

Lecture Notes in Computer Science 6536
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Raja Natarajan Adegboyega Ojo (Eds.)

Distributed Computing
and Internet Technology

7th International Conference, ICDCIT 2011
Bhubaneshwar, India, February 9-12, 2011
Proceedings

13

Volume Editors

Raja Natarajan
Tata Institute of Fundamental Research
School of Technology & Computer Science
Homi Bhabha Road, Colaba, Mumbai 400005, India
E-mail: raja@tifr.res.in

Adegboyega Ojo
United Nations University
International Institute of Software Technology
Center for Electronic Governance
P.O. Box 3058, Macao
E-mail: ao@iist.unu.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19055-1 e-ISBN 978-3-642-19056-8
DOI 10.1007/978-3-642-19056-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010943036

CR Subject Classification (1998): C.2.4, C.2, D.4.2-3, D.4.7, H.2.4, H.3-5, K.6.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the 7th International Conference on Distributed
Computing and Internet Technology (ICDCIT) held during February 9–12,
2011 at the Kalinga Institute of Information Technology (KIIT) University in
Bhubaneshwar, India. The conference was co-sponsored by KIIT and the Center
for Electronic Governance at United Nations University—International Institute
for Software Technology (UNU-IIST-EGOV), Macao. ICDCIT is an interna-
tional forum for the discussion of contemporary research in distributed com-
puting, Internet technologies, and related areas. Proceedings of all the past six
ICDCIT conferences have been published in the Springer LNCS series – volume
3347 (year 2004), 3816 (2005), 4317 (2006), 4882 (2007), 5375 (2008), and 5966
(2010).

ICDCIT 2011 received 184 abstracts, of which 138 (from 12 countries) were
followed by their full versions. The Programme Committee consisted of 40 mem-
bers from 12 countries. Each submission was reviewed by at least two Programme
Committee members, and on average by three Programme Committee members,
with the help of 72 external reviewers. The Programme Committee meeting was
conducted electronically over a period of two weeks in September 2010. The
Programme Committee decided to accept 18 papers (13%) for presentation and
publication in the LNCS proceedings. In order to make the conference more in-
clusive, and to provide greater scope for interesting conference presentations and
discussions, the Programme Committee decided to accept 21 additional papers
for presentation only. We would like to thank all the Programme Committee
members for their hard work dedicated to reviews and discussions, and all the
external reviewers for their invaluable contributions.

This volume also contains the full papers of six distinguished invited speak-
ers: Jos Baeten (Eindhoven University of Technology, The Netherlands), Yves
Deswarte (LAAS-CNRS, France), Kohei Honda (Queen Mary and Westfield
College, UK), Vaughan Pratt (Stanford University, USA), Krishna Shankara
Narayanan (IIT Bombay, India), and Maria Wimmer (University of Koblenz,
Germany). We would like to thank all the invited speakers for accepting our
invitations to speak and also for sending their papers.

Our thanks to Achyuta Samanta (Founder KIIT), for his support of ICDCIT
2011 and for providing the infrastructure of KIIT to organize the conference.
We are grateful to KIIT and UNU-IIST for being co-sponsors of ICDCIT 2011.
Our thanks to Ashok Kolaskar (Vice-Chancellor, KIIT) and Peter Haddawy,
(Director, UNU-IIST) for the co-sponsorships. We are grateful to the Advisory
Committee and the General Co-chairs for their invaluable support and guidance.
We are indebted to Animesh Tripathy, Samaresh Mishra, Prachet Bhuyan, D.N.
Dwivedy, and Hrushikesha Mohanty for their tireless efforts that made ICDCIT
2011 in Bhubaneshwar possible.

VI Preface

Our thanks to all the authors whose scholarly submissions offered an inter-
esting technical program. EasyChair made the handling of submissions and the
production of the proceedings extremely smooth and efficient. For the publishing
process at Springer, we would like to thank Alfred Hofmann and Anna Kramer
for their constant help and cooperation. We acknowledge UNU-IIST and the
Tata Institute of Fundamental Research (TIFR) for providing the infrastruc-
tural support to carry out this editorial work.

Our thanks to all the participants for lively interactions that made ICDCIT
2011 enjoyable.

February 2011 Raja Natarajan
Adegboyega Ojo

Conference Organization

ICDCIT 2011 and its associated events were held at Kalinga Institute of Indus-
trial Technology, Bhubaneshwar, India.

Sponsoring Institutions

Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneshwar,
India, and the Center for Electronic Governance at United Nations University—
International Institute for Software Technology (UNU-IIST-EGOV), Macao.

Patron

Achyuta Samanta KIIT, India

Advisory Committee

Maurice Herlihy Brown University, USA
Gérard Huet INRIA, France
Tomasz Janowski UNU-IIST, Macao
Ashok S. Kolaskar KIIT, India
David Peleg WIS, Israel
R.K. Shyamasundar TIFR, India

General Co-chairs

Hrushikesha Mohanty University of Hyderabad, India
Vivek Sarkar Rice University, USA

Organizing Chair

Animesh Tripathy KIIT, India

Finance Chair

Samaresh Mishra KIIT, India

Publicity Chair

Prachet Bhuyan KIIT, India

VIII Conference Organization

Programme Chairs

Raja Natarajan TIFR, India
Adegboyega Ojo UNU-IIST, Macao

Programme Committee

Sowmya Arcot UNSW, Australia
Purandar Bhaduri IIT Guwahati, India
Nikolaj Bjorner Microsoft, USA
Elizabeth Buchanan University of Wisconsin-Milwaukee, USA
Antonio Cerone UNU-IIST, Macao
Venkatesh Choppella IIIT Hyderabad, India
Van Hung Dang Vietnam National University, Vietnam
Elsa Estevez UNU-IIST, Macau
Pablo Fillottrani Universidad Nacional del Sur, Argentina
Michele G. Pinna University of Cagliari, Italy
Veena Goswami KIIT, India
Chittaranjan Hota BITS Pilani, India
Paul Humphreys University of Virginia, USA
Aditya Kanade IISc, India
Delia Kesner Université Paris Diderot, France
Paddy Krishnan Bond University, Australia
Lakshmanan Kuppusamy VIT, India
Sanjay Madria Missouri University, USA
Rupak Majumdar MPI, Germany
Tulika Mitra NUS, Singapore
Debajyoti Mukhopadhyay Calcutta Business School, India
G.B. Mund KIIT, India
Ankur Narang IBM, India
Rajdeep Niyogi IIT Roorkee, India
Brajendra Panda University of Arkansas, USA
N. Parimala JNU, India
Manas Ranjan Patra Berhampur University, India
Dana Petcu West University of Timisoara, Romania
P. Radha Krishna Infosys, India
Srini Ramaswamy ABB Corporate Research, India
Benoit Razet TIFR, India
Manoj Saxena University of Delhi, India
Ashutosh Saxena Infosys, India
Jaydip Sen TCS, India
Manuel Serrano INRIA, France
Hardeep Singh GNDU, India
Hideyuki Takahashi Tohoku University, Japan
Nobuko Yoshida Imperial College London, UK

Conference Organization IX

External Reviewers

Anirudh Santhiar Anthony Tam Anuraag Sridhar
Arijit Sur Arnab De B. Hariharan
Barbara Thoenssen Bernhard Hengst Carole Delporte
Christophe Prieur D. Manjunath Diganta Goswami
Dimitri Semenovich Eugene Asarin Fabien de Montgolfier
Gary Steri Hadi Otrok Hieu Vo
Hoang Truong Hrushikesha Mohanty Hugues Fauconnier
Ian Hodkinson Indhumathi Raman Indrajit Bhattacharya
Jonathan Hayman Jonathan White Jorgen Peddersen
Jyothish Soman K. Samudravijaya Kumar K.
Kumar Swamy H.V. Ludovico Boratto Madhu Viswanatham
Marcus Randall Massimo Bartoletti Massimo Merro
Matthieu Latapy Mauro Piccolo Mihaela Sighireanu
Mike Bain Narendra Kumar

Nelabhotla
Ngoc Hung Pham

Onkar Dabeer Pawel Sobocinski Pinaki Mitra
Pranavadatta D.N. Qussai Yaseen Rahul Vaze
Riccardo Scateni S.V. Rao Salil Kanhere
Sebastian Nanz Souvik Bhattacherjee Stefanie Kosuch
Sukumar Nandi Sumita Basu Suresh Purini
Sushanta Karmakar T. Venkatesh Thi Minh Chau Tran
Trong Dung Nguyen Vamsi Krishna

Brahmajosyula
Vasanta Lakshmi K.

Victor Khomenko Vijaya Saradhi Vikas Garg
Vivek Sarkar Xiongcai Cai Yacine Boufkhad
Yang Wang Kamala Krithivasan Zheng Da Wu

Table of Contents

Invited Talks

An Overview of Membrane Computing . 1
Shankara Narayanan Krishna

Protecting Critical Infrastructures While Preserving Each
Organization’s Autonomy . 15

Yves Deswarte

Computations and Interaction . 35
Jos C.M. Baeten, Bas Luttik, and Paul van Tilburg

Scribbling Interactions with a Formal Foundation . 55
Kohei Honda, Aybek Mukhamedov, Gary Brown,
Tzu-Chun Chen, and Nobuko Yoshida

Open Government in Policy Development: From Collaborative Scenario
Texts to Formal Policy Models . 76

Maria A. Wimmer

Linear Process Algebra . 92
Vaughan Pratt

Distributed Computing

Jump-Start Cloud: Efficient Deployment Framework for Large-Scale
Cloud Applications . 112

Xiaoxin Wu, Zhiming Shen, Ryan Wu, and Yunfeng Lin

Capacity Estimation in HPC Systems: Simulation Approach 126
A. Anghelescu, R.B. Lenin, S. Ramaswamy, and K. Yoshigoe

A Multi–Granular Lock Model for Distributed Object Oriented
Databases Using Semantics . 138

V. Geetha and N. Sreenath

Contention-Free Many-to-Many Communication Scheduling for High
Performance Clusters . 150

Satyajit Banerjee, Atish Datta Chowdhury, Koushik Sinha, and
Subhas Kumar Ghosh

Recursive Competitive Equilibrium Approach for Dynamic Load
Balancing a Distributed System . 162

K. Shahu Chatrapati, J. Ujwala Rekha, and A. Vinaya Babu

XII Table of Contents

Sensor Networks

Smoothed Functional and Quasi-Newton Algorithms for Routing in
Multi-stage Queueing Network with Constraints . 175

K. Lakshmanan and Shalabh Bhatnagar

An Incremental Power Greedy Heuristic for Strong Minimum Energy
Topology in Wireless Sensor Networks . 187

B.S. Panda and D. Pushparaj Shetty

kth Order Geometric Spanners for Wireless Ad Hoc Networks 197
Prabhat Kiran and S.V. Rao

Robust and Distributed Range-Free Localization Using Anchor Nodes
with Varying Communication Range for Three Dimensional Wireless
Sensor Networks . 209

Manas Kumar Mishra and M.M. Gore

Internet Technologies and Applications

Decision Support Web Service . 221
N. Parimala and Anu Saini

A Scalable Architecture for Real-Time Online Data Access 232
Ionuţ Roşoiu

Socially Responsive Resource Usage: A Protocol . 243
Hrushikesha Mohanty

An Automated HSV Based Text Tracking System from Complex Color
Video . 255

C. Misra and P.K. Swain

Security

Enhanced Insider Threat Detection Model that Increases Data
Availability . 267

Qussai Yaseen and Brajendra Panda

Checking Anonymity Levels for Anonymized Data . 278
V. Valli Kumari, N. Sandeep Varma, A. Sri Krishna,
K.V. Ramana, and K.V.S.V.N. Raju

Chaos Based Image Encryption Scheme Based on Enhanced Logistic
Map . 290

I. Shatheesh Sam, P. Devaraj, and R.S. Bhuvaneswaran

Table of Contents XIII

Bio-inspired Computing

Matrix Insertion-Deletion Systems for Bio-Molecular Structures 301
Lakshmanan Kuppusamy, Anand Mahendran, and
Shankara Narayanan Krishna

Artificial Bee Colony Based Sensor Deployment Algorithm for Target
Coverage Problem in 3-D Terrain . 313

S. Mini, Siba K. Udgata, and Samrat L. Sabat

Author Index . 325

An Overview of Membrane Computing

Shankara Narayanan Krishna

Department of Computer Science and Engineering,
IIT Bombay, Powai, Mumbai, India 400 076

krishnas@cse.iitb.ac.in

Abstract. Membrane Computing is a natural computing paradigm aim-
ing to abstract computing models from the structure and functioning of
the living cell as well as from the cooperation of cells in tissues, organs
and other populations of cells. This direction of research was initiated
by Gh. Păun in November 1998 [25]. In the last twelve years, the area
has grown substantially: initial research focussed on understanding com-
putability aspects using formal language theoretic elements, and using
membrane computing as a parallel computing device capable of solv-
ing intractable problems; over the years, membrane computing has been
found useful in modelling biological processes, simulating ecosystems,
and also finds some applications in areas like economics, computer graph-
ics and approximate optimization. Off late, complexity classes (time,
space) of membrane systems and their connection with the classical
complexity classes have been investigated. The connection of membrane
computing with other areas like petri nets, brane calculi, process alge-
bra, dynamical systems, X-machines and models based on fuzzy sets is
an active and important recent line of research. In this paper, we give a
high level overview of the research in membrane computing over the last
12 years.

1 Introduction

The research area of membrane computing originated as an attempt to formu-
late a model of computation motivated by the structure and functioning of the
living cell - more specifically, by the role of membranes in partitioning living cells
into individual “reaction agents”. The initial model was based on a hierarchical
arrangement of membranes delimiting compartments, where multisets of objects
(representing proteins, molecules and chemicals) evolve according to given evo-
lution rules. These rules were either capturing chemical reactions and had the
form of multiset rewriting rules, or were inspired by other biological mechanisms,
like communication of objects through membranes (a classic example is the sym-
port/antiport action in systems) and had the form of communication rules. The
initial model was modified later to incorporate additional features motivated by
biological/mathematical/computer science considerations. One such modifica-
tion was that the hierarchical model was replaced by a non-hierarchical arrange-
ment of membranes. While hierarchical (cell-like) arrangements of membranes
correspond to trees, the non-hierarchical (tissue-like) arrangements correspond

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 1–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S.N. Krishna

to arbitrary graphs as underlying structures, with membranes placed on the
nodes and edges corresponding to communication channels. The most recent
developments in this line are the neural-like membrane systems motivated by
spiking neural networks.

All the computing devices considered in membrane computing are called P
Systems in honour of Gh.Păun, the father of the area. In the initial phases of re-
search, investigation of computability aspects of P systems led to several variants
of P systems turning out to be equivalent to Turing machines, hence computa-
tionally complete. This was followed by research concerning complexity classes
yielding results relating classic complexity classes to computational efficiency of
various variants of P systems. Research on applications of P systems is currently
a very active area, with applications in several areas, to mention in particular
biology and bio-medicine.

The paper is organized as follows: In section 2, we introduce [25] the initial
hierarchical cell-like model, illustrate the working of a P system using an exam-
ple, and discuss computability results. We close section 2 mentioning some well
known variants of P systems. In section 3, we introduce a variant of P systems
modeling the biological action mitosis. This is the first known variant of P sys-
tems capable of solving intractable problems. We talk about complexity classes
for P systems, and do a quick survey of complexity related results. We conclude
in section 4 mentioning some applications.

2 The Basic Model

In this section, we recall the definition of the basic model of P systems as intro-
duced in [25]. A membrane is a three dimensional vesicle, which geometrically
can be considered as a ball in the Euclidean space. A membrane thus delimits
space, separating the inside from the outside. The inside space serves as a re-
actor - where reactions take place using the molecules/chemicals in the space.
In the basic model, we will consider a hierarchical arrangement of nested mem-
branes. Graphically, we represent membrane structures as Euler-Venn diagrams.
Figure 1 gives a membrane structure.

In the figure, the membranes are labeled in a 1-1 manner through numbers
ranging from 1 to 10. The outermost membrane labeled 1 is called the skin
membrane. The space delimited by membrane 1 and membranes 2,3 and 6 is
called the region of membrane 1. Likewise, the space delimited by membrane 2
is the region of membrane 2 and so on. The space outside the skin membrane is
called the environment. The membranes 2, 3 and 6 are the children of membrane
1, membrane 2 has no children, membrane 3 has children 4 and 5 and so on.
A membrane is called elementary if it has no children. The skin membrane is
unique. A region is either the space delimited by an elementary membrane or a
space delimited by a non-elementary membrane and its children. The membranes
4,5 are siblings; so are membranes 8,9 and 10. It is easy to visualize a membrane
structure as a rooted tree, with the root corresponding to the skin membrane.
An edge from node i to node j corresponds to membrane j being a child of

An Overview of Membrane Computing 3

1
2 3

4 5

6
7

8 9 10

Fig. 1. A membrane structure

membrane i. The leaf nodes are the elementary membranes. Commonly, to save
space, a linear parentheses expression is adopted to specify membrane structures.
Thus, the parenthesis expression corresponding to the membrane structure in
Figure 1 is

[1 [2]2 [3 [4]4 [5]5]3 [6 [7 [8]8 [9]9 [10]10]7]6]1

Next, we come to multisets of objects which can be placed in the regions de-
limited by the membranes and rules to process them. In an abstract form, we
assume that the proteins/molecules present in regions are represented by multi-
sets over a finite alphabet Σ. The multisets of objects in region i is represented
by wi. The rules for processing these objects are of the form u → v where u is a
string and v is a string over Σ × tar, tar ∈ {here, in, out} represents the target
membrane. For example, in the above case, we can have Σ = {a, b, c, d} with
w1 = aa, w2 = bc, w3 = a = w4, w5 = c, w6 = ∅ = w7, w8 = ab, w9 = bc, w10 =
cc. We can represent this as part of the membrane structure as

[1aa [2 bc]2 [3 a [4 a]4 [5 c]5]3 [6 [7 [8 ab]8 [9 bc]9 [10 cc]10]7]6]1

Rules processing objects wi are denoted by Ri. We can have in this exam-
ple, R1 = {a → (b, out)}, R2 = {b → (c, here), c → (a, here)}, R3 = {a →
(cc, in)}, R4 = {(a → (b, out)}, R5 = {c → (a, here)}, R6 = {b → (a, here)},
R7 = ∅, R8 = {a → (b, here), b → (c, here)}, R9 = ∅, R10 = {c → (a, out)}.
The rules are applied in the maximally parallel mode; i.e, all objects to which
a rule is applicable are processed in a step, if more than one rule is applicable
to an object, then one rule is chosen non-deterministically and applied. A con-
figuration of the system consists of the membrane structure and their contents
at a given point of time. The initial configuration C0 is given by the membrane
structure and the multisets of all regions. A configuration Ci evolves to a con-
figuration Ci+1 by one rewriting step, used in the maximally parallel mode. The
string above represents the initial configuration C0. It is possible to have multi-
ple configurations corresponding to a rewriting step depending on the choice of
the rules used. In our example, C1 is the configuration

bb[1 [2 ca]2 [3 b [4 c]4 [5 ca]5]3 [6 [7 aa [8 bc]8 [9 bc]9 [10]10]7]6]1

4 S.N. Krishna

Note that while using the rule a → (cc, in) in R3, we have non-deterministically
distributed the two c’s among membranes 4,5 (each get a copy of c). From C1,
we obtain the next configuration as C2 which is

bb[1 [2 aa]2 [3 b [4 c]4 [5 aa]5]3 [6 [7 aa [8 cc]8 [9 bc]9 [10]10]7]6]1

From C2, no more evolution is possible, and the system halts. To observe the
output of a halting computation, we designate a membrane or the environment
and observe the contents of that membrane (or environment) after halting. If we
designate membrane 10 as the output membrane, then at the end of a halting
computation, we obtain ∅ as the result. If we consider the environment, then we
obtain bb. Formally, a P system with multiset rewriting rules of degree m ≥ 1 is
a construct

Π = (Σ, H, μ, w1, . . . , wm, R1, . . . , Rm, i0)

where

1. Σ is the finite alphabet of objects,
2. H is the alphabet of membrane labels,
3. μ is a membrane structure with m membranes (degree m),
4. w1, . . . , wm ∈ Σ∗ are the multisets of objects associated with the m regions

of μ,
5. Ri, 1 ≤ i ≤ m are finite sets of multiset rewriting rules associated with the

m regions of μ,
6. i0 ∈ H ∪ {env} specifies the output region of Π , where env stands for the

environment.

The number or the Parikh vector of the multiset of objects from Σ contained in i0
at the moment when the system halts is the result of Π . By collecting the results
of all possible computations possible in Π we get the set of natural numbers and
vectors generated by Π , denoted by N(Π) and Ps(Π) respectively. In the above
example, when we consider the environment as i0, we obtain Ps(Π) = {(0, 2, 0)}
and N(Π) = 2. The families of all sets of numbers or sets of vectors computed
by P systems with multiset rewriting with atmost m membranes is denoted by
NOPm and PsOPm respectively. By allowing only “minimal” cooperation among
the objects, these systems have been shown to be computationally complete.
Formally, using rules of the form ca → cv and a → v, where c is a specified fixed
object outside Σ, a ∈ Σ, and v a string over Σ ×{here, out, in}, we obtain with
just two membranes the result

Theorem 1. NOP2 = NRE.

where NRE denotes the family of Turing computable sets of numbers. The proof
can be seen in [25], [34].

2.1 Variants of the Basic Model

Following the initial model of P systems with multiset objects, several variants
were introduced. All the results mentioned here can be found in [34]. We mention
some of the prominent ones here:

An Overview of Membrane Computing 5

1. P systems with string objects and rewriting rules [25]. The computing power
of the model is established by comparing with families RE, CF, MAT and
ET0L. Using various features like permitting/forbidding contexts, membrane
dissolution, membrane permeability, the computing power is investigated.
Certain combinations of these features provide computational completeness.
The application of rules in sequential/parallel mode and their effect on the
computational power has been studied. Decision questions such as reacha-
bility of a deadlock configuration has also been investigated. An important
extension of P systems with rewriting rules is the one where replication is in-
troduced [17]. This variant is capable of producing an exponential workspace
in polynomial time, and is thus useful for solving intractable problems.

2. Splicing P systems [25]. This variant is motivated by the splicing operation.
The biological splicing operation was first mathematically formalized by T.
Head [11]. Using the rotate and simulate technique, a characterization of RE
is obtained using 2 membranes. By a transformation of splicing P systems
into language equivalent H systems [24], results comparing the power of splic-
ing P systems with the Chomsky hierarchy are obtained. Restricted variants
of splicing P systems have been studied by considering features like one-way
communication and immediate communication [34]. The construction of a
universal splicing P system can be seen in [10].

3. P systems with communication rules [23]. This variant has multisets of ob-
jects, but no rewriting rules of any kind. The only rules governing the system
are the communication of objects across membranes inspired by the biologi-
cal operations symport and antiport. Various modes of parallelism in the use
of rules and various modes of halting are considered, and Turing complete-
ness is achieved with some combinations. The size of the symport/antiport
rules (number of objects per communication) is a parameter which also
influences the computational power. A trade off between the different
parameters, viz., number of membranes and number of objects per com-
munication is studied, and its effect on the computing power is analyzed.
There are open questions regarding the descriptional complexity measures
for this class of P systems based on the parameters [34].

4. Tissue and population P systems [3], [9], [19]. Tissue P systems were intro-
duced as a generalization of cell-like P systems [25] by considering a more
general structure than a tree, and population P systems are an extension of
these. Tissue P systems have a generic graph as the underlying structure and
pure communication governs the evolution of the system. Specific channels of
communication are established between various membranes and between the
membranes and the environment. The computational efficiency is analyzed
using the complexity principles of number of symbols, number of cells, size
of rules involved and different modes of parallelism. While tissue P systems
have a fixed underlying cell topology, in population P systems, the structure
can dynamically change. The quorum sensing behaviour of Vibrio fischeri
bacterium has been successfully modeled using population P systems.

6 S.N. Krishna

5. P systems with active membranes [26]. This variant of P systems model
the biological action of mitosis in cells. This was the first variant to solve
intractable problems in polynomial time apart from being Turing complete.
Several restrictions of the model introduced in [26] have been studied with
respect to computational efficiency, solving hard problems, and time, space
complexity considerations. Related variants are [2] with dynamic creation
of membranes modeling the biological process of autopoiesis and [14] with
mobile membranes.

6. Spiking neural P systems [12]. This variant is inspired by the way neurons
communicate by means of electric impulses of identical shape, called spikes.
The underlying structure of such a system is a directed graph with neu-
rons placed on the nodes. The synapses between the neurons determine the
connections of the graph. Closure properties, comparisons with the Chom-
sky hierarchy as well as the ability to solve intractable problems are the
highlights of this variant.

7. P systems with objects on membranes [6], [22]. This model is a deviation
from the standard model where objects are placed in the membranes. [22]
models peripheral proteins placed on sides of the membranes or integral pro-
teins which have parts of the molecule on both sides of the membrane. In
this framework, the area of membrane computing has been compared [15] to
that of brane calculi [8]. Decision questions regarding reachability of config-
urations in this model has been investigated in [7].

In general, computational power has been investigated by simulation of tradi-
tional devices (register machines, partially blind counter machines, vector addi-
tion systems, suitable grammars). The first paper to differ from this and prove
computational completeness is [16]. In [16], P systems with mobile membranes
simulate with a linear slow down (without introducing non-determinism) P sys-
tems with replicated rewriting, thereby achieving Turing completeness. The fact
that a variant with symbol objects simulates a variant with string objects is a
hallmark of this work. The question of biological feasibility of such simulations
for various variants is an interesting question.

3 Complexity Aspects

While the previous section discussed about the computational power of various
variants of P systems, this section addresses how real life problems can be solved
by P systems. To this aim, notions of classical computational complexity theory
are adapted for the membrane computing framework. Complexity aspects of ba-
sic transition P systems [25], P systems with active membranes [26], P systems
with membrane creation [2] and spiking neural P systems [12] have been inves-
tigated so far. The efficiency of these systems and their relations with classes
P, NP, NP ∩ co-NP, L, NL and PSPACE have been investigated. In this
section, we look only at the results concerning P systems with active membranes
[26]. We first recall the definition.

An Overview of Membrane Computing 7

3.1 Active Membranes

A P system with active membranes of degree q ≥ 1 is a tuple Π =
(Γ, H, μ, w1, . . . , wq, R, h0) where Γ, H, w1, . . . , wq, h0 are as in the basic model
in section 2, μ is a membrane structure consisting of q membranes injectively
labeled with elements of H and with electrical charges (+,−, 0) associated with
them, and R is a finite set of rules, of the following forms:

1. [ha → u]αh for h ∈ H , α ∈ {+,−, 0}, a ∈ Γ, u ∈ Γ ∗ (object evolution rules),
2. a[h]α

h → [hb]βh, for h ∈ H , α, β ∈ {+,−, 0}, a, b ∈ Γ
(send-in communication rules),

3. [ha]α
h → [h]β

hb, for h ∈ H , α, β ∈ {+,−, 0}, a, b ∈ Γ
(send-out communication rules),

4. [ha]α
h → b, for h ∈ H , α ∈ {+,−, 0}, a, b ∈ Γ (dissolution rules),

5. [
h
a]α

h
→ [

h
b]β

h
[
h
c]ζ

h
, for h ∈ H , α, β, ζ ∈ {+,−, 0}, a, b, c ∈ Γ

(division rules for elementary membranes),
6. [h[h1

]α
h1

. . . [hk
]α
hk

[hk+1
]β
hk+1

. . . [hn
]βhn

]θh → [h[h1
]γh1

. . . [hk
]γhk

]ζh[h[hk+1
]κ
hk+1

. . . [hn
]κhn

]χh , for h, h1, . . . , hn ∈ H , α, β, θ, γ, ζ, κ, χ ∈ {+,−, 0}, and {α, β} =
{+,−} (division rules for non-elementary membranes).

When we treat membrane systems as language deciding devices to solve decision
problems, we call these recognizer membrane systems. Each computation of a
recognizer membrane system outputs either an object yes or an object no. The
output is read only at the halting configuration. Formally, a recognizer membrane
system Π is such that (1) All computations halt, (2) yes, no ∈ Γ , and (3) One
of the objects yes, no appear in the halting configuration. The computation is
accepting if the yes object arrives in the halting configuration and rejecting if the
no object arrives. Similar to circuit complexity, we consider an infinite family of
active membrane P systems Π to solve a decision problem. Let X = {x1, x2, . . .}
be a language over alphabet Σ. The family Π decides X if for any string x ∈ Σ∗,
the P system Π(x) accepts whenever x ∈ X and rejects otherwise. Thus, each
instance of the problem is solved by some family member of Π . The family Π
is sound with respect to X when, for each x ∈ Σ∗, if there exists an accepting
computation of Π(x), then x ∈ X . The family Π is complete with respect to X
when, for each x ∈ Σ∗, if x ∈ X , then every computation of Π(x) is accepting.
A membrane system is confluent if it is sound and complete.

3.2 Uniformity and Semi-uniformity

The notion of uniformity was first introduced by Borodin [5] for boolean
circuits. In this section, we discuss notions of uniformity and semi-uniformity
applied to membrane systems. With no restrictions, recognizer active membrane
systems are a non-uniform model of computation; that is, there may be a
different device solving the problem for each input size. This idea is similar to
the case of employing different circuits to solve different problem instances;
we consider an infinite family of recognizer active membrane systems to cover

8 S.N. Krishna

all potential input strings. However, if we can invest unbounded amounts of
computation in order to construct each member of the family, it can potentially
solve uncomputable problems. To ensure that the function that constructs each
member of the family does not increase the set of problems decided by the
family, we impose that the constructing function is computable within certain
restricted resources (time/space). When the function maps a single input length
to a membrane system that decides all inputs of that length, then the function
is called a uniformity condition. When the function maps a single input word
to a membrane system that decides that input, then the function is called a
semi-uniformity condition. The notions of uniformity and semi-uniformity were
first applied to membrane systems in [27].

Class of problems solved by a uniform family: Let R be a family of recognizer
membrane systems and let t : N → N be a total function. Let E, F be classes of
functions. The class of problems solved by an (E, F)-uniform family of membrane
systems R in time t denoted (E, F)−MCR(t) contains all problems X such that

(a) There exists a F -uniform family of membrane systems Π = {Π1, Π2, . . .}
of type R: that is, there exists a function f ∈ F , f : {1}∗ → Π such that
f(1n) = Πn,

(b) There exists an input encoding function e ∈ E such that e(x) is the input
multiset of Πn, for |x| = n,

(c) Π is t-efficient: Πn halts in t(n) steps,
(d) The family Π is sound with respect to (X, e, f): for each x ∈ X , there is an

accepting computation of Π|x| on input e(x),
(e) The family Π is complete with respect to (X, e, f): for each x ∈ X , every

computation of Π|x| on input e(x) must be accepting.

The set of languages decided by a uniform family of membrane systems in poly-
nomial time is defined as

(E, F) − PMCR =
⋃

k∈N

(E, F) − MCR(nk)

Semi-uniformity is a generalization of uniformity. Let H be a class of functions.
The class of problems solved by a (H)-semi-uniform family of membrane systems
of type R in time t denoted (H) − MC∗

R(t) contains all problems X such that
condition (c) as above as well as soundness and completeness hold, and in place
of condition (a) we have the following: there exists a H-semi-uniform family Π =
{Πx1 , Πx2 , . . .} of type R: there exists h ∈ H , h : Σ∗ → Π such that h(xi) = Πxi .
The set of languages decided by a semi-uniform family of membrane systems in
polynomial time is defined as (H) − PMC∗

R =
⋃

k∈N(H) − MC∗
R(nk). In our

case, R will be substituted with various (sub)classes of P systems with active
membranes. Let NAM denote the class of P systems with active membranes
where division rules are not used. The class P characterizes both uniform and
semi-uniform families of recognizer P systems with active membranes without
division rules, when the encoding as well as construction functions ∈ P.

An Overview of Membrane Computing 9

Theorem 2. [34] (P)PMC∗
NAM = (P, P)PMCNAM = P.

Let AM(+n) (respectively AM(−n)) denote the class of recognizer P sys-
tems with active membranes allowing division for both elementary and non-
elementary membranes (respectively division only for elementary membranes).
In the framework of AM(−n), efficient uniform solutions [34] to weakly NP-
complete problems (knapsack, subset sum, partition) and strongly NP-complete
problems (SAT, clique, bin packing) have been obtained.

A linear time solution to SAT by a uniform family of recognizer P systems
with active membranes AM(−n) is given in [34]. This result, along with the
observation that (P, P)PMCR is closed under complements and polynomial time
reductions gives us the following result:

Theorem 3. 1. SAT ∈ (P, P)PMCAM(−n),
2. NP ∪ co − NP ⊆ (P, P)PMCAM(−n).

The class of P systems with active membranes where non-elementary division of
membranes is allowed, has been shown to solve a PSPACE complete problem,
QBF. The upper and lower bounds of this class [1], [29], [32] are

Theorem 4. PSPACE ⊆ (P, P)PMCAM(+n) ⊆ (P)PMC∗
AM(+n) ⊆ EXP.

3.3 Avoiding Polarizations

Next, several classes of recognizer P systems without electrical charges and with
different kinds of membrane division rules were studied from a computational
complexity point of view. All rules in section 3.1 carry over without polariza-
tions. In particular, we mention rules (5) and (6) in this context:
(5)[ha]h → [hb]h[hc]h, for a, b, c ∈ Γ, h ∈ H ,
(weak division rules for elementary/non-elementary membranes)
(6)[h[h1

]h1
. . . [hk

]hk
[hk+1

]hk+1
. . . [hn

]hn
]h → [h[h1

]h1
. . . [hk

]hk
]h[h[hk+1

]hk+1

. . . [hn
]hn

]h, for h, h1, . . . , hn ∈ H , k ≥ 1, n ≥ k
(strong division rules for non-elementary membranes).
Throughout, we use rule (6) only for the case k = 1, n = 2. A restriction of rule
(6) is when the division happens in the presence of a specific membrane labeled
p that is, rules of the form
(7) [h[h1

]h1
[h2

]h2
[p]p]h → [h[h1

]h1
[p]p]h[h[h2

]h2
[p]p]h.

The class of recognizer polarizationless P systems with active membranes (resp.
without division) is denoted AM0 (resp. NAM0) and AM0(α, β, γ, δ) where
the parameters are as follows:

(a) α ∈ {+d,−d}. +d(−d) stand for allowing (disallowing) dissolution rules,
(b) β ∈ D = {−n, +nw, +ns, +nsw, +nsr}. −n stands for disallowing non-

elementary division, +nw(+ns) for weak (strong) division for elementary
and non-elementary membranes, +nsw for weak and strong division for
elementary/non-elementary membranes and +nsr for allowing rules of type
(5), (6) and (7),

(c) γ ∈ {+e,−e}. +e(−e) stand for allowing (disallowing) evolution rules, and
(d) δ ∈ {+c,−c}. +c(−c) stand for allowing (disallowing) communication rules.

10 S.N. Krishna

The following results can be found in [34].

Theorem 5. 1. P ⊆ (P, P)PMCNAM0(−d,−e,+c),
2. P = (P)PMC∗

AM0(−d,β,−e,+c), with β ∈ D,
3. NP ∪ co − NP ⊆ (P)PMC∗

AM0(+d,+ns,+e,+c),
4. NP ∪ co − NP ⊆ (P)PMC∗

AM0(+d,+nsw,−e,−c),
5. PSPACE ⊆ (P, P)PMCAM0(+d,+ns,+e,+c),
6. PSPACE ⊆ (P)PMC∗

AM0(+d,+nsr,−e,−c).

So far, in all the results connecting complexity classes with the set of prob-
lems solvable by (semi) uniform families of P systems, one considered the class
of functions E, F (or H) to be in P. It was shown in [20] that, by tightening
the uniformity conditions, it is possible to obtain characterizations of P sys-
tems by families lower than P. In particular, [20] showed that by considering
C-uniformity where C ∈ {AC0,NC1,L,NL}, polarizationless recognizer P sys-
tems with active membranes characterize the class NL.

Theorem 6. [20] Let C ∈ {AC0,NC1,L,NL}. Then for all β ∈ D,
(C)PMC∗

AM0(−d,β,+e,+c) = NL.

An important question relating to complexity classes in membrane computing
is with respect to the notions of semi-uniformity and uniformity. It has been
observed that in almost all cases where a semi-uniform solution for a problem
was given, at a later point a uniform solution was also proposed [20]. The question
of interest is whether the notions of semi-uniformity and uniformity coincide in
membrane systems. [20] has answered this in negative, by giving a semi-uniform
class of recognizer P systems that solves a strictly larger class of problems than
the corresponding uniform class. This result is summarized as

Theorem 7. Let β ∈ D. Then AC0 = (AC0,AC0)PMCAM0(−d,β,+e,+c) ⊂
(AC0)PMC∗

AM0(−d,β,+e,+c) = NL.

The relationship between complexity classes and the efficiency of several variants
of P systems is an active line of recent research. Most of the existing work has
been concerning time complexity classes, characterizations dealing with space
complexity classes need to be worked out as well.

4 Discussion

In this section, we talk about recent developments in membrane computing as
well as the connection between membrane computing and related areas.

4.1 Extensions, Applications

1. Dynamic probabilistic P systems (DPP) is an extension of P systems consid-
ered in [28]. This model has been found useful in modeling biological systems.

An Overview of Membrane Computing 11

The gene regulation system of the lac operon in E.coli has been modeled us-
ing this variant [30]. This variant has also been employed to study signalling
cascade pathways [21], and to provide an artificial life system that behaves
very close to a quorum sensing system as exhibited by Vibrio fischeri [31]. A
much more complex example [4] deals with the Ras/cAMP/PKA pathway
in Yeast S.cerevisiae. This pathway is involved in the control of the yeast cell
metabolism, stress resistance, and proliferation, in relation to the quantity
of available nutrients.

2. Metabolic P systems (MP) are an extension proposed in [18] which introduce
a new possibility in modeling complex phenomena which is related to the
log-grain theory. In these systems, the dynamics is computed by suitable
recurrent equations, based on flux regulation maps, and the log-grain theory
provides a method for deducing adequate flux maps of an MP model, by
means of suitable algebraic manipulations of data coming from macroscopic
observation of the system to be modeled. A strong connection can be stated
between MP systems and ordinary differential equations: from a differential
model, an equivalent MP system can be deduced, and conversely, any MP
system can be transformed into an equivalent differential model too.

3. [33] is a collection of articles dealing with applications of P systems. We
mention a few here. (i) The activity of mechanosensitive channels of large
conductance in cellular membranes has been modeled in P systems and an
implementation in silico carried out, (ii) The T cell signalling network which
plays a central role in cell-mediated immunity has been modeled using P
systems, and an implementation of T cell signalling networks has also been
carried out using this modelling. The experiments conducted gave relevant
biological information on T cell behaviour, particularly T cell responses.
The simulations explain how various factors play a role in determining T
cell response, relating input and output values of T cell mechanisms. (iii) A
model of light reactions taking place in photo synthesis is constructed using
P systems. Behaviours of the model under various parameters are tested on
a computer. Computer simulations show that the model explains in a good
way many phenomena of photosynthesis, including photoinhibition mecha-
nisms. A dynamical system using differential equations for photosynthesis is
compared with the P system model. The comparison shows that P systems
are better tools for dealing with biological phenomena than models based on
differential equations using P systems.

4.2 Comparison with Related Areas

1. The relationship between membrane computing and Brane calculi has been
explored in [34]. Brane calculi was introduced in [8] as a process calculi with
dynamic nested membranes. Many of the basic operations used in membranes
like endo, exo, phago, pino, bud, mate, drip, wrap were represented in the pro-
cess calculi framework, their structural congruences as well as decidability of
reachability, universal and existential termination under (i) maximal paral-
lel and (ii) interleaved, sequential semantics were studied. The expressiveness

12 S.N. Krishna

and decidability results of both the areas membrane computing and brane cal-
culi are compared.

2. The relationship between Petri nets and membrane computing has been
explored [34]. Petri nets are an operational model for concurrent systems
directly generalizing state machines by their distributed states and local ac-
tions. A translation between basic membrane systems and PT nets, a promi-
nent petri net model has been given in [13]. As a consequence, tools and
techniques developed for petri nets become available for the description,
analysis and behavioural verification of P systems.

4.3 Implementation Efforts

Software simulators for automatically simulating and verifying behaviours of
membrane systems have been created in the past decade. [34] gives a detailed
account of first and second generation software simulators. We mention two most
significant directions here. P-lingua [35] is a programming language created with
the aim of becoming the standard representation and implementation of future
software. Programs in P-lingua define families of P systems in a parametric
and modular way. The compilation tool generates an XML document associated
to the P system, which can be integrated into other applications. The XML
specification of a P system can be translated into an executable representation.
The second big project that could have significant impact is being carried out in
the Chemical faculty of Technion Institute, Haifa, Israel. It will be the first in
vitro experiment, using test tubes as membranes and DNA molecules as objects,
evolving under the control of enzymes. The group working at Technion has a
big dream : that of constructing a P Computer which will be one of the fastest
super computers; this dream is justified due to the theoretical results obtained
for P systems where several variants have been shown to be RE, as well as due
to the fact that hard problems can be efficiently solved by P systems. Of course,
there are a lot of challenges here, the most basic being to determine and decide
a feasible P system model for implementation.

References

1. Alhazov, A., Martin-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
recognizing P systems with restricted active membranes. Fundamenta Informati-
cae 58, 67–77 (2003)

2. Arroyo, F., Baranda, A., Castellanos, J., Păun, G.: Membrane Computing: The
power of (rule) creation. Journal of Universal Computer Science 8, 369–381 (2002)

3. Bernardini, F., Gheorghe, M.: Population P Systems. Journal of Universal Com-
puter Science 10, 509–539 (2004)

4. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.:
Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast
sacharomyces cerevisiae evidences a key regulatory function for intracellular gua-
nine nucleotides pools. Journal of BioTechnology 133, 377–385 (2008)

5. Borodin, A.: On relating time and space to size and depth. SIAM Journal of
Computing 6(4), 733–744 (1977)

An Overview of Membrane Computing 13

6. Brijder, R., Cavaliere, M., Riscos-Núñez, A., Rozenberg, G., Sburlan, D.: Mem-
brane systems with marked membranes. Electronic Notes in Theoretical Computer
Science 171, 25–36 (2007)

7. Brijder, R., Cavaliere, M., Riscos-Núñez, A., Rozenberg, G., Sburlan, D.: Mem-
brane systems with proteins embedded in membranes. Theoretical Computer Sci-
ence 404, 26–39 (2008)

8. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS
(LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

9. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue-like P systems with channel
states. Theoretical Computer Science 330, 101–116 (2005)

10. Frisco, P., Hoogeboom, H.J., Sant, P.: A direct construction of a universal P
system. Fundamenta Informaticae 49, 103–122 (2002)

11. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviours. Bulletin of Mathematical Biology 49, 737–759
(1987)

12. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta
Informaticae 71, 279–308 (2006)

13. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a petri net semantics for mem-
brane systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

14. Krishna, S.N.: The Power of Mobility: Four Membranes Suffice. In: Cooper, S.B.,
Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 242–251. Springer,
Heidelberg (2005)

15. Krishna, S.N.: Membrane computing with transport and embedded proteins.
Theoretical Computer Science 410(4-5), 355–375 (2009)

16. Krishna, S.N., Păun, G.: P systems with mobile membranes. Natural Comput-
ing 4, 255–274 (2005)

17. Krishna, S.N., Rama, R.: P systems with replicated rewriting. Journal of Au-
tomata, Languages and Combinatorics 6, 345–350 (2001)

18. Manca, V., Bianco, L., Fontana, F.: Evolutions and oscillations of P systems:
Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-
J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365,
pp. 63–84. Springer, Heidelberg (2005)

19. Martin-Vide, C., Păun, G., Pazos, J., Rodriguez-Paton, A.: Tissue P Systems.
Theoretical Computer Science 296, 295–326 (2003)

20. Murphy, N.: Uniformity conditions for membrane systems: Uncovering complexity
below P. Ph.D thesis, National University of Ireland, Maynooth (May 2010)

21. Păun, A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling signal trans-
duction using P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 100–122. Springer, Heidelberg (2006)

22. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Infor-
maticae 72, 467–483 (2006)

23. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20, 295–305 (2002)

24. Păun, G.: DNA Computing: distributed splicing systems. In: Mycielski, J.,
Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science.
LNCS, vol. 1261, pp. 353–370. Springer, Heidelberg (1997)

25. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000); First circulated as TUCS Research Report No 208
(November 1998), http://www.tucs.fi

http://www.tucs.fi

14 S.N. Krishna

26. Păun, G.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6, 75–90 (2001)

27. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity
classes in models of cellular computing with membranes. Natural Computing 2(3),
265–285 (2003)

28. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-
tems. Intern. J. Found. Computer Sci. 17, 183–204 (2006)

29. Porreca, A.E., Mauri, G., Zandron, C.: Complexity classes for membrane systems.
Informatique Theorique et Applications 40, 141–162 (2006)

30. Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control
using P systems: the Lac Operon, a case study. BioSystems 91, 438–457 (2008)

31. Romero-Campero, F.J., Pérez-Jiménez, M.J.: A model of the quorum-sensing sys-
tem in Vibrio fischeri using P systems. Artificial Life 14, 1–15 (2008)

32. Sosik, P.: The computational power of cell division. Natural Computing 2, 287–298
(2003)

33. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing. Springer, Heidelberg (2005)

34. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

35. http://www.p-lingua.org/

http://www.p-lingua.org/

Protecting Critical Infrastructures
While Preserving Each Organization’s

Autonomy

Yves Deswarte1,2

1 CNRS, LAAS, 7 avenue du Colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

Yves.Deswarte@laas.fr

Abstract. In critical infrastructures (CIs), different organizations must
cooperate, while being mutually suspicious since they have different in-
terests and can be in competition on some markets. Moreover, in most
cases, there is no recognized authority that can impose global security
rules to all participating organizations. In such a context, it is difficult
to apply good security practices to the interconnected information sys-
tems that control the critical infrastructure. In this paper, we present
the PolyOrBAC security framework, aimed at securing global infrastruc-
tures while preserving each participating organization’s autonomy. In this
framework, each organization is able to protect its assets by defining its
own security policy and enforcing it by its own security mechanisms,
and the global infrastructure is protected by controlling and auditing
all interactions between participating organizations. PolyOrBAC helps
to satisfy the CII security requirements related to secure cooperation,
autonomy and confidentiality, monitoring and audit, and scalability.

Keywords: Critical Infrastructure Protection, Security, Access Control
Policies and Models, Collaboration, Interoperability.

1 Introduction

Our way of life relies on utilities provided by many Critical Infrastructures
(CIs), such as those dedicated to electricity generation, transport and distribu-
tion (i.e., the electric power grid), telecommunications, supply services (energy,
food, fuel, water, gas), transportation systems (whether by road, rail, air or sea),
financial services (banks, stock exchange, insurances), etc. These infrastructures
are critical, since their failure or disruption could potentially have a dramatic
impact on economic and social welfare or health of a large population. Each
of these infrastructures is controlled by an underlying information infrastruc-
ture, made of interconnected information and communication systems, includ-
ing SCADA systems and other management information systems for operators,
brokers, customers, etc. This information infrastructure is as critical as the in-
frastructure it controls, thus being a Critical Information Infrastructure (CII).

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 15–34, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

16 Y. Deswarte

Public attention has been recently drawn on the related risks by the discovery
of the Stuxnet worm targeting some SCADA systems1.

Due to interdependencies between various infrastructures, cascading failures2

and escalating failures3 are not unlikely [33], [23], and a simple failure can propa-
gate at a large scale, as in the case of the North America blackout that occurred on
14 august 2003 [8]. One of the immediate events that provoked this large blackout,
with a cost estimated at between 7 and 14 billion dollars [21], was the failure of a
monitoring software, which prevented confining an electrical line incident before
it propagated across the electrical power grid. Such failure scenarios might occur
as a result of accidental events as well as of malicious acts at the level of the infras-
tructure itself or of the information infrastructure (intrusions, worms and viruses,
denials of service, etc.). Ensuring the security of CIIs is thus of tremendous im-
portance, since a security breach in a CII can have catastrophic consequences.

As any other information system, a CII can be secured only by the combination
of security policies, enforcement mechanisms, and monitoring and audit means.
Security policies are specified as (1) security properties that the information sys-
tems must respect, and (2) rules that must be enforced to achieve and maintain
these properties. These rules are to be enforced by authentication, access control
and other protection mechanisms, including encryption for confidentiality, signa-
tures for integrity, redundancy for availability, etc. And since policies can be im-
perfect or imperfectly enforced, monitoring and audit are needed to detect security
violations, evaluate the damages and recover nominal operations, while collecting
evidence to eliminate the exploited vulnerabilities and punish the culprits.

CIIs are more complex than most other information infrastructures. They
are generally huge, extending over large geographic areas, and they interconnect
very heterogeneous organizations, from individual users to multinational corpo-
rations. They must be flexible and extensible to incorporate new organizations,
possibly over new geographical areas. Consequently, a CII must be open and dis-
tributed to allow the organizations participating in it to collaborate and provide
globally the needed resources and services to their users. With the opening and
the deregulation of markets, some of these organizations can be in competition,
while they need to cooperate. The European electric grid is a typical instance
of such a situation, where local, national and multinational companies are in
competition but must cooperate to produce, transport and distribute electric
power. Securing such an infrastructure is thus an extremely challenging task. To
help in this task, this paper proposes a general framework to secure CIIs, taking
into account their peculiarities, including scalability, flexibility and autonomy
requirements.

1 See for instance
http://www.enisa.europa.eu/media/press-releases/stuxnet-analysis

2 Cascading failures occur when a failure in one infrastructure causes the failure of one
or more components in a second infrastructure [23].

3 Escalating failures occur when an existing failure in one infrastructure exacerbates
an independent failure in another infrastructure, increasing its severity or the time
for recovery and restoration from this failure [23].

http://www.enisa.europa.eu/media/press-releases/stuxnet-analysis

Protecting CIs While Preserving Each Organization’s Autonomy 17

The remainder of this paper is organized as follows: Section 2 identifies the
generic security requirements of CIIs and confront these requirements to tradi-
tional access control models. Then a sketch of our proposal, the PolyOrBAC secu-
rity framework, is presented in Section 3 and we show how this framework satisfies
the CII security requirements. Section 4 presents briefly an experiment of PolyOr-
BAC application and gives some lessons learnt form it. Finally, Section 5 draws up
the conclusions and proposes possible extensions of this work.

2 Problem Statement and Related Work

2.1 CII Security Requirements

Globally, a CI can be seen as a set of interacting organizations involving dif-
ferent actors and stakeholders (e.g., power generation companies, electric power
transmission and distribution operators, energy brokers, national and transna-
tional authorities, maintenance service providers, etc.). Such a CI is controlled
through heterogeneous logical and physical information and communication sys-
tems and networks, exhibiting different levels of security threats and protection
mechanisms.

The corresponding Critical Information Infrastructure (CII) can thus be
viewed as a set of Local Area Networks (LANs) interconnected through a Wide
Area Network (WAN) by dedicated switches and firewalls, noted CIS in
Fig. 1 [38]. Each logical LAN is considered as a separate organization, com-
posed of logical and physical information and communication systems, with its
own applications and access control policy, which proposes its services to other
systems. Each logical LAN belongs to a facility (e.g., power plant, substation,
control center, etc.), and the WAN interconnects all the facilities belonging to the
Critical Infrastructure. The CII is managed and accessed by different actors and
stakeholders (e.g., power generation, transmission and distribution companies,
regulation authorities, communication and computing system providers, brokers,
subcontractors, etc.). Each logical LAN is dedicated to a CI component (e.g., a
plant), in order to manage a different access control policy for each component.
More than one LAN segment can be connected by the same CIS if they are part
of the same organization and located in the same area.

In most cases, there is no global, recognized authority that can impose the
same rules to all organizations participating in the infrastructure. Most often
these organizations must reach a common agreement on how to operate the
global infrastructure and on the interfaces and protocols through which their
information systems should interact. And reaching such an agreement is not an
easy task since these organizations are competing on the same markets, and thus
have different interests, quite often conflicting, raising mutual suspicion. More-
over, they often operate legacy systems, not designed for cooperation, and they
do not want to loose the control on their information systems, in particular for
private tasks, independent of the infrastructure. Concerning the security policy,
even if the participating organizations can agree on common security properties
for the infrastructure, they would not easily accept to obey global rules, imposed

18 Y. Deswarte

Control
Network

Control
Network

PLC

Corporate Network

CIS

CIS

Data Historian

CIS

Historian Network

Site A

PLC
CIS

Site B

Site C

CIS

WAN

Telco

Internet

Utility Network

LAN

LAN

Fig. 1. General Architecture of a CII

by other partners, or on the mechanisms to enforce them. And finally, each or-
ganization wishes to protect its own business secrets as well as the privacy and
autonomy of its personnel and of its assets, and would not wish to disclose more
of its internal structure than needed for the infrastructure to operate safely.
Concerning security, each organization wishes to be autonomous and protect its
own assets by applying its own rules, enforced by its own mechanisms and pro-
cedures. The consequence of this autonomy is that each organization accepts, at
least implicitly, its liability for the damages that any of its personnel may cause
to other participating organizations.

These general constraints must be translated in the following requirements
for the underlying Critical Information Infrastructure:

1. Secure cooperation between the information systems of the participating or-
ganizations, with different features, procedures and policies. In this context,
it is necessary to control not only intra-organizational accesses (i.e., by a
user of an organization to an object belonging to the same organization) but
also interactions between different independent organizations.

2. Autonomy, confidentiality and responsibility: each organization controls its
own security policy, users, resources, applications, etc., while respecting the
global operation and security of the whole infrastructure, and maintains the
confidentiality of its users and assets with respect to the other organizations,

Protecting CIs While Preserving Each Organization’s Autonomy 19

as much as possible. On the other hand, an organization is responsible and
liable for all actions that it authorizes its users to perform to the other
organizations.

3. Monitoring and audit : especially for inter-organizational workflows, moni-
toring should determine if the rules applying to interactions between or-
ganizations are correctly enforced in practice and audit should keep logs
on interactions between partners, to provide evidence in case of dispute or
abuse.

4. Scalability: the security framework should be easily adaptable to large, evolv-
ing infrastructures, where organizations can dynamically be integrated or
leave, without requiring too much change in the security policies and their
enforcement.

2.2 Related Work

To satisfy the CII security requirements cited above, two global approaches can
be contemplated: centralized or peer-to-peer. In the following, we discuss some
examples of significant contributions that range between these two extreme ap-
proaches.

Centralized approaches. Several works on Workflow Management Systems
follow the centralized approach. For example, Bertino et al. describe different
configurations and constraints associated to workflow execution [12]. Adam et
al. use colored and timed petri nets to define a conceptual and a logical work-
flow authorization model based on the inter-dependencies between activities [6].
However, these works do not show how to enforce inter-organization workflows
while respecting the global and local constraints, especially when organizations
collaborate to achieve a common objective. Moreover, these works suppose the
existence of a central entity responsible for specifying and managing the work-
flow security policy without describing how to enforce such a policy. Hence,
applied to our context, these solutions would require the definition of a global
security policy for the CII, according to which all participating organizations
must adapt their own security policies. Finally, these solutions do not provide a
framework for the security policy to be dynamically monitored during the work-
flow execution, while this requirement is important in our context. Indeed, such
a centralized approach is incompatible with the autonomy requirements of most
CIIs.

Lin et al. [25] proposed a novel access control model for collaborative organiza-
tions, based on policy decomposition. This architecture is based on the XACML
framework [30], which allows the proposed solution to be easily integrated into
existing systems. It also presents algorithms for decomposing a global policy that
is enforced by a set of collaborating parties without compromising the auton-
omy or confidentiality requirements of the collaborating parties and to efficiently
evaluate requests from different parties. While very interesting, this work cannot
be directly applied in our context as it imposes a global access control policy

20 Y. Deswarte

over the whole collaborative environment, which is not easily compatible with
our autonomy, confidentiality and scalability requirements.

Bertino, Jajodia and Samarati [13] presented a unified framework that can
enforce multiple access control policies within a single system. The framework is
based on a language through which users can specify security policies to be en-
forced on specific accesses. The language allows the specification of both positive
and negative authorizations and incorporates notions of authorization derivation,
conflict resolution, and decision strategies. Different strategies may be applied
to different users, groups, objects, or roles, according to the needs of the security
policy. The major advantage of this approach is that it can be used to specify
different access control policies that can be enforced by the same security server.
However it does not take into consideration collaboration and autonomy issues,
which are important in the context of CIIs.

In term of languages, other significant contributions are related to Ponder [17]
and XACML. For example, Lorch et al. propose to use XACML as one compo-
nent of a distributed and inter-operable authorization framework [26]. This work
illustrates how authorization can be deployed in distributed, decentralized sys-
tems, and helps connecting the general components of an authorization system.
XACML is useful for specifying complex policies in a wide variety of distributed
applications, environments and systems. However, the language flexibility and
expressiveness comes at the cost of complexity and verbosity. In practice, using
this language is painful as it leads to complex policy description files. Tools are
underway, but as long as they are not widely available, it will be hard for av-
erage users to work with any XACML-based system. And even with good tools
in place, there is an inherent semantic complexity that accumulates over the
syntactic complications.

Peer-to-Peer approaches. Peer-to-peer solutions have been proposed in some
previous works. These approaches do not assume the existence of a global CII
organization. In 2008, Sturm et al. [36] presented a fine grained access control
mechanism for peer-to-peer collaborations. This mechanism is based on the local
access control policies of the participants, expressed in XACML and exported
to the other participating organizations. Two methods are proposed to combine
these policies. The first one consists in establishing mappings between exported
policies. The second method consists in installing a distributed access control di-
rectory. While mappings are created between two peers (at the price of disclosing
significant private information to the other peer), a directory contains all rights
of all users of all peers of all the participating organizations. Both methods are
thus unsatisfactory with respect to the confidentiality requirement.

In a similar way, Shehab et al. [35] presented a distributed secure interoper-
ability framework for mediator-free collaboration environments in which domains
collaborate in making localized access control decisions. This work introduced
the idea of secure access paths which enables domains to take local access con-
trol decisions without having a global view of the collaboration. It also presents
a path authentication technique for proving path authenticity. Basically, this
uses proactive and on-demand path discovery algorithms that enable domains

Protecting CIs While Preserving Each Organization’s Autonomy 21

to securely discover paths in the collaboration environment. This technique can
establish secure channels for interactions between organizations, but does not
help in controlling whether these interactions are compatible with global secu-
rity rules.

Pearlman et al. [32] presented the Community Authorization Service (CAS)
intended to solve three critical authorization problems that arise in distributed
virtual organizations: scalability, flexibility and expressibility, and the need for
policy hierarchies. Their work addressed these problems by introducing a trusted
third party administrated by the virtual organization that performs fine-grain
control of community policy while leaving ultimate control of resource access to
the responsibility of resource owners. This work is interesting in the fact that it
presents an authorization framework for distributed and collaborative environ-
ments. However, it requires a third party with a global knowledge of policies of
other organizations. This is a limitation that our work tries to overcome.

In a similar way, MultiOrBAC [2] and O2O [16] stipulate that the various
organizations accept to cooperate so that roles in one organization are given
privileges in another organization. For that, each participating organization must
trust the others, at least for the definition of some of their roles and for the
assignment of the corresponding roles to trustworthy users. This approach is
also intrusive with respect to the confidentiality of each organization’s internal
structure, user identity, and security policy. This is equally unacceptable in our
context, where each organization wants to keep its autonomy on the choice of
its internal security policy, and would not accept to open its information and
communication system to unknown external users working for its competitors.
Ideally, an organization should know nothing about the other organizations’
users or assets, but only the information needed to cooperate fairly. Enabling a
secure collaboration between organizations while preserving each organization’s
autonomy and self-determination is the challenge addressed by our approach,
the PolyOrBAC framework, presented in the next section.

3 The PolyOrBAC Security Framework

With PolyOrBAC [5], we intend to provide a global security framework, where
each organization participating in a Critical Infrastructure is autonomous for
protecting its assets by defining its own security policy and enforcing it by its
own security mechanisms. To interact securely with its partners, the organiza-
tion integrates in its security policy the access points to the other organizations
it interacts with, and control local accesses to these access points in the same
way as for other local objects. On the other hand, the organization provides also
access points to other organizations it interacts with, and controls the actions
preformed by the other organizations through these access points in the same
way as it controls the actions made by its own users. In this framework, inter-
actions between organizations are limited to Web Services [3], and for each Web
Service, the service provider and the service client must have previously signed a
contract that defines the conditions of service provision and the rules governing

22 Y. Deswarte

the interactions. All interactions are logged by both the service provider and the
service client, which can present them to a judge in case of dispute or abuse,
with reference to the signed contract. This framework is intended to satisfy all
the above constraints of (1) secure cooperation, (2) autonomy, confidentiality
and responsibility, (3) monitoring and audit, and (4) scalability.

PolyOrBAC defines, deploys and audits a security framework for both intra-
and inter-organizational workflows. It mainly gives answers to questions such
as: how to define intra-organizational security policies? how to specify inter-
organizational access policies? how to specify and deploy e-contracts that can be
agreed between organizations collaborating within a CII? how to enforce access
control, and how to detect and audit possible violations and abuses at runtime?
The following subsections describe PolyOrBAC proposal: first, we show how to
specify local security policies within each organization, based on the OrBAC
model [1]; then, we introduce new notions (virtual users and WSs images) to
manage inter-organizational accesses; and finally, we define e-contracts to express
and check WSs interactions at runtime.

3.1 Specifying Local Security Policies with OrBAC

In PolyOrBAC, each organization specifies its own security policy, which defines
which user has access to what, when, and in which conditions. In this subsection,
we show that OrBAC is a suitable access control model for achieving this task.
First, let us recall the main notions of OrBAC and discuss them with respect to
some other access control models.

The OrBAC (Organization-based Access Control) model is an extension of the
traditional RBAC (Role-Based Access Control) model [34], [19]. In RBAC, roles
are assigned to users, permissions are assigned to roles and users acquire permis-
sions by playing roles. By abstracting users into roles, RBAC facilitates security
management: if users are added to or are withdrawn from the system, only in-
stances of the relationship between users and roles need to be updated. OrBAC
goes further by abstracting objects into views and actions into activities. In this
way, security rules are specified by abstract entities only, and the representation
of the security policy is completely separated from the implementation.

More precisely, in OrBAC, an activity is a group of one or more actions; a view
is a group of one or more objects; and each rule expresses if an authorization,
prohibition or obligation applies for a role to perform an activity on a view in a
certain context. Actually, two levels can be distinguished in OrBAC:

– Abstract level : the organization’s security administrator defines rules by
using abstract entities (roles, activities, views) without worrying about how
the organization implements these entities.

– Concrete level : when a user requests to perform an action on an object,
permissions are granted to him according to the concerned rules, the role
currently played by the user, the requested action (that instantiates an ac-
tivity defined in the rule) on the object (that instantiates a view defined in
the rule), and the current context.

Protecting CIs While Preserving Each Organization’s Autonomy 23

The derivation of permissions (i.e., runtime evaluation of security rules) can be
formally expressed as follows:

∀ org ∈ Organizations, ∀s ∈ Subjects, ∀ α ∈ Actions, ∀ o ∈ Objects, ∀
r ∈ Roles, ∀a ∈ Activities, ∀ v ∈ Views, ∀ c ∈ Contexts
Permission (org, r, v, a, c) ∧
Empower (org, s, r) ∧
Consider (org, α, a) ∧
Use (org, o, v) ∧
Hold (org, s, a, o, c)
→ Is permitted(s, α, o)

This rule means: if in a certain organization org, a security rule specifies that
role r can carry out the activity a on the view v when the context c is true, and
if r is assigned to subject s, if action α is a part of a, and if object o is part
of v, and if c is true, then s is allowed to perform α (e.g., WRITE) on o (e.g.,
f1.txt). Prohibitions and obligations can be defined in the same way.

As rules are expressed only through abstract entities, OrBAC is able to specify
the security policies of several collaborating and heterogeneous sub-organizations
(e.g., departments) of a “global organization”. In fact, the same role (e.g., op-
erator) can be played by several users belonging to different sub-organizations;
the same view (e.g., “TechnicalFile”), can designate a table TF-Table in one
sub-organization or a XML object TF1.xml in another one; and the same activ-
ity read can correspond in a particular sub-organization to a SELECT action
while in another sub-organization it may specify an OpenXMLfile() action.

In our context, OrBAC presents several benefits and satisfies several security
requirements of organizations participating in a CII: rule expressiveness, abstrac-
tion of the security policy, scalability, heterogeneity and evolvability. OrBAC is
thus more suitable than RBAC (and other variants), in particular for specify-
ing local security policies of the CII’s organizations. These security policies can
subsequently be locally enforced by the security mechanisms implemented by
the local organization, e.g., Access Control Lists (ACL), firewall rules, security
credentials (e.g., XML capabilities), OASIS WS security mechanisms, etc.

3.2 Managing Interactions between Organizations

While OrBAC is suitable for specifying local security policies, it suffers a limi-
tation that is important in our context: OrBAC is limited to the specification of
a single security policy and does not handle collaborations between autonomous
organizations having independent policies. In fact, an OrBAC policy belonging
to a given organization cannot specify rules that associate permissions to users
belonging to other organizations or to control access to resources belonging to
other organizations. As a result, OrBAC is unfortunately only adapted to infras-
tructures with a global security policy and thus does not cover the distribution
and collaboration needs of current CIIs presented in Section 2.1.

24 Y. Deswarte

As an attempt to fulfill these needs, we first proposed the MultiOrBAC model
in [2]. Basically, MultiOrBAC abstract rules specify that roles in a certain orga-
nization are permitted (or prohibited or obliged) to carry out activities on views
belonging to other organizations. Therefore, contrarily to OrBAC, a MultiOr-
BAC rule may involve two different organizations that do not belong to the same
hierarchy: the organization where the role is played, and the organization which
the view and the activity belong to. However, in the context of CIIs, MultiOr-
BAC presents several weaknesses. In fact, MultiOrBAC offers the possibility to
define local rules that control accesses to local objects from external roles (i.e.,
belonging to another organization), without having any information on who
plays these roles and how the (user, role) association is managed by the remote
organization. This causes a serious problem of responsibility and liability: who
is responsible in case of remote abuse of privileges? how can the organization to
which belongs the object trust the organization to which belongs the user? Mul-
tiOrBAC logic is thus not adapted to CIIs, where in-competition organizations
are mutually suspicious. Moreover, in MultiOrBAC access control decision and
enforcement are done independently by each organization, which means that a
global security policy is in fact defined by the set of the organizations’ security
policies. In that case, it is difficult to enforce and maintain the consistency of the
global security policy, in particular if each organization’s security policy evolves
independently.

In the PolyOrBAC framework, collaboration and interactions between orga-
nizations are made through the use of the Web Service technology (WS), which
provides platform-independent protocols and standards for exchanging heteroge-
neous interoperable services. Software applications written in various program-
ming languages and running on various platforms can use WS to exchange data
over computer networks in a manner similar to inter-process communication on a
single computer. WS also provide a common infrastructure and services for data
access, integration, provisioning, cataloging and security [29]. These functional-
ities are made possible through the use of open standards, such as: XML for
exchanging heterogeneous data in a common information format [31]; SOAP, a
protocol to exchange data between different applications running on one or sev-
eral operating systems [40]; WSDL, used to describe the services that a business
offers and to provide a way for individuals and other businesses to access those
services [41] and UDDI, an XML-based registry which enables businesses to list
themselves and publish their services (in WSDL) on the Internet and discover
each other [28].

Note that some recent works already tried to combine web services mecha-
nisms and security policies based on RBAC. Beznosov and Deng presented a
framework for implementing Role-Based Access Control using CORBA secu-
rity service [15]. Vuong, Smith and Deng proposed an XML-Based approach
to specify enterprise RBAC policies [39]. In 2004, Feng, Guoyuan and Xuzhou
suggested SRBAC, a Service-oriented Role-Based Access Control model and
security architecture model for Web Services [18]; Leune and van den Heuvel
presented RBAC4WS, a methodology for designing and developing a Role-Based

Protecting CIs While Preserving Each Organization’s Autonomy 25

Access Control model for Web Services [24]. Focusing on service invocation, this
methodology adopts a symmetric perspective considering both the supplier and
the customer. Besides, some other works tried to couple XACML with RBAC.
For example, in 2004, OASIS adopted an XACML profile for Role Based Access
Control, while in 2005, Crampton proposed an RBAC policy using an XACML
formulation [30].

In the proposed PolyOrBAC framework, we integrate WS and OrBAC. To
achieve this task, we introduce two new notions, virtual users and WS images:

– for the organization offering a WS (i.e., that allows external accesses to its
local resources through a WS interface), the client organization is seen as a
virtual user which plays a role authorized to use the WS;

– for the organization requesting the WS, the WS is seen as an external object,
locally represented by its WS image.

To illustrate these notions, let us describe the two main phases of PolyOrBAC:
(1) publication and negotiation of collaboration rules, including the correspond-
ing access control rules, and (2) runtime access to remote services.

In the first phase, each organization determines which resources it will offer
to other partners. Web services are then developed on application servers, and
published in a UDDI registry to be accessible to external users.

When an organization has published its WS in the UDDI registry, the other
organizations can contact it to express their wish to use the WS. Let us take
a simple example where organization B offers WS1, and organization A is in-
terested in using WS1. A and B should negotiate and come to an agreement
concerning the use of WS1. Then, A and B establish a contract4 and jointly
define security rules concerning the access to WS1. These rules are registered
(according to an OrBAC format) in databases located at both A and B (typ-
ically in their CIS, see Section 3.1). For instance, if the agreement between A
and B is “users from A have the permission to consult B’s measurements in the
emergency context”, B should, in its OrBAC security policy:

– have (or create) a rule that grants the permission to a certain (local) role
(e.g., Operator) to consult its measurements: Permission(B, Operator,
Measurements, Consult, Emergency);

– create a virtual user noted PartnerA that represents A for its use of WS1;
– add the Empower(B, PartnerA, Operator) association to its rule base. By

this rule, organization B grants PartnerA the right to play the Operator
role.

In parallel, A creates locally a WS1 image which (locally in A) represents WS1
(i.e., the WS offered by B), and adds a rule in its OrBAC base to define which
of A’s roles can run the action invoke on object WS1 image to use WS1.

Considering the second phase of PolyOrBAC dedicated to the control of run-
time access to remote services, we use an AAA (Authentication, Authorization

4 The contract aspects will be discussed in the next subsection.

26 Y. Deswarte

and Accounting) architecture, which separates authentication from authoriza-
tion; we distinguish access control decision from access control enforcement; and
we keep access logs in each organization. Basically, if a user from A (let us note
it Alice) wants to carry out an activity, she is first authenticated by A. Then,
protection mechanisms of A check if the OrBAC security policy (of A) allows this
activity. We suppose that this activity contains local as well as external accesses
(e.g., invocation of B’s WS1). Local accesses should be controlled according to
A’s policy, while the WS1 invocation is both controlled by A’s policy (Alice must
play a role that is permitted to run the action invoke on object WS1 image),
and by B’s policy (the invocation is transmitted to virtual user PartnerA, which
must play a role authorized to execute the web service), according to the con-
tract established between A and B. If both policies grant the invocation, WS1
is executed (under the access control enforcement mechanisms implemented by
A and by B).

3.3 Expressing and Checking WS Interactions with e-Contracts

In the previous subsection, we have shown that PolyOrBAC offers several useful
concepts and mechanisms for access control in CIIs: it permits a better specifi-
cation and control of local security policies through OrBAC; each organization
authenticates its users and manages its resources autonomously; and interactions
are handled by WS. Consequently, the service-requesting organization is liable
for its users, and thus is responsible for the actions carried out by their users.
In the same way, the service-providing organization is liable for the services it
offers. However, other aspects need to be addressed:

– Enforcement and real time checking of contracts established between differ-
ent organizations; in fact, the system must be able to check the satisfaction
as well as the correct enforcement of the signed contracts.

– Audit logging and assessment of the different actions: in fact, in large scale
systems, experience has shown that even if the security policy is consistent
(thanks to an off-line verification), violations and abuses (especially, remote
abuse of privileges) can occur dynamically at runtime. Hence, we need a
mechanism that can detect this kind of dysfunctional behavior and to notify
the concerned parties.

– Handling of mutual suspicion between organizations: no information is dis-
closed about local security policies and the organization providing the web
service does not know which user of the other organization requests the web
service, and the organization requesting the web service does not know which
role performs which activity on which views in the service providing organi-
zation. It is also necessary to detect any abuse of the contract by a malicious
organization.

To deal with these issues, we state that for each WS use, an e-contract should
be negotiated between the two partner organizations (the WS provider and the
WS client). This contract must specify precisely the web service functions and

Protecting CIs While Preserving Each Organization’s Autonomy 27

parameters (including the expected quality of service, the liability of each party,
payment for service use, penalties in case of abuse, etc.), and also the security
rules related to the invocation and the result provision of the web service. These
security rules must be checked and enforced at runtime to prevent, or at least
detect, any abuse. The security rules can be expressed with a syntax close to
OrBAC (see Section 3.1).

The question that arises now is how to specify e-contracts. Actually, the most
relevant security notions for such e-contracts are workflows, actions, permissions,
prohibitions, obligations, time constraints, disputes and sanctions.

To express these requirements, we propose using timed automata [7]. First,
permissions (actions that are authorized by the contract clauses) are simply
specified through transitions in the timed automata. For instance, in Fig. 2, the
system can (i.e., has the permission to) execute the action a at any time and
then, behaves like the automaton A.

Fig. 2. Modeling Permissions Fig. 3. Modeling prohibitions

Second, we distinguish two kinds of prohibitions in e-contracts:

– Implicit prohibitions : the idea is that permissions being transitions in the
automata, the states, actions and transitions not represented in the automata
are by essence prohibited, so the runtime model checker will not recognize
them, and thus will halt the execution.

– Explicit prohibitions : explicit prohibitions can be particularly useful in the
management of decentralized policies / contracts where an organization’s
security administrator does not have details about the other organizations
participating in the CII, and thus has to trigger exception procedures in
case of unauthorized interactions. Moreover, explicit prohibitions can also
limit the propagation of permissions in case of hierarchies. In our model, we
specify explicit prohibitions by adding a “failure state” where the system
will be automatically led if a malicious action is detected. In Fig. 3, as the
a action is forbidden, its execution automatically leads to the failure state
described by an “unhappy face”, which automatically triggers an exception
carried out locally.

28 Y. Deswarte

Let us now deal with obligations. Recently, several works have focussed on the
modeling of this access modality [14] [17] [27] [22]. In XACML [30], obligations
are a set of operations that must be fulfilled in conjunction with an authorization
decision (permit or deny). Bettini et al. distinguish between provisions and obli-
gations [14]. Provisions are conditions that need to be satisfied or actions that
must be performed before a decision is rendered, while obligations are actions
that must be fulfilled by either the users or the system after the decision. Hilty et
al. define an Obligation Specification Language (OSL), that allows formulating a
wide range of usage control requirements [22]. They differentiate between usage
and obligational formulae. Usage is concerned with operations (e.g., process-
ing, rendering, execution, management, or distribution) on data that must be
protected; while obligational formulae are conditions on the usage of data, e.g.,
“delete document D within 30 days”. An obligational formula becomes an obli-
gation once a data consumer is obliged to satisfy it, i.e., once the data consumer
has received the data and committed to the condition.

In our vision, obligations are actions that must have been carried out before
a specified event occurs (e.g., before a given delay); otherwise the responsible
entity will be subject to sanctions. Besides that, as every obligation is also a
permission5, obligations will be specified by particular transitions (in the same
way as permissions). However, as obligations are stronger than permissions, we
should add another symbols to capture this semantics and to distinguish between
what is mandatory and what is permitted but not mandatory. Actually, to model
obligations, we use transition time-outs and invariants.

In this respect, an obligation is considered as a simple transition, and if a
maximum delay is assigned to the obligation, a time-out (noted by d in Fig. 4)
is set for the delay. When the obligation is fulfilled, this event resets the time-
out and the system behaves like A1. On the contrary, if the time-out expires, an
exception is raised and the system behaves like A2 (which can be considered as
an exception).

Basically, when an explicit prohibition occurs because an obligation is not
fulfilled, a dispute situation (e.g., one of the parties does not comply with the
contract clauses) arises, and the automaton automatically makes a transition to
a failure state or triggers an exception processing (like A2 in Fig. 4). Actually,
modeling disputes will allow to not only identify anomalies and violations, but
go further by identifying activities (sequence of actions and interactions) that
led to these situations, and finally can automatically lead to the cancelation of
the contract. Moreover, as disputes have different severities and as they are not
all subject to the same sanctions, we use variables (i.e., labels on the failure
states) to distinguish the different kinds of disputes as well as the corresponding
sanctions (Fig. 5).

Note that once the expected behaviors of the contracting parties are modeled
by timed automata, it is possible to verify some security properties statically,
and then enforce them at run-time by checking the execution of the system

5 A mandatory action should be permitted; in other words, we cannot render manda-
tory something that is not permitted.

Protecting CIs While Preserving Each Organization’s Autonomy 29

Fig. 4. Modeling obligations Fig. 5. Modeling dispute situations

dynamically against the behaviors specified by the model [4]: by static analysis,
we can (1) check e.g. under which conditions the system can reach a dispute
state; at runtime, we can (2) maintain an audit log and perform model-checking
by monitoring the interactions and mapping them to the timed-automata; and
(3) notify the concerned parties in case of contract violation (i.e., when a failure
state is reached).

This is important in our context where the collaborating organizations are
in mutual suspicion. In practice, the security policy of the service-providing
organization discards any request that does not correspond to a signed contract.
This is a first level of security. The second level is enforced by runtime model
checking. Hence, even if a user succeeds in bypassing his own organization’s
security policy and interacts in a wrong way (by accident or by malice) with
another organization (e.g., by using an authorized Web service in a way which is
in contradiction with the signed contract rules), the forbidden interactions are
detected and audited (i.e., logged) at runtime. In the same way, if the providing
organization does not satisfy its obligations, our e-contract model checking will
detect and audit the corresponding misbehavior.

4 Experiment and Lesson Learnt

In a demonstration experiment, we successfully applied the PolyOrBAC frame-
work to an emergency scenario of a smart electric power grid [20], where the
transport operator detects a risk of overload that could lead to a blackout, then
alerts a distribution operator to prepare for shedding a given load if the crit-
ical situation occurs. The distribution operator then selects which distribution
substations must be armed to shed a sufficient load while minimizing the risks
for its customers. Then if the overload is detected by a transport substation, this

30 Y. Deswarte

substation will automatically send a load shedding command to all concerned
distribution substations, and then the armed substations will open their circuits
in a few milliseconds, thus avoiding the blackout.

This experiment has been implemented on a network of four computers, run-
ning up to twenty virtual machines to simulate the transport control center with
its console, the distribution control center with its console, a transport substation
and four distribution workstations. Each organization (transport control center,
distribution control center, and each substation) was composed of two virtual
machines, one simulating the corresponding information system, and another
one corresponding to the CIS connecting this organization to the network, and
responsible for model-checking the interactions with the other organizations. The
behavior of the electric grid was simulated with realistic production and trans-
port characteristics as well as variable power consumption at the distribution
substation level, under the control of an experiment management system and its
console. Various situations have been emulated, nominal as well as emergency
situations, without and with realistic attacks, injected at various points of the
simulated CII. More information on this experiment are given in [9], while [5]
presents a summary of the scenario and some details on its implementation.

The first lesson learnt form this experiment is that it has been relatively easy
to implement all interactions between the various organizations (transport con-
trol center, distribution control center, and each substation) by means of Web
Services, while this is not the traditional way to implement such complex control
systems. For each interaction, all the Web Service exchanges were first modeled
by timed automata, and these automata were checked at runtime by a model
checker implemented with UPPAAL [37] in each concerned CIS. The efficiency of
these mechanisms has been confirmed by our attack experiments. Each organiza-
tion had its own security policy, with its roles, activities and views, corresponding
to “real” users (e.g., transport and distribution operators) with their privileges,
as well as virtual users corresponding to the Web Services. Attacks simulating
intrusions in the various organizations (including attacks by malicious operators
and by outsiders attacking the network) have been simulated to observe their
effect on local access control enforcement and on CIS Web Service interaction
monitoring and exception handling. In no case, an intrusion into one organiza-
tion could disturb another organization without being detected and recovered
by at least one CIS. Even a fake initial action by a malicious transport operator
(i.e., a critical situation alert sending to the distribution operator) would have
no consequence on the other organizations. But of course, an alert omission by
a malicious transport operator can result in a larger than necessary load shed-
ding, if both a power grid overload occurs and no other safety countermeasure
is in place. Denial of service attacks could have the same effect, but have been
addressed by another study within the same European project [10].

The second lesson learnt from this experiment is that PolyOrBAC is indeed
able to fulfill the CII security requirements:

1. Secure cooperation between the information systems of the participating or-
ganizations, has been experimented successfully.

Protecting CIs While Preserving Each Organization’s Autonomy 31

2. Autonomy, confidentiality and responsibility: a specific security policy has
been defined for each organization, and the only information known by an
organization about other ones where limited to the Web Service characteris-
tics. Each organization controls all actions performed by its users, and thus
is responsible for their acts.

3. Monitoring and audit : the Web Service interactions were successfully moni-
tored and audited, and when an abuse was detected, enough logs had been
collected to identify the organization responsible for the abuse.

4. Scalability: since each organization knows only those organizations that ei-
ther provides it a service or requests one of its services, the number of con-
tracts and model-checking automata grows linearly (with a small coefficient)
with the number of organizations instead of with the square of this number.
Moreover, at least in our experiment, the complexity of the timed automata
specifying the Web Service interactions has proven to be very low (see [5]
for examples of such automata).

5 Conclusion

In this paper, the PolyOrBAC security framework has been presented, which
meets access control and collaboration requirements of CIIs. Even if several
works had previously investigated security in workflow and collaborative sys-
tems, none of these works have defined an homogeneous peer-to-peer approach
going from the specification to the deployment and runtime model-checking.
Moreover, none of them have been applied to secure CIIs. Dealing with these
issues, the PolyOrBAC framework manages collaboration and resources sharing
between all organizations of a CII thanks to the web services technology, while
controlling that the interactions between these organizations are in conformity
with their needs and their internal security policies specified with OrBAC. Poly-
OrBAC supports the enforcement, the real-time checking as well as the audit-
ing of the exchanges that are established between the different organizations
participating in a CII. Even if we experimented it only in a particular critical
infrastructure simulation, we are confident that our work can be successfully ap-
plied to most other critical infrastructures, and can also benefit to non-critical
collaborative systems, especially those with mutually suspicious organizations.

Acknowledgments

This work has been partially supported by the European FP6-IST researchproject
CRUTIAL (CRitical UTility InfrastructurAL Resilience)6, the European
Networks of Excellence ReSIST7 and the LAAS project PolSec8. The author is
grateful to all colleagues who participated in these projects, and more particlarly
to those who contributed directly to the design, the development and the experi-
ment of PolyOrBAC:Mohamed Kaâniche, Anas Abou El Kalam and Amine Bäına.
6 http://crutial.erse-web.it/
7 http://www2.laas.fr/RESIST/
8 http://www2.laas.fr/PolSec/

http://crutial.erse-web.it/
http://www2.laas.fr/RESIST/
http://www2.laas.fr/PolSec/

32 Y. Deswarte

References

1. Abou El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miege, A., Saurel, C., Trouessin, G.: Organization Based Access
Control. In: Proc. of IEEE 4th Intl Workshop on Policies for Distributed Systems
and Networks (POLICY 2003), Lake Come, Italy, June 14-16, pp. 120–131 (2003)

2. Abou El Kalam, A., Deswarte, Y.: Multi-OrBAC: a New Access Control Model
for Distributed, Heterogeneous and Collaborative Systems. In: IEEE Symp. on
Systems and Information Security (SSI 2006), Sao Paulo, Brazil (2006)

3. Abou El Kalam, A., Deswarte, Y., Bäına, A., Kaâniche, M.: Access Control for
Collaborative Systems: A Web Services Based Approach. In: IEEE Intl Conf. on
Web Services (ICWS 2007), Salt Lake City, Utah, USA, July 9-13, pp. 1064–1071
(2007)

4. Abou El Kalam, A., Deswarte, Y.: Critical Infrastructures Security Modeling, En-
forcement and Runtime Checking. In: Setola, R., Geretshuber, S. (eds.) CRITIS
2008. LNCS, vol. 5508, pp. 95–108. Springer, Heidelberg (2009)

5. Abou El Kalam, A., Deswarte, Y., Bäına, A., Kaâniche, M.: PolyOrBAC: A Se-
curity Framework for Critical Infrastructures. International Journal of Critical In-
frastructure Protection (IJCIP) 2, 154–169 (2009)

6. Adam, N.R., Atluri, V., Huang, W.-K.: Modeling and Analysis of Workflows Using
Petri Nets. Journal of Intelligent Information Systems, Special Issue on Workflow
and Process Management 2(2), 131–158 (1998)

7. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

8. Amin, M.: North America’s Electricity Infrastructure: Are We Ready for More
Perfect Storms? IEEE Security and Privacy 1(5), 19–25 (2003)

9. Bäına, A.: Modèles et politiques de sécurité pour la protection des infrastructures
critiques, Doctorate Thesis, Université de Toulouse, LAAS-CNRS (September 29,
2009) (in French)

10. Beitollahi, H., Deconinck, G.: An Overlay Protection Layer Against Denial-of-
Service Attacks. In: 22nd IEEE Intl Parallel and Distributed Processing Sympo-
sium (IPDPS 2008), Miami, Florida, May 14-18, pp. 1–8 (2008)

11. Berard, B., Bidiot, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L.,
Schnoebelen, P., McKenzie, P.: Systems and Software Verification, Model Checking
Techniques and Tools. Springer, Heidelberg (2001) ISBN 3-540-41523-7

12. Bertino, E., Ferrari, E., Alturi, V.: The Specification and Enforcement of Au-
thorization Constraints in Workflow Management Systems. ACM Transactions on
Information and System Security (TISSEC) 2(1), 65–104 (1999)

13. Bertino, E., Jajodia, S., Samarati, P.: Flexible Support for Multiple Access Control
Policies. ACM Transaction on Database Systems (TODS) 26(2), 214–260 (2001)

14. Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Obligation Monitoring in Pol-
icy Management. In: Proc. of IEEE 3rd Intl Workshop on Policies for Distributed
Systems and Networks (POLICY 2002), Monterey, CA, June 5-7, pp. 2–12 (2002)

15. Beznosov, K., Deng, Y.: A Framework for Implementing Role-Based Access Control
Using CORBA Security Service. In: 4th ACM Workshop on Role-Based Access
Control, Fairfax, VA, USA, October 28-29, pp. 19–30 (1999)

16. Cuppens, F., Cuppens-Boulahia, N., Coma, C.: O2O: Virtual Private Organizations
to Manage Security Policy Interoperability. In: Bagchi, A., Atluri, V. (eds.) ICISS
2006. LNCS, vol. 4332, pp. 101–115. Springer, Heidelberg (2006)

Protecting CIs While Preserving Each Organization’s Autonomy 33

17. Damianou, N., Dulay, N., Lupu, E.: The Ponder Policy Specification Language.
In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp.
18–38. Springer, Heidelberg (2001)

18. Feng, X., Guoyuan, L., Xuzhou, X.: Role-based Access Control System for Web
Services. In: 4th International Conference on Computer and Information Technol-
ogy (CIT 2004), Wuhan, China, September 14-16, pp. 357–362 (2004)

19. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information
and System Security (TISSEC) 4(3), 224–274 (2001)

20. Garrone, F., Brasca, C., Cerotti, D., Codetta Raiteri, D., Daidone, A., Deconinck,
G., Donatelli, S., Dondossola, G., Grandoni, F., Kaaniche, M., Rigole, T.: Analysis
of new control applications. CRUTIAL project, Deliverable D2 (January 2007)

21. Hilt, D.W.: August 14, 2003, Northeast Blackout Impacts and Actions and the En-
ergy Policy Act of 2005. In: North American Electric Reliability Council (NERC),
Presentation at ISPE Annual Conference (August 2, 2006),
http://www.nerc.com/filez/blackout.html

22. Hilty, M., Pretschner, A., Basin, D., Schaefer, C., Walter, T.: A Policy Language
for Distributed Usage Control. In: Biskup, J., López, J. (eds.) ESORICS 2007.
LNCS, vol. 4734, pp. 531–546. Springer, Heidelberg (2007)

23. Laprie, J.C., Kanoun, K., Kaâniche, M.: Modelling Interdependencies Between
the Electricity and Information Infrastructures. In: Saglietti, F., Oster, N. (eds.)
SAFECOMP 2007. LNCS, vol. 4680, pp. 57–67. Springer, Heidelberg (2007)

24. Leune, K., van den Heuvel, W.-J.: A Methodology for Developing Role-Based Ac-
cess/Control to Web-Services. Tilburg University, Infolab Technical Report Series,
no. 11 (December 2002)

25. Lin, D., Rao, P., Bertino, E., Li, N., Lobo, J.: Policy Decomposition for Collabo-
rative Access Control. In: 13th ACM Symposium on Access Control Models and
Technologies (SACMAT 2008), Estes Park, CO, USA, pp. 103–112 (2008)

26. Lorch, M., Proctor, S., Lepro, R., Kafura, D., Shah, S.: First Experiences Using
XACML for Access Control in Distributed Systems. In: 2003 ACM Workshop on
XML Security, Fairfax, VA, pp. 25–37 (2003)

27. Ni, Q., Bertino, E., Lobo, J.: An Obligation model bridging access control policies
and privacy policies. In: 13th ACM SACMAT, Estes Park, CO, USA, June 11-13
(2008)

28. OASIS, Universal Description, Discovery and Integration v3.0.2 (UDDI), UDDI
Specification TC, OASIS Standard (February 2005)

29. OASIS, Web Services Security: SOAP Message Security 1.1 (WS-Security 2004),
OASIS Standard Specification (February 1, 2006)

30. OASIS, eXtensible Access Control Markup Language (XACML) Version 2.0, OA-
SIS Standard (February 1, 2005)

31. OASIS, XML Catalogs, OASIS Standard V1.1 (October 7, 2005)
32. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A Community Au-

thorization Service for Group Collaboration. In: Proc. of IEEE 3rd Intl Workshop
on Policies for Distributed Systems and Networks (POLICY 2002), Monterey, CA,
June 5-7, pp. 50–59 (2002)

33. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and an-
alyzing critical infrastructure interdependencies. IEEE Control Systems Maga-
zine 21(6), 11–25 (2001)

34. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Con-
trol Models. IEEE Computer 29(2), 38–47 (1996)

http://www.nerc.com/filez/blackout.html

34 Y. Deswarte

35. Shehab, M., Bertino, E., Ghafoor, A.: Secure Collaboration in Mediator-Free Envi-
ronments. In: 12th ACM Conference on Computer and Communications Security
(CCS 2005), Alexandria, VA, pp. 58–67 (2005)

36. Sturm, C., Dittrich, K.R., Ziegler, P.: An access control mechanism for P2P col-
laborations. In: Proceedings of the 2008 International Workshop on Data Manage-
ment in Peer-to-peer Systems (DaMaP 2008), Nantes, France, March 25, pp. 51–58
(2008)

37. UPPAAL tool available at, http://www.uppaal.com
38. Verissimo, P., Neves, N.F., Correia, M., Deswarte, Y., Abou El Kalam, A., Bon-

davalli, A., Daidone, A.: The CRUTIAL Architecture for Critical Information In-
frastructures. In: de Lemos, R., Di Giandomenico, F., Gacek, C., Muccini, H.,
Vieira, M. (eds.) Architecting Dependable Systems V. LNCS, vol. 5135, pp. 1–27.
Springer, Heidelberg (2008)

39. Vuong, N., Smith, G.S., Deng, Y.: Managing Security Policies in a Distributed En-
vironment Using eXtensible Markup Language (XML). In: 2001 ACM Symposium
on Applied Computing (SAC 2001), Las Vegas, NV, pp. 405–411 (2001)

40. W3C, SOAP Specifications, W3C Recommendation, 2nd edn. (April 27, 2007)
41. W3C, Web Services Description Language (WSDL) 1.1, W3C Note (March 15,

2001)

http://www.uppaal.com

Computations and Interaction

Jos C.M. Baeten1,2, Bas Luttik2,3, and Paul van Tilburg2

1 Department of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3 Department of Computer Science, Vrije Universiteit Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{j.c.m.baeten,s.p.luttik,p.j.a.v.tilburg}@tue.nl

Abstract. We enhance the notion of a computation of the classical the-
ory of computing with the notion of interaction. In this way, we enhance
a Turing machine as a model of computation to a Reactive Turing Ma-
chine that is an abstract model of a computer as it is used nowadays,
always interacting with the user and the world.

1 Introduction

What is a computation? This is a central question in the theory of computing,
dating back to 1936 [17]. The classical answer is that a computation is given by
a Turing machine, with the input given on its tape at the beginning, after which
a sequence of steps takes place, leaving the output on the tape at the end. A
computable function is a function of which the transformation of input to output
can be computed by a Turing machine.

A Turing machine can serve in this way as a basic model of a computation,
but cannot serve as a basic model of a computer. Well, it could up to the advent
of the terminal in the 1970s. Before that, input was given as a stack of punch
cards at the start, and output of a computation appeared as a printout later.
The terminal made direct interaction with the computer possible. Nowadays, a
computer is interacting continuously, with the user at the click of a mouse or
with many other computers all over the world through the Internet.

An execution of a computer is thus not just a series of steps of a computation,
but also involves interaction. It cannot be modeled as a function, and has inher-
ent nondeterminism. In this paper, we make the notion of an execution precise,
and compare this to the notion of a computation. To illustrate the difference
between a computation and an execution, we can say that a Turing machine
cannot fly an airplane, but a computer can. An automatic pilot cannot know all
weather conditions en route beforehand, but can react to changing conditions
real-time.

Computability theory is firmly grounded in automata theory and formal lan-
guage theory. It progresses from the study of finite automata to pushdown au-
tomata and Turing machines. Of these different classes of automata, it studies

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 35–54, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 J.C.M. Baeten, B. Luttik, and P. van Tilburg

the languages, the sets of strings, induced by them. We can view a language as
an equivalence class of automata (under language equivalence).

The notion of interaction has been studied extensively in concurrency theory
and process theory, see e.g. [13]. It embodies a powerful parallel composition
operator that is used to compose systems in parallel, including their interaction.
The semantics of concurrency theory is mostly given in terms of transition sys-
tems, that are almost like automata. However, there are important differences.

First of all, a notion of final state, of termination, is often missing in con-
currency theory. The idea is that concurrency theory often deals with so-called
reactive systems, which need not terminate but are always on, reacting to stimuli
from the environment. As a result, termination is often neglected in concurrency
theory, but is nevertheless an important ingredient, as shown and fully worked
out in [2]. Using this presentation of concurrency theory as a starting point, we
obtain a full correspondence with automata theory: a finite transition system is
exactly a finite automaton. On the other hand, we stress that we fully incor-
porate the reactive systems approach of concurrency theory: non-terminating
behaviour is also relevant behaviour, that is taken into account.

A second difference between automata theory and concurrency theory is that
transition systems need not be finite. Still, studying the subclass of finite transi-
tion systems yields useful insights for the extension to pushdown automata and
Turing machines.

The third and main difference between automata theory and concurrency the-
ory is that language equivalence is too coarse to capture a notion of interaction.
Looking at an automaton as a language acceptor, acceptance of a string repre-
sents a particular computation of the automaton, and the language is the set of
all its computations. The language-theoretic interpretation abstracts from the
moments of choice within an automaton. For instance, it does not distinguish be-
tween, on the one hand, the automaton that first accepts an a and subsequently
chooses between accepting a b or a c, and, on the other hand, the automaton that
starts with a choice between accepting ab and accepting ac. As a consequence,
the language-theoretic interpretation is only suitable under the assumption that
an automaton is a stand-alone computational device; it is unsuitable if some
form interaction of the automaton with its environment (user, other automata
running in parallel, etc.) may influence the course of computation.

Therefore, other notions of equivalence are studied in concurrency theory,
capturing more of the branching structure of an automaton. Prominent among
these is bisimulation equivalence [15]. When silent steps are taken into account,
the preferred variant is branching bisimilarity, arguably preserving all relevant
moments of choice in a system [11].

In this paper we study the notion of a computation, taking interaction into
account. We define, next to the notion of a computable function, the notion of
an executable process. An executable process is a behaviour that can be exhib-
ited by a computer (interacting with its environment). An executable process is a
branching bisimulation equivalence class of transition systems defined by a Reac-
tive Turing Machine. A Reactive Turing Machine is an adaptation of the classical

Computations and Interaction 37

Turing Machine that can properly deal with ubiquitous interaction. Leading up
to the definition of the Reactive Turing Machine, we reconsider some of the
standard results from automata theory when automata are considered modulo
branching bisimilarity instead of language equivalence.

In Section 3 we consider finite-state processes, defined as branching bisim-
ulation equivalence classes of finite labeled transition systems that are finite
automata. The section illustrates the correspondence between finite automata
and linear recursive specifications that can be thought of as the process-theoretic
counterpart of regular grammars.

In Section 4 we consider pushdown processes, defined as branching bisimula-
tion equivalence classes of labeled transition systems associated with pushdown
automata. We investigate the correspondence between pushdown processes and
processes definable by sequential recursive specifications, which can be thought
of as the process-theoretic counterpart of context-free grammars.

In Section 5 we define executable processes, defined as branching bisimulation
equivalence classes of labeled transition systems associated with Reactive Turing
Machines. We highlight the relationship of computable functions and executable
processes, laying the foundations of executability theory alongside computability
theory.

2 Process Theory

In this section we briefly recap the basic definitions of the process algebra TCP∗
τ

(Theory of Communicating Processes with silent step and iteration). This pro-
cess algebra has a rich syntax, allowing to express all key ingredients of con-
currency theory, including termination that enables a full correspondence with
automata theory. It also has a rich theory, fully worked out in [2].

Syntax. We presuppose a finite action alphabet A, and a countably infinite set of
names N . The actions in A denote the basic events that a process may perform.
We furthermore presuppose a finite data alphabet D, a finite set C of channels,
and assume that A includes special actions c?d, c!d, c!?d (d ∈ D, c ∈ C), which,
intuitively, denote the event that datum d is received, sent, or communicated
along channel c.

Let N ′ be a finite subset of N . The set of process expressions P over A and
N ′ is generated by the following grammar:

p ::= 0 | 1 | a.p | τ.p | p · p | p∗ | p + p | p ‖ p | ∂c(p) | τc(p) | N

(a ∈ A, N ∈ N ′, c ∈ C).

Let us briefly comment on the operators in this syntax. The constant 0 denotes
inaction or deadlock, the unsuccessfully terminated process. It can be thought of
as the automaton with one initial state that is not final and no transitions. The
constant 1 denotes the successfully terminated process. It can be thought of as
the automaton with one initial state that is final, without transitions. For each

38 J.C.M. Baeten, B. Luttik, and P. van Tilburg

action a ∈ A there is a unary operator a. denoting action prefix; the process
denoted by a.p can do an a-transition to the process denoted by p. The τ -
transitions of a process will, in the semantics below, be treated as unobservable,
and as such they are the process-theoretic counterparts of the so-called λ- or ε-
transitions in the theory of automata and formal languages. We write Aτ for A∪
{τ}. The binary operator · denotes sequential composition. The unary operator ∗

is iteration or Kleene star. The binary operator + denotes alternative composition
or choice. The binary operator ‖ denotes parallel composition; actions of both
arguments are interleaved, and in addition a communication c!?d of a datum d
on channel c can take place if one argument can do an input action c?d that
matches an output action c!d of the other component. The unary operator ∂c(p)
encapsulates the process p in such a way that all input actions c?d and output
actions c!d are blocked (for all data) so that communication is enforced. Finally,
the unary operator τc(p) denotes abstraction from communication over channel
c in p by renaming all communications c!?d to τ -transitions.

Let N ′ be a finite subset of N , used to define processes by means of (recur-
sive) equations. A recursive specification E over N ′ is a set of equations of the
form N

def= p with as left-hand side a name N and as right-hand side a process
expression p. It is required that a recursive specification E contains, for every
N ∈ N ′, precisely one equation with N as left-hand side.

One way to formalize the operational intuitions we have for the syntactic
constructions of TCP∗

τ , is to associate with every process expression a labeled
transition system.

Definition 1 (Labeled Transition System). A labeled transition system L
is defined as a four-tuple (S,→, ↑, ↓) where:

1. S is a set of states,
2. → ⊆ S ×Aτ × S is an Aτ -labeled transition relation on S,
3. ↑ ∈ S is the initial state,
4. ↓ ⊆ S is the set of final states.

If (s, a, t) ∈ →, we write s
a−−→ t. If s is a final state, i.e., s ∈ ↓, we write s↓.

We see that a labeled transition system with a finite set of states is exactly a
finite (nondeterministic) automaton.

We use Structural Operational Semantics [16] to associate a transition relation
with process expressions: we let → be the Aτ -labeled transition relation induced
on the set of process expressions P by the operational rules in Table 1. Note
that the operational rules presuppose a recursive specification E.

Let → be an Aτ -labeled transition relation on a set S of states. For s, s′ ∈ S
and w ∈ A∗ we write s

w−−� s′ if there exist states s0, . . . , sn ∈ S and actions
a1, . . . , an ∈ Aτ such that s = s0

a1−−→ · · · an−−→ sn = s′ and w is obtained from
a1 · · · an by omitting all occurrences of τ . ε denotes the empty word. We say a
state t ∈ S is reachable from a state s ∈ S if there exists w ∈ A∗ such that
s

w−−� t.

Computations and Interaction 39

Table 1. Operational rules for TCP∗
τ and a recursive specification E (a ranges over

Aτ , d ranges over D, and c ranges over C)

1 ↓ p∗ ↓ a.p
a

−−→ p

p
a

−−→ p′

(p + q) a
−−→ p′

q
a

−−→ q′

(p + q) a
−−→ q′

p ↓

(p + q) ↓
q ↓

(p + q) ↓

p
a

−−→ p′

p · q
a

−−→ p′ · q

p ↓ q
a

−−→ q′

p · q
a

−−→ q′

p ↓ q ↓

p · q ↓

p
a

−−→ p′

p∗ a
−−→ p′ · p∗

p
a

−−→ p′

p ‖ q
a

−−→ p′ ‖ q

q
a

−−→ q′

p ‖ q
a

−−→ p ‖ q′

p ↓ q ↓

p ‖ q ↓

p
c!d

−−→ p′ q
c?d

−−−→ q′

p ‖ q
c!?d

−−→ p′ ‖ q′

p
c?d

−−−→ p′ q
c!d

−−→ q′

p ‖ q
c!?d

−−→ p′ ‖ q′

p
a

−−→ p′ a �= c?d, c!d

∂c(p) a
−−→ ∂c(p′)

p ↓

∂c(p) ↓

p
c!?d

−−→ p′

τc(p) τ
−−→ τc(p′)

p
a

−−→ p′ a �= c!?d

τc(p) a
−−→ τc(p′)

p ↓

τc(p) ↓

p
a

−−→ p′ (N def= p) ∈ E

N
a

−−→ p′

p ↓ (N def= p) ∈ E

N ↓

Definition 2. Let E be a recursive specification and let p be a process expres-
sion. We define the labeled transition system TE(p) = (Sp ,→p , ↑p , ↓p) associated
with p and E as follows:

1. the set of states Sp consists of all process expressions reachable from p;
2. the transition relation →p is the restriction to Sp of the transition relation
→ defined on all process expressions by the operational rules in Table 1, i.e.,
→p = → ∩ (Sp ×Aτ × Sp).

3. the process expression p is the initial state, i.e. ↑p = p; and
4. the set of final states consists of all process expressions q ∈ Sp such that q↓,

i.e., ↓p = ↓ ∩ Sp .

If we start out from a process expression not containing a name, then the tran-
sition system defined by this construction is finite and so is a finite automaton.

Given the set of (possibly infinite) labeled transition systems, we can divide
out different equivalence relations on this set. Dividing out language equiva-
lence throws away too much information, as the moments where choices are
made are totally lost, and behavior that does not lead to a final state is ignored.

40 J.C.M. Baeten, B. Luttik, and P. van Tilburg

An equivalence relation that keeps all relevant information, and has many good
properties, is branching bisimulation as proposed by van Glabbeek and Weij-
land [11]. For motivations to use branching bisimulation as the preferred notion
of equivalence, see [9].

Let → be an Aτ -labeled transition relation, and let a ∈ Aτ ; we write s
(a)−−→ t

if s
a−−→ t or a = τ and s = t.

Definition 3 (Branching bisimilarity). Let L1 = (S1,→1, ↑1, ↓1) and L2 =
(S2,→2, ↑2, ↓2) be labeled transition systems. A branching bisimulation from L1
to L2 is a binary relation R ⊆ S1 × S2 such that ↑1 R ↑2 and, for all states s1
and s2, s1 R s2 implies

1. if s1
a−−→1s′1, then there exist s′2, s

′′
2 ∈ S2 such that s2

ε−−�2s′′2
(a)−−→2s′2, s1 R s′′2

and s′1 R s′2;
2. if s2

a−−→2 s′2, then there exist s′1, s
′′
1 ∈ S1 such that s1

ε−−�1 s′′1
(a)−−→1 s′1,

s′′1 R s2 and s′1 R s′2;
3. if s1↓1, then there exists s′2 such that s2

ε−−�2 s′2 and s′2↓2; and
4. if s2↓2, then there exists s′1 such that s1

ε−−�1 s′1 and s′1↓1.

The labeled transition systems L1 and L2 are branching bisimilar (notation:
L1 ↔b L2) if there exists a branching bisimulation from L1 to L2.

Branching bisimilarity is an equivalence relation on labeled transition systems [8].
A branching bisimulation from a transition system to itself is called a branch-
ing bisimulation on this transition system. Each transition system has a maxi-
mal branching bisimulation, identifying as many states as possible, found as the
union of all possible branching bisimulations. Dividing out this maximal branch-
ing bisimulation, we get the quotient of the transition system w.r.t. the maximal
branching bisimulation. We define the branching degree of a state as the cardinal-
ity of the set of outgoing edges of its equivalence class in the maximal branching
bisimulation.

A transition system has finite branching if all states have a finite branching
degree. We say a transition system has bounded branching if there exists a natural
number n ≥ 0 such that every state has a branching degree of at most n.
Branching bisimulations respect branching degrees.

3 Regular Processes

A computer with a fixed-size, finite memory is just a finite control. This can
be modeled by a finite automaton. Automata theory starts with the notion of a
finite automaton. As nondeterminism is relevant and basic in concurrency theory,
we look at a nondeterministic finite automaton. As a nondeterministic finite
automaton is exactly a finite labeled transition system, we refer to Definition 1
for the definition.

Two examples of finite automata are given in Figure 1.

Computations and Interaction 41

c

a

a a

a
τ

b

b

a

a

a
a

b

b

Fig. 1. Two examples of finite automata

Definition 4 (Deterministic finite automaton). A finite automaton M =
(S,A,→, ↑, ↓) is deterministic if, for all states s, t1, t2 ∈ S and for all actions
a ∈ A′, s

ε−−� a−−→t1 and s
ε−−� a−−→t2 implies t1 = t2.

In the theory of automata and formal languages, it is usually also required in the
definition of deterministic that the transition relation is total in the sense that
for all s ∈ S and for all a ∈ A′ there exists t ∈ S such that s

a−−→ t. The extra
requirement is clearly only sensible in the language interpretation of automata;
we shall not be concerned with it here.

The upper automaton in Figure 1 is nondeterministic and has an unreachable
c-transition. The lower automaton is deterministic and does not have unreach-
able transitions; it is not total.

In the theory of automata and formal languages, finite automata are consid-
ered as language acceptors.

Definition 5 (Language equivalence). The language L(L) accepted by a la-
beled transition system L = (S,→, ↑, ↓) is defined as

L(L) = {w ∈ A∗ | ∃s ∈ ↓ such that ↑ w−−� s}.
Labeled transition systems L1 and L2 are language equivalent (notation: L1 ≡
L2) if L(L1) = L(L2).

The language of both automata in Figure 1 is {aaa} ∪ {ab2n−1 | n ≥ 1}; the
automata are language equivalent.

A language L ⊆ A∗ accepted by a finite automaton is called a regular language.
A regular process is a branching bisimilarity class of labeled transition systems
that contains a finite automaton.

In automata theory, every silent step τ and all nondeterminism can be removed
from a finite automaton. These results are no longer valid when we consider
finite automata modulo branching bisimulation. Not every regular process has a
representation as a finite automaton without τ -transitions, and not every regular

42 J.C.M. Baeten, B. Luttik, and P. van Tilburg

process has a representation as a deterministic finite automaton. In fact, it can
be proved that there does not exist a finite automaton without τ -transitions
that is branching bisimilar with the upper finite automaton in Figure 1. Nor
does there exist a deterministic finite automaton branching bisimilar with the
upper finite automaton in Figure 1.

Regular expressions. A regular expression is a process expression using only
the first 7 items in the definition of process syntax above, so does not contain
parallel composition or recursion. Not every regular process is given by a regular
expression, see [3]. We show a simple example in Figure 2 of a finite transition
system that is not bisimilar to any transition system that can be associated with
a regular expression.

s t

a

b

Fig. 2. Not bisimilar to a regular expression

However, if we can also use parallel composition and encapsulation, then we
can find an expression for every finite automaton, see [7]. Abstraction and re-
cursion are not needed for this result. We can illustrate this with the finite
automaton in Figure 2, but need to replace the label a by st!?a and label b by
ts!?b. Then, we can define the following expressions for states s, t:

s = (ts?b.(st!a.1 + 1))∗, t = (st?a.(ts!b.1 + 1))∗.

The expressions show the possibilities to enter a state, followed by the possibil-
ities to leave a state, and then iterate. Then, we compose the expressions of the
states in a parallel composition:

∂st,ts(((st!a.1 + 1) · s) ‖ 1 · t).
Using the operational rules on this resulting expression gives again the finite
automaton in Figure 2.

Regular grammars. In the theory of automata and formal languages, the notion of
grammar is used as a syntactic mechanism to describe languages. The correspond-
ing mechanism in concurrency theory is the notion of recursive specification.

If we use only the syntax elements 0, 1, N (N ∈ N ′), a. (a ∈ Aτ) and + of
the definition above, then we get so-called linear recursive specifications. Thus,
we do not use sequential composition, parallel composition, encapsulation and
abstraction.

We have the result that every linear recursive specification by means of the
operational rules defined generates a finite automaton, but also conversely, ev-
ery finite automaton can be specified, up to isomorphism, by a linear recursive
specification. We illustrate the construction with an example.

Computations and Interaction 43

S T

U

V

a

b
a

a

a

Fig. 3. Example automaton

Consider the automaton depicted in Figure 3. Note that we have labeled each
state of the automaton with a unique name; these will be the names of a recursive
specification E. We will define each of these names with an equation, in such
a way that the labeled transition system TE(S) generated by the operational
semantics in Table 1 is isomorphic (so certainly branching bisimilar) with the
automaton in Figure 3.

The recursive specification for the finite automaton in Figure 3 is:

S
def= a.T, T

def= a.U + b.V, U
def= a.V + 1, V

def= 0.

This result can be viewed as the process-theoretic counterpart of the result from
the theory of automata and formal languages that states that every language
accepted by a finite automaton is generated by a so-called right-linear grammar.
There is no reasonable process-theoretic counterpart of the similar result in the
theory of automata and formal languages that every language accepted by a
finite automaton is generated by a left-linear grammar. If we use action postfix
instead of action prefix, then on the one hand not every finite automaton can
be specified, and on the other hand, by means of a simple recursive equation we
can specify an infinite transition system (see [4]).

We conclude that the classes of processes defined by right-linear and left-linear
grammars do not coincide.

4 Pushdown and Context-Free Processes

As an intermediate between the notions of finite automaton and Turing machine,
the theory of automata and formal languages treats the notion of pushdown au-
tomaton, which is a finite automaton with a stack as memory. Several definitions
of the notion appear in the literature, which are all equivalent in the sense that
they accept the same languages.

Definition 6 (Pushdown automaton). A pushdown automaton M is defined
as a six-tuple (S,A,D,→, ↑, ↓) where:

1. S a finite set of states,
2. A is a finite action alphabet,
3. D is a finite data alphabet,

44 J.C.M. Baeten, B. Luttik, and P. van Tilburg

4. → ⊆ S×Aτ × (D∪{ε})×D∗×S is a Aτ × (D∪{ε})×D∗-labeled transition
relation on S,

5. ↑ ∈ S is the initial state, and
6. ↓ ⊆ S is the set of final states.

If (s, a, d, δ, t) ∈ →, we write s
a[d/δ]−−−−→ t.

The pair of a state together with particular stack contents will be referred to as
the configuration of a pushdown automaton. Intuitively, a transition s

a[d/δ]−−−−→ t
(with a ∈ A) means that the automaton, when it is in a configuration consisting
of a state s and a stack with the datum d on top, can consume input symbol a,
replace d by the string δ and move to state t. Likewise, writing s

a[ε/δ]−−−−→ t means
that the automaton, when it is in state s and the stack is empty, can consume
input symbol a, put the string δ on the stack, and move to state t. Transitions
of the form s

τ [d/δ]−−−−→ t or s
τ [ε/δ]−−−−→ t do not entail the consumption of an input

symbol, but just modify the stack contents.
When considering a pushdown automaton as a language acceptor, it is gener-

ally assumed that it starts in its initial state with an empty stack. A computation
consists of repeatedly consuming input symbols (or just modifying stack contents
without consuming input symbols). When it comes to determining whether or
not to accept an input string there are two approaches: “acceptance by final
state” (FS) and “acceptance by empty stack” (ES). The first approach accepts a
string if the pushdown automaton can move to a configuration with a final state
by consuming the string, ignoring the contents of the stack in this configuration.
The second approach accepts the string if the pushdown automaton can move to
a configuration with an empty stack, ignoring whether the state of this configu-
ration is final or not. These approaches are equivalent from a language-theoretic
point of view, but not from a process-theoretic point of view. We also have a
third approach in which a configuration is terminating if it consists of a termi-
nating state and an empty stack (FSES). We note that, from a process-theoretic
point of view, the ES and FSES approaches lead to the same notion of pushdown
process, whereas the FS approach leads to a different notion. We established in
[4] that for FS, the connection with context-free grammars is more difficult to
make (see further on). That is why we adopt the FSES approach in the sequel.

Definition 7. Let M = (S,A,D,→, ↑, ↓) be a pushdown automaton. The labeled
transition system T (M) associated with M is defined as follows:

1. the set of states of T (M) is S × D∗;
2. the transition relation of T (M) satisfies

(a) (s, dζ) a−−→(t, δζ) iff s
a[d/δ]−−−−→ t for all s, t ∈ S, a ∈ Aτ , d ∈ D, δ, ζ ∈ D∗,

and
(b) (s, ε) a−−→ (t, δ) iff s

a[ε/δ]−−−−→ t;
3. the initial state of T (M) is (↑, ε); and
4. the set of final states is {(s, ε) | s↓}.

Computations and Interaction 45

This definition now gives us the notions of pushdown language and pushdown
process: a pushdown language is the language of the transition system associated
with a pushdown automaton, and a pushdown process is a branching bisimilar-
ity class of labeled transition systems containing a labeled transition system
associated with a pushdown automaton.

s t

a[ε/1]
a[1/11]

b[1/ε]

b[1/ε]

Fig. 4. Example pushdown automaton

As an example, the pushdown automaton in Figure 4 defines the infinite
transition system in Figure 5, that accepts the language {anbn | n ≥ 0}.

(s, ε) (s, 1) (s, 11) (s, 111)

(t, ε) (t, 1) (t, 11)

a a a

b b b

bb

a

b

Fig. 5. A pushdown process

Only push and pop transitions. It is not difficult to see that limiting the set
of transitions to push and pop transitions only in the definition of pushdown
automaton yields the same notion of pushdown process. Here, a push transition
is a transition with label a[ε/d] or a[d/ed], and a pop transition is a transition
with label a[d/ε].

Context-free grammars. We shall now consider the process-theoretic version of
the standard result in the theory of automata and formal languages that the set
of pushdown languages coincides with the set of languages generated by context-
free grammars. As the process-theoretic counterparts of context-free grammars
we shall consider so-called sequential recursive specifications in which only the
constructions 0, 1, N (N ∈ N ′), a. (a ∈ Aτ), · and + occur, so adding
sequential composition to linear recursive specifications.

Sequential recursive specifications can be used to specify pushdown processes.
To give an example, the process expression X defined in the sequential recursive
specification

X
def= 1 + a.X · b.1

specifies the labeled transition system in Figure 5, which is associated with the
pushdown automaton in Figure 4.

46 J.C.M. Baeten, B. Luttik, and P. van Tilburg

If we would consider pushdown automata with termination just by final state
(irrespective of the contents of the stack), then the transition system of this
pushdown automaton would have every state final, and this cannot be realised
by a sequential recursive specification [4].

The notion of a sequential recursive specification naturally corresponds with
with the notion of context-free grammar: for every pushdown automaton there
exists a sequential recursive specification such that their transition systems are
language equivalent, and, vice versa, for every sequential recursive specification
there exists a pushdown automaton such that their transition systems are lan-
guage equivalent.

A similar result with language equivalence replaced by branching bisimilarity
does not hold. In fact, we shall see that there are pushdown processes that are not
recursively definable by a sequential recursive specification, and that there are
also sequential recursive specifications that define non-pushdown processes. We
shall present a restriction on pushdown automata and a restriction on sequential
recursive specifications that enable us to retrieve the desired equivalence: we
proved in [4] that the set of so-called popchoice-free pushdown processes corre-
sponds with the set of processes definable by a transparency-restricted sequential
recursive specification without head recursion. Our result is not optimal: we give
an example of a pushdown process that is not popchoice-free, but is definable
by a sequential recursive specification.

c[ε/ε]
c[1/1]

b[1/ε] b[1/ε]

a[ε/1]
a[1/11]

Fig. 6. Pushdown automaton that is not popchoice-free

Consider the pushdown automaton in Figure 6, which generates the transition
system shown in Figure 7. In [14], Moller proved that this transition system can-
not be defined with a BPA recursive specification, where BPA is the restriction
of sequential recursive specifications by omitting the τ -prefix and the constant
0 and by disallowing 1 to occur as a summand in a nontrivial alternative com-
position. His proof can be modified to show that the transition system is not
definable with a sequential recursive specification either. We conclude that not
every pushdown process is definable with a sequential recursive specification.

Note that a push of a 1 onto the stack in the initial state of the pushdown
automaton in Figure 6 can (on the way to termination) be popped again in the
initial state or in the final state: the choice of where the pop will take place cannot
be made at the time of the push. In other words, in the pushdown automaton in
Figure 6 pop transitions may induce a choice in the associated transition system;
we refer to such choice through a pop transition as a popchoice. By disallowing
popchoice we define a class of pushdown processes that are definable with a
sequential recursive specification.

Computations and Interaction 47

c c c c

bbb b

a a a

bbb

a

b

Fig. 7. Transition system of automaton of Figure 6

Suppose we have a pushdown automaton that uses only push and pop transi-
tions. A d-pop transition is a transition with label a[d/ε]. We say the pushdown
automaton is popchoice-free iff whenever there are two d-pop transitions, they
lead to the same state. A pushdown process is popchoice-free if it contains a la-
beled transition system associated with a popchoice-free pushdown automaton.

The definition of a pushdown automaton uses a stack as memory. The stack
itself can be modeled as a pushdown process, in fact (as we will see shortly)
it is the prototypical pushdown process. Given a finite data set D, the stack
has an input channel i over which it can receive elements of D and an output
channel o over which it can send elements of D. The stack process is given by
a pushdown automaton with one state ↑ (which is both initial and final) and

transitions ↑ i?d[ε/d]−−−−−−→ ↑, ↑ i?d[e/de]−−−−−−→ ↑, and ↑ o!d[d/ε]−−−−−−→ ↑ for all d, e ∈ D. As
this pushdown automaton has only one state, it is popchoice-free. The following
recursive specification ES defines a stack over data set D:

S
def= 1 +

∑
d∈D

i?d.S · o!d.S.

The stack process can be used to make the interaction between control and
memory in a pushdown automaton explicit [5]. This is illustrated by the follow-
ing theorem, stating that every pushdown process is equal to a regular process
interacting with a stack.

Theorem 1. For every pushdown automaton M there exists a regular process
expression p and a linear recursive specification E, and for every regular process
expression p and linear recursive specification there exists a pushdown automaton
M such that

T (M) ↔b TE∪ES (τi,o(∂i,o(p ‖ S))).

In automata theory, context-free grammars are often reduced to a normal form,
by which they become more tractable. Some of these transformations can be
performed on sequential recursive specifications as well, preserving branching
bisimulation. Others cannot. Useful in our case will be the restricted Greibach
normal form, see [12].

Every sequential recursive specification can be brought into Process Greibach
normal form, that is, satisfying the requirement that every right-hand side of the

48 J.C.M. Baeten, B. Luttik, and P. van Tilburg

equation of N only has summands that are 1 or of the forms a.1, a.X , a.X · Y
or N · X for certain names X, Y . Compared to the case of automata theory,
we cannot remove 1 summands and we cannot remove head recursion (where a
name has a summand that is a sequential composition of itself with another or
the same name).

A convenient property of recursive specification in Process Greibach normal
form is that every reachable state in the labeled transition system associated
with a name N in such a recursive specification will be denoted by a sequential
composition of names (see, e.g., the labeled transition system in Figure 8).

Let p be a process expression in the context of a sequential recursive speci-
fication E. In case there is no head recursion, the associated labeled transition
system TE(p) has finite branching (see, e.g., [2] for a proof). Using head recur-
sion, this is possible, as the following example shows.

X
def= 1 + X · Y, Y

def= a.1

Still, restricting to sequential recursive specifications in Process Greibach normal
form is not sufficient to get the desired correspondence between processes defin-
able by sequential recursive specifications and processes definable as a popchoice-
free pushdown automaton. Consider the following recursive specification, which
is in Process Greibach normal form and has no head recursion:

X
def= a.X · Y + b.1, Y

def= 1 + c.1.

The labeled transition system associated with X , which is depicted in Figure 8,
has finite but unbounded branching. We claim this cannot be a pushdown process.

Note that the unbounded branching is due to the 1-summand in the equation
of Y by which Y n c−−→ Y m for all m < n. A name N in a recursive specification
is called transparent if its equation has a 1-summand; otherwise it is called
opaque. To exclude recursive specifications generating labeled transition systems
with unbounded branching, we will require that transparent names may only
occur as the last element of reachable sequential compositions of names.

Thus, we call a sequential recursive specification in Process Greibach normal
form transparency-restricted if for all (generalized) sequential compositions of
names reachable from a name in the specification it holds that all but the last
name is opaque.

As an example, note that the specification of the stack over D defined above is
not transparency restricted, because it is not in Process Greibach normal form.
But the same process can be defined with a transparency-restricted recursive
specification, without head recursion: it suffices to add, for all d ∈ D, a name
Td to replace S · o!d.1. Thus we obtain the following transparency-restricted
specification of the stack over D:

S
def= 1 +

∑
d∈D′

i?d.Td · S, Td
def= o!d.1 +

∑
e∈D′

i?e.Te · Td .

It can be seen that the labeled transition system associated with a name in a
transparency-restricted specification has either bounded or infinite branching.

Computations and Interaction 49

X X · Y X · Y 2 X · Y 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

Fig. 8. Process with unbounded branching

In the case without head recursion, the branching degree of a state denoted by
a reachable sequential composition of names is equal to the branching degree of
its first name, and the branching degree of a name is bounded by the number
of summands of the right-hand side of its defining equation. In the case with
head recursion, when name N has a summand N · P and there is a transition
N a−−→ ξ for a sequence of names ξ, then there are steps N a−−→ ξ · Mn for any
n-fold sequence of names M , making the branching infinite.

For investigations under what circumstances we can extend the set of push-
down processes to incorporate processes with finite but unbounded branching,
see [5]. In this paper a (partially) forgetful stack is used to deal with transparent
variables on the stack. However, if we allow for τ -transitions in the recursive
specifications, we can use the stack as is presented above. Note also that the
paper does not require the recursive specifications to be transparency-restricted,
but this comes at the cost of using a weaker equivalence (namely contrasimula-
tion [10] instead of branching bisimulation) in some cases.

We are now in a position to establish a process-theoretic counterpart of the
correspondence between pushdown automata and context-free grammars.

Theorem 2. A process is a popchoice-free pushdown process if, and only if,
it is definable by a transparency-restricted recursive specification without head
recursion.

This theorem was proven in [4].
Consider the pushdown automaton shown in Figure 4. This pushdown au-

tomaton is popchoice-free, since both 1-pop transitions lead to the same state.
The method described in the proof of Theorem 2 can now be used to yield a
sequential recursive specification. After simplification, this specification again
reduces to the specification we had before, X = 1 + a.X · b.1.

Thus, we have established a correspondence between a popchoice-free push-
down processes on the one hand, and transparency-restricted recursive specifi-
cation on the other hand, thereby casting the classical result of the equivalence
of pushdown automata and context-free grammars in terms of processes and
bisimulation.

50 J.C.M. Baeten, B. Luttik, and P. van Tilburg

To show that this result is not optimal, consider the following sequential
recursive specification:

X
def= a.1 + X · Y, Y

def= b.1

This specification is in Process Greibach normal form, and is transparency-
restricted, as all variables are opaque. The resulting transition system is infinitely
branching. However, inserting additional τ -steps, we can see it is branching bisim-
ilar to the transition system in Figure 9.

a a a a

bbb b

τ τ τ

τττ

τ

τ

Fig. 9. Transition system branching bisimilar to infinitely branching one

Now, checking all configurations we can see this transition system is generated
by the pushdown automaton in Figure 10. This pushdown automaton is not
popchoice-free.

a[ε/ε]
a[1/1]

τ [1/ε] b[1/ε]

τ [ε/1]
τ [1/11]

Fig. 10. Pushdown automaton that is not popchoice-free

5 Computable Processes

We proceed to give a definition of a Turing machine that we can use to generate a
transition system. The classical definition of a Turing machine uses the memory
tape to hold the input string at start up. We cannot use this simplifying trick, as
we do not want to fix the input string beforehand, but want to be able to input
symbols one symbol at a time. Therefore, we make an adaptation of a so-called
off-line Turing machine, which starts out with an empty memory tape, and can
take an input symbol one at a time.

Definition 8 (Reactive Turing Machine). A Reactive Turing Machine M
is defined as a six-tuple (S,A,D,→, ↑, ↓) where:

1. S is a finite set of states,
2. A is a finite action alphabet, Aτ also includes the silent step τ ,

Computations and Interaction 51

3. D is a finite data alphabet, we add a special symbol � standing for a blank
and put D� = D ∪ {�},

4. → ⊆ S ×Aτ ×D� ×D� ×{L, R}×S is a finite set of transitions or steps,
5. ↑ ∈ S is the initial state,
6. ↓ ⊆ S is the set of final states.

If (s, a, d, e, M, t) ∈ →, we write s
a[d/e]M−−−−−−→ t, and this means that the machine,

when it is in state s and reading symbol d on the tape, will execute input action
a, change the symbol on the tape to e, will move one step left if M = L and
right if M = R and thereby move to state t. It is also possible that d and/or e is
�: if d is �, the reading head is looking at an empty cell on the tape and writes
e; if e is � and d is not, then d is erased, leaving an empty cell. At the start
of a Turing machine computation, we will assume the Turing machine is in the
initial state, and that the memory tape is empty (only contains blanks).

By looking at all possible executions, we can define the transition system of
a Turing machine. The states of this transition system are the configurations of
the Reactive Turing Machine, consisting of a state, the current tape contents,
and the position of the read/write head. We represent the tape contents by an
element of D∗

�
, replacing exactly one occurrence of a tape symbol d by a marked

symbol d̄, indicating that the read/write head is on this symbol. We denote by
D̄� = {d̄ | d ∈ D�} the set of marked tape symbols; a tape instance is a sequence
δ ∈ (D� ∪ D̄�) such that δ contains exactly one element of D̄�.

A tape instance thus is a finite sequence of symbols that represents the con-
tents of a two-way infinite tape. We do not distinguish between tape instances
that are equal modulo the addition or removal of extra occurrences of a blank at
the left or right extremes of the sequence. The set of configurations of a Reactive
Turing Machine now consists of pairs of a state and a tape instance. In order
to concisely describe the semantics of a Reactive Turing Machine in terms of
transition systems on configurations, we use some additional notation.

If δ ∈ D�, then δ̄ is the tape instance obtained by placing the marker on
the right-most symbol of δ if this exists, and �̄ otherwise. Likewise, δ̄ is the
tape instance obtained by placing the marker on the left-most symbol of δ if this
exists, and �̄ otherwise.

Definition 9. Let M = (S,A,D,→, ↑, ↓) be a Turing machine. The labeled
transition system of M , T (M), is defined as follows:

1. The set of states is the set of configurations {(s, δ) | s ∈ S, δ a tape instance}.
2. The transition relation → is the least relation satisfying, for all a ∈ Aτ , d, e ∈
D�, δ, ζ ∈ D∗

�
:

– (s, δd̄ζ) a−−→ (t, δ̄ eζ) iff s
a[d/e]L−−−−−→ t,

– (s, δd̄ζ) a−−→ (t, δē ζ) iff s
a[d/e]R−−−−−→ t.

3. The initial state is (↑, �̄);
4. (s, δ) ↓ iff s ↓.

Now we define an executable process as the branching bisimulation equivalence
class of a transition system of a Reactive Turing Machine.

52 J.C.M. Baeten, B. Luttik, and P. van Tilburg

As an example of a Reactive Turing Machine, we define the (first-in first-out)
queue over a data set D. It has the initial and final state at the head of the
queue. There, output of the value at the head can be given, after which one
move to the left occurs. If an input comes, then the position travels to the left
until a free position is reached, where the value input is stored, after which the
position travels to the right until the head is reached again. We show the Turing
machine in Figure 11 in case D = {0, 1}. A label containing an n, like τ [n/n]L
means there are two labels τ [0/0]L and τ [1/1]L.

The queue process is an executable process, but not a pushdown process.

i?0[n/n]L

o!n[n/�]L

i?1[n/n]L

τ [n/n]L

τ [n/n]L τ [n/n]R

τ [�/0]R

τ [�/1]R

τ [�/�]L

i?n[�/n]R

Fig. 11. Reactive Turing Machine for the FIFO queue

We call a transition system computable if it is finitely branching and there is
a coding of the states such that the set of final states is decidable and for each
state, we can determine the set of outgoing transitions. A transition system is
effective if its set of transitions and set of final states are recursively enumerable.
The following results are in [6].

Theorem 3. The transition system defined by a Reactive Turing Machine is
computable.

Theorem 4. Every effective transition system is branching bisimilar with a
transition system of a Reactive Turing Machine.

As in the case of the pushdown automaton, we can make the interaction be-
tween the finite control and the memory explicit, and turn this into a recursive
specification.

Theorem 5. For every Reactive Turing Machine M there exists a regular pro-
cess expression p and a linear recursive specification E, and for every regular

Computations and Interaction 53

process expression p and linear recursive specification there exists a Reactive
Turing Machine M such that

T (M) ↔b TE∪EQ(τi,o(∂i,o(p ‖ Qio))).

In this theorem, we use the queue process as defined above, and its specification
EQ to be defined next. By putting a finite control on top of a queue, we can sim-
ulate the tape process of a Reactive Turing Machine. The control of the Turing
machine together with this control, can be specified as a finite-state process.

We finish by giving a finite recursive specification EQ for a queue with input
channel i and output channel o, Qio, using all syntax elements of our process
theory TCP∗

τ except for sequential composition and iteration. It uses an auxiliary
channel l, and six interrelated equations.

Qio def= 1 +
∑
d∈D

i?d.τl(∂l(Qil ‖ (1 + o!d.Qlo)))

Qil def= 1 +
∑
d∈D

i?d.τo(∂o(Qio ‖ (1 + l!d.Qol)))

Qlo def= 1 +
∑
d∈D

l?d.τi(∂i(Qli ‖ (1 + o!d.Qio)))

Qol def= 1 +
∑
d∈D

o?d.τi(∂i(Qoi ‖ (1 + l!d.Qil)))

Qli def= 1 +
∑
d∈D

l?d.τo(∂o(Qlo ‖ (1 + i!d.Qoi)))

Qoi def= 1 +
∑
d∈D

o?d.τl(∂l(Qol ‖ (1 + i!d.Qli)))

Now, the theorem above implies that recursive specifications over our syntax
(even omitting sequential composition and iteration) constitute a grammar for
all executable processes.

6 Conclusion

We established the notion of an execution in this paper, that enhances a compu-
tation by taking interaction into account. We do this by marrying computability
theory, moving up from finite automata through pushdown automata to Turing
machines, with concurrency theory, not using language equivalence but branch-
ing bisimilarity on automata.

Every undergraduate curriculum in computer science contains a course on
automata theory and formal languages. On the other hand, an introduction to
concurrency theory is usually not given in the undergraduate program. Both
theories as basic models of computation are part of the foundations of computer
science. Automata theory and formal languages provide a model of computation
where interaction is not taken into account, so a computer is considered as a
stand-alone device executing batch processes. On the other hand, concurrency

54 J.C.M. Baeten, B. Luttik, and P. van Tilburg

theory provides a model of computation where interaction is taken into account.
Concurrency theory is sometimes called the theory of reactive processes.

Both theories can be integrated into one course in the undergraduate curricu-
lum, providing students with the foundation of computing, see [1]. This paper
provides a glimpse of what happens to the Chomsky hierarchy in a concurrency
setting, taking a labeled transition system as a central notion, and dividing out
bisimulation semantics on such transition systems.

References

1. Baeten, J.C.M.: Models of Computation: Automata and Processes. Technische Uni-
versiteit Eindhoven, Syllabus 2IT15 (2010)

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories
of Communicating Processes). Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge (2009)

3. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular
expressions under bisimulation. Journal of the ACM 54(2):6, 1–28 (2007)

4. Baeten, J.C.M., Cuijpers, P.J.L., Luttik, B., van Tilburg, P.J.A.: A process-
theoretic look at automata. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 1–33. Springer, Heidelberg (2010)

5. Baeten, J.C.M., Cuijpers, P.J.L., van Tilburg, P.J.A.: A context-free process as
a pushdown automaton. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 98–113. Springer, Heidelberg (2008)

6. Baeten, J.C.M., Luttik, B., van Tilburg, P.J.A.: Reactive Turing machines. Draft
(2010)

7. Baeten, J., Luttik, B., Muller, T., van Tilburg, P.: Expressiveness modulo bisim-
ilarity of regular expressions with parallel composition. In: Fröschle, S., Valencia,
F.D. (eds.) Proceedings EXPRESS 2010, number xx in EPTCS, pp. 229–243 (2010)

8. Basten, T.: Branching bisimilarity is an equivalence indeed! Information Processing
Letters 58(3), 141–147 (1996)

9. van Glabbeek, R.J.: What is Branching Time Semantics and why to use it? Bulletin
of the EATCS 53, 190–198 (1994)

10. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Else-
vier, Amsterdam (2001)

11. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. Journal of the ACM 43(3), 555–600 (1996)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Pearson, London (2006)

13. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

14. Moller, F.: Infinite results. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996.
LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

15. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P.
(ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

16. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61, 17–139 (2004)

17. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265
(1936)

Scribbling Interactions with
a Formal Foundation�

Kohei Honda1, Aybek Mukhamedov1, Gary Brown2,
Tzu-Chun Chen1, and Nobuko Yoshida3

1Queen Mary, University of London
2Red Hat, Inc.

3Imperial College London

Abstract. In this paper we discuss our ongoing endeavour to apply no-
tations and algorithms based on the π-calculus and its theories for the
development of large-scale distributed systems. The execution of a large-
scale distributed system consists of many structured conversations (or
sessions) whose protocols can be clearly and accurately specified using
a theory of types for the π-calculus, called session types. The proposed
methodology promotes a formally founded, and highly structured, devel-
opment framework for modelling and building distributed applications,
from high-level models to design and implementation to static check-
ing to runtime validation. At the centre of this methodology is a formal
description language for representing protocols for interactions, called
Scribble. We illustrate the usage and theoretical basis of this language
through use cases from different application domains.

1 Introduction

A fundamental challenge in modern computing is the establishment of an
effective and widely applicable development methodologies for distributed
applications, comparable in its usability to the traditional methodologies for
non-distributed software built on, among others, core UML diagrams and object-
oriented programming languages. Though a middle-to-large-scale application is
almost always distributed nowadays, and in spite of the presence of an acceler-
ating infrastructural support for portable and reliable distributed components
through e.g. clouds, software developers (including architects, designers and pro-
grammers alike) are still lacking well-established development methodologies for
building systems centring on distributed processes and their interactions. For ex-
ample, there is no central computational abstractions (comparable to classes and
objects) for capturing distributed interactions usable throughout development
stages; no UML diagrams are widely in use for modelling distributed applica-
tions; no major programming languages offer high-level, type-safe communica-
tion primitives, leaving treatment of communications to low-level APIs. In short,

� This work is partially supported by EPSRC EP/F003757, EP/F002114, EP/G015635
and EP/G015481.

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 55–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

56 K. Honda et al.

we are yet to have a general and tangible framework for developing distributed,
communication-centred software systems.

We believe that one of the major reasons why it is so hard to even conceive
an effective software development framework for distributed systems, is the lack
of a core descriptive framework, with a uniform conceptual and formal founda-
tion and usable throughout development stages. To illustrate this point, let us
briefly examine the descriptive framework in one of the traditional development
methodologies for non-distributed software, underpinned by UML diagrams and
object-oriented programming. In this framework, the description of computation
centres on objects (which belong to classes) and operations on objects, a repre-
sentative paradigm of sequential computation. Class Diagram in UML and all
associated core modelling diagrams such as Sequence Diagrams and State Charts
follow this paradigm; and it is supported by many high-level programming lan-
guages, including Java, C++, C� and Python.1

Types and logics, two linchpins of theories of computing, play fundamental
and mutually enriching roles in this traditional descriptive framework. Types,
as seen in the now familiar APIs, offer a basic notion of interface of subsystems,
tightly coupled with the central computational dynamics of this paradigm, i.e. in-
voking objects and returning results. This dynamics is embodied in high-level
programming primitives, which in turn enables cheap and compositional static
validation at the compile time [15, 29], leading to modular software development.
Types are also a basis of logical specifications. In the widely practiced modelling
framework known as Design-by-Contracts (DbC) [28], assertions elaborate types
with predicates. Assertions are expressive, allowing us to pinpoint practically
any property one wishes to specify [21], though automatic validation is not al-
ways possible. Assertions offer a refined form of modular software development
through compositional behavioural contracts.

In the light of this well-established (and highly successful) engineering frame-
work in the traditional development methodology, a natural question is whether
we can build its analogue in the world of distributed processes, centred on com-
mon high-level abstraction for modelling and programming, and aiding modular
software development on a rigorous theoretical basis.

This paper illustrates our ongoing endeavour to build a core descriptive frame-
work and the associated development environment for large-scale distributed
systems based on the π-calculus [30], centring on a simple language for describ-
ing interactions, called Scribble. A key insight is that a distributed system can be
naturally and effectively articulated as a collection of possibly overlapping struc-
tured conversations, and that the structures of these conversations, or protocols,
can be clearly and accurately described using a type theory of the π-calculus,
called session types [23, 24, 39]. In Section 2, we discuss how protocols play a
fundamental role for modelling and building distributed applications in diverse
domains. In Section 3, we introduce Scribble. In Section 4, we present larger
description examples in Scribble from real-world use cases. Section 5 outlines

1 Having a different origin, functional languages such as Haskell and ML share a
common paradigm, data belonging to data types and operations on data.

Scribbling Interactions with a Formal Foundation 57

a theoretical basis of Scribble. Section 6 discusses a development framework.
Section 7 concludes with related and future work.

2 Background: Modelling Interactions through Protocols

Protocols in Interactional Computing. The idea of protocols becomes im-
portant for general software development when the shape of software becomes
predominantly a collection of numerous distributed processes communicating
with each other. Such interactional computing is increasingly common in prac-
tice, from web services to financial protocols to services in clouds to parallel
algorithms to multicore chips. Processes will be engaged in many interleaving
conversations, each obeying a distinct protocol: the aggregate of overlapping con-
versations make up a whole distributed system. Dividing the design into distinct
conversations promote tractability because the structure of one conversation in
an application are relatively unaffected by other conversations.

A protocol offers an agreement on the ways interactions proceed among two
or more participants. Without such an agreement, it is hard to do meaningful
interactions: participants cannot communicate effectively, since they do not know
when the other parties will send what kind of data and through which channels.
This is why the need to describe protocols have been observed in many different
contexts in the practice of interactional computing, as we illustrate below.

Needs for Protocols (1): Global Financial Network. ISO TC68, the Tech-
nical Committee for Global Financial Services in ISO, recognized the need for a
mechanism to register and maintain international financial protocols (FPs) un-
der the auspice of ISO. This has led to the establishment of a working group for
FPs, WG4, which is in charge of drafting the evolving global standard for FPs,
ISO20022 [41], using high-level models for describing message formats based on
UML. The use of high-level models enable flexible engineering, such as compi-
lation to different document format (e.g. XML schemas and ASN.1), semantic
matching of message fields, and model-driven development. [20]

However a message format alone cannot describe an FP in its entirety: the
flows in which asynchronous messages are exchanged is at the heart of the FPs.
In ISO20022, this dynamic aspect of a FP is called its message choreography
(“Every Business Transaction contains its own Message Choreography” [41]). In
spite of its importance, the chair of WG4 observed that the description of the
message choreography through the current technology has severe limitations:

1. It is imprecise: The descriptions of protocols are unclear, ambiguous and
misleading, and legally unusable.

2. It is incomplete: It is impossible to describe the structure and constraints of
FPs in their entirety up to a suitable abstraction level.

3. It is informal: The description cannot be used for formal reasoning about
protocols; for checking their internal consistency; for verifying, either by
hand or by machine, the conformance of endpoint programs against a given
protocol; for code generation; for testing; and for runtime control.

58 K. Honda et al.

A precise, complete and formal description of message choreography would offer
a vital tool for harnessing and governing global FPs. A long-term goal of WG4
is to identify an effective method for describing message choreography of FPs,
and use it in future versions of ISO20022.

Needs for Protocols (2): Operating System for Multicore CPUs. We
turn our eyes to a basic form of systems software, operating systems. Most
commodity computers nowadays are equipped with multi-core processors, which
offer an effective way of harnessing high-density transistor circuits without in-
curring the performance penalties associated with monolithic processors. This
trend is expected to continue in future, where many-core processors, whose
numerous cores share a high-bandwidth on-chip interconnect, will become a
commonplace [5]. As a consequence, computers are increasingly resembling a
distributed system, which cannot be effectively utilised by traditional monolithic
OS kernels built around shared data structures that suffer from performance and
scalability issues in a parallel execution environment.

Barrelfish is a new multi-kernel OS architecture that aims to address the
challenge [4]. It is designed to run on heterogeneous multicore machines and
is structured as a distributed system of cores that communicate via explicit
message passing and share no memory. Early benchmarks on present day multi-
core computers showed that the performance of Barrelfish is comparable to that
of existing commodity operating systems and can scale better to support future
many-core hardware [4]. There are clear parallels between Barrelfish OS and a
distributed system, and in particular, the importance of having unambiguous
specification of communication protocols. However, the current programming
development for Barrelfish only offers description of procedural interface, making
it hard to ensure compatibility at the level of asynchronous message passing
among OS components, a predominant mode in this operating system.

Needs for Protocols (3): Web Services. In web services, applications make
an extensive use of communications among components and services through
the standardised format and transport technologies (e.g. URI, XML and TCP/
HTTP), increasingly combined with other distributed computing technologies
such as clouds, messaging and distributed store. Business transactions using
web services are often termed business protocols because each of them obeys
an agreed-upon conversation structure. Web Services Choreography Descrip-
tion Language (WS-CDL) [13] was conceived in W3C as a declarative, XML-
based domain-specific language for specifying business protocols. It is also a first
standardization effort done in collaboration with the π-calculus experts from
academia.

WS-CDL is notable in that its description captures “global” ordering – a
choreography – of observable behaviour of participants in a channel-based com-
munication. It comprises a rich set of concepts (roles, work units, exceptions,
etc.) and general control constructs (sequencing, parallel, conditionals, recur-
sion) for expressing multi-party interaction. At the same time, as a descrip-
tive means for protocols, it has several drawbacks: first, although a subset of

Scribbling Interactions with a Formal Foundation 59

WS-CDL has been given a formal semantics using the π-calculus [12], the lan-
guage as a whole is not equipped with the notion of projection from a global
specification to endpoint specifications (which is important for deriving commu-
nication specification for local participants); and it lacks a clear stratification
between specifications and executable programs.

Needs for Protocols (4): Large-scale Cyberinfrastructure. The Ocean
Observatories Initiative (OOI) is a large-scale project funded by US National Sci-
ence Foundation for implementation of a distributed environmental science ob-
servatory with persistent and interactive capabilities that have a global physical
observatory footprint [14, 35]. A key component of the OOI is a comprehensive
cyberinfrastructure (CI), whose design is based on loosely coupled distributed
services and agents, expected to reside throughout the OOI observatories, from
seafloor instruments to on-shore research stations. The CI acts as an integrating
element that links the sub-networks of OOI into a coherent system-of-systems
and uses a large catalogue of communication protocols among distributed in-
struments and stakeholders. These protocols are required to be unambiguously
specified for the implementation and runtime communication monitoring.

Towards a Descriptive Basis for Protocols. The pervasiveness and com-
plexity of interactional computation in modern and future computing high-
light the need for a general and rigorous protocol description framework, usable
throughout the software development life cycle, equipped with a clear, transpar-
ent semantic basis, and offering foundations for modular software development
through computer-aided validation and verification tools. We now illustrate our
recent efforts to develop such a framework, centred on a small description lan-
guage for scribbling protocols.

3 Overview of Scribble

The goal of Scribble is to provide a formal and yet intuitive language and tools for
specifying and reasoning about communication protocols and their implementa-
tions, based upon the theory of multiparty session types [6, 24, 43]. Figure 1 gives
an overview of this software framework, which we call the Scribble framework.

Applications can implement interaction behaviour through the conversation
API, a high-level language-independent message-passing interface, to be real-
ized in various high-level programming languages (such as ML, Java, Python,
C�, C++ and others). Static validation is carried out with the aid of a conversa-
tion API. In place of the conversation API, we can also use language extensions
with intrinsic type checking capability, as studied in [25, 26]. The protocol type-
checker inspects the application code and decides whether its communication
behaviour in a conversation follows the prescribed protocol. Dynamic validation
is performed by a monitor that reads in a Scribble protocol specification and in-
spects runtime communication behaviour of an application. The monitor checks
that its interaction follows the behaviour of the corresponding role(s) prescribed
by the protocol. For further discussions, see Section 5.

60 K. Honda et al.

Fig. 1. Scribble framework overview

The Scribble framework is currently a work in progress. In the following we
present an overview of its underlying protocol specification language, Scribble.

Hello World. We start the overview of Scribble with a customary hello-world
example as a protocol, illustrating its basic structure.
1 import Message;
2

3 protocol GreetWorld {
4 role You, World;
5 greet(Message) from You to World;
6 }

The above protocol definition intuitively says:

The protocol uses Message type defined using the import statement.
Each conversation instance (a run) of the protocol involves two partici-
pants – one taking the role You and the other taking the role World. In
each conversation instance, You sends a single message to World, which
consists of the operation name greet with a value of type Message.

This protocol uses a single interaction (more complex examples will appear
later). A protocol such as GreetWorld gives a global description of interactions
among two or more participants. A session, or conversation, is an instantia-
tion of a protocol that follows the protocol’s rules of engagement. Principals
represent entities, such as corporations and individuals, who are responsible for
performing communication actions in distributed applications. When a principal
participates in a conversation (i.e. becoming its participant), it does so by taking
up specific role(s) stipulated in the underlying protocol.

Transport Characteristics. We assume the following properties of the un-
derlying message transport. This is an important assumption to understand the
semantics of Scribble.

Scribbling Interactions with a Formal Foundation 61

• Asynchrony: send actions are non-blocking.

• Message order preservation: the order of messages from the same participant
to another participant in a single conversation is preserved.

• Reliability: a message is never lost or tampered with during transmission.

These properties may be realised by a transport layer possibly combined with
runtime systems at endpoints. They are natural assumptions for many existing
transports, be it in Internet, high-performance LAN or on-chip interconnect.

Main Constructs. The top-level grammar of a Scribble description comprises:

(1) At most one preamble, which consists of one or more import statements:
in the GreetWorld protocol we have just seen, this is Line 1, importing a
message type called Message.

(2) A single protocol definition (Lines 3–6 in the GreetWorld protocol), which
consists of the keyword protocol, the name of the protocol (e.g. GreetWorld),
and the main part – the protocol body – enclosed by curly braces.

The protocol body consists of one or more role declarations followed by inter-
action description. Roles are placeholders for participating endpoints. When a
protocol is instantiated to a concrete conversation, each role, say You, is bound to
a principal, making the latter a participant in that conversation. The behaviour
of this participant should follow that of You prescribed in the protocol. In the
GreetWorld protocol, Line 4 gives role declarations, which specifies that the pro-
tocol description includes two endpoints, You and World. The grammar of the
role declaration is:

role role1, ..., roleN;

where roleNamei is a role name. This is equivalent to:
role role1;
...
role roleN;

All role names should be distinct and the order does not matter.
The interaction description is the main part of the protocol description. There

is at most one such description in a protocol specification. It specifies one or more
interactions, which belong to a syntactic category called interaction sentence.

The grammar of interaction sentences has several forms. Below we describe a
few basic types that appear in the current version of Scribble:

(1) Interaction, of the form:
msgType from role1 to role2;

which defines an interaction signature (often simply interaction), and reads:

A participant playing the role role1 sends a message of type msgType
to a participant playing the role role2 and the latter eventually receives
the message.

62 K. Honda et al.

Above the message type msgType is imported in an enclosing environment, and
can be a base or a composite type. Base type can be a primitive type common to
many programming languages, such as int, bool, or a user-defined type. In the
current syntax, composite message types are restricted to an operator name ap-
plied to (possibly empty) sequence of base message types: OpName(ValType1, ..,

ValTypeN). Operator names give clarity to interaction signatures, just as object
methods determine its interaction signature in object-oriented programming.

(2) Sequencing, of the form:
I1; I2; ...; In

represents an interaction sentence, where if the same role name appears in both
Ii and I(i + k), then the interaction actions of that participant take place under
a temporal order (thus if none of the role names overlap between I1 and In,
then no order is specified). This interpretation is faithful to the asynchronous
semantics of communications (formally treated in [24]). For example, in:
1 order(Goods) from Buyer to Seller;
2 deliver(Shipment) from Seller to Supplier;
3 confirm(Invoice) from Seller to Buyer;

Seller sends an invoice to Buyer (Line 3) only after it receives an order from
Buyer and sends a shipment order to Supplier (Lines 1, 2). Buyer expects an
invoice from Seller after it sends an order to Seller.

(3) Unordered (also called Parallel), of the form:
I1 & I2 & ... In

represents interleaved interactions that may be observed in any order. We write:
msgType from role1 to role2,.., roleK;

for a shorthand of:
msgType from role1 to role2 & .. & msgType from role1 to roleK;

(4) Directed Choice, of the form:
choice from role1 to role2,.., roleK {
msgType1: I1
..
msgTypen: In

}

represents interaction flow branching, where role1 makes a choice msgTypej to
continue interaction following scenario in Ij. For example, in :
1 order(Goods) from Buyer to Seller;
2 choice from Seller to Buyer {
3 accept(Invoice):
4 payment(CardDetails) from Buyer to Seller;
5 decline():
6 end;
7 }

After Buyer sends an order to Seller, Seller makes a choice whether to ac-
cepts it or not. If it decides the former, Seller returns an invoice to Buyer and
subsequently waits for a payment in return from him.

Scribbling Interactions with a Formal Foundation 63

(5) Recursion, of the form:

rec BlockName { I }

where #BlockName appears inside I at least once, signifying a repetition of the
whole block when #BlockName is encountered. For example, in
1 rec X {
2 order(Goods) from Buyer to Seller;
3 choice from Seller to Buyer {
4 accept():
5 ..
6 #X;
7 decline():
8 end;
9 }

10 }

Seller can continuously accept orders from Buyer, until it decides to decline
one. When Seller declines an order, the repetition stops.

(6) Nested protocol, of the form:

run Protocol(param1,.., paramk, roleInChild1=roleInParent1,.., roleInChildn=
roleInParentn);

represents protocol nesting. When run directive is encountered in the interac-
tion flow of a conversation, a new conversation is instantiated and followed as
prescribed by the nested Protocol. The Protocol may require positional argu-
ments, as well as role keyword arguments, by which the roles in the Protocol
are instantiated with the roles of the enclosing protocol.

Scribble includes other forms of interaction sentences (global escape, delega-
tion, repetition, etc), which we omit for brevity of this presentation, see [37].

4 Scribble Examples

Scribble can be utilised to express communication protocols from a wide range
of application domains. In this section we present two examples, taken from web
services [13] and from multikernel OS [4, 40].

Web services: Travel Agent. Travel Agent is an interaction scenario designed
by the WS-CDL Working Group [13], intended to represent general concepts
common to many applications of web services. It comprises multiple participants
– a client, a travel agent and a number of service providers – and involves complex
branching and repetition in the interaction flow. Figure 2 gives an informal
description of the interaction behaviour among the participants.

We present a specification of Travel Agent protocol in Scribble in two parts
with: ReserveTravel protocol (Figure 3), by which the client enquires about and
reserves travel services with the help of an agent, and PurchaseTravel protocol
(Figure 4) for subsequent service booking interaction. PurchaseTravel is para-
metric in the number of service providers that the agent communicates with in
the preceding ReserveTravel protocol. The specification makes use of recursion to

64 K. Honda et al.

1. The client interacts with the travel agent to request information about various services.
2. Prices and availability matching the client requests are returned to the client. The client can then perform

one of the following actions:
(a) The client can refine their request for information, possibly selecting more services from the provider

(Repeat step 2). OR
(b) The client may reserve services based on the response, OR
(c) The client may quit the interaction with the travel agent.

3. When a customer makes a reservation, the travel agent then checks the availability of the requested services
with each service provider.

4. Either
(a) All services are available, in which case they are reserved. OR
(b) For those services that are not available, the client is informed.

– Either
i. Given alternative options for those services. OR
ii. Client is advised to restart the search by going back to step 1.

– Go back to step 3.
5. For every relevant reserved service the travel agent takes a payment for the reservation (credit card can be

used as a form of payment)
6. The client is then issued a reservation number to confirm the transaction.
7. Between the reservation and the final date of confirmation, the client may modify the reservation. Modifi-

cations may include cancellation of some services or the addition of extra services.

Fig. 2. Travel Agent protocol: informal description

1 import TravelAgent.messages.*;
2

3 protocol ReserveTravel {
4 role Client, Agent, Provider[1..num_providers];
5

6 query(Services) from Client to Agent;
7 Services_info from Agent to Client;
8

9 rec X {
10 choice from Client to Agent {
11 more_info():
12 query(Services) from Client to Agent;
13 Services_info from Agent to Client;
14 #X;
15 reserve():
16 query(Services) from Agent to Provider[1..num_providers];
17 Services_info from Provider[1..num_providers] to Agent;
18 choice from Agent to Client {
19 all_available():
20 reserve(Services) from Agent to Provider[1..num_providers];
21 run PurchaseTravel(num_providers);
22 altern_services():
23 Altern_services_info from Agent to Client;
24 #X;
25 restart(): end;
26 }
27 quit(): end;
28 }
29 }
30 }

Fig. 3. Travel Agent: ReserveTravel protocol in Scribble

Scribbling Interactions with a Formal Foundation 65

1 import TravelAgent.messages.*;
2

3 protocol PurchaseTravel(num_providers) {
4 rec X {
5 choice from Client to Agent {
6 cancel():
7 cancel(Services) from Client to Agent;
8 #X;
9 add_services():

10 request(Extra_services) from Client to Agent;
11 Extra_services_response from Agent to Client;
12 #X;
13 book():
14 Payment from Client to Agent;
15 book(Services) from Agent to Provider[1..num_providers];
16 confirm(Services) from Provider[1..num_providers] to Agent;
17 choice from Agent to Client {
18 confirm():
19 Receipt from Agent to Client;
20 timeout_error():
21 Error_details from Agent to Client;
22 }
23 quit(): end;
24 }
25 }
26 }

Fig. 4. Travel Agent: PurchaseTravel protocol in Scribble

represent arbitrary repetition of a series of interactions. In ReserveTravel proto-
col, lines 6-13 correspond to steps 1 and 2a in Figure 2, lines 15-21 to steps 2b,
3 and 4a. Line 21 uses a nested protocol, PurchaseTravel, which describes a
successful purchase of travel services by the client (steps 5, 6 and 7 of Figure 2).

Multikernel OS: Distributed USB Manager. Next we present a protocol
from a distributed USB manager in Barrelfish multi-kernel OS [4, 40], consisting
of three primary modules that cooperate via explicit message passing:

– EHCI host controller driver (HCD). The host driver manages interaction
with the host controller hardware and provides a high-level interface for
communicating with the hardware.

– Client device driver. The client driver carries out interaction with a USB
device and exposes services of the device to applications.

– USB manager. The manager is responsible for coordination of the modules
and allocation of resources.

The USB manager has the most complex communication logic among these mod-
ules, performing orchestration of other components. In Figure 5 we informally
describe a USB device Plug Unplug protocol.

Figure 6 presents a specification of Plug Unplug protocol in Scribble. The
interaction has a linear structure and its subtlety lies in the correct interleaving
of control messages (ctrl exe) with data commands (dctrl exe) between the
USB manager and HCD.

66 K. Honda et al.

– Either, a new device is inserted into one of the USB ports:
1. HCD notifies the USB manager that a device is inserted.
2. The manager reads the USB device descriptor (via HCD) that contains the number of configurations,

device protocol, class and other information.
3. The manager reads each configuration reported by the above descriptor, which contain information

about power requirements, interfaces and endpoints. The configurations are read twice: at first, to
determine the total length of data needed to read interface and endpoint descriptors and subsequently
to fetch all interface and endpoint descriptors.

4. The manager switches the device into addressed mode and crosschecks that by reading device descrip-
tor again.

5. The manager assigns a configuration and interfaces to the device, which can be later changed by
device driver.

6. The manager locates appropriate client driver by querying System Knowledge Base (SKB). If a match
is found, SKB returns the server name running the required driver.

7. The manager probes the driver if it accepts the new device or not.
• If the driver accepts the request, it requests the manager to establish a logical connection (pipe)

with the device. The pipe is subsequently controlled by HCD.
• If the driver rejects the request, the manager cleans up its resources.

– OR, a USB device is removed from a port:
1. HCD notifies USB manager the device is removed.
2. The manager cleans up its resources and notifies the client driver.

Fig. 5. Distributed USB PlugUnplug protocol from Barrelfush multi-kernel OS

1 import PlugUnplug.messages.*;
2

3 protocol PlugUnplug {
4 role HCD, USB_Manager, Driver, SKB;
5

6 choice from HCD to USB_Manager {
7 notify_new_device(port):
8 // step 2
9 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;

10 dctrl_done(id) from HCD to USB_Manager;
11 // step 3
12 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;
13 dctrl_done(id) from HCD to USB_Manager;
14 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;
15 dctrl_done(id) from HCD to USB_Manager;
16 // step 4
17 ctrl_exe(req,dev,id) from USB_Manager to HCD;
18 ctrl_done(id) from HCD to USB_Manager;
19 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;
20 dctrl_done(id) from HCD to USB_Manager;
21 // step 5
22 ctrl_exe(req,dev,id) from USB_Manager to HCD;
23 ctrl_done(id) from HCD to USB_Manager;
24 // step 6
25 get_addr(dev,buf,id) from USB_Manager to SKB;
26 get_addr_done(id) from SKB to USB_Manager;
27 // step 7
28 probe(dev,class,prot) from USB_Manager to Driver;
29 choice from Driver to USB_Manager {
30 probe_done(ACCEPT,dev):
31 pipe_req(dev,type,dir) from Driver to USB_Manager;
32 pipe_resp(resp,pipe) from USB_Manager to Driver;
33 probe_done(REJECT,dev):
34 // clean-up
35 }
36 notify_device_removal(port):
37 disconnect(dev) from USB_Manager to Driver;
38 }
39 }

Fig. 6. PlugUnplug protocol in Scribble

Scribbling Interactions with a Formal Foundation 67

5 Formal Foundations of Scribble

General Ideas. Scribble is formally based on the π-calculus and its type theory
called session types. Having a general, well-understood theoretical foundation is
important since without such a foundation, we cannot establish clear seman-
tics for protocol descriptions, we cannot rigorously analyse how descriptions
relate to dynamics, and we cannot accurately state and validate properties of a
target system. The π-calculus enjoys full expressiveness for representing interac-
tional behaviours in spite of its tiny syntax: it can mathematically embed a large
class of communication-centred software behaviours, including those of existing
programming languages, without losing precision. For this reason, the study of
session types in the π-calculus, including various validation algorithms, can be
directly applicable to real-world programming languages. Below we informally
outline the correspondence between the theory of session types and Scribble,
including assurance of properties founded on this theory.

Types for Protocols: Session Types. In sequential programming language
such as Java and C, a type mainly stipulates the data type of a variable. In
particular, in typed languages, all variables should first be declared before they
can be used. For example,

int storage = 1;

This program involves stating the type and name of a variable, and telling pro-
gram that a field named storage exists, holds numerical data, and has an initial
value of 1.

Extending this view to interactional computing, session types set the rules
for a session (conversation), ensuring safe interactional behaviours for each ses-
sion. The specification starts from a global session type or a global type [24],
which describes the whole conversation scenario. It gives a specification for the
whole protocol from a bird’s eyes by giving the rules of conversations for all par-
ticipants. This global type corresponds to a protocol in Scribble: the Scribble’s
protocol notation was born from the theories of global types studied in [6], which
is the advancement of the theory presented in [24].

A local type represents the type of interactions for each role, played by a
principal in a conversation. It is given by projecting the corresponding global
type onto a specific role. The following example shows that, in a Buyer-Seller-
Broker session s, a Buyer asks Broker for a product, and sends the product’s
name. Broker refers this request to Seller, then Seller replies to the Broker with
the product’s price. Broker refers the price to Buyer after receiving it.

G = Buyer → Broker : string.
Broker → Seller : string.
Seller → Broker : int.
Broker → Buyer : int.
end.

The local types for Buyer are

〈Broker〉!〈string〉.〈Broker〉?(int),

68 K. Honda et al.

which are the projection from G onto Buyer. This local types indicate that a
Buyer should firstly send a name of type string to Broker, and then wait to
receive a price, which is a variable of type int, sent from Broker.

Similarly, the local type for Seller is given as

〈Broker〉?(string).〈Broker〉!〈int〉,
and the local type for Broker is

〈Buyer〉?(string).〈Seller〉!〈string〉.〈Seller〉?(int).〈Buyer〉!〈int〉.
Through a global type, we can stipulate the whole set of rules of interactional
behaviours participated by all participants; whereas a local type enables the
corresponding endpoint (local program) to know the rules of behaviours for a
specific role in a conversation.

Safety Assurance by Session Types. The typing system of Scribble for multi-
party sessions follows [6], using their global types and projection rules. A well-
designed typing system can ensure error-free conversations among multi-party
sessions [24], by typing each endpoint with the corresponding local type, which
is projected from a stipulated global type. Thus, for a given conversation, we can
assure each of its participants plays its role correctly. This assurance can be done
effectively at the programming/compilation-time: we can derive a typing algo-
rithm from the tying rules, which can (in)validate that a process, corresponding
to an application program at some endpoint, is conforming to a projected local
type. Thus session types provide static type-checking at the programming time.

When all endpoints are type-checked and they start interaction, they satisfy
several significant properties. First, we have a formal theorem which says that

“well-typed processes never exchange wrong values.”

That is, if a process is expecting an integer, it will get an integer; and if it expects
a string, it will receive a string. Secondly, inside each session (conversation), there
is what is often called linearity:

“an output is never shared by more than one inputs, and vice versa.”

Finally, we can assure that the interactions through a well-typed conversation
follow the initially stipulated protocol:

“interactions inside a session among well-typed processes under a global
type, never violate the scenarios given in that type.”

This property can be further strengthened under certain conditions that inter-
actions can always proceed in a session, so that they inevitably complete one of
the scenarios given in a protocol, assuring an important liveness property. Here
by a liveness property we mean a property demanding a process can surely do
a good thing. In contrast, the preceding three properties are about safety since
each says that a process never does a stipulated bad thing.

Scribbling Interactions with a Formal Foundation 69

The type-based static checking (including projection) and properties ensured
by the typing algorithm give a basis of diverse engineering practice and theories
centring on session types. As has been studied in [8], a logical method, which
elaborates session types with assertions (just as Design-by-Contract elaborates
procedural types with logical formulae), can be built on this basis, which uses
precisely the same framework except that it is lifted to logical elaboration of
session types. Further, a series of studies show how we can consistently and
effectively incorporate session types in the semantics and pragmatics of existing
programming languages [19, 25, 26].

6 Development Framework

6.1 General Concepts

Project for Development Environment of Distributed Applications.
For Scribble to be useful for development, it should be complemented with as-
sociated software tools including programming languages, integrated into a de-
velopment environment. The present authors, in conversation and collaboration
with academic and industry colleagues, started the design and implementation
of core development tools centring on Scribble in late 2009, complemented by
other activities. Our aim is to reach a simple and effective tool chain for the
development of distributed applications which can effectively interface with ex-
isting artifacts and tools such as UML and Java. We are still in an early stage
of design assessment and prototyping: below we illustrate some of its key ideas.

Modelling with Protocols. The requirement capture phase of the software
development life cycle leads to the identification of significant scenarios, or use
cases, associated with the target system’s usage. For interactional systems, many
of such use cases may as well be conversational — in the sense that they represent
interactions among more than one actor. A use case can then be elaborated
into one or more scenarios-as-conversations, each of which will obey a certain
protocol: just as an object referred to in a use case scenario belongs to a class.

There are two functions which a tool can provide for this modelling stage:
to edit protocols (with grammatical checks) and to validate their semantic
consistency or conformance to other documents. To share protocols with other
developers one can also publish protocols. One can also project a protocol with
multiple participants to each endpoint (role), to produce a local protocol using
the algorithm coming from the underlying theory (see Section 5). This gives a
model of conversations from the local viewpoint.

Programming with Protocols. Protocols produced at the modelling stage
may be refined into more concrete protocols at the design stage, so that they
are eventually usable for implementation. A programmer may also need new
protocols just for implementation purposes, as well as using already published
protocols. She will then edit a program, which uses typed sessions for com-
munications among programs, for example through a Scribble-aware API for

70 K. Honda et al.

communications. She can then statically check conformance of her program
to stipulated protocols. Protocol descriptions can also be used to test programs,
where interactions are checked against protocols.

At runtime, each endpoint application is executed through a runtime which
links the high-level communication operations for sessions to the underlying
messaging infrastructure [25, 26]. Multiple such endpoints will converse with each
other over multiple conversations, where each endpoint participates in a session
taking some role, as specified in the underlying protocol. Communications can be
monitored to prevent a conversation from violating a protocol, at each endpoint
and/or globally. If some anomaly is detected, a monitor will notify this fact to an
entity (a virtual agent) in charge of policy enforcement. The protocol documents
also form basic part of the design document of the system.

6.2 Concrete Design

Project for Scribble-based Development Environment. Scribble and asso-
ciated tools are being developed by an open source project hosted at [37], with
multiple academic and industry participants. Its purpose is to provide a collab-
orative environment to support the development of the language Scribble and
associated tools. One of the exciting aspects of the project is the collaboration
between academia and industry. Within the project, we are aiming to harness the
best of these two worlds: leverage the academic results to develop cutting edge
capabilities, while providing the stable software development life cycle required
to deliver a higher quality and better supported product for use in industry.

Our current design of a tool chain focuses on Eclipse. To enable extensibil-
ity in this environment, we leverage the OSGi standard. The tooling includes
an Eclipse-based context sensitive editor for Scribble. Since Eclipse is based on
the OSGi framework, various Scribble-related functions become automatically
available in the editor as OSGi modules become available. Extensibility also
facilitates incorporation of new research ideas into existing tool functionalities.

Protocols are parsed by a parser generated by the ANTLR parser generator,
producing an internal representation (a Java object model) through the abstract
syntax tree. It is this representation which is used and acted upon by various
validation modules, discussed next.

Static Validation and Other Algorithms. One of the fruits of the industry-
academia collaboration in the Scribble project is the use of the latest research
results on validation and other algorithms that are provably correct to give the
required results. Each validation module is responsible for processing a Scribble
protocol object model to output whether it is valid or not (with respect to a
specific criteria). Validations can be arbitrarily chained, and are usually set up
so that they are triggered automatically as a protocol description is created
or updated in the editor. A new validation function can be added simply by
installing an OSGi module implementing the appropriate interface. The main
validation functions include:

Scribbling Interactions with a Formal Foundation 71

1. Syntactic consistency (parsability)
2. Semantic consistency of session types (including linearity guarantee, which

avoids a race condition in a conversation [24])
3. Conformance checking of a local protocol against a global one [31].

The conformance checking noted above is also used for local protocols extracted
from an implementation of an endpoint in an already existing program, writ-
ten in e.g. BPEL. These validations, together with other functions such as the
projection of a global protocol to local protocols (using the latest algorithm
from [43]), can be lifted to logical specifications following [8]. Another form of
validation is dynamic validation through monitors, using an efficient internal
representation of protocols. The design and implementation of these and other
validation modules are under way, with a stable release planned in late 2011.

Finally, programming support for Scribble for existing languages comes from
two sources: APIs and language extensions. In both cases, a type checker, which
validate type correctness of programs against local protocols, plays a key role.
Three implementations covering both approaches are under way, based on the
latest research on session-based programming and runtime [25, 26].

7 Related Work and Conclusion

In this section we discuss some of the related work, with an emphasis on theo-
retical studies related to Scribble, and conclude with further topics.

Process Algebra. Process algebras, such as ACP [3], CSP [22] and π-calculus
[30], present a semantic framework where interactional behaviour of software
systems can be captured on a rigorous mathematical basis through a small set
of operators for constructing processes. The fruits from the studies on these
and other models of concurrency form an essential engineering foundation of
Scribble. For example, behavioural equivalences such as bisimulations, a linchpin
of theories of process algebras, offer the mathematical basis of key engineering
activities such as optimisations, security, correctness of compiler, correctness of
runtime, and various semi-automatic verifications.

Session Types and Other Description Frameworks. Session types [23, 39]
have been studied over the last decade as a typed foundation for structured
communication-centred programming using various programming languages and
process calculi. The original binary session types have been generalised to multi-
party session types [24], in order to guarantee stronger conformance to stipulated
session structures when a protocol involves more than two parties. Theories of
multiparty session types [6, 24] give the foundations of Scribble, together with
their semantic basis given by the π-calculus. Validation and other algorithms
from their studies are used as the core elements of its tool chain.

Since [24], the theory of multiparty session types has been extended in dif-
ferent directions, including a theory which ensures the progress property for

72 K. Honda et al.

interleaved multiparty sessions [6] (which also gave the formal basis of the Scrib-
ble’s syntax); generalised type structures which allow communication optimisa-
tion through permutation [31]; and a static analysis for communication buffer
overflows [16]. The existing notations for describing protocols include message
sequence charts [9, 27] and UML sequence diagrams [34] (the latter when method
calls are replaced by asynchronous signals). These notations are different in that
they are not based on the abstraction of protocols as type signatures. Protocol
descriptions from a different viewpoint are studied in [18], where one stipulates
possible communication events among endpoints using a logic of commitment.
WS-CDL [13] (discussed in Section 2) is one of the first expressive languages
which allow description of interactions from a global viewpoint. WS-CDL is also
a basis of the preceding validation tool by one of the authors (G.B.), pi4soa [36],
on whose experience the design of the Scribble-based development environment is
being carried out. In comparison with these descriptive languages, the multiparty
generalisation of session types offer, for the first time, a framework of protocol
descriptions where they are formally captured as type signature, together with
a notion of type conformance through formal projection to endpoints.

Recently the theory of multiparty session types has been applied in different
contexts, including protocol optimisation for distributed objects [38]; integrity
of session interactions [7, 10]; type-safe asynchronous event programming [25];
safe and efficient parallel programming [32, 43]; multicore programming [44]; and
medical guidelines [33]. Many of these studies are inspired by and/or inspire our
industrial collaborations.

Communication-Centred Programming Languages and Scribble. Occam-
Pi [42] is a highly efficient systems-level concurrent programming language
centring on synchronous communication channels, based on CSP and the π-
calculus. Hewitt’s Actor Model [1] is an influential programming model centring
on asynchronous unordered message passing. Erlang [2] is a communication-
centred programming language with emphasis on reliability based on actors.
Scribble differs from these languages in that it is a protocol description language
rather than a programming language, with formal foundations coming from the
π-calculus and session types, intended to be used across multiple programming
languages through different stages of software development.

Further Topics. To realise the full potential of the proposed approach in gen-
eral and Scribble in particular, the incorporation of several recent advances of
the theory of session types into the description language would be relevant.
First, Scribble can be extended to the type-safe multiparty session exceptions
recently developed in [11], in order to handle system failure and fault-tolerance
in a larger class of distributed protocols, preserving type safety. The incorpora-
tion of the parametrised dependent type theory from [43] enables us to directly
express more complex communication topologies. More recently, we studied a
dynamic multirole session type in [17] where an arbitrary number of partici-
pants can dynamically join and leave an active session under a given role. This
solved an open problem in the theory of multiparty session types, providing a

Scribbling Interactions with a Formal Foundation 73

new framework to handle common distributed communication patterns such as
publisher-subscriber or P2P and chat protocols within the theory. The notion
of the role with dynamic join capabilities in [17] was motivated by Scribble and
protocol descriptions in it, demonstrating an interaction between practice cen-
tring on Scribble and academia brings a new theory which can be used to enrich
type structures of Scribble. Another significant extension of the theory of multi-
party session types, again motivated by a dialogue with practice, is our recent
work [8] on an assertion framework built on session types. The incorporation
of the assertion-based framework will enrich the expressiveness of Scribble as
a tool for description by enabling the specification of fine-grained constraints.
The framework generalises the traditional Design-by-Contract, offering a refined
modular development framework for distributed communicating processes based
on multiparty behavioural contracts.

Acknowledgements. We thank Raymond Hu, Matthew Rawlings and Munindar
Singh for their comments. The Scribble project has been enriched by an extensive
dialogue with academic and industry colleagues, including, but not limited to,
Matthew Arrott, Matthew Rawlings, Steve Ross-Talbot and Olivier Pernet. The
first author acknowledges a fruitful discussion with another industry colleague,
Antony Alappatt. We thank all of them, and record that this series of a dialogue
between practice and theories was made possible by the initiative and leadership
of late Robin Milner, who is also the originator of many of the key theoretical
foundations on which Scribble is based. For this reason, we dedicate this paper
to him, and hope that our work from now on in this domain will contribute to
the enrichment of both practice and theories of computing through their deep
and honest dialogue, as Robin envisioned in his address in Edinburgh in 1986
and encouraged us in the early days of this endeavour.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

2. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

3. Baeton, J., Wejland, W.: Process Algebra. Cambridge University Press, Cambridge
(1990)

4. Baumann, A., et al.: The multikernel: a new os architecture for scalable multicore
systems. In: SOSP, pp. 29–44. ACM, New York (2009)

5. Baumann, A., Peter, S., Schüpbach, A., Singhania, A., Roscoe, T., Barham, P.,
Isaacs, R.: Your computer is already a distributed system. why isn’t your os? In:
Proceedings of the 12th Conference on Hot Topics in Operating Systems, HotOS
2009, pp. 12. USENIX Association, Berkeley (2009)

6. Bettini, L., et al.: Global progress in dynamically interleaved multiparty sessions.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008)

7. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: CSF, pp. 124–140
(2009)

74 K. Honda et al.

8. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

9. Broy, M., Krüger, I.H., Meisinger, M.: A formal model of services. ACM Trans.
Softw. Eng. Methodol. 16(1), 5 (2007)

10. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M., Rezk, T.: Session Types for Ac-
cess and Information Flow Control. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 237–252. Springer, Heidelberg (2010)

11. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty session. In:
FSTTCS 2010 (2010) (to appear), http://www.di.unito.it/~capecchi/mpe.pdf

12. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 2–17. Springer, Heidelberg (2007)

13. W3C Web Services Choreography Description Language, http://www.w3.org/

2002/ws/chor/

14. Chave, A., Arrott, M., Farcas, C., Farcas, E., Krueger, I., Meisinger, M., Orcutt,
J., Vernon, F., Peach, C., Schofield, O., Kleinert, J.: Cyberinfrastructure for the
US Ocean Observatories Initiative. In: Proc. IEEE OCEANS 2009. IEEE, Los
Alamitos (2009)

15. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL,
pp. 207–212 (1982)

16. Deniélou, P.-M., Yoshida, N.: Buffered communication analysis in distributed mul-
tiparty sessions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 343–357. Springer, Heidelberg (2010) Full version, Prototype at,
http://www.doc.ic.ac.uk/~pmalo/multianalysis

17. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL 2011.
ACM, New York (2011) (to appear), http://www.doc.ic.ac.uk/~malo/dynamic

18. Desai, N., Chopra, A.K., Arrott, M., Specht, B., Singh, M.P.: Engineering foreign
exchange processes via commitment protocols. In: IEEE SCC, pp. 514–521 (2007)

19. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Gairing, M.: Session Types for
Object-Oriented Languages. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp.
328–352. Springer, Heidelberg (2006)

20. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. Wiley, Chichester (January 2003)

21. Hoare, T.: An axiomatic basis of computer programming. CACM 12 (1969)
22. Hoare, T.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs

(1985)
23. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines

for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

24. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
In: POPL 2008, pp. 273–284. ACM, New York (2008)

25. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-safe eventful
sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

26. Hu, R., Yoshida, N., Macko, M.: Session-Based Distributed Programming in Java.
In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidel-
berg (2008)

27. International Telecommunication Union. Recommendation Z.120: Message se-
quence chart (1996)

http://www.di.unito.it/~capecchi/mpe.pdf
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/
http://www.doc.ic.ac.uk/~pmalo/multianalysis
http://www.doc.ic.ac.uk/~malo/dynamic

Scribbling Interactions with a Formal Foundation 75

28. Meyer, B.: Applying “Design by Contract”. Computer 25(10), 40–51 (1992)
29. Milner, R.: Theory of type polymorphism in programming languages. In: TCS

(1982)
30. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II.

Info. & Comp. 100(1) (1992)
31. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-

tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

32. Ng, N.: High performance parallel design based on session programming. Masters
thesis, Department of Computing, Imperial College London (2010), http://www.
doc.ic.ac.uk/~cn06/individual-project/

33. Nielsen, L., Yoshida, N., Honda, K.: Multiparty symmetric sumtypes. Technical
Report 8, Department of Computing, Imperial College London (2009), To appear
in Express’10. Apims Project at, http://www.thelas.dk/index.php/apims

34. OMG. Unified Modelling Language, Version 2.0 (2004)
35. Ocean Observatories Initiative (OOI),

http://www.oceanleadership.org/programs-andartnerships/

ocean-observing/ooi/

36. pi4soa homepage, http://pi4soa.sourceforge.net/
37. Scribble development tool site, http://www.jboss.org/scribble
38. Sivaramakrishnan, K.C., Nagaraj, K., Ziarek, L., Eugster, P.: Efficient session type

guided distributed interaction. In: Clarke, D., Agha, G. (eds.) COORDINATION
2010. LNCS, vol. 6116, pp. 152–167. Springer, Heidelberg (2010)

39. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing
System. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

40. Trivedi, A.: Hotplug in a multikernel operating system. Master’s thesis, ETH Zurich
(2009)

41. UNIFI. International Organization for Standardization ISO 20022 UNIversal Fi-
nancial Industry message scheme (2002), http://www.iso20022.org

42. Welch, P., Barnes, F.: Communicating Mobile Processes: introducing occam-pi. In:
Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP 2004. LNCS, vol. 3525, pp.
175–210. Springer, Heidelberg (2005)

43. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session
types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010)

44. Yoshida, N., Vasconcelos, V.T., Paulino, H., Honda, K.: Session-based compilation
framework for multicore programming. In: de Boer, F.S., Bonsangue, M.M., Made-
laine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 226–246. Springer, Heidelberg
(2009)

http://www.doc.ic.ac.uk/~cn06/individual-project/
http://www.doc.ic.ac.uk/~cn06/individual-project/
http://www.thelas.dk/index.php/apims
http://www.oceanleadership.org/programs-andartnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-andartnerships/ocean-observing/ooi/
http://pi4soa.sourceforge.net/
http://www.jboss.org/scribble
http://www.iso20022.org

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 76–91, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Open Government in Policy Development: From
Collaborative Scenario Texts to Formal Policy Models

Maria A. Wimmer

University of Koblenz-Landau, Institute for IS Research,
Universitätsstraße 1, 56070 Koblenz, Germany

wimmer@uni-koblenz.de

Abstract. The technical capacities of service offers for e-government and
e-participation have considerably progressed over the last years. Yet, the prin-
ciples of good governance are still not well implemented, especially when it
comes to policy development. Governments struggle to effectively apply inno-
vative technologies in regards to providing open collaboration in policy formu-
lation or to monitor and evaluate policy implementation. Through a recent
initiative of the European Commission (EC), several research projects have
been launched to address these challenges. This paper first investigates existing
deficiencies in open government towards transparent policy development. Sub-
sequently, an approach of a project funded by the EC is introduced to develop
better ICT support for open collaboration in policy modeling. The approach
combines existing e-participation tools, collaborative scenario generation and
formal policy modeling to evaluate and explore policies via agent-based model-
ing (OCOPOMO - www.ocopomo.eu).

Keywords: E-Government, E-Governance, Open Collaboration, Scenario Gen-
eration, Policy Modeling.

1 From Technology-Driven E-Government to Open Government

Over the past ten years, electronic government (also called e-government or digital
government) has evolved to a prevalent field of research and practice. A considerable
number of definitions have emerged in this time, among which - in the European
domain - the definition of the European Commission (EC) is considered as the
reference of understanding in both, research and practice. The most recent definition
of the EC for e-government refers to the use of information and communication
technologies (ICT) by public administrations to provide better public services to citi-
zens and businesses. According to the EC’s understanding, “effective e-government
also involves rethinking organizations and processes, and changing behavior so that
public services are delivered more efficiently to the people who need to use them.
Implemented well, e-government enables all citizens, enterprises and organizations to
carry out their business with government more easily, more quickly and at lower

 Open Government in Policy Development 77

cost”.1 Earlier definitions of the EC and other research scholars also include the effec-
tive interaction of public administrations among themselves to reduce bureaucracy
and red tape as well as policy formulation and citizen participation in democratic
processes. Investigations and comparison of different definitions can be found e.g. in
[4], [23], [54], [55], [56].

After a first hype of e-government research and implementation in the early
2000ers, e-government had to face a severe recession around 2005, where the initia-
tives were blamed to be too much technology-driven and neglecting user perspectives,
organisational aspects and the legal and policy dimensions in ICT developments for
public administration. Subsequently, a more holistic approach involving different
disciplines was acknowledged, which has been actually already claimed by the author
for e-government in publications dating back to the early 2000ers (see e.g. [53], [57],
[58]). Multi-disciplinary e-government research has e.g. been described in [53].

Along the discussions and evolution of innovative ICT for e-government in the past
five years, topics such as citizen at focus, accessible and user-driven e-government,
openness and transparency, trustworthiness, efficiency, value-generating public ser-
vices, citizen participation, or open government including citizen involvement in pol-
icy making emerged from a broader understanding of e-government. The annual
conference proceedings of EGOV, HICSS e-government tracks and dg.o evidence
these strands of focus.

With holistic e-government development, the concept of good governance has to
be referred to as well. Good governance describes the principles, approaches and
guidelines for good governance and public administration to promote interaction and
formation of political will with regard to societal and technological changes. Already
in 2001, the EC has formulated five principles for good governance: openness, par-
ticipation, accountability, effectiveness and coherence [13]. For a number of years,
governance and strategic policy making were addressed separately and were not
researched with the focus of using ICT. After the first downward tendency of
e-government developments around 2004/2005, a high demand to focus more on the
aspects of good governance in e-government arose. Two terms coined these develop-
ments: e-participation and e-governance. While e-participation concentrated on citi-
zen participation in democratic decision making and policy formulation therewith
using modern ICT2, e-governance and public governance developments focused on
organizational and efficiency aspects.

Recent trends bring together the three foci of past evolutions in research and prac-
tice of e-government, e-participation and e-governance. The OECD has published a
study in 2009, where it addresses the integration of these three aspects. In the study
“Focus on Citizens: Public Engagement for Better Policy and Services”, it is argued
that “open and inclusive policy making offers one way to improve policy performance
and meet citizens rising expectations. Public engagement in the design and delivery of
public policy and services can help governments better understand people’s needs,

1 http://ec.europa.eu/information_society/activities/egovernment/
 index_en.htm (accessed 17/10/2010).
2 For definitions and scoping the field of e-participation, see www.demo-net.org and e.g. [35],

[36], [19].

78 M.A. Wimmer

leverage a wider pool of information and resources, improve compliance, contain
costs and reduce the risk of conflict and delays downstream” [43, p. 21]. Likewise,
the European Commission (EC) has introduced an objective in its recent Framework
Program (FP 7), which is dedicated to “ICT for governance and policy modeling”3.
The objective specifically focuses the involvement of the general public in policy
making and in strategic decision making thereby exploiting advanced ICT.

In the context of the EC FP 7, the project OCOPOMO was composed and is co-
funded. OCOPOMO is the acronym for “Open COllaboration in POlicy MOdeling”4.
The objective of the project is to define and demonstrate a new approach to policy
formation that resolves crucial issues involved with prevailing approaches in policy
modeling and stakeholder engagement. The innovative OCOPOMO approach is “off
the mainstream” by applying a bottom-up approach to social policy modeling, com-
bined with e-governance tools and techniques, and advanced ICT technologies.
OCOPOMO will create an ICT-based environment integrating lessons and practical
techniques from complexity science, agent based social simulation, foresight scenario
analysis and stakeholder participation in order to formulate and monitor social poli-
cies to be adopted at several levels of government. With the open collaboration plat-
form to policy generation, OCOPOMO enables actors of relevant target groups to
better cope and master future developments and therewith meet the demands of evolv-
ing societies. Likewise, governance aspects such as transparency, trustworthiness and
participation are enabled.

In the subsequent sections, current deficiencies in open government will be ana-
lyzed (section 2), the OCOPOMO project and overall approach will be introduced
(section 3) and the status of relevant concepts and solutions will be investigated
(section 4). Concluding remarks provide a reflection of the approach and a view on
next steps in the project.

2 Current Deficiencies in Open Government

Making Europe the most competitive knowledge society is a strategic objective
stressed in the Lisbon agenda [12] in the early 2000s. Since then, a number of re-
search frameworks and strategic initiatives have been launched by the EC to spur
innovative developments, application and wide-spread usage of ICT in civil society as
well as the commercial and public sectors (see e.g. [11], [14], [15], [16]). While these
programs and strategies have to a large extent investigated traditional ICT usage and
modernization of Governments through improved online provision of public services,
the areas of ICT usage in participation and especially advanced ICT support in policy
making and governance were not sufficiently addressed. The most recent strategy
document of the EC – “Digital Agenda for Europe 2010 – 2020”5 – aims at advancing

3 Objective 7.3 in call 4 of 2008, Objective 5.6 in Call 7 of 2010 (accessed 17/10/2010) – see
http://ec.europa.eu/information_society/activities/egovernment/
research/fp7/index_en.htm

4 http://www.ocopomo.eu/
5 http://ec.europa.eu/information_society/
 digital-agenda/index_en.htm (accessed 18/10/2010).

 Open Government in Policy Development 79

and ensuring a flourishing digital economy in Europe by 2020 [17]. This latest EC
strategy addresses current deficiencies in open government and in dealing with social
and economic phenomenon such as demographic change and the recent financial
crisis. The “Digital Agenda for Europe” puts forward the need for actions that need to
be taken urgently to get Europe on track for smart, sustainable and inclusive growth.
It is expected that these actions will set the scene for the longer-term transformations
that the increasingly digital economy and society will bring about. To exit the crisis
and prepare the EU economy for the challenges of the next decade, Europe 2020 sets
out a vision to achieve high levels of employment, a low carbon economy, productiv-
ity and social cohesion, to be implemented through concrete actions at EU and na-
tional levels. This battle for growth and jobs requires ownership at top political level
and mobilization from all actors across Europe.

Especially the recent economic and financial crisis, which resulted also from our
inability to predict dramatic changes in the economy and society and/or ignoring
those few individuals who were warning the governments before these threats and
negative trends, sheds light on an urgent need for more effective and efficient proc-
esses of governance and policy making.

When preparing for the OCOPOMO project, several deficiencies in current gov-
ernance in the public sector have been unveiled, among which the following are most
prominent6:

─ inappropriate ICT support in foresights, especially in long-term policy planning,
─ lack/inability of managing complexity in strategic planning and policy making

in complex socioeconomic environments,
─ lack of open collaboration and lack of transparency in identifying the crucial

features of complex social and macroeconomic models to simulate potential
alternative policies,

─ ignorance of the need for e-participation and other forms of ICT-enabled effi-
cient collaboration of communities of stakeholders relevant to the given policy
area;

─ lack of focus on developing, visualizing and simulating appropriate policy
models to enable better management of socio-economic developments and the
identification of interdependencies that result in complex social and economic
relations likely to affect future developments, and

─ lack of comprehensive ICT solutions to support policy modeling and simulation
on the one hand, and collaboration among policy analysts and policy operators
as well as wider interest groups and the general public on the other hand.

These challenges and deficiencies emerge from a long history of scientific develop-
ment that resulted in the need to engage stakeholders in the design and evaluation of
models of social processes, from which it was a small and natural step to use the
models for purposes of social policy analysis and which itself required the engage-
ment of the stakeholders in policy analysis. A driving force of this scientific devel-
opment was the combination of two specific failures of prevailing social theory and
related social modeling.

6 As stated in the technical annex of the project contract.

80 M.A. Wimmer

The first of these failures has been the patent inability of social scientists to forecast
the timing, magnitude or duration of such extreme events as the credit crisis and reces-
sion of the last two years. Despite a widespread search of the academic literature and
the mass media and public enquiries via relevant newsgroups and discussion lists, the
policy expert partners in OCOPOMO have not been able to identify a single, correct,
model-based forecast of a turning point in either macroeconomic trade cycles or finan-
cial market indices in the whole history of economic forecasting. This problem has
implications of enormous, global significance since macroeconomic and econometric
models are central to the understanding of economists and the advice they give in the
process of policy formation. Different models imply and inform different policies. The
effects of stabilization policies and recovery plans, the magnitude of problems atten-
dant upon protectionist policies, the need for financial support for individuals and
enterprises are all assessed by the use of economic and econometric models.

The second failure is the lack of connection between scientific and informal obser-
vation of human behavior and social interaction on the one hand and, on the other, the
specification of behavior by constrained optimization algorithms and the assumption
that there is no social interaction in many social (and all mainstream economic) policy
models. The explanation for the systematic (and possibly complete) forecasting fail-
ure emerged in parallel and in mutual ignorance of one another in two branches of the
scientific literature: statistical physics and agent-based social simulation modeling.

In consequence, a new approach is necessary that builds on evidence-based user-
driven development of policy texts, which informs a formal policy model to elicit
potential interdependencies, and which enables a simulation model as correct and
precise as possible. The development of the user-generated scenario models and the
formal simulation models needs to be iterative and needs to enables different relevant
stakeholders to interact and contribute to the evidence-based policy texts.

3 OCOPOMO: A New Approach to Integrate Open Collaboration
in Policy Development

3.1 The Project

To address current deficiencies in open government and to cope with the challenges
and shortcomings of currently existing fragmented approaches, OCOPOMO provides
an innovative "off the mainstream" bottom-up approach to social policy modeling,
combined with e-governance tools and techniques and advanced ICT technologies. It
therewith integrates concepts, techniques and tools from different disciplinary fields
in order to formulate and monitor social policies. Focus is put on the long-term strate-
gic planning for governments and policy operators (those responsible for preparing
and developing the strategic decisions to be made in parliaments and or respective
government bodies).

OCOPOMO aims at providing an integrated ICT toolbox with proper mechanisms
for open collaboration in policy modeling, including collaborative support for scenario

 Open Government in Policy Development 81

based policy development. It will enable actors of all target groups at different levels of
government across Europe “to master and shape future developments so that the de-
mands of its society and economy are met”7. Policy issues which are high on the Euro-
pean political agenda serve as test-beds to evaluate and test the OCOPOMO approach.
The policy cases selected for this purpose are renewable energy and management of
structural funds. With the two test cases, OCOPOMO demonstrates that, with appro-
priate ICT, the integration of formal policy modeling, scenario generation and open
and widespread collaboration is not only possible but can come to be seen as essential
at all levels of policy formation - whether local, regional, national or global.

The overall concept of OCOPOMO is shown in Fig. 1. Through open collaboration
(e-participation features), stakeholders develop a set of scenarios for the policy cases
(1). Based on the understanding of each policy case and the most wanted scenario
elements, policy experts generate a common macroeconomic model (2) and targeted
individual agent-based policy models for the pilot cases (3). These formal policy
models are simulated (4) and visualized to enable stakeholders (5a) and policy model-
ing experts (5b) to validate and evaluate the simulated policy models. In several itera-
tions of scenario and model development, the policy models are refined.

Fig. 1. Overall concept for open collaboration in policy modeling in the OCOPOMO project

Through open and widespread collaboration via the ICT toolbox, scenario genera-
tion and formal policy modeling, the policy experts as well as wider stakeholder
groups are supported in strategic decision making and policy formation. The OCO-
POMO approach thereby provides a more suitable policy approach and engages the
stakeholder in different stages of the policy formulation.

7 http://cordis.europa.eu/fp7/ict/ (accessed 31st October 2010).

82 M.A. Wimmer

To achieve the core objectives of OCOPOMO, the project will generate the follow-
ing outcomes:

─ Two policy analyses at regional level within Member States of the European
Union, which will be based on, and enriched with different sets of user-
generated scenarios that reflect particular perspectives of relevant stakeholder
views in each policy case. The pilot policy cases cover different political,
cultural and geographical environments. The policy issues to be addressed are
all sensitive to the current financial and economic crisis and economic develop-
ment policies. The policy analyses will be based on both, formal simulation
models and narrative scenarios.

─ A general model of macroeconomic relations constrained as far as possible by
data produced at national and European level. The model will have properties
that are well justified by evidence in every case, some of which are known from
experience to yield the unpredictable extreme events and statistical properties of
outputs from the models that are incompatible with statistical forecasting
techniques.

─ Narrative scenario analyses that inform the formal policy models in a way to
produce policy analyses with the precision and clarity of formal models and also
the rich contextual and imaginative content of verbal narratives of relevant
stakeholders in the respective policy cases.

─ A model of macroeconomic complexity enriched with the regional policy mod-
els, which will ensure that the regional models generate a range of surprising re-
sults that can be analyzed both formally from model output and informally by
means of scenario exercises, online forum, and the like.

─ An integrated ICT solution, which will support the engagement of core, partici-
pating stakeholders and also open engagement by stakeholders who are not
partners in the project but who have an interest or expertise in the policy issues.

The ICT solution will provide a collaborative environment for an integrated process
of evidence-based user-generated scenario development and formal policy modeling,
which will produce formal model-driven scenarios by means of simulation experi-
ments. The target users of the OCOPOMO toolbox are on one hand policy analysts
and policy operators and, on the other hand, special interest groups and to some extent
the wider general public. Hence, the traditional approach of (expert) top-down policy
modeling is counterbalanced and expanded with

1. innovative ground-up participation in (narrative) scenario-building and
2. an iterative process of identifying the parameters and features of policy models

from the narrative scenarios, designing and simulating the policy models (includ-
ing outputs of formal scenarios) and refining them iteratively;

3. open collaboration of policy analysts, policy operators and wider interest groups
(representatives of specific unions, chambers, etc., and the general public).

3.2 The Approach in More Detail

Using the numbered items depicted in Fig. 1, policy operators (decision makers in
governments and politics), policy analysts and interest groups (specific stakeholder
groups as well as general public) collaborate in the process of scenario development.

 Open Government in Policy Development 83

Thereby, they depict alternative narrative descriptions of a policy area, which de-
mands strategic decisions (1). Local development policies embrace a wide range of
issues, e.g. Natural resources (improvements to water resources, soil and coastline
protection, upgrading of natural areas, waste processing and energy management
(especially renewable resources), Cultural resources (Enhancement of the region's
cultural resources as a factor contributing to its economic and social development.),
employment and training policies. The results of this process step are a number of
alternative scenarios for each policy domain (i.e. for each pilot).

Based on these narrative scenarios, two types of model will be developed. The first
type (2 in Fig. 1) is a common macroeconomic agent-based simulation model that
produces outputs relevant to the policy concerns of each of the regional pilot models.
Because the macroeconomic model has the properties of complexity models more
generally, we expect it to produce surprises for the regional stakeholders or, at least,
to encourage them to plan for unwanted extreme events such as a collapse in private
investment or consumption or unexpected changes in rates of inflation (positive or
negative). This common macroeconomic model will be integrated into each of the
regional pilot models to simulate the wider economic environment in which the re-
gional policies are to be implemented. The regional pilot models (3 in Fig. 1) will be
developed specifically to reflect the concerns, objectives and perspectives of the local
stakeholders.

Subsequently, the policy models can be simulated and visualized (4 in Fig. 1). The
interest groups, local policy analysts and policy operators simulate and evaluate the
policy models based on the scenarios developed in step 1. The aim of this step is to
assess and evaluate the policy models and the scenarios developed. The result of this
step is a collection of revisions and modifications for the alternative scenarios, the
parameters identified as those being crucial in the policy domain, and the individual
policy models.

These results of step four are fed back to earlier steps – depending on what revi-
sions are requested, and where – in order to revise: a) the alternative scenarios devel-
oped which starts the process again at step 1 (5a in Fig. 1) or b) the individual policy
models at step 3 (iteration indicated with (5b) in Fig. 1). Throughout the execution of
the OCOPOMO project, two iterations are scheduled for this process. In practice, this
process is likely to be ongoing and incremental with many partial revisions.

Finally, the resulting narrative scenarios and policy models shall help policy opera-
tors to make their decisions on the basis of (i) better quality of policy analysis results
available and (ii) a consultative process that will have taken place with key stake-
holders of the policy domain throughout the policy development.

Likewise, interest groups affected by such decisions have better knowledge and
understanding of the decisions to be taken by policy makers, as they have actively
contributed their views, concerns and understanding to the policy process.

3.3 Overall Architecture for the ICT Toolbox

Current ICT tools in e-participation focus on participation with either advanced means
of search, interaction or argument visualization. In this context, the great majority of
e-participation platforms and social networks based on Web 2.0 technologies serve as

84 M.A. Wimmer

examples. Other tools – not necessarily with widespread usage by the general public -
provide ICT support in policy modeling and simulation.

In OCOPOMO we aim at bringing together both strands of tools and technologies
available. Fig. 2 shows the overall architecture of the OCOPOMO ICT solution. The
OCOPOMO platform will allow on one hand open collaboration in scenario devel-
opment (step 1 of Figure 1) through the use of advanced participation and collabora-
tion features. Such tools provide means for structuring joint scenario development,
discussion, assessment and rating features of the key parameters to be identified. On
the other hand, tools for policy modeling, policy visualization and simulation will be
integrated in order to support the different target groups in performing the steps 2, 3
and 4 of the procedural design shown in Figure 1.

Fig. 2. OCOPOMO’s ICT toolbox supporting open collaboration of stakeholders in scenario-
based policy development, as well as policy experts in policy analysis, modeling, simulation
and complexity management

To achieve the objectives in OCOPOMO, mostly existing tools will be integrated.
Hence, the next section provides an overview of relevant tools and developments.

4 Current Status of Related Developments

OCOPOMO integrates a number of currently existing concepts and ICT solutions,
which exist for particular purposes. Among the research and development topics of high
relevance in OCOPOMO, the following are briefly introduced in this section: policy
modeling (including in regards to e-governance), complexity in policy modeling and
public governance, social policies in relation to e-governance, scenario-based foresights,
e-governance and e-participation, and ICT solutions for integrating user-generated

 Open Government in Policy Development 85

scenarios with formal policy modeling therewith enabling open collaboration among
relevant stakeholders. OCOPOMO aims at integrating these solutions to a comprehen-
sive innovative toolbox.

Agent based policy modeling is an application of agent based social simulation.
The field can be divided into two classes: models that are designed and implemented
bottom-up on the basis of evidence obtained from stakeholders and other domain
experts, and models that are designed and implemented top-down on the basis of
some prior social (frequently economic) theory. Top-down, theory driven models are
largely used in economics to suggest policy implications. Different approaches to
macroeconomic modeling exist, yet many of them lack representation of individual
behavior based directly or indirectly on evidence of how individuals behave or how
they interact (cf. e.g. [9], [24], [26], [49]). To model the overall economy at the
macro-level, the model of Nobel Prize winner Larry Klein is one approach [33]. It
essentially builds on the Keynesian system of macro-theoretical relationships and it
adds fitting curves (planes) through empirical macro-data using econometric (statisti-
cal) techniques to estimate parameters for these theoretical relationships. Another
more recent approach is based upon micro-theoretical relationships. It posits that the
economy can be understood by reference to a single so-called ‘representative agent’,
who takes decisions to maximize his/her utility over an infinite time horizon (cf. e.g.
[52]). In OCOPOMO, a bottom-up evidence-based approach will be used. It will
therewith use multi-agent concepts as e.g. put forward by [38], [39]. This way, com-
plexity management concepts are engaged alike.

Complexity represents an interdisciplinary approach in science, which focuses on
explaining highly complex phenomena in terms of simple rules. The essence of this
approach is well captured by the statement of P.W. Andersen [1] that “more is differ-
ent”. The discovery that complex properties may emerge from simple elements inter-
acting with each other in a simple way is one of the most important discoveries of
modern science (e.g. [27], [31], [48]). Even if the system’s elements are relatively
simple, nonlinearity in their interactions may lead to highly complex dynamic behav-
ior, such as self-organization, and pattern formation (cf. [6]; [25]; [31], [32]; [44]).
For example, simple rules of social influence among individuals lead to the emer-
gence of complex patterns of public opinion [42]. Complex properties arise in the
process of self-organization. According to principles of "dynamical minimalism" [41]
the goal of complexity inspired science is to unveil the simple rules governing interac-
tion of system's elements and to show how interactions of these rules in time can
produce the complexity observed at the system level. Many models for complex sys-
tems with phenomena of economics have been proposed (cf. e.g. [3], [10], [34], [37],
[46]). Moss et al. [39] explicitly introduce purely social factors into a model of self-
organized criticality and therewith demonstrated that models attributing self-
organized criticality to the interaction between rationally reasoning agents has the
same statistical signatures as real markets for a wide range of goods and services [38].

The impact of social (including economic) policies is frequently conditioned by
wider economic considerations. Unpredictability is a key aspect of events that could
occur during the course of any but the shortest-term policy implementations. The kinds
of indicators that will be used to assess the effectiveness and feasibility of policies and
the responses to unexpected events will have to be considered by stakeholders engaging
in policy analyses that take into account the outputs from models of social complexity.

86 M.A. Wimmer

In these cases, the responses can involve actions and considerations that are identified in
new narrative scenarios exemplified in the scenario development approach used in the
eGovRTD2020 project [8]. Agents in agent-based models can learn to combine elemen-
tary actions in novel ways to formulate policies and plans but cannot identify novel
actions. Consequently, the additional actions and considerations identified by stake-
holders in response either to unexpected real events or simulated outcomes will then
have to be incorporated into further versions of the policy models. Complexity evidently
brings to the fore the complementarity between narrative scenario exercises and formal
simulation modeling, which will be combined in OCOPOMO throughout an iterative
approach.

The role of scenario studies is commonly taken to be the definition and exploration
of policy vies that are possible without attaching any subjective or statistical prob-
abilities that any one of them will actually occur. The scenarios are narratives
couched in the language of participating stakeholders and domain experts [7]. Sce-
nario-building is a technique of future research that aims at generating different
perspectives of the future to gain more insight into possible opportunities and threats.
This technique allows better and more effective exploration of alternative trajectories
of a certain domain beyond short-term forecasting. Different approaches exist [20].
Scenarios may e.g. start from an actual problem which is perceived as disappointing
by a large part of the population and which must urgently be solved. Additionally
there are several (sometimes controversial) scientific and/or political approaches to
solve the problem, which can be documented in alternative scenario descriptions.
Although the future is complex and therefore largely unpredictable, forming clear
perspectives and cognitive frameworks for considering alternative trajectories is ex-
tremely valuable. Foresight scenarios have been developed for discussions of policies
and strategies relating to future trajectories that are subject to uncertainty. Prime ex-
amples are environmental issues (e.g. IPCC scenarios [40], research and development
strategies (e.g. eGovRTD2020 [8]). More detailed argumentation on the use of sce-
nario methods and an exemplary application are available in [28] and [29].

As already mentioned in the introduction, the EC has formulated five principles for
good governance. Besides, the UN ESCAP [51] defined eight major characteristics
for good governance: participatory, consensus oriented, accountable, transparent,
responsive, effective and efficient, equitable and inclusive and in conformity with the
law. According to ESCAP, governance is “the process of decision-making and the
process by which decisions are implemented, an analysis of governance focuses on
the formal and informal actors involved in decision-making and implementing the
decisions made and the formal and informal structures that have been set in place to
arrive at and implement the decision” [51]. Governance thereby fosters the manage-
rial, organizational and policy aspects of steering States and democracies. Good gov-
ernance characteristics differ depending on country, culture or chosen point of view.
Overall, governance aims at minimizing corruption and taking the views of minorities
into account in decision-making thereby being responsive to the present and future
needs of society. A crucial aspect of good governance to be addressed in OCOPOMO
is the involvement of formal and informal actors in policy making and in strategic
decision making, as a more systematic dialogue among relevant stakeholders thereby
improving in particular the dialogue with non-governmental and private actors when
developing policy proposals with wide-ranging consequences. With the involvement

 Open Government in Policy Development 87

of different affected stakeholders and experts in an online open collaboration (using e-
participation tools and techniques), an approach to ensure policy coherence is given.
Combined with e-participation facilities, the OCOPOMO approach represents an
innovative means for involved stakeholders and for a wider interest group to take part
in the opinion-making process up to the point of decision-making with electronic
systems. Therewith, public responsiveness and public satisfaction can be improved.

The ICT solutions for policy modeling, scenario-building and the open collabora-
tion platform of OCOPOMO embark on leading edge tools and technologies in sev-
eral fields (cf. Fig. 2). Key elements to be adapted, integrated and deployed for the
OCOPOMO ICT governance toolbox are:

- Agent-based modeling tools supporting formal model development and policy
simulation (cf. e.g. [18]), especially multi-agent systems. The advantages of
MAS such as heterogeneity, modularity, flexibility and robustness against
failures seem especially appropriate for building complex systems [30].8

- Content management systems and knowledge systems for managing the
sources and various contents of the toolbox to provide efficient management
of a rich set of document and content services that address a wide range of
different content types (for a wider discussion of CMS in e-participation see
e.g. [47]). Examples of current open source CMS systems are: Alfresco,
Apache Lenya, Ariadne, AWF-CMS, Contenido, Daisy, Drupal, E107,
Jackrabbit, Plone, Rainbow, Sitellite, SPINE, Typo3, WebGUI, Xaraya,
Xorio, etc.

- E-participation platforms with advanced web 2.0 features, argument
visualization, etc. enabling participation of wider stakeholder groups.
Current e-participation platforms extensively base on web 2.0 features and
social software such as discussion fora, wikis, social networks, blogs, chats,
podcasts, web services, Natural language processing tools, GIS tools, etc.
Extensive reports on e-participation tools and technologies are available
from DEMO-net reports [19], [2], [22], [45] and in [47].

5 Concluding Remarks

In this contribution, current deficiencies in open government have been investigated.
This included a review of developments in the field of e-government. As the Euro-
pean Commission provides co-funding of research to strengthen a current policy
priority on “ICT for governance and policy modeling”, the OCOPOMO project has
been introduced, which forms an innovative approach to realize open government.
OCOPOMO bases on a combined approach of user-driven scenario-generation and
formal policy modeling therewith facilitating participation of stakeholders in the pol-
icy formation process.

Successful integration of policy modeling and scenario analysis for use by stake-
holders and policy operators has not, as far as we know, previously been attempted.
Certainly, the design, implementation and running of such models has informed

8 Popular software frameworks and toolkits for developing multi-agent systems today are JADE

(http://jade.tilab.com/) and Repast (http://repast.sourceforge.net).

88 M.A. Wimmer

scenario analysis and role playing games and therefore influenced stakeholders indi-
rectly. To achieve the direct engagement of stakeholders with policy modeling and to
use that engagement in the development of complementary scenarios adds significant
progress beyond the state of the art in policy modeling - not least by demonstrating a
whole new approach to the use of models and scenarios in policy formation.

This achievement will itself will require significant innovations in ICT as well in
terms of integration of current tools developed for specific purpose. The biggest chal-
lenge of OCOPOMO will be to ensure traceability of results from the evidence-based
and user generated scenario models to the formal policy models and back. This is a
topic currently under investigation and conceptualization. Studies of qualitative data
analysis, text analysis and tracing via tagging are ongoing. A concept has been
drafted. It will be subject to future scientific publications from the project activities.

The benefits and expected added value of OCOPOMO are, on the one hand, the im-
plementation and proof of concept of an integrated ICT toolbox to support complex
socio-economic policy making, ready-made to be deployed in similar policy domains
without further large efforts of implementation. On the other hand, governments and
policy operators benefit from the OCOPOMO solution by being able to involve stake-
holders and have a toolbox to master complexity better in developing their strategic
policies through an integrated e-governance toolbox. The innovative approach of facili-
tating stakeholder engagement in complex policy making domains adds value to them
by combining narrative scenario development and advanced agent-based social simula-
tion in strategic policy areas. Through the policy models, the methodological approach
of combining scenario-based stakeholder engagement and formal policy modeling
provides policy operators with better results in foresight and impact assessments of
alternative policies. Hence, OCOPOMO adds considerable value in implementing
current objectives of “ICT for governance and policy modeling” of the European
Union.

Acknowledgement. OCOPOMO is co-funded by the European Commission under
the 7th Framework Program. This publication reflects the view only of the author and
the project consortium, and the Commission cannot be held responsible for any use
which may be made of the information contained therein. This paper reflects parts of
the OCOPOMO project proposal. Herewith the author expresses special thanks to her
colleague Prof. Scott Moss for his invaluable contributions and discussions to shaping
the project scope and proposal of OCOPOMO. Thanks to the project partners to shape
the project.

References

1. Anderson, P.W., Arrow, K., Pines, D. (eds.): The Economy as an Evolving Complex Sys-
tem. Addison-Wesley Longman, Redwood (1988)

2. Apostolou, D., Babic, F., Bafoutsou, G., Butka, P., Dioudis, S., Mach, M., Macintosh, A.,
Gordon, T., Halaris, C., Kafentzis, K., Mentzas, G., Paralic, M., Paralic, J., Renton, A.,
Rosendahl, A., Sabol, T., Schneider, C., Thorleifsdottir, A., Wimmer, M.: D5.2 - ePartici-
pation: The potential of new and emerging technologies (2007) DEMO-net consortium,
http://www.demo-net.org

 Open Government in Policy Development 89

3. Arthur, W.B.: Complexity and the Economy. In: Colander, D. (ed.) The Complexity Vi-
sion and the Teaching of Economics. Edward Elgar (2000)

4. Barzilai-Nahon, K., Scholl, H.J.: Siblings of a Different Kind: E-Government and E-
Commerce. In: Wimmer, M., Scholl, H.J., Janssen, M., Chappelet, J.-L. (eds.) EGOV
2010. LNCS, vol. 6228, pp. 25–37. Springer, Heidelberg (2010)

5. Botterman, M., Millard, J., Horlings, E., van Oranje, C., van Deelen, M., Pedersen, K.:
Value for citizens - A vision of public governance in 2020. European Commission (2008),
http://ec.europa.eu/information_society/activities/
egovernment/studies/docs/final_report_web.pdf (accessed 17/10/2010)

6. Camazine, S.: Self-organizing systems. In: Nadel, L. (ed.) Encyclopedia of Cognitive Sci-
ence, pp. 1059–1062. Elsevier, New York (2003)

7. Carroll, J.M.: Scenario-Based Design: Envisioning Work and Technology in System De-
velopment. Wiley, Chichester (1995)

8. Codagnone, C., Wimmer, M.A. (eds.): Roadmapping eGovernment Research: Visions and
Measures towards Innovative Governments in 2020. MY Print snc di Guerinoni Marco &
C, Clusone (2007)

9. Cortelezzi, F., Villani, G.: Valuation of R&D Sequential Exchange Options Using Monte
Carlo Approach. Journal of Computational Economics 33(3), 209–236 (2009)

10. Epstein, J.M.: Generative Social Science: Studies in Agent-Based Computational Model-
ing. Princeton University Press, New York (2006)

11. eTen, eTen Program: support for trans-European telecommunications networks. Trans-
European Telecommunications Networks (2007),
http://europa.eu/legislation_summaries/information_society/
l24226e_en.htm (accessed 18/10/2010)

12. European Commission. Lisbon European Council 23 And 24 March 2000 (2000),
http://www.europarl.europa.eu/summits/lis1_en.htm
(accessed 18/10/2010)

13. European Commission, European Governance, A white paper, COM (2001) 428 final, Brus-
sels (25.7.2001), http://eur-lex.europa.eu/LexUriServ/site/en/com/
2001/com2001_0428en01.pdf (accessed 18/10/2010)

14. European Commission. eEurope 2005. An information society for all: An Action Plan to be
presented in view of the Sevilla European Council, COM (2002) 263 final. Brussel (2002),
http://ec.europa.eu/information_society/eeurope/2002/
news_library/documents/eeurope2005/eeurope2005_en.pdf
(accessed 18/10/2010)

15. European Commission. Establishing a Competitiveness and Innovation Framework Pro-
gramme (2007-2013), COM (2005) 121 final. Brussels (2005),
http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=COM:2005:0121:FIN:EN:PDF (accessed 18/10/2010)

16. European Commission. i2010 - A European Information Society for growth and employ-
ment, COM (2005) 229 final. Brussels (2005),
http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=COM:2005:0229:FIN:EN:PDF (accessed 18/10/2010)

17. European Commission: A Digital Agenda for Europe. Communication from the Commis-
sion to the European Parliament, the Council, the European Economic and Social Commit-
tee and the Committee of the Regions, COM (2010) 245 final/2, Brussels (26.8.2010),
http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=COM:2010:0245:FIN:EN:PDF (accessed 18/10/2010)

90 M.A. Wimmer

18. Fletcher, M., Vrba, P.: A Brace of Agent Simulation Scenarios. In: Proceedings of the
IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Appli-
cations (DIS 2006), pp. 169–176 (2006)

19. Fraser, C., Liotas, N., Lippa, B., Mach, M., Macintosh, A., Marzano, F., Mentzas, G.,
Rosendahl, A., Sabol, T., Tambouris, E., Tarabanis, K., Thorleifsdottir, A., Westholm, H.,
Wimmer, M.: D5.1 - Report on current ICTs to enable Participation. DEMO-net consor-
tium (2006), http://www.demo-net.org -> Results (accessed 17/10/2010)

20. Gausemeier, J., Fink, A., Schlake, O.: Szenario-Management: Planen und Führen mit
Szenarien. München, Hanser (1995)

21. Gell-Mann, M.: The quark and the jaguar: Adventure in the simple and the complex.
Freeman, New York (1994)

22. Gkarafli, M., Papadopoulos, A., Tambouris, E., Tarabanis, K.: D14.3c: The role of Web
2.0 technologies in eParticipation, DEMO-net consortium (2007), http://www.demo-
net.org

23. Grönlund, A.: Ten Years of eGovernment: The ‘End of History’ and New Beginning. In:
Wimmer, M.A., Chappelet, J.-L., Janssen, M., Scholl, H.J. (eds.) EGOV 2010. LNCS,
vol. 6228, pp. 13–24. Springer, Heidelberg (2010)

24. Guastaroba, G., Mansini, R., Grazia Speranza, M.: Models and Simulations for Portfolio
Rebalancing. Journal of Computational Economics 33(3), 237–262 (2009)

25. Haken, H.: Synergetics. Springer, Berlin (1978)
26. He, L.T., Hu, C.: Impacts of Interval Computing on Stock Market Variability Forecasting.

Journal of Computational Economics 33(3), 263–276 (2009)
27. Holland, J.H.: Emergence: From chaos to order. Addison-Wesley, Reading (1995)
28. Janssen, M., van der Duin, P., Wimmer, M.A.: Framework and Methodology: Methodol-

ogy for scenario building. In: 8, pp. 23–28 (2007)
29. Janssen, M., Wimmer, M.A., Bicking, M., Wagenaar, R.W.: Scenarios of governments in

2020. In: 8, pp. 55–84 (2007)
30. Jennings, N.R., Bussman, S.: Agent-Based Control Systems: Why are They Suited to En-

gineering Complex Systems? IEEE Control Systems Magazine 23(3), 61–73 (2003)
31. Johnson, S.: Emergence: The connected lives of ants, brains, cities and software. Scribner,

New York (2001)
32. Kelso, J.A.S.: Dynamic patterns: The self-organization of brain and behavior. MIT Press,

Cambridge (1995)
33. Klein, L.R.: The use of econometric models for policy purposes’. Econometrica 15 (1947)
34. Levy, M., Levy, H., Solomon, S.: Microscopic Simulation of Financial Markets: From In-

vestor Behavior to Market phenomena. Academic Press, New York (2000)
35. Macintosh, A.: Characterizing e-participation in policy-making. In: Proceedings of the

37th Annual Hawaii International Conference on System Sciences (HICSS-37), Track 5,
vol. 5, p. 50117a. IEEE Computer Society Press, Washington (2004),
http://doi.ieeecomputersociety.org/10.1109/
HICSS.2004.1265300

36. Macintosh, A. (ed.): The Initial DEMO-net Landscape. Deliverable D4.1, DEMO-net Con-
sortium (2006), http://www.demo-net.org-> Results

37. Miller, J.H., Page, S.E.: Complex Adaptive Systems: An Introduction to Computational
Models of Social Life. Princeton University Press, New York (2006)

38. Moss, S.: Competition in Internal Markets: Statistical Signatures and Critical Densities.
CPM Report Number 01-79, Manchester Metropolitan University, UK (2001)

 Open Government in Policy Development 91

39. Moss, S., Edmonds, B., Wallis, S.: The Power Law and Critical Density in Large Multi-
Agent Systems. CPM Report Number 00-71, Manchester Metropolitan University, UK
(2000)

40. Nakicenovic, N., Swart, R.: Emissions Scenarios: Special Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge (2000)

41. Nowak, A.: Personality and Social Psychology Review 8(2), 183–192 (2004)
42. Nowak, A., Szamrej, J., Latane’, B.: From private attitude to public opinion: A dynamic

theory of social impact. Psychological Review 97, 362–376 (1990)
43. OECD: Focus on Citizens: Public Engagement for Better Policy and Services, OECD

Studies on Public Engagement. OECD Publishing (2009) doi: 10.1787/9789264048874-en
44. Prigogine, I., Stengers, I.: Order out of chaos. Bantam, Toronto (1984)
45. Rose, J., Sæbø, O., Nyvang, T., Sanford, C.: D14.3a: The role of Social networking soft-

ware in eParticipation. DEMO-net consortium (2007), http://www.demo-net.org
46. Rosser, J.B.: On the Complexities of Complex Economic Dynamics. The Journal of Eco-

nomic Perspectives 13, 169–192 (1999)
47. Scherer, S., Wimmer, M.A., Schneider, C.: Investigating Information and Knowledge

Management (IKM) in eDeliberation. In: Cunningham, P., Cunningham, M. (eds.) Col-
laboration and the Knowledge Economy: Issues, Applications, Case Studies, pp. 270–277.
IOS Press, Amsterdam (2008)

48. Stephan, A.: Emergence. In: Nadel, L. (ed.) Encyclopedia of Cognitive Science, pp. 1108–
1115. Nature Publishing Group, London (2003)

49. Strid, I., Walentin, K.: Block Kalman: Filtering for Large-Scale DSGE Models. Journal of
Computational Economics 33(3), 277–304 (2009)

50. Tobias, R., Hofmann, C.: Evaluation of free Java-libraries for social-scientific agent based
simulation. Journal of Artificial Societies and Social Simulation 7(1), 6 (2004),
http://jasss.soc.surrey.ac.uk/7/1/6.html

51. United Nations Economic and Social Commission for Asia and the Pacific (ESCAP):
What is good governance?

52. Wellens, T., Kuś, M.: Separable approximation for mixed states of composite quantum
systems. Phys. Rev. A 64, 052302 (2001)

53. Wimmer, M.A.: Integrated service modeling for online one-stop Government. EM - Elec-
tronic Markets, Special Issue on e-Government 12(3), 1–8 (2002)

54. Wimmer, M.A.: The Role of Research in Successful E-Government Implementation. In:
Zechner, A. (ed.) E-Government Guide Germany. Strategies, Solutions and Efficiency,
Stuttgart, pp. 79–87. Fraunhofer IRB Verlag (2007)

55. Wimmer, M.A.: Introduction. In: [8], pp. 1–9
56. Wimmer, M.A., Codagnone, C.: Framework and Methodology: Definitions for eGovern-

ment. In: [8], pp. 11–12
57. Wimmer, M.A., Traunmüller, R.: Integration - The Next Challenge in e-Government. In:

Far, B.H., Shafazand, M.H., Takizawa, M., Wagner, R. (eds.) EurAsia-ICT 2002 - Ad-
vances in Information and Communication Technology, pp. 213–218, Book series # 161.
Austrian Computer Society (2002)

58. Wimmer, M.A., von Bredow, B.: A Holistic Approach for Providing Security Solutions in
e-Government. In: Proceedings of the 35th Hawaii International Conference on System
Sciences (HICSS-35) at Big Island of Hawaii (2002)

Linear Process Algebra

Vaughan Pratt

Stanford University, Stanford CA 94305-9045, USA
pratt@cs.stanford.edu

Abstract. A linear process is a system of events and states related
by an inner product, on which are defined the behaviorally motivated
operations of tensor product or orthocurrence, sum or concurrence, se-
quence, and choice. Linear process algebra or LPA is the theory of this
framework. LPA resembles Girard’s linear logic with the differences at-
tributable to its focus on behavior instead of proof. As with MLL the
multiplicative part can be construed via the Curry-Howard isomorphism
as an enrichment of Boolean algebra. The additives cater for indepen-
dent concurrency or parallel play. The traditional sequential operations
of sequence and choice exploit process-specific state information catering
for notions of transition and cancellation.1

Keywords: concurrency, event, state, duality, linear logic, Curry-
Howard.

1 Background

Computation itself, as distinct from its infrastructure (operating systems, pro-
gramming languages, etc.) and applications (graphics, robotics, databases, etc.),
has two main aspects, algorithmic and logical. The algorithmic aspect serves pro-
grammers by providing techniques for the design and analysis of programs. The
logical aspect serves language designers, compiler writers, documentation writ-
ers, and program verification by proposing suitable concepts for the operations
and constants of a language (abstract syntax), giving them meanings and names
(semantics and concrete syntax), showing how to reason about them (logic), and
studying their structure (abstract algebra).

Originally computation was performed on a single computer under the control
of a central processing unit. Parallel and distributed computing emerged from
the infrastructure with the advent of multiprocessors and networking, enhancing
the applications at the expense of complicating both the algorithmic and formal
aspects of computation. This paper focuses on the latter.

Formal methods divide broadly into logical and algebraic. On the logical side
we find Amir Pnueli’s temporal logic [45], which speaks of a single universal
process from the point of view of a neutral observer. Pnueli has called this

1 More recent follow-up remarks and expansions on this paper may be found at
http:boole.stanford.edu/pub/LPA

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 92–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Linear Process Algebra 93

kind of specification endogenous to distinguish it from exogenous modal logics
of programs such as dynamic logic [32, 46].

In the algebraic approach process calculi provide one (but certainly not the
only) framework. The most prominent of the early such calculi are Hoare’s Com-
municating Sequential Processes (CSP) [7, 33], Milner’s Calculus of Communi-
cating Systems (CCS) [38], and Bergstra and Klop’s Algebra of Communicating
Processes (ACP) [2, 5, 6].

Each of these calculi imputes a certain nature to the process concept. Their
differences raise the question of whether they are theories of essentially different
entities or are merely refinements of a common core conception differing only in
their emphases on secondary aspects.

A similar question arose millennia ago about the core of geometry, and was
answered in turn by Euclidean geometry which postulated lines and circles as
primitive concepts, cartesian geometry which expressed them as ax+ by + c = 0
and (x − x0)2 + (y − y0)2 = r2, and linear algebra as a source of more abstract
spaces within which to conduct cartesian geometry and much else besides. Each
in turn shed light on its predecessor. Yet all of them can be seen to be about
Euler’s notion of affine space as a common framework, with Euclidean geometry
adding notions of metric and angle, linear algebra adding an arbitrary origin, and
cartesian geometry doing both via the basis imputed by its coordinate frame.

Both space and computation can be understood either denotationally—what
they are—or operationally—how to construct things. Euclid’s account of Eu-
clidean space was operational in that a good number of his postulates and propo-
sitions promised constructions in space rather than properties of space. Linear
algebra on the other hand is founded on a denotational framework, with matrix
inversion M−1 for example being defined denotationally as a solution in N to
MN = I before addressing questions of existence, uniqueness, and construction.
The modern conception of Euclidean space is entirely denotational, making Eu-
clid’s operational treatment of the two-dimensional case of his eponymous space
seem somehow nonmathematical to the modern reader, its trend-setting logical
formulation notwithstanding.

Concurrency has likewise had both operational and denotational accounts.
Among the former, perhaps the best known are Petri nets [42] and Plotkin’s
Structured Operational Semantics (SOS) [44]. The considerable popularity of
both can be taken to mean that concurrency is best treated operationally, or
that its denotational treatment is problematic, or both.

It cannot however be taken to mean that no one has tried. The denotational
semantics of concurrency can be considered to have begun with the idea of
sequential processes as sets of computation traces, by analogy with formal lan-
guages as sets of strings, with concurrency introduced via the shuffle operation
[15, 68]. However this semantics captures neither branching (timing of nonde-
terminism) nor independence (determinism of nontiming), both of which can be
seen as a deficiency not of the operations but of sets of traces themselves. In
that model all decisions in a computation are reduced to the choice of a single
trace, ignoring both the order in which the decisions were made and their timing

94 V. Pratt

relative to other events. Independence of a and b on the other hand is expressed
as the choice ab+ba, introducing both order and choice when neither are relevant
to independence.

Branching time was first formalized denotationally by Milner’s synchroniza-
tion trees [38]. The implied distinction was formalized by Park in terms of a
relation of bisimilarity [41] expressing lock-step equivalence. Bisimilarity is a
more refined equivalence of processes than mere equality of two sets of traces,
which is too coarse to distinguish a(b+c) from ab+ac. Subsequently a hierarchy
of congruences intermediate between trace equivalence and bisimilarity emerged:
Figure 1 of [73] partially orders the 11 semantics by their relative positions in
the linear time/branching time spectrum.

Independence, or “true concurrency,” was formalized denotationally early on
by Greif [28] in terms of events partially ordered by time as a semantics for
Hewitt’s actor framework, and later by Mazurkiewicz via traces quotiented by an
equivalence relation of independence on the alphabet Σ extended to a congruence
on the free monoid Σ∗ [37]. Yet later Grabowski [27] and Pratt [17, 48] further
abstracted Mazurkiewicz traces with a notion of partially ordered multiset or
pomset. In the latter two models choice was expressed by defining a process to
be a set of traces or pomsets.

All these semantics of independence were explicitly or implicitly based on the
notion of multiset over an alphabet of symbols as a set labeled with symbols.
Identifying unlabeled strings with ordinals, a string can be defined as a labeled
ordinal, with the length of a string being the underlying ordinal. Pomsets gen-
eralize labeled ordinals to labeled posets.

Nielsen, Plotkin and Winskel’s notion of event structure (A,≤, #) [39, 76–78]
formalizes independence as for pomsets, namely with a partial order ≤, with
two differences. First it conflates the two-level set-of-pomsets approach to the
one level used in treatments of branching time by expressing choice in terms
of an irreflexive symmetric conflict relation a#b on events satisfying a#b ∧ b ≤
c ⇒ a#c. Conflict creates the choice of which of the conflicting events not to
perform, and is the only kind of choice expressible by event structures. Second
the unlabeled event structures are taken to be the primary object of study, which
is analogous to studying strings over a one-letter alphabet, i.e. ordinals, instead
of general strings. Unlabeled event structures are already interesting enough in
their own right without labels.

But while unlabeled event structures can easily represent a||b, a and b acting
independently, it is unclear how they can distinguish it from ab + ba, a and b
acting in either order. Gaifman and Pratt [14] addressed this distinction with a
notion of prosset (E,≤, <) with a reflexive weak and irreflexive strong partial
order satisfying a < b ⇒ a ≤ b, with a process defined as a set of prossets as for
traces and pomsets. Both relations order events by time, with the difference being
that only a ≤ b permits the simultaneous occurrence of a and b. Independence
can be expressed with the requirement that if two prossets of a process differ only
in that a ≤ b holds in one and b ≤ a in the other then the process also contains a
prosset differing from those two in omitting both constraints, thereby expressing

Linear Process Algebra 95

their independence. If however a < b and b < a hold in the respective prossets
then this is understood to mean ab + ba, the mutually exclusive execution of a
and b in either order.

A quite different way of drawing this distinction is with the notion of a
higher dimensional automaton [54] or HDA based on combinatorial ge-
ometry. This approach abandons events and reverts to states. However the
conception of state is an n-dimensional one in which a process consists of com-
binatorial cells whose dimension gives the number of ongoing events in that cell.
While the 0-dimensional cells correspond to the ordinary notion of state, the
1-dimensional cells look more like transitions, while the higher-dimensional cells
express concurrency and have no counterpart in ordinary automata theory. This
approach amounts to an automata-theoretic formalization of Papadimitriou’s ge-
ometric treatment of concurrency control [40], as well as ST-bisimulation [18] and
deterministic asynchronous automata [71]. Higher dimensional automata have
since been studied by many authors [10, 12, 19–23, 25, 26, 29, 63, 70, 72, 74],
leading Eric Goubault to found a series of conferences on the geometry and
topology of computation, GETCO, and a special issue of MSCS [24].

My own perspective on concurrency has evolved gradually over the past three
decades [31, 47–61] by way of pomsets, prossets, event structures, higher dimen-
sional automata, and finally Chu spaces. The last were so interesting in their
own right as to distract me from process algebra in order to study their appli-
cations to mathematics for a few years before returning to their process algebra
applications [63–65, 67]. [67] in particular made the observation that the usual
two values 0 and 1 of Chu spaces, denoting event states of ready (not yet started)
and done, could be extended with either or both of the intermediate value of
transition and the alternative value × of cancelled. These permit respectively
higher-dimensional automata and what we now call cancellation automata to be
represented as Chu spaces. In particular we show how van Glabbeek’s example
of a higher dimensional automaton not expressible as a Petri net [75, Fig.11]
can be expressed instead as a pure cancellation automaton, one with no higher
dimensional cells.

This paper serves the dual purposes of an up-to-date tutorial on the repre-
sentation of processes as Chu spaces over K = {0, 1, ,×}, which we propose to
call linear processes, and its relationship to these earlier models, along with an
update on recent work. The Chu representation of concurrent processes is not
as well known in concurrency circles as I feel it should be, despite having been
in the literature for two decades [8, 9, 30, 31], justifying the tutorial part. The
emphasis here is more on rationale, intuition, definitions, and perspective and
less on a formal theorem-and-proof development of the theory; for more in-depth
technical details see [62] for the relevant theory of Chu spaces and [67] for more
on process algebra based on transition and cancellation.

Algebra traditionally starts with operations and laws forming a theory, e.g.
the theory of commutative rings or of fields, leaving the values to emerge as the
elements of models of the theory. Useful algebra however is often motivated by its
intended or primary model, e.g. the ring of integers or the field of rationals, and

96 V. Pratt

for this reason it is preferable to begin with the intended values as motivation
for the operations, and to let both drive the laws rather than vice versa. This
is the approach we follow here in starting with Chu spaces as the values, then
explicitly defining operations on them, and lastly considering what form the laws
should take and what they are.

2 Chu Spaces as Generalized Linear Algebra

The previous section noted the diverse notions of process, some based on events,
such as pomsets and event structures, others on states, such as information sys-
tems, synchronization trees, and higher-dimensional automata. A common core
compatible with both kinds needs somehow to cater for and reconcile both events
and states. To unify such diversity would appear to call for a complex frame-
work; in particular one would not expect the simplest conceivable framework
meeting the brief desiderata of the previous sentence to be up to the job on its
own. Nevertheless that is what we propose and study here.

We take for our core notion of (unlabeled) process simply a set of events, a
set of states, and a binary relation between them, and nothing else. We write
these as respectively A, X , and r : A×X → K, where K is a set (such as {0, 1})
making r a K-valued binary relation. A map h : P → Q transforming process
P = (A, r, X) into process Q = (B, s, Y) is defined as an adjoint pair (ĥ, ȟ)
of functions ĥ : A → B, ȟ : Y → X , meaning one that satisfies s(ĥ(a), y) =
r(a, ȟ(y)) for all a ∈ A and y ∈ Y . The maps from P to Q are all and only those
pairs of functions satisfying these conditions.

In general such a structure is called a Chu space over K, with the category
of such and their maps being denoted by Chu(Set, K). Chu spaces can be
specialized to particular applications by a suitable choice of K. Before developing
the process concept further, by way of background we first consider other areas
whose objects can be organized as Chu spaces.

The paradigmatic example is linear algebra over a given field k. This is more
than just an analogy: as pointed out by Y. Lafont [34, 35] it is the special case
K = |k|, the set of elements of the field. Each vector space V is represented as
the Chu space Ṽ = (|V |, r, |V ∗|) whose points are the vectors of V , whose states
are its functionals or dual points, namely the linear transformations comprising
the vectors of the vector space V ∗ = kV (treating k as a one-dimensional vector
space over k) and r : V × V ∗ → K is the inner product for V , satisfying
r(v, g) = g(v) for each vector v ∈ V and functional g ∈ V ∗. In mathematics
inner product r(v, g) is customarily written (v, g), in physics as 〈g|v〉 (bra 〈g|
and ket |v〉). It can be shown that each linear transformation h : U → V is
represented uniquely as the pair (h, λg.gh) : Ũ → Ṽ constituting a morphism of
the Chu spaces representing respectively U and V . That is, the category Vctk

of vector spaces over k and their linear transformations fully embeds in the
category Chu(Set, K), creating a bijection between homsets Vctk(U, V) and
Chu(Set, K)(Ũ , Ṽ).

As another instance, Y. Lafont [34, 35] has further pointed out that the points
and open sets of a topological space S can be treated by analogy with respectively

Linear Process Algebra 97

the vectors and functionals of a vector space, with r taken to be the two-valued
relation of membership of a point in an open set. The counterpart of the one-
dimensional space is the Sierpinski space with two points and three open sets,
while each continuous function h : S → T is represented uniquely as the pair
(h, h−1) : S̃ → T̃ where h−1 is the inverse image function associated to h. We
give a great many more such examples elsewhere [62, 66].

The term “linear” is also motivated by Girard’s linear logic, LL, a substruc-
tural logic applicable to sequent-based proof theory. The “multiplicatives” of LL,
namely perp P⊥, tensor P⊗Q, its De Morgan dual P

..
... Q = (P⊥⊗Q⊥)⊥ and the

multiplicative units 1 and ⊥, constituting multiplicative linear logic MLL, make
essentially the same connection with Boolean algebra via the Curry-Howard iso-
morphism as do their counterparts for linear process algebra. Furthermore the
extension of MLL to MALL with the “additives” P ⊕ Q and P&Q of LL, as
respectively direct sum (coproduct) and direct product as notated by Girard
(we will write P&Q as the more customary P ×Q), also find application in both
LL and LPA.

3 Linear Processes

In this section we define processes as structures. Just as the Chu representation
of linear algebra over a field k took K = |k|, and of topological spaces, K =
{0, 1}, so do we define linear processes Chu spaces over the set K = {0, , 1,×}.
Organizing processes as Chu spaces makes events and states equally primary,
paralleling Hamilton’s reorganization of Newton-Langrange mechanics in 1837
by putting position and momentum on the same level.2

The elements of K constitute the four possible states an event can be in,
namely ready 0 (i.e. not yet started), transition , done 1, and cancelled×.3 The
intuitive meaning of transition is as in “Shh, the event is in progress”, while that
of cancellation is as in “Sorry but the event has been cancelled.”

Thinking of these four as local states, we interpret the value of r(a, x) as the
local state of event a in state x. The latter is a global state or state vector in the
sense that it can be interpreted extensionally via the function X → (A → K)
mapping each x in X to the function λa.r(a, x) : A → K, which we call the
extension of x. Dually the extension of each event a is the function λx.r(a, x) :
X → K. We can refer to a row of a matrix either intensionally by its index a or
extensionally by the row itself, and dually for columns.

Following Barr’s terminology [4] we call a Chu space extensional when if
two columns have the same extension then they have the same intension; that is,
there are no repeated extensional columns. Topological spaces can be understood
as extensional Chu spaces by identifying their open sets with the extensions of
states. Dually a Chu space is separated when two rows with the same extension
2 Hamiltonian mechanics took 90 years to catch on in physics; hopefully event-state

symmetry will not take that long!
3 This is sufficient for a theory of ideal processes. In practice processes need to be

abortable, which a fifth state, aborted, could address. We leave this to future work.

98 V. Pratt

have the same intension; this corresponds to the notion of a T0 topological space.
A biextensional Chu space is one that is both extensional and separated, all
rows and columns distinct. The above representation of vector spaces as Chu
spaces is biextensional.

Viewed as event structures, Chu spaces are unlabeled. As with the theory of
event structures we draw the distinction between events and actions. An event
constitutes an instance of an action; it can happen only once, whereas an action
can happen many times.

We take events to be more basic than actions on the ground that the order
in which things happen in a process is an ordering of events, not of actions.
This is not to say that actions are unimportant but that the structure of events
independently of their labels is already of considerable interest in its own right.

A labeled process over an alphabet Λ of actions is a pair (P, λ) where P =
(A, r, X) is an unlabeled process and λ : A → Λ labels each event a with the
action λ(a) of which a is an instance.

4 Processes as Transformable Entities

The preceding section defined a process over a set K as a structure (A, r, X)
where r : A ×X → K. In this section we instead define processes analogously
to how Zermelo-Fraenkel set theory, ZF, defines sets. Whereas all individuals of
a model of ZF are sets, those of our theory are of two sorts, processes P, Q, . . .
forming a class P and process transformations or maps h : P → Q forming a
class M. And whereas the language of ZF consists of a single binary relation
∈ of membership on a homogeneous domain of sets, ours consists of one binary
operation, three unary operations, and two constants. Besides permitting a more
axiomatic definition, this perspective distinguishes the events of a process P from
its states by exhibiting them as maps respectively to and from P 4 and makes
the event-state schizophrenia of the elements of K more explicit by exhibiting
them as states of the generic one-event process 1, which of course they are, as
well as events of K, which of course they are.

The binary and unary operations are just those for a category, namely com-
position m : M2 → M , source and target s, t : M→ P and identity i : P →M.
Moreover they satisfy the usual laws, namely s(i(P)) = t(i(P)) = P , m(k, h)
or kh for short is defined just when s(k) = t(h), s(kh) = s(h), t(kh) = t(k),
(kh)j = k(hj) (associativity), and i(P) or 1P for short is both a left and right
identity for composition.

As usual a map h : P → Q is an isomorphism when it has an inverse h−1 :
Q → P in the sense that both h−1h and hh−1 are identity maps, namely 1P and
1Q respectively. Processes are isomorphic when there is an isomorphism between
them.
4 Early on [30, 31] we took events and states to be respectively columns and rows

for consistency with linear algebra, which traditionally identifies the points and
functionals of a vector space with respectively columns (maps to the space) and
rows (maps from it), but found this unnatural in thinking about processes and
subsequently reversed the correspondence.

Linear Process Algebra 99

The only process-specific part of the language consists of two constant pro-
cesses 1 and K, satisfying four axioms, A1-A4, the first two of which are ele-
mentary (first order).

Definition 1. A process P is rigid when the only map P → P is the identity
1P .

Axiom A1. The processes 1 and K are rigid.

Definition 2. An event is a map from 1, while a state is a map to K.

Events to P and states from P are considered to belong to P , as in “event (state)
of P .” Variables ranging over events and states are written a, b, . . . and x, y, . . .
respectively. An ordinary map is one that is neither an event nor a state.

For convenience we denote by AP and XP the sets of respectively events and
states of P . The following two propositions are routine.

Proposition 1. 1 has one event, while K has one state.

Proposition 2. The events of K are precisely the states of 1. (So they have a
dual identity as events and states.)

Definition 3. The state of an event a of P in state x of P is the state xa of 1
(and an event of K).

We distinguish states of processes from states of events by considering them
respectively global and local states. By proposition 2 local states are events of
K. Composition of states with events of a process is the axiomatic counterpart
of r in the structural definition (A, r, X).

Given any map h : P → Q we define its left action ĥ to be the function
λa.ha mapping each event a of P to the event ha of Q, and its right action ȟ
to be the function λy.yh mapping each state y of Q to the state yh of P . The
types of these actions are respectively ĥ : AP → AQ and ȟ : XQ → XP .

Proposition 3. For any map h : P → Q, its left and right actions satisfy
xĥ(a) = ȟ(x)a for all a ∈ AP and x ∈ XQ.

Functions AP → AQ and XQ → XP satisfying this condition are said to be an
adjoint pair of functions between P and Q.

Proof. The two sides expand to respectively x(ha) and (xh)a, which are equal
by associativity.

Definition 4. Two maps h, k : P → Q with the same left and right actions are
called equivalent.

Axiom A2. (Extensionality) Equivalent maps are equal.

Thus far all definitions and propositions have been equivalent to elementary or
first order ones; the second order constructs are inessential and can be translated

100 V. Pratt

into first order ones. By introducing two process operations P ⊗ Q and P−◦Q
we could continue the ZF analogy with further elementary axioms. However a
hybrid approach involving counterfactuals (whose explication in the absence of a
self-contained foundation requires falling back on ZF) allows this transformation-
based axiomatization to be completed much faster using just two more axioms,
neither one elementary in the sense of first order logic but both elementary in the
sense of being intuitively clear. We leave to another occasion the development
of a purely first order theory of processes replacing A3 and A4.

The purpose of Axiom A3 is to ensure that all possible maps are present
between the processes of the model. We state it as a counterfactual which con-
templates the possibility of additional ordinary maps not already in whatever
the model happens to be, and denies this possibility in a positive way. It is coun-
terfactual in that it refers to a map that does not yet exist, a notion absent from
first order logic. “Ordinary” is essential here since adding new events or states
to a process would make it a different process.

Axiom A3. (No new maps) Any new ordinary map is equivalent to an old
one.

A3 together with A2 implies that M has no proper extension. That is, M is
maximal and the contemplated counterfactual is impossible.

The following establishes uniqueness up to isomorphism of such a maximal
M, namely the set of all pairs of actions.

Proposition 4. (Density) For any two processes P, Q for which P is not 1 and
Q is not K, every adjoint pair of functions between P and Q is the pair of actions
of some map g : P → Q.

This notion of density is due to Gabriel and Ulmer [13] by analogy with density
of the rationals in any extension thereof, namely any Archimedean field. Here
it means, informally speaking, that all possible maps between two processes are
present.

Proof. Suppose some adjoint pair between P and Q is realized by no map. Then
a map g : P → Q with this pair as its actions can be adjoined, along with
all required composites hgf : P ′ → Q′ not already present where f : P ′ → P
and h : Q → Q′. No other maps than these need be adjoined (there is no
chain reaction) since by associativity any map of the form h′(hgf)f ′ is of the
form (h′h)g(ff ′) and hence is already adjoined. All compositions are uniquely
determined by the actions of g and those of the f ’s and h’s.

Since the possible pairs of actions between two processes form a set this max-
imum is well-defined.

Axiom A4 similarly depends on the counterfactual notion of extending P (what-
ever processes exist in the model at hand) with additional processes, subject to
maintaining the preceding axioms. When a process is added, its events and states
and how they compose as maps of AK are considered part of the addition, and
these are thereafter left undisturbed by any further extensions of either M or P .

Linear Process Algebra 101

As part of this addition, all new morphisms needed to satisfy A3 are added. This is
a weak denial of the impossibility of new processes in that it takes “new” to mean
new up to isomorphism.

Axiom A4. (No new processes) Any new process is isomorphic to an old one.

As defined earlier P and Q are isomorphic when there exists an isomorphism
h : P → Q. We need A3 for this, without which processes that an external ob-
server would judge isomorphic might nevertheless lack the requisite isomorphism
witnessing their isomorphism.

In the following “equivalent” means in the sense of equivalent categories.

Proposition 5. (Completeness) All models of these axioms are equivalent.

Proof. For any two sets A, X and any function r : A ×X → AK there exists a
process P and bijections α : A → AP , and ω : X → XP , such that r(a, x) =
ω(x)α(a) (composition). It follows that every model of these axioms is equivalent
to the category of Chu spaces over AK , as defined in the preceding section, when
its morphisms from (A, r, X) to (B, s, Y) are taken to be all adjoint pairs (f, g) of
maps f : A → B and g : Y → X , that is, maps satisfying s(f(a), y) = r(a, g(y))
for all a ∈ A and y ∈ Y .

5 Linear Process Algebra

We turn now from linear process semantics, what processes are, to process alge-
bra, how to name them compositionally and reason about them.

The operations of Linear Process Algebra, LPA, are orthocurrence P ⊗ Q,
concurrence P ||Q, sequence P ; Q or just PQ, and choice P + Q. In defining op-
erations we assume that all processes are extensional (states with equal exten-
sions are equal, i.e. no repeated columns). The extensional collapse of a process
P is the result of making P extensional by identifying states of P with equal
extensions. Since some of the operations below do not necessarily preserve ex-
tensionality we enforce it by automatically collapsing extensionally the result of
every operation.

Dual P⊥. Duality makes the connection between processes viewed as a sched-
ule of events and as an automaton comprised of states. Given P = (A, r, X),
(A, r, X)⊥ is defined as (X, r′, A) where r′(x, a) = r(a, x), that is, transpose.
Transpose also applies to process maps, with the transpose of h : P → Q being
h⊥ : Q⊥ → P⊥, where h and h⊥ have the same actions in the sense of Section
4 but with left and right simply interchanged.

Duality has no operational interpretation, but rather serves to convert an
event-oriented process, meaning one whose events and states transform respec-
tively covariantly and contravariantly, into a state-oriented process for which
events and states transform respectively contravariantly and covariantly.

Orthocurrence P ⊗Q. This is the fundamental interaction operator of linear
process algebra. Although it appeared in our work almost as early as did pomsets
[11, 31, 51, 53], it is at the heart of both Barr’s category-theoretic notion of a

102 V. Pratt

∗-autonomous category [3], and Girard’s proof-theoretic notion of linear logic
developed independently several years after Barr. [16].

Given two processes P = (A, r, X) and Q = (B, s, Y), their orthocurrence
P⊗Q is the process (A×B, t, Z). Here Z is the set of all functions z : A×B → K
such that
(i) for each b ∈ B, λa.z(a, b) is a state of P , and
(ii) for each a ∈ A, λb.z(a, b) is a state of Q,
while t : (A × B) × Z → K is defined as t((a, b), z) = z(a, b). Each z may be
thought of as an A × B crossword whose rows are states of Q (the “across”
dictionary) and whose columns are the states of P (the “down” dictionary).

Besides interaction, othocurrence P ⊗Q can also be understood as dual to the
observation P−◦Q⊥ of states of process Q (events of Q⊥) from vantage points
of process P , or by symmetry the observation Q−◦P⊥, giving a sense in which
observation is as symmetric as orthocurrence [64].

Concurrence P ||Q. This is the independent or noninteracting parallel behav-
ior of P and Q. Given two processes P = (A, r, X) and Q = (B, s, Y), their
concurrence P ||Q is the process (A+B, t, X×Y). Here A+B denotes the dis-
joint or marked union of A and B, where the marking indicates for each event of
A+B whether it came from A or B (e.g. by defining A+B = A×{1}∪B×{2})
while t(a, (x, y)) = r(a, x) and t(b, (x, y)) = s(b, y) where a and b denote events
of A + B coming from respectively A and B.

Initial states. The initial local or event state is 0 or ready. The initial global
state is the all-zero state vector: all events are in their ready state 0.

Final states. The two final local states are 1 and×. A state is final just when
all its events are in a final event state.

This definition is facilitated by the cancel state. Without it the event struc-
ture literature has struggled with the concept of final state, termination, and
sequence. One might suppose that a final state could be defined simply as one
with no successor state. This however fails to represent a process that may
choose nondeterministically to halt or continue. For example the process a + ∅
that chooses to do either a or nothing has a state in which a is ready, but that
state cannot be final because it has 1 as a successor state. While solutions have
been proposed, none are as simple as merely allowing a to enter the cancelled
state to indicate termination.

Cancelled states. A state is cancelled when all its events are cancelled. The
typical application is to the definition of choice P + Q, whose first step is to
cancel one of P or Q simultaneously with starting the other.

Sequence PQ. Given two processes P = (A, r, X) and Q = (B, s, Y), their
sequence PQ is defined as for P ||Q but with only those states (x, y) of X × Y
for which either y is initial or x is final. When y is initial we consider P to
be happening when in state (x, y), while when x is final we consider Q to be
happening.

If Q has no initial state (usually not the case in practice) then P cannot run
and is understood to be in one of its final states. If P has no final state then Q

Linear Process Algebra 103

cannot run. If P has n final states xi then PQ has n copies (xi, y) of each state
y of Q.

Choice P + Q. Given two processes P = (A, r, X) and Q = (B, s, Y) with
both A and B nonempty, their choice P + Q is the process (A + B, t, {∗} +
X ′ + Y ′) where X ′ and Y ′ are X and Y less their respective initial states,
t(a, ∗) = t(b, ∗) = 0 (making ∗ the initial state of P + Q), t(a, x) = r(a, x),
t(b, y) = s(b, y), and t(a, y) and t(b, x) are the cancelled state (× if available,
otherwise 0). Operationally, P + Q begins in the initial state (all events of both
P and Q ready) and then simultaneously cancels all the events of one of P or Q
and begins the other.

Constants ∅ and 1. The process ∅ is (0, !, 1), consisting of no events and one
state. It is the unit for both concurrence and sequence, that is, a||∅ = a∅ = ∅a =
a. However ∅ is not the unit for choice because P + ∅ creates a state in which
all events of P are cancelled.

The process 1 is as defined in Section 4. As a Chu space it can be taken to be
({∗}, s, K) where s(∗, k) = k. Up to isomorphism 1 is the unit for orthocurrence:
when (A, r, X) “flows through” 1, A× {∗} is isomorphic to A and the states of
A⊗ 1 are in bijection with those of A.

6 The Curry-Howard Correspondence with Boolean
Algebra

The core of linear process algebra is orthocurrence P ⊗ Q as interacting con-
currency, which we distinguish from concurrence P ||Q as noninteracting concur-
rency, parallel play as kindergarten teachers call it. Orthocurrence together with
the involution P⊥ share essential features with Boolean conjunction x ∧ y and
complement ¬y.

The connection is made via the Curry-Howard correspondence5 between logi-
cal values and mathematical objects. In this case the logical values may be taken
to be 0 and 1 while the objects are linear processes. Conjunction and negation
of the former correspond respectively to orthocurrence and dual of the latter.

Many of the logical laws involving terms built with these two logical opera-
tions have their counterpart as natural isomorphisms between functors built from
these two process operations. In particular associativity and commutativity of
conjunction carry over, the latter as a symmetry P ⊗ Q ∼= Q ⊗ P , but idem-
potence has no counterpart. Double negation ¬¬x = x does carry over, with
P⊥⊥ being not only isomorphic but equal to P . And just as x∨y is definable by
De Morgan’s law as ¬(¬x ∧ ¬y), so is Girard’s par operation P

..
... Q definable as

(P⊥⊗Q⊥)⊥. The meaning of P⊥ in LPA is P viewed as an automaton consisting
of (covariantly transforming) states instead of as a schedule consisting of events,
while the meaning of P

..
... Q is just the automaton counterpart of orthocurrence.

5 This is commonly called the Curry-Howard isomorphism but since it is not techni-
cally an isomorphism we prefer to call it a correspondence.

104 V. Pratt

7 Example Terms

We now consider the behavior of the operations on atomic processes, showing
how they compose in certain cases to produce larger terms. Table 1 lists a dozen
terms and the linear processes they denote.

Table 1. Example LPA expressions

a a 0 1 a + ∅ a 0 1×

ab
a 0 111
b 000 1 a + b

a 0 1××
b 0×× 1

a||b a 0 10 10 1
b 000 111 ab + ba

a 0 1010 1
b 000 111

a(b + c)
a 0 11111
b 000 1××
c 000×× 1

ab + ac
a 0 111 111
b 000 1××××
c 0××××00 1

(b + c)a
a 000 100 1
b 0 111××××
c 0×××× 111

ba + ca
a 000 100 1
b 0 111××××
c 0×××× 111

ab ⊗ cd

ac 0 11111111111
ad 00000 11111
bc 000 10 10 111
bd 00000000000 1

(a + b) ⊗ (c + d)

ac 0 11××××
ad 0×××× 11
bc 0×××× 1 1
bd 0 1 1××××

Cancellation distinguishes a+∅ from a by adjoining a fourth state to a allowing
it to be cancelled. Hence a has only one final state while a + ∅ has two.

Sequence ab and choice a + b each have five states. These are performed
sequentially for ab, while in a+ b they form two branches each with three states,
the initial state of which is common to both branches.

Processes a||b and ab + ba are almost identical, the one difference being that
is a state of the former but not of the latter. Thus a||b has a two-dimensional

state while ab + ba does not, but otherwise has the same states of dimension 0
and 1 as a||b.

Process a(b + c) does not cancel either b or c until after a is done. At that
point the state is 100, which can be viewed as the initial state of b + c. One of
b or c is then cancelled while simultaneously the other gets under way in the
transition state, and then is done, for a total of 7 states. Process ab + ac on the
other hand cancels one of b or c as soon as a enters its transition state, after
which it behaves like an ordinary sequence. There are thus two branches with 5
states each, but with the initial state shared so that there are only 9 rather than
10 states. Hence a(b + c) and ab + ac are distinct.

Processes (b+ c)a and ba+ ca however are the same: both begin by cancelling
one of b or c while beginning the other. This gives them both two branches,
branching at the root with each branch having 5 states as for ab + ac.

Linear Process Algebra 105

The orthocurrence ab ⊗ cd involves no cancellation. However there is one
instance of concurrency, namely ad with bc, where ac is done and bd is ready.

One example of this situation is a train schedule involving two sequential
trains a then b passing through two stations c then d. The pair ac is the event
of train a arriving at station c. When ac is in transition the train is standing
at the station; passing to done corresponds to the train having left the station.
The only opportunity for concurrency here is when the first train is standing at
the second station while the second train is at the first station.

Another example of ab⊗ cd is Allen’s 13 configurations of a pair of intervals
sliding past each other [1], with a and b denoting the endpoints of one interval
and c and d those of the other. Allen’s 13 configurations correspond in the evident
way to the 13 states shown in Table 1. In particular aligning the two intervals
at both ends corresponds to the one two-dimensional state 1 0. Rodriguez
and Anger [69] have studied extensions of Allen’s configurations to handle richer
notions of time such as relativistic time, accomplished by suitably enlarging the
local event set K. With one extension they characterize as branching time the
13 states extend to 29, with their relativistic one it extends to 82 states, see [67]
for further details.

8 Laws

As indicated in Section 6, the Curry-Howard counterpart of many (but not all)
of the equations of Boolean algebra are natural isomorphisms between terms
involving orthocurrence (tensor), duality (perp), and dual orthocurrency (par).
There are in addition laws governing concurrence, sequence, and choice, but
already just those governing the first three mentioned operations raise interesting
questions.

Perhaps the most important question is, what is the Curry-Howard counter-
part of logical truth in the LPA setting? One might suppose that the same
question would arise for linear logic and therefore serve as a guide. However Gi-
rard has taken the position that truth is merely that which proof establishes, as
opposed to being definable independently. Since LPA deals with processes rather
than proofs, this view would appear to make no sense for LPA.

Yet there is one point of commonality: the classical notion of truth does ar-
guably not make sense for LPA. The usual conception of truth for a proposition,
at least for Boolean logic, entails a binary decision. Such a decision is necessarily
centralized, with data from sensors being collected at one point to arrive at a
binary determination.

The Curry-Howard counterpart of a proposition is a process. Processes need
not be local as they can be distributed over an arbitrarily large area or volume.
This is not consistent with logical decision-making as a centralized notion as
decisions must be made locally if they are to be timely. This in turn implies that
decision itself should be a concurrent notion.

We therefore propose to dispense with the traditional notion of propositions
as special entities that are true or false and simply define a proposition to be a
process. We take reasoning to be an extension of behavior that introduces events

106 V. Pratt

of a propositional or judgmental nature above and beyond the ordinary events
of behavior. There can be many of these running concurrently in a distributed
fashion, with no requirement of global coordination at any point.

The benefit of this approach is that reasoning can be absorbed into the frame-
work without making special provision for it as a distinct notion. Reasoning
becomes simply a kind of parallel behavior.

We take reasoning to be the transformation of one process into another, in
its most general sense. Transformation acts on terms, and terms are realized by
functors. When all functors are covariant a transformation can be defined simply
as a natural transformation. In the presence of contravariant functors, logic of
this kind is more delicate. Dinatural transformations have been proposed for this
[36]; however Chapter 6 of [62] points out difficulties with dinaturality that are
overcome using binary logical transformations [43].

When the processes being so transformed represent behavioral rather than
propositional information, transformations can be regarded as serving simply to
establish program equivalence. Processes incorporating distributed propositional
information may convey more nuanced decision-oriented information, much in
the manner of couriers carrying information between locations and multiple local
headquarters planning for their immediate neighborhood. In short, very much
how reasoning is carried out in the real world, namely by many individuals,
organizations, and machines, in a distributed fashion.

This conception of distributed reasoning is not at all well worked out here,
and we hope to sharpen these ideas more satisfactorily in due course.

9 Beyond Petri Nets

In [75, Fig.11] van Glabbeek gives an example of a higher-dimensional automaton
expressing a process that is not expressible as a Petri net. The following story
relocates van Glabbeek’s process to a more rural setting than the race across
the conference podium that enlivened Rob’s presentation of this example at
EXPRESS’04.

Alphonse and Gaston are walking abreast along a path when they come to
a gate that seems stuck half-open, obliging them to pass through it in single
file. Neither one wishing to be the first to emerge, they try to push the gate
open as they pass through in an attempt to emerge together. The three possible
outcomes, c, d, and e, are that they succeed (c), or that they fail and one of
Alphonse (d) or Gaston (e) emerges first. That is, exactly one of the events c,
d, and e must occur. Taking a and b to be the events of respectively Alphonse
and Gaston entering the opening (which could happen either before, after, or
instead of succeeding in opening the gate), represent this scenario suitably.

Van Glabbeek proposed the following 11-state automaton, which however
he interpreted as a higher-dimensional automaton with 31 states when the 15
one-dimensional and 5 two-dimensional states are counted. Our depiction here

Linear Process Algebra 107

labels the 11 states to exhibit it as a pure cancellation automaton, one with no
higher-dimensional cells. We give it in both forms, matrix and visual (its Hasse
diagram).

a 0 1 0 0 1 1 1 0 1 1 1
b 0 0 0 1 0 1 1 1 1 1 1
c 0 0 1 0 1 0 0 1×1×
d 0 0×××0××1××
e 0××0××0×××1

• •
�

�
�

�

�
�

�
�

•

•101××
�

�
�

�

•011××
�

�
�

�•1000×
�

�
�

�

•001×× •010×0
�

�
�

�•
00000

11×1× abcde
111×× 11××1

• •

�
�

�
��

�
�

�
��

�
�

�
��

�
�
�
��

�
�

�
��

�
�
�

��

1100×110×0

a

a

b

a bb a

b c

c

c

c

d e

The success of this representation depends on the observation that as soon as
either party has entered the opening at least one of d or e may be immediately
cancelled. Without cancellation, the state of both a and b being in the opening
with the gate still stuck would be 110 regardless of their single-file order. With
cancellation, exactly one of d or e is cancelled in that situation, refining 110
into the two states 110×0 and 1100×, thereby creating the natural five-state
automaton for ab+ ba which is what the stuck gate obliges, thereby splitting the
“ground floor” c = 0 of what would otherwise be the abc cube. The top floor,
c = 1, gate open, represents a||b.

The five two-dimensional cells that naturally suggest themselves, namely two
instances of a||c and b||c and one of a||b (so five out of the six faces of the abc
cube), could certainly be added, making this a full-blown higher-dimensional
cancellation automaton with 11 + 15 + 5 = 31 cells. However when a||b is un-
derstood by default to include all possible higher-dimensional cells, that is, no
mutual exclusion, it is not necessary.

Van Glabbeek’s example raises an important distinction that we have glossed
over so far. Table 1 makes the distinction between a||b and ab+ba one of mutual
exclusion: the latter forbids the state . The role of events d and e here is
to record the primacy of respectively a and b in the choice implied by ab + ba.
In the absence of c the above automaton simplifies to that on the left below.
Alternatively we can be more faithful to our disjoint-union definition of P + Q

108 V. Pratt

than thus far and obtain an isomorphic automaton in terms of marked copies of
just a and b as on the right.

a 0 1 1 0 1
b 0 0 1 1 1
d 0 1 1××
e 0××1 1

a 0 1 1××
b 0 0 1××

a′ 0××1 1
b′ 0××0 1

References

1. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23,
123–154 (1984)

2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

3. Barr, M.: ∗-Autonomous categories. Lecture Notes in Mathematics, vol. 752.
Springer, Heidelberg (1979)

4. Barr, M.: ∗-Autonomous categories and linear logic. Math Structures in Comp.
Sci. 1(2), 159–178 (1991)

5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60, 109–137 (1984)

6. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. El-
sevier (North-Holland), Amsterdam (2000)

7. Brookes, S.D., Hoare, C.A.R., Roscoe, A.D.: A theory of communicating sequential
processes. Journal of the ACM 31(3), 560–599 (1984)

8. Brown, C., Gurr, D.: A categorical linear framework for Petri nets. In: Mitchell,
J. (ed.) Logic in Computer Science, pp. 208–218. IEEE Computer Society, Los
Alamitos (June 1990)

9. Brown, C., Gurr, D., de Paiva, V.: A linear specification language for Petri nets.
Technical Report DAIMI PB-363, Computer Science Department, Aarhus Univer-
sity (October 1991)

10. Buckland, R., Johnson, M.: Echidna: A system for manipulating explicit choice
higher dimensional automata. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996.
LNCS, vol. 1101, Springer, Heidelberg (1996)

11. Casley, R.T., Crew, R.F., Meseguer, J., Pratt, V.R.: Temporal structures. Math.
Structures in Comp. Sci. 1(2), 179–213 (1991)

12. Fajstrup, L., Goubault, E., Raussen, M.: Detecting deadlocks in concurrent sys-
tems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp.
332–347. Springer, Heidelberg (1998)

13. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathe-
matics, vol. 221. Springer, Heidelberg (1971)

14. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: Proc. 2nd Annual IEEE Symp. on Logic in Computer Science,
Ithaca, NY, pp. 72–85 (June 1987)

15. Ginsburg, S., Spanier, E.H.: Mappings of languages by two-tape devices. Journal
of the ACM 12, 423–434 (1965)

16. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
17. Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61,

199–224 (1988)

Linear Process Algebra 109

18. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of
concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE
1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)

19. Goubault, E.: Homology of higher-dimensional automata. In: CONCUR 1993.
LNCS, vol. 630, pp. 254–268. Springer, Heidelberg (1993)

20. Goubault, E.: The Geometry of Concurrency. PhD thesis, École Normale
Supérieure (1995)

21. Goubault, E.: Schedulers as abstract interpretations of hda. In: Proc. of PEPM
1995, La Jolla, ACM Press, New York (June 1995)

22. Goubault, E.: Durations for truly-concurrent actions. In: Riis Nielson, H. (ed.)
ESOP 1996. LNCS, vol. 1058, pp. 173–187. Springer, Heidelberg (1996)

23. Goubault, E.: A semantic view on distributed computability and complexity. In:
Proceedings of the 3rd Theory and Formal Methods Section Workshop, Imperial
College Press, London (1996)

24. Goubault, E.: Geometry and concurrency. Mathematical Structures in Computer
Science, Special Issue 10(4), 409–573 (7 papers) (2000)

25. Goubault, E., Cridlig, R.: Semantics and analysis of Linda-based languages. In:
Cousot, P., Filé, G., Falaschi, M., Rauzy, A. (eds.) WSA 1993. LNCS, vol. 724, pp.
72–86. Springer, Heidelberg (1993)

26. Goubault, E., Jensen, T.P.: Homology of higher dimensional automata. In: Cleave-
land, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 254–268. Springer, Heidel-
berg (1992)

27. Grabowski, J.: On partial languages. Fundamenta Informaticae IV(2), 427–498
(1981)

28. Greif, I.: Semantics of Communicating Parallel Processes. PhD thesis, Project
MAC report TR-154, MIT (1975)

29. Gunawardena, J.: Homotopy and concurrency. EATCS Bulletin 54, 184–193 (1994)
30. Gupta, V.: Chu Spaces: A Model of Concurrency. PhD thesis, Stanford University,

Tech. Report (September 1994), http://boole.stanford.edu/pub/gupthes.pdf
31. Gupta, V., Pratt, V.R.: Gates accept concurrent behavior. In: Proc. 34th Ann.

IEEE Symp. on Foundations of Comp. Sci., pp. 62–71 (November 1993)
32. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Boston (2000)
33. Hoare, C.A.R.: Communicating sequential processes. Communications of the

ACM 21(8), 666–672 (1978)
34. Lafont, Y.: The linear abstract machine. TCS 59, 157–180 (1988)
35. Lafont, Y., Streicher, T.: Games semantics for linear logic. In: Proc. 6th Annual

IEEE Symp. on Logic in Computer Science, Amsterdam, pp. 43–49 (July 1991)
36. Lambek, J., Scott, P.: Introduction to Higher-Order Categorical Logic. Cambridge

University Press, Cambridge (1986)
37. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Techni-

cal Report DAIMI Report PB-78, Aarhus University, Aarhus (1977)
38. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-

delberg (1980)
39. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures, and domains,

part I. Theoretical Computer Science 13, 85–108 (1981)
40. Papadimitriou, C.: The Theory of Database Concurrency Control. Computer Sci-

ence Press, Rockville (1986)
41. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
42. Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In: Proc.

IFIP Congress 62, Munich, pp. 386–390. North-Holland, Amsterdam (1962)

http:{\char 47}{\char 47}boole.stanford.edu{\char 47}pub{\char 47}gupthes.pdf

110 V. Pratt

43. Plotkin, G.D.: Lambda definability in the full type hierarchy. In: To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 363–373. Aca-
demic Press, London (1980)

44. Plotkin, G.D.: A structural approach to operational semantics. Technical Report
Technical Report DAIMI FN-19, Computer Science Department, Aarhus Univer-
sity, Aarhus, Denmark (1981); Reprinted with corrections in J. Log. Algebr. Pro-
gram. (60-61), 17–139 (2004)

45. Pnueli, A.: The temporal logic of programs. In: 18th IEEE Symposium on Foun-
dations of Computer Science, pp. 46–57 (October 1977)

46. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17th Ann.
IEEE Symp. on Foundations of Comp. Sci., pp. 109–121 (October 1976)

47. Pratt, V.R.: Process logic. In: Proc. 6th Ann. ACM Symposium on Principles of
Programming Languages, San Antonio, pp. 93–100 (January 1979)

48. Pratt, V.R.: On the composition of processes. In: Proceedings of the Ninth Annual
ACM Symposium on Principles of Programming Languages (January 1982)

49. Pratt, V.R.: Position statement. Circulated at the Panel on Mathematics of Parallel
Processes, chair A.R.G. Milner, IFIP-83 (September 1983)

50. Pratt, V.R.: The pomset model of parallel processes: Unifying the temporal and
the spatial. In: Seminar on Concurrency. LNCS, vol. 197, pp. 180–196. Springer,
Heidelberg (1984)

51. Pratt, V.R.: Some constructions for order-theoretic models of concurrency. In: Log-
ics of Programs. LNCS, vol. 193, pp. 269–283. Springer, Heidelberg (1985)

52. Pratt, V.R.: Two-way channel with disconnect. In: The Analysis of Concurrent
Systems: Proceedings of a Tutorial and Workshop. LNCS, vol. 207, pp. 110–111.
Springer, Heidelberg (1985)

53. Pratt, V.R.: Modeling concurrency with partial orders. Int. J. of Parallel Program-
ming 15(1), 33–71 (1986)

54. Pratt, V.R.: Modeling concurrency with geometry. In: Proc. 18th Ann. ACM Sym-
posium on Principles of Programming Languages, pp. 311–322 (January 1991)

55. Pratt, V.R.: Arithmetic + logic + geometry=concurrency. In: Simon, I. (ed.)
LATIN 1992. LNCS, vol. 583, pp. 430–447. Springer, Heidelberg (1992)

56. Pratt, V.R.: The duality of time and information. In: Cleaveland, W.R. (ed.) CON-
CUR 1992. LNCS, vol. 630, pp. 237–253. Springer, Heidelberg (1992)

57. Pratt, V.R.: Event spaces and their linear logic. In: Algebraic Methodology and
Software Technology, Workshops in Computing, AMAST 1991, Iowa City, pp. 1–23.
Springer, Heidelberg (1992)

58. Pratt, V.R.: Chu spaces: complementarity and uncertainty in rational mechanics.
Technical report, TEMPUS Summer School, Budapest (July 1994) (manuscript),
http://boole.stanford.edu/pub/bud.pdf

59. Pratt, V.R.: Time and information in sequential and concurrent computation. In:
Ito, T. (ed.) TPPP 1994. LNCS, vol. 907, pp. 1–24. Springer, Heidelberg (1995)

60. Pratt, V.R.: Chu spaces and their interpretation as concurrent objects. In: van
Leeuwen, J. (ed.) Computer Science Today: Recent Trends and Developments.
LNCS, vol. 1000, pp. 392–405. Springer, Heidelberg (1995)

61. Pratt, V.R.: Types as processes, via Chu spaces, Santa Margherita. In: Electronic
Notes in Theoretical Computer Science, Santa Margherita, vol. 7, p. 21 (1997),
http://www.elsevier.nl/locate/entcs/volume7.html

62. Pratt, V.R.: Chu spaces: Notes for school on category theory and applica-
tions. Technical report, University of Coimbra, Coimbra, Portugal (July 1999)
(manuscript) http://boole.stanford.edu/pub/coimbra.pdf

http:{\char 47}{\char 47}boole.stanford.edu{\char 47}pub{\char 47}bud.pdf
http:{\char 47}{\char 47}www.elsevier.nl{\char 47}locate{\char 47}entcs{\char 47}volume7.html
http:{\char 47}{\char 47}boole.stanford.edu{\char 47}pub{\char 47}coimbra.pdf

Linear Process Algebra 111

63. Pratt, V.R.: Higher dimensional automata revisited. Math. Structures in Comp.
Sci. 10, 525–548 (2000)

64. Pratt, V.R.: Orthocurrence as both interaction and observation. In: Rodriguez, R.,
Anger, F. (eds.) Proc. Workshop on Spatial and Temporal Reasoning, IJCAI 2001,
Seattle (August 2001)

65. Pratt, V.R.: Event-state duality: The enriched case. In: Brim, L., Jančar, P.,
Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 41. Springer,
Heidelberg (2002)

66. Pratt, V.R.: Chu spaces as a semantic bridge between linear logic and mathematics.
Theoretical Computer Science 294(3), 439–471 (2003); Selected papers from Linear
Logic 1996, Tokyo

67. Pratt, V.R.: Transition and cancellation in concurrency and branching time. Math.
Structures in Comp. Sci., Special Issue on the Difference Between Sequentiality and
Concurrency 13(4), 485–529 (2003)

68. Riddle, W.: The Modeling and Analysis of Supervisory Systems. PhD thesis, Com-
puter Science Dept., Stanford University, p. 174 (March 1972)

69. Rodriguez, R.V., Anger, F.D.: Branching time via Chu spaces. In: Rodriguez, R.,
Anger, F. (eds.) Proc. Workshop on Spatial and Temporal Reasoning, IJCAI 2001,
Seattle (August 2001)

70. Sassone, V., Cattani, G.L.: Higher-dimensional transition systems. In: Proceedings
of LICS 1996 (1996)

71. Shields, M.: Deterministic asynchronous automata. In: Neuhold, E.J., Chroust, G.
(eds.) Formal Models in Programming. Elsevier Science Publishers, B.V., North
Holland (1985)

72. Takayama, Y.: Extraction of concurrent processes from higher-dimensional au-
tomata. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 72–85. Springer,
Heidelberg (1996)

73. van Glabbeek, R.: Comparative Concurrency Semantics and Refinement of Actions.
PhD thesis, Vrije Universiteit te Amsterdam (May 1990)

74. van Glabbeek, R.: Bisimulations for higher dimensional automata (June 1991)
(manuscript), http://theory.stanford.edu/ rvg/hda

75. van Glabbeek, R.: On the expressiveness of higher dimensional automata. Theo-
retical Computer Science 356(3), 169–194 (2006)

76. Winskel, G.: Events in Computation. PhD thesis, Dept. of Computer Science,
University of Edinburgh (1980)

77. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255. Springer, Heidelberg (1987)

78. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354. Springer, Heidelberg (1989)

http:{\char 47}{\char 47}theory.stanford.edu{\char 47}~rvg{\char 47}hda

Jump-Start Cloud: Efficient Deployment
Framework for Large-Scale Cloud Applications

Xiaoxin Wu1, Zhiming Shen2, Ryan Wu3, and Yunfeng Lin4

1 Huawei Corporate Research, China
xiaoxinwu@huawei.com

2 Department of Computer Science, North Carolina State University, US
zshen5@ncsu.edu

3 tuan800.com, Beijing, China
ryanwu510@hotmail.com

4 Intel China Research Center Ltd., Beijing, China
yunfeng.lin@intel.com

Abstract. 1Reducing the time that a user has to occupy resources for
completing cloud tasks can improve cloud efficiency and lower user cost.
Such a time, called cloud time, consists of cloud deployment time and
application running time. In this work we design jump-start cloud, under
which an efficient cloud deployment scheme is proposed for minimizing
cloud time. In particular, VM cloning based on disk image sharing has
been implemented for fast VM and application deployment. For appli-
cations with heavy disk visits, the post-deployment quality of service
(QoS) may suffer from image sharing and consequently, application run-
ning time will increase. To solve this problem, different image distribution
schemes have been designed. We test jump-start cloud through a Hadoop
based benchmark and MapReduce applications. Experiment studies show
that our design saves application installation time and meanwhile, keeps
application running time reasonably low, thus makes cloud time shorter.

1 Introduction

Cloud [1] [2] [3] has been looked as a natural evolvement for data center (DC)
so that resources such as CPU, memory, storage, and IO/network in a DC can
be dynamically and flexibly grouped or allocated, to serve clients with different
service level agreement (SLA). Virtualization [4] [5] [6] [7] [8] [9] has been looked
as a de facto management technology because of the speed, flexibility and agility
it brings to cloud resource management. Providing resources in terms of virtual
machines (VMs), it is easy to assign an application with a set of quantitatively
measurable resources, e.g., a number of VMs where each VM has an assigned
CPU slots (VCPU) and an amount of memory. As applications and OS are
bundled into VM images, virtualization enables users to run their applications
with a supporting OS of their choice, giving users the exposure to system-level
1 This work was mainly conducted when Xiaoxin Wu, Zhiming Shen, and Ryan Wu

were with Intel China Research Center.

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 112–125, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Jump-Start Cloud: Efficient Deployment Framework 113

capabilities, as provided by OpenCirrus open cloud testbed [10]. This is oppose
to applications that only get access to higher level programming primitives as
specified by Google AppEngine [11] and Microsoft Windows Azure [12].

Deploying and launching a VM-based user cloud application on top of a cloud
infrastructure in general involves the following steps. First, a VM image mainly
consisted of the targeted OS and user applications is compiled and then up-
loaded to a VM image repository within the cloud infrastructure. Then a num-
ber of VM’s are launched on a set of DC physical hosts. Finally, application
environments (IP, hostname, etc.) are configured and target applications are
deployed.

It is desired that a cloud can jump-start, i.e., a cloud can be deployed and
ready in short time. We think cloud jump-start time, in this work defined as the
overall time that a cloud application is deployed and becomes functioning under
desired QoS, should be fast for improving cloud infrastructure services for the
following reasons:

1. One of the most important goals for cloud service providers is to make quick
response to clients’ resource requests and provide clients with applications
running in desired states as soon as possible.

2. Even during the deployment time the resources reserved for a cloud appli-
cation cannot be used by any other applications, which means a kind of
resource waste. Making clouds jump-start can significantly improve cloud
resource efficiency because a cloud normally serves thousands of users.

3. Users are usually billed based on the amount of cloud resource requested and
the length of time to occupy such resource. The overall time that a cloud
application occupies the resources needed, which we call cloud time, then is
an important criteria for measuring, e.g., non long-lasting cloud services. It
is to the interests of users to reduce cloud jump-start time for minimizing
cloud time, unless the prompt cloud deployment results in a much longer
application execution time.

4. Reducing cloud jump-start time helps improve cloud service availability. Var-
ious system software and hardware failures or software patches may require
the entire cloud to shut down and restart. Faster jump-start time will help
reduce system downtime and improve cloud availability.

Reducing cloud jump-start time has become a research challenge, especially for
virtual cloud environment that normally involves a distributed system consisted
of a large number of VMs. Having a virtual cloud environment ready requires
many VMs deployed with a complex configuration setting, thus leading to chal-
lenges for both VM deployment and application environment setup. For example,
it takes Amazon Elastic MapReduce [13] about 4 minutes to deploy a Hadoop
cluster [14] with 20 VMs.

We propose using VM cloning to reduce VM installation time, thus to achieve
a shorter jump-start time. A small-sized memory state file is generated from a
suspending VM and distributed. Upon receiving the memory state file a VM can

114 X. Wu et al.

be resumed in a short time. The base image is shared in an image server, e.g.
a NFS server, and VMs fetch extra data from the base image on-demand, e.g.,
through leveraging remote disk image access techniques that have been widely
used in VM migrations [15] [16] [17] [18] [19].

A design issue not clearly addressed by previous cloning works such as [20]
[21] [22], is how to differentiate cloned VMs. cloning from the memory state
can only generate identical VMs. These VMs can not start working immediately
before their memory states for MAC/IP addresses and the roles they play in the
cloud application are assigned.

Another design issue not addressed previously, which we think even more
important, is how to guarantee application post-deployment QoS. The QoS may
suffer from VM cloning when there are a large number of live VMs sharing the
same disk image, and for each VM disk image access is frequent. The disk IO
for accessing the image then can be crammed, which leads to a long delay for
image data fetch. The delay may cause application interruption and bad user
experience for real-time applications, or a longer task accomplishment time for
result-oriented applications.

We design and evaluate a comprehensive jump-start cloud deployment frame-
work that considers all of the above issues. We implement VM cloning for fast
VM launching, design specific dameon for VM differentiation and the consequent
application deployment, and propose different disk image distribution methods
for meeting post-deployment cloud QoS. We focus on non long-lasting VM-based
Hadoop applications, and consider major QoS as how soon a cloud task is accom-
plished. The evaluation criteria then becomes cloud time, which is composed of
jump-start time and application running time. The research methodology, how-
ever, can be applied to exploring how the proposed framework works for long-
lasting applications, by investigating intermediate stages of applications instead.

In summary, our major contributions are as follows:

– We design jump-start cloud deployment framework that balances deploy-
ment time and post-deployment QoS. In this framework a KVM fast cloud
application installation scheme is a designed. The scheme clones VMs upon
memory state file, differentiates VMs through post VM configurations, and
installs application through VM meta-data. Depending on application image
access patterns, different image distribution schemes are designed to solve
image access bottleneck problem.

– We identify cloud jump-start time as a critical parameter for cloud servicemea-
surement, and propose using cloud time that consists of cloud jump-start time
and application running time for measuring non long-lasting applications.

– We design a Hadoop [14] cloud application benchmark. Through running it
and cloud applications, we conduct intensive experiments for understanding,
evaluating, and validating the proposed schemes. Experimental data shows
that the proposed framework minimizes cloud time by making the time con-
sumed on both application installation and application execution relatively
short.

Jump-Start Cloud: Efficient Deployment Framework 115

2 Jump-Start Cloud Deployment Overview

The targeted usage is user-defined large-scale cloud applications where both ap-
plications and their execution environment (e.g., OS) are created and/or defined
by client. This may likely be one of major cloud usage models because future
cloud is able to expose clients its infrastructure and let client determine the soft-
ware environment. When the image is created by client, cloud services may have
1) a better efficiency due to a close bundle between application and its execution
environment and 2) a better privacy because the client owns the entire software
stack and data. In this model, to request cloud resources a client submits disk
image to the cloud. The cloud works on this image to deploy and run the user-
defined application. The application is on-the-fly, and for each request cloud has
to establish a new execution environment. After the application is completed,
this environment including VMs and data will be removed.

Our goal is to design a comprehensive cloud deployment framework that can
make a non long-lasting user-defined cloud application finished in shortest time,
i.e., makes its cloud time minimum. We care about the cloud time for result-
oriented applications because for client a shorter completion time means a better
QoS and a lower cost (a client will be charged based on a shorter resource
occupation time), and for cloud a shorter cloud time can improve cloud resource
efficiency (the released resources from the finished application can be used by
other clients).

The two major steps after the cloud has loaded user image is application
deployment and application running. To make the application deployment time
(including the VM deployment time) short, our proposed technology for jump-
start cloud is VM cloning. VM memory state files (or snap shots) are generated
first at a physical machine where the application image is loaded. They are then
delivered to the physical machines where VMs are supposed to be located at.
As the size for a state file is small, the time for distributing it is short. VMs can
then be quickly activated at destined machines. Once application meta data is
sent to these VMs accordingly, application can start to run.

Such a fast application deployment may cause negative impact on application
performance. A VM may visit the image from time to time. This happens, e.g.,
when disk image contains a large amount of data that has to be processed by
the cloud application. Generally, a number of VMs will share and visit the same
image, e.g., through NFS. In case a large number of image visits from a large
number of VMs over the disk access IO, an image visit for a VM may take long
time. If we consider the case that for an application the parallelism has been done
perfectly at VM level so that there is only single thread in each of the VMs, the
increased image access delay for a VM will result in the same increased running
time for the application part running in that VM. Keeping image access delay
low thus is critical.

In our efficient cloud deployment framework we add one more step before ap-
plication deployment. The application disk image will be distributed to a number
of physical machines within the cloud, if needed, to keep cloud time low for ap-
plications with a large number of image visits. Basically, a few image copies

116 X. Wu et al.

will serve VMs so that the number of VMs that share the same image becomes
smaller. Consequently, the request rate for visiting a particular image becomes
lower, which leads to a lower average image access delay. Because distributing
image also takes time, whether or not to distribute images depends on applica-
tions’ image visiting pattern, including application scale (number of VMs) and
image visiting load per VM. In jump-start cloud images can be distributed before
application is deployed or after application has already started.

3 Fast Cloud Application Deployment

Fast distributed application deployment in virtualized environment include VM
installation and application deployment. In this section we present the detailed
design and our solutions for implementation issues.

3.1 Fast VM Installation and Differentiation

For distributed cloud applications we deploy VMs through live cloning in a cloud
that supports KVM. The memory state file of the original VM is distributed to
the hosts (i.e., physical machines) where the VMs are supposed to be located.
At this stage we consider all of VMs share one disk image, e.g., through NFS.
Since the size of memory state file is small, distributing such a file within cloud
takes a short time. Once a destined host receives the state file, the VM can be
resumed at that host immediately. The state file can be either submitted by a
cloud user or generated by cloud itself, through storing the memory state into a
separate file. This is supported by mainstream hypervisors such as Xen [4] and
KVM [5].

The cloned VMs are exactly the same as their parent, including networking
configurations for IP address and MAC address. The next step for VM instal-
lation then is how to enable these VMs with individual network configurations
and other distinguished features if any. Ideally, if a hypervisor at the host of that
VM knows which part of the VM memory state should be changed for such di-
versification, it can modify the internal memory state and consequently diversify
the VM. However, up-to-date there is no such technology due to the extreme
complexity of memory state file.

In this work we diversify VMs by adding a daemon into each of them. The
daemon will load the information needed, called VM-metadata in this paper,
to distinguish its host VM. The VM-metadata is obtained from cloud manager.
Based on the metadata the daemon triggers a re-configuration for the VM to
have its distinguished features enabled.

A remained design issue is how a daemon obtains the metadata of a VM. Note
that a daemon cannot obtain the metadata from the cloud manager directly
through the DC network, as the VM cannot communicate with any other cloud
components until its diversification is completed. Therefore, the metadata can
only be obtained through some other ways based on the virtualized hardware.

In this work we collect VM metadata by generating an ISO image, as what
has been done in VMPlants [23]. The metadata stored in the ISO image will

Jump-Start Cloud: Efficient Deployment Framework 117

be delivered to VM host along with the memory state file, while the daemon
accesses the information from CDROM. The ISO image is customized through
an interface open to cloud users. When creating a VM image the user adds
additional information to VM-metadata, e.g., through a user script added to the
ISO image. Once the ISO image is invoked after the VM cloning, customized
configurations including application configurations will be accomplished.

We implement the fast VM deployment in KVM, thanks to the fact that KVM
hypervisor supports offline migration, during which memory state is stored into
a file and then loaded in the destination. Two important implementation works
are VM meta-data construction and self-configuration daemon design.

3.2 Cloud Application Deployment

Once VMs are installed, each of them has to act as different roles of a distributed
application. If a VM template also carries application memory state file, the
application can be installed along with VM. However, in some applications such
state file depends on cloud settings, which cannot be obtained before it starts
to run in cloud. For example, in a process of HDFS in Hadoop, the storage ID
is generated according to the cloud configurations and once it is set, it can not
be modified. It is then difficult for a client to provide a storage ID in the VM
template.

We extend the VM-metadata and design a framework that makes dynamic ap-
plication configuration automatically. Under this framework, client adds a script
to the VM-metadata that implements the client interface, and sends a script
to a centralized configuration management server (CMS) that is designed for
collecting information and delivering customized configurations. The CMS then
can assign the VM a role through sending meta data, to initiate application
deployment. After the fast installation of VMs the CMS has the system VM
deployment information through collecting reports from these VMs. It then de-
livers configuration commands based on client’s request, through which the role
of each VM is determined. For example, when deploying a Hadoop cluster in
the cloud, After receiving VM installation completion reports from all VMs, the
CMS dbecides which VM works as Master. It then tells other VMs the Master’s
IP address and their roles, which are Slaves. Slaves then contact the master to
get application started.

The application configuration framework is implemented with Python. When
a request is submitted to the cloud stack, the CMS makes a new waiting list for
VMs regarding to the request. After configuring network, the daemon in a VM
will invoke the script named selfconf.py in the VM-metadata. The activated
VM then communicates with the CMS using remote procedure call (RPC). Upon
receiving a PRC, the CMS invokes the user policy to make a decision what
should be returned to the VM. The returned value can be additional meta-data
or a configuration command. Typically there is only one interaction between a
daemon and CMS. A daemon can trigger more RPC calls if more information is
required.

118 X. Wu et al.

4 Image Distribution for Application QoS

When applications depend on frequent, large number of disk image visits, the
delay for a VM to obtain data from disk image may be large. This lowers com-
putation efficiency and results in an increased application running time (i.e., a
worse QoS). To reduce the average image access time, disk image can be dis-
tributed to a number of physical machines so that each of the images is visited
by fewer VMs. In general, image distribution helps to reduce cloud time only if
the time cost for the image distribution is less than the consequent time savings
on disk image reading.

Since the size of an image is generally very large, it will take a long time to
copy an image from one physical machine to another. In addition, for any part
of a large-scale application, which runs in a VM in our case, it may only visit a
small portion of the image. It is then not necessary to distribute the whole image
to every host. Another reason for not distributing too many images within cloud
is for storage savings, as storage is considered as cloud cost as well.

Ideally, if client or Cloud is aware of which part of image a VM will visit, the
image part that will be visited by a lot of VMs then can be properly distributed.
Unfortunately, identifying roles of each part of an image and separating them is
not an easy work. Therefore, as a first step, in this work we consider the case
that client or Cloud does not have the detailed knowledge of the image contents.
However, they may know whether the application will visit the image frequently
or not either through previous experience or Cloud monitoring.

The major image distribution schemes we have implemented in jump-start
cloud deployment framework are pre-deployment, background deployment, and
on-demand deployment.

4.1 Pre-deployment

In the pre-deployment distribution scheme the image will be copied and dis-
tributed in cloud before application runs. Given a client request that has defined
the number of VMs required for running the application, the cloud decides the
number of images to be distributed so that for each image, the number of VMs
it will serve is below a threshold value. The number of images to be distributed
depends on image reading load from each of the VMs as well as the network and
disk IO bandwidth availability.

After the number of disk images to be distributed in the Cloud has been deter-
mined, a remained issue for pre-deployment is where to store these images (i.e.,
where to locate these image servers) and how to store them. Image server loca-
tion depends on cloud system deployment and configuration. A general guideline
is to store an image to make it easily accessed by its serving VMs. In our frame-
work, an image is located at the same subnet as its serving VMs. After receiving
an image, the image server stores it in its local disk. Because reading from disk
takes longer time, to enhances image access speed, the image can be stored in
the memory. This, however, is at the cost of occupying a much larger size of
memory.

Jump-Start Cloud: Efficient Deployment Framework 119

For applications that client or cloud is aware which part of the image may be
visited by applications, only that part needs to be distributed. A typical such
application can be one that processes client-provided data, where data is the
major disk part to be visited and distributed. Other disk parts, e.g., application
execution OS, are shared by all the VMs, unless image access bottleneck prob-
lem occurs then we can use background deployment method introduced later
to resolve it. Distributing partial image significantly reduces image distribution
time.

4.2 Background Deployment

Usually for any submitted cloud application it is not easy for either client or
cloud to predict image reading pattern. Therefore, it is hard to make decision
whether to pre-deploy disk image and how many images should be deployed. In
our framework, for applications without the knowledge of image visiting patterns,
all VMs share a single image at the beginning. Through monitoring the image
access load as well as image reading time, the Cloud manager then decides
whether the image has to be copied and deployed at other physical machines.
During image deployment, application may continue running.

The number of images that should be finally distributed in the cloud can be
reached gradually by adding images from time to time, until image access time
is below a required value. This value is estimated through observing under what
access latency application performance may not be seriously affected.

An implementation issue regarding to background deployment is about the
so-called VM re-direction. Because at the beginning all the VMs are directed to
a single image, when other images are ready, some of VMs have to be re-directed
to their new assigned image servers. In this work we resolve the issue by changing
the image direction command in KVM, which determines the image access for
VMs.

4.3 On-Demand Deployment

Lots of image parts, e.g., OS bootstrap and drivers, may not or seldom be read by
applications. Therefore, it is not efficient to distribute the entire image. However,
pre-deployment requires a clear knowledge for what part of an image will be
accessed during application runtime, which is difficult. To address this issue, we
propose on-demand image distribution scheme.

In this scheme, at the beginning a number of images are built along with
the original image in cloud. These images are actually empty, and we call them
pseudo images. Like the oringinal image (or real image), a pseudo image also
serves a number of VMs. When a process running in a VM served by a pseudo
image requires some image data, it will visit the pseudo image serving it. If the
data requested is not available at the pseudo image, the pseudo image will ask
the real image for that part. Once the pseudo image receives the data, it delivers
it to the requesting VM. At the mean time, it stores a copy for serving other
VMs that may require the same image part later. On-demand deployment may

120 X. Wu et al.

lead to a longer delay for some image readings, yet it can significantly reduce
communication load for image distribution.

To further improve the performance of on-demand image deployment, multi-
cast and data pre-fetching can be applied.

5 Experimental Results

5.1 Experimental Data

Hadoop Deployment Time. In Fig. 1 we show when applying our fast appli-
cation deployment scheme that shares a single image, the deployment time of a
Hadoop with different scales, i.e., different number of VMs. The overall deploy-
ment time is around 10 seconds, which is much shorter than deploying such a
Hadoop in EC2. In addition, the deployment time does not significantly increase
when Hadoop scales up, because in such application after loading the VM mem-
ory state file, a VM seldom visits the disk image. Access delay for disk reading
at the image server then is short. The meta data delivered for VM role config-
uration has a small size too. Therefore, even if the number of VMs increases,
there is a minor increase for application deployment time. In Fig. 2 we show the
detailed time contribution from different stages of Hadoop deployment at each
of the VMs, when 56 VMs are assigned. At this scale, the time for memory state
file distribution (for VM cloning), VM resume, and application configuration are
about 0.5s, 2s, 8s respectively.

Fig. 1. Deployment time for Hadoop at
different scales

Fig. 2. Time taken at different stages and
different VMs

In Table 1 we compare the time needed for deploying MapReduce with differ-
ent scales in jump-start cloud and EC2. Generally, EC2 will take a few minutes
while jump-start cloud takes less than 20 seconds. Considering a MapReduce ap-
plication such as sorting may take only a few minutes, fast deployment through
jump-start cloud can greatly improve user experience and cloud efficiency.

Jump-Start Cloud: Efficient Deployment Framework 121

Table 1. Deployment Time: Jump-Start Cloud vs. EC2

Application Scale (Number of VMs) 20 50 100
Jump-Start cloud launching time 13s 14s 15s

EC2 launching time 238s 291s 304s

Improvement through Image Distribution. In Fig. 3 we shows distributing
disk image does help to reduce average image access delay, and consequently the
overall application running time. Under our testing scenario, when the number
of images changes from 1 to 2, the delay decreases significantly. When the num-
ber of images increases further, the gain on access delay becomes trivial. This
implies that for reducing access delay, distributing too many images may not be
necessary.

(a) Sequential Access (b) Random Access

Fig. 3. Average access delay per request under different number of images

We show in Fig. 4 how image pre-deployment may help to reduce application
cloud time when VM has a sequential reading pattern. Both unicast and mul-
ticast are used for image distribution for comparison. It is observed that image
distribution works for heavy image visiting load. Multicast has a better gain
because it helps to save image distribution time. From our experimental data
we found that image pre-deployment can help to cloud time if when a single
image serves all the VMs, its disk IO is fully occupied. As we mentioned pre-
viously, when VMs read disk sequentially, the equivalent disk IO bandwidth in
our setting is about 20MB/s or 160Mb/s. For the unicast case, if we use 1Gb/s
for intra-cluster connection, the maximum number of images is approximately 2.
The experimental results proves the mathematical deduction. When the number
of images becomes greater, pre-deployment has a longer cloud time. This can
be explained by referring to Fig. 3. A greater number of images results in very
minor access delay improvement at a much longer image distribution time. The
overall time saving on application execution then cannot compensate the time

122 X. Wu et al.

taken on distributing images. For the multicast image distribution case there
is no such issue, through which generally the a greater number of images are
distributed, a shorter cloud time can be achieved. However, when the number
reaches a value, the gain from multicast is minor as well. Since the number of
images to be multicasted determines how much cloud network bandwidth and
system storage are needed, this number should be carefully selected based on
application parameters and cloud configurations.

(a) λ = 50 (b) λ = 200

Fig. 4. Cloud time for application with sequential access under different number of
images

Fig. 5 shows the cloud time for random image access pattern. The overall per-
formance trend is similar to what has been shown for the sequential disk reading
case. For unicast the optimum number of image to be distributed, however, is
greater than 2 because the equivalent disk IO bandwidth now is much smaller.
Our test result shows the IO bandwidth is about 2MB/s, the optimum number
for distributing images is about 8.

Background and On-Demand Deployment. When using background image
distribution we found there was no gain on cloud time reduction. The reason is
that image distribution can help to reduce overall cloud time only when sharing
single image, image disk IO is fully occupied. Therefore, background distribution
under heavy disk visiting load will contend disk IO with applications, making
the overall data getting out from disk image greater than the case when all VMs
share a single image. However, background distribution may help is some par-
ticular application cases where QoS can be degraded to keep applications from
being interrupted. For example, for a streaming video application at the begin-
ning a fewer frames per second can be played, while the saved disk bandwidth
can be used for image distribution. Once the background image distribution is
completed, the performance becomes normal.

In Figure 6 we show cloud time improvement when on-demand image distri-
bution is applied. Different numbers of images (including one real image) are
deployed. We suppose 50% of the image will be accessed by all of the VMs,

Jump-Start Cloud: Efficient Deployment Framework 123

(a) λ = 5 (b) λ = 20

Fig. 5. Cloud time for application with random access under different number of images

while other parts of the image will be accessed by VMs individually. It is ob-
served that on-demand distribution can help to reduce cloud time. We also found
that the deployment with 3 pseudo images has a little worse gain that that from
1 pseudo image case. The reason is that the visiting load to the real image is the
performance bottleneck for on-demand distribution. This visiting load, actually,
is determined by the number of the physical machines it serves. The number of
physical machines the real image serves is greater in the 3 pseudo image case in
our settings (The cloud has 8 physical machines), thus it has worse performance.
It is also observed that deploying one pseudo image in the on-demand scheme
results in a better performance than deploying one more real image through pre-
deployment, because pre-deployment has to distribute the image part that will
not be accessed as well. When the number of image increases, pre-deployment
works better, at the cost of communication and storage.

In Figure. 7 we show how image access pattern impacts the cloud time gain
in on-demand distribution. The access pattern we care about is how much of
the image will be accessed (or shared) by all of the VMs. We consider only 1
pseudo image is deployed. According to the figure, it is observed that the more
image data to be shared, the more cloud time reduction can be achieved through
on-demand distribution. This is because the major role of the on-demand dis-
tribution is to reduce the visiting load at the real image. This load is mainly
determined by the size of the disk data to be shared. Therefore, the on-demand
distribution works better when more image part has to be shared.

Impact of Image Distribution on Real Application. In Fig. 8 a) we show
the impact of image distribution on a MapReduce sorting application. There are
2G data to be sorted, through a MapReduce that runs over 56 VMs. The data
is provided by user and originally stored in a disk image. We modified Hadoop
so that data can be loaded from local storage. Each Mapper fetches the same
amount data from the disk, and no data is shared. Mappers read data in turn,
following a sequential reading pattern. As in our previous experiment, the tested
results show the equivalent disk IO bandwidth can be up to 20MB/s. Because

124 X. Wu et al.

Fig. 6. Cloud time with on-demand
image distribution

Fig. 7. On-demand distribution gain vs.
image visiting pattern

(a) cloud time (b) Map time

Fig. 8. Impact of image distribution on real application

the network has a bandwidth of 1G, according to the analysis in 4.1 image
distribution should be able to help to reduce cloud time. The experimental data
proves it. We show in Fig. 8 b) that the major gain on application running time
comes from Mapper, because that is the process involving most image access for
loading data.

6 Conclusions

We enable jump-start cloud that applies an efficient deployment framework we
designed to reduce cloud time for resource efficiency and service quality improve-
ment. VM cloning is used for fast application deployment, and image distribution
is used for post-deployment QoS. We test different application image access pat-
terns and cloud system configurations to study cloud application characteristics
and evaluate the deployment scheme.

Jump-Start Cloud: Efficient Deployment Framework 125

References

1. Armbrust, M., et al.: Above the Clouds: A Berkeley View of Cloud Computing.
Technical report, UC Berkeley Reliable Adaptive Distributed Systems Laboratory
(2009)

2. EC2: Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
3. Nimis, J., Tai, S., Sandholm, T.: What’s Inside the Cloud? An Architectural Map

of the Cloud Landscape. In: CLOUD (2009)
4. Barham, P., et al.: Xen and the Art of Virtualization. In: SOSP (2003)
5. Kvm, http://www.linux-kvm.org/page/Main_Page
6. Xenserver,

http://www.citrix.com/English/ps2/products/feature.asp?

contentID=1686939

7. Waldspurger, Carl A.: Memory Resource Management in VMware ESX Server. In:
SIGOPS (2002)

8. Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic Virtual
Clusters in a Grid Site Manager. In: HPDC (2003)

9. Steinder, M., Whalley, I., Carrera, D., Gaweda, I., Chess, D.: Server Virtualization
in Autonomic Management of Heterogeneous Workloads. In: Proc. 10th Integrated
Network Management (IM) Conference (2007)

10. Open cirrus, https://opencirrus.org/
11. Google app engine, http://code.google.com/appengine/
12. Windows azure platform, http://www.microsoft.com/windowsazure/
13. Amazon elastic mapreduce, http://aws.amazon.com/elasticmapreduce/
14. hadoop, http://hadoop.apache.org/
15. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box

Strategies for Virtual Machine Migration. In: Proc. 4th Symposium on Networked
Systems Design and Implementation, NSDI (2007)

16. Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S., Rosenblum, M.:
Optimizing the Migration of Virtual Computers. In: Proc. 5th Symposium on Op-
erating Systems Design and Implementation, OSDI (2002)

17. Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy Live Migration of Virtual
Machines. ACM SIGOPS Operating Systems Review (2009)

18. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design & Implementation (2005)

19. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box
strategies for virtual machine migration. In: Proc. 4th Symposium on Networked
Systems Design and Implementation, NSDI (2007)

20. Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P., Rumble, S.M.,
de Lara, E., Brudno, M., Satyanarayanan, M.: Snowflock: Rapid virtual machine
cloning for cloud computing. In: EuroSys (2009)

21. Vrable, M., Chen, J., Ma, J., Moore, D., Vandekieft, E., Voelker, G., Snoeren, A.,
Savage, S.: Scalability, Fidelity and Containment in the Potemkin Virtual Honey-
farm. In: SOSP (2005)

22. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus:
High Availability via Asynchronous Virtual Machine Replication. In: NSDI (2008)

23. Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: VMPlants, Pro-
viding and Managing Virtual Machine Execution Environments for Grid Comput-
ing. In: SC (2004)

http://aws.amazon.com/ec2/
http://www.linux-kvm.org/page/Main_Page
http://www.citrix.com/English/ps2/products/feature.asp?contentID=1686939
http://www.citrix.com/English/ps2/products/feature.asp?contentID=1686939
https://opencirrus.org/
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/
http://aws.amazon.com/elasticmapreduce/
http://hadoop.apache.org/

Capacity Estimation in HPC Systems:
Simulation Approach

A. Anghelescu1, R.B. Lenin2, S. Ramaswamy3, and K. Yoshigoe4

1 Department of Mathematics and Computer Science, Emory University,
Atlanta, GA 30322, USA

2 Department of Mathematics, University of Central Arkansas, Conway,
AR 72035, USA

3 Industrial Software Systems, ABB Corporate Research, Bangalore 560048, India
4 Department of Computer Science, University of Arkansas at Little Rock,

Little Rock, AR 72204, USA
aanghel@emory.edu, rblenin@uca.edu, srini@acm.org, kxyoshigoe@ualr.edu

Abstract. As HPC (high performance computing) systems are exten-
sively employed for heavy computational problems throughout hetero-
geneous environments, the scale and complexity of applications raises
the issue of capacity planning. A cardinal aspect of efficiency is the job
scheduler in any HPC systems. The job scheduling techniques can worsen
or mitigate issues such as job starvation, increased queue time, and de-
creased system utilization. Since the impact of scheduling techniques is
dependent on the workload of a supercomputer, this research proposes to
analyze various scheduling disciplines on a given workload. By simulat-
ing HPC system, for any given workload, we can find the paradigm that
yields the best performance, i.e. minimizing the wait time of jobs in the
queue while maximizing resource utilization. Furthermore, given a fixed
configuration of a HPC system, this research can be used to determine
an appropriate workload that optimizes the system’s performance. The
development and implementation of such complex simulation framework
for HPC does not yet exist in HPC’s literature. The efficiency of the
proposed simulation framework is illustrated through simulation results
of performance measures such as average queuing time, average number
of jobs in the queue, and system utilization. These results are verified by
a developed mathematical model for job load characterization.

Keywords: queuing disciplines, job load characterization model, dis-
crete event system simulation, average queuing time, utilization.

1 Introduction

As HPC (supercomputers) systems are extensively employed for heavy compu-
tational problems throughout heterogeneous environments, the scale and com-
plexity of applications raises the issue of capacity planning. A cardinal aspect
of efficiency is the job scheduler in any HPC systems. The job scheduling tech-
niques can worsen or mitigate issues such as job starvation, increased queue

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 126–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Capacity Estimation in HPC Systems: Simulation Approach 127

Fig. 1. High Performance Cluster Computing (HPCC) system overview

time, and decreased system utilization. Scheduling is a key concept in dealing
with challenges such as capacity planning. The queuing algorithms implemented
in the job scheduler can drastically change the performance of a supercomputer,
in particular the CPU utilization and the wait time of a job. A software en-
hancement in the scheduler can obviate a hardware expansion by maximizing
the utilization of the current system and improving its response time.

Figure 1 offers an overview of an HPC environment. Each job submitted allo-
cates a number, n, of processors (from computing nodes) on which the job will
run. The user decides this number when a job is submitted. It could be said that
each job runs on its own partition of n processors [3]. An arriving job that does
not find resources available to execute immediately will be placed in a queue.
Wait time is the time that the job spends in the queue, and it varies depending
on factors such as job priority, current load on the system, resources available,
etc. [5]. Turnaround time is the total time elapsed between the submission and
completion of a job; thus, it results from adding the wait time and the execu-
tion (processing) time. The queue is controlled by the supercomputer scheduler
whose decision-making is based on the scheduling algorithm implemented; hence,
various combinations of job parameters and scheduling algorithms yield different
wait times and resource utilization percentages.

A brief survey of scheduling algorithms is presented in [5]. Even though most
schedulers operate in space-mode sharing (jobs run on separate partitions which
become available only after the job execution is completed), several scheduling
algorithms are used in both commercial and open source schedulers. The most
common and simple space-sharing algorithms are First In First Out (FIFO),
Shortest Job First (SJF), and Longest Job First (LJF). FIFO executes jobs in
the order in which they arrive in the queue. It is implemented easily, but wastes
a lot of time and resources if the job load is high in the system. SJF and LJF
periodically sort the incoming jobs in the queue and push the shortest, respec-
tively longest jobs at the top of the queue. Obviously, SJF delays the execution
of large jobs, while LJF yields a poor turnaround time. These algorithms can be

128 A. Anghelescu et al.

enhanced by combining them with more advanced techniques such as backfill.
The backfill technique improves space-sharing scheduling by trying to fit small
jobs into gaps (i.e. idle compute nodes). When filling the gaps, the sequence
of jobs previously scheduled is not altered. If job j which is at the top of the
queue cannot start because the n processors that it asks for are not available,
the scheduler looks back into the queue for the first job that could start execut-
ing with the current resources available. More scheduling algorithms or queuing
techniques are discussed [2] and [13].

Reference [7] reveals that data gathered over 11 years of operating parallel su-
percomputers (including the Intel iPSC/860, Intel Paragon, Thinking Machines
CM-5, IBM SP-2, and Cray Origin 2000) show three distinct trends: scheduling
using the banal FCFS first-fit policy results in 40-60% utilization; employing
more sophisticated dynamic-backfilling scheduling algorithms improves utiliza-
tion by approximately 15% (resulting in 70% system utilization); and reducing
the maximum allowable job size increases utilization. However the conclusion of
[7] is that the goal of achieving 100% utilization is currently unrealistic and that
the trends remain surprisingly consistent.

Advanced schedulers were developed to effectively operate in various HPC
environments and efficiently adapt to the system’s workload; two of the most
popular and successful ones are dynP [12] and Maui [6]. The dynP scheduler
dynamically changes three different queue disciplines (SJF, FCFS, and LJF), for
incoming jobs, based on their job type characterizations. The implementation of
a self-tuning scheduler with dynamic policy switching is continuously revised, as
the boundaries of switching policies, and the fairness or unfairness of the decider,
can be problematic. Maui [6] possesses an internal simulator that is capable of
analyzing workload, resource and policy change impacts. In [5], Maui was touted
as one of the better job schedulers because it possessed all the characteristics of
a good job scheduler. Since the Maui job scheduler possesses an internal HPC
system simulator, it is dependent on logs in order to maximize the scheduler
performance. This means, it needs to have a running HPC system to make
decisions.

Computer simulations have proven to be an excellent method of experienc-
ing modifications to a real system in virtual time. Simulation has effectively
been used to manage, evaluate and even predict a variety of systems including
capacity planning and performance from mainframes to client servers [9], manag-
ing harbor container terminal [10], computer network reliability with congestion
[8], and computer capacity planning [11]. In [4] the authors made an attempt
to build a simulation framework for HPC systems using OMNeT++ 4.0. The
workload for the simulation is modeled from trace log files of a HPC system. The
simulation’s purpose is to validate its results with the trace log files; however,
key information is missing for the simulated HPC system, making the validation
uncertain to some extent.

This researchuses a simulationbased approach to analyze scheduling techniques
in HPC based on a givenworkloadof the system. Using OMNeT++3.x, an extensi-
ble, modular, component-basedC++ simulation library and framework [1], a HPC

Capacity Estimation in HPC Systems: Simulation Approach 129

system will be simulated. In order to analyze the impact of scheduling techniques
on performance, a varying configuration will be tested on a determined workload.
The following four scheduling algorithms will be tested:

1. FIFO with backfill (no priority),
2. FIFO with priority and preemptive backfill,
3. SJF (no priority), and
4. LJF (no priority).

The impact on performance of the four scheduling algorithms will be measured
by comparing the average wait times of jobs (queue time), the average number of
jobs in the queue(queue length), resource utilization, and throughput(the ratio
of jobs generated to jobs scheduled or completed). The strong aspect about
this simulation is that the setup is dynamic. The results will show not only
the present state of the system, but what happens as the configuration of the
system is changed (i.e., changing the number of nodes, changing the policies).
For systems that use a dynamic scheduler(switching between more policies), the
simulation could decide when and what scheduling policies should be switched.

2 Job Load Characterization

This section presents the mathematical model for the job load characterization,
which will help predict/verify the results from the simulations.

Let C and c denote the total number of clients, and the total number of CPUs
of the HPC, respectively. For i = 1, 2, . . . , C, let

– the random variable X ia
i denote the inter-submission times of jobs submitted

by client i to the HPC with mean E[X ia
i];

– the random variable Xp
i denote the processing time distribution of the jobs

submitted by client i with mean E[Xp
i];

– the random variable Xcpu
i denote the number of CPUs requested by jobs

that are submitted by client i with mean E[Xcpu
i];

– the ρi denote the average load of the HPC due to jobs submitted by client i.

By treating a job from client i asking for p CPUs as p jobs, the load ρi can be
given by

ρi =
E[Xcpu

i]E[Xp
i]

cE[X ia
i]

, i = 1, 2, . . . , C. (1)

We note that 1/E[X ia
i] gives the average submission rate of jobs of client i.

The total load ρ of the HPC offered by jobs of all the clients is then given by

ρ =
C∑

i=1

ρi =
1
c

C∑
i=1

E[Xcpu
i]E[Xp

i]
E[X ia

i]
. (2)

We note that ρ is independent of the queuing discipline adapted by the job
scheduler.

130 A. Anghelescu et al.

3 Simulation Setup

OMNeT++ is used to build and run the HPC simulation software. OMNeT++
is an open source, extensible, and highly modular C++ simulation library and
framework. OMNeT++ is gaining popularity as a simulation platform in the
scientific community, and has a rather large user group. It is supported on all
platforms, provides a rather thorough documentation, and generates a GUI for
simulation execution. The GUI can be useful for visualizing the processes and de-
bugging. A quintessential aspect of OMNeT++ is that the architecture is based
on components, which are programmed in C++ and then assembled into mod-
ules using a high-level language(NED). It is primarly used for building network
simulations, but we took advantage of its modularity and available libraries, and
applied them to HPC. Because it is not specifically intended for HPC simula-
tions, one of the challanges in using OMNeT++ was to adapt it to our project.
The powerful simulation libraries and C++ were really important for our design.
We currently implemented a very simple configuration for the HPC simulator,
but for further development, OMNeT++ supports additional complexity such
as switching, channel delays, latency, etc.

To make the simulation, the HPC system is abstracted into three modules.
The client module, the job scheduler, and the node module. The client module
is an array of individual clients which simulates the workload of the system.
Each client has its own characteristic parameters such as job generation rate,
processing time, range of nodes requested, any priority assignment associated
with the job, and an unique ID. To simulate the workload we used distributions
such as exponential for the job generation rate and processing times, and discrete
uniform distribution for priority assignment and node request.

The job scheduler module encompasses the job queue, but also deals with
communicating with the clients and nodes, and monitors the status of the com-
pute nodes (busy or idle). The implementation of the job queue depends on the
queuing discipline chosen. The first is FIFO with backfill, the second algorithm
is FIFO with backfill and priority. In this case, each client must assign prior-
ity to its job. High-priority jobs can prevent lower-priority jobs from running
if resources to run the high-priority jobs are not available. In some cases, re-
sources reserved for high-priority jobs can be used to run low-priority jobs when
no high-priority jobs are in the queue. This scheduling algorithm is sometimes
called preemptive backfilling. The other two scheduling disciplines are SJF and
LJF, where the job is sorted according to the number of nodes it is requesting,
at insertion time in the job scheduler’s queue.

The node module is an array of nodes, which represents the computing nodes of
the HPC. For simplicity purposes, each node represents exactly one CPU. Statis-
tics concerning the nodes utilization are collected in the scheduler module, and
wait time is collected in the client module. The wait time is collected when the
job gets out of the wait queue and it is sent to the nodes. Note that the wait time
of the jobs that are still in the queue when the simulation ends will not be collected.

Capacity Estimation in HPC Systems: Simulation Approach 131

Each discipline will be tested on the simulated HPC system with a dynamic
number of nodes. Overall there are 32 runs for each discipline. Run 1 is a HPC
system with 32 nodes, run 2 with 64 nodes, run 3 with 96 nodes, run 32, respec-
tively, with 1024 nodes. By varying the number of nodes, we can better analyze
the tradeoff between wait time and resource utilization, and see the impact of
the scheduling techniques on performance. There are 10 clients (this number
stays fixed), each client having a different workload configuration from the oth-
ers. Each run is five minutes long; hence, each simulation will have 32 runs of 5
minutes (wall clock time; in simulation time it can be days, months, or years)
each.

In the simulation, we consider 10 clients and hence C = 10. The client i
submits jobs according to an exponential distribution with an average inter-
submission time of tiai minutes. Each job of client i requests a number of CPUs
based on a integer (discrete) uniform distribution over (ai, bi) with ai < bi.
The processing times of jobs of client ci is exponentially distributed with an
average processing time tpi minutes. Therefore, X ia

i is an exponential random
variable with E[X ia

i] = tiai , Xcpu
i is an integer uniform random variable with

E[Xcpu
i] = ai+bi

2 , and Xp
i is an exponential random variable with E[Xp

i] = tpi .
Hence by (1), we have

ρi =
tpi (ai + bi)

2ctiai
, i = 1, 2, . . . , 10, (3)

and by (2), we have,

ρ =
1
2c

10∑
i=1

tpi (ai + bi)
tiai

. (4)

The values of the parameters tiai , tpi , ai and bi that are used in the simulation are
tabulated in Table 1. Using these values, the total load on the HPC by all the
clients is given by

ρ =
10∑

i=1

ρi =
510
c

=
510
c
× 100%.

That is,

ρ

{≥ 100%, if c ≤ 510,
< 100%, if c > 510.

Hence, theoretically in all the simulation results, after 510 CPUs, the load of the
HPC drops below 100% and hence the average queuing time Wq and average
number of jobs Lq in the queue should drop to zero and ultimately become zero
as c increases. For the same reason, the throughput should reach 1 because all
arriving jobs are processed because the system is under loaded for c > 510. This
theoretically proven fact is exhibited by all our simulation results in Section 4
which validates the developed simulation framework’s efficiency. We recollect
that the load ρ of the HPC is independent of the queuing disciplines used by the
job scheduler.

132 A. Anghelescu et al.

Table 1. Parameter values used in the simulation

Client i tia
i (minutes) (ai, bi) tp

i (minutes) ρi

1 2.0 (1, 5) 4.0 6/c

2 4.0 (6, 10) 8.0 16/c

3 6.0 (11, 15) 12.0 26/c

4 8.0 (16, 20) 16.0 36/c

5 10.0 (21, 25) 20.0 46/c

6 12.0 (26, 30) 24.0 56/c

7 14.0 (31, 35) 28.0 66/c

8 16.0 (36, 40) 32.0 76/c

9 18.0 (41, 45) 36.0 86/c

10 20.0 (46, 50) 40.0 96/c

4 Simulation Results

In this section, we discuss the results generated from the output of the simula-
tions. The graphs reflect the average waiting time Wq in the queue, job through-
put T , the average length Lq of the queue, and system utilization.

Figure 2 illustrates the wait time of jobs in the queue, for each discipline.
As it was mentioned in the previous section, it is important to note that the
wait time is collected when the jobs get out of the queue. Thus, if the jobs
never get out of the queue by the time the simulation ended, the time that
they spend in the queue will not be counted. With this in mind, we plotted the
throughput, Figure 3, and the average number of jobs in the queue, Figure 4,
for each discipline. If the wait time is low, but the throughput is also low(hence,
the length of the queue is relatively high), the wait time should be, in fact, very
high. This is the case of clients 5-10, in Figure 2(a) for the node range 32-160.

Observing the graph in Figure 2(a), the wait time for the FIFO with backfill,
we can see that the smaller the job is, the lower the wait time. Because this
discipline uses backfilling, the smaller jobs are always favored, while the larger
ones suffer, which was intuitive. In Figure 2(b) we introduce priority, which
makes the results far less intuitive. Since priority is assigned uniformly for each
job, the results are more balanced. Although backfill is still implemented, the
smaller jobs are regulated by priority, and thus, will be prevented from jumping
ahead of higher priority jobs. In this case, only clients 7-10 are completely blocked
in the queue, but only for the configuration with 32 nodes (some clients asking for
more nodes than are initially available). Introducing priority slightly increases
the wait time of small jobs, but drastically decreases the wait time of larger
jobs. Hence, on average, the overall wait time of clients in the module that uses
uniform priority(Figure 2(b)) is much less than the one without (Figure 2(a)).

Figures 2(c) and 2(d) depict the scenarios for SJF and LJF. In Figure 2(c),
since the jobs are sorted at insertion, the small incoming jobs will jump ahead of
larger ones, and continually use up the resources. This results in job starvation
for the larger jobs. For LJF it is vice versa. The wait time is so low for most

Capacity Estimation in HPC Systems: Simulation Approach 133

32 160 288 416 544 672 800 928 1024
0

1

2

3

4

5

6
x 10

6

Number of nodes

W
q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10
All Clients

(a)

32 160 288 416 544 672 800 928 1024
0

2

4

6

8

10

12

14
x 10

5

Number of nodes

W
q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10
All Clients

(b)

32 160 288 416 544 672 800 928 1024
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of nodes

W
q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10
All Clients

(c)

32 160 288 416 544 672 800 928 1024
0

2

4

6

8

10

12

14

16
x 10

5

Number of nodes

W
q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10
All Clients

(d)

Fig. 2. Average wait time in the queue for each discipline

clients in SJF and LJF because, because the larger, and respectively smaller,
jobs never get out of the queue. It is evident however, that around 500 nodes,
the wait time of all disciplines approaches 0 (the system resources have outgrown
the load on the system).

Analyzing the throughput of jobs in Figure 3 reveals the behavior of jobs in
each discipline. In Figure 3(a) small jobs start out with a good throughput, while
large jobs have 0 throughput. The smaller the client, the better throughput. This
trend remains consistent for FIFO with backfill, and it is also the case of SJF
(Figure 3(c)). However, in FIFO with backfill, all jobs reach a better throughput
faster, and it is, thus, a more efficient policy for the given workload. LJF follows
the reverse trend of SJF and FIFO with backfill - the larger the jobs, the better
the throughput. This policy is evidently inefficient for this configuration of the
system (large jobs are not predominant) since half of the clients (1-5) have a
throughput of 0, even at 300 nodes. The throughput for FIFO with backfill and
priority (Figure 3(b)) is significantly different than the others. It is clear here
how the uniform priority balances the job scheduling. All job types have similar

134 A. Anghelescu et al.

32 160 288 416 544 672 800 928 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

T

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(a)

32 160 288 416 544 672 800 928 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

T

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(b)

32 160 288 416 544 672 800 928 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

T

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(c)

32 160 288 416 544 672 800 928 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

T

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(d)

Fig. 3. Throughput for each discipline

throughput during the simulation. Around 500 nodes, all jobs reach a throughput
of 1, which means that there are now enough resources available for all jobs to
be completed.

Figure 4 shows the average length of the queue, for all job disciplines. This
helps to visualize what is happening in the queue for each discipline. It is impor-
tant to keep in mind that the smaller clients have a higher job generation rate
than the larger clients. Actually, the job generation rate decreases as the jobs
get larger. Figure 4(b) reveals that the length of the queue is larger for smaller
clients. Since we know that all jobs in this discipline have similar throughput, the
larger queue length for smaller clients must mean that there are more smaller jobs
being generated, thus currently in the system, than larger jobs. In Figure 4(a),
the smaller jobs have a shorter queue because the discipline favors them, and
even though they are generated faster, they are also scheduled almost immedi-
ately. This tendency is present also for SJF in Figure 4(c), and the reverse for
LJF in Figure 4(d).

Capacity Estimation in HPC Systems: Simulation Approach 135

32 160 288 416 544 672 800 928 1024
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of nodes

L q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(a)

32 160 288 416 544 672 800 928 1024
0

2000

4000

6000

8000

10000

12000

14000

Number of nodes

L q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(b)

32 160 288 416 544 672 800 928 1024
0

2000

4000

6000

8000

10000

12000

Number of nodes

L q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(c)

32 160 288 416 544 672 800 928 1024
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of nodes

L q

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9
Client 10

(d)

Fig. 4. Average number of jobs in the queue for each discipline

It is obvious that all four disciplines, for all the three performance measures,
are convergent around 500 nodes. The wait time and queue length are rapidly
decreasing to 0, and the throughput reaches 1. This reveals consistency, because
a wait time of 0 means that the jobs generated are basically scheduled immedi-
ately, which means that the queue length is close to 0, and the throughput is 1
(every job generated is scheduled or completed during the simulation). Further-
more, the utilization graph in Figure 5 also shows that around 500 nodes, the
resource utilization begins to drop exponentially. Before 500 nodes, the resource
utilization for SJF and Priority is somewhat lower (90%) than FIFO with back-
fill (100%). The utilization for LJF starts high because for low resources, the
large jobs fill up all the resources. But as the number of nodes increases, the
utilization of the system is lower because the large jobs are blocking access to
resources. In this case, some jobs are too large to be scheduled with the avail-
able nodes, and they don’t allow smaller jobs to fill in. Utilization increases again
when enough resources permit all the large jobs to start and allow smaller ones
to start as well.

136 A. Anghelescu et al.

32 160 288 416 544 672 800 928 1024
40

50

60

70

80

90

100

Number of nodes

H
P

C
 U

til
iz

at
io

n
(%

)

FIFO−BF
Priority
SJF
LJF

Fig. 5. HPC utilization

5 Conclusions and Future Work

The results of the simulation show how each queuing technique impacts perfor-
mance and resource utilization. For the given configuration, it seems that FIFO
with backfill and priority optimizes the system performance, yielding the best
wait time and a moderate throughput, while utilizing resources in a better or
similar way than other policies. The average wait time for SJF and LJF is thrown
off by the numerous jobs that have a wait time of 0, when in fact, the wait time
should be much higher. LJF is by far, the worst fit for the system. FIFO with
backfill and SJF run close, but SJF offers too much favoritism to smaller jobs.

As the simulation results show, and the mathematical model validates, after 510
nodes, the resources outgrown the load of the system. This information can be use-
ful for capacityplanning purposes andhardware expansion. For the givenworkload
trend, the 500-600 nodes seems an optimal choice for resource configuration.

These results only offer an insight into the capabilities of such complex sim-
ulation framework. The simulation can be used with any system workload that
is modeled mathematically, and can be modified to fit various hardware config-
urations. For random workload configurations the simulation can be validated
mathematically, and for a real workload configurations, the simulation can be
validated by the logs that were used to model the workload.

Future work will include further analysis on the accuracy of the simulator. The
goal is to compare the results obtained in the the simulation with ones obtained
in the real environment. This can be addressed by configuring the simulator to
be as close as possible to the HPC system that would be used to run the results,
and modeling a workload from the HPC logs.

More work can be directed towards increasing the complexity of the scheduling
algorithms (adding more parameters to the jobs such as threshold for the queuing
time, memory limit, combining scheduling disciplines, etc.), and developing a
comprehensive mathematical model to model an entire HPC system.

Capacity Estimation in HPC Systems: Simulation Approach 137

Acknowledgments

This work is based in part, upon research supported by the University of Central
Arkansas, National Science Foundation (grant nos. CNS-0619069, EPS-0701890
and OISE 0729792), Grant CRI CNS0855248, Grant EPS0701890, Grant MRI
CNS0619069, and OISE0729792. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

References

[1] OMNeT++ (2010), http://www.omnetpp.org
[2] Bansal, N., Harchol-Balter, M.: Analysis of srpt scheduling: Investigating unfair-

ness. ACM SIGMETRICS Performance Evaluation Review 29(1), 279–290 (2001)
[3] Cirne, W., Berman, F.: Adaptive selection of partition size for supercomputer

requests. In: Feitelson, D.G., Rudolph, L. (eds.) IPDPS-WS 2000 and JSSPP
2000. LNCS, vol. 1911, pp. 187–207. Springer, Heidelberg (2000)

[4] Hurst, W.B., Ramaswamy, S., Lenin, R.B., Hoffman, D.: Development of gener-
alized hpc simulator. In: Proc. of Acxiom Laboratory for Applied Research 2010
(2010)

[5] Iqbal, S., Gupta, S.R., Fang, Y.-C.: Planning considerations for job scheduling in
hpc clusters. Dell Power Solutions Magazine, 133–136 (February 2005)

[6] Jackson, D.B., Jackson, H.L., Snell, Q.O.: Simulation based HPC workload anal-
ysis. In: Proc. of International Parallel and Distributed Processing Symposium
(2001)

[7] Jones, J.P., Nitzberg, B.: Scheduling for parallel supercomputing: A historical
perspective of achievable utilization. In: Feitelson, D., Rudolph, L. (eds.) JSSPP
1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 1–16. Springer,
Heidelberg (1999)

[8] Lui, H.-L., Shooman, M.L.: Simulation of computer network reliability with conges-
tion. In: Proc. of Annual Reliability and Maintainability Symposium, pp. 208–213
(1999)

[9] Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Capacity Planning and Perfor-
mance Modeling: From Mainframes to Client-Server Systems. Prentice-Hall, Up-
per Saddle River (1994)

[10] Merkuryev, Y., Tolujew, J., Blumel, E., Novitsky, L., Ginters, E., Viktorova, E.,
Merkuryeva, G., Pronins, J.: A modelling and simulation methodology for man-
aging the riga harbour container terminal. Simulation 71(2), 84–95 (1998)

[11] Riesen, R.: Simulating a supercomputer. Presentation, Sandia National Labora-
tories, Wildhaus, Switzerland (March 2008), http://sos12.epfl.ch/riesen.pdf

[12] Streit, A.: The self-tuning dynp job-scheduler. In: Proc. of the 20th International
Parallel and Distributed Processing Symposium, pp. 1530–2075 (2002)

[13] Thanalapati, T., Dandamudi, S.: An efficient adaptive scheduling scheme for dis-
tributed memory multicomputers. IEEE Transactions on Parallel and Distributed
Systems 12(7), 758–768 (2001)

http://www.omnetpp.org
http://sos12.epfl.ch/riesen.pdf

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 138–149, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Multi–Granular Lock Model for Distributed Object
Oriented Databases Using Semantics

V. Geetha and N. Sreenath

Dept. of Information Technology, Dept. of Computer Science & Engg.,
Pondicherry Engineering College,

Puducherry – 605014
vgeetha@pec.edu, nsreenath@pec.edu

Abstract. In object oriented databases, transactions may make simultaneous re-
quests to do design time access and runtime access of resources. Concurrency
control on the transactions can be implemented by using Multi granular lock
models. Though several semantics based multi granular lock models have been
proposed in the literature for object-oriented databases, they provide fine granu-
larity of resources for runtime requests. However they have not fully utilized
the semantics of object-oriented concepts to provide fine granularity of design
time requests. In the proposed semantic based multi granular lock model, vari-
ous dependencies of objects are exploited to exercise concurrency control. The
dependencies among objects participating in the system can be inferred through
their relationships such as inheritance, composition etc, with other objects par-
ticipating in the domain. The proposed lock model uses these dependencies in
defining lock modes for design time requests, which will provide fine granular-
ity. It also utilizes these dependencies to provide better concurrency control for
transactions modifying class relationships using Relationship Vectors (RV).

Keywords: Distributed object oriented databases, concurrency control, multi
granular lock model, class relationships, design time requests, run time
requests.

1 Introduction

Object Oriented Database Systems (OODB) is a collection of classes and instances,
where classes and instances are called objects. Multi- Granular Lock Model (MGLM)
is a common technique for implementing concurrency control on transactions using
the OODB.

There are several MGLM proposed in the literature. Gray et al. [1] has defined
MGLM for relational databases. The main advantages of MGLM are high concur-
rency and minimal deadlocks. Using MGLM, transactions can request resources of
different granule sizes varying from coarse granules to fine granules. Intension locks
are used to infer the presence of locked resources at smaller granule level. The lock
modes defined in [1] are S (Shared - Read), X (eXclusive – Write) and SIX (Shared
Intension eXclusive – locks all in S mode but a few of them to be updated alone in X
mode).

 An MGLM for Distributed Object Oriented Databases Using Semantics 139

MGLM was first extended to object oriented databases by Garza and Kim [2] for
ORION. In this paper, MGML was defined for objects related by inheritance and
exclusive composition only. The locks defined in [2] are of granularity of classes
(collection of objects) and objects. Later Kim et al. [3] extended it to all types of
composition (namely shared and exclusive, dependent and independent). In this paper,
apart from the lock modes in Garza and Kim [2], new lock modes like ISOS, IXOS,
SIXOS are added to support shared composition. In Geetha and Sreenath [4], these
shared intension locks are extended to shared inheritance also. In Jun and Gruenwald
[5], concurrency control for runtime requests on inheritance alone is proposed. How-
ever, in [1, 2, 3, 4, 5] compatibility of runtime requests only are considered. A com-
patibility matrix defines the compatibility of a requested lock mode over existing lock
mode on a particular resource.

Due to the continuous evolving nature of distributed systems, a system might re-
ceive both design time requests and runtime requests parallely. The compatibility is
extended to consider design time requests also in Lee and Liou [6]. In [6], new lock-
ing modes like RS (Read Schema) and WS (Write Schema) are added to support de-
sign time requests. A new compatibility matrix has been designed in [6] to support
both runtime requests and design time requests simultaneously. However, the design
time request lock modes are defined in [6] for coarse grain i.e., entire schema only.
The smallest granule in [1, 2, 3, 4, 5, 6] for runtime requests is only up to object
level and all of them have proposed MGLM based on relationships only.

Malta and Martinez [7] proposed commutativity of methods to resolve lock con-
flicts between runtime requests. In [7], the lock modes are defined independent of
object relationships. This paper has claimed to eliminate the burden of determining
commutativity exhaustively for every pair of methods at run time, by determining it
apriori using direct access vectors (DAV). A DAV is a vector defined for every
method, whose field corresponds to each attribute defined in the class on which the
method operates. Each value composing this vector denotes the most restrictive ac-
cess mode used by the method when accessing the corresponding field. The access
mode of any attribute can be one of the three values, N(null), R(read), W(write) with
N < R < W for their restrictiveness. The access vectors are defined for all methods
based on their lock mode on every attribute defined in the class. This paper has also
claimed to reduce locking overhead, lock escalation and deadlocks. Since the most
restrictive lock mode is decided in the beginning itself, lock overheads due to lock
conversions are reduced, and hence deadlock is minimized. However, this paper has
extended concurrency up to attribute level.

In Jun [8], commutativity is further extended to a granularity lower than attribute
level by using break points. Here the DAV of a method is computed as the union of
DAV of all its break points, which improved the concurrency of the system further.
The lock modes of design time requests defined in Jun [8] have been extended to
three smaller granules for every class: - 1. Read/Modify Attributes, 2. Read/ Modify
Methods, 3. Read/Modify Class Relationships. In Saha and Morrisey [9], a self
adjusting MGLM is defined to let the transactions to dynamically choose their granu-
larity from coarse to fine on a particular resource based on the increasing degree of
resource contention.

Though [7, 8, 9] claim to be semantic based MGML, they have not really exploited
the semantics of attributes, methods and class relationships to fully maximize the

140 V. Geetha and N. Sreenath

concurrency of design time requests. They perform better, when the system is stable
with less frequent changes. This paper aims in proposing a MGML, which will im-
prove the degree of concurrency for design time requests and runtime requests by
fully utilizing the semantics of object oriented features.

The organization of the paper is as follows: Chapter 2 explains the contributions of
the related papers. Chapter 3 explains the proposed MGML. Chapter 4 gives informal
proof and chapter 5 concludes the paper.

2 Related Works

In this chapter, semantics related to various types of access conflicts are discussed.
The resource access requests can be runtime requests or design time requests. A typi-
cal runtime request involves execution of methods in classes that will read or alter the
values of attributes in the class. The values of the attributes are mapped on to the
underlying database. The runtime access to a resource can be at class level (involving
all objects) or instance level (involving any one object) based on the property of
methods [11]. A design time request involves reading and modifying the structure of
the system. Since it is OODBMS, the structure is defined by a set of related classes
participating in the domain. The possible conflicts in resource access could be 1.
Among runtime requests, 2. Among design time requests and 3. Between runtime
requests and design time requests.

Since the granularity of runtime requests is already provided up to smallest granule
i.e., attribute level, in Jun [8] by using DAV, we will focus on providing fine granu-
larity for cases 2 and 3 in this paper.

2.1 Conflicts among Design Time Requests

In Garza and Kim [2] and Kim et al. [3], design time requests are not at all allowed.
Lee and Liou [6] require locking the entire OODBMS schema for reading (RS) or
writing (WS) by design time clients. This provides locking of coarse grains only and
hence reduces concurrency. Malta and Martinez [7] defines lock modes RD (Read
Definition) and MD (Modify Definition) to lock every class individually.

In Jun [8], Class definition has been divided into three compartments namely 1.
Reading and Modifying Attributes (RA, MA), 2. Reading and Modifying Methods
(RM, MM) and 3. Reading and Modifying Class Relationships (RCR, MCR).

Locking mode for attributes involves changing the domain of the attribute, or de-
leting the attribute. In Jun [8], there is only one lock mode shared by all the attributes
of a class. At any time, only one attribute can be modified in a class. This lock mode
considers the access conflicts within the class only. It does not consider the conflicts
arising due to the relationship of this class with other classes. However, AAV (Attrib-
ute Access Vector) is defined for every attribute of all classes to maintain its lock
status. Using this, simultaneous access to more than one attribute is facilitated. This
paper offers a trade off between limited concurrency of accessing only one attribute at
a time against maintenance overhead of AAV for all attributes of every class.

By the semantics of object-oriented concepts, Sub classes can both read as well as
modify their attributes, but they can only read base class attributes. Only the base

 An MGLM for Distributed Object Oriented Databases Using Semantics 141

classes can modify the base class attributes. This theory can be extended to composition
also. The attributes defined in component class can be modified only in component
classes where as composite objects can only read them. In simple words, modification
is possible only in the class in which the attributes are defined. Therefore, the attributes
from the base classes and component classes can be viewed as adapted attributes in the
sub class or composite class. So in Jun [8], adapted attributes and attributes defined in
this class cannot be accessed parallely, even though they are mutually exclusive without
AAV. It also does not define the concurrency control of modifying an attribute in
base class (component class) while reading the same attribute in sub class (composite
class).

In Jun [8], there is only one lock mode for all the methods defined in a class. At
any time, only one method can be modified in a class. This lock mode considers the
access conflicts of methods within the class only. It does not consider the access con-
flicts arising due to the inheritance and composition relationships of this class with
other classes. However, MAV (Method Access Vector) is defined for every method to
maintain its lock status. Using this, simultaneous access to all methods is facilitated.
This paper offers a trade off between limited concurrency of accessing only one
method at a time against maintenance overhead of MAV for all attributes of every
class.

By object oriented semantics, modifying methods typically includes modifying the
signature of the method, modifying its implementation and modifying its location i.e.,
moving a method from one class to another class in the class hierarchy. Modifying the
signature means modifying the name of the method, adding or deleting the input pa-
rameters, changing their order and changing the returning type. It can be noted that
modification of method is independent of reading and modification of attribute as
they are to done by acquiring different lock modes and cannot be done at the same
time. In Jun [8], all the operations related to modification of methods are locked in the
same mode.

For example, consider figure 1. A1 is an attribute of base class and it is inherited in
subclass. B1 is sub class attribute. M1 and M2 are methods of base class. In this M1 is
inherited as it is in sub class (called as template method [10]), whereas M2 is overrid-
den in subclass (called as hook method [10]). M3 is a method defined in subclass. By
Jun [8], locking of all types of attributes i.e., A1 and B1 are defined by a single mode
and locking of all methods i.e., M1, M2 and M3 are defined by a single mode in the
subclass. The semantics of each of these attributes and methods are not utilized to
maximize the concurrency.

There are certain aspects that can be inferred from fig 1. Attribute A1 can be read
in both base class as well as sub class. However, modifying A1 is possible only in
base class. It is worth noting that while base class is modifying A1, no request should
be allowed in sub class to read A1 to maintain consistency. In sub class, attribute B1
can be read or modified. So the attributes in any class can be categorized into two
categories namely, 1. attributes adapted from other classes and 2. attributes defined in
the same class.

142 V. Geetha and N. Sreenath

Fig. 1. Locking in Inheritance

In fig 1, M1 is a template method whose signature or implementation can be modi-
fied only in base class. It can be only read in subclasses. M2 is a hook method. There-
fore, its signature is modifiable only in base class and implementation is modifiable in
both base class and subclass. This means hook methods can be overloaded and can
have different implementations in base class and sub class. In Jun [8], MM is the only
mode to handle all these method types. Similarly, signature and implementation of
methods defined in component class cannot be modified in composite class. They are
available only for reading in the composite class. Hence, they can be treated similar to
template methods of inheritance.

Modifying class relationship involves adding or deleting a class from the class hi-
erarchy, moving its location in the class hierarchy. In Jun[8], class relationship defini-
tion includes name of the class, all attributes and methods defined in the class, set of
super classes and sub classes of the class. This is not complete definition of class
relationships. Banerjee et al. [13] categorizes modification of class relationships into
two types: 1. changing an edge 2.changing a node.

Changing an edge means changing the relationships between any two classes in the
class diagram. This includes making a class as parent class (component class) to a sub
class (composite class), removing a class from the list of parents (component classes)
of a class and changing the order of parent classes of a class.

Changing a node includes adding a new class, dropping an existing class and
changing the name of a class. In Jun [8], at any time only one change in class relation-
ship is allowed at a time in every class. It does not take into account the details relat-
ing between classes. I.e., it considers intra class relationships only and excludes inter
class relationships. In [6, 7], no other runtime requests or design time requests are
allowed. i.e., the entire class diagram is locked and indirectly the entire database is
locked. So there is no lock mode defined in the literature to read or modify class
relationships as defined in Banerjee et al. [13].

2.2 Conflicts between Runtime Requests and Design Time Requests

In object oriented databases, all objects in a class share the implementation of all meth-
ods defined in the class. Though storage space is allotted separately to attributes of all
objects in a class, their method implementation is usually shared by all objects. Hence, it
implies that while one or more objects simultaneously share the implementation of

 An MGLM for Distributed Object Oriented Databases Using Semantics 143

a method for reading and execution, if design time clients try to modify the implementa-
tion, the consistency of the system will be affected.

3 Proposed Scheme

The proposed scheme mainly aims in providing fine granule locking for design time
requests. This will not only improve concurrency between design time requests, but
will improve concurrency between runtime requests and design time requests also.
The principles based on which concurrency is improved between design time requests
and between runtime requests and design time requests are discussed in the following
sections.

3.1 Concurrency among Design Time Requests

The proposed scheme defines the lock modes with following objectives:

1. Exploiting the features of object oriented systems to identify mutually exclusive
operations in the system.

2. Maximize concurrency by providing rich set of locking modes.
3. Provide compatibility matrix independent of domain or specific instances, so

that it does not require any apriori analysis.
4. Impose concurrency control wherever consistency is affected, due to semantics

of object oriented concepts.

Based on section 2.1, the attributes are classified into Adapted Attributes (AA) and
Attributes (A). Hence separate lock modes can be defined for reading adapted attrib-
utes(RAA) and reading and modifying sub class attributes (RA,MA). Since adapted
attributes cannot be modified in this class, lock mode for modifying these adapted
attributes is not available in this class.

Szyperski [12] says that the signature i.e. method definition is independent of
method implementation. This concept is called as separation of concerns. In object
oriented environment, the implementation of a method can be modified any number
of times. As long as its definition does not change, the clients need not be informed
about the change in implementation. The implementation of methods is usually modi-
fied to provide better service to clients. However, when the signature is changed, the
clients need to be informed, as they are going to avail this service only by calling in
this format. In fact, the signature is viewed as a contract between client and server. So
lock mode for method is split into Method Signature (MS) and Method Implementa-
tion (MI) in the proposed scheme.

Based on section 2.1, the signatures also called as definitions of methods in base
classes and component classes are separately maintained in the class. Hence separate
lock modes can be defined for reading signatures of adapted class methods (RAMS)
and for reading and modifying sub class methods(RMS,MMS). Since signatures of
methods in adapted class cannot be modified in this class, lock mode for modifying
the signature of these adapted methods is not available in this class.

Modification of template methods of inheritance and methods in component
classes is possible only in respective classes and is bound to the entire class hierarchy.

144 V. Geetha and N. Sreenath

However, Hook methods are overridden in sub classes. Hence, their implementation
in base class and subclasses can be independently modified without affecting the
other implementations. Hence, MI is further split into Adapted Method Implementa-
tion (AMI) and Method Implementation (MI) in the proposed scheme. Therefore,
implementation can be read or modified by lock modes (RAMI, RMI, MMI). There
is only read mode available for adapted method implementations. MMI includes
modification of hook methods and methods defined in this class.

However, when transactions request to modify adapted attributes in the respective
classes where they are defined and try to read them in the class where they are
adapted, should not be allowed to maintain consistency. This is applicable to modifi-
cation of signatures and implementation of methods too to maintain consistency.
Hence, the compatibility of lock modes on these attributes, signatures and implemen-
tations of these methods at both the classes where they are defined and where they are
read, need to be checked to maintain consistency. Table 1 defines the compatibility
matrix defined for classes. Table 2 defines the compatibility matrix for classes where
the attributes and methods (signature and implementation) are defined against where
they are adapted, where Y means two methods commute always and ∆ means that the
two methods commute only when they access disjoint portions of an object. The hier-
archy of granules in design time requests in Malta and Martinez [7], Jun [8] and pro-
posed scheme can be summarized as given in fig 2.

(a) Malta & (b) Jun Scheme (c) Proposed Scheme
Martinez Scheme

Fig. 2. Hierarchy of granules of design time requests

The semantics of the various modes defined are as follows:

1. RAA – Read Adapted Attributes – Read attributes defined in base class and com-
ponent class adapted in to this class
2. RA – Read Attribute – Read attributes defined in this class.
3. MA – Modify Attribute – Modify attributes defined in this class.
4. RAMS – Read Adapted Method Signature – Read signature of template methods
and hook methods adapted from other classes by inheritance and methods from com-
ponent classes.
5. RMS – Read Method Signature – Read signature of methods defined in this class.

 An MGLM for Distributed Object Oriented Databases Using Semantics 145

Table 1. Compatibility matrix among design time requests

Requested mode
 Current mode

RAA RA MA RAMS RMS MMS RAMI RMI MMI RCR MCR
RAA Y Y Y Y Y Y Y Y Y Y ∆
 RA Y Y ∆ Y Y Y Y Y Y Y ∆
 MA Y ∆ ∆ Y Y Y Y Y Y Y ∆
RAMS Y Y Y Y Y Y Y Y Y Y ∆
RMS Y Y Y Y Y ∆ Y Y ∆ Y ∆
MMS Y Y Y Y ∆ ∆ Y ∆ ∆ Y ∆
RAMI Y Y Y Y Y Y Y Y Y Y ∆
RMI Y Y Y Y Y ∆ Y Y ∆ Y ∆
MMI Y Y Y Y Y Y Y ∆ ∆ Y ∆
RCR Y Y Y Y Y ∆ ∆ Y ∆ Y ∆
MCR ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

Table 2. Compatibility matrix between defined class and adapted classes

RAA RAMS RAMI RMI MMI

MA ∆ Y Y Y Y

MMS Y ∆ ∆ ∆ ∆

MMI Y Y ∆ Y Y

Lock mode in adapted class

Lock
mode in
defined
class

6. MMS– Modify Method Signature – Modify signature of methods defined in this
class.
7. RAMI – Read Adapted Method Implementation - Read implementation of tem-
plate methods adapted from other classes by inheritance and methods from compo-
nent classes.
8. RMI – Read Method Implementation - Read implementation of hook methods
adapted from other classes by inheritance and methods defined in this class.
9. MMI – Modify Method Implementation - Modify implementation of hook methods
adapted from other classes by inheritance and methods defined in this class.
10. RCR – Read class Relationship – Reading the definition of class, its relationship
with other classes in the class lattice.
11. MCR– Modify Class Relationship - changing edges or changing nodes in class
diagram.

The modification to class relationships can be modifying edges or modifying nodes as
mentioned in section 2.1. The concurrency control is imposed by using Relationship
Vectors (RV). The relationship vector of a class can be defined as a set of classes that
are subclasses and/or composite classes which are directly or indirectly affected by
any changes on this class. For e.g. in fig 3, classes E and H are sub classes of A by
direct inheritance and indirect inheritance respectively. Then RV [A] includes A,E

146 V. Geetha and N. Sreenath

Fig. 3. Sample class diagram

and H as they are the classes which will be affected by any modification of class rela-
tionship done in A. A is also included to avoid parallel changes on A.

The relational vectors for the sample class diagram in fig 2 are given as follows:

[A] = [A, E, H]; RV [B] = [B, E, H]; RV [C] = [C, F]; RV [D] = [D, G, I];
RV [E] = [E, H]; RV [F] = [F]; RV [G] = [G.I]; RV [H] = [H]; RV [I] = I

From the list of relational vectors, it can be inferred that the dependency is more when
the classes are in the top of the class lattice and hence more no of classes are affected
when their class relationships are modified like A, B, D. In the lowest level of classes
for e.g. H, F and I, only those classes are affected when their class relationships are
modified. Then commutativity of Relational Vectors for the sample diagram can be
constructed as follows:

Table 3. Example of Commutativity of relationship vector for sample class diagram (fig 3)

 A B C D E F G H I
A N Y Y Y N Y Y N Y
B Y N Y Y N Y Y N Y
C Y Y N Y Y N Y Y Y
D Y Y Y N Y Y N Y N
E Y Y Y Y N Y Y N Y
F Y Y Y Y Y N Y Y Y
G Y Y Y Y Y Y N Y N
H Y Y Y Y Y Y Y N Y
I Y Y Y Y Y Y Y Y N

Let us consider the various scenarios to show how jun’s scheme and proposed

scheme works: Let T1 be a transaction arriving at t. Let T2 and T3 be transactions
arriving at t+1. Let us assume that each transaction takes atleast 1 second to complete.
Let class name: [tran-name, lock type (item name)] be the format for design time
request. Item name refers to the name of the attribute or method which is accessed. Let
us consider fig 1. Let the base class be C1.Let its sub class be C2. T1 requests C1. T2
and T3 requests C2. The scenarios will show how the proposed scheme improves con-
sistency wherever necessary and improves concurrency using runtime information.

 An MGLM for Distributed Object Oriented Databases Using Semantics 147

 Jun’s Scheme Proposed Scheme
1. t: C1:[T1,MS(M1)] [T1,MS(M1)] [T1,MS(M1)]

 t+1:C2:[T2,RS(M1)] [T1,MS(M1)] [T2,RS(M1)] [T1,MS(M1)]
// allowed //[T2,RS (M1)] is blocked as M1 is a

template method and consistency is
affected.

2 t: C1:[T1,MA(A1)] [T1,MA(A1)] [T1,MA(A1)]

 t+1:C2:[T2,RA(M1)] [T1,MA(A1)] [T2,RA(A1)] [T1,MA(A1)]
// allowed //[T2,RA (A1)] is blocked as A1 is

an attribute and its consistency is
affected.

3. t: C1:[T1,MI(M1)] [T1,MI(M1)] [T1,MI(M1)]

 t+1:C2:[T2,RAMI(M1)] [T1,MI(M1)] [T2,RAMI(M1)] [T1,MI(M1)]
// allowed //[T2,RAMI (M1)] is blocked as M1

is a template method and
consistency is affected.

4. t: C1:[T1,MI(M2)] [T1,MI(M2)] [T1,MI(M2)]

 t+1:C2:[T2,MI(M2)] [T1,MI(M2)] [T2,MI(M2)] [T1,MI(M2)][T2,MI(M2)]
// allowed // allowed as M2 is a hook method

and it can modify implementations
in base class and subclass
independently.

5. t: C2:[T2,MA(B1)] [T2,MA(B1)] [T2,MA(B1)]

 t+1:C2:[T3,RAA(A1)] [T2,MA(B1)] [T3,RAA(A1)] [T2,MS(B1)][T3,RAA(A1)]
 // allowed only if AAV // allowed by using different lock

 is present modes
6. t: C2:[T2,MS(M3)] [T2,MS(M3)] [T2,MS(M3)]

 t+1:C2:[T3,MI(M2)] [T1,MS(M3)] [T3,MI(M2)] [T1,MS(M3)] [T3,MI(M2)]
 // allowed only if MAV // allowed by using different lock

 is present. modes.
7. t: C2:[T2,RAMS(M1)] [T2,RAMS(M1)] [T2,RAMS(M1)]

 t+1:C2:[T3,MS(M3)] [T2,RAMS(M1)] [T3,MS(M2)] [T2,RAMS(M1)] [T3,MS(M2)]
 // allowed only if MAV // allowed by using different lock

 is present. modes.
8. t: C2:[T2,RAMI(M2)] [T2,RAMI(M2)] [T2,RAMI(M2)]

 t+1:C2:[T3,MI(M3)] [T2,RAMI(M2)] [T3,MI(M3)] [T2,RAMI(M2)] [T3,MI(M3)]
 // allowed only if MAV // allowed by using different lock

 is present. modes.
From fig2,

Let T1 tries to change the relationship R between A and E. T2 moves method M
from G to I.

9. t: A:[T1,MCR(R)] //not defined [T1,MCR(R)]
 t+1:G:[T2,MCR(M)] //not defined [T1,MCR(R)] [T2,MCR(M)]
 //allowed using RV
10. T: A:[T1,MCR(R)] //not defined [T1,MCR(R)]
 t+1:E:[T2,MCR(M)] //not defined [T1,MCR(R)] [T2,MCR(M)]
 // not allowed using RV

148 V. Geetha and N. Sreenath

Using the commutativity of lock modes, a finer granularity lock can be obtained. The
lock granularity in the proposed work is one of MA, MMS, MMI, MCR and RAA,
RA, RAMS, RMS, RAMI, RMI and RCR. Whenever a design time request is made,
table 1 is checked for compatibility. If it is sub class or composite class and lock
mode is one of RAA, RAMS, RMI and MMI or if it is base class or component class
and lock mode is one of MA, MMS, MMI, table 2 is checked for compatibility.

3.2 Concurrency between Design Time Requests and Runtime Requests

The concurrency between instance access and design time access can be maximized
using lock modes defined in table 4. The lock modes defined below and their com-
patibility is possible with the help of AAV, MAV and RV.

Table 4. Commutativity among design time requests and runtime requests

 RAA RA MA RAMS RMS MMS RAMI RMI MMI RCR MCR I
RAA Y Y Y Y Y Y Y Y Y Y ∆ Y
 RA Y Y ∆ Y Y Y Y Y Y Y ∆ Y
 MA Y ∆ ∆ Y Y Y Y Y Y Y ∆ ∆

RAMS Y Y Y Y Y Y Y Y Y Y ∆ Y
RMS Y Y Y Y Y ∆ Y Y ∆ Y ∆ Y
MMS Y Y Y Y ∆ ∆ Y ∆ ∆ Y ∆ ∆
RAMI Y Y Y Y Y Y Y Y Y Y ∆ Y
RMI Y Y Y Y Y ∆ Y Y ∆ Y ∆ Y
MMI Y Y Y Y Y Y Y ∆ ∆ Y ∆ ∆
RCR Y Y Y Y Y ∆ ∆ Y ∆ Y ∆ Y
MCR ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

I Y Y ∆ Y Y ∆ Y Y ∆ Y ∆ ∆

4 Correctness of the Algorithm

As the proposed scheme is based on standard two phase locking, the serializability is
guaranteed [14]. Thus it is sufficient to show that all access conflicts are detected.
Based on the description of the paper, it is clear that the lock modes in the proposed
scheme detects all read- write and write –write conflicts among design time requests
and instance accesses. The smallest granules that can be accessed during design time
within a class are attributes and methods. The proposed scheme checks the compati-
bility against read - write conflicts and write-write conflicts of these granules by
checking the compatibility matrix of the defined class, and the compatibility matrix of
adapted class that could read or write the same granules. Thus, the overhead of using
AAV and MAV are reduced by defining separate lock modes for attributes and meth-
ods in defined class and adapted class. This was overlooked in Jun [8] that could lead
to inconsistency. Similarly access of class relationships in Jun [8] required locking of
entire class diagram. However, in the proposed scheme locking of only dependent
class hierarchy is enough, rather than the entire class diagram.

 An MGLM for Distributed Object Oriented Databases Using Semantics 149

5 Conclusion

In this paper, a concurrency control scheme is proposed on multiple granularities to
provide fine granularity among design time requests and instance accesses. The pro-
posed scheme imposes concurrency control on the write-to-read conflicts between
classes related by inheritance and composition. It minimizes the need for AAV and
MAV used in jun’s scheme by proposing rich set of lock modes based on semantics of
object oriented concepts. Fine granularity on modifying class relationships is pro-
posed by defining relation vectors. The objective of this paper is to provide finest
granularity on all lock modes to provide highest concurrency, however with the over-
head of maintaining AAV, MAV and RV. Future work is aimed at minimizing this
overhead.

References

1. Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, L.I.: Granularity of locks and degrees of
consistency in shared database. In: Nijssen, G.M. (ed.) Modeling in Database management
system, pp. 393–491. Elsevier, North Holland (1978)

2. Garza, F., Kim, W.: Transaction management in an object oriented database system. In:
Proc. ACM SIGMOD Int’l Conference, Management Data (1987)

3. Kim, W., Bertino, E., Garza, J.F.: Composite Objects revisited. In: Object Oriented Pro-
gramming, Systems, Languages and Applications, pp. 327–340 (1990)

4. Geetha, V., Sreenath, N.: Impact of Object Operations and Relationships in Concurrency
Control in DOOS. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN
2010. LNCS, vol. 5935, pp. 258–264. Springer, Heidelberg (2010)

5. Jun, W., Gruenwald, L.: An Effective Class Hierarchy Concurrency Control Technique in
Object – Oriented Database Systems. Elsevier Journal of Information and Software Tech-
nology, 45–53 (1998)

6. Lee, S.Y., Liou, R.L.: A Multi-Granularity Locking model for concurrency control in
Object – Oriented Database Systems. IEEE Transactions on Knowledge and Data Engi-
neering 8(1) (1996)

7. Malta, C., Martinez, J.: Automating Fine Concurrency Control in Object Oriented Data-
bases. In: 9th IEEE Conference on Data Engineering, Austria, pp. 253–60 (1993)

8. Jun, W.: A multi-granularity locking-based concurrency control in object oriented database
system. Elsevier Journal of Systems and Software, 201–217 (2000)

9. Saha, D., Morrissey, J.: A self – Adjusting Multi-Granularity Locking Protocol for Object
– Oriented Databases. IEEE, Los Alamitos (2009)

10. Riehle, D., Berczuk, S.P.: Types of Member Functions in C++, Report (2000)
11. Riehle, D., Berczuk, S.P.: Properties of Member Functions in C++, Report (2000)
12. Szyperski, C., Gruntz, D., Murer, S.: Component Software – Beyond object -oriented pro-

gramming, 2nd edn. Pearson Education, London (2002)
13. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and Implementation of Schema

evolution in Object–Oriented Databases. In: Proc. ACM SIGMOD Conference (1987)
14. Eswaran, K., Gray, J., Lorrie, R., Traiger, I.: The notion of consistency and predicate locks

in a database system. ACM Communications 19(11), 624–633 (1976)

Contention-Free Many-to-Many Communication
Scheduling for High Performance Clusters

Satyajit Banerjee�, Atish Datta Chowdhury�

Koushik Sinha1,��, and Subhas Kumar Ghosh2

1 Honeywell Technology Solutions, Bangalore, India
sinha kou@yahoo.com

2 Siemens Corporate Research and Technologies,
Bangalore, India

subhas.k.ghosh@gmail.com

Abstract. In the context of generating efficient, contention free schedules for
inter-node communication through a switch fabric in cluster computing or data
center type environments, all-to-all scheduling with equal sized data transfer re-
quests has been studied in the literature [1, 3, 4]. In this paper, we propose a
communication scheduling module (CSM) towards generating contention free
communication schedules for many-to-many communication with arbitrary sized
data. Towards this end, we propose three approximation algorithms - PST, LDT
and SDT. From time to time, the CSM first generates a bipartite graph from
the set of received requests, then determines which of these three algorithms
gives the best approximation factor on this graph and finally executes that al-
gorithm to generate a contention free schedule. Algorithm PST has a worst case
run time of O(max (Δ|E|, |E| log (|E|))) and guarantees an approximation fac-
tor of 2H2Δ−1, where |E| is the number of edges in the bipartite graph, Δ is
the maximum node degree of the bipartite graph and H2Δ−1 is the (2Δ − 1)-
th harmonic number. LDT runs in O(|E|2) and has an approximation factor of
2(1 + τ), where τ is a constant defined as a guard band or pause time to elim-
inate the possibility of contention (in an apparently contention free schedule)
caused by system jitter and synchronization inaccuracies between the nodes. SDT
gives an approximation factor of 4 log (wmax) and has a worst case run time of
O(Δ|E| log (wmax)), where wmax represents the longest communication time
in a set of received requests.

Keywords: Many-to-many scheduling, contention free schedule, switch schedul-
ing, switch fabric, cluster computing, data centers, approximation algorithms.

1 Introduction

Recent years have seen cluster computing obtain tremendous impetus for usage rang-
ing from the hosting of web services to general computing applications, scientific and
other computation intensive applications, sensor data processing and video rendering,

� Contributed to this work while at Honeywell Technology Solutions, Bangalore, India.
Email: satyajitb@gmail.com, adattachowdhury@yahoo.com

�� Corresponding author.

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 150–161, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Contention-Free Many-to-Many Communication Scheduling 151

to name a few. A pertinent question in designing a cluster is whether there is any need
of a communication scheduling module (CSM) that can do a better job than the in-built
logic of the switch fabric at generating a contention free communication schedule for a
set of data transfer requests. Such a module would take as input the set of application
communication requests and ideally generate a schedule with optimal latencies.

An alternative to the CSM could be to have the applications generate data exchange
schedules [12, 14] that take into account the communication overheads. However, this
approach is not frequently used due to the difficulties in solving an optimization prob-
lem that considers communication overheads.

Thus, the popular approach involves having the application generate a data redis-
tribution that ignores the communication overheads and then rely completely on the
underlying switched interconnection network using high performance switches [8, 11],
for handling the communications. Unfortunately, even with the availability of high per-
formance switches it is possible that due to the adverserial nature of data forwarding by
some of the compute nodes, messages at the switch are highly contending. Thus, dele-
gating the responsibility of communication scheduling to the underlying switch fabric
may cause sub-optimal latencies, which in turn, may lead to failure to meet the applica-
tion QoS requirements.

Even under an assumption of ideal output queued (OQ) switch with unlimited out-
put buffers, the limited speed of the output links will introduce suboptimal latencies
unless the communications are properly scheduled. An example of this that has been
researched is the regular all-to-all communication on switched interconnects [1, 3, 4].
However, for many cluster applications, an all-to-all communication pattern may not
exist. Instead, their communication patterns can be better described as many-to-many
communication with arbitrary sized data. Examples of such communication patterns
may be found in dynamic load balancing through data/task migration, replication and
dynamic redistribution of virtual machines (VMs) in large data centers and mesh based
numerical simulations/computations [12, 14–16].

1.1 Our Contribution

In this paper, we focus on designing contention free schedules. We propose a communi-
cation scheduling module (CSM) that is capable of generating contention free commu-
nication schedules for many-to-many communication with arbitrary sized data. Towards
this end, we propose three approximation algorithms - PST, LDT and SDT. The CSM
takes as input a set of communication requests, determines the algorithm that gives
the best approximation factor for the given set of requests and then executes that al-
gorithm to generate a contention free schedule. The CSM generates a schedule under
the following two assumptions: i) the contention free schedule generated by the CSM
is executed by the underlying switch fabric without any modification and, ii) the sched-
ule is executed by the switch fabric immediately with no additional delays (e.g., delays
resulting from buffering of the data to optimize messaging overhead). A survey of the
literature shows that these are reasonable assumptions to make for most current IQ, OQ
and CIOQ switches [4, 8, 11].

A significant difference between existing scheduling algorithms for IQ switches and
our problem is as follows: in IQ switching the exact amount of data to be transferred

152 S. Banerjee et al.

is unknown except for some bound on the admissible rate of data arrival on the ports.
However, in our problem the amount of data to be transferred between every pair of
ports is given a priori. With this observation, instead of randomized edge coloring based
techniques [5], we can use deterministic maximal matching based algorithms to gener-
ate optimal schedules. In this paper, we use maximal matching algorithms instead of
costly maximum weight matching (MWM) algorithms [5].

We model the many-to-many communication requirements in the form of a bipartite
graph, and generate communication schedules within a certain approximation factor of
the optimal schedule (having minimum total communication latency). Algorithm Par-
tial Shuffle Transfer (PST) guarantees an approximation factor of 2H2Δ−1, where Δ is
the maximum node degree of the bipartite graph and H2Δ−1 is the (2Δ−1)-th harmonic
number. Algorithm PST has a worst case run time of O(max (Δ|E|, |E| log (|E|))),
where |E| is the number of edges in the bipartite graph. PST is suitable for applica-
tion scenarios where it is unlikely to have a bipartite graph with high value of Δ. Such
requirements may arise, e.g., in the context of redistribution of VMs in physical ma-
chines for dynamic load balancing where the objective is to perform incremental and
regular correction rather than complete re-shuffling. Algorithm Large Data Transfer
(LDT) runs in O(|E|2) and has an approximation factor of 2(1+ τ), where τ is a pause
time constant to eliminate the possibility of contention (in an apparently contention
free schedule) caused by system jitter and synchronization inaccuracies between the
nodes. This may be useful for scenarios where there is a need for inter-node migration
of large volumes of data from time to time (e.g., data/process replication) and/or where
the compute nodes are reasonably well synchronized by some time synchronization
protocol. Algorithm Small Data Transfer (SDT) has been designed for scenarios where
the amount of time required to complete each of the communication requests is small
(e.g., in some mesh based scientific computations). SDT has a worst case run time of
O(Δ|E| log (wmax)) and an approximation factor of 4 log (wmax), where wmax repre-
sents the largest transfer time in the set of received communication requests.

2 System Model

We consider a cluster of compute nodes linked through a fully duplex, switched inter-
connection network (typically forming a LAN) so as to form a connected graph. Each
switch has m number of up-link ports and one down-link port. We assume that the
switches are arranged hierarchically [3, 4, 11] to form a complete m-ary tree. Compute
nodes are connected to the up-link ports of leaf level switches and the communication
scheduling module (CSM) runs on a compute node/device attached to the down-link
port of the root switch. We assume that the compute nodes connected to the leaf level
switches are synchronized with the possibility of some clock drift (e.g., through the use
of the network time protocol).

We make the following assumptions on the configuration of the hierarchically orga-
nized switches:

1. The down-link speed of a switch is m times its up-link speed.
2. The up-link speed of a switch at depth/level i is same as the down-link speed of a

switch at depth (i + 1).

Contention-Free Many-to-Many Communication Scheduling 153

The above assumptions related to the switch fabric configuration ensure congestion free
data transfer from the leaf level switches to the root switch and vice versa. Fig. 1 depicts
a two level hierarchical switched interconnection network with m = 4. The speed of
each up-link of the leaf level switches is denoted by x. Accordingly, the corresponding
down-link speed of the each of the leaf-level switches is 4x. The up-link speeds of the
root switch are 4x and its down-link speed is thus 16x. The CSM is connected to the
root switch through this 16x speed link.

We also make the following two assumptions on the behavior of the in-built logic
of the switch fabric. Typically, these assumptions hold good for almost all the existing
switch variants e.g IQ, OQ and CIOQ [8, 11].

1. The switch fabric executes any contention free data exchange schedule between its
up-link ports without any modification.

2. The switch fabric does not introduce any additional delay (e.g., through buffering
of data until a minimum message size is reached) while executing a contention free
data exchange between its up-link ports.

The above assumptions related to the switch fabric behavior ensure that the individual
switches do not introduce any additional communication overhead in a contention free
data exchange schedule that is presented to the fabric.

16x

x

4x 4x

x x x x x x x x x x x x x x x

4x 4x

Switch 1 Switch 2 Switch 3 Switch 4

Root Switch

Cluster Nodes

CSM

Fig. 1. A 2-level hierarchical switched interconnection tree with m = 4

Note that the above assumptions related to the configuration and behavior of the
switch fabric allow us to abstract the switch fabric as a single switch which gracefully
executes the contention free data exchange computed by the CSM without any modifi-
cation and also without incurring any additional delay. The procedure for generating a
contention free communication schedule using the CSM is as follows:

– Whenever a compute node has a need for data communication, it sends information
about its communication requests up the interconnection tree to the root switch in
the form of (source node, destination node, communication time) tuples.

– Next, the CSM attached to the root switch collects all the tuples and runs an ap-
propriate algorithm to arrive at some optimal contention free schedule assuming
the slowest link speed for each communication request. For this, it computes the
time required for each data transfer request based on the slowest link speed in the
path from the sender to the receiver (e.g., in Fig. 1 the slowest link speed is x for
a path between any pair of nodes). The schedule computation is done either when

154 S. Banerjee et al.

a sufficient number of requests have been received or after a time out period since
the first received request. The schedule is then returned to the root switch. The root
switch then sends this schedule down the tree to the requesting compute nodes.

– The compute nodes upon receiving the schedule from the root switch initiate their
data transmissions according to the schedule.

– The above steps are repeated by the compute nodes and the root switch whenever
there is a new communication request generated at a compute node.

3 Problem Formulation

In a cluster, if a node i needs to send to node j some data that takes t amount of time
to transmit with the available network speed, then we denote such a communication
request as (i, j, t). Now, given a set of communication requests received by the CSM,
our goal is to arrive at a transmission schedule that minimizes the total time required to
migrate all the data in that set. As contention adds on to the incurred communication
latencies, we focus on designing contention free schedules. In this context, the use of
matching based approaches is particularly attractive.

We associate with each node i, two logical ports - an out-port iout and an in-port iin.
We can then view each request of the form (i, j, t) as a data transfer from out-port iout to
in-port jin for duration t. We can thus represent such a set of port-level communication
requests by a weighted bipartite graph G = (O∪I, E, w) where O and I are the sets of
out-ports and in-ports respectively, E is the set of edges and w is a mapping defined as
follows: for each port-level request (iout, jin, t) there is an edge eij ∈ E having weight
w(eij) = t. For rest of the paper, we adopt the following convention: i) we shall refer
to the ports in O and I as vertices and the compute nodes as nodes, ii) we shall use the
terms wij and w(eij) interchangeably. For such a bipartite graph, the idea is to generate
a number (say L) of sets Mk ⊆ E, 1 ≤ k ≤ L such that:

1. M1, . . . , ML decompose an edge eij into L edges as e
(1)
ij , e

(2)
ij , . . ., e

(L)
ij , with

weight w
(k)
ij assigned to edge e

(k)
ij such that:

∑
1≤k≤L

w
(k)
ij = wij , w

(k)
ij ≥ 0.

2. Edges of non-zero weight in each Mk form a matching.

The output is a schedule S = {(M1, T1), (M2, T2), . . . , (ML, TL)} where Tk =
max{w(k)

ij } and 1 ≤ k ≤ L, for executing a set of communication requests received
by the CSM. The values T1, T2, . . . , TL indicate that data needs to be transmitted for a
maximum of Tk amount of time along each edge eij ∈ Mk in the kth step of the sched-
ule. Since each Mk is a matching, the schedule S ensures contention free transmission
of data amongst perfectly synchronized nodes. Thus the total communication time of
data is the sum of all the Tk’s.

Fig. 2 depicts a bipartite graph G representing the input port-level data communica-
tion requests and a possible schedule S consisting of a sequence of matchings M1, M2
and M3 derived from G. Matching M2 is executed after M1 followed by M3. In Fig. 2,
for each matching only edges with non-zero weights have been shown. From Fig. 2 we
see that the edge e43 is present in M1 and M2 with weights w

(1)
43 and w

(2)
43 = w43−w

(1)
43

respectively.

Contention-Free Many-to-Many Communication Scheduling 155

1 Matching M 3

w32

w11
a1

a3

a2

b1

b3

b2

b4a4

w24

w43
(1)

w43
(2)

a1

a3

a2

b1

b3

b2

w12

w21

b4
a4

a1

a3

a2

b1

b3

b2

b4a4

w12

w24

w31w32

w21 w31

w24

w11

w12
a1

a3

a2

b1

b3

b2

b4
a4 w43

Graph G

(b)

Set O Set ISet I Set O Set I

(c)

Set O Set I

(d)

(1)

(1)
(1)

(2)

(3)(2)

(3)

(3)

Set ISet O

Matching M

(a)

2Matching M

Fig. 2. A representative bipartite communication graph G and a possible schedule S derived
from G

Unfortunately, while the resultant schedule is theoretically contention free, in prac-
tice, collisions may still occur due to system related issues associated with (i) clock drift
and (ii) operating system jitter [3, 4, 10]. For tightly coupled systems or solutions with
dedicated hardware for clock synchronization, synchronization overhead due to clock
drift might be insignificant. However, that typically leads to costly solutions. Thus, net-
work time protocol (NTP) [9] based solutions that in general provide relatively coarser
granularity synchronization between the nodes are more popular and for the rest of the
paper we assume the nodes to be using NTP. Hence, to ensure contention free trans-
missions, it is important to take into account the effect of system jitter and partial syn-
chronization between the nodes arising from the use of NTP. Therefore, we introduce a
pause time or guard band (τ) between the execution of two consecutive matchings Mi

and Mi+1 in S. We assume τ to be a constant. The value of τ depends on i) the max-
imum drift of the clocks between two consecutive invocations of NTP and, ii) system
jitter. For the rest of the paper, we use pause time and guard band interchangeably.

A collision-free data migration amongst partially synchronized nodes can be guaran-
teed using the following rule: In each step i, all the vertices having some data to be sent
through the edges of Mi start sending data at their local time t0 +

∑
0<j<i Tj +(i−1)τ

for duration at most Ti, where t0 is the execution start time of schedule S. It is easy to
see that the number of guard bands that need to be inserted in S is one less than the
number of matching in the schedule. For example, in Fig. 2, the total transmission time
corresponding to the schedule S = {M1, M2, M3} is:

T = max (w(1)
11 , w

(1)
24 , w

(1)
32 , w

(1)
43) + max (w(2)

12 , w
(2)
21 , w

(2)
43) + max (w(3)

12 , w
(3)
31 , w

(3)
24) + 2τ,

where τ > 0 is a constant denoting the pause time or duration of each guard band.
Note that, for perfectly synchronized nodes τ = 0. Therefore to minimize the total
communication time we need to find a schedule S that minimizes both the total transfer
time and the total pause time. That is, we can formulate our problem of finding an
efficient communication schedule for data transfer in high performance clusters as:

minimize T =
∑

1≤i≤L

Ti + τ(L − 1) (1)

4 Proposed Solution

For the ease of analysis, we assume that all wij ’s are integers. If wij ’s are not integers
then we first scale the values with respect to the minimum value among the wij ’s and

156 S. Banerjee et al.

then round up to get integer edge weights. Given such integral values of wij ’s in G,
it can be shown that the first component (

∑
Ti) in equation 1 can be optimized by

considering edge coloring of the corresponding bipartite multigraph of G [6, 7]. On the
other hand, optimizing the second component τ(L− 1) is equivalent to minimizing the
number of matching sets that are internally contention free. It can thus be separately
optimized by considering edge coloring of the bipartite simple graph G.

= 222

w = 121

w43

w32

a1

a4

a3

a2

b1

b3

b4

b2

w24

w11
a1

a4

a3

a2

b1

b3

b4

b2

Bipartite Graph G

= 1

= 3

= 2

Set ISet O

= 4

Set ISet O

w

Bipartite Multigraph G’

Fig. 3. A weighted bipartite graph and its equivalent bipartite multigraph

Fig. 3 shows a weighted bipartite graph G = (O∪I, E, w) with integer edge weights
and the corresponding multigraph G′ = (O ∪ I, E′) derived from G. For each edge
eij ∈ E of weight wij , G′ has wij edges between vertices i and j. Thus, if the total
edge weight incident on a vertex i in G is λi, then the vertex degree of i in G′ is λi. For
example, in Fig. 3 the sum of edge weights incident on vertex b1 is 5 (since w11 = 4
and w21 = 1) and hence in G′ the degree of vertex b1 is 5. Similarly, the vertex degree
of a2 in G′ is 5 (since w21 = 1, w22 = 2 and w24 = 1). We denote the maximum vertex
degree of G by Δ and that of G′ by Δw where Δw = maxi (λi). Note that because of
integer edge weights in G, Δw ≥ Δ. For example, Δ = 3 and Δw = 5 in Fig. 3.

The fastest known exact algorithm for edge coloring bipartite graphs runs in time
O(E log (Δ)) [6]. Although, this serves our purpose for the second component, its com-
plexity becomes unacceptable (super polynomial time) for the first component when
edge multiplicities are encoded as binary numbers in the input. The best known ap-
proximation algorithm for the first component runs in O(|V | log (wmax)) time [7]. One
might argue that the technique of storing parallel edges as described in [7] can be used
in [6] to design an exact algorithm with run time polynomial in |V | and log (wmax).
But, this is non-trivial and on top of that our problem is at least as hard the first compo-
nent alone, if not harder. Thus, we restrict ourselves only to approximation algorithms
for the overall optimization problem denoted by equation 1.

4.1 CSM Module Description

In this paper we propose three different approximation algorithms for handling various
types of communication requests determined by the combination of i) the properties of
graph G = (V, E, w) and, ii) the pause time τ .

Fig. 4 depicts a block diagram of the CSM. The CSM takes as input i) the set of com-
munication requests generated by the application as a bipartite graph G = (V, E, w)
and, ii) the pause time τ . This input is analyzed by the algorithm choice unit to deter-
mine which of our three proposed algorithms (PST, LDT and SDT described later in
this section) would give the best approximation bound. To determine this, it first eval-
uates Δ and wmax. It then computes the approximation bound for each of the three

Contention-Free Many-to-Many Communication Scheduling 157

Chosen Algorithm

Unit
GenerationInput: G=(O U I,E,W), τ

PST LDT SDT

Algorithm Choice
UnitFrom root switch To root switch

Output: Schedule S

Communication Scheduling Module

Schedule

Fig. 4. Block diagram of our proposed CSM module

algorithms. If there is a tie, then the algorithm with the lowest worst-case runtime is
chosen. Together with the original input graph and τ , this choice of the algorithm then
serves as the input to the schedule generation unit. The output of the schedule genera-
tion unit is the schedule S which is returned to the root switch for dissemination among
the compute nodes.

4.2 Lower Bound on the Total Migration Time

We capture a lower bound on the total migration time of a schedule that follows from
the structure of the bipartite graph induced by the set of data transfer requests.

Lemma 1. No optimal schedule can guarantee a total migration time less than Δw +
τ(Δ− 1).

Proof. For any (optimal) schedule, the number of matchings and transfer time are re-
spectively at least Δ and Δw, both of which follow from Konig’s theorem on edge
coloring bipartite graphs [13] when applied on graphs G and G′ respectively. Thus, for
any schedule, the migration time is at least Δw + τ(Δ− 1). �

We use the above result while calculating the approximation factor of the algorithms
presented in the subsequent sections.

4.3 Algorithm Partial Shuffle Transfer (PST)

For certain envisioned application scenarios such as redistributing VMs in physical ma-
chines [16], it is unlikely to have an input graph with high value of Δ as dynamic load
balancing algorithms are meant for incremental correction and not complete re-shuffling
[12, 14]. Our first algorithm called Partial Shuffle Transfer (PST) is designed for such
applications. Algorithm PST ensures a good approximation guarantee when Δ is small.

Initialize, schedule S ← ∅; i ← 11
Sort the edges in the descending order of their weights2
while there exists some edge yet to be chosen do3

Try choosing edges in the sorted order until a maximal matching Mi is formed4

Let w(i)
max = maxekl∈Mi

(wkl) � maximum edge weight among the edges in Mi5

Append the tuple (Mi , w(i)
max) to the schedule S; i ← i + 16

end7
Output the resultant schedule S8

Algorithm 1. Algorithm PST

158 S. Banerjee et al.

4.4 Analysis of Algorithm PST

Lemma 2. Algorithm PST runs in O(max(Δ|E|, |E| log (|E|))) time.

Proof. Sorting takes O(|E| log (|E|)) steps. And, in a phase, a vertex abstains from
contributing an edge in the maximal matching only if all its neighbors contribute. Thus
a vertex does not participate in forming the maximal matching at most for Δ−1 phases
and in all other phases it has to necessarily participate. Therefore, maximum number of
phases is 2Δ−1. Now finding a maximal matching in each phase takes O(|E|) and thus
the running time of the algorithm (without considering the time required for sorting the
edges in the first step) is O(Δ|E|). Hence the total running time of the Algorithm PST
is O(max(Δ|E|, |E| log (|E|))). �

Lemma 3. Algorithm PST guarantees 2H2Δ−1 approximation factor.

Proof. Let Mi be the maximal matching chosen in the ith phase and e∗i ∈ Mi be of
maximum weight t∗i (which is also equal to Ti by definition). Since, e∗i was not chosen
in the previous phases, some edge from each of the previous phases, having weight at
least t∗i had a common vertex with e∗i . Therefore, the total weight of the edges incident
on one of the end vertices of e∗i is at least it∗i /2. This implies 2Δw ≥ it∗i and hence
Ti ≤ 2Δw/i. Using Lemma-2, the number of maximal matchings in the schedule is at
most 2Δ− 1 and from the above argument transfer time

∑
i Ti is at most 2ΔwH2Δ−1,

where H2Δ−1 is the (2Δ − 1)-th harmonic number. Thus, the total migration time
is less than equal to (2ΔwH2Δ−1) + τ(2Δ − 2). Hence, the approximation factor is
(2ΔwH2Δ−1)+τ(2Δ−2)

Δw+τ(Δ−1) ≤ 2H2Δ−1. �

4.5 Algorithm Large Data Transfer (LDT)

In certain applications, there is a need for inter-vertex migration of large volumes of
data from time to time (e.g., data/process replication). Also, it may so happen that in
some application scenarios the nodes are reasonably well synchronized by some time
synchronization protocol. In such situations, the pause time is typically order magnitude
smaller than the individual edge weights of the input graph G. For such application sce-
narios, we present below algorithm Large Data Transfer (LDT) to generate contention
free data exchange schedules which may have a better approximation factor than algo-
rithm PST.

4.6 Analysis of Algorithm LDT

Lemma 4. Algorithm LDT runs in O(|E|2) time.

Proof. Finding a maximal matching in each step takes O(|E|) time and in each step at
least one edge having the minimum weight in the chosen matching is fully exhausted.
Hence the worst case running time of the algorithm is O(|E|2). �

Lemma 5. Algorithm LDT guarantees 2(1 + τ) approximation factor.

Contention-Free Many-to-Many Communication Scheduling 159

Initialize, schedule S ← ∅; i ← 11
while there exists an edge ekl ∈ E with wkl > 0 do2

Find a maximal matching Mi from the set of edges ekl ∈ E with wkl > 03

Let w
(i)
min = minekl∈E (wkl) � minimum edge weight of the edges in Mi4

Append the tuple (Mi , w
(i)
min) to the schedule S5

foreach ekl ∈ Mi do6
wkl ← wkl − w

(i)
min7

end8
i ← i + 19

end10
Output the resultant schedule S11

Algorithm 2. Algorithm LDT

Proof. Consider the equivalent multigraph G′ derived from G. Let Δw be the maximum
vertex degree of G′. Then, a vertex v that has degree Δw in G′ does not participate for
at most Δw − 1 communication steps and participates for at most Δw communication
steps. Therefore, the number of matchings in the schedule can be at most 2Δw − 1.
Since, each matching is for unit time duration, total communication time is also 2Δw−
1. Hence the approximation factor is (2Δw−1)+τ(2Δw−2)

Δw+τ(Δ−1) ≤ 2(1 + τ). �

4.7 Algorithm Small Data Transfer (SDT)

For applications where the quantum of time required to complete each of the commu-
nication requests is small (e.g., in mesh based numerical simulations [12, 15]), i.e., the
maximum edge weight wmax of the input bipartite graph is small, the following algo-
rithm may be a suitable choice. We call this algorithm as Small Data Transfer (SDT).
The description of Algorithm SDT is given below.

Let Gi = (I ∪ O, Ei, w) be the subgraph of G where Ei ⊆ E and for each e ∈ Ei,
2i−1 < w(e) ≤ 2i. Thus, there can be a maximum of log (wmax) such compo-
nent graphs in G. Assume that G can be partitioned into k such component graphs
G1, G2 . . . , Gk, 1 ≤ k ≤ log (wmax). Let G′

i be the equivalent multigraph of Gi.

We define Δ(i) and Δ
(i)
w) as the maximum vertex degree of Gi and G′

i respectively.

It clearly follows from the definition of Gi that: i) Δ(i) ≤ Δ, ii) Δ
(i)
w ≤ Δw, iii)

2i−1Δ(i) < Δ
(i)
w ≤ 2iΔ(i) < 2Δ

(i)
w and, iv) |Ei| ≤ |E|.

Initialize, schedule S ← ∅; i ← 11
Let G consist of the k component graphs {G1, . . . , Gk} � 1 ≤ k ≤ log (wmax)2
for j = 1 to k do3

while there exists some edge in Gj yet to be chosen do4
Choose a maximal matching Mi from Gj5

Let w(i)
max = maxekl∈Mi

(wkl) � maximum edge weight among the edges in Mi6

Append the tuple (Mi , w(i)
max) to the schedule S7

Remove Mi from the edge set of Gj ; i ← i + 18
end9

end10
Output the resultant schedule S11

Algorithm 3. Algorithm SDT

160 S. Banerjee et al.

4.8 Analysis of Algorithm SDT

Lemma 6. Algorithm SDT runs in O(Δ|E| log(wmax)) time.

Proof. Partitioning G into its component graphs takes O(|E|)-time. For each compo-
nent graph Gi, finding maximal matching in each step takes |Ei| steps and number of
steps can be at most (2Δi − 1) (refer to arguments in Lemma-2). Therefore, the time
required to run the algorithm for all the components is at most O(Δ|E| log (wmax))
(since Δ(i) ≤ Δ and |Ei| ≤ |E|). �

Lemma 7. Algorithm SDT guarantees 4 log (wmax) approximation factor.

Proof. The contribution of Gi in the resultant schedule in terms of number of matching
and communication time is at most 2Δ(i)−1 and 2i(2Δ(i)−1) respectively. Note that,

2Δ(i)−1 < 2Δ−1 (since Δ(i) ≤ Δ) and 2i(2Δ(i)−1) < 4Δw (since 2iΔ(i) < 2Δ
(i)
w

and Δ
(i)
w ≤ Δw). Therefore in the complete schedule, total number of matchings and

the total communication time are at most (2Δ− 1) log (wmax) and 4Δw log (wmax) re-
spectively. Hence, the approximation factor is 4Δw log (wmax)+τ((2Δ−1) log (wmax)−1)

Δw+τ(Δ−1) ≤
4 log (wmax). �

5 Discussion on Hierarchical Schedule Generation

We have so far assumed a system model where the schedule generation is done at the
CSM attached to the down-link of the root switch. However, it is also possible to en-
vision a hierarchical computation model under the assumption that every switch in the
switch fabric has either a CSM unit attached to it or contains the CSM as part of the
in-built scheduling logic. A possible procedure to compute a globally contention free
schedule in a m-ary switch tree may then be as follows:

– Whenever a compute node has some data communication requirements, it sends
information about its communication requests to its parent switch.

– The CSM attached to the parent switch collects all the tuples from its children.
If there exist some tuples that involve source-destination pairs within its children
nodes, it computes a contention free communication schedule S′ for those nodes
using the appropriate choice of algorithm and returns S′ to the appropriate children.
If some destination nodes are not within its set of children, then the switch sends
such tuples and the schedule S′ computed by it to its parent switch.

– A parent switch receives all partial schedules S′ and unscheduled tuples from its
children and repeats the above process of partial schedule generation with the start
time of its generated schedule offset by an additional τ amount from the maximum
of the completion times of the received partial schedules. For those tuples with
destination nodes outside the nodes in its subtree, the switch passes on such tuples
along with all the partial schedules generated by it and the switches in its subtree,
to its parent switch. The process is repeated until all tuples are scheduled. At every
level of the switch tree, any partial schedule generated by a switch is passed down
to the compute nodes in its subtree which immediately initiate data transmissions
according to the received schedule(s).

Contention-Free Many-to-Many Communication Scheduling 161

The advantage of the above scheme is two-fold: i) the schedule generation can be dis-
tributed across the switch fabric and, ii) a pair of vertices can possibly begin their com-
munication earlier if their request can be scheduled by a switch at a level greater than
that of the root switch of the m-ary switch tree.

6 Conclusion

We have presented a solution to the problem of many-to-many communication in clus-
ter computing environments with arbitrary sized data. Our proposed approach utilizes a
schedule generation unit called the CSM to generate contention free schedules for com-
munication requests received from time to time from the compute nodes of the cluster.
The CSM unit consists of three scheduling algorithms called PST, LDT and SDT. De-
pending on the value of τ and values of Δ and the longest communication time wmax in
the bipartite graph derived from a set of received requests, CSM first determines the al-
gorithm that gives the best approximation bound. It then uses that algorithm to generate
an efficient contention free schedule for a received set of communication requests.

References

1. Faraz, A., Patarasuk, P., Yuan, X.: Bandwidth efficient all-to-all broadcast on switched clus-
ters. Intl. Journal of Parallel Programming 36(4), 426–453 (2008)

2. Fan, X., Jonsson, M., Hoang, H.: Efficient many-to-many real-time communication using an
intelligent Ethernet switch. In: Proc. ISPAN, pp. 280–287 (2004)

3. Tam, A.T.-C., Wang, C.-L.: Contention-aware communication schedule for high-speed com-
munication. Cluster Computing 6(4), 339–353 (2003)

4. Yang, Y., Wang, J.: Optimal all-to-all personalized exchange in self-routable multistage net-
works. IEEE Trans. on Parallel and Dist. Systems 11(3), 261–274 (2000)

5. Aggarwal, G., Motwani, R., Shah, D., Zhu, A.: Switch scheduling via randomized edge
coloring. In: Proc. IEEE Symp. on Foundations of Comp. Science (FOCS), p. 502 (2003)

6. Cole, K.O.R., Schirra, S.: Edge-coloring bipartite multigraphs in O(E log D) time. Combi-
natorica 21, 5–12 (2001)

7. Sanders, P., Steurer, D.: An asymptotic approximation scheme for multigraph edge coloring.
ACM Trans. on Algorithms 4(2), 21:1–21:24 (2008)

8. Firoozshahian, A., Manshadi, V., Goel, A., Prabhakar, B.: Efficient, fully local algorithms
for CIOQ switches. In: Proc. INFOCOM, pp. 2491–2495 (2007)

9. NTP: The Network Time Protocol, http://www.ntp.org/
10. Operating System Jitter (2010), http://domino.research.ibm.com/comm/

research_projects.nsf/pages/osjitter.Identifying.html
11. Cisco 12000 Series Gigabit Switch Routers (2010), http://www.cisco.com/warp/

public/cc/pd/rt/12000/prodlit/gsr_ov.pdf
12. Touheed, N., et al.: A comparison of dynamic load-balancing algorithms for a parallel adap-

tive flow solver. Parallel Computing 26(12), 1535–1554 (2000)
13. Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (July 2010)
14. Sinha, K., Datta Chowdhury, A., Banerjee, S., Ghosh, S.K.: Efficient load balancing on a

cluster for large scale online video surveillance. In: Garg, V., Wattenhofer, R., Kothapalli, K.
(eds.) ICDCN 2009. LNCS, vol. 5408, pp. 450–455. Springer, Heidelberg (2008)

15. Gupta, A., Luksch, P., Schmidt, A.C.: MethWerk: scalable mesh based simulation on cluster
of SMPs. In: Proc. High Perf. Comp. in Science and Engineering, pp. 141–151 (2005)

16. Wilcox Jr., T.C.: Dynamic load balancing of virtual machines hosted on Xen, MS Thesis,
Dept. of Computer Science, Brigham Young University (April 2009)

http://www.ntp.org/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/osjitter.Identifying.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/osjitter.Identifying.html
http://www.cisco.com/warp/public/cc/pd/rt/12000/prodlit/gsr_ov.pdf
http://www.cisco.com/warp/public/cc/pd/rt/12000/prodlit/gsr_ov.pdf

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 162–174, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Recursive Competitive Equilibrium Approach for
Dynamic Load Balancing a Distributed System

K. Shahu Chatrapati1, J. Ujwala Rekha2, and A. Vinaya Babu2

1 Dept. of Computer Science and Engineering, JNTUH College of Engineering, Jagitial
2 Dept. of Computer Science and Engineering, JNTUH College of Engineering, Hyderabad

shahujntu@gmail.com, ujwala_rekha@gmail.com,
dravinayababu@gmail.com

Abstract. Load balancing is very important and a common problem in
distributed systems. The load balancing mechanism aims to fairly distribute
load across the resources so as to optimize a given objective function. The ob-
jective can be system optimality which tries to minimize mean response time of
all users or individual optimality which tries to minimize each user’s individual
response time. The load balancing can be achieved either statically or dynami-
cally. In this paper we review, competitive equilibrium (CE) approach for static
load balancing and then propose recursive competitive equilibrium (RCE) ap-
proach for dynamic load balancing. A computer model is run to evaluate the
performance of proposed RCE scheme with static scheme using Nash equili-
brium (NE) approach and the static scheme using CE. The results show that
static scheme using CE and dynamic scheme using RCE achieved both system
optimality and individual optimality simultaneously, while NE scheme achieved
only individual optimality. Moreover the performance of RCE scheme is higher
than CE when communication overhead is less and almost same as CE scheme
when the communication overhead is more.

Keywords: Distributed System, Load Balancing, Competitive Equilibrium,
Recursive Competitive Equilibrium.

1 Introduction

The purpose of load balancing in a distributed system is to minimize the response
time of a single application running in parallel on multiple computers. Load balancing
can be achieved either statically or dynamically. In static load balancing, the load
assigned to a computer is proportional to its processing capacity and remains the same
throughout the duration of the application or job. Whereas, in dynamic load balancing
the distribution of load is assessed periodically, and then adjusted such that the result-
ing distribution results in the reduction of the remaining execution time of the job.

Static load balancing is simpler and less overhead intensive to implement, than
dynamic load balancing. However, often it is not possible to predict the runtime beha-
vior of either the running application or the computational environment and can thus
invalidate the assumptions under which static load distribution was made. Hence, sub-
sequent to initial static load distribution, sometimes load imbalances develop, which

 RCE Approach for Dynamic Load Balancing a Distributed System 163

might result in a less efficient system. Therefore, run-time monitoring and redistribu-
tion of workload among the processors can improve the efficiency of the system. How-
ever, any benefit that can be derived due to the redistribution of load needs to be
weighed against the overhead associated with monitoring and redistribution.

From the optimization perspective, the objective of load balancing can be to
provide a system-optimal solution, where the mean response time of all jobs is mini-
mized, or an individual optimal solution where each job minimizes its own response
time. There are studies on static load balancing that provide system-optimal solution
([2],[16]). In such schemes, some jobs may experience very longer response time than
others, which may not be acceptable in current distributed systems. Few studies exist
on static load balancing that provide individual optimal solution based on game-
theoretic solutions ([1],[13],[15]). However, such schemes may not achieve system
optimal efficiency. Competitive equilibrium approach for achieving both system op-
timal efficiency and individual optimality is proposed in ([7],[8]). However, it does
not take into account run-time behavior.

Many dynamic load balancing schemes exist that either achieve system optimality
([9],[17]) or individual optimality ([3],[14]) but not both simultaneously. In this study,
we propose recursive competitive equilibrium approach for dynamic load balancing
that simultaneously achieves both system optimal efficiency and individual optimality.

This paper is organized as follows: In sections 2 and 3, we discuss competitive equi-
librium theory, and recursive competitive equilibrium theory respectively. Section 4
presents the distributed system model considered in our study and formulates the ob-
jective function. Sections 5 and 6 describe how competitive equilibrium theory and
recursive competitive equilibrium theory can be applied to static and dynamic load
balancing problems respectively. Section 7 shows the performance study of Nash Equi-
librium Scheme (NES), Competitive Equilibrium Scheme (CES), and Recursive Com-
petitive Equilibrium Scheme (RCES). And finally the paper concludes with section 8.

2 Competitive Equilibrium Theory

Competitive equilibrium theory is a branch of mathematical economics to model
prices for a whole economy. The theory dates back to 1870s and the credit for initiat-
ing the study can be attributed to French Economist Lêon Walras [10]. In Walrasian
model the market consists of m agents and n divisible goods. Let wij and xij denote
respectively, the non-negative endowment and consumption by agent i, relative to the
good j. Let pj denote the non-negative price associated to the good j. Grouping the
introduced quantities into vectors, the total endowment vector of agent i is
wi=(wi1,…,win), the total consumption vector of agent i is xi=(xi1,…,xin) and the price
vector is p=(p1,…,pn). Let ui(xi): , describe the preference of agent i for

different bundles of goods. At given prices, each agent sells their initial endowment,
and buys a bundle of goods, which maximizes ui(xi) subject to her budget constraints.

An equilibrium is a set of market clearing prices p=(p1,…,pn) such that for agent
i, there is a bundle of goods xi=(xi1,…,xin) such that the following two conditions
hold:

RRn
++ →

164 K. Shahu Chatrapati, J. Ujwala Rekha, and A. Vinaya Babu

i. For each agent i, the vector xi maximizes ui(xi) subject to the constraints

(1)

ii. For each good j,

(2)

According to Arrow and Debreu Theorem [5], such equilibrium exists under very
mild conditions if the utility functions are concave. The First Fundamental Theorem
asserts that such equilibrium is pareto efficient [5]. Fisher [4] in 1891 independently
modeled a market, which consists of a set of m buyers and a set of n divisible goods.
Each buyer i has an amount ei of money and each good j has an amount bj of this
good. The preferences of agent i for different bundles of goods is denoted by ui(xi):

R+ , where xi=(xi1,…,xin) is the consumption vector of agent i, and xij is the
consumption of good j by agent i. Equilibrium prices is an assignment of prices of

prices to the goods such that the market clears i.e., there is neither

shortage nor surplus. In other words the following two conditions should hold:

i. For each buyer i, the vector xi maximizes ui(xi) subject to the constraints

(3)

ii. For each good j,

(4)

In this study, load balancing problem is translated to Fisher’s market model, where
buyers are users and goods are computing resources. In the next section we discuss
about the recursive competitive equilibrium.

3 Recursive Competitive Equilibrium Theory

Recursive Competitive Equilibrium Theory was first developed by Mehra and Prescott
[11] and further refined in Prescott and Mehra [12] which establish the existence of, and
asserts the pareto optimality of recursive competitive equilibrium. Recursive Competi-
tive Equilibrium approach is one way of modeling uncertain dynamic phenomena to
search for optimal actions.

Now, we define the dynamic case of Fisher’s market model which consists of a set of
m buyers and a set of n divisible goods. Let ei(t) be the amount of money agent i has at
time t, and xi(t)=(xi1(t),…,xin(t)) be the consumption vector of agent i at time t, where
xij(t) is consumption of good j by i at time t. Let bj(t) be the amount of good j present at
time t, and pj(t) be the price of good j at time t. Let the preference of agent i, relative to
the consumption xi(t) at time t be denoted by the utility function ui(t, xi(t)).

 *
n

1k

n

1k
ikkikk wpxp∑ ∑≤∗

= =

m

1k

m

1k
kjkj wx∑ ∑≤

= =

R
n
+

R
n

pn...,p1,P +∈=)(

 ∑ ≤
=

n

1k
iikk exp *

m

1k
jkj bx∑ ≤

=

 RCE Approach for Dynamic Load Balancing a Distributed System 165

At the start of each period t, the amount ei(t) is determined from the previous pe-
riod t-1 as follows

(5)

and the amount bj(t) of good j at time t is determined as follows

(6)

Next, in each period, equilibrium prices p=(p1(t),…,pn(t)) are determined such that
there is a bundle of goods xi(t)=(xi1(t),…,xin(t)) and the following conditions hold:

i. For each buyer i, the vector xi(t) maximizes ui(t,xi(t)) subject to the con-
straints

(7)

ii. For each good j

(8)

Note that, the period prices depend only on the state variables in that period.

4 Proposed Distributed System Model

We consider a distributed system of n heterogeneous nodes (computing resources)
connected by a communication network shared by m users. The terminology, nota-
tions, and assumptions used are similar to [14]. The job arrival rate of user j job at

node i is . Total arrival rate of user j jobs is . All the jobs in the system

are assumed to be same. The service rate of node i is µi.

Out of user k jobs arriving at node i, the ratio of jobs is forwarded upon arrival

through the communication means to another node (j≠i) to be processed there. The

remaining ratio is processed at node i. That is, the rate of user k

jobs that arrive at node i are forwarded through the communication means to node j,

while the rate of user k jobs are processed at arrival node. Therefore, a set of

values (for k=1,…,m; i=1,…,n; j=1,…,n) are to be chosen such that

(9)

 (10)

∑ −−−−=
=

n

k
ikkii 1)(t*1)(t1)(t(t) xpee

1

∑−−=
=

m

1k
kjjj (t)1)(t(t) xbb

 (t)∑ ≤
=

n

1k
iikk exp (t)*

 (t)(t)
m

1k
jkj bx∑ ≤

=

Φ j
i ∑=

=

n

1k

j
k

j ΦΦ

xk
ij

∑
≠

−=
ij

k
ij

k
ii xx 1 xΦ k

ij
k
i

xΦ k
ii

k
i

xk
ij

 m1,...,k n;1,...,i 1 x
n

1j

k
ij ==∀=∑

=

 m1,...,k n;1,...,j n;1,...,i 0xk
ij ===∀≥

166 K. Shahu Chatrapati, J. Ujwala Rekha, and A. Vinaya Babu

(11)

Let us group these quantities into vectors as , and

.

Modeling each node as an M/M/1 queuing system [6], the expected node delay at
node i is as follows

 (12)

where βi is the load on node i and given as

 (13)

It is to be noted that Fi(x) is a strictly increasing, convex, and continuously differenti-
able function of Xj.

Let us assume that the expected communication delay of forwarding user k jobs at
node i to node j is independent of two nodes but dependent on the total traffic through
the network. Examples of such a case are local area networks and satellite communi-
cation systems, where the communication delay between any two nodes (or stations),
depends on the total traffic generated by all nodes (or stations).

Let the traffic through the network be denoted by λ, where and λj, is the

traffic through the network due to user j jobs given as follows

 (14)

where is the contribution on the load on node i by user j jobs.

Modeling the communication network as an M/M/1 queuing system [6], the ex-
pected communication delay of any job is given as

(15)

where t is the mean communication time for sending and receiving a job from one
node to the other for any user. Clearly, G(λ) is a positive, non-decreasing, convex, and
continuously differentiable function of λ.

Therefore, over all response time of user j job is the sum of expected node delay at
each node i and expected communication delay given as follows

 (16)

 n1,...,i * μxΦ i

m

1k

n

1j

k
ji

k
j =∀<∑ ∑

= =

),...,(xxx k
in

k
i1

k
i =),...,(xxx k

n
k
1

k =

),...,(xxx m1=

 1(x)
βμF

ii
i −

=

∑ ∑=
= =

m

1k

n

1j

k
ji

k
ji * xΦβ

∑=
=

m

1j

jλλ

2
1 n

1i

j
i

j
i

j βΦλ ∑ −=
=

∑=
=

n

1k

j
ki

j
k

j
i xΦβ

)
t1

tG(
m

1k

kλ
λ

∑−
=

=

()∑ +=
=

n

1i j

j

i
j
ij

j G(x)1(x)
Φ
λFβ

Φ
T λ

 RCE Approach for Dynamic Load Balancing a Distributed System 167

The mean response time of all jobs is given by

 (17)

The best response time for user j job is a solution to the following optimization
problem

(18)

subject to the constraints (9) to (11).

5 Competitive Equilibrium Approach for Static Load Balancing

Let us review the scheme described in [8]. At first the distributed system model de-
scribed in the previous section is translated to Fisher’s market model, where buyers
are users and goods are computing resources. Each user j is endowed a monetary

budget wi≥0 to purchase computing power, and has utility function to
denote her preferences for various computing resources. The price for executing unit
job at node i is pi.

The competitive equilibrium solution to load balancing is to find a set of prices and
allocation of jobs to computing resources such that each user maximizes her utility
subject to her budget constraints, and the market clears i.e.,

 (19)

subject to the constraints (9) to (11) and market clearing condition given by

 (20)

where uj(x) is strictly continous, concave, and continuosly differentiable function of

xj. Also is a closed convex set bounded from below. According to Arrow

and Debreu [4] the necessary and sufficient conditions for the existence of competi-
tive equilibrium are satisfied. Hence there exists a competitive equilibrium for the
given load balancing problem.

We present below the algorithm CES (Competitive Equilibrium Solution) for com-
puting equilibrium prices and load allocation of jobs at various resources.

5.1 Algorithm CES

Input
 Node Processing Rates: µ1,…,µn

 Job Arrival Rates:

Output
 Load Fractions x1,…,xm

 (x)
Φ
1T(x)

m

1j

jjTΦ∑=
=

 (x)Tj min
xj

(x)Tj(x)Uj −=

 m1,...,j =∀ (x)umax
x

j

j

m1,...,j =∀≤∑
=

 wβ*p j
j
i

n

1i
i

Rx nj
+⊆

n1,...,i m;1,...,j ==∀Φ j
i

168 K. Shahu Chatrapati, J. Ujwala Rekha, and A. Vinaya Babu

1. Intialization
 1.1. Wj 1 j=1,…,m
 1.2. pi 1/n i=1,…,n
2. Loop
 2.1. At prices p1,…,pn compute x

1,…,xm such that
each user maximizes her utility function
(19) subject to the constraints (9) to (11)

 2.2. Obtain market clearing error, α given as
follows

 (21)

where is given by

 (22)

 2.3. Adjust the prices p1,…,pn in proportion to
aggregate demands

 Until α ≤ error tolerance

This is an artificial trade, where price p and budget w do not have any physical inter-
pretations and have no outside use. They are only an economic means for achieving
individual and system optimality. The meaningful output of our problem is only the
load distribution.

5.2 Complexity of Algorithm CES

According to Arrow and Debreu [4] the load balancing problem is guaranteed to have
competitive equilibrium. Hence the algorithm CES is PPAD-Complete whose con-
vergence is unpredictable but there surely exists a solution.

6 Dynamic Load Balancing

In this section, we extend the static load balancing scheme described in the previous
section.

In general, a decentralized load balancing scheme has three components.

i. an information policy used to exchange state information (number of jobs
waiting in the queue to be processed) between the nodes every P time units.

ii. a transfer policy that determines whether the job should be processed local-
ly or transferred to another node for processing.

iii. a location policy that determines the destination node for remote processing.

6.1 Recursive Competitive Equilibrium Approach for Dynamic Load Balancing

Let denote the mean number of user j jobs at node i and ri denote the mean service
time of a job at node i. The user j marginal node delay is defined as

∀
∀

m

1j

2
jξα ∑=

=

ξj

∑−=
=

n

1i

j
iijj *βpwξ

N
j
i

 RCE Approach for Dynamic Load Balancing a Distributed System 169

 (23)

where denotes the mean number of user k jobs at node i.

Rewriting the above equation, in terms of ri and

 (24)

Let , denote mean utilization of the communication network, and

denote the utilization of communication network excluding user j traf-

fic. The marginal communication delay of user j job is defined as

 (25)

where λk Gk(λ) denotes the mean number of user jobs in the communication network.
Denoting the above equation in terms of ρ and ρ-j we have

 (26)

Let ρ' denote the utilization of the network at a given instant, and ρ-j' denote the utili-

zation of the network at a given instant excluding user j traffic. Similarly, let de-

note the number of user j jobs at i, at a given instant. Expressing and in

terms of instant variables, we have

 (27)

We now describe the three components of dynamic load balancing in detail

i. Information Policy-Every node broadcasts its state (i.e., queue length) to

all other nodes every P time units.
ii. Transfer Policy-A threshold is used to determine whether user j job arriving

at node i should be processed locally or transferred to another node.

)(

)(

))(()β(m

1k

k
ii

2

m

jk1,k

k
ii

i
j
i

j
ij

i
i

j
i

βμ

βμ
βFβ

β
f

∑−

∑−
=

∂
∂=

=

≠=

)(βFβ i
k
i

k
i

N
j
i

∑ ++=
=

m

1k

j
i

k
iii

j
i))(1)(NNrβf 1(

∑=
=

m

1k

kλtρ

∑=
≠=

− m

jk1,k

kj λtρ

() ()

)(

2

)(

)λ(λ
m

1k

k

m

jk1,k

k

jj
j

j

λt1

λt1t

Gλ
λ

g

∑

∑
=

∂
∂=

=

≠=

−

−

() λ 1ρ
ρ)(1

)ρt(1
g 2

j
j <

−
− −

=

nj
i

)(βf i
j
i ()λgj

 '
'

 1ρ

)'(1

)t(1

))(1(1

ρ

ρ
g

nnrf

2

j
j

m

1k

j
i

k
ii

j
i

<

−

−
=

∑ ++=
−
=

nj
i

170 K. Shahu Chatrapati, J. Ujwala Rekha, and A. Vinaya Babu

Let be the threshold at node i for user j job. Each node i broadcasts its ar-

rival rate to all other nodes every P1time units, where P1>>P. From this

information all the nodes determine the optimal loads using the algorithm

CES. Threshold is the optimal number of user j jobs that can be present at

node i. ()

When the number of jobs of user j at node i is greater than , then it is

eligible for transfer.
iii. Location Policy-The destination node for user u job that is eligible for trans-

fer is determined as follows.

a. First, a node with the lightest load for user u job is determined.

If , then node j is lightly loaded than node i for user u

job. Let . If >0, then node j is the

lightest loaded node for user u job, otherwise there is no light
node and user u job should be processed locally.

b. Let c denote the number of times that a user u job has been
transferred. Let ω (0<ω≤1) be a weighting factor used to prevent
a job from being transferred many times. And let ∆ (∆>0) be a
bias used to protect the system from instability by not allowing

the load balancing policy to react to small changes. If ωc >∆,

then the job of user u will be transferred to node j. Otherwise it
will be processed locally.

7 Experimental Results

A computer model is run to evaluate the effects of different schemes on mean
response time of all jobs and individual response time of each job. The proposed dy-
namic scheme (RCES), the static load balancing scheme using competitive Equili-
brium (CES), and Nash equilibrium scheme (NES) are implemented for comparison
purposes.

The parameters used for the experiments are given below:

i. The distributed system consists of 16 computers with service rates as
shown in Table 1

Table 1. Service Rates of the Computers

Computer 1-6 7-11 12-14 15-16
Service Rate (jobs/sec) 10 20 50 100

Tj
i

Φ j
i

β j
i

Tj
i

)(βFβT i
j
i

j
i

j
i =

Tj
i

gff
uu

j
u
i +>

))((gffmaxδ uu
j

u
i

j

u
i +−= δu

i

δu
i

 RCE Approach for Dynamic Load Balancing a Distributed System 171

ii. The system has 10 users with job arrival fractions qj as given in Table 2.
The actual arrival rate Фj of user j is calculated to give the required over-
all system load ρ and is given by

 (28)

The job arrival rates of each user j, j=1,...,m to each computer i, i=1,…,n

i.e., are obtained as

 (29)

Table 2. Job Arrival Fractions of Each User

User 1 2 3-6 7-9 10
Job Arrival Fractions qj 0.3 0.2 0.1 0.001 0.07

iii. The mean communication time for a job t, is set to 0.01 sec. The commu-

nication overhead OV is the percentage of service time that a computer
has to spend to send or receive a job. The over head value is set to 0%, 5%
and 10% to show the effect of communication overhead on the average
mean response time and individual response time.

7.1 Nash Equilibrium Scheme (NES)

In this scheme, each user j (j=1,…,m) must find the load assigned to each computing
resource i (i=1,…,n) such that the response time of his own jobs is minimized.
The best response of user j job is a solution to the optimization problem given by
(18).

The algorithm for NES is run by initializing strategy xi of each player i to zero vec-
tor. Each player then updates its strategy xi in a sequential manner by solving the
optimization problem (18). An interesting case occurs when no player can change its
strategy xi*, and decrease its response time by choosing a different strategy xi* when
the other users’ strategies are fixed. In this case, the system is said to reach Nash
equilibrium.

7.2 Effect of System Utilization

Figures 1, 2, and 3 present the effect of system utilization (ranging from 10% to 90%)
on the mean response time of all users when communication overhead OV is 0%, 5%
and 10% respectively. The bias for job transfer (Δ) is set to 0.4, the exchange period
of state information (P) is set to 0.1 sec., and the weighting factor for job transfer (ω)
is set to 0.9 in all the cases.

 ∑
=

=
n

1j
j

jj μqΦ *ρ*

Φ j
i

 μqΦ i
jj

i *=

172 K. Shahu Chatrapati, J. Ujwala Rekha, and A. Vinaya Babu

Fig. 1. System Utilization Vs Mean Re-
sponse Time of the System when OV=0%

Fig. 2. System Utilization Vs Mean Re-
sponse Time of the System when OV=5%

In figure 1, and 2 when OV is 0%, and 5%, it can be observed that at low system

utilization (load), all the schemes show similar performance. But with the increase in
system utilization, RCES yields higher performance than both CES and NES. Howev-
er, in figure 3, when OV is 10%, the performance of RCES is insensitive to overheads
at low to medium system loads. But at high system loads, the performance
of RCES degrades and the static schemes are more efficient because of their less
complexity.

Fig. 3. System Utilization Vs Mean Re-
sponse Time of the System when OV=10%

Fig. 4. Response Time of Each User when
OV=5% and System Utilization=50%

Figure 4, presents the response time of each user when system utilization is 50%,
and communication overhead is 5%. The other parameters, Δ, ω, and P are all fixed
as before. It can be observed that the differences in response times for RCES is very
small compared to CES and NES.

7.3 Effect of Bias

In figure 5, we present the variation of mean response time with system utilization for
various biases. The overhead is assumed to be 5%. The other parameters are fixed

 RCE Approach for Dynamic Load Balancing a Distributed System 173

Fig. 5. Effect of Bias on Mean Response
Time (OV=5%)

Fig. 6. Effect of Exchange Period on Mean
Response Time (System Utilization=50%)

(P=0.1sec, ω=0.9). It can be observed that as the bias increases, the expected response
time of RCES increases, and for a high bias (Δ=1), the performance of RCES is simi-
lar to CES.

7.4 Effect of Exchange Period

In figure 6, we present the variation of mean response time with exchange period of
system state information. The system utilization is assumed to be 50%. The other
parameters are fixed (Δ=0.4, ω=0.9). It can be observed that the mean response time
of RCES increases with increase in exchange period, because for high values of P,
outdated state information is exchanged between the nodes and optimal load balanc-
ing will not be done.

8 Conclusions

Our study proposes recursive competitive equilibrium approach for dynamic load
balancing a computational grid. A computer model of a grid is run with various sys-
tem loads and communication overheads. Two other schemes- competitive equili-
brium scheme and Nash equilibrium scheme are implemented. It was observed that, at
low communication overheads, RCES yields superior performance over CES and
NES. Furthermore, RCES is fairer than both CES and NES as it provides almost equal
response times for all the users. Moreover, as the bias, exchange period and overheads
for communication are increased, CES and RCES yield similar performance.

References

1. Grosu, D., Chronopolous, A.T.: Non Cooperative Load Balancing in Distributed Systems.
Journal of Parallel and Distributed Computing 65(9), 1022–1034 (2005)

2. Grosu, D., Chronopoulous, A.T., Leung, M.Y.: Cooperative Load Balancing in Distributed
systems. Concurrency and Computation: Practices and Experience 20(16), 1953–1976 (2008)

174 K. Shahu Chatrapati, J. Ujwala Rekha, and A. Vinaya Babu

3. El-Zoghdy, S.F., Kameda, H., Li, J.: A comparative Study of Static and Dynamic Indivi-
dually Optimal Load Balancing Policies. In: The Proceedings of IASTED International
Conference on Networks, Parallel, and Distributed Processing and Applications (2002)

4. Scarf, H.: The Computation of Economic Equilibria. In: Cowles Foundation Monograph,
vol. 24, Yale University Press, New Haven (1973)

5. Arrow, K.J., Debreu, G.: Existence of an Equilibrium for a Competitive Economy. Econome-
trica 22(3), 265–290 (1954)

6. Kleinrock, L.: Queuing Systems-Theory, vol. 1. John Wiley and Sons, Chichester
7. Shahu Chatrapati, K., Ujwala Rekha, J., Vinaya Babu, A.: Competitive Equilibrium

Approach for Load Balancing in Computational Grids. In: The Proceedings of the Interna-
tional Conference on Advances and Emerging Trends in Computing Technologies (2010)

8. Shahu Chatrapati, K., Ujwala Rekha, J., Vinaya Babu, A.: Competitive Equilibrium Ap-
proach for Load Balancing a Computational Grid with Communication Delays. Journal of
Theoretical and Applied Information Technology 19(2), 126–133 (2010)

9. Youran, L.: A Dynamic Load Balancing Mechanism for Distributed Systems. Journal of
Computer Science and Technology 11(3), 195–207 (1996)

10. Walras, L.: Elements of Pure Economics; or the Theory of Social Wealth, Lausanna, Paris
(1874)

11. Mehra, R., Prescott, E.C.: Recursive Competitive Equilibria and Capital Asset Pricing. In:
Mehra, R. (ed.) Essays in Financial Economics, Doctoral Dissertation, Carnegie Mellon
University, UMI, Ann Arbor, Michigan (1977)

12. Prescott, E.C., Mehra, R.: Recursive Competitive Equilibria: The Case of Homogeneous
Households. Econometrica 48, 1365–1379 (1980)

13. Subrata, R., Zomaya, A.Y.: Game Theoretic Approach for Load Balancing in Computa-
tional Grids. IEEE Transactions on Parallel and Distributed Systems 19(1), 66–76 (2008)

14. Penmatsa, S., Chronopolous, A.T.: Dynamic Multi-User Load Balancing in Distributed
Systems. In: The Proceedings of 20th IEEE International Parallel and Distributed
Processing Symposium (2006)

15. Spata, M.O.: A Nash Equilibrium Based Algorithm for Scheduling Jobs in a Grid Cluster.
In: The Proceedings of 16th IEEE International Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises, vol. 18(20), pp. 251–252 (2007)

16. Tang, X., Chason, S.T.: Optimizing Static Job Scheduling in a Network of Heterogeneous
Computers. In: The Proceedings of International Conference on Parallel Processing (2000)

17. Zeng, Z., Veeravalli, B.: Design and Performance Evaluation of Queue-and-Rate-
Adjustment Dynamic Load Balancing Policies for Distributed Networks. IEEE Transac-
tions on Computers 55(11), 1410–1422 (2006)

Smoothed Functional and Quasi-Newton
Algorithms for Routing in Multi-stage Queueing

Network with Constraints

K. Lakshmanan and Shalabh Bhatnagar

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560012, India

{lakshmanank,shalabh}@csa.iisc.ernet.in

Abstract. We consider the problem of optimal routing in a multi-stage
network of queues with constraints on queue lengths. We develop three
algorithms for probabilistic routing for this problem using only the total
end-to-end delays. These algorithms use the smoothed functional (SF)
approach to optimize the routing probabilities. In our model all the
queues are assumed to have constraints on the average queue length. We
also propose a novel quasi-Newton based SF algorithm. Policies like Join
Shortest Queue or Least Work Left work only for unconstrained routing.
Besides assuming knowledge of the queue length at all the queues. If
the only information available is the expected end-to-end delay as with
our case such policies cannot be used. We also give simulation results
showing the performance of the SF algorithms for this problem.

1 Introduction

Multi-stage queueing networks are used for modelling manufacturing systems.
They also find applications in telecommunication networks, multi-stage inter-
connection networks [11] and server farms [9]. Constraints are ubiquitous in real
world systems, like QoS routing in the Internet [15] or energy constraints in
sensor networks [1]. Queueing network models have been used to analyze these
systems. Analyzing a general queueing network is hard and can involve compli-
cations like Braess paradox [6]. Policies like Join the Shortest Queue(JSQ), Least
Work Left(LWL), Central-Queue-Shortest-Job (CQSJ) or Size-Interval Splitting
are used for task assignment (routing) when there are multiple parallel queues
[10]. Theoretical analysis of these policies is hard. Another drawback is that
these policies are known to work only for unconstrained routing.

In many optimization problems the relationship between the parameters and
the objective function is not explicitly known. The objective itself may be a
parameterized long-run average of a certain sample cost function which has to
be estimated by simulation. In the case of gradient search algorithms one is
often interested in finding the zeros of an objective function that corresponds
to the gradient of average cost. It is not possible in most cases to calculate the
gradient of such an objective analytically. Simulation has been widely used in
such scenarios.

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 175–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

176 K. Lakshmanan and S. Bhatnagar

Amongst the algorithms that estimate the gradient,the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) [14] is popular. This is because it uses
only two simulations at any instant regardless of the parameter dimension. An-
other gradient estimation technique with good performance is based on the idea
of randomly perturbing parameters and goes by the name smoothed functional
(SF) scheme. It is originally due to Katkovnik and Kulchitsky [12]. Here the
idea is to approximate the gradient by a convolution with a multi-normal dis-
tribution. In Bhatnagar [2], a similar technique was used to estimate the second
derivative as well. A problem of constrained optimization with long-run aver-
age cost objective and constraint functions is considered in Bhatnagar et al. [3].
Convergence of these SF algorithms has also been proved in [2] and [3].

A multi-stage shortest path problem is considered in Kolavali and Bhatnagar
[13]. Here the links between nodes are assumed to have different weights. How-
ever there are no constraints considered. As in our model the link weights are
not known to the algorithm, and the only information available is the total path
length for any particular path chosen. The objective is to find the shortest path.
Algorithms based on Q-Learning and Multi-Agent Foraging Ant Colony Opti-
mization (MAF-ACO) [5] are used. The MAF-ACO algorithm in [5] is similar to
Ant Colony Optimization (ACO) algorithms [8] and relies on the differential path
length effect. But unlike ACO algorithms it does not use any complex heuris-
tics or elitist policies. This makes the algorithm suitable for network routing.
Convergence of these algorithms is studied in [5] using stochastic approximation
theory.

In this paper we consider the problem of routing in multi-stage network of
queues with constraints on queue lengths. Instead of link weights, the queueing
delays are considered here as they capture the real networks better. To the best
of our knowledge this is the first time that this problem is considered. We propose
three algorithms which route traffic probabilistically based on the total end-to-
end delay. Unlike in policies used for task assignment like JSQ,CQSF,LWL we
do not use information on individual queue lengths that vary rapidly. Further
these policies determine the next queue in the path for individual packets, while
our algorithms tune only the routing probabilities.

In dynamic problems like routing it is not possible to directly estimate the gra-
dient or Hessian of the cost analytically. Hence the smoothed functional method
is used. In a Newton based algorithm we need to evaluate the inverse of the
Hessian matrix which can be expensive. We therefore develop for the first time
the quasi-Newton smoothed functional (QN-SF) algorithm that does not require
the computation of the Hessian inverse. Our algorithm is based on the popular
quasi-Newton algorithm BFGS [7] for approximating the inverse of the Hessian.

The rest of the paper is organized as follows. Section 2 describes the multi-
stage constrained routing problem and the framework of constrained optimiza-
tion. The next section describes the G-SF and N-SF algorithms for the routing
problem. In section 4 quasi-Newton methods are briefly explained and the QN-
SF algorithm is presented. Section 5 discusses the simulation results. Finally
concluding remarks are given in section 6.

Smoothed Functional and Quasi-Newton Algorithms 177

2 Routing in Multi-stage Queueing Network - Problem
Formulation

Routing in communication networks is a dynamic problem where queue lengths
and delays change with the traffic. Simulation is often used to study these sys-
tems as analyzing such networks theoretically is hard in general. Besides it also
often involves constraints involving delays or bandwidth.

We model our system as a multi-stage network of queues as in Fig. 1. There
is no assumption on service time or arrival distribution. There is a queueing
delay at each node. The packets have to be routed from the source node s to
destination d. Here the objective is to find a path that minimizes the total delay
from source to destination. Further this path should be such that it satisfies
certain constraints on the average queue length at each node. Thus the problem
we are interested in can be posed as a constrained optimization problem.

Fig. 1. Network of queues

Let the total number of queues be N . Each stage has a fixed number M of
queues and it is assumed that all queues in one stage are connected to the next
stage. Hence each queue at every stage except the last one is connected to M
other queues and similarly except the first stage, each queue is fed by M other
queues. The total dimension of routing probability is thus K = (N−M +1)∗M .

The parameter θ(n) to be tuned is the routing probability vector p(n) =
[pl(n), l = 1, . . . ,K]T at the queues. Let p(i∗j)(n), i = 1, . . . , (N−M+1) and j =
1, . . . , M, i∗j = l, be the probability of selecting choice j, 0 < j ≤ M after service
of a packet at the node i. Given a routing probability vector θ(n) = p(n), the
vector of queue lengths at the nodes q(n) = [qi(n), . . . , qN (n)]T is Markov. Hence
{q(n)} is a parameterized Markov process.

The queueing delay incurred at node i is hi(q(n)) = E
[
delay at i

∣∣q(n), p(n)
]
.

The total delay h
(
q(n)

)
is the expected end-to-end delay for a packet, given the

vector of queue lengths q(n) and vector routing probabilities p(n), and is given
by

h
(
q(n)

)
=

N−M+1∑
i=1

M∑
j=1

(
p(i∗j)(n) ∗ hj

(
q(n)

))

178 K. Lakshmanan and S. Bhatnagar

The long-run average delay J(θ) from the source to the destination node is

J(θ) = lim
n→∞

1
n

n−1∑
j=0

h
(
q(j)

)
(2.1)

The constraint function gi

(
q(n)

)
= E

[
qi(n)

∣∣p(n)
]
, ∀i = 1, . . . , N at node i is

the expected queue length at that node. There are constraints on the long-run
average queue length at each node

Gi(θ) = lim
l→∞

1
l

l−1∑
j=0

gi

(
q(j)

) ≤ αi, ∀i = 1, . . . , N

The objective thus is to minimize the long-run expected queue length J(θ) such
that the constraints Gi(θ) ≤ αi are satisfied for certain prescribed thresholds
αi, i = 1, . . . , N . The SF algorithms are used to update probability vector p(i∗j)
at a node i. To ensure that the probabilities at each queue add up to 1 after
each update, the normalized probability p̂l = pl∑

l pl
is used.

Note that the tunable parameter θ takes values in the constraint set C =
[0, 1]N which is closed and bounded (hence compact) set. Our aim is to find the
optimum θ∗ ∈ C s.t.

θ∗ = arg min{J(θ) | θ ∈ C, Gi(θ) ≤ αi, i = 1, 2, . . . , p}
We assume that there exists at least one θ ∈ C for which all the above constraints
are satisfied. For given λ1, λ2, . . . , λN ∈ IR+ ∪ {0} let

L(θ, λ1, λ2, . . . , λN) = J(θ) +
N∑

i=1

λi(Gi(θ)− αi)

denote the Lagrangian. Let λ denote the vector (λ1, λ2, . . . , λN)T .
The following assumptions are required to prove convergence of our algo-

rithms, see [2] for details of convergence of smoothed functional algorithms in a
general setting.

Assumption A1. The functions J(.) and Gi(.), i = 1, 2, . . . , N are twice con-
tinuously differentiable.

Assumption A2. The functions h(.) and gi(.), i = 1, . . . , N are Liptschitz
continuous.

In the case of Newton based algorithms, the Hessian estimate is projected onto
the space of positive definite and symmetric matrices after each iteration. This is
done to ensure that the algorithm proceeds along the negative gradient direction.

Let P : IRN → {positive definite and symmetric matrices} denote the pro-
jection operator. If A is positive definite and symmetric then P (A) = A. We
assume the operator P satisfies the following condition.

Assumption A3. If {An} and {Bn} are sequences of matrices in RN×N such that
lim

n→∞ ‖An −Bn‖ = 0 then lim
n→∞ ‖P (An)− P (Bn)‖ = 0. Further for any sequence

{Cn} of matrices if sup
n
‖Cn‖ < ∞, then sup

n
‖P (Cn)‖, sup

n
‖P (Cn)−1‖ < ∞.

Smoothed Functional and Quasi-Newton Algorithms 179

3 Smoothed Functional Algorithms for Constrained
Routing

Gradient and Newton based SF algorithms for constrained optimization have
been studied in [3]. For details and derivation of the SF scheme, see [2]. Let
Γ (x) =

(
Γ1(x), . . . , ΓK (x)

)T represent the projection of x ∈ IRK on to the set

C =
{

x ∈ [0, 1]K
⏐⏐⏐ (j+1)m∑

i=jm+1

xi = 1, ∀ j = 0, 1, . . . , N−M +1
}

which is a compact

set. Let Γ̂ : IR → [0,∞)K denote the projection Γ̂ (y) = max(y, 0), y ∈ IR.

3.1 Gradient SF Algorithm

This algorithm aims to update the parameter along the steepest descent direc-
tion. Let η =

(
η1, η2, . . . , ηK

)T be a vector of independent N (0, 1)-distributed
random variables η1, η2, . . . , ηK . The following gradient estimate is used here, see
[2] for details.

�θL(θ, λ) = lim
β→0

E
[η

β
(L(θ + βη, λ)− L(θ, λ)

]
(3.1)

We use the G-SF algorithm to update the routing probability vector p(n) =
[pl(n), ∀l = 1, . . . ,K]T and Lagrange parameter λ(n) = [λi(n), ∀i = 1, . . . , N]T .

Define step-sizes sequences {a(n)}, {b(n)} and {c(n)} that satisfy the
requirements∑

n

a(n) =
∑

n

b(n) =
∑

n

c(n) = ∞;
∑

n

a(n)2,
∑

n

b(n)2,
∑

n

c(n)2 < ∞; (3.2)

a(n) = o(b(n)); b(n) = o(c(n)). (3.3)

3.2 Newton-SF Algorithm

The Newton version of SF algorithm has been first studied in Bhatnagar [2].
Let Zij(n), i, j = 1, . . . , N, denote an estimate of the Hessian and let H(n) =
P

(
[[Zij(n)]]Ni,j=1

)
denote its projection to the space of symmetric and positive

definite matrices. Let M(n) = [[Mi,j(n)]]Ni,j=1 � H(n)−1 be the inverse of H(n).
In the Jacobi version that we implemented only the diagonal entries Hi,i are
considered so,

Mi,j(n) =
{ 1

Hi,i(n) i = j if Hi,i(n) > 0,

0 i �= j

For the case when Hi,i(n) ≤ 0, we first set Hi,i(n) = ε for some ε > 0 and then
set Mi,i(n) = 1/ε. In this algorithm we have an additional step-size d(n) that
satisfies

∑
n

d(n) = ∞,
∑

n

d(n)2 < ∞ and c(n) = o(d(n)). Further step-sizes

a(n), b(n) and c(n) satisfy (3.2) and (3.3). Convergence of both G-SF and N-SF
algorithms for constrained optimization has been proved in [3]. It is also shown
in the paper that the optimal point to which the algorithms converge is feasible
i.e; the constraints are satisfied at the point of convergence.

180 K. Lakshmanan and S. Bhatnagar

Algorithm 1. G-SF algorithm for constrained routing
1: Initialize Zl = 0, pl = 0.1, ∀l = 1, . . . ,K . Fix M and small β > 0 and set n = 0.
2: while n < M do
3: Generate i.i.d N (0, 1) random variables η(n) =

(
η1(n), η2(n), . . . , ηK (n)

)T . Gen-
erate two parallel simulations of the queue {q(n)} and {q′(n)} governed by pa-
rameters p(n) and p(n) + βη(n). For l = 1, . . . ,K and i = 1, . . . , N,

Zl(n + 1) = Zl(n) + c(n)
(

ηl(n)
β

(
h
(
q′(n)

)
+

N∑
i=1

λi(n)Y ′
i (n) (3.4)

− h
(
q(n)

) − N∑
i=1

λi(n)Yi(n)
)
− Zl(n)

)

pl(n + 1) = Γl

(
pl(n) − b(n)Zl(n)

)
(3.5)

Yi(n + 1) = Yi(n) + c(n)
(
qi(n) − Yi(n)

)
(3.6)

Y ′
i (n + 1) = Y ′

i (n) + c(n)
(
q′i(n) − Y ′

i (n)
)

(3.7)

λi(n + 1) = Γ̂
(
λi(n) + a(n)(Yi(n) − αi)

)
(3.8)

4: Set n := n + 1
5: end while
6: Output the routing probability p(n) and terminate.

4 Quasi-Newton Algorithms

The Newton’s method for solving unconstrained minimization is in general cum-
bersome because in addition to computing the Hessian it is also required to solve
a linear system of equations to find its inverse, see chapter 4 of [4]. This has led
to a new class of algorithms known as quasi-Newton methods, variable metric
or secant methods. The paper by Dennis and More [7] gives a detailed survey
on these algorithms. These algorithms do not find the exact Hessian inverse but
approximations of it at each iteration are used.

4.1 Quasi-Newton SF Algorithm

We briefly describe the popular BFGS (Broyden-Fletcher-Goldfarb-Shanno) up-
date for optimization problems. For simplicity consider the following uncon-
strained minimization problem

min
x∈IRn

f(x)

The following is the general algorithm used for finding zeros of the gradient
�f(x)

x(n + 1) = x(n)− γ(n)M(n)�f
(
x(n)

)
where γ(n) is the step size and M(n) is an approximation to the inverse of the
Hessian. Let s = s(n) = x(n)−x(n−1) and u = u(n) = f

′(
x(n)

)−f
′(

x(n−1)
)
.

Smoothed Functional and Quasi-Newton Algorithms 181

Algorithm 2. N-SF algorithm for constrained routing
1: Initialize Zl = 0, pl = 0.1, ∀l = 1, . . . ,K . Fix M and β > 0 and set n = 0.
2: while n < M do
3: Generate i.i.d N (0, 1) random variables η(n) =

(
η1(n), η2(n), . . . , ηK (n)

)T . Gen-
erate two parallel simulations {q(n)} and {q′(n)} of the queue governed by rout-
ing probability parameters p(n) and p(n) + βη(n). For j, k = 1, . . . ,K , j < k,

Zi,i(n + 1) =
(
1 − d(n)

)
Zi,i(n) + d(n)

(
η2

i (n) − 1
β2

(
h
(
q′(n)

)
+

N∑
i=1

λi(n)Y ′
i (n)

(3.9)

− h
(
q(n)

) − N∑
i=1

λi(n)Yi(n)
))

Zj,k(n + 1) =
(
1 − d(n)

)
Zj,k(n) + d(n)

(
ηj(n)ηk(n)

β2

(
h
(
q′(n)

)
+

N∑
i=1

λi(n)Y ′
i (n)

(3.10)

− h
(
q(n)

) − N∑
i=1

λi(n)Yi(n)
))

And for j > k, set Zj,k(n + 1) = Zk,j(n + 1).
4: Use equations (3.4), (3.6), (3.7) and (3.8) for updating Zl, Yi, Y

′
i and λi respec-

tively as in the G-SF algorithm. Use the Hessian inverse to update the probability
pl(n) as follows:

pl(n + 1) = Γl

(
pl(n) − b(n)

K∑
k=1

Ml,k(n)Zk(n)
)

(3.11)

5: Set n := n + 1
6: end while
7: Output the routing probability p(n) and terminate.

All quasi-Newton algorithms successively approximate the inverse of Hessian
f ′′(x(n)

)−1 by the matrix M(n) :

M(n + 1) = M(n) + B(n) (4.1)

so that M(n) is positive definite and symmetric for all n. The so called quasi-
Newton equation M(n + 1)u(n) = s(n) should also be satisfied for all n. The
error term B(n) should be minimal. The BFGS update is given by

M(n + 1) = M(n)− suT M(n) + M(n)usT

(u, s)
+

[
1 +

(u, M(n)u)
(u, s)

]
ssT

(u, s)
, (4.2)

see [7] for a derivation and other details.
For the first time we develop quasi-Newton SF algorithms based on the BFGS

update. In our problem x(n) is the probability vector p(n) and f
′(

x(n)
)

is the

182 K. Lakshmanan and S. Bhatnagar

Algorithm 3. QN-SF algorithm for constrained routing
1: Initialize Zl(0) = 0, ul(0) = 0, pl(0) = 0.1, sl(0) = 0 and Mi,j(0) = 0, ∀l, i, j =

1, . . . ,K . Fix M and β > 0 and set n = 0.
2: while n < M do
3: Generate i.i.d N (0, 1) random variables η(n) =

(
η1(n), η2(n), . . . , ηK (n)

)T . Gen-
erate two parallel simulations {q(n)} and {q′(n)} of the queue governed by rout-
ing probability parameters p(n) and p(n) + βη(n).

4: Use equations (3.4), (3.6), (3.7) and (3.8) for updating Zl, Yi, Y
′
i and λi, ∀l =

1, . . . ,K , i = 1, . . . , N respectively as in the G-SF algorithm.
5: Use the BFGS rule (4.2) for approximating the inverse of Hessian matrix M(n) =

[[Mi,j(n)]]Ni,j=1

M(n + 1) = M(n) + b(n)

[
− s(n)u(n)T M(n) + M(n)u(n)s(n)T(

u(n), s(n)
) +

(
1 +

(
u(n), M(n)u(n)

)(
u(n), s(n)

)
)

s(n)s(n)T(
u(n), s(n)

)
]

(4.3)

6: As in N-SF algorithm use the equation (3.11) for updating the probability pl(n+
1), l = 1, . . .K . Set n := n+1 and s(n) = p(n)−p(n−1), u(n) = Z(n)−Z(n−1).

7: end while
8: Output the routing probability p(n) and terminate.

vector Z(n) = [Zl(n), l = 1, . . . ,K]T . The vectors [sl(n), l = 1, . . . ,K]T and
[ul(n), l = 1, . . . ,K]T are denoted by s(n) and u(n) respectively. Note that the
BFGS rule for Hessian inverse M(n) and the probability p(n) are updated on
the same time scale b(n).

Many line search algorithms like Wolfe’s rule or Armijo, Goldstein-Price meth-
ods have been used to find the best step-size γk given a descent direction. These
algorithm calculate the objective function value for many intermediate step sizes.
In the network routing problem, the objective function is the delay. This is how-
ever not analytically known and it is not feasible to repeat the simulation for small
changes in step sizes. Hence line search techniques were not used in SF algorithms.

5 Simulation Results

The algorithms were tested on the setting of multi-stage network of queues, see
Fig. 1. All the queues were assumed to be M/M/1 and use FCFS discipline. This
assumption is not necessary as the SF algorithms work for any general queue.
Packets arrive at the source s and are routed to the destination d by choosing a
queue at each stage. The objective is to minimize the long-run average delay for
the packets to reach destination d. The constraint that the average queue length
at each queue should not exceed a threshold is used.

Individual queue lengths are not used in the algorithms. Expected end-to-
end delay is only used for tuning the routing probabilities. This is guided by

Smoothed Functional and Quasi-Newton Algorithms 183

Table 1. Expected delay for different λ and μ with first queue ten being times slower

λ/μ 10/5 5/10 5/5 10/10 15/15
Random 2.75±0.003 0.72±0.001 1.51±0.002 1.29±0.001 1.24±0.001
Optimum 0.93±0 0.26±0 0.52±0 0.46±0 0.44±0
G-SF 1.13±0.134 0.33±0.079 0.65±0.049 0.62±0.139 0.57±0.11
QN-SF 0.99±0.182 0.50±0.175 0.67±0.038 0.55±0.032 0.48±0.021
N-SF 1.06±0.259 0.42±0.079 0.61±0.032 0.53±0.107 0.57±0.079

Table 2. Expected delay for different λ and μ with 3 stages and first queue at each
stage being ten times slower

λ/μ 10/5 5/10 5/5 10/10 15/15
Random 6.81±0.004 2.88±0.005 5.41±0.011 4.01±0.003 3.47±0
Optimum 1.67±0 0.56±0 1.2±0 0.79±0 0.65±0
G-SF 3.08±0.541 1.57±0.087 2.51±0.412 1.52±0.162 1.76±0.518
QN-SF 3.93±0.356 1.21±0.209 3.71±0.405 1.91±0.4 1.75±0.353
N-SF 3.56±0.553 1.08±0.132 3.76±0.48 2.16±0.163 1.54±0.292

contributions from ACO literature. Given the routing probabilities the expected
delay has to be found by simulating the queue. It takes longer time if the network
is larger. In our simulations we found the performance of the algorithms was good
for a moderately sized network of 3 stages with 4 queues at each stage. The three
SF algorithms - Gradient SF, Newton SF and Quasi-Newton SF were tested on
this network. The Jacobi version of N-SF using only the diagonal entries in the
Hessian matrix was considered. The projection operator P used simply mapped
all negative diagonal elements to a small value 0.01.

Table 1 shows the expected delay over 500 iterations for various combinations
of total arrival rate λ at the source s and service rate μk at the queues. At each
iteration we have to simulate the queue to get the steady state values. Here there
is only one stage with four queues. The service rate first queue μ1 is ten times
slower than than the rate μ other three queues, μ1 = μ/10. This model is useful
where there is single router dispatching jobs to N non-identical servers based on
the expected job completion time alone. The first row “Random” shows the value
for routing with equal probability to all queues. The probabilities are initialized
to this value. The second shows the optimum value. The SF algorithms are able
to achieve values close to the optimum for this simple case.

Table 2 shows values for the expected delay with three stages and 4 queues
at each stage. Hence the parameter dimension for this setting is 16 ∗ 2 + 4 = 36.
Again the first queue in each stage here has ten times slower service rate than
the rest. Since it takes longer time to reach the destination, the algorithms
performance is lower than optimum but much better than random routing. All
the SF algorithms have similar performance for this problem.

Table 3 shows the performance of the algorithms with 4 stages with 4 choices
and a constraint that the expected queue length at queue i is lower than 3 ∗ (i
mod 4 + 1). Hence for the first queue in each stage the expected queue length
should be lesser than 3, for the second it is 6, third 9 and the last 12.

184 K. Lakshmanan and S. Bhatnagar

Table 3. Expected delay for different λ and μ with constraints αi = 3∗(i mod 4+1), ∀i

λ/μ 10/5 5/10 5/5 10/10 15/15
G-SF 1.67±0.015 0.58±0.005 1.21±0.015 0.78±0.014 0.66±0.009
QN-SF 1.65±0.024 0.57±0.006 1.22±0.020 0.78±0.005 0.64±0.011
N-SF 1.65±0.008 0.57±0.026 1.19±0.005 0.78±0.003 0.64±0.006

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500

Q
ue

ue
 L

en
gt

h

Iteration Number

Queue Length Vs Iteration Number

Constraint
Queue 1
Queue 2
Queue 3
Queue 4

Fig. 2. Queue length Vs Iteration Number. First queue has 10 times higher service rate
with no constraint.

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

Q
ue

ue
 L

en
gt

h

Iteration Number

Queue Length Vs Iteration Number

Constraint
Queue 1
Queue 2
Queue 3
Queue 4

Fig. 3. Queue length Vs Iteration Number. First queue has 10 times higher service rate
with constraint on average queue length ≤ 10 at all queues.

The plots in Fig. 2 and Fig. 3 show the queue length process for the G-SF
algorithm. In this only one stage with four queues was considered. The service
rate for the first queue is assumed to be 10 times higher than the rest. In Fig. 2
there are no constraints, hence the queue length at the first queue is much higher
than others. While in Fig. 3 the constraint that the expected queue length at all
the four queues should not exceed 10 was used. Hence the queue length are more
equal at all the queues, though the first one is assumed to be 10 times faster. As
expected imposing this constraint results in deterioration in the performance.

Smoothed Functional and Quasi-Newton Algorithms 185

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500

R
ou

tin
g

P
ro

ba
bi

lit
y

Iteration Number

Probability Vs Iteration Number

Queue 1
Queue 2
Queue 3
Queue 4

Fig. 4. Routing probability Vs Iteration Number for G-SF algorithm with constraints
αi = 3 ∗ (i mod 4 + 1), ∀i

Fig. 4 shows how the routing probabilities for the four queues at the source vary
over time. The constraint is that the expected queue length at queue i is lesser than
3 ∗ (i mod 4+1). Initially all the queues have equal probability 0.25. As the G-SF
algorithm proceeds the routing probability converges to a value depending on the
constraint imposed on the queues. Hence the first queue gets the lowest probability
because of the strongest constraint followed by the second, third and the fourth
queues. This is clearly seen in the graph. It can also be seen that the difference in
probabilities for third and fourth queues is not high. This is because the arrival rate
λ is not high enough to violate the weak constraints at these queues.

6 Conclusion

We have developed smoothed functional algorithms for routing in a multi-stage
network of queues with constraints on average queue length. For the first time we
have proposed a quasi-Newton SF algorithm though variants of this algorithm
need to be developed for better performance. Our simulation results show that
SF algorithms are able to perform fairly well for this problem where other policies
like JSQ,LWL or CQSF cannot be used. Convergence of gradient and Newton
SF algorithms is known, however similar proofs need to be shown for the quasi-
Newton algorithm. We are also studying reinforcement learning algorithms for
a similar problem of routing in a multi-stage queueing network.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: A survey. Comp. Netw. 38, 393–422 (2002)

2. Bhatnagar, S.: Adaptive newton-based smoothed functional algorithms for simula-
tion optimization. ACM Trans. on Model. Comput. Simul. 18(1), 27–62 (2007)

3. Bhatnagar, S., Hemachandra, N., Mishra, V.: Stochastic approximation algorithms
for constrained optimization via simulation (2009) (preprint)

186 K. Lakshmanan and S. Bhatnagar

4. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Opti-
mization: Theoretical and Practical Aspects. Springer, Heidelberg (2006)

5. Borkar, V., Das, D.: A novel aco scheme for emergent optimization via reinforce-
ment and initial bias. Swarm Intell. 3, 3–34 (2009)

6. Cohen, J.E., Kelly, F.P.: A paradox of congestion in a queueing network. J. Appl.
Prob. 27, 730–734 (1990)

7. Dennis, J.E., More, J.J.: Quasi-newton methods, motivation and theory. SIAM
Review 19(1), 46–89 (1977)

8. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theor. Comp.
Sci. 344, 243–278 (2005)

9. Gupta, V., Harchol-Balter, M., Sigman, K., Whitt, W.: Analysis of join-the-
shortest-queue routing for web server farms. Perf. Eval. 64, 1062–1081 (2007)

10. Harchol-Balter, M., Crovella, M., Murta, C.: On choosing a task assignment policy
for a distributed server system. J. Parll. Dist. Comput. 59(2), 204–228 (1999)

11. Harrison, P.G., Patel, N.M.: The representation of multistage interconnection net-
works in queuing models of parallel systems. J. of ACM 37(4), 863–898 (1990)

12. Katkovnik, V.Y., Kulchitsky, Y.: Convergence of a class of random search algo-
rithms. Automat. Remote Contr. 8, 1321–1326 (1972)

13. Kolavali, S., Bhatnagar, S.: Ant colony optimization algorithms for shortest
path problems. In: Altman, E., Chaintreau, A. (eds.) NET-COOP 2008. LNCS,
vol. 5425, pp. 37–44. Springer, Heidelberg (2009)

14. Spall, J.C.: Adaptive stochastic approximation by the simultaneous peturbation
method. IEEE Trans. on Automat. Contr. 45, 1839–1853 (1992)

15. Xiao, X., Ni, L.M.: Internet qos: A big picture. IEEE Netw. 13, 8–18 (1999)

An Incremental Power Greedy Heuristic for
Strong Minimum Energy Topology in Wireless

Sensor Networks

B.S. Panda and D. Pushparaj Shetty

Computer Science and Application Group
Department of Mathematics

Indian Institute of Technology Delhi, Hauz Khas
New Delhi 110016, India

bspanda@maths.iitd.ac.in, prajshetty@gmail.com

Abstract. Given a set of sensors in the plane, the strong minimum en-
ergy topology (SMET) problem is to assign transmit power to each sen-
sor such that the resulting topology containing only bidirectional links is
strongly connected. This problem is known to be NP-hard.As this problem
is very much significant from application point of view, several heuristic al-
gorithms have been proposed. In this paper, we propose a new incremen-
tal power greedy heuristic for SMET problem, called Kruskal-incremental
power greedy heuristic. We compare Kruskal-incremental power greedy
heuristic with Prim-incremental power greedy heuristic, one of the most
popular heuristics available in the literature, through extensive simulation.
The simulation results suggest that Kruskal-incremental power greedy
heuristic outperforms on an average the Prim-incremental power greedy
heuristic.

Keywords: Sensor Networks, Topology Control, Minimum Spanning
Tree, Graph Algorithms.

1 Introduction

A wireless sensor network consists of a collection of battery powered sensors each
of which is integrated in a single package with low power signal processing, com-
putation, and a wireless transceiver. Many features of wireless sensor networks
can be found in an excellent survey paper [2]. Sensor nodes collect data of inter-
est and transmit them to other nodes. In such a network, a packet from a source
sensor to the destination sensor may have to travel through intermediate sensors
before reaching to the destination. The transmission power of each sensor can be
tuned between a minimum and a maximum. The energy requirement by a sensor
to transmit a packet depends on its transmission power. Two sensors are said to
be connected by a bidirectional link if each of these sensor is in the transmission
range of the other. So it is important to adjust the transmit power of each sen-
sors so that the resulting network satisfies some prescribed network properties

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 187–196, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

188 B.S. Panda and D. Pushparaj Shetty

such as connectivity (see [3, 4, 8, 9]). This problem is known as topology con-
trol problem in sensor networks and is widely studied (see [5–7, 9, 11, 12]).
One of the topology control problems widely studied is the strong minimum
energy topology problem. The problem is to adjust the transmit power of
each sensors so that the resulting network consisting only of the sensors and all
bidirectional links is strongly connected, i.e., there is a path between every pair
of sensors and the sum of the transmit power assigned to all sensors must be
minimum. The strong minimum energy topology (SMET) problem is de-
fined as follows: Given a set of sensors in the plane, the strong minimum energy
topology (SMET) problem is to assign transmit power to each sensor such that
the resulting topology containing only bidirectional links is strongly connected.
The SMET problem is shown to NP-hard by Cheng et al.[3]. Cheng et al. [3] also
proposed two heuristics: a minimum spanning tree (MST) based heuristic , and
an incremental power greedy. They [3] also showed through simulation results
that the incremental power greedy outperforms the MST based heuristic. The
incremental power greedy heuristic due to Cheng et al. [3] is one of the popular
heuristic available in the literature for the SMET problem.

In this paper, a new incremental power greedy heuristic for SMET problem,
called Kruskal-incremental power greedy heuristic, is proposed. This heuristic is
compared with the MST-heuristic and Prim-incremental power greedy heuristic
due to Cheng et al. [3] through exhaustive simulation. The Kruskal-incremental
power greedy heuristic outperforms the Prim-incremental power greedy heuristic
as evident from the simulation results.

The rest of the paper is organized as follows. Section 2 introduces the graph
theoretic model of the SMET problem. Section 3 introduces the MST-heuristic
and Prim-incremental power greedy heuristic due to Cheng et al. [3]. Section 4
presents a new heuristic, called Kruskal-incremental power greedy heuristic, and
shows the existence of instances when the proposed heuristic is better than the
incremental power greedy heuristic due to Cheng et al. [3]. Section 5 presents
the simulation results. Finally, Section 6 concludes the paper.

2 A Graph Theoretic Model of the SMET Problem

We present first some graph theoretic terminologies which will be required in
this paper. Let G = (V, E) be a graph. Let n and m denote the number of
vertices and number of edges of G, respectively. If each edge e of G is assigned
a wight w(e), then G is called a weighted graph. A graph H = (V ′, E′) is a
subgraph of G if V ′ ⊆ V and E′ ⊆ E. A sequence of vertices v1, v2, . . . , vk is
a path in G if vivi+1 ∈ E for all 1 ≤ i ≤ k − 1. A cycle in G is a sequence of
vertices v1, v2, . . . , vk, v1 such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1 and vkv1 ∈ E.
A subgraph T = (V, E′) of G is called a spanning tree if (i) there is a path in T
between every pair of vertices in V , i.e., T is connected, and (ii) T has no cycle,
i.e., T is acyclic. The cost of a spanning tree T = (V, E′) of a weighted graph
G = (V, E) with weight function w is

∑
e∈E′ w(e). A spanning tree of a weighted

graph G is called a minimum spanning tree (MST) if T has the minimum cost

An Incremental Power Greedy Heuristic for SMET 189

among all spanning trees of G. Two popular algorithms for finding an MST of
a weighted graph are Prim’s algorithm and Kruskal’s algorithm (see [1]). Let
T = (V, E′) be a spanning tree of a weighted graph G = (V, E) having cost
function w. Let PT (v) = max{w(vw)|vw ∈ E(G)} and P (T) =

∑
v∈V PT (v).

Other graph theoretic concepts can be found in [13].
A sensor network consisting of n sensors s1, s2, . . . , sn in the plane can be

modeled as a weighted directed graph G by taking each sensor in the plane as a
vertex and joining the vertices si and sj and assigning w(vivj) = t.dα, where d
is the Euclidean distance between si and sj , t is a threshold which is a function
of signal-to-noise ratio at vj , and α is a constant that is related to path loss and
is from two to four [10]. The SMET problem now reduces to finding a spanning
tree T of G such that P (T) is minimum.

3 Summary of Previous Work

The SMET problem is proved to be NP-hard [3]. Chang et al. [3] proposed two
heuristics for SMET problem. Let T = (V, E′) be a subgraph of the complete
graph Kn = (V, E) on n vertices. Let PT (u) be the power assigned to u in T .
Note that PT (u) = max{w(uv)|uv ∈ E′} if u is adjacent to some vertex v in
T ; otherwise PT (u) = 0. Let xy ∈ E \ E′. Let T ′ = (V, E′ ∪ {xy}). Define
δT (x) = w(xy) − PT (x) if w(xy) > PT (x) else δT (x) = 0. δT (y) is defined
similarly. Let δ′T (xy) = δT (x)+δT (y). So δ′T (xy) is the increase in energy needed
to obtain T ′ from T .

1. MST-Heuristic:
(a) Find a minimum Spanning tree(MST) T of G. Let P (u) be the power

assigned to u for all u ∈ V and P be the sum of all P (u).
(b) Compute P (u) = max{w(uv)|uv ∈ E(T)}.
(c) Output P and P (u) for all u ∈ V .

2. Prim-incremental power greedy Heuristic:
(a) Initialization: Let S be the set containing the subset of sensors con-

sidered so far during the execution of the heuristic. Let T = (S, E′). Let
P be the total power of all the sensors in S, and P (u) be the power ex-
penditure in sensor u. Initially P = 0, S = {v0}, where v0 is any sensor
,P (v0) = 0, and E′ = ∅.

(b) Let S′ = V − S. Find u ∈ S and v ∈ S′ such that δ′T (uv) is minimum
among all u ∈ S and v ∈ V \S, i.e., connecting u and v needs minimum
incremental power δ′T (uv). Set S = S ∪ {v}, P = P + δ′T uv.

(c) If S = V , output P and P (v) for all v ∈ V , and stop; else goto step (b).

The Prim-incremental power greedy heuristics builds the tree more like the Prim’s
MST Algorithm. Hence we call it Prim-incremental power greedy heuristic.

One of the ways to construct an MST of a weighted graph is to use Prim’s
MST algorithm [1]. If Prim’s algorithm is used to construct the MST in the

190 B.S. Panda and D. Pushparaj Shetty

MST-heuristic, then in each iteration an edge uv is added to T if δT (v) = w(vu)
is minimum. However, even though δT (v) is minimum, to reach v, u may need
additional energy δT (u) and in turn = δ′T (uv) = δT (u) + δT (v) may not be
minimum. This has been taken care of in the Prim-incremental power greedy
heuristic.

4 Kruskal-Incremental Power Greedy Heuristic

It has been shown in [3] that MST-Heuristic is a 2-approximation algorithm,
i.e., the total power P needed by MST-Heuristic is at most twice the optimal
power. Though no performance guarantee for Prim-incremental power greedy
heuristic has been obtained, it has been shown by Cheng et al. [3] through
extensive simulation that Prim-incremental power greedy heuristic outperforms
MST-heuristic. However, Prim-incremental power greedy heuristic suffers from
the following demerits.

1. The performance of the algorithm heavily dependents on the initial vertex
chosen.

2. It finds local minimum in each stage while selecting an edge with minimum
incremental power.

As we need to construct a spanning tree with minimum power, we need to
choose n− 1 edges so that these edges do not for any cycle and the total power
required is as small as possible. The demerits of Prim-incremental power greedy
heuristic is that it enforces that the so far selected edges forms a connected
component in addition to the constraint that these edges do not form any cycle.
The connected component constraint forces the Prim-incremental power greedy
heuristic to select an edge based on local minimum. The performance of Prim-
incremental power greedy heuristic also heavily depends upon the initial vertex
chosen. These two demerits can be fixed by removing the constraint that the so
far selected edges forms a single connected component and the initial vertex is
the one which needs minimum incremental power to connect to another node.
This is the motivation of our new heuristic.

We next describe a new incremental power greedy heuristic which is based on
Kruskal’s MST algorithm and hence we call it Kruskal-incremental power greedy
heuristic.

In the Kruskal-incremental power greedy heuristic, we select an edge xy such
that the edge xy needs minimum incremental energy among all edges which are
not selected so far subject to the condition that it does not form a cycle with
the so far selected edges. The heuristic is described below.

Kruskal-incremental Power Greedy Heuristic:

1. Initialization: T = (V, E′), where E′ = ∅, P = 0, PT (u) = 0 for all u ∈ V .
2. Find an edge xy ∈ E \E′ such that (i) T = (V, E′ ∪{xy}) is acyclic and (ii)

δ′T (xy) is minimum.

An Incremental Power Greedy Heuristic for SMET 191

3. E′ = E′ ∪ {xy}, PT (x) = PT (x) + δT (x), PT (y) = PT (y) + δT (y), P =
P + δ′T (xy).

4. if |E′| = n − 1 , then output T = (V, E′), P , and PT (v) for all v ∈ V and
stop; else go to step 2.

We now analyze the time complexity of Kruskal-incremental power greedy
heuristic.

Lemma 1. The Kruskal-incremental power greedy heuristic takes O(n2 log n)
time, where n is the number of nodes in the network.

Proof. Let Ei−1 be set set of edges that have been selected till (i−1)th iteration.
In ith iteration the algorithm chooses an edge xy such that Ei−1 ∪ {xy} is
acyclic and δ′T (xy) is minimum, where T = (V, Ei−1). Using the disjoint set data
structure, acyclicity testing in all the n−1 iterations can be done in O(m log m)
time [1]. The minimum finding takes O(log m) time in each iteration if we use
augmented minimum heap of the δ′T (xy) of all the edges not in Ei−1. Once an
edge xy is added to Ei−1 to get Ei, we need to update δ′T (ab) of all edges in
E \ Ei which are incident either on x or on y. So O(n) updates are needed per
iteration. Since each update in an augmented heap can be done in O(log m) time
[1], all updates take O(n2 log m) = O(n2 log n) time. Hence Kruskal-incremental
power greedy heuristic takes O(n2 log n) time. �

26

d

e

7

c

b

20

17

8

26

8

7

a

b c

d

e

29

d

b

e

7

17

29

c

8

a
a

17

Prim−incremental power, Total power=94 Kruskal−incremental power, Total power=90

(iii)(ii)(i)

Fig. 1. Prim’s Vs. Kruskal incremental power greedy(Kruskal is better)

Figure 1 illustrates Prim-incremental power greedy heuristic and Kruskal-
incremental power greedy heuristic algorithms. The cost of each missing edges
is 100 and can be seen easily that none of the missing edges will be selected
by each of these two heuristics. Hence these high cost edges are not shown in
the graph G of Figure 1(i). The tree constructed by Prim-incremental power
greedy heuristic is shown in Figure 1(ii) Initially, T = (S, E′), where S = {a}
and E′ = ∅. As the stating vertex is a, we have two choices, namely ae and
ab. However, δ′T (ae) = 52 and δ′T (ab) = 58. So, ae is chosen. and E′ = {ae}. In

192 B.S. Panda and D. Pushparaj Shetty

next stage, we have two choices, namely ab and ed. Now δT (a) = 3, δT (b) = 29,
δT (e) = 0, and δT (d) = 7. So, δ′T (ab) = 3 + 29 = 32 and δ′T (ed) = 0 + 7 = 7.
So, ed is chosen next. Similarly, it can be seen that Prim-incremental power
greedy heuristic chooses the edges ae, ed, dc and ab in this order. The power
needed by Prim-incremental power greedy heuristic is 94. However, Kruskal-
incremental power greedy heuristic chooses the edges ed, dc, bc, and ab in this
order and produces the tree T2 with power 90 as shown in Figure 1(iii). So
Kruskal-incremental power greedy heuristic requires 4 unit less power than the
power required by Prim-incremental power greedy heuristic in this case.

The following lemma shows that the difference in the power required by
Kruskal-incremental power greedy heuristic and Prim-incremental power greedy
heuristic can be arbitrarily large.

x−1

d

e

c

b

x−4

a

b c

d

e

x

d

b

e

c

a
a

x
x

x−7

x/3

x/2

x−1

x−7

x/2

x/3

(i) (ii)

x/2

x/3

(iii)
Kruskal Incremental power, power=3x+5x/6−7Incremental power, Power=4x−1

Fig. 2. Power difference between Prims and Kruskal-incremental can be large

Lemma 2. Given any integer k > 6, there is a weighted complete graph with five
vertices such that the Prim-incremental power greedy heuristic takes k more units
of power than the power required by Kruskal-incremental power greedy heuristic.

Proof. Consider the weighted complete graph G with weight system as shown in
Figure 2(i). The costs of the edges which are not shown in the graph are very high
so that these edges will not be included by any of the two heuristics considered
in the lemma. One way to achieve this is by setting the cost of each missing edge
to be x2. The Prim-incremental power greedy heuristic when applied to G of
Figure 2(i), produces the tree T shown in Figure 2(ii). The Kruskal-incremental
power greedy heuristic produces the tree T shown in Figure 2(iii). Kruskal-
incremental power greedy heuristic chooses the edges ed, dc, bc and ab in this
order. The total power needed by Prim-incremental power greedy heuristic is
4x − 1 whereas the total power needed by Kruskal-incremental power greedy
heuristic is 3x + 5x/6 − 7. So the difference in power is x/6 + 6. If we choose
x = 6k−36, then Prim-incremental power greedy heuristic will need k more unit
of power needed by Kruskal-incremental power greedy heuristic for the graph G
of Figure2(i). This proves the lemma. �

An Incremental Power Greedy Heuristic for SMET 193

5 Experimental Results

We compare all the three heuristics, namely, (i) MST-heuristic, (ii) Prim-
incremental power greedy heuristic, and (iii) Kruskal-incremental power greedy
heuristic. We assume n sensors are randomly distributed in a 1000×1000 square.
The power function used in the simulation study is f(d) = t.dα, where α is a
constant between 2 and 4. We take α = 2 in our simulation study, t is the thresh-
old which is set to 1. For each n ranging from 10 to 100 in increments of 5, we
run the heuristics 100 times with different seeds for random number generator.
The average of the total powers is reported in Figure 3. The maximum and
the variance of power consumptions are shown in Figure 4 and 5 respectively.
Table 1 shows the number of times Kruskal-incremental power greedy heuristic
outperforms Prim-incremental power greedy heuristic out of 100 runs. Since we
plot the average of 100 runs for each n considered in the paper, the comparison
of variance of power consumption is essential to see the stability of the heuristic.

We find that total energy decreases with the increase in number of nodes. This
is because when the sensors are densely located, it requires less energy to reach
the neighbor. We also observe that 66 percent of the time Kruskal-incremental
power greedy heuristic requires less total power than the Prim-incremental power
greedy heuristic. Total transmit power produced by Kruskal-incremental power
greedy heuristic is 0.67 percent less than that of Prim-incremental power greedy

10 20 30 40 50 60 70 80 90 100
7.5

8

8.5

9

9.5

10
x 10

5

No.of nodes in the network

A
ve

ra
ge

 to
ta

l e
ne

rg
y

co
ns

um
pt

io
n

MST
Prim−incr
Kruskal−incr

Fig. 3. Average total power

194 B.S. Panda and D. Pushparaj Shetty

10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

No.of nodes in the network

M
ax

im
um

 to
ta

l e
ne

rg
y

co
ns

um
pt

io
n

MST
Prim−incr
Kruskal−incr

Fig. 4. Maximum total power

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

10

No.of nodes in the network

V
ar

ia
nc

e
of

 to
ta

l e
ne

rg
y

co
ns

um
pt

io
n

MST
Prim−incr
Kruskal−incr

Fig. 5. Variance of total power

An Incremental Power Greedy Heuristic for SMET 195

Table 1. Comparison of Prim-incremental power greedy and Kruskal-incremental
power greedy Heuristics

No.of Nodes MST Prim-incr Kruskal-incr %Avg Imp %better
10 960130 954950 946788 0.85 45
15 902063 889198 887646 0.17 74
20 920350 902596 891203 1.26 68
25 865974 853997 846003 0.94 69
30 826402 815477 811237 0.52 55
35 839361 828701 819911 1.06 72
40 846873 830740 827007 0.45 60
45 834892 818632 812645 0.73 55
50 840166 825165 819163 0.73 70
55 821330 804650 801864 0.35 65
60 820065 805089 800832 0.53 63
65 829995 817755 811348 0.78 65
70 815051 800098 795336 0.6 66
75 799142 778653 775288 0.43 62
80 807427 790382 786310 0.52 63
85 794559 781058 773804 0.93 76
90 797419 782288 776716 0.71 63
95 804207 785587 780546 0.64 59
100 801213 783156 779163 0.51 62

heuristic. The maximum transmit power produced by Kruskal-incremental power
greedy heuristic is 1.78 percent less than that of Prim-incremental power greedy
heuristic. The variance of total power consumption is improved by 6.87 percent
in compared to Prim-incremental power greedy heuristic. This study indicates
that Kruskal-incremental power greedy heuristic performs better than the Prim-
incremental power greedy heuristic.

6 Conclusion

In this paper, we proposed a new heuristic, called Kruskal-incremental power
greedy, for strong minimum energy topology problem in wireless sensor networks.
We compared the proposed heuristic with Prim-incremental power greedy heuris-
tic and MST-heuristic proposed in [3]. Our study shows that the proposed heuris-
tic out performs both MST-heuristic as well as Prim-incremental power greedy
heuristic. However, there are cases in which Kruskal-incremental power greedy
is worse than that of Prim-incremental power greedy heuristic, as can be seen
from Table 1. So there is a scope of improving the Kruskal-incremental power
greedy heuristic using some novel ideas so that in each case it is better than Prim-
incremental power greedy heuristic. Note that MST-heuristic is a 2-approximation
algorithm. As both Prim-incremental power greedy heuristic and Kruskal-
incremental power greedy heuristic are better than MST-heuristic, it would be
interesting to see whether these heuristics are 2-approximate algorithms.

196 B.S. Panda and D. Pushparaj Shetty

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms.
Addison-Wesley Publishing Company, Reading (1987)

2. Akyildiz, I.F., Su, W., Sankarsubramanian, Y., Cayirci, E.: Wireless Sensor Net-
works: A Survey. Computer Networks 38, 393–422 (2002)

3. Cheng, X., Narahari, B., Simha, R., Cheng, M., Liu, D.: Strong minimum en-
ergy topology in wireless sensor networks: NP-Completeness and Heuristics. IEEE
Transactions on Mobile Computing 2(3), 248–256 (2003)

4. Cheng, M.X., Cardei, M., Sun, J., Cheng, X., Wang, L., Xu, Y., Du, D.-Z.: Topology
Control of Ad Hoc Wireless Networks for Energy Efficiency. IEEE Transactions on
Computers 53(12), 1629–1635 (2004)

5. Gonzales, T. (ed.): Handbook of Approximation Algorithms and Metaheuristics,
ch. 67. Chapman and Hall CRC, Boca Raton (2007)

6. Kirousis, L.M., Kranakis, E., Krizane, D., Pele, A.: Power consumption in packet
radio networks. Theoretical Computer Science 243, 289–305 (2000)

7. Labrador, M.A., Wightman, P.M.: Topology Control in Wireless Sensor Networks.
Springer, Heidelberg (2009)

8. Li, D., Du, H., Liu, L., Huang, S.C.H.: Joint Topology Control and Power Con-
servation for Wireless Sensor Networks Using Transmit Power Adjustment. In:
Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 541–550. Springer,
Heidelberg (2008)

9. Lloyd, E.L., Liu, R., Marathe, M.V., Ramanathan, R., Ravi, S.S.: Algorithmic
aspects of topology control problems for Ad Hoc Networks. Mobile Networks and
Applications 10, 19–34 (2005)

10. Rappaport, T.S.: Wireless communications: Principle and Practice. Prentice-Hall,
Englewood Cliffs (1996)

11. Santi, P.: Topology Control in wireless ad hoc and sensor Networks. ACM Com-
puting Surveys 37(2), 164–194 (2005)

12. Santi, P.: Topology Control in wireless ad hoc and sensor Networks. Wiley Inter
Science, Chichester (2005)

13. West, D.: Introduction to Graph Theory. PHI (2006)

kth Order Geometric Spanners
for Wireless Ad Hoc Networks

Prabhat Kiran and S.V. Rao

Department of Computer Science & Engineering,
Indian Institute of Technology
Guwahati 781039, Assam, India
{p.kiran,svrao}@iitg.ernet.in

Abstract. Wireless ad hoc network can be modeled as a unit disk graph
(UDG) in which there is an edge between two nodes if and only if their Eu-
clidean distance is at most one unit. The size of UDG is in O(n2), where
n is the number of network nodes. In the literature, the geometric span-
ners like Relative Neighborhood Graph (RNG), Gabriel Graph (GG), De-
launay Triangulation (Del), Planarized Localized Delaunay Triangulation
(PLDel) and YaoGraph are proposed, which are sparse subgraphs of UDG.
In this paper, we propose a hierarchy of geometric spanners called the kth

order RNG (k-RNG), kth order GG (k-GG), kth order Del (k-Del), and
kth order Yao (k-Yao) to reduce the spanning ratio and control topology,
sparseness and connectivity. We have simulated these spanners and com-
pared with the existing spanners. The simulation results show that the
proposed spanners have better properties in terms of spanning ratio and
connectivity by controlling topology and sparseness.

Keywords: Geometric Spanners, Wireless Networks, Distributed
Computing.

1 Introduction

Wireless ad hoc network can be modeled as a unit disk graph, UDG(V), in which
there is an edge between two nodes if and only if their Euclidean distance is at
most one unit, where V denotes the set of nodes in the network. Routing and
topological control often require subgraphs of UDG(V), which are sparse, can be
constructed locally in an efficient way, and is still relatively good compared with
the original unit disk graph for routes’ quality. One such quality requirement is
the shortest path connecting any two nodes in the subgraph is not much longer
than the shortest path connecting them in the original unit disk graph. This
aspect of path quality is called the stretch factor of the subgraph. A subgraph
with a constant stretch factor is often called a spanner.

A geometric graph G is a t-spanner (for t ≥ 1) when the length of the shortest
path in G between any pair of nodes a, b does not exceed t· |ab| where |ab| is the
Euclidean distance between a and b. Any path from a to b in G whose length

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 197–208, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

198 P. Kiran and S.V. Rao

u v

(a) RNG

u v

(b) GG

w

vu

(c) Del

w

vu

x

(d) LDel

u

(e) Yao

Fig. 1. Neighborhood properties used by various geometry spanners

does not exceed t · |ab| is a t-spanning path. The smallest constant t having this
property is the spanning ratio or stretch factor of the graph. A comprehensive
survey on the topic can be found in [1].

Several geometric structures are known to be spanners and can be exploited
for use in ad hoc wireless networks [2]. Here we review some of the spanners
related to our work. Let UDG of V be denoted by G.

The relative neighborhood graph (RNG(V)), consists of all edges uv such that
there is no point w ∈ V such that |uw| < |uv| and |vw| < |uv| [3]. Thus an edge
uv is included if the intersection of two circles centered at u and v with radius
|uv| does not contain any vertex w from the set V (see the Fig. 1(a)). The RNG
is a planar graph. Its length stretch factor, however, is at most n− 1.

The Gabriel graph (GG(V)), consists of all edges uv such that disk(u, v) does
not contain any node from V , where disk(u, v) is the disk with diameter |uv| (see
the Fig. 1(b)). The GG is a planar graph. The length stretch factor of GG(V)
is at most 4π

√
2n−4
3 [4].

The emptiness criteria of RNG and GG is tested by each node with respect to
its 1-hop neighbors, instead of V , in localized distributed construction for adhoc
networks.

A triangulation of V is a Delaunay triangulation (Del(V)), if the circumcircle
of each of its triangles does not contain any other vertices of V in its interior (see
the Fig. 1(c)). The Del(V) is a planar t-spanner with spanning ratio 2π

3 cos π
6

=
4
√

3
9 π ≈ 2.42 [5] [6]. The best known lower bound on t is π/2 [7]. The emptiness

criteria of circumcircle of a triangle is tested with respect to 1-hop neighbors of
each node of the triangle in localized distributed construction.

kth Order Geometric Spanners for Wireless Ad Hoc Networks 199

A localized algorithm that constructs a sequence of graphs, called localized
Delaunay (LDelm(V)) is proposed by Li et al [8]. An edge uv is called a Gabriel
edge if |uv| ≤ 1 and the open disk with uv as diameter does not contain any
vertex from V . We call a triangle "uvw a m-localized Delaunay triangle if the
interior of the circumcircle of "uvw, does not contain any vertex of V that is a
m-neighbor of u, v, or w (see the Fig. 1(d)) and all edges of the triangle "uvw
have length no more than one unit. Then, the m-localized Delaunay graph over
a vertex set V has exactly all unit Gabriel edges and edges of all m-localized
Delaunay triangles. A node q is a m-neighbor of p if q is in m-hop neighborhood
of p. The LDelm(V) is a planar graph for any m ≥ 2 [8]. A planar graph
PLDel(V) is constructed from LDel(1)(V) locally and is shown to be a t-spanner
of UDG(V).

The Yao graph with an integer parameter c ≥ 6, −−→Y Gc(V), is defined as follows.
At each node u, c cones are defined by taking c equally separated rays originated
at u. In each cone, choose the closest node v to u with distance at most one,
if there is any, and add a directed link −→uv, ties are broken arbitrarily (see the
Fig. 1(e)). Let Y Gc(V) be the undirected graph by ignoring the direction of each
link in −−→Y Gc(V). Yao graph contains at most cn edges. Its length stretch factor
is at most 1

1−2 sin π
c
. However, the Yao graph is not guaranteed to be planar. The

directed graphs −−→Y Gc(V) has a bounded out-degree c, but some nodes can have
large in-degree.

The existing spanners provide fixed topologies, which does not allow to change
spanning ratio, sparseness and connectivity. In this paper we proposed higher
order graphs based on the existing spanners, for adhoc networks, to reduce the
spanning ratio and control topology, sparseness and connectivity. We have sim-
ulated these spanners and compared with the existing spanners. The simulation
results show that the proposed spanners have better properties in terms of span-
ning ratio and connectivity by controlling topology and sparseness.

The rest of the paper is organized as follows. In the next section, we define
our proposed graphs and their properties. The third section presents a detailed
analysis of simulation results. The last and final section concludes with some
pointers to future research directions.

2 kth Order Geometric Spanners

In the literature, higher order geometric graphs, k-GG, k-RNG, and k-Del are
used to solve the problems Hamiltonian cycle [9], and Euclidean bottleneck
matching [10], and Euclidean biconnected edge subgraph [11]. The k-GG and
k-RNG can be computed in O(kn3/2 log n + k2n) time [12]. This algorithm is a
centralized algorithm which is not suitable for ad-hoc networks. More over each
node has to know the position of all the nodes in the network, which is very
expensive. The criteria of higher order graph edges are tested with respect to
its 1-hop neighbors, instead of V , in localized distributed construction for adhoc
networks.

200 P. Kiran and S.V. Rao

2.1 kth Order Relative Neighborhood Graph (k-RNG)

The kth order Relative Neighborhood Graph consists of all edges uv such that
there are no more than k−1 nodes w ∈ V such that |uw| < |uv| and |wv| < |uv|.
In other words the edge uv is included in the graph if and only if the intersection
of two circles centered at u and v and with radius |uv|, denoted by lune(u, v),
does not contain more than k − 1 nodes w from the set V . Note that for k = 1,
k-RNG reduces to the normal RNG.

In order to make the graph construction amenable to ad-hoc networks, we
relax the criteria of checking lune(u, v) restricted to 1-hop neighbors instead of
V . In other words. each node u places an edge to a node v if and only if lune(u, v)
does not contain more than k− 1 nodes of 1-hop neighbors of u. This method is
depicted in the algorithm below.

Algorithm: k-RNG

Broadcast hello packet with ID and location information
and collect 1-hop information n1(u).

Each node u follow the steps to find k-RNG edges
for each ai ∈ n1(u) do

if lune(u, ai) contain less than k nodes aj ∈ n1(u)
add edge uai to k-RNG.

We can prove the following interesting properties of k-RNG.

Lemma 1. k-RNG ⊆ (k + 1)-RNG.

Lemma 2. The message complexity of construction of k-RNG is in O(n), where
n is number of nodes in the network.

Lemma 3. The time complexity of construction of k-RNG is in O(Δ2), where
Δ is the maximum node degree of UDG.

Proof. It follows from the fact that the time required to check lune(u, ai) con-
tains at most k− 1 nodes is in O(Δ), since number of nodes in 1-hop neighbors
for the node u is in O(Δ). This test has to done for each edge formed be-
tween u and every 1-hop neighbor of u, which are at most Δ. Hence follows the
lemma.

2.2 kth Order Gabriel Graph (k-GG)

The kth order Gabriel Graph (k-GG) contain all edges uv such that the disk(u, v)
does not contain more than k − 1 nodes from V . k-GG reduces to the normal
GG, for k = 1. Similar to k-RNG, we relax the criteria of checking the disk(u, v)

kth Order Geometric Spanners for Wireless Ad Hoc Networks 201

v

w

eu

Expanded disk(e)

disk(e)

Fig. 2. Illustration of the proof k-GG ⊆ k-Del

to 1-hop neighbors only. That is, each node u places an edge to the node v if
and only if disk(u, v) does not contain more k − 1 nodes of 1-hop neighbors of
u. One can easily verify the following lemmas.

Lemma 4. k-GG ⊆ (k + 1)-GG.

Lemma 5. The time and message complexity of construction of k-GG is in
O(Δ2) and O(n) respectively, where Δ is the maximum node degree of UDG and
n is number of nodes.

Lemma 6. k-RNG ⊆ k-GG, for given k.

Proof. Let e be an edge in k-RNG. This implies that the lune(e) contains at
most k − 1 nodes. The edge e ∈ k-GG, because disk(e) � lune(e).

2.3 kth Order Delaunay Graph (k-Del)

The kth order Delaunay Graph, consists of all edges uv such that the interior of
the circumcircle of the triangle "uvw does not contain more than k − 1 nodes
from the set V . For k = 1, k-Del reduces to the normal Del. Similar to previous
graphs, we relax the criteria of checking the circumcircle of "uvw to 1-hop
neighbors of u only. Some properties of the graph are stated below.

Lemma 7. k-Del ⊆ (k + 1)-Del.

Lemma 8. The time and message complexity of construction of k-Del is in
O(Δ3) and O(n), where Δ is the maximum node degree of the network in UDG
and n is number of nodes.

Lemma 9. k-GG ⊆ k-Del, for given k.

Proof. Let e be an edge in k-GG. This implies that there exits a disk(e) which
contain at most k − 1 nodes as shown in the Fig. 2. Expand the disk(e) till it
touches a node w outside of it such that the end points of e, u and v, also lies

202 P. Kiran and S.V. Rao

on the circle as shown in the Fig. 2. The expanded circle is the circumcircle of
"uvw and contains at most k − 1 nodes.

Hence follows the theorem.

Theorem 1. k-RNG ⊆ k-GG ⊆ k-Del.

2.4 kth Order Yao Graph (k-Yao)

The kth order Yao Graph is formed by considering each node u ∈ V and con-
necting it to no more than k closest nodes v in each cone, and preserving only
those edges with |uv| ≤ 1. The number of cones is given by a parameter c, which
is the number of equally separated angular regions around any given node. For
k = 1, k-Y ao reduces to the normal Yao graph.

Lemma 10. The time and message complexity of construction of k-Yao is in
O(Δ) and O(n), where Δ is the maximum node degree of the network in UDG
and n is the number of nodes.

3 Simulation and Analysis

We have simulated these higher order geometric graphs and evaluated their
performance. We have varied the number of nodes between 100 and 500 in the
area of 500× 500m2 with each nodes’ communication radius of 100m.

We have evaluated our proposed structures against average degree of nodes
(AVG DEG), maximum spanning ratio (MAX SPAN), percentage of UDG edges
present in the graph (%UDG), and average number of edges per node (SIZE FAC)
by varying the number of nodes in the network between 100 and 500. Similar to
graph size, SIZE FAC gives an estimate of sparseness of the graph. The other prop-
erties like minimum degree, average spanning ratio, graph size and diameter are
studied in [13].

The simulation results are shown in the Fig. 3, Fig. 4, Fig. 5, Fig. 6, and Fig. 7.
For a given k, as number of nodes increases, the graph size naturally increases.
But the %UDG decreases, because large number of edges do not satisfy the kth

order graph property due to increase in node density. However, spanning ratio
increases since edges density increased in UDG and decreased in higher order
graphs. This means that the sparseness of the graph with respect to UDG is
increasing as N increases.

As k increases, connectivity between nodes increase due to relaxation of the
higher order graph property, which can observed in increase in average node
degree, average number of edges per node and percentage of UDG edges. This
leads to decease in spanning ratio and sparseness. Moreover, increase in the
connectivity increases the fault tolerance of network.

kth Order Geometric Spanners for Wireless Ad Hoc Networks 203

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 100 200 300 400 500

D
eg

re
e

No. of Points (N)

k-GG (AVG_DEG v/s N)

k=1
k=2
k=3
k=4
k=5

(a) Average Degree v/s Points

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 100 200 300 400 500

M
A

X
_S

P
A

N

No. of Points (N)

k-GG (MAX_SPAN v/s N)

k=1
k=2
k=3
k=4
k=5

(b) Maximum Spanning Ratio v/s Points

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400 500

S
iz

e
F

ac
to

r

No. of Points (N)

k-GG (Size Factor v/s N)

k=1
k=2
k=3
k=4
k=5

(c) Size Factor v/s Points

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500

%
U

D
G

No. of Points (N)

k-GG (%UDG v/s N)

k=1
k=2
k=3
k=4
k=5

(d) Percentage of UDG v/s Points

Fig. 3. Simulation results for k-GG

204 P. Kiran and S.V. Rao

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 100 200 300 400 500

D
eg

re
e

No. of Points (N)

k-RNG (AVG_DEG v/s N)

k=1
k=2
k=3
k=4
k=5

(a) Average Degree v/s Points

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100 200 300 400 500

M
A

X
_S

P
A

N

No. of Points (N)

k-RNG (MAX_SPAN v/s N)

k=1
k=2
k=3
k=4
k=5

(b) Maximum Spanning Ratio v/s Points

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 100 200 300 400 500

S
iz

e
F

ac
to

r

No. of Points (N)

k-RNG (Size Factor v/s N)

k=1
k=2
k=3
k=4
k=5

(c) Size Factor v/s Points

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 200 300 400 500

%
U

D
G

No. of Points (N)

k-RNG (%UDG v/s N)

k=1
k=2
k=3
k=4
k=5

(d) Percentage of UDG v/s Points

Fig. 4. Simulation results for k-RNG

kth Order Geometric Spanners for Wireless Ad Hoc Networks 205

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 100 200 300 400 500

D
eg

re
e

No. of Points (N)

k-Del (AVG_DEG v/s N)

k=1
k=2
k=3
k=4
k=5

(a) Average Degree v/s Points

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 200 300 400 500

M
A

X
_S

P
A

N

No. of Points (N)

k-Del (MAX_SPAN v/s N)

k=1
k=2
k=3
k=4
k=5

(b) Maximum Spanning Ratio v/s Points

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 100 200 300 400 500

S
iz

e
F

ac
to

r

No. of Points (N)

k-Del (Size Factor v/s N)

k=1
k=2
k=3
k=4
k=5

(c) Size Factor v/s Points

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500

%
U

D
G

No. of Points (N)

k-Del (%UDG v/s N)

k=1
k=2
k=3
k=4
k=5

(d) Percentage of UDG v/s Points

Fig. 5. Simulation results for k-Del

206 P. Kiran and S.V. Rao

 5

 10

 15

 20

 25

 30

 35

 100 200 300 400 500

D
eg

re
e

No. of Points (N)

k-Yao (AVG_DEG v/s N)

k=1
k=2
k=3
k=4
k=5

(a) Average Degree v/s Points

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 100 200 300 400 500

M
A

X
_S

P
A

N

No. of Points (N)

k-Yao (MAX_SPAN v/s N)

k=1
k=2
k=3
k=4
k=5

(b) Maximum Spanning Ratio v/s Points

 2

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500

S
iz

e
F

ac
to

r

No. of Points (N)

k-Yao (Size Factor v/s N)

k=1
k=2
k=3
k=4
k=5

(c) Size Factor v/s Points

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500

%
U

D
G

No. of Points (N)

k-Yao (%UDG v/s N)

k=1
k=2
k=3
k=4
k=5

(d) Percentage of UDG v/s Points

Fig. 6. Simulation results for k-Yao

kth Order Geometric Spanners for Wireless Ad Hoc Networks 207

 2

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500

D
eg

re
e

No. of Points (N)

All Graphs (AVG_DEG v/s N)

Del
2-Del

GG
3-GG
LDel

PLDel
RNG

3-RNG
Theta

Yao
2-Yao

(a) Average Degree v/s Points

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 200 300 400 500

M
A

X
_S

P
A

N

No. of Points (N)

All Graphs (MAX_SPAN v/s N)

Del
2-Del

GG
3-GG
LDel

PLDel
RNG

3-RNG
Theta

Yao
2-Yao

(b) Maximum Spanning Ratio v/s Points

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500

S
iz

e
F

ac
to

r

No. of Points (N)

All Graphs (Size Factor v/s N)

Del
2-Del

GG
3-GG
LDel

PLDel
RNG

3-RNG
Theta

Yao
2-Yao

(c) Size Factor v/s Points

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 200 300 400 500

%
U

D
G

No. of Points (N)

All Graphs (%UDG v/s N)

Del
2-Del

GG
3-GG
LDel

PLDel
RNG

3-RNG
Theta

Yao
2-Yao

(d) Percentage of UDG v/s Points

Fig. 7. Simulation results for various spanners

208 P. Kiran and S.V. Rao

4 Conclusion

In this paper we have considered the basic geometric spanners used in ad-hoc
networks and generalized to higher order graphs by relaxing the emptiness crite-
ria for better topology control. It would be interesting to study various network
parameters like delay, jitter, delivery ratio, and throughput, when these graphs
used as network topology for routing.

References

1. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York (2007)

2. Cheng, X., Huang, X., Li, X.Y.: Applications of computational geometry in wireless
networks (2003)

3. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognition 12, 261–268 (1980)

4. Bose, P., Devroye, L., Evans, W., Kirkpatrick, D.: On the spanning ratio of gabriel
graphs and beta-skeletons. SIAM J. Discret. Math. 20(2), 412–427 (2006)

5. Keil, J.M., Gutwin, C.A.: The Delaunay triangulation closely approximates the
complete Euclidean graph. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS
1989. LNCS, vol. 382, pp. 47–56. Springer, Heidelberg (1989)

6. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good
as complete graphs. Discrete & Computational Geometry 5, 399–407 (1990)

7. Chew, P.: There is a planar graph almost as good as the complete graph. In:
Proceedings of the Second Annual Symposium on Computational Geometry, SCG
1986, pp. 169–177. ACM, New York (1986)

8. Li, X.Y., Calinescu, G., Wan, P.J.: Distributed construction of planar spanner and
routing for ad hoc wireless networks. In: INFOCOM (2002)

9. Chang, M.S., Tang, C.Y., Lee, R.C.T.: 20-relative neighborhood graphs are hamil-
tonian. In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS,
vol. 450, pp. 53–65. Springer, Heidelberg (1990)

10. Chang, M.S., Tang, C.Y., Lee, R.C.T.: Solving the euclidean bottleneck bicon-
nected edge subgraph problem by 2-relative neighborhood graphs. Discrete Applied
Mathematics 39, 1–12 (1992)

11. Chang, M., Tang, C., Lee, R.: Solving the euclidean bottleneck matching problem
by k-relative neighborhood graphs. Algorithmica 8, 177–194 (1992),
doi:10.1007/BF01758842

12. Rao, S.V., Mukhopadhyay, A.: Fast algorithms for computing beta-skeletons and
their relatives. Pattern Recognition 34, 2163–2172 (2001)

13. Kiran, P.: kth order geometric spanners for wireless ad hoc networks. Master’s
thesis, Indian Institute of Technology Guwahati (2010)

Robust and Distributed Range-Free Localization
Using Anchor Nodes with Varying

Communication Range for Three Dimensional
Wireless Sensor Networks

Manas Kumar Mishra and M.M. Gore

Department of Computer Science & Engineering
Motilal Nehru National Institute of Technology, Allahabad, India

{manasmishra,gore}@mnnit.ac.in

Abstract. Localization of the nodes in a sensor network is a premier
activity which influences the performance of the network. The data col-
lected by a sensor node may become useless if the location of that node
is not known. Sensor networks are mostly deployed in areas where man-
ual positioning of the sensor nodes is not feasible, and the topology and
size of the network also changes frequently. Therefore, the localization
schemes developed for these kinds of network need to be self-configurable
and adaptive to the changes. This paper presents a localization scheme
for three dimensional wireless sensor networks that not only helps sensor
nodes to self-localize, but, it is also able to verify the estimated location
and re-estimate it, if needed. The sensor nodes estimate their positions
based on the position information of the GPS enabled anchor nodes. Sim-
ulation results show that the proposed method gains heavily in terms of
the accuracy of the estimated positions.

1 Introduction

Of late, Wireless Sensor Networks (WSN) have been perceived as a befitting
alternative in various critical applications like surveillance of terrains for land-
slide detection, invasion monitoring, study of underwater ecosystem for pollution
monitoring, early warning systems for natural disasters like tsunamis, oil drilling,
etc. Predominately these applications require three dimensional (3D) modeling
of the WSN, as the event detection need to be associated with the height/depth
of it’s occurrence as well. The location information about occurrence of an event
is estimated based on the location information of the participating nodes, de-
tecting that particular event. Therefore, the localization algorithm is required
to be designed to help sensor nodes to self localize. The condition gets more
demanding when such sensor networks have to be deployed on a larger scale.
Most of the terrestrial 3D localization schemes [3][6][10] use Global Positioning
System (GPS) enabled anchor nodes for generation of beacon points to be used
for localization. While the mobile anchor nodes broadcast their position infor-
mation, the static nodes register valid beacon points from these messages. Out

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 209–220, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

210 M.K. Mishra and M.M. Gore

of the two possible valid beacon points, one is recorded while the static node is
at the surface of the communication sphere of the anchor node and before enter-
ing into it, and the second one is recorded at the surface again, while the node
is about to leave the communication sphere. If d is the distance of separation
between the lines containing the anchor and the static node, respectively, and if
the communication range of the anchor node is r, and the speed of the anchor
node is v, then the time difference (denoted as t) between recording of the two
valid beacon points as described before, is given by the equation,

t =
2 ∗ √r2 − d2

v
(1)

Therefore, for a predefined speed of travel, and a specific distance of separation
between a pair of static and anchor nodes, the communication range of the anchor
node governs, and is directly proportional to the time difference between the
record of two valid beacon points that can be generated from that anchor node.
Further, despite the distribution of the sensor nodes being random in nature,
the presence of patches of highly dense deployment can not be ruled out. In such
a patchy distribution, if the diameter of a dense patch is much smaller than the
communication range of the anchor node, then the time difference to receive two
valid beacon points for the nodes in the patch will be too high, as most of the
time the nodes will be with in the communication range of the anchor node. So,
smaller communication range anchor nodes should be preferred. But, in contrast
to this, the nodes located in a sparsely dense patch will have to wait for a longer
period for the first valid beacon point if the communication range of anchor nodes
are relatively smaller, and hence higher communication range should be used.
Therefore, the use of anchor nodes with different communication ranges will be
more efficient. But, the authors are unaware of any range-free scheme which
uses anchor nodes with variable communication ranges for position estimation
in 3D WSN. In addition to this, if the anchor nodes are battery (limited energy)
operated, then the communication ranges of these nodes will get reduced over a
period of time based on the number of beacon messages they broadcast, resulting
in the variation of communication ranges for different anchor nodes. Further,
the estimated position will inherit the fault in reading from the beacon points, if
any, due to faultier GPS readings, wrongly estimated communication ranges, etc.
Hence, localization techniques need to be developed to cater to the issues of error
correction and varying communication range. This paper proposes a robust and
distributed anchor based range-free localization algorithm for 3D WSNs that
provides position estimations with accuracy using anchor nodes with variable
communication range.

The paper is organized in five sections. In section 2, the related works are
discussed. The proposed localization algorithm is elucidated in section 3, it also
defines the network model and the assumptions made in the scheme. Section 4
presents and analyzes the simulation results. Finally, we conclude the paper in
section 5.

Robust and Distributed Range-Free Localization Using Anchor Nodes 211

2 Related Work

Range-free schemes [1][4][7][11] do not use any range measurements. Range-free
methods are simple, but, give only a coarse estimation of the node location
[5][9]. So, we require localization schemes that give accurate results as well as
cost effective.

Marcelo Martins et.al proposed a localization scheme for 3D WSN in [6] using
a centroid method. This method uses the location information of the anchor
nodes to estimate the centroid of the tetrahedron composed of these points. The
coordinates of the centroid is considered as the estimated position of the sensor
node.

Chia-Ho Ou and Kuo-Feng Ssu in [3] proposed a range free scheme for 3D
WSN which requires two chords to be built from the beacon points on the com-
munication sphere. The chords need to have an angle of at least 10 degrees
between them. This constraint results in a high probability of discarding the
received anchor node positions. This scheme estimates the location of the sensor
nodes with negligible errors.

A range-free localization scheme for 3D WSN is proposed in [10] by V.Yadav
et.al. This approach uses basic principle of 3D geometry for location estimation.
With four anchor positions, four equations of sphere can be formed using which
we can find the three coordinates of the node location in a three dimensional
space. This scheme requires only one non-coplanar beacon point among the four
positions received. This lowers the probability of discarding any anchor position
as compared to the approach mentioned in [3].

The schemes proposed in literature do not verify the estimated position, which
may have in it the inherited errors due to the calculations made, or faulty GPS
readings, if any. Further, the usefulness of varying communication range for
location estimation of nodes in a patchy deployment has not been explored.
In addition, the communication ranges of anchor nodes can also reduce due to
the depletion of their battery power, if it is not assumed to be unlimited. Our
proposed localization algorithm solves these problems.

3 Proposed Localization Algorithm

3.1 Network Model and Assumptions

Types of Nodes: The WSN model used for this scheme consists of two types
of nodes: sensor nodes and anchor nodes. Sensor nodes are large in number
and will be used for sensing the data. Anchor nodes are few in numbers and
are equipped with the GPS device, hence, they are able to find their own
exact positions. These nodes also have more battery power than the static
nodes as these have to continuously transmit the beacon messages. All the
nodes of the network are randomly deployed.

Node Property: The communication ranges of all the nodes are assumed
to be spherical. The sensor nodes have a fixed communication range. The
anchor nodes can have different communication ranges to start with which

212 M.K. Mishra and M.M. Gore

will remain fixed till completion of the localization process, or may reduce
their communication range with an initial fixed value which is same for all
anchor nodes, or may have both the conditions. Under all such conditions,
the anchor nodes are assumed to know their current transmitting power
and are able to calculate the spreading distance of the RF signals which
they can transmit with that power. These calculated spreading distances
are transmitted in their beacon messages as their respective communication
range.

NodeMobility: The sensor nodes are assumed to be static in nature unless some
external force makes them to change their location. The anchor nodes are con-
sidered to be mobile. In this work, the mobility model for these kind of nodes
are considered to be that of Random Walk, and Random Way Point [2].

3.2 Beacon Point Selection

As the anchor nodes move, they continuously broadcast their positions and their
current communication range. The static unlocalized nodes listen to all these
messages, but stores only the first and last messages received from the passing
anchor node. Because the instance at which the static node receives first/last
message from an anchor, it is assumed to be at the surface of the communication
sphere of that anchor node. The distance between the static node and the anchor
is equal to the current communication range of that anchor node. So, it stores
the position coordinates and communication range of the anchor node received
in the message and considers the position coordinates as a valid beacon point.
Figure 1 shows the valid beacon points of a and a′′ recorded by the static node
s for an anchor node moving in D direction. All other beacon points denoted
as a, are not valid as s is within the communication range of the anchor node
rather than being at the surface of it.

a

a’
a’

a’

a’

a"

s

D

Fig. 1. Valid beacon points a and a′′ received by s

3.3 Position Calculation

When any sensor node registers a valid beacon point, then the sensor node
can be assume to be at the center of a sphere with a radius that denotes the
distance of it from the anchor node, while the anchor node can be assume to be
at the surface of the sphere. The equation of such a sphere centered at the point

Robust and Distributed Range-Free Localization Using Anchor Nodes 213

(x, y, z) representing the position of the sensor node and having the anchor node
at (x0, y0, z0) on the surface with radius r (which is equal to the transmission
range of the anchor node) is given by

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2 (2)

Let (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (x4, y4, z4) be the position coordi-
nates received from four anchors with communication range as r1, r2, r3 and r4
respectively. Using these values, four equation of sphere with the sensor node at
the center of each sphere can be formed as

(x− x1)2 + (y − y1)2 + (z − z1)2 = r2
1 (3)

(x− x2)2 + (y − y2)2 + (z − z2)2 = r2
2 (4)

(x− x3)2 + (y − y3)2 + (z − z3)2 = r2
3 (5)

(x− x4)2 + (y − y4)2 + (z − z4)2 = r2
4 (6)

Above equations can be solved for the values of x, y and z as follows,

x =

⎡
⎣((x2

2 + y2
2 + z2

2 − r2
2)− (x2

1 + y2
1 + z2

1 − r2
1))/2 y2 − y1 z2 − z1

((x2
3 + y2

3 + z2
3 − r2

3)− (x2
1 + y2

1 + z2
1 − r2

1))/2 y3 − y1 z3 − z1
((x2

4 + y2
4 + z2

4 − r2
4)− (x2

1 + y2
1 + z2

1 − r2
1))/2 y4 − y1 z4 − z1

⎤
⎦ /Δ (7)

y =

⎡
⎣x2 − x1 ((x2

2 + y2
2 + z2

2 − r2
2)− (x2

1 + y2
1 + z2

1 − r2
1))/2 z2 − z1

x3 − x1 ((x2
3 + y2

3 + z2
3 − r2

3)− (x2
1 + y2

1 + z2
1 − r2

1))/2 z3 − z1
x4 − x1 ((x2

4 + y2
4 + z2

4 − r2
4)− (x2

1 + y2
1 + z2

1 − r2
1))/2 z4 − z1

⎤
⎦ /Δ (8)

z =

⎡
⎣x2 − x1 y2 − y1 ((x2

2 + y2
2 + z2

2 − r2
2)− (x2

1 + y2
1 + z2

1 − r2
1))/2

x3 − x1 y3 − y1 ((x2
3 + y2

3 + z2
3 − r2

3)− (x2
1 + y2

1 + z2
1 − r2

1))/2
x4 − x1 y4 − y1 ((x2

4 + y2
4 + z2

4 − r2
4)− (x2

1 + y2
1 + z2

1 − r2
1))/2

⎤
⎦ /Δ (9)

where

Δ =

⎡
⎣x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1
x4 − x1 y4 − y1 z4 − z1

⎤
⎦ (10)

3.4 Error Detection and Correction

The major contribution of the paper is the error correction aspect of the al-
gorithm which provides the much needed robustness to it. Once the location
information of a node is estimated, it goes to a state of estimated position. On
receiving a fifth valid beacon point it estimates the Euclidean distance from the
position information of the beacon, and compares it with the communication
range received. If the distance and the communication range are found to be
different, then the error correction is carried out. The error correction can be
achieved by using any of the three different approaches.

214 M.K. Mishra and M.M. Gore

1. The simplest approach is to discard all the four beacon points and rerun the
algorithm for the estimation of the location coordinates of the static node,
again. This method takes more time as it need to record four valid beacon
points again.

2. Another approach is to discard the beacon point corresponding to the an-
chor node having the largest communication range amongst the four beacon
points recorded. The reason for the selection of the largest communication
range is that, in presence of interference, the actual distance between the
anchor node and the static sensor node will be most effected for the largest
communication range. In case of a tie between beacon points on this criteria,
any one of them may be dropped.

3. The modified version of the second approach is the weighted approach for
determining the beacon point to discard. If the error is found to be positive
that is if the distance is larger than the communication range, then the
actual position of the static node is nearer to the anchor node instead of
the estimated position. Hence, the farthest beacon point form the anchor
node on the same side as that of the static node is the heavy weight in the
contribution to the error detected. Therefore, it should be dropped from the
record, and the position is re-estimated taking the other three beacon points
and the current position of the anchor node as the fourth beacon point. But,
if the error is found to be negative that is the distance is smaller than the
communication range, then the actual position of the static node is farther
to the anchor node instead of the estimated position. Thus, the farthest
beacon point from the anchor node on the opposite side of the static node
is the heavy weight in the contribution to the error detected. Therefore, it
should be dropped for the record, and the position is re-estimated taking the
other three beacon points and the current position of the anchor node as the
fourth beacon point. The direction of the beacon points are estimated using
angle between the line joining the estimated coordinates of the static node
and the position of the anchor node, and the line joining the anchor node
and the beacon points, respectively. Positions having angles less than 900 are
considered on the same side, and positions having the angles greater than
900 are considered to be on the opposite side. In case of a tie between beacon
points on this criteria, any one of them may be dropped. But, if no beacon
is identified as the candidate to be dropped based on this criteria, then the
anchor node is considered as ineffective for error correction. The static node
is considered to remain in estimated state and waits for an effective fifth
beacon position for error correction.

In both the second and the third approaches, the gain is due to the dropping
of only one beacon point as compared to the first approach where all the four
beacon points are dropped. But, the first method has an added advantage that,
it can relocate the accidentally displaced nodes, whereas the other two methods
can only make error corrections to the estimated location information.

Robust and Distributed Range-Free Localization Using Anchor Nodes 215

3.5 Algorithm

The proposed method uses the GPS enabled anchor nodes to know their position
and broadcast these along with their communication range. The position of an
unlocalized sensor node is calculated based on the position information in the
messages received from the anchor nodes. The anchor nodes use Random Walk,
and Random Way Point as mobility models. Algorithm 1 presents the detailed
algorithm for localization of the static sensor nodes.

Algorithm 1. Localization Algorithm
Initialize: k = 0 and loc found = false

if pos recvd, range recvd then
if k < 4 then

add pos(SET, pos recvd, range recvd)
k = k + 1

else
if k == 4 then

if !loc found then
det = calculate det(SET)
if det > 0 then

pos est = calculate pos(SET)
loc found = true

else
remove last pos(SET)
k = k − 1

end if
else

dist = calculate dist(pos est, pos recvd)
if dist = range recvd then

sleep(ΔR)
else

do error correction
end if

end if
end if

end if
end if

Initially, k, the number of beacon points received by a static node, is set to
zero and loc found is set to false. To start with, each static node waits for the
beacon messages. With each beacon message, it receives a new position and the
transmission range of the sender anchor node. Each anchor node position that
satisfies the boundary condition is added to the SET of node positions. A static
node needs at least four node positions in order to calculate its location (k=4).
After getting these positions, it calculates the determinant. A zero determinant
shows that all the four positions lie in a plane hence, the node removes the
last position from the SET and again waits for the beacon message to get a
new node position. If the determinant is not equal to zero, then location can
be found. After the location is found, a new position is needed for verification
of the estimated location. The distance between this position and the estimated
location is found. If this distance is equal to the transmission range of the anchor
node, then the estimated location is assumed to be correct, otherwise the error
correction is done using either of the methods mentioned in section IV D. The
algorithm terminates once all the nodes are localized.

216 M.K. Mishra and M.M. Gore

4 Simulation Results

The proposed approach is simulated on Sinalgo-0.75.3-Regular Release [8]. It
provides a simulation framework for testing and validating network algorithms
in both two and three dimensions. Sinalgo offers a broad set of network condi-
tions.Table 1 presents the simulation settings applied for the execution of the
proposed algorithm.

Table 1. Simulation Settings

Total Number of Sensor Nodes 525
Static Sensor Nodes 500
Mobile Sensor Nodes 25
Simulation Area: Dimensions: 3 (500mX500mX500m)
Simulation:
Synchronous Mode True
Interference Model No Interference
Connectivity Model UDG (rmax=175,150,125)
Reliability Model Reliable Delivery
Distribution Model Random(for Static Nodes and Mobile Nodes)
Mobility Model No Mobility(for Static Nodes), Random

Walk/Random Way Point(for Mobile Nodes)
Message Transmission Model Constant Time
Mobility Model:
Speed Distribution (meters per round) Constant(value=1)
WaitingTimeDistribution (number of rounds) Constant(value=1)
Message Transmission Model:
Message Transmission Time (number of rounds) Constant Time(value=1)

We compared the results obtained using different mobility models. The results
obtained by implementing the method using fixed and variable communication
ranges over uniform distribution has been compared. We have also shown the
effect of variable communication range method in case of non-uniform distribu-
tion leading to patchy dense regions. The results obtained using three different
error correction methods have also been analyzed. Further, two parameters de-
fined below have been used to present and analyze our results with the results
obtained using the method proposed in [3].

– Average localization time: The average time required for all sensor nodes to
compute their locations i.e.

AverageLocalizationT ime =
ΣLocalization time

no.ofsensors
(11)

It provides the rate of localization for any localization approach.
– Average localization error : The average distance between the estimated lo-

cation (xe, ye, ze) and actual location (xL, yL, zL) i.e.

AverageLocationError =
Σ

√
(xe − xL)2 + (ye − yL)2 + (ze − zL)2

no.ofsensors
(12)

It checks the accuracy of the computed locations.

Robust and Distributed Range-Free Localization Using Anchor Nodes 217

Uniform Distribution Patchy Distribution

%
 o

f
N

o
d
e
s

0

20

40

60

80

100

120
Verified Localized Nodes

Unverified Localized Nodes

Unlocalized Nodes

(a)

Fixed Range Variable Range

Case1 Case2 Case3 Case1 Case2 Case3

%
 o

f N
od

es

0

20

40

60

80

100

Verified Localized Nodes

Unverified Localized Nodes

Unlocalized Nodes

(b)

Fig. 2. Performance for a sample run of 500 rounds using Random Way Point mobility
model. (a) Variable communication range using different distribution models (b) Fixed
and variable communication range with uniform distribution.

4.1 Fixed vs. Variable Communication Range

We advocated in the previous sections that use of variable communication range
will help in applications having patchy distributions and anchor nodes having
limited power supply. The implementation of this method has been compared
for uniform distribution and patchy distribution in Figure 2a. The results show
that the performance is better in patchy distribution as compared to uniform
distribution condition. We also present the results for implementation with fixed
communication range and variable communication range under uniform distri-
bution using Random Way Point mobility model, in Figure 2b. The cases in the
results refer to the three error correction methods, respectively. The two results
in Figure 2 show that, there is not much of performance difference between fixed
and variable communication range methods in uniform distribution, whereas, the
variable communication range method gains in performance when implemented
in patchy distribution.

4.2 Mobility Model

The results for different mobility models using variable communication range
have been compared for all the three cases of error correction. Figure 3 shows
the results. The results show that the Random Way Point mobility model using
the third error correction method has the best performance.

4.3 Error Correction

We also compare the error correction methods in Figure 4a. The results are ob-
tained implementing variable communication range method with different mo-
bility models using all three error correction methods. The results show that,
the accuracy in localization is best in case 1, whereas, the results in case 3 is
better than case 2. As discussed in earlier sections, the first method of error cor-
rection gains in accuracy at the cost of time of localization. Figure 4b presents

218 M.K. Mishra and M.M. Gore

Random Walk Random Way Point

Case1 Case2 Case3 Case1 Case2 Case3

%
 o

f N
od

es
0

20

40

60

80

100

Verified Localized Nodes

Unverified Localized Nodes

Unlocalized Nodes

Fig. 3. Performance using variable communication ranges under different mobility
models for a sample run of 500 rounds with uniform distribution

Case1 Case2 Case3 Case1 Case2 Case3

A
vg

 L
oc

al
iz

at
io

n
E

rr
or

 (
m

)

0.0

1.0

2.0

3.0

4.0

Random Walk

Random Way Point

(a)

Case1 Case2 Case3 Case1 Case2 Case3

A
vg

 L
oc

al
iz

at
io

n
T

im
e

(R
ou

nd
s)

0

100

200

300

400

Random Walk

Random Way Point

(b)

Fig. 4. Performance using variable communication range with different error correction
methods for a sample run of 500 rounds under uniform distribution model. (a) Average
Localization Error (b) Average Localization Time.

the average localization time for all the three error correction methods. The case
2 takes relatively less time as discarding all the beacon points makes the method
slow in case 1, whereas the calculations to be made to determine the candidate
beacon point to discard in case 3 results in the method taking more time.

4.4 Average Localization Time

The average localization time as defined earlier is used to compare the results
obtained from the approach in [3] with that of our approach. We conducted
simulations with 250 static nodes to find out the total localization time in terms
of rounds, using both the approaches. Figure 5 presents the results between
proposed approach and approach in [3] with 25 anchor nodes being deployed,
and using both Random Walk and Random Way Point as the mobility models.
Further, a set of five readings with 500 static nodes have been taken for each
approach to calculate the average localization time for a run of 500 rounds.
Figure 6a presents the average localization time for both the approaches using
the two mobility models.

Robust and Distributed Range-Free Localization Using Anchor Nodes 219

Number of Nodes Localized
0 50 100 150 200 250

Lo
ca

liz
at

io
n

T
im

e
(R

ou
nd

s)

0

500

1000

1500

2000

2500

MOBILITY MODEL:
RANDOM WALK

Proposed Approach

Approach in [3]

(a)

Number of Nodes Localized
0 50 100 150 200 250

Lo
ca

liz
at

io
n

T
im

e
(R

ou
nd

s)

0

500

1000

1500

2000

2500

MOBILITY MODEL:
RANDOM WAY POINT

Proposed Approach

Approach in [3]

(b)

Fig. 5. Performance comparison on Localization time

Proposed Approach in [3] Proposed Approach in [3]

A
ve

ra
g
e
 L

o
ca

liz
a
tio

n
 T

im
e
 (

R
o
u
n
d
s)

0

100

200

300

400

Random Walk

Random Way Point

(a)

Proposed Approach in [3] Proposed Approach in [3]

A
ve

ra
ge

 L
oc

al
iz

at
io

n
E

rr
or

 (
m

)

0.0

1.0

2.0

3.0
Random Walk

Random Walk Point

(b)

Fig. 6. Performance comparison for a sample run of 500 rounds. (a) Average localiza-
tion time (b) Average localization error.

4.5 Robustness (Average Localization Error)

The average localization error as defined earlier is also used to compare the
results obtained from both the approaches. Figure 6b presents the average local-
ization error for the approach in [3] with the proposed method using the third
error correction approach. The results show that, though the proposed approach
takes more time to get the nodes localized, its accuracy of localization is a major
advantage.

5 Conclusion and Future Work

The presented scheme not only localizes sensor nodes but, also verifies the accu-
racy of the estimated locations. Displaced nodes are able to detect the change in
their location and can relocate themselves using the first error correction method.
This scheme requires more beacon messages to be transmitted, but, the simple
implementation of the scheme makes it a much better option. The accuracy of
the estimated locations is better than other range-free schemes. The relocation
of any node can easily be done if detected within the total localization time. But,

220 M.K. Mishra and M.M. Gore

once localization of all the nodes are over the anchor nodes need to move again
to detect the change in position of nodes and to subsequently relocate them. The
adaptability of the method for the variable communication range makes it more
suitable for deployments leading to patchy regions. In addition, this method can
accommodate the change in the communication range of the anchor nodes due
to power depletion, if any. Detection of changed position and relocation of any
node using the other localized static nodes can be considered as a future work.
A tolerance limit for the mobility of the static nodes in terms of its transmission
range can also be considered as a future scope of work.

Acknowledgements. The authors would like to thank Ms. Neha Ojha for her
support in the simulation of the approach.

References

1. Blum, B.M., Stankovic, J.A., Abdelzaher, T., He, T., Huang, C.: Range-Free Lo-
calization and Its Impact on Large Scale Sensor Networks. ACM Transactions on
Embedded Computing Systems (TECS), 877–906 (2005)

2. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.-C., Jetcheva, J.: A performance
comparison of multi-hop wireless ad hoc network routing protocols. In: Proc. of
the Fourth Annual ACM/IEEE International Conference on Mobile Computing
and Networking (Mobicom 1998), ACM, New York (1998)

3. Ou, C.-H., Ssu, K.-F.: Sensor Position Determination with Flying Anchors in
Three-Dimensional Wireless Sensor Networks. IEEE Transactions on Mobile Com-
puting, 1084–1097 (2008)

4. Niculescul, D., Nath, B.: DV Based Positioning in Ad Hoc Networks. SpringerLink
Journal of Telecommunication Systems, 267–280 (2004)

5. Mao, G., Fidan, B., Anderson, B.D.O.: Wireless sensor network localization tech-
niques. Computer Network: The International Journal of Computer and Telecom-
munications Networking 51, 2529–2553 (2007)

6. Martins, M., So, H.C., Chen, H., Huang, P., Sezaki, K.: Novel centroid localization
algorithm for three-dimensional wireless sensor networks. IEEE Transactions on
Wireless Communication, Networking and Mobile Computing, 1–4 (October 2008)

7. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less Low Cost Outdoor Localization
For Very Small Devices. IEEE Journal of Personal Communications, 28–34 (2000)

8. Sinalgo: Simulator for network algorithms (2009),
http://dcg.ethz.ch/projects/sinalgo

9. He, T., Stoleru, R., Stankovic, J.A.: Range free localization. Technical report, Uni-
versity of Virginia (2006)

10. Yadav, V., Mishra, M.K., Singh, A.K., Gore, M.M.: Localization Scheme for Three
Dimensional Wireless Sensor Networks Using GPS Enabled Mobile Sensor Nodes.
International Journal of Next-Generation Networks 1(1) (2009)

11. Vivekanandan, V., Wong, V.W.S.: Concentric Anchor-Beacons (CAB) Localization
for Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2733–
2744 (2007)

http://dcg.ethz.ch/projects/sinalgo

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 221–231, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Decision Support Web Service

N. Parimala and Anu Saini

School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
dr.parimala.n@gmail.com,

anuanu16@gmail.com

Abstract. Currently, UDDI (Universal Description Discovery and Integration)
is a standard for publishing and discovery of Web services. The UDDI search
mechanism is based on functional properties and the consumer chooses a web
service based on these properties. When functional properties are identical,
additional distinguishing characteristics are needed to choose a service.
Towards this, we propose to associate non functional properties, referred to as
criteria, with a web service. A web service that has a list of criteria associated
with it is termed as Decision Support Web Service (DSWS). In order to
associate criteria, the UDDI is extended to X-UDDI which includes a new
orange page containing the list of criteria and their description. We also add one
more bag, criteria bag, which is used to define the attributes of the criteria. In
order to publish and invoke a service on both, the functional properties and the
criteria, we define new APIs.

Keywords: Web service, Decision support web service (DSWS), Non
functional properties, UDDI, Extended UDDI.

1 Introduction

Service Oriented Architecture (SOA) is a business architecture which provides
business functionality and application logic to users or consumers as a shared and
reusable service [1, 2]. Main building blocks of SOA are these reusable services.

Web service is defined as a piece of business logic which is available on the
internet and that can be accessible with the help of internet protocols [3, 4].

Web service has three characteristic: functional, behavioural and non-functional
[5]. Functional description tells us about what exactly the service can do. Behavioural
description details how the web service works and how it can be integrated using
Orchestration and Choreography in WSMO (Web Service Modeling Ontology). Non-
functional descriptions are the constraints on the functional properties which are given
by the user to discover the service.

Normally, functional characteristics and also some non-functional parameters like
provider name, service name and category are used to search the registry. Using just
these characteristics for search may be inadequate in some cases. For instance,
consider the case where the user might like to decide dynamically in which hotel he
wishes to stay. The choice may not necessarily depend on the basic information like

222 N. Parimala and A. Saini

name of the hotel, but may depend on some other facilities like swimming pool, room
service etc. In this case it is necessary that facilities on which a choice can be made be
defined and made available with a web service.

The idea of associating additional information with a service to help locate the
right service has been addressed by many researchers. In [6] this additional
information has been specified by extending the UDDI (Universal Description
Discovery and Integration) to UDDIe. [9] has provided non functional properties as
part of the tmodels. Semantic web services do not exactly add additional properties
but associate meaning with a web service thereby helping the consumer identify the
service.

In this paper, non-functional properties are associated with the service and these
properties form the criteria for the user to choose a service. Such a web service is
termed ‘Decision Support Web Service’ (DSWS). It is termed as ‘Decision Support’
because it helps the client to decide whether a service is to be invoked or not based on
functional and non-functional properties.

To store more information we extend the traditional UDDI to the X-UDDI by
adding one more page (orange page). The page is used to save the criteria which are
associated with the service. The page is flexible and can be easily modified and
updated by the provider. Key references of the service are associated with criteria. To
store these, we introduce a new bag called the Criteria Bag. We also add the necessary
APIs to publish and invoke the criteria associated service. We introduce an attribute,
criteriaMatch which allows for full or partial match of the user specified criteria with
the criteria stored in the X-UDDI.

The layout of the paper is as follows. A survey of related work is dealt with in
section 2. Section 3 defines a decision support web service and the architecture of our
proposals. In section 4 the extension of UDDI is explained. Section 5 describes the
extended APIs of X-UDDI. An example is given in section 6. Section 7 is the
concluding section.

2 Related Work

As mentioned above, the ability of the user to differentiate between the services
which provide the same functionality and select the right one depends upon their non-
functional properties. The non-functional properties that can be specified are quality
of service (QoS), performance, scalability, reliability, availability, stability, cost,
completeness etc [7]. A number of attempts have been made to describe and discover
service based on the non-functional properties. We describe these methods in detail
below.

1. Extension of UDDI to UDDIe is used to include QoS attributes for
discovering and describing the service [6, 8]. The UDDI registry is extended
to UDDIe wherein the attributes of a service are stored. In [6] the client
requests for a service with associated additional attributes. The condition on
the attributes can be combined using Boolean operators AND/OR. The QoS
information is stored in the blue page and is created when the service is
published. However, since the information is in the blue page, it cannot be

 Decision Support Web Service 223

updated to incorporate any changes in QoS. Further, the service is stored in
the UDDIe for a finite period of time and hence does not support the
reusability of service.

2. Quality of service (QoS) which includes performance, reliability, availability
and throughput are defined in tmodels as a non-functional property [9].
tmodels represents concepts or constructs that are used to describe
compliance with a specification. Four different methods for storing the QoS
in UDDI are used by the tmodels [9, 10]. In the first method the QoS tmodel,
called QoSinformation, which references an external quality of service, is
defined in the UDDI. Each UDDI bindingTemplate contains a
QoSInformation tModel, and adds the QoSInformation tModel to the
tModelInstanceDetails collection. The second method creates many
additional tmodels for different QoS information. These categories are added
to the binding templates. The third method is similar to the first method. The
only difference is that it contains the binding template. As a result, the
category bag of QoSinformation tmodel has many key references to
represent different QoS information. The fourth method stores the QoS
values in the categoryBag of businessService in UDDI. All these methods
require multiple steps to locate the desired service. As a result the time
required to locate a service would be long. It can lead to an inefficient
system. These methods also contain the unmanageably large category bags
with many categories on each binding template. These methods are,
therefore, difficult to use to manage the non-functional properties.

3. Semantic Web Service (SWS) [11, 12] provides meaningful information to
help the user in searching, discovery, selection and composition of web
service. The semantics of the web service is treated as the non functional
property of the web service. It is described in the ontology. The non-
functional properties considered in semantic web service ontology include
service author, service contact information, service contributor, service
contributor, description, service URL, service identifier, version, release
date, language, trust, subject reliability and service cost. The service is
discovered by matching the description with the user requirement. A
different level of matching is used in [13] like exact, subsume, plug-in,
intersection and disjoint. In SWS the attempt is to discover the web service
automatically with the help of ontologies. Even though semantic web service
has major benefits, there are some drawbacks. Ontologies are not flexible,
difficult and complex to define [14, 15]. Making a consistent and appropriate
ontology and its further maintenance is another big problem in the usage of
semantic web service [15]. Further, it is difficult for the user to understand
the semantics as they are complex and difficult to use. Another problem is
that semantic web service lacks repositories or SWS marketplace where
interaction could take place [15].

4. Web service Peer-to-Peer discovery service (WSPDS) is also used for
discovery of service based on non-functional properties which includes
interoperability, scalability, efficiency, fault tolerance and semantics [16, 17,
18]. These Peer-to-Peer systems, referred to as unstructured systems, are
decentralized, scalable, and self organizing. In Peer-to-peer discovery of

224 N. Parimala and A. Saini

service, the role of provider is eliminated [17]. All system entities work
together in a distributed manner to provide a service. Here, each entity is
work as a server and client of the peer-to-peer service. In this system there is
no way to determine which peer in the system is more likely to have certain
data. Thus, it leads to inefficient search.

5. Agent framework for discovery of Web services with QoS is proposed for
determining the best service according to the user requirement [19, 20,21]. In
this, both, service consumers and provider participate via the agent
framework. QoS data that is collected from agents is stored, aggregated and
then shared between them. The agent-based framework is implemented using
the Web Services Agent Framework (WSAF). In [20], QoS ontology is used
to capture and define the most generic quality concepts. On the other hand,
the framework proposed in [19] contains many non-functional properties like
reliability, availability, and request-to-response time.

6. QoS Broker Based approach is used for dynamic selection of the web service
[22, 23]. This approach is used to specify the non-functional requirements as
well as the functional requirements. QoS broker is placed between the web
service registry and service requester who helps the requester to specify and
select the appropriate web service according to his/her requirement. In [23],
QoS is used to select and rank the web service. In this approach a tree model
is made for the requester’s QoS requirements by considering the QoS
request.

In our approach we associate a list of attributes with a service. The client searches for
a service having a desired set of attributes. The service which matches his/her request
is returned via SOAP protocol. Even though we extend UDDI to X-UDDI, we are
different from [6] in that in our architecture the result of a search is directly handled
by the user and there is no broker to decide which is the best service that meets the
client’s needs. This is in keeping with our philosophy that we provide a decision
support service and the ultimate decision is to be taken by the client. We are different
from semantic web service as we do not associate any meaning to a service but
enhance the service with non functional properties. As opposed to the usage of
tmodels, our approach is a single step approach.

3 Architecture

Decision support web service (DSWS) is defined as follows:
‘A decision support web service is a service with which multiple criteria are

associated’
For deploying DSWS, we need to explore the technical aspects of publishing and

invoking the service. Currently for web services, Universal Description Discovery
and Integration (UDDI) registry is used to publish WSDL (Web Service Description
Language) document containing the web service description, so that users can access
the service.

 Decision Support Web Service 225

X-UDDI

Client

4. SOAP call + Criteria

Provider

1. Publishing

5. Result

3. Found criteria + criteria

2. Find service according to criteria

Fig. 1. Modified Architecture of SOA with X-UDDI

The architecture of our system is shown in Figure 1. The steps are

1. The provider saves the DSWS in the X-UDDI with the description of its
criteria.

2. Client requests for a web service with a criteria list.
3. The matching services are returned by the X-UDDI.
4. Client chooses one among the list that was received and sends a SOAP call to

the provider.
5. Provider sends the result to the client.

4 X-UDDI

In this section we explain the extensions to UDDI. Before doing so, we briefly
describe the UDDI structure which is relevant to the extension.

UDDI is an XML-based registry for businesses worldwide to list themselves on the
Internet [24, 25]. The four data structures of UDDI are business entity, business
service, binding template, and tmodel. UDDI consists of pages which are associated
with each data structure. Existing UDDI consists of white, yellow and green pages.
White page is associated with business entity. These pages hold the basic contact
information of the company. Yellow page is associated with business service. These
pages organize web services into categories like usage billing service, authorization
service and so on. Binding template is associated with green page. Green pages
provide detailed technical information about the individual services.

As can be seen from the above, there is a need to introduce a new page to store the
information of each criterion of this service. Thus, we extend UDDI to X-UDDI
where X-UDDI contains the additional page, referred to as the ‘Orange Page’. The
orange page contains the criteria and the associated detailed information. As defined
in [6] every service has its details described in business service. Therefore, we add the
criteria information to the Business service structure as shown in Figure 2. Since the

226 N. Parimala and A. Saini

details of the criteria are in the orange page, we associate the business service with the
newly defined orange page. This is in addition to the already existing association with
yellow page.

Business
entity

• Key

• Name

• Description

• Contacts

• Business
service

• Identifier

Contact

Phone no.

 Add

Email

Identifier bag

tmodel key

 Key name

 Key value

X-UDDI

Business service

Key

Name

Description

binding template

Criteria
information

Criteria bag

Criteria Attributes

 Name

 Type

Description

Fig. 2. X-UDDI Structure

We introduce a Criteria Bag in the X-UDDI which contains the key reference of
the DSWS and the criteria attributes. The criteria attributes associated with each
criterion are name, type and a description as shown in Figure 3.

 Criteria

criteriaName criteriaType criteriaDescription

Fig. 3. Criteria Attributes

 Decision Support Web Service 227

An example of the criteriaBag is given below.

<criteriaBag>
<criteria>

<criteriaName>SwimmingPool</criteriaName>
 <criteriaType>String</criteriaType>
 < criteriaDescription> “Swimming pool facility is
 present” </ criteriaDescription>

</ criteria >
</ criteriaBag>

5 APIs of X-UDDI

So far we have described the extensions to UDDI. Now, we need APIs (Application
Programming Interface) to store the orange page and the criteria bag in the X-UDDI.
We also have to define APIs to access the DSWS. These are explained below.

The programming interface for UDDI consists of two parts: a Publishing API and an
Inquiry (search) API.

The Publishing API is for the use of service providers. Publishing interface consists of
save_business, save_service, save_binding, save_tModel, delete business, delete_service,
delete_binding, delete_tModel.

The Inquiry API is used by the clients to access the web service. Inquiry interface
consists of find_business, find_service, find_binding, find_tModel,
get_businessDetail, get_serviceDetail, get_bindingDetail, get_tModelDetail.

In X-UDDI we have extended both the publishing as well as the inquiry APIs.
Publishing API is extended by defining save_dservice interface. Find_dservice is the part
of inquiry interface. We consider below first the publishing API followed by the inquiry
API.

5.1 Publishing API of DSWS

After developing the DSWS we have to publish it in the X-UDDI. We extend the
existing UDDI API by adding the following publishing API:

save_dService: save_dservice is used to publish DSWS. In addition to the entries
defined in Save_service API, save_dService has an additional entry which is the
criteria bag with the list of criteria. The criteria information along with other
information pertaining to the service is stored in the X-UDDI.

5.2 Inquiry API of DSWS

The inquiry API, find_dservice, allows the user to locate and obtain the service which
matches the criteria list.

find_dService: It has the criteria bag with the desired criteria list and an optional
matching option. The other entries of find_dService are as defined in find_service
API. The matching option, criteriaMatch, has two values. These are
full_criteria_match and partial_criteria_match. In the case of full_criteria_match, the

228 N. Parimala and A. Saini

service returned by find_dService will have exactly the same criteria as passed by the
client. In the case of partial_criteria_match, the service returned by find_dService will
have a minimum of one criterion among those specified by the client.

6 Example

Consider an example of booking a room in the hotel which offers multiple criteria.
Suppose Taj_Hotel_Service is a DSWS which is associated with three criteria which
are

1. Room Service,
2. Swimming Pool and
3. Internet access.

6.1 Publishing the Service in the X-UDDI

In this example, Taj-Hotel_Service is providing three facilities which are to be
associated as criteria with the service. The code for publishing Taj-Hotel_Service
with criteria list is given below. The code below depicts only the manner in which we
associate criteria with a service and the other details like binding template are not
shown as these details are specified as per the WSDL format.

<save_dService generic="2.0" xmlns="urn:uddi-org:api_v2">
<businessService businessKey="*****" serviceKey="">
 <name>Taj_Hotel_Service</name>
 <criteria Bag>
 < criteria >
 < criteria Name>Room_service</ criteria Name>
 < criteriaType>string</ criteriaType>

 < criteriaDescription> “ Facility of room
 service ” </ criteriaDescription>

 </criteria >
 < criteria >
 <criteriaName>Swimming_Pool</ criteria Name>
 < criteriaType>string</ criteria Type>
 < criteriaDescription> “Swimming pool facility
 is present ”</ criteriaDescription>
 </ criteria >
 < criteria >
 <criteria Name>Internet_Access</ criteria Name>
 < criteria Type>string</ criteria Type>
 < criteriaDescription> “Internet facility is
 available”</ criteriaDescription>
 </ criteria >
 </ criteriaBag>

</BusinessService>
</save_dService>

 Decision Support Web Service 229

6.2 Finding a DSWS

Let us say that the client wants to find a hotel service which has room service and an
internet connection. Both the criteria must be available. Therefore, the client must
chooses Full_criteria_match. The snippet of the call is given below. Only the details
pertaining to find_dservice is given in the code below.

<find_dServicebusinessKey="*****"generic="2.0"
xmlns="urn:uddi.org:api_v2">
 <name>Hotel</name>

<categoryBag>
 <keyedReferencetModelKey="******"keyName="******"
keyValue="******" />

</categoryBag>
 < criterialBag>

 <criteriaMatch>Full_criteria_match</criteriaMatch>
 < criteria>
 < criteriaName>Room service</criteriaName>
 <criteriaDescription>“Room service facility is
 available or not” </criteriaDescription>
 </ criteria >
 < criteria >
 <criteria Name> Internet </ criteria Name>
 <criteriaDescription> “Internet facility is
 available or not” </ criteriaDescription>
 </ criteria >
 </ criteriaBag>

</find_dService>

7 Conclusion

In this paper we have extended the web service to decision support web service where
a DSWS has a list of criteria associated with it. This helps the client to search for a
service which suits his needs.

We have extended UDDI by adding a new orange page, which contains criteria list
along with their description. We have also added one more bag, criteria bag, which is
used to define the attributes of the criteria. When the service is searched for, the user
has the option of specifying whether there can be a partial match or whether there
must be a full match between the attributes specified by the user and those stored with
the service. Towards this, we have introduced the attribute criteriaMatch with two
values, namely fullCriteriaMatch and partialCriteriaMatch. We have introduced APIs
for publishing and for inquiry. save_dService is used for publishing the service
whereas find_dservice allows to search for a service.

In this work, a single service which matches the criteria of the client is returned.
We propose to extend this to handle more than one service in a business workflow.

Here, we have not considered the effect of scaling down X-UDDI to standard
UDDI as and when required. This issue will be addressed is our subsequent work.

230 N. Parimala and A. Saini

Note that in this paper we expect the user to specify the name of the criteria to be
identical to that given with the service. It may be possible that the user specifies, not
the identical name but a name which has the same semantics. This issue of
semantically equivalent criteria is outside the scope of our work.

References

1. MacVittie, L.: Aligning Application Infrastructure with Business through Service-Oriented
Application Delivery. F5 Networks, Inc. (March 2007)

2. Proteans, white paper.: Service Oriented Architecture Provide Flexibility to Business
Operations. Proteans Software Solutions Pvt Ltd Copyright (2009)

3. Chappell, D., Jewell, T.: Java Web Services, 1st edn. O’Reilly, Sebastopol (March 2002)
4. Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open

Problems. In: ICAPS (2003)
5. Toma, I., Foxvog, D.: Non-functional properties of web services. WSMO working draft

(October 25, 2006)
6. ShaikhAli, A., Rana, O.F., Al-Ali, R., Walker, D.W.: UDDIe: An Extended Registry for

Web Services. In: Proceedings of the 2003 Symposium on Applications and the Internet
Workshops (SAINT 2003 Workshops). IEEE Computer Society, Washington (2003)

7. Chen, Y.-p., Li, Z.-z., Jin, Q.-x., Wang, C.: Study on qoS driven web services composition.
In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS,
vol. 3841, pp. 702–707. Springer, Heidelberg (2006)

8. Garcia, D.Z.G., de Toledo, M.B.F.: A Uddi Extension For Business Process Management
Systems

9. Blum, A., Carter, F.: Representing Web Services Management Information (2004),
http://www.oasis-open.org/committees/../
UDDI%20WSM-Info-1v7.doc

10. Blum, A.: UDDI as an Extended Web Services Registry. Soa World Magazine
11. The OWL Services Coalition. OWL-S specification version 1.2 (November 2006),

http://www.daml.org/services/
12. Shakya, A., Takeda, H.: Information Sharing on the Social Semantic Web. Springer,

Heidelberg (2004)
13. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web

technology. In: Proceedings of the Twelfth International Conference on World Wide Web
(WWW 2003), pp. 331–339. ACM Press, New York (2003)

14. Al Hunaity, M.A.: Towards an Efficient Quality Based Service Discovery Framework. In:
IEEE Congress on Services (2008)

15. Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Semantic Web Services Applications- A
Reality Check. Gabler Verlag, Wirtschaftsinformatik (2008)

16. Emekci, F., Sahin, O.D., Agrawal, D., El Abbadi, A.: A Peer-to-Peer Framework for Web
Service Discovery with Ranking. In: Proceedings of the IEEE International Conference on
Web Services, ICWS 2004 (2004)

17. Banaei-Kashani, F., Chen, C.-C., Shahabi, C.: WSPDS: Web Services Peer-to-peer
Discovery Service. University of Southern California, Los Angeles (2004)

18. Vu, L.-H., Hauswirth, M., Aberer, K.: Towards P2P-based semantic web service discovery
with qoS support. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 18–
31. Springer, Heidelberg (2006)

 Decision Support Web Service 231

19. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web Services
Selection. In: IEEE Educational Activities Department Piscataway, NJ, USA (2006)

20. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web Services
Selection. IEEE Internet Computing 8(5), 84–93 (2004)

21. Rajendran, T., Balasubramanie, P.: An Efficient Framework for Agent-Based Quality
Driven Web Services Discovery. In: lAMA IEEE (2009)

22. Rajendran, T., Balasubramanie, P., Cherian, R.: An Efficient WS-QoS Broker Based
Architecture for Web Services Selection. International Journal of Computer
Applications 1(9) (2010)

23. D’Mello, D.A., Ananthanarayana, V.S., Thilagam, S.: A QoS Broker Based Architecture
for Dynamic Web Service Selection. In: Proceedings of the 2008 Second Asia
International Conference on Modelling & Simulation (AMS), May 13-15, pp. 101–106
(2008)

24. Brittenham, P.: Understanding WSDL in a UDDI registry. Part 1, IBM (2001)
25. Siddiqui, B.: Using SOAP as a UDDI Search Engine (2001)

A Scalable Architecture for Real-Time Online Data
Access

Ionuţ Roşoiu

University Politehnica of Bucharest
Computer Science and Engineering Department

Splaiul Independenţei nr. 313, Bucharest, Romania
ionut.rosoiu@gmail.com

Abstract. In recent years more and more computer users are getting connected
to the Internet. The explosive growth not only provides a wealth of opportunities
for building online services, but also poses significant challenges. Handling an
ever increasing number of users imposes a careful design of the system. Giving
them real-time access to the data complicates even further the implementation of
such a service. In this paper a real-time data storage architecture is presented that
scales with ease to accommodate an increasing number of clients. The proposed
architecture can handle not only predominant read operations, such as when using
a traditional database with a caching layer, but also when most of the operations
are write operations. By also prioritizing the access to data with respect to the user
interactions with the system, the real-time performance of the system is enhanced.

1 Introduction

Computers and the Internet have become an integral part of our life. Having one at home
with an Internet connection is increasingly common for most of us. A few years ago,
Mrs. Forrest, a teacher at the Taylorsville Elementary School, USA started a project
with her sixth-grade students. She asked them to send a short email message to all
their contacts asking them to forward it to their contacts and so on. They also asked
each recipient to respond to the email so that they could keep a record of how many
responded and how far the email has reached. In a matter of hours the email has reached
Japan and had been responded to. Although the project was scheduled to run for a few
months, because of the huge number of responses the project was cancelled only after
a few weeks. In this short time it had already received more than 450.000 replies from
eighty-four countries [16].

In this heavily interconnected world, online services face complex and difficult prob-
lems in order to accommodate their increasing user base. Designing such systems re-
quires great expertise in order to allow them to scale cost-effectively. Many of them
suffer greatly from an inappropriate use of databases. Although traditional relational
database management systems offer advanced features, ACID properties and improved
management functionality, they are also more expensive and often create congestion
problems that turin into single points of failure for the whole architecture. Moreover,
most of them are designed around the idea of vertical scalabilility, which although it’s
easier to implement, it is much more expensive, creates single points of failure and
complicates replication and availability.

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 232–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Scalable Architecture for Real-Time Online Data Access 233

In order to service a high number of concurrent users and not increase the latency too
much, multiple servers are used and data is replicated on each of them. This elegantly
solves the problem if the majority of operations are reads, because no data has to be
updated. However, when write operations have to be performed, all the replicated copies
have to be updated at the same time, leading to a huge overhead and time penalties.

In practice, most of the advanced features offered by DBMSes are not actually
needed. Maintaining ACID properties may not always be required, but only for
certain operations or it might be completely bypassed. Recently, a whole bunch of
non-relational data stores started to appear, designed from the ground up for horizontal
scalability. Their creation was based on the observation that most of the online services
today can be designed without using a complicated traditional database schema, such
that the scalability of the system is increased.

In order to better understand some of the problems, we will present a real-time secu-
rity protection system that enables users to safely use their Internet connection, whilst
proactively protecting them against online threats.

Using personal computers doesn’t come without security threats, such as phishing
websites trying to steal confidential financial information, viruses that cripple the com-
puter or worms that steal sensitive personal information or intellectual property. New
threats emerge every day with more and more sophistication and an increasing destruc-
tive capability, some even powerful enough to infect nuclear facilities [13].

Most antivirus softwares rely upon a local database of virus signatures and sophisti-
cated heuristics detection techniques in order to protect the users from both known and
unknown malwares. Using a local database means that it has to be regularly updated and
it may be out of sync with the newest threats for quite some time, leaving the unsus-
pecting user unprotected. This problem was also outlined in a report from Microsoft [3]
and can be seen in Figure 1, where the reports about the Win32/Renos virus are dis-
played. It can be seen that the systems affected increased exponentially as time passed,
affecting more and more computers. But once the virus signature was made available to
the customers, the reports decreased dramatically. Had it been released earlier, a great
number of infections would have not occurred at all.

An in-the-cloud system ensures that information about newly discovered, dangerous
software is pushed to the users much faster. Also, because the service interacts with it’s
users in real-time, it can also deduce how the virus spreads around the world and act
proactively to defend the non-infected users. Detecting the moment a virus outbreak
starts is essential, as it allows the system to alert its users about the new threat more
quickly.

The cloud system has to be composed of many servers around the world, not only
to accommodate a large number of users, but also to decrease the latency of constantly
communicating with them. However, the data exchanged with the users has to be ag-
gregated in order to have a complete picture and new information about the threats
discovered has to be pushed as fast as possible. What such a system would be required
to do is to prioritize the distribution of new information according to how important
it is to its users. It’s obvious that detecting a new threat with a viral spread would be
considered of maximum importance. Also, prioritization could be done based on the
geographical location of the user. This is important because, as shown in Figure 2 from

234 I. Roşoiu

Fig. 1. Reports about the Win32/Renos virus
affecting Microsoft Windows Vista

Fig. 2. Rootkit.Win32.Stuxnet world distribu-
tion (black is lower, gray is higher)

SecureList [5], some viruses spread based on this information. So, for example, a user
in Iran would be first of all interested in receiving alerts about the Stuxnet virus spread-
ing aggressively in his country, rather than a virus appearing in another corner of the
world.

Storing information in the cloud using traditional DBMS in order to match these
requirements would be very difficult, as this is not the usual extract-transform-load
task [15] and data is constantly written to the system. Many such systems, such as
MySQL [6] or PostgreSQL [7], have limited capabilities related to scalability. Sharding
and replication are common techniques aimed at solving this problem. Apart from the
problems they introduce themselves - performance degradation due to joins being made
across different shards, referential integrity across different servers, difficult rebalancing
- they don’t solve the problem if the majority of operations are writes. Not only a real-
time system that can handle queries is needed, but one that can handle mostly write
operations. That is because, in order to detect outbreaks, the system constantly monitors
the users and updates the information in the system based on their input, so that any
abnormal behavior can be deduced and investigated.

It can be seen that maintaining all this data using relational databases poses a signifi-
cant implementation overhead and doesn’t completely solve the scalability issue. More-
over, the needed prioritization scheme has to be separately implemented, which leads
to yet another difficulty in designing a proper database schema. The system proposed
in this paper is well suited for such a task, as it scales horizontally with the number of
nodes added and inherently prioritizes distribution of new data in the system according
to the user’s query patterns.

The layout of this paper is as follows. Section 2 outlines the relevant research in
this field. Section 3 describes the architecture behind the described system. Some of
the experimental results obtained are presented in Section 4. Finally, Section 5 provides
concluding remarks.

2 Previous Work

One of the first non-relational database systems came from Google and is called
BigTable [8]. Built upon other systems developed at Google, such as the Google File

A Scalable Architecture for Real-Time Online Data Access 235

System (GFS), it was designed to be highly scalable but also very fast. The data model
is a three-dimensional table - a (row, column, timestamp) tuple - which holds an unin-
terpreted array of bytes. Row keys are specified by arbitrary strings and help the system
store data according to the lexicographic order of the row keys. Distribution and load
balancing works with tablets, that are formed by groups of rows. The system does not
address problems such as frequent reconfiguration or Byzantine fault tolerance.

Dynamo [9] is a system developed at Amazon to reliably and efficiently solve the
storage problem of key-value pairs. The system is eventually consistent and was de-
signed like so in order to improve the scalability and availability requirements. Because
availability was so important, the system will never reject an update, even if there is a
problem with some nodes in the system. Data is split across the cluster using a consis-
tent hashing scheme against the keys, in order to split them evenly between the nodes.
The hash function’s space is treated as a circular ring and each node is designated to
store the data that corresponds to a portion in this ring. When an item is added to the
system, it’s key is hashed and based on the ouput of the hash function, the item is placed
on the corresponding node. In order for the system to handle individual node failures,
the same item is replicated on the next N-1 nodes in the clockwise direction in the ring.
Consistency is maintained between the nodes using a quorum-like protocol that has two
configurable values: R - which is the number of successful read operations required
when reading and W - the minimum number of successful write operations required
when writing.

A distributed, column-oriented data store that was modeled after Google’s BigTable
is HBase [2]. Data rows are stored in labeled tables, with each row composed of a
sortable key and an arbitrary number of columns. The table itself is stored sparsely, so
that rows in the same table can have varying columns. Each of the columns can have
multiple versions of the same key, making it easy to recover from bugs or detect write
conflicts. The system has a tight connection to the Hadoop HDFS file system, which
comes with a great disadvantage: logs are stored in the filesystem, but files don’t exist
until they are explicitly closed, leading to potential durability issues. It also has a single
point of failure, the Hadoop NameNode, a problem that is scheduled to be fixed.

Another system, which has its roots at Facebook, is Cassandra [11]. The storage
layer is placed atop of a P2P network. It combines features from both the Dynamo
and BigTable systems and was designed to be highly available. In order to increase
availability, consistency had to be dropped, so the data store is eventually consistent.
However, the consistency level can be specified by the user, ranging from a ”writes
never fail” model to a ”block all replicas to be readable” model. The system lacks
atomicity guarantees for updates across multiple keys and relies upon a gossip protocol
for cluster membership.

3 Design and Implementation

As outlined in the introduction, the goal of the service is to handle a high number
of clients that perform read and write operations on the data. The data partitioning
scheme used was first introduced by the Chord [14] system. Much like a distributed
hash table, data is composed of key-value pairs stored on different servers in the system

236 I. Roşoiu

based on the hash value of the key. The database cluster is considered to be an M-bit
integer space, divided into equally sized partitions, each handled by a different server.
Keys are hashed and, based on the hash value, they are mapped to one of the partitions
in the cluster. A node will typically be required to handle a number of keys equal to
number-of-keys / number-of-nodes, just like in Figure 3. Exceptions to this
rule happen when a new node enters the system or a node leaves it, an operation which
imposes a reconfiguration phase in which keys are migrated between the remaining
nodes, so that their number is again balanced across the ring.

The same address space is used to identify a node, each node having an unique ID
in this address space. The node identifier is stored in this implementation using 34 bits,
thus each identifier can have a value between 0 and 234-1. Node communications hap-
pens between adjacent nodes in the ring, i.e. each node can communicate with its prede-
cessor and successor in the ring. The successor for a node is the node that has the lowest
ID greater than the node’s ID, in a clockwise direction following the ring. Conversely,
the predecessor of the node is the first node in the counter-clockwise direction.

Just like in the Chord system, in order to minimize the number of hops needed for a
message to reach its destination, each node maintains a routing table in which it holds
its successors in the ring. When a message for another node arrives, each node inspects
the routing table in order to forward the message to the closest node to the destination.

Each node in the cluster will store the keys (and their associated values) correspond-
ing to a range in the domain of the hash function, meaning it will be the master for those
keys. The node will be responsible with storing the keys that have their corresponding
hash values between the predecessor’s node ID and its own ID. Each value correspond-
ing to a key can be read by any other node in the cluster, but only its master is allowed
to change it.

Fig. 3. The circular key ring is split between the
nodes

Fig. 4. A high-level view of the system

Because of the CAP theorem [10], which states that a system is capable of offering
at the same time only two of consistency, availability and partition tolerance, a choice
had to be made which ones were mostly needed. For this system, the least important
was consistency, while the most important was availability. In order to service as many

A Scalable Architecture for Real-Time Online Data Access 237

clients as possible the system is thus eventually-consistent, meaning that, at any given
time, it may be in an inconsistent state. This actually means that the corresponding value
for a key might be different on different nodes. It doesn’t mean that the situation will
last forever, it is just temporary.

Apart from this three characteristics, tolerance to failure had also been addressed.
For it to be increased, each key is mapped not only to one, but more master servers,
in this implementation four. Each key will be stored on the master node and on the
next 3 successors after the main master node. The number of replicas for a key was not
randomly chosen, but based on empirical observations. It is a number low enough to
minimize the overhead of maintaining multiple copies of the same data, but high enough
to actually help in increasing the failure tolerance. A number that is too big would have
increased both the storage requirements as well as the network communication between
nodes, while a number too small would have not helped in the process of error recovery
from individual node failures. Maintaining several copies for the same key on different
nodes gives the possibility to service requests for the key even if its primary master has
died. When the key is written to, the corresponding value will not only be modified on
a single node, but on all the four master nodes.

Because the system is not fully-consistent, the problem of conflict resolution had
to be addressed. The system tries to automatically resolve the write conflicts by using
Lamport’s vector clocks [12]. When this is not enough to determine the merge outcome,
a versioning scheme is used along a user-defined function that combines the different
versions. Special care is taken in order to minimize the time the system is left in an
inconsistent state. Another feature that is unique to this system is that it tries to achieve
consistency faster for keys that are more ”important” in the system, i.e. keys corre-
sponding to information that will have the greatest impact to the users. Going back to
the example in the introduction, whenever a new virus is detected and that virus has a
viral spread, the detection information will be propagated with a higher priority than an
information related to a less dangerous new virus.

The propagation of information based on data priority has a good motivation behind.
It will impact positively a larger number of users that will benefit from the fact that they
first receive important, real-time information. The number of users not affected by the
consistency problem is thus lower for important data and higher for not-so-important
data, so the system has a greater performance from the user’s point of view.

A high-level overview of the system, with its main components, is given in Figure 4.
The system has a Networking Layer that is responsible with handling the communica-
tions inside the ring and which maintains the routing table. The Network Manager is the
subsystem that is in charge with handling the propagation with priority of the keys, be-
ing the middleware between the networking layer and the processing layer above. The
Failure Detector is the component that is used to detect which nodes are not functioning
properly, so that they can be gracefully removed from the ring. The main application
logic is implemented in the Node Manager subsystem, while the Bootstrap Server is
used to manage the IDs for each node in the system. The Database subsystem is in
charge of storing the keys and their corresponding values.

The whole system was implemented using the ERLANG [1] language, which empha-
sizes message-based concurrency. Another advantage is that it’s possible to use special

238 I. Roşoiu

processes, called supervisors, to monitor child processes and restart them whenever a
failure is detected. Two different strategies can be used for a supervisor: the one-for-one
strategy can be used to restart only a failed process within a group and the one-for-all
strategy can be used to restart the whole process group whenever one of its processes
dies. The all-for-one strategy was used to monitor the Database, Failure Detector, Node
Manager, Network Manager and Networking Layer components.

Each node is assigned an unique identifier by contacting the Bootstrap Server before
joining the ring. Then the node wanting to join will contact any other node in the ring,
requesting the identifier of the node that will become its successor. It will then con-
tact its successor to inform it that its predecessor has changed. After the predecessor-
successor links have been updated, data is redistributed through the ring. It should be
noted that even if the Bootstrap Server is the only centralized part in this infrastructure,
thus suffering from the single point of failure problem, steps are being taken in order to
remove it completely. Modifications inside the ring are detected by using a stabilization
protocol that runs in the background. Each node periodically asks its successor which
is it’s current predecessor and, based on the response, it will decide if it should update
its own successor or not. Also, each node will notify its successor about the fact that
it’s still alive, giving the successor a chance to also update its own predecessor. The
successor will update its predecessor only if it knows no other node that it’s closer to it,
in a counter-clockwise direction on the ring. Whenever a node voluntarily whishes to
leave the ring, it will will notify its successor and predecessor before disconnecting.

As noted earlier, in order to minimize the number of hops a message has to travel
round the ring, a routing table is kept at the networking level inside each node. The
routing table will have at most log(M) entries, with M being the maximum ID that a
node can have. Each entry in the routing table contains a pointer to a node that follows
the current node in the ring. Thus, the ith entry at node n will point to the first node in
a clockwise direction in the ring that is at least 2(i− 1) far apart from node n.

Because each main master node is responsible with storing the keys in the range
(predecessorID, nodeID], whenever a request for a key is received, the node
first tests if the key hash falls between its own ID and the ID of its successor. If this is
the case, the node will query its successor for the key. If not, the node will look-up in the
routing table for a node that immediately precedes the searched node ID and forwards
the request to that node. With this simple algorithm, the number of nodes that must
be queried before the value is reached is O(logN) in a network with N nodes. The
routing table is maintained by the networking layer by periodically sending a request to
the successor. This procedure allows nodes to find out about the newcomers in the ring
as well as allowing new nodes to create their own routing table.

One important aspect to note is that each node keeps a local cache, along the keys
that it’s responsible for. The cache is made up of keys that are not stored on the node,
but have been queried by clients recently. Keeping such a cache allows the node to
service requests for keys not stored on the node faster than synchronously querying
the masters for that key. It also allows a greater number of clients to be serviced by
each node. Whenever a request for a key that it’s not in the node or in the cache arrives,
the node will immediately return a null value to the client, because it doesn’t yet know

A Scalable Architecture for Real-Time Online Data Access 239

what the value for the key is, like in Figure 5. It will then asynchronously query one of
the masters for that key to find out the corresponding value and it will update the cache
accordingly. This way, when a new request for the same key arrives it will service it from
the cache. If the read request comes for a key for which the node is a master, the node
will service it using the local value, but from time to time it will also asynchronously
check with the other masters if the key has been updated in the meantime.

When a key is written, the value is either updated on the node and the write is for-
warded to the other three masters for the key (if the node is the master for that key) or
the cache is updated and the write is forwarded to the other four masters (if the node
isn’t the master for that key).

The system is capable of automatically assigning priorities to keys based on the
interactions with the clients. A user defined function that computes the priority can also
be specified. The automatic priority assignment works by monitoring how many read
requests come in for each key. Whenever e key that is stored on the node is read, its
corresponding priority is increased by the Network Manager. If the same key is written
to, the new value will have to be sent to the other master nodes, but keys will be sent
according to their priority. Using this simple scheme, the system ensures that the time
in which an oftenly-used key is not consistent is kept to a minimum. For such hot
keys, more clients will not be affected by the consistency problem, thus improving the
overall system performance from the user perspective. If the key that is written is a key
for which the node is a master, the new value just replaces the one currently stored. The
node also proactively informs the other three masters about this write, also taking into
consideration the priority for the key as shown in Figure 6. This procedure is performed
to aid in achieving faster consistency for hot keys.

Fig. 5. How read operations are handled
Fig. 6. How write operations are handled

4 Results

This section presents some of the results obtained while testing the system. For the
tests, two computers were used with the specifications in Table 1 for simulating the
servers and five computers with the specifications in Table 2 for the client machines.

240 I. Roşoiu

Table 1. The server computers characteristics

model name : Intel(R) Core(TM) CPU 750 @ 2.67GHz
cpu MHz : 2667.263
cache size : 8192 KB
bogomips : 5333.24
memory : 6GB

Table 2. The client computers characteristics

model name : Intel(R) Core(TM)2 CPU 600 @ 2.40GHz
cpu MHz : 2394.000
cache size : 4096 KB
bogomips : 4616.46
memory : 1GB

The first test was with a larger number of clients. 2700 clients on five computers and
6 servers on two computers were simulated, with each client running 1000 iterations
consisting of two read requests and two write requests, thus the read-write ratio was
50%-50%. Each request was made to a different server, chosen in a round-robin fash-
ion. The results shown in Figure 7 show an average of 4700 requests per second for each
machine and an average of about 23000 requests for the whole system. By monitoring
the cluster with the MonaLISA [4] distributed monitoring system it was observed that
the number of simulated clients was too big considering the limited infrastructure avail-
able. Swapping to disk because of not enough RAM memory available was the biggest
bottleneck while conducting the test.

Fig. 7. Request rate for a split read/write test
with 2700 clients

Fig. 8. Request rate for a split read/write test
with 1200 clients

The second test used a smaller number of simulated clients. 1200 clients making the
same 1000 iterations with a split 50% reads - 50% write ratio were used. The results
obtained in Figure 8 show an increase in the throughput per machine to about 6500
requests per second, while the total number of queries serviced by the system gravi-
tates around 32000 queries per second. The same big overhead per machine was the
motivation that lead to a further decrease in the number of simulated clients.

The next test used only 960 clients split evenly on 5 computers, with 192 clients
simulated per machine. Each client performed 1000 iterations with a read-write ratio of
50%-50%. The results shown in Figure 9 show an average of 7200 requests/second per
machine, with the total throughput of the servers at 36000 requests per second. The re-
quest rate for a random client on each of the five client machines was also measured and
the results are shown in Figure 10. The average request rate is about 36 requests/second
for the sample selected population.

For the same number of clients, a simulation that took about 90 minutes was done,
but with a different read-write ratio, of 25% reads - 75% writes. Each client performed
1000 iterations with four operations per iteration. The first operation was a random key

A Scalable Architecture for Real-Time Online Data Access 241

Fig. 9. Request rate for a split read/write test
with 960 clients

Fig. 10. The requests rate for one of the 960
clients on each machine

Fig. 11. Request rate for a 25% read, 75% write scenario with 960 clients

read, while the other three operations were random key writes. The results presented
in Figure 11 show an average of 5500 requests/second per machine, while the total
throughput of the system is at 27000 requests per second. It can be seen that if the
number of writes is higher, the total request rate drops with about 25%, because there
is a higher cost of achieving consistency when the majority of the keys are changed
often. Each master node will have to inform all the other three master nodes about each
key that is written, thus increasing the communication between the servers. Because
the writes are done randomly by each client, a write request will not necessarily reach
the master server first, so the request will have to be propagated through the ring, which
also increases the communication overhead inside the ring. Taking into consideration all
these additional overheads, the the request rate achieved seems more than reasonable.

5 Conclusions

The system described in this paper can mediate access to real-time data in a horizon-
tally scalable fashion. It automatically ensures that the data that is most used in the
system will be made available to all of the clients with increased priority. Because
the system is an eventually consistent one, this consistency issue is solved taking into

242 I. Roşoiu

account how important the data is to the clients. From the user’s point of view, the sys-
tem behaves more efficiently, because heavily used data will be up-to-date much faster.
Achieving consistency in a distributed environment taking into consideration the actual
usage patterns of the clients is a new idea, which has a low impact in the performance
of the system expressed in queries per second, but a major positive one from the client’s
perspective.

However, much more work remains to be done. A further increase in the total through-
put of the system is currently being investigated, as well as assessing the impact of fre-
quent ring reconfiguration on the performance of the system. The test results presented
in this paper were obtained using a rather limited test infrastructure, with computers not
too well suited for the job because of their hardware configuration. The future plan is
to test the system using more powerful computers and in a greater number. Future test
plans also include the benchmark of the latency in achieving consistency for keys that
have great importance compared to the ones that are less important.

References

[1] The ERLANG programming language, http://www.erlang.org/
[2] Hadoop database, http://hadoop.apache.org/hbase/
[3] Microsoft Security Intelligence Report - volume 7, http://download.microsoft.

com/download/A/3/0/A30A60D9-1303-4B6A-91B7-BB24E0211B05/
Microsoft_Security_Intelligence_Report_volume_7_Key_
Findings_Summary_English.pdf

[4] MONitoring Agents using a Large Integrated Services Architecture,
http://monalisa.caltech.edu/monalisa.htm

[5] Myrtus and Guava, episode 3, http://www.securelist.com/en/blog/272/
Myrtus_and_Guava_Episode_3

[6] The MySQL database, http://www.mysql.com/
[7] The PostgreSQL database, http://www.postgresql.org/
[8] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra,

T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In:
Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2006, Berkeley, CA, USA, pp. 15–15. USENIX Association (2006)

[9] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-
value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

[10] Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

[11] Lakshman, A., Malik, P.: Cassandra: structured storage system on a P2P network. In: Pro-
ceedings of the 28th ACM Symposium on Principles of Distributed Computing, PODC
2009, pp. 5–5. ACM, New York (2009)

[12] Lamport, L.: Time, clocks, and the ordering of events in a distributed system. ACM Com-
mun. 21(7), 558–565 (1978)

[13] Marks, P.: Stuxnet: the new face of war. The New Scientist 208(2781), 26–27 (2010)
[14] Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M., Balakrishnan, H.: Chord: A scalable

peer-to-peer lookup service for internet applications, pp. 149–160 (2001)
[15] Stonebraker, M., Abadi, D., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:

Mapreduce and parallel dbmss: friends or foes? ACM Commun. 53(1), 64–71 (2010)
[16] Watts, D.J.: Six degrees: the science of a connected age. Norton, New York (2004)

http://www.erlang.org/
http://hadoop.apache.org/hbase/
http://download.microsoft.com/download/A/3/0/A30A60D9-1303-4B6A-91B7-BB24E0211B05/Microsoft_Security_Intelligence_Report_volume_7_Key_Findings_Summary_English.pdf
http://download.microsoft.com/download/A/3/0/A30A60D9-1303-4B6A-91B7-BB24E0211B05/Microsoft_Security_Intelligence_Report_volume_7_Key_Findings_Summary_English.pdf
http://download.microsoft.com/download/A/3/0/A30A60D9-1303-4B6A-91B7-BB24E0211B05/Microsoft_Security_Intelligence_Report_volume_7_Key_Findings_Summary_English.pdf
http://download.microsoft.com/download/A/3/0/A30A60D9-1303-4B6A-91B7-BB24E0211B05/Microsoft_Security_Intelligence_Report_volume_7_Key_Findings_Summary_English.pdf
http://monalisa.caltech.edu/monalisa.htm
http://www.securelist.com/en/blog/272/Myrtus_and_Guava_Episode_3
http://www.securelist.com/en/blog/272/Myrtus_and_Guava_Episode_3
http://www.mysql.com/
http://www.postgresql.org/

Socially Responsive Resource Usage: A Protocol

Hrushikesha Mohanty

Department of Computer and Information Sciences
University of Hyderabad

India
mohanty.hcu@gmail.com

Abstract. Sharing of state resources like natural resources and devel-
opmental funds, needs to be inclusive as well as traceable. Further, for
sustainability resource rights are to be enforced. For the purpose, a pro-
tocol for resource usages is proposed and shown that the protocol could
be made adaptive to empower people by cooperation, collaboration and
self help.

Keywords: Social Distance, Protocol, Social Inclusion, Resource Rights
for Sustainability.

1 Introduction

Resources empower an individual to sustain and excel. Resources are either nat-
ural or man-made. Here, we are mainly concerned of fair distribution of pub-
lic resources like state funds and natural resources that are usually used for
poverty elevation, personal uses and business purposes. This paper proposes a
resource usage protocol with prime aim of protecting both user and resource
rights. User rights include fair chance of resource usage whereas resource rights
include protection and conservation of resources. The proposed protocol presents
a framework for communication among users and resources (i.e agencies manag-
ing resources).

The proposed protocol is useful for orderly usages of natural resources and
public resources like coal and house building aid respectively. In general these
resources are managed by designated agencies; a user interacts with it for availing
a resource e.g. a saw mill owner wanting logs approaches forest department for
permission. Another example could be of state resources like house building aid
available to underprivileged. The novelty of the proposed protocol includes:
– a generic framework for public resource management
– assurance of fair order to access resources promoting social inclusion
– ensuring protection of resource rights
– traceability of resource usages

The paper has another six sections. The second section presents social ethics
on public resource usages. In third section, the entities and their relations used
in design of the protocol are specified in class diagrams.In the fourth section,

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 243–254, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

244 H. Mohanty

the protocol stack and its behaviour are modeled. An analysis of the dynamic
behaviour of the protocol is carried out in the fifth section. Some related works
are surveyed in the sixth section. Seventh section concludes the paper.

2 Ethics on Resource Usage

The synthesis of the proposed protocol is based upon two principal ethics that
are, socially responsive resource usage and resource rights for its protection. A
user or a group for survival or growth looks for resources; a request for resources
is to be honoured based on social norms. A socially disadvantaged person needs
resources mainly for survival whereas a user with knowledge and capital needs
resources for commercial usages; thus making profit for personal growth. Rights
and privileges are to be associated with constraints particularly when natural
and public resources are in use. While unlimited usages of resources is to be
banned, users should be made responsible to maintain the resource in proportion
to its use. At present situation in prospect of environment, a user on using a
natural resource should pay in certain proportion of use, for safe keeping of the
ecosystem.

A resource usage is viewed as a process that starts from initiation of resource
request to fulfilling of obligation for resource usage before the process terminates.
That way, a resource usage session has a life time spanning from initiation to
termination. During the session, both user privileges and resource rights are
guarded by checking the satisfiability of constraints and obligations. Resource
constraints follow just enough principle to safeguard resources from unabated
exploitation. It also follows just fair principle that prioritized under-privileged
users based on their social distances. Social distance is a notion that quantifies
how far a person is from a resource. More the distance, the more the person is
at disadvantage to assess the resource. It is to note that social distance is coined
to bring in social issues in synthesis of the proposed protocol. A resource user is
obliged to replenish, to recreate or to maintain the resource it used. This ensures
the resources’ rights to protect itself for humanity. These obligations are made
by legislation’s and social practices. The constraints defined on resource usage
are useful to constrain over-usages or misuses of resources like indiscriminate
mining, deforestation or squandering of poverty elevation funds.

The proposed protocol has a social objective to empower people those are at
disadvantageous position in accessing public resources. The protocol prioritizes
requests of the socially distanced people for resource sharing. A logical distance
defined between a resource and its user, is termed as social distance of the user
with respect to the resource. A resource has three attributes: place, cost and
constraints, having dominating effects on its usages. A place means the loca-
tion where a resource is available or from where the resource can be availed.
A resource may have specified cost that a user has to pay for availing it. The
constraints are set of conditions and assertions used as pre- and post-conditions
to a resource usage. Let’s take HBF (House Building Fund), a resource available
for marginalized people and the resource is specified as:

Socially Responsive Resource Usage: A Protocol 245

Resource::r
{

Location: Welfare Dept., Bhubaneshwar,Odisha
Cost: 1000 Rs.
Constraint: AnnlIncomeL4() & FamilyDependent4() &

CompletionCert()
}

The resource HBF is being distributed by Welfare department. Bhubaneshwar,
Odisha (gives a geographical location of the resource); the cost to apply for
fund is 1000 rs. The fund is available for those who have less than four lakh
rupees annual income AnnlIncomeL4() and the dependents are four or more
FamilyDependent4() . These two are pre-conditions to avail the fund. On availing
the fund, a user needs to submit a house completion certificateCompletionCert().
This is a post-condition to a usage of the resource. One can add assertions, in-
variants related to governance, environment, community usages and any other
relevant domains. These are to be verified during a resource usage session or after.
Preconditions can be verified with the facts available at a resource requesting
user.In order to make the resource accessible to socially disadvantaged users
preconditions could be made friendly to them whereas, postconditions are for
resources to assert their rights. This brings out the inherent dichotomy between
liberal development and strain on resources. We have handled this issue making
the protocol adaptive as shown later in subsequent section. A user alike a resource
is specified as:

User:: u
{
Location: Bangalpur, Balasore, Odisha
Invest: 1500 Rs.
Fact: (Dependents 5) & (AnnlIncome 3L)

}

A user is specified by its geographic location, the amount it can invest and some
facts as presented of types viz. Location, Invest and Fact, respectively. The
geographical distance between user and a resource is calculated from r.Location
and u.Location. And financial distance between two is computed from r.Cost and
u.Invest. The conditions AnnlIncomeL4() and FamilyDependent4() are evaluated
with u.Fact.

Social distance between a person and a resource is computed by

SDr
u = w1 ∗ LDr

u + w2 ∗ IDr
u + w3 ∗ CDr

u (1)

where LDr
u, IDr

u and CDr
u correspond to location distance, invest distance and

condition distance respectively for resource r and user u. More, wis are the
weights assigned to each of the three constituents of the social distance metric.
LDr

u computes absolute geographical distance between a resource and a user.
Based on the distance, it is categorized as far, near or at average distance. And

246 H. Mohanty

each of it assumes value in 10 scale e,g, 10 for far, four for near and six for
average distance. Similarly IDr

u = r.Cost − u.Invest. This factor contributes
to social distance only if IDr

u > 0. Semantically, IDr
u > 0 is categorized pro-

hibitive, expensive and costly based on slabs defined on investment distance; let’s
say the three assume values ten, eight and six respectively in a scale of 10. Of
course, this categorization has to be person specific for example based on one’s
economic conditions and liability, the ID slabs are to be fixed. The conditional
distance indicates a person’s social limitations in availing a resource. A person
is disadvantaged if u.Fact satisfy the conditions stated at r.Constraint. If no
condition is satisfied then CDr

u is zero. Please note that, we assume constraints
with a resources are framed in favour of disadvantaged. When say x

′
conditions

are satisfied from total x conditions then CDr
u = (x

′
/x) ∗ 10; its different ranges

of values say 10-8, 7-5, 4-1 are identified as the most disadvantaged, more disad-
vantaged and disadvantaged respectively and they numerically contribute to the
metric 10, 8 and 6 respectively. In order to express SDr

u in 10-scale, we propose
weight values in the range of (0,1) based on the importance we lay to each com-
ponent. For the sake of discussion let’s assume all three are of equal importance
and so each assumes value 0.33.

Other than being able to define social distance for a person from a resource
we plan to introduce resource rights in r.Constraint in terms of Pre and Post
conditions. In precondition a resource specifies its choices to serve. Here we
make a resource more reachable for socially distanced people by prioritizing their
resource requests. Also preconditions can be set in such way that the affluents
get less privileged access to the resource. Thus a resource usage becomes socially
responsive. Further, postcondition specifies the obligations of users that should
be fulfilled on utilization of resources. We can have assertions and in-variants for
ensuring legal resource usages.

In the design of the proposed protocol the social ethics taken into consideration
are:

1. Socially underprivileged should have better chance to avail a sharable public
resource.

2. Financial and social conditions of a person have impact on its ability to avail
a resource. Further, a remotely located person is found at disadvantage in
availing state resources.

3. A resource has means to exercise its right to protect itself and grow.

In the next section we introduce the important artifacts that make a framework
for implementing the proposed protocol.

3 Participating Entities

Prior to detailing of the proposed protocol, here we will introduce the entities’
that participate in the design of the proposed protocol Fig. 1 . Each user registers
at a user router : ur, which collects resource requests from users and keeps track
of the delivery of resources to users. In reality resource delivery can be in both

Socially Responsive Resource Usage: A Protocol 247

Fig. 1. Participating Entities and Relations

ways i.e. off-line/on-line. But in both the cases the delivery details are maintained
at user router. Similarly, the roles of a resource router : rr can be thought of. A
resource router can be imagined as an agency that allows, monitors and controls
usages of resources. Each resource registers at a rr that executes the protocol for
resource usage like a ur. That is, the copies of the proposed protocol stack Fig.2
resides at ur and rr for ensuring socially responsive resource usages. A resource
request ResRequest originates at a user and gets forwarded to a resource owner
through respective ur and rr. So, for each ResRequest , there exists a user u, a
resource rt and corresponding ur and rr. Each ResRequest has a an obligation
ot of Obligation based on the resource it looks for. The entity obligation specifies
what a user needs to oblige for using the resource it’s looking for. At different
stages during execution of a resource request, information relating to the request
processing are recorded at different databases viz. ResReqDB, ReqV alidateDB,
ReqPriorityDB and DelivReqDB. The use of these databases are explicit in
Algorithm 1.

4 The Protocol

A user and a resource (owner/mentor) exchange messages between them during
a resource usage session. Resource usage is a process initiated by a user and
in between resource and user both the routers ur and rr take part in message
communication. Both the routers validate, prioritize, route and record messages
transacted in resource usage sessions as shown in Algorithm 1, SRRUP: Socially
Responsive Resource Usage Protocol.

248 H. Mohanty

Algorithm 1. Socially Responsive Resource Usage Protocol
t: transaction for a resource request.
ResReqDB: Resource request database containing transactions.
rt: a resource requested by a transaction.
ReqV alidateDB: Database of validated requests.
rvt: a valid request in ReqValidateDB
ReqPriorityDB: Database of validated and prioritized requests.
rpt: a prioritized request in ReqPriorityDB
InSessionDB: Database of running transactions.
ist: a transaction listed InSessionDB
DelivReqDB: Database of transactions that received resource.
drt: a transaction in DelivReqDB
Obligation: Condition resource user to meet on availing requested resource.
ot: an obligation with respect to a transaction.

// On taking a request from ResReqDB do at ur
for (t ε ResReqDB) do

if !Validate(t) then
Terminate(t)

else
PutInReqValidateDB(t,ReqValidateDB
Prioritize(t,ReqPriorityDB)

end if
end for

// On taking a request from ReqPriorityDB do at ur
for (rpt ε ReqPriorityDB) do

PutInSessionDB(rpt,InSessionDB)
SendResReq(t,rr) // send request to rr

end for

// On receiving resource request t from ur do at rr
On receiving SendResReq(t,rr)
PutInSessionDB(t,InSessionDB)
if !Validate(t) then

Terminate(t) // Terminates the request
SendTerminate(t,ur) //Informs ur to terminate.
PutInReqValidateDB(t,ReqValidateDB

else
PutInReqValidateDB(t,ReqValidateDB
Prioritize(t,ReqPriorityDB
SendDelivReq(t,r) // rr asks resource owner to deliver the resource to user
//Resource delivery could be online or offline
SendDelivReq(t,ur) // rr informs resource grant to the requesting user

end if

//On receiving SendDelivReq(t,ur) from rr processed at ur
sendResOblige(t, u) //Informs user to oblige for the resource grant
// User sends SendOblige(t,ur,rr) to ur and rr on obligation compliance
On receiving SendOblige(t,ur,rr)
// Executed both at ur and rr
if Validate(t) then

//Transaction obligation is validated
PutInSessionDB(t,InSessionDB)
Terminate(t)

end if

Socially Responsive Resource Usage: A Protocol 249

Fig. 2. Session State Machine

A ur at a time or periodically or asynchronously collects a ResRequest and
validates for onward processing else, the request is rejected and the user is in-
formed of the termination of the session. A user can be prohibited to use a
resource either based on own social status or on performance history (e.g. a well
off person say more than 4Lakhs rupees annual income is not allowed to avail
house building aid from government, a defaulter to oblige resource rights like not
paying to environment conservation fund after mining). For this at user router,
resource rights and users obligation compliance information should be published;
so that a request can be validated (a defaulter’s request is terminated). The val-
idated requests are prioritized based on users social distances and routed to a
resource router rr corresponding to the resource. For that, ur needs to have
resource addresses. For each request ur, creates a session and logs the session
related activities in different databases till the session terminates. A session on
resource usage terminates for one of the reasons: on rejection, on resource de-
livery and meeting resource obligation by the concerned user. Unless the user
satisfies obligatory conditions, the session remains active and used for filtering
out further requests if any from the same user. This information, can be further
used by a related legal agency for further actions. So, the sessions as we see are
long-lived transactions. A resource router rr on receiving a request performs the
same operations as a ur does. It prioritizes the requests received from differ-
ent user routers and issues the resources to each eligible requests in turn. This
delivery status is also intimated to the corresponding ur for record as well as
passing information to the corresponding user. A user on receiving the desired
resource should oblige to specified resource usage obligations. And compliance
to such obligation is recorded both at rr and ur associated to a transaction.
And then the protocol terminates and the status is recorded at both the routers.
We assume no loss in communication to avoid session status inconsistencies i.e
missing of information at databases located at both the routers. The states a
session assumes are Receive, Validate, Prioritize, Initiate, Deliver, Oblige and

250 H. Mohanty

Terminate. The state machine in Fig. 2 models the sequence of state changes in
a session due to the protocol. The protocol is detailed in Algorithm 1 in terms
of messages and associated actions at different routers.

The Algorithm. 1 provides an algorithmic implementation of the protocol stack
Fig. 3. The algorithm is made self-explanatory by using meaningful function
names. For the space constraint we refrain from formal analysis of the proto-
col. In the next section we extend the protocol to be adaptive resulting social
inclusion.

Fig. 3. Protocol Stack

5 Adaptive Protocol

As said earlier, the protocol is inclusive of have-nots as they score more satisfying
the conditions that are usually coded in favor of them e.g. a user below poverty
line has higher priority to get aid for house building. But, usually these people
are ill-capable of meeting resource obligations like paying for resource investment
or to fund for resource maintenance and generations. This brings out a trade
off between inclusiveness for poverty eradication and resource sustainability. In
order to meet this dichotomy, we propose to make the protocol adaptive so that
both socially distanced people as well as resource will have win-win situation.
For the purpose, three schemes viz. Cooperate,Collaborate and Empower are
proposed and elaborated as follows:

Case-1: Cooperate A disadvantaged user while satisfying resource preconditions
that is being a candidate for social inclusion, could be constrained to meet the
cost to invest or for resource maintenance. Overlooking of this requirement of
a resource, could have impact in long run. The protocol at this stage can look
for cooperation from other users to overcome the constraint (e.g. by lending the

Socially Responsive Resource Usage: A Protocol 251

resource cost). The cooperation among two users looking for the same resource
is defined as:

Cooperate(u, u
′
, r):: ≡

iff (u.Invest− r.Cost) ≥ (r.Cost − u
′
.Invest)

∧AgreeToLend(u, u
′
, r).

A user u cooperates with another user u
′
for accessing resource r provided it has

invest amount extra after meeting its own requirement i.e for meeting the cost
for resource r, so that it can lend the invest cost to u

′
. The cooperation taken

place only after the user u agrees. The process of cooperation is run at ur before
starting the resource request session for u

′
starts.

Case-2: Collaborate. Two users u and u
′
can collaborate for resource r when indi-

vidually they can’t satisfy its post conditions and cost for availing the resource.
But together they can meet, hence they cooperate. A cooperation can include
more than two users. In a cooperation the constituent members contribute to ac-
quire a resource that they may like to share (e.g. resource to set up a co-operative
business). Collaboration of users creates a virtual user u

′′
to access the resource.

The process of collaboration that takes place at ur first creates a collaborator
as:

CreateCollaborate(u, u
′
, r) −→

(u
′′ | u′′

.Location = mindist(u.Location, u
′
.Location, r),

u
′′
.Invest = u.Invest + u

′
.Invest,

u
′′
..Fact = u.Fact u

′
.Fact).

The collaboration between u and u
′
for resource r creates a virtual user u

′′
that

assumes location equals to the minimum of the distances from u and u
′
have to

reach resource r. Again the sum of their investments makes the investment of
u

′′
and so also for the Facts. Now,

Collaborate(u, u
′
, r) ::≡

iff(u.Invest < r.Cost) ∧ (u
′
.Invest < r.Cost)

∧ (u
′′
.Invest ≥ r.Cost)

∧ ¬SatisfyPostCond(r.Constraint, u.Fact)
∧ ¬SatisfyPostCond(r.Constraint, u

′
.Fact)

∧ SatisfyPostCond(r.Constraint, u
′′
.Fact)

∧AgreeToCollaborate(u, u
′
, r). // both agree to collaborate

Case-3: Empower. A user lacking capability to invest for and to satisfy post
conditions of a resource r, may look for another resource r

′
for which he is

capable to access. And the user is proposed by ur to avail the resource r
′
. This

is a kind of prescriptive approach a user router ur employs to empower a user
u and possibly empowering it to avail its originally intended resource r. This is
a process of engagement and empowerment leading to social inclusion without
giving a scope for frustration. The process of empowerment of u that takes place
at ur, by offering resource r

′
in place of r is:

252 H. Mohanty

Empower(u, r, r
′
) ::≡

iff(u.Invest < r.Cost) ∧ (u.Invest ≥ r
′
.Cost)

∧ SatisfyPostCond(r
′
.Constraint, u.Fact)

∧AgreeToT ransact(u, r, r
′
).

In reality, this prescription is made from experience of an agency, to empower an
under-privileged user. For example, such a prescription could be of a government
funded program that assures returns. Say here, on availing the resource r

′
the

user has improved on capability required to access the resource r i.e. satisfies
(u.Invest ≥ r.Cost) ∧ SatisfyPostCond(r.Constraint, u.Fact). Though, we
have shown the empowerment of u for r in one step; still it can be extended to
several levels of empowerment by just repeating the process considering several
transactions to perform in sequence or in parallel or in mix mode even.

6 Related Work

In developing countries like India, poverty eradication program is mainly pre-
scriptive and follow top-down approach. However, the current trend has taken
bottom-up approach. Well-informed individuals and self-help groups have started
taking decisive roles for self-development and poverty eradication. These enti-
ties mostly seek access to natural and public resources to carry out their plans
and programs. Every citizen has right of access to state resources and at the
same time each resource primarily natural resources also have right to protect
themselves from misuse as well as overuse [9]. This paper proposes implementing
resource rights (constraints) for access, recovery and regeneration. A resource is
described in a way so that its social roles and responsibilities can be specified
and queried [10]. A generic meta-model for representation of resources that are
used in workflows is presented in [11][12]. The proposed model has provision to
assign static meta model e.g. relation types, access policies and dynamic meta
model to monitor and synchronize resource access to workflow activities.

The proposed protocol uses a concept of social distance for routing of re-
source requests. After designing the protocol, I found the term is in use since
long mainly among social scientists. A way back, in 1959 Edward T Hall while
describing people’s world view, outlined how culture control people’s lives and
make one different from another. He introduced proxemics and use of space in
his seminal works The Silent Language and The Hidden Dimension. He proposed
several distances viz. Intimate Distance, Personal Distance, Public Distance and
Social Distance. He said, social distance is the distance for impersonal business
that shows the degree on involvement and formality.[13][14]

In [15], the research shows that self-enforcing exchange among socially het-
erogeneous agents i.e. socially distant agents can even work by adopting degrees
of homogeneity with another, thus reducing social distance and making the ar-
rangement workable. A generalization as well as extension to social distance is
proposed in [16] and a multiagent frame to simulate the model is proposed.

In this paper we plan to make use of social distance for developing a
protocol for sharing resources mainly natural and state funded ones. Information
systems have been successful for societal uses by managing huge information and

Socially Responsive Resource Usage: A Protocol 253

providing services like facility reservation systems, governance systems etc. But,
there are very few works that model social phenomena and prescribe socially
responsive solutions to the problems that the contemporary society is passing
through. We have not come across much work on this aspect in literature. Some
of the work we feel related are reviewed here.

In [4] a method to model social features like group, role, actions, depen-
dency and interactions is demonstrated by extending UML. The proposed frame-
work models concepts existing in organizational models for agents, including
AALAADIN [7], dependency theory [6], interaction protocols [8] and holonics
[5]. Negotiation among a group of ISPs (Internet Service Providers) has been
proposed in [17] where the services are forwarded on a path negotiated by asso-
ciated ISPs so that all will have win-win situation with respect to their business
goals. A worldwide concerns on food supply chain include sustainability as well
as transparency. Sustainability addresses wider global issues like environmental
as well as social issues. A recent work [18] surveys on information systems that
provide sustainability as well as transparency among stakeholders. Following the
trend, it’s found that one school works for introducing social concerns in devel-
opment of information systems i.e. making it socially responsive while the other
school works to make use of social concepts in development of systems for better
performance. The work reported in this paper falls into former category.

7 Conclusion

Social distance, a social phenomenon, is mainly conceptualized to categorize
social communications. This paper has redefined the term for calculating one’s
distance from a given resource and has devised a protocol for resource access
based on this distance. The protocol is designed to address today’s social concern
like resource sustainability, transparency in resource usages and achieving social
inclusion providing priority to socially deprived people.

The proposed framework with user router, resource router and protocol stack
shows the possible implementation of the protocol. The working of the protocol
stack is discussed by a state machine that presents the life cycle of a transaction.
And the actions due to the state machine is presented in Algorithm 1. Further,
the protocol is made adaptive incorporating social behaviours viz. cooperation,
collaboration and empowerment for achieving social inclusions.

The immediate future work in sequel to this, is the implementation of the pro-
tocol and finding its usability in a given domain. A formal study on social distance
and the protocol is planned to analyze several properties of the protocol. Of course,
modeling social distance itself requires a very insightful investigation on dynamics
of a particular society. Still, we view the concept of social distance has significant
potential in the development of socially responsive information systems.

Acknowledgements. This work is carried out while I’m in sabbatical from Uni-
versity of Hyderabad. I would like to thank Tomasz Janowski, UNU/IIST and
other anonymous reviewers for their valuable comments.

254 H. Mohanty

References

1. Kossinets, G., Kleinberg, J., Wattśı, D.: The structure of information pathways
in a social communication network. In: Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 435–443.
ACM, New York (2008)

2. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. ACM
Comm. 21(7), 558–565 (1978)

3. Adar, E., Zhang, L., Adamic, L.A., Lukose, R.M.: Implicit structure and the dy-
namics of blogspace. In: Workshop on the Weblogging Ecosystem (2004)

4. Van Dyke Parunak, H., Odell, J.J.: Representing social structures in UML. In:
Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222,
pp. 1–16. Springer, Heidelberg (2002)

5. Fischer, K.: Agent-based design of holonic manufacturing systems. Robotics and
Autonomous Systems 27(1-2), 3–13 (1999)

6. Castelfranchi, C.: Founding Agent’s ’Autonomy’ on Dependence Theory. In: Pro-
ceedings of 14th European Conference on Artificial Intelligence, pp. 353–357. IOS
Press, Amsterdam (2000)

7. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multi-agent systems. In: Proceedings of Third International Conference on
Multi-Agent Systems (ICMAS 1998), pp. 128–135. IEEE Computer Society, Los
Alamitos (1998)

8. Odell, J., Parunak, H.V.D., Bauer, B.: Representing Agent Interaction Protocols in
UML. In: Proceedings of Agent-Oriented Software Engineering, pp. 121–140 (2000)

9. Murali, K.S.: Microfinance, social capital and natural resource management sys-
tems: conceptual issues and empirical evidences. Int. J. Agricultural Resources
Governance and Ecology 5(4), 327–337 (2006)

10. Nickles, M., Weiss, G.: A Framework for the Social Description of Resources in
Open Environments. In: Klusch, M., Zhang, S.-W., Ossowski, S., Laamanen, H.
(eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 206–221. Springer, Heidelberg (2003)

11. zur Muehlen, M.: Resource Modeling in Workflow Applications. Issues and Per-
spectives Information Technology and Management 5, 271–279 (2004)

12. Xiao, Z., Chang, H., Wen, S., Yi, Y., Inoue, A.: An Extended Meta Model for
Workflow Resource Model. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM 2006.
LNCS (LNAI), vol. 4092, pp. 525–534. Springer, Heidelberg (2006)

13. Hall, E.T.: The Hidden Dimension. Doubleday, GordonCity (1996)
14. Hall, E.T.: The Silent Language. Anchor Books, NY (1990)
15. Leeson, P.T.: Social Distance and Self-Enforcing Exchange. Journal of Legal Stud-

ies 37, 161–188 (2008)
16. W ↪as, J.: Multi-agent frame of social distances model. In: Umeo, H., Morishita, S.,

Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191,
pp. 567–570. Springer, Heidelberg (2008)

17. Mahajan, R., Wetherall, D., Anderson, T.: Negotiation-Based Routing Between
Neighboring ISPs. In: USENIX Proc. NSDI, pp. 29–42 (2005)

18. Wognum, P.M(Nel), Bremmers, H., Trienekens, J.H., van der Vorstb, J.G.A.J.,
Bloemhof, J.M.: Systems for sustainability and transparency of food supply chains
Current state and challenges. Advanced Engineering Informatics (2010) (Article in
Press)

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 255–266, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Automated HSV Based Text Tracking System from
Complex Color Video

C. Misra and P.K. Swain

School of Computer Application
KIIT University, Bhubaneswar-751024, India

cmisra@yahoo.com, prasantkiit@gmail.com

Abstract. Tracking, extraction and recognition of text from video are important
steps in building efficient indexing and retrieval systems for multimedia data-
bases. We propose a top-down approach in which multiple cues are used for
detecting text blocks in videos. In our proposed text tracking and extraction sys-
tem, color and edge features are combined together to increase the precision of
text detection. Our system detects both caption text as well as scene text of dif-
ferent font, size, color and intensity. Our objective is to detect both stationary
text and moving text from complex color video. Extracted texts from videos are
recognized using an OCR and stored in a database with relevant information.
Such texts are used in future for retrieval of video clips based on any given
keyword. This paper shows comparative result of RGB and HSV based ap-
proaches using different types of domain and shows the result of text tracking in
different scenarios.

Keywords: Tracking of text in video, Video indexing and retrieval, HSV based
approach, neural network, Text recognition.

1 Introduction

Text tracking from a video is now recognized as one of the key components of video
indexing and retrieval systems. Text is considered to be a strong candidate for use as a
feature in high level semantic indexing and content-based retrieval as text has com-
pact, distinctive visual characteristics i.e., a set of symbols with distinct geometrical
and morphological features. An index built using extracted and recognized text en-
ables keyword-based searches [1],[2] on a multimedia database. Text in a video lasts
for a few seconds so that viewers can get adequate time to read the contents. So, any
text which occurs in a video must persist in consecutive frames.

Text in image and video can be classified into two broad types: (i) stationary text
(ii) moving text. Stationary text does not change their positions with time. In contrast,
horizontally aligned texts with a simple linear motion may exhibit either horizontal or
vertical movement across the screen in video.

Some examples of text instances and their behaviors in video are shown in Fig. 1
(a) through (b). Fig. 1(a) left shows vertical scrolling of movie credits on static back-
ground. The text lines move from bottom to top across the frames. In second the

256 C. Misra and P.K. Swain

 (a)

(b)

Fig. 1. Examples of video texts of different classes (a) Initial frame (b) After text or back-
ground movement

movements of text along with background are shown. Here the texts move from bot-
tom to top direction. In third image, we show static text with slowly moving back-
grounds. Our main focus is to accurately track and extract text blocks from video
sequences, recognize the texts using an optical character recognizer (OCR) and store
them as keywords in a database for indexing and future retrieval. The text in video
sequences can be stationary or moving with simple horizontal or vertical scrolling
motions across the scene. The background of the text sometimes varies frame-to-
frame i.e. moving background.

2 Related Work

In recent years, a great deal of attempts have been made to develop methods for ex-
tracting text blocks from still images and videos for specific applications like license
plate recognition, image and video indexing, text to speech conversion, etc.

Li et al. [3] present a novel text tracking system to detect text with simple linear
motion or complex non-linear motion. They use sum of squared difference (SSD)
method to track the moving text with simple linear motion and stationary text. For
finer refinement of text tracking in complex motion, Canny edge based contour stabi-
lization method is applied. They apply Canny operator to detect edge map of text
component and finally horizontal smearing process is used to group the text block.
CC based method is employed to derive the refined text position. The authors pointed
out that the tracking time is 0.2 seconds per frame. Sato et al [4] investigate superim-
posed caption recognition in news videos. They use a spatial filter to localize the text
regions as well as size and position constraints to refine the detected area. This algo-
rithm can be applied only in a specific domain, namely, news video analysis.

Lienhart and Wernicke [5] apply forward tracking system to detect text in video.
They use vertical and horizontal projection profile to generate characteristics signature

 An Automated HSV Based Text Tracking System from Complex Color Video 257

from detected text line and compare with reference signature of next frame in order to
find the position of text line. The authors mention that their method is sensitive to
fading and cannot perform if the text persists for a long span.

Malababic et al.[6] detect artificial text in videos using a feature that captures fore-
ground to background contrast, density of short edges of varying orientations and
concentration of short vertical edges that are horizontally aligned. Various geometri-
cal constraints are also applied for improving the result. Byun et al. [7] have presented
a text extraction method using color clustering and CC analysis from scene images.
They apply separate approaches for color and gray images to detect candidate text
regions. For color images, geometrical clustering is used to group the same color as a
preprocessing step.

The rest of the paper is organized as follows. In the next section, we give a descrip-
tion of our system. The results are presented in section 4 and we conclude in the last
section of the paper.

3 Overview of the Approach

3.1 Shot Detection

In the context of text tracking from video, a video clip is decomposed into a number
of shots. In Fig 3. we have depicted our proposed approach. Shot detection is the pre-
processing step to track text in a video. In this section, we present an algorithm to
detect shot boundary in a video using a histogram based approach. A standard way of
generating a color histogram is to concatenate the higher order two bits for each of the
red (R), green (G) and blue (B) values in the RGB space. A 24-bit color image is bit
dropped to a 6-bit image after color reduction. Next, a two dimensional histogram is
generated from the color reduced image where each row in the histogram (H) repre-
sents frequency of color pixels in the corresponding row of the video frame. Now to
compare the similarities between two successive frames, histograms are generated
from color reduced video frames and normalized mean centered correlation is com-
puted. The correlation (Im) between the frame M and next frame N is computed from
histograms HM and HN as follows:

()()

() ()∑∑

∑
×××

××
=

i

2
NN

i

2
MM

i
NNMM

m

m)i(Hm)i(H

m)i(Hm)i(H
I (1)

HM and HN are two dimensional histograms of the color reduced video frames M and
N, respectively. mM and mN represent mean values of the histograms. The correlation
value less than a threshold Ts indicates shot change and a higher correlation value
signifies similar frames, i.e. frames belonging to the same shot.

3.2 Key Frame Selection

Key frames are extracted from videos as representative frames to capture the salient
characteristics of that shot. We use a key frame selection scheme which assumes an

258 C. Misra and P.K. Swain

input video clip V as temporal sequence of images with redundancy. It has been ob-
served that for video sequences, a text must maintain temporal stability so that view-
ers can read the contents. Therefore, the text is monitored in a video shot at an equally
spaced video frame. In our key frame selection method, since we use only I-frames
for text extraction from videos with the typical IBBPBBPBBPBB sequence at a rate
of 30 frames per second, V may be represented as V= {In; n=1,2,…..M} where I1, I2,
…. IM are the I-frames in the video shot and M is the total number of frames. Any
text, which occurs in a video for duration less than the time gap between successive I-
frames, is not useful to the viewers as well, and hence need not be considered. If a
video follows any other frame sequence, we extract every twelfth frame for text ex-
traction. It should be noted that at this stage, we target only a few key frames among
large number of redundant frames. We consider the I-frames to speed up the text
tracking in a video.

3.3 Frame Based Text Localizer

Color reduction is an important pre-processing step for text extraction from complex
still images and videos. The mapping of RGB space to HSV space is the initial step
for HSV based color reduction. A three dimensional representation of the HSV color
space may be considered as a hexacone, where the central vertical axis represents
intensity. Hue lies in the range [0, 2π] relative to the red axis with pure red at angle 0,
pure green at 2π/3, pure blue at 4π/3 and pure red again at 2π. Saturation is the depth
or purity of the color and it is measured as a distance from the central axis with the
value between 1 at the outer surface for a completely saturated color and 0 at the
center, which represents a completely unsaturated color. Each image can be repre-
sented as a set of triplets as follows:

I = {(pos, [t | g], Val)} (2)

Here pos denotes position of the pixel, [t | g] signifies whether the pixel is a “true
color” or a “gray color” component. We consider either its hue or intensity value as
the prevailing feature based on its saturation. The algorithm for computing the “true
color” and “gray color” may be written as follows:

For each pixel in the image
 Read the RGB value

 Convert RGB to HSV
 If ((S<Min_Sat)or(V<Min_lum_fctr*no_of_color))

 V= Round (V/DIV_FCTR+57)
 Else if ((H > float (0.0))
 H= Round (H* MUL_FCTR)
 Else
 V= Round (V/DIV_FCTR+57)

Here no_of_color is the maximum intensity, usually 256 and Min_Sat is the mini-
mum saturation value. Min_lum_fctr is the minimum luminance factor. Min_Sat and
Min_lum_fctr are assigned values 0.2 and 0.25 respectively and work well for our
experiments. In Fig. 2. original image and the corresponding HSV based color

 An Automated HSV Based Text Tracking System from Complex Color Video 259

reduced images are shown. We next determine the Regions of Interest (ROIs) - Re-
gions in the image where text could potentially be located using horizontal projection
profile analysis like [8]. This step, while meant to speed-up subsequent searches,
should not filter out the text regions. Care is, therefore, taken to ensure that only those
regions that are certainly of type non-text are eliminated.

 (a) (b)

Fig. 2. Color Reduction using HSV based method (a) Original image (b) HSV based color
reduced image

After identification of the regions of interest, a set of geometrical and morphologi-
cal features are extracted from each ROI. We use F-ratio based method to determine
the contribution of each feature in the feature set. Contribution of a feature is defined
as the feature’s impact on the discrimination of text and non-text classes. F-ratio can
be defined as a ratio between variance of means between classes and the mean of
variances within class. The criteria for better separation between text class and non-
text class are increase in distribution of mean value between text class and non-text
class or narrow gap in value within each class. F-ratio values of ten features which are
computed from 75 text and 75 non-text data. The higher value of F-ratio indicates
better impact on classification process. Next Singular Value Decomposition (SVD)
method is applied on the training data set to select the optimum feature set for our
feature based classifier. Singular Value Decomposition can be expressed as follows:

 S= SVD(X) (3)

Here X is the data set, containing features values of text and non-text training samples
and S indicates the returned vector of singular values for the feature set and we con-
sider seven features as final set for our application. A multilayer perceptron (MLP) is
used to determine if the ROI contains text or non-text blocks. During the training
phase, the MLP is trained with sample text and non-text blocks. During classification,
the MLP uses the learnt weight values for marking each ROI. It should be noted that
at this stage, we identify an entire ROI to either belong to a text region or to a non-
text region and not its individual components. 200 text regions and an equal number
of non-text regions are used for training the MLP. The MLP contains 7 inputs, one
hidden layer of 10 units and 1 output. After classification of an ROI as text or non-
text, the potential text regions are subjected to a connected component analysis for
reducing the false positives.

260 C. Misra and P.K. Swain

Start

Use shot detection
to segment video

Extract key frames
from each shot

Connected component
based filtering

Odd
frames?

Yes

Frames left to
 be processed?

Yes

No

Use frame based
text localizer

Refine predicted area
in intermediate frame

 Stop
A

Merge detected region
of previous frame and
successive frame

Feature extraction

Neural network
based classification

New shot?
Yes

No

No

A

Fig. 3. Flow chart of the proposed system

Connected components of the regions of interest so far marked as text, are exam-
ined for the existence of specific text features. If such features are not present in the
connected components, they are eliminated. The remaining components are marked as
text blocks. These text blocks are next given as input to an OCR after converted to
binary image. For making it suitable to OCR input we have done some preprocessing
like color polarity detection, removing connected characters and noise. The OCR
output in the form of ASCII characters forming words is stored in a database as key-
words with frame reference for future retrieval. In Fig. 4(a) (b) and (c) we show the
original image, binarized image and OCR output.

 Sample Image Only

 How do you test a
 (a) (b) (c)

Fig. 4. (a) Image with ROIs identified (b) Binarized text block (c) OCR output

 An Automated HSV Based Text Tracking System from Complex Color Video 261

3.4 Text Localization in Key Frames Using Bi-directional Prediction

We adopt a two-stage text detection scheme to detect text in key frames. This en-
hances the time performance and reduces computational complexity. Above image
based text localizer scheme is applied on odd key frames in a shot. We use
bi-directional predictive method to detect the potential text regions in the intermediate
key frames of each video shot, as there is a chance that the same text appears in the
same location or with minute movements. In the even key frames or intermediate key
frames, text instances are detected by forward and backward prediction. Co-ordinates
of the detected text regions of previous key frame and successive key frame are
merged to get the candidate text regions of the intermediate key frame. Due to motion
of text instances in video, the co-ordinates may be different. The predicted regions are
considered as different, if the percentage of the merged area is less than threshold
value tm. Otherwise, minimum row and column value and maximum row and column
value among the predicted regions are considered as final co-ordinates of the refined
predicted text region. After refinement of predicted text region in intermediate key
frame, geometrical and morphological features are extracted for each predicted area.
An MLP based classifier is employed to identify whether predicted text region actu-
ally belongs to text or non-text. After classification, refined text regions are subjected
to a connected component analysis for reducing the false positives. Connected compo-
nents of the regions of interest so far marked as text, are examined for the existence of
specific text features. If such features are not present in the connected components,
they are eliminated. The remaining components are marked as text blocks.

4 Performance of the Proposed System

4.1 Shot Detection Accuracy and Speed of Processing

In this section, we present quantitative performance of our text tracking system. Ex-
periments were carried out on a dataset of 27 video clips of different categories like
cartoons, TV news, educational video lectures and sports as shown in Table 1. All the
video sequences are encoded in MPEG format. Our proposed system can process
more than 18 frames per second. Our system can process a frame in 0.11 second using
Intel Core i3 2.26 GHz machine. In comparison [9] take 1.2 sec for processing a
frame of same size using Sun Ultra Sparc 60 and [10] take 0.47 for processing a frame
of size 320 Χ 240 and Our proposed method is very fast since most of the computa-
tionally intensive algorithms are applied only on the regions of interests. Table 1
shows the accuracy of hard cut detection on a variety of video sequences. More than
96% accuracy is achieved for commercials, news and video lectures. For soccer vid-
eos the shot detection accuracy is less than 88%. Due to movements of players
although the scene changes in the video, there is only little variation in the color dis-
tribution of the histogram.

4.2 Text Detection Accuracy

Video clips of 35 minutes are extracted from TV news, movie credits, video lectures
and other sources. Operational time of the proposed system and experimental results

262 C. Misra and P.K. Swain

are shown with video clips of different categories. We use MPEG video sequences at
a resolution that varied between 352Χ240 and 384Χ288 with RGB values of 256
levels. Frame rates of videos are in the range of 25 to 30 frames per second. We suc-
cessfully detect text of the classes as enumerated below.

(i) Static text with static background
(ii) Static text with moving background
(iii) Horizontal scrolling text with static background
(iv) Vertical scrolling text with static background
(v) Horizontal scrolling text with moving background
(vi) Vertical scrolling text with moving background
(vii) Text with special effects

Table 1. Accuracy of shot detection in MPEG video sequences

Type of Video No. of Video
Clips

No. of Frames %Of Shots Detected
Correctly

News 5 17000 96.8%
Movies 8 13300 98.3%
Sports 2 12000 82.3%
Video Lectures 7 16600 96.8%
Advertisement 5 11700 87.6%

Another important consideration is the quality and complexity of pictures for
evaluation. In [11] large fonts in web images, advertisements and video clips are con-
sidered. Kim [12] does not detect low contrast text and small fonts and [3] use text
with different complex motions. Zhang et al [10] as well as [4] detect only caption
text in news video clips. We are able to detect text under a large number of different
conditions as enumerated below.

Fig. 5(a) shows the performance of text tracking in a video sequence with vertical
scrolling movement of texts on a static background. Here the text lines consist of
small font and they are shifting from bottom to top across the scene. Fig. 5.(b) illus-
trates tracking performance in a news video. The news headlines move fast from right
to left across the scene. The news captions are in English and Hindi languages and
both fonts are detected correctly. In Fig. 5(c) we demonstrate tracking of subtitles
from a movie clip. In this case the background is changing and the texts are composed
of small fonts. The text instances are tracked efficiently by the algorithm though there
are movements in background.

In Fig. 6. we show performance of tracking algorithm for a movie clip with high
noise. The text appears randomly on a static background and there are presence of
fading in and fading out effects of text instances. In frame numbers 11, 22 and 33 the
text instances are fading in. Fading out of text instances are shown in frame number
45, 56 and 63.

 An Automated HSV Based Text Tracking System from Complex Color Video 263

 Frame 15 Frame 105 Frame 195

(a)

Frame 3 Frame 30 Frame 63

(b)

 Frame 22 Frame 58 Frame 93

(c)

Fig. 5. (a) Tracking algorithm applied to caption text with vertical scrolling (b) Detection of
horizontal scrolling news caption (c) Results of text tracking with dynamic background

 Frame 11 Frame 23 Frame 35

Frame 45 Frame 56 Frame 67

Fig. 6. Detection of text events with high noise and fading effect

264 C. Misra and P.K. Swain

Table 2. Accuracy of text tracking for different combinations of text and background movements

Type of Text Instances Video
Duration

(hh:mm:ss)

No. of
Text Lines

%of Text
Detected
Correctly

Static text with static
background

00.04:20 12 98%

Static text with moving
background

00:07:05 16 87%

Horizontal scrolling text
with static background

00:14:10 30 97.3%

Vertical scrolling text with
static background

00:05:40 38 92.4%

Horizontal scrolling text
with moving background

00:02:30 15 91.4%

Vertical scrolling text with
moving background

00:02:10 16 82%

Text with special effect 00:02:08 9 77.6%

In Table 2, we show the accuracy of text tracking with a number of video clips of

different combinations of text and background motions. It is seen that detection per-
formance is better for static background than moving background and more than 92%
detection is achieved in case of static background. These video sequences total about
35 minutes with a wide variety of font, color, domain, motion and complexity. The
video sequences consist of 463 words, 127 lines in total.

0
20
40
60
80

100
120

Cartoons News Lectures Movies
(a)

0

50

100

Cartoons News Lectures Movies

HSV RGB

(b)

Fig. 7. Performance comparison of HSV and RGB based approaches with different types of
video clips (a) Recall (b) Precision

The performance shows that text tracking approach works well in both stationary
text as well as moving text with simple linear motion. However, our proposed meth-
odology cannot detect text with very complex motion and skewed text.

In every text rich image or video-frame, there are two regions, text dominated and
non-text dominated. It is also very important not to detect any non-text part as text

 An Automated HSV Based Text Tracking System from Complex Color Video 265

part. The performance can be measured in terms of recall and precision. They can be
defined as follows Recall can be defined as the ratio of text regions identified cor-
rectly as text regions and total no of text instances in the frame and similarly Precision
is defined as ratio of correctly identified text regions and total no of detected text
region by our proposed system.

We have calculated recall and precision on large and diverse sets of text-rich video
frames for HSV based approaches. For video frame processing, we have tested the
system on different types of domains such as news clips, lecture clips and movies and
cartoons. We have made comparison with [8] and in Fig.7 (a) and (b) we show com-
parative recall and precision values of HSV and RGB for different sets of test data of
different domains. To the best of our knowledge, this is the first successful attempt for
text detection taking different types video with moving text. It should be noted that
our methods are robust and stable for unconstrained videos and the system parameters
remain the same throughout all the experiments.

4.3 Processing Speed

We next study the effect of shot detection on the operational time of proposed text
tracking system. It may be argued that the time spent in shot detection is more than
the ROI processing time saved. In Table 3, we compare the running time of two ver-
sions of the algorithm, one with shot detection, and one without. It can be seen that
more than 45% time is saved by using shot detection. The time performance given in
Table 3 has been achieved on a Intel Core i3 2.26 GHz machine.

Table 3. Effect of shot detection and text tracking on running time

Running Time(hh:mm:ss)
With Shot Detection

Video
Duration

(hh:mm:ss)
Without Shot

Detection Shot
Detection+
Key Frame
Selection

Text
Tracking

Total
Time

00:00:30 00:06:35 00:02:55 00:00:20 00:03:15

5 Conclusion

We have built a complete automated content based video retrieval system using em-
bedded text. We integrate all the modules starting from the detection of the text until
the keywords are converted to ASCII characters stored in a database with a link to the
video sequence and the frame number for future retrieval. A great deal of work will
have to be done to make the system more efficient. First, we plan to extend our work in
the compressed domain processing to make it even faster. Secondly, our system cannot
detect non-horizontal text in an image. Thirdly, we have to investigate possible im-
provements of our method for better tracking of text with complex motion. Fourthly,
the recognition accuracy of our system is poor for text with complex background.
Finally, a more accurate OCR will also improve the quality of retrieval further.

266 C. Misra and P.K. Swain

References

1. Niblack, W.: The QBIC Project: Querying Images by Content Using Color, Texture and
Shape. In: Proc. Storage and Retrieval for Image and Video Databases, pp. 173–187. SPIE,
Bellingham (1993)

2. Ma, W.Y., Manjunath, B.S.: Ne Tra: A Toolbox for Navigating Large Image Databases.
Journal Multimedia System, 184–198 (1999)

3. Li, H., Doerman, D., Kia, O.: Automatic Text Detection and Tracking in Digital Video.
IEEE Transactions on Image Processing 9, 147–156 (2000)

4. Sato, T., Kanade, T., Hughes, E., Smith, M.: Video OCR: Indexing Digital News Libraries
by Recognition of Superimposed Captions. Multimedia Systems 7, 385–394 (1999)

5. Lienhart, R., Wernicke, A.: Localizing and Segmenting Text in Images and Videos. IEEE
Transactions on Circuits and Systems for Video Technology 12, 256–268 (2002)

6. Malobabic, J., O’Connor, N., Murphy, N., Marlow, S.: Automatic Detection and Extrac-
tion of Artificial Text in Video. In: Adaptive Information Cluster, Center for Digital Video
Processing, Dublin City University (2002)

7. Byun, H.-R., Roh, M.-C., Kim, K.-C., Choi, Y.-W., Lee, S.-W.: Scene text extraction in
complex images. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423,
pp. 329–340. Springer, Heidelberg (2002)

8. Misra, C., Sural, S.: Content Based Image and Video Retrieval Using Embedded Text. In:
Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 111–
120. Springer, Heidelberg (2006)

9. Wong, E.K., Chen, M.: A New Robust Algorithm for Video Extraction. Pattern Recogni-
tion 36(6), 1397–1406 (2003)

10. Jung, K., Han, J.H.: Hybrid Approach to Efficient Text Extraction in Complex Color
Images. Pattern Recognition Letters 25, 679–699 (2004)

11. Jain, A.K., Yu, B.: Automatic Text Location in Images and Video Frames. Pattern Recog-
nition Society 31, 2055–2076 (1998)

12. Kim, H.-K.: Efficient Automatic Text Location Method and Content-Based Indexing and
Structuring of Video Database. Journal of Visual Communication and Image Representa-
tion 7, 336–344 (1998)

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 267–277, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Enhanced Insider Threat Detection Model that Increases
Data Availability

Qussai Yaseen and Brajendra Panda

Computer Science and Computer Engineering Department
University of Arkansas

Fayetteville, AR 72701, USA
{qyaseen,bpanda}@uark.edu

Abstract. This paper demonstrates how to prevent or mitigate insider threats in
relational databases. It shows how different order of accesses to the same data
items may pose different levels of threat. Moreover, it states the conditions that
are required to regard a data item as expired. In addition, it introduces the two
different methods of executing insiders’ tasks, and how to prevent insider threat
in those. The models presented in this paper organize accesses to data items in a
particular sequence so that the availability of data items is maximized and the
expected threat is minimized to the lowest level. Furthermore, it determines
when to give an insider an incorrect but acceptable value of a risky data item in
order to prevent a possible threat.

Keywords: Insider Threat, Databases, Knowledgebase, Data Availability.

1 Introduction

In the information age where both information systems and attacks on them have
become more complicated, preserving the security of sensitive data has become a
major research issue. While most of research has focused on defending systems
against hackers or outside threat, threats coming from insiders are becoming more
risky and damaging. Surprisingly, insiders were responsible for 52% of all security
breaches in 2004 [1]. Such threats are harder to detect due to the fact that insiders
exploit their privileges and familiarity with the properties and internal structure of the
system to launch attacks. In a relational database system, which is the focus of this
work, insiders are usually familiar with the schema, dependencies, and other proper-
ties of the database. This familiarity gives them an advantage over outsiders and
makes an attack lunched by such an insider difficult to detect.

To date, extensive research has been performed on detection of attacks originating
from outside the system while very little has been done in the area of insider attack
detection. Moreover, mechanisms developed for the former are not effective for the
latter since removing a suspect in the latter case would result in removal of a valid
user of the system, and this in turn would affect the performance of the organization.
While most of the research performed in the area of insider threat has been done at the
system level, very little progress has been made at the application level such as the
database systems.

268 Q. Yaseen and B. Panda

This paper, which is an enhanced version of our previous work [2], discusses the
insider threat issues in relational databases, and proposes mechanisms to mitigate or
prevent the problem. We state the conditions required to regard the lifetime of a data
item as expired and introduce two methods for executing an insider’s task, namely,
batch of transactions and transaction by transaction methods. Furthermore, we explain
techniques to prevent or mitigate the insider threat in both cases. Our models use the
Neural Dependency and Inference Graph NDIG to make the prevention of insider
threat more effective in situations when an insider has to get access to risky data
items.

The rest of the paper is organized as follows. The next section discusses some re-
lated work. Section 3 explains the threat due to the insiders’ knowledgebase as well as
the lifetime of data items. Section 4 describes the effect of organizing insiders’ ac-
cesses to data items. Section 5 presents the methods for computing the risk of possible
sequences of data item accesses and how to choose the lowest risk sequence. Finally,
section 6 offers the conclusions and the plan for future work.

2 Related Work

Several definitions of the term “insider” have been introduced in [3][4][5]. Yaseen
and Panda [5] defined the term “insider” in the context of relational databases as “the
person who has privileges to access and is familiar with the structure of the system
under consideration, and is inspired to harm that system”. This definition summarizes
the problem and the power of insiders.

Some researchers have used existing methods of detecting external threat, such as
using honeypots [6], to recognize insider threat while others have introduced new
techniques to detect and prevent such attacks, for example, Althebyan and Panda [7].
The latter introduced the knowledge graph of an insider at the system level as well as
the dependency graph for the data item accesses, and used them to detect and prevent
insider threats. However, their work was at the system level and did not consider
relational databases.

Insider threat in relational databases is strongly related to dependencies among data
items since insiders can use this knowledge to get unauthorized information and make
malicious changes. The research by Farkas et al. [8][9] discussed the problem of
combining non-sensitive data to get sensitive data using dependencies. Farkas et. al
[9] showed how updates can affect the knowledgebase of users. In addition, they
demonstrated that looking through the history of accesses of users without checking
the lifetimes of the data items limits the availability of data items.

Researchers in [10] and [11] discussed the inference channel. Yaseen and Panda
[5] introduced new graph called the Neural Dependency and Inference Graph (NDIG)
that shows dependencies and the amount of information that can be inferred about
data items using dependencies. In [14] the authors showed how insiders can use de-
pendencies to make unauthorized changes to data items.

 Enhanced Insider Threat Detection Model that Increases Data Availability 269

3 The Effect of Knowledgebase and Lifetime of Data Items

The knowledgebase of an insider contains the values of data items that he/she has
accessed. These values may be combined with some insensitive data items that he/she
may request later to infer sensitive information, which pose a threat [5][12]. Revoking
read accesses from previously accessed data items does not eliminate the threat since
the values still exist in the insider’s knowledgebase. For instance, consider the de-
pendency [Rank, Experience] [Salary]. If an insider had accessed the Rank attrib-
ute and he/she is given a read access to the Experience attribute, he/she can infer the
value of the Salary attribute, which could be sensitive information.

Clearly, an insider’s knowledgebase could pose a serious threat, but not if the data
items in the knowledgebase are expired. That is, if other insiders modify the data
items whose values may also exist in the insider’s knowledgebase, the lifetime of
those data items (old values) would expire. Thus, using them to infer sensitive infor-
mation would not pose a threat. In light of this, determination of the lifetimes of data
items in an insider’s knowledgebase is important.

However, merely updating values of data items does not always make their life-
times expire. To clarify this point, we should mention the types of dependencies ex-
plained in [12]. The method that is presented there classified dependencies based on
different categories. One of these categories is the strength of the dependencies,
which is classified into two types: strong and weak. A dependency between two data
items A and B is called a strong dependency if a change in A forces a change in B.
For instance, the dependency [Rank Salary] is a strong dependency since any
change in the Rank attribute makes a change in the Salary attribute. On the other
hand, a dependency between two data items A and B is called a weak dependency if a
change in A may or may not make a change in B. For instance, the dependency [Score

 Grade] in a student table is a weak dependency since a change in the Score attrib-
ute does not always make a change in the Grade attribute. To clarify this point, sup-
pose that a student gets A in a class if he/she gets a score between 90 and 100, and
gets B if he/she gets a score between 80 and 89. Now, if the score of a student is up-
dated from 85 to 87, the value of his/her grade does not change. However, if the score
of the student is updated from 88 to 91, his/her grade changes from B to A. The infer-
ence is based on the familiarity of insiders of the dependencies and their constraints
that exist in the database [12]. That is, in case of the example above, if an insider gets
access to the Score attribute of a student and the insider is familiar with the depend-
ency constraints, he/she can infer the Grade of a student without having access to it.
For instance, suppose that the insider has read a student’s score, say 85, he/she infers
that the student’s grade is B. However, suppose that the student’s score has been up-
dated to be 88 and the insider is prevented from accessing the student’s score again.
In this case, the insider still infers the right value of the student’s grade based on the
old value of the student’s score. We say in this case that the old value of the student’s
score in the insider knowledgebase has not been expired although it has been updated.
In light of this discussion, we define the lifetime of data items as follows.

Definition 1: Given the data items A and B in a relational database DB and the de-
pendency A B, the lifetime of the data item A expires when it is updated to a value
such that if an insider uses the old value of A to infer information about B, his/her
inference will be incorrect.

270 Q. Yaseen and B. Panda

To understand the role of data life-time, let us consider the following. Suppose the
security protocol denied the request of an insider to access a data item, say K, due to
the reason that the insider may combine it with a data item, say R, that is in his/her
knowledgebase to infer unauthorized information. However, if the value of data item R
has expired, the system unnecessarily denied the access to K since providing the value
of K would not create a problem; rather by denying access to K, delays the user from
performing his/her job on a timely basis. Similarly, ignoring the knowledgebase and
granting access irrespective of the history of previous accesses may pose a threat.
Thus, both these issues should be considered when a user requests accesses to data
items. The work by Farkas et. al [9] attempts to increase the availability of data items
by checking the updates history. In their work, each insider has a history file that stores
all data items, which the insider either has previously received or can disclose from the
received data items. When an insider launches a query, all data items that can be re-
ceived from this query are stored in the file. The data items that an insider can infer are
discovered by considering the current request, the history file, and the dependencies
among data items. Based on the inferred data items, the system decides whether to
grant or deny the requested data items. However, some data items that were accessed
in the past may have been updated by others as explained before. Therefore, the in-
ferred data items based on those expired data items would be incorrect.

4 Ordering Access Sequence

A task of an insider may consist of several operations involving many data items.
Some operations may have dependent relationships, i.e., they should be performed in
some order, while other operations are independent and can be performed without any
order among themselves. In some situations, different order of accesses imposes dif-
ferent levels of risks. This section demonstrates how to prevent insider threat and
increase the availability by choosing a safe sequence of operations.

An insider may perform his/her tasks in one of the two ways: he/she may submit
his/her task as a group of transactions representing the entire task or submit the trans-
actions one after another.

4.1 Tasks as a Batch of Transactions

This approach considers various insiders in the system, their tasks, the set of opera-
tions required for each task, and the dependencies among the operations. It must be
noted that investigating the knowledgebase of each insider is a major undertaking.
Our approach helps in organizing insiders’ accesses to data items in order to reduce
the risk level and to mitigate the effect of past requests on current transaction.

Figure 1 shows a system at a given point of time with current set of insiders S1 to
S6. For insider S1, it shows the sequence of accesses that S1 requests to perform
his/her task. The data item L is in the knowledgebase of S1. Dashed arrows represent
the situation that if S1 gets access to the data item C, he/she can combine it with L to
get sensitive information about the data item T to which he/she has no access privi-
lege; this indicates a threat. As shown in the figure, insider S1 needs to get access to
data items Q and V to work on the data item R. Similarly, he needs access to C to
work on K and so on. Notice that the insider may be given access to C before allowing

 Enhanced Insider Threat Detection Model that Increases Data Availability 271

Q

R

V

Y

X

K

C

T

 L Knowledgebase

Done

Insider S2

Insider S3

Insider S4

Insider S5

Insider S6

Insider S1

Fig. 1. A Snapshot of a System Showing Current Insiders and Tasks and Knowledgebase of one
of them

access to Q or V as they do not have any dependency relationship among them. How-
ever, he must work on R before working on Y since the latter is dependent on the for-
mer. Determining which accesses the insider should get first depends on the level of
the risk that the access sequences pose and how the decision affects availability of data
items. Granting accesses randomly may increase the risk and reduce the availability as
explained earlier.

To minimize the risk that insider S1 may pose to the lowest level, the insider should
not get read access to C until the lifetime of L expires. This prevents the insider from
inferring correct information about T. However, delaying the insider’s task until the
lifetime of L expires is not always a good solution since the delay may continue for
long. To solve this problem, the insider is given access to other data items to work on
an independent operation until the lifetime of L expires. In this example, the insider
may get access to Q and V to work on R first, before he gets access to C. We can make
the lifetime of L expire by giving a different insider who wants to modify L, say S3, a
write access on it. Thus, the lifetime of L would expire after it is updated by S3. In this
case, after S1 finishes his/her work on R and S3 updates L and makes it expires in the
knowledgebase of S1, giving S1 access to C may pose a much lower threat or would not
pose a threat at all. Obviously, this increases the availability of data items. Moreover, it
mitigates the threat due to the values present in the knowledgebase of insiders.

The following example explains how the proposed approach works. Consider
the three relations in a relational database: Table 1, Table 2, and Table 3. Suppose that
the database has the functional dependency {Rank Base_Salary}. In addition,
sssume that the data items (Name, Rank), (Rank, Base_Salary), and (Name, Experi-
ence_in_the_Rank) are not sensitive information, while the data items (Name,
Base_Salary) and (Name, Salary) are sensitive information. In addition, suppose that
the salary of an academic staff is computed using the formula: Salary = Base_Salary +
200 * Experience.

272 Q. Yaseen and B. Panda

Table 1. Professor Table

ID FName LName Rank
Experience_in_the_

Rank DeptID
3301 George Thompson Assistant Prof 3 154
3302 Jamal Yaseen Full Prof 2 452
3303 Jiff Tyson Associate Prof 5 154

Table 2. Rank_Salary Table

Rank Base_Salary
Assistant Prof 100K
Associate Prof 120K
Full Prof 140K

Table 3. Department Table

DeptID Name Location
168 Computer Science SSED
597 Electrical Engineering LKEF

Now, assume that there are two insiders who are currently working in parallel,

where the task of the first insider (Insider1) is as follows:

Query 1: Retrieve the name and the rank for all computer science professors.
Query 2: Retrieve the experience in the rank for the professor Jiff.
Query 3: Retrieve the Base_Salary of all associate professors.

While the second insider (Insider2) has the following task.

Query 4: Promote Jiff to Full Professor position.

Suppose that Insider1 launches his/her first and second queries (Query1 and Query2).
Obviously, executing these two queries does not pose any threat. Thus, the system
allows the insider to get this information, which is: (< James, Assistant Prof >, < Jiff,
Associate Prof >, < Jiff, 5>).

Now suppose that Insider1 launches the third query (Query3). If Insider1 gets the
privilege to execute this query, he/she will get the information (< Associate Prof,
120K>). In this case, the insider can combine this information with the data items
he/she retrieved from Query1 and Query2 to get the sensitive information <Jiff,
120K>, which is a threat.

If the system discovers this threat and declines Insider1’s request, Insider1’s task
will be affected negatively. On the other hand, if the system does not discover this
possible threat, sensitive information may be revealed. Thus, both cases affect the
system negatively.

Next, let us consider a scenario for satisfying the requests of the two insiders. Sup-
pose that the query Query4 is executed before the query Query3. This means that
Insider2 promotes the rank of “Jiff” from associate professor to full professor before
Insider1 gets access to the Base_Salary of associate professors. In that case, after
Insider2 executes Query4, Insider1 would infer incorrect information about Jiff’s
sallary. This means that the sequence <Query1, Query2, Query3, Query4> pose a
threat, while the sequence <Query1, Query2, Query4, Query3> does not pose any
threat. This example demonstrates the importance of choosing the order of executing

 Enhanced Insider Threat Detection Model that Increases Data Availability 273

the requested operations in preventing the insider threat and increasing the availability
of data items.

4.2 Limitations and Possible Solutions

Organizing access sequences as discussed earlier either eliminates or significantly
reduces the risk of some data items present in the knowledgebase of an insider. This is
performed by letting other insiders modify the data items so that their previous values
are expired before they are read by some other insiders. However, what can be done if
there is no other user who requests a modification of such a data item? To solve this
problem, the granting of risky accesses may be delayed until such modifications are
performed. But, this method would result in data unavailability for users and degraded
system performance. Moreover, if the insider must get access to the requested data
item to perform his/her job on a timely manner, the above mentioned solution is unac-
ceptable. In this case, we may grant the insider an incorrect value of the risky data
item and correct the results later based on the correct value of that data item. The next
section discusses this idea.

A

X R Y

M

90% 2% 8% 10% 90%

100% 100% 100%

Z

 S

L P

80%10%10%

Fig. 2. A Part of an NDIG of a Database

4.3 Providing Incorrect Values of Data Items

When incorrect values of data items are provided to insiders, they will not be able to
infer correct values of dependent data items. We propose to do so when the inferable
data is sensitive. However, this approach may negatively affect insiders’ trust about the
system. To mitigate this issue, incorrect but close enough values must be provided
while making sure that the values still do not disclose any sensitive data. To know how
much information one can infer, we make use of the Neural Dependency and Inference
Graph (NDIG) [5]. An example of NDIG is shown in Figure 2. Cyclic inference is
omitted in this graph for simplicity. Suppose that an insider K had accessed the data
items L and P in this database. Later, he/she requested the data item Z. Figure 3 shows
K’s task. Assume that the insider K’s threshold is 100% for all data items except for
the sensitive data item S, which is 65%. In addition, assume that the value of S ranges
between 0 and 100, and it is computed using the formula: S = 4*Z + L+ P.

Obviously, using the proposed approach, the insider is given first an access to the
data items X, R, and Y to work on M. He/she is not given access to Z first because
he/she can combine it with the data items L and P, which are in his knowledgebase, to
get sensitive information more than the allowable threshold about the data item S.
Suppose that at the time, there is no insider requesting a write access on either L or P.

274 Q. Yaseen and B. Panda

In addition, assume that due to the time sensitive nature of insider K’s task, the sys-
tem has to grant him/her the access to data item Z. Clearly, granting the access poses
a threat. Thus, to avoid this threat, the insider is given an incorrect value of Z. Notice
that the given incorrect value does not mean that the value of Z is changed in the
database. It means that the system provides an incorrect value to the insider. How-
ever, this incorrect value should satisfy two conditions, which are:

- It should not be very different from the correct value, otherwise this would af-
fect the insider’s trust on the system, if the insider has a guess on the range of
the value.

- Using the value, the user should not be able to make a correct estimation of the
sensitive data item.

A

X R Y

M

Z

 S

L P
K’s KB

F

Done

Fig. 3. Insider K’s Task and Knowledgebase

After giving the insider an incorrect value of Z, the system should track the subse-
quent modifications on the data items that the insider K makes using the incorrect
value of Z and correct those using the right value of Z. This process applies to other
users who access such damaged data items as well. Damage assessment and recovery
are not the focus of this paper and, therefore, the methods will not be discussed here.
As a reference, interested readers may review the work presented in [15].

4.4 Tasks Executing a Transaction at a Time

There may be situations when the system does not know what task an insider plans to
perform. This is the case when the insider submits one transaction after another rather
than submitting all the transactions to complete his/her task. Hence, the system can-
not use the previous approach. To solve this problem, accesses patterns for each task
of each insider can be extracted. Insiders having a specific role access the same data
items to perform a specific task. However, the order of access of data items in each
task may differ. Thus, for each different task, all patterns of accesses of data items
should be extracted and stored. These patterns are used to construct the Task Graph,
which shows the data items, the paths of possible accesses to those data items and
dependent and independent operations in a task. For instance, the sub-graph with solid
lines in Figure 3 is an example of a task graph.

Tasks graphs are used to predict the tasks of insiders based on what they request
when they execute their tasks. Predicting the task of an insider and combining it with

 Enhanced Insider Threat Detection Model that Increases Data Availability 275

his/her knowledgebase, as shown in Figure 3, facilitates the prediction. The feasibil-
ity of this approach depends on the ability of the system to extract the correct patterns
of the tasks at hand. In addition, it also depends on construction the correct task
graph, which may not be an easy job. We, as our future research direction, intend to
develop appropriate methods for this.

5 Choosing the Sequence with the Lowest Risk

After considering active insiders in the system and their tasks, the system organizes
their accesses to data items to prevent any insider threat. There are many possible
sequences of data accesses to complete a task. Finding a safe sequence is critical to
preventing a threat. A Safe sequence is defined as follows.

Definition 2: A safe sequence is a sequence of operations when executed in that order
does not reveal any sensitive information either with or without the data in the corre-
sponding insiders’ knowledgebase.

However, choosing a safe sequence of operations is not always achievable. Thus, an
acceptable sequence should be chosen, which is defined as follows.

Definition 3: An acceptable sequence is a sequence that reveals insignificant sensitive
information to the insider under consideration so that, even with the data in the in-
sider’s knowledgebase, it doesn’t pose any intolerable threat to the system.

Security administrators decide whether the revealed information is insignificant or
not, or whether it poses an intolerable threat. In order to choose either a safe or an
acceptable sequence, the risk of granting each request is computed. The risk in such a
case is the maximum difference between a sensitive data item that may be revealed by
granting this request and the threshold value for the requested data item with respect
to the insider. The following formula summarizes this, where Rj is a request by the
given insider I and di is a sensitive data item that may be revealed by granting the
request.

Risk(Rj)=Max(Sensitivity(di) - Threshold(I,di)). (1)

Next, the risk of the entire sequence of requests for an insider is computed as the
summation of the risks of all requests the sequence contains. During the computation
the previous requests in the same sequence are also considered to see if any of the
data item’s values have expired, thus, posing a reduced risk. It must be observed that,
therefore, the risk of a request when calculated by checking data items accessed in
previous requests may differ from that when computed otherwise.

Using this method, an acceptable sequence, which poses the lowest risk among dif-
ferent sequences, is chosen. However, if no acceptable sequence is found, the in-
sider’s request is either denied or delayed till another user’s update reduces the risk to
an acceptable level.

276 Q. Yaseen and B. Panda

6 Conclusions and Future Work

Insider threats cannot be accurately detected just by considering the impending re-
quest of an insider. Rather, all past data accesses must be taken into consideration
during the process. Therefore, each insider’s knowledgebase plays a critical role in
threat computation. However, some of the data items in a knowledgebase may not
have any relevance if they have been modified by another user. If the validity of such
data items is not taken into account, the threat prediction model may signal a threat
whereas in reality there may not be one. In order to reduce such false alarms during
threat analysis, we have advocated checking the data dependency relationships and
validity of data values. We have presented two approaches for safely executing insid-
ers’ tasks. Since the feasibility of our models depends on the capability of the system
to accurately identify insiders’ tasks, as our future research, we plan to develop a task
detection mechanism and integrate that with our current models. Furthermore, to
assess their effectiveness, we wish to carry out performance study of the models.

Acknowledgement. This work has been supported in part by US AFOSR under grant
FA 9550-08-1-0255. We are thankful to Dr. Robert. L. Herklotz for his support,
which made this work possible.

References

1. Gordon, L., Loeb, M., Lucyshyn, W., Richardson, R.: Computer Crime and Security Survey,
http://www.cpppe.umd.edu/Bookstore/Documents/
2005CSISurvey.pdf

2. Yaseen, Q., Panda, B.: Organizing Access Privileges: Maximizing the Availability and
Mitigating the Threat of Insiders’ Knowledgebase. In: 4th International Conference on
Network and System Security, Melbourne, Australia (2010)

3. Bishop, M., Gates, C.: Defining the Insider Threat. In: 4th Annual Workshop on Cyber Se-
curity and Information Intelligence Research. Oak Ridge, Tennessee (2008)

4. Brackney, R., Anderson, R.: Understanding the insider threat. Technical Report, RAND
Corporation (2004)

5. Yaseen, Q., Panda, B.: Knowledge Acquisition and Insider Threat Prediction in Relational
Database Systems. In: International Workshop on Software Security Processes, Vancou-
ver, Canada, pp. 450–455 (2009)

6. Spitzner, L.: Honeypots: Catching the Insider Threat. In: 19th Annual Computer Security
Applications Conference, Washington, DC (2003)

7. Althebyan, Q., Panda, B.: A knowledge-base model for insider threat prediction. In: IEEE
Workshop on Information Assurance and Security, West Point, NY, pp. 239–246 (2007)

8. Farkas, C., Jajodia, S.: The Inference Problem: A Survey. ACM SIGKDD Explorations,
pp. 6–11 (2002)

9. Farkas, C., Toland, T., Eastman, C.: The Inference Problem and Updates in Relational Da-
tabases. In: 15th IFIP WG11.3 Working Conference on Database and Application Secu-
rity, Ontario, Canada, pp. 181–194 (2001)

10. Brodsky, A., Farkas, C., Jajodia, S.: Secure Databases: Constraints, Inference Channels
and Monitoring Disclosures. IEEE Trans. on Knowledge and Data Engineering, 900–919
(2000)

 Enhanced Insider Threat Detection Model that Increases Data Availability 277

11. Yip, R., Levitt, K.: Data Level Inference Detection in Database Systems. In: 11th Com-
puter Security Foundations Workshop, Rockport, MA, pp. 179–189 (1998)

12. Yaseen, Q., Panda, B.: Predicting and preventing insider threat in relational database sys-
tems. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.)
WISTP 2010. LNCS, vol. 6033, pp. 368–383. Springer, Heidelberg (2010)

13. Morgenstern, M.: Security and Inference in Multilevel Database and Knowledge-Base
Systems. ACM SIGMOD Record, 357–373 (1987)

14. Yaseen, Q., Panda, B.: Malicious Modification attacks by Insiders in Relational Databases:
Prediction and Prevention. In: 2nd IEEE International Conference on Information Privacy,
Security, Risk and Trust, Minneapolis, Minnesota (2010)

15. Yalamanchili, R., Panda, B.: Transaction Fusion: A Model for Data Recovery from Infor-
mation Attacks. Journal of Intelligent Information Systems 23(3), 225–245 (2004)

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 278–289, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Checking Anonymity Levels for Anonymized Data

V. Valli Kumari, N. Sandeep Varma, A. Sri Krishna,
K.V. Ramana, and K.V.S.V.N. Raju

Dept of Computer Science & Systems Engineering, Andhra University,
Visakhapatnam, Andhra Pradesh, India, 5300 03

{vallikumari,snvarma9,srikrishna.au,kvramana.777,
kvsvn.raju}@gmail.com

Abstract. Privacy Preserving Publication has become one of the most
prominent research topics in the recent years. Several techniques like k-
anonymity, l-diversity and (α, k) anonymity were proposed to preserve privacy.
Most of the published work focuses on anonymizing the microdata for
preserving privacy and now the focus towards the verification of the anonymity
levels of the microdata before publishing is the need of the day. Many
publishers claim having anonymized the data. Verification of the claim on a
large anonymized dataset is a herculean task. This paper focuses on providing
simple approach for checking the anonymity levels for an anonymized dataset
using frequent itemset generation. A GUI based tool named PRUDENT was
developed to demonstrate the practicality of the solution. PRUDENT deals with
numerical, categorical and multiple sensitive attributes. Results show that the
algorithm is feasible and practical. A comparison with the existing methods is
shown.

Keywords: Privacy, PRUDENT, Frequent Itemsets, Vertical Data Format.

1 Introduction

With the increase in the identity theft, privacy preserving data publication took its
prominent role in the research arena. Published data from organizations like hospitals,
financial institutions is available for survey or mining purposes. On the other hand the
individuals are unaware of the future privacy threats as their information is being
shared with various vendors. This paper provides a practically feasible verification
tool for validating the anonymity levels.

In 2002 Sweeney [1] discovered that the medical data was exposed when the
dataset was cross referenced with the voter’s registrations data. When de-
anonymization was applied on the Netflix database, it exposed the individual’s
information [2]. In 2006 AOL [16] removed their published query logs quickly
because of re-identification of the individuals from their query logs. An extensive
research was done in the past decade on privacy breaches in public data. Though
statistical databases were anonymized using perturbation techniques [4][6], the
usefulness of the published data was limited. Personalized privacy [7] is another
approach to let each individual set his individual privacy level for his data.

 Checking Anonymity Levels for Anonymized Data 279

The main objective of the privacy preserving publication is to find a distorted table
ΔT from the original microdata table T, by applying anonymization principles like k-
anonymity [1], l-diversity [10], (α,k)-anonymity. The objective is to preserve privacy
and retain as much utility as possible in ΔT.

Table 1. Original Table

Job Sex Age Disease
Lawyer Male 28 Cancer
Engineer Male 25 HIV
Writer Female 33 Asthma
Dancer Female 32 Hepatitis
Dancer Female 35 Hepatitis
Writer Female 34 HIV

Table 2. 2-anonymous Table

Job Sex Age Disease
Professional Person [20-30] Cancer
Professional Person [20-30] HIV
Writer Female [30-35] Asthma
Writer Female [30-35] HIV
Dancer Person [30-35] Hepatitis
Dancer Person [30-35] Hepatitis

Table 3. 2-Anonymous with l=2

Job Sex Age Disease
Professional Person [20-30] Cancer
Professional Person [20-30] HIV
Artist Person [30-35] Asthma
Artist Person [30-35] HIV
Artist Person [30-35] Hepatitis
Artist Person [30-35] Hepatitis

Table 4. Anonymized Dataset

Id Age Gender Zipcode Salary
1 1-100 Male 510001-520000 11001-21000
2 1-100 Male 510001-520000 1001-11000
3 1-100 Male 510001-520000 11001-21000
4 1-100 Female 510001-520000 11001-21000
5 1-100 Female 510001-520000 1-10000

6 31-40 Male 520001-530000 11001-21000

7 31-40 Male 520001-530000 21001-31000

8 31-40 Male 520001-530000 11001-21000

The T is said to have identifying attribute like SSN and quasi identifiers (Qid)

which may reveal the identity of an individual when linked to external data. T may
also have sensitive attributes (SA) which should not be disclosed to the public or may
be disclosed after disassociating its values with an individual’s other information. A
few examples are Income and Disease. This paper considers both numerical and
categorical types of sensitive values.

In k-Anonymity [1], if one record in the table has some value as Qid, at least k-1
other records should have the value Qid or the minimum group size on Qid must be at
least k. For example Table 2 is the 2-anonymized version of original Table 1.

280 V. Valli Kumari et al.

Consider the equivalence class {Dancer, Person, [30-35]}. Since the sensitive
attribute Disease = ‘Hepatitis’ for all members in the equivalence class, there is a
privacy breach. This is termed as homogeneity attack [10]. To avoid this attack the
Qid-block which contains the sensitive values must be l-diversified. l-diversity
provides privacy even when the data publisher does not know what kind of
knowledge is possessed by the adversary. To satisfy the l-diversity in Table 2 we
generalize Writer, Dancer and Female as Artist, Artist and Person respectively. Once
generalization is done the attribute disease for the equivalence class {Artist, Person,
[30-35]} will have diverse values as shown in the Table 3 thus satisfying l-diversity
principle.

Wong et.al [3] proposed an anonymity model (α, k) to protect both identification
and sensitive information to eliminate homogeneity attack. In (α, k), k portion is
similar to k-anonymity and α is the maximum percentage of any sensitive value
within any Qid-block. Table 3 is (0.5, 2) - anonymous since α = 0.5 for the set {job,
sex, age} and sensitive value ‘HIV’. There are two equivalence classes {t1, t2} and
{t3, t4, t5, t6}. The first equivalence class has one tuple containing ‘HIV’ which
implies that α = 0.5. Similarly for the second equivalence class α= 0.25. Hence α ≤
0.5 for ‘HIV’.

In this paper GUI based verification tool PRUDENT (PRivacy Unscrambler for
Disclosing IdENTity) is developed. The developed framework reveals the anonymity
levels for anonymized (ΔT) dataset for a given dataset T. Any dataset that is being
anonymized by using principles like k-anonymity, l-diversity and (α, k)- anonymity
without any loss of generality by nature can be checked for anonymity levels using
PRUDENT. This paper is divided into five sections. Section 2 deals with the related
work. Section 3 shows the architecture of PRUDENT and analysis of the algorithm.
Section 4 shows experimental results. In Section 5 a comparative study between
Privacy FP- Tree and PRUDENT is done and Section 6 concludes the paper.

2 Related Work

To the best of our knowledge very less published work is available for verifying the
anonymized dataset for privacy violations. Friedman et. al [8] developed the concept
of k-anonymous decision tree in order to find the privacy breach. They initially scan
the database and store the frequencies of all possible splits to determine whether the
k-anonymity is breached

Sampson et al. [11] has worked on the concept of privacy FP-Tree which is an
extension of FP-Tree to determine privacy violations for k-anonymity, l-diversity and
(α, k) anonymity principles on an anonymized dataset. They store the dataset in a tree
format and determine the anonymity levels by calculating the frequency of each
identifier from the tree.

The construction of the Privacy FP-Tree is shown in Fig.1 for the anonymized
dataset as shown in the Table 4. Each leaf node of the FP-Tree represents one unique
quasi-identifier block of the dataset. The sensitive values are appended to each leaf
node associated with the correct Qid-block in the form of a linked list as shown in the
Fig.1. Privacy FP-tree determines the k-anonymity value of the data set by finding the
minimum number of rows that are located in each Qid-block. For example the node

 Checking Anonymity Levels for Anonymized Data 281

“510001-520000” has frequency of 3 which means that “510001-520000, 1-100,
Male” is repeated thrice in the dataset. The minimum frequency is k for that dataset.
To find l-diversity initially the unique sensitive values within each Qid-block must be
identified. This is achieved by finding the minimum depth of the linked list which is
stored at the leaf node.

Fig. 1. Privacy FP-Tree

Motivation for PRUDENT

Verifying whether the dataset has been correctly anonymized is required to assure the
user. The data publisher anonymizes the huge microdata claiming that the anonymity
is guaranteed to k-anonymous level. For an ordinary user or intermediary anonymity
verification process is cumbersome. This motivation lead to the development of the
PRUDENT, which is capable of checking k, l and (α, k) anonymity principles, and
several others can be plugged into. Our algorithm uses simple itemset generation for
determining the anonymity levels of aforementioned principles. Experimentations
proved that PRUDENT is inexpensive when compared to the existing approaches.

3 The PRUDENT

In general FP-growth, Apriori [13] methods are used for mining frequent itemsets
from a database using horizontal data format (Table 4) and is represented as {Tid:
itemset} where Tid is the tuple-id and itemset is the set of attributes in the dataset. We
can represent the same in vertical format [13] as {itemset: Tid-set} as shown in Table
5. PRUDENT (Fig.6) uses vertical format for generating frequent itemsets for
detecting the anonymity levels of an anonymized dataset. The architecture of the
PRUDENT is shown in Fig.2. In Section I the microdata T is given to the
anonymizer. The anonymizer applies k, l and (α, k) anonymity principles over T and
releases the anonymized dataset ΔT. ΔT is given as an input to Horizontal to Vertical
data format Converter in section II. The itemset generator then generates item sets.

282 V. Valli Kumari et al.

Later in section III k, l and α values are determined from the itemset with the help of
k, l and α Finder. PRUDENT also generates a report showing the equivalence classes
and their corresponding sensitive values. Due to space limit we omitted the snapshot
of the report generator.

Fig. 2. Architecture of PRUDENT

3.1 Verification Algorithm

Vertical data set construction from an anonymized data set is shown in algorithm 1.
Qid-set generator in algorithm 2 generates itemsets in the form of {itemset: Tid-set}
from the vertical dataset. Intersection operations are performed on the tuple-id sets
(Tid) to produce Tid+1 sets and union operations are applied on the corresponding Qid-
sets until Tid(k+1) is not empty to form respective equivalence classes. Once all
combinations of the Qid-sets are generated, k, l and α are determined. The 1-itemset
shown in Table 5 is the result produced after converting the horizontal dataset in
Table 4 into vertical format.

Algorithm 2 is then applied on this 1-itemset to generate the subsequent itemsets.
Consider the Qid-sets {1-100} and {male}. When intersection operation is performed
on their corresponding Tid-sets -[1,2,3,4,5] and [1,2,3,6,7,8] it produces Qid-set {1-
100, male} and the corresponding Tid-set is [1,2,3]. This process is repeated until all
itemsets are produced. In some cases not all combinations of the Qid-sets are produced
since the intersections of Tid-sets will result in a null candidate set. Consider the 1-
Itemset shown in Table 5. When intersections are performed on tuple-id sets
[1,2,3,4,5] and [6,7,8] the resultant tuple-id set is a null candidate set. All such null
candidate sets are eliminated in PRUDENT for optimal memory usage.

 Checking Anonymity Levels for Anonymized Data 283

Algorithm 1. Vertical Dataset Constructor
Input: A anonymized dataset DS
Output: Vertical Dataset of anonymized dataset (VDS)
Method: The vertical dataset is constructed as follows
1. Begin
2. Scan the anonymized dataset DS
3. Create all items
4. for each Ti in DS do
5. for each Qid in Ti do
6. Insert Tid of Qid to Tid-set which Corresponding with Qid
7. end for
8. end for
9. end Begin

3.2 Verifying for k-Anonymity

Let E= {E1, E2, E3.. En} be the set of n equivalence classes of the dataset ΔT
represented in the form of {Qid-set: Tid-set} where Tid-set = { Tid1, Tid2,….. Tidn} and
Ei={ Qid-set : Tid-set}. The size of ith equivalence class is ki. ki= | Ei| = |Tid-seti| where
1 ≤ i≤ n. The k- value for the given dataset is given by (1). Consider the 3-itemset as

Algorithm 2. Qid sets generator
Input: A vertical dataset (VDS)
Output: The set of frequent patterns of Qid

’s with associated sensitive values and
 k, l and values of the anonymized dataset
Method: The frequent patterns of Qid are constructed as follows
1. Begin
2. for each xi in VDS do
3. while the Ii+1 item in VDS <> the last item do
4. //perform itemsets generation
5. =
6. If (! = Emptyset) then
7. =
8. Store along with to (k+1) itemsets
9. end If
10. end while
11. end for
12. Store all (k+1) itemsets into VDS
13. Go to step (14) if all Qid set is generated otherwise Go to step 1 increment

k value by 1
14. Call k(VDS) //Finding k-value
15. Call l(VDS) //Finding l-value
16. Call (VDS) //Finding -Value
17. end Begin

284 V. Valli Kumari et al.

shown in the Table 7. Let the first, second and third items in the Table 7 be E1, E2 and
E3 respectively with values corresponding to 3, 2 and 3. The k-value for the dataset in
Table 4 is Min (E1, E2, E3) = 2.

k=Min { |ki| } where 1≤i≤n (1)

Table 5. 1-Itemset

Qid-set Tid-set
{1-100} [1, 2, 3, 4, 5]
{31-40} [6, 7, 8]
{male} [1, 2, 3, 6, 7, 8]
{female} [4, 5]
{510001-520000} [1, 2, 3, 4, 5]
{520001-530000} [6, 7, 8]

Table 6. 2- Itemset

Qid-set Tid-set
{1-100, male} [1, 2, 3]
{1-100, female} [4, 5]
{1-100,510001-520000} [1, 2, 3, 4, 5]
{31-40, male} [6, 7, 8]
{31-40, 520001-530000} [6, 7, 8]

Table 7. 3- Itemset

Qid-set Tid-set
 {1-100, male, 510001- 520000} [1, 2, 3]
{1-100, female, 510001-520000} [4, 5]
{31-40, male, 520001-530000} [6, 7, 8]

Table 8. Tid’s and sensitive values

TId Salary
1 11001-21000
2 1001-11000
3 11001-21000
4 11001-21000
5 1-10000
6 11001-21000
7 21000-31000
8 11001-21000

3.3 Verifying for l-Diversity

l-diversity verification is done by finding the value of l. Initially all the sensitive
values are stored along with the tuple-id’s before the itemsets are produced as shown
in Table 8. Let Si ={ s1, s2,…sm} be the set of sensitive values of the corresponding
tuple-ids in the tuple-id set. Let Li = | | where 1≤i≤ n, where Li is the number
of distinct sensitive values in ith equivalence class. The l-value for the dataset ∆T is
determined by (2).

l =Min {Li} where 1≤i≤n (2)

3.4 Verifying for (α, k) Anonymity

The (α, k) verification process is divided into two portions α and k. While k is verified
as was done above, α can be determined by calculating the Max ((sk)), where

(sk) is the probability that the sensitive value sk occurs equivalence class Ei and is
defined in equation (3).

where (Ei, sk) is the set of | , | is the cardinality
shown below.

αEi= Max { (sk)

α = Ma

4 Experimentation

Experiments are performed
allocated separately for the
on the Adult dataset availab
consists of age, sex and go
was taken as sensitive attrib
class is of size 1,000 tuples

The first part of the exp
dataset from horizontal to v

Fig. 3. Horizontal to Vertic

The conversion process
size of 1, 00, 000 with 3-qu
took less than 26 seconds fo
scalable as shown in Fig. 4

Checking Anonymity Levels for Anonymized Data

(sk)=
| , || |

tuples containing sk in the given equivalence class Ei

 of the set. For each equivalence class α is calculated

) : sk S} where 1 ≤ k ≤ | S |

ax{ αEi } where 1 ≤ i ≤ n

d on Intel Core2 Duo @ 2.93 GHz with 1024MB be
e Netbeans platform. The experimentation was perform
ble at UCI Machine Learning Repository [15]. The data
overnment attributes as Quasi Identifiers. Disease attrib
bute apart from Salary. We assumed that each equivale
. This can be changed if necessary.
erimentations is confined to the conversion process of

vertical format.

al Conversion Fig. 4. Itemset Generation

took less than 2 minutes as shown in Fig. 3 for the data
uasi and 2-sensitive attributes (SA). The itemset generat
or two sensitive attributes. Results show that PRUDENT
even for multiple sensitive attributes.

0

10

20

30

10 30 50 70 90Ti
m

e
in

 S
ec

on
ds

No. of Records in thousands

Single SA Two SA

285

(3)

and
d as

(4)

 (5)

eing
med
aset
bute
ence

the

aset
tion
T is

286 V. Valli Kumari et al.

5 PRUDENT Vs. Privacy FP- Tree

The time complexity for constructing Privacy FP-Tree is O(nlogn) [11]. In our
approach the time for constructing the itemset generation is also O(nlogn). The
privacy properties of k-anonymity, l-diversity and (α, k)-anonymity are determined
after the construction of Privacy FP-Tree [11] and itemset generation (Our Approach).
The complexity for determining the privacy properties for the both approaches are
explained and compared in the following sections.

5.1 k-Anonymity

Privacy FP-tree determines the k-value after tree construction [11]. The number of
steps required for travelling all the leaf nodes is given by equation 6.

T=
 | |

 -1 where | | | | (6)

T is average number of nodes traversed by the privacy FP-tree for finding k-
anonymity. Let E be the set of equivalence classes Ei and N be the total number of
tuples in the database. Let q be the number of quasi identifiers. The time complexity
for performing these operations is O(T). In PRUDENT there is no necessity of
travelling all the leaf nodes. In our approach we simply perform itemset generations
(Section 3.2) and the k-value is calculated as per equation (1) mentioned in section
3.3. The time complexity for doing such operation is O(E).

5.2 l–Diversity

Once the final itemset was generated we retrieve the sensitive values corresponding to
the tuple-id’s within each equivalence class with n sensitive values. The retrieved
sensitive values are sorted out using merge sort where the complexity is and n
comparisons are required to compute distinct sensitive values in each equivalence
class. We perform all these operations in parallel. So, the time complexity is O(S).
For finding the l-diversity of a dataset initially the privacy FP- Tree must be
constructed. During the tree construction, the sensitive values are appended to the leaf
node of the tree using linked list format. First one sensitive value is appended. When
the second sensitive value is added there must be a comparison with the pervious
sensitive value. If the prior and the later are same we increment the count value of the
prior sensitive value or else a new node is added for the prior one.

Let us assume that |E| equivalence classes are formed and for each equivalence
class let the sensitive values are mi. Two cases were identified: if all the sensitive

values are distinct the number of comparisons will be ∑| | . If all the

sensitive values are similar the number of comparisons will be ∑ . On an average
the complexity is O(m2) for constructing the linked list of sensitive values.

S=
| |

(7)

 Checking Anonymity Levels for Anonymized Data 287

Before checking for the l-value, we must traverse till the leaf node whose order of
complexity will be O(T) and for finding the depth of the linked list the complexity is
O(m) for each equivalence class. So the overall complexity for travelling all the |E|
equivalence classes is (O(T)+O(m2)+O(m)). Hence, the total complexity is O
(|E|m2).The performance of the PRUDENT when compared to Privacy FP-Tree for k-
anonymity is encouraging. Fig. 5(a), 5(b), 5(c) show how the performance varies for
different Qid’s. Fig. 5(d) shows the average comparisons for l-diversity which are
enormously increased for Privacy FP-Tree when compared with our approach section.

Fig. 5. Comparisons Privacy FP-Tree Vs PRUDENT

5.3 (α, k) – Anonymity

In (α, k) - anonymity the k-portion’s complexity is similar to the complexity of k-
anonymity, O(E) and the α portions complexity is similar to the complexity of l-
diversity, O(S). So the overall complexity is O(E) +O(S) ≈ O(S).

6 Conclusions

PRUDENT, a tool to verify the anonymity levels for a given anonymized dataset is
discussed. The tool gives the flexibility of selecting the database, the quasi-identifiers
and sensitive attributes. The tool will come in handy for both users and publishers. It
allows the selection of different combinations of the quasi-identifier attributes.

288 V. Valli Kumari et al.

The itemset (Equivalence classes) determines k, l and α values for a given
anonymized dataset. PRUDENT checks any kind of anonymized dataset which is
anonymized by using any anonymized framework like generalization, suppression etc.
This paper discusses an approach for verifying anonymity levels for a given
anonymized dataset. The tool presented works for all the datasets that are anonymized
using k-anonymity, l-diversity, (α, k) anonymity principles using the proposed
algorithm. A comparison is also made with an existing method based on Privacy
FP-Tree.

Acknowledgements

This work was supported by Grant SR/S3/EECE/0040/2009 from Department of
Science and Technology (DST), Government of India. We would like to thank the
anonymous reviewers for their insightful comments.

References

1. Sweeney, L.: K-anonymity: a model for protecting privacy. International Journal on
Uncertainty 10(5), 557–570 (2002)

2. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Datasets (February 5,
2008)

3. Wong, R., Li, J., Fu, A., Wang, K.: (α, k) Anonymity: An Enhanced k-Anonymity Model
for Privacy Preserving Data Publishing. In: KDD (2006)

4. Dwork: An Ad Omnia Approach to Defining and Achieving Private Data Analysis. In:
Proceedings of the First SIGKDD International Workshop on Privacy, Security, and Trust
in KDD (2007)

5. Sweeney, L.: Weaving technology and policy together to maintain confidentiality. J. of
Law, Medicine and Ethics 25(2-3), 98–110 (1997)

6. Liew, K., Choi, U.J., Liew, C.J.: A data distortion by probability distribution. ACM
TODS 10(3), 395–411 (1985)

7. Xiao, X., Tao, Y.: Personalized Privacy Preservation. In: SIGMOD (2006)
8. Friedman, R.W., Schuster, A.: Providing k-anonymity in data mining. The VLDB Journal,

789–804 (2008)
9. Wang, K., Fung, B.C.M., Yu, P.S.: Handicapping Attacker’s Confidence: An Alternative

to k-Anonymization. Knowledge and Information Systems: J, KAIS (2006)
10. Machanavajjhala, J.G., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-

anonymity. In: Proc. 22nd Intl. conf. Data Engg (ICDE), p. 24 (2006)
11. Sampson, P., Barker, K.: Privacy FP-Tree. In: Chen, L., et al. (eds.) DASFAA 2009

Workshops. LNCS, vol. 5677, pp. 246–260 (2009)
12. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and

Suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems 10(5), 571–588 (2002)

13. Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San
Fransisco (2006)

14. Fung, B.C.M., Wang, K.E., Chen, R., Yu, P.S.: Privacy- Preserving Data Publishing: A
Survey on Record Developments. ACM Computing Surveys 42(4), Article 14 (2010)

15. UCI Repository of Machine Learning databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html

16. Hansell, S.: AOL removes search data on vast group of web users. New York Times
(August 8, 2006)

 Checking Anonymity Levels for Anonymized Data 289

Appendix:

Fig. 6. PRUDENT

Chaos Based Image Encryption Scheme Based on
Enhanced Logistic Map

I. Shatheesh Sam1, P. Devaraj2, and R.S. Bhuvaneswaran1

1 Ramanujan Computing Centre, College of Engineering, Guindy,
Anna University, Chennai, India

2 Department of Mathematics, College of Engineering, Guindy,
Anna University, Chennai, India

shatheeshsam@yahoo.com

Abstract. Image encryption schemes are important to ensure the se-
curity during transmission or storage. In this paper, chaos based image
encryption scheme based on enhanced logistic map is proposed. The first
stage consists of row and column rotation and XORing with first chaotic
key. In the diffusion process, the pixel values are altered sequentially so
that the changes made to a particular pixel depends on the accumu-
lated effect of all the previous pixels. The operations include nonlinear
diffusion using the second chaotic key and alternative zig-zag diffusion
of adjacent pixels and XORing with the third chaotic key. The number
of rounds in the steps are controlled by combination of pseudo random
sequence and original image. The security and performance of the pro-
posed image encryption technique have been analysed using statistical
analysis, key space analysis, differential analysis and entropy analysis.
The scheme possesses good performance in encryption speed and is suit-
able for real-time image encryption and transmission.

Keywords: Enhanced Chaotic Map, Nonlinear Diffusion, Alternative
zig-zag Diffusion.

1 Introduction

The degree to which individuals appreciate privacy differ from one person to
another. Various methods have been investigated and developed to protect per-
sonal privacy. Security of multimedia is the most obvious one. In the last two
decades increasing efforts have been made to use chaotic systems for enhancing
some features of communications systems. The highly unpredictable and ran-
dom look nature of chaotic signals is the most attractive feature of deterministic
chaotic systems that may lead to novel applications.

Security of image data is receiving more attention due to the widespread
transmission over various communication networks. It has been noticed that the
traditional text encryption schemes fail to safely protect image data due to some
special properties of these data and some specific requirements of image process-
ing systems, such as bulky size and strong redundancy of uncompressed data.

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 290–300, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Chaos Based Image Encryption Scheme Based on Enhanced Logistic Map 291

Therefore, designing good image encryption schemes has become a focal research
topic since the early 1990s. Inspired by the subtle similarity between chaos and
cryptography, a large number of chaos-based image encryption schemes has been
proposed [2–5]. Most chaotic image encryptions or encryption systems use the
permutation substitution architecture. These two processes are repeated for sev-
eral rounds, to obtain the final encrypted image. Fridrich [1] suggested a chaotic
image encryption method composed of permutation and substitution. All the
pixels are moved using a 2D chaotic map. Sam et.al. [12] used odd keys in the
permutation stage, byte susbtitution and imporved chaotic maps in the diffusion
stage. The new pixels moved to the current position are taken as a permutation
of the original pixels. In the substitution process, the pixel values are altered
sequentially. Unfortunately, many of these schemes have been found insecure,
especially against known and/or chosen-plaintext attacks. The one dimensional
chaos system has the advantages of simplicity and high security. Some of the
cryptanalysis techniques [7-11] are suggested to break the scheme and reduce
the flaws in the algorithm design.

In this paper, chaos based image encryption scheme based on enhanced logistic
map is suggested to overcome the weakness of security level. The algorithm uses
significant features such as sensitivity to initial condition, permutation of keys,
enhanced chaotic maps, nonlinear diffusion and alternative zig-zag diffusion. The
nonlinearity is used to overcome the limitation of the other schemes. The rest
of this paper is organized as follows. Section 2 introduces the logistic map and
enhanced maps. In section 3, the image encryption based on enhanced logistic
map is proposed including a new scheme. Section 4, analyses the security of new
algorithm. Finally, the conclusions are discussed in section 5.

2 Logistic Map

Logistic map is a simple but broadly researched dynamic system. A classical
logistic map is defined by

xi+1 = axi(1−xi)

where a is system parameter, 0 < a ≤ 4 and xi is a floating number in (0,1),
i = 0, 1, 2, 3 When a > 3.568945672, this system become chaotic in behavior,
in other words, the sequence {xi, i = 0, 1, 2, . . .} produced based on logistic map
with the initial value x0 is neither periodic nor convergent. A graphical way
to visualize this phenomenon is as shown in Fig. 1, where the bifurcation map
brings information about the dynamics of the system.

Since not all the fixed points for a one dimensional mapping properties are
identical and a feature that makes the difference is their stability, a way to
determine it, is by calculating the lyapunov exponent where a positive value
indicates instability and for chaotic systems the larger value is better. The basic
expression of the discrete lyapunov exponents is defined as

λF =
1
M

M−1∑
i=0

ln
d(F (mi+1), F (mj))

d(mi+1, mj)

292 I.S. Sam, P. Devaraj, and R.S. Bhuvaneswaran

Fig. 1. Bifurcation diagram for the logistic map

Fig. 2. Lyapunov exponent for the logistic map

where mi is the subset of trajectory of a digitalized map F in length M and
d(mi,, mj) is the distance between miand mj . The computation of the logistic
map is shown in Fig. 2.

Though, the logistic map is better for image encryption which has some com-
mon problems such as stable windows, blank windows, uneven distribution of
sequences and weak key[6]. New types of enhanced logistic maps have been pro-
posed in the paper to alleviate the problems in the logistic map. The maps are
mixed together so as to achieve larger key space and to attain chaotic behavior.
We have attempted to improve it by chaotic transformation. The proposed en-
hanced chaotic logistic maps are defined and keys are generated in the section.
Thus, the proposed enhanced chaotic logistic map does not have security issues
which are present in the logistic map. Moreover, the resulting chaotic sequences
are uniformly distributed (see the Figure 3) and the key size has been increased
greatly.

Chaos Based Image Encryption Scheme Based on Enhanced Logistic Map 293

Fig. 3. Distribution of sequence for the enhanced map

Fig. 4. Lyapunov exponent for the enhanced map

The lyapunov exponent computation of the enhanced map is shown in Fig. 4.
Lyapunov exponent is bigger than zero, the system is chaotic.

3 Proposed Scheme

The architecture of the proposed substitution-diffusion based cryptosystem is
shown in Fig. 5. The scheme consists of three major phases, rotation, nonlinear
diffusion and alternative zig-zag diffusion. In the confusion stage, both the rota-
tion on pixel position, the change of pixel value and XORing with chaotic key are
carried out at the same time while the diffusion process remains unchanged. As
a result, the pixel value mixing effect of the whole cryptosystem is contributed
by confusion and diffusion operations: the modified confusion process, nonlinear
diffusion and the alternative zig-zag diffusion function.

294 I.S. Sam, P. Devaraj, and R.S. Bhuvaneswaran

Fig. 5. Proposed architecture

The plain image is stored in a two dimensional array of pixels. In this, 1 ≤
i ≤ H and 1 ≤ j ≤ W , where H and W represent height and width of the plain
image in pixels.

3.1 Key Generation

The enhanced chaotic map and the keys have been generated in the following
way:

for i = 1 to 256
for j = 1 to 256

xi,j+1 = (3.853429× k1 × (1− xi,j) + (yi,j)2) mod 1
yi,j+1 = (3.979283× k2 × yi,j × (1/1 + (xi,j+1))) mod 1
zi,j+1 = (3.769943× k3 × (xi,j+1)2 × yi,j+1 × sin(zi,j)) mod 1
KXi,j = $xi,j+1 × 256%
KYi,j = $yi,j+1 × 256%
KZi,j = $zi,j+1 × 256%

end
xi+1,1 = xi,j+1
xi+1,1 = xi,j+1
zi+1,1 = zi,j+1

end

where | k1 |> 31.5, | k2 |> 25.7, | k3 |> 21.3 respectively. To increase the key size
we can use k1, k2, k3 as another set of keys. Along with the key ki the distribution
of the sequences becomes better. KXi,j, KYi,j , KZi,j are the set of chaotic keys.

3.2 Rotation and XORing

The image is rotated by rotation function using first chaotic key and the resultant
values are XORed with same chaotic key. All rotation are done based on the key
values.

The rotation functions are described as follows:

for i = 1 toH
for j = 1 toW

Chaos Based Image Encryption Scheme Based on Enhanced Logistic Map 295

C[i, j] = R(i,j+KXi,j)mod 256 ⊕KXi,j

end
end

where KX is the first chaotic key. R is to rotate each value in the ith row and
jth column of the image r times.

3.3 Nonlinear Diffusion

Diffusion refers to the property that redundancy in the statistics of the plain text
is dissipated in the statistics of the cipher text. The diffusion is obtained by 4
Least Significant Bits (LSB) circular shift method using randomly chosen image.
The resultant values are again XORed with second chaotic key. The procedure
for the nonlinear diffusion is as follows:

for i = 1 toH
for j = 1 toW

Ci,j = (Ci,j ≫ 4) mod 256
Di,j = Ci,j ⊕KYi,j

end
end

where KYi,j is the second chaotic key. D[i, j] denotes the (i, j)th pixel of the
cipher image. The combination of 4 bit circular shift and XORing make the
encryption operation nonlinear and hence the system becomes strong against
known/chosen plaintext attack.

3.4 Alternative zig-zag Diffusion

In this, we read the values in the alternative zig-zag (see Figure 6) manner as
follows: R11, R21, R22, R12, R13, R23, R33, R32, R31, R41 etc. However, the diffu-
sion is obtained with the help of alternative zig-zag XORing and XORing with
third chaotic key. Therefore, these operations enhance diffusion property and
hence improves the security features.

The procedure for alternative zig-zag diffusion is as follows:

R11 = R11 ⊕ z11,
R21 = R11 ⊕R21 ⊕KZ12,
R22 = R21 ⊕R22 ⊕KZ21,
R12 = R12 ⊕R22 ⊕KZ31,
R13 = R13 ⊕R12 ⊕KZ22,
R23 = R23 ⊕R13 ⊕KZ13,
R33 = R33 ⊕R23 ⊕KZ14,
.
.

where KZ is the third chaotic key. The above procedure is continued till the last
pixel is reached.

296 I.S. Sam, P. Devaraj, and R.S. Bhuvaneswaran

Fig. 6. Alternative zig-zag pixel value reading

4 Performance and Security Analysis

We have made several expriments to check the security of the proposed cryptosys-
tem. Statistical tests include histogram analysis, calculation of the correlation
coefficients of adjacent pixels. Security tests against differential attack include
calculation of the NPCR and UACI, and information entropy evaluation.

4.1 Histogram Analysis

Histograms may reflect the distribution information of the pixel values of an
image. An attacker can analyse the histograms of an encrypted image by using
some attacking algorithms to get some useful information of the original image.
Thus, the histograms of an encrypted image should be as smooth and evenly
distributed as possible, and should be very different from that of the plaintexts.
Fig. 7. shows a comparison of the histograms between plaintext and encrypted
images.

4.2 Statistical Analysis

Randomly select thousand pairs of adjacent pixels in vertical, horizontal and
diagonal directions from the plain image and ciphered image and calculate the
correlation coefficients of two adjacent pixels according to the following formula

rxy =
cov(x, y)√

D(α)
√

D(β)

where

cov(x, y) =
1
N

N∑
i=1

(xi − E(x))(yi − E(y)),

Chaos Based Image Encryption Scheme Based on Enhanced Logistic Map 297

Fig. 7. Histogram analysis of plain image and cipher image

E(x) =
1
N

N∑
i=1

xi,

D(x) =
1
N

N∑
i=1

(xi − E(x))2

where x and y denote two adjacent pixels and N is the total number of duplets
(x, y) obtained from the image.

Table 1. Correlation coefficients of plain image and ciphered image

Correlation Vertical Horizontal Diagonal
Plain image 0.9856 0.9821 0.9687
Ciphered image 0.0067 0.0043 0.0021

Table 1 shows the results of correlation coefficients of two adjacent pixels. The
result indicates that the correlation of two adjacent pixels of the plain image is
significant, while that of the ciphered image is very small. Thus, it is clear that
the proposed algorithm is robust.

4.3 Differential Analysis

Differential attack would become ineffective even if a single pixel change in the
plain-image causes a significant difference in the cipher-image. In order to mea-
sure this capability quantitatively, the following measures are usually used: num-
ber of pixels change rate (NPCR) and unified average changing intensity (UACI).

298 I.S. Sam, P. Devaraj, and R.S. Bhuvaneswaran

They are defined as follows:

Dij =

{
1, if Cij �= C

′
ij

0, otherwise

The NPCR is defined as

NPCR =

∑
i,j Dij

M ×N
× 100%

The UACI is defined as

UACI =
1

M ×N

⎡
⎣∑

i,j

Cij − C
′
ij

M ×N

⎤
⎦× 100%

where Cij and C
′
ij are the two cipher-images at position (i, j) whose correspond-

ing plain-images have only one-pixel difference and M and N are the number of
rows and columns of images. The results of NPCR and UACI are listed in Table 2.

Table 2. Sensitivity to ciphertext

NPCR% UACI%
Lena 99.6311 33.4989
Baboon 99.6334 33.4813
House 99.6341 33.4809
Tree 99.6331 33.4814

In order to assess the influence of changing a single pixel in the original image
on the encrypted image, the NPCR and the UACR are computed in the pro-
posed scheme. It is found that the NPCR is over 99.3% and the UACI is over
33.4%. The results show that a small change in the original image will result in
a significant difference in the cipherimage, so the scheme proposed has good in
anti differential attack.

4.4 Key Space Analysis

There are series of enhanced maps parameters, initial values and ki values that
can be used as key in our scheme. The key space is as large as the range between
220 to 420 bits. The key space is large enough to resist the attacks.

4.5 Avalanche Criterion

A small change in either the key or the plaintext should cause a drastic change
in the ciphertext, ideally 50% difference in the bits of the cipher. The analysis is
exhibited the changing rate of bits about 49.96%. So proposed scheme is nearly
ideal.

Chaos Based Image Encryption Scheme Based on Enhanced Logistic Map 299

4.6 Information Entropy Analysis

Information entropy is the most important feature of randomness. The entropy
H(s) of a message s can be calculated by

H(s) =
2N−1∑
i=0

p(si)log
1

p(si)

where p(si) represents the probability of symbol si . In theory, a true random
source should generate 28 symbols with equal probability, and the entropy is
H(s) = 8. After calculation, we found the average entropy of the ’Lena’ cipher
image of this algorithm is about 7.9989 which is very close to the theoretical
value N = 8.

Table 3. Entropy analysis of the proposed and other schemes

Cipher Proposed RC5 RC6
Lena 7.9989 7.9813 7.9839
Lion 7.9991 7.9863 7.9872

As shown in Table 3, we notice that the values obtained of our scheme are very
close to the theoretical value of 8 than other schemes. Therefore the proposed
algorithm is robust against the entropy attack.

5 Conclusion

In this paper, chaos based image encryption scheme based on enhanced logistic
map is proposed. The proposed cipher provides good confusion and diffusion
properties that ensure extremely high security. Confusion and diffusion have
been achieved using rotation, nonlinear diffusion and alternative zig-zag dif-
fusion. This scheme is immune to various types of cryptographic attacks like
known/chosen plain text attacks and brute force attacks. We have carried out
statistical analysis, key space analysis differential analysis and entropy analy-
sis to demonstrate the security of the new image encryption procedure. Based
on the various analyses, it is shown that the proposed scheme is more secure
and fast and so more suitable for real time image encryption for transmission
applications.

Acknowledgment

The first author is partly funded by All India Council for Technical Education
(AICTE), New Delhi, India.

300 I.S. Sam, P. Devaraj, and R.S. Bhuvaneswaran

References

1. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J.
Bifurc. Chaos. 8(6), 1259–1284 (1998)

2. Tong, X., Cui, M.: Image encryption with compound chaotic sequence cipher shift-
ing dynamically. Image Vision Comput. 26, 843–850 (2008)

3. Wong, K.W., Wok, B.S.H., Law, W.S.: A fast image encryption scheme based on
chaotic standard map. Phys. Lett. A 372, 2645–2652 (2008)

4. Patidar, V., Pareek, N.K., Sud, K.K.: A new substitution diffusion based image
cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer.
Simulat. 14, 3056–3075 (2009)

5. Patidar, V., Pareek, N.K., Purohit, G., Sud, K.K.: Modified substitution–diffusion
image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci.
Numer. Simulat. 15(10), 2755–2765 (2010)

6. Jianquan, X., Chunhua, Y., Qing, X., Lijun, T.: An Encryption Algorithm Based on
Transformed Logistic Map. In: IEEE International Conference on Network Security,
Wireless Communications and Trusted Computing, pp. 111–114 (2009)

7. Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution-diffusion
based image cipher. Commun. Nonlinear Sci. Numer. Simulat. 15, 1887–1892 (2010)

8. Alvarez, G., Shujun, L.: Cryptanalyzing a nonlinear chaotic algorithm (NCA) for
image encryption. Commun. Nonlinear Sci. Numer. Simulat. 14, 3743–3749 (2009)

9. Li, C., Li, S., Alvarez, G., Chen, G., Lo, K.-T.: Cryptanalysis of two chaotic encryp-
tion schemes based on circular bit shift and XOR operations. Phys. Lett. A 369(1-
2), 23–30 (2007)

10. Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G.: On the security defects
of an image encryption scheme. Image Vis. Comput. 27, 1371–1381 (2009)

11. Li, C., Shujun, L., Chen, G., Halang, W.A.: Cryptanalysis of an image encryption
scheme based on a compound chaotic sequence. Image Vis. Comput. 27, 1035–1039
(2009)

12. Sam, I.S., Devaraj, P., Bhuvaneswaran, R.S.: Enhanced Substitution-Diffusion
Based Image Cipher Using Improved Chaotic Map. In: Das, V.V., Vijaykumar,
R. (eds.) ICT 2010. CCIS, vol. 101, pp. 116–123. Springer, Heidelberg (2010)

Matrix Insertion-Deletion Systems for
Bio-Molecular Structures

Lakshmanan Kuppusamy1, Anand Mahendran1,
and Shankara Narayanan Krishna2

1 School of Computing Science and Engineering,
VIT University, Vellore-632 014, India

klakshma@vit.ac.in, manand@vit.ac.in
2 Department of Computer Science and Engineering,

IIT Bombay, Powai - 400 076, India
krishnas@cse.iitb.ac.in

Abstract. Insertion and deletion are considered to be the basic opera-
tions in Biology, more specifically in DNA processing and RNA editing.
Based on these evolutionary transformations, a computing model has
been formulated in formal language theory known as insertion-deletion
systems. Since the biological macromolecules can be viewed as symbols,
the gene sequences can be represented as strings. This suggests that the
molecular representations can be theoretically analyzed if a biologically
inspired computing model recognizes various bio-molecular structures
like pseudoknot, hairpin, stem and loop, cloverleaf and dumbbell. In this
paper, we introduce a simple grammar system that encompasses many
bio-molecular structures including the above mentioned structures. This
new grammar system is based on insertion-deletion and matrix grammar
systems and is called Matrix insertion-deletion grammars. Finally, we
discuss how the ambiguity levels defined for insertion-deletion grammar
systems can be realized in bio-molecular structures, thus the ambiguity
issues in gene sequences can be studied in terms of grammar systems.

Keywords: bio-molecules, structure representation, insertion-deletion
systems, matrix grammars, ambiguity.

1 Introduction

In the last three decades, biology played a great role in the field of formal lan-
guages by being the root for the development of various biologically inspired
computing models such as sticker systems, splicing systems, Watson-Crick au-
tomata, insertion-deletion systems, p systems [3], [8], [9]. Since, most of the
language generating devices are based on the operation of rewriting systems, the
insertion-deletion systems opened a particular attention in the field of formal lan-
guages. Informally, the insertion and deletion operations of an insertion-deletion
system is defined as follows: If a string α is inserted between two parts w1 and
w2 of a string w1w2 to get w1αw2, we call the operation as insertion, whereas if

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 301–312, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

302 L. Kuppusamy, A. Mahendran, and S.N. Krishna

a substring β is deleted from a string w1βw2 to get w1w2, we call the operation
as deletion.

DNA molecules may be considered as strings over alphabet consisting of
four symbols namely a, t, g and c. Similarly, RNA molecules may be consid-
ered as strings over alphabet consisting of four symbols namely a, u, g and c.
Since the bio-molecular structures can be defined in terms of sequence of sym-
bols (i.e., strings) there exists a correlation between formal grammars and bio-
molecular structures. The following example shares a common point between
formal grammar and molecular strings. Consider the following gene sequence
S = ctatcgcgatag. As ā = t, t̄ = a, ḡ = c and c̄ = g, the above gene sequence
resembles the context-free (palindrome) language {ww̄R | w ∈ {a, b}∗}.

The gene sequences in the bio-molecular structures can be viewed as strings
which has some common patterns in it. In [7], [6] it has been shown that there
exists a relevance between the gene sequences and natural language constructs
such as triple agreements : L1 = {anbncn | n ≥ 1}, crossed dependencies:
L2 = {anbmcndm | n, m ≥ 1}. We discuss in brief some of the important
structures seen in bio-molecules. Fig.1. shows the two structures which are pre-
dominantly available in bio-molecules like proteins, DNA and RNA molecular
structures. Fig.2. shows the coherence between natural language constructs and
gene sequences. Fig.2.(a) and (b) represents the grammar oriented derivations
of idealized RNA structures (# denotes empty string) whereas Fig.2.(c) repre-
sents a biological sequence which has a crossed dependency pattern. The corre-
sponding languages for the above structures can be given as hairpin language
(for Fig.2(a)), orthodox language (for Fig.2(b)) and pseudoknot structure (for
Fig.2(c)). The formal language notations for such structures and for a few other
structures are discussed in detail in the coming sections. For more details on
Genome structures we refer to [2].

��
��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

5’ C A A U G A C 3’

 U A

U G

C G
5’ C U U

 A

 A G G A C U

 U G A C 3’

A A

(a) (b)

U C

A A

Fig. 1. Bio-molecular structures: (a)stem and loop (b)pseudo-knot

In the last two decades, many attempts have been made to establish the lin-
guistic behaviour of biological sequences by defining new grammar formalisms
like cut grammars [4], [5], [6], crossed-interaction grammar [7], simple linear tree
adjoining grammars and extended simple linear tree adjoining grammars [15]

Matrix Insertion-Deletion Systems for Bio-Molecular Structures 303

S

S

S

S

S

a u

u a

c g

u a S

 S

 S

 S

 S

 S

c g

u a

 a

 u
S

u a

u a

 g c

 c g

 u a

 (a) RNA stem (b) RNA branched structure (c) RNA pseudoknot structure

 #

 # #

 g c

u a u c g c g a u a c u a u u a a g u g c u c a a g

Fig. 2. RNA structures

which are capable of generating some of the biological structures mentioned
above. However, there is no unique grammar system that encapsulate all dis-
cussed bio-molecular structures. This motivates us to introduce a simple and
powerful grammar systems that captures all the essential and important bio-
molecular structures.

Ambiguity is considered as one of the fundamental problems in formal lan-
guage theory. A grammar is said to be ambiguous, if there exists more than
one distinct derivation of the words in the generated language. As the insertion-
deletion system can be applied in DNA processing [8], the ambiguity in DNA
processing (which uses the insertion system) can happen in the following manner.
Let W1W2 be a DNA strand and suppose we want to insert W3W4W5 between
W1 and W2 to obtain another DNA strand W1W3W4W5W2. This can be done
first by inserting W3 between W1 and W2, followed by inserting W4 between W3
and W2, followed by inserting W5 between W4 and W2. The other sequence would
be first by inserting W5 between W1 and W2, followed by inserting W4 between
W1 and W5, followed by inserting W3 between W1 and W4. This shows that am-
biguity in gene sequences is also possible (i.e., starting from one sequence we are
able to get another sequence in more than one way such that the intermediate
sequences are different). This motivates us to study about the ambiguity in gene
sequences by using Matrix insertion-deletion systems. Study of this concept of
ambiguity may be useful in considering inheritance properties and phylogenetic
trees [14]. More specifically, when these intermediate sequences are represented
as phylogenetic trees, we can see that the trees are different and thus it might
help us to identify the inheritance properties.

With the above mentioned details, in this paper we first introduce a simple
and powerful bio-inspired distributed computing model named Matrix insertion-
deletion systems. This model is obtained by combining insertion-deletion and
matrix grammars. Next, in Section 4 we show that the newly introduced vari-
ant can capture the various important and essential bio-molecular structures
described in DNA, RNA, protein like hairpin, stem and loop, ideal, orthodox,

304 L. Kuppusamy, A. Mahendran, and S.N. Krishna

dumbbell, pseudoknot, clover-leaf, attenuator and non-ideal attenuator. In
Section 5, we analyze the application of ambiguity in gene sequences by using
the Matrix insertion-deletion system and discuss about the universality result
for the new system.

2 Preliminaries

We assume that the readers are familiar with the notions of formal language
theory. However, we recall the basic notions which are used in the paper. A
finite non-empty set V or Σ is called an alphabet. We denote by V ∗ or Σ∗, the
free monoid generated by V or Σ, by λ it identity or the empty string, and by
V + or Σ+ the set V ∗ − {λ} or Σ∗ − {λ} . The elements of V ∗ or Σ∗ are called
words or strings. For any word w ∈ V ∗ or Σ∗, we denote the length of w by |w|.
For more details on formal language theory, we refer to [10]. RE represents the
family of recursive enumerable languages.

Next, we will look into the basic definitions of insertion-deletion systems.
Given an insertion-deletion system γ = (V, T, A, R), where V is an alphabet,
T ⊆ V , A is a finite language over V , R is a finite triples of the form (u, β/α, v),
where (u, v) ∈ V ∗, (α, β) ∈ (V + × {λ}) ∪ ({λ} × V +). The pair (u, v) are called
as contexts which will be used in insertion/deletion rules. Insertion rule will be
of the form (u, λ/α, v) which means that α is inserted between u and v. Deletion
rule will be of the form (u, β/λ, v), which means that β is deleted between u and
v. In other words, (u, λ/α, v) corresponds to the rewriting rule uv → uαv, and
(u, β/λ, v) corresponds to the rewriting rule uβv → uv.

Consequently, for x, y ∈ V ∗ we can write x =⇒∗ y, if y can be obtained from
x by using either an insertion rule or a deletion rule which is given as follows:
(the down arrow ↓ indicates the position where the string is inserted, the down
arrow ⇓ indicates the position where the string is deleted and the underlined
string indicates the string inserted/deleted)

1. x = x1u
↓vx2, y = x1uαvx2, for some x1, x2 ∈ V ∗ and (u, λ/α, v) ∈ R.

2. x = x1uβvx2, y = x1u
⇓vx2, for some x1, x2 ∈ V ∗ and (u, β/λ, v) ∈ R.

The language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A}
where =⇒∗ is the reflexive and transitive closure of the relation =⇒. The family
of languages generated by the insertion-deletion systems is given as INSm

n DELq
p

for n, m, p, q ≥ 0, where n denotes the maximal length of the inserted string,
m denotes the maximal length of the context in insertion rules, p denotes the
maximal length of the deleted string and q denotes the maximal length of the
context in deletion rules.

Next, we will look into the definition of matrix grammars. A matrix grammar
is an ordered quadruple G = (N, T, S, M) where N is a set of non-terminals, T
is a set of terminals, S is the start symbol and M is a finite set of nonempty
sequences whose elements are ordered pairs (P, Q). The pairs are referred to as

Matrix Insertion-Deletion Systems for Bio-Molecular Structures 305

productions and written in the form P → Q. The sequences are referred to as
matrices and written m = [P1 → Q1, ..., Pr → Qr], r ≥ 1. Some rules in a matrix
are exempted in applying the derivation if those rules are present in the set
appearance checking. The language generated by the matrix grammar is defined
by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The family of languages generated by matrix
grammars is denoted by MAT λ (the λ on the upper index indicates that P → λ
is allowed). For more details on matrix grammars, we refer to [1], [12].

The language of DNA can be considered over ΣDNA = {a, t, g, c}, where the
complementary can be given as: ā = t, t̄ = a, ḡ = c and c̄ = g. Similarly,
the language of RNA can be considered over ΣRNA = {a, u, g, c}, where the
complementary can be given as: ā = u, ū = a, ḡ = c and c̄ = g.

3 Matrix Insertion-Deletion Systems

In this section, we introduce our new grammar system Matrix insertion-deletion
systems. A Matrix insertion-deletion system is a construct Υ = (V, T, A, R) where
V is an alphabet, T ⊆ V , A is a finite language over V , R is a finite triples of the
form in matrix format [(u1, β1/α1, v1), . . . , (un, βn/αn, vn)], where (uk, vk) ∈ V ∗,
and (αk, βk) ∈ (V +×{λ})∪({λ}×V +), with (uk, βk/αk, vk) ∈ RIi∪RDj∪RIi/Dj

,
for 1 ≤ k ≤ n. Here RIi denotes the matrix which consists of only insertion rules,
RDj denotes the matrix which consists of only deletion rules and RIi/Dj

denotes
the matrix which consists of both insertion and deletion rules.

Consequently, for x, y ∈ V ∗ we can write x =⇒ x′ =⇒ x′′ =⇒ . . . =⇒ y, if y
can be obtained from x by using the matrix consisting of insertion or deletion or
insertion and deletion rules as follows: (the down arrow ↓ indicates the position
where the string is inserted, the down arrow ⇓ indicates the position where the
string is deleted and the underlined string indicates the string inserted/deleted)

1. x = x1u1
↓v1u2v2...unvnx2 =⇒ x′ = x1u1α1v1u2

↓...unvnx2 =⇒ x′′ =
x1u1α1v1u2α2v2...un

↓vnx2 =⇒∗ y = x1u1α1v1u2α2v2...unαnvnx2, for some
x1, x2 ∈ V ∗ and [(u1, λ/α1, v1), (u2, λ/α2, v2), . . . , (un, λ/αn, vn)] ∈ RIi .

2. x = x1u1β1v1u2β2v2...unβnvnx2 =⇒ x′ = x1u1
⇓v1u2β2v2...unβnvnx2 =⇒

x′′ = x1u1v1u2
⇓v2...unβnvnx2 =⇒∗ y = x1u1v1u2v2...un

⇓vnx2 for some
x1, x2 ∈ V ∗ and [(u1, β1/λ, v1), (u2, β2/λ, v2), ..., (un, βn/λ, vn)] ∈ RDj .

3. x = x1u1
↓v1u2β2v2...unβnvnx2 =⇒ x′ = x1u1α1v1u2β2v2...unβnvnx2 =⇒

x′′ = x1u1α1v1u2
⇓v2...unβnvnx2 =⇒∗ y = x1u1α1v1u2v2...un

⇓vnx2, for
some x1, x2 ∈ V ∗ and [(u1, λ/α1, v1), (u2, β2/λ, v2), ..., (un, βn/λ, vn)] ∈ RIi/Dj

.

In a derivation step the rules in a matrix are applied sequentially one after other
in order and no rule is in appearance checking (note that the rules in a matrix
are not applied in parallel). The language generated by Υ is defined by

L(Υ) = {w ∈ T ∗ | x =⇒∗
Rχ

w, for some x ∈ A}, where χ ∈ {Ii, Dj , Ii/Dj}
where =⇒∗ is the reflexive and transitive closure of the relation =⇒. Note that
the string w is collected after applying all the rules in a matrix and also w ∈ T ∗

only. The family of languages generated by Matrix insertion-deletion systems is

306 L. Kuppusamy, A. Mahendran, and S.N. Krishna

given as MATINSm
n DELq

p. The following example gives the clear understanding
of the Matrix insertion-deletion systems. Consider the triple agreement language
L1 = {anbncn | n ≥ 1}. The language L1 can be generated by the following
Matrix insertion-deletion system Υ1.

Example 1. L1 = {anbncn | n ≥ 1} ∈ Υ1. The language L1 can be generated
by the Matrix insertion-deletion system Υ1 = ({a, b, c}, {a, b, c}, {abc}, {RI1 =
[(a, λ/ab, b), (b, λ/c, c)]}). A sample derivation can be given as follows:
a↓bc =⇒RI1

aabb↓c =⇒RI1
aabbcc =⇒∗

RI1
anbncn. The triple agreement lan-

guage has relevances to triple-stranded DNA [6]. If we include d in V , T , replace
the axiom as abcd and RI1 as [(a, λ/ab, b), (c, λ/cd, d)] in Υ1 we can see that Υ1
generates quadruple agreement language {anbncndn | n ≥ 1}. The quadruple
agreement language has relevances to quadruple-stranded DNA [6].

4 Representing Bio-Molecular Structures

In this section, we show that the Matrix insertion-deletion systems can capture
the important and essential biological structures discussed earlier in the paper.
In most of the following derivations, at each derivation step, we directly write
the resultant string obtained by applying all the rules in a matrix.

Lemma 1. The pseudoknot structure language Lps = {uvūRv̄R | u, v ∈ Σ∗
DNA}

can be generated by Matrix insertion-deletion system.

Proof. The language Lps can be generated by the Matrix insertion-deletion sys-
tem Υps = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {λ, †1 †2 †3†4}, R), where b ∈ {a, t, g, c}, b̄ is
complement of b and R is given as follows:
RI1 = [(λ, λ/b, †1), (λ, λ/b̄, †3)], RI2 = [(λ, λ/b, †2), (λ, λ/b̄, †4)]
RD1 = [(λ, †1/λ, λ), (λ, †3/λ, λ)], RD2 = [(λ, †2/λ, λ), (λ, †4/λ, λ)]
A sample derivation is given as follows:

↓ †1 †↓2 †3 †4 =⇒RI1
a †↓1 †2t †↓3 †4 =⇒RI2

a †1 g↓ †2 t †3 c↓†4 =⇒RI2

a †1 ga †2 t †3 ct†4 =⇒RD1
a⇓ga †2 t⇓ct†4 =⇒RD2

aga⇓tct⇓

The attenuator language in a molecular structure can be represented as Lan =
{uūRuūR | u ∈ Σ∗

DNA}. The Fig.3. shows the attenuator structure.

Lemma 2. The attenuator language Lan = {uūRuūR | u ∈ Σ∗
DNA} can be

generated by Matrix insertion-deletion system.

Proof. The language Lan can be generated by the Matrix insertion-deletion sys-
tem Υan = ({a, t, g, c, †1, †2}, {a, t, g, c}, {λ, †1†2}, R), where R is given as follows:
RI1 = [(λ, λ/a, †1), (†1, λ/t, λ), (λ, λ/a, †2), (†2, λ/t, λ)]
RI2 = [(λ, λ/t, †1), (†1, λ/a, λ), (λ, λ/t, †2), (†2, λ/a, λ)]
RI3 = [(λ, λ/c, †1), (†1, λ/g, λ), (λ, λ/c, †2), (†2, λ/g, λ)]
RI4 = [(λ, λ/g, †1), (†1, λ/c, λ), (λ, λ/g, †2), (†2, λ/c, λ)]
RD1 = [(λ, †1/λ, λ), (λ, †2/λ, λ)]

Matrix Insertion-Deletion Systems for Bio-Molecular Structures 307

a u

g c

 a u

a g a

 u a

c g

u a

a g a

a g a u c u a g a

Fig. 3. Attenuator representation

A sample derivation is given as follows:
↓ †↓1 ↓†↓2 =⇒RI1

a↓ †↓1 t a↓ †↓2 t =⇒RI2
at↓ †↓1 atat↓ †↓2 at =⇒RI3

atc↓ †↓1 gatatc↓

†↓2gat =⇒RI4
atcg †1 cgatatcg †2 cgat =⇒RD1

atcg⇓cgatatcg⇓cgat �

Lemma 3. The non ideal-attenuator language Lnian = {uūRu | u ∈ Σ∗
DNA}

can be generated by Matrix insertion-deletion system.

Proof. The language Lnian can be generated by the Matrix insertion-deletion
system Υnian = ({a, t, g, c, †1, †2}, {a, t, g, c}, {λ, †1†2}, R), where R is given as

RI1 = [(λ, λ/a, †1), (†1, λ/t, λ), (λ, λ/a, †2)] RI2 = [(λ, λ/t, †1), (†1, λ/a, λ), (λ,λ/t, †2)]
RI3 = [(λ, λ/c, †1), (†1, λ/g, λ), (λ,λ/c, †2)] RI4 = [(λ, λ/g, †1), (†1, λ/c, λ), (λ, λ/g, †2)]

RD1 = [(λ, †1/λ, λ), (λ, †2/λ, λ)]

A sample derivation is given as follows:
↓ †↓1 ↓†2 =⇒RI1

a↓ †1 t a↓†2 =⇒RI2
at↓ †1 atat↓†2 =⇒RI3

atc↓ †1 gatatc↓†2 =⇒RI4

atcg↓ †1 cgatatcg↓†2 =⇒RI3
atcgc †1 gcgatatcgc†2 =⇒RD1

atcgc⇓gcgatatcgc⇓ �

Lemma 4. The hairpin language Lhp = {w = w̄R | w ∈ Σ∗
DNA} can be gener-

ated by Matrix insertion-deletion system.

Proof. The hairpin language Lhp = {w = w̄R | w ∈ Σ∗
DNA} can be generated by

the Matrix insertion-deletion system Υhp = ({b, b̄, †}, {bb̄}, {λ, b † b̄}, R), where
b ∈ {a, t, g, c}, b̄ is complement of b and R is given as follows:

RI1 = [(λ, λ/b, †), (†, λ/b̄, λ)], RD1 = [(λ, †/λ, λ)]

A sample derivation is given as follows:

a↓ †↓ t =⇒RI1
at↓ †↓ at =⇒RI1

atg † cat =⇒RD1
atgcg⇓cgcat �

308 L. Kuppusamy, A. Mahendran, and S.N. Krishna

Lemma 5. The stem and loop language Lsl = {uvūR | u, v ∈ Σ∗
DNA} can be

generated by Matrix insertion-deletion system.

Proof. The stem and loop language Lsl can be generated by the Matrix insertion-
deletion system Υsl = ({b, b̄, †1, †2, †3}, {b, b̄}, {λ, b †1 †3 †2 b̄}, R), where b ∈
{a, t, g, c}, b̄ is complement of b and R is given as follows:
RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)], RI2 = [(λ, λ/b, †3)]
RD1 = [(λ, †1/λ, λ), (λ, †2/λ, λ)], RD2 = [(λ, †3/λ, λ)]
A sample derivation is given follows:

a↓ †1 †3 †↓2 t =⇒RI1
ac †↓1 †3 †2 gt =⇒RI2

ac †1 t †3 †2gt =⇒RI2

ac †1 tc †3 †2gt =⇒RD1
aca⇓tc †3 gt =⇒RD2

acatc⇓gt �

The dumbbell language in a molecular structure can be represented as Ldb =
{uūRvv̄R | u, v ∈ Σ∗

DNA}. The Fig.4. shows the pictorial representation of
dumbbell language.

a g a t c t t g a t c a

Fig. 4. Dumbbell representation in bio-molecular structures

Lemma 6. The dumbbell language Ldb = {uūRvv̄R | u, v ∈ Σ∗
DNA} can be

generated by Matrix insertion-deletion system.

Proof. The dumbbell language Ldb can be generated by the Matrix insertion-
deletion system Υdb = ({b, b̄, †1, †2}, {b, b̄}, {λ, †1†2}, R), where b ∈ {a, t, g, c}, b̄
is complement of b and R is given as follows:
RI1 = [(λ, λ/b, †1), (†1, λ/b̄, λ)], RI2 = [(λ, λ/b, †2), (†2, λ/b̄, λ)]
RD1 = [(λ, †1/λ, λ)], RD2 = [(λ, †2/λ, λ)]
A sample derivation is given follows:
↓ †↓1 †2 =⇒RI1

a †1 t↓†↓2 =⇒RI2
a †1 tg↓ †↓2 c =⇒RI2

a †1 tgc †2 gc =⇒RD1

a⇓tgc †2 gc =⇒RD2
atgc⇓gc �

Definition 1. A string w over a complementary alphabet Σ is called ideal iff
|w|b = |w|b̄ for all b ∈ Σ. A language is ideal iff it contains only ideal strings.

Lemma 7. The ideal language Lid can be generated by Matrix insertion-deletion
system.

Proof. The ideal language Lid can be generated by the Matrix insertion-deletion
system Υid = ({b, b̄}, {b, b̄}, {λ}, R), where b ∈ {a, t, g, c}, b̄ is complement of b
and R is given as RI1 = [(λ, λ/b, λ), (λ, λ/b̄, λ)].
A sample derivation is given as follows:
↓λ↓ =⇒RI1

a↓t↓ =⇒RI1
ac↓tg↓ =⇒RI1

act↓tga↓ =⇒RI1
actctgag �

Matrix Insertion-Deletion Systems for Bio-Molecular Structures 309

Definition 2. A string w over a complementary alphabet Σ is called orthodox
iff it is (i) the empty string ε, or (2) the result of inserting two adjacent comple-
mentary element bb̄, for some b ∈ Σ, anywhere in an orthodox string. A language
is orthodox iff it contains only orthodox strings.

Lemma 8. The orthodox language Lod can be generated by Matrix insertion-
deletion system.

Proof. The orthodox language Lod can be generated by the Matrix insertion-
deletion system Υod = ({b, b̄}, {b, b̄}, {λ}, R), where b ∈ {a, t, g, c}, b̄ is comple-
ment of b and R is given as RI1 = [(λ, λ/bb̄, λ)]. A sample derivation is given as
λ↓ =⇒RI1

at↓ =⇒RI1
a↓tgc =⇒RI1

atatgc↓ =⇒RI1
atatgccg �

The cloverleaf language in bio-molecular structures is represented as Lcl =
{uv1v̄

R
1 v2v̄

R
2 , ..., vnv̄R

n ūR | u, v1, v2, v3, ..., vn ∈ Σ∗
DNA, n ≥ 0}. The following

Fig.5. represents the diagramatic representation of cloverleaf language for n = 3.

A

B

C

u u
 _ R

Fig. 5. Cloverleaf representation(where A = v1v̄
R
1 , B = v2v̄

R
2 , C = v3v̄

R
3)

Lemma 9. The cloverleaf language Lcl = {uv1v̄
R
1 v2v̄

R
2 , ..., vnv̄R

n ūR | u, v1, v2, ...,
vn ∈ Σ∗

DNA, n ≥ 0} can be generated by Matrix insertion-deletion systems.

Proof. The cloverleaf language Lcl (for n = 3) can be generated by the Matrix
insertion-deletion system Υcl = ({b, b̄, †1, †2, †3, †4, †4, †5}, {b, b̄}, {λ, b †1 †2b̄, †3 †4
†5, b †1 †3 †4 †5 †2 b̄}, R), where b ∈ {a, t, g, c}, b̄ is complement of b and R is
RI1 = [(λ, λ/b, †1), (†2, λ/b̄, λ)], RI2 = [(λ, λ/b, †3), (†3, λ/b̄, λ)]
RI3 = [(λ, λ/b, †4), (†4, λ/b̄, λ)], RI4 = [(λ, λ/b, †5), (†5, λ/b̄, λ)]
RD1 = [(λ, †1/λ, λ), (λ, †2/λ, λ)], RD2 = [(λ, †3/λ, λ)]
RD3 = [(λ, †4/λ, λ)] RD4 = [(λ, †5/λ, λ)]
A sample derivation is given as follows:

a↓ †1 †3 †4 †5 †↓2 t =⇒RI1
ac↓ †1 †3 †4 †5 †↓2 gt =⇒RI1

acg †↓1 †↓3 †4 †5 †2 cgt

=⇒RI2
acg †1 t †3 a↓ †↓4 †5 †2 cgt =⇒RI3

acg †1 t †3 a c †4 g↓ †↓5 †2cgt =⇒RI4

acg †1 t †3 ac †4 ga †5 t †2 cgt =⇒RD1
acg⇓t †3 ac †4 ga †5 t⇓cgt =⇒RD2

acgt⇓ac †4 ga †5 tcgt =⇒RD3
acgtac⇓ga †5 tcgt =⇒RD4

acgtacga⇓tcgt �

5 Ambiguity Issues in Gene Sequences

In this section, we study the application of various ambiguity levels of insertion-
deletion systems introduced in [11]. Since the Matrix insertion-deletion systems

310 L. Kuppusamy, A. Mahendran, and S.N. Krishna

is an extension of insertion-deletion systems, the ambiguity levels defined for
insertion-deletion system even holds for Matrix insertion-deletion systems also.

Level 0: The Matrix insertion-deletion systems is said to be 0-ambiguous if
the same string can be derived from two different axioms. Consider the gene
sequence actgagct in ideal language. This sequence can be generated by the
Matrix insertion-deletion system Υid from two different axioms at and ta such
that the same string is obtained at the end of the derivation. The two different
derivations which differ by axioms are given as follows:

Derivation 1 : at↓ =⇒ a↓t↓gc =⇒ actg↓gc↓ =⇒ actgagct

Derivation 2 : ta↓ =⇒↓ ta↓gc =⇒↓ ctaggc↓ =⇒ actaggct

Level 1: The Matrix insertion-deletion systems is said to be 1-ambiguous if
there are two different derivations for the same string which differs by the order
of string inserted/deleted. Consider the gene sequence aagtt in stem and loop
language. This sequence can be generated in two ways by the Matrix insertion-
deletion system Υsl. Note that the axiom for both derivation is same. The two
derivations are given as follows:

Derivation 1 : a↓ †1 †3 †↓2 t =⇒RI1
aa †↓1 †3 †2 tt =⇒RI2

aa †1 g †3 †2tt =⇒RD1

aa⇓g †⇓3 tt =⇒RD2
aag⇓tt (order of insertion is a and g)

Derivation 2 : a †↓1 †3 †2 t =⇒RI2
a↓ †1 g †3 †↓2t =⇒RI1

aa †1 g †3 †2tt =⇒RD1

aa⇓g †⇓3 tt =⇒RD2
aag⇓tt (order of insertion is g and a)

Level 2: The Matrix insertion-deletion systems is said to be 2-ambiguous if
there are two different derivations for the same string which differs by the order
of contexts used for insertion/deletion. Consider the gene sequence ctaatcgg in
cloverleaf language. This sequence can be generated in two ways by the Matrix
insertion-deletion system Υcl. The two derivations are given as follows:

Derivation 1 : c †↓1 †↓3 †4 †5 †2 g =⇒RI2
c †1 t †3 a↓ †↓4 †5 †2 g =⇒RI3

c †1 t †3 aa

†4t↓ †↓5 †2g =⇒RI4
c †1 t †3 aa †4 tc †5 g †2 g =⇒RD1

c⇓t †3 aa †4 tc †5 g⇓g

=⇒RD3
ct⇓aa †4 tc †5 gg =⇒RD3

ctaa⇓tc †5 gg =⇒RD4
ctaatc⇓gg

Derivation 2 : c †1 †3 †↓4 †↓5 †2 g =⇒RI4
c †1 †↓3 †↓4 c †5 g †2 g =⇒RI3

c †↓1 †↓3a †4 tc

†5g †2 g =⇒RI2
c †1 t †3 aa †4 tc †5 g †2 g =⇒RD1

c⇓t †3 aa †4 tc †5 g⇓g =⇒RD2

ct⇓aa †4 tc †5 gg =⇒RD3
ctaa⇓tc †5 gg =⇒RD4

ctaatc⇓gg

Note that the contexts chosen are of different order in each derivation. The
Level 2 ambiguity can be pictorially represented as shown in Fig.6. Fig. 6(a)
corresponds to derivation 1 and Fig.6(b) corresponds to derivation 2. This picture
suggests a way of handling ambiguity issues in gene sequences and how they can
be interpreted and what could be the intermediate sequences of genes in its
sequence process.

Matrix Insertion-Deletion Systems for Bio-Molecular Structures 311

(a)

t

a

t

a

a t

t

a

a t

c

g

(b)

a t

c

g

a t

c

 gt

a

c g c g c g

c g c g c g

c

g

Fig. 6. Ambiguity in cloverleaf language

Level 3: The Matrix insertion-deletion systems is said to be 3-ambiguous if there
are two different descriptions for the same string which differs by the position
where the string is inserted/deleted. Consider the string gctagcat in orthodox
language. This string can be derived in two different descriptions by Υod The
two different descriptions are given as follows:

Description 1 :↓ ta =⇒RI1
gcta↓ =⇒RI1

gctagc↓ =⇒RI1
gctagcat

Description 2 : ta↓ =⇒RI1

↓tagc =⇒RI1
gctagc↓ =⇒RI1

gctagcat

Note that the axiom, order of insertion of strings, order of contexts (here (λ, λ))
all are same in both derivations, but the position of insertion is different in each
derivation.

From the above results we can see that there may be more than one way that
a gene sequence can be processed.

5.1 Universality of Matrix Insertion-Deletion Systems

Though our aim in this paper is not to analyze the introduced system with
respect to Chomsky grammars, we provide the following trivial universality result
in order to show that our new system is computationally complete.

Lemma 10. RE ⊆ MATINS1
1 DEL1

1

Proof. In [13], it is proved that RE ⊆ INS1
1 DEL1

1. Since each rule of insertion-
deletion system can be considered as a set of matrices with each matrix consisting
a single rule, the above result is true for Matrix insertion-deletion systems also.

�

6 Conclusion

Insertion-deletion systems were defined and motivated by the way DNA strands
are inserted and deleted. The bio-molecular structures like pseudoknot, atten-
uator, non-ideal attenuator are beyond the scope of context free grammars.

312 L. Kuppusamy, A. Mahendran, and S.N. Krishna

The bio-molecular structures like hairpin, stem and loop, ideal languages are
within the power of context free grammars. We have defined a simple and pow-
erful grammar system named Matrix insertion-deletion system. This is a unique
grammar system which encompasses all the important biological structures that
can be found in DNA, RNA, protein and other bio molecules. No other grammar
system captures all the above discussed bio-molecular structures and therefore
this new grammar system deserves a special attention. We have also shown the
application of various ambiguity levels of insertion-deletion systems in gene se-
quences and how the ambiguity can be interpreted in gene sequences. As a future
work, it is worth to analyze the closure properties and generative capacity of the
introduced Matrix insertion-deletion systems.

References

1. Salomaa, A.: Formal languages. Academic Press, New York (1973)
2. Brendel, V., Busse, H.G.: Genome structure described by formal languages. Nucleic

Acids Res., 2561–2568 (1984)
3. Calude, C.S., Paŭn, G.: Computing with cells and atoms, An intro. to Quantum,

DNA and Membrane Computing. Taylor and Francis, London (2001)
4. Searls, D.B.: Representing genetic information with formal grammars. In: Proceed-

ings of the National Conference on Artificial Intelligence, pp. 386–391 (1988)
5. Searls, D.B.: The linguistics of DNA. American Scientist, 579–591 (1992)
6. Searls, D.B.: The computational linguistics of biological sequences. In: Hunter, L.

(ed.) Artificial Intelligence and Molecular Biology, pp. 47–120. AAAI Press, Menlo
Park (1993)

7. Rivas, E., Reddy, S.R.: The language of RNa: A formal grammar that includes
psuedoknots. Bioinformatics 16, 334–340 (2000)

8. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing, New Computing
Paradigms. Springer, Heidelberg (1998)

9. Păun, G.: Membrane Computing-An introduction. Springer, Heidelberg (2002)
10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, Reading (2006)
11. Krithivasan, K., Kuppusamy, L., Mahendran, A., Khalid, M.: On the ambiguity

and complexity measures in insertion-deletion systems. In: Proceedings of Bionetics
2010, USA, December 1-3. LNCS (2010)

12. Rozenberg, G., Salomaa, A.: Handbook of formal languages. Springer, Heidelberg
(1997)

13. Verlan, S.: On minimal context-free insertion-deletion systems. Journal of Au-
tomata, Languages and Combinatorics 2, 317–328 (2007)

14. Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology.
PWS Publishing Company (1997)

15. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars-
for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999)

Artificial Bee Colony Based Sensor Deployment
Algorithm for Target Coverage Problem in 3-D

Terrain

S. Mini1, Siba K. Udgata1, and Samrat L. Sabat2

1 Department of Computer and Information Sciences
University of Hyderabad, Hyderabad-500046, India

mini2min2002@yahoo.co.in, udgatacs@uohyd.ernet.in
2 School of Physics

University of Hyderabad, Hyderabad-500046, India
slssp@uohyd.ernet.in

Abstract. In this paper we address sensor deployment problem to
achieve different types of target coverage, viz; simple coverage, k-coverage
and Q-coverage. Energy which is an important and scarce resource is not
being optimally used if sensor nodes are randomly deployed in a region.
This energy wastage can significantly be reduced if the deployment po-
sitions can be optimally computed. It is important to provide required
coverage by keeping the required sensing range at minimum which will
require less energy for sensing. We find out the optimal deployment posi-
tions in a 3-D terrain using Artificial Bee Colony (ABC) algorithm, which
is based on swarm intelligence, and also compare the sensing range re-
quirement for simple, k and Q-coverage problems. Experimental results
reveal that for dense networks, the required sensing range does not in-
crease in same proportion for increased value of k and increased value
of average number of sensor nodes in Q for k-Coverage and Q-Coverage
problems respectively. Sensitivity analysis is done to study the change
in the required sensing range if the sensor nodes cannot be deployed
exactly in the optimal positions. The analysis reveals that there is no
significant change in the sensing range if the sensor nodes are deployed
in near optimal positions.

Keywords: Sensor Deployment, Target Coverage, ABC Algorithm.

1 Introduction

Over the past few years, Wireless Sensor Networks (WSNs) has attracted the
attention of researchers. Network lifetime is one crucial element that decides the
efficiency of a network. In order to maximize the network lifetime, sensor nodes
should be deployed in such a way that energy will be used efficiently. By restrict-
ing the sensing range requirement, energy usage can substantially be controlled.
When coverage requirement of the targets in a region vary, the problem of de-
ployment becomes complicated. The nodes should be able to provide necessary
coverage and the required sensing range should be at minimum.

R. Natarajan and A. Ojo (Eds.): ICDCIT 2011, LNCS 6536, pp. 313–324, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

314 S. Mini, S.K. Udgata, and S.L. Sabat

In general, coverage problems can be classified into two: Area coverage and
Target coverage. Area coverage focusses on providing coverage for an entire re-
gion, and target coverage aims at providing coverage for certain point objects
located in a region. Target coverage can be categorized as simple, k and Q-
coverage. A target is required to be monitored by at least one sensor node for
simple coverage problem. k-coverage problem arises when all the targets need to
be monitored by at least k sensor nodes, where k is a predefined integer constant.
Simple coverage problem is a special case of k coverage where k = 1. In case of
node failures or to increase the accuracy of monitoring, higher values of k are
preferred. When all targets T = {T1, T2, . . . , Tn} should be monitored by Q =
{q1, q2, . . . , qn} number of sensor nodes such that target Tj is monitored by at
least qj number of sensor nodes, where n is the number of targets and 1 ≤ j ≤ n,
it is defined as Q-coverage problem.

Swarms use their environment and resources effectively by collective intelli-
gence. Self-organization is a key feature of a swarm system which gives global
solutions/responses through many lower level interactions. Honey bee swarm
is an interesting swarm in nature which uses dynamic task allocation and also
adapts to environmental changes [1]. We use ABC algorithm, which is currently
used to solve many optimization problems, to find sensor node deployment posi-
tions such that the coverage requirement is satisfied and required sensing range
is optimal.

The rest of the paper is organized as follows: Section 2 presents an overview
of related work. In Section 3, the problem is defined. We present the pro-
posed method in Section 4. The proposed method is evaluated by simulations in
Section 5. Section 6 concludes the paper.

2 Related Work

Most works on target coverage problem concentrates on finding schedules such
that all the nodes need not be active at the same time. Simple coverage [2][3],
k-coverage [4][5][6] and Q-coverage [7][8] algorithms for network lifetime maxi-
mization focuses on creation of schedules which represents the set of all sensor
nodes that should be active for each time instant. Based on this schedule, sen-
sor nodes alternate between active and idle states. Since all sensor nodes need
not be active all the time, some energy is preserved and this prolongs the net-
work lifetime. These types of coverage problem assume that all sensor nodes
are randomly deployed and the WSN under consideration is a densely deployed
network.

Methods to determine the minimum number of sensors to be deployed in a
region is presented in [9] and [10]. Clouqueur et al. [9] use the minimum exposure
as a measure of the goodness of deployment and aims to maximize the exposure of
the least exposed path in the region. Path exposure is a measure of the likelihood
of detecting a target traversing the region using a given path. The higher the
path exposure, the better the deployment. The set of paths to be considered
may be constrained by the environment. They found that the optimal number of

Artificial Bee Colony Based Sensor Deployment Algorithm 315

sensors deployed in each step varies with the relative cost assigned to deployment
and sensors. Watfa et al. [10] consider a 3-D region and finds out the minimum
number of nodes required to carry out target coverage. Random deployment, as
well as deployment using square and hexagonal lattices is studied for different
values of the sensing radius. A measure of optimality was proposed that compares
a given deployment of WSN with optimum deployment. This metric is shown to
be indicative of the energy efficiency of the WSN and serves as a useful means to
select between two different deployments of a WSN. Andersen et al. [11] present
an approach called discretization which models sensor deployment problem as a
discrete optimization problem. This method does not assure k-coverage of the
complete region. In their setting, due to the presence of walls through which a
sensor may or may not be able to sense, the region monitored by a sensor is
usually not a sphere, but could be of a more complex shape.

Bee colony based algorithms are surveyed by Karaboga et al. [1]. A comparison
of ABC with traditional back propagation algorithm and the genetic algorithm
done by Karaboga et al. [12] shows that ABC outperforms the other two and can
be used to train feed forward neural networks. Another comparison of ABC with
Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms,
by Karaboga et al. [13], shows that ABC performs better and can be used to solve
multimodal engineering problems with high dimensionality. ABC based method
to solve area coverage problem for a two dimensional irregular space is proposed
by Udgata et al. [14]. The area under consideration is a two dimensional irregular
terrain and the objective is to find the sensor node deployment positions in order
to minimize the sensing range for simple coverage problem.

In this paper, we deal with sensor deployment problem to address all types of
target coverage requirements.

3 Problem Definition

3.1 Sensor Coverage

A sensor node located at (x1, y1, z1) can cover a target at (x2, y2, z2) if the
euclidean distance between the sensor node and the target is less than or equal
to the sensing range sr.√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≤ sr (1)

3.2 Mean of Location Points

The mean value of the location points (xr , yr, zr) for r = 1, 2, . . . , N , is repre-
sented by (a1, a2, a3), where

a1 =
∑

N
r=1(xr)
N

(2)

a2 =
∑

N
r=1(yr)
N

(3)

316 S. Mini, S.K. Udgata, and S.L. Sabat

a3 =
∑

N
r=1(zr)
N

(4)

3.3 Simple Coverage

Given a set of targets T = {T1, T2, . . . , Tn} located in u× v×w region and a set
of sensor nodes S = {S1, S2, . . . , Sm}, the objective is to deploy the sensor nodes
such that all the targets are continuously monitored and the network lifetime is
extended by keeping the sensing range at minimum. In other words, the objective
is to cover all the targets in a given region by at least one sensor node and to
minimize the function

F = ∀i((max(distance(Si, Pg)))) (5)

where P is the set of all targets monitored by Si, i = 1, 2, . . . , m , g = 1, 2, . . . , h,
where h is the total number of targets that the sensor node Si monitors.

3.4 k-Coverage

Given a set of targets T = {T1, T2, . . . , Tn} located in u × v × w region and a
set of sensor nodes S = {S1, S2, . . . , Sm}, the objective is to deploy the sensor
nodes such that all T = {T1, T2, . . . , Tn} is covered by at least k number of sensor
nodes, 1 ≤ k ≤ m and the network lifetime is extended by keeping the sensing
range at minimum. In other words, the objective is to cover all the targets in a
given region by at least k sensor nodes and to minimize F denoted by eqn. 5.

3.5 Q-Coverage

Given a set of targets T = {T1, T2, . . . , Tn} located in u× v×w region and a set
of sensor nodes S = {S1, S2, . . . , Sm}, the objective is to deploy the sensor nodes
such that all T = {T1, T2, . . . , Tn} is covered by at least Q = {q1, q2, . . . , qn}
sensor nodes, where each target Tj , 1 ≤ j ≤ n, is covered by at least qj sensor
nodes, 1 ≤ qj ≤ m, at any time and the network lifetime is extended by keeping
the sensing range at minimum. In other words, the objective is to cover each
target by at least qj sensor nodes and to minimize F denoted by eqn. 5.

3.6 Cluster Formation

Partitioning the targets into clusters will be a key to identify the position of
sensor nodes. Each sensor node is associated to a cluster. Let the set of clusters
to be formed be represented as C = {C1, C2, . . . , Cm}. A target Tj belongs to
Ci if and only if distance(Tj, Si) ≤ distance(Tj, Sl)∀l where l = 1, 2, . . . , m
; l �= i and j = 1, 2, . . . , n. After computing clusters, if any Ci = φ, mark
C = C − {Ci} it implies that Si is not associated to any cluster. For simple
coverage problem, each target is associated to exactly one cluster and for k and
Q-coverage problems, each target is associated to minimum of k and qj sensor
nodes respectively.

Artificial Bee Colony Based Sensor Deployment Algorithm 317

1: for each Be do
2: var = 0
3: repeat
4: if var = 0 then
5: Calculate distance between each target and all the sensor locations
6: Form clusters by assigning targets to 1/k/Q sensor nodes which

are at minimum distance (Sec. 3.4)
7: if all sensor nodes form cluster then
8: Move the sensor location to centroid of all target location points

that are associated with it
9: var = 1

10: else
11: Move sensors without assigned targets to random target loca-

tions
12: end if
13: end if
14: until var = 1
15: end for

Fig. 1. Pseudocode: Cluster Formation

4 Proposed Approach

4.1 Behavior of Bees in Nature

Honey bee swarms consists of three essential components: food sources, employed
foragers and unemployed foragers. The model defines two leading modes of the
behaviour: the recruitment to a nectar source and the abandonment of a source.
Initially, a potential forager will start as unemployed forager. That bee will
have no knowledge about the food sources around the nest. This bee can be a
scout and starts searching around the nest spontaneously for a food due to some
internal motivation or possible external clue. After locating the food source, the
bee utilizes its own capability to memorize the location and then immediately
starts exploiting it. Hence, the bee will become an employed forager.

The foraging bee takes a load of nectar from the source and returns to the
hive and unloads the nectar to a food store. After unloading the food, the bee
performs a special form of dance called waggle dance[15] which contains infor-
mation about the direction in which the food will be found, its distance from
the hive and its quality rating. Since information about all the current rich
sources is available to an onlooker on the dance floor, an onlooker bee probably
could watch numerous dances and choose to employ itself at the most qualita-
tive source. There is a greater probability of onlookers choosing more qualitative
sources since more information is circulating about the more qualitative sources.
Employed foragers share their information with a probability, which is propor-
tional to the quality of the food source. Hence, the recruitment is proportional
to quality of a food source[13][16].

318 S. Mini, S.K. Udgata, and S.L. Sabat

1: Initialize the solution population B
2: Evaluate fitness
3: Produce new solutions based on cluster centroids
4: Choose the fittest bee
5: cycle = 1
6: repeat
7: Search for new solutions in the neighborhood
8: if new solution better than old solution then
9: Memorize new solution and discard old solution

10: end if
11: Replace the discarded solution with a newly randomly generated solu-

tion through a scout bee
12: Memorize the best solution
13: cycle = cycle + 1
14: until cycle = maximumcycles

Fig. 2. Pseudocode: Proposed Method

4.2 Proposed Method

The target locations are assumed to be stationary. A solution is a set of lo-
cations where the sensor nodes can be deployed to cover all the targets and
sensing range is optimal. Initial solutions are randomly generated. Let the so-
lution population be B. Each solution corresponding to a bee e is denoted as
Be = {(x1, y1, z1), (x2, y2, z2), . . . , (xm, ym, zm)} where e = 1, 2, . . . , d , d rep-
resents total number of bees and m represents total number of nodes to be
deployed.

The initial task is to form clusters according to their location. Each cluster
has a sensor node associated as cluster centroid with it. The Euclidean distances
of the targets and the sensor locations are calculated. Clusters are formed based
on this distance measure. Clusters are generated in such a way that no sensor
location in a solution is left idle without being part of a cluster. The number
of targets in a cluster will be less if sensor to which the cluster is associated
is located at a remote place. The number of clusters formed is exactly equal
to the number of sensor nodes to be deployed. The employed bees return with
the solution having cluster centroids. All the deployment locations in a solution
is replaced by the corresponding cluster centroid. The pseudocode for forming
clusters is given in Fig. 1.

The Euclidean distance between each target and the sensor location to which
it is associated is used as the fitness function to evaluate the solutions. Let
Di = (Di1, Di2, Di3) be the cluster centroid of ith cluster. F (Di) refers to the
nectar amount at food source located at Di. After watching the waggle dance of
employed bees, an onlooker goes to the region of Di with probability pi defined
as,

pi =
F (Di)∑nf

f=1 F (Df)
(6)

Artificial Bee Colony Based Sensor Deployment Algorithm 319

where nf is the total number of food sources. The onlooker finds a neighborhood
food source in the vicinity of Di by using,

Di(t + 1) = Di(t) + δid × v (7)

where δid is the neighborhood patch size for dth food source, v is random uniform
variate ∈ [-1, 1] and t is the cycle number. The onlooker bee then evaluates
the fitness function based on the new value Di(t + 1). It should be noted that
the solutions are not allowed to move beyond the edge of the region. The new
solutions are also evaluated and compared using the fitness function. If any new
solution is better than the existing one, the new one is retained and old one is
discarded. Scout bees search for a random feasible solution. The solution with
the least sensing range is finally chosen as the best solution. The pseudocode of
proposed method is given in Fig. 2.

Table 1. Sensing Range Requirement for k-coverage problem

k=1 k=3 k=5
N.T 1 Instance N.S 2 Best Mean S.D 3 S.A 4 Best Mean S.D3 S.A4 Best Mean S.D.3 S.A 4

10 38.88 38.88 0 38.91 92.23 93.47 1.07 92.4 109.89 109.99 0.16 109.96
1 20 24.34 25.37 0.92 24.41 53.61 53.94 0.54 53.68 64.96 64.96 0 65.08

30 19.45 20 0.96 19.59 41.76 41.82 0.05 41.85 56.08 56.17 0.15 56.16
10 39.38 40.07 0.83 39.42 90.91 91.25 0.29 91 104.15 104.7 0.47 104.21

100 2 20 24.61 25.34 1.05 24.72 54.43 54.86 0.61 54.51 61.62 61.62 0 61.7
30 19.46 19.72 0.22 19.53 46.91 47.6 0.59 46.99 57.17 58.87 1.54 57.2
10 35.66 36.55 0.98 35.78 87.77 88.38 0.61 87.84 108.71 108.9 0.32 108.86

3 20 26.2 26.46 0.46 26.23 55.24 55.52 0.24 55.32 65.37 65.79 0.74 65.45
30 18.79 19.18 0.6 18.91 39.51 39.51 0 39.59 59.43 59.44 0.01 59.53
10 38.21 38.21 0 38.35 86.31 86.7 0.34 86.44 106.06 106.55 0.74 106.16

1 20 26.53 27.22 0.6 26.93 53.63 54.38 0.65 53.73 67.34 67.81 0.78 67.5
30 21.48 21.8 0.45 21.56 41.99 42.24 0.42 42.32 56.41 56.68 0.45 56.51
10 39.53 39.8 0.48 39.61 99.44 99.89 0.59 99.91 108.68 108.68 0 108.74

150 2 20 26.64 26.89 0.22 26.7 54.62 55.54 1.33 54.83 70.06 70.22 0.14 70.12
30 21.02 21.39 0.33 21.12 43.23 43.67 0.43 43.51 62.05 62.05 0 62.14
10 40.93 40.93 0 41 91.05 91.09 0.08 91.13 109.16 109.78 1.08 109.28

3 20 25.7 26.63 0.8 25.85 53.86 54.34 0.42 53.96 66.21 66.21 0 66.3
30 21.39 22.28 0.91 21.5 42.81 43.37 0.65 42.92 58.6 58.83 0.37 58.73
10 42.24 42.3 0.08 42.33 95.85 96.58 0.68 95.96 111.42 111.85 0.69 111.54

1 20 30.14 30.29 0.27 30.22 58.95 59.71 0.71 59.05 70.6 70.6 0 70.72
30 23.39 23.71 0.56 23.52 47.74 48.37 0.85 47.9 66 66.96 0.92 66.11
10 41.22 42.03 1.13 41.32 99.37 99.77 0.35 99.49 111.54 111.74 0.17 111.63

200 2 20 28.95 29.09 0.17 29.08 56.74 56.94 0.34 56.89 70.22 70.22 0 70.34
30 23.18 23.43 0.24 23.36 47.13 47.13 0 47.56 59.36 59.8 0.38 59.45
10 42.51 43.08 0.64 42.68 98.06 98.12 0.06 98.19 114.09 114.27 0.27 114.18

3 20 29.57 29.73 0.28 29.66 59.2 59.72 0.53 59.34 71.54 71.88 0.6 71.6
30 24.01 24.54 0.77 24.13 47.49 47.73 0.25 47.61 62.02 63.17 1.53 62.09
10 41.27 41.75 0.67 41.33 99.53 99.85 0.3 99.6 110.04 110.29 0.22 110.1

1 20 29.68 30.14 0.46 22.73 56.7 57.08 0.33 56.8 67.94 67.97 0.03 68
30 23.83 24.78 0.83 23.89 44.92 45.89 1.11 44.98 64.59 65.22 0.72 64.63
10 41.76 41.93 0.29 41.83 96.86 96.99 0.12 96.94 108.48 108.48 0 108.53

250 2 20 28.91 29.59 0.76 28.96 55.24 55.14 0.91 55.27 72.95 73.39 0.38 72.98
30 23.02 23.87 0.99 23.07 45.3 45.74 0.59 45.38 60.79 60.96 0.16 60.84
10 42.6 42.72 0.12 42.64 98.26 99.85 1.39 98.31 108.23 108.23 0 108.3

3 20 28.37 29.39 0.88 28.44 59.58 59.92 0.5 59.64 71.82 72.28 0.45 71.89
30 23.64 25.19 1.36 23.7 43.78 43.95 0.31 43.84 63.21 63.53 0.44 63.27

1 Number of targets.
2 Number of sensor nodes.
3 Standard Deviation.
4 Sensitivity Analysis.

320 S. Mini, S.K. Udgata, and S.L. Sabat

5 Results and Discussion

We consider a 200 × 200 × 20m region for experiments. The number of bees is
taken as 10, number of cycles is 500 and the number of runs is 3. We conducted
experiments using MATLAB 7.

Table 2. Sensing Range Requirement for Q-coverage problem

Q=1-5 Q=3-5
N.T1 Instance N.S2 Best Mean S.D3 S.A 4 Best Mean S.D3 S.A4

10 111.64 112.29 0.65 111.75 125.27 126.16 1.15 125.34
1 20 65.03 65.96 0.81 66.03 89.5 89.65 0.17 89.65

30 48.25 48.49 0.29 48.39 61.2 62.24 1.12 61.29
10 112.96 115.28 2.01 113.1 146.83 147.63 1.01 146.96

100 2 20 65.81 66.71 1.33 65.93 96.11 97.48 1.27 96.24
30 48.48 49.14 0.58 48.62 65.11 65.79 0.62 65.2
10 98.5 99.14 0.58 98.64 134.47 135.21 0.93 134.52

3 20 61.17 61.62 0.4 61.25 93.5 93.93 0.62 93.58
30 47.65 48.33 0.8 47.74 65.16 65.77 0.53 65.29
10 111.57 112.89 1.24 111.64 132.4 132.97 0.54 132.53

1 20 70.76 71.16 0.41 70.89 93.12 93.72 0.65 93.22
30 56.06 56.6 0.49 56.1 70.19 70.48 0.41 70.28
10 109.87 110.16 0.29 109.98 133.55 133.93 0.43 133.67

150 2 20 68.19 68.51 0.53 68.3 99.69 99.97 0.33 99.88
30 55.83 56.04 0.23 55.89 72.07 72.12 0.06 72.19
10 119.52 120.06 0.58 119.66 143.1 144.05 0.95 143.14

3 20 72.36 72.78 0.49 72.5 99.59 101.81 1.96 99.74
30 59.92 60.32 0.32 59.99 68.53 69.1 0.61 68.6
10 122.21 122.74 0.51 122.27 138.19 139.06 0.78 138.24

1 20 78.75 79.52 0.73 78.81 101.28 101.88 0.55 101.31
30 63.42 63.5 0.07 63.5 77.6 77.98 0.41 77.69
10 123.74 124.6 0.74 123.8 142.2 143.88 1.61 142.25

200 2 20 71.36 72.17 0.8 71.43 104.95 106.23 1.11 105
30 59.83 60.67 0.74 59.88 68.49 68.89 0.35 68.54
10 117.21 117.24 0.06 117.28 140.37 142.09 1.6 140.44

3 20 70.14 70.22 0.11 70.21 101.79 101.95 0.25 101.83
30 54.04 55 0.84 54.09 75.82 76.04 0.78 75.89
10 116.67 117.16 0.49 116.74 130.84 131.56 0.66 130.88

1 20 74.47 74.86 0.56 74.54 97.89 98.14 0.41 97.91
30 58.73 59.85 1 58.8 72.77 73.11 0.51 72.83
10 125.74 127.41 1.46 125.79 139.19 139.33 0.13 139.24

250 2 20 77.38 78.85 1.37 77.42 103.91 105.83 1.82 103.96
30 57.3 57.94 0.56 57.36 72.83 73.21 0.33 72.9
10 119.69 122.53 2.73 119.74 151.06 152.95 1.68 151.09

3 20 77.12 78 0.94 77.17 117.98 119.39 1.44 118.01
30 57.67 58.1 0.51 57.7 79.47 81.41 1.77 79.53

1 Number of targets.
2 Number of sensor nodes.
3 Standard Deviation.
4 Sensitivity Analysis.

5.1 Impact of Varying k and Q

The value of k is initially set as 1, which implies simple coverage problem. The
optimal deployment locations and the required sensing range are computed using
the proposed method. The same is done for k = 3 and k = 5. An increase in
sensing range is observed but it is evident that the sensing range requirement
does not increase in proportion to the increase in k. The same is observed for
Q-coverage requirement also. Q which had values ranging from 1 to 5 and 3
to 7 were used as coverage requirement criteria. Table 1 and Table 2 show the
sensing range requirement for k and Q coverage problems respectively. Fig. 3.
shows an instance where 10 sensor nodes has to be deployed in a region and k

Artificial Bee Colony Based Sensor Deployment Algorithm 321

Fig. 3. Sensing range requirement for k-coverage problem where number of sensor
nodes to be deployed is 10

Fig. 4. Sensing range requirement for Q-coverage problem where number of sensor
nodes to be deployed is 10

takes values 1, 3 and 5. Fig. 4. shows an instance where Q-coverage requirement
has to be satisfied with the least required sensing range. Both the figures clearly
show that sensing range requirement does not increase in proportion with the
coverage requirement.

5.2 Impact of Varying Number of Sensor Nodes

The number of sensor nodes to be deployed in the region is varied from 10 to
30. The number of clusters increases as the number of sensor nodes increase.
The sensing range requirement decreases when more number of nodes are to be
deployed. Fig. 5. and Fig. 6. show this decrease in sensing range requirement

322 S. Mini, S.K. Udgata, and S.L. Sabat

Fig. 5. Sensing range requirement for k-coverage problem where number of targets is
100

Fig. 6. Sensing range requirement for Q-coverage problem where number of targets is
100

when the number of sensor nodes are increased, for k and Q coverage problems
respectively.

5.3 Impact of Varying Number of Targets

The number of targets to be covered is varied from 100 to 250. Results show that
the sensing range requirement need not essentially be high for higher number
of targets. Sensing range requirement is highly dependent on the location of the
targets to be covered. The results can also be used to find the minimum number
of sensor nodes required to cover specific number of targets with a given sensing
range in the 3-D region.

Artificial Bee Colony Based Sensor Deployment Algorithm 323

5.4 Sensitivity Analysis

Since it may be hard to deploy the sensors exactly at positions where sensing
range is optimal, we conduct sensitivity analysis. We have changed the optimum
deployment positions by ±0.05 and calculated the new required sensing range.
The variation in required sensing range is found to be of less significance. The
analysis reveals that the deployment solutions obtained through the proposed
ABC based method is a robust one and does not change significantly with a
slight variation in the optimal deployment positions.

6 Conclusion

In this paper, we have proposed an ABC based method to find optimum sensor
deployment positions in a 3-D terrain in order to satisfy different target coverage
criteria, namely, simple, k-coverage and Q-coverage. Extensive simulations are
carried out with varying number of sensor nodes, number of targets, k-values
and values of vector Q to find the minimum sensing range requirement. We no-
tice that sensing range requirement does not increase in same proportion with
increase in k or Q requirements. An increase in number of sensor nodes to be
deployed, decreases the sensing range requirement. But for a given number of
sensor nodes, an increase in the number of targets to be covered need not al-
ways make the sensing range requirement high. This method is also suitable to
find the optimal number of sensor nodes required to satisfy a coverage criteria.
We propose to compare this proposed method with other swarm intelligence
techniques in future.

References

1. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence.
Artificial Intelligence Review 31, 61–85 (2009)

2. Slijepcevic, S., Potkonjak, M.: Power Efficient Organization of Wireless Sensor
Networks. In: IEEE International Conference on Communications, pp. 472–476
(2001)

3. Cardei, M., Du, D.: Improving Wireless Sensor Network Lifetime through Power
Aware Organization. ACM Wireless Networks 11, 333–340 (2005)

4. Huang, C., Tseng, Y.: The Coverage Problem in a Wireless Sensor Network. In:
2nd ACM International Conference on Wireless Sensor Networks and Applications,
pp. 115–121 (2003)

5. Yen, L., Yu, C., Cheng, Y.: Expected k-Coverage in Wireless Sensor Networks. Ad
Hoc Networks 4, 636–650 (2006)

6. Hefeeda, M., Bagheri, M.: Randomized k-Coverage Algorithms for Dense Sensor
Networks. In: INFOCOM, pp. 2376–2380 (2007)

7. Gu, Y., Liu, H., Zhao, B.: Target Coverage with QoS Requirements in Wireless
Sensor Networks. In: IPC, pp. 35–38 (2007)

8. Chaudhary, M., Pujari, A.K.: Q-coverage problem in wireless sensor networks. In:
Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408,
pp. 325–330. Springer, Heidelberg (2008)

324 S. Mini, S.K. Udgata, and S.L. Sabat

9. Clouqueur, T., Phipatanasuphorn, V., Ramanathan, P., Saluja, K.: Sensor Deploy-
ment Strategy for Detection of Targets Traversing a Region. Mobile Networks and
Applications 8, 453–461 (2003)

10. Watfa, M., Commuri, S.: Optimal 3-Dimensional Sensor Deployment Strategy. In:
IEEE CCNC 2006, pp. 892–896 (2006)

11. Andersen, T., Tirthapura, S.: Wireless Sensor Deployment for 3D Coverage with
Constraints. In: Proc. of the 6th International Conference on Networked Sensing
Systems, pp. 78–81 (2009)

12. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization al-
gorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y.,
Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer,
Heidelberg (2007)

13. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing 8, 687–697 (2008)

14. Udgata, S.K., Sabat, S.L., Mini, S.: Sensor Deployment in Irregular Terrain using
ABC Algorithm. In: IEEE BICA 2009, pp. 296–300 (2009)

15. Riley, J.R., Greggers, U., Smith, A.D., Reynolds, D.R., Menzel, R.: The flight paths
of honeybees recruited by the waggle dance. Nature 435, 205–207 (2005)

16. Tereshko, V., Loengarov, A.: Collective decision-making in honey bee foraging
dynamics. Comput. Inf. Syst. J. 9, 1–7 (2005)

Author Index

Anghelescu, A. 126

Babu, A. Vinaya 162
Baeten, Jos C.M. 35
Banerjee, Satyajit 150
Bhatnagar, Shalabh 175
Bhuvaneswaran, R.S. 290
Brown, Gary 55

Chen, Tzu-Chun 55

Datta Chowdhury, Atish 150
Deswarte, Yves 15
Devaraj, P. 290

Geetha, V. 138
Ghosh, Subhas Kumar 150
Gore, M.M. 209

Honda, Kohei 55

Kiran, Prabhat 197
Krishna, Shankara Narayanan 1, 301
Kuppusamy, Lakshmanan 301

Lakshmanan, K. 175
Lenin, R.B. 126
Lin, Yunfeng 112
Luttik, Bas 35

Mahendran, Anand 301
Mini, S. 313
Mishra, Manas Kumar 209
Misra, C. 255
Mohanty, Hrushikesha 243
Mukhamedov, Aybek 55

Panda, Brajendra S. 187, 267
Parimala, N. 221
Pratt, Vaughan 92
Pushparaj Shetty, D. 187

Raju, K.V.S.V.N. 278
Ramana, K.V. 278
Ramaswamy, S. 126
Rao, S.V. 197
Rekha, J. Ujwala 162
Roşoiu, Ionuţ 232

Sabat, Samrat L. 313
Saini, Anu 221
Sam, I. Shatheesh 290
Shahu Chatrapati, K. 162
Shen, Zhiming 112
Sinha, Koushik 150
Sreenath, N. 138
Sri Krishna, A. 278
Swain, P.K. 255

Udgata, Siba K. 313

Valli Kumari, V. 278
van Tilburg, Paul 35
Varma, N. Sandeep 278

Wimmer, Maria A. 76
Wu, Ryan 112
Wu, Xiaoxin 112

Yaseen, Qussai 267
Yoshida, Nobuko 55
Yoshigoe, K. 126

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	An Overview of Membrane Computing
	Introduction
	The Basic Model
	Variants of the Basic Model

	Complexity Aspects
	Active Membranes
	Uniformity and Semi-uniformity
	Avoiding Polarizations

	Discussion
	Extensions, Applications
	Comparison with Related Areas
	Implementation Efforts

	References

	Protecting Critical Infrastructures While Preserving Each Organization’s Autonomy
	Introduction
	Problem Statement and Related Work
	CII Security Requirements
	Related Work

	The PolyOrBAC Security Framework
	Specifying Local Security Policies with OrBAC
	Managing Interactions between Organizations
	Expressing and Checking WS Interactions with e-Contracts

	Experiment and Lesson Learnt
	Conclusion
	References

	Computations and Interaction
	Introduction
	Process Theory
	Regular Processes
	Pushdown and Context-Free Processes
	Computable Processes
	Conclusion
	References

	Scribbling Interactions with a Formal Foundation
	Introduction
	Background: Modelling Interactions through Protocols
	Overview of Scribble
	Scribble Examples
	Formal Foundations of Scribble
	Development Framework
	General Concepts
	Concrete Design

	Related Work and Conclusion
	References

	Open Government in Policy Development: From Collaborative Scenario Texts to Formal Policy Models
	From Technology-Driven E-Government to Open Government
	Current Deficiencies in Open Government
	OCOPOMO: A New Approach to Integrate Open Collaboration in Policy Development
	The Project
	The Approach in More Detail
	Overall Architecture for the ICT Toolbox

	Current Status of Related Developments
	Concluding Remarks
	References

	Linear Process Algebra
	Background
	Chu Spaces as Generalized Linear Algebra
	Linear Processes
	Processes as Transformable Entities
	Linear Process Algebra
	The Curry-Howard Correspondence with Boolean Algebra
	Example Terms
	Laws
	Beyond Petri Nets
	References

	Distributed Computing
	Jump-Start Cloud: Efficient Deployment Framework for Large-Scale Cloud Applications
	Introduction
	Jump-Start Cloud Deployment Overview
	Fast Cloud Application Deployment
	Fast VM Installation and Differentiation
	Cloud Application Deployment

	Image Distribution for Application QoS
	Pre-deployment
	Background Deployment
	On-Demand Deployment

	Experimental Results
	Experimental Data

	Conclusions
	References

	Capacity Estimation in HPC Systems: Simulation Approach
	Introduction
	Job Load Characterization
	Simulation Setup
	Simulation Results
	Conclusions and Future Work
	References

	A Multi–Granular Lock Model for Distributed Object Oriented Databases Using Semantics
	Introduction
	Related Works
	Conflicts among Design Time Requests
	Conflicts between Runtime Requests and Design Time Requests

	Proposed Scheme
	Concurrency among Design Time Requests
	Concurrency between Design Time Requests and Runtime Requests

	Correctness of the Algorithm
	Conclusion
	References

	Contention-Free Many-to-Many Communication Scheduling for High Performance Clusters
	Introduction
	Our Contribution

	System Model
	Problem Formulation
	Proposed Solution
	CSM Module Description
	Lower Bound on the Total Migration Time
	Algorithm Partial Shuffle Transfer (PST)
	Analysis of Algorithm PST
	Algorithm Large Data Transfer (LDT)
	Analysis of Algorithm LDT
	Algorithm Small Data Transfer (SDT)
	Analysis of Algorithm SDT

	Discussion on Hierarchical Schedule Generation
	Conclusion
	References

	Recursive Competitive Equilibrium Approach for Dynamic Load Balancing a Distributed System
	Introduction
	Competitive Equilibrium Theory
	Recursive Competitive Equilibrium Theory
	Proposed Distributed System Model
	Competitive Equilibrium Approach for Static Load Balancing
	Algorithm CES
	Complexity of Algorithm CES

	Dynamic Load Balancing
	Recursive Competitive Equilibrium Approach for Dynamic Load Balancing

	Experimental Results
	Nash Equilibrium Scheme (NES)
	Effect of System Utilization
	Effect of Bias
	Effect of Exchange Period

	Conclusions
	References

	Sensor Networks
	Smoothed Functional and Quasi-NewtonAlgorithms for Routing in Multi-stage QueueingNetwork with Constraints
	Introduction
	Routing in Multi-stage Queueing Network - Problem Formulation
	Smoothed Functional Algorithms for Constrained Routing
	Gradient SF Algorithm
	Newton-SF Algorithm

	Quasi-Newton Algorithms
	Quasi-Newton SF Algorithm

	Simulation Results
	Conclusion
	References

	An Incremental Power Greedy Heuristic for Strong Minimum Energy Topology in Wireless Sensor Networks
	Introduction
	A Graph Theoretic Model of the SMET Problem
	Summary of Previous Work
	Kruskal-Incremental Power Greedy Heuristic
	Experimental Results
	Conclusion
	References

	kth Order Geometric Spanners for Wireless Ad Hoc Networks
	Introduction
	kth Order Geometric Spanners
	kth Order Relative Neighborhood Graph (k-RNG)
	kth Order Gabriel Graph (k-GG)
	kth Order Delaunay Graph (k-Del)
	kth Order Yao Graph (k-Yao)

	Simulation and Analysis
	Conclusion
	References

	Robust and Distributed Range-Free Localization Using Anchor Nodes with Varying Communication Range for Three Dimensional Wireless Sensor Networks
	Introduction
	Related Work
	Proposed Localization Algorithm
	Network Model and Assumptions
	Beacon Point Selection
	Position Calculation
	Error Detection and Correction
	Algorithm

	Simulation Results
	Fixed vs. Variable Communication Range
	Mobility Model
	Error Correction
	Average Localization Time
	Robustness (Average Localization Error)

	Conclusion and Future Work
	References

	Internet Technologies and Applications
	Decision Support Web Service
	Introduction
	Related Work
	Architecture
	X-UDDI
	APIs of X-UDDI
	Publishing API of DSWS
	Inquiry API of DSWS

	Example
	Publishing the Service in the X-UDDI
	Finding a DSWS

	Conclusion
	References

	A Scalable Architecture for Real-Time Online Data Access
	Introduction
	Previous Work
	Design and Implementation
	Results
	Conclusions
	References

	Socially Responsive Resource Usage: A Protocol
	Introduction
	Ethics on Resource Usage
	Participating Entities
	The Protocol
	Adaptive Protocol
	Related Work
	Conclusion
	References

	An Automated HSV Based Text Tracking System from Complex Color Video
	Introduction
	Related Work
	Overview of the Approach
	Shot Detection
	Key Frame Selection
	Frame Based Text Localizer
	Text Localization in Key Frames Using Bi-directional Prediction

	Performance of the Proposed System
	Shot Detection Accuracy and Speed of Processing
	Text Detection Accuracy
	Processing Speed

	Conclusion
	References

	Security
	Enhanced Insider Threat Detection Model that Increases Data Availability
	Introduction
	Related Work
	The Effect of Knowledgebase and Lifetime of Data Items
	Ordering Access Sequence
	Tasks as a Batch of Transactions
	Limitations and Possible Solutions
	Providing Incorrect Values of Data Items
	Tasks Executing a Transaction at a Time

	Choosing the Sequence with the Lowest Risk
	Conclusions and Future Work
	References

	Checking Anonymity Levels for Anonymized Data
	Introduction
	Related Work
	The PRUDENT
	Verification Algorithm
	Verifying for k-Anonymity
	Verifying for l-Diversity
	Verifying for (α, k) Anonymity

	Experimentation
	PRUDENT Vs. Privacy FP- Tree
	k-Anonymity
	l–Diversity
	(α, k) – Anonymity

	Conclusions
	References

	Chaos Based Image Encryption Scheme Based on Enhanced Logistic Map
	Introduction
	Logistic Map
	ProposedScheme
	Key Generation
	Rotation and XORing
	Nonlinear Diffusion
	Alternative zig-zag Diffusion

	Performance and Security Analysis
	Histogram Analysis
	Statistical Analysis
	Differential Analysis
	Key Space Analysis
	Avalanche Criterion
	Information Entropy Analysis

	Conclusion
	References

	Bio-inspired Computing
	Matrix Insertion-Deletion Systems for Bio-Molecular Structures
	Introduction
	Preliminaries
	Matrix Insertion-Deletion Systems
	Representing Bio-Molecular Structures
	Ambiguity Issues in Gene Sequences
	Universality of Matrix Insertion-Deletion Systems

	Conclusion
	References

	Artificial Bee Colony Based Sensor Deployment Algorithm for Target Coverage Problem in 3-D Terrain
	Introduction
	Related Work
	Problem Definition
	Sensor Coverage
	Mean of Location Points
	Simple Coverage
	k-Coverage
	Q-Coverage
	Cluster Formation

	Proposed Approach
	Behavior of Bees in Nature
	Proposed Method

	Results and Discussion
	Impact of Varying k and Q
	Impact of Varying Number of Sensor Nodes
	Impact of Varying Number of Targets
	Sensitivity Analysis

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

