
A. Fred, J. Filipe, and H. Gamboa (Eds.): BIOSTEC 2010, CCIS 127, pp. 97–110, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Method for Representing and Querying
Temporal Information in OWL

Martin J. O’Connor and Amar K. Das

Stanford Center for Biomedical Informatics Research
Stanford, CA 94305, U.S.A.

Abstract. Ontologies are becoming a core technology for supporting the shar-
ing, integration, and management of information sources in Semantic Web ap-
plications. As critical as ontologies have become, ontology languages such as
OWL typically provide minimal support for modeling the complex temporal in-
formation often contained in these sources. As a result, ontologies often cannot
fully express the temporal knowledge needed by many applications, forcing us-
ers and developers to develop ad hoc solutions. In this paper, we present a
methodology and a set of tools for representing and querying temporal informa-
tion in OWL ontologies. The approach uses a lightweight temporal model to
encode the temporal dimension of data. It also uses the OWL-based Semantic
Web Rule Language (SWRL) and the SWRL-based OWL query language
SQWRL to reason with and query the temporal information represented using
our model.

1 Introduction

The Semantic Web effort [5] aims to provide languages and tools that specify explicit
semantic meaning for data and knowledge shared among knowledge-based applica-
tions. In particular, the Ontology Web Language (OWL; [23]) and its associated Se-
mantic Web Rule Language (SWRL; [15]) provide a powerful standardized approach
for representing information and reasoning with it. Despite the power of these tech-
nologies, they have very limited support for temporal information modeling. OWL,
for example, provides no temporal support beyond allowing data values to be typed as
basic XML Schema dates, times or durations [38]. SWRL includes operators for
manipulating these values, but its operators work at a very low level. There are no
standard high-level mechanisms to consistently represent and reason with temporal
information in OWL.

Because the temporal dimension is central in many information sources, these
shortcomings have significant consequences. Primarily, they restrict the complexity of
temporal information that can be represented in application ontologies. In addition,
they reduce the possibilities for automated temporal validation of the temporal infor-
mation that they do have. Crucially, these restrictions also limit the temporal expres-
sivity of deductive rules and queries that can be formulated over ontology-encoded
data. Formulating these rules and queries thus requires custom solutions using tech-
nologies that may not leverage the formal knowledge representation techniques

98 M.J. O’Connor and A.K. Das

provided by ontologies. There is a pressing need for solutions that provide robust
knowledge-level mechanisms for representing and reasoning with temporal information
in OWL ontologies.

2 Background

Historically, the importance of time in many applications has driven the develop-
ment of custom temporal management solutions. In particular, the centrality of the
temporal dimension in biomedical data drove early research in the area. One of the
first biomedical systems to address the problem was the Time Oriented Database
(TOD; [37]). TOD had a three-dimensional view of clinical data, with time repre-
sented explicitly as one of the dimensions. Data relating to individual patient visits,
for example, were indexed by patient identifier, clinical parameter type, and visit
time. TOD supported a set of basic temporal queries that allowed extraction of data
values following certain temporal patterns. The Arden Syntax [16] also supports a
basic instant-based temporal representation.

Both TOD and the Arden Syntax model time by associating an instant timestamp
with particular records. An instant timestamp permits a range of simple temporal ques-
tions, such as "Did the patient suffer from shortness of breath before the visit?" or "Did
the patient receive Ibuprofen last week?" However, associating an interval timestamp
with data enables more complex queries. Interval timestamps are composed of a start
timestamp and a stop timestamp. Later systems used this type of temporal representa-
tion. These systems were typically built to operate with relational database systems and
exploited the considerable amount of research on temporal database systems in the
1990s.

This research aimed to address the shortcomings of relational databases for repre-
senting temporal information. While relational databases can readily store time values,
the relational model provides poor support for storing complex temporal information. A
simple instant timestamp is all that the relational model provides, and there is no consis-
tent mechanism for associating the timestamp with non-temporal data. For example, if a
database row contains some temporal information, there is no indication as to the rela-
tionship between it and the non-temporal data in the row. Does the timestamp refer to
the time when the information was recorded, or to when it was known? Other shortcom-
ings include no standard way to indicate a timestamp's granularity. As a result, the rela-
tional model provides very limited capabilities for temporal querying.

More than a dozen formal extensions to the relational data model were proposed to
address the problem. These approaches ultimately led to the development of a consen-
sus query language, called TSQL2 [30]. TSQL2 supports temporal and non-temporal
tables. It also provides a temporal relational algebra that can undertake temporal selec-
tion of data, temporal joins based on temporal intersection, and temporal catenation of
interval time stamps. The TSQL2 query language is compatible with standard SQL,
since it is a strict super set of it. Efforts were made to introduce some TSQL2 temporal
features into the SQL3 standard [31], but these efforts did not succeed. No complete
implementations of TSQL2 were produced, but several temporal query systems were
written using its core features. TSQL2-influenced systems include Chronus [1994] and

 A Method for Representing and Querying Temporal Information in OWL 99

its later evolution, Chronus II [24]. Like the earlier TOD system [37], both were devel-
oped to meet the temporal query requirements of biomedical applications.

Experience with these systems illustrated that the entire TSQL2 specification is
not necessary for developing a powerful temporal query language. A few simple lan-
guage extensions can provide a large increase in temporal expressivity. The most
important lesson learned is that a principled temporal model is key to developing the
extensions. This model must enforce a consistent representation of all temporal in-
formation in a system. One of the important results of the TSQL2 standardization
efforts was the convergence on the valid-time temporal model [30]. While numerous
models were proposed to represent temporal information in relational databases and in
other types of information systems, this model was selected because it coupled sim-
plicity with considerable expressivity.

In the valid-time model, a piece of information—which is often referred to as a
fact-can be associated with instants or intervals denoting the times that the fact is held
to be true. Facts have a value and one or more valid-times. Conceptually, this repre-
sentation means that every temporal fact is held to be true during the time(s) associ-
ated with it. No conclusions can be made about the fact for periods outside of its
valid-time. The valid-time model provides a mechanism for standardizing the repre-
sentation of time-stamped data. When this model is used in a relational system, tem-
poral information is typically attached to all tuples in a temporal table. This approach
effectively adds a third dimension to two-dimensional relational tables. The valid-
time model is not restricted to use in relational systems, however, and can be used in
any information system that requires a consistent representation of temporal
information.

The valid-time temporal model has been used to model time in the XML domain,
primarily by developing extensions to XPath [2, 39]. Extensions to the XQuery lan-
guage have also been developed to facilitate temporal querying of XML data de-
scribed using the valid-time model [11].

The importance of time was recognized early in the Semantic Web effort [7]. A
variety of approaches have been proposed to represent temporal information in RDF
[22] and OWL [23], the two primary Semantic Web languages. The valid-time model
predominates in these approaches. One of the earliest RDF systems was BUSTER
[35], an information retrieval system that used a temporal reasoning framework to
help answer time-oriented questions. Several extensions to the RDF model have been
proposed to facilitate representing temporal information in RDF ontologies [12, 28].
Recent systems have described RDF-based temporal query languages that use these
extensions. These systems include T-SPARQL [34], which was developed as an ex-
tension to the SPARQL RDF query language, and TOQL [3], a SQL-like temporal
query language.

A variety of OWL-based temporal systems have also been developed. Unfortu-
nately, adding a temporal dimension to OWL is not straightforward. OWL’s logic-
based formalism makes it difficult to model dynamically changing information [18].
Also, OWL does not provide any temporal constructs. As with the relational model, a
simple instant timestamp representation is all that it supports. Because OWL supports
only binary predicates, relations cannot be directly equipped with a temporal argu-
ment. Rather than extending OWL’s logical model, researchers have attempted to
support temporal representations on top of OWL. For example, OWL-Time [14]

100 M.J. O’Connor and A.K. Das

proposes an ontology that provides rich descriptions of temporal instants, intervals,
durations, and calendar terms. However, this representation is not lightweight and
concerns itself with descriptions of individual data elements, rather than building a
temporal model to consistently describe all temporal information in a system.

When developing a temporal model on top of OWL, two approaches are common:
reification and fluents. Reification involves introducing a new object plus a relation to
associate an entity with its temporal extent or valid-time. A related approach, known
as fluents [36], defines a time slice to encode the temporal dimension occupied by an
entity. Entities are then connected through their time slices, rather than through source
ontology relations. Both approaches can be modeled at the user level without modifi-
cations to OWL itself. A disadvantage is that the enforcement of temporal semantics
is outside OWL, and only limited OWL reasoning can be used by the temporal rea-
soning processes. Both approaches also require some rewriting of a source ontology
to model the temporal dimension, though this process can be relatively straightfor-
ward with reification. An additional disadvantage is that these approaches introduce
new relations and objects to model the temporal information associated with an entity.
As a result, querying temporal information using these approaches can be cumber-
some.

Another approach that does not modify OWL is versioning [4]. Here, when an on-
tology is modified, a new version is created to represent the temporal evolution of the
ontology. Most implementations adopt a variety of optimization strategies to ensure
that entire copies of the ontology are not generated for each new version. However,
irrespective of the optimizations adopted, versioning suffers from significant disad-
vantages. The primary one is that querying for events occurring during particular time
intervals can be computationally expensive. Significant information redundancy is
also typical of this approach.

A large amount of research has aimed at extending the description logic model
underlying OWL to incorporate time [17, 18, 20]. These approaches involve defining
new OWL operators and associated semantics. A variety of temporal description
logics have been proposed, though there is still no agreement on a standard approach.
There has been comparatively little work related to developing query languages for
temporal description logics, with very few systems described in the literature [10].

The systems described here demonstrate the variety of ways in which a temporal
model can be represented in OWL. Each one involves a variety of tradeoffs. Descrip-
tion logic-based solutions are the most theoretically attractive, because they can fully
exploit OWL reasoning functionality. However, they require modifications to OWL
itself. User-level models do not involve modification to OWL, but the enforcement of
temporal semantics can thus not be handled by OWL reasoners. However, user-level
approaches are attractive because they can be readily implemented. User-level models
also involve trade-offs. Many have verbose representations of temporal information,
requiring the introduction of several new objects to represent each temporal entity.
The models also vary in the amount of ontology rewriting that is necessary. Some
require an entire ontology redesign, while others can easily be incorporated with ex-
isting ontologies.

Irrespective of the approach adopted, a common shortcoming of existing models is
their poor support for temporal querying. Unlike efforts in the relational database field
that focused on developing expressive temporal query languages, OWL-based

 A Method for Representing and Querying Temporal Information in OWL 101

approaches have not emphasized ease of querying. With many user-level OWL mod-
els, for example, concise query expression can be difficult because of complex under-
lying model representations. The development of practical query languages for tem-
poral description logics is an open research challenge. More advanced querying func-
tionalities, such as grouping and aggregation, are also missing from these systems,
further limiting expressivity.

3 Temporal Model

We have developed a valid-time temporal model in OWL. The model was encoded at
the user-level and adopts a reification-based temporal representation mechanism. We
chose this approach because it most easily meets the goal of compatibility with exist-
ing OWL-based tools. The resulting model can also be easily shared and used in third-
party applications. As this paper shows, this model also provides a foundation for a
simple, concise, yet expressive temporal query language. We built it by extending an
earlier temporal valid-time model [25] and simplified it so that it could more easily be
integrated with existing ontologies. This enhanced model was designed to be light-
weight, allowing it to be layered on existing OWL ontologies without requiring that
they be significantly rewritten. This model concerns itself with time only and provides
a simple approach to adding a temporal dimension to existing entities in domain
ontologies.

We developed an ontology in OWL to encode this valid-time temporal model [32,
33]. This paper henceforth uses the prefix temporal for entities defined in this ontol-
ogy. The core class that models an entity that can extend over time is represented by
an OWL class called temporal:Fact. This class is associated with a property called
temporal:hasValidTimes that holds the time(s) during which the associated
information is held to be true. Values of this property are modeled by a class called
temporal:ValidTime, which has the subclasses temporal:ValidInstant and tempo-
ral:ValidInterval. These subclasses represent instants and intervals, respectively.
Temporal:ValidInstant is associated with the property temporal:hasTime, and
temporal:ValidInterval is associated with the properties temporal:hasBeginning
and temporal:hasFinish. These three properties are of XML Schema type
xsd:DateTime. Intervals and instances also have granularities associated with them.
This association is modeled by the property temporal:hasGranularity, with a range
class called temporal:Granularity. Specific granularities, such as days and minutes,
are modeled as instances of this class.

One possible use of the valid instant and interval classes is to take an existing
OWL class and add a user-defined property with a range of one of these two classes
to it. The choice of class depends on whether one wishes to model an activity that
occurs at a single instant in time or one that takes place over an interval of time. Also,
if the activity occurs only once, the association will be represented as an OWL func-
tional property, whereas an activity that may repeat can use a non-functional property.
For example, consider the case where a user wishes to add a temporal dimension to a
blood pressure measurement that is described using a class called BloodPressure-
Measurement, which has properties for both the systolic and diastolic values. Blood
pressures are typically recorded as instantaneous measurements, so the valid instant

102 M.J. O’Connor and A.K. Das

class would be the appropriate property range choice here. By using the valid instant
class as the range of a user-defined property associated with the measurement class,
all instances of BloodPressureMeasurement can now use the temporal:hasTime and
temporal:hasGranularity properties associated with the instant. This will allow
them to consistently record temporal information associated with the measurement.
Similarly, if a user wishes to work with prescriptions using an existing class called
Prescriptions, they might choose the valid interval class as the range of a user-
defined property associated with the class.

A more useful modeling approach is to directly use the temporal:Fact class to
represent temporal entities. This class can be made the superclass of an existing OWL
class in need of a temporal dimension, thus asserting that instances of that class have
a temporal extent. For example, if an investigator wishes to take the blood pressure
measurements class cited above and model it as a temporal fact, they can simply make
the class a subclass of temporal:Fact. Instances of this class will now be able to use
the temporal:hasValidTimes property to store their valid instants as instances of the
temporal:ValidInstant class. Similarly, the earlier prescriptions class can be mod-
eled as a temporal entity by making it a subclass of the temporal fact class and using
temporal:ValidInterval to store the temporal intervals associated with it. The
granularities of those instants or intervals can also be modeled with the tempo-
ral:hasGranularity property associated with the temporal:ValidTime superclass.

Representing temporal entities as subclasses of the temporal:Fact class can clar-
ify the distinction between the temporal and non temporal entities in an ontology.
This temporal representation can also coexist with any existing temporal representa-
tions in the ontology, and so does not necessitate modifying the temporal component
of existing entities. In most cases, existing temporal information will need to be
mapped from the source entities to conform to the format encoded by valid-time in-
stants or intervals. This mapping may be non trivial in some cases, but will ensure a
consistent representation of temporal information.

4 Temporal Querying

Once all temporal information is represented consistently in an ontology, it can then
be manipulated using reusable methods. While OWL itself has no temporal operators
for manipulating time values, its associated rule language SWRL [15] provides a
small set. However, the operators in this set are very basic, and provide simple in-
stant-based comparisons only.

4.1 Basic Temporal Queries: Allen’s Operators

SWRL provides a mechanism for creating user-defined libraries of custom methods-
—called built-ins—and using them in rules. We have used this mechanism to define a
library of methods that implement Allen’s [1] interval-based temporal operators. Our
library provides built-ins implementing the entire set of the Allen operators. It also
supports operations on basic XML Schema temporal types, such as xsd:date,
xsd:dateTime, and xsd:duration. Operators to perform granularity conversion and
duration calculations at varying granularities are also provided.

 A Method for Representing and Querying Temporal Information in OWL 103

The following rule illustrates the use of a built-in defined by this library called
temporal:before, which can be used to see if one valid time is before another. This
rule classifies patients as trial-eligible if they completed any DDI drug therapy before
1999. In this rule, a patient has a property called hasTreatment which has a range
class that is a subclass of the temporal:Fact class and holds a list of valid-time inter-
vals for each treatment.

Patient(?p) ^ hasTreatment(?p, ?tr) ^ hasDrug(?tr, DDI) ^
temporal:hasValidTime(?tr, ?trVT) ^ temporal:hasTime(?trVT, ?t)

temporal:before(?t, “1999”) → TrialEligible(?p)

The library also has a native understanding of the valid-time temporal model and
supports an array of temporal operations on intervals defined using the classes in our
model. It can thus be used to directly reason about valid time instants and intervals.
As a result, basic XSD temporal data values do not have to be extracted from valid
time objects. The previous rule can thus be shortened to:

Patient(?p) ^ hasTreatment(?p, ?t) ^ hasDrug(?t, DDI) ^
temporal:hasValidTime(?t, ?tVT) ^ temporal:before(?tVT, “1999”)

→ TrialEligible(?p)

If temporal facts are supported by built-ins, even more concise rules can be written.
For example, with this support, a more complex rule indicating that patients are trial-
eligible if they had drugs prescribed during the first three months of 2008 that were
taken for longer than one week, can be written:

Patient(?p) ^ hasTreatment(?p, ?t) ^ hasDrug(?t, ?drug) ^
temporal:overlaps(?t, "2008-1", "2008-3") ^

temporal:duration(?d, ?t, temporal:weeks) ^ swrlb:greaterThan(?d, 1)
→ TrialEligible(?p)

Here, the temporal:overlaps built-in is supplied with a temporal fact and two literal
date values. Internally, it extracts the intervals associated with the temporal fact t,
constructs an interval from the two supplied dates, and then performs the temporal
comparison of the intervals.

The temporal built-ins in our library can take any combination of temporal facts,
valid-time instants, valid-time intervals, or XSD date or datetime literal values. As
this paper will show, the ability of built-ins to directly reason with objects defined by
the temporal model can significantly reduce the number of clauses required to express
temporal criteria, resulting in considerably more concise rules. It can also free users
from concerns about the low-level representation details of the temporal model.

In addition to being able to write temporal rules, the ability to write temporal
queries on an ontology is also desirable. A SWRL-based query language called the
Semantic Query-Enhanced Web Rule Language [26] provides such support. Using
built-ins, SQWRL defines a set of SQL-like query operators that that can be used to
construct retrieval specifications for information stored in an OWL ontology. These
operators are used in the consequent of a SWRL rule to format the information
matched by a rule antecedent. This antecedent is effectively treated as a pattern
specification for the query. The prefix sqwrl is conventionally used for SQWRL
built-ins. The core built-in defined by SQWRL is sqwrl:select. This built-in takes
one or more arguments, which are typically variables used in the antecedent of a
rule, and builds an internal table using the arguments as the columns of the table.

104 M.J. O’Connor and A.K. Das

For example, the earlier rule to determine trial-eligible patients can be rewritten as a
query as follows:

Patient(?p) ^ hasTreatment(?p, ?t) ^ hasDrug(?t, DDI) ^
temporal:before(?t, “1999”)

→ sqwrl:select(?p)

This query will return a table with one column listing all patients who have completed
a DDI drug therapy before 1999.

SQWRL queries have access to all built-in libraries available to SWRL and can
thus be used to perform temporal queries using the full range of built-ins in the tem-
poral library.

4.2 More Advanced Temporal Queries: Grouping and Aggregation

Temporal querying capabilities more advanced than the ones noted above are typi-
cally required by many applications. In addition to support for basic interval manipu-
lations, many queries need more complex selection of results. For example, queries
such as List the first three doses of the drug DDI or Return the most recent dose of the
drug DDI are common. Because of OWL and SWRL's open world assumption, ex-
pressing these types of temporal queries on OWL ontologies can be difficult.

These queries require closure operations for correct formulation. The core
SQWRL operators support some degree of closure when querying, and do so without
violating OWL’s open world assumption. As shown, queries like List all patients in
an ontology who had drug treatments for longer than three months can be expressed
fairly directly. However, queries with more complex closure requirements cannot be
expressed using the core operators. For example, the query List the first three DDI
treatments for each patient is not expressible. Basically, while the core operators
support basic closure operations, no further operations can be performed on the results
of these operators. Queries with negation or complex aggregation functionality are
similarly not expressible using the core operators.

We have extended SQWRL to support the closure operations necessary for these
types of temporal queries. Two types of collections are supported: sets and bags. As
might be inferred, sets do not allow duplicate elements, whereas bags do. A built-in
called sqwrl:makeSet is provided to construct a set. Its basic form is:

swqrl:makeSet(<set>, <element>)

The first argument of this set construction operator specifies the set to be constructed.
The second specifies the element to be added to the set. This built-in constructs a
single set for a particular query and will place the supplied element into the set. If a
variable is specified in the element position, then all bindings for that variable in a
query will be inserted into the set. A built-in called sqwrl:makeBag is provided to
construct a bag. Its basic form is:

swqrl:makeBag(<set>, <element>)

The scope of each collection is limited to the query that contains it. Collection opera-
tors, such as, for example, sqwrl:size, can be applied to these collections. The re-
sults of these operators can be used by built-ins in the query, thus allowing access to
the results of the closure operation. Two new SQWRL clauses are provided to contain

 A Method for Representing and Querying Temporal Information in OWL 105

these collection construction and manipulation operators. The collections construction
clause comes after a standard SWRL pattern specification and is separated from it
using the ° character. It is followed by a collections operation clause that contains
built-ins that operate on the collections, and is again separated from it by the ° charac-
ter. In outline, a SQWRL query with collections operators looks as follows:

<SWRL Pattern Specification> °
<Collections Construction Clause> °

<Collections Operation Clause>
→ <Select Clause>

The construction clause can only contain SQWRL collection construction operators,
such as sqwrl:makeSet and sqwrl:makeBag. The collection operators clause can con-
tain only collection operators, such as sqwrl:size, in addition to built-ins that operate
on the results of these operations. It may not contain other SWRL atom types.

Collections support basic closure operations over the entire ontology. However,
the earlier query to list the first three DDI treatments for each patient is still not ex-
pressible using this approach. Additional collection operators to allow more complex
queries that group related entities are also required. This additional expressivity is
supplied by collections that are partitioned by a group of arguments. A built-in called
sqwrl:groupBy provides this functionality. The general form of this grouping is:

sqwrl:makeSet(<set>, <element>) ^ sqwrl:groupBy(<set>, <group>)
or

sqwrl:makeBag(<bag>, <element>) ^ sqwrl:groupBy(<bag>, <group>)

This group can contain one or more entities. The first argument to the sqwrl:groupBy
built-in is the collection, and the second and (optional) subsequent arguments are the
entities to group by. Only one grouping can be applied to each collection.

Using this mechanism, the construction of a set of treatments for each patient can
be written:

Patient(?p) ^ hasTreatments(?p, ?t) °
sqwrl:makeSet(?s, ?t) ^ sqwrl:groupBy(?s, ?p)

Here, a new set is built for each patient matched in the query and all treatments for
each one are added to that patient’s set.

SQWRL also provides standard operators such as sqwrl:union,
sqwrl:difference, sqwrl:intersection, and so on. These operators employ stan-
dard set semantics and generate sets. Queries can use them to examine the results of
two or more closure operations, permitting the creation of queries that are far more
complex. Putting elements into collections effectively provides a closure mecha-
nism. Clearly, two-phase processing is required for these queries—a query cannot,
say, determine how many elements are in a collection until it has been constructed.
As mentioned, the language restricts the atoms that are processed in the second
phase to collection built-ins and other built-ins that operate on the results of these
collection built-ins. That is, the first phase of query execution is analogous to stan-
dard rule execution. The second phase consists of operations on the collections
constructed as a result of that execution.

106 M.J. O’Connor and A.K. Das

More complex groupings have multiple grouping entities. For example, to make a
set of the start times of each patient’s treatment, the set construction operator must be
supplied with both patient and treatment grouping arguments:

Patient(?p) ^ hasTreatment(?p, ?t) ^
temporal:hasValidTime(?t, ?vt) ^ temporal:hasStartTime(?bt, ?start) °

sqwrl:makeSet(?s, ?start) ^ sqwrl:groupBy(?s, ?p, ?t)

Here, a set is constructed for each patient and treatment combination, and all the start
times for the combination are added to the set.

Ordinal selection or aggregation operators can be applied to a collection if its ele-
ments have a natural ordering. These operators include sqwrl:min, sqwrl:max,
sqwrl:avg, and so on. For example, a query to return the time of the first treatment
for each patient can be written:

Patient(?p) ^ hasTreatment(?p, ?t) ^
temporal:hasValidTime(?d, ?vt) ^ temporal:hasStartTime(?vt, ?start) °

sqwrl:makeSet(?s, ?start) ^ sqwrl:groupBy(?s, ?p, ?t) °
sqwrl:min(?first, ?s) ^ temporal:equals(?first, ?start)

→ sqwrl:select(?p, ?start)

The result is a list of patients and the time of the first treatment for each one.

4.3 More Advanced Temporal Queries: Temporal Collections

Combining SQWRL’s collection operators with the temporal valid-time model can
provide support for very powerful selection operators on temporal results. Using
SQWRL’s grouping mechanism, aggregation operators such as earliest, latest, and so on
can be supported. Supporting these operators is a key requirement for a temporal query
language [8, 29].

We have further extended the temporal built-in library to support these types of col-
lections. The library now supports the same set of construction and manipulation opera-
tors as SQWRL, but allows only temporal facts to be placed in the collections. The
library natively understands the interval-based valid-time model underlying the facts
placed in collections and provides collection operations on the collections. Additional
temporal collection operators, such as temporal:first, temporal:firstN, tempo-
ral:last, temporal:lastN, temporal:nth, and so on, are also provided. Operators
applied to these temporal collections consider the interval-based semantics of the enti-
ties in the collections. If two collections are merged, for example, intervals belonging to
value-equivalent entities are merged. This process is known as coalescing [6]. The stan-
dard Allen temporal operators can also be applied to collections, facilitating queries
such as Were all DDI prescriptions before all AZT prescriptions?

Consider, for example, a query to return the first treatment for each patient in an on-
tology, together with drug and dosage information. Again, assuming that each patient
has a treatment property that holds a treatment class containing drug and dosage infor-
mation which is modeled as a temporal fact using the temporal ontology, the query can
be expressed as follows:

Patient(?p) ^ hasTreatment(?p, ?tr) ^
hasDrug(?tr, ?drug) ^ hasDose(?tr, ?dose) °

temporal:makeSet(?trs, ?tr) ^temporal:groupBy(?trs, ?p) °
temporal:first(?ftr, ?trs) ^ temporal:equals(?ftr, ?tr)

→ sqwrl:select(?p, ?tr, ?drug, ?dose)

 A Method for Representing and Querying Temporal Information in OWL 107

A query to return the first three DDI treatments for each patient, together with dosage
information, can be written:

Patient(?p) ^ hasTreatment(?p, ?tr) ^
hasDrug(?tr, DDI) ^ hasDose(?tr, ?dose) °

temporal:makeSet(?trs, ?tr) ^ temporal:groupBy(?trs, ?p) °
temporal:firstN(?f3tr, ?trs, 3) ^ temporal:equals(?f3tr, ?tr) →

sqwrl:select(?p, DDI, ?dose)

Here, the temporal:firstN built-in is used to select the first three treatments from a
patient’s treatment set.

A query to return the most recent DDI treatment for each patient, together with
dosage information can be written:

Patient(?p) ^ hasTreatment(?p, ?tr) ^
hasDrug(?tr, DDI) ^ hasDose(?tr, ?dose) °

temporal:makeSet(?trs, ?tr) ^ temporal:groupBy(?trs, ?p) °
temporal:last(?ltr, ?trs) ^ temporal:equals(?ltr, ?tr) →

sqwrl:select(?p, DDI, ?dose)

Here, the temporal:last built-in is used to select the most recent treatment from each
patient’s treatment set.

As can be seen from these examples, natively supporting the valid time-model in
collections allows expressive, yet relatively concise temporal queries. With SQWRL’s
grouping mechanism, queries with advanced aggregation requirements can be ex-
pressed directly in the languages. More advanced query functionality can also be
supported by combining rules and queries to incrementally generate intermediate
results at successively higher levels of abstraction.

5 Conclusions

We have created a lightweight, yet expressive temporal model that can be used to
encode the temporal dimension of data in OWL ontologies. Our model has been de-
signed to be integrated with existing ontologies with minimal redesign of them. It
facilitates the consistent representation of temporal information in ontologies, thus
allowing standardized approaches to performing temporal reasoning and temporal
queries. We used SWRL and the SWRL-based OWL query language SQWRL to
show how knowledge-level temporal rules and queries can be constructed on the
information in the ontologies. The primary goal of our approach was to develop a
concise, yet expressive query language. To date, OWL-based temporal research ef-
forts tend to emphasize temporal representation, with comparatively little emphasis on
methods to query the information in them. A particular failing of existing systems is
poor support for queries with aggregates, a failing tends to limit the types of queries
than be expressed. This paper shows how we have provided these functionalities by
developing temporal extensions to SQWRL and demonstrates how the resulting lan-
guage provides powerful mechanisms for expressing complex temporal queries. In
particular, we show that extending SQWRL with collection operators that can be
directly applied to data described using the temporal model provides a high degree of
expressivity.

108 M.J. O’Connor and A.K. Das

We used an initial version of the temporal valid-time model described here to en-
code temporal information collected during a national clinical trials project [25].
Other researchers have reported using our model in a hypertension management ap-
plication to identify patients who satisfy a set of evidence-based criteria for quality
improvement potential [21]. We are currently using the updated model with the recent
set-based SQWRL extensions to reason with breast cancer image annotation for tumor
assessment [19, 27].

A possible shortcoming of our approach is that all temporal information in a
source ontology must be transformed to conform to the valid-time model. This proc-
ess can be time-consuming, and typically requires considerable domain expertise.
However, the mapping requirement is not unique to our method. If principled tempo-
ral reasoning mechanisms are to be applied to temporal information, some sort of
mapping process to regularize the information is nearly always required, irrespective
of the final reasoning processes.

An additional possible shortcoming is that complex temporal rules and queries can
become difficult to maintain and extend as their numbers increase. We are developing
management tools to tackle this problem [13].

The methodologies and tools described in this paper aim to enhance the ability of
software developers and investigators to encode critical forms of temporal knowledge
in their applications. This knowledge can be represented directly in domain ontolo-
gies, facilitating much higher-level analyses than would be possible with lower-level
techniques. Ultimately, working at the knowledge level will enable investigators to
make better sense of the complex temporal patterns typical in many domains.

Acknowledgements. This research was supported in part by grant R01LM009607
from the National Library of Medicine.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11) (1983)

2. Amagasa, T., Yoshikawa, M., Uemura, S.: A Data model for temporal XML documents.
In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 334–344.
Springer, Heidelberg (2000)

3. Baratis, E., Petrakis, E.G.M., Batsakis, S., Maris, N., Papadakis, N.: TOQL: Temporal
ontology querying language. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent,
I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 338–354. Springer, Heidelberg (2009)

4. Bedi, P., Marwah, S.: Versioning OWL ontologies using temporal tags. In: World
Academy of Science, Engineering, and Technology (March 27, 2007)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
6. Bohlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In: Proceed-

ings of the International Conference on Very Large Databases, Mumbai, India (1996)
7. Bry, F., Koch, C.: Querying the web reconsidered: design principles for versatile web

query languages. Journal of Semantic Web and Information Systems (2005)
8. Chatziantoniou, D., Ross, K.A.: Querying multiple features of groups in relational data-

bases. In: Proceedings of the International Conference on Very Large Databases (1996)

 A Method for Representing and Querying Temporal Information in OWL 109

9. Das, A.K., Musen, M.A.: A temporal query system for protocol-directed decision support.
Methods of Information in Medicine 33, 358–370 (1994)

10. Frasincar, F., Milea, V., Kaymak, U.: tOWL: integrating time into OWL. In: Semantic
Web Information Management. Springer, Heidelberg (2010)

11. Gao, C., Snodgrass, R.: Temporal slicing in the evaluation of XML queries. In: 29th Inter-
national Conference on Very Large Databases, Berlin, Germany (2003)

12. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE Transactions
on Knowledge and Data Engineering 19(2), 207–218 (2007)

13. Hassanpour, S., O’Connor, M.J., Das, A.K.: Exploration of SWRL Rule Bases through
Visualization, Paraphrasing, and Categorization of Rules. In: Governatori, G., Hall, J.,
Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 246–261. Springer, Heidelberg
(2009)

14. Hobbs, J.R., Pan, F.: An ontology of time for the Semantic Web. ACM Transactions on
Asian Language Processing (TALIP): Special issue on Temporal Information Process-
ing 3(1), 66–85 (2004)

15. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a
Semantic Web rule language combining OWL and RuleML. In: W3C (2004)

16. Hripcsak, G., Ludemann, P., Allan Pryor, T., Wigertz, O.B., Clayton, P.: Rationale for the
Arden Syntax. Computers and Biomedical Research 27, 291–324 (1994)

17. Kim, S.K., Song, M.Y., Kim, C., Yea, S.J., Jang, H.C., Lee, K.C.: Temporal Ontology
Language for Representing and Reasoning Interval-Based Temporal Knowledge. In:
Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 31–45. Springer,
Heidelberg (2008)

18. Krieger, H.-U.: Where temporal description logics fail: Representing temporally-changing
relationships. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer,
T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 249–257. Springer, Heidelberg (2008)

19. Levy, M., O’Connor, M.J., Rubin, D.L.: Semantic reasoning with image annotations for
tumor assessment. In: San Francisco, C.A. (ed.) AMIA Annual Symposium, San Fran-
cisco, CA (2009)

20. Lutz, C., Wolter, F., Zakharyashev, M.: Temporal description logics: a survey. In: 15th In-
ternational Symposium on Temporal Representation and Reasoning (2008)

21. Mabotuwana, T., Warren, J.: An ontology-based approach to enhance querying capabilities
of general practice medicine for better management of hypertension. Artificial Intelligence
in Medicine 47(2), 87–103 (2009)

22. Manola, F., Miller, E.: RDF Primer. In: W3C Recommendation (2004)
23. McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. In: W3C

(2004)
24. O’Connor, M.J., Tu, S.W., Musen, M.A.: The Chronus II temporal database mediator. In:

AMIA Annual Symposium, San Antonio, TX, pp. 567–571 (2002)
25. O’Connor, M.J., Shankar, R.D., Parrish, D.B., Das, A.K.: Knowledge-data integration for

temporal reasoning in a clinical trial system. International Journal of Medical Informat-
ics 78(1), S77–S85 (2009)

26. O’Connor, M.J., Das, A.K.: SQWRL: a query language for OWL. In: OWL: Experiences
and Directions (OWLED), Fifth International Workshop, Chantilly, VA (2009)

27. O’Connor, M.J., Das, A.K.: Semantic reasoning with XML-based biomedical information
models. In: 13th World Congress on Medical Informatics (MedInfo 2010), Cape Town,
South Africa (2010)

28. Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with time. In: WWW Confer-
ence, pp. 605–614 (2008)

110 M.J. O’Connor and A.K. Das

29. Rafiq, M.I., O’Connor, M.J., Das, A.K.: Computational method for temporal pattern dis-
covery in biomedical genomic databases. In: IEEE Computational Systems Bioinformatics
Conference (CSB 2005) (2005)

30. Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer, Boston (1995)
31. Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Transitioning temporal support

in TSQL2 to SQL3. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl Seminar 1997.
LNCS, vol. 1399, pp. 150–194. Springer, Heidelberg (1998)

32. SWRL Temporal Built-ins (2010),
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTemporalBuiltIns

33. SWRL Temporal Ontology (2010),
http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl

34. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying of RDF
Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T.,
Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

35. Visser, U.: Intelligent Information Integration for the Semantic Web. LNCS (LNAI),
vol. 3159. Springer, Heidelberg (2004)

36. Welty, C., Fikes, R.: A reusable ontology for fluents in OWL. In: Formal Ontology in In-
formation Systems: Proceedings of the Fourth International Conference (FOIS 2006), pp.
226–336. IOS Press, Amsterdam (2006)

37. Wiederhold, G.: Databases for healthcare. Lecture Notes in Medical Informatics. Springer,
Heidelberg (1981)

38. XML Schema (2009), http://www.w3.org/TR/xmlschema11-1/
39. Zhang, S., Dyreson, C.E.: Adding Valid Time to XPath. In: Bhalla, S. (ed.) DNIS 2002.

LNCS, vol. 2544, pp. 29–42. Springer, Heidelberg (2002)

	A Method for Representing and Querying Temporal Information in OWL
	Introduction
	Background
	Temporal Model
	Temporal Querying
	Basic Temporal Queries: Allen’s Operators
	More Advanced Temporal Queries: Grouping and Aggregation
	More Advanced Temporal Queries: Temporal Collections

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

