
Chapter 10

Rule Authoring Infrastructure in JRules

Target audience
l Developer, rule author, business analyst (may skip 3.3)

In this chapter you will learn
l The structure of rule projects in JRules
l The different components of a rule project
l Rule project relationships and their importance in modularizing

rule development
l The Business Object Model (BOM), which is used for rule author-

ing, and how to build it from the application (or executable)
object model

l Best practices for organizes organizing rules, and the artifacts
they depend on, in rule projects

l Best practices for the design of a stable and flexible BOM

Key points
l Getting the rule project structure right is an important first step in

rule authoring.
l Rule project dependencies can be used to modularize rule devel-

opment and to maximize the reuse of rule artifacts.
l The BOM to XOM mapping is a powerful mechanism for obtain-

ing a vocabulary that embodies business needs from an applica-
tion model geared towards IT needs.

l The BOM update and refactoring capabilities of Rule Studio
enable us to selectively propagate some changes from the XOM
to the BOM, and to shield the BOM – and rules – from the others.

10.1 Introduction

In Chap. 9, we explored the design space for rule authoring, in a technology-

independent way, and proposed patterns and best practices for authoring. In this

chapter and next, we present the JRules rule authoring artifacts, languages, and

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_10, # Springer-Verlag Berlin Heidelberg 2011

283

tools. This chapter focuses on the rule authoring infrastructure, i.e., the rule project
structure, and the set-up of the rule authoring vocabulary; the next chapter focuses

on the rule authoring per se. This chapter is by no means a user-manual into the

JRules rule authoring infrastructure tools. Instead, we focus on some of the design

dimensions that were discussed in Chap. 9 that relate to the business object model

and to rule organization, but within the context of the JRules product. We start by

presenting the concept of a rule project in JRules (Sect. 10.2), and the Eclipse-based
project dependency relationships, which provide a powerful modularization mech-

anism. The Business Object Model is presented in Sect. 10.3. In particular, we stress
the layered structure of the BOM that enables us to (a) separate the business view of

the data from the implementation view – the BOM to XOM mapping, (b) separate

the terminology from the semantics – the notion of vocabulary, and (c) shield rules
from (most) refactoring in the implementation model, while propagating changes in

the terminology. Best practices for project organization and BOM design are

presented in Sect. 10.4. We conclude in Sect. 10.5. Material for further reading is

presented in section on “Further Reading.”

10.2 Rule Projects

Referring back to Sect. 9.4.1, a rule project contains a set of rule artifacts (if-then

rules, decision tables, decision trees, etc.) grouped in rule packages, and the elements

needed to define them, chief among them, the business object model (BOM). In

JRules, projects are first created in Rule Studio (RS), which is an Eclipse-based rule

authoring environment with the power – and extensibility – of the Eclipse platform

(see Chap. 8). Typically, this is a job for developers who know JRules, as opposed to

your typical business analysts or policy managers. Indeed, as we will show later, the

definition and the customization of the business object model (BOM) requires a good

knowledge of the Java language and a good knowledge of the ILOG rules technical

language – or IRL – and we will explain why. In addition to setting the BOM, a rule
architect would typically design the higher levels of the package hierarchy, create

some rule templates to be used by rule authors for rule authoring, write some impact

analysis or deployment queries, and design the execution behavior of the ruleset

(ruleset parameters, ruleflow, etc.). We call this the rule entry infrastructure. Once
the rule entry infrastructure is set, the developer hands the project over to a rule author

for authoring the rules. Depending on a number of factors – discussed in Sect. 10.2.4 –

rule authors may work with the Rule Studio environment, or within Rule Team Server
(RTS), the web-based rule authoring environment. To make the project available to

Rule Team Server (or RTS), the developer instantiates a remote connection to RTS

from Rule Studio, and uploads the project to RTS. Later on, changes can be made to

the project in either environment, and so the two versions will need to be synchro-

nized. Figure 10.1 illustrates this.

We first start by discussing the structure of rule projects by going over the

different artifacts that they can contain and their relationships. In particular, we

284 10 Rule Authoring Infrastructure in JRules

would go over the business object model (BOM) without delving into the details

since the BOMwill be discussed more thoroughly in Sect. 10.3 of this chapter. Next

(Sect. 10.2.2), we talk about dependencies between rules projects. Section 10.2.3

presents best practices about organizing rules in projects. Synchronization between

Rule Studio and Rule Team Server will be discussed in Sect. 10.2.4.

10.2.1 The Structure of Rule Projects in Rule Studio

Roughly speaking, a rule project contains rules grouped in packages plus a bunch of

other things needed to define them. Rule projects are a special case of Eclipse

projects and consist of the following components:

l Rule artifacts, grouped in packages
l The Business Object Model
l Rule queries
l Rule templates

10.2.1.1 Rule Artifacts

JRules supports all the rule artifacts discussed in Sect. 9.2.2, and more:

l Business Action Language (BAL) rules, which are rules written in a natural

language-like format; the Business Action Language (BAL) will be discussed in

Sect. 11.2.3
l Technical rules, which are rules written in the native execution format;1 the

technical rule language – IRL, for ILOG rule language – will be discussed in

Sect. 11.2.2
l Decision tables, discussed in Sect. 11.2.4

Rule Studio Rule Team Server

Synchronize

Fig. 10.1 Rule projects are first born in Rule Studio before they can be shipped to Rule Team

Server

1Almost. More on this later.

10.2 Rule Projects 285

l Decision trees, discussed in Sect. 11.2.5
l Scorecards, discussed in Sect. 11.2.6
l IRL Functions, which can be thought of as IRL macros used internally by the

rule engine; the IRL language is described in Sect. 11.2.1
l Ruleflows, which are procedural constructs used to orchestrate the evaluation

and execution of rules
l Ruleset variables, which represent variables that can be referenced from within

rules and ruleflows
l Ruleset parameters, which are used to pass data to the rule engine (and back)

from outside applications

Ruleflows, ruleset variables, and ruleset parameters will be discussed in

Sect. 11.3.

10.2.1.2 Business Object Model

With the exception of ruleset parameters, which are defined as rule project proper-
ties, all of the rule artifacts are organized in a hierarchy of packages under the

“rules” folder. The Business Object Model (BOM) represents the business view of

the data, and it consists of a set of Business Object Model entries (BOM entries).

Figure 10.2 shows a single BOM entry, called “claim processing BOM.” Each

BOM entry is associated with an eXecution Object Model (XOM), which is the

native format for the actual objects manipulated by the rule engine. In Sect. 9.2.1,

we described the relationship between the business view of the data and the

physical view as analogical to that between a relational view, and the physical

model view. With JRules, this analogy is a fairly accurate one; we will talk about

Technical rule

Decision table

Decision tree

BAL rule

IRL function

Ruleset variable

BOM entry

Query

Rule template

Ruleflow

Fig. 10.2 A screenshot of a sample Rule Studio project

286 10 Rule Authoring Infrastructure in JRules

the BOM in Sect. 10.3 of this chapter. For the purposes of this section, suffice it to

say that typically each BOM entry maps to – and references – an eXecution Object
Model (XOM). Execution object models typically consist of the set of Java classes
contained in JAR file, or the set of Java classes contained in an Eclipse Java project

within the same workspace as the rule project. In the latter case, the rule project has

a project dependency or reference to a Java project.

In JRules, the BOM is the vocabulary or domain of discourse for the rule

artifacts mentioned above: BAL rules, technical rules, decision tables, decisions

trees, ruleset variables, IRL functions, etc. Different artifacts use different views of
the BOM. For example, technical rules and IRL functions use the “raw format” of

the BOM, whereas BAL rules and decision tables, for example, use the natural

language-like veneer on top the raw format; this will be discussed in Sect. 10.3.

10.2.1.3 Rule Queries

Rule projects also contain rule queries. One can write queries on the rules of a

project2 based on:

l Their metadata. Rule properties include things such as the rule name, its author,

its effective date (date at which the rule comes into effect), its expiration date

(date at which a rule expires), its development status (e.g., one of “new,”

“defined,” “validated,” “rejected,” “deployable,” and “retired”), its jurisdiction

(e.g., a particular state or county), etc.3

l The (business) object model elements they reference/modify. For example, all the

rules that reference the “age” attribute of the policy holder or that modify the

“payment” field of the claim.
l Their semantics. For example, rules that might be triggered by a particular

boolean condition, or that trigger another rule.

Queries have many uses in JRules, including:

l Reporting. Producing various reports on the contents of a project (e.g., rules

authored by X).
l Impact analysis. For example to assess the impact of modifying or replacing a

particular BOM element (a class, an attribute, an operation) by finding those

rules that reference it.
l Logical analysis. To compute logical relationships between rules, for analysis

and validation (semantic queries).

2If a rule project depends on another rule project, the domain of the query will be extended to

include the rules included in that project. And so on (recursively). More on project dependencies in

Sect. 10.2.2.
3JRules comes with a predefined set of rule properties, but developers can extend the rule model
and add organization or application-specific metadata.

10.2 Rule Projects 287

l Ruleset deployment. As mentioned in Chap. 8, JRules makes a clear distinction

between the development-time organization of rules – rule projects – and the run-

time organization of rules – rulesets. JRules provides a default mapping between

the two that packages the contents of a project into a ruleset. With queries, we can

filter which rules actually get deployed into the ruleset: example criteria include

development status (e.g., only validated rules are deployed), jurisdiction, effec-

tive/expiration date, etc. We talk about rule set extractors in Chap. 12.

Rule queries are written in the Business Query Language (BQL), which is very

similar to the Business Action Language (BAL).4

10.2.1.4 Rule Templates

Rule templates are fill-in-the-blank rules that rule authors can use to author rules,

instead of starting with an empty rule. Figure 10.3 shows the example of a template

for rules that reject claims because of invalid data. In this example, rule authors

need only write the condition part, which corresponds to a data validation constraint

violation; the action part is pretty much completed where only the message argu-

ment (the string “Data is invalid: . . .”) needs to be edited.

Rule templates are not only convenient, but they can be used as safeguards to

make sure that business rule authors do not mess up the business logic. For

example, our processing logic may rely on the fact that data validation rules set

the value of a particular data member of class Claim to signal a data validation

constraint violation. We have to make sure that all the rules that detect validation

errors properly set that data member. Using a rule template that builds in that action

Fig. 10.3 A rule template

4On some level, a rule is like a query: the condition part ‘queries’ the working memory for tuples

of objects satisfying some conditions, and the action part applies some actions to the result.

288 10 Rule Authoring Infrastructure in JRules

would do the trick. In the template of Fig. 10.3, we put into the rule action part two

actions that set the appropriate data member to the appropriate data value – what the

action “reject the claim” actually does behind the scenes5 – and logs the rule firing.

In this case, it so happens that those two actions are frozen, i.e., they cannot be

removed from rules generated from the template; the rule template editor enables us

to freeze or unfreeze selected parts of the rule template, down to the function

argument level. In the remainder of Sect. 10.2, and the subsequent sections, we

will revisit various rule project constituents that we discussed here.

While rule projects can only be created in Rule Studio, they can be modified in

either Rule Studio, or in Rule Team Server, the web-based rule authoring environ-

ment (see Chap. 8). To edit a rule project in Rule Team Server (RTS), we need to

first publish it from Rule Studio to Rule Team Server (see Sect. 10.2.4). After

logging in to Rule Team Server, we can edit project elements there. We will revisit

this in Sect. 10.2.3, but for the time being, we can think of the two projects (the RS

version and the RTS version) as equivalent.6

10.2.2 Rule Project Dependencies

We mentioned in the previous section that rule projects typically contain the

definition of a business object model (BOM), and that the BOM is typically derived
from Java class definitions contained in JAR file, or in a Java project within the

same workspace. JRules enables us also to define dependencies between rule

projects. If a rule project RPA references a rule project RPB, then:

l The BOM defined in RPB is visible within RPA, meaning that we can write rules

that refer to the BOM of RPB.
l The ruleset parameters defined in RPB are accessible within RPA, meaning that

we can refer to them in the rule artifacts of RPA.
l The ruleset variables defined in RPB are accessible with RPA by using an import

statement.
l The rule artifacts defined in RPB are accessible within RPA. In particular (a)

templates defined within RPB can be used within RPA, (b) rule queries defined in

RPB can be used to define ruleset extractors in RPA, (c) rule packages defined

within RPB can be assigned to rule tasks within RPA, (d) rule flows defined

within RPB can be assigned as flow tasks rule tasks within RPA, and (e) rules in

RPB can override rules that are in project RPA.
l Queries defined in RPB can be run on the artifacts of RPB alone, or be extended

to artifacts in RPA.

Within Rule Studio, project dependencies are limited to the rule projects within

the same workspace. They are editable through the project’s properties under

5More about this in Sect. 10.3.
6Not true, but an acceptable first approximation.

10.2 Rule Projects 289

“Project references,” like any Eclipse project. Figure 10.4 shows a screenshot of the

corresponding property editor. In this case, we have 11 projects in this workspace,

and the project “sample rule project” (our RPB above) references project “Claim

Proc BOM” (our RPA above). Within Rule Team Server, project dependencies are

limited to projects within the same repository, and only users with role “Config-

urator” and above can edit a project’s dependencies.7

One of the subtle implications of rule project dependencies is the notion of BOM
path, similar to the concept of class path with Java code. Indeed, because the BOM
of a project RPA is made visible to project RPB if RPB references RPA, potential

conflicts could arise if the same entity – a BOM class – is defined in both the BOM

of RPA and the BOM of RPB. Hence, the notion of a BOM path. For each project,

JRules defines a default BOM precedence, which an author can edit. The default

precedence rules of BOM entries are:

l Within a single project with no external references, BOMs appear by order of

definition, with the most recent BOM entry showing last.
l Within a given project, dynamic BOM entries, i.e., BOM entries generated from

XSDs, appear before BOM entries that are built from Java XOMs.
l If project RPB references project RPA, then the BOM entries of RPA appear

before the locally defined BOM entries.

Fig. 10.4 Adding project references to a rule project

7This means that a regular rule author cannot edit projects’ dependencies, and that is a good thing,

because of the subtle implications on rule writing (BOM visibility, variable visibility, etc.).

290 10 Rule Authoring Infrastructure in JRules

These rules apply recursively, to a dependency chain of any length. Users can

override these defaults by moving BOM entries up and down the BOM path (see

Fig. 10.5).

With the BOM path of Fig. 10.5, if some class com.mywebinsurance.model.

Claim is present in both the BOM of the rule project “Claim Proc BOM,”

and in the locally defined “local claim processing BOM,” it is the

definition found in the project “Claim Proc BOM” that will be taken.8

Rule project dependencies enable us to modularize our rule development, and to

get an effective division of labor. Section 10.4.1 will present best practices about

organizing rules in different related projects.

10.2.3 Synchronizing Projects Between Rule Studio and Rule
Team Server

As mentioned above, projects are first born in Rule Studio. However, Rule Studio is

not an appropriate tool for your typical business rule author (policy manager), for
three reasons:

l Its GUI metaphors are more geared towards developers, and relate little to

business metaphors.
l Its computational requirements often exceed the capabilities of the desktop (or

laptop) of the typical business user.

Fig. 10.5 BOM path

8This is counter-intuitive to inheritance, where locally defined structures and behavior prime over

inherited ones.

10.2 Rule Projects 291

l It is a dangerous tool to put in the hands of business users, who may inadver-

tently break the structure of a rule project and the underlying business logic.

Hence Rule Team Server (RTS) differs from Rule Studio (RS) in two major ways:

l Some rule project elements are not editable in RTS, for two main reasons: (a)

safety, to maintain the integrity of the project, and (b) because the information

needed to edit the element is not available RTS. Examples of (a) include rule-
flows, ruleset parameters, the business object model (BOM), and the BOM path.

Examples of (b) include the BOM, again, as well as customizable features that

require Java code.
l A (far) more granular access control to the elements of a rule project. Whereas

RS controls access to projects and project elements through access control

mechanisms of the underlying source code management (SCM) tool (ClearCase,

Subversion, MKS, etc.), RTS combines a coarse-grained role-based access,

which controls which roles have access to which functionalities, with a fine-

grained permission management, to manage read/write access to the rule arti-

facts of a project.

There are a number of other minor functional differences, some of which were

explained in Chap. 8.

Implementation-wise, RS and RTS use different representations of projects and

project elements:

l RS uses a file-based representation of project elements. Typically, we have one

file per artifact, be it a BAL rule, a technical rule, a decision table, a decision

tree, a scorecard, a rule flow, a variable set, a function, etc. Aggregate artifacts

are represented a directory that includes a file that represents the aggregate

metadata, and the actual contents of the aggregate, as files or subdirectories

included therein. Figure 10.6 shows part of the file hierarchy for our sample

project. Hence access to these artifacts is managed through the underlying

source code control system.
l RTS uses database persistence. Roughly speaking, RTS uses different tables to

represent different types of artifacts9 and the relationships between them. Con-

current access to these artifacts is thus managed through the database locking

mechanism.

JRules provides functionality for exporting a project from RS to RTS. This

functionality makes a remote connection from RS to a running instance of RTS and

either creates a fresh new project in RTS to receive the exported RS, or synchro-

nizes the current state of the RS project with the most current state of the

corresponding RTS project.

Figure 10.7 shows a screenshot of the project synchronization wizard. In this

particular case, we are synchronizing our “sample rule project” between RS and the

9We don’t have a table for each rule project element types as similar element types are represented

by the same table, but have one attribute distinguish between them.

292 10 Rule Authoring Infrastructure in JRules

Fig. 10.6 RS represents rule projects using the file system. The right-hand side shows the contents

of “claim eligibility” directory, which represents the “claim eligibility” rule package

Fig. 10.7 Synchronizing the RS “sample rule project” with the instance of RTS running at http://

localhost:8080/teamserver

10.2 Rule Projects 293

http://localhost:8080/teamserver
http://localhost:8080/teamserver

instance of RTS. To create a new project on RTS, we need to connect to RTS as an

administrator. But to simply synchronize an RS project with an existing RTS

project, regular user (policy manager) privileges suffice.

Having exported an RS project to RTS, the two projects will typically continue

to evolve independently, and will go out of sync. When we synchronize the two

versions, the synchronization functionality will perform a three-way comparison

between (a) the current version of the RS project, (b) the current version of

the RTS project, and (c) the initial version of the project in RTS. Indeed, the

initial version of the project in RTS corresponds to the one point in time where

the two versions were synchronized. Figure 10.8 shows a screenshot of the

synchronization view.

Figure 10.8 illustrates cases where:

l A rule was added to the RTS version: case of rule “jurisdiction not covered,” in

package “claim eligibility/policy holder eligibility.”
l A rule was added to the RS version: case of rule “claim date,” added to package

“data validation/claim data validation.”
l A rule was deleted from RTS version: case of rule “tin length” in package “data

validation/policy holder data validation.”
l A rule was changed concurrently in both RS and RTS, and the changes are

conflicting: the case of rule “policy holder age” in package “data validation/

policy holder data validation.” In this case, RS puts side to side the two versions,

and does a text compare, highlighting the parts that were changed.

Users of the Eclipse environment will recognize the familiar look and semantics

of source code management (SCM) plug-ins, when a developer tries to check in

their local copy of a project in the corresponding SCM repository. Roughly

speaking, in those cases where the change is one-sided, the user has the option of

either accepting the change, or rejecting it. In the case of conflict, the user can

selectively combine changes coming from either side, if she/he wishes to. The

Rule added to RTS version

A rule added to RS

Rule deleted from RTS

Rule with conflicting changes done in RS and RTS
(shown above)

Fig. 10.8 A case where synchronization yields several changes in both RS and RTS versions

294 10 Rule Authoring Infrastructure in JRules

example of Fig. 10.8 shows three conflicting changes within the rule “policy

holder age.”10

While JRules offers functionality to synchronize projects between RS and RTS,

an organization needs to put in place a set of processes, both manual, and auto-

mated, to prevent development chaos; having to resolve conflicting changes

between two versions of rules should not be a way of rule project life. The first

question that we ask is: notwithstanding the initial creation of a rule project, do we

really need to have projects edited in both environments. The answer lies in which

environment is being used for creating and maintaining rules, which depends on

who is responsible for maintaining the rules. We have encountered three typical

scenarios.

Business users are responsible for creating and maintaining the rules, and they
use RTS. This is the textbook scenario of usage of the tool set. In this case,

developers create the project(s) in RS, export them to RTS, and let the business

users edit the projects there. At first glance, there should be no reason in this

scenario for the version that resides in RS to change. Thus, when developers

synchronize the RS projects with the RTS versions,11 they should not encounter

any conflicts. However, even in this case, there are going to be cases where the RS

projects need to be updated. First, recall that the BOM and the ruleflow are not

editable in RTS. Thus, if either needs to be changed, we can only implement the

change in RS. Second, there are cases where rule testing identifies a problem with a

ruleset that cannot be identified through tracing. In such cases, we need debugging

of the kind that is available only in RS, and a developer may have to correct the

problem (i.e., edit the rule).

So what we do in those cases where we do have to change a project in RS? The

safest – and coarsest – solution consists of freezing the project in RTS by making it

not editable there,12 then synchronizing RS with RTS to bring the most recent

version from RTS to RS, then making the desired changes in RS, then synchroniz-

ing the projects again to export the change to RTS, then releasing the project in

RTS. This solution will work in all cases. However, it makes an RTS project

unavailable for editing for the time it takes the make the needed changes within

RS. This may be justifiable if we are making a change to the BOM, for two reasons:

(a) to take advantage of RS’s refactoring functionality and (b) to prevent the

business users from using the old BOM. Idem for the ruleflow, as it provides the

execution context for the rules, and rule authors need it to be current.

10Actually, in this case only the one about the threshold birthdate for the policy holder is

substantive. The others are due to small – non essential – differences in serialization format

between the two environments.
11One reason we may want to do that is if deployment to the Rule Execution Server (RES) of the

development, testing, QA, or production environment is performed from RS as opposed to from

RTS, which is the recommended practice.
12We can do that by removing a user group from the groups of users who have the right to access

the project. By doing so, the project no longer shows up in their project selection in RTS.

10.2 Rule Projects 295

If the change that we need to make in RS concerns a single or a handful of rules,

then we can make our “freezing” in RTS more selective, as opposed to freezing an

entire project. An administrator can log into RTS and lock those rules that are being

debugged for the duration of the debugging, to release them later, possibly with

changes.

Whatever the case, to prevent conflicts between changes made in RS and RTS,

we serialize those changes in time so that, at any given point in time, a project is

being edited only in one environment. This is a combination of (a) JRules basic

functionality (synchronization, RTS permissionmanagement, RTS locking), and (b)

a human process that uses this functionality. Adherence to the human process is,

naturally, crucial and is part of rule governance, to be discussed in Chaps. 15 and 16.

IT developers are responsible for creating and maintaining the rules, and they
use RS. While one of the goals of the business rules approach is to have business

take over the creation and maintenance of rules, the complete take over from rule

discovery all the way to rule coding does not always happen, on the initial

development of the business application, or in subsequent rule maintenance

mode. Many customers that we encountered prefer to leave rule authoring and

unit testing to IT.13 In this case, developers use RS to author and maintain rules.

However, rules are available for business to view within RTS, in a read-only mode.

This scenario is easy to handle: developers simply synchronize the RS project with

RTS whenever they have a new stable version (or “release”) of the RS project to

share with business.

Business is responsible for creating and maintaining the rules, and they use RS.
We also encountered this scenario in many situations where business units have in

their midst what we call “technical business analysts” who are, typically, ex-

developers who are quite comfortable with Rule Studio’s interaction metaphors.

This scenario is no different from the previous one and presents no challenges.

10.2.4 Managing Multiple Users

Whether we are using RS or RTS to author and maintain rules, we need to manage

multiple users creating and modifying rules within the same environment. As

mentioned in the previous section, RS uses a file representation of rule project

elements, and manages the different versions of rule project elements through the

connectivity of RS to a source code management system. By contrast, RTS uses a

database to store rule project elements, and manages concurrent access through the

database. In the remainder of this section, we will first summarize the concept of

operations of source code management software, and see how those apply to rule

projects. We will then discuss the many access control features of RTS.

13We have also encountered situations where IT developers are transferred, administratively, from

the IT department over to business units where they report to a manager within the business unit.

296 10 Rule Authoring Infrastructure in JRules

In Rule Studio, coordination between multiple users is managed by the underly-

ing source code management software. There a number of source code management

applications, both commercial, such as SourceSafe, ClearCase, MKS, or Perforce,

as well as open source ones, such as CVS, Subversion, and others. There are two

general approaches to handling multiple users, pessimistic locking, of the kind done
by databases, where only a single user has write access to a particular resources, and

optimistic locking, which is a euphemism for no-locking at all. This strategy is

optimistic because it makes the optimistic hypothesis that users will work on

different parts, and thus, there will be no need to lock entire projects, say, if one

just wants to change a rule. If the “optimistic hypothesis” turns out to be wrong,

then we deal with it with conflict resolution, as illustrated for the case of synchro-

nization between RS and RTS.

The tools mentioned above differ in functionality, but most use optimistic lock-

ing. This model is illustrated in Fig. 10.9. Different users work on their own local

copies of rule projects, which they synchronize regularly with the state of a

common repository. To have access to a given rule project, a user needs to be

registered within the SCM and be granted access to the repository containing that

project. The first time they access the project, they typically check-out a particular
version of the project from the repository, to get a local copy on their machines or

private workspace. They can then work off-line from the SCM repository making as

many changes as they wish. If they want to make their work available to others – or

simply to back it up – they check-in their work. This creates a new version of the

project in the repository. If other users have checked out the same version as the

current user and have already checked-in their changes, then the tool performs

the kind of comparisons we showed in the previous section. If a user judges that

there are irreconcilable differences between the version of the project that they want

Common
code

repository

s
e
r
v
e
r

c
l
i
e
n
t

c
l
i
e
n
t

…

Local
copy of
user 1

Local
copy of
user 2

Fig. 10.9 The concept of operations of source code management software plug-ins to RS

10.2 Rule Projects 297

to check in, and the latest version in the repository, they can then start a new

development branch.
Note that the model illustrated in Fig. 10.9 applies to the case where the client

component of the SCM is well-integrated with the Rule Studio, i.e., as an Eclipse

plug-in. If that is not the case, then the client module and the local copy in Fig. 10.9

trade places: we can use a separate command-line SCM client interface to check-in

and check-out projects, and use RS on the local copy, totally unaware of the SCM.

This model is workable but is less user-friendly and more brittle.14 However, if

there are no Eclipse plug-ins – or if the existing ones are buggy – we have no

alternative.

A common complaint about traditional SCMs is the lack of granularity of

their access control mechanism. Some tools grant read or write access in an all-

or-nothing fashion: to the entire repository, or none. Others, such as subversion,

will support access control to the path level: enabling a particular group of users to

access only some subdirectories of the repository in a read or write fashion. Either

way, the permissions being file-based, this means two restrictions:

l We cannot grant a user or user group access to certain kinds of artifacts and not

others. For example, if a user has read/write access to a rule package, they can

modify everything in that package, including rules, ruleflows, functions, variable

sets, and so forth.
l For a given artifact, the access is all or nothing: either the user can modify both

the contents and the metadata, or they cannot modify either.

If we have business users working with RS, this can be a problem.

RTS’s access control mechanism is much more fine-grained than can be afforded

with RS and SCM software. First of all, RTS supports role-based access, where

users belong to roles, and the roles that a user has determine what functionality the
user has access to. The tool comes with four default roles, which can be customized

to the needs of the organization:

l rtsUser. This role corresponds to the typical rule authors. They can browse

projects, create rule folders (packages) and various rule artifacts, query projects,

analyze them, produce rule reports, export/import rules and decision tables to

Microsoft Office documents,15 and (re)deploy existing rule apps with the most

current version of the project.
l rtsConfigurator. In addition to rtsUser functionalities, this role also has

access to project and environment configuration functionalities, including: (a)

managing project baselines, (b) editing project dependencies, (c) generating

14SCM files deal in files: they do not know about rule projects, rule packages, and the like, and

thus, performing a (text) file-based reconciliation of two rule project versions is typically tedious

and error prone.
15JRules includes Office plug-ins that enables to edit rules in Word documents, and decision tables

in Excel spreadsheets. See Chap. 8.

298 10 Rule Authoring Infrastructure in JRules

ruleset archives, (d) editing ruleset extractors, (e) editing RES server configura-

tions, and (f) editing/managing ruleapps.
l rtsAdministrator. In addition to rtsConfigurator functionalities, it

includes functionalities for (a) enabling and configuration of project-level secu-

rity, (b) running diagnostics on the current RTS, and (c) configuring the current

installation of RTS (schema, persistence locale, message file, etc.).
l rtsInstaller. It has access to the installation functionalities for RTS.

Any RTS user has to be a member of one of these four groups, plus, as the case

may be, other site or domain-specific groups. For example, MyWebInsurance may

decide to create three groups, policyUnderwriting, claimProcessing,
and tester, where rule authors working on policy underwriting will be members

of both rtsUser and policyUnderwriting, rule authors working on claim

processing will be members of both rtsUser and claimProcessing, and
testers will be members of both rtsUser and tester. An RTS user who creates

a rule artifact can assign the artifact to one of the groups of which she or he is a

member. We discuss below the use of groups.

By default, RTS does not enforce project level security: all users of all

groups can access all the projects of the repository. However, an administrator

(rtsAdministrator group) can enforce security for a specific project, and

specify which groups have access to the project. Figure 10.10 shows a screenshot of

the set-up form.

Having defined the groups that can access the project, we can specify what kind

of access. This is done through permissions. A permission is specified through four

parameters:

l The specific action. Create, view (read), update, delete.
l The value. Can be yes or no for create, and yes, group, or no for the view, update

and delete.

Fig. 10.10 Enforcing security for a particular project

10.2 Rule Projects 299

l The type. Refers to the type of project artifact for which we want to specify

the permission. Types include: Action Rule, Technical Rule, Decision Table,

Decision Tree, Template, etc., or the wild card (“*”), which means all types.
l Property. Refers to a property of the selected type, and the wildcard (“*”) to

mean all properties of the selected type.16

The last two parameters describe the scope of the permission. For example, to

allow the viewing of all the artifacts of a project, we define the permission: <View,

Yes, *, - >. To allow the update of the “status” attribute of a decision table, we

define the permission <Update, Yes, Decision Table, Status>. To allow the

deletion of action rules created by members of the same group, we write <delete,

Group, Action Rule, – >. Figure 10.11 shows five permissions defined for the

“Eligibility” group on our “sample rule project.” Effectively, members of this group

can view all the artifacts of the project (first permission), create action rules, delete

action rules created by other members of the group, update all the aspects of an

action rule (content and metadata), and update the “status” attribute of decision

tables – but nothing else.

How about creating a decision table, or changing the “effective date” of a

decision tree? Once we enforce security for a given project, all the actions become

forbidden, unless explicitly allowed. Hence, with these permissions, it is not

possible to create a decision table or to update the “effective date” of a decision

tree. Further, more specific permissions override less specific ones. For example,

the result of the two permissions: <Update, No, Technical Rule, *> and <Update,

Yes, Technical Rule, Status> means that I cannot update any aspect of a Technical

Rule, except for its status property.17 The tool enables us to view the effective
permissions based on the ones that were explicitly defined, where it shows all of the
defaults and takes into account the overrides.

Fig. 10.11 Examples of five permissions

16When the selection of a property does not make sense or when “all” is implied by default, the

property parameter takes the value “-.”
17In this case, the permission <Update, No, Technical Rule, *> may not even be needed, as what

is not explicitly allowed is not permitted by default . . . unless we have a more generic permission

such as <Update, Yes, *, - > that we want to override for Technical Rules. And so forth.

300 10 Rule Authoring Infrastructure in JRules

In terms of managing concurrent access to project artifacts, RTS automatically

write-locks a project element whenever a user starts editing that element. The write-

lock is released when the element is saved. An RTS user can also explicitly write-

lock an element, and hold the lock even after the current session terminates. The

write-lock can be released by the same user or by an administrator.

10.3 The Business Object Model

The Business Object Model embodies the business view of the application data. It

represents the domain of discourse for rule authoring. A lot of the artistry in setting
up rule authoring deals with the confection of the BOM. We start with the basics of

the BOM in Sect. 10.3.1. Section 10.3.2 deals with the BOM to XOM mapping

in more depth. In particular, we show how to recreate a differentiated business

object model from a generic and stripped down execution object model (see

discussion in Sect. 9.2.1). Because execution object models will likely evolve

during the development phase and lifetime of an application.

10.3.1 The Basics of the BOM

The Business Object Model embodies the domain of discourse for business rules. It

represents the link or bridge between the implementation of the application data –

what we call eXecutable Object Model, or XOM – and the business rules. Roughly

speaking, the BOM consists of a three layers:

l The vocabulary, which is the collection of natural language-like expressions that
we use to write rules, such as “the date of <the claim>” or “the age of <the

policy holder>”
l The business object model itself, which is an object model defined in terms of

packages, classes, attributes, methods, and associations
l The BOM to XOM mapping, which describes how the BOM maps to the actual

XOM

Figure 10.12 illustrates the three layers and the relationships between them, and

to the rules, on one end, and to the XOM, on the other. Typically, the starting point

for building a BOM is a XOM, and the typical XOM is a set of Java classes

packaged as a Java project, a class directory, or a JAR file. JRules has a utility

that builds a default BOM based on the XOM, i.e., default values for the three layers

mentioned above. We will explain what those defaults are when we explain the

relationships between the various layers.

Let us start from the middle: the business object model looks like a regular object

model, with nested packages (com.mywebinsurance.claimprocessing), a bunch of

classes which, in turn, have attributes and methods. The PolicyHolder BOM class

10.3 The Business Object Model 301

appears to have four public data members, “age,” “birthDate,” “name,” and “tin,”

for “tax identification number” which, for the case of individuals, consists of their

social security number; we will worry about the constructor later.

In Java, to write a condition about the age of a PolicyHolder, one would write

something like:

if (myPolicyHolder.age < 18) {…}

In the example of Fig. 10.12, we are using the JRules Business Action Language
(BAL, see Sect. 10.4.2) which uses natural language-like “paraphrases” of the

various elements of the BOM. With the BAL, the default reference to an attribute

ATT of some class CLS is through a phrase “the {ATT} of {this}”

where {ATT} refers to the name of the attribute, and {this} will be replaced

by an object variable name of the type CLS. The collection of such phrases is called

the vocabulary of the BOM. The vocabulary file is like a property file where the key

refers to the BOM model element, and the value refers to the phrase template. The

following are excerpts from the vocabulary file for our claim processing BOM:

Rules

Vocabulary

(business) object model

BOM to XOM mapping

XOM

the age of <policy holder>

B
O

M

Fig. 10.12 The structure of the BOM and how it links natural language-like rules to (Java)

application objects

302 10 Rule Authoring Infrastructure in JRules

…
com.mywebinsurance.claimprocessing.PolicyHolder.age#phrase.navigatio
n = {age} of {this}
…
com.mywebinsurance.claimprocessing.PolicyHolder.tin#phrase.action =
set the tin of {this} to {tin}
com.mywebinsurance.claimprocessing.PolicyHolder.tin#phrase.navigatio
n = {tin} of {this}
…

Note that we have a single entry for the “age” attribute, corresponding to

navigation, i.e., to read/get the value of the attribute. Because the “tin” attribute

is read/write, we have both a “navigation” phrase (getter) and an “action” phrase

(setter). Generally speaking, the vocabulary file will have one or two entries for

every attribute or every BOM class, which correspond to reading or writing the

value of the attribute. It will also have one entry for the class itself to define the

term. The good news is that JRules generates the vocabulary automatically, and

does a pretty good job at it, provided that the BOM – and the XOM – use

recommended naming conventions; more on this in Sect. 10.3.2.

Let us now turn to the bottom half of Fig. 10.12, i.e., the relationship between the

BOM and the underlying XOM. If we look more closely at the PolicyHolder
BOM class, and compare it to the Java class, we notice three main differences:

l In the BOM PolicyHolder class, the attributes “name” “birthDate”

and “tin” are public whereas in the Java PolicyHolder class, they are

private.
l The Java PolicyHolder class has getter/setter functions for those private

attributes whereas the BOM PolicyHolder class has no such functions.
l The BOM PolicyHolder class has an “age” attribute which does not appear

in the Java PolicyHolder class.

The first two differences are related: in the process of building a BOM class for a

Java class, JRules ignores the data and function members that are not public.
However, it assumes that the Java class uses the Java Beans naming convention,

and thus, if the Java class has functions that follow either of (or both) the two

patterns:

TypeT getSomeName();

void setSomeName(TypeT value);

the corresponding BOM class will have a read (or write, or read/write) attribute

called someName.

The “age” attribute illustrates the power and flexibility of the BOM to XOM

mapping: we can define an attribute in the BOM class that is not physically stored in

the Java class, but that is computed on the fly based on some actual physical

attribute. Hence, if business rule authors like to think in terms of age, we can

provide them with an “age” attribute in the BOM PolicyHolder class, as long as

10.3 The Business Object Model 303

we provide a way of computing it from the actual/physical data stored in the Java

PolicyHolder class. That mapping is illustrated in Fig. 10.12 by the expression:

return DateUtil.getAge(this.birthdate.toDate(),DateUtil.now());

which is entered as the “BOM to XOM mapping” for the “getter” of the “age”

attribute, where DateUtil is a custom Java utility class that manipulates dates. More

powerful mappings will be discussed in Sect. 10.3.3.

The structure described so far corresponds to a single BOM entry. Each BOM

entry consists of three distinct files corresponding to the three layers shown in

Fig. 10.12. In the example of Fig. 10.12, we have a BOM entry called “claim

processing model” consisting of three files:

l “claim processing model_en.voc”. It is the vocabulary file.

Notice the “_en” suffix in the file name, which represents the locale. Indeed, we

can have different vocabularies associated with a BOM based on the locale.
l “claim processing model.bom”. It represents the model itself

represented in a java interface-like textual format. The following shows excerpts

from that file. In addition to the Java signatures of the various attributes,

methods, and constructors, the file may contain other BOM-specific properties

such as domains and categories, to be explained in Sect. 10.3.5.

package com.mywebinsurance.claimprocessing;

…

public class PolicyHolder {

public java.util.Date birthDate;

public string name;

public string tin;

public PolicyHolder();

}
…

l “claim processing model.b2x”. It groups in a single file all the

custom BOM to XOMmappings for the current model entry. We will come back

to this in Sect. 10.3.3.

A typical project BOM would consist of several BOM entries.
We can build a BOM entry in Rule Studio (RS) in one of two ways:

l From scratch, by manually adding packages, classes, data, and function mem-

bers using various RS (Eclipse) wizards. In this case, we have to do everything

manually (1) specify the names of the various model elements (packages,

classes, attributes, methods, and constructors), (2) their Java types, where appli-

cable, (3) generate their verbalizations, and (4) specify the BOM to XOM

mappings.
l From an existing XOM, which can be either a Java project within the same work-

space, or an external Java jar file or class directory, or an XML schema – referred

304 10 Rule Authoring Infrastructure in JRules

to as a dynamic XOM. In either case, Rule Studio analyzes the XOM, and then

creates BOM elements from that XOM. Thanks to the BOM entry creation wizard,

Rule Studio will perform 90% of the job with a few selections and clicks, using

default verbalizers and default BOM to XOM mappings. A user can later edit the

BOM to override some defaults or add virtual elements to the BOM, such as the

“age” attribute mentioned above (more on that in Sect. 10.3.3).

Which method is preferred? Clearly, if you already have the target XOM, then

you should build the BOM (entry) from the existing XOM. However, there are

situations where one would want to start authoring rules before the underlying

implementation code has been completed, and there one would build the BOM from

scratch. These issues will be discussed in Sect. 10.4.2.

10.3.2 Verbalization

Verbalization is the process of assigning a term or phrase to a BOMmodel element,

e.g., as in assigning the phrase “the {age} of {this}” to the attribute

“age” of the BOM class PolicyHolder. Rule Studio has a default “verbalizer” that

can verbalize the elements of an entire BOM entry, in one batch, or single BOM

elements (classes, attributes, and methods), one by one. Developers can override

the default verbalization for a given model element. Default verbalization follows

simple rules that we explain below.

First, we look at the verbalization of identifiers. The rules are illustrated in

Table 10.1.

In particular, if we adopt the Java nomenclature for spelling multi-word identifiers

– capitalizing the first letter of every word, with the possible exception of the first –

the verbalizer will actually separate out the individual words.

Consider now the verbalization of attributes. First, the name of the attribute

is verbalized to generate what JRules calls a subject, which is then used to generate
a navigation phrase (a getter expression) and an action phrase (a setter action).

Table 10.2 illustrates the default verbalizations for non-boolean attributes.

Notice that the name of the attribute in the navigation and action phrases appears

in a template form (i.e., between curly brackets) between it is editable. For example,

a BOM developer may choose to use the term “date of birth” instead of “birth date,”

and adjust the plural to “dates of birth” (as opposed to the default “date of births”).

The figure across shows the wizard for editing terms. This wizard knows a bit

Table 10.1 Verbalization of

identifiers
Identifier Its default verbalization

lowercasename lowercasename

UPPERCASENAME UPPERCASENAME

UpperFirstLetter upper first letter

upperFirstLetter upper first letter

lowerSECOND lower SECOND

10.3 The Business Object Model 305

about the English language so that the indefinite singular form for “age” is “an

age” and not “a age,” and the plural of “bankruptcy” is “bankruptcies” and not

“bankruptcys.”

The verbalization of boolean attributes is different and is illustrated in Table 10.3.

The last example shows an instance where the default verbalization does not

work: both the navigation and action phrases need to be edited to get rid of the extra

“is” (underlined in the table).

Finally, JRules enables us also to verbalize methods, as those may be used within

conditions – those that return values – or actions of rules – those that return void.

The parameters of such functions then become data prompts for the rule author.

Assume that our class PolicyHolder has a method with signature:

void addAccident(Date d, Responsibility resp);

Table 10.2 Verbalization of non-boolean attributes

Attribute Verbalization

(subject)

Navigation/action phrases Examples

Name name {name} of {this} the name of “my
policy holder”

set the name of
{this} to
{name}

set the name of “my
policy holder” to
"John";

birthDate birth
date

{birth date} of
{this}

the birth date of
“my policy holder”
. . .

set the birth date
of {this} to
{birth date}

set the birth date
of “my policy
holder” to 13/4/
1991;

306 10 Rule Authoring Infrastructure in JRules

where Responsibility is an enumerated type with the values AT_FAULT and

NO_FAULT. The default verbalization for this method is the ugly:

{this}.addAccident({0},{1})

Notice here {0} and {1} that stand for the first and second positional

parameters of the function (date and responsibility of the accident, respectively),

and that become data prompts for the rule authors using this action. In a rule, this

action would appear as follows:

'my policy holder'.addAccident(21/8/2009,“AT_FAULT”);

Not exactly business user friendly. We can change the verbalization template to

the following:

add a {1} accident to {this} on {0}

where {1} stands for the second parameter of the function,18 i.e., the responsibility,

{this} stands for the policy holder, and {0} stands for the first positional parameter,

i.e., the date. This action will then appear in a rule as follows:

add a “AT_FAULT” accident to 'my policy holder' on 21/8/2009;

Table 10.3 Verbalization of boolean attributes

Attribute Verbalization

(subject)

Navigation/action phrases Examples

approved approved {this} is approved “my claim” is
approved

make it {approved}
that {this} is
approved

make it true
that “my claim”
is approved;

isRejected rejected {this} is rejected my claim” is
rejected

make it {rejected}
that {this} is
rejected

make it true
that “my claim”
is rejected;

hasBeenPaid has been
paid

{this} is has been
paid

“my claim” is has
been paid

make it {has been
paid} that
{this} is has
been paid

make it true
that “my claim”
is has been
paid;

18We can all thank Java, C++, C, or the assembly language for this numbering convention,

depending on how far back you want to go J.

10.3 The Business Object Model 307

This is part of the artistry that goes into setting up the verbalizations for the BOM

elements, and that can make rule authoring – and reading – more intuitive and more

business friendly. The person responsible for configuring the BOM (business

analyst or rule developer) needs to be familiar with the “vocabulary” and phrasing

used by business to mimic it as closely as possible in the BOM.

10.3.3 BOM to XOM Mapping

We introduced the BOM to XOMmapping in Sect. 10.3.1 and explained how it acts

as a bridge between the business view of the data (BOM) and the actual implemen-

tation of the business data (XOM). Recall also that Rule Studio enables us to create

a BOM entry from a XOM such as a Java project, a Java jar file, or an XML schema.

The BOM creation utility uses a default BOM to XOM mapping, which we can

override or customize. We will first talk about the default mapping, and then talk

about custom BOM to XOM mappings.

Table 10.4 shows the main default mappings for a Java XOM. Anything that is

not public does not appear in the BOM.When we build a BOM entry from a specific

XOM, Rule Studio does not store these default mapping in the B2X file (BOM to

XOM), which starts out empty. The B2X file is only used to store custom mappings.

We now explore some typical uses for the BOM to XOM mapping. Our first

example of Fig. 10.12 showed one case of custom BOM to XOM mapping. In that

example, we added an “age” attribute to the PolicyHolder BOM class, that did not

exist in the Java PolicyHolder class, but that was computed from the “birthDate”

attribute. Generally speaking, the Rule Studio BOM editors enables us to manually

add data and function members to a BOM class that have no equivalent in the

corresponding XOM, provided that we supply the BOM to XOM mapping for that

Table 10.4 Default Java XOM to BOM mappings

Java construct BOM construct

Package Package

Public class Class

Public interface Interface

public Type attName; public Type attName;

public Type getAttName() public readonly Type attName;

with no corresponding setter

public void setAttName(Type arg) public writeonly Type attName;

with no corresponding getter

A getter/setter pair get/setAttName(Type a) public Type attName;

A non-getter/setter public function A similar public function

Public constructor constructor

An “extends” relationship between Java

classes or interfaces

An “extends” relationship between corresponding

Java classes or interfaces

An “implements” relationship between a

class and an interface

An “implements” relationship between the

corresponding BOM class/interface

308 10 Rule Authoring Infrastructure in JRules

data or function member. We call those virtual data or function members. For a

virtual data member, the BOM to XOM editor enables us to specify a “getter” and/

or a “setter” expression, depending on whether the data member is readonly,

writeonly, or read/write. Below, we reproduce parts of the BOM to XOM editor

for the “age” attribute, shown in Fig. 10.12. This fragment is part of the BOM class

data member editor, for the attribute “age.”

In this case, because the “age” attribute is computed, it is read only, and we only

specify the getter.

10.3.3.1 Virtual Functions

We can also specify virtual functions, i.e., functions that exist only in the BOM. If

such a function returns a non-void value, it will appear in the condition part; if it

returns a void, it will appear in the action part. Assume now that a claim is only

eligible if it has been filed less than 180 days after the expense was incurred, for an

ongoing policy, and less than 90 days after the expiration of the policy, for an

expired policy. We could add a boolean function to the BOM class Claim with the

following signature:

boolean filedMoreThanNDaysAfterDate(int nDays, Date aDate);

We can then specify how to compute such a function in the BOM to XOM

mapping, as shown below. The variables nDays and aDate refer to the

arguments of the function, with types int and java.util.Date, respec-

tively. The pseudo-variable this refers to a Claim, and the dot reference

this.date, to the date of the claim.19

19So which object model do we refer to in the BOM to XOM mapping? Logically, this should be

the XOM, as we are showing how BOM elements map to XOM elements. In practice, we can refer

to the BOM, and to any Java object model referenced in the rule project, included but not limited to

the XOM. Thus to access the attribute “date” of Claim, I can use either “myClaim.date” or

“myClaim.getDate().”

10.3 The Business Object Model 309

This function can then be verbalized as follows:

{this} was filed more than {0} days after {1}

And used in a rule:

In this rule, {this} was substituted by the variable “the claim,” the first

argument {0} was set to 90, and the second argument {1}, which is a date, was

replaced by the end date of “the claim.” Incidentally, the second rule

action (log that this rule has fired on . . .) is itself a virtual

function of the BOM class Claim with the signature:

void logRuleFiringWithMessage(String message)

The verbalization:

log that this rule has fired on {this} with message {0}

and the BOM to XOM mapping:

This mapping is a bit more complex, and illustrates some advanced features of

the BOM to XOMmapping and of the IRL language. First, rule{this} refers to

a claim. In the first line, we are initializing an array of Object’s with {this}

310 10 Rule Authoring Infrastructure in JRules

(the claim). In the second line, we are building the string that represents a claim

by making what looks like a reflective call to some one-argument function called

“printClaim” (sort of a custom toString()method), and that is exactly what

it is: the method invokeFunction(String functionName,
Object[] args) is an IlrContext (the class that represents rule

engines) method that invokes an IRL function called functionName with

the argumentsargs. We described IRL functions briefly in Sect. 10.2.1 as macro-

like functions defined within rule projects. Such functions can be used within the

action parts of IRL rules (covered in Sect. 11.2.1), function task bodies (see Sect.

11.3.2), within the initial actions and final actions of ruleflow tasks (Sect. 11.3.2),

within other IRL functions, or within BOM to XOM mappings. In all the places

but BOM to XOM mappings, these functions would be invoked normally, as in

“printClaim(my_claim);.” However, within the BOM to XOM

mapping, they need to be invoked reflectively.20 This code fragment shows also

the use of two predefined IRL variables: context, which refers to the engine

currently executing this piece of code, and ?instance, which refers to the

rule instance currently executing.21 The latter enables us to access the rule name,

the tuple of objects for which the rule fired, the priority of the rule instance on the

agenda, etc., which makes it possible to write generic – and detailed – rule logging

capabilities, as the rule above illustrates.

10.3.3.2 Virtual Classes

We now turn our attention to virtual classes. A virtual class is a class that exists

only in the BOM with no direct equivalent in the XOM. As with virtual attributes

and methods, we only need to specify what XOM (Java) class this BOM class maps

to. First, let us explore a scenario where you would want to create a virtual class,

and then we will show how to define such a virtual class.

We have shown in Sect. 9.2.1 the requirements that we place on BOM and on

XOM. In particular, we identified specificity as a desirable property of the BOM and

genericity as a desirable property of the XOM. Assume that our business people

created the model shown in Fig. 10.13 on paper, before handing it over to IT to

implement. This model distinguishes between an AUTO policy and a Health policy

and makes a distinction between a medical claim and a car repair claim.

Upon closer inspection of the attributes of the various classes (not shown in this

figure), an object designer, or a data architect, might find this model unnecessarily

differentiated, and might decide to implement the model shown in Fig. 10.14,

instead. In this model, both kinds of policies are represented by the same class

20The BOM to XOM mapping is used by the engine during run-time. Further, IRL functions can

refer to BOM virtual functions. If we allow IRL functions to be called normally within the BOM to

XOM mapping, we could end up with an arbitrarily long – and potentially circular – translation

sequence from BOM to XOM.
21The Java type for ?instance is ilog.rules.engine.IlrRuleInstance.

10.3 The Business Object Model 311

Policy, which now has an attribute called policyType. Common policy

attributes are represented in the class Policy itself, whereas policy type-specific

attributes are represented in a PolicyData object. Idem for the Claim class.

If we create a BOM from this XOM, rule authors will not have the concept of

a “health policy” or of a “car policy,” but they can talk about a “policy” whose

policyType equals “HEALTH_POLICY” or “CAR_POLICY.”

Virtual classes allow us to (re)create the BOM classes HealthPolicy and

CarPolicy even though there is a single underlying XOM class, Policy.
Figure 10.15 shows the BOM editor for classes. We are defining the class

HealthPolicy as a class from the package com.mywebinsurance.
claimprocessing and specifying its execution name (see (1) marker

on figure) as com.mywebinsurance.claimprocessing.

-policyType

PolicyPolicyHolder

PolicyData

1..* 0..*

holders

1

-data1

-claimType

Claim

1 0..*

claims

ClaimData

1

-data1

Fig. 10.14 The actual implemented XOM

ClaimPolicy

1 0..*

claimsPolicyHolder

1..*0..*

holders

HealthPolicyCarPolicy MedicalClaim CarRepairClaim

1 0..*claims
1 0..*

claims

Fig. 10.13 The business view of the application data (“BOM on paper”)

312 10 Rule Authoring Infrastructure in JRules

Policy. However, a HealthPolicy is not any Policy: it is a policy whose

“tester” expression (see (2) marker) returns true:

return("HEALTH_POLICY" .equals(this.policyType));

where the variable this refers to a Policy.
Having defined the class HealthPolicy, we now wish to use it within rules,

and test its data members, such as startDate, endDate, like any regular

Policy, i.e., we wish to inherit the data and function members of the . . . BOM
class Policy. To do that, we need to specify the BOM class Policy as a

superclass of HealthPolicy (see marker (3)). Figure 10.16 illustrates the

required steps to define the virtual class HealthPolicy.
Note that, unlike with Java classes, BOM classes do support multiple inheri-

tance: I can specify two or more BOM superclasses for any given BOM class. We

will come back to this feature when we talk about best practices.

10.3.3.3 Dynamic XOM

Finally, we talk about dynamic XOMs, and more specifically, the XSD-based XOM.

In short, JRules enables us to write and execute rules about XML data. This means

two things:

l At rule definition time. The BOM is defined from an XML schema as opposed to a
set of Java classes.

l At rule execution time. The rule engine can manipulate a generic and efficient

run-time representation of XML data through the same object-based API that is

used to access Java objects. This object-based API abstracts away the way

objects are created, and their attributes read and set.

(3)

(1)

(2)

Fig. 10.15 BOM editor for BOM classes. To define a virtual BOM class, we need to (1) specify its

execution name (i.e., corresponding XOM class), (2) specify what conditions instances of the

XOM class need to satisfy (tester), and (3) specify its BOM superclasses

10.3 The Business Object Model 313

Table 10.5 shows the basics of the XSD-based BOM to XOMmapping. Roughly

speaking, XSD’s complex types map to classes, where the type’s<element>s

and attributes map to read/write BOM class data members, and the built-in XSD

types map to the corresponding Java types. If an <element> has a maxOccurs

higher than one, than the element is mapped to a java.util.Vector, with a BOM

annotation that specifies the element type.

Table 10.6 shows excerpts from an XSD, and the corresponding excerpts from

the BOM classes. For the sake of presentation, in the BOM column, the package

names were omitted from the class names, with an ellipsis shown instead (“. . .”).
The reader will notice that all BOM classes in this case inherit from the default

IlrXmlObject, which is the actual implementation class for XML data (more on

this below). The XSD types string, float, and int map to the Java types

java.lang.String, float, and int, respectively. The XSD date type maps

to the ILOG type ilog.rules.xml.types.IlrDate, which knows how to

convert back and forth to a java.util.Date. Notice also how the Policy XSD

+getStartDate() : Date
+setStartDate(in date : Date) : void
+getEndDate() : Date
+setEndDate(in date : Date) : void

-policyType : String
-startDate : Date
-endDate : Date

Policy

-policyType : String
-startDate : Date
-endDate : Date

Policy

0..*

-execution name

1

BOM to XOM mapping (default)

HealthPolicy

0..*

-execution name
1

BOM to XOM mapping (custom)

(1): Specifying Policy as the
execution name for HealthPolicy

(3): Specifying Policy as the
superclass of HealthPolicy

BOM world XOM world

Fig. 10.16 Steps to specialize a BOM class with a virtual BOM class

Table 10.5 The basics of the XSD to BOM mapping

XSD BOM element

Complex type BOM class

XSD element or attribute Read/write BOM attribute

An XSD element with maxOccurs >1 A java.util.Vector attribute with a collection domain

of the element type (i.e., a multi-valued attribute)

Built-in XSD simple types Corresponding java types

Extension and restriction BOM class inheritance

Restricted simple types Corresponding Java type with a literals domain

314 10 Rule Authoring Infrastructure in JRules

elements insured and coverages mapped to java.util.Vector instance vari-

ables, with a domain that is of the appropriate element type (PolicyHolder
and Coverage, respectively); we will talk about domains in Sect. 10.3.5 of this

chapter.22

Table 10.6 The basics of the XSD to BOM mapping

Excerpts of an XSD schema Excerpts of the corresponding BOM

<xs:complexType
name="PolicyHolder">

<xs:sequence>
<xs:element name="name"

type="xs:string"/>
<xs:element name="tin"

type="xs:string"/>
…
</xs:sequence>

</xs:complexType>

<xs:complexType name="Coverage">
<xs:sequence>
<xs:element name="procedure"

type="Procedure"/>
<xs:element name="deductible"

type="xs:float"/>
<xs:element name="yearlyCap"

type="xs:float"/>
<xs:element name="totalToDate"

type="xs:float"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="Policy">
<xs:sequence>
<xs:element name="number"

type="xs:int"/>
<xs:element name="startDate"

type="xs:date"/>
<xs:element name="endDate"

type="xs:date"/>
<xs:element name="policyHolder"

type="PolicyHolder"/>
<xs:element name="insured"

type="PolicyHolder"
minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="coverage"
type="Coverage"
minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

public class PolicyHolder extends
ilog.rules.xml.IlrXmlObject

// some custom properties
property …

{
…
}

public class Coverage extends
ilog.rules.xml.IlrXmlObject

// some custom properties
property …

{
…
}

public class Policy extends
ilog.rules.xml.IlrXmlObject

// some custom properties
property …

{public int number
property // custom properties

public …IlrDate startDate
property // custom properties

public …IlrDate endDate
property // custom properties

public …PolicyHolder policyHolder
property // custom properties

public …Vector insuredList
domain 0,* class …PolicyHolder
property // custom properties

public …Vector coverageList
domain 1,* class …Coverage
property // custom properties

… // plus some other stuff
}

22This feature of JRules has been around since 2002, i.e. prior to JDK 1.5 (which came out in the

fall of 2004) which introduced support for genericity, and the handling of collections has remained

unchanged for backward compatibility reasons.

10.3 The Business Object Model 315

Notice that the classes PolicyHolder, Coverage, and Policy exist only

in the BOM; during run-time, the underlying XML data – that conforms to the XML

schema – will be represented by instances of the IlrXmlObject class, regardless

of the BOM class. Indeed, unlike JAX-RPC, JAXB, or JAX-WS frameworks,

JRules does not generate Java classes for the corresponding XML schema complex

types; we can think of the XSD-mapped classes as virtual classes with an execution
class IlrXmlObject.

For now, suffice it to say that if your application manipulates business data

that comes in an exotic, self-describing, and evolving data format, you too could

develop support for your exotic format, at both rule definition time (BOM to XOM

mapping) and at rule execution time.

10.3.4 Refactoring

To use a common cliché, the only constant in today’s business applications is

change. The BOM has a pure layered architecture where each layer depends only

on the layer just below it (see Fig. 10.17). Eclipse’s refactoring functionality has

been extended by the JRules plug-in to propagate changes in a given layer to the

layer just above it. In this section, we review the different kinds of changes, and the

available functionalities to propagate them through the layered structure of

Fig. 10.17.

10.3.4.1 Changes to the XOM

A stable XOM is an elusive goal in many rule projects, especially ones where both

the business layer (i.e., business entities) and the business rules are within scope of

the development or modernization effort. We might as well live with it, considering

Rules

Vocabulary

(business) object model

BOM to XOM mapping

XOM

BOM

Fig. 10.17 The BOM’s

layered architecture enhances

the rules’ resilience to change

316 10 Rule Authoring Infrastructure in JRules

that Rule Studio enables us to cope with the most common situations. If we build

a BOM from a XOM (see Sects. 10.3.1 and 10.3.3), whenever we change the

XOM, we can ask the tool to update the BOM accordingly. This is done by selecting

the corresponding BOM entry, and selecting the action “BOM Update” in the

contextual menu. This will compare the current state of the XOM to the current

state of the BOM, and (a) identify the differences, and (b) propose actions to bridge

those differences. Figure 10.18 shows the interface of Rule Studio’s BOM – XOM

synchronization wizard. The top part shows, side by side, the XOM and the BOM.

The class Coverage (left-hand side) has a warning sign, which indicates that it is not

consistent with the corresponding BOM version. The list of differences is shown in

the lower pane – here just one indicating that the attribute “description” of the XOM

class Coverage could not be found in the corresponding BOM class. For each

difference identified, the tool proposes one or more (generally two) actions that

can be performed to bridge the difference. In this case, the tool proposes to update

the BOM class – and thus, add the attribute “description” to it.
Let us now consider the typical changes to the XOM, and how they could be

handled:

1. Additions. If we add XOM elements, when we re-synchronize the BOM with the

XOM, the tool offers to propagate those additions to the BOM. This works for

both the addition of XOM classes and the addition of function or data members

to existing XOM classes. This will have no effect on existing BOM or rules.

2. Removals. If we remove a XOM element, be it a class or a member of a class, the

BOM update wizard will note that the corresponding BOM element has been

“orphaned” and will offer to either delete it or to “deprecate it.” We could also

do nothing. If we do nothing, Rule Studio will complain that the now-orphaned

BOM element has no XOM corresponding element, in which case, we should

use the BOM to XOM mapping to map it to other existing XOM elements.

Deprecating it means that we set the property “deprecated” of the BOM element

to true, which will flag rules that use it with “deprecated” warnings.23 This will

also stop making the element available in the pull-down lists or code completion

Fig. 10.18 An example of the “Update BOM” wizard, for BOMs created from a XOM

23You may need to “clean” the project for the warnings to show up.

10.3 The Business Object Model 317

feature of the rule editor. We still have to use the BOM to XOMmapping to map

the orphaned BOM element to something. If we delete the BOM element . . . we
better make sure that the element is not used in any rule, first.24

3. Renaming. If we rename a XOM element, depending on where it is performed,

the changed can be propagated automatically throughout the BOM, or will have

to be done manually:

– Renaming done through Eclipse’s refactoring menu. This is possible if the
XOM is a Java project included in the same workspace as the project

containing the BOM. In this case, Eclipse’s refactoring functionality will

propagate the renaming to (a) the BOM, by renaming the corresponding

BOM element, and (b) the vocabulary, by changing the corresponding key in
the vocabulary file, but leaving the value, i.e., the actual verbalization,

unchanged. Figure 10.19 shows an example of rename refactoring, which

is propagated all the way to the key part of the vocabulary file.

– Renaming done manually. This would be the case for any XOM that is not a
Java project within the same workspace, such as an XSD XOM, or a Java

XOM supplied as a jar file, or a bunch of .class files. In this case, the “BOM

Update” facility will note an addition to the XOM, corresponding to the new

name, and a removal from the XOM, corresponding to the old name. We can

handle it either by renaming the BOM element manually, which will propa-

gate it to the vocabulary (see below, BOM changes), or by using the BOM to

XOM mapping to map the BOM element with the old name to the XOM

element with the new name.

Fig. 10.19 Renaming a Java (XOM) method through Eclipse’s refactor will propagate the change

to the .bom and vocabulary file, without affecting the rules that use the member

24Rule queries and Eclipse search functionality enable us to ascertain that. We could also first

deprecate the element then see if any rules generate “deprecated” warnings, and if none do, we

could then safely delete it.

318 10 Rule Authoring Infrastructure in JRules

4. More complex refactorings. In this case, Eclipse’s refactor menu will not do the

trick, as the tool gets confused. Instead, we should use the “BOM Update”

functionality to propagate some of the changes, and fix the rest manually.25

5. Non-semantics preserving changes. If we change the type signature of a method

(e.g., number or types of parameters), then we use “BOM Update,” and it should

be treated as an addition and a removal. In some cases, it may be appropriate to

map the old BOM method to the new XOM method using the BOM to XOM

mapping. For example, if the new XOM method has an additional parameter,

perhaps that parameter has a reasonable default value, and we can keep the old

BOM method, but as a virtual method. This would need to be handled on a case-

by-case basis.

The important thing to note from this analysis is that in any of the above change

scenarios, the rules are shielded by the changes to the XOM, as the change is

absorbed in the various intervening layers between the XOM and the rules.

10.3.4.2 Changes to the BOM

Most changes to the BOM originate from the XOM and were discussed above. The

changes that do originate from the BOM correspond to the addition, modification,

or removal of virtual BOM elements:

1. Additions of virtual BOM elements. This is, for the most part, non-problematic,

except in those cases where the new BOM element has the same verbalization as

an existing BOM element.

2. Modification of a virtual BOM element.Renamings have no effect as the vocabulary

absorbs the change. As mentioned earlier and illustrated in Fig. 10.19, the vocabu-

lary file assigns BOM element phrases that will appear in rules, in a key ¼ value.

Renaming the BOM element will only modify the key part, as illustrated in

Fig. 10.19, leaving the verbalization – and the rules – unchanged. More substantial

changes can break existing rules. For example, if we modify the signature of a

virtual method, its verbalization will need to change to account for the additional/

fewer parameters, which will be propagated to the rules that use it (see below). This,

in turn, will break those rules.

3. Removal. See the discussion above regarding removal, and removal versus

deprecation.

25For example, if we move a data member and its accessors up the hierarchy of classes, the right

thing to do would be to move the corresponding public data member up the BOM hierarchy.

However, the tool cannot do that on its own: the “BOM Update” will enable us to add the member

to the superclass, but will not remove it from the original class, and will not complain about it since

it does have a XOM equivalent. However, if the data member is used in a rule, the rule editor

will complain about an “ambiguous sentence,” meaning that two data members have the same

verbalization.

10.3 The Business Object Model 319

10.3.4.3 Changes to the Vocabulary

If we make a change to the verbalization of a BOM element, and save the BOM,

Rule Studio will prompt the user to confirm the verbalization modification as it may

affect existing rules. If the user accepts to proceed, a refactoring menu is presented

to the user, showing the various rules that use that BOM element/its verbalization

with the before and after text. The user has then the options of (1) rejecting the

change (save), or (2) accepting it and propagating it to all concerned rules or a

subset thereof.

Notice that the propagation of verbalization changes to rules will only work if the
rule is syntactically correct to start with. If the rule is wrong, the result can be

unpredictable: in the best case, the change will not be propagated and the rule will

remain wrong. In the worst case, you lose parts of the rule text.

10.3.5 Enhancing the Rule Authoring Experience

JRules offers a set of bells and whistles that make life easier for rule authors. We

will present two important ones, categories and domains.

10.3.5.1 Categories

Any self-respecting BOMwill have dozens of classes and hundreds if not thousands

of members. While editing rules, the number of drop-downs that are provided to

rule authors is likely to be overwhelming. However, any given rule will typically

address only one facet of the data. In our claim processing example, a rule about the

eligibility of a given procedure will be concerned with coverages attached to the

policy, and not about personal or credit data about the policy holder. JRules offers

a way to filter those BOM elements that show up in rule editors based on the

categories assigned to the BOM elements and the categories assigned to rules.

Figure 10.20 illustrates the relationship between BOM elements, categories,

and rules.

Categories are defined at the project level. By default, a rule project starts with a

single category “Any,” and all BOM elements and rules are assigned the category

“Any.” Thus, by default, rules will pull in all the BOM elements. Assume that we

add the categories “Claim eligibility” and “Claim adjudication” to the project.

We can then assign the category “Claim eligibility” to those BOM elements that

we think are relevant to assessing the eligibility of a claim, and “Claim adjudica-

tion” to those BOM elements that we think are relevant to adjudicating the claim.

Naturally, some BOM elements will be relevant to both areas, and can have both

categories. In this case, the class Claim is relevant to both and will have both

categories. Figure 10.21 shows the Rule Studio wizard for assigning categories to a

BOM class.

320 10 Rule Authoring Infrastructure in JRules

When we define a rule, we can also edit its category filter, which uses a similar

wizard to that of Fig. 10.21 to assign one or more categories to the rule. In so doing,

we determine the subset of BOM elements that are selectable – and thus usable – in

the rule. The default category “Any” plays the role of a wildcard: a BOM element

with category “Any” is available to all rules, regardless of their category filters, and

a rule with category filter “Any” will have access to the entire BOM.26 Table 10.7

illustrates the semantics of the category filter.

Fig. 10.21 Assigning categories to a BOM class

CategoryBOM Element Rule

0..* 1..* 1..* 0..*

Fig. 10.20 The relationship between BOM elements, categories, and rules

Table 10.7 Semantics of category filters

BOM element BE_1 BE_2 BE_3 BE_4 BE_5

Categories Eligibility Adjudication Eligibility,

Adjudication

Any

Rule Category filter

Rule_1 Eligibility Visible Not Visible Visible Not

Rule_2 Adjudication Not Visible Visible Visible Not

Rule_3 Eligibility,

Adjudication

Visible Visible Visible Visible Not

Rule_4 Any Visible Visible Visible Visible Not

26It is technically possible to assign no category to a BOM element, which makes it unavailable for

rule authoring, altogether.

10.3 The Business Object Model 321

Notice that when we assign a category to a class, it is not “inherited” by members

of the class. This may sound counter-intuitive but in the above example, while the

Claim class itself is relevant to both claim eligibility and adjudication, some of

its members will be relevant to only eligibility while others will be relevant to only

adjudication.

10.3.5.2 Domains

The BOM uses Java types, regardless of its origin, be it a Java XOM or an XSD

XOM. Pre-Java 5, if we wanted to represent the state component of a US address, say,

we had two choices: (1) use the Java String type for the java attribute, but then control

what values can be assigned through the input forms, or (2) use what is called the

(pre-JDK 5) Java enumeration pattern with a class State as illustrated below.

public class State {
private String stateCode;
private String stateName;

// getters
…

private State(String code, String name){
stateCode = code;
stateName = name;

}

public final static State AL = new State("AL","ALABAMA");
…
// 50 states later
public final static State WY = new State("WY","WYMONING");

}

JRules enables us to restrict the set of values that a BOM attribute, a BOM

function parameter, or a BOM function return value can take using domains. With

domains, when a rule author is prompted to enter a value for that attribute/parame-

ter/return value, they will get a dropdown list of the domain values, as illustrated in

Fig. 10.22. Here, the “decision” attribute of a Claim, a String, has been restricted to

the values shown using a literal domain, i.e., a domain whose values are explicitly

enumerated.

Generally speaking, JRules enables us to define five kinds of domains:

1. Literal domains. In this case, the values are enumerated. This works for scalar

types and for String. This will also work for actual Java 5 (and beyond)

enumerations: if a BOM attribute or function parameter or return value is a

Java enum, then it will have a literal domain consisting of the elements of the

enumeration.

322 10 Rule Authoring Infrastructure in JRules

2. Bounded domains. For numerical types, where we can specify a range of values.

3. Static references. This corresponds to our State example above. If our Java class

uses the enumeration pattern illustrated below, Rule Studio will automatically
create a domain that includes all of the public static final data members for each

attribute, parameter or return value. We can later edit that domain to remove

values. For example, with the State class above, any BOM attribute, parameter,

or function return value will have a domain consisting of all the enumerated

states. That domain can later be edited to remove or put back states.

4. Collection domains. If a BOM data member or a function parameter or a

function return value is a Java collection (Vector, ArrayList, List, etc.),

we can define a collection domain on that attribute/parameter/return value

by specifying the type of the elements of the collection. For example, the class

Policy has an attribute called coverageList, with the java type

java.util.Vector, we can specify a collection domain on cov-
erageList by stating that its elementType is com.mywebinsurance.
claimprocessing.Coverage. Naturally, if your Java 5 (and beyond)

class used the generic type variety for the vector, i.e., Vector<com.
mywebinsurance.claimprocessing.Coverage>, then Rule Studio

will add the collection domain automatically, with the appropriate element type.

With pre-JDK 5 collections, we have to add them explicitly.

5. Other.We can specify custom domains in cases that do not fit the above patterns,

using an esoteric notation.

Domains are useful for three reasons: (a) convenience to rule authors, (b)

maintaining data value integrity, and (c) support for powerful rule constructs with

the Business Action Language, discussed in Sect. 10.4.2.

Notice that Rule Studio supports the dynamic computation of domains. Con-

sider a domain that enumerates the possible medical procedures. That list will

likely be updated as new medical procedures are developed every day. We would

want that domain to be updated automatically whenever new procedures are added

so that rule authors will automatically get the most up-to-date list of procedures to

Fig. 10.22 The “decision” attribute of Claim has type String, but with a domain {“ELIGIBLE”,”-

INELIGIBLE”,”INPROGRESS”,”INVALID”,”PAID”,”VALID”}

10.3 The Business Object Model 323

write their rules. It is possible to set-up dynamic domains in both Rule Studio

and Rule Team Server, which get initialized at the beginning of each session with

the tool.

10.4 Best Practices

In this section, we present best practices related to the organization of rule projects,

and to the design of the BOM.

10.4.1 Best Practices for Organizing Rule Projects

We just saw in Sect. 10.2.4 how JRules deals with multiple users accessing and

updating the same rule projects, in both the RS and RTS environments. While both

RS and RTS support multiple users concurrently accessing the same rule project, a

rule project does represent an easily manageable modularization boundary, in both

RS and RTS. As such, it can be used as a unit for work for an effective division of

labor. However, when we are trying to divide up work between the members of a

team, we need to be concerned about both (a) enabling team members to work

separately on things that are within their exclusive jurisdiction, with no interference

from others, and (b) enabling them to share the things that are common to their

work. This is where project dependencies, discussed in Sect. 10.2.2, come in handy.

Figure 10.23 illustrates the idea. The common rules are defined in a separate

A rules B rules

C
om

m
on

ru
le

s

Common
rules

A rules B rules

Fig. 10.23 Using project dependencies to better modularize rule projects that share some rules

324 10 Rule Authoring Infrastructure in JRules

project, and are thus (a) made accessible to both projects, and (b) maintained

separately from them.

Project dependencies also come in handy for building and maintaining BOMs.

Because different decisions/rulesets may use the same BOM, we should define the

BOM in a separate project and have projects for rules that depend on that BOM

refer to that project. Going one step further, we could also use project dependencies

and the notion of a BOM path (see Sect. 10.2.2) to build the BOM incrementally.

For example, in the case of MyWebInsurance, we use rules for new policy under-

writing, rules for policy renewal, and rules for claim processing. All three decision

areas refer to a Policy and the PolicyHolder’s basic data. Policy underwriting

and policy renewal would also refer to the PolicyHolder’s DrivingRecord and

CreditProfile. On the other hand, policy renewal and claim processing refer to

Claim’s, past (for renewal) and present (for claim processing). We could thus a first

rule project with no rules in it but just the basic common BOM, i.e., containing

Policy and PolicyHolder. Other BOM-only rule projects are then created to add

process-specific BOMs. And so forth. Figure 10.24 illustrates this idea.

The example of Fig. 10.24 is just another variation of Fig. 10.2: when have two

or more rule projects that overlap (BOM-wise or rule-wise, or ruleflow-wise, etc.),

we separate the common parts from the exclusive parts and put each in a project

where the projects with the exclusive parts refer to the project with the common

parts. Figure 10.25 shows the full pattern.

BOM-only project
with common classes

BOM-only project with
extensions for claim

processing

Rules-only project for
policy renewal

Rules-only project for
claim processing

Rules-only project for
new policy underwriting

BOM-only project with
extensions for new
policy underwriting

BOM-only project
with extensions for

policy renewal

Fig. 10.24 Using project dependencies to build specialized BOM by leveraging commonalities

10.4 Best Practices 325

We will talk about rule execution orchestration in more detail in Sect. 11.3. For

the time being, suffice it to say that an orchestration-only rule project is a rule

project that defines a ruleflow, which is a process flow for rule execution where each

task of the process flow typically runs the rules contained within a rule package.

Thus, an orchestration-only project would define a rule flow that sequences the

execution of rules (rule packages) defined in the rules-only layer. This enables us to

reuse the same set of rules for different processes. For example, the same policy

data validation rules could be used for both new policy underwriting and for policy

renewal. Thus, such rules would be defined in one rule project, which could be

referenced by two orchestration-only rules that pull those rules in for both pro-

cesses. We will revisit this topic briefly in Sect. 11.3.

10.4.2 Best Practices for the Design of the BOM

The clear separation that JRules draws between the actual implementation of

application data (the XOM) and the business view of it (the BOM) is a very

powerful feature. It provides “rule architects” with lots of degrees of freedom,

Core BOM

Specialized BOMs

R R R

R RRRR

R RRR

BOM-only
rule project
layer

Rule-only
rule project
layer

Orchestration
-only rule
project layer

Fig. 10.25 A recommended three-layer rule project structure

326 10 Rule Authoring Infrastructure in JRules

and, alas, too much creativity. As with many features of the product, they should be

used wisely, and we should show restraint in ringing all of the bells and blowing all

of the whistles. In this section, we present some best practices.

10.4.2.1 Best Practice 1: Build Your BOM from Interfaces

If you are doing anything remotely OO or Java, there are a bazillion reasons to

program to interfaces, as opposed to classes, and most authors hammer that

message, and most frameworks rely on such a separation. We will give you a few

more reasons to separate interfaces from implementations, by showing you the

benefits of building your BOM based on interfaces, as opposed to based on the

classes that implement them.

Recall that when you build a BOM from XOM, the BOM builder ignores all of

the XOM elements that are not public: any model element that is private, protected,

or package is ignored. Second, implementation classes will typically have business
functions, but will also included many utility methods that provide services to the

business functions, or that implement non-business infrastructural services (saving,

loading, serializing, logging, etc.). Such methods will only clutter the BOM, and we

know that they will not be needed to write rules. Thus, business interfaces will
contain all of the necessary and sufficient elements you will need in the BOM.27

Then there is the issue of nomenclature. Business interfaces (typically/should)

use implementation neutral terminology. A policy is called Policy and not Policy-

Bean, or PolicyImpl or PolicyTransferObject, or PolicyDAOImpl, or PolicyDAO-

BeanObserver, or PolicyDAOImplFacade. As we saw above in Sect. 10.3.2, the

Rule Studio BOM builder does a pretty good job of verbalizing your classes. If you

use the names used in your implementation classes, they are likely to be polluted by

initials of the authors, prefixes or suffixes of the various frameworks that you are

using, markers of the coolest design pattern you just read about, etc.

But the strongest argument of all is the applicability of your rules. Assume that

you build your BOM from the classes shown in Fig. 10.26. Here we assume that

PersonalAutoPolicy deals with vehicles used exclusively for personal activ-
ities whereas CommercialAutoPolicy deals with vehicles used exclusively

for business activity. The BOM classes will mirror this structure. If you write a rule

about a AutoPolicy, and you hand your rule engine an PersonalAuto-
Policy, the rule will be evaluated on that policy and will fire if applicable.

Idem for CommercialAutoPolicy. You would also typically have rules spe-

cific to PersonalAutoPolicy and others specific to CommercialAuto-
Policy. Assume now that MyWebInsurance decides to create a novel auto

insurance product that combines the features of a personal and business auto policy:

we will call it DualUseAutoPolicy. This kind of insurance will share some

27Naturally, provided they are properly designed.

10.4 Best Practices 327

characteristics with PersonalAutoPolicy and others with Commercial-
AutoPolicy. We would also want to reuse the corresponding rules about

PersonalAutoPolicy and about CommercialAutoPolicy. With Java

classes, this would not be possible: the DualUseAutoPolicy class can

inherit from either PersonalAutoPolicy or CommercialAutoPolicy,
but not both. And thus, we would be able to reuse either the relevant rules about

PersonalAutoPolicy or the ones about CommercialAutoPolicy, but
not both. With Java interfaces, we can define a java interface DualUseAuto-
Policy that extends both PersonalAutoPolicy and CommercialAuto-
Policy, the BOM classes (interfaces in this case) will mirror that structure, and

rules specific to either PersonalAutoPolicy or CommercialAuto-
Policy, will apply to DualUseAutoPolicy.28

10.4.2.2 Best Practice 2: Too Much of a Good Thing . . .

The layered architecture of the rule authoring stack of JRules provides a very clean

abstraction mechanism. This enables us to limit the impact of the changes we make

to the different layers (see Fig. 10.12). This is important because when we start

identifying and coding rules, we frequently identify new data requirements,

typically new business attributes or actions that rule authors need to write rules

-number
-startDate
-endDate

AutoPolicy

CommercialAutoPolicy PersonalAutoPolicy

DualUseAutoPolicy

?

a b

+getNumber()
+get / setStartDate()
+get / steEndDate()

«interface»
AutoPolicy

«interface»
CommercialAutoPolicy

«interface»
PersonalAutoPolicy

«interface»
DualUseAutoPolicy

With classes, a DualUseAutoPolicy can inherit rules about
either CommercialAutoPolicy or PersonalAutoPolicy, not both

With interfaces, we can

Fig. 10.26 Building the BOM from interfaces yields more robust and more reusable rules

28OK, maybe you do not want all of the rules that are specific to either PersonalAutoPolicy
or CommercialAutoPolicy to apply to DualUseAutoPolicy’s and that is OK, because

the tool allows you to pick and choose (see Sect. 10.5 about rule orchestration).

328 10 Rule Authoring Infrastructure in JRules

(e.g., new attributes). In general, if the application object model has been thought

out thoroughly, most of the data and functionality will be present in the XOM in a

“raw” form: then, it is just a matter of computing the required attributes from the

existing ones (e.g., computing age from birth date), or implementing virtual func-

tions that provide a convenient shorthand for some XOM functionality. Either way,

the new data and function requirements will be defined in the BOM to XOM

mapping. Naturally, there will be cases when the required data or functionality is

not present in any shape of form. In that case, we need to make changes to the

XOM. But as the project progresses through the various iterations of ABRD (see

Chaps. 3 to 5), and as the application goes into maintenance mode, the XOM should

become fairly stable.

At what point does the BOM to XOM mapping become too much of a good

thing? As mentioned in Chap. 8, the BOM and the XOM need to satisfy different

sets of requirements: the BOM needs to be close to the business, at the expense of

some redundancy, and the XOM needs to be “canonical,”29 at the expense of some

readability.

First, by design, given a well-designed XOM, all of the virtual BOM elements will

be more or less redundant with other elements. The convenience of having a BOM

element to express every nuance and relationship between concepts comes at a price:

1. The possible confusion between close BOM concepts

2. The conceptual overhead of learning a rich vocabulary

For example, assume that some rules need to reason about service acts that cost

more than some value. We could either add a virtual method to the class Claim
that does just that:

Collection<ServiceAct> getServiceActsCostingMoreThan(float cost);

with the verbalization:

the service acts of {this} that cost more than {0};

and code the “cost filter” in the BOM to XOMmapping by iterating over the service

acts of the claim, and returning those that cost more than the argument. Or,

assuming that the service acts of a Claim are verbalized as “the service acts of

{this},” we could code the “cost filter” directly in the rule language (see BAL in

Sect. 10.4.2) as in:

set 'costly service acts' to all service acts in the service acts of
'my claim' where the cost of each service act is at least 500;

29That is, it contains a minimum number of “orthogonal” concepts that can accommodate the most

data or functionality needs.

10.4 Best Practices 329

Editing the BOM to accommodate new rules should be an exceptional occur-
rence, especially in rule maintenance mode; we should not have to edit the BOM –

and add one virtual function – for every condition any business user or policy

manager can think of. Alas, we have seen many customer projects where the BOM

grows linearly with the rule set . . .
There is another reason why one should not put too much in the BOM to XOM

mapping. Unlike Java code, which source-code management software handles quite

well (class/file-level versioning, class member granularity for merging conflicting

versions, documenting changes), the BOM to XOM mappings are all lumped into

a single file, with coarse-grained versioning, and little or awkward visibility to

developers. This makes it into the least manageable part of your code. Of course,

there are legitimate uses for virtual functions and the BOM to XOM mapping, and

once an application has gone into production, we certainly do not want to deploy a

new version of the application (the XOM) each time some rule needs a new

computed attribute or a new convenience method. Between application/Java code

releases, we should use all the tricks of the book. However, with each planned code

release, we should take the time to revisit the virtual BOM elements and their BOM

to XOM mappings and assess whether they should be pushed back to the XOM. If
the virtual BOM element embodies significant and generally useful business logic,
then that element and its BOM to XOM mapping should be pushed back to the

XOM at the next opportunity. Computing an age from a birth date does not

represent significant business logic – it is rather trivial. Computing the compound

yearly interest rate of a loan based on the daily interest rate – or vice-versa – is

significant and generally useful, i.e., useful to other parts of the business application
besides the rule service.

10.4.2.3 Best Practice 3: Do Not Be Too Creative

Consistency is a highly desirable property in software: you choose an architecture, a

design, a pattern, a coding style, a nomenclature, a file structure pattern, what have

you, and you apply it uniformly. Consistency is desirable because it makes software

understandable, maintainable, scalable, etc., and its components reusable, portable,

and all around adorable. Consistency comes at a cost: whichever pattern you choose

(architectural, design, coding, structuring, naming, etc.), it will not be optimal in
every situation, or for every component or part of your software. If you choose your

patterns carefully, they will be optimal or near optimal most of the time. For the

remaining cases, live with the awkwardness or sub-optimality: it is a small price to

pay for the resulting consistency!

This general principle applies also to the BOM and the vocabulary. Do not be too

creative. Take the example of verbalization. Rule Studio generates decent to good

verbalizations, 95% of the time.30 It also knows a bit about grammar. Do not tweak

30Less if you use lousy naming patterns – or none at all – in your XOM/Java code.

330 10 Rule Authoring Infrastructure in JRules

verbalizations to death so that your rules will read like English: they will not and

they do not need to. We are not writing poetry: the rules need to be understandable

and precise, not necessarily perfectly constructed English sentences or pleasant to

the ear. Consistency makes learning the BOM and the vocabulary much easier, and

the resulting rules less error-prone.

10.5 Discussion

In this chapter, we discussed rule projects and the Business Object Model.

Together, they provide the basics of the rule authoring infrastructure. They also

play a crucial role in the quality and the manageability of the rules. A poor BOM

design can lead to rules that are barely better than programming code. A poor BOM

design can also lead to rules that are brittle, i.e., that are not properly shielded from

non-essential changes taking place on the XOM side. A poor rule project design can

lead to an inefficient and chaotic division of labor between rule developers. It can

also lead to poor rule reuse and sharing and to nightmarish rule maintenance. It is

critical to get those designed right before rule authoring can start. Naturally, the

BOM will most likely continue to evolve during rule authoring and maintenance,

but we have to get the basic architecture of the BOM right before we start. The

design guidelines and best practices provided in this chapter should give you a head

start.

The design tasks, skills, and decisions described in this chapter fall within the

purview of the rule architect. A typical rule writer does not have the skill, and

should not be given the responsibility, of designing rule project structure and the

various BOMs. Chapter 11 will address rule writer-specific tasks and skills within

the context of JRules.

10.6 Further Reading

As this chapter is JRules specific, additional sources of information can be found in

the product documentation and on IBM’s support site for Websphere Ilog JRules.
More information about the rule engine execution algorithms can be found in Chap.

6 and its references. The web site http://www.agilebrdevelopment.com, which is

dedicated to this book, contains complementary information.

10.6 Further Reading 331

http://www.agilebrdevelopment.com

	Chapter 10: Rule Authoring Infrastructure in JRules
	10.1 Introduction
	10.2 Rule Projects
	10.2.1 The Structure of Rule Projects in Rule Studio
	10.2.1.1 Rule Artifacts
	10.2.1.2 Business Object Model
	10.2.1.3 Rule Queries
	10.2.1.4 Rule Templates

	10.2.2 Rule Project Dependencies
	10.2.3 Synchronizing Projects Between Rule Studio and Rule Team Server
	10.2.4 Managing Multiple Users

	10.3 The Business Object Model
	10.3.1 The Basics of the BOM
	10.3.2 Verbalization
	10.3.3 BOM to XOM Mapping
	10.3.3.1 Virtual Functions
	10.3.3.2 Virtual Classes
	10.3.3.3 Dynamic XOM

	10.3.4 Refactoring
	10.3.4.1 Changes to the XOM
	10.3.4.2 Changes to the BOM
	10.3.4.3 Changes to the Vocabulary

	10.3.5 Enhancing the Rule Authoring Experience
	10.3.5.1 Categories
	10.3.5.2 Domains

	10.4 Best Practices
	10.4.1 Best Practices for Organizing Rule Projects
	10.4.2 Best Practices for the Design of the BOM
	10.4.2.1 Best Practice 1: Build Your BOM from Interfaces
	10.4.2.2 Best Practice 2: Too Much of a Good Thing
	10.4.2.3 Best Practice 3: Do Not Be Too Creative

	10.5 Discussion
	10.6 Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

