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Preface

The 18th International Symposium on Graph Drawing (GD 2010) was held in
Konstanz, Germany, September 21–24, 2010, and was attended by 108 partici-
pants from 20 countries.

In response to the call for papers, the Program Commitee received 77 sub-
missions. Each submission was reviewed by at least three Program Committee
members. Following substantial discussions, the committee accepted 30 long pa-
pers, 5 short papers, as well as 8 posters.

GD 2010 invited two keynote speakers. Carsten Thomassen from the Techni-
cal University of Denmark gave a talk on graph decomposition, and Peter Eades
from the University of Sydney outlined the future of graph drawing. Both talks
were recorded and can be accessed via the conference website,
http://www.graphdrawing.org/gd2010/.

Keeping with tradition, the symposium was accompanied by the 17th Annual
Graph Drawing Contest, including an onsite Graph Drawing Challenge for con-
ference attendees. A detailed report about the event is contained in this volume.

The conference was preceded by proGD, a free training event with tutorials
on data mining, biological networks, and social networks. proGD was organized
in cooperation with the Research Training Group Explorative Analysis and Vi-
sualization of Large Information Spaces and the Konstanz Research School on
Chemical Biology.

For the first time, child care services were offered during the conference, and
we do hope that the four little ones whose parents requested it enjoyed GD 2010
as much as we did.

Many people contributed to the success of the conference. First of all, the
authors of the submitted contributions deserve special thanks, as well as the
members of the Program Committee and all external referees for their careful
work and extensive discussions. In addition to the members of the Organizing
Committee, we would like to thank especially Christine Agorastos, Gabriela
Kruse-Niermann, and our excellent crew of student helpers who took care of all
things big and small that have to be considered during such a meeting.

The conference received considerable support from the hosting organization,
University of Konstanz, and Deutsche Forschungsgemeinschaft (DFG). Further-
more, we are grateful to the various sponsors listed herein.

The 19th International Symposium on Graph Drawing (GD 2011) will be held
September 21–23, 2011, in Eindhoven, The Netherlands, and hosted by Bettina
Speckmann and Marc van Kreveld.

October 2010 Ulrik Brandes
Sabine Cornelsen
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Stephen G. Kobourov University of Arizona, USA
Jan Kratochv́ıl University of Prague, Czech Republic
Giuseppe Liotta University of Perugia, Italy
Henk Meijer Roosevelt Academy, The Netherlands
Petra Mutzel TU Dortmund, Germany
Patrice Ossona de Mendez EHESS Paris, France
Maurizio Patrignani University of Rome III, Italy
Marcus Schaefer DePaul University, Chicago, USA
Bettina Speckmann TU Eindhoven, The Netherlands
Antonios Symvonis NTU Athens, Greece
Stephen Wismath University of Lethbridge, Canada
Xiao Zhou Tohoku University, Japan

External Reviewers

Patrizio Angelini
Christopher Auer
Melanie Badent
Michael Bekos
Carla Binucci
Romain Bourqui
Wolfgang Brunner
Markus Chimani

Walter Didimo
Stefan Felsner
Fabrizio Frati
Andreas Gleißner
Luca Grilli
Karsten Klein
Nils Kriege
Martin Mader

Kazuyuki Miura
Pietro Palladino
Barbara Pampel
Christian Pich
Bruno Pinaud
Salvatore Romeo
Hoi-Ming Wong



Organization IX

Sponsors

Explorative Analysis
and Visualization of

Large Information Spaces

Gold Sponsors

Silver Sponsors

Contributors



Table of Contents

Papers

On the Size of Graphs That Admit Polyline Drawings with Few Bends
and Crossing Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Eyal Ackerman, Radoslav Fulek, and Csaba D. Tóth
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On the Size of Graphs That Admit Polyline
Drawings with Few Bends and Crossing Angles

Eyal Ackerman1, Radoslav Fulek2, and Csaba D. Tóth3,�

1 University of Haifa at Oranim
ackerman@sci.haifa.ac.il

2 Ecole Polytechnique Fédérale de Lausanne
radoslav.fulek@epfl.ch
3 University of Calgary

cdtoth@math.ucalgary.ca

Abstract. We consider graphs that admit polyline drawings where all
crossings occur at the same angle α ∈ (0, π

2
]. We prove that every graph

on n vertices that admits such a polyline drawing with at most two bends
per edge has O(n) edges. This result remains true when each crossing
occurs at an angle from a small set of angles. We also provide several
extensions that might be of independent interest.

1 Introduction

Graphs that admit polyline drawings with few bends per edge and such that
every crossing occurs at a large angle have received some attention lately, since
cognitive experiments [7,8] indicate that such drawings are almost as readable
as planar drawings. That is, even though they may contain crossings, one can
still easily track the edges of such drawings.

A topological graph is a graph drawn in the plane with vertices represented by
distinct points and edges as arcs connecting its vertices, but not passing through
any other vertex. A polyline drawing of a graph G is a topological graph where
each edge is drawn as a simple polygonal arc between the incident vertices, but
not passing through any bend point of other arcs. In a polyline drawing, every
crossing occurs in the relative interior of two segments of the two polygonal arcs,
and so they have a well-defined crossing angle in (0, π

2 ].
Didimo et al. [5] introduced right angle crossing (RAC) drawings, which are

polyline drawing where all crossings occur at a right angle. They prove that a
graph with n ≥ 3 vertices that admits a straight line RAC drawing has at most
4n − 10 edges, and this bound is best possible. A simpler proof of this bound
was later found by Dujmović et al. [6]. It is not hard to show that any graph
admits an RAC drawing with three bends per edge (see Figure 1 for an example).
Arikushi et al. [3] have recently proved, improving previous results by Didimo
et al. [5], that if a graph with n vertices admits an RAC drawing with at most
two bends per edge, then it has O(n) edges.
� Partially supported by NSERC grant RGPIN 35586.

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 E. Ackerman, R. Fulek, and C.D. Tóth

Fig. 1. An RAC drawing of K6 with 3 bends per edge

Dujmović et al. [6] generalized RAC drawings, allowing crossings at a range
of angles rather than at right angle. They considered αAC drawings, which are
polyline drawings where every crossing occurs at angle at least α. They showed
that a graph with n vertices and a straight line αAC drawing has at most
π
α (3n − 6) edges, by partitioning the graph into π

α planar graphs. They also
proved that their bounds are essentially optimal for α = π

k −ε, with k = 2, 3, 4, 6
and sufficiently small ε > 0.

Results for polyline drawings. We consider polyline drawings where every
crossing occurs at the same angle α ∈ (0, π

2 ]. An αAC=
b drawing of a graph is

a polyline drawing where every edge is a polygonal arc with at most b bends
and every crossing occurs at angle exactly α. It is easy to see that every graph
with n vertices that admits an αAC=

0 drawing has at most 3(3n − 6) edges (see
Lemma 1 below). Every graph admits an αAC=

3 drawing for every α ∈ (0, π
2 ]:

Didimo et al. [5] constructed an RAC drawing of the complete graph with three
bends per edge (see also Figure 1), where every crossing occurs between a pair of
orthogonal segments of the same orientation, so an affine transformation deforms
all crossing angles uniformly. It remained to consider graphs that admit αAC=

1
or αAC=

2 drawings. Our main result is:

Theorem 1. For every α ∈ (0, π
2 ], a graph on n vertices that admits an αAC=

2
drawing has O(n) edges.

For α = π
2 , this has recently been proved by Arikushi et al. [3]. Their proof

techniques, however, do not generalize to all α ∈ (0, π
2 ]. Our techniques use

some ideas from [3], but are in fact somewhat simpler. The constant hidden in
the big-O notation in Theorem 1 is quite moderate. For graphs admitting αAC=

1
drawings (with at most one bend per edge), we give a better upper bound than
Theorem 1, using a simpler proof.

Theorem 2. For any angle α ∈ (0, π
2 ], a graph on n vertices that admits an

αAC=
1 drawing has at most 27n edges.

A straightforward generalization of αAC=
2 drawings are polyline drawings where

each crossing occurs at an angle from a list of k distinct angles.
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Theorem 3. Let A ⊂ (0, π
2 ] be a set of k angles. If a graph G on n vertices

admits a drawing with at most two bends per edge such that every crossing occurs
at some angle from A, then G has O(k3n) edges.

Generalizations to topological graphs. Suppose that every edge in a topo-
logical graph is partitioned into edge-segments, such that all crossings occur in
the relative interior of the segments. The bends in polyline drawings, for exam-
ple, naturally define such edge partitions. An end segment is an edge-segment
incident to a vertex of the edge, while a middle segment is an edge-segment
not incident to any vertex. The key idea in proving Theorems 1 and 2 is to
consider the crossings that involve either two end segments, or an end segment
and a middle segment. This idea extends to topological graphs whose edge seg-
ments satisfy a few properties (which automatically hold for polyline drawings
with same angle crossings). We obtain the following results, which might be of
independent interest.

Theorem 4. Let G = (V, E) be a topological graph on n vertices, in which
every edge can be partitioned into two end segments, one colored red and the
other colored blue, such that:

(1) no two end segments of the same color cross;
(2) every pair of end segments intersects at most once; and
(3) no end segment is crossed by more than k end segments that share a vertex.

Then G has O(kn) edges.

Theorem 5. Let G = (V, E) be a topological graph on n vertices. Suppose that
every edge of G can be partitioned into two end segments and one middle segment
such that:

(1) each crossing involves one end segment and one middle segment;
(2) each middle segment and end segment intersect at most once; and
(3) each middle segment crosses at most k end segments that share a vertex.

Then G has O(k2n) edges.

Organization. We begin with a few preliminary observations. Our main results
appear in Section 3 where we prove Theorems 1, 2, 3, and 5. Theorem 4 is proved
in Section 4. It is actually not needed for the proof of Theorem 2, however, it
also implies that graphs with αAC=

1 drawings have a linear number of edges.

2 Preliminaries

In a polyline drawing of a graph, the edges are simple polygonal paths, consisting
of line segments. We start with a few initial observations about line segments
and polygonal paths. We say that two line segments cross if their relative inte-
riors intersect in a single point. (Note that intersecting segments that share an
endpoint or are collinear do not cross.)
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Lemma 1. Let α ∈ (0, π
2 ], and let S be a finite set of line segments in the plane

such that any two segments may cross only at angle α. Then S can be partitioned
into at most three subsets of pairwise noncrossing segments. Moreover, if π

α is
irrational or if π

α = p
q , where p

q is irreducible and q is even, then S can be
partitioned into at most two subsets of pairwise noncrossing segments.

Proof. Partition S into maximal subsets of pairwise parallel line segments. Let S
denote the subsets of S. We define a graph GS = (S, ES), in which two subsets
S1, S2 ∈ S are joined by an edge if and only if their respective directions differ
by angle α. Clearly, the maximum degree of a vertex in GS is two. Hence, GS
is 3-colorable. In any proper 3-coloring of GS , the union of each color class is a
set of pairwise noncrossing segments in S, since they do not meet at angle α.

If π
α is irrational, then GS is cycle-free. If π

α = p
q , where p

q is irreducible and
q is even, then GS can only have even cycles. In both cases, GS is 2-colorable,
and S has a partition into two subsets of pairwise noncrossing segments.

(a)

p q

v0

v1

v2

v3

v4

v5

v6

(b) (c)

u1

u2

u3

u4

v1

v2

v3

v4

v5

p q

u1

u2

u3

u4

v1

v2

v3

v4 v5

Fig. 2. (a) The turning angles of a polygonal path. (b) Two crossing polygonal paths
with the same turning angle between p and q. (c) Two noncrossing polygonal paths
with the same turning angle between p and q.

Consider a simple open polygonal path γ = (v0, v1, . . . , vn) in the plane. At every
interior vertex vi, 1 ≤ i ≤ n − 1, the turning angle ∠(γ, vi) is the directed angle
in (−π, π) (the counterclockwise direction is positive) from ray −−−→vi−1vi to −−−→vivi+1;
see Figure 2(a). The turning angle of the polygonal path γ is the sum of turning
angles

∑n−1
i=1 ∠(γ, vi). We say that two line segments overlap if one of them is

contained in the other.

Lemma 2. Let p and q be two points in the plane. Let γ1 and γ2 be two directed
simple polygonal paths from p to q. If γ1 and γ2 have the same turning angle and
they do not cross, then the first segment of γ1 overlaps with the first segment of
γ2 and the last segment of γ2 overlaps with the last segment of γ2.

Proof. Let γ1 = (u0, u1, . . . , um) and γ2 = (v0, v1, . . . , vn), with p = u0 = v0
and q = um = vn. Let β be their common turning angle. Since γ1 and γ2
do not cross, they enclose a weakly simple polygon P with m + n vertices
(Figure 2(c)). Suppose w.l.o.g. that the vertices of P in clockwise order are
v0 = u0, u1, . . . , um = vn, vn−1 . . . , v1. Every interior angle of P is in [0, 2π],
and the sum of interior angles is (m + n − 2)π. The sum of interior angles at
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the vertices u1, . . . , um−1 is (m − 1) · π + β; and the sum of interior angles at
v1, . . . , vn−1 is (n − 1) · π − β. Hence the interior angles at p and q are both 0.

Let G be a topological multi-graph. We say that two edges overlap if their
intersection contains a connected set of more than one point. Such a maximal
set is called an overlap of the two edges. A common tail is an overlap of two
edges that contains a vertex adjacent to both edges.

Lemma 3. Let G be a topological multi-graph in which some edges may overlap,
but only in common tails. Then the edges of G can be slightly perturbed such that
all overlaps are removed and no new crossings are introduced.

Proof. We successively perturb G and decrease the number of edge pairs that
have a common tail. Let e = (u, v) be an edge in G, and let e1, e2, . . . , ek be
edges in G that have a common tail with e, such that their overlaps with e
contain the vertex u. Direct all these edges away from u. Then every edge ei

follows an initial portion of e, and then turns either right or left at some turning
point pi. Suppose that there is at least one right turning point, and let pj be the
last such point. (Observe that the part of e between u and pj does not contain
turning points of common tails adjacent to vertex v, for otherwise there would
be overlaps that are not common tails.)

u

e

e1

p1

pj

ej

(a) before

u

e

e1

ej

(b) after

Fig. 3. Removing overlaps

Redraw all the edges ei with a right turning point such that they closely follow
e on the right. See Figure 3. We have removed the overlap between e and ej ,
and decreased the number of edge pairs that have a common tail. If there are
no right turning points, then we redraw all the edges with a left turning point
such that they closely follow e on the left.

We say that a topological graph is simple if any two of its edges meet at most
once, either at a common endpoint or at a crossing. By a quasi-planar graph
we understand a topological graph with no three pairwise crossing edges. In the
sequel we will use the linear upper bound on the maximum number of edges in
a simple quasi-planar graph by Ackerman and Tardos [1].
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3 Polyline Drawing with the Same Crossing Angle

In this section, we prove Theorems 1 and 2. The key new technique can be
summarized as follows. Fix an αAC=

2 drawing of a graph G = (V, E). For a
constant fraction of the edges (u, v) ∈ E, we draw a new “red” edge that connects
u to another vertex in V (which is not necessarily v). The red edges closely
follows edges in the αAC=

2 drawing of G, and they only turn at bends and some
crossings of G. We show that all crossings among red edges occur on their end
segments. This combined with Lemma 1 will complete the proof. We continue
with the details.

An αAC=
∞ drawing of a graph G is polyline drawing where every crossing oc-

curs at angle α. Every edge is a polygonal arc that consists of line segments. The
first and last segments of each edge are called end segments, all other segments
are called middle segments. Note that each end segment is incident to a vertex of
G. Let G = (V, E) be a graph with an αAC=∞ drawing. It is clear that G has at
most 3n − 6 crossing-free edges, since they form a plane graph. All other edges
have some crossings. We distinguish several cases below depending on whether
the edges have crossings along their end segments.

3.1 Crossings between End Segments

Lemma 4. Let 0 < α ≤ π
2 . Let G = (V, E) be a graph on n ≥ 4 vertices that

admits an αAC=
∞ drawing such that an end segment of every edge e ∈ E crosses

an end segment of some other edge in E. Then |E| ≤ 36n. Moreover, the number
of edges in E whose both end segments cross some end segments is at most 18n.

Proof. In the αAC=
∞ drawing of G, let S be the set of end segments that cross

some other end segments. We have |E| ≤ |S| ≤ 2|E|. Direct each segment s ∈ S
from an incident vertex in V to the other endpoint. For a straight line edge,
choose the direction arbitrarily.

We construct a directed multi-graph G′ = (V, R). We call the edges in R
red, to distinguish them from the edges of E. For every end segment s ∈ S, we
construct a red edge γ(s), which is a polygonal path with one bend between two
vertices in V . For a segment s ∈ S, the path γ(s) is constructed as follows.

Let us ∈ V denote the starting point of s (along its direction). Let cs be the
first crossing of s with an end segment, which we denote by ts. Let vs ∈ V be a
vertex incident to the end segment ts. Now let γ(s) = (us, cs, vs).

Note that for every s ∈ S, the first segment of γ(s) is part of the segment s
and does not cross any segment in S. Hence the first segments of the red edges
γ(s) are distinct and do not cross other red edges. However, the second segment
of γ(s) may cross other red edges or overlap with other red edges. Since the
edges of G cross at angle α and cs is a crossing, the turning angle of γ(s) is
±α or ±(π − α). Note that overlaps may occur only between red end segments.
However, they can be removed using Lemma 3.

We show that for any two vertices u, v ∈ V , there are at most 4 directed red
edges from u to v. By Lemma 2, any two noncrossing paths of the same turning
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angle between u and v must overlap in the first and last segments. The first
segments of the red edges are pairwise non-overlapping. Furthermore, the red
edges from u to v cannot cross, since the segments incident to v cannot cross.
Since red edges may have up to 4 distinct turning angles, there are at most 4
pairwise noncrossing edges between u and v. Hence there are at most 8 red edges
between u and v (in either direction).

Distinguish two types of red edges. Let R1 be the set of red edges whose
second segment crosses some other red edge, and let R2 be the set of red edges
where both segments are crossing-free. Note that two edges in R1 cannot follow
the same path γ in opposite directions. If R2 contains two edges that follow the
same path γ in opposite directions, then remove one arbitrarily, and denote the
remaining edges by R′

2 ⊆ R2, with |R′
2| ≥ 1

2 |R2|.
Hence, there are at most 4 red edges in R1 between any two vertices in V .

Let S1 be the set of second segments of the red edges in R1. By Lemma 1, there
is a subset S′

1 ⊆ S1 of pairwise noncrossing segments of size at least 1
3 |R1|. Let

R′
1 be the set of red edges containing the segments S′

1, with |R′
1| ≥ 1

3 |R1|. Now
(V, R′

1 ∪R′
2) is a simple multi-graph with maximum multiplicity 4, with at most

4(3n − 6) edges. Hence, |R| ≤ 3 · 4(3n − 6) = 36n − 72, if n ≥ 3.
For the last part of the statement observe that in the above argument, an

edge in E is counted twice if its both end segments are in S.

Theorem 2 follows from Lemma 4.

Proof of Theorem 2: Let G = (V, E) be a graph with n ≥ 4 vertices drawn in the
plane with an αAC=

1 drawing. Let E1 ⊆ E denote the set of edges in E that have
at least one crossing-free end segment. Let G1 = (V, E1) and G2 = (V, E \ E1).

It is easy to see that if α �= π
3 , then G1 is a simple quasi-planar graph and so

it has at most 6.5n− 20 edges by a result of Ackerman and Tardos [1]. If α = π
3 ,

let S1 be the set of crossed end segments of edges in E1. By Lemma 1, there
is a subset S′

1 ∈ S1 of pairwise noncrossing segments of size 1
3 |E1|. The graph

G′
1 corresponding to these edges is planar, with at most 3n − 6 edges. Hence E1

contains at most 3 · (3n − 6) = 9n − 18 edges.
By Lemma 4, G2 has at most 18n edges. Hence, G has at most 24.5n edges if

α �= π
3 and at most 27n edges otherwise. �

Remark. It is easy to generalize the proof of Lemma 4 to the case that every
two polyline edges cross at one of k possible angles. The only difference is that
the red edges may have up to 2k different turning angles.

Lemma 5. Let G = (V, E) be a graph on n ≥ 4 vertices that admits a polyline
drawing such that an end segment of every edge e ∈ E crosses an end segment
of some other edge in E at one of k possible angles. Then |E| ≤ 36kn. �

Corollary 1. Let A ⊂ (0, π
2 ] be a set of k angles. If a graph G on n vertices

admits a drawing with at most one bend per edge such that every crossing occurs
at some angle from A, then G has at most (36k + 3)n edges. �
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3.2 Crossings between End Segments and Middle Segments

We prove Theorem 5. Note that in an αAC=
2 drawing, we can take k = 2.

Proof of Theorem 5: Without loss of generality we can assume that G is drawn in
the plane so that the number of edge crossings is minimized under the constraint
that it satisfies conditions (1)–(3). Observe that G has at most 3n−6 edges whose
end segments are crossing-free, since two such edges cannot cross each other. Let
E1 ⊂ E denote the set of edges with at least one crossed end segment. Let S1
be the set of crossed end segments. It is clear that |E1| ≤ |S1| ≤ 2|E1|. We will
construct a red edge for at least 1

k |S1| end segments in S1.
Direct every end segment from the incident vertex in V to its other endpoint,

and direct every middle segment arbitrarily. For every end segment s ∈ S1, let
cs be the first crossing along s (that is, closest to its incident vertex in V ).

By property (3), for every middle segment m and for every vertex v ∈ V ,
there are at most k end segments s adjacent to v with cs ∈ m. Order these at
most k end segments according to the position of their crossings cs along m; and
select the one corresponding to the last crossing cs. Let S2 ⊂ S1 be the set of
selected end segments, we have |S2| ≥ 1

k |S1| ≥ 1
k |E1|.

Drawing red edges. We construct a directed multi-graph G′ = (V, E′). We call
the edges in E′ red, to distinguish them from the edges of E. For every end
segment s ∈ S2, we construct a red edge γ(s), which is a polygonal path with
two bends between the vertex us incident to s and another vertex in V . The red
edge γ(s) is constructed as follows. Recall that cs is the first crossing of s with
some middle segment, say ms. Let ds be the next crossing along ms (following
the direction of ms), or if cs is the last crossing along ms, then let ds be the
endpoint of ms. In both cases, ds lies on a unique end segment, which is incident
to a unique vertex vs ∈ V . Now γ(s) is the directed path that follows segment s
from us to cs; it follows the middle segment ms from cs to ds; and finally follows
another end segment from ds to vs. See Figure 4(a) for an example. Since we
assume that G is drawn with the minimal number of crossings, we have us �= vs.

Indeed, suppose that us = vs. If ds is the endpoint of the middle segment
ms, then we could redraw the edge em containing ms so that edge em ends
right before reaching point cs and then continues to us closely following along
s without crossings. Observe that by this redrawing we reduce the number of
crossings without violating conditions (1)–(3). Otherwise ds is a crossing of ms

with an end segment, say s′, which is incident to us = vs. In this case, we could
redraw the part of s′ between vs and ds so that it closely follows s from vs to
cs and then follows ms to ds without crossing any edge. Since ds �= cs′ , the end
segment s′ crosses some middle segment before ds, and so this redrawing reduces
the number of crossings without violating conditions (1)–(3).

Every red edge γ(s) is naturally partitioned into two end segments, (us, cs)
and (ds, vs), and one middle segment (cs, ds). The first segment of a red edge γ(s)
lies along the end segment s ∈ S2, and it is crossing-free. The middle segment of
γ(s) lies along a middle segment ms, follows the direction of ms, and it is also
crossing-free. The last segment of γ(s) lies along an end segment, and possibly
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us

vs

cs ds

ms

s

γ(s)

(a) Drawing a red edge

u

e2

w

s2

γ1

v

γ3

γ2

(b) Illustration for Proposition 1

Fig. 4. Illustrations for the proof of Theorem 5

have a common tail with other red edges. Note that the last segment of γ(e) does
not cross any other red edges, since all crossings in G are between end segments
and middle segments, and by construction, the middle segments of red edges do
not cross any end segments. Note also that two red edges cannot follow the same
polygonal path in opposite directions (e.g., (u, v) and (v, u)), since every red edge
follows a prescribed direction along its middle segment. If two red edges overlap,
then the overlap lies on their end segments, and they have a common tail. Thus,
they can be removed using Lemma 3, and we obtain a planar multi-graph.

Recall that a planar multi-graph on n vertices has at most 3n edges, if it has
no faces of size 2. We show that by removing at most a 4k+3

4k+4 fraction of the
edges of G′, the remaining planar multi-graph will have no 2-faces.

Proposition 1. Let γ1, γ2, γ3 be three parallel red edges from u to v in G′. Let
A be the region bounded by γ1 and γ3 and containing γ2. Let e2 ∈ E be the edge
that contains the middle segment of γ2, and let s2 be the middle segment of e2.
If e2 has an endpoint w �= u, v (that is, e2 �= (u, v)), then w ∈ A or s2 crosses
the last segment of γ1 or γ3. (See Figure 4(b).)

Proof. By construction, only the last segment of a red edge can cross any edge
of the original graph G. Hence if e2 has an endpoint w �= u, v and w /∈ A, then
s2 must cross the last segment of γ1 or γ3.

For every pair of vertices u, v we consider the two sets of red edges (u, v) and
(v, u), and remove the smaller one. Note that at most half of the red edges
were deleted. Let γ1, γ2, . . . , γ2k+4 be parallel red edges from u to v in G′, listed
according to their cyclic order around u. Denote by A the region bounded by γ1
and γ2k+4, and containing the rest of the edges. Let si be the middle segment in
G that contains the middle segment of γi, for i = 1, 2, . . . , 2k + 4, and let ei be
the edge of G that contains si. Since G is a simple graph, one of ek+2 and ek+3 is
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not an edge between u and v. Assume, w.l.o.g., it is ek+2. Applying Proposition 1
on ek+2 and every pair of edges ei, e2k+5−i, i = 1, 2, . . . , k + 1, we conclude that
there must be a vertex w �= u, v of ek+2 in A, or sk+2 crosses at least k + 1 end
segments that are adjacent to v. However, the latter cannot happen since every
middle segment in G crosses by at most k end segments that share a vertex.

Therefore, by deleting all but one of every 2k+3 consecutive parallel red edges
around a vertex, we obtain a planar graph with no 2-faces. In the worst case,
we have 4k + 4 consecutive parallel edges between u and v, and keep only one.
By removing at most (4k + 3)/(4k + 4) fraction of the edges in G′, we obtain a
planar multi-graph with no 2-faces, and thus having at most 3n edges. it follows
that the number of red edges is bounded by

1
2
|E′| ≤ (4k + 4)3n = 12(k + 1)n.

Since |E′| ≥ 1
k |E1|, it follows that |E| < |E1|+3n ≤ k|E′|+3n ≤ 24(k+1)kn+3n.

�

3.3 Proofs of Theorems 1 and 3

We are now ready to prove that a graph on n vertices that admits an αAC=
2

drawing has O(n) edges.

Proof of Theorem 1: Let G = (V, E) be a graph with n vertices drawn in the
plane with an αAC=

2 drawing. It follows from Lemma 4 that the number of
edges in G which have end segments crossing some other end segments, is at
most 36n. Let G1 = (V, E1) be the subgraph of G that does not contain two
mutually crossing end segments.

Let S1 be the set of middle segments of all edges in E1. By Lemma 1, there
is a subset S2 ⊂ S1 of at least 1

3 |S1| = 1
3 |E1| pairwise noncrossing segments.

Let E2 ⊆ E1 be the set of edges whose middle segments are in S2, and let
G2 = (V, E2) be a subgraph of G with at least 1

3 |E1| edges.
Note that G2 has properties (1)–(3) with k = 2 in Theorem 5. All crossings are

between an end segment and a middle segment. Moreover, no middle segment
crosses more than two end segments that share a vertex, since two such end
segments form an isosceles triangle with the middle segment.

Therefore, it follows from Theorem 5 that the number of edges in E2 is at
most 147n. Therefore, G has at most 36n + 3 · 147n = 477n edges. �

With a slightly more effort one can prove Theorem 3.

Proof of Theorem 3: Let A ⊂ (0, π
2 ] be a set of k angles. Let G be a graph on n

vertices that admits a drawing with at most two bends per edge such that every
crossing occurs at some angle from A.

Using an easy generalization of Lemma 1 (c.f., [4]), G has a subgraph with
at least |E|/(2k + 1) edges that does not contain two crossing middle segments.
This graph has at most 3n edges that have crossing-free end segments. Note that a
segment can be crossed by at most 2k end segments that share a vertex. Therefore,
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The number of edges whose end segments are only crossed by middle segments is
at most O(k2n) by Theorem 5. It remains to count the number of edges that have
an end segment which is crossed by another end segment. By Lemma 5, there are
at most O(kn) such edges. Therefore, G has O(k3n) edges. �

4 Proof of Theorem 4

We prove Theorem 4 using the same ideas as in the proofs of Lemma 4 and
Theorem 5.

Proof of Theorem 4: Let G be a topological graph on n vertices, and suppose that
every edge of G is partitioned into a red end segment and a blue end segment,
such that: (1) no two end segments of the same color cross; (2) every pair of end
segments intersects at most once; and (3) no end segment is crossed by more
than k end segments that share a vertex. We show that G has O(kn) edges.

By [1] the graph G has at most 6.5n − 20 edges with a crossing free end
segment, since these edges form a simple quasi-planar graph. Denote the rest of
the edges by E1. For every edge e = (u, v) ∈ E1 we draw a new edge γ(e) as
follows. Let (u, x) denote the crossed red end segment of e. Direct (u, x) from u
to x, and let y be the first crossing point on it. Let e′ be the edge that crosses e
at y. Then y must lie on the blue end segment of e′. Denote by w the vertex that
is adjacent to the blue end segment of e′, and observe that w �= u, for otherwise
e and e′ have end segments that intersect twice. Define γ(e) = (u, y) ∪ (y, w),
orient it from u to w, and call it a red-blue edge.

For every pair of vertices u, v, we consider the two sets of parallel edges from
u to v and parallel edges from v to u, We remove the smaller set. Denote the
resulting multi-graph by G′ = (V, E′), and observe that |E′| ≥ |E1|/2. Note also
that G′ is a plane graph. Indeed, crossings may occur only between a red end
segment and a blue end segment, however, the red end segment of every edge in
G′ is crossing-free. G′ might contain edges with a common tail, however, these
overlaps may be removed using Lemma 3.

Proposition 2. Let γ1, γ2, γ3, be three parallel red-blue edges from u to w in
G′. Let A be the region bounded by γ1 and γ3 and containing γ2. Let r2 be the
red end segment of G that contains the red end segment of γ2, and let e2 be the
edge of G that contains r2. Then if e2 = (u, v) for v �= w then either v lies inside
A or r2 crosses the blue end segment of γ1 or γ3.

Proof. Suppose that e2 = (u, v) such that v �= w. If v /∈ A then e2 must cross γ1
or γ3. Since crossings occur only between red and blue end segments, and the
red end segment of a red-blue edge is crossing-free, it follows that r2 must cross
the blue end segment of γ1 or γ3.

Let γ1, γ2, . . . , γ2k+4 be parallel red-blue edges from u to w in G′, listed according
to their cyclic order around u. Denote by A the region bounded by γ1 and γ2k+4,
and containing the rest of the edges. Let ri be the red end segment of G that
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contains the red end segment of γi, i = 1, . . . , 2k + 4, and let ei be the edge of
G that contains ri. One of ek+2, ek+3 is not an edge between u and w. Assume,
w.l.o.g., it is ek+2. Applying Proposition 2 on γk+2 and every pair of edges
γi, γ2k+5−i, i = 1, 2, . . . , k +1, we conclude that there must be a vertex v �= u, w
of ek+2 in A, or rk+2 crosses at least k+1 blue end segment that are adjacent to
w. However, the latter cannot happen since every end segment in G is crossed
by at most k end segments that share a common vertex.

Therefore, by keeping one out of every 2k + 3 consecutive parallel red edges
around a vertex, we obtain a graph with no 2-faces. In the worst case, we keep
only one edge out of 4k + 4 parallel edges. Therefore, by removing at most
(4k + 3)/(4k + 4) of the edges in G′ we obtain a planar multi-graph with no 2-
faces and therefore with at most 3n edges. We conclude that |E| ≤ |E1|+6.5n ≤
2|E′| + 6.5n ≤ 2(4k + 4)3n + 6.5n = (24k + 30.5)n. �

Remark. It follows from Theorem 4 that a graph on n vertices that admits an
αAC=

1 drawing has O(n) edges (however, with a worse constant coefficient than
in Theorem 2): Let α ∈ (0, π

2 ] and let G = (V, E) be a graph on n vertices that
admits an αAC=

1 drawing. We first partition arbitrarily every straight-line edge
of G into two end segments. Next, for every edge of G we assign the color red to
one of its end segments, and the color blue to its other end segment. Applying
Lemma 1 twice we conclude that there is a set of edges E′ ⊆ E, such that no two
end segments of the same color of two edges in E′ cross, and |E′| ≥ |E|/9. Recall
that an end segment in G cannot be crossed by more than two end segments
that share a common vertex. Therefore, by Theorem 4 we have that |E′| ≤ 78.5n
and thus |E| ≤ 706.5n.
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Abstract. We study a new standard for visualizing graphs: A monotone draw-
ing is a straight-line drawing such that, for every pair of vertices, there exists a
path that monotonically increases with respect to some direction. We show al-
gorithms for constructing monotone planar drawings of trees and biconnected
planar graphs, we study the interplay between monotonicity, planarity, and con-
vexity, and we outline a number of open problems and future research directions.

1 Introduction

A traveler that consults a road map to find a route from a site u to a site v would like
to easily spot at least one path connecting u and v. Such a task is harder if each path
from u to v on the map has legs moving away from v. Travelers rotate maps to better
perceive their content. Hence, even if in the original orientation of the map all the paths
from u to v have annoying back and forth legs, the traveler might be happy to find at
least one orientation where a path from u to v smoothly flows from left to right.

Leaving the road map metaphora for the Graph Drawing terminology, we say that
a path P in a straight-line drawing of a graph is monotone if there exists a line l such
that the orthogonal projections of the vertices of P on l appear along l in the order
induced by P . A straight-line drawing of a graph is monotone if it contains at least one
monotone path for each pair of vertices. Having at disposal a monotone drawing (map),
for each pair of vertices u and v a user (traveler) can find a rotation of the drawing such
that there exists a path from u to v always increasing in the x-coordinate.

In a monotone drawing each monotone path is monotone with respect to a differ-
ent line. Upward drawings [7,10] are related to monotone drawings, as in an upward
drawing every directed path is monotone. Even more related to monotone drawings are
greedy drawings [13,12,2]. Namely, in a greedy drawing, between any two vertices a
path exists such that the Euclidean distance from an intermediate vertex to the destina-
tion decreases at every step, while, in a monotone drawing, between any two vertices
a path and a line l exist such that the Euclidean distance from the projection of an
intermediate vertex on l to the projection of the destination on l decreases at every step.

Monotone drawings have a strict correlation with an important problem in Compu-
tational Geometry: Arkin, Connelly, and Mitchell [3] studied how to find monotone
trajectories connecting two given points in the plane avoiding convex obstacles. As a
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vanced tracking system in intermodal freight transportation”, no. RBIP06BZW8.
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corollary, they proved that every planar convex drawing is monotone. Hence, the graphs
admitting a convex drawing [6] have a planar monotone drawing. Such a class of graphs
is a super-class (sub-class) of the triconnected (biconnected) planar graphs.

In this paper we first deal with trees (Sect. 4). We prove several properties relating
the monotonicity of a tree drawing to its planarity and “convexity” [5]. Moreover, we
show two algorithms for constructing monotone planar grid drawings of trees. The first
one constructs drawings lying on a grid of size O(n1.6)× O(n1.6). The second one has
a better area requirement, namely O(n3), but a worse Ω(n) aspect ratio.

The existence of monotone drawings of trees allows to construct a monotone drawing
of any graph G by drawing any of its spanning trees. However, the obtained monotone
drawing could be non-planar even if G is a planar graph. Motivated by this and since
every triconnected planar graph admits a planar monotone drawing, we devise an al-
gorithm to construct planar monotone drawings of biconnected planar graphs (Sect. 5).
Such an algorithm exploits the SPQR-tree decomposition of a biconnected planar graph.
We conclude the paper with several open problems (Sect. 6). Due to space reasons sev-
eral proofs are omitted and can be found in [1].

2 Definitions and Preliminaries

A straight-line drawing of a graph is a mapping of each vertex to a distinct point of the
plane and of each edge to a segment connecting its endpoints. A drawing is planar if its
edges do not cross but, possibly, at common endpoints. A graph is planar if it admits
a planar drawing. A planar drawing partitions the plane into topologically connected
regions, called faces. The unbounded face is the outer face. A strictly convex drawing
(resp. a (non-strictly) convex drawing) is a straight-line planar drawing in which each
face is delimited by a strictly (resp. non-strictly) convex polygon.

We denote by P (v1, vm) a path between vertices v1 and vm. A graph G is connected
if every pair of vertices is connected by a path and is biconnected (resp. triconnected) if
removing any vertex (resp. any two vertices) leaves G connected. A subdivision of G is
obtained by replacing each edge of G with a path. If each path has at most one internal
vertex we have a 1-subdivision. A subdivision of a drawing Γ of G is a drawing Γ ′ of
a subdivision G′ of G such that, for every edge (u, v) of G that has been replaced by
a path P (u, v) in G′, u and v are drawn at the same point in Γ and in Γ ′, and all the
vertices of P (u, v) lie on the segment between u and v.

Let p be a point in the plane and l an half-line starting at p. The slope of l, denoted by
slope(l), is the angle spanned by a counter-clockwise rotation that brings a horizontal
half-line starting at p and directed towards increasing x-coordinates to coincide with l.
We consider slopes that are equivalent modulo 2π as the same slope (e.g., 3

2π is regarded
as the same slope as - π

2 ). Let Γ be a drawing of a graph G and (u, v) an edge of G.
The half-line starting at u and passing through v, denoted by d(u, v), is the direction of
(u, v). The slope of (u, v), denoted by slope(u, v), is the slope of d(u, v). Observe that
slope(u, v) = slope(v, u)−π. When comparing directions and their slopes, we assume
that they are applied at the origin of the axes. An edge (u, v) is monotone with respect
to a half-line l if it has a “positive projection” on l, i.e., if slope(l)− π

2 < slope(u, v) <
slope(l) + π

2 . A path P (u1, un) = (u1, . . . , un) is monotone with respect to a half-
line l if (ui, ui+1) is monotone with respect to l, for i = 1, . . . , n − 1; P (u1, un) is
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monotone if there exists a half-line l such that P (u1, un) is monotone with respect to l.
Observe that if a path P (u1, un) = (u1, . . . , un) is monotone with respect to l, then the
orthogonal projections on l of u1, . . . , un appear in this order along l. A drawing Γ of a
graph G is monotone if, for each pair of vertices u and v in G, there exists a monotone
path P (u, v) in Γ . Observe that monotonicity implies connectivity.

The Stern-Brocot tree [14,4] is an infinite tree whose nodes are in bijective mapping
with the irreducible positive rational numbers. The Stern-Brocot tree SB has two nodes
0/1 and 1/0 that are connected to the same node 1/1, where 1/1 is the right child of 0/1
and 1/1 is the left child of 1/0. An ordered binary tree is then rooted at 1/1 as follows.
Consider a node y/x of the tree. The left child of y/x is the node (y + y′)/(x + x′),
where y′/x′ is the ancestor of y/x that is closer to y/x (in terms of graph-theoretic
distance in SB) and that has y/x in its right subtree. The right child of y/x is the node
(y+y′′)/(x+x′′), where y′′/x′′ is the ancestor of y/x that is closer to y/x and that has
y/x in its left subtree. The first level of SB is composed of node 1/1. The i-th level of
SB is composed of the children of the nodes of the (i−1)-th level of SB. The following
property of the Stern-Brocot tree is well-known and easy to observe:

Property 1. The sum of the numerators of the elements of the i-th level of SB is 3i−1

and the sum of the denominators of the elements of the i-th level of SB is 3i−1.

To decompose a biconnected graph into its triconnected components, we use the SPQR-
tree, a data structure introduced by Di Battista and Tamassia [8,9]. Definitions about
SPQR-trees can be found in [8,9,11] and in [1]. Here we give some notation. Let T
be the SPQR-tree of a graph G. We denote by pert(μ) the pertinent of a node μ of T ,
that is, the subgraph of G induced by the vertices of G in μ. We denote by skel(μ)
the skeleton of a node μ of T , that is, the graph representing the arrangement of the
triconnected components composing pert(μ). The edges of skel(μ) are called virtual
edges. The nodes shared by pert(μ) and the rest of the graph are called poles of μ.

3 Properties of Monotone Drawings

Property 2. Any sub-path of a monotone path is monotone.

Property 3. A path P (u1, un) = (u1, u2, . . . , un) is monotone if and only if it contains
two edges e1 and e2 such that the closed wedge centered at the origin of the axes,
delimited by the two half-lines d(e1) and d(e2), and having an angle smaller than π,
contains all the half-lines d(ui, ui+1), for i = 1, . . . , n − 1.

Edges e1 and e2 as in Prop. 3 are the extremal edges of P (u1, un). The closed wedge
delimited by d(e1) and d(e2) and containing all the half-lines d(ui, ui+1), for i =
1, . . . , n − 1, is the range of P (u1, un) and is denoted by range(P (u1, un)), while
the closed wedge delimited by d(e1) − π and d(e2) − π, and not containing d(e1) and
d(e2), is the opposite range of P (u1, un) and is denoted by opp(P (u1, un)).

Property 4. The range of a monotone path P (u1, un) contains the half-line from u1
through un.
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Lemma 1. Let P (u1, un) = (u1, u2, . . . , un) be a monotone path and let (un, un+1)
be an edge. Then, path P (u1, un+1) = (u1, u2, . . . , un, un+1) is monotone if and only
if d(un, un+1) is not contained in opp(P (u1, un)). Further, if P (u1, un+1) is mono-
tone, range(P (u1, un)) ⊆ range(P (u1, un+1)).

Corollary 1. Let P (u1, un) = (u1, . . . , un) and P (un, un+k) = (un, . . . , un+k) be
monotone paths. Then, path P (u1, un+k) = (u1, . . . , un, un+1, . . . , un+k) is mono-
tone if and only if range(P (u1, un))∩opp(P (un, un+k)) = ∅. Further, if P (u1, un+k)
is monotone, range(P (u1, un)) ∪ range(P (un, un+k)) ⊆ range(P (u1, un+k)).

The following properties relate monotonicity to planarity and convexity.

Property 5. A monotone path is planar.

Lemma 2. [3] Any strictly convex drawing of a planar graph is monotone.

In the following we will construct non-strictly convex drawings of graphs. Observe
that any graph containing a degree-2 vertex does not admit a strictly convex drawing,
but it might admit a non-strictly convex drawing. While not every non-strictly convex
drawing is monotone, we can relate non-strict convexity and monotonicity:

Lemma 3. Any non-strictly convex drawing of a graph such that each set of parallel
edges forms a collinear path is monotone.

On the relationship between convexity and monotonicity, we also have:

Lemma 4. Consider a strictly convex drawing Γ of a graph G. Let u, v, and w be
three consecutive vertices incident to the outer face. Let d be any half-line that splits
the angle ûvw into two angles smaller than π

2 . Then, for each vertex t of G, there exists
a path from v to t in Γ that is monotone with respect to d.

Next, we provide a powerful tool for “transforming” monotone drawings.

Lemma 5. An affine transformation of a monotone drawing gives a monotone drawing.

4 Monotone Drawings of Trees

The first property we present is on the relationship between monotonicity and planarity,
and descends from the fact that every monotone path is planar (by Prop. 5) and that in
a tree there exists exactly one path between every pair of vertices.

Property 6. Every monotone drawing of a tree is planar.

The second property relates monotonicity and convexity. A convex drawing of a tree
T [5] is a straight-line planar drawing such that replacing each edge between an internal
vertex u and a leaf v with a half-line starting at u through v yields a partition of the plane
into convex unbounded polygons. A convex drawing of a tree might not be monotone,
because of the presence of two parallel edges. However, if such parallel lines are not
used, then a convex drawing is also monotone. Define a strictly convex drawing of a
tree T as a straight-line planar drawing such that each set of parallel edges forms a
collinear path and such that replacing every edge of T between an internal vertex u and
a leaf v with a half-line starting at u through v yields a partition of the plane into convex
unbounded polygons. We have the following:
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Property 7. Every strictly convex drawing of a tree is monotone.

A simple modification of the algorithm presented in [5] constructs strictly convex draw-
ings of trees. Hence, monotone drawings exist for all trees.

We introduce slope-disjoint drawings of trees and show that they are monotone. Let
T be a tree rooted at a node r. Denote by T (u) the subtree of T rooted at a node u.
A slope-disjoint drawing of T is such that: (P1) For every node u ∈ T , there exist
two angles α1(u) and α2(u), with 0 < α1(u) < α2(u) < π, such that, for every
edge e that is either in T (u) or that connects u with its parent, it holds that α1(u) <
slope(e) < α2(u); (P2) for every two nodes u, v ∈ T with v child of u, it holds that
α1(u) < α1(v) < α2(v) < α2(u); (P3) for every two nodes v1, v2 with the same
parent, it holds that α1(v1) < α2(v1) < α1(v2) < α2(v2). We have the following:

Theorem 1. Every slope-disjoint drawing of a tree is monotone.

Proof: Let T be a tree and let Γ be a slope-disjoint drawing of T . We show that, for
every two vertices u, v ∈ T , a monotone path between u and v exists in Γ . Let w be the
lowest common ancestor of u and v in T .

If w = u, then, by P1, for every edge e in the path P (u, v), 0 < slope(e) < π.
Hence, P (u, v) is monotone with respect to a half-line with slope π/2. Analogously,
if w = v then P (u, v) is monotone with respect to a half-line with slope −π/2. If
w �= u, v, let u′ and v′ be the children of w in T such that u ∈ T (u′) and v ∈ T (v′).
Path P (u, v) is composed of path P (u, w) and of path P (w, v). As before, P (u, w)
is monotone with respect to a half-line with slope −π/2. By P1, for every edge e ∈
P (u, w), α1(u′)−π < slope(e) < α2(u′)−π. Hence, α1(u′) < slope(l) < α2(u′), for
each half-line l contained into the closed wedge opp(P (u, w)). Analogously, P (w, v)
is monotone with respect to a half-line with slope π/2 and, by P1, for every edge e ∈
P (w, v), α1(v′) < slope(e) < α2(v′). Hence, α1(v′) < slope(l) < α2(v′), for each
half-line l contained into the closed wedge range(P (w, v)). Finally, since u′ and v′

are children of the same node, by P3 α1(u′) < α2(u′) < α1(v′) < α2(v′) (the case
in which α1(v′) < α2(v′) < α1(u′) < α2(u′) being symmetric). Since α1(u′) <
slope(l) < α2(u′) for each half-line l contained into the closed wedge opp(P (u, w))
and since α1(v′) < slope(l) < α2(v′) for each half-line l contained into the closed
wedge range(P (w, v)), we have opp(P (u, w))∩range(P (w, v)) = ∅. By Corollary 1,
P (u, v) is monotone. �

By Theorem 1, as long as the slopes of the edges in a drawing of a tree T guarantee
the slope-disjoint property, one can arbitrarily assign lengths to such edges always
obtaining a monotone drawing of T . In the following we present two algorithms for
constructing slope-disjoint drawings of any tree T . In both algorithms, we individuate
a suitable set of elements of the Stern-Brocot tree SB. Each of such elements, say
s = y/x, is then used as a slope of an edge of T in the drawing.

Algorithm BFS-based: Consider the first �log2(n)� levels of the Stern-Brocot tree SB.
Such levels contain a total number of at least n − 1 elements y/x of SB. Order such
elements by increasing value of the ratio y/x and consider the first n − 1 elements in
such an order S, say s1 = y1/x1, s2 = y2/x2, . . . , sn−1 = yn−1/xn−1. Consider the
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Fig. 1. (a) A tree T . (b) The drawing of T constructed by Algorithm BFS-based.

subtrees of r, say T1(r), T2(r), . . . , Tk(r)(r). Assign to Ti(r) the |Ti(r)| elements of

S from the (1 +
∑i−1

j=1 |Tj(r)|)-th to the (
∑i

j=1 |Tj(r)|)-th. Consider a node u of T
and suppose that a sub-sequence S(u) = sa, sa+1, . . . , sb of S has been assigned to
T (u), where |T (u)| = b − a. Consider the subtrees T1(u), T2(u), . . . , Tk(u)(u) of u

and assign to Ti(u) the |Ti(u)| elements of S(u) from the (1 +
∑i−1

j=1 |Tj(u)|)-th to the

(
∑i

j=1 |Tj(u)|)-th. Now we construct a grid drawing of T . Place r at (0, 0). Consider a
node u of T , suppose that a sequence S(u) = sa, sa+1, . . . , sb of S has been assigned
to T (u) and suppose that the parent p(u) of u has been already placed at the grid point
(px(u), py(u)). Place u at grid point (px(u) + xb, py(u) + yb), where sb = yb/xb. See
Fig. 1 for an example of application. We have the following:

Theorem 2. Let T be a tree. Then, Algorithm BFS-based constructs a monotone draw-
ing of T on a grid of area O(n1.6) × O(n1.6).

Algorithm DFS-based: Consider the sequence S composed of the first n − 1 elements
1/1, 2/1, . . . , n − 1/1 of the rightmost path of SB. Assign sub-sequences of S to the
subtrees of T and construct a grid drawing in the same way as in Algorithm BFS-based.
We have the following.

Theorem 3. Let T be a tree. Then, Algorithm DFS-based constructs a monotone draw-
ing of T on a grid of area O(n2) × O(n).

As a further consequence of Theorem 1, we have the following:

Corollary 2. Every (even non-planar) graph admits a monotone drawing.

Namely, for any graph G, construct a monotone drawing of a spanning tree T of G
with vertices in general position. Draw the other edges of G as segments, obtaining a
straight-line drawing of G in which, for any pair of vertices, there exists a monotone
path (the one whose edges belong to T ). Such a drawing is a monotone drawing of G.

5 Planar Monotone Drawings of Biconnected Graphs

First, we restate, using the terminology of this paper, the well-known result of [6].

Lemma 6. [6] Let G be a biconnected planar graph with a given planar embedding
such that each split pair u, v is incident to the outer face and each maximal split com-
ponent of u, v has at least one edge incident to the outer face but, possibly, for edge
(u, v). Then, G admits a strictly convex drawing with the given embedding in which the
outer face is drawn as an arbitrary strictly convex polygon.
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Let Γ be a monotone drawing, d any direction, and k a positive value. A directional-
scale, denoted by DS(d, k), is an affine transformation defined as follows. Rotate Γ
by an angle δ until d is orthogonal to the x-axis. Scale Γ by (1, k) (i.e., multiply its
y-coordinates by k). Rotate back the obtained drawing by an angle −δ.

Lemma 7. Let Γ be a monotone drawing and d a direction such that no edge in Γ is
parallel to d. For any α > 0 a directional-scale DS(d− π

2 , k(α)) exists that transforms
Γ into a monotone drawing in which the slope of any edge is between d − α and d + α.

A path monotone with respect to a direction d is (α, d)-monotone if, for each edge e,
d − α < slope(e) < d + α. A path from a vertex u to a vertex v is an (α, d1, d2)-
path if it is a composition of a (α, d1)-monotone path from u to a vertex w and of a
(α, d2)-monotone path from w to v. Let pN , pS , pW , and pE be four points in the plane
such that pW is inside triangle (pN , pS , pE), ̂pW pSpE = ̂pW pNpE , and ̂pW pSpN +
2 ̂pW pSpE < π

2 . Quadrilateral (pN , pE , pS , pW ) is a boomerang (see Fig. 2(a)).
Let G be a biconnected graph and T be the SPQR-decomposition of G rooted

at an edge e. We prove that G admits a planar monotone drawing by means of an
inductive algorithm which, given a component μ of T with poles u and v, and a
boomerang boom(μ) = (pN (μ), pE(μ), pS(μ), pW (μ)), constructs a drawing Γμ of
pert(μ) satisfying the following properties. Let dN (μ) be the half-line starting at pE(μ)
through pN(μ), let dS(μ) be the half-line starting at pE(μ) through pS(μ), let αμ be

̂pW (μ)pS(μ)pE(μ) = ̂pW (μ)pN (μ)pE(μ), and let βμ = ̂pW (μ)pS(μ)pN (μ). (A) Γμ is
monotone; (B) with the possible exception of edge (u, v), Γμ is contained into boom(μ),
with u drawn on pN (μ) and v on pS(μ); (C) each vertex w ∈ pert(μ) belongs to a
(αμ, −dN(μ), dS(μ))-path from u to v. Observe that C implies that in Γμ there exists a
path between the poles that is monotone with respect to the line through them and that
B implies the planarity of Γμ.

Lemma 8. Let μ be a component of T . Every (αμ, −dN (μ), dS(μ))-path from u to v
is monotone with respect to the half-line from u through v.

Let μ1, . . . , μk be the children of μ in T , with poles (u1, v1), . . . , (uk, vk). We con-
struct a drawing Γμ satisfying A–C by composing drawings Γμ1 , . . . , Γμk

, which are
constructed inductively, as follows.

If μ is a Q-node, then draw an edge between pN(μ) and pS(μ).
If μ is an S-node (see Fig. 2(b)), then let p be the intersection point between seg-

ment pW (μ)pE(μ) and the bisector line of ̂pW (μ)pN (μ)pE(μ). Consider k equidistant
points p1, . . . , pk on segment pN (μ)p such that p1 = pN (μ) and pk = p. For each μi,
with i = 1, . . . , k − 1, consider a boomerang boom(μi) = (pN (μi), pE(μi), pS(μi),
pW (μi)) such that pN (μi) = pi, pS(μi) = pi+1, and pE(μi) and pW (μi) determine
βμi + 2αμi <

αμ

2 . Apply the inductive algorithm to μi and boom(μi). Also, consider a
boomerang boom(μk) = (pN (μk), pE(μk), pS(μk), pW (μk)) such that pN (μk) = p,
pS(μk) = pS(μ), and pE(μk) and pW (μk) determine βμk

+ 2αμk
<

αμ

2 . Apply the
inductive algorithm to μk and boom(μk).

If μ is a P-node (see Fig. 2(c)), then consider 2k points p1, . . . , p2k on segment

pW (μ)pE(μ) such that p1 = pW (μ), p2k = pE(μ), and ̂pipN (μ)pi+1 = αμ

2k−1 , for each
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Fig. 2. (a) A boomerang. The construction rules for an S-node (b) and for a P-node (c).

i = 1, . . . , 2k − 1. For each μi, with i = 1, . . . , k, consider a boomerang boom(μi) =
(pN (μi), pE(μi), pS(μi), pW (μi)) such that pN (μi) = pN(μ), pS(μi) = pS(μ),
pW (μi) = p2i−1, and pE(μi) = p2i. Apply the inductive algorithm to μi and boom(μi).

If μ is an R-node, then consider the graph G′ obtained by removing v and its incident
edges from skel(μ). Since skel(μ) is triconnected, G′ is a biconnected graph whose
possible split pairs are on the outer face. Further, each of such split pairs separates
at most three maximal split components, and in this case one of them is an edge. By
Lemma 6, G′ admits a convex drawing whose outer face is any strictly convex polygon.
Consider a strictly convex polygon C with one vertex on pN , one vertex on pE , and
m − 2 vertices inside boom(μ) so that they are visible from pS(μ) inside boom(μ) and
the internal angle incident to pE(μ) is smaller than π

2 (see Fig. 3(a)). Construct a convex
drawing Γ (G′) of G′ such that the vertices of the outer face of G′ are on the vertices
of C, with u on pN (μ). By Lemma 2, Γ (G′) is monotone. Slightly perturb the position
of the vertices of Γ (G′) so that no two parallel edges exist and no edge is orthogonal
to dN (μ). Apply a directional-scale DS(dN (μ) − π

2 , k(αμ

2 )) to Γ (G′). By Lemma 7,
for every edge e ∈ G′, slope(−dN(μ)) − αμ

2 < slope(e) < slope(−dN(μ)) + αμ

2 ).
Further, by Lemma 4 and by the fact that the internal angle of C incident to pN(μ) is
smaller than αμ

2 < π
2 , for every vertex w ∈ G′, a (αμ

2 , −dN(μ))-monotone path exists
from u to w. Let Γ (skel(μ)) be the drawing of skel(μ) obtained from Γ (G′) by placing
v on pS(μ) and drawing its incident edges (see Fig. 3(b)). We have the following:

Claim 1. Γ (skel(μ)) is monotone.

Consider a drawing Γ ′(skel(μ)) of a subdivision of skel(μ) obtained as a subdivision
of Γ (skel(μ)). We have the following:

Claim 2. Γ ′(skel(μ)) is monotone.

Consider the pair of vertices x, y belonging to the subdivision of skel(μ) such that the
range range(P (x, y)) of the monotone path P (x, y) between them in Γ ′(skel(μ)) cre-
ates the largest angle ∠(x, y) among all the pairs of vertices. Let γ = π − ∠(x, y). Let
δ be the smallest angle between two adjacent edges in Γ (skel(μ)). For each μi, with
i = 1, . . . , k, let pN (μi) and pS(μi) be the points where ui and vi have been drawn
in Γ (skel(μ)), respectively. Consider a boomerang boom(μi) = (pN (μi), pE(μi),
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Fig. 3. Two phases of the construction for an R-node: (a) definition of the strictly convex polygon
C and (b) the directional-scale applied to G′

pS(μi), pW (μi)) such that pE(μi) and pW (μi) determine βμi+2αμi < min{ δ
2 , γ

2 }. For
each μp such that either pN (μp) and pS(μp) lie on the vertices of C or pS(μp) = pS(μ),
choose points pW (μp) and pE(μp) inside boom(μ). Then, apply the inductive algorithm
to μi, with poles ui and vi, and boom(μi) (see Fig. 3(c)).

In the following we prove that the above described algorithm constructs a planar
monotone drawing of every biconnected planar graph.

Theorem 4. Every biconnected planar graph admits a planar monotone drawing.

Proof: Let T be the SPQR-tree of a biconnected graph G, rooted at any Q-node μe cor-
responding to an edge e. Consider a boomerang boom(μe) = (pN (μe), pE(μe), pS(μe),
pW (μe)) such that x(pN (μe)) = x(pS(μe)) < x(pW (μe)) < x(pE(μe)), y(pS(μe)) <
y(pW (μe)) = y(pE(μe)) < y(pN (μe)), and βμe + 2αμe < π

2 . Apply the inductive al-
gorithm described above to μe and boom(μe). We prove that the resulting drawing is
monotone by showing that at each step of the induction the constructed drawing satis-
fies A–C. This is trivial if μ is a Q-node. Otherwise, μ is an S-node, a P-node, or an
R-node and the statement is proved by the following claims:

Claim 3. If μ is an S-node, Γμ satisfies A.

Proof: Refer to Fig. 4(a). Consider any two vertices w′, w′′ ∈ pert(μ) and the com-
ponents μa and μb such that w′ ∈ pert(μa) and w′′ ∈ pert(μb). If a = b, then a
monotone path between w′ and w′′ exists by induction. Otherwise, for each μi, con-
sider a vertex wi, where wa = w′ and wb = w′′. For each μi, with i = 1, . . . , k, con-
sider a (αμi , −dN(μi), dS(μi))-path P (ui, vi) from ui to vi containing wi. Observe
that such paths exist since, for each μi, Γμi satisfies C. Consider a path P (ui, vi) with
1 ≤ i ≤ k−1. Since βμi +2αμi <

αμ

2 , and since pN (μi) and pS(μi) lie on the bisector
line of αμ, for each edge e ∈ P (ui, vi), it holds slope(e) < βμ + αμ

2 + βμi + 2αμi <
βμ + αμ < βμ + 2αμ = dN (μ) +α, and slope(e) > βμ + αμ

2 − (βμi + 2αμi) > βμ =
dN (μ) − αμ. Hence, P (ui, vi) is (αμ, −dN(μ))-monotone. Analogously, P (uk, vk) is
(αμ, dS(μ))-monotone. Therefore, the path P (u, v) composed of all the paths P (ui, vi)
is an (αμ, −dN (μ), dS(μ))-path. By Lemma 8, P (u, v) is monotone. Hence, by Prop. 2,
the subpath of P (u, v) between w′ and w′′ is monotone, as well, and Γμ satisfies A. �
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u

v
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w′′

w1

w3 wb

wa

dN(μb)

dN(μa)

dS(μa)

dS(μb)

u

v

dN(μb)

−dN(μa)dS(μa)

αμb

αμa

(a) (b) (c)

Fig. 4. Γμ satisfies A (a) if μ is an S-node and (b)–(c) if μ is a P-node

Claim 4. If μ is an S-node, Γμ satisfies B and C.

Claim 5. If μ is a P-node, Γμ satisfies A.

Proof: Consider any two vertices wa, wb ∈ pert(μ) and the nodes μa and μb such that
wa ∈ pert(μa) and wb ∈ pert(μb). If a = b, then a monotone path from wa to wb exists
by induction. Otherwise, consider the (αμa , −dN (μa), dS(μa))-path Pa(u, v) from u to
v through wa and the (αμb

, dN (μb), −dS(μb))-path Pb(v, u) from v to u through wb,
which exist by induction (C). Suppose wb lies on the (αμb

, dN (μb))-monotone path
P (wb, u) from wb to u that is a subpath of Pb(v, u), the other case being analogous.
Consider the (αμa , −dN (μa), dS(μa))-path P (u, wa) that is a subpath of Pa(u, v). We
show that path P (wb, wa) composed of P (wb, u) and P (u, wa) is monotone. When
translated to the origin of the axes, dN (μb), −dN (μa), and dS(μa) are in the 2nd, 4th,
and 3rd quadrant, respectively. By construction, the wedge delimited by dN (μb) and
−dN (μa) and containing the 3rd quadrant has an angle ≤ π − 2 αμ

2k−1 . Since, by defi-
nition, every edge of P (wb, u) creates an angle with dN (μb) smaller than αμb

= αμ

2k−1
and every edge of P (u, wa) creates an angle with −dN (μa) smaller than αμa = αμ

2k−1 ,
the slopes of all the edges of P (wb, wa) lie inside a wedge having an angle smaller than
π. Hence, P (wb, wa) is monotone. �

Claim 6. If μ is a P-node, Γμ satisfies B and C.

Claim 7. If μ is an R-node, Γμ satisfies Prop. A.

Proof: Consider any two vertices wa, wb ∈ pert(μ) and the nodes μa and μb such that
wa ∈ pert(μa) and wb ∈ pert(μb). Let ea and eb be the virtual edges of skel(μ)
corresponding to μa and μb, respectively. If a = b by induction a monotone path from
wa to wb trivially exists. Otherwise, consider the monotone drawing Γ ′(skel(μ)) of a 1-
subdivision of skel(μ) and the monotone path Pa,b from the subdivision vertex of ea to
the subdivision vertex of eb. By construction, π − range(Pa,b) ≥ γ. As βμi + 2αμi <
min{ δ

2 , γ
2} ≤ γ

2 , for the path P (wa, wb) obtained by replacing each edge ei of Pa,b

with the corresponding path of pert(μei) it holds that range(P (wa, wb)) < π. �
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Claim 8. If μ is an R-node, Γμ satisfies B and C.

This concludes the proof of Theorem 4. �

6 Conclusions and Open Problems

We initiated the study of monotone graph drawings. Concerning trees, we proved that
every monotone drawing is planar, that every strictly convex drawing is monotone, and
that monotone drawings exist on polynomial-size grids. We believe that simple mod-
ifications of our algorithms allow one to construct strictly convex drawings of trees
on polynomial-size grids. Another possible extension of our results is to characterize
monotonicity in terms of the angles between adjacent edges. Our definition of slope-
disjointness goes in this direction, although it introduces some non-necessary restric-
tions on the slopes of the edges (like the one that all the slopes are between 0 and π).

We proved that every biconnected planar graph admits a planar monotone drawing.
Extending such a result to general simply-connected graphs seems to be non-trivial.
There exist planar graphs not having a monotone drawing (see Fig. 5(a)) if the embed-
ding is given. However, we are not aware of any planar graph not admitting a planar
monotone drawing for any of its embeddings.

Several area minimization problems concerning monotone drawings are, in our opin-
ion, worth of study. First, determining tight bounds for the area requirements of grid
drawings of trees appears to be an interesting challenge. Second, modifying our tree
drawing algorithms so that they construct grid drawings in general position would lead
to algorithms for constructing monotone drawings of non-planar graphs on a grid of
polynomial size. Third, the drawing algorithm we presented for biconnected planar
graphs constructs drawings in which the ratio between the lengths of the longest and
of the shortest edge is exponential in n. Is it possible to construct planar monotone
drawings of biconnected planar graphs in polynomial area?

Finally, we introduce a new drawing standard related to monotone drawings. A path
from a vertex u to a vertex v is strongly monotone if it is monotone with respect to the
half-line from u through v. A drawing of a graph is strongly monotone if a strongly
monotone path connects each pair of vertices. Strong monotonicity appears to be even
more desirable than general monotonicity for the readability of a drawing. However,
designing algorithms for constructing strongly monotone drawings seems to be harder
than for monotone drawings and only restricted graph classes appear to admit strongly
monotone drawings. Note that a subpath of a strongly monotone path is, in general,
not strongly monotone; also, while convexity implies monotonicity, it does not imply
strong monotonicity, even for planar triangulations (see Fig. 5(b)).

u v

(a) (b)

Fig. 5. (a) A planar embedding of a graph with no monotone drawing. (b) A drawing of a planar
triangulation that is not strongly monotone.
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Abstract. We study the problem of characterizing the directed graphs with an
upward straight-line embedding into every point set in general or in convex posi-
tion. We solve two questions posed by Binucci et al. [Computational Geometry:
Theory and Applications, 2010]. Namely, we prove that the classes of directed
graphs with an upward straight-line embedding into every point set in convex po-
sition and with an upward straight-line embedding into every point set in general
position do not coincide, and we prove that every directed caterpillar admits an
upward straight-line embedding into every point set in convex position. Further,
we provide new partial positive results on the problem of constructing upward
straight-line embeddings of directed paths into point sets in general position.

1 Introduction

Constructing planar straight-line embeddings of graphs into point sets is a well-studied
topic of research since more than twenty years. A celebrated result of Gritzmann et
al. [9] is that the class of graphs that admit a planar straight-line embedding into every
point set in general position or in convex position is the one of the outerplanar graphs.
Efficient algorithms are known to embed outerplanar graphs [4] and trees [5] into any
point set in general or in convex position. Further, while testing whether a graph admits
a planar straight-line embedding into every point set in general or in convex position
can be done efficiently, due to the above cited characterization [9] and to the existence
of a linear-time algorithm to test whether a graph is outerplanar [11], testing whether a
graph admits a planar straight-line embedding into a given point set in general position
is NP-hard, as proven by Cabello [6]. Planar graph embeddings into point sets have
been also studied when edges are allowed to bend (see, e.g., [10,2,7]).

The problem of constructing upward planar straight-line embeddings of directed
graphs into point sets has been first suggested by Giordano et al. [8] and has been very
recently tackled by Binucci et al. in [3], who proved the following main results: (a)
No biconnected directed graph admits an upward planar straight-line embedding into
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every point set in convex position; (ii) the upward planar straight-line embeddability of a
directed graph into every one-side convex point set can be characterized and efficiently
tested; (iii) there exist directed trees that do not have an upward planar straight-line
embedding into every point set in convex position; (iv) every directed path admits an
upward planar straight-line embedding into every point set in convex position.

In this paper we continue the study of the straight-line embeddability of directed
graphs into planar point sets and show the following results.

In Sect. 3, we study upward planar straight-line embeddings of directed graphs into
point sets in general and in convex position. First, we solve an open problem posed
in [3], by exhibiting an infinite class of upward planar directed graphs admitting an
upward planar straight-line embedding into every point set in convex position, but not
into every point set in general position, showing an interesting difference between up-
ward planar straight-line embeddability of directed graphs and planar straight-line em-
beddability of undirected graphs, as the classes of graphs with a planar straight-line
embedding into every point set in convex position and into every point set in general
position coincide. Second, we show that every single-source upward planar directed
graph with cycles of length at most three admits an upward planar straight-line em-
bedding into every point set in general position. Such a result is the best possible with
respect to the number of sources and to the length of the longest cycle.

In Sect. 4, we study upward planar straight-line embeddings of directed trees into
point sets in convex position. We solve an open problem posed in [3] by proving that
every directed caterpillar admits an upward planar straight-line embedding into every
point set in convex position, improving the result in [3] stating that every directed path
admits an upward planar straight-line embedding into every point set in convex position.

In Sect. 5, we study upward planar straight-line embeddings of directed paths into
point sets in general position. We tackle the problem by considering directed paths with
few switches (a switch is either a source or a sink). While the upward planar straight-
line embeddability of directed paths with at most two or three switches into point sets
in general position can be trivially proven, it is already difficult to deal with directed
paths with four or five switches. We prove that directed paths with four (or five) switches
admit an upward planar straight-line embedding into every point set in general position,
if we suppose that at least one (at least two) of the monotone paths composing the
directed paths with four (or five) switches are single edges. Finally, we show that every
directed path with at most k switches admits an upward planar straight-line embedding
into every point set in general position with n2k−2 points.

Omitted proofs can be found in the full version of the paper [1].

2 Preliminaries

A point set in general position, or general point set, is such that no three points lie on
the same line and no two points have the same y-coordinate. The convex hull Ch(S) of
a point set S is the point set that can be obtained as a convex combination of the points
of S. A point set in convex position, or convex point set, is such that no point is in the
convex hull of the others. In a point set S, each point p ∈ S is given by its coordinates
x(v) and y(v) in the plane. We denote by b(S) and by t(S) the lowest and the highest
point of S, respectively. A one-side convex point set S is a convex point set in which
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b(S) and t(S) are adjacent in the border of Ch(S). During the execution of an algorithm
which embeds a graph G into a point set S, a free point is a point of S to which no vertex
of G has been mapped yet. Given a point p in a point set S, a subset S′ of S is clockwise
separated around p if a half-line fixed at p, starting from a horizontal position, directed
towards decreasing x-coordinates, and moving clockwise encounters all the points of
S′ before encountering any other point of S. A counterclockwise separation is defined
symmetrically.

An upward planar directed graph admits a planar drawing where each edge is repre-
sented by a curve monotonically increasing in the y-direction. In the following we refer
to paths, cycles, caterpillars, and trees meaning upward planar directed graphs whose
underlying graphs are paths, cycles, caterpillars, and trees, respectively.

An upward straight-line embedding of a graph into a point set is a mapping of each
vertex to a distinct point and of each edge to a straight-line segment between its end-
points such that no two edges cross and each edge (u, v) has y(u) < y(v).

A monotone path (v1, v2, . . . , vk) is such that edge (vi, vi+1) is directed from vi to
vi+1, for 1 ≤ i ≤ k − 1. An upward straight-line embedding of a monotone path into
any general point set S can be easily constructed by mapping vertex vi to the i-th lowest
point of S. A monotone path is trivial when it consists of a single edge.

3 Embeddings of Directed Graphs into Point Sets

In this section we study the relationship between upward straight-line graph embed-
dability into convex point sets and upward straight-line graph embeddability into gen-
eral point sets, and the relationship between upward straight-line graph embeddability,
the number of switches, and the length of the longest cycle in the underlying graph.

First, we show an infinite class of graphs that admit an upward straight-line embed-
ding into every convex point set but not into every general point set.

Let Gk be defined as follows, for every k ≥ 3: Gk has 3k vertices, it contains a
3-cycle C3 composed of edges (u, v), (v, z), and (u, z), and it contains 4-cycles C4

i ,
with i = 1, . . . , k − 1, composed of edges (u, vi), (vi, wi), (wi, zi), and (u, zi).

Lemma 1. Gk admits an upward straight-line embedding into every convex point set
S with 3k points.

Proof: Map u to b(S). Let l and r be the number of points in the subsets L and R of S
to the left and to the right, respectively, of the line through b(S) and t(S).

If l ≡ 0 mod 3 (and r ≡ 1 mod 3), then iteratively map ui, vi, and zi to the lowest
three free points of L, for i = 1, 2, . . . , l

3 ; further, iteratively map ui, vi, and zi to the
lowest three free points of R, for i = l+3

3 , l+6
3 , . . . , k − 1; finally, map v and z to the

highest point of R and to t(S), respectively. If l ≡ 1 mod 3 (and r ≡ 0 mod 3), then
iteratively map ui, vi, and zi to the lowest three free points of L, for i = 1, 2, . . . , l−1

3 ;
further, map v and z to the highest point of L and to t(S), respectively; finally, itera-
tively map ui, vi, and zi to the lowest three free points of R, for i = l+2

3 , l+5
3 , . . . , k−1.

If l ≡ 2 mod 3 (and r ≡ 2 mod 3), then iteratively map ui, vi, and zi to the lowest
three free points of L ∪ {t(S)}, for i = 1, 2, . . . , l+1

3 ; further, iteratively map ui, vi,
and zi to the lowest three free points of R, for i = l+4

3 , l+7
3 , . . . , k − 1; finally, map v

and z to the highest two points of R.
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b(S3k)

t(S3k)

pl

lbt

p′l

t(S ′
3k−2) lbt′

Fig. 1. Point set S3k

In all the cases, the obtained straight-line embedding is upward and planar. �

Lemma 2. There exists a general point set S3k with 3k points such that Gk does not
admit any upward straight-line embedding into S3k.

Proof: Point set S3k is any point set that satisfies the following constraints (see Fig. 1).
One point pl is to the left of the line lbt through b(S3k) and t(S3k). The remaining
3k − 3 points are to the right of lbt and, together with b(S), they form a convex point
set S′

3k−2 with one point p′l lying to the left of the line lbt′ through b(S) and t(S′
3k−2).

Observation 1. Let G be a graph containing a 4-cycle C composed of edges (x1, x2),
(x2, x3), (x3, x4), and (x1, x4). Let S be a point set such that exactly one point pl(S)
lies to the left of the line through b(S) and t(S). Suppose that an edge of G has been
mapped to segment b(S)t(S). Then, there exists no upward embedding of G into S in
which a vertex of C is mapped to pl(S).

Since u is the only source of Gk , such a vertex has to be mapped to b(S3k). Further,
since a sink of Gk has to be mapped to t(S3k) and since every sink of Gk is adjacent to
u, segment b(S3k)t(S3k) is part of any embedding. Then, by Observation 1 no vertex
of a 4-cycle C4

i of Gk is mapped to pl. Hence, a vertex of C3 is mapped to pl. If such a
vertex is z, then vertex v is mapped to a point to the right of lbt, hence b(S)t(S) crosses
the segment between z and v. It follows that v is mapped to pl. If z is not mapped to
t(S3k), then b(S3k)t(S3k) crosses the segment between z and v. Hence, z is mapped to
t(S3k). Then, all the vertices of the 4-cycles of Gk are mapped to the vertices of S′

3k−2.
A sink of one of the 4-cycles has to be mapped to t(S′

3k). Since every sink of Gk is
adjacent to u, segment b(S3k)t(S′

3k) is part of any embedding. Then, by Observation 1
no vertex of a 4-cycle C4

i of Gk can be mapped to p′l, thus proving the lemma. �

We get the following:

Theorem 1. For every k ≥ 3, there exists a 3k-vertex upward planar digraph that
admits an upward straight-line embedding into every convex point set with 3k points
but not into every general point set with 3k points.

Next, we show that every single-source graph G whose every simple cycle has length
three admits an upward straight-line embedding into every general point set. Such a
result is tight both with respect to the maximum length of a cycle in G and with respect
to the number of sources in G. Namely, a single-source graph exists whose every simple
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B1

B2

Bk

s = b(S) s = b(S)

s′ = b(S ′)

G′

s = b(S)

s′ = b∗(S) = b(S ′)

G′

G′′

s′′ = b(S ′′)

s = b(S)

s′ = b∗(S) = b(S1)

G′G′′

s′′ = b(S2)

(a) (b) (c) (d)

Fig. 2. (a) s is a cut-vertex. (b) B is an edge. (c) B is a 3-cycle (s, s′, s′′) and l encounters b(S′′)
after s. (d) B is a 3-cycle (s, s′, s′′) and l encounters b(S′′) before s.

cycle has length at most four not admitting any upward straight-line embedding into
some general point set (by Lemma 2). Further, a graph with two sources exists whose
every simple cycle has length three not admitting any upward straight-line embedding
into some general point set (by the results in [3] on upward straight-line embeddability
into one-side convex point sets).

We show a recursive algorithm to construct upward straight-line embeddings of
single-source graphs whose every simple cycle has length three into every general point
set. The recursion is on the number x of biconnected components of G. If x = 1, then
the statement is trivially true. If x > 1, consider the unique source s of G.

If s is a cutvertex of G, denote by B1, . . . , Bk the connected components obtained
by removing s from G (see Fig. 2(a)). Clockwise separate the sets S1, . . . , Sk with
|B1|, . . . , |Bk| points, respectively, around b(S). Recursively construct straight-line em-
beddings of the subgraphs of G induced by the vertices in B1 ∪ {b(S)}, . . . , in Bk ∪
{b(S)} into point sets S1 ∪ {b(S)}, . . . , Sk ∪ {b(S)}, respectively.

If s is not a cutvertex of G, consider the biconnected component B incident to s.
If B is an edge (s, s′), denote by S′ the point set obtained by removing b(S) from S

and by G′ the graph obtained by removing s and its incident edge from G (see Fig. 2(b)).
Recursively construct an upward straight-line embedding of G′ into S′.

If B is a 3-cycle (s, s′, s′′), denote by b∗(S) the lowest point of S different from
b(S). Denote by G′ (by G′′) the graph composed of s′ (resp. of s′′) and of every con-
nected component not containing s that is obtained by removing s′ (resp. s′′) from G.
Clockwise separate |G′| − 1 points around b∗(S). Such points, together with b∗(S),
form a set S′. Let S′′ = S \ {S′ ∪ {b(S)}}. Consider a line l fixed at b∗(S) and ro-
tating clockwise starting from a horizontal position. If l encounters b(S′′) after s (see
Fig. 2(c)), then recursively construct upward straight-line embeddings of G′ into S′ and
of G′′ into S′′. If l encounters b(S′′) before s (see Fig. 2(d)), then counterclockwise sep-
arate |G′|− 1 points around b∗(S). Such points, together with b∗(S), form a set S1. Let
S2 = S \ {S1 ∪ {b(S)}}. Then, recursively construct upward straight-line embeddings
of G′ into S1 and of G′′ into S2.

We get the following:

Theorem 2. Every single-source upward planar directed graph whose every simple
cycle has length three admits an upward straight-line embedding into every point set in
general position.
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Fig. 3. (a) A caterpillar G = (V, E) and function E : V → {1, 2, . . . , n}. (b) Decomposition of
a caterpillar into increasing caterpillars, decreasing caterpillars, and extremal legs.

4 Embeddings of Directed Caterpillars into Convex Point Sets

In this section we prove that every caterpillar admits an upward straight-line embedding
into every point set in convex position.

We introduce some terminology. A caterpillar G is a tree such that removing all the
degree-1 vertices, called the legs of G, yields a path, called the spine of G. A caterpillar
whose spine is a monotone path is a monotone caterpillar. Let vs and vt be a source and
a sink of the spine of a caterpillar. A vertex w that is connected to vs by edge (w, vs)
or to vt by edge (vt, w) is an extremal leg of a caterpillar. In Fig. 3(a) the extremal legs
are numbered 1, 13, 14, 20, 21, 28, 29, 39, 40, 41.

Let G be a caterpillar, let T be its spine, and let u be one of the end-points of T . Let
U be the set composed of u and of the extremal legs of G adjacent to u. The following
lemma descends from algorithms presented in the literature [8,3].

Lemma 3. Suppose that u is a source (resp. a sink) of T . Then, G admits an upward
straight-line embedding into every one-side convex point set S in which the vertices of
G in U are mapped to the |U | lowest (resp. highest) points of S.

Let G be a monotone caterpillar and let T be its spine. Let s and t be the source and the
sink of T , respectively. In addition, suppose that s and t are a source and a sink of G,
respectively. We have the following:

Lemma 4. G admits an upward straight-line embedding into every convex point set S
in which s is mapped to the lowest point of S and t is mapped to the highest point of S.

Next, for a caterpillar G=(V, E), we define a bijective function E : V→{1, 2, . . . , n}.
Let T be the spine of G and let a and b be the end-vertices of T . Function E is defined
according to the following rules (see Fig. 3(a)). (R1): For any two vertices u, v ∈ T
such that u comes before v when traversing T from a to b, the value associated to u
and to all the legs adjacent to u is smaller than the value associated to v and to all legs
adjacent to v; (R2): For any vertex u ∈ T , the value associated to u is greater than the
value associated to all the legs incident to edges entering u; (R3): For any vertex u ∈ T ,
the value associated to u is smaller than the value associated to all the legs incident to
edges exiting u.

We now describe an algorithm to construct an upward straight-line embedding of
any caterpillar G into any convex point set S. The idea is to partition G into three
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Ri Ri

(a) (b)

Fig. 4. Sub-caterpillars of (a) an increasing caterpillar Ri and (b) a decreasing caterpillar Ri

smaller caterpillars that can be embedded into suitable subsets of S by means of the
two algorithms described above. In the following we formalize this idea.

Let G be a caterpillar with spine T . Let (T1, . . . , Tk) be the maximal monotone
paths composing T ; Ti is an increasing path if, for any edge (u, v) in Ti, E(u) < E(v)
and a decreasing path otherwise. Assume the sources and the sinks of T belong to
the increasing paths and not to the decreasing paths. Hence, T1 and Tk are increasing
paths, possibly with one vertex. Let Ri be the caterpillar induced by Ti and by the non-
extremal legs of G adjacent to Ti; Ri is an increasing (resp. decreasing) caterpillar if
Ti is an increasing (resp. decreasing) path. Caterpillar G is partitioned into increasing
caterpillars, decreasing caterpillars, and extremal legs (see Fig. 3(b)). If Ri is an in-
creasing caterpillar, let s(Ri) and t(Ri) be the source and the sink of Ti, respectively.
If Ri is a decreasing caterpillar, let t(Ri) = t(Ri−1) and s(Ri) = s(Ri+1), that is,
s(Ri) (resp. t(Ri)) is the source (the sink) of T immediately following (preceding) Ti.
Observe that, if Ri is a decreasing caterpillar, s(Ri) and t(Ri) do not belong to Ri.

Next, we define the sub-caterpillars G1
i and G2

i of G induced by Ri. If Ri is an
increasing caterpillar (see Fig. 4(a)), set G1

i (G2
i ) to be the caterpillar induced by the

vertices of G preceding s(Ri) (following t(Ri), resp.) in E , except for the extremal legs
adjacent to s(Ri) (to t(Ri), resp.). If Ri is a decreasing caterpillar (see Fig. 4(b)), set
G1

i (G2
i ) to be the caterpillar induced by t(Ri) (by s(Ri), resp.) and by the vertices of

G preceding t(Ri) (following s(Ri), resp.) in E .
Consider a line l through b(S) and t(S). Denote by A and B the point sets to the left

and to the right of l, resp. (see Fig. 5(a)). Points b(S) and t(S) belong to A. Consider any
increasing caterpillar Ri. Denote by il (resp. ih) the number of extremal legs adjacent
to s(Ri) (resp. to t(Ri)) and by L (resp. H) the set of the il + 1 lowest (resp. of the
ih + 1 highest) points of S. Let A′ = A \ (L ∪ H), B′ = B \ (L ∪H), |H ∩ A| =
ha, |H ∩ B| = hb, |L ∩ A| = la, and |L ∩ B| = lb (see Fig. 5(a)). We have the
following:

Lemma 5. If |G1
i | ≤ |A|−la and |G2

i | ≤ |B|−hb, then there is an upward straight-line
embedding of G into S.

Proof: We distinguish three cases:

Case 1: |G1
i | ≤ |A′| and |G2

i | ≤ |B′|. Refer to Fig. 6(a). Map s(Ri) to t(L) and
the extremal legs adjacent to s(Ri) to the other points of L. Map t(Ri) to b(H) and
the extremal legs adjacent to t(Ri) to the other points of H . Embed G1

i into the |G1
i |

lowest points of A′ and G2
i into the |G2

i | highest points of B′. Such embeddings can
be constructed by Lemma 3, since A′ and B′ are one-side convex point sets. Embed
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Fig. 5. Point sets for (a) Case 1, (b) Case 2, and (c) Case 3
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Fig. 6. Embedding G into S if (a) |G1
i | ≤ |A′| and |G2

i | ≤ |B′|, (b) |G1
i | ≤ |A| − la, |G2

i | ≤
|B| − hb, and |G1

i | > |A′|, and (c) |G2
i | ≤ |B| − hb, |G1

i | ≤ |A′|, and |G2
i | > |B′|

Ri into the remaining free points of S. This can be done by Lemma 4, since Ri is a
monotone caterpillar. We have the following:

Claim 1. The constructed straight-line embedding of G into S is upward and planar.

Case 2: |G1
i | > |A′|. We create a partition (A′

1, B
′
1, H1, L1) of S such that |G1

i | = |A′
1|,

|G2
i |+ |Ri| = |B′

1|, il +1 = |L1|, and ih +1 = |H1| (see Fig. 5(b)). Let dG1
i

= |G1
i |−

|A′|. By the assumptions of the lemma, |G1
i | ≤ |A|− la. Since |A| = |A′|+ la +ha, we

have dG1
i
≤ ha. Define A′

1 as A′ plus the dG1
i

lowest points of H ∩A, B′
1 as B′ minus

the dG1
i

highest points of B′, L1 = L, and H1 = S \ (A′
1∪B′

1∪L1). Refer to Fig. 6(b).
Map s(Ri) to t(L1) and map the extremal legs adjacent to s(Ri) to the other points of
L1. Map t(Ri) to b(H1) and the extremal legs adjacent to t(Ri) to the other points of
H1. Embed G1

i into A′
1 and G2

i into the |G2
i | highest points of B′

1. Such embeddings can
be constructed by Lemma 3, since A′

1 and B′
1 are one-side convex point sets. Embed

Ri into the remaining free points of S. This can be done by Lemma 4, since Ri is a
monotone caterpillar. We have the following:

Claim 2. The constructed straight-line embedding of G into S is upward and planar.

Case 3: |G1
i | ≤ |A′| and |G2

i | > |B′|. We create a partition (A′
1, B

′
1, H1, L1) of S

such that |G1
i | + |Ri| = |A′

1|, |G2
i | = |B′

1|, il + 1 = |L1|, and ih + 1 = |H1| (see
Fig. 5(c)). Let dG2

i
= |G2

i | − |B′|. By the assumptions of the lemma, |G2
i | ≤ |B| − hb.

Since |B| = |B′| + lb + hb, we have dG2
i
≤ lb. Define B′

1 as B′ plus the dG2
i

highest
points of L ∩ B, A′

1 as A′ minus the dG2
i

lowest points of A′, H1 = H , and L1 =
S \ (A′

1 ∪ B′
1 ∪ H1). Refer to Fig. 6(c). Map s(Ri) to t(L1) and the extremal legs
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adjacent to s(Ri) to the other points of L1. Map t(Ri) to b(H1) and the extremal legs
adjacent to t(Ri) to the other points of H1. Embed G2

i into B′
1 and G1

i into the |G1
i |

lowest points of A′
1. Such embeddings can be constructed by Lemma 3, since A′

1 and
B′

1 are one-side convex point sets. Embed Ri into the remaining free points of S. This
can be done by Lemma 4, since Ri is a monotone caterpillar. We have the following:

Claim 3. The constructed straight-line embedding of G into S is upward and planar.

�

Now consider any decreasing caterpillar Ri that is part of G. Define il, ih, L, H , A′,
B′, ha, hb, la, and lb as before. We have the following:

Lemma 6. If |G1
i | ≤ |A| − ha + 1 and |G2

i | ≤ |B| − lb + 1, then there is an upward
straight-line embedding of G into S.

The proof of Lemma 6 is analogous to the one of Lemma 5. The requirements |G1
i | ≤

|A| − ha + 1 and |G2
i | ≤ |B| − lb + 1 of Lemma 6 are weaker than the requirements

|G1
i | ≤ |A| − la and |G2

i | ≤ |B| − hb of Lemma 5. This is due to the fact that, if Ri is a
decreasing caterpillar, then t(Ri) and s(Ri) belong to G1

i and to G2
i , respectively, and

they do not belong to Ri. We are now ready to prove the following:

Theorem 3. Any n-vertex directed caterpillar G admits an upward straight-line em-
bedding into every convex point set S with n points.

Proof: Let T be the spine of G and let {R1, . . . , Rk} be the increasing and decreasing
caterpillars of G. Let (A, B) be the partition of S created by a line through b(S) and
t(S), where b(S) and t(S) belong to A. Consider the |A|-th vertex v|A| in the order
v1, . . . , vn of the vertices of G defined by E . We partition G into three smaller caterpil-
lars and we draw each of them on a suitably chosen portion of S. The partition of G is
determined by the position of v|A| in G. We distinguish four cases:

Case 1: v|A| is a vertex of an increasing caterpillar Ri. Define il, ih, L, H , hb, la, ha,
and lb as before. Since v|A| ∈ Ri, we have that |G1

i |+ il < |A|. Since il +1 = la + lb, it
follows that la ≤ il +1. Thus, |G1

i |+ la ≤ |A|. Analogously, we have that |G2
i |+ ih <

|B|. Since ih +1 = ha +hb, it follows that hb ≤ ih +1. Thus, |G2
i |+hb ≤ |B|. Hence,

Lemma 5 applies and the result follows.

Case 2: v|A| is a vertex of a decreasing caterpillar Ri. Analogously to Case 1, it can be
proven that |G1

i | ≤ |A|−ha +1 and |G2
i | ≤ |B|− lb +1. Hence, Lemma 6 applies and

the result follows.

Case 3: v|A| is an extremal leg adjacent to a sink of T . Let Ri and Ri+1 be such that
t(Ri) = t(Ri+1) and v|A| is an extremal leg adjacent to t(Ri). Note that Ri is an
increasing caterpillar and Ri+1 is a decreasing caterpillar. Denote by ih the number of
extremal legs adjacent to t(Ri) and by H the set of the ih + 1 highest points of S. Let
|H∩B| = hb and |H∩A| = ha. Notice that ha +hb = ih +1. We claim the following.

Claim 4. Let G1
i and G2

i (let G1
i+1 and G2

i+1) be the sub-caterpillars of G induced
by Ri (resp. by Ri+1). At least one of the following inequalities holds: (1) |G1

i+1| ≤
|A| − ha + 1; (2) |G2

i | ≤ |B| − hb.
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We further distinguish two cases.

Inequality (1) holds. Consider the decreasing caterpillar Ri+1. Let il be the number of
extremal legs adjacent to s(Ri+1) and let L be the set of the il + 1 lowest point of
S. Denote la = |L ∩ A| and lb = |L ∩ B|. We have that |B| > |G1

i+1| + il, hence
|B| ≥ |G1

i+1|+ lb, as il + 1 = la + lb. Hence, Lemma 6 applies and the result follows.

Inequality (2) holds. Consider the increasing caterpillar Ri. Let il be the number of
extremal legs adjacent to s(Ri+1) and let L be the set of the il + 1 lowest point of
S. Denote la = |L ∩ A| and lb = |L ∩ B|. We have that |A| > |G1

i | + il, hence
|A| ≥ |G1

i |+ la, as il + 1 = la + lb. Hence, Lemma 5 applies and the result follows.

Case 4: v|A| is an extremal leg adjacent to a source of T . Analogously to Case 3, it
can be proven that either |A| ≥ |G1

i+1| + ha − 1 and |B| ≥ |G1
i+1| + lb − 1 hold

simultaneously, thus the result follows from Lemma 6, or |A| ≥ |G1
i | + la and |B| ≥

|G2
i |+ hb hold simultaneously, thus the result follows from Lemma 5. �

5 Embeddings of Directed Paths into General Point Sets

In this section we deal with upward straight-line embeddings of paths with few switches
into general point sets. We first deal with paths with four switches.

Theorem 4. Every path P composed of three monotone paths P1, P2, and P3 admits
an upward straight-line embedding into every general point set S if at least one out of
P1, P2, and P3 is a trivial path.

Proof: Let P1 = (s1 = u1, . . . , uU = t1), P2 = (t1 = v1, . . . , vV = s2), and
P3 = (s2 = w1, . . . , wW = t2) be the monotone paths composing P , where s1 and s2
are sources and t1 and t2 are sinks. If P2 is trivial, a more general result in [3] states
that a path P admits an upward straight-line embedding into every general point set if
the i-th monotone path composing P is trivial, for every odd i or for every even i. We
discuss the case in which P3 is trivial, the case in which P1 is trivial being symmetric.
Counterclockwise separate a set S1 of U − 1 points around t(S). Construct upward
straight-line embeddings of P1 into S1∪{t(S)} and of P2 \{s2} into the V −1 highest
points of S \ S1. Map s2 to b(S \ S1) and t2 to the only remaining free point of S.

Claim 5. The constructed straight-line embedding of P into S is upward and planar.

�We now deal with paths with five switches.

Theorem 5. Every path P composed of four monotone paths P1, P2, P3, and P4 admits
an upward straight-line embedding into every general point set S if at least two out of
P1, P2, P3, and P4 are trivial paths.

Proof: Let P1 = (s1 = u1, u2, . . . , uU = t1), P2 = (t1 = v1, v2, . . . , vV = s2),
P3 = (s2 = w1, w2, . . . , wW = t2), and P4 = (t2 = z1, z2, . . . , zZ = s3) be the
monotone paths composing P , where s1, s2, and s3 are sources and t1 and t2 are sinks.
The case in which P has three sinks and two sources can be discussed analogously. If
P1 and P3 are trivial or if P2 and P4 are trivial, the proof follows from the result in [3]
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cited in the proof of Theorem 4. We discuss the case in which P1 and P4 are trivial.
Clockwise separate a set S1,2 of V points around b(S). Construct upward straight-line
embeddings of P2\{t1} into the V −1 lowest points of S1,2∪b(S) and of P3\{t2} into
the W −1 lowest points of S \S1,2. Map t1 to t(S1,2) and s1 to the only remaining free
point of S1,2. Map t2 to t(S \ S1,2) and s3 to the only remaining free point of S \ S1,2.

Claim 6. The constructed straight-line embedding of P into S is upward and planar.

We discuss the case in which P1 and P2 are trivial, the case in which P3 and P4 are
trivial being symmetric. Clockwise separate a set S4 of Z − 1 points around t(S).
Construct upward straight-line embeddings of P4 into S4 ∪ {t(S)} and of P3 \ {s2}
into the W − 1 highest points of S \ S4. Consider the line l′ through the point where
w2 is drawn and the lowest free point of S. If both the two remaining free points of S
are on the same side of l′, then map s2 to b(S \ S4), map t1 to the highest free point
of S, and map s1 to the other free point of S. Otherwise, one of the two remaining free
points of S is to the left l′ and the other one is to its right. Then, map s2 to the lowest
of such two points, map t1 to the highest of such two points, and map s1 to b(S \ S4).

Claim 7. The constructed straight-line embedding of P into S is upward and planar.

We discuss the more involved case in which P2 and P3 are trivial. Let p1 and p2 be the
two highest points of S, with y(p1) ≥ y(p2). Counterclockwise separate a set S1 of
U − 1 points around p2. Denote by p the point that is added to S1 when U points are
counterclockwise separated around p2. We consider the following two cases:

Point p is to the left of l1,2: Refer to Fig. 7(a). Consider a half-line l1 fixed at p1 and
passing through p. Rotate l1 in counterclockwise direction. Let p′ be the last point of S1
encountered by l1 before encountering p2. If no point of S1 is encountered by l1 before
p2, then let p′ = p. Map t1 to p1, t2 to p2, and s2 to p′; construct upward straight-line
embeddings of P1 into S1 ∪ {p1, p} \ {p′} and of P4 into S \ {S1} ∪ {p2} \ {p}.
Point p is to the right of l1,2: Refer to Fig. 7(b). Consider a half-line l1 fixed at p1
and passing through p. Rotate l1 in clockwise direction. Let p′ be the last point of S1
encountered by l1 before encountering p2. If no point of S1 is encountered by l1 before
p2, then let p′ = p. Map t1 to p2, t2 to p1, and s2 to p′; construct upward straight-line
embeddings of P1 into S1 ∪ {p2} and of P4 into S \ {S1} ∪ {p1, p} \ {p′}.

Claim 8. The constructed straight-line embedding of P into S is upward and planar.

�

Next, we tackle the problem of embedding paths with at most k switches into general
point sets with more than n points. We show the following:

Theorem 6. Every directed path P with n vertices and k switches admits an upward
straight-line embedding into every general point set S with |S| ≥ n2k−2.

Proof: We prove the statement by induction on the number of switches; we suppose
inductively that one of the end-vertices of P is mapped to b(S) or t(S), depending on
whether such a vertex is a source or a sink. The statement is trivial if k = 2, as in such
a case P is monotone and any general point set with n points suffices.
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Fig. 7. (a) Point p is to the left of l1,2. (b) Point p is to the right of l1,2.

Suppose that k > 2. Let a1 be an end-vertex of P . Suppose that a1 is a source, the
case in which it is a sink being analogous. Let Pa = (a1, a2, . . . , al) be the maximal
monotone path of P containing a1. Notice that l ≥ 2. Map Pa \ {al} to the |Pa| − 1
points of S with lowest y-coordinate. Denote such a point set by Sa. Map al to t(S). Let
S1 and S2 be the point sets composed of t(S) and of the points of S \ Sa to the left and
to the right, respectively, of the line through al−1 and al. If |S1| ≥ |S2| (if |S2| > |S1|),
construct an upward straight-line embedding of P \{a1, a2, . . . , al−1} into S1 (into S2,
resp.) with al placed at t(S1) = t(S) (at t(S2) = t(S), resp.).

It is easy to see that the constructed straight-line embedding is upward and planar. We
show that the cardinality of point sets S1 and S2 is sufficient to apply the induction. The
number of points in the one of S1 and S2 with more points is at least (|S| − (l− 1))/2.
Further, P \ {a1, a2, . . . , al−1} has n − (l − 1) vertices and k − 1 switches. Since
|S| ≥ n2k−2, the one of S1 and S2 with more points has at least (n2k−2− (l−1))/2 =
n2k−3 − (l − 1)/2 > n2k−3 − (l − 1)2k−3 and, since k > 2, the lemma follows. �

6 Open Problems

In this paper we continued the study of upward straight-line embeddability of directed
graphs into point sets initiated in [8,3]. While we solved some of the open questions
posed by Binucci et al. in [3], the following problems remain open: (i) Is it possible
to test in polynomial time whether a directed graph/tree admits an upward straight-line
embedding into every point set in general/convex position? (ii) Does every directed path
admit an upward straight-line embedding into every point set in general position? (iii)
Is there a polynomial function p(n, k) such that every directed path admits an upward
straight-line embedding into every point set in general position with at least p(n, k)
points? Lemma 6 shows that every directed path admits an upward straight-line em-
bedding into every point set in general position with at least n2k−2 points, which is
exponential in k.
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On a Tree and a Path with No Geometric Simultaneous
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Abstract. Two graphs G1 = (V, E1) and G2 = (V, E2) admit a geomet-
ric simultaneous embedding if there exists a set of points P and a bijection
M : P → V that induce planar straight-line embeddings both for G1 and for
G2. The most prominent problem in this area is the question whether a tree and
a path can always be simultaneously embedded. We answer this question in the
negative by providing a counterexample. Additionally, since the counterexample
uses disjoint edge sets for the two graphs, we also prove that it is not always pos-
sible to simultaneously embed two edge-disjoint trees. Finally, we study the same
problem when some constraints on the tree are imposed. Namely, we show that a
tree of height 2 and a path always admit a geometric simultaneous embedding. In
fact, such a strong constraint is not so far from closing the gap with the instances
not admitting any solution, as the tree used in our counterexample has height 4.

1 Introduction

Embedding planar graphs is a well-established field in graph theory and algorithms with
many applications. Keystones in this field are the works of Thomassen [18], Tutte [19],
and Pach and Wenger [17], dealing with planar and convex representations of graphs.

Recently, motivated by the need of concurrently represent different relationships
among the same elements, a major focus in the research lies on simultaneous graph
embedding, in which, given a set of graphs with the same vertex-set, the goal is to place
the vertices on the plane so that all the graphs are planar, when drawn separately. Prob-
lems of this kind frequently arise in the visualization of evolving networks and in the
visualization of huge and complex relationships, as the graph of the Web.

Among the many variants of this problem, the most important and natural one is
the geometric simultaneous embedding (GSE). Given two graphs G1 = (V, E′) and
G2 = (V, E′′), the task is to find a set of points P and a bijection M : P → V that
induce planar straight-line embeddings for both G1 and G2.

In the seminal paper on this topic [3], Brass et al. proved that GSEs of pairs of paths,
of cycles, and of caterpillars always exist. A caterpillar is a tree such that deleting all
its leaves yields a path. On the other hand, they provided negative results for a pair of
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outerplanar graphs and for three paths. Erten and Kobourov [6] found a planar graph and
a path not allowing any GSE. Geyer et al. [14] proved that there exist two edge-disjoint
trees not admitting any GSE. Finally, Cabello et al. [4] showed a planar graph and a
matching not admitting any GSE and gave algorithms to obtain a GSE of a matching
and a wheel, an outerpath, or a tree. The most important open problem is the question
whether a tree and a path always admit a GSE or not, that is the subject of this paper.

Many variants of the problem, where some constraints are relaxed, have been studied.
In the simultaneous embedding setting, where the edges do not need to be straight-line
segments, any number of planar graphs admit a simultaneous embedding, since any
planar graph can be planarly embedded on any given set of points in the plane [16,17].
However, the same does not hold in the simultaneous embedding with fixed edges set-
ting [11,13,8], in which the edges shared by the two graphs have to be represented by
the same Jordan curve. Finally, the research on this problem opened a new exciting field
of problems and techniques, like ULP trees and graphs [7,9,10], colored simultaneous
embedding [2], near-simultaneous embedding [12], and matched drawings [5], deeply
related to the general fundamental question of point-set embeddability.

In this paper we study the GSE problem of a tree and a path. We answer the question
in the negative by providing a counterexample, that is, a tree and a path not admitting
any GSE. Moreover, since the tree and the path used in our counterexample do not share
any edge, we also negatively answer the question on two edge-disjoint trees.

The main idea is to use the path to enforce part of the tree to be in a non-planar
configuration. Namely, we consider level nonplanar trees [7,10], that is, trees not ad-
mitting any planar embedding if their vertices must be placed inside certain regions
according to a particular leveling. The tree of the counterexample contains many copies
of such trees, while the path creates the regions. To prove that at least one copy has the
non-planar leveling, we need a huge number of vertices, which is often needed just to
ensure the existence of certain structures playing a role in our proof. A much smaller
counterexample could likely be constructed with the same techniques, but we decided
to prefer the simplicity of the arguments rather than the search for the minimum size.

In Sect. 2 we give define level nonplanar trees. In Sect. 3 we describe a tree T and a
path P, and in Sect. 4 we show that T and P do not admit any GSE. In Sect. 5 we give
an algorithm to construct a GSE of a tree of height 2 and a path and in Sect. 6 we make
some final remarks. Omitted proofs can be found in the full version of the paper [1].

2 Preliminaries

A (undirected) k-level tree T = (V, E, φ) is a tree T ′ = (V, E), called the underly-
ing tree of T , together with a leveling of its vertices given by a function φ : V 
→
{1, . . . , k}, such that for every edge (u, v) ∈ E, it holds φ(u) �= φ(v) (see [7,10]). A
drawing of T = (V, E, φ) is a level drawing if each vertex v ∈ V such that φ(v) = i
lies on a horizontal line li = {(x, i) | x ∈ R}. A level drawing of T is planar if
no two edges intersect except, possibly, at common end-points. A k-level tree is level
nonplanar if it does not admit any planar level drawing. We extend this concept to the
one of region-level drawing by enforcing the vertices of each level to lie inside a region
rather than on a horizontal line. Let l1, . . . , lk be k non-crossing straight-line segments
and let r1, . . . , rk+1 be the regions such that any straight-line segment connecting a
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Fig. 1. (a) A tree Tu. (b)-(c) A level nonplanar tree and a region-level nonplanar tree whose
underlying tree is Tu. (d) A schematization of T . Joints and stabilizers are small circles. A solid
triangle represents a branch, while a dashed triangle represents the subtree connected to a joint.

point in ri and a point in rh, with 1 ≤ i < h ≤ k + 1, cuts all and only the segments
li, li+1, . . . , lh−1, in this order. A drawing of a k-level tree T = (V, E, φ) is a region-
level drawing if each vertex v ∈ V such that φ(v) = i lies inside region ri. A k-level
tree is region-level nonplanar if it does not admit any planar region-level drawing. The
4-level tree T whose underlying tree is shown in Fig. 1(a) is level nonplanar [10] (see
Fig. 1(b)). We show that T is also region-level nonplanar (see Fig. 1(c)).

Lemma 1. The 4-level tree T whose underlying tree is shown in Fig. 1(a) is region-
level nonplanar.

Lemma 1 will be vital for proving that a tree T and a path P exist not admitting any
GSE. In fact, T contains many copies of the underlying tree of T , whileP connects ver-
tices in such a way to create the regions satisfying the above conditions and to enforce
at least one of such copies to lie inside them according to the nonplanar leveling.

3 The Counterexample

In this section we describe a tree T and a path P not admitting any GSE.
The tree T has a root r and q vertices j1, . . . , jq at distance 1 from r, called joints.

Each joint is connected to l := (s − 1)4 · 32 · x vertices of degree 1, called stabilizers
and to x subtrees Bi, i = 1, . . . , x, called branches, each one consisting of a root ri,
(s − 1) · 3 vertices of degree (s − 1) adjacent to ri, and (s − 2) · (s − 1) · 3 leaves
at distance 2 from ri. See Fig. 1(d). Vertices of the branches are called B-vertices and
denoted by 1-, 2-, or 3-vertices, according to their distance from their joint.

For the sake of readability, we use variables q, s, and x as parameters describing
the size of certain structures, that will be given a value when the technical details are
described. We claim that a number n ≥

(27·3·x+2
3

)
of vertices suffices for the coun-

terexample. Despite the oversized number of vertices, tree T has limited height, that is,
every vertex is at distance from the root at most 4. This leads to the following property.

Property 1. Any simple path of tree edges starting at the root has at most 3 bends.

Path P is given by describing some basic recurring subpaths on the vertices of T . The
idea is to partition the set of branches adjacent to each joint into subsets of s branches
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each and to connect the vertices of each set with path edges, according to some features
of the tree structure, so defining the first building block, called cell. Then, cells be-
longing to the same joint are connected to create formations, for which we can ensure
some properties on the intersection between tree and path edges. Further, formations
are connected to create extended formations, which, in their turn, are connected to cre-
ate sequences of extended formations. These structures are constructed in such a way
that there exists a set of cells, connected to the same joint and being part of the same
formation or extended formation, such that any four of these cells contain a copy of a
region-level nonplanar tree, where the level of a vertex is determined by the cell it be-
longs to. Proving that four of such cells lie in different regions satisfying the properties
of separation described above is equivalent to proving the existence of a crossing in T .
This allows us not to deal with single copies of the region-level nonplanar tree.

In the following we define such structures more formally and state their properties.
The most basic structure is defined by looking at how P connects the vertices of a

set of s branches connected to the same joint of T . For each joint jh, h = 1, . . . , q, and
for each disjoint subset of s branches Bi, i = 1, . . . , s, connected to jh, we construct
a set of s cells as follows. For each i = 1, . . . , s, a cell ci(h) is composed of its head,
its tail, and a number t of stabilizers. The head of ci(h) consists of the unique 1-vertex
of Bi, the first three 2-vertices of each branch Bk, with 1 ≤ k ≤ s and k �= i, that
are not already used in a cell ca(h) with 1 ≤ a < r and, for each 2-vertex not in ci(h)
and not in Bi, the first 3-vertices not already used in a cell ca(h), with 1 ≤ a < i.
The tail of ci(h) is created by considering a set of 3 · s · (s − 1)2 branches adjacent to
jh, partitioned into 3 · (s − 1)2 subsets of s subtrees each. The vertices of each subset
are distributed between the cells in the same way as for the vertices of the head. Path
P visits the vertices of a cell ci(h) as follows: Starting at the unique 1-vertex of the
head, it reaches the 2-vertices of the head, then the 3-vertices of the head, then the 2-
vertices of the tail, and finally the 3-vertices of the tail. After each occurrence of a 2- or
3-vertex of the head, P visits a 1-vertex of the tail, and after each occurrence of a 2- or
a 3-vertex of the tail, it visits a stabilizer of joint jh (see Fig. 2(a)). Note that each set
of s cells constructed starting from the same set of s branches is such that each subset
of size four contains a region-level nonplanar tree, where the levels correspond to the
membership of the vertices to a cell. Namely, consider four cells c1, . . . , c4 belonging
to the same set, leveled in this order. A region level nonplanar tree as in Fig. 1 consists
of the 1-vertex v of the head of c2, the three 2-vertices of c3 connected to v and, for
each of them, the 3-vertex of c1 and the 3-vertex of c4 connected to it.

The next structure describes how cells from four different sets are connected each
other. A formation F (H), where H = (h1, h2, h3, h4) is a 4-tuple of indices of joints,
consists of 592 cells. Namely, for each joint jhi , 1 ≤ i ≤ 4, F (H) contains 148 cells
of the same set of s cells connected to jhi . Path P connects these cells in the order
((h1h2h3)37h37

4 )4, that is, P repeats four times the following sequence: It connects
c1(h1) to c1(h2), then to c1(h3), then to c2(h1), and so on until c37(h3), from which it
connects to c1(h4), to c2(h4), and so on till c37(h4) (see Fig. 2(b)). Since cells of F (H)
connected to the same joint belong to the same set of s cells, the following holds:

Property 2. For any formation F (H) and any joint jh, with h ∈ H , if four cells cr(h) ∈
F (H) are pairwise separated by straight lines, then there exists a crossing in T .
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large and stabilizers are small circles. (b) A formation.

Formations are connected by P to create an extended formation EF (H), where H =
(H1 = (h1, . . . , h4), H2 = (h5, . . . , h8), . . . , Hx = (h4x−3, . . . h4x)) is an x-tuple
of 4−tuples of disjoint indices of joints. For each 4−tuple Hi, EF (H) contains y − y

x
formations F1(Hi), . . . , Fy− y

x
(Hi) not belonging to any other extended formation and

composed of cells of the same set of s cells connected to the same joint. Formations
inside EF (H) are connected in P in the order (H1, H2, . . . , Hx)y , that is, P con-
nects F1(H1) to F1(H2), then to F1(H3), and so on until F1(Hx), then to F2(H1), to
F2(H2), and so on until Fy− y

x
(Hx). However, in each of these y repetitions one Hi

is missing. Namely, in the k-th repetition P does not reach any formation at Hm, with
m = k mod x. We say that the k-th repetition has a defect at m and a subsequence
(H1, H2, . . . , Hx)x is a full repetition, having exactly one defect at each tuple.

Extended formations are connected by P in a sequence of extended formations
SEF (H), where H = (H∗

1 , . . . , H∗
12) is a 12−tuple of x-tuples of 4−tuples of disjoint

indices of joints. For each x-tuple H∗
i , with i = 1, . . . , 12, there exist 110 extended

formations EFj(H∗
i ), with j = 1, . . . , 110, not belonging to any other sequence of

extended formations, that are connected by P in the order (H∗
1 , . . . , H∗

12)(120). We
have two types of sequences of extended formations. In the first type, in each repetition
(H∗

1 , . . . , H∗
12) one extended formation EF (Hm) is missing, creating a defect at m. In

the second type, in each repetition (H∗
1 , . . . , H∗

12) two consecutive extended formations
are missing. Namely, in the k-th repetition P skips the extended formations EF (H∗

m)
and EF (H∗

m+1), with m = k mod 12, creating a double defect at m.
The size of s can now be fixed as the number of formations in an extended formation

times the number of cells in a formation, that is, s := (y− y
x) ·37 ·4. Further, q := 48x,

as we need 4 sequences of extended formations (of size 12 each) not sharing any joint.
We claim that x = 7 · 32 · 223 and y = 72 · 33 · 226 is sufficient in the proofs.

4 Overview

In this section we present the main arguments leading to the conclusion that T and P
do not admit any GSE. The main idea is to use the structures given by P to fix a part of
T in a specific shape creating restrictions for the placement of the further substructures
attached to it. Then, we show that such restrictions lead to a crossing in any possible
GSE of P and T . In the following, we will perform an analysis of the geometrical
properties of each possible embedding, in order to show that none of them is feasible.
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First, we give some definitions and properties of cells enforced by properties of
region-level planar drawings and by the order of the cells inside a formation.

Let c1(h), c2(h) be two cells connected to a joint jh that can not be separated by
a straight line and a cell c′(h′) connected to a joint jh′ , with h′ �= h. A passage P
between c1, c2, and c′ exists if the path of c′ separates vertices of c1 from vertices of
c2 (see Fig. 3(a)). Since the separation can not be straight, there is a vertex of c′ lying
inside the convex hull of the vertices of c1∪c2. Hence, there exist at least two path-edges
e1, e2 of c′ intersected by tree-edges connecting vertices of c1 to vertices of c2.

For two passages P1 between c1(h1), c2(h1), and c′(h′
1), and P2 between c3(h2),

c4(h2), and c′(h′
2) (w.l.o.g., assume h1 < h′

1, h2 < h′
2, and h1 < h2), we distinguish

three configurations: (i) If h′
1 < h2, P1 and P2 are independent; (ii) if h′

2 < h′
1, P2 is

nested into P1; and (iii) if h2 < h′
1 < h′

2, P1 and P2 are interconnected (see Fig. 3(b)).
Let c1(h), c2(h), and c′(h′) be three cells creating a passage. We call a door any

triangle given by a vertex v′ of c′ inside the convex hull of c1 ∪ c2 and by any two
vertices of c1 ∪ c2 that encloses neither any other vertex of c1, c2 nor any vertex of c′

that is closer than v′ to jh′ in T . A door is open if no tree-edge incident to v′ crosses
the side of the triangle between the vertices of c1 and c2, otherwise it is closed.

Consider two joints ja and jb, with jh, ja, j′h, jb in this circular order around the
root. Any polyline connecting the root to ja, then to jb, and again to the root, without
crossing tree edges, must traverse each door by crossing both the sides adjacent to v′. If
a door is closed, such a polyline has to bend between the two sides adjacent to v′. In the
rest of the argument we will exploit this fact to obtain the claimed property that a large
part of T has to follow the same shape. In view of this, we state the following lemmata.

Lemma 2. For each formation F (H), with H = (h1, . . . , h4), there exists a passage
between some cells c1(ha), c2(ha), c′(hb) ∈ F (H), with 1 ≤ a, b ≤ 4.

Lemma 3. Each passage contains at least one closed door.

Hence, each formation contains at least one closed door. In the following we prove that
the combined effects of closed doors of different formations enforces more restrictions
on the shape of the tree. First, we exploit the Ramsey Theorem [15] to state that there
exists a set of joints such that any two joints contain cells creating a passage.

Lemma 4. Given a set of joints J = {j1, . . . , jy}, with |J | = y :=
(27·3·x+2

3

)
, there

exists a subset J ′ = {j′1, . . . , j′r}, with |J ′| = r ≥ 27 · 3 · x, such that for each pair of
joints j′i, j

′
h ∈ J ′ there exist two cells c1(i), c2(i) creating a passage with a cell c′(h).

Consider two paths p1 = {u1, v1, w1} and p2 = {u2, v2, w2}. The bendpoint v1 of p1
encloses the bendpoint v2 of p2 if v2 is internal to triangle�(u1, v1, w1).

Consider a set of joints J = {j1, . . . , jk} in clockwise order around the root. The
channel ci of a joint ji, with i = 2, . . . , k−1, is the region given by the pair of paths, one
path of ji−1 and one path of ji+1, with the maximum number of enclosing bendpoints
with each other. We say that ci is an x-channel if the number of enclosing bendpoints is
x. Note that, by Prop. 1, x ≤ 3. See Fig. 3(c). An x-channel ci is composed of x + 1
channel segments. The first channel segment cs1 is the part of ci visible from the root.
The h-th channel segment csh is the part of ci disjoint from csh−1 that is bounded by
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Fig. 3. (a) A passage between cells c1, c2, and c′. (b) Two interconnected passages. (c) A 3-
channel and its channel segments.

the elongations of the paths of ji−1 and ji+1 after the h-th bend. The bending area
b(a, a + 1) of ci is the region visible from all the points of csa and csa+1. As channels
are created by tree-edges, only path-edges can cross the boundaries of the channel.

We study the relationships between path-edges and channels. As every second vertex
of P in a cell is either a 1-vertex or a stabilizer, we have the following property.

Property 3. For any path-edge (a, b), at least one of a and b lies inside either cs1 or cs2.

A blocking cut is a path edge connecting two consecutive channel segments by cutting
some of the other channels twice.

Property 4. If a channel that is cut twice by a blocking cut has vertices in both the chan-
nel segments cut by the path-edge, then it has vertices in a different channel segment.

Next, based on Prop. 4, we show that any set of joints as in Lemma 4 contains a sub-
set of joints creating interconnected passages such that each pair of paths of tree-edges
starting at the root and containing such joints has at least two common enclosing bend-
points, which implies that most of them create 2-channels. From now on, we identify
a joint with the channel it belongs to. Then, when dealing with a passage between two
cells c1(h), c2(h) of a joint jh and a cell c′(h′) of a joint jh′ , we might also say that
there is a passage between joints jh and j′h or between the corresponding channels.

Lemma 5. Let J = {j1, . . . , jk} be a set of joints such that there exists a passage be-
tween each pair (ji, jh), with 1 ≤ i, h ≤ k. Let P1 = {P | P connects ci and c 3k

4 +1−i,

for i = 1, . . . , k
4} and P2 = {P | P connects c k

4 +i and ck+1−i, for i = 1, . . . , k
4} be

two sets of passages between pairs of joints in J (see Fig. 4(a)). Then, for at least k
4 of

the joints of one set of passages, say P1, there exist paths in T , starting at the root and
containing these joints, which traverse all the doors of P2 with at least 2 and at most 3
bends. Also, at least half of these joints create an x-channel, with 2 ≤ x ≤ 3.

By Lemma 5, any formation attached to a certain subset of joints must use at least three
different channel segments. In the remainder we focus on this subset and give some
properties holding for it. As we need a full sequence of extended formations attached
to these joints, k has to be at least eight times the number of channels inside a sequence
of extended formations, that is, k ≥ 8 · 48x = 27 · 3x.

A formation F is nested in a formation F ′ if there exist four path-edges e1, e2 ∈ F
and e′1, e′2 ∈ F ′ cutting a boundary cb of a channel c such that all the vertices of the
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path in F between e1 and e2 lie inside the region delimited by cb and by the path in F ′

between e′1 and e′2 (see Fig. 4(b)). A series of pairwise nested formations F1, . . . , Fk is
r-nested if there exist r formations Fq1 , ..., Fqr , with 1 ≤ q1, . . . , qr ≤ k, such that the
4-tuples of Fq1 , ..., Fqr have at least one common joint j, and such that for each pair
Fqp , Fqp+1 there exists at least one formation Fz , with 1 ≤ z ≤ k, such that the 4-tuple
of Fz does not contain j, Fqp is nested in Fz and Fz is nested in Fqp+1 .

Let S1, . . . , Sk be sets of formations of one extended formation EF (H) such that
each set Si, for i = 1, . . . , k, contains the formations Fi(H1), . . . , Fi(Hr), such that
(H1, . . . , Hr) ⊂H . Let Fa(Hc) be not nested in Fb(Hd), for each 1 ≤ a, b ≤ k, a �= b,
and 1 ≤ c, d ≤ r. If for each two sets Sa, Sb there exists a line l1 (a line l2) separating
the vertices of Sa (of Sb) inside channel segment cs1 (channel segment cs2), then sets
S1, . . . , Sk are independent (see Fig. 4(c)).

In the following lemmata we prove that in any extended formation there exists a
nesting of a certain depth (Lemma 8) by first proving that in any extended formation
the number of independent sets of formations is limited (Lemma 6) and then by showing
that, although some formations might be neither nested nor independent, there exists a
certain number that have to be either independent or nested (Lemma 7).

Lemma 6. No extended formation contains n ≥ 222 ·14 independent sets of formations
S1, . . . , Sn such that each set Si contains formations Fi(H1), . . . , Fi(Hr), with r ≥ 22.

Lemma 7. Let EF be an extended formation and let Q1, . . . , Q4 be four subsequences
of formations, each consisting of a whole repetition (H1, H2, . . . , Hx) of EF . Then,
there exists either a pair of nested subsequences or a pair of independent subsequences.

Lemma 8. For every extended formation EF , there exists a k-nesting, with k ≥ 6.

Then, we study how such a nesting can be performed inside the channels. We will
conclude that, in any possible shape of the tree, either it is not possible to draw the
nesting formations planar, or that any planar drawing of such formations induces further
geometrical constraints not allowing a planar drawing of the rest of the tree.

Let csa and csb, with 1 ≤ a, b ≤ 4, be two channel segments. If the elongation of csa

intersects csb, then it is possible to connect from csb to csa by cutting both the sides of
csa. In this case, csa and csb have a 2-side connection (see Fig. 5(b)). On the contrary,
if the elongation of csa does not intersect csb, only one side of csa can be used. In this
case, csa and csb have a 1-side connection (see Fig. 5(a)).
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First, we consider the case in which only 1-side connections are possible (Fig. 3(c)).
We prove that, in this configuration, the existence of a nesting in one extended formation
results in a crossing in either T or P .

Proposition 1. If every two channel segments have a 1−side connection, then T and
P do not admit any GSE.

Next, we study the case in which there exist 2-side connections. We distinguish two
types of 2-side connections. If the elongation of channel segment csa intersecting chan-
nel segment csb starts at the bendpoint that is closer to the root, we have a low Intersec-
tion I l

(a,b) (see Fig. 5(c)). Otherwise, we have a high Intersection Ih
(a,b) (see Fig. 5(d)).

We use notation I(a,b) to describe both Ih
(a,b) and I l

(a,b). Two intersections I(a,b) and
I(c,d) are disjoint if a, d ∈ {1, 2} and b, c ∈ {3, 4}. E.g., I(1,3) and I(4,2) are disjoint,
while I(1,3) and I(2,4) are not. Since consecutive channel segments can not create 2-side
connections, to explore all the possible shapes we consider the combinations of low and
high intersections of channel segments cs1 and cs2 with cs3 and cs4. First, we prove
that intersections of adjacent channels have to maintain certain consistencies.

Lemma 9. Consider two channels chp, chq with the same intersections I(a,b). Then,
none of channels chi, where p < i < q, have an intersection that is disjoint with I(a,b).

As for Proposition 1, in order to prove that 2-side connections are not sufficient, we
exploit the existence of the nesting shown in Lemma 8. Note that every extended for-
mation using a channel segment csa to place the nesting must place vertices inside the
adjacent bending area. We prove that not many of the nesting formations can use the
part of the path that creates the nesting to place vertices in such a bending area.

Lemma 10. Consider a nesting of formations inside a sequence of extended formations
on an intersection I(a,b), with a ≤ 2. Then, one of the formations contains a pair of
path-edges (u, v), (v, w), with v lying inside channel segment csa, separating some
formations in csa from bending area b(a, a + 1) or b(a− 1, a) (see Fig. 5(e)).

Let the inner area and outer area of csa be the two parts in which csa is split by edges
(u, v), (v, w), as in Lemma 10. Since in every extended formation a path exists connect-
ing the inner and the outer area by going around either u or w, the extended formations
using such paths create a structure that is analogous to a nesting of formations. We
prove that, as every repetition of an extended formation contains a defect, if only 1-side
connections are available to host such paths, then a crossing in T or P is created.

Lemma 11. Let csa be a channel segment that is split into inner area and outer area
by two edges such that every extended formation of a sequence of extended formations
has vertices in both the areas. If the only possibility to connect vertices from the inner
to the outer area is with a 1-side connection, then T and P do not admit any GSE.

Lemma 11 states that one single 2-side connection is not sufficient to obtain a GSE of
T and P. We prove that a further 2-side connection is not useful if it is not disjoint.

Proposition 2. If there exists no pair of disjoint 2-side connections, then T and P do
not admit any GSE.

Note that it is sufficient to restrict the analysis to cases I(1,3) (see Figs. 6(a)–(b)) and
I(3,1), as the cases involving 2 and 4 can be reduced to them.
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Fig. 5. (a) A 1−side connection. (b) A 2−side connection. (c) A low Intersection. (d) A high
Intersection. (e) A situation as in Lemma 10. Inner and the outer areas are represented by a light
grey and a dark grey region, respectively.

Lemma 12. If a shape contains an intersection I(1,3) and does not contain any other
intersection that is disjoint with I(1,3), then T and P do not admit any GSE.

Lemma 13. If there exists a sequence of extended formations in any shape containing
an intersection I(3,1), then T and P do not admit any GSE.

Finally, we tackle the general case where two disjoint intersections exist.

Proposition 3. If there exists two disjoint 2-side connections, then T and P do not
admit any GSE.

Note that Lemma 13 stated a property that is stronger than Proposition 2. In fact, a
GSE cannot be obtained in any shape containing I(3,1), even if a disjoint intersection is

present. Hence, we only consider the eight configurations with I(1,3) and Ih,l
(4,{1,2}).

Let csi and csi+1 be two consecutive channel segments of a channel chk and let e be
a path-edge crossing the boundary of one of csi and csi+1, say csi. Edge e is a double
cut at chk if the line through e cuts chk in csi+1. A double cut is simple if the elongation
of e cuts csi+1 (see Fig. 6(c)) and non-simple if e itself cuts csi+1 (see Fig. 6(d)). A
double cut of an extended formation EF is extremal at bending area b(i, i + 1) if no
double cut of EF closer to b(i, i+1) exists. Double cut e blocks visibility to b(i, i+1)
for a part of csi in each channel chh with h > k or with h < k.

We show that a certain ordering of extremal double cuts in two consecutive channel
segments leads to a non-planarity, and that, because of the double defect in every repe-
tition of an extended formation, both shapes Ih

(1,3) Ih,l
(4,2) induce this order (Lemma 16).

Lemma 14. Let csi and csi+1 be two consecutive channel segments. If there exists an
ordered set S := (1, 2, . . . , 5)3 of extremal double cuts cutting csi and csi+1 such that
the order of the intersections of the double cuts with csi (with csi+1) is coherent with
the order of S, then T and P do not admit any GSE.

We first show that double cuts exist in Ih
(1,3) Ih

(4,2). This is easy to see in Ih
(1,3) I l

(4,2).

Lemma 15. Shape Ih
(1,3) Ih

(4,2) creates double cuts in at least one bending area.

Lemma 16. Every sequence of extending formations in shape Ih
(1,3) Ih,l

(4,2) contains an

ordered set (1, 2, . . . , 5)3 of extremal double cuts at either b(2, 3) or b(3, 4).
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Fig. 6. (a) Case I(1,3) Ih
(2,4). As a nesting at I(1,3) must reach b(2, 3), it crosses any nesting at

Ih
(2,4). (b) Case I(1,3) I l

(2,4). A nesting at I(1,3) crosses any nesting at I l
(2,4) and any extended

formation nesting at I(1,4) creates a nesting at I(1,3), as it must reach b(2, 3) and b(3, 4). (c) A
simple double cut. (d) A non-simple double cut. (e) Construction of a GSE of a height-2 tree and
a path. Arrows indicate that the subpaths before and after r are monotone in opposite directions.

Finally, we consider shapes I l
(1,3) Ih,l

(4,2). Note that, in both cases, cs2 lies on the convex
hull of the shape. We show that this yields a crossing either in T or in P .

Lemma 17. If cs2 is part of the convex hull, then T and P do not admit any GSE.

Based on the above discussion, we state the following theorem.

Theorem 1. There exist a tree and a path that do not admit any GSE.

5 Constructing a GSE of a Tree of Height 2 and a Path

In this section we sketch the algorithm for constructing a GSE of a tree T of height 2
and a path P. See Fig. 6(e). Draw the root r of T as the leftmost vertex. Consider the
two subpaths P1 and P2 of P starting at r. Assign an orientation to P1 (to P2) such
that r is the only source of P1 (of P2). Draw P1 to the right of r, placing its vertices
from the left to the right following the orientation of P1. Draw the vertex v following r
in P2 as the rightmost vertex. Finally, draw P2 to the left of v, placing its vertices from
the right to the left following the orientation of P2, so that the leftmost vertex of P2 is
to the right of the rightmost vertex of P1.

6 Conclusions

In this paper we have shown that there exist a tree T and a path P on the same set
of vertices that do not admit any GSE. We first extended the concept of level nonpla-
nar trees [10] to the one of region-level nonplanar trees, and showed that there ex-
ist trees not admitting any planar embedding if the vertices are forced to lie inside
certain regions according to a prescribed ordering. Then, we constructed T and P so
thatP creates these regions and enforces at least one of the many region-level nonplanar
trees composing T to lie inside them in the desired order. Our result implies that two
edge-disjoint trees exist not admitting any GSE, answering a question posed in [14].

Note that, despite the huge number of vertices, T can be considered as “simple”, as
its height is just 4. In this direction, we proved that any tree of height 2 admits a GSE

with any path, giving raise to an intriguing question: What about a tree of height 3?
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Abstract. Difference maps are one way to show changes between times-
lices in a dynamic graph. They highlight, using colour, the nodes and
edges that were added, removed, or persisted between every pair of adja-
cent timeslices. Although some work has used difference maps for visual-
ization, no user study has been performed to gauge their performance. In
this paper, we present a user study to evaluate the effectiveness of differ-
ence maps in comparison with presenting the evolution of the dynamic
graph over time on three interfaces. We found evidence that difference
maps produced significantly fewer errors when determining the number
of edges inserted or removed from a graph as it evolves over time. Also,
difference maps were significantly preferred on all tasks.

1 Introduction

Dynamic graph drawing deals with the problem of depicting a graph that
evolves over time. Dynamic graph drawing algorithms typically represent the
evolving graph as a series of timeslices. A timeslice encodes the structure of
the graph at a given time. The timeslices, also known as the sequence of graphs,
are often placed in chronological order, demonstrating graph evolution.

A few visualization systems [3,6] have exploited difference maps to show the
evolution of dynamic series of graphs. A difference map does not present the
actual timeslices. Rather, for each pair of adjacent timeslices, it presents the
union of the nodes and edges in both graphs. The nodes and edges are coloured
one of three colours depending on whether they were added, removed, or per-
sisted in the graph over that timeslice. Despite the use of difference maps in
visualization systems, the effectiveness of this presentation method has yet to
be evaluated.

Many different user interfaces have been used to present dynamic graphs to a
user. In an animation of the dynamic graph sequence, nodes and edges that are
added and removed from the drawing are faded in and out of the display. Node
movement is smoothly interpolated so that the user of the system can more easily
follow how the data has changed. One could also picture a slide show of the
data whereby the data is presented like a Powerpoint presentation. No smooth

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 50–61, 2011.
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transitions exist between drawings in the sequence, and the arrow keys are used
to cycle through the graphs in the series. In a small multiples [21] interface, all
timeslices are presented on the screen at once with each timeslice placed inside
its own window. The user scans the matrix of windows to see how the graph
evolves. All three interfaces could be used to present a series of difference maps,
but we currently don’t know which is the most effective.

This work presents a user study which investigates two research questions:

1. Do difference maps help improve the readability of dynamic graphs?
2. Under what interface do they help the most: animation, slide show, or small

multiples?

We found that difference maps can help answer questions about large scale
changes in terms of the number of edges in a graph. Also, difference maps were
preferred over simply presenting the dynamic graph series as it evolves over time.

2 Previous and Related Work

Previous and related work is divided into three subsections. First, we present
some of the work on difference maps in section 2.1. Section 2.2 presents work
in dynamic graph drawing. Finally, section 2.3 presents a few user studies with
results on dynamic graph drawing readability.

2.1 Difference Maps

Difference maps were designed to show the differences, in terms of nodes and
edges, between a pair of graphs. They do so by taking the union of the nodes and
edges in both graphs and colouring them by presence in one graph, the other,
or both. Assuming that there is a unique identifier for each node of the graph, a
one-to-one correspondence is available and the difference map can be computed
in linear time. Fig. 1(c) shows a difference map computed from two graphs. The
black nodes are only present in Fig. 1(a). Similarly, the light grey nodes are only
present in Fig. 1(b). The grey nodes in Fig. 1(c), however, are present in both
graphs.

Archambault [3] used difference maps and graph hierarchies to show where
areas of a large graph changed. In this work, graph hierarchies or cluster trees,
were used to simplify a large difference map into areas of similar evolution. The
work also presented coarsening methods to make the diagrams simpler to read.

Bourqui and Jourdan [6] accentuated areas common to pairs of biological net-
works using difference maps. In the study of biological networks, structurally sim-
ilar pathways often have similar function. By emphasizing structural similarities,
both structure and context of functionally similar elements can be compared.

Both papers present techniques to visualize difference maps. However, nei-
ther of them have a user study to evaluate their effectiveness. These techniques
use other graph visualization techniques, such as graph hierarchies and fisheye
views, that we do not test in this experiment. In this study, we are interested in
evaluating the overall difference map approach in a dynamic graph context.
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Fig. 1. Two timeslices and the resulting difference map. (a) The graph at time 1. (b)
The graph at time 2. (c) The difference map. Nodes and edges at time 1 are coloured
black. Nodes and edges at time 2 are coloured light grey. Nodes that appear in both
timeslices are coloured grey. The difference map encodes the nodes and edges that are
added, removed, and persist over the dynamic graph series.

2.2 Dynamic Graph Drawing and the Mental Map

A number of dynamic graph drawing algorithms have looked at effective ways of
preserving the mental map [16,8,7,9,14,11,13,5], and various experiments have
investigated the effect of preserving the mental map [17,20,18,1].

In this study, we use the GraphAEL algorithm [11]. In this approach, inter-
timeslice edges exist between nodes that are the same across timeslices. All
timeslices are placed into the same plane and laid out using a force directed al-
gorithm. The assigned strength of these inter-timeslice edges controls the amount
of mental map preservation between timeslices: the higher the strength of the
inter-timeslice edges, the shorter the distance nodes can move, increasing the
degree of mental map preservation. Informed by previous experiments [18,1], we
use a relatively low level of mental map preservation over all conditions and
factors in this experiment.

2.3 Animation vs. Small Multiples for Dynamic Data

Several experiments have evaluated the performance of interfaces on dynamically
evolving data. Most of these experiments have compared animation to small
multiples on various types of data, and a pair of experiments have looked at this
question in the context of dynamic graphs.

Griffen et al. [15] found that for clusters of moving hexagons against back-
ground noise, animation could be faster and more accurate than small multiples.
Robertson et al. [19] compared animation, trace line, and small multiples visual-
ization techniques on animated multi-dimensional data. The authors found that
animation was the least effective form for analysis. Both small multiples and
trace lines were significantly faster than animation, and small multiples was sig-
nificantly more accurate. These varied results may indicate that the effectiveness
of animation or small multiples strongly depends on the data to be visualized.

A pair of experiments have compared animation and small multiples in the
context of dynamic graphs. Archambault et al. [1] compare small multiples and
animation in addition to the effect of the mental map. In this experiment, small
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Fig. 2. Experiment interface. The question appears on the right along with four mul-
tiple choice answers. The participant selected the appropriate radio button and clicked
“submit answer” to respond. The slide show interface under the difference map condi-
tion for threads2 is shown in this figure.

multiples was significantly faster overall and for most tasks. For tasks that in-
volved the simultaneous appearance of nodes or edges in the data, animation was
significantly more accurate, but it was not the case that more time led to fewer
errors. Farrugia et al. [12] compared animation and small multiples on two dy-
namic graph series. The experiment found that small multiples was significantly
faster for most tasks.

In this experiment, we focus on the effectiveness of the difference map and
determining the appropriate interface for it. We also compare three interfaces,
small multiples, animation, and slide show, in this context.

3 The Experiment

To test the effectiveness of difference maps with respect to interface, we per-
formed a within subject experiment. We employed a 2 condition (no difference
map (ND) vs with difference maps (WD)) × 3 factor (animation (Anim) vs slide
show (SD) vs small multiples (SM)) × 2 data set (threads2 and van de Bunt)
× 4 question design. The following subsections provide the details of this design.

3.1 Interfaces

The animation interface is similar to a movie player. The current view of the
graph takes up the entire screen and smooth transitions morph the graph from
one timeslice to another. Nodes that are added to the data or removed from it
are faded in or out respectively. The positions of nodes and edges are linearly
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avg. max min
Data Set |N | |E| d max d min d |N |′ |E|′ d′ |N |′ |E|′ d′ |N |′ |E|′ d′

threads2 70.14 83.43 2.38 8 1 2.50 3.83 0.06 4 4 2 0 0 0
van de Bunt 23.14 32.43 2.56 9 1 3.33 6.17 0.78 11 25 6 -6 -24 -6

Fig. 3. Graph statistics where |N |, |E|, and d are the average number of nodes, average
number of edges, and average degree respectively. Primes indicate changes over time.
The values for max d and min d are the maximum and minimum degrees observed over
all timeslices. The columns labeled avg. correspond to the average change in values
over all timeslices. The columns labeled max and min are the maximum and minimum
changes observed between any pair of successive timeslices in the data set.

interpolated between frames. At any time, the participant could stop the anima-
tion and drag the slider at their own rate. No other form of interaction, including
zooming, is allowed. This interface was used previously in Archambault et al. [1].

The slide show interface is very similar to a Powerpoint presentation. In this
interface, each timeslice takes up the entire screen as in the animation condition.
However, no smooth transition exists between pairs of timeslices. At the bottom
right corner of the interface, the current slide number and the total number of
slides is indicated. The participant uses the arrow keys to advance to the next
timeslice or rewind to the previous one. No other form of interaction, including
zooming, is allowed. This interface is shown in Fig. 2.

In the small multiples interface, all timeslices are presented in a matrix ordered
left to right and top to bottom. The participant scans the windows to determine
the right answer. No other form of interaction, including zooming, is allowed.
This interface was used previously in Archambault et al. [1].1

3.2 Difference Map Encoding

A difference map, as previously described, is the union of a pair of adjacent
timeslices in the dynamic graph sequence. Thus, given a sequence of t graphs,
there would be t − 1 difference maps, depicting graph evolution. If a node is
deleted between a pair of timeslices, it is light blue. If it is added, it is purple.
Nodes that persist are brown. The same colour scheme is applied to the edges.
In the non difference map condition, all t timeslices are presented using the
interface. All nodes, except those pertaining to the question, are coloured grey.

3.3 Data Sets

In this experiment, two graph series of similar size were used to gauge the read-
ability of difference maps. Fig. 3 reports the graph series parameters.

Threads2, used in the work of Frishman and Tal [13], is a graph series repre-
senting online newsgroup discussions. Nodes are authors of newsgroup articles,

1 Examples of each interface in operation under each condition × factor pairing for
all questions are available at http://www.labri.fr/perso/bpinaud/diffmap/

http://www.labri.fr/perso/bpinaud/diffmap/
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and an edge exists between two authors if one replied to the posting of another.
As authors and postings are never deleted, this data set always grows in size.
We selected seven timeslices from this data: timeslices ten through sixteen.

The van de Bunt data set [10] is a network that was used previously in the
experiment of Farrugia et al. [12]. The nodes in the graph are undergraduate
students. An edge exists between two undergraduates if they self-reported in a
survey that they had a relationship. In the original graph, there were a number
of edge types which encoded if the relationship was best friends, friends, friendly
neutral, or troubled. In our experiment, we used only the links that were best
friends or friends. This data set fluctuates in size over the timeslices.

3.4 Tasks

Our tasks aim to test the readability of both local and global structure in the
graph. More importantly, each question should require the participant to look at
all timeslices, because the full dynamic evolution of the graph should be taken
into account. We chose four questions.

The first question tests the evolution of node degrees in the graph and is a
local, topology-based question. It is similar to the types of questions posed in
Purchase et al. [18]. Four nodes were highlighted different colours, and partici-
pants were asked to select the colour of the node as the answer to the question.
The remaining nodes and edges were coloured as specified by the condition.

1. Node degree changes. One of the following questions was asked:
(a) Which vertex increases its degree over time?
(b) Which vertex decreases its degree over time?
(c) Which vertex keeps its degree constant over time?

The second question explores when specific edges appear in the graph and gauges
if participants can see when a specific pair of edges is added to the data set. The
question is local and is one of the most basic questions related to the dynamism
of the graph. Four to six nodes were highlighted one of four different colours and
participants were asked if a pair of thick edges simultaneously appeared adjacent
to a node of a specific colour. The remaining nodes and edges in the graph were
coloured as specified by the condition.

2. Which edges appear together exactly once over all timeslices?

The third question tests the ability of the participant to notice global trends
in the graph. Specifically, the question tests if overall trends, in terms of the
number of edges in the graph, can be perceived. All nodes and edges, for this
question, were coloured as specified by the condition.

3. In this data set, does the number of edges increase, decrease, remain
constant, or fluctuate?
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Finally, we would like to use a question that tests the more global, topology-
related readability of a graph. In this case, it involves reading a path through the
graph between two nodes. In this question, a black focus node and four coloured
nodes appeared in the graph. Participants were asked to select the coloured
node that became closer, in a graph connectivity sense, to the black node. The
remaining nodes and edges, for this question, were coloured as specified by the
condition.

4. When a path exists between the black node and a node of each of the four
colours, which path only decreases in length?

Nodes pertinent to each question were highlighted with colours to eliminate
additional cognitive cost for searching for nodes or reading labels. Keywords
appeared in bold, as shown above, so that the participant could easily recognize
each question. Multiple choice questions, with four answers, were used. Asking
participants to select nodes directly on the screen would put the animation
condition at a disadvantage, because in this case, nodes often move on the screen.

3.5 Experimental Design

Each condition × factor pairing (ie: a pairing of difference map and presentation
method, for example, difference maps with slide show) was placed in its own
block, giving the experiment a total of six blocks. Each block started with a
demonstration of the interface, allowing the participant to ask questions, find
out about the experiment, and see how the answers could be found.

The blocks each had eight experimental tasks: 2 data sets × 4 questions.
These eight tasks were prefixed with a practice block of four questions. During
this practice block, each of the four questions was asked exactly once with two
on threads2 and two on van de Bunt. Eight versions of each question were
found on both data sets. The first six versions were used as experimental data
and the last two versions were only used in the practice blocks. Thus, for exper-
imental data, the same version of the same question was never asked twice to
the participant. For practice block data, the same version of the same question
was never asked under the same condition. For each participant, the order of
the questions within each block was randomized with versions of each question
randomly selected.

To minimize the cognitive shift incurred by moving from the difference map
condition to the non difference map condition, participants answered all ques-
tions on one condition followed by the other. However, conditions were counter-
balanced by presenting the non difference map condition first to even participants
and the difference map condition first to odd participants. The order of the in-
terface blocks within each condition was randomized such that each participant
had a unique interface order.

All three interfaces were rendered in real time using the Tulip framework [4].
No time limit was enforced per question or for the experiment overall. However,
a warning label appeared on the screen after forty seconds had elapsed for each
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question, and participants were encouraged to finish their work quickly after
that point. The animation started playing automatically after a delay of three
seconds had elapsed and took about ten seconds to play in its entirety.

Each experiment was conducted individually with the researcher and took
approximately 1 hour and 20 minutes, including the pre-experiment training,
practice tasks, experimental tasks for both experimental conditions, and post-
experiment questionnaire. Overall, there were twenty-five participants used in
the final results. Participants were drawn from members of the Complex and
Adaptive Systems Laboratory of University College Dublin (UCD CASL). All
but one had computer science experience.

4 Results

In this section, we present the results for our experiment overall, divided by
question, and divided by interface. We compare the difference map presenta-
tion (WD) to the standard representation (ND). A Shapiro-Wilk test, with a
significance level of α = 0.05, was used to determine whether or not the data
was normally distributed. We found that the error rate data was not normally
distributed whereas response time data was. As a consequence, we used an ex-
act Wilcoxon signed rank test on the error rate data and a paired t-test on the
response time data. For both tests, a significance level of α = 0.05 was used.
When we divided the data by question, we applied a Bonferroni correction, thus
reducing the significance level to α = 0.025.

4.1 WD vs. ND

Overall, we did not find a significant difference, either in terms of error rate or
response time, between the difference map condition (WD) and the simple graph
timeslice condition without difference maps (ND) independent of interface.

By Question. On questions 1, 2, and, 4, we did not find a significant difference
in terms of error rate or response time when comparing WD to ND independent
of interface. However, on question 3, we discovered that WD produced signif-
icantly fewer errors (WD 0.08, ND 0.25, p = 0.0035) as shown in Fig. 4(a).
Neither presentation method was significantly faster.

4.2 WD vs. ND Divided by Interface

We subsequently divided the data by interface to determine if, within interface,
there were differences between the two presentation methods.

Animation. When considering only the animation interface, we found no sig-
nificant difference between either condition (WD and ND) overall or on a per
question basis.
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Fig. 4. Significant differences found in response time and error rate for this experiment.
Error rate is percentage error and time is seconds. The mean and median values,
separated by a dash, are written below each bar of the chart. SD and SM are the slide
show and small multiples interfaces respectively.

Q1 Q2 Q3 Q4
ND WD ND WD ND WD ND WD

Mean 12.96 8.08 11.16 9.64 13.40 7.40 12.04 8.96
Std. Deviation 2.61 2.63 2.93 3.15 2.50 2.58 3.27 3.27

Fig. 5. Table of preference data comparing WD to ND aggregated across interface.
WD was preferred in all cases and significantly so on questions 1, 3, and 4 (p = 0.001,
p = 0.000, and p = 0.028 using a Wilcoxon signed ranks test).

Slide Show. On slide show, we did not find a significant difference between
WD and ND overall. However, for question 3, we found that WD produced
significantly fewer errors than ND (WD: 0.06, ND 0.30, p = 0.013) as shown in
Fig 4(b). We did not find a significant difference in terms of response time.

Small Multiples. Under the small multiples interface, we did not find a sig-
nificant difference overall. However, for question 3, we found that WD produced
fewer errors than ND (WD 0.04, ND 0.22, p = 0.008). For question 2, we found
that ND was significantly faster than WD (ND 27s, WD 42s, p = 0.007). These
results are shown in Figs. 4(c) and 4(d) respectively. We did not find a significant
difference in terms of response time.

4.3 Preference Data

A summary of our findings from the post-experiment questionnaire are shown in
Fig. 5. Participants were asked to rank the six condition × interface pairs from
1 to 6, with 1 indicating the most preferred.

When we aggregated the results across interface, WD was preferred to ND
for all questions and significantly so for questions 1, 3, and 4. For question 3, In
this data set, does the number of edges increase, decrease, remain constant, or
fluctuate? most participants remarked qualitatively that WD made this question
much easier to answer. For question 2, some participants noted that the two
colours used in the question made it more difficult to answer.
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5 Discussion

5.1 Does the Difference Map Help?

Overall, we did not find that difference maps helped on all tasks. As our tasks
are varied, this fact may not be all that surprising as the presentation method
may not be suitable for all types of questions.

When we divided the data by question, however, we did find that difference
maps were able to significantly reduce the number of errors for the question
which asked if the number of edges increased, decreased, remained constant,
or fluctuated (question 3). These results were supported by the survey data
which found difference maps were preferred significantly on this question. As
difference maps highlight, using colour, if the edge has been added or removed,
the participant can easily see where and by how much the graph has changed.
Thus, difference maps may be helpful when trying to gauge how much the graph
has changed between timeslices at a large scale.

5.2 Does It Help for All Interfaces?

There was no significant difference between the two conditions overall for any of
the interfaces individually. However, on the slide show interface, WD produced
significantly fewer errors than ND for question 3 (change in total number of
edges). Using small multiples, ND was significantly faster than WD on question
2 (simultaneous appearance of edges). In terms of error rate for question 3 on this
interface, WD produced significantly fewer errors. No other significant differences
were found.

The results for question 3 are unsurprising considering that we saw an overall
benefit of difference maps on this question globally. It seems that the benefit
was achieved mostly using the small multiples and slide show interfaces. As
these interfaces do not smoothly fade edges in and out, it may be the case that
colour helped gauge when something was inserted or deleted. However, further
study is required to confirm this conjecture.

The result on question 2 for the small multiples interface, that ND is signif-
icantly faster than WD, may be related to the fact that colour encoded both
the answer to the question and graph structure changes. In the WD condition,
participants had to contend with two sets of colours for each edge and reason
about what the combination meant. Thus, the results suggest that the partic-
ipants were able to perform the task equally as well, but it took them much
longer to find the solution.

The difference map was significantly preferred for questions 1, 3, and 4 accord-
ing to the survey data. It is surprising to get such strong preference data for one
presentation method that does not match the corresponding performance data
(which found little benefit in the use of difference maps when performing tasks).
This result suggests that even if the use of difference maps may not improve
performance, users might feel more comfortable with this presentation method
when performing tasks on a dynamic graph sequence.
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5.3 Limitations

We have tried to collect data that allows us to make generalizations for each
interface, by including more than one data set, and more than one question.
However, it would have been impossible to test a wider range of data sets and
even more questions. The generalization of these results are therefore limited by
these parameters. It was necessary for our participants to have some knowledge
of graphs, meaning that our results only hold for this particular population.
Running the experiment in a laboratory situation, on context-free graphs (even
if based on real data sets) means that these results may not extrapolate to the
visualization of graphs within an application context.

6 Conclusions and Future Work

In future work, it would be interesting to see if graph hierarchies can help improve
the performance of difference maps. Hierarchies have been used in systems that
present difference maps [6,3], and a recent experiment [2] has provided some
evidence that hierarchies can improve graph readability for some tasks. It would
be interesting to see if difference maps can benefit from these representations.

We performed a user study to gauge the benefit of using difference maps
rather than presenting the timeslices directly in a dynamic graph. We tested the
readability of difference maps using three interfaces and four questions. In this
study, we found that difference maps can help answer questions about large scale
changes in a dynamic graph in terms of changes in the number of edges. Also,
difference maps were strongly preferred by participants.
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Abstract. A major factor affecting the readability of a graph drawing is
its resolution. In the graph drawing literature, the resolution of a draw-
ing is either measured based on the angles formed by consecutive edges
incident to a common node (angular resolution) or by the angles formed
at edge crossings (crossing resolution). In this paper, we evaluate both
by introducing the notion of “total resolution”, that is, the minimum of
the angular and crossing resolution. To the best of our knowledge, this
is the first time where the problem of maximizing the total resolution of
a drawing is studied.

The main contribution of the paper consists of drawings of asymptot-
ically optimal total resolution for complete graphs (circular drawings)
and for complete bipartite graphs (2-layered drawings). In addition, we
present and experimentally evaluate a force-directed based algorithm
that constructs drawings of large total resolution.

1 Introduction

There exist several criteria that have been used to judge the quality of a graph
drawing [4,14]. An undesired property that may negatively influence the read-
ability of a graph drawing is the presence of edges that are too close to each
other, especially if these edges are adjacent. Thus, maximizing the angles among
incident edges becomes an important aesthetic criterion, since there is some cor-
relation between the involved angles and the visual distinctiveness of the edges.
On the other hand, recent cognitive experiments by Huang et al. [12,13] indicate
that the negative impact of an edge crossing on the human understanding of a
graph drawing is eliminated in the case where the crossing angle is greater than
70 degrees. This motivates us to study a new graph drawing scenario in which
both angular and crossing resolution are taken into account in order to produce
a straight-line drawing of a given graph. Formally, the term angular resolution
denotes the smallest angle formed by two adjacent edges incident to a common
node, whereas the term crossing resolution refers to the smallest angle formed by
a pair of crossing edges. The angular resolution maximization problem has been
extensively studied by the graph drawing community over the last few decades
[3,9,10,11,15,16]. On the other hand, the crossing resolution maximization is a
relatively new problem [1,6,7]. To the best of our knowledge, this is the first
attempt, where both angular and crossing resolution are combined to produce
drawings.
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2 Drawings with Optimal Total Resolution for Complete
and Complete Bipartite Graphs

In this section, we define the total resolution of a drawing and we present draw-
ings of asymptotically optimal total resolution for complete graphs (circular
drawings) and complete bipartite graphs (2-layered drawings).

Definition 1. The total resolution of a drawing is defined as the minimum of
its angular and crossing resolution.

We first consider the case of complete graphs Kn, n ≥ 3. Our aim is to construct
a circular drawing of Kn of maximum total resolution. Our approach is construc-
tive and common when dealing with complete graphs. A similar one has been
given by Formann et al. [9] for obtaining optimal drawings of complete graphs,
in terms of angular resolution. Consider a circle C of radius rc > 0 centered at
(0, 0) and circumscribe a regular n-polygon Q on C. The nodes of Kn coincide
with the vertices of Q. The construction supports the following Theorem. For a
detailed proof, refer to [2].

Theorem 1. A complete graph Kn admits a drawing of total resolution Θ( 1
n ).

Obviously, the bound of the total resolution of a complete bipartite graph can be
implied by the bound of the complete graph. However, if the nodes of the graph
must have integer coordinates, i.e., we restrict ourselves on grid drawings, few
results are known regarding the area needed of such a drawing. An upper bound
of O(n3) area can be implied by [3]. This motivates us to separately study the
class of complete bipartite graph, since we can drastically improve this bound.
Note that tradeoffs between (angular or crossing) resolution and area have been
studied by the graph drawing community, in the past [1,5,16].

Let Km,n = (V1 ∪ V2, E) be a complete bipartite graph, where V1 = {u1
1, . . .,

u1
m}, V2 = {u2

1, . . . , u
2
n} and E = V1 × V2. Let R = ABΓΔ be a square whose

top and bottom sides coincide with L1 and L2, respectively. The nodes of V1
(V2) reside along side ΓΔ (AB). Let �1, . . . , �m, be a bundle of semi-lines, each
of which emanates from vertex B and crosses side ΓΔ of R, so that the angle
formed by BΓ and semi-line �i equals to (i−1)·̂ΔBΓ

m−1 , for each i = 1, . . . , m. These

semi-lines split angle Δ̂BΓ into m− 1 angles, each of which is equal to π
4·(m−1) .

Then, we place node u1
i at the intersection of semi-line li and ΓΔ, for each

i = 1, . . . , m. We denote by ai the horizontal distance between two consecutive
nodes u1

i and u1
i+1, i = 1, . . . , m − 1. Symmetrically, we define the position of

the nodes of V2 along side AB of R. We conclude by the following Theorem. For
a detailed proof refer to [2].

Theorem 2. A complete bipartite graph Km,n admits a 2-layered drawing of
total resolution Θ( 1

max{m,n} ).

Say that the nodes of the graph must have integer coordinates. Then, assuming
that L1 and L2 coincide with two horizontal grid lines, we can slightly move
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each node of V1 and V2 to the rightmost grid-point to its left. We can prove
that there are not two nodes sharing the same grid point, assuming that a1 is
greater than one grid unit. Since no node moves more than one unit of length,
the total resolution is not asymptotically affected. Regarding the computation
of the area occupied by the drawing, we can further prove that it supports the
following Theorem. The reader is referred to [2], for a detailed proof.

Theorem 3. A complete bipartite graph Km,n admits a 2-layered grid drawing
of Θ( 1

max{m,n} ) total resolution and O(max{m2, n2}) area.

3 A Force Directed Algorithm

We present a force-directed algorithm that given a reasonably nice initial draw-
ing, results in a drawing of high total resolution. Our algorithm uses the at-
tractive forces of the classical force-directed algorithm of Eades [8] and some
additional forces exerted to the nodes of the graph, that tend to maximize the
total resolution of the drawing.

Before we proceed with the description of our algorithm, we present some
notation that is heavily used in the remainder. Given a drawing Γ (G) of G, we
denote by pu = (xu, yu) the position of node u ∈ V on the plane. The unit
length vector from pu to pv is denoted, by −−→pupv, where u, v ∈ V . The degree of
node u ∈ V is denoted by d(u). Let also d(G) = maxu∈V d(u) be the degree of
the graph. Given a pair of points q1, q2 ∈ R2, with a slight abuse of notation,
we denote by ||q1 − q2|| the Euclidean distance between q1 and q2. We refer to
the line segment defined by q1 and q2 as q1q2. Let −→α and −→γ be two vectors.
The vector which bisects the angle between −→α and −→γ is

−→α
||−→α || +

−→γ
||−→γ || . We denote

by Bsc(−→α ,−→γ ) the corresponding unit length vector. Given a vector
−→
β , we refer

to the unit length vector which is perpendicular to
−→
β and precedes it in the

clockwise direction, as Perp(
−→
β ).

Let e = (u, v) and e′ = (u′, v′) be two crossing edge and let pc be their
intersection point. Let also θvv′ , θv′u, θuu′ and θu′v be the angles formed by the
intersection of e and e′ at pc, as illustrated in Fig.1a. Then, our preference for
right-angle crossings can be captured by spring forces (see Fig.1a), and, by the
angles θvv′ and θv′u formed at the crossing (see Fig.1b). The exact formulas of
these force are:

Fcros
spring(pv, pv′) = Ccros

spring · log
||pv − pv′ ||

�vv′
spring

· −−−→pvpv′

Fcros
angle(pv, pv′) = Ccros

angle · sign(θvv′ − π

2
) · f(θvv′) · Perp(Bsc(−−→pcpv,−−−→pcpv′))

where the constants Ccros
spring and Ccros

angle are used to control the stiffness of the
springs and the strength of the force, respectively, �vv′

spring, which corresponds
to the natural length of the spring, is equal to

√
||pc − pv||2 + ||pc − p′v||2 and
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Fig. 1. Forces applied on nodes in order to maximize the total resolution

f : R→ R is a function so that f(θ) = |π2 − θ|/θ. The remaining forces of Fig.1a
and 1b are defined similarly.

Let u be a node incident to edges e0 = (u, v0), . . . ed(u)−1 = (u, vd(u)−1).
Assume that e0, e1, . . . , ed(u)−1 are consecutive in the counter-clockwise order
around u in the drawing of the graph. Let θi be the angle formed by ei and
e(i+1)mod(d(u)), measured in counter-clockwise direction from ei to e(i+1)mod(d(u)).
Then, our preference for angles equal to 2π/d(u) can be captured by spring forces
(see Fig.1c), and, by the angles θi, i = 0, 1, . . . , d(u)− 1 (see Fig.1d). The exact
formulas of these force are:

Fangular
spring (pvi , pv(i+1)mod(d(u)) ; u) = C

angular
spring · log

||pvi − pv(i+1)mod(d(u)) ||
�i
spring

·

−−−−−−−−−−−−→pvipv(i+1)mod(d(u))

Fangular
angle (pvi , pv(i+1)mod(d(u)) ; u) = C

angular
angle · sign(θi −

2π

d(u)
) · g(θi; u)·

Perp(Bsc(−−−→pupvi ,
−−−−−−−−−−−→pupv(i+1)mod(d(u))))

where the quantities Cangular
spring and Cangular

angle are constants which captures the
stiffness of the spring and the strength of the force, respectively, g : R× V → R

is a function so that g(θ; u) =
| 2π

d(u)−θ|
θ and lispring, which corresponds to the

natural length of each spring, is equal to:√
||ei||2 + ||e(i+1)mod(d(u))||2 − 2 · ||ei|| · ||e(i+1)mod(d(u))|| · cos (2π/d(u))
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(a) Angular resolution results (b) Crossing resolution results

(c) Total resolution results (d) Running time results

Fig. 2. A visual presentation of our experimental results. The X-axis indicates the
number of the nodes of the graph. In Fig.(a)-(c) the Y -axis corresponds to the resolution
measured in degrees, whereas in Fig.(d) to the running time measured in milliseconds.

Note that by setting zero values to the constants Ccros
spring, Ccros

angle or C
angular
spring ,

C
angular
angle , our algorithm can be configured to maximize the angular, or the cross-

ing resolution only, respectively. Regarding the time complexity, each iteration of
our algorithm takes O(E2+V d(G) log d(G)) time and can be further improved to
O(K + E log2 E/ log log E + V d(G) log d(G)) time per iteration, using standard
techniques from computation geometry.

In the following, we present the results of the experimental evaluation of our
algorithm. Apart from our algorithm, we have also implemented the algorithms
of Eades [8] and Lin and Yen [15]. The implementations are in Java using yFiles
library (www.yworks.com). The experiment was performed on a Linux machine
with 2.00 GHz CPU and 2GB RAM using the Rome graphs obtained from
graphdrawing.org. The experiment was performed as follows. Each Rome graph
was laid out using the SmartOrganic layouter of yFiles. This layout was the
input of all algorithms. If both the angular and the crossing resolution between
two consecutive iterations of each algorithm were not improved more that 0.001
degrees, we assumed that the algorithm has converged. The maximum number
of iterations was set to 100.000. Our algorithm is evaluated as (a) Crossing-Only,
(b) Angular-Only and (c) Mixed. Fig.2 illustrates the results of the experimental
evaluation. For a more detailed analysis refer to [2].
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4 Conclusions

We introduced and studied the total resolution maximization problem. Of course,
our work leaves several open problems. It would be interesting to try to identify
other classes of graphs that admit optimal drawings. Even the case of planar
graphs is of interest, as by allowing some edges to cross (say at large angles), we
may improve the angular resolution and therefore the total resolution.
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Abstract. In stack and queue layouts the vertices of a graph are linearly
ordered from left to right, where each edge corresponds to an item and
the left and right end vertex of each edge represents the addition and
removal of the item to the used data structure. A graph admitting a
stack or queue layout is a stack or queue graph, respectively.

Typical stack and queue layouts are rainbows and twists visualizing
the LIFO and FIFO principles, respectively. However, in such visualiza-
tions, twists cause many crossings, which make the drawings incompre-
hensible. We introduce linear cylindric layouts as a visualization tech-
nique for queue and deque (double-ended queue) graphs. It provides new
insights into the characteristics of these fundamental data structures and
extends to the visualization of mixed layouts with stacks and queues. Our
main result states that a graph is a deque graph if and only if it has a
plane linear cylindric drawing.

1 Introduction

In his pioneering work on the Art of Computer Programming, D. E. Knuth
raises the question “How shall we draw a tree?” [10, p. 306], which can be
seen as the beginning of Graph Drawing. Knuth also studied elementary data
structures, such as stacks, queues and deques, and represented their behavior as
train tracks. In this paper we pose the question “How shall we draw a stack, a
queue, or a deque?”. The purpose of such drawings is to visualize the underlying
data structure and the operations applied to it.

Stack and queue layouts have been studied extensively in the past, e.g., in
[1, 2, 4–9, 12–14], and are used for 3D drawings of graphs [12, 13], in VLSI
design [2] and in other application scenarios (see [9] for a short survey). In these
layouts the vertices of a graph are linearly ordered from the left to the right.
The vertices are processed in this order and each edge corresponds to an item
which is inserted into the data structure at its left endpoint and is removed at
its right endpoint. These operations must obey the principles of the underlying
data structure, such as “last-in, first-out” for a stack or “first-in, first-out” for a
queue.

k-stack (k-queue) layouts are a generalization of stack (queue) layouts: Such
layouts consist of a single linear order of the vertices and a partition of the set of
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Fig. 1. Visualizing queue layouts

edges into k subsets, where each subset permits a stack (queue) layout, see, e.g.,
[5, 9]. k-stack (k-queue) layouts have also been generalized to mixed layouts, e.g.,
two stacks and one queue, and have been studied in [5]. The authors motivate
their studies of mixed layouts by their investigations of the deque data structure:
A deque can either emulate two stacks or one queue. Conversely, two stacks and
one queue can emulate one deque.

Stack layouts are also known as book-embeddings of graphs [1] and the number
of pages corresponds to the number of used stacks. These graphs have interesting
graph theoretic properties: A graph G is a stack graph if and only if G is outer-
planar [1]. Bernhart and Kainen [1] have characterized the class of 2-stack graphs
as the subgraphs of planar graphs with a Hamiltonian cycle, and every planar
graph has a layout with four stacks [14].

Common visualizations of stack and queue graphs with a given layout place
the vertices from left to right on the x-axis according to the given order. The
edges are drawn as arches, which are x-monotone curves above the x-axis. Stack
layout visualizations show rainbows [13] as characteristic structures, which are
properly nested arches, whereas the equivalent structure in queue layouts are
twists [9]. Conversely, in a visualization of queue graphs rainbows are not allowed,
while stack graphs forbid twists.

Fig. 1(a) depicts a queue graph. The edges drawn as solid lines constitute
a valid queue layout since no two arches nest completely (nesting edges with
common end vertices are allowed). A characteristic twist is displayed by edges
{1, 4} and {2, 5}, i.e., {1, 4} is added to the queue before {2, 5} and both are
removed in the same order. However, due to the many crossings (one crossing
per twist), it is hard to follow the routing of the edges and to validate the queue
layout. Introducing the edge {2, 3} (dashed) destroys the queue layout since it is
completely nested in the arch {1, 5}, i.e., at first {1, 5} and then {2, 3} is added
to the queue but {2, 3} has to be removed before {1, 5}. Nevertheless, it is hard
to recognize immediately that {2, 3} destroys the queue layout.

Heath et al. [5, 9] characterize the class of queue graphs as the arched leveled-
planar graphs. Such a graph has a planar drawing with vertices placed on levels
and inter-level edges only between two adjacent levels or intra-level edges from
the left-most vertex to vertices on the right side. Fig. 1(b) shows the queue layout
from Fig. 1(a) again, where levels are drawn as dotted lines. Again it is hard to
see immediately that edge {2, 3} is illegal. Moreover, an invalid drawing of an
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arched leveled-planar graph does not necessarily indicate an invalid queue layout
since a valid drawing with a different leveling of the vertices is still possible.

In this paper we propose a novel approach for visualizing queue graphs that
overcomes the aforementioned drawbacks. We achieve our visualization of a
queue graph by winding the arcs at most once around the surface of a 3D cylin-
der. A 2D representation is achieved by cutting the cylinder and duplicating the
vertices. Moreover, our representation is also suitable for deque (double-ended
queue) graphs where the deque may even have a restricted set of input or output
operations. We can also display graphs with mixed layouts of stacks, queues and
deques together in one concise drawing. By applying our drawing technique we
immediately arrive at the result that every deque graph is planar.

The remainder of the paper is structured as follows. In Sect. 2 we intro-
duce deque layouts. In Section 3 we define linear cylindric drawings and their
equivalent representations. We also characterize the class of graphs permitting
a deque layout as the graphs permitting a crossing-free linear cylindric drawing.
We describe how linear cylindric drawings help to investigate mixed layouts in
Sect. 4. We also revisit queue layouts and show how linear cylindric drawings of
queue graphs overcome the drawbacks of the drawings depicted in Fig. 1. Finally,
Sect. 5 gives a conclusion and an outlook to future work.

2 Preliminaries

We consider simple undirected graphs G = (V, E) with n vertices and m edges. A
linear layout π is a bijective assignment π : V → {1, . . . , n} of the vertices to po-
sitions {1, . . . , n}. For each edge e = {u, v} we denote by l(e) = min{π(u), π(v)}
and r(e) = max{π(u), π(v)} the position of its left- and right-hand vertex, re-
spectively. Edge e ∈ E is said to cover the range from l(e) to r(e) (both included).

A deque generalizes a stack and a queue: It has two ends, a head h and a
tail t, to insert and remove items. If insertions or removals are only allowed at
the deque’s head, it is called input or output restricted, respectively. Let α and
ω be two functions from E to {h, t} that assign to each edge e the side of its
addition and its removal, respectively. α/ω are called input/output assignments
(I/O assignments). If α(e) = ω(e), then e is called a stack edge, otherwise a
queue edge, according to the manner the edges are processed by the deque. We
denote by Δ(G) the tuple (π, α, ω) and call it linear I/O layout. Δ(G) is a deque
layout iff the vertices can be processed from left to right according to π such
that all edges can be processed by the deque according to α and ω.

Definition 1. A graph is a deque graph if and only if G has a deque layout.
Accordingly, a graph is an input restricted deque (an output restricted deque, a
stack, a queue) graph if it has a respective layout.

Note that at each vertex v, before any edge can be inserted to a particular side,
e.g., head, all edges that end at v and are accessible from the head need to
be removed. Also note that at each vertex v, when inserting edges e ∈ E into
the deque pointing to right-hand neighbors, i.e., l(e) = π(v), the queue (stack)
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edges have to be inserted in (in reverse) order of their respective positions of the
right-hand neighbors. This is to ensure that the edges can be removed from the
deque when processing the corresponding right-hand neighbor. Furthermore, at
first always all queue edges and then all stack edges have to be inserted into the
deque since otherwise edges cannot be removed anymore, e.g., consider a stack
and a queue edge inserted at the head in that order, then neither of the edges
can be removed.

3 Linear Cylindric Drawings of Deque Graphs

In this section we introduce a new type of drawing on the surface of a 3D cylinder
(Sect. 3.1) and transform the drawings into equivalent 2D representations. In the
case of planar drawings they exactly fit to deque graphs (Sect. 3.2).

3.1 Linear Cylindric Drawings

Definition 2. In a linear cylindric drawing Γ (G) of a graph G the vertices are
placed disjointly on a straight line L, the front line, on the surface of the cylinder
parallel to its axis. The edges are drawn as monotone curves in direction of the
cylinder’s axis and do not cross L.

For convenience, we consider horizontal cylinders where L is parallel to the
x-axis. Moreover, we identify the placement of the vertices on L with the per-
mutation π : V → {1, . . . , n}.

Obviously, every graph has a linear cylindric drawing. The vertices can be
arranged arbitrarily on the front line and the edges are drawn as simple curves
on the side surface of the cylinder while not crossing L.

For an example, consider graph G = ({1, . . . , 8}, E) as displayed in Fig. 2(a).
Fig. 2(b) visualizes a linear cylindric drawing of G: The vertices are drawn on the
horizontal front line (dashed) and edges are either drawn as arches, e.g., {2, 4},
or wrap at most once around the cylinder, e.g., {1, 4}. Note that the dashed edge
{3, 8} causes a crossing with edge {4, 7}.

A linear cylindric drawing Γ (G) imposes a direction onto each edge from the
lower to the higher π-value of its vertices. We denote an undirected edge {u, v}
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Fig. 2. A graph and its linear cylindric drawing
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Fig. 3. 2D representations of the linear cylindric drawing of Fig. 2(b)

with π(u) < π(v) by the directed edge (u, v). Moreover, Γ (G) partitions the set
of edges into four subsets according to their orientation with respect to the front
line. Let E∩ (E∪) denote the set of edges leaving and entering their vertices
above (below) the front line and let E/ (E\) denote the set of edges leaving the
front line above (below) and entering at the opposite side. The subscripts of the
sets illustrate the shape of the edges. The edges from E/ and E\ wrap around
the cylinder once and the edges from E∩ (E∪) can be drawn as arches above
(below) the front line.

Definition 3. The tuple C(G) = (π, E∪, E∩, E\, E/) is a linear cylindric em-
bedding of G = (V, E).

We obtain a 2D representation of a linear cylindric drawing, which we call un-
rolled cylinder, by cutting the cylinder along the front line and “bending” the
surface of the cylinder until it is plane. The front line with the vertices is dupli-
cated and the two copies constitute the bottom (Lbottom) and top (Ltop) of the
so obtained drawing.

For instance, when applied to Fig. 2(b), the result is depicted in Fig. 3(a),
where the area that was formerly placed above the front line is now situated at
the bottom of the drawing. Then an edge (u, v) ∈ E\ can be drawn as a straight
line from its vertex u on Ltop to its vertex v on Lbottom. Symmetrically, the
edges from E/ can be drawn as straight lines Lbottom to Ltop. The edges in E∩
can be represented as arches above Lbottom and, accordingly, the edges from E∪
can be represented as arches below Ltop. Note that crossings between each pair
of edges (e1, e2) ∈ E∩ × E∪ can always be avoided.

The drawing in Fig. 3(a) can further be continuously transformed to the un-
rolled cylinder on the circle by mapping Ltop and Lbottom to two halves of a
circle. The result is depicted in Fig. 3(b). Note that in this drawing all edges are
drawn as straight lines and, hence, their routing is uniquely determined.

Without further proof, note that all different types of drawings are topologi-
cally equivalent, i.e., all drawings can be transformed into each other by a contin-
uous function without changing the topological structure of the drawing. In par-
ticular, planarity is preserved. The equivalence of the drawings has an important
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implication: Consider a linear cylindric drawing where non-monotonous edges
are allowed. Such a drawing can be continuously transformed to a drawing on
the unrolled cylinder on the circle with straight-line edges that are monotonous.
This justifies our assumption of monotonous edges in Def. 2.

Definition 4. A graph G is linear cylindric planar if G has a linear cylindric
embedding that permits a linear cylindric drawing without crossing edges.

The classes of graphs that can be drawn without crossings on the plane and on
the cylinder are equal. We thus obtain:

Corollary 1. Every linear cylindric planar graph is a planar graph.

3.2 Characterization of Deque Graphs

In this section we present the main result of this paper:

Theorem 1. A graph G is a deque graph iff G is linear cylindric planar.

The idea of the proof is to construct a one-to-one correspondence between a
linear I/O layout Δ(G) = (π′, α, ω) and a linear cylindric embedding C(G) =
(π, E∪, E∩, E\, E/) as follows: The positions π of the vertices on L are equal to
the linear layout π′. The crucial point of the proof concerns the edges: Consider
the edges in E∩ in the linear cylindric embedding that all leave and enter their
end vertices above the front line, e.g., (2, 4) in Fig. 2(b). Edges in E∩ are drawn
as arches in a linear cylindric layout and, hence, they do not cross iff they form
rainbows and, consequently, constitute a stack layout. Hence, an edge (u, v) ∈ E∩
is interpreted as an edge that is processed by the deque like by a stack, that is,
it is inserted at and removed from the same side, e.g., tail. The same holds true
for edges in E∪ with respect to the deque’s head. Edges in E\ or E/ which
enter and leave at opposite sides of the front line are interpreted as “moving”
from one side of the deque to its opposite side. For instance, (1, 4) ∈ E\, which
leaves below and enters above the front line, is interpreted as being inserted at
the deque’s head and removed from its tail. Consequently, E\ and E/ are queue
edges inserted at the head and tail, respectively.

Using this one-to-one correspondence, we are then able to prove that edges
cause no crossings in a linear cylindric drawing if and only if they can be pro-
cessed by the deque. Conversely, any unavoidable crossing in such a drawing can
be interpreted as a violation of the deque layout, i.e., crossing edges cannot be
processed by the deque by any allowed operation.

First we show that it is sufficient to only consider pairs of edges when inves-
tigating a deque layout or a linear cylindric planar embedding. We start with
deque layouts:1

1 A similar statement is proven in [3], which is concerned with trains entering and
leaving a train station from two sides. Such a train station with n tracks can be
modelled by n deques and the trains must be assigned to the deques such that they
do not block each other.
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Lemma 1. Δ(G) = (π, α, ω) is a deque layout if and only if for each pair of
edges e, e′ ∈ E with e �= e′ , Δ|e,e′ (G) = (π, α|e,e′ , ω|e,e′) is a deque layout, where
α|e,e′ and ω|e,e′ are the restrictions of α and ω to {e, e′}, respectively.

Proof. “⇒”: If all edges can be processed by the deque, in particular any two
edges can be processed.

“⇐”: For each pair of distinct edges e, e′ ∈ E, Δ|e,e′ is a deque layout. We
assume for contradiction that Δ(G) is not a deque layout.

Since an edge can always be inserted into the deque a problem can only occur
when removing an edge.

Let e ∈ E be the first edge that cannot be removed at some vertex v. W. l.
o. g. we assume that ω(e) = h. Let e1, . . . , ek be the elements between the head
and e in the deque. k ≥ 1 since otherwise e could be removed from the deque.
If for all edges ei with 1 ≤ i ≤ k, r(ei) = π(v) and ω(ei) = h, then all edges
ei could be removed and e could also be removed. Thus, there exists an edge ej

with 1 ≤ j ≤ k which prevents the removal of e, i.e., r(ej) > r(e) or ω(ej) = t.
In the first case, i.e., r(ej) > r(e), if l(ej) = l(e) and α(ej) = α(e), then at the

vertex at position l(e) the edges e and e′ would have been inserted into the deque
such that e would always be accessible from the head (see also Sec. 2), where four
cases have to be distinguished: If both are stack edges added to the head then ej

would be have been inserted before e since r(ej) > r(e). If both are queue edges
then e and ej would have been inserted at the tail in that order. Similarly if e is
a stack and ej a queue edge, then ej would have been inserted at the head before
e is inserted at the head. If e is a queue edge and ej a stack edge, then e would
have been inserted at the tail before ej is inserted at the tail as a stack edge. In
all cases e is accessible from the head. If l(ej) = l(e) and α(ej) �= α(e), then ej

and e can not be processed in Δ|e,ej
(G) as well independently of their insertion

order. In all other cases the relative order in which ej and e are inserted into
the deque is uniquely determined by l(e) and l(ej). The same order has to be
used in Δ|e,ej

(G) and causes a problem there as well. The second case ω(ej) = t
follows analogously. Hence, in each case Δ|e,ej

(G) is no deque layout, which is a
contradiction. ��

Lemma 2 is the corresponding version of Lemma 1 for pairs of edges in linear
cylindric planar embeddings:

Lemma 2. C(G) = (π, E∪, E∩, E\, E/) is a linear cylindric planar embedding
of a graph G = (V, E) if and only if for each pair of edges e, e′ ∈ E with e �= e′

C|e,e′(G) = (π, E∪ ∩ {e, e′}, E∩ ∩ {e, e′}, E\ ∩ {e, e′}, E/ ∩ {e, e′}) is a linear
cylindric planar embedding.

Proof. “⇒”: Take a linear cylindric drawing without crossings. From this draw-
ing a linear cylindric planar embedding for each pair of edges can be obtained.

“⇐”: The drawing of the unrolled cylinder on the circle (e.g., Fig. 3(b)) is a
drawing with straight lines and is topologically equivalent to a linear cylindric
drawing. Note that the routing of the edges is uniquely determined if the edges
are drawn as straight lines. In order to construct a plane drawing with all edges,
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Fig. 4. Different cases in the proof of Lemma 3

simply draw all edges according to their unique straight-line representation. This
drawing has no crossings since no pair of edges cross and is conform to embedding
C(G). Hence, C(G) is linear cylindric planar. ��

Lemma 3 is the main step to our theorem. It states that every pair of edges can
be processed by a deque if and only if they cause no crossing in the drawing.
In order to show this we utilize the aforementioned one-to-one correspondence
between a linear cylindric embedding and a linear I/O layout:

Lemma 3. Given G = (V, E), let C(G) = (π, E∪, E∩, E\, E/) be a linear cylin-
dric embedding and Δ(G) = (π, α, ω) be a linear I/O layout. If ∀e ∈ E:

α(e) = h ∧ ω(e) = h⇔ e ∈ E∪ , α(e) = h ∧ ω(e) = t⇔ e ∈ E\ ,

α(e) = t ∧ ω(e) = h⇔ e ∈ E/ , α(e) = t ∧ ω(e) = t⇔ e ∈ E∩ ,

then, for every pair of distinct edges e, e′ ∈ E, C|e,e′(G) is a linear cylindric
planar embedding if and only if Δ|e,e′ (G) is a deque layout.

Proof. Let e, e′ ∈ E be two distinct edges, therefore l(e) �= l(e′) or r(e) �= r(e′).
W. l. o. g., we assume l(e) < l(e′).

The proof is a complete differentiation between all cases of how two edges are
processed by the deque and routed in the embedding: For each case we show that
two distinct edges e, e′ ∈ E do not cross if and only if they can be processed by
the deque. We assume that e and e′ have non-disjoint ranges, i.e., they overlap.
Otherwise, they can be drawn without crossings, and, conversely, they can be
processed disjointly by the deque according to their I/O assignments. The same
holds true if r(e) = l(e′). Note that l(e) = r(e′) is not possible since we assume
l(e) < l(e′). The following five cases remain:

Case (a): α(e) = ω(e), α(e′) �= ω(e′) (e is a stack edge and e′ a queue edge):
Without loss of generality, we assume α(e) = ω(e) = h. If α(e′) = h, then e and e′

do not cross iff l(e′) ≤ l(e), which is not possible by assumption, or l(e′) ≥ r(e),
which is not possible by assumption since the edges have to overlap.

If α(e′) = t, then e and e′ do not cross if and only if r(e′) ≤ l(e), i.e., the edges
do not overlap which contradicts our assumption, or r(e′) ≥ r(e) (Fig. 4 (a)). In
the deque first e is inserted at the head, then e′ at the tail. Afterwards, e can
be removed from the head and then e′.

Conversely, assume that e and e′ can be processed by the deque but, for the
sake of contradiction, r(e′) < r(e), i.e., e and e′ cross. This implies that e′ must
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be removed from the head before e. However, at first e is inserted at the head
and then e′ at the tail and, hence, e′ cannot be removed from the head because
e is blocking its way.

The case where e is a queue and e′ is a stack edge follows analogously.

Case (b): α(e) �= ω(e), α(e′) �= ω(e′), α(e) �= α(e′) (two queue edges inserted
at different sides): Since e and e′ overlap this situation always causes a crossing
(Fig. 4(b)). Moreover, since e and e′ overlap, there is a time instance where both
edges are in the deque. However, since both have to be removed from opposite
sides they cannot be removed at all.

Case (c): α(e) = ω(e) �= α(e′) = ω(e′) (two stack edges inserted at different
sides): These edges never cross (Fig. 4(c)) and, in the deque, two stack edges
inserted at different sides, can always be processed without any problems.

Case (d): α(e) = ω(e) = α(e′) = ω(e′) (two stack edges inserted at the same
side): e and e′ do not cross if and only if e nests e′ and, hence, r(e′) ≤ r(e)
(Fig. 4(d)). In the deque, at first e and then e′ can be inserted at the same side
of the deque and both are removed from this side in reverse order.

Conversely, since l(e) < l(e′), e is inserted before e′ into the deque. Since both
are stack edges inserted at the same side, e must not be removed before e′ and,
hence, r(e′) ≤ r(e). Thus, e properly nests e′ and they cause no crossing.

Case (e): α(e) = α(e′) �= ω(e) = ω(e′) (two queue edges inserted at the same
side): Since e and e′ do not cross, we have that r(e) ≤ r(e′) (Fig. 4(e)). Conse-
quently, e is inserted before e′ and both are removed in the same order.

Conversely, since e and e′ are both queue edges inserted at the same side and e
is inserted before e′ it follows that e is removed from the deque before e′. Hence,
r(e) ≤ r(e′) and e and e do not cross in the drawing. ��

We are now able to prove our main result of Theorem 1:

Proof. Let Δ(G) be a linear I/O layout and C(G) a linear cylindric embedding
of G. By Lemma 1, G permits a deque layout iff each pair of edges permits a
deque layout. By Lemma 3 this holds true if and only if no pair of edges causes
a crossing in the linear cylindric embedding. Finally, by Lemma 2 this is true if
and only if C(G) is a plane embedding. ��

By Corollary 1 and Theorem 1 we can conclude:

Corollary 2. A graph G = (V, E) that permits a deque layout is planar.

Theorem 1 leads to the following interpretation of a linear cylindric drawing:
Consider a vertical line drawn in the middle between vertices 2 and 3 from Ltop
to Lbottom in Fig. 3(a). This line intersects the edges (2, 3), (1, 3), (1, 4) and
(2, 4) in that order from top to bottom. This sequence reflects the content of the
deque after vertex 2 and before vertex 3 is processed, where (2, 3) is situated at
the head and (2, 4) at the tail. When moving this vertical line like a scan line
further to the right, its crossings with edges always correspond to the content of
the deque. If the vertical line passes a crossing between two edges e and e′, e.g.,
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(3, 8) and (4, 7), then this can be interpreted as swapping the positions of e and
e′ in the deque, which is an invalid deque operation.

Note that the aforementioned interpretation of a linear cylindric drawing is
only true if all edges are monotonously drawn from the left to the right, which
is another reason why we assume monotonicity in Definition 2.

4 Linear Cylindric Drawings of Queue and Mixed
Layouts

In this section we show how linear cylindric drawings can help to investigate
layouts of graphs on data structures that allow only a subset of the operations
of a deque and layouts with mixtures of data structures like a deque together
with a stack or two stacks. Queue, 1- and 2-stack, and input and output restricted
deque layouts are special cases of a deque layout:

Corollary 3

– A graph is a queue (stack) graph iff it is a deque graph where all edges are
queue (stack) edges and are inserted either all at the head or all at the tail.

– A graph is a 2-stack graph iff it is a deque graph with stack edges only.
– A graph is an input (output) restricted deque graph iff it is a deque graph

where α(e) = h (ω(e) = h) for all e ∈ E.

Corollary 4

– A graph is a queue (stack) graph iff it is linear cylindric planar with the
edges either all in E\ or all in E/ (all in E∩ or all in E∪).

– A graph is a 2-stack graph iff it is linear cylindric planar with all edges in
E∪ ∪E∩.

– A graph is an input (output) restricted deque graph iff it is linear cylindric
planar with all edges in E∪ ∪ E\ (E∪ ∪ E/).

4.1 Queue Graphs

In this section we revisit queue graphs and their drawings that have been dis-
cussed in Sect. 1. Consider again the two drawings in Fig. 1. In both drawings
it is hard to recognize immediately that the edges drawn as solid lines depict
a queue layout and that edge (2, 3) destroys this layout with respect to the
depicted linear layout.

The same graph can be depicted with the same linear layout on an unrolled
cylinder (Fig. 5) where all edges are in E\. It is immediately visible that none of
the solid drawn edges cross and, hence, display a valid queue layout. Edge (2, 3)
crosses edges (1, 4) and (1, 5) and, consequently, (2, 3) destroys the queue layout.
Moreover, it is immediately visible that exactly these three crossing edges de-
stroy the queue layout. Removing edges until the drawing is crossing-free, e.g.,
edges (1, 4) and (1, 5), reestablishes a valid queue layout.
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Fig. 6. Linear cylindric drawings of mixed layouts

4.2 Linear Cylindric Drawings of Mixed Layouts

Stack, queue, and deque layouts can be extended to mixed layouts, where k
(possibly different) data structures {D1, . . . , Dk} are given. Such a mixed layout
consists of a single linear layout π of the vertices and a partition of the set of
edges E consisting of k subsets E1, E2, . . . , Ek, where for each i ∈ {1, . . . , k}, G =
(V, Ei) has a layout in data structure Di with linear layout π. Our technique of
representing layouts by an unrolled cylinder straightforwardly extends to mixed
layouts: Create k + 1 copies L1, . . . , Lk+1 of the front line, place them one upon
the other and display the edges Ei of data structure Di between the i-th and
(i + 1)-th front line as described in Sect. 3.1.

As an example consider the complete graph K6 with six vertices. This graph
has neither a 2-stack nor a 2-queue layout. Fig. 6(a) shows the K6 in a linear
cylindric drawing with two data structures. Between L1 and L2 only stack edges
are used. The region between L2 and L3 contains only queue edges. Since no
edges cross in this drawing we can conclude that the K6 is a graph with a mixed
layout consisting of one stack and one queue.

Figure 6(b) shows a possible mixed layout of the complete graph K8 with 8
vertices using one input-restricted deque drawn between L1 and L2, one queue
between L2 and L3 and one stack between L3 and L4. Note that each edge of
the K8 appears in the representation of exactly one data structure and the same
linear layout π is used for all data structures.

5 Conclusion and Future Work

In this paper we introduced the new graph visualization technique by linear
cylindric drawings. We proved that the class of graphs that have a plane linear
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cylindric drawing are exactly those graphs that permit a layout by the deque
data structure. We also showed how our new representation gives deeper insights
into the fundamental data structures queue, stack and deque and can even be
used to investigate graph layouts with mixed data structures.

The decision problem whether or not a graph permits a stack layout can be
solved in linear time [1, 11]. In contrast the corresponding decision problem for
a queue layout is NP-hard [9]. The question is open whether or not the decision
problem in the case of a deque is solvable in polynomial time. Currently we are
in the progress of proving that the class of deque graphs coincides with the class
of graphs that are a subgraph of a planar graph with a Hamiltonian path. These
are new insights we gained by linear cylindric drawings, which also give new
characterizations of, e.g., queue graphs and proper level planar graphs.
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Abstract. Applying the multilevel paradigm to energy-based layout al-
gorithms can improve both the quality of the resulting drawings as well
as the running time of the layout computation. In order to do this, ap-
proaches for the different multilevel phases refinement, placement, lay-
out, and optionally scaling and postprocessing need to be implemented.
A number of multilevel layout algorithms have been proposed already,
which differ in the way these phases are realized. We present an experi-
mental study that investigates the influence of varying combinations with
respect to running time and quality criteria.

1 Introduction

Energy-based layout methods are used in many different application areas such
as social sciences and biology to automatically compute straight-line drawings
of undirected graphs. They are often preferred over alternative methods because
they are reasonably fast, allow straight-forward extensions for a large number of
drawing constraints, and are relatively easy to implement. However, in practice
they suffer from a number of drawbacks. First of all, they tend to converge to
locally optimal solutions far away from the global optimum, e.g., when the graph
is not completely unfolded. This is often also a result of poor parameter settings,
since it is difficult and time-consuming to optimize the parameters with regard to
a large number of input instances, and suitable parameters for a class of graphs
may be disadvantageous for other classes. In addition, even though improvements
in the implementation and continuous advances in hardware performance allow
to compute layouts for medium to large graphs, running times are still too high
for many large graphs from practical applications.

The multilevel approach helps to overcome these problems both by avoiding
local minima and speeding up the computation due to improved convergence
to the final drawing. Due to the step-by-step construction of the final layout
starting with the layout of a small graph, there is also no dependency on a good
initial drawing to start with. A number of different multilevel approaches have
been proposed over the last years, but the influence of the different phases as
well as the effects of their combination have not been investigated so far.

There is a wealth of publications concerning energy-based layout methods;
see [3, 17] for an overview. An early comparison of such methods was presented
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by Brandenburg et al. [4]. Walshaw [19] introduced the multi-level paradigm
for graph drawing and Hachul and Jünger [14] presented an experimental study
of layout algorithms for large graphs, including energy-based and algebraic ap-
proaches. Brandes and Pich [5] presented a study on distance-based graph draw-
ing, and Frishman and Tal [8] and Godiyal et al. [11] investigated the use of the
GPU for multi-level layout computation.

We present an experimental study that investigates the performance of a
large number of different combinations for the multilevel phases. Our comparison
includes a selection of well-established energy-based layout methods, as well as
a number of fast methods specifically developed for multilevel approaches. We
check if one of the combinations can be recommended as an overall choice or
if a number of combinations need to be considered due to the characteristics
of the input graphs. Our benchmark set comprises graphs already known from
literature and a number of additional generated and real-world graphs.

After a short description of the multilevel paradigm for graph drawing in
Sect. 2, we describe the setting and results of our experiments in Sect. 3 and
draw a conclusion in Sect. 4.

2 The Multilevel Paradigm

Multilevel layout computation is an iterative process that can be roughly divided
in three phases: coarsening, placement, and single level layout. Starting with the
smallest graph, the final layout for the input graph is obtained by successively
computing layouts for the graph sequence computed by the coarsening phase.
At each level, the additional vertices need to be placed into the layout of the
preceding level, optionally after a scaling to provide the necessary space.

Coarsening Phase. Given an input graph G, the coarsening phase builds a
multilevel hierarchy by computing a sequence of increasingly smaller graphs
G0, G1, . . . , Gk with G = G0. In order to coarsen the graph, sets of vertices in
Gi are combined to single vertices in Gi+1, where a number of different criteria
can be used for deciding which vertices to combine. Subsequent merging or lay-
out steps for the graphs at each level may take into account vertex weights that
represent the merging of vertex sets to a single vertex.

The influence of the coarsening method is twofold: On the one hand, the way
the graphs are coarsened can have an impact on both the quality of the drawing
and the running time on each level. This depends on how well the overall graph
structure is represented on the levels, influencing the way the graph is unfolded.
On the other hand the number of hierarchy levels may have a significant influence
on the total running time.

Placement Phase. The placement phase is responsible for adding vertices to the
layout when the algorithm proceeds to the next level in the multilevel hierarchy.
Typically, new vertices are placed close to their representative in the previous
level. How much the layout computation on each level can profit from the lay-
out given by the previous level, and how a special placement can improve the
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computation, therefore is influenced both by the way the vertices are merged
and the number of vertices that are merged to a single representative. Clever
placement may drastically reduce the work needed by the single level layout
and also have an impact on the way the graph is unfolded. Instead of using a
static position assignment, Frishman and Tal [8], Gajer et al. [10], and Godiyal
et al. [11] describe an iterative method with a small number of iterations.

Single Level Layout. On each level i in the multilevel hierarchy, a layout for
the corresponding graph Gi has to be computed. The main requirement for the
layout method used is that it has to accept the layout resulting from the previous
placement phase as initial layout such that the layout is an extended and refined
version of the layout of Gi+1. In order to allow a running time improvement by
the multilevel method, the single level run should either work with a reduced
number of iterations or be dependent on a stop criterion, e.g., when the layout
energy drops under a predefined threshold.

3 Experimental Study

We use a benchmark set that comprises 43 graphs of varying size and charac-
teristics, including both real world and generated instances1. In addition to a
selection of graphs used by Hachul and Jünger [14], we use a further real world
graphs, comprising a protein interaction network, the RNA network from the
InterViewer project [15], a selection of Walshaw’s graph archive [18] and the
AT&T graph library [2], as well as a number of generated grids. We added a
rectangular grid with 400 rows and 20 columns in order to test for distortions,
and two smaller squared grids, also in variants where corners of the grids are
connected to make the instances more difficult to unfold.

We compare results from multilevel layout computations and also single level
runs of the implemented layout methods in order to evaluate the gain from
the corresponding multilevel runs. In single level runs, all layout algorithms
are called using standard parameters, which are either obtained by empirical
evaluation or from the original publications. We adapt these settings for use
in the multilevel framework based on experiments on a small “tuning” subset
to investigate reasonable ranges for parameter settings. We did this mainly by
visual inspection of the resulting layouts.

For our study we ran the full set of method combinations for the three phases
on the full benchmark set and mainly evaluated the results of the statistical
analysis of the layout characteristics. We still did sample visual inspections,
both to check that our analysis is reasonable and to judge the quality when the
statistical values are ambiguous. In order to capture the quality of the drawings,
we analyze a couple of aesthetic criteria, including standard criteria as number of
edge crossings and drawing area, and also typical optimization goals of energy-
based layout methods like edge length deviation and node distribution.
1 More information: http://ls11-www.cs.tu-dortmund.de/staff/klein/gdmult10

http://ls11-www.cs.tu-dortmund.de/staff/klein/gdmult10
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3.1 Implementations

We implemented a multilevel framework within OGDF [1] that allows to freely
combine different strategies for the multilevel phases. Therefore it is not pos-
sible to do a fine tuning for combinations to speed up the computation, and
the runtime of our approach may be slightly inferior compared to particular
implementations of a single multilevel approach.

We used the energy-based layout algorithms provided by OGDF and imple-
mented various. coarsening and placement strategies (see below). In addition
to these main phases, the framework provides scaling and local postprocessing
at each drawing level. Although these steps may influence running time as well
as layout quality, we focus on the three main phases here and use the same
minimum scaling and postprocessing options for all combinations.

Coarsening methods. All coarsening methods we use take an approach, where
vertices on a level Gi are merged such that a single representative of a group of
vertices survives on the next level Gi+1.

(NM). The Null Merger does not merge any vertices and is used to simply
realize a single-level layout within the multilevel framework.

(RM). The Random Merger simply selects vertices randomly and merges them
with a random neighbor, until the size of the graph decreases by a prede-
fined factor. This method allows a good control over the number of levels
in the hierarchy and is used to have a minimal quality threshold that more
sophisticated methods should outperform.

(MM). The Matching Merger corresponds to the method described in [19],
where a matching is computed by visiting the vertices in a random order,
matching each unmatched vertex with a random unmatched neighbor if ex-
istent. The number of vertices in Gi+1 is then at least half the number of
the vertices in Gi.

(WMM). The Weighted Matching Merger is the weighted variant of MM de-
scribed in [19]. In order to achieve a uniform merging, the matching vertex
is chosen to be the neighbor with the smallest weight, where the weight of a
vertex v is the number of vertices on lower levels represented by v.

(ECM). The Edge Cover Merger is a variant of MM intended to eliminate the
problem that for certain graphs containing star-like subgraphs a linear num-
ber of levels may be necessary. In addition to the matching, an edge cover
is computed such that each contained edge is incident to at least one un-
matched vertex. These cover edges are then used to merge their end vertices.

(LBM). The Local Biconnected Merger is a variant of ECM that tries to avoid
situations where distortions are introduced, since—during the coarsening
process—vertices are merged to a cut vertex at which the layout method
may twist the orientation. LBM checks if biconnectivity may be lost in the
local neighborhood around the potential merging position.

(SM). The Solar Merger corresponds to the method described in [13], where the
vertices are partitioned into solar systems, classifying each vertex as either
sun, planet or moon. The resulting solar systems are then collapsed to the
sun vertex.
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(ISM). The Independent Set Merger corresponds to the strategy used within
the GRIP [10] approach. It uses a maximal independent set filtration V : V =
V0 ⊃ V1 ⊃ . . . ⊃ Vk with k = O(log n), such that Vi are the nodes on level
i. V1 is a maximal independent set of G and Vi is a maximal subset of Vi−1
such that the graph theoretical distance between any pair of its elements is
at least 2i−1+1. Gajer and Kobourov sped-up the computation using partial
BFS-trees, which achieves subquadratic runtime behavior in practice.

Placement methods. We have implemented the following placement methods,
most of which were already described in the literature.

(ZP). The Zero Placer uses the simplest strategy of all methods under investi-
gation. A vertex is placed at the same position as its representative in the
previous level. A small random offset avoids a zero distance between two
nodes which may pose problems for some layout methods.

(RP). The Random Placer places vertices at random positions within the small-
est circle containing all vertices around the barycenter of the current drawing.
Clearly, this placement strategy may hinder convergence and lead to distor-
tions in the drawing. It is introduced to give a minimum quality bound that
more sophisticated strategies should outperform.

(BP). A well-known method is the Barycenter Placer, which places a vertex
at the barycenter of its neighbors’ positions. The influence of the neighbor
position might be weighted, e.g., by the merging weight of the vertices. The
barycenter placement should help the energy-based layout algorithm to reach
an energy-minimal state because it at least partially considers the influence
of the neighbor positions on the movement force for the placed node.

(MP). As an alternative to BP, the Median Placer uses the median position
of the neighbor nodes for each coordinate axis. This smoothes the effect of
neighbors at outlier positions but still takes into account the strong influence
of the neighbor positions within the layout methods.

(SP). Developed for use within the FMMM approach [13], the Solar Placer is
able to use information from the merging phase of the solar merger. A new
vertex is placed on the direct line between two suns at the relative position
with respect to its position on the intersystem path between these suns. If
it lies on more than one intersystem path, the average value of all relevant
positions is used. In combination with other mergers, SP resembles ZP.

Layout methods. We investigate the performance of energy-based layout meth-
ods that where either implemented as single level methods in OGDF or described
as parts of multilevel approaches in the literature, as, e.g., the new multipole
method by Hachul. In addition, we implemented two variations which try to ex-
ploit the specific multilevel setting. Due to the runtime of the Kamada-Kawai ap-
proach, we test a combination of Kamada-Kawai (KK) and the two faster methods
Fruchterman-Reingold (FR) and Fast Multipole Embedder (FME), where Kamada-
Kawai is used for all levels but the last, where FR or FME is applied instead. For
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the even slower Davidson-Harel method, we compute the last layout using the
very fast New Multipole Method (NMM). Clearly, these combinations will only
pay off when the increase in the number of vertices at the last level is relatively
large. The following layout methods are used within our study:

(EAD). This method uses the spring model proposed by Eades [7] which rep-
resents the classical force directed approach.

(FR). The model proposed by Fruchterman and Reingold [9] is based on the
force-directed method, and uses a cooling scheme to limit the total dis-
placement. We used two variations: (FRE) uses the node weighting scheme
proposed by Walshaw [19] and (FR) is the original grid variant [9].

(KK). The force-directed method by Kamada and Kawai [16] that constitutes
an MDS approach, using the graph theoretic distance between vertices as
distance.

(NMM). The New Multipole Method introduced by Hachul and Jünger [13] that
uses a fast multipole approximation of the repulsive forces with O(N log N)
running time leading to an O(|V | log(|V |+ |E|)) overall running time.

(FME). The Fast Multipole Embedder method by Gronemann [12] uses the
same repulsive forces as NMM, but slightly modified attractive forces. The
repulsive forces are approximated with the fast multipole method using a
reduced quadtree construction and well-separated pair decomposition.

(DH). The layout algorithm introduced by Davidson and Harel [6], based on
simulated annealing; with a running time of O(|V |2|E|) by far the slowest
algorithm in our comparison.

3.2 Computational Results

We ran the selected combinations and single level layout algorithms on all test
graphs, except for Kamada-Kawai and Davidson-Harel, which were only run on
graphs with up to 2000 (DH), 6000 (KK), 12000 (KKFR), and 15000 (KKFME) nodes,
respectively, due to their space and running time requirements. We used a system
with eight quad-core AMD Opteron processors and 16GB memory.

Due to the huge amount of experimental data, we provide detailed results for
the most relevant methods and criteria only.

Discussion. We had a number of hypotheses regarding the performance of the
methods under investigation when we conducted the experiments. First of all,
we expected that combinations from established multilevel approaches should
outperform the other combinations at least to a certain extent. Also the methods
whose running time includes a significant layout independent computation, like
for example KK that comprises an all-pairs shortest paths computation, may not
benefit largely by the multilevel approach, whereas the methods FME and NMM
especially developed for this scenario should dominate the others.

Our experiments showed that a significant part of our benchmark set did not
pose a challenge to the layout algorithms, and that even single level calls were
competitive both in speed and quality at least for graphs up to a certain size; cf.
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Fig. 2. Especially the NMM method, actually developed for use within a multilevel
approach, could often deliver good results in single level runs. However, FME was
not able to compute layouts of similar quality with a single level.

From the visual inspection we found that the layouts computed by KK are often
the most pleasing, especially for the smaller graphs, but the gain compared to
NMM and EAD was not large enough to justify the additional time. E.g., for add32
KK computes a radial-like layout emphasizing the special structure of the graph
better than the best layouts w.r.t. number of crossings and area (see Fig. 3), but
also needed 255s compared to 7.7s and 6.1s for FME and NMM, respectively.

(a) SP+ISM+KK (b) MP+ISM+FME (c) BP+LBM+KKFME

Fig. 1. Drawings of the Grid 400 20 and uk graphs, which posed a challenge to many
combinations regarding the distortions

Grid and mesh-like structures were mostly an easy task for all algorithms, with
the exception of the narrow grid, which often suffered from folding in multilevel
runs. For some of the layout methods, a specific effect can be observed when
the narrow grid is laid out. The graph then is not drawn as a straight line but
seems to be compressed; see Fig. 1(b). We found that this is not the result of
bad unfolding, but due to the influence of the repulsion forces when vertices
from the next hierarchy level are reinserted—the placement close to their parent
vertex leads to large repulsion forces that distort the graph layout in the next
layout step. The planar graphs grid 400 20 and uk were problematic for nearly
all combinations, since they were subject to a large number of distortions; see
Fig. 1(a) and 1(c). LBM achieves slightly less crossings on average for these graphs,
at the cost of additional running time due to more levels.

Graphs like the flower and spider graphs did a better job in separating single-
and multilevel runs. Here it often came to crossings and foldings, and the single
level methods typically did not obtain an acceptable layout. LBM only computed
a single level for graph flower 5 and therefore also had inacceptable results.

The interpretation of the results regarding the placement methods did not
show big differences. We mainly introduced the random placer to better judge
the overall quality of the other methods. Nonetheless it produced good results in
most cases, but also some worst-case drawings with a huge number of crossings;
therefore it cannot be recommended. Most other placers achieved comparable
results without a clear winner; combining SP with SM was not better than any
combination with other placers.

For the merger methods, we had a look at the resulting number of levels; see
Fig. 4. Whereas RM, ECM, and ISM produced small and comparable numbers (less
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(a) BP,MM,KKFR (b) MP,SM,FME (c) KKS (d) EADS

Fig. 2. Layout of the planar graph 3elt computed with slowest (BP, MM, KKFR, 15 levels,
91s) and fastest overall combination (MP,SM,FME, 5 levels, 2.27s), compared to results of
fastest (EADS, 2.77s) and slowest (KKS, 158s) single level methods

(a) KK (b) NMM (c) FME

Fig. 3. Layout of graph add32 computed with NMM and KK, both with solar placer and
merger, and the layout with fewest crossings computed with MP, LBM and FME

than 15), LBM produced slightly more levels, with the exception of sierpinski 08
and Grid 400 20 with about 30 levels, graph flower 005 with only a single level.
SM was able to stay below 10 levels in all cases, with a minimum of 3 levels.

The matching mergers MM and WMM produced by far the most levels, especially
for the tree graphs, with a maximum of 81 and 76 for tree 06 05, and 33 and 31
for the smaller snowflake A. For the graphs with a large star subgraph (dg 1087
and snowflake C ), the number of levels (6565 and 2505) was prohibitively large,
making layout computation infeasible.

As expected, there is a clear correlation between the number of levels created
by the coarsening phase and the resulting running time. Depending on the graph
characteristics, the coarsening may introduce a huge number of levels linear in
the number of vertices in the graph. Even though the running time on each
of the levels should be much smaller than a single level run (due to the smaller
number of iterations and the earlier convergence), this may lead to a tremendous
increase in running time without a corresponding gain in layout quality.

Running Time. We first had a look at the overall average running time with
respect to the layout methods. Besides DH, which is extremely slow and only
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Fig. 4. Number of levels computed by the different merger methods

acceptable for the smallest graphs, we can identify three groups of layout meth-
ods: FME, NMM and EAD were always among the fastest layouts, dominating the FR
and KK variants, which are an order of magnitude faster than KK alone. Above a
graph size of about a few hundred vertices, the single level methods were clearly
inferior to the multilevel combinations, where FME was slightly faster than NMM
and EAD. We also compared the average running time of the mergers in combi-
nation with EAD, relative to SM (see Fig. 5); LBM and the matching mergers show
a number of peaks while the other mergers show a balanced behavior and are
always slower than SM.

Edge length. Our observation that KK often produced the most pleasing layouts
corresponds well with the values of the normalized standard deviations of the
edge lengths, where KK is clearly the best with nearly all values below 0.5, and
for the fast methods NMM has a slight advantage over FME and EAD; see Fig. 6.

Crossings. We found that the number of crossings was a very good indicator
of the layout quality, as layouts with unfolding problems often had a significant
larger number of crossings. An exception are graphs which required an extreme
number of crossings, e.g. because they contain complete subgraphs as the flower
graphs. We observed that the random placer sometimes caused a drastic increase
in crossings, especially in combination with the FME. We only report here the
number of crossings for a selection of mergers with layout method EAD; see Fig. 7.
For the large graphs with a large number of crossings on average, the difference
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between the mergers is minimal, whereas for smaller crossing numbers there is no
clear winner. SM and also LBM often produced quite good results in comparison.

Drawing Area. The drawing area alone is not a good quality indicator for
straight-line drawings, as layouts with a huge number of crossings and over-
laps may require a smaller area than drawings that reveal the graph structure
well. We therefore do not report on the drawing area here.

4 Conclusions

We presented an experimental study of multilevel layout methods within a frame-
work implemented in OGDF. Though there is no clear winning combination, a
number of layout methods, mergers and placers showed a good behavior. The
EAD layout algorithm, using the classical force model introduced by Eades worked
very well within the multilevel approach and lead to similar results, both in
quality and running time, as the models in NMM and FME specifically designed for
multilevel computations. Mergers ECM, SM and ISM often produced good results,
whereas the others showed bad worst-case behavior. It would be interesting to
investigate how the running time is influenced by the different merging due to
different graph characteristics, i.e. instead of just looking at the number of levels,
to also analyze the effect on the convergence on each level. In addition, instead of
looking at single criteria like edge crossings, the combination of different criteria
might give a better estimation of the layout quality.
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Abstract. In this work we consider the following problem. Given a pla-
nar graph G with maximum degree 4 and a function flex : E −→ N0 that
gives each edge a flexibility. Does G admit a planar embedding on the
grid such that each edge e has at most flex(e) bends? Note that in our
setting the combinatorial embedding of G is not fixed.

We give a polynomial-time algorithm for this problem when the flexi-
bility of each edge is positive. This includes as a special case the problem
of deciding whether G admits a drawing with at most one bend per edge.

1 Introduction

Orthogonal graph drawing is one of the most important techniques for the
human-readable visualization of complex data. Its æsthetic appeal derives from
its simplicity and straightforwardness. Since edges are required to be straight
orthogonal lines—which automatically yields good angular resolution and short
links—the human eye may easily adapt to the flow of an edge. The readability
of orthogonal drawings can be further enhanced in the absence of crossings, i.e.,
if the underlying data exhibits planar structure. Unfortunately, not all planar
graphs have an orthogonal drawing in which each edge may be represented by
a straight horizontal or vertical line. In order to be able to visualize all planar
graphs, nonetheless, we allow edges to have bends. Since bends obfuscate the
readability of orthogonal drawings, however, we are interested in minimizing the
number of bends on the edges. Previous approaches to orthogonal graph draw-
ing in the presence of bends focus on either the minimization of the maximum
number of bends per edge or the total number of bends in the drawing.

In typical applications, however, edges have varying importance for the read-
ability depending on their semantic and their importance for the application.
Thus, it is convenient to allow some edges to have more bends than others.

We consider the following orthogonal graph drawing problem, which we call
FlexDraw. Given a 4-planar graph G, i.e., G is planar and has maximum
degree 4, and for each edge e a non-negative integer flex(e), its flexibility. Does G
admit a planar embedding on the grid such that each edge e has at most flex(e)
bends? Such a drawing of G on the grid is called a flex-drawing. For a graph with
flex(e) > 0 for each edge e in G we shortly say that G has positive flexibility.

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 92–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The problem we consider generalizes a well-studied problem in orthogonal
graph drawing, namely the problem of deciding whether a given graph is β-
embeddable for some non-negative integer β. A 4-planar graph is β-embeddable
if it admits an embedding on the grid with at most β bends per edge.

Garg and Tamassia [6] show that it is NP-hard to decide 0-embeddability.
The reduction crucially relies on the ability to construct graphs with rigid em-
beddings. Later, we show that this is impossible if we allow at least one bend
per edge. This is a key observation which yields, among others, an efficient al-
gorithm for recognizing 1-embeddable graphs. For special cases, namely planar
graphs with maximum degree 3 and series-parallel graphs, Di Battista et al. [1]
gave an algorithm that minimizes the total number of bends and hence solves
0-embeddability. On the other hand, Biedl and Kant [2] show that every 4-planar
graph admits a drawing with at most two bends per edge with the only exception
of the octahedron, which requires an edge with three bends. Similar results are
obtained by Liu et al. [9].

Liu et al. [8] claim to have found a characterization of the planar graphs with
minimum degree 3 and maximum degree 4 that admit an orthogonal embedding
with at most one bend per edge. They also claim that this characterization can
be tested in polynomial time. Unfortunately, their paper does not include any
proofs and to the best of our knowledge a proof of these results did not appear.
Morgana et al. [10] characterize the class of plane graphs (i.e., planar graphs with
a given embedding) that admit a 1-bend embedding on the grid by forbidden
configurations. They also present a quadratic algorithm that either detects a
forbidden configuration or computes a 1-bend embedding.

If the combinatorial embedding of a 4-planar graph is given, Tamassia’s flow
network can be used to minimize the total number of bends [11]. Note that this
approach may yield drawings with a linear number of bends for some of the edges.
Given a combinatorial embedding that admits a 1-bend embedding, however, the
flow network can be modified in a straightforward manner to minimize the total
number of bends using at most one bend per edge.

The problem we consider involves considering all embeddings of a planar
graph. Many problems of this sort are NP-hard. For instance, 0-embeddability
is NP-hard [6], even though it can be decided efficiently if we are given an
embedding by minimizing the total number of bends.

Contribution and Outline. In this work we give an efficient algorithm that solves
FlexDraw for graphs with positive flexibility. Since FlexDraw contains the
problem of 1-embeddability as a special case this closes the complexity gap
between the NP-hardness result for 0-embeddability by Garg and Tamassia [6]
and the efficient algorithm for computing 2-embeddings by Biedl and Kant [2].

We present some preliminaries in Section 2. In Section 3 we study orthogonal
flex-drawings of graphs with a fixed embedding and introduce the maximum
rotation of a graph as a measure of how “flexible” it is. In Section 4 we show
that replacing certain subgraphs with graphs that behave similarly does not
change the maximum rotation. Based on this fact and the SPQR-tree we give an
algorithm that solves FlexDraw for biconnected 4-planar graphs with positive
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flexibility. We extend our algorithm to arbitrary 4-planar graphs with positive
flexibility in Section 5. For full proofs we refer the reader to the long version of
this article [3].

2 Preliminaries

Orthogonal representation. The orthogonal representation introduced by Tamas-
sia [11] describes orthogonal drawings of plane graphs, by listing the faces as
sequences of bends. The advantage of the orthogonal representation is, that it
neglects the lengths of the segments, thus it is possible to apply different opera-
tions on the drawing, without the need to worry about the exact geometry. Our
orthogonal representation is always normalized, i.e., each edge has only bends
in one direction; this slightly differs from the notion introduced by Tamassia.

The orthogonal representation of a plane graph G is defined as a set of lists
R = {R(f1), . . . ,R(fk)} with a list for each face fi of G. For each face fi

the list R(fi) is a circular list of edge descriptions containing the edges on the
boundary of fi in clockwise (counter-clockwise if fi is the external face) order.
Each description r ∈ R(fi) contains the following information: edge(r) denotes
the edge represented by r, bends(r) is an integer whose absolute value is the
number of 90◦-bends of edge(r), where positive numbers represent bends to
the right and negative numbers bends to the left. For a given edge description
r ∈ R(fi) we denote its successor in R(fi) by r′ and represent the angle α
between edge(r) and edge(r′) in fi by their rotation rot(r, r′) = 2 − α/90◦.
Every edge has exactly two edge descriptions, if r is one of them, the other
is denoted by r̄. Since each face forms a rectilinear polygon, every orthogonal
representation R of an orthogonal drawing has the following three properties.

I Each edge description r is consistent with r̄, i.e., bends(r̄) = − bends(r).
II The interior bends of any face fi sum up to 4 and the exterior bends to -4:

∑
r∈R(fi)

(bends(r) + rot(r, r′)) =

{
−4, if f is the external face,
+4, if f is an internal face.

III The angles around every node sum up to 360◦.

Given an orthogonal representation R of a graph, a corresponding orthogonal
drawing can be computed efficiently [11]. Hence, it is sufficient to work with
orthogonal representations. An orthogonal representation is valid for a given
flexibility function flex if | bends(r)| ≤ flex(edge(r)) for each edge description r.

For a planar graph G = (V, E) with orthogonal representation R and two
vertices s and t on the outer face f1, we denote by πR(s, t) the path in R(f1)
that connects s and t in counter-clockwise direction. Such a path π = π(s, t)
consists of consecutive edge descriptions r1, . . . , rk. We define the rotation of π
as

rotR(π) =
k∑

i=1

bends(ri) +
k−1∑
i=1

rot(ri, ri+1).



Orthogonal Graph Drawing with Flexibility Constraints 95

Moreover, if v is a vertex of G that has exactly one angle in the outer face,
we denote by rotR(v) the rotation of this angle. Note that, for a single edge
description r we have rot(r) = bends(r). If it is clear from the context which
orthogonal representation is meant we omit the indices of π and rot. The concept
of rotation is similar to the spirality defined by Di Battista et al. [1].

The value rot(π(s, t)) describes the shape of the path π(s, t) in the orthogonal
representation in terms of the angle between its start- and its endpoint. Fixing
the rotation of π(s, t), π(t, s) and the outer angles at s and t in a sense determines
the shape of the outer face. In Section 4, we will exploit this by replacing certain
subgraphs of G with simpler graphs whose outer faces have the same shapes.

Connectivity, st-graphs and the SPQR-tree. A graph is connected if there exists
a path between any pair of vertices. A separating k-set is a set of k vertices whose
removal disconnects the graph. Separating 1-sets and 2-sets are cutvertices and
separation pairs. A graph is biconnected if it does not have a cut vertex and
triconnected if it does not have a separation pair. The maximal biconnected
components of a graph are called blocks.

The block-cutvertex tree of a connected graph is a tree whose nodes are the
blocks and cutvertices of the graph. In the block-cutvertex tree a block B and a
cutvertex v are joined by an edge if v belongs to B.

A weak st-graph is a 4-planar graph G = (V, E) with two designated vertices
s and t such that the graph G + st is planar and has maximum degree 4. An
st-graph is a weak st-graph such that G + st is biconnected. An orthogonal
representation R of a (weak) st-graph with positive flexibility is valid if each
edge e has at most flex(e) bends and s and t are embedded on the outer face.
A valid orthogonal representation of a (weak) st-graph is tight if all angles at s
and t in inner faces are 90◦.

We distinguish st-graphs with deg(s), deg(t) ≤ 2 by the degrees of s and t.
An st-graph is of Type (1,1) if deg(s) = deg(t) = 1, it is of Type (1,2) if one
of them has degree 1 and the other one has degree 2 and it is of Type (2,2) if
deg(s) = deg(t) = 2.

To handle the decomposition of biconnected graphs into triconnected compo-
nents we use the SPQR-tree, which was introduced by Di Battista and Tamas-
sia [4,5]. A detailed description of the SPQR-tree can be found in the litera-
ture [4,5,7]. Here we just give a sketch and some notation.

The SPQR-tree T of a graph G is a rooted tree that is determined by the
split pairs of G. A split pair is a pair of vertices that are either connected by an
edge or that is a separation pair. In the latter case the corresponding connected
components are called the split components of the split pair.

The SPQR-tree T has four different types of nodes, namely S-,P-,Q- and R-
nodes. Each node μ of T has an associated biconnected multigraph, its skeleton,
denoted by skel(μ), which can be seen as a simplified version of the original
graph. An edge uv in skel(μ) indicates that {u, v} is a split pair and the edge
uv represents one or more split components of {u, v}. The pertinent graph of
a node μ, denoted by pert(μ) is the graph that is represented by the subtree
of T with root μ. Note that in particular each pertinent graph is an st-graph.



96 T. Bläsius et al.

s

t

f� fr
e1

e2
a) e2

s

t

f� fr

b) s

t

f� fr

c)

Fig. 1. An st-graph with flexibility 1 for all edges with rot(π(s, t)) = 1 and its flex
graph G× (a), after removal of bridge e1 (b), and removal of edge e2 (c)

The SPQR-tree of a graph G represents all planar embeddings of G in the sense
that choosing planar embeddings for all skeletons of T corresponds to a choosing
a planar embedding of G and vice versa.

Our approach. We start out with an observation. Let G be a 4-planar graph
with positive flexibility and let {s, t} be a split pair of G that splits G into two
subgraphs G1, G2 and let eref be an edge of G1. Let ρ be the maximum rotation
of π(s, t) over all embeddings of G2 where s and t are on the outer face.

If G2 is of Type (1,1) then obviously the following holds. If G admits a valid
orthogonal drawing with the given flexibility such that eref is embedded on the
outer face then also the graph G′ where G2 is replaced by an edge f with
flexibility ρ admits such a drawing. Graphs of Type (1,2) and (2,2) allow for
similar substitutions.

Thus we can substitute st-graphs of each type with a small gadget graph to
obtain a new graph G′ such that if G has a valid drawing then also G′ has one. We
show that the converse is also true, i.e., if the graph G′ admits such an embedding
then also G does. We then exploit this characterization algorithmically using the
SPQR-tree of G to successively replace subgraphs of G by simpler graphs.

3 The Maximum Rotation with a Fixed Embedding

The goal of this section is to derive a description of the valid orthogonal represen-
tations of a given (weak) st-graph with positive flexibility and a fixed embedding.
Namely, we prove that the values that can be obtained for rot(π(s, t)) form an
interval for these graphs. We show that if there exists a valid orthogonal repre-
sentationR with rotR(π(s, t)) ≥ 0 then there exists an orthogonal representation
R′ with rotR′(π(s, t)) = rotR(π(s, t))−1, which can be obtained from R by only
altering the number of bends on certain edges.

To model the possible changes of an orthogonal representation R of a (weak)
st-graph G that can be performed by only changing the number of bends on
edges we introduce the flex graph G× of G with respect to R, which is based on
the bidirected dual graph of G. Thus, the flex graph is a directed multigraph.
See Fig. 1a for an illustration. We start out by adding to G the edge st and
embed it into the outer face of G thus splitting the outer face into two faces
f� and fr, where f� is bounded by π(s, t) and the new edge {s, t} and fr is
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bounded by π(t, s) and {s, t}. We denote this graph by Ḡ and its dual graph
by Ḡ∗. We set V × = V (Ḡ∗) and we define E× as follows. For each edge e of
G denote its incident faces in Ḡ by fu and fv and let ru and rv be the edge
descriptions of e in R(fu) and R(fv), respectively. We add the edge (fu, fv) if
− flex(e) < bends(ru) and, analogously, we add (fv, fu) if − flex(e) < bends(rv).
Consider an edge (fu, fv) of G× and let ru and rv be the edge descriptions of
the corresponding edge e in G. The fact that (fu, fv) ∈ E× indicates that it
is possible to decrease bends(ru) (and thus increase bends(rv)) by at least 1
without violating the flexibility of e.

Assume that there exists a simple directed path from f� to fr in G×. Let f� =
f1, f2, . . . , fk = fr be this path. We construct a new orthogonal representation
R′ from R as follows. For each edge fifi+1, i = 1, . . . , k − 1, let ei be the
corresponding edge of G and let ri ∈ R(fi), r̄i ∈ R(fi+1) be its edge descriptions.
We obtain R′ fromR by decreasing bends(ri) by 1 and increasing bends(r̄i) by 1
for i = 1, . . . , k−1. First, it is clear that R′ satisfies Properties I and III since we
increase and decrease the number of bends consistently and we do not change
any angles at vertices. Property II holds since each face of G has either none
of its edge descriptions changed or exactly one of them is increased by 1 and
exactly one of them is decreased by 1. Moreover, since the path starts at f� and
ends at fr we have that rotR′(π(s, t)) = rotR(π(s, t)) − 1. We now show that
such a path exists if rot(π(s, t)) ≥ 0.

Lemma 1. Let G be a weak st-graph with positive flexibility and let R be a valid
orthogonal representation of G with rotR(π(s, t)) ≥ 0. Then the flex graph G×

contains a directed path from f� to fr.

Proof. Assume that G is a minimal counter example such that G× does not
contain such a path. First, we show that in G× there exists at least one edge
starting from f�. Let π(s, t) be composed of the edge descriptions r1, . . . , rk in
R(f), where f is the outer face of G. Then, by assumption we have rot(π(s, t)) =∑k

i=1 bends(ri)+
∑k−1

i=1 rot(ri, ri+1) ≥ 0. Since rot(ri, ri+1) ≤ 1 for i = 1, . . . , k−
1 we have that

∑k
i=1 bends(ri) ≥ −k + 1 and hence there is at least one rj with

bends(rj) ≥ 0. Hence, G× contains an edge corresponding to edge(rj) that starts
at f�. This shows that there always exists an edge (f�, fu) in G×. We distinguish
three types of edges (f�, fu). If fu = fr then (f�, fu) is the desired path.

If fu = f� the corresponding edge e of G is a bridge whose removal does not
disconnect s and t, see Fig. 1b, then let H be the connected component of G− e
containing s and t and let S be the restriction of R to H . For the outer face
of H we have that rotS(π(s, t)) + rotS(s) + rotS(π(t, s)) + rotS(t) = −4. Since
πR(t, s) = πS(t, s) we have that rotS(π(t, s)) = rotR(π(t, s)). Moreover, since
we only remove edges the angles at s and t (and thus their rotations) do not
decrease, i.e., we have rotS(t) ≤ rotR(t) and rotS(s) ≤ rotR(s). Hence, we have
that rotS(π(s, t)) ≥ −4− rotR(π(t, s)) − rotR(s)− rotR(t) = rotR(π(s, t)) ≥ 0.
Since H has fewer edges than G it is not a counter example and its flex graph
H× contains a path from f� to fr. Since H× is a subgraph of G× this contradicts
the assumption that G is a counter example.
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Otherwise, fu is an internal face of G, see Fig. 1c. Let e be the corresponding
edge of G. Let H := G−e and let S be the orthogonal representationR restricted
to H . Note that the flex graph of H× of H can be obtained from G× by removing
all edges between f� and fu and merging f� and fu into a single node f ′

�. As above
we obtain that rotS(π(s, t)) ≥ 0 and hence in H× there exists a path from f ′

� to
fr. The corresponding path in G× (after undoing the contraction of f� and fu)
either starts at f� or at fu and ends at fr. In the former case we have found our
path, in the latter case the path together with the edge (f�, fu) forms the desired
path. Again this contradicts the assumption that G is a counter example. ��

Recall that a valid orthogonal representation of a (weak) st-graph is tight if the
inner angles at s and t are 90◦. We show that a valid orthogonal representation
can be made tight without decreasing rot(π(s, t)).

Lemma 2. Let G be a weak st-graph with positive flexibility and let R be a valid
orthogonal representation. Then there exists a valid orthogonal representation
R′ of G with the same planar embedding such that R′ is tight, rotR′(π(s, t)) ≥
rotR(π(s, t)) and rotR′(π(t, s)) ≥ rotR(π(t, s)).

Let G be an st-graph with positive flexibility and a fixed planar embedding E .
Lemma 1 shows that the attainable values of rot(π(s, t)) for a given st-graph
with a fixed embedding form an interval. Hence, the set of possible rotations
can be described by the boundaries of this interval and we define the maximum
rotation of G with respect to E as maxrotE(G) = maxR∈Ω rotR(π(s, t)) where
Ω contains all valid orthogonal representations of G whose embedding is E .

The following theorem states that indeed the maximum rotation essentially
describes the orthogonal representations of st-graphs with fixed embedding and
positive flexibility.

Theorem 1. Let G be an st-graph with positive flexibility and fixed embedding E.
Then for each ρ ∈ {−1, . . . , maxrotE(G)} there exists a valid and tight orthogonal
representation R of G with planar embedding E such that rotR(π(s, t)) = ρ.

Using a variant of Tamassia’s flow network [11] the maximum rotation can be
computed efficiently for st-graphs with a fixed embedding.

Theorem 2. Given an st-graph G = (V, E) with fixed embedding E with s and
t on the outer face we can compute maxrotE(G) in O(n3/2) time or decide that
G does not admit a valid orthogonal representation with this embedding.

4 Biconnected Graphs

Until now the planar embedding of our input graph was fixed. Now, we assume
that this embedding is variable. Following the approach of the previous sec-
tion we define the maximum rotation of a (weak) st-graph G as maxrot(G) =
maxE∈Ψ maxrotE(G) where Ψ contains all planar embeddings of G such that s
and t are embedded on the outer face.
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In this section we show that maxrot(G) essentially describes all valid orthogo-
nal representations of G in the sense that substituting a subgraph H of G with a
different graph H ′ with maxrot(H) = maxrot(H ′) does not change maxrot(G).
We further use this substitution to give an algorithm that computes maxrot by
successively reducing the size of the graph. To handle the different possible pla-
nar embeddings we use the SPQR-tree and we substitute subgraphs with small
graphs that have only one embedding. We need the following technical lemma.

Lemma 3. Let G be an st-graph with deg(s), deg(t) ≤ 2 and let R be a tight
orthogonal representation of G. Then rot(π(s, t)) + rot(π(t, s)) = −x where x is
0,1 and 2 for graphs of Type (1,1), (1,2) and (2,2), respectively.

The following theorem shows that indeed the maximum rotation describes all
possible rotation values of an st-graph.

Theorem 3. Let G be an st-graph with positive flexibility and let ρ be an integer.
Then there exists a tight orthogonal representation R of G with rot(π(s, t)) = ρ
if and only if −maxrot(G) − x ≤ ρ ≤ maxrot(G) where x depends on the Type
of G and x = 0, 1, 2 for Types (1,1), (1,2) and (2,2), respectively.

Proof. We first show the only if part. Let R be any embedding of G. By the
definition of maxrot(G) we clearly have that rotR(π(s, t)) ≤ maxrot(G). By def-
inition we also have that rotR(π(t, s)) ≤ maxrot(G) (otherwise by mirroring we
could obtain an orthogonal representation R′ with rotR′(π(s, t)) > maxrot(G))
and hence with Lemma 3 we obtain − rot(π(s, t))− x ≤ maxrot(G).

It remains to show that for any given ρ in the range we can find a valid
orthogonal representation. If −1 ≤ ρ ≤ maxrot(G) we find an orthogonal
representation as follows. Let R be a valid orthogonal embedding of G with
rot(π(s, t)) = maxrot(G). By Lemma 2 we can reduce the inner angles at s and
t to 90◦ without decreasing rot(π(s, t)). By Theorem 1 we thus find the desired
orthogonal representation.

If ρ ≤ −2 by Lemma 3 we need to find a valid orthogonal representation R
with rotR(π(t, s)) = −ρ−x =: ρ′. Note that by the definitions of ρ and x we have
that 0 ≤ ρ′ ≤ maxrot(G). As above we obtain a valid orthogonal embedding R′

of G with rotR′(π(s, t)) = ρ′. We obtain R by mirroring R′. ��

Note that if s (or t) has degree 1 then its incident edge allows for three different
rotations and hence the range of valid rotations contains at least three integers.
This observation together with the theorem yields the following.

Corollary 1. Let G be an st-graph with positive flexibility. If G admits a valid
drawing then maxrot(G) ≥ 1 if G is of Type (1,1) or (1,2) and maxrot(G) ≥ −1
if G is of Type (2,2).

In particular, Theorem 3 shows that an st-graph G with deg(s) = deg(t) = 1
essentially behaves like a single edge st with flexibility maxrot(G). The following
lemma shows that we can replace any st-graph with deg(s), deg(t) ≤ 2 in a graph
G by a different st-graph of the same type and with the same maximum rotation
without changing maxrot(G). Fig. 2 illustrates the lemma and its proof.
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Fig. 2. Illustration of Lemma 4, st-graph G with split pair {u, v} splitting off H (left),
replacement of H with a tight orthogonal representation (middle) and replacement of
H with a graph H ′ with maxrot(H) = maxrot(H ′) = 3 (right)
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Fig. 3. Gadgets for st-graphs with maximum rotation ρ depending on the Type

Lemma 4. Let G = (V, E) be an st-graph with positive flexibility and let {u, v}
be a split pair of G that splits G into two components G− and H such that G−

contains s and t and H is an st-graph of Type (1,1), Type (1,2) or Type (2,2)
(with respect to vertices u and v). Let H ′ be an st-graph with designated vertices
u′, v′ of the same type as H with maxrot(H ′) = maxrot(H).

Then G admits a valid orthogonal representation R with rotR(π(s, t)) = ρ
if and only if the graph G′, which is obtained from G by replacing H with H ′

admits a valid orthogonal representation R′ with rotR′(π(s, t)) = ρ.

We now present three especially simple families of replacement graphs, called
gadgets, for st-graphs of Types (1,1), (1,2) and (2,2), respectively; see Fig. 3.
Let ρ be an integer. The graph Gρ

1,1 is simply an edge st with flex(st) = ρ.
The graph Gρ

1,2 has three vertices s, v, t and two edges between s and v, both
with flexibility 1, and the edge vt with flexibility ρ. The gadget Gρ

2,2 consists
of two parallel edges between s and t, both with flexibility ρ + 2. Note that
by Corollary 1 all edges of our gadgets have again positive flexibility and that
maxrot(Gρ

1,1) = maxrot(Gρ
1,2) = maxrot(Gρ

2,2) = ρ. Moreover, each of these
graphs has a unique embedding with s and t on the outer face.

We now describe an algorithm that computes maxrot(G) for a given st-graph
G with positive flexibility or decides that G does not admit a valid orthogonal
representation. We use the SPQR-tree T of G + st, rooted at the Q-node cor-
responding to st to represent all planar embeddings of G with s and t on the
outer face. Our algorithm processes the nodes of the SPQR-tree in a bottom-
up fashion and computes the maximum rotation of each pertinent graph from
the maximum rotations of the pertinent graphs of its children. For each node μ
we have a variable maxrot(μ). We will prove later that after processing a node
we have that maxrot(μ) = maxrot(pert(μ)). For each Q-node μ we initialize
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maxrot(μ) to be the flexibility of the corresponding edge. We now show how to
compute maxrot(μ) from the maximum rotations of its children. We make a case
distinction based on the type of μ.

If μ is an R-node let μ1, . . . , μk be the children of μ and let H1, . . . , Hk

be their pertinent graphs. Each virtual edge in skel(μ) represents at least one
incidence of an edge of G to its poles. Since skel(μ) is 3-connected each node
has at least degree 3 and hence no virtual edge can represent more than two
incidences, i.e., the nodes of skel(μ) have degree at most 2 in the subgraphs
of G that are represented by the virtual edges of μ. As we already know their
maximum rotations we can simply replace each of the graphs by a corresponding
gadget; we call the resulting graph Gμ. Since the embeddings of all gadgets are
completely symmetric it is enough to compute the maximum rotations of Gμ

for the only two embeddings E1 and E2 induced by the embeddings of skel(μ).
We set maxrot(μ) = max{maxrotE1(Gμ), maxrotE2(Gμ)} if one of them admits
a valid representation. Otherwise we stop and return “infeasible”.

If μ is a P-node we treat μ similar as in the case where μ is an R-node. Again,
we have that each pole has degree at least 3 in skel(μ) and hence no virtual edge
can represent more than two edge incidences. We replace each virtual edge with
the corresponding gadget and try all possible embeddings of skel(μ), which are
at most six and store the maximum rotation or stop if none of the embeddings
admits a valid representation.

If μ is an S-node let μ1, . . . , μk be the children of μ. We set maxrot(μ) =∑k
i=1 maxrot(μi) + k − 1.

Theorem 4. Given an st-graph G = (V, E) with positive flexibility it can be
checked in O(n3/2) time whether G admits a valid orthogonal representation. In
the positive case maxrot(G) can be computed within the same time complexity.

Proof. We prove the invariant that after processing node μ we have maxrot(μ) =
maxrot(pert(μ)). The proof is by induction on the height h of the SPQR-tree T
of G + st. Let μ be the node of T whose parent corresponds to st.

If h = 1 then G is a single edge e and μ its corresponding Q-node. Since
maxrot(G) = flex(e) the claim holds. For h > 1 let μ1, . . . , μk be the children of
μ. By induction we have that maxrot(μi) = maxrot(pert(μi)) for i = 1, . . . , k.
We make a case distinction based on the type of μ.

If μ is an R- or a P-node then by Lemma 4 we have that maxrot(Gμ) =
maxrot(pert(μ)) and since the gadgets have a unique embedding we consider all
relevant embeddings of Gμ. If none of the embeddings admits a valid orthogo-
nal representation then obviously also pert(μ) and thus G do not admit valid
orthogonal representations.

If μ is an S-node and the pertinent graphs of its children admit a valid or-
thogonal representation then there always exists a valid orthogonal represen-
tation of pert(μ). Let H1, . . . , Hk be the pertinent graphs of the children of
μ and let v1, . . . , vk+1 be the vertices in skel(μ) such that vi and vi+1 are
the poles of Hi. By Theorem 3 there exist tight orthogonal representations
R1, . . . ,Rk of H1, . . . , Hk with rot(π(vi, vi+1)) = maxrot(μi). We put these or-
thogonal representations together such that the angles at the nodes v2, . . . , vk on
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π(v1, vk+1) are 90◦. Hence we get an orthogonal representation of pert(μ) with
rot(π(v1, vk+1)) =

∑k
i=1 maxrot(μi) + k − 1. On the other hand if we had an

orthogonal representation of pert(μ) with a higher rotation then at least one of
its children μi would need to have a rotation that is bigger than maxrot(μi).

This proves the correctness of the algorithm. For the running time note that
the SPQR-tree can be computed in linear time [7]. The time for computing
maxrot(μ) for a given node μ from the maximum rotations of its children can
be done in O(| skel(μ)|3/2) time by Theorem 4 since skel(μ) has only a constant
number of embeddings. The total running-time follows from the fact that the
total size of all skeletons is in O(n). ��

This theorem can be used to solve FlexDraw for biconnected 4-planar graphs
with positive flexibility. Such a graph G admits a valid orthogonal representation
if and only if one of the graphs G − e, e ∈ E(G) (which is an st-graph with
respect to the endpoints of e) admits a valid orthogonal representation such
that e can be added to this representation. This can be done if and only if
maxrot(G − e) + flex(e) ≥ 2. This can be seen as follows. Let s and t be the
endpoints of e. Adding e to G − e creates a new interior face and the total
rotation of this new face needs to be 4. We can have at most two 90◦ angles
at s and t, hence maxrot(G − e) + flex(e) ≥ 2 is a necessary condition. On the
other hand, it is not hard to see that it is possible to add e to a tight orthogonal
representation of G − e. If flex(e) ≥ 3 then we can add e to a tight orthogonal
representation of G − e with rot(π(s, t)) = −1. Otherwise, we add e to a tight
orthogonal representation of G−e with rot(π(s, t)) = 2−flex(e), which is possible
since 2 − flex(e) ≥ −1 holds in this case. We obtain the following theorem; the
running time is due to O(n) applications of the algorithm for st-graphs.

Theorem 5. FlexDraw can be solved in time O(n5/2) for biconnected 4-planar
graphs with positive flexibility.

5 Connected Graphs

In this section we generalize our results to connected 4-planar graphs that are
not necessarily biconnected. We analyze the conditions under which orthogonal
representations sharing a cut vertex can be combined and use the block-cutvertex
tree to derive an algorithm that decides whether a connected 4-planar graph with
positive flexibility admits a valid orthogonal drawing.

Lemma 5. Let G be a connected 4-planar graph with cutvertex v and
corresponding cut components H1, . . . , Hk. Then G admits a valid orthogonal
representation if and only if all cut components Hi have valid orthogonal repre-
sentations such that at most one of them has v not on the outer face.

Now let G be a connected 4-planar graph with positive flexibility and B its
block-cutvertex tree. Let further B be a block of G that is a leaf in B and let v
be the unique cutvertex of B.
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If B is the whole graph G we return “true” if and only if G admits any valid
orthogonal representation. This can be checked with the algorithm from the
previous Section.

If B is not the whole graph G we check whether B admits a valid orthogonal
representation having v on its outer face. This can be done with the algorithm
from the previous section by rooting the SPQR-tree of B at all edges incident
to v. If it does admit such an embedding then by Lemma 5 G admits a valid
orthogonal embedding if and only if the graph G′, which is obtained from G
by removing the block B, admits a valid orthogonal embedding. We check G′

recursively. If B does not admit such an embedding we mark B and proceed
with another unmarked leaf. If we ever encounter another block B′ that has to
be marked we return “infeasible”. This is correct as in this case B has to be
embedded in the interior of B′ and vice versa, which is obviously impossible.
Checking a single block B can be done in O(|B|5/2) time by Theorem 5. Since
the total size of all blocks is in O(n) the total running-time is O(n5/2). This
proves the following theorem.

Theorem 6. FlexDraw can be solved in O(n5/2) time for 4-planar graphs with
positive flexibility.

Conclusion. We have shown that FlexDraw can be solved efficiently for graphs
with positive flexibility. Moreover, it is straightforward to generalize our algo-
rithm to positive flexibility functions flex : E −→ N∪{∞}, i.e., some edges may
be bent arbitrarily often. An interesting open question is whether FlexDraw
can still be handled if few edges are required to have no bends.
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Abstract. We explore the complexity of drawing ordered (k − 1)–ary
trees on grids with k directions for k ∈ {4, 6, 8} and within a given
area. This includes, e. g., ternary trees drawn on the orthogonal grid.
For aesthetically pleasing tree drawings on these grids, we addition-
ally present various restrictions similar to the common hierarchical case.
First, we generalize the NP–hardness of minimal width in hierarchical
drawings of ordered trees to (k − 1)–ary trees on k–grids and then we
generalize the Reingold and Tilford algorithm to k–grids.

1 Introduction

Drawing trees is an important area in graph drawing. There are three main styles:
hierarchical, radial and orthogonal [14]. For hierarchical tree drawings the linear
time algorithm by Reingold and Tilford [16] is commonly used. These drawings
fulfill various aesthetic criteria: vertices on the same level of the tree are placed
on a horizontal line, children maintain their order, parents are centered above
their children, a certain minimum horizontal distance is guaranteed, edges do
not cross, and isomorphic subtrees are identically drawn up to translation. The
resulting drawings require O(n2) area. However, the problem of determining the
minimum width of such drawings of ordered binary trees is NP–hard [1,18]. For
unordered trees the NP–hardness was shown by Marriott and Stuckey [15].

Another drawing style are radial drawings. Eades [8] presented an O(n) time
algorithm where the root is placed at the center of the drawing. The subtrees
are placed into sectors around the root, whose widths are determined by the
number of their leaves. The vertices are placed onto concentric circles and the
parents are centered with respect to their children. In contrast to hierarchical
drawings, this algorithm positions the vertices on real coordinates.

The third approach are drawings of trees on grids [6,7,12,17]. Vertices are
positioned on integer coordinates and the edges are either orthogonal straight
lines, arbitrary polylines, or orthogonal polylines. In the following we consider
drawings with edges as straight lines. In the case of unordered ternary trees on
the orthogonal grid it turns out to be a NP–hard problem to decide whether
or not there is a drawing with unit edge length or within given area [5]. The
same holds true for 5–ary trees on the hexagonal grid with six directions [3].
Additionally, the logic engine introduced by Eades and Whitesides [10] can be

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 105–116, 2011.
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(a) k = 4 (b) k = 8

(c) k = 6 (asymmetric) (d) k = 6 (symmetric)

Fig. 1. Patterns on the k–grids
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Fig. 2. Drawing styles

used to prove these NP–hardness results. If only three directions on the or-
thogonal grid are allowed for straight line edges (west, south, and east), the
algorithms use tree folding techniques to achieve tree drawings with a small area
[6,7,12,17]. Chan et. al. proved an area bound of O(n logn) for upward drawings
and of O(n log logn) for non–upward drawings (all four orthogonal directions)
of binary trees [6]. However, such drawings are not really pleasing since subtrees
may be arbitrarily nested. In h–v layouts using two directions on the orthogo-
nal grid complete binary trees only need O(n) area and arbitrary binary trees
need Θ(n logn) area [7]. For binary trees on the orthogonal grid Eades et. al. [9]
developed an O(n2) time algorithm for non order–preserving h–v drawings on
minimal area.

Ordered binary trees can be drawn on the orthogonal grid within O(n1.5)
area and Θ(n2) area is a tight bound for ternary trees [11]. In this work we draw
ordered (k − 1)–ary trees on k–grids with k ∈ {4, 6, 8} directions, e. g., ternary
trees on the orthogonal grid with four possible directions. We prove that it is
a NP–hard problem to decide whether or not an ordered (k − 1)–ary tree has
an order–preserving drawing on the k–grid within a given area. Moreover, we
introduce further aesthetics transferred from the hierarchical case [16] leading
to more comprehensible and symmetric tree drawings on k–grids. In most cases
we show that the decision problem remains NP–hard.

2 Preliminaries

The orthogonal grid is the infinite plane graph whose vertices have integer coor-
dinates and whose edges link pairs of vertices at unit distance either vertically
or horizontally. For all vertices (x, y) we extend the orthogonal grid with four di-
rections to the hexa grid with six directions by adding undirected edges between



Drawing Ordered (k − 1)–Ary Trees on k–Grids 107

(x, y) and (x+ 1, y− 1), see the underlying grid in Fig. 1(c). A further extension
is achieved by introducing undirected edges between integer coordinates (x, y)
and (x+ 1, y + 1) resulting in the octa grid with eight directions, see Fig. 1(b).
We call these three grids k–grids with k ∈ {4, 6, 8}. In the literature the hexa
grid is called hexagonal grid [2,13] and triangular grid [19] as well. The distance
between vertices u and v with coordinates (ux, uy) and (vx, vy) on a k–grid is
defined by ‖(u, v)‖ = max(|ux − vx|, |uy − vy|). A path v1 � vn is a sequence
of vertices (v1, . . . , vn) in a graph with edges (vi, vi+1) and i ∈ {1, . . . , n− 1}. A
straight path is a path where all edges have the same direction.

Let T = (V,E) be a tree and v ∈ V . We use Tv for the subtree with root v.
The depth of a vertex v is the number of edges of the path from the root to v.
The height of T is the depth of the deepest vertex. We call two vertices siblings if
they have the same parent. Trees with outdegree up to d are called d–ary trees.
A tree embedding Γk(T ) of a tree T on a k–grid is a mapping Γk which specifies
for each vertex v ∈ V distinct integer coordinates Γk(v) = (x, y) on a k–grid. Γk
maps an edge e ∈ E on a straight path Γk(e) of the k–grid whose endpoints are
the mappings of vertices linked by e. We use the terms drawing and embedding
synonymously. The length of an edge e ∈ E is the distance between its incident
vertices and the length of a straight path p is the sum of its edge lengths. We
call a vertex v of a (k− 1)–ary tree on a k–grid full if it has k− 1 children. The
relative direction of each outgoing edge of a full vertex is determined, due to the
given order of the tree. We call a path of full vertices full path.

Similar to the hierarchical drawing style of trees [16,18,20], we produce pla-
nar drawings preserving a given minimal distance and isomorphic subtrees. We
discuss drawings of ordered trees on k–grids which are order–preserving and sat-
isfy the given aesthetics. A tree drawing is locally uniform if for each vertex its
outgoing edges have the same length, see Fig. 2(b). In a pattern drawing of a
(k− 1)–ary tree on the k–grid, the edge directions of the outgoing edges of each
vertex have a prescribed angle with respect to the direction of the incoming edge,
see Fig. 2(c). All patterns for the various k–grids are shown in Fig. 1. The pat-
terns in Fig. 1(c) do not seem to be symmetric, but changing the underlying grid
by rotating two axes yields a more pleasing symmetric drawing, see Fig. 1(d).

In the following we define various restrictions for order–preserving tree draw-
ings on k–grids. Figure 2 presents an ordered tree T with vertices v and its
children v1, v2 and v3 in various order–preserving drawing styles. In Fig. 2(a)
we show a drawing of T where no additional restrictions are given, called Ok–
drawing. If a drawing is additionally local uniform on the k–grid, we call it an
OLk–drawing, see Fig. 2(b). We call an order–preserving pattern drawing on
a k–grid OPk–drawing. For an example see Fig. 2(c). If we combine these two
properties, we obtain order–preserving locally uniform pattern drawings, called
OLPk–drawings, see Fig. 2(d). In such drawings the children of a vertex v are
positioned axially symmetrical with respect to the incoming edge of v, which
is analogous to placing the parent centered over its children in the hierarchical
case. In Sect. 4 we introduce a drawing algorithm generating OLPk–drawings.
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3 NP–Hardness Results

We show that drawing (k−1)–ary trees within a given area is NP–hard for Ok–,
OL4–, OPk–, and OLPk–drawings. Clearly all these problems are in NP .

3.1 O–Drawings

In this section we prove the complexity of order–preserving drawings.

Theorem 1. Let k ∈ {4, 6, 8}, T be a rooted (k−1)–ary tree, and A ≥ 1. Deter-
mining the existence of an Ok–drawing Γk(T ) with area at most A is NP–hard.

We reduce 3–SAT by creating a (k−1)–ary tree for a given expression in 3–CNF
similarly to the hierarchical case [1,18] in polynomial time. Let the boolean
expression E consist of r clauses F1, . . . , Fr with n variables x1, . . . , xn. Each
clause Fi with i ∈ {1, . . . , r} has three literals, such that Fi = (yi,1 ∨ yi,2 ∨ yi,3).
A literal yi,j with j ∈ {1, 2, 3} in the i–th clause is either a variable xl or its
negation xl. In the following, we treat the case k = 8, i. e., we construct a 7–ary
tree on the octa grid. To simplify the representation of the tree we replace some
full vertices and their adjacent leaves by big vertices, called box vertices as can
be seen in Fig. 3(a) and 3(b). Any label of a box vertex or near a full vertex and
its leaves identifies the center vertex.

Variable tree. For a variable xl of E with l ∈ {1, . . . , n}, we define a unique
7–ary tree, called variable tree V T (xl) as the shaded part in Fig. 3(a). It is the
induced subtree of the root pl having a full path pl � u. The full path u1 � ul
is appended to u having length l depending on the index of xl. We append a
further full vertex h above u and a single vertex z at the top of the full vertex h.
Note that (the essential part of) the variable tree V T (xl) of Fig. 3(a) is shown
in Fig. 3(b) as well, but there the vertical outgoing edge of pl has length four
instead of three.

bi,j

s

pl z
h

f f1 fl fl+1 fn+1fn+2 fn+i+1

Pf

V T (xl)
Pbound

g g1 gl gn+1gn+2
Pg

u u1 ul

︸
︷
︷

︸

height
14︷ ︸︸ ︷

l full vertices

︷ ︸︸ ︷
i full vertices

︷ ︸︸ ︷
n+ 1 full vertices

(a) yi,j = xl

bi,j

s

z

h
V T (xl)

f f1

g g1

u u1

(b) yi,j = xl

Fig. 3. Literal tree LT (yi,j) of yi,j with j = 3
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Literal tree. The j–th literal yi,j in the i–th clause is either xl or xl. We define
a literal tree LT (yi,j), which contains the corresponding variable tree V T (xl).
The skeleton of a literal tree (see Fig. 3(a)) is the full path bi,j � fl+1. At
fl+1 we append a path of three full vertices Pbound in vertical direction and a
horizontal full path fl+2 � fn+i+1. A similar symmetrical construction is added
to the top from bi,j to gn+i+1 without the full path Pbound.

The full path Pbound ensures that if the skeleton of the literal tree is drawn
within minimal width, the variable tree is also drawn within minimal width. At
the child above the last vertex fn+i+1 we append a path Pf of j single vertices
(analogous Pg below gn+i+1) as can be seen in Fig. 3(a). Due to this construction,
all these subtrees are non isomorphic.

If yi,j = xl, the root pl of variable tree V T (xl) is appended to the vertex s, see
Fig. 3(a). Otherwise it is appended to bi,j , see Fig. 3(b), where just the essential
part of the corresponding literal tree is shown.

Minimal height and width of a literal tree: Let the incoming edge of bi,j face to
the east. Fig. 3(a) shows a drawing of LT (yi,j) with yi,j = xl of minimal height
14. Note that the directions of the edges are determined by the incoming edge of
the root bi,j, except for the edges of Pf and Pg. If all vertical edges have minimal
length, the drawing has minimal height 14, otherwise the height may increase.

The minimal height of the drawing of LT (yi,j) with yi,j = xl is also 14, as can
be seen in Fig. 3(b). Observe that if the vertical outgoing edge of pl gets length
three, the height of the drawing increases due to z. For both cases yi,j = xl and
yi,j = xl the drawing of LT (yi,j) has minimal width 8 + 3(n+ i+ 1) due to the
paths f � fn+i+1 and g � gn+i+1.

Clause tree. For a clause Fi = (yi,1 ∨ yi,2 ∨ yi,3), we define a 7–ary clause tree
CT (Fi) with root ri. Each clause tree CT (Fi) has the paths ri � ci, ci � ei,
and ri � di, see Fig. 4. CT (Fi) contains three literal trees LT (yi,1), LT (yi,2)
and LT (yi,3) with roots bi,1, bi,2 and bi,3, appended at the corresponding vertices
ai,1, ai,2 and ai,3. For an example in Fig. 4, the edge (a1,3, b1,3) connects the
first clause tree F1 with its third literal tree LT (y1,3).

Minimal height and width of a clause tree: Let the incoming edge of ri face to the
east. As explained above, all important edge directions are fixed in the drawing
then. Each clause tree CT (Fi) has a vertical path ci � ei, which determines the
minimal height 49, see Fig. 4. If each literal tree in a clause tree has at least
height 15, its height is at least 2 + 1 + 15 + 1 + 15 + 1 + 15 = 50. If at least one
literal tree is drawn with height 14 and the remaining two with height 15, the
clause tree can be drawn with height 49. The topmost horizontal path ri � ci
of full vertices determines the minimal width 14 + 3(n+ i+ 1).

Tree T (E). For a boolean expression E = F1 ∧ . . . ∧ Fr we define a 7–ary tree
T (E) with clause trees CT (F1), . . . , CT (Fr). The root r0 of T (E) is the parent
of the root r1 of the first clause tree. Each clause tree CT (Fi) is connected
with CT (Fi+1) (i ∈ {1, . . . , r − 1}) by an edge (ci, ri+1). At the last clause tree
CT (Fr) we add a leaf cr+1 to the center vertex cr directing to the east.
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Fig. 4. 7–ary tree T (E) on the octa grid of boolean expression E = (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x4) with assignment τ (x1) = τ (x2) = false and τ (x3) = τ (x4) = true

Minimal height and width of the tree T (E): Let the edge (r0, r1) face to the
east. The construction generates a horizontal straight path r0 � cr+1 at the top
ensuring minimal width of

∑r
i=1 (14 + 3(n+ i+ 1)) + (r − 1) = 1.5r2 + (3n +

19.5)r − 1. The height of Γ (T (E)) is the maximal height of the clause trees
because the clause trees are placed side by side with aligned top.

Lemma 1. Let E be a boolean expression in 3–CNF with r clauses and n vari-
ables. E is satisfiable if and only if there exists a drawing Γ (T (E)) of the
7–ary tree T (E) on the octa grid with area at most A = 49 · W with W =
1.5r2 + (3n+ 19.5)r − 1.

Proof. Let E be an arbitrary boolean expression in 3–CNF with n variables
x1, . . . , xn and r clauses F1, . . . , Fr. We construct the 7–ary tree T (E) as de-
scribed above.

’⇒’: Let τ : {x1, . . . , xn} → {true, false} be a satisfying assignment for the
boolean expression E. We construct a tree drawing Γ (T (E)) on the octa grid
with area at most A in the following way. If for a variable xl the assignment
τ(xl) = true is given, the variable tree V T (xl) is drawn as in Fig. 3(a) such that
all edges are drawn with minimal length. Otherwise for τ(xl) = false, we draw
all edges with minimal length, except the vertical outgoing edge of pl, which is
drawn with length four (see drawing of the variable tree in Fig. 3(b)).
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For every satisfied literal in E we construct a drawing with height 14, else 15.
Let yi,j be the j–th literal in the i–th clause of E. If yi,j = xl and xl = true,
we draw the literal tree LT (yi,j) as shown in Fig. 3(a), where each edge has
minimal length and, thus, the literal tree has minimal height 14. If yi,j = xl and
xl = false, we draw the outgoing edge of pl in V T (xl) with length four, such
that a vertical edge of the skeleton of LT (yi,j) has to be drawn with length four.
Therefore, the height of the literal tree is 15. If yi,j = xl and xl = true, in the
corresponding variable tree V T (xl) all edges are drawn with minimal length. In
this case the drawing of the literal tree needs height 15, due to z. The last of the
four cases is yi,j = xl and xl = false, where we draw the literal tree LT (yi,j) as
in Fig. 3(b) with height 14.

As one of the three literals of each Fi is satisfied, the corresponding literal
tree is drawn with height 14 and the other two literal trees have height at most
15, such that the height of the drawing of CT (Fi) is 49. Hence, the described
construction produces drawings of clause trees with height 49 and width 14 +
3(n + i + 1). The resulting drawing of T (E) is constructed within a rectangle
with height at most 49 and width at most W and, hence, area 49 ·W .

’⇐’: Let Γ ′(T (E)) be a drawing with area at most A = 49 ·W . Suppose, the
outgoing egde of r0 of the drawing of T (E) faces to the east determining all
essential edge directions. Due to the vertical and horizontal paths in Γ ′(T (E)),
the drawing has at least height 49 and at least width W . Thus, the height is
exactly 49 and the width exactly W . As a consequence each edge of the path
r1 � cr has minimal length three. For each Fi this determines the horizontal
distance between the vertical paths ri � di and ci � ei of CT (Fi). Thus, the
width of this clause tree is 14 + 3(n+ i+ 1).

In the following we construct a satisfying assignment τ ′(E) from this drawing
Γ ′(T (E)). As explained above in each clause tree CT (Fi) at least one literal
tree LT (yi,j) has to have height 14. We assign its variable xl the boolean value
satisfying the literal yi,j. This is well defined because it is not possible that the
literal trees of a non–negated and a negated literal with the same variable xl
both have height 14 due to the subtree isomorphism property.

Consequently if a literal tree LT (yi,j) with yi,j = xl is drawn with height 14,
we assign τ ′(xl) = true. For a drawing of a literal tree LT (yi,j) with xi,j = xl and
height 14, the outgoing edge of pl has at least length four. We assign τ ′(xl) =
false constructing a satisfiying assignment of the corresponding literal. Since
each clause tree CT (Fi) contains a literal tree with height 14, the assignment τ ′
satisfies each clause Fi. Thus, E is satisfied. If there are remaining variables xl
with no assignment yet, we assign an arbitrary boolean value. 
�

For an example, see Fig. 4, where the drawing of the 7–ary tree on the octa grid
within height 49 and width W = 1.5 · 22 + (3 · 4 + 19.5) · 2− 1 = 68 is given for
a boolean expression with two clauses (r = 2) and four variables (n = 4). The
variable x1 = false appears in the literal y1,1 of the first clause F1 and in y2,1 in
F2. The corresponding literal tree of the satisfied literal y1,1 = x1 has height 14.
LT (y2,1) has height 15 corresponding to the not satisfied literal y2,1. All literals
in F1 are satisfied and all literal trees in CT (F1) have height 14. Nevertheless,
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the minimal height of 49 of CT (F1) is ensured by the vertical path c1 � e1 of
box vertices. F2 has exactly one satisfied literal y2,2 and therefore one literal tree
LT (y2,2) with height 14.

We have shown that for k = 8 the problem of determining the existence of
a tree drawing on the octa grid on given area is NP–hard. To show the NP–
hardness for k = 6 and k = 4, the construction of the tree T (E) and the values
of the heights and widths have to be adjusted. The idea of the constructions
remains mainly the same. This completes the proof of Theorem 1.

3.2 OL–Drawings

Theorem 2. Let T be a rooted ternary tree and A ≥ 1. Determining the exis-
tence of an OL4–drawing Γ4(T ) with area at most A is NP–hard.

Proof. (Sketch). The construction for OL4–drawings of ternary trees on the or-
thogonal grid is similar to the construction of the O4–drawings from above. The
local–uniformity property enforces inserting interspaces between vertical paths
of the tree leading to other dimensions. 
�
For OL6– and OL8–drawings this approach does not work because the children
of two adjacent locally uniform full vertices would overlap.

3.3 OP– and OLP–Drawings

Theorem 3. Let k ∈ {4, 6, 8}, T be a rooted (k − 1)–ary tree, and A ≥ 1.
Determining the existence of an OPk– or an OLPk–drawing Γk(T ) with area at
most A is NP–hard.

Proof. The construction for OPk–drawings for k ∈ {4, 6, 8} is identical to the
Ok cases as these drawings already are pattern drawings.

To prove the cases OLPk for k ∈ {6, 8} we modify the reduction of Sect. 3.1
slightly. The edges connecting full vertices are splitted by one vertex. The out-
going edge of this vertex can have arbitrary length without contradicting the
aesthetic local uniformity since it has no siblings. In contrast to Sect. 3.1 and
3.2 the directions of the edges are completely defined by the patterns (see Fig. 1).
Thus, for each new vertex the outgoing edge has the same direction as the in-
coming edge. As a consequence of the construction, the resulting drawing has
the same dimensions and the proof is done analogously.

For OLP4–drawings the proof is identical to the proof of Theorem 2, because
an order–preserving local uniform pattern drawing is already given there. 
�

4 Heuristic

We present a heuristic in Algorithm 1 which produces drawings of (k − 1)–ary
trees on the k–grid. It is an improvement of our algorithm presented in [3] where
enclosing hexagons for distance calculations on the hexa grid were used. Our new



Drawing Ordered (k − 1)–Ary Trees on k–Grids 113

algorithm generally creates smaller drawings using more precise contours follow-
ing the Reingold and Tilford algorithm [16].

To describe the heuristic we need some definitions. Dk is a set of direction
vectors dependent on the current k–grid having 2k direction vectors. Let D4
be the set {(0,±1), (±1,±1), (±1, 0)}, D6 = D4 ∪

{±(1
2 , 1),±(1, 1

2 )
}

, and
D8 = D6 ∪

{±(1
2 ,−1),±(1,− 1

2 )
}

. For the vector (d1, d2) = D ∈ Dk we
define the orthogonal vector Do = (−d2, d1). A direction contour Cv,D with
D ∈ Dk is a (non–strictly) monotonic increasing polyline with respect to Do of
Γ (Tv). It is the set of vertices and segments of edges visible along the direction
vector D ∈ Dk. If two neighboring segments/points do not have the same end-
point, they are connected by a segment parallel to D. For an example see the
direction contour Cv4,D3,4 in Fig. 5(a). The direction contour Cl,D of a leaf l
trivially consists of the coordinates of l itself for all D ∈ Dk. We call the set of
all direction contours Cv,D with D ∈ Dk the contour Cv of the subtree Tv.

We use a preprocessing step creating a planar drawing on the k–grid. The
outgoing edges of each vertex v ∈ V get the initial length 3height(T )−depth(v)−1

as in [3], which guarantees planarity for all k–grids. The recursive Algorithm 1
is called with the root v of Tv as input. The output of each recursion step is
the contour of Cv of Tv and the updated edge lengths in the drawing of Tv. If v
is a leaf, its trivial contour is returned in line 1. The loop in line 1 realizes the
recursive call of getContour(vi) computing the contours Cvi of the subtrees Tvi
for each child vi. The outgoing edges of v are contracted in line 1, see details in
Sect. 4.1. Finally, the contour Cv of Tv is created by merging the contours of the
subtrees of the children of v in line 1, see details in Sect. 4.2.

4.1 Contract Edges

To determine the maximal contraction value of the outgoing edges of v, we
calculate the distances of all pairs of subtrees and the distances of subtrees to
incident edges of v. Let vi and vj be children of v with incoming edges ei and
ej , respectively. First, we calculate the minimal distance between the subtrees
Tvi and Tvj using the contours Cvi and Cvj . The difference of the unit vectors
D = −→ei / ‖−→ei ‖ −−→ej / ‖−→ej ‖ determines the necessary direction contours Cvi,D and
Cvj ,−D facing each other. We calculate the minimal distance minDist between
these two direction contours using a scanline moving along Do. Each bend of

Algorithm 1. getContour
Input: A vertex v of a planar drawing of a (k − 1)–ary tree on a k–grid
Output: Contour Cv of v and the contracted edge lengths of Tv
if v is a leaf then return trivial contour of v1
C ← ∅2
foreach child vi of v do C ← C ∪ {getContour(vi)}3
contractEdges(C, v) // contract outgoing edges of v4
Cv ← mergeContours(C, v)5
return Cv6
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Fig. 5. Contraction step of a drawing of a 7–ary tree on the octa grid

both direction contours is visited once to determine the distance to the other
direction contour along the direction D. The complexity of this step is linear in
the number of bends of the direction contours.

Proposition 1. The number of bends in a direction contour Cv,D of a subtree
Tv and direction D ∈ Dk is linear in the number of vertices in the subtree Tv.

The maximal possible contraction value of the two subtrees Tvi and Tvj is deter-
mined considering the behavior of the two vertices vi and vj while contracting
the edges ei and ej simultaneously by one. If the distance between the two ver-
tices is thereby reduced by two, e. g., Tv2 and Tv4 in Fig. 5(a), we could shorten
ei and ej by (minDist − 1)/2�, otherwise the distance is reduced by one and
we could shorten these edges by minDist − 1, e. g., Tv3 and Tv4 . This maxi-
mal contraction value is calculated for all pairs of subtrees of the children of
v. For an example see Fig. 5(a) where the distance between the two contours
Cv3,−D3,4 and Cv4,D3,4 is 7 and the edges e3 and e4 could be shortened by 6
without creating an intersection of the two subtrees. To calculate the distance
between the subtrees Tv2 and Tv4 the direction contours Cv2,−D2,4 and Cv4,D2,4

are used. The distance between these direction contours is 10. Since the sub-
trees move towards each other, the maximal contraction value considering these
two subtrees is  (10−1)

2 � = 4. To prevent the subtrees of the children of v from
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overlapping with its incident edges, we have to determine their distances as well.
In this case the distance minDist is calculated between all incident edges of v
and each direction contour Cvi,Di with direction Di = −→ei / ‖−→ei‖ ∈ Dk. The edge
ei could be shortened by minDist− 1. In Fig. 5(a) the distance between Cv2,D2

and e1 is 6. Thus, e2 could be shortened by 5. The final contraction value is the
minimum of all contraction values and we shorten the outgoing edges of v by
this value. In Fig. 5(a) the outgoing edges can be shortened by 4, see Fig. 5(b).

4.2 Merge Contours
After contracting the edges the contour Cv has to be calculated for each direction
D ∈ Dk. Let v1, . . . , vi with i ∈ {1, . . . , k − 1} be the children of v. Again, we
use a scanline procedure along Do. For the new contour Cv,D we use the union
of all “visible” parts of Cv1,D, . . . , Cvi,D and of the outgoing edges of v, as can
be seen in Fig. 5(b). There, the merge of the contours Cv2,D, Cv3,D, Cv4,D, the
edges (v, v2), (v, v3), and (v, v4) is shown. The merge step runs in linear time due
to Proposition 1. As can be seen in Fig. 5(b), a part of the edge (v, v4) becomes
part of the dashed direction contour Cv,D. The direction contour of Cv3,D is not
needed anymore because it is no longer visible along direction D.

4.3 Time Complexity
The calculation of the order–preserving locally uniform pattern drawing with
Algorithm 1 has time complexity of O(n2). In every recursion step of Algo-
rithm 1 the running time is in O(n) based on the scan line procedures of the
contraction step (Sect. 4.1) and the merge step (Sect. 4.2). The recursive method
getContour(v) is called for each v ∈ V exactly once.

Using techniques similar to those used in the Reingold and Tilford algorithm
[16] and a more sophisticated merge step, the time complexity of the algorithm
can be improved to O(n). Such an implementation is realized in Gravisto [4].

5 Conclusion

We have shown the NP–hardness for several problems of drawing trees on k–
grids within a given area forOk–,OPk–,OL4– andOLPk–drawings. Furthermore
we introduced a heuristic producing OLPk–drawings of ordered (k−1)–ary trees
on a k–grid guaranteeing the isomorphic subtree property. For the calculation
we use contours similar to threads of the algorithm of Reingold and Tilford [16].

For unordered trees we conjecture that the Bhatt and Cosmadakis technique
[5] or the logic engine [10] can be used to prove the NP–hardness of drawing
unordered trees on the octa grid within a given area or with unit edge length.
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Abstract. A regular edge labeling (REL) of an irreducible triangula-
tion G uniquely defines a rectangular dual of G. Rectangular duals find
applications in various areas: as floor plans of electronic chips, in architec-
tural designs, as rectangular cartograms, or as treemaps. An irreducible
triangulation can have many RELs and hence many rectangular duals.
Depending on the specific application different duals might be desirable.
In this paper we consider optimization problems on RELs and show how
to find optimal or near-optimal RELs for various quality criteria. Fur-
thermore, we give upper and lower bounds on the number of RELs.

1 Introduction

A rectangular partition of a rectangle R is a partition of R into a set R of non-
overlapping rectangles such that no four rectangles in R meet at one common
point. A rectangular dual of a plane graph G is a rectangular partition R, such
that (i) there is a one-to-one correspondence between the rectangles in R and
the nodes in G; (ii) two rectangles in R share a common boundary if and only if
the corresponding nodes in G are connected. Rectangular duals find applications
in various areas: as floor plans of electronic chips or in architectural designs, as
rectangular cartograms, or as treemaps.

Not every plane graph has a rectangular dual. A plane graph G has a rect-
angular dual R with four rectangles on the boundary of R if G is an irreducible
triangulation: (i) G is triangulated and the exterior face is a quadrangle; (ii) G
has no separating triangles (a 3-cycle with vertices both inside and outside the
cycle) [6,19]. A plane triangulated graph G has a rectangular dual if and only if
we can augment G with four external vertices such that the augmented graph is
an irreducible triangulation.

The equivalence classes of the rectangular duals of an irreducible triangulation
G correspond one-to-one to the regular edge labelings (RELs) of G. An REL of
an irreducible triangulation G is a partition of the interior edges of G into two
subsets of red and blue directed edges such that: (i) around each inner vertex in
clockwise order we have four contiguous sets of incoming blue edges, outgoing red
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Fig. 1. A subdivision and its augmented dual graph G, a regular edge labeling of G,
and a corresponding rectangular dual

edges, outgoing blue edges, and incoming red edges; (ii) the left exterior vertex
has only blue outgoing edges, the top exterior vertex has only red incoming
edges, the right exterior vertex has only blue incoming edges, and the bottom
exterior vertex has only red outgoing edges (see Fig. 1, red edges are dashed).
Kant and He [17] show how to find a regular edge labeling and construct the
corresponding rectangular dual in linear time. Regular edge labelings are also
studied by Fusy [15] who calls them transversal pairs of bipolar orientations.

An irreducible triangulation can have many RELs and hence many rectangular
duals. Depending on the specific application different duals might be desirable.
For example, sliceable duals—which can be obtained by recursively slicing a
rectangle by horizontal and vertical lines—are popular in VLSI design. Not every
irreducible triangulation has a sliceable dual. A full characterization of those
graphs that do is lacking, but Yeap and Sarrafzadeh [24] prove that irreducible
triangulations without separating 4-cycles have a sliceable dual. Area-universal
duals have the nice property that any assignment of areas to rectangles can
be realized by a combinatorially equivalent rectangular dual. Again, not every
irreducible triangulation has an area-universal dual, but Eppstein et al. [12] show
how to find such a dual if it exists.
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Fig. 2. Two different rectangular duals of the dual graph of a map of Europe. Luxem-
bourg and Moldavia have been removed and “sea regions” have been added to ensure
that the dual graph is an irreducible triangulation.
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We are particularly interested in the application of rectangular duals to rect-
angular cartograms. A rectangular cartogram is a thematic map where every
region is depicted as a rectangle. The area of the rectangles corresponds to a
geographic variable, such as population or GDP. In the context of rectangular
cartograms it is desirable that the direction of adjacency between the rectangles
of the dual follows the spatial relation of the regions of the underlying map as
closely as possible. Consider the two rectangular duals of the dual graph of a map
of Europe shown in Fig. 2. The left dual will lead to a recognizable cartogram,
whereas the right dual (with France east of Germany and Hungary north of
Austria) is useless as basis for a cartogram. Both rectangular duals stem from
the same graph G and correspond to two different valid RELs of G.

Previous work on finding RELs that lead to cartograms with geographically
suitable adjacency directions has focused on finding RELs that satisfy user-
specified constraints on a subset of the edges of the input graph. Eppstein and
Mumford [11] show how to find RELs that satisfy user-specified orientation con-
straints, if such labelings exist for the given set of constraints. Van Kreveld and
Speckmann [23] search through a user-specified subset of the RELs. Every label-
ing in this subset is considered acceptable with respect to adjacency directions.
In contrast, we consider quality measures that take all edges of G into account
and do not concentrate on a fixed, user-specified subset.

Results and organization. In this paper we consider optimization problems
on RELs and show how to find optimal or near-optimal RELs for various quality
criteria. Furthermore, we give upper and lower bounds on the number of RELs.

Let G be an irreducible triangulation with n vertices. Fusy [15] proves that
the RELs of G form a distributive lattice. Hence, one can use reverse search to
enumerate all RELs of G and so find optimal RELs for any given quality measure
(see Section 2). G can have exponentially many RELs; simple upper and lower
bounds are 8n and 2n−O(

√
n). Since the running time and hence the feasibility of

any enumeration algorithm depends on the number of RELs, we next give much
tighter bounds. In Section 3 we show that G has less than O(4.6807n) RELs
and that there are irreducible triangulations with Ω(3.0426n) RELs. Our upper
bound relies on Shearer’s entropy lemma [10]. Björklund et al. [7] recently used
this lemma to obtain (2 − ε)n algorithms for the TSP problem. In contrast to
our application of the lemma, they count vertex sets with certain properties and
crucially rely on bounded maximum degree.

In Section 4 we show how to find optimal or near-optimal RELs for rectan-
gular cartogram construction. This step of the construction pipeline has been
performed essentially manually in previous work and can now finally be fully
automated. We consider two quality criteria: (i) the relative position of the rect-
angles and (ii) the cartographic error of the resulting cartogram. For smaller
maps enumeration of all RELs is feasible and we can find optimal solutions.
For larger maps enumeration is infeasible. But the diameter of the distributive
lattice of RELs is comparatively small and hence simulated annealing performs
well. We present experimental results that show that our method can find RELs
which result in visually pleasing cartograms with small cartographic error.
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2 Useful Facts and Reverse Search

In this section we first collect some useful facts and definitions from previous
work and then show how to use reverse search to enumerate RELs.

left alternating

right alternating

Regular Edge Labelings. Fusy [15] gives the following facts. A
regular edge coloring is an REL, with the directions of the edges
omitted. A regular edge coloring uniquely determines an REL. An
alternating 4-cycle is an undirected 4-cycle in which the colors of
the edges alternate between red and blue. There are two kinds of
alternating 4-cycles, depending on the color of the interior edges
incident to the cycle. If these are the same color as the next clock-
wise cycle edge the cycle is right alternating, otherwise it is left
alternating. The set of RELs of a fixed irreducible triangulation
form a distributive lattice. The flip operation consists of switching
the edge colors inside a right alternating 4-cycle, turning it into a left alternating
4-cycle. An REL with no right alternating 4-cycle is called minimal ; it is at the
bottom of the distributive lattice. An REL induces no monochromatic triangles.

Perron-Frobenius theory. We need the following matrix theory for our lower
bound in Section 3.2. For details refer to textbooks on matrices [16,20]. We
assume from now on that A is a nonnegative n×n matrix. A matrix is nonnegative
if all its elements are nonnegative. The matrix A is irreducible if for each (i, j)
there is a k > 0 such that (Ak)ij > 0. Consider the directed graph with adjacency
matrix A, where we interpret every non-zero element as an adjacency. The matrix
A is irreducible if and only if the associated graph is strongly connected. The
matrix A is primitive if there is a k > 0 such that all elements of Ak are positive.
An irreducible matrix with a positive diagonal entry is primitive.

Theorem 1 ([16,20]). Let A be a primitive non-negative matrix with maximal
eigenvalue λ.

(a) λ is positive and the unique eigenvalue of largest absolute value. λ has a
positive eigenvector and is the only eigenvalue with nonnegative eigenvector.

(b) Let fA(x) = minxi �=0
(Ax)i

xi
and gA(x) = maxxi �=0

(Ax)i

xi
. Then fA(x) ≤ λ for

all nonnegative non-zero vectors x, and gA(x) ≥ λ for all positive vectors x.
If fA(x0) = λ then x0 is an eigenvector of A corresponding to λ.

(c) Let x be a nonnegative non-zero vector. Then Atx/‖Atx‖ converges to an ei-
genvector with eigenvalue λ. Thus, limt→∞ fA(Atx) = limt→∞ gA(Atx)=λ.

Reverse search, proposed by Avis and Fukuda [5], is a general method for
enumerating structures that match two criteria: (i) there must be a concept of
“neighboring” structures such that the structures form a graph; (ii) there must
be a local search operation that moves through this graph in a deterministic way
and ends up at a local optimum. The local search defines a forest on the graph, of
which each tree is rooted at a local optimum. If the local optima are known and
we have a way of enumerating all neighbors of a structure, then we can traverse
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these trees by starting at a local optimum and testing for each neighbor if the
local search ends up at our current structure when applied to that neighbor. If
it does, we traverse the edge and recurse.

RELs fit the criteria for reverse search: the distributive lattice is the underlying
graph structure and the flip operation is the local search that ends up at the
minimal labeling. We need to ensure only that the local search is deterministic.
We do so by imposing an ordering on the 4-cycles of the input graph. Then, if an
REL has multiple right alternating 4-cycles, we choose the first one according to
this ordering. One possible ordering is to sort the vertices lexicographically by
their x- and y-coordinates, use this ordering to sort the edges lexicographically
by their lower and higher endpoint, and finally use this order on the edges to
sort the cycles lexicographically by their lowest edge and the non-adjacent edge.

Avis and Fukuda give an implementation of their algorithm if the graph is
given by an adjacency oracle. For this we need an upper bound δ on the number
of neighbors a labeling can have: δ is the number of 4-cycles in the input graph.
The oracle returns the k-th neighbor of a labeling, or ⊥ if that neighbor does
not exist. Using our ordering on the 4-cycles of the input graph, we let the oracle
return the resulting labeling after flipping the colors of all edges inside the k-th
4-cycle, or ⊥ if this 4-cycle is not alternating.

The enumeration takes O(δt(oracle)Λ + t(local search)δΛ) time, where Λ is
the number of RELs. We have δ = O(n2), since a 4-cycle is defined by two edges.
The oracle takes linear time, as it might have to switch the color of linearly many
edges, and the local search takes quadratic time, as it might have to evaluate all
4-cycles to find the first right-alternating one, for a total of O(n4Λ).

Note that RELs can be represented as lower sets of a directed acyclic graph
with polynomial size (see [11,12]). Using this representation one can enumerate
RELs more efficiently per REL than with reverse search.

3 Counting Regular Edge Labelings

Here we prove that every irreducible triangulation with n vertices has less than
O(4.6807n) RELs and that there are irreducible triangulations with Ω(3.0426n)
RELs. Before we present our bounds, we review some additional related work.

Counting all RELs of all n-vertex irreducible triangulations yields the num-
ber of combinatorially different rectangular partitions with n rectangles which
is in Ω(11.56n) [4] and less or equal to 13.5n−1 [14]. If we consider partitions to
be identical when the incidence structure between rectangles and maximal line
segments is the same, then the number of different partitions is in Θ(8n/n4) [2].
RELs are related to bipolar orientations—orientations of the edges from a source
to a sink—but there is no direct relation between their numbers. Felsner and
Zickfeld [13] show that the number of bipolar orientations of a planar graph
is in O(3.97n) and that there are planar graphs with Ω(2.91n) bipolar orienta-
tions. Many other interesting substructures have been counted in planar graphs
(see [3,8,9]), but the upper bounds we obtained by adapting the techniques used
for these structures to RELs were far from the bounds that we present.
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3.1 Upper Bound

Let G = (V, E) be an irreducible triangulation on n vertices. Since an REL is
uniquely determined by a regular edge coloring and G has less than 3n edges, we
obtain a simple upper bound of 8n on the number of RELs of G. In the following
we refine this bound using Shearer’s entropy lemma.

Lemma 1 (Shearer’s entropy lemma [10]). Let S be a finite set and let
A1, . . . , Am be subsets of S such that every element of S is contained in at least
k of the A1, . . . , Am. Let F be a collection of subsets of S and let Fi = {F ∩Ai :
F ∈ F} for 1 ≤ i ≤ m. Then we have |F|k ≤

∏m
i=1 |Fi|.

Theorem 2. The number of regular edge labelings of an irreducible triangula-
tion is in O(4.6807n).

Proof (sketch). Let G = (V, E) be an irreducible triangulation on n vertices. Let
S be E with the four edges on the exterior face excluded. For a REL L of G let
E(L) be the set of blue edges in L. Let F := {E(L) | L is a REL of G}. Since
E(L) determines L, the number of RELs is |F|.

For the vertices vi of G, 1 ≤ i ≤ n, let Ai be the set of edges in S of the
triangles adjacent to vi. Every edge e ∈ S is in four of the sets Ai, namely in the
four sets corresponding to the vertices of the two triangles with e as edge. Let
Fi be the set of intersections of the set Ai with the sets E(L), i.e., Fi contains
all possible ways to choose blue edges around vi consistent with a REL. By
Lemma 1 the number of RELs is bounded by

∏n
i=1 |Fi|1/4.

It is easy to see that |Fi| ≤ 25
(
di

4

)
, where di is the degree of vi. Therefore, the

number of RELs of G is bounded by
(
32n

∏n
i=1

(
di

4

))1/4, which by convexity (and

using a bound of 6 on the average degree) is upper-bounded by
(
32n

(6
4

)n)1/4 =
480n/4 < 4.6807n. ��

3.2 Lower Bound

Our lower bound construction for the number of RELs uses triangulated grids.
We refer to the number of rows of a triangulated grid as its height h and to the
number of columns as its width w. We add four vertices to the outside of the
grid to turn it into an irreducible triangulation. The total number of vertices of
the augmented grid is n = hw + 4.

A simple lower bound stems from the following coloring: color all horizontal
edges blue and all vertical edges red. Then all diagonals can be colored indepen-
dently blue or red. This gives a lower bound of 2n−O(

√
n) for h = w. We prove a

stronger bound by coloring only the edges of every h′th row blue (for some choice
of h′) and by not coloring the edges of columns. We color the parts between the
blue rows independently. We assume for now that h = h′ + 1. Larger values of h
do not change the analysis, but do improve the lower bound.

We first describe all steps for h′ = 1, i.e., the edges of all rows are blue.
Then we generalize the method for larger values of h′. We color the triangulated
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grid from left to right. The edges of the first and last column must be colored
red, since a REL has no monochromatic triangles. Assume we have colored the
triangulated grid up to the ith column. We call the edges of the ith column and
the diagonals connecting to this column from the left the ith extended column.
How we can color the (i+1)st extended column depends on the colors of the ith
extended column (assuming we have no restriction from the right).

If h′ = 1, the previous column can be either red or
blue. The color of the previous diagonal does not influ-
ence our choices for this column. If the previous column
is red, we can make this column red too and choose
either color for the diagonal. We can also make this
column blue, but then the diagonal needs to be red to
satisfy the constraints around the top vertex of this column. Likewise, if the pre-
vious column was blue, our diagonal needs to be red to satisfy the constraints
around the bottom vertex of the previous column (see figure).

From
To

R

B

R B

2 1

1 1

We represent these coloring options as a transition matrix
M , using the column colors as state. With M we can compute
the number of colorings up to the ith extended column, by
starting in the red state and repeatedly multiplying it with M .
The resulting vector gives us the number of colorings ending
in a red or a blue edge. Since M has only positive elements, it is primitive. By
Theorem 1(c) the ratio between the number of labelings ending in a red column
up to the ith extended column and up to the (i+1)th extended column converges
towards the largest eigenvalue of M . This eigenvalue is φ + 1 > 2.61803. So for
any ε > 0, we obtain more than (φ + 1 − ε)w labelings for sufficiently large w.
Since we add two vertices to add a single column, this yields a lower bound of
(φ+1− ε)(n−4)/2 for sufficiently large w. If we now increase h, we need to add h
vertices to add h−1 columns, i.e., we get a lower bound of (φ+1−ε)(n−4)(h−1)/h,
which for sufficiently large h and w is larger than 2.61803n.

Next we consider h′ > 1. We need to extend the states with information
about the vertices, specifically how many color-switches there should be in the
next extended column. This information, together with the color of the bottom
column edge incident to this vertex, fixes the color of the top edge. So all we
need for the state is the color of the bottom edge of the column and the color
switches for each vertex, moving upwards. Some states that can be described in
this way cannot be part of an REL. We call such states infeasible. A state is
feasible if it can be reached from the initial all-red state (i.e., all vertical edges of
the column are red) and if the all-red state can be reached from it. Thus a state
is feasible if and only if it is in the strongly connected component of the all-red
state. We remove all infeasible states and consider only the reduced matrix.

The reduced matrix is primitive: it is irreducible by construction, and there is
always at least one transition from the all-red state to the all-red state (by col-
oring all diagonals and horizontal edges between the two columns blue). When
constructing a regular edge coloring, we start with the all-red column and color
the columns one by one. By Theorem 1(c) the number of regular edge colorings
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increases with each new column by a factor that converges to the largest eigen-
value of the transition matrix. Therefore, a strict lower bound on this eigenvalue
λh′ of this matrix gives us a strict lower bound for the growth rate per column
(ignoring a constant number of initial columns).

We obtain a strict lower bound on λh′ in the following way. We take a non-
negative non-zero state vector x, multiply it with the transition matrix, and
determine the minimum growth rate (for the non-zero elements). If the vector
is not an eigenvector of A (i.e., the growth rate is not the same for all non-zero
states) then the minimum growth rate is a strict lower bound on λh′ by The-
orem 1(b). As vector x we choose x0A

100, where A is the reduced transition
matrix and x0 is the vector with a 1 for the all-red state and 0 otherwise. Since
in all the cases that we consider the vector x is positive, we also obtain an upper
bound on λh′ by the maximum growth rate.

We now again use several copies of h′ rows beneath each other to obtain
a triangulated grid with w = h. The growth rate per vertex in this way ap-
proaches λ

1/h′

h′ . As strict lower bound on λ
1/h′

h′ we obtain 2.61803, 2.80921,
2.90453, 2.96067, 2.99746, 3.0233, and 3.04263 for h′ = 1, 2, 3, 4, 5, 6, 7. Note
that the lower bounds are rounded down, and that our upper bounds on λ

1/h′

h′

equal the (unrounded) lower bounds up to at least 10 significant digits.

Theorem 3. The number of regular edge labelings of the triangulated grid is in
Ω(3.04263n).

4 Optimizing RELs for Rectangular Cartograms

In this section, we describe how to find good RELs for rectangular cartogram
construction and present experimental results. We follow the iterative linear
programming method presented in [22] to build a cartogram from an REL.

Quality criteria. We consider two quality criteria: (i) the relative position
of the rectangles and (ii) the cartographic error of the resulting cartogram.
Furthermore, we bound the aspect ratio of all rectangles by 20.

To make a rectangular cartogram as recognizable as possible, it is important
that the directions of adjacency between the rectangles of the cartogram follow
the spatial relation of the regions of the underlying map. An REL specifies the
relative directions between adjacent rectangles. We use two quality measures
to quantify how well an REL matches the spatial relations between regions in
the input map. The first method is based on region centroids [21]. It considers
the direction between the centroids of two regions as the “true” direction of
adjacency and expresses the quality of a labeling in terms of the deviation from
this direction, measured as the smallest angle between the two directions (see
Fig. 3 left). The centroid measure tends to perform quite well, although it can
lead to counter-intuitive results in some cases. Our second measure is based on
the bounding boxes of the regions. The bounding box separation distance (bb sep
dist) measures the distance these bounding boxes would need to be moved to
separate them in the direction indicated by the edge label (see Fig. 3 right). We
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α
α

α α

d d

d d

Fig. 3. The angle deviation and bounding box separation distance measures

consider both the average and the maximum error over all edges of a labeling,
as well as a binary version of the measures: determine the “correct” color and
direction for each edge and count the number of edges that are labeled correctly.

Another important quality criterion for cartograms is the cartographic error
which is defined as |Ac − As|/As, where Ac is the area of the region in the
cartogram and As is the specified area of that region, given by the geographic
variable to be shown. As before, we consider both the maximum and average
cartographic error over all regions of the cartogram.

We strive to construct cartograms of low cartographic error and high recog-
nizability, hence we consider various ways to combine the two quality criteria.
One possibility is to take weighted averages, another to bound the maximum
cartographic error at 5%, while minimizing the maximum angle deviation or
bounding box separation distance, which we call a bounded measure.
Enumeration. The augmented dual graph of the provinces of the Netherlands
has only 408 RELs which can be enumerated in less than a second. Nevertheless
the map is large enough to show interesting trends. Fig. 4 shows cartograms
produced by enumerating all labelings and taking the best one according to var-
ious quality measures. The first data set shows total population on January 1st
2009, the second total livestock in 2009. Both were obtained from the Centraal
Bureau voor de Statistiek. The color of a region corresponds to its cartographic
error, with red indicating that the region is too small and blue indicating that
it is too big. The saturation corresponds to the magnitude of the error, a white
region has a cartographic error of at most 5%, while a fully saturated region
has a cartographic error of over 30%. The figure clearly shows that combining
recognizability measures with cartographic error leads to the best results.
Simulated Annealing. For larger maps—the countries of Europe or the con-
tiguous states of the US—enumeration is infeasible (both have over four billion
labelings). Fortunately the diameter of the lattice of RELs is comparatively small
(115 for Europe and 278 for the US) and hence simulated annealing [18] per-
forms well. We use a typical static cooling schedule and the original acceptance
probability [1] for our experiments. Specifically, given two labelings with quali-
ties q1 and q2, the probability that our algorithm moves to the worse labeling is
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average angle dev maximum angle dev binary angle dev bounded angle dev average carto error

average bb sep dist maximum bb sep dist binary bb sep dist bounded bb sep dist maximum carto error

Total population:

Total livestock:

average angle dev maximum angle dev binary angle dev bounded angle dev average carto error

average bb sep dist maximum bb sep dist binary bb sep dist bounded bb sep dist maximum carto error

Fig. 4. Population and livestock cartograms of the provinces of the Netherlands

e|q1−q2|/T , where T is the current temperature. We let the temperature decrease
exponentially as T = 0.002t, where t is the current time, varying from 0 ini-
tially to 1 at the end of the process. The base factor of 0.002 can be increased to
produce more random behaviour, or decreased to produce more greedy behavior.

Fig. 5 shows some results of our implementation1. Note that we produce
only cartograms with correct adjacencies. The top two figures show the total
population of the countries of Europe on January 1st 2008, with the populations
of Luxembourg and Moldova added to Belgium and Ukraine, respectively. The
left cartogram was generated by bounding the maximum cartographic error on
5% and optimizing the average angle deviation, which results in an average

1 Data from Eurostat http://epp.eurostat.ec.europa.eu/portal/page/portal/

eurostat/home, the CIA World Factbook https://www.cia.gov/library/

publications/the-world-factbook/index.html, and the the US Census Bureau
http://www.census.gov/

http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home
https://www.cia.gov/library/publications/the-world-factbook/index.html
https://www.cia.gov/library/publications/the-world-factbook/index.html
http://www.census.gov/
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Fig. 5. Top row: two population cartograms of Europe. Bottom row: highway lengths
of Europe and population of the US. All with correct adjacencies.

cartographic error of 0.004 and a maximum cartographic error of 0.023. The
right cartogram was generated by solely optimizing the average cartographic
error. Note that most of the relative positions are suitable while the cartogram
still obtains a maximum cartographic error of 0.000.

The two bottom cartograms are produced with the same maps and data sets
as the cartograms by Speckmann et al. [22] which were based on user-specified
RELs. Both cartograms were generated by optimizing a weighted average of the
maximum cartographic error with weight 0.7 and the average bb sep distance
with weight 0.3. The left cartogram shows the total highway length in Europe. It
has an average cartographic error of 0.001 and a maximum error of 0.003. This
is a significant improvement over the results of Speckmann et al. who achieved
0.022 average and 0.166 maximum cartographic error. The last cartogram shows
the total population of the US. It has an average cartographic error of 0.031
and a maximum error of only 0.140. Again a significant improvement over the
results of Speckmann et al. of 0.086 average and 0.873 maximum cartographic
error. We can conclude that our fully automated method to find optimal RELs for
cartogram construction performs significantly better than semi-manual methods.
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19. Koźmiński, K., Kinnen, E.: Rectangular dual of planar graphs. Networks 5, 145–157
(1985)

20. Minc, H.: Nonnegative Matrices. Wiley-Interscience, Hoboken (1988)
21. Peuquet, D., Ci-Xiang, Z.: An algorithm to determine the directional relationship

between arbitrarily-shaped polygons in the plane. Pattern Rec. 20(1), 65–74 (1987)
22. Speckmann, B., van Kreveld, M., Florisson, S.: A linear programming approach to

rectangular cartograms. In: Progress in Spatial Data Handling: Proc. 12th Inter-
national Symposium on Spatial Data Handling, pp. 529–546 (2006)

23. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Computational Ge-
ometry: Theory and Applications 37(3), 175–187 (2007)

24. Yeap, G.K.H., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM
J. Discrete Mathematics 8(2), 258–280 (1995)



Drawing Graphs in the Plane with
a Prescribed Outer Face and Polynomial Area

Erin W. Chambers1, David Eppstein2,
Michael T. Goodrich2, and Maarten Löffler2
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Abstract. We study the classic graph drawing problem of drawing a
planar graph using straight-line edges with a prescribed convex polygon
as the outer face. Unlike previous algorithms for this problem, which may
produce drawings with exponential area, our method produces drawings
with polynomial area. In addition, we allow for collinear points on the
boundary, provided such vertices do not create overlapping edges. Thus,
we solve an open problem of Duncan et al., which, when combined with
their work, implies that we can produce a planar straight-line drawing
of a combinatorially-embedded genus-g graph with the graph’s canonical
polygonal schema drawn as a convex polygonal external face.

1 Introduction

The study of planar graphs has been a driving force for graph theory, graph
algorithms, and graph drawing. Our interest in this paper is in drawing planar
graphs without edge crossings using straight line segments for edges, in such
a way that all faces are convex polygons and the outer face is a given shape.
Figure 1 shows an example.

G

(a)

G
P

(b)

G
P

(c)

Fig. 1. Our problem: given (a) a combinatorially embedded planar graph G and (b) a
polygon P with certain vertices on the outer face of G marked as corresponding to
vertices of P , find (c) a straight-line embedding of G that uses P as the shape of its
outer face
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Related Prior Work. In seminal work that has been highly influential in
graph drawing, Tutte [19,20] shows that one can draw any planar graph using
non-crossing straight-line edges so that the outer face is drawn as a prescribed
convex polygon. This work has influenced a host of subsequent papers, and,
according to Google Scholar, Tutte’s 1963 paper has been directly cited over
600 times. His work has influenced many methods for drawing maximal pla-
nar graphs [10,17,21] and drawing planar graphs using straight-line edges (e.g.,
see [3,4,5,11,7,14,1,16]). Moreover, not only has Tutte’s result itself been highly
influential, but because his method is based on a force-directed layout method,
it has also influenced a considerable amount of work on force-directed layouts
(e.g., see [6,8,12,13,18]).

Unfortunately, one drawback of Tutte’s algorithm is that it can result in
drawings with exponential area. This area blowup is not inherent in planar
straight-line drawing, but known polynomial-area straight-line drawing algo-
rithms (e.g., [4,5,11,14,16]) lose a critical feature of Tutte’s drawing algorithm,
in that none of them allow the vertices of a planar graph’s outer face to be
placed on a prescribed convex polygon. Becker and Hotz [2], on the other hand,
show how to draw a planar graph with minimum weighted edge length and pre-
scribed outer face but, like Tutte’s method, their method may produce drawings
with exponential area. Duncan et al. [9] pose as an open problem whether an
algorithm can produce polynomial-area straight-line drawings with vertices on
a given convex polygon.

One motivation for prescribing the outer face of a planar drawing comes from
a common way of drawing planar representations of genus-g graphs. Namely, if a
graph G is embedded into a genus-g topological surface, the surface may be cut
along the edges and vertices of 2g fundamental cycles in G to form a topological
disk (known as a canonical polygonal schema), with a boundary that is made
up of 4g paths (with multiple copies of the vertices on the fundamental cycles).
Moreover, as shown by Duncan et al. [9], G can be cut in this way so that each of
these 4g paths is chord-free, that is, so that there are no non-path edges between
two vertices strictly internal to the same path. The standard way of drawing this
unfolded version of such an embedding, in the topology literature (e.g., see [15]),
is to draw the disk as a convex polygon with each of its 4g boundary paths
drawn as a straight line segment: the geometric shape is used to make clear the
pattern in which the surface was cut to form a disk. Fortunately, given Tutte’s
seminal result, it is possible to draw any chord-free canonical polygonal schema
in this way. The drawback of using Tutte’s algorithm for this purpose is that the
resulting drawing may have exponential area. Thus, we are interested in drawing
the unfolded embedding in polynomial area and in polynomial time.

Our Results. In this paper, we describe an algorithm for drawing a planar
graph with a prescribed outer face shape. The input consists of an embedded
planar graph G, a partition of the outer face of the embedding into a set S of
k chord-free paths, and a k-sided polygon P ; the output of our algorithm is a
drawing of G within P with each path in S drawn along an edge of P . Given the
above-mentioned prior result of Duncan et al. [9], for finding chord-free canonical
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polygonal schemas, our result implies that we can solve their open problem: any
graph G combinatorially embedded in a genus-g surface has a polynomial-area
straight-line planar drawing of a canonical polygonal schema S for G, drawn as
a 4g-sided convex polygon P with the vertices of each path in S drawn along an
edge of P .

2 Preliminaries

In this paper, we show how to draw a graph with a given boundary with coordin-
ates of polynomial magnitude. Before treating the main construction, though,
we show in this section that we can equivalently state the problem in terms
of the resolution of the graph. Furthermore, we recall some known results and
concepts.

Resolution. Instead of drawing a graph with integer coordinates of small total
size, we will make a drawing with real coordinates that stays within a fixed
region (inside the input polygon) with a large resolution.

Let G be a graph that is embedded in IR2 with straight line segments as
edges. We define the resolution of G to be the shortest distance between either
two vertices of the graph, or between a vertex and a non-incident edge. The
diameter of G is the largest distance between two vertices of the graph.

We begin by establishing a relation between resolution and size, which basi-
cally says that drawing a graph G with small diameter and large resolution also
results in another drawing with integer coordinates and small size. Generally it
may not be possible to scale a given input polygon such that its coordinates
become integers, so we need to do some rounding. We say that two drawings of
G are combinatorially equivalent if their topology is the same, and any collinear
adjacent edges in one drawing are also collinear in the other. We say two draw-
ings are ε-equivalent if the distance between the locations of each vertex of G in
the two drawings is at most ε. The following lemma is proved in the full version
of our paper, which can be found online at arXiv:1009.0088.

Lemma 1. Let G be a graph, and let Γ be a drawing of G without crossings, with
constant resolution, and with diameter D. Then there exists another drawing Γ ′

of G with integer coordinates and diameter O(D2), such that a scaled copy of Γ ′

with diameter D is both combinatorially equivalent and O(1)-equivalent to Γ .

Note that, for a fixed input polygon with non-integer vertex coordinates, this
perturbation may slightly modify its shape, since it may not be possible to find
a similar copy of the polygon with integer vertex coordinates.

Now, let Q be a set of points in the plane. We define the potential resolution
of Q to be the resolution of the complete graph on Q. Similarly, for a polygon
P , we define its potential resolution to be the potential resolution of its set of
vertices. Clearly, the resolution of any drawing we can achieve will depend on the
potential resolution of the input polygon, because the drawing could be forced
to include any edge of the complete graph.

http://arxiv.org/abs/1009.0088
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Next, we make an observation about the nature of the potential resolution of
convex polygons.

Observation 1. If P is a convex polygon, then the potential resolution of P is
the minimum over the vertices of P of the distance between that vertex and the
line through its two neighboring vertices.

Thus, for a convex polygon P to allow for a drawing of polynomial area in its
interior, we insist that P has a polynomially-bounded aspect ratio. It cannot be
arbitrarily thin and still support a polynomial-area drawing in its interior.

Alpha Cuts. We now describe a useful property of the potential resolution of
a convex polygon, namely that it can be “distributed” any way we want when
cutting the polygon into smaller parts. This will be made more precise later. We
first make another observation about convex polygons, which is proven in the
full version.

Lemma 2. Let P be a convex polygon, v a vertex of P , e an edge incident to
v, and α ∈ (0, 1) a number. Let P ′ be a copy of P where v has been replaced by
v′ by moving v along e over a fraction α of the length of e. Then the potential
resolution of P ′ is at least 1− α times the potential resolution of P .

Let P be a convex polygon. We will show that we can cut P into two smaller
polygons, “distributing” its potential resolution in any way we want.

We define an α-cut of P to be a directed line � that splits P into two smaller
polygons, such that if an edge e of P is intersected by �, the length of the piece
of e to the left of � is α times the length of e, and the piece of e to the right of
� is (1 − α) times the length of e. For a given convex polygon and two features
of its boundary (either vertices or edges), there is a unique α-cut that cuts the
polygon through those two features in order.

Lemma 3. Suppose we are given a convex polygon P of resolution d, two fea-
tures (either vertices or edges) of P , and a fraction 0 < α < 1. Let � be the α-cut
through the two given features that cuts P into a piece Pl to the left of � and a
piece Pr to the right of �. Then the potential resolution of Pl is at least αd unless
the two features are two adjacent edges that meet to the right of �. Similarly,
the potential resolution of Pr is at least (1−α)d unless the two features are two
adjacent edges that meet to the left of �.

Proof: We will argue about the potential resolution of Pl; the argument for Pr

is symmetric. We prove this lemma by applying Lemma 2 to the new vertices
of Pl. If both features where � cuts through P are vertices, then all vertices of
Pl are also vertices of P and clearly the potential resolution can only become
better. However, if one or both of the features are edges, then Pl has one or two
new vertices that are not part of P . Figure 2 shows three different cases that
can occur. To solve this problem, we first alter P to a different polygon P ′ that
has the new vertices. Let u′ be the place where � enters P and u the closest



Drawing Graphs in the Plane with a Prescribed Outer Face 133

� P

(a)

�

P

(b)

�

P

(c)

Fig. 2. (a) An α-cut through a vertex and an edge. (b) An α-cut through two non-
adjacent edges. (c) An α-cut through two adjacent edges.

vertex below � along the boundary to it (possibly u = u′), and similarly let v′

be the place where � exits P and v the closest vertex below �. Now, we create
P ′ by moving u to u′ and v to v′. Clearly, both will move a fraction 1−α along
their edges, so by Lemma 2 P ′ has a potential resolution of at most α times the
potential resolution of P . Therefore, the potential resolution of Pl can only be
larger.

The only exception is when u = v; in this case we cannot move the vertex to
two new places simultaneously, but we have to create two new vertices. Indeed,
the result is not true in that case, since the two new vertices can be arbitrarily
close to each other as α comes arbitrarily close to 1, so the resolution of P ′

cannot be expressed in terms of α, as can be seen in Figure 2c. �

Combinatorial Embeddings. Let G = (V, E) be a plane graph. That is,
we consider the combinatorial structure of G’s embedding to be fixed, but we
are free to move its vertices and edges around. Let F be the set of faces of G,
excluding the outer face. We make some definitions about faces. We say that a
subset F ′ ⊂ F induces a subgraph G〈F ′〉 of G that consists of all vertices and
edges that are incident to the faces in F ′. A subset F ′ ⊂ F is said to be vertex-
connected if G〈F ′〉 is connected; it is said to be edge-connected if the dual graph
induced by the dual vertices of F ′ is connected. In other words, faces that share
an edge are both edge-connected and vertex-connected, but faces that share only
a vertex are only vertex-connected.

We recall a lemma from [9], rephrased in terms of the faces of the graph:

Lemma 4. Given an embedded plane graph G that is fully triangulated except
for the external face and two edges e1 and e2 on that external face, it is possible
to partition the faces of G into three sets F1, F2, R ⊂ F such that:

1. All vertices of G are in either G〈F1〉 or G〈F2〉.
2. R is edge-connected and contains the faces incident to e1 and e2.
3. F1 and F2 are both vertex-connected.
4. The edge-connected components of F1 and F2 all share an edge with the outer

face of G.

Intuitively, R is a path of faces that goes from e1 to e2 and that splits the
remaining faces into two sets F1 and F2.
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3 Drawing a Graph with a Given Boundary

We are now ready to formally state the problem and describe the algorithm to
solve it.

The Problem. Let G be a triangulated planar graph with a given combinatorial
embedding, and let B be the cycle that bounds the outer face of G. Let f be a
map from a subset of the vertices of B to points in the plane, such that these
points are in convex position and their order along their convex hull is the same
as their order along B.

We say that a map g from all vertices of G to points in the plane respects f
when:

1. The vertices mapped by f are also mapped by g to the same points; these
define a convex polygon P .

2. The remaining vertices of B are mapped to the corresponding edges of P .
3. The remaining vertices of G are mapped to the interior of P .
4. If all edges are drawn as straight line segments, they cause no crossings or

incidences not present in G.

An example of a respectful embedding was shown in Figure 1.
The input to our problem is a pair (G, f). We will use the notations B and

P as above. We will further define F to be the set of faces of G, excluding the
outer face. We define s = |F |, the number of internal faces, to be the size of the
problem. We define d to be the resolution of the problem, which is the potential
resolution of P (recall, that is the resolution of the complete graph on the corners
of P ). Our goal is to compute a mapping g that respects f and such that the
resolution of the embedded graph is bounded by some function of s and d.

Observe that it will not be possible to do so when there are any edges in G
between two vertices that have to be on the same edge of P . Therefore, we call
a problem invalid if this is the case. We will show that for any valid problem,
we can find an embedding with a polynomially bounded resolution.

The Main Idea. We want to solve the problem using divide-and-conquer. The
idea is to divide P into smaller convex polygons, and F into smaller sets of
faces, and map each subset of faces to one of the smaller regions. Then we need
to decide which vertices of G are mapped to the new corners of the smaller
regions, and solve the subproblems.

A first idea would be to find a path in G between two vertices of B, and lay
that out on a straight line, resulting in a split of P into two smaller polygons
and solve the two subproblems. There are two issues with this approach though.
First, the vertices on the new straight line have to be placed the same way in
the two subproblems, which means they are not independent. Second, if there
are any chords on this path one of the subproblems will become invalid.

To avoid these issues, we will not split along a single path, but along two
paths next to each other. The region between these two paths, which we call a
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(a) (b) (c)

Fig. 3. (a) A “river” (a path in the dual graph that does not reuse any vertices of the
primal graph) between two edges on B. (b) The river banks have chords, and so we
include the area behind the chords in the river. (c) We fix the vertices on the river
boundary that are on B, and draw the rest of the river boundary straight. This results
in three smaller problems, plus the area of the river itself.

river, has a controlled structure, which means that we can always complete the
interior independently of how the vertices on the edges were placed. Furthermore,
if these paths have any chords, we shortcut them along the chords and show how
to deal with the added complexity of the river. Because the river may touch the
boundary of P in more places, the problem may be decomposed into more than
two subproblems. Figure 3(a) shows an example instance, and Figure 3(c) shows
a possible decomposition where some vertices on the boundary of P have been
fixed, and the paths between them are made straight.

We assume the input is a valid problem with size s and resolution d. We
will keep as an invariant the ratio d/s, and show in the next paragraph how
to subdivide a problem into smaller valid problems with the same (or better)
ratio, plus an extra region (the river). We then recursively solve the independent
subproblems, which results in a placement of all vertices that are not in the
interior of the river. Finally, we show in the paragraph after that how to we
place the vertices inside the river.

Splitting a Problem. Let (G, P ) be a valid problem of size s and resolution
d, and suppose that P has at least four sides.

Let e1 and e2 be two edges of B that lie on two sides of P that are not
consecutive. Note that the endpoints of e1 and e2 are not necessarily fixed yet.
Now, by Lemma 4, there exists a path of faces that connects e1 to e2, such that
the boundary of this path does not have any repeated vertices. Let R be the union
of the faces of F on this path. We call R a river ; Figure 3(a) shows an example.
This river may touch B in other points than e1 and e2, so it can subdivide the
faces of F into any number of edge-connected subsets (apart from the river itself).
We will assign a separate subproblem to each such edge-connected component.

We would like to straighten the banks of the river, but this may lead to invalid
subproblems if these banks have any chords. Therefore, we identify any chords
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that the river has (note that they can only appear on the outside of the river,
since the river forms a dual path), and we add the faces of F behind those chords
to R. Similarly, if one of the paths touches a side of P more than once, it would
create a subproblem that would be flattened. To avoid that, we also incorporate
such a region into the river (even though the straight side that lies alongside P
is not necessarily a chord).

Next, we count the numbers of faces in the river, as well as those in the parts
outside the river. Then we fix the vertices where the river touches P by cutting
off the subproblems, using α-cuts where α is the fraction of faces inside the
subproblem. Now, by Lemma 3, if we have a problem with parameters s and
d, we will construct subproblems with the same (or better) ratio d/s. Finally
we straighten the new banks of the river, so that the subproblems have proper
convex boundaries. Figure 3 shows an example.

Lemma 5. Given a valid problem (F, P ) where P has at least four sides, We
can subdivide F and P into disjoint sequences F1, F2, . . . , Fh and P1, P2, . . . , Ph

such that each (G〈Fi〉, Pi) is a valid subproblem with ratio d/s, and such that
the remainders F ′ = F \

⋃
Fi and P ′ = P \

⋃
Pi have the following properties:

1. F ′ and P ′ also have ratio d/s.
2. The vertices of G〈F ′〉 that are not vertices of G〈

⋃
Fi〉 form internally 3-

connected components that share at least two vertices of G〈
⋃

Fi〉 .

Proof: For the first part of the lemma, we need to show that the subproblems
(Fi, Pi) are valid and have a resolution/size ratio at least as good as d/s. First,
we define the polygons Pi by applying Lemma 3 to P with α = si/s (that is, the
fraction of faces in F that is in Fi). The lemma ensures that the new polygons
have potential resolution at least di ≥ αd = sid/s, so clearly di/si ≥ d/s as
required. Second, recall that a subproblem is valid if it does not have any chords
between two vertices that have to be drawn on the same side of Pi. For those
sides of Pi that are part of P , we already know there are no chords because
(G, P ) was valid. For the new sides, we explicitly added all faces behind chords
to the river R = F ′.

For the second part of the lemma, we need to show that R has the right
ratio and that the internal vertices of the river form 3-connected components
that share two or more vertices with the boundary of the river. If we denote
sR = |R| to be the size of the river and dR to be the potential resolution of the
region P ′ in which it is to be drawn, then by Lemma 3, the potential resolution
of R after repeatedly slicing off subpolygons is at least dR = dΠ(1 − si/s) ≥
d(1 − Σ(si/s)) = sRd/s, so dR/sR ≥ d/s. Finally, since we chose R according
to Lemma 4, all edge-connected pieces of F outside R share an edge with the
outer face. In particular, this means that the boundary of R does not touch itself
and that any subgraphs sliced off by chords are 3-connected and share exactly
two vertices with the boundary of R. Furthermore, if the boundary of R touches
the same side of P multiple times, then the edge-connected components of F
between that side of P and R are also 3-connected and share at least two vertices
with the new boundary of R. �
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(a) (b) (c)

Fig. 4. (a) The interior of a river, after all vertices on its boundary have already been
fixed by recursive calls to the split algorithm. (b) Because of the structure given by the
river, we can identify small areas inside the river that we draw using the de Fraysseix-
Pach-Pollack algorithm. (c) If we flatten the triangular drawings enough, every vertex
is able to see every other one (in fact we need slightly more, namely that no visibility
ray comes too close to any vertex). Note that in the figure the drawing is not flat
enough for that, but otherwise the structure would become too hard to see. In fact, in
this particular case no flattening at all would be required.

When P has only 3 sides, we cannot choose two edges e1 and e2 on non-adjacent
sides of P . However, we can still use the same basic idea; we just have to be
careful because of the special case in Lemma 3. So, let c be a corner of P and
let e1 and e2 be edges of B on the sides incident to c. The lemma does not give
a bound on the resolution of the region on the far side of c. So, let e1 and e2 be
the edges furthest away from c. Since P is a triangle, the two vertices of B on
the far side on e1 and e2 are the other two corners of P , and they are joined by
a side of P . This means that the region between the river and this side will be
included into the river, and there will be no subproblem on the far side of c.

Fixing a River. It remains to show how to place the interior vertices of a river
after all vertices on its boundary have been placed recursively. Again, we are
given a graph G and a polygon P that it has to be drawn in (P is the boundary
of the river, and G is the part of the graph that has to be drawn in it), but
there are two important differences with the initial problem: First, now we know
that all vertices of B have already been fixed (not only those on the corners but
also those on the boundary of P ). Second, we know that the remaining vertices
of G have a very specific structure, namely, they form internally 2-connected
components that share at least two vertices with the vertices fixed along an
edge. Furthermore, since all fixed vertices have been placed using the algorithm
above, they will never be closer than d/n to each other. This means we can draw
these components using the algorithm by de Fraysseix, Pach and Pollack [11], and
rotate and scale them to fit inside P . We can then flatten them more such that all
remaining edges (between fixed vertices on the boundary of P or vertices on the
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de Fraysseix-Pach-Pollack drawings) can be drawn with straight line segments.
Figure 4 shows an example.

Lemma 6. Given a river placement problem, of size s and resolution d, we can
lay out the graph with a resolution of Ω(d/n3).

Proof: The polygon P that forms a river and the graph G to be drawn in it are
formed by subdividing a bigger problem according to Lemma 5. Then, the ver-
tices on the boundary of P are placed during recursive calls to smaller problems.
All vertices have to be corners of the polygons of at least one such subproblem,
and by our invariant all these problems have ratio d/s, so the distance between
any two fixed vertices cannot be smaller than d/n. Furthermore, Lemma 5 tells
us that the vertices of G can be grouped into a number of subsets V1, V2, . . . , Vh

such that each Vi is internally biconnected, and there is a sequence of at least two
vertices in Vi that is in B, so that have been fixed on the boundary of P . Note
that there will be exactly two if such a component came from a chord on the
river bank, but there can be more if it came from the river touching a side of P
multiple times. Then we can place these subgraphs using the de Fraysseix-Pach-
Pollack algorithm, starting from the vertices that are already fixed (at distance
at least d/n) and adding the remaining O(|Vi|) vertices one by one using 45◦

edges. This results in a drawing with resolution which can be roughly bounded
by d/n2. Then, it is sufficient to squeeze them by a factor of n to make sure that
they do not block any potential edges, and a further factor 2 to make sure that
the tips of the de Fraysseix-Pach-Pollack drawings are in fact far enough away
from these potential edges, guaranteeing a good resolution. This means the final
resolution of the drawing is Ω(d/n3). �

Putting It Together. To conclude, Lemmas 5 and 6 together imply:

Theorem 1. Given a plane graph G with n vertices, a convex polygon P with
k corners and potential resolution d, and a map f that maps k vertices on the
outer face of G to the k corners of P , we can draw a G in P respecting f using
resolution Ω(d/n3).

Note that by Lemma 1, we can rephrase this in terms of the more standard area
of a drawing when all coordinates are integer.

Corollary 1. Given a plane graph G with n vertices, a convex polygon P with
k corners, at integer coordinates and diameter D, and a map f that maps k
vertices on the outer face of G to the k corners of P , we can draw the graph
G in a scaled copy P ′ of P that has diameter O(D4n6), such that the drawing
respects f and uses only integer coordinates for the vertices of G.

Proof: First of all, if P has only integer coordinate vertices and diameter D,
then its potential resolution is at least 1/D. To see this, consider a triangle
formed by any three vertices of P : this triangle has area at least 1/2, and in any
direction its base is at most D so its height must be at least 1/D.
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Now, by Theorem 1, we can draw G inside P with resolution Ω(d/n3) =
Ω(1/Dn3). Then we can blow up the drawing by a factor Dn3, which results
in a polygon of diameter D2n3 and at least constant resolution. By Lemma 1,
there now also exists a drawing of G in a polygon P ′ of diameter O(D4n6) in
which all vertices are drawn with integer coordinates. �

4 Application to Drawing Graphs of Genus g

As mentioned in the introduction, graphs of genus g are often drawn in the
plane by drawing their polygonal schema in a prescribed convex polygon. Using
a canonical polygon schema allows us to draw this outer face as a regular 4g-gon
that has some pairs of edges identified, and vertices on those edges duplicated.
Given previous work by Duncan et al. [9], which gives us a chord-free polygonal
schema derived from a graph G combinatorially-embedded in a genus-g surface,
we can complete a straight-line drawing of G using a given regular 4g-gon as
its external face, by applying Theorem 1 and rounding the coordinates. Since a
regular 4g-gon with diameter 1 has potential resolution Θ(1/g2), this results in
a drawing with resolution Ω(1/g2n3).

Of course, there is a slight issue with using a regular 4g-gon: not every regular
k-gon can be embedded with fractional coordinates. So, such a drawing will not
fit exactly on an integer grid no matter how big the integers can be. Thus, we
either have to allow for non-integer coordinates or allow for a slight (possibly
imperceptible) perturbation of the vertex coordinates.

5 Conclusion and Open Problems

We have given an algorithm to draw any combinatorially-embedded planar graph
with a prescribed convex shape as its outer face and polynomial area, with
respect to the potential resolution of that shape. That is, if the given convex
shape has a polynomially-bounded aspect ratio, then we can draw the graph G
in its interior using polynomial area. We have not made a strenuous attempt
to optimize the exponent in this area bound. So a natural open problem is to
determine the upper and lower bound limits of this function.

With respect to drawings of genus-g graphs using a canonical polygonal
schema, although our construction guarantees that copies of corresponding ver-
tices appearing in multiple boundary paths will be drawn in the same relative
order, it does not guarantee that they will be drawn with the same inter-path
distances. So another open problem is whether one can extend our algorithm to
draw such paths with matching inter-path distances for corresponding vertices.
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Abstract. Many practical applications for drawing graphs are modeled
by directed graphs with domain specific constraints. In this paper, we
consider the problem of drawing directed hypergraphs with (and with-
out) port constraints, which cover multiple real-world graph drawing
applications like data flow diagrams and electric schematics.

Most existing algorithms for drawing hypergraphs with port con-
straints are adaptions of the framework originally proposed by Sugiyama
et al. in 1981 for simple directed graphs. Recently, a practical approach
for upward crossing minimization of directed graphs based on the pla-
narization method was proposed [7]. With respect to the number of
arc crossings, it clearly outperforms prior (mostly layering-based) ap-
proaches. We show how to adopt this idea for hypergraphs with given
port constraints, obtaining an upward-planar representation (UPR) of
the input hypergraph where crossings are modeled by dummy nodes.

Furthermore, we present the new problem of computing an orthogonal
upward drawing with minimal number of crossings from such an UPR,
and show that it can be solved efficiently by providing a simple method.

1 Introduction

The visualization of directed graphs in an upward fashion is a central research
field in graph drawing. Thereby we ask for a drawing where all arcs are drawn
monotonously increasing in one direction, in order to make it easy to follow the
overall direction in the process that is modeled by the graph. There is a large
number of publications regarding this topic. Most known approaches follow the
layer-based scheme originally proposed by Sugiyama et al. [18]. However, many
important applications such as data flow diagrams or electric schematics require
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directed hypergraphs rather than traditional directed graphs; moreover they
often come with further specific drawing constraints. Layer-based methods that
consider these specialties [17] often suffer from too many edge crossings, and thus
planarization-based methods—where minimizing the number of crossings is the
main objective—may be preferable. In order to keep a consistent arc direction,
the technique of upward-planarization is needed. Recent results for traditional
graphs have shown that, by using this approach, the number of edge crossings
can be reduced by 50% compared to layer-based methods [7, 8].

In this paper we consider the problem of drawing directed hypergraphs with
port constraints. Basic definitions on hypergraphs are given in Sect. 1.1, and port
constraints are introduced in Sect. 1.2. We describe how to adapt an existing
upward-planarization method to handle directed hyperarcs as well as prescribed
port positions. Our upward-planarization algorithm produces an upward-planar
representation of the hypergraph and is covered in Sect. 2. Using this represen-
tation, we show how to construct an orthogonal layout that respects the arc
directions using a derived layering in Sect. 3. By exploiting the topological in-
formation of the planarization phase, we can efficiently minimize the number of
crossings with respect to the computed embedding. We conclude with Sect. 4.

1.1 Hypergraphs

A directed graph is a pair G = (V, A), where V is a finite set of nodes and A
is a set of ordered node pairs called directed edges or arcs. A directed acyclic
graph (DAG) with exactly one source node is called an sT -graph. A node u
dominates a node v in G if there exists a directed path from u to v in G. A
directed hypergraph is a pair H = (V,A), where V is a finite set of nodes and
A is a set of pairs (S, T ) with non-empty sets S, T ⊆ V . The elements of A are
called directed hyperedges or hyperarcs, S are the source nodes, and T are the
target nodes. While our definition conceptually allows S∩T �= ∅ (i.e., a hyperarc
may be or contain a self-loop), we will not consider such a case in this paper.

Now let H be a self-loop free directed hypergraph and φ = (S, T ) a hyperarc
of H . A directed tree T = (Vφ, Aφ) with Vφ = (S ∪ T ∪N) is an underlying tree
of φ if: (i) for each source node s ∈ S there is a node n ∈ N with (s, n) ∈ Aφ;
(ii) for each target node t ∈ T there is a node n′ ∈ N with (n′, t) ∈ Aφ; (iii) the
degree of each v ∈ S ∪ T is exactly 1 within T ; and (iv) each n ∈ N is only
adjacent to vertices of Vφ and has degree at least 2. We call N the hypernodes
of φ. Informally, the source and target nodes are the leaves and the hypernodes
are the inner nodes of T . T is called confluent if each source node dominates
all target nodes. A directed underlying graph H ′ of a directed hypergraph H
is obtained by substituting each hyperarc φ by an underlying tree Tφ, i.e., H ′

consists of the nodes of H together with the hypernodes and arcs of all underlying
trees. If each underlying tree contains only one hypernode, we call H ′ a star-
based underlying graph of H (cf. tree-based and point-based drawing style of
hyperedges [6]). H ′ is confluent if all underlying trees are confluent.

In this paper we also consider the problem of orthogonal routing of hyper-
edges. Layer-based approaches for orthogonal routing of plain edges were given
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by Sander [15] and Baburin [1]. Eschbach et al. showed that the orthogonal
hyperedge routing problem using at most one horizontal line segment per hy-
peredge is NP-hard by revealing its equivalence to the minimal feedback arc set
problem [10], and proposed a greedy assignment heuristic and a sifting heuristic.
Sander proposed to use standard cycle breaking heuristics [16], still limited to
at most one horizontal line segment for each hyperedge (except for hyperedges
that span multiple layers).

Since our approach is based on planarization, we use the basic ideas for han-
dling of hyperedges from previous work on hypergraph planarization [6].

1.2 Port Constraints

The ports of a hyperarc φ = (S, T ) are the points in the drawing where φ
touches the nodes in S and T . In many applications these ports have a specific
semantic interpretation, such as being inputs or outputs for data tokens in data
flow diagrams, or pins of electric components in circuit schematics. Thus in
such applications the positioning of ports is not arbitrary, but may be subject to
specific constraints [17]. The strictest variant of port constraints is the one where
the exact position of each port, relative to the respective node, is prescribed. This
implies that each port has an associated side of the node where it is drawn, i.e.,
the top, bottom, left, or right side.

Given a node v with incident arcs I, the application’s model of port constraints
may limit the set of admissible clockwise orders of the arcs I. A generic approach
to model this set of orders for each node is by using embedding constraints, which
define a tree structure of constraint nodes [12]. This structure can be considered
by an extended planarization algorithm in order to obtain a planar embedding
that respects the pre-defined constraints. The embedding constraints approach is
compatible with the method described in this paper, but for the sake of brevity
we mostly consider only the strict port positions variant in the following, which
admits merely one port order for each node.

First approaches to include ports in layer-based drawings were given by Gansner
et al. [11] and Sander [14]. A more advanced adaption considers different types
of port constraints as well as hyperarcs [17], as they are required for the layout of
data flow diagrams. That method leads to quite acceptable results for different
types of hypergraphs with port constraints, but is still limited by the fact that
a bad layering can lead to an unnecessarily high number of arc crossings. As
an alternative that is based on planarization, Eiglsperger et al. [9] proposed a
method to include constraints in the orthogonalization phase for the topology-
shape-metrics approach.

2 Upward-Planarization

The currently strongest upward-planarization approach for sT -graphs is due
to [7]. The key ingredients of this algorithm can be summarized as follows.
Let G = (V, A) be the graph to draw. Similar to the traditional undirected
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planarization approach [2], we start with an upward-planar subgraph U = (V, A′)
of G and then iteratively insert the edges A \ A′ into U with as few crossings
as possible. All arising crossings on an inserted edge are replaced by dummy
nodes (crossing dummies), such that the iteration always considers the problem
of inserting a single arc into an otherwise upward-planar graph.

Yet, unlike for the undirected planarization approach, our upward requirement
results in two subtle but central difficulties: not every upward-planar subgraph
can be used as a starting point, and a crossing minimal insertion of some arc
a may leave a graph in which the remaining, not yet inserted arcs cannot be
inserted in an upward fashion anymore, see [7] for details.

In the following, we will investigate how this approach can be extended to
hypergraphs and port constraints.

2.1 Preprocessing

We can assume that the given directed hypergraph H contains no hyperacrs with
self-loops, as they could be easily reinserted as a postprocessing step without
requiring any further crossings. Let H ′ be the star-based directed underlying
graph of hypergraph H . As we require an sT -graph, we may have to insert
dummy edges from an artificial super source node to the source nodes of H ′.
These edges will have weight 0 for the purpose of crossing minimization and can
be removed for the final layout computation (Sect. 3).

It remains to make H ′ acyclic by reversing the direction of the arcs in a min-
imal feedback arc set. Although this problem is NP-hard, any heuristic finding
a minimal (in contrast to a minimum) arc set suffices for our purpose. Also
note that, under the assumption that an upward drawing is actually a suitable
drawing paradigm for H , this set will typically be small or even empty. In the
final drawing, we re-reverse these arcs again. Yet, for the upward-planarization
approach, we still have to take special care of such reversed arcs, as we require
each hypergraph to be drawn in a confluent way. Let Rev be the arcs that were
reversed in the preprocessing step.

Our port constraints may require arcs a = (u, v), with u being properly drawn
below v, (a) to leave u downwards, or (b) to enter v from above. This clearly
invalidates the pure upward drawing style. Nevertheless we want to allow such
constructs, but have to ensure that such “misdirected” pieces of the arcs are only
drawn close to u or v, respectively (see below). Hence any such arc requiring (a)
and (b) is substituted by a chain of subarcs (d1

a, u), (d1
a, d2

a), (v, d2
a), where d1

a, d2
a

are two new dummy nodes. Arcs only requiring either (a) or (b) are analogously
replaced by simpler chains of only two subarcs and a single dummy node. For
notational simplicity, we will continue to store the original unmodified arcs in
the graph, denoted by the set Chn . Whenever we consider an arc a ∈ Chn , we
in fact use the complete chain corresponding to a.

So after preprocessing we have a simple sT -graph G = (V, A), with Rev ⊂ A
and Chn ⊂ A. Note that these two subsets may not be disjoint.
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2.2 Feasible Upward-Planar Subgraph

Besides ensuring upward-feasibility of the initial upward-planar subgraph (i.e.,
ensuring that all temporarily removed arcs are re-insertable), our subgraph has
to additionally be feasible with respect to the port constraints. As described in
Sect. 1.2, embedding constraints can be seen as a specific model of admissible
arc orders for planarization. We can handle such constraints by replacing each
constrained node by its constraint-tree [12], thus in the following we only consider
nodes with no constraints or strict port constraints.

We first compute a spanning tree U ′ = (V, A′′) of G, with A′′ ∩ Rev = ∅,
which clearly exists due to the minimality of Rev .

We then insert the arcs a = (x, y) ∈ A \ (A′′ ∪Rev) one by one into U ′. After
each insertion step we perform an upward-planarity test, obtaining some feasible
embedding, and check whether the graph still allows the insertion of all remaining
arcs within this embedding, using the merge-graph paradigm introduced in [7].
By the implicit transformation of the arcs Chn we thereby also ensure that the
port constraints can be satisfied. If any of the above two tests fails, we remove
the arc again, and store it in a set B instead.

After that, we fix the current embedding of the graph, and try to re-insert the
arcs in B a second time, as the previously considered embedding might just have
been a bad choice. In the end we have a maximal port-feasible upward-planar
subgraph U = (V, A′) with a feasible embedding Γ , and the set B = A \ A′ of
arcs not yet in U .

Remark. The runtime of the arc-wise test for insertion-feasibility is still domi-
nated by the acyclicity test in the merge-graph, and we can hence obtain U in
O(|A|2) time.

2.3 Arc Insertion

Again, we will start our investigation by outlining how arc insertion works for
traditional arcs without port constraints, cf. [7] for details. We will then use
this algorithm as a building block when considering hypergraphs and port con-
straints. Sometimes we thereby require seemingly minor internal modifications
to this algorithm, which in fact require intricate modifications in the proofs of
the algorithm’s validity. Due to space constraints, we will only touch upon these
issues and focus on the overall idea.

Considering a fixed embedding, the non-upward edge insertion problem can
be solved by considering the dual graph of the embedding, and finding a shortest
path in this dual graph between two faces adjacent to the edge’s start and end
node. When considering inserting an arc a = (u, v) in an upward fashion, this
dual graph has to be substituted by a somewhat similar routing network that
ensures that the identified insertion path is monotonously going upward and is
non-self-intersecting.

Furthermore, not every such found insertion path is feasible with respect
to the remaining, not yet inserted arcs. Therefore, during the shortest path
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computation within the routing network, we additionally have to check feasibility
of the intermediate merge-graph (simply put, the merge graph is the current
graph, augmented with the not-yet inserted arcs in such a way that the remaining
arcs are insertable if and only if the merge graph is acyclic).

Hyperarc Insertion. Starting from the subgraph U , we will now iteratively insert
full hyperarcs, until we obtain a upward-planarization of G and hence of H . Note
that hyperedge insertion in the tree-based paradigm is already NP-hard in the
undirected, non-upward setting [6]. We therefore introduce a novel piecewise
insertion strategy which realizes a low-crossing number hyperarc insertion, still
ensuring confluency of the hyperarc drawing.

For any original hyperarc φ ∈ A in H , G contains a set of arcs Aφ ⊂ A
and a set of hypernodes Vφ. Initially, |Vφ| = 1 since we started with the star-
based underlying graph of H . We will see that both sets will grow during the
subsequent insertion steps. Also note that, in general, some arcs of Aφ may be
in A′ and some in B.

Let U◦ = (V, A◦) be a port-feasible upward-planar planarization (i.e., cross-
ings are modeled via dummy nodes) of some subgraph of G during the insertion
process, B◦ the not yet inserted arcs, and φ ∈ A the hyperarc to insert. The
edge set A◦

φ := Aφ ∩A◦ forms a tree, corresponding to the partially tree-based-
drawn hyperarc. Our induction hypothesis states that this tree is confluent: In
the initial subgraph U , this tree is at most a star (and at least a single edge) and
therefore clearly confluent. The arcs Bφ := Aφ ∩ B◦ are the arcs corresponding
to φ that have yet to be inserted in our current iteration step, extending the tree
A◦

φ in a confluent way.
We will insert these arcs one by one. Let a = (x, y) ∈ Bφ and assume for now

that a �∈ Rev ∪ Chn . We first compute the minimal subtrees Ts, Tt of A◦
φ that

contain all source and target nodes, respectively, that are already connected by
A◦

φ. By the induction hypothesis on confluency, Ts and Tt are disjoint except for
at most one hypernode. Let hs (ht) be the hypernode of Ts (Tt) closest to Tt

(Ts, respectively) on the tree A◦
φ.

If x is a hypernode, then y is a target vertex of φ, and we search for a shortest
feasible upward-insertion path from hs to y. Otherwise, y is a hypernode, x is
a source node of φ, and we search for a shortest feasible upward-insertion path
from x to ht. Thereby we modify the routing network in three ways:

Port Constraints. If our port constraints require us to leave x or enter y at
some special positions with respect to already inserted arcs, we can easily
restrict the routing network to use only applicable start or end faces for the
routing. Yet, there are additional augmentations necessary, if a ∈ Chn , see
below.

Arc Reuse. We want to reuse already drawn (sub)arcs corresponding to φ,
in order to generate hyperarc drawings with low total number of crossings.
Therefore, our routing allows 0-cost crossings over A◦

φ and next to crossing
dummies in A◦

φ. In other words, the new path may reuse already established
paths of φ, cf. Fig. 1.
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Fig. 1. Arc Reuse for the case when the source node x is one of the red colored hyper-
nodes. The insertion path p for a = (x, y) starts at node hs.

Splitting other Hyperarcs/-nodes. The knowledge of the properties of hy-
pernodes allows a further improvement, lifted from [6] where it was used in
the context of undirected edge insertion for the so-called minor-monotone
crossing number [3]. We can cross “through” a hypernode h of another hy-
peredge ψ, as long as we thereby do not separate both source and target
nodes from each other, cf. Fig. 2: By our induction hypothesis on conflu-
ency, crossing through h means that we split h into two hypernodes h and h′

and add the arc (h, h′). Then we change the source (or target) vertex of at
least two arcs from h to h′. Let Ain and Aout be the arcs formerly entering
and leaving h, respectively. To ensure confluency, we only allow a split where
(a) all Ain remain incident to h, (b) all Aout become incident to h′, or (c)
neither of both, but either Ain or Aout is an empty set. After this split, our
routing path can cross over the arc (h, h′). Note that, since we consider a
fixed embedding, all valid hypernode-crossings can be modeled via arcs in
the routing network directly connecting two faces (e.g., f6, f3 in Fig. 2). Such
arcs have cost 1, as they induce a hypernode split such that a single crossing
suffices.

Inserting chain-transformed arcs, i.e., a ∈ Chn. If a = (x, y) has to leave x
downwards or enter y upwards, we have to extend our routing network further.
Assume that a only requires the second property (the first one is independent
of the second and can be solved analogously). Usually, all arcs dominated by y
will be statically locked, i.e., we may not cross through them. Now, we unlock
the arcs that directly leave y, and search for a path entering y from there;
depending on the exact port constraint, only a single face above y might be
a valid entrance point into y. We now place the dummy node of the chain-
transformation, where (x, y) was split into (x, d), (y, d), into the face from which y
is entered. Then all crossings are still drawn only between upward arcs. The small
subarc (y, d), which will be reversed in the final drawing, is even drawn without
any crossings. By forbidding crossings to happen over (y, d) in the subsequent
steps, we therefore guarantee that the overall drawing is still upward, and the
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Fig. 2. Splitting a hypernode by introducing an additional arc can reduce the crossings

small downward pieces of arcs, due to port constraints, are restricted to the
direct neighborhood of the corresponding node.

Note that, after the full upward-planarization approach is completed, we can
merge multiple such dummy nodes that correspond to the same hyperarc, when
they lie in a common face.

Inserting reversed arcs, i.e., a ∈ Rev. To ensure confluency in the hyperarcs, we
have to take special care for the arcs that where reversed in the preprocessing
step to remove cycles. After the drawing is computed, we will have to reset their
original direction. To avoid notational complexity, we will add such arcs only
after all other arcs of the hyperarc are already inserted.

Assume the arc a = (x, y) originally connected a source vertex to the hypern-
ode of the star-based underlying graph, but got reversed and hence connects the
hypernode to a target vertex. Nonetheless we have to ensure that it connects to
the aforementioned subtree Ts, instead of Tt. Let S be the set of original sources
in Ts before inserting a. Then a confluency-feasible upward insertion path for
a can be found by selecting the minimal insertion path from any node in S to
y. Thereby it may cross over A◦

φ \ Tt and next to crossing dummies of A◦
φ \ Tt

at no cost. The analogous holds, if a originally connected a target vertex to the
star-based hypernode.

Putting it together. So overall, after first computing a special feasible upward
subgraph, our upward-planarization approach inserts one hyperarc after another.
Each hyperarc is inserted by incrementally inserting the arcs of the star-based
underlying graph, reusing the already established tree-based sub-drawing of the
hyperarc as far as possible. By specially considering original arc directions, we
thereby guarantee that all hyperarcs are drawn as confluent trees. The final
result of the planarization is an upward-planar representation (planar, upward-
feasible sT -graph) R of G, and hence of H , together with an embedding Γ of
R. Within R, hyperarcs of H are represented as confluent trees, and crossings
are represented as dummy nodes.
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Fig. 3. Steps towards a final layout: (a) the subgraph between consecutive layers of
an UPR R, (b) fine-layering of the subgraph with included dummy nodes to split long
arcs

3 Layout

Using the embedding Γ of the upward-planar planarization (UPR) R computed
in the previous step, our layout procedure works in three steps:

1. A layering L of R is computed.
2. An initial orthogonal drawing of R is computed.
3. Optional step: Orthogonal compaction is applied to remove unnecessary bend

points and improve layout quality.

We finally obtain an upward drawing of R, which induces a drawing of H in a
straight-forward way. The number of hyperarc crossings in this drawing equals
the number of crossing dummies in R, thus it is minimal with respect to the
computed embedding. Our initial method for orthogonal upward drawing may
produce an unnecessarily high number of bend points, but it reveals that such
a drawing can be computed efficiently. We discuss the individual steps in more
detail.

Layering. We compute a layering ofR in two phases using the layering algorithm
by Chimani et al. [8], which also induces a node ordering for each layer. In the
first phase we compute a layering L′ of the nodes of H , and in the second
phase a layering L′′ of the subgraph between each two consecutive layers of L′.
Notice that the nodes of L′′ are either crossing dummies or hypernodes. For each
crossing dummy c of L′′, we split c by adding new dummy nodes c′ and c′′ such
that c′ is the immediate left and c′′ is the immediate right neighbor of c. These
two nodes will be bend points in the later drawing and ensure the orthogonality
of the arcs incident to c. We redirect the left incoming and the right outgoing arc
of c such that c′ is its new target and c′′ is its new source node, respectively. We
then merge L′ and L′′ into a complete layering L of R and create dummy nodes
to split long edges that span multiple layers. An example is shown in Fig. 3.
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Initial orthogonal drawing. Using the layering L, we apply an arbitrary coordi-
nate assignment algorithm known for the third step of Sugiyama’s framework
(e.g., [4, 5, 11, 15]) to compute horizontal node coordinates. The orthogonal
routing of the edges between each pair of consecutive layers can then be calcu-
lated using an existing method for layer-based routing, such as the one proposed
by Sander [15]. Since the embedding of R is planar, such a routing can be con-
structed without introducing additional arc crossings. As a result, all incoming
and outgoing arcs of hypernodes and dummy nodes end in the same point, where
incoming arcs reach the nodes from below and outgoing arcs leave the nodes up-
wards. If there are multiple incoming or multiple outgoing arcs of a node u,
the corresponding vertical line segments that touch u overlap each other. These
overlapping line segments need to be merged to single line segments.

For the computation of the orthogonal layout, port constraints essentially
need to be considered only in the routing algorithm, since they determine where
the arcs shall touch the connected nodes. In case of ports that are situated on
the left or right side of a node, we can artificially broaden the node prior to
the horizontal coordinate calculation and add one bend point per arc such that
incoming and outgoing arcs are redirected downwards and upwards, respectively
(see [14], Sect. 7).

Applying orthogonal compaction. The resulting initial drawing may contain var-
ious unnecessary bends; many such bends can be removed using orthogonal
compaction techniques (see [13] for an overview). First, we connect the nodes of
each pair of consecutive layers Ltop and Lbottom of L′ by horizontal edges and
connect the first nodes and the last nodes on these layers by edges with two bend
points, such that all these additional edges form a surrounding rectangular frame
(cf. Figure 4). We assign fixed edge lengths to the edges on this frame, so that
the nodes on Ltop and Lbottom will remain on their horizontal positions. Then,
we compute the orthogonal representation induced by this drawing and apply
orthogonal flow-based compaction. This allows us to assign costs to segments.
Let S0 denote the set of line segments adjacent to two bend points with a 90 and
a 270 degree angle in a face. The segments in S0 are assigned maximal cost and
zero minimal length. The minimum length of the remaining segments is set to
the minimum of their lengths in the initial drawing and a desired spacing, mak-
ing sure that the initial drawing is a feasible solution for the compaction. Each
segment in S0 for which the compaction achieves zero length is then removed
from the orthogonal representation by merging its adjacent segments.

Final layout. The so constructed drawing is an orthogonal drawing and its arc
crossings are exactly the crossings modeled by R. In order to obtain a valid
drawing of the original hypergraph H , we perform the following post-processing
steps:

a) Replace each crossing dummy c and its corresponding neighboring nodes c′

and c′′ by a horizontal line segment from c′ to c′′.
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Fig. 4. Orthogonal compaction: (a) An initial drawing of Figure 3(a) with unnecessary
bend points. Before starting the compaction, the drawing is framed by a rectangle (red
edges) and the new edges are assigned fixed lengths. (b) The final drawing.

b) Eliminate all remaining dummy nodes and hypernodes by directly connecting
the line segments of the incoming and outgoing arcs.

c) Reverse all arcs of Rev , which were previously reversed to break cycles.

We can add an additional compaction step on the whole layout—similar as
before—to further improve the layout. Notice that when considering the whole
layout, we do not need to fix the x-coordinates; we only have to ensure that the
horizontal distance between ports is fixed.

4 Conclusion

We presented the first planarization approach for hypergraphs in the context
of upward drawings. To this ends, we combined the known ideas of upward arc
insertion and insertion of a single edge in the undirected minor crossing number
setting with a novel heuristic method to assemble multiple adequately chosen
insertion paths to a confluently drawn hyperarc. Furthermore, we dealt with
the problem of laying out the so obtained upward-planar representation in an
orthogonal upward drawing style. As our hyperarcs offer more freedom than
prior approaches within the Sugiyama framework, their orthogonalization step
is inapplicable for our needs, even after layering. We therefore introduced a new
global scheme based on orthogonal compaction.

We also considered port constraints both in the upward-planarization as well
as in the layout step, as they are integral to many hypergraph drawing appli-
cations such as pins in electrical circuits. We want to stress that our algorithm
not only solves the upward drawing problem for hypergraphs with and without
port constraints, but also is the first port-constraint-aware upward-planarization
approach that is suitable for regular DAGs.

Based on the experience with prior upward-planarization methods, we expect
that our methods should workwell in practice—the implementation, togetherwith
a thorough experimental investigation comparing this approach to the more tra-
ditional hypergraph drawing algorithms within the Sugiyama framework, remains
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as our next research step. Furthermore, we would be interested in more direct
orthogonalization methods, along the lines of, e.g., [15, 10]. These methods solve
the problem locally on a layer-by-layerbasis, but extending them to allow multiple
horizontally drawn hypernodes per hyperarc between two layers is non-trivial.
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Abstract. We present a system for the visualization of relational infor-
mation on the smartphones. It is implemented on the iPhone and on the
Google Android platforms and is based on a new visualization paradigm
that poses interesting algorithmic challenges. We also show customiza-
tions of the system to explore and visualize popular social networks.

1 Introduction

Millions of people in the world have in their pocket a smartphone. Such a widely
used device is exploited to quickly access, from almost everywhere, different
types of data on different subjects. A large amount of such data is relational
information. As an example, smartphones are used to access social networks
like Facebook or Twitter, ontologies like the Wikipedia network of concepts, or
technical information related to the job of the owner like the connections of a
computer network or the delivery routes of a goods distribution framework.

Graph Drawing can play an important role in supporting information visu-
alization on the smartphones, provided that the methodologies and tools that
are typical of this research area are recast to meet the needs of such a challeng-
ing device. Indeed, different information contexts have already changed their
visualization methods in this direction. E.g., on-line newspapers have special
visualization formats that are designed for the smartphone.

Dealing with smartphones the challenges that visualization applications have
to face are, of course, the small screen and the limited memory size. On the other
hand, such strong limitations come together with new technological opportuni-
ties that can be exploited to support the interaction. They are the multi-touch
screen that is able to capture commonly used gestures like pinch, flick, and slide,
sensors like the accelerometer and the compass, and sounds and vibrations. All
this comes with an always-on connection to the Internet.

A previous attempt to draw graphs on smartphones has been done in [6].
However, such a tool uses Graph Drawing techniques that are not specifically
designed for smartphones.
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Since any graph is too large for the little screen of the smartphones, a piv-
otal reference point for designing interfaces and algorithms for drawing graphs
on such a device is the literature on drawing very large graphs. One, for ex-
ample, could use the fish-eye approach [7] where the details of the drawing
decrease according to the distance that separates them from a point chosen
by the user. However, using Shneiderman’s information visualization mantra [8]
(overview first, zoom and filter, then details-on-demand) in this context seems to
be unfeasible.

In this paper we present a system for the visualization and interaction with
relational information on the smartphones. Section 2 shows the visualization and
interaction paradigm we devised, that is based on visualizing a small subgraph
defined by a focus vertex and its neighborhood and exploits smartphone-specific
interaction primitives. The approach can be considered similar to the navigation
approach of [2]. Section 3 shows how even such a simple visualization paradigm
can originate interesting algorithmic problems. Section 4 gives details on the
adopted algorithms. Section 5 discusses experimental results on such algorithms.
Section 6 gives technical details on the implementation and presents case studies.

2 A Visualization and Interaction Paradigm

Our visualization paradigm is based on a navigation approach. The user selects
a focus vertex v and the drawing contains vertices and edges as follows. Let N(v)
be the set of neighbors of v, that is assumed circularly ordered. About vertices,
the drawing contains v and a subset ωL

i , called lobe, of N(v), where L (lobe size),
is the size of the lobe and the elements of ωL

i have positions i, . . . , (i + L − 1)
mod |N(v)| in N(v). About edges, the drawing contains the radial edges from
v to the vertices of ωL

i , the inner edges between vertices of ωL
i , the outer edges

that have one end-vertex in ωL
i and one end-vertex in N(v)\ωL

i , and the external
edges that have one end-vertex in ωL

i and one end-vertex that is not in N(v).
The focus vertex is in the center of the bottom side of the drawing, while the lobe
vertices lie on an half-ellipse centered at the focus vertex. This, together with
other graphical features, suggests to the user that ωL

i is only a subset of N(v)
and that the vertices of N(v) \ ωL

i (outer vertices) are under the bottom side
of the screen. External edges exit the drawing from the left, top, right borders
of the screen, giving the impression that the rest of the graph is outside the
screen. Their external end-vertices are not represented. Outer edges are directed
downward, leading to vertices of N(v) that are not represented and that are
under the bottom side of the screen. Fig. 1 shows an example of visualization.

Different types of edges have different thicknesses. Radial edges, that do not
give additional information, are thin, while inner edges, that represent relation-
ships between vertices of the lobe, are emphasized. External edges could be too
many to be represented explicitly, hence they are drawn with straight-lines only
up to a certain number. Over that number they are shown with a shadow exiting
the drawing. Essentially, the important information for the user is if they are 0,
a few, or a lot. Similar graphic features are used for outer edges.
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Fig. 1. Visualization of the subgraph induced by the lobe plus the focus vertex
(vertex 11)

The user interacts with the graph according to the following primitives. There
are vertex oriented primitives like focus change, navigation backtrack, and execu-
tion of actions associated with vertices (e.g., open a browser or send an sms) and
lobe oriented primitives like lobe shift, lobe resize, and lobe layout temporary
optimization.

The focus change primitive substitutes the currently visualized subgraph with
the subgraph induced by a new focus vertex and its neighborhood. The gesture
used to change the focus consists of dragging the vertex of the lobe that will
be the new focus towards the focus position. The backtrack primitive shows the
previously displayed lobe. The user can navigate the path of the explored focus
vertices by performing a double fingers flick towards the bottom or top side of
the screen. A side feature of our framework is the possibility of extending the
interaction experience by executing an action related to a selected vertex. For
example, if the input graph is a social network, possible actions are: showing
more information about the individual, sending an e-mail or an sms, deleting
him/her from the graph, etc. The gesture associated with this action is a double
tapping or a pressure on the vertex.

A primitive that changes the lobe is lobe shift. Let ωL
i be the visualized lobe,

the effect of lobe shifting is to substitute ωL
i with ωL

k where k = i±1 mod |N(v)|.
Sliding a finger on the screen is the simpler way to do this. However, if |N(v)| is
very large this interaction can be unsuitable to reach vertices that are far from
the current lobe. Hence, the user needs a single gesture to skip a large portion of
the subgraph. This is obtained with a flick of finger on the screen. The number
of the vertices that are skipped is proportional to the speed of the gesture. The
same primitive can be invoked using the accelerometer by changing the slope of
the device or using the compass by changing the orientation of the device.

Zooming is a quite common functionality offered by smartphone applications.
In our paradigm this function corresponds to a lobe resize. Let ωL

i be the visu-
alized lobe, the effect of this function is to show the lobe ωM

k where k = i if
(M = L) ∨ (M = L + 1) or k = i − 1 mod |N(v)| if M = L + 2. The gesture
used to resize the current lobe is a multi-touch gesture called pinch, this con-
sists of moving together two fingers on the screen, increasing or decreasing their
distance.
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The current order of the vertices of a lobe could lead to a drawing that is
unpleasant. Hence, we provide a local optimization feature that temporary re-
orders the vertices of the lobe in order to increase the readability of the drawing.
This local optimization is invoked by performing a double tap on the screen.

In order to help the user in maintaining the mental map during the naviga-
tion, a mechanism for morphing between successive drawings, supported by a
smooth movement of edges and vertices, is necessary. Hence, for all primitives,
vertices move slowly towards their final positions. In lobe oriented primitives,
vertices entering (exiting) the current lobe come in (out) from the bottom side of
the screen. Also, inner edges can become external and vice-versa, and their rep-
resentation features change coherently. The flick function is accompanied by an
inertial rotation of the neighborhood of the focus vertex. The morphing features
of the focus change primitive are more complex than those described above.
Since they depend on the order of the lobes, they are discussed in Section 4.
With the purpose of helping the user interaction experience, sounds and vibra-
tion events are associated with the primitives. They are selected in such a way
to be consistent with the effects of the corresponding primitives.

3 Choosing the Lobe Order

An important aspect of the visualization paradigm is the left-to-right order of the
vertices of the lobe. The specific choice of this order may depend on the specific
application. However, the need of preserving the user’s mental map implies that
the orderings of contiguous lobes of a focus vertex v are consistent. Since this
constraint holds for all the lobes of v, this implies the need of choosing a unique
order for all the vertices of N(v).

Trivial choices are possible, like using the alphabetical order, that can be
suitable for some applications. On the other hand, it is also possible to make
different choices, according to aesthetics that are related to the selected visual-
ization paradigm. We deepen two different choices corresponding to two aspects
of the paradigm. The first is the one of displaying the relational information
as clean as possible, while the second is the one of showing as much relational
information as possible. The two choices conflict each other.

The first choice is the one of selecting an order that tries to minimize the
visible crossings. Given a focus vertex and a lobe, a visible crossing is a crossing
between two inner edges. We concentrate only on visible crossings because the
only edges that are completely visible for a certain lobe are the inner edges and
the radial edges. Also, crossings with radial edges do not compromise readability.
More precisely, we try to minimize the average number of visible crossings for
all the lobes of a focus vertex.

The problem of minimizing the visible crossings has similarities with the
circular crossings minimization problem. In that problem, the vertices lie on
a circumference, the edges are straight lines, and a circular order is searched
that minimizes the total number of crossings. See, e.g. [4,9,1,3]. However, as
shown in Fig. 2, the two problems are different.
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Fig. 2. Circular crossings and visible crossings. (a) Order with minimum total number
of crossings. (b) Order with minimum number of visible crossings if the lobe size is
equal to 4. (c)–(e) Lobes with 0 visible crossings.

Observe that minimizing the visible crossings with a lobe with size that is
equal to |N(v)| is equivalent to solving a circular crossings minimization on
the subgraph induced by N(v). But, unfortunately, such a problem has been
proved NP-complete [5]. Hence, solving in practice the minimization of the visible
crossings requires the usage of heuristics.

One may ask whether heuristics for the circular crossings minimization are
effective also for our problem. Our experiments show that this is not the case
(see Section 5). Hence, we used in our system a special purpose algorithm that
is described in Section 4.

A second alternative for choosing an order is to select one that tries to
maximize the visible edges, that is to minimize the number of edges that are
not inner edges in any lobe. This corresponds to minimizing the information
that is lost for a certain focus vertex. Let L be the lobe size and let v be the
focus vertex. Observe that it might not exist an order for N(v) in which every
edge with end-vertices in N(v) is an inner edge for at least one lobe of size L.
As an example, consider the case when the subgraph induced by N(v) contains
the clique KM with M ≥ 2L. Of course, this information is not lost. In fact,
such edges will be visible selecting one of the end-vertices of the missing edges
as focus vertex. Observe the similarities with the Graph Bandwidth Problem.

4 Algorithmic Framework

The algorithmic framework that we have developed in our system allows to
tackle both the visible crossings minimization and the visible edges maximization
problems.

The typical parameters of the algorithms for the circular crossings minimiza-
tion problem presented in [4,1,3] are: 1. the start vertex s of the graph to be
drawn; 2. the policy which selects the next vertex to process; and 3. the position
that is chosen for the selected vertex. We make use of the same general setting.
The algorithmic framework we propose is Algorithm 1.

Notice that Algorithm 1 refers to a vertex processing policy that is not spec-
ified. The main processing policies used in the literature for determining the
insertion sequence are: Random, vertices are processed in random order; Max-
imum degree, at each step, a vertex with the largest number of neighbors is
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Algorithm 1. Lobe Ordering Algorithmic Framework
N ← |N(v)|
S ← N(v)
while S �= ∅ do

Nexts ← select a start vertex s ∈ S;
while Nexts �= ∅ do

1. extract a vertex u ∈ Nexts according to the adopted processing policy
2. S ← S \ {u}
3. assign priority pu(x) to each position x ∈ {0, ..., N − 1}
4. place u at position x so that minx pu(x)
5. Nexts ← Nexts ∪ {unplaced vertices of N(u) ∩ N(v)}

end while
end while

placed; Minimum degree, at each step, a vertex with the least number of neigh-
bors is placed; and Connectivity, at each step, a vertex with the largest number
of already placed neighbors and (in case of ties) the least number of unplaced
neighbors is selected. In our experiment we test the effectiveness of each of them.

Note that the inner cycle of Algorithm 1 involves vertices belonging to the
same connected component. Indeed, inside this cycle, a wave-like scanning of the
connected component is performed. The outer cycle is used to iterate the inner
one on all the connected components, until all vertices are placed.

In order to evaluate the impact (in terms of the qualities of interest) of the
placement of the selected vertex in each available position of the current layout,
we introduce a real valued priority function. The function pu(x) : {0 . . .N −
1} → R estimates the quality of the position x for vertex u considering the
cost associated with the edges that link u to its already placed neighborhood
(i.e. Np(u)). We define length(s, t) = min(|s − t|, N − |s − t|). Let pu(x) =∑

w∈Np(u) ck(length(x, π(w)), L) if position x is available and let pu(x) = ∞
otherwise.

With reference to the qualities desired for the representation, we can define
different cost functions ck(d, L) : {1, . . . , �N/2�}×{1, . . . , N} → R that estimate
the burden produced by an edge of length d in a layout with lobe size L. Fig. 3
shows two possible cost functions aimed at minimizing the number of crossings
between inner edges. The former function cL(d, L) (MinLobe) estimates the cost
of an edge of length d in a lobe of size L as the maximum number of visible
crossings this edge can produce if there exist (in the lobe) all the edges that
are able to cross it. The latter function cLS(d, L) (MinLobeSum) computes a
weighted average of the previous one with respect to the number of lobes the
edge will appear in.

Actually, the current implementation of the algorithm associates with each
location a list of priority values that are sequentially evaluated. This feature
makes it possible to choose the final position of a vertex using multiple selection
criteria (or, equivalently, a multi-objective function), whose relative importance
is defined by the order they are taken into account.
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cL(x, L) =

⎧⎪⎨⎪⎩
(x − 1)(L − x − 1) x ≥ 1 ∧ x < L

0 otherwise

cLS(x, L) =

⎧⎪⎨⎪⎩
cL(x, L)(L − x) x ≥ 1 ∧ x < L

0 otherwise
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Fig. 3. Cost functions for minimizing visible crossings

If we want to maximize the visible edges, a simple cost function whose purpose
is to maximize the number of edges that can become inner edges in some lobe
is function cI(d, L) (MaxVisibleEdge), defined as follows: cI(d, L) = −1 if d < L
and cI(d, L) = 0 if d ≥ L.

If we find that two positions have the same priority, we break the tie using
a cost function called MinEdgeLength, that is cD(x, L) = x ∀x, L. It is used to
avoid enlarging too much the set of considered positions.

As we said in Section 2, special attention is needed to perform an effective
morphing procedure for the focus change primitive from the current focus v to
the new focus u. This has important effects also in the algorithmic framework.
Let ωL

i be the visible lobe of v. It is essential, to preserve the user mental map, to
order the vertices in N(u) such that the relative order of the vertices in N(u)∩ωL

i

remains the same. Also, the external vertices of u that enter the drawing must be
placed after the inner vertices at the left of v in the lobe. Hence, the algorithm
should be able to impose constraints of the above type on the lobe ordering.
Observe that the above algorithmic approach, since the positions are explicitly
represented, easily integrates such type of constraints.

5 Experimental Analysis of the Algorithms

In order to asses the effectiveness of our algorithmic techniques we performed
several experimental tests using a suite of randomly generated connected graphs,
where each graph represents the subgraph induced by N(v) for some choice of
focus vertex v. For each test we generated an average of 5, 000 graphs according
to two modalities: 1. fixed number of vertices (100) and variable density (from
0.1% to 100%); 2. fixed density and variable number of vertices (from 10 to
100). Both types of graphs are evaluated with a fixed lobe size of 10. This value
represents a good compromise between the number of the visible vertices and an
effective usage of the available space.
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We evaluated the algorithms according to the following requirements: 1. visible
crossings, that is the number of crossings between inner edges; 2. visible edges
ratio, that is the ratio between the number of visible edges and the number of
edges of the graph. A selection of the results is presented below.

In the experiment shown in Fig. 4(a) we compare a simple random order with
the BB algorithm [1], chosen as one of the best algorithms for computing a circu-
lar layout with few crossings. Each point shows the average number (computed
over all lobes) of the visible crossings for a graph whose density is reported on
the x-axis. A random order produces fewer visible crossings than the BB algo-
rithm. Such results suggest that the circular approach is not a good choice for
the visible crossings minimization problem. The tested circular algorithm tries
to minimize the total length of the edges but short edges enter more easily in a
lobe, increasing the possibility of generating crossings.

In the experiment shown in Fig. 4(c) we compare several variants of our
algorithm (see Fig. 6). We changed the processing policy that selects the next
vertex to insert (Random or Connectivity) and the cost functions for each level
of priority (MinLobe or MinLobeSum). Observe that in all cases we use, for
a second priority level, cost function MinEdgeLength. Mixing these features we
obtain four different algorithms to evaluate (RLobe, RSum, CLobe, CSum). The
graphic shows the comparison between these algorithms with a variable number
of vertices and fixed density 15%. It is evident that the choice of a good processing
policy has a strong influence on the number of visible crossings. Algorithms that
use the connectivity policy perform better than those using the random policy.
For a given processing policy, the MinLobeSum cost function is slightly better
than the MinLobe.

In the experiment shown in Fig. 4(e) we compare the average number of
visible crossings of the CSum algorithm with the minimum number of visible
crossings on a lobe of a Random placement. The graphic shows that CSum
has a similar trend to Random with slightly better results. Roughly, given an
unordered layout and selected the lobe with lower number of visible crossings, the
algorithm generates a drawing with the same average number of visible crossings
for each lobe.

In the experiment shown in Fig. 4(b) we compare the visible edges ratio
between Random order and BB Algorithm. Although BB is not designed for
solving this problem, drawing shorter edges decreases the number of edges hidden
by the paradigm and therefore increases the visible edges ratio. In the graphic
we observe that BB Algorithm has a better behavior than the one of a Random
order.

For this problem we follow two different approaches. The first is to reverse
the cost function of CSum in order to increase the number of crossings and
consequently the number of visible edges. The second approach is a typically
greedy approach where a vertex is positioned in the local highest visible edges
position. This cost function is associated with a Random and Connectivity pro-
cessing policy. A Random selection decreases the effectiveness of the results of
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the MaxVisibleEdge cost function. With an equal processing policy the MaxVis-
ibleEdge function is slightly better than MaxSum. (See Fig. 4(d).)

In the experiment shown in Fig. 4(f) we compare CVis algorithm with BB
algorithm. CVis has better results than BB, especially with a small number of
vertices (CVis keeps visible 100% of edges for graphs with more vertices than
BB). Increasing the number of vertices both algorithms have the same trend and
CVis has generally an improvement of 2− 3%.

6 Implementation and Case Studies

The project has been fully driven by the experiments performed on the devices.
(See in Fig. 5(a) and 5(b) the usage of the important primitive focus change
over the iPhone device.) This led to two SW libraries, one for the iPhone OS
3.1.3 (Objective-C language) and the other for the Google Android 2.1 (Java
language) platforms. Both the libraries were designed to have fully customizable
graphical and behavioral components and to allow simple usage for the SW
developer.

Although the two platforms are very different, we developed the SW so that
both prototypes have the following common features: 1. use vector graphics,
2. build a new abstract layer over the platform to manage animations and ges-
tures, and 3. optimize the number of operations and edge drawings needed for
each display refresh. Because of the limitations of the platform, the Android
release required also to minimize the number of refreshes.

We implemented several case studies. Two of them, that refer to the context
of social networks, are especially interesting.

The first case study uses the Facebook API to determine the graph of the
friendships of a Facebook user (see Fig. 5(c) and 5(d)). These APIs allow to
read (and write) objects and social connections of the Facebook Graph. The
objects, that are the vertices of the graph, have a unique identifier (ID) and
their associated data can be retrieved with a simple fetch of the URL https://
graph.facebook.com/ID. All objects are linked together through relationships
of different types for different objects. We retrieve the connections using URLs
of the form: https://graph.facebook.com/ID/CONNECTION_TYPE. Obviously,
in order for the queries to succeed they must not violate the privacy restrictions
set by the users. The user can provide his/her personal credentials (username
and password) to our FacebookView Application through an input window. The
system automatically generates the necessary requests to determine the subgraph
of the Facebook Graph induced by the set of vertices consisting of the facebook
user and his/her friends. Actually, in the current implementation the set of
vertices (and relationships between them) is extended at run-time with queries
that refer to resources (events, photos, links, videos, etc.) liked or tagged by
other users.

The second case study shows the public relations exposed and available on
the Web from the Google Social Graph API (see Fig. 5(f)). This information

https://graph.facebook.com/ID
https://graph.facebook.com/ID
https://graph.facebook.com/ID/CONNECTION_TYPE
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(a) |N(v)| = 100, L=10.
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(b) |N(v)| = 100, L=10.
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(c) |N(v)| = {10, ..., 100}, L=10,
density=15%.
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(d) |N(v)| = 100, L=10, density=
0 − 30%.

 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
um

be
r 

of
 v

is
ib

le
 c

ro
ss

in
gs

Density

Random (Min)

CSum (Avg)

(e) |N(v)| = 100, L=10, density=0−
100%.
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(f) |N(v)| = {10, ..., 100}, L=10,
density=15%.

Algorithm Processing policy Cost functions

RSum Random 1: MinLobeSum
2: MinEdgeLength

RLobe Random 1: MinLobe
2: MinEdgeLength

CSum Connectivity 1: MinLobeSum
2: MinEdgeLength

CLobe Connectivity 1: MinLobe
2: MinEdgeLength

CVis Connectivity MaxVisibleEdge
CMaxSum Connectivity 1: MaxSumLobe (i.e. −cLS(x,L))

2: MinEdgeLength

Fig. 4. Algorithms experimental results
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(a) A focus change starts (b) Focus change result

(c) FacebookView over iPhone (d) FacebookView over Android

(e) WikipediaView over iPhone (f) SocialView over Android

Fig. 5. Application samples

is declared within public profiles via XFN (XHTML Friends Network), FOAF
(Friend Of A Friend), and other declared public connections. For example, XFN
provides a simple way to define human relationships through Web links using
the rel attribute of the <a href> tag (e.g. <a href=“http://pino.example.com/”
rel=“colleague met”>Pino</a>). The user can provide to our SocialView Ap-
plication the URL of a public account through an input window. The system
automatically generates a query for acquiring as much relational information as
possible.

We also implemented a case study to explore Wikipedia (see Fig. 5(e)). A user
selects a word and the smartphone shows the related concepts. For example if
the user selects Graph Drawing the device shows the Graph Theory, Topology,
Geometry, etc. When the user finds an interesting concept, he/she can expand
the vertex and visualize the Wikipedia page.
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Abstract. This paper studies the problem of designing graph drawing algorithms
that guarantee good trade-offs in terms of number of edge crossings, crossing an-
gle resolution, and geodesic edge tendency. It describes two heuristics designed
within the topology-driven force-directed framework that combines two classical
graph drawing approaches: the force-directed approach and a planarization-based
approach (e.g., the topology-shape-metrics approach). An extensive experimen-
tal analysis on two different test suites of graphs shows the effectiveness of the
proposed solutions for the optimization of some readability metrics.

1 Introduction and Overview

Several empirical studies compare different aesthetic criteria for drawing graphs and
show that the number of edges crossings often has the strongest impact on the read-
ability of a diagram (see, e.g., [21,22]). As a consequence, it has been widely accepted
that one of the primary optimization tasks of a good graph drawing algorithm is the
minimization of crossings and a large body of literature has been devoted to this topic
(see, e.g., [4,20]).

Cognitive experiments by Huang, Huang et al., and Ware et al. provide new insights
into the classical correlation between edge crossings and human understanding of graph
drawings [18,19,24]. As these experiments show, the readability of a diagram not only
depends on the edge crossings (which are unavoidable for dense non-planar graphs) but
also on the “quality” of these crossings and on the “quality” of the curves that cross
with each other. The experiments suggest that the query “Are two vertices adjacent in
the drawing?” is easier to answer when the minimum angle formed by the crossing
edges is as large as possible and when the curves that represent the edges are as straight
as possible. The task of easily following the drawing of an edge from its source to its
destination is also listed in the NetViz Nirvana of a recent study by Dunne and Shnei-
derman about HCI design principles for visual analytics [7].

This paper studies the problem of designing graph drawing algorithms that guar-
antee good trade-offs in terms of number of edge crossings, crossing angle resolution
and geodesic edge tendency. The crossing angle resolution measures the value of the
minimum angle formed by two crossing edges. The geodesic edge tendency measures
how close a bent edge is to the straight-line segment connecting the end-points of the
edge. To this aim, we adopt a graph drawing methodology, which we call topology-
driven force-directed approach, that combines two classical graph drawing algorithmic
frameworks: the force-directed approach and planarization-based approach.

� Work supported in part by the MIUR project AlgoDEEP prot. 2008TFBWL4.

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 165–176, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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The force-directed approach associates the input graph with a physical system of
forces and it tries to place the vertices so that the total energy of the physical system is
minimal. Only a few examples of force directed algorithms use edges with bends (see,
e.g., [5,10,12]); the vast majority of the force-directed algorithms represent the edges as
straight-line segments and thus the computed drawings are optimal in terms of geodesic
edge tendency. Unfortunately, force directed algorithms may introduce unnecessarily
many crossings. For example, the drawing of Fig. 1(a) computed with a force-directed
algorithm of the OGDF Library1 contains edge crossings even though the input graph is
planar.

A planarization-based algorithm first computes a topology (i.e., an embedding) of the
graph with a small number of edge crossings and then it applies a drawing algorithm
that preserves this topology. Since the crossing minimization problem is NP-hard, a
planarization-based algorithm typically relies on heuristics such as first computing a
maximal planar subgraph and then inserting an edge per time (see, e.g., [4,15] ). Each
unavoidable edge crossing is replaced by a dummy vertex and a planar embedding of
an augmented planar graph is obtained. The drawing algorithm typically preserves this
computed topology by introducing bends along the edges; for example, the well-known
topology-shape-metrics algorithm by Tamassia [23] is a planarization-based algorithm
that computes orthogonal drawings. Planarization-based algorithms are likely to com-
pute drawings with smaller number of crossings than force-directed algorithms and
often with a better crossing angle resolution. However, the bends along the edges may
strongly affect the geodesic edge tendency. See for example the orthogonal drawing of
Fig. 1(b). This drawing, computed with the GDToolkit Library2, depicts the same
graph of Fig. 1(a). Note that, understanding whether the two black vertices are adja-
cent is more complicated in the orthogonal drawing because their connecting edge is
far from being geodesic.

The main results in this paper are as follows:

– We describe ORTHFD and POLYFD, two graph drawing algorithms that were de-
signed within the topology-driven force-directed framework (see Section 3). For
example, Fig. 1(c) shows a drawing computed by algorithm ORTHFD. Observe that
compared to Fig. 1(a), the drawing does not have crossings; compared to Fig. 1(b)
the edge between the black vertices is easier to follow.

– We perform an experimental study that compares our algorithms with respect to
some of the most effective force-directed and planarization-based algorithms de-
scribed in the literature. The results show that the drawings computed with the
topology-driven force-directed approach achieve better trade-offs in terms of num-
ber of edge crossings, crossing angle resolution, and geodesic edge tendency. They
often provide good results with respect to some other important aesthetic criteria as
well, such as number of bends and vertex angle resolution (see Section 4).

Throughout this paper we assume that the reader is familiar with the basic concepts of
force-directed and planarization-based techniques (see e.g. [4,20]).

1 http://www.ogdf.net/
2 http://www.dia.uniroma3.it/∼gdt
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(a) (b) (c)

Fig. 1. Drawings of the same graph with different approaches: (a) A force-directed approach; (b)
A planarization-based approach; (c) A topology-driven force-directed approach

2 Related Work

There are many examples in the literature describing force-directed algorithms that pre-
serve a given topology (i.e. a given embedding). While we refer the interested reader to
the accurate surveys in [8,9,10] for exhaustive lists of references, we mention here only
those results that can be more closely related to the approach described in this paper.

Bertault describes a force-directed algorithm, called PRED, that preserves edge cross-
ing properties [2]. Our work and the one of Bertault have some similarities but also sub-
stantial differences. Similar to PRED, our algorithmic framework uses force-directed
techniques that do not increase the number of crossings with respect to an initial draw-
ing of the graph. Differently from PRED, our work: (i) Combines crossing minimization
heuristics and force-directed methods; (ii) Guarantees good crossing angle resolution by
allowing bent edges; (iii) Enhances the force-directed model with a set of constraints that
guarantees a good geodesic edge tendency in spite of the fact that the edges can bend.

Also, Dwyer et al. [9,10] have extensively studied sophisticated stress-optimization
techniques that maintain a set of constraints, including a given topology. Similar to the
algorithms in those papers, we allow bends along the edges. Differently from those pa-
pers, our primary goal is to find good trade-offs between number of edge crossings,
crossing angle resolution, and geodesic edge tendency, while we do not focus on the
stability problem in dynamic graph layout. This difference impacts on the developed
techniques and on the computed drawings. For example, we do not consider the contin-
uous network layout problem and we do not insist on preserving an initial mental map;
in fact, our techniques may even change the initial topology if this change reduces the
total number of edge crossings.

3 The Topology-Driven Force-Directed Approach

Let G be a graph. The topology-driven force-directed approach computes a drawing Γ
of G into two main phases. Phase 1: A drawing Γ0 of G is computed by applying a
planarization-based algorithm. Phase 2: The final drawing Γ is obtained by applying
a force-directed algorithm to Γ0, with the constraint that Γ does not have more edge
crossings than Γ0.
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Within this general approach, one can design several algorithms by combining dif-
ferent strategies for the two phases. In this work we describe two specific algorithms
that we call ORTHFD and POLYFD, respectively. Both of these algorithms adopt a
similar planarization step, that computes a planar embedding of G where crossings are
replaced with dummy vertices, called cross vertices. In order to have a small number of
edge crossings the planarization step uses a classical heuristic based on finding a short-
est path in the dual graph for each edge insertion (see, e.g., [4]). Algorithms ORTHFD
and POLYFD then construct a drawing Γ0 of G that preserves the computed planar em-
bedding. Algorithm ORTHFD uses the topology-shape-metrics approach for orthogonal
drawings in the Kandinsky drawing convention [13]. According to this convention, the
vertices are represented as squares of the same dimension and there may be parallel
edges incident to vertices whose degree is larger than four. The orthogonal drawing
is computed by the algorithm described in [3], which minimizes the total number of
bends along the edges in O(n

7
4 log n) time if the network flow algorithm of Garg and

Tamassia is used [14]. We use the O(n2 log n) algorithm described in [3].
Algorithm POLYFD computes a polyline drawing Γ0 by applying the algorithm de-

scribed in [6]. Γ0 is constructed by finding a suitable orientation of the edges of the
graph and by using this orientation to define a visibility representation of the graph.
The polyline drawing is obtained collapsing the vertices of the visibility representation
into points (see, e.g., [4]).

Phase 2 of ORTHFD and of POLYFD uses a common force-directed strategy, that
works in different steps:

– Step 1: Every bend of Γ0 is replaced with a dummy vertex, called a bend vertex.
After this step all the edges are straight-line segments. Call Γ1 the new drawing.

– Step 2: A force directed algorithm is applied, starting with Γ1 as the initial drawing
where the general physical model is that described in [11]: Each vertex is modeled
as an electrically charged particle and each edge as a spring. The phisical model is
augmented by additional constraints as described below:

• Let e = (u, v) be an edge of G that has k bends in Γ0 and let e1, e2, . . . , ek+1
be the edges of Γ1 forming e. Note that, if k = 0 then e1 coincides with e;
in this case we call e1 a straight edge. With respect to Γ1, denote by �(ei) the
length of ei, by �(e) the sum of all �(ei), and by d(u, v) the Euclidean distance
between u and v. The spring corresponding to ei is given a zero-energy length
equal to d(u, v) �(ei)

�(e) . Also, the stiffness of the springs that model the straight
edges is smaller than the stiffness of the springs associated with the other edges.
This is done to ensure that each edge approximates the straight line between its
end-vertices, in order to obtain a good geodesic edge tendency.

• Let
−−→
f(v) be the resultant of all forces acting on v, and let d be the maximum

distance by which v can be moved along the direction of
−−→
f(v) without creating

any new edge crossings. Vertex v is moved along the direction of
−−→
f(v) by a

quantity δ such that δ ≤ min{d, |
−−→
f(v)|}. More precisely, if moving v by a

quantity |
−−→
f(v)| does not create crossings, then we set δ = |

−−→
f(v)|, otherwise

we compute δ by applying a binary search along the direction of
−−→
f(v); we stop



Topology-Driven Force-Directed Algorithms 169

(a) (b)

Fig. 2. Two drawings of the same graph computed with different algorithms. The drawing com-
puted by ORTHFD, in Fig. 2(b), has six fewer crossings than the one computed by a planarization-
based orthogonal drawer of GDToolkit, in Fig. 2(a). The edges in ORTHFD are represented by
smoothed curves.

this search as soon as a placement for v is found that does not increase the
number of edge crossings. Note that this procedure may lead to a reduction of
the number of crossings computed by the planarization step. For example, the
drawing computed by ORTHFD in Fig. 2(b) has six fewer crossings than the
one in Fig. 2(a), computed by using a planarization-based orthogonal drawer
of GDToolkit.

– Step 3: This is a post-processing step whose goal is to improve the crossing an-
gle resolution. Let Γ2 be the drawing at the end of Step 2 and let α be a target
value for the minimum angle formed by two crossing edges. Let e1, e2 be two
crossing edges of Γ2 that form an angle smaller than α. In order to enlarge the
crossing angle formed by e1 = (u1, v1) and e2 = (u2, v2) we adopt a technique
similar to that described in [5]. Denote by c the crossing point of e1, e2. Define
a disk δ centered at c such that δ does not intersect in Γ2 any edge other than
e1 and e2. Let pi, qi be the intersection points between δ and ei (i ∈ {1, 2}).
Edge ei is split into the path (ui, pi), (pi, qi), (qi, vi). Also, the straight-line edges
(p1, p2), (p2, q1), (q1, q2), (q2, p1) are added to the drawing. The four-cycle formed
by these dummy edges is called the cage of crossing c. The zero-energy length of all
edges forming the cages is set to be a constant smaller than the zero-energy length
of the shortest edge of Γ2; the stiffness of the edges in the cages is larger than the
one of the other edges. Let Γ ′

2 be the drawing obtained from Γ ′
2 by inserting all

cages. By applying a few iterations of the force-directed method to Γ ′
2, we obtain

a new drawing where the cages are drawn as close as possible to squares, which
enforces their diagonals to cross at large angles.

– Step 4: Let Γ3 be the drawing at the end of Step 3. The algorithm iteratively re-
moves unnecessary bends along the edges. A bend is unnecessary if its removal: (i)
does not introduce new crossings; (ii) does not make the crossing angle resolution
lower than the given threshold α.
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4 Experimental Study

We tested algorithms ORTHFD and POLYFD on two different test suites of graphs. The
first test suite, called Rome, consists of 300 graphs randomly selected in the popular
collection known as the “Rome graphs” [1]; we selected 30 graphs for each fixed num-
ber of vertices n ∈ {10, 20, . . . , 100}. The graphs in this test suite are typically sparse
(the average density of the Rome graphs is about 1.4) and they reflect the structure of
graphs coming from real life applications in the field of databases.

The second test suite, called Rand consists of 300 randomly generated graphs, that
are denser than the “Rome graphs”. They have number of vertices n ∈ {10, 20, . . . , 50}
and density d ∈ [1.5− 4.0]. For each pair 〈n, d〉, a graph with n vertices and m = d · n
edges was generated with a uniform probability distribution; we generated 60 graphs
for each distinct value of n.

We initially compared the drawings computed by ORTHFD and POLYFD with three
effective force-directed and planarization-based algorithms, namely FM3, ORTH, and
POLY. Algorithm FM3 is the fast force-directed algorithm described by Hachul and
Jünger [16]. Among the wide set of force-directed algorithms, we chose FM3 because
an experimental study showed that it typically computes drawings with smaller num-
ber of crossings and edge overlaps than other force-directed methods [17]. We used
the implementation of FM3 available in the open source library OGDF. ORTH and
POLY are the algorithms that compute an orthogonal drawing and a polyline draw-
ing in Phase 1 of ORTHFD and POLYFD, respectively. We used the implementation of
these algorithms available in the GDToolkit Library; the algorithms ORTH and POLY

perform well in terms of number of bends and number of edge crossings [4]. How-
ever, after a few experimental measures we realized that ORTH outperformed POLY

in all aesthetics. Also POLY was often giving rise to drawings with overlapping edge
bends, which was making the final drawings rather confusing. For example, Fig. 3
shows five drawings of the same graph, each computed by one of the above algorithms.
It is immediate to see that the drawing of Fig. 3(d) is less readable than the others
when trying to answer basic queries, such as identifying the neighbors of the black
vertex (white vertices). Therefore, we decided to restrict the experimental compari-
son to algorithms ORTH, FM3, ORTHFD, and POLYFD. We remark that the problem
of overalpping edge bends does not occur with algorithm POLYFD, where the repul-
sive forces acting between pairs of vertices do not allow two bends to be drawn at the
same point.

In the experimental setting of algorithms ORTHFD and POLYFD we set the mini-
mum threshold α for the crossing angle resolution to be α = 30◦. This is motivated
by the work of Ware et al. [24], who observe that crossing angles smaller than 30◦ are
more likely to cause visual confusion when reading a drawing of a graph.

In the following we present the charts summarizing our experimental results. In all
charts we use bars with the following colors for the different algorithms: (a) FM3 -
White color; (b) ORTH - Light gray color; (c) ORTHFD - Dark gray color; POLYFD -
Black color.
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(a) FM3 (b) ORTH (c) ORTHFD

(d) POLY (e) POLYFD

Fig. 3. Five drawings of the same graph computed with different algorithms

Number of Edge Crossings

Fig. 4(a) and Fig. 4(b) show that the number of edge crossings of ORTH, ORTHFD, and
POLYFD is, on average, half that computed by FM3. This behavior is a consequence of
the impact of the planarization heuristic used in ORTH, ORTHFD, and POLYFD. The
experiments also confirmed the observation made in the previous section that Phase 2
of the topology-driven force-directed framework can further reduce the number of edge
crossings of a planarized drawing. In particular, the drawings computed by ORTHFD
contain on average 10% less edge crossings than ORTH. We finally remark that some of
the drawings computed by FM3 presented edge overlaps (37 in the Rome test suite and
62 in the Rand test suite). The other algorithms never created edge overlaps.

For example, Fig. 3(a) has 59 edge crossings, Fig. 3(b) and Fig. 3(e) have 17 edge
crossings, while Fig. 3(c) has 16 edge crossings.

Crossing Angle Resolution

Fig. 5(a) and Fig. 5(b) show the crossing angle resolution in the drawings computed
by FM3, ORTHFD, and POLYFD, that is, the value of the minimum angle formed by
any two crossing edges. Clearly, the crossing angle resolution of the drawings com-
puted by ORTH is always optimal (i.e., 90◦) and hence we do not report the data for
this algorithm. If a drawing is planar, it was assigned an optimal crossing angle resolu-
tion. From the charts it can be seen that both ORTHFD and POLYFD outperform FM3.
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(a) Number of edge crossings - Rome (b) Number of edge crossings - Rand

Fig. 4. Number of edge crossings for the two test suites of graphs (average values over the number
of vertices)

(a) Crossing angle resolution - Rome (b) Crossing angle resolution - Rand

Fig. 5. Crossing angle resolution for the two test suites (average values over the number of
vertices)

In particular, the average crossing angle resolution of the drawings computed by OR-
THFD is always above 30◦ for number of vertices up to 80 in the Rome test suite. Also,
the crossing angle resolution of the drawings computed by FM3 on the Rand graphs is
often very poor (around 10◦), while it is maintained always above 20◦ by ORTHFD.

Also, we observed that the percentage of edge crossings with an angle smaller than
30◦ is about 6% on average for the drawings computed by FM3, while it is about 2%
for the drawings computed by algorithms ORTHFD and POLYFD. This data is par-
ticularly relevant if considered together with the observation that the number of edge
crossings created by FM3 is typically much higher than the one created by ORTHFD
and POLYFD.

For example, Fig. 3(a) has two crossings that form an angle less than 30◦, all edge
crossings in Fig. 3(c) form angles larger than 30◦, and Fig. 3(e) has one edge crossing
that forms an angle less than 30◦.

Geodesic Edge Tendency

Clearly, the drawings computed by FM3 are optimal in terms of geodesic edge tendency,
because they have straight-line edges only. To measure the geodesic edge tendency of
the drawings computed by algorithms ORTH, ORTHFD, and POLYFD we considered
two different parameters: (i) The percentage of edges (u, v) that are not monotone in
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(a) Percentage of non-monotone edges - Rome (b) Percentage of non-monotone edges
- Rand

(c) Ratio (as percentage) between max. dist. from
(u, v) to uv and |uv| - Rome

(d) Ratio (as percentage) between max.
dist. from (u, v) to uv and |uv| - Rand

Fig. 6. Geodesic edge tendency (average values over the number of vertices)

the direction of the straight segment uv; small percentages of such edges indicate good
geodesic edge tendency. (ii) The ratio between the maximum distance from an edge
(u, v) to the segment uv and the length of uv. Small values indicate good geodesic
edge tendency.

Fig. 6(a) and Fig. 6(b) show that the number of non-monotone edges in the drawings
computed by ORTHFD is between than 2 − 4%, and dramatically improves the values
for the drawings computed by ORTH, namely by 82% on average. Also POLYFD gives
some improvement with respect to ORTH for almost all instances, but this improvement
is not so relevant as for ORTHFD. For example, Fig. 3(b) has six non-monotone edges,
all edge in Fig. 3(c) are monotone, and Fig. 3(e) has four non-monotone edges.

Concerning the second parameter used to measure the geodesic edge tendency,
Fig. 6(c) and Fig. 6(d) show the ratio (expressed as percentage) between the maximum
distance from an edge (u, v) to the segment uv and the length of uv. It can be observed
that for the Rome graphs both the two topology-driven force-directed algorithms sig-
nificantly improve the results of algorithm ORTH. More precisely, this percentage is
on average 40% for ORTH, 23% for ORTHFD, and 24% for POLYFD. For the Rand
graphs Orth and PolyFD perform similarly (about 40% on average), while OrthFD
perform better for almost all instances (about 32% on average).

Bends and Vertex Angles

From the experiments we also observed that ORTHFD works well also in terms of
number of bends and vertex angle resolution. Namely, Fig. 7 shows that the ORTHFD
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(a) Total number of bends - Rome (b) Total number of bends - Rand

Fig. 7. Total number of bends for the two test suites (average values over the number of vertices)

reduces the total number of bends of ORTH by 60% on average, both for the Rome and
for the Rand graphs. On the contrary, POLYFD usually performs worse than the other
two algorithms, because the drawings computed in Phase 1 by POLYFD contain many
more bends than those computed by ORTH.

About the vertex angle resolution, we excluded from the comparison the drawings
computed by Orth, where two edges incident to the same vertex may form an angle
of zero degree (if they are parallel). Fig. 8 shows that ORTHFD and POLYFD perform
better than FM3 except for the sample of 10 vertices in the Rome graphs. In particular,
the vertex angle resolution of the drawings computed by ORTHFD is on average 2.5
times higher than that of the drawings computed by ORTH on the Rand graphs.

For example, Fig. 3(b) has 38 edge bends, Fig Fig. 3(c) has 10 edge bends, and
Fig. 3(e) has 34 edge bends. Also, Fig. 3(a) has vertex angle resolution equal to 0.64◦,
Fig. 3(c) has vertex angle resolution equal to 11.2◦, and Fig. 3(e) has vertex angle
resolution equal to 5.68◦.

Running Time

We designed our algorithms to take into account several readability metrics, which typ-
ically conflict with each other. The good performances in terms of aesthetic criteria are

(a) Vertex angle resolution - Rome (b) Vertex angle resolution - Rand

Fig. 8. Vertex angle resolution (average values over the number of vertices)
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(a) Running time - Rome (b) Running time - Rand

Fig. 9. Running time (in seconds) of algorithms ORTHFD and POLYFD (average values over the
number of vertices)

however paid in terms of computational efficiency. A theoretical analysis shows that
the algorithms require O((n + b)(m log m)) time, where n, m, and b are the number
of vertices, edges, and bends in the drawing. The time performances of ORTHFD and
POLYFD are reported in Fig. 9. The algorithms were executed on a PC Intel Core Duo
2.66 GHz and 2GB RAM. From the charts, it is possible to see that the Rand graphs are
computationally much harder than the Rome graphs, due to their higher density. How-
ever, the time required by ORTHFD is much smaller than that required by POLYFD.

5 Conclusions and Open Problems

In this paper we concentrated on the design of graph drawing algorithms that guaran-
tee a good trade-off between number of edge crossings, crossing angle resolution, and
geodesic edge tendency. We adopted the topology-driven force-directed framework and
experimentally studied the performances of two algorithms, ORTHFD and POLYFD
designed within this framework. The experimental analysis shows that algorithm OR-
THFD has a better trade-off between number of edge crossings, crossing angle resolu-
tion, and geodesic edge tendency than existing force-directed and planarization-based
algorithms. Also, it behaves rather well in terms of number of bends and in the ver-
tex angle resolution. Furthermore ORTHFD generally outperformed POLYFD in all the
experiments we have executed.

As our experiments show, algorithm ORTHFD can be reasonably applied to graphs
having up to 100 vertices. It would be interesting to design graph drawing algorithms
that perform equally well with respect to the aesthetic criteria taken into account in this
paper and that can be applied efficiently to larger graphs. More experimental results that
compare our technique with other force-directed algorithms are also of interest.
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Abstract. For a set S of n lines labeled from 1 to n, we say that S supports
an n-vertex planar graph G if for every labeling from 1 to n of its vertices, G
has a straight-line crossing-free drawing with each vertex drawn as a point on its
associated line. It is known from previous work [4] that no set of n parallel lines
supports all n-vertex planar graphs. We show that intersecting lines, even if they
intersect at a common point, are more “powerful” than a set of parallel lines. In
particular, we prove that every such set of lines supports outerpaths, lobsters, and
squids, none of which are supported by any set of parallel lines. On the negative
side, we prove that no set of n lines that intersect in a common point supports
all n-vertex planar graphs. Finally, we show that there exists a set of n lines in
general position that does not support all n-vertex planar graphs.

1 Introduction

We consider the effect of restricting the placement of vertices in a planar, straight-line,
crossing-free embedding of a planar graph. Every vertex has an associate region of the
plane where it can be placed. If each region is the whole plane then the regions support
all planar graphs. If the regions are points then they fail to support even such a simple
class of graphs as paths. Our interest is in what classes of planar graphs are supported
by particular families of vertex regions. Specifically, in this paper we focus on vertex
regions that are lines.

A set of segments is crossing-free if no two segments intersect in their interiors. A
vertex labeling of a graph G = (V, E) is a bijection π : V → [n]. A set R of n regions
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(subsets of R2) labeled from 1 to n supports a graph G with vertex labeling π if there
exists a set of distinct points p1, p2, . . . , pn such that pi lies in region i for all i and the
segments pπ(u)pπ(v) for (u, v) ∈ E are crossing-free. The set R of n labeled regions
supports a graph G if R supports G with vertex labeling π for every vertex labeling π.
As an example of the use of this terminology, we show that every n-pinwheel (set of n
labeled lines that share a common point) supports any n-squid (see definition below).

While we focus on embeddings that prescribe a specific region for each vertex, the
problem is also interesting if each vertex may be placed in any one of the regions.
In this variant, a set of regions R supports a graph G = (V, E) without mapping if
there exists a bijection π from V to R such that R supports G with vertex labeling
π. Rosenstiehl and Tarjan [8] posed the question of whether there exists a point set of
size n that supports without mapping all n-vertex planar graphs: a universal point set
for all planar graphs. De Fraysseix et al. [3] resolved the question in the negative by
presenting a set of n-vertex planar graphs that requires a point set of size Ω(n +

√
n).

For some classes of n-vertex planar graphs, universal point sets of size n have been
found. In particular, Gritzmann et al. [6] showed that any set of n points in general
position forms a universal point set for trees and indeed for all outerplanar graphs, for
which Bose [2] gave an efficient drawing algorithm.

Embedding with mapping is an even more restricted version of the problem. For
example, any set of n points supports without mapping all n-vertex paths. Whereas, for
large enough n, no set of n points supports all n-vertex paths. For n ≥ 5, every set of n
points contains a subset of three collinear points or four points in convex position.1 In
both cases, it is easy to devise a vertex mapping of three (respectively four) consecutive
vertices of any n-vertex path to that subset of points that forces an edge crossing.

If we remove the straight-line edge condition in this mapped setting, Pach and
Wenger [7] showed that any set of n points supports all n-vertex planar graphs, how-
ever Ω(n) bends per edge may be necessary in any crossing-free drawing. Even if the
mapping constraint is relaxed to just two colors: the red vertices must be mapped to
any red point and the blue vertices to any blue point, Badent et al. [1] proved that Ω(n)
bends per edge are sometimes necessary.

Estrella-Balderrama et al. [4] show that any set of n parallel lines supports exactly
the class of unlabeled level planar (ULP) graphs. This class of graphs contains several
sub-classes of trees (namely caterpillars, radius-2 stars and degree-3 spiders) [4] and a
restricted set of graphs with cycles (such as generalized caterpillars) [5]. The simplest
class of trees not supported by parallel lines is the class of lobsters.

We show that any set of n lines that intersect at a common point supports a larger
sub-class of n-vertex trees than the ULP graphs. We further show that no set of n lines
that intersect at a common point supports all n-vertex planar graphs. Whether such a
set of lines supports all trees is a natural open question. We also show that there exists a
set of n lines in general position that does not support all n-vertex planar graphs. Here,
a set of lines is considered in general position if no two lines are parallel and no three
lines intersect in a common point. The main open question remaining is whether there
exists a set of lines in general position that supports all planar graphs.

1 Eszter Klein’s Happy Ending problem.
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2 Preliminaries

Definition 1. A pinwheel is an arrangement of n distinct lines that intersect the origin
and are labeled from 1 to n in clockwise order. Each line in the pinwheel is called a
track.

As the next lemma shows, pinwheels are an interesting family of line sets to consider
when investigating whether more general families support planar graphs.

Lemma 1. Any class of graphs supported by every n-line pinwheel is also supported
by every arrangement of n lines, no two of which are parallel.

Proof: Determine a circle that contains all line intersections. By scaling the arrange-
ment down we can make the radius of this circle arbitrarily small, rendering it effec-
tively into a pinwheel.

3 Graphs Supported by Arrangements of Lines

In this section we describe non-ULP families of planar graphs that are supported by ev-
ery arrangement of lines, no two of which are parallel. We use pinwheels as supporting
sets for the graphs in these families since by Lemma 1 the results will then apply to
the more general arrangements. We begin by studying lobsters, then extend the result to
squids and finally consider outerpaths.

– A caterpillar is a graph in which the removal of all degree one vertices and their
incident edges results in a path. This path is called the spine of the graph.

– A lobster is a graph in which the removal of all degree one vertices and their inci-
dent edges results in a caterpillar.

– A squid is a subdivision of a lobster.
– An outerpath is an outerplanar graph whose weak dual is a path (where the weak

dual is obtained from the dual by removing the vertex corresponding to the outer-
face and its adjacent edges).

Lemma 2. Every n-line pinwheel supports any n-vertex lobster.

Proof: Let L be a lobster with n vertices and spine vertices v1, v2, . . . , vk. We compute
a straight-line embedding of L on any labeled n-pinwheel such that no two edges cross
for any vertex labeling of L. We place the vertices in order of a preorder traversal of
L, where L is considered as a tree rooted at v1 and such that each spine vertex is the
last descendant of its parent. At any step, there is a set of vertices not all of whose
children have been drawn – call these the active vertices. We maintain the invariant
that all active vertices can “see” the origin (i.e., the segment from the embedded active
vertex to the origin does not intersect a segment of the drawing). As a consequence, all
active vertices can see an empty disk (i.e., a disk that does not intersect a segment of the
current drawing) of nonzero radius centered at the origin and intersecting every track
twice; see Fig. 1. At each step, the current vertex is placed at one of the two intersection
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Fig. 1. (a) A labeled lobster with spine vertices v1 = 1, v2 = 8. (b) An embedding using the
algorithm. The dotted circles indicate the empty discs at each step.

points of its track and the boundary of the largest empty disk centered at the origin
that is seen by all active vertices. The intersection point that is chosen is the one that is
encountered first in counter-clockwise radial order from the track of its already-placed
parent. (The first vertex, v1, is initially placed on its corresponding track at an arbitrary
point that is not the origin.)

The correctness of the drawing algorithm is proved by induction on the length of the
spine. While a spine vertex is active, only vertices at distance at most two from it are
drawn. Since the radial distance between a vertex and its parent is less than 180 degrees,
we maintain the invariant that each active vertex sees the origin.

Lemma 3. Every n-line pinwheel supports any n-vertex squid.

Proof: We extend the algorithm of Lemma 2 to the drawing of squids. A squid G′ can
be obtained from a lobster G by subdividing edges of G. For each vertex v created by
subdividing an edge (u, w) of G, we define v’s lobster parent as the closer of u or w to
the root v1. We draw the vertices in order of a preorder traversal of the graph. But at each
step, the position chosen for a vertex is on the track that is encountered first in counter-
clockwise radial order from the track of its lobster parent instead of its parent. As a
result, the whole path obtained by subdividing an edge is drawn at the radial distance of
at most 180 degrees from its lobster parent. As in the proof of Lemma 2, every active
vertex can see the origin.
With similar techniques as those of Lemmas 2 and 3, the following can be proved.

Lemma 4. Every n-line pinwheel supports any n-vertex outerpath.

Lemmas 3, 4, and 1 imply the following.

Theorem 1. Every arrangement of n lines, no two of which are parallel, supports any
n-vertex squid and any n-vertex outerpath.

4 Non-supporting Line Sets

In this section, we show that there is a labeled planar graph that is not supported by any
pinwheel. We also show that there exists a family of n-line sets, where each set is in
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Fig. 2. (a) Graph G6 can be realized only if the origin of the pinwheel is contained in an internal
face. (b) Graph G3

6 consists of three copies of G6 connected by three edges.

general position, that does not support all n-vertex planar graphs. Note that this does not
rule out the possibility that some family of n-line sets in general position could support
all n-vertex planar graphs.

Both arguments rely on graphs that use as a building block the graph G6 in Fig. 2(a).
It is not difficult to show that any straight-line, crossing-free embedding of G6 with the
given labeling requires that the origin of the pinwheel (with tracks labeled in clockwise
order) is in an internal face. We prove a slightly stronger statement since we will need
it in the proof of Theorem 3. For a set, S, of lines, no two of which are parallel, define
the core, C(S), of S to be the union of the intersections, finite edges, and bounded cells
of the arrangement of S.

Lemma 5. Let S be any set of lines, no two of which are parallel, labeled so that they
intersect some line at infinity in the order 1,2,3,4,5,6. In any straight-line, crossing-free
embedding of G6 (labeled as in Fig. 2(a)) on S, the core C(S) intersects some internal
face of the embedding.

Proof: Suppose for the sake of contradiction that the core C(S) lies in the external
face of some embedding of G6. Thus each vertex of G6 lies on a half-line (of the
arrangement of S) that does not intersect C(S) and these six half-lines intersect a line
at infinity in some order. Let us assume initially that this order is 1, 2, 3, 4, 5, 6.

Consider edge (1, 5) in the embedding of G6, and the line � that contains edge (1, 5).
For any pair of vertices a, b ∈ {2, 3, 4} of G6, if a and b are in the distinct half-planes
bounded by � then a does not see b, that is, the segment between a and b intersects
edge (1, 5). Since both 3 and 4 are adjacent to 2 in G6, all three of these vertices are in
the same half-plane determined by �. Moreover, 2 is contained inside of a triangle, T ,
determined by either 1, 3, 5 or 1, 4, 5. Since 6 is adjacent to 2 in G6, 6 is inside of T as
well. However, line 6 does not intersect T , which provides a desired contradiction.

A similar argument holds for the other possible half-line orders.

To construct the graph that is not supported by any pinwheel, we make three copies of
G6 and label them so that the vertex labeled k in the original graph is labeled 6(i−1)+k
in the ith copy. Finally, the graph G3

6 is created by connecting the three labeled copies
of G6 with the help of three additional edges, as shown in Fig. 2(b).
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Theorem 2. Planar graph G3
6 is not supported by any pinwheel.

Proof: Assume for the sake of contradiction that there is a straight-line, crossing-free
drawing of the labeled graph G3

6 on the pinwheel. By Lemma 5, each of the copies of
G6 can be realized crossing-free and with straight line edges only if the origin of the
pinwheel is contained in an internal face. Without loss of generality, that implies that
the first copy of G6 is inside an internal face of the second copy of G6, and both are
inside an internal face of the third copy of G6. That provides a desired contradiction,
since the edge connecting the first copy with the third copy must cross some edge of the
second copy.

We now turn our attention to lines in general position. One might hope that lines in
general position (i.e., no two lines are parallel and no three lines intersect in a common
point) provide enough freedom in the placement of vertices to support any planar graph.
We show that the general position assumption alone is not sufficient. Specifically, we
can prove that there exists a family of n-line sets such that each set is in general position
and not all planar graphs are supported by a line set in the family. Using a parabolic grid
of n lines and a graph that contains multiple copies of G6 we can obtain the following
theorem (due to space constraints, we leave the proof out of this abstract):

Theorem 3. For every n ≥ 24, the parabolic grid on n lines does not support all
n-vertex planar graphs.

5 Conclusion and Open Problems

Whether there exists some set of n lines that does support all n-vertex planar graphs is
a natural question that is still open. It is also not known whether pinwheels support all
trees.
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Abstract. We study methods for drawing trees with perfect angular resolution,
i.e., with angles at each vertex, v, equal to 2π/d(v). We show:

1. Any unordered tree has a crossing-free straight-line drawing with perfect
angular resolution and polynomial area.

2. There are ordered trees that require exponential area for any crossing-free
straight-line drawing having perfect angular resolution.

3. Any ordered tree has a crossing-free Lombardi-style drawing (where each
edge is represented by a circular arc) with perfect angular resolution and
polynomial area.

Thus, our results explore what is achievable with straight-line drawings and what
more is achievable with Lombardi-style drawings, with respect to drawings of
trees with perfect angular resolution.

1 Introduction

Most methods for visualizing trees aim to produce drawings that meet as many of the
following aesthetic constraints as possible:

1. straight-line edges,
2. crossing-free edges,
3. polynomial area, and
4. perfect angular resolution around each vertex.

These constraints are all well-motivated, in that we desire edges that are easy to follow,
do not confuse viewers with edge crossings, are drawable using limited real estate, and
avoid congested incidences at vertices. Nevertheless, previous tree drawing algorithms
have made various compromises with respect to this set of constraints; we are not aware
of any previous tree-drawing algorithm that can achieve all these goals simultaneously.
Our goal in this paper is to show what is actually possible with respect to this set of
constraints and to expand it further with a richer notion of edges that are easy to fol-
low. In particular, we desire tree-drawing algorithms that satisfy all of these constraints
simultaneously. If this is provably not possible, we desire an augmentation that avoids
compromise and instead meets the spirit of all of these goals in a new way, which, in
the case of this paper, is inspired by the work of artist Mark Lombardi [18].
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Problem Statement. The art of Mark Lombardi involves drawings of social networks,
typically using circular arcs and good angular resolution. Figure 1 shows such a work of
Lombardi that is crossing-free and almost a tree. Note that it makes use of both circular
arcs and straight-line edges. Inspired by this work, let us define a set of problems that
explore what is achievable for drawings of trees with respect to the constraints listed
above but that, like Lombardi’s drawings, also allow curved as well as straight edges.

Fig. 1. Mark Lombardi, Pat Robertson, Beurt Servaas, and the UPI Takeover Battle, ca. 1985-91,
2000 [18]

Given a graph G = (V,E), let d(u) denote the degree of a vertex u, i.e., the number
of edges incident to u in G. For any drawing of G, the angular resolution at a vertex u
is the minimum angle between two edges incident to u. A vertex has perfect angular
resolution if its minimum angle is 2π/d(u), and a drawing has perfect angular resolu-
tion if every vertex does. Drawings with perfect angular resolution cannot be placed on
an integer grid unless the degrees of the vertices are constrained, so we do not require
vertices to have integer coordinates. We define the area of a drawing to be the ratio of
the area of a smallest enclosing circle around the drawing to the square of the distance
between its two closest vertices.

Suppose that our input graph, G, is a rooted tree T . We say that T is ordered if
an ordering of the edges incident upon each vertex in T is specified. Otherwise, T
is unordered. If all the edges of a drawing of T are straight-line segments, then the
drawing of T is a straight-line drawing. We define a Lombardi drawing of a graph G
as a drawing of G with perfect angular resolution such that each edge is drawn as a
circular arc. When measuring the angle formed by two circular arcs incident to a vertex
v, we use the angle formed by the tangents of the two arcs at v. Circular arcs are strictly
more general than straight-line segments, since straight-line segments can be viewed as
circular arcs with infinite radius. Figure 2 shows an example of a straight-line drawing
and a Lombardi drawing for the same tree. Thus, we can define our problems as follows:

1. Is it always possible to produce a straight-line drawing of an unordered tree with
perfect angular resolution and polynomial area?

2. Is it always possible to produce a straight-line drawing of an ordered tree with
perfect angular resolution and polynomial area?

3. Is it always possible to produce a Lombardi drawing of an ordered tree with perfect
angular resolution and polynomial area?
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(a) Straight-line drawing for an unordered tree (b) Lombardi drawing for an ordered tree

Fig. 2. Two drawings of a tree T with perfect angular resolution and polynomial area as produced
by our algorithms. Bold edges are heavy edges, gray disks are heavy nodes, and white disks are
light children. The root of T is in the center of the leftmost disk.

Related Work. Tree drawings have interested researchers for many decades: e.g., hierar-
chical drawings of binary trees date to the 1970’s [24]. Many improvements have been
proposed since this early work, using space efficiently and generalizing to non-binary
trees [2,5,13,14,15,21,23,22]. These drawings do not achieve all the constraints men-
tioned above, however, especially the constraint on angular resolution.

Alternatively, several methods strive to optimize angular resolution of trees. Radial
drawings of trees place nodes at the same distance from the root on a circle around the
root node [11]. Circular tree drawings are made of recursive radial-type layouts [20].
Bubble drawings [16] draw trees recursively with each subtree contained within a circle
disjoint from its siblings but within the circle of its parent. Balloon drawings [19] take
a similar approach and heuristically attempt to optimize space utilization and the ratio
between the longest and shortest edges in the tree. Convex drawings [4] partition the
plane into unbounded convex polygons with their boundaries formed by tree edges.
Although these methods provide several benefits, none of these methods guarantees
that they satisfy all of the aforementioned constraints.

The notion of drawing graphs with edges that are circular arcs or other nonlinear
curves is certainly not new to graph drawing. For instance, Cheng et al. [6] used circle
arcs to draw planar graphs in an O(n)×O(n) grid while maintaining bounded (but
not perfect) angular resolution. Similarly, Dickerson et al. [7] use circle-arc polylines
to produce planar confluent drawings of non-planar graphs, Duncan et al. [8] draw
graphs with fat edges that include circular arcs, and Cappos et al. [3] study simultaneous
embeddings of planar graphs using circular arcs. Finkel and Tamassia [12] use a force-
directed method for producing curvilinear drawings, and Brandes and Wagner [1] use
energy minimization methods to place Bézier splines that represent express connections
in a train network. In a separate paper [10] we study Lombardi drawings for classes of
graphs other than trees.

Our Contributions. In this paper we present the first algorithm for producing straight-
line, crossing-free drawings of unordered trees that ensures perfect angular resolution
and polynomial area. In addition we show, in Section 3, that if the tree is ordered (i.e.,
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given with a fixed combinatorial embedding) then it is not always possible to maintain
perfect angular resolution and polynomial drawing area when using straight lines for
edges. Nevertheless, in Section 4, we show that crossing-free polynomial-area Lom-
bardi drawings of ordered trees are possible. That is, we show that the answers to the
questions posed above are “yes,” “no,” and “yes,” respectively.

2 Straight-Line Drawings for Unordered Trees

Let T be an unordered tree with n nodes. We wish to construct a straight-line drawing
of T with perfect angular resolution and polynomial area.

The main idea of our algorithm is, similarly to the common bubble and balloon tree
constructions [16, 19], to draw the children of each node of the given tree in a disk
centered at that node; however, our algorithm differs in several key respects:

– Before drawing the tree, we perform a heavy path decomposition [17]: for each
node v, the heavy child of v is the child with the greatest number of descendants,
and the other children are light children, denoted L(v). The paths that follow edges
from nodes to their heavy children are heavy paths, and they form a partition of the
input tree with the property that the tree H(T ) formed by compressing each heavy
path to a node has only logarithmic depth h(T ).

– In our drawing, each heavy path P is confined to a disk, whose radius is linear in
the number of nodes descending from P and exponential in the level of P in the
heavy path decomposition. In this way, at each step downwards in the heavy path
decomposition, the total radius of the disks at that level shrinks by a constant factor,
allowing room for disks at lower levels to be placed within the higher-level disks.

– For each heavy path P, and each node v on P, we form another disk, contained
within the disk for P, that contains v at its center and also contains the disks for the
lower-level heavy paths connected to v (the descendants of the light children of v).
The disks for the nodes of the heavy path are placed within the disk for the heavy
path, with the topmost node of the heavy path at the center of the disk for the heavy
path and successive heavy path nodes placed on concentric circles within this disk.

– Because the radii of our disks are exponential in the level of the heavy path decom-
position, the radii of the disks for the children of v add up to a constant fraction
of the radii of the disk for v itself (Figure 3a). Within the disk centered at node v,
we place the smaller disks containing the heavy paths descending from v in two
concentric annuli (Figure 3b).

– The outer annulus surrounding v contains light children of v that are the ancestors
of many nodes (relative to the total number of descendants of v and the degree of
v); the disks for the heavy paths containing these light children are placed using
a greedy algorithm so that the edges connecting them to v have angles that are
multiples of the proper angular resolution.

– The inner annulus surrounding v contains the remaining light children, each of
which is the ancestor of few enough nodes that the disk for its heavy path may be
placed in the inner annulus at the perfect angular resolution for v, filling out all the
positions incident to v that were not already filled by the two edges of the heavy
path for v and the disks in the outer annulus.
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(a) All light children fit into a disk of radius
rv/4 and are split into small and large disks.

(b) Large disks are placed in the outer annulus
and small disks in the inner disk.

Fig. 3. Drawing a node v and its light children L(v)

As we show in the full paper [9], this method draws the given tree with perfect angular
resolution and polynomial drawing area. However, our method may reorder the children
of each node, so it does not respect a fixed embedding of the given tree. Figure 2a shows
a drawing of an unordered tree according to our method.

3 Straight-Line Drawings for Ordered Trees

In many cases, the ordering of the children around each vertex of a tree is given; that
is, the tree is ordered (or has a fixed combinatorial embedding). In the previous section
we rely on the freedom to order subtrees as needed to achieve a polynomial area bound.
Hence that algorithm cannot be applied to ordered trees with fixed embeddings. As we
now show, there are ordered trees that have no straight-line crossing-free drawings with
polynomial area and perfect angular resolution.

Specifically we present a class of ordered trees for which any straight-line crossing-
free drawing of the tree with perfect angular resolution requires exponential area. Fig-
ure 4a shows a caterpillar tree, which we call the Fibonacci caterpillar because of its
simple behavior when required to have perfect angular resolution. This tree has as its
spine a k-vertex path, each vertex of which has 3 additional leaf nodes embedded on
the same side of the spine. When drawn with straight-line edges, no crossings, and with
perfect angular resolution, the caterpillar is forced to spiral (a single or a double spi-
ral). The best drawing area, exponential in the number of vertices in the caterpillar, is
achieved when the caterpillar forms a symmetric double spiral; see Figure 4c.

The Fibonacci caterpillar shows that we cannot maintain all constraints (straight-
line edges, crossing-free, perfect angular resolution, polynomial area) for ordered trees.
However, as we show next, using circular arcs instead of straight-line edges allows us
to respect the remaining three constraints. See, for example, Figure 4b.
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(a)

(b) (c)

Fig. 4. (a) A Fibonacci caterpillar; (b) Lombardi drawing; (c) Straight-line drawing with perfect
angular resolution and exponential area

4 Lombardi Drawings for Ordered Trees

In this section, let T be an ordered tree with n nodes. As we have seen in Section 3, we
cannot find polynomial area drawings for all ordered trees using straight-line edges. An
augmentation of the straight-line edge requirement is the use of circular arcs as edges.
Circular arcs are curves that are not only still easy to follow visually but they also let
us achieve all remaining three constraints, i.e., we can find crossing-free circular arc
drawings with perfect angular resolution and polynomial area. We call a drawing with
circular arcs and perfect angular resolution a Lombardi drawing, so in other words we
aim for crossing-free Lombardi drawings with polynomial area.

The flavor of the algorithm for Lombardi tree drawings is similar to our straight-
line tree drawing algorithm of Section 2: We first compute a heavy-path decomposition
H(T ) for T . Then we recursively draw all heavy paths within disks of polynomial area.
Unlike before, we need to construct the drawing in a top-down fashion since the place-
ment of the light children of a node v now depends on the curvature of the two heavy
edges incident to v.

Our construction in this section uses the invariant that a heavy path P at level j is
drawn inside a disk D of radius 2 ·4h(T)− jn(P), where n(P) = |Tv| for the root v of P.

4.1 Drawing Heavy Paths

Let P = (v1, . . . ,vk) be a heavy path at level j of the heavy-path decomposition that is
rooted at the last node vk. We denote each edge vivi+1 by ei. Recall that the angle in an
intersection point of two circular arcs is measured as the angle between the tangents to
the arcs at that point. We define the angle α(vi) for 2≤ i≤ k−1 to be the angle between
ei−1 and ei in node vi (measured counter-clockwise). The angle α(vk) is defined as the
angle in vk between ek−1 and the light edge e = vku connecting the root vk of P to its
parent u. Due to the perfect angular resolution requirement for each node vi, the angle
α(vi) is obtained directly from the number of edges between ei−1 and ei and the degree
d(vi).

Lemma 4.1. Given a heavy path P = (v1, . . . ,vk) and a disk Di of radius ri for the
drawing of each vi and its light subtrees, we can draw P with each vi in the center of its
disk Di inside a large disk D such that the following properties hold:
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Di

D′D′ei

ei+1

vi

Fig. 5. Any angle α ∈ [0,π] can be realized Fig. 6. Placing a single disk D′ in the extended
small zone of Di (shaded gray)

1. each heavy edge ei is a circular arc that does not intersect any disk other than Di

and Di+1;
2. there is a stub edge incident to vk that is reserved for the light edge connecting vk

and its parent;
3. any two disks Di and D j for i �= j are disjoint;
4. the angle between any two consecutive heavy edges ei−1 and ei is α(vi);
5. the radius r of D is r = 2∑k

i=1 ri.

Proof. We draw P incrementally starting from the leaf v1 by placing D1 in the center
M of the disk D of radius r = 2∑k

i=1 ri. We may assume that D1 is rotated such that the
edge e1 is tangent to a horizontal line at v1 and that it leaves v1 to the right. All disks
D2, . . . ,Dk will be placed with their centers v2, . . . ,vk on concentric circles C2, . . . ,Ck

around M. The radius of Ci is r1 + 2∑i−1
j=2 r j + ri so that Di−1 and Di are placed in

disjoint annuli and hence by construction no two disks intersect (property 3). Each disk
Di will be rotated around its center such that the tangent to Ci at vi is the bisector of the
angle α(vi).

We now describe one step in the iterative drawing procedure that draws edge ei and
disk Di+1 given a drawing of D1, . . . ,Di. Disk Di is placed such that Ci bisects the angle
α(vi) and hence we know the tangent of ei at vi. This defines a family Fi of circular
arcs emitted from vi that intersect the circle Ci+1, see Figure 5. We consider all arcs
from vi until their first intersection point with Ci+1. Observe that the intersection angles
of Fi and Ci+1 bijectively cover the full interval [0,π ], i.e., for any angle α ∈ [0,π ]
there is a unique arc in Fi that has intersection angle α with Ci+1. Hence we choose
for ei the unique circular arc that realizes the angle α(vi+1)/2 and place the center vi+1

of Di+1 at the endpoint of ei. We continue this process until the last disk Dk is placed.
This drawing of P realizes the angle α(vi) between any two heavy edges ei−1 and ei

(property 4). Note that for the edge from vk to its parent we can only reserve a stub
whose tangent at vk has a fixed slope (property 2). Figure 7 shows an example.

Note that each edge ei is contained in the annulus between Ci and Ci+1 and thus
does not intersect any other edge of the heavy path or any disk other than Di and Di+1

(property 1). Furthermore, the disk D with radius r = 2∑k
i=1 ri indeed contains all the

disks D1, . . . ,Dk (property 5). ��

Lemma 4.1 shows how to draw a heavy path P with prescribed angles between the heavy
edges and an edge stub to connect it to its parent. Since each heavy path P (except the
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C2

C3

C4 C5 C6 C7

v1

v2

v4

v3

v5 v6 v7

Fig. 7. Drawing a heavy path P on concentric circles with circular-arc edges. The angles α(vi)
are marked in gray; the edge stub to connect v7 to its parent is dotted.

path at the root of H(T )) is the light child of a node on the previous level of H(T )
that light edge is actually drawn when placing the light children of a node, which we
describe next.

4.2 Drawing Light Children

Once the heavy path P is drawn as described above, it remains to place the light children
of each node vi of P. For each node vi the two heavy edges incident to it partition the
disk Di into two regions. We call the region that contains the larger conjugate angle the
large zone of vi and the region that contains the smaller conjugate angle the small zone.
If both angles equal π , then we can consider both regions small zones.

For a node vi at level j of H(T ) we define the radius ri of Di as ri = 4h(T)− j(1 +
∑u∈L(vi) |Tu|) = 4h(T)− jl(vi). All light children of vi are at level j + 1 of H(T ) and thus

by our invariant every light child u of vi is drawn in a disk of radius ru = 2 ·4h(T)− j−1|Tu|.
Thus we know that ru ≤ ri/2; in fact, we even have ∑u∈L(vi) ru ≤ ri/2.

Light children in the small zone. Depending on the angle α(vi), the small zone of a disk
Di might actually be too narrow to directly place the light children in it. Fortunately, we
can always place another disk D′ of radius at most ri/2 in an extension of the small zone
along the annulus of Di in the drawing of P such that D′ touches ei−1 and ei and does
not intersect any other previously placed disk, see Figure 6. If there is a single child u
in the small zone then D′ = Du and we are done. The next lemma shows how to place
more than one child; the proof can be found in the full paper [9].

Lemma 4.2. If a single disk D′ of radius r′ can be placed in the possibly extended small
zone of the disk Di, then we can correctly place any sequence of l disks D′1, . . . ,D

′
l with

radii r′1, . . . ,r
′
l and ∑l

i=1 r′i = r′ in the (extended) small zone of Di.
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vi
ei−1 ei

vi
ei−1 ei

(a) (b)

D′
D′′

1

D′′
2D′

�l/2	 D′′
1

D′′
2

D′
�l/2	

Fig. 8. Placing light children in the large zone by first splitting it into two parts (a) and then
applying the algorithm for small zones to each part (b)

Light children in the large zone. Placing the light children of a vertex vi in the large
zone of Di must be done slightly different from the algorithm for the small zone since
Lemma 4.2 holds only for opening angles of at most π . On the other hand, the large
zone does not become too narrow and there is no need to extend it beyond Di. Our
approach splits the large zone into two parts that again have an opening angle of at
most π so that we can apply Lemma 4.2 and draw all children accordingly.

Let l be the number of light children in the large zone of Di. We first place a disk
D′ of radius at most ri/2 such that it touches vi and such that its center lies on the line
bisecting the opening angle of the large zone. The disk D′ is large enough to contain
the disjoint disks D′1, . . . ,D

′
l for the light children of vi along its diameter. We need to

distinguish whether l is even or odd. For even l we create a container disk D′′1 for disks
D′1, . . . ,D

′
l/2 and a container disk D′′2 for D′l/2+1, . . . ,D

′
l . Now D′′1 and D′′2 can be tightly

packed on the diameter of D′. Using a similar argument as in Lemma 4.2 we separate
the two disks by a circular arc through vi that is tangent to the bisector of α(vi) in vi.
Since D′ is centered on the bisector this is possible even though the actual opening angle
of the large zone is larger than π . If l is odd, we create a container disk D′′1 for disks
D′1, . . . ,D

′
�l/2� and a container disk D′′2 for D′!l/2"+1, . . . ,D

′
l . The median disk D′!l/2" is

not included in any container. Then we apply Lemma 4.2 to D′ and the three disks
D′′1 ,D

′
!l/2",D

′′
2 along the diameter of D′, see Figure 8a. The separating circular arcs in vi

are again tangent to the bisector of α(vi), which is, since l is odd, also the correct slope
for the circular arc connecting vi to the median disk D′!l/2".

In both cases we split the large zone and the sequence of light children to be placed
into two parts that each have an opening angle at vi of at most π between a separating
circular arc and the edge ei−1 or ei, respectively. Next, we move D′′1 and D′′2 along the
separating circular arcs keeping their tangencies until they also touch the edge ei−1 or
ei, respectively. Then we can apply Lemma 4.2 to both container disks and thus place
all light children in the large zone, see Figure 8b.

Drawing light edges The final missing step is how to actually connect a heavy node vi

to its light children given a position of vi and positions of all disks containing its light
subtrees. Let u be a light child of vi and let Du be the disk containing the drawing of Tu.
When placing the disk Du in the small or large zone of vi we made sure that a circular
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arc from vi with the tangent required for perfect angular resolution at vi can reach any
point inside Du without intersecting any other edge or disk.

On the other side, we know by Lemma 4.1 that u is placed in the outermost annulus
of Du and that it has a stub for the edge e = uvi. This stub is the required tangent for e
in order to obtain perfect angular resolution in u. Let Cu be the circle that is the locus of
u if we rotate Du and the drawing of Tu around the center of Du.

There is again a family F of circular arcs with the correct tangent in u that lead
towards Du and intersect the circle Cu. As observed in Lemma 4.1 the intersection angles
formed between F and Cu bijectively cover the full interval [0,π ], i.e., for any angle
α ∈ [0,π ] there is a unique circular arc in F that has an intersection angle of α with
Cu. In order to correctly attach u to vi we first choose the arc a in F that realizes an
intersection angle of α(u)/2 with Cu, where α(u) is the angle between e and the heavy
edge from u to its heavy child that is required for perfect angular resolution in u. Let p
be the intersection point of that arc with Cu. Then we rotate Du and the drawing of Tu

around the center of Du until u is placed at p, see node v7 in Figure 7. Since the stub of
u for e also has an angle of α(u)/2 with Cu, the arc a indeed realizes the edge e with
the angles in both u and vi required for perfect angular resolution. Furthermore, a does
not enter the disk bounded by Cu and hence it does not intersect any part of the drawing
of Tu other than u.

We can summarize our results for drawing the light children of a node as follows:

Lemma 4.3. Let v be a node of T at level j of H(T ) with two incident heavy edges.
For every light child u ∈ L(v) assume there is a disk Du of radius ru = 2 ·4h(T)− j−1|Tu|
that contains a fixed drawing of Tu with perfect angular resolution and such that u is
exposed in the outer annulus of Du. Then we can construct a drawing of v and its light
subtrees inside a disk D, potentially with an extended small zone, such that the following
properties hold:

1. the edge between v and any light child u ∈ L(v) is a circular arc that does not
intersect any disk other than Du;

2. the heavy edges do not intersect any disk Du;
3. any two disks Du and Du′ for u �= u′ are disjoint;
4. the angular resolution of v is 2π/d(v);
5. the disk D has radius rv = 4h(T)− jl(v).

By combining Lemmas 4.1 and 4.3 we obtain the following theorem:

Theorem 4.4. Given an ordered tree T with n nodes we can find a crossing-free Lom-
bardi drawing of T that preserves the embedding of T and fits inside a disk D of ra-
dius 2 · 4h(T)n, where h(T ) is the height of the heavy-path decomposition of T . Since
h(T )≤ log2 n the radius of D is no more than 2n3.

Figure 2b shows a drawing of an ordered tree according to our method. We note that
instead of asking for perfect angular resolution, the same algorithm can be used to con-
struct a circular-arc drawing of an ordered tree with any assignment of angles between
consecutive edges around each node that add up to 2π . The drawing remains crossing-
free and fits inside a disk of radius O(n3).
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5 Conclusion and Closing Remarks

We have shown that straight-line drawings of trees can be performed with perfect an-
gular resolution and polynomial area, by carefully ordering the children of each vertex
and by using a style similar to balloon drawings in which the children of any vertex
are placed on two concentric circles rather than on a single circle. However, using our
Fibonacci caterpillar example we showed that this combination of straight lines, perfect
angular resolution, and polynomial area could no longer be achieved if the children of
each vertex may not be reordered. For trees with a fixed embedding, Lombardi drawings
in which edges are drawn as circular arcs allow us to retain the other desirable qualities
of polynomial area and perfect angular resolution. In [9] we report on a basic imple-
mentation and some practical improvements of the straight-line drawing algorithm.

Our work opens up new problems in the study of Lombardi drawings of trees, but
much remains to be done in this direction. In particular, our polynomial area bounds
seem unlikely to be tight, and our method is impractically complex. It would be of
interest to find simpler Lombardi drawing algorithms that achieve perfect angular reso-
lution for more limited classes of trees, such as binary trees, with better area bounds.
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Abstract. We introduce the notion of Lombardi graph drawings, named after the
American abstract artist Mark Lombardi. In these drawings, edges are represented
as circular arcs rather than as line segments or polylines, and the vertices have
perfect angular resolution: the edges are equally spaced around each vertex. We
describe algorithms for finding Lombardi drawings of regular graphs, graphs of
bounded degeneracy, and certain families of planar graphs.

1 Introduction

The American artist Mark Lombardi [24] was famous for his drawings of social net-
works representing conspiracy theories. Lombardi used curved arcs to represent edges,
leading to a strong aesthetic quality and high readability. Inspired by this work, we intro-
duce the notion of a Lombardi drawing of a graph, in which edges are drawn as circular
arcs with perfect angular resolution: consecutive edges are evenly spaced around each
vertex. While not all vertices have perfect angular resolution in Lombardi’s work, the
even spacing of edges around vertices is clearly one of his aesthetic criteria; see Fig. 1.

Traditional graph drawing methods rarely guarantee perfect angular resolution, but
poor edge distribution can nevertheless lead to unreadable drawings. Additionally, while
some tools provide options to draw edges as curves, most rely on straight-line edges,
and it is known that maintaining good angular resolution can result in exponential draw-
ing area for straight-line drawings of planar graphs [17,25]. Our requirement of perfect
angular resolution forces us to use curved edges, since even very simple graphs such as
cycle graphs cannot be drawn with perfect angular resolution and straight edges.

New Results. We define a Lombardi drawing of a graph G to be a drawing of G in the
plane in which vertices are represented as points (or as disks or labels centered on those
points), edges are represented as line segments or circular arcs between their endpoints,
and every vertex has perfect angular resolution, as measured by the angle formed by the
tangents to the edges at the vertex. We do not necessarily insist that the drawings are free
of crossings; the drawings of Lombardi had crossings, sometimes even in cases where
they could have been avoided. We also do not consider crossings when we measure
the angular resolution of a drawing. However, we do require that the only vertices that
intersect the arc for an edge (u,v) are its two endpoints u and v.

Several of Mark Lombardi’s drawings used a circle as their overall shape. We define
a circular Lombardi drawing to be a Lombardi drawing in which the vertices lie on a
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Fig. 1. Mark Lombardi, George W. Bush, Harken Energy, and Jackson Stevens c.1979-90, 1999.
Graphite on paper, 20×44 inches [24].

circle. Similarly, we define a k-circular Lombardi drawing to be a Lombardi drawing
in which the vertices lie on k concentric circles. We provide the following:

– We characterize the regular graphs that have circular Lombardi drawings, and we
find efficient algorithms for constructing these drawings.

– We describe methods of finding Lombardi drawings for any 2-degenerate graph (a
graph that may be reduced to the empty graph by repeated removal of vertices of
degree at most 2) and many but not all 3-degenerate graphs.

– We investigate the graphs that have planar Lombardi drawings. We show that cer-
tain subclasses of the planar graphs always have such drawings, but that there exist
planar graphs with no planar Lombardi drawing.

– We implement an algorithm for constructing k-circular Lombardi drawings and use
it to draw many symmetric graphs.

Related Work. Although most previous work on angular resolution concerns straight-
line drawings (e.g., see [10,17,25]) or polyline drawings (e.g., see [18,21]), the angu-
lar resolution of drawings with circular-arc edges was previously studied by Cheng
et al. [8], who showed that maintaining bounded angular resolution in planar draw-
ings may require exponential area even with circular-arc edges. Our circular Lombardi
drawings use a circular layout of vertices that is already popular (e.g., see [3,16,30]).
However, previous methods for circular layouts draw edges as straight line segments or
curves perpendicular to the circle, neither of which leads to good angular resolution.

Efrat et al. [13] show that given a fixed placement of the vertices of a planar graph,
determining whether the edges can be drawn with circular arcs so that there are no cross-
ings is NP-Complete. For fixed position drawings with cubic Bézier curves, Brandes
et al. [5,7] use force-directed algorithms to maximize the angular resolution and Bran-
des, Shubina, and Tamassia [6] rotate optimal angular resolution templates. Aicholzer
et al. [1] show that, for a given embedded planar triangulation with fixed vertex posi-
tions, one can find a circular-arc drawing of the triangulation that maximizes the mini-
mum angular resolution by solving a linear program. Finkel and Tamassia [14] also try
to optimize angular resolution using force-directed methods for laying out graphs with
curved edges. Di Battista and Vismara [10] give a nonlinear optimization characteriza-
tion that can find straight-line drawings of embedded planar graphs with a prescribed
assignment of angles if such drawings exist.
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Any tree may be drawn with straight edges and perfect angular resolution. However,
in a separate paper [12], we show that (when the order of the edges is fixed around
each vertex) straight-line tree drawings with perfect angular resolution may require
exponential area, whereas Lombardi drawings can achieve polynomial area.

2 Circular Lombardi Drawings of Regular Graphs

We begin by investigating circular Lombardi drawings, Lombardi drawings in which
all vertices are placed on a circle. As we show, drawings of this type exist for many
regular graphs. Our proofs use the following basic geometric observation:

Property 1. Let A be a circular arc or line segment connecting two points p and q that
both lie on circle O. Then A makes the same angle to O at p that it makes at q. Moreover,
for any p and q on O and any angle 0≤ θ ≤ π , there exists an arc, line segment, or pair
of collinear rays A connecting p and q, making angle θ with O, and lying either inside
or outside of O.

The case of two collinear rays is problematic (we only allow edges to be represented by
arcs or line segments) but easily avoided by perturbing the vertices on O.

Lemma 1. A d-regular graph G has a circular Lombardi drawing if and only if G can
be decomposed into a disjoint union of 1-regular and 2-regular graphs and one of the
following conditions is true: d �≡ 2 (mod 4), one of the 2-regular subgraphs is bipartite,
or one of the 2-regular subgraphs is a Hamiltonian cycle.

Proof. Suppose G has a circular Lombardi drawing on a circle O centered at o; in this
drawing, define the twist θv of a vertex v to be the sharpest of the angles between line
segment vo and the edges incident to v (with positive sign if one of the edges forming
the sharpest angle is clockwise of the line segment, and negative sign if there is only
one edge forming the sharpest angle and it is counterclockwise of v). Then if v and w
are adjacent in G, θv = −θw except when there are two equal sharpest angles at both v
and w, in which case θv = θw. In each connected component either all vertices have the
same twist, and have edge angles that are symmetric with respect to reflections through
axis vo, or the component is bipartite, all vertices on one side of the bipartition have
one twist, and all vertices on the other side of the bipartition have the opposite twist.

We can decompose each connected component of G into 1-regular and 2-regular
graphs by partitioning the edges of the component according to the angle they make
with circle O. For a bipartite component in which the vertices on the two sides of the
bipartition have different twists, this forms a decomposition into 1-regular graphs (some
of which may be combined in pairs to form bipartite 2-regular graphs). When d is 2
mod 4 and a component of G is not bipartite, the only possibilities for a symmetric
twist are to make some edges parallel or perpendicular to O. Edges that are parallel to
O must be drawn as arcs of O through all vertices, so they form a Hamiltonian cycle.
Edges perpendicular to O must form even-length cycles that alternate between the inside
and outside of O. Thus, in all cases a graph with a circular Lombardi drawing can be
decomposed into 1-regular and 2-regular graphs matching the conditions of the lemma.
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In the other direction, suppose that G can be decomposed into 1-regular and 2-regular
graphs with the additional conditions of the lemma. By combining pairs of 1-regular
graphs into a single 2-regular graph, we may assume that all but at most one of these
subgraphs are 2-regular. Then we may choose an evenly spaced set of angles, draw each
2-regular graph as a set of arcs that meet O at one of these fixed angles, and draw the
1-regular graph (if it exists) as a set of arcs that are perpendicular to and interior to
O. If d is divisible by four, we can choose these angles in such a way that no angle is
parallel to the circle O and no angle is perpendicular to O. If d is odd, the angles can
be chosen so that the 1-regular subgraph of G is perpendicular to and interior to O, and
all other angles are neither perpendicular nor parallel to O. If d is congruent to 2 mod
4 and one of the 2-regular graphs is a Hamiltonian cycle, we may draw it using edges
that lie on C, placing the vertices in the order of this cycle. And if d is congruent to
2 mod 4 and one of the 2-regular graphs is bipartite, we may draw it using edges that
are perpendicular to O, taking care in the vertex placement to avoid using an edge that
connects two diametrally opposite points on O via an exterior arc. In both of these cases
where d is 2 mod 4 we then draw the other subgraphs of the decomposition using arcs
that are neither parallel to nor perpendicular to O. ��

Theorem 1. Every regular graph G of degree divisible by four has a circular Lombardi
drawing. A regular graph of odd degree has a circular Lombardi drawing if and only
if it has a perfect matching. A regular graph of degree congruent to two modulo four
has a circular Lombardi drawing if and only if it is Hamiltonian or has a 2-regular
bipartite subgraph. In the cases of odd degree and degree divisible by four, when a
circular Lombardi drawing exists it can be constructed in polynomial time.

Proof. This follows from Lemma 1 together with Petersen’s theorem that a regular
graph of even degree can always be decomposed into 2-regular subgraphs [27,28]. ��

Testing for the existence of a 2-regular bipartite subgraph in a regular graph is NP-
complete (in 3-regular graphs, it is equivalent to 3-edge-coloring) but we have not de-
termined its complexity for the case of interest to us, d-regular graphs in which d is
congruent to two modulo four.

Figures 2(a–c) show drawings produced by this method for 3-regular, 4-regular, and
6-regular graphs. Figure 2(d) shows a 3-regular graph that does not have a perfect
matching, and that therefore has no circular Lombardi drawing.

For bipartite regular graphs of bounded degree the method of Theorem 1 again leads
to a linear-time algorithm.

Corollary 1. Every bipartite d-regular graph has a circular Lombardi drawing that
can be constructed in time O(dn logd).

Proof. It is known that every bipartite regular graph can be decomposed into perfect
matchings in the given time bound [2,9,29].1 The result follows by applying Theorem 1
to this decomposition. ��

1 The fact that every regular bipartite graph has a decomposition into matchings is commonly at-
tributed to König [22], but is equivalent to a result proved in terms of point-line configurations
in the 1894 Ph.D. thesis of Ernst Steinitz.



Lombardi Drawings of Graphs 199

(a) (b) (c) (d)

Fig. 2. (a) A circular Lombardi drawing of the 3-regular Wagner graph; (b) A circular Lombardi
drawing of the 4-regular graph K4,4; (c) The 6-regular Paley graph connecting integers modulo
13 if their difference is a quadratic residue; (d) A 3-regular graph that has no perfect matching
and therefore has no circular Lombardi drawing

Corollary 2. Every d-regular graph for which d is a power of two, with the exception
of 2-regular non-bipartite disconnected graphs, has a circular Lombardi drawing that
can be constructed in time O(dn logd).

Proof. Repeatedly decompose the graph into pairs of subgraphs with half the degree
by taking alternating edges of an Euler tour [15] and then apply Theorem 1 to the
decomposition. ��

Corollary 3. Every 3-regular bridgeless graph has a circular Lombardi drawing that
can be constructed in time O(n log3 n loglogn).

Proof. The result that every 3-regular bridgeless graph has a perfect matching (equiva-
lently, a decomposition into a 2-regular and a 1-regular subgraph) is known as Petersen’s
theorem [28]. Such a matching can be found in the stated time bound via an algorithm
based on dynamic 2-edge-connectivity testing data structures [4,20,31]. ��

3 Two-Degenerate and Three-Degenerate Graphs

The degeneracy of a graph G is the minimum number d such that G can be reduced to
the empty graph by repeatedly removing a vertex of degree at most d; equivalently, it
is the minimum degree in the subgraph of G that maximizes the minimum degree [23].
If a graph G has degeneracy at most d, it is known as d-degenerate. In this section we
consider algorithms for drawing 2-degenerate and 3-degenerate graphs, with a specified
cyclic ordering of the edges around each vertex. The main idea of these algorithms is
to delete a low-degree vertex, draw the remaining graph with the appropriate angles at
each of its vertices, and then find a position for the deleted vertex that allows it to be
connected to the drawing of the remaining graph.

For 2-degenerate graphs, when we add back the vertices in reverse order of deletion,
there is always a circle on which they can be added so we can choose one point on the
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circle that is not crossed by a previously drawn feature. For 3-degenerate graphs there
are two points at which the point can be added to give the correct edge angles (the com-
mon intersection points of three circles) so there might be circumstances under which
this addition is forced to create an undesirable edge-vertex or vertex-vertex intersection.

The results in this section rely on the following geometric property, which is proven
in the full version of the paper [11].

Property 2. Suppose we are given two points p and q with associated vectors vp and
vq and an angle θpq. Consider all pairs of circular arcs that leave p and q with tangent
vectors vp and vq respectively and meet at an angle θpq. The locus of meeting points for
these pairs of arcs is a circle.

3.1 2-Degenerate Graphs

Theorem 2. Every 2-degenerate graph with a specified cyclic ordering of the edges
around each vertex has a Lombardi drawing.

Proof. Order the vertices by repeatedly removing a low-degree vertex. Reinsert the
vertices in reverse order creating subgraphs G0,G1 . . .Gn with the invariant that after
each insertion the drawing is a partial Lombardi drawing Γi of Gi where some vertices
may not yet have all of their neighbors placed. To insert a new vertex v = vi+1 with
degree two in Gi+1 (the case for degree one is simpler) let p and q be its two neighbors
in Gi+1. Since there is a specified ordering around p, which has already been placed
in Γi, there is a unique tangent vector vp associated with the arc from p to v. Similarly,
there is a unique tangent vector vq. In addition, since the degree of v in G is known and
the ordering of the neighbors at v is also given, there is a unique angle θpq associated
with the two arcs from p and q to v. From Property 2, we may choose to place v at any
position on the defined circle. Choosing a point v that does not coincide with any other
arcs or vertices already placed guarantees we have a valid drawing Γi+1. ��

Corollary 4. Every outerplanar or series-parallel graph has a Lombardi drawing.

Proof. This follows from the fact that these graphs are 2-degenerate. ��

3.2 3-Degenerate Graphs

An algorithm following the same approach can be used to draw many, but not all, 3-
degenerate graphs. In this case we have three points p, q, and r that we want to connect
by arcs to an unplaced new vertex v. Each pair of known points yields a circle of possi-
ble choices for v. These three circles, Opq,Opr,Oqr, have to pairwise cross, and where
they cross the third one must also cross because fixing the angles between two pairs of
incoming arcs at the new point fixes all angles. Every graph with maximum degree four
is either 4-regular or 3-degenerate, so the same algorithm applies in this case.

However, for certain graphs and certain orderings of the edges around the vertices
of the graph, this algorithm can fail by placing a vertex on another edge or vertex. An
example in which this occurs is the seven-vertex split graph G7 formed by adding four



Lombardi Drawings of Graphs 201

(a) (b) (c)

Fig. 3. A 7-vertex 3-degenerate graph that has no Lombardi drawing with the given vertex order-
ing. (a) A Möbius transformation makes one triangle equilateral, forcing the other 4 vertices to
be placed at the centroid and the point at infinity; (b) A different transformation with finite vertex
locations; (c) A straight-line drawing of the graph.

independent vertices p, q, r, and s to a triangle xyz, with an edge from each of p, q, r, and
s to each of x, y, and z, as shown in Figure 3. In any Lombardi drawing of G7 with the
edge order as shown, we can assume by making an appropriate Möbius transformation
of the drawing that xyz is equilateral. It follows that the only possible locations for p,
q, r, and s are the centroid of the equilateral triangle and the point at infinity, so at least
two vertices would have to be placed at the same point, forming an invalid drawing.

4 Non-crossing Lombardi Drawings

4.1 Planar Graphs without Planar Lombardi Drawings

Not every planar graph has a planar Lombardi drawing. To see this, consider the k-
nested triangle graphs, maximal planar graphs with 3k vertices formed by k nested
triangles with k− 1 six-cycles connecting consecutive triangles. A k-nested triangle
graph may also be formed geometrically by gluing k−1 octahedra end-to-end.

As can be seen in Figure 4, the 2-nested and 3-nested triangle graphs have planar
Lombardi drawings. The 4-nested triangle graph, however, does not. If it did have such
a drawing, its middle two triangles would form circles (the only smooth curve formed by
three circular arcs). By an appropriate Möbius transformation, the outer circle O can be
assumed to have its three vertices equally spaced around it. The three cirles C1, C2, and
C3 that (by Property 2) describe the potential positions of the vertices on the inner circle
have the same radius as O and meet at the center of O, and the inner circle would have
to be tangent to all three of C1, C2, and C3. However, the only circle tangent to all three
is exterior to O, concentric with O and having twice the radius of O. Therefore, using
an edge ordering around each vertex that comes from a planar embedding but enforcing
perfect angular resolution leads to a nonplanar drawing, shown in Figure 4(c).

4.2 Halin Graphs

A Halin graph [19] is a planar graph obtained from a plane tree T (with at least four
vertices and with no vertices of degree 2), by connecting all the leaves of T into a
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(a) k = 2 (b) k = 3 (c) k = 4

Fig. 4. k-nested triangle graphs. The 2-nested and 3-nested triangle graphs have planar Lombardi
drawings, but the 4-nested triangle graph does not.

cycle in the order given by its embedding. As we now describe, Halin graphs (and the
graphs formed in the same way from trees with degree-2 vertices) have planar Lombardi
drawings that can be constructed using hyperbolic geometry.

We draw T within a Poincaré disk model of the hyperbolic plane, with its leaves
on the boundary circle of the model, and then draw the cycle connecting the leaves
outside this circle. If T is drawn using hyperbolic line segments, with perfect angular
resolution, then its edges will form circular arcs in the Poincaré model; the conformal
(angle-preserving) nature of the Poincaré model implies that the angular resolution of
the hyperbolic line segments equals the angular resolution of these Euclidean arcs.

For a given straight-line drawing of a rooted tree in the hyperbolic plane, and a non-
root vertex v, partition the hyperbolic plane into wedges bounded by the bisectors of
the angles around the parent of v and define the dominance region of v to be the wedge
containing v. Equivalently, in a Voronoi diagram generated by the rays from the parent
of v to its children, the dominance region of v is the Voronoi cell containing v. We define
a good hyperbolic drawing of a rooted tree T to be a drawing in which the edges are
straight line segments or rays in the hyperbolic plane, the leaves are placed on the circle
at infinity, and the dominance regions for two vertices v and w are either nested within
each other (if one of the two vertices is an ancestor of the other) or disjoint otherwise.
Two dominance regions in a good hyperbolic drawing are shown in Figure 5(a).

Lemma 2. Every rooted tree has a good hyperbolic drawing.

Proof. We use induction on the number of non-leaf nodes in the given tree T . As a base
case, when there is one non-leaf node, it may be placed at the center of the Poincaré
disk model of the hyperbolic plane with its leaves at the limit points of equally-spaced
rays (radii of the disk model). Otherwise, let v be a non-leaf that is as far from the
root of T as possible, and let T ′ be formed from T by removing all children of v. Then
by induction, T ′ has a good hyperbolic drawing. In this drawing, v is on the circle at
infinity; let R be the ray connecting the parent of v to v. For any position x along this
ray, let θx be the maximum angle made to R by a line that stays within the dominance
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(a) (b)

Fig. 5. (a) A good hyperbolic drawing of a seven-node tree, with the dominance regions of two
leaves of the tree shown as shaded regions; (b) The Lombardi drawing formed by adding arcs
outside the Poincaré model, at 30◦ angles to the boundary, connecting consecutive leaves

region of v. Then θx varies continuously along R, starting from a value of π/d at the
parent of v (where d is the degree of the parent) and ending with a value of π at v itself.
If the degree of v in T is d′, there must be an intermediate position x on R for which
θx = π(1− 1/d′). If we move v to x and place its leaf children at the limit points of
equally spaced rays around x, the result is a good hyperbolic drawing of T . ��

Theorem 3. Every Halin graph has a planar Lombardi drawing that may be con-
structed in linear time.

Proof. Root the tree T at an arbitrarily chosen non-leaf node, and construct a good
hyperbolic drawing of T according to Lemma 2. Draw the cycle connecting the leaves
of T using circular arcs that meet the circle bounding the Poincaré model at angles
of 30◦ as in Figure 5(b). Then each non-leaf node of T has perfect angular resolution
from the tree drawing, and each leaf node has perfect angular resolution because the ray
connecting it to its parent in T is perpendicular to the boundary circle and therefore at
120◦ angles from the two arcs connecting it to adjacent leaves. ��

4.3 Other Classes of Planar Graphs

The networks formed by two-dimensional soap bubbles naturally form 3-regular planar
Lombardi drawings: they have circular arcs as their edges (the boundaries between
bubbles), and 120◦ angles at each vertex where three arcs meet [26]. However, we do
not have a precise characterization of the graphs that can be formed in this way.

The vertices of every Platonic solid, Archimedean solid, and prism lie on a common
sphere. In all but two cases (the snub cube and snub dodecahedron) one may draw the
edges of the polyhedron as circular arcs on the sphere with perfect angular resolution.
By stereographic projection, each of these graphs has a Lombardi drawing in the plane.
For instance, Figure 4(a) depicts the graph of the octahedron drawn in this way.

All outerplanar and series-parallel graphs have Lombardi drawings (Corollary 4),
but we do not know whether they all have planar Lombardi drawings.
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(a) Petersen graph (b) K6 (c) Grötzsch graph

(d) Nauru graph G(12,5) (e) Brinkmann graph

(f) Dyck graph (g) 40-vertex cubic symmetric graph F40 (the
bipartite double cover of the dodecahedron)

Fig. 6. Sample drawings by the Lombardi Spirograph
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5 The Lombardi Spirograph

We have implemented a program for constructing k-circular Lombardi drawings of
graphs with dihedral symmetry; we call it the Lombardi Spirograph, as its drawings
resemble those created by the SpirographTM drawing toy produced by Hasbro, Inc. Our
program places vertices on k concentric circles; the input specifies not only the num-
ber of vertices per circle and the set of edges to be drawn, but also the order in which
those edges are incident at each vertex. Each vertex can have at most three neighbors on
smaller circles; a circle on which the vertices have two or three inward neighbors has a
unique radius for which the vertices have perfect angular resolution, whereas the radius
for circles on which the vertices have one inner neighbor is chosen heuristically.

Figures 2 (a–c), 4 (a & b), and 6 were all drawn using this program.

6 Conclusions

We have begun an investigation into Lombardi drawings and found algorithms based on
graph matching, incremental construction, hyperbolic geometry, and symmetry display
for constructing drawings of this type. Based on our constructions, we can show that
many regular graphs, sparse graphs, special classes of planar graphs, and symmetric
graphs have Lombardi drawings, and we have found drawings of this type for many
well-known graphs. In addition, we have implemented a method, called the Lombardi
Spirograph, for producing Lombardi drawings of graphs with dihedral symmetry.

There are many related problems that remain open, including the following:

1. What are the complexities of finding circular Lombardi drawings for regular graphs
with degrees that are 2 mod 4?

2. Is there an effective classification of 3-degenerate graphs according to whether they
can or cannot be drawn in a way that avoids overlapping features?

3. Are there efficient methods for producing planar Lombardi drawings for outerpla-
nar graphs, series-parallel graphs, and 3-regular planar graphs?

It would also be of interest to combine Lombardi drawing with other standard graph
drawing quality criteria such as edge-length minimization. In general, we believe that
Lombardi drawings will be a fruitful area for much additional research.
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tions. In: Proc. 26th Eur. Worksh. Comp. Geometry (EuroCG 2010), Dortmund, Germany,
pp. 17–20 (2010)



206 C.A. Duncan et al.

2. Alon, N.: A simple algorithm for edge-coloring bipartite multigraphs. Information Process-
ing Letters 85(6), 301–302 (2003), doi:10.1016/S0020-0190(02)00446-5

3. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J., Nagl,
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Abstract. We show that every graph of maximum degree three can be drawn in
three dimensions with at most two bends per edge, and with 120◦ angles between
any two edge segments meeting at a vertex or a bend. We show that every graph of
maximum degree four can be drawn in three dimensions with at most three bends
per edge, and with 109.5◦ angles, i. e., the angular resolution of the diamond
lattice, between any two edge segments meeting at a vertex or bend.

1 Introduction

Much past research in graph drawing has shown the importance of avoiding sharp an-
gles at vertices, bends, and crossings of a drawing, as they make the edges difficult to
follow [15]. There has been much interest in finding drawings where the angles at these
features are restricted, either by requiring all angles to be at most 90◦ (as in orthogonal
drawings [11] and RAC drawings [1,7,8]) or more generally by attempting to optimize
the angular resolution of a drawing, the minimum angle that can be found within the
drawing [4, 13, 14, 16].

Three-dimensional graph drawing opens new frontiers for angular resolution in two
ways. First, in three-dimensional graph drawing, there is no need for crossings, as any
graph can be drawn without crossings; however, finding a compact layout that uses few
bends and avoids crossings can sometimes be challenging. Second, and more impor-
tantly, in 3d there is a much greater variety in the set of ways that a collection of edges
can meet at a vertex to achieve good angular resolution, and the angular resolution that
may be obtained in 3d is often better than that for a two-dimensional drawing. For in-
stance, in 3d, six edges may meet at a vertex forming angles of at most 90◦, whereas in
2d the same six edges would have an angular resolution of 60◦ at best.

The problem of optimizing the angular resolution of a collection of edges incident
to a single vertex in 3d is equivalent to the well-known Tammes’ problem of placing
points on a sphere to maximize their minimum separation; this problem is named after
botanist P. M. L. Tammes who studied it in the context of pores on grains of pollen [18],
and much is known about it [5]. For graphs of degree five or six, the optimal angular
resolution of a three-dimensional drawing is 90◦, as above, achieved by placing vertices
on a grid and drawing all edges as grid-aligned polylines. The simplicity of this case
has freed researchers to look for three-dimensional orthogonal drawings that, as well as
optimizing the angular resolution, also optimize secondary criteria such as the number
of bends per edge, the volume of the drawing, or combinations of both [3,10,19]. Thus,
in this case, it is known that the graph may be drawn with at most 3 bends per edge in an
O(n)×O(n)×O(n) grid and with O(1) bends per edge in an O(

√
n)×O(

√
n)×O(

√
n)
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Fig. 1. Left: The three-dimensional diamond lattice, from [12]. Right: A space-filling 3-regular
graph with 120◦ angular resolution.

grid [10]. For graphs of maximum degree five a tighter bound of two bends per edge is
also known [19]; a well known open problem asks whether the same two-bend-per-edge
bound may be achieved for degree six graphs [6].

In two dimensions, 90◦ angular resolution is optimal for graphs that may be nonpla-
nar, because every crossing has an angle at least this sharp. However, in 3d, crossings
are no longer a concern and graphs of degree three and four may have angular resolu-
tion even better than 90◦. In particular, in the diamond lattice, a subset of the integer
grid, the edges are parallel to the long diagonals of the grid cubes and meet at an-
gles of arccos(−1/3)≈ 109.5◦, the optimal angular resolution for degree-four graphs
(Figure 1, left). For graphs with maximum degree three, the best possible angular reso-
lution at any vertex is clearly 120◦; three edges with these angles are coplanar, but the
planes of the edges at adjacent vertices may differ: for instance, Figure 1(right) shows
an infinite space-filling graph in which all vertices are on integer grid points, all edges
form face diagonals of the integer grid, and all vertices have 120◦ angular resolution.

The primary questions we study in this paper are how to achieve optimal 120◦ an-
gular resolution for 3d drawings of arbitrary graphs with maximum degree three, and
optimal 109.5◦ angular resolution for 3d drawings of arbitrary graphs with maximum
degree four. We define angular resolution to be the minimum angle at any bend or ver-
tex, matching the orthogonal drawing case, and we do not allow edges to cross. These
questions are not difficult to solve without further restrictions (just place the vertices
arbitrarily and use polylines with many bends to connect the endpoints of each edge)
so we further investigate drawings that minimize the number of bends, align the ver-
tices and edges of the drawing with the integer grid similarly to the alignment of the
spacefilling patterns in Figure 1, and use a small total volume. We show:

– Any graph of maximum degree four can be drawn in 3d with optimal 109.5◦ angular
resolution with at most three bends per edge, with all vertices placed on an O(n)×
O(n)×O(n) grid and with all edges parallel to the long diagonals of the grid cubes.

– Any graph of maximum degree three can be drawn in 3d with optimal 120◦ angular
resolution with at most two bends per edge. However, our technique for achieving
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this small number of bends does not use a grid placement and does not achieve
good volume bounds.

– Any graph of maximum degree three has a drawing with 120◦ angular resolution,
integer vertex coordinates, edges parallel to the face diagonals of the integer grid,
at most three bends per edge, and polynomial volume.

We believe that, as in the orthogonal case, it should be possible to achieve tighter bounds
on the volume of the drawing at the expense of greater numbers of bends per edge.

2 Three-Bend Drawings of Degree-Four Graphs on a Grid

Our technique for three-dimensional drawings of degree-four graphs with angular res-
olution 109.5◦ and three bends per edge is based on lifting two-dimensional drawings
of the same graphs, with angular resolution 90◦ and two bends per edge. The three-
dimensional vertex placements are all on the plane z = 0, essentially unchanged from
their two-dimensional placements, but the edges are raised and lowered above and be-
low the plane to avoid crossings and improve the angular resolution.

Our two-dimensional orthogonal drawing technique uses ideas from previous work
on drawing degree-four graphs with bounded geometric thickness [9]. We begin by
augmenting the graph with dummy edges and a constant number of dummy vertices
if necessary to make it a simple 4-regular graph, find an Euler tour in the augmented
graph, and color the edges alternately red and green in their order along this path. In this
way, the red edges and the green edges each form 2-regular subgraphs [17] consisting of
disjoint unions of cycles. We denote the number of red (green) cycles by mred (mgreen).

Next, we draw the red subgraph so that every cycle passes horizontally through its
vertices with two bends per edge, and we draw the green subgraph so that every cycle
passes vertically through its vertices with two bends per edge. We can do that by using
the cycle ordering within each of these two subgraphs as one of the two Cartesian
coordinates for each point. More precisely, we do the following.

We define the green order of the vertices of the graph to be an order of the vertices
such that the vertices of each green path or cycle are consecutive; we define the red
order the same way. Let rgreen(v) ≥ 0 be the rank of a vertex v in some green order,
and rred(v) be its rank in some red order. We further order the red and green cycles and
define cred(v) ≥ 0 and cgreen(v) ≥ 0 to be the ranks in the two cycle orders of the red
and green cycles to which v belongs. We embed the vertices on a (2n + 2mgreen−4)×
(2n+2mred−4) grid such that the x-coordinate of each vertex is 2rgreen(v)+2cgreen(v),
and its y-coordinate is 2rred(v)+ 2cred(v).

Let v1, ...vk be the vertices of a green cycle C in the green order. We embed C as
follows. We mark each end of each edge with a plus or a minus such that at every vertex
exactly one end is marked with a plus and exactly one with a minus. We then would like
to embed C in such a way that plus would correspond to the edge entering the vertex
from above and a minus corresponds to the edge entering the vertex from below. Note
that every edge whose two ends are marked the same can be embedded in this way with
two bends. Whenever the marks alternate along the edge one can only embed it with
two bends if the lower end (the end incident to a vertex with smaller y-coordinate) is
marked with plus.
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Fig. 2. A 4-regular graph with 10 vertices embedded according to the decomposition into disjoint
red and green cycles

We next describe how to label C so that it has a 2-bends-per-edge embedding re-
specting the labeling. If k is even, we mark both ends of the edge (v1,v2) with pluses. If
k is odd, we mark the higher end of (v1,v2) with a minus and its lower end with a plus.
In both cases there is a unique way to label the rest of the edges such that both ends of
each edge have the same signs and the labels alternate at every vertex.

To complete our 2d embedding we draw all edges consistently with the labeling as
follows. Each edge (vi,vi+1) is placed such that the y-distance of its horizontal segment
to one of the vertices is 1. If the last edge (v1,vk) is labeled negatively, its horizontal
segment is drawn on the grid line one unit below the lowest vertex or bend of C. Simi-
larly, if (v1,vk) is labeled positively, the horizontal segment is drawn one unit above the
highest part of C. See Figure 2 for an illustration.

Lemma 1. The embedding described above has the following properties:

– no two edges of the same color intersect;
– a vertex lies on an edge if and only if it is incident to the edge;
– no midpoint of an edge coincides with a bend of the edge;
– the embedding fits on a (2n + 2mgreen)× (2n + 2mred) grid.

Proof. Green edges connecting consecutive vertices in the green order of the same cycle
C are trivially disjoint. The horizontal segment of the edge connecting the first and the
last vertex of C is placed below or above all other edges of C. Two different green
components are disjoint because the edges of every component are contained inside the
vertical strip defined by its first and last vertices and components are ordered along the
x-axis. The argument for red edges is symmetric.

Since all the vertices have distinct x-coordinates, and every green vertical segment
has a vertex at one of its ends we can conclude that every vertex is incident to at most
two vertical green segments. Every green horizontal segment has odd y-coordinate and
every vertex has even y-coordinate hence a green horizontal segment cannot contain a
vertex. The argument for red edges is symmetric.
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For arbitrary red and green vertex orders it is possible that the midpoint of an edge
coincides with one of its bends. We show that there are red and green vertex orders for
which this is not the case. For any edge whose ends are labeled differently we can al-
ways place the horizontal segment such that the midpoint of the edge does not coincide
with a bend. For edges whose ends have the same label it is easy to see that the midpoint
coincides with a bend if and only if the vertical distance and the horizontal distance of
its vertices are equal. Apart from the last edge in each green cycle the horizontal dis-
tance between any two adjacent vertices vi and vi+1 is 2. We claim that the vertical
distance between vi and vi+1 is larger than 2 since otherwise vi and vi+1 are adjacent in
a red cycle which contradicts the assumption that the 4-regular graph is simple. Note
that this is the reason why different components are spaced by at least 4 units. Finally
consider the last edge (v1,vk) of a cycle C with vertices v1, . . . ,vk. The horizontal dis-
tance of v1 and vk is 2k−2. If their vertical distance equals 2k−2 as well, we cyclically
shift the green order of the vertices in C by moving vk to the vertical grid line of v1

and shifting each of v1, . . . ,vk−1 two units to the right. Now (vk,vk−1) is the last edge
of C. We perform this shifting until the vertices of the last edge no longer have vertical
distance 2k− 2. Since every vertex has an exclusive y-coordinate there is at least one
edge with this property in C. The local shifting of C does not influence other parts of
the drawing. The argument for red cycles is analogous.

The vertices lie on (2n + 2mgreen− 4)× (2n + 2mred− 4) grid, and each grid line
with coordinate 2k contains exactly one vertex. The lowest vertex is incident to a green
edge with a horizontal segment at the height −1; the highest one is incident to a green
edge with a horizontal segment at the height 2n + 2mred− 3. One of the green edges
connecting the first and last vertices of some cycle can lie one grid line below the height
−1 or one grid lines above 2n + 2mred−3. ��
It remains to lift the 2d drawing described above into three dimensions. We first rotate
the drawing by 45◦; this expands the grid size to (4n + 4mgreen)× (4n + 4mred). The
vertices themselves stay in the plane z = 0, but we replace each edge by a path in 3d
that goes below the plane for the red edges and above the plane for the green edges,
eliminating all crossings between red and green edges. The path for a green edge goes
upwards along the long diagonals of the diamond lattice cubes until its midpoint, where
it has a bend and turns downwards again. The lifted images of the two bends in the
underlying 2d edge remain bends in the 3d path and hence we get three bends per edge
in total. The red edges are drawn analogously below the plane z = 0. Since in the original
2d drawing every edge has even length, the midpoint of every edge is a grid point and
hence the lifted midpoint is also a grid point of the diamond lattice. By Lemma 1 a
midpoint of an edge never coincides with a 2d bend and hence all bend angles as well as
the vertex angles are 109.5◦ diamond lattice angles. Finally, we remove all the edges we
added to make the graph 4-regular. Considering the longest possible red and green edges
the total grid size is at most (4n+4mgreen)×(4n+4mred)×(12n+6mgreen +6mred). We
note that mgreen, mred ≤ n/3 since every component is a cycle. This yields the following
theorem.

Theorem 1. Any graph G with maximum vertex degree four can be drawn in a 3d grid
of size 16n/3×16n/3×16n with angular resolution 109.5◦, three bends per edge and
no edge crossings.
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Fig. 3. Δ–Y transformation of a graph G containing a triangle, and undoing the transformation to
find a drawing of G (Lemma 2). Top: the contracted vertex has degree three, and is replaced by a
hexagon. Bottom: the contracted vertex has degree two, and is replaced by a heptagon.

3 Two-Bend Drawings of Degree-Three Graphs

The main idea of our algorithm for drawing degree-three graphs with optimal angular
resolution and at most two bends per edge is to decompose the graph into a collection
of vertex-disjoint cycles. Each cycle of length four or more can be drawn in such a
way that the edges incident to the cycle all attach to it via segments that are parallel to
the z axis (Lemma 4). By placing the cycles far enough apart in the z direction, these
segments can be connected to each other with at most two bends per edge. However,
several issues complicate this method:

– Cycles of length three cannot be drawn in the same way, and must be handled
differently (Lemma 2).

– Our method for eliminating cycles of length three does not apply to the graph K4,
for which we need a special-case drawing (Lemma 3).

– Although Petersen’s theorem [2,17] can be used to decompose any bridgeless cubic
graph into cycles and a matching, it is not suitable for our application because
some of the matching edges may connect two vertices in a single cycle, a case
that our method cannot handle. In addition, we wish to handle graphs that may
contain bridges. Therefore, we need to devise a different decomposition algorithm.
However, with our decomposition, the complement of the cycles is a forest rather
than just a matching, and again we need additional analysis to handle this case.

Lemma 2. Let G be a graph with maximum degree three containing a triangle uvw. If
uvw is not part of any other triangle, let G′ be the result of contracting uvw into a single
vertex (that is, performing a Δ–Y transformation on G). Otherwise, if there is a triangle
vwx, let G′ be the result of contracting uvwx into a single vertex. If G′ can be drawn in
3d with two bends per edge and with angles of at least 120◦ between the edges at each
vertex or bend, then so can G.

Proof. First we consider the case that G′ is obtained by collapsing uvw. The edges
incident to the merged vertex uvw must lie in a plane in any drawing of G′. If uvw
has degree zero, one, or three in G′, or if it has degree two and is drawn with angular
resolution exactly 120◦, then we may draw G by replacing uvw by a small regular
hexagon in the same plane, with at most one bend for each of the three triangle edges
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Fig. 4. A two-bend drawing of K4 with 120◦ angular resolution (left) and its two-dimensional
projection (right)

(Figure 3, top). If the merged vertex uvw has degree two in G′ and is drawn with angular
resolution greater than 120◦, we may replace it by a small heptagon (Figure 3, bottom).

The case that G′ is obtained by collapsing four vertices uvwx is similar: the collapsed
vertex may be replaced by a pair of regular hexagons or irregular heptagons, meeting
edge-to-edge. The four vertices uvwx are placed at the points where these two polygons
meet the other edges of the drawing and the two endpoints of the edge where they meet
each other; the edge vw has no bends and the other edges all have one or two bends. ��

Lemma 3. The graph K4 may be drawn in 3d with all vertices on integer grid points,
angular resolution 120◦, and at most two bends per edge.

Proof. See Figure 4. ��

Lemma 4. Let G be a graph with maximum degree three, consisting of a cycle C of
n ≥ 4 vertices together with some number of degree-one vertices that are adjacent to
some of the vertices in C. Suppose also that each degree-one vertex in G is labeled with
the number +1 or −1. Then, there is a drawing of G with the following properties:

– All vertices and bends have angular resolution at least 120◦.
– All edges of C have at most two bends.
– All edges attaching the degree-one vertices to C have no bends.
– Every degree-one vertex has the same x and y coordinates as its (unique) neighbor,

and its z coordinate differs from its neighbor’s z coordinate by its label. Thus, all
edges connecting degree-one vertices to C are parallel to the z axis, all positively
labeled vertices are above (in the positive z direction from) their neighbors, and all
negatively labeled vertices are below their neighbors.

– No three vertices of C project to collinear points in the (x,y)-plane.

Proof. As shown in Figure 5, we draw C in such a way that it projects onto a polygon
P in the xy-plane, with 135◦ angles and with sides parallel to the coordinate axes and
at 45◦ angles to the axes. There are polygons of this type with a number of sides that
can be any even number greater than seven; we choose the number of sides of P so that
at least one and at most two vertices of C can be assigned to each axis-parallel side of
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−1

+1 +1+1

Fig. 5. The embedding of a cycle with degree-one neighboring vertices described by Lemma 4.
Left: the xy-projection of the cycle; cycle vertices are indicated as large hollow circles and bends
are indicated as small black disks. Right (at a larger scale): the xz-projection of the portions of
the embedding corresponding to the two horizontal bottom sides of the xy-projected polygon.

the polygon. (E. g., when C has from four to eight vertices, P can have eight sides, but
when C has more vertices P must be more complex.)

We assign the vertices of C consecutively to the axis-parallel sides of P, in such a
way that at least one vertex of C and at most two vertices are assigned to each axis-
parallel side. If one vertex is assigned to a side, it is placed at the midpoint of that side,
and if two vertices are assigned to a side of length �, then they are placed at distances
of �/4 from one endpoint of the side, as measured in the xy plane, with a bend at the
midpoint of the side.

In three dimensions, the diagonal sides of P are placed in the plane z = 0. For any
axis-parallel side of P of length � containing k vertices of C, we place the vertices with
no degree-one neighbor or with a positively labeled neighbor at elevation z = �/(2k

√
3),

and the vertices with a negatively labeled neighbor at elevation z =−�/(2k
√

3), so that
the portion of C that projects onto a single side of P forms a polygonal curve with angles
of exactly 120◦. The degree-one neighbors of the vertices in C are then placed above or
below them according to their signs.

With this embedding, each vertex of C gets angular resolution exactly 120◦. Any two
consecutive vertices of C that are assigned to the same side of P are separated either by
zero bends (if their neighbors have opposite signs) or a single bend (if their neighbors
have the same signs). Two consecutive vertices of C that belong to two different sides
of P are separated by two bends at two of the corners of P; these bends have angles of
arccos(−

√
3/8)≈ 127.8◦. By adjusting the lengths of the sides of P appropriately, we

may ensure that no three vertices of C project to collinear points in the xy-plane. ��

The main idea of our drawing algorithm is to use Lemma 4, and some simpler cases
for individual vertices, to repeatedly extend partial drawings of the given graph G until
the entire graph is drawn. We define a vertically extensible partial drawing of a set S of
vertices of G to be a drawing of the subgraph G[S] induced in G by S, with the following
properties:

– The drawing of G[S] has angular resolution 120◦ or greater and has at most two
bends per edge.

– Each vertex in S has at most one neighbor in G\ S.
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Fig. 6. Extending a vertically extensible drawing by adding a cycle

– If a vertex v in S has a neighbor w in G\S, then w could be placed anywhere along
a ray in the positive z-direction from v, producing a drawing of G[S∪ {w}] that
remains non-crossing, continues to have angular resolution 120◦ or greater, and has
no bends on edge vw. We call the ray from v the extension ray for edge vw.

– No three extension rays are coplanar.

For instance, if C is a chordless cycle of length four or greater in G, then by Lemma 4
there exists a vertically extensible partial drawing of C. More, the same lemma may be
used to add another cycle to an existing vertically extensible partial drawing (Figure 6):

Lemma 5. For any vertically extensible drawing of a set S of vertices in a graph G of
maximum degree three, and any chordless cycle C of length four or more in G\S, there
exists a vertically extensible drawing of S∪C.

Proof. For each vertex v in C that has a neighbor w in G, replace w with a degree-one
vertex that has label −1 if w ∈ S and +1 if w /∈ S. Apply Lemma 4 to find a drawing
of C that can be connected in the negative z-direction to the neighbors of C in S, and
in the positive z-direction for the remaining neighbors of C. Translate this drawing of
C in the xy-plane so that, among the extension rays of S and the vertices of C, there are
no three points and rays whose projections into the xy-plane are collinear and so that,
when projected onto the xy-plane, the extension rays of S (points in the xy-plane) are
disjoint from the projection of the drawing of C.

For each extension ray of S that connects a vertex v of S to a vertex w in C, draw a
two-bend path with 120◦ bends in the plane containing the extension ray and w, such
that the final segment of the path has the same x and y coordinates of w. By making the
transverse section of this path be far enough away from S in the positive z direction, it
will not intersect any other features of the existing drawing, and it cannot cross any of
the other extension rays due to the requirement that no three of these rays be coplanar.
If C is translated in the positive z direction farther than all of the bends in these paths, it
can be connected to S to form a vertically extensible drawing of S∪C, as required. ��

Lemma 6. For any vertically extensible drawing of a set S of vertices in a graph G of
maximum degree three, and any vertex v in G\S with at most two neighbors in S and at
most one neighbor in G\ S, there exists a vertically extensible drawing of S∪{v}.
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Fig. 7. Left: Adding a vertex v with two neighbors u and w in S and one neighbor in G \ S to a
vertically extensible drawing (shown in the plane of the extension rays of u and w). Right: Adding
a vertex v with three neighbors t, u, and w in S (shown in the xy-plane). The three segments
incident to v are parallel to the xy plane and the three remaining transverse segments form 120◦

angles to the extension rays of t, u, and w. The bends where these transverse segments meet their
extension rays are shown on top of the three points t, u, and w.

Proof. If v has no neighbors in S, then v may be placed anywhere on any z-parallel line
that does not pass through a feature of the existing drawing and is not coplanar with
any two existing extension rays. If v has a single neighbor w in S, then v may be placed
anywhere on the extension ray of wv.

In the remaining case, v connects to two extension rays of S. Within the plane of these
two rays, we may connect v to these two rays by transverse segments at 120◦ angles to
the rays. By placing v far enough in the positive z direction, these transverse segments
can be made to avoid any existing features of the drawing. The extension ray from v
can lie on any line parallel to and between the lines of the two incoming extension rays;
only finitely many of these lines lead to coplanarities with other extension rays, so it is
always possible to place v avoiding any such coplanarity. As shown in Figure 7(left),
this construction produces one bend on each edge into v. ��

Lemma 7. If we are given a vertically extensible drawing of a set S of vertices in a
graph G of maximum degree three, and a vertex v in G\S that has three neighbors t, u,
and w in S, then there exists a vertically extensible drawing of S∪{v}.

Proof. Suppose that tu is the longest edge of the triangle formed by the projections
of t, u, and w into the xy plane. Then, as a first approximation to the position of v in
the xy-plane, let the (two-dimensional) point v′ be placed on edge tu of this triangle,
at the point where v′w is perpendicular to tu. We adjust this position along edge tu,
keeping the angle between v′w and tu close to 90◦ in order to ensure that line segment
v′w does not pass through the two-dimensional projection of any extension ray. Then,
we replace v′ by three short line segments at 120◦ angles to each other meeting the three
line segments v′t, v′u, and v′w at angles of 150◦, 150◦, and close to 180◦. Let v be the
point where these three short line segments meet.

This configuration can be lifted into three-dimensional space by placing v and the
three edges that attach to it in a plane perpendicular to the z axis, and by replacing the
remaining portions of line segments v′t, v′u, and v′w by transverse segments that make
120◦ angles with the extension rays of t, u, and w. There are two bends per edge: one
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at the point where the extension ray of t, u, or w meets a transverse segment, and one
where a transverse segment meets one of the horizontal segments incident to v.

The angles at the bends on the extension rays of t, u, and w are all exactly 120◦, and
the angles at the other bends on the paths connecting t and u to w are arccos(3/4) ≈
138.6◦. As long as segment v′w stays within 54◦ of perpendicular to tu in the xy-plane,
the angle at the final remaining bend will be at least 120◦. ��
The construction of Lemma 7 is illustrated in Figure 7(right).

Theorem 2. Any graph G of degree three has a drawing with 120◦ angular resolution
and at most two bends per edge.

Proof. While G contains a triangle, apply Lemma 2 to simplify it, resulting in either K4

or a triangle-free graph G′. If this simplification process leads to K4, draw it according
to Lemma 3. Otherwise, starting from S = /0, we repeatedly grow a vertically extensible
drawing of a subset S of G′ until all of G′ has been drawn. If G′ \ S contains a vertex
with at most one neighbor in G′ \ S, then either Lemma 6 or Lemma 7 applies and we
can add this vertex to the vertically extensible drawing. Otherwise, all vertices in G′ \S
have two or more neighbors in G′ \ S, so G′ \ S contains a cycle. Let C be the shortest
cycle in G′ \ S; it has length at least four (because we eliminated all triangles) and no
chords (because a chord would lead to a shorter cycle) so we may apply Lemma 5 to
incorporate it into the vertically extensible drawing. Once we have included all vertices
in the vertically extensible drawing, we have drawn all of G′, and we may reverse the
transformations performed according to Lemma 2 to produce a drawing of G. ��
In the full version (arXiv:1009.0045) we show that any graph of degree three has a
drawing with 120◦ angular resolution, integer vertex coordinates, edges parallel to the
face diagonals of the integer grid, at most three bends per edge, and polynomial volume.

4 Conclusions

We have shown how to draw degree-three graphs in three dimensions with optimal an-
gular resolution and two bends per edge, and how to draw degree-four graphs in three
dimensions with optimal angular resolution, three bends per edge, integer vertex coor-
dinates, and cubic volume. Multiple questions remain open for investigation, however:

– It does not seem to be possible to draw K4 or K5 in three dimensions with optimal
angular resolution and one bend per edge. Can this be proven rigorously?

– Does every degree-four graph have a drawing in three dimensions with optimal
angular resolution and two bends per edge? In particular, is this possible for K5?

– How many bends per edge are necessary to draw degree-three graphs with optimal
angular resolution in an O(n)×O(n)×O(n) grid, with all edges parallel to the face
diagonals of the grid?

– It should be possible to draw degree-three and degree-four graphs with optimal
angular resolution in an O(

√
n)×O(

√
n)×O(

√
n) grid. How many bends per edge

are necessary for such a drawing?
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Abstract. We show that there exist series-parallel graphs requiring Ω(n2
√

log n)
area in any straight-line or poly-line grid drawing, improving the previously best
known Ω(n log n) lower bound.

1 Introduction

Determining asymptotic bounds for the area requirements of straight-line and poly-line
drawings of planar graphs is a classical topic in the Graph Drawing literature. Ground-
breaking works of the beginning of the nineties [5,10] have shown that every n-vertex
planar graph admits a planar straight-line drawing in an O(n2) grid. Such a bound is
worst-case optimal, even for poly-line drawings [7,5]. Hence, it is natural to search for
interesting sub-classes of planar graphs admitting sub-quadratic area drawings.

In this paper we deal with series-parallel graphs, a class of planar graphs that has
been widely investigated in Graph Theory and Graph Drawing (see, e.g., [11,8,1,6]).
Series-parallel graphs can be equivalently defined as the graphs excluding K4 as a minor
or, inductively, by series and parallel compositions of smaller series-parallel graphs.

Biedl [2,3] proved that a series-parallel graph with n vertices admits a poly-line grid
drawing in O(n3/2) area. She achieved such a bound by first constructing visibility rep-
resentations of series-parallel graphs in O(n3/2) area and by then turning such repre-
sentations into poly-line drawings with asymptotically the same area. No sub-quadratic
area upper bound is known for straight-line grid drawings of series-parallel graphs.

The author proved [9] that there exist series-parallel graphs requiring Ω(n log n) area
in any straight-line or poly-line grid drawing. To achieve such a bound, the following
theorem1 was proved in [9], improving upon previous results of Biedl et al. [4].

Theorem 1. Every planar straight-line or poly-line grid drawing of K2,n in a W ×H
grid satisfies max{W, H} ≥ c · n, for some constant c ≤ 1/2.

In this paper, we prove the following.

Theorem 2. There exist series-parallel graphs with n vertices requiring Ω(2
√

log n)
width and Ω(2

√
log n) height in any straight-line or poly-line grid drawing.

� This work is partially supported by the Italian Ministry of Research, Grant number
RBIP06BZW8, FIRB project “Advanced tracking system in intermodal freight transportation”.

1 Theorem 1 is stated in [9] in an equivalent form using the Ω(n) notation.

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 220–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Such a result is achieved by carefully constructing a graph out of several copies of
K2,n and by then exploiting Theorem 1 and some further geometric considerations.
Theorem 1, together with Theorem 2, directly implies the following.

Theorem 3. There exist series-parallel graphs with n vertices requiring Ω(n2
√

log n)
area in any straight-line or poly-line grid drawing.

We remark that the function 2
√

log n is asymptotically greater than any polylogarithmic
function of n and smaller than any polynomial function of n.

2 Preliminaries

A planar grid drawing of a graph is a mapping of each vertex to a distinct point of the
plane with integer coordinates and of each edge to a Jordan curve between the endpoints
of the edge, so that no two edges intersect except, possibly, at common endpoints. In
the following we always refer to planar grid drawings. A straight-line drawing is such
that all edges are rectilinear segments. A poly-line drawing is such that the edges are
sequences of rectilinear segments. In a poly-line drawing a bend is a point in which
an edge changes its slope, i.e., a point common to two consecutive segments in the
sequence of segments representing the edge. In a grid drawing bends have integer co-
ordinates. A polygonal path is a poly-line grid drawing of a path. The bounding box
of a drawing Γ is the smallest rectangle with sides parallel to the axes that covers Γ
completely. The height (width) of Γ is the height (resp. width) of its bounding box. The
area of Γ is the height of Γ times its width.

A drawing of the complete bipartite graph K2,n can be thought as a drawing of n
paths that start and end at the same two vertices and that do not share any other vertex.
In the following we will refer to such paths as to the paths of K2,n.

In the next section, we will use the following lemmata [9].

Lemma 1. Consider any poly-line grid drawing of K2,n, any path π of K2,n, and any
vector v. There exists a grid point p ∈ π such that v · p ≥ v · p′, for any point p′ ∈ π.

Lemma 2. Let a and b be the endvertices of the paths of K2,n. Consider any planar
drawing of K2,n. Let l be any line that does not intersect nor contain the open segment
ab. No three paths π1, π2, and π3 of K2,n exist such that: (i) π1, π2, and π3 do not
intersect each other; (ii) π1, π2, and π3 are contained in the closed half-plane delimited
by l and containing a and b; (iii) each of π1, π2, and π3 touches l at least once.

3 Proof of Theorem 2

As straight-line drawings are also poly-line drawings, it suffices to prove Theorem 2 for
poly-line drawings. Let f(n) be a function to be computed later and let d = c/4, where
c is the constant of Theorem 1. Observe that d ≤ 1/8.

Graph G1 is K2,f(n)−2. Graph Gi+1 is defined as follows. Consider f(n) copies
Gi,1,1, Gi,1,2, Gi,2,1, Gi,2,2, . . . , Gi,j,1, Gi,j,2, . . . , Gi,f(n)/2,1, Gi,f(n)/2,2 of Gi; con-
struct f(n)/2 series-parallel graphs Gi,1, Gi,2, . . . , Gi,j , . . . , Gi,f(n)/2, where Gi,j is
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(a) (b)

(c)

Fig. 1. Graphs Gi, with f(n) = 6. (a) G1. (b) G2. (c) G3

the series composition of Gi,j,1 and Gi,j,2; then, Gi+1 is the parallel composition of
graphs Gi,1, Gi,2, . . . , Gi,f(n)/2. See Fig. 1.

First, we prove Theorem 2 for sufficiently large graphs, that is, for graphs having a
number of vertices that is at least some constant n0 to be determined later. From now
till it is otherwise specified, assume that n ≥ n0.

Suppose that f(n) ≥ 8, ∀n ≥ n0. Let n be the number of vertices of graph Gk. We
have the following main lemma.

Lemma 3. Let Γi be any poly-line grid drawing of Gi and let ai and bi be the poles of
Gi, for each 1 ≤ i ≤ k. Then, one of the following holds:

– Condition 1: The height and the width of Γi are both greater than or equal to
d · f(n).

– Condition 2: The width of Γi is greater than or equal to d · f(n) and Γi contains a
polygonal path li connecting ai to bi that has height greater than or equal to 2i and
such that, for every point p ∈ li, min{y(ai), y(bi)} ≤ y(p) ≤ max{y(ai), y(bi)};
or the height of Γi is greater than or equal to d · f(n) and Γi contains a polygonal
path li connecting ai to bi that has width greater than or equal to 2i and such that,
for every point p ∈ li, min{x(ai), x(bi)} ≤ x(p) ≤ max{x(ai), x(bi)}.

Proof: We prove the statement by induction on i. In the base case, consider any poly-
line grid drawing Γ1 of G1. By Theorem 1, one of the height and the width of Γ1, say
the width of Γ1, is at least c · f(n), hence it is at least d · f(n).

Assume, without loss of generality, that y(a1) ≤ y(b1). Suppose that at least 2d·f(n)
paths of G1 = K2,f(n)−2 intersect the open half-plane H−(a1) defined as y < y(a1) or
the open half-plane H+(b1) defined as y > y(b1). By Lemma 1 with v = (0,−1), for
each path π of G1 intersecting H−(a1), a grid point p ∈ π exists whose y-coordinate
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is minimum among the points of π. Clearly, p belongs to H−(a1). Hence, p belongs to
a horizontal grid line h not intersecting nor containing segment a1b1. By Lemma 2, at
most two paths of G1 have their points with smallest y-coordinate in h. Analogously,
by Lemma 1 with v = (0, 1), for each path π of G1 that intersects H+(b1), a grid point
p ∈ π exists whose y-coordinate is maximum among the points of π. Clearly, p belongs
to H+(b1). Hence, p belongs to a horizontal grid line h not intersecting nor containing
segment a1b1. By Lemma 2, at most two paths of G1 have their points with greatest y-
coordinate in h. Hence, as 2d ·f(n) paths of G1 intersect H−(a1) or H+(b1), it follows
that Γ1 has height at least d · f(n).

Now suppose that no 2d ·f(n) paths of G1 intersect H−(a1) or H+(b1). Then, since
d ≤ 1/8, at least f(n)−2−2d ·f(n)+1 ≥ 3f(n)/4−1 paths of G1 are such that, for
every point p of any such a path, y(a1) ≤ y(p) ≤ y(b1). By planarity of Γ1 at most one
path of G1 contains a point p such that y(p) = y(a1) and x(p) < x(a1). Analogously,
at most one path of G1 contains a point p such that y(p) = y(a1) and x(p) > x(a1), at
most one path of G1 contains a point p such that y(p) = y(b1) and x(p) < x(b1), and
at most one path of G1 contains a point p such that y(p) = y(b1) and x(p) > x(b1).
Since f(n) ≥ 8, it follows that 3f(n)/4 − 1 ≥ 5, hence there is at least one path of
G1 whose only vertex v �= a1, b1 is such that y(v) > y(a1) and y(v) < y(b1). Then,
the polygonal path (a1, v, b1) has height at least two and is such that, for every point
p ∈ (a1, v, b1), y(a1) ≤ y(p) ≤ y(b1), thus proving the base case.

In the inductive case, consider any poly-line grid drawing Γi+1 of Gi+1, containing
drawings Γi,1,1, Γi,1,2, Γi,2,1, Γi,2,2, . . . , Γi,j,1, Γi,j,2, . . . , Γi,f(n)/2,1, Γi,f(n)/2,2 of
Gi,1,1, Gi,1,2, Gi,2,1, Gi,2,2, . . . , Gi,j,1, Gi,j,2, . . . , Gi,f(n)/2,1, Gi,f(n)/2,2,respectively.
By induction, for 1 ≤ j ≤ f(n)/2 and 1 ≤ k ≤ 2, Γi,j,k satisfies Condition 1 or 2.

If two indices 1 ≤ j ≤ f(n)/2 and 1 ≤ k ≤ 2 exist such that Γi,j,k satisfies
Condition 1, then the width and the height of Γi,j,k are both greater than or equal to
d · f(n), hence so are the width and the height of Γi+1.

Hence, we can assume that, for every 1 ≤ j ≤ f(n)/2 and 1 ≤ k ≤ 2, Γi,j,k satisfies
Condition 2. If indices 1 ≤ j′, j′′ ≤ f(n)/2 and 1 ≤ k′, k′′ ≤ 2 exist, where j′ = j′′

and k′ = k′′ do not hold simultaneously, such that the width of Γi,j′,k′ is greater than
or equal to d · f(n) and the height of Γi,j′′,k′′ is greater than or equal to d · f(n), then
the width and the height of Γi+1 are both greater than or equal to d · f(n).

Hence, we can assume that, for every 1 ≤ j ≤ f(n)/2 and 1 ≤ k ≤ 2, the width
of Γi,j,k is greater than or equal to d · f(n) and Γi,j,k contains a polygonal path li,j,k
connecting ai to bi that has height greater than or equal to 2i and such that, for every
point p ∈ li,j,k, min{y(ai), y(bi)} ≤ y(p) ≤ max{y(ai), y(bi)}; the case in which,
for every 1 ≤ j ≤ f(n)/2 and 1 ≤ k ≤ 2, the height of Γi,j,k is greater than or equal
to d · f(n) and Γi,j,k contains a polygonal path li,j,k connecting ai to bi that has width
greater than or equal to 2i and such that, for every point p ∈ li,j,k, min{x(ai), x(bi)} ≤
x(p) ≤ max{x(ai), x(bi)} can be treated analogously.

Denote by li,j the path connecting ai+1 and bi+1 composed of li,j,1 and li,j,2. As-
sume, without loss of generality, that y(ai+1) ≤ y(bi+1). Suppose that at least 2d ·f(n)
paths li,j intersect the open half-plane H−(ai+1) defined as y < y(ai+1) or the open
half-plane H+(bi+1) defined as y > y(bi+1). By Lemma 1 with v = (0,−1), for
each path li,j that intersects H−(ai+1), a grid point p ∈ li,j exists whose y-coordinate
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is minimum among the points of li,j . Clearly, p belongs to H−(ai+1). Hence, p be-
longs to a horizontal grid line h not intersecting nor containing segment ai+1bi+1. By
Lemma 2, at most two paths li,j have their points with smallest y-coordinate in h. Anal-
ogously, by Lemma 1 with v = (0, 1), for each path li,j that intersects H+(bi+1), a grid
point p ∈ li,j exists whose y-coordinate is maximum among the points of li,j . Clearly,
p belongs to H+(bi+1). Hence, p belongs to a horizontal grid line h not intersecting
nor contain segment ai+1bi+1. By Lemma 2, at most two paths li,j have their points
with greatest y-coordinate in h. Hence, as 2d · f(n) paths li,j intersect H−(ai+1) or
H+(bi+1), it follows that Γi+1 has height at least d · f(n).

Now suppose that no 2d · f(n) paths li,j intersect H−(ai+1) or H+(bi+1). Then,
since d ≤ 1/8, at least f(n) − 2d · f(n) + 1 ≥ 3f(n)/4 + 1 paths li,j are such that,
for every point p of any such a path, y(ai+1) ≤ y(p) ≤ y(bi+1). By planarity of Γi+1
at most one path li,j contains a point p such that y(p) = y(ai+1) and x(p) < x(ai+1).
Analogously, at most one path li,j contains a point p such that y(p) = y(ai+1) and
x(p) > x(ai+1), at most one path li,j contains a point p such that y(p) = y(bi+1) and
x(p) < x(bi+1), and at most one path li,j contains a point p such that y(p) = y(bi+1)
and x(p) > x(bi+1). Since f(n) ≥ 8, it follows that 3f(n)/4+1 ≥ 5, hence there is at
least one path li,j composed of path li,j,1, that connects the poles ai+1 and v of Gi,j,1,
and of path li,j,2, that connects the poles bi+1 and v of Gi,j,2, such that y(v) > y(ai+1)
and y(v) < y(bi+1). By inductive hypothesis, li,j,1 has height greater than or equal to 2i

and, for every point p ∈ li,j,1, y(ai+1) ≤ y(p) ≤ y(v); further, li,j,2 has height greater
than or equal to 2i and, for every point p ∈ li,j,2, y(v) ≤ y(p) ≤ y(bi+1); hence, li,j
has height greater than or equal to 2i+1 and, for every point p ∈ li,j , y(ai+1) ≤ y(p) ≤
y(bi+1), thus completing the induction. �

Corollary 1. Any poly-line grid drawing of Gk has height and width that are both
greater than or equal to min{d · f(n), 2k}.

Let f(n) = nx(k). By construction |G1| = nx(k); since Gi is composed of f(n) =
nx(k) copies of Gi−1, |Gi| ≤ nx(k) · |Gi−1|; inductively, we obtain |Gk| ≤ nk·x(k).
Assuming |Gk| = n, we get x(k) ≥ 1/k and f(n) ≥ n1/k.

We now choose k in such a way that n1/k and 2k are equal. This is done as fol-
lows. 2k = n1/k ⇒ log2(2k) = log2(n1/k) ⇒ k log2(2) = 1/k log2(n) ⇒ k2 =
log2(n) ⇒ k =

√
log2(n). By Corollary 1, both the height and the width of Γk,

with k =
√

log2(n), are greater than or equal to min{d · n1/
√

log2(n), 2
√

log2(n)} =

d · 2
√

log2(n) = Ω(2
√

log2(n)), and Theorem 2 follows if n ≥ n0.

Asweneedf(n) = 2
√

log2(n) ≥ 8,∀n ≥ n0, thenn0 = 512.However,d·2
√

log2(n) <
1, for all n < 512, as d ≤ 1/8. Since every drawing of a graph that is not a collection of

paths has height and width at least one, the d ·2
√

log2(n) lower bound holds also for graphs
with less than 512 nodes, thus completing the proof of Theorem 2.

4 Conclusions and Open Problems

In this paper we have shown that there exist series-parallel graphs with n vertices re-
quiring Ω(n2

√
log n) area in any straight-line or poly-line grid drawing.
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The best known area upper bound for poly-line grid drawings of series-parallel
graphs is O(n3/2) [2,3], while no sub-quadratic area upper bound is known in the case
of straight-line grid drawings. Hence, in both cases, closing the gap between upper and
lower bound is an intriguing challenge.

Concerning straight-line drawings, David Wood [12] conjectures the following: Let
p1, . . . , pk be positive integers. Let G(p1) be the graph obtained from K3 by adding
p1 new vertices adjacent to v and w for each edge (v, w) of K3. For k ≥ 2, let
G(p1, p2, . . . , pk) be the graph obtained from G(p1, p2, . . . , pk−1) by adding pk new
vertices adjacent to v and w for each edge (v, w) of G(p1, p2, . . . , pk−1). Observe that
G(p1, p2, . . . , pk) is a series-parallel graph.

Conjecture 1. (D. R. Wood) Every straight-line grid drawing of G(p1, p2, . . . , pk) re-
quires Ω(n2) area for some choice of k and p1, p2, . . . , pk.
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Abstract. A drawing of a graph in the plane is called a thrackle if
every pair of edges meets precisely once, either at a common vertex or at
a proper crossing. Let t(n) denote the maximum number of edges that a
thrackle of n vertices can have. According to a 40 years old conjecture of
Conway, t(n) = n for every n ≥ 3. For any ε > 0, we give an algorithm
terminating in eO((1/ε2) ln(1/ε)) steps to decide whether t(n) ≤ (1+ε)n for
all n ≥ 3. Using this approach, we improve the best known upper bound,
t(n) ≤ 3

2
(n − 1), due to Cairns and Nikolayevsky, to 167

117
n < 1.428n.

1 Introduction

A drawing of a graph (or a topological graph) is a representation of the graph in
the plane such that the vertices are represented by distinct points and the edges
by (possibly crossing) simple continuous curves connecting the corresponding
point pairs and not passing through any other point representing a vertex. If it
leads to no confusion, we make no notational distinction between a drawing and
the underlying abstract graph (i.e. its set representation) G. In the same vein,
V (G) and E(G) will stand for the vertex set and edge set of G as well as for the
sets of points and curves representing them.

A drawing of G is called a thrackle if every pair of edges meets precisely once,
either at a common vertex or at a proper crossing. (A crossing p of two curves is
proper if at p one curve passes from one side of the other curve to its other side.)
More than forty years ago Conway [19,2,15] conjectured that every thrackle has
at most as many edges as vertices, and offered a bottle of beer for a solution.
Since then the prize went up to one thousand dollars. In spite of considerable
efforts, Conway’s thrackle conjecture is still open. It is believed to represent the
tip of an “iceberg”, obstructing our understanding of crossing patterns of edges
in topological graphs. If true, the inequality of Conway’s conjecture would be
tight as any cycle of length at least five can be drawn as a thrackle, see [18].
Two thrackle drawings of C5 and C6 are shown in Figure 1.
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Fig. 1. C5 and C6 drawn as
thrackles

Obviously, the property that G can be
drawn as a thrackle is hereditary: if G has
this property, then any subgraph of G does.
It is very easy to verify (cf. [18]) that C4,
a cycle of length four, cannot be drawn as
a thrackle. Therefore, every “thrackleable”
graph is C4-free, and it follows from ex-
tremal graph theory that every thrackle of n
vertices has at most O(n3/2) edges [6]. The
first linear upper bound of 2n−3 on the maximum number of edges of a thrackle
of n vertices was given by Lovász et al. [12]. This was improved to 3

2 (n− 1) by
Cairns and Nikolayevsky [3].

The aim of this note is to provide a finite approximation scheme for estimating
the maximum number of edges that a thrackle of n vertices can have. We apply
our technique to improve the best known upper bound for this maximum.

Fig. 2. Dumbbells DB(6, 6,−1),
DB(6, 6, 0), and DB(6, 6, 1)

To state our results, we need a definition.
Given three integers c′, c′′ > 2, l ≥ 0, the dumb-
bell DB(c′, c′′, l) is a simple graph consisting of
two edge disjoint cycles of length c′ and c′′, con-
nected by a path of length l. For l = 0, the two
cycles share a vertex. It is natural to extend this
definition to negative values of l, as follows. For
any l > −min(c′, c′′), let DB(c′, c′′, l) denote the
graph consisting of two cycles of lengths c′ and c′′ that share a path of length
−l. That is, for any l > −min(c′, c′′), we have

|V (DB(c′, c′′, l))| = c′ + c′′ + l − 1.

The three types of dumbbells (for l < 0, l = 0, and l > 0) are illustrated in
Figure 2.

Our first theorem shows that for any ε > 0, it is possible to prove Conway’s
conjecture up to a multiplicative factor of 1 + ε, by verifying that no dumbbell
smaller than a certain size depending on ε is thrackleable.

Theorem 1. Let c ≥ 6 and l ≥ −1 be two integers, such that c is even, with the
property that no dumbbell DB(c′, c′′, l′) with −c′/2 ≤ l′ ≤ l and with even c′, c′′,
for which 6 ≤ c′, c′′ ≤ c, can be drawn in the plane as a thrackle. Let r = �l/2�.
Then the maximum number of edges t(n) that a thrackle on n vertices can have
satisfies t(n) ≤ τ(c, l)n, where

τ(c, l) =

⎧⎪⎨⎪⎩
47c2+116c+80
35c2+68c+32 if l = −1,

1 + 2c2r+4cr2+22cr+7c2+22c+8r2+24r+16
2c2r2+14c2r+4cr2+16cr+24c2+12c if l ≥ 0,

as n tends to infinity.

As both c and l get larger, the constant τ(c, l) given by the second part of
Theorem 1 approaches 1. On the other hand, assuming that Conway’s conjecture
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is true for all bipartite graphs with up to 10 vertices, which will be verified
in Section 4, the first part of the theorem applied with c = 6, l = −1 yields
that t(n) ≤ 617

425n < 1.452n. This bound is already better than the bound 3
2n

established in [3].
By a more careful application of Theorem 1, i.e. taking c = 6 and l = 0, we

obtain an even stronger result.

Theorem 2. The maximum number of edges t(n) that a thrackle on n vertices
can have satisfies the inequality t(n) ≤ 167

117n < 1.428n.

Our method is algorithmic. We design an eO((1/ε2) ln(1/ε)) time algorithm by
means of which we can prove, for any ε > 0, that t(n) ≤ (1+ε)n for all n, or which
provides a counterexample to Conway’s conjecture. The proof of Theorem 2 is
computer assisted: it requires testing the planarity of certain relatively small
graphs.

For thrackles drawn by straight-line edges, Conway’s conjecture has been set-
tled in a slightly different form by Hopf and Pannwitz [10] and by Sutherland
[17] before Conway was even born, and later, in the above form, by Erdős and
Perles. Assuming that Conway’s conjecture is true, Woodall [18] gave a complete
characterization of all graphs that can be drawn as a thrackle. He also observed
that it is sufficient to verify the conjecture for dumbbells. This observation is
one of the basic ideas behind our arguments.

Several interesting special cases and variants of the conjecture are discussed
in [3,4,5,9,12,13,14].

In Section 2, we describe a crucial construction by Conway and summarize
some earlier results needed for our arguments. The proofs of Theorems 1 and 2
are given in Sections 3 and 4. The analysis of the algorithm for establishing the
(1 + ε)n upper bound for the maximum number of edges that a thrackle of n
vertices can have is also given in Section 4 (Theorem 3). In the last section, we
discuss some related Turán-type extremal problems for planar graphs.

2 Conway’s Doubling and Preliminaries

In this section, we review some earlier results that play a key role in our
arguments.

A generalized thrackle is a drawing of a graph in the plane with the property
that any pair of edges share an odd number of points at which they properly cross
or which are their common endpoints. Obviously, every thrackle is a generalized
thrackle but not vice versa: although C4 is not thrackleable, it can be drawn as
a generalized thrackle, which is not so hard to see (Figure 3(a)).

We need the following simple observation based on the Jordan curve theorem.

Lemma 1. [12] A (generalized) thrackle cannot contain two vertex disjoint odd
cycles.

Lovász, Pach, and Szegedy [12] gave a somewhat counterintuitive characteri-
zation of generalized thrackles containing no odd cycle: a bipartite graph is a
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(a)

v
′

v

v
′

1

v
′

2

v1

v2

(b)

Fig. 3. (a) C4 drawn as generalized thrackle, (b) Conway’s doubling of a cycle

generalized thrackle if and only if it is planar. Moreover, it follows immediately
from Lemma 3 and the proof of Theorem 3 in Cairns and Nikolayevsky [3] that
this statement can be strengthened as follows.

Lemma 2. [3] Let G be a bipartite graph with vertex set V (G) = A ∪ B and
edge set E(G) ⊆ A×B. If G is a generalized thrackle then it can be redrawn in
the plane without crossing so that the cyclic order of the edges around any vertex
v ∈ V (G) is preserved if v ∈ A and reversed if v ∈ B.

We recall a construction by Conway for transforming a thrackle into another
one. It can be used to eliminate odd cycles.

Let G be a thrackle or a generalized thrackle that contains an odd cycle C.
In the literature, the following procedure is referred to as Conway’s doubling:
First, delete from G all edges incident to a vertex belonging to C, including all
edges of C. Replace every vertex v of C by two vertices v1 and v2 which lie near
to each other and to the former position of v. For any edge vv′ of C, connect
v1 to v′2 and v2 to v′1 by two edges running very close to the original edge vv′,
as depicted in Figure 3(b). For any vertex v belonging to C, the set of edges
incident to v but not belonging to C can be divided into two classes, E1(v) and
E2(v): the set of all edges whose initial arcs around v lie on one side and the
other side of C, respectively. In the resulting topological graph G′, connect all
edges in E1(v) to v1 and all edges in E2(v) to v2 so that every edge connected
to v1 crosses all edges connected to v2 exactly once in their small neighborhood.
See Figure 3(b). All other edges of G remain unchanged. Denote the vertices of
the original odd cycle C by v1, v2, . . . , vk, in this order. In the resulting drawing
G′, we obtain an even cycle C′ = v1

1v2
2v

3
1v4

2 . . . v1
2v

2
1v

3
2v4

1 . . . instead of C. It is
easy to verify that G′ is drawn as a thrackle, which is stated as part (ii) of the
following lemma (see also Lemma 2 in [3]).

Lemma 3. (Conway, [18,3]) Let G be a (generalized) thrackle with at least one
odd cycle C. Then the topological graph G′ obtained from G by Conway’s doubling
of C is

(i) bipartite, and
(ii) a (generalized) thrackle.

Finally, we recall an observation of Woodall [18] mentioned in the introduction,
which motivated our investigations.
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As thrackleability is a hereditary property, a minimal counterexample to the
thrackle conjecture must be a connected graph G with exactly |V (G)|+ 1 edges
and with no vertex of degree one. Such a graph G is necessarily a dumbbell
DB(c′, c′′, l). If l �= 0, then G consists of two cycles that share a path or are
connected by a path uv. In both cases, we can “double” the path uv, as indi-
cated in Figure 4, to obtain another thrackle G′. It is easy to see that G′ is
a dumbbell consisting of two cycles that share precisely one vertex (the ver-
tex v in the figure). Moreover, if any of these two cycles is not even, then
we can double it and repeat the above procedure, if necessary, to obtain a
dumbbell DB(b′, b′′, 0) drawn as a thrackle, where b′ and b′′ are even num-
bers. Thus, in order to prove the thrackle conjecture, it is enough to show that
no dumbbell DB(c′, c′′, 0) consisting of two even cycles that share a vertex is
thrackleable.

3 Proof of Theorem 1

v

u

v

u1 u2

Fig. 4. Doubling the
path uv

Let c ≥ 6 and l ≥ −1 be two integers, and suppose
that no dumbbell DB(c′, c′′, l′) with −c′/2 ≤ l′ ≤ l
and with even c′, c′′, for which 6 ≤ c′, c′′ ≤ c, can be
drawn in the plane as a thrackle. For simpler notation,
let r = �l/2�.

Let G = (V, E) be a thrackleable graph with n ver-
tices and m edges. We assume without loss of gener-
ality that G is connected and that it has no vertex of
degree one. Otherwise, we can successively delete all
vertices of degree one, and argue for each connected
component of the resulting graph separately.

As usual, we call a graph two-connected if it is con-
nected and it has no cut vertex, i.e., it cannot be sepa-
rated into two or more parts by the removal of a vertex
[6].

We distinguish three cases:

(A) G is bipartite;
(B) G is not bipartite, and the graph G′ obtained by performing Conway’s

doubling of a shortest odd cycle C ⊂ G is 2-connected;
(C) G is not bipartite, and the graph G′ obtained by performing Conway’s

doubling of a shortest odd cycle C ⊂ G is not 2-connected.

In each case, we will prove that m ≤ τ(c, l)n.

(A) By Lemma 2, in this case G is planar. We fix an embedding of G in the plane.
According to the assumption of our theorem, G contains no subgraph that is a
dumbbell DB(c′, c′′, l′), for any even 6 ≤ c′ ≤ c′′ ≤ c, and −c′/2 ≤ l′ ≤ l. We
also know that G has no C4. We are going to use these conditions to bound the
number of edges m = |E(G)|.
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Notice that we also exclude dumbbells DB(c′, c′′, l′) with −c′ ≤ l′ < −c′/2.
Indeed, in this case DB(c′, c′′, l′) is isomorphic to DB(c′, d, k), where d = (c′ +
c′′ + 2l′), k = (−c′ − l′), and d < c′′ ≤ c, max(−c′/2,−d/2) ≤ k < 0.

Suppose first that G is two-connected. Let f denote the number of faces, and
let fc stand for the number of faces with at most c sides. By double counting
the edges, we obtain

2m ≥ 6fc + (c + 2)(f − fc). (1)

If l = −1, then applying the condition of forbidden dumbbells, we obtain that
no two faces of size at most c share an edge, so that 6fc ≤ m. If l ≥ 0, Menger’s
theorem implies that any two faces of size at most c are connected by two vertex
disjoint paths. Since any such path must be longer than l, to each face we can
assign its vertices as well as the r = �l/2� closest vertices along two vertex
disjoint paths leaving the face, and these sets are disjoint for distinct faces.
Thus, we have fc(2r + 6) ≤ n. In either case, we have

fc ≤

⎧⎨⎩
m
6 if l = −1,

n
2r+6 if l ≥ 0.

(2)

Combining the last two inequalities, we obtain

f ≤ (c− 4)fc + 2m

c + 2
≤

⎧⎪⎨⎪⎩
(c−4) m

6 +2m

c+2 if l = −1,

(c−4) n
2r+6+2m

c+2 if l ≥ 0.

Using Euler’s polyhedral formula m + 2 = n + f we obtain

m ≤

⎧⎨⎩
6c+12
5c+4 n− 12c+24

5c+4 if l = −1,

2cr+4r+7c+8
2cr+6c n− 2c+4

c if l ≥ 0.
(3)

It can be shown by routine calculations that the last estimates, even if we
ignore their negative terms independent of n, are stronger than the ones claimed
in the theorem. (In fact, they are also stronger than the corresponding bounds
(5) and (4) in Case (B); see below.) This concludes the proof of the case (A)
when G is 2-connected.

If G is not 2-connected, then consider a block decomposition of G, and proceed
by induction on the number of blocks. The base case, i.e when G is 2-connected, is
treated above. Otherwise G can be obtained as a union of two bipartite graphs
G1 = (V1, E1) and G2 = (V2, E2) sharing exactly one vertex. By induction
hypothesis we can use (3) to bound the number of edges in Gi, for i = 1, 2, by
substituting |Ei| and |Vi| for m and n, respectively. We obtain the claimed bound
on the maximum number of edges in G by adding up the bounds on |E1| and
|E2| as follows. |E(G)| = |E(G1)| + |E(G2)| ≤ k1|V (G1)| + k1|V (G2)| − 2k2 =
k1|V (G)|+ k1− 2k2 where k1 = k1(c, l) and k2 = k2(c, l) represent the constants
in (3). The induction step follows analogously, because k1 < k2 for all considered
values of c and l.
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(B) In this case, we establish two upper bounds on the maximum number of
edges in G: one that decreases with the length of the shortest odd cycle C ⊆ G
and one that increases. Finally, we balance between these two bounds.

By doubling a shortest odd cycle C ⊆ G, as before, we obtain a bipartite
thrackle G′ (see Lemma 3). Let C′ denote the doubled cycle in G′. By Lemma 2,
G′ is a planar graph. Since G′ is bipartite, it is trivially two-colorable. Moreover,
it can be embedded in the plane without crossing so that the cyclic order of the
edges around each vertex in one color class is preserved, and for each vertex in
the other color class reversed. A closer inspection of the way how we double C
shows that as we traverse C′ in G′, the edges incident to C′ start on alternating
sides of C′. This implies that, after redrawing G′ as a plane graph, all edges
incident to C′ lie on one side, that is, C′ is a face.

Slightly abusing the notation, from now on let G′ denote a crossing-free draw-
ing with the above property, which has a 2|C|-sided face C′. Denoting the number
of vertices and edges of G′ by n′ and m′, the number of faces and the number of
faces of size at most c by f ′ and f ′

c, respectively, we have n′ = n+ |C| = |V (G′)|,
m′ = m + |C| = |E(G′)|, and, as in Case (A), inequality (2),

f ′
c ≤

⎧⎨⎩
1
6m′ if l = −1,

n′
2r+6 if l ≥ 0.

Double counting the edges of G′, we obtain

2m′ ≥ 6f ′
c + (c + 2)(f ′ − 1− f ′

c) + 2|C|.

In case l ≥ 0, combining the last two inequalities, we have

f ′ ≤ (c− 4)f ′
c + 2(m′ − |C|) + c + 2

c + 2
≤

(c− 4) n′
2r+6 + 2(m′ − |C|) + c + 2

c + 2
.

By Euler’s polyhedral formula, f ′ = m′ − n′ + 2. Thus, after ignoring the
negative term, which depends only on c and l, the last inequality yields

|E(G)| ≤ 2cr + 4r + 7c + 8
2cr + 6c

n + |C| c− 4
2cr + 6c

. (4)

The case l = −1 can be treated analogously, and the corresponding bound on
E(G) becomes

|E(G)| ≤ 6c + 12
5c + 4

n + |C| c− 4
5c + 4

. (5)

We now establish another upper bound on the number of edges in G: one
that decreases with the length of the shortest odd cycle C in G. As in [12], we
remove from G the vertices of C together with all edges incident to them. Let
G′′ denote the resulting thrackle. By Lemma 1, G′′ is bipartite. By Lemma 2, it
is a planar graph. From now on, let G′′ denote a fixed (crossing-free) embedding
of this graph. According to our assumptions, G′′ has no subgraph isomorphic to
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DB(c′, c′′, l′), for any even numbers c′ and c′′ with 6 ≤ c′ ≤ c′′ ≤ c, and for any
integer l′ with −c′/2 ≤ l′ ≤ l.

We can bound |E(G′′)|, as follows. By the minimality of C, each vertex v ∈
V (G) that does not belong to C is adjacent in G to at most one vertex on C.
Indeed, otherwise, v would create either a C4 or an odd cycle shorter than C.
Hence, if l ≥ 0, inequality (3) implies that

|E(G)| ≤ |E(G′′)|+ |C|+ (n− |C|) ≤ 2cr + 4r + 7c + 8
2cr + 6c

(n− |C|) + n. (6)

In the case l = −1, we obtain

|E(G)| ≤ |E(G′′)|+ |C|+ (n− |C|) ≤ 6c + 12
5c + 4

(n− |C|) + n. (7)

It remains to compare the above upper bounds on |E(G)| in order to find the
value of |C| for which the minimum of our two bounds is maximal. If l > −1,
then the value of |C| for which the right-hand sides of (4) and (6) coincide is

|C| = cr + 3c

cr + 2r + 4c + 2
n.

The claimed bound follows by inserting this value into (4) or (6).
In the case l = −1, the critical value of |C|, obtained by comparing the bounds

(5) and (7), is

|C| = 5c + 4
7c + 8

n.

Inserting this value into (5) or (7), the claimed bound follows.

(C) As before, let C be a shortest odd cycle in G, and let G′ be the graph
obtained from G after doubling C. The doubled cycle is denoted by C′ ⊂ G′. Let
G0 ⊇ C denote a maximal subgraph of G, which is turned into a two-connected
subgraph of G′ after performing Conway’s doubling on C. Let G1 stand for the
graph obtained from G by the removal of all edges in G0.

It is not very hard to see that G1 is bipartite, and each of its connected
components shares exactly one vertex with G0. Indeed, if a connected component
G2 ⊆ G1 were not bipartite, then, by Lemma 1, G2 would share at least one
vertex with C, which belongs to an odd cycle of G2. By the maximal choice of
G0, after doubling C, the component G2 must turn into a subgraph G′

2 ⊂ G′,
which shares precisely one vertex with the doubled cycle C′. Thus, G2 must also
share precisely one vertex with C, which implies that G′

2 ⊆ G′ has an odd cycle.
This contradicts Lemma 3(i), according to which G′ is a bipartite graph.

Therefore, G1 is the union of all blocks of G, which are not entirely contained
in G0. Since each connected component G2 of G1 is bipartite, the number of
edges of G2 can be bounded from above by (3), just like in Case (A).

In order to bound the number of edges of G, we proceed by adding the con-
nected components of G1 to G0, one by one. As at the end of the discussion of
Case (3), using the fact that the last terms in (3), which do not depend on n,
are smaller than −2, we can complete the proof by induction on the number of
connected components of G1.
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4 A Better Upper Bound

As was pointed out in the introduction, if we manage to prove that for any
l′, −3 ≤ l′ ≤ −1, the dumbbell DB(6, 6, l′) is not thrackleable, then Theorem 1
yields that the maximum number of edges that a thrackle on n vertices can have
is at most 617

425n < 1.452n. This estimate is already better than the currently best
known upper bound 3

2n due to Cairns and Nikolayevsky [3].
In order to secure this improvement, we have to exclude the subgraphs

DB(6, 6,−1), DB(6, 6,−2), and DB(6, 6,−3). The fact that DB(6, 6,−3) cannot
be drawn as a thrackle was proved in [12] (Theorem 5.1). Here we present an al-
gorithm that can be used for checking whether a “reasonably” small graph G can
be drawn as a thrackle. We applied our algorithm to verify that DB(6, 6,−1) and
DB(6, 6,−2) are indeed not thrackleable. In addition, we show that DB(6, 6, 0)
cannot be drawn as a thrackle, which leads to the improved bound in
Theorem 2.

v

Fig. 5. 4-cycle around a
vertex v of G′, which was a
crossing point in G

Let G = (V, E) be a thrackle. Direct the edges
of G arbitrarily. For any e ∈ E, let Ee ⊆ E
denote the set of all edges of G that do not
share a vertex with e, and let m(e) = |Ee|.
Let πe = (πe(1), πe(2), . . . , πe(m(e)) stand for
the m(e)-tuple (permutation) of all edges belong-
ing to Ee, listed in the order of their crossings
along e.

Construct a planar graph G′ from G, by intro-
ducing a new vertex at each crossing between a
pair of edges of G, and by replacing each edge by
its pieces. In order to avoid G′ having an embed-
ding in which two paths corresponding to a crossing pair of edges of G do not
properly cross, we introduce a new vertex in the interior of every edge of G′,
whose both endpoints are former crossings. For each former crossing point v, we
add a cycle of length four to G′, connecting its neighbors in their cyclic order
around v, as illustrated in Figure 5. In the figure, the thicker lines and points
represent edges and vertices or crossings of G, while the thinner lines and points
depict the four-cycles added at the second stage.

Obviously, G′ is completely determined by the directed abstract graph of G

and by the set of permutations Π(G) := {πe ∈ E
m(e)
e |e ∈ E}. Thus, a graph

G = (V, E) can be drawn as a thrackle if and only if there exists a set Π of |E|
permutations of Ee, e ∈ E, such that the abstract graph G′ corresponding to the
pair (G, Π) is planar. In other words, to decide whether a given abstract graph
G = (V, E) can be drawn as a thrackle, it is enough to consider all possible
sets of permutations Π of Ee, e ∈ E, and to check if the corresponding graph
G′ = G′(G, Π) is planar for at least one of them. The first deterministic linear
time algorithm for testing planarity was found by Hopcroft and Tarjan [11].
However, in our implementation we used an improved algorithm for planarity
testing by Fraysseix et al. [7], in particular, its implementation in the library
P.I.G.A.L.E. [8]. The source code can be found in [20].
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It was shown in [12] (Lemma 5.2) that in every drawing of a directed cycle C6
as a thrackle, either every oriented path e1e2e3e4 is drawn in such a way that
πe1 = (e4, e3) and πe4 = (e1, e2), or every oriented path e1e2e3e4 is drawn in
such a way that πe1 = (e3, e4) and πe4 = (e2, e1). Using this observation (which
is not crucial, but saves computational time), we ran a backtracking algorithm to
rule out the existence of a set of permutations Π , for which G′(DB(6, 6, 0), Π),
G′(DB(6, 6,−1), Π), or G′(DB(6, 6,−2), Π) is planar. Our algorithm attempts
to construct larger and larger parts of a potentially good set Π , and at each
step it verifies if the corresponding graph still has a chance to be extended to a
planar graph.

Summarizing, we have the following

Lemma 4. None of the dumbbells DB(6, 6, l′), −3 ≤ l′ ≤ 0 can be drawn as a
thrackle.

According to Lemma 4, Theorem 1 can be applied with c = 6, l = 0, and
Theorem 2 follows.

For any ε > 0, our Theorem 1 and the above observations provide a deter-
ministic algorithm with bounded running time to prove that all thrackles with n
vertices have at most (1+ ε)n edges or to exhibit a counterexample to Conway’s
conjecture.

In what follows we give an estimate of the dependence of the running time of
our algorithm on ε (the proof is omitted due to lack space). The analysis uses
the standard random access machine model. In particular, we assume that all
basic arithmetic operations can be carried out in constant time.

Theorem 3. For any ε > 0, there is a deterministic algorithm with running
time eO((1/ε2) ln(1/ε)) to prove that all thrackles with n vertices have at most
(1 + ε)n edges or to exhibit a counterexample to Conway’s conjecture.

5 Concluding Remarks

We say that two cycles C1 and C2 of a graph are at distance l ≥ 0, if the length
of a shortest path joining a vertex of C1 to a vertex of C2 is l. The following
Turán-type questions were motivated by the proof of Theorem 1.

(1) Given two integers c1, c2, with 3 ≤ c1 ≤ c2, what is the maximum number
of edges that a planar graph on n vertices can have, if its girth (i.e. the length
of the shortest cycle) is at least c1, and no two cycles of length at most c2 share
an edge?
(2) Given three integers c1, c2, and l, with 3 ≤ c1 ≤ c2 and l ≥ 0, what is the
maximum number of edges that a planar graph on n vertices can have, if its
girth is at least c1, and any two of its cycles of length at most c2 are at distance
larger than l ?

The inequalities (3) provide nontrivial upper bounds for restricted versions of
the above problem for bipartite graphs.

We have the following general result.
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Theorem 4. Let c1, c2, and l denote three non-negative natural numbers with
3 ≤ c1 ≤ c2. Let G be a planar graph with n vertices and girth at least c1.

(i) If no two cycles of length at most c2 share an edge, then
|E(G)| ≤ c1c2+c1

c1c2−c2−1n.
(ii) If no two cycles of length at most c2 are at distance at most l, then

|E(G)| ≤ c1c2+2�l/2�c2+2�l/2�+c2+1
2�l/2�c2−2�l/2�+c1c2−c1

n.

Proof. (Outline.) Without loss of generality, we can assume in both cases that
G is connected, it has no vertex of degree one, and it is not a cycle. To establish
part (i), consider an embedding of G in the plane. Let m = |E(G)|, and let f and
fc2 stand for the number of faces of G and for the number of faces of length at
most c2. We follow the idea of the proof of Case (A), Theorem 1, with fc2 ≤ 1

c1
m

instead of fc ≤ 1
6m, and with the inequality

2m ≥ c1fc2 + (c2 + 1)(f − fc2) (8)

replacing (1). Analogously, in the proof of part (ii), we use fc2 ≤ 1
2�l/2�+c1

n

instead of the inequality fc ≤ 1
2r+6n.

It is possible that the constant factor in the part (i) of Theorem 4 is tight for
all values of c1 and c2. It is certainly tight for all values of the form c1 = ml
and c2 = m(l + 1)− 1, where m and l are natural numbers, as is shown by the
following result, the proof of which is omitted.

Theorem 5. For any positive integers n0, m ≥ 1, and l ≥ 3, one can construct
a plane graph G = (V, E) with at least n0 vertices with girth ml such that all of
its inner faces are of size ml or m(l + 1), its outer face is of size 2ml, and each
edge of G not on its outer face belongs to exactly one cycle of size ml, which is
a face of G. The second smallest length of a cycle in G is m(l + 1).

If we slightly relax the conditions in Theorem 4 by forbidding only dumbbells
determined by face cycles, we obtain some tight bounds. For instance, it is not
hard to prove the following.

Theorem 6. Let c1 and c2 be two nonnegative integers with 3 ≤ c1 ≤ c2. Let G
be a plane graph on n vertices that has no face shorter than c1 and no two faces
of length at most c2 that share an edge. Then we have |E(G)| ≤ c1c2+c1

c1c2−c2−1n, and
the inequality does not remain true with any smaller constant.
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Abstract. An important step in laying out hierarchical network dia-
grams is to order the nodes on each level. The usual approach is to
minimize the number of edge crossings. This problem is NP-hard even
for two layers when the first layer is fixed. Hence, in practice crossing
minimization is performed using heuristics. Another suggested approach
is to maximize the planar subgraph, i.e. find the least number of edges to
delete to make the graph planar. Again this is performed using heuristics
since minimal edge deletion for planarity is NP-hard. We show that using
modern SAT and MIP solving approaches we can find optimal orderings
for minimal crossing or minimal edge deletion for planarization on rea-
sonably sized graphs. These exact approaches provide a benchmark for
measuring quality of heuristic crossing minimization and planarization
algorithms. Furthermore, we can straightforwardly extend our approach
to minimize crossings followed by maximizing planar subgraph or vice
versa; these hybrid approaches produce noticeably better layout then
either crossing minimization or planarization alone.

1 Introduction

The standard approach for drawing hierarchical network diagrams is a three
phase approach in which (a) nodes in the graph are assigned levels producing a
k-level graph; (b) nodes are assigned an order so as to minimize edge crossings
in the k-level graph; and (c) the edge routes and node positions are computed.
There has been considerable research into step (b) which is called k-level cross-
ing minimization. Unfortunately this step is NP-hard even for two layers (k = 2)
where the ordering on one layer is given. Thus, research has focussed on devel-
oping heuristics to solve it. In practice the approach is to iterate through the
levels, re-ordering the nodes on each level using heuristic techniques such as the
barycentric method [1].

An alternative to performing crossing minimization in phase (b) is k-level pla-
narization problem. This was introduced by Mutzel [2] and is the problem of
finding the minimal set of edges that can be removed which allow the remaining
edges in the k-level graph to be drawn without any crossings. Mutzel has ar-
gued convincingly that for hierarchical network diagrams with many crossings,

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 238–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Graphviz heuristic layout for the profile example graph

this leads to better drawings than those obtained by simply minimizing the total
number of edge crossings. While in some sense simpler than k-level crossing min-
imization (since the problem is tractable for k = 2 with one side fixed) it is still
NP-hard for k > 2. A disadvantage of k-level planarization is that it does not take
into account the number of crossings that the non-planar edges generate and so a
poor choice of which edges to remove can give rise to unnecessary edge crossings.

Here we introduce a combination of the two approaches we call k-level pla-
narization and crossing minimization. This minimizes the weighted sum of the
number of crossings and the number of edges that need to be removed to give
a planar drawing. We believe that this gives rise to nicer drawings than either
k-level planarization or k-level crossing minimization while providing a natural
generalization of both.

As some evidence for this consider the drawings shown in Figures 1 and
Figure 2 of the example graph profile from the GraphViz gallery [3]. Figure 1
shows the layout from GraphViz using its heuristic for edge crossing minimiza-
tion. It has 54 edge crossing and requires removal of 17 edges to become planar.

The layout resulting from minimizing edge crossings is shown in Figure 2(a). It
has 38 crossings, significantly less than the heuristic layout. The layout resulting
from maximizing the planar subgraph is shown in Figure 2(b) with deleted edges
dotted. It requires only 9 edges to be deleted but has 81 crossings. The layout
clearly shows that maximizing the planar subgraph in isolation is not enough,
leading to many unnecessary crossings.

The combined model allows us to minimize both crossings and edge
deletions for planarity simultaneously. Figure 2(c) shows the result of mini-
mizing crossings and then maximizing the planar subset. It yields 38 crossings
and 11 edge deletions. Figure 2(d) shows the results of of maximizing the pla-
nar subset and the minimize crossings. It yields 9 edge deletions and 57 edge
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crossings, a substantial improvement over the maximal planar subgraph layout
of Figure 2(b).

We believe these combined layouts clearly illustrate that some combination of
minimal edge crossing and minimal edge deletions for planarity leads to better
layout than either individually. Part of the advantage is simply that displaying
edges deleted for planarity differently makes the layout much clearer.

Apart from introducing these combined layouts, the paper has two main tech-
nical contributions. The first is to give a binary program for the combined k-level
planarization and crossing minimization problem. By appropriate choice of the
weighting factor this model reduces to either k-level planarization or k-level
crossing minimization. Our basic model is reasonably straightforward but we
use some tricks to reduce symmetries, handle leaf nodes in trees and improve
bounds for edge cycles.

Our second technical contribution is to evaluate performance of the binary
program using both a generic MIP solver and a generic SAT solver. While MIP
techniques are not uncommon in graph drawing the use of SAT techniques is
quite unusual. Our reason for considering MIP is that MIP is well suited to
combinatorial optimization problems in which the linear relaxation of the prob-
lem is close to the original problem. However this does not seem true for k-level
planarization and/or k-level crossing minimization. Hence it is worth investigat-
ing the use of other generic optimization techniques. Over the last decade there
has been considerable improvement in SAT solving techniques and they are now
capable of solving problems with thousands of variables in a few seconds. Part of
this improvement arises by learning combinations of assignments to the Boolean
variables that lead to unsatisfiability (called “no goods”) as the search for the
optimum solution proceeds. The no goods are used to prune the search space
leading to orders of magnitude performance improvement.

We find that modern SAT solving with learning, and modern MIP solvers
(which now have special routines to handle SAT style models) are able to handle
the k-level planarization and crossing minimization problems and their combina-
tion for quite large k, meaning that we can solve step (b) to optimality. They are
fast enough to find the optimal ordering of nodes on all layers for graphs with
hundreds of nodes in a few seconds, so long as the graph is reasonably narrow
(less than 10 nodes on each level) and for larger graphs they find reasonable
solutions within one minute.

The significance of our research is twofold. First it provides a benchmark for
measuring the quality of heuristic methods for solving k-level crossing minimiza-
tion and/or k-level planarization. Second, the method is practical for small to
medium graphs and leads to significantly fewer edge crossings involving fewer
edges than is obtained with the standard heuristic approaches. As computers
increase in speed and SAT solving and MIP solving techniques continue to im-
prove we predict that optimal solution techniques based on MIP and SAT will
replace the use of heuristics for step (b) in layout of hierarchical networks.

Furthermore, our research provides support for the use of generic optimization
techniques for exploring different aesthetic criteria. The use of generic techniques
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allows easy experimentation with, for instance, our hybrid objective function. As
another example rather than k-level planarization we might wish to minimize
the total number of edges involved in crossings. This is simple to do with generic
optimization. Another advantage of generic optimization techniques is that they
also readily handle additional constraints on the layout, such as placing some
nodes on the outside or clustering nodes together.

The task of reducing crossings in k-layered graphs has received considerable
attention, particularly due to the layout algorithm of Sugiyama [4]. However,
most of these approaches, such as [5] tend to use heuristics, rather than finding
the global optimum.

The most closely related work is on the use of MIP and branch-and-bound
techniques for solving k-level crossing minimization. Jünger and Mutzel [6] com-
pared heuristic methods for two layer crossing minimization with a MIP encoding
solved using a specialized branch-and-cut algorithm to solve to optimality. They
found that the MIP encoding for the case when one layer is fixed is practical
for reasonably sized graphs. In another paper, Jünger et al [7] gave a 0-1 model
for k-level crossing minimization and solved it using a generic MIP solver. They
found that at that time MIP techniques were impractical except for quite small
graphs. We differ from this in considering planarization as well and in investigat-
ing SAT solvers. Randerath et al [8] gave a partial-MAXSAT model of crossing
minimization, however did not provide any experiments. We show that SAT solv-
ing with learning, and more recent MIP solvers (which now have special routines
to handle SAT style models) are now practical for reasonably sized graphs.

Also related is Mutzel [2] which describes the results of using a MIP encoding
with branch-and-cut for the 2-level planarization problem. Here we give a binary
program model for k-level planarization and show that SAT with learning and
modern MIP solvers can solve the k-level planarization problem for quite large
k. We use a similar model to that of Jünger and Mutzel but examine both MIP
and SAT techniques to solving it.

The paper is organized as follows. In the next section we give our model for
combined planarity and crossing minimization. In Section 3 we show how to
improve the model by taking into account graph properties. In Section 4 we give
results of experiments comparing the different measures, and finally in Section 5
we conclude.

2 Model

A general framework for generating layouts of hierarchical data was presented by
[4]. This proceeds in three stages. First, the vertices of the graph are partitioned
into horizontal layers. Then, the ordering of vertices within these horizontal
layers is permuted to reduce the number of edge crossings. Finally, these layers
are positioned to straighten long edges and minimize edge length. Our focus is
on the second stage of this process – permuting the vertices on each layer.

Consider a graph with nodes divided into k layers, with edges restricted to
adjacent layers, ie. edges from layer i to i + 1. Denote the nodes in the k − th
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layer by nodes[k], and the edges from layer k to layer k + 1 by edges[k]. For a
given edge e, denote the start and end nodes by e.s and e.d respectively.

The combined model for maximal planar subgraph and crossing minimization
is defined by the binary program:

min
∑

k∈levels C
∑

e,f∈edges[k] c(e,f) + P
∑

e∈edges[k] re (1)
s.t. ∧

k∈levels

∧
i,j,k∈nodes[k] l(i,j) ∧ l(j,k) → l(i,k) (2)∧

k∈levels

∧
e,f∈edges[k] c(e,f) ↔ l(e.s,f.s) ⊕ l(e.d,f.d) (3)∧

k∈levels

∧
e,f∈edges[k] re ∨ rf ∨ ¬c(e.f) (4)

The variable l(i,j) indicates node i is before j in the level ordering. The vari-
able c(e,f) indicates that edge e crosses edge f . The variable re indicates that
edge e is deleted to make the graph planar. The constants C and P define the
relative weights of crossing minimization and edge deletion for planarity. The
3-cycle constraints of Equation 2 ensures that the order variables are assigned
to a consistent ordering. Equation 3 defines the edge crossings variables in terms
of the ordering: the edges cross if the relative order of the start and end nodes
are reversed. It is encoded in clauses as

c(e,f) ∨ l(e.s,f.s) ∨ ¬l(e.d,f.d), c(e,f) ∨ ¬l(e.s,f.s) ∨ l(e.d,f.d),
¬c(e,f) ∨ l(e.s,f.s) ∨ l(e.d,f.d), ¬c(e,f) ∨ ¬l(e.s,f.s) ∨ ¬l(e.d,f.d).

The planarity requirement is encoded in Eq. 4 which states that for each pair
either one is removed, or they don’t cross. The combined model uses O(k.(e2 +
n2)) Boolean variables and is O(k.(n3 + e2)) in size.

We can convert this clausal model to a MIP binary program by converting
each clause b1 ∨ · · · bl ∨ ¬bl+1 ∨ · · · ∨ ¬bm to the linear constraint b1 + · · · + bl −
bl−1 − · · · − bm ≥ m − l + 1.

Long edges are handled by adding intermediate nodes in the levels that the
long edges cross and breaking the edge into components. For crossing minimiza-
tion each of these new edges is treated like an original edge. For the minimal
deletion of edges each component edge in a long edge e is encoded using the
same deletion variable re.

By adjusting the relative weights for crossing C, and planarization P , we
can create and evaluate new measures of clarity of the graph. With C = 1 +∑

k∈levels |edges[k]| and P = 1 we first minimize crossings, then minimize edge
deletions for planarity. With C = 1 and P =

∑
k∈levels |edges[k]|2 we first mini-

mize edge deletions and then crossings.

3 Additional Constraints

While the basic model described in Section 2 are sufficient to ensure correctness,
finding the optimum still requires a great deal of search. We can modify the
model to significantly improve performance.

First note that we add symmetry breaking by fixing the order of the first
two nodes appearing on the same level. If the graph to be layed out has more
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Fig. 3. (a) A graph, with an initial ordering (b) The corresponding vertex-exchange
graph

symmetries than this left-to-right symmetry we could use this to fix more vari-
ables (although we don’t do this in the experiments). Next, we can improve edge
crossing minimization by using as an upper bound the number of crossings in
a heuristic layout. We could also use heuristic solutions to bound planarity but
doing so requires computing how many edges need deletion, which is non-trivial.

3.1 Cycle Parity

Healy and Kuusik introduced the vertex-exchange graph [9] for analyzing layered
graphs.Each edge in the vertex-exchangegraph corresponds to a potential crossing
in the initial graph; each node corresponds to a pair of nodes within a level.

Consider the graph shown in Figure 3(a), its vertex-exchange graph is shown
in Figure 3(b). Note there are two edges (ab, de) corresponding to the two pairs
((a, d), (b, e)) and ((a, e), (b, d)). Edges corresponding to crossings in Figure 3(a)
are shown as solid, the rest are dashed.

For any given cycle in the vertex exchange graph, permuting nodes within a
layer will maintain parity in the number of crossings in the cycle. For cycles with
an odd number of crossings, this means that at least one of the pairs of edges in
the cycle will be crossing. This can be represented by the clause

∨
(e,f)∈cycle c(e,f).

When finding the maximal planar subgraph, we then know that at least one edge
involved in the cycle must be removed from the subgraph. Similarly since the
cycle is even in length we know that not all edges can cross, represented by∨

(e,f)∈cycle ¬c(e,f). Both these constraints can be added to the model.
A special case of cycle parity is the K2,2 subgraph. This subgraph always

produces exactly one crossing, irrespective of the relative orderings of the nodes
in the subgraph. When minimizing crossings, the corresponding c(e,f) variables
need not be included in the objective function, which considerably simplifies the
problem structure. Note that, for example, a K3,3 subgraph contains 9 K2,2
subgraphs, and each of the 9 ce,f variables arising can be ommitted from the
problem. For the experiments we add constraints for cycles of length 6 or less,
since the larger cycles did not improve performance.

3.2 Leaves

It is not difficult to prove that if a node on layer k has m child leaf nodes
(unconnected to any other node) on layer k + 1, then all of these leaf nodes can
be ordered together.
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Fig. 4. A partial layout with respect to some leaf nodes 1,2,3,4

Consider the partial layout illustrated in Figure 4, where each node 1,2,3 and
4 is a leaf node with no outgoing arcs. If we place a node f in between nodes
1,2,3 and 4 (as illustrated) there is always at least as good a crossing solution by
placing f either before or after all of them. Here since there are 2 parents before
0 and 3 after, f should be placed after 4, leading to 8 crossings rather than the
9 illustrated.

Similarly maximizing planarity always requires that all edges to siblings left of
f be removed or all edges from parents before 0, and all edges to siblings right of
f or all edges from parents after 0. An optimal solution always results by either
deleting all edges to leaf nodes (which makes the leaf positions irrelevant), or
ordering f after all leaves and deleting all edges from parents before 0, or ordering
f before all leaves and deleting all edges from parents after 0.

Since there is no benefit in splitting leaf siblings we can treat them as a
single node, but note we must appropriately weight the edge resulting, since it
represents multiple crossings and multiple edge deletions.

Let N be a set of m leaf nodes from a single parent node i. We replace N by
a new node j′, and replace all edges {(i, j) | j ∈ N} by the single edge (i, j′).
We replace each m terms c((i,j),f), j ∈ N in the objective function by one term
m × c((i,j′),f) and replace each of the m terms r(i,j), j ∈ N in the objective by
the term m × r(i,j′).

4 Experimental Results

We tested the binary model on a variety of graphs, using the pseudo-Boolean
constraint solver MiniSAT+[10], and the Mixed Integer Programming solver
CPLEX 12.0. All experiments were performed on a 3.0GHz Xeon X5472 with
32 Gb of RAM running Debian GNU/Linux 4.0. We ran for a maximum of 60s,
and all times are given in seconds. We compared 4 different objective functions:

– crossing minimization: C = 1, P = 0;
– maximal planar subgraph C = 0, P = 1;
– crossing minimization then maximal planar subgraph C = 1 +

∑
k∈levels

|edges[k]|,

P = 1; and
– maximal planar subgraph then minimize crossings C = 1, P =

∑
k∈levels

|edges[k]|2.
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Table 1. Time to find and prove the minimal crossing layout and maximal planar
subgraph for Graphviz examples using MIP and SAT

Problem
Crossing minimization Maximal planar subgraph

graphviz MIP SAT MIP SAT

best best solved best solved best solved best solved
crazy 3 2 0.04 2 0.01 1 0.03 1 0.01
datastruct 2 2 0.00 2 0.00 1 0.02 1 0.00
fsm 0 0 0.00 0 0.00 0 0.00 0 0.00
lion share 7 4 0.04 4 0.11 2 0.05 2 0.02
profile 54 38 6.81 54 — 12 — 9 5.39
switch 20 20 0.75 20 0.64 17 — 17 34.49
traffic lights 0 0 0.00 0 0.00 0 0.00 0 0.00
unix 3 2 0.05 2 0.01 1 0.04 1 0.02
world 50 46 — 50 — 15 — 13 —

To compare speed and effectiveness of the model we ran it on two sets of
graphs. The first set of graphs are all the hierarchical network diagrams appear-
ing in the GraphViz gallery [3]. The second set of graphs are random graphs of
k-levels with n nodes per level and a fixed edge density of 20% (that is each node
is connected on average to 20% of the nodes on the next layer); these do not
include any long edges. Problem class gk n is a suite of 10 randomly generated
instances with k levels and n nodes per level.

Table 1 shows the results of minimizing edge crossings and maximizing planar
subgraphs with MIP and SAT solvers, as well as the crossings resulting in the
Graphviz heuristic layout for graphs from the GraphViz gallery. We use the
best variation of our model for each solver: for the MIP solver this is with all
improvements described in the previous section, while for the SAT solver we
omit the leaf optimization since it slows down the solver. For each solver we
show the solution, with least edge crossings or minimal number of edges deleted
for planarity, found in 60s and the time to prove optimality or ‘—’ if it was
not proved optimal. The results show that for realistic graphs we can find better
solutions than the heuristic method, even when there are very few crossings. The
best found crossing and edges deleted for planarization and problems solved/time
combination are highlighted in bold. We can find optimal crossing solutions for
9 out of ten examples, and maximal planar subgraph solutions for 7 out of 10
examples. The MIP approach is clearly superior for minimizing edge crossings,
while SAT is superior for maximizing planarity.

Table 2 shows the results of crossing minimization and maximal planar sub-
graph for the second data set of random graphs using the MIP and SAT solver.
The table shows: the total number of crossings when the graphs are laid out
using GraphViz then for each solver: the total number of crossings or edge dele-
tions in the best solutions found in 60s for the suite (a ‘—’ indicates that for
at least one instance the method found no solution better than the Graphviz
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Table 2. Time to find and prove the minimal crossing layout and maximal planar
subgraph, using MIP and SAT for random examples

Problem
Crossing minimization Maximal planar subgraph

graphviz MIP SAT MIP SAT

best best solved best solved best solved best solved
g3 7 41 35 10 / 0.00 35 10 / 0.02 18 10 / 0.01 18 10 / 0.02
g3 8 103 86 10 / 0.03 86 10 / 0.10 31 10 / 0.15 31 10 / 0.04
g3 9 204 195 10 / 0.07 195 10 / 6.67 63 10 / 4.60 63 10 / 0.12
g3 10 399 373 10 / 0.97 380 8 / 14.44 91 5 / 15.53 91 10 / 3.37
g4 7 70 55 10 / 0.01 55 10 / 0.04 32 10 / 0.11 32 10 / 0.04
g4 8 187 169 10 / 0.09 169 10 / 0.68 61 10 / 3.83 61 10 / 0.16
g4 9 351 342 10 / 0.89 345 8 / 13.69 94 6 / 26.85 94 10 / 2.82
g4 10 703 681 9 / 2.37 — — 161 — 152 —
g5 7 101 95 10 / 0.03 95 10 / 0.11 47 10 / 0.43 47 10 / 0.08
g5 8 284 245 10 / 0.32 245 10 / 4.01 93 10 / 25.46 93 10 / 2.78
g5 9 474 450 10 / 0.99 — 5 / 30.47 139 1 / 35.37 138 3 / 47.46
g6 7 141 131 10 / 0.03 131 10 / 0.18 57 10 / 1.51 57 10 / 0.18
g6 8 357 324 10 / 0.53 324 10 / 13.34 112 4 / 11.64 111 10 / 28.81
g6 9 684 637 10 / 3.28 — — 190 — 197 —
g7 7 159 148 10 / 0.08 148 10 / 0.58 67 10 / 3.91 67 10 / 0.78
g7 8 390 366 10 / 0.72 372 6 / 12.35 134 1 / 47.75 140 —
g7 9 813 786 9 / 12.54 — — 238 — 233 —
g8 7 249 235 10 / 0.16 235 10 / 4.06 92 8 / 13.38 92 10 / 4.91
g8 8 466 431 10 / 1.51 — 1 / 10.73 154 — 165 —
g9 7 269 238 10 / 0.30 238 10 / 2.60 108 7 / 17.72 108 8 / 15.18
g9 8 572 541 10 / 2.95 — 3 / 28.71 197 — 200 —
g10 7 334 304 10 / 0.27 304 10 / 9.67 119 8 / 24.05 121 4 / 19.39
g10 8 733 661 10 / 10.68 — — 216 — 225 —

bound in 60s) and the number of instances where optimal solutions were found
and proved and the average time to prove optimality.

The results are in accord with those for the first dataset and show that the MIP
solver can almost always find optimal minimal crossing solutions within this time
bound (only two instances failed). The Graphviz solutions can be substantially
improved, the best solutions found have 10-20% fewer crossings.

For maximal planar subgraph, in contrast to edge crossings, the SAT solver
is better than the MIP solver, although as the number of levels increases the
advantage decreases.

Tables 3 and 4 show the results for the mixed objective functions: minimiz-
ing crossings then maximizing planar subgraph and the reverse. For minimizing
crossings first MIP dominates as before, and again is able to solve almost all
problems optimally within 60s. For the reverse objective SAT is better for the
small instances, but suffers as the instances get larger. This problem is signifi-
cantly harder than the minimizing crossings first.

Results not presented demonstrate that the improvements presented in the
previous section make a substantial difference. The elimination of K2,2 cycles is
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Table 3. Time to find and prove optimal mixed objective solutions for Graphviz
examples using MIP and SAT

Problem
Crossing then planarization Planarization then crossing

MIP SAT MIP SAT

best solved best solved best solved best solved

crazy (2, 1) 0.07 (2, 1) 10.51 (1, 2) 0.08 (1, 2) 0.31
datastruct (2, 1) 0.02 (2, 1) 0.26 (1, 2) 0.03 (1, 2) 0.23
fsm (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00
lion share (4, 3) 0.15 (4, 3) 3.55 (2, 5) 0.52 (2, 5) 0.60
profile (38, 11) 29.96 (281, 34) — (12, 66) — (13, 145) —
switch (20, 17) 1.36 (20, 17) 3.61 (17, 20) — (17, 20) —
traffic lights (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.00 (0, 0) 0.01
unix (2, 1) 0.07 (2, 1) 10.52 (1, 2) 0.09 (1, 2) 0.32
world (47, 14) — (108, 19) — (18, 79) — (15, 106) —

Table 4. Time to find and prove optimal mixed objective solutions for random exam-
ples using MIP and SAT

Problem
Crossing then planarization Planarization then crossing
MIP SAT MIP SAT

best solved best solved best solved best solved

g3 7 (35, 22) 10 / 0.01 (35, 22) 10 / 0.04 (18, 39) 10 / 0.02 (18, 39) 10 / 0.04
g3 8 (86, 41) 10 / 0.13 (86, 41) 10 / 0.37 (31, 102) 10 / 0.31 (31, 102) 10 / 0.21
g3 9 (195, 78) 10 / 0.48 (195, 78) 10 / 3.09 (63, 231) 9 / 10.31 (63, 231) 10 / 1.04
g3 10 (373, 115) 10 / 2.67 (564, 166) 2 / 40.99 (91, 444) 2 / 13.84 (91, 419) 9 / 10.64
g4 7 (55, 35) 10 / 0.05 (55, 35) 10 / 0.23 (32, 58) 10 / 0.21 (32, 58) 10 / 0.23
g4 8 (169, 76) 10 / 0.57 (169, 76) 10 / 1.58 (61, 223) 10 / 6.66 (61, 223) 10 / 1.91
g4 9 (342, 116) 10 / 1.66 (418, 162) 5 / 33.21 (94, 386) 3 / 31.03 (95, 382) 8 / 14.76
g4 10 (681, 195) 9 / 8.17 (1249, 338) — (158, 933) — (160, 928) —
g5 7 (95, 55) 10 / 0.08 (95, 55) 10 / 0.35 (47, 104) 10 / 0.76 (47, 104) 10 / 0.53
g5 8 (245, 108) 10 / 0.66 (245, 108) 10 / 8.38 (95, 269) 4 / 29.48 (94, 290) 8 / 25.24
g5 9 (450, 174) 10 / 3.83 (694, 210) 1 / 42.43 (142, 612) — (146, 656) —
g6 7 (131, 64) 10 / 0.25 (131, 64) 10 / 1.98 (57, 153) 10 / 2.74 (57, 153) 10 / 2.32
g6 8 (324, 136) 10 / 1.16 (357, 150) 6 / 22.50 (112, 419) 2 / 22.62 (117, 413) 2 / 31.29
g6 9 (637, 228) 10 / 8.15 (1353, 513) — (192, 881) — (212, 967) —
g7 7 (148, 83) 10 / 0.34 (148, 83) 10 / 23.94 (67, 168) 10 / 10.66 (67, 168) 10 / 10.59
g7 8 (366, 159) 10 / 3.00 (454, 236) 2 / 20.16 (136, 472) — (148, 500) —
g7 9 (778, 255) 8 / 18.96 (1372, 481) — (236, 1031) — (258, 1303) —
g8 7 (235, 116) 10 / 0.50 (235, 116) 10 / 14.06 (92, 272) 5 / 15.54 (93, 277) 8 / 22.09
g8 8 (431, 195) 10 / 5.06 (641, 345) 1 / 33.37 (154, 552) — (182, 639) —
g9 7 (238, 123) 10 / 0.77 (241, 126) 9 / 25.00 (108, 260) 6 / 16.29 (112, 283) 2 / 57.22
g9 8 (541, 229) 10 / 6.17 (981, 464) — (198, 757) — (216, 871) —
g10 7 (304, 144) 10 / 1.59 (329, 201) 7 / 33.19 (119, 362) 4 / 32.01 (126, 415) 1 / 58.29
g10 8 (661, 256) 9 / 15.15 (1216, 546) — (199, 832) — (224, 987) —

highly beneficial to both solvers. Constraints for larger cycles can have significant
benefit for the MIP solver but rarely benefit the SAT solver. The leaf optimiza-
tion is good for the MIP solver, but simply slows down the SAT solver. We
believe this is because it complicates the MiniSAT+ translation of the objective
function to clauses. Overall the optimizations improve speed by around 2-5×.
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They allow 6 more instances to find optimal solutions for minimizing crossing, 5
for maximal planar subgraph, 19 for crossing minimization then maximal planar
subgraph, and 9 for maximal planar subgraph then crossing minimization.

5 Conclusion

This paper demonstrates that maximizing clarity of heirarchical network dia-
grams by edge crossing minimization or maximal planar subgraph or their com-
bination can be solved optimally for reasonable sized graphs using modern SAT
and MIP software. Using this generic solving technology allows us to experiment
with other notions of clarity combining or modifying these notions. It also gives
us the ability to accurately measure the effectiveness of heuristic methods for
solving these problems.
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Abstract. In this paper, we consider the problem of representing graphs by trian-
gles whose sides touch. We present linear time algorithms for creating touching
triangles representations for outerplanar graphs, square grid graphs, and hexago-
nal grid graphs. The class of graphs with touching triangles representations is not
closed under minors, making characterization difficult. We do show that pairs of
vertices can only have a small common neighborhood, and we present a complete
characterization of the subclass of biconnected graphs that can be represented as
triangulations of some polygon.

1 Introduction

Planar graphs are a widely studied class that includes naturally occurring subclasses
such as trees and outerplanar graphs. Typically planar graphs are drawn using the
node-link model, where vertices are represented by points and edges are represented
by line segments. Alternative representations, such as contact circles [5] and contact
triangles [8] have also been explored. In these representations, a vertex is a circle or
triangle, and an edge is represented by pairwise contact at a common point.

In this paper, we explore the case where vertices are polygons, with an edge when-
ever the sides of two polygons touch. Specifically, given a planar graph G = (V, E), we
would like to find a set of polygons R such that there is bijection between V and R, and
two polygons touch non-trivially if and only if the corresponding vertices are adjacent
in G.

Note that, unlike the case of contact circle and contact triangle representations, two
polygons that share a common point are not considered adjacent. In the sequel, we use
“contact” to refer to edges touching non-trivially.

A theorem of Thomassen [20] implies that all planar graphs can be represented using
convex hexagons and this also follows from results by Kant [15] and de Fraysseix et
al. [7]. Gansner et al. [10] have shown that six sides are not only sufficient but also
necessary, and gave a linear time construction. This leads us to consider which planar
graphs can be represented by polygons with fewer than six sides.

This paper presents some initial results for the case of touching triangles. We assume
we are dealing with connected planar graphs G = (V, E). We let TTG denote the
class of graphs that have a touching triangles representation. Concerning how to attack
the problem, we can start with some simple observations. First, unlike such classes as
planar graphs, TTG graphs are not closed under homeomorphisms or minors. On the

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 250–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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other hand, as Corollary 1 shows, we can sometimes find a subclass of TTG graphs
which can be extended by homeomorphism. In addition, there is the special subclass of
filled TTG graphs, i.e., those for which the polygon formed by the union of triangles
is simply-connected. At times, the filled version can be more tractable than the general
version, and may lead to a solution of the general problem [6].

In Section 2, we show that all outerplanar graphs can be represented as filled TTG.
Similarly, we show in Section 3 that all subgraphs of a square or hexagonal grid are
in TTG. Section 4 characterizes the special case of graphs arising from filled trian-
gulations of polygons. Finally, in Section 5, we show that, for graphs in TTG, pairs
of vertices can have very limited common neighborhoods. This allows us to identify
concrete examples of graphs not in TTG.

1.1 Related Work

In the limiting case, one can date results on representing planar graphs as touching
polygons to Koebe’s 1936 theorem [16] which states that any planar graph can be rep-
resented as a contact graph of disks in the plane. Kant’s linear time algorithm for draw-
ing degree-3 planar graphs on a hexagonal grid [15] can be used to obtain hexagonal
drawings for planar graphs. Gansner et al. [10] show that at least six sides are necessary
and that the lower bound is matched by an upper bound of six sides with a linear time
algorithm for representing any planar graph by touching convex hexagons.

The problem restricting the polygons to isothetic rectangles has been extensively
studied, starting with Ungar [21]. Rahman et al. [18] describe a linear time algorithm
for constructing rectangular contact graphs, if one exists. Buchsbaum et al. [6] provide
a characterization of the class of graphs that admit rectangular contact graph representa-
tion. The version of the problem where it is further required that the rectangles partition
a rectangle is known as the rectangular dual problem. Bhasker and Sahni[4] and He [12]
describe linear time algorithms for constructing a rectangular dual of a planar graph, if
one exists.

In VLSI floor-planning it is often required to partition a rectangle into rectilinear
regions so that non-trivial region adjacencies correspond to a given planar graph. It is
natural to try to minimize the complexities of the resulting regions and the best known
results are due to He [13] and Liao et al. [17] who show that regions need not have
more than 8 sides. Both of these algorithms run in O(n) time and produce layouts on
an integer grid of size O(n) × O(n), where n is the number of vertices.

Rectilinear cartograms can be defined as rectilinear contact graphs for vertex
weighted planar graphs, where the area of a rectilinear region must be proportional to
the weight of its corresponding node. Even with this extra condition, de Berg et al. [2]
show that rectilinear cartograms with constant region complexity can be constructed
in O(n log n) time. Specifically, a rectilinear cartogram with region complexity 40 can
always be found.

2 Outerplanar Graphs

In this section, we show that any outerplanar graph can be represented by a set of touch-
ing triangles, that is, outerplanar graphs belong to the class TTG. Here we assume that
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Fig. 1. Incremental construction of the TTG representation for outerplanar graphs. The shaded
vertices on the top row and shaded regions on the bottom row are the ones processed at the current
step.

we are given an outerplanar graph G = (V, E) and the goal is to represent G as a set of
touching triangles. We describe a linear time algorithm based on inserting the vertices
of G is an easy-to-compute “peeling” order.

2.1 Algorithm Overview

1. Compute an outerplanar embedding of G.
2. Compute a reverse “peeling” order of chains of vertices of G.
3. Insert region(s) corresponding to the current set of vertices in the peeling order, while

maintaining a concave upper envelope.

We now look at each step in more detail. First we compute an outerplanar embedding
of the graph, that is, an embedding in which all the vertices are on the outer face. For a
given planar graph G = (V, E), this can be easily done in linear time as follows. Let w
be a new vertex and let G′ = (V ′, E′), where V ′ = V ∪ {w} and E′ = E ∪ {(v, w)
for all v ∈ V }. Note that G′ is planar: if it contained a subgraph homeomorphic to
K5 or K3,3, then G would contain a subgraph homeomorphic to K4 or K3,2, which
would imply that G was not outerplanar to begin with as these are forbidden graphs for
outerplanar graphs (Theorem 11.10, [11]). We can then compute a planar embedding for
G′ with w on the outer face. Removing w and all its edges yields the desired outerplanar
embedding, with all vertices on the outer face.

The second step of the algorithm is to compute a reverse “peeling” order of the
vertices of G. Such an order is defined by peeling off one face at a time and keeping
track of the set of removed vertices. If G is a single edge, the result is trivial, so we may
assume that |V | > 2. In addition, we may assume that G is biconnected. If not, we can
traverse the outer face v1, v2, . . . , vn. If we encounter a node vi = vj , 1 < j < i, we
add a new node wi and edges (vi−1, wi) and (wi, vi+1). The graph remains outerplanar,
and we continue the traversal from vi+1. This yields a biconnected graph G′. If we can
construct a TTG for G′, we need only remove the triangles corresponding to the added
vertices to get a TTG for G.
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The dual of an outerplanar graph restricted to the interior faces is a tree. We pick a
face with at least one edge (v1, v2) on the outer face and make that the root of the tree.
We then remove the faces in depth-first order. At each step, a face consists of vertices
v, u1, u2, . . . , uj, w, where j ≥ 1 and only the edge (w, v) is part of another face. We
then remove the path u1, u2, . . . , uj and continue the process until we come to the root
face. We then remove the path connecting v1 and v2.

The third step of the algorithm is to create the touching triangles representation of
G, by processing the graph using the peeling order from the second step. We begin
by placing the vertices v1 and v2 as shown in Fig. 1(a). We then recreate each face
in the reverse order in which it was removed by adding triangles corresponding to the
path removed from the face. We assume that, at each step, we have the following two
invariants:

1. each pair of adjacent triangles corresponding to the path from v1 to v2 form a
concave angle

2. each triangle has part of its upper side forming part of the boundary.

This is clearly true for the first step.
Suppose the path being added consists of a single vertex w connecting to adjacent

vertices vi and vk. Let p be the point where triangles vi and vk meet concavely, and let
q and r be any two points of the exposed upper sides of the two triangles vi and vk.
We can then add w as the triangle p, q, r, giving us the next face and maintaining the
invariants. This is illustrated in Figures 1(b) and (d).

If the path to be added consists of multiple vertices u1, u2, . . . , uj , with u1 and uj

connecting to adjacent vertices vi and vk, respectively, we again let the points p, q, r
be as defined in the previous paragraph. We then pick points s1, s2, . . . , sj−1 so that
path q, s1, s2, . . . , sj−1, r is a concave path of line segments. We can then add this face
using the triangles

(q, p, s1), (s1, p, s2), . . . , (sj−2, p, sj−1), (sj−1, p, r)

while maintaining the invariants. Figure 1(c) shows a sample of this.
Figure 1 provides an example of the algorithm. We start with the outerplanar embed-

ding shown in the top line of Figure 1(d), and progressively remove chains until we are
left with a single edge. This is used to create the configuration shown at the bottom of
Fig. 1(a). The chains are added as fans of triangles until we finish with the TTG shown
at the bottom right.

The first step of this algorithm can be done in linear time as it is a slight modification
of a standard planar embedding algorithm such as that by Hopcroft and Tarjan [14].
The second step can also be done in linear time as computing the “peeling ordering”
requires constant time per face, given the embedding of the graph from the previous
step. In the third step, we record the three edges of each triangle corresponding to each
processed vertex. Inserting a new chain of vertices involves finding, say, the midpoint
of the exposed edges, and forming the “fan” of new triangles, all tasks which require
constant time per vertex and add up to linear overall time. Thus, we have the following
theorem:

Theorem 1. A touching triangles representation can be computed in linear time for
any outerplanar graph.
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Fig. 2. Replacing a chord in an outerplanar graph with a path

Given that the above construction relies on fitting chains of triangles into smaller and
smaller areas with each face, the area bounds are likely to be poor.

Corollary 1. Any graph homeomorphic to an outerplanar graph has a touching trian-
gles representation.

Proof. (Sketch) Without loss of generality, we may assume that G is biconnected with
an embedding such that all vertices are on the outer face except for paths of nodes con-
necting two nodes on the outer cycle. We then replace these interior chains by chords,
yielding an outerplanar graph, and use the algorithm described above. By the construc-
tion, any chord is represented by two triangles, one of whose sides is totally within a
side of the other. The shorter side can then be rotated, breaking the chord but leaving
all other adjacencies intact. It is then simple to insert a fan of triangles corresponding
to replacing the chord by a path of nodes. Figure 2 shows how the edge between nodes
2 and 7 in Figure 1(d) can be replaced by a chain of two nodes.

3 Grid Graphs

In this section, we show that any subgraph of a square or hexagonal grid graph is in
TTG. We describe a linear time algorithm based on inserting the vertices of the graph in
an outward fashion starting from an interior square/hexagon. We illustrate the algorithm
with examples in Figure 3.

3.1 Algorithm Overview

We first consider TTG representations for grid graphs. We assume we have a canonical
embedding of the graph.

1. Compute a “spiral” order of the vertices of G.
2. Insert region(s), corresponding to a vertex or a path of vertices in the spiral order,

while maintaining a concave upper envelope in each quadrant (in the case of square
grid), or by carving out triangles out of trapezoids that correspond to the current
spiral segment (in the case of hexagonal grid).
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Fig. 3. Grid graphs (left) as touching triangles (right). The Hamiltonian path that visits all the
vertices in the spiral order is given by the labels of the vertices.

The “spiral” order is constructed as a Hamiltonian path which starts at a center node
and visits all the vertices as shown in Fig. 3.

In the case of square grids, the plane is partitioned into four quadrants and in each
quadrant the spiral order introduces vertices in paths of increasing lengths (1, 3, 5, . . .).
In general these paths can be introduced recursively, provided that the upper envelope
of the quadrant remains concave. The insertion of regions is similar to the process de-
scribed for outerplanar graphs above.

In the case of hexagonal grids the plane is partitioned into six sectors and in each
sector the spiral order introduces vertices in paths of increasing lengths (1, 3, 5, . . .). In
general, these paths can be introduced directly by adding an adjacent trapezoidal region
and carving it into triangles.

The above algorithms show how to construct a TTG representation for any square
or hexagonal grid graph. To get a TTG representation for any subgraph, given a canon-
ical embedding, we need to add vertices and edges to create a grid graph, construct the
TTG representation for that, and then remove the triangles corresponding to vertices
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unused in the subgraph, and adjust the remaining triangles to remove any contacts cor-
responding to unused edges. Note that, in degenerate cases, extending the subgraph and
then removing unnecessary triangles and contacts may be quadratic in the size of the
subgraph. Thus, we have the following theorem:

Theorem 2. A touching triangles representation can be computed for any subgraph of
a square or hexagonal grid graph.

4 Triangulations

In a triangle representation, if we require that a vertex of one triangle cannot touch the
interior of the side of another, we get the special case of TTGs we call triangulation
graphs. These representations clearly correspond to creating a triangular mesh [3,1],
allowing Steiner points within the interior of a polygon. For example, the representation
in the bottom right of Fig. 3 is a triangulation graph and the representation in the top
right of Fig. 3 is not.

It is easy to see that triangulation graphs form a strict subset of TTGs. For example,
K4 is a TTG but not a triangulation graph. It is also immediate that a triangulation
graph has maximum degree 3, because by the definition of triangulation graphs, the
vertex of one triangle cannot touch the side of another.

Lemma 1. If G is a triangulation graph with no nodes of degree 1, G has at least 3
nodes of degree 2.

Proof. The only triangles that can contribute to the polygon’s boundary or outer face
must have degree 2 in the graph, each contributing exactly 1 edge to the boundary. Since
the polygon has at least 3 edges, the result follows.

Here we focus on the filled triangulation graphs, those whose TTG representation is
filled. It is possible to fully characterize the biconnected subset of these graphs.

Theorem 3. A biconnected graph G is a filled triangulation graph if and only if it has:

1. only nodes of degree 2 or 3
2. an embedding in the plane such that:

(a) every internal node has degree 3;
(b) there are at least 3 nodes of degree 2 on the boundary;
(c) if there are any degree 3 nodes on the boundary, all of the degree 2 nodes

cannot be consecutive; and
(d) if the degree 2 nodes on both ends of a chain of degree 3 boundary nodes are

removed, the graph remains connected.

Proof. We first prove necessity. Let G be a filled triangulation graph. Since it is bicon-
nected, it cannot have any vertices of degree 1. Its triangulation representation yields
an embedding with all internal nodes of degree 3. Lemma 1 shows we have at least 3
nodes of degree 2 on the boundary.

Suppose there are degree 3 nodes on the boundary and the degree 2 nodes are consec-
utive. The chain of degree 2 nodes cannot connect at a single vertex, because this would
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be a cut vertex. Thus, if we remove all triangles corresponding to degree 2 nodes, we
would have a triangulation representation of a graph with exactly 2 vertices of degree
two, which is not allowed by Lemma 1.

To finish the proof of necessity, we note that for two degree 2 triangles to disconnect
the triangulation, they would have to share an interior vertex. On the other hand, if all
intervening triangles on the boundary have degree 3, they can contribute nothing to the
polygon boundary, so the two degree 2 must share another vertex. But then, they share
a side, so there can’t be any intervening degree 3 triangles.

Next, we prove sufficiency. We assume G is biconnected, all of its vertices have
degree 2 or 3, and it has the specified embedding. We construct a graph G′ which is a
special kind of dual of G. G′ contains the dual of the interior faces and edges of G. In
addition, G′ has a vertex for each maximal sequence of degree 3 nodes on the boundary,
and a vertex for each boundary edge connecting two degree 2 nodes. These are placed
in the external face of G, near the corresponding nodes or edges. These vertices are
connected in a cycle of G′ following the ordering induced by the boundary nodes and
edges of G. Finally, for each boundary edge e of G, we add an edge from the node of
G′ corresponding to the interior face of G containing e to one of the vertices on the
external cycle of G′. If e is adjacent to a vertex of degree 3, we connect the edge to the
node of G′ corresponding to the degree 3 vertex. Otherwise, we connect to the node of
G′ corresponding to e.

It is immediate from the construction that G′ is a planar embedding of nodes and
edges; all interior faces are triangles; and there is a 1-1 correspondence between faces
of G′ and vertices of G and between edges in G and G′. We need to show that G′ is a
simple graph.

As G is biconnected, G′ can have no loops. Property 2(d) of the embedding implies
that each interior face is connected to at most one of the nodes associated with the
exterior face. The only way that multiedges could then occur would be if G′ has a
boundary consisting of two nodes and two edges. We know G has as least n2 ≥ 3
nodes of degree 2 on the boundary. If there are only degree 2 nodes on the boundary,
G′ has a boundary of n2 nodes. Assume G has some degree 3 nodes on the boundary.
If these nodes split into 3 or more paths, the construction creates at least 3 nodes on the
boundary of G′. If not, they must split into 2 paths, since the degree 2 nodes must be
separated. One group of degree 2 nodes must contain at least 2 nodes. The construction
then creates one node for each group of degree 3 nodes, and at least one node for the
path of more than 2 degree nodes, again given G′ at least 3 boundary nodes.

As G′ is simple, by using one of the algorithms (e.g, [9]) for making the edges of
planar graph into line segments while retaining the embedding, we derive a triangulation
representation of G, completing the proof.

Perhaps not surprisingly, the conditions of the theorem have a similar feel to those for
rectangular drawings [18]. It is also not hard to see that the result can probably be de-
rived from the duality between planar, cubic, 3-connected graphs and triangulations of
the plane [19], but our proof seems more straightforward. Lastly, we note that Theo-
rem 3 gives another proof that the hexagonal grid graphs of Section 3 are in TTG.

Figure 4 illustrates the algorithm. Figure 4(a) shows a graph satisfying the conditions
of the theorem. In Figure 4(b), we have added a node for each internal face, and node
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Fig. 4. Constructing a triangulation graph. (a) Original graph; (b) Creating the “dual” graph; (c)
Straightening the edges.

on the outside for each sequence of degree 3 nodes or for each edge both of whose
nodes have degree 2. This gives us a planar graph with each face having three sides and
associated with a node of the original graph. Straightening the sides of the faces makes
each face a triangle.

5 Necessary Conditions

Thus far, we have shown that various categories of graphs are in TTG. Now, we wish
to pursue some necessary conditions which will eliminate many graphs from TTG.
Specifically, we show that pairs of vertices in any graph that can be represented by
touching triangles must have a small common neighborhood: if a pair of vertices is
connected by an edge, they cannot have more than 3 common neighbors, and if they are
not directly connected, they cannot have more than 4 common neighbors. We start with
some definitions.

Given triangles T0 and T1, pick two sides s0 and s1, one from each triangle, and
orient the side counter-clockwise around the interior of the triangle. Extend the sides
into directed lines L0 and L1. If the lines intersect at a unique point, the intersection is
feasible if a non-trivial portion of s0 lies to the right of L1 and a non-trivial portion of
s1 lies to the right of L0. Considering the four rays induced by the intersection, only
one of the four angles corresponds to a ray pointing into the intersection followed by
right turn to a ray point out. We call this a feasible angle. Two sides are collinear if the
directed lines L0 and L1 are identical.

Lemma 2. If a triangle T touches both T0 and T1, using two distinct sides, one of its
angles must be a feasible angle of T0 and T1.

Proof. If α is the angle of T determined by the two touching sides of T0 and T1, it
immediate that α is a feasible angle. See Figure 5.

This lemma already greatly reduces the possible TTG graphs. If two triangles have no
collinear sides, there can be at most nine triangles touching both of them, since any such
triangle uses at least one of the feasible angles. If two sides are collinear, one triangle
can touch those two sides. Any other triangles must correspond to feasible angles, and
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Fig. 5. A triangle T touching two other triangles T0 and T1. The angle α is a feasible angle of T0

and T1.

since the remaining sides of both triangles are all to the left of the two collinear sides,
there can be at most 4 feasible angles. We next work at tightening these bounds.

For a node u in G, we let Nu be the nodes in G joined to u by an edge. If u and
v are two nodes in a graph G, define Nuv as the mutual neighbors of u and v, that is,
Nuv = Nu ∩ Nv. Finally, define Euv be the subset of edges of G induced by Nuv .

Theorem 4. Let G be a TTG, and let u and v be two nodes in G joined by an edge.
Then |Nuv| ≤ 3 and |Euv| ≤ 1.

Proof. Let Tu and Tv be the two triangles corresponding to nodes u and v. Since the
two nodes share an edge, Tu and Tv must touch. There are basically two possibilities:
one side is totally contained in the other or not.

In the first case, we have the situation represented in Figure 6. We immediately note
that there can be no feasible angle associated with 12 and ab. In addition, ab is to the
left of both 23 and 31. On the other hand, there are feasible angles formed by 12 with
bc and ca. So, we only have to consider pairings of 23 and 31 with bc and ca.

If point c is placed in region II, both bc and ca are to the left of 23 and 31, so there
are no more feasible angles, giving a total of two.

If c is in region III, we get a new feasible angle formed by 31 and bc. In this case,
though, we are left with bc and ca to the left of 23, and 31 to the left of ca. Thus,
we have at most three feasible points. We also note that any triangle associated with the
feasible angle formed by 12 and ca cannot share an edge with any triangle of the other
two feasible angles, so there can be at most one edge among the neighbors of u and v.
The argument is similar if c is in region I.

If points 1 and b are identical, the same arguments hold except, in addition, we no
longer have a feasible angle formed by 12 and bc because 12 is to the left of bc. Thus,
we have at most two mutual neighbors and no edge between them. If points 2 and a are
the same, the same arguments hold. Putting these two cases together, we find that if 1
and b are identical and 2 and a are identical, there can be at most one feasible angle.

The remaining case occurs when neither shared side is contained in the other. This
is the situation represented by Figure 7.

As previously, there can be no feasible angle associated with 12 and ab, but now
we have feasible angles formed by 12 and ca, and by 31 and ab. In addition, 12 is
to the left of bc and ab is to the left of 23. Again, we are reduced to considering the
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four pairings of 23 and 31 with bc and ca. If ca is to the right of 31, then 31 is to the
left of ca, and vice versa, so that pairing is not possible. Finally, we note that if c is in
regions I or II, then 23 and 31 are to the left of bc, while if c is in regions II or III, bc
and ca are to the left of 23. So, if c is in region II, there are at most two feasible angles.
Otherwise, there can be three but, as above, at most two of the associated triangles can
touch.

We next consider what happens to the set of common neighbors if we relax the condition
that there is an edge between two nodes.

Theorem 5. Let G be a TTG, and let u and v be any two nodes in G. Then |Nuv| ≤ 4
and |Euv| ≤ 2.

Proof. The proof is similar to that of Theorem 4, and is omitted for lack of space.

6 Conclusion and Future Work

We considered the class of graphs TTG that can be represented as side-touching trian-
gles, and showed that this includes outerplanar graphs, as well as subgraphs of square
and hexagonal grids. We derived some necessary conditions for such TTG graphs, and
described a complete characterization of biconnected triangulation graphs.

A complete characterization of graphs in TTG, as well as contact graphs of 4-
gons and 5-gons, remains open. This is true even for the typically simpler case of
filled graphs. Theorem 3 does solve the filled problem for a restricted version of TTG
graphs. Can this be extended to allow for holes? Finally, the work on hexagonal con-
tact graphs [10] gives a small (|V | × |V |) area bound. Are small areas possible in the
triangular or, at least, the outerplanar case?
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Triangle Contact Representations and Duality�
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Abstract. A contact representation by triangles of a graph is a set of triangles
in the plane such that two triangles intersect on at most one point, each triangle
represents a vertex of the graph and two triangles intersects if and only if their
corresponding vertices are adjacent. de Fraysseix, Ossona de Mendez and Rosen-
stiehl proved that every planar graph admits a contact representation by triangles.
We strengthen this in terms of a simultaneous contact representation by triangles
of a planar map and of its dual.

A primal-dual contact representation by triangles of a planar map is a contact
representation by triangles of the primal and a contact representation by triangles
of the dual such that for every edge uv, bordering faces f and g, the intersec-
tion between the triangles corresponding to u and v is the same point as the
intersection between the triangles corresponding to f and g. We prove that every
3-connected planar map admits a primal-dual contact representation by triangles.
Moreover, the interiors of the triangles form a tiling of the triangle correspond-
ing to the outer face and each contact point is a node of exactly three triangles.
Then we show that these representations are in one-to-one correspondence with
generalized Schnyder woods defined by Felsner for 3-connected planar maps.

1 Introduction

A contact system is a set of curves (closed or not) in the plane such that two curves
cannot cross but may intersect tangentially. A contact point of a contact system is a
point that is in the intersection of at least two curves. A contact representation of a
graph G = (V, E) is a contact system C = {c(v) : v ∈ V }, such that two curves
intersect if and only if their corresponding vertices are adjacent.

The Circle Packing Theorem of Koebe [14] states that every planar graph admits a
contact representation by circles.

Theorem 1 (Koebe [14]). Every planar graph admits a contact representation
by circles.

Theorem 1 implies that every planar graph has a contact representation by convex poly-
gons, and de Fraysseix et al. [8] strengthened this by showing that every planar graph
admits a contact representation by triangles. A contact representation by triangles is
strict if each contact point is a node of exactly one triangle. de Fraysseix et al. [8]
proved the following:
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Fig. 1. A strict tiling primal-dual contact representation by triangles

Theorem 2 (de Fraysseix et al. [8]). Every planar graph admits a strict contact rep-
resentation by triangles.

Moreover, de Fraysseix et al. [8] proved that strict contact representations by triangles
of a planar triangulation are in one-to-one correspondence with its Schnyder woods
defined by Schnyder [17].

Andre’ev [1] strengthen Theorem 1 in terms of a simultaneous contact representa-
tion of a planar map and of its dual. The dual of a planar map G = (V, E) is noted
G∗ = (V ∗, E∗). A primal-dual contact representation (V ,F) of a planar map G is
two contact systems V = {c(v) : v ∈ V } and F = {c(f) : f ∈ V ∗}, such that V is
a contact representation of G, and F is a contact representation of G∗, and for every
edge uv, bordering faces f and g, the intersection between c(u) and c(v) is the same
point as the intersection between c(f) and c(g). A contact point of a primal-dual con-
tact representation is a contact point of V or a contact point of F . Andre’ev [1] proved
the following:

Theorem 3 (Andre’ev [1]). Every 3-connected planar map admits a primal-dual con-
tact representation by circles.

Our main result is an analogous strengthening of Theorem 2. We say that a primal-dual
contact representation by triangles is tiling if the triangles corresponding to vertices
and those corresponding to bounded faces form a tiling of the triangle corresponding
to the outer face (see Figure 1). We say that a primal-dual contact representation by
triangles is strict if each contact point is a node of exactly three triangles corresponding
to vertices or faces (see Figure 1). We prove the following :

Theorem 4. Every 3-connected planar map admits a strict tiling primal-dual contact
representation by triangles.
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In [12], Gansner et al. study representation of graphs by triangles where two vertices are
adjacent if and only if their corresponding triangles are intersecting on a side (touch-
ing representation by triangles). Theorem 4 shows that for 3-connected planar graphs,
the incidence graph between vertices and faces admits a touching representation by
triangles.

The tools needed to prove Theorem 4 are introduced in section 2. In section 2.1, we
present a result of de Fraysseix et al. [10] concerning the stretchability of a contact sys-
tem of arcs. In section 2.2, we define (generalized) Schnyder woods and present related
results obtained by Felsner [4]. In Section 3, we define a contact system of arc, based
on a Schnyder wood, and show that this system of arc is stretchable. When stretched,
this system gives the strict tiling primal-dual contact representation by triangles. In Sec-
tion 4, we show that strict tiling primal-dual contact representations by triangles of a
planar map are in one-to-one correspondence with its Schnyder woods. In Section 5,
we define the class of planar maps admitting a Schnyder wood and thus a strict tiling
primal-dual contact representation by triangles. In Section 6, we discuss possible im-
provements of Theorem 4.

2 Tools

2.1 Stretchability

An arc is a non-closed curve. An internal point of an arc is a point of the arc distinct
from its extremities. A contact system of arcs is strict if each contact points is internal to
at most one arc. A contact system of arcs is stretchable if there exists a homeomorphism
which transforms it into a contact system whose arcs are straight line segments. An
extremal point of a contact system of arcs is a point on the outer-boundary of the system
and which is internal to no arc.

We define in Section 3 a contact system of arcs such that when stretched it gives a
strict tiling primal-dual contact representation by triangles. To prove that our contact
system of arcs is stretchable, we need the following theorem of de Fraysseix et al. [10].

Theorem 5 (de Fraysseix et al. [10]). A strict contact system of arcs is stretchable if
and only if each subsystem of cardinality at least two has at least three extremal points.

2.2 Schnyder Woods

The contact system of arcs defined in Section 3 is constructed from a Schnyder wood.
Schnyder woods where introduced by Schnyder [17] and then generalized by Fel-

sner [4]. Here we use the definition from [4] except if explicitly mentioned. We refer
to classic Schnyder woods defined by Schnyder [17] or generalized Schnyder woods
defined by Felsner [4] when there is a discussion comparing both.

Given a planar map G. Let x0, x1, x2 be three distinct vertices occurring in clockwise
order on the outer face of G. The suspension Gσ is obtained by attaching a half-edge
that reaches into the outer face to each of these special vertices. A Schnyder wood rooted
at x0, x1, x2 is an orientation and coloring of the edges of Gσ with the colors 0, 1, 2
satisfying the following rules (see Figures 2 and 3):
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– Every edge e is oriented in one direction or in two opposite directions. We will
respectively say that e is uni- or bi-directed. The directions of edges are colored
such that if e is bi-directed the two directions have distinct colors.

– The half-edge at xi is directed outwards and colored i.
– Every vertex v has out-degree one in each color. The edges e0(v), e1(v), e2(v)

leaving v in colors 0, 1, 2, respectively, occur in clockwise order. Each edge en-
tering v in color i enters v in the clockwise sector from ei+1(v) to ei−1(v) (where
i + 1 and i − 1 are understood modulo 3).

– There is no interior face the boundary of which is a directed monochromatic cycle.

The difference with the original definition of Schnyder [17] it that edges can be oriented
in two opposite directions.

A Schnyder wood of Gσ defines a labelling of the angles of Gσ where every angle
in the clockwise sector from ei+1(v) to ei−1(v) is labeled i.

A Schnyder angle labellings of Gσ is a labeling of the angles of Gσ with the labels
0, 1, 2 satisfying the following rules (see Figures 2 and 3):

– The two angles at the half-edge of the special vertex xi have labels i + 1 and i − 1
in clockwise order.

– Rule of vertices: The labels of the angles at each vertex form, in clockwise order,
a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval of
2’s.

– Rule of faces: The labels of the angles at each interior face form, in clockwise order,
a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval of
2’s. At the outer face the same is true in counterclockwise order.

Felsner [5] proved the following correspondence:
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Fig. 2. (a) Edge colored respectively with color 0, 1, and 2. We use distinct arrow types to
distinguish those colors. (b) Rules for Schnyder woods and angle labellings. (c) Example of
angle labelling around an uni-directed egde colored with color 0. (d) Example of angle labelling
around a bi-directed edge colored with colors 2 and 1.

Theorem 6 (Felsner [5]). Schnyder woods of Gσ are in one-to-one correspondence
with Schnyder angle labellings.
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3 Mixing Tools

Given a planar map G and a Schnyder wood of G rooted at x0, x1, x2 we construct a
contact system of arcs A corresponding to the Schnyder wood by the following method
(see Figure 4):

Each vertex v is represented by three arcs a0(v), a1(v), a2(v), where the arc ai(v)
is colored i and represent the interval of angles labeled i of v. It may be the case that
ai(u) = ai(v) for some values of i, u and v. For every edge e of G, we choose a point
on its interior that we note p(e). There is also such a point on the half-edge leaving xi,
for i ∈ {0, 1, 2}. The points p(e) are the contact points of the contact system of arcs.

Actually the arcs of A are completely defined by the following subarcs : For each
angle labeled i at a vertex v in-between the edges e and e′, there is a subarc of ai(v)
going from p(e) to p(e′) along e and e′. Each contact point p(e) is the end of 4 such
subarcs. The Schnyder labelling implies that the three colors are represented at p(e) and
so the two subarcs with the same color are merged and form a longer arc.

One can easily see that this defines a contact system (there is no crossing arcs) of
arcs (there is no closed curve) whose contact points are the points p(e). It is also clear
that the arcs satisfy the following rules:

– For every edge e = vw uni-directed from v to w in color i: The arcs ai+1(v) and
ai−1(v) end at p(e) and the arc ai(w) goes through p(e).

– For every edge e = vw bi-directed, leaving v in color i and leaving w in color j:
Let k be such that {i, j, k} = {0, 1, 2}. The arcs aj(v) and ai(w) ends at p(e), and
the arcs ak(v) and ak(w) are equal and go through p(e).
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Fig. 4. A Schnyder wood with its corresponding angle labeling and contact system of arcs

The following lemma will be used to transform the contact system of arcs into a strict
tiling primal-dual contact representation by triangles.

Lemma 1. The contact system of arcs corresponding to a Schnyder wood is stretchable.

Proof. Let G be a planar map, given with a Schnyder wood rooted at x0, x1, x2. Let
A be the contact system of arcs corresponding to the Schnyder wood as defined before.
By definition of A, every point p(e), corresponding to an edge e uni- or bi-directed, is
interior to one arc and is the end of two other arcs, so the contact system of arcs A is
strict. By Theorem 5, we have to prove that each subsystem of A, of cardinality at least
two, has at least three extremal points. Let B be a subsystem of arcs of cardinality at
least two. We have to prove that B has at least three extremal points.

The rest of this technical proof is omitted due to lack of space.

4 One-to-One Correspondence

De Fraysseix et al. [8] already proved that strict contact representations by triangles of a
planar triangulation are in one-to-one correspondence with its Schnyder woods defined
by Schnyder [17]. In this section, we are going to prove a similar result for primal-dual
contact representations.

De Fraysseix et al. [9] proved that classic Schnyder woods of a planar triangulation
are in one-to-one correspondence with orientation of the edges of the graph where each
interior vertex has out-degree 3. This shows that it is possible to retrieve the coloring
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of the edges of a classic Schnyder wood from the orientation of all the edges of this
Schnyder wood.

For generalized Schnyder woods (with some edges bi-directed) such a property is
not true: it is not always possible to retrieve the coloring of the edges of a generalized
Schnyder wood from the orientation of the edges (see for example the graph of Figure 8
in [6]). But Felsner proved that a Schnyder wood of a planar map uniquely defines a
Schnyder wood of the dual and when both the orientation of the edges of the primal and
the dual are given, then the coloring of the Schnyder wood can be retrieved. We will
use this to obtain the one-to-one correspondence with strict tiling primal-dual contact
representations by triangles. To this purpose, we need to introduce some formalism
from [6].

The suspension dual Gσ∗ is obtained from the dual G∗ by the following: The dual-
vertex corresponding to the unbounded face is replaced by a triangle with vertices
y0, y1, y2. More precisely, let Xi be the set of edges on the boundary of the outer face
of G between vertices xj and xk, with {i, j, k} = {0, 1, 2}. Let Yi be the set of dual
edges to the edges in Xi, i.e. Y0∪Y1 ∪Y2 is the set of edges containing the vertex f∞ of
G∗ which corresponds to the unbounded face of G. Exchange f∞ by yi at all the edges
of Yi, add three edges y0y1, y1y2, y2y0, and finally add a half-edge at each yi inside the
face y0y1y2. The resulting graph is the suspension dual Gσ∗. Felsner [5,6] proved that
Schnyder woods of Gσ are in one-to-one correspondence with Schnyder woods of Gσ∗.

The completion of a plane suspension Gσ and its dual Gσ∗ is obtain by the following:
Superimpose Gσ and Gσ∗ so that exactly the primal dual pairs of edges cross (the half-
edge at xi cross the dual edge yjyk, for {i, j, k} = {0, 1, 2}). The common subdivision
of each crossing pair of edges is a new edge-vertex. Add a new vertex v∞ which is the
second endpoint of the six half-edges reaching into the unbounded face. The resulting
graph is the completion G̃σ .

A s-orientation of G̃σ is an orientation of the edges of G̃σ satisfying the following
out-degrees :

– d+(v) = 3 for all primal- and dual-vertices v
– d+(e) = 1 for all edge-vertices e.
– d+(v∞) = 0 for the special vertex v∞.

Felsner [6] proved the following:

Theorem 7 (Felsner [6]). Schnyder woods of Gσ are in one-to-one correspondence
with s-orientations of G̃σ .

We are now able to prove the following correspondence:

Theorem 8. The non-isomorphic strict tiling primal-dual contact representations by
triangles of a planar map are in one-to-one correspondence with its Schnyder woods.

Proof. Given a strict tiling primal-dual contact representation by triangles (V ,F) of a
graph G, one can associate a corresponding suspension Gσ , its suspension dual Gσ∗,
the completion G̃σ and a s-orientation of the completion. The three vertices x0, x1, x2
that define the suspension Gσ are, in clockwise order, the three triangles of V that share



Triangle Contact Representations and Duality 269

a node with the triangle corresponding to the outer face. We modify our contact system
by exchanging the triangle c(f∞), representing the outer face f∞, by three triangles
c(y0), c(y1), c(y2) each one representing y0, y1, y2 of the suspension dual. Each c(yi)
share a side with c(f∞) and two c(yi) have parallel and intersecting sides. The interiors
of the triangles of this new system still form a tiling of a triangle c(v∞) representing
the vertex v∞ of the completion. The edge-vertices of the completion corresponds to
the nodes of the triangles of the new system.

The s-orientation of G̃σ is obtained by the following. For a primal- or dual-vertex
v, represented by a triangle c(v), all edges ve of G̃σ are directed from v to e if e
corresponds to a node of c(v) and from e to v otherwise. For the special vertex v∞, all
its incident edges are directed towards itself. Clearly, for every primal- or dual-vertex
v, we have d+(v) = 3 as c(v) is a triangle and for v∞ we have d+(v∞) = 0. As the
primal-dual contact representation (V ,F) is strict, i.e. each contact point is a node of
exactly three triangles, we have d+(e) = 1 for every edge-vertex that is a contact point
of (V ,F). For edge-vertices between special vertices xi, yj and v∞ one can check that
the out-degree constraint is also satisfied.

One can remark that two non-isomorphic triangle contact systems representing the
same planar map G define two distinct orientations of G̃σ and thus two different Schny-
der woods of Gσ by Theorem 7.

Conversely, let G be a planar map, given with a Schnyder wood rooted at x0, x1,
x2 and the corresponding s-orientation of G̃σ . Let A be the contact system of arcs
corresponding to the Schnyder wood as defined in Section 3. For each vertex v ∈ V ,
we note c(v) the closed curve that is the union, for i ∈ {0, 1, 2}, of the part of the
arc ai(v) between the contact point with ai−1(v) and ai+1(v). The set of curves V =
(c(v))v∈V is a contact representation of G by closed curves. For each interior face F ,
the labels of its angles form a nonempty interval of 0’s, a nonempty interval of 1’s
and a nonempty interval of 2’s by Theorem 6. By definition of the arcs, each interval
of i’s corresponds to only one arc, noted ai(f). We note c(f) the closed curve that
is the union, for i ∈ {0, 1, 2}, of the part of the arc ai(f) between the contact point
with ai−1(f) and ai+1(f). For the outer face f∞, the curve c(f∞) is the union, for
i ∈ {0, 1, 2}, of ai+1(xi). The set of curves F = (c(f))f∈V ∗ is a contact representation
of G∗ by closed curves.

By Lemma 1, the contact system of arcs A is stretchable. For each v ∈ V ∪ V ∗,
the closed curves c(v) is the union of three part of arcs of A, so when stretched it
becomes a triangle. Thus, we obtain a primal-dual contact representation by triangles
(V ,F) of G. By definition of (V ,F) the interiors of the triangles form a tiling of the
triangle corresponding to the outer face. Thus, the primal-dual contact representation
by triangles (V ,F) is tiling. By definition of A, every contact point, corresponding to
an uni- or bi-directed edge, is interior to one arc and is the extremity of two arcs. So
each contact point of (V ,F) is a node of exactly three triangles. Thus, the primal-dual
contact representation by triangles (V ,F) is strict. The strict tiling primal-dual contact
representation by triangles (V ,F) corresponds to the s-orientation of G̃σ and thus to
the Schnyder wood by Theorem 7.
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5 Internally 3-Connected Planar Maps

A planar map G is internally 3-connected if there exists three vertices on the outer face
such that the graph obtain from G by adding a vertex adjacent to the three vertices is
3-connected. Miller [16] proved the following (see also [4] for existence of Schnyder
woods for 3-connected planar maps and [3] were the following result is stated in this
form):

Theorem 9 (Miller [16]). A planar map admits a Schnyder wood if and only if it is
internally 3-connected.

As a corollary of Theorems 8 and 9, we obtain the following:

Corollary 1. A planar map admits a strict tiling primal-dual contact representation by
triangles if and only if it is internally 3-connected.

A 3-connected planar map is obviously internally 3-connected, so we obtain Theorem 4
as a consequence of Corollary 1.

6 Particular Types of Triangles

The construction given by de Fraysseix et al. [8] to obtain a strict contact representation
by triangles of a planar triangulation can be slightly modified to give a strict tiling
primal-dual contact representation by triangles (the three triangles corresponding to the
outer face have to be modified to obtain the tiling property). In de Fraysseix et al.’s
construction all the triangles have a horizontal side at their bottom and moreover it
is possible to require that all the triangles are right (with the right angle on the left
extremity of the horizontal side). This leads us to propose the following conjecture.

Conjecture 1. Every 3-connected planar map admits a strict tiling primal-dual contact
representation by right triangles where all triangles have a horizontal and a vertical
side and where the right angle is bottom-left for primal vertices and the outer face and
top-right otherwise.

One may wonder if further requirements can be asked. Is it possible to obtain primal-
dual contact representation by homothetic triangles ? The 4-connected planar triangu-
lation of Figure 5 has a unique contact representation by homothetic triangles (for a
fixed size of the external triangles). The central face corresponds to an empty triangle
and thus this graph has no primal-dual contact representation by homothetic triangles.
Moreover if one add a vertex in the central face adjacent to all the vertices of this face,
then, there is no contact representation by homothetic triangles. In this case, the planar
triangulation that is obtain is not 4-connected anymore. This leads Kratochvil [15] (see
also [2]) to conjecture that every 4-connected planar triangulation admits a contact rep-
resentation by homothetic triangles. Actually this conjecture holds by an application of
the following theorem of O. Schramm [18] that is a generalization of Theorem 1 (in the
sense that circle are replaced by convex bodies).
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Fig. 5. A contact representation by homothetic triangles

Theorem 10 (Convex Packing Theorem). Let T be a planar triangulation with out-
erface abc. Let C be a simple closed curve in the plane, and let Pa, Pb, Pc be three
arcs composing C, which are determined by three distinct points of C. For each ver-
tex v ∈ V (T ) \ {a, b, c}, let there be a prototype Pv , which is a convex set in the
plane containing more than one point. Then there is a contact system in the plane
Q = {Qv : v ∈ V (T )}, where Qa = Pa, Qb = Pb, Qc = Pc and each Qv (for
v ∈ V (T ) \ {a, b, c} is either a point or (positively) homothetic to Pv, and such that T
is a subgraph of the graph induced by Q.

This theorem makes an intersecting link between Theorem 1 and Theorem 2.

Theorem 11. Every 4-connected planar triangulation T admits a contact representa-
tion by homothetic triangles.

Proof. Indeed, in the Convex Packing Theorem if we let the prototypes be homothetic
triangles and the curves Pa, Pb, Pc be segments with appropriate slopes (in such a
way that those segment can be the sides of homothetic triangles added in the outer-
region), we obtain a contact system of homothetic triangles Q, where the triangles may
be reduced to a point, and that induces a graph G ⊇ T . Thus, to prove the theorem
we just have to show that (a) none of the triangles are reduced to a point and (b) that
E(G) = E(T ).

(a) If there was a vertex v such that its triangle Qv is reduced to a point p then by taking
a sufficiently small circle C around p we intersect at most three non-degenerated tri-
angles. Since a path P from x to y in H clearly corresponds to a curve in ∪z∈P Qz

from Qx to Qy , the triangles intersecting C correspond to a set of vertices sep-
arating v to some u ∈ {a, b, c} in G, contradicting the 4-connectedness of G
and T .

(b) Since none of the triangles is degenerated, the contact points are either the inter-
section of two or three triangles. In those cases the contact point respectively corre-
spond to one or three edges of H . Then, since these contact points are respectively
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the nodes of at least one, or exactly three triangles, and according to the position of
the segments Pa, Pb and Pc, we have that |E(G)| ≤ 3 + 3(n − 3) = 3n − 6 =
|E(T )|. Thus E(G) = E(T ) and we are done.

It is still an open question to know whether these representations by homothetic trian-
gles are unique for a given 4-connected triangulation. These representations being not
strict (three triangles can meet at one point, see Figure 5) we can not always derive
a unique Schnyder wood as in [8]. However, we can define a set of Schnyder woods
corresponding to the representation as follow. All the triangles of the representation are
homothetic to a triangle with nodes colored 0, 1, 2 in clockwise order. The out-going
arc of color i of a vertex v corresponds to the contact point with the node i of its cor-
responding triangle. For the particular case where three triangles meet in one point we
have to choose arbitrarily the clockwise or anti-clockwise cycle. This set of Schnyder
woods can be embedded on an orthogonal drawing where edge-points are coplanar (by
allowing a degenerate patterns for each point that is the intersection of three triangles,
see Felsner and Zickfeld [7]). Another interesting conjecture concerning contact system
of triangles is the following.

Conjecture 2. Every planar graph has a contact representation by equilateral (not nec-
essarily homothetic) triangles.

Concerning intersection systems (not contact systems) of triangles, M. Kaufmann et
al. [13] proved that Max-tolerance graphs are exactly those graphs that have an in-
tersection representation by homothetic triangles. Then K. Lehmann conjectured that
every planar graph has such a representation. We can derive from Theorem 11 that her
conjecture holds.

Theorem 12. A graph G is planar if and only if it has an intersection representation
by homothetic triangles where no three triangles intersect.

It is interesting to notice that this theorem implies a result of Gansner et al. [11], that pla-
nar graphs have a representation by touching hexagons. Indeed consider an intersection
model of G by homothetic triangles where no three triangles intersect, and where two
intersecting triangles intersect in more than one point (inflate the triangles if necessary).
Then remove, for each pair of intersecting triangles T (u) and T (v) (where T (u) has a
node strictly inside T (v)), the triangle T (u) ∩ T (v) from T (u). However, Gansner et
al.’s construction also provides, for triangulations, a model of touching polygons (with
at most six sides) that form a tilling.
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Abstract. We study the maximum differential graph coloring problem,
in which the goal is to find a vertex labeling for a given undirected graph
that maximizes the label difference along the edges. This problem has its
origin in map coloring, where not all countries are necessarily contiguous.
We define the differential chromatic number and establish the equivalence
of the maximum differential coloring problem to that of k-Hamiltonian
path. As computing the maximum differential coloring is NP-Complete,
we describe an exact backtracking algorithm and a spectral-based heuris-
tic. We also discuss lower bounds and upper bounds for the differential
chromatic number for several classes of graphs.

1 Introduction

The Four Color Theorem states that only four colors are needed to color any
map so that no neighboring countries share the same color. This theorem assumes
that each country forms a contiguous region in the map. However, if countries
in the map are not all contiguous then the result no longer holds [6]. Instead,
this necessitates the use of a unique color for each country to avoid ambiguity.
As a result, the number of colors needed is equal to the number of countries.

Given a map, we define the country graph G = {V, E} to be the undirected
graph where countries are nodes and two countries are connected by an edge
if they share a nontrivial boundary. We then consider the problem of assigning
colors to nodes of G so that the color distance between nodes that share an edge
is maximized. Figure 1 gives an illustration of this map coloring problem.

As not all colors make suitable choices for country colors, a good color palette
is often a gradation of certain “map-like colors”. Furthermore, if the final result
is to be printed in black and white, then the color space is strictly 1D. We
therefore make the assumption that the colors form a line in the color space,
and model our map coloring problem as one of node labeling of the graph, where
the available labels are from set C of all permutations {1, 2, · · · |V |}}. This brings
us to the maximum differential graph coloring problem, in which we aim to find a
vertex labeling for a given undirected graph that maximizes the label difference
along the edges in the graph.
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Fig. 1. Graph Drawing Symposia (1994-2004) co-authorship map with a single-hue
color palette from ColorBrewer [2]: a random color assignment above and optimal
below
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More formally, we are looking for a labeling function, a bijection c : V →
{1, 2, . . . , |V |}, that solves the following MaxMin optimization problem:

max
c∈C

min
{i,j}∈E

wij |c(i) − c(j)| (1)

Here wij is a positive weight representing the importance of keeping the differ-
ence of the labels between nodes i and j large. To simplify the problem further,
throughout this paper we assume wij = 1.

Figure 2 illustrates the graph coloring problem. We use a color palette of yel-
low to blue, indexed from 1 to 9. Figure 2(a) shows a map with 9 countries, with
one non-contiguous country (its two components are at the center, and to the far
right of the map). Figure 2(b) shows the corresponding country graph. The node
labeling is not optimal, with many adjacent nodes having label difference of 1.
Figure 2(c) gives the optimal node labeling, with a minimal label difference of 3.
The map in Figure 2(a) is in fact colored using this optimal coloring scheme,
which gives distinctive colors for neighboring countries.

In this paper we define the differential chromatic number and show a corre-
spondence between the maximum differential graph coloring problem and the
Hamiltonian path problem in the complement graph. We also provide exact and
heuristic algorithms for computing good solutions. In Section 3 we establish the
relationship between this problem and that of finding a k-Hamiltonian path. Sec-
tion 4 gives an exact algorithm and compares it with a heuristic algorithm on
a number of well known graphs. Section 5 gives results for some special graphs.
We conclude the paper with Section 6.

2 Related Work

The problem of maximum differential coloring of graphs arises in the context
of coloring a map in which not all regions are necessarily contiguous [7, 6]. A
variation of the differential graph coloring problem was studied by Dillencourt
et al. [4], under the assumption that all colors in the color spectrum are available.
This makes the problem continuous rather than discrete. A heuristic algorithm
based on the force-directed model is used to select |V | colors as far apart as
possible in the 3-dimensional color space. However this algorithm cannot be used
directly for the general map coloring problem, as maps are typically colored with
“map-like colors”, often light, pastel colors which come from a very restricted
subset of the color spectrum. It may be possible to adapt the algorithm and apply
it to a lower-dimensional color manifold, but because the algorithm is greedy it
is more likely to converge to local minimum in lower dimensional space.

Finding a permutation that minimizes the labeling differences along the edges
is well-studied problem in the context of minimum bandwidth or wavefront re-
duction ordering for sparse matrices. It is known that the bandwidth problem
is NP-complete, with a reduction from 3SAT dating to 1975 [11]. Moreover, it
is NP-complete to find any constant approximation, even when restricting the
problem to trees [1, 15]. A number of effective heuristics for that problem have
been proposed [8, 9, 13].
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Fig. 2. An illustration of the graph coloring problem and its relation to a k-Hamiltonian
path. A yellow to blue coloring scheme (indexed from 1 to 9) is used; nodes are labeled
by color indices and edges are labeled with the absolute difference of of the adjacent
nodes. (a) An input map. (b) The country graph G corresponding to the input map;
note that many adjacent nodes have very similar colors. (c) An optimal 3-differential
coloring of the country graph. (d) The complement graph Ḡ corresponding to G and a
2-Hamiltonian path. The Hamiltonian path {1, 2, . . . , 9} is shown with orange arrows,
and edges with labeling difference of 2 are shown as blue dashed lines. Note that the
2-Hamiltonian path of Ḡ is such that any two nodes of labeling difference ≤ 2 form an
edge of Ḡ.

The complement of the bandwidth problem, that of maximizing the label-
ing difference along the edges, is the less well-known antibandwidth problem.
Not surprisingly, it is also NP-Complete as shown in 1984 [10]. Exact values
for the antibandwidth are known for some Hamming graphs [5], as well as for
meshes [14], hypercubes [12,16], and complete k-ary trees for odd values of k [3].

There have been definitions for a graph being k-edge Hamiltonian and k-
vertex Hamiltonian in the literature [17], which are defined as the graph having
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a Hamiltonian cycle after removing any k edges or vertices, respectively. These
concepts, though related, are different from our definition of k-Hamiltonian path,
introduced in the next section.

3 Maximum Differential Coloring and Hamiltonian Path

Let the undirected graph of interest be G = {V, E}. We denote Ḡ as the com-
plement of graph G, defined as Ḡ = {V, Ē}, where Ē = {{i, j}|i = j, i, j ∈
V, and {i, j} /∈ E}. In other words, Ḡ is the graph containing all nodes in G,
and all edges that are not in G. We now formally define the maximum differential
coloring problem.

Definition 1. A coloring of the nodes of G is a bijection c : V → {1, 2, . . . , |V |}.
We denote the set of all colorings C(G).

Definition 2. A k-differential coloring of G is one in which the absolute coloring
difference of the endpoints for any edge is k or more. We denote the set of
all such k-differential colorings DC(G, k) = {c | c ∈ C(G), |c(i) − c(j)| ≥
k for all {i, j} ∈ E}.

Definition 3. A graph is k-differential colorable if DC(G, k) = ∅.

Definition 4. If a graph is k-differential colorable, but not (k + 1)-differential
colorable, it has a differential chromatic number k, denoted as dc(G) = k.

Definition 5. A Hamiltonian path of G is a bijection p : {1, 2, . . . , |V |} → V ,
such that {p(i), p(i + 1)} ∈ E for all i = 1, 2, . . . , |V | − 1. We denote the set of
all Hamiltonian paths H(G).

The key insight in understanding the maximum differential coloring comes from
observing a good differential coloring scheme. For example, in Figure 2(c), the
minimum labeling difference between any two adjacency nodes is 3. This means
that any two nodes with labeling difference of ≤ 2 can not form an edge in G,
in other word they must form an edge in the complement of the graph, shown
in Figure 2(d). Therefore the list of nodes induced by this coloring scheme of G,
with labels {1, 2, . . . , |V |}, forms a Hamiltonian path in Ḡ, shown in Figure 2(d)
with orange arrows. Furthermore, this Hamiltonian path is such that any two
nodes along the path with labeling difference of 2 are also connected by an edge
of Ḡ, shown in Figure 2(d) with dashed lines.

This observation leads to a natural extension of the concept of Hamiltonian
path, which we call a k-Hamiltonian path.

Definition 6. A k-Hamiltonian path (k ≥ 1) of G is a Hamiltonian path, such
that each i-th node on the path is connected to the j-th node, if |i−j| ≤ k. We de-
fine the set of k-Hamiltonian paths as H(G, k) = {p|p ∈ H(G), and {p(i), p(j)} ∈
E if 0 ≤ i, j ≤ |V | and |i − j| ≤ k}. Clearly H(G) = H(G, 1).
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Based on our previous discussion, we can relate the k-differential coloring prob-
lem to that of finding a (k − 1)-Hamiltonian path.

Theorem 1. A k-differential coloring (k ≥ 2) of a graph G exists if and only if
a (k − 1)-Hamiltonian path exists in the complement of G, i.e., DC(G, k) = ∅ if
and only if H

(
Ḡ, k − 1

)
= ∅. Furthermore, the inverse function of each element

of DC(G, k) is in H
(
Ḡ, k − 1

)
, and vice visa.

Proof. Suppose a k-differential coloring c exists for G. Define the path, p = c−1,
so that it visits the vertices of the graph in order of their color index (i.e., the
first vertex is that with color 1, the second is that with color 2 and so on).
Consider two nodes u = p(i) and v = p(j) such that |i − j| ≤ k − 1. Since
the color difference of these two nodes in the original graph, |c(u) − c(v)| =
|i − j| ≤ k − 1, by the definition of k-differential coloring (u, v) is not an edge
of G, hence {u, v} = {p(i), p(j)} is an edge of Ḡ. It follows that p = c−1 is a
(k − 1)-Hamiltonian path.

Conversely, suppose a (k−1)-Hamiltonian path p exists for Ḡ. Define a coloring
c = p−1, where the color index is given by the order in which a vertex appears
in the path (i.e., color 1 is assigned to the first vertex along the path, color
2 to the second, and so on). Consider any edge {u, v} ∈ E. We prove that
|c(u)− c(v)| ≥ k. Assume that |c(u)− c(v)| < k. Let i = c(u) and j = c(v), then
|i − j| < k, and u = c−1(i) = p(i) and v = c−1(j) = p(j). By the definition of a
(k − 1)-Hamiltonian path, (u, v) must be an edge of Ḡ, which is a contradiction
with the fact that {u, v} ∈ E. It follows that |c(u) − c(v)| ≥ k, and so c = p−1

is a k-differential coloring of G. ��

This theorem immediately gives an upper bound for the differential chromatic
number of a graph based on its maximum degree:

Corollary 1. A graph of maximum degree Δ(G) has a differential chromatic
number of at most |V | − Δ(G).

Proof. Ḡ must have a node with degree |V | − 1 − Δ(G), therefore H(Ḡ, |V | −
Δ(G)) = ∅, or by Theorem 1 DC(G, |V | − Δ(G) + 1) = ∅. ��

A special case of differential coloring is finding a scheme with maximum differ-
ence of 2 or more. Clearly:

Corollary 2. Finding a 2-differential coloring of a graph G is equivalent to
finding a Hamiltonian path of Ḡ.

Given the equivalence between 2-differential coloring and Hamiltonian path, a
number of well known results for Hamiltonian path can immediately be used to
give results on 2-differential coloring.

Theorem 2. (Ore’s Theorem) A graph with more than 2 nodes is Hamiltonian
if, for each pair of non-adjacent nodes, the sum of their degrees is |V | or greater.

Corollary 3. A graph with more than 2 nodes is 2-differential colorable if, for
each pair of adjacent nodes, the sum of their degrees is |V | − 1 or less.
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Theorem 3. (Dirac’s Theorem). A graph with more than 2 nodes is Hamilto-
nian if each node has degree |V |/2 or greater.

Corollary 4. A graph with more than 2 nodes is 2-differential colorable if each
node has degree |V |/2 − 1 or less.

Corollaries 3-4 confirm the intuition that a sparser graph has a better chance
of being more differential colorable.1 The flip side of this intuition is that the
complement graph needs to be denser. For a graph to be k-colorable, the com-
plement graph must be well connected. The next theorem follows from a result
in [12]:

Theorem 4. The complement of a k-differential colorable graph is (k − 1)-
connected.

Given the connection between finding a 2-differential coloring and a Hamiltonian
path, it is not difficult to prove directly that the maximum differential coloring
problem is NP-Complete. An equivalent result was established in 1984 in the
context of the antibandwidth problem [10].

4 Algorithms for Maximum Differential Coloring

Theorem 1 provides a way to check whether a graph is k-differential colorable.
The following kpath algorithm attempts to find a k-Hamiltonian path of Ḡ =
{V, Ē} from a given node i. Before calling kpath the k-Hamiltonian path is
initialized as p = ∅. Each call to kpath recursively tries to add a neighbor to the
last node in the path, and checks that this maintains the k-path condition. If the
condition is violated, the next neighbor is explored, or the algorithm backtracks.
If a k-Hamiltonian path of Ḡ is found by the algorithm, we know that the graph
G is (k + 1)-colorable.

As the exact algorithm requires exponential time, it is impractical for large
graphs, where heuristic algorithms might be a better choice. Gansner et al. [6]
proposed a heuristic based on a relaxation of the discrete MaxMin problem (1)
into a continuous maximization problem of 2-norm:

max
∑

{i,j}∈E

wij(ci − cj)2, subject to
∑
i∈V

c2
i = 1 (2)

where c ∈ R|V |. This continuous problem is solved when c is the eigenvector
corresponding to the largest eigenvalue of the weighted Laplacian of the graph.
Once (2) is solved, the ordering defined by the eigenvector is used as an ap-
proximate solution for the MaxMin problem. This is followed by a greedy re-
finement algorithm which repeatedly swaps pairs of vertices, provided that the
1 Even planar graphs, which have average degree less than 6, may be tough to color

well. Consider a star graph, where one vertex is connected to every other vertex in
the graph. Regardless of the coloring, at least one pair of nodes will have a difference
of at most one, thus showing that dc(G) = 1.
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Input: Ḡ, i, p (initialized to ∅ on first entry)
Output: p
if i ∈ p, or i is not connected with the last k nodes in p then

return ∅;
end
p = p ∪ {i};
if |p| = |V | then

return p;
end
foreach neighbor node j of i do

if kpath(Ḡ, j, p) �= ∅ then
return p;

end

end
p = p − {i};
return ∅;

Algorithm 1. kpath

swap improves the coloring scheme. We call this algorithm GSpectral (Greedy
Spectral). Table 1 gives the chromatic number of some well-known graphs found
by kpath, as well as an estimate of the differential chromatic number obtained
by GSpectral. The exact algorithm kpath can be prohibitively expensive even
for small graphs. For example, on the 60-node football graph (skeleton graph
of a truncated icosahedron), one week of CPU time was not enough to find the
exact differential chromatic number, whereas the greedy spectral algorithm gives
a lower bound of 18 in a few milli-seconds. We note that the GSpectral algo-
rithm often finds good solutions, though it rarely matches the optimal solution.
We also tested GSpectral on larger grid graphs for which the differential chro-
matic number is known; see Section 5. For grid10 and grid20 graph, it gives
an estimate of 30 and 124, and the actual differential chromatic numbers are 45
and 190, respectively. In both case the CPU time for GSpectral is less than 0.1
seconds.

5 Differential Chromatic Numbers of Special Graphs

Theorem 5. A line graph on n nodes has differential chromatic number of
�n/2�. A cycle graph on n nodes has differential chromatic number of �(n−1)/2�.

Proof. Consider a line graph with even number of nodes labeled in order with
n/2+1, 1, n/2+2, 2, . . . , n, n/2; see Fig. 3(top). This labeling is clearly a n/2-
differential coloring and it is easy to show that this is the best possible coloring.
Take any labeling of this graph and consider the node labeled n/2. Regardless of
the labels of its neighbor(s) this node must induce an edge difference of at most
n/2 achieved if the neighbor(s) is labeled n. Hence the differential chromatic
number can not be more than n/2, that is, dc(G) = n/2 = �n/2�. A similar
argument also works when n is odd; see Fig. 3 (bottom).

Now consider a cycle graph with an even number of vertices labeled in order
with 1, n/2+1, 2, n/2+ 2, . . . , n/2, n; see Fig. 4(left). This labeling is clearly
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Table 1. Differential chromatic numbers given by kpath and by GSpectral
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Fig. 3. Optimal coloring of line graphs with 10 and 11 nodes
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Fig. 4. Optimal coloring of ring graphs with 10 and 11 nodes

n/2 − 1 = �(n − 1)/2� differential coloring and no better solution exists. Take
any labeling of this graph and consider the node labeled n/2. Regardless of the
labels of its two neighbors this node must induce an edge difference of at most
n/2 − 1, achieved if the first neighbor is labeled n and the second neighbor is 1
or n − 1. A similar argument also works when n is odd; see Fig. 4 (right). ��
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Fig. 5. Optimal coloring of n × n-grids for even n
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Fig. 6. Optimal grid map coloring (left) and one induced by the largest eigenvector
(right)

Theorem 6. A grid graph of n × n nodes has differential chromatic number
≥ 1

2n(n − 1).

Proof. If n is even, let m = n/2, we can color the grid as shown in Fig. 5.
Due to the symmetries in the numbering scheme, only five labeling differences
are possible: 2m2 − m, 2m2 − 1, 2m2, 2m2 + 1, 2m2 + m. The smallest is
2m2 − m = 1

2n(n − 1). For odd n there is also solution with only four label
differences. ��

It turns out that 1
2n(n − 1) is also an upper bound for the chromatic number of

the n×n grid graph, making this result tight [12]. It is informative to contrast an
optimally colored grid map with a grid map that uses the coloring induced by the
largest eigenvector; see Fig. 6. The eigenvector coloring provides good contrast
between neighboring countries, particularly in the center. This indicates that
GSpectral might ineed be a good practical heuristic for large graphs.

6 Conclusion

In this paper we introduced the maximum differential graph coloring problem
which arises in the context of map coloring. We described exact and heuristic
algorithms for this problem, and considered some special classes of graphs for
which good solutions can be computed. We showed that this problem is related to
that of finding a k-Hamiltonian path. There is also a close relationship between
this problem and the antibandwidth problem.

We note that the results of this paper extend easily to the case when there
are more than |V | colors available: we can augment the graph with the same
number of isolated “dummy” nodes as there are extra colors. We further note
that countries that are not neighbors, but are nevertheless close (e.g., neighbor’s
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neighbor), can also be forced to have distinctive colors by adding additional
edges in the country graph linking these countries.

Throughout our paper we have been assuming that the edge weights in the
country graph are uniform. That is, the importance of having a different color
between any pair of adjacent countries in the map is the same. We would also
like to investigate ways to handle non-uniform weights, where more importance
can be placed on certain countries or certain types of adjacencies (e.g., long vs.
short common borders).
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Abstract. A graph G on n vertices is a k-dot product graph if there are
vectors u1, . . . , un ∈ Rk, one for each vertex of G, such that uT

i uj ≥ 1
if and only if ij ∈ E(G). Fiduccia, Scheinerman, Trenk and Zito (1998)
asked whether every planar graph is a 3-dot product graph. We show
that the answer is “no”. On the other hand, every planar graph is a
4-dot product graph.

1 Introduction and Statement of Results

We study a type of geometric representation of graphs using vectors from Rk

for some k ∈ N. Let G be a graph with n vertices. We say G is a k-dot product
graph if there exist vectors u1, . . . , un ∈ Rk such that uT

i uj ≥ 1 if and only if
ij ∈ E(G). An explicit set of vectors in Rk that exhibits G in this way is called
a k-dot product representation of G. The dot product dimension of G is the least
k such that there is a k-dot product representation of G. (Notice that G can be
trivially represented in R|E(G)|, so that the dot product dimension is finite for
all graphs.)

The well-studied class of threshold graphs coincides with the 1-dot product
graphs; consult the monograph by Mahadev and Peled [6] for a comprehensive
survey of results on these and related structures.

Partially motivated by the striking application by Lovász of a similar geomet-
ric representation to an important problem on Shannon capacity [5], Reiterman,
Rödl and Šiňajová [7,8,9] studied the dot product dimension extensively and
obtained several bounds in terms of threshold dimension, sphericity, chromatic
number, maximum degree, maximum average degree, and maximum comple-
mentary degree; they also detailed various examples. Arriving from a different
direction Fiduccia, Scheinerman, Trenk and Zito [3] also considered dot product
dimension and, for example, analysed bipartite, complete multipartite, and in-
terval graphs. Both Reiterman et al. and Fiduccia et al. proved that every forest
is a 3-dot product graph [8,3].
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Seeing a potential extension to this result, Fiduccia et al. asked whether every
planar graph is a 3-dot product graph. Here we will answer this in the negative
by describing a counterexample. In contrast, we show that any planar graph has
dimension at most 4.

Theorem 1. Every planar graph is a 4-dot product graph, and there exist planar
graphs which are not 3-dot product graphs.

It remains open to characterise which planar graphs have dot product dimension
exactly 4.

The structure of the paper is as follows. In the next section, we develop some
notation and review some spherical geometry. In Section 3, we present our coun-
terexample. We show how every planar graph has a 4-dot product representation
in Section 4.

2 Preliminaries

For u, v ∈ S2, let us denote by [u, v] the (shortest) spherical arc between u and
v. Let distS2(u, v) denote the length of [u, v]. Then one can see that distS2(u, v)
equals the angle between the two vectors u, v ∈ S2. It can thus be expressed as

distS2(u, v) = arccos(vT u).

For r ≥ 0, let the spherical cap of radius r around v ∈ S2 be defined as

cap(v, r) := {u ∈ S2 : distS2(u, v) ≤ r}.

Suppose that u, v, w ∈ S2 are three points on the sphere in general position.
We shall call the union of the three circular arcs [u, v], [v, w], [u, w] a spherical
triangle. Similarly one can define a spherical polygon.

Let us write a := distS2(u, v), b := distS2(u, w), c := distS2(v, w), and let γ
denote the angle between [u, v] and [u, w]. See Figure 1.

γ

c

b

a

u

w

v

Fig. 1. A spherical triangle
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Recall the spherical law of cosines:

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ). (1)

The spherical law of cosines can be rephrased as:

vT w = (uT v) · (uT w) + cos(γ)
√

(1 − (uT v)2)(1 − (uT w)2). (2)

This second form will be more useful for our purposes.

3 Planar Graphs That Are Not 3-Dot Product Graphs

We will construct graphs F, G, H as follows.

(i) We start with K4, the complete graph on the four vertices t1, t2, t3, t4.
(ii) To obtain F , we replace each edge titj of K4 by a path titijtjitj of

length 3.
(iii) An embedding of the graph F divides the plane into four faces. To obtain

G, we place an additional vertex inside each face of F and connect it to all
vertices on the outer cycle of the face. Here, fi will denote the vertex in
the face whose limiting cycle does not contain ti.

(iv) Finally, to obtain H we attach four leaves to each vertex of G.

The graphs G and H are depicted in Figure 2. For k ∈ N, let the graph Hk

consist of k disjoint copies of H . Clearly Hk is planar for all k. In the rest of this
section, we shall prove the following.

Theorem 2. The graph Hk is not a 3-dot product graph, for sufficiently
large k.

f3

f1f2

t31

t13

t41

t21

t42

t23

t32

t3

t34

t43

t2

t24

t4

t12

t14

t1

f4

Fig. 2. The graphs G, H
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Proof of Theorem 2. The proof is by contradiction. Let us assume that every
Hk has a 3-dot product representation. The proof is divided into a number of
intermediate steps. The details of the proofs of Claims 3 through 8 below can
be found in the journal version of this paper.

Claim 3. For every η > 0 there is a 3-dot product representation of H , with
‖u(t)‖ < 1 + η for all t ∈ V (H). ��

Let us fix a small η (say η := 10−10), and let u : V (H) → R3 be the represen-
tation provided by Claim 3. For s ∈ V (H) let us write l(s) := ‖u(s)‖, v(s) :=
u(s)/‖u(s)‖. Let us observe that

st ∈ E(H) if and only if v(s)T v(t) ≥ 1/l(s)l(t).

Recall that G ⊆ H is the subgraph induced by all non-leaf vertices.

Claim 4. For every s ∈ V (G) we have l(s) > 1. ��

Claim 5. Suppose that st, s′t′ ∈ E(G) are edges with s, s′, t, t′ distinct and
suppose that the arcs [v(s), v(t)] and [v(s′), v(t′)] cross. Then at least one of
ss′, st′, ts′, tt′ is also an edge of G. ��

v(t)

v(t′)v(s)

v(s′)

Claim 6. Suppose that s1, s2, s3 form a clique in G, and v(s) lies inside the
(smaller of the two areas defined by the) spherical triangle defined by v(s1),
v(s2), v(s3). Then either s1s ∈ E(G) or s2s ∈ E(G) or s3s ∈ E(G). ��

v(s2)

v(s)
v(s3)

v(s1)

From now on, let us write vi := v(ti), li = l(ti) and vij = v(tij), lij =
l(tij). By Claim 5, the arcs [vij , vji] and [vkl, vlk] do not cross each other (for
{i, j} = {k, l}). However, the arc [vij , vji] could cross an arc of the form [vi, vik]
or [vj , vjk].

Let C denote the cycle t1t12t21t2t23t32t3t31t13t1 in G, and let P denote the
corresponding spherical polygon. Because each circular arc corresponding to an
edge has length at most ρ, we have P ⊆ cap(v1, 5ρ). Also note that S2\P consists
of at least two path-connected components (by the Jordan Curve Theorem). As
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ρ is small, exactly one of these components has area > 3.9π. We shall refer to
this component as the “outside” of P , and the union of the other components
we will call the “inside”.

Claim 7. We can assume without loss of generality that v4 lies inside the poly-
gon P . ��

v13

v12 v1

v21

v23
v2v4

v31

v3

v32

Claim 8. v4 lies inside the spherical triangle defined by v(f4) and two consec-
utive points on P . ��

v(f4)

v(t4)

v(s2)

v(s1)

Since f4, s1, s2 form a triangle in G, Claim 6 implies that t4 must be adjacent to
at least one of them. This is a contradiction, since t4 is neither adjacent to f4
nor to any vertex of C. This completes the proof of Theorem 2. ��

4 All Planar Graphs Are 4-Dot Product Graphs

The Colin de Verdière parameter μ(G) of a graph G is the maximum co-rank
over all matrices M that satisfy

(i) Mij < 0 if ij ∈ E(G);
(ii) Mij = 0 if ij ∈ E(G) and i = j;
(iii) M has exactly one negative eigenvalue;
(iv) if X is symmetric with Xij = 0 for all ij ∈ E(G) and Xii = 0, for all i, and

MX = 0, then we must have X = 0.

This parameter was introduced Y. Colin de Verdiére in [1,2], where it is shown
that planar graphs are exactly the graphs G with μ(G) ≤ 3.

Kotlov, Lovasz and Vempala [4] introduced the following related parameter.
Let ν(G) denote the smallest d such that there exist vectors u1, . . . , un ∈ Rd

that satisfy

(i) uT
i uj = 1 if ij ∈ E(G);

(ii) uT
i uj < 1 if ij ∈ E(G) and i = j;
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(iii) if X is a symmetric n × n matrix such that Xij = 0 for all ij ∈ E(G) and
Xii = 0 for all i, and

∑
j Xijuj = 0 for all i, then X = 0.

Clearly, every graph G is a ν(G)-dot product graph. However, because (i) asks
for equality and because of the extra demand (iii), G might also be a k-dot
product graph for some k < ν(G). The relation between ν(G) and μ(G) is given
by the following result.

Theorem 9 ([4]). If G = K2 then ν(G) = n − 1 − μ(G).

That K2 is a 4-dot product graph is obvious. That every other planar graph is
a 4-dot product graph is a direct consequence of Theorem 9 and the following
result.

Theorem 10 ([4]). If G is the complement of a planar graph then μ(G) ≥ n−5.
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with Few Slopes
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Abstract. We settle a problem of Dujmović, Eppstein, Suderman, and
Wood by showing that there exists a function f with the property that
every planar graph G with maximum degree d admits a drawing with
noncrossing straight-line edges, using at most f(d) different slopes. If we
allow the edges to be represented by polygonal paths with one bend,
then 2d slopes suffice. Allowing two bends per edge, every planar graph
with maximum degree d ≥ 3 can be drawn using segments of at most
�d/2	 different slopes. There is only one exception: the graph formed by
the edges of an octahedron is 4-regular, yet it requires 3 slopes. These
bounds cannot be improved.

Keywords: Graph drawing, Slope number, Planar graphs.

1 Introduction

A planar layout of a graph G is called a drawing if the vertices of G are repre-
sented by distinct points in the plane and every edge is represented by a contin-
uous arc connecting the corresponding pair of points and not passing through
any other point representing a vertex [3]. If it leads to no confusion, in notation
and terminology we make no distinction between a vertex and the corresponding
point and between an edge and the corresponding arc. If the edges are repre-
sented by line segments, the drawing is called a straight-line drawing. The slope
of an edge in a straight-line drawing is the slope of the corresponding segment.

In this paper, we will be concerned with drawings of planar graphs. Unless it
is stated otherwise, all drawings will be noncrossing, that is, no two arcs that
represent different edges have an interior point in common.

Every planar graph admits a straight-line drawing [9]. From the practical and
aesthetical point of view, it makes sense to minimize the number of slopes we
use [23]. The planar slope number of a planar graph G is the smallest number
s with the property that G has a straight-line drawing with edges of at most s
distinct slopes. If G has a vertex of degree d, then its planar slope number is
at least �d/2�, because in a straight-line drawing no two edges are allowed to
overlap.

Dujmović, Eppstein, Suderman, and Wood [4] raised the question whether
there exists a function f with the property that the planar slope number of
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every planar graph with maximum degree d can be bounded from above by f(d).
Jelinek et al. [13] have shown that the answer is yes for outerplanar graphs, that
is, for planar graphs that can be drawn so that all of their vertices lie on the
outer face. In Section 2, we answer this question in full generality. We prove the
following.

Theorem 1. Every planar graph with maximum degree d admits a straight-line
drawing, using segments of O(d2(3 + 2

√
3)12d) ≤ Kd distinct slopes.

The proof is based on a paper of Malitz and Papakostas [18], who used Koebe’s
theorem [14] on disk representations of planar graphs to prove the existence of
drawings with relatively large angular resolution. As the proof of Malitz and
Papakostas, our argument is nonconstructive; it only yields a nondeterministic
algorithm with running time O(dn).

For d = 3, much stronger results are known than the one given by our theorem.
Dujmović at al. [4] showed that every planar graph with maximum degree 3
admits a straight-line drawing using at most 3 different slopes, except for at
most 3 edges of the outer face, which may require 3 additional slopes. This
complements Ungar’s old theorem [22], according to which 3-regular, 4-edge-
connected planar graphs require only 2 slopes and 4 extra edges.

The exponential upper bound in Theorem 1 is probably far from being op-
timal. However, we were unable to give any superlinear lower bound for the
largest planar slope number of a planar graph with maximum degree d. The
best constructions we are aware of are presented in Section 4.

It is perhaps somewhat surprising that if we do not restrict our attention
to planar graphs, then no result similar to Theorem 1 holds. For every d ≥ 5,
Barát, Matoušek, and Wood [1] and, independently, Pach and Pálvölgyi [20]
constructed graphs with maximum degree d with the property that no matter
how we draw them in the plane with (possibly crossing) straight-line edges, we
must use an arbitrarily large number of slopes. (See also [5].) The case d ≤ 3
is different: Keszegh et al. [15] proved that every graph with maximum degree
3 can be drawn with 5 slopes. Moreover, Mukkamala and Szegedy [19] showed
that 4 slopes suffice if the graph is connected. The case d = 4 remains open.

Returning to planar graphs, we show that significantly fewer slopes are suf-
ficient if we are allowed to represent the edges by short noncrossing polygonal
paths. If such a path consists of k+1 segments, we say that the edge is drawn by
k bends. If we allow one bend per edge, then every planar graph can be drawn
using segments with O(d) slopes. The proof of Theorem 2 is based on a result of
Fraysseix et al. [10], according to which every planar graph can be represented
as a contact graph of T -shapes. See the full version of this paper for details.

Theorem 2. Every planar graph G with maximum degree d can be drawn with
at most 1 bend per edge, using at most 2d slopes.

Allowing two bends per edge yields an optimal result: almost all planar graphs
with maximum degree d can be drawn with �d/2� slopes. In Section 3, we
establish
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Theorem 3. Every planar graph G with maximum degree d ≥ 3 can be drawn
with at most 2 bends per edge, using segments of at most �d/2� distinct slopes.
The only exception is the graph formed by the edges of an octahedron, which is
4-regular, but requires 3 slopes. These bounds are best possible.

It follows from the proof of Theorem 3 that in the cyclic order of directions,
the slopes of the edges incident to any given vertex form a contiguous interval.
Moreover, the �d/2� directions we use can be chosen to be equally spaced in
[0, 2π). We were unable to guarantee such a nice property in Theorem 2: even
for a fixed d, as the number of vertices increases, the smallest difference between
the 2d − 2 slopes we used tends to zero. We suspect that this property is only
an unpleasant artifact of our proof technique.

2 Straight-Line Drawings–Proof of Theorem 1

Note that it is sufficient to prove the theorem for triangulated planar graphs,
because any planar graph can be triangulated by adding vertices and edges so
that the degree of each vertex increases only by a factor of at most three [21],
so at the end we will lose this factor.

We need the following result from [18], which is not displayed as a theorem
there, but is stated right above Theorem 2.2.

Lemma 1. (Malitz-Papakostas) The vertices of any triangulated planar graph
G with maximum degree d can be represented by nonoverlapping disks in the
plane so that two disks are tangent to each other if and only if the corresponding
vertices are adjacent, and the ratio of the radii of any two disks that are tangent
to each other is at least αd−2, where α = 1

3+2
√

3
≈ 0.15.

Lemma 1 can be established by taking any representation of the vertices of G
by tangent disks, as guaranteed by Koebe’s theorem, and applying a conformal
mapping to the plane that takes the disks corresponding to the three vertices
of the outer face to disks of the same radii. The lemma now follows by the
observation that any internal disk is surrounded by a ring of at most d mutually
touching disks, and the radius of none of them can be much smaller than that
of the central disk.

The idea of the proof of Theorem 1 is as follows. Let G be a triangulated
planar graph with maximum degree d, and denote its vertices by v1, v2, . . ..
Consider a disk representation of G meeting the requirements of Lemma 1. Let
Di denote the disk that represents vi, and let Oi be the center of Di. By properly
scaling the picture if necessary, we can assume without loss of generality that
the radius of the smallest disk Di is sufficiently large. Place an integer grid on
the plane, and replace each center Oi by the nearest grid point. Connecting the
corresponding pairs of grid points by segments, we obtain a straight-line drawing
of G. The advantage of using a grid is that in this way we have control of the
slopes of the edges. The trouble is that the size of the grid, and thus the number
of slopes used, is very large. Therefore, in the neighborhood of each disk Di, we
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Fig. 1. Straight-line graph from disk representation

use a portion of a grid whose side length is proportional to the radius of the
disk. These grids will nicely fit together, and each edge will connect two nearby
points belonging to grids of comparable sizes. Hence, the number of slopes used
will be bounded. See Figure 1.

Now we work out the details. Let ri denote the radius of Di (i = 1, 2 . . .), and
suppose without loss of generality that r∗, the radius of the smallest disk is

r∗ = miniri =
√

2/αd−2 > 1,

where α denotes the same constant as in Lemma 1.
Let si = �logd(ri/r∗)� ≥ 0, and represent each vertex vi by the integer point

nearest to Oi such that both of its coordinates are divisible by dsi . (Taking
a coordinate system in general position, we can make sure that this point is
unique.) For simplicity, the point representing vi will also be denoted by vi.
Obviously, we have that the distance between Oi and vi satisfies

Oivi <
dsi

√
2
.

Since the centers Oi of the disks induce a (crossing-free) straight-line drawing of
G, in order to prove that moving the vertices to vi does not create a crossing, it
is sufficient to verify the following statement.

Lemma 2. For any three mutually adjacent vertices, vi, vj , vk in G, the orien-
tation of the triangles OiOjOk and vivjvk are the same.
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Proof. By Lemma 1, the ratio between the radii of any two adjacent disks is at
least αd−2. Suppose without loss of generality that ri ≥ rj ≥ rk ≥ αd−2ri. For
the orientation to change, at least one of Oivi, Ojvj , or Okvk must be at least
half of the smallest altitude of the triangle OiOjOk, which is at least rk

2 .
On the other hand, as we have seen before, each of these numbers is smaller

than
dsi

√
2

≤ ri/r∗√
2

=
αd−2ri

2
≤ rk

2

which completes the proof.

Now we are ready to complete the proof of Theorem 1. Take an edge vivj of G,
with ri ≥ rj ≥ αd−2ri. The length of this edge can be bounded from above by

vivj ≤ OiOj + Oivi + Ojvj ≤ ri + rj +
dsi

√
2

+
dsj

√
2

≤ 2ri +
√

2dsi ≤ 2ri +
√

2ri/r∗

≤ ri/r∗(2r∗ +
√

2) ≤ rj/r∗

αd−2 (2r∗ +
√

2) <
dsj+1

αd−2 (
2
√

2
αd−2 +

√
2).

According to our construction, the coordinates of vj are integers divisible by dsj ,
and the coordinates of vi are integers divisible by dsi ≥ dsj , thus also by dsj .

Thus, shrinking the edge vivj by a factor of dsj , we obtain a segment whose
endpoints are integer points at a distance at most d

αd−2 ( 2
√

2
αd−2 +

√
2). Denoting

this number by R(d), we obtain that the number of possible slopes for vivj ,
and hence for any other edge in the embedding, cannot exceed the number of
integer points in a disk of radius R(d) around the origin. Thus, the planar slope
number of any triangulated planar graph of maximum degree d is at most roughly
R2(d)π = O(d2/α4d), which completes the proof. �
Our proof is based on the result of Malitz and Papakostas that does not have
an algorithmic version. However, with some reverse engineering, we can obtain a
nondeterministic algorithm for drawing a triangulated planar graph of bounded
degree with a bounded number of slopes. Because of the enormous constants
in our expressions, this algorithm is only of theoretical interest. Here is a brief
sketch.

Nondeterministic algorithm. First, we guess the three vertices of the outer face
and their coordinates in the grid scaled according to their radii. Then embed
the remaining vertices one by one. For each vertex, we guess the radius of the
corresponding disk as well as its coordinates in the proportionally scaled grid.
This algorithm runs in nondeterministic O(dn) time.

3 Two Bends per Edge–Proof of Theorem 3

In this section, we draw the edges of a planar graph by polygonal paths with at
most two bends. Our aim is to establish Theorem 3.

Note that the statement is trivially true for d = 1 and is false for d = 2. It
is sufficient to prove Theorem 3 for even values of d. For d = 4, the assertion
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was first proved by Liu et al. [17] and later, independently, by Biedl and Kant
[2] (also that the only exception is the octahedral graph). The latter approach
is based on the notion of st-ordering of biconnected (2-connected) graphs from
Lempel et al. [16]. We will show that this method generalizes to higher values
of d ≥ 5. As it is sufficient to prove the statement for even values of d, from
now on we suppose that d ≥ 6 even. We will argue that it is enough to consider
biconnected graphs. Then we review some crucial claims from [2] that will enable
us to complete the proof. We start with some notation.

Take d ≥ 5 lines that can be obtained from a vertical line by clockwise rotation
by 0, π/d, 2π/d, . . . , (d − 1)π/d degrees. Their slopes are called the d regular
slopes. We will use these slopes to draw G. Since these slopes depend only on d
and not on G, it is enough to prove the theorem for connected graphs. If a graph
is not connected, its components can be drawn separately.

In this section we always use the term “slope” to mean a regular slope. The
directed slope of a directed line or segment is defined as the angle (mod 2π) of
a clockwise rotation that takes it to a position parallel to the upward directed
y-axis. Thus, if the directed slopes of two segments differ by π, then they have
the same slope. We say that the slopes of the segments incident to a point p form
a contiguous interval if the set S ⊂ {0, π/d, 2π/d, . . . , (2d − 1)π/d} of directed
slopes of the segments directed away from p, has the property that for all but at
most one α ∈ S, we have that α+π/dmod2π ∈ S (see Figure 3). Finally, we say
that G admits a good drawing if G has a planar drawing such that every edge
has at most 2 bends, every segment of every edge has one of the �d/2� regular
slopes, and the slopes of the segments incident to any vertex form a contiguous
interval. To prove Theorem 3, we show by induction that every planar graph
with maximum degree d admits a good drawing.

Lemma 3. Let G be a connected planar graph of maximum degree d, let t ∈
V (G) be a vertex whose degree is strictly smaller than d, and let v ∈ V (G) be a
cut vertex. Suppose that for any connected planar graph G′ of maximum degree
d, which has fewer than |V (G)| vertices, and for any vertex t′ ∈ V (G′) whose
degree is strictly smaller than d, there is a good drawing of G′ with t′ on its outer
face. Then G also admits a good drawing with t on its outer face.

Proof. Let G1, G2, . . . denote the connected components of the graph obtained
from G after the removal of the cut vertex v, and let G∗

i be the subgraph of G
induced by V (Gi)∪{v}. If t = v is a cut vertex, then each G∗

i has a good drawing
with t = v on its outer face. After performing a suitable rotation and scaling
for each of these drawings, and identifying their vertices corresponding to v, the
lemma follows because the slopes of the segments incident to v form a contiguous
interval in each component. If t = v, then let Gj be the component containing
t. Using the hypothesis, G∗

j has a good drawing with t on its outer face. Also,
each G∗

i for i ≥ 2 has a good drawing with v on its outer face. As in the previous
case, the lemma follows by scaling down and rotating the components for i = j
and again identifying the vertices corresponding to v.
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In view of Lemma 3, in the sequel we consider only biconnected graphs. We need
the following definition.

Definition 1. An ordering of the vertices of a graph, v1, v2, . . . , vn, is said to
be an st-ordering if v1 = s, vn = t, and if for every 1 < i < n the vertex vi has
at least one neighbor that precedes it and a neighbor that follows it.

In [16], it was shown that any biconnected graph has an st-ordering, for any
choice of the vertices s and t. In [2], this result was slightly strengthened for
planar graphs, as follows.

Lemma 4. (Biedl-Kant) Let DG be a drawing of a biconnected planar graph,
G, with vertices s and t on the outer face. Then G has an st-ordering for which
s = v1, t = vn and v2 is also a vertex of the outer face and v1v2 is an edge of
the outer face.

We define Gi to be the subgraph of G induced by the vertices v1, v2, . . . , vi.
Note that Gi is connected. If i is fixed, we call the edges between V (Gi) and
V (G) \V (Gi) the pending edges. For a drawing of G, DG, we denote by DGi the
drawing restricted to Gi and to an initial part of each pending edge connected
to Gi.

Proposition 1. In the drawing DG guaranteed by Lemma 4, vi+1, . . . vn and the
pending edges are in the outer face of DGi .

Proof. Suppose for contradiction that for some i and j > i, vj is not in the
outer face of DGi . We know that vn is in the outer face of DGi as it is on the
outer face of DG, thus vn and vj are in different faces of DGi . On the other
hand, by the definition of st-ordering, there is a path in G between vj and vn

using only vertices from V (G) \V (Gi). The drawing of this path in DG must lie
completely in one face of DGi . Thus, vj and vn must also lie in the same face, a
contradiction. Since the pending edges connect V (Gi) and V (G) \ V (Gi), they
must also lie in the outer face.

By Lemma 4, the edge v1v2 lies on the boundary of the outer face of DGi , for any
i ≥ 2. Thus, we can order the pending edges connecting V (Gi) and V (G)\V (Gi)
by walking in DG from v1 to v2 around DGi on the side that does not consist
of only the v1v2 edge, see Figure 2(a). We call this the pending-order of the
pending edges between V (Gi) and V (G) \ V (Gi) (this order may depend on
DG). Proposition 1 implies

Proposition 2. The edges connecting vi+1 to vertices preceding it form an in-
terval of consecutive elements in the pending-order of the edges between V (Gi)
and V (G) \ V (Gi).

For an illustration see Figure 2(a).
Two drawings of the same graph are said to be equivalent if the circular order

of the edges incident to each vertex is the same in both drawings. Note that
in this order we also include the pending edges (which are differentiated with
respect to their yet not drawn end).

Now we are ready to prove Theorem 3.
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Fig. 2. Properties of the st-ordering
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(b) Adding vi; partial edges added in
this step are drawn with dashed lines

Fig. 3. Drawing with at most two bends

Lemma 5. For any biconnected planar graph G with maximum degree d ≥ 6
and for any vertex t ∈ V (G) with degree strictly less then d, G admits a good
drawing with t on its outer face.

For d ≥ 6, it follows from Euler’s polyhedral formula that G has a vertex t of
degree at most 5 < d. Thus, Theorem 3 is a direct consequence of the lemma.

Proof (Proof of Theorem 3.). Take a planar drawing DG of G such that t is on
the outer face and pick another vertex, s, from the outer face. Apply Lemma 4
to obtain an st-ordering with v1 = s, v2, and vn = t on the outer face of DG
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such that v1v2 is an edge of the outer face. We will build up a good drawing of
G by starting with v1 and then adding v2, v3, . . . , vn one by one to the outer face
of the current drawing. As soon as we add a new vertex vi, we also draw the
initial pieces of the pending edges, and we make sure that the resulting drawing
is equivalent to the drawing DGi .

Another property of the good drawing that we maintain is that every edge
consists of precisely three pieces. (Actually, an edge may consist of fewer than
3 segments, because two consecutive pieces are allowed to have the same slope
and form a longer segment) The middle piece will always be vertical, except for
the middle piece of v1v2.

Suppose without loss of generality that v1 follows directly after v2 in the clock-
wise order of the vertices around the outer face of DG. Place v1 and v2 arbitrarily
in the plane so that the x–coordinate of v1 is smaller than the x–coordinate of
v2. Connect v1 and v2 by an edge consisting of three segments: the segments in-
cident to v1 and v2 are vertical and lie below them, while the middle segment has
an arbitrary non-vertical regular slope. Draw a horizontal auxiliary line l2 above
v1 and v2. Next, draw the initial pieces of the other (pending) edges incident to
v1 and v2, as follows. For i = 1, 2, draw a short segment from vi for each of the
edges incident to it (except for the edge v1v2, which has already been drawn) so
that the directed slopes of the edges (including v1v2) form a contiguous interval
and their circular order is the same as in DG. Each of these short segments will
be followed by a vertical segment that reaches above l2. These vertical segments
will belong to the middle pieces of the corresponding pending edges. Clearly, for
a proper choice of the lengths of the short segments, no crossings will be created
during this procedure. So far this drawing, including the partially drawn pending
edges between V (G2) and V (G)\V (G2), will be equivalent to the drawing DG2 .
As the algorithm progresses, the vertical segments will be further extended above
l2, to form the middle segments of the corresponding edges. For an illustration,
see Figure 3(a).

The remaining vertices vi, i > 2, will be added to the drawing one by one,
while maintaining the property that the drawing is equivalent to DGi and that
the pending-order of the actual pending edges coincides with the order in which
their vertical pieces reach the auxiliary line li. At the beginning of step i + 1,
these conditions are obviously satisfied. Now we show how to place vi+1.

Consider the set X of intersection points of the vertical (middle) pieces of
all pending edges between V (Gi) and V (G) \ V (Gi) with the auxiliary line li.
By Proposition 2, the intersection points corresponding to the pending edges
incident to vi+1 must be consecutive elements of X . Let m be (one of) the
median element(s) of X . Place vi+1 at a point above m, so that the x-coordinates
of vi+1 and m coincide, and connect it to m. (In this way, the corresponding
edge has only one bend, because its second and third piece are both vertical.)
We also connect vi+1 to the upper endpoints of the appropriately extended
vertical segments passing through the remaining elements of X , so that the
directed slopes of the segments leaving vi+1 form a contiguous interval of regular
slopes. For an illustration see Figure 3(b). Observe that this step can always be
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performed, because, by the definition of st-orderings, the number of edges leaving
vi+1 is strictly smaller than d. This is not necessarily true in the last step, but
then we have vn = t, and we assumed that the degree of t was smaller than d. To
complete this step, draw a horizontal auxiliary line li+1 above vi+1 and extend
the vertical portions of those pending edges between V (Gi) and V (G) \ V (Gi)
that were not incident to vi+1 until they hit the line li+1. (These edges remain
pending in the next step.) Finally, in a small vicinity of vi+1, draw as many
short segments from vi+1 using the remaining directed slopes as many pending
edges connect vi+1 to V (G) \ V (Gi+1). Make sure that the directed slopes used
at vi+1 form a contiguous interval and the circular order is the same as in DG.
Continue each of these short segments by adding a vertical piece that hits the
line li+1. The resulting drawing, including the partially drawn pending edges, is
equivalent to DGi+1.

In the final step, we place vn and we obtain a drawing that meets the re-
quiremenets.

4 Lower Bounds

In this section, we construct a sequence of planar graphs, providing a nontrivial
lower bound for the planar slope number of bounded degree planar graphs. They
also require more than the trivial number (�d/2�) slopes, even if we allow one
bend per edge. Remember that if we allow two bends per edge, then, by Theorem
3, for all graphs with maximum degree d ≥ 3, except for the octahedral graph,
�d/2� slopes are sufficient, which bound is optimal.

Theorem 4. For any d ≥ 3, there exists a planar graph Gd with maximum
degree d, whose planar slope number is at least 3d− 6. In addition, any drawing
of Gd with at most one bend per edge requires at least 3

4 (d − 1) slopes.

Proof. The construction of the graph Gd is as follows. Start with a graph of 6
vertices, consisting of two triangles, abc and a′b′c′, connected by the edges aa′,
bb′, and cc′ (see Figure 4(a)). Add to this graph a cycle C of length 3(d − 3),
and connect d − 3 consecutive vertices of C to a, the next d − 3 of them to b,
and the remaining d − 3 to c. Analogously, add a cycle C′ of length 3(d − 3),
and connect one third of its vertices to a′, one third to b′, one third to c′. In the
resulting graph, Gd, the maximum degree of the vertices is d.

In any crossing-free drawing of Gd, either C lies inside the triangle abc or C′

lies inside the triangle a′b′c′. Assume by symmetry that C lies inside abc, as in
Figure 4(a).

If the edges are represented by straight-line segments, the slopes of the edges
incident to a, b, and c are all different, except that aa′, bb′, and cc′ may have the
same slope as some other edge. Thus, the number of different slopes used by any
straight-line drawing of Gd is at least 3d − 6.

Suppose now that the edges of Gd are represented by polygonal paths with at
most one bend per edge. Assume, for simplicity, that every edge of the triangle
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a

b c

a′

b′ c′

(a) A straight line drawing of G6

b

a

c

(b) At most four segments
starting from a, b, c can use
the same slope in a draw-
ing of Gd with one bend per
edge

Fig. 4. Lower bounds

abc is represented by a path with exactly one bend (otherwise, an analogous
argument gives an even better result). Consider the 3(d − 3) polygonal paths
connecting a, b, and c to the vertices of the cycle C. Each of these paths has a
segment incident to a, b, or c. Let S denote the set of these segments, together
with the 6 segments of the paths representing the edges of the triangle abc.

We claim that the number of segments in S with any given slope is at most 4.
The sum of the degrees of any polygon on k vertices is (k − 2)π. Every direction
is covered by exactly k − 2 angles of a k-gon (counting each side 1/2 times at its
endpoints). Thus, if we take every other angle of a hexagon, then, even including
its sides, every direction is covered at most 4 times (See Figure 4(b)).

The claim now implies that for any drawing of G with at most one bend per
edge, we need at least (3(d − 3) + 6)/4 = 3

4 (d − 1) different slopes.
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Abstract. We study the complexity of the problem of finding non-
planar rectilinear drawings of graphs. This problem is known to be NP-
complete. We consider natural restrictions of this problem where con-
straints are placed on the possible orientations of edges. In particular,
we show that if each edge has prescribed direction “left”, “right”, “down”
or “up”, the problem of finding a rectilinear drawing is polynomial, while
finding such a drawing with the minimum area is NP-complete. When
assigned directions are “horizontal” or “vertical” or a cyclic order of the
edges at each vertex is specified, the problem is NP-complete. We show
that these two NP-complete cases are fixed parameter tractable in the
number of vertices of degree 3 or 4.

1 Introduction

In this paper, we study the rectilinear (or bendless orthogonal) drawing of
graphs, where each edge is drawn either as a horizontal or vertical line segment.
Such drawings are important for various applications such as VLSI circuit de-
sign, entity-relationship diagrams for databases, flow chart drawings in software
engineering, and subway-map design. This work is also motivated by the increas-
ing research interest in RAC (Right Angle Crossing) drawing [1,7]. Note that a
rectilinear drawing of a graph is a RAC-drawing with the additional property
that the angles between adjacent incident edges around a vertex are multiples
of π/2.

Formally, a rectilinear drawing/embedding of a graph G = (V, E) is the pair of
mappings x, y : V → Z, where x(u) and y(u) represent the x and y coordinates
of vertex u on the rectangular grid, such that each edge {u, v} ∈ E is mapped
to endpoints of a horizontal or vertical line segment that does not contain any
other mapped vertices but its endpoints u and v. Observe that if the maximum
degree of G is larger than 4, then it does not have a rectilinear drawing. Such a
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drawing/embedding is called planar if none of embedded edges cross; otherwise,
it is called non-planar. We remark here that all embedded edges are straight,
and thus do not contain any bends.

There are several variants of the rectilinear drawing problem which put re-
strictions on how each edge is drawn. The most studied is the following variant.
Associated with the input graph G is a function λ which assigns each oriented
edge �e = (u, v) ∈ �E of G one of the following four labels: L, R, D, and U, where
λ(u, v) = L (R) means edge �e should be drawn horizontally to the left (right)
of the source vertex u, and λ(u, v) = D (U) means edge �e should be drawn
vertically below (above) the source vertex u. A graph with edges labeled in this
way will be called an LRDU-restricted graph and is specified as G = (V, E, λ).
An HV-restricted graph G = (V, E, λ) is a graph with each of its oriented edges
�e = (u, v) labeled with H or V. An edge �e = (u, v) labeled with λ(u, v) = H
should be drawn on the plane horizontally; whereas an edge labeled λ(u, v) = V
should be drawn vertically. Furthermore, we also consider a different kind of
restriction on the edges of the input graph, in which the cyclic ordering of the
incident edges around each vertex is fixed in every rectilinear drawing of this
graph. Such graphs will be called cyclic-restricted. Cyclic-restricted graphs with
a planar embedding are exactly the so-called graphs with a fixed embedding.
On the other hand, a fixed cyclic ordering of edges around a vertex is an impor-
tant constraint in the definition of a fixed embedding condition for a non-planar
graph [1]. This motivates us to investigate rectilinear drawings of such a kind of
graphs. A graph with no restriction on the edges will be called unrestricted.

Planar rectilinear drawings have been extensively investigated in the literature
of graph drawing. Garg and Tamassia [5] showed that deciding whether a graph
is rectilinear planar is NP-complete. However, there are efficient algorithms, in
fact linear-time algorithms, to find (construct) planar rectilinear drawings of
plane graphs of maximum vertex degree three [13], subdivisions of planar tricon-
nected cubic graphs [11], and series-parallel graphs of maximum vertex degree
three [12]. These algorithms apply to unrestricted graphs. Some other research
also considered the restricted variants. Vijayan and Wigderson [14] present a
linear-time decision algorithm and a O(n2)-time algorithm for finding a planar
rectilinear drawing of an LRDU-restricted graph. Following this work, Hoffman
and Kriegel [6] present an improved linear-time algorithm that finds such a draw-
ing. However, Patrignani [10] showed that it is NP-complete to find a planar
rectilinear drawing with minimum area for an LRDU-restricted graph. Recently,
Eppstein [3] investigated the rectilinear drawing problem in three dimensions,
and showed that it is NP-complete to determine whether an unrestricted graph
has a rectilinear drawing with the constraint that at most two vertices lie on the
same axis-parallel line.

On the other hand, non-planar rectilinear drawing has not been so well stud-
ied. Formann et al. [4] showed that it is NP-hard to decide whether a graph of
maximum vertex degree 4 has a straight-line drawing with angular resolution π

2 .
This is equivalent to say that it is NP-hard to decide whether there is a draw-
ing/embedding of an unrestricted graph. Further, Eades, Hong and Poon [2]
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showed that the problem is NP-hard even for an unrestricted graph consisting of
4-cycle blocks connected by single edges. In this paper, we investigate variants
of the existence and the area-minimization problems of non-planar rectilinear
drawings of given graphs. In particular, we show that the problem of deciding
whether an LRDU-restricted graph has a rectilinear drawing (and finding such
a drawing) is polynomial (Section 2.3), while the problem is NP-complete for
HV-restricted graphs (Section 2.1) and cyclic-restricted graphs (Section 2.2).
We then show that the NP-complete cases are fixed parameter tractable (FPT)
in the number of vertices of degree 3 or 4 (Section 2.4). In addition, we show
that finding a rectilinear drawing of an LRDU-restricted graph with minimum
area is NP-complete as well (Section 3.1). The following table summarizes these
results (the results marked with * follow immediately from the NP-completeness
of the existence version):

Input Graph Existence Area-minimization

unrestricted NP-c ([4]) FPT (Th. 4) NP-c∗

HV-restricted NP-c (Th. 1) FPT (Th. 4) NP-c∗

cyclic-restricted NP-c (Th. 2) FPT (Th. 4) NP-c∗

LRDU-restricted P (Th. 3) NP-c (Th. 5)

2 Existence of Rectilinear Drawings

2.1 Rectilinear Drawings of HV-Restricted Graphs

Theorem 1. Given an HV-restricted graph G, the problem of deciding if G has
a rectilinear drawing is NP-complete.

Proof. It is clear that this problem is in NP. We show it is NP-hard by a re-
duction from the Betweenness (BTW) problem, proved to be NP-complete by
Opatrny [8]. The input for the BTW problem is a set S = {1, . . . , n} and set of
triples ti = (ti,1, ti,2, ti,3) ∈ S3 for i ∈ {1, . . . , k}, and the problem is to determine
if there is an injective mapping f : S → Z on the elements S, such that for every
i ∈ {1, . . . , k}, either f(ti,1) < f(ti,2) < f(ti,3) or f(ti,3) < f(ti,2) < f(ti,1).

Given an instance I of the BTW problem we construct an HV-restricted graph
G = (V, E, λ) on the following 3k vertices: for i ∈ {1, . . . , k} and every triple
ti = (ti,1, ti,2, ti,3) ∈ S3, we add the corresponding vertices vi,1, vi,2 and vi,3. The
idea of the construction is that the x-coordinates of the vertices of any rectilinear
drawing x, y of G will correspond to values of their corresponding elements of S
assigned by a solution f . The goal is then to add edges to the graph in such a
way that (i) each triple constraint is enforced and that (ii) for every s ∈ S, the
set Vs = {vi,j | ti,j = s} of vertices in G that correspond to s are all assigned to
the same x-coordinate.

To ensure (i), for i ∈ {1, . . . , k}, for the set of vertices vi,1, vi,2, vi,3 corre-
sponding to each triple ti we set λ(vi,1, vi,2) = λ(vi,2, vi,3) = H. This ensures
that for every rectilinear drawing x, y of G, that x(vi,2) is between x(vi,1) and
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v1,1 v1,2 v1,3

v2,1v2,2 v2,3

v3,1 v3,2v3,3

v4,1v4,2 v4,3

1 2 3 4 5

(a)

v1,1 v1,2 v1,3

v2,1v2,2v2,3

v3,1v3,2v3,3

v4,1 v4,2 v4,3

12 34 5

(b)

Fig. 1. (a) The input graph constructed for the instance of the BTW problem with
triples (2, 4, 5), (3, 1, 4), (3, 5, 1) and (2, 1, 3). The dashed lines represent edges labeled
with V. (b) Rectilinear drawing of this graph corresponding to the solution f(2) <
f(4) < f(1) < f(5) < f(3) of this instance.

x(vi,3). Now to ensure (ii), for every s ∈ S, let vi1,j1 , vi2,j2 , . . . , vip,jp be the ele-
ments of Vs ordered such that i1 < i2 < · · · < ip. For � ∈ {1, . . . , p − 1}, we set
λ(vi�,j�

, vi�+1,j�+1) = V. This path containing vertical edges through the set Vs

ensures that they have the same x-coordinate for every rectilinear drawing x, y
of G. An example of a graph constructed for an instance of the BTW problem
is shown in Figure 1(a). Figure 1(b) shows a rectilinear drawing of this graph.
We now show that instance I has a solution if and only if G has a rectilinear
drawing.

If I has a solution f , then we draw G as follows. The x-coordinates of vertices
in V are set according to the injective mapping f and y-coordinates are set
according to the order on the triples: x(vi,j) = f(ti,j) and y(vi,j) = i. Obviously,
the pair x, y satisfies all restrictions on edges. To show that it is a rectilinear
drawing, we need the following lemma. For any v ∈ V , we denote (x, y)(v) =
(x(v), y(v)).

Lemma 1. For edge {vi,j , vi′,j′} ∈ E, there is no vertex vi′′,j′′ ∈ V \{vi,j , vi′,j′}
such that (x, y)(vi′′ ,j′′) lies on the line segment L = [(x, y)(vi,j), (x, y)(vi′ ,j′)].

Proof. Assume for contradiction that the image of vertex vi′′,j′′ ∈ V \{vi,j, vi′,j′}
lies on line segment L. If λ(vi,j , vi′,j′) = H, then i = y(vi,j) = y(vi′,j′) = i′ and
j = j′ ± 1. Since (x, y)(vi′′,j′′) lies on L, we have i′′ = y(vi′′,j′′) = i = i′,
i.e., ti,j , ti′,j′ and ti′′,j′′ are from the same triple ti, i.e., {j, j′, j′′} = {1, 2, 3}.
Furthermore, x(vi′′,j′′) = f(ti′′,j′′) is between x(vi,j) = f(ti,j) and x(vi′,j′) =
f(ti′,j′). Hence, j′′ = 2 which contradicts the fact that j = j′ ± 1.

If λ(vi,j , vi′,j′) = V, then we have ti,j = ti′,j′ = s and vi,j , vi′,j′ ∈ Vs. Since
(x, y)(vi′′,j′′ ) lies on L, f(ti′′,j′′) = f(s). Since f is injective, ti′′,j′′ = s, i.e.,
vi′′,j′′ ∈ Vs. It follows that vertices vi,j , vi′,j′ , vi′′,j′′ lie on the path of V-edges,
hence, (x, y)(vi′′,j′′) cannot lie on L in any rectilinear drawing of G. ��

Conversely, assume G has a rectilinear drawing x, y. Such a drawing must satisfy
conditions (i) and (ii) discussed above. By condition (ii), for every s ∈ S, every
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vertex in Vs has the same x-coordinate. We will construct mapping f by assigning
this x-coordinate of vertices in Vs to s. To ensure that f is injective, it might be
necessary to modify the drawing x, y slightly: if for two different values s, s′ ∈
S, points in Vs and points in Vs′ are mapped to the same x-coordinate, we
will slightly offset the x-coordinate of points in one of the two sets. After this
modification, the pair x, y will remain a rectilinear drawing which satisfies all
edge constraints. Now, condition (i) will guarantee that f is a solution to I.

Given an instance I to the BTW problem, we have constructed an HV-
restricted graph G in time polynomial in the size of I that has a rectilinear
drawing if and only if the instance I has a solution. Thus the problem of decid-
ing if G has a rectilinear drawing is NP-hard. ��

2.2 Rectilinear Drawings of Cyclic-Restricted Graphs

Theorem 2. Given a cyclic-restricted graph G, the problem of deciding if G has
a rectilinear drawing is NP-complete.

Proof. Clearly, the problem is in NP. In order to show that the problem is
NP-hard, we give a reduction from the 3SAT problem. The input instance
of the 3SAT problem is a set {x1, x2, . . . , xn} of n variables, and a collection
{c1, c2, . . . , cm} of m clauses, where each clause consists of exactly three literals.
The 3SAT problem is to determine whether there exists a truth assignment to
the variables so that each clause has at least one true literal. In the following,
we will describe our linear-time reduction, which is based on the construction of
Formann et al. [4].

First we construct an L-shaped skeleton (denoted by K) by connecting a
series of 4-cycles together and attaching ports that connect to variable towers
and clause gadgets as depicted in Figure 2. The upward spikes sitting on the
base of this L-shaped skeleton are the ports that connect to the variable towers,
and the 2-edge paths hanging on the right hand side of the vertical column of
the skeleton are ports that connect to the clause gadgets.

The variable tower for variable xi is constructed and connected to the skeleton
as shown in Figure 3. Since the cyclic order of the incident edges to every vertex
is fixed, there are only two possible configurations of this tower as depicted in
Figure 3(a) and (b). These will represent the true and false states, respectively,
of variable xi. The spikes xi,j and xi,j on this variable tower will represent
the literals xi and xi, respectively, of clause cj (if cj contains xi), where the
truth value in cj of this literal will correspond to the state of variable xi, as
determined by the configuration of its variable tower. Note that in each of these
two configurations, the literals pointing to the right always have the true values.

Each clause gadget consists of three 3-edge paths connecting the port of this
clause to spikes (on the corresponding variable towers) of the literals it contains.
We illustrate the construction of clause gadgets with an example of constructing
the gadget for clause cj = xi ∨xl ∨xk, as depicted in Figure 4. Since one of these
3 paths incident to port cj must contain an edge pointing to the right (depending
on which direction this port is bent), this path forces its corresponding variable
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x1 x2 x3 xn

. . . . . .

...

cm

c2

c1

K

Fig. 2. L-shaped skeleton with ports
that connect to variable towers and
clause gadgets

...

xi,2

xi

xi,1

xi,m

xi,2

xi,1

xi,m

xi = True

...

xi,2

xi,1

xi,m

xi,2

xi,1

xi,m

xi = False

K K

xi

(a) (b)

Fig. 3. Variable tower for xi and the represen-
tation of its truth values. Note that the literals
on the right have value true.

xi,jxi,j

xi = False

xk,j

xk

xk,j

xk = False

xl,j

xl

xl,j

xl = True

cj

cj = True

xi

K

Fig. 4. An example of a clause gadget for clause cj = xi ∨ xl ∨ xk. The port of cj is
bent down which forces the last literal xk to have value true.

tower to be in the configuration that sets its literal in cj to true, in this exam-
ple, literal xk. Finally, it is easy to see that the 3SAT formula has a satisfying
assignment if and only if the constructed graph has a rectilinear drawing. Thus
this problem is NP-hard. ��

2.3 Rectilinear Drawings of LRDU-Restricted Graphs

Theorem 3. Given an LRDU-restricted graph G = (V, E, λ), the problem of
deciding if G has a rectilinear drawing and finding such a drawing can be done
in time O(|V ||E|).
Proof. We will give a polynomial-time algorithm for the problem. Given LRDU-
restricted graph G = (V, E, λ), we first check to see if G satisfies the following
necessary conditions: for every u, v, w ∈ V and X ∈ {L, R, D, U}, (i) λ(u, v) ∈
{L, R, D, U} iff {u, v} ∈ E; (ii) λ(u, v) = L iff λ(v, u) = R and λ(u, v) = D
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iff λ(v, u) = U; and (iii) if λ(u, v) = X then λ(w, v) = X , i.e., that two edges
cannot start at the same vertex and have the same direction. Checking (i) and
(ii) each takes time O(|E|), while checking (iii) takes time O(|V ||E|).

If this check succeeds, we will define equivalence relations Ex and Ey on the
vertices of G, and construct partial orders Px and Py on equivalence classes of Ex

and Ey, respectively, if possible. To construct Ex (Ey), for vertices u, v ∈ V , we
set u ≡Ex v (u ≡Ey v) when λ(u, v) ∈ {D, U} (λ(u, v) ∈ {L, R}). Each class V |Ex

(V |Ey) of equivalence relation Ex (Ey) specifies then a set of vertices of G which
must have the same x-coordinate (y-coordinate) in any rectilinear drawing of G.
To construct Px (Py), for classes A, B ∈ V |Ex (V |Ey), we set A < B when there
exist u ∈ A and v ∈ B such that λ(u, v) = R (λ(u, v) = U). The partial order
Px (Py) on the classes of Ex (Ey) then specifies the partial ordering that the
x-coordinates (y-coordinates) of these classes must have on the x-axis (y-axis)
of the rectangular grid of this rectilinear drawing. We say that such a rectilinear
drawing models (Ex, Ey, Px, Py). Orders Px and Py can be built (if they exist)
independently of each other and in time O(|V ||E|). We will show that Px and
Py exist if and only if G has a rectilinear drawing, i.e., to solve the problem it
is enough to decide if partial orders Px and Py exist.

Since (Ex, Ey , Px, Py) express necessary conditions on any rectilinear drawing
of G, if there exists a rectilinear drawing of G, then it models (Ex, Ey, Px, Py),
i.e., Px and Py must exist. On the other hand, given (Ex, Ey, Px, Py) we can easily
construct mappings x, y which satisfy all edge restrictions as follows. We first
extend Px (Py) to any two total orders (this can be done in time O(|V | + |E|)).
Then we assign to equivalence classes in V |Ex (V |Ey) unique x (y) coordinates
which respect these total orders, and for any u ∈ A ∈ V |Ex (u ∈ B ∈ V |Ey) set
x(u) (y(u)) equal to the coordinate assigned to the class. Finally, we draw each
edge {u, v} ∈ E as line segment L = [(x(u), y(u)), (x(v), y(v))]. To show that
mappings x, y form a rectilinear drawing, we need the following lemma.

Lemma 2. For any pair of vertices {u, v} ∈ E, there is no vertex w ∈ V \{u, v}
such that (x(w), y(w)) lies on the line segment L = [(x(u), y(u)), (x(v), y(v))].

Proof. Since {u, v} ∈ E, then λ(u, v) ∈ {L, R, D, U}, so it would be assigned
to one of the equivalence classes in V |Ex or V |Ey , i.e., x(u) = x(v) or y(u) =
y(v). We can assume without loss of generality that y(u) = y(v). Assume, for
contradiction, that vertex (x(w), y(w)) lies on the line segment L. Thus y(w) =
y(u) = y(v), and the only way this can happen is when w ≡Ey u ≡Ey v,
otherwise w would have been placed above or below u and v in the drawing.
Now, if (x(w), y(w)) lies on the line segment L then either x(u) ≤ x(w) ≤ x(v)
or x(v) ≤ x(w) ≤ x(u); without loss of generality, we assume the former. Since
x(u) ≤ x(w) ≤ x(v) and w ≡Ey u ≡Ey v, either there is a u′ ≡Ey u such that
x(u′) ≤ x(u) and λ(u′, w) = R or there is a v′ ≡Ey v such that x(v) ≤ x(v′) and
λ(w, v′) = R. In either case, this contradicts the fact that the check for property
(iii) succeeded. ��
By the above lemma, it follows that if Px and Py exist, we can find a rectilinear
drawing of G in time O(|V ||E|). ��
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2.4 Fixed-Parameter Algorithms

In previous work, Eades, Hong and Poon showed that the problem of finding non-
planar rectilinear drawings is fixed parameter tractable, where the parameter k
is the number of vertices of degree 3 or 4, more precisely, they obtained that it
can be solved in O(24k · k2k · n)-time [2]. In this work, we build on their idea
to improve the runtime complexity of the algorithm and in addition consider
rectilinear drawings for cyclic-restricted, and HV-restricted graphs. We sketch
our proof here, and leave its detailed proof for the full version of this paper.

Theorem 4. Given an unrestricted, cyclic-restricted, or HV-restricted degree-4
graph G of order n, a rectilinear drawing of G can be found in linear-time, or
more precisely, in O(24k ·k2k+1+n), O(12k·k2k+1+n), and O(4k ·k2k+1+n)-time,
respectively, where k, the number of vertices of degree 3 or 4, is a constant.

Proof (Sketch). Let K be the set of these k degree-3 or degree-4 vertices. We
refer to any vertex v ∈ K as a high degree vertex, or simply an hd-vertex. We
call a path of degree-2 vertices connecting two hd -vertices an hd-path.

We first consider the case where G is unrestricted. Consider an hd -path p going
from vertex u to vertex v. Suppose eu and ev are the two end edges of p incident
to u and v, respectively. Depending on the current embedding of K, there are at
most four choices of orientation for each of the two edges eu and ev. Thus there
are at most 16 combinations. For each of these combinations, we know exactly
how many edges, say m, path p needs to possess so that the connection between
u and v can be built and routed around the other hd -vertices. We further know
that m is at most five: if p possesses at least five edges, then no matter what
the orientations of eu and ev are, the connection between u and v can be built.
Hence, we perform a prepossessing step by traversing input graph G, to compute
the lengths of all hd -paths. Since the maximum number of hd -paths is 2k, this
can be done in time proportional to the size of G, i.e., O(n).

Since finding a routing of all hd -paths is sufficient for finding a rectilinear em-
bedding of the entire graph G, we simply enumerate the number of possibilities
to be checked to give us the running time of this algorithm. For any embedding
of the vertices in K on the plane, it is possible that no two share a common coor-
dinate, thus resulting in k unique horizontal and vertical coordinates. Therefore,
any embedding in the plane can be considered a distribution of the vertices of
K on a k × k grid. Hence, there are no more than (k2)k = k2k possible embed-
dings to consider. Since each vertex v ∈ K is incident to at most four edges,
each having one of four possible orientations, there are at most 4! = 24 possible
orientations of edges incident to v, and at most 24k possible orientations for all
vertices in K. Therefore, considering this number of possibilities, the time to
check them and the initial length calculation of all O(k) hd -paths, a rectilinear
drawing for G (if one exists) can be found in O(24k · k2k+1 + n)-time.

Finding a rectilinear drawing when G is cyclic-restricted (resp. HV-restricted)
needs to consider at most 12 (resp. 4) possible orientations of edges incident to
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each hd -vertex resulting in O(12k · k2k+1 + n) (resp. O(4k · k2k+1 + n)) time
overall. Note that the HV-restricted case also considers the sequence of H and
V transitions along each hd -path in the same time bound. ��

3 Area-Minimization Drawings

3.1 Rectilinear Drawings of LRDU-Restricted Graphs

Theorem 5. Given an LRDU-restricted graph G, the problem of deciding if G
has a rectilinear drawing with minimum area is NP-complete.

Proof. We show that this problem is NP-complete by reduction from 3SAT(3), a
restricted version of 3SAT, proved NP-complete by Papadimitriou [9], where each
variable appears exactly twice positive and once negated in the clauses. Given an
instance φ of 3SAT(3) with n variables and m clauses, we construct a graph G
which has a rectilinear drawing on a 10m× 6n grid if and only if φ is satisfiable.
Graph G will consist of m×n blocks, where each block is of three different types
depicted in Figure 5. The i-th row of blocks corresponds to variable xi and the
j-th column of blocks corresponds to clause cj . We will refer to the block in the
i-th row and the j-th column, as the block at position (i, j). If neither xi nor x̄i

appear in cj , then the block at position (i, j) is the no-occurrence block depicted
in Figure 5(a). If xi appears in cj, the positive-occurrence block in Figure 5(b)
is used. If x̄i appears in cj , the negative-occurrence block in Figure 5(c) is used.

(a) (b) (c)

Fig. 5. Blocks: (a) a no-occurrence block — used if the variable does not occur in the
clause; (b) a positive-occurrence block — used if the variable has a positive occurrence
in the clause; (c) a negative-occurrence block — used if the variable has a negative
occurrence in the clause

In addition, G contains a clause line and a variable line for each clause and
each variable, respectively. The clause line for clause cj starts at position (2, 0)
of the last block in the j-th column and ends at position (2, 6) of the first block
in this column. It contains k + 2 vertical segments, where k is the number of
literals it contains. Hence, it is a vertical line spanning the whole grid with k +1
internal points on it. The variable line for variable xi starts at position (0, 5) of
the first block in the i-th row and ends at position (10, 5) of the last block in
this row. It contains the following segments RDRURDRUR (two “bumps”).
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(a) (b) (c)

Fig. 6. (a) The clause and variable lines passing through the no-occurrence block at
position (i, j), i.e., variable xi has no occurrence in cj . Note that if the block is in
the first column (last column, first row, last row) then the variable (variable, clause,
clause) line is attached to the left (right, top, bottom) of the frame. (b-c) The clause
and variable lines passing through the positive-occurrence block at position (i, j), i.e.,
variable xi has a positive occurrence in cj .

Now, let us analyze how the clause line for cj and the variable line for xi can
pass through the block at position (i, j). This will depend on the type of the
block. For the no-occurrence block depicted in Figure 5(a) there is only one way
that the clause and variable lines can pass through the block; see Figure 6(a).
Note that no internal vertex can be placed on the clause line and no bump can
occur on the variable line inside this block.

For the positive-occurrence block depicted in Figure 5(b) there are two ways
that the clause and variable lines can pass through the block. They are depicted
in Figure 6(b)–(c). Note that the variable line can contain at most one bump
inside this block. In the case where it contains no bump (passes through directly),
at most one internal vertex can be placed on the clause line inside this block.
If it contains a bump, then at most two internal vertices can be placed on the
clause line inside this block. Figure 6(b)–(c) depicts the possibilities with the
maximal number of internal vertices on the clause line.

(a) (b)

Fig. 7. The clause and variable lines passing through the negative-occurrence block at
position (i, j), i.e., variable xi has a negative occurrence in cj

For the negative-occurrence block depicted in Figure 5(c) there are two ways
that the clause and variable lines can pass through the block. They are depicted
in Figure 7. Note that the variable line contains either zero or two bumps in-
side this block. In the case where it contains no bump (passes through directly),
similarly as for the positive-occurrence block, at most one internal vertex can
be placed on the clause line inside this block. If it contains two bumps, then
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at most two internal vertices can be placed on the clause line inside this block.
Figure 7 depicts the possibilities with the maximal number of internal vertices
on the clause line.

Now, we are ready to show that the constructed graph has a rectilinear draw-
ing if and only if the 3SAT(3) instance is satisfiable. First, let us consider the
variable lines. Each variable line contains two bumps. Since the variable line for
xi cannot make any bumps in the no-occurrence blocks, it must make bumps in
the remaining three blocks. Let cj1 , cj2 (cj3 ) be the clauses containing a positive
(negative) occurrence of xi. The variable line for xi can contain zero or one bump
in the blocks at positions (i, j1) and (i, j2), and zero or two bumps in the block
at position (i, j3). It follows that we have two mutually-exclusive possibilities:
either the variable line makes bumps in its positive-occurrence blocks (one in
each of them) or it contains two bumps in its negative-occurrence block. In the
first case, we set the value of variable xi to true, in the second case, to false.

Next, we show that each clause is satisfied in the constructed assignment.
Recall that each clause line contains k+1 internal vertices, where k is the number
of literals in the clause. Consider a clause cj . Since the clause line cannot contain
any internal vertices inside the no-occurrence blocks it passes through, the k +1
internal points have to appear in the remaining k blocks. It follows that in at
least one of them the clause line will contain two internal vertices. However, by
the above analysis and definition of the assignment, the corresponding literal
must be set to true, hence, clause cj is satisfied.

Given a truth assignment for the 3SAT(3) instance, we can construct a recti-
linear drawing for the graph as follows. First, for the variable line for xi, we place
the bumps in the blocks at position (i, j), where cj contains an occurrence of the
variable xi and this occurrence (positive or negative) has value true. Second, for
the clause line for cj , we place two internal vertices on the clause line inside the
block at position (i, j), where cj contains an (positive or negative) occurrence of
xi which makes cj satisfied. We might have several choices for i, but we pick one
of them. Then we place one internal vertex on the clause line in the remaining
blocks at positions (i′, j), where cj contains an occurrence of xi′ and i′ = i. Now,
each variable line contains exactly two bumps and each clause line for a k-clause
contains exactly k + 1 internal vertices, hence, we have a rectilinear drawing of
the graph. ��

4 Conclusions

Previous work has shown the problem of finding non-planar rectilinear drawings
for graphs to be NP-complete [2,4]. In this work, we have resolved the complexity
of a number of natural restrictions where constraints are placed on the possible
orientations of edges. In particular, we show that determining the existence of a
non-planar rectilinear drawing for a graph when directions are prescribed to each
edge is polynomial, while determining a minimum-area drawing for the same case
is NP-complete. When edges are prescribed to be either horizontal or vertical,
or when a cyclic order of the incedent edges around each vertex is prescribed,
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we show that the existence problem, and thus the area-minimization problem,
is NP-complete. Finally, we have shown the NP-complete existence problems to
be fixed parameter tractable in the number of vertices of degree 3 or 4.

It remains open whether or not the corresponding minimum-area drawing
cases are also fixed parameter tractable. Since there are polynomial time al-
gorithms for finding planar rectilinear drawings for several different classes of
maximum degree 3 graphs [13,11,12], it would be interesting to find such classes
for the non-planar case. Further interesting open questions are the complexity of
finding planar rectilinear drawings of HV-restricted and cyclic-restricted graphs.
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Abstract. A straight-line drawing of a plane graph G is a planar draw-
ing of G, where each vertex is drawn as a point and each edge is drawn
as a straight-line segment. Given a set S of n points on the Euclidean
plane, a point-set embedding of a plane graph G with n vertices on S
is a straight-line drawing of G, where each vertex of G is mapped to a
distinct point of S. The problem of deciding if G admits a point-set em-
bedding on S is NP-complete in general and even when G is 2-connected
and 2-outerplanar. In this paper we give an O(n2 log n) time algorithm
to decide whether a plane 3-tree admits a point-set embedding on a
given set of points or not, and find an embedding if it exists. We prove
an Ω(n log n) lower bound on the time complexity for finding a point-
set embedding of a plane 3-tree. Moreover, we consider a variant of the
problem where we are given a plane 3-tree G with n vertices and a set S
of k > n points, and give a polynomial time algorithm to find a point-set
embedding of G on S if it exists.

Keywords: Point-set embedding, Plane 3-tree, Lower bound.

1 Introduction

A straight-line drawing Γ of a plane graph G is a planar drawing of G, where
each vertex is drawn as a point and each edge is drawn as a straight-line segment.
The problem of computing a straight-line drawing of a graph where the vertices
are constrained to be located at integer grid points is a classical problem in
the graph drawing literature [6,12]. One of the variants of this problem is to
compute a planar embedding of a graph G on a set of points S where the points
are located on the Euclidean plane [3,9,11].

Let G be a plane graph of n vertices and S be a set of n points on the
Euclidean plane. A point-set embedding of G on S is a straight-line drawing of
G, where each vertex of G is mapped to a distinct point of S. We do not restrict
the points of S to be in general position. In other words, three or more points in
S may be collinear. Figure 1(a) and (b) depict two sets S and S′ of 10 points,
respectively. Figure 1(c) depicts a plane graph G of 10 vertices. One can easily
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observe that G admits a point-set embedding on S′, as illustrated in Fig. 1(d).
But G does not admit a point-set embedding on S since the convex hull of S
contains four points whereas the outer face of G has three vertices.

A rich body of literature has been published on the point-set embeddings when
the input graph G is restricted to trees or outerplanar graphs [8,3]. Cabello [4]
proved that the problem is NP-complete for planar graphs in general and even
when the input graph is 2-connected and 2-outerplanar. Recently, Garcia et al.
have given a characterization of a set of points S such that there exists a 3-
connected cubic plane graph that admits a point-set embedding on S [7].

b
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g d
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Fig. 1. (a) A set S of 10 points, (b) a set S′ of 10 points, (c) a plane graph G of 10
vertices, and (d) a point-set embedding of G on S′

In this paper we consider the problem of obtaining point-set embeddings of
“plane 3-trees”. A plane 3-tree G of n ≥ 3 vertices is a plane graph for which the
following (a) and (b) hold: (a) G is a triangulated plane graph; (b) if n > 3, then
G has a vertex whose deletion gives a plane 3-tree G′ of n − 1 vertices. We give
an O(n2 log n) time algorithm that decides whether a plane 3-tree G admits a
point-set embedding on a given set S of n points or not; and computes a point-
set embedding of G if such an embedding exists. We prove an Ω(n log n) lower
bound on the time complexity for obtaining a point-set embedding of a plane
3-tree of n vertices on a set of n points. Furthermore we give a polynomial-time
algorithm to decide whether a plane 3-tree G of n vertices admits a point-set
embedding on a set of k > n points.

The rest of this paper is organized as follows. Section 2 presents some defini-
tions and preliminary results. Section 3 gives an O(n2 log n) time algorithm to
obtain a point-set embedding of a plane 3-tree of n vertices, if it exists. Section 4
shows an Ω(n log n) lower bound on the running time for computing point-set
embeddings of plane 3-trees. Section 5 gives an O(nk8) time algorithm to decide
whether a plane 3-tree G of n vertices admits a point-set embedding on a set of
k > n points. Finally, Section 6 concludes the paper suggesting future works.

2 Preliminaries

In this section we give some relevant definitions that will be used throughout
the paper and present some preliminary results.
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For the graph theoretic definitions which have not been described here, see [10].
A graph is planar if it can be embedded in the plane without edge crossings

except at the vertices where the edges are incident. A plane graph is a planar
graph with a fixed planar embedding. If all the faces of a plane graph G are
triangles, then G is called a triangulated plane graph. A plane graph G with
n ≥ 3 vertices is called a plane 3-tree if the following (a) and (b) hold. (a) G is a
triangulated plane graph. (b) if n > 3, then G has a vertex whose deletion gives
a plane 3-tree G′ of n− 1 vertices. We denote by Gn a plane 3-tree of n vertices.
The following results are known on plane 3-trees [2].

Lemma 1. Let Gn be a plane 3-tree of n vertices where n > 3. Then the follow-
ing (a) and (b) hold. (a) Gn has an inner vertex x of degree three such that the
removal of x gives the plane 3-tree Gn−1 of n − 1 vertices. (b) Gn has exactly
one inner vertex p which is the common neighbor of all the three outer vertices
of Gn.

We call p the representative vertex of Gn. Let G be a plane graph. For a cycle
C in G, we denote by G(C) the plane subgraph of G inside C (including C). A
separating triangle of G is a triangle in G whose interior and exterior contain at
least one vertex each. We now have the following lemma.

Lemma 2. Let Gn be a plane 3-tree of n > 3 vertices and C be any triangle of
Gn. Then the subgraph Gn(C) is a plane 3-tree.

Let T be a rooted tree and i be any vertex of T . Then we define a subtree T (i)
rooted at i as a subgraph of T induced by the vertex i and all the descendants
of i. An ordered rooted tree is a rooted tree where the children of any vertex are
ordered counter-clockwise.

Let Gn be a plane 3-tree of n vertices. Let p be the representative vertex and
a, b, c be the outer vertices of Gn. The vertex p, along with the three outer
vertices a, b and c, form three triangles abp, bcp and cap. We call those three
triangles the nested triangles around p. We now define a tree Tn−3 with the inner
vertices of Gn which we call the “representative tree” of Gn. The representative
tree of Gn is an ordered rooted tree Tn−3 satisfying the following two conditions
(a) and (b).

(a) Tn−3 consists of a single vertex if n = 3.
(b) if n > 3, then the root p of Tn−3 is the representative vertex of Gn and the

subtrees rooted at the three counter-clockwise ordered children p1, p2 and
p3 of p in Tn−3 are the representative trees of Gn(C1), Gn(C2) and Gn(C3),
respectively, where C1, C2 and C3 are the three nested triangles around p
in counter-clockwise order.

Figure 2(a) depicts a plane 3-tree Gn and Fig. 2(b) depicts the representative tree
Tn−3 of Gn. We now have the following lemma whose proof has been omitted.

Lemma 3. Let Gn be any plane 3-tree of n ≥ 3 vertices. Then Gn has a unique
representative tree Tn−3 with exactly n − 3 internal vertices and 2n − 5 leaves.
Moreover, Tn−3 can be found in time O(n).
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Fig. 2. (a) A plane 3-tree Gn and (b) the representative tree Tn−3 of Gn

We now have the following lemma whose proof is immediate from the definition
of the representative tree and Lemma 3.

Lemma 4. Let Tn−3 be the representative tree of a plane 3-tree Gn of n ≥ 3
vertices and let T (i) be an ordered subtree rooted at a vertex i of Tn−3. Then
there exists a unique triangle C in Gn such that T (i) is the representative tree
of Gn(C).

By Lemma 4, for any vertex p of Tn−3, there is a unique triangle in Gn which
we denote as Cp. For the rest of this paper, we shall often use an internal vertex
p of Tn−3 and the representative vertex of Gn(Cp) interchangeably.

3 Point-Set Embeddings of Plane 3-Trees

In this section we give an O(n2 log n) time algorithm to decide whether a plane
3-tree G of n vertices has a point-set embedding on a set S of n points or not,
and obtain a point-set embedding of G on S if it exists.

Before presenting the detail of our algorithm we focus on some properties
of the point-set embeddings of plane 3-trees. Let S be a set of n points on
the Euclidean plane. The convex-hull of S is the smallest convex polygon that
encloses all the points in S. Let G be a plane 3-tree of n vertices. In any point-
set embedding of G the outer face of G is drawn as a triangle and hence the
following fact holds.

Fact 1. Let G be a plane 3-tree of n vertices and S be a set of n points. If G
admits a point-set embedding on S, then the convex-hull of S contains exactly
three points in S.

By Fact 1, G has no point-set embedding on S if the convex-hull of S does not
contain exactly three points in S. We thus assume that the convex-hull of S
contains exactly three points. One may observe that the outer vertices of G can
be mapped to the three points on the convex-hull of S in six ways, and hence we
need to check whether G admits a point-set embedding on S or not for each of
the six mappings. In the remaining of this section we give an algorithm to check
whether G admits a point-set embedding on S for a given mapping of the outer
vertices of G to the three points of the convex-hull of S.
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Let Tn−3 be the representative tree of G and let p be the root of Tn−3. Let
Cp1 , Cp2 , Cp3 be the three nested triangles around p. By lemma 2, Gn(Cp1),
Gn(Cp2 ) and Gn(Cp3) are three plane 3-trees which have the corresponding
unique representative trees Tn1(p1), Tn2(p2) and Tn3(p3) where n1, n2 and n3
are the number of internal vertices of Tn1(p1), Tn2(p2) and Tn3(p3), respectively.
Let C be a cycle in G. We denote by Γ (C) the embedding of C on some points
of S. We call a mapping of p to a point x ∈ S a valid mapping of p if the
proper interiors of Γ (Cp1), Γ (Cp2) and Γ (Cp3) contain n1, n2 and n3 points,
respectively. We now have the following lemma whose proof is omitted in this
extended abstract.

Lemma 5. Let G be a plane 3-tree of n vertices, let a, b and c be the three outer
vertices of G, and let p be the representative vertex of G. Let S be a point set
of n points such that the convex hull of S contains exactly three points. Assume
that G has a point-set embedding Γ (G) on S for a given mapping of a, b and c
to the three points of the convex-hull of S. Then p has a unique valid mapping
for the given mapping of a, b and c.

Based on Fact 1 and Lemma 5 we now describe an algorithm to find a point-set
embedding of a plane 3-tree G on a point-set S. The algorithm first computes the
convex-hull of S and then recursively finds valid mappings of the representative
vertices. A naive approach to find a valid mapping of a representative vertex
p is as follows. For each point u ∈ S interior to Γ (Cp), we assume u as the
representative vertex and check whether Γ (Cp1), Γ (Cp2) and Γ (Cp3) contains
the required number of points. One can easily compute a valid mapping of p in
O(n2) time. Now, if we compute the mappings of the representative vertices for
the plane 3-trees Gn(Cp1), Gn(Cp2) and Gn(Cp3) in a recursive fashion, we can
obtain a point-set embedding of G. Since there are n− 3 representative vertices,
computation of the final embedding takes O(n) × O(n2) = O(n3) time. We call
this algorithm Point-set-embedding, and in the rest of this section we give a
faster method to find a valid mapping of a representative vertex and use it to
implement Algorithm Point-set-embedding in O(n2 log n) time.

We first compute a convex-hull of S in O(n log h) time [5], where h is the
number of points on the hull. If G admits a point-set embedding on S, then the
convex-hull contains exactly three points in S. For a given mapping of the three
outer vertices a, b, c of G to the three points on the convex hull of S, we sort the
points interior to the triangle abc by increasing polar angle around a in clockwise
order. Then we put the sorted list in an array Aa as illustrated in Fig. 3. For
the points with the same slope, we keep a pointer to the point closest to a from
the other points with the same slope. The point closest to a is the parent of the
other points with the same slope. Let x and y be any two points where y has a
pointer to x. Then y is a child of x. We also maintain a count of the children of a
parent in Aa. In a similar way we construct Ab and Ac for b and c, respectively.
Clearly, the construction of these three arrays takes O(n log n) time.

We next take any point u ∈ S, interior to the triangle abc, and draw straight
lines through (u, a), (u, b) and (u, c) which intersect bc, ac, ab at p, q and r,
respectively as illustrated in Fig 4. Thus the region inside the triangle abc gets
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Fig. 3. Illustration for the construction of the array Aa

split into six disjoint regions which we denote as x1, x2, . . . , x6. The regions x1,
x2, x3, x4, x5, x6 are bounded by the triangles aur, auq, cuq, cup, bup, bur,
respectively. Moreover, by x7, x8 and x9 we denote the three lines shared by
region x1 and x6, x2 and x3, x4 and x5, respectively. In the remaining of this
section we also denote by xi,1 ≤ i ≤ 9, the number of points of S in the region xi.
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Fig. 4. Computation of the mapping of the representative vertex

Let Tn−3 be the representative tree of G and p be the root of Tn−3. Let n1, n2
and n3 be the number of vertices of the three subtrees rooted at the three children
of p. We now formulate a set of nine linear equations and solve them to check
whether u is a valid mapping for p. The three constraints are x2 + x8 + x3 = n1,
x4+x9+x5 = n2 and x1+x7+x6 = n3 which can be obtained easily. For example,
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the constraints are x2 + x8 + x3 = 4, x4 + x9 + x5 = 3 and x1 + x7 + x6 = 6 for
the graph of Fig. 3.

The nine equations can be obtained using the three straight lines (u, a), (u, b)
and (u, c) as follows. The straight line (u, a) splits the triangle abc into two
disjoint regions x1 +x5 +x6 +x7 and x2 +x3 +x4 +x8. The number of points in
those regions are x1 +x5 +x6 +x7 = ui−1 and x2 +x3 +x4 +x8 = |Aa|−ui −ua

where ui is the index of u in Aa and ua is the count of children of u in Aa. The
number of points on x9 is equal to ua which gives another equation x9 = ua. Let
uj and uk be the indices of a point u in Ab and Ac, respectively and let ub and uc

be the counts of children of u in Ab and Ac, respectively. Then we can derive six
other equations using (u, b) and (u, c) in a similar way as described above. The
nine equations for any point u, interior to the triangle abc, are x1+x5+x6+x7 =
ui − 1, x2 + x3 + x4 + x8 = |Aa| − ui − ua, x9 = ua, x5 + x9 + x4 + x3 = uj − 1,
x2 + x1 + x7 + x6 = |Ab| − uj − ub, x8 = ub, x3 + x8 + x2 + x1 = uk − 1,
x4 +x9 +x5 +x6 = |Ac|−uk −uc and x7 = uc. When the vertex g is mapped to
the point u in the graph of Fig. 3, the equations become x1 + x5 + x6 + x7 = 8,
x2 + x3 + x4 + x8 = 5, x9 = 0, x5 + x9 + x4 + x3 = 3, x2 + x1 + x7 + x6 = 10,
x8 = 0, x3 + x8 + x2 + x1 = 7, x4 + x9 + x5 + x6 = 5 and x7 = 1.

If we get a unique solution of the set of linear equations, then u is a valid
mapping of p by Lemma 5. A simple “Gaussian elimination” to solve a system
of t equations for t unknowns requires O(t3) time. Here t = 9 and hence we can
verify whether u is a valid mapping of p in O(1) time. Similarly we check the
points inside the triangle abc, other than u, to obtain a valid mapping of p. Since
there are O(n) points inside the triangle abc, this step takes O(n)×O(1) = O(n)
time.

Finally, we find the valid mappings of representative vertices for the smaller
plane 3-trees in a recursive fashion and obtain a point-set embedding of G.
At each recursive step we construct three sorted arrays in O(n log n) time and
find the mapping of the representative vertex in O(n) time. Since there are
O(n) representative vertices, computation of the final embedding takes O(n) ×
(O(n log n) + O(n)) = O(n2 log n) time. We now recall that the computation
of the convex-hull takes O(n log h) time and there are six ways of mapping the
three outer vertices of G to the three points on the convex-hull of S. Therefore
the time taken for deciding whether G admits a point-set embedding on S is
(O(n log h) + 6 × O(n2 log n)) = O(n2 log n) time. We now have the following
theorem.

Theorem 1. Given a plane 3-tree G of n vertices and a point-set S of n-points,
Algorithm Point-set-embedding computes a point-set embedding of G on S in
O(n2 log n) time if such an embedding exists.

One can observe that the bottle-neck of Algorithm Point-set-embedding is to
construct three sorted arrays at each recursive step; which takes O(n log n) time
at each step and O(n2 log n) time in total. But if we assume that the points are in
general position, we can construct the sorted arrays for all the points collectively
at the initial step of the algorithm in O(n2) time using “arrangements” [1].
At each recursive step we can update those arrays in such a way that the total
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number of updates after all the recursive steps becomes O(n2). Thus, when the
points are assumed to be in general position, the time required to decide whether
G admits a point-set embedding on S becomes O(n2)+O(n log h)+6×O(n2) =
O(n2).

4 Lower Bound

In this section, we first analyze the time complexity of Algorithm Point-Set-
Embedding in some restricted cases. We then show that the lower bound on
time complexity for computing a point-set embedding of a plane 3-tree of n
vertices is Ω(n log n).

Let G be a plane 3-tree of n-vertices and let T be the representative tree of G.
Suppose that, for each internal vertex u of T the ratio of the number of vertices
in the three subtrees rooted at three children of u is x : y : z. Without loss of
generality we assume that x ≥ y ≥ z. One can easily find that running time of
the Algorithm Point-Set-Embedding can be written as O(n) + T (n) where
the term O(n) is to obtain the embedding of the outer face of G and the term
T (n) ≥ T (n − 3) is the time to obtain the embedding of n − 3 internal vertices
of G. Since at each recursive step we take O(n log n) time to obtain a valid
mapping of a representative vertex, T (n) can be defined recursively as follows.
T (n) ≤ T ( nx

x+y+z ) + T ( ny
x+y+z ) + T ( nz

x+y+z ) + cn log n = 3T (n
b ) + cn log n. Here

c is a constant hidden in O(n log n) term and b = x+y+z
x . We observe that, for

b =
√

3, T (n) = 3T ( n√
3 )+cn log n = O(n2); for b = 2, T (n) = 3T (n

2 )+cn log n =
O(n1.58); and for b = 3, T (n) = 3T (n

3 ) + cn logn = O(n log2 n). Therefore, we
obtain the following theorem.

Theorem 2. Let G be a plane 3-tree of n vertices and S be a point-set of n
points. If the representative tree of G is a complete ternary tree, it can be decided
whether G admits a point-set embedding on S in O(n log2 n) time.

We now prove a lower bound on the running time of the problem of obtaining a
point-set embedding of a plane 3-tree with n vertices as in the following theorem.

Theorem 3. The lower bound on the running time of the problem of computing
point-set embeddings of plane 3-trees with n vertices is Ω(n log n).

Proof. We reduce sorting problems into the problem of computing point-set
embeddings of plane 3-trees in the sense that point-set embedding algorithm
can be used to solve sorting problems with little additional work.

Let L = (x1, x2, . . . , xn) be a list of n unsorted numbers to be sorted and let
the smallest number in L be xmin. Without loss of generality we assume that
xi > 0, 1 ≤ i ≤ n, since if there exists an xi ≤ 0 we can obtain a list L′ of
nonzero positive numbers by adding 1 − xmin to all the xi, 1 ≤ i ≤ n. One can
observe that the sorted order of the numbers in L′ yields a sorted order of the
numbers in L. Suppose that we have an algorithm X that computes a point-set
embedding of a plane 3-tree of n vertices in f(n) time. We show that Algorithm
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X can be used to solve a sorting problem of n numbers in time f(n) + O(n)
where the O(n) represents additional time to convert the solution of X to the
solution of the sorting problem.

Let xmax be the maximum number in L which can be found in O(n) time.
We make a set S of two-dimensional points (xi, x

2
i ); 1 ≤ i ≤ n and let S′ =

S ∪ {(xmax + 1, 0), (0, 0)}. Let G be a plane 3-tree of n + 2 vertices such that its
representative tree T has the following properties (a) and (b). (a) The left child
and the right child of each internal vertex of T are leaves. (b) The subgraph
induced by the internal vertices of T is a path of n − 1 vertices. Figure 5(a),
(b) and (c) illustrate S′, G and T , respectively. We now use Algorithm X to
compute a point-set embedding of G on S.

In a point-set embedding Γ (G) of G on S′, the outer vertices of G is mapped to
the convex-hull of S′ by Fact 1. The convex-hull of S′ contains the points (0, 0),
(xmax + 1, 0) and (xmax, x2

max) which we denote by a, b and c, respectively. Let
the representative vertex p of G be mapped to a point z ∈ S′ in Γ (G) and let the
proper interiors of the triangles abz = Cp1 , bcz = Cp2 , caz = Cp3 be Rz1 , Rz2 ,
Rz3 , respectively. Since p is also the root of T with two leaves, two of the regions
Rz1 , Rz2 and Rz3 do not contain any point of S. One can observe that such
two regions can be obtained if z is the second smallest (or the second largest)
number of L. Suppose that the region Rz2 (or Rz1) contains all the points of S′

other than a, b, c and z. We now consider the point-set embedding of G(Cp2)
(or G(Cp1 )). Let c1, c2 and c3 be the left, middle and right child of p in T . If
the children are leaves, we have no vertices left to consider. Otherwise c2 is an
internal vertex. Since the left child and the right child of c1 are leaves, c1 must
be mapped to the next smallest number or (next largest number) to ensure two
regions which do not contain any points of S′, maintaining the plane embedding
of G.
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(x ,x2
2)2

(x ,xn
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Fig. 5. Illustration for the proof of Theorem 3

Thus the sequence of x-coordinates of the mappings of the internal vertices
of T from the root gives an increasing (or decreasing) order of the numbers in
L − {xmax}. Moreover, we can check whether the obtained order is increasing
or decreasing and place xmax in the correct position in constant time. Thus, we
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can use Algorithm X to solve the sorting problem which implies that the lower
bound of Algorithm X is equal to the lower bound Ω(n log n) on the running
time of sorting problems. ��

5 Generalized Case

In this section we consider the problem of computing a point-set embedding of
a plane 3-tree G, when the number of given points is greater than the number
of vertices of G. We use dynamic programming to solve the problem.

Let G be a plane 3-tree of n vertices and S be a point-set of k > n points. We
obtain a grid by drawing a vertical line and a horizontal line passing through each
of the k points. We assign x-coordinates for the vertical lines according to the
count from left to right. Similarly we assign y-coordinates for the horizontal lines
according to the count from bottom to top. The grid points are the intersections
of the horizontal and the vertical lines. A valid grid point is a grid point which
is also a point in S. The width W and height H of the grid are measured by
the width and the height of the smallest rectangle with sides parallel to the axes
which encloses all the points in S. The size of the grid is usually described as
W × H . Since the number of points in S is k, the size of the grid is at most
k × k. A graph G is drawable on a grid obtained from a point-set S if G admits
a straight-line drawing such that the vertices of G are mapped on to the valid
points on the grid obtained from S.

We assume a height h and a width w, iterate h from 1 to k and for each h,
we iterate w from 1 to k. At each iteration we check whether G is drawable on a
w × h grid or not. We give two algorithms Algorithm Point-Set and Algorithm
Feasibility-Checking to serve this purpose. Let T be the representative tree
of G. At each iteration we traverse T in preorder. For each internal vertex i
of T , Algorithm Point-Set generates all possible (x, y)-coordinate assignments
for the outer vertices a, b and c of G(Ci) within area w × h. For each such
(x, y)-coordinate assignment of a, b and c, Algorithm Feasibility-Checking is
called to check whether G(Ci) is drawable. Here we formally define the input
and output of the problem Feasibility-Checking.

Input: A plane 3-tree G and a mapping of the three outer vertices a, b and
c of G to the three different valid points on a grid obtained from S.

Output: If G is drawable with the given mapping of a, b and c, then the
output is True. Otherwise, the output is False.

We denote the x-coordinate and y-coordinate of a vertex v by vx and vy,
respectively. We denote by Fp(ax

y , bx
y , cx

y) the Feasibility Checking problem of any
vertex p of T where ax

y , bx
y , cx

y are the (x, y)-coordinates of the three outer vertices
a, b and c of G(Cp). We solve this decision problem by showing in Lemma 6 that
the optimal solution of the problem consists of the optimal solutions of the
subproblems. Theorem 4 states the recursive solution of the Feasibility Checking
problem.
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Lemma 6. Let G be a plane 3-tree with the representative tree T . Let p be any
internal vertex of T with the three children p1, p2, p3 in T and a, b, c be the
outer vertices of G(Cp). Then, for an assignment of the vertices a, b, c and p
to valid grid points, the Feasibility Checking problems of p1, p2 and p3 are the
three subproblems of the Feasibility Checking problem of p.

Theorem 4. Let G be a plane 3-tree with the representative tree T and p be any
vertex of T . Let a, b, c be the three outer vertices of G(Cp) and p1, p2, p3 be the
three children of p when p is an internal vertex of T . Let Fp(ax

y , bx
y , cx

y) be the
Feasibility Checking problem of p. Then Fp(ax

y , bx
y , cx

y) has the following recursive
formula.

Fp(ax
y , bx

y , cx
y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

False if (max{ax, bx, cx} − min{ax, bx, cx} = 0)
∨ (max{ay, by, cy} − min{ay, by, cy} = 0);

True if (max{ax, bx, cx} − min{ax, bx, cx} ≥ 1)
∧ (max{ay, by, cy} − min{ay, by, cy} ≥ 1)
∧ p is a leaf;

False if p is an internal vertex and there is no valid
grid point inside the triangle abc;∨

px,py
{Fp1(ax

y , bx
y , px

y) ∧ Fp2(bx
y , cx

y , px
y) ∧ Fp3(cx

y , ax
y , px

y)}
where (px, py) is a valid grid point inside
the triangle abc, otherwise.

Proof. First we consider the case when (max{ax, bx, cx}−min{ax, bx, cx} = 0)∨
(max{ay, by, cy} − min{ay, by, cy} = 0). Then we assign Fp(ax

y , bx
y , cx

y) = False
because a grid of at least area 1×1 is necessary to draw a triangle. The next case is
(max{ax, bx, cx}−min{ax, bx, cx} ≥ 1)∧(max{ay, by, cy}−min{ay, by, cy} ≥ 1)
when p is a leaf. Then we assign Fp(ax

y , bx
y , cx

y) = True since area 1×1 is sufficient
to draw a triangle. In the next case, p is an internal vertex and there is no valid
grid point inside the triangle abc. We assign Fp(ax

y , bx
y , cx

y) = False since p cannot
be placed inside Cp. The remaining case is (max{ax, bx, cx}−min{ax, bx, cx} >
1) ∧ (max{ay, by, cy} − min{ay, by, cy} > 1) when p is an internal vertex. Then
we define Fp(ax

y , bx
y , cx

y) recursively according to Lemma 6. ��
One can associate tables to store the computed (x, y)-coordinates of the vertices
of G to obtain the point-set embedding of G in polynomial time, if it exists.

Theorem 5. Given a plane 3-tree G with n ≥ 3 vertices and a point-set of k > n
points, Algorithm Point-Set decides whether G admits a point-set embedding on
S in time O(nk8).

6 Conclusion

We give an O(n2 log n) time algorithm that decides whether a plane 3-tree G
of n-vertices admits a point-set embedding on a set S of n points or not; and
computes a point-set embedding of G if such an embedding exists. We observe
that it is possible to obtain a point-set embedding of G on S in O(n2) time
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if the points are assumed to be in general position. We prove an Ω(n log n)
lower bound on the time complexity for obtaining point-set embeddings of plane
3-trees. Beside obtaining a point-set embedding of a plane 3-tree, we consider
a generalized problem when the given point-set has more than n points and
give a polynomial-time algorithm to solve the problem. It is a challenge to find
simpler algorithms for obtaining point-set embeddings of plane 3-trees both in
the restricted and generalized cases.
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Abstract. We show how to improve the Sugiyama scheme by edge bundling.
Our method modifies the layout produced by the Sugiyama scheme by bundling
some of the edges together. The bundles are created by a new algorithm based
on minimizing the total ink needed to draw the graph edges. We give several
implementations that vary in quality of the resulting layout and execution time.
To diminish the number of edge crossings inside of the bundles we apply a metro-
line crossing minimization technique. The method preserves the Sugiyama style
of the layout and creates a more readable view of the graph.

1 Introduction

Layered drawings present directed graphs in a way that the nodes are arranged in hori-
zontal layers. Most approaches for drawing layered graphs follow in practice the algo-
rithm proposed by Sugiyama et al. [14]. This method is intended to produce layouts with
a small number of edge crossings and smooth edges. However, when the given graph is
dense, even an optimal layout can have numerous edge crossings and edges that are too
curved. In fact, the edge clutter quickly makes the drawing useless for understanding
the relations among the nodes.

One of the popular methods to improve quality of such drawings is edge bundling
[13,9,7,3]. This method can significantly reduce clutter and can also help to highlight
high-level edge patterns in a graph. A known shortcoming of the method is that it tends
to produce drawings with ambiguity; it becomes hard to visually follow a single edge.
Still a good edge bundling improves the readability of a drawing. To the best of our
knowledge, our method is the first attempt to apply edge bundling for graphs with mul-
tiple layers. The algorithm is relatively simple and fast enough to be used in practice.
For dense graphs, in our opinion, the method produces drawings that are easier to ana-
lyze than the standard layouts.

The input to our method is the output of the standard Sugiyama algorithm. We devi-
ate some of the edge routes and create edge bundles, thus reducing the clutter. We do
not change the positions of the original nodes of the graph, and we preserve the edge
homotopy classes relative to the original nodes, i.e. the new routing can be obtained
from the previous one by a continuous deformation of the edges without overlapping
with the nodes. This visual stability can help the user to analyze the graph, for example,
by comparing the original and the bundled drawings. Fig. 1 illustrates these ideas and
motivates our approach.

U. Brandes and S. Cornelsen (Eds.): GD 2010, LNCS 6502, pp. 329–340, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) Standard layout (b) Edge bundling

Fig. 1. The state diagram for the notepad.exe model

Recall that before the Ordering stage of the Sugiyama scheme the original graph
is transformed to a proper layered graph. In this graph each original edge is replaced
by a connected sequence of proper edges passing through added virtual nodes where a
proper edge is an edge between adjacent layers. The first edge of the sequence starts
from the original edge source and the last edge ends at the original target.

The starting point of our algorithm is a layered layout of the graph. We change the
positions and the order of virtual nodes to organize edges into bundles. On a high level
our method consists of the following three stages: create edge bundles of the proper
layered graph where each bundle is a subset of edges spanning the same pair of layers;
straighten out the edges to avoid excessive bends, and finally reduce the ambiguity in
the routing by sorting the edges and drawing them individually inside the bundles.

In Section 3 we give a detailed explanation of our algorithm. Experimental data
and results are presented in Section 4 to demonstrate the effectiveness of the method.
Finally, Section 5 concludes the paper and discusses additional aspects and future work.
The next section summarizes related work.

2 Related Work

Sugiyama-style layered layouts were proposed in the early 80’s [14,4] and improved
in many ways during recent years [8,5]. This method is widely used to layout a graph
in a monotone fashion where all edges in a directed-acyclic graph follow the same
downward direction. The idea of improving the quality of layered layouts with edge
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bundling is related to edge concentration [13], where a two-layered graph is covered
by bicliques reducing the number of drawn edges. Later Eppstein et al. [6] proposed
confluent graph drawings, allowing groups of edges to be merged and drawn together.

Recently Holten and van Wijk [9] suggested edge bundling based on an additional
tree structure. Unfortunately, not every graph comes with a suitable underlying tree
and an artificial one might affect the final layout in an undesirable way. Methods of
edge bundling for general graphs were presented by Cui et al. in [3] and by Holten et al.
in [10]. We notice that for dense graphs both methods produce ambiguous layouts where
it is hard to follow a single edge. In addition, these techniques do not guarantee that the
edges are drawn downward which is a requirement of the Sugiyama scheme.

The paper on the metro-line crossing minimization problem by Argyriou et al. [1]
inspired us to use the technique of metro-lines crossing minimization to minimize edge
crossings inside of the bundles. The paper on circular layouts by Gansner and Koren [7],
where bundles were built by minimizing the total ink, also influenced our work.

Unlike the approaches of Holten [10] and Cui [3], we preserve the edge homotopy
classes while creating bundles. Moreover, our method takes into consideration the di-
mensions of the nodes and routes the bundles without overlapping them with the nodes.

3 Edge Bundling

We start with some basic definitions. A directed graph G is a pair (V, E), where V =
{1, . . . , n} is the set of nodes and E ⊂ V 2 is the set of edges. As usual for the Sugiyama
algorithm, we may assume that G is an acyclic graph. A layering L of G is a partition
of V into sets of layers L1, . . . , Lh such that for every edge (u, v) ∈ E with u ∈ Li

and v ∈ Lj holds i < j. From G and L, we build a proper layered graph Gp: For each
e = (u, v) of G with u ∈ Li, v ∈ Lj we add to Gp nodes u = di, di+1, . . . , dj = v,
add dk to Lk for k ∈ [i, j] and add to Gp edges (dk, dk+1) for i ≤ k < j. Nodes dk

with i < k < j are called virtual nodes. They are unique for every edge. We denote by
D(e) the sequence di, di+1, . . . , dj . Nodes of Gp which are also nodes of G are called
original nodes. Edges of G are called original edges.

The Sugiyama algorithm assigns a point in the plane to each node of Gp such that the
nodes of the same layer have the same y-coordinate. For the purpose of our discussion
we assume that the edges are drawn as polylines; for an edge e of G the polyline is
defined by the positions of nodes of D(e).

Suppose S is a subset of edges of Gp connecting a pair of adjacent layers. We define
bundling of S as a procedure where we horizontally shift the ends of the edges of S
to make them coincide (Fig. 2(a)). After bundling the edges of S together we call S a
bundle, the edges of S are called bundled edges, and those nodes that as a result of the
shift acquired the same positions are called bundled nodes. We define the graph ink [15]
as the sum of the lengths of line segments needed to draw the graph edges.

The order of the nodes on a layer allows us to define an equivalence relation on the
layer nodes where each original node is equivalent only to itself, and any two virtual
nodes are equivalent if and only if there is no original node between them. Consider two
adjacent layers. We subdivide the edges of Gp between these two layers into mutually
disjoint groups; two edges belong to the same group Gr if and only if their sources
are equivalent in the upper layer and their targets are equivalent in the lower layer, see
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(a) (b)

Fig. 2. (a) Bundling of edges (a,b), (c,d), and (e,f). (b) The original node c divides the edges into
three groups: {(a, g), (b, e), (b, f)}, {(c, e), (c, f), (c, g)}, and {(d, f), (d, h)}.

Fig. 2(b). We bundle together some of the edges of the same group if routing them on
top of each other saves ink. In order to preserve the homotopy classes of the edges we
never bundle together edges from different groups. Note that we will not try to solve the
ink minimization problem optimally but propose several greedy heuristics. We address
the complexity issue in Section 5.

3.1 Identifying Edge Bundles

We use the output of the Sugiyama layout algorithm as the starting point. More pre-
cisely, we are given a layering L and the node positions of graph Gp.

We process the graph layers downward, consider each group Gr separately and
bundle together some of the edges in Gr. Initially, for each edge, we create a bun-
dle containing only this edge. Iteratively we try to find a pair of bundles whose merge
maximally reduces the ink, and, if a pair is found, we create a new bundle from the pair
components. The group processing stops when the ink does not decrease anymore or
there is only one bundle in the group. The procedure on a high level is sketched below.
Edge Bundling(proper layered graph Gp)

for j = 1 to h − 1 do
for every group Gri with sources at Layerj do

bundles ← {{e1}, . . . , {emi
}};

do (b1, b2) ← valid pair of bundles whose merge produces the maximal ink gain;
bundles ← bundles − {b1, b2} + {UniteBundles(b1, b2)};

while ink improvement > 0
end for

end for

UniteBundles(b1, b2) returns the union of b1 and b2. It also shifts the ends of the
edges of the union to make the edges coincide. The new coordinates of the edge sources
(targets) are set to the average of the coordinates of edge sources (targets) of b1 ∪ b2.

Our experiments show that this strategy alone does not always produce good draw-
ings. In a layout with little ink original edges may be highly curved. To address this
issue we restrict the bundling with the following angle constraint:

– Bundling of two edges is allowed only if it does not introduce sharp bends on the
polylines of the original edges participating in the bundling. In our implementa-
tion we do not allow for an original edge polyline to turn more than on π/4 after
bundling (Fig. 3(a)).



Improving Layered Graph Layouts with Edge Bundling 333

(a) (b)

Fig. 3. (a) A polyline turns more than on π/4 at b; the bundling is forbidden. (b) Edge (a, c) is
compatible only with edge (a, d); edge (a, d) is compatible with edges (a, c),(a, f), and (b, e).

The most expensive part of the bundling scheme described above is the lookup for
a suitable pair of bundles whose merge gives the maximal ink gain. We consider three
different implementation varying in the time complexity and the quality.

A naive lookup. The brute force approach is to try all the pairs of bundles from the
same group Gri of size mi and find a pair whose merge gives the maximal ink gain.
Let t be the time needed to calculate the ink gain for the merge of two bundles. In the
simplest case when bundles contain only one edge t = O(1). However, in the worst
case t = O(m), where m is the number of the edges in Gp, because moving a bundle
involves moving the edges adjacent to the bundle above and below. A performance
analysis of processing Gri gives us O(m3

i t) since before each merge we consider all
O(m2

i ) bundle pairs, we perform O(mi) merges as the number of bundles is reduced
by one at every merge, and each ink gain computation costs O(t) time. That gives us
O(m3t) for all the groups since

∑
mi = m and therefore

∑
m3

i ≤ m3. Note that this
is a worst-case estimation; our experiments show a much better behaviour in practice.

More efficient lookup. The idea here is to avoid calculating ink gain for distant pairs
of bundles of the group. For convenience below we denote a bundle by the x-positions
of its source and target. For two bundles e = (x, y) and e′′ = (x′′, y′′), we say that
e′ = (x′, y′) lies between e and e′′ if and only if both endpoints of e′ lie between
the corresponding endpoints of e and e′′; that is min(x, x′′) ≤ x′ ≤ max(x, x′′) and
min(y, y′′) ≤ y′ ≤ max(y, y′′). This definition includes the case where e and e′′ cross
each other (Fig. 3(b)). We call two bundles compatible if there is no other bundle lying
between them. We noticed that the Sugiyama scheme usually produces such outputs
that if we reduce ink by uniting bundles e, e′′ and e′ lies in between then we would also
save ink bundling e, e′ and e, e′′. The heuristic here is based on this observation.

We enumerate over all the pairs of bundles from group Gr but check the ink gain only
for compatible ones. Then we merge a pair of bundles giving the maximal ink gain. In
the worst case group Gri contains O(m2

i ) compatible pairs. In practice we found that
only a small fraction of all possible pairs are compatible. By more involved arguments,
it can be seen that the number of compatible pairs is O(mi + cr), where cr denotes the
number of edge crossings within group Gri. As a result, we compute the ink gain rarely
comparing with the naive implementation, and obtain a significant speedup.

Fast restricted lookup. In the third heuristic we avoid enumerating over all bundle
pairs of a group but only consider compatible pairs having a common endpoint.
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(a) (b) (c)

Fig. 4. (a) Shift of node-set Vb results in edges with less turns. (b) Graph layout before straight-
ening phase. (c) Graph layout after straightening phase.

For each node v we order its adjacent edges (v, ui), 1 ≤ i ≤ dv by the x-coordinates
of the targets. Here dv is the out-degree of the node. Then we compute the ink gain of
bundling each pair (v, ui), (v, ui+1), 1 ≤ i < dv and store these values in a balanced
tree. A pair giving the maximal ink gain is merged to a bundle. Ink gains of the pairs
referencing merged bundles are removed from the tree. Ink gains of merging the new
bundle with its left and right neighbors, if they exist, are inserted into the tree. When
merging does not decrease the ink, or there is only one bundle left, we stop the proce-
dure and proceed to the next node of the layer. To process the whole graph we sweep
top-down layer-by-layer and bundle only pairs with the common source. After the first
pass we sweep bottom-top and merge only pairs with a common target.

Processing node v takes O(tdv log dv) steps, where t is the time to compute the
ink gain. Note that the ink gain calculation might be cheaper for this special case than
in general since we move only one end of the bundle. Processing group Gri requires
O(tmi log mi) steps. Summing over the groups, we achieve a bound of O(tm log m).

In section 4 we give more details of quality and practical performance of the sug-
gested heuristics.

3.2 Straightening Edges

The polylines generated by the method described above often have too many sharp
turns. To resolve this problem we use a modification of the median heuristic [8,5],
producing smoother and more vertically aligned edges. We iterate over the graph layers
in upward direction and try to shift each set of bundled nodes to align its position with
the median position of its neighbors from the layer below (Fig. 4).

The shift follows two rules: (I) the set of bundled nodes is shifted only if the new
position is outside of the shapes of the original nodes and (II) the number of turns of the
edge polylines passing through the shifted nodes does not increase. After sweeping the
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(a) (b)

Fig. 5. Bundled graph before (a) widening with high level of ambiguity and after (b) with optimal
crossing number

graph upward we sweep the layers downward. Our approach is sketched below under
the assumption that the top layer has index 1.

Edge Straightening
do

for i = h − 1 to 1 do %% upward iteration
for every set of bundled nodes Vb in Layeri do

x ← sorted array of x-coordinates of adjacent nodes to Vb on Layeri+1;
ProcessNodes(Vb, x);

end for
end for
for i = 2 to h do %% downward iteration

for every set of bundled nodes Vb in Layeri do
x ← sorted array of x-coordinates of adjacent nodes to Vb on Layeri−1
ProcessNodes(Vb, x)

end for
end for
iteration ← iteration + 1

while iteration < Max iterations

ProcessNodes(Vb, x)
xmedian ← (x�(k+1)/2� + x�(k+1)/2	)/2 %% median x-position of neighbors Vb

if moving nodes of Vb agrees with rules (I) or (II) then
for every v in Vb do vx ← xmedian

The straightening step requires Max iterations iterations, which is 10 in our im-
plementation, over the graph nodes. Processing each node takes O(d log d) steps, where
d is the out-degree of the node. Summing over the nodes gives O(m log m) time. Here
we take into account that the sum of all out-degrees of the nodes is equal to m.

3.3 Metro-Map Widening

After uniting edges we have a bundled graph where the ambiguity is often too high (see
Fig.5(a)). In this section, we propose a bundle “widening” technique which helps to
reduce the ambiguity and highlight the importance of a single bundle.

We draw each edge within the same bundle individually. This is performed by hor-
izontally moving apart coinciding edge ends to slightly separate the bundled edges.
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(a) (b) (c)

Fig. 6. (a), (b) e0 < e1; (c) e0 and e1 have to cross each other

To avoid introducing unnecessary edge crossings, we order the edges at bundled nodes
and spread the nodes according to this order. The problem of finding such orders is
similar to the metro-line crossing minimization problem [2,1].

To define the order, consider two original edges e0 and e1. Suppose e0 has node
u, and e1 has node v, which are bundled together to the node set b. To define the order
between e0 and e1 at b, we first walk up the layers simultaneously over e0 and e1 starting
from u, v until we find nodes u′ and v′, which are not bundled together, or reach the
source of at least one of the edges. If we find u′ and v′, as in Fig.6(a), we order e0 and
e1 at b according to the x-coordinates of u′ and v′. If such nodes are not found, that is
the edges have the same prefix before b, we walk down the edges, again looking for the
first fork. If not bundled nodes u′ and v′ are found, as in Fig.6(b), we order e0 and e1
at b according to the x-coordinates of u′ and v′. If no forks are found then two edges
belong to the common multi-edge; we order e0 and e1 at b arbitrarily but keep the same
order for every other common bundled node of e0 and e1.

To use the calculated orders, we uniformly, with some gap given in advance, spread
by x the nodes of a bundled node set. We keep the same average of the x-positions of the
nodes of a set. After widening only unavoidable edge crossings remain. An unavoidable
crossing occurs for a pair of original edges e0, e1 if there are nodes u, v, u′, and v′ such
that u, v belong to e0, u′, v′ belong to e1, u, v belong to the same layer, and u′, v′ belong
to the same layer, and (xu − xv)(xu′ − xv′ ) < 0 holds (see Fig. 6(c)). The result of
widening is illustrated in Fig. 5(b).

We now discuss the computation cost of this step. The comparison of any two edges
can be done in O(h) time, where h is the number of layers. Therefore, the sorting of
k edges needs O(hk log k) time. We need to order the edges at each bundled node set.
Let ki be the number of edges passing through the i-th bundled node set. Then the total
complexity of our algorithm is O((k1 log k1+. . .+kn log kn)h), where k1+. . .+kn =
n and n is the number of virtual nodes in the proper layered graph. Here we take into
account that through every virtual node passes only one original edge. The maximum
of k1 log k1 + . . . + kn log kn is n log n; it is reached when some ki = n. Therefore,
the algorithm works in O(hn log n) steps.
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(a) The Rome and North graphs
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(b) Dense graphs
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(c) Execution time

Fig. 7. (a-b) The quality of the ink minimization strategies; strategy 1 is the naive lookup, strategy
2 is the efficient lookup, and strategy 3 is the fast restricted lookup. Each data point refers to the
average ink improvement of all the graphs in the collection with the same number of edges in the
proper layered graph Gp. (c) shows the comparison of execution times of strategies.

At the final stage we follow[12]; we insert new points into the polylines to avoid
edge-node overlaps, and beautify each polyline by fitting cubic Bezier segments in its
corners. We do not have an estimate of the complexity of this step, but in practice it
takes only an insignificant fraction of the whole time.

4 Experiments

We implemented our method in tool MSAGL [12], and used the tool in our experiments.
We applied the edge bundling to some real-world graphs and three graph collections:

– Rome [16] contains 11528 graphs with 10 − 100 nodes and 9 − 158 edges. They
are obtained from a basic set of 112 real-world graphs. The graphs are originally
undirected; we orient the edges according to the node order given in the input files.

– North [16] contains 1175 graphs grouped into 9 sets, where set i = 1, . . . , 9 con-
tains graphs with 10i to 10i + 9 edges.

– Dense is a collection of power-law graphs as used in the social network analysis.
The collection contains 116 graphs with 65−95 nodes and 350−850 edges; it was
generated with the benchmark framework described in [11].

The performance and quality analysis of three edge bundling schemes is presented at
Fig. 7. It shows the comparison of the ink minimization strategies; the average run-time
and the ink gain for the graphs having the same number of virtual edges. The experi-
ments have been run on an Intel Core-2 Duo 1.83GHz with 2GB RAM. The simplest
implementation reduces the total ink by four times within 40 seconds for the graphs
with 25000 virtual edges. The second strategy works two times faster, while its qual-
ity of the ink minimization is almost the same. The implementation with restrictions
is the fastest: our largest graphs are processed within 10 − 12 seconds. Typical lay-
outs obtained with different ink minimization schemes are demonstrated by Fig. 8. We
conclude that the second and third strategies are both practical. The former is more ag-
gressive: it bundles larger amount of edges and creates less cluttered images. The latter
bundles the edges with common sources or targets only, and thus produces the layouts
with less ambiguity.

We compared the time complexity of the edge bundling with other stages of the
Sugiyama algorithm. It can be seen that building of bundles is the most time-consuming
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(a) (b) (c) (d)

Fig. 8. A comparison of bundle strategies. (a) The standard layout. (b) The naive lookup. (c) The
efficient lookup. (d) The fast restricted lookup.
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(b)

Fig. 9. Execution time of algorithm stages

part of the edge bundling (Fig. 9(a)). This step requires around 65% of the total time.
In the whole, the edge bundling time is comparable with the time required by other
Sugiyama stages as layering and x-coordinate assignment (Fig. 9(b)). The analysis of
performance shows that our algorithm handles well medium-sized graphs containing up
to several hundred nodes and a thousand edges.

A real-world example of layered layout is state machine diagram. A tool [17] created
a model of the standard Windows application notepad.exe. We applied our method to
show the state machine of the model. The nodes of the graph depict all possible states
of the Notepad model and the edges correspond to the user actions like adding/deleting
characters, selecting text, etc. The original and bundled layouts are shown in Fig. 1.
Our method reveals the edge patterns and clarifies the structure of the state machine.
Another example of edge bundling is given in Fig. 10.

We conclude that our technique is beneficial for dense graphs. For such graphs we
utilize the white space better, and the bundles help to visualize the high-level edge
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(a)

(b)

Fig. 10. Graph from the North collection with 25 nodes and 184 edges

patterns. Our method might introduce some ambiguity as, for example, for edges be-
tween S19 and S7 in Fig. 1(b); interactive edge highlighting can help here.

5 Conclusion, Discussion and Future Work

We have presented an edge bundling scheme for layered graphs that preserves the initial
node positions and the homotopy classes of the edges. It ensures that nodes do not over-
lap with the edge bundles and that the resulting bundles are relatively straight, making
them easy to follow visually. The resulting layout highlights the edge routing patterns
and shows significant clutter reduction. Our method can improve layouts produced by
other layered graph layout algorithms. The experiments show that the method is fast
enough to process medium-sized graphs.

We found yet another application of our method to the Sugiyama algorithm, as a
post-processing step for the crossing minimization of the Ordering phase. The idea is
for each layer to bundle all virtual nodes which are not separated by an original node.
After that we apply the widening technique described in Section 3.3. This results in an
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order with the minimum number of the edge crossings subject to the given order of the
original nodes. In some cases we found up to 30% of edge crossings reduction.

There are several directions for future work. One could be a global multi-layer
bundling processing the edges by taking into consideration the whole graph. We ex-
pect to receive drawings of a better quality by analyzing edges globally. Performance of
our method depends on the number of virtual edges which can be large and vary signifi-
cantly for graphs of the same size. The multi-layer approach might lead to an algorithm
which does not depend on the number of virtual nodes so heavily. Finally, we would
like to understand whether the problem of ink minimization is solvable in a polynomial
time. It would be interesting to know how close the ink of drawings produced by our
methods is to the minimal ink.
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Abstract. The need of effective drawings for non-planar dense graphs
is motivated by the wealth of applications in which they occur, including
social network analysis, security visualization and web clustering engines,
just to name a few. One common issue graph drawings are affected by is
the visual clutter due to the high number of (possibly intersecting) edges
to display. Confluent drawings address this problem by bundling groups
of edges sharing the same path, resulting in a representation with less
edges and no edge intersections. In this paper we describe how to create
a confluent drawing of a graph from its rectangular dual and we show
two important advantages of this approach.

Keywords: Confluent Drawing, Rectangular Dualization, Orthogonal
Drawing, Clustered Graphs.

1 Introduction

Drawing graphs is a challenging problem, as witnessed by the wealth of ap-
proaches (recently surveyed in [6]) that have been proposed over the last two
decades. Far from being mere and meaningless collections of nodes and edges,
graphs are effective ways to describe relationships between objects (e.g. people,
molecules, computers); consequently, visualizing a graph is an important step to
clearly reveal all its information. In order to be readable, a drawing must com-
ply with precise aesthetic criteria on the way nodes and edges are visualized;
nodes (and edges) should not be too close to one another, symmetries should be
highlighted, the total area should be minimized and so on. While optimizing all
such constraints is clearly impossible, a good balance is usually the right way
to go to create nice drawings. Large and dense graphs are inherently difficult
to draw, as the amount of information that can be visualized is limited by the
size of the medium (computer screen or paper) used to render the drawing. One
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common issue is the visual clutter due to the high number of (possibly inter-
secting) edges, which prevents the human eye from easily following their paths.
Recently a new drawing style called confluent drawing has been introduced to
draw non-planar graphs with no edge crossings by bundling groups of intersect-
ing edges into tracks [4]. Since not all graphs are confluent (e.g. can be drawn
confluently) and no polynomial exact algorithm is known to decide whether a
graph is confluent or not, most of the research in this area focuses on inves-
tigating new heuristics to recognize confluent graphs as well as studying new
classes of confluent graphs [4, 7, 8, 14, 15]. However, it would be interesting to
investigate how edges can be bundled not only to eliminate crossings but also to
visualize as few segments/curves as possible, thus reducing the visual clutter in
both non-planar and planar dense graphs.

Rather than improving the existing heuristics to recognize confluent graphs,
our paper proposes an algorithm that is specifically designed for creating con-
fluent drawings, bundling the edges so as to significantly reduce the amount
of drawing elements to display. The algorithm creates a confluent drawing of a
graph from its rectangular dual, a graph representation mostly used in VLSI
floorplanning [13, 16–18]. We claim two major contributions of this approach:

(a) We create orthogonal-like confluent drawings with large angular resolution
(≥ π/2) of graphs with unbounded maximum degree, such that nodes are
visualized as points in the plane and edges as sequences of vertical and
horizontal segments connected through curved bends (Fig. 4);

(b) We outline how to draw confluently a clustered graph with rectangular clus-
ters, by extending the definition of rectangular dual to clustered graphs [19].

As far as (a) is concerned, in the case of planar graphs we may think of our
drawings as a generalization of orthogonal drawings to graphs with maximum
degree ≥ 4, even though they are not perfectly orthogonal, due to the curved
bends. We are fully aware that approaches exist that create perfectly orthog-
onal drawings for graphs with unbounded maximum degree. One of the best
approaches is the Kandinsky model [11], where the nodes are represented as
squares of equal size placed on a grid and edges as sequences of vertical and
horizontal segments. However, if the size of the squares is too small the edges
incident with a high-degree node may appear too close to one another which
we avoid by keeping a large angular resolution. Tree-like confluent graphs [15]
and delta-confluent graphs [7] can also be drawn with angular resolution ≥ π/2,
but they are limited to chordal bipartite graphs and distance hereditary graphs
respectively, while our drawings can represent every confluent graph 1.

The remainder of the paper is organized as follows. The notation and defini-
tions used in the paper and relevant related work are introduced in Section 2.
Theory of rectangular dualization is detailed in Section 3. In Section 4 we de-
scribe our drawing algorithms and we show preliminary results. In Section 5 we
outline our method to create confluent drawings of clustered graphs. Section 6
concludes the presentation.
1 Henceforth when we say “every confluent graph” we mean every graph that can be

recognized as confluent by the existing heuristics.
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2 Background and Related Work

In a confluent drawing edges are merged together into tracks which are the
union of locally-monotone curves [4]. A locally-monotone curve is one that does
not self intersect and contains no point with left and right tangents forming an
angle ≤ 90 degrees. More precisely, in a confluent drawing D of an undirected
graph G = (V, E) each node v ∈ V is drawn as a point v′ in the plane, every
edge (vi, vj) ∈ E is represented as a locally-monotone curve connecting v′i and
v′j and no two locally-monotone curves can cross.

A clustered graph C is a graph with a recursive partitioning of its node set
V (G) into groups called clusters. More formally C = (G, T ) consists of an under-
lying graph G and a tree T , describing the inclusion relation between clusters,
such that every node ν of T is a cluster V (ν) of the nodes of G that are leaves of
the subtree rooted at ν [9, 10]. High-level clusters are those included in no other
clusters. Typically each cluster V (ν) is visualized as a region R in the plane
enclosing the drawing of G(ν) (and the drawing of all subclusters). When the
drawing of an edge e crosses the boundary of region R more than once and both
endpoints of e are outside R we have a edge-region crossing. A drawing with
no edge crossings nor edge-region crossings is said c-planar and C is c-planar
if it admits such a drawing. Finally, C is c-connected if G(ν) is connected, for
each ν ∈ T [9, 10]. Two important algorithms to draw clustered graphs using
rectangular regions are described in [1, 5].

3 Rectangular Dualization

Let G = (V, E) be a plane connected graph with n nodes and m edges. A
rectangular dual RD(G) = (Γ, f) of G (Fig. 1) is a rectangular subdivision system
Γ – a partition of a rectangle into a set of non-overlapping rectangles no four of
which meet at the same point – with a one-to-one correspondence f : V → Γ
such that two nodes u and v are adjacent in G if and only if their corresponding
rectangles f(u) and f(v) share a common boundary [16]. Not every planar graph
admits a rectangular dual and, if so, it has many. Different groups of authors
independently discovered and proved necessary and sufficient conditions for a
graph to have a rectangular dual [16–18]. We prefer the formulation in [16] as
we use the resulting algorithm to create rectangular duals.

Theorem 1. A plane graph G has a rectangular dual with four rectangles on
the boundary if and only if (a) every inner face of G is a 3−cycle and there
are exactly four nodes on the outer cycle; (b) G has no separating triangles –
3−cycles containing at least one node in its interior.

A graph which complies with Theorem 1 is called a Proper Triangular Planar
(PTP) graph; we denote the four nodes on the outer cycle of G in counterclock-
wise order as vN , vW , vS and vE . By Theorem 1 only a limited subclass of planar
graphs admits a rectangular dual; in order to support our statement that conflu-
ent drawings can be obtained from a rectangular dual of every confluent graph, we
need to explain how we force a graph to comply with the admissibility conditions.
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Fig. 1. A graph and its rectangular dual

3.1 Enforcing the Admissibility Conditions

First, Theorem 1 requires G to be planar; if it is not the case, we use the pla-
narization procedure described in [4]. For every clique or biclique C of G, the
edges of C are removed and the nodes of C are connected to a new node v, which
we call a clique crossover node if C is a clique and biclique crossover node if C is
a biclique; we say that the nodes of C are adjacent through the crossover node v.
If the resulting graph is not planar, the algorithm concludes that G is not con-
fluent and terminates. As pointed out in [4], this planarization procedure runs
in O(n) time assuming that G has bounded arboricity, which is the minimum
number of forests into which the edges of G can be partitioned.

In order to turn G into a PTP graph G∗, we use a procedure described in [18]
which goes through the following steps:

(a) Edges are added to make G biconnected.
(b) The four nodes vN , vW , vS , vE are added so that they form a new outer

cycle of G. New edges are introduced to link the new nodes to those of the
former outer cycle of G.

(c) Separating triangles are searched [3] and broken (see below).
(d) All inner faces are triangulated using the O(n) algorithm described in [2].

As for step (c), the algorithm described in [3] finds all 3-cycles of G, including
not only the separating triangles but also the 3-faces (e.g. faces bounded by a
3-cycle) of G. Since every 3-cycle can be described as a triple of integer numbers,
each integer identifying a node (or an edge), the list L of 3-cycles and the list F
of 3-faces can be lexicographically sorted using radix sort and compared against
each other in O(n) time to remove from L any item of F . To break a separating
triangle Δ = (v, w, z), one of its edges (say (v, w)) is replaced by two new edges
(v, c) and (c, w), c being a new node called ST crossover node, and we say that
v and w are adjacent through c. In order to break in O(n) time all separating
triangles of G by adding as few crossover nodes as possible we use the heuristics
described in [19].

Using the algorithm described in [16] the rectangular dual RD(G∗) is com-
puted while removing the rectangles corresponding to vN , vW , vS and vE . It
stands to reason that a rectangular dual of G∗ is not a rectangular dual of G.
Since new edges are added, indeed, two rectangles f(u) and f(v) may be adja-
cent in RD(G∗) even if the two corresponding nodes u and v are not adjacent in
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G; similarly, due to the introduction of a crossover node c, f(u) and f(v) may
not be adjacent in RD(G∗) while (u, v) ∈ E. In the first case, since there is no
relationship between u and v in G we can simply ignore that f(u) is adjacent
to f(v); in the second case, we can think of f(c) as a gate, through which one
can go from f(u) to f(v), so as they can be considered as adjacent. Therefore,
although it is not theoretically sound, we will refer to RD(G∗) as the rectangular
dual of G and we will denote it as RD(G). Notice that exactly two nodes are
adjacent through a ST gate (corresponding to a ST crossover node), while more
than two are typically adjacent through clique and biclique gates.

4 From Rectangular Dual to Confluent Drawing

In this section we describe two methods to create a confluent drawing D of a
graph G = (V, E) from a rectangular dual RD(G) = (Γ, f) of G. Both use an
orthogonal-like drawing style, where nodes are represented as points in the plane
and edges as sequences of horizontal and vertical segments, except for the edges
connecting nodes adjacent through gates which are bundled into traffic circles
(Fig. 2) as done in [4]. We remark that, while in an orthogonal drawing a bend
is a point at which an horizontal and vertical segment meet, in our confluent
drawings a bend is represented as a small diagonal segment (Fig. 2) connecting
an horizontal to a vertical segment (or the other way round). The reason of this
choice is that in a confluent drawing a segment may be shared by two or more
edges that may follow different paths, whose direction is indicated by the bends.

Before describing the two approaches, we need some more notation. Every
rectangle R in RD(G) is bounded by four lines x = xwest(R), x = xeast(R),
y = ynorth(R), y = ysouth(R), such that xwest(R) < xeast(R) and ysouth(R) <
ynorth(R). Consequently R has four sides: the north and south sides lie on lines
y = ynorth(R) and y = ysouth(R) respectively and the west and east sides lie
on lines x = xwest(R) and x = xeast(R) respectively. Two rectangles R and
Q are adjacent if they share one side or part of it. If R shares (part of) its
north side with Q, R is south of Q (Q is north of R) and we write south(R, Q)
(north(Q, R)); if R shares (part of) its west side with Q, R is east of Q (Q is
west of R) and we write east(R, Q) (west(Q, R)).

In the following, when no ambiguity arises, we will use the same notation to
denote a node or an edge and its pictorial representation (a point and a sequence
of segments respectively).

4.1 Baseline Approach

The first method we will be describing creates D using no explicit technique to
reduce the number of bends nor to bundle as many edges as possible so as to
reduce the visual clutter. For this reason we refer to it as the baseline approach.
To create the nodes, a point u is drawn at the center of every non-gate rectangle
f(u). As we will see, this choice heavily impacts on the number of resulting
bends. In order to keep the bends at a readable length, if the x-coordinates x(u)
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and x(v) of two points u and v are such that |x(u) − x(v)| < ε, for a small
constant ε, the position of u and v is modified so that they appear aligned along
the same vertical line. The same goes for y(u) and y(v). Next, we draw a traffic
circle inside each gate. While traffic circles are the only possible option for clique
and biclique gates, as more than two nodes are adjacent through them, they are
not so necessary for ST gates, which connect exactly two nodes. However, we
found cases where edges running through gates had too many unpleasant bends,
which a traffic circle helped to hide. Finally for each point u we create its incident
edges as follows (Fig. 3(a)). Without losing generality, we assume that at least
one non-gate rectangle f(v) is such that north(f(v), f(u)) and (u, v) ∈ E (recall
that since G may have been turned into a PTP graph f(u) and f(v) may be
adjacent even if (u, v) /∈ E). The same reasoning can be replicated if f(v) has
a different position with respect to f(u). If u and v are aligned along the same
vertical line (e.g. x(u) = x(v)), edge (u, v) is simply a segment between them (it
has no bends). If u and v are not aligned, we create a new point (called confluence
point) cnorth(u) with coordinates (x(u), ynorth(f(u)) − ε) and we connect u and
cnorth(u) by a segment s. Assuming s oriented from u to cnorth(u), v may be
either left or right of segment s; in the first case a boundary point cl

north(u) is
created on the north side of f(u) with coordinates (x(u) − ε, ynorth(f(u))) and
connected to cnorth(u) by a segment; otherwise a boundary point cr

north(u) is
created with coordinates (x(u) + ε, ynorth(f(u))) and connected to cnorth(u). A
segment connecting a confluence point to a boundary point is a bend. Finally, if
v has been already processed (meaning that cl

south(v) or cr
south(v) already exist),

a segment is drawn between cl
north(u) and cl

south(v) (if v is at the left of segment
s) or cr

north(u) and cr
south(v) (if v is at the right of segment s). The resulting

edge (u, v) will have exactly two bends. The same procedure is used to create

Fig. 2. Drawing produced by the baseline approach
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(a) Baseline Approach (b) Improved Approach

Fig. 3. How the baseline and the improved approaches work

an edge e between u and any traffic circle, with the only difference that e needs
an extra bend to connect to the traffic circle, which is necessary to understand
the direction e has to take inside the circle.

Theorem 2. The baseline approach creates a confluent drawing D of graph G
in O(n) time.

Proof. The number of gates is O(n) and to create the edges the adjacency list
of every node is crossed at most once, hence the linearity of the method. As
for confluency, we notice that smooth lines are created only between points
corresponding to nodes that are adjacent in G. In any edge e incident with a
point u, the segment incident with u always run along a line passing through u;
the other edges run along the boundaries of the rectangles and cross a boundary
only to reach an endpoint. Given that, it is impossible that two sequences of
segments cross.

4.2 Improved Approach

As it is clear from Figure 2, the baseline approach creates many unwanted bends
(look for example at edges (n, o) (o, p) and (p, q)) and it does not effectively
reduce the visual clutter. Motivated by these observations, we propose a second
approach, which we refer to as the improved approach that goes through the
same steps as the baseline approach (creates the nodes, the traffic circles and,
for each point, the edges incident with it) but optimizes through heuristics the
position of the nodes as well as the layout of the edges to reduce the number of
bends and to bundle as many edges as possible (Fig. 4).

In order to make sure that we do not create edge crossings, we stick with our
principle that the drawing of node u must be inside the corresponding rectangle
f(u) and that the drawing of edge (u, v) must cross the boundary of no rectangle
but f(u) and f(v). Instead of blindly drawing point u at the center of f(u), we
place u within f(u) so as to minimize the number of bends of its incident edges.
Although this does not necessarily imply that we minimize the number of bends
across the whole drawing, we found that eliminates many unnecessary bends,
such as the ones mentioned before. As for the edges, we remark that in the
drawings generated by the baseline approach any edge between two nodes not
adjacent through a gate either has no bends or two. Before creating a two-
bend edge, the improved approach checks whether it is possible to lay it down
with only one. Let us assume again, without loss of generality, that north(v, u).
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Fig. 4. Drawing produced by the improved approach

There are two ways to draw edge (v, u) with one bend (Fig. 3(b)): using the
sequence of black thick segments denoted as s1 or the sequence of gray thick
segments denoted as s2. s2 is not a good solution, as it may cross sequences of
segments incident with v (such as s4); on the other hand, s1 cannot cross any
segment incident with v because the segment of s1 incident with v runs on a line
passing through v, as in the baseline approach, where crossings are not possible.
However, s1 may still cross a previously created 1-bend edge s3 incident with
u. Since both s1 and s3 represent valid 1-bend edges incident with u, we create
the one which maximizes the number of 1−bend edges incident with u; in other
words, we create s1 if the edges following the same path as s1 are more than the
ones following the same path as s3. Finally, all edges that cannot be created with
only one bend are drawn with two-bends as described in the baseline approach.
It is immediate to verify that the improved approach creates confluent drawings
in linear time.

4.3 Implementation and Results

Both approaches described in the previous section have been implemented in C
and included in our software OcORD, which has been originally created to study
the properties of rectangular dualization and now has been extended to the graph
drawing domain [19]. While introducing this paper, we stated that the goal of our
drawing algorithm is to reduce the visual clutter due to the high number of edges
in large graphs. To support this statement, we need a measure to assess such a
reduction. One way to go here is to compare the number of drawing elements (e.g.
segments) used to create the confluent drawing against the number of segments
that would have been necessary to create the same drawing without bundling the
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Fig. 5. Experimental results

edges. Therefore we selected 100 graphs from the AT&T data set2, whose order
ranges from 10 to 100 nodes, and for each of them we created, besides a confluent
drawing using both the baseline and the improved approach, a Kandinsky-like
drawing using the same drawing conventions for the edges as in the confluent
drawings described in the previous section (e.g. edges represented as sequences
of vertical and horizontal segments with diagonal bends). For all drawings we
then measured the total number of bends and the number of segments used to
draw the edges. Figure 5 reports on the average of these values over all data set.
As expected, the improved approach outperforms the baseline approach both
in terms of reduction of the segments and in terms of total number of bends.
On average the drawings produced with the improved approach have up to 30%
less segments than the drawings produced without bundling the edges, while
in the drawings created by the baseline approach this reduction drops to 20%.
Moreover, the improved approach halves the number of bends created with the
baseline; however, looking at Fig. 4, we are still able to find unwanted bends,
partly due to the traffic circles and partly due to the constraint that edges
cannot cross the boundaries of other rectangles than the ones corresponding to
their endpoints. As bends are also responsible for visual clutter, we are planning
on substituting heuristics with an optimal algorithm which minimizes the bends
through a flow based method, like it is done in [12]. We conclude the discussion
of the results with two important remarks. First, we found the quality of the
drawings is sometimes questionable. Referring to Fig. 4, nodes tend to crowd
in some areas, while other regions appear empty; this is due to the different
size of the rectangles in the rectangular dual, which is also responsible for the
excessive length of some edges (such as edge (f, n)). Finally, a graph has typically
many rectangular duals, which obviously lead to different drawings. It would be
interesting to investigate how different rectangular duals impact on the quality
of the drawing (especially in terms of number of gates and thus bends). Both
aspects will be object of future research.

5 Confluent Rectangular Drawing for Clustered Graphs

In [19] the clustered rectangular dual (c-rectangular dual for short) has been
introduced as a generalization of the rectangular dual for c-planar clustered
2 http://www.graphdrawing.org/
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Fig. 6. A clustered graph with its c-rectangular dual and confluent drawing (in gray)

graphs. Intuitively, a c-rectangular dual of C = (G, T ) is a rectangular dual of G
such that the rectangles corresponding to the nodes in V (ν) form a rectangular
dual of G(ν) (Fig. 6). More formally:

Definition 1. A c-rectangular dual RD(C) = (Γ, f) of a c-planar clustered
graph C = (G, T ) is a rectangular dual of G such that, for each node ν of T :
(A) The union of the rectangles in Γ (V (ν)) is a rectangular dual of G(ν), where
Γ (V (ν)) = {R ∈ Γ |f−1(R) ∈ V (ν)}; (B) If V (μ) ⊂ V (ν), Γ (V (μ)) ⊂ Γ (V (ν)).

The outline of the admissibility conditions require additional theoretical back-
ground which is out of the scope of this paper; the interested reader is referred
to [19]. Here we limit ourselves to a short description of the algorithm that cre-
ates a c-rectangular dual of every c-planar graph C = (G, T ). Without losing
generality we assume that the underlying graph G is a PTP graph, whose outer
nodes belong to no cluster (they are mere construction nodes). The idea of the
algorithm is extremely simple; first we create the rectangular dual RD(Q) of the
quotient graph Q of C, where each rectangle corresponds to a high-level cluster
V (ν) of C, and next each rectangle is “filled” with the rectangular dual of G(ν)
(if G(ν) is a plain graph) or the c-rectangular dual of G(ν) (if G(ν) is in turn a
clustered graph). We recall that Q is the graph having a node vν for each high-
level cluster V (ν) of C and an edge between two nodes vν , vμ if and only if there
is an edge in C linking a node in V (ν) to a node in V (μ). Figure 7 (a) and (b)
show the quotient graph of the clustered graph in Fig. 6 and the rectangular dual
respectively. It stands to reason that G being a PTP does not imply that Q is a
PTP graph; separating triangles and even multiple edges may need to be broken
using additional crossover nodes (which may be thought of as empty clusters).
Similarly, the rectangular dual of G(ν), for each V (ν), must be such that the
rectangles on the boundary fulfill the adjacency constraints with the rectangles
on the boundary of adjacent clusters. Referring to Fig. 6, the rectangular dual
of G({a, b, c, l}) can be rotated so that rectangle l appears in the position where
b, c are now (and vice versa), and still we would have a valid rectangular dual of
G({a, b, c, l}); but rectangle l would not be adjacent to rectangle k anymore and,
similarly, c would not be adjacent to d. Again, for details on this point we refer
the interested reader to [19]. Once a c-rectangular dual has been created, one
of the algorithms described in Section 4 is used to create a confluent drawing
of the underlying graph. Figure 6 shows that the confluent drawing of G(ν), for
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Fig. 7. (a) Quotient graph Q of C. (b) RD(Q). (c) Confluent R-drawing of C.

every cluster, is completely contained in the interior of the rectangular region
delimited by the rectangular dual of G(ν). All we are left to do is to separate
the sides of these rectangular regions so as to obtain the confluent rectangular
drawing (or confluent R-drawing) shown in Figure 7, where each cluster is rep-
resented as an independent rectangular region. The advantage of a a confluent
R-drawing is that it reduces the visual clutter due to the edges and the visual
clutter due to the representation of the clusters; using simple convex regions
such as rectangles, in fact, improves the readability of the graph, as pointed out
in [5]. We have no experimental results on this part so far, as the algorithm
that creates the c-rectangular dual is not perfect yet. In particular, it seems to
create too many gates, which, as seen before, have such a negative impact on
the number of bends. This will be the object of our future work.

6 Conclusions

In this paper we discussed two algorithms that create a confluent drawing of a
graph G from its rectangular dual. Preliminary results indicate that one of the
approaches successfully decreases the amount of segments needed to visualize
the edges, thus reducing visual clutter. Much work is still left to do to reduce
the number of bends as well as applying the described techniques to clustered
graphs.
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How to Draw a Tait-Colorable Graph

David A. Richter

Western Michigan University, Kalamazoo MI 49008, USA

Abstract. Presented here are necessary and sufficient conditions for a
cubic graph equipped with a Tait-coloring to have a drawing in the real
projective plane where every edge is represented by a line segment, all of
the lines supporting the edges sharing a common color are concurrent,
and all of the supporting lines are distinct.

1 Introduction

The complete bipartite graph K3,3 has 9 edges and the Pappus configuration has
9 lines. In fact, we may embed K3,3 in the Pappus configuration, as in Figure 1.

Fig. 1. How to draw K3,3

Notice that K3,3 has a Tait-coloring, meaning that the graph is cubic and
the edges may be colored with three colors in such a way that edges of all
three colors meet at every vertex [13]. Given a graph G with a Tait-coloring,
we ask in general whether it is possible to represent G by this type of drawing.
Specifically, we require that the drawing in the real projective plane have the
properties that (a) every edge is represented by a line segment, (b) all of the
lines supporting the edges sharing a common color are concurrent, and (c) every
supporting line contains exactly 2 vertices of the graph. The main result here
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gives combinatorial necessary and sufficient conditions for when such a graph has
this type of drawing. Since K3,3 appears as a special case, this is a generalization
of Pappus’s classical hexagon theorem.

This is a particular type of straight-line drawing. Since every bipartite cubic
graph is Tait-colorable, the main result yields the fact that every 3-connected
bipartite cubic graph has a drawing with slope number less than or equal to 3.
Moreover, the main result here singles out a particular class of graphs studied
in [9], where it is proved that every graph with degree not exceeding 3 has slope
number less than or equal to 5. A significant source for inspiration for this work
was the recent study [5], [6] on xyz graphs and xyz polyhedra. According to [5],
an xyz graph is a cubic graph which can be represented in R3 in such a way that
every axis-parallel line contains either zero or two points of the graph. Every xyz
graph is Tait-colorable, and it is well known that every cubic graph equipped
with a Tait-coloring yields a corresponding compact surface, cf. [4]. Hence, an
xyz surface is the compact surface associated to an xyz graph. Obviously the
definitions of xyz graphs and projective drawings are closely related. Thus, for
example, one sees that every xyz graph has a projective drawing, but a graph
which has a projective drawing may fail to be an xyz graph. The complete
bipartite graph K3,3 furnishes an example of this. Thus, our class extends the
class of xyz graphs.

The question of drawing graphs in this way arose during a reading of [11],
where it is proved that realization spaces of 4-dimensional convex polytopes are
universal. In the course of this proof, it is necessary to construct a 4-dimensional
polytope with a non-prescribable octagonal face. In particular, imposing certain
incidences among the edges and vertices forces slopes of the edges of the octagon
to be a harmonic set. Having seen the construction of this octagon, it is natural
to inquire how many incidences may be similarly prescribed.

By serendipity, the main result here is a close relative of a theorem which was
discovered while studying a phenomenon which may be called “ghost symme-
try”. Roughly, one says that a subset of a Euclidean space has a ghost symmetry
if some projection of that object has an unexpected symmetry group. The main
result in [10] gives a necessary and sufficient condition for a cubic graph equipped
with a Tait-coloring to correspond to a subset of the plane having ghost symme-
tries specified by the coloring. Even though the idea behind this “ghost symmetry
prescribability theorem” is not nearly as intuitive as that of drawing a graph, it
is stated below for the sake of completeness.

The drawings which appear here were produced using Cinderella [12].

2 Theory of Tait-Colored Graphs

Suppose n is a positive integer. Define a Tait-colored graph as a pair G = (S, T ),
where S = {1, 2, 3, ..., 2n − 1, 2n}, and T : {1, 2, 3} → H is a function into the
set H ⊂ Perm(S) ∼= S2n of all fixed-point-free permutations of S of order 2. It is
convenient to designate the image T ({1, 2, 3}) by {b, g, r} and write T = {b, g, r}.
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In graph-theoretic terminology, H coincides with the set of all perfect matchings
of the complete graph with vertex set S. Define the Θ-graph as the unique Tait-
colored graph with 2 vertices.

Notice that we use the term “Tait-colored graph” instead of the more cumber-
some phrase “cubic graph equipped with a Tait-coloring”. Indeed, every graph
which we consider is already equipped with a Tait-coloring, and we do not ad-
dress the issue of Tait-colorability. The reason we regard a Tait-colored graph as
a triple of permutations is due to the connection to ghost symmetries described
below.

Define a component of a graph G = (S, T ) as an orbit in the group gener-
ated by T . Call a graph connected if it has exactly one component. Define a
monochromatic pair of a graph G = (S, T ) as a pair of transpositions appearing
in the cycle decomposition of one of the elements of T . Graph-theoretically, a
monochromatic pair is a pair of edges having the same color. Thus, one may
designate a monochromatic pair by π = {(x, σx), (y, σy)}, where σ ∈ T and x
and y are vertices. A pair of edges of a connected graph G is a 2-edge cut set if
deleting the edges disconnects the graph. If G is Tait-colored and π is a 2-edge
cut set, then a 2-edge cut set is necessarily a monochromatic pair.

The language required in the case a graph is not bipartite is streamlined
by using the bipartite double cover of a graph, as defined, for example, in [2].
We specialize this to Tait-colored graphs. Thus, suppose G = (S, T ) is a Tait-
colored graph. Introduce disjoint sets S1 and S2 such that there exist bijections
βi : S → Si. The bipartite double cover of G has vertex set S1 ∪ S2 and edges
{(β1(z), β2(σz)) : z ∈ S, σ ∈ T }. Alternatively, one constructs the bipartite dou-
ble cover by introducing a monochrome pair {(β1(z), β2(σz)), (β2(z), β1(σz))} for
every edge (z, σz) of G. Notice that the Tait-coloring of G furnishes a natural
Tait-coloring of the bipartite double cover.

In general, a connected graph is bipartite if and only if its bipartite double
cover is disconnected; if a graph is bipartite, then the bipartite double cover is
a disjoint union of two copies of the original graph. Call a Tait-colored graph
G = (S, T ) is strongly non-bipartite if the deleted graph G\π is non-bipartite
for every monochromatic pair π. Notice that a graph is strongly non-bipartite if
the bipartite double cover of G\π is connected for every monochromatic pair π.
Finally, note that the bipartite double cover of a connected non-bipartite graph
G has a 2-edge cut set if and only if G\π has both a bipartite component and a
non-bipartite component for some monochromatic pair π.

3 Projective Drawings

The purpose of this section is to state and prove the main results of this article.
Suppose G = (S, T ) is a Tait-colored graph and assume T = {b, g, r}. Define

a parallel drawing of G as a pair (ι, φ) where ι : S → R2 is a function and
φ = {φb, φg, φr} is a triple of projections to distinct 1-dimensional subspaces of
R2 such that such that φσ(ι(z)) = φσ(ι(σz)) for all z ∈ S and all σ ∈ T . Call a
monochromatic pair {(x, σx), (y, σy)} degenerate for (ι, φ) if the lines ι(x), ι(σx)
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and ι(y), ι(σy) coincide. Given a Tait-colored graph G = (S, T ), define the trivial
drawing of G by specifying ι(z) = 0 for all z ∈ S. Clearly every monochromatic
pair of a graph is degenerate for its trivial drawing. Call a parallel drawing
faithful if it has no degenerate pairs. In this terminology, we are interested in
general in when one may find a faithful parallel drawing of G.

The space of parallel drawings of a fixed graph G = (S, T ) carries an action
by the group GL(2, R), induced by the usual action on R2. Thus, suppose (ι, φ)
is a drawing of G and g ∈ GL(2, R). Define a pair (ιg , φg) by ιg(x) = gι(x)
and (φg)σ = (g−1)T φσ for all x ∈ S and σ ∈ T . Then (ιg, φg) is a drawing of
T . Notice (ιg , φg) is faithful whenever (ι, φ) is faithful. The action of GL(2, R)
factors through to an action of PGL(2, R) which is triply transitive on RP 1.
Thus, one may prescribe {φb, φg, φr} to be the projections to any three distinct
1-dimensional subspaces of R2. For this reason, we assume throughout that these
projections are fixed and suppress mention of them unless necessary.

The main results are handled in two cases, depending on whether or not a
given graph is bipartite:

Theorem 1. A connected, bipartite, Tait-colored graph which is not the Θ-graph
admits a faithful parallel drawing if and only if it does not have a 2-edge cut set.

There is a similar characterization when the graph is non-bipartite:

Theorem 2. A connected, non-bipartite, Tait-colored graph admits a faithful
parallel drawing if and only if it is strongly non-bipartite and its bipartite double
cover does not have a 2-edge cut set.

In the proofs of each of these, one must establish two directions. The “combi-
natorial” direction is to show that if a graph has a certain pathology, then the
graph cannot be drawn faithfully. The converse “constructibility” direction is to
show that if a graph lacks the pathology, then one may draw it faithfully.

Call a monochromatic pair of a Tait-colored graph G forced if it is degenerate
in every parallel drawing of G. Forced pairs allow an alternate statement of the
main results:

Corollary 3. Suppose G is a connected, Tait-colored graph with at least 4 ver-
tices and π is a monochromatic pair of G. (a) If G is bipartite, then π is forced
if and only if π is a cut set. (b) If G is non-bipartite, then π is forced if and only
if G\π has a bipartite component.

In particular, a monochromatic pair π of a connected non-bipartite graph G can
be forced in one of two ways. Either G\π is connected and bipartite or π is a
cut set and exactly one of the two components of G\π is bipartite.

Given a Tait-colored graph G = (S, T ), define a projective drawing of G as a
pair (ι, λ) where ι : S → RP 2 is a function and λ : T → RP 2 is an injection such
that λσ lies on ι(z), ι(σz) for all z ∈ S and σ ∈ T . Call a projective drawing
faithful if the lines ι(z), ι(σz) correspond bijectively with the edges (z, σz). A pro-
jective drawing becomes a parallel drawing when the three points λ are collinear.
Since faithfulness and non-collinearity are open conditions, one may perturb a
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parallel drawing so that the three “vanishing points” λ are non-collinear while
preserving faithfulness. In fact, if a graph admits a faithful parallel drawing,
then one may find a projective drawing for any choice of three distinct points λ.
The converse of this, however, is not true. For example, the complete quadran-
gle is a projective drawing of the complete graph K4 equipped with its unique
Tait-coloring, and it is often taken as an axiom in projective geometry that the
three diagonal points not lie on a common line.

3.1 The Combinatorial Direction

Proposition 4. Suppose G = (S, T ) is a connected Tait-colored graph and π is a
monochromatic pair of G. (a) If G is bipartite and π is a cut set, then π is forced.
(b) If G is non-bipartite and G\π has a bipartite component, then π is forced.

Proof. (a) Let {S1, S2} be the bipartition of S and let V be the vertices of
one of the components of G\π Without loss of generality, assume that π =
{(x, bx), (y, by)}, where x ∈ S1 and y ∈ S2. Let ι be any drawing of G. Notice
g(S1 ∩ V ) = S2 ∩ V and g(S2 ∩ V ) = S1 ∩ V , so we may write∑

z∈S1∩V

φg(ι(z)) =
∑

z∈S1∩V

φg(ι(gz)) =
∑

z∈S2∩V

φg(ι(z)) .

By a similar token, we also have∑
z∈S1∩V

φr(ι(z)) =
∑

z∈S1∩V

φr(ι(rz)) =
∑

z∈S2∩V

φr(ι(z)) .

Since φg and φr are linearly independent, this yields∑
z∈S1∩V

ι(z) =
∑

z∈S2∩V

ι(z) .

In particular, this implies∑
z∈S1∩V

φb(ι(z)) =
∑

z∈S2∩V

φb(ι(z)) .

Subtracting off all terms corresponding to blue edges of G, this yields φb(ι(x)) =
φb(ι(y)). However, ι is a drawing of G, so φb(ι(x)) = φb(ι(bx)) and φb(ι(y)) =
φb(ι(by)). Therefore π is a forced pair.

Part (b) follows in an analogous manner, although there are two parts to
show. If G\π has two components, then one may use the argument above on
the bipartite component. If G\π is connected, then it is bipartite and there is a
uniquely determined bipartition {S1, S2} of the vertices of G\π. Again one may
show as above that the centroid of ι(S1) coincides with the centroid of ι(S2).
One then projects according to φb, subtracts terms corresponding to blue edges,
and concludes that the vertices of π must be collinear. ��

This establishes the combinatorial direction for both theorems.
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3.2 The Constructibility Direction

Given a Tait-colored graph G = (S, T ), define a cycle of G as a sequence γ =
(z1, z2, ..., z2k) of vertices such that zi+1 = σizi for some σi ∈ T for each i,
regarding subscripts modulo 2k. Call a cycle of length 2k simple if it has 2k
distinct vertices.

Suppose (ι, φ) is a parallel drawing of G = (S, T ) and γ = (z1, z2, ..., z2k) is a
simple cycle of G. Assuming T = {b, g, r}, choose non-zero vectors vσ ∈ ker(φσ)
such that vb + vg + vr = 0. Define τi ∈ T \{σi−1, σi}, the unique third color at
zi which is not equal to σi−1 or σi. Next, assign s : {1, 2, 3, ..., 2k} → {−1, 1} as
follows. First let s1 = 1. Then, assuming si has been defined, let

si+1 =
{

si if τi+1 = τi ,
−si if τi+1 = τi .

For ease of notation, write vi = vτ if τ = τi for each i. Next, for t ∈ R, let
ιγ,t(z) = ι(z) for all z /∈ {z1, z2, ..., z2k} and

ιγ,t(zi) = ι(zi) + tsivi

for all i ∈ {1, 2, 3, ..., 2k}. It is routine to verify that ιγ,t is a parallel drawing of G
for any choice of cycle γ satisfying the assumptions above. Call ιγ,t a perturbation
of ι along γ. Notice that a perturbation is defined only for cycles of even length.

One may quickly establish:

Proposition 5. Suppose G = (S, T ) is a Tait-colored graph, ι is a parallel draw-
ing of G, and γ is a simple cycle of G. (a) If z is a vertex of γ and t = 0, then
ιγ,t(z) = ι(z). (b) If z is not a vertex of γ, then ιγ,t(z) = ι(z) for all t. (c) If
(z, σz) is an edge of γ and t = 0, then ιγ,t(z), ιγ,t(σz) = ι(z), ι(σz). (d) If z is
a vertex of γ and (z, σz) is not an edge of γ, then ιγ,t(z), ιγ,t(σz) = ι(z), ι(σz)
for all t.

This proposition indicates how the constructibility direction of the proof works.
Our aim in each case is to show that one may perturb the trivial drawing along
simple cycles and inductively remove every degenerate pair under the given hy-
potheses. In each case, one chooses the perturbation carefully so as not to intro-
duce any further degeneracies. Note that if π = {(x, σx), (y, σy)} is a degenerate
pair for a drawing ι and there exists a pair (γ, t) such that π is not a degenerate
pair for ιγ,t, then the general perturbation of ι along γ has strictly fewer degen-
erate pairs than ι. This follows because the condition for a pair to be degenerate
for ιγ,t is a linear equation in t. Since there are only finitely many monochro-
matic pairs, the number of values of t for which ιγ,t has more or equal numbers
of degenerate pairs than ι is finite.

The Bipartite Case. Suppose first that G = (S, T ) is a connected, bipartite,
Tait-colored graph. Furthermore, assume that G does not have a 2-edge cut set.
Let ι be any drawing of G and suppose π = {(x, σx), (y, σy)} is degenerate for
ι. Since π is not a 2-edge cut set, there is a simple cycle γ in G which contains
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the edge (x, σx), but not the edge (y, σy). Hence, if G has a degenerate pair,
one may always choose a non-zero perturbation ιγ,t which has fewer degenerate
pairs than ι. This completes the proof of the main result in the case when G is
bipartite.

The Non-Bipartite Case. This follows analogously, although it is more cum-
bersome. Suppose G = (S, T ) is a connected, non-bipartite, Tait-colored graph,
ι is a drawing of G, and π = {(x, σx), (y, σy)} is a degenerate pair for ι. Assume
moreover that the deleted graph G\π is non-bipartite and does not have a bipar-
tite component. Showing the existence of a desirable cycle depends on whether
or not π is a cut set.

Suppose first that G\π is connected. Since G\π is not bipartite, there is a
simple cycle γ in G having the property that (x, σx) is an edge of γ and (y, σy)
is not an edge of γ. (If such a cycle didn’t exist, then G\π would be bipartite
or disconnected.) Hence, one may perturb along γ to eliminate the degeneracy
along π without introducing more degeneracies.

Suppose instead that G\π is disconnected, consisting of components G1 and
G2. Assume x is a vertex of G1 and σx is a vertex of G2. Since neither G1 nor G2
is bipartite, there are integers j, k and cycles γ1 = (x = z1, z2, ..., z2j−1, z2j = x)
of length 2j − 1 in G1 and γ2 = (σx = z2j+1, z2j+2, ..., z2j+2k = σx) of length
2k−1 in G2. Without loss of generality, assume that γ1 and γ2 are simple. Define
a cycle γ of length 2j + 2k by

γ = (z1, z2, ..., z2j−1, z2j , z2j+1, ..., z2j+2k) .

Hence γ is a cycle in G which uses the edge (x, σx) but not (y, σy). We must
provide a definition of the perturbation along γ because it has repeated vertices
z1 = z2j = x and z2j+1 = z2j+2k = σx. In this case, we define ιγ,t as above on
the non-repeated vertices, but also specify

ιγ,t(z1) = ι(z1) + t(s1v1 + s2jv2j)

and
ιγ,t(z2j+1) = ι(z2j+1) + t(s2j+1v2j+1 + s2j+2kv2j+2k) .

As above, it is routine to verify that this defines a 1-parameter family of parallel
drawings of G. However, one must verify that this perturbation removes the
degeneracy along π without introducing any others. Since the vertices of γ1 and
γ2 are distinct, we have τ1 = τ2j and τ2j+1 = τ2j+2k. This in turn implies that
s1 = s2j and s2j+1 = s2j+2k. Hence, up to a sign,

ιγ,t(z1) = ι(z1) ± t(v1 − v2j)

and
ιγ,t(z2j+1) = ι(z2j+1) ± t(v2j+1 − v2j+2k) .

Now, recall that the subspaces {v⊥b , v⊥g , v⊥r } are distinct. This implies that the
vectors v1 − v2j and v2j+1 − v2j+2k are both non-zero. Hence, a non-zero per-
turbation of ι along γ may remove the degeneracy along π without introducing
any additional degeneracies.

This completes the proof of the theorem in the case G is non-bipartite.
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4 Subsequent Results

The purpose of this section is to highlight some general observations concerning
projective drawings of Tait-colored graphs. These results are not required in
the proofs of the main results above, but they are nevertheless interesting in
their own right. Given that the main theorem is a generalization of Pappus’s
theorem, it is thought that these results may play some role in studying geometric
configurations.

4.1 Quasi-Faithful Drawings

A faithful projective drawing of a Tait-colored graph is the nicest possible be-
cause all supporting lines are distinct. However, even though a certain graph may
not admit a faithful drawing, it may admit one that is nearly faithful. Thus, call
a drawing ι of a Tait-colored graph G = (S, T ) quasi-faithful if ι restricts to a bi-
jection on S. For a quasi-faithful drawing, we do not require that the supporting
lines ι(z), ι(σz) be distinct. Call a Tait-colored graph quasi-faithful if it admits
at least one quasi-faithful drawing but it does not admit a faithful drawing. For
example, the graph in Figure 2 is quasi-faithful because the edges (5, 7) and
(2, 10) lie on the same supporting line in every drawing.

Whether or not a graph is quasi-faithful depends only on the combinatorics of
its forced pairs. For example, if a graph has only one forced pair, then one may
always perturb to find a quasi-faithful drawing. In fact, the main results above
show that a graph fails to have a quasi-faithful drawing exactly when it has at
least two forced pairs π1 and π2 with different colors and at least two common
vertices.

The graph of a triangular prism, for example, does not even have a quasi-
faithful drawing. For, let G = (S, T ), where S = {1, 2, 3, 4, 5, 6} and T = {b, g, r}
with b = (1, 2)(3, 4)(5, 6), g = (1, 6)(2, 3)(4, 5), and r = (1, 3)(2, 5)(4, 6). Then G
is non-bipartite and both of the graphs G\{(1, 2), (5, 6)} and G\{(2, 3), (4, 5)}
are bipartite. According to the theorem in the case G is non-bipartite, the pairs
{(1, 2), (5, 6)} and {(2, 3), (4, 5)} are forced. Since the points {1, 2, 5, 6} are al-
ways collinear and the points {2, 3, 4, 5} are always collinear, the points {2, 5}
common to both always coincide in every drawing of G. By symmetry, the points
{1, 4} are always coincident as are {3, 6}.

4.2 Forced Triples

For some projective drawings, one sees extraneous points where three support-
ing lines always concur. For example, in every projective drawing of the graph
appearing in Figure 2, the lines 1, 2, 4, 9 and 6, 7 are concurrent. The purpose of
this section is to characterize when this happens. Suppose G = (S, T ) is a Tait-
colored graph and assume T = {b, g, r}. Call a triple τ = {(x, bx), (y, gy), (z, rz)}
of edges with 6 distinct vertices forced if the lines ι(x), ι(bx), ι(y), ι(gy), and
ι(z), ι(rz) are concurrent in every drawing ι of G.
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Fig. 2. A quasi-faithful graph with a forced triple

Proposition 6. Suppose G = (S, T ) is a connected Tait-colored graph and τ is
a triple of edges with 6 distinct vertices. (a) If G is bipartite, then τ is forced if
and only if τ is a cut set. (b) If G is non-bipartite, then τ is forced if and only
if G\τ has a bipartite component.

Notice in particular that a triple τ in a connected non-bipartite graph G can be
forced in one of two ways. Either G\τ is connected and bipartite or τ is a cut
set and exactly one of the two components of G\τ is bipartite.

The proof of this follows in a manner similar to the main results above. In
the combinatorial direction, one uses the style of argument which was used for
proposition 4. In the constructibility direction, one shows that if a drawing has a
coincident triple of lines which does not arise in one of these ways, then one may
perturb the drawing along a carefully chosen cycle to remove the degeneracy.

The presence of a forced triple provides a way to decompose a drawing of
a graph into “subdrawings”. Suppose for instance that G = (S, T ) is con-
nected and bipartite and τ = {(x, bx), (y, gy), (z, rz)} is a forced triple. Then
G\τ has two components. Let S1 and S2 be the sets of vertices for each of
these components and assume x, y, z ∈ S1 and bx, gy, rz ∈ S2. Then one ob-
tains two smaller graphs G1 and G2 by introducing vertices, say w1 and w2, and
edges {(x, w1), (y, w1), (z, w1)} in G1 and {(bx, w2), (gy, w2), (rz, w2)} in G2. The
graphs G1 and G2 inherit Tait-colorings from G, but they are not subgraphs of
G. Nevertheless, due to the proposition above, every projective drawing of G
automatically contains projective drawings of G1 and G2. There is a similar
decomposition when G is non-bipartite.
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4.3 Realization Spaces

The purpose here is to discuss the space of all drawings of a given graph. The
main point is that such spaces are always topologically trivial.

Given a Tait-colored graph G = (S, T ), let D(G) denote the set of all parallel
drawings of G with a fixed triple of projections. Reading the definition, one sees
that D(G) is a vector space. Using perturbations, one may show:

Proposition 7. Suppose n is a positive integer, |S| = 2n, and G = (S, T ) is a
Tait-colored graph. (a) If G is bipartite, then D(G) has dimension n + 1. (b) If
G is non-bipartite, then D(G) has dimension n.

Given G, let F(G) denote the space of all faithful parallel drawings of G. Again,
due to the linearity in the definition, one sees that F(G) is the complement of
an arrangement of hyperplanes in D(G). This yields:

Proposition 8. Suppose n is a positive integer, |S| = 2n, and G = (S, T ) is a
Tait-colored graph which admits a faithful parallel drawing. (a) If G is bipartite,
then F(G) is a disjoint union of open cells of dimension n + 1. (b) If G is
non-bipartite, then F(G) is a disjoint union of open cells of dimension n.

Currently the number of connected components of F(G) as a function of G is
unknown.

5 Conclusion

5.1 Higher Degree

One may extend the notions above and ask about parallel drawings of d-edge-
colored regular graphs. However, even the case of d = 4 appears very difficult to
handle:

Conjecture 9. The decidability problem of whether or not a 4-edge-colored quar-
tic graph has a faithful parallel drawing is polynomially equivalent to the exis-
tential theory of the reals.

See [3] for a definition. The intuition behind this conjecture is based on sev-
eral facts. Consider that the space of faithful drawings of a Tait-colored graph
is always a complement of a hyperplane arrangement, but this property does
not appear to be predictable for quartic graphs. For example, there is no sim-
ple relationship between the dimension of the realization space and the number
of vertices for quartic graphs. By a similar token, the realization space of a
Tait-colored graph always contains realizations with integer coordinates, but, by
contrast, the realization space of a quartic graph often uses an extension of the
rationals. Another source of intuition comes from the theory of graph-encoded
manifolds and crystallizations [7]. In this theory, one represents a pseudomanifold
of dimension d with a (d + 1)-edge-colored graph of degree d + 1, and then uses
these representations to study the pseudomanifold. Thus, each 4-edge-colored



How to Draw a Tait-Colorable Graph 363

quartic graph represents a certain 3-dimensional pseudomanifold. Even in di-
mension 3, several decision problems are known to be NP-complete [1,8]. Thus,
it is thought that decision problems in 3-dimensional manifolds must translate
via polynomial-time algorithms to decision problems for 4-edge-colored quartic
graphs. Finally, it was shown in [11] that any semialgebraic variety can be ap-
proximated by the realization space of a 4-dimensional convex polytope. This is
in contrast to the case in dimension 3, where the realization space of every convex
polytope is an open cell. Thus, things appear to “go bad” when one increases
the dimension. Due to the connection to crystallizations of pseudomanifolds,
increasing the degree from 3 to 4 is akin to increasing the dimension.

5.2 Ghost Symmetry in the Plane

This section explains the connection from the main result from [10] to parallel
drawings. Suppose G = (S, T ) is a Tait-colored graph. Define a GS realization of
G as a pair (ι, φ) where ι : S → R2 is a function and φ = {φb, φg, φr} is a triple
of projections to distinct 1-dimensional subspaces of R2 such that such that
φσ(ι(z)) = −φσ(ι(σz)) for all z ∈ S and all σ ∈ T . The 1-dimensional subspaces
in this definition are the lines of ghost symmetry because, while the 2-dimensional
point configuration ι(S) may have a trivial symmetry group, there are three
distinct 1-dimensional shadows φσ(ι(S)) which each have bilateral symmetry.
Call a GS realization faithful if each of the projections φσ restricts to a bijection
on ι(S). Here is the main theorem from [10]:

Theorem 10. A Tait-colored graph admits a faithful GS realization if and only
if it does not have a 2-edge cut set.

Obviously the statement of this theorem is similar to the main results above on
parallel drawings. The main difference is that the theorem does not resort to the
notion of bipartiteness. One may prove this analogously. In the combinatorial
direction, one shows that a 2-edge cut set makes faithfulness impossible, and
in the constructibility direction one shows that one may perturb along cycles
(of arbitrary length) to obtain a faithful drawing. Likewise, there are analogous
statements for realization spaces and forced triples. Having seen this theorem, it
should be clear why we regard a Tait-colored graph as a triple of fixed-point-free
involutions: After projecting one of these configurations ι(S) down to one of the
three prescribed subspaces, one obtains a linear configuration whose two-fold
symmetry yields the corresponding permutation of those points.

Here is the connection to parallel drawings. Suppose G = (S, T ) is a connected,
bipartite, Tait-colored graph which does not have a 2-edge cut set. Then G has
a faithful GS realization, say ι. Let {S1, S2} be the bipartition of the vertices.
Define a map ι′ : S → R2 by

ι′(z) =
{

ι(z) if z ∈ S1,
−ι(z) if z ∈ S2.

Then ι′ is a faithful parallel drawing of G.
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Abstract. Let R and B be two sets of distinct points such that the points of R
are coloured red and the points of B are coloured blue. Let G be a family of
planar graphs such that for each graph in the family |R| vertices are red and |B|
vertices are blue. The set R∪B is a universal pointset for G if every graph G ∈ G
has a straight-line planar drawing such that the blue vertices of G are mapped to
the points of B and the red vertices of G are mapped to the points of R. In this
paper we describe universal pointsets for meaningful classes of 2-coloured trees
and show applications of these results to the coloured simultaneous geometric
embeddability problem.

1 Introduction

Let G be a planar graph with n vertices whose vertex set is partitioned into subsets
V0, . . . , Vk−1 for some positive integer 1 ≤ k ≤ n and let S be a set of n distinct points
in the plane partitioned into subsets S0, . . . , Sk−1 with |Si| = |Vi| (0 ≤ i ≤ k − 1).
We say that each index i is a colour, G is a k-coloured planar graph, and S is a k-
coloured set of points compatible with G. A k-coloured point-set embedding of G on S
is a polyline drawing of G such that each vertex of Vi is mapped to a distinct point of
Si and no two edges cross.

Let G be a family of k-coloured graphs such that for each colour all graphs in G
have the same number of vertices of that colour, and let S be a k-coloured set of points
compatible with each G ∈ G. Set S is an h-bend universal pointset for the family G if
each G ∈ G has a k-coloured point-set embedding on S such that every edge of G is
drawn as a polyline having at most h bends. h-Bend universal pointsets are the subject
of extensive research in the graph drawing and combinatorial geometry literatures.

Pach and Wenger [17] consider the family of n-coloured planar graphs and prove
that any pointset in general position is O(n)-bend universal for this family. In the
same paper, the authors show that for some n-coloured planar graphs and for some
n-coloured compatible sets of points Ω(n) bends per edge may be necessary. Kauf-
mann and Wiese [16] prove that every set of n distinct points in the plane is 2-bend
universal for all (1-coloured) planar graphs. Everett et al. [6] show how to construct a
set of n distinct points that is 1-bend universal for all planar graphs. On the negative
side, De Fraysseix, Pach, and Pollack [4] show that a 0-bend universal pointset does not
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exist for the family of planar graphs. Gritzman, Mohar, Pach, and Pollack [10] prove
that every set of n distinct points in the plane is 0-bend universal for the outerplanar
graphs with n vertices and that this is the largest subfamily of the planar graphs having
this property.

Several results are also known for h-bend universal pointsets of k-coloured planar
graphs with 1 < k < n and h ≥ 1. Di Giacomo et al. [9] show that every set of n
distinct points is 1-bend universal for the properly 2-coloured caterpillars, the properly
2-coloured wreaths, the 2-coloured paths, and the 2-coloured cycles. Di Giacomo et
al. [7] also prove that every set of n distinct points is 5-bend universal for the 2-coloured
outerplanar graphs, while Badent et al. [1] prove that not all sets of n distinct points can
be h-bend universal for 2-coloured non-outerplanar graphs for any fixed constant h.

This paper is devoted to the study of 0-bend universal pointsets for 2-coloured trees.
Since we only consider pointsets that support straight-line drawings, we shall simply
say universal pointset to mean a 0-bend universal pointset. Also, for consistency with
existing literature, we name the two colours of our trees as red and blue. Although 2-
colored trees may appear as a somewhat restricted subfamily of the k-colored planar
graphs, there is a rich literature concerning universal pointsets of these trees. While the
interested reader is referred to the survey by Kaneko and Kano [14], we briefly recall
here some of the most recent findings that are more closely related to our results.

Abellanas et al. [2] show that any 2-coloured pointset S such that either the convex
hull of S consists of all red points and no blue points or S is a linearly separable biparti-
tion (i.e., there exists a line that separates all blue points from the red ones) is a universal
set for the properly 2-coloured paths. Brandes et al. [3] extend this result and show that
a linearly separable bipartition is universal for the (non necessarily properly) 2-coloured
paths. Results by Ikebe et al. [11] and by Kaneko and Kano [12] show that every set of
n distinct points in general position is universal for the 2-colored forests of size n and
consisting of at most two trees each having exactly one red vertex. Follow-up papers by
Kaneko and Kano [13,15] extend this last result to forests with more than two trees un-
der the assumption that the forest consists of either star-trees or trees whose sizes differ
from one another by at most one vertex. Di Giacomo et al. [8] also study forests such
that every tree has exactly one red vertex and prove that any set of points where the red
points are in convex position is universal for these graphs. Finally, Estrella-Balderrama,
Fowler, and Kobourov [5] describe universal pointsets for different families of 2- and
3-coloured trees, namely the 2-coloured spiders, the 3-coloured caterpillars, and the
3-coloured radius-two stars.

This paper describes three new, fairly general families of 2-coloured trees for which
universal pointsets exist. Our results are as follows.

– There exists a universal pointset for the properly 2-coloured trees whose leaves all
have the same colour (Theorem 1, Section 2).

– There exists a universal pointset for the properly 2-coloured full binary trees
(Theorem 2, Section 2).

– There exists a universal pointset for the rooted 2-coloured trees where every vertex
has at most one child having a colour different from its own (Theorem 3, Section 3).

Finally, an application of the our results to the k-coloured simultaneous geometric em-
beddability problem [3] is given in Section 4 (Corollaries 1, 2, and 3).
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2 Properly 2-Coloured Trees

In this section we consider universal pointsets of properly 2-coloured trees, i.e.
2-coloured trees in which no two vertices of the same colour are adjacent. Unless stated
otherwise, the trees considered in this section are not rooted. Throughout the paper, the
blue vertices will be depicted as black dots and the red vertices as white dots. We start
by considering properly 2-coloured trees where all leaves have a same colour.

Theorem 1. There exists a universal pointset for the properly 2-coloured trees in which
all leaves have the same colour.

Proof. Let T be the set of properly 2-coloured trees such that each tree in the set has nr

red vertices and nb blue vertices and such that all leaves have the same colour. Without
loss of generality assume that the leaves are red, which implies nr ≥ nb. If nr = nb

the tree is a path and the statement holds by the result of Abellanas et al. [2]. Hence we
prove the theorem for the case that nr > nb.

We draw a ”downwards pointing” circular arc ρ and a horizontal line σ below it so
that each point on ρ is visible from each point on σ as illustrated in Figure 1. Let S be
a point set defined as follows. Place an alternating sequence of red and blue points on ρ
with nb red and nb blue points. We place nr − nb red points on σ. We now prove that
S is universal for T by presenting an algorithm that, for any tree T ∈ T , computes a 2-
coloured point set embedding of T on S with straight-line edges. For an illustration see
Figure 1, where some edges have been purposely drawn as curves to make the picture
more readable.

We start with decomposing T in a set of paths. A total of nr − nb red leaves will
not be included in this decomposition. Since T is properly 2-coloured, any path in T
alternates between red and blue vertices. Choose an arbitrary path in T from a leaf v to
a vertex w adjacent to a leaf. Add the path from v to w to the decomposition. The path
from v to w is called the first path of T . Mark the vertices in the first path and repeat
the decomposition into paths as follows. For any marked vertex v that has an unmarked
neighbour w that is not a leaf, choose a path starting at w and ending at a leaf u. If
w is blue, add the path to the decomposition and mark all vertices in this path. If w is
red, remove u from the path, add the shortened path to the decomposition and mark all
vertices in this path. Notice that all paths start and end at vertices of different colours.
We will draw all such paths on arc ρ, and the remaining nr − nb red leaves on σ.

Let v0, v1, . . . , vp−1 be the first path. Place v0 on the left or right-most point of ρ,
depending on which point has the correct colour. Place the remaining vertices of the
first path on neighbouring points of S on ρ. We will now consider T as a rooted tree,
rooted at an arbitrary vertex on this path. Let w0, w1, . . . , wk−1 be the vertices in T that
do not lie on the first path, that are neighbours of vertices in the first path, and that are
not leaves. Each wi is an endpoint of one of the paths in the decomposition. Assume
that we have numbered these vertices from one end of the path to the other, i.e. for all
i < j, if wi and wj are neighbours of vertices va and vb in the first path then a ≤ b.
Let ni be the number of vertices in the subtree rooted at wi for 0 ≤ i < k. Processing
the unused points on ρ starting at the unused point besides vp−1 reserve the first nk−1
points for the paths in the subtree of wk−1, reserve the next nk−2 points for the paths
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Fig. 1. Illustration for the proof of Theorem 1. The red points are white dots, the blue points are
black dots. The first path has length 6 and k = 3, n0 = 6, n1 = 2 and n2 = 6. Some edges have
been drawn as curves to make the figure more readable.

in the subtree of wk−2, and so on. Then, for all i place wi on the left or right most
point of its reserved group of points, depending on which point has the correct colour.
Map the remaining vertices on the path containing wi to the neighbouring points of S
on ρ. We then continue recursively. Finally, we can connect the points of S on σ to
their neighbours on ρ, since each point on σ can see all points on ρ. Since the resulting
drawing is a 0-bend point-set embedding of T on S, it follows that S is a universal
pointset for T . ��
Motivated by Theorem 1, it is natural to ask whether there exists a universal pointset
also for properly 2-coloured trees whose leaves can be either red or blue. The next
theorem answers this question for the family of properly 2-coloured full binary trees,
i.e. properly 2-coloured trees whose vertices have degree either three or one. The proof
is omitted here because of space limitations.

Theorem 2. There exists a universal pointset for the properly 2-coloured full binary
trees.

3 Almost Mono-Chromatic Rooted Trees

In this section we study universal pointsets of 2-coloured trees where vertices of the
same colour may be adjacent. The almost monochromatic trees are those 2-colored
rooted trees where each parent has at most one child of a different colour than its own.

Theorem 3. There exists a universal pointset for the almost monochromatic trees.

Sketch of Proof: Let T be the set of almost monochromatic trees having nr red vertices
and nb blue vertices. Let S be a set of points defined as follows. Draw two circular
arcs cr and cb so that they form an “hourglas”, as illustrated in Figure 2. Place nr red
points on cr and nb red points on cb. Assume without loss of generality that the root v0
is red. We prove that S is universal for T by showing how to compute a 0-bend point
set embedding on S of any tree T ∈ T . Call unfinished a vertex of T whose children
are not all drawn. We compute a 0-bend point set embedding of T on S by maintaining
the following invariant: For each unfinished vertex v ∈ T there exists a convex region
that intersects cr and/or cb and such that v is either mapped to the lowest red point or
to the lowest blue point on cr or cb inside this region. The region associated with v
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contains the correct number of vertices for the subtree of v. Map v0 to the bottom red
point on cr. Notice that the invariant holds after the first step. If v0 has a blue child
vb, assign a convex region to vb containing the unused bottom-most points from cr and
cb. The number of red and blue points in this region is equal to the number of red and
blue vertices in the subtree rooted at vb. Place vb in its region at the bottom unused
point of cb. If v0 has red children, then for each red child vr, assign a convex region
to vr containing the next group of bottom-most points from cr and from cb. Map the
children of v0 to the bottom most points on cr in their regions. Since the invariant holds
for each child of v0, each subtree can be recursively drawn inside the corresponding
convex regions. Hence S is a universal pointset for T . ��

v0

cb

v0

v1 v2 v3 v4

v4

v1

v2

v3

cr

Fig. 2. Illustration for the proof of Theorem 3. The red points are white dots, the blue points are
black dots. Some edges have been drawn as curves to make the figure more readable.

4 Coloured Simultaneous Geometric Embeddings

The k-coloured simultaneous geometric embeddability problem is defined as follows.
The input is a set of k-coloured planar graphs G1 = (V, E1), G2 = (V, E2), . . . , Gr =
(V, Er) on the same vertex set V . The goal is to find planar straight-line drawings Di of
Gi using the same |V | points in the plane for all i = 1, . . . , r, such that vertices of colour
i are mapped to points of colour i. The set of drawings Di (i = 1, . . . , r) is a k-coloured
simultaneous geometric embedding of the graphs G1 = (V, E1), G2 = (V, E2), . . . ,
Gr = (V, Er) . The k-coloured simultaneous geometric embeddability problem was
first defined by Brandes et al. [3] and subsequently investigated by Estrella-Balderrama,
Fowler, and Kobourov [5]. By using the universal pointsets of Theorems 2, 1, and 3 the
following results are immediate.

Corollary 1. Any number of properly 2-coloured full binary trees admits a 2-coloured
simultaneous geometric embedding.

Corollary 2. Any number of properly 2-coloured trees whose leaves all have the same
colour admits a 2-coloured simultaneous geometric embedding.

Corollary 3. Any number of rooted almost-monochromatic 2-coloured trees admits a
2-coloured simultaneous geometric embedding.
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5 Open Problems

It is unknown whether there are universal pointsets for properly 2-coloured (binary)
trees, or more generally whether there are universal pointsets for 2-coloured trees.
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Abstract. We study how much better a right-angled crossing (RAC)
drawing of a planar graph can be than any planar drawing of the same
planar graph. We analyze the area requirement, the edge-length ratio,
and the angular resolution. For the first two measures, a RAC drawing
can be arbitrarily much better, whereas for the third measure a RAC
drawing can be 2.75 times as good.

Keywords: Right-angled crossing drawing, planar graphs, quality.

1 Introduction

Right-angled crossing drawings of graphs were introduced recently, motivated
by the fact that good drawings may have crossings, as long as the crossing edges
have a large crossing angle. In a right-angled crossing drawing (RAC drawing),
every two edges that cross must do so at a right angle. It was shown that RAC
drawings of graphs with n vertices can have up to 4n−10 edges, and this bound
is tight in the worst case [4].

Although RAC drawings can be drawings of non-planar graphs, one could also
use a RAC drawing of planar graph in order to get a better angular resolution
(for instance). For example, the K4 has a RAC drawing whose smallest angle is
π/4 (the square with two diagonals), while any planar drawing has an angle of
at most π/6 (the optimum is realized by the equilateral triangle with the center
point). Hence, the angular resolution of a RAC drawing can be 1.5 times as good
as the angular resolution of any planar drawing of the same planar graph.

Let Φ be a quality measure of a drawing like area requirement, edge-length
ratio, or angular resolution. In this paper we study how much better a RAC
drawing of a planar graph can be than any planar drawing of the same graph.
In particular, we study the quality ratio

QR(Φ) = sup
G planar

ΦRAC(G)
Φplanar(G)

,

where ΦRAC(G) is the quality of the RAC drawing that is optimal for graph
G and measure Φ, and Φplanar(G) is the quality of the planar drawing that
is optimal for graph G and measure Φ. While research on RAC drawings has
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considered both the case of straight-line drawings and drawings with bends in
the edges [1,4], we consider only straight-line drawings.

Firstly, we consider the area requirement (Section 2). We show that for any n,
there is a planar graph with n vertices that admits a RAC drawing of area O(n),
but any planar drawing requires area Ω(n2). This implies that a RAC drawing
can be arbitrarily much better than a planar drawing of the same planar graph. If
the area requirement quality ΦA(G) is defined as the reciprocal of the minimum
area needed in a drawing of G, then QR(ΦA) = ∞.

Secondly, we consider the edge-length ratio (Section 3). We give a class of
graphs that has constant edge-length ratio for RAC drawings but an unbounded
edge-length ratio for all planar drawings when n → ∞. We define the edge-length
ratio quality ΦE(G) as the longest possible length of the shortest edge in any
drawing of G, assuming the longest edge in that drawing has length 1. Then we
will show that QR(ΦE) = ∞.

Thirdly, we consider the angular resolution (Section 4). Let Φα(G) be the
largest possible smallest angle in a drawing of G. It follows from the results
of Malitz and Papakostas [6] that for constant-degree planar graphs, the ratio
of angular resolution is constant, because a planar drawing with all angles at
least Ω(1/7d) exists (where d is the maximum degree; see also [5]), while no
drawing—planar or not—can do better than 2π/d. We give a planar graph of
degree 8 that shows that QR(Φα) ≥ 2.75. Whether QR(Φα) is bounded from
above by a constant for planar graphs of non-constant degree is open.

2 Ratio of Area Requirement

Consider the class of graphs shown in Figure 1 (left). The n vertices can be
placed on a 2 × n/2 grid for a RAC drawing, and hence the area requirement is
linear in n. For any planar drawing, we show that it contains a linear number
of nested triangles, and hence the area requirement of any planar drawing is
quadratic [3].

Consider the middle K4 of the sequence, abcd. For a drawing to be planar,
one of the vertices must be inside the triangle formed by the other three. Since
the situation is symmetric, we can assume that c is inside �abd in a planar
drawing. Since the vertices e, f are adjacent to both c and d, they must be
inside �abd, and so must the whole further part of the graph beyond e and f

a

b

c

d

e

f

g

h
c d

f

a

b

e

c d

f

a

b
e

Fig. 1. Area requirement of a RAC drawing and a planar drawing
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including g and h. Since the subgraph c, d, e, f must be planar, we either have f
inside �cde or e inside �cdf , see Figure 1, right. We repeat the argument once
more to conclude that h is inside �efg or g is inside �efh. In the first case, we
have �abd enclosing �efg, and the remainder of the graph (right part) is inside
�efg. The second case is analogous. We conclude that in all cases, any planar
drawing has Ω(n) nested triangles, and hence it has area requirement Ω(n2).
We conclude that the ratio of area-requirement quality is unbounded.

3 Ratio of Edge-Length Ratio

In this section we show that for a sufficiently large constant R, a graph exists
such that a RAC drawing has edge-length ratio at most 3 and a planar drawing
has edge-length ratio at least R. The graph consists of nested quadrilaterals,
shown as squares in the left part of Figure 2. Nested squares come in pairs; note
that the edges between the outer two squares are the same as the edges between
the inner two squares. We can extend this construction to �n/10� pairs of squares
in a graph with n vertices. The graph has a unique embedding except for the
choice of the outer face, and by a standard duplication of the construction we
can ensure that any embedding has Ω(n) pairs of nested quadrilaterals. We will
show that the inner quadrilateral of a pair is sufficiently smaller in some sense
(area and/or diameter) than the outer quadrilateral of that pair. Since we have
Ω(n) pairs of nested quadrilaterals and n is not bounded by any constant, the
innermost one can be made arbitrarily much smaller than the outermost one.

Fig. 2. Planar and RAC drawing of a graph that illustrates that the ratio of edge-length
quality is unbounded

Figure 2 (right) shows that a RAC drawing exists where the edge-length ratio
is less than 3. The quadrilaterals can be drawn as squares that are not nested, and
the drawing can be extended to any number of squares. If the outermost square
has edge length 1, then for any ε > 0, we can make the innermost square have
edge length 1−ε, and the longest and shortest edges have lengths approximately
1
2

√
5 and 1

2 .
Summarizing, we can prove unbounded ratio of edge-length quality for RAC

drawings and planar drawings of the same graph if we can show that in any
planar drawing of the graph shown in Figure 2, an edge-length ratio bounded
by R implies that the inner quadrilateral of a pair of nested quadrilaterals is
smaller by some significant amount than the outer quadrilateral.
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v1
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u2 u3

u4
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v1

v3

v4

u1

u2

u3

u4

Q

Q′Q Q′

Fig. 3. The graph G and its edges (left). The 1-neighborhood regions of the four vertices
of Q.

Lemma 1. Let G be a planar graph as in Figure 3, using the shown embedding.
Then for any embedding-preserving straight-line drawing of G and some large
enough constant R, if the edge length ratio of G is at most R, then the diameter
ratio of the quadrilaterals Q = v1v2v3v4 and Q′ = u1u2u3u4 is greater than
1 + Ω(1/R2) or the area ratio of Q and Q′ is greater than 1 + Ω(1/R4).

Proof. Let R be a sufficiently large constant. Consider any embedding-preserving
straight-line drawing of G with shortest edge length 1 and longest edge length
R. Then the area of Q is in (0, R2] and the diameter of Q is in (1, 2R). The area
and diameter of Q′ is always smaller than that of Q, but we will show that at
least one of these measures is significantly smaller.

We define the 1-neighborhoods of v1, . . . , v4 as the intersection of the unit
disks centered at v1, . . . , v4 with the interior of Q. By the edges of G between Q
and Q′, ui cannot be in the 1-neighborhood of vi for i = 1, . . . , 4, and u1 cannot
be in the 1-neighborhood of v2 or v4, and u2 cannot be in the 1-neighborhood
of v3.

If none of u1, . . . , u4 is in the 1-neighborhood of any of v1, . . . , v4, then the
diameter decreases at least by some constant amount, depending on R. Since R
is a constant, the diameter of Q′ is smaller by a constant fraction < 1 (some
calculation shows that it is at most 1− c

R2 times the diameter of Q, for a constant
c > 0). So it remains to analyze the cases where at least some u1, . . . , u4 are in
the 1-neighborhood of some of v1, . . . , v4, but with the restrictions on which ui

cannot be close to which vj .
Consider the six triangles of G in between Q and Q′ (we ignore the quadri-

lateral that is also in between). If any of these triangles has at least a constant
area (which may depend on R), then the area of Q′ is a constant fraction < 1
less than the area of Q. In particular, this implies that u1 must be very close to
the line through v1 and v2 (due to the area of �u1v1v2 and the shortest edge
length of 1) and very close to the line through v1 and v4 (due to the area of
�u1v1v4 and the shortest edge length of 1). In particular, a distance of at least
1/R2 implies that the area of a triangle is at least 1/(2R2), which makes the
lemma true because the area of Q is at most R2. So we continue with the case
where the distance from u1 to these lines is less than 1/R2. Since u1 is close to



The Quality Ratio of RAC Drawings and Planar Drawings of Planar Graphs 375

both lines but at least distance 1 from v1, we see that the angle at v1 in Q is
either very close to 0, or very close to 180, or very close to 360 degrees (within
c/R2 for some constant c > 0).

By analyzing these three cases for the angle at v1 and many subcases, we
can always conclude that either the area of Q′ or the diameter is significantly
smaller than that of Q (or else we get a contradiction with the planarity of G).
The rather tedious full proof is in the full paper. �

By applying the lemma above to a graph with k pairs of nested quadrilaterals,
the outermost quadrilateral has a diameter that is at least (1 + Ω(1/R2))k/2

times as large as the innermost one, or the outermost quadrilateral has an area
at least (1+Ω(1/R4))k/2 times as large as the innermost one. By choosing k (and
therefore n) large enough, we can achieve a diameter ratio or area ratio larger
than any constant, because R is assumed to be constant. Since an upper bound
on the diameter or the area (independent of each other) bound the maximum
edge length that is possible, we derive a contradiction that follows from the
assumption that R is constant. We conclude that the edge-length ratio for any
planar drawing of the graph is unbounded, and the quality ratio of edge length
is unbounded as well.

4 Ratio of Angular Resolution

That the angular resolution of a RAC drawing can be better than of a planar
drawing can easily be seen from the K4. A RAC drawing can be a square with the
two diagonals, giving a smallest angle of 45◦, while a planar drawing with optimal
angular resolution is an equilateral triangle that has its fourth vertex in the
center, giving a smallest angle of 30◦. The quality ratio is 1.5. By extending the
example we obtain another planar graph that has a RAC drawing with smallest
angle 45◦, see Figure 4, left. Any planar drawing must have one of a, b, c, d
inside the triangle formed by the other three. Since the graph is symmetric, we
can assume that d is inside. But then the biconnected component shown below
b, d and the biconnected component right of c, d must be inside �abc as well.
This implies that �abc has its angle at a partitioned into two angles, its angle

a

b

c

d

a

b

c
d

Fig. 4. A planar graph showing that the ratio of angular resolution is at least 11/4
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at b partitioned in five angles, and its angle at c partitioned into four angles by
edges from these vertices. In total, the angle of 180◦ for �abc is split into eleven
parts, so there will be some angle of at most 180

11
◦ in any planar drawing of the

graph. Hence, the ratio of angular resolution is at least 11/4 = 2.75.

5 Conclusions and Further Research

This paper compared quality measures of RAC drawings and planar drawings
by defining a ratio, using the best possible RAC drawing and planar drawing of
the same graph, maximized over all planar graphs. We showed that the quality
ratio for area requirement quality is unbounded, and so is the quality ratio of
edge-length. For angular resolution we gave an example that shows that the
quality ratio is at least 2.75. It is unknown—and the main open problem arising
from this paper—whether this quality ratio is bounded by a constant or not. If
it is bounded by a constant, it may still be possible to improve upon the given
bound of 2.75.

Several other aesthetic criteria can also be analyzed. A list is given in [2]. Our
construction that shows an unbounded quality ratio of edge length also shows
that the quality ratio of total edge length is unbounded, assuming the shortest
edge has unit length. For the criterion of symmetry, a RAC drawing of a K4
using a square is in a sense “more symmetric” than any planar drawing of a K4.
In a K4, all vertices are “the same”, which is also true in the RAC drawing but
not in any planar drawing.

This paper considered only straight-line drawings of planar graphs. One can
extend the research to drawings with bends and analyze the ratio of RAC draw-
ings and planar drawings in this case as well. This is left for future research.
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Abstract. Geometric intersection graphs are graphs determined by in-
tersections of geometric objects. We study the complexity of visualizing
the arrangements of objects that induce such graphs. We give a general
framework for describing geometric intersection graphs, using arbitrary
finite base sets of rationally given convex polygons and affine transfor-
mations. We prove that for every class of intersection graphs that fits the
framework, the graphs in the class have a representation using polyno-
mially many bits. Consequently, the recognition problem of these classes
is in NP (and thus NP-complete). We also give an algorithm to find a
drawing of the objects in the plane, if a graph class fits the framework.

1 Introduction

A geometric intersection graph is the intersection graph of a finite set of ge-
ometric objects. There is an edge between two vertices in the graph iff their
corresponding objects intersect. The objects form a representation of the graph.
Classes of geometric intersection graphs are obtained if one only allows objects
similar to certain base objects specific for a class.

To visualize a geometric intersection graph, drawing a representation is more
informative than just drawing the graph itself. Therefore we study the com-
plexity of visualizing representations. We consider the following problems: do
representations in polynomial space exist and if so, how can their drawings be
found effectively.

Understanding Geometric Intersection Graphs. Geometric intersection
graphs arise naturally in many areas. They are used e.g. in modeling wire-
less communication networks, where geometric objects model the transmission
ranges of the different devices in the network. This has lead to the study of the
well-known class of (unit) disk graphs and many other classes [9,20,22,23].

Current geometric intersection graph models use only homothetic copies, thus
translations and scalings, of objects. Moreover, normally only a single base object
is used. A broader notion of similarity and a larger variety of base objects may
be desired in defining a class. Therefore we aim at a more general conceptual
framework.
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Definition 1. A signature is any 2-tuple P = 〈S, T 〉 with: (a) S = {o1, · · · , om}
is a finite nonempty base set of geometric objects in the plane, with each object
in S containing the origin, and (b) T maps every object o ∈ S to a finite set of
similarity templates that determine how objects similar to o can be obtained.

Here a similarity template is any family of similarity transforms, e.g. a rotation
over some angle, followed by a translation. More generally, a template t will be
any parametric family of bi-continuous functions t(w1, . . . , wk) : R2 → R2 which
are shape-preserving in some sense, with the wi’s ranging over e.g. R+.

Definition 2. Given a signature P = 〈S, T 〉, a graph G is called P-intersection
graph if it is the intersection graph of a finite set of objects O1, · · · ,On, where
every Oi (1 ≤ i ≤ n) is similar to an object o ∈ S, i.e. obtained using a
transformation conforming to a similarity template in T (o).

Problem Definitions. In order to visualize P-intersection graphs, we must
know the complexity of their representation. In particular, we want to know
whether representations exist that require only polynomially many bits. Assume
from now on that all objects we consider are fully specified, both for localizing
and drawing them, by only finitely many parameters.

Definition 3. (i) A P-intersection graph with n vertices is said to be polyno-
mially represented (using polynomial p), if it is the intersection graph of a finite
set of objects O1, · · · ,On, where every Oi (1 ≤ i ≤ n) is similar to an object in
S according to an allowed template, and has all its specifying parameters equal
to rationals a

b with |a|, |b| ≤ 2p(n).
(ii) A class C of P-intersection graphs is said to be polynomially represented

if there is a polynomial p = p(n) such that every graph in C is polynomially
represented using p.

Given a graph, we like to determine whether it is a geometric intersection graph
of some kind and be able to visualize it by its representation. This leads to the
following problems.

P-Intersection Graph Recognition
Given a graph G, decide whether G is a P-intersection graph.

P-Intersection Graph Construction (Visualisation)
Given a graph G that is known to be a P-intersection graph, construct a
representation of G by objects in the plane according to signature P.

We consider the complexity of both problems for P-intersection graphs and
whether or not such graphs have feasible, i.e. polynomial, representations.

Previous Work. The size of a representation and the complexity of the recog-
nition problem have been studied for many classes of geometric intersection
graphs. Some prominent results in this area are shown in Table 1.
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Table 1. Some classes of geometric intersection graphs. The first column indicates the
graph class, the second column the objects used in representing the class, the third the
complexity of the recognition problem, the fourth the size of a representation of the in-
tersection graph (polynomial or exponential). The fifth gives references. Contributions
of this paper are marked in italics. We use * to refer to the current paper.

Graph Class Objects Recognition Repr. Reference
(unit) disk disks NP-h, ∈PSPACE exp. [1,14,9,19]
box (rectangle) rectangles in R2 NP-c poly [13,18]
unit square unit squares NP-c poly [1,4]
square squares NP-h, ∈ NP poly *
max-tolerance semi-squares NP-h, ∈ NP poly [10], *
polygon intersect. homoth. conv. polygons NP-h - [16,21]
polygon intersect. rat. repr. conv. polygons ∈ NP poly *
convex intersect. convex sets ⊂ R2 NP-h, ∈PSPACE exp. [12,21]

Recognition can be nontrivial. For example, for disk graphs the problem is al-
gorithmically decidable ([22]), known to be NP-hard [14] and in PSPACE [9,15],
but it is open whether the problem actually is in NP. This holds even for the
class of unit disk graphs.

The complexity or size of a representation poses an equally challenging prob-
lem. A first question is whether a class actually has a representation using only
rational coordinates. This was shown e.g. for the intersection graphs of all so-
called scalable objects [23]. If one only allows objects to touch but not to overlap
(contact graphs), this is no longer guaranteed [3].

A second question is whether the rationals in these representations can be
specified using polynomially many bits. For (unit) disk graphs, this question
was answered negatively only recently [19].

Our Results. We apply our framework to define classes that use finite base
sets of rationally given convex polygons and templates of rationally constrained
affine transformations (see Section 2). We prove that for any such class, the
intersection graphs in it have a polynomial representation, even in integers. This
contrasts the known fact that intersection graphs of arbitrary convex polygons
may require exponentially-sized representations in worst case [21].

We also settle, in a general way, the question left open by the recent NP-
hardness proof of the recognition problem for intersection graphs of homoth-
etic copies of a single convex polygon [16], namely whether this problem is in
NP. Our results immediately imply that this problem is indeed in NP, even for
considerably larger classes of intersection graphs. Moreover, we give an algo-
rithm to determine whether a given graph is an intersection graph within the
above framework. The algorithm is constructive and returns a visualization of the
arrangement of objects representing the given graph, if one exists.

The main result is presented in Section 4. (In Section 3 we show that it is
irrelevant whether the objects we consider are open or closed.) By applying
the same techniques, one can prove e.g. that max-tolerance graphs and contact
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graphs of homothetic convex polygons have polynomial representations, and that
their recognition problems thus are in NP. Further applications are given in
Section 5. More details are given in [25].

2 P-intersection Graphs

P-intersection graphs give a very general framework. We use it to consider P-
intersection graphs for signatures P = 〈S, T 〉, where S is any finite nonempty
base set of (closed and) rationally given convex polygons.

We also tune the choice of similarity templates. Similarity templates t were
described as parametric families of bi-continuous functions t(w1, . . . , wk) : R2 →
R2 which preserve shapes according to some notion of similarity. Templates
should be smooth, which means that images of base objects under t(w1, . . . , wk)
and t(z1, . . . , zk) must be ‘almost equal’ if (w1, . . . , wk) and (z1, . . . , zk) are.

Given convex base polygons, we restrict ourselves to linear similarity
templates consisting of parameterized affine transformations over Q only.

Definition 4. A linear similarity template t = tα,β,γ,δ is a family of affine
transformations of the form x → u + Q(v)x, where: (i) α, β, γ, δ are rationals
such that αδ − βγ = 0, (ii) u = (u1, u2) is any 2-dimensional vector, and (iii)
Q(v) = v

( α γ
β δ

)
is a 2 × 2 matrix with v satisfying v > 0.

Linear similarity templates have two parameters: u (the translation vector) and
v (the scaling factor of the distortion matrix). Neither of them needs to be
rational. The constraint v > 0 keeps Q(v) nonsingular and guarantees that all
template mappings are topological isomorphisms. Linear similarity templates
can be shown to be smooth. From now on, we only consider linear similarity
templates.

Even though applying linear similarity transformations x → u+Q(v)x to ob-
jects o amounts to applying regular homothetic transformations to objects Q(o),
the framework gives us the conceptual generality we want. Also, the framework
allows us to vary templates while keeping the set of base polygons fixed.

An affine transformation u+Q(v)x ∈ t, where t is any template assigned to a
polygon in S by T , is called a P-transformation. Many familiar transformations
(combined with scaling) are P-transformations, aside from shifts and (skewed)
scalings: horizontal shears, vertical shears, rotations, and reflexions, where for
the latter the coefficients of the appropriate Q must be rounded to keep them
rational. T may assign different sets of templates to different objects, without
any dependency between them.

Definition 5. Given a signature P = 〈S, T 〉, object O is said to be similar to an
object o ∈ S if O can be obtained from o by applying an allowed P-transformation
to it.

One can show that the notion of similarity is well-founded, i.e. it is decidable,
for any signature P = 〈S, T 〉 and convex polygon O, whether O is similar to a
polygon in S under P-transformation. Consider the (polynomial) representation
of any P-intersection graph and an arbitrary object O occurring in it.
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Lemma 1. Let P = 〈S, T 〉 be as above, and let O be similar to o ∈ S.
(i) If O is polynomially represented and μ > 0 is a polynomially represented
rational, then the scaling of O by μ is also polynomially represented.
(ii) If O is polynomially represented and ρ > 0 is a polynomially represented
rational, then there is an enlargement of O by an additive margin δ with 0 <
δ < ρ that is again polynomially represented. This holds likewise for reductions.

Because the matrices Q(v) in similarity templates are nonsingular, P-transforms
map convex polygons 1-1 onto convex polygons. Thus vertices and edges of the
latter are images of the vertices and edges of the former, respectively. Recall that
a convex polygon can be given by its defining inequalities.

Lemma 2. (i) Let Q be a nonsingular 2 × 2 matrix, and o a plane convex
polygon containing the origin. When Q transforms o and detQ > 0, then defining
inequalities are mapped to defining inequalities with preservation of the inequality
sign. If det Q < 0, the inequality signs are reversed.
(ii) A P-transformation (u1, u2) + Q(v)x with Q(v) = v

( α γ
β δ

)
maps the line

ax + by + c = 0 onto the line (aδ − bβ)x + (bα − aγ)y + (αδ − βγ)vc − (aδ −
bβ)u1 − (bα − aγ)u2 = 0.

Lemma 2 enables one to determine exactly how the defining inequalities of a
base polygon are transformed under a P-transformation.

3 Open Versus Closed Objects

Let P = 〈S, T 〉 be a signature. What happens if we let S consist of open convex
polygons instead of closed ones? For disk graphs, it is known that taking open or
closed disks does not change the class of graphs [24]. In [23], this was proved for
the intersection graphs of all ‘scalable’ geometric objects. In the case of (unit)
disk graphs, even polynomial representation is preserved.

We consider the case of P-intersection graphs, emphasizing polynomial rep-
resentation. We show in two steps that for P-intersection graphs the closed and
open cases are again equivalent. We use the following facts.

Lemma 3. Let O1 and O2 be two disjoint convex polygons in the plane, both
having nonempty interior. The (shortest) distance between O1 and O2 is realized
as the distance between a vertex of one polygon and an edge of the other.

Proof. This follows by a simple extension of the proof of Lemma 2.1 in [6]. �

Lemma 4. Let a, b, c, v1, v2 be rationals with their numerator and denominator
bounded in absolute value by q for some q > 0. If the following fraction is = 0,
then |av1+bv2+c|√

a2+b2
≥ 1

2q5 .

We first show one side of the equivalence. Let P = 〈S, T 〉.
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Lemma 5. Every polynomially represented P-intersection graph using a
non-empty base set of closed convex polygons can be obtained as a polynomi-
ally represented P-intersection graph using a nonempty base set of open convex
polygons.

Proof. Let S = {o1, · · · , om} be the base set of closed convex polygons. Let G be
the intersection graph defined by the objects O1, · · · ,On, where Oi (1 ≤ i ≤ n)
is similar to osi ∈ S for some si ∈ {1, . . . , m} and obtained by applying an
allowed affine transformation of T (osi) to osi . Let Oi (1 ≤ i ≤ n) only have
vertices with rational coordinates ai

bi
with |ai|, |bi| ≤ 2p(n).

Let P ′ = 〈S′, T 〉 be the signature obtained from P in which every (closed)
base polygon o is replaced by its interior o◦. G can be viewed as the intersection
graph of O◦

1 , · · · ,O◦
n, provided no intersections of polygons are lost by restricting

to the interiors. Intersections are lost precisely when there are (closed) polygons
Oi and Oj that touch. We show that one can slightly enlarge the polygons Oi

such that this does not occur, while preserving G as the intersection graph.
Suppose one of the closed polygons, say Oi, touches several other polygons

Oj . By enlarging Oi by a small but nonzero margin μ, we can eliminate the
touchings and let Oi overlap nontrivially with each Oj . However, in enlarging
it (and enlarging all other polygons for which this step is carried out) we must
make sure that no spurious intersections with objects Or disjoint from Oi are
created. Suppose Oi and Or are disjoint. By Lemma 3, the distance between
them is realized by the distance between a vertex, say v = (v1, v2) of one of
them and an edge, say ax + by + c = 0 of the other. This distance is |av1+bv2+c|√

a2+b2
.

The numerators and denominators of v1, v2 are ≤ q = 2p(n). Also, ax+by+c =
0 connects two vertices of a polygon in the set, which have rational coordinates
with numerators and denominators ≤ q. It follows that a, b, c are all rational,
with numerators and denominators ≤ 4q4. By Lemma 4 the distance is now at
least 1

dq20 for some constant d > 0. Hence, if we enlarge Oi by a nonzero margin
of μ ≤ 1

3dq20 , then disjointness with every disjoint Or is maintained (taking into
account that the latter may also be enlarged by the same factor).

As μ is independent of the specific Oi chosen, the enlargement can be carried
out simultaneously for all polygons. For every Oi, it preserves all the intersec-
tions with other polygons, introduces no new ones, and has the effect that every
polygon Oi that it touched, now overlaps nontrivially with it as well (and thus
their interiors overlap). By Lemma 1, enlarging every Oi by a nonzero margin
at most μ can be achieved while preserving similarity and polynomial represen-
tation. Thus, G is a P ′-intersection graph and polynomially represented. �

The converse of the lemma is proved in a similar way. We conclude:

Theorem 1. Every polynomially represented P-intersection graph with a base
set of closed convex polygons can be obtained as a polynomially represented
P-intersection graph with a base set of open convex polygons, and vice versa.
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4 Representing P-intersection Graphs

Let G be a P-intersection graph and let some geometric realization of G as P-
intersection graph be given. The realization of G can be viewed as a feasible
solution of a model, namely of a model that defines the exact pattern of inter-
sections and nonintersections between the polygons. We will design a suitable
LP model for this such that, if it has a feasible solution (which it has), it also
has one that is polynomially represented, thus implying a geometric realization
of G with this property. A similar approach was used in [8,24]. We rely on the
following fact, which seems folklore (cf. [10,15,25]).

Lemma 6. Two closed convex polygons in the plane are disjoint iff they can be
separated by a line that precisely coincides with an edge of one of them.

Let G be the P-intersection graph of the convex polygons O1, · · · ,On, where Oi

(1 ≤ i ≤ n) is similar to osi ∈ S (some si ∈ {1, . . . , m}). Let Oi be the result of
applying transformation ui + Qix =

( ui,1
ui,2

)
+ vi

( αi γi

βi δi

)( x
y

)
to osi , with suitable

ui,1, ui,2, and vi (1 ≤ i ≤ n), all conforming to a template t = ti applicable to
osi . Let osi (1 ≤ i ≤ n) have ki vertices and (thus) ki edges. All data related to
osi (vertices, edges, defining inequalities) will be super-indexed by (i).

4.1 Helpful Inequalities

Consider any two polygons Oi,Oj and suppose we want to express that they
are disjoint. By Lemma 6 there must be a defining inequality of (say) Oi such
that all of Oj does not satisfy it. Which of Oi,Oj to take and which defining
inequality, follows from the given geometric realization of G. Say the polygon to
take is indeed Oi and that the defining inequality to take is the one obtained by
applying ti to the defining inequality a(i)x + b(i)y + c(i) ≤ / ≥ 0 of osi . Lemma
2 implies that this defining inequality of Oi can then be written as

(a(i)δi − b(i)βi)x+(b(i)αi −a(i)γi)y +(αiδi −βiγi)vic
(i) − (a(i)δi − b(i)βi)ui,1 −

(b(i)αi − a(i)γi)ui,2 ≤ / ≥ 0.

Each vertex of Oj is obtained from a vertex
(

d(j)

e(j)

)
of osj using uj +Qjx, and can

thus be written as
(

uj,1+αjd(j)vj+γje(j)vj

uj,2+βjd(j)vj+δje(j)vj

)
. To express that Oj is disjoint of Oi

it now suffices to express that none of these kj vertices of Oj satisfy the defining
inequality. This gives kj constraints of the form

DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) :=
(a(i)δi − b(i)βi)(uj,1 + αid

(j)vj + γje
(j)vj) + (b(i)αi − a(i)γi)(uj,2 + βjd

(j)vj +
δje

(j)vj)+ (αiδi−βiγi)vic
(i)−(a(i)δi−b(i)βi)ui,1−(b(i)αi−a(i)γi)ui,2 > / < 0

one for each vertex of Oj . We strengthen each inequality to “≥ some positive
margin” or “≤ some negative margin” respectively (for real nonzero margins), by
evaluating the inequalities in the given realization of G. The inequalities are
homogeneous in ui,1, ui,2, vi, uj,1, uj,2, vj . Thus, multiplying all ui,1, ui,2, vi, uj,1,
uj,2, vj (1 ≤ i, j ≤ n) by a factor μ ≥ 1 large enough and rescaling the variables,
the constraints still express the realization of G, but now with inequalities
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DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ≤ −1/ ≥ 1 for kj nodes and relevant 1 ≤ i, j ≤ n.

(We will in fact choose μ large enough such that a number of further goals w.r.t.
the other constraints are achieved as well, as explained below.)

Next, Oi,Oj overlap iff there is a point (xi,j , yi,j) satisfying the defining
inequalities of both Oi and Oj . This leads to ki + kj linear constraints

INi(xi,j , yi,j , ui,1, ui,2, vi) ≤ / ≥ 0,
INj(xi,j , yi,j , uj,1, uj,2, vj) ≤ / ≥ 0,

one for each defining inequality of Oi and Oj . The inequalities are homogeneous
in xi,j , yi,j, ui,1, ui,2, vi, uj,1, uj,2, vj and thus scale along with the scaling of the
DISJ-inequalities.

Observe that the constraints “vi > 0” may be replaced by “vi ≥ some positive
margin” in all cases as before, using the data from the given embedding. If
we multiply all variables by a μ ≥ 1 large enough and rescale the variables
accordingly, we can achieve that all constraints continue to express what we want,
i.e. the resulting model still realizes G, but now we can also assume w.l.o.g. that
vi ≥ 1 for 1 ≤ i ≤ n.

Finally, note that the arrangement of polygons realizing G can be shifted over
any fixed vector we want. Thus, w.l.o.g. we may assume that ui,1, ui,2 ≥ 0 for
every 1 ≤ i ≤ n.

4.2 Assembling the Model

The model is complete when we define the situation (intersection or not) for every
pair Oi,Oj . First include all constraints of the affine transformations ui +Qix =( ui,1

ui,2

)
+ vi

( αi γi

βi δi

)( x
y

)
, following the templates ti that are used and taking the

scalings into account: ui,1, ui,2 ≥ 0 and vi ≥ 1. (The condition αiδi − βiγi = 0 can
be assumed for all templates in T .)

Next consider all 1
2n(n − 1) pairs Oi,Oj and express the model inequalities

for each pair. For any pair Oi,Oj we have kij or li,j inequalities respectively of
the following form:

if Oi,Oj must be disjoint:
kij ≤ max{ki, kj} inequalities of type

DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ≤ −1/ ≥ 1

if Oi,Oj must intersect (m cases):
lij = ki + kj inequalities of type

INi(xi,j , yi,j , ui,1, ui,2, vi) ≤ / ≥ 0, resp
INj(xi,j , yi,j , uj,1, uj,2, vj) ≤ / ≥ 0.

Bring the linear system into standard form with nonnegative slack variables
zi, wij1, · · · , wijkij , zij1, · · · , zijlij , turning inequality into equality constraints:

vi − zi = 1,

if Oi,Oj must be disjoint:
kij inequalities DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ± wijr = ∓1 (wijr used in
the r-th inequality),
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if Oi,Oj must intersect:
lij inequalities INi(xi,j , yi,j , ui,1, ui,2, vi) ± zijr = 0 and
INj(xi,j , yi,j , uj,1, uj,2, vj) ± zijr = 0 (zijr used in the r-th inequality),

now with the standard constraints: ui,1, ui,2, vi, xi,j , yi,j , zi ≥ 0 (1 ≤ i ≤ n),
wij1, · · · , wijkij ≥ 0 (1 ≤ i < j ≤ n), and zij1, · · · , zijlij ≥ 0 (1 ≤ i < j ≤ n).
Note that all linear equations of the model have rational coefficients.

4.3 Solving the Model

Because S is finite, there is a constant k such that ki ≤ k for every 1 ≤ i ≤ n.
As T only has finitely many different templates, there is a constant q ≥ 1
such that for every 1 ≤ i ≤ n, the numerators and denominators of the (ra-
tional) coefficients of the defining inequalities of every osi and of the ratio-
nals αi, βi, γi, δi are all ≤ 2q. Thus the coefficients in the linear inequalities
DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ≤ −1/ ≥ 1 and INi,j(ui,1, ui,2, vi, uj,1, uj,2, vj)
≤ 0/ ≥ 0 are all rationals with numerators and denominators ≤ 2dq for a small
integer constant d ≥ 1. The same bound holds in the standard form.

Let N = n+
∑

ij kij +
∑

ij lij ≤ n+ 1
2kn(n−1). The system of linear equalities

can be written as: Ax = b with x ≥ 0, where

A is a N by N +3n+2m all-rational matrix, all entries a of A have numerator
and denominator ≤ 2dq, N columns of A are unit vectors namely those cor-
responding to variables zi, zij1, · · · , zijkij , wij1, · · · , wijlij (1 ≤ i ≤ n and 1 ≤
i < j ≤ n resp.), x = (· · · , ui,1, ui,2, · · · , vi, · · · , xi,j , yi,j , · · · , zi, · · · , wij1, · · · ,

wijkij , · · · , zij1, · · · , zijlij , · · · )T , and b = (· · · , 1, · · · ,∓1, · · · , 0, · · · )T , with
all entries rational, in fact ±1 or 0.

The term ‘unit vector’ is used to denote any column that has only one nonzero
entry, with this entry being ±1. Note that rank(A) = N = O(n2).

Theorem 2. The LP model has an all-rational solution for ui,1, ui,2, vi with
numerators and denominators bounded in absolute value by 2O(n4).

Proof (Outline). Because Ax = b with x ≥ 0 has a feasible solution and rank(A)
= N , it has a basic feasible solution with (at least) 3n + 2m of the coordinates
of x equal to 0, whereas the N -by-N submatrix A′ consisting of the columns
corresponding to the other coordinates is invertible and satisfies A′x′ = b (with
x′ ≥ 0), where x′ is the subvector of x consisting of these other coordinates.
Hence, by Cramer’s rule, it follows that (x′)i = detA′

i

detA′ , where A′
i is the matrix

formed by replacing the i-th column of A′ by b. Observe that, because A′ and
A′

i are rational matrices, their determinants are rational as well.
The nonzero entries of A′ are all of the form f

h with f, h integer and |f |, |h| ≤
2dq. Let Hi be the product of all |h|-values that occur as denominators in the
i-th column and let H =

∏N
1 Hi, thus H ≤ 2dq·N ·N . Then detA′ = 1

H detA′′,
where A′′ is obtained from A′ by multiplying the elements in the first column by
H1, the elements of the second column by H2, etc. Using Hadamard’s inequality
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for matrices, F = | detA′′| ≤
(√

N22dqN
)N

≤ N
1
2 N2dqN2 ≤ 22dqN2

. This shows

that detA′ = F
H with F, H integers with |F |, |H | ≤ 2gn4

for some constant g.
The same bound holds for the other determinants. �

Theorem 2 gives a sufficient bound and easily leads to the following, main result.

Theorem 3. Let G be a P-intersection graph. Then G has a polynomial
representation, even fully in integers.

Corollary 1. The recognition problem for every class of P-intersection graphs
is in NP .

Although the above arguments seem to rely on being given some realization of
the P-intersection graph, this is in fact not necessary. It suffices to know for
each vertex of G which base polygon of S and which transformations of T to
use, and for any nonadjacent pair of vertices which defining inequality of the
objects representing these vertices to use to express disjointness. Quantifying
over this information suffices to find a realization of P .

Corollary 2. The construction (i.e. ‘drawing’) problem of any class of P-inter-
section graphs can be solved algorithmically, in exponential time.

5 Applications

The notions of signatures and P-intersection graphs are very useful in model-
ing classes of intersection graphs, particularly when combined with the generic
theorems presented above. We list a few applications.

Square Intersection Graphs: It is known that unit square graphs have poly-
nomial size representations [4]. We can now extend this to square intersection
graphs. Recall that NP-hardness of the recognition problem of unit square inter-
section graphs was proved in [1]. For general square graphs, NP-hardness follows
from the recent results in [16].

Theorem 4. Square intersection graphs have polynomial-size integer represen-
tations. Their recognition problem is in NP (and thus NP -complete).

Proof. Define signature P = 〈S, T 〉 with S consisting of a unit square around
the origin, and T consisting of the template t : u + v

(
1 0
0 1

)
. Square intersection

graphs are precisely the P-intersection graphs for this signature P . Now apply
Theorem 3 and Corollary 1. �

Polynomial representation for unit square graphs is easily shown directly [4], but
also follows from our arguments, by adding equations vi = vj to the model.

Max-tolerance Graphs: Kaufmann et al. [10] showed that the max-tolerance
graphs are precisely the intersection graphs of so-called semi-squares. (A semi-
square is ‘a square with one half cut off along the bottom-right to top-left diago-
nal’.) In the same way as in the previous example, one can show that semi-square
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intersection graphs, thus max-tolerance graphs, have polynomial-size integer
representations and an NP-recognition problem.

As Kaufmann et al. [10] proved the recognition problem of max-tolerance
graphs to be NP-hard, it now follows that this problem is in fact NP-complete.

Intersection Graphs of Homothetic Polygons: Kratochv́ıl and Pergel [16]
initiated a general study of the intersection graphs that can be formed using
homothetic copies of a single convex polygon P , or Phom-intersection graphs.
(We assume that P is always finitely given, in rational coordinates.) They show
that the recognition problem for Phom-intersection graphs is NP-hard. We can
strengthen this as follows.

Theorem 5. Phom-intersection graphs have polynomial-size integer representa-
tions. Their recognition problem is in NP (and thus NP -complete).

Proof. Define P = 〈S, T 〉 with S = {P} and T assigning the homothetic transfor-
mations to P . Phom-intersection graphs are precisely the P-intersection graphs.
The result follows. �

In [16], Kratochv́ıl and Pergel also define Phom-contact graphs, where intersec-
tions are restricted to being contacts only. They pose as an open problem to
determine the complexity of recognizing Phom-contact graphs. By modifying
the LP model, one can show by the same technique as developed in Section 4
that Phom-contact graphs have polynomial-size integer representations. Thus the
recognition problem for Phom-contact graphs is in NP. It remains open whether
this problem is NP-complete.

Note added in proof: In recent work jointly with Tobias Müller (CWI,
Amsterdam), tight upper- and lowerbounds have been obtained on the num-
ber of bits needed for representing convex polygon intersection graphs.
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1 Motivation

Graphs are an accepted and popular way of representing and solving problems of
various kinds. Thus, applications of graphs as well as related topics such as graph
visualization and graph representation are numerous. Our application is located
in the domain of industrial automation and driven by the need of parallelizing
our controller’s firmware for the upcoming multi-core CPUs. As efficiency mat-
ters, we thereby aim at gaining maximum performance increases by spending no
more implementation effort than necessary. In order to achieve that objective,
we at first want to explore, evaluate and visualize those efficient paralleliza-
tion alternatives by means of a graph-based model of our firmware. Thus, we
are currently developing the EEEPA (Exploration and Evaluation of Efficient
Parallelization Alternatives) tool for this purpose. Thereby, we have chosen and
extended GraphML [1], a widespread format for graph representation.

2 The EEEPA Tool

At first, the EEEPA tool is targeting the static mapping of established tasks and
interrupts to CPU cores by modeling the firmware’s task system as an extended
kind of a task interaction graph (TIG), the EEEPA.TIG. Derived from runtime
logs, the graph represents each of the firmware’s tasks by a node, weighted by
the task’s fraction of the system’s load. An interaction edge between two nodes
indicates interaction among the corresponding tasks by means of semaphores,
events and messages. As GraphML-Attributes are restricted to simple types,
the EEEPA-GraphML scheme redefines the data-extension.type for holding
the entire interaction profile of an interaction edge as a sequence of complex
types. Next, the weights of these edges are derived. This can either happen by
taking hardware- and OS-specific benchmark results into account in order to
consider the interaction-specific performance impacts of switching to inter-core
interaction or by simply adding up the absolute interaction counts. Finally, effort
edges are parsed from an Excel sheet. These edges indicate the development
efforts of implementing proper synchronizations before running the edge-adjacent
tasks on different CPU cores. The efforts are commonly estimated by developers.
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Fig. 1. Visualization of parallelization alternatives: The EEEPA.TIG (1) for a mapping
of tasks and interrupts and the EEEPA.CDFG (2) for the parallel schedule of a task’s
or interrupt’s decomposition.

However, the sole mapping of established tasks and interrupts can cause an
imbalanced core utilization due to coarse grain ones, that are consuming a sig-
nificant fraction of processing time. Thus, decomposition of established tasks
and interrupts is also targeted by the EEEPA tool. The employed graph model
for this purpose is a special kind of a control/data flow graph (CDFG), the
EEEPA.CDFG. Again, the graph is constructed on basis of runtime logs: By
source code instrumentation, developer-defined code blocks are enclosed by spe-
cific logging events. The derived graph comprises a node for each code block,
that is weighted by the code block’s runtime. Nodes are connected by unweighted
control flow edges if logging revealed a control flow between them. Weighted in-
teraction edges between code blocks indicate interactions in terms of data flows.
These edges are derived by means of logging events and source code annota-
tions, that are commonly defined by developers, maybe by assistance of static
code analysis. The aforementioned GraphML extension again provides means for
holding all data flow details between code blocks. Finally, an effort edge is added
along each control flow edge, as implementation effort is induced by control flow
adaptation for running the adjacent code blocks on different cores.

In case of both graph-based firmware models, a multi-objective problem solver
is engaged for exploring and evaluating mapping or scheduling alternatives, that
are Pareto optimal for a given set of load profiles. For finally selecting an alterna-
tive for implementation, not solely their ratings with respect to core balance or
schedule length, inter-core interaction and implementation effort are of interest:
An appropriate visualization of the alternatives, that highlights and annotates
parallelization-specific issues such as core-crossing edges, can be of great advan-
tage. Figure 1 is depicting an according sketch of a visualization.
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1 Introduction

Generating route sketches is a graph redrawing problem, where we are given an initial
drawing of a graph G and want to find a new, schematized drawing of G that reduces
the drawing complexity while preserving the structural characteristics of the input. The
motivation of our work is the visualization of routes in road networks as sketches for
driving directions. An important property of a route sketch is that it focuses on road
changes and important landmarks rather than exact geography and distances. Typically
the start and destination lie in populated areas that are locally reached via a sequence
of relatively short road segments. On the other hand, the majority of the route typically
consists of long highway segments with no or only few road changes. This property
makes it difficult to display driving directions for the whole route in a single tradi-
tional map since some areas require much smaller scales than others. The strength of
route sketches for this purpose is that they are not drawn to scale but rather use space
proportionally to the route complexity.

In summary, we wish to find drawings of routes that have a low visual complexity, yet
capture all important parts of a route, such as turning points or road changes. Further, the
schematized drawing should in some sense reflect the layout of the original geographic
route. We model the problem as a mixed-integer linear program (MIP) that computes
schematizations of paths or unions of alternative paths. The solution of the MIP satisfies
all mandatory constraints and optimizes the visual quality criteria.

Related Work. Agrawala and Stolte [1] presented a system called LineDrive that draws
route sketches with heuristic methods based on simulated annealing. Nöllenburg and
Wolff [4] used a MIP approach to compute schematic metro maps of public transport
graphs. Brandes and Pampel [2] studied a path schematization problem in the pres-
ence of orthogonal order constraints for preserving the mental map. They showed that
deciding the existence of a rectilinear schematization is NP-hard. Delling et al. [3]
gave an efficient algorithm for schematizing monotone paths under orthogonal order
constraints.

2 Model

Our aim is to produce a drawing of the input graph that reduces the drawing complexity
but at the same time maintains the user’s mental map of the route. As a preprocessing
step we simplify the input using the standard Douglas-Peucker line-simplification algo-
rithm to reduce the number of edges in the graph while maintaining its overall shape
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as well as all important vertices (e.g., road changes and turning points). For further
reducing the drawing complexity, we use a limited set Cd = {z · 90◦/d | z ∈ Z} of
admissible edge slopes for d ≥ 1.

To maintain the mental map, we preserve the orthogonal order of the input, i.e., the
left-to-right and top-to-bottom order of all vertices. Furthermore, each edge is prefer-
ably drawn with the slope in Cd that is closest to its input slope; an appropriate minimum
edge length is used so that each edge is well visible.

We also experimented with two supplementary approaches that help create sketches
that are often visually more pleasing. In the original formulation edge lengths in the
output do not carry information about the true distances. While it is an important feature
of a route sketch that distances are distorted, we may require that the input length order
of the edges is preserved in the output. Second, preserving the orthogonal order for
vertices that are far apart is of limited importance. So any pair of vertices whose distance
in one of the coordinates is at least one third of the total extent of the path in that
coordinate does not need to preserve its order in the respective other coordinate.

All these constraints can be modeled as the linear constraints and the linear objective
function of a MIP.

3 Evaluation

We have implemented our approach and have tested it on 1000 random routes in the
German road network. Two main observations can be made in this study: 1) More than
50% of the instances did not have a valid rectilinear schematization, whereas only 0.7%
of the instances were infeasible in the octilinear case d = 2 and for any d ≥ 3 there
were at most 0.1% infeasible instances. 2) The average running time of the MIP opti-
mizer increases with increasing d from 107.36ms for d = 1 and 649.49ms for d = 3
to 1347.86ms for d = 5 on a single AMD Opteron 2218 CPU with the MIP optimizer
Gurobi 3.0.1.

Additionally, we present examples that display sketches of alternative routes in a
single picture.
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1 Introduction

When working with graphs one often faces the problem of comparing two or more
graphs. For example in biology, when two protein-protein interaction networks from
closely related species have to be compared, the graphs can easily contain several hun-
dred nodes and thousands of edges but very few differences. Our goal was to develop
a software-tool that creates an overview of large graphs and maintains the structure but
reduces the number of nodes and edges and enables the user to easily find and inves-
tigate the areas of interest. This problem has been considered in the past by various
groups ([1], [2]) and different heuristics have been proposed. Here, we follow the con-
cept proposed in [3]. For this work, we assume that the input-graphs are relatively large
with small local differences and node correspondences are known.

2 Our Method

Condensation of Graphs
We denote the condensation of a graph as the extraction of its structure and the reduction
to its important parts. Our first approach identifies important nodes and removes the
remaining nodes from the graph. To assess the importance of a node we used different
centrality measures from [4]. Neighboring nodes are merged into group nodes as long
as their combined centrality value doesn’t exceed a pre-defined threshold.

For the second approach a given number of nodes with the highest centrality value is
chosen and all other nodes are merged with the closest chosen node. In both cases new
edges have to be created to maintain connectivity.

In order to enable the user to investigate interesting areas of the graph, a detailed
view of a part of the graph can be created by clicking on a node in the condensed graph.
An extra window is then opened which shows the area in the immediate proximity of
the chosen node in uncondensed form. By clicking on one of the dashed lines, which
represent edges to parts of the graph not yet displayed, the currently shown graph-part
can be extended into that direction. Also, by clicking on a normal edge, the subgraph
beginning at the target-node of that edge can be removed from the detailed view.

Comparison of Graphs
For the construction of the overview graph the common elements are identified and
compacted using one of the previously described methods. Then, for each difference
a node is added. For the resulting graph a layout is computed with a force-directed
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method. Clicking on one of the difference nodes opens another window that shows the
difference and the area around it in detail. It is also possible to extend and contract the
part of the graph that is currently shown. For the detailed view, the positions of ele-
ments from the overview graph stays the same while new elements are placed with a
force-directed method. Once a node has been set to a position, it will always stay there
to ease orientation around the graph for the user.

3 Implementation and Results

For our implementation we used Java and the yFiles graph library ([5]). Figure 1 depicts
the overview graph before and after the condensation as well as a detailed view of a
difference node.

Fig. 1. The overview graph (left) contains 350 nodes while the condensed version (right) contains
75 blue group nodes and 11 red or green difference nodes. In the detailed view in the middle
colored elements indicate differences and dashed lines expansion edges.
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Abstract. In this paper we investigate how one can modify an orthog-
onal graph drawing to accommodate the placement of overlap-free labels
with the minimum cost. We present a polynomial time algorithm that
finds the minimum increase of space in one direction, needed to resolve
overlaps, while preserving the orthogonal representation of the drawing.

1 Introduction

Automatic labeling is a very difficult problem, and because we rely on heuristics
to solve it, there are cases where the best methods available do not always
produce an acceptable or legible solution even if one exists. If a solution to the
labelng problem is not acceptable one could either redraw the graph taking into
account the placement of labels (in [1,2,3] labeling with drawing of orthogonal
representations of graphs is combined), or modify the drawing to produce an
acceptable label assignment.

In this paper we consider the problem of modifying an existing orthogonal
drawing by inserting extra space in order to accommodate the placement of edge
labels that are free of overlaps. We will refer to it as the Opening Space Label
Placement (OSLP) problem. We have chosen orthogonal drawings because they
have the most regular structure among all layout styles with respect to opening
space, which in orthogonal drawings implies inserting rows and/or columns.

2 Solving the OSLP Problem

We want to minimize the extra area needed to resolve label overlaps while pre-
serving the orthogonal representation of the drawing. Because the OSLP problem
is NP-Complete [4] we must rely on heuristics to solve it.

Given an orthogonal drawing Γ , first we find an edge label assignment where
overlaps are allowed by using existing techniques. Then, we modify Γ by applying
a polynomial time algorithm based on minimum flow techniques to find the
minimum width needed to eliminate label overlaps in Γ , given a partial order
of overlapping objects, while preserving the orthogonal representation of Γ . The
case of finding minimum height is analogous.
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Fig. 1. (a) An input drawing Γ with label overlaps. (b) The flow graph for Γ . (c)
Label overlaps have been resolved by running the minimum flow algorithm.

The main idea of our algorithm is the following: We create a directed acyclic
graph Gflow that transfers flow from the top to the bottom of the drawing in
order to insert extra vertical space to resolve horizontal overlaps. Intuitively, if
two objects overlap, then we must push between them at least as much flow as
the amount of their overlap in the x direction. First we decompose the input
drawing Γ into vertical segments (each label, node and vertical edge segment
of Γ is a vertical segment). Next, we obtain the partial order of the objects by
performing a plane sweep. Then, we create a separation visibility graph Gsv.
For each vertical segment of Γ we insert a node in Gsv. Each node in Gsv is
a rectangle and has the size of its corresponding object in Γ . We insert edges
in Gsv by expanding (to the left and to the right) the horizontal sides of each
node in Gsv until they touch another node of Gsv. We assign a weight to each
edge e of Gsv which represents the minimum distance the two objects connected
with edge e must be kept apart to avoid overlaps. Next, we create the flow
graph Gflow from graph Gsv by adding into Gflow: (i) A source node s and a
target node t, (ii) A node for each face of Gsv and (iii) An edge for each pair of
neighboring faces of Gsv that share a horizontal edge segment. For each edge in
Gflow we assign lower and upper capacity equal to a pair of weights for the only
edge in Gsv it intersects. We show that the minimum flow of Gflow produces the
minimum width expansion needed to resolve overlaps.
Theorem 1. The minimum flow of Gflow gives the minimum width of the draw-
ing, in O(m log n (m + n log n)) time, such that all label overlaps are resolved
in one direction and the orthogonal representation of the drawing is preserved.
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1 Introduction

Recent empirical research has shown that increasing the angle of crossings re-
duces the effect of crossings and improves human readability [5]. In this paper, we
introduce a post-processing algorithm, namely MAXCIR, that aims to increase
crossing angles of circular layouts by using Quadratic Programming. Experi-
mental results indicate that our method significantly increases crossing angles
compared to the traditional equal-spacing algorithm, and that the running time
is fairly negligible.

2 Algorithm

The post-processing approach MAXCIR in this paper aims to increase the cross-
ing angles after a circular ordering of the vertices is given, such as by a crossing
reduction algorithm [3]. With a fixed ordering of the vertices, all of the crossing
pairs (e,e′) can be pre-determined in linear time. Let Ω denote the set of pairs
of crossing edges. We aim to minimise

F =
∑

(e,e′)∈Ω

(
α(e,e′) − π

2

)2
, (1)

where α(e,e′) denotes the angle at which edges e and e′ cross.
The circular layout is a function θ : V → [0 .. 2π) that associates an angle

θ(u) with each vertex u. Suppose that the ordering of the vertices around the
circle is (u0, u1, . . . , un−1). We denote θ(ui) by θi.

For every edge e of G, let em and eM denote the end vertices such that θ(em)
< θ(eM ). For a pair of crossing edges e and e′, their crossing angle is given
by α(e,e′)= 1

2 (θ(eM ) − θ(e′M ) + θ(em) − θ(e′m)) where θ(e′m) < θ(em) < θ(e′M ) <
θ(eM ).

In practice an angular gap g between vertices needs to be preserved, e.g., for
avoiding overlapping node labels. The circular ordering and the gap lead to the
following constraints:

0 ≤ θ0; θi + g < θi+1, ∀i = 0..n − 2; θn−1 + g < 2π. (2)

Minimizing F in equation (1) subject to the constraints (2) defines a quadratic
program.
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3 Experiments

We compare our new MAXCIR layout algorithm with EQCIR — a circular
layout that places the nodes equally on the circle. We use the Rome data set
[2] and use Baur and Brandes’s algorithm [3] to generate a vertex ordering. The
experiments were conducted on a 3.00GHz Pentium IV CPU and 1GB RAM
Solaris/SPARC with cplex solver v10.0.1 [1].

We ran MAXCIR with gap values g=0, 0.2γ, 0.4γ, 0.7γ and 0.9γ, where
γ = π/|V |. We obtained the average crossing angle produced by MAXCIR and
EQCIR, over all five gap values. A significant improvement of 61.4% was ob-
tained; the average is slightly reduced when the default gap value is increased.
The average execution time of MAXCIR varies between 6ms and 13ms, and
slightly reduces when the gap value increases.

We measured the angular resolution of MAXCIR layout results. We adapted
the measurement used in [4] to circular layouts by defining the optimal angle at
a vertex v as 180/deg(v) instead of 360/deg(v). The average angular resolution
produced by MAXCIR is 49.18 degrees compared to 55.50 degrees produced by
EQCIR. When the gap value increases the average angular resolution slightly
decreases. A smaller difference implies a better angular resolution as the angles
between pairs of coincident edges are closer to optimal.

Figure 1 shows circular layouts of a Rome graph instance produced by MAX-
CIR with five gap values. For small gap values, the crossing angles are largely
optimised, yet several nodes are placed too close to each other or overlap one
another. For larger gap values, the crossing angles and angular resolution are
slightly improved, but the nodes are better distinguished.

(a) gap=0 (b) g=0.2γ (c) g=0.4γ (d) g=0.7γ (e) g=0.9γ

Fig. 1. Applying MAXCIR with different gap values on Rome graph 10005 39

4 Conclusion

We have presented a post-processing method based on quadratic programming
for circular layouts. The method significantly improves the crossing angles of a
circular layout with negligible overheads.

Our future work will incorporate angular resolution into MAXCIR model.
Maximising angular resolution is particularly interesting since crossing angle
competes with angular resolution when two adjacent edges cross the same edge.
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Abstract. It is easy to find graph visualization applications for all sorts of uses.
However, choosing an appropriate application may be difficult. This poster pre-
sents a website (http://gvsr.polytech.univ-nantes.fr/) built to
help users to choose a program adapted to their problems. So far, this site ref-
erences eighty programs and aims at helping users both in their choices and in
comparing the programs. The site is also designed as a tool repository helping
the community to access and compare the available tools, and benchmark new
techniques and algorithms.

Keywords: Graph Visualization Software, On-Line Repository.

1 Introduction

The profusion of available graph visualization applications may even confuse an ex-
pert in this field. Some programs have been developed in close partnership with the
scientific community (Pajek, Cytoscape), others are purely commercial, or some are
general graph manipulation and visualization software (Tulip). Generally speaking, the
choice of a program well-adapted to both the data and the methodology is difficult.
Some books can be used as guides [1, 2], and several websites present lists of pro-
grams [3, 4]. However, those websites plainly list the existing software, or make them
accessible through snapshots. Consequently much effort is required to compare the
various programs before choosing the best one for the problem considered.

Those observations led us to develop GVSR ( http://gvsr.polytech.univ-
nantes.fr). Its added value is to offer users query about existing software based on
commonly used criteria such as scalability, implementation issues or type of uses. Our
objectives are to facilitate the users’ choices and to compare programs with common
criteria. The website also presents the programs with a uniform text-based description.
This site keeps evolving and so far contains eighty various software descriptions. In
addition, the site allows users to propose new programs by simply completing an en-
closed form. The site is also designed as a tool repository helping the user to access
and compare the available Graph Visualization tools, and benchmark new techniques
and algorithms. The whole community can benefit from the ability to reproduce pub-
lished results, and from comprehensive comparisons with previous work. Thus, GVSR
can be seen as a contribution to improving both the accessibility and quality of graph
visualization tools.
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2 How to Use the Site?

The site proposes four ways to find a software : 1) a tag cloud with the software
names (the more a software page is accessed, the bigger its name is displayed); 2) the
“Software List” link gives access to a simple alphabetical order list; 3) the “Advanced
Search” link gives access to a search engine on the software database; 4) the “Start
Browsing Now” button to start navigating in a taxonomy covering all the criteria used
to described software, providing a structured exploration mode of the repository.

Each software description (Fig. 1) page is made of a screenshot, general information
(e.g. website, . . . ), specific information on the visualization, technical information (e.g.
license(s), . . . ) and references. At the bottom of the page, one can write a comment and
score the software. After validation, these information will be added on the page.

Fig. 1. Example of a software description page

3 Future Works

GVSR keeps evolving by a regular watch on the database, the addition of new programs
and functionalities. We are working on an interactive visualization of the taxonomy as
a graph. We also plan to directly host samples datasets to benchmark programs.
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Introduction

Visualization components from IBM provide a comprehensive set of graphics
products for creating highly graphical, interactive displays, including
diagrams, gantt charts, maps, business dashboards, business charts, telecom dis-
plays, SCADA/HMI Screens and many more. User interface developers reduce
development risks and implementation time when deploying the IBM visual-
ization technology. The components are available for many different platforms:
various C++ platforms, Java Swing applications, Java Eclipse plugins, thin client
AJAX applications, for the Microsoft .NET and the Adobe Flex platform.

Graph layout and label layout are key functionalities of many our compo-
nents. It is part of the algorithmic core of the components that gets enriched by a
graphical display layer (classes that actually draw elements on the screen). Graph
layout needs the highest graph-theory expertise and is optimized the most. In
order to leverage the platform infrastructure in the best way, the graphical dis-
play layer was specially developed for the different platforms (Swing, Microsoft
.NET, Adobe Flex and various C++ and AJAX platforms). However, for the
nonvisual and mathematical part, this is not needed and would be a waste of
manpower, since the pure mathematics is always the same, no matter whether
you are in C++, Java, C# or ActionScript. On the other hand, IBM ILOG
follows a strict uniform platform strategy that avoids hybrid technologies (for
instance no C++ inside Java). Even the reference documentation must use the
native tool (for instance, no Javadoc inside C#). Last but not least, the sup-
port engineers must be able to work with the code for debugging or consulting
assignments even when they are specialists of only one single platform.

Graph Layout Translation Technology

How to provide graph layout technology in C++, Java, C# and ActionScript
without the need for huge development teams that redevelop the same algorithms
over and over again? IBM takes an automatic translation approach from a single
common source. The algorithms are implemented in a central repository and are
translated by a set of tools fully automatically to the different target languages.
The advantage: the graph layout team can concentrate on improving the layout
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Fig. 1. Graph Layout Translations at IBM ILOG

algorithms instead of spending time on platform coding, and every improvement
in the layout algorithms is immediately available on all platforms without effort.

When Microsoft introduced the .NET platform, some simple tools were also
introduced to convert Java to C#. Most of these tools were one-shot translations
that required manual adaptations of the translation results. As disadvantage, all
manual adaptations are lost whenever the common source needs to be retrans-
lated (for instance whenever an incremental improvement was added to a graph
layout algorithm). Therefore, IBM ILOG has developed its own tool set that
does not require any manual adaptations of the result of the translation. The
development is done entirely on the common source that is fed into the transla-
tor tools. Some other Microsoft tools converted Java bytecode to C# bytecode,
with the disadvantage that the translated code is not human readable and hence
unsuitable for the IBM support engineers, and that the translation does not
provide any API documentation in the same step. The IBM tool set however
translates source to source and converts all the code comments into the canoni-
cal format expected by the targeted platform. This allows to produce a reference
manual by using the native reference tool on the translated source code.

We develop the graph layout algorithms in a simplified Java based language, a
subset of Java enriched by an annotation formalism. Annotations specify which
Java methods should become C# properties, or how enumerations are mapped
in ActionScript. Since these annotations are comments for Java, it allows for
quick turnaround time when testing new algorithms, as the original code can
be compiled with Java. However, the production code contains only the result
of the source to source translations, even for the Java products (a Java to Java
translator converts GUI related code from the common source alternatively to
Swing for IBM ILOG JViews Diagrammer, or to SWT/GEF for IBM ILOG
JViews Graph Layout for Eclipse). Other tools translate the common source to
C# for IBM ILOG Diagram for .NET, to ActionScript for IBM ILOG Elixir
Enterprise for Adobe Flex, or to C++1 for IBM ILOG Views.

1 In the current state, all translations are fully automatic except C++, which requires
still small manual adaptations for the memory management.
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1 Introduction

Voice portals are widely used to guide users interactively through an application.
Recent portals provide a growing number of functions in one application, thus
increasing their complexity. This work presents flow-map-based techniques for
the comparative visualization of user flows at different time frames, in order to
enable dialog designers to analyze and improve the user interaction with these
systems.

Natural Language Systems in Voice Portals: More sophisticated voice portals
use natural language systems (NLS), giving users the option to actually “talk”
to the system in whole sentences. The system tries to interpret these sentences
and interactively asks the user for detailed information, if necessary. Portals
using NLS are rather large and complex, making it difficult to analyze their
performance. Especially after applying changes to a voice portal or in case of
technical problems, it is important to be able to analyze the consequences on
user flows in the system.

2 Comparing User Flows

The user flow in a voice portal within a specific time frame corresponds to
a weighted graph, where dialogs are represented by nodes and user flows by
weighted edges. In order to compare user flows within the same voice portal
at different time frames, a joined graph with multiple edges drawn as single,
multi-colored arrows is created. The user value passing between two dialogs is
visualized by varying either edge width or color saturation. The graph layout
is based on a radial tree layout [2], which is manually adjusted. Two different
approaches are discussed in the following.

� Contact author: volker.ahlers@fh-hannover.de
This work is financially supported by the German BMBF (grant no. 17N2809).
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Fig. 1. Comparing user flows via edge width (left) and color saturation (right)

Varying Edge Width: Our first approach uses a flow map-based layout in such
a way that the amount of users is represented by edge width, without merg-
ing edges that share the same direction [1]. Each color represents a different
selectable time frame. The edge width represents the amount of users that have
passed between the adjacent dialogs. The result for an example voice portal is
shown in Fig.1 (left). The main drawback of this approach is that user flows
between central dialogs of the portal lead to very thick edges. Peripheral edges
are too thin to actually give a hint of the user flows. Very small flows are nearly
invisible. To see the details at peripheral parts, the overall edge width could be
increased, with the effect of making the graph look very crowded and unsettled.
Additionally, viewing time frames with very different user flows could create
the need to adjust node positions in order to route thick edges between them,
destroying the mental map of the user [3].

Using Color Saturation: Representing user flows by color saturation avoids vary-
ing edge width. The result for the same example voice portal as used above is
shown in Fig. 1 (right). Even smaller user flows at peripheral parts are now vis-
ible as low-saturated edges. A lower saturation threshold of 0.05 (for the range
[0, 1]) is used in order to keep colors distinguishable for small amounts of users. If
no users have passed between two dialogs within a certain time frame, the corre-
sponding color is not contained in the edge connecting these dialogs. Changing
time frames does not have an impact on the edge width, thus preventing the
need to adjust node positions.
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Abstract. This report describes the 17th Annual Graph Drawing Con-
test, held in conjunction with the 2010 Graph Drawing Symposium in
Konstanz, Germany. The purpose of the contest is to monitor and chal-
lenge the current state of graph-drawing technology.

1 Introduction

As in recent years, this year’s Graph Drawing Contest was divided into the offline
challenge and the online challenge. The offline challenge had three categories:
two dealt with edge routing and one was a mystery graph. The data sets for the
offline challenge were published months in advance, and contestants could solve
and submit their results before the conference started. For the two edge routing
categories, the supplied data sets had nodes with fixed positions and nonzero
dimensions. The task was to produce an aesthetic routing of the edges using
bends or splines. For the mystery graph data set, the task was to determine the
meaning of the graph and to produce a suitable drawing.

The online challenge took place during the conference in a format similar to
a typical programming contest, where teams were presented with a collection
of challenge graphs and had approximately one hour to submit their highest
scoring drawings. The topic of the online challenge was to minimize the length
of the longest edge in a planar orthogonal grid drawing.

Overall, we received 25 submissions: 9 submissions in the offline challenge and
16 submissions in the online challenge.

2 Edge Routing - Circuit Diagram

The first data set for the edge routing challenge was a circuit diagram of the
Apple II+ Video Signal Generator [1]. It consists of 48 nodes and 84 edges. The
sizes and positions of the nodes were appoximately the same as in the original
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Fig. 1. First place, Circuit Diagram

drawing, except that the original drawing had some node duplicates that were
removed from the challenge data set.

The winning submission, from Quan Nguyen from the University of Sydney
(Figure 1), used an orthogonal routing style, which is very common for circuit
diagrams. The layout was produced using yEd [5] by parametrizing the auto-
mated layout with a very large crossing penalty. The layout was then tuned by
a few manual adjustments for multiedges.

3 Edge Routing - Author Collaboration Graph

The second data set for the edge routing challenge was the author collaboration
graph of the graph drawing community. The 362 nodes represent the authors of
select papers published in the graph drawing community. When several people
coauthored a paper, edges were created between each pair of authors of that
paper, yielding 942 edges. Papers with only a single author do not contribute to
the set of edges and were removed from the data. The data was obtained from
GDEA [2] for the years 2004 – 2010. The graph contains one big connected com-
ponent, representing the core graph drawing researchers who have collaborated
significantly over the years, and several smaller components from authors from
other research communities that probably only occasionally contribute to the
graph drawing literature.

The submitted work of Quan Nguyen and Seok-Hee Hong from University
Sydney must be honorably mentioned. They analyzed the graph semantically us-
ing centrality and k-core techniques to produce confluent drawings. They were



408 C.A. Duncan et al.

(a) (b)

Fig. 2. First place, Author Collaboration Graph, (a) overview and (b) detail

able to detect strongly connected researchers as well as highly connected re-
search groups and could even reverse engineer the related papers from the given
data (which contains only information about the authors, not about the papers
directly).

However, the winning and most visually pleasing layout (Figure 2) was sub-
mitted by Sergey Pupyrev from Ural State University using an edge bundling
technique similar to [3]. This layout avoids overlaps between nodes and edges
completely and reduces the number of edge crossings.

4 Mystery Graph

The mystery graph was a small bipartite graph with 49 edges. One node set
was labeled A to G, and the other node set was labeled 0000 to 1001. Besides
delivering an aesthetic drawing, the task was to determine the meaning of the
data. Not all submissions found the correct answer that it represents the mapping
of the 10 digits, labeled in binary form, to a seven-segment display.

The winning submission came from Michael Baur, Martin Siebenhaller,
Roland Wiese and Thomas Wurst from yWorks. Since a straight-forward lay-
out was very unclear due to the relatively large number of edges, they used
a dependency analysis to obtain a simpler display. The representation of some
digits include other digits. For example, the segments for digit 7 contain all
segments of digit 1, and digit 8 requires all seven segments hence contains all
other digits. Figure 3a shows these dependencies. To minimize the edge paths
by taking advantage of these dependencies, edges were routed to (one of) the
nodes of their contained digits whenever possible. The final layout (Figure 3b)
was obtained through yFiles [5] by using the orthogonal layout algorithm for the
digit nodes while the segment nodes were placed manually, and an orthogonal
edge router to combine routes to bundles.
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(a) (b)

Fig. 3. First place, Mystery Graph

5 Online Challenge

The online challenge, which took place during the conference, dealt with mini-
mizing the longest edge in a planar orthogonal drawing. The longest edge can
be a bottleneck for many applications, hence minimizing its length is important.
The challenge graphs were planar and had at most four incident edges per node.
The task was to place nodes and edge bends on integer coordinates so that the
edge routing is orthogonal and the layout contains no crossings or overlaps. At
the start of the one-hour on-site competition, the contestants were given six
graphs with an initial legal planar layout with very long edges. The goal was to
rearrange the layout to reduce the length of the longest edge. Only the length of
the longest edge was judged; other aesthetic criteria such as the number of edge
bends or the area were ignored.

The contestants could participate in one of two categories: automated and
manual. In the automated category, contestants received graphs ranging in size
from 69 nodes / 101 edges to 3070 nodes / 4604 edges and were allowed to
use their own sophisticated software tools with specialized algorithms. Only one
team (Petra Mutzel and Hoi-Ming Wong from TU Dortmund) submitted results
in this category and hence was the winner. They submitted only results for the
four smallest graphs, which were computed with the tool Gryphon, a graph editor
based on the OGDF [4] graph drawing library. They applied standard orthogonal
graph drawing algorithms for minimizing the number of bends in the drawing,
followed by advanced flow-based orthogonal compaction techniques. Notice that
the overall optimization goal of this approach is not minimizing the length of the
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(a) (b)

Fig. 4. Challenge graph with 120 nodes / 146 edges. (a) The initial layout. (b) The
best (and optimal) manually obtained result by team Löffler/Nöllenburg, with longest
edge length 1.

Fig. 5. The best automated result of the same graph as in Fig. 4 by team Mutzel/Wong,
with longest edge length 16

longest edge; however, this approach usually leads to short edges. In addition,
their bend minimization procedure used a special option which forces two 180
degree angles on nodes of degree two if this does not increase the number of
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bends. Though this leads to aesthetically pleasing drawings in many cases, it
appears to be a bit counter-productive for this contest, since inserting clever
“bends” at degree-2 nodes seems to be a basic requirement for achieving short
edges (compare manual results in figure 4 with figure 5).

The 15 manual teams solved the problems by hand using IBM’s Simple Graph
Editing Tool provided by the committee. They received graphs ranging in size
from 4 nodes / 6 edges to 190 nodes / 284 edges. Two of the larger input graphs
were also in the automated category, and the best manual teams scored similar
and better than the automated submissions. To determine the winner among
the manual teams, the scores of each graph, determined by dividing the longest
edge length of the best submission by the longest edge length of the current
submission, were summed up. With a score of 4.78, the winner was the team of
Maarten Löffler from UC Irvine and Martin Nöllenburg from Karlsruher Institut
für Technologie who found the optimal results for four of the six contest graphs.

Figure 4 shows the initial layout and the best manually obtained result of one
contest graph with 120 nodes and 146 edges. Figure 5 shows the best automated
result of the same graph, since it was used in both the manual and the automated
category. For the largest graph in the manual category, we know of a solution
with the longest edge having length 13 (Figure 6a), but the best solution found
by the manual teams was only 19 (Figure 6b).

(a) (b)

Fig. 6. Challenge graph with 190 nodes / 284 edges. (a) A solution with longest edge
length 13. (b) The best result, found during the contest, with longest edge length 19.

Acknowledgments. The contest committee would like to thank the generous
sponsors of the symposium and all the contestants for their participation.
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