
Chapter 13

Deploying with JRules

Target audience
l Application architect, software architect, developer

In this chapter you will learn
l How rulesets are packaged as part of a RuleApp
l What are the ruleset versioning capabilities
l How to manage a RuleApp in Rule Team Server and in Rule

Execution Server
l How to use the Rule Engine API, the JSR 94 or the Rule Execu-

tion Server rule session API to integrate rule engine processing
into your application

l How to use a rule engine using JMS deployment
l The concept of Transparent Decision Service
l How to identify which rules executed using the Decision Ware-

house capability
l How to develop queries to select the rules you want to have in

your ruleset

Key points
l The main deployment unit when using the rule execution server is

the RuleApp, which can be created and managed by a business
user within rule team server.

l JRules offers a very flexible API to integrate the rule engine into

the business application leveraging JEE or J2SE deployment
model.

l Rule execution server is simple to use and delivers the rich set of

features to manage a ruleset in production and scale vertically.
l Business users use Rule Team Server to author but also deploy

rules to the different RES.
l Rulesets can be exposed as services, but for most business appli-

cation deployed in SOA a decision service is part of reusable
business services therefore better deigned with a meaningful
interface and implemented using Java using the RES API.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_13, # Springer-Verlag Berlin Heidelberg 2011

419

13.1 Introduction

In this chapter, we present the different deployment possibilities offered by IBM

WebSphere ILOG JRules. We first go over a quick review of the concepts of

operation (see also Sect. 8.2 for more details), with an emphasis on RuleApps,

which are the deployable artifacts to the rule execution server. In Sect. 13.3, we talk

about deploying rule application using the rule engine API. In particular, we review

the classes for rule engine, rulesets, and various utilities that support rule execution

tracing and debugging. In Sect. 13.4, we describe rule deployment using JRules’

Rule Execution Server (RES), whereby rulesets are deployed as services that can be
invoked by applications. Different RES configurations are discussed, depending on

the needs of the business application. We review pure Java integration, JMS, and

SCA. In Sect. 13.5, we address the deployment of Rule Team Server. We conclude

in Sect. 13.6.

13.2 Reminder on the Concepts of Operation

JRules has two authoring environments from where we can deploy rules: Rule

Studio and Rule Team Server (RTS). As seen in Chap. 5, developers use Rule

Studio to build the project structure, to develop the Business Object Model, to

organize the flow of execution, and to implement rules. From Rule Studio, they also

define the different configurations they may want to use for the ruleset deployment.

Basically, we can deploy rules to a rule engine embedded in a business application or

to a managed rule execution environment, which offers a richer set of application

management features. The choices between the two depend on the application require-

ments. In SOA, an architect may leverage the JEE container to support service

binding, security, transaction support, pool for connections to the different data

sources, and so forth. Therefore, the natural deployment leverages the Rule Execution

Server (RES) component, which is a Java Connector Architecture implementation.

The alternative is to use an embedded deployment in whichwe package the engine jars

with the application and we deploy and execute the ruleset (as ruleset archive) on a

single JVM. This last approach uses the lower level API to access the rule engine and

the ruleset archive: a packaging for the rules (see Sect. 13.3.1 later). There is a third

deployment using the RES in J2SE, which we present in Sect. 13.4.1.

Figure 13.1 illustrates the tasks a developer has to perform within Rule Studio to

prepare for an embedded integration.

The right side of Fig. 13.1 presents a potential application packaging, including

the domain data model, the application logic (business service interfaces and

implementations), the rule engine, and the ruleset. The domain data model is

most likely a Java model accessed through a data access object layer, so it can be

packaged as a standalone reusable jar: dom.jar. The business logic code uses the

rule engine and the ruleset API, which is in the jrules-engine.jar.

420 13 Deploying with JRules

The embedded integration is not recommended when the requirements for

management of rules and rulesets are becoming crucial. IT developers will most

likely re-implement most of the features supported by the rule execution server, like

database persistence for the ruleset, management stack to control the life cycle of

the ruleset, rule processing statistics and logging mechanism, transaction support,

security control, engines pooling, etc. When the application needs to support

multiple rulesets, parallel execution, or is processing data within a transactional

context, we must leverage the services of a JEE container. Rule Execution Server,

deployed on an application server as a Java Connector Architecture1 resource

adapter (RA), supports transaction management, security controls, and rule engine

pooling.

In RES, there are multiple patterns to invoke a ruleset: using java object (POJO),

local or remote EJBs, web service protocols, or as JMS listener using a Message

Driven Bean. We will detail the RES subcomponents and the activities to deploy a

ruleset in Sect. 13.4.

At the lowest level, a Ruleset is packaged as a rule archive which is a jar

including rule files,2 meta data files such as the reference to BOM, the ruleset

signature description, and the exported rule properties. If we use the rule engine

API we have to parse the rule archive before calling the rule execution. This parsing

has to be performed only at the application initialization. When using the Rule

Execution Server, the rule archive is packaged within a RuleApp and transparently

parsed at the first call for rule execution.

A RuleApp contains one or more rulesets. In Fig. 13.2, the ClaimProcessing-

RuleApp has four rulesets with rules and one with the BOM entries.

In Rule Studio, RuleApps are managed inside projects. A RuleApp project

includes XML descriptors to describe the rule project dependencies, the ruleset

path, and a list of ruleset archive files. As a good design approach, a RuleApp

should include rulesets that share the same domain object model and are in the

IT Staff

Rule Studio

Build Rule Project with all rule
elements
Package Domain OM
Integrate Rule Engine API with core
app
Export ruleset archive
Deploy jars

JVM
BizApp.jar

BRE
Rule Set

Dom.jar

App-logic.jar

Fig. 13.1 Packaging a rule application

1Java Connector Architecture: http://java.sun.com/j2ee/connector/reference/industrysupport/index.

html.
2One irl (ILOG Rule Language) file per rule. The format is a text file with IRL syntax.

13.2 Reminder on the Concepts of Operation 421

http://java.sun.com/j2ee/connector/reference/industrysupport

same application context. From a RuleApp project, the developer can perform

all the pure administration activities like versioning, deployment, adding

management properties, export, and so forth. Figure 13.3 shows the Rule

Studio RuleApp editor for the claim processing RuleApp, which includes

three rulesets, “adjudicateClaimrules”, “verifyCoveragerules”, and “validate-

Claimrules.”

Each ruleset in a RuleApp can be invoked using a ruleset path. A ruleset path

includes the reference of the RuleApp name and the ruleset name inside the

RuleApp. The following ruleset path/ClaimProcessing-RuleApp/validateClaim-

rules refers to the current version of both RuleApp and ruleset. A path such as/

ClaimProcessing-RuleApp/1.0/validateClaimrules/2.1 references specific versions

Fig. 13.2 RuleApp and Ruleset archives

Fig. 13.3 RuleApp editor

422 13 Deploying with JRules

for both elements. Using the ruleset path it is possible to use different versions of a

ruleset within the calling client code. The API supports opening a session with the

rule execution server and to specify the ruleset path to use.

The following simple practice can be applied to control the version number of

the ruleset:

l Increase the X of X.Y version number for each major release of the ruleset
l Increase the Y of X.Y version number to manage subversion deployment

If we change the business logic in any way in one of our rule projects, we have to

upgrade the RuleApp archive to take the modifications into account. It is possible

for a business analyst using Rule Team Server to author rules and to deploy

RuleApps directly to a Rule Execution Server (Using the Configure Tab). In

RTS, a business user can create baseline, which can be seen as a tag applied to

each rule to deploy, and then he can deploy the RuleApp to the target execution

environment. Figure 13.4 presents RuleApps management screen with the set of

buttons to drive the deployment of a RuleApp.

It is important to use the correct RuleApp and ruleset names when defining

the RuleApp in RTS: they have to be the same as the ones specified in the

ruleset path as seen in previous section. If not the rule execution will not find

the rulesets.

Finally, the Rule Execution Server has also a web interface used by administra-

tor to manage the deployed ruleset archives and RuleApps. It is also possible to

perform basic monitoring, to view execution statistics, and to deploy, change, and

manage business rules without stopping the server. The information provided is rich

as we can see the rules deployed in ILOG Rule Language format and the rules that

were executed for given input data.3 The central panel displays the content and

status of a ruleset (Fig. 13.5).

We will detail the RES Console capabilities when detailing the new decision

warehouse function in Sect. 13.4.4.

Fig. 13.4 Rule App management in RTS

3A new capability called Decision Warehouse, see product documentation at http://publib.boulder.

ibm.com/infocenter/brjrules/v7r1/index.jsp.

13.2 Reminder on the Concepts of Operation 423

http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp
http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp

13.3 Integration with JRules Engine

In this section, we cover the integration of JRules engine using the different API

offered, engine and ruleset API in Sect. 13.3.1; JSR94 in Sect. 13.3.2. Using this

kind of integration may be a realistic use case when none of the out of the box

features supported by the rule execution server are needed by the application.

13.3.1 Deploying with the Rule Engine API

When we execute rules using the engine and ruleset API, we deploy and execute a

ruleset archive in a single Java Virtual Machine. The rule engine API is packaged as

jar and added to the classpath of the application. The client code using the rule

engine needs to load the ruleset archive from its data source, to parse it, to

instantiate a rule engine, to prepare the data as ruleset parameters or as facts inserted

into the working memory, to execute the rules, and finally to process the result.

As it takes some time to build the RETE Network and other internal objects, the

operation of loading and parsing the ruleset should be done only the first time the

application is started. The basic API used includes the class IlrContext for

the rule engine, IlrRuleset for the ruleset, plus some helper classes to load

and parse ruleset archive. The following code sample presents a class called

ProcessClaimImplWithJrules with a constructor preparing the rulesets by loading

the archive, parsing it, and creating the IlrRuleset object.

Fig. 13.5 Ruleset view as deployed in RES

424 13 Deploying with JRules

public class ProcessClaimImplWithJrules implements ProcessClaim {

// ruleset name…

protected String validateClaimRsName = "validateClaim-rules.jar";

protected static IlrRuleset validateClaimRuleset;

// constructor

public ProcessClaimImplWithJrules(){

JarInputStream is;

try {

 is = new JarInputStream(new FileInputStream(new File(validate-

ClaimRsName)));

 // prepare a Ruleset archive loader

IlrRulesetArchiveLoader rulesetloader = new IlrJarArchiveLoader(is);
 // then a parser

IlrRulesetArchiveParser rulesetparser = new IlrRulesetArchiveParser();
 validateClaimRuleset = new IlrRuleset();
 rulesetparser.setRuleset(validateClaimRuleset);

 // finally parse to create the ruleset

 rulesetparser.parseArchive(rulesetloader);

 …

Parsing the ruleset archive can generate errors; it is therefore recommended to stop

if an error occurs. Building IlrRuleset may take time so we need to avoid

creating it at each rule execution call, for example, by using a factory and static variable

protected with the singleton pattern. The last part of the class supports the implementa-

tion of the businessmethods. It needs to get an engine instance, sets the input parameters,

optionally initializes the workingmemory, executes the rules, and finally gets the output

parameters. Below is an example of code for the validateClaim operation:

public Result validateClaim(Claim claim) {

// Create the engine with a reference to the ruleset

ilog.rules.engine.IlrContext context = new IlrContext(validateClaimRuleset);
// Initialize the input parameters

IlrParameterMap inputs = new IlrParameterMap();
inputs.setParameter("validateClaim", claim);

inputs.setParameter("validateResult",new Result());

context.setParameters(inputs);

// Initialize the working memory

 context.insert(claim.getPolicy());

// Execute the ruleset

IlrParameterMap outputs = context.execute();
// Get the result

Result rOut=(Result)outputs.getObjectValue("validateResult");
// Clean the context

 context.retractAll();

 context.end();

 return rOut;

 }

13.3 Integration with JRules Engine 425

The engine API is simple and is enough to support a lot of basic applications.

Other transaction heavy applications should leverage the RES API, which we will

detail in Sect. 13.4. But first, let us look at how JRules is supporting JSR94.

13.3.2 JSR94: JRules Specifics

As introduced in the previous chapter, the JSR 94 offers the advantage of interact-

ing with a rule engine without any knowledge of the underlying product API. As of

this writing, the value of using JSR94 is questionable until there is an agreed format

to exchange rules between different engine vendors. W3C is working on defining a

standard called Rule Interchange Format or RIF.4 For more detailed explanations of

the JSR94 API, see Sect. 12.3.4.

JSR-94 delegates its processing using JRules rule sessions deployed in a Java archive

file named jrules-res-jsr94.jar. The JSR-94 interface is implemented with the Rule

Execution Server and not with the rule engine API, which is an additional layer added

on top of the engine, in order to have a common interface for J2SE and J2EE executions.

For JRules, it is not mandatory to deploy a ruleset with the JSR-94 management

API to execute this ruleset. The ruleset is already being deployed to RES and the

client code uses the JSR94 run time API to load object and execute rules. The

Uniform Resource Identifier (URI) used should be a valid ruleset path including

ruleappname/rulesetname. This also means we need to deploy a RuleApp archive to

get access to the rule execution set with JSR94.

For creating a rule execution set, the input stream has to point to a XML ruleset

descriptor which looks like:

<?xml version="1.0" encoding="UTF-8"?>

<rule-execution-set>

 <!-- The value attribute could be a valid path or a valid URL on a RuleApp ar-

chive file -->

 <location value="res_data/validateClaim-rules.jar"/>

</rule-execution-set>

It defines the path to your RuleApp archive file, generated by Rule Studio. The

client code needs to create a service provider, which in the case of JRules should use

the following URL:

// Get the rule service provider from the provider manager

Class.forName(IlrRuleServiceProvider.class.getName());

RuleServiceProvider serviceProvider = RuleServiceProviderManager.getRuleServicePro

vider(“ilog.rules.bres.jsr94”);

4See detail at W3C URL: http://www.w3.org/2005/rules/wiki/RIF_Working_Group.

426 13 Deploying with JRules

http://www.w3.org/2005/rules/wiki/RIF_Working_Group

13.3.3 Monitoring and Tracing Rule Execution

As part of the integration there is a need to be able to trace and monitor execution of

the rules. RES supports monitoring of rule execution out of the box. We will detail

this in Sect. 13.4. When using the low-level API, it is still possible to attach a

monitoring tool to get events from the rule engine when it processes business data.

We can attach a notification observer using the engine API connectTool(engine-

Observer).

// create a rule engine – with a ruleset

IlrContext context = new IlrContext(validateClaimRuleset);

//add the observer
context.connectTool(new EngineObserver());

The observer is an extension of the ilog.rules.engine.IlrToolAdapter class or

an implementation of the IlrTool interface; some callback methods can be over-

ridden to trace the execution. For example, the method notifyBeginInstance is

invoked in RETE mode when the engine executes a rule, so we can log the name

of the rule.

public class EngineObserver extends IlrToolAdapter {
….
 public void notifyBeginInstance(IlrRuleInstance instance) {
 logger.info(instance.getRuleName());
 }

In production environment, logging has to be designed with care. We will most

likely prepare the minimum information during the rule processing and use an

asynchronous call to send the message to a messaging queue for future processing

done by a listener. Such heavy processing include saving the information to a

database. The goal is to avoid impacting the performance of the rule engine.

Asynchronous calls do not block the caller and make the receiver take care of the

logging and of the persisting of the events into a data source.

13.3.4 Resource Pooling

As discussed in the previous chapter, it is possible to pool rule engines for parallel

processing. JRules offers this capability out of the box using JCA connection

pooling inside the RES. Even in a J2SE deployment, the JRules implementation

(in jar jrules-res-execution.jar) of the JCA API is using engine pooling. The pool

size can be configured using a XML descriptor file named ra.xml.

13.3 Integration with JRules Engine 427

13.4 Deploying with the Rule Execution Server

In this section, we review the most important capabilities of RES in the context of

application integration and ruleset deployment. We start by presenting RES archi-

tecture as a JCA resource adapter, detailing the rule engine pooling and the ruleset

deployment. Then we review the RES session API to use to call for rule execution

in application server or a J2SE application. We detailed the JMS deployment in

Sect. 13.4.2 and the SCA deployment in Sect. 13.4.3. We present in Sect. 13.4.5 the

concept of transparent decision service (TDS) as the simplest way to demonstrate

smooth integration. Finally in Sect. 13.4.4 we present the decision warehouse

feature, used to monitor the rule execution with RES.

RES can be deployed as a centralized service, executing multiple rulesets on the

requests of multiple clients. It can also be packaged within a unique business

application (WAR or EAR) and only visible by the code of this application. This

packaging does not mean we cannot reuse rulesets, in fact the business services can

be reused and are callable using Web Service, SCA, JMS, local Java call, or RMI

depending on the communication choices. RES is based around a modular archi-

tecture that can be deployed as a set of Java Plain Old Java Objects (POJOs) running

in a J2SE JVM, hosted using Apache Tomcat, or run within a full Java EE

compliant application server.

RES is a resource adapter of the Java Connector Architecture. JCA is designed to

provide a unified way to access external resources from Enterprise Information

System (EIS), instead of having proprietary adapters for each external system. JCA

enables an EIS vendor to provide a standard resource adapter for its EIS (Fig. 13.6).

By plugging into an application server, the resource adapter collaborates with the

JEE-App Server- Services

Connection
Mgr

Transation
Mgr

Security
Mgr

Container
Component

Contract

System
Contracts

Application Component
(POJO, EJB, Servlet)

Resource Adapter

CCI

EIS

ERP System CRM

Fig. 13.6 JCA basic architecture

Source: java-sun JCA 1.5 specification

428 13 Deploying with JRules

server which provides the underlying mechanisms for transactions, security, and

connection pooling mechanisms.

Considering a rule engine as an EIS may look strange, at first, as a rule engine

does not access EIS per say, but the goal of this implementation is to leverage the

contracts provided by the JEE container such as transaction, security, and connec-

tion management without reinventing those services. Resource adapters implement

two things: the Common Client Interface (CCI) used to expose the high level JCA

API to the caller, and the implementation of the functionality expected using

underlying EIS resource.

There are two main types of contracts that a resource adapter (RA) implements

in order to get compliant with the JCA:

l The application level contract defines what the RA needs to support so compo-

nents within the JEE container can communicate to the EIS.
l The system level contracts: which are connection management, transaction

management, and security management.

Connection management provides a connection factory and connection interface

based on the CCI. It pools the connections to the EIS to improve performance. A

rule engine is attached to a connection. So rule engine pooling is linked to

connection pooling. Transaction management allows EIS resources to be included

in the transaction initiated by the container’s transaction manager. The RAmanages

a set of shared EIS resources to participate in a XA or local transaction. Finally,

security management secures access to the EIS through user identification, authen-

tication, and authorization and uses communication security protocols.

The resource adapter in JRules is named eXecution Unit (XU) and aims to handle

the low-level details of initializing and invoking the rule engine. It adds amanagement

layer used to access resource adapter, resources such as connections to a ruleset data

source and exposing configuration and run time data. An XU is packaged as an

independently deployable unit called a resource adapter archive (RAR) .

There is only one XU deployed (.rar) per Application Server instance. Figure 13.7

illustrates a classical deployment within a JEE container. The clients are decision

services, which are using the rule session factory and the rule session to access the

rule engine. The implementation of a session is getting SPI connection from a pool

managed by the JEE container (JCA pool).

The XU provides scalability by using context pooling and ruleset caching: Each

IlrContext is linked to an SPI connection, which the application server

caches within the JCA pool. In fact due to the transaction support requirement,

asynchronous ruleset parsing, and hot ruleset deployment use cases, one JCA SPI

connection is associated to a set of IlrContext.

The IlrRuleset is shared between engines and kept in memory until

there is no more IlrContext using it (SPI connection reference). At the end

of an execution, the server may decide to put the SPI connection back into the JCA

pool. In this case, the associated IlrContext will be reset and ready for

another execution. In the case of XML binding usage, the dynamic classes are

attached to the ruleset and are therefore made available directly to the XU. For Java

implementations, all the classes are passed to the XU by the rule session class

13.4 Deploying with the Rule Execution Server 429

loader. In Fig. 13.7, we can imagine the decision service as packaged within aWAR

or an EAR. If we deploy it in Tomcat 6 for example, we use the J2SE packaging

which includes jrules-res-session.jar and the JCA API: j2ee_connector-1_5-fr.jar.

The same data source must be used for the management and execution stacks. To do

so we get a ra.xml file from <jrules-home>/executionserver/bin and add it to the

classpath. This file will override the default_ra.xml descriptor provided in the

jrules-res-execution.jar. When we use a data base to persist RuleApps we need to

change some of the properties in this file, like thepersistenceType, and

the persistenceProperties.
The last important component of RES is the management model. When deploy-

ing a ruleset using the RES Console, this one saves rulesets to a data source, and

signals changes to the management stack of RES using the JMX5 protocol. The

management model is based on the JMX Mbeans specification and is used to

deploy, to manage, and to monitor the execution resources of Rule Execution

Server. The various MBeans of the RES model are the runtime proxies of each

entity within the model. There are three Mbeans deployed in each managed server:

l The IlrJmxModelMBean is the root of the Rule Execution Server

management model. It controls every RuleApp deployed on Rule Execution

Server. This MBean performs actions such as adding and removing references to

the RuleApps contained within the model.

JEE-App Server

Rule Execution Server

RES DB

Decision
Service

RuleSet

RuleSet

Other
Service

Connection
Manager

Transaction
Mgr

Security
Mgr

BPEL
Service

System Contracts

JCA Pool

SPI connection
RuleSetEngine

P
E
R
S
I
S
T
E
N
C
E

JCA-Res Adp

Session
Management

JMX-Mbean
Server

Business Tier

Decision
Service

Fig. 13.7 Rule Execution Server as resource adapter

5See http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/ for details.

430 13 Deploying with JRules

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

l The IlrJmxRuleAppMBean is a management entity that controls a

deployed RuleApp. This MBean performs actions such as adding and removing

references to the rulesets contained within a RuleApp.
l The IlrJmxRulesetMBean is the management entity that represents

the execution resources for the Execution Unit (XU). This MBean exposes some

runtime metrics of the execution. These metrics are computed from the various

data collected on each XU in a cluster. It exposes an API to set the resources and

properties that are used at execution time and provides a “hot” deployment entry

point to update the rules at execution time.

The XU reads rulesets from the persistent layer whenever it needs to, that is,

when the application server has removed a cache entry from the JCA connection

pool, or when a new ruleset was deployed to the data source and the XU receives a

JMX notification message.

13.4.1 Using RES Session API

When using a Rule Execution Server, the implementation of a business interface is

leveraging the rule session object to communicate with the rule engine. Starting

with JRules 6.0 rule sessions use a factory interface to allow clients to obtain

management session, stateless, or stateful execution sessions. The factory repre-

sents the entry point to communicate with the RES. The code used to get a rule

session factory has to specify if we use a POJO, J2EE, or J2SE sessions. Most of the

time when deployed into a JEE container, it is simpler to use a Plain Old Java

Object approach and create a POJO factory as a singleton within the business

service implementation. We recommend defining the rule session factory as the

singleton design pattern: during the first call to a ruleset, the RES creates the XU

resource like the connection pool, loads the classes, and parses the ruleset. Using a

singleton enforces that each subsequent call will only execute the rules and not the

ruleset parsing. Using an factory instance enforces parsing the ruleset at each call.

The factory has different implementation depending of the type of deployment.

The following table summarizes each possible implementation:

Concept: Singleton
Singleton6 is a design pattern to restrict the instantiation of a class to one unique

object. In Java, this restriction applies within the classloader and uses the “static”

keyword to declare the unique instance.

6See Wikipedia detailed definition at http://en.wikipedia.org/wiki/Singleton_pattern.

13.4 Deploying with the Rule Execution Server 431

http://en.wikipedia.org/wiki/Singleton_pattern

Name Description Comment

J2SE Session

Factory

Used in pure J2SE environment. The rule session implementation

provided by this factory does not

support transactions.

It is thread safe.

POJO Session

Factory

Session used for JEE deployment. No

EJB support.

Simplest interaction with the engine.

EJB3 Session

Factory

Used by EJB code to get access to a rule

session with JNDI lookup. The

sessions are EJB session obtained

from the JNDI namespace.

Pure EJB pattern, but with transparent

life cycle.

Rule sessions help execute the rules in stateless or stateful mode. Most business

applications are using stateless, stateful mode is rarely used. The stateful mode aims

to maintain a long runtime communication model with the engine in particular to

control the working memory and to keep object references at each execution call.

The implementation of a stateful mode is a bit more complex as it forces developers

to manage the full life cycle of the engine and its working memory. A rule session

provides the class loader for the Java XOM and therefore will almost certainly be

packaged in every client application. This class is dependent on the application

server used. So copy the jar file from <jrules-home>/j2ee/<application-server>/

jrules-res-session-<appserver>.jar and package it with your application ear.

A decision service, which uses the RES API, follows the same pattern already

seen before: Get a session, set the parameters, call the rule execution, parse the

results, and return the result to the caller. The session request is open using a

canonical path to the ruleset under execution. The path includes the reference to the

RuleApp and ruleset:

// Create a session request object

IlrSessionRequest sessionRequest = factory.createRequest();
sessionRequest.setRulesetPath(IlrPath.parsePath(“/ClaimProcessingRuleApp/Validate
ClaimRules”));

// … Set the input parameters for the execution of the rules

Map inputParameters = new HashMap();

inputParameters.put("validateClaim", claim);

inputParameters.put("validateResult",new Result());
sessionRequest.setInputParameters(inputParameters);

try {

 // Create the stateless rule session.

 session = factory.createStatelessSession();
 // Execute rules

 IlrSessionResponse sessionResponse = session.execute(sessionRequest);

 // get result

 result=(Result) sessionResponse.getOutputParameters().get("validateResult");

…

This code is best written in Rule Studio using the java client for RuleApp wizard,

and then integrated into the decision service implementation. If we need to use a

stateful session, some care has to be taken to reuse the factory, the rule session, and

other objects to avoid losing the stateful management of the working memory.

432 13 Deploying with JRules

The choice of session type is linked to the deployment strategy of each decision

service. When the service is deployed within the same server as the RES, a local

rule session can be used. The POJO or EJB rule sessions are the possible choices to

interact with the RES. The use of EJB session is relevant to support transaction

propagation and security requirements. The session is coming from one of the

possible session factory. Below is an example of EJB3 rule session factory to use

within the decision service code:

IlrSessionFactory factory = new IlrEJB3SessionFactory();

// work on the session request the same way as code above …

IlrStatelessSession session = factory.createStatelessSession()

When the client code is remote to the RES, remote EJB can be used, or Message

Driven Bean. For remote EJB, the IlrEJB3SessionFactory has a simple API to set a

remote flag to get remote session. Message Driven Bean represents one of the most

common deployments when we need to integrate with Enterprise Service Bus,

legacy application connected with IBM WebSphere MQ or any asynchronous

event architecture.

13.4.2 JMS Deployment

As detailed in the previous chapter, Message-Oriented Middleware is the technol-

ogy of choice for asynchronous processing of messages. JRules Rule Execution

Server delivers an out of the box Message Driven Beans (MDB) (IlrRule
ExecutionBean) to invoke the XU within the onMessage() call using a

simple session and then posts the execution results to a JMS destination. The MDB

with the rule session are packaged as an EAR file and deployed in the JEE

container. This implementation may be useful for event driven application or

with mainframe application integration. The JMS message needs to include the

ruleset path and a status property. The message body has to include the ruleset

parameters using key-value pairs. The client code posting messages to a topic or a

queue needs to specify the ruleset path it wants to execute. This strongly coupled

integration between the client and the rule service is not a common usage of JMS.

Most of the architectures which are leveraging message-oriented middleware or

ESB use a loosely coupled approach where clients post messages without any

knowledge of what the consumer is. So if we need to implement an Event Driven

Architecture decision service which can be used with messaging communication

we may need to leverage our own MDB implementation which will hide the fact

we are using a rule set. The onMessage() method can do the unmarshalling of the

JMS message payload into a Java data model and then can synchronously call

the business service responsible to process the business objects. The outcome

of the decision services can be processed by a publisher class back to the JMS

layer. Queue or topic listener needs to get references to the business service

13.4 Deploying with the Rule Execution Server 433

implementations and to the publisher so that it can send the result back to a topic for

future processing. Figure 13.8 illustrates a design where the decision service

implemented following the concepts presented in previous section can be re-used

with the JMS communication without a lot of work.

13.4.3 SCA Component

Another interesting wizard within Rule Studio is used for generating RuleApp

client code with all the needed artifacts to deploy the rule execution as a Service

Component Architecture (SCA) component. One of the main goals of SCA is to

clearly separate the communication details from the business logic: the protocols

and quality of service are wired at execution time, the developer focuses on defining

reusable services and components supporting the business functions to develop. By

looking at the generated java code, there is no difference with standard RES client

implementation (see Sect. 13.4.1); the only difference is coming from the compos-

ite descriptor used to define the SCA component. The component statement in the

composite file may look like:

<component name="ClaimProcessingComponent">

 <implementation.java class="claimProcessing.server.ClaimProcessingImpl"/>

</component>

Before release 7.1.1 of JRules, the wizard leveraged the Apache Tuscany7 Java

runtime on client side to call the service. In later releases of JRules, the SCA

Decision Service

Result ValidateClaim(Claim)

RES
BRE

Rule Set
Decision Service Impl RES API

Result Claim

Domain Object Model

Listener
onMessage()

Publisher
sendMessage()

Fig. 13.8 JMS – Rule engine deployment

7http://tuscany.apache.org.

434 13 Deploying with JRules

http://tuscany.apache.org

implementation used is the one coming from the IBM WebSphere SCA feature

pack. Most likely a business application will not use the RuleApp exposed “as is” as

a SCA component but will use a business service as façade for the rule execution. In

that case, the generated client code can be used as a starting point for the imple-

mentation of such a business service. The caller of an SCA component needs to get

a SCADomain instance by specifying the composite descriptor, then get the service

reference, and finally call the business method (e.g., validateClaim).

// Create a Tuscany runtime

SCADomain scaDomain = SCADomain.newInstance ("ClaimProcessing.composite");

ClaimProcessing service = scaDomain.getService(

 ClaimProcessing.class,"ClaimProcessingComponent");
// prepare objects like the claim … then call the execution using the decision

service API

service.validateClaim(theClaim);

For WebSphere SCA feature pack8 the access to the service is done using the

service manager like:

com.ibm.websphere.sca.ServiceManager.INSTANCE.locateService
("ClainProcessingComponent");

13.4.4 Monitoring and Decision Warehouse

When an administrator wants to monitor the rule execution, he can use the Rule

Execution Server Console which is a web application deployed to a servlet con-

tainer like Tomcat or WebSphere Application Server. The RES Console includes

the JMX MBean server used to receive rule execution statistics. The application

server needs to support JMX, JNDI, and JDBC data sources. In a J2SE deployment

if we want to have the monitoring capabilities we need to have the RES Console and

the RES-XU in the same JVM.

One of the first monitoring functions is to verify the server status. In the RES

Console, the Diagnostic tab allows the execution of a set of predefined tests and to

present color coded results. The tests address connection, resource adapter infor-

mation, rule app and ruleset status, etc. (see Fig. 13.9).

In Fig. 13.9, the XU lookup and XU MBean are yellow because we did not

execute a ruleset yet. The XU MBean is created when the XU connector is created.

The XU connector is created when a connection is requested so a rule session

opened.

8See details at http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/.

13.4 Deploying with the Rule Execution Server 435

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/

As part of the monitoring capabilities in JRules v7.x is a new feature called

Decision Warehouse (Decision Validation Service add-on) which stores the rule

execution results in a data source. The type of data persisted may vary depending on

the application, but it is possible to get the list of rules fired, the rule tasks executed

for a given transaction, and the content of the ruleset parameters. When the ruleset

is deployed from rule team server, it is possible to get within the trace, hyperlinks

back to the corresponding rule in RTS repository. This capability helps to quickly

assess for a given business transaction what were the conditions which made the

rule fire. Using the Decision Warehouse tab of the Rule Execution Server Console,

we can search the rule execution trace by specifying search criteria. Figure 13.10

presents this capability.

It is interesting to note from Fig. 13.10 that the first rule execution took more

processing time (328ms), as the RES was parsing the ruleset. The detail of the

decisions made on the last claim processed gives us information about the claim

sent, the path of execution within the ruleset with the rules fired. Figure 13.11

presents such results.

To configure the Decision Warehouse, we need to enable the ruleset execution

monitoring by setting the monitoring.enabled ruleset property to

true. It is possible to use Rule Studio, Rule Team Server, or Rule Execution

server to set such property. RES offers a simple Add Property command inside the

ruleset View. This command supports predefined property (Fig. 13.12).

Usually developers will want to set those properties at the rule project level in

Studio by using the rule project property and the ruleset property menu. When the

rule flow defines a task that uses the sequential or Fastpath algorithm, we need to

Fig. 13.9 Rule Execution Server diagnostic report

436 13 Deploying with JRules

add another ruleset property called: sequential.trace.enabled.
Lastly as we may want to trace what the inputs and outputs were and as such we

may need to setruleset.bom.enabled property to true. If the ruleset is

based on an XSD XOM, the input/output parameters are stored as XML documents.

If the ruleset is based on a Java XOM, the toString() method of the ruleset parameter

(s) type stores the content. Using toString we can limit the information persisted to

improve the performance.

The Decision Warehouse stores its results to different data sources. It is impor-

tant to properly design how to organize the data sources and partition the traces

according to the different decision services the application is supporting. It is also

possible to add our own DAO to store the information in another database;

therefore, a business user can run Business Intelligence report from it. The product

documentation details all of these and provides some customization samples.

13.4.5 Transparent Decision Service

We have seen quite often the term Decision Service in previous chapters. In a

SOA, it is a service which is making a business decision on business data. Such

Fig. 13.10 Search Decision Warehouse

13.4 Deploying with the Rule Execution Server 437

services are most often supported by a business ruleset executed by a rule engine.

In IBM WebSphere JRules, there is also the concept of transparent decision

service (TDS). The term transparent means we can define the decision logic

externally using a rule repository without having to dig into application code to

understand the rules. The Rule Execution Server can expose a ruleset automati-

cally as a web service as soon as it uses an XSD as executable model (or is limited

to using basic java types). The interface definition is based on the ruleset para-

meters, which are defined according to the nature of the business decisions to

Fig. 13.12 Ruleset properties set in RES Console

Fig. 13.11 A rule execution report from Decision Warehouse

438 13 Deploying with JRules

make, and should not be dependent on the needs of a single business process. TDS

is accessed using SOAP and can offer an easy deployment within a SOA. As we

explained in previous chapters, the design of reusable service consumers want to

reuse enforces respecting a set of best practices like loosely coupled, coarse-

grained interfaces, simple data model a client can create and send to the service

provider, keep the business meaning, and the service provider responsible for his

processing like loading the data. A ruleset supports one operation of a business

service: service end point groups operations over a single place, an URL, over a

single protocol; therefore, a ruleset has to be one operation within a packaged

business service. For efficient rule processing, the data needed by the rules need to

be present, a good design practice is to let the service have the responsibility of

loading the data it needs and not ask the client to send the complete data set. This

is truly relevant with reference data. This is not to say we need to load the data

within the ruleset, but before calling the rules. Loading of the data in a ruleset may

be an attractive solution but has a lot of drawbacks. In particular, when we need to

support transaction initiation or propagation, the call to load the data can occur at

the beginning of the rule flow; but if there are exceptions or a time out, the

management of such events is more complex to support in rules than in traditional

code. Finally, most of the ruleset processing needs some reference to other

technical service to access them for getting reference data, or other business

objects. Those services should be hidden to the caller.

There are two types of TDS in JRules: the hosted and the monitored:

l A hosted transparent decision service (HTDS) is a ruleset deployed as a Web

service. It is installed and integrated on the same application server as the Rule

Execution Server. It includes a JMX MBean and is packaged as an EAR (for

example jrules-res-htds-WAS7.ear for Websphere) or as a WAR for Apache

Tomcat 6 (named DecisionService.war). This web application defines some web

service servlet and HTTP listeners which process SOAP requests and route the

message payload (XML document) to the ruleset. Any ruleset is mapped to the

following URL:

http://<hostname>:<httpport>/DecisionService/ws/<NameOfTheRuleApp>1.0

/<NameOfRuleSet/ 1.0?WSDL

The objects defined in the BOM and the ruleset parameters are used to

generate the WSDL file. When the BOM was created by using XSD, HTDS is

very easy to set. The WSDL binding is using SOAP over HTTP with a Docu-

ment/literal style. A developer can import this WSDL and generate the client

code with tool such as Apache axis wsdl2 java.
l A monitored transparent decision service (MTDS) resides on the same applica-

tion server, but is not integrated with RES. It is generated from Rule Studio as a

web app using the wizard: New > Client Project for RuleApps > Web Service.

There are two projects created by this wizard. One client project which includes

the client code calling the web service. And the other one the server side project

13.4 Deploying with the Rule Execution Server 439

which includes the web service definition using the reference implementation of

JAX-WS so it is not supported in all application servers. MTDS manage rulesets

that use an XML schema or a Java XOM with any object types (not limited to

basic java types).

Starting with the server side generated code, the generated project includes

java files, ant script, Execution Unit configuration file (ra.xml), and other xml

descriptors to create the web service (web.xml, application server specific

deployment descriptor). Using the ant targets, we can generate a war file for

the application and deploy it to the target application server. Each rule project

part of the Rule App is exposed as a WebMethod using a signature like

<RuleSetName>Result execute<RuleSetName> (<Rule
SetName>Request request). The operation results and request are

mapped to wrapper objects which include references to the ruleset parameters.

For example, the ValidateClaimRuleRequest has a reference to the Claim

(Fig. 13.13).

The implementation of the web method is using the RES API to set the para-

meters and to call the rule execution. The Java objects used for the data model must

respect the JavaBean specification. The generated code can be used to implement

the business services we need to code and exposed as reusable service. At the

interface definition level we are not specific to rule execution. The service method

can be renamed to better serve business operations. If we need to hook up some

reference to other services needed by the rules, we can do so in the implementation

class. The listener class can be reused to offer statistic reports in the RES Console.

The client code is also an excellent starter code to implement some simulator or

functional test framework.

Decision Service
@WebService
RuleappNameRunner

@WebMethod
Result executeRuleSetName
(Request)

RES

BRE Rule Set

Decision Service Impl RES API

Result RequestServletContextListener

WSDL
Domain Object Model

Fig. 13.13 Monitored TDS generated components

440 13 Deploying with JRules

13.5 Rule Team Server

In this section, we present the deployment of rule team server web application

within the IT architecture and how to leverage the data source mapping to support

multiple rule repositories with one web application. Then, in Sect. 13.5.2, we briefly

present the concept of queries, an element used to control the ruleset packaging.

13.5.1 Physical Deployment

As a management application, the war file does not need to be deployed on the same

node and server as the rule execution server. It is better to deploy it on a different

server, because it can use resources that may impact the performance of the rule

processing. The deployment follows traditional Web App deployment using a

database: we need to configure the JNDI data source reference and specify in the

web descriptor which JNDI name to lookup. Rule team server is also delivered with

an Installation Manager which helps to deploy the DB schema when the database

does not exist. It is important to note that when you are using a different rule meta

model the database schema is different. This is easily done by loading the XML

files describing the extension model into RTS (Fig. 13.14).

All the rule projects within RTS share the same meta properties; therefore, if

there is a need to have different extension model, architect may need to define

different rule repository data sources. By default, the data source used is jdbc/
ilogDataSource. If we want to specify a different data source, we have to

pass it as a request parameter in the URL, for example, http://localhost:8080/

teamserver?datasource¼jdbc/otherteamserverds.

This capability is also used to support different development branches: one data

source is used as trunk and other for other releases. We will detail that in Chap. 17.

It is also possible to define one data source per group of users or line of business:

finance and marketing teams may have two rule repositories clearly separated but

one RTS deployed.

Fig. 13.14 Add custom rule properties in Rule Team Server

13.5 Rule Team Server 441

http://localhost:8080/teamserver?datasource=jdbc/otherteamserverds
http://localhost:8080/teamserver?datasource=jdbc/otherteamserverds
http://localhost:8080/teamserver?datasource=jdbc/otherteamserverds

As part of the physical deployment is the support of “single sign on” integration

for getting users information like userid, group, and password from a central

directory service. RTS can be deployed in an application server and will leverage

the container contract as RTS uses the JAAS API to retrieve user’s data. The

important configuration to complete before running RTS is the group definition

and assignment of the user to one of the four groups of RTS: rtsAdministrator,

rtsConfigManager, rtsUser, and rtsInstaller.

Finally as RTS is the main component to control the rule project, it is important

to avoid duplicating rule repositories between multiple platforms. It is possible to

manage the ruleset deployment to different RES platforms from one central

deployed RTS. This is the simplest and most efficient deployment. The second

pattern is to use one RTS per target platforms, as most IT environment includes at

least development, test, UAT, production, we can have unnecessary deployed RTS.

Rulesets are deployed to the different deployed RES. Finally, another common

deployment is to use two RTS, one for all the rule authoring done by the business

user, used to deploy ruleset to any execution platforms except production. And one

in production managed by IT and mostly used to support rule ‘hot fix’, exclusively

deploy to production RES. It is this last RTS instance that will be used for ruleset

deployment to production server.

13.5.2 Queries

Queries are an important element of the Ruleset deployment. Using query and

ruleset extractors, we can control the ruleset deployment for different purposes

(e.g., test, simulation, and production) and platforms. Common dimensions used

in business are the effective date and expiration date for some business entities

like a product, a pricing campaign, a medicine availability, a loan eligibility, . . .
Business rules defining constraints on those entities have to follow the effective

and expiration dates patterns. With a ruleset extractor, business users may extract

only the rules valid at a given time, or can search for rules in a given status.

Queries can be added to RTS repository by any type of user with the create query

permission. We will detail in Chap. 17 the fine grained permission management

RTS provides. Figure 13.15 presents a query developed to extract rules ready for

production.

Once the queries are defined, a RTS administrator can define extractors using the

feature Configure> Edit Ruleset Extractors. An extractor is defined using a name, a

query, and a validator (Fig. 13.16).

Extractors are then used in the creation of the ruleset archives by specifying the

extractor name. By default all the rules are extracted to the archive (Fig. 13.17).

With queries and extractors we can package rulesets as intended for the different

purposes platform dependant like test, simulation, and production, or time-oriented,

or any business needs.

442 13 Deploying with JRules

13.6 Summary

We reviewed the concepts of operation of JRules and detailed the RuleApp

element, which includes one to many rulesets and which represents the deployable

unit to the rule execution server. RES supports monitoring of rule execution, with

Fig. 13.15 Query to get rules ready for production

Fig. 13.16 Manage ruleset extractors in RTS

Fig. 13.17 Ruleset archives built using extractor

13.6 Summary 443

the option to persist the trace in a decision warehouse. To support vertical scalabil-

ity, the RES leverages the JCA connection pool, so parallel executions are possible

as soon as the server has multiple CPUs or Cores. Ruleset parsing takes time at the

first call, but once parsed a ruleset stays in the RES cache for future processing.

When using a Java XOM, the ruleset parsing needs the class information as part of

the classloader of the class using the rule session API. Most decision service, even if

exposed as web service, should leverage a java layer, which implements the

business service and completes the work of preparing the data graph for the rule

processing. It is important to recall that lazy loading of data may make the rule’s

conditions not evaluate as true: for example, a collection of objects may not be

loaded, and so a test with the in operator will fail. The decision service uses a

stateless processing, sending all the data in one call. The deployment mode can

include different patterns from JMS, for message processing, to pure POJO or EJB.

As a new programming model, SCA is also supported, and SCA component

implemented in Java, uses the RES API to call the rule execution. Finally, we

covered the rule team server deployment, where a set of features help the business

analyst to deploy the RuleApp to RES.

13.7 Further Reading

For more technical information and tutorials, the product documentation is acces-

sible at http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp.

Service component architecture presentation can be read at IBM developerworks

web site at http://www.ibm.com/developerworks/library/specification/ws-sca/, and

the specification is accessible at the Open service oriented architecture portal http://

www.osoa.org/display/main/service+component+architecture+home.

The rule interchange format recommendation is part of the semantic web work

done at W3C. and aims to provide interoperability between rule based systems,

reader can access the description of this recommendation at http://www.w3.org/

blog/SW/2010/06/22/w3c_rif_recommendation_published.

The SCA support pack for WebSphere Application Server can be studied at

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/.

444 13 Deploying with JRules

http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.osoa.org/display/main/service+component+architecture+home
http://www.osoa.org/display/main/service+component+architecture+home
http://www.w3.org/blog/SW/2010/06/22/w3c_rif_recommendation_published
http://www.w3.org/blog/SW/2010/06/22/w3c_rif_recommendation_published
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/

	Chapter 13: Deploying with JRules
	13.1 Introduction
	13.2 Reminder on the Concepts of Operation
	13.3 Integration with JRules Engine
	13.3.1 Deploying with the Rule Engine API
	13.3.2 JSR94: JRules Specifics
	13.3.3 Monitoring and Tracing Rule Execution
	13.3.4 Resource Pooling

	13.4 Deploying with the Rule Execution Server
	13.4.1 Using RES Session API
	13.4.2 JMS Deployment
	13.4.3 SCA Component
	13.4.4 Monitoring and Decision Warehouse
	13.4.5 Transparent Decision Service

	13.5 Rule Team Server
	13.5.1 Physical Deployment
	13.5.2 Queries

	13.6 Summary
	13.7 Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

