
Chapter 11

Rule Authoring in JRules

Target audience
l Business analyst, developer, rule author

In this chapter you will learn
l The different rule entry languages and rule artifacts, namely,

technical rules, action rules, decision tables, decision trees, and
scorecards

l How to build your custom rule language
l How to orchestrate rule execution with ruleset parameters and

ruleflow
l How to optimize rule execution by selecting the appropriate rule

execution algorithm for a given rule task

Key points
l The Ilog Rule Language (IRL) is the foundation upon which other

languages and rule artifacts are built.
l Action rules, decision tables, decision trees, and scorecards are

translated into/executed as IRL technical rules.
l Be aware of the possibility to develop your own rule language

(with the Business Rule Language Development Framework), but
resist the temptation to.

l Refer to your application objects through ruleset parameters.
l Use ruleflows to orchestrate rule execution. They provide a high-

level control mechanism and a context for rule execution.
l Ruleflows offer opportunities for speeding execution through run-

time rule selection, and algorithm selection.

11.1 Introduction

In Chap. 10, we explored the rule authoring infrastructure in JRules, where we

focused on rule projects and the business object model. Rule projects and rule project
dependencies enable us to modularize rule development in such a way as to facilitate

the sharing and reuse of rule artifacts across different functional areas. The business

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_11, # Springer-Verlag Berlin Heidelberg 2011

333

object model represents the business view of the application data – be it Java classes

or XML data. It is defined through a powerful (BOM to XOM) mapping language in

much the same way that relational database views are defined using the underlying

database, by filtering irrelevant properties, defining computed attributes, or introdu-

cing so-called virtual classes that mean something to business but that are not

supported in the underlying application model (Java or XSD). In particular, we saw

how the architecture of the BOM and the BOM to XOM mapping is able to absorb a
wide range of changes to the underlying application model (Java or XSD), without

affecting the existing rules. If it is the rules that we want to rephrase, a vocabulary
refactoring functionality propagates vocabulary changes to the rules that use them.

In this chapter, we first explore the different kinds of rule languages (the ILOG
Rule Language, or IRL, and the Business Action Language, or BAL) and rule artifacts
that use them, namely, technical rules (IRL), action rules (BAL), decision tables
(BAL), decision trees (BAL), and scorecards (IRL). We also provide an overview of

a framework for developing rule languages. In Sect. 11.3, we discuss rule execution

orchestration, where the focus is on organizing the execution of rules during run-time.

We will talk about ruleset variables and parameters and about ruleflows, which are

process flows whose tasks consist of groups or rules. Ruleflows enable us, among

other things, to statically select the algorithm to use to execute for a particular rule

task, and to dynamically select the rules that execute within a particular task. Best

practices are presented in Sect. 11.4. We conclude in Sect. 11.5.

11.2 Rule Artifacts

In this section, we give a brief overview of the various rule artifacts. Space

limitations do not allow us to delve too deeply into any of the artifacts or languages

covered; the tutorials and reference manuals included in the product documentation

do a much better job at that! Our purpose is to provide the reader with a roadmap of

the rule artifacts, and the relationships between them.

With this in mind, it makes sense to start with the IRL language, or ILOG Rule
Language, which is the ancestor of all of the languages and artifacts,1 and technical
rules which are if-then rules written using IRL. IRL is also the only language that the

rule engine understands, and every other language or artifact has to map to IRL. We

then talk about the Business Action Language, which references the business vocabu-
lary as opposed to the BOM elements directly, and action ruleswhich are if-then rules
written inBAL.Wenext talk about decision tables anddecision trees, which are higher-

level rule aggregates written using the BAL. Scorecards represent yet another high-

level artifact typically used in risk assessment or credit worthiness applications. Finally,

we briefly talk about the business rule language development framework, which is a

flexible framework for developing rule languages, of which the BAL is an instance.

Figure 11.1 shows the different kinds of languages, artifacts, and relations between

them. Ruleflows will be discussed in Sect. 11.3 about rule execution orchestration.

1The first full-fledged ILOG Rule Language was based on the rule language OPS5 (see Chap. 6).

334 11 Rule Authoring in JRules

11.2.1 IRL and Technical Rules

As shown in Fig. 11.1, the ILOG Rule Language is the base language for rule

artifacts of JRules, including, but not limited to, if-then “technical rules”. Histori-

cally, IRL was synonymous with if-then rules, and so we will start with the subset of

IRL that concerns if-then rules, called technical rules as opposed to action rules
which are written using the BAL. Let us first start with a simple example.

rule YoungDriver {

 property priority = 0;

 when {

 ?driver: Driver(age < 25);

 } then {

 System.out.println(“Found a young driver:” + ?driver);

 }

 }

A rule has a name (YoungDriver), some metadata/properties (property
priority ¼ 0), an if/when/condition part (when{?driver: Driver
(age < 25);}), and a then/action part (then {System.out.
println(“Found a young driver:” + ?driver);}). This

rule will fire for those instances of class Driver found in working memory,

whose age attribute is smaller than 25. For each such driver, the rule will print the

string “Found a young driver:” followed by the output of the toString()
method on that object. The expression Driver(age < 25) is called a class
condition, where the class name is Driver, and the condition is age < 25

Ilog Rule
Language (IRL)

Business Action Language
Business Rule Language

Develop Framework

Action RulesTechnical Rules

translates-into

written-in

written-in

Decision tablesDecision treesScorecardsRuleflows

written-in
translates-into

written-in

translates-into
translates-into

translates-into

translates-into

Your language?

la
ng

ua
ge

s
ar

tif
ac

ts

Fig. 11.1 The rule language landscape in JRules

11.2 Rule Artifacts 335

whereage in this case refers to a public data member of the classDriver. The

expression’“?driver : . . .” is a variable binding, where ?driver is the

variable name. In this case,?driverwill be bound to an instance ofDriver
that matches the condition age < 25, and becomes referencable in subsequent

conditions or actions of the rule. The action part of the rule shows some vanilla-

flavor Java. Indeed, we can use pretty much any Java expression in the action part,

with the following limitations:

1. The underlying object model (“vocabulary”) is the BOM and not the XOM. This

means that only the classes that are part of the BOM are “referencable.”2 For

example, if the underlying Java class Driver has a pair of getter/setter

for attribute age, in IRL, we set the value of age using the dot notation

(?driver.age ¼ 24), i.e., by manipulating the BOM class, as opposed

to using the setter (?driver.setAge(24)). Further, we can refer to

virtual classes and virtual class members (see Sect. 10.3.3), which do not exist in

the real world (Java).

2. The definition of complex types (classes, interfaces, enums) is not supported, but

who would do such a thing in the action part of a rule, anyway.

3. Some exotic expressions are not supported, e.g., the instantiation of anonymous

Java classes.

Consider now this next rule:

rule big_claim_over_90_days_past_exp_date_policy {
 property effectiveDate = java.util.Date(“1/1/2010”);
 property expirationDate = java.util.Date(“12/31/2010”);
 property status = “development”;
 when {

?myPolicy: Policy(?bDate: beginDate; ?eDate: endDate);

?claim: Claim(amount > 1000; date.before (?bDate) ||

date.moreThan(90,?eDate);

policy == ?myPolicy);
 } then {

 ?claim.status = Claim.REJECTED;
update ?claim;

 System.out.println(?claim+ “ is rejected because …” +

?myPolicy);
 }

}

2When we build a BOM entry from a Java project, we not only “import” the classes from that

project, but we also “import” commonly useful classes from the Java library including basic types,

collections, java.util.Date, java.util.Calendar, etc. These additional classes constitute what JRules

calls the boot bom. Empty BOM entries actually are not empty: they contain the boot bom. The
default boot bom can be changed.

336 11 Rule Authoring in JRules

More often than not, rules have effectiveness periods during which they are in

force. Rules can expire if they are replaced by new rules, or if they embody a time-

limited policy such as limited-duration promotional campaigns and such. The

property status is used to assign a development status to a rule. Indeed, like

other software artifacts, rules will undergo a development lifecycle starting with

the coding of the rule (status ¼ 00development00) to its testing, from

which a rule can either be rejected or promoted to production. A rule that is in

productionmay return to development, for debugging or maintenance, or retirement –

if it is superseded by new rules. We will talk about rule governance in Chaps. 16

and 17.

Consider now the condition part of the rule. This rule has two class
conditions which are considered to be ANDed. The first class condition

(?myPolicy: Policy(. . .);) is actually no condition: It will

match any Policy object in working memory, and will bind the values of

its beginDate and endDate attributes to the variables ?bDate and

?eDate. The second class condition on Claim consists of three test/condi-

tions, also considered to be ANDed: (a) a condition on the amount (amount >
1000), (b) a condition on the date of the claim, which says that the

date of the claim is either prior to the beginning of the policy or is more

than 90 days past ?eDate, i.e., more than 90 days past the endDate
of ?myPolicy (date.before (?bDate) || date.mor-
eThan(90,?eDate)), and (c) a condition tying ?myPolicy to

?claim. The last condition (policy ¼¼ ?myPolicy) ensures that,

should the working memory of the engine contain several policies and several

claims, the rule only matches < ?claim,?myPolicy > pairs that are

related. In JRules-speak, the last two conditions are called join conditions because
they relate two objects together.

The action part of this rule shows three statements. The first and third statements

look like regular Java. The second statement (update ?claim) tells the engine

to reevaluate the rules involving the object ?claim. Indeed, the engine needs to

be told explicitly which objects may have changed in a way that might match new

rules, or invalidate existing ones.3

Let us take a first shot at the grammar for technical rules, using a mixture of

EBNF4 and regular expressions:

3Recall the discussion in Sect. 6.3.2 regarding the engine notification. The good news is that BAL

rule authors do not need to worry about this, because this behavior can be configured at the BOM

level. Indeed, we can set up a particular data member setter (or void function member) to

automatically trigger an update when used in the action part of a rule. We will come back to

this in the next section when we talk about BAL to IRL translation.
4EBNF stands for Extended Backus-Naur Form. People familiar with Yacc or ANTLR will

recognize the syntax. Things that are supposed to appear as-is (language keywords) appear

between quotes. Things that are optional appear between square brackets ([optional]). Groups of

things that can appear zero or more times appear as (. . .)*.

11.2 Rule Artifacts 337

• TECHNICAL RULE ::= “rule” RULE_NAME “{“ (RULE_PROPERTY)*
“when {” CONDITIONS “} then {” ACTIONS “}}”

• RULE_PROPERTY ::= “property” PROP_NAME “=” PROP_VALUE “;”
• CONDITIONS ::= CONDITION (CONDITION)*
• CONDITION ::= CLASS_CONDITION | EXISTS_COND | NOT_COND |

COLLECTION_COND | EVALUATE_COND | WAIT_COND
• CLASS_CONDITION ::= [VAR_NAME “:”] SIMPLE_CLASS_COND “;”
• SIMPLE_CLASS_COND ::= CLASS_NAME “(“ TEST_BIND_LIST “)”

[SCOPE_EXPRESSION]
• SCOPE_EXPRESSION ::= “from” SINGLE_OBJ_EXPRESSION | “in”

COLLECTION_OBJ_EXPRESSION
• TEST_BIND_LIST ::= TEST_OR_BINDING (“;” TEST_OR_BINDING)*
• TEST_OR_BINDING::= TEST | BINDING
• NOT_COND ::= “not” SIMPLE_CLASS_COND “;”
• EXISTS_COND ::= “exists” SIMPLE_CLASS_COND “;”
• EVAL_COND ::= “evaluate(“ TEST_BIND_LIST “);”
•

•

COLLECTION_COND ::= [VAR_NAME “:”] “collect”
SIMPLE_CLASS_COND [“where(“ TEST_BIND_LIST “)”] “;”

ACTIONS ::= ACTION (ACTION)*

Wewill say a few words about the different types of conditions. This will help us

understand the BAL to IRL translations, to be discussed in the next section.

Consider the following condition:

rule no_expensive_claims_in_WM {
 when {not Claim(amount > 1000);}

then {System.out.println(“No expensive claims in WM”);}
}

The condition part is satisfied if there are no claims in working memory worth

more than 1,000. Similary, the rule:

rule there_are_expensive_claims_in_WM {
when {exists Claim(amount > 1000);}
then {System.out.println(“there are expensive claims in

WM”);}

}

will fire once if there exist claims worth more than 1,000. In particular, if there

are one or a hundred such claims, the rule will still fire only once. Contrast that with

rule found_an_expensive_claims_in_WM {
when {Claim(amount > 1000);}
then {System.out.println(“found expensive claim in WM”);}

}

which will fire for every claim in working memory that is worth more than 1,000.

338 11 Rule Authoring in JRules

Consider now the following rule:

rule policy_with_no_expensive_claims {
 when {

?myPolicy: Policy();
not Claim(amount > 1000) in ?myPolicy.getClaims();

} then {
System.out.println(“Policy with expensive claims”);

}

}

In this case, we look for a policy in working memory, and check that there are no
claims, for that policy (in ?myPolicy.getClaims()) that are worth

more than 1,000. The expression “in ?myPolicy.getClaims()” cor-

responds to what we referred to in the grammar asSCOPE_EXPRESSION. We

use in when the scope is a collection (?myPolicy.getClaims()) and
from when the scope is a single object.

Let us now illustrate an example of COLLECTION_CONDITION.

Consider the following rule:

rule policy_with_more_than_3_at_fault_claims {
 when {

?myPolicy: Policy();
?claims: collect Claim(amount > 1000;
 responsibility == AT_FAULT) in ?myPolicy.getClaims()

where (size() > 3);
 } then {
 System.out.println(?myPolicy + “ had more than 3 ” +

“at-fault claims worth more than 1000”);

 }

}

In this case, the variable ?claims will contain a collection5 of the claims of

?myPolicy that are worth more than 1,000, with AT_FAULT responsibil-

ity. The “where” clause indicates conditions on the collection, in this case

(size() > 3).

We conclude our overview of IRL by an illustration of the evaluate condi-

tion. The evaluate condition is a convenience construct that enables us to group

variable bindings and tests outside of a class condition. For example, the rule

big_claim_over_90_days_past_exp_date_policy
shown above can be written as follows using an evaluate:

5The exact type is ilog.rules.engine.IlrCollection, which is a dynamic
collection in the sense that objects will be automatically removed from the collection as soon as

they no longer satisfy the conditions that got them in.

11.2 Rule Artifacts 339

rule big_claim_over_90_days_past_exp_date_policy {
 property effectiveDate = java.util.Date(“1/1/2010”);
 property expirationDate = java.util.Date(“12/31/2010”);
 property status = “development”;
 when {

?myPolicy: Policy();

 ?claim: Claim();

evaluate(?bDate: ?myPolicy.beginDate;
?eDate : ?myPolicy.endDate;

 ?claim.amount > 1000;

 ?claim.date.before(?bDate)||

 ?claim.date.moreThan(90,?eDate);

 ?claim.policy == ?myPolicy);

 } then {
 …

 }

}

In other words, we took all of the bindings and tests out of the class conditions,

and grouped them in the (external) evaluate condition. The Boolean value of an

evaluate is the conjunction of the individual tests contained within. In fact, the

technical rules generated from BAL rules look like this (more about the BAL to IRL

translation in the next section). Note that, considering that the conditions clauses of

a rule are ANDed, the evaluate enables us to write disjunctions between tests

that are part of different class conditions.

In this section, we skimmed the surface of the IRL language. There are a number

of rule-specific constructs that can be used within the condition and action parts of a

rule that we did not talk about:

1. Constructs for event management: The IRL (and the JRules rule engine) enables us

to reason about time and events. For example,we canwrite a rule that says “if event

A occurred, wait 5 s for event B to occur, if it does, do X, if you time out, do Y.”

2. Constructs for truth maintenance: There are situations where rules create objects

fromwithin their action parts when their condition part is satisfied. Consider the e

xample of amonitoring application that creates anAlarm or aServiceRequest
object when some parameter of the system or device being monitored goes out of

range.With normal rules, if the parameter in question returns to its normal range,

the Alarm or ServiceRequest remains in working memory and will be

processed. If we want the Alarm or ServiceRequest to be retracted if the

conditions return to normal, we use specific constructs within the rule.6

6Called logical conditions and logical assert. The system maintains some sort of a reference-count

of justifications for Alarm (or ServiceRequest) objects, and we need to redefine the

equalsmethod on the classAlarm (orServiceRequest) accordingly. More can be

found in the product documentation.

340 11 Rule Authoring in JRules

3. Constructs for working memory management within the action part of rules.

Actually, we saw one: the update keyword. There is the insert, retract,
modify, and update refresh. All of these have equivalent methods in the

IlrContext class. More about these constructs can be found in the product

documentation.

4. The else clause in rules. Indeed, IRL rules can have an else clause, but with a

special meaning: the “else action part” is executed when all the conditions but

the last evaluate statement yield true.7

Finally, as mentioned above, the IRL is not just for writing technical rules: It is also

used to write functions and ruleflows. We will talk about ruleflows in Sect. 11.3.2.

11.2.2 BAL and Action Rules

When we deliver trainings, we lose developers at about this point. They tune out

and start playing with IRL exploring the limits of the language, raising their heads

only to ask questions. Alas, for all its power – we have only scratched the surface –

the IRL is not appropriate for business consumption. Business cannot understand

IRL rules, cannot relate them to business logic, and cannot own them, by taking

over rule development and maintenance; if we code business rules in IRL, we defeat

the major tenets of the business rules approach. The Business Action Language
(BAL) enables all of the above.

The basic structure of a BAL action rule is illustrated below. A typical BAL rule

has three parts:

1. A definitions part, to declare rule variables to be referenced in the condition
part, the action part, or subsequent definitions

2. An if part, which consists of a Boolean expression that typically uses the

variables of the rule

3. A then part, consisting of one or several actions that typically use the variables

of the rule, ending with a semi colon (“;”)

7We would not explain it any further, especially that we strongly recommend not using else,

because it makes rules error prone and the ruleset hard to maintain.

11.2 Rule Artifacts 341

As mentioned earlier, when we talked about the BOM, BAL rules, much like

IRL rules, refer to elements of the BOM. However, whereas IRL rules refer directly
to the BOM elements using a Java-like object notation, BAL rules refer to BOM

elements through their verbalizations. We show below the corresponding IRL

translation.8

 rule claim_date {
 property status = "new";
 when {
 current_claim: Claim();
 evaluate (current_claim.fileMoreThanXDaysAfter(90,

current_claim.policy.startDate.toDate()));
 } then {
 current_claim.decision = "INELIGIBLE";
 update current_claim;
 current_claim.logRuleFiringWithMessage("Claim filed
too late");
 }

 }

The BAL definition of the variable “current claim” yielded the simple class

condition, with an object binding:

current_claim: com….Claim();

and the condition of the if part ended up in a single evaluate statement. This is

the general translation pattern from BAL to IRL. Lest we oversimplify:

1. definitions become simple class conditions.

2. The conditions of the if part get lumped into a single evaluate statement.

3. The BAL then part maps to the (IRL) then when part.

Two points are worth noting. First, the reader may have noticed the “update
current_claim;” action shown in the IRL translation. This action was

inserted in the action part of the rule after the assignment of a new value to the

decision attribute of the BOM class Claim, because that attribute had the

“Update object state” option checked. Second, the BAL to IRL

translator replaced the white space in the variable name (“current claim”) by
an underscore (current_claim) to make the variable name IRL/Java

compliant.

In the remaining paragraphs, we will talk briefly about definitions and variables,

the condition part, and the action part. Before we do that, we will present the

high-level structure of the language in a similar notation to the grammar of the IRL

shown in the previous section:

8In this and subsequent IRL translations, we omitted class package names for presentation

purposes. Just be aware that the real IRL code shows fully qualified class names in class

conditions.

342 11 Rule Authoring in JRules

• BAL_RULE ::= [DEFINITION_PART] [CONDITION_PART]
ACTION_PART [ELSE_PART]

• DEFINITION_PART ::= “definitions” DEFINITION “;”
(DEFINITION”;”)*

• CONDITION_PART ::= “if” CONDITION ((and | or)
CONDITION)*

• ACTION_PART ::= “then” ACTION“;”(ACTION ”;”)*
• ELSE_PART ::= “else” ACTION“;”(ACTION ”;”)*

Notice that:

1. Only the action part is required in a BAL rule; everything else is optional. Thus,

the following is a valid BAL rule.

2. A BAL rule can have an else part. As with the case of IRL, we discourage the

use of the else, and for similar reasons.

3. The conditions of the condition part can be combined freely using the logical

operators and and or.

We will further expand on the different components as we talk about them.

Definitions and variables. To write conditions and actions on objects, we need to
refer to them through variables. In BAL (and IRL), there are three different kinds

of variables:

1. Rule variables. These are variables defined in the rule itself through the DEFI-
NITIONS part of the rule. Such variables have rule-scope: They are only visible

within the rule, and only live while the rule is being executed.9 In particular,

the names of these variables need only be unique within the context of a single

rule; several rules can use the same variable name (e.g., “current claim”).
2. Ruleset variables. These are variables that are defined at the rule project level.

They are visible within all of the rules of a project, and they live during one

ruleset execution.

3. Ruleset parameters. These variables are also defined at the rule project level, and
are visible within all of the rules of a project. They are used to pass data in and

out of the engine during ruleset execution.

The difference between ruleset variables and rule parameters is like that

between the local variables and parameters of a function.

9The lifetime issue is a bit more complex: It spans the evaluation of the condition part and the

lifetime of the rule instance, if one is created. See Chap. 6.

11.2 Rule Artifacts 343

We will talk about ruleset variables and parameters in Sect. 11.5. Here we focus

on rule variables. The syntax for a rule variable definition can be described as

follows:

• DEFINITION ::= “set” VAR_NAME “to”VAR_VALUE [“where”
BOOLEAN_EXPRESSION]

• VAR_VALUE ::= CONSTANT | REFERENCED_VAL| ANON_OBJ_VALUE |
ANON_OBJ_COLL

• REFERENCED_VAL ::= VAR_NAME | ATTRIBUTE REFERENCED_VAL
• ANON_OBJ_VALUE ::= BOM_TYPE [SCOPE]
• ANON_OBJ_COLL ::= “all” BOM_TYPE [SCOPE]

The following illustrates the first three types of definitions:

The first definition corresponds to setting a variable to a constant. The next three

correspond to setting a variable to an anonymous object value (ANON_OBJ_
VALUE), with three variants: (a) simplest, (b) with scope, and (c) with scope and

test. The last three definitions correspond to REFERENCED_VAL . The first

(0expensiveserviceactcost0) illustrates the case where we create
a variable to hold the value of a scalar attribute. The last two (0current
policy0 and 0young policy holder0) show the case of a

variable that holds the value of an attribute that is a domain object, without

and with a condition. The following shows the IRL translation for the first five

definitions:

evaluate (THRESHOLD_EXPENSIVE_ACT : 1000);
 current_claim: Claim();
 claimed_service_act: ServiceAct() in

current_claim.serviceActList;
 expensive_service_act: ServiceAct(?this.cost >= (float)
THRESHOLD_EXPENSIVE_ACT) in current_claim.serviceActList;

evaluate (expensive_service_act_cost :
expensive_service_act.cost);

The reader will notice that variables that are of scalar type are defined using

a binding (VAR_NAME 00:00 VAR_VALUE) embedded within an evaluate.
The middle three are defined using simple class conditions, with or without

embedded tests, and with or without scope (in current_claim.some-
Attribute).

344 11 Rule Authoring in JRules

We now illustrate the definition of collection variables:

And we show below the resulting IRL:

some_claim: Claim();
all_claims_in_WM: collect Claim();
some_claim_service_acts: collect ServiceAct() in

 some_claim.serviceActList;
expensive_service_acts: collect

ServiceAct(?this.cost >= 1000) in
some_claim.serviceActList;

What can you do with collections? You can test the contents of a collection or its

size, in the condition part, or iterate over its elements to apply a bunch of actions, in

the action part. We will illustrate both uses in the subsequent discussion.

The condition part. Roughly speaking, the condition part of a rule consists of a

logical combination of individual conditions using the logical operators and and or.
In turn, each “top-level” condition can itself be a single Boolean term or a logical

formula, with operators and’s, or’s, and parentheses. This is embodied in the next

four grammar productions (rules).

• CONDITION_PART ::= “if” CONDITION ((and | or)
CONDITION)*

• CONDITION ::= BOOLEAN_TERM | BOOLEAN_TERM (and | or)
CONDITION

•

•

BOOLEAN_TERM ::= BOOLEAN_TEST | “(“ CONDITION “)”

BOOLEAN_TEST ::= COMPARISON | PREDICATE | SET_MEMBERSHIP |

COLLECTION_TEST |

Next, we will show examples of the various Boolean tests.10

comparisons

Set membership

Predicate

Collection conditions

10Please do not write rules like this one at home J: This rule breaks every rule writing guideline

we mentioned in Chap. 9. It is only meant to illustrate various syntactic constructs.

11.2 Rule Artifacts 345

With the exception of collection conditions (COLLECTION_TEST),

which we will address shortly, we build Boolean tests by selecting an object

(a variable) or the attribute of an object, then a comparison operator (or a predicate)

appropriate for that object, and then an operand of the appropriate type. In the rule

above (which is utterly non-sensical), we show three comparisons. The first com-

pares a numerical data member (total claimed of 'current claim')
to a constant (1,000). The second compares a date attribute (thebirthdate
ofthepolicyholderofthepolicyof 'current claim')
to a constant date (1/1/1990), while the third compares a date attribute (the
date of 0current claim0) to another date attribute (the start date
of the policy of 0current claim0). The case of a predicate is illu-

strated by the condition 0current claim0 was filed more than 90
days after <some date>. The SET_MEMBERSHIP case

is illustrated by the condition the decision of 0current claim0 is
not one of {"VALID"‚ "ELIGIBLE"}. Set membership tests (is not
oneof andisoneof) are available for all types (simple types, object types)

and the values of the set can be enumerated literally, as in this example, or given as

a collection variable.

Let us look now at the collection conditions. The BAL offers several types of

conditions on collections, which may be described using the following grammar:

• COLLECTION_TEST ::= QUANTIFIED_COLLECTION_TEST |
COLLECTION_SIZE_TEST | COLLECTION_CONTENT_TEST

• QUANTIFIED_COLLECTION_TEST ::= QUANTIFIER [NUMBER]
OBJ_TYPE [scope] [“where” COLLECTION_ELEMENT_TEST]

• QUANTIFIER::= “there are” | “there are at least” | “there
are at most” | “there are more than” | “there are less
than” | “there is no” | “there is at least one” | “there
is one” | “there is at most one”

• COLLECTION_SIZE_TEST ::= “the number of” OBJ_TYPE [scope]
[“where” COLLECTION_ELEMENT_TEST] COMP_OPERATOR NUMBER

• COLLECTION_CONTENT_TEST ::= COLLECTION_NAME (“contain” |
“does not contain”) OBJECT

Behind the scenes (IRL), all of these conditions map to an IRL COLLEC-
TION_CONDITION, but with different tests on the collection size (QUAN-
TIFIED_COLLECTION_TEST and COLLECTION_SIZE_TEST)
and collection contents (COLLECTION_CONTENT_TEST). The rule above
shows two examples, using the “there are at least” and “there is no”
forms. The following shows the IRL equivalent11:

11We simplified the underlying IRL to make it more readable, by: (a) removing class package

names, (b) reducing the number of extraneous parentheses, and (c) simplifying/faking the way

Date constants are handled.

346 11 Rule Authoring in JRules

when {
 current_claim: Claim();
 service_act: ServiceAct() in current_claim.serviceActList;
 var$_$0: collect Coverage(?this.percentCapUsedUp >= 95) in

 current_claim.policy.coverageList;
 var$_$1: collect
 Coverage(?this.procedure.equals(service_act.procedure))

in current_claim.policy.coverageList;
evaluate (
 current_claim.totalClaimed > 1000

 && current_claim.decision !in {"VALID","ELIGIBLE"}
 && (current_claim.policy.policyHolder.birth-

Date.compareTo(new IlrDate(1990,1,1)) > 0
 || (current_claim.fileMoreThanXDaysAfter(90,

current_claim.policy.endDate)
 || current_claim.date.compareTo(

current_claim.policy.startDate) < 0

)
 || var$_$0.size() >= 5
 || var$_$1.size() == 0

)
);

}then {
…

 }

The reader will notice that all of the conditions of the if part of the BAL rule

ended up in the single evaluate statement.

There is more to BAL conditions than what we just covered. Our goal in this

section is to show the “philosophy” of the BAL language. The full language

reference is available in the product documentation.

BAL Actions. BAL actions are fairly straightforward. They can be of five

different types:

• ACTION ::= SIMPLE_ACTION | FOREACH_COMPOUND_ACTION
• SIMPLE_ACTION ::= ATTRIBUTE_SETTER | VOID_FUNCTION_ACTION

| VARIABLE_SETTER | SYSTEM_ACTION
• ATTRIBUTE_SETTER ::= “set” ATTRIBUTE_EXPRESSION “to”

ATTRIBUTE_VALUE
• VARIABLE_SETTER ::= “set” VAR_NAME “to” VAR_VALUE
• FOR_EACH_COMPOUND_ACTION ::= “for each” OBJ_TYPE [

“called” VAR_NAME “,”] in COLLECTION “:” “-“ SIMPLE_ACTION
(“-“ SIMPLE_ACTION)*

The previous rule examples illustrated ATTRIBUTE_SETTER (e.g.,

“set the decision of 0current claim0 to "INELIGIBLE";”),
SYSTEM_ACTION (e.g., “print "illustrating conditions";”),
and VOID_FUNCTION_ACTION (e.g., “log that this rule
has fired on 'current claim' with message "Claim filed
too late";”). The next rule illustrates the compound statement.

11.2 Rule Artifacts 347

and the (simplified) IRL equivalent:

when {
current_claim: Claim(?this.decision.equals("ELIGIBLE"));
service_acts: collect ServiceAct() in

current_claim.serviceActList;}
then {

foreach (ServiceAct my_service_act in service_acts) {
my_service_act.payment = my_service_act.cost;
printMessage("the procedure"+ my_service_act.procedure +

"was paid in full"));
}
current_claim.decision = "PAID";
update current_claim;
printMessage("illustrating for each");
}

The BAL is used in many other places, besides action rules. It is used to write

preconditions, condition and action columns in decision tables (to be discussed

next), preconditions, node conditions and actions in decision trees (Sect. 11.2.4), as

well as in many places in ruleflows (function tasks, initial and final actions in all

ruleflow tasks, transition guards, and rule selection, see Sect. 11.3.2).

11.2.3 Decision Tables

As mentioned in Sect. 9.2.2.2, when we have several rules whose conditions test on

the same set of attributes and whose actions perform the same actions (modulo

some parameter values), it pays to organize those rules in a decision table, both
during rule analysis (see Chap. 4) and during rule authoring. JRules supports

decision tables, like most BRMS. Figure 11.2 shows a decision table that sets the

parameters of a coverage (deductible and yearly cap), based on the procedure

covered, and on the type of policy (individual versus group policy). This table

has four columns, two conditions columns, labeled “Covered Procedure” and

“Policy Type”, and two action columns, labeled “Deductible” and “Yearly Cap”.

Each line of the table corresponds to a rule. Here, we selected the line number 6,

which corresponds to the case where the procedure is ECG (Electro-CardioGram),

the policy type is “GROUP”. In this case, the deductible is $20, and the yearly cap is

$125 (per insured). As shown in the screenshot, by selecting a particular row of the

348 11 Rule Authoring in JRules

decision table, Rule Studio brings up a tool tip consisting of the BAL equivalent of

the rule represented by that row.

Let us first get some vocabulary. Notice that for each value of “Covered Proce-

dure”, we have two possible values of “Policy Type”. Each value of “Policy Type” is

considered as a branch of the corresponding value of “Covered Procedure”. The set of
covered procedures {“PHYSICAL CHECK-UP”, “BLOOD TEST”, ECG, “X-RAY”,

and “CAT SCAN”} is said to represent a partition of the domain of procedures.

Similarly, the set {INDIVIDUAL, GROUP} is said to represent a partition of the

domain of the attribute “policyType” of the class Coverage. This table is called

symmetrical because the same partition of “Policy Type” is used for all the values

of “Covered Procedure”. We now show how the table is defined.

Figure 11.3a shows the wizard for defining condition columns. A condition

column enables us to enter a Boolean condition similar to the kinds of conditions

we enter in a BAL action rule. The condition should be fully specified except for

one (or several) value(s), which needs to be specified in the cells of the columns. In

this case, the condition is “the procedure of coverage is <a
procedure>”, and we need only specify <a procedure> in the cells

of the column. The column has an editable title. We can also specify conditions that

column cell values must satisfy – in addition to being of the appropriate type, which

is guaranteed by the table editor. Similarly, for the second condition column, the

test is “the policy type of policy is <a policy type>.”

Figure 11.3b shows the wizard for defining action columns. The action corre-

sponds to any valid action we can insert in the action part of a rule (see previous

section), with the exception of FOR_EACH_COMPOUND_ACTION (see

previous section). Depending on the parameters of the action, the action column can

have two or more subcolumns. In this case, the action is a setter that takes a single

value. The second action column is defined in a similar way: The action is “set
the yearly cap of coverage to <a number>.” Notice that we

can specify a default value for an action parameter. We can also specify additional

Fig. 11.2 A sample decision table

11.2 Rule Artifacts 349

constraints on the cell values, in a way similar to values in condition columns.

Finally, we can make an action column invisible.12

The reader may wonder where the variables that are referenced in the condition

and action columns (coverage and policy) come from. The answer is:

preconditions of the table. Generally speaking, preconditions are used to define

variables and to enter conditions that hold true for all of the columns of the table.

Figure 11.4 shows a screenshot of the tab used to define preconditions.

We will not discuss all of the wizardry of the decision table editor. However, a

few features are worth mentioning:
l JRules performs different kinds of verifications and analyses on decision tables,

and the results of these analyses can be presented as “Info”, “Warning”, or “Error”:

– Symmetry. A table is said to be symmetrical if for each condition column i,
the same partition of values for that column is used consistently for all the

values of column i-1. As mentioned above, the table shown in Fig. 11.2 is

symmetrical because the same partition {“INDIVIDUAL”, “GROUP”} for

“Policy Type” is used for the values of “Covered Procedure.”

– Overlap. This refers to the case where the values “within a partition”

overlap.13 In the table of Fig. 11.2, we would have had an overlap if, for

Wizard for defining a condition column

a b

Wizard for defining an action column

Fig. 11.3 Wizards for defining condition and action columns. (a) Wizard for defining a condition

column and (b) wizard for defining an action column

12This is useful in those situations where (a) all the cells have the same value, or (b) the action

takes no arguments – and thus no values to enter – or (c) the action represents a non-business tasks

that business rule authors should not care about.
13This is a misnomer because mathematically speaking, the partition of a set S is a set of non-
overlapping subsets of S whose union equals S.

350 11 Rule Authoring in JRules

example, row 5 had both “INDIVIDUAL” and “GROUP”, and row 6 had

“GROUP”. If that were the case, when procedure¼“ECG” and policy type¼
“GROUP”, we would hit both rows 5 and 6 of the table. This is not a logical
error, but more often than not, overlaps result from data entry errors.

– Gaps. Gaps are best illustrated with a numerical (range) condition column

(not used here). Assume that we have a condition column based on age

ranges. If our condition had age ranges [0,18], [18,30], and [65,100], then

one might wonder about the age range [30,65]: What happens in such

situations? Again, this is not a definite logical error per se, but, more often

than not, indicative of a data entry error.
l JRules can enforce locking different aspects of the table:

– Preconditions. Making sure that the preconditions part is not editable.

– Number of columns. We can prevent the addition and removal of condition

columns, action columns, or both.

– Condition column contents. For each condition column, we can selectively

lock the tests (preventing users from changing the column test, or column cell

overrides), the partitions, i.e., how many different values in the partition, or

the values themselves. In our case, if we lock the partition of column “Policy

Type”, it means that we can have exactly two cells/branches for every

procedure, but the table author can select which values to enter in each

cell. If we lock the values for the column, it means that values themselves

are not editable, i.e., nothing about the column can be changed.

– Action column contents. With action columns, we can lock the action, the
status, or the values.

l JRules supports the graphical customization of the table. Indeed, we can change

the background color, text color, text font, text style, and text size, for column

headers, condition columns, and action columns (separately).

JRules supports a bunch of other features for data entry (e.g., splitting cells,

merging cells, inserting the values of a BOM domain, etc.) that make life easier for

table authors.

Looking under the hood, decision tables are actually encoded as . . . a bunch of

IRL rules, one per row! The following shows the beginning of the IRL file for the

table of Fig. 11.2. The rule coverage_parameters_0 represents the

first row of the table, i.e., row 0. There are 10 such rules, each one corresponding to

a different combination of procedure and policyType values.

Fig. 11.4 Defining preconditions for a table

11.2 Rule Artifacts 351

// begin DT coverage parameters
// -- begin rule 'coverage parameters 0'
rule coverage_parameters_0 {
 property ilog.rules.dt = "coverage parameters";
 property ilog.rules.group = "coverage_parameters";
 property status = "new";
 when {
 policy: com.mywebinsurance.claimprocessing.Policy();
 coverage: com.mywebinsurance.claimprocessing.Coverage()
in policy.coverageList;
 evaluate ((((coverage.procedure.equals("PHYSICAL CHECK-
UP"))) && ((policy.policyType.equals("INDIVIDUAL")))));
 } then {
 coverage.deductible = 15;
 coverage.yearlyCap = 150;
 }
}

// -- end rule 'coverage parameters 0'
// -- begin rule 'coverage parameters 1'
rule coverage_parameters_1 {
…

At first glance, this may not sound like the most efficient implementation.

Indeed, the table format “leads us to believe” that conditions are shared between

different rows and the tests are performed only once. For example, the first and

second rows of the table share the same value for procedure, i.e., “PHYSICAL
CHECK-UP”, but if each row is represented by a separate rule, then we lose the

condition sharing. Actually, not so! Recall from Chap. 6 that the RETE algorithm

ensures that if two rules start with the same condition, that condition will be shared

and it will be evaluated only once for both of them. Hence, once the ruleset

containing this table is parsed and the RETE network is built from it, conditions

will be shared, as suggested by the table.

As mentioned in Chap. 9, JRules provides API for creating decision tables

and decision trees – to be discussed next – from tabular data,14 including csv

(comma-separated values) files, Excel spreadsheets, and relational data bases. A

few years back (2005), in one project for a Wall Street financial services company,

we used decision tables to encode rules that figure out which kinds of financial

transactions for specific types of foreign customers were subject to IRS reporting

and withholding.15 Our input from “business” was a bunch of Excel spreadsheets

14Check root package ilog.rules.dt, and more specifically, ilog.rules.dt.model.
15The Internal Revue Service expects all US entities (corporations, individuals) to file for taxes

every year, and it has the necessary authority and . . . hum . . . leverage to make sure they comply.

With foreign entities, because it lacks such “leverage”, it requires that a percentage of their gains

on each transaction be preemptively withheld (typically 30%, but sometimes 15% or 10%) or

reported . . . unless, of course . . . (a few hundred rules and exceptions based on type of entity,

country of origin, existence of treaties, type of transaction, etc.).

352 11 Rule Authoring in JRules

prepared by tax accountants. After a minor clean-up, we were actually able to load

up the spreadsheets using the API, saving countless hours of data entry, but more

importantly, getting rid of a major source of errors. Since JRules 7.x, there is out of

the box functionality (Rule Solutions for Office) to export decision tables from Rule

Team Server (RTS) as Excel 2007 spreadsheets, and to import them back after

editing.

11.2.4 Decision Trees

The same kinds of situations that call for decision tables can also be handled by

decision trees. As mentioned in Chap. 9, you may find that business people

actually think in terms of decision trees, but encode the decision tree in the

form of a table. With JRules decision trees, they can encode them the way they

see them. However, there are situations where decision tables would be too rigid.

Going back to our example decision table, it may the case that, (a) for some
procedures, we actually do not care about the type of policy as the same deduct-

ible and yearly cap apply whether the policy is INDIVIDUAL or GROUP, and (b)

for some others, the deductible and yearly cap do not only depend on the type of

policy, but also depends on the number of insured. To encode such a situation with a

decision table, we will need three condition columns but some columns will have

empty values. Here, a decision tree comes in handy as different branches of the three
can have different tests and different depths. Further, a decision tree allows different
rule/action nodes to have different sets of actions; doing the same with decision

tables would require some acrobatics. Figure 11.5 shows such a decision tree where

we have branches of depth 1, 2, and 3. Each leaf node (box) represents the action part

of a rule whose condition part consists of the path leading to that node. As was the

case with decision tables, behind the scenes, decision trees are actually encoded as

Fig. 11.5 A sample decision tree for computing coverage parameters

11.2 Rule Artifacts 353

separate IRL rules. With regard to condition sharing, as explained for the case of

decision tables, because of the structure of the RETE network (see Chap. 6),

common conditions will indeed be shared between the different rules. In fact, the

encoding of the rules of the decision tree in the RETE network mirrors the decision

tree!

As is the case with decision tables, JRules enables us to check for gaps and

overlaps between the different branches of the tree. In terms of GUI wizardry to

create decision trees, the reader is referred to the product documentation. We will

mention, however, that the decision tree editor enables us to fold rule nodes

or entire tree branches, and to turn the tree sideways, with the root on the left

side of the panel, and the branches going rightward. Both of these tricks enable

us to somehow manage the expansive nature of decision trees: more often than not,

the decision table format is much more compact than the decision tree format.

However, business users love the visuals: They fit nicely in PowerPoint pre-

sentationsJ.

11.2.5 Score Cards

In the insurance and financial services sector, an important rule-rich business

process is underwriting. Simply speaking, underwriting consists of assessing

the eligibility of an actual or potential customer to receive a product or service.

An important aspect of underwriting is risk scoring. You use risk scoring when the

underwriting is a multi-criteria decision – as it often is. In such a case, no single

criterion is eliminatory, but the accumulation of factors, positive or negative, can tip

the balance one way or the other. With risk scoring, you assign a single score to the

(potential) customer based on a set of criteria. If the score falls below a certain

threshold, the product or service is denied. Else, it is granted.

JRules supports scorecards through a product add-on called Scorecard Modeler.
Figure 11.6 shows an example of a scorecard for policy underwriting. In this

fictitious example, we assign a score to a (potential) policy holder based on four

criteria: (a) the age, (b) the number of claims when the policy holder was at-fault in

the past 3 years, (c) the number of claims of the policy holder in the past 3 years,

regardless of responsibility, and (d) the number of years of driving experience. The

higher the score, the better (i.e., lower) the risk. The first three columns assign the

score per se. The last two are used to customize what is called reasoning strategy, to
be discussed below. For the driver’s age, we assign different scores to different age

ranges: the highest the risk, the lower the score. Drivers between the ages of 25 and

75 are considered to possess the best mix of qualities (e.g., sobriety, reflexes). With

regard to the number of claims, at-fault or in general, the smaller the number of

claims, the higher the score. With regard to the driving experience, the longer the

experience, the higher the score. With this scorecard, a driver who is 30 years old,

with one at-fault claim and one not at-fault claim, and 11 years of driving experience,

354 11 Rule Authoring in JRules

would get a total score of: 50 (for age) þ 40 (at-fault claims) þ 60 (claims in

general) þ 50 (driving experience), for a total of 200. A 23-year-old driver, with

no claims, and 5 years of driving experience would get: 20 (for age) þ 100 (at-fault

claims) þ 100 (claims) þ 30 (driving experience), for a total of 250.

Which driver to accept (or reject), if any? As mentioned in Chap. 9, all of the

parameters of the scorecard, including which attributes to use for scoring, how

many ranges to use for each attribute, what are the bounds for each range, what

score to use for each range, how to compute the overall score (simple sum versus

weighted sum), and what the decision threshold should be, are determined by

statistical models.16 For example, MyWebInsurance may have a policy to under-

write only those drivers who have less than 5% chance of making a claim worth

more than $5,000 within the first year. Statistical score models will tell, among the

many things mentioned above, what the threshold score should be.

With regard to the reasoning, Scorecards make it possible to not only return

an overall score, but to also return reason codes to explain a particular score.

Scorecard Modeler maintains lists of reason codes that can be used within a

particular scorecard. In the most trivial approach, we could use one reason code

per row of the scorecard, and ask that all reason codes be returned. Most business

applications do not care about that level of precision. Instead, business may find it

useful to identify those attributes that have unusually (or damningly) low scores.

Scorecard Modeler offers a number of “knobs” to tune the reasoning strategy:
We can specify a maximum number of reason codes, and doing so, we need to

specify criteria for determining which reason codes to return in case we have

Fig. 11.6 A sample scorecard

16As is the case with statistical models, it is part science (mostly), part art. Note that the JRules

Scorecard Modeler does not support those statistical analyses: They need to be done using other

tools such as the SAS Enterprise Miner™.

11.2 Rule Artifacts 355

more candidates than the maximum, and how to order them. Possible criteria for

figuring out which reason codes to include: (a) reason code priority (they have one),

(b) deviation relative to maximum score, (c) deviation based on expected score, or

(d) custom reasoning strategy. For deviation, we can take positive deviation, or

negative deviation or both. In the example of Fig. 11.6, we used negative deviation
relative to expected score, meaning that we return reason codes for the attributes

ranges that are farthest below the expected score. The fourth column of the scorecard

shows the expected score. With regard to the ordering, we can start with reason codes

corresponding to the highest deviation (i.e., worst outliers) or smallest. There are also

rules for handling duplicates. And so forth.

If we look under the hood of a Scorecard, we find four IRL rules, one per attribute,

that look like the rule below.17 This rule, which is not meant for human consumption,

sets the reasoning parameters in the action part, and assigned scores for the different

ranges of the attribute in the action part using “if” statements.

// -- begin rule 'riskScoring_1'
rule riskScoring_1 {

property ilog.rules.group = "riskScoring";
 property status = "new";
 when {

 scorecard: Scorecard() from riskScoring;
 PolicyHolder() from theClaim.policy.policyHolder;
evaluate (scorecard.rejection == null);

 } then {
 scorecard.name = "riskScoring";
 scorecard.scoringStrategy = "Sum";
 scorecard.reasoningStrategy = "Deviation based on ex-

pected score";
 scorecard.reasonOrderBy = "Descending deviation";
 scorecard.reasonFilterBy = "Negative deviation";
// -- other reasoning strategy parameters

 …
if(theClaim.policy.policyHolder.numberAtFaultClaimsLas

tThreeYears < 1) {
 scorecard.setScore("numberAtFaultClaimsLastThree-

Years", 100);
 scorecard.setReasonCode("numberAtFaultClaimsLast-

ThreeYears","NO AT FAULT CLAIMS");
}
if(theClaim.policy.policyHolder.numberAtFaultClaimsLas

tThreeYears in [1, 3[) {
 scorecard.setScore("numberAtFaultClaimsLastThree-

Years", 40);
 }
 …

17We greatly simplified the actual IRL to make it readable. The actual IRL has more actions, and

some of the functions have more parameters.

356 11 Rule Authoring in JRules

The business logic implemented by Scorecard can easily be implemented by

individual (business-friendly) BAL action rules, one per attribute, per range, such

as the following:

We could also use one decision table per attribute. The scorecard solution

has the advantage of conveniently grouping the various scoring rules into one

place, and presenting them in a visually intuitive/appealing fashion. It also

enables us to conveniently customize the scoring calculation and manipulate

reason codes.

11.2.6 The Business Rules Language Development Framework

In Chap. 4, we presented different classifications of rules. Not all classes of rules

can be conveniently written as if-then rules. While we can turn every type of rule

into an if-then rule, there are situations where a custom language can make rule

authoring more familiar to the business users. Let us revisit the example we

mentioned in Sect. 9.2.2.5. Assume that you are building an application for filling

out tax returns. The majority of tax rules are computations. Using the rule templates

described in Sect. 4.1, a computation may be stated as:

The taxable income I S-COMPUTED-AS gross income + commission–s deductions

It would be convenient to be able to enter such a rule as is within a rule editor. In

this case, the rule editor would be a formula editor similar to the formula editor

available in Excel spreadsheets. This would be more natural than entering the rule as:

if <some trivial condition or no condition> then taxPayer.taxableIncome =
taxPayer.grossIncome + taxPayer.commission–s taxPayer.deductions

or its business-oriented language equivalent.

JRules offers a rule language development framework called the Business Rule
Language Development Framework (BRLDF), which is a java framework for

specifying the syntax of the custom rule language, and for translating rules written

in this syntax to some target language. If the target language is JRules IRL, then we

can reuse the entire rule development and execution infrastructure for our new

language. Figure 11.7 illustrates the approach.

11.2 Rule Artifacts 357

In Chap. 9, we discussed situations under which it is justifiable to build a custom

rule language. In this section, we provide a high-level description of how to do it

with the JRules BRLDF. In the BRLDF, a rule language is defined by three

components:

1. An abstract syntax. This syntax defines the structure of the language in a

notation similar to the EBNF-like notation we used to describe the IRL and

the BAL. In this case, the syntax is defined in an XML schema. We show below

excerpts of the abstract syntax for our formula editor. The types prefixed with

namespace “brl” are ones reused from the definition of the BAL.

<complexType name="T-equation">
 <sequence>
 <element name="left-hand-var" type="brl:T-local-var"/>
 <element name="right-hand-side"type="T-formula"/>
 </sequence>
</complexType>
<complexType name="T-formula">
 <choice>

 <element name="value" type="brl:T-local-var"/>
 <element name="expression" type="T-operation"/>
</choice>

</complexType>
<complexType name="T-operation">

<sequence>
 <element name="left-op" type="T-local-var"/>
 <element name="operator" type="brl:T-operator"/>
 <element name="right-op" type="T-expression"/>
</sequence>

</complexType>
etc

2. A concrete syntax. This syntax defines the graphical properties of the constructs
of our language. This is where we specify the textual patterns (actual tokens), the
text styles, the tool tips, prompts, whether there is a newline after a particular

element, etc. We also specify the classes that process our language (see the next

element). The concrete syntax is given in a properties file format. We illustrate

the format in the excerpts below.

A = B +
 C – D

Formula editor
built with BRLDF

Translate

Formula translated as a
JRules technical rule

JRules rule
engine

if A is undefined
then
A = B + C – D

Fig. 11.7 Developing a custom rule language

358 11 Rule Authoring in JRules

Define the text pattern of 'if-then-else'

<T-equation>.text = <left-hand-side>=<right-hand-side>

<T-equation>.style = keyword

Specify the parser/translator (see below) IRL

<T-equation>.translatorClass = MyTranslator

<T-equation>.codeGeneratorExtender.irl = MyCodeGenerator

Specify graphical properties of elements

<T-equation>.<left-hand-var>.toolTip = Pick a variable

<T-equation>.<left-hand-var>.label = left-hand-side

…

3. Parsers/translators, which parse sentences of our language into an intermediate

form and then translate/generate a target language. These are Java classes built

using the parsing and translation framework that is part of the BRLDF. As

mentioned above, to be able to reuse the rule deployment and execution infra-

structure, it is a good idea to translate rules written using our custom language

into IRL. In the above example, the class MyTranslator parses rules and

generates the abstract syntax tree, whereas the class MyCodeGenerator reads

such a tree and generates IRL.

Having defined the language, we now need to integrate it into the authoring

environments, i.e., Rule Studio and Rule Team Server. This, in turn, involves three

things:

1. Defining a new rule class that represents the new type of rules within these

development environments. This is the class that defines which properties such

rules can have. This is done through the rule extension model, in both RS and RTS.
2. Making sure that the language definition is available to the environment: that

includes the files used to define the abstract syntax and the concrete syntax, and

the Java classes that implement the parser and IRL translator. In RS, this is done

through a specific plug-in.18 In RTS, the whole thing is packaged in a jar file, and

the RTS archive is repackaged to include the language jar file.

3. Customize the rule editors (Guided Editor and Intellirule) to handle the new

language. Luckily, the rule editors are parameterized by the rule language, and

thus, not much needs to be done for the customization.

Notice that the BAL language itself is developed using the BRLDF. In fact, the

files that contain the abstract syntax and the concrete syntax are public and editable.

Further, the parsers and translators for the BAL are part of the public API. This

means three things:

1. If all you need is to change the ordering of BAL constructs or some of keywords,

then you could simply edit the abstract syntax and concrete syntax files, with no

programming involved.

18If you must know, we need to create an Eclipse plug-in project using the extension point

ilog.rules.studio.brl.languages.

11.2 Rule Artifacts 359

2. If you need to add a new kind of definition, condition, or action, then all you

need to do is to define the abstract and concrete syntax for the new construct in

the corresponding files, and code the corresponding parser and translator for

abstract syntax tree nodes that represent the new construct.

3. If your language is too different from the BAL, you could still reuse many of the

artifacts used to build the BAL, which have been conveniently modularized: (a)

a component that handles bindings (variable definitions), (b) a component that

handles conditions, and (c) a component that handles actions.

In our experience, developing a custom rule language is rarely justified, in terms

of business need, development cost, and maintenance risk. Luckily, thanks to the

incremental approach of the BRLDF, we can often address the most pressing BAL

irritants/shortcomings using low-cost, low-impact modifications of the BAL.

11.3 Rule Execution Orchestration

In Chap. 6, we presented the principles behind rule engines and rule engine

execution. Recall from Chap. 6 that an engine maintains three memory areas: (a)

a ruleset consisting of a set of rules that embody a computation, decision, or action

that the engine implements, (b) a working memory, containing (or referring to) the

objects that the ruleset will be applied to, and (c) an agenda that maintains a list of

so-called rule instances, which are candidate rules for firing. We saw earlier in this

chapter the development infrastructure in JRules, namely, rule projects and the

BOM, and we just covered the different rule artifacts.

What we know from Chap. 5 (prototyping) and Chap. 8 (an introduction to JRules)

is that, simply speaking, a rule project – a development artifact – ismapped to a ruleset –
a run-time concept. What we know from Chap. 6 is that the rules of a ruleset are treated

as an indiscriminate “bag of rules” where all of the rules are evaluated on all of the

objects in workingmemorywith no underlying structuring or sequencing, except for the

ordering on the agenda. This leaves a couple of key questions to address:

1. How to get data into the rule engine – and its working memory – in the first

place, especially within the context of a rule execution service, as we discussed
in Sect. 7.5.1. This introduces the notion of a ruleset signature, and more

specifically, the notion of ruleset parameters.
2. How to structure the execution of rules within a ruleset. While each ruleset is

meant to implement a single business decision, such a decision will typically be

broken down into a set of sub-decisions that need to be executed in a particular

sequence. In fact, the structure of these sub-decisions may be a guiding principle

in the organization of rules during development, as illustrated in Sects. 7.4.2 and

7.4.3. This is the notion of ruleflow that we hinted at in many places in the

previous chapters (Chaps. 5, 6, 7, and 8).

We can think of these two aspects as the execution infrastructure of a rule project.

360 11 Rule Authoring in JRules

In this section, we address these two aspects in detail. First, we talk about ruleset

parameters: What they are, how to create them, and how to use them, both inside

and outside the rule engine. Incidentally, we will also talk about ruleset variables.
Section 11.5.2 introduces the basics of ruleflows: what they are, and how to create

them. Section 11.5.3 will discuss advanced ruleflow concepts, namely, run-time

selection of the contents of rule tasks, and algorithm selection.

11.3.1 Ruleset Parameters and Variables

If we think of ruleset as a function, ruleset parameters are parameters of that function:

1. They have a name and a type.

2. They have a direction: in, out, or inout.
3. They are visible anywhere within the “function”, and can be referenced by name.

4. Their lifetime depends on the calling scope.

While this is a fairly accurate analogy, some qualifications are in order. Of course,

in Java, methods have a single out parameter, which is the return value,19 and all of

their parameters are inout because Java passes variables by reference. With rulesets,

the distinction between in and inout parameters makes sense within the context of a

remote invocation of the rule engine. Let us first show how to define ruleset para-

meters, and then show how they can be referencedwithin the rules of a project, at rule
development time, and by the rule engine calling application, at rule execution time.

To the extent that rule projects map to rulesets, ruleset parameters are defined at

the rule project level. Figure 11.8 shows a screenshot of the wizard for defining

Fig. 11.8 Wizard for defining ruleset parameters

19Of course, we could have several out parameters in Java . . . if we aggregate them in a single

return object.

11.3 Rule Execution Orchestration 361

ruleset parameters. In this case, we have a single parameter, which is the Claim

object, and it is inout. Incidentally, that is the only in object we need because it is

the root of an object hierarchy that contains the various service acts, and the policy,

which in turn points to the policy holder, its coverages, etc. It is the only out object
we need because the decision and the total payment are stored in the claim object

itself, and the itemized payment amounts are stored in the ServiceAct objects. Note

that a ruleset parameter has a verbalization which enables us to refer to it in rules.

First, we look at how data is passed to the engine using ruleset parameters, as

opposed to through the working memory; the full API will be discussed in Chap. 13.

The following shows how data is passed through insertion into working memory,

and how the result of rule execution is retrieved.

// initialize the rule engine (load and compile ruleset:

// see chapter 12 for details

IlrContext myEngine = …;

// get next claim object and insert into working memory

Claim myClaim = fetchNextClaim();

myEngine.insert(myClaim);

// Execute the rules. See chapter 6 for details

myEngine.execute();

// Check the outcome by examining the decision attribute

String decision = myClaim.getDecision();

if (“PAID”.equals(decision))

 System.out.println(“The Claim “+myClaim+” was paid in

the amount “ + myClaim.getTotalPaid());

Now with the ruleset parameter:

// initialize the rule engine (same as above)

IlrContext myEngine = …;

// get next claim object and pass as parameter value

Claim myClaim = fetchNextClaim();

IlrParameterMap inputs = new IlrParameterMap();

inputs.setPatameterValue(“theClaim”,myClaim);

myEngine.setParameters(inputs);

// Execute the rules, and collect the inout/out params

IlrParameterMap outputs = myEngine.execute();

Claim modClaim =(Claim)outputs.getObjectValue(“theClaim”);

// Check the outcome by examining the decision attribute

String decision = modClaim.getDecision();

if (“PAID”.equals(decision))

 System.out.println(“The Claim “+modClaim+” was paid in

the amount “ + modClaim.getTotalPaid());

There are a couple of subtle differences between the two “data passing” modes.

In the first case, the calling application relies on the fact that the engine lives in the

same JVM, and hence the variablemyClaim stays current: Upon returning from

362 11 Rule Authoring in JRules

the call “myEngine.execute();” the variable myClaim will reflect

whichever changes were made by the rules. With the parameters, the calling

application does not rely on the fact that the engine lives in the same JVM,

and will retrieve the modified value of myClaim into a separate variable

modClaim. This makes the second approach more scalable in the sense of

being remotable. In fact, the Rule Execution Server (RES) API, to be discussed in

Chap. 13, relies on ruleset parameters to pass data back and forth.20

We now look at how ruleset parameters are referenced in rules. As mentioned

above, ruleset parameters are visible within all the rule of the project, and can thus

be referenced within rules. Going back to our “claim date” BAL rule from

Sect. 11.2.2, we can now write the rule without a definitions part:

And if we look at the IRL:

rule claim_date {
property status = "new";
when {

 com.mywebinsurance.claimprocessing.Claim() from theClaim;
 evaluate (theClaim.fileMoreThanXDaysAfter(90,

theClaim.policy.startDate.toDate()));
 } then {
 theClaim.decision = "INELIGIBLE";
 ?context.updateContext();
 theClaim.logRuleFiringWithMessage("Claim filed too late");

 }

}

If we compare this IRL to that produced for the original rule (Sect. 11.2.2), we

see a couple of differences:

1. In the earlier rule (Sect. 11.2.2), we looked for the claim object in working

memory, whereas, here, the claim object is scoped within the ruleset parameter.

2. If we look at the action part, the rule in Sect. 11.2.2 includes an update on the

claim object, namely: ‘update current_claim;0 whereas the above
rule does an update on the rule engine itself (“?context.update-
Context()”).

20This is a somewhat abusive simplification, but it will do for now: (1) the API for manipulating

XML data (XML XOM) is slightly different, for both working memory insertion, and parameter

passing, (2) with inout parameters, for the case of local invocation (same JVM, as in the example

above) the variable passed as inout will reflect the changes made by rule execution (no need to

fetch the new value from outputs), and (3) the RES API does enable us to pass data that is to be

inserted in working memory.

11.3 Rule Execution Orchestration 363

Recall that ‘update some_object;’ causes the rule engine to reevalu-

ate all of the rules relevant to some_object, which is the mechanism that

underlies rule chaining. However, what if the object is not in working memory, as is

the case with ruleset parameters? Technically, ruleset parameters are treated as data

members of the rule engine object itself21 and thus, whenever a ruleset parameter is

modified, the BAL to IRL translator throws in ‘?context.update
Context()0 whose effect is to reevaluate all of the rules that concern . . . the
ruleset parameters!

Finally, note that passing a data object as a ruleset parameter does not insert it
into working memory. Thus, the original form of the rule “claim date”, where we

defined a rule variable in the definitions part, would not work. Indeed, the class

condition:

…
current_claim: Claim();
…

Would fail because there would not be any Claim object in working memory!

So what do we do? We have three alternatives:

1. Rewrite the rule . . . naah!
2. Find a way of inserting ruleset parameters into working memory so that “work-

ing memory-style” rules continue to work. There are several more or less elegant

techniques of doing this that do not involve the Java code; we will see one such
technique when we talk about ruleflows (Sects. 11.5.2 and 11.5.3).

3. Design the signature of the ruleset (i.e., the ruleset parameters) before we start

writing rules, and then write rules that refer to those parameters. This is the

recommended practice. We will come back to this and other practices in section

on “Further Readings”.

We now talk about ruleset variables. If ruleset parameters are to rulesets what
function parameters are to functions, then ruleset variables are to rulesets what

function-scope local variables are to functions: they are visible everywhere in the

ruleset/rule project, and they keep their values during the invocation of the ruleset;

we could not say “their lifetime spans a ruleset invocation”, because ruleset variables

actually survive a ruleset invocation, and even keep their values from one invocation t

o the next. . . unless we clean them using “myEngine.cleanRuleset
Variables();”, or the more drastic “myEngine.reset();”.

Like with ruleset parameters, ruleset variables can be referenced in both rule

conditions and rule actions. We typically use ruleset variables to hold intermediary

results of the “reasoning” of the rule engine that we wish to pass from one rule to

another, with no other place to store them. A fairly common use is to implement

routing logic with ruleflows, to be discussed next. For the time being, we simply

show the mechanics of defining ruleset variables. Figure 11.9 shows the wizard for

21And in a distant past (Rules C++), they were.

364 11 Rule Authoring in JRules

defining ruleset variables. Ruleset variables are defined through variable sets. We

can have several variables sets within the same project, but only one per package.

However, the variables are accessible in all the packages of the project.

11.3.2 Ruleflows: Basics

A ruleflow is a way of organizing the execution of the rules of a rule project/ruleset in

terms of groups of related rules. It is a process flow whose tasks consist – mostly – of
the execution of groups of related rules. As mentioned in the introduction of this

section, while a ruleset is meant to implement a single business decision, that decision

is typically complex enough that it can be broken down into more elementary

decisions. This breakdown was actually presented as one of the criteria for organizing

rules during development (Sects. 7.4.2 and 7.4.3). The basic idea is that the rules of a

ruleset are broken down into subsets distributed among the tasks of the ruleflow, and

they will be evaluated in the sequence embodied in the ruleflow. Another way of

putting it: the ruleflow becomes sort of the “main program” of the ruleset.

Figure 11.10 shows the different types of components of a ruleflow. Much like a

Java function, a ruleflow has a single entry point and one or more end points. There

are three types of tasks in a ruleflow:

1. Function tasks, which include some imperative IRL or BAL code to execute,

i.e., the kind of code we would find in the action part of a rule (IRL or BAL) or

in IRL functions. Function tasks are typically used as the starting tasks of a

ruleflow to perform required initializations. For example, we could use a func-

tion task to insert ruleset parameters in working memory!

2. (Simple) rule tasks, which contain a bunch of rules and rule packages that will be
evaluated – and fired, if applicable – when the processing reaches that particular

task.

3. Flow tasks, which consist of the execution of a nested ruleflow. Indeed, some

complex decisions may require two or more levels of decomposition, and some

tasks of the main ruleflow may consist of executing another ruleflow.

The three types of tasks can have initial actions and final actions, which consist

of imperative IRL or BAL code to be executed upon entering or exiting the task.

Ruleflow tasks are linked to each other and to the start and end nodes using

transitions. Transitions can be guarded, i.e., they can be crossed only when certain

conditions are satisfied. Those conditions are Boolean expressions that can

reference variables that have rule project (ruleset) scope, i.e., either global Java

Fig. 11.9 Wizard for defining ruleset variables

11.3 Rule Execution Orchestration 365

variables,22 ruleset variables or ruleset parameters. We can have several transitions

coming out of the same task. If we have n transitions, n � 1 should be guarded, and

the nth should be tagged with the else. When several transitions come out of a task,

we can use a branch node for better visuals, even though it is not strictly necessary.
Ruleflows can have forks and joins. Because there is no parallel execution of

ruleflows, forks simply tell that there is no precedence between the branches of

the fork. However, under the hood, the branches are serialized.

Figure 11.11 shows what a claim processing ruleflow might look like. The

initialization function task does, indeed, insert the ruleset parameter theClaim into

working memory so that rules that refer to a claim in working memory (i.e., non-

scoped class condition) would still work. Both the data validation step and the

eligibility step are complex and require ruleflows of their own. Hence, the claim

processing ruleflow (Fig. 11.11a) references a data validation ruleflow (not shown)

and the claim eligibility ruleflow (Fig. 11.11b).

In this ruleflow, we only check the eligibility of the claim if the data is valid, and

we only adjudicate if the claim is eligible. This need not be the case. For example,

we could choose to check eligibility even if some data fields are erroneous or do not

A start node. There
can be only one start
node per ruleflow

A function task. Con-
tains IRL or BAL im-
perative code

A transition

A branch node

A guarded
transition

A rule task. Contains
rules and rule pack-
ages

A fork

A flow task-
references an-
other (nested)
ruleflow

A join

An exit node. There
can be several per
ruleflow

Fig. 11.10 The components of a ruleflow

22For example, public static class data members.

366 11 Rule Authoring in JRules

make sense. Deciding which way to go is often a combination of computational

constraints and business considerations. For example, in an automated system

where throughput is important, we may decide to throw out a claim as soon as it

Fig. 11.11 Claim processing ruleflow. (a) Claim processing main flow and (b) claim eligibility

ruleflow

11.3 Rule Execution Orchestration 367

fails any of the data validation tests or any of the eligibility criteria. If there are

problems past the first failure point, we will not know. However, a claims service

representative may need to provide a complete diagnosis for a rejected claim for

legal reasons, or for customer relationship management reasons: Tell the customer

what to fix for their corrected submission, once and for all, instead of asking for yet

another piece of documentation as the claim passes the various eligibility criteria.

For the sake of brevity, we will not show the Rule Studio wizards for creating

and editing ruleflows. However, we discuss the corresponding IRL (Fig. 11.12).

We will comment the structure of the IRL, here displayed in multi-column

format for compactness. The top pane shows the definition of the main ruleflow,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

use claim_eligibility;
use data_validation;
flowtask claim_processing {
property mainflowtask = true;
body {

 claim_processing#data_initialization;
 claim_processing#data$_$validation;

if (data_validation.dataValid) {
 claim_processing#claim$_$eligibility;

if ((theClaim.decision.equals("ELIGIBLE"))) {
 claim_processing#claim_adjudication;
 goto _node_5;
 } else { goto _node_5; }
 } else {
 _node_5 : claim_processing#reporting;
 }
 }
};

19

20
21
22
23

24

25
26
27
28

30

31
32
33
34
35
36

functiontask
claim_processing#data_initiali
zation {
body {
insert theClaim;

 }
};

flowtask
claim_processing#data$_$valida
tion {
body {

 data_validation;
 }
};

ruletask
claim_processing#reporting {
algorithm = default;
ordering = dynamic;
body {

 reporting.*
 }
};

ruletask
claim_processing#claim_adjudic
ation {
algorithm = default;
ordering = dynamic;
body {

 claim_adjudication.*
 }
};

flowtask
claim_processing#claim$_$eligi
bility {
body {

 claim_eligibility;
 }
};

Fig. 11.12 The IRL equivalent to the “claim processing” main ruleflow

368 11 Rule Authoring in JRules

“claim processing.” The IRL construct for ruleflows is flowtask (line

3). A ruleflow/flowtask has a bunch of properties (line 4) and a body (lines 5–17).

The body looks like any good old main program, even using a GOTO! Each

statement in the body references a task, including the (function) task “data
initialization” (line 6), the (flow) task “data_validation”

(line 7), etc. Transition guards show up as simple if-then-else statements. The first

transition (line 8) tests on a ruleset variable called “data_valid” defined

within the rule package “data validation.” The second guarded transi-

tion (line 10) tests on the value of the decision attribute of the ruleset

parameter “theClaim.”

Now that we have looked at the “main program”, let us look at the “subroutines”,

i.e., the definitions of the various tasks. Lines 19–23 show the definition of

the function “data_initialization”: It consists of a single IRL

statement: “insert theClaim.” In turn, the flowtask “claim_pro-
cessing#data$_$validation”23 is defined as invoking “data_
validation” in its body, which is the name of the nested ruleflow. This

externally defined entity is actually declared in line 2, with the statement

“use data_validation.” The flowtask “claim_processing #
claim$_$eligibility” (shown in second column) is defined in a

similar fashion.

Consider now the ruletasks “claim_processing#reporting”

(lines 30–36) and “claim_processing#claim_adjudica-
tion” (shown in second column). Their bodies are supposed to contain names

of rules or rule packages. The notation “reporting.*” is similar to Java’s

import convention: The “*” means all of the contents of the package “report-
ing”, including rules, and subpackages. The act of determining the body contents

of a rule task is called rule selection, as in selecting the rules that will be evaluated

and executed within the rule task. For these two cases, we talk about static rule
selection, meaning that the body of a rule task is determined statically, at ruleflow

development time. We can also have run-time rule selection, to be discussed in the

next section.

Rule tasks also show two properties, “algorithm” and “ordering.” Within

a ruleflow, we can use a different rule execution algorithm for each task. In fact, a

ruleset that contains a ruleflow behaves as different rulesets, one per task, and the rule
engine behaves as a bunch of rule engines, each with its own ruleset and agenda, but

they share working memory.24 We will discuss algorithm selection in the next

section, and best practices for algorithm selection in section on “Further Reading”.

23JRules enables us to use variable names that contain spaces. However, internally, it replaces

spaces by “_” . . . and “_” by “$_$”.
24We insist on the term behaves as because internally, it is the same ruleset object and the same

rule engine, except that different subsets of the ruleset will be activated as we move from one rule

task to another.

11.3 Rule Execution Orchestration 369

11.3.3 Ruleflows: Advanced Concepts

In this section, we talk about two features of ruleflows, run-time rule selection, and
algorithm selection. Rule selection deals with the selection of the rule contents of a

rule task. This selection is typically done at ruleflow development time where we

pick a set of rules or packages to execute in the rule task. JRules enables us to

compute the body of a rule task at run-time, and we will show how. As mentioned

above, within a ruleflow, we can select a different rule execution algorithm for each

rule task, and for each algorithm, we can specify additional parameters. We will

show how to do that, and discuss situations where each algorithm is appropriate.

11.3.3.1 Run-Time Rule Selection

Figure 11.13 shows the Rule Studio wizard for selecting rules. From the property

sheet of a rule task, we can select the “Rule Selection” which shows two panels. The

top panel shows the list of rules and rule packages in the rule task. Initially empty,

we can edit it by pressing the “Edit . . .” button which brings up the wizard shown on
the left of Fig. 11.13. In the “Select Rules” wizard, we get, on the left hand side, the

list of all rules and rule packages included in the current project and in the projects
that the current project depends on. We can move rules and packages from the left

to the right, and back, using the familiar >, �, <, and � buttons. Once we press

the “OK” button, the contents of the right list become the body of the rule task.

If we leave it at that, that is going to be the body of the rule task. In the example

of Fig. 11.13, we are looking at the rule task “claim adjudication”

from the “claim processing” ruleflow (see Fig. 11.11a). Here, we

selected the rule package called “claim adjudication.” Note that

this does not mean that all of the rules of the package “claim adjudica-
tion” will be evaluated/executed in this ruletask: Indeed, the ruleset extractor

might actually filter out some rules from that package based on development status

(e.g., only validated rules) or based on effective and expiration date. Thus, during

run-time, this task will have all of the rules of the package “claim adjudi-
cation” that were extracted by the ruleset extractor.

Fig. 11.13 The Rule Studio wizard for rule selection

370 11 Rule Authoring in JRules

As we mentioned above, we can also make run-time rule selection, which acts as

an additional rule filter. Let us first consider a business scenario that requires run-time

rule selection. Business policies and rules change regularly – one of the motivations

for using the business rules approach! Insurance companies will update their rules

regularly based on market trends, marketing studies, new actuarial studies, changing

regulations, etc.When new rules come into effect, they usually have an effective date.

If they are meant to replace older rules, the older rules will be made to expire on that

date. However, new rules will generally apply only to new business. Existing con-

tracts will continue to be honored according to the old rules. For example, if we

decide to change the yearly cap on a particular procedure, the new cap will apply to

new policies, or to existing policies at renewal time but will not apply retroactively to
existing policies that are still in effect. So how dowe handle that? One solution would

have us use different rulesets, one per effectiveness period. When a claim comes in,

we check the start and expiration dates of the policy, and select the ruleset to use

accordingly. The yearly cap for procedure X is updated on January 20. The yearly cap

for procedure Y is updated on February 18. The list of approved providers is updated

on March 5 . . . you get the idea: We will end up with numerous rulesets, and a

cumbersome and error-prone ruleset dispatching mechanism. This is the business

case for run-time rule selection: Our rule packages may contain rules with different

effectiveness periods. However, for a given claim, we will select which of those rules

to use, based on the effectiveness period of the policy of the claim.

Figure 11.14 shows the corresponding run-time rule selection filter. The BAL

expression compares the “effective date” and “expiration
date” of the rule to the “start date” and “end date” of the policy

of the claim. Naturally, we can use any run-time property of a rule25 and any

property of the business data manipulated by the ruleset. Because the set of rule

properties (metadata) is extensible, the possibilities are endless. For example,

thanks to so-called hierarchical properties (properties whose values fit in a hierar-

chy), we can imagine filters based on the jurisdiction of the rule, and the place of

Fig. 11.14 The dynamic run-time rule selection filter

25The properties of a rule can be either extractable, in which case they are available in the run-time
representation of rules, or non-extractable, in which case they are development time-only proper-

ties. The extractability of a rule property is a true/false attribute than can be set in rule model
extensions. See Chap. 17 for more information about extending the rule metamodel.

11.3 Rule Execution Orchestration 371

residence of the policy holder. For example, California and US-wide rules will

apply to a policy held by a San Francisco resident, whereas Michigan rules will not.

Figure 11.14 above shows a radio button labeled “Static BAL”. So what is static
BAL run-time rule selection filter? A dynamic BAL run-time rule selection filter is

run each time the control flow reaches the rule task, i.e., each time the rule task is

executed. In our case, that is the behavior we want, because our ruleset will be run

with a different claim each time. By contrast, a static BAL run-time rule selection
filter is applied only the first time the rule task is executed and the body of the task

will remain constant throughout the lifetime of the ruleset object. There are not that

many use cases where a static BAL run-time rule selection filter is appropriate.

Figure 11.15 shows the IRL for the rule task “claim adjudication”. By comparing

it with the IRL in Fig. 11.12, the reader may notice that the package “claim_
adjudication.*” now represents the scope of the rule task, and the body

consists of the filter. The filter is like a Boolean function that takes a rule as an

argument, and return true if the rule should be included, and false otherwise. The

scope determines the set of rules over which this filter will be applied?

Had we picked the static BAL button (Fig. 11.14) instead, the keyword dyna-
micselect would be replaced by the keyword select. And had

we picked the button “IRL” (Fig. 11.14), we would have had to enter the body

block, and would have had the leisure to pick either dynamicselect or

select. We could even have used a different signature for the filter (static or

dynamic) which takes no arguments and returns an array of rules to include in the

rule task, in one shot, which makes the computation of the body more efficient.

Indeed, dynamic run-time rule selection does have a performance cost, and if we are

not careful, we can make it prohibitively costly.

11.3.3.2 Algorithm Selection

As mentioned above, we can select a different execution algorithm for each task

within a ruleflow. JRules offers three execution algorithms, discussed in Chap. 6:

ruletask claim_processing#claim_adjudication {
algorithm = default;
ordering = dynamic;

 scope {
 claim_adjudication.*,
 }

body = dynamicselect (?rule) {
 return ((?rule.?effectiveDate.compareTo(

 theClaim.policy.endDate.toDate()) < 0
&& ?rule.?expirationDate.compareTo(
 theClaim.policy.startDate.toDate()) > 0));

 }

};

Fig. 11.15 IRL for a rule task with a dynamic run-time rule selection

372 11 Rule Authoring in JRules

1. The RETE algorithm, which is the default algorithm. This is the most powerful

of the three, and it supports rule chaining (see Chap. 6).

2. The sequential algorithm, which applies the rules of a ruleset/task to the data of

the working memory sequentially. Thus, for a given object tuple <object1,

object2, . . . ,objectn>, each rule is evaluated only once, if at all. This leads to

a more efficient execution, but does not support rule chaining and has other

limitations, to be discussed later.

3. The fastpath algorithm, which combines characteristics of the RETE algorithm

and of the sequential algorithm. It does not support rule chaining, but it does not
have many of the sequential algorithm limitations.

Figure 11.16 shows the algorithm selection wizard. In addition to the algorithm

selection, we have two additional properties, with three potential values each:

1. Exit criteria, which defaults to “None” but can take the value “Rule” or

“RuleInstance.” None means that we let the engine fire all of the

rules that are satisfied. With RuleInstance, as soon as the engine fires

any rule instance, we stop the execution and exit. WithRule, we let the engine

fire all of the instances of highest priority rule, and then exit.

2. Ordering, which defaults to . . . “Default” but which can take the values

“Literal” or “Priority.” Default refers to the use of dynamic
priorities to order the execution of rules. Priority means that rules are

executed according to their static priorities, and Literal means that rules

are executed according to their order of appearance in the task body (yuk!).

We can also enter some advanced properties in a textual format. One such

property is firinglimit which can take any positive integer value, to

mean how many rules of a particular task can fire before the task is terminated.

A firinglimit¼0 means no limit, i.e., we let the algorithm run its course

to the end. Generally speaking, the value None for “Exit Criteria” means

firinglimit¼0, and the value RuleInstance or Rule (depend-

ing on the execution algorithm) means firinglimit¼1.

Note that not all combinations of values are legal. For example, Default
ordering is not legal for the sequential algorithm, because the sequential algorithm

Fig. 11.16 The rule task algorithm selection wizard

11.3 Rule Execution Orchestration 373

does not support dynamic priorities: we will get a ruleset parsing error.26 Further,

not all the legal combinations make sense. For example, the combinations

<Algorithm¼RetePlus, Ordering¼Literal or Priority, Exit Criteria ¼ anything>
are legal but would yield a RETE algorithm with no agenda or rule chaining. Why

bother? We will discuss below the legal combinations that do make sense. The

reader can consult the product documentation for the more exotic combinations.

For the RETE algorithm. As mentioned above, only the Default value

makes sense here. With regard to the exit criteria, if we use “None”, we let the

“while agenda not empty” loop discussed in Chap. 6 run its course until the agenda

is empty. If “Exit Criteria” is RuleInstance, the “while agenda not empty”

loop actually stops after the first rule instance is executed. This exit criterion might

be needed for a rule task that contains rules that detect violations of eligibility or

validation constraints: If all we are interested in is the pass/fail decision, then we

can exit at the first violation, i.e., the first rule instance. With “Exit Criteria” equal to

Rule, we take the first rule instance (i.e., the top of the agenda), and fire it and all
of the other instances of the same rule that are on the agenda. Often, all of the other

instances of the same rule will have the same priority as the first one, and will be

“right behind” on the agenda. But there are situations where that would not be the

case: For example, when that rule uses dynamic priorities – and thus, different

instances will have different priorities – or when there are other rules on the agenda

with the same priority – in which case other criteria such as recency (see Chap. 6)

come into play.

For the sequential algorithm. As mentioned above, the Ordering property

can be either Literal or Priority in this case. With Literal, for

each data tuple, the rules are applied in the other in which they (or the packages that

contain them) are listed in the rule task body. With Priority, the rules are

applied according to their static priority. Regarding the Exit Criteria
property, None means that all of the rules will be applied, RuleInstance
does not make sense (because we have no agenda), and Rule means that as soon

as a rule is fired, we drop the current data tuple, and take the next one.

For the fastpath algorithm. Because this algorithm does not rely on an agenda,

the Ordering property can be either Literal or Priority, with

the same behavior as with the sequential algorithm. Regarding the Exit
Criteria property, None means that all of the rules will be applied. Using

RuleInstancemeans that as soon as a rule instance is fired, we end the task.

With Rule, we execute all of the instances of the first rule, based on the ordering

property, and then we exit the task.

In this section, we discussed algorithm selection, and discussed the various

parameters. We will discuss criteria for selecting one algorithm versus the other

in Sect. 11.6.3.

26We will be able to extract the ruleset, but when we load it into a ruleset object, we get a ruleset

parsing error.

374 11 Rule Authoring in JRules

11.4 Best Practices

In this section, we review some best practices regarding rule authoring and rule

execution orchestration.

11.4.1 Best Practice 1: Design the Signature First

We saw in Sect. 11.5.1 how the use of ruleset parameters can change the way

rules reference application objects, and ultimately, where rules will fire on

not. Adding ruleset parameters after people have written rules can require some

acrobatics:

1. Rewriting rules so that they now refer to the ruleset parameters

2. Add rules or ruletasks to insert ruleset parameters in working memory

It is better to start right, from the beginning. We will talk shortly about how to

pick the correct signature.

The same is true with ruleflows: It is better to start designing the structure of the

ruleflow before rule authoring starts. Indeed, we recommend that the rule architect

design the high-level package structure of the rule project (see Sect. 9.4.3 for some

design patterns) and the ruleflow, before rule authors start writing rules. This way,

rule authors will write rules within the context of a predefined and carefully

designed development structure (rule package hierarchy), and that structure is

pre-mapped to the execution structure (ruleflow) through rule task rule selection.

Indeed, when we write a rule, it helps to know the context under which the rule will

be executed, i.e., the point in the process, what things are already assumed to be

true, etc.

Regarding the ruleset signature, which data items should I pass back and forth

between the calling application, and the rule engine? Actually, there are two aspects

to this question, the business data contents, and the computational data structure.

With regard to the business contents of the parameters . . . business knows! Policy
analysts know which information they need for policy underwriting, policy

renewal, or for claim processing. For each one of these processes, there is, naturally,

the main document or transaction (e.g., policy application, claim), but also a bunch

of ancillary or supporting data (see Fig. 11.17).

For example, for policy underwriting, we would want to know about the policy

(which risks are to be covered, deductibles, restrictions), but we may also want to

know about the (potential) policy holder credit file. For claim processing, in

addition to the claim itself, we may want to get the policy itself, to see which

coverages are included, but perhaps also some historical data about past claims,

etc. Only business knows the sources of information they draw upon to make

decisions.

11.4 Best Practices 375

Having decided on the business contents of the data, the question now is how to

structure it to pass it back and forth. We illustrate the issue with the model in

Fig. 11.18. In this particular case, from the Claim object, we can access all of the

information about the service acts, the policy, the coverages, and the policy holder.

Hence, passing the Claim object is enough: The policy can be accessed as “the
policy of the claim”, the service acts can be accessed as “a service
act in the service acts of the claim”, etc. If we need the past

claims, then we have several alternatives:

1. If we need the aggregated data from the past claims (e.g., total amount, number

over a three year period, etc.), then those can be stored at the Policy object as

attributes.

2. If we need the actual individual claims, then, either the Policy object points

back to the claims made against it, in which case the main Claim object

suffices, or we need to pass the set of past claims, separately, as a ruleset

parameter.

Similar issues will arise regarding the decision output. Generally speaking, if the

“rule team” has some control over the XOM, we can custom tailor the XOM (e.g.,

adding collection attributes to point from a Policy to past claims) to make the

ruleset signature simpler.

Fig. 11.17 The business signature of a ruleset

-name : string
-birthDate : Date
-ssn : string

PolicyHolder

-number : int
-startDate : Date
-endDate : Date

Policy

-policies

0..*

-holder1..*

-id : int
-date : Date

Claim

-claims

0..*

-policy1

-procedure : string
-deductible : decimal
-yearlyCap : decimal

Coverage

-policy

1

-coverages1..*

-date : Date
-procedure : string
-provider : string
-cost : decimal

ServiceAct

-claim

0..1
-acts1..*

Fig. 11.18 A model of the data needed to make a decision

376 11 Rule Authoring in JRules

11.4.2 Best Practice 2: Rulesets and Ruleflows

One of the design issues that will come up has to do with the granularity of the

ruleflow. At the highest level, we have a business process that involves a number of

decisions. At the lowest level, we have individual business rules. JRules provides

with rulesets and ruleflows as a way of structuring rule executions. The question

then becomes:

1. What should be the granularity of a ruleset?

2. Having chosen a ruleset granularity, how far down should we decompose the

decision implemented by a ruleset using ruleflows?

Let us answer the ruleset question first, and then we will tackle ruleflows.

Chapters 3 and 4 argued that decision points within a business process are

candidates for a ruleset. However, we did not talk about the granularity of the

business process. Because business processes can themselves be nested, we had not

answered the question entirely. Let us consider our case study. Figure 11.19 shows

claim processing, at three levels of detail. At the highest level, we have the entire

business process from the reception of the claim in paper format to actual payment.

Starting with the process in the left, the first task consists of entering the claim data

into the system, possibly scanning and archive receipts, etc. The next task consists

Date eligibility

Procedure eligibility

Provider eligibility

Beneficiary eligibility

Report

Claim Data Validation

Claim Eligibility

Claim Adjudication

Report

Enter Claim Data

Claim Processing

Payment

Report

Fig. 11.19 The claim processing, at three levels of detail

11.4 Best Practices 377

of processing the claim, and if the claim is deemed payable, then we go through

payment, and then report. The claim processing task itself can be broken down into

data validation, eligibility, and adjudication. In turn, claim eligibility can be broken

down into data eligibility, beneficiary eligibility, procedure eligibility, and provider

eligibility.

So the question is which of the three processes should be a ruleset, if any?

Generally speaking, a process or task should be a candidate for a ruleset if it satisfies

two sets of criteria:

1. Business criteria:

– The process or task should be decision intensive, i.e., it should involve

business rules.

– The process or task should embody a cohesive decision, i.e., have a single

identifiable, business meaningful outcome.

2. Computational criteria:

– The process or task should represent a short-lived, synchronous activity.
– The process or task should not involve any heavy-lifting, e.g., accessing a

legacy EIS, or making a remote connection.

The business criteria are self-explanatory. The computational criteria are justified

by the fact that ruleset execution requires a single, synchronous rule engine invoca-

tion (the method execute()). Indeed, we would not want a rule engine

invocation to last minutes, hours, or days, and lock the resources (claim object,

policy object, etc.) while the engine is running. Second, we would not want to be

dealing with exceptions raised by the external resources (e.g., a SQL exception, a

database connection timeout, a deadlock, a remote method invocation timeout, etc.)

within a ruleset execution because they are at worst, unrecoverable, and at best, leave

the engine in an inconsistent state, making the entire rule engine invocation suspect.

Going back to our example (Fig. 11.19), both the claim processing process

(middle one) and the claim eligibility process (right one) satisfy all the criteria,

and are potential candidates for a ruleset. However, the top-level process does not:

l It is debatable whether we could call it decision intensive: Two tasks out of three
are clerical and do not involve decisions (data entry and payment).

l It fails both computational criteria: It is not a short-lived process as it involves an
external manual task (data entry, archiving), and it does involve accessing

external resources, for both data entry and payment.27

Having eliminated the top process as a candidate for a ruleset, we can now worry

about the next two.

27Data entry typically involves saving the data entered in the database, but also, pulling out the

policy object from the database. Payment requires either printing checks or making automatic

transfers by accessing a banking system.

378 11 Rule Authoring in JRules

If we choose to make “claim processing” a ruleset – as we have assumed in this

chapter – then the internal process will be implemented using a ruleflow. One could

also imagine deciding otherwise. In real life, the process labeled “claim processing”

will likely require thousands of rules. Further, while data validation is generally

relatively simple (e.g., checking individual property values), claim eligibility will

involve lots of rules, and lots of data. If a claim fails data validation, we would have

loaded all of the business data (policy, policy holder, past claims, etc.) for nothing.

An architect might then choose to implement the “claim processing” process

(middle of Fig. 11.19) in Java – or in BPEL or in some workflow engine – and

then implement data validation, claim eligibility, and claim adjudication as

separate rulesets.

Having decided on the granularity of the ruleset, now the question becomes:

How fine-grained should be our ruleflows? Considering that a ruleflow is a piece of

hardcoded procedural logic, the procedural logic needs to be business-oriented, so
that it makes sense to the people writing rules, and it should be stable so that we do
not have to frequently redesign the ruleflow. Indeed, the high-level package struc-

ture of a rule project and the ruleflow embody the architecture of the rule project

and of the corresponding ruleset. We should not implement computational algo-

rithms or replicate procedural code using ruleflows: We should let the engine do its

job with the built-in inference mechanisms. For example, you know that you have

gone too far if each rule task contains a handful of rules.

11.4.3 Best Practice 3: My Kingdom for an Algorithm

Chap. 6 explained the various rule engine execution algorithms. Section 11.5.3.2

of this chapter explained the different parameters of the various rule task execu-

tion algorithms, and how to set them. In this section, we present criteria for

selecting an execution algorithm and its associated parameters for a particular

task.

If you do nothing, the default execution algorithm for rule tasks is the RETE

algorithm. As mentioned earlier, this is the most powerful of the three execution

algorithms, and it supports all of the IRL constructs, including exists, not, truth
maintenance, and event-based reasoning. This execution mode supports rule chain-
ing. In the context of a ruleflow, rule chaining for a rule task means that the firing

of a rule within that task can trigger the firing of another rule within the same task.

Let us first refresh our memory about what rule chaining means. Consider the

“procedure eligibility” task, in Fig. 11.19. A procedure is considered eligible if (a) it

is covered by the policy and (b) it is justified. Assume that this is written using two

rules as follows:28

28Note that the current BOM does not support these rules. They are used for illustration purposes.

11.4 Best Practices 379

Rule 1 - coverage:
definitions

set 'a service act' to a service act in the service acts
of 'the claim';

if
there exists a coverage in the coverages of the policy of

'the claim' where the procedure of this coverage
is the procedure of 'a service act' ,

then
 set the status of 'a service act' to "COVERED" ;

Rule 2 – justification:
definitions

set 'a service act' to a service act in the service acts
of 'the claim' where the status of this service act is
"COVERED";

if
there exists a prescription in the documents of

'the claim' where the procedure of this prescription
is the procedure of 'a service act' ,

then
 set the status of ' a service act' to "JUSTIFIED" ;

The justification rule (Rule 2) will only be triggered for those service acts that

have the status “COVERED.” If Rule 1 and Rule 2 are in the same task, only the

RETE algorithm will ensure that if Rule 1 is executed for a particular service act,

then Rule 2 will be evaluated and potentially triggered. Indeed, both the sequential

algorithm and the fastpath algorithm will take a single pass at the rules, and if Rule
2 happens to be looked at before Rule 1 (see discussion in Chap. 6, and the rule

ordering parameter in Sect. 11.5.3.2), we will never be able to establish that a

service act is eligible!

Because the RETE algorithm is the least efficient of the three algorithms, we

have to consider whether we need it for a particular task. Two sets of reasons would

compel us to use the RETE algorithm:

1. The decision logic. The above example illustrated a case where rule chaining

was needed for the proper execution of rules. Other cases include truth mainte-

nance and event-based reasoning, which also require the RETE algorithm.

2. The use of or reliance on working memory or agenda constructs in rules. This
means constructs like dynamic priorities, which are not supported in either

sequential or fastpath. It also means unscoped29 exists, not and collections,

and their BAL equivalents, which are not supported by the sequential algorithm,

and insert, update and retract, which will have unexpected or unpre-

dictable behavior30 in sequential and fastpath.

29That is, without the in/from constructs.
30For example, in RETE mode, when an object is insert’ed, all of the rules that concern it will

be evaluated. In sequential and fastpath mode, the new object may or may not be considered

380 11 Rule Authoring in JRules

The two factors are not independent: business logic can also dictate the kind of

IRL construct we use. For example, while we can refrain from using unscoped

exists or not – by scoping them using in/from constructs!—it may be far

more awkward, for a particular application, to implement the business logic without

insert or retract, say.
If you have established that, for a particular task, the business logic does not

require the RETE algorithm, and if the rules that do go into that task do not use

the IRL constructs mentioned above, then we should aim for the more efficient

alternatives, the sequential or fastpath algorithm. Which one should you use? As it

turns out, this is not only a question of efficiency, but it is also a question of

correctness. Indeed, if the rules within a rule task do not have a homogeneous
signature, the sequential algorithm will not behave correctly.

Informally, the signature of a rule is the tuple of objects on which the

rule applies. Formally, the signature of an IRL rule is the set of simple class
conditions of the rule. At the BAL level, it is the set of object variables of the
rule – including object ruleset parameters, object ruleset variables, and object
local variables.31 In the example above, the rules Rule 1 (coverage) and Rule

2 (justification) have the same signature: {Claim, ServiceAct}. By contrast,

the signature of the following rule is {Claim,PolicyHolder,ServiceAct}.

Rule 3 – different signature:
definitions

set 'a service act' to a service act in the service acts
 of 'the claim;

set 'a policy holder' to apolicy holder in the insureds
of the policy of 'the claim;

if
 …

Recall from Chap. 6 that the default tuple generator used by the sequential

algorithm (see Chap. 6) takes the union of the signatures of the rules within the task
to generate the tuples. Thus, if Rule 3 were in the same rule task as Rule 1 and Rule

2, the tuple generator will use the signature {Claim, PolicyHolder, Servi-
ceAct} as the structure for the tuples. Given the objects claim_1, ser-
viceAct_1, serviceAct_2, policyHolder_1,
policyHolder_2, the tuple generator will generate the tuples: T1 ¼
<claim_1, policyHolder_1, serviceAct_1>, T2 ¼
<claim_1, policyHolder_1, serviceAct_2>, T3 ¼

depending on the tuple enumerator used by the sequential algorithm or the rule ordering algorithm

used by fastpath.
31Object local variables are variables defined using the form “set <var name>to a <object type>
[scope expression].” A variable that represents the value of an attribute (regardless of its type) is

not mapped to an IRL class condition.

11.4 Best Practices 381

If the rules within a task do have the same signature, then it becomes a matter of

performance. Recall that the fastpath algorithm does build a RETE network from

the rules; it is just that takes a single pass at the rules. Compiling the rules of the task

into a RETE network does have a cost. The benefit is the underlying condition

sharing. Thus, if the rules of the task have numerous randomly ordered conditions,

the fastpath algorithm will incur the RETE network construction costs, without the

benefit of condition sharing: We should use the sequential algorithm. If the rules

share some conditions, then the fastpath algorithm is preferred.

We summarize our preliminary discussion in the decision process of Fig. 11.20.

This decision process needs to be qualified. In particular, the need for the RETE

algorithm and for WM or agenda constructs can, in some cases, be eliminated, or

reduced in scope. This is illustrated with a couple of examples below.

Most underwriting decisions – be they for mortgage or insurance – involve two

distinct phases: (a) a risk assessment phase, which assigns a risk score to the

customer application (for a loan or an insurance policy) and (b) a decision phase,

which consists of assigning a recommendation (typically, accept, reject, or send for

manual referral) based on that score. The underwriting decision itself does require
rule chaining between risk assessment rules and decision rules. However, if we
break the underwriting decision into two tasks, then the ruleflow built-in control

flow will enforce that rule chaining. This is illustrated in Fig. 11.21. With this

decomposition, instead of selecting a single algorithm for the task “Policy under-

writing” (left ruleflow), we can now select different algorithms for the rule tasks

“Risk scoring” and “Decision”. Typically, risk scoring rules compare attributes to

predefined ranges and increment or decrement a cumulative score, and they do not

require rule chaining. The same is true for decision rules which typically compare a

single risk value, or a set of score, to predefined thresholds and assign a decision

with justifications. Thus, we should be able to use the sequential or fastpath

algorithm for each of the two tasks taken separately – provided that the IRL/BAL

constructs that are used in the rules allow it!

While this is a useful heuristic, it should be used sparingly: We should resist the

temptation of slicing business decisions into finely granular, sequential decisions,

<claim_1, policyHolder_2, serviceAct_1>, and T4 ¼
<claim_1, policyHolder_2, serviceAct_2>. For each

tuple, we will apply Rule 1, Rule 2, and Rule 3, sequentially; if a rule has a smaller

signature than the tuple, we “project” the tuple on the signature of the rule,meaning

that the extra objects are ignored. This means that Rule 1, for example, will be

evaluated twice on the pair<claim_1,serviceAct_1>, first while we

processT1 and a second timewhile we process the tupleT3. The same is true for the

pair <claim_1, serviceAct_2>, which will be evaluated twice by

Rule 1, once for T2 and a second time for T4. The same is true for Rule 2. Having a

rule execute several times on the same tuple of objects within a single run can be

anywhere from inefficient to outright wrong.Hence, if the rules within a task do not

have the same signature, the sequential algorithm should not be considered.

382 11 Rule Authoring in JRules

just to get rid of rule chaining. Do not lose from sight the guidelines provided in

Sect. 11.4.2 regarding the granularity of ruleflows.

With regard to the IRL or BAL constructs that are problematic or forbidden in

sequential/fastapath, by adhering to a few stylistic guidelines, we can live without

most of them – and never miss them again. For example, we can refrain from using

unscoped exists, not, and collections in IRL, or their BAL equivalents. In

particular, by using ruleset parameters to communicate business data to the engine

and by refraining from inserting objects in working memory – as is the recom-

mended practice, see Sects. 11.3.1 and 11.4.1 – we have no choice but to use the

scoped versions of exists, not, and collections: Rules would not work other-

wise, regardless of the execution algorithm!

Does business
logic require

RETE

Select (keep) RETE

[Yes] [No]

Rules need
WM or agenda

constructs

[Yes]

Use sequential algorithm

[No]

Rules have
same signature?

Use fastpath

[No] [Yes]

Rules have
randomly ordered

tests?

[Yes] [No]

Fig. 11.20 A first-cut rule task execution algorithm selection process

11.4 Best Practices 383

This discussion raises two issues. First, technically, it is always possible to write
the business rules so that they can execute in sequential or fastpath . . . as it is

possible to write them in Java or assembly language! The question is:How much of
a price are we willing to pay for efficiency. Keep in mind that business rules are

supposed to become the communication language between business and IT. If that

language is tweaked to the point that the business logic is no longer recognizable by

a business person, be it a mortgage specialist, for a mortgage underwriting applica-

tion, or a network operator, for an alarm filtering and correlation application, then

we defeated the purpose of the business rules approach.

The second issue is related to the interplay between rule authoring and algorithm

selection. If we design the ruleflow before we write the rules – as is the recommended

practice, see Sects. 11.4.1 and 11.4.2 – then we will not know which algorithm to use

for each rule task, until the rules are written. This erodes, a bit further, the separation

of concerns between the development time concerns surrounding rule authoring and

the run-time concerns. In particular, it raises the question of how much a rule author

needs to know about the execution context of the rule that she or he is writing, for that

rule to execute correctly and efficiently. This is a valid concern, but as we showed for
the case of problematic IRL/BAL constructs, we can achieve quite a bit with a good

preliminary design (Sects. 11.4.1 and 11.4.2), and a few stylistic guidelines, which

can be enforced through the use of rule templates.

11.4.4 Best Practice 4: Do You Really Need a Custom Language?

We showed in Sect. 11.4.6 the JRules Business Rules Language Development
Framework or BRLDF for short, a framework for developing custom rule authoring

languages. The BRLDF, which has evolved over a dozen or so years, has a nice

Policy underwriting

Issue quoteIssue rejection letterSend manual referral

Risk scoring

Issue quoteIssue rejection letterSend manual referral

Decision

Underwriting
requires chaining
between scoring

and decision

The chaining is
implemented by

the ruleflow’s built-
in control flow

Fig. 11.21 By breaking a decision into two, we may obviate the need for rule chaining

384 11 Rule Authoring in JRules

modular design, and provides a nice separation between the abstract syntax of a

language from its concrete syntax. It also provides a clean separation between

parsing and code generation. The BRLDF also enables us to build a language

incrementally by modifying an existing language. This provides for localized and

low-cost customization of existing languages. This makes it particularly easy to

customize or extend the BAL, which is built using the BRLDF.

That being the case, do you really need a separate rule language? Now? The

answer is probably no, and almost certainly not now. In Chap. 9, we argued that a

new rule language is justified only when the following conditions, reframed within

the context of JRules, are satisfied:

l The BAL syntax represents an unnecessary burden, and an unbearably awkward

syntax for the rule authors.
l The cost of developing the custom rule language, the custom rule editor, and the

custom rule engine was minimal.
l You have reasonable assurance that future evolution of JRules will not invalidate

your language.

With regard to the second condition, the BRLDF design ensures that the cost of

developing the language is indeed minimal, if we build it by extending or reusing

parts of the BAL. However, how could we have a reasonable assurance that future

evolution of the product will not invalidate your custom rule language? And if so,

for how long? JRules is one of the most mature – if not most mature – BRMSs on

the market. And yet, historically, it underwent major modernizations every few

years. A case in point is the change between JRules 5 and JRules 6, which came out

in late 2005/early 2006. In JRules 5, BAL rules are persisted in the form of their

abstract syntax trees, serialized in XML format. In JRules 6, BAL rules are

persisted in BAL text format. JRules 6.x and 7.x include utilities that know how

to read the old representation format (XML-based abstract syntax trees) and how to

convert them to the new format. However, these utilities understand, out of the box,

only the standard BAL syntax.32 This means a set of painful choices:

1. Refrain from upgrading to the newest product version, thereby foregoing valu-

able additional functionalities, bug fixes, or architectural enhancements.

2. Manually migrate your existing rules into the new version of JRules.

3. Develop your own migration utilities.

Note that both choice two and three imply that you upgrade your implementation

of the custom language into the new version of JRules/BRLDF.

Different customer circumstances have at one point or another dictated each

of the three choices. We can certify that they were all painful, and we do not

recall a case where it was candidly felt that the customization added-value was,

with hindsight, worth the initial language development effort (minimal) and the

32Well. They can also handle simple extensions like specifying value editors or specializing tokens

of the language, but they cannot handle different grammatical structures.

11.4 Best Practices 385

migration pain (major). So how do customers get talked – or talk themselves – into

building risky custom languages? Two reasons: (a) uneducated or unreasonable

user requirements, and (b) an eager development organization. Indeed, if JRules is

brought into an organization to replace another niche BRMS-like product, business

users may insist on (and get) keeping every single nicety – or idiosyncracy – of the

niche-product it is replacing, even when there are better or cleaner way of doing it

in the generalist JRules. This could mean recreating an idiosyncratic rule entry

language.33 Second, developers are often eager to please because developers . . .
love to develop: Any opportunity to delve into the more exotic parts of the API is a

welcome relief from the often repetitive development tasks. Project managers and

technical leads should know when to call off the party and say no.

As for the timing, while we believe that there is seldom a good time to develop a

custom rule entry language, doing it on your first major rule project is definitely the

wrong time. Project teams have enough to deal with on the first release of a rule-

based application; they should not overburden themselves with “cosmetic” or nice-

to-have features. And besides, the requirements for such a language can only be

determined through practice.

11.5 Discussion

There is a lot more to what we collectively referred to as “rule authoring” than

actually coding individual rules. Rule execution orchestration involves a number of

complex design decisions that impact rule authoring, rule deployment, and rule

execution. In this chapter, we identified these design decisions, described the design

space, and discussed some best practices.

Designing rule execution orchestration falls within the purview of the rule
architect and is of no concern to rule writers. As illustrated for the case of algorithm
selection, the rule architect needs a deep understanding of the business logic, a deep

understanding of the BAL, IRL, and an understanding of rule engine mechanics.

Similarly, ruleset signature requires good business logic knowledge and software

architecture knowledge.

As this chapter and last showed, the rule architect has a central role in rule

authoring, management, and execution. He also needs a variety of skills straddling

three different areas: business, java, and JRules. From our experience, customers

often misunderstand this role and assign its tasks to individuals who lack one – and

sometimes two – skill sets, or worse yet, assign different tasks to different indivi-

duals. This typically leads to suboptimal or incoherent designs.

Our experience has also been that customers underestimate the skill level

required of rule writers. In most projects, we have been to where IT is responsible

for authoring and maintaining rules, it was often the most junior members of the

33We can call it a domain-specific language to make it more acceptable J.

386 11 Rule Authoring in JRules

team that got to write rules. That is a shame because good rule authoring requires a

deep understanding of the business logic, an awareness of the rule coding patterns

discussed in Chap. 9, and a mastery of the business action language (BAL) and its

derivatives. A junior IT person would typically lack at least one of the skill sets.

As with any other technology, quality is not inevitable. Get the wrong people,

and you get the wrong results. If this is your first business rules project, get the

wrong people, and not only do you get the wrong results, but you also learn the

wrong lesson – and set back business rule adoption in your organization by a few

years.

11.6 Further Reading

As this chapter is JRules specific, additional sources of information can be found in

the product documentation and on IBM’s support site forWebsphere Ilog JRules at
http:/publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp.

More information about the rule engine execution algorithms can be found in

Chap. 6 and its references. The Web site www.agilebrdevelopment.com, which is

dedicated to this book, contains complementary information.

11.6 Further Reading 387

http://http:/publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp
http://www.agilebrdevelopment.com

	Chapter 11: Rule Authoring in JRules
	11.1 Introduction
	11.2 Rule Artifacts
	11.2.1 IRL and Technical Rules
	11.2.2 BAL and Action Rules
	11.2.3 Decision Tables
	11.2.4 Decision Trees
	11.2.5 Score Cards
	11.2.6 The Business Rules Language Development Framework

	11.3 Rule Execution Orchestration
	11.3.1 Ruleset Parameters and Variables
	11.3.2 Ruleflows: Basics
	11.3.3 Ruleflows: Advanced Concepts
	11.3.3.1 Run-Time Rule Selection
	11.3.3.2 Algorithm Selection

	11.4 Best Practices
	11.4.1 Best Practice 1: Design the Signature First
	11.4.2 Best Practice 2: Rulesets and Ruleflows
	11.4.3 Best Practice 3: My Kingdom for an Algorithm
	11.4.4 Best Practice 4: Do You Really Need a Custom Language?

	11.5 Discussion
	11.6 Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

