
Chapter 2
Hydrodynamic Principles

2.1 General

The hydrostatic phenomenon is simplified by the absence of shear stress within the
fluid and in contact with the solid boundary. In contrast, the hydrodynamic phe-
nomenon becomes rather complex. As the fluid flows over a solid boundary,
whether stationary or moving, the fluid velocity in contact with the boundary must
be the same as that of the boundary, termed no-slip. Thus, a velocity gradient is
created over the boundary, as the fluid velocity increases with the normal distance
from the boundary. The resulting differential velocity normal to the boundary
gives rise to the shear stress within the fluid and on the boundary, as already
discussed in Newton’s law of viscosity, Eq. (1.3). Fluid flows as a result of the
action of forces set up by the pressure difference or the gravity. Fluid motion is
controlled by the inertia of fluid and the effect of the shear stress exerted by the
surrounding fluid. Therefore, the resulting fluid motion cannot be easily analyzed
theoretically; and the theories are often essentially supplemented by the experi-
ments. The fluid motion can be defined in the following ways:

The path traced by an individual fluid particle over a period of time is known as
pathline, which describes the trajectory (position at successive intervals of time) of
a particle that started from a given position. On the other hand, streakline provides
an instantaneous picture of the positions of all the particles which have passed
through a particular point at a given time. Streakline is therefore the locus of points
of all the fluid particles that have passed continuously through a particular spatial
point in the past. Since the flow characteristics may vary from instant to instant, a
streakline is not necessarily the same as a pathline.

In analyzing a fluid flow, one often makes use of the idea of a streamline, which
is an imaginary line whose tangents at every point along the imaginary line rep-
resent velocity vectors at that moment. It implies that at a given instant, there is no
flow across the streamline. Since there can be no flow through a solid boundary,
the streamline in contact with or nearest to the solid boundary is known as limiting
streamline. Let us consider a particle moves in the direction of the streamline at
any instant; it has a displacement ds having components dx, dy, and dz and the
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velocity vector v having components u, v, and w in the x-, y-, and z-direction,
respectively. Then, the equation of streamline is

dx

u
¼ dy

v
¼ dz

w
ð2:1Þ

For a continuous stream of fluid, streamlines are continuous lines extending to
infinity upstream and downstream or forming closed curves, but they cannot
intersect. When flow conditions are steady and laminar, then the pathlines and the
streamlines are identical; however, if the flow is fluctuating or turbulent, this is not
the case. A family of streamlines through every point on the perimeter of a small
area of the fluid flow cross section forms a streamtube (Fig. 2.1). Since there is no
flow across a streamline, no fluid can enter or leave a streamtube except through its
ends. It thus behaves as if it were a solid tube.

The Lagrangian approach of the fluid flow is the method of looking at fluid
motion, where the observer follows an individual fluid particle as it moves through
space and time. To illustrate its use, let (xA(x0, y0, z0, t), yA(x0, y0, z0, t), zA(x0, y0,
z0, t)) be the position at an instant t of a fluid particle that had an initial position (x0,
y0, z0) at time t0. Hence, by definition, xA(x0, y0, z0, t = t0) = x0(x0, y0, z0). The
velocity components are given by

uðx0; y0; z0; tÞ � lim
Dt!0

xAðx0; y0; z0; t0 þ DtÞ � xAðx0; y0; z0; t0Þ
Dt

¼ lim
Dt!0

xA � x0

Dt
¼ oxAðx0; y0; z0; tÞ

ot

vðx0; y0; z0; tÞ ¼
oyAðx0; y0; z0; tÞ

ot

wðx0; y0; z0; tÞ ¼
ozAðx0; y0; z0; tÞ

ot

9
>>>>>>>>>>=

>>>>>>>>>>;

ð2:2Þ

In the above, Dt = t - t0. The partial derivatives signify that the differentiation
is performed keeping initial position (x0, y0, z0) fixed. Then, the acceleration
components are given by

Fig. 2.1 Streamtube, where
curved lines with arrows
represent streamlines. The
two arrows tangential to the
lowest streamline show the
velocity vectors at those
points
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axðx0; y0; z0; tÞ ¼
ouðx0; y0; z0; tÞ

ot
¼ o2xAðx0; y0; z0; tÞ

ot2

ayðx0; y0; z0; tÞ ¼
ovðx0; y0; z0; tÞ

ot
¼ o2yAðx0; y0; z0; tÞ

ot2

azðx0; y0; z0; tÞ ¼
owðx0; y0; z0; tÞ

ot
¼ o2zAðx0; y0; z0; tÞ

ot2

9
>>>>>>>=

>>>>>>>;

ð2:3Þ

On the other hand, the Eulerian approach of the fluid flow is the method of
looking at fluid motion that focuses on specific locations in the space through
which the fluid flows, as over the time. To describe velocity components, it is
written as

u ¼ uðx; y; z; tÞ
v ¼ vðx; y; z; tÞ
w ¼ wðx; y; z; tÞ

9
>=

>;
ð2:4Þ

Then, to determine the acceleration, having known that as the acceleration
means the rate of change of velocity of a fluid particle at a position while noting
that the particle moves from that position at the time it is being studied, the
acceleration component in x-direction is

ax ¼ lim
Dt!0

Duðxþ uDt; yþ vDt; zþ wDt; t þ DtÞ
Dt

¼ u
ou

ox
þ v

ou

oy
þ w

ou

oz
þ ou

ot

ay ¼ u
ov

ox
þ v

ov

oy
þ w

ov

oz
þ ov

ot

az ¼ u
ow

ox
þ v

ow

oy
þ w

ow

oz
þ ow

ot

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð2:5Þ

Note that the first three terms in the right-hand side of Eq. (2.5) are referred to
as convective acceleration (also occasionally called advective acceleration) and
the last terms in the right-hand side of Eq. (2.5) are the local acceleration (also
occasionally called temporal acceleration).1 The convective terms are quadratic in
the velocity components and hence they are nonlinear. This introduces the major
complexity in having the solution of the equations of fluid motion. On the other
hand, as the Lagrangian approach does not have nonlinearity, one might thought
that it could be relatively convenient to use. This is, however, not the case, as the

1 Convective acceleration is the acceleration of fluid due to space at a given time, while the local
acceleration is the acceleration of fluid due to time at a given spatial location.
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internal force terms due to viscosity introduced by the Newton’s laws become
nonlinear in the Lagrangian approach. Further, the physical laws, such as the
Newton’s laws and the laws of conservation of mass and energy, apply directly to
each particle in the Lagrangian approach. However, the fluid flow is a continuum
phenomenon, at least down to the molecular level. It is not possible to track each
particle in a complex flow field. Thus, the Lagrangian approach is rarely used in
hydrodynamics.

In the Eulerian approach, individual fluid particles are not tracked; instead, a
control volume is defined. The flow parameters are described as fields within the
control volume, expressing them as a function of space and time. Hence, one is not
concerned about the location or velocity of a particular fluid particle, but rather
about the velocity, acceleration, etc. of whatever particle happens to be at a par-
ticular location and at a given time. Since the fluid flow is a continuum phe-
nomenon, the Eulerian approach is usually preferred in hydrodynamics.
Notwithstanding that the physical laws, such as the Newton’s laws and the laws of
conservation of mass and energy, apply directly to particles in a Lagrangian
approach, some transformations or reformulations of these laws are required for
the use with the Eulerian approach.

2.2 Rates of Deformation

In a fluid flow, if the fluid elements do not undergo rotation as it flows, then the
flow is called irrotational. In consideration of a frictionless or ideal fluid flow, no
shear stresses act on the surface of the elements. Only normal stresses or pressures
act following the Pascal’s law. Then, the resultant of all surface forces acting on
the element should pass through the centroid of the element irrespective of its
shape. As a result , there can be no turning moment on the element and it remains
in the same orientation at all its locations provided the element remains undis-
turbed initially. On the other hand, rotation of elements is inevitable, where vis-
cous forces come into play. In a real fluid flow, a fluid element gets distorted as it
moves. Note that distortion is not always rotation which is identified by the change
in orientation of the diagonal or the axis of the element. An element may, however,
get distorted without undergoing rotation or vice versa. A fluid element can
undergo four types of motion or deformation: (1) translation, (2) rotation, (3)
extensional strain, and (4) shear strain. These types of motion are time dependent.

Consider a rectangular fluid element ABCD at time t and then after elapsing a
small interval of time dt, the element undergoes four types of motion to become
A0B0C0D0 at time t + dt, as shown in Fig. 2.2. The translation is defined by the
displacement udt and vdt of the corner B. The rotation of the diagonal BD is
expressed as xzdt = h + da - 45�, where xz denotes the angular velocity or rate
of rotation about an axis parallel to z-axis.
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Using the summation of angles 2h + da + db = 90� yields

xzdt ¼ 1
2
ðda� dbÞ ð2:6Þ

Referring to Fig. 2.2, da and db are expressed as

da ¼ lim
dt!0

arc tan

ov

ox
dxdt

dxþ ou

ox
dxdt

0

B
@

1

C
A �

ov

ox
dt ð2:7aÞ

db ¼ lim
dt!0

arc tan

ou

oy
dydt

dyþ ov

oy
dydt

0

B
B
@

1

C
C
A �

ou

oy
dt ð2:7bÞ

Substituting Eqs. (2.7a, b) into Eq. (2.6), the rate of rotation or angular velocity
about z-axis is obtained as

xz ¼
1
2

ov

ox
� ou

oy

� �

ð2:8Þ
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Fig. 2.2 Deformation of a moving fluid element
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Similarly, the rates of rotation about x- and y-axis are

xx ¼
1
2

ow

oy
� ov

oz

� �

;xy ¼
1
2

ou

oz
� ow

ox

� �

ð2:9Þ

Note that if the rates of rotational components vanish, then the flow is irrota-
tional, for which the conditions are

xx ¼ xy ¼ xz ¼ 0) ow

oy
¼ ov

oz
;

ou

oz
¼ ow

ox
;

ov

ox
¼ ou

oy
ð2:10Þ

The vorticity is the tendency of a fluid element to spin. The components of
vorticity in three dimensions are expressed as follows:

Xx ¼ 2xx ¼
ow

oy
� ov

oz

� �

; Xy ¼ 2xy ¼
ou

oz
� ow

ox

� �

; Xz ¼ 2xz ¼
ov

ox
� ou

oy

� �

ð2:11Þ

The circulation is the line integral around a closed curve of the fluid velocity
(Fig. 2.3). It can be considered as the amount of push along a closed boundary or
path. Thus, it provides an estimation of the strength of the rotational flow. Cir-
culation can be related to the vorticity by the Stokes theorem as

C ¼
I

C

u � dl ¼
Z Z

A

XdA ð2:12Þ

where dl is the linear increment along the contour C and A is the area within the
contour.

The components of circulation in three dimensions are expressed as follows:

Cx ¼
Z

y

Z

z

ow

oy
� ov

oz

� �

dydz; Cy ¼
Z

z

Z

x

ou

oz
� ow

ox

� �

dzdx;

Cz ¼
Z

x

Z

y

ov

ox
� ou

oy

� �

dxdy

ð2:13Þ
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Fig. 2.3 Definition sketch
for fluid circulation
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The two-dimensional shear strain rate is generally defined as the average
decrease in angle between two lines which are initially perpendicular to each other
before the strained state. Taking AB and BC as initial lines (Fig. 2.2), the shear
strain rate is

exy ¼
1
2

da
dt
þ db

dt

� �

¼ 1
2

ov

ox
þ ou

oy

� �

ð2:14Þ

Similarly, other components of shear strain rate are

eyz ¼
1
2

ow

oy
þ ov

oz

� �

; ezx ¼
1
2

ou

oz
þ ow

ox

� �

ð2:15Þ

The extensional strain in x-direction is defined as the fractional increase in
length of horizontal side of the element. The normal strain rate in x-direction is

exxdt ¼ 1
dx

dxþ ou

ox
dxdt

� �

� dx

� �

¼ ou

ox
dt) exx ¼

ou

ox
ð2:16Þ

Similarly, other components of normal strain rate are

eyy ¼
ov

oy
; ezz ¼

ow

oz
ð2:17Þ

2.3 Conservation of Mass

Except in the relativistic processes (E = mc2, where E is the energy, m is the mass
of the matter, and c is the speed of the light) after Albert Einstein in 1905, matter is
neither created nor destroyed. This principle of conservation of mass can be
applied to the fluid flow.

Considering an enclosed region in the flow constituting a control volume (CV)
(Fig. 2.4), the equation of conservation of mass can be written in terms of mass
flux as

Mass flux entering ¼ Mass flux leaving

þ Change of mass in the CV per unit time
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For the steady flow, there is no change of mass of fluid in the CV and the
relation reduces to

Mass flux entering ¼ Mass flux leaving

Applying this principle to a steady flow in a streamtube (Fig. 2.5) having an
elementary cross-sectional area, through which the velocity to be considered as
constant across the cross section, since there can be no flow across the wall of a
streamtube, the conservation of mass for the region between sections 1 and 2 is

q1u1dA1 ¼ q2u2dA2 ¼ d _m ¼ constant ð2:18Þ

The mass influx or mass entering per unit time at section 1 equals the mass
efflux or mass leaving per unit time at section 2. In Fig. 2.5, u is the velocity
through the elementary cross-sectional area dA, q is the mass density of fluid and
the subscripts denote sections. Therefore, for a steady flow, it implies that the mass
flow rate, termed mass flux d _m, across any cross section of the elementary
streamtube is constant. This is known as the continuity equation for the com-
pressible fluid flow through an elementary streamtube. Therefore, the continuity
equation of the fluid flow for the entire cross section of the streamtube can be
obtained integrating Eq. (2.18) as

q1U1A1 ¼ q2U2A2 ¼ _m ¼ constant ^ U ¼ 1
A

Z

A

udA ð2:19Þ

Control volume

Mass of fluid entering

Mass of fluid leaving

Fig. 2.4 Control volume in a fluid flow
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Fig. 2.5 Definition sketch
for the fluid flow through a
streamtube showing an
elementary streamtube
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where U is the average velocity through the cross-sectional area A.
If the fluid is incompressible, then q1 = q2 = q; and Eq. (2.19) reduces to

U1A1 ¼ U2A2 ¼ Q ¼ constant ð2:20Þ

where Q is the discharge or volume rate of flow.

2.3.1 Continuity Equation in Three Dimensions

Differential mode of continuity equation is used to analyze two- and three-
dimensional flows. To derive three-dimensional continuity equation of fluid flow, a
control volume element of fluid dxdydz, having a mass density q, with a center at
(x, y, z) in a Cartesian coordinate system is considered (Fig. 2.6). The velocity
components in x-, y- and z-direction are u, v, and w, respectively. The mass influx
of fluid flow through the back face of the control volume by advection in the x-
direction is given by

qu� o

ox
ðquÞ � dx

2

� �

dydz

In the above expression, the first term, qudydz, is the mass influx through
the central plane normal to the x-axis, as shown by the broken line in Fig. 2.6.
The second term, [q(qu)/qx](dx/2)dydz, is the change of mass flux with respect
to distance in x-direction multiplied by the distance dx/2 to the back face.
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Fig. 2.6 Definition sketch for the derivation of three-dimensional continuity equation of fluid
flow in a control volume element
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Similarly, the mass efflux through the front face of the control volume in
x-direction is given by

quþ o

ox
ðquÞ � dx

2

� �

dydz

Therefore, the net mass flux out in x-direction through these two faces is
obtained as

o

ox
ðquÞdxdydz

The other two directions yield similar expressions; and hence, the net mass flux
out of the control volume is

o

ox
ðquÞ þ o

oy
ðqvÞ þ o

oz
ðqwÞ

� �

dxdydz

From the concept of conservation of mass, the net mass flux out of the
control volume plus the rate of change of mass in the control volume, given by
(qq/qt)dxdydz, equals the rate of production of mass in the control volume, which
is zero, by definition of the conservation of mass. Thus, the three-dimensional
continuity equation of fluid flow is given by

o

ox
ðquÞ þ o

oy
ðqvÞ þ o

oz
ðqwÞ ¼ � oq

ot
ð2:21Þ

which must hold for every point in the flow of a compressible fluid. For incom-
pressible fluid flow (q = constant), Eq. (2.21) simplifies to

ou

ox
þ ov

oy
þ ow

oz
¼ 0 ð2:22Þ

The kinematic relation in terms of the components of normal strain rate can be
obtained using Eqs. (2.16) and (2.17) into Eq. (2.22). It is

exx þ eyy þ ezz ¼ 0 ð2:23Þ

Thus, the sum of the components of normal strain rate vanishes to satisfy the
continuity. If Eq. (2.22) reduces to only two terms, regardless of the coordinate
system, a useful device is to introduce the so-called stream function w, defined so
as to satisfy the continuity identically. For example, for two-dimensional incom-
pressible flow in xz plane, the continuity equation (Eq. 2.22) reduces to
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ou

ox
þ ow

oz
¼ 0 ð2:24Þ

If the stream function is defined as w such that

u ¼ ow
oz
; w ¼ � ow

ox
ð2:25Þ

By direct substitution of Eq. (2.25), Eq. (2.24) is satisfied identically, assuming
that the w is continuous to the second-order derivatives. The stream function has a
useful physical significance:

dw ¼ ow
ox

dxþ ow
oz

dz ¼ �wdxþ udz) w ¼ �
Z

wdxþ
Z

udz ð2:26Þ

Equation (2.26) implies that the line of constant w(dw = 0) is the line across
which no flow takes place; that means it is a streamline. However, the difference
between the values of stream functions w1 and w2 of two neighboring streamlines
is numerically equal to the flow rate per unit width (denoted by Dq) between those
two streamlines.

w2 � w1 ¼ Dq ð2:27Þ

It is illustrated in Fig. 2.7, where the flow rate across section AB is dw
explaining now the flow across the two streamlines dw = Dq = -wdx + udz.

2.3.2 Continuity Equation for Open-Channel Flow

The continuity equation of unsteady flow in open channel states that the difference
of mass influx into and mass efflux out of the control volume must be equal to the
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Fig. 2.7 The stream function
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rate of increase in fluid mass within the control volume. In Fig. 2.8, the initial free
surface is shown by the solid lines, while the final free surface after a small interval
of time dt is shown by the dotted lines. The flow is analyzed through a space
between two sections having an elementary distance dx apart to form a control
volume. The flow in the channel is fed laterally with a uniform flow rate qL. Note
that qL may also arise in the form of seepage flow (injection) normal to the wetted
perimeter of the channel. The mass influx in time dt into the control volume is

qUAdt
|fflfflffl{zfflfflffl}
Main flow

þ qqLdxdt
|fflfflfflffl{zfflfflfflffl}
Lateral flow

where U is the area-averaged flow velocity through left section and A is the flow
area of the left section.

The mass efflux in time dt out of the control volume is

qðU þ dUÞðAþ dAÞdt) q U þ oU

ox
dx

� �

Aþ oA

ox
dx

� �

dt

where U + dU is the area-averaged flow velocity through right section and
A + dA is the flow area of the right section. Note that dU = (qU/qx)dx and
dA = (qA/qx)dx.
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ρStorage after dt =

ρqLdxdt 
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Fig. 2.8 Continuity of an unsteady flow in an open channel
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The rate of increase in fluid mass in time dt within the control volume is

qT
oh

ot
dtdx

where T is the top width of the flow and h is the initial flow depth.
The continuity of flow in an open channel is therefore given by

qUAdt þ qqLdxdt � q U þ oU

ox
dx

� �

Aþ oA

ox
dx

� �

dt ¼ qT
oh

ot
dtdx ð2:28Þ

Simplifying,

U
oA

ox
þ A

oU

ox
þ T

oh

ot
¼ qL ð2:29Þ

Using Q = UA and qA = Tqh at a given section, Eq. (2.29) becomes

oQ

ox
þ oA

ot
¼ qL ð2:30Þ

Further, using hydraulic depth hd = A/T and qA = Tqh at a given section,
Eq. (2.29) can be given as

U
oh

ox
þ hd

oU

ox
þ oh

ot
¼ qL

T
ð2:31Þ

Equations (2.30) and (2.31) are the two different forms of the continuity
equation for an unsteady flow in open channels. For a rectangular channel with no
lateral flow (qL = 0), Eq. (2.30) reduces to

oq

ox
þ oh

ot
¼ 0 ð2:32Þ

where q is the discharge per unit width (=Uh). This equation was first introduced
by de Saint-Venant (1871).

2.4 Conservation of Momentum

The momentum equation is a statement of Newton’s second law of motion and
relates the sum of the forces acting on a fluid element to its acceleration or the rate
of change of momentum in the direction of the resultant force. The change of
momentum flux in the control volume is obtained from the difference between the
momentum efflux and the momentum influx in the control volume. Let us consider
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a simple case of flow through a streamtube, as shown in Fig. 2.9, denoting the flow
parameters with subscripts 1 and 2 at the entrance and the exit, respectively. The
rate of change of momentum in the horizontal direction according to Newton’s
second law of motion is caused a horizontal force component Fx, such that

Fx ¼ q2A2U2u2 � q1A1U1u1 ¼ _mðu2 � u1Þ ^ q1A1U1 ¼ q2A2U2 ¼ _m

ð2:33Þ

The value of Fx is positive in the direction in which u is assumed to be positive.
Similarly, in three dimensions, Fy and Fz can be given as follows:

Fy ¼ _mðv2 � v1Þ; Fz ¼ _mðw2 � w1Þ ð2:34Þ

To summarize the position, the total force exerted on the fluid in a control
volume in a given direction equals the rate of change of momentum in the given
direction of the fluid passing through the control volume. Therefore,

F ¼ _mðUout � UinÞ ð2:35Þ

The nonuniform distribution (variation with the vertical distance) of velocity
affects the computation of momentum in the flow based on the area-averaged
velocity U (=Q/A). The actual and the area-averaged velocity distributions are
illustrated in Fig. 2.10. Based on the area-averaged velocity, the momentum flux
of the fluid passing through a section is expressed as b _mU, where b is known as
the momentum coefficient or Boussinesq coefficient. The equation balancing the
momentum flux calculated from the actual velocity distribution and that obtained
from the area-averaged velocity corrected by b is used to determine momentum
coefficient b as

Z

A

ðqudA � uÞ ¼ b _mU )
Z

A

qu2dA ¼ bqU2A ð2:36Þ
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Fig. 2.9 Control volume as a
streamtube with influx and
efflux normal to the control
sections
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where u is the velocity through an elementary area dA. Solving for b yields

b ¼ 1
A

Z

A

u2

U2
dA ð2:37Þ

In straight prismatic channels, b roughly varies from 1.01 to 1.12 (Chow 1959).

2.4.1 Momentum Equation in Three Dimensions

2.4.1.1 Equations of Motion for Inviscid Flow (Euler Equations)

In Euler equations of motion, the resultant force on a fluid element equals the
product of the fluid mass and its acceleration, acting in the direction of the
resultant. A control volume element of fluid dxdydz, having a mass density q, with
a center at (x, y, z) in a Cartesian coordinate system is considered (Fig. 2.11).
Assuming that the fluid is inviscid (frictionless), the contact forces are pressure
forces acting normally on the faces of the element. The pressure intensity at the
center of the element is p. Let the component of the body force per unit mass in the
x-direction be gx. The extraneous force in the x-direction acting on the element is
gxqdxdydz. The net force in the x-direction is then

Fx ¼ p� op

ox
� dx

2

� �

dydz� pþ op

ox
� dx

2

� �

dydzþ gxqdxdydz

¼ � op

ox
þ gxq

� �

dxdydz ð2:38Þ

dA 
u
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Q = UA 

Fig. 2.10 Velocity distribution and area-averaged velocity in an open-channel flow
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According to Newton’s second law of motion, the net force Fx in x-direction
equals the product of the mass and acceleration, that is, (qdxdydz)ax. Hence, using
Eq. (2.5) into Eq. (2.38) yields
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Similarly,
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where gy and gz are the body forces per unit mass in y- and z-direction, respec-
tively. Equations (2.39)–(2.41) are known as the Euler equations of motion.

2.4.1.2 Equations of Motion for Viscous Flow (Navier–Stokes
Equations)

Stress Components in Cartesian Coordinates: Nine stress components, as shown in
Fig. 2.12, are acting on the faces of the three-dimensional fluid element, whose
each face is normal to the coordinate axis of a Cartesian coordinate system. The
normal stresses are denoted by r, considering positive in the outwards and having
a subscript to indicate its direction according to the axis. The effects of viscosity
are to cause shear or tangential stresses in the fluid. The shear stresses are denoted
by s, having first subscript to indicate the direction of the normal to the plane over
which the stress acts and the second subscript to indicate the direction.
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Fig. 2.11 Forces acting on a fluid element in x-direction
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Let the moment be taken about an axis through the center of the element
parallel to the z-axis to show that

sxydydz
|fflfflffl{zfflfflffl}
Shear force

dx� syxdxdz
|fflfflffl{zfflfflffl}
Shear force

dy ¼ 0) sxy ¼ syx ð2:42Þ

Similarly,

syz ¼ szy; szx ¼ sxz ð2:43Þ

Hence, the stress components that define the state of stress at a point can be
conveniently written in a matrix format as

rx sxy sxz

syx ry syz

szx szy rz

Equations of Motion in Terms of Stress Components: Referring to Fig. 2.13, the
shear stresses are included in the equations of motion. Let the stress components at
the center (x, y, z) of the fluid element be sxy, syz, szx, rx, ry, and rz that follow
above matrix. Accordingly, the stresses are obtained on six faces of the fluid
element shifting the positions by a distance of one half of the length of the
element.

According to Newton’s second law of motion, the product of the mass and
acceleration of the element, that is, (qdxdydz)ax, equals the summation of the
forces (net force) acting on the element in the x-direction. Thus,
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Fig. 2.12 Stress components on a fluid element in Cartesian coordinates
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Dividing both sides of Eq. (2.44) by the element mass, qdxdydz, and taking the
limit as the element reduces to a point, that is, dxdydz ? 0, the general form of
equations of motion in three dimensions can be written using Eqs. (2.5) and (2.44) as
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In Newtonian fluid, both the normal and the shear stress components are related
to the velocity gradients so that the viscous stresses are proportional to the shear
strain rates. The normal stresses can be defined in terms of a linear deformation by
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Fig. 2.13 Stress components on a fluid element in x-direction
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the dynamic viscosity l (=tq, where t is the coefficient of kinematic viscosity) and
a second viscosity lS to account for the volumetric deformation, defined as the
sum of the velocity gradients or the components of normal strain rate along each of
the three coordinate axes (Streeter 1948). The normal stresses are as follows:
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In a three-dimensional case, extending the Newton’s law of viscosity, the
components of shear stress are
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The effect of the second viscosity lS is of secondary importance being small in
practice. A good approximation is to set

lS ¼ �2l=3

that is, the Stokes hypothesis; and the pressure may be seen to be the average from
Eqs. (2.46a–c) as

p ¼ � 1
3
ðrx þ ry þ rzÞ ð2:48Þ

As an exemplar, using Eqs. (2.46a), (2.47) and (2.48) into Eq. (2.45a) and
applying the Stokes hypothesis, the equation of motion in x-direction is
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where

r2 ¼ o2
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Similarly,
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For unsteady and incompressible flow, by reference to the continuity equation
(Eq. 2.22), Eqs. (2.49) and (2.50a, b) reduce to
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The above equations are known as the equations of motion for viscous fluid flow
or the Navier–Stokes equations. These equations in other coordinate systems are
given in Appendix (Sect. 2.9).

2.4.2 Momentum Equation for Open-Channel Flow

2.4.2.1 Momentum Equation for Gradually Varied Steady Flow

A gradually varied steady flow through an open channel, whose bed is inclined at
an angle h with the horizontal, is considered. Figure 2.14 shows the forces acting
on the flow within the control volume between sections 1 and 2. The application of
Newton’s second law of motion, in a one-dimensional flow case, to this control
volume along the streamwise direction is made equating the resultant of all the
external forces acting on the fluid body with the rate of change of momentum in
the flowing fluid body. Thus,

F1 � F2 þ FW sin h� Ff ¼ qQðb2U2 � b1U1Þ ð2:52Þ

where F1 and F2 are the resultants of the hydrostatic pressure forces in the
direction of flow acting at sections 1 and 2, respectively, Fw is the weight of the
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fluid within the control volume, Ff is the total external force due to frictional
resistance acting along the contact surface between the fluid and the channel
boundary, Q is the total flow discharge, U1 and U2 are the area-averaged flow
velocities at sections 1 and 2, respectively, and b1 and b2 are the momentum
coefficients at sections 1 and 2, respectively.

Assuming h to be small or a horizontal bed (h & 0), Ff to be negligible for a
short reach of a prismatic channel and also b1 = b2 = 1, Eq. (2.52) reduces to

F1 � F2 ¼ qQðU2 � U1Þ ð2:53Þ

The resultants of the hydrostatic pressure forces in the streamwise direction
(that is, the horizontal direction for h & 0) acting on the plane flow areas A1 and
A2 are expressed as

F1 ¼ qgzc1A1; F2 ¼ qgzc2A2 ð2:54Þ

where g is the acceleration due to gravity, and zc1 and zc2 are the distances to the
centroid of respective flow areas A1 and A2 from the free surface. Substituting
U1 = Q/A1, U2 = Q/A2, and Eq. (2.54) into Eq. (2.53) yields

Q2

gA1
þ zc1A1 ¼

Q2

gA2
þ zc2A2 ð2:55Þ
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Fig. 2.14 Momentum principle applied to a gradually varied steady flow in an open channel.
Forces acting on a control volume are shown
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The left-hand and right-hand sides of Eq. (2.55) are analogous and therefore
may be expressed by a general momentum or force function for any flow cross
section as

M ¼ Q2

gA
þ zcA ð2:56Þ

The first term of the right-hand side of Eq. (2.56) represents the momentum flux
passing through the channel section per unit weight of fluid, and the second term is
the force per unit weight of fluid. The sum of these two terms is called specific
force and is denoted by M.

To illustrate the variation of specific force M with flow depth h given by
Eq. (2.56), the specific force diagram [that is, M(h) curve] for a given rectangular
channel having width of 2 m carrying a flow discharge of 0.3 m3 s-1 is drawn as
shown in Fig. 2.15a. The M(h) curve has two limbs, AC and BC. The lower limb AC
asymptotically approaches the abscissa, while the upper limb BC rises upwards and
extends indefinitely to the right. Thus, for a given value of specific force M (say
M = 0.2 m3 of water as shown in Fig. 2.15), the M(h) curve predicts two possible
flow depths, a low stage h1 (=0.023 m) and a high stage h2 (=0.436 m). These depths
are termed sequent depths. For instance, h1 is the sequent depth of h2 and vice versa.
However, at point C on the M(h) curve, the two depths merge and the specific force
becomes a minimum [Mmin(hc = 0.132 m) = 0.052 m3, where hc is the critical
depth], termed critical flow condition. Mathematically, the minimum value of the
specific force can be obtained from Eq. (2.56) by taking the first derivative of M with
respect to h and setting the resulting expression equal to zero. Thus,
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gA2
� dA

dh
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ðzcAÞ ¼ 0 ð2:57Þ

Referring to Fig. 2.15b, note that for a change in flow depth dh, the corre-
sponding change of the moment of the flow area, d(zcA), can be obtained as

dðzcAÞ ¼ ðzc þ dhÞAþ TðdhÞ2
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Using Eq. (2.58a) or Eq. (2.58b), T = dA/dh, U = Q/A, and hd = A/T into
Eq. (2.57) yields

U2
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2g
¼ hd

2
) Frc ¼

Uc
ffiffiffiffiffiffiffi
ghd

p
� �

¼ 1 ð2:59Þ

where Fr is the flow Froude number and subscript ‘‘c’’ refers to the quantity for the
critical condition. The above equation provides the criterion for the critical flow,
which states that at the critical flow condition, the velocity head is equal to half the
hydraulic depth or the flow Froude number is unity. In conclusion, at the critical
flow condition, the specific force is a minimum for a given discharge, and the
corresponding flow depth is termed critical depth, hc. More discussion on critical
flow is available in Sect. 2.5.1.

2.4.2.2 Momentum Equation for Gradually Varied Unsteady Flow

One can proceed to obtain equations describing an unsteady open-channel flow
considering a control volume with a short reach of dx (Fig. 2.16). The bed is
inclined at an angle h with the horizontal. Applying Newton’s second law of
motion in the streamwise direction (x-direction), one gets

pA� pAþ oðpAÞ
ox

dx

� �

þ FW sin h� Ff ¼ max ^ ax ¼ U
oU

ox
þ oU

ot
ð2:60Þ

where m is the mass of the fluid element (=qAdx). Using the expressions for the
weight of fluid in the control volume FW = qgAdx, the bed frictional resistance
Ff = s0Pdx, m, and ax into Eq. (2.60) yields
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where s0 is the bed shear stress and P is the wetted perimeter of the channel. For a
small bed slope (h = small), one can assume sinh & tanh = -qz/qx = S0 (say).
Dividing both sides of Eq. (2.61) by the weight of fluid, qgAdx, in the control
volume and rearranging, one gets
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where Sf is the friction slope and Rb is the hydraulic radius (=A/P). The first term
of the left-hand side of Eq. (2.62) can be expressed in a more general way as
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Then, Eq. (2.62) becomes

Sf ¼ S0|fflfflfflffl{zfflfflfflffl}
Kinematic

Uniform flow

� oh

ox

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Diffusive

�U

g
� oU

ox

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Quasi�steady

Steady�nonuniform flow

� 1
g
� oU

ot

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dynamic

Unsteady�nonuniform flow

ð2:64Þ

This equation is called the general dynamic equation for gradually varied
unsteady flow. It is applicable as indicated in Eq. (2.64). It shows how nonuniformity
and unsteadiness contribute to the equation of motion. Equation (2.64), also called de
Saint-Venant equation, was first introduced by de Saint-Venant (1871).

2.4.2.3 Momentum Equation for Steady Uniform Flow

Referring to Fig. 2.17, for a steady uniform flow, F1 = F2 and U1 = U2 = U.
Then, Eq. (2.52) reduces to

FW sinh� Ff ¼ 0 ð2:65Þ

Using FW = qgAL, Ff = s0PL, and sinh = S0 yields

qgALS0 � s0PL ¼ 0 ð2:66Þ

Experiments revealed that the bed shear stress s0 is a function of dynamic
pressure, kfqU2/2, where kf is a friction parameter. Hence, rearranging Eq. (2.66)
yields
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Fig. 2.17 Definition sketch
for a steady uniform flow
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U ¼ CRðRbS0Þ0:5 ^ CR ¼
2g

kf

� �0:5

ð2:67Þ

where CR is the Chézy coefficient. The above equation, that defines the flow
resistance, is called the Chézy equation, which is applicable for uniform flow in
open channels. The flow depth in uniform flow is called normal flow depth and is
denoted by h0.

However, the most widely used flow resistance equation for steady uniform
flow is the Manning equation. It is

U ¼ 1
n

R2=3
b S0:5

0 ð2:68Þ

where n is Manning roughness coefficient. Note that the Manning equation is an
empirical equation.

2.5 Conservation of Energy

An element of fluid, as shown in Fig. 2.18, acquires the potential energy due to its
elevation z above the datum and the kinetic energy due to its velocity U.

If weight of the element is w, then the potential energy is wz. Thus,

potential energy per unit weight ¼ z ð2:69Þ

Then, the kinetic energy is wU2/(2g). Thus,

kinetic energy per unit weight ¼ U2

2g
ð2:70Þ

A steady fluid flow also does work due to hydrostatic pressure force acting on
the cross section of fluid, as the fluid flows. If the hydrostatic pressure p acting at
the section 1–1 having a cross-sectional area A, then the pressure force exerted on
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Fig. 2.18 Definition sketch
for the derivation of energy
equation of fluid flow
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1–1 is pA. The section 1–1 moves to 2–2 after a weight of fluid w transported along
the streamtube. Then, the volume of fluid passing through the section 1–1 is
w/(qg). The distance between 1–1 and 2–2 is w/(qgA). The pressure energy or the
work done by the pressure is pA 9 w/(qgA) = pw/(qg). Therefore,

pressure energy per unit weight ¼ p

qg
ð2:71Þ

Equations (2.69)–(2.71) together represent the total energy per unit weight H in
the fluid flow.

Each of the equations has the dimension of a length, called the head; and they
are often referred to as the hydrostatic or piezometic pressure head, p/(qg); the
velocity head, U2/(2g); the potential head, z; and the total head, H. Therefore, for a
steady flow of an inviscid fluid along a streamline, the energy equation is as
follows:

p

qg
þ U2

2g
þ z ¼ H ð2:72Þ

This equation is also commonly called Bernoulli’s equation. Interestingly,
Bernoulli derived it from the integration of the Euler equation along a streamline
containing same terms as in Eq. (2.72).

The nonuniform distribution (variation with the vertical distance) of velocity
affects the computation of kinetic energy in the flow based on the area-averaged
velocity U (=Q/A). Figure 2.10 illustrates the nonuniform and area-averaged
velocity distributions and was already used in the context of momentum calcu-
lation. Based on the area-averaged velocity, the kinetic energy flux of the fluid
passing through a section is expressed as a _mU2/2, where a is known as the energy
coefficient or Coriolis coefficient. The equation balancing the kinetic energy flux
calculated from the actual velocity distribution and that obtained from the area-
averaged velocity corrected by a is used to determine energy coefficient a as
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Solving for a yields

a ¼ 1
A

Z

A

u3

U3
dA ð2:74Þ

In straight prismatic channels, a varies approximately from 1.03 to 1.36 (Chow
1959).
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2.5.1 Energy Equation for Open-Channel Flow

Figure 2.19 illustrates the energy heads in a gradually varied steady flow in
an open channel, whose bed is inclined at an angle h with the horizontal. In an
open-channel flow, the free surface represents the hydrostatic pressure head,
provided there is no curvilinearity in the streamlines in the flow. It implies that
p/(qg) = hcosh, where h is the flow depth. Considering a suitable datum, the
Bernoulli’s equation is applied to the flow section 0–0, and the total energy head
H is given by

zþ h cos hþ a
U2

2g
¼ H ð2:75Þ

where a is the energy coefficient, U is the area-averaged velocity, and z is the
elevation of the channel bottom above the datum. It is pertinent to mention that as
the velocity distribution along the vertical distance varies, the velocity head, which
is based on the constant velocity distribution U, that is truly identical for all points
across the flow section, is corrected by a.

According to Bernoulli’s equation, the total energy head at the upstream sec-
tion 1 should be equal to the total energy head at the downstream section 2 plus
the loss of energy head hf between the two sections (Fig. 2.19). Thus,
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Fig. 2.19 Definition sketch for the derivation of energy equation of a gradually varied steady
flow in an open channel
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z1 þ h1 cos hþ a1
U2

1

2g
¼ z2 þ h2 cos hþ a2

U2
2

2g
þ hf ð2:76Þ

This is the energy equation for gradually varied flow in an open channel.
Assuming h to be small or a horizontal bed (cos h & 1) and hf to be negligible for
a short reach of a prismatic channel and also a1 = a2 = 1, Eq. (2.76) becomes

z1 þ h1 þ
U2

1

2g
¼ z2 þ h2 þ

U2
2

2g
¼ constant ð¼HÞ ð2:77Þ

Either of the above equations is known as the energy equation for open-channel
flow.

2.5.1.1 The Specific Energy

Specific energy at a channel section is defined as the total energy head or the total
energy per unit weight of the flow at the section with respect to the channel
bottom. It means z = 0 in Eq. (2.75). Therefore, for a given channel section, the
specific energy, denoted by E, is

E ¼ h cos hþ a
U2

2g
ð2:78Þ

For h to be small and a & 1 (for simplicity), Eq. (2.78) becomes

E ¼ hþ U2

2g
ð2:79Þ

The specific energy, as indicated by Eq. (2.79), is the sum of the flow depth and
the velocity head. Substituting U = Q/A, Eq. (2.79) becomes

E ¼ hþ Q2

2gA2
ð2:80Þ

Since for a given channel section, Q = Q(h) and A = A(h), the specific energy
E is a function of flow depth h only.

To illustrate the variation of specific energy E with flow depth h given by
Eq. (2.80), the specific energy diagram [that is, E(h) curve] for a given rectangular
channel having a width of 2 m carrying a flow discharge of Q = 0.3 m3 s-1 is
drawn, as shown in Fig. 2.20. The E(h) curve has two limbs, AC and BC. The
lower limb AC asymptotically approaches the abscissa toward the right, while the
upper limb BC rises upwards and approaches the line OD as it extends to the right.
The line OD that passes through the origin and is inclined at an angle 45� rep-
resents the hydrostatic pressure head or the flow depth h. Thus, for a given value of
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specific energy E (say E = 0.3 m of water as shown in Fig. 2.20), the E(h) curve
predicts two possible flow depths, a low stage h1 (=0.071 m) and a high stage h2

(=0.286 m). These depths are termed alternate depths. For instance, h1 is the
alternate depth of h2, and vice versa. However, at point C on the curve, the
alternate depths merge and the specific energy becomes a minimum. The flow
corresponding to a minimum specific energy is known as critical flow and the
resulting flow depth is termed critical depth, hc. In Fig. 2.20, the minimum specific
energy Emin = 0.198 m corresponds to a critical depth hc = 0.132 m. When the
flow depth is greater than the critical depth, the flow velocity is less than the
critical velocity for a given discharge, and hence, the flow is called subcritical. On
the other hand, when flow depth is less than the critical depth, the flow is
supercritical. Hence, h1 is the supercritical flow depth and h2 is the subcritical
flow depth. With the change in discharge, the E(h) curve changes its position.
Figure 2.20 also shows another E(h) curve for a discharge Q1 = 0.5 m3 s-1,
which is greater than the previous discharge Q = 0.3 m3 s-1. The E(h) curve of
Q1 lies on the right side of E(h) curve of Q. Similarly, the E(h) curve of a discharge
less than Q will lie on the left side of E(h) curve of Q.

Mathematically, the minimum value of the specific energy can be obtained
from Eq. (2.80) by taking the first derivative of E with respect to h and setting the
resulting expression equal to zero. Thus,

dE

dh
¼ 0 ) 1� Q2

gA3
� dA

dh
¼ 0 ð2:81Þ
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Using T = dA/dh and hd = A/T into Eq. (2.81) yields

Q2T

gA3
¼ 1 ) U2

c

2g
¼ hd

2
) Frc ¼

Uc
ffiffiffiffiffiffiffi
ghd

p
� �

¼ 1 ð2:82Þ

Equation (2.82) provides the criterion for the critical flow, which is similar to
that discussed in Sect. 2.4.2. In summary, at the critical flow condition, the specific
energy is minimum for a given discharge. Hence, for critical condition, h = hc,
U = Uc, and Fr = Frc = 1; for subcritical condition, h [ hc, U \ Uc, and Fr \ 1;
and for supercritical condition, h \ hc, U [ Uc, and Fr [ 1.

2.5.1.2 The Gradually Varied Flow

Figure 2.21 shows a schematic of a gradually varied flow (GVF) in a prismatic
open channel. The definition of a GVF indicates two conditions: (1) steady flow
and (2) practically parallel streamline flow, that is, a hydrostatic pressure distri-
bution prevailing along the depth. The derivation of a GVF profile is based on the
following assumptions:

(a) The channel is prismatic.
(b) The flow depth is indifferent whether it is measured in the vertical or normal

(to the channel bed) direction. It means the bed slope is small; and hence,
h & hcos h such that cos h & 1.

(c) The head loss at a channel section is identical as for a uniform flow having
the same velocity and hydraulic radius of the section. Thus, the resistance
equation, such as the Manning equation, for the uniform flow can be used to
determine the energy slope of a GVF.

Datum

Q

1 2

21

U2/(2g)

z

h

Energy slope, Sf 

Free Surface

Sf dx

Bed slope, S0 

dx

Fig. 2.21 Schematic of a
gradually varied flow in an
open channel
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(d) The friction coefficient is independent of the flow depth and unchanged
throughout the channel reach, that is under consideration.

Considering cos h & 1 and a & 1 and differentiating Eq. (2.75) with respect to
x, one gets

dH

dx
¼ dz

dx
þ dh

dx
þ d

dx

U2

2g

� �

ð2:83Þ

Using U = Q/A and T = dA/dh, the last term of the right-hand side of
Eq. (2.83) is developed as

d
dx

U2

2g

� �

¼ d
dh

Q2

2gA2

� �
dh

dx
¼ � Q2

gA3
� dA

dh
� dh

dx
¼ �Q2T

gA3
� dh

dx
ð2:84Þ

Substituting Eq. (2.84) into Eq. (2.83) and rearranging yield

dh

dx
¼ S0 � Sf

1� Q2T
gA3

^ dH

dx
¼ �Sf _ dz

dx
¼ �S0 ð2:85Þ

where Sf is the energy or friction slope and S0 is the bed slope. Further, using
hd = A/T and Q = UA into Eq. (2.85), it produces

dh

dx
¼ S0 � Sf

1� Fr2
^ Fr ¼ U

ffiffiffiffiffiffiffi
ghd

p ð2:86Þ

This is the general differential equation of a GVF and predicts the free surface
profiles. Flow with a positive value of dh/dx refers to an increase in flow depth
along the streamwise direction and is called backwater curve. On the other hand,
flow with a negative value of dh/dx refers to a decrease in flow depth along the
streamwise direction and is called drawdown curve. However, for a uniform flow,
dh/dx = 0 or S0 = Sf.

Classification of Bed Slope: A downward bed slope (positive value of S0) is
classified as steep if the normal depth is less than the critical depth (that is, the
normal flow is supercritical) and mild if the normal depth is greater than the critical
depth (that is, the normal flow is subcritical).2 Other types of slopes are critical
(S0 = Sc [ 0 and h0 = hc), horizontal (S0 = 0 and h0 ? ?), and adverse (S0 \ 0
and h0 = imaginary). The slopes are designated using the first characters as S, M,
C, H, and A for steep, mild, critical, horizontal, and adverse slopes, respectively.
Further, to designate the flow profiles (that is, free surface profiles) corresponding
to a given slope, the second characters 1, 2, and 3 are used as the subscript of the

2 Alternatively, a downward slope is steep if it exceeds the critical slope Sc (that is the slope at
which the normal depth of flow is critical depth). Hence, S0 [ Sc. Similarly, mild slope can be
explained.

60 2 Hydrodynamic Principles



first characters referring to the zone, where the actual depth h lies with respect to
the flow depth lines for hc and h0 and the channel bed. By convention, zone 1
refers to the zone above the upper line, whichever (either hc or h0) it may be; zone
2 is the zone between the two lines; and zone 3 is the zone between the bed and the
lower line. Figures 2.22, 2.23, 2.24, 2.25 and 2.26 show various flow profiles.
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S3

hc

h0

Fig. 2.22 Steep slope
profiles (S-profiles)
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Fig. 2.23 Mild slope profiles
(M-profiles)
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Bed slope S0 = Sc 

h0 = hc

C1
Fig. 2.24 Critical slope
profiles (C-profiles)

Bed slope S0 = 0

h0 = ∞

hc

H2

H3

Fig. 2.25 Horizontal slope
profiles (H-profiles)
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A number of methods to compute steady GVF from Eq. (2.86) are furnished in
Chow (1959). The direct and standard step methods solve the energy equation
between two consecutive channel sections. Dey (2000) presented a generalized
numerical solution in the Chebyshev form for the standard step method. Then, a
number of numerical methods are also available to integrate the differential
equation, Eq. (2.86). These methods do not allow a direct solution, and therefore,
trial-and-error method of solution is to be used (Chaudhry 2008).

2.5.1.3 Pressure Distribution in Curvilinear Flow

In the preceding cases, the streamlines were straight and parallel to the channel
bottom. For instance, streamlines in a uniform flow are practically parallel and
those in GVF may also be regarded as parallel, since the variation of flow depth is
gradual that the streamlines have neither considerable curvature nor steep diver-
gence/convergence. However, in real-life cases, the streamlines in several flow
situations have pronounced curvature and/or divergence/convergence that the
effects of acceleration components on the flow section are significant.

When the streamlines in a fluid flow have substantial curvature, the flow is
called curvilinear flow. The curvature of streamlines is to induce considerable
acceleration component normal to the direction of flow, called centrifugal accel-
eration. Thus, the pressure distribution in a curvilinear flow over the flow depth
departs from the hydrostatic law, that is, p = qgh. Such curvilinear flows may be
either convex or concave as shown in Figs. 2.27a, b. In a convex flow situation
guided by a convex boundary, the centrifugal acceleration acts upward against the
gravity and the resulting pressure is less than the hydrostatic pressure. On the other
hand, in a concave flow situation guided by a concave boundary, the centrifugal
acceleration acts downward to add to the gravity and the resulting pressure is
greater than the hydrostatic pressure. Likewise, when streamlines have consider-
able divergence/convergence to develop appreciable acceleration normal to
the flow direction, the pressure distribution again departs from the hydrostatic
law. The distribution of pressure can be obtained by the Euler equations
(Eqs. 2.39–2.41). In normal or radial direction of flow, it is

Bed slope S0 = negative

h0 = imaginary

hc

A2

A3

Fig. 2.26 Adverse slope
profiles (A-profiles)
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o

oz

p

qg
þ z cos h

� �

¼ � ar

g
ð2:87Þ

where ar is the centrifugal acceleration at the radius of curvature r of the
streamline and h is the angle between the section of interest and the vertical line.
The centrifugal acceleration at any point in a curvilinear flow is ar = u2/r, where
u is the tangential velocity at r. It is positive for the concave flow and negative for
the convex flow. Integrating Eq. (2.87) within limits z = z and z = h yields

p

qg
¼ ðh� zÞ cos h� 1

g

Zz

h

u2

r
dz ð2:88Þ
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Fig. 2.27 Pressure distributions in curvilinear flows: a convex flow and b concave flow
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The above expression can be evaluated if u = u(r) is known using r = R ± z,
where positive z is for convex flow and negative z for concave flow. Here, R is the
radius of curvature of the channel boundary. For instance, (1) u can be invariant of r,
as an average velocity; (2) u is proportional to r for forced vortex type of flow; and
(3) u is proportional to r-1 for free vortex type of flow.

2.5.1.4 Pressure Distribution in Flow with Small Free Surface
Curvature

Figure 2.28 shows a schematic of a free overfall whose free surface curvature is
relatively small varying from a finite value at the free surface to zero at the channel
bottom. According to Boussinesq approximation (Jaeger 1957), a linear variation
of the streamline curvature at any point A at a vertical distance z is assumed.
Hence, the radius of curvature r of a streamline at A is expressed as

1
r
¼ z

h
� 1
rs

ð2:89Þ

where rs is the radius of curvature of the free surface. For small free surface
curvature, it can be approximated as

1
rs

¼ d2h

dx2
ð2:90Þ

where x is the streamwise distance. The normal acceleration az based on the
aforementioned assumption is given by

az ¼ Kz ^ K ¼ U2

h
� d

2h

dx2
ð2:91Þ
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Fig. 2.28 Schematic of flow
with a small free surface
curvature
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where U is the average flow velocity over depth h; hence, it is constant along the
vertical distance. Considering the bottom as a datum and then integrating
Eq. (2.87), the hydrostatic pressure head hp at point A is obtained as

hp ¼
p

qg
þ z

� �

¼ � 1
g

Z

Kzdzþ C ¼ �K

g
� z

2

2
þ C ð2:92Þ

Using the boundary condition, at z = h, p = 0, and hp = h, it leads to

C ¼ hþ K

g
� h

2

2
ð2:93Þ

Hence, from Eq. (2.92), the hydrostatic pressure head hp is obtained as

hp ¼ hþ Kðh2 � z2Þ
2g

; ) hp ¼ hþ Dh ð2:94Þ

It indicates that the variation of hydrostatic pressure head is given by
Dh. Therefore, the depth-averaged value of Dh can be determined as

Dh ¼ 1
h

Zh

0

Dhdz ¼ 1
h
� K

2g

Zh

0

ðh2 � z2Þdz ¼ Kh2

3g
ð2:95Þ

The effective hydrostatic pressure head hep is therefore

hep ¼ hþ Kh2

3g
¼ hþ U2h

3g
� d

2h

dx2
ð2:96Þ

Note that d2h/dx2 is negative for convex flow and positive for concave flow.

2.6 The Boundary Layer

According to the concept of the ideal fluid flow (that is, the potential flow), a
streamline follows the solid boundary, termed limiting streamline, involving a
finite fluid velocity at the boundary. It, in fact, implies that the fluid particles slip at
the boundary, as a result of which, the no-slip condition is not preserved in the
ideal fluid flow. However, in real fluid flow, the viscosity causes the fluid particles
to have no motion at the boundary preserving a no-slip condition. In reality, the
velocity, that is zero at the boundary, keeps increasing with the perpendicular
distances away from the boundary. The change in velocity is discernible only
within a layer adjacent to the boundary. The layer close to the solid boundary
affected by the boundary shear is called boundary layer, where the viscous effects

2.5 Conservation of Energy 65



are prominent. This phenomenon was discovered by Prandtl (1904). He, however,
arbitrarily suggested the boundary layer to extend up to 99 % of the free stream
velocity U. Hence, it is possible to define the boundary layer thickness d as that the
distance from the boundary where the local velocity u equals 0.99U:

d ¼ zju¼0:99U

In fluid flow outside the boundary layer, the effects of viscosity may be van-
ishingly small that the theory of ideal fluid flow is applicable. Importantly,
boundary layer is not a streamline. It is worth mentioning that the concept of
boundary layer is the most significant contribution to the development of
hydrodynamics.

2.6.1 Characteristics of Boundary Layer

Consider a fluid flow over a flat plate aligned parallel to the approaching free
stream, as shown in Fig. 2.29. The approaching free stream that has a velocity
U suffers retardation in the vicinity of the plate due to the viscous resistance offered
by the solid boundary. The boundary layer starts growing from the leading edge of
the plate. Its thickness increases with distance from the leading edge as more and
more fluid is to decelerate by the viscous resistance near the solid boundary. Near
the leading edge, the flow in the boundary layer is entirely laminar. With an
increase in distance, the laminar boundary layer thickness grows becoming
progressively unstable and eventually changes to a turbulent boundary layer over
a transition region. The transition occurs in the range Rx = 3 9 105 to 106,

z

x

TransitionLaminar boundary 
layer

U

Turbulent boundary 
layer

u = 0.99U
Edge of boundary layer

Viscous sublayer

δ

U

u

Fig. 2.29 Details of a boundary layer developed over a flat plate
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where Rx = Ux/t. Even in the region of the turbulent boundary layer, the turbu-
lence becomes suppressed to such a degree that the viscous effects predominate and
a very thin layer adjacent to the solid boundary remains laminar, which is called the
viscous sublayer.

The boundary layer thickness is the distance from the boundary to a point where
the velocity is 0.99U, which has already been discussed. It is based on the fact that
beyond this arbitrary limit of vertical distance z|u=0.99U, the viscous stresses are
practically absent. Other definitions of thickness, such as displacement thickness
and momentum thickness, are also useful in boundary layer theory.

The presence of a boundary introduces a retardation to the free stream velocity
in the vicinity of the boundary. The difference (U - u), called the velocity defect,
causes a decrease in the mass flux as compared to the mass flux of the free stream
that would pass through the same section in the absence of the boundary layer (see
Fig. 2.30). To compensate for this defect, the actual boundary may be imagined to
have been displaced by a displacement thickness d* such that the mass flux would
be the same as that of an ideal fluid flowing over the displaced boundary. The
equivalence of the two mass fluxes yields the displacement thickness in incom-
pressible flow (q = constant) as

Zd

0

qudz ¼
Zd

d�

qUdz )
Zd

0

udz ¼
Zd

0

Udz� Ud�; ) d� ¼
Zd

0

1� u

U

� 	
dz

ð2:97Þ

Further, the retardation offlow within the boundary layer causes a reduction in the
momentum flux as well. The momentum thickness h is defined as the thickness of an
imaginary layer in free stream flow which has a momentum flux equals the deficiency
of momentum flux over the entire section caused to the actual mass flux within the
boundary layer. Mathematically, for an incompressible flow (q = constant), it can be
developed as

qU2h ¼
Zd

0

quðU � uÞdz; ) h ¼
Zd

0

u

U
1� u

U

� 	
dz ð2:98Þ
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Fig. 2.30 The velocity
defect

2.6 The Boundary Layer 67



The shape factor Hs, that is defined as the ratio of the displacement thickness to
the momentum thickness is used to determine the nature of the flow.

Hs ¼
d�

h
ð2:99Þ

For a higher value of shape factor Hs, a stronger adverse pressure gradient
(qp/qx [ 0) is indicated. Conventionally, Hs = 2.59 is typical for laminar flow,
while Hs = 1.3 - 1.4 is typical for turbulent flow.

2.6.1.1 Boundary Layer Separation

In a favorable streamwise pressure gradient (qp/qx \ 0), the flow is accelerated by
the pressure force and thereby the boundary layer thickness keeps thin. In contrast,
when the flow encounters an adverse streamwise pressure gradient (qp/qx [ 0)
along the solid boundary, the flow is decelerated by the pressure force, thereby
causing the boundary layer to thicken. Then, the flow cannot advance too far in the
region of adverse pressure gradient due to the insufficient kinetic energy that the
fluid flow possesses. As a result, the boundary layer is deflected from the wall,
known to be the separated boundary layer, which progresses into the main flow, as
shown in Fig. 2.31. In general, the flow downstream the separation point (point S)
experiences the adverse pressure gradient and turns to the reverse direction of the
main flow that exists in the upper region of the separation line. As a result of the
flow reversal, the boundary layer is thickened rapidly. The separation point is
defined as the limit between the main and the reverse flow in the immediate
vicinity of the wall. Further, in explaining the separation phenomenon by the

δ

Separation point
( u/ z)z=0 > 0 ( u/ z)z=0 = 0 ( u/ z)z=0 < 0

S

I

Boundary layer

Reversed flow

Fig. 2.31 Boundary layer separation
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potential flow theory, the streamlines within the boundary layer in the vicinity of
the boundary layer separation are shown in Fig. 2.31. At the separation point, a
streamline originates from the wall at a certain angle due to the merger of two
limiting streamlines moving in the opposite direction. The separation point can be
determined by the condition that the velocity gradient normal to the wall becomes

zero on the wall, that is, ou=ozjSz¼0¼ 0.
The integral equation of the boundary layer to be discussed in the Sect. 2.6.2 is

only applicable to the extent where the separation point occurs. At a short distance
downstream the separation point, the boundary layer becomes so thick that the
assumptions that are made in deriving the boundary layer equation no longer
apply. In a steady flow, the event of separation that occurs only in a decelerated
flow can be obtained from the relation between the pressure gradient qp/qx and the
velocity distribution u(z) with the aid of the Navier–Stokes equations. From
Eq. (2.51a) with the boundary condition u = w = 0 (no-slip at the wall, z = 0) in
a two-dimensional flow, one can have at z = 0

l
o2u

oz2










S

z¼0

¼ op

ox
) o3u

oz3










S

z¼0

¼ 0

In the vicinity of the wall, the curvature of the velocity distribution q2u/qz2

depends only on the pressure gradient qp/qx. The curvature q2u/qz2|z=0 at the wall
does changeover its sign with qp/qx. In flow with a decreasing pressure (accelerated
flow, qp/qx \ 0), the prevailing condition is q2u/qz2|z=0 \ 0; and therefore, q2u/qz2

is negative over the entire boundary layer thickness (Fig. 2.31). On the other hand, in
flow within the near-wall layer of increasing pressure (decelerated flow, qp/qx [ 0),
the prevailing condition is q2u/qz2 [ 0. In flow with q2u/qz2 \ 0 at some distance
above the wall, there must exist a point (point I) for which q2u/qz2 = 0, which is an
inflexion point of the velocity distribution within the boundary layer (Fig. 2.31).
It suggests that in the region of decelerating potential flow, the velocity distribution
within the boundary layer always displays an inflexion point. Since there exists
q2u/qz2 \ 0 at the edge of the boundary layer, the velocity distribution that has a
separation point with qu/qz|z=0 = 0 must have an inflexion point.

2.6.2 von Kármán Momentum Integral Equation

Consider a control volume ABCD of elementary length dx having a boundary layer
thickness d, as shown in Fig. 2.32. For a steady flow, the forces on the control
surface are caused by the pressure and the wall or boundary shear stress. As the flow
is almost parallel, a uniform pressure at a section can be assumed, neglecting the
hydrostatic pressure. The components of force (per unit area and width) in x-
direction are shown in Fig. 2.32. Since the boundary layer is thin, the pressure
within the boundary layer at a section equals the pressure in the free stream portion
at that section outside the boundary layer. The summation of forces in x-direction is
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X
Fx ¼ pd� ðpþ dpÞðdþ ddÞ þ pþ dp

2

� �

dd� s0dx ^ dp ¼ op

ox
dx ð2:100Þ

Simplifying and neglecting second-order terms, Eq. (2.100) becomes

X
Fx ¼ � d

op

ox
þ s0

� �

dx ð2:101Þ

Change of momentum flux in the control volume is
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By Newton’s second law of motion, one can write
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Adxþ qUðwdx� uddÞ ð2:102Þ

The continuity of flow for the control volume that constitutes the equation is3

(p + dp) 
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Fig. 2.32 Control volume in
the boundary layer

3 The mass flux through BC can be obtained as q(ûiþ wk̂)�(-dd̂i + dxk̂) = q(-udd + wdx).
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Using Eq. (2.103) into Eq. (2.102) and replacing partial differential by total
differential yield

�d
dp

dx
� s0 ¼

d
dx

Zd

0

qu2dz� U
d
dx

Zd

0

qudz ð2:104Þ

Further, the pressure gradient dp/dx can be determined from the Bernoulli’s
equation (Eq. 2.72), considering the potential head z = 0. Hence,

p

qg
þ U2

2g
¼ H ) pþ q

2
U2 ¼ constant ð2:105Þ

Differentiating with respect to x and rearranging, Eq. (2.105) becomes

dp

dx
¼ �qU

dU

dx
ð2:106Þ

Substituting the expression of dp/dx into Eq. (2.104), the wall shear stress s0 for
incompressible flow (q = constant) is obtained as

s0 ¼ �q
d
dx

Zd

0

u2dzþ qU
d
dx

Zd

0

udzþ qUd
dU

dx
;

) s0 ¼ q
d
dx
ðU2hÞ þ qUd

dU

dx

ð2:107Þ

Equation (2.107) is the generalized von Kármán momentum integral equation,
which can be applicable for both laminar and turbulent boundary layer flows.

If the flow has a zero-pressure gradient dp/dx = 0, then dU/dx = 0; and
Eq. (2.107) reduces to

s0 ¼ qU2 dh
dx

ð2:108Þ
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2.6.2.1 Laminar Boundary Layer Over a Flat Plate in a Zero-Pressure
Gradient Flow

The laminar boundary layer is formed as a result of flow over a short reach of the
leading edge of a flat plate. In practice, it always prevails, even in flows that are
evidently turbulent. To apply von Kármán momentum integral equation for such a
flow situation, the assumption on the velocity u distribution, which is reasonably a
function of g (=z/d) and invariant of x, is an essential prerequisite. For an
approximate analysis of a laminar boundary layer, a third-order polynomial law
(u/U = A + Bg + Cg2 + Dg3 = f, where A, B, C, and D are the coefficients) of
velocity distribution that satisfies the boundary conditions (1) u(z = 0) = 0, (2)
q2u/qz2(z = 0) = 0, (3) u(z = d) = U, and (4) qu/qz(z = d) = 0 was assumed by
Prandtl within the boundary layer (0 B z B d). The coefficients are obtained as
A = C = 0, B = 3/2 and D = -1/2. Therefore, the velocity distribution is

u

U
¼ f ðgÞ ^ f ð0� g\1Þ ¼ 3

2
g� 1

2
g3; f ðg	 1Þ ¼ 1 ð2:109Þ

Inserting Eq. (2.109) into Eq. (2.108), one can obtain

s0 ¼ qU2 dh
dx
¼ qU2 dd

dx

Z1

0

f ð1� f Þdg ¼ qU2 dd
dx

Z1

0

3
2
g� 1

2
g3

� �

1� 3
2

gþ 1
2
g3

� �

dg

¼ 0:139qU2 dd
dx

^ h ¼ d
Z1

0

f 1� fð Þdg

ð2:110Þ

Further, applying Newton’s law of viscosity at the boundary, one gets

s0 ¼ l
du

dz









z¼0

¼ l
U

d
� df

dg









g¼0

¼ l
U

d
� d
dg

3
2
g� 1

2
g3

� �







g¼0

¼ 3
2

l
U

d
ð2:111Þ

Equating Eqs. (2.110) and (2.111) and rearranging yield

ddd ¼ 10:79
t
U

dx ð2:112Þ

The above equation is integrated as follows:

Zd

0

ddd ¼ 10:79
t
U

Zx

0

dx ^ d2

2
¼ 10:79

t
U

x; ) d ¼ 4:643xR�0:5
x ð2:113Þ
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Equation (2.113) can be used to determine the boundary layer thickness d(x),
which varies directly as a square root of distance x. Substituting the expression for
d into Eq. (2.111), the wall shear stress expression s0(x) is obtained. It is

s0 ¼ 0:323qU t
U

x

� �0:5

¼ 0:323l
U

x
R0:5

x ð2:114Þ

It indicates that the wall shear stress varies inversely as a square root of distance
x. Equation (2.114) can be used to determine the wall shear resistance per unit
width Fs on the surface of the plate for a given length x = 0 to L as

Fs ¼
ZL

0

s0dx ¼ 0:646qUðtULÞ0:5 ¼ 0:646qUtR0:5
L ^ RL ¼

UL

t
ð2:115Þ

2.6.2.2 Turbulent Boundary Layer Over a Flat Plate in a Zero-
Pressure Gradient Flow

For the approximation of a turbulent boundary layer, a 1/7-th power law of
velocity distribution, which is a good replacement of the logarithmic law (Sect. 3.
7.2), as proposed by Prandtl, can be assumed within the boundary layer
(0 B z B d). Thus,

u

U
¼ f ðgÞ ^ f ð0� g\1Þ ¼ g1=7; f ðg	 1Þ ¼ 1 ð2:116Þ

Inserting Eq. (2.116) into Eq. (2.108), one can obtain

s0 ¼ qU2 dd
dx

Z1

0

f ð1� f Þdg ¼ qU2 dd
dx

Z1

0

g1=7ð1� g1=7Þdg ¼ 7
72

qU2 dd
dx
ð2:117Þ

Blasius (1912, 1913) obtained the wall shear stress for hydraulically smooth
flow as

s0 ¼ 2:28
 10�2qU2 t
Ud

� 	0:25
ð2:118Þ

Equating Eqs. (2.117) and (2.118) and rearranging yield

d0:25dd ¼ 0:235
t
U

� 	0:25
dx ð2:119Þ
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The above equation is integrated as follows:

Zd

0

d0:25dd ¼ 0:235
t
U

� 	0:25
Zx

0

dx ^ d1:25 ¼ 0:294
t
U

� 	0:25
x;

) d ¼ 0:376xR�0:2
x

ð2:120Þ

Hence, the turbulent boundary layer thickness increases with distance as x0.8, as
compared to the laminar boundary layer thickness that varies as x0.5. It indicates
that the turbulent boundary layer thickness grows faster. Substituting the expres-
sion for d into Eq. (2.118) yields

s0 ¼ 2:91
 10�2qU2 t
Ux

� 	0:2
¼ 2:91
 10�2qU2R�0:2

x ð2:121Þ

The wall shear resistance per unit width Fs on the surface of the plate for a
given length x = 0 to L is

Fs ¼
ZL

0

s0dx ¼ 3:638
 10�2qU2L
t

UL

� 	0:2
¼ 3:638
 10�2qU2LR�0:2

L ð2:122Þ

2.7 Flow in Curved Channels

Flow in a curved channel is influenced by the centrifugal acceleration, which
induces a three dimensionality in the flow characterized by a helical (spiral)
motion with a superelevated free surface. The helical motion can be viewed across
a cross section as a transverse circulation. The differential centrifugal acceleration
u2/r along a vertical line due to vertical variation of streamwise velocity u in open
channel is the cause of the transverse circulation. As a result, a helical motion is
initiated when the flow enters the curved (bend) portion of the channel. The
helicoidal flow is gradually fully developed becoming in an equilibrium state,
where the flow structure remains unchanged from cross section to cross section.
Such a flow situation eventually prevails, if a prismatic channel has an adequately
long curved reach. The streamlines near the free surface are deflected toward the
outer bank, whereas those near the bed are inclined toward the inner bank
(Fig. 2.33). Hence, the near-bed velocity and the bed shear stress are generally
directed toward the inner bank.

The flow in a curved channel is analyzed in cylindrical polar coordinates
restricting to a subcritical flow having a hydrostatic pressure distribution
(Fig. 2.34). In natural channels, the flow depth is in general much smaller than the
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width and the radius of curvature. In cylindrical polar coordinates, the velocity
components (ur, uh, uz) are in r-, h-, and z-direction, respectively. Note that
qs = rqh. Referring to Fig. 2.34, the forces in the tangential direction, that is, h-
direction, is given by

ðsh þ dshÞ � sh þ qgShdz½ �drds ¼ osh

oz
þ qgSh

� �

drdsdz ^ dsh ¼
osh

oz
dz

where sh and Sh are the shear stress and the slope of the channel in h-direction,
respectively. Applying Newton’s second law of motion in h-direction yields

ahqdrdsdz ¼ osh

oz
þ qgSh

� �

drdsdz ) ah ¼
1
q
� osh

oz
þ gSh

ah ¼ uh
ouh

os
þ uhur

r
þ ur

ouh

or
þ uz

ouh

oz
þ ouh

ot
;

) uh
ouh

os
þ ur

ouh

or
þ uz

ouh

oz
þ ouh

ot
¼ 1

q
� osh

oz
þ gSh �

uhur

r

ð2:123Þ

where ah is the total acceleration in h-direction. On the other hand, the forces in the
radial direction, that is, r-direction, is given by

½ðsr þ dsrÞ � sr�drdsþ ½p� ðpþ dpÞ�dsdz

¼ osr

oz
� qgSr

� �

drdsdz ^ dsr ¼
osr

oz
dz _ dp ¼ op

or
dr ¼ qgSrdr

where sr and Sr are the shear stress and the slope of the free surface in r-direction,
respectively. Applying Newton’s second law of motion in r-direction yields

Bottom current

β

Surface current

Outer bank

Inner bank

Outer bank Inner bank

Fig. 2.33 Flow in a curved channel
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arqdrdsdz ¼ osr

oz
� qgSr

� �

drdsdz) ar ¼
1
q
� osr

oz
� gSr

ar ¼ uh
our

os
þ ur

our

or
� u2

h

r
þ uz

our

oz
þ our

ot
;

) uh
our

os
þ ur

our

or
þ uz

our

oz
þ our

ot
¼ 1

q
� osr

oz
� gSr þ

u2
h

r

ð2:124Þ
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Fig. 2.34 Velocity and force distributions in flow through a curved channel
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where ar is the total acceleration in r-direction. The continuity equation is

our

or
þ ur

r
þ ouh

os
þ ouz

oz
¼ 0 ð2:125Þ

2.7.1 Superelevation in Curved Channels

The superelevation Dz of the free surface is the difference between the free surface
level at the outer and the inner banks. It can be approximated as

Dz ¼
Zro

ri

Srdr ð2:126Þ

where ro and ri are the radii of curvature of outer and inner banks, respectively.
The slope of the free surface in radial direction can be obtained by balancing the
radial force components acting on the column of fluid with depth h. Neglecting the
bed resistance, the net pressure force due to the free surface slope in r-direction is
balanced by the centripetal force. It yields

Zh

0

u2
h

r
qdrdsdz ¼ qghSrdrds) Sr ¼

1
gh

Zh

0

u2
h

r
dz ¼ br

U2

gr
^ brU

2h ¼
Zh

0

u2
hdz

ð2:127Þ

where br is the correction factor and U is the depth-averaged tangential velocity.
Then, using Eq. (2.127) into Eq. (2.126), the superelevation Dz is obtained as

Dz ¼
Zro

ri

br
U2

gr
dr � br

U2
a T

grc

ð2:128Þ

where Ua is the cross-sectional averaged tangential velocity, T is the width of the
free surface, and rc is the radius of curvature of the centerline of the channel. In
Eq. (2.128), br can be assumed as unity.

2.7.2 Velocity Distributions in Curved Channels

In a steady fully developed flow, quh/qt = qur/qt = 0 and quh/qs = qur/qs = 0.
Further, the radial and the vertical velocity components are negligible as compared
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to the tangential velocity components. Hence, uh = uh(z) and ur = uz = 0. From
Eqs. (2.123) and (2.124), one can obtain

1
q
� osh

oz
þ gSh ¼ 0 ð2:129aÞ

1
q
� osr

oz
� gSr þ

u2
h

r
¼ 0 ð2:129bÞ

Integration of Eq. (2.129a) produces a linear distribution of tangential shear
stress as

sh ¼ qghSh 1� z

h

� 	
ð2:130Þ

Following the concept of the mixing length (see Sect. 3.5), it can be written as

sh ¼ ql2 duh

dz


















duh

dz
¼ qet

duh

dz
ð2:131Þ

where l is the mixing length and et is the eddy viscosity or turbulent diffusivity.
Equating Eqs. (2.130) and (2.131), et can be determined from

et ¼ ghSh 1� z

h

� 	 duh

dz

� ��1

ð2:132Þ

if a suitable velocity distribution, uh = uh(z), is assumed. Note that by the concept
of the isotropic turbulence

sr ¼ qet

dur

dz
ð2:133Þ

Using Eqs. (2.132) and (2.133) yields

sr ¼ qghSh 1� z

h

� 	 duh

dz

� ��1dur

dz
ð2:134Þ

Equation (2.134) can be used in Eq. (2.129b) to determine the radial velocity
distribution, as uh = uh(z).

For tangential velocity distribution, Rozovskii (1957) assumed

uh

U
¼ 1þ g0:5

jCR

ð1þ ln~zÞ ð2:135Þ
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where j is the von Kármán constant, CR is the Chézy coefficient, and ~z = z/h. Using
Eq. (2.135), Rozovskii (1957) derived the radial velocity distribution in case of a
hydraulically smooth flow as

ur

U
¼ h

r
� 1
j2

/1 �
g0:5

jCR

/2

� �

^ /1 ¼
Z

2 ln~z

~z� 1
d~z _ /2 ¼

Z
ln2 ~z

~z� 1
d~z

ð2:136Þ

On the other hand, in case of a hydraulically rough flow, Rozovskii (1957)
derived the radial velocity distribution as

ur

U
¼ h

r
� 1
j2

/1 �
g0:5

jCR

/2 þ 0:8ð1þ ln~zÞ½ �
� �

ð2:137Þ

The angle b of the velocity vector at any depth with the tangential direction, as
shown in Fig. 2.33, can be obtained from b = arctan(ur/uh).

Kikkawa et al. (1976) also derived the velocity distributions from the equation
of motion, where the eddy viscosity was assumed to be same as that of a two-
dimensional flow in a straight channel. They suggested the equation of motion that
governs by the secondary flow as

o4w
oz4
¼ uh

ouh

oz
ð2:138Þ

where w is the stream function. Neglecting the nonlinear interaction between the
secondary flow and the main flow, the tangential velocity distribution could be
shown as

uh � us

u�
¼ � 1

j
ln~z ð2:139Þ

where us is the tangential velocity at the free surface and u� is the shear velocity.
Kikkawa et al. (1976) derived the radial velocity distribution in a fully developed
flow by integrating Eq. (2.138) as

ur

Ua

¼ U2

U2
a

� h
r
� 1
j

/A �
1
j
� u�
Ua

/B

� �

ð2:140Þ

where U is the depth-averaged tangential velocity, which is a function of r, and /A

and /B are as follows:

/A ¼ �15 ~z2 ln~z� ~z2

2
þ 15

54

� �

ð2:141aÞ
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/B ¼
15
2

~z2 ln2 ~z� ~z2 ln~zþ ~z2

2
� 19

54

� �

ð2:141bÞ

Equation (2.140) indicates that the radial velocity distribution ur(z) is propor-
tional to U2 and h/r.

Odgaard (1989) assumed the tangential and the radial velocity distributions as

uh

U
¼ mþ 1

m
~z1=m ^ m ¼ j

U

u�
¼ j

8
kD

� �0:5

¼ j
CR

g0:5
ð2:142aÞ

ur ¼
1
h

Zh

0

urdzþ 2urjca ~z� 1
2

� �

ð2:142bÞ

where m is the reciprocal of exponent, kD is the Darcy-Weisbach friction factor,
and ur|ca is the centrifugally induced component. For a fully developed flow,
Odgaard (1989) gave

U ¼ m

j
ðghSÞ0:5 ð2:143aÞ

urjca

U
¼ 1

j2
� ðmþ 1Þð2mþ 1Þ

1þ mþ 2m2
� h

r
ð2:143bÞ

Odgaard argued that the ratio h/r is nearly a constant varying between 7.2 and 8,
while m can vary between 3 and 6 in a curved channel.

2.7.3 Bed Shear Stress Distribution in Curved Channels

The bed shear stress in a curved channel is decomposed into tangential s0h and
radial s0r components. The tangential component of the bed shear stress can be
given by

s0h ¼ qg
U2

C2
R

ð2:144Þ

From a radial velocity distribution similar to that of Rozovskii (1957)
(Eq. 2.137), Jansen et al. (1979) derived the radial component of bed shear stress as

s0r ¼ �
2qgh

rj2
� U

2

C2
R

1� g0:5

jCR

� �

ð2:145Þ
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2.8 Hydrodynamic Drag and Lift on a Particle

When a real fluid flows past a solid particle, the hydrodynamic force of resistance
contributes in two ways. Firstly, resistance due to viscosity is developed at the wall
of the particle in the form of shear stresses. Secondly, differential pressure
intensities act normal to the wall. The integration of both the forces over the entire
surface of the particle composes the total hydrodynamic force. The component of
the hydrodynamic force in the flow direction is called drag, which is the force by
which the fluid tends to drag the particle. On the other hand, the component normal
to the flow direction is called lift, which is the force by which the fluid tends to lift
the particle (Fig. 2.35).

2.8.1 The Drag

The drag on the body of the particle is made up of two contributions, namely skin
friction drag and form or pressure drag. Thus, drag is the sum of the components
of the wall shear stress s0 and the pressure p in the flow direction, respectively.
Thus, referring to Fig. 2.35, s0 and p act on an elementary area da tangentially and
normally, respectively; and the drag is given by

FD ¼
Z

a

s0 sin hda

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Skin friction drag

þ
Z

a

p cos hda

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Form drag

ð2:146Þ

where a is the total surface area. The above equation suggests that both the
contributions to the drag can therefore be theoretically calculated. It, however,
requires knowledge of the wall shear stress distribution on the surface of the
particle and the pressure distribution around the particle. Nevertheless, the inte-
grals of Eq. (2.146) cannot be evaluated easily, as the description of s0 and
p becomes uncertain due to the boundary layer separation phenomenon, as
described in the preceding section. It is therefore simpler to measure the drag

U 
p

FL

da

0

FD d

θ
τ

Fig. 2.35 Hydrodynamic
drag and lift due to flow past
a particle
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experimentally and express it as a function of dynamic pressure force (qU2/2)A,
where A is the projected area of the particle on a plane, that is normal to the flow
direction. Thus,

FD ¼
1
2

CDqU2A ð2:147Þ

where CD is the drag coefficient being determined experimentally (see Sect. 1.7).

2.8.1.1 Creeping Flow About a Spherical Particle (Stokes’ Law)

The basic assumption for a creeping flow is that the inertia terms are negligible in
the momentum equation if the particle Reynolds number Re is very small (Re � 1,
where Re = Ud/t and d is the size or diameter of the particle). This is the special
case of creeping viscous flow, where viscous effects predominate.

Let a creeping flow of free stream velocity U about a solid spherical particle of
diameter d be considered (Fig. 2.36). Using a spherical polar coordinates (r, h), the
radial and tangential velocity components ur and uh are related to the Stokes
stream function w by the relations

ur ¼
1

r2 sin h
� ow
oh
; uh ¼ �

1
r sin h

� ow
or

ð2:148Þ

For a creeping flow, the Navier–Stokes equations in two-dimensional spherical
coordinates reduce to

1
q
� op

or
¼ tr2ur;

1
q
� 1

r
� op

oh
¼ tr2uh ^ r2 ¼ o2

or2
þ sin h

r2
� o

oh
1

sin h
� o

oh

� �

ð2:149Þ
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r = d/2
r
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d
θ

θ
Fig. 2.36 Creeping flow past
a spherical particle
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Using Eq. (2.148) into Eq. (2.149) yields

op

or
¼ l

r2 sin h
� o

oh
ðr2wÞ; op

oh
¼ � l

sin h
� o

or
ðr2wÞ ð2:150Þ

Eliminating p, one finds

r4w ¼ 0 or
o2

or2
þ sin h

r2
� o

oh
1

sin h
� o

oh

� �� �2

w ¼ 0 ð2:151Þ

Making substitution w = f(r) sin2h, it allows to reduce Eq. (2.151) to a fourth-
order ordinary differential equation

d2

dr2
� 2

r2

� �
d2f

dr2
� 2f

r2

� �

¼ 0 ð2:152Þ

A substitution of f = rk leads to fourth-order polynomial, whose roots are
k = -1, 1, 2, and 4. Thus, the general solution for f becomes

f ðrÞ ¼ Ar�1 þ Br þ Cr2 þ Dr4 ð2:153Þ

where A, B, C, and D are the constants of integration. The boundary conditions are
the following: (1) at r = d/2 (at surface), w = 0 (ur = 0 at surface), and
qw/qr = 0 (uh = 0 at surface) and (2) at r ? ?, w ? (Ur2/2)sin2h. It leads to
A = Ud3/32, B = -3Ud/8, C = U/2, and D = 0. Then, the desired stream func-
tion for a creeping flow is obtained as

wðr; hÞ ¼ 1
16

Ud2 sin2 h
d

2r
� 6r

d
þ 8r2

d2

� �

ð2:154Þ

Then, the velocity components are obtained from Eq. (2.148) as

ur ¼ U cos h 1þ d3

16r3
� 3d

4r

� �

; uh ¼ U sin h �1þ d3

32r3
þ 3d

8r

� �

ð2:155Þ

With known ur and uh, the pressure is determined by integrating Eq. (2.150).
The result is

p ¼ p1 �
3ldU

4r2
cos h ð2:156Þ

where p? is the uniform free stream pressure. This exerts a pressure drag on the
spherical particle. In addition, a wall shear stress exerts a drag. The shear stress
distribution is given by
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srh ¼ l
1
r
� our

oh
þ ouh

or
� uh

r

� �

¼ �lU
sin h

r
� 3d3

16r3
ð2:157Þ

Then, the total drag can be obtained from Eq. (2.146) as

FD ¼ �
Zp

0

srhjr¼d=2sin hda�
Zp

0

pjr¼d=2cos hda ^ da ¼ pd
d

2
sin hdh;

) FD ¼ 2pldU þ pldU ¼ 3pldU ð2:158Þ

This is known as the Stokes’ law (Stokes 1851). Note that viscous shear force
contributes two-third and pressure force one-third. Equation (2.158) is strictly
valid only for Re � 1, but satisfactorily agrees with the experimental data up to
Re & 1.

2.8.2 The Lift

As already discussed, fluid flowing past a particle exerts hydrodynamic force on
the surface of the particle. Lift is the component of this force. It acts normal to the
flow direction. The total lift force is the integral of the pressure forces normal to
the flow direction. Thus,

FL ¼
Z

a

p sin hda ð2:159Þ

Analogous to Eq. (2.147), lift can also be expressed as a function of dynamic
pressure force (qU2/2)A, where A is the planform area. Thus,

FL ¼
1
2

CLqU2A ð2:160Þ

where CL is the lift coefficient being determined experimentally.
Further, when a small spherical particle spinning with an angular velocity x is

placed in a uniform free stream, in addition to drag a lift due to Magnus effect acts
on the particle. Rubinow and Keller (1961) formulated it as

FL ¼
p
8

qd3Ux ð2:161Þ
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It is pertinent to mention that the lift due to Magnus effect on a rotating cylinder
in an ideal (inviscid) fluid flow is given by FL = qUC, where C is the circulation
of the cylinder.

2.8.2.1 Lift in a Shear Flow

Particle in a shear flow, that has a spatially nonuniform velocity distribution,
experiences a transverse force on the particle, even when the particle is prevented
from a spinning motion (Fig. 2.37). The shear lift is originated from the inertia
effects in the viscous flow around the particle and is fundamentally different from
the hydrodynamic lift. The expression for the inertia shear lift was first obtained by
Saffman (1965, 1968). It is

FL ¼ aLqd2u t
ou

oz

� �0:5

ð2:162Þ

where aL is the Saffman lift coefficient, being equal to 1.615.

2.9 Appendix

2.9.1 Navier–Stokes and Continuity Equations in
a Cylindrical Polar Coordinate System

Navier–Stokes equations in cylindrical polar coordinates (r, h, z) with corre-
sponding velocity components (u, v, w) for an incompressible fluid flow are given
as follows:

FD
u 

FL

z

d

Fig. 2.37 Shear flow past a
spherical particle

2.8 Hydrodynamic Drag and Lift on a Particle 85



u
ou

or
þ v

r
� ou

oh
� v2

r
þ w

ou

oz
þ ou

ot
¼ gr �

1
q
� op

or

þ t
o

or

1
r
� o

or
ðruÞ

� �

þ 1
r2
� o

2u

oh2 �
2
r2
� ov

oh
þ o2u

oz2

� � ð2:163aÞ

u
ov

or
þ v

r
� ov

oh
þ uv

r
þ w

ov

oz
þ ov

ot
¼ gh �

1
q
� 1

r
� op

oh

þ t
o

or

1
r
� o

or
ðrvÞ

� �

þ 1
r2
� o

2v

oh2 þ
2
r2
� ou

oh
þ o2v

oz2

� � ð2:163bÞ

u
ow

or
þ v

r
� ow

oh
þ w

ou

oz
þ ow

ot
¼ gz �

1
q
� op

oz

þ t
1
r
� o

or
r
ow

or

� �

þ 1
r2
� o

2w

oh2 þ
o2w

oz2

� � ð2:163cÞ

The continuity equation for an incompressible flow is
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2.9.2 Navier–Stokes and Continuity Equations in a Spherical
Polar Coordinate System

Navier–Stokes equations in spherical polar coordinates (r, h, u) with corre-
sponding velocity components (u, v, w) are as follows:
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The continuity equation for an incompressible flow is
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2.10 Examples

Example 2.1 The velocity distribution in a wide channel is given by u/umax =
(z/h)1/n, where umax is the maximum velocity at a flow depth h. Find the depth-
averaged velocity, momentum coefficient b and energy coefficient a.

Solution

The depth-averaged velocity U is obtained as

U ¼ 1
h

Zh

0

udz ¼ 1
h

Zh

0

umax

z

h

� 	1=n
dz ¼ n

1þ n
umax

Therefore, the velocity distribution can be expressed in terms of depth-averaged
velocity as

u ¼ umax

z

h

� 	1=n
¼ 1þ n

n
U

z

h

� 	1=n

For a wide channel, the momentum coefficient b given by Eq. (2.37) can be
expressed as

b ¼ 1
h

Zh

0

u2

U2
dz ¼ 1

h

Zh

0

1
U2

1þ n

n

� �2

U2 z

h

� 	2=n
dz ¼ ð1þ nÞ2

ð2þ nÞn

Again, for a wide channel, the energy coefficient a given by Eq. (2.74) can be
expressed as

a ¼ 1
h

Zh

0

u3

U3
dz ¼ 1

h

Zh

0

1
U3

1þ n

n

� �3

U3 z

h

� 	3=n
dz ¼ ð1þ nÞ3

ð3þ nÞn2
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Example 2.2 Determine the critical depth for a water discharge of 8 m3 s-1

flowing in a trapezoidal channel with a base width of 3 m and a side slope of 1
horizontal to 2 vertical.

Solution

For base width, b = 3 m and side slope, z = 1/2 = 0.5, the area A and the top
width T are

A ¼ ðbþ zhÞh ¼ 3hþ 0:5h2; T ¼ bþ 2zh ¼ 3þ h

The condition of a critical flow is

f ðhÞ ¼ Q2T

gA3
¼ 1( Eq: 2:82ð Þ

) f ðhÞ ¼ Q2T

gA3
¼ 82ð3þ hÞ

9:81ð3hþ 0:5h2Þ3
¼ 6:524ð3þ hÞ
ð3hþ 0:5h2Þ3

Adopting the trial-and-error method, the solution of the above equation is
f(h = 0.854) & 1. Therefore, the critical depth is 0.854 m.

Example 2.3 Derive the relationship for the sequent depth ratio of a hydraulic
jump4 on a horizontal floor of a rectangular channel, as shown in Fig. E2.1. Also
determine the energy loss.

Solution

The specific force equation between sections 1 and 2 for a prismatic rectangular
channel having a width b can be given by

Q2

gA1
þ zc1A1 ¼

Q2

gA2
þ zc2A2 ( Eq: 2:55ð Þ

h2

h1

1

2Fig. E2.1 Hydraulic jump

4 Hydraulic jump occurs when there is a rapid change in flow depth resulting from a low stage
(supercritical) to a high stage (subcritical) with an abrupt rise in free surface elevation. It is
therefore a local phenomenon due to a transition from a supercritical flow to a subcritical flow.
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Substituting Q = U1A1 = U2A2, A1 = bh1, A2 = bh2, zc1 = h1/2, zc2 = h2/2, and
F1 = U1/(gh1)0.5, the above equation becomes

h2

h1

� �2

þ h2

h1
� 2F2

1 ¼ 0

where h1 and h2 are the sequent depths and F1 is the Froude number in low stage.
The feasible solution for the sequent depth ratio of the quadratic equation is

h2

h1
¼ 1

2
ð1þ 8F2

1Þ
0:5 � 1

h i

Bélanger (1828) was the first to apply the momentum equation across a hydraulic
jump to obtain the above equation, which is often called the Bélanger equation.
Applying the specific energy concept, the energy loss DE in a hydraulic jump can
be expressed as

DE ¼ E1 � E2 ¼ h1 þ
U2

1

2g

� �

� h2 þ
U2

2

2g

� �

where E1 and E2 are the specific energies at sections 1 and 2, respectively. In the
above, the energy coefficients are assumed to be unity, that is, a1 = a2 = 1.
Applying the continuity equation, the discharge per unit width q is given by
q = U1h1 = U2h2, and then, the above equation becomes

DE ¼ �ðh2 � h1Þ þ
q2

2g

1

h2
1

� 1

h2
2

� �

Further, applying q = U1h1 and F1 = U1/(gh1)0.5, the equation of sequent depth
ratio or the Bélanger equation is expressed as

q2

g
¼ h1h2

2
ðh1 þ h2Þ

Therefore, the energy loss DE in a hydraulic jump is formulated as

DE ¼ ðh2 � h1Þ3

4h1h2

Example 2.4 Derive the relationship of the critical depth in terms of alternate
depths in the flow through a rectangular channel.
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Solution

Since the specific energy is same at two sections (low and high stages), assuming
a1 = a2 = 1, it gives

h1 þ
U2

1

2g
¼ h2 þ

U2
2

2g

Then, applying q = U1h1 yields

h2 � h1 ¼
q2

2g

1

h2
1

� 1

h2
2

� �

Again, the condition of a critical flow in a rectangular channel can be obtained
from Eq. (2.82) as

h3
c ¼

q2

g

Thus, the relationship of the critical depth in terms of alternate depths is obtained
as follows:

hc ¼
2h2

1h2
2

h1 þ h2

� �1=3

Example 2.5 Oil with a free stream velocity of 1 m s-1 flows over a thin plate of
1.5 m wide and 2.5 m long. Determine the boundary layer thickness and the wall
shear stress at a distance of 1.5 m from the leading edge of the plate and also
calculate the total resistance on one side of the plate. Consider coefficient of
kinematic viscosity of oil t = 10-5 m2 s-1 and relative density of oil s = 0.8.

Solution

Given data are as follows:
Free stream velocity, U = 1 m s-1; plate width, b = 1.5 m; plate length,
L = 2.5 m; coefficient of kinematic viscosity of oil, t = 10-5 m2 s-1; and relative
density of oil, s = 0.8.
The mass density of oil, q = 0.8 9 103 kg m-3

The Reynolds number Rx at x = 1.5 m is

Rx ¼
Ux

t
¼ 1
 1:5

10�5
¼ 1:5
 105\3
 105

It is low enough to allow a laminar boundary layer
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The boundary layer thickness d at x = 1.5 m is

d ¼ 4:643xR�0:5
x ¼ 4:643
 1:5ð1:5
 105Þ�0:5 ¼ 0:018 m( Eq: 2:113ð Þ

The wall shear stress s0 at x = 1.5 m is

s0 ¼ 0:323l
U

x
R0:5

x ¼ 0:323ð10�5 
 0:8
 103Þ 1
1:5
ð1:5
 105Þ0:5 ¼ 0:667 Pa

( Eq: 2:114ð Þ

The Reynolds number RL at the end of the plate having a length L = 2.5 m is

RL ¼
UL

t
¼ 1
 2:5

10�5
¼ 2:5
 105\3
 105

The RL is to allow a laminar boundary layer.
The wall shear resistance per unit width Fs on one side of the plate of length
L = 2.5 m can be obtained from

Fs ¼ 0:646qUtR0:5
L ¼ 0:646
 0:8
 103 
 1
 10�5ð2:5
 105Þ0:5

¼ 2:584 N m�1 ( Eq: 2:115ð Þ

Therefore, the total resistance is FR = Fs b = 2.584 9 1.5 = 3.876 N

Example 2.6 Water that has a free stream velocity of 1.5 m s-1 at the entrance
flows through a 2.5 m wide rectangular channel. Determine the length of the
channel required to obtain a fully developed turbulent flow for the flow depth of
0.5 m and also calculate the wall shear stress at the location of the fully developed
flow and the total resistance on the channel base up to that location. Consider
coefficient of kinematic viscosity of water t = 10-6 m2 s-1. Assume the length of
the channel over which the laminar boundary layer exists is negligibly small as
compared to that over which the turbulent boundary layer exists.

Solution

Given data are as follows:
Free stream velocity, U = 1.5 m s-1; channel width, b = 2.5 m; and coefficient of
kinematic viscosity of water, t = 10-6 m2 s-1.
Fully developed flow depth, h = d = 0.5 m.
Considering a turbulent boundary layer, the equation of boundary layer is used as

d ¼ 0:376xR�0:2
x ¼ 0:376x

Ux

t

� ��0:2

( Eq: 2:120ð Þ

) x ¼ 3:396d1:25 U

t

� �0:25

¼ 3:396
 0:51:25 1:5
10�6

� �0:25

¼ 49:97 m
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The Reynolds number Rx at x = 49.97 m is

Rx ¼
Ux

t
¼ 1:5
 49:97

10�6
¼ 7:496
 107 [ 106

Noting that the transition occurs in the range Rx = 3 9 105 to 106, the
Rx = 7.496 9 107 is therefore large enough to allow a turbulent boundary layer.
However, the length up to the transition is x = Rx(t/U) = 106(10-6/1.5)
= 0.667 m, which is negligibly small in comparison to the length required to form
the fully developed turbulent flow, that is, x = 49.97 m.
The wall shear stress s0 at x = 49.97 m is

s0 ¼ 2:91
 10�2qU2R�0:2
x ¼ 2:91
 10�2 
 103 
 1:52ð7:496
 107Þ�0:2

¼ 1:742 Pa( Eq: 2:121ð Þ

The wall shear resistance per unit width Fs for L = x = 49.97 m and
RL = Rx = 7.496 9 107 is

Fs ¼ 3:638
 10�2qU2LR�0:2
L

¼ 3:638
 10�2 
 103 
 1:52 
 49:97ð7:496
 107Þ�0:2 ¼ 108:84 N m�1

( Eq: 2:122ð Þ

Therefore, the total resistance is FR = Fs b = 108.84 9 2.5 = 272.1 N

Example 2.7 A spherical particle having a diameter d = 4 mm is placed in a free
stream of water with a velocity U = 1.2 m s-1. Determine the drag and the
lift acting on the particle. The drag and lift coefficients are given by
CD = 24R�1

e (1 + 0.15R0:687
e ) and CL = 0.85CD, where Re = Ud/t. Consider

coefficient of kinematic viscosity of water t = 10-6 m2 s-1.

Solution

Given data are as follows:
Particle diameter, d = 4 mm; free stream velocity, U = 1.2 m s-1 and coefficient
of kinematic viscosity of water, t = 10-6 m2 s-1.
The particle Reynolds number Re is

Re ¼
Ud

t
¼ 1:2
 4
 10�3

10�6
¼ 4:8
 103

The drag and lift coefficients are

CD ¼
24
Re

ð1þ 0:15R0:687
e Þ ¼ 24

4:8
 103
½1þ 0:15ð4:8
 103Þ0:687� ¼ 0:259

CL ¼ 0:85CD ¼ 0:85
 0:259 ¼ 0:22
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The drag is

FD ¼
1
2

CDqU2A ¼ 1
2

 0:259
 103 
 1:22 
 p

4
ð4
 10�3Þ2

¼ 2:343
 10�3 N( Eq: 2:147ð Þ

The lift is

FL ¼
1
2

CLqU2A ¼ 1
2

 0:22
 103 
 1:22 
 p

4
ð4
 10�3Þ2

¼ 1:991
 10�3 N( Eq: 2:160ð Þ
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