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ETH Zürich, Informationstechnologie und Ausbildung, CAB F 16, F 13.1
Universitätstr. 6, 8092 Zürich, Switzerland, E-mail: juraj.hromkovic@inf.ethz.ch

Keith Jeffery
Science and Technology Facilities Council, Rutherford Appleton Laboratory
Harwell Science and Innovation Campus, Didcot, OXON OX11 0QX, UK
E-mail: keith.jeffery@stfc.ac.uk

Rastislav Královič
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Preface

The 37th International Conference on Current Trends in Theory and Practice
of Computer Science, SOFSEM 2011, was held during January 22–28, 2011 in
the Hotel Atrium, Nový Smokovec, of the Tatra Mountains of Slovakia. This
volume contains 5 of the invited lectures and 41 contributed papers selected
for presentation at the conference. The contributed papers were selected by the
Program Committee out of a total of 122 submissions.

SOFSEM (originally SOFtware SEMinar) is an annual international winter
conference devoted to the theory and practice of computer science. Its aim is
to present the latest developments in research for professionals from academia
and industry, working in leading areas of computer science. As a well-established
and fully international conference, SOFSEM maintains the best of its original
Winter School aspects, such as a high number of invited talks, in-depth coverage
of selected research areas, and ample opportunities to discuss and exchange new
ideas. SOFSEM 2011 was organized around the following four tracks:

– Foundations of Computer Science (Chair Ivana Černá)
– Software, Systems, and Services (Chair Tibor Gyimothy)
– Processing Large Datasets (Chair Keith Jeffery)
– Cryptography, Security and Trust (Chairs Stefan Wolf and Marko Vukolic)

An integral part of SOFSEM 2011 was the traditional Student Research Forum
(Chair Mária Bieliková) organized with the aim to give students feedback on
both the originality of their scientific results and on their work in progress.
The papers presented at the Student Research Forum were published in local
proceedings.

SOFSEM 2011 was organized by the Faculty of Mathematics, Physics and
Informatics of the Comenius University in Bratislava, and the Slovak Society
for Computer Science with support from the Czech Society of Cybernetics and
Informatics.

SOFSEM 2011 added a new page to the tradition of SOFSEM dating back to
1974, which was possible due to the effort of many people. As editors of these pro-
ceedings, we are grateful to everyone who contributed to the scientific program
of the conference. We would like to thank the invited speakers Christian Cachin,
Markus Gross, Juerg Gutknecht, Tony Hey, Rainer Koschke, Ulrich Rührmair,
Vitaly Shmatikov, Jiri Srba, and Tomas Vojnar for presenting their work to the
audience of SOFSEM 2011. We thank all authors who submitted their papers for
consideration. Many thanks go to the Program Committee, and to all external
referees, for their hard work in evaluating the papers. The work of the Program
Committee was carried out using the EasyChair system, and we gratefully ac-
knowledge this contribution. Special thanks are due to Mária Bieliková, of the
Slovak University of Technology in Bratislava, for her expert preparation and
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handling of the Student Research Forum, and to the SOFSEM Steering Com-
mittee headed by Július Štuller, of the Institute of Computer Science in Prague,
for its excellent support throughout the preparation of the conference.

We are also indebted to the Organizing Committee led by Vanda Hambálková
and Dana Pardubská.

November 2010 Ivana Černá
Tibor Gyimothy
Juraj Hromkovič

Keith Jeffery
Rastislav Královič

Marko Vukolic
Stefan Wolf
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Ákos Horváth
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Integrity and Consistency for Untrusted Services
(Extended Abstract)

Christian Cachin

IBM Research - Zurich
CH-8803 Rüschlikon, Switzerland

cca@zurich.ibm.com

Abstract. A group of mutually trusting clients outsources an arbitrary compu-
tation service to a remote provider, which they do not fully trust and that may
be subject to attacks. The clients do not communicate with each other and would
like to verify the integrity of the stored data, the correctness of the remote com-
putation process, and the consistency of the provider’s responses.

We present a novel protocol that guarantees atomic operations to all clients
when the provider is correct and fork-linearizable semantics when it is faulty;
this means that all clients which observe each other’s operations are consistent, in
the sense that their own operations, plus those operations whose effects they see,
have occurred atomically in same sequence. This protocol generalizes previous
approaches that provided such guarantees only for outsourced storage services.

Keywords: cloud computing, fork-linearizability, data integrity, computation
integrity, authenticated data structure, Byzantine emulation.

1 Introduction

Today many users outsource generic computing services to large-scale remote service
providers and no longer run them locally. Commonly called the cloud computing model,
this approach carries inherent risks concerning data security and service integrity.

Whereas data can be stored confidentially by encrypting it, ensuring the integrity of
remote data and outsourced computations is a much harder problem. A subtle change
in the remote computation, whether caused inadvertently by a bug or deliberately by a
malicious adversary, may result in wrong responses to the clients. Such deviations from
a correct specification can be very difficult to spot manually.

Suppose a group of clients, whose members trust each other, relies on an untrusted
remote server for a collaboration task. For instance, the group stores its project data on
a cloud service and accesses it for coordination and document exchange. Although the
server is usually correct and responds properly, it might become corrupted some day
and respond wrongly. This work aims at discovering such misbehavior, in order for the
clients to take some compensation action.

When the service provides data storage (read and write operations only), some well-
known methods guarantee data integrity. With only one client, a memory checker [1]
ensures that a read operation always returns the most recently written value. If multiple
clients access the remote storage, they can combine a memory checker with an external

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 1–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

cca@zurich.ibm.com


2 C. Cachin

trusted infrastructure (like a directory service or a key manager in a cryptographic file
system), and achieve the same guarantees for many clients.

But in the asynchronous network model without client-to-client communication con-
sidered here, nothing prevents the server from mounting a forking attack, whereby it
simply omits the operations of one client in its responses to other clients. Mazières and
Shasha [15] put forward the notion of fork-linearizability, which captures the optimal
achievable consistency guarantee in this setting. It ensures that whenever the server’s
responses to a client A have ignored a write operation executed by a client B, then
A can never again read a value written by B afterwards and vice versa. With this no-
tion, the clients detect server misbehavior from a single inconsistent operation — this
is much easier than comparing the effects of all past operations one-by-one.

This paper makes the first step toward ensuring integrity and consistency for ar-
bitrary computing services running on an untrusted server. It does so by extending
untrusted storage protocols providing fork-linearizability to a generic service protocol
with fork-linearizable semantics. Previous work in this model only addressed integrity
for a storage service, but could not check the consistency of more general computations
by the server.

Similar to the case of a storage service, the server can readily mount a forking attack
by splitting the group of clients into subgroups and responding consistently within each
subgroup, but not making operations from one subgroup visible to others. Because the
protocol presented here ensures fork-linearizability, however, such violations become
easy to discover. The method therefore protects the integrity of arbitrary services in an
end-to-end way, as opposed to existing techniques that aim at ensuring the integrity of
a computing platform (e.g., the trusted computing paradigm).

Our approach requires that (at least part of) the service implementation is known
to the clients, because they need to double-check crucial steps of an algorithm lo-
cally. In this sense, the notion of fork-linearizable service integrity, as considered here,
means that the clients have collaboratively verified every single operation of the service.
This strictly generalizes the established notion of fork-linearizable storage integrity. A
related notion for databases is ensured by the Blind Stone Tablet protocol [20].

1.1 Contributions

We present the first precise model for a group of mutually trusting clients to execute an
arbitrary service on an untrusted server S, with the following characteristics. It guar-
antees atomic operations to all clients when S is correct and fork-linearizability when
S is faulty; this means that all clients which observe each other’s operations are con-
sistent, in the sense that their own operations, plus those operations whose effects they
see, have occurred atomically in same sequence.

Furthermore, we generalize the concept of authenticated data structures [16] to-
ward executing arbitrary services in an authenticated manner with multiple clients. We
present a protocol for consistent service execution on an untrusted server, which adds
O(n) communication overhead for a group of n clients; it generalizes existing protocols
that have addressed only the special case of storage on an untrusted server.
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1.2 Related Work

Ensuring integrity and consistency for services outsourced to third parties is a very
important problem, particularly regarding security in cloud computing [8].

A common approach for tolerating faults, including adversarial actions by malicious,
so-called Byzantine servers, relies on replication [5]. All such methods, however, break
down as soon as a majority of servers becomes faulty. We are interested in consistency
for only one server, which is potentially Byzantine.

Our approach directly builds on authenticated data structures [16, 14, 19]; they gen-
eralize Merkle hash trees for memory checking [1] to arbitrary search structures on gen-
eral data sets. Authenticated data structures consist of communication-efficient methods
for authenticating database queries answered by an untrusted provider. In contrast to our
setting, the two- and three-party models of authenticated data structures allow only one
client as a writer to modify the content. Our model allows any client to issue arbitrary
operations, including updates.

Previous work on untrusted storage has addressed the multi-writer model. Mazières
and Shasha [15] introduce untrusted storage protocols and the notion of fork-lineari-
zability (under the name of fork consistency), and demonstrate them with the SUNDR
storage system [12]. Subsequent work of Cachin et al. [4] improves the efficiency of un-
trusted storage protocols. A related work demonstrates how the operations of a revision
control system can be mapped to an untrusted storage primitive, such that the resulting
system protects integrity and consistency for revision control [2].

FAUST [3] and Venus [18] extend the model beyond the one considered here and
let the clients occasionally exchange messages among themselves. This allows FAUST
and Venus to obtain stronger semantics, in the sense that they eventually reach consis-
tency (in the sense of linearizability) or detect server misbehavior. In our model with-
out client-to-client communication, fork-linearizability, or one of the related “forking”
consistency notions [3], is the best that can be achieved [15].

Several recent cloud-security mechanisms aim at a similar level of service consis-
tency as guaranteed by our protocol. They include the Blind Stone Tablet [20] for
consistent and private database execution using untrusted servers, the SPORC frame-
work [9] for securing group collaboration tasks executed by untrusted servers, and the
Depot [13] storage system.

Orthogonal approaches impose correct behavior on a remote service indirectly, for
instance through accountability in a storage service [21] or distributed systems [10]. Yet
other work relies on trusted hardware modules at all parties [6, 7].

1.3 Organization

Section 2 describes the model and recalls fork-linearizability and other consistency no-
tions. In Section 3 the notion of authenticated service execution is introduced, which
plays the main role for formalizing arbitrary services so that their responses can be ver-
ified. Section 4 presents the fork-linearizable service execution protocol. The detailed
analysis and generalizations are omitted from this extended abstract.
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2 System Model

2.1 System

We consider an asynchronous distributed system consisting of n clients C1, . . . , Cn and
a server S. Every client is connected to S through an asynchronous reliable channel that
delivers messages in first-in/first-out (FIFO) order. The clients and the server together
are called parties. A protocol P specifies the behaviors of all parties. An execution of
P is a sequence of alternating states and state transitions, called events, which occur
according to the specification of the system components.

All clients follow the protocol; in particular, they do not crash. Every client has some
small local trusted memory, which serves to store keys and authentication values. The
server might be faulty and deviate arbitrarily from the protocol; such behavior is also
called Byzantine. A party that does not fail in an execution is correct.

2.2 Functionality

We consider a deterministic state machine, which is modeled by a functionality F as
follows. It maintains a state s ∈ S, repeatedly takes some operation o ∈ O as input
(o may contain arguments), and outputs a response r ∈ R and a new state s′. The initial
state is denoted by sF0. Formally, a step of F is written as

(s′, r) ← F (s, o).

Because operations are executed one after another, this gives the sequential specifica-
tion of F . We discuss the concurrent invocation of multiple operations later.

We extend this notation for executing multiple operations o1, . . . , om in sequence,
starting from an initial state s0, and write

(s′, r) = F (s0, [o1, . . . , om])

for (si, ri) = F (si−1, oi) with i = 1, . . . , m and (s′, r) = (sm, rm).
We define the space complexity of F , denoted by SPACEF , to be the number of bits

required to store the largest of its states, i.e.,

SPACEF = max
s∈S
|s|.

The space complexity determines the amount of local storage necessary to execute F .

2.3 Operations and Histories

Our goal is to emulate F to the clients with the help of server S. The clients invoke the
operations of F ; every operation is represented by two events occurring at the client,
an invocation and a response. A history of an execution σ consists of the sequence of
invocations and responses of F occurring in σ. An operation is complete in a history
if it has a matching response. For a sequence of events σ, complete(σ) is the maximal
subsequence of σ consisting only of complete operations.
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An operation o precedes another operation o′ in a sequence of events σ, denoted
o <σ o′, whenever o completes before o′ is invoked in σ. A sequence of events π
preserves the real-time order of a history σ if for every two operations o and o′ in π, if
o <σ o′ then o <π o′. Two operations are concurrent if neither one of them precedes
the other. A sequence of events is sequential if it does not contain concurrent operations.
For a sequence of events σ, the subsequence of σ consisting only of events occurring at
client Ci is denoted by σ|Ci (we use the symbol | as a projection operator). For some
operation o, the prefix of σ that ends with the last event of o is denoted by σ|o.

An execution is well-formed if the sequence of events at each client consists of alter-
nating invocations and matching responses, starting with an invocation. An execution is
fair, informally, if it does not halt prematurely when there are still steps to be taken or
messages to be delivered.

2.4 Consistency Conditions

We now describe the formal consistency notions required from an untrusted service,
formulated in terms of the possible views of a client. A sequence of events π is called
a view of a history σ at a client Ci w.r.t. a functionality F if σ can be extended (by
appending zero or more responses) to a history σ′ such that:

1. π is a sequential permutation of some subsequence of complete(σ′);
2. π|Ci = complete(σ′)|Ci ; and

3. π satisfies the sequential specification of F .

Intuitively, a view π of σ at Ci contains at least all those operations that either occur at
Ci or are apparent from to Ci from its interaction with F .

One of the most important consistency conditions for concurrent operations is lin-
earizability, which guarantees that all operations occur atomically.

Definition 1 (Linearizability [11]). A history σ is linearizable w.r.t. a functionality F
if there exists a sequence of events π such that:

1. π is a view of σ at all clients w.r.t. F ; and

2. π preserves the real-time order of σ.

The notion of fork-linearizability [15] (originally called fork consistency) requires that
when an operation is observed by multiple clients, the history of events occurring before
the operation is the same. For instance, when a client reads a value written by another
client from a storage service, the reader is assured to be consistent with the writer up to
the write operation.

Definition 2 (Fork-linearizability). A history σ is fork-linearizable w.r.t. a function-
ality F if for each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;

2. πi preserves the real-time order of σ;

3. (No-join) For every client Cj and every operation o ∈ πi ∩ πj , it holds that πi|o =
πj |o.
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We now recall the concept of a fork-linearizable Byzantine emulation [4]. It summarizes
the requirements put on our service emulation protocol, which runs between the clients
and an untrusted server. This notion means that when the server is correct, the service
should guarantee the standard notion of linearizability; otherwise, it should ensure fork-
linearizability.

Definition 3 (Fork-linearizable Byzantine emulation). A protocol P emulates a
functionality F on a Byzantine server S with fork-linearizability whenever the follow-
ing conditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is lineariz-
able w.r.t. F ; and

2. The history of every fair and well-formed execution of P is fork-linearizable w.r.t.
F .

2.5 Cryptographic Primitives

Our implementation uses hash functions, digital signatures, and symmetric-key encryp-
tion. We model them as ideal functionalities here. But all notions can be made formal
in the model of modern cryptography.

A hash function H maps a bit string x of arbitrary length to a short, unique repre-
sentation of fixed length. It is assumed to be collision-free, that is, no party can produce
two different inputs x and x′ such that H(x) = H(x′).

A digital signature scheme provides two operations, sign and verify. The invocation
of sign takes an index i ∈ {1, . . . , n} and a bit string m as parameters and returns
a signature φ with the response. The verify operation takes the index i of a client, a
string m, and a putative signature φ as parameters and returns a Boolean value b ∈
{FALSE, TRUE} with the response. It satisfies that verify(i, m, φ) = TRUE for all i and
m if and only if Ci has executed sign(i, m) = φ before. Only Ci may invoke sign(i, ·)
and S cannot invoke sign. Every party may invoke verify.

A symmetric encryption scheme consists of a key generation algorithm, an encryp-
tion algorithm encrypt and a decryption algorithm decrypt. Initially a trusted entity
runs the key generator and obtains a key k ∈ K. Algorithm encrypt takes k and a
message m as inputs and returns a ciphertext c. Algorithm decrypt takes k and a ci-
phertext c as inputs and returns a message m. For any k and m, it is required that
decrypt(k, encrypt(k, m)) = m. Furthermore, any party that obtains c = encrypt(k, m)
but has no access to k obtains no useful information about m.

3 Service Execution and Authentication

This section first introduces a model for executing the service F on server S such that op-
erations are invoked by the clients. The primary task of S is to maintain the global state s
of F ; we intend this model for coordination services, shared collaboration spaces, light-
weight databases, storage applications and so on, with small computational expense for
every operation, but high demand on maintaining a consistent state.
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Given this setting, the clients could simply send their operations to S and, since F is
deterministic, S could execute them and return the responses. But we are interested in
a model where the clients execute the bulk of every operation, so as to reduce the load
on S. This assumption also helps preparing the ground for authenticating the responses
of S.

In the second part of this section, we introduce a model for authenticating the execu-
tion of a sequence of operations issued by a single client (imagine for a moment there is
only one client; we extend this to multiple clients later). The client uses its local trusted
memory to maintain some authentication data, from which it verifies the responses of F
sent by S. This model closely resembles the established concept of authenticated data
structures.

3.1 Separated Execution

We model the execution of operations of F in a separated way, such that the clients
do most of the work. Not all functionalities encountered require that every operation
accesses the complete state s. An operation o can be executed in a separated way when
it uses only a part so of the global state s of the functionality; this part may depend
on the operation. If o modifies the global state, then the separated execution will also
generate an updated state s′o, which must be reconciled with s to maintain the correct
semantics of F .

More formally, we say a functionality F allows separated execution when there ex-
ist three deterministic algorithms extractF , execF , and reconcileF as follows. Algo-
rithm extractF produces a partial state so from a global state s and an operation o,

so ← extractF (s, o);

algorithm execF executes o on the partial state so to produce a response r and a partial
updated state s′o,

(s′o, r) ← execF (so, o);

finally, algorithm reconcileF takes s′o and o, together with the old global state s and
outputs the new global state

s ← reconcileF (s, s′o, o).

The algorithms satisfy that for any s ∈ S and o ∈ O, and for any s′, r with (s′, r) =
F (s, o), there exists a partial state so = extractF (s, o) and a partial updated state s′o
such that

(s′o, r) = execF (so, o) ∧ s′ = reconcileF (s, s′o, o)

and
|so| � |s| ∧ |s′o| � |s′|.

In other words, the algorithms for the separated execution of F produce the same re-
sponse and new state as the original F , but there exist intermediate states for the oper-
ation (so and s′o), which are much smaller than the full state(s). The latter requirement
should be understood qualitatively and is not quantified; but it is crucial for enabling
efficient separated execution between a client and a server.
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The communication complexity of some F with separated execution measures the
size of the messages that must be communicated for separated execution. It is de-
noted by COMMF and defined as the number of bits required to store the largest partial
state so, partial updated state s′o, together with a description of the operation o itself, for
executing any operation on any state. That is,

COMMF = max
{
|so|+ |s′o|+ |o|

∣∣
s ∈ S, o ∈ O, so = extractF (s, o), (s′o, r) = execF (so, o)

}
.

3.2 Authenticated Separated Execution

When only a single client engages in separated execution of operations on the server,
well-known methods allow the client to verify the correctness of the responses. These
methods protect the client from a faulty server that tries to forge wrong responses.
Known generally as authenticated data structures [16, 14], they apply to a broad class
of information retrieval services, such as reading an item from a memory, hash tables,
or search queries to a structured data type. Such service authentication schemes rely on
a small authenticator value maintained by the client in its local trusted memory. The
client can verify the response of an operation o in such a way that it recognizes when
the response differs from the correct response r, resulting from applying o to the current
state s of the service. That is, state s is obtained by applying all past operations of the
client to F in order and the correct response is determined by (s′, r) = F (s, o). We
model this concept as an extension of separated execution.

We say a functionality F allows authenticated separated execution when there exist
three deterministic algorithms authextractF , authexecF , and authreconcileF as follows.
Algorithm authextractF produces a partial state so from a global state s and an opera-
tion o,

so ← authextractF (s, o).
The client maintains an authenticator denoted by a, which is initialized to a default
value aF0. Algorithm authexecF takes a, so, and o as inputs and produces an updated
authenticator a′, a partial updated state s′o, and a response r. In the course of execut-
ing o, the algorithm also verifies its inputs with respect to a and may output the special
symbol⊥ as response, indicating that the verification failed. In other words,

(a′, s′o, r) ← authexecF (a, so, o),

with r = ⊥ if and only if verification failed. Finally, algorithm authreconcileF takes s′o
and o, together with the old global state s and outputs the new global state

s ← authreconcileF (s, s′o, o).

Its role is exactly the same as in separated execution.
A proper authenticated execution of the operation sequence o1, . . . , om proceeds as

follows. Starting with the initial authenticator a0 = aF0 and state s0 = sF0, it computes

(si, ri)← F (si−1, oi)
soi ← authextractF (si, o)

(ai, s
′
oi

, ri)← authexecF (ai−1, soi , oi),
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for i = 1, . . . , m and outputs the triple (am, sm, rm) containing an authenticator am,
state sm, and response rm.

Consider now the proper authenticated execution of an arbitrary operation sequence
and the resulting authenticator a and state s. The following conditions must hold:

Correctness: For any o ∈ O and (s′, r) = F (s, o), there exist so = authextractF (s, o)
and a′, s′o, and r �= ⊥ such that

(a′, s′o, r) = authexecF (a, so, o) ∧ s′ = authreconcileF (s, s′o, o).

and
|a′| � |s| ∧ |so| � |s| ∧ |s′o| � |s′|.

Security: For any o ∈ O and any adversary that outputs some s̃o, suppose that there
exist a′ and s′o such that (a′, s′o, r̃) = authexecF (a, s̃o, o) with r̃ �= ⊥; then r̃ = r.

The correctness property is simply reformulated from the unauthenticated scheme for
separated execution. It states that for any authenticator and state s resulting from a
proper authenticated execution, applying separated execution of o yields a response
r �= ⊥ such that verification succeeds and, moreover, the resulting updated state s′

together with r satisfies (s′, r) = F (s, o).
The security property considers a faulty S as an adversary, which tries to forge some

partial state s̃o that causes the client to produce a wrong response r̃. But in an au-
thenticated separated execution scheme, algorithm authexecF either outputs the correct
response (r̃ = r), or it recognizes the forgery and the verification fails (r̃ = ⊥).

The communication complexity of some F with authenticated separated execution is
defined in the same way as for separated execution and measures how much data must
be communicated between C and S.

The notion of authenticated data structures [14] differs from a service with authen-
ticated separated execution in that the former does not contain a partial updated state
and the reconciliation step. In fact, the server could equally well execute the whole op-
eration on the state that it maintains. But in practice, many algorithms execute update
operations more efficiently when the client computes the updated parts of the state and
the server merely stores them in its memory.

3.3 Examples

The literature contains many examples of data structures that can be formulated as func-
tionalities with authenticated separated execution. They are interesting because their
communication complexity for separated execution is much smaller their space com-
plexity. For instance, hash trees can be used to check the correctness of individual en-
tries in a memory with N elements [1] with complexity O(log N), a generalization of
hash trees can authenticate responses produced by any DAG-structured query evalu-
ation algorithm with logarithmic overhead [14], and cryptographic methods based on
accumulators can maintain authenticated hash tables with constant communication for
query operations and sub-linear cost for updates [17].

As a concrete example, consider a functionality MEM whose state consists of N
storage locations denoted by MEM[1], . . . , MEM[N ]. MEM supports two operations:
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read(j), which returns MEM[j], and write((j, x)), which assigns MEM[j] ← x and
returns nothing. Note that for N = n and when Ci may only write to MEM[i], we
obtain the functionality that was considered in most previous work on untrusted storage
(e.g., [4]).

A standard hash tree computed over MEM[1], . . . , MEM[N ] gives an authenticated
separated execution scheme, where the internal nodes of the tree are also stored in the
state of MEM. The authenticator is the root node of the hash tree, which commits all
entries in MEM. Algorithm authextractMEM for an operation that concerns entry j always
returns the internal tree nodes along the path from the root to the leaf node j and all their
siblings, which are needed for recomputing the root hash in order to authenticate leaf
node j [1]. Verification succeeds if the recomputed root hash matches the authenticator.
For a write operation, the nodes on the path from MEM[j] to the root are updated and
included in the partial updated state s′o. The server extracts them from s′o and stores
them in the appropriate place during authreconcileMEM.

The client must explicitly recompute the path in the hash tree also for write opera-
tions, in order to verify the sibling nodes along the path from the modified leaf node to
the root; these nodes originate from the server and influence the computation of the new
root hash. If they are not verified, they might lead to an invalid authenticator. Because
the client computes these values anyway, they are contained in the partial updated state,
and the server only needs to store them.

In this way, our notion of authenticated separated execution models closely what hap-
pens in practical hash tree implementations inside cryptographic storage systems; this
is not possible with the notion of an authenticated data structure, where no
reconciliation algorithm is foreseen.

4 Fork-Linearizable Execution Protocol

We now introduce a novel untrusted service execution protocol, which emulates an arbi-
trary F on a Byzantine server with fork-linearizability. The protocol combines elements
from existing untrusted storage protocols with an authenticated separated execution
scheme for F .

The protocol operates in lock-step mode, similar to the bare-bones storage protocol
of SUNDR [15]. This means that the server serializes all operations and does not allow
them to execute concurrently. Proceeding in lock-step is for illustration purposes only;
extending it to concurrent operations is feasible and discussed at the end of this paper.

At a high level, the protocol operates like this. A client assigns a local timestamp to
every one of its operations. Every client maintains a timestamp vector T in its trusted
memory. At client Ci, entry T [j] is equal to the timestamp of the most recently executed
operation by Cj in some view of Ci. To begin executing an operation o, client Ci sends a
SUBMIT message with o to S. A correct S responds to this SUBMIT message by invoking
the authenticated separated execution scheme, and computes so ← authextractF (s, o)
on the current state s.

In addition to s, the server maintains a timestamp vector V , an authenticator a, and
a signature ϕ, which it received in a so-called COMMIT message from the client Cc that
executed the last preceding operation at S. The signature was issued by Cc on V and a.
The server sends a REPLY message to Ci containing V , a, so, c, and ϕ.
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When it receives the REPLY message, the client first checks the content. It verifies the
signature ϕ and makes sure that V ≥ T (using vector comparison) and that V [i] = T [i].
If not, the client aborts the operation and halts, because this means that S has violated
the consistency of the service.

Then Ci verifies the response with respect to a and runs the separated execution by
computing (a′, s′o, r) ← authexecF (a, so, o). If the verification fails, the client again
halts. Otherwise, Ci proceeds to copying the received timestamp vector V into its vari-
able T , incrementing T [i], and computing a signature ϕ′ on T and a′. The value T [i]
becomes the timestamp of o. Finally, Ci returns a COMMIT message to S containing T ,
a′, s′o, and ϕ′.

It is not hard to see that all checks are satisfied when S is correct because every client
only increments its own entry in a timestamp vector. Therefore, the timestamp vectors
sent out by S in REPLY messages appear in strictly increasing order.

The description so far allows the server to learn the authenticator values, which is
not foreseen in the model of an authenticated separated execution scheme. To prevent
any damage that might be caused by this, all clients know a common secret key k for a
symmetric encryption scheme and use it to encrypt the authenticator before sending it
to S.

This completes the high-level description of the untrusted service execution protocol;
the details are given in Algorithms 1 and 2.

Algorithm 1. Untrusted execution protocol for client Ci

State
k ∈ K // symmetric encryption key
T ∈ N0

n, initially [0]n // current timestamp vector

upon operation runF (o) do
send message [SUBMIT, o] to S
wait for message [REPLY, V, ā, so, c, ϕ]
if
(
V = [0]n ∨ verify(c, COMMIT‖V ‖ā, ϕ)

) ∧ V ≥ T ∧ V [i] = T [i] then
if V = [0]n then

a← aF0

else
a← decrypt(k, ā)

(a′, s′o, r)← authexecF (a, so, o)
if r �= ⊥ then

T ← V
T [i]← T [i] + 1
ϕ′ ← sign(i, COMMIT‖T‖a′)
ā′ ← encrypt(k, a′)
send message [COMMIT, o, T, ā′, s′o, ϕ

′] to S
return r

halt
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Algorithm 2. Untrusted execution protocol for server S

State
s ∈ S , initially sF0 // state of F
c ∈ {1, . . . , n}, initially 1 // index of currently or most recently served client
V ∈ N0

n, initially [0]n // timestamp vector of last committed operation
ā, initially ε // encrypted authenticator of last committed operation
ϕ, initially ε // signature of last committed operation
block ∈ {FALSE, TRUE}, initially FALSE

upon receiving message [SUBMIT, o] from Ci such that block = FALSE do
so ← authextractF (s, o)
send message [REPLY, V, ā, so, c, ϕ] to Ci

c← i
block← TRUE

upon receiving message [COMMIT, o, T, ā′, s′o, ϕ
′] from Ci such that block = TRUE ∧ i = c do

s← authreconcileF (s, s′o, o)
(V, ā, ϕ)← (T, ā′, ϕ′)
block← FALSE

Intuitively, the algorithm relies on the same properties of vector clocks as previous
protocols for untrusted storage [15, 4]. Note that S can only send a timestamp vector
and authenticator in a REPLY message that have been signed by a client; otherwise,
the first verification step in Algorithm 1 fails. Under this condition, S may violate the
protocol only by sending a timestamp vector/authenticator pair that is properly signed
but does not satisfy a global sequential order of the operations.

In other words, a violation by S means that there is one operation o0 whose times-
tamp vector is received in a REPLY by at least two different clients C1 and C2, in op-
erations o1 and o2, respectively. If all other information is correct, operations o1 and
o2 both succeed, but the two clients sign incomparable timestamp vectors. According
to the protocol, one can then show that C1 will not execute any operation in a view at
C1 that includes o2 and, vice versa, any operation in a view at C2 that includes o1 will
cause C2 to abort.

With the functionality MEM from the previous section and n storage locations, this
protocol gives the same guarantees as the bare-bones storage protocol of SUNDR [15]
and the lock-step protocol of Cachin et al. [4]. As in the latter protocol, our algorithm
adds a linear (in n) overhead to the communication complexity of separated execution.

5 Conclusion

This paper has introduced the first precise model for a group of mutually trusting clients
to execute an arbitrary service on an untrusted server S, such that the clients observe
atomic operations when S is correct and the service respects fork-linearizability when
S is Byzantine. An implementation of this notion has been obtained by combining
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any scheme for authenticated separated execution with elements from untrusted storage
protocols.

The protocol is not particularly efficient because a correct server executes all oper-
ations in lock-step mode. Similar to untrusted storage protocols, the protocol can be
improved by letting the clients execute some operations concurrently, as long as they
do not conflict. Some restrictions on the achievable parallelism have been identified [4].
Clarifying the concept of conflicts for arbitrary functionalities and extending the proto-
col to concurrent operations are deferred to the forthcoming full version of this paper.
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I thank Alexander Shraer, Idit Keidar, Rüdiger Kapitza, and Matthias Schunter for
interesting discussions about the ideas leading to this paper.

This work has been supported in part by the European Commission through the
ICT programme under contracts ICT-2007-216676 ECRYPT II and ICT-2009-257243
TCLOUDS.

References

[1] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of
memories. Algorithmica 12, 225–244 (1994)

[2] Cachin, C., Geisler, M.: Integrity protection for revision control. In: Abdalla, M.,
Pointcheval, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 382–399. Springer, Heidelberg
(2009)

[3] Cachin, C., Keidar, I., Shraer, A.: Fail-aware untrusted storage. In: Proc. International Con-
ference on Dependable Systems and Networks (DSN-DCCS), pp. 494–503 (2009)

[4] Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted shared
memory. In: Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC),
pp. 129–138 (2007)

[5] Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and Practice. LNCS,
vol. 5959. Springer, Heidelberg (2010)

[6] Chun, B.G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only memory: Mak-
ing adversaries stick to their word. In: Proc. 21st ACM Symposium on Operating System
Principles (SOSP), pp. 189–204 (2007)

[7] Chun, B.G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Tiered fault tolerance for long-
term integrity. In: Proc. 7th USENIX Conference on File and Storage Technologies, FAST
(2009)

[8] Cloud Security Alliance, CSA (2010),
http://www.cloudsecurityalliance.org/

[9] Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: SPORC: Group collaboration
using untrusted cloud resources. In: Proc. 9th Symp. Operating Systems Design and Imple-
mentation, OSDI (2010)

[10] Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability for dis-
tributed systems. In: Proc. 21st ACM Symposium on Operating System Principles (SOSP),
pp. 175–188 (2007)

[11] Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

http://www.cloudsecurityalliance.org/


14 C. Cachin

[12] Li, J., Krohn, M., Mazires, D., Shasha, D.: Secure untrusted data repository (SUNDR).
In: Proc. 6th Symp. Operating Systems Design and Implementation (OSDI), pp. 121–136
(2004)

[13] Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.: Depot:
Cloud storage with minimal trust. In: Proc. 9th Symp. Operating Systems Design and Im-
plementation, OSDI (2010)

[14] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A general
model for authenticated data structures. Algorithmica 39, 21–41 (2004)

[15] Mazières, D., Shasha, D.: Building secure file systems out of Byzantine storage. In: Proc.
21st ACM Symposium on Principles of Distributed Computing, PODC (2002)

[16] Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE Journal on Se-
lected Areas in Communications 18(4), 561–570 (2000)

[17] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: Proc.
15th ACM Conference on Computer and Communications Security, CCS (2008)

[18] Shraer, A., Cachin, C., Cidon, A., Keidar, I., Michalevsky, Y., Shaket, D.: Venus: Verifica-
tion for untrusted cloud storage. In: Proc. Cloud Computing Security Workshop (CCSW).
ACM, New York (2010)

[19] Tamassia, R., Triandopoulos, N.: Computational bounds on hierarchical data processing
with applications to information security. In: Caires, L., et al. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 153–165. Springer, Heidelberg (2005)

[20] Williams, P., Sion, R., Shasha, D.: The blind stone tablet: Outsourcing durability to un-
trusted parties. In: Proc. Network and Distributed Systems Security Symposium, NDSS
(2009)

[21] Yumerefendi, A.R., Chase, J.S.: Strong accountability for network storage. ACM Transac-
tions on Storage 3(3) (2007)



I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 15–25, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

A Structured Codesign Approach to Many-Core 
Architectures for Embedded Systems 

Jürg Gutknecht 

ETH Zürich 
gutknecht@inf.ethz.ch 

Abstract. In this paper we present a structured hardware/ software codesign 
approach to modeling and development of embedded systems for many-core 
platforms. Our method is based on the combination of three technologies that 
are not commonly used in such a context: a.) programmable hardware, b.) high-
level computing model and programming language, and c.) hybrid hardware/ 
software compilation. Resulting benefits are better reliability and performance, 
as well as higher productivity, portability and scalability thanks to a fully inte-
grated design flow. We shall also show that our method is promising in terms of 
resource-efficiency and in particular energy-efficiency. An application from the 
medical ICT area will serve as a proof of concept. 

1   Introduction 

The context of the following presentation is the goal of advancing the level of embed-
ded systems development. This is a highly relevant goal as a.) more than 95% of all 
processors ever produced go into embedded systems and many of them go into safety-
critical systems, and b.) the technological step from single-core architectures to many-
core architectures does not stop in front of embedded systems. Embedded systems 
will be many-core systems in the future, and the underlying architecture will be cus-
tom design rather than some off-the-shelf microprocessor plus standard memory plus 
device controllers. 

Many-core technology will open up an entirely new range of opportunities in terms 
of computing model, hardware/ software partnership, operating system etc. but it will 
also challenge the standard development procedures and design tools commonly used 
today, notably the following peculiarities 

• Total separation of hardware architecture and software architecture in the  
design process 

• Use of a low-level programming language, often in combination with hand-
crafting 

• Use of some general-purpose operating system, downscaled to microprocessors 

The approach presented in this paper is based on the vision of a programmable hard-
ware platform that is capable of accommodating a large number of microprocessors 
(cores) of potentially different kinds, each of them operating on some local memory, 
and a corresponding number of interprocessor connections for communication  
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purposes. However, neither any specific microprocessor architecture, nor any kind of 
a full interconnect, nor homogeneity, nor shared global memory is assumed. 

In our computing model, programs resemble downscaled distributed systems with 
actor objects interoperating via message passing. The important point here is that 
each program is a coherent description of both the topology of the actor network and 
the algorithm to be executed by each actor object. Program development is supported 
by a hybrid compiler that maps the topology into a description in some hardware 
language (HDL), and the algorithms into microprocessor code respectively. 

In view of the potentially large number of available processor cores, our program-
ming model aims at minimizing or even eliminating processor sharing, preemption 
and asynchronous interrupts, to the benefit of a deterministic behavior and of better 
control of real-time guarantees. 

The work presented here builds on the work described in [1]. Similar projects shar-
ing our goal of an integrated and automated design flow for embedded systems and 
our emphasis on data flow architectures are OpenDF [2], Handle-C [3], StreamIT [4], 
and Streams-C [5]. However, our approach clearly distinguishes itself against these 
projects by its focus on a high-level, general purpose programming language that 
strictly hides all details about the underlying hardware from the programmers. 

2   Computing Model 

Our computing model is a collection of communicating actor objects (or actors, in 
short). Each actor consists of a local state space, an activity describing its intrinsic 
behavior, one or more communication activities, and a constructor for the purpose of 
initializing the state space and constructing the communication links. All activities 
within an actor are supposed to run in parallel. A program module is a collection of 
logically connected actors plus a constructor for the construction of the actor network, 
which is supposed to be static. The basic idea is now to compile both the construction 
of the actor network and the construction of the communication links into HDL, and 
to compile the “kernel” codes in actors into microprocessor code. 

Assume, for example, that we want to construct a network consisting of two  
instances of some actor type X, one instance of another actor type Y, and two  
communication links as depicted in Figure 1. 
 

Y XX

behavior

communication

  

Fig. 1. Sample actor network 
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In a notation close to the Pascal/ Modula/ Oberon language family, the  
corresponding program text looks as follows. Notice that the colored/ uncolored  
part of the code will be compiled into hardware language/ microprocessor code  
respectively. 

module M; 
  var x1, x2: X; y: Y; 
 
    type 
      X = object 
        var c: Y.C; 
        activity A; 
          var i, j, k: integer; 
        begin (*behave*) 
          …; c(i, j); …; c(k); … 
        end A; 
        procedure X (y: Y); 
        begin (*construct objec*) 
          …; new (c); … 
        end X; 
    begin new A (*launch behavior*) 

      end X; 
 
      Y = object 
        activity A; 
          begin (*behave*) … 
        end A; 
        activity C; 
          var u, v, w: integer; 
        begin (*communicate*) 
          …; accept(u, v); …; accept(w); … 
        end C; 
        procedure Y; 
          begin (*construct object*)… 
        end Y; 
      begin new A 
      end Y; 
 
begin new(y); new(x1, y); new (x2, y) 
end M. 

 
Activities running within an actor need to synchronize their actions properly, if they 
operate on the shared state space. However, as all but one activity are dedicated to 
communication over a separate channel, synchronization can easily be achieved in a 
lock-free form, for example by atomically switching between an active buffer and a 
shadow buffer. Figure 2 illustrates the situation for actors of type Y. The figure shows 
one microprocessor P and two communication processors C reading from input  
buffers and accessing the shared state space M. 
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C

P

C

M

FIFO

FIFO

 
Fig. 2. Microprocessor and communication processors operating on shared local state-space 
within an actor 

With the aim of exploiting all of the potential for parallelization, we allow activi-
ties to spawn mutually independent sub-activities, where the spawning “parent”  
activity acts as a fence for its sub-activities: it is considered terminated after all  
sub-activities have terminated. 

The following figure specifies an activity A spawning three sub-activities, two of 
type A1 and one of type A2: 

spawn

fence

A
A1

A2

A1

 

Fig. 3. Activity spawning sub-activities 

Here is the corresponding program code: 

activity A1; 
begin … 
end A1; 
 
activity A2; 
begin … 
end A2; 
 
activity A; 
begin 
  … new(A1); … new(A2); … new(A1); … (*spawn*) 
end A; 
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In summary, our computing model supports concurrency on two levels: 

• Level of actor objects (intrinsic behavior, communications) 

o Number statically determined at compile time 
o Synchronization needed 
o Scheduling not needed 

• Level of activities (mutually independent sub-tasks) 

o Number dynamically determined at runtime 
o Synchronization not needed 
o Scheduling needed 

If a large number of processor cores are available, it is justified to assign a separate 
core to each behavior/ communication activity, and a pool of cores to sub-tasks. 

3   Target Platform 

The target platform of our development environment for embedded systems is  
programmable hardware or, more precisely, FPGA (Field Programmable Gate  
Array). We are currently using Xilinx Virtex-5 XC5VLX50T for this project but our  
integrated development environment is inherently portable. 

The basic FPGA resources are lookup tables (LUT), block RAMs (BRAM), and 
digital signal processor slices (DSP). However, unlike approaches to “hardware  
compilation” on a statement-by-statement basis, our system does not rely on such 
basic resources directly but on a library of prefabricated hardware components of 
some higher-level, synthesized functionality instead. The hardware library typically  
includes the following kind of components or modules: 

• On-chip memory 
• FIFO buffers 
• I/O controllers (UART) 
• Floating point units 
• Microprocessors 

The main purpose of the hardware library is facilitating the mapping task of the  
compiler. Each module is expressed in “behavioral Verilog”, a portable hardware 
description code that uses no device-specific libraries (apart from some idioms in-
volving DSP and BRAM for optimizing purposes) and that can be compiled for a 
specific target FPGA by conventional behavioral synthesis tools. 

The microprocessor used in this project (see Figure 4) is a custom design called 
“tiny RISC machine” (TRM). The TRM is a 32 bit machine that comes with both a 
configurable on-chip instruction memory (IM) and data memory (DM). Each TRM 
consumes only 2% LUT of the Virtex-5 FPGA. 
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Fig. 4. Diagram of TRM 

The TRM comes in different variants, including 

• I/O variant TRM.IO 
• Direct memory access variant TRM.DMA 
• Vector variant TRM.Vector 

Each of the TRM variants features a correspondingly extended instruction set. It is 
worth noting in this context that vector processing is an important ingredient in our 
project because it supports high performance computing and in particular image proc-
essing in embedded systems. Consequently, our programming language provides 
powerful built-in types for vectors, matrices, tensors, and generic operations on these 
types.  

The following diagram shows the vector TRM, a basic TRM enhanced by a vector 
unit. 

IM
(4K x 18 bits)

DM
(8K x 32 bits)

TRM

Vector
256

  

Fig. 5. Diagram of TRM.Vector 

The vector unit processes floating point vectors of length 8, and it takes 12% of the 
Virtex-5 LUT. Built-in operations are vector addition, vector multiplication, and  
horizontal addition (for fast computing of scalar products). Each TRM.Vector micro-
processor is typically coupled with a direct memory access TRM (TRM.DMA) for 
fast reading and writing of entire vectors from and to the external DDR2 memory. 
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FIFO buffers are used for communication between TRMs, in particular for com-
munication between TRM.Vector and TRM.DMA but also for actor interoperability 
according to our programming model as explained in Section 3. FIFOs are imple-
mented with LUTs or BRAMs, depending on their depth. 

In concluding this section, let us summarize the entire automated design flow. We 
can distinguish the following steps, see also Figure 6: 

1. Analyze the module body and actor constructors to determine the system topol-
ogy (actors and communication links). Compile the activities into microprocessor 
code and generate the instruction image and the data image (.mem files) for each 
microprocessor core (or cluster of cores). 

2. Map the results of step 1 to functional modules provided by the hardware library 
such as processor cores or cluster of cores, on-chip memories, FIFOs, I/O con-
trollers etc. and generate Verilog code. In addition, generate a script file make.tcl 
and a block memory configuration file ram.bmm. 

3. Call the Xilinx synthesizer, router and configurator to create the target machine 
from the generated Verilog code, to set the clock target, to patch the memory im-
ages (.mem files) to the BRAM defined in ram.bmm, and to create the final  
bitstream. 

4. Download the bitstream to the FPGA. 

source program

hybrid
compiler

memory images
.mem

Verilog code
scripts 

make.tcl, 
ram.bmm

Xilinx
synthesizer

runtime
library

hardware
library

bits

Fig. 6. System design flow 

4   Proof of Concept 

As a proof of concept, an electrocardiographic (ECG) signal analyzer has been im-
plemented. Its task is to analyze the activity of the heart, the morphology of the  
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corresponding waves, and the heart rate variability (HRV), with the aim of detecting 
and classifying potential anomalies. The signal to be analyzed decomposes into 8 
physical channels, each of them sampled at 500 Hz.  

This application belongs to the data-streaming class. Figure 7 depicts its topology 
and the corresponding functional diagram. 

Signal
input

Wave 
proc_1

QRS
detect

HRV 
analysis

Disease  
classifier

Wave 
proc_2

Wave 
proc_8

ECG
bitstream

out
stream

 

Fig. 7. Program topology of the ECG application 

After each sampling, the following steps are performed: 

1. Edit input: Receive ECG signal from UART, compose individual samples, 
and distribute them to channel processors. 

2. Wave processing (per channel): Precondition wave by suppressing noise via 
linear filtering; Detect the heart beats and contractions. 

3. QRS detection: Detect QRS patterns and make a final decision about heart 
rate on the basis of standard multichannel logic. 

4. HRV analysis: Analyze the current heart rhythm and the heart rate  
variability. 

5. Disease detection: Use decision tree logic to detect and classify arrhythmia 
events such as premature ventricular contractions (PVC), ventricular tachy-
cardia etc. Feed results back to configure wave processing. 

Notice that the topology in Figure 7 exhibits two concurrency patterns, as they typi-
cally occur in data streaming applications: 

• Fan out (to separate channel processing) 
• Pipeline (to analyze the signal in stages) 

Figure 8 shows how the topology of the ECG analyzer is mapped to FPGA hardware. 
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Fig. 8. FPGA implementation of the ECG topology 

While the ECG analyzer served primarily the purpose of a proof of concept for our 
integrated and automated development process for many-core embedded systems, its 
functional quality is quite remarkable. For example, applied to test record I01 from 
the 12-lead Arrhythmia Database of the St.-Petersburg Institute of Cardiological 
Technics, the detection rate for the more than 2700 ECG heart beats was 100.0%, 
with 328 from 341 PVC contractions correctly classified. 

Based on an extensive evaluation procedure of two different FPGA implementa-
tions of the ECG analyzer, the following lessons can be learned: 

Feasibility of the Approach 

Data-streaming applications like the ECG analyzer exhibit a high degree of intrinsic 
potential for parallel computing. Typical concurrency patterns are fan-outs and pipe-
lines. The use of a combination of an actor model and a data flow model has proved 
to be highly suitable for this kind of applications, and the hybrid hardware/ software 
compiler ensures a very high degree of portability. It was merely a matter of minutes 
to build a new system after (experimental) changes in the underlying hardware.  

Use of Resources and Energy 

The combination of a tiny RISC processor (TRM), configurable local memory, and 
configurability of the topology of interprocessor links contributes significantly to an 
economical use of FPGA resources and energy. A comparison with an older and more 
rigid model based on constant-size local memory and on a full on-chip interconnect 
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witnesses a slight improvement in terms of FPGA resources used and a dramatic  
improvement in terms of energy consumption, in particular in quiescent mode, see 
Table 1 below. 

Table 1. Comparative use of FPGA resources and energy consumption 

System #TRM #LUT #BRAM #DSP Quiescent
power (W) 

Dynamic 
power (W) 

Configurable 12 
13859 
(48%) 

52 
(86%) 

12 
(25%) 0.49742 0.48060 

Rigid 12 
15510
(53%) 

56 
(93%) 

12 
(25%) 3.43823 0.58988 

Performance measurements showed that each of the processor cores is used to less 
than 10% of its capacity in average at the highest achievable clock rate of 116 MHz. 
Even though the signal processing algorithms currently used are not at their highest 
level of sophistication yet, the large amount of unused computing power suggests 
that, in the interest of optimized energy efficiency, the clock rate should be carefully 
tuned towards a minimum under the given real-time constraints. 

For the purpose of exploiting the limits of the capacity of the Virtex-5 FPGA, a test 
application comprising 30 actors arranged in a linear sequence was implemented. 
Each of the actors continuously reads data from its left neighbor and passes it on to its 
right neighbor, where the left most actor reads its data from an 8-bit switch, and the 
right most actor displays its data in the form of 8 LEDs. In terms of FPGA resources, 
the test application consists of 30 TRM cores and of 29 32-element deep LUT RAMs 
implementing the buffer FIFOs for the communication network. In total, 27692 
LUTs, 60 BRAMs and 30 DSPs are used. More advanced FPGAs on the market today 
such as the Virtex-6 XC6VSX475T can easily accommodate up to 500 TRM cores. 

Potential for Improvement 

In the current implementation, the full power of our language is not exploited yet. 
Currently, a single processor core is assigned to each actor, which makes it impossible 
to exploit fined-grained parallelism expressed in terms of the “fenced statement” 
construct within individual actors. An obvious solution would be processor clusters, 
sharing a local memory. Also, separate processors for the handling of communication 
are not supported at this time. The use of ultra-simple communication processors 
would be an interesting option. 

Finally, mechanisms have been discussed to further improve power-awareness. We 
already mentioned the goal of down-scaling the clock rate appropriately. Another 
promising measure is shutting down processors when they are unused. Power-aware 
variants of the TRM are currently being explored. One idea is to add a register whose 
contents define the state of the processor. Its value would be set to “sleeping” by a 
running activity and reset to “running” automatically whenever input data has arrived 
in one of the communication buffers associated with this TRM. 
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5   Summary and Conclusion 

With the aim of facilitating the construction of sophisticated embedded systems on 
top of programmable hardware platforms, we have developed a new programming 
language with built-in concurrency and a corresponding hybrid hardware/ software 
compiler. Programs in our language exhibit a unique combination of actors and data 
flow. Our hybrid compiler translates programs into FPGA hardware code but, unlike 
other "hardware compilers", it uses pre-fabricated hardware modules of a granularity 
on the level of microprocessor, local memory, FIFO etc. rather than elementary FPGA 
elements like LUT, BRAM, DSP etc. for this purpose. The basic microprocessor used 
in this project is a custom designed tiny RISC machine (TRM) that comes in different 
variants including energy-aware, vector processing, direct memory access etc. As a 
large number of TRMs fit on a single FPGA, strategies like processor sharing, pre-
emption, asynchronous context-switches and interrupts etc. are no longer used, with 
the highly beneficial effect of reduced complexity and increased predictability and 
deterministic behavior. 

Other important strengths of our approach are increased productivity and portabil-
ity. The built-in support for vector processing makes our system particularly promis-
ing in connection with high performance computing applications, for example in the 
areas of signal processing and image processing. And, thanks to multiple configura-
bility options, a high level of resource efficiency can be achieved.  
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Computer Science Department
Technische Universität München

Boltzmannstr. 3
85748 Garching

ruehrmai@in.tum.de
http://www.pcp.in.tum.de

Abstract. This paper discusses a new cryptographic primitive termed SIMPL
system. Roughly speaking, a SIMPL system is a special type of Physical Un-
clonable Function (PUF) which possesses a binary description that allows its
(slow) public simulation and prediction. Besides this public key like function-
ality, SIMPL systems have another advantage: No secret information is, or needs
to be, contained in SIMPL systems in order to enable cryptographic protocols —
neither in the form of a standard binary key, nor as secret information hidden in
random, analog features, as it is the case for PUFs. The cryptographic security
of SIMPLs instead rests on (i) a physical assumption on their unclonability, and
(ii) a computational assumption regarding the complexity of simulating their out-
put. This novel property makes SIMPL systems potentially immune against many
known hardware and software attacks, including malware, side channel, invasive,
or modeling attacks.

1 Introduction

Background and Motivation. Electronic communication and security devices are per-
vasive in our life. Just to name two examples, around five billion mobile phones are
currently in use worldwide [1] [2], and the world market of smart cards has an estimated
volume of over three billion pieces per year [3] [4]. Their widespread use makes such
devices both a well-accessible and a worthwhile target for adversaries. Many security
attacks are thereby not directed against the employed cryptographic primitives them-
selves, some of which have proven attack-resilient over surprisingly long time spans.
Rather, they often apply physical or software attacks in order to extract the employed
secret keys. Such key-extracting strategies are not just a theoretical concern, but have
been demonstrated several times in widespread, commercial systems [5] [6] [7]. This
drives the search for new mechanisms that protect — or better still: avoid! — secret
keys in vulnerable hardware.

Physical Unclonable Functions (PUFs). The security primitive of a Physical Unclon-
able Function (PUF) [8] [9] [10] [11] was introduced, at least in part, in order to address
some of the above problems. A PUF is a (partly) disordered physical system S that can
be challenged with so-called external stimuli or challenges Ci, upon which it reacts with
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corresponding responses termed RCi . Contrary to standard digital systems, a PUF’s
responses shall depend on the nanoscale structural disorder present in the PUF. This
disorder cannot be cloned or reproduced exactly, not even by its original manufacturer,
and is unique to each PUF. Assuming the stability of the PUFs responses, any PUF S
hence implements an individual function FS that maps challenges Ci to responses RCi

of the PUF. Due to its complex and disordered structure, a PUF can avoid some of the
shortcomings associated with digital keys. For example, it is usually harder to read out,
predict, or derive its responses than to obtain the values of digital keys stored in non-
volatile memory. This fact has been exploited for various PUF-based security protocols
[8] [9] [15] [22].

One prominent example are PUF-based identification schemes [8] [9] [10]. They
are usually run between a central authority (CA) and a hardware carrying a (unique)
PUF S. One assumes that the CA had earlier access to S, and could establish a large,
secret list of challenge-response-pairs (CRPs) of S. Whenever the hardware wants to
identify itself to the CA at some later point in time, the CA selects some CRPs at random
from this list, and sends the challenges contained in these CRPs to the hardware. The
hardware applies these challenges to S, and sends the obtained responses to the CA.
If these responses match the pre-recorded responses in the CRP-list, the CA believes
the identity of the hardware. Note that each CRP can only be used once, whence the
CRP-list uses up over time, and needs to be large.

Private Key like Functionality of PUFs. The described protocol has several well-known
advantages [8] [9]. However, one potential downside is that it presumes a previously
shared piece of secret numerical information (i.e., the CRP-list). This information needs
to be established in a secure set-up phase between the CA and the hardware, and must
constantly be kept secret. In this particular structural aspect, PUFs are resemblant of
classical private key systems.

Secret Information in PUFs. Another noteworthy point is that PUFs in general do not
obviate the presence of secret information within cryptographic hardware. The secret
information is no longer stored in digital form in two-level systems, such as digital
secret keys stored in non-volatile memory cells. But still there is some sort of secret
information present in most PUFs, whose disclosure breaks the security of the system.
Let us name two examples to illustrate our point: In the case of SRAM PUFs the infor-
mation that needs to be kept secret is the state of the SRAM cells after power up, or the
tiny manufacturing variations of the SRAM cells that determine their state after power
up [25]. Once this information is known to an adversary, he can numerically derive the
same key as the cryptographic hardware embedding the SRAM PUF. In the case of Ar-
biter PUFs, the secret information are the internal runtime delays in the circuit stages
[11]. If this information is known, the adversary can numerically simulate the behavior
of the PUF output by an additive, linear model, again breaking its security [26].

In other words, the architectures of most current PUFs “hide” or “obfuscate” secret,
security-relevant information very well in analog characteristics of integrated circuits.
But at the same time, they do not avoid the need for secret information in hardware
systems in principle; they just store it in a different form.
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Our Contributions. This paper introduces a novel security primitive called a SIMPL
system, whereby the acronym SIMPL stands for “SIMulation Possible, but Laborious”.
These systems have two interesting conceptual advantages: First, they are a PUF-like
security tool, but possess some type of public key functionality. This improves their
practical applicability. Second, they obviate the need for secret information in crypto-
graphic systems, trading it for two other assumptions: (i) their physical unclonability,
and (ii) the assumed computational overhead of numerically simulating their output
(in comparison with their faster real-time behavior). We show that SIMPLs can realize
basic communication protocols such as identification and message authentication, and
briefly describe the application of these protocols in some concrete settings. We also
discuss implementations of SIMPL systems, thereby surveying existing approaches,
and propose a new optical implementation strategy. Proof-of-concept data on this opti-
cal implementation, which arose from other, recent research activities in our group [40],
is presented in the appendix.

Related Work. The current paper is an extended version of [16]. Since the publication
of [16], several papers of our group have dealt with the implementation of SIMPLs by
integrated circuits [17] [18] [19] [20]. We emphasize that around the same time as [16],
a comparable concept has been described independently in [21] under the name of a
Public PUF (PPUF).

While stressing that both pieces of work are very interesting, let us briefly address
a few differences between [21] and our studies. One difference is that we focus on
SIMPL systems/Public PUFs for which the relative speed difference between the real
hardware and the simulation is comparably low, for example only a small constant
factor. Such systems seem to have milder complexity requirements and less stability
issues. We argue that by applying feedback loops, not the relative, but the absolute time
difference between such systems and any emulation can still be amplified to a sufficient
absolute value. Once this absolute value is large enough, it enables secure identification
and message authentication protocols, and could compensate network or other delays.
Another reason for concentrating on systems with small speed gaps lies in the fact that
the verification step in identification and message authentication must be carried out
relatively efficiently (see Protocols 2 and 3).

Second, we center upon applications where the main advantage of SIMPL systems
— that they can build security systems without secret key information — is most rel-
evant. Two typical examples are the named identification and message authentication
schemes. Should a shared secret key between two parties be required in a SIMPL-based
communication infrastructure (for example in order to achieve confidentiality), SIMPL-
based message authentication can be used together with the Diffie-Hellman protocol to
exchange a session key. But this key ideally will not be stored permanently in the system.

To the contrary, [21] discuss a PPUF-scenario where a one-time, permanent secret
key is exchanged in a computationally relatively intensive scheme. This scheme appears
too time consuming for multiple session key exchange. Their setting hence puts key ex-
change on different security assumptions than classical protocols (like Diffie-Hellman),
which is a strong achievement on its own. But they do not attempt to generally avoid
the long-term presence of secret information in cryptographic hardware, as we aspire
with SIMPL systems.
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Finally, a very interesting and recommendable, but later source is [24], where time-
bounded authentication for FPGAs is discussed.

Organization of this Paper. The rest of this manuscript is organized as follows: In Sec-
tion 2, we give a semi-formal specification of SIMPL systems, and discuss their proper-
ties. Section 3 provides two formal SIMPL-based protocols for entity identification and
message authentication. In Section 4 we discuss implementation candidates for SIMPL
systems, and conclude the paper in Section 5.

2 SIMPL Systems and Their Properties

2.1 Informal Description of SIMPL Systems

We start by informally listing the properties of a SIMPL system. A physical system S
is called a SIMPL system (or just a SIMPL) if the following holds:

1. S is a (partly) disordered physical system. It can be stimulated with challenges
Ci, upon which it reacts with corresponding responses RCi . The responses are a
function of the specific disorder present in S, and of the applied challenge Ci. The
responses are assumed to be sufficiently stable to regard the behavior of S as a
function FS that maps challenges Ci to responses RCi .

2. Given a challenge Ci, it is possible to numerically simulate the corresponding re-
sponse RCi of S with high accuracy. The simulation is carried out via an individual,
public description D(S) of S, and a public simulation algorithm Sim.

3. Any feasible algorithm, or any physical emulation, that predicts the responses of S
correctly (i.e., which computes FS), is noticeably slower than the real-time behav-
ior of S.

4. It is difficult to physically clone S, i.e. to produce a second system S′ which gener-
ates the same responses on almost all possible challenges with comparable speed.
This must hold even if the internal characteristics and disorder of S, the description
D(S), and many CRPs of S are known.

Put in one sentence, the holder of a secure SIMPL system S is able to evaluate a publicly
known, publicly computable individual function FS faster than anyone else.

2.2 Semi-formal Specification of SIMPL Systems

The above properties can also be coined into a semi-formal specification of SIMPL
systems. The style of the specification follows the specifications and definitions that
have been presented in [22]. It specifies the security of SIMPL systems as a “game”
with the adversary, thereby introducing a relatively precise adversarial model.

Specification 1 ((tmax, c, tC , tPh, q, ε)-SIMPL SYSTEMS.). Let S be a physical sys-
tem mapping challenges Ci to responses RCi , with C denoting the finite set of all pos-
sible challenges. Let c > 1 be a constant, and let furthermore tmax be the maximum
time (over all challenges Ci ∈ C) which it takes until the system S has generated the
response RCi to the challenge Ci. S is called a (tmax, c, tC , tPh, q, ε)-SIMPL SYS-
TEM if there is a string D(S), called the description of S, and a computer algorithm
Sim such that the following conditions are met:
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1. For all challenges Ci ∈ C, the algorithm Sim on input
(
Ci, D(S)

)
outputs RCi in

feasible time.
2. Any cryptographic adversary Eve will succeed in the following security experi-

ment with a probability of at most ε:

(a) Eve is given the numerical description D(S) and the code of the algorithm Sim
for a time period of length tC .

(b) Within the above time period tC , Eve can q times adaptively query an oracle
O for arbitrary responses RCi of S .

(c) Within the above time period tC , Eve is furthermore given physical access to
the system S at adaptively chosen time points, and for time periods of adap-
tively chosen lengths. The only restriction is that her access times must add up
to a total of at most tPh.

(d) After the time period tC has expired, Eve is presented with a challenge Ci0 that
was chosen uniformly at random from the set C, and is asked to output a value
VEve.

We say that Eve succeeds in the described experiment if the following conditions
are met:

(i) VEve = RCi0
.

(ii) The time that Eve needed to output VEve after she was presented with Ci0 was
at most c · tmax.

Please note that the said probability of ε is taken over the uniformly random choice
of Ci0 ∈ C, and the random choices or actions that Eve might take in steps 2a, 2c
and 2d.

Discussion. Let us briefly discuss the security model underlying Specification 1. In
practical applications of SIMPL systems, Eve can gather information about S in three
ways: (i) She analyzes the algorithm Sim and the description D(S), which are both
public. (ii) She collects as many challenge-response-pairs (Ci, RCi) of S as possible
from external sources, for example protocol eavesdropping. (iii) Eve physically mea-
sures the system S. She may determine CRPs by such measurements, but also other,
more general characteristics of the system.

These three types of attacks must be covered in our security model, and they are:
Possibility (i) is covered in item 2a of Spec. 1, (ii) is reflected in item 2b, and (iii) is
implicit in item 2c. Since the physical access time and the time in which Eve can prepare
her attack by previous computations differ strongly in most application scenarios, it
makes sense to distinguish between tPh and tC in Spec. 1.

We also chose the value c, which describes the time gap between Eve and the SIMPL
system, to be a flexible system parameter. This keeps the definition general and al-
lows its application to different types of SIMPLs. In many practical applications, even
small values (e.g. around 2) may suffice for c. See also the discussion in Section 2.3,
paragraphs on constant vs. super-polynomial time gap and feedback loops.

2.3 Properties of SIMPL Systems

Let us discuss a few properties of SIMPL systems implied by Specification 1.
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Immunity against ε-fraction Read-out and Simulation. Spec. 1 implies that for any
SIMPL system it must be impossible to measure the values RCi for more than an
ε-fraction of all parameters Ci ∈ C within time tPh. Otherwise, Eve could create a
lookup table for an ε-fraction of all possible values RCi during step 2c. This could en-
able her to succeed in the described experiment with probability greater than ε. There-
fore, for any SIMPL system the set of possible measurement parameters C must be
very large.

For the same reasons, it must be impossible for Eve to determine more than an ε-
fraction of all CRPs within time tC by exhaustive simulation on the basis of Sim and
D(S). This again implies that C must be very large (for example exponential in some
system parameter), and/or that the simulation must be time consuming.

Immunity against Cloning. Spec. 1 also implies that previous physical access for time
tPh and computations of time tC do not allow Eve to build a physical clone S′ of the
system S, for whose responses R′

Ci
it holds that

RCi = R′
Ci

for more than an ε-fraction of all Ci ∈ C,

and for which the evaluation of the R′
Ci

works within time c · tmax. Spec. 1 both rules
out the possibility to build an exact physical reproduction of S, or the feasibility to
fabricate a functional clone, i.e., a physical system of a possibly very different structure
or lengthscale than S, which still generates its response R′

Ci
within time c · tmax.

Constant vs. Super-polynomial Time Gap. Spec. 1 stipulates that the time gap between
Eve and the real SIMPL system S must be at least a constant factor c > 1. This
seems surprising: Being used to the formalism of complexity-based classical cryptog-
raphy, one might expect the stipulation of an exponential gap. But it is unclear whether
SIMPLs with an exponential time margin between Eve and the SIMPL exist at all. The
only known, realistic computational systems which might outperform Turing architec-
tures by a super-polynomial factor are quantum computers [35]. But standard quantum
computers possess no immunity against physical cloning, since they could be mass-
fabricated with the same functionality. They are hence unsuited as SIMPL systems. A
further setback in the search for SIMPLs with an exponential security margin is that
it has been frequently hypothesized within the computational complexity community
that there are no realistic hardware systems that solve NP-complete problems effi-
ciently in practice, i.e. by using polynomial resources. Two recent sources in this context
are [33] [34].

Still, meaningful applications for SIMPL systems may not require exponential speed
gaps. In the appliances we suggest in this paper (namely identification and on-the-fly
message authentication), a constant, detectable time difference suffices. An exponential
time gap between the SIMPL system and any simulation machine may even be unde-
sirable there, since it could lead to time consuming verification steps in the Protocols
2 and 3.

Feedback Loops. In order to enable large absolute time margins, the absolute (but not
the relative!) time difference between the original SIMPL system and any fraudster can
be amplified via feedback loops. In a nutshell, such feedback-loops can be set up as
follows: Presented with a challenge C1, the SIMPL systems successively determines a
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sequence of k challenge-responses-pairs (C1, RC1), (C2, RC2), . . . , (Ck, RCk
), where

later challenges Cn are determined by earlier results RCm , with k ≥ n > m ≥ 1. The
tuple (C1, RCk

) can then be regarded as the overall challenge-response pair determined
by the SIMPL. The application of such feed-back loops can help us to compensate
network and transmission delays.

Let us make a concrete example in order to illustrate our point. Suppose that we
possess a SIMPL system S which produces its responses in tmax of 10 nanoseconds
(ns), and which possesses a speed advantage of c = 2 over all simulations. That means
that any adversary cannot produce the response to a randomly chosen challenge within
20 ns. This tiny difference would not be detectable in many practical settings, for ex-
ample in large networks with natural delays. Nevertheless, the application of repeated
feedback loops can amplify not the relative, but the absolute time margin, such as to 1
millisecond (ms) vs. 2 ms, or also 1 sec vs. 2 sec.

SIMPLs with Multi-bit Output. In some applications, it is found convenient if a SIMPL
system produces not just one bit as response, but a multi-bit output. Some implementa-
tions of SIMPLs have this property naturally (for example the optical implementation
of section 4.3). Otherwise, feedback loops can allow us to create multi-bit outputs from
SIMPL systems with 1-bit outputs: One simply considers a concatenation (or some
other function, for example a hash function) of the last n responses RCk−n+1, . . . , RCk

in the feedback loop. This concatenation (or function) can be taken as the overall output
of the SIMPL.

Another option to create “large” SIMPL systems with k-bit outputs from “small”
SIMPL systems with 1-bit outputs is to employ k such SIMPL systems in parallel, and
to directly concatenate their responses to produce a k-bit overall output. This method
has been suggested already in the context of PUFs in [13].

Error Correction. Please note that in the Spec. 1, in the above discussion, and also
in the upcoming protocols in Section 3, we assume that the responses of the SIMPL
system are stable. In practice, error correction and helper data must, and can, be applied
to achieve this goal; see, for example, [9] [37] [38] [39].

3 Protocols and Applications

We will now describe two exemplary protocols that can be realized by SIMPL systems,
and discuss some application scenarios.

3.1 Identification of Entities

We assume that Alice holds an individual (tmax, c, tC , tPh, q, ε)-SIMPL system S, and
has made the corresponding data D(S), Sim, the value c · tmax, and a description of
C public. Now, she can prove her identity to an arbitrary second party Bob, who knows
D(S), Sim, c · tmax and C, as follows (with k being the security parameter of the
protocol):
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Protocol 2: IDENTIFICATION OF ENTITIES BY SIMPL SYSTEMS

1. Bob chooses k challenges C1, . . . , Ck uniformly at random from C.
2. For i = 1, . . . , k do:

(a) Bob sends the value Ci to Alice.
(b) Alice determines the corresponding response RCi by an experiment on her

SIMPL system S, and sends this value to Bob.
(c) Bob receives an answer from Alice, which we denote by Vi. If Alice’s answer

did not arrive within time c · tmax, then Bob sets Vi = ⊥ and continues the
for-loop.

3. Bob computes the value RSim
Ci

= Sim(Ci, D(S)) for all i = 1, . . . , k, and verifies
if RSim

Ci
= Vi �= ⊥. If this is the case, Bob believes Alice’s identity, otherwise not.

Discussion. In a nutshell, the security of the protocol follows from the fact that an
adversary is unable to determine the values RCi for randomly chosen Ci comparably
quickly as Alice, provided that: (i) The lifetime of the system S (and the period since
D(S) was made public) does not exceed tC , and (ii) the adversary’s accumulated physi-
cal access times do not exceed tPh (see Spec. 1). In that case, the adversary’s probability
to succeed in the protocol without possessing S decrease exponential in k.

Bob can improve his computational efficiency by verifying the correctness of the
responses RCi only for a randomly chosen subset of all responses. If necessary, possible
network and transmission delays can be compensated for by amplifying the absolute
time gap between Eve and S through feedback loops (see Section 2.3).

If the SIMPL system has multi-bit output, then a value of k = 1, i.e. a protocol
with one round, may suffice. In these cases, the parameter ε of the multi-output SIMPL
system will in itself be exponentially small in some system parameter (for example in
the size of the sensor array in the optical SIMPLs discussed in Section 4).

3.2 Authentication of Messages

Alice can also employ an individual (tmax, c, tC , tPh, q, ε)-SIMPL system S in her pos-
session to authenticate messages to Bob. Again, we suppose that the values D(S), Sim,
c · tmax, and a description of C are public.

Protocol 3: AUTHENTICATION OF A MESSAGE N BY SIMPL SYSTEMS

1. Alice sends the message N , which shall be authenticated, to Bob.
2. Bob chooses k · l challenges C1

1 , . . . , C1
k , C2

1 , . . . , C2
k , . . . , Cl

1, . . . , C
l
k uniformly

at random from C.
3. For i = 1, . . . , l do:

(a) Bob sends the values Ci
1, . . . , C

i
k to Alice.

(b) Alice determines the corresponding responses RCi
1
, . . . , RCi

k
by experiments

on her SIMPL system S.
(c) Alice derives a MAC-key Ki from RCi

1
, . . . , RCi

k
by a publicly known proce-

dure, for example by applying a publicly known hash function to these values.
She sends MACKi(N) to Bob.
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(d) Let us denote the answer Bob receives from Alice by Vi. If Vi did not arrive
in time c · tmax + tMAC , where tMAC is the time to derive Ki and compute
MACKi(N), then Bob sets Vi = ⊥ and continues the for-loop.

4. For i = 1, . . . , k and j=1, . . . , l, Bob computes the values RSim
Cj

i

=Sim(Cj
i , D(S))

by simulation via Sim. He derives the keys KSim
1 . . . , KSim

k by application of the
same procedure (e.g. the same publicly known hash function) as Alice in step 3c.

5. For all i = 1, . . . , k, Bob checks if it holds that MACKSim
i

(N) = Vi �= ⊥. If this
is the case, he regards the message N as properly authenticated, otherwise not.

Discussion. In a nutshell, the security of the protocol follows from the fact that an ad-
versary cannot determine the responses RCj

i
and the MAC-Keys K1, . . . , Kl as quickly

as Alice. As earlier, verification of a randomly chosen subset of all MACs can improve
Bob’s computational efficiency in step 5. Depending on the exact circumstances, a few
erroneous Vi may be tolerated in step 5, too.

We assume without loss of generality that the MAC can be computed quickly (in-
cluding the derivation of the MAC keys K1, . . . , Kl), i.e., within time tMAC , and that
tMAC is small compared to tmax. Again, this condition could be realized by amplifi-
cation through feedback loops if necessary (see Section 2.3). Furthermore, it is known
that MACs can be implemented very efficiently [27]. If information-theoretically secure
hash functions and MACs are used, the security of the protocol will not depend on any
assumptions other than the security of the SIMPL system.

If the SIMPL system has a multi-bit output, then values of k = 1, i.e., sending just
one challenge in each round, or of l = 1, i.e., employing just one round of communica-
tion, may suffice. Such a multi-bit output can arise either naturally, for example through
the choice of the SIMPL system itself (as noted earlier, the optical SIMPL system pre-
sented in Section 4.3 has this property). Or it can be enforced by feedback loops, or
by using several independent SIMPL systems in parallel (see Section 2.3, page 32). In
fact, such measures even are strictly necessary to uphold the protocol’s security if the
constant c has got a very low value.

3.3 Application Scenarios

Secure Communication Infrastructures. Within the given space restrictions, we
will now discuss the application of SIMPL systems to secure communication in net-
works, illustrating their potential in such a setting. Consider a situation where k parties
P1, . . . , Pk and a trusted authority TA participate in a communication network. As-
sume that each party Pi carries its own SIMPL Si in its hardware, and that a certificate
Ci has been issued for each party by the TA. The certificate includes the identity and
the rights of Party Pi, and has the form

Ci =
(
Idi, Rightsi, D(Si), SigTA(Idi, Rightsi, D(Si))

)
.

Under these provisions, the parties can mutually identify themselves by Protocol 2, they
can establish authenticated channels with each other by Protocol 3, and they can ex-
change session keys via the Diffie-Hellman protocol [32] over these authenticated chan-
nels. The whole architecture works without permanent secret keys, or without any other
secret information that is stored permanently in the hardware of the parties P1, . . . , Pk.
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It also seems well applicable to cloud computing: All personal data could be stored
centrally. Session keys could be exchanged by the Diffie-Hellman protocol over chan-
nels authenticated by the SIMPL systems. These keys can be used to download the
personal data in encrypted form from the central storage. The keys can be new in each
session, no permanent secret keys in the mobile hardware are be necessary.

The above approaches can further be combined with tamper-sensitive SIMPL sys-
tems. These SIMPLs may cover hardware which has a functionality Funci as long as it
is non-manipulated. Each certificate Ci could then also include the functionality of the
hardware, i.e., it could be of the form

Ci =
(
Idi, Rightsi, Funci, D(Si), SigTA(Idi, Rightsi, Funci, D(Si))

)
.

By running the identification protocol (Prot. 2), party Pi can prove to party Pj that
the SIMPL system Si is non-tampered, and that the hardware hence has the claimed
functionality Funci. Please note that the optical SIMPL systems we propose in this
paper is naturally tamper sensitive; the tamper sensitivity of such optical scattering
structures has already been shown in detail in [8].

Two other Applications. Let us, in all brevity, point to two other applications of SIMPL
systems. They are described in more detail in [16].

A first application is the generation of unforgeable labels for products or security
tokens. SIMPL systems can create labels which do not contain any secret information,
which can be verified offline, and which only require remote, digital communication
between the label and a testing device. These properties are not met by other known
labeling techniques: RFID-tags with secret keys obviously contain secret information;
PUF-based labels contain secret information in the case of Weak PUFs, and require an
online database in the case of Strong PUFs [8]; and current Certificates of Authenticity
(COAs) [28] [30] require analog near-field measurements in the verification step.

Another application area of SIMPLs lies in the context of the digital rights manage-
ment problem. SIMPLs can create unclonable representations of digital content [16].
Similar to the unforgeable labels, these unclonable representations of digitial content
do not contain any secret information. They can be verified for their validity offline and
by mere digital communication between a tester and the device carrying the unclonable
representation. Again, in combination these features are not met by any comparable
technique known to the author. In [29] [30] [31], for example, the random features of
the data carrier must be determined in the near-field by analog measurements.

4 Implementation of SIMPL Systems

Let us now turn to the practical implementation of SIMPL systems. We will give an
overview of existing ideas and challenges, and propose one new, optical concept.

4.1 Challenges

It turns out that there are some strong challenges in the realization of SIMPL systems.
The three non-trivial requirements that need to be balanced are complexity, stability,
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and simulatability: On the one hand, the output of a SIMPL system must be sufficiently
complex to require a long computation/simulation time. On the other hand, it must be
simple enough to allow simulation at all, and to enable the determination of D(S) by
measurement or numeric analysis techniques. A final requirement is that the simulation
can be carried out relatively efficiently by everyone (this is necessary to complete the
verification steps in the identification and message authentication protocols quickly);
while, at the same time, even a very well equipped attacker, who can potentially at-
tempt to parallelize the simulation on many powerful machines, cannot simulate as fast
as the real-time behavior of the SIMPL system. In the sequel, we will discuss a few
implementations that try to meet these seemingly conflicting requirements.

4.2 Electrical SIMPL Systems

Since the first publication of [16], a sequence of papers of our group has dealt with the
implementation of SIMPL systems by electrical, integrated circuits [17] [18] [19] [20].
We tried to exploit two known speed bottlenecks of modern CPUs: Their problems in
dealing simultaneously with very large amounts of data, and the complexity of simu-
lating analog, parallel phenomena. Let us briefly summarize these approaches, quoting
from said papers.

“Skew” SRAM Memories. A first suggestion made in [17] [18] [19] [20] is to employ
large arrays of SRAM cells with a special architecture named “skew design”. In this
design, the read- and write behavior of the cells is dependent on the applied operational
voltage. The simulation of a skew SRAM memory in a feedback loop of a very large
number of successive read- and write events then seems somewhat laborious to simulate
on a standard architecture. The hypothesis put forward in [17] [18] [19] [20] is that this
creates a small, constant simulation overhead. Two essential assumptions in this concept
are: (i) No parallelization is possible, since the successive read- and write events in
the feedback loop are made dependent on the previous read results. And (ii), since no
parallelization is possible, the limiting factor for an adversary is his clock frequency,
which is quite strongly limited by current technology.

As described in the listed references, the idea shows strong promise to succeed
against any adversaries with a limited financial budget, and in particular against any
FPGA-based attacks. Future work will need to show how large the exact simulation
margin is, and whether it is indeed sufficient to defeat an adversary with large resources,
who is capable of fabricating ASICs. Due to its relatively easy realizability and good
security level, the idea could have a strong potential for the consumer market.

Two-dimensional Analog Computing Arrays. A second suggestion of [17] [18] [19]
[20] consists of using analog, two-dimensional computing arrays. The authors suggest
the use of so-called cellular non-linear networks (CNNs) which are designed to imitate
non-linear optical systems. Due to their analog and inherently parallel nature (many
cells exchange information at the same time), it is suggested that CNNs are time con-
suming to simulate on a digital, sequential architecture.

This idea has its assets on the security side: Since it is based on manufacturing mis-
matches in CNN fabrication that currently seem unavoidable, it shows promise of de-
feating even attackers with very strong financial resources, and of being manufacturer
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resistant in the sense of [23]. It requires the use of analog circuits, though, which might
potentially be unsuited for low-cost applications.

Other Approaches. Independently, the work of other groups has lead to different struc-
tures that could be used as SIMPLs. The implementation of PPUFs presented in [21]
could potentially be downscaled to become a SIMPL system, even though it would
have to be carefully investigated how resilient such small-scale instances are against
parallelization attacks. Another very interesting, FPGA-based candidate for SIMPLs is
implicit in the work of [24].

4.3 Integrated Optical SIMPLs

Also optical structures can be used as SIMPL systems. The rationale behind employ-
ing optics is as follows: First, optical systems can potentially achieve faster component
interaction than electronic systems; this promises to create the desired speed advantage
over any electronic simulator. The phenomenon of optical interference has no elec-
tronic analog at room temperature [41], and can create a computational overhead for
electronic simulators. Second, the material degradation of optical systems is low, and
their temperature stability is known to be high [41] [42]. Even very complex and ran-
domly structured optical systems, whose internal complexity creates the desired speed
gaps, can produce outputs that are stable against aging and environmental conditions.

The concrete optical SIMPL we suggest is depicted schematically in Figure 1. It
comprises of an immobile laser diode array with k phase-locked diodes D1, . . . , Dk

[43], which is used to excite a disordered, random scattering medium. The diodes can
be switched on and off independently, leading to 2k challenges Ci. These can be written
as Ci = (b1, . . . , bk), where each bi ∈ {0, 1} indicates whether diode Di is switched
on or off. (Note that the diode array must indeed be phase locked in order to allow
interference of the different diode signals.) At the right hand side of the system, an array
of l light sensors S1, . . . , Sl, e.g. photodiodes, measures the resulting light intensities
locally. A response RCi consist of the intensities I1, . . . , Il in the l sensors. Instead
of phase-locked diode arrays, also a single laser source with a subsequently placed,
inexpensive light modulator (as contained in any commercially available beamer) can
be employed.

Under the provision that a linear scattering medium is used in such integrated op-
tical SIMPLs, the following analysis holds[44]. Every diode Di with bi = 1 creates a

Array of phase-lockedk

laser diodes

Medium with randomly

distributed scatterers

Array of sensorsl

Fig. 1. An integrated optical SIMPL system
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lightwave, which is scattered in the medium and arrives at the sensor Sj with amplitude
Eij and phase shift θij . The intensity Ij at the sensor Sj is then given by [42]

Ij =
∣∣Ej

∣∣ 2 =
∣∣∑

i

bi Eij cos θij

∣∣ 2. (1)

For the said linear scattering medium, the amplitude Eij and phase shift θij are inde-
pendent of whether the other diodes are switched on or off. One can hence collect many
CRPs

(Cm, RCm) = ((b1, . . . , bk), (I1, . . . , Il)),

and derive the values Eij and θij from knowledge of these many (Cm, RCm). One
suited approach are machine learning techniques, for example a standard machine learn-
ing regression.

Once the parameters Eij and θij are known, the simulation of a response RCm =
(I1, . . . , Il) to a given challenge Cm = (b1, . . . , bk) can be executed by simple calcu-
lation following Eqn. 1. The time margin to the real system will be small, but likely
detectable: The real system creates its output and the complex interference in nanosec-
onds, while the calculation of Eqn. 1 requires around k · l multiplications and k · l
additions. Some of these computations can be parallelized, and the values Eij · cos θij

can be precomputed. Still, even for a moderate size of the two-dimensional diode and
sensor arrays of around 100× 100 = 104 each, the number of additions is on the order
of 108. This seems to create exactly the constant, notable time gap that we require in
SIMPLs.

A first proof-of-concept for this integrated optical approach, which is not optimized
in terms of speed, but shows the feasibility of the output simulation/prediction on the
basis of real data, is given in the appendix.

4.4 Further Implementation Strategies

Let us discuss a few further implementation strategies for SIMPLs.

Employing PUFs with Reduced Complexity. One generic strategy for the realization of
SIMPL systems, which has been suggested already in [16], is the following: Employ a
PUF or a PUF-like structure; and reduce its inner complexity until it can be character-
ized by measurements and simulated, or until it can successfully be machine learned. If
the level of complexity is still sufficient, then this simulation will be more time consum-
ing than the real-time behavior of the system. In fact, the suggestions of the previous
subsections used this strategy already, since both CNNs and integrated optical struc-
tures have already been suggested as PUFs in earlier work [36] [12]. But also any other
PUFs could be used in this strategy, for example Pappu’s original optical PUF with a
reduced number of scatterers [8], as suggested in [16].

Simulation vs. Verification. Another interesting idea is to exploit the well-known asym-
metry between actively computing a solution for a certain problem and verifying the
correctness of a proposed solution (as also implicit in the infamous P vs. NP question)
[16]. Exploiting this asymmetry could lead to protocols of the following kind: A SIMPL
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system provides the verifier in an identification/authentication protocols with some ex-
tra information that allows the verifier to verify its answers fast. To illustrate our point,
imagine an analog, two-dimensional, cellular computing array whose behavior is gov-
erned by partial differential equations (PDEs), such as the CNN described in section
4.2. Then, verifying the validity of a given final state of such a PDE-driven system (i.e.
verifying that this state is indeed a solution of the PDEs driving the system) could be
much more time efficient than computing this solution from scratch. Furthermore, the
verifier could not only be given external outputs of such a two-dimensional array (e.g.
values in boundary cells), but also internal submeasurements (e.g. values in inner cells)
that help him to verify the output quickly.

The simulation vs. verification strategy can help to relieve the seeming conflict be-
tween the requirement for fast simulation on the side of the verifier (who may not
be well equipped on the hardware side) and the necessary time margin to an attacker
(who may be very well equipped on the hardware side), which we already addressed in
Section 4.1.

5 Summary, Discussion, and Future Work

Summary. This paper introduced a security concept termed “SIMPL Systems”. We
started by a explaining the basic idea and by giving a semi-formal specification of
SIMPL systems. We subsequently discussed some basic properties that follow from this
specification. We then presented two protocols that can be realized by SIMPL systems,
namely identification and message authentication. These protocols exploit the fact that
the holder of a SIMPL system is the only person who can determine the response of
the SIMPL to a randomly chosen challenge within a certain time frame. We argued that
the can be used to set up special, secure communication infrastructures which obviate
the long-term storage of any form of secret keys in hardware. We listed other appli-
cations of SIMPL systems, for example as unforgeable labels and in the digital rights
management problem.

We next discussed the practical implementation of SIMPL systems. We gave an
overview of existing, electrical candidates, and then suggested a new optical imple-
mentation based on light scattering. We gave a proof-of-concept for this optical SIMPL
by using data from a first prototype, which had been set-up by our group in a different
context [40]. This data shows the general feasibility of predicting such systems, but was
not yet optimized in terms of speed. We also presented generic and/or future implemen-
tation strategies for SIMPLs, for example the use of PUFs with reduced complexity, or
exploiting the asymmetry between actively computing and merely verifying a solution
to a given problem (as implicit in the well-known P vs. NP question).

Discussion. Let us conclude this work by a detailed comparative analysis. As said ear-
lier, there are some similarities between classical private/public key cryptoschemes and
SIMPL systems: The numeric description D(S) is some analog to a public key, while
the physical system S itself constitutes some functional equivalent to a private key.
This provides SIMPLs with some public-key like functionality and with the resulting
practicality advantages.
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At the same time, there is one important difference to classical public-key systems:
This new type of “private key” S is no secret numeric information, but a randomly
structured, hard-to-clone physical system. It has the interesting feature of not containing
any form of secret information. Neither in an explicit digital form like a digital key in
classical hardware. Nor in a hidden, analog form such as internal PUF parameters (for
example the mentioned delay values in the Arbiter PUFs, or the parameters determining
SRAM behavior). All internal characteristics of a SIMPL, including its precise internal
configuration, can be publicly known without compromising the security of the derived
cryptographic protocols.

The security of SIMPL systems is not free of assumptions, though. Instead of presup-
posing the secrecy of some sort of information, it rests on the following two hypothe-
ses: (i) on the computational assumption that no other, well-controllable, configurable,
or even programmable hardware can generate the complex responses of a SIMPL with
the same speed, and (ii) on the physical assumption that it is practically infeasible for
Eve to exactly clone or rebuild the SIMPL system, even though she knows its internal
structure and properties.1

It is long accepted that computational assumptions play a standard role in classical
cryptography, and they are also a part of the security assumptions for SIMPL systems;
but SIMPLs show that one can trade the need for secret information in the hardware
against assumptions on the physical unclonability of the SIMPL system. This can sur-
prisingly obviate the familiar requirement that cryptographic hardware must contain
secret key information of some sort.

Future Work and Prospects. Future work on SIMPLs will likely concentrate on new
protocols beyond identification and message authentication, and on formal security
proofs for such protocols. But perhaps the greater challenge lies on the hardware side:
Even though there are several promising candidates (see Section 4), the issue of finding
a highly secure, practical, and cheap implementation of SIMPL systems appears not to
be fully settled yet. If such an implementation is found, or if the existing implementa-
tion candidates are shown to possess all necessary properties, this could change the way
we exercise cryptography today.
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A A First Proof-of-Concept for Optical SIMPLs

In order to rigorously prove the validity of the suggested optical SIMPL implementa-
tion, two statements would have to be shown. (i) The system indeed has the desired
speed advantage. (ii) Our suggestion is workable in the sense that its responses can be

Laser Camera
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LCD Array
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Fig. 2. Schematic illustration of our measurement set-up. The schematic icon “lenses” on the left
stands for several lenses that were used to shape the light beam.
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Fig. 3. A randomly chosen 15 × 15 excitation pattern (top left), a CCD image of the response
of the optical SIMPL (top right), the predicted response (bottom right), and the difference map
(bottom left)
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Fig. 4. A second, randomly chosen 15 × 15 excitation pattern (top left), a CCD image of the re-
sponse of the optical SIMPL (top right), the predicted response (bottom right), and the difference
map (bottom left)

predicted sufficiently accurately by the described approach. Similar to the security of
classical cryptoschemes, statement (i) cannot be shown or proven mathematically in a
strict sense given the current state of computational complexity theory. Also building
an optical SIMPL prototype that operates at optimized operational speed is expensive
and beyond the scope of this paper.

Nevertheless, it proved well doable to build a prototype that is not optimized in
terms of speed, but which verifies statement (ii). It occured that such a prototype had
been already set up in our group in the course of a different study, where we generally
investigated the machine learnability of integrated optical PUFs [40]. We found there
that it was indeed possible to machine learn the output of linear optical PUFs with high
accuracy. This has direct implications for the realizability of optical SIMPL systems;
we quote from the work [40] in the sequel.

The set-up we used in [40] is depicted schematically in Figure 2. It consists of a
LCD array from an old beamer acquired via ebay for 20 Euros, several lenses (depicted
schematically in one symbol) and a scattering token of small glasspheres and a transpar-
ent glue (“UHU Schnellfest”). A pattern is switched on in the LCD array, and the laser
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is directed towards it. The set-up has the same effective operational functionality as a
array of phase-locked laser diodes, but was easier to realize with components present in
our laboratory.

We applied the method described in Section 4.3 in order to predict the outcome of
the speckle pattern. We found that the predictability on the basis of optical wave su-
perposition works not only well in theory, but also in practice. Standard ML regression
were applied to 53,700 different CRPs (i.e. patterns on the LCD array and correspond-
ing CCD images) that were collected. The success for two different excitation patterns
in shown in Figures 3 and 4. The difference map between the actually acquired optical
image and the prediction is contained in the figures, and is very small compared to the
natural fluctuations in optical speckle patterns, for example due to laser fluctuations,
which were already reported in [8] [9]. The variations observed in the difference map
will presumably likely not be noticeable after the usual image transformations have
been applied to the output. This illustrates the basic feasibility of predicting the output
of optical SIMPLs.



Verification of Timed-Arc Petri Nets

Lasse Jacobsen, Morten Jacobsen, Mikael H. Møller, and Jǐŕı Srba�
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Abstract. Timed-Arc Petri Nets (TAPN) are an extension of the clas-
sical P/T nets with continuous time. Tokens in TAPN carry an age
and arcs between places and transitions are labelled with time intervals
restricting the age of tokens available for transition firing. The TAPN
model posses a number of interesting theoretical properties distinguish-
ing them from other time extensions of Petri nets. We shall give an
overview of the recent theory developed in the verification of TAPN ex-
tended with features like read/transport arcs, timed inhibitor arcs and
age invariants. We will examine in detail the boundaries of automatic
verification and the connections between TAPN and the model of timed
automata. Finally, we will mention the tool TAPAAL that supports mod-
elling, simulation and verification of TAPN and discuss a small case study
of alternating bit protocol.

1 Introduction

Formal verification of embedded and hybrid systems is an active research
area. Recently, a lot of attention has been devoted to the analysis of systems
with quantitative attributes like timing, cost and probability. In particular, sev-
eral different time-dependent models were developed over the two last decades
or so. These models are often introduced as a time extension of some well-
studied untimed formalism and include, among others, (networks of) timed
automata [7, 8] and different time extensions of the Petri net model [46]. These
formalisms are nowadays supported by a number of tools [1, 2, 12, 20, 21, 27,
30, 37] and exploited in model-driven system design methodologies.

We shall focus on the Petri net model extended with continuous time. The
timing aspects are associated with different parts of the model in the various
time-extended Petri net formalisms. For example, timed transitions Petri nets
where transitions are annotated with their durations were proposed in [47]. A
model in which time parameters are associated with places is called timed places
Petri nets and it was introduced in [52]. Time Petri nets of Merlin and Faber
[39, 40] were introduced in 1976 and associate time intervals to each transition.
The intervals define the earliest and latest firing time of the transition since it be-
came enabled. Yet another model of timed-arc Petri nets was first studied around
1990 by Bolognesi, Lucidi, Trigila and Hanisch [15, 29]. Here time information is
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attached to the tokens in the net representing their relative age while arcs from
places to transition contain time intervals that restrict the enableness of the
transitions. For an overview of the different extensions see e.g. [19, 45, 55, 56].

In this paper we will survey the results and techniques connected with
timed-arc Petri nets (TAPN). This model is particularly suitable for mod-
elling of manufacturing systems, work-flow management and similar applica-
tions [4, 5, 43, 44, 50, 51] and a recently developed tool TAPAAL [23] enables
automatic verification of bounded TAPNs extended with transport/inhibitor
arcs and age invariants.

The outline of the paper is as follows. In Section 2 we give an informal in-
troduction to the TAPN model and in Section 3 we describe its formal syntax
and semantics. Section 4 illustrates the modeling of alternating bit protocol as a
TAPN and Section 5 explains the main decidability and complexity results. Sec-
tions 6 and 7 define the TCTL logic and explain a translation from TAPN with
transport arcs, inhibitor arcs and age invariants to UPPAAL timed automata.
The translation preserves TCTL model checking including liveness properties.
Finally, Section 8 gives a short conclusion.

2 Informal Introduction to Timed-Arc Petri Nets

We shall first informally introduce the TAPN model extended with transport
arcs, age invariants and inhibitor arcs. A basic timed-arc Petri net is presented
in Figure 1a. It consists of two transitions t1 and t2 drawn as rectangels and five
places p1, . . . , p5 drawn as circles. There is one token of age 0.0 in each of the
places p1, p2 and p3. Initially, only the transition t1 is enabled because its input
place p1 contains a token of an age that fits into the interval [0,∞] present on
the arc from p1 to t1. The transition t2 requires a token of any age in p2 but
also a token of an age in the interval [4, 5] in p3. This is why t2 is not enabled
at the moment. Because t1 is enabled, it can fire, whereby it removes the token
from p1 and produces a new fresh token of age 0.0 in each of the output places
p4 and p5. Instead, it is also possible that the net performs a time delay of, say,
4.5 time units. By this step all tokens in the net grow 4.5 time units older. As
all tokens are now of age 4.5, both t1 and t2 are enabled and can fire. Notice
that the tokens that are produced even after the time delay are of age 0.0.

Let us now introduce transport arcs into our example net. Specifically, we
will replace the normal arcs from p1 to t1 and from t1 to p5 with a pair of
transport arcs with solid arrow tips as illustrated in Figure 1b. Transport arcs
come always in pairs like this. Note that the symbol ‘:1’ on the transport arcs is
there to denote the pairing of the arcs (as it is in general possible to have more
than one pair of transport arcs connected to a transition).

For the sake of illustration, assume that we have initially made a time delay
of 2.5 time units such that all tokens are now of age 2.5. Transition t1 is still
the only enabled one in the net at this point, however, there is a difference when
we fire t1. Firing t1 will remove a token of age 2.5 from p1 and produce a token
of age 0.0 in the place p4 as before. However, due to the transport arcs, it will
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Fig. 1. Examples of timed-arc Petri nets

produce a token at p5 of the same age as the token it removed from p1, i.e. of
the age 2.5 in this case. Hence transport arcs allow us to preserve the ages of
tokens as they are transported through the net. This is a feature particularly
suitable for modelling of e.g. product lines where we need to track the age of a
product from its start until its final production stage.

The next modelling feature is called age invariant. It simply restricts the max-
imum age of tokens that can appear in certain places. In our running example,
we can add age invariants to the places p3 and p5 as illustrated in Figure 1c.
These invariants will disallow tokens older than 5 time units in these two places.

Assume a situation after a time delay such that all tokens are of age 5.0 as in the
figure. At this point no further time delays are possible as they would violate the
invariant at p3. We are thus forced to fire either t1 or t2, both of which are enabled.
Invariants hence facilitate the modelling of urgency. One of the particularities of
the combination of invariants and transport arcs is that transitions are disabled
should their transport arcs move a token to a place where the age of the token
violates the age invariant. In our example t1 is enabled but should the invariant at
p5 allow tokens only of age at most 4, then it would be disabled.
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Finally, we introduce inhibitor arcs that disable the firing of a transition based
on the presence of tokens in certain places. In our example we will replace the
arc from p3 to t2 with an inhibitor arc with circle arrow tip as illustrated in
Figure 1d. Transition t2 is then blocked whenever there is a token in place p3
with age in the interval [4, 5]. As this is not the case in the depicted situation,
both t1 and t2 are enabled and can be fired. Firing of t2 has no effect on the
tokens in the place p3. If instead a time delay of 4 time units was performed, t2
would be blocked and only t1 could fire. This concludes the informal introduction
to timed-arc Petri nets.

3 Formal Definition of Timed-Arc Petri Nets

We start with the preliminaries and the definition of timed transition system.
We let N0 and R≥0 denote the sets of nonnegative integers and nonnegative

real numbers, respectively.
A timed transition system (TTS) is a pair T = (S,−→) where S is a set of

states (or processes) and −→⊆ S × S ∪ S × R≥0 × S is a transition relation.
We write s −→ s′ whenever (s, s′) ∈−→ and call them discrete transitions, and

s
d−→ s′ whenever (s, d, s′) ∈−→ and call them delay transitions. We require that

all TTS we consider satisfy the following standard axioms for delay transitions
(see e.g. [13]). For all d, d′ ∈ R≥0 and s, s′, s′′ ∈ S:

1. Time Additivity: if s
d−→ s′ and s′ d′

−→ s′′ then s
d+d′
−→ s′′,

2. Time Continuity: if s
d+d′
−→ s′′ then s

d−→ s′ d′
−→ s′′ for some s′,

3. Zero Delay: s
0−→ s for each state s, and

4. Time Determinism: if s
d−→ s′ and s

d−→ s′′ then s′ = s′′.

By s[d] we denote the state s′ (if it exists) such that s
d−→ s′. Time determinism

ensures the uniqueness of s[d]. We write s =⇒ s′ if s −→ s′ or d−→ s′ for some
d. The notation =⇒∗ denotes the reflexive and transitive closure of =⇒.

3.1 Syntax

We shall now define the timed-arc Petri net model. First, we define the set of
well-formed time intervals by the abstract syntax where a, b ∈ N0 and a < b:

I ::= [a, a] | [a, b] | [a, b) | (a, b] | (a, b) | [a,∞) | (a,∞).

We denote the set of all well-formed time intervals by I. Further, the set of all
well-formed time intervals for invariants is denoted by Iinv and defined according
to the following abstract syntax:

IInv ::= [0, 0] | [0, b] | [0, b) | [0,∞).

The predicate r ∈ I is defined for r ∈ R≥0 in the expected way.
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Definition 1. A TAPN is a 7-tuple (P, T, IA,OA,Transport , Inhib, Inv), where

– P is a finite set of places,
– T is a finite set of transitions s.t. P ∩ T = ∅,
– IA ⊆ P × I × T is a finite set of input arcs s.t.

((p, I, t) ∈ IA ∧ (p, I ′, t) ∈ IA)⇒ I = I ′

– OA ⊆ T × P is a finite set of output arcs,
– Transport : IA × OA → {true, false} is a function defining transport arcs

which are pairs of input and output arcs connected to some transition, for-
mally we require that for all (p, I, t) ∈ IA and (t′, p′) ∈ OA whenever
Transport((p, I, t),(t′, p′)) then t = t′ and moreover for all α ∈ IA and all
β ∈ OA

(Transport(α, (t′, p′))⇒ α = (p, I, t)) ∧

(Transport((p, I, t), β)⇒ β = (t′, p′))

– Inhib : IA −→ {true, false} is a function defining inhibitor arcs which do not
collide with transport arcs, i.e. whenever Transport(α, β) for some α ∈ IA
and β ∈ OA then ¬Inhib(α), and

– Inv : P → Iinv is a function assigning age invariants to places.

A TAPN is called basic if the functions Transport and Inhib return false for all
arcs.

The preset of a transition t ∈ T is defined as •t = {p ∈ P | (p, I, t) ∈ IA}.
Similarly, the postset of t is defined as t• = {p ∈ P | (t, p) ∈ OA}. For technical
convenience we do not allow multiple arcs.

3.2 Semantics

We will now define the semantics of the TAPN. First we define a marking, which
is a function assigning to each place a finite multiset of nonnegative real numbers
(all such finite multisets are denoted by B(R≥0)). The real numbers represent
the age of tokens that are currently at a given place; the age of every token must
moreover respect the age invariant of the place where the token is located.

Definition 2 (Marking). Let N = (P, T, IA,OA,Transport , Inhib, Inv) be a
TAPN. A marking M on N is a function M : P −→ B(R≥0) where for every
place p ∈ P and every token x ∈ M(p) we have x ∈ Inv(p). The set of all
markings over N is denoted by M(N).

We shall sometimes use the notation (p, x) to refer to a token in the
place p of age x ∈ R≥0. Likewise, we shall sometimes write M =
{(p1, x1), (p2, x2), . . . , (pn, xn)} for a multiset representing a marking M with
n tokens located in the places pi and with age xi for 1 ≤ i ≤ n.

A marked TAPN is a pair (N, M0) where N is a TAPN and M0 is an initial
marking on N where all tokens have the age 0.
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Definition 3 (Enabledness). Let N = (P, T, IA,OA,Transport , Inhib, Inv) be
a TAPN. We say that a transition t ∈ T is enabled in a marking M by tokens
In = {(p, xp) | p ∈ •t} ⊆M and Out = {(p′, xp′) | p′ ∈ t•} if

– for all input arcs except the inhibitor arcs there is a token in the input place
with an age satisfying the age guard of the arc, i.e.

∀(p, I, t) ∈ IA . ¬Inhib((p, I, t))⇒ xp ∈ I

– for all inhibitor arcs there is no token in the input place of the arc with an
age satisfying the age guard of the arcs respectively, i.e.

∀(p, I, t) ∈ IA . Inhib((p, I, t))⇒ ¬∃x ∈M(p) . x ∈ I

– for all input arcs and output arcs which constitute a transport arc the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, I, t) ∈ IA . ∀(t, p′) ∈ OA . Transport((p, I, t), (t, p′))⇒
(xp = xp′) ∧ (xp ∈ Inv(p′))

– for all output arcs that are not part of a transport arc the age of the output
token is 0, i.e.

∀(t, p′) ∈ OA .
(
¬(∃α ∈ IA.Transport(α, (t, p′))) ⇒ xp′ = 0

)
.

Definition 4 (Firing Rule). Let N = (P, T, IA,OA,Transport , Inhib, Inv) be
a TAPN, M a marking on N and t ∈ T a transition . If t is enabled in the
marking M by tokens In and Out then it can fire and produce a marking M ′

defined as
M ′ = (M \ In) ∪Out

where \ and ∪ are operations on multisets.

Definition 5 (Time Delay). Let N = (P, T, IA,OA,Transport , Inhib, Inv) be
a TAPN and M a marking on N . A time delay d ∈ R≥0 is allowed in M if
(x + d) ∈ Inv(p) for all p ∈ P and all x ∈ M(p), i.e. by delaying d time units
no token violates any of the age invariants. By delaying d time units in M we
reach a marking M ′ defined as

M ′(p) = {x + d | x ∈M(p)}

for all p ∈ P .

A given TAPN N now defines a timed transition system (M(N),−→) where
states are markings of N and for two markings M and M ′ we have M −→M ′ if
by firing some transition in M we can reach the marking M ′ and M

d−→ M ′ if
by delaying d time units in M we reach the marking M ′. We say that a marking
M ′ is reachable from marking M if M =⇒∗ M ′.
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4 A Small Case Study: Alternating Bit Protocol

In this section we shall discuss a small case study of the well-known Alternating
Bit Protocol (ABP) [9] and show its modelling by timed-arc Petri nets. The
purpose of the protocol is to ensure a safe communication between a sender
and a receiver over an unreliable medium. To achieve this, messages are labelled
with a control bit in order to compensate (via message retransmission) for the
possibility of losing messages in transfer. In order to avoid a confusion between
new and old messages, each message is moreover time-stamped and after its
expiration it is ignored.

Figure 2 shows a TAPN model of the protocol. The model contains four
places associated to the sender (on the left side) and four places associated to
the receiver (on the right side). The sender and receiver can communicate over
a lossy medium represented by the four places in the middle.

Initially, the only enabled transition is Send0 which moves the sender from
the place Sender0A to Sender0B and at the same time places a message (token)
with the appended bit 0 into the place Medium0A. At any time the message can
be lost by firing the transition Loss0A. Now the receiver can read the message
and move it to the place Receiver0B by firing the transition Receive0, followed by
firing AckSend0 and placing a token (acknowledgment) in the place Medium0B.
There is at least a one time unit delay before the acknowledgment is sent. The
acknowledgment can now be read by the sender using the transition AckRec0.
Notice that the path of the token from place Medium0A to Medium0B consists of
transport arcs and hence the time-stamp of the message is preserved. The sender
accepts only acknowledgments that are no older than three time units since the
message was sent. As the medium is lossy, the communication may fail and it
may be necessary to retransmit the message by firing the transition ReSend0,
which must happen any time between five to six time units since the last time
the message was sent. Similarly, the receiver may retransmit the acknowledgment
by firing the transitions ReceiveOld0 and AckSend0. If the first phase with the
appended bit 0 succeeded, the protocol continues in a symmetric way with the
next message that gets appended the bit 1.

Having the formal model of alternating bit protocol in place, we can now
start analysing its behaviour. One possible analysis technique is the simulation
of transition firings that can reveal possible flaws in the design, however, it
cannot be used to argue about the correctness of the protocol. We will postpone
the actual definition of the correctness requirement of the protocol to Section 6
once an appropriate logic for the formulation of this property is defined. In the
meantime we can observe that the net can exhibit a behaviour in which the
places representing the medium become unbounded (there is no a priori given
constant that bounds the number of tokens in these places). This can be seen by
the fact that e.g. the transition ReSend0 can be repeatedly fired and, as the net
is not forced to ever perform the transition Loss0A, more and more tokens will
accumulate in the place Medium0A. In the section to follow, we will show that
automatic verification of unbounded nets with invariants is not possible, as the
model has the full Turing power.
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Fig. 2. A TAPN model of the alternating bit protocol

A possible solution to this problem (which is though specific to our con-
crete model) is to introduce age invariants to all places representing the medium
which will disallow tokens older than two time units. This will enforce urgency
on the transitions that lose messages and it can be proved (or automatically ver-
ified) that the net becomes bounded after such an addition, while the interesting
behaviour of the protocol does not change.

Another approach that works in general is to consider an under-approximation
of the net behaviour where we give a limit on the maximum number of new tokens
that the net can produce and explore the behaviour of the net only up to that
many tokens. An experiment using this approach is described in Section 7.

A similarly looking model of the alternating bit protocol was given also for
time Petri nets (see e.g. [11]) where clocks are associated to each transition of
the net. Unlike our TAPN model, TPN do not allow time-stamps on tokens
and messages are instead automatically discarded after one time unit. Hence the
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behaviour of the TPN is less general and does not allow us to model (at least
not in a straightforward way) all the features available in TAPN.

5 Overview of (Un)Decidability and Complexity Results

In this section we shall discuss results about (un)decidability and complexity
questions of the classical Petri net problems like reachability, coverability and
boundedness in the TAPN context.

We start with the problem of reachability: given a marked net (N, M0) and
a marking M , is M reachable from M0? In spite of the fact that reachability
is decidable for untimed Petri nets [38], it is undecidable for timed-arc Petri
nets [48], even for nets without any transport/inhibitor arcs and age invariants.
The result can be further extended to the case where tokens in different places
are not required to age synchronously [42].

We shall now recall the idea of the undecidability result by Ruiz et al. [48] as
it is easy to explain and illustrates the power of tokens with age. For showing
the undecidability of many Petri net problems the halting problem for Minsky
two counter machine is often exploited. The proof from [48] is no exception.

A Minsky machine with two nonnegative counters c1 and c2 is a sequence of
labelled instructions

1 : inst1; 2 : inst2; . . . , n : instn

where instn = HALT and each insti, 1 ≤ i < n, is of one of the following forms

– (Inc) i: cj++; goto k
– (Dec) i: if cj=0 then goto k else (cj--; goto 
)

for j ∈ {1, 2} and 1 ≤ k, 
 ≤ n.
Instructions of type (Inc) are called increment instructions and of type (Dec)

are called test and decrement instructions. A configuration is a triple (i, v1, v2)
where i is the current instruction and v1 and v2 are the values of the counters c1
and c2, respectively. A computation step between configurations is defined in the
natural way. If starting from the initial configuration (1, 0, 0) the machine reaches
the instruction HALT then we say it halts, otherwise it loops. It is well known
that the problem whether a given Minsky machine halts is undecidable [41].
This is the case even for the question whether it halts with both counters empty
(as they can be easily emptied before the halting instruction is reached).

The main idea of simulating a Minsky machine by a Petri net is to create two
places called pc1 and pc2 such that the number of tokens in these places represents
the value of the counters c1 and c2, respectively. Also, for every instruction label
i, 1 ≤ i ≤ n, we create a new place called pi in the net. During the behaviour
of the net the sum of the tokens in p1, . . . , pn will be invariantly equal to one.
The presence of a token at pi represents the fact that the next instruction to be
executed is the one with label i.

Given a Minsky machine with two counters, we shall now construct a basic
TAPN such that, given an initial marking with just one token in p1, the final
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(b) i: if c1=0 then goto k else (c1--; goto �)

Fig. 3. Simulation of (Inc) and (Dec) instructions by basic TAPN

marking where there is exactly one token of age 0 in place pn is reachable if and
only if the given Minsky machine halts.

The instruction of type (Inc) is easy to simulate as depicted in Figure 3a
for the increment of c1; a symmetric construction is used for the increment of
c2. The interval [0, 0] disallows any time delay before the transition ti is fired.
After the firing, the control is given to the instruction k and the counter c1 is
incremented by one. Note that there is no invariant in pi so we are also allowed
to delay here but in this case the whole net will get stuck and it will thus not
be possible to place a token at the place pn.

For any instruction of type (Dec) we add the places and transitions as de-
picted in Figure 3b (again the test on counter c2 is completely symmetric). The
modelling of the decrement branch via the transition tdeci is straightforward.
The difficult part is the simulation of the jump to label k when the counter c1
is empty. As Petri nets, unless equipped with inhibitor arcs, do not allow to test
for zero number of tokens in a place, we need to introduce a few more transitions
that will detect a cheating, i.e. when the transition tzeroi is taken while there are
some tokens in pc1. Notice that the transition tzeroi can be fired only after a delay
of one time unit, hence all tokens in both pc1 and pc2 will also grow older by one
time unit. Now the transition treseti will allow to reset the ages of all tokens in
pc2 to 0, however, any potential tokens in place pc1 will remain of age 1 (if we
cheated). The simulation then continues by firing the transition tend

i which gives
the control to the instruction k.

Clearly, if the given Minsky machine halts with both counters empty, we can
faithfully simulate its computation in the Petri net such that the place pn will
be eventually marked and all other places will be empty.

On the other hand, if the Minsky machine loops then we can either faithfully
simulate it in the net but then the final marking with one token in pn will never
be reached, or we can cheat but as a result the net will contain tokens which are
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too old (also called dead tokens) in either pc1 or pc2 that cannot be removed,
and hence the final marking will not be reachable either.

Theorem 1 ([48]). Reachability is undecidable for the basic timed-arc Petri net
model (with only ordinary arcs and no age invariants).

On the other hand, coverability, boundedness and other problems remain decid-
able for the basic TAPN [4, 6, 49] model, which is also known to offer ‘weak’ ex-
pressiveness, in the sense that basic TAPN cannot simulate Turing machines [14].

The coverability problem asks, given an initial marking M0 and a final marking
M , is there a marking M ′ reachable from M0 such that M(p) ⊆ M ′(p) for all
places p?

The boundedness problem asks, given an initial marking M0, is there a constant
k such that the total number of tokens in any reachable marking from M0 is less
than or equal to k? If this is the case, the net is called k-bounded.

It is known that coverability remains decidable for the basic TAPN extended
with read arcs [17] where a read arc is a special case of a pair of two transport arcs
that return the consumed token to the same place (and hence do not change its
age). These results hold due to the monotonicity property (adding more tokens
to the net does not restrict the possible executions) and the application of well-
quasi-ordering (for a general introduction see [26]) resp. better-quasi-ordering [3]
techniques.

One of the major weaknesses of the basic TAPN is the lack of the possibility
to model urgent behaviour. On the other hand, when allowing age invariants,
both coverability and boundedness become undecidable as shown in [31] and
demonstrated in what follows.

The basic idea is similar as in the previous reduction and illustrations are
depicted in Figure 4. We have two places pc1 and pc2 representing the counters
plus we add one more place called pcount which records the number of already
executed instructions and will be used for the undecidability of boundedness.
The counters are each equipped with a place called preset

cj
such that a presence

of a token in this place will allow us to reset the age of all tokens of age 1 in pcj .
The simulation of the increment instruction in Figure 4c starts by delaying one

time unit. Now all tokens in the counters become of age 1 but can subsequently be
reset to 0 due to the presence of the tokens in preset

c1
and preset

c2
. By performing

tgotoi the simulating finishes, increases the number of tokens in pcount by one,
gives the control to the instruction k and adds 1 to the counter c1.

The decrement instruction, depicted in Figure 4d, can fire the transition tdeci ,
provided that there is a token of age 0 in pc1 , increase the number of counted
steps and give the control to the instruction 
. It can also delay one time unit
and perform the transition tzeroi which will allow us to reset the ages of tokens in
pc2 and after firing tend

i add one token to pcount and continue with the simulation
of the instruction k. The point is that if we were cheating in the simulation and
fired the transition tzeroi with a nonempty counter c1, tokens of age 1 will nec-
essarily appear in the place pc1 . Notice that the simulation of most instructions
(in particular of the halt instruction) must start with a time delay, however, if in
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(d) i: if c1=0 then goto k else (c1--; goto �).

Fig. 4. Simulation of a Minsky machine by a TAPN with invariants

some of the counters there were tokens of age 1, no time delay is possible due to
the age invariants ≤ 1 in pc1 and pc2 . Hence the place phalt can be marked if and
only if the net did not cheat and this gives the undecidability of coverability.

The same construction also serves as a reduction showing undecidability of
boundedness. Assume that the given Minsky machine halts in k steps. This
means that if the net faithfully simulates its behaviour, it will terminate with a
token in phalt and at most k tokens in any of the two counter places and pcount .
If the net cheated at some point, most of the instructions will be disabled as
discussed above, except for the firing of tdeci , which can however only decrease
the number of tokens in the places. The net is hence bounded. On the other
hand, if the Minsky machine loops, the net can faithfully simulate this infinite
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Table 1. Overview of (un)decidability results for TAPN

Reachability Coverability Boundedness

basic TAPN ✕ [48] � [4] � [6]

basic TAPN plus transport arcs ✕ [48] �? �?

basic TAPN plus age invariants ✕ [48] ✕ [31] ✕ [31]

basic TAPN plus inhibitor arcs ✕ [28] ✕ [28] ✕ [28]

behaviour and the place pcount will be unbounded. Hence the undecidability of
boundedness for basic TAPN with invariants is established too.

Theorem 2 ([31]). Coverability and boundedness are undecidable for basic
TAPN with invariants.

A summary of the results is provided in Table 1. The decidability of coverability
and boundedness for TAPN with transport arcs is marked with a question mark
as it is only a claim, though the proofs from [17] for read arcs seem easy to
extend to TAPN with transport arcs too.

In applications, the fact that coverability is decidable for the basic TAPN
model can be useful as demonstrated in [4] where the authors verified a param-
eterized version of Fischer’s protocol [36] using their prototype implementation
of the coverability algorithm.

Most often though, we may like to use the additional features like age invari-
ants and inhibitor arcs to facilitate the modelling process. While all interesting
problems become quickly undecidable for such models, we may still verify a
number of interesting properties by restricting ourselves to bounded nets where
the maximum number of tokens in the net is given as a constant. Recent work
shows that bounded TAPN and 1-safe (at most one token in any place) nets
offer a similar expressive power as networks of timed automata, even though
the models are rather different. Sifakis and Yovine [53] provided a translation of
1-safe timed-arc Petri nets into timed automata which preserves strong timed
bisimilarity but their translation causes an exponential blow up in the size. Srba
established in [54] a strong relationship (up to isomorphism of timed transition
systems) between networks of timed automata and a superclass of 1-safe TAPN
extended with read arcs. For reachability questions the reductions in [54] work in
polynomial time. Recently Bouyer et al. [17] presented a reduction from bounded
TAPN (with read-arcs) to 1-safe TAPN (with read-arcs), which preserves timed
language equivalence. Hence PSPACE-completeness of reachability on 1-safe and
bounded TAPN was established [17, 54].

Nevertheless the translations described in these papers are inefficient from
the practical point of view as they either cause an exponential blow-up in the
size or create a new parallel component with a fresh local clock for each place
in the net. In connection with the development of the tool TAPAAL [1] for
modelling, simulation and verification of extended timed-arc Petri nets, more
efficient translations were investigated [22, 23].
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Recently, in [33] we identified a general class of translations that preserve
Timed Computation Tree Logic (TCTL), a logic suitable for practical specifica-
tion of many useful temporal properties (see e.g. [45]). In the next two sections
we shall present the framework and give an example of an efficient translation
from TAPN to UPPAAL networks of timed automata [2].

6 Timed Computation Tree Logic

In this section we introduce the Timed Computation Tree Logic (TCTL). Unlike
much work on TCTL where only infinite alternating runs are considered [45] or
the details are simply not discussed [16, 24], we consider also finite maximal runs
that appear in the presence of stuck computations or time invariants (strict or
nonstrict) and treat the semantics in its full generality as used in most of the ver-
ification tools nowadays. This fact is particularly important for the verification
of liveness properties.

Before we define the syntax and semantics of TCTL, we extend the notion
of timed transition systems (TTS) as defined in Section 3 with propositions.
A timed transition system with propositions is a quadruple T = (S,−→,AP , μ)
where (S,−→) is a TTS, AP is a set of atomic propositions, and μ : S → 2AP

is a function assigning sets of true atomic propositions to states.
For a TAPN N = (P, T, IA,OA,Transport , Inhib, Inv) the set of atomic propo-

sitions AP and the labeling function μ can be defined as

AP def
= {(p �� n) | p ∈ P, n ∈ N0 and �� ∈ {<,≤, =,≥, >}}

and for a marking M we have

μ(M)
def
= {(p �� n) | |M(p)| �� n and �� ∈ {<,≤, =,≥, >}} .

The intuition is that a proposition (p �� n) is true in a marking M iff the number
of tokens in the place p satisfies the given relation with respect to n.

A run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ . . . in a TTS is a (finite

or infinite) alternating sequence of time delays and discrete actions.
We shall now introduce the syntax and semantics of TCTL. The presentation

is inspired by [45]. Let AP be a set of atomic propositions. The set of TCTL
formulae Φ(AP) over AP is given by

ϕ ::= ℘ | ¬ϕ | ϕ1 ∧ ϕ2 | E(ϕ1 UI ϕ2) | A(ϕ1 UI ϕ2) | E(ϕ1 RI ϕ2) | A(ϕ1 RI ϕ2)

where ℘ ∈ AP ranges over atomic propositions and I ∈ I ranges over time
intervals. Formulae without any occurrence of the operators A(ϕ1 UI ϕ2) and
E(ϕ1 RI ϕ2) form the safety fragment of TCTL.

The intuition of the until and release TCTL operators (formalized later on)
is as follows:

– A(ϕ1 UI ϕ2) is true if on all maximal runs ϕ2 eventually holds within the
interval I, and until it does, ϕ1 continuously holds;
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Fig. 5. Illustration of a concrete run

– E(ϕ1 UI ϕ2) is true if there exists a maximal run such that ϕ2 eventually
holds within the interval I, and until it does, ϕ1 continuously holds;

– A(ϕ1 RI ϕ2) is true if on all maximal runs either ϕ2 always holds within the
interval I or ϕ1 occurred previously;

– E(ϕ1 RI ϕ2) is true if there exists a maximal run such that either ϕ2 always
holds within the interval I or ϕ1 occurred previously.

In the semantics, we handle maximal runs in their full generality. Hence we
have to consider all possibilities in which a run can be “stuck”. In this case, we
annotate the last transition of such a run with one of the three special ending
symbols (denoted δ in the definition below).

A maximal run ρ is either

(i) an infinite alternating sequence of the form ρ = s0
d0−→ s0[d0] −→ s1

d1−→
s1[d1] −→ s2

d2−→ s2[d2] −→ . . ., or

(ii) a finite alternating sequence of the form ρ = s0
d0−→ s0[d0] −→ s1

d1−→
s1[d1] −→ . . . −→ sn

δ−→ where δ ∈ {∞, d≤n , d<
n } for some dn ∈ R≥0 s.t.

• if δ =∞ then sn
d−→ sn[d] for all d ∈ R≥0,

• if δ = d≤n then sn � d−→ for all d > dn and sn
dn−→ sn[dn] s.t. sn[dn] �−→,

and
• if δ = d<

n then sn � d−→ for all d ≥ dn, and there exists ds, 0 ≤ ds < dn,
such that for all d, ds ≤ d < dn, we have sn

d−→ sn[d] and sn[d] �−→.

By MaxRuns(T, s) we denote the set of maximal runs in a TTS T starting at s.
Intuitively, the three conditions in case (ii) describe all possible ways in which

a finite run can terminate. First, a run can end in a state where time diverges.
The other two cases define a run which ends in a state from which no discrete
transition is allowed after some time delay, but time cannot diverge either (typ-
ically caused by the presence of invariants in the model). These cases differ in
whether the bound on the maximal time delay can be reached or not.

Figure 5 illustrates a part of a maximal run ρ = s0
1−→ s0[1] −→ s1

2.5−→
s1[2.5] −→ s2

2−→ s2[2] −→ s3
1.3−→ s3[1.3] −→ s4 −→ . . .. Note that actions take

zero time units and that, although not shown in this example, time delays can
be zero so it is possible to do multiple actions in succession without any time
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s0 s0[d0]

s1 s1[d1]

s2 s2[d2]

s3 s3[d3]

s4

. . .

I

s1[d]

d0

d1

s2[d′]

d2
s2[d′′]

d3

time

Fig. 6. Illustration of a run

s0 |= E(ϕ1UIϕ2)
s0

s′
0

s1 s′
1

s2 s′
2

s3 s′
3

s4

. . .

ϕ2
ϕ1

I

time

Fig. 7. Illustration of a run satisfying an until formula

progression in between. Further, there is no special meaning as to whether the
arrow for an action goes up or down, this is simply to keep the figure small.

Let us now introduce some notation for a given maximal run
ρ = s0

d0−→ s0[d0] −→ s1
d1−→ s1[d1] −→ s2

d2−→ . . .. First, r(i, d) denotes
the total time elapsed from the beginning of the run up to some delay d ∈ R≥0

after the i’th discrete transition. Formally, r(i, d) =
(∑i−1

j=0 dj

)
+ d. Second, we

define a predicate valid ρ : N0 ×R≥0 × I → {true, false} such that validρ(i, d, I)
checks whether the total time for reaching the state si[d] in ρ belongs to the
time interval I , formally

valid ρ(i, d, I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d ≤ di ∧ r(i, d) ∈ I if di ∈ R≥0

r(i, d) ∈ I if di =∞
d ≤ dn ∧ r(i, d) ∈ I if di = d≤n
d < dn ∧ r(i, d) ∈ I if di = d<

n .

Let us now give some example of the application of the validρ(i, d, I) function.

Figure 6 illustrates a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→

s2[d2] −→ . . . and three points (marked with ×). We see that validρ(1, d, I) is
false because s1[d] lies outside the interval I. Similarly, valid ρ(2, d′′, I) is false
because s2[d′′] is not a part of the run (since d′′ > d2). Finally, validρ(2, d′, I) is
true because s2[d′] is a part of the run and within I.

Next, we define a function historyρ : N0 × R≥0 → 2N0×R≥0 s.t. historyρ(i, d)
returns the set of pairs (j, d′) that constitute all states sj [d′] in ρ preceding si[d],
formally historyρ(i, d) = {(j, d′) | 0 ≤ j < i ∧ 0 ≤ d′ ≤ dj}∪{(i, d′) | 0 ≤ d′ < d}.
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s0 |= E(ϕ1RIϕ2)
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Fig. 8. Illustration of runs satisfying a release formula

Now we can define the satisfaction relation s |= ϕ for a state s ∈ S in a TTS
with propositions T = (S,−→,AP , μ) and a TCTL formula ϕ.

s |= ℘ iff ℘ ∈ μ(s)
s |= ¬ϕ iff s �|= ϕ

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= E(ϕ1 UI ϕ2) iff ∃ρ ∈ MaxRuns(T, s) .

∃i ≥ 0 . ∃d ∈ R≥0 . [validρ(i, d, I) ∧ si[d] |= ϕ2 ∧
∀(j, d′) ∈ historyρ(i, d) . sj[d′] |= ϕ1

]
s |= E(ϕ1 RI ϕ2) iff ∃ρ ∈ MaxRuns(T, s) .

∀i ≥ 0 . ∀d ∈ R≥0 . validρ(i, d, I)⇒[
si[d] |= ϕ2 ∨ ∃(j, d′) ∈ historyρ(i, d) . sj [d′] |= ϕ1

]
The operators A(ϕ1 UI ϕ2) and A(ϕ1 RI ϕ2) are defined analogously by replacing
the quantification ∃ρ ∈ MaxRuns(T, s) with ∀ρ ∈ MaxRuns(T, s).
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Figure 7 illustrates the satisfaction of the until formula and Figure 8 illustrates
the release formula. In particular, notice that there are four possible ways for a
release formula to be satisfied. First, ϕ1 may have occurred in the past (outside
the interval), which releases ϕ2, effectively ensuring that ϕ2 need not hold in the
interval I at all. Second, ϕ2 may not be released, which means that it must hold
continuously within the entire interval I. Third, ϕ2 can hold continuously in the
interval I, until some point in the interval where ϕ1∧ϕ2 holds, thereby releasing
ϕ2. Finally, ϕ2 can hold continuously in the interval I until the run deadlocks.

As expected, the until and release operators are dual.

Lemma 1 ([33]). We have s |= A(ϕ1 RI ϕ2) iff s |= ¬E(¬ϕ1 UI ¬ϕ2), and
s |= A(ϕ1 UI ϕ2) iff s |= ¬E(¬ϕ1 RI ¬ϕ2).

Example 1. Consider again the TAPN model of alternating bit protocol from
Section 4. We can express the correctness of the protocol as the property that
the sender and receiver never get out of synchrony. This property is violated if
the sender is about to send a message with the bit 0 but the receiver is either in
the state Receiver0B or Receiver1A, in other words when the receiver is sending or
resending an acknowledgment for the bit 0. Such situation should not happen,
and symmetrically for the second part of the protocol where a message with
the bit 1 is about to be sent. We can express the violation of synchrony by
the following TCTL formula: E(true U[0,inf) (Sender0A = 1 ∧ (Receiver0B = 1 ∨
Receiver1A = 1))∨(Sender1A = 1∧(Receiver1B = 1∨Receiver0A = 1))). The time
interval in the until operator is set to [0, inf) as the correct protocol behaviour
should not be violated at any point of its execution. In Section 7 we discuss
automatic tool-supported verification of this property.

Another example of a property can require that during the first 20 time
units of the protocol execution there are never more than 5 acknowledg-
ment messages in transfer. This can be expressed by the TCTL formula
A(false R[0,20] (Medium0B ≤ 5 ∧Medium1B ≤ 5)) and it is satisfied in the initial
marking of the alternating bit protocol.

Finally, we may also ask whether the sender and the receiver eventually finish
the transmission of the message with bit 0 and proceed to a message with bit
1. However, the TCTL formula A(true U[0,∞) (Sender1A = 1 ∧ Receiver1A = 1))
expressing this property is false due to several reasons. First of all, in the initial
marking the sender is not forced to initiate the sending of the first message and
time can elapse for ever. This can be fixed by adding age invariants at all sender
and receiver places in order to enforce urgency. However, as the medium is lossy,
there is another maximal run where the retransmitted message gets repeatedly
lost and such run also violates our formula.

7 Translations Preserving TCTL Model Checking

In this section, we shall present a general framework for arguing when a simula-
tion of one time dependent system by another preserves satisfiability of TCTL
formulae. We define the notion of one-by-many correspondence, a relation be-
tween two TTSs A and B, such that if A is in one-by-many correspondence with
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B then every transition in A can be simulated by a sequence of transitions in
B. Further, every TCTL formula ϕ can be algorithmically translated into a for-
mulate tr(ϕ) s.t. A |= ϕ iff B |= tr(ϕ). In the rest of this section, we shall use A
and B to refer to the original and the translated system, respectively. The text
of the next subsection is to a large extend based on [33] where the reader can
find a more detailed exposition and proofs.

7.1 One-by-Many Correspondence

As the system B is simulating a single transition of A by a sequence of transitions,
the systems A and B are comparable only in the states before and after this
sequence was performed. We say that B is stable in such states and introduce a
fresh atomic proposition called stable to explicitly identify this situation. We now
define three conditions that B should possess in order to apply to our framework.
A TTS (S,→,AP , μ) s.t. stable ∈ AP is

– delay-implies-stable if for any s ∈ S, it holds that s
d−→ for some d > 0

implies s |= stable,
– delay-preserves-stable if for any s ∈ S such that s |= stable , if s

d−→ s[d] then
s[d] |= stable for all d ∈ R≥0, and

– eventually-stable if for any s0 ∈ S such that s0 |= stable and for any infinite
sequence of discrete transitions ρ = s0 −→ s1 −→ s2 −→ s3 −→ s4 −→ . . .
or any finite nonempty sequence of discrete transitions ρ = s0 −→ s1 −→
· · · −→ sn �−→ there exists an index i ≥ 1 such that si |= stable .

We write s � s′ if there is a sequence s = s0 −→ s1 −→ s2 −→ · · · −→ sn = s′

s.t. s |= stable, s′ |= stable, and sj �|= stable for 1 ≤ j ≤ n− 1.

Definition 6. Let A = (S,→A,APA, μA) and B = (T,→B,APB, μB) be two
TTSs s.t. stable ∈ APB and B is a delay-implies-stable and delay-preserves-
stable TTS. A relation R ⊆ S × T is a one-by-many correspondence if there
exists a function trp : APA −→ APB such that whenever sR t then

1. t |= stable,
2. s |= ℘ iff t |= trp(℘) for all ℘ ∈ APA,
3. if s −→ s′ then t � t′ and s′R t′,
4. if s

d−→ s[d] then t
d−→ t[d] and s[d]R t[d] for all d ∈ R≥0,

5. if t � t′ then s −→ s′ and s′R t′, and
6. if t

d−→ t[d] then s
d−→ s[d] and s[d]R t[d] for all d ∈ R≥0.

If B is moreover an eventually-stable TTS, then we say that R is a complete
one-by-many correspondence. We write s �= t (resp. s �=c t) if there exists a
relation R which is a one-by-many correspondence (resp. a complete one-by-
many correspondence) such that sR t.

Now we translate TCTL formulae. Let APA and APB be sets of atomic propo-
sitions such that stable ∈ APB and let trp : APA −→ APB be a function
translating atomic propositions. We define tr : Φ(APA)→ Φ(APB) as follows.
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tr(℘) = trp(℘)
tr(¬ϕ1) = ¬tr(ϕ1)

tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)
tr(E(ϕ1 UI ϕ2)) = E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))
tr(A(ϕ1 UI ϕ2)) = A((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))
tr(E(ϕ1 RI ϕ2)) = E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))
tr(A(ϕ1 RI ϕ2)) = A((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))

We are now ready to state the main result (see [34] for its full proof).

Theorem 3. Let A = (S,→A,APA, μA) and B = (T,→B,APB, μB) be two
TTSs such that stable ∈ APB and let s0 ∈ S and t0 ∈ T . If s0 �=c t0 then for
any TCTL formula ϕ we have s0 |= ϕ if and only if t0 |= tr(ϕ). If s0 �= t0 then
the claim holds only for any formula ϕ from the safety fragment of TCTL.

We finish this subsection by recalling the steps needed in order to apply the
framework to a particular translation between two time-dependent systems. As-
sume that we designed an algorithm that for a given system A constructs a
system B together with the notion of stable states in the system B.

1. Show that B is a delay-implies-stable and delay-preserves-stable TTS (and
optionally an eventually-stable TTS).

2. Define a proposition translation function trp : APA −→ APB.
3. Define a relation R and show that it fulfills conditions 1–6 of Definition 6.

Theorem 3 now allows us to conclude that the translation preserves the full
TCTL (or its safety fragment if R is only a one-by-many correspondence).

There are several reductions from TAPN to networks of timed automata that
fit into the general framework [22, 33, 54] and the theory is applicable also to
reductions between other time-dependent models including Time Petri nets [18,
24, 25, 35]. For more discussion we refer the reader to [33].

7.2 Translation from TAPN to Networks of Timed Automata

We will now present a translation from k-bounded TAPN (where the maximum
number of tokens in every reachable marking is at most k) to networks of timed
automata [7, 8] in the UPPAAL style (see e.g. [10] for an introduction to the
formalism) in order to demonstrate the applicability of the framework described
in the previous subsection.

For each token in the net, we create a parallel component in the network of
timed automata. As the net is k-bounded, we will need at most k such compo-
nents. In each of these parallel automata there is a location corresponding to
each place in the net. Whenever a TA is in one of these locations, it simulates
a token in the corresponding place. Moreover, each automaton has a local clock
x which represents the age of the token. All automata simulating the tokens
have the same structure, the only difference being their initial locations that
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Fig. 9. Translation from TAPN to UPPAAL network of timed automata

correspond to the initial placement of tokens in the net. Because there may not
always be exactly k tokens present during the execution of the net, we add a
new location P capacity to represent currently unused tokens.
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In addition to these ‘token’ automata we create a single control automaton.
The purpose is to simulate the firing of transitions and to move tokens around
via handshake synchronization initiated by the control automaton. This automa-
ton has a location P stable which acts as a mutex in the sense that the control
automaton moves out of this location once the simulation of a transition begins
and returns back once the simulation of the transition ends. Hence the propo-
sition stable is defined as (P stable = 1). Moreover, each time the automaton is
in P stable, the token automata in the composed UPPAAL network correspond
to a marking in the TAPN. This directly implies that the generated TTS is
delay-preserves-stable as time delay steps do not change the placement of to-
kens. We shall now demonstrate how the translation works on an example; the
full algorithm is described in [32].

Consider the 5-bounded TAPN in Figure 9a. The translated network of
UPPAAL timed automata is given below it. It consists of the control automaton
in Figure 9b and five token automata like the one in Figure 9c. The token au-
tomata differ only in their initial locations, otherwise they are identical. Hence,
in our example, we have two token automata whose initial locations are P0, and
the remaining three have initial locations P1, P2 and P capacity, respectively.

The communication in the network of timed automata begins when the con-
troller broadcasts on the channel t broadcast. All token automata that can ac-
cept the broadcast (i.e. their guards evaluate to true) will participate and set the
corresponding global boolean variables ok0, . . . , ok3 to true. The UPPAAL im-
plementation of broadcast allows the controller to move to the location P t test
only if the associated invariant where ok0, . . . , ok2 are all true and ok3 is false
is satisfied, otherwise the broadcast cannot be executed. It is now clear that
performing the broadcast is possible only if there is at least one token of an
appropriate age in all input places of t, including P capacity as a new token will
be produced, and at the same time there is no token of age in the interval (2, 7)
in the place p2. This is very important for the preservation of liveness TCTL
properties, as once the transition firing is initiated, it should be always possibile
to successfully finish it. Otherwise the generated transition system would not be
eventually-stable. For this reason, the reader can notice that while the interval
on the arc from p0 to t is [0,∞), the corresponding guard in the token automaton
on the edge from P0 to P hp t 1 requires the age of the token to be also less or
equal to 3. The reason for this is that the token will be transported to the place
p3 and its age will be preserved. Any age value larger than 3 would violate the
invariant in place p3; hence as before the eventually-stable property might fail.

After the broadcast transition was successfully executed, then the effect of
firing the transition t is simulated by a series of handshake synchronizations on
channels t 1 in, t 2 in, t 3, t 2 out, t 1 out initiated by the controller and we have
a guarantee that such a sequence will always bring the controller to the stable
location P stable, hence ensuring that the generated TTS is eventually-stable.
Moreover, all locations of the controller are committed (do not allow any time
delay steps), which means that the generated TTS is also delay-implies-stable.
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Table 2. Verification of ABP; dashes indicate more than 5 minutes running time

(a) ABP without symmetry reduction

Messages UPPAAL TAPAAL
1 < 1s < 1s
2 < 1s < 1s
3 < 1s 1.4s
4 < 1s 16.3s
5 2.2s 165.3s
6 14.4s -
7 141.9s -

(b) ABP with symmetry reduction

Messages UPPAAL TAPAAL
9 2.5s 1.1s

10 3.6s 1.9s
11 10.9s 2.9s
12 24.7s 4.2s
13 89.0s 6.1s
14 239.3s 8.8s
15 - 12.8s

The reason why the tokens are not moved directly to their destinations but
are temporarily stored at the locations P hp t 1 and and P hp t 2 is to avoid the
situation where a newly produced token is immediately consumed by firing of
the same transition (as it may happen if the transition shared some input and
output places).

In case the net contains more transitions, the controller automaton contains a
similar loop for all such transitions. This concludes our example. It is relatively
easy to argue (see [32] for details) that the original and the translated systems
are in one-by-many equivalence. This gives us a polynomial time reduction from
the full TCTL model checking problem of timed-arc Petri nets to TCTL model
checking problem on networks of timed automata.

We have implemented the reduction described in this section in the open
source verification tool TAPAAL [1]. The tool provides a graphical user inter-
face for modelling, simulation and verification of timed-arc Petri nets. Further,
we have modelled our example of alternating bit protocol described in Section 4
in TAPAAL and verified the correctness of its behaviour by asking about the
violation of synchronization property described in Example 1. As the protocol
model is unbounded and contains invariants, automatic verification is not pos-
sible. Instead, we considered an under-approximation of the protocol behaviour
by limiting the maximum number of messages in transit so that the net becomes
bounded. The protocol does not violate the correctness property for any number
of messages in transit that we were able to verify. The verification times are
measured on an Intel R©CPU @ 2.67GHz based computer with 4 GB of memory.
The results for a different maximum number of messages in transit are compared
in Table 2 with a manually created UPPAAL model of the protocol.

It is clear that both the UPPAAL and TAPAAL models experience the state-
space explosion problem so that even relatively small instances take a long ver-
ification time. Here the native UPPAAL model is verified faster than the one
automatically translated to UPPAAL automata from the TAPN model. On the
other hand, the models contain lots of symmetric behaviour, so we also veri-
fied both models with symmetry reduction activated. Here, on the other hand,
TAPAAL translation provides significantly faster verification compared to the
native UPPAAL model. A similar story is true also for a few other experiments
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we ran and it seems to be connected to the fact that even though the translated
models are larger than the manually created UPPAAL models, TAPAAL better
exploits the benefits of symmetry reduction. A more detailed investigation of
this phenomenon is a part of the future research.

8 Conclusion

In this article we provided an overview of decidability and complexity results
related to verification of timed-arc Petri nets extended with transport arcs, age
invariants and inhibitor arcs. We described a general framework for arguing
when a translation between two time-dependent models preserves TCTL model
checking and provided an example of such a translation from timed-arc Petri nets
to networks of timed automata. The initial experimental data look promising and
in the future we shall consider larger case studies and invest a significant effort
into further development of the tool TAPAAL, including its own verification
engine.

Among the different extensions of Petri nets with time aspects, we believe
that timed-arc Petri nets constitute a convenient modeling formalism and with
the recent development of its tool support, TAPN will become an attractive
alternative to other modeling approaches.
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Finite (word, tree, or omega) automata play an important role in different areas
of computer science, including, for instance, formal verification. Often, determin-
istic automata are used for which traditional algorithms for important operations
such as minimisation and inclusion checking are available. However, the use of
deterministic automata implies a need to determinise nondeterministic automata
that often arise during various computations even when the computations start
with deterministic automata. Unfortunately, determinisation is a very expensive
step since deterministic automata may be exponentially bigger than the original
nondeterministic automata. That is why, it appears advantageous to avoid de-
terminisation and work directly with nondeterministic automata. This, however,
brings a need to be able to implement operations traditionally done on deter-
ministic automata on nondeterministic automata instead. In particular, this is
the case of inclusion checking and minimisation (or rather reduction of the size
of automata). In the talk, we review several recently proposed techniques for
inclusion checking on nondeterministic finite word and tree automata as well as
Büchi automata. These techniques are based on using the so called antichains,
possibly combined with a use of suitable simulation relations (and, in the case
of Büchi automata, the so called Ramsey-based or rank-based approaches). Fur-
ther, we discuss techniques for reducing the size of nondeterministic word and
tree automata using quotienting based on the recently proposed notion of me-
diated equivalences. The talk is based on several common works with Parosh
Aziz Abdulla, Ahmed Bouajjani, Yu-Fang Chen, Peter Habermehl, Lisa Kaati,
Richard Mayr, Tayssir Touili, Lorenzo Clemente, Lukáš Hoĺık, and Chih-Duo
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Abstract. Recent cognitive experiments have shown that the negative
impact of an edge crossing on the human understanding of a graph draw-
ing, tends to be eliminated in the case where the crossing angles are
greater than 70 degrees. This motivated the study of RAC drawings, in
which every pair of crossing edges intersects at right angle. In this work,
we demonstrate a class of graphs with unique RAC combinatorial em-
bedding and we employ members of this class in order to show that it is
NP-hard to decide whether a graph admits a straight-line RAC drawing.

1 Introduction

In the graph drawing literature, the problem of finding aesthetically pleasant
drawings of graphs has been extensively studied. The graph drawing community
has introduced and studied several criteria that judge the quality of a graph
drawing, such as the number of crossings among pairs of edges, the number of
edge bends, the maximum edge length, the total area occupied by the drawing
and so on (see the books [5,17]).

Motivated by the fact that the edge crossings have negative impact on the
human understanding of a graph drawing [20], a great amount of research effort
has been devoted on the problem of finding drawings with minimum number
of edge crossings. Unfortunately, this problem is NP-complete in general [12].
However, recent eye-tracking experiments by Huang et al. [15,16] indicate that
the negative impact of an edge crossing is eliminated in the case where the
crossing angle is greater than 70 degrees. These results motivated the study of
a new class of drawings, called right-angle drawings or RAC drawings for short
[1,7,8,9]. A RAC drawing of a graph is a polyline drawing in which every pair of
crossing edges intersects at right angle.

Didimo, Eades and Liota [8] proved that it is always feasible to construct a
RAC drawing of a given graph with at most three bends per edge. In this work,
we prove that the problem of determining whether an input graph admits a
straight-line RAC drawing is NP-hard.
� Funded by the Operational Programme on Education and Lifelong Learning (Action
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1.1 Related Work

Didimo et al. [8] initiated the study of RAC drawings and showed that any
straight-line RAC drawing with n vertices has at most 4n− 10 edges and that
any graph admits a RAC drawing with at most three bends per edge. Angelini
et al. [1] showed that the problem of determining whether an acyclic planar
digraph admits a straight-line upward RAC drawing is NP-hard. Furthermore,
they constructed digraphs admitting straight-line upward RAC drawings, that
require exponential area. Di Giacomo et al. [7] studied the interplay between the
crossing resolution, the maximum number of bends per edges and the required
area. Didimo et al. [9] presented a characterization of complete bipartite graphs
that admit a straight-line RAC drawing. Arikushi et al. [4] studied polyline RAC
drawings in which each edge has at most one or two bends and proved that the
number of edges is at most O(n) and O(n log2 n), respectively. Dujmovic et al.
[10] studied α Angle Crossing (or αAC for short) drawings, i.e., drawings in
which the smallest angle formed by an edge crossing is at least α. In their work,
they presented upper and lower bounds on the number of edges. Van Kreveld
[18] showed that the quality of a planar drawing of a planar graph, evaluated in
terms of area required, edge-length and angular resolution, can be improved if
one allows right-angle crossings.

Closely related to the RAC drawing problem, is the angular resolution maxi-
mization problem, i.e., the problem of maximizing the smallest angle formed by
any two adjacent edges. Note that both problems correlate the resolution of a
graph with the visual distinctiveness of the edges in a graph drawing. Formann et
al. [11] introduced the notion of the angular resolution of straight-line drawings.
In their work, they proved that determining whether a graph of maximum degree
d admits a drawing of angular resolution 2π

d (i.e., the obvious upper bound) is
NP-hard. They also presented upper and lower bounds on the angular resolu-
tion for several types of graphs of maximum degree d. Malitz and Papakostas
[19] proved that for any planar graph of maximum degree d, it is possible to con-
struct a planar straight-line drawing with angular resolution Ω( 1

7d ). Garg and
Tamassia [13] presented a continuous tradeoff between the area and the angu-
lar resolution of planar straight-line drawings. For the case of connected planar
graphs with n vertices and maximum degree d, Gutwenger and Mutzel [14] pre-
sented a linear time algorithm that constructs planar polyline grid drawings on
a (2n−5)×(3

2n− 7
2 ) grid with at most 5n−15 bends and minimum angle greater

than 2
d . Bodlaender and Tel [6] showed that planar graphs with angular resolu-

tion at least π
2 are rectilinear. Argyriou et al. [2] studied a generalization of the

crossing and angular resolution maximization problems, in which the minimum
of these quantities is maximized and presented optimal algorithms for complete
graphs and a force-directed algorithm for general graphs.

The rest of this paper is structured as follows: In Section 2, we introduce
preliminary properties and notation. In Section 3, we present a class of graphs
with unique RAC combinatorial embedding. In Section 4, we show that the
straight-line RAC drawing problem is NP-hard. We conclude in Section 5 with
open problems.
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2 Preliminaries

Let G = (V, E) be a simple, undirected graph drawn in the plane. We denote
by Γ (G) the drawing of G. The following properties are used in the rest of this
paper.

Property 1 (Didimo, Eades and Liota [8]). In a straight-line RAC drawing there
cannot be three mutually crossing edges.

Property 2 (Didimo, Eades and Liota [8]). In a straight-line RAC drawing there
cannot be a triangle T and two edges (a, b) and (a, b′), such that a lies outside
T and b, b′ lie inside T .

3 A Class of Graphs with Unique RAC Combinatorial
Embedding

The NP-hardness proof employs a reduction from the well-known 3-SAT prob-
lem. However, before we proceed with the reduction details, we first provide a
graph, referred to as augmented square antiprism graph, which has the following
property: All RAC drawings of this graph have two “symmetric” combinatorial
embeddings. Figures 1a and 1b illustrate this property. Observe that the aug-
mented square antiprism graph consists of a “central” vertex v0, which is incident
to all vertices of the graph, and two quadrilaterals (refer to the dashed and bold
drawn squares in Figure 1b), that are denoted by Q1 and Q2 in the remainder
of this paper. Removing the central vertex, the remaining graph corresponds to
the skeleton of a square antiprism, and, it is commonly referred to as square
antiprism graph.

v0

va

vb

vc

vd

vab

vbc vcd

vad

(a)

va

vb vc

vd

vab

vbc

vcd

vad

v0

(b)

va

vb

vc

vd

vab vbc

vcd

vad

v0

(c)

Fig. 1. (a)-(b) Two different RAC drawings of the augmented square antiprism graph
with different combinatorial embeddings. (a)-(c) Two different RAC drawings with the
same combinatorial embedding

If we replace the two quadrilaterals with two triangles, then the implied graph
is the augmented triangular antiprism graph. Didimo et al. [8], who showed that
any n-vertex graph which admits a RAC-drawing can have at most 4n−10 edges,
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used the augmented triangular antiprism graph, as an example of a graph that
achieves the bound of 4n − 10 edges (see Figure 1c in [8]). In contrast to the
augmented triangular antiprism graph, the augmented square antiprism graph
does not achieve this upper bound. In general, the class of the augmented k-gon
antiprism graphs, k ≥ 3, is a class of non-planar graphs, that all admit RAC
drawings. Recall that any planar n-vertices graph, should have 3n−6 edges, and
since an augmented k-gon antiprism graph has 2k + 1 vertices and 5k edges, it
is not planar for the entire class of these graphs.

Theorem 1. Any straight-line RAC drawing of the augmented square antiprism
graph has two combinatorial embeddings.

Sketch of proof. The proof of this theorem is implied by the following properties:

– Property A: There does not exist a RAC drawing of the augmented square
antiprism graph in which the central vertex v0 lies on the exterior of quadri-
lateral Qi, i = 1, 2, and an edge connecting v0 with a vertex of Qi crosses
an edge of Qi.

– Property B: In any RAC drawing of the augmented square antiprism graph,
quadrilateral Qi, i = 1, 2, is drawn planar.

– Property C: In any RAC drawing of the augmented square antiprism graph,
the central vertex v0 lies in the interior of quadrilateral Qi, i = 1, 2.

– Property D: There does not exist a RAC drawing of the augmented square
antiprism graph where an edge emanating from vertex v0 towards a vertex
of quadrilateral Qi, i = 1, 2, crosses quadrilateral Qi.

– Property E: There does not exist a RAC drawing of the augmented square
antiprism graph in which quadrilateral Q1 intersects Q2.

Due to space constraints, the proofs of these properties are omitted. The proofs
make use of elementary geometric properties, they heavily use Properties 1 and
2, and are based on exhaustive cases analysis on the relative positions of (a) the
central vertex v0, and, (b) quadrilaterals Q1 and Q2. For more details, we refer
the reader to [3]. ��
We extend the augmented square antiprism graph, by appropriately “glueing”
multiple instances of it, the one next to the other, either horizontally or vertically.
Figure 2a demonstrates how a horizontal extension of two instances, say G and
G′, is realized, i.e., by identifying two “external” vertices, say v and v′, of G with
two “external” vertices of G′ (refer to the gray-colored vertices of Figure 2a), and
by employing an additional edge (refer to the dashed drawn edge of Figure 2a),
which connects an “internal” vertex, say u, of G with the corresponding “internal”
vertex, say u′, of G′. Let G⊕G′ be the graph produced by a horizontal or vertical
extension of G and G′. Since each of G and G′ has two RAC combinatorial
embeddings each, one would expect that G⊕G′ would have four possible RAC
combinatorial embeddings. We will show that this is not true and, more precisely,
that there only exists a single RAC combinatorial embedding.

Theorem 2. Let G and G′ be two instances of the augmented square antiprism
graph. Then, G⊕G′ has a unique RAC combinatorial embedding.
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Fig. 2. (a) Horizontal extension of two instances of the augmented square antiprism
graph, (b) The additional (dashed) edge does not permit the second instance to be
drawn in the interior of the first one. (c) The vertices which are identified, during a
horizontal or vertical extension (v and v′ in Figure), should be on the external face of
each augmented square antiprism graph. (d) At each extension step the new instance
of the augmented square antiprism graph may introduce a “turn”.

Proof. Assume first that in a RAC drawing of G⊕G′, vertices v and v′ are on
the external quadrilateral of G and graph G′ is drawn completely in the interior
of G (see Figure 2b; since v and v′ are on the external face of G′, vertices α and β
in Figure 2b should also be on the external face of G′). First observe that vertex
u′ of G′, which is incident to vertices v and v′, cannot reside to the “left” of both
edges (u, v) and (u, v′) (refer to the bold drawn edges of Figure 2b), since this
would lead to a situation where three edges mutually cross and, subsequently,
to a violation of Property 1 (see the gray-colored square vertex of Figure 2b).
Therefore, vertex u′ should lie within the triangular face of G formed by vertices
u, v and v′. The same similarly holds for the central vertex of G′, which is also
incident to vertices v and v′. By Property 2, any common neighbor of vertices u′

and v should also lie within the same triangular face of G, which progressively
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implies that entire graph G′ should reside within this face, as in Figure 2b.
However, in this case and since u′ is incident to v and v′, edge (u, u′), which is
used on a horizontal or a vertical extension, crosses the interior of G′, which is
not permitted. This suggests that graph G′ should be on the exterior of G.

Now assume that vertices v and v′, which are identified, during a horizontal
or vertical extension, are along the internal quadrilateral of G in a RAC drawing
of G ⊕ G′. This is illustrated in Figure 2c. Then, the edge, say e, which per-
pendicularly crosses edge (v, v′) and emanates from the external quadrilateral
towards the central vertex of G (refer to the bold solid edge of Figure 2c) will be
involved in crossings with G′. More precisely, we focus on vertex u′ of G′, which
is incident to vertices v and v′. These edges will inevitably introduce non-right
angle crossings, since one of them should cross edge e. Therefore, the vertices
that are identified, during a horizontal or vertical extension, should always be on
the external face of each augmented square antiprism graph and, subsequently,
the drawing of the graph produced by a horizontal or vertical extension will
resemble the one of Figure 2a, i.e., it has a unique embedding. ��

Note that the extension which is given in Figure 2a, is ideal. In the general
case, at each extension step the new instance of the augmented square antiprism
graph may introduce a “turn”, as in Figure 2d. We observe that by “glueing”
a new instance of the augmented square antiprism graph on G ⊕ G′ either by
a horizontal or a vertical extension, we obtain another graph of unique RAC
combinatorial embedding. In this way, we can define an infinite class of graphs
of unique RAC combinatorial embedding. This is summarized in the following
theorem.

Theorem 3. There exists a class of graphs of unique RAC combinatorial
embedding.

4 The Straight-Line RAC Drawing Problem is NP-Hard

Theorem 4. It is NP-hard to decide whether an input graph admits a straight-
line RAC drawing.

Proof. We will reduce the well-known 3-SAT problem to the straight-line RAC
drawing problem. In a 3-SAT instance, we are given a formula φ in conjunctive
normal form with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm, each with
three literals. We show how to construct a graph Gφ that admits a straight-line
RAC drawing Γ (Gφ) if and only if formula φ is satisfiable.

Figure 3 illustrates the gadgets of our construction. Each gray-colored square
in these drawings corresponds to an augmented square antiprism graph. Adjacent
gray squares form an extension (refer, for example, to the topmost gray squares
of Figure 3a, which form a “horizontal” extension). There also exist gray squares
that are not adjacent, but connected with edges. The legend in Figure 3 describes
how the connections are realized.

The gadget that encodes variable xi of formula φ is given in Figure 3a. The
gadget of variable xi consists of a combination of augmented square antiprism
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Fig. 3. Gadgets of our construction: (a) Variable gadget, (b) Dummy variable gadget,
(c) Clause gadget
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graphs, and, “horizontal” and “vertical” edges, which form a tower, whose RAC
drawing has unique combinatorial embedding. One side of the tower accommo-
dates multiple vertices that correspond to literal xi, whereas its opposite side ac-
commodates vertices that correspond to literal xi (refer to vertices xi,1, . . . , xi,m

and xi,1, . . . , xi,m in Figure 3a). These vertices are called variable endpoints.
Then, based on whether on the final drawing the negated vertices will appear
to the “left” or to the “right” side of the tower, we will assign a true or a false
value to variable xi, respectively. Pairs of consecutive endpoints xi,j and xi,j+1
are separated by a corridor (see Figure 3a), which allows perpendicular edges to
pass through it (see the bottommost dashed arrow of Figure 3a). Note that this
is not possible through a “corridor” formed on a variable endpoint, since there
exist four non-parallel edges that “block” any other edge passing through them
(see the topmost dashed arrow of Figure 3a). The corridors can have variable
height. In the variable gadget of variable xi, there are also two vertices (they are
drawn as gray circles in Figure 3a), which have degree four. These vertices serve
as “connectors” among consecutive variable gadgets, i.e., these vertices should
be connected to their corresponding vertices on the variable gadgets of variables
xi−1 and xi+1. Note that the connector vertices of the variable gadgets associated
with variables x1 and xn are connected to connectors of the variable gadgets that
correspond to variables x2 and xn−1, respectively, and to connectors of dummy
variable gadgets.

Figure 3b illustrates a dummy variable gadget, which (similarly to the variable
gadget) consists of a combination of augmented square antiprism graphs, and,
“horizontal” and “vertical” edges, which form a tower. Any RAC drawing of this
gadget has also unique combinatorial embedding. A dummy variable gadget does
not support vertices that correspond to literals. However, it contains connector
vertices (they are drawn as gray circles in Figure 3b). In our construction, we
use exactly two dummy variable gadgets. The connector vertices of each dummy
variable gadget should be connected to their corresponding connector vertices
on the variable gadgets associated with variables x1 and xn, respectively.

The gadget that encodes the clauses of formula φ is illustrated in Figure 3c
and resembles a valve. Let Ci = (xj ∨ xk ∨ xl) be a clause of φ. As illustrated in
Figure 3c, the gadget which corresponds to clause Ci contains three vertices1,
say xj , xk, and xl, such that: xj has to be connected to xj,i, xk to xk,i and
xl to xl,i by paths of length two. These vertices (i.e., xj , xk, and xl), referred
to as the clause endpoints, encode the literals of each clause. Obviously, if a
clause contains a negated literal, it should be connected to the negated end-
point of the corresponding variable gadget. The clause endpoints are incident to
a vertex “trapped” within two parallel edges (refer to the bold drawn edges of
Figure 3c). Therefore, in a RAC drawing of Gφ, only two of them can perpen-
dicularly cross these edges, one from top (top endpoint ; refer to clause endpoint
xl of Figure 3c) and one from bottom (bottom endpoint ; refer to clause endpoint
xj of Figure 3c). The other one (right endpoint ; refer to clause endpoint xk of

1 With slight abuse of notation, the same term is used to denote variables of φ and
vertices of Gφ.
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Figure 3c) should remain in the interior of the two parallel edges. The one that
will remain “trapped” on the final drawing will correspond to the true literal of
this clause (see Figure 3).

The gadgets, which correspond to variables and clauses of φ, are connected
together by the skeleton of graph Gφ, which is depicted in Figure 4a. The skele-
ton consists of two main parts, i.e., one “horizontal” and one “vertical”. The
vertical part accommodates the clause gadgets (see Figure 4a). The horizontal
part will be used in order to “plug” the variable gadgets. The long edges that
perpendicularly cross (refer to the crossing edges slightly above the horizontal
part in Figure 4a), imply that the vertical part should be perpendicular to the
horizontal part. The horizontal part of the skeleton is separately illustrated in
Figure 4b. Observe that it contains one set of horizontal lines.

Figure 5 shows how the variable gadgets are attached to the skeleton. More
precisely, this is accomplished by a single edge, which should perpendicularly
cross the set of the horizontal edges of the horizontal part. Therefore, each vari-
able gadget is perpendicularly attached to the skeleton, as in Figure 5. Note
that each variable gadget should be drawn completely above of these horizon-
tal edges, since otherwise the connections among variable endpoints and clause
endpoints would not be feasible. The connector vertices of the dummy variable

C1

C2

Cm

Horizontal Part

Vertical Part

(a) (b)

Variable Gadgets

Fig. 4. Illustration of the skeleton of the construction
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C3 = x1 ∨ x2 ∨ x3

C2 = x1 ∨ x2 ∨ x3

C1 = x1 ∨ x2 ∨ x3

x1,1

x1,3

x1,1

x1,3

x2,1x2,1

x3,1 x3,1

x3,2 x3,2

x2,3x2,3

x3,3 x3,3

x1,2 x1,2

x2,2x2,2

Fig. 5. The reduction from 3-SAT to the straight-line RAC drawing problem. The
input formula is φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). The drawing
corresponds to the truth assignment x1=x3=true, x2=false.

gadgets, the variable gadgets and the vertical part of the construction, ensure
that the variable gadgets will be parallel to each other (i.e., they are not allowed
to bend) and parallel to the vertical part of the construction.

We now proceed to investigate some properties of our construction. Any path
of length two that emanates from a top- or bottom-clause endpoint can reach a
variable endpoint either on the left or on the right side of its associated variable
gadget. The first edge of this path should perpendicularly cross the vertical edges
of the vertical part of the construction and pass through some corridors2, whereas
the second edge will be used to realize the “final” connection with the variable
gadget endpoint (see Figure 5). However, the same doesn’t hold for the paths
2 In Figure 5, the corridors are the gray-colored regions that reside at each variable

gadget.
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that emanate from a right-clause endpoint. These paths can only reach variable
endpoints on the right side of their associated variable gadgets. More precisely,
the first edge of the 2-length path should cross one of the two parallel edges
(refer to the bold drawn edges of Figure 3c) that “trap” it, whereas the other
one should be used to reach (passing through variable corridors) its variable
endpoint (see Figure 5).

Our construction ensures that up to translations, rotations and stretchings any
RAC drawing of Gφ resembles the one of Figure 4. Each tower corresponding to
a non-dummy variable gadget of the construction contributes O(m) time to the
total construction time. The towers that correspond to dummy variable gadgets
trivially contribute constant time to the total construction time. Therefore, we
can construct all towers of variable gadgets in O(nm) time. The horizontal part
needs an extra O(n) time, whereas the vertical part can be done in O(m) time.
Thus, our construction can be completed in O(nm) time in total. Assume now
that there is a RAC drawing Γ (Gφ) of Gφ. If the negated vertices of the variable
gadget that corresponds to xi, i = 1, 2, . . . , n, lie to the “left” side in Γ (Gφ),
then variable xi is set to true, otherwise xi is set to false. We argue that this
assignment satisfies φ. To realize this, observe that there exist three paths that
emanate from each clause gadget. The one that emanates from the right endpoint
of each clause gadget can never reach a false value. Therefore, each clause of φ
must contain at least one true literal, which implies that φ is satisfiable.

Conversely, suppose that there is a truth assignment that satisfies φ. We
proceed to construct a RAC drawing Γ (Gφ) of Gφ, as follows: In the case where,
in the truth assignment, variable xi, i = 1, 2, . . . , n is set to true, we place the
negated vertices of the variable gadget that corresponds to xi, to its left side
in Γ (Gφ), otherwise to its right side. Since each clause of φ contains at least
one true literal, we choose this as the right endpoint of its corresponding clause
gadget. As mentioned above, it is always feasible to be connected to its variable
gadgets by paths of length two. This completes our proof. ��

5 Conclusions

In this paper, we proved that it is NP-hard to decide whether a graph admits a
straight-line RAC drawing. Didimo et al. [8] proved that it is always feasible to
construct a RAC drawing of a given graph with at most three bends per edge.
If we permit two bends per edge, does the problem remain NP-hard? It is also
interesting to continue the study on the interplay between the number of edges
and the required area in order to fill the gaps between the known upper and
lower bounds.
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Abstract. It is believed by many academic and industrial experts, that source
code cloning (copy&paste programming) represents a significant threat to main-
tainability in an evolving software system. The real threat does not lie in the ex-
istence of duplications, but the fears are in connection with their evolution. There
exist an abundance of algorithms for finding code clones in one particular ver-
sion of a software system, but eliminating or even evaluating these clones often
seems hopeless, as there may exist several thousands of them. Tracking the evo-
lution of individual clones might solve the problem, as it could help identifying
the inconsistently changing duplications: the clones which are really dangerous
at a particular moment. In this paper we present an approach for mapping code
duplications from one particular version of the software to another one, based
on a similarity distance function. For the suspicious evolution patterns we in-
troduce the term of ”clone smells”. By defining the relevant categories of the
possible evolution patterns, the proposed method also gives a clue about why the
reported code fragments might be dangerous. In the case study, clone smells were
extracted, evaluated, and manually categorized throughout many versions of the
jEdit system. The findings suggest that roughly half of the reported smells refer
to inconsistent changes in the code.

1 Introduction

During software development, when developers are under constant pressure of dead-
lines, it is a common practice to reuse source code by simply copying parts of it, and
eventually performing smaller modifications on it (it has been estimated that both in-
dustrial and open source systems contain in average about 20% of duplicated code [1]).
Although this approach can reduce software development time, the price in the long-
term will usually be paid in the form of increased maintainability costs. One of the pri-
mary concerns is that if the original code segment needs to be corrected, all the copied
parts need to be checked and changed accordingly as well. By inadvertently neglecting
to change the related duplications, the programmers may leave bugs in the code and
introduce inconsistencies. On the other hand, some researches [2,3] point out that there
exist situations when duplicating code could even be beneficial, and clones should not
always be considered as bad smells.

There exist an abundance of clone detection algorithms ranging from lexical (token-
based) [4], through AST-based [5] to metric-based [6] approaches. These methods act
on one particular version of the software and as a result they provide a detailed list of
copied code segments, which may eventually contain several thousand items in case of
real-size software. Despite the obvious fact that the eventual danger of using clones is
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in connection with their evolution, the field has only recently become a hot research
area [7, 8, 9, 10]. There are basically three kinds of approaches that map clones be-
tween different versions of a software. Two of the techniques utilize single-version
clone detection. The first category of approaches detects clones in a reference version
and calculates those of following versions using change information from a version
repository [11,12]. The second class of approaches detects clones for all versions of the
program. Clones are then retroactively mapped using heuristics [13,8,14]. The third cat-
egory of approaches uses incremental clone detection for finding clones in subsequent
versions of a software.

In this paper we follow the second approach: a heuristics called evolution mapping is
used to relate clone instances from different versions of a system. The mapping between
the clones is trivial in some special cases, but generally, a sophisticated approach is
needed, whose details will be presented in the following sections of this paper. By
using the evolution mapping concept, we introduce the notion of clone smells which,
similarly to bad code smells [15], refer to particular code parts that should be further
inspected manually. The smells are defined based on the possible categories of clone
evolution patterns. The advantage of this approach is that instead of focusing on a set
of several thousand copied code segments and eliminating them (even those that will
probably never be modified again), the developers can concentrate on those segments
which may represent maintainability threats. In the paper we provide definitions of
five different clone smells, which cover the possible clone evolution patterns on clone
instance level. To evaluate the approach we executed the algorithm on several versions
of the jEdit [16] text editor. The experiment resulted in a list of code fragments that
was manually checked. It turned out that more than half of the reported smells occurred
because of inconsistent changes in the code.

This paper is a continuation of our conference paper [14], and contains several new
contributions:

1. The previously presented optimization approach was based on a greedy algorithm
which does not necessarily find the global optimal solution (it may stuck in lo-
cal optima) for the problem and strongly depends on the order in which the clone
instances are considered. This drawback has been resolved here by replacing it
with an also polynomial time complexity algorithm which always yields the global
optimum.

2. The set of clone smells is different from the one proposed in our previous paper,
and here it has also been extended to the clone class1 level, which proved useful for
identifying new types of clone evolution patterns.

3. We evaluated and manually checked the results on much more versions of an open
source system.

The paper is organized as follows. Section 2 discusses several studies similar to ours.
Afterwards, Section 3 describes our approach for creating an evolution mapping of
clone instances between versions. Next, in Section 4 we give the definitions and ex-
plain the meaning of clone smells. In Section 5 we present the results obtained during
the execution of the algorithm on jEdit. Finally, in the last section we round off with
conclusions and suggestions for future work.

1 Clone class is a set of source code segments which are considered to be copies.
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2 Related Work

There are a number of papers that deal with various clone detection approaches. Starting
from the algorithms which are based on a lexical comparison of the source lines or
tokens [4], through the metric-based approaches [6] which use metric values of the
code parts in order to identify similar fragments, to the more sophisticated AST-based
approaches [5] which require a full syntactic analysis of the source code before the
clone detection can take place. Algorithms for tracking clone instances across different
versions of a software system has only recently become a hot research area.

Kim et al. [9] proposed a similar approach to ours. They defined the cloning relation-
ship between two clone classes based on the lexical similarity of their representatives.
In this way a directed acyclic graph was obtained (the nodes are the clone classes and
the edges are represented by the evolution pattern relationship). Clone Genealogy is a
connected component of the above graph where every clone group is connected by at
least one evolution pattern. Clone genealogy was used to perform a study on two small
Java systems from the viewpoint of the cloning habits of the developers.

Duala-Ekoko et al. [8] proposed a technique for tracking clones in evolving soft-
ware. They proposed the notion of an abstract Clone Region Descriptor (CRD), which
describes the clone instances within methods in such a way that it is independent of the
exact text or their location in the code. A CRD is a lightweight and abstract descrip-
tion of the location of a clone region (i.e. clone instance) in the source code. Given a
CRD and a code base, they identify the corresponding clone region through a series of
automatic searches. The attributes used for constructing the CRD are similar to those
applied by us for defining our similarity distance function. The subsequent versions of
the system were searched thoroughly for code pieces having the same CRD.

Krinke [12] used a version control system of open source systems to identify changes
applied to code duplications. They checked whether changes applied to cloned seg-
ments were generally consistent (repeated for all instances) or not. Their study revealed
that clone classes were consistently changed in roughly half of the cases. Krinke also
showed that classes that had been changed inconsistently earlier and were consistently
changed later, were comparatively rare. This conclusion reinforces our view that identi-
fying inconsistent changes, which may lead to unexpected behavior in the future, is an
important maintenance-related challenge, which was our primary goal in the study.

Göde et al. [10] presented an incremental clone detection algorithm, which detects
clones based on the results of the previous revision’s analysis. Their algorithm creates
a mapping between clones of one revision to the next, supplying information about the
addition and deletion of clones. The incremental approach considerably speeds up clone
detection itself, and makes it possible to track the changes on-the-fly (even while the
developer is typing). They utilized general suffix trees in their approach built on token
tables representing tokens of individual files. When a file is added, deleted or modi-
fied, the corresponding token table is either added, subtracted or modified accordingly.
During the update procedure, the clones from consecutive versions are also related.

Thummalapenta et al. [11] proposed an automatic approach to classify the evolution
of source code clone fragments. Their approach is different (and complementary) to this
work for three main reasons:
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1. Their approach aims at analyzing how clone fragments belonging to the same clone
class are maintained, while our focus is to map clones detected in different releases
of a software system.

2. They trace clones by starting from clone section pairs using a variant of a code
tracing approach to analyze clones. Instead, we map clones based on a similarity
distance function defined as a weighted sum of characteristic features such as lexi-
cal structure, file name, etc.

3. Our empirical study was performed by tracing clones between software system
releases, while they used file revisions instead.

3 Approach

Our approach for finding clone smells consists of the following three steps:

1. Clone detection phase
2. Evolution mapping creation phase
3. Clone smell detection phase

Cloning defines an equivalence relation on the set of copied code segments. Two code
segments correspond to each other if they are copies of each other (with respect to
the underlying clone detection approach). The classes of the relation are called clone
classes, and the members of the classes will be referred to as clone instances or just
simply clones.

In the following, Ci, Cj will denote arbitrary clone instances, not necessarily from
the same class. We shall use the notion of Cv

i , Cv
j , etc. to emphasize version v of the

system from which the instances originate. In a similar way, CCv
i , CCv

j refer to clone
classes of version v, while CIv stands for the set of instances extracted from version
v of the underlying system. We will use CCv to denote the set of all clone classes in
version v of the system.

3.1 Clone Detection

Clone detection is preceded by a syntactic and semantic analysis of the source code
performed in the Columbus reverse engineering environment [17, 18].

In order to identify code clones, we apply the AST-based approach presented by
Koschke et al. [5] implemented on the Columbus Schema [19] instance (which is basi-
cally an AST – Abstract Syntax Tree decorated with semantic edges). This method finds
clone candidates that form syntactic units, i.e. there always exist a root AST node for
each clone candidate (called head node). Two code parts are considered similar (and
therefore fall into the same clone class) if they consist of the same AST node types
(represented by the schema) in the same order. The algorithm used here is able to detect
type 1 and type 2 clones2.

2 Type 1 and 2 clones can differ in whitespace, commentation, identifier names and constant
values.
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3.2 The Evolution Mapping

The evolution mapping is, in our context, a partial injective mapping of the clone in-
stances of version v1 to a version v2 of the subject system:

e : G ⊂ CIv1 → CIv2

If a clone instance is a map of another instance, it means that the latter one has evolved
from the first one. The mapping is partial (expressed by set G), as there might be
some clone instances that vanished. Injectivity means that every clone instance from
the newer version has at most one earlier corresponding instance. As the asymptotic
number of possible mappings grows exponentially with the number of elements of the
sets (due to partiality), it turns out that finding a good one (meaning of goodness will
be specified later on) is hard. Not just the location of a clone instance may change,
but also its syntactic structure, unique name, etc., which makes really hard to find the
corresponding code fragments. Although, we used clone detector for type 1 and type 2
clones, the approach of constructing an evolution mapping does not rely on that; in fact
the algorithm works on any two sets of source code fragments. Initially, every pair of
instances from two subsequent versions should be considered as a potential pair of the
mapping.

To find a good mapping, first we define a similarity distance function, which mea-
sures how similar the clone instances are. The measure is aggregated from the following
elementary features:

F1 : The lexical structure of the clone instance.
F2 : Name of the file containing the clone instance.
F3 : The unique name of the head node, or its nearest named ancestor.
F4 : The relative position of the code segment inside its first named ancestor.

If a developer would need to decide if a code piece has evolved from another, first she
would compare the lexical structures of the code fragments (F1). If they do not differ
too much, the developer would next check their location in the code. First, the names of
the files would be compared (F2). If they are two different, the probability that the code
fragments are related would be smaller. Then the name of containing class/function
would be compared (F3). The same class/function could easily contain two very sim-
ilar code pieces and nothing else but their relative position would distinguish them.
Therefore, the relative positions of code fragments inside their class/function would be
compared (F4).

After every step the person becomes more or less confident in the final decision. If
after any step the differences are already too significant, the developer would reject the
possibility that the latter code has evolved from the earlier one. The goal is to use the
above formula, to construct a mapping, which is in some sense optimal, i.e. it relates as
many pairs as possible, but makes mistakes as rarely as possible. We will give a more
formal description of optimality later in this section.

To formalize the concepts, let

D∗ (Ci, Cj) =
4∑

k=1

αkDk (Ci, Cj) (1)
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be defined for any two different Ci and Cj clone instances, where Dk (Ci, Cj) is a
similarity measure for the Fk feature, and αk is the contribution factor of Fk to the
overall composed similarity measure. If D∗ (Ci, Cj) is zero, then every Fk (Ci, Cj) is
zero for every feature, meaning that Ci and Cj neither differ in lexical structure, nor in
location. In this case, we assume that Cj must be a map of Ci. Therefore, considering
just the pairs with non-zero distances, we arrive at a so-called assignment problem [20],
which is a fundamental combinatorial optimization problem. In its general form, the
assignment problem is the following:

There are a number of agents and a number of tasks. Any agent can be assigned to
perform any task, incurring some cost that may vary depending on the agent-task
assignment. It is required that all the tasks be performed by assigning exactly one
agent to each task in such a way that the total cost of the assignment is minimized.
The number of agents and the number of tasks are equal.

The optimal solution of the above problem can be obtained by a polynomial time and
space complexity algorithm called Hungarian method [21]. By considering the clone
instances of the version vs as agents, the instances of version vt as tasks, and the simi-
larity distances as costs, the original problem can be reduced to an assignment problem.
If the number of instances are not the same (as it is expected), virtual nodes should be
added to the version which has fewer instances. These virtual nodes are unlike every
instance in the other version (the distances are infinite). The solution of the assignment
problem is a bijection between the agents and tasks (i.e. clone instances), but a partial
injective mapping would be needed. Partiality needs to be enforced, otherwise it could
happen that an instance would be mapped onto a very dissimilar (i.e. distant) one, just
because “something needs to be assigned to everything”. To resolve this issue a thresh-
old value β is introduced which serves to prevent mappings between instances being
too dissimilar. In essence, the β value makes the mapping rather partial than bad. Thus
equation 1 now has the following form:

D (Ci, Cj) =
{ D∗ (Ci, Cj) , if D∗ (Ci, Cj) ≤ β

∞, otherwise
(2)

After the optimal mapping has been found, the edges having an infinite weight are
deleted (it affects the pairs for which the similarity distance exceeds β and those in
which one of the nodes is virtual). The remaining edges make up the optimal evolution
mapping between the two versions.

When applying this procedure, two essential questions arise:

1. How should the similarity distance functions for the separate features be defined?
2. How should the weights and the cutting threshold value be determined?

Similarity distance functions. As the features F1, F2 and F3 operate on lexical (string)
values, we employed a modified Levenshtein distance [22] (also known as the edit dis-
tance) to measure their distances. In our case the distance between two strings is their
edit distance divided by the length of the longer one. In this way we obtain a distance
function for each of the above features lying between 0 and 1.
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In the case of F4 a different approach is required. This feature is responsible for
measuring the displacement of the instances within their class or function. Let LBI(Ci)
and LIE(Ci) be the number of AST nodes in the class/function before and after the
clone instance respectively. Furthermore, let LI(Ci) be the length of the clone instance,
measured by the number of AST nodes. Let

D2 (Ci, Cj) =

√(
LBI (Ci)
LBI (Cj)

− Lij

)2

+
(

LIE (Ci)
LIE (Cj)

− Lij

)2

where

Lij = (LBI(Ci) + LI(Ci) + LIE(Ci)) / (LBI(Cj) + LI(Cj) + LIE(Cj)).

In this way D2 measures the difference of the ratio of AST nodes before and after the
clone instances.

Weights and threshold. As we would like to have an optimal mapping we need to
define and to measure somehow the goodness of a particular mapping. A candidate
mapping is good if it relates as many pairs as possible, while the probability of making
mistakes (i.e. amount of false positives) is as low as possible at the same time. The
number of pairs is measured by the number of edges of the mapping, while the overall
similarity distance (every edge has a similarity distance value which contributes to the
overall similarity distance of the mapping) must strictly correlate with the amount of
false positives (if the overall weight is high – there are more pairs which are distant
from each other, but they are still related – the probability of having false positives is
higher).

For goodness, we decided to take a weighted ratio of these two numbers, formally:

C (α, β) =

⎛
⎝ ∑

Ci∈CIv1 ,Cj=e(Ci)

D (Ci, Cj)

⎞
⎠

n

/‖e (CIv1) ‖

where n > 0, Cj is the map of Ci, ‖e (CIv1 ) ‖ is the number of edges of the mapping
and the sum in the numerator expresses the overall weight of the edges involved in the
evolution mapping. The smaller the C (α, β) function value is, the better the mapping
is – at least with our interpretation of goodness. Simply taking the sum of the distances
would not be enough, as the trivial mapping with no edges would outperform any other
(this is possible as the mapping might be partial). The parameter n is used to express
the importance of a similarity distance compared to the number of edges. The higher
values of n make small changes of the similarity distance less significant compared
to the number of edges. This is important for smaller values of n as the optimization
algorithm may drop edges even for a small gain in distance. By increasing n, this should
happen less frequently. Thus the proper value of this parameter needs to be determined
empirically. Furthermore, we may assume that

∑
α2

i = 1, otherwise dividing all the
αi and β values by

∑
α2

i would result the some mapping. Without this assumption α
would tend to 0 making all the distances smaller and everything similar to everything.

Now, as the goodness of a mapping with respect to the weights can be measured, the
need to apply an optimization algorithm naturally arises. The cost function C (α, β) is
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a step-function (not differentiable, not even continuous at every point of its domain),
hence to find its minimum value, probably the simplest solution is to apply a simulated
annealing algorithm [23]. At each step of the iteration, the αi and β values are inde-
pendently varied by choosing random values of a normal distribution, and the goodness
of the resulting mapping is computed. Initially we assume that each feature is equally
important, i.e. αi = 1

2 = 0.5 (as
∑

α2
i = 1). In the beginning β was also set to this

value. The optimization was performed on 36 versions of Mozilla Firefox.
Initially, the overall similarity distance was equal to 141.31 and there were 34, 747

edges between the consecutive versions. After the optimization, 34, 635 edges remained,
while the overall similarity distance dropped to 4.87 (the sum of squares of the weights
was necessarily equal to one throughout the whole process). As the overall dissimilarity
is minimized in this way, the probability of having false edges (edges between instances
which are not evolutionary related) is also smaller.

Table 1. Initial and optimized weights of the model

Weights Initial Optimized
α1 0.5 0.74
α2 0.5 0.21
α3 0.5 0.37
α4 0.5 0.52
β 0.5 0.16

Table 1 shows the initial values of the weights and the values we got by applying
this optimization procedure. The optimal weights lead to an evolution mapping e which
will be referred to as the optimal evolution mapping in the following sections.

Evolution of clone classes. The optimal evolution mapping can naturally be extended
to the level of clone classes: if more than the half of the instances of a clone class are
mapped onto more than half of the instances of the other class, then the mapping can
be extended to these two classes. It is easy to show that in this way one will necessarily
have a well defined, partial and injective mapping for the clone classes.

4 Clone Smells

In the following, we will systematically summarize all of the possible evolution patterns
and give a brief description of their meaning and consequences. Let us suppose that
v1, v2, . . . , vn are consecutive versions of the same software system.

Disappearing clone class (DCC)
Definition: if e

(
CC

vi−1
j

)
= ∅ for some CC

vi−1
j ∈ CCvi−1 clone class, i.e. the evo-

lution mapping was unable to find a correspondence with any clone class from version
vi, then CC

vi−1
j is said to be a disappearing clone class. The most likely reason is

that the clone instances of the class had changed inconsistently, making the clone class
disappear.
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Appearing clone class (ACC)
Definition: if e−1

(
CCvi

j

)
= ∅ for some CCvi

j ∈ CCvi clone class, i.e. the clone class
is not a map of any other clone class from version vi−1, then CCvi

j is said to be an
appearing clone class. It is very probable that the developers created a new type of
duplication.

The next smells apply to just those clone instances which are not members of clone
classes that had already been reported as DCC or ACC smells. This means that from
now on it may be assumed that both the e−1

(
CCvi

j

)
	= ∅ and e

(
CCvi

j

)
	= ∅ relations

hold for the classes of the particular instances.

Disappearing clone instance (DCI)
Definition: Ck ∈ CIvi−1 is a disappearing clone instance if e (Ck) = ∅, i.e. Ck has not
been mapped to any instance of the subsequent version. It means, that a clone instance
had been modified, but at least two other copies still remained the same, as the developer
might have forgotten for the other instances.

Fig. 1. Example of a DCI smell in the jEdit system

Figure 1 illustrates an example of a DCI smell which was found in the version of
May 4th, 2008 in the jEdit system. Please note, that the clone classes in the diagram are
mapped onto each other. In this case, the clone instance colored in gray has disappeared
as an execution branch possibly resulting in a NullPointerException has been fixed. The
same bugfix was applied for the other two instances just two weeks later.

Appearing clone instance (ACI)
Definition: Ck ∈ CIvi is an appearing clone instance if e−1 (Ck) = ∅, i.e. Ck is not
a map of any instance from the previous version. It means that new duplication of an
already copied code was created.

From this point on we will just consider those clone instances for which none of
the above smells have yet been reported. Hence we shall assume that the relations
e−1 (Cvi

k ) 	= ∅ and e (Cvi

k ) 	= ∅ both hold.

Moving clone instance (MCI)
Definition: Let Ck ∈ CIvi ∩ CCvi

j be a clone instance in version vi. Ck is said to be a
moving clone instance if e−1 (Ck) 	∈ e−1

(
CCvi

j

)
, i.e. Ck comes from a different clone

class as the other instances. It usually means that the developers had modified the clone
instance in such a way that it became a clone instance of another class, while the other
instances remained in the same clone class.

These five smells cover all the basic cases when just two consecutive versions of the
system are considered.
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5 Evaluation

We checked the usefulness of clone smells on the jEdit open source text editor [16]
system, written in Java programming language. The clone detection was performed
starting with the year 2008, taking weekly snapshots of the code. The evolution mapping
over the 84 consecutive versions was computed by using the weights obtained in the
optimization step (see Section 3.2). Table 2 lists the ranges in which the basic metric
values of the system varied. (lLOC – logical Lines Of Code means the number of non-
empty non-comment lines of code.)

Table 2. Basic metric values of jEdit

Metrics jEdit
lLOC(logical Lines Of Code) 99,994 - 106,196
NCL (Number Of Classes) 905 - 979
CI (Clone Instances) 349 - 376
CCL (Clone Classes) 125 - 135
CC (Clone Coverage) 4.9% - 10%

The detected clone smells were manually evaluated in order to see if they are useful
for finding suspicious evolution patterns. We tried to answer the following questions:

– Are the reported smells really duplications?
– Are the reported smells really clone smells of a particulary type?
– What is the root cause of their existence?

Table 3 summarizes the main results of our evaluation. As can be seen 50 smells were
reported in 84 versions of jEdit. The most frequent smells are the DCC and the ACC
smells. The table also shows that more than 80% of the hits were really smells (relative
to the precision of the clone detector).

Table 3. Number of clone smells

Hit Clones? Smells?
DCC 21 19 (90%) 17 (89%)
ACC 29 24 (83%) 22 (92%)
DCI 1 1 (100%) 1 (100%)
ACI 1 0 0
MCI 0 0 0
Overall 50 44 (88%) 40 (91%)

Table 4. Amount of clone smells found in jEdit

Cause DCC ACC DCI Σ

Consistent C1: Instances deleted 1 1
C2: Intentional refactoring 3 3

changes C3: Instances are newly created 10 10
Σ 4 10 14

Inconsistent C4: Some instances deleted 1 1
C5: Inconsistent changes 12 8 1 21

changes C6: New instances added 4 4
Σ 13 12 1 26

Σ 17 22 1 40

Table 4 categorizes the clone smells found in jEdit. The categories are defined based
on the types of the causes that resulted in reporting the particular smell. The first
main category is the category of Consistent changes which includes 3 subcategories
(C1-C3). 14 out of 40 evaluated smells fell into the Consistent changes group. The
other main category is the category of Inconsistent changes, where not all the instances



96 T. Bakota

of a clone class are affected in the same way by the changes. In this category all the enu-
merated cases are suspicious, as they might have occurred because the developers were
unaware of the existence of duplications. Most of the smells are caused by inconsistent
changes (C5), which indicates unawareness of developers. To summarize the findings
of experiment:

– More than the half (65%) of the reported smells refer to inconsistent code changes.
– Inconsistent changes (C5) are the major cause of the reported smells.
– Among inconsistent changes DCC is approximately as much frequent as ACC.

Although, the main goal of the smells is not in detecting coding issues, inconsistently
changing duplications may uncover unintentionally leaved serious coding problems as
well. Figure 2 illustrates an example. First, a bugfix eliminating the possibility of a
NullPointerException was applied to the instance in the upper right corner. As there had
been two other copies of it, which remained untouched, a DCI smell was reported. Two
weeks later the same bugfix was applied to the other two instances, but in a syntactically
different way which resulted the class to disappear (DCC) and new class appeared at
the same time (ACC).

Fig. 2. Inconsistent changes uncover the possibility of a remaining NullPointerException

6 Conclusions and Future Work

In this paper we presented an approach for tracking clone instances across several con-
secutive versions of a system. We showed that by utilizing an appropriate optimization
algorithm the code segments which have evolved from each other can be found. Our
evaluation suggests that clone smells can be useful during software development be-
cause of the following observations:

1. The approach results in a comparatively short list of critical code segments.
2. The optimal evolution mapping yields a relatively high precision for clone smells.
3. More than the half of the reported smells is caused by inconsistent code changes.
4. Inconsistent changes could uncover unintentionally remaining bugs in the code.

In the approach presented here, we have not used any information originating from the
underlying version control system (code repository). In the future we intend to make use
of the configuration management as well. In this way, the additionally available pieces
of process-related information about the source code should help improve the evolution
mapping procedure.
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Abstract. Generating multimedia streams, such as in a netradio, is
a task which is complex and difficult to adapt to every users’ needs.
We introduce a novel approach in order to achieve it, based on a dedi-
cated high-level functional programming language, called Liquidsoap, for
generating, manipulating and broadcasting multimedia streams. Unlike
traditional approaches, which are based on configuration files or static
graphical interfaces, it also allows the user to build complex and highly
customized systems. This language is based on a model for streams and
contains operators and constructions, which make it adapted to the gen-
eration of streams. The interpreter of the language also ensures many
properties concerning the good execution of the stream generation.

The widespread adoption of broadband internet in the last decades has changed
a lot our way of producing and consuming information. Classical devices from
the analog era, such as television or radio broadcasting devices have been rapidly
adapted to the digital world in order to benefit from the new technologies avail-
able. While analog devices were mostly based on hardware implementations,
their digital counterparts often consist in software implementations, which po-
tentially offers much more flexibility and modularity in their design. However,
there is still much progress to be done to unleash this potential in many ar-
eas where software implementations remain pretty much as hard-wired as their
digital counterparts.

The design of domain specific languages is a powerful way of addressing that
challenge. It consists in identifying (or designing) relevant domain-specific ab-
stractions (construct well-behaved objects equipped with enough operations)
and make them available through a programming language. The possibility to
manipulate rich high-level abstractions by means of a flexible language can often
release creativity in unexpected ways. To achieve this, a domain-specific language
should follow three fundamental principles. It should be

1. adapted : users should be able to perform the required tasks in the domain
of application of the language;

2. simple: users should be able to perform the tasks in a simple way (this means
that the language should be reasonably concise, but also understandable by
users who might not be programming language experts);
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3. safe: the language should perform automatic checks to prevent as many
errors as possible, using static analysis when possible.

Balancing those requirements can be very difficult. This is perhaps the reason
why domain specific languages are not seen more often. Another reason is that
advanced concepts from the theory of programming language and type systems
are often required to obtain a satisfying design.

In this paper, we are specifically interested in the generation of multimedia
streams, notably containing audio and video. Our primary targets are netradios,
which continuously broadcast audio streams to listeners over Internet. At first,
generating such a stream might seem to simply consist in concatenating audio
files. In practice, the needs of radio makers are much higher than this. For in-
stance, a radio stream will often contain commercial or informative jingles, which
may be scheduled at regular intervals, sometimes in between songs and some-
times mixed on top of them. Also, a radio program may be composed of various
automatic playlists depending on the time of the day. Many radios also have
live shows, based on a pre-established schedule or not; a good radio software is
also expected to interrupt a live show when it becomes silent. Most radios want
to control and process the data before broadcasting it to the public, performing
tasks like volume normalization, compression, etc. Those examples, among many
others, show the need for very flexible and modular solutions for creating and
broadcasting multimedia data. Most of the currently available tools to broad-
cast multimedia data over the Internet (such as Darkice, Ezstream, VideoLAN,
Rivendell or SAM Broadcaster) consist of straightforward adaptation of classical
streaming technologies, based on predefined interfaces, such as a virtual mixing
console or static file-based setups. Those tools perform very well a predefined
task, but offer little flexibility and are hard to adapt to new situations.

In this paper, we present Liquidsoap, a domain-specific language for multi-
media streaming. Liquidsoap has established itself as one of the major tools for
audio stream generation. The language approach has proved successful: beyond
the obvious goal of allowing the flexible combination of common features, un-
suspected possibilities have often been revealed through clever scripts. Finally,
the modular design of Liquidsoap has helped its development and maintenance,
enabling the introduction of several exclusive features over time. Liquidsoap has
been developed since 2004 as part of the Savonet project [2]. It is implemented
in OCaml, and we have thus also worked on interfacing many C libraries for
OCaml. The code contains approximatively 20K lines of OCaml code and 10K
lines of C code and runs on all major operating systems. The software along
with its documentation is freely available [2] under an open-source license.

Instead of concentrating on detailing fully the abstractions manipulated in
Liquidsoap (streams and sources) or formally presenting the language and its
type system, this paper provides an overview of the two, focusing on some key
aspects of their integration. We first give a broad overview of the language and
its underlying model in Section 1. We then describe two recent extensions of that
basic setup. In Section 2 we illustrate how various type system features are com-
bined to control the combination of stream of various content types. Section 3
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motivates the interest of having multiple time flows (clocks) in a streaming sys-
tem, and presents how this feature is integrated in Liquidsoap. We finally discuss
related systems in Section 4 before concluding in Section 5.

1 Liquidsoap

1.1 Streaming Model

A stream can be understood as a timed sequence of data. In digital signal pro-
cessing, it will simply be an infinite sequence of samples – floating point values
for audio, images for video. However, multimedia streaming also involves more
high-level notions. A stream, in Liquidsoap, is a succession of tracks, annotated
with metadata. Tracks may be finite or infinite, and can be thought of as indi-
vidual songs on a musical radio show. Metadata packets are punctual and can
occur at any instant in the stream. They are used to store various information
about the stream, such as the title or artist of the current track, how loud the
track should be played, or any other custom information. Finally, tracks contain
multimedia data (audio, video or MIDI), which we discuss in Section 2.

Streams are generated on the fly and interactively by sources. The behavior
of sources may be affected by various parameters, internal (e.g., metadata) or
external (e.g., execution of commands made available via a server). Some sources
purely produce a stream, getting it from an external device (such as a file, a sound
card or network) or are synthesizing it. Many other sources are actually operating
on other sources in the sense that they produce a stream based on input streams
given by other sources. Abstractly, the program describing the generation of a
stream can thus be represented by a directed acyclic graph, whose nodes are the
sources and whose edges indicate dependencies between sources (an example is
given in Figure 1).

Some sources have a particular status: not only do they compute a stream
like any other source, but they also perform some observable tasks, typically
outputting their stream somewhere. These are called active sources. Stream gen-
eration is performed “on demand”: active sources actively attempt to produce
their stream, obtaining data from their input sources which in turn obtain data
from their dependent sources, and so on. An important consequence of this is the
fact that sources do not constantly stream: if a source would produce a stream
which is not needed by any active source then it is actually frozen in time. This
avoids useless computations, but is also crucial to obtain the expected expressive-
ness. For example, a rotation operator will play alternatively several sources,
but should only rotate at the end of tracks, and its unused sources should not
keep streaming, otherwise we might find them in the middle of a track when we
come back to playing them. Sources are also allowed to fail after the end of a
track, i.e., refuse to stream, momentarily or not. This is needed, for example,
for a queue of user requests which might often be empty, or a playlist which
may take too long to prepare a file for streaming. Failure is handled by various
operators, the most common being the fallback, which takes a list of sources and
replays the stream of the first available source, failing when all of them failed.
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input.http �� fallback �� normalize ��

���������������
�� ���� �	
� ��� ��output.icecast

playlist

��������������
�� ���� �	
� ��� ��output.file

Fig. 1. A streaming system with sharing

1.2 A Language for Building Streaming Systems

Based on the streaming model presented above, Liquidsoap provides the user
with a convenient high-level language for describing streaming systems. Although
our language borrows from other functional programming languages, it is has
been designed from scratch in order to be able to have a dedicated static typing
discipline together a very user-friendly language.

One of the main goals which has motivated the design of the Liquidsoap lan-
guage is that it should be very accessible, even to non-programmers. It turned out
that having a functional programming language is very natural (cf. Section 1.3).
The built-in functions of the language often have a large number of parameters,
many of which have reasonable default values, and it would be very cumbersome
to have to write them all each time, in the right order. In order to address this,
we have designed a new extension of λ-calculus with labeled arguments and multi-
abstractions which makes it comfortable to use the scripting API [3]. Having
designed our own language also allowed us to integrate a few domain-specific
extensions, to display helpful error messages and to generate a browsable docu-
mentation of the scripting API. In practice, many of the users of Liquidsoap are
motivated by creating a radio and not very familiar with programming, so it can
be considered that the design of the language was a success from this point of view.

An other motivation was to ensure some safety properties of the stream gen-
eration. A script in Liquidsoap describes a system that is intended to run for
months, some parts of whose rarely triggered, and it would be very disappointing
to notice a typo or a basic type error only after a particular part of the code
is used for an important event. In order to ensure essential safety properties,
the language is statically and strongly typed. We want to put as much static
analysis as possible, as long as it doesn’t put the burden on the user, i.e., all
types should be inferred. As we shall see, Liquidsoap also provides a few useful
dynamic analysis.

The current paper can be read without a prior understanding of the language
and its typing system, a detailed presentation can however be found in [3]. A
basic knowledge of programming languages should be enough to understand the
few examples presented in this paper, which construct sources using built-in
operators of our language. For example, the following script defines two elemen-
tary sources, respectively reading from an HTTP stream and a playlist of files,
composed in a fallback and filtered through a volume normalizer. The resulting
stream is sent to an Icecast server which broadcasts the stream to listeners, and
saved in a local backup file:
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s = normalize(fallback([input.http("http://other.net/radio"),
playlist("listing.txt")])))

output.icecast(%vorbis,mount="myradio",s)
output.file(%vorbis,"backup.mp3",s)

The graph underlying the system resulting from the execution of that script is
shown in Figure 1. Note that the two output functions build a new source: these
sources generate the same stream as s, but are active and have the side effect
of encoding and sending the stream, respectively to an Icecast server and a file.
A few remarks on the syntax: the notation [. . . ] denotes a list, mount is a label
(the name of an argument of the function output.icecast) and %vorbis is an
encoding format parameter whose meaning is explained in Section 2 (recall that
Vorbis is a compressed format for audio, similar to MP3).

1.3 Functional Transitions

Liquidsoap is a functional programming language and a particularly interesting
application of this is the case of transitions. Instead of simply sequencing tracks,
one may want a smoother transition. For example, a crossfade consists in mixing
the end of the old source, whose volume is faded out, with the beginning of the
new one, whose volume is faded up (see Figure 2). But there is a wide variety of
other possible transitions: a delay might be added, jingles may be inserted, etc.

100

0

volume (%)

time (sec)

old new

Fig. 2. A crossfade transition between two tracks

A solution that is both simple and flexible is to allow the user to specify
a transition as a function that combines two sources representing the old and
new tracks. We illustrate this feature with an example involving transitions used
when switching from one source to another in a fallback. This is particularly
useful when the fallback is track insensitive, i.e., performs switching as soon as
possible, without waiting for the end of a track. The following code defines a
fallback source which performs a crossfade when switching from one source to
another:

def crossfade(old,new) =
add([fade.initial(duration=2.,new),fade.final(duration=3.,old)])

end
t = [crossfade,crossfade]
f = fallback(track_sensitive=false,transitions=t,[r,s])
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Because any function can be used to define a transition, the possibilities are
numerous. A striking example from the standard library of Liquidsoap scripts
is the operator smooth add, which takes as argument a main source (e.g., mu-
sical tracks) and a special interruption source (e.g., news items). When a new
interruption is available, smooth add gradually reduces the volume of the main
source to put it in the background, and superposes the interruption. The re-
verse is performed at the end of the interruption. This very appreciated effect is
programmed using the same building blocks as in the previous example.

1.4 Efficient Implementation

An important aspect of the implementation is efficiency concerning both CPU
and memory usage. The streams manipulated can have high data rates (a typi-
cal video stream needs 30Mo/s) and avoiding multiple copies of stream data is
crucial.

In Liquidsoap, streams are computed using frames, which are data buffers
representing a portion of stream portion of fixed duration. Abstractly, sources
produce a stream by producing a sequence of frames. However, in the implemen-
tation a source is passed a frame that it has to fill. Thus, we avoid unnecessary
copies and memory allocations. Active sources, which are the initiators of stream-
ing, initially allocate one frame, and keep re-using it to get stream data from
their input source. Then, most sources do not need to allocate their own frame,
they simply pass frames along and modify their content in place. However, this
simple mechanism does not work when a source is shared, i.e., it is the input
source of several sources. This is the case of the normalize node in the graph
of Figure 1 (which happens to be shared by active sources). In that case, we use
a caching mechanism: the source will have its own cache frame for storing its
current output. The first time that the source is asked to fill a frame, it fills its
internal cache and copies the data from it; in subsequent calls it simply fills the
frame with the data computed during the first call. Once all the filling operations
have been done, the sources are informed that the stream has moved on to the
next frame and can forget their cache.

With this system, frames are created once for all, one for each active source
plus one for each source that is shared and should thus perform caching — of
course, some sources might also need another frame depending on their behavior.
Sharing is detected automatically when the source is initialized for streaming.
We do not detail this analysis, but note that the dynamic reconfigurations of
the streaming system (notably caused by transitions) make it non-trivial to
anticipate all possible sharing situations without over-approximating too much.

2 Heterogeneous Stream Contents

In Liquidsoap, streams can contain data of various nature. The typical example is
the case of video streams which usually contain both images and audio samples.
We also support MIDI streams (which contain musical notes) and it would be
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easy to add other kinds of content. It is desirable to allow sources of different
content kinds within a streaming system, which makes it necessary to introduce
a typing discipline in order to ensure the consistency of stream contents across
sources.

The nature of data in streams is described by its content type, which is a triple
of natural numbers indicating the number of audio, video and midi channels. A
stream may not always contain data of the same type. For instance, the playlist
operator might rely on decoding files of heterogeneous content, e.g., mono and
stereo audio files. In order to specify how content types are allowed to change
over time in a stream, we use arities, which are essentially natural numbers
extended with a special symbol �:

a ::= � | 0 | S(a)

An arity is variable if it contains �, otherwise it is an usual natural number, and
is fixed. A content kind is a triple of arities, and specifies which content types are
acceptable. For example, (S(S(0)), S(�), �) is the content kind meaning “2 audio
channels, at least one video channel and any number of MIDI channels”. This
is formalized through the subtyping relation defined in Figure 3: T <: K means
that the content kind T is allowed by K. More generally, K <: K ′ expresses
that K is more permissive than K ′, which implies that a source of content kind
K can safely be seen as one of content kind K ′.

0 <: 0
A <: A′

S(A) <: S(A′) � <: � 0 <: �

A <: �

S(A) <: �

A <: A′ B <: B′ C <: C′

(A,B, C) <: (A′, B′, C′)

Fig. 3. Subtyping relation on arities

When created, sources are given their expected content kind. Of course, some
assignments are invalid. For example, a pure audio source cannot accept a con-
tent kind which requires video channels, and many operators cannot produce
a stream of an other kind than that of their input source. Also, some sources
have to operate on input streams that have a fixed kind – a kind is said to be
fixed when all of its components are. This is the case of the echo operator which
produces echo on sound and has a internal buffer of a fixed format for storing
past sound, or sound card inputs/outputs which have to initialize the sound card
for a specific number of channels. Also note that passing the expected content
kind is important because some sources behave differently depending on their
kind, as shown with the previous example.

Integration in the language. To ensure that streaming systems built from user
scripts will never encounter situations where a source receives data that it can-
not handle, we leverage various features of our type system. By doing so, we
guarantee statically that content type mismatches never happen. The content
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kinds are reflected into types, and used as parameters of the source type. In
order to express the types of our various operators, we use a couple features
of type systems (see [5] for extensive details). As expected, the above subtyp-
ing relation is integrated into the subtyping on arbitrary Liquidsoap types. We
illustrate various content kinds in the examples of Figure 4:

– The operator swap exchanges the two channels of a stereo audio stream. Its
type is quite straightforward: it operates on streams with exactly two audio
channels.

– Liquidsoap supports polymorphism à la ML. We use it in combination with
constraints to allow arbitrary arities. The notation ’*a stands for a universal
variable (denoted by ’a) to which a type constraint is attached, expressing
that it should only be instantiated with arities. For example, the operator
on_metadata does not rely at all on the content of the stream, since it is
simply in charge of calling a handler on each of its metadata packets – in
the figure, handler is a shortcut for ([string*string]) -> unit.

– When an operator, such as echo, requires a fixed content type, we use another
type constraint. The resulting constrained universal variable is denoted by
’#a and can only be instantiated with fixed arities.

– The case of the greyscale operator, which converts a color video into
greyscale, shows how we can require at least one video channel in types.
Here, ’*b+1 is simply a notation for S(’*b).

– Finally, the case of output.file (as well as several other outputs which en-
code their data before sending it to various media) is quite interesting. Here,
the expected content kind depends on the format the stream is being encoded
to, which is given as first argument of the operator. Since typing the functions
generating formats would require dependent types (the number of channels
would be given as argument) and break type inference, we have introduced
particular constants for type formats with syntactic sugar for them to ap-
pear like functions – similar ideas are for example used to type the printf
function in OCaml. For example, output.file(%vorbis,"stereo.ogg",s)
requires that s has type source(2,0,0) because %vorbis alone has type
format(2,0,0), but output.file(%vorbis(channels=1),"mono.ogg",s)
requires that there is only one audio channel; we also have video formats
such as %theora.

These advanced features of the type system are statically inferred, which means
that the gain in safety does not add any burden on users. As said above, content

swap : (source(2,0,0)) -> source(2,0,0)

on metadata : (handler,source(’*a,’*b,’*c)) -> source(’*a,’*b,’*c)

echo : (delay:float,source(’#a,0,0)) -> source(’#a,0,0)

greyscale : (source(’*a,’*b+1,’*c)) -> source(’*a,’*b+1,’*c)

output.file : (format(’*a,’*b,’*c),string,source(’*a,’*b,’*c))->

source(’*a,’*b,’*c)

Fig. 4. Types for some operators
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kinds have an influence on the behavior of sources — polymorphism is said to
be non-parametric. In practice, this means that static types must be maintained
throughout the execution of a script. This rather unusual aspect serves us as an
overloading mechanism: the only way to remove content kinds from execution
would be to duplicate our current collection of operators with a different one for
each possible type instantiation.

Ideally, we would like to add some more properties to be statically checked
by typing. But it is sometimes difficult to enrich the type system while keeping
a natural syntax and the ability to infer types. For example, Liquidsoap checks
that active sources are infallible, i.e., always have data available in their input
stream, and this check is currently done by a flow analysis on instantiated sources
and not typing. Another example is clocks which are described next section.

3 Clocks

Up to now, we have only described streaming systems where there is a unique
global clock. In such systems, time flows at the same rate for all sources. By
default, this rate corresponds to the wallclock time, which is appropriate for a
live broadcast, but it does not need to be so. For example, when producing a file
from other files, one might want the time rate to be as fast as the CPU allows.

While having a global clock suffices in many situations, there are a couple of
reasons why a streaming system might involve multiple clocks or time flows. The
first reason is external to liquidsoap: there is simply not a unique notion of time
in the real world. A computer’s internal clock indicates a slightly different time
than your watch or another computer’s clock. Moreover, when communicating
with a remote computer, network latency causes a perceived time distortion.
Even within a single computer there are several clocks: notably, each soundcard
has its own clock, which will tick at a slightly different rate than the main clock
of the computer. Since liquidsoap communicates with soundcards and remote
computers, it has to take those mismatches into account.

There are also some reasons that are purely internal to liquidsoap: in order
to produce a stream at a given speed, a source might need to obtain data from
another source at a different rate. This is obvious for an operator that speeds up
or slows down audio, but is also needed in more subtle cases such as a crossfading
operator. A variant of the operator described in Section 1.3 might combine a
portion of the end of a track with the beginning of the next track of the same
source to create a transition between tracks. During the lapse of time where the
operator combines data from an end of track with the beginning of the other
other, the crossing operator needs to read both the stream data of the current
track and the data of the next track, thus reading twice as much stream data
as in normal time. After ten tracks, with a crossing duration of six seconds, one
more minute will have passed for the source compared to the time of the crossing
operator.
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Fig. 5. A streaming system with two clocks

3.1 Model

In order to avoid inconsistencies caused by time differences, while maintaining a
simple and efficient execution model for its sources, liquidsoap works under the
restriction that one source belongs to a unique clock, fixed once for all when the
source is created. Sources from different clocks cannot communicate using the
normal streaming protocol, since it is organized around clock cycles: each clock
is responsible for animating its own active sources and has full control on how
it does it.

In the graphical representation of streaming systems, clocks induce a partition
of sources represented by a notion of locality or box, and clock dependencies are
represented by nesting. For example, the graph shown in Figure 5 corresponds
to the stream generators built by the following script:

output.icecast(%vorbis,mount="myradio",
fallback([crossfade(playlist("some.txt")),jingles]))

There, clock2 was created specifically for the crossfading operator; the rate of
that clock is controlled by that operator, which can hence accelerate it around
track changes without any risk of inconsistency. clock1 is simply a wallclock, so
that the main stream is produced following the real time rate.

A clock is active if it ticks by itself, therefore running its sources constantly;
this is the case of wallclocks or soundcard clocks. We say that a clock depends on
another one if its animation (and thus time rate) depends on it. Active sources
do not depend on other sources, and dependencies must be acyclic. In the above
example, the ticking of clock2 is provoked by that of clock1, and freezes when
the fallback is playing jingles. Although nothing forces it in the model, it makes
more sense if each passive source depends (possibly indirectly) on an active one,
and all sources without dependencies are active. Those assumptions are in fact
guaranteed to hold for the systems built using the Liquidsoap language.

From an implementation viewpoint, each active clock launches its own stream-
ing thread. Hence, clocks provide a way to split the generation of one or several
streams across several threads, and hence multiple CPU cores.This powerful pos-
sibility is made available to the user through the intuitive notion of clock. As we
shall see in the next section, the script writer never needs to specify clocks unless
he explicitly wants a particular setup, and Liquidsoap automatically checks that
clock assignements are correct.
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3.2 Clock Assignment

Clocks are not represented in the type of Liquidsoap sources. Although it would
be nice to statically check clock assignment, type inference would not be possible
without technical annotations from the user. Instead, clocks are assigned upon
source creation. Some sources require to belong to a particular, definite clock,
such as the wallclock, or the clock corresponding to a sound card. Most sources
simply require that their clock is the same as their input sources. Since clocks
often cannot be inferred bottom-up, we use a notion of clock variable that can
be left undefined. Clock variables reflect the required clock dependencies, which
are maintained during the inference process.

Two errors can occur during this phase. Although they are runtime errors that
could be raised in the middle of streaming when new sources are created (e.g., by
means of a transition), this usually only happens during the initial construction.
The first error is raised when two different known clocks need to be unified. For
example, in the following script, the ALSA input is required to belong to the
ALSA clock and crossfade’s internal clock at the same time:

output.file(%vorbis,"record.ogg",crossfade(input.alsa()))

The other possible error happens when unifying two unknown clock variables if
one depends on the other – in unification terminology, this is an occurs-check
failure. A simple example of that situation is the script add([s,crossfade(s)])
where the two mixed sources respectively have clocks c and Xc where c is the
clock created for the crossfading operator and Xc is the variable representing
the clock to which the crossfading belongs, on which c depends.

After this inference phase, it is possible that some clocks are still unknown.
Remaining variables are thus forcibly assigned to the default wallclock, before
that all new sources are prepared for streaming by their respective clocks.

4 Related Work

Liquidsoap is obviously different from classical tools such as Ices or Darkice in
that it offers the user the freedom to assemble a stream for a variety of operators,
through a scripting language rather than traditional configuration files.

Liquidsoap has more similarities with multimedia streaming libraries and digi-
tal signal processing (DSP) languages. The GStreamer library [6] defines a model
of stream, and its API can be used to define streaming systems in various pro-
gramming languages (primarily coded in C, the library has also been ported to
many other languages). Faust [4] provides a high-level functional programming
language for describing stream processing devices, and compiles this language
down to C++, which enables an integration with various other systems. It is also
worth mentioning Chuck [7], a DSP programming language with an emphasis
on live coding (dynamic code update). Besides a different approach and tar-
get application, Liquidsoap differs more deeply from these tools. The notion of
source provides a richer way of generating streams, providing and relying on the



110 D. Baelde, R. Beauxis, and S. Mimram

additional notions of tracks and metadata; also recall the ability to momentarily
stop streaming, and the possibility to dynamically create or destroy sources. It
would be very interesting to interface Liquidsoap with the above mentionned
tools, or import some of their techniques. This could certainly be done for sim-
ple operators such as DSP, and would allow us to program them efficiently and
declaratively from the scripting language rather than in OCaml.

5 Conclusion

We have presented the main ideas behind the design of Liquidsoap, a tool used
by many netradios worldwide as well as in some academic work [1]. We believe
that Liquidsoap demonstrates the potential of building applications as domain-
specific languages. It also shows that very rich type systems can be put to work
usefully even in tools not designed for programmers: although most Liquidsoap
users have a limited understanding of our type system, they are able to fix their
mistakes when an error is reported — errors might be difficult to read but they
have the merit of signaling real problems.

Of course, there are many other reasons behind the success of Liquidsoap, in-
cluding a wide variety of features plugged onto the basic organization described
here. Some of the future work on Liquidsoap lies there: integration with other
tools, graphical interfaces, documentation, etc. But we are also planning some
improvements of the language. One of the goals is to make it possible to express
more operators directly in Liquidsoap instead of OCaml, bringing more cus-
tomizability to the users. Also, Liquidsoap offers a server through which many
sources offer various services. An interesting way to structure more this very use-
ful system would be to consider sources as objects whose methods are services,
and type them accordingly.

References

1. Baccigalupo, C., Plaza, E.: A case-based song scheduler for group customised radio.
In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp.
433–448. Springer, Heidelberg (2007)

2. Baelde, D., Beauxis, R., Mimram, S., et al.: Liquidsoap, http://savonet.sf.net/
3. Baelde, D., Mimram, S.: De la webradio lambda à la λ-webradio. In: Journées Fran-
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Abstract. The traditional map labeling problems are mostly NP-hard.
Hence, effective heuristics and approximations have been developed in
the past. Recently, efficient algorithms for the so-called boundary labeling
model have been introduced which assumes that the labels are placed on
the boundary of the map and connected by polygonal leaders to their
corresponding sites. Internal labels have been forbidden. In this paper, we
allow both. Since clearly internal labels should be preferred, we consider
several maximization problems for the number of internal labels and we
show that they can be obtained efficiently or in quasi-polynomial time.

1 Motivation

In information visualization, geographic information systems, and cartography,
map labeling constitutes an important task, which is concerned with the place-
ment of extra information –in the form of textual labels– next to features of
interest of an illustration. In order to ensure readability, it is suggested that the
labels: i) do not overlap with each other, and ii) are close to (if possible, next to)
the features they are associated with. Unfortunately, due to these constraints, the
majority of the map labeling problems turns out to be computationally hard [9].
A detailed bibliography on map labeling can be found in [19].

A great amount of research on map labeling has been devoted to labeling
site-features of a map. However, in the presence of large labels or dense point
sets, producing a labeling with no overlaps is most of the times impossible. To
address this problem, a commonly used approach is to place the labels next to
the map, and to connect them to their sites by polylines, called leaders. This
labeling approach is called boundary labeling; in the past, several papers have
appeared that show that certain types of boundary labeling problems can be
solved efficiently in theory and practice [2,3,4,5,6,12,15,16].
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In this paper, we introduce and study a mixed labeling model, according to
which we place the labels next to the sites and use boundary labeling in cases
where this is not feasible due to overlaps.

As a first step towards solving this labeling problem, we investigate simple set-
tings of the problem. Our motivation rests on the work of Fowler et al. [10], who
proved that the number maximization problem (i.e., the problem of determin-
ing the maximum number of labels that can be placed on a set of sites without
overlaps) is NP-hard, even if the labels are of uniform size, each site has only
one label candidate position and leaders are not permitted. In contrast to the
negative result of Fowler et al., there are variants of the proposed model which
admit an algorithm that maximizes the number of site-labels and guarantees the
placement of all labels (either immediately next to the sites or on the boundary
of the underlying drawing through leaders). Our variants, where we give quasi-
polynomial time algorithms, suggest that using boundary labeling, the problem
becomes easier as no NP-hard problem is known which has a quasi-polynomial
algorithm. More sophisticated variants are still to be considered. The proposed
model is well suited when labeling technical or medical maps where it is common
to explain certain features of the map with label on its boundary, since in the
case where the map contains several features to be labeled, a great number of
leaders will unavoidably occur, and subsequently clutter the illustration.

This rest of this paper is structured as follows: In Section 2, we formally define
the mixed map labeling model. In Sections 3, 4 and 5, we study several varia-
tions of the mixed labeling problem. In Section 6, we provide an experimental
evaluation of our algorithms. We conclude in Section 7 with open problems.

2 Problem Definition

Typically, a map labeling problem consists of a set P = {s1, s2, . . . sn} of n
sites to be labeled. Each site si = (xi, yi) is associated with an axis-parallel,
rectangular label li of dimensions wi × hi. We also assume that the site set is
enclosed in an axis-parallel rectangle R = [0, W ] × [0, H ] (enclosing rectangle).
According to our model, there exist two alternatives to label each site: i) either
through a label “close” to the site (internal labels), or ii) through a label on the
boundary of R and a leader which realizes the connection (external labels).

For each site which is to be labeled with an internal label, the input specifies
a model, which indicates how the site’s label can be placed w.r.t. the actual
position of the site. The most important models studied in the literature are:
i) the fixed position model, where each site has a finite set of label candidates
(i.e., feasible label positions), and ii) the slider model, where each label can be
placed at any position, so that it touches its site. Fig.1 depicts some commonly
used variants of the both models. For a more formal definition refer to [13].

The external labels are usually attached to one, two or all four sides of R.
Several types of leaders have been proposed, among them straight-line [5], rec-
tilinear [5] and octilinear [6]. In this paper, we focus on rectilinear leaders of
type-opo, that consist of three line segments, where the first and third ones are
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1P 2PH 4P

1SH 2SH 4S

2PV

1SV 2SV

Fig. 1. Each model has an abbreviation of the form xMD, where M ∈ {P, S} stands
for fixed-position (P ) or slider model (S), x ∈ {1, 2, 4} refers to the number of fixed
positions or sliding directions, and D ∈ {∅, H, V } indicates the horizontal or vertical
direction in which fixed-position labels are arranged or labels slide

orthogonal (o) to the side of R containing the label, and the second one is par-
allel (p) to that side. We further assume that the sites are in general position,
i.e., no two sites share the same y or x coordinate. For more details, refer to [5].

Conventionally, a mixed labeling model (m, k, t) is identified as a type-m
traditional labeling model supported by a k-sided boundary labeling model with
type-t leaders, where m ∈ {1P, 2PH, 2PV, 4P, 1SH, 1SV, 2SH, 2SV, 4S}, k ∈
{Left-Sided, Right-Sided, Two-Sided, Four-Sided} and t ∈ {s, po, opo, do, od, pd}1,
in the case where the internal (external) labels are placed according to the rules
of model m (k) and the leaders are of type t. Our intension is to obtain legal la-
belings in which no internal labels overlap and no leader intersect or overlap, and,
simultaneously maximize the number of internal labels. We further assume that
one of the rectangle’s sides can always accommodate all labels.

3 The (1P, Right-Sided, opo) Mixed Labeling Model

We first consider the mixed model (1P, right-sided, opo) and present an algo-
rithm which produces labelings with maximum number of internal labels. Our
algorithm performs in three steps. Initially, it computes a legal labeling purely
consisting of external labels. This is feasible since we have assumed that one of
the enclosing rectangle’s sides can accommodate all labels. As shown in [5], in a
legal solution of the pure boundary labeling problem (i.e., no internal labels are
allowed), the vertical order of the sites is identical to the vertical order of their
corresponding labels and it can be computed in O(n log n) time. The leaders are
considered to be preliminary and might either be removed or labeled permanent.
In the second step, the algorithm identifies sites whose preliminary leaders can-
not be replaced by internal labels. Crucial is the following. For two sites with
overlapping internal labels, the lower one must be labeled through a leader (see
the right part of Figure 2).

Based on this observation, we determine in a second step for each site s, if
its inner label l(s) is intersected by a label l(s′) such that s′ lies above of s. If
such a label l(s′) exists, we mark the leader of s to be permanent. In the final
step, we perform a top-down plane sweep, where we stop at each leader that
1 Abbreviations s, po, opo, do, od and pd refer to different types of leaders (see [2] and

[5]).
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Fig. 2. The internal labels of sites a and b are involved in an overlap. In the case where
the leaders are routed to the right only one feasible case exists. However, in the case
where the leaders are routed to the left, two feasible solutions exist.

we reach. If the leader, say for site s, is already permanent and it intersects
other internal labels l(s′), we mark the leaders for s′ also to be permanent. If
the leader of site s is still preliminary, we know that for site s there is no other
intersecting internal label and also no intersecting leader. Hence we can replace
it by an internal label.

Theorem 1. The (1P, right-sided, opo) problem can be solved in O(n log2 n)
time.

Sketch of proof. As already stated, the first step of our algorithm needs O(n log n)
time. By employing a dynamic data structure that maintains a set of rectangles
(that changes under insertions and deletions) and given a query rectangle q
reports whether q is involved in an overlap with other rectangle stored in the
data structure in O(log2 n) time [8], the second step of our algorithm can be
implemented in a total of O(n log2 n) time. The third step of our algorithm needs
an extra O(n log n) time by employing a dynamic data-structure that maintains
a set of points Q that changes under insertions, and supports visibility queries
of the form in O(log n) time: “Given a threshold value x0 and a query range
(ybottom, ytop), return the point of Q (if any) with the largest y-coordinate that
is located within the rectangle (0, x0)× (ybottom, ytop)” [17, pp. 209]. ��

4 The (1P, Left-Sided, opo) Mixed Labeling Model

In this section, we adopt the scenario of the previous section assuming that the
external labels occupy the left side of R. Again, our goal is to obtain a labeling
with maximum number of internal labels. In contrast to the case where the
external labels are to the right of R, in this case when two labels overlap it is
not necessary that the lower label is always external in a feasible solution and
this makes the problem more complicated (see the left part of Figure 2).

4.1 A Quasi-polynomial Time Solution

We first present a quasi-polynomial time algorithm, assuming that the labels are
of uniform height. Our recursive algorithm splits the problem into a particular
number of half-sized subproblems by fixing an internal label each time, then
recursively solves the subproblems and derives a solution of the initial problem
by keeping the solution which implies the maximum number of internal labels.
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Ltop
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Fig. 3. An illustration of our recursive algorithm

Consider an arbitrary line L that is parallel to x-axis and intersects several
internal labels and let ls be any of these internal labels. Let also s be its corre-
sponding site. In the final optimal solution, site s will be labeled either by an
internal or by an external label. Consider a solution in which site s is the first
site (from left to right) out of those intersected by line L to be labeled by an
internal label (see Fig. 3). The sites to the left of s with internal labels intersect-
ing L must all be routed through leaders. Let Ltop (Lbottom) be the horizontal
half-line that emanates from the top-left (bottom-left) corner of ls and coincides
with the top (bottom) boundary edge of ls. Also, let Rs be the rectangle defined
by the left side of ls, Ltop, Lbottom and the right side of R (see the light-gray
rectangle of Fig. 3). Then, all sites inside Rs must be labeled by internal labels.

First, we have to check whether all sites inside Rs can be labeled by internal
labels, which needs O(n log2 n) time using range queries [17]. Next, we turn our
attention to the solution of the internal label maximization problem restricted
to instances where ls is the first internal label (from left to right) out of those
that intersect L. The maximum number of internal labels can be determined by
the solution of two independent problems, each consisting of a set of sites to
be labeled and a set of already labeled sites through internal or external labels.
For the first (top) subproblem, the set of sites consists of all unlabeled sites
above line L and half-line Ltop (within the dark-gray polygonal region of Fig.3),
while the set of fixed labels consists of the internal labels for the sites in Rs,
plus ls (plus, any previously fixed label placements). For the second (bottom)
subproblem, the set of sites consists of the remaining unlabeled sites, while the
set of fixed sites consists of all sites in Rs, plus all sites to the left of s which are
labeled by leaders, plus s (plus, any previously fixed label placements).

The global optimal solution can then be easily obtained by considering each
of the internal labels crossed by L as the first internal label. If line L is carefully
selected so that it has half of the unlabeled sites above and below it, then the
time needed to calculate the optimal solution is given by the following formula:

T (k) =
{

2kT (k/2) + n2 log2 n, k > 1
O(1), k = 1

The n2 log2 n term is needed in order to check whether the labeling of the sites in
each rectangle Rs is legal. The solution of this formula leads to a time complexity
of O(nlog n+3). So, we can state the following theorem.

Theorem 2. The (1P, left-sided, opo) problem with labels of uniform height can
be solved in O(nlog n+3) time.
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4.2 A 2-Approximation Algorithm

In the following, we present a more efficient, factor 2-approximation algorithm,
which is based on a reduction to a variant of the 2-SAT problem. Reductions
to the 2-SAT problem have been previously used in the map labeling litera-
ture [9,18]. In our approach, each site si in the labeling instance is identified
by a boolean variable zi, i = 1, 2, . . . , n. The true or false value of each vari-
able zi specifies whether si is labeled through an external or an internal label,
respectively. We proceed to construct a set of clauses based on the following
cases:

1. Avoidance of internal label overlaps: Let zi and zj be two internal la-
bel candidates that overlap and assume that neither site si nor sj is contained
in zj and zi, respectively. Then, zi and zj cannot simultaneously appear in
a solution, which is ensured by clause: zi ∨ zj .

2. Avoidance of site and internal label overlaps: Let zi and zj be two in-
ternal label candidates that overlap and assume that sj is contained in zi.
Then, zi cannot appear in a solution, which is ensured by clause: zi.

3. Avoidance of leader and internal label intersections: Let si and sj be
a pair of sites, such that the leader of sj crosses the internal label of si.
Then, zj and zi cannot simultaneously appear in a solution. This is ensured
by clause: zi ∨ zj.

Having formulated our problem as a 2-SAT clausal problem, we need a satisfy-
ing truth assignment which simultaneously minimizes the number of true vari-
ables. Gusfield and Pitt [11] proved that given a satisfiable 2-SAT formula, it is
NP-hard to find a satisfying assignment that contains a minimum number of
true variables and proposed an approximation that results in an assignment with
at most twice as many true variables as necessary in O(NM) time, where N and
M are the number of variables and clauses, respectively. Hence, we can state the
following theorem:

Theorem 3. The (1P, left-sided, opo) problem admits a factor 2 approximation
algorithm which needs O(n3) time.

4.3 An ILP Formulation

In this subsection, we provide an alternative solution of the (1P, left-sided, opo)
labeling problem, that is, a formulation as an integer linear program. ILP for-
mulations have also been previously used in the map labeling literature [7,20].
In our formulation, each site si is associated with two variables zi and wi, each
of which has value 0 or 1 indicating the absence or presence of an internal label
and a leader, respectively. Then, one set of constraints expresses the requirement
that each site should be labeled exactly once, either through an internal label or
through a leader. Therefore, zi + wi = 1, for each i = 1, 2, . . . , n. A second set
of constraints expresses the requirement that no two internal label candidates
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overlap. More precisely, if si and sj is a pair of sites, whose internal labels over-
lap then a constraint of the form zi +zj ≤ 1 should be present. Finally, a last set
of constraints is needed in order to avoid crossings among leaders and internal
labels. So, the case where the leader emanating from a site si crosses the internal
label of another site sj , can be expressed by a constraint of the form wi +zj ≤ 1.
Since we seek to maximize the number of internal labels, the objective function
of our integer linear program is

∑n
i=1 zi. Clearly, the set of constraints can be

constructed in O(n2). Therefore, we can state the following theorem.

Theorem 4. An instance of the (1P, left-sided, opo) problem can be transformed
into an integer linear program in O(n2) time.

Note that the formulation given above with small modifications can be used
to solve any type-opo mixed labeling problem that involves a fixed position
model. However, the ILP presented above has an extra property; it contains two
variables per constraint. Bar-Yehuda and Rawitz [1] proved that such integer
programs can be approximated by a factor of 2 in O(NMU) time, where N , M
and U are the number of variables, constraints and the maximum variable range,
respectively. This implies that our problem admits another 2-approximation al-
gorithm that also needs O(n3) time.

5 The (1P, Two-Sided, opo) Mixed Labeling Model

In this section, we adopt the 1P point-labeling model supported by the two
opposite-sided type-opo boundary labeling model as alternative, assuming that
the labels are of uniform height and the external labels are allowed to be placed
along the left and the right side of R. The algorithm we describe follows the lines
of the recursive algorithm for the left sided case, presented in Section 4. However,
due to the fact that for each site we have three possible labeling alternatives
(i.e., leader to the left, internal label, leader to the right), the splitting into
subproblems is slightly more complicated.

Let h be the height of each label and λ be the maximum number of sites within
any strip of height h. Consider some legal labeling and as before, consider an
arbitrary line L that is parallel to the x-axis and intersects several internal labels.
Let again ls be the leftmost of these labels and s be its corresponding site. Define
as before lines Ltop and Lbottom. Let t be the leftmost site out of those to the
right of label ls that is labeled by a leader towards the right side of R. Then,
the following must hold:

- Let R1 be a rectangle (of maximum height h) whose bottom-right corner co-
incides with site s, whereas its top-left corner coincides with the intersection
of line L and the left side of the enclosing rectangle R (see Fig.4a). Then, all
sites in R1 are labeled through leaders to the left side of R.

- Let Rs be the rectangle that has the sites s and t on its left and right sides,
respectively, and is defined by the half-lines Ltop and Lbottom (see Fig.4a).
Then, all sites in Rs must be labeled through internal labels.
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Fig. 4. Illustrations of our recursive algorithms

- Let R2 be the rectangle having site t as its top-left corner and the intersection
of Lbottom with the right side of R as its bottom-right corner. Then, all sites
in R2 must be labeled through leaders to the right side of R.

- Let R3 be the rectangle with site t as its bottom-left corner and the intersection
of Ltop with the right side of R as its top-right corner. Then, all sites in R3
must be labeled by internal labels or through leaders to the right side of R.

As in the previous case, the maximum number of internal labels can be deter-
mined by the solution of two independent problems, each consisting of a set of
sites to be labeled and a set of already labeled sites through internal or external
labels. For the first (top) subproblem, the set of sites consists of all unlabeled
sites that lie above line L, half-line Ltop and in the interior of R3 (within the
dark-gray polygonal region of Fig.4a), while the set of fixed labeled sites consists
of the sites in Rs (which are labeled by internal labels), plus, s and t (plus, any
previously fixed label placements). For the second (bottom) subproblem, the set
of sites consists of the remaining unlabeled sites, while the set of fixed labeled
sites consists of all sites in R1∪R2 (which are labeled by leaders), plus, the sites
in Rs (which are labeled by internal labels), plus, s and t (plus, any previously
fixed label placements).

Attempting to do an analysis as in the previous case, we realize that there
are at most 2λ2 subproblems, each defined by a pair of sites s and t (as defined
above). If line L equally-splits the sites, observe that the top subproblem might
have at most n/2 sites plus the sites of R3 that are below line L. Since each
slice of height h contains at most λ sites, the top subproblem contains at most
n/2 + λ sites. Then, the bottom subproblem contains at least n/2− λ sites. So,
in the i-th recursion-level, each subproblem has size at most n/2i +

∑i
k=0 λ/2k,

which approximately equals n/2i + 2λ. Note that parameter λ is not halfed at
each recursion level, the subproblems however do.

We choose to stop the recursion when the size of a subproblem is less than
3λ to facilitate our analysis. Observe that a problem of size 3λ can be solved in
O(33λλ log2 λ) time. For each site, we have three choices, i.e., leader to the left,
internal label, leader to the right. Thus, the time complexity of our algorithm is
given by the following formula.

T (n) ≤
{

λ2(2T (n/2 + λ) + n log2 n), n > 3λ

33λλ log2 λ, n ≤ 3λ
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The above formula, for n > 3λ means that we have log(n/3λ) recursion lev-
els, giving a total time of O(n(n/(3λ))2 log λ log2 n + 2λ(n/(3λ))2 log(2λ) log2 n),
while the second term gives for each subproblem of size λ an amount of at
most 33λλ log2 λ. On level i, we have 2iλ2i subproblems, hence in total the
recursion ends with (n/(3λ))2 log λ+1 subproblems. In total this gives a seem-
ingly complicated formula for the time complexity: O(n(n/(3λ))2 log λ log2 n +
2λ(n/(3λ))2 log(2λ) +(n/(3λ))2 log λ+1 ·33λλ log2 λ). We conclude by the following
theorem. If λ is constant, the following theorem gives a polynomial time bound.

Theorem 5. An instance of the (1P, 2-sided, opo) labeling problem can be solved
in time (n/λ)O(log λ) · 3O(λ).

5.1 Generalizations

In the following, we present a general scheme for the mixed labeling model
(m, k, opo), where m ∈ {2PH, 2PV, 4P}, k ∈ {∅, Left-Sided, Right-Sided, Two-
Sided}. The proposed scheme also supports labelings without external labels. It
resembles to one of the first map labeling algorithms by Kucera et al [14].

Let κ and μ be two variables defined as follows. Variable κ equals to (a) zero,
if k = ∅, (b) one, if k ∈ {Left-Sided, Right-Sided}, and, (c) two, if k = Two-
Sided. Similarly, variable μ equals to (a) two, if m ∈ {2PH, 2PV }, and, (b) four,
if m = 4P . Let also P be a labeling problem with labels of uniform height h and
λ-height restricted, i.e., in each horizontal strip of height h there are at most
λ sites. Let L be a horizontal line bisecting the rectangle into two subproblems
Ptop and Pbot, such that the subproblems have at most n/2 sites each. Because
of the height restriction, at most λ sites above L might have a bottom-label
which intersects L, and analogously at most λ sites below L might have a top-
label which intersects L (see Fig.4b). It is clear that any solution of P consists
of a configuration C of labels intersecting L and the solution of Ptop(C) and
Pbot(C), where the two subproblems are modified according to the configuration
C. For each configuration C, we solve the corresponding subproblems Ptop(C) and
Pbot(C), construct the solution P(C) and optimize over all configurations C.

For each configuration C, labels of the sites close to line L might intersect L
or not. The sites above and below might intersect the strip only when they use
their lower or upper internal labels, or they do not intersect at all, hence we
have κ/2+1 possibilities for the upper sites and κ/2+1 possibilities for the sites
below. Hence, we have at most (κ/2+1)λ · (κ/2+1)λ different configurations for
the middle line L. If we fix one of those configurations, then the two subproblems
arising on top or below the strip are independent of each other, and can be solved
recursively. They only depend on the fixed label configuration of the middle strip
and they have size at most n/2 each. Each configuration can be checked, whether
it is legal or not, in time O(n log2 n), using the methods described in Section 4.

Note that the recursion stops when n ≤ λ, after log(n/λ) recursion levels.
Each time, we have to check the legality of the solution for the subproblem. This
can be done in time O(λ log2 λ) by a series of O(λ) range queries concerning at
most O(λ) rectangles. Then, T (λ) ≤ O((κ+μ)λλ log2 λ). Hence, we get a similar
recursion as before, which can be summarized by the following theorem.
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Theorem 6. A λ-height restricted instance of the (m, k, opo) problem, where
m ∈ {2PH, 2PV, 4P}, k ∈ {∅, Left-Sided, Right-Sided, Two-Sided} can be solved
in time (n/λ)O(λ log κ) · (κ + μ)λ+1.

More concretely, if m ∈ {2PH, 2PV } and k ∈ {Two-Sided}, a λ-height restricted
instance of this problem can be solved in O((n/λ)1+2λ · (4λλ log2 λ + n log2 n).
If m ∈ {4P} and k ∈ {Left-Sided, Right-Sided}, we have 5 choices for each
site (either through a leader or through an internal label utilizing one of the
four available internal label candidates). For the sites directly above and below
the strip, we have 3 choices, since two of the four available internal label candi-
dates cannot be utilized. Hence, there are 3λ · 3λ configurations for the middle
line. Therefore, a λ-height-restricted instance of this model can be solved in
O((n/λ)1+λ log 9 · (5λλ log2 λ+ n log2 n). When λ is constant or logarithmic in n,
we obtain polynomial or quasi-polynomial algorithms, which do not contradict
the NP-hardness of the general problem if λ is large (λ ≥ nε, ε > 0).

6 Experimental Results

In this section, we present the results of the experimental evaluation of the
algorithms presented in Sections 3, 4.1 and 5. The experiment was performed
on a Linux machine with 2.60 GHz CPU and 2GB RAM. A parameter that
was taken into account in the experiment’s setup was the density of each input
point set, that is the ratio of the total area of all labels to the area of R. The
labels had a predefined, fixed size. Hence, a specific density value together with a
given value for the total number of point sites, also specifies the dimensions of the
enclosing rectangle. The density values vary from 1/10 (low density) to 1/5 (high
density), whereas the point sets were randomly generated with 5 up to 100 sites.
Given a density value and a number of point sites, the experiment generated 100
random point sets, which were given as input to the three algorithms.

As expected the one-sided, polynomial time algorithm of Section 3 is slightly
faster than the corresponding one of Section 4.1 that runs in quasi-polynomial
time. Both algorithms need less than half a second to perform the labeling,
regardless of the density of the labeling or the size of the input point set. On the
other hand, the two-sided, quasi-polynomial time algorithm of Section 5 needs
noticeably more time, especially in large and dense point sets. For input point
sets consisting of less than 40 points the algorithm needs less than two and a
half seconds. For input point sets with 50 up to 60 point sites less than a minute.
However, for more dense point sets consisting of more than 70 points, there exist
instances which need more than ten minutes. Note that in our experiment we
didn’t bound the parameter λ.

Regarding the quality of the produced labelings, which is measured in terms
of the number internal labels, the two-sided, quasi-polynomial time algorithm of
Section 5 produces labelings that have significantly more internal labels than the
other two algorithms, especially in large and dense point sets. On the other hand,
the one-sided, quasi-polynomial time algorithm of Section 4.1 and the one-sided,
polynomial time algorithm of Section 3 have roughly the same performance.
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Fig. 5. The anatomy of a human brain produced by the (1P, left-sided, opo) model

Figure 5 depicts a medical map that describes the anatomy of a human brain.
The labeling has been produced by our one-sided quasi-polynomial time algo-
rithm of Section 4.1, in which we have also performed an additional post-process
step, in order to minimize the number of leader-bends (using an algorithm given
in [5]). Since the external labels are few, most of the leaders are eventually drawn
as straight-lines, which drastically improves the quality of the final labeling.

7 Conclusions

Our experimental results indicate that our algorithms have practical impact,
even if they are mostly subexponential (except from the first one). Of course,
there is large space for improvements. The proposed model is not appropriate
for every instance of map labeling problems. We evaluated our algorithms in
terms of time complexity and number of internal labels. It should also be eval-
uated whether the criterion of maximizing the number of internal labels yields
aesthetically valuable labelings. The extension from the type-opo boundary la-
beling model to the more appealing type-po (or even to octilinear models [2])
is still open and seems nontrivial. Other variants to be considered might be to
use leaders only when they are bend-less, to incorporate length-restrictions on
the leaders or more general penalty functions for intersections between internal
labels and leaders.

References

1. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two
variables per constraint (extended abstract). Algorithmica 29(44), 595–609 (2001)
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Abstract. For directed and undirected graphs, we study the problem
to make a distinguished vertex the unique minimum-(in)degree vertex
through deletion of a minimum number of vertices. The corresponding
NP-hard optimization problems are motivated by applications concern-
ing control in elections and social network analysis. Continuing previous
work for the directed case, we show that the problem is W[2]-hard when
parameterized by the graph’s feedback arc set number, whereas it be-
comes fixed-parameter tractable when combining the parameters “feed-
back vertex set number” and “number of vertices to delete”. For the so
far unstudied undirected case, we show that the problem is NP-hard and
W[1]-hard when parameterized by the “number of vertices to delete”. On
the positive side, we show fixed-parameter tractability for several param-
eterizations measuring tree-likeness, including a vertex-linear problem
kernel with respect to the parameter “feedback edge set number”. On
the contrary, we show a non-existence result concerning polynomial-size
problem kernels for the combined parameter “vertex cover number and
number of vertices to delete”, implying corresponding nonexistence re-
sults when replacing vertex cover number by treewidth or feedback vertex
set number.

1 Introduction

Making a distinguished vertex minimum degree by vertex deletion is a natural
though widely unexplored graph problem. We contribute new insights into the
algorithmic complexity of the corresponding computational problems, providing
intractability as well as fixed-parameter tractability results.

Formally, we studied the following two decision problems.
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Min-Indegree Deletion (MID)
Given: A directed graph D = (W, A), a distinguished vertex wc ∈ W ,

and an integer k ≥ 1.
Question: Is there a subset W ′ ⊆ W \ {wc} of size at most k such that

wc is the only vertex that has minimum indegree in D[W \W ′]?

Whereas MID has been studied in one previous paper [2], its undirected coun-
terpart seems completely unexplored:

Min-Degree Deletion (MDD)
Given: An undirected graph G = (V, E), a distinguished vertex wc ∈ V ,

and an integer k ≥ 1.
Question: Is there a subset V ′ ⊆ V \ {wc} of size at most k such that wc

is the only vertex that has minimum degree in G[V \ V ′]?

MID directly emerges from a problem concerning electoral control with respect
to so-called “Llull voting” [2,9], one of the well-known voting systems based
on pairwise comparision of candidates. Concerning MDD, in undirected social
networks the degree of a vertex relates to its popularity or influence [18, pages
178–180]. Then, making a distinguished vertex minimum degree (equivalently,
making it maximum degree in the complement graph) corresponds to activities
or campaigns where a single agent shall be transformed to the least or most
important agent in its community. Minimum vertex deletion, hence, can be in-
terpreted as making “competing agents” disappear at minimum cost. A problem
related to MDD is Bounded Degree Deletion (BDD) and its dual problem
(considering the complement graph) Maximum s-plex. For BDD the goal is to
bound the maximum vertex degree by a prespecified value d (the case d = 0 is
equivalent to the well-known Vertex Cover problem) using a minimum num-
ber of vertex deletions. Other than MDD, BDD and its dual Maximum s-plex
have been studied quite intensively in recent years [1,10,14] which is due to their
applications in social and biological network analysis.

Although both MID and MDD are simple and natural graph problems, we
only know one previous publication concerning these problems. MID has been
shown W[2]-complete for parameter solution size k even when restricted to tour-
nament graphs and it is polynomial-time solvable on directed acyclic graphs [2].

We initiate a thorough theoretical analysis of MID and MDD mainly fo-
cussing on “tree-likeness” parameterizations. We employ several basic structural
parameters measuring the tree-likeness of graphs. The most famous parameter
is the treewidth tw of the input graph, which comes along with the concept of
tree decompositions of graphs.1 The feedback vertex set number sv of a graph
is the minimum number of vertices to delete from a graph to make it acyclic.
Correspondingly, the feedback edge set number se and the the feedback arc set
number sa, respectively, denote the minimum number of edges or arcs to delete
from an undirected or directed graph to make it acyclic. While the computation
of tw, sv and sa leads to NP-hard problems, se can be quickly determined by a

1 We omit any details because we will not need the formal definition in this work.
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Table 1. Overview of the parameterized complexity of Min-Indegree Deletion and
Min-Degree Deletion. The considered parameters are tw :=“treewidth of the input
graph”, sv :=“size of a feedback vertex set”, sa :=“size of a feedback arc set”, s∗v :=
“size of a feedback vertex set not containing wc”, se :=“size of a feedback edge set”,
k :=“number of vertices to delete”, and d :=“maximum degree”. New results are in
boldface. The remaining results are from [2].

parameter Min-Indegree Deletion Min-Degree Deletion

tw — FPT, no polynomial kernel
sv W[2]-hard FPT, no polynomial kernel

s∗v W[2]-hard O((2s∗v + 4)s
∗
v · n6), no polynomial kernel

sa, se W[2]-hard O(2se · n3), vertex-linear kernel
k W[2]-complete W[1]-hard
d FPT FPT

(sv, k) O(sv · (k + 1)sv · n2), no polynomial kernel

spanning tree computation. Note that a small value of se means that the network
is very sparse—however, there are several sparse social networks [13,16,17].

Table 1 summarizes our results. We extend the previous results for MID [2]
by showing that MID is W[2]-hard even when parameterized by sa whereas it
turns fixed-parameter tractable for the combined parameter (k, sv). Note that
this also implies fixed-parameter tractability with respect to the combined pa-
rameter (k, sa) since sa is a weaker parameter than sv in the sense that sv ≤ sa.
As to MDD, we show that it is NP-complete as well as W[1]-hard with re-
spect to the parameter k, devising a parameterized many-one reduction from the
Independent Set problem. In addition, we show that MDD is fixed-parameter
tractable for each of the tree-likeness parameters treewidth, size s∗v of a feed-
back vertex set not containing the distinguished vertex, and feedback edge set
number se. Herein, our fixed-parameter tractability result for treewidth is of
purely theoretical interest whereas the one for the feedback edge set number
comes along with a 2se-vertex problem kernel and a size-O(2se) search tree.
The result for s∗v relies on dynamic programming and bears a combinatorial ex-
plosion of O((2s∗v + 4)s∗

v ). Finally, building on a recent framework for proving
non-existence of polynomial-size problem kernels [3], we also show that there is
presumably no polynomial-size problem kernel for MDD even for the combined
parameter (k, s∗c), where s∗c denotes the size of a vertex cover not containing the
distinguished vertex. This directly implies the non-existence of polynomial-size
problem kernels for the parameters feedback vertex set number and treewidth.
Due to the lack of space, several details are deferred to a full version of this
paper.

Preliminaries. Parameterized complexity is a two-dimensional framework for
studying the computational complexity of problems [8,11,15]. One dimension is
the input size n (as in classical complexity theory), and the other one is the
parameter k (usually a positive integer). A problem is called fixed-parameter
tractable (fpt) if it can be solved in f(k) · nO(1) time, where f is a computable
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function only depending on k. The complexity class consisting of all fpt problems
is denoted by FPT. A core tool in the development of fixed-parameter algorithms
is polynomial-time preprocessing by data reduction [4,12]. Here, the goal is for a
given problem instance x with parameter k, to transform it into a new instance x′

with parameter k′ such that the size of x′ is upper-bounded by some function
only depending on k, the instance (x, k) is a yes-instance if and only if (x′, k′)
is a yes-instance, and k′ ≤ k. The reduced instance, which must be computable
in polynomial time, is called a problem kernel, and the whole process is called
reduction to a problem kernel or kernelization.

Downey and Fellows [8] developed a formal framework for showing fixed-
parameter intractability by means of parameterized reductions. A parameterized
reduction from a parameterized problem P to another parameterized problem P ′

is a function that, given an instance (x, k), computes in f(k) · nO(1) time an in-
stance (x′, k′) (with k′ only depending on k) such that (x, k) is a yes-instance
of problem P if and only if (x′, k′) is a yes-instance of problem P ′. The ba-
sic complexity class for fixed-parameter intractability is called W [1]. There is
good reason to believe that W [1]-hard problems are not fpt [8,11,15]. In this
sense, W [1]-hardness is the parameterized complexity analog of NP-hardness.
The class W[2] means the next higher degree of parameterized intractability.

We assume familiarity with basic graph-theoretic concepts. Let G = (V, E)
be an undirected graph. Unless stated otherwise, let n := |V | and m := |E|. For
V ′ ⊆ V we denote the subgraph induced by V ′ as G[V ′]. Furthermore, we write
G− V ′ for G[V \ V ′]. The open neighborhood of a vertex v is denoted by N(v)
and the degree of v is deg(v) := |N(v)|. We use analogous terms for directed
graphs and differentiate between in- and out-(degree, neighborhood, etc.) by a
subscript in the notation (e.g., degin(v) denotes the indegree of v).

2 Min-Degree Deletion

In this section, we study parameterizations of Min-Degree Deletion by the
solution size, that is, the number of vertices to delete, and structural graph
parameters measuring the tree-likeness. By devising a parameterized reduction
from the W[1]-complete Independent Set problem we obtain the following.

Theorem 1. Min-Degree Deletion is NP-complete and W[1]-hard for the
parameter “number of vertices to delete”.

For the “tree-likeness” parameterizations, we show fixed-parameter tractability
results (Subsection 2.1) and refute the existence of some polynomial-size problem
kernels (Subsection 2.2).

2.1 Fixed-Parameter Tractability Results

In the following, all structural graph parameters are related to measuring the
tree-likeness of the underlying graph. More specifically, we provide results for the
treewidth tw, the size s∗v of a feedback vertex set not containing the distinguished
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vertex, and the feedback edge set number se. By definition, (tw +1) ≤ s∗v ≤ se.
Hence, our fixed-parameter tractability result for MDD for the parameter tw
implies fixed-parameter tractability for the parameters s∗v and se. However,
since our corresponding result for tw only provides a classification and not
an efficient fixed-parameter algorithm, we subsequently present specific fixed-
parameter tractability results for each parameterization.

Parameter treewidth. For treewidth, the “strongest” tree-likeness parameter
we consider in this section, we obtain the following.

Theorem 2. Min-Degree Deletion is fixed-parameter tractable for the pa-
rameter treewidth.

The proof of Theorem 2 relies on expressing MDD by a monadic second-order
logic (MSO) sentence and making use of Courcelle’s famous theorem [6]. Due
to the huge constants coming along with Courcelle’s machinery this result is of
purely theoretical interest. The following observation is crucial to obtain Theo-
rem 2 as well as for some of our other results.

Observation 1. Let G = (V, E) be a graph of treewidth tw and let M∗ be any
solution set for MDD. Then, wc has degree at most tw−1 in G−M∗.

Parameter distinguished feedback vertex set number. We investigate
the parameter distinguished feedback vertex set number s∗v denoting the “size of
a feedback vertex set not containing the distinguished vertex wc”. Since for a
graph with treewidth tw it holds that s∗v ≥ sv ≥ (tw +1), Theorem 2 implies that
MDD is fixed-parameter tractable with respect to s∗v. However, Theorem 2 does
not come with a direct combinatorial algorithm and hence such an algorithm
with running time O((2s∗v +4)s∗

v ·n4 ·deg(wc)2) will be provided in the following.
Let (G = (V, E), wc, k) be an MDD-instance and let Vf be a feedback vertex

set that does not contain wc. Our algorithm basically branches into all possible
subsets V ∗

f of Vf and investigates whether there is a solution containing all
vertices from V ∗

f and not containing any vertex from Vf \ V ∗
f . Furthermore, the

algorithm iterates over the “final” degree that wc might assume in the graph G
after deleting a set of “solution vertices”. Additionally applying some simple
branching and preprocessing steps it remains to solve the following problem.

Annotated Min-Degree Deletion (AMDD)

Given: An undirected graph G = (V, E), a distinguished vertex wc, a
feedback vertex set Vf of G with Vf ⊆ V \ {wc}, and two non-
negative integers k and i.

Question: Is there a subset M ⊆ V \ (Vf ∪ {wc}) of size at most k such
that, in G −M , deg(wc) = i and every other vertex has degree at
least i + 1?

The branching and the preprocessing giving an AMDD-instance can be carried
out in O(2|Vf | ·n2) time. Moreover, due to the preprocessing, in the following we
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can assume that every vertex in V \ {wc} has degree at least i+1 and wc has at
most i neighbors in Vf . Now, for an AMDD-instance (G = (V, E), wc, Vf , k, i),
the algorithm makes use of the following property of VS := V \ (Vf ∪ {wc}), the
set consisting of all vertices that can be part of the solution.

Observation 2. Let n1, . . . , nd denote the neighbors of wc in G−Vf . In the graph
G[VS ], every vertex nx belongs to a connected component T (x) such that T (x) is a
tree and does not contain any vertex ny with nx 	= ny.

Observation 2 can be seen as follows. Consider two neighbors nx and ny of
wc. First, assume that there would be a path from nx and ny that does not
contain wc. Adding wc to this path would induce a cycle and hence Vf would
not be a feedback vertex set of G. Hence, every connected component can contain
at most one neighbor of wc. Second, a cycle within a connected component would
also violate that Vf is a feedback vertex set. Hence, all connected components
induce trees.2

Now, we take a look at an arbitrary solution set M of our MDD-instance.
Since the final degree of wc is i, M must contain degG(wc)− i neighbors of wc.
Putting a vertex x ∈ N(wc) \ Vf into the solution may decrease the degree of
other vertices from T (x) so that they also must be part of the solution. The
set A(x) of affected vertices that need to be deleted when x is deleted can be
computed iteratively as follows. Start with A(x) := {x}. While there is vertex v
with degree at most i in T (x) − A(x), add v to A(x). Since we have to put all
vertices of A(x) into a solution when choosing x into the solution, we define
the cost of x as cost(x) := |A(x)|. Moreover, we will make use of the following
easy-to-verify observation.

Observation 3. A vertex v ∈ Vs \ (
⋃

x∈N(wc)\Vf
A(x)) cannot be part of any

minimal solution.

For the graph not containing vertices from the feedback vertex set Vf , a solution
could easily be computed by choosing a set of deg(wc)− i neighbors of wc such
that the sum of the corresponding costs is minimal. The critical point is that
putting a vertex x into the solution set may also decrease the degree of vertices
from Vf . By definition, we cannot remove any vertex from Vf . Thus, we must
ensure that we “keep” enough vertices from Vs such that the final degree of
every vertex from Vf is at least i + 1. For every vertex v ∈ Vf , we can easily
compute the number nfixed(v) of neighbors which it has “for sure” in every
minimal solution. More specifically, nfixed(v) is the number of neighbors of v in
Vf and in Vs \ (

⋃
x∈N(wc) A(x)) (see Observation 3).

We introduce some notation measuring how many neighbors of a vertex from Vf

must be kept under the assumption that a certain subset Vr ⊆ Vs is not part
of a solution. More specifically, for a vertex v ∈ Vf , let nVr(v) be the number
of neighbors of v in Vr. Then, the number of additional neighbors that are not
2 Observation 2 does not hold for a feedback vertex set containing the distinguished

vertex. Hence, the following approach cannot be transferred to this more general
case.
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allowed to be deleted is defined as s(v, Vr) := i+1−nfixed(v)−nVr(v). This can
be generalized as follows.

Definition 1. For Vf = {v1, . . . , v|Vf |}, the remain-tuple with respect to Vr ⊆
VS is S = (s1, . . . , s|Vf |) where sj := s(vj , Vr).

Recall that the task is to search for a set N ⊆ N(wc) \ Vf of deg(wc) − i
neighbors of wc of minimum cost such that the degree of every vertex from Vf

is at least i + 1. Now, for every subset N ′ ⊆ N(wc) \ Vf , the effect of choosing
that N ′ is not part of a solution can be described by a remain-tuple. More
specifically, a subset N ′ ⊆ N(wc) \ Vf realizes a remain-tuple (s′1, . . . , s

′
|Vf |)

when, for every v ∈ Vf , the number of neighbors of v in
⋃

x∈N ′ A(x) is at least
i + 1 − nfixed(v) − s′i. Then, a cost-k set N ⊆ N(wc) containing deg(wc) − i
neighbors of wc such that set N(wc) \ N realizes the remain-tuple (0, . . . , 0)
corresponds to a solution.

Dynamic programming table. Based on the previous definitions, the dynamic
programming table is defined as D(x, z, S′) with x ∈ {1, . . . , d} where d :=
|N(wc) ∩ Vs|, z ≤ min{x, d− i}, and S′ ⊆ S := {(s′1, . . . , s′|Vf |) | 0 ≤ s′j ≤ i + 1}.
The entry d(x, z, S′) contains the minimum cost of deleting a size-z subset N ′ ⊆
{ni ∈ N(wc) | i ≤ x} such that N ′

r := N(wc) \ N ′ “realizes” the remain-
tuple S′. It follows that D(deg(wc), deg(wc) − i, (0, . . . , 0)) ≤ k if and only if
(G, Vf , wc, k, i) is a yes-instance of AMDD. It is easy to verify that the size of
the D is bounded by deg(wc)2 · (s∗v + 2)s∗

v (see also Observation 1).
One can show that the initialization and update step per entry can be accom-

plished in O((s∗v + 2)s∗
v · n2 · deg(wc)2) time. Hence, together with the running

time for the overall branching into all subsets of a feedback vertex set, one ends
up with the following.

Theorem 3. Min-Degree Deletion can be solved in O((2s∗v + 4)s∗
v · n4 ·

deg(wc)2) time with s∗v being the size of a feedback vertex set not containing wc.

Parameter feedback edge set number. As discussed in the beginning of
this section, the feedback edge set number is the weakest of our parameters
measuring the tree-likeness of graphs. Hence, not surprisingly, we achieve our
best running time bounds here, based on kernelization and a simple search tree.

Our problem kernel result relies on the following “low-degree removal” proce-
dure. Let G = (V, E) be an undirected graph and k be a positive integer. Denote
by RLD(G, k) the graph resulting from the following data reduction: If deleting
all or all but one neighbors from wc leads to a solution (by iteratively deleting
all further vertices with degree at least zero/one), then return “yes”. Otherwise,
wc has degree at least two for every solution. Hence, iteratively remove every
vertex with degree at most two and decrease k accordingly. It is easy to verify
that RLD(G, k) is sound and can be executed in O(n2 · k) time. Note that every
vertex different from wc in RLD(G, k) has degree at least three.
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Theorem 4. Parameterized by the feedback edge set number se, Min-Degree

Deletion admits a 2se-vertex problem kernel which can be computed in O(n2 ·k)
time.

Proof. Let (G′, k′) := RLD(G, k), and let Ed be a size-se-feedback edge set for
G. The graph G−Ed is a forest. Since each vertex in G′ has degree at least three,
each leaf in G′−Ed must be incident to at least two edges in Ed. It follows that
G′ − Ed contains l ≤ se leaves because each leaf must be incident to two edges
of the feedback edge set and each edge of the feedback edge set can be incident
to at most two leaves. Furthermore, the number of incidences of the edges in Ed

is bounded from above by 2se. Each inner vertex of degree two in G′ −Ed must
be incident to at least one edge in Ed. Since there are l leaves in G′ − Ed, only
2se − 2l incidences are left over. Hence, G′ −Ed contains at most 2se − 2l inner
vertices with degree two. Moreover, all remaining vertices must have degree at
least three and a tree with l leaves can clearly have at most l such vertices.
Altogether, G′ consists of at most l + 2se − 2l + l = 2se vertices. ��

Finally, we complement Theorem 4 by a simple search tree algorithm which can
be interleaved with the data reduction procedure RLD(G, k). This yields the
following theorem.

Theorem 5. Min-Degree Deletion can be solved in O(2se ·se
3+n2 ·k) time,

where se is the feedback edge set number of the input graph.

2.2 Non-existence of a Polynomial Kernel

We show that, unless coNP ⊆ NP / poly, there is no polynomial kernel for MDD

with respect to the parameter s∗c :=“size of a vertex cover that does not contain
wc”. Since the treewidth tw and the feedback vertex set number sv of a graph
are bounded from above by s∗c , this non-kernelizable result carries over to these
two parameterizations.

Theorem 6. MDD does not admit a polynomial kernel with respect to the com-
bined parameter (s∗c , k), with s∗c being the size of a vertex cover not containing
wc and k being the solution size, unless coNP ⊆ NP / poly.

Proof. Our proof relies on a reduction from Hitting Set (HS) defined as fol-
lows. Given a set family S := {S∗

1 , . . . , S∗
m} over a universe U := {u∗

1, . . . , u
∗
d}

and an integer k′ ≥ 0, HS asks for a subset U ′ ⊆ U with |U ′| ≤ k′ such that
S∗

i ∩ U ′ 	= ∅ for every i, 1 ≤ i ≤ m. Herein, U ′ is called a hitting set.
Dom et al. [7] have shown that HS does not admit a problem kernel of size

(d + k′)O(1), unless coNP ⊆ NP / poly. Since HS and MDD are NP-complete, it
directly follows from a result of Bodlaender et al. [5] that if there is a polynomial-
time reduction from HS to MDD such that (s∗c+k) ≤ (d+k′)O(1), then MDD does
not admit a polynomial kernel with respect to (s∗c , k) unless coNP ⊆ NP / poly.
In the following, we provide such a reduction.

Let (U, S, k′) be an HS-instance. We construct an undirected graph G = (V, E)
with a distinguished vertex wc as follows. The vertex set V is the disjoint union
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of the sets {wc}, VU , VS , C, and L. Herein, VU := {ui | u∗
i ∈ U}, VS := {sj |

S∗
j ∈ S}, C := {c1, . . . , ck′+1}, and L := {l1, . . . , ld}. The edge set is constructed

as follows. There is an edge between ui and sj if and only if u∗
i ∈ S∗

j . Moreover,
the following edges are added to adjust the degree of wc to d and, for each other
vertex, to at least k′ + 1. First, wc is made adjacent to every vertex in VU .
Furthermore, C is transformed into a clique, and each li, 1 ≤ i ≤ d, is made
adjacent to each vertex in C. Finally, each vertex x ∈ VU ∪ VS is made adjacent
to k′ arbitrarily chosen vertices of C. This completes the construction.

Now, observe that each edge of G is incident to a vertex in C ∪ VU . Hence, G
has a vertex cover of size k′+1+d which does not contain wc. For the correctness
of the reduction it remains to show that (U,S, k′) is a yes–instance of HS if and
only if (G, wc, d− k′) is a yes–instance of MDD.
“⇒”: Let U ′ ⊆ U with |U ′| = k′ denote a hitting set of S. We show that
M := {uj | u∗

j ∈ U \ U ′} is a solution for (G, wc, d− k′). First, observe that wc

has degree k′ in G −M . Moreover, since U ′ is a hitting set, every vertex in VS
has at least one neighbor in VU \M , and, hence, degree at least k′ +1 in G−M .
For this reason and since we do not delete a neighbor of L ∪ C, each vertex
in V \ {wc} has degree at least k′ + 1. Hence, (G, wc, d− k′) is a yes-instance of
MDD.
“⇐”: Let M ⊆ V with |M | ≤ d− k′ denote a solution for (G, wc, d− k′). First,
we argue that wc has degree k′ in G−M . Clearly, wc cannot have degree smaller
than k′. Furthermore, wc cannot have degree more than k′ in G−M ; otherwise,
since wc is the only vertex with minimum degree in G−M and each vertex in L
has degree k′ +1, M must contain every vertex in L. However, |L| = d > d− k′.
Thus, degG−M (wc) = k′ and, as a consequence, M ⊆ VU and |M | = d− k′.

Next, we show that U ′ := {u∗
i ∈ U | ui ∈ VU \M} is a hitting set of size k′.

By the observation above, |U ′| = k′. Assume towards a contradiction that there
is a set S∗

j , 1 ≤ j ≤ m, with S∗
j ∩ U ′ = ∅. Thus, for each element u∗

i ∈ S∗
j the

corresponding vertex ui is in M . Due to the construction of G, vertex sj has
degree k′ in G−M ; since degG−M (wc) = k′ this contradicts the fact that wc is
the only vertex with minimum degree. ��

Since the treewidth and the feedback vertex set of a graph are bounded from
above by s∗c , we arrive at the following.

Corollary 1. MDD has no polynomial problem kernel with respect to the param-
eters feedback vertex set and treewidth, respectively, unless coNP ⊆ NP / poly.

3 Min-Indegree Deletion

In this section, we show that MID is W[2]-hard with respect to the parameter
feedback arc set number sa. We provide a parameterized reduction from the
W[2]-complete Dominating Set (DS) problem [8]. Given an undirected graph
and an integer k, DS asks whether there is a size-k subset V ′ ⊆ V such that
every vertex from V is contained in V ′ or has a neighbor in V ′. A corresponding
subset is denoted as dominating set.
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Theorem 7. Min-Indegree Deletion is W[2]-hard with respect to the feed-
back arc set number sa.

Proof. Given a DS-instance (G∗ = (V ∗, E∗), k) with V ∗ = {v∗1 , v∗2 , . . . , v∗n}, we
construct a directed graph G = (W, E) with feedback arc set number at most
(k + 1)2 such that (G, wc, n− k) is a yes-instance of MID if and only if (G∗, k)
is a yes-instance of DS.

The vertex set W of G consists of wc and the union of the following disjoint
vertex sets. The sets V := {vi | v∗i ∈ V ∗} and D := {di | v∗i ∈ V ∗} representing
the vertices of G and four sets of auxiliary vertices, namely a set S containing
n vertices and three sets X , Y , and Z, each containing k + 1 vertices. The arcs
of G are as follows.

– One arc from vi to dj if and only if v∗j ∈ N [v∗i ].
– One arc from each vertex in V to wc.
– One arc from each vertex in X to each vertex in Y , from each vertex in Y

to each vertex in Z, and from each vertex in Z to each vertex in X .
– One arc from each of k arbitrarily chosen vertices in Y to each vertex in D.
– One arc from each vertex in Y to each vertex in V .
– One arc from each vertex in X to each vertex in S.

It follows directly from the construction that the distinguished vertex wc has
indegree n and each vertex in V ∪ X ∪ Y ∪ Z ∪ S has indegree k + 1. Since
each vertex di has one ingoing arc from vi and k ingoing neighbors from Y , the
vertices in D have indegree at least k + 1.

Furthermore, it is easy to verify that (W, E \ (X × Y )) is acyclic and, since
|X | = |Y | = k + 1, the feedback arc set number sa is at most (k + 1)2. This
finishes the description of the construction. It remains to prove the correctness.
Claim: (G∗, k) is a yes-instance of DS if and only if (G, wc, n−k) is a yes-instance
of MID.
“⇒”: Let V ∗

d ⊆ V ∗ be a size-k dominating of G∗. We show that Md := {vi ∈
V | v∗i /∈ V ∗

d } is a solution for MID. Since |Md| = n− k and wc has indegree n
in G, wc has indegree k in G−Md. We show that all other vertices have degree
at least k + 1. By construction, every vertex in G has indegree at least k + 1.
Since from the vertices in V ∗

d there are only arcs to D ∪ {wc}, only vertices
from D∪{wc} can have smaller indegrees in G−Md than in G. Because V ∗

d is a
dominating set, every di has at least one in-neighbor within V \Md. Moreover,
every di has k further in-neighbors in Y . Hence, each vertex in D has indegree
at least k + 1. Thus, (G, wc, n− k) is a yes-instance of MID.
“⇐”: Consider a yes-instance (G, wc, n− k) of MID with solution Md. We show
that V ∗

d := {v∗i ∈ V ∗ | vi ∈ V \Md} is a size-k dominating set of G∗.
We first prove that V ∗

d has cardinality k. To this end, we show by contradiction
that the indegree of wc in G − Md is k and hence Md contains only vertices
from V . Assume that wc has indegree at least k + 1 in G −Md. Then, every
other vertex must have indegree greater than k+1 in G−Md. Since every vertex
in S has indegree exactly k + 1, it follows that S ⊆ Md and hence |Md| ≥ n; a
contradiction. Consequently, |V ∩Md| = n− k and, hence, V ∗

d has cardinality k.
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It remains to show that V ∗
d is a dominating set. Assume that there is a ver-

tex v∗i ∈ V ∗ not dominated by any vertex in V ∗
d . This implies that di has no

in-neighbor from V in G − Md. Moreover, by construction, di has only k in-
neighbors in G − V . As argued above, di is not in Md since Md contains only
vertices from V . Hence, di and wc have indegree k in G−Md; a contradiction.

In the remainder of this section, we show fixed-parameter tractability of MID

with respect to the combined parameter feedback vertex set number sv and
number k of vertices to be deleted. The corresponding branching algorithm relies
on the following lemma.

Lemma 1. For a yes-instance (G = (V, E), wc, k) of MID, the indegree of wc

in G is at most k + sv, where sv denotes the feedback vertex set number of G.

Proof. The proof is by contradiction. Let Vf ⊆ V be a feedback vertex set of
size sv. Assume that degin(wc) > sv +k. For every subgraph G′ of G obtained by
deleting k vertices from G−{wc}, one can make the following two observations.
First, since G′ − Vf is acyclic, there must be a vertex v with indegree zero
in G′ − Vf . Hence, the indegree of v in G′ is at most sv (in case that v has one
ingoing arc from every vertex in Vf ). Second, since degin(wc) > sv + k in G,
it follows that degin(wc) > sv in G′. Consequently, there is no size-k subset of
vertices that can be deleted from G such that wc is a vertex with minimum
indegree; a contradiction to the fact that (G = (V, E), wc, k) is a yes-instance.

��

Now, by applying an algorithm branching on all up-to-size-k subsets of the in-
neighborhood of wc and checking whether a corresponding subset can be ex-
tended to a solution, one arrives at the following theorem.

Theorem 8. Min-Indegree Deletion can be solved in O((k + 1)sv · sv · n2)
time.

4 Conclusion

We introduced the NP-hard vertex deletion problem Min-Degree Deletion

on undirected graphs. For Min-Degree Deletion and its directed counter-
part Min-Indegree Deletion we provided several results concerning their
fixed-parameter tractability with respect to the parameter solution size and sev-
eral parameters measuring the input graph’s tree-likeness (see Table 1 in the
introductory section for an overview). There remain numerous opportunities for
future research. For example, the fixed-parameter tractability results for Min-

Degree Deletion for the parameter treewidth as well as for the parameter
feedback vertex set are far from any practical relevance. For these parameteri-
zations it would be interesting to complement our classification results by direct
combinatorial algorithms. Moreover, we are not aware of studies concerning the
polynomial-time approximability of both problems.



134 N. Betzler et al.

References

1. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network
analysis: The maximum k-plex problem. Oper. Res. (2010) (to appear)

2. Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elec-
tions and related digraph problems. Theor. Comput. Sci. 410(52), 5425–5442 (2009)

3. Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without poly-
nomial kernels. J. Comput. System Sci. 75(8), 423–434 (2009)

4. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen,
J., Fomin, F.V. (eds.) IWPEC2009. LNCS, vol. 5917, pp. 17–37. Springer,Heidelberg
(2009)
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Randomized OBDDs for the Most Significant
Bit of Multiplication Need Exponential Size

Beate Bollig� and Marc Gillé
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44221 Dortmund, Germany

Abstract. Integer multiplication as one of the basic arithmetic func-
tions has been in the focus of several complexity theoretical investiga-
tions and ordered binary decision diagrams (OBDDs) are one of the
most common dynamic data structures for Boolean functions. Only two
years ago, the question whether the deterministic OBDD complexity of
the most significant bit of integer multiplication is exponential has been
answered affirmatively. Since probabilistic methods have turned out to
be useful in almost all areas of computer science, one may ask whether
randomization can help to represent the most significant bit of integer
multiplication in smaller size. Here, it is proved that the randomized
OBDD complexity is also exponential.

Keywords: computational complexity, integer multiplication, lower
bounds, ordered binary decision diagrams, randomized one-round com-
munication complexity.

1 Introduction

Integer multiplication is one of the most important functions in computer science
and a lot of effort has been spent in designing good algorithms and small circuits
and in determining its complexity. For some computation models it is a quite
simple function. It is contained in NC1 (polynomial-size {∨,∧,¬}-circuits of
fan-in 2 and logarithmic depth) and in TC0,3 (polynomial-size threshold circuits
of depth 3) but neither in AC0 (polynomial-size {∨,∧,¬}-circuits of unbounded
fan-in and constant depth) nor in TC0,2 [14]. For more than 35 years the algo-
rithm of Schönhage-Strassen [22] has been the fastest method for integer mul-
tiplication running in time O(n log n log log n). Recently algorithms running in
time n log n · 2O(log∗ n) have been presented [12,13]. Until now it is open whether
there exist algorithms with running time O(n log n) for integer multiplication.

Ordered binary decision diagrams (OBDDs), introduced by Bryant [10], are
one of the most common dynamic data structures for Boolean functions. Al-
though many exponential lower bounds on the OBDD size of Boolean functions
are known and the lower bound methods are quite simple, it is often a more
difficult task to prove large lower bounds for some predefined and interesting
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functions. Although an exponential lower bound on the OBDD size of the so-
called middle bit of integer multiplication has been known since 1991 [11], only
two years ago Wegener’s question [25], whether the OBDD complexity of the
most significant bit of integer multiplication is also exponential, could be an-
swered affirmatively [4].

The complexity theoretical analysis of randomized OBDDs has been launched
in [1] by presenting a function representable by randomized OBDDs of polyno-
mial size with small one-sided error (for the formal definition of the model see
Section 2) but exponential size for deterministic OBDDs. Independently, in [2]
and [20] the first lower bounds for randomized OBDDs have been proven. In [3]
it has been shown that the size of randomized ordered binary decision diagrams
representing the middle bit of integer multiplication with two-sided bounded
error is at least 2Ω(n/ log n). In this paper we show that the size of randomized
ordered binary decision diagrams for the most significant bit of integer multi-
plication is 2Ω(n) using a simple proof. As a by-product the lower bound on the
size of randomized ordered binary decision diagrams for the middle bit of integer
multiplication can also be improved up to 2Ω(n).

1.1 Ordered Binary Decision Diagrams

Boolean circuits, formulae, and binary decision diagrams, in complexity the-
ory often called branching programs, are standard representations for Boolean
functions. (For a history of results on binary decision diagrams see, e.g., the
monograph of Wegener [25]). Besides the complexity theoretical viewpoint peo-
ple have used restricted binary decision diagrams in applications and ordered
binary decision diagrams are nowadays one of the most popular data structures
for Boolean functions. Among the many areas of application are verification,
model checking, computer-aided design, relational algebra, and symbolic graph
algorithms.

Definition 1. A binary decision diagram (BDD) on the variable set Xn =
{x1, . . . , xn} is a directed acyclic graph with one source and two sinks labeled
by the constants 0 and 1. Each non-sink node (or decision node) is labeled by
a Boolean variable and has two outgoing edges, one labeled by 0 and the other
by 1. An input b ∈ {0, 1}n activates all edges consistent with b, i.e., the edges
labeled by bi which leave nodes labeled by xi. A computation path for an input
b in a BDD G is a path of edges activated by the input b which leads from the
source to a sink. A computation path for an input b which leads to the 1-sink is
called accepting path for b. The BDD G represents a function f ∈ Bn for which
f(b) = 1 iff there exists an accepting path for the input b. The size of a binary
decision diagram G is the number of its nodes. The binary decision diagram size
of a Boolean function f is the size of the smallest BDD representing f .

Definition 2. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables. An ordered binary decision diagram (OBDD) is
a binary decision diagram with a variable ordering. On each path from the source
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to the sinks, the variables at the nodes have to appear in the order prescribed by
π (where some variables may be left out). A π-OBDD is an OBDD ordered
according to π. The π-OBDD size of f (denoted by π-OBDD(f)) is the size of
the smallest π-OBDD representing f . The OBDD complexity of f (denoted by
OBDD(f)) is the minimum of all π-OBDD(f).

It is well known that the size of an OBDD representing a function f , that is
defined on n Boolean variables and depends essentially on all of them (a function
g depends essentially on a variable z if g|z=0 �= g|z=1), depends on the chosen
variable ordering and may vary between linear and exponential size.

Randomized binary decision diagram models can be defined like randomized
algorithms for decision problems.

Definition 3. A randomized binary decision diagram G is a directed acyclic
graph with decision nodes for Boolean variables and randomized nodes. A ran-
domized node is an unlabeled node with two outgoing edges. Sinks can be labeled
by 0, 1, or ?. The random computation path for an input b is defined as follows.
At decision nodes labeled by xi, the outgoing bi-edge is chosen. At randomized
nodes each outgoing edge is chosen independently from all other random decisions
with probability 1/2. The acceptance probability accG(b) or Prob(G(b) = 1) of
G on b is the probability that the random computation path reaches the 1-sink.
The rejection probability rejG(b) or Prob(G(b) = 0) of g on b is the probability
that the random computation path reaches the 0-sink.

Randomized variants of restricted binary decision diagrams can be defined sim-
ilarly. Another approach to define randomized binary decision diagrams is the
introduction of probabilistic variables in addition to the usual Boolean variables
(see [1]). The input is an assignment to the usual variables where the proba-
bilistic variables independently take the values 0 and 1 with probability 1/2. If
each probabilistic variables is tested at most once on each path from the source
to the sinks, we obtain an equivalent definition of randomized binary decision
diagrams.

Definition 4. i) G represents a function f ∈ Bn with unbounded error if
Prob(G(b) = f(b))> 1/2 for all inputs b.

ii) G represents a function f ∈ Bn with two-sided ε-bounded error, 0 ≤ ε < 1/2,
if Prob(G(b) �= f(b))≤ ε for all inputs b.

iii) G represents a function f ∈ Bn with one-sided ε-bounded error, 0 ≤ ε < 1,
if Prob(G(b) �= f(b))≤ ε for all inputs b ∈ f−1(1) and Prob(G(b) = 0)= 1
for all inputs b ∈ f−1(0).

iv) G represents a function f ∈ Bn with zero error and ε-failure, 0 ≤ ε < 1, if
Prob(G(b) = f(b)) = 0 and Prob(G(b) =?) ≤ ε for all inputs b.

1.2 Integer Multiplication and Ordered Binary Decision Diagrams

Lower bounds for integer multiplication are motivated by the general interest in
the complexity of important arithmetic functions.
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Definition 5. The Boolean function MULi,n ∈ B2n maps two n-bit integers
x = xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their product , i.e.,
MULi,n(x, y) = zi, where x · y = z2n−1 . . . z0 and x0, y0, z0 denote the least
significant bits.

The first exponential lower bound on the OBDD complexity for an output bit of
integer multiplication has been proved for MULn−1,n. Bryant [11] has presented
a lower bound of 2n/8. Progress in the analysis of the middle bit of integer mul-
tiplication has been achieved by an approach using universal hashing and as a
result Woelfel [26] has improved Bryant’s lower bound up to Ω(2n/2). In the
meantime exponential lower bounds for the middle bit of multiplication have
also been proved for more general binary decision diagram models (see, e.g.,
[9,8], [19], and [21]). As mentioned above, in [3] it has been shown that the size
of randomized ordered binary decision diagrams representing MULn−1,n with
ε-bounded error, where ε < 1/2 is a constant, is bounded below by 2Ω(n/ log n).
In [21] a lower bound for so-called read-k-times branching programs represent-
ing MULn−1,n has been shown which is superpolynomial as long as the error
probability is superpolynomially small. (For more about integer multiplication
and the size of BDDs see e.g. [5].)

MUL2n−1,n computes the most important bit of integer multiplication in the
following sense. Let (z2n−1, . . . , z0) be the binary representation of the integer
z, i.e., z =

∑2n−1
i=0 zi · 2i. Since the bit z2n−1 has the highest significance, for

the approximation of the value of the product of two n-bit numbers x and y it
is the most important one. Moreover, for space bounded models of computation
the most significant bit of integer multiplication is interesting since lower bounds
of order s(n) can be transferred to lower bounds of order s(i/2) for any other
bit zi, 2n− 1 > i ≥ 0. As mentioned before, only in 2008 it has been shown that
the OBDD complexity of the most significant bit of multiplication is exponential
[4]. (For larger lower bounds see also [6,7].)

Our result can be summarized as follows.

Theorem 1. The size of randomized OBDDs representing the most significant
bit of integer multiplication MUL2n−1,n with bounded two-sided error is at least
2Ω(n).

In Section 2 we start with some notation. Since results on randomized one-
round communication complexity provide useful tools to prove lower bounds on
the size of randomized OBDDs, we present afterwards some basics concerning
communication complexity. Our lower bound proof on the size of randomized
OBDDs for the most significant bit of integer multiplication appeals to known
results for the communication complexity of the greater than function GTn,
therefore we take a look at the round-elimination technique and the lower bounds
for GTn. Finally, Section 3 contains the main result of the paper, the proof of
Theorem 1.
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2 Preliminaries

2.1 Notation

In the rest of the paper we use the following notation.
Let [x]lr, n − 1 ≥ l ≥ r ≥ 0, denote the bits xl . . . xr of a binary number

x = (xn−1, . . . , x0). For the ease of description we use the notation [x]lr = z if
(xl, . . . , xr) is the binary representation of the integer z ∈ {0, . . . , 2l−r+1 − 1}.
Sometimes, we identify [x]lr with z if the meaning is clear from the context. We
use the notation (z)l

r for an integer z to identify the bits at position l, . . . , r in
the binary representation of z.

Let � ∈ {0, . . . , 2m − 1}, then � denotes the number (2m − 1)− �.

2.2 Communication Complexity

In order to obtain lower bounds on the size of OBDDs one-round communication
complexity has become a standard technique (see [15] and [17] for the theory of
communication complexity). Loosely speaking, the known lower bound proofs on
the size of OBDDs are based on the fact that a large amount of information has
to be exchanged across a suitably chosen cut in the OBDD in order to evaluate
the represented function. Results from communication complexity are more or
less used to get lower bounds on the necessary amount of information.

The main subject is the analysis of the following (restricted) communication
game. Consider a Boolean function f ∈ Bn which is defined on the variables in
Xn = {x1, . . . , xn}, and let Π = (XA, XB) be a partition of Xn. Assume that
Alice has only access to the input variables in XA and Bob has only access to
the input variables in XB. In a one-round communication protocol, upon a given
input x, Alice is allowed to send a single message (depending on the input vari-
ables in XA) to Bob who must then be able to compute the answer f(x). The
one-round communication complexity of the function f denoted by C(f) is the
worst case number of bits of communication which need to be transmitted by
such a protocol that computes f . It is easy to see that an OBDD G with respect
to a variable ordering where the variables in XA are tested before the variables
in XB can be transformed into a communication protocol and C(f) ≤ �log |G|	.
Therefore, linear lower bounds on the communication complexity of a function
f : {0, 1}|XA| × {0, 1}|XB| → {0, 1} lead to exponential lower bounds on the size
of π-OBDDs where the XA-variables are before the XB-variables in π. Similarly,
randomized communication complexity (or more precisely communication with
randomized protocols) provide the main tool to prove lower bounds on the size
of randomized OBDDs. (For a nice paper on randomized one-round communi-
cation complexity see [16]). A randomized OBDD G′ can be transformed into
a randomized communication protocol with the same error or failure guarantee
and R(f) ≤ �log |G′|	 for the randomized communication complexity R(f) of
the given type of one-round protocol.

Usually we cannot directly analyze the communication complexity of a func-
tion. One way out is the identification of hard subproblems. Rectangular
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reductions allow to apply known results on (randomized) communication com-
plexity to prove results on the size of randomized OBDDs in a simple way.

Definition 6. Let f(x, y) : {0, 1}n × {0, 1}m → {0, 1} and g(x, y) : {0, 1}k ×
{0, 1}l → {0, 1}. A pair (ϕA, ϕB) of functions ϕA : {0, 1}n → {0, 1}k and
ϕB : {0, 1}m → {0, 1}l is called rectangular reduction from f to g if f(a, b) =
g(ϕA(a), ϕB(b)) for all (a, b) ∈ {0, 1}n × {0, 1}m.

The obvious and important property of a rectangular reduction from a function
f to a function g is that the communication complexity of f is bounded above
by the communication complexity of g and this holds for each type of protocol
(deterministic and randomized).

Next, we look at the randomized communication complexity of some func-
tions and the ideas for the lower bound proofs of the size of (randomized)
OBDDs for the output bits of integer multiplication. Let the greater than func-
tion GTn : {0, 1}n×{0, 1}n → {0, 1} be defined by GTn(a, b) = 1 iff [a]n1 > [b]n1 .
In [18,23,24] rounds versus communication tradeoffs for GTn have been stud-
ied. An r-round protocol is a protocol with the restriction that Alice and Bob
may exchange at most r messages, where Alice must send the first message and
only one of the players need output the answer. Rr(f) is the number of bits
in the largest message, minimized over all r-round protocols that output f cor-
rectly with the given bounded error or failure probability. A lower bound of
Rr(GTn) = Ω(n1/rc−r) for some fixed constant c and a nearly matching up-
per bound of O(n1/r log n) are known [18,23] which leads to linear randomized
one-round communication complexity for the greater than function. Intuitively
speaking, the round elimination technique pioneered in [18] and refined in [23]
enables Alice and Bob to remove the first round of communication in a protocol
and to solve a somewhat smaller instance of the same problem. Here, a problem
GTk,A

n/k(a1, . . . , ak, i, b) is defined, where Alice is given a1, . . . , ak ∈ {0, 1}n/k and
Bob is given i, i ∈ {1, . . . , k}, b ∈ {0, 1}n/k and copies of a1, . . . , ai−1, and they
have to communicate and decide whether ai > b. To reduce GTk,A

n/k to GTn,
Alice concatenates a1, . . . , ak to a and Bob concatenates a1, . . . , ai−1, b, 1 . . . 1 to
b′ ∈ {0, 1}n. Now, using the round elimination lemma the argumentation is the
following. If there exists an one-round δ-bounded error (public coin) randomized
protocol for the modified greater than function with communication complex-
ity c′, then a zero-round protocol for the greater than function GTn/k can be
obtained with error probability δ + 1/2(2c′ ln 2/n)1/2. Since n/k > 1, GTn/k is
defined on a nontrivial domain, the function cannot be solved by a zero-round
protocol with error probability less than 1/2. Therefore, c′ = Ω(n). It is easy
to prove that the same lower bound for a modification of GTn, where Alice
gets exactly one of the variables ai and bi, 1 ≤ i ≤ n, can be obtained using a
rectangular reduction.

Binary addition ADDi,n : {0, 1}2n → {0, 1} maps two n-bit integers x =
xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their sum, i.e., ADDi,n(x, y) = si,
where sn . . . s0 is the sum of x and y and x0, y0, z0 denote the least significant
bits. It is easy to see that the communication complexity of ADDn,n is linear
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if for each i, 0 ≤ i ≤ n − 1, Alice gets exactly one of the variables xi and
yi. ADDn,n(x, y) = 0 iff [x]n1 < 2n − [y]n1 . Therefore, the functions ADDn,n and
GTn are closely related, to be more precise, there is a rectangular reduction from
GTn to ADDn,n and vice versa. The idea of Bryant’s lower bound proof on the
OBDD size of MULn−1,n [11] is the following. For each variable ordering there
is a subfunction of MULn−1,n which is equal to ADDm,m, where m ≥ n/8. The
variable ordering is bad in the sense that among Alice’s m variables is exactly
one of the variables xi and yi. As a result we can conclude that the size of
randomized OBDDs representing MULn−1,n is at least 2Ω(n). For the proof of
the lower bound on the size of randomized OBDDs for MUL2n−1,n in the next
section, we use some of the ideas for the exponential lower bound on the size of
deterministic OBDDs for the most significant bit of integer multiplication [4,7].

Definition 7. Let f : {0, 1}n → {0, 1} be an arbitrary function defined on the
variable set Xn = {x1, . . . , xn}. Let π : {1, . . . , n} → {1, . . . , n} be a vari-
able ordering on Xn, 1 ≤ p ≤ n − 1, and L := {xπ(1), . . . , xπ(p)}, R :=
{xπ(p+1), . . . , xπ(n)}. The function fπ,p : {0, 1}p × {0, 1}n−p → {0, 1} is de-
fined on assignments l to the variables in L and r to R by fπ,p(l, r) := f(l + r),
where l + r denotes the joint assignment to Xn obtained from l and r.

Our aim is to prove that there exists for every variable ordering π a rectangular
reduction from the variant of GTn′ , where Alice gets exactly one variable for
each significance and n′ = Θ(n), or the negation of this function to MULπ,p

2n−1,n

for p suitably chosen.

3 An Exponential Lower Bound on the Randomized
OBDD Complexity of the Most Significant Bit of
Integer Multiplication

In this section we prove Theorem 1 and determine the lower bound of 2Ω(n) on
the size of randomized OBDDs for the representation of the most significant bit
of integer multiplication. We use some of the ideas presented in [7] but we have
to apply them differently to obtain a lower bound on the size of randomized
OBDDs.

Let π be an arbitrary but fixed variable ordering in the rest of the sequel. We
start with a useful observation.

Fact 1. For an integer 2n−1+�2n/3 the corresponding smallest integer such that
the product of the two numbers is at least 22n−1 is

2n − �2n/3+1 +
⌈
�22−n/3+2 − 4�3

2n−1 + �2n/3

⌉
.

Next, we investigate requirements that have to be fulfilled for inputs x and y,
where MUL2n−1,n(x, y) = 1. If x represents an integer 2n−1 + �2n/3, 1 ≤ � <

2n/3−1, and [y]n/3
0 = 0, the upper part of y has to represent an integer greater
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Fig. 1. The composition of the input x

than 2(2/3)n − 2�, i.e., [y]n−1
n/3 > 2(2/3)n − 2�. If [x]n−1

0 = 2n−1 + �2n/3 and
[y]n−1

n/3 = 2(2/3)n − 2�, the lower part of y has to represent an integer of at least⌈
�22−n/3+2 − 4�3

2n−1+�2n/3

⌉
.

In the following we decompose � into two parts:

� := u · 2m + w,

w < 2m and u < 2(7/8)m and m := (8/45)n− 8/15. (In the sequel for the sake of
simplicity we do not apply floor or ceiling functions to numbers even when they
need to be integers whenever this is clear from the context and has no bearing
on the essence of the proof.) Then �2 = u222m + uw2m+1 + w2. In our lower
bound proof we choose u and w in such a way that no carry bit is generated by
adding w2 and uw2m+1. For our rectangular reduction the most decisive part is
uw2m+1. If we choose u as a power of 2, the product u · w is equal to w shifted
according to u. Moreover, one key idea of our lower bound proof is that

(
�2
)(5/2)m−n/3+2
2m+1−n/3+2 =

(⌈
�22−n/3+2 − 4�3

2n−1+�2n/3

⌉)(5/2)m−n/3+2

2m+1−n/3+2

=
(
u22−1 + u · w

)(3/2)m−1
m

if we fix u and choose the assignments for w suitably. Therefore, [y]n/3−1
0 ≥⌈

�22−n/3+2 − 4�3

2n−1+�2n/3

⌉
if [y](5/2)m−n/3+2

2m+1−n/3+2 ≥
(
u22−1 + u · w

)(3/2)m−1
m

. (See
Figure 1 for the decomposition of our inputs x in the lower bound proof.)

Let S := {xn/3+m/2, . . . , xn/3+m−1, y(5/2)m−n/3+2, . . . , y2m+1−n/3+2} and L
be the set of the first |L| variables according to π where there are m/2 variables
from S and R be the set of the remaining variables. Let XS,L be the x-variables
in S ∩ L, XS,R the x-variables in S ∩ R. Similar the sets YS,L and YS,R are de-
fined. Using simple counting arguments we can prove that there exists a distance
parameter d such that there are at least m/8 pairs (xn/3+i, ym+1+i+d−n/3+2) in
XS,L × YS,R ∪XS,R × YS,L (for a similar proof see, e.g., [11]). Let I be the set
of indices, where xn/3+i belongs to such a pair.

Next, we have to use a case inspection. A pair (xn/3+i, yn/3+i+1), i ∈ I, is
called (x, y)-pair. A pair (xi, yi+1) is called separated with respect to L iff xi ∈ L
and yi+1 /∈ L or vice versa.
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Fig. 2. Some replacements of the x- and y-variables in Case 1. The free x-and
y-variables are in the shaded areas.

Case 1: There are at least |I|/2 separated (x, y)-pairs with respect to L.
Let I ′ ⊆ I be the set of indices i such that xn/3+i belongs to a separated

(x, y)-pair with respect to L. The variables xn/3+i, yn/3+i+1, i ∈ I ′, are called
free x- and y-variables. We replace the variables that are not free in the following
way (see Figure 2 for some of the replacements mentioned below):

– xn−1 and xn/3+m/2−1 are set to 1, the remaining x-variables that are not
free are set to 0,

– yn/3+m/2 and yn/3+m/2−1 are set to 1, yn/3+m/2−2, . . . , y0 are set to 0, the
remaining y-variables that are not free are set to 1.

The effect of these replacements is that the function value of the corresponding
subfunction of the most significant bit of integer multiplication is 1 if the vector
that consists of the free x-variables is at least as large than the vector that
consists of the negated free y-variables. With other words there is a rectangular
reduction from the variant of the function GT|I′|, where Alice has exactly one
bit for each significance, to MULπ,|L|

2n−1,n.

Case 2: There are less than |I|/2 separated (x, y)-pairs with respect to L.
Let I ′ ⊆ I be the set of indices i such that xn/3+i belongs to a separated

(x, y)-pair with respect to L and I ′′ := I \ I ′. The variables xn/3+i, yn/3+i+1,
ym+1+i+d−n/3+2, i ∈ I ′′, are called free x- and y-variables. We replace some
of the variables that are not free in the following way (see Figure 1 for the
composition of the input x and Figure 3 for some of the replacements mentioned
below):

– xn−1, xn/3+m+d, and xn/3 are set to 1, the remaining x-variables that are
not free are set to 0,

– yn/3+m+d+1 and yn/3 are set to 0, the remaining variables in {yn−1, . . . , yn/3}
that are not free are set to 1,

– y2m+2d−n/3+2 and y2m−n/3+2, . . . , y0 are set to 1, the remaining y-variables
that are not free are set to 0.

Now, it is not difficult to see that there is a rectangular reduction from the
variant of the function GT|I′′|(a, b), where Alice has exactly one bit for each
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3n− 2 0
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3 − 1
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2 − 1
n
3 + m− 1

1 . . . 1

Fig. 3. Some replacements of the x- and y-variables in Case 2. The function value of
the corresponding subfunction of MUL2n−1,n(x, y) is 1 iff the subvector y′ represents
an integer that is at least u2 · 2−1 + (u · w) div 2m = 22d−1 + (2d · w) div 2m (if
xn/3+i = yn/3+i+1, for all i ∈ I ′′).

significance, to MULπ,|L|
2n−1,n: assignments to the a-variables are set to the same

assignments to the variables xn/3+i, i ∈ I ′′, the variables yn/3+i+1 are set to the
negated assignments to xn/3+i, and the assignments to the b-variables are set to
the same assignments to the variables ym+1+i+d−n/3+2.

4 Concluding Remarks

The complexity of integer multiplication is a fascinating subject, although we
have already learned in primary school how to multiply integers. For the middle
bit of multiplication exponential lower bounds for more general (non-oblivious)
binary decision diagram models are known for a long time ([19]) but nothing
is known for the most significant bit. Intuitively MUL2n−1,n seems to be easier
to compute than MULn−1,n but does there really exists a (non-oblivious) bi-
nary decision diagram model for which the computational complexity of the two
functions is exponentially different?
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Abstract. A maximum independent set problem for a simple graph
G = (V, E) is to find the largest subset of pairwise nonadjacent vertices.
The problem is known to be NP-hard and it is also hard to approximate.
Within this article we introduce a non-negative integer valued function
p defined on the vertex set V (G) and called a potential function of a
graph G, while P (G) = maxv∈V (G) p(v) is called a potential of G. For
any graph P (G) ≤ Δ(G), where Δ(G) is the maximum degree of G.
Moreover, Δ(G) − P (G) may be arbitrarily large. A potential of a ver-
tex lets us get a closer insight into the properties of its neighborhood
which leads to the definition of the family of GreedyMAX-type algorithms
having the classical GreedyMAX algorithm as their origin. We establish
a lower bound 1/(P + 1) for the performance ratio of GreedyMAX-type
algorithms which favorably compares with the bound 1/(Δ + 1) known
to hold for GreedyMAX. The cardinality of an independent set generated
by any GreedyMAX-type algorithm is at least

∑
v∈V (G)(p(v)+1)−1, which

strengthens the bounds of Turán and Caro-Wei stated in terms of vertex
degrees.

Keywords: independent set, stable set, graph algorithm, greedy algo-
rithm, ordering, potential of a graph.

1 Introduction

The maximum independent set (MIS) problem is one of the fundamental prob-
lems of discrete optimization. It gained a significant interest as well in theoretical
investigations as in the context of applications ranging from parallel computing,
image processing to data mining and database design. Within this paper we
consider MIS for finite, simple and undirected graphs G = (V, E) with vertex
set V , edge set E, order n = |V (G)| and size m = |E(G)|. A set of vertices I,
I ⊆ V (G) is independent in G, if no two vertices of I are adjacent. The MIS
problem is to find an independent set with the goal of maximizing its cardinality.
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The maximum cardinality of an independent set in G is called the independence
number α(G) of a graph G.

In context of applications a graph G is usually a conflict graph with vertices
representing desirable objects and edges uv to express that objects u and v are
in conflict, i.e. at most one of them can be selected. The goal is to select as
many desirable objects as possible while never selecting two conflicting objects.
Examples for applications of MIS problem are, e.g. disjoint paths for network
routing [7], interval scheduling in manufacturing processes [26], map labeling [1]
and frequency assignment [21] to mention just a few of them.

MIS problem is known to be NP-hard [9] and it is also hard to approximate
within n1−ε [17]. Several exponential time exact algorithms for MIS were given
in literature with the current best running time O(20.288n) [8]. A lot of effort was
put as well into establishing the bounds on α(G) as into design and analysis of
approximation algorithms (see e.g. [3,4,5,10,11,13,14,15,16,18,22,23,24,25,27,28]
to mention just a few of them). The readers interested in more details are also
referred to [12,19] for surveys.

In what follows we need the notion of the neighborhood of a vertex v in the
graph G defined as a set NG(v) = {u ∈ V (G) | vu ∈ E(G)}. A set NG[v] =
NG(v) ∪ {v} is called a closed neighborhood of v in G. The degree of vertex v in
G is the number dG(v) = |NG(v)| of its neighbors, while Δ(G) stands for the
maximum vertex degree in graph G. One of the best known general bounds on
the independence number

α(G) ≥ CW (G) =
∑

v∈V (G)

1
dG(v) + 1

(1)

was independently given by Caro [5] and Wei [28] and it has been also proved
using probabilistic methods, e.g. by Alon and Spencer [3] and Selkow [25]. In-
equality (1) extends the classical result of Turán [27] α(G) ≥ n/(d̄(G) + 1)
stated in terms of graph’s order n and its average degree d̄(G). Griggs [10] and
also Chvátal and McDiarmid [6] proved that the classical GreedyMAX algorithm,
which selects a vertex of maximum degree, deletes it with all incident edges from
the graph and iterates this process on the resulting graph until no edge remains,
outputs an independent set of cardinality bounded by CW (G).

In Section 2 we introduce a non-negative integer valued function p defined
on the vertex set V (G) called a potential function of a graph G and an in-
variant P (G) = maxv∈V (G) p(v) called a potential of a graph G. In contrast
to Caro-Wei and Turán bounds, which strongly depend on counting the neigh-
bors, the criteria relying on the potential function gives a closer insight into
the properties of the neighborhoods. This leads to the definition of the fam-
ily of GreedyMAX-type algorithms (see Sec. 3.1), which have their origin in the
classical GreedyMAX algorithm, and lets us incorporate as well quantitative as
qualitative aspects in algorithms analysis to obtain the improved bounds on their
performance (see Sec. 3.2). In particular, since for any vertex pG(v) ≤ dG(v),
a potential function is used to strengthen CW (G) by proving that cardinality
of an independent set produced by any GreedyMAX-type algorithm is at least
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CWP (G) =
∑

v∈V (G)(p(v) + 1)−1. As a consequence, we obtain a lower bound
1/(P + 1) for the performance ratio of GreedyMAX-type algorithms which favor-
ably compares with the bound 1/(Δ + 1) known to hold for GreedyMAX.

2 Potential of a Graph

2.1 k-Sequences

Let A ⊂ N0 be a multiset. We say that the non-decreasing sequence S =
(s1, . . . , sk), S ⊆ A is the k-sequence in A, if for each i ∈ {1, . . . , k} it holds
si ≥ i (if there is no ambiguity we also use k-sequences as if there were mul-
tisets). The k-sequence S is maximal in A if there does not exist k1 > k such
that A contains a k1-sequence. A maximal k-sequence with the largest sum of
elements is called maximum in A and it is denoted by SA

max, while SA
min stands

for k-sequence with the smallest sum which is called minimum in A. We say
that the k-sequence S is saturating in A if k = |A|. Otherwise we say that S is
non-saturating. It follows by maximality that for any k-sequence S maximal in
A which is non-saturating in A there exists at least one element si ∈ S such that
si = i. Every element si ∈ S for which si = i is called a blocking element in S.

Lemma 1. Let S and S′ be any k-sequences maximal in A and let m, m′ be the
values of the largest blocking elements in S and S′ respectively. Then m = m′.

Proof. The lemma obviously holds when S and S′ are saturating in A. Let
X = A \ S, M = {s ∈ S | s ≤ m} and L = S \M . The sets X ′, M ′ and L′ for S′

are defined analogously.
Assume that m > m′. If there existed a ∈ L such that a /∈ L′ then S′ would

not be maximal in A (take a (k + 1)-sequence obtained from S′ by inserting a
just after m′). Hence L ⊆ L′. Let C = L′ \ L. If C were not empty, then since
m′ is the largest blocking element in S′, C would have to contain an element
c > m. Obviously C ⊆ X ∪M and if X ∪M contained element c > m, S would
not be maximal in A (take a (k + 1)-sequence obtained from S by inserting c
just after m). Therefore m′ ≥ m.

Since m′ ≤ m follows by symmetry, we have m′ = m. ��

In what follows we use bmax to denote the value of the largest blocking element
for k-sequences maximal in A. We also use emax for the value of the largest
element of X = A \ SA

min, when X �= ∅ and emax = 0 if X = ∅.

Example 1. Let A = {1, 2, 3, 3, 3, 5, 5, 8}. Then SA
max = (3, 3, 3, 5, 5, 8), bmax = 5,

while SA
min = (1, 2, 3, 5, 5, 8), A \ SA

min = {3, 3} and consequently emax = 3.

Consider the two complementary lemmas on extending and shortening of
k-sequences.

Lemma 2. If A′ = A ∪ {t}, then every maximal (k + 1)-sequence S′ in A′

contains t if and only if A contains a maximal k-sequence S such that exactly
one of the following conditions is satisfied:
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(a) S contains at least one blocking element and t > bmax,
(b) S does not contain blocking elements.

Proof. (⇒) Let S′ be a maximal (k+1)-sequence in A′ and let t ∈ S′. Moreover,
let S′ = (s′1, . . . , s

′
i, t, s

′
i+2, . . . , s

′
k, s′k+1) be such that t has the smallest index,

say i + 1. It follows that i ≤ s′i < i + 1 ≤ t. Hence elements of S′ satisfy
s′i = i, t ≥ i + 1 and s′j ≥ j for j ∈ {i + 2, . . . , k + 1}. Now, consider the
sequence S = (s1, s2, . . . , si, si+1, . . . , sk−1, sk), where sj = s′j for j ∈ {1, . . . , i}
and sj = s′j+1 if j ∈ {i + 1, . . . , k}. Observe that all elements of S satisfy the
following conditions: sj ≥ j for j ∈ {1, . . . , i} with si = i and sj = s′j+1 ≥ j + 1
implying sj > j when j ∈ {i+1, . . . , k}. It follows that si is the largest blocking
element in S and t > bmax. If t has index one in S′, then S does not contain
blocking elements. Maximality of S follows by maximality of S′.

(⇐) Assume that A contains a maximal k-sequence S containing no blocking
elements. Then for every element si ∈ S, i ∈ {1, . . . , k} we have si − i ≥ 1.
Hence, every sequence S′ obtained from S by inserting t, independently of index
of t is a (k + 1)-sequence in A′. Now, let sj ∈ S be the largest blocking element.
Then similarly, for any si ∈ S, i ∈ {j + 1, . . . , k} we have si − i ≥ 1. Hence, any
sequence S′ = (s1, . . . , sj, t, sj+1, . . . , sk) is a (k + 1)-sequence in A′. ��
Example 2. Let A = {1, 2, 3, 3, 3, 5, 5, 8} and let A′ = A∪{t}. Consider t > bmax,
e.g. t = 6. Then A′ contains a maximal 7-sequence SA′

max = (3, 3, 3, 5, 5, 6, 8),
while for t ≤ bmax, e.g. t = 5 a 6-sequence SA′

max = (3, 3, 5, 5, 5, 8) is maximal.

Lemma 3. Let A contain a maximal k-sequence S. If A′ = A \ {t}, then A′

contains a maximal (k − 1)-sequence if and only if t > emax.

Proof. Let S be any k-sequence saturating in A. Then emax = 0 and for any t,
emax < t. On the other hand, removal of any element t from S directly results
in the (k−1)-sequence S′ maximal in A′. Now, assume that S is any k-sequence
non-saturating in A.

(⇒) On the contrary assume that A′ was obtained by removal of t ≤ emax

from S = (s1, . . . , si−1, t, si+1, . . . , sk) and let S′ = S \ {t}. If t /∈ SA
min, then

SA
min ⊆ A′, a contradiction. If t ∈ SA

min, then there exists an element t′ ∈
A \ SA

min, t′ = emax such that S′ = (s1, . . . , si−1, t
′, si+1, . . . , sk) is a k-sequence

in A. A contradiction.
(⇐) It is enough to see that all elements t > emax must belong to every

maximal k-sequence S in A, or in other words no element from A \ S could
replace t without decreasing k. ��
Example 3. Let A = {1, 2, 3, 3, 3, 5, 5, 8} and let A′ = A \ {t}. Recall emax = 3
and consider t > emax, e.g. t = 5. Then a 5-sequence SA′

min = (1, 2, 3, 5, 8) is
maximal in A′, while for t ≤ emax, e.g. t = 2 a 6-sequence still exists, e.g.
SA′

max = (3, 3, 3, 5, 5, 8).

2.2 Potential Function

The potential of a vertex v is the length pG(v) of the maximal k-sequence in
a multiset A = {dG(u) |u ∈ NG(v)}, while P (G) = maxv∈V (G) p(v) is called



150 P. Borowiecki and F. Göring

Fig. 1. Values of the potential function for various graphs

the potential of a graph G (see Fig. 1 for examples). From the definition we
immediately have pG(v) ≤ dG(v) and any vertex v for which dG(v) = pG(v) is
called saturated. A vertex v is called critical if for every u ∈ NG(v) either

(a) u is saturated and pG(u) ≤ dG(v) or
(b) u is not saturated and pG(u) < dG(v).

A critical vertex v may simultaneously have neighbors of both types (a) and (b).
In what follows we give a strengthening of lower bound (1) using potentials of

vertices instead of their degrees. In order to prove the main result we need the
following proposition.

Proposition 1. Let x ∈ V (G) be a critical vertex and let H be the subgraph of
G induced by V (G)\{x}. Then for every u ∈ NG(x) we have pH(u) ≤ pG(u)−1.

Proof. Consider arbitrary vertex u ∈ NG(x) and let emax
G (u) denote emax in

a multiset A = {dG(v) | v ∈ NG(u)}. If u is saturated, then the assertion is
obviously true. Assume u is not saturated. Since emax

G (u) ≤ pG(u), following
the definition of a critical vertex we have pG(u) < dG(x) and it follows that
emax

G (u) < dG(x). Hence, by Lemma 3, pH(u) ≤ pG(u)− 1. ��

To see that the potential of not saturated vertex u for which pG(u) = dG(x) or
pG(u) > dG(x) does not have to decrease, consider NG(u) consisting of vertices
having degrees {1, 2, 3, 3} and remove vertex x ∈ NG(u) of degree 3 or x of
degree 2, respectively. It is also worth pointing out that after deletion of vertex
x, the potentials of some vertices u ∈ NG(x) may be even smaller, since they
may be neighbors one of another, e.g. consider a graph K2 + 2K1, i.e. a join of
K2 with two disjoint copies of K1, and delete vertex of degree 3. Note that for
K3-free graphs pH(u) = pG(u) − 1. Proposition 1 works fine for some natural
choices of x, e.g. for x of locally largest degree, i.e. when for every u ∈ NG(x),
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dG(u) ≤ dG(x). It holds also when x has globally largest degree dG(x) = Δ(G).
In the next section we discuss these and other choices in context of the selection
rules of GreedyMAX-type algorithms.

3 Performance of GreedyMAX-type Algorithms

3.1 Family of GreedyMAX-type Algorithms

The GreedyMAX-type algorithm selects a critical vertex x, deletes it with all
incident edges from the graph and iterates this process on the resulting graph
until no edge remains. Repeating deletions naturally defines the sequence of
vertices (x0, . . . , xt−1) as well as the sequence of subgraphs (G0, . . . , Gt), where
Gi+1 = Gi[V (Gi) \ {xi}] and t is the number of iterations. Let us consider the
following template for GreedyMAX-type algorithms.

Algorithm GreedyMAX-type;
input: G - a simple graph;
output: I - a maximal independent set in G;

Begin

i← 0; Gi ← G; I ← ∅;
While E(Gi) �= ∅ do

choose critical vertex xi according to the selection rule;
Gi+1 ← Gi[V (Gi) \ {xi}];
i← i + 1;

I ← V (Gi);
End.

In order to define a particular GreedyMAX-type algorithm one has to specify an
appropriate selection rule. Following the definition of a critical vertex we give
examples of criteria which can be used as a basis for the definition of selection
rules:

(C1) choose xi such that for every u ∈ NGi(xi), dGi(u) ≤ dGi(xi),
(C2) select xi for which dGi(xi) = Δ(Gi),
(C3) pick not saturated xi with pGi(xi) = P (Gi),
(C4) pick not saturated xi with pGi(xi) = μ(Gi), μ(G) = minv∈V (G) pG(v).

Note that criteria (C1) - (C4) do not exclude each other and can be used simul-
taneously. For the correctness of the algorithm it is necessary to point out that
in contrast to (C1) and (C2), that may be used as a standalone selection rules,
G may not contain a vertex satisfying (C3), (C4). Though (C2) is a special case
of (C1) it is given separately since the sole use of it defines the selection rule of
the classical GreedyMAX.

It remains to argue that vertex x in (C1) - (C4) is critical. For (C1) recall
dG(u) = pG(u) for saturated u and dG(u) > pG(u), when u is not saturated.
Criticality in (C2) follows easily from (C1). Concerning (C3) it is enough to see
that for every u ∈ NG(x), pG(u) ≤ P (G) = pG(x) and since x is not saturated,



152 P. Borowiecki and F. Göring

pG(x) < dG(x). For (C4) observe that since pG(x) is the smallest, for every
u ∈ NG(x), pG(u) ≥ pG(x). Obviously dG(u) ≥ pG(u), thus dG(u) ≥ pG(x). If
there existed even one u′ ∈ NG(x) such that dG(u′) > pG(x), then since x is
not saturated it still would have at least k = dG(x) − 1 ≥ μ(G) neighbors u
having dG(u) = pG(x). Hence, a sequence (dG(u1), . . . , dG(uk), dG(u′)), would
be a (μ(G) + 1)-sequence in NG(x), a contradiction.

3.2 Analysis of GreedyMAX-type Algorithms

As the main result of this paper we prove the following theorem.

Theorem 1. If I is an independent set generated by some GreedyMAX-type al-
gorithm, then

|I| ≥
∑

v∈V (G)

1
pG(v) + 1

. (2)

Proof. Denote CWP (G) =
∑

v∈V (G) 1/(pG(v) + 1). We are going to prove that
for any i ∈ {0, . . . , t − 1}, CWP (Gi+1) ≥ CWP (Gi) and consequently |I| =
CWP (Gt) ≥ CWP (G0) = CWP (G). Recall that by Proposition 1, deletion of
xi decreases the potentials of vertices in NGi(xi). However, this also changes the
degrees of all vertices from NGi(xi) and may in turn influence the potentials of
some vertices in U = V (Gi)\NGi [xi]. Therefore, for the subgraph Gi+1 we write

CWP (Gi+1) =
∑
v∈U

1
pGi+1(v) + 1

+
∑

u∈NGi
(xi)

1
pGi+1(u) + 1

,

while for Gi we have

CWP (Gi) =
∑
v∈U

1
pGi(v) + 1

+
∑

u∈NGi
(xi)

1
pGi(u) + 1

+
1

pGi(xi) + 1
.

On the contrary assume that CWP (Gi) > CWP (Gi+1). Since for any v ∈ U it
holds pGi(v) ≥ pGi+1(v), we have

∑
u∈NGi

(xi)

1
pGi(u) + 1

+
1

pGi(xi) + 1
>

∑
u∈NGi

(xi)

1
pGi+1(u) + 1

.

By Proposition 1 for any u ∈ NGi(xi), pGi+1(u) ≤ pGi(u)− 1. Hence

1
pGi(xi) + 1

>
∑

u∈NGi
(xi)

1
pGi(u)(pGi(u) + 1)

. (3)

Now, for u ∈ NGi(xi) consider values of pGi(u) which minimize the right-hand
side of (3). We argue that even for these values the inequality does not hold.
Hence, in what follows, we assume that pGi(u) = dGi(u) for all u ∈ NGi(xi), i.e.
all neighbors of xi are saturated.
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Fig. 2. A diagram of a two-level pattern for the sequence of degrees in NGi(xi)

Case 1. Let vertex xi be saturated, i.e. pGi(xi) = dGi(xi). Since xi is critical,
pGi(u) ≤ dGi(xi). Therefore

1
pGi(xi) + 1

>
∑

u∈NGi
(xi)

1
pGi(u)(pGi(u) + 1)

≥
∑

u∈NGi
(xi)

1
dGi(xi)(dGi(xi) + 1)

=
1

dGi(xi) + 1
.

Hence, pGi(xi) < dGi(xi), a contradiction.
Case 2. Assume that xi is not saturated, i.e. pGi(xi) < dGi(xi). Let k =

pGi(xi) and let (u1, . . . , udGi
(xi)) be the neighbors of vertex xi ordered non-

decreasingly with respect to their degrees. Observe that whenever for all neigh-
bors pGi(uj) = k, we have 1/(k + 1) > dGi(xi)/(k(k + 1)), a contradiction since
dGi(xi)/k > 1. Therefore, assume that xi has r, 1 ≤ r ≤ k − 1, neighbors
for which pGi(uj) > k. Note that r has to be smaller than k and for the re-
maining dGi(xi) − r neighbors, pGi(uj) ≤ k − r must hold (otherwise, since xi

is not saturated, pGi(xi) would be greater). Minimizing the right-hand side of
(3) we take the largest possible values of neighbors’ potentials, which results in
the following two-level pattern: pGi(uj) = k − r, j ∈ {1, . . . , dGi(xi) − r} and
pGi(uj) = dGi(xi), j ∈ {dGi(xi) − r + 1, . . . , dGi(xi)} (see Fig. 2 with gray bars
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Fig. 3. CWP (G)−CW (G) may be arbitrarily large

for elements of the k-sequence and dark gray for the blocking element). Let Sr

stand for the right-hand side of (3) for r ∈ {1, . . . , k}. Consider Sr−1 − Sr for
r ∈ {2, . . . , k − 1}.

Sr−1 − Sr =
dGi(xi)− r + 1

(k − r + 1)(k − r + 2)
+

r − 1
dGi(xi)(dGi(xi) + 1)

− dGi(xi)− r

(k − r)(k − r + 1)
− r

dGi(xi)(dGi(xi) + 1)

=
k + r − 2dGi(xi)

(k − r)(k − r + 1)(k − r + 2)
− 1

dGi(xi)(dGi(xi) + 1)
.

Since r ≤ k − 1 and k < dGi(xi), we have k + r < 2dGi(xi)− 1. Hence, we have
Sr−1− Sr < 0 and the considered minimum is attained for r = 1. However, it is
not hard to see that also in this case (3) does not hold. ��

Concerning the difference between CW (G) and CWP (G) we have the following

Theorem 2. For any integer η > 0 there exists a connected graph G such that
CWP (G)− CW (G) > η.

Proof. Consider a graph G presented in Fig. 3 for which t > 2 is the number
of vertices being neighbors of leaves, i.e. vertices of degree 1. Furthermore, let
d > 2 be the degree of such vertices. Hence,

CW (G) = 2
(

d− 1
2

+
1

d + 1

)
+ (t− 2)

(
d− 2

2
+

1
3

+
1

d + 1

)
+

1
3

,

while

CWP (G) = 2
(

d− 1
2

+
1
3

)
+ (t− 2)

(
d− 2

2
+

2
3

)
+

1
3

.

Therefore

CWP (G)− CW (G) = t

(
1
3
− 1

d + 1

)

may be arbitrarily large even for connected graphs. ��
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Let A(G) denote the cardinality of the independent set produced by the algo-
rithm A for a graph G. A performance ratio ρA of A is defined as infG A(G)/α(G).
Halldórsson and Radhakrishnan [11] provide a complete bipartite graph with re-
moved perfect matching to argue that for any graph of maximum degree bounded
by Δ we have ρGreedyMAX ≤ 2/(Δ + 1), while the result of Griggs [10] implies
ρGreedyMAX ≥ 1/(Δ + 1). As a consequence of Theorem 1 we have the following,
improved lower bound for the performance ratio of GreedyMAX-type algorithms
for graphs having their maximum potential bounded by P .

Theorem 3. If A is a GreedyMAX-type algorithm, then ρA ≥ 1/(P + 1) .

To see that for any η > 0 there exists a graph G such that Δ(G) − P (G) > η,
consider stars K1,k and wheels Wk. For stars P (K1,k) = 1, Δ(K1,k) = k, while
for wheels P (Wk) = 3 and Δ(Wk) = k. In both cases we have a constant
performance ratio, whereas the ratio depending on maximum degree gets worse
when Δ grows. More complex examples are ct-graphs [2,20], where G is called a
ct-graph if for each edge uv ∈ E(G) the value of |dG(v)− dG(u)| is constant.
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Abstract. In this paper, we present a methodology to optimize matrix
chain multiplication sequentially relative to different cost functions such
as total number of scalar multiplications, communication overhead in a
multiprocessor environment, etc. For n matrices our optimization pro-
cedure requires O(n3) arithmetic operations per one cost function. This
work is done in the framework of a dynamic programming extension that
allows sequential optimization relative to different criteria.
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1 Introduction

In dynamic programming as introduced by Bellman [1], we usually look for one
optimal solution of a problem. In this paper, we consider an extension of dy-
namic programming which allows us to describe efficiently (in terms of directed
acyclic graph with vertices corresponding to subproblems) the whole set of op-
timal solutions. We can continue the procedure of optimization on the resulting
optimal set of solutions, but relative to another criterion etc. This approach is
used in [2,3,4] for optimization of decision trees. In this paper, we illustrate this
approach on matrix chain multiplication problem.

Matrix chain multiplication is a classic optimization problem in computer
science. For a given sequence A1, A2, . . . , An of matrices, we need to find the
product of these n matrices in the most efficient way. Often the most efficient
way is the parenthesization that minimizes the total number of scalar multipli-
cations on a single processor (sequential) machine. However, other optimization
scenarios are also possible (some of these optimization criteria are discussed in
this paper). Matrix chain multiplication problem can be found in any standard
text on algorithms such as Cormen et al. [5] or Alsuwaiyel [6]. This classic prob-
lem was introduced by Godbole in [7]. Hu and Shing [8] present an O(n log n)
solution of this problem in contrast to O(n3) solution to the problem posed by
Godbole in [7].
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We should find the product A1 × A2 × · · · × An (it is well known that ma-
trix multiplication is associative, i.e., A × (B × C) = (A × B) × C). The cost
of multiplying a chain of n matrices depends on the order of multiplications.
Each possible ordering of multiplication of n matrices corresponds to a dif-
ferent parenthesization (e.g., A × (B × C) or (A × B) × C). It is well known
that the total number of ways to fully parenthesize n matrices is equal to the
nth Catalan number bounded below by Ω(4n/n1.5). We will consider different
cost functions (complexity measures) for parenthesizations. Our aim is to find a
parenthesization with minimum cost. Furthermore, we present a generic method
to apply different cost functions to optimize matrix chain multiplication one after
another called sequential optimization.

This paper consists of seven sections including Introduction. In Sect. 2 we
discuss in detail some cost functions for matrix chain multiplication. In Sect. 3
we provide a mechanism to construct a directed acyclic graph to carry out opti-
mization. Sequential optimization relative to different cost functions is discussed
in Sect. 4. We provide a detailed example in Sect. 5. In Sect. 6 we discuss
computational complexity of optimization and we conclude the paper in Sect. 7.

2 Cost Functions

Let A1, A2, . . . , An be matrices with dimensions m0×m1, m1×m2, . . . , mn−1×
mn, respectively. We consider the problem of matrix chain multiplication of
these matrices and denote it as S(1, n). Furthermore, we consider subproblems
of the initial problem. For 1 ≤ i ≤ j ≤ n, we denote by S(i, j) the problem of
multiplication of matrices Ai ×Ai+1 × · · · ×Aj .

We describe inductively the set P (i, j) of parenthesizations for S(i, j). We
have P (i, i) = {Ai} for all i = 1, . . . , n. For i < j we define:

P (i, j) =
j−1⋃
k=i

{(p1 × p2) : p1 ∈ P (i, k), p2 ∈ P (k + 1, j)}.

We realize a parenthesization using n processors π1, π2, . . . , πn. Initially, the pro-
cessor πi contains the matrix Ai, i = 1, . . . , n. Suppose we compute (p1 × p2),
where p1 is computed by the processor πi1 and p2 by the processor πi2 . At this
point, there are two possibilities i.e., either the processor πi1 sends the matri-
ces corresponding to p1 to the processor πi2 or vice versa, where the receiving
processor computes the product of matrices corresponding to p1 and p2.

Let we should compute (p1×p2), the work with p1 is finished by the processor
πi1 and the work with p2 is finished by the processor πi2 . After that we have
two possibilities either πi1 sends the matrix corresponding to p1 to πi2 , and πi2

multiplies matrices corresponding to p1 and p2 or vice-versa.
We describe inductively the notion of cost function ψ which associates to each

parenthesization p a nonnegative integer ψ(p), which can be interpreted as the
cost of the parenthesization. Let F (x1, x2, y1, y2, y3) be a function from ω5 into
ω, i.e., F : ω5 → ω, where ω = {0, 1, 2, 3, . . .}.
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Now for i = 1, . . . , n we have ψ(Ai) = 0. Let 1 ≤ i ≤ k < j ≤ n, p1 ∈ P (i, k),
p2 ∈ P (k + 1, j) and p = (p1 × p2), then

ψ(p) = F (ψ(p1), ψ(p2), mi−1, mk, mj).

Note that p1 describes a matrix of dimension mi−1 × mk and p2 describes a
matrix of dimension mk ×mj .

The function F (and corresponding cost function ψ) is called monotonic if for
x′

1 ≤ x1 and x′
2 ≤ x2, the following inequality holds:

F (x′
1, x

′
2, y1, y2, y3) ≤ F (x1, x2, y1, y2, y3).

The function F (and corresponding cost function ψ) is called strictly monotonic
if it is monotonic and for x′

1 ≤ x1 and x′
2 ≤ x2 such that x′

1 < x1 or x′
2 < x2 we

have
F (x′

1, x
′
2, y1, y2, y3) < F (x1, x2, y1, y2, y3).

2.1 Some Cost Functions

Let us consider examples of functions F and corresponding cost functions ψ.

1. Functions F1 and ψ(1).

ψ(1)(p) = F1(ψ(1)(p1), ψ(1)(p2), mi−1, mk, mj)

= ψ(1)(p1) + ψ(1)(p2) + mi−1mkmj .

Parenthesizations p1 and p2 represent matrices of dimensions mi−1×mk and
mk ×mj . For multiplication of these matrices we need to make mi−1mkmj

scalar multiplications. So ψ(1)(p) is the total number of scalar multiplications
required to compute the product Ai × · · · × Aj according to parenthesiza-
tion p = (p1 × p2). We should add that ψ(1)(p) can be considered as time
complexity of computation of p (when we count only scalar multiplications)
using one processor. It is clear that F1 and ψ(1) are strictly monotonic.

2. Functions F2 and ψ(2).

ψ(2)(p) = F2(ψ(2)(p1), ψ(2)(p2), mi−1, mk, mj)

= max{ψ(2)(p1), ψ(2)(p2)}+ mi−1mkmj .

This cost function describes time complexity of computation of p (when we
count only scalar multiplications) using n processors. Here the functions F2
and ψ(2) are monotonic functions.

3. Functions F3 and ψ(3).

ψ(3)(p) = F3(ψ(3)(p1), ψ(3)(p2), mi−1, mk, mj)

= ψ(3)(p1) + ψ(3)(p2) + min{mi−1mk, mkmj}.
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This cost function describes the total cost of sending matrices between the
processors when we compute p by n processors. We have the following sit-
uation: either processor πi1 can send the mi−1 × mk matrix to πi2 , or πi2

can send the mk × mj matrix to πi1 . The number of elements in the first
matrix is equal to mi−1mk and the number of elements in the second matrix
is equal to mkmj . To minimize the number of elements that should be sent
we must choose minimum between mi−1mk and mkmj . It is clear that F3
and ψ(3) are strictly monotonic.

4. Functions F4 and ψ(4).

ψ(4)(p) = F4(ψ(4)(p1), ψ(4)(p2), mi−1, mk, mj)

= max{ψ(4)(p1), ψ(4)(p2)}+ min{mi−1mk, mkmj}.

This function describes the cost of sending matrices between processors in
the worst-case where we use n processors. The functions F4 and ψ(4) are
monotonic functions.

3 Optimization

Now we describe a directed acyclic graph (DAG) G0 which allows us to represent
all parenthesizations P (i, j) for each subproblem S(i, j), 1 ≤ i ≤ j ≤ n. The set
of vertices of this graph coincides with the set

{S(i, j) : 1 ≤ i ≤ j ≤ n}.

If i = j then S(i, j) has no outgoing edges. For i < j, S(i, j) has exactly 2(j− i)
outgoing edges. For k = i, . . . , j − 1, exactly two edges start from S(i, j) and
finish in S(i, k) and S(k + 1, j), respectively. These edges are labeled with the
index k, we call these edges a rigid pair of edges with index k.

Let G be a subgraph of G0 which is obtained from G0 by removal of some
rigid pairs of edges such that for each vertex S(i, j) with i < j at least one rigid
pair outgoing from S(i, j) remains intact.

Now for each vertex S(i, j) we define, by induction, the set PG(i, j) of paren-
thesizations corresponding to S(i, j) in G. For every i we have PG(i, i) = {Ai}.
For i < j, let K(i, j) be the set of indexes of remaining rigid pairs outgoing from
S(i, j), then

PG(i, j) =
⋃

k∈K(i,j)

{(p1 × p2) : p1 ∈ PG(i, k), p2 ∈ PG(k + 1, j)}.

Let ψ be a cost function, we consider the process of optimization of parenthe-
sizations corresponding to vertices of G relative to ψ. We know that ψ(Aj) = 0
for i = 1, . . . , n. For 1 ≤ i ≤ k < j ≤ n, p1 ∈ P (i, k), p2 ∈ P (k + 1, j) and
p = (p1 × p2), we have

ψ(p) = F (ψ(p1), ψ(p2), mi−1, mk, mj).
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For each vertex S(i, j) of the graph G we mark this vertex by the number ψi,j

which can be interpreted as minimum value of ψ on PG(i, j). For i = 1, . . . , n,
we have ψi,i = 0. If for i < j and for each k ∈ K(i, j) we know values ψi,k and
ψk+1,j , we can compute the value ψi,j :

ψi,j = min
k∈K(i,j)

F (ψi,k, ψk+1,j , mi−1, mk, mj).

Let Ψ(i, k, j) be defined as follows:

Ψ(i, k, j) = F (ψi,k, ψk+1,j , mi−1, mk, mj),

now we should remove from G each rigid pair with index k such that

Ψ(i, k, j) > ψi,j .

We denote by Gψ the resulting subgraph obtained from G. It is clear that for
each vertex S(i, j), i < j, at least one rigid pair outgoing from S(i, j) was left
intact.

The following theorem summarizes the procedure of optimization for mono-
tonic cost function.

Theorem 1. Let ψ be a monotonic cost function. Then for any i and j,
1 ≤ i ≤ j ≤ n, ψi,j is the minimum cost of a parenthesization from PG(i, j) and
each parenthesization from PGψ

(i, j) has the cost equal to ψi,j.

Proof. The proof is by induction on j − i. If i = j then PG(i, j) = {Ai},
PGψ

(i, j) = {Ai}, ψ(Ai) = 0 and ψi,j = 0 by definition. So if j − i = 0 the
considered statement holds. Let for some t > 0 and for each pair (i, j) such that
j − i ≤ t this statement hold.

Let us consider a pair (i, j) such that j − i = t + 1. Then

ψi,j = min
k∈K(i,j)

Ψ(i, k, j),

where Ψ(i, k, j) = F (ψi,k, ψk+1,j , mi−1, mk, mj). Since i ≤ k < j, k − i ≤ t and
j − k − 1 ≤ t. By induction hypothesis the considered statement holds for the
pairs (i, k) and (k + 1, j) for each k ∈ K(i, j). Furthermore, for k ∈ K(i, j) let

P k
G(i, j) = {(p1 × p2) : p1 ∈ PG(i, k), p2 ∈ PG(k + 1, j)}.

It is clear that
PG(i, j) =

⋃
k∈K(i,j)

P k
G(i, j). (1)

Using the monotonicity of F we know that Ψ(i, k, j) is the minimum cost of an
element from P k

G(i, j). From this and (1), it follows that ψi,j is the minimum
cost of an element from PG(i, j). In Gψ the only rigid pairs outgoing from S(i, j)
are those for which Ψ(i, k, j) = ψi,j where k is the index of considered pair.
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It is clear that the cost of each element from the set

P k
Gψ

(i, j) = {(p1 × p2) : p1 ∈ PGψ
(i, k), p2 ∈ PGψ

(k + 1, j)}

is equal to
F (ψi,k, ψk+1,j , mi−1, mk, mj) = Ψ(i, k, j)

since the cost of each element from PGψ
(i, k) is equal to ψi,k and the cost of each

element from PGψ
(k + 1, j) is equal to ψk+1,j . Since

PGψ
(i, j) =

⋃
k∈K(i,j)

Ψ(i,k,j)=ψi,j

P k
Gψ

(i, j)

we have that each parenthesization from PGψ
(i, j) has the cost equal to ψi,j . ��

Furthermore, in case of a strictly monotonic cost function we have stronger result
summarized in terms of following theorem.

Theorem 2. Let ψ be a strictly monotonic cost function. Then for any i and j,
1 ≤ i ≤ j ≤ n, ψi,j is the minimum cost of a parenthesization from PG(i, j) and
PGψ

(i, j) coincides with the set of all elements p ∈ PG(i, j) for which ψ(p) = ψi,j.

Proof. Since ψ is a strictly monotonic cost function then if follows from Theo-
rem 1 that ψi,j is the minimum cost of parenthesization in PG(i, j) and every
parenthesization in PGψ

(i, j) has the cost ψi,j . To prove this theorem it is enough
to show that an arbitrary parenthesization p in PG(i, j) with optimal cost ψi,j

also belongs to PGψ
(i, j).

We prove this statement by induction on j − i. If j = i then PG(i, j) = {Ai}
and PGψ

(i, j) = {Ai}. So for j − i = 0 the considered statement holds. Let this
statement hold for some t > 0 and for each pair (i, j) such that j − i ≤ t. Let us
consider a pair (i, j) such that j − i = t + 1.

Let p ∈ PG(i, j) and ψ(p) = ψi,j . Since p ∈ PG(i, j) then there is k, i ≤ k < j,
such that p = (p1×p2) where p1 ∈ PG(i, k) and p2 ∈ PG(k+1, j). Also, we know
that ψ(p) = F (ψ(p1), ψ(p2), mi−1, mk, mj) and ψ(p) = ψi,j . Let us assume that
ψ(p1) > ψi,k or ψ(p2) > ψk+1,j . Since ψ and F are strictly monotonic, we have

ψ(p) > F (ψi,k, ψk+1,j , mi−1, mk, mj) = Ψ(i, k, j) ≥ ψi,j ,

however, this is impossible. So we have Ψ(i, k, j) = ψi,j , ψ(p1) = ψi,k and
ψ(p2) = ψk+1,j . Since Ψ(i, k, j) = ψi,j , we have that the graph Gψ has a rigid
pair with index k outgoing from the vertex S(i, j).

From inductive hypothesis we have p1 ∈ PGψ
(i, k) and p2 ∈ PGψ

(k + 1, j),
therefore p ∈ PGψ

(i, j). ��

4 Sequential Optimization

Our optimization procedure (presented in previous section) is very generic in
nature. We can apply several cost functions sequentially one after another to
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optimize matrix multiplication for several optimization criteria. In fact similar
techniques have been used extensively for optimization of decision trees, see
[2,3,4,9] for a wide range of complexity functions and their applications.

Initially we get a DAG G = G0. This DAG G can be optimized according to
any cost function ψ (monotonic or strictly monotonic). The generality of this
technique allows us to use the resulting DAG Gψ as input to further optimize for
any other cost function say ψ′ resulting in a DAG that is sequentially optimized
according to two different cost functions ψ and ψ′, i.e., Gψ,ψ′ . We can continue
optimizing on the resulting graph for further cost functions.

It is important to note here that in the process of optimization we retain the
vertices and only remove the edges. However, in this process there may be some
vertices which become unreachable from the starting vertex (that represents the
initial basic problem).

In the next section we discuss an example of matrix chain multiplication.
We optimize it for several cost functions one after another, and do not consider
vertices that are unreachable from the initial vertex S(1, n).

5 An Example

We consider an example of matrix chain multiplication. Let A1, A2, A3, A4, and
A5 be five matrices with dimensions 2×2, 2×5, 5×5, 5×2, and 2×2, respectively,
i.e., m0 = 2, m1 = 2, m2 = 5, m3 = 5, m4 = 2, and m5 = 2.

We use the cost function ψ(1) and obtain the following DAG (as shown in
Fig. 1). This DAG is a subgraph of Gψ(1) (note that G = G0) as it does not

S(1, 5)

S(1, 1) S(1, 4) S(2, 5) S(5, 5)

S(2, 4)

S(2, 2) S(3, 4)

S(3, 3) S(4, 4)

1 4
1 4

1

1

4
4

2
2

3
3

Fig. 1. Subgraph of Gψ(1) after removing several rigid pairs from G with respect to
the cost function ψ(1)
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include vertices S(i, j) (representing subproblems) which are unreachable from
the vertex S(1, 5) (representing the main problem).

The resulting directed acyclic graph Gψ(1) describes the following two different
parenthesizations, which are optimal from the point of view of ψ(1):

1. (A1 × ((A2 × (A3 ×A4))×A5)),
2. ((A1 × (A2 × (A3 ×A4)))×A5).

We can apply another cost function say ψ(3) (which is also a strictly monotonic
function) to our DAG Gψ(1) and we obtain Gψ(1),ψ(3) . Interestingly, we get exactly
the same graph as there are no edges to remove from Gψ(1) .

We apply yet another cost function ψ(4) (ψ(4) is a monotonic function and
not a strictly monotonic function). However, the example is highly symmetric
and we again get the same DAG as depicted in Fig. 1.

6 Computational Complexity of Optimization

We assume that for each cost function ψ there exists a constant cψ such that to
compute the value of ψ we need to make at most cψ arithmetic operations. The
comparison operation is also considered as an arithmetic operation. In particular,
we can choose cψ(1) = cψ(2) = 4 and cψ(3) = cψ(4) = 5.

Initially we get a DAG G0. After optimization relative to a sequence of cost
functions we get a DAG G, which is obtained from G0 by removal of some rigid
pairs. Let us now consider the process of optimization of G relative to a cost
function ψ.

The number of subproblems S(i, j) (vertices in G) is O(n2). It is enough to
make O(n) arithmetic operations to compute the value ψi,j and to remove all
rigid pairs for which

Ψ(i, k, j) > ψi,j ,

if the values ψi,k and ψk+1,j are already known for k ∈ K(i, j). Therefore, the
total number of arithmetic operations to obtain Gψ from G is O(n3).

7 Conclusion

We have discussed in detail a procedure to sequentially optimize matrix chain
multiplication relative to different cost functions. Furthermore, each step of opti-
mization (relative to a cost function) can be carried out in polynomial-time with
respect to the total number of matrices. We have also considered an example of
matrix multiplication and successfully applied three different cost functions in
succession.
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Abstract. Among the many models of language acceptors that have
been studied in the literature are multihead finite automata (finite au-
tomata with multiple one-way input heads) and 1-reversal counter ma-
chines (finite automata with multiple counters, where each counter can
only “reverse” once, i.e., once a counter decrements, it can no longer
increment). The devices can be deterministic or nondeterministic and
can be augmented with a pushdown stack. We investigate the relative
computational power of these machines. Our results (where C1 and C2

are classes of machines) are of the following types:
1. Machines in C1 and C2 are incomparable.
2. Machines in C1 are strictly weaker than machines in C2.

In obtaining results of these types, we use counting and “cut-and-paste”
arguments as well as an interesting technique that shows that if a lan-
guage were accepted by a device in a given class, then all recursively
enumerable languages would be decidable.

1 Introduction

A deterministic pushdown automaton (DPDA) is a deterministic finite automa-
ton (DFA) augmented with a pushdown stack. The nondeterministic versions are
called NPDA and NFA, respectively. It is well-known that a DPDA is weaker
than an NPDA, and the latter machines accept exactly the context-free lan-
guages. A special case of a pushdown stack is one where the stack alphabet
has only two symbols, one of which is used only to mark the bottom of the
stack and cannot be modified. Such a stack is called a counter. Thus, we can
think of a counter as a memory unit that holds a non-negative integer (initially
zero), which can be incremented by 1, decremented by 1, left unchanged and
tested for zero. A DFA (NFA) augmented with multiple (at least two) coun-
ters is equivalent to a Turing machine [12]. However, if we restrict the counters
� This research was supported by the National Science Foundation Grant CCF-

0524136 of Oscar H. Ibarra, and by Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant R2824A01, the Canada Research
Chair Award in Biocomputing to Lila Kari.
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to be reversal-bounded, the equivalence no longer holds. Here, reversal-bounded
means that the number of alternations between non-decreasing mode and non-
increasing mode each counter makes during the computation is at most r for
some given positive integer r. An NFA augmented with such counters is called a
(reversal-bounded) counter machine (NCM). The deterministic version is called
a DCM. It was shown in [7] that an NCM can accept only a language whose
Parikh map is semilinear. Closure and decidable properties for NCM and DCM
were also investigated in [7]. For related results, see [2,3,4,5,8,10]. We note that
a counter making r-reversals can be simulated by � r+1

2 	 counters each of which
makes 1 reversal. Hence, we may assume that the counters in a DCM and NCM
are 1-reversal.

An NFA with multiple one-way input heads is called an NMHFA. The de-
terministic version is called DMHFA. These devices were first studied in [13],
where it was reported that for any integer k ≥ 1, a DMHFA (resp., NMHFA)
with k + 1 head is more powerful than one with only k heads. The proof in
[13] was incomplete and was later completed in [15]. Stateless version of this
hierarchy was later shown in [9].

A DPDA (resp. NPDA) can be generalized by augmenting it with multiple
reversal-bounded counters – we will call it a DPCM (resp. NPCM), or by equip-
ping it with multiple input heads – we will call it DMHPDA (resp. NMHPDA).

As for the classes of 1-reversal (pushdown) counter machines (DCM, NCM,
DPCM, NPCM), our primary interest lies in the following questions:

1. whether a pushdown stack or non-determinism strictly strengthens 1-reversal
counter machines, and

2. whether there is a trade-off, that is, whether an NCM can simulate a DPCM,
and vice-versa.

We exhibit two languages which are in the symmetric difference of NCM and
DPCM to answer the above questions negatively (Corollary 2).

It is of particular interest for applications to determine whether a given lan-
guage is in DCM (or in DPCM) or not. This is because these deterministic
classes possess desirable properties about decidability which are not shared by
their non-deterministic counterparts such as the decidability of equivalence be-
tween a DCM and a DPCM (Corollary 5.4 in [7]) or between two DPDAs [14].
A typical tool to prove that a language is not in a given class is the pumping
lemma, and actually pumping lemmas are available for DFA(= NFA), DPDA,
and NPDA [6,16,17]. We propose another type of tool (Lemma 4), which reduces
a language that is accepted by a DPCM with k-counters into its sub-language
that is accepted by a DPCM with at most k−1 counters. Then, using the pump-
ing lemma for DPDA [16], the reduction enables us to prove the existence of a
language in NCM which cannot be accepted by any DPCM (Corollary 1).

In order to prove the incomparability between DPCM and NCM, we will also
propose a language which is accepted by a DPCM but cannot be accepted by
any NCM. A technique used toward this end deserves special mention: on the
supposition that an NCM accepted this language, we could design an algorithm
to decide the halting problem for Turing machines (Theorem 2).
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2 Preliminaries

Let Σ be an alphabet and by Σ∗ we denote the set of all words over Σ including
the empty word ε. Let Σ+ = Σ∗ \{ε}. For a word w ∈ Σ∗, |w| denotes its length
and wR denotes its reverse. By |w|a, we denote the number of a letter a ∈ Σ
occurring in w. A subset L of Σ∗ is called a language.

Let us recall the definition of reversal-bounded (pushdown) counter machines
[7]. A reversal-bounded counter machine is a finite automaton augmented with
reversal-bounded counters. We can further augment a reversal-bounded counter
machine with a pushdown stack to obtain a reversal-bounded pushdown counter
machine. Formally, a pushdown k-counter machine M is represented by a
7-tuple (Q, Σ, Γ, δ, q0, Z0, F ), where Q, Σ, Γ, F are the respective sets of states,
input letters, stack symbols, and final states, q0 is the initial state, and Z0 ∈ Γ
is the particular stack symbol called the start symbol. We define the transition
δ in a way that is different from but equivalent to the convention as a rela-
tion from Q × Σ × Γ × {0, 1}k into Q × {S, R} × Γ ∗ × {−1, 0, +1}k. S and R
indicate the direction in which M moves its input head (S: stay, R: right). M
is said to be deterministic if δ is a function. A configuration of M is given by
a (k + 3)-tuples (q, w, x, c1, . . . , ck) denoting the fact that M is in the state q,
w is the “unexpended” input, the stack contains the word x, and c1, c2, . . . , ck

are the values contained in the k counters. Among configurations, we define a
relation �M as follows: (q, aw, Xα, c1, . . . , ck) �M (p, w′, βα, c1 + e1, . . . , ck +
ek) if δ(q, a, X, λ(c1), . . . , λ(ck)) contains (p, d, β, e1, . . . , ek), where d ∈ {S, R},
e1, . . . , ek ∈ {−1, 0, +1},

λ(ci) =

{
0 if ci = 0
1 otherwise,

and w′ =

{
aw if d = S

w if d = R.

It is clear that the transition with the indicator S corresponds to the ε-transition
in the conventional definition of pushdown counter machines, whereas that with
R corresponds to the transition which consumes an input symbol. The reflexive
and transitive closure of �M is written as �∗M . The subscript is dropped from �M

and �∗M whenever the particular M is understood. A word w ∈ Σ∗ is accepted
by M if (q0, w, Z0, 0, . . . , 0) �∗ (qf , ε, α, c1, . . . , ck) for some qf ∈ F . The set
of all words accepted by M is denoted by L(M). By ignoring the pushdown
stack through the description so far, we can obtain the analogous definition and
notions for counter machines (no pushdown stack).

A counter machine is said to be reversal-bounded if it has the property that
for each of its counter the number of alternations between non-decreasing mode
and non-increasing mode and vice-versa is bounded by a given constant in
any computation1. For the reason mentioned in Introduction, we assume this
1 The reversal-bounded property can be defined by taking into account only the accept-

ing computation, but these two definitions are equivalent. A machine can remember,
in its states, how many times each of its counters has made the reversal, and can
abort a computation immediately after one of its counters makes the reversal more
than the given constant times.
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constant to be 1 in this paper. A finite state machine with a 1-reversal stack is
said to be 1-turn.

For an integer k ≥ 0, let NCM(k) be the set of counter machines with k
1-reversal counters, and then let NCM =

⋃
k=0 NCM(k). For notational conve-

niences, we also use NCM(k) to denote a machine in the class as well as the
class of languages accepted by a machine in the class. Their deterministic sub-
classes are denoted by DCM(k) and DCM, respectively. Let us denote the class of
pushdown machines with k 1-reversal counters (pushdown k-counter machines)
by NPCM(k), and NPCM =

⋃
k=0 NPCM(k). DPCM(k) and DPCM are their

deterministic subclasses. Note that NCM(0) = DCM(0) is the class of regular
languages, while NPCM(0) and DPCM(0) correspond to the classes of context-
free languages and deterministic context-free languages, respectively.

3 NCM and DPCM Are Incomparable

We begin our investigation with proving that NCM and DPCM are incomparable
with respect to the power to accept languages. To achieve this goal, we study
the problem of how to determine whether a given language can be accepted by a
machine in DCM(k), NCM(k), DPCM(k), or NPCM(k) for some k ≥ 0 or not.

For specific values of k, pumping lemmata are available. Pumping lemmata
for DCM(0) (the class of regular languages) as well as for NPCM(0) (that of
context-free languages) are well-known the most [6,17]. We need the following
one by Yu [16] for DPCM(0) (that of deterministic context-free languages).

Lemma 1 ([16]). For L ∈ DPCM(0), there exists a constant C for L such that
for any pair of words w, w′ ∈ L if w = xy and w′ = xz with |x| > C, and y and
z begin with the same letter, then one of the following statements is true:

– there is a factorization x = x1x2x3x4x5 with x2x4 �= ε and |x2x3x4| ≤ C
such that for all i ≥ 0, x1x

i
2x3x

i
4x5{y, z} ⊆ L,

– there are factorizations x = x1x2x3, y = y1y2y3, and z = z1z2z3, with x2 �= ε
and |x2x3| ≤ C such that for all i ≥ 0, x1x

i
2x3{y1y

i
2y3, z1z

i
2z3} ⊆ L.

We use the above lemma along with a method which reduces a language in
DPCM(k) into a language in DPCM(0) for an arbitrary k in order to prove that
some language is NOT in DPCM.

Let M be a DPCM(k) for some k ≥ 0. For an integer 1 ≤ i ≤ k, we say that a
word is i-decreasing if while M reading the word, the i-th counter is decreased.

Lemma 2. Let M ∈ DPCM(k). If there exists an integer 1 ≤ i ≤ k such that
no word in L(M) is i-decreasing, then L(M) ∈ DPCM(k − 1).

Proof. The basic idea is the following. It follows from the assumption that while
processing an input, if M encounters the decrement of the i-th counter, the input
should be rejected immediately. Also note that the transition function of M does
not check the actual value of the counter, but it checks only whether the value
is zero or non-zero. Thus, we can encode this zero-nonzero information about
the i-th counter rather into its state, set its initial value to 0, and change it to
1 when M increments the i-th counter for the first time. ��
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Lemma 3. Let M ∈ DPCM(k) \DPCM(k − 1), and w be an i-decreasing word
for some 1 ≤ i ≤ k. Then L(w) := L(M) ∩wΣ∗ ∈ DPCM(k − 1).

Proof. First of all, Lemma 2 guarantees the existence of an i-decreasing word w
in L(M) for any 1 ≤ i ≤ k. Let us build up a DPCM(k − 1) M ′ for L(w). Once
activated, this machine firstly checks whether a given input begins with w and
if not M ′ rejects the input immediately. During this check, M ′ simulates the
computation of M on w except for the i-th counter. About the i-th counter, M
remembers, using its state, the value of this counter which is obtained after M
(deterministically) processes w. Since the i-th counter has been reversed already
when M completes the processing of w, M ′ does not require infinite number of
states in order to simulate the counter for the rest of its computation. ��

By applying Lemmas 2 and 3 alternately as many times as necessary, we can
find a subset of a given language in DPCM(k) which is accepted by a DPCM(0).

Lemma 4. If L ∈ DPCM, then there exists w ∈ Σ∗ such that L(w) is a
nonempty DPCM(0).

It is noteworthy that our argument so far does not rely on whether the pushdown
stack is available for computation or not. Thus, analogous results of
Lemmas 2, 3, and 4 hold for DCM.

Using Lemma 4, now we can prove the existence of a language which is in
NCM, but cannot be accepted by any DPCM. As an example of such languages,
we propose the balanced language Lb defined as follows:

Lb = {ai1#ai2# · · ·#ain | n ≥ 2, i1, . . . , in ≥ 0
such that i1 + i2 + · · ·+ ik = ik+1 + · · ·+ in for some 1 ≤ k < n }.

Informally speaking, an element of this language has the symbol # located at
its fulcrum to the left and to the right of which there are the same number of
a’s. It is clear that Lb can be accepted by an NCM(1).

In order to verify that Lb �∈ DPCM, it suffices to prove that for any word
w ∈ {a, #}∗, L

(w)
b cannot be accepted by any DPCM(0) due to Lemma 4.

Lemma 5. For any w ∈ {a, #}∗, L
(w)
b = Lb ∩ w{a, #}∗ is not a DPCM(0).

Proof. Suppose L
(w)
b were DPCM(0), then so is L := L

(w)
b ∩ wΣ∗#Σ∗#Σ∗.

Let n = |w|a. Then waC#aC+n#, waC#aC+n#a2(C+n) ∈ L, where C is the
pumping constant given in Lemma 1. With x = waC#aC+n, y = #, and z =
#a2(C+n), these words are written as xy and xz, which satisfy the requirements
on x, y, z in Lemma 1. So one of the factorizations must hold. The pumped
parts should not contain any # because any word of L contains exactly |w|# +2
#’s. Let us consider the first factorization x = x1x2x3x4x5. Since x2x4 = am

for some 1 ≤ m ≤ C, omitting this pumpable part from waC#aC+n#a2(C+n)

would result in a word waC−i#aC+n−(m−i)#a2(C+n) for some i ≥ 0. This word
is unbalanced so that other factorization x = x1x2x3 and y = y1y2y3 must hold.
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Since y = #, the pumped part y2 is empty. If x2 is in waC , then removing x2
results in an unbalanced word. If x2 is in aC+n, then pumping x2 more than
once makes the resulting word unbalanced. ��
Corollary 1. Lb is not in DPCM.

Proof. Suppose that Lb ∈ DPCM. Lemma 4 implies that there exists w ∈ Σ∗

such that L
(w)
b := Lb ∩ wΣ∗ ∈ DPCM(0), but this contradicts Lemma 5. ��

Having seen that Lb ∈ NCM \DPCM, now we show that there are languages in
DPCM that cannot be accepted by any NCM. This result shall lead us to the
incomparability of NCM and DPCM. It would also follow that the machines in
DCM are strictly less powerful than those in DPCM.

We give two proofs below. The first uses the following result in [1], whose
proof is quite complicated (long and tedious).

Theorem 1 ([1]). If M is an NCM, then we can construct another NCM M ′

such that L(M ′) = L(M) and M ′ operates in linear time (i.e., every string of
length n in L(M’) has an accepting computation for which M ′ runs in linear
time).

Theorem 2. There is a language accepted by a 1-turn DPDA that cannot be
accepted by any NCM.

Proof. Consider the language Lpal = {x#xR | x ∈ {0, 1}+} (recall that R de-
notes reverse). It is obvious that Lpal can be accepted by a deterministic PDA
(DPDA) and hence Lpal ∈ DPCM(0). Suppose Lpal can be accepted by an NCM
M with k counters. We may assume, by Theorem 1, that M operates in linear
time. Consider an input u#uR, where |u| = n. Clearly, the number of possible
configurations when the input head of M reaches # is O(nk). Now consider an-
other input v#vR, where |v| = n and v �= u. It follows that since there are 2n

binary strings of length n, u#vR will also be accepted by M for n large enough.
This is a contradiction. ��
We will give another proof of Theorem 2 since it employs an interesting tech-
nique, which constructs a contradictory algorithm to decide an undecidable re-
cursively enumerable language on the assumption that a specific language can
be accepted by an NCM, implying then that the language cannot be accepted
by any NCM. Let us describe the details below.

1. Let L ⊆ {a}∗ be a unary recursively enumerable language that is not decid-
able (such L exists) and M be a Turing machine (TM) accepting L.

2. Let Q and Σ be the state set and worktape alphabet of M and let q0 ∈ Q
be the initial state of M . Let Σ′ = Q ∪ Σ ∪ {#}. Note that a is in Σ.
The halting computation of M on input ad can be represented by the string
ID1#ID3 · · ·#ID2k−1##IDR

2k · · ·#IDR
4 #IDR

2 for some k ≥ 2 (without
loss of generality, we can assume that the length of a computation is even),
where ID1 = q0a

d and ID2k are the initial and halting configurations of M ,
and (ID1, ID2, · · · , ID2k) is a sequence of configurations of M on input ad,
i.e., configuration IDi+1 is a valid successor of IDi.
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Now consider the languages

L1 = {ID1# · · ·#ID2k−1##IDR
2k · · ·#IDR

2 | ID2k is a halting configuration,

k ≥ 2, ID1 = q0a
p(p ≥ 1), and IDi+1 is a valid successor of IDi for odd i},

L2 = {ID1# · · ·#ID2k−1##IDR
2k · · ·#IDR

2 | ID2k is a halting configuration,

k ≥ 2, ID1 = q0a
p(p ≥ 1), and IDi+1 is a valid successor of IDi for even i}.

Clearly, L1 and L2 can be accepted by 1-turn DPDAs.

Theorem 3. L1 or L2 cannot be accepted by any NCM.

Proof. Suppose L1 and L2 are accepted by NCMs A1 and A2 with n1 and n2
1-reversal counters, respectively. We construct from A1 and A2 an NCM A ac-
cepting the language L1 ∩ L2 = {ID1# · · ·#ID2k−1##IDR

2k · · ·#IDR
2 | k ≥

2, ID1 = q0a
p, p ≥ 1, ID2k is a halting configuration, and IDi+1 is a valid suc-

cessor of IDi for i ≥ 1}. A simulates A1 and A2 in parallel (hence, A will have
n = n1 + n2 1-reversal counters).

Finally, we show (using NCM A) that there exists an algorithm to decide L,
which would be a contradiction. The algorithm works as follows:

1. On an input ad, construct a finite automaton B accepting q0a
d#Σ′∗.

2. From the finite automaton B and the NCM A (accepting L1∩L2), construct
an NCM A′ which accepts L(A) ∩ L(B).

3. Test if the language accepted by A′ is empty. This is possible since the
emptiness problem for NCMs (or even for NPCMs) is decidable [7].

Note that ad �∈ L if and only if the language accepted by A′ is empty. ��

From Corollary 1 and Theorem 2, we have:

Corollary 2. 1. NCM are strictly more powerful than DCM.
2. NCM and DPCM are incomparable.
3. DPCM are strictly more powerful than DCM.

Remark 1. Note that the fact that NCM is closed under intersection and has
decidable emptiness problem while this problem is undecidable for DPCM does
not necessary imply that these two classes are incomparable. This kind of argu-
ment would lead to a fallacy. For example, the class DFA of finite automaton
languages is closed under intersection and has decidable emptiness problem. Now
consider the class Null-TM of languages defined by TMs whose inputs can only
be the null string ε. Then the emptiness problem for Null-TM is undecidable
(because the halting problem for TMs on an initially blank tape is undecidable).
However, Null-TM is contained in DFA (since Null-TM consists only of the two
languages ∅ and {ε}), hence, not incomparable.
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4 Counter Machines and Multihead Automata

A (non-deterministic) multihead finite automaton (NMHFA) M with k heads
(written as NMHFA(k)) is a machine with k one-way input heads operating on an
input string with a right end marker $. At the start of the computation, the heads
are on the leftmost symbol of the input string and M is in its initial state. A move
of the machine is a transition of the form δ(q, a1, . . . , ak) = {(p, d1, . . . , dk)},
where q is the current state, a1, . . . , ak are the symbols scanned by heads, p is
the next state, and d1, . . . , dk are the movements of the heads, which can be
R or S (one position to the right, or do not move). Note that the heads are
non-sensing (i.e., the heads cannot sense the presence of the other heads on
the same position). An input is accepted if M eventually enters an accepting
state and all heads are on the right end marker. The machine can be augmented
with a pushdown stack (NMHPDA) in the obvious way. It can be deterministic
(DMHFA, DMHPDA).

The main aim of this section is to investigate the comparability and incom-
parability among the classes of finite state machines with those of finite state
machines with multiple heads. First, we prove that a DCM can be simulated
by a DMHFA. In order to prove this, we propose some properties which can be
assumed for DCMs without loss of generality. The first property says that given
a DCM, we can construct a DCM with the same number of counters which reads
any input till its end.

Lemma 6. Any DCM M can be converted to a DCM M ′ such that L(M ′) =
L(M) and for every input, M ′ does not go into an infinite loop on a symbol on
the input tape.

Proof. Let M have s states. M ′ is constructed as follows:

1. M ′ simulates M .
2. If M has made more than s moves while remaining on the symbol without

at least one of the following happening:
(a) a positive counter decrementing,
(b) a zero counter becoming positive (note that when a positive counter be-

comes zero from being positive, it can no longer become positive again),

then M is looping on the symbol. M ′ then has two cases to handle:

Case 1: During the looping, M does not enter any accepting state. In this case,
M ′ enters a special (new) reject state r and scans the remaining input in
state r until the head falls off the input.

Case 2: During the looping, M enters an accepting state. In this case, M ′ enters
a special (new) accepting state f (thus accepting the input if there is no more
symbol to the right of the head). Then M ′, in state f , on any input enters
a special rejecting state r and scans the remaining input in state r until the
head falls off the input.

The next lemma provides us with one desirable property that DCMs satisfying
Lemma 6 have.
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Lemma 7. Any DCM M can be converted into a DCM M ′ such that L(M ′) =
L(M) and there exist constants c1, c2, and for any input w, the values of counters
are at most c1|w| + c2 during the computation by M ′ on w.

Proof. Let M be a DCM(k) with s states for some k ≥ 1 (since we concern the
value of counters, we ignore the case k = 0). Let M ′ be the DCM(k) converted
from M according to Lemma 6. Let c = s × 2k. Since c ≥ s, according to the
design in Lemma 6, if M ′ makes more than c moves while its head remaining on
the same symbol, then either the event (a) or event (b) must occur.

We claim that during the computation by M ′ on an input of length n, the
value of each counter can be at most (c + 2)k−1(c + 1)(n + k), i.e., O(n), by
induction on the number of counters. Note that when two counters contain the
respective values n1 and n2, M ′ can increment the first counter further by cn2
while decreasing the second one up to 0. In order to make the value of a counter
as large as possible, we employ the following strategies:

1. at each transition, M ′ will increase the values of all counters which are in
non-decreasing mode;

2. M ′ never decrease two counters at the same transition.

For the case k = 1, more than c transitions should not occur uninterruptedly
without moving its head. According to the first strategy, M should increment
the counter from the very beginning transition, and once being decremented, M
cannot increment the counter any more. Thus the value of this counter can be
at most (c + 1)n + c ≤ (c + 1)(n + 1).

Now suppose that the claim holds for some k− 1 and consider the case when
M ′ has k counters. Let us assume that M decrements (k− 1)-th counter for the
first time while M ′ moving its head from the (m − 1)-th input symbol to the
m-th one. At the point, the value of (k−1)-th or k-th counter can reach at most
(c + 2)k−2(c + 1)(m + k − 1) according to the induction hypothesis, even if M ′

makes the other counters to be 0. While decrementing the (k−1)-th counter up to
0, the k-th counter can increase at most by (c+1)·(c+2)k−2(c+1)(m+k−1)+c.
By expending the rest of the input (n −m symbols), we can increase at most
(c + 1)(n−m) + c. Thus, the k-th counter can become largest when m = n and
the value is (c+2)k−2(c+1)(n+k−1)+(c+1) · (c+2)k−2(c+1)(n+k−1)+ c,
which is at most (c+2)k−1(c+1)(n+k). Thus, the induction step is verified and
the claim holds. By letting c1 = (c + 2)k−1(c + 1) and c2 = k(c + 2)k−1(c + 1),
this lemma holds. ��

Proposition 1. For any k ≥ 0, DCM(k) ⊆ DMHFA(2k + 1).

Proof. Let M ∈ DCM(k). Each 1-reversal counter C of M can be simulated
by two input heads H1 and H2, which are initially positioned on the leftmost
symbol of the input. When C increments by 1, H1 is moved one position to the
right. When C reverses, both heads are moved simultaneously to the right until
H1 reaches the end marker before continuing with the simulation of C. After
that, decrementing C would correspond to moving H2 one position to the right.
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When H2 reaches the end marker, this indicates that C has the value zero. This
simulation works if the counter values are bounded by n, where n is the length
of the input. If the counter values are bounded by c1n + c2 for some constant
c1, c2 (i.e., the counter values are linearly bounded), then H1 (resp. H2) operates
modulo c1, i.e., H1 (resp. H2) is moved one position to the right for every c1
increments (resp. decrements) of C. The existence of such c1, c2 is guaranteed
by Lemma 7. ��

Next, we prove the incomparability between NPCM and NMHFA. Following the
notation in the proof of Theorem 2, let us firstly consider the language:

L = {ID1#ID2#ID3#ID4# · · ·#IDk | ID1 = q0a
p for some p ≥ 1

and for i ≥ 1, IDi+1 is a valid successor of IDi}.

It is clear that L ∈ DMHFA(2). In contrast, the technique used to prove Theo-
rem 2 is also applicable to show that L �∈ NPCM.

Proposition 2. There is a language accepted by a DMHFA(2) that cannot be
accepted by any NPCM.

Due to Proposition 2, now it suffices to propose a language in NPCM\NMHFA
to show the incomparability between NPCM and NMHFA. The marked palin-
dromic language Lpal = {x#xR | x ∈ {0, 1}+} serves this purpose, which is
actually in DPDA. The following results may have already been known, but we
have not been able to find an appropriate reference. We give a proof below for
completeness. The proof uses a Kolmogorov-complexity-based idea in [11]. The
Kolmogorov complexity of a word w ∈ Σ∗, denoted by K(w), is defined to be
the length of the shortest program that outputs only w. Let K(w|y) be the con-
ditional Kolmogorov complexity of w with respect to a given extra information
y. A word w is said to be random if K(w) ≥ |w|. It is well-known that there
exist random strings. We state one more well-known fact without proof.

Fact 1. If string uvw is random, then K(v|uw)� |v| −O(log |uvw|).

Proposition 3. Lpal �∈ DMHFA(2).

Proof. Suppose that there were a DMHFA(2) M such that L(M) = Lpal. Let
hr, hl be the rightmost and leftmost heads of M , respectively.

Let us consider a random word w = w1w2 satisfying |w1| = |w2| � log |w| +
|M |, where |M | denotes the (program) size of M . Note that w1 �= w2 because of
the randomness of w. Then we put the following input into M :

I1 = ∗w1 ∗ w2 ∗# ∗ wR
2 ∗ wR

1 ∗ .

For this input, we say that wi (i = 1, 2) is checked if there is a time t when hr

is on wR
i while hl is on wi.

We claim that both w1 and w2 have to be checked. Indeed, suppose that
w1 were not checked. Consider the computation of M on I1. Let IDin(hr)
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(IDout(hr)) be the configuration of M when hr first reaches the first (resp.
second) * sign in ∗wR

1 ∗ of I1. The analogous notation is defined for hl. Note
that these IDs can be described of length O(log |w|). Given these IDs and
w2, we can reconstruct w1 by a short program as follows: For a word x with
|x| = |w1|, let P (x) = ∗0|w1| ∗w2 ∗# ∗wR

2 ∗x ∗ . We simulate M on this program
P (x) starting with IDin(hr) and IDin(hl). If IDin(hr) �∗P (x) IDout(hr) and
IDin(hl) �∗P (x) IDout(hl) hold, then M accepts I1(x) = ∗w1 ∗w2 ∗# ∗wR

2 ∗ x ∗ .

This can happen if and only if x = wR
1 (otherwise, an input not in Lpal would be

accepted by M). Therefore, K(w1|w2) = O(log |w|), but this contradicts Fact 1.
Now, the claim has been verified so that both w1 and w2 have to be checked,

but clearly it cannot be done by one-way multihead FA (if w2 is checked, then
hl is on w2 so that it cannot return back to w1 in order to check w1.) ��

We can easily modify the proof of Proposition 3 to prove that Lpal cannot be
accepted by any DMHFA not depending on how many heads are available. It
suffices to split the random string w into k substrings of the same length as
w = w1w2 · · ·wk in order to prove that any DMHFA(k) cannot accept this
language. With this modification, we can verify the next proposition.

Proposition 4. Lpal �∈ DMHFA.

We further strengthen the above result by showing that even non-determinism
does not help for multihead finite automata to accept Lpal.

Lemma 8. Let Σ be a non-unary alphabet, and @ be a symbol that is not in
Σ. For a language L ∈ NMHFA(k), there exists a language L′ ⊆ (Σ ∪ {@})∗ in
DMHFA(k + 1) with a property that w ∈ L if and only if w@Σ∗ ∩ L′ �= ∅.

Proof. The transition function of an NMHFA(k) maps a tuple (q, a1, a2, . . . , ak)
into a set {(p1, d11, d12, . . . , d1k), . . . (pm, dm1, dm2, . . . , dmk)}, where m ≥ 0 is an
integer, pis are future states, and dijs are either S or R. Hence, if an NMHFA(k)
is in configuration (q, a1, a2, . . . , ak), it will have m transition choices.

If L is accepted by an NMHFA(k) M and w is a word in L, then there is
a sequence c1, c2, . . . , c|w| such that if we feed w into M and choose the cith
transition at the ith step, we reach an accepting state. On the other hand, if
w �∈ L, there will be no such sequence. Therefore, one can build L′ from L by
attaching @〈c1, c2, . . . , c|w|〉 at the end of every w ∈ L, where 〈c1, c2, . . . , c|w|〉
denotes any encoding of the sequence using the alphabet Σ. ��

The above-mentioned lemma can be used to show that Lpal is not in NMHFA.
For the sake of contradiction, suppose Lpal ∈ NMHFA(k) for some k. Let L′

pal
be the language that can be constructed from Lpal as in Lemma 8. Then, L′

pal ∈
DMHFA(k + 1). However, an argument very similar to the one in the proof of
Proposition 3 can be used to show that L′

pal �∈ DMHFA(k + 1).

Proposition 5. Lpal �∈ NMHFA.

Corollary 3. Neither DMHFA nor NMHFA is comparable with either DPCM
or NPCM.
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Abstract. Gathering n mobile robots in one single point in the
Euclidean plane is a widely studied problem from the area of robot for-
mation problems. Classically, the robots are assumed to have no physi-
cal extent, and they are able to share a position with other robots. We
drop these assumptions and investigate a similar problem for robots with
(a spherical) extent: the goal is to gather the robots as close together as
possible. More exactly, we want the robots to form a sphere with min-
imum radius around a predefined point. We propose an algorithm for
this problem which synchronously moves the robots towards the center
of the sphere unless they block each other. In this case, if possible, the
robots spin around the center of the sphere. We analyze this algorithm
experimentally in the plane. If R is the distance of the farthest robot
to the center of the sphere, the simulations indicate a runtime which is
linear in n and R. Additionally, we prove a theoretic upper bound for
the runtime of O(nR) for a discrete version of the problem. Simulations
also suggest a runtime of O(n + R) for the discrete version.

1 Introduction

Given n robots which are distributed in the plane, the goal of the traditional
gathering problem is to let all robots gather in one point. This problem is one
of the simplest problems from the area of robot formation problems. Therefore,
a lot of effort has been put into pinpointing the needed capabilities and possible
limitations of robots that are able to perform gathering in finite time and in
different time models. Mostly, the assumptions are quite theoretical: Robots oc-
cupy only one single point in the plane and may share a position, viewing ranges
are exact spheres etc. Recently, the main focus is on more realistic assumptions
regarding the robot abilities. Especially robustness against faulty compasses or
other types of imprecise measurements is considered. However, little effort has
been put into the fact that in a realistic setting, gathering on a single point for
a reasonable number of robots is not possible due to their physical extent. Even
� Partially supported by the EU within FP7-ICT-2007-1 under contract no. 215270

(FRONTS) and DFG-project “Smart Teams” within the SPP 1183 “Organic Com-
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worse, colliding robots could prevent each other from moving toward some target
at all. The focus of this paper is to overcome these inherent obstacles by model-
ing robots with an extent rather than as simple points. Assuming the robots to
have a circular shape, gathering in this context means letting the robots gather
in an area (of circular shape) which is as small as possible. During the move-
ment robots are not allowed to collide. We take a local approach to this problem:
When deciding where to move, robots only take their direct neighborhood into
account. Moreover, our goal is to not only show that gathering the robots in this
setting is possible in finite time, but we also analyze the time it takes until the
robots have reached a close-to-optimal or optimal gathering.

Our Contribution. We present a simple, local algorithm in two variants: one
for gathering in a continuous environment and in continuous time, and one for
a setting with a discrete environment and discrete time. We provide a runtime
bound of O(nR) for the latter setting and give experimental insight that the
runtime in general could be of order O(n + R), where n is the number of robots
and R the diameter of the system. To enforce this conjecture, a statistical analysis
using the mean value of the measured running time and the difference to its 95%-
confidence interval is presented.

Related Work. While the gathering problem is well studied, most studies as-
sume that several robots can share the same position. The main focus in the
literature is to limit the needed capabilities of robots in a given time model such
that gathering is still possible. For instance, authors often assume robots not
to know their ID (anonymity), not to remember their past (oblivious), and not
to have a common sense of direction (disoriented). In [10] it was shown that
robots which are anonymous, disorientated, oblivious, and can not communicate
are able to gather in a semi-synchronous time model if and only if n is odd.
Another example is [19], where two robots gather with inaccurate compasses or
[14], where the compasses even vary over time. There is also work for gathering
in graphs instead of Euclidean spaces [9,15], and in models with uncertainty [17].
Impossibility results are also known. For instance, in [18] it is shown under which
circumstances robots are unable to gather. In [13] an exponential lower bound
for randomized algorithms is shown assuming very restricted robots. They also
propose a linear time gathering algorithm on the base of multiplicity detection.
If at least one robot behaves maliciously, gathering is only possible if there are
at least three robots in total [1]. Another important aspect is robustness [6].
Since robots in practice cannot look arbitrarily far, recently robots with local
view were considered [7,8,3,2]. A similar problem considered under local view is
to transform a long, winding chain of robots into a short one [16,11]. There are
also runtime bounds given, which are, in contrast to our work, rarely stated for
gathering. A notable exception is [4], where an upper bound of O(n2) for the
easier convergence problem in several time models is shown. Closest to our work
is [5], where the authors solve a different gathering problem for robots with an
extent. Similar to our model, robot collisions are prohibited. In spite of this, the
main problem tackled by the authors is that the line of sight of one robot may
be blocked by the extent of another. While the goal in [5] is to gather the robots
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in such a way that the union of all (circular) robot shapes is connected, our goal
is to gather the robots (at a fixed position) as dense as possible. The authors
use an asynchronous time model for which no runtime bounds are shown.

2 Basic Model and Problem Description

Consider a set R = {r1, r2, . . . , rn} of n robots in the 2–dimensional Euclidean
space R2. We imagine the robots to have a spherical shape of diameter 1. By
pi ∈ R2 we indicate the center of the robot ri, called its position. We do not allow
any two robots to penetrate each other, thus, the Euclidean distance between
robot positions may not drop below 1. Our goal is to let the robots gather in an
area which is as small as possible. To describe the problem formally, we introduce
the notion of the robots’ C-miniball BC , which is the smallest sphere around all
robots centered in point C. The problem T-GATHERd is now as follows: given a
set R of robots in R2 and a gathering point T ∈ R2, how must the robots move
such that the diameter of their T –miniball becomes minimal?

Our algorithms can be executed by very simple robots. The robots have a lim-
ited viewing range in which they observe the positions of neighbors. This viewing
range must only be large enough to avoid collisions. Thus, a viewing range of 2
is sufficient. The only global information the robots have is the gathering point:
each robot has its own local coordinate system, it knows the position of the
gathering point and its own position with respect to its own coordinate system.
Memory is only needed for the gathering point, that is, robots do not remember
past situations: a robot’s decision at a time t is only based on the positions of
the robots within the viewing range at time t and the gathering point. Thus,
the robots are oblivious. Moreover, the robots do not communicate1 and they do
not need to distinguish robots from each other. The described model is used in
both the continuous (Section 3) and the discrete (Section 4) setting. However,
we left some aspects of the model—especially the time model—undefined. They
depend on the actual setting and are introduced in the corresponding sections.

3 The Continuous Setting

In this section we describe and study the algorithm PullSpin in a contin-
uous environment. Continuous models are rather uncommon in this research
area: while the gathering problem has been considered in several different time
models (synchronous, semi-synchronous, asynchronous, etc.; see for example [12]
for an introduction), nearly all results use a discrete time model. That is, the
robots observe their environment, perform computations on these observations
and eventually move to a new position. However, in reality these observations
are often made (nearly) continuously and the entities react (nearly) immediately
on their input. The theoretic handling of such continuous models seems rather
1 In the discrete setting, we do symmetry breaking in a global fashion. A local imple-

mentation would need communication between nearby robots. Still, the robots being
oblivious, communication cannot be used to compute a global solution.
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complex and very different from their discrete counterparts. A recent example
for a problem that has been considered in a discrete and continuous environ-
ment is the communication chain problem [8]. Due to the apparent complexity
of a theoretic analysis, we will only provide an experimental evaluation of the
algorithm in several different situations. However, in Section 4 we consider the
problem in a discrete environment. This simplification will allow us to prove
several theoretical results about the discrete version of the PullSpin algorithm.
Note that we consider an idealized, continuous time model. That is, the robots
move on continuous trajectories and continuously perceive other robots within
their viewing range. In our experiments, we approximated this model by very
short discrete simulation steps.

Algorithm Description. Our PullSpin algorithm is named after and build
around two central operations: the PULL and SPIN operations. The PULL opera-
tion causes the robots to approach the gathering point. If pulling further would
cause them to penetrate each other, we say that they are pull-blocked. In this
case, the robots use the SPIN operation to rotate around the gathering point. By
choosing the rotation direction uniformly at random, the robots may move away
from each other and thereby re-enable PULL operations. The distance covered
by a SPIN operation is called spin parameter. Its choice has an impact on the
running time and success of the algorithm.

It is easy to see that this algorithm does not guarantee the robots to gather
optimally around the gathering point. Indeed Figure 1c depicts a situation where
robots have not yet reached a very dense gathering around the gathering point:
the corresponding miniball’s radius is linear in the number of robots. No robot
can perform a PULL operation without penetrating its neighbors. Moreover, all
possible spin directions are blocked by other robots. That is, these robots are
pull- and spin-blocked. Such a situation is called a deadlock.

(a) (b) (c)

Fig. 1. Three different kinds of pull- and/or spin-blocks. While the T -miniballs cor-
responding to (b) and (c) have a diameter that is linear in the number of robots, the
corresponding diameter for (a) may be arbitrarily large. The situations (a) and (b) can
be resolved by spin operations.

However, while our algorithm is—in the continuous model—not even guaran-
teed to lead to a nearly optimal gathering (i.e., optimal up to a constant), exper-
iments suggest that such deadlock situations are unstable and very unlikely to
occur, at least if the robots do not already start in such a highly symmetric situ-
ation. In our experiments, typical results were dense packings with a few robots
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still performing spin operations, but unable to find a space for a pull-operation.
Note however, that the algorithm for the discrete problem variant described in
Section 4 always achieves optimal configurations.

Experiments. We designed several experiments to evaluate the quality of the
PullSpin-algorithm. The idealized continuous time model was approximated
by using a discrete model and restricting the distance robots can move during
one simulation step to the relatively small value of 0.01. For the experiments,
we created several initial arrangements differing in the number of robots n and
the maximal distance R of a robot to the gathering point. Our main interest
was to capture interesting and hard configurations. There are two extreme cases
yielding two different problems: widespread configurations (robots have to travel
a large distance) and configurations where some robots are close together (and
block each other). To capture the former (homogeneous arrangement), every
robot was given an integer starting position taken uniformly at random from
the sphere of radius R around the gathering point. For the latter, four cluster
centers were chosen uniformly at random within radius R of the gathering point.
The robots were evenly distributed on the clusters in compact spheres. Instances
with overlapping clusters were discarded. For every arrangement, it was validated
that there is at least one robot of distance R to the gathering point and that
every pair of robots obeys the minimum distance of 1.0 to each other. The SPIN
operation was implemented as follows: whenever a robot is pull-blocked in the
last step, it spins clock- or counterclockwise (uniformly at random) around the
gathering point for a distance of at most 2.0 or until it becomes blocked by
another robot2. Afterward, the robot tries to PULL again. Due to the random
nature of the initial arrangements, we created 25 different starting settings for
each parameter tuple (n, R). We measured the number of simulation steps it
took until all robots reached a “close to optimal” configuration. More precisely,
we stopped a run when all robots were contained in a sphere of radius 2·r around
the gathering point. Here, r = 1

2
√

n is a lower bound of the optimal radius (the
radius of a sphere with the same volume as all robots together).

As expected, the PullSpin algorithm has no problems to deal with the ho-
mogeneous arrangements. At the beginning of these experiments, almost every
robot is able to perform several PULL operations until it is forced to SPIN for
the first time. The number of spin operations increases as the region around the
gathering point becomes more and more dense. Additional problems occur in
the inhomogeneous arrangements. In these arrangements almost all robots block
each other initially, preventing them from approaching the origin. This way they
force each other to perform SPIN operations. However, after a small amount of
time all the clusters become loose enough such that most robots are able to con-
tinue with PULL operations. Even though many robots may reach the gathering
point from the same direction in these arrangements (by a corresponding choice
of the clusters), it seems that—mainly due to the SPIN operation—deadlock sit-
uations are very rare: only in 29 out of 5525 runs the termination criterion of our

2 This proved to be a sensible choice in some preliminary experiments.
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(a) Mean of running time (b) Difference of the boundary of the
95%-conf. interval to the mean values

Fig. 2. Homogeneous PullSpin experiments for different (n, R)-tuples. The running
time t is measured in simulation steps.

(a) Mean of running time (b) Difference of the boundary of the
95%-conf. interval to the mean values

Fig. 3. Inhomogeneous PullSpin experiments for different (n, R)-tuples. The running
time t is measured in simulation steps.

experimental analysis was not reached within a feasible time (100,000 simulation
steps)3. Furthermore, note that at most two of them occurred for the same pair
of n and R values.

Figures 2 and 3 show the mean value and the difference between the bound-
ary of the 95% confidence interval and the mean value. For example, Figure 2a
shows the mean values we measured over all runs in the homogeneous PullSpin

arrangements. Figure 2b indicates how much this mean value differs from the up-
per bound of the corresponding 95% confidence interval. As can be seen in both
the homogeneous and inhomogeneous PullSpin arrangements, the difference is
rather small. Together, the diagrams indicate that the average running time of
PullSpin is linear in the parameters n and R for homogeneous and inhomo-
geneous arrangements. The initial radius R seems to be more dominating than
the number of robots n. Surprisingly, for fixed R the mean running time even

3 These were considered as outliers and not included in the statistical analysis.



184 A. Cord-Landwehr et al.

decreases for large values of n, due to the fact that we stopped the simulations on
arrival of the last robot in some nearly optimal sphere as described above. Since
the radius of this sphere grows for large n, the simulation terminates earlier,
compensating the effect of additional collisions by the higher amount of robots.

4 The Discrete Setting

In the discrete setting, we no longer allow the robots to move arbitrarily in
R2, but restrict them to positions on the 2-dimensional integral grid Z2. This
discretization yields several advantages for the analysis, while the central diffi-
culties still hold. Most important, robot movements are easy to describe and the
property that robots may not collide due to their extent is properly captured.
As in the continuous setting, we want the robots to gather around the origin.
However, we use a more natural distance notion on the grid: the metric induced
by the L1-norm (also known as the taxicab metric or Manhattan distance). We
use ‖x‖1 := |x1|+ |x2| to refer to the L1-norm of x ∈ Z2. Given the restriction to
discrete robot positions and the finite number of robots, we can, w.l.o.g., assume
a discrete time model starting at time t = 0. A robot that wants to move to a
(free) neighbored grid point p ∈ Z2 will immediately reach p in the next time
step. To avoid collisions, we do not allow two distinct robots to be placed on the
same position. Our goal is to find a gathering that minimizes the radius of the
minimal L1-sphere containing all robots. We define B(k) := {x ∈ Zd | ‖x‖1 ≤ k}
as the (filled) L1-sphere and B◦(k) := {k ∈ Zd | ‖x‖1 = k} as the hollow L1-
sphere of radius k ∈ N. It is obvious that, given exactly |B(k)| robots, there is
a unique optimal gathering: the gathering where all robots lie on a grid point
within B(k). To simplify the analysis, in the remainder we will assume, w.l.o.g.,
that the number n of robots is of the form |B(k)| for some k ∈ N.

Algorithm Description. In the following, we present a discretization of the
PullSpin algorithm named GridPullSpin. In contrast to the original
PullSpin algorithm, GridPullSpin is deterministic. This eases the analysis.
Once more, the discrete algorithm is based on two operations: PULL and SPIN
(discrete variants of the corresponding continuous operations). They are implic-
itly defined as follows: PULL decreases the distance to the origin by exactly one.
SPIN increases/decreases the distance to the origin in every dimension by at
most one, such that the distance to the origin does not change. As illustrated in
Figure 4, robots may have the choice between several PULL and/or SPIN opera-
tions. In such situations, our GridPullSpin algorithm chooses from the avail-
able operations in the following order: PULL in x-direction, PULL in y-direction,
counterclockwise SPIN operation.

The notions introduced in Section 3 (e.g., pull-blocked, spin-blocked, . . . )
apply accordingly to the discrete setting. As in the continuous setting, there
are situations where all robots are pull-blocked, even if they have not reached
an optimal gathering (see Figure 5). Again, SPIN operations are used to resolve
pull-blocks. Note that there are no deadlocks (other than the optimal situation)
in the discrete setting. In fact, the GridPullSpin algorithm is guaranteed to
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Fig. 4. Possible PULL/SPIN operations (dashed)
and choices of GridPullSpin (solid)

Fig. 5. Non-optimal and pull-
blocked gathering

lead to an optimal gathering around the origin, as we will prove in Theorem 1.
If several robots simultaneously move to the same position, we arbitrarily select
one of them, favoring robots performing a PULL operation4. This robot performs
its move as usual, while the remaining robots idle for one step.

GridPullSpin Analysis. We begin by showing that the GridPullSpin

algorithm leads to an optimal gathering in a finite amount of time. Afterward,
we will carefully analyze how long the algorithm needs to achieve such an optimal
gathering and prove an upper time bound of O(nR).

Theorem 1. Given an arbitrary initial arrangement of n robots on the grid Z2,
GridPullSpin leads to an optimal gathering of the robots around the origin.

Proof. First note that the total number of PULL operations is finite. Assuming
the robots have not yet reached an optimal gathering at time t ∈ N, consider the
innermost level lmin around the origin that has less robots than in the optimal
gathering. Furthermore, let lnext > lmin denote the next level that contains at
least one robot at time t. If lnext > lmin +1, then at least one robot at level lnext

performs a PULL operation at the next time step. Otherwise, the robots at level
lnext will perform SPIN operations until one of them perceives a free position at
level lmin and performs a PULL operation. Note that there must be a free position
somewhere at level lmin and, because of the robots spinning deterministically
counterclockwise around the origin, one of them will perceive this free position
after at most 4(lmin + 1) steps. Since only finitely many PULL operations are
performed, an optimal gathering must be reached within finite time. ��

Theorem 2. Given n robots on the 2-dimensional grid Z2, GridPullSpin

leads to an optimal gathering around the origin after at most 3nR steps.

Before we prove this Theorem, remember that we assume (w.l.o.g.) the number
of robots to be of the form n = |B(k)| for some k ∈ N. Thus, the robots have
reached an optimal gathering around the origin if and only if each point in B(k)
is occupied. That is, B(k) forms the set of target positions. The target positions

4 This operation can be implemented locally if robots can communicate and have either
IDs or use randomization. In the latter case, each of the (at most four) robots tosses
a coin. Only if exactly one of them tosses head, this robot moves to the position. In
expectation, it takes a constant number of tosses until one of the robots proceeds.
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B(k) can be partitioned into k + 1 levels Bi (i = 0, . . . , k) with Bi := B◦(i).
We will refer to Bi as the i-th level. A target position x ∈ Bi can be in one of
two states: For i = 0, x is called occupied if a robot is at position x. If i > 0, x
is called occupied if all target positions on levels j < i are occupied and there
is a robot at position x. If x is not occupied, it is called free. We call level i
occupied if all target positions in Bi are occupied. An occupied target position
can become free again: the occupying robot may simply move away. However,
once a level is occupied, it can not become free anymore. Let us gather this and
some other basic observations:

Observation 1
(a) Once a level is occupied, it cannot become free anymore.
(b) The number of occupied target positions in Bi is monotonically increasing.
(c) Level k is occupied iff the robots have reached the optimal gathering.

To determine how long it takes to occupy level k, we define a total order on
the robots. Theorem 1 and Observation 1.c guarantee that eventually all target
positions become occupied. Let us consider the robot that increases the number
of occupied target positions on level i ∈ {1, . . . , k} from j−1 to j ∈ {1, 2, . . . , 4i}
and refer to it by ri,j , breaking ties arbitrarily. The robot eventually occupying
B0 is referred to by r0,1. This defines a bijection between the set of robots
and the corresponding indices (i, j). We use these indices to order the robots
lexicographically and write ri,j < ri′,j′ if (i, j) < (i′, j′). We call robot ri,j

settled when it caused the j-th target position of level i to become occupied.

Proposition 1
(a) If ri,j < ri′,j′ , ri,j will be settled before or at the same time as ri′,j′ .
(b) Robot r0,1 becomes settled after at most R steps.
(c) If all robots r < ri,j are settled, ri,j becomes settled after at most 3R steps.

Proof
(a) This follows immediately from the definition of the total order on the robots.
(b) Let t̂ denote the time when r0,1 becomes settled and consider an arbitrary
time t < t̂. Let Rt denote the set of robots having minimal distance δt > 0 to
the origin. All robots in Rt will perform a PULL operation, some of them not
succeeding in case of competition for the same position. This implies ∅ �= Rt+1 ⊆
Rt. At time t̂ − 1, only one robot will succeed with its PULL operation: robot
r0,1. Now we have r0,1 ∈ Rt̂ ⊆ Rt̂−1 ⊆ . . . ⊆ R0. That is, r0,1 always performed
a (successful) PULL operation. This implies t̂ = δ0 ≤ R.
(c) Consider robot ri,j at time t0 when all robots r < ri,j have been settled. All
of them lie on a level ≤ i. For a time t ≥ t0, let Rt denote the set of robots having
minimal distance δt > i to the origin. Similar to the proof of Proposition 1.b, we
can identify a robot in Rt0 that performs only PULL operations until it reaches
level i+1. Thus, there is a robot r ∈ Rt0 that reaches level i+1 after δ−i−1 < R
steps. Having reached level i+1, it may now be pull-blocked by an already settled
robot at level i. Let us denote this time with t1 < t0 +R and consider two cases:
If at least j target positions in level i are occupied, robot ri,j has been settled



Collisionless Gathering of Robots with an Extent 187

at a time ≤ t1 < t0 + R < t0 + 3R (by definition). Otherwise, if at most j − 1
target positions in level i are occupied, then—since all robots r with r < ri,j

have been settled—there are exactly j − 1 occupied target positions in level
i. Furthermore, there is a free target position somewhere on level i. Robot r
will SPIN counterclockwise, while the target position “spins” clockwise. If r is
not spin-blocked during these steps, it will reach the target position after at
most 4i/2 = 2i ≤ 2R steps. If r is spin-blocked by a robot r′, we can iterate
the argument on r′ until we find a robot r′′ that is not spin-blocked before it
reaches the free target position. Therefore, after at most 2R steps, another target
position on level i has been occupied. Thus, the j-th target position on level i
must have been occupied at a time ≤ t1 + 2R < t0 + 3R. In both cases, robot
ri,j has been settled after at most 3R steps. ��

Proof (of Theorem 2). Proposition 1 immediately implies that it takes at most
n · 3R steps until all robots are settled. Especially, since all level k marks have
been occupied, the robots have reached an optimal gathering (Observation 1).

��

(a) Mean of running time. (b) Difference of the boundary of
the 95%-conf. interval to the mean
values.

Fig. 6. Homogeneous GridPullSpin experiments for different (n, R)-tuples

Experiments. Similar to the experiments in Section 3, we used homogeneous
and inhomogeneous arrangements to test the capabilities of GridPullSpin.
The experimental setting differs from the one in Section 3 in the several aspects.
On the one hand, for all distances the L1-norm is used instead of the Euclidean
norm. On the other hand, the maximum movement distance is 2 (in L1-norm),
since GridPullSpin moves robots by at most one in each dimension. Further-
more, note that the criterion for termination is the achievement of an optimal
gathering. Apparently, GridPullSpin needs more time to terminate in the in-
homogeneous arrangements (Figure 7) than in the homogeneous arrangements
(Figure 6). One has to be careful when comparing these results to the corre-
sponding results in the continuous setting. By the choice of our parameters, the
robots in the continuous setting cover much smaller distances in one time unit.
However, in both cases the experiments clearly indicate a linear dependence in n
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and R of the average running time. The stair-like artifacts in Figure 6 stem from
the fact that the radius of the optimal gathering is not directly proportional to
the number of robots: an almost empty last level is easier to reach than one that
is almost full. The decreasing running time for growing n and small, fixed R
can be explained by the low difference of these arrangements from an optimal
gathering. For inhomogeneous arrangements the deviation of the confidence in-
terval boundaries seems (in contrast to all other cases) not to be constant, but
linear dependent with respect to n. However, this does not affect the observed
averaged linear running time.

(a) Mean of running time. (b) Difference of the boundary of
the 95%-conf. interval to the mean
values.

Fig. 7. Inhomogeneous GridPullSpin experiments for different (n, R)-tuples

5 Conclusion and Future Work

We conjecture that our runtime bound can be improved to O(n + R). After all,
our experiments suggest this bound and our proof ignores the parallel movement
of the robots. Moreover, we would like to extend our algorithms to arbitrary
dimensions. To do this in the discrete setting it seems crucial to guarantee that
robots spin around an almost compact sphere in such a way that they find the
possibly sole gap they can pull into. This is related to the exploration of sphere
surfaces, only that the gap may move as well. The experiments seem to suggest
that similar runtime bounds apply to the continuous setting. Here proofs are
still needed. A first step is to discretize only the time, such that the robots’
movement distance is bounded to a small value at every time step.
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Abstract. We consider devices equipped with multiple wired or wireless
interfaces. By switching among interfaces or by combining the available
interfaces, each device might establish several connections. A connection
is established when the devices at its endpoints share at least one active
interface. Each interface is assumed to require an activation cost. In this
paper, we consider the problem of establishing the connections defined
by a network G = (V, E) while keeping as low as possible the maximum
cost set of active interfaces at the single nodes. Nodes V represent the
devices, edges E represent the connections that must be established. We
study the problem of minimizing the maximum cost set of active inter-
faces among the nodes of the network in order to cover all the edges.
We prove that the problem is NP-hard for any fixed Δ ≥ 5 and k ≥ 16,
with Δ being the maximum degree, and k being the number of different
interfaces among the network. We also show that the problem cannot be
approximated within Ω(ln Δ). We then provide a general approximation
algorithm which guarantees a factor of O((1 + b) ln(Δ)), with b being a
parameter depending on the topology of the input graph. Interestingly,
b can be bounded by a constant for many graph classes. Other approxi-
mation and exact algorithms for special cases are presented.

1 Introduction

The heterogeneity of modern devices poses new challenges to the scientific com-
munity. The interest is also increased by the wide range of real-world applications
inferred. For instance, the equipment of recent devices provides users with the
opportunity to access to different networks by means of the selection of suitable
interfaces. Classical problems related to wired and wireless networks can be re-
considered with respect to the new environment. Different computational power,
energy consumption, radio interfaces, supported communication protocols, and
other peculiarities can characterize the involved devices. In this paper, we are
interested in multiple interfaces equipments where a connection between two or
more devices might be accomplished by means of different communication net-
works according to provided requirements. The selection of the most suitable
interface for a specific connection might depend on various factors. Such factors
include: its availability in specific devices, the cost (in terms of energy consump-
tion) of maintaining an active interface, the available neighbors, and so forth.

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 190–201, 2011.
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While managing such connections, a lot of effort must be devoted to energy con-
sumption issues. Devices are, in fact, usually battery powered and the network
survivability might depend on their persistence in the network.

We study communication problems in wireless networks supporting multiple
interfaces. In the considered model, the input network is described by a graph
G = (V, E), where V represents the set of wireless devices and E is the set
of required connections according to proximity of devices and the available in-
terfaces that they may share. Each v ∈ V is associated with a set of available
interfaces W (v). The set of all the possible interfaces available in the network
is then determined by

⋃
v∈V W (v); we denote the cardinality of this set by k.

We say that a connection is covered when the endpoints of the corresponding
edge share at least one active interface. If an interface x is activated at some
node u, then u consumes some energy c(x) for maintaining x as active. In this
setting, we study the problem of covering all the edges of G by minimizing the
maximum cost required at the single nodes. This implies that the cost imposed
by all the interfaces activated in the whole network to accomplish the coverage
requirement might not be the global minimum. Indeed, the chosen requirement
is in favor of a uniform energy consumption among the devices, as it tries to
maintain as low as possible the maximum cost spent by the single devices. This
plays a central role in the context of wireless networks where the whole network
survivability might depend on few devices.

1.1 Related Work

Multi-interface wireless networks have been recently studied in a variety of
contexts, usually focusing on the benefits of multiple radio devices of each
node [6,9,10]. Many basic problems of standard wireless network optimization
can be reconsidered in such a setting [2]. However, previous works have been
mainly focused on the minimization of the costs among the whole network.
In [5,14], for instance, the same problem of Coverage has been investigated, but
with the goal of activating the minimum cost set of interfaces among all the
nodes in the network in such a way that all the edges of G are covered. Connec-
tivity issues have been addressed in [1,8,14,15]. The goal becomes to activate the
minimum cost set of interfaces in G in order to guarantee a path of communi-
cation between every pair of nodes. In particular, [8] considers the connectivity
task under the same objective function of this paper, i.e., the minimization of
the maximum cost spent by each single node. In [3,15], the attention has been
devoted to the so called Cheapest path problem. This corresponds to the well-
known shortest path problem, but in the context of multi-interface networks.

1.2 Our Results

In this paper, we study the problem of establishing all the connections defined
by G which minimize the maximum cost required at the single nodes. We call
this problem the Minimum Maximum Cost Coverage problem in Multi-Interface
Networks (MMCC for short). The chosen requirement is intended as a first step
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toward distributed environments where the objective function refers to local
properties rather than global costs.

We consider two variants of the above problem: the parameter k is either
considered as part of the input (this is called the unbounded case), or k is a fixed
constant (the bounded case). The case where the cost function is constant for
each interface is called the unit cost case.

First, we prove that the problem is NP -hard, even for the unit cost case
and even when the number of interfaces k and the maximum node degree Δ
are fixed. In particular, we prove that the problem remains NP -hard for any
fixed Δ ≥ 5 and k ≥ 16. Then, we present efficient algorithms that optimally
solve the problem in some relevant special cases. In detail, we focus on instances
where the input graph is a tree, by giving a polynomial time algorithm for fixed
k or fixed Δ. By using this algorithm we can derive efficient algorithms for
Δ ≤ 2. Furthermore, we give a polynomial time algorithm for k ≤ 3. For fixed
k, 4 ≤ k ≤ 15, and fixed Δ, 3 ≤ Δ ≤ 4, the complexity of MMCC remains open.

Concerning approximation results for MMCC, we show that the problem is not
approximable within an η ln(Δ) factor for a certain constant η, unless P = NP .
This result holds even in the unit cost case and when the input graph is a
tree but only when k or Δ are unbounded. We then provide an approximation
algorithm that guarantees a factor of ln(Δ) + 1 + b · min{cmax, (ln(Δ) + 1)},
with cmax = maxi∈{1,...k} c(i) and b being a parameter depending on structural
properties of the input graph. Such parameter can be bounded by a constant
in many graph classes (see Section 4). Note that, the obtained approximation
guarantees a 1+b factor from the best possible algorithm. Another approximation
factor which is directly implied by [8] is k

2 . This clearly might be useful for small
values of k.

1.3 Structure of the Paper

In the next section, we formally define the problem of covering all the edges of the
input graph by minimizing the maximum cost required at the single nodes and
give some preliminary results. In Section 3, we study the complexity of MMCC
by analyzing the cases where the problem is NP -hard, and when the problem
can be optimally solved. In Section 4, we provide inapproximability results and
we present a polynomial time approximation algorithms for both the general
case and particular cases. In Section 5, we outline some conclusion and possible
future research.

2 Preliminaries and Notation

For a graph G, we denote by V its node set, by E its edge set. We denote the sizes
of V and E by n and m, respectively. For any v ∈ V , let N(v) be the set of its
neighbors, and deg(v) = |N(v)| be its degree in G. The maximum degree of G is
denoted by Δ = maxv∈V deg(v). Unless otherwise stated, the graph G = (V, E)
representing the network is always assumed to be simple (i.e., without multiple
edges and loops), undirected and connected.
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A global assignment of the interfaces to the nodes in V is given in terms
of an appropriate interface assignment function W , according to the following
definition.

Definition 1. A function W : V → 2{1,2,...,k} is said to cover graph G if for
each {u, v} ∈ E we have W (u) ∩W (v) �= ∅.

The cost of activating an interface i is given by the cost function c : {1, 2, . . . , k} →
R+ and it is denoted as c(i). It follows that each node holding an interface i pays
the same cost c(i) by activating i. The considered MMCC optimization problem
is formulated as follows.

MMCC: Minimum Maximum Cost Coverage in Multi-Interface Networks

Input : A graph G = (V, E), an allocation of available interfaces
W : V → 2{1,2,...,k} covering graph G, an interface cost function
c : {1, 2, . . . , k} → R+.

Solution: An allocation of active interfaces WA : V → 2{1,2,...,k} covering G
such that WA(v) ⊆W (v) for all v ∈ V .

Goal : Minimize the maximum cost of the active interfaces among all the
nodes, i.e. minWA maxv∈V

∑
i∈WA(v) c(i).

We recall that two variants of the above problem are considered: when the pa-
rameter k is part of the input (i.e., the unbounded case), and when k is a fixed
constant (i.e., the bounded case). In both cases we assume k ≥ 2, since the case
k = 1 admits the obvious solution provided by activating the unique interface
at all the nodes.

It is worth to mention that for paths and trees the MMCC problem coin-
cides with the Connectivity problem studied in [8] where the aim is to allow a
communication path between any pair of nodes. In fact, the following statement
holds.

Proposition 1. When the input graph is a tree, any solution for MMCC is also
a solution for Connectivity at the same cost.

3 Complexity

In this section, we study the complexity of MMCC. First, we prove that the
problem is NP -hard and then we identify special cases where it is polynomially
solvable.

Theorem 1. MMCC is NP-hard even when restricted to the bounded unit cost
case, for any fixed Δ ≥ 5 and k ≥ 16.

Proof. We prove that the underlying decisional problem, denoted by MMCCD,
is in general NP -complete. We need to add one bound B ∈ R+ such that the
problem will be to ask whether there exists an activation function which induces a
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maximum cost of the active interfaces per node of at most B. In detail, MMCCD

is defined as follows.

MMCCD

Input : A graph G = (V, E), an allocation of available interfaces
W : V → 2{1,2,...,k} covering graph G, an interface cost function
c : {1, 2, . . . , k} → R+, and a bound B ∈ R+.

Question : Is there an allocation of active interfaces WA : V → 2{1,2,...,k}

covering G such that WA(v) ⊆ W (v) for all v ∈ V and
maxv∈V

∑
i∈WA(v) c(i) ≤ B?

The problem is in NP as, given an allocation function of active interfaces for
an instance of MMCCD, to check whether it covers the input graph G with a
maximum cost of active interfaces per node of at most B is linear in the size of
the instance.

The proof then proceeds by a polynomial reduction from the well-known Sat-
isfiability problem. The problem is known to be NP -complete [12] and it can be
stated as follows.

SAT: Satisfiability

Input : Set U of variables and collection C of clauses over U .
Question : Is there a satisfying truth assignment for C?

SAT remains NP -complete even if there are at most three literals for each clause
and a variable appears, negated or not, in at most three clauses [12]. Moreover,
the problem remains NP -complete even if we assume that there are no clauses
with a single literal. Then, in the following reduction, we assume that each clause
has two or three literals and each variable belongs to at most three clauses.

Given an instance of SAT, we can build an instance of MMCCD in polynomial
time as follows. Let B = 3. The graph G = (V, E) of MMCCD has, for each
variable u ∈ U , three nodes au, bu, cu in V and two edges {au, bu} and {au, cu}.
For each clause q ∈ C, G has two nodes dq, eq in V and an edge {dq, eq}. Let
D = {dq ∈ V | q ∈ C}. If clause q has two literals, we add a new node fq and
the edge {dq, fq}. Finally, for each variable u and each clause q containing u, the
graph G has an edge {au, dq}.

Note that nodes in G have degree at most five, then Δ = 5.
There are three interfaces Ib, Ic, Id and, for each variable u ∈ U , two further

interfaces: Tu and Fu.
Node au has four interfaces: Tu, Fu, Ib, Ic, node bu has interface Ib and node

cu has interface Ic, for each u ∈ U . For each clause q ∈ C, node dq has interfaces
Tw, Fw for each variable w ∈ U that appears in q; dq has an additional interface
Id if q has only two literals; eq has either interface Fw or Tw, according to whether
w is negated in q or not, for each variable w ∈ U that appears in q. Nodes fq

have only interface Id for each q ∈ C having only two literals.
Let us assume that SAT admits a satisfying truth assignment for its variables.

For each variable u ∈ U , we activate interfaces Ib and Ic in au, bu, cu, and if u
has true (false, resp.) assignment, we activate interface Tu (Fu, resp.) in au.
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For each clause q ∈ C, and for each variable w in q, we activate on nodes
dq, eq interfaces Tw if the corresponding literal has a true value, Fw otherwise.
Moreover, if q has only two literals, we activate interfaces Id on nodes dq and fq.

Now, the number of active interfaces for each node is at most B = 3 and each
edge is covered. In fact edges {au, bu} and {au, cu} are covered by interfaces Ib

and Ic, respectively, for each u ∈ U . Each edge {dq, fq} is covered by interface
Id for each clause q ∈ C with two literals. As there exists at least one true literal
for each clause q, then edge {dq, eq} is covered by the corresponding interface
Tw or Fw according to the literal is w or w. Finally, for each clause q ∈ C and
for each variable u in q, each edge {au, dq} is covered by the interface Tu or Fu

according to whether u is true or false, respectively.
On the contrary, let us assume that MMCCD has a positive answer. Then

both interfaces Ib and Ic are active on each node au, u ∈ U , to cover edges
{au, bu} and {au, cu}. Being B = 3, each au can activate either Tu or Fu to
cover edges connecting it to nodes in D. For each u ∈ U , if au activates Tu we
assign true to u, otherwise, if au activates Fu we assign false to u.

Now, each node dq ∈ D, where q is a clause in C, activates either interface
Tu or interface Fu for each variable u in q (and interface Id, if it has only two
variables, to cover edge {dq, fq}). Being B = 3, one of these interface is also used
to cover edge {dq, eq}, corresponding to a true value for one literal in q. Then q
is satisfied.

This shows that MMCCD is NP -complete. To show that the problem remains
NP -complete even if k is bounded, note that it is not necessary to use all the
interfaces Tu and Fu for each variable u ∈ U . In fact it is sufficient that each node
d ∈ D has a set of distinct interfaces, two for each variable in the corresponding
clause. Then, provided that two variables x and y never appear at the same
time into a single clause, the pair of interfaces Tx and Fx associated to x can be
reused for y.

To assign interfaces to variables, and in particular to nodes in au, u ∈ U ,
we proceed as follows. We build the conflict graph H = (U, EH), where there
is an edge {u, v} in EH between two variables u, v in U if there exists a node
d ∈ D and two edges {au, d}, {av, y} in G. We find a minimum coloring of
H and, if χ(u) is the color assigned to a variable u ∈ U we replace the pair
of interfaces Tu and Fu with the pair Tχ(u) and Fχ(u) in each node of G. As
H has maximum degree 6, it is possible to color it with at most 7 colors. In
conclusion, 14 interfaces are sufficient. Concerning Id, at each pair of connected
nodes dq ∈ D and fq, interface Iq can be substituted by any interface among
the 14 used by the previous coloring which has not been already assigned to dq.
Other two interfaces Ib and Ic completes the set. Hence, we require a total of 16
interfaces. ��

Theorem 2. In the unit cost case with k ≤ 3, MMCC is optimally solvable in
O(m) time.

Proof. The proof is based on the analysis of Algorithm 1. The case k = 1 is
trivial and it is solved by code lines 2–3 of the algorithm. When k = 2, either
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Algorithm1.

1. V ′ := ∅
2. if ∃ i ∈ ⋂v∈V W (v) then
3. WA(v) := {i} for each v ∈ V
4. else
5. for each v ∈ V s.t. |W (v)| ≤ 2
6. V ′ := V ′⋃{v}
7. WA(v) := W (v)
8. for each v ∈ V s.t. |W (v)| = 3
9. if ∃ a set S ⊂W (v), |S| ≤ 2, s.t.

∀ u ∈ N(v) ∩ V ′, S ∩WA(u) �= ∅, then
10. WA(v) := S
11. if |S| = 1 then activate one further arbitrary interface at v
12. else
13. if ∀ u ∈ N(v), |W (u)| = 3 then
14. activate two arbitrary interfaces at v
15. else
16. WA(v) := W (v)

there exists one common interface for all the nodes (again code lines 2–3 of
Algorithm 1), or the optimal solution costs 2 which equals to activate all the
available interfaces at all the nodes (code lines 5–7). Note that in this case code
lines 8–16 are not executed as no node holds more than 2 interfaces. When k = 3,
if there exists a solution of cost 1 (code lines 2–3), again it is easily verifiable
by checking whether all the nodes hold one same interface. If not, in order to
check whether there exists a solution of cost 2, it is possible to activate all the
interfaces at the nodes holding less than 3 interfaces. This can be realized as
at code lines 8–16. For each node v holding 3 interfaces, it is possible to check
whether at most 2 interfaces among the available 3 are enough to connect v to
all its neighbors holding less than 3 interfaces. If not, then the optimal solution
costs 3 and all the nodes can activate all their interfaces to accomplish the
coverage task (code lines 15–16). If yes, then v activates the 2 interfaces induces
by its neighborhood (code lines 9–10); if only 1 or 0 interfaces are induced by the
neighborhood then v activates one further (code line 11) or two interfaces (code
lines 13–14), respectively, chosen arbitrarily. In this way, all the edges connecting
nodes holding at most 2 interfaces and all the edges connecting nodes holding
3 interfaces with nodes holding at most 2 interfaces are covered. In order to
conclude the proof, we need to show that all the edges between nodes holding
3 interfaces are covered by the designed activation function. Indeed, since each
node holding 3 interfaces activates 2 interfaces, every two of such neighbors must
share at least one common interface, and the claim holds. The above algorithm
requires O(m) time, as the execution of code lines 9–11 might refer to all the
edges of the input graph. ��

In [8], it has been shown that when the input graph is a tree and k = O(1)
or Δ = O(1), then Connectivity is polynomially solvable in O(n) or O(k2Δn),
respectively. Hence, by Proposition 1, we can state the following theorem.
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Theorem 3. If the input graph is a tree and k = O(1) or Δ = O(1), MMCC
can be optimally solved in O(n) or O(k2Δn) time, respectively.

Theorem 3 implies that if the input graph is a path, MMCC can be optimally
solved in O(k4n) time. The case of cycles requires some more insights.

Theorem 4. If the input graph G is a cycle, MMCC can be optimally solved in
O(k6n) time.

Proof. Let OPT be the optimal solution over G, and x be a generic node. In
OPT , x makes use of interface i to establish the connection with one of its
neighbors, say y, and interface j for the other neighbor z. Possibly, i ≡ j. If we
consider the path obtained by removing {x, y} from the G and by adding a new
neighbor x′ to y, with x holding only interface j and x′ holding only interface i,
then the solution OPT is also an optimal solution with respect to the obtained
path. In fact, if there exists a better solution OPT ′ for the obtained path, it must
activate the only available interfaces i and j at nodes x′ and x to communicate
with y and z, respectively, and then it saves something with respect to OPT on
the other connections. This would imply that by activating at node x interfaces
i and j in the original cycle and by following the solution provided by OPT ′ for
the other nodes, we should obtain a better solution for G with respect to OPT ,
despite its optimality.

The aforementioned property suggests a way to compute an optimal solution
for cycles by means of an algorithm for paths. In order to find the optimal
solution for G, we may consider all the path instances obtainable as previously
described by associating to x and x′ only one interface, possibly the same one,
among the original set of interfaces associated with x in G. Such paths are at
most

(
k
2

)
+ k = O(k2), and we choose the solution which minimizes the cost

in the original cycle G. Hence, by applying the algorithm from Theorem 3 for
the case of Δ = 2 for all the obtained path instances, we can find the optimal
solution in O(k2 · k4n). ��

4 Approximation Results

In this section, we study the approximability properties of MMCC. We first
show that the problem is not approximable within Ω(ln(Δ)), and then we de-
vise a polynomial time algorithm which guarantees an approximation factor of
O((1 + b) ln(Δ)) with b being a parameter depending on structural properties of
the input graph. We remind the reader that such a parameter can be bounded
by a constant in many graph classes.

In [8], it has been shown that the Connectivity problem is not approximable
within η ln(Δ) for a certain constant η, by an approximation factor preserving
reduction from Set Cover (SC). As such a reduction is based on a star topology,
from Proposition 1 the following theorem holds.

Theorem 5. Unless P = NP , MMCC in the unit cost unbounded case cannot
be approximated within an η ln(Δ) factor for a certain constant η, even when the
input graph is a tree.
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In order to devise an approximation algorithm, we provide a characterization
of the graph according to the existence of a b-bounded ownership function [7,11].
Given a graph G = (V, E), an ownership function Own : E → V is a function
that assigns each edge {u, v} to an owner node between u or v. The set of
nodes connected to node u by the edges owned by u is denoted as Own′, i.e.,
Own′(u) = {v|Own({u, v}) = u}. Function Own is said to be b-bounded if the
maximum number of edges owned by a node is less than or equal to b, that is
|Own′(u)| ≤ b for each u ∈ V .

Parameter b can be computed in polynomial time by using structural prop-
erties of the graph. For example b is easily bounded by the maximum degree,
the treewidth, and the arboricity of G. In [7], the authors provide a linear time
algorithm to find a 3-bounded ownership function for planar graph. In [11] it
has been observed that for a graph with pagenumber p, b ≤ p and that, as for
graphs with genus g, p = O(

√
g) [16], then b = O(1 +

√
g). Moreover, for any

graph g ≤ m, and then for general graphs b = O(
√

m). Finally, in [4] it has
been observed that for general graphs b = O

(
m
n

)
. All these b-bounded functions

can be computed in polynomial time. The resulting bounds are summarized in
Table 1.

Table 1. Known bounds on ownership functions for some graph classes

General graphs b = O(
√

m), b = O
(

m
n

)
Planar graphs b ≤ 3
Graph with genus g b = O(1 +

√
g)

Graphs with arboricity a b ≤ a
Graphs with maximum degree Δ b ≤ Δ
Graphs with pagenumber p b ≤ p
Graphs with treewidth t b ≤ t

The approximation algorithm is given in Figure 2. It is based on suitable
instances of Set Cover. Here we remind the definition of such a problem:

SC : Set Cover

Input : A set U with n elements and a collection S = {S1, S2, . . . , Sq} of
subsets of U .

Solution: A cover for U , i.e. a subset S′ ⊆ S such that every element of U
belongs to at least one member of S′.

Goal : Minimize |S′|.

Algorithm 2 activates a coverage of the graph. In fact, for each node u, it covers
all the edges {u, v}, v ∈ N(u) \ Own′(u) at code lines 7–8 by activating the
interfaces corresponding to a solution of ISC(u). While edges {u, v}, v ∈ Own′(u)
are covered during the iteration related to node v as, by definition of accounting
function, u ∈ N(v) \Own′(v).

It is easy to see that Algorithm 2 is polynomial and its computational time is
given by algorithms used to compute function Own at code line 1 and to solve
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Algorithm2.

Algorithm 2
1. Compute a b-bounded accounting function Own for G
2. for each node u ∈ V
3. Define an instance ISC(u) of SC as follows
4. U := N(u) \ Own′(u)
5. for each i ∈W (u)
6. Si := {v ∈ N(u) \ Own′(u) | i ∈ W (v)}
7. Solve ISC(u) by using the best known approximation algorithm for SC and

activate at u the corresponding set of interfaces
8. Activate at each v ∈ N(u) \ Own′(u) the interface of minimal cost

in {i | Si ∈ S′} ∩W (v)

ISC(u) at code line 7. The following theorem gives us the approximation bound
for Algorithm 2.

Theorem 6. Let I be an instance of MMCC where the input graph admits a
b-bounded ownership function, the solution provided by Algorithm 2 guarantees
a (ln(Δ) + 1 + b · min{ln(Δ) + 1, cmax})-approximation factor, with cmax =
maxi∈{1,...k} c(i).

Proof. Let opt denote the cost of an optimal solution for I, we show that the
solution provided by Algorithm 2 has a cost C such that C ≤ (ln(Δ) + 1 + b ·
min{ln(Δ) + 1, cmax}) · opt. Given a node u ∈ V , let us denote as optSC(u)
and CSC(u) the cost of an optimal solution for instance ISC(u) of SC(u) defined
at code lines 3–6 and the cost of the solution for ISC(u) computed at code
line 7, respectively. Moreover, let optSC = maxu∈V {optSC(u)} and CSC =
maxu∈V {CSC(u)}.

Node u will activate a set of interfaces corresponding to the solution computed
at code line 7 at the cost of CSC(u) ≤ CSC plus |Own′(u)| interfaces for the
connection to nodes in Own′(u) activated at code line 8, in the iteration related
to such nodes. Note that, the cost of each interface induced by nodes v ∈ Own′(u)
cannot be bigger than both cmax and CSC(v) ≤ CSC. Moreover, as |Own′(u)| ≤ b
we obtain,

C ≤ CSC + |Own′(u)| ·min{CSC, cmax} ≤ CSC + b ·min{CSC, cmax}.

Let us denote as opt(u) the cost at u induced by an optimal solution. By defini-
tion, for any optimal solution opt(u) ≤ opt. Moreover, as an optimal solution
has to cover all the edges incident to u,

optSC(u) ≤ opt(u).

From [13], there exists a (ln |U | + 1)-approximation algorithm for weighted SC
that can be applied at code line 7. Therefore, since |U | ≤ Δ,

CSC(u) ≤ (ln |U |+ 1) · optSC(u) ≤ (ln(Δ) + 1) · optSC(u).



200 G. D’Angelo, G. Di Stefano, and A. Navarra

As the above inequalities hold for any u ∈ V , it follows that

CSC ≤ (ln(Δ) + 1) · opt,

and hence,

C ≤ (ln(Δ)+1)·opt +b·min{(ln(Δ)+1)·opt, cmax}. ��

Note that, the previous theorem is a generalization of the result stated in [8]
for trees. In fact, tree topologies induce b = 1, hence obtaining a 2(ln(Δ) + 1)-
approximation factor.

Finally, it is worth to mention a further approximation factor that can be
achieved for the unit cost case.

Theorem 7. In the unit cost case, MMCC is k
2 -approximable in O(n) time.

The theorem is based on the fact that an optimal solution either activates the
same interface among all the nodes (if possible) or it must activates at least two
interfaces at some node. Hence, a simple algorithm can check whether all the
nodes share a common interface or activates all the available interfaces at all the
nodes. Such interfaces are at most k by definition.

5 Conclusion

We have considered the Coverage problem in Multi-Interface Networks. The
new objective function with respect to previous works in this area considers the
minimization of the maximum cost required by the single nodes of the network.
We focused on problem hardness and approximation factors in general and more
specific settings. In summary, MMCC is NP -hard for any fixed Δ ≥ 5, while it
is polynomially solvable for Δ ≤ 2. Moreover, it is NP -hard for any fixed k ≥ 16
while it is polynomially solvable for k ≤ 3. For fixed k, 4 ≤ k ≤ 15 and for fixed
Δ, 3 ≤ Δ ≤ 4, the complexity of MMCC remains open.

Concerning approximation results for MMCC, we show that the problem is
not approximable within a factor of η ln(Δ) for a certain constant η, unless
P = NP . This result holds even in the unit cost case and when the input graph is
a tree, but only when k or Δ are unbounded. We then provide an approximation
algorithm that guarantees a factor of ln(Δ) + 1 + b · min{cmax, (ln(Δ) + 1)},
with cmax = maxi∈{1,...k} c(i) and b being a parameter depending on structural
properties of the input graph. Another approximation algorithm guarantees a k

2
factor of approximation.

This paper represents a first step towards distributed approaches as the ob-
jective function refers to local parameters rather than global ones. Further in-
vestigations on experimental results and modifications to the proposed model
are of main interest.
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Abstract. In heterogeneous networks, devices can communicate by
means of multiple wired or wireless interfaces. By switching among inter-
faces or by combining the available interfaces, each device might establish
several connections. A connection is established when the devices at its
endpoints share at least one active interface. Each interface is assumed
to require an activation cost, and provides a communication bandwidth.
In this paper, we consider the problem of activating the cheapest set of
interfaces among a network G = (V, E) in order to guarantee a minimum
bandwidth B of communication between two specified nodes. Nodes V
represent the devices, edges E represent the connections that can be es-
tablished. In practical cases, a bounded number k of different interfaces
among all the devices can be considered. Despite this assumption, the
problem turns out to be NP -hard even for small values of k and Δ, where
Δ is the maximum degree of the network. In particular, the problem is
NP -hard for any fixed k ≥ 2 and Δ ≥ 3, while it is polynomially solvable
when k = 1, or Δ ≤ 2 and k = O(1). Moreover, we show that the prob-
lem is not approximable within η log B or Ω(log log |V |) for any fixed
k ≥ 3, Δ ≥ 3, and for a certain constant η, unless P = NP. We then
provide an approximation algorithm with ratio guarantee of bmax, where
bmax is the maximum communication bandwidth allowed among all the
available interfaces. Finally, we focus on particular cases by providing
complexity results and polynomial algorithms for Δ ≤ 2.

1 Introduction

The interest in wireless networks has rapidly grown during the last decades.
Their success is certainly due to the wide range of applications for which such
networks are designed. A very important issue is constituted by the heterogeneity
of the devices which might interact in order to exchange data. Wireless networks
are, in fact, composed of devices with different characteristics like computational
power, energy consumption, radio interfaces, supported communication proto-
cols, and so forth. In this paper, we are mainly interested in devices equipped
with multiple interfaces (like Bluetooth, WiFi, GPRS, etc.). A connection be-
tween two or more devices might be accomplished by means of different commu-
nication networks according to connectivity and quality of service requirements.

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 202–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The selection of the most suitable interface for a specific connection might de-
pend on various factors. Such factors include: its availability in specific devices,
the required communication bandwidth, the cost (in terms of energy consump-
tion) of maintaining an active interface, the available neighbors, and so forth.
While managing such connections, a lot of effort must be devoted to energy con-
sumption issues. Devices are, in fact, usually battery powered and the network
survivability might depend on their persistence in the network.

We study communication problems in wireless networks supporting multiple
interfaces. In the considered model, the input network is described by a graph
G = (V, E), where V represents the set of wireless devices and E is the set of pos-
sible connections according to proximity of devices and the available interfaces
that they may share. Each v ∈ V is associated with a set of available interfaces
W (v). The set of all the possible interfaces available in the network is then deter-
mined by

⋃
v∈V W (v); we denote the cardinality of this set by k. We say that a

connection is satisfied (or covered) when the endpoints of the corresponding edge
share at least one active interface. If an interface x is activated at some node u,
then u consumes some energy c(x) for maintaining x as active, and it provides a
maximum communication bandwidth b(x) with all its neighbors which share in-
terface x. In this setting, we study the problem of establishing a communication
path between two selected nodes s, t ∈ V of minimum cost in terms of energy
consumption, while guaranteeing a minimum communication bandwidth B. In
other words, we look for the minimum cost set of active interfaces among the
input graph G, in such a way that s is guaranteed to exchange data with t at
least with some bandwidth B. This implies that between s and t not necessarily
a path of covered edges must be established but a more complex graph might
be required according to the topology and to the available interfaces.

Related work. Multi-interface wireless networks have recently been studied in a
variety of contexts, usually focusing on the benefits of multiple radio devices of
each node. Many basic problems of standard wireless network optimization can
be reconsidered in such a setting [3], in particular, focusing on issues related to
routing [7] and network connectivity [5,8]. The study of combinatorial problems
on multi-interface wireless networks has originated from [4]. That paper, as well
as [13] investigate the so called Coverage problem, where the goal is the acti-
vation of the minimum cost set of interfaces in such a way that all the edges
of G are covered. Connectivity issues have been addressed in [2,6,14]. The goal
becomes to activate the minimum cost set of interfaces in G in order to guaran-
tee a path of communication between every pair of nodes. In [14], the attention
has been devoted to the so called Cheapest path problem. This corresponds to
the well-known shortest path problem but in the context of multi-interface net-
works. A natural continuation on investigating such kind of networks is certainly
to consider also quality of service constraints in the problem. To the best of our
knowledge, bandwidth issues have never been treated before in this context.

Our results. In this paper, we are interested in establishing the cheapest way
of communication between two given nodes while guaranteeing a minimum
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Table 1. Complexity results achieved in this paper for BCMI

Δ k Complexity

Δ = 1
Bounded Optimally solvable in O(1) time

Unbounded NP-hard (equiv. MinKnapsack), (1+ ε)-apx in O( k2

ε
)

Δ = 2
Bounded Optimally solvable in O(|V |)
Unbounded NP-hard; (2 + ε)-apx in O(|V |k2

ε
) for paths

Fixed Δ ≥ 3
Fixed k ≥ 2 NP-hard (from X3C )

Fixed k ≥ 3 Not apx within η log B, or within Ω(log log |V |)

Any
k = 1 Opt. solvable in O(|V |+ |E|) (equiv. Shortest Path)

Any bmax-apx (optimal for constant bandwidth)

bandwidth of communication. The resulting problem, called Bandwidth Con-
straints in Multi-Interface Networks (BCMI) is similar to the better known
Minimum Edge Cost Flow [9]. The main difference resides in the fact that we
do not consider costs and capacities for the edges of the network but we have
to cope with interfaces at the nodes that require some costs and can manage
some maximum bandwidths. In the special case where each connection can be
established by means of a different interface, the two problems coincide. Hence,
it is not surprising that BCMI turns out to be NP -hard when the number k of
interfaces is unbounded. However, in practical cases it is more realistic to con-
sider a bounded number of interfaces. Despite the expectations, we show that
the problem is NP -hard even when k is a fixed small number. In detail, we prove
that the problem is NP -hard for any fixed k ≥ 2 and Δ ≥ 3, where Δ is the
maximum degree of the network, while it is polynomially solvable when k = 1, or
Δ ≤ 2 and k = O(1). Moreover, we show that the problem is not approximable
within η log B or Ω(log log |V |) for any fixed k ≥ 3, Δ ≥ 3, and for a certain
constant η, unless P = NP. We then provide an approximation algorithm with
ratio guarantee of bmax, where bmax is the maximum communication bandwidth
allowed among all the available interfaces. This algorithm optimally solves the
problem in the case that the bandwidth is constant for all the interfaces. Finally,
we focus on particular cases by providing complexity results and polynomial al-
gorithms for Δ ≤ 2. Surprisingly, when k is unbounded and the network reduces
to a single edge the problem remains NP -hard. Table 1 summarizes the results.

2 Definitions and Notation

For a graph G, we denote by V its node set, by E its edge set, and by Δ its max-
imum node degree. Unless otherwise stated, the graph G = (V, E) representing
the network is assumed to be undirected, connected, and without multiple edges
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and loops. A global assignment of the interfaces to the nodes in V is given in
terms of an appropriate interface assignment function W , as follows.

Definition 1. A function W : V → 2{1,2,...,k} is said to cover graph G if for
each {u, v} ∈ E we have W (u) ∩W (v) �= ∅.
The cost of activating an interface i is given by the cost function
c : {1, 2, . . . , k} → Z+

0 and it is denoted as c(i). The bandwidth allowed by a
given interface i is defined by the bandwidth function b : {1, 2, . . . , k} → Z+

0
and it is denoted as b(i). It follows that each node holding an interface i pays
the same cost c(i) and provides the same bandwidth b(i) by activating i. The
considered BCMI optimization problem is formulated as follows.

BCMI: Bandwidth Constraints in Multi-Interface Networks

Input : A graph G = (V, E), a source node s ∈ V , a target node t ∈ V , a set
of interfaces I = {1, 2, . . . , k}, an allocation of available interfaces
W : V → 2I covering graph G, an interface cost function c : I → Z+

0 ,
an interface bandwidth function b : I → Z+

0 and a bound B ∈ Z+
0 .

Solution: An allocation of active interfaces WA : V → 2I , WA(v) ⊆ W (v) for
all v ∈ V and a flow function f : V × V × I → Z+

0 such that:

– f(u, v, i) = 0 if {u, v} �∈ E or WA(u)∩WA(v) = ∅ for all u, v ∈ V
and i ∈ I

–
∑

v∈V :f(u,v,i)>0 f(u, v, i) ≤ b(i) for all u ∈ V and i ∈ I

– f(u, v, i) = −f(v, u, i) for all u, v ∈ V and i ∈ I
–
∑

v∈V,i∈I f(u, v, i) = 0 for all u ∈ V \ {s, t}
–
∑

v∈V,i∈I f(s, v, i) =
∑

v∈V,i∈I f(v, t, i) ≥ B

Goal : Minimize the total cost of the active interfaces, c(WA) =∑
v∈V

∑
i∈WA(v) c(i).

Note that we can consider two variants of the above problem: the parameter k
can be considered as part of the input (this is called the unbounded case), or
k may be a fixed constant (the bounded case). In both cases we assume k ≥ 2,
since the case k = 1 admits an obvious unique solution given by the shortest
path connecting s to t of maximum bandwidth b(1). The case where the cost
function is constant for each interface is called the unit cost case.

3 Hardness and Approximation

In this section we first prove that BCMI is NP -hard even in the restricted case
of unit cost, fixed k ≥ 2, and fixed Δ ≥ 3. We then prove that, unless P = NP,
the problem is inapproximable within a factor of η log B, for a certain constant
η, or within a factor of Ω(log log |V |). Finally, we provide a polynomial time
bmax-approximation algorithm, where bmax = maxi∈I b(i).

Theorem 1. BCMI is NP-hard even when restricted to the unit cost interface
case for any fixed Δ ≥ 3 and k ≥ 2.
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Proof. We prove that the underlying decisional problem, denoted by BCMID, is
in general NP -complete. We need to add one further bound B′ ∈ Z+

0 such that
the problem will be to ask whether there exists an activation function which
induces a total cost of the active interfaces of at most B′.

Given an allocation function of active interfaces for an instance of BCMID,
to check whether the induced subgraph allows a flow bandwidth greater than or
equal to B of total cost smaller than or equal to B′ is linear in the number of
edges of the input graph G. The proof then proceeds by a polynomial reduction
from the well-known Exact Cover by 3-Sets problem. The problem is known to
be NP -complete [9] and it can be stated as follows:

X3C : Exact Cover by 3-Sets

Input : Set X with |X | = 3q and a collection C of 3-element subsets of X .
Question : Is there an exact set cover for X , i.e. a subset C′ ⊆ C such that

|C′| = q and every element of X belongs to exactly one member of
C′?

Given an instance of X3C , we construct an instance of BCMID where the graph
G consists of copies of subgraphs N(�) and T (�), � ≥ 1 (see Fig. 1). Subgraph
N(�) consists of 3� nodes {x1, x2, . . . , x�} ∪ {y1, y2, . . . , y�} ∪ {w1, w2, . . . , w�}
and edges {xi, xi+1}, {wi, wi+1}, for i = 1, 2, . . . , �− 1 and {xi, yi}, {yi, wi}, for
i = 1, 2, . . . , �. Subgraph T (�) is a binary tree consisting of a complete binary
tree BT with 2�log2 ��−1 nodes, and � nodes adjacent to the leaves of BT . These
nodes are the only leaves of T (�), i.e. every leaf of BT is connected to at least
one leaf of T (�). We call r the root of T (�). Note that, each path from r to a leaf
of T (�) is constituted of �log2 �	+ 1 nodes. Moreover, when � = 1, BT is empty
and T (�) consists of a single node.

We now define the graph G, see Fig. 1 right. Let s and t be two nodes of
G. For each element Ci of C, i = 1, 2, . . . , |C|, G contains a node ci, a copy
of N(3), denoted as N i(3) and a copy of T (3), denoted as T i(3), with root ri

and leaves li1, li2, li3. Vertices xi
1 and wi

3 of N i(3) are adjacent to ci and ri,
respectively. All nodes ci form a path P in G, that is {ci, ci+1} is an edge of G,
for i = 1, 2, . . . , |C|−1. Node s of G is adjacent to c1, while node c|C| is adjacent
to node x0

1 belonging to a copy N0(1) of N(1) with nodes x0
1, y0

1 and w0
1 .

Let ej, j = 1, 2, . . . , 3q, be the elements of X and let μ(ej) be the number of
sets Ci ∈ C containing ej, for each j. Let μ = maxj{μ(ej)}. For each element
ej , G contains a copy of T (μ), called T j(μ), with root rj , and a copy N j(1) of
N(1), with nodes xj

1, yj
1 and wj

1. Root rj is adjacent to xj
1 ∈ N j(1), for each

j = 1, 2, . . . , 3q. If ej is in Ci, for some i and j, then there is an edge from a leaf
of T i(3) to a leaf of T j(μ). These edges are pairwise disjoint. Note that, even
if each leaf of T i(3), i = 1, 2, . . . , |C| is adjacent to a leaf in T j(μ), for some
j ∈ {1, 2, . . . , 3q}, the contrary is not true: there could be a leaf of T j(μ), for
some j, not adjacent to any leaf of T i(3), i = 1, 2, . . . , |C|.

G also contains a copy of T (3q + 1), having the root adjacent to node t, and
leaves adjacent to nodes wj

1, j = 0, 1, . . . , 3q. The set of interfaces I is {1, 2}, with
c(1) = c(2) = 1 and b(1) = 1, b(2) = 3q + 1. All the nodes in G have interface 2
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Fig. 1. Left: The subgraphs used in the proofs of Theorems 1 and 2. Right: The graph
G in the transformation from X3C to BCMID.

apart from nodes labeled y in the copies of N(1) and N(3). All the nodes in the
copies of N(1) and N(3) have interface 1: no further node in G has interface 1.
When all the interfaces of the nodes in copies of N(�) (T (�), resp.), for a certain
� ≥ 0, are active the total cost is 5� (2�log2 ��−1+�, resp.). In T (�), when only the
interfaces of the nodes in a single path from r to a leaf are active, the total cost
is �log2 �	+1. Let B = 3q+1 and B′ = |C|+q(42+3�log2 μ	)+2�log2(3q+1)� +7.

Assume that X3C has a positive answer, i.e., there exists an exact set cover
C′ = {Ci1 , Ci2 , . . . , Ciq} ⊆ C for X . We show that also BCMID has a positive
answer, i.e., there exists an activation function WA of the available interfaces
such that the bandwidth allowed from s to t is bigger than or equal to B and
the total cost is smaller than or equal to B′. Function WA is defined as follows.
Along with interfaces of nodes s, t, all the interfaces of nodes in T (3q+1), N j(1),
j = 0, 1, . . . , 3q, and ci, i = 1, 2, . . . , |C|, are active. All the interfaces of nodes
in N ij (3) and T ij(3), for each Cij ∈ C′, j = 1, 2, . . . , q, are active. Moreover, if
ej ∈ X is covered by Ci ∈ C′, then all the interfaces of nodes in T j(μ) belonging
to the path from rj to a leaf in T i(3) are active. No further interface is active.
The flow function is defined as 1 in nodes y of active copies of N(1) and N(3) and
in the remainder of G it is defined to satisfy the flow conservation constraints.

The total cost of active interfaces is given by 2, for nodes s and t; |C|, for nodes
ci ∈ P , i = 1, 2, . . . , |C|; 15q + 6q for nodes in N ij (3) and T ij (3), j = 1, 2, . . . , q;
3q(�log2 μ	+ 1) for nodes in T j(μ), j = 1, 2, . . . 3q; 5(3q + 1) for nodes in N j(1),
j = 0, 1, . . .3q; and 2�log2(3q+1)� + 3q for nodes in T (3q + 1). Summing up all the
values we obtain a cost equal to B′.

Regarding the total bandwidth, note that a copy of N(�) has a maximum
bandwidth of �. As X3C has a positive answer, each element of X is covered,
then the flow through each subgraph N j(1), j = 1, 2, . . . , 3q, is exactly 1. As all
the interfaces in P are active, we also have another unit of flow from N0(1) that
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reaches t through the T (3q+1) subgraph, hence obtaining a total flow of 3q +1,
i.e., BCMID has a positive answer.

Now, let us assume we have a positive answer to BCMID. As the total flow
received by t is greater than or equal to B = 3q + 1, there is a flow of value
1 in each subgraph N j(1), j = 0, 1, . . . , 3q, meaning that each element of X
is covered. Let us suppose, by contradiction, that the flow reaching the N j(1),
j = 1, 2, . . . , 3q subgraphs, implies the activation of the interfaces in q′ > q
subgraphs among the N i(3), i = 1, 2, . . . , |C| copies of N(3). In this case there
will be q′1 subgraphs having one unit of flow, q′2 subgraphs having 2 units of flow,
and q′3 subgraphs having 3 units of flow such that q′1 + 2q′2 + 3q′3 = 3q.

The total cost for the interfaces activation is: 2, for nodes s and t; |C|, for
nodes in P (all the interfaces in P are active as N0(1) receives one unit of flow);
7q′1 + 11q′2 + 15q′3 for nodes in N i(3); 6q for nodes in T i(3), i = 1, 2, . . . , q;
3q(�log2 μ	+ 1) for nodes in T j(μ), j = 1, 2, . . . 3q; 5(3q + 1) for nodes in N j(1),
j = 0, 1, . . .3q, and 2�log2(3q+1)� + 3q for nodes in T (3q + 1).

Then the total cost is |C|+ q(27q +3�log2 μ	)+2�log2(3q+1)� +7+7q′1+11q′2 +
15q′3. As 7q′1+11q′2+15q′3 > 5(q′1+2q′2+3q′3) = 15q, the total cost is greater than
B′, a contradiction. Hence there are exactly q subgraphs N ij (3), j = 1, 2, . . . , q
with 3 units of flow each and the corresponding sets Cij , j = 1, 2, . . . , q, represent
a solution for X3C. ��

Theorem 2. BCMI cannot be approximated within a factor of η log B, for a
certain constant η, or within a factor of Ω(log log |V |), for any fixed Δ ≥ 3 and
k ≥ 3, unless P = NP.

Theorem 2 also holds when the number of interfaces is unbounded. We now pro-
vide a bmax-approximation algorithm for any instance of BCMI, where bmax is
the maximum bandwidth value among the interfaces in I. The algorithm con-
sists in relaxing BCMI to the well-known Integral Minimum Cost Flow (IMCF )
problem [1]. In the proof of the next theorem, we transform an instance of BCMI
into an instance of IMCF , and we show that such a transformation guarantees
an approximation factor of bmax. Let A be an algorithm which optimally solves
IMCF in a graph H = (V ′, E′) in polynomial time PA(|V ′|+ |E′|).

Theorem 3. There exists a polynomial time bmax-approximation algorithm for
BCMI which requires O(|V |k2 + |E|+ PA(|V |k2 + |E|)) time.

Proof. First, we transform an instance I1 on a graph G = (V, E) of BCMI in
an instance of an equivalent problem defined on a directed graph G′ = (V ′, A)
without using multiple interfaces but associating costs and bandwidth only to
arcs in A. The particular instance I2 of such problem is defined as follows.
Informally, for each interface of each node, there is an arc which has the same
cost and bandwidth of the considered interface. The head of each of such arcs is
connected to the tail of another arc of the same kind if they share an interface
or they represent different interfaces of the same node. Formally, there are two
nodes in V ′ for each node in V and for each interface of each node:

V ′ = {(v, i), (v, i) | v ∈ V, i ∈W (v)} ∪ {s̃, t̃},



Bandwidth Constrained Multi-interface Networks 209

A = {((v, i), (v, i)) | v ∈ V, i ∈ W (v)}∪ {((v, i), (v, j)) | v ∈ V , i, j ∈ W (v)
s.t. i �= j}∪ {((v, i), (u, i))| {u, v} ∈ E, i ∈W (v) ∩W (u)}∪ {(s̃, (s, i)) , ((t, j), t̃)
| i ∈ W (s), j ∈W (t)} .

The capacity of each arc a = ((v, i), (v, i)) is set to b′(a) = b(i) whereas the
capacity of each other arc is unlimited. The cost c′(a) of each arc ((v, i), (v, i)) is
set to c(i) and it is 0 for the remaining arcs. The objective is to find a flow func-
tion which minimizes the overall cost of arcs with positive flow and guarantees
a flow of B between s̃ and t̃.

Given a solution for I2, which defines a flow function f2, we can define
a solution for I1 by assigning a flow function f1(v, u, i) = f2((v, i), (u, i)) −
f2((u, i), (v, i)), for each v, u ∈ V and i ∈ W (v)∩W (u). Vice versa, given a solu-
tion for I1, which defines a flow function f ′

1, we can define a solution for I2 by as-
signing a flow function f ′

2 such that f ′
2((v, i), (u, i)) = f ′

1(v, u, i), if f ′
1(v, u, i) > 0

and f ′
2((v, i), (u, i)) = 0 otherwise, for each v, u ∈ V and i ∈ W (v) ∩ W (u).

The flows in the remainder of A are set in order to satisfy flow conservation
constraints. It is not difficult to note that the feasibility of f2 (f ′

1, resp.) implies
the feasibility of f1 (f ′

2). Moreover, the cost of f2 (f ′
1, resp.) is equal to the cost

of f1 (f ′
2) as the cost of arcs ((v, i), (v, i)) in A is c(i) and it is 0 for any other

arc. By the above discussion it follows that we can solve I1 by solving I2.
We find an approximate solution for I2 by using an IMCF instance. The

IMCF problem consists of finding an integral flow greater than or equal to
a given quantity between two nodes in a directed graph H where each arc a
has a capacity β(a) and cost χ(a). The objective is to minimize the function∑

a∈A+ χ(a) ·f(a), where f(a) is the flow on arc a and A+ is the set of arcs with
positive flow. This problem admits a polynomial time algorithm (see, e.g., [15]).

We obtain an IMCF instance I3 from I2 by setting H = G′, β(a) = b′(a), and
χ(a) = c′(a)/b′(a), for each a ∈ A.

Let us denote as f∗ and f IMCF two optimal flow functions for I2 and I3,
respectively and as A∗ and AIMCF the corresponding sets of arcs with positive
flow. By definition, opt =

∑
a∈A∗ c′(a). As f∗(a) ≤ b′(a), it follows that

∑
a∈A∗

c′(a) ≥
∑

a∈A∗
c′(a) · f

∗(a)
b′(a)

=
∑

a∈A∗
χ(a) · f∗(a).

By the optimality of AIMCF it follows that

∑
a∈A∗

χ(a) · f∗(a) ≥
∑

a∈AIMCF

χ(a) · f IMCF(a) =
∑

a∈AIMCF

c′(a)
b′(a)

· f IMCF(a).

As f IMCF(a) ∈ Z+
0 , for each a ∈ A, then f IMCF(a) ≥ 1, for each a ∈ AIMCF.

Moreover, bmax ≥ b′(a), for each a ∈ AIMCF.

Therefore,
∑

a∈AIMCF
c′(a)
b′(a) · f IMCF(a) ≥ 1

bmax

∑
a∈AIMCF c′(a). ��

Corollary 1. Let b ∈ Z+
0 . If b(i) = b for each i ∈ I, BCMI is solvable within

O(|V |k2 + |E|+ PA(|V |k2 + |E|)).
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Proof. If b = 1, then the bmax-approximation algorithm given in Theorem 3 op-
timally solves BCMI. Otherwise, it is enough to solve the problem with required
bandwidth of B̄ =

⌈
B
b

⌉
and bandwidth b̄(i) = 1, for each interface i. ��

4 Particular Cases, Δ ≤ 2

In this section, we consider graphs of bounded degree Δ ≤ 2. As announced in
Table 1, we now prove that when the number of interfaces k is a given constant,
the problem can be optimally solved in polynomial time. On the other hand, if
k is unbounded, we show that the problem remains NP -hard.

For Δ ≤ 1, the input graph can be composed of either one single node or
two nodes connected by one edge. In the first case, there are no interfaces to
be activated, as the source and the destination coincide. In the second case, the
problem already starts to be interesting.

Lemma 1. BCMI is polynomially solvable within O(1) time in the bounded case
with Δ = 1.

Proof. BCMI can be solved by an exhaustive search among all the possible com-
binations of interfaces shared by s and t. The number of such combinations is
O(2k). Among them, a resolution algorithm has to choose the cheapest one that
guarantees at least B bandwidth. ��
For the unbounded case, i.e., when k is not a given constant, the same arguments
of Lemma 1 do not apply to BCMI as the provided algorithm would show an
exponential behavior. Surprisingly, in this setting the problem turns out to be
already NP -hard by means of a simple polynomial transformation from the well
known Knapsack problem. Indeed, we need to consider the so called Minimiza-
tion Knapsack problem [11,12].

MinKP : Minimization Knapsack

Input : An integer d ∈ Z+
0 and a set of n items, each one having weight

wi ∈ Z+
0 and profit pi ∈ Z+

0 , i = 1, 2, . . . , n.
Solution: An allocation of variables yi ∈ {0, 1}, for i = 1, 2, . . . , n, such that∑n

i=1 wiyi ≥ d
Goal : Minimize

∑n
i=1 piyi.

MinKP problem is the corresponding minimization version of the Knapsack
problem. In other words, the goal is to minimize the profits of the items that
remain out of the knapsack. If xi, i = 1, 2, . . . , n, are the variables selecting
the items for the classical knapsack problem and c ∈ Z+

0 its capacity, then the
problem can be solved by means of MinKP , by setting d =

∑n
i=1 wi − c and

yi = 1− xi, i = 1, 2, . . . , n.
When Δ = 1, that is when the input graph G consists of a single edge from

s to t, the required solution must select a subset of interfaces among the ones
shared by s and t in such a way that a bandwidth of B is guaranteed, and the
cost for activating such interfaces is minimized. Intuitively, this particular case
of BCMI is equivalent to the MinKP problem.
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Theorem 4. BCMI is polynomially equivalent to MinKP in the unbounded case
with Δ = 1.

Proof. We have to show that there exist two polynomial time algorithms A and
B such that, for each instance I1 of MinKP , A(I1) returns an instance I2 of
BCMI, for any solution σ′ of I2, B(σ′) = σ is a solution for I1, and the values
of solutions σ and σ′ are equal. Moreover, we have to show that there exist
two polynomial time algorithms A−1 and B−1 such that, for each instance I2
of BCMI, A−1(I2) returns an instance I1 of MinKP , for any solution σ of I1,
B−1(σ) = σ′ is a solution for I2, and the values of solutions σ and σ′ are equal.

We now show the first part of the above statement by defining the polynomial
algorithms A and B. Given an instance I1 of MinKP , we consider an instance
I2 of BCMI made of nodes s and t, edge {s, t} and, for each item i of I1, an
interface shared between s and t with cost c(i) = 1

2pi and bandwidth b(i) = wi.
Moreover, let k = n and B = d. Note that, if, for some i, pi is an odd number,
we can scale all the profits pi of a factor 2 in order to have c(i) ∈ Z+

0 for each
i = 1, 2, . . . , n. This does not affect the generality of the proof as it is enough
to divide by 2 the objective function value of the solution for I1 which will be
defined in the following. A feasible solution for I2 selects a set of interfaces W ,
by means of an activation function, in such a way that B ≤

∑
i∈W b(i). As

d = B ≤
∑

i∈W b(i) =
∑

i∈W wi and the cost of activating interfaces W in both
s and t is 2

∑
i∈W c(i) =

∑
i∈W pi we can define algorithm B as the algorithm

which selects items W in order to output a solution for I1. Finally, both A and
B are polynomial time algorithms. This proves the first part of the theorem. For
the second part of the theorem, it is enough to note that algorithms A and B
can be naturally inverted. ��

Corollary 2. BCMI is NP-hard in the unbounded case with Δ = 1.

Corollary 3. In the unbounded case with Δ = 1, BCMI admits a (1 + ε)-
approximation algorithm which requires O(k2

ε ) time, for any ε > 0.

Proof. It follows by applying the linear time algorithm A of Theorem 4 which
requires O(k) time, and the algorithm from [10] which provides a (1 + ε)-
approximation for MinKP in O(k2

ε ) time. ��

For Δ = 2, the input graph of BCMI is either a path or a cycle. Clearly, from
Corollary 2, BCMI remains NP -hard in the unbounded case. The following the-
orems give polynomial time algorithms for the bounded case, and a refined ap-
proximation algorithm for paths in the unbounded case.

In the remainder, for a set of interfaces W , we denote as c(W ) the cost of
activating the interfaces in W , formally: c(W ) =

∑
i∈W c(i).

Theorem 5. BCMI is solvable within O(|V |) time in the bounded case when the
input graph is a path.

Theorem 6. In the unbounded case, if the input graph is a path, BCMI admits
a (2 + ε)-approximation algorithm which requires O(|V |k2

ε ) time, for any ε > 0.
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Proof. Let us denote the input path as a sequence of n nodes: s ≡ x0, x1, . . .,
xn−1 ≡ t. We define an algorithm C as follows. It defines n−1 MinKP problems,
each one arising from one different edge ei = {xi−1, xi} of the path, 1 ≤ i ≤ n−1,
by using the linear time algorithmA of Theorem 4. From Corollary 3, this implies
that for each ei and for any ε > 0, a (1 + ε)-approximation for MinKP can be
guaranteed. Algorithm C chooses, for each 1 ≤ i ≤ n − 1, interfaces Wi arising
from the approximate solution of the related knapsack problem on edge ei, that
is interfaces Wi are activated on nodes xi−1 and xi.

For each 1 ≤ i ≤ n − 1, let us denote as W ∗
i , the sets of active interfaces in

nodes xi−1 and xi covering edge ei for an optimal solution of BCMI for the input
path; and let WMK

i the sets of active interfaces in nodes xi−1 and xi covering
edge ei for an optimal solution of the MinKP problem obtained by C for the
input path.

Note that, for some i, the set Wi∩Wi+1 is not necessarily empty, which means
that node xi uses a set of interfaces for communicating both with xi−1 and xi+1.
Thus, in this case, the cost paid for activating the interfaces used by xi is less
than c(Wi)+c(Wi+1) and the same holds for solutions W ∗

i and WMK
i . It follows

that, for each 1 ≤ i ≤ n−1 the cost paid for activating interfaces in Wi in nodes
xi and xi−1 is at most 2c(Wi) and the overall cost of the solution provided by C
is less than or equal to 2

∑n−1
i=1 c(Wi). As from Corollary 3 we are using in each

edge a (1+ε)-approximation algorithm for the knapsack problem, it follows that:
2
∑n−1

i=1 c(Wi) ≤ 2
∑n−1

i=1 (1 + ε)c(WMK
i ). As WMK

i is an optimal solution for
MinKP on edge ei which guarantees a bandwidth of B, c(WMK

i ) ≤ c(W ∗
i ), for

each 1 ≤ i ≤ n−1, and hence: 2(1+ ε)
∑n−1

i=1 c(WMK
i ) ≤ 2(1+ ε)

∑n−1
i=1 c(W ∗

i ) ≤
2(1 + ε)

(∑n−2
i=1 c(W ∗

i ∪W ∗
i+1) + c(W ∗

n−1)
)
≤ 2(1 + ε)opt, where the two last

inequalities follow from the fact that in an optimal solution the cost of activating
interfaces for each node xi is c(W ∗

i ∪ W ∗
i+1) ≥ c(W ∗

i ) and the overall cost is
opt = c(W ∗

1 ) +
∑n−2

i=1 c(W ∗
i ∪W ∗

i+1) + c(W ∗
n−1).

The complexity of C is O(nk2

ε ) as it is composed of n − 1 executions of al-
gorithm A of Theorem 4 which requires O(k) time, and n − 1 executions of
algorithm from [10] which requires O(k2

ε ) time. By defining ε′ = 2ε, Algorithm
C provides a (2 + ε′)-approximated solution and requires O(|V |k2

ε′ ) time. ��

When the input graph is a cycle, since there are two paths from s to t, it is not
always clear how the bandwidth B must be split among the two possible ways.
However, the following theorem can be stated for the bounded case.

Theorem 7. BCMI is solvable within O(|V |) time in the bounded case when the
input graph is a cycle.

5 Conclusion

We have considered the Bandwidth Constraints in Multi-Interface Networks
problem. We focused on problem hardness and approximation factors in general
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and more specific settings. The obtained results have shown that the problem
is NP -hard to be optimally or approximately solved. Polynomial algorithms for
special cases have been provided. Further investigation for better performing
approximation algorithms or heuristics remain challenging problems. Another
interesting issue is to study the problem from a distributed point of view.
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Abstract. In 2008, Wan et al. presented an anonymous ID-based group
key agreement scheme for wireless networks, for which they claim that
it ensures anonymity and unlinkability of the group members, as well as
forward and backward secrecy of the group session key. In this paper, we
show that forward and backward secrecy do not hold for the protocol. We
propose a correction that introduces a shielding factor that protects each
member’s input to the group key. we also introduce a new feature that
assures the correctness of the key as computed by all group members.
This results in an increased computation cost, due to extra public key
operations, and a similar communication cost. We also show in which
practical setting the protocol can be deployed.

Keywords: Privacy, Group key agreement, ID-based cryptography.

1 Introduction

In this paper, we propose an improved version of the anonymous ID-based group
key agreement scheme for wireless networks by Wan et al. [1], and present a
scenario in which such a scheme can be used. The original scheme claims to
provide group member anonymity from outside eavesdroppers, and forward and
backward group key secrecy from leaving resp. joining group members. We show
that these claims are incorrect and propose an improved protocol. In Sect. 2,
we introduce ID-based cryptography, the original protocol by Wan et al. and its
vulnerabilities. The main problem with the protocol is that most of the shares
of the previously agreed group key remain unaltered in the computation of the
new group key, such that joining/leaving members can reconstruct the old/new
group key. The improvement, presented in Sect. 3 involves the introduction of a
session ID to protect the previously established group key shares. In Sect. 4 we
analyse the performance loss, and indicate why the improvements fix the original
protocol. Finally, we show how the protocol can be used in the practical setting
of a Virtual Private Ad Hoc Network (VPAN), and we conclude with ideas for
future work.

The setting in which we operate is as follows: a dynamic set of devices wants
to establish a shared secret group key in a privacy-preserving way. ‘Dynamic’

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 214–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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means that devices can join or leave, albeit at a slow pace (a couple of devices per
hour). Encryption with an authenticated group key will ensure confidentiality,
but we also require the following:

- Anonymity: a group member remains anonymous for an outsider;
- Unlinkability: an outsider should be unable to link a group member across

sessions with different group keys;
- Backward and forward secrecy: only the members that were involved in

the group key generation should be able to construct the group key. Being
part of the group in the past (forward secrecy) or the future (backward
secrecy) leaks no information on the ‘current’ group key.

- Perfect forward secrecy: in case of master key compromise, all previous
group keys should remain secret.

2 ID-Based Protocol by Wan et al.

The group key agreement scheme of Wan et al. in [1] is based on ID-based public-
key cryptography in which the public key of a user is derived from its identity.
Identity Based Encryption (IBE) was proposed by Shamir [2] in 1984, and one
of the first practical IBE schemes [3, 4] is based on bilinear maps. In IBE, a
trusted server S, called a Private Key Generator (PKG), provides private keys
for all participating group members using a randomly chosen master secret s
and the identity of each user, after checking his ID. The focus on this paper is
on how to fix the scheme of Wan et al., but many similar schemes have been
proposed; one example of similar work can be found in [5], which also contains
some references to other schemes, and a survey [6] of key agreement protocols.
The mathematical setup for the protocol in [1] can be summarised as follows: the
PKG selects two cyclic groups G1 and G2 of order q for some large prime q, and
a bilinear mapping ê : G1×G1 → G2 : (P1, P2) �→ Q . The PKG determines the
generator P ∈ G1, a master secret s ∈R Zq \ {0}, and a public value Ppub = sP .

The public parameters 〈q, G1, G2, ê, H1, P, Ppub〉 are distributed to all users
in the system, where H1 is a hash function, H1 : {0, 1}∗ → G1, used to embed
identity values in G1: For a user with identity Ui, the PKG generates the private
key PrKi = sH1(Ui), for which the corresponding public key is the user’s identity
PuKi = Ui. In the remainder of the text, ui = H1(Ui).

The building blocks of the anonymous ID-based group key agreement protocol
presented by Wan et al., which is based on [7, 8], are: group initialisation, the
join protocol and the leave protocol.

Initialisation Protocol
The initialisation protocol is executed when an initiator U1 wants to have a
private group session with a set of users {U2, . . . , Un}.
Round 1: U1 → Ui : [EPuKi

(L, SigPrK1
(L)), r1P ] , where r1 ∈R Zq and L =

U1‖ . . . ‖Un‖Nym1‖ . . . ‖Nymn, the concatenation of the identities Ui and the
related pseudonyms Nymi. L is signed with U1’s private key, and encrypted with
the recipient’s (Ui) public key.
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Round 2: Ui → Ui−1, Ui+1 : [Nymi, riP ]: The users Ui, (i �= 1) decrypt the
message from Round 1, retrieve their pseudonym Nymi, which is sent, together
with riP, ri ∈R Zq to the users Ui−1 and Ui+1:
Round 3: Ui → ∗ : [Nymi, Xi = ki

ki−1
]: Each Ui broadcasts his Nymi with a

key share Xi = ki/ki−1, depending on his private key PrKi = sui, the random
number ri and the points ri−1P and ri+1P from Round 2:

ki = h(ê(ui+1, PrKi)‖riri+1P ), ki−1 = h(ê(ui−1, PrKi)‖riri−1P ).1 The bi-
linear property of the mapping ê ensures the consistency of the subkeys ki:
ê(ui+1, PrKi) = ê(ui+1, sui) = ê(ui, sui+1) = ê(ui, PrKi+1).
Group key K generation: Each user Ui receives all Xj , (j �= i), and computes2

the ‘subkeys’ ki+1,ki+2,. . . ,ki+n−1, from his own subkey ki:
ki+1 =kiXi+1, ki+2 =ki+1Xi+2, . . . ki+n−1=ki−1 =ki+n−2Xi+n−1 =ki−2Xi−1 .

Then Ui verifies ki+n−1Xi+n = ki, and forms the group key K =
H(k1‖k2‖ . . . ‖kn).3 Finally, each user Ui, (i �= 1) sends H(K‖U1‖U2‖ . . . ‖Un)
to the initiator U1, who checks the consistency of the group key K.

Join Protocol
When the join protocol is executed to add a new user Un+1 to the group, the
group key is updated to ensure backward secrecy.
Round 1: U1 generates Nymn+1 for Un+1 and initiates the protocol:

U1 → Un : EPuKn
(L1‖SigPrK1

(L1)), L1 = Un+1‖Nymn+1 (1)

U1 → Un+1 : EPuKn+1
(L2‖SigPrK1

(L2)), (2)

L2 = U1‖Nym1‖r1P‖Un‖Nymn‖rnP‖L1 , (3)

Round 2: Un+1 obtains Nymn+1, chooses rn+1 ∈R Zq and computes two sub-
keys kn+1 = h(ê(u1, PrKn+1)‖rn+1r1P ) and k′

n = h(ê(un, PrKn+1))‖rn+1rnP ).
Un+1 then sends his information to U1 and Un:

Un+1 → U1, Un : Nymn+1, rn+1P, Xn+1, where Xn+1 = kn+1/k′
n. (4)

Round 3: U1 and Un compute kn+1 and k′
n respectively:

kn+1 = h(ê(un+1, PrK1)‖r1rn+1P ), k′
n = h(ê(un+1, PrKn)‖rnrn+1P ). Then

they compute the new X-values X ′
1 = k1/kn+1 and X ′

n = k′
n/kn−1, and dis-

tribute them to the new group:
Un → U1 : X ′

n ,

U1 → Un+1 : EPuKn+1
(N1‖SigPrK1

(N1)), N1 = X ′
1‖X2‖ . . . ‖Xn−1‖X ′

n ,

U1 → ∗ : EK(N2‖SigPrK1
(N2)), N2 = X ′

1‖Xn+1‖X ′
n .

Group key K update: Every group member (including Un+1) can now com-
pute all the subkeys ki, i = 1, . . . , n + 1 with the altered k′

n and the new kn+1
with the following sequence of calculations4 (illustrated for user Un−1):
1 h : G2 ×G1 → {0, 1}k is a hash function with security parameter k.
2 Subscript numbers are considered modulo n.
3 H : {0, 1}∗ → {0, 1}k is a hash function.
4 Note that all subscript numbers are considered modulo n + 1.
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k′
n =kn−1X

′
n; kn+1 =k′

nXn+1; kn+2 =k1 =kn+1X
′
1; k2n =kn−1 =kn−2Xn−1.

The updated group key K ′ = H(k1‖k2‖ . . . ‖k′
n‖kn+1), is formed and checked in

the same way as in the initialisation protocol.

Leave Protocol
This protocol ensures forward secrecy when a group member Ui leaves.
Round 1: U1 assigns new pseudonyms to Ui−1 and Ui+1, using the current
group key K:

U1 → Ui−1, Ui+1 : EK(L‖SigPrK1
(L)), (5)

L = Ui‖Nymi‖Ui−1‖Nym′
i−1‖Ui+1‖Nym′

i+1 .

Round 2: Ui−1 and Ui+1 verify the signature of U1 and exchange new parame-
ters r′i−1P and r′i+1P using their new pseudonyms:

Ui−1 → Ui+1 : Nym′
i−1, r

′
i−1P, Ui+1 → Ui−1 : Nym′

i+1, r
′
i+1P .

Round 3: Ui−1 and Ui+1 recompute their (equal) subkeys k′
i−1 and k′

i:
Ui−1 : k′

i−1 = h(ê(ui+1, PrKi−1)‖r′i−1r
′
i+1P ) ,

Ui+1 : k′
i = h(ê(ui−1, PrKi+1)‖r′i+1r

′
i−1P ) .

Next, the updated X-values are computed and distributed:

Ui−1 → U1 : X ′
i−1 =

k′
i−1

ki−2
, Ui+1 → U1 : X ′

i+1 =
ki+1

k′
i

=
ki+1

k′
i−1

,

U1 → ∗ : EK(N‖SigPrK1
(N )), N = Ui‖Ui−1‖Ui+1‖X ′

i−1‖X ′
i+1. (6)

Group key K update: The remaining n− 1 group members can now compute
the updated group key K ′ = H(k1‖k2‖ . . . ‖k′

i−1‖ki+1‖ . . . ‖kn), which is checked
in the same way as in the initialisation protocol.

Security Properties

Forward and backward secrecy are not met in the described protocols, contrary to
the claims in [1]. In the adversary model, we assume a global, active attacker who
is capable of eavesdropping, injecting, modifying or dropping messages within
the network at will.
Forward secrecy: In the leave protocol described above, forward secrecy is not
guaranteed. In round 3 of the protocol, the leaving member Ui can obtain the
values X ′

i−1 and X ′
i+1 in two ways: they are sent unprotected to U1 AND they are

broadcasted under the old group key K in (6). Ui already knows ki (i = 1, . . . , n),
from the old group key, and only needs to recover the updated subkey k′

i−1 = k′
i,

to get the new group key K ′ = H(k1‖ . . . ‖ki−2‖k′
i−1‖ki+1‖ . . . ‖kn), which can

be done from X ′
i−1 and X ′

i+1:

k′
i−1 = ki−2X

′
i−1, k′

i = ki+1X
′
i+1.

Backward secrecy: Backward secrecy is not ensured by the group member join
protocol. At the end of this protocol, user Un+1 computes the new group key
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K ′ = H(k1‖ . . . ‖kn−1‖k′
n‖kn+1) knowing all subkeys ki. To be able to compute

K, only kn is missing, which can be computed from X1 = k1/kn or Xn =
kn/kn−1, sent around unencrypted in the previous session, which Un+1 could
have monitored.

3 Improved Protocol

Forward and backward secrecy can be ensured by the following improved
leave/join protocols. Our improvement, partially based on ideas of Jung [9],
makes use of a session ID, denoted as SID. This random string, unique for each
new group session is newly generated and distributed by U1 in each join/leave
protocol. The SID will blind all subkeys k, such that each member will affect the
updated group key. Below we describe the difference to the original protocol, for
the building blocks described in Sect. 2.

3.1 Initialisation Protocol

U1

Ui

Uk
1<k<i−1

Ui−1

Ui+1

Ul
i+1<i≤n

(1)

(1)

(1)

(1)

(1)

(1)

L = U1‖ . . . ‖Un‖Nym1‖ . . . ‖Nymn‖SID

U1 → Ui : EPuKi
(L‖SigPrK1

(L)), r1P ,

(2)

(2)

(2)

(2)

(2)

(2)

(2) Ui → Ui−1, Ui+1 : Nymi, riP

(a) Round-step 1 & 2

U1

Ui

Uk
1<k<i−1

Ui−1

Ui+1

Ul
i+1<i≤n

(3)

(3)

(3)

(3)

(3)(3)

(3) Ui, (i = 1, . . . , n)→ ∗ : Nymi, Xi ,

Xi = H(ki, SID)⊕H(ki−1, SID)

(b) Round-step 3

Fig. 1. Initialisation Protocol

Round 1: U1 generates a SID and adds it to the encrypted and signed message,
sent to each user Ui, in which L = U1‖ . . . ‖Un‖Nym1‖ . . . ‖Nymn‖SID:

U1 → Ui : EPuKi
(L‖SigPrK1

(L)), r1P . (7)

Round 2: No changes to the original protocol.
Round 3: Each Ui calculates ki and ki−1 as in the original. Xi is different:

Xi = H(ki‖SID)⊕H(ki−1‖SID) .

Xi now also depends on SID, and will be updated with each change of the group.
As before Nymi, Xi is broadcasted to all other users.
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Group key K generation: Each Ui executes a series of calculations:

H(ki+1, SID) = H(ki, SID)⊕Xi+1 ,H(ki+2, SID) = H(ki+1, SID)⊕Xi+2 ,

. . .

H(ki+n−1, SID) = H(ki+n−2, SID)⊕Xi+n−1 .

At the end, Ui verifies if H(ki+n, SID) = H(ki+n−1, SID) ⊕
Xi+n = H(ki, SID), and the group key K is formed: K =
H(H(k1, SID)‖H(k2, SID)‖ . . . ‖H(kn, SID)) , Group key K consistency
verification: In the original scheme, each Ui, (i �= 1) sends the same check
value to U1, which means that U1 cannot verify its origin. In our version of the
protocol, the confirmation message can only be generated by a legitimate Ui:
Ui → U1 : EK(Ui‖SigPrKi

(K)).

3.2 Join Protocol

U2

U1

Ui

Un−1

Un

Un+1

2<i<n−1

(1a)

(1a)
(1a)

(1a)

(1a)
L1 = U1‖ . . . ‖Un‖Un+1‖Nym′

1‖ . . . ‖Nym′
n‖Nymn+1‖SID′

U1 → ∗ : EK(L1‖SigPrK(L1)),

(1b)

(1b)

U1 → Un+1 : EPuKn+1
(L2‖SigPrK1

(L2)),

L2 = L1‖r1P‖rnP

Un+1 → U1, Un : Nymn+1, rn+1P

(2)

(2)

(2)

(a) Round-step 1 & 2

U2

U1

Ui

Un−1

Un

2<i<n−1

Un+1

(3a)

(3a)
(3a)

(3a)

(3a)

(3b)

(3a)

(3b)
Xn+1 = H(kn+1‖SID′)⊕H(k′

n‖SID′)

X ′
1 = H(k1, SID′)⊕H(kn+1, SID′)

X ′
n = H(k′

n, SID′)⊕H(kn−1, SID′)

X ′
i|2≤i≤n−1 = H(ki, SID′) ⊕ H(ki−1, SID′)

Un+1 → ∗ : Nymn+1, Xn+1,

Ui, (i = 1, . . . , n)→ ∗ : Nym′
i, X

′
i,

(b) Round-step 3

Fig. 2. Join Protocol

Round 1: U1 generates a new session ID, denoted as SID′. Next U1 informs
all members Ui, (i = 1, . . . , n) and Un+1 about Un+1’s joining, and assigns new
pseudonyms Nym′

i to all Ui and a pseudonym Nymn+1 to Un+1
5 :

U1 → ∗ : EK(L1‖SigPrK1
(L1)),

L1 = U1‖ . . . ‖Un‖Un+1‖Nym′
1‖ . . . ‖Nym′

n‖Nymn+1‖SID′ , (8)

U1 → Un+1 : EPuKn+1
(L2‖SigPrK1

(L2)), L2 = L1‖r1P‖rnP , (9)

5 Note that the encryption algorithms in (8) and (9) are different.
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Round 2: After decryption, Un+1 obtains the pseudonyms of all Ui, (i =
1, . . . , n + 1), chooses rn+1 ∈R Zq and computes kn+1 and k′

n as in the orig-
inal protocol. He also computes his own Xn+1 = H(kn+1‖SID′) ⊕ H(k′

n‖SID′)
and sends Nymn+1, rn+1P to U1 and Un.
Round 3: Upon reception of rn+1P , U1 and Un can compute subkeys kn+1 and
k′

n as before and recompute their X-values:
U1 : X ′

1 = H(k1, SID′)⊕H(kn+1, SID′) ,

Un : X ′
n = H(k′

n, SID′)⊕H(kn−1, SID′) .

The other users Ui need to update their X-value as well:
Ui, (i = 2, . . . , n− 1) : X ′

i = H(ki, SID′)⊕H(ki−1, SID′) .

Finally, all group members broadcast their new X-values to all other users along
with their new pseudonym:

Ui, (i = 1, . . . , n)→ ∗ : Nym′
i, X

′
i , Un+1 → ∗ : Nymn+1, Xn+1 .

Group key K update: Each user can now compute every H(ki‖SID′), using
the X-values, and compute and verify the new group key K ′ 6:

K ′ = H(H(k1, SID′)‖ . . . ‖H(k′
n, SID′)‖H(kn+1, SID′)) .

3.3 Leave Protocol

U1

Ui

Uk
1<k<i−1

Ui−1

Ui+1

Ul
i+1<i≤n

(1)

(1)

(1)

(1)

(1) U1 → ∗ : EK(L‖SigPrK1
(L)),

L = U1‖ . . . ‖Un‖Nym′
1‖ . . . ‖Nym′

i−1‖Nymi‖
Nym′

i+1‖ . . . ‖Nym′
n‖SID′

(2)

(2) Ui−1 → Ui+1 : Nym′
i−1, r

′
i−1P

Ui+1 → Ui−1 : Nym′
i+1, r

′
i+1P

(a) Round-step 1 & 2

U1

Ui

Uk
1<k<i−1

Ui−1

Ui+1

Ul
i+1<i≤n

Ui, (i = 1, . . . , i− 1, i + 1, . . . , n)→ ∗ : Nym′
i, X

′
i ,(3)

X ′
i|i=1,...,i−2,i+2,...,n = H(ki, SID′) ⊕ H(ki−1, SID′)

X ′
i−1 = H(k′

i−1, SID′)⊕H(ki−2, SID′)

X ′
i+1 = H(ki+1, SID′)⊕H(k′

i, SID′)

(3)

(3)

(3)

(3)
(3)

(b) Round-step 3

Fig. 3. Leave Protocol

Round 1: When Ui wants to leave the current session, U1 generates a new SID′

and informs all remaining group members by broadcasting:
6 The consistency verification is identical to the one in the initialisation protocol.
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U1 → ∗ : EK(L‖SigPrK1
(L)),

L = U1‖ . . . ‖Un‖Nym′
1‖ . . . ‖Nym′

i−1‖Nymi‖Nym′
i+1‖ . . . ‖Nym′

n‖SID′ ,

in which new pseudonyms Nym′
i are assigned.

Round 2: Upon reception of their new pseudonym, Ui−1 and Ui+1 exchange
their new values r′i−1P and r′i+1P , as in the original protocol.
Round 3: Then, Ui−1 and Ui+1 recompute their subkeys k′

i−1 and k′
i, again as

in the original protocol, and compute their X-values:
Ui−1 : X ′

i−1 = H(k′
i−1, SID′)⊕H(ki−2, SID′) ,

Ui+1 : X ′
i+1 = H(ki+1, SID′)⊕H(k′

i, SID′) .

The other users Ui need to update their X-value as well:
Ui, (i = 1, . . . , i− 2, i + 2, . . . , n) : X ′

i = H(ki, SID′)⊕H(ki−1, SID′) .

Finally, all remaining group members broadcast their new X-value:
Ui, (i = 1, . . . , i− 1, i + 1, . . . , n)→ ∗ : Nym′

i, X
′
i .

Group key K update: Each user can now compute every H(ki‖SID′)7, using
the X-values, and compute and verify the new group key K ′ 8:

K ′ = H(H(k1, SID′)‖ . . . ‖H(k′
i−1, SID′)‖H(ki+1, SID′)‖ . . . ‖H(kn, SID′)).

4 Security and Performance Analysis

4.1 Security

Here we informally show that our scheme ensures all the requirements, including
forward/backward secrecy. In the security analysis below, we assume that the
adversary knows the current SID, unless otherwise stated.
Anonymity: The identities of the users Ui are encrypted at all times in the
protocols, either by anonymous ID-based encryption using their public keys PuKi

or by symmetric encryption using the group key K. In all protocols, identities
are masked by pseudonyms constructed by the initiator U1. The use of identities
and private keys in the calculation of the values Xi is masked by hashing with a
random point in G1; identity information cannot be retrieved without the master
secret s or the user’s private key PrKi.
Unlinkability: Anonymity alone only hides the real identities of the group mem-
bers. To prevent an adversary from tracing a user by his pseudonym, pseudonyms
or X-values are never re-used when the group changes and a new group key needs
to be established. Therefore, a user Ui is able to join or leave a private group
session anonymously.
Group key secrecy and perfect forward secrecy: If an attacker knows
SID, the group key K = H(H(k1, SID)‖H(k2, SID)‖ . . . ‖H(kn, SID)) remains
secure: to retrieve K, he needs access to at least one user’s shared subkey ki,
to compute the other subkeys kj from the broadcasted X-values. The subkey
ki = h(ê(ui+1, PrKi)‖riri+1P ) cannot be computed without knowing Ui+1, the
private key PrKi and the element riri+1P :
7 The equality k′

i−1 = k′
i is necessary for the correctness of the sequence of calculations.

8 The consistency verification is identical to the one in the initialisation protocol.
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– The IDs Ui are encrypted, and only known to the participating members;
– The private key of the users is never shared and can only be computed with

the master secret s;
– The element riri+1P cannot be computed from the exchanged riP and ri+1P

because of the ECDHP assumption [10].
Knowing the identities Ui next to SID, is also insufficient to compute ki with-
out having knowledge of the master secret s or the private keys PrKi, since
ê(ui+1, PrKi) = ê(ui+1, sui). The argumentation above shows that the group
key K cannot be retrieved by the adversary in our threat model.

Even in case when the long-term master secret s is compromised and the
identities of the participating members are revealed, group keys from previous
stages remain uncompromised, because of the last argument in the list above,
such that the protocol is also perfectly forward secret.
Forward and backward secrecy: Forward and backward secrecy should be
ensured for the leaving and joining protocol respectively. Each time the group
membership changes, the initiator U1 introduces a new SID′ and the group key
is updated. While each user Ui still computes both subkeys ki and ki−1, he will
share H(ki‖SID′), instead of the unprotected ki. This is done by broadcast-
ing X ′

i = H(ki‖SID′) ⊕ H(ki−1‖SID′). A joining/leaving member is unable to
compromise a past/future group key K:
1. the only subkeys k a joining/leaving member knows are his own, which are

both newly generated or updated during the join/leave protocol such that
the knowledge of the previous SID/updated SID′ cannot be used to compute
a previous/updated group key;

2. each user’s shared contribution and the corresponding X-value are SID-
dependent, and are updated and re-broadcasted in the join/leave protocol.

Forward secrecy for the leaving protocol: In round 1, the leaving member Ui gains
knowledge of the updated SID′ since it is encrypted using the old group key K.
This is no problem for the forward secrecy, as Ui can only generate H(ki‖SID′)
and H(ki−1‖SID′); these are exactly the values that are updated by Ui−1 and
Ui+1 in round 3, and shared through updated X ′-values:

Ui−1 : X ′
i−1 = H(k′

i−1, SID′)⊕H(ki−2, SID′) ,

Ui+1 : X ′
i+1 = H(ki+1, SID′)⊕H(k′

i, SID′) ,

where each shared contribution is updated with the new SID′. Because Ui only
knows H(ki−1, SID′), H(ki−2, SID), H(ki+1, SID), H(ki, SID′), he is unable to re-
trieve any useful information from X ′

i−1 and X ′
i+1 to retrieve the new K ′.

Backward secrecy for the joining protocol: In round 2, the joining member
Un+1 computes both subkeys kn+1 and k′

n and shares this through Xn+1 =
H(kn+1‖SID′) ⊕ H(k′

n‖SID′). If Un+1 knows the previous session ID, i.e. SID,
he can compute H(kn+1‖SID) and H(k′

n‖SID). However, this does not give
him an advantage in recovering any past group key K since the subkey kn

has been updated. The shared contributions of all other group members are
now masked with a new SID′, hence knowing H(k1‖SID′) in combination with
X1 = H(k1‖SID)⊕H(kn‖SID) does not help to retrieve K.
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4.2 Performance

In Tables 1 and 2, we give an overview of the communication and computation
cost of the new protocol, compared to the original protocol by Wan et al.

Communication cost: The number of broadcast messages in the join and leave
protocol is higher: each time the group (of size n) changes, each Ui needs to
broadcast his updated share H(ki‖SID′) to all other users.

Table 1. Communication Cost Comparison

Protocols Rounds Messages Unicast Broadcast

Wan et al.
Initialise 3 4n 3n n

Join 3 7 6 1
Leave 3 7 6 1

Our protocol
Initialise 3 4n 3n n

Join 3 n + 5 3 n + 2
Leave 3 n + 2 2 n

Computation cost: The increase in signature generations and verifications is
due to (1) the initiator U1 broadcasts his signed message containing the
newly reassigned pseudonyms Nym′

i and updated SID′ during the join/leave
protocol, and (2) the improved group key consistency verification process at
the end of each protocol.

Table 2. Computation Cost Comparison

Protocols ID-based Pairing Signature Point
Encryption Computation (ê) Gen./Verif. Multiplication (in G)

Wan et al.
Initialise n− 1 2n 1 n− 1 3n

Join 3 4 4 n + 3 5
Leave 0 2 2 n + 1 4

Our protocol
Initialise n− 1 2n n 2n− 2 3n

Join 1 4 n + 2 2n + 1 5
Leave 0 2 n− 1 2n− 4 4

5 Application: Virtual Private Ad Hoc Network

As more and more mobile devices interconnect though largescale IP networks,
new network architectures become important. Virtual Private Ad Hoc Network
(VPAN) is a concept that aims to establish a secure virtual network on top of
the existing insecure IP base network by combining network virtualisation and
ad hoc networking techniques. This concept was proposed and introduced in [11]
and [12].

Due to geographical distribution of VPAN entities, clusters of entities – VPAN
Nodes – that are able to connect to each other directly are formed, in which a



224 Y. De Mulder, K. Wouters, and B. Preneel

special node, the Gateway Node, has connectivity to an IP-based access net-
work. Within the same VPAN, clusters are interconnected through their Gate-
way Nodes. The VPAN membership is self-organising: members need to be able
to discover each other and form a secure overlay without user intervention. Ad-
ditionally, ad hoc routing techniques are used for efficient internal routing. A
VPAN is identified by a VPAN prefix, which is prepended to the VPAN Node
ID for every node in a VPAN, such that one node can be active in multiple
VPANs.

Our privacy-preserving ID-based group key agreement scheme described in
Sect. 3 can be applied to the VPAN setting to protect the privacy of VPAN
cluster nodes to the outside world as well as to obtain a shared group session
key within each cluster while supporting dynamic cluster membership. More
specifically, VPAN Nodes remain anonymous and an outside eavesdropper is
unable to trace or monitor activities of a specific VPAN Node, or to link the
same VPAN Node in clusters of different VPANs.

The initiator U1, which should have an IP connection, assumes the role of
Gateway Node GN , while the remaining users Ui|2≤i≤n act as VPAN Nodes.
Hence a group of users {Ui|1≤i≤n} is here referred to as a cluster of VPAN
members {GN, Ui|2≤i≤n}. To ensure that VPAN Nodes can form new clusters
or join an existing cluster, the GN of each VPAN cluster broadcasts periodi-
cally the following beacon message: GN → ∗ : GN‖SigPrKGN

(GN), where GN
denotes the Gateway Node’s public key.
Initialisation Protocol: Cluster initialisation occurs when setting up a new
VPAN or forming a new cluster within an existing VPAN. Each VPAN Node
Ui receiving GN ’s beacon, responds with the following encrypted message:
Ui → GN : EPuKGN

(L‖SigPrKi
(L)) with L = Ui‖VPANprefix. At the end,

GN has a set of VPAN Nodes {Ui|2≤i≤n} to form a cluster and to agree upon a
shared group session key.
Join Protocol: When a new VPAN Node Un+1 wants to join an existing
cluster {GN, Ui|2≤i≤n}, he waits for the beacon and responds with the fol-
lowing encrypted message: Un+1 → GN : EPuKGN

(L‖SigPrKn+1
(L)) with

L = Un+1‖VPANprefix. During the join protocol, the shared group session key
is updated to provide backward secrecy.
Leave Protocol: When a VPAN Node Ui wants to leave an existing cluster, the
leave protocol is executed to update the group session key and thus to provide
forward secrecy.

The protocols themselves remain exactly the same as described in Sect. 3, all
initiated by the Gateway Node GN .

6 Conclusion and Future Work

In this paper, we showed that the key agreement protocol by Wan et al. does
not offer forward and backward secrecy, contrary to their claims. We adjusted
the protocol such that these requirements are met and added an extra safe-
guard at the end of the protocol. The cost for these improvements is a increased
computation cost and a moderately higher communication cost.
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Future work includes a thorough investigation of the role of the network in
which our protocol will operate; this can be done in a VPAN setting, for which
test infrastructures exist already. The designers of the referenced VPAN were
involved in this work, and collaboration seems possible.

The cost of running an anonymous routing mechanism in a multihop ad hoc
network, as suggested by the original protocol authors, cannot be neglected.
Furthermore, privacy-preserving ID-based protocols in which multiple members
can join and leave simultaneously and in which groups can merge and split are
still to be developed.
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Abstract. We study a classical problem in communication and wireless
networks called Finding White Space Regions. In this problem, we are
given a set of antennas (points) some of which are noisy (black) and the
rest are working fine (white). The goal is to find a set of convex hulls
with maximum total area that cover all white points and exclude all
black points. In other words, these convex hulls make it safe for white
antennas to communicate with each other without any interference with
black antennas. We study the problem on three different settings (based
on overlapping between different convex hulls) and find hardness results
and good approximation algorithms.

1 Introduction

The problem of finding white space regions arises in the context of Cognitive
Radio systems. According to FCC Task Force report [1] in 2004 on the under-
utilization of the wireless radio environment, primary users did not use their
licensed spectrum from 15% to 85% of the time. Therefore, these silence ranges
in time and frequency can be exploited by unlicensed users provided that these
users do not make any interference with the primary licensed users.

Consider a primary network whose Base Stations(BSs) are fixed and commu-
nicate occasionally in a licensed band along with spatially random distributed
spectrum sensing base stations of the cognitive radio networks distributed in a
large region. Such a network is depicted in Fig. 1 in which primary users are
shown by long antennas and the others by short antennas. The goal is to find
the largest area in which no primary user transmission is detected. From now on,
we call this area the white space region or WSR for short. Cognitive radio users
can then safely use this WSR to communicate with each other without affecting
primary users. Moreover, the more the area of WSR is the more non-licensed
users can communicate with each other.

Abachi et al [3] first proposed a model based on the spatial information of
the antennas. In their model, each antenna is a point with cartesian coordinates.
They colored points corresponding to primary users as black and the rest as

� The research was in part supported by grant no. CS1389-4-09 from the institute for
Research in Fundamental Sciences (IPM).

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 226–237, 2011.
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Fig. 1. Sensing Scenario [2]

white. In this model, WSRs are convex regions around white points whose cir-
cumcircle does not contain any black point. They proposed a pseudo polynomial
algorithm for finding good WSRs.

In another related work, Fischer [4,5] focuses on finding just one WSR with the
maximum area. In [4], he proposes a dynamic programming based O

(
n4log(n)

)
-

time algorithm for finding the maximum area convex polygon which does not
contain any black points. In [5] he improved his result by learning techniques.

In this paper, we let more than one convex hull be chosen. Our aim is to find
a set of WSRs which covers all white points and whose total area is maximum
(We assume a single point or two points connected via a segment as a convex
hull of area 0; so, it is always possible to cover all white points with convex
hulls). Moreover, no convex hull should contain any black point inside.

1.1 Formal Problem Definition

As mentioned earlier we have a set of n points; some are black (nb of them) and
others are white (nw of them), and we are looking for a set of convex hulls of
the white points that:

– cover all the white points (a single point or a line segment between two
points is assumed a convex hull).

– are free from black points.
– the area of their union is maximum.

One question is whether these convex hulls are allowed to have intersection.
Depending on wether the convex hulls can overlap, we have three different prob-
lems(see Fig. 2):

Definition 1. Three different problems of finding the white space regions are:

– Totally Disjoint Convex Covering (TDCC): In this problem WSRs
cannot touch each other, i.e. they are not allowed to have common vertices
or common area or one’s edge lying on another’s edge(Fig. 2 part (a))
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(a) (b)

(c)

Fig. 2. Three different types of the problem

– Nonoverlapping Convex Covering (NOCC): In this problem WSRs
are not allowed to have common areas but having common vertices is fine
(Fig. 2 part (b)).

– Convex Covering with no Restriction (CCR): There are no restric-
tions in regards to intersection (Fig. 2 part (c))

Our main results are as follows. First, we obtain some hardness results.

Theorem 1. Both NOCC and TDCC problems are NP-hard.

Next we obtain two different, but similar approximation algorithms for both of
the problems (OPT is the area of the optimal solution).

Theorem 2. There is an approximation algorithm that computes a set of convex
hulls with total area of at least ( OPT

2 log(2n/OPT )+2 log(n) )
1/4 for the NOCC problem.

Theorem 3. There is an approximation algorithm that computes a set of con-
vex hulls with total area of at least 3

√
3

4.π ( OPT
2 log(2n/OPT )+2 log(n) )

1/4 for the TDCC

problem.

Finally, we propose heuristic algorithms based on Fischer’s algorithm and pro-
vide experimental and theoretical analysis for them.

For the CCR problem, it’s straightforward to find an exact polynomial time
algorithm.

Theorem 4. CCR can be solved in polynomial time.
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Proof. It is enough to consider all possible triangles of white vertices that contain
no black vertex and output their union. It is easy to see that this output is
the maximum area convex covering. Since the number of possible triangles is
polynomial (≤

(
n
3

)
) the running time will be polynomial.

The structure of our paper is as follows. In the next section, we prove the hard-
ness results. Then, in section 3, we propose good approximation algorithms for
the problems. In section 4, we propose greedy algorithms based on Fischer’s
works [4,5]. We show by experimental evaluations that these greedy algorithms
work well in practice, but may behave arbitrarily bad in the worst case.

2 Hardness Results

In this section we will prove the NP-Hardness of NOCC. The hardness of TDCC

follows similarly. The idea is to reduce the independent set problem on triangle-
free planar graphs. A proof for the hardness of the latter problem can be found
at [6].

a b
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Fig. 3. Forming an intersection graph of rectangles with equal area from G

Definition 2. Intersection Graph of a set of geometric objects S, is defined
as a graph G = (S, E) in which there is an edge between two nodes s, s′ ∈ S if
s ∩ s′ �= ∅.

We use the fact that every planar graph is an intersection of line segments in 2D
space, e.g. we can put line segments corresponding to vertices of every planar
graph such that two vertices are connected if and only if their corresponding
line segments have an intersection. Construction of this equivalent graph can be
done in polynomial time[7].

Let G be a planar graph whose maximum independent set is I and |I| = k.
We make an instance of NOCC whose optimal solution has area εk for some
constant ε. That concludes the reduction as having a polynomial algorithm for
NOCC would reveal the size of I.
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To do the reduction, we first transform G into an intersection of line segments
using the polynomial construction in [7]. It’s easy to make the construction such
that no two line segments are co-linear and intersections does not happen on the
end-points.

Assume si is the corresponding line segment to vertex i. Next, we replace si

with a rectangle ri whose area is ε (i.e. one edge length is |si| and the other edge
length is ε

|si| , where |si| is the length of si). ε is chosen so small that every two
lines si and sj intersect if and only if their corresponding rectanbles ri and j

intersect.
Finally, for every two pairs i �= j, we put a black point on the line between

every vertex of ri and every vertex of rj . These black points must not be placed
inside any of the rectangles. This latter step ensures that only ri’s will be selected
when solving the NOCC problem. The value of ε is chosen so small that it does
not interfere with the construction, i.e. it’s smaller than the distance of every
two points in line segment intersection graph. The process of constructing the
intersection graph of the rectangles is shown in Fig. 3.

How big is the area of the optimal solution in this NOCC instance? It’s easy
to see that the optimal solution must be a set of intersecting-free ri’s which
means the optimal answer is |I|ε. This completes the proof of the Theorem 1.

3 Approximation Algorithms

In this section we propose an approximation algorithm for NOCC. One can
assume that the optimal solution is a set of non-intersecting triangles because
every polygon in the optimal solution can be triangulated. So the problem re-
duces to the problem of finding the maximum weighted independent set in the
intersection graph of all the black point-free triangles with white vertices whose
weights are equal to their area. That is, for every triangle of three white points
that does not contain any black point, we put a vertex with weight equal to the
area of the trinagle. Two vertices are adjacent if their corresponding triangles
interset in area.

Agarwal et al. [8] consider a non-weighted version of this problem for the
intersection graphs of n convex shapes in 2D space. They proposed an approxi-
mation algorithm that computes a solution whose output is at least 3

√
α

2 log(2n/α) ,

where α is the cardinality of the optimum solution. We have manipulated their
algorithm to solve our problem. Let’s first outline the algorithm of Agarwal et
al. and then state our manipulations.

3.1 Non-weighted Version

The algorithm in [8] gets n convex shapes in 2D space as input and computes
the maximum independent set of their intersection graph. Their algorithm has a
divide and conquer approach and is outlined below(The algorithm is stated for
a set of triangles Δ instead of polygons).
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Algorithm 1. ApproxNOCC(Δ: a set of triangles)
Find a line � which divides Δ into two almost equal cardinality sets.
C� = all the triangles that intersect �.
L� = all the triangles whose position is completely to the left of �.
R� = all the triangles that are completely positioned to the right of �.
Compute ζ(C�) by a separate approximation algorithm
return max{ApproxNOCC(L�) + ApproxNOCC(R�), ζ(C�)}

Given a vertical line � every triangle is either completely to the left of �,
completely to the right of �, or intersects �. Based on this we have three sets of
triangles L�, R� and C�. By the way, � is chosen in such a way that ||R�|− |L�|| is
minimized. For C� they provide a separate algorithm that computes a solution
whose size is ζ(C�), for some function ζ. Notice that this problem is different
from and simpler than the original problem as all triangles in C� intersect the
vertical line �. At the end their algorithm returns the maximum of ζ(C�) and
their approximation algorithm solution on the reduced set L� ∪R�.

Let μ(Δ) be the size of the solution returned by their algorithm. It’s easy to
prove that

μ(Δ) = max{μ(L�) + μ(R�), ζ(C�)} (1)

Given the above recursive equation, Agarwal et al. prove the following lower
bound for μ(Δ).

μ(Δ) ≥ ζ(
OPT

2log(2t/OPT )
) (2)

where t = |Δ| and OPT is the size of the optimal solution. For C� they propose
a dynamic programming based algorithm that computes a solution that has a
cubic approximation factor:

ζ(C�) ≥ 3
√

OPT

where OPT is the size of the optimal solution on C�. This yields the above
3

√
α

2log(2n/α) approximation factor.

3.2 Our Modification

Our algorithm has the same structure except that our triangles are weighted
and consequently, our approximation algorithm for the maximum independent
set on C� is different as explained below.

First we need the following useful lemma for our construction.

Lemma 1. Suppose that we are given a set I of weighted objects such that for
each x ∈ I we have w(x) ≥ 1. Assume a partial order � over the members of I
is given. Let S =

∑
x∈I w(x). Then there exists a chain or anti-chain over the

members of I whose total weight is at least
√

S.
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Proof. LetA be a maximum cardinality anti-chain and C be a partition of objects
into minimum number of chains. By Dilworth’s theorem [9], the cardinality of
A equals the number of chains in C.

If A has cardinality more than
√

S then we are done as every object has
weight more than one. Otherwise, C has at most

√
S chains which means the

heaviest chain must have total weight at least S√
S

=
√

S.

Let � be a vertical line. Like before, let C� be all the triangles that intersect �.
Suppose OPT (C�) is the total area of all the triangles in the maximum weighted
independent set of C�. For each si ∈ C� define r(si)(resp. l(si)) to be the
x-coordinate of the rightmost (resp. leftmost) point in si. Also define c(si) to be
the maximum y-coordinate of the intersection of si with line �. The following
lemma is obtained from [8] by minor modifications.

Lemma 2. There exists a sequence I =≺ si1 , si2 , ..., sim � of the members of C�

such that
∑m

j=1 w(sij ) ≥ 4

√
|
∑

x∈C�
w(x)|, where w(x) is the area of the triangle

x and I is a chain according to one of the following order conditions:

– O1(si, sj): r(si) < r(sj) and c(si) < c(sj).
– O2(si, sj): r(si) < r(sj) and c(si) > c(sj).
– O3(si, sj): r(si) > r(sj).

Proof. Let Sl = |
∑

x∈C�
w(x)|. First we apply lemma 1 on C� with partially

order defined by O1. So, there must be a chain or anti-chain D1 with total
weight at least

√
Sl. If it’s a chain then we are done. Otherwise, apply lemma

1 to D1 on partially order defined by O2. According to this lemma, there exist
a chain or anti-chain D2 whose total weight is at least

√√
Sl = 4

√
Sl. If it’s a

chain then it satisfies condition O2. Otherwise, as it is an anti-chain by both O1
and O2, it must satisfy O3.

The interesting fact is that the optimal answer that satisfies either of Oi’s can
be computed in polynomial time by a dynamic-programming algorithm.

For each x ∈ {1, 2, 3}, we shall compute the sequence with maximum total
area that satisfies Ox. Let s1, · · · , sp be a topological ordering based on the order
Ox on C�. Let i, j be two vertices such that i < j and si ∩ sj = ∅. Define φx(i, j)
to be the size of the maximum total area sequence from the set {si, si+1, · · · , sj}
which satisfies Ox. φx(i, j) equals

maxi≤k≤j
sk∩si=∅
sk∩sj=∅

φx(i, k − 1) + φx(k + 1, j) + w(sk)

which means one can use dynamic programming and compute φx in polynomial
time. At the end, ζ(C�)) will be the maximum of three values,

ζ(C�) = max{φ1(1, p), φ2(1, p), φ3(1, p)} ≥ 4

√∑
x∈C�

w(x) ≥ 4
√

OPT (C�)



White Space Regions 233

Given the above lower bound for ζ(C�) we plug it into Equation 2 and obtain a
lower bound for the approximation factor of our algorithm.

μ(Δ) ≥ 4

√
OPT

2log(2t/OPT )
≥ 4

√
OPT

2log(2n/OPT ) + 2log(n)

The last inequality follows from the fact that t ≤
(
n
3

)
.

The algorithm is outlined in Algorithm 1. The input of this algorithm is the
set of all triangles of white vertices which contain no black points (Δ). This
completes the proof of Theorem 2.

3.3 TDCC

The idea for approximating TDCC is similar to that of NOCC with some
modifications. In NOCC we could safely assume that the optimal answer is a
set of triangles and then found an approximate weighted independent set on the
set of feasible triangles. This assumption, however, does not hold for the case
of TDCC as a polygon cannot necessarily be partitioned into a set of totally
disjoint triangles.

Fig. 4. Inscribed triangles with area of 3
√

3
4π

. OPT in TDCC problem.

To overcome this difficulty, we use the following useful lemma.

Lemma 3. ([10]) Let B be a compact convex body in the plane and Bk be the
largest area k-edge polygon inscribed in B. Then area(Bk) ≥ area(B). k

2π sin 2π
k ,

where equality holds if and only if B is an ellipse.

This means if we only focus on triangles for TDCC then the optimal solution
would be less by no more than a factor of 3

2π sin 2π
3 = 3

√
3

4π .
Therefore, we can run the same algorithm as the one for NOCC (with the

change that two triangles are considered connected even if they share an edge
or a vertex) and obtain a solution whose total area is at least

3
√

3
4π

4

√
OPT

2log(2n/OPT ) + 2log(n)

This completes the proof of Theorem 3.
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Algorithm 2. GreedyTDCC
C ← ∅
C = maximum convex hull of white points by the Fischer’s algorithm[4]
while The area of C is greater than 0 do
C ← C ∪ C
Remove all the white points inside C
Replace C’s vertices with black points
foreach pair (A, B) of points which coincide on the outside or boundary of C do

if segment AB has intersection with C then

Add a dummy black point on AB which resides inside C.
end

end
Add a dummy black point inside C.
C = maximum convex hull of white points.

end
return C

3.4 A Note on Measurement Units and the Root Function

It’s clear that if we change our measurement unit(e.g. use meter instead of inch)
then it affects our approximation factor which is a root function. To avoid this
problem the area of triangles (and hence, the wight of vertices) are computed
relative to the smallest triangle. Thus, all weights are at least one (which is
needed for Lemma 1) and our approximation factor would not change by scaling.

4 Heuristic Approach

The algorithm of Fischer[4] for finding one single region with maximum area
can be easily transformed into a greedy algorithm for our problem by repeatedly
finding a region and deleting it.

In this section, we show that while this algorithm behaves well for random
data, it can be arbitrarily bad in the worst case. First we explain the algorithm
in detail and then provide experimental results. Finally we prove a lower bound
for its behavior in the worst case. We explain the algorithm and experimental
results for TDCC. The results for NOCC are essentially similar but they are
more complex and need more details and is left to the journal version of our
work.

4.1 Algorithm Description

The algorithm works as follows. It iteratively computes a maximum area convex
hull of white regions using Fischer’s algorithm. In order to prevent intersection, it
puts enough black points around and inside the selected convex hulls to prevent
future convex hulls to overlap existing ones.

The details of the algorithms is depicted in Algorithm 2.
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Once a convex hull C is chosen, for any line segment AB of two white points
A and B that intersect with C, the algorithm puts an arbitrary black point on
the intersection of AB and the interior of C. That prevents line segment AB to
be chosen as part of any future convex hull. It also replaces C’s vertices with
black points so as to prevent future convex hulls to have intersection with C’s
vertices.

4.2 Analysis

As we see shall see shortly this greedy algorithm could work arbitrarily bad,
however, our experiments show its good behavior for random data.

First we build an example on which the solution of GreedyTDCC and the
optimal differ by a factor of Ω(n). Our worst case example is depicted in Fig. 5.

a1
a2

S

S − ε

S − ε

S − ε

S − ε

b1

b2

S − ε

S − ε

Fig. 5. Worst case example of GreedyTDCC

Let C be an n-regular polygon with area S and vertices a1, a2, · · · , an. For
each 1 ≤ i < n we create a vertex bi outside C such that the triangle biaiai+1

has area S − ε (for an arbitrarily small ε). Assume a1 = an+1 and n
2≡ 0 for

convenience.
Our aim is to let only C and triangles of the form biaiai+1 be chosen in any

solution. Therefore we only allow the following three types of line segments:
aiai+1, biai, and biai+1. For any other line segment we put a black point on it in
a suitable place (i.e. is not contained in any of the triangle biaiai+1) to prevent
it from being chosen.

In this instance the GreedyTDCC algorithm will pick C as the first convex
hull and then it can not find any other convex hull with area more than 0. So the
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area of the output of GreedyTDCC is S. However, the optimal answer will pick
all the n

2 triangles of type b2ka2ka2k+1 , so OPT = n
2 .(S − ε). This completes

our claim that GreedyTDCC works arbitrarily bad in the worst case.

Theorem 5. There is an instance L of n points such that

OPT (L)
GreedyTDCC(L)

∈ Ω (n)

where GreedyTDCC(L) is the output of our greedy algorithm on the instance L
and OPT (L) is the optimal answer.

The algorithm, however, works well on random data. For this, we implemented
the GreedyTDCC algorithm and tested it on seven different random distribu-
tion of the points. For each case, e.g. RAN1, we created 10 different random
instances and computed the average and the worst (least) ratio of our algorithm
to the optimal algorithm. The area of the optimal covering is obtained via a
simple exhaustive search algorithm. The results are shown in table 1 ). The ex-
perimental result suggests that the output of GreedyTDCC algorithm is a good
approximation of the optimal answer in practice.

Table 1. The ratio of GreedyTDCC’s solution to optimal

Test Data #White Points #Black Points Worst case Ratio Average Ratio

RAN1 10 3 0.64 0.7
RAN2 12 12 0.49 0.66
RAN3 16 10 0.48 0.59
RAN4 14 20 0.41 0.72
RAN5 15 16 0.6 0.7
RAN6 20 40 0.56 0.68
RAN7 20 20 0.48 0.63

5 Conclusion and Further Works

We considered three different versions of the problem of covering a set of white
points without touching black points . We solved one and found hardness result
as well as approximation algorithms for the other two.

The approximation factor of our algorithms are dependent to the result of
Lemma 1. Any improvement in that lemma would improve the approximation
factor. One may hope to find a bound like S√

n
(which is identical to Dilworth’s

bound for uniform weights), but we haven’t been able to achieve it.
There are many variants of the problem that are worth studying. One partic-

ular problem that we are interested in is the weighted version of our problem.
Black points have weights between zero and one and the aim is to find a set of
convex hulls around white points so that the total weight of black points inside
convex hulls is less than a threshold.
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Abstract. This paper deals with the Max-Rep and Min-Rep problems,
both of which are related to the famous Label Cover problem. These are
of notable theoretical interest, since they are often used to prove hardness
results for other problems. In many cases new complexity results for
these problems may be preserved by the reductions, and so new results
for Max-Rep and Min-Rep could be applicable to a wide range of other
problems as well.

Both Max- and Min-Rep are strongly inapproximable, and the best
approximation algorithms have a ratio of O(n1/3) and O(n1/3 log2/3 n)
respectively. Thus, other approaches are desperately needed to tackle
these hard problems. In our paper we use the very successful parameter-
ized complexity paradigm and obtain new complexity results for various
parameterizations of the problems.

1 Introduction

Both Max-Rep and Min-Rep are natural problems first introduced by Kortsarz
[14] related to the famous Label Cover problem of Arora, Babai, Stern and
Sweedyk [3]. Indeed, Max-Rep can be expressed as a maximization variant of
Label Cover, however Min-Rep is slightly different from its minimization variant.
Both of these problems are often used in hardness reductions, which provides
strong motivation for obtaining new complexity results for these two problems.

The reductions from Min-Rep and Max-Rep to other problems include Di-
rected Steiner Forest [9], l-Round Power Dominating Set [2], Min-Power k-Edge-
Disjoint Paths [12], Red-Blue Set Cover [17], Set Cover with Pairs [13], Sparsest
k-Transitive-Closure-Spanner [5], Stochastic Steiner Tree with Non-uniform In-
flation [11], Target Set Selection [7] and Vertex Connectivity Survivable Network
Design [15].

Previous studies of Min-Rep and Max-Rep focused mainly on their ap-
proximability and on approximation algorithms for these problems. Kortsarz
proved that both are strongly inapproximable [14], and only recently Charikar,
Hajiaghayi and Karloff [6] managed to improve the ratio from O(n1/2) to O(n1/3)
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for Max-Rep and O(n1/3log2/3n) for Min-Rep. In light of these (fairly discour-
aging) results, one has to ask whether it would be possible to tackle these two
problems by using some other approach than approximation.

In our article, we study Max-Rep and Min-Rep from a parameterized-
algorithmics point of view and obtain several new results by various parameter-
izations of these problems. In this case negative results are of particular interest
– hardness results may in the future be used to immediately obtain hardness
results for other problems by reductions. We show that both Max-Rep and Min-
Rep admit XP-time algorithms when parameterized by the number of sets, that
both are W [1]-hard with respect to this parameter and that FPT algorithms
are possible for both when the structure of the graph is restricted by popular
width measures (see section 2 for an explanation of these terms). The final part
of the article provides separate hardness proofs for Max-Rep and Min-Rep when
parameterizing by the size of sets, and shows that Max-Rep remains hard even
when additional very restrictive constraints are present.

2 Definitions

Definition 2.1 (Max-Rep)
Instance: A bipartite graph G = (A, B, E) with n = |A| = |B| = m · k and 2m
cardinality-k disjoint subsets A1 . . . Am, B1 . . . Bm such that A1∪A2∪· · ·∪Am =
A and B1 ∪B2 ∪ · · · ∪Bm = B.

Objective: Select sets of representatives A′ ⊆ A, B′ ⊆ B such that |A′ ∩Ai| = 1,
|B′ ∩ Bi| = 1 for all 1 ≤ i ≤ m and the subgraph induced by A′ ∪ B′ has the
maximum number of edges.

Another view of the Max-Rep problem is to consider a bipartite “supergraph”
H with 2m vertices, the vertices of H being the sets Ai and Bj . Ai and Bj are
then adjacent in H iff there exist ai ∈ Ai and bj ∈ Bj such that (ai, bj) ∈ E(G)
(in this case we say that (ai, bj) covers the superedge (Ai, Bj)). In this case, the
goal of Max-Rep is to select a single representative for each of the sets Ai, Bj in
a way maximizing the edges of H.

Definition 2.2 (Min-Rep)
Instance: A bipartite graph G = (A, B, E) with n = |A| = |B| = m · k and 2m
cardinality-k disjoint subsets A1 . . . Am, B1 . . . Bm such that A1∪A2∪· · ·∪Am =
A and B1 ∪B2 ∪ · · · ∪Bm = B.

Objective: Select sets A′ ⊆ A, B′ ⊆ B such that each superedge of H is covered
by some edge (a, b) of G where a ∈ A′, b ∈ B′. The goal is to minimize |A′|+|B′|.

It is important to notice that although both problems work with the same in-
put, their objectives differ significantly. While in Max-Rep one is restricted to
selecting only a single representative for each subset of the input with a goal of
maximizing superedges in H, in Min-Rep the requirement is to actually cover all
the superedges of H while minimizing the number of selected vertices in A ∪B.
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Finally, we provide some basic terms used in parameterized complexity theory.
A parameter (sometimes referred to as a width or structural parameter) is a
function f : I → N where I is the input for our problem. The idea is to select
a parameter which is low on some large and interesting instances of the given
problem, and then design parameterized algorithms which run in polynomial
time when the parameter is bounded. A good example of a parameter used
for many problems is the tree-width of a graph, which is low on graphs that
are structurally similar to trees and allows the design of efficient parameterized
algorithms for many problems. It is also often the case that the input of the
problem itself provides a natural choice for the parameter – e.g. when computing
the minimum dominating set of a graph we may take its size as the parameter.

With respect to parameterized algorithms, we distinguish between those which
run in time (considerng a parameter k and an input of size n) O(f(k) · poly(n))
and those with a runtime of O(poly(n)f(k)). Algorithms of the first type are called
Fixed-Parameter Tractable (FPT in short) since the exponent of the polynomial
in n does not grow with the parameter. On the other hand, algorithms of the
second type are called XP algorithms. An FPT algorithm is typically much more
practical than an XP one, however having an XP algorithm is still preferable to
exponential algorithms when the parameter is bounded.

3 New Results

The problem definitions themselves allow two natural approaches to parameter-
izing the input: either selecting m as the parameter, thus restricting the number
of subsets, or bounding k, which leads to a restriction on the size of the subsets.
We will show that while one case leads to relatively positive results, the other
remains NP-hard even under very restricted circumstances.

3.1 Parameterization by m

If we set m as the parameter, it is a trivial observation that an XP algorithm
exists for computing Max-Rep. The algorithm simply runs through all n

m choices
of selecting representatives for each of the m subsets in A and B, and then for
each choice counts the number of covered edges.

Corollary 3.1. There exists an algorithm computing Max-Rep in time ( n
m )2m·n2.

For Min-Rep, an XP algorithm exists as well, however the situation is slightly
more complicated. Since it is now admissible to select several representatives for
each subset, the previous approach will not work directly. On the other hand,
there may be at most n2

m2 edges between any two chosen subsets Ai, Bj and we
know that for each adjacent pair of sets it is sufficient to have a single edge cover
the superedge between them. So, it is possible to run through all n2

m2 choices of
edges between any pair of subsets (with m2 pairs in total) and select A′, B′ as
those vertices which are incident to the chosen edges. In this way, we obtain the
optimal choices of A′, B′ for each pre-selected edge set, and all that remains is
to compute the cardinality of A′ ∪B′.
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Corollary 3.2. There exists an algorithm computing Min-Rep in time
O(( n2

m2 )m2 · n).

In light of the negative approximability results on these problems, any new exact
algorithms may actually be considered good news. Still, the running time of XP
algorithms typically grows very quickly with the parameter and so in practical
applications it is usually only possible to use them for very low values of the
parameter. So, could these parameterized problems be solved in FPT time?
Unfortunately, the answer is no – we prove that they are W [1]-hard, which means
that they do not admit FPT algorithms unless the exponential time hypothesis
fails.

Theorem 3.3. Max-Rep is W [1]-hard when parameterized by m.

Proof. We prove the theorem by reduction from the well-known W [1]-hard
independent set problem [8]. Given is a graph G = (V, E) and a parameter d,
and the question is whether there exists an independent set of size d in G. We
construct our Max-Rep instance as follows:

For all 1 ≤ i ≤ m = 3d, |Ai| = |Bi| = |V | and there exists a bijection jA
i

between each Ai and V and jB
i between each Bi and V (so that in each set there

is a vertex corresponding to any vertex in G). Then for all 1 ≤ g, h ≤ d we add
edges between each a ∈ Ag and b ∈ Bh iff (jA

g (a), jB
h (b)) /∈ E(G). At this point,

notice that if we could somehow ensure that:

1. Max-Rep choses vertices in Ai and Bi which correspond to the same vertices
in G, and

2. No two sets Az �= Ax have selected the same vertex in G,

an optimal solution of Max-Rep with d2 edges would represent an independent
set in G, while the non-existence of one would on the other hand indicate that
no independent set of size d exists in G.

We will use Aq, Bq with d + 1 ≤ q ≤ 2d to fulfill point 1. For each Ai, Bi,
1 ≤ i ≤ d, and for each a ∈ Ai, b ∈ Bi s.t. jA

i (a) = jB
i (b), we create edges (a, b′),

(b, a′), (a′, b′), where a′ ∈ Ai+d, b′ ∈ Bi+d and jA
i+d(a

′) = jB
i+d(b

′) = jB
i (b).

Informally, we have created “links” between a and b in Ai, Bi corresponding to
the same vertex. These links may increase the optimal solution of Max-Rep by
3d, but only if for each i we choose vertices in Ai, Bi which correspond to the
same vertex in G.

Next, we will use Ap, Bp with 2d + 1 ≤ q ≤ 3d to fulfill point 2, i.e. to ensure
that no vertex of G is selected multiple times in Ai (or Bi), 1 ≤ i ≤ d. For every
a ∈ Ai we create an edge between a and b′′ ∈ Bi+2d which corresponds to the
same vertex in G. Then, for each b′′ ∈ Bi+2d we add edges to all elements of
Aj , 1 ≤ j �= i ≤ d such that they correspond to a different vertex of G than b′′.
For a′′ ∈ Ai we then do the same as for b′′ ∈ Bi, by symmetry. In total, this
may increase the optimal solution of Max-Rep by 2d2, but only if each vertex in
G appears at most once in A′ and at most once in B′.

To summarize: in our instance of Max-Rep, an optimal solution of value
3d2 + 3d exists iff there exist two k-selections of vertices in G (a) which are
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identical, (b) where no vertex occurs more than once in each selection, and (c)
which are pairwise independent; however this is actually only a complicated way
of saying that G contains an independent set of cardinality k.

Theorem 3.4. Min-Rep is W [1]-hard when parameterized by m.

Proof. The proof utilizes the same reduction as in Theorem 3.3. The number
of superedges in H in the reduction is 3d2 + 3d:

1. The number of superedges between A1 . . . Ad and B1 . . . Bd is d2.
2. The number of superedges between A1 . . . Ad and B2d+1 . . . B3d and between

A2d+1 . . . A3d and B1 . . . Bd is 2 · d2.
3. Each of {(Ai, B(d+i)), (B(d+i), A(d+i)), (A(d+i), Bi)} constitutes 3 new su-

peredges in H.
4. No other superedges are present in H.

Since we already know that the bound of 3d2 + 3d superedges is attainable by
selecting 6d vertices iff I is independent, this concludes our proof.
Before we move forward to parameterization by k, it is an interesting question
to ask whether these results could be improved by adding an additional graph-
structural parameter constraint to the input graphs for Max-Rep and Min-Rep.
Indeed, in both cases the result turns out to be positive.

Theorem 3.5. There exists an algorithm computing Max-Rep in FPT time
parameterized by the tree-width of the input graph and m.

Proof. It suffices to show that the problem may be captured by a so-called
LinEMSOL formula. It is a known result that on graphs of bounded tree-width
it is possible to compute LinEMSOL optimization problems in FPT time [1].
The formula for Max-Rep has the following form:

MaxE′ : ∃A′, B′ : ∀1≤i,j≤mAi, Bj : |Ai ∩A′| = 1 ∧ |Bj ∩B′| = 1 ∧ (∀e ∈ E′ :
∃a′ ∈ A′, b′ ∈ B′ : inc(e, a′) ∧ inc(e, b′))

The formula finds two vertex sets A′ and B′ which fulfill the listed conditions
such that the number of edges in |E′| is maximized, and all edges in E′ need to
be incident to a vertex in A′ and B′.

Theorem 3.6. There exists an algorithm computing Min-Rep in FPT time
parameterized by the rank-width of the input graph and m.

Proof. The proof is similar to the one for Max-Rep. However, here it is pos-
sible to generalize the result from tree-width to the much less restrictive rank-
width parameter [16]. Rank-width, like tree-width, allows efficient solution of
LinEMSOL-expressible problems [10], however only with respect to the less
powerful MSO1 language which does not allow variables to represent edges or
edge sets. The formula for Min-Rep has the following form:

Min V ′ : ∀1≤i,j≤mAi, Bj : (∃ai ∈ Ai, bj ∈ Bj : edge(ai, bj)) =⇒ (∃a′
i ∈

Ai ∩ V ′, b′j ∈ Bj ∩ V ′ : edge(a′
i, b

′
j))



New Results on the Complexity of the Max- and Min-Rep Problems 243

3.2 Parameterization by k

Parameterization of Max-Rep and Min-Rep yielded, to a certain extent, at least
some positive results. The next natural step is to try a different approach –
instead of fixing the number of sets as the parameter, we parameterize their size
k. Both Max-Rep and Min-Rep become trivial for k = 1, so the first meaningful
value of k is 2.

Surprisingly, things get much worse now. The key result is that both Max-
Rep and Min-Rep remain NP-hard even for k = 2. For Max-Rep, the problem
remains hard even when restricted to forests with paths of length at most 2 and
degree at most 3. It is interesting that for this problem restricting the structure
of the graph helped significantly when parameterizing by m but does not help
even for very low values of k.

Theorem 3.7. Max-Rep is NP-hard to compute when k ≥ 2, even if G is a
forest with maximum path length 2 and maximum degree 3.

Proof. We prove hardness by reduction from the NP-hard E3OCC-MAX-2SAT
problem, which is even hard to approximate within some constant factor [4].
Given is a 2SAT instance where each variable occurs exactly three times, and
the goal is to evaluate the variables so that the number of satisfied clauses is
maximized.

The first part of our reduction gadget is simple – for each clause c we have
a set Bc = {c1, c2}. We may safely assume that each variable occurs twice
positively and once negatively or twice negatively and once positively. Now, say
we had some vertices of A represent literals and each was connected to the
clause it belonged to by a single edge so that each clause vertex had exactly
one neighbour. Then, if we could somehow ensure that Max-Rep would only
select positive or negative values for each variable, solving it would immediately
translate to an optimal solution solution for E3OCC-MAX-2SAT; indeed, each
edge in the optimal solution leads to a unique clause which is satisfied by the
valuation found by Max-Rep.

We will construct our gadget with this idea in mind. For each variable x
with two positive and one negative occurrences, we have Ax1 = {xt

1, x
f
1} and

Ax2 = {xt
2, x

∅
2}. xt

1, xf
1 and xt

2 will be adjacent to an arbitrary clause vertex of
the clause they occur in (where f represents false and t true), while keeping each
clause vertex of degree 1.

To make sure it is never optimal to choose xf
1 and xt

2 in the solution, we
add two special sets Bxp = {xtp, xfp} and Bxq = {xtq, xfq} and make xtp, xtq

adjacent to xt
1 and xfp, xfq adjacent to x∅

2 (see Figure 1 for an illustration).
Consider what would happen if A′ contained both xf

1 and xt
2. This choice of

A′ for Ax1 and Ax2 could at best induce two superedges in H – both adjacent to
clause vertices. On the other hand, for example a choice of xf

1 and x∅
2 certainly

induces three superedges in H thanks to xfp and xfq, and so an optimal solution
for Max-Rep will never contain an invalid choice of SAT variables.

For formal reasons, it is necessary to add some degree 0 vertices to make
sure |A| = |B|, however otherwise we are done. Given the optimal solution
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c1

c′1

xt
1

xt
2

x∅
2

xf
1

c2

c3

c′2

c′3

xtp

xtq

xfp

xfq

Fig. 1. An illustration of the Max-Rep reduction gadget for variable x

for such a Max-Rep instance, it suffices to subtract 2 · |var| (var being the
set of variables) and the result is the maximum number of obtainable edges
between clause vertices and variable vertices. Since each clause may only add a
single edge to the sum and any optimal choice of variable vertices translate to
proper valuations, this number exactly equals the maximum number of satisfiable
clauses in the E3OCC-MAX-2SAT instance.
At this moment the distinction between Max-Rep and Min-Rep becomes more
apparent. While the reduction in the previous section was applicable to both
Min-Rep and Max-Rep, here there is no simple way of translating the proof to
Min-Rep and a full separate proof is required.

Theorem 3.8. Min-Rep is NP-hard to compute even when k ≥ 2.

Proof. The proof is again based on a reduction from E3OCC-MAX-2SAT.
Notice that in any optimal solution to an E3OCC-MAX-2SAT instance each
variable appears in at most one unsatisfied clause (otherwise its value could be
switched to obtain a better solution). Thus, solving E3OCC-MAX-2SAT is actu-
ally equivalent to being allowed to select universal variables which will “cheat”
and fulfill every clause they appear in, with the goal of minimizing the number
of universal variables.

For the reduction itself, assume that the input is an E3OCC-MAX-2SAT
instance with n variables. A and B are completely symmetric in the reduction
gadget, so we will only explicitly describe A. For each literal z we create n sets
Ai

z = {zA,i
t , zA,i

f } ∈ A, 1 ≤ i ≤ n. Next, edges are added between all zA,i
t and

zB,j
t (true vertices) and between all zA,i

f and zB,j
f (false vertices), 1 ≤ i, j ≤ n.

Now for each variable x we create an additional control set Ax = {xA
t , xA

f }
with edges from xA

t to all the true vertices of x in B and from xA
f to all the

false vertices of x in B. An optimal Min-Rep solution at this moment would be
6n2 + 2n and is obtained by selecting either only true or only false vertices for
each variable (see Fig. 2 for an illustration).

Next, for each pair of literals which form a clause edges are added based on
their positive/negative signs in the clause so that the only non-adjacent vertices
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t

x1A,1
f

x1B,1
t

x1B,1
f
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x1A,2
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x1B,2
t

x1B,2
f

xA
t

xA
f

xB
t

xB
f

x2A

x3A

x2B

x3B

Fig. 2. Min-Rep reduction gadget for variable x, appearing as three literals x1, x2, x3

are those with opposite signs than in the clause (i.e. assignments which satisfy
the clause are adjacent). For instance, if x2 and ¬y3 form a clause then the
created edges are 1 ≤ i, j ≤ n : (x2A,i

t , y3B,j
f ), (x2A,i

f , y3B,j
f ), (x2A,i

t , y3B,j
t ) and

their symmeric copies.
If the input 2SAT instance is satisfiable, Min-Rep will still output 6n2 + 2n

since it is possible to select only true or false vertices for each variable and
still cover all superedges – those belonging to the variable gadgets are covered
simply by selecting all vertices as true or false, and those belonging to clauses
are covered since all clauses are satisfied. On the other hand, if the instance is
not satisfiable, then it is not possible to cover all the clause superedges in this
way and in some sets both vertices are selected. The goal is to show that the
minimum number of unsatisfied clauses (or, equivalently, universal variables) is
k−(6n2+2n)

2 where k is the optimal solution of Min-Rep.
First assume that the optimal solution only contains double selections of ver-

tices from control sets. It is easy to see that any symmetric double selection in
A and B then allows the variable to independently change the truth assignment
of one of its literals, and so the number of double selections (obtained by sub-
tracting the number of sets, 6n2 + 2n) is equal to twice the number of universal
variables.

On the other hand, assume that an optimal solution contains at least one
double selection of vertices from a non-control set, say some x3A,i

t and x3A,i
f . If

the control set of x is double-selected then it is possible to satisfy all superedges
adjacent to x3A,i without any additional double selections, contradicting the
optimality of our solution. Yet if the control set of x is not double-selected then
to satisfy all the superedges between x3 vertices and the control set it is necessary
for all x3 sets to have the corresponding truth assignment selected. But then the
double selection of x3A,i is either unnecessary or it satisfies some superedges
which – due to symmetry - also need to be satisfied for all the n− 1 other sets
of x3, which contradicts the optimality of our solution in comparison with a
solution which only double selects control sets.
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4 Conclusions

We have provided several new results on the parameterized complexity of the
theoretically important Max-Rep and Min-Rep problems. These problems are of
particular interest since they are often used in hardness proofs, and the provided
results may help future authors obtain stronger results when using reductions
to Max-Rep and Min-Rep.

Furthermore, our hardness proofs illustrate the importance of using the right
parameter in algorithms: while using m as the parameter leads to some positive
results (particularly if the graph has bounded tree-width), parameterizing by k
in fact does not help at all and it does not seem that this could be improved
by restricting the structure of the graph. Future research could be aimed at
determining the hardness of Min-Rep on graphs with structural restrictions.
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2 College of International Business ISM Slovakia in Prešov
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Abstract. We present an algorithm for asymptotically efficient sorting.
Our algorithm sorts the given array A by the use of n·lg n + O(n·lg lg n)
comparisons and O(n) element moves. Moreover, this algorithm works
in-place, using only a constant auxiliary workspace. This shrinks the gap
between the known information-theoretic lower bound and the existing
algorithms to O(n·lg lg n) comparisons, even if we require the algorithm
to use only a constant auxiliary memory and a linear number of moves.

Keywords: in-place algorithms, sorting, computational complexity.

1 Introduction

Sorting is one of the oldest and most fundamental problems in computer science.
The efficiency of a comparison-based sorting algorithm is given by two quanti-
ties: the number of pairwise element comparisons and the number of element
moves carried out in the worst case, both expressed as a function of n, which is
the number of elements to be sorted. It is well known that any comparison-based
sorting algorithm must perform at least lg n! ≈ n·lg n− 1, 443n comparisons to
sort an array consisting of n elements, see [4]. Moreover, we assume that the
algorithm works in-place, that is, only one extra storage location (in addition to
the input array) is available for storing elements aside. To store array indexes,
counters, etc., only O(1) integer storage locations, of O(lg n) bits each, are avail-
able. As was shown in [6], the lower bound for the number of moves performed
by any in-place sorting algorithm is �3/2·n�.

The first algorithm that asymptotically matches these lower bounds and re-
duces simultaneously, the number of comparisons, moves, and storage is [2],
which works in-place and uses 2n·lg n + o(n·lg n) comparisons and (13+ε)·n el-
ement moves, where ε > 0 denotes an arbitrarily small, but fixed, real constant.
However, the ultimate goal, stated in [5], is an in-place sorting algorithm that
performs n·lgn + O(n) comparisons and O(n) element moves.

In this paper we present a sorting algorithm that works in-place and comes
very close to this ultimate goal, with n·lg n+O(n·lg lg n) comparisons and (34+ε)·n
� Supported by VEGA, the Slovak Grant Agency, under contract 1/0035/09.

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 248–259, 2011.
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element moves, performed in the worst case. The structure is similar to [2] and,
moreover, we use [2] as a subroutine to sort segments of limited length.

The main difference between our algorithm and [2] is the introduction of
cache memory and the subsequent usage of pointer memory. The cache enables
us to save a significant number of comparisons, by reading the pointers not for
individual input elements, but for the groups of elements stored in cache blocks.
This allows to accomplish in-place sorting with a number of comparisons only
O(n ·lg lg n) above n ·lg n (the information-theoretic lower bound), keeping the
number of moves linear. This result is mainly of theoretical interest, showing that
the information-theoretic lower bound for comparisons cannot be asymptotically
raised even by adding such drastic restrictions as a constant auxiliary memory
together with linear number of moves.

2 Sorting with Additional Memory

First, let us concentrate on a simpler task. Assume that we are given a contiguous
block A consisting of m active elements, which are to be sorted. Assume also
that we are given an extra work space B called buffer memory of size at least
3m−1 and a pointer memory Π , capable of storing at least �4m/(lgm)2� bits.
To enable movement of elements, we have one empty location called a hole. An
assignment aj :=ai transports not only one element from the location i to j, but
also the hole from location j to i.

2.1 Structure of the Memory

The buffer memory forms a contiguous block B, containing at least 3m−1
buffer elements. All buffer elements are greater than or equal to a given buffer
separator b

�
, placed in an extra location. All active elements from A are strictly

smaller than b
�

and therefore, by using a single comparison, it is possible to
determine whether any given element is an active element or a buffer element.

The buffer memory B consists of three parts. At the left end of B, starting
with its leftmost element, is a high level frame memory consisting of blocks which
will be called frames. Right next to the last frame is a cache memory consisting
of cache blocks. Both, the frame and the cache memory, are of fixed length.
Finally at the right end of B is a segment memory, consisting of segments that
are dynamically allocated from the right end of B and growing to the left.

Cache memory is used as a temporary storage for active elements before
transportation to segment memory. All cache blocks are of fixed length c, where

c =
{

�lg m�
�lg m�+ 1 so that c is odd. (1)

The number of cache blocks c# corresponds to the number of frame elements
in R, which will be defined later. For the time being, let us just assume that
c# = R + 1 ≤ 4m/(lgm)3. The length of the cache memory is then

C = c# ·c = (R+1) · c ≤ (1 + o(1)) · 4m/(lgm)2. (2)
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Every cache block is associated with a particular frame element, except the
leftmost cache block, denoted by γ0, not associated with any frame element.
Thus, the starting position of the ith cache block, associated with the ith frame
element, is R + i · c + 1, where R is the total size of the frame memory.

At the beginning of computation, all cache blocks are free, containing buffer
elements only. However, during the computation, any cache block might contain
some active elements. The general structure of a cache block is t1 . . . thbh+1 . . . bc,
for some h∈ {0, . . . , c}, where t1 . . . th are some active elements and bh+1 . . . bc

are buffer elements. Neither t1 . . . th nor bh+1 . . . bc are sorted. In addition, the
algorithm does not keep any information about the boundary h separating active
and buffer elements, if the cache block is not being manipulated at the present
moment. Since all active elements are strictly smaller than b

�
and all buffer

elements are greater than or equal to b
�
, we can quickly determine the number

of active elements, by using a binary search with b
�

over the c locations of the
block, which costs only 1+�lg c� ≤ O(lg lg m) comparisons, by (1).

The blocks in the segment memory have a similar structure as the blocks
in the cache memory. All segments are of a fixed length s, defined as follows:

κ =
{

�(lg m)3�(
�(lg m)3�+ 1

) so that κ is odd, and

s = κ · c.
(3)

Since cache block size c is also an odd number, the size s of every segment
is an odd integer multiple of c. Therefore, each segment can be divided into
κ subsegments, where κ is odd, and the size of each subsegment is exactly c, the
size of a single cache block. The number of active segments is bounded by

s# = �2m/s� ≤ 2m/(lg m)4. (4)

The size of workspace reserved for the segment memory is therefore bounded by

S = s# ·s ≤ 2m . (5)

Here we assume that m is “sufficiently large,” such that s≤m, and hence s#≥2.
A “short” block A is sorted in a different way, by the use of a modified heapsort.

All segments are free at the beginning of computation, containing buffer ele-
ments only. The starting position of the last segment that has been allocated is
kept in a global index variable s̄. Initially, s̄ points to the right end of B, that is,
the initial number of allocated segments is zero. To allocate a new segment, the
procedure sets s̄ := s̄−s, and returns s̄ as the starting position of the new seg-
ment. Immediately after allocation, some �κ/2� subsegments containing active
elements only (smaller than b

�
) are transported to the first �κ/2� subsegments

of the new segment. The corresponding buffer elements are saved in the locations
released by the active elements. From this point forward, the segment becomes
active.

The structure of an active segment is t1 . . . thbh+1 . . . bs, where h is an integer
multiple of κ ranging between 0 and s. The first h elements t1 . . . th are active
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elements stored in the segment, while bh+1 . . . bs are some buffer elements. The
value of h is kept between �κ/2�·c and s−c, so that at least one half (roughly)
of elements in each active segment is active, and there is still a room for storing
one more subsegment. Active and buffer elements in the segment are not sorted.
Nevertheless, the boundary separating active and buffer elements can be easily
computed by a binary search with b

�
over the leftmost elements in the κ subseg-

ments, which costs 1+�lgκ� ≤ 3 · lg lg m+1 comparisons, by (3). Here we utilize
the fact that each subsegment is either full (consisting of active elements only),
or empty (containing only buffer elements), and that all nonempty subsegments
form a contiguous zone starting from the left.

The frame memory is placed at the left end of B and consists of r# frame
blocks of size r, where

r = 1 + �lg(2m/s)� ≤ 2+lg(2m/8) ≤ lg m− 1 ,

r# = 2r−1 = 2�lg(2m/s)� ≤ 2·2m/s ≤ 4m/(lg m)4,
(6)

using (1), (3) and m≥8. That is, the total length of frame memory is

R = r# ·r ≤ 4m/(lg m)3 − 1 . (7)

Using (2), (5), (7) and m≥ 8, we get that the total space requirements for the
cache, segment and frame memories does not exceed the size of the buffer B,
since C+S+R ≤ 4m/(lg m)2 + 2m + 4m/(lg m)3 ≤ 3m−1. A frame block can
be either free, containing buffer elements only, or active, containing some active
elements followed by some buffer elements. Initially, all frame blocks are free.
During the computation, active frame blocks are concentrated in a contiguous
left part of the frame, followed by some free frame blocks. However, there are
some important differences from the cache and segment memory structure:

First, let us denote the elements in the frame memory by x1, . . . , xR.
Second, the active elements, forming a left part of a frame block, are in sorted

order. So are the active frame blocks, forming a left part of the frame memory.
More precisely, let a1, . . . , af denote the sequence of all active elements stored
in the frame memory, obtained by reading active elements from left to right,
ignoring buffer elements. Then a1, . . . , af is a sorted sequence of elements. Con-
sequently, a subsequence of these, stored in the first (leftmost) positions of active
frame blocks, denoted here by ai1 , ai2 , . . . , aig , must also be sorted. Here f de-
notes the total number of active elements in the frame, while g the number of
active frame blocks, at the given moment. Similarly, aij aij+1aij+2 . . . aij+1−1,
the sequence of active elements stored in the jth frame block, is also sorted.

Third, the number of active elements in an active frame block can range
between 1 and r−1. That is, we keep room for potential storing of one more
active element in each active frame block. The only restriction follows from the
fact that there are no free blocks in between some active blocks.

Relationship between the frame, cache and segments: For every element
x� in the frame (no matter whether active or not) there is one cache block
associated with it. Moreover, with each active frame element ak we associate
one segment σk. Thus, if we skip cache blocks associated with buffer elements
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in the frame, we get a sequence γ0, γ1, . . . , γf corresponding to active frame ele-
ments a1, . . . , af . Besides active cache blocks we also have a sequence of allocated
segments σ0, σ1, . . . , σf . Both, the cache block γk and the segment σk, for any
k ∈ {1, . . . , f}, contain some active elements satisfying ak≤a≤ak+1, taken from
the array A and stored in the structure so far. The active elements satisfying
af ≤ a are stored in γf or in σf , similarly, those satisfying a≤ a1 are stored in
γ0 or σ0. Note that no frame element is associated with the cache block γ0 and
the segment σ0. Chronologically, γ0 is the first cache block, and σ0 is the first
active segment that has been allocated. If f = 0, i.e., no active elements have
been stored in the frame yet, all active elements are transported from A to γ0
and, later if necessary, from γ0 to σ0.

Recall that we also maintain the invariant that the total number of active ele-
ments in each active cache/segment pair is at least �s/2�. More precisely, either
the number of active subsegments (all full) is at least �κ/2�, or the number of
such subsegments is �κ/2�, but the associated cache block contains at least �c/2�
active elements. Thus, if the frame contains f active elements at the given mo-
ment, namely, a1, . . . , af , for some f ≥ 1, the total number of active elements,
stored both in the frame and in the cache/segment pairs γ0/σ0, γ1/σ1, . . . , γf/σf

is at least f +(f +1)·�s/2�. However, the total number of all active elements is
exactly equal to m, which gives m ≥ (f +1) · s/2, and hence also f +1 ≤ 2m/s.
But f+1, the number of active segments, is an integer number, which gives that
f +1 ≤ �2m/s�. Therefore, using (4) and (6),

f +1 ≤ �2m/s� = s# , f ≤ 2m/s ≤ 2�lg(2m/s)� = r# . (8)

As a consequence, we get that f +1, the number of active segments, does not
exceed s#, the capacity of the segment memory. Second, f , the number of ac-
tive elements in the frame, will never exceed r#, the total number of blocks in
the frame, and hence there is enough room to store all active frame elements,
even if each active frame block contained only a single element of the sequence
a1, . . . , af . Recall that each cache block is associated with one element in the
frame, and hence the requirement for cache memory is also sufficient.

Structure of the pointer memory: The relative order of active frame ele-
ments in the sequence a1, . . . , af and the corresponding order of active cache
blocks does not reflect the chronological order, in which the segments σ0 and
σ1, . . . , σf are allocated. Therefore, with each element position in the frame, we
associate a pointer to the starting position of the corresponding segment. More
precisely, if the frame is viewed as a single contiguous zone of elements x1 . . . xR,
then the corresponding zone of pointers is π1 . . . πR. If, for some �, the element x�

is a buffer element, then π� = 0, which represents a NIL pointer. Conversely, if
x� is an active element, then the value of π� represents the starting position of
the segment associated with x�. (The pointer π0 to the segment σ0, having no
“parent” in the frame, is stored separately, in a global index variable).

Since there are at most s# segments, all of equal length, a pointer to a segment
can be represented by an integer value ranging between 0 and s# = �2m/s� ≤
m/2, by (4). Thus, a single pointer can be represented by a block of p bits, where
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p = 1 + �lg s#� ≤ lg m . (9)

The number of pointers is equal to R, the size of the frame. Therefore, p# =R .
Thus, the pointer memory Π can be viewed as a contiguous array consisting of
p# bit blocks, of p bits each, and hence, by (7), its total length is at most

P = p# ·p = R·p ≤ �4m/(lgm)2� , (10)

using also the fact that P must be an integer number.
Since an in-place algorithm can store only a limited amount of information

in index variables, the pointer memory Π is actually simulated by two separate
contiguous blocks ΠL and ΠR, each containing at least �4m/(lg m)2� elements.
Initially, ΠL and ΠR are sorted, and the largest (rightmost) element in ΠL is
strictly smaller than the smallest (leftmost) element in ΠR. This allows us to
encode the value of the jth bit, for any j ranging between 1 and �4m/(lgm)2�,
by swapping the jth element of ΠL with the jth element of ΠR. Testing the value
of the jth bit is equivalent to comparing the relative order of the corresponding
elements in ΠL and ΠR, which costs only a single comparison. Setting a single
bit value requires a single comparison and, optionally, 3 element moves.

2.2 Inserting Elements in the Structure

In the first phase, we take all m active elements and insert them into the structure
described above. Throughout the process the structure is kept “balanced” and
we also save all buffer elements from B in the locations released by inserted
active elements. In the second phase, the active elements are collected back to A
in sorted order. The goal of the first phase is to transport every active element
from A to one of the segments σ0, σ1, . . . , σf in buffer memory B. For each active
element a, we perform the following steps.

First, we find the “proper” block in the frame, which means finding the index j
satisfying aij <a≤aij+1 . This is done by a binary search with the given element a
over ai2 , . . . , aig , that is, over the leftmost locations in the active frame blocks.
Note that the element ai1 is excluded from the range of the binary search. If
a≤ai2 , the binary search will return j =1, i.e., the first frame block. Similarly,
for aig <a, the binary search returns j=g, i.e., the last frame block. If g<2, we
can go directly to the first (and only) active frame block, that is, j :=1.

Second, by the use of a binary search with the given element a over the
r locations in the jth active frame block, we find the “proper” active frame
element for the element a, i.e., the index k satisfying ak <a≤ ak+1. Note that,
since aij < a ≤ aij+1 , the elements ak and ak+1 are between aij and aij+1 in
the sequence a1, . . . , af of all frame elements, not excluding the possibility that
aij =ak, and/or ak+1 =aij+1 . Recall that the jth active frame block begins with
the active elements aij aij+1aij+2 . . . aij+1−1, followed by some buffer elements,
so that the length of the block is equal to r. These buffer elements are not
sorted, however, they are all greater than or equal to b

�
. On the other hand,

the element a, being active, is strictly smaller than b
�
. This allows us to use
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the binary search with the given element a in the standard way, which returns
the index k satisfying ak < a≤ ak+1. For aij+1−1 < a, the binary search returns
correctly k= ij+1−1. If j=1, that is, we are in the first frame block, the binary
search may end up with k=0, indicating that a≤a1 =ai1 .

Third, after finding the frame element ak we compute the starting position
of the cache block γk associated with ak. This value is obtained simply by com-
puting R + k·c + 1, which takes constant time, with no comparisons or moves.

Fourth, by the use of a binary search with the buffer separator b
�
over the

c elements in the current cache block, find the boundary h dividing the cache
block into two parts, namely, t1 . . . th, the active elements stored in the block,
and bh+1 . . . bc, some buffer elements, filling up the room.

Fifth, we save the buffer element bh+1 aside, to the current location of the
hole, and store the given element a in the cache block. If h+1<c, then we can
repeat the process and insert the next active element from A into the structure.
Otherwise, if h+1 = c, then the current cache block γk has become full and
cannot absorb any more elements. In this case we empty γk by transporting its
content into the segment σk associated with the same element ak in the frame.

The above process is repeated until all m active elements have been inserted in
the structure. At this moment, the cache memory contains at most (f+1) · (c−1)
active elements, since there are f active elements in the frame, hence, f+1 active
cache blocks, each containing at most c−1 active elements. The inserting phase
is finalized by emptying the entire cache memory. All active elements residing in
cache blocks are moved to the corresponding segments. This is done simply by
scanning through all the cache blocks γ0, γ1, . . . , γR. For each cache block γk, we
determine whether it is active by comparing its leftmost element with b

�
. If γk

is active, we empty the entire block γk, even if it contains some buffer elements.
Let us now determine the standard cost of inserting a single element. The

binary search looking for a proper frame block inspects a range of g−1 < r#
elements, and hence it performs at most 1+�lg r#� ≤ lg m comparisons, by (6).
The second binary search, looking for a proper active element within the given
frame block, inspects a range of r elements, performing at most 1+ �lg r� ≤
O(lg lg m) comparisons, by (6). Computing the starting position of the associated
cache block takes constant time and the subsequent binary search with b

�
over

c locations of this block uses at most 1+�lg c� ≤ O(lg lg m) comparisons, by (1).
Finally, saving one buffer element and transporting the element a to the current
cache block uses 2 element moves. Since the total of m elements is inserted in
this way, the number of comparisons is bounded by m·lg m+O(m·lg lg m) and the
number of moves by 2m, not counting the costs for emptying active cache blocks.
It can be shown that, in the course of the entire computation, m + O(m·lg lg m)
comparisons and 2m element moves are sufficient for emptying cache blocks.

In addition, the final dumping of the entire cache memory consists of scanning
through the leftmost positions of all cache blocks (comparing them with b

�
),

which requires R+1 ≤ 4m/(lg m)3 comparisons, by (7), and dumping of f+1 ≤
2m/s active cache blocks, by (8). It is easy to show that emptying a single cache
block consumes lg m+O(lg lg m) comparisons and 2c element moves. Thus the
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number of comparisons is at most 2m/(lg m)3 +O(m·lg lg m) and the number of
moves 4m/(lg m)3. Summing up, the final dumping of cache memory consumes
at most 6m/(lg m)3 + O(m·lg lg m) comparisons and 4m/(lgm)3 moves.

Lemma 1. Inserting m elements in the structure requires m·lg m+O(m·lg lg m)
comparisons and (4+o(1))·m element moves.

2.3 Extracting in Sorted Order

In the second phase, we transport all active elements back to A in sorted order.
Let fm denote the maximal value of f , corresponding to the number of active
elements in the frame at the moment when the last active element has been
inserted. Thus, the frame memory contains the sorted sequence of active elements
a1, . . . , afm , intertwined with some buffer elements, so the total size of the frame
is R, consisting of elements x1, . . . , xR. The rest of the active elements is in
segments σ0, σ1, . . . , σfm , with σk containing active elements that satisfy ak ≤
a≤ak+1. Thus, to produce the sorted order of all active elements, it is sufficient
to move, back to A, the sequence σ′

0, a1, σ
′
1, a2, σ

′
2, . . . , afm , σ′

fm
, where σ′

k denotes
the block of sorted active elements contained in σk.

The procedure begins with moving the block σ′
0 to A. (The problem of sorting

a given segment σk is described later.)
Then, in a loop iterated for � = 1, . . . , R, check whether x� is an active element.

This requires only a single comparison, comparing x� with b
�
. If x� is a buffer

element, it is skipped, and we can go to the next element in the frame.
If x� is an active element, i.e., x� = ak, for some k, the procedure saves the

leftmost buffer element, not moved yet from the output block A, in the current
location of the hole and, after that, moves x� =ak to A. (The first free position
in A, i.e., the position of the leftmost buffer element, is kept in a separate global
index variable, and incremented each time a new active element is transported
back to A). Then we read the value encoded in the pointer π� and compute
the starting position of the segment σk. We sort σk by the procedure described
bellow, creating σ′

k. During this process we obtain the value hk, which is the
number of active elements in the given segment. After that, we move the hk

active elements from σ′
k back to A in the same fashion as described above, i.e.,

we save the leftmost buffer element in A to the current location of the hole,
transport the leftmost active element from σ′

k to A and increment the indices.
Again, only two moves per element are sufficient.

Let us derive computational costs of the above procedure, not including the
cost of sorting σk. Testing whether x� is an active element, for � = 1, . . . , R,
requires R≤O(m/(lg m)3) comparisons, by (7). Transporting m elements back
to A requires only 2m moves in total, since only active elements are moved.
Reading the values of fm pointers, of length p bits each, can be done with fm·p ≤
r# ·p ≤ O(m/(lg m)3) comparisons, using (6), (8), and (9). By summing up we
see that, if we exclude the costs of sorting the segments, extracting the elements
back to A in sorted order uses O(m/(lg m)3) comparisons and 2m moves.
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Let us now return to the problem of sorting a single segment σk. The number
of active elements in this segment is hk, and clearly hk ≤ s ≤ (1+o(1))·(lg m)4,
using (1) and (3). Initially, we determine the value of hk by the use of a bi-
nary search with b

�
over the s locations of the segment. This costs 1+�lg s� ≤

O(lg lg m) comparisons. Then we sort the hk active elements by an in-place sort-
ing algorithm [2], using (2+o(1))·hk · lg hk comparisons and (13+ε)·hk moves.
A total of fm+1 segments is sorted this way, while extracting all m active ele-
ments. Therefore the total number of comparisons performed by [2] is bounded
by (fm+1)·(2+o(1))·hk ·lg hk ≤ O(m · lg lg m), using (3) and (8). The number
of moves is bounded by (fm+1)·(13+ε)·hk ≤ (26+ε)·m. This gives:

Lemma 2. Transporting m active elements from the structure back to A in
sorted order requires O(m ·lg lg m) comparisons and (28+ε)·m element moves,
where ε>0 is an arbitrarily small, but fixed, real constant.

At this moment we are not yet able to determine the cost for the entire algorithm
by simply adding the costs in Lems. 1 and 2. This is due to the fact that, while
inserting elements in the structure some segments might become full, and need
to be rebalanced. Furthermore, after each segment rebalancing some frame block
might also become full and trigger rebalancing at the frame level, which is yet
another special situation. The costs associated with these rebalancing operations
must also be taken into account. It can be shown that, in the course of the entire
computation, O(m·lg lg m) comparisons and (4/(lg m)3+ε)·m moves are sufficient
to keep the segment memory balanced. The cost of keeping the frame memory
balanced is O(m/ lg m) comparisons and moves. (For details, see [2,8].)

2.4 Summary

Theorem 3. The cost of sorting the given block A of size m is m·lgm + O(m·
lg lg m) comparisons and (32+ε)·m moves, where ε>0 is an arbitrarily small, but
fixed, real constant, provided we can use additional buffer and pointer memories,
of respective sizes 3m−1 and �4m/(lgm)2�.

The algorithm assumes that m is “sufficiently large”, so that the following condi-
tions hold true. First, the segment size s, defined by (3), satisfies s≤m. Second,
the space requirement for cache, segment and frame memories, stated in Sect. 2.1,
satisfies C +S+R ≤ 3m−1. And finally, the number of active elements in the
frame f , defined by (8), satisfies f ≥ 1. All of these assumptions hold for each
m>217 =131 072. Shorter blocks are handled in a different way, by the use of a
modified heapsort, keeping the bounds presented in Thm. 3.

3 In-Place Sorting

Now we can present an in-place algorithm sorting the given array A consisting
of n elements. If n≤217, the array is sorted directly by a modified heapsort. For
n>217, the task of the main program is to provide sufficiently large pointer and
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buffer memories for the procedure presented in Sect. 2. The size of the largest
block ever sorted by the procedure of Sect. 2 will not exceed m=n/4. Using (10)
and the fact that the function 4x/(lg x)2 is monotone increasing for x≥ 8, we
get the size of the pointer memory bounded by P = �n/(lg(n/4))2�.

The pointer memory is built by collecting two contiguous blocks ΠL and ΠR.
The block ΠL, placed at the left end of A, will contain the smallest P elements
of the array A, while ΠR, placed at the right end, the largest P elements. To
create the blocks ΠL and ΠR, we can use a generalized version of heapsort,
which employs a modified heap-like structure. Building the pointer memory then
requires O(n) comparisons and O(n/ lg n) moves.

Now the configuration of the array A has changed to ΠLA′ΠR, where A′

denotes the elements to be sorted. Before proceeding further, the algorithm
verifies, with a single comparison, whether the rightmost element in ΠL is strictly
smaller than the leftmost element in ΠR. If this is not the case, all elements in A′

must be equal to these two elements. Therefore, the algorithm terminates, the
entire array A has already been sorted. Conversely, if ΠL and ΠR pass the test
above, they can be used to imitate a pointer memory consisting of P bits.

Once the blocks ΠL and ΠR have been created, the zone A′ is kept in the
form ASAU, where AS and AU represent the sorted and unsorted parts of A′,
respectively. Each element in AS is strictly smaller than the smallest element
of AU. The routine described here is a partition-based loop. In the course of the
ith iteration, the length of AU is ni, with ni < ni−1. Initially, for i = 0, AS is
empty, AU =A′, and n0 = n−2P < n. The loop proceeds as follows:

First, find b
�
, an element of rank �ni/4� in AU. The selection procedure places

this element at the right end ofAU, so the configuration ofA′ changes toASA′
Ub

�
.

Here A′
U denotes a mix of elements in AU, of length ni−1.

Second, A′
U is partitioned into A< and B≥ consisting, respectively, of elements

strictly smaller than b
�

and of those greater than or equal to b
�
. The configura-

tion of the array thus changes to ASA<B≥b
�
. The lengths of A< and B≥ will be

denoted by ni,< and ni,≥. Note that, even for a large block AU, we may obtain
a very short (or empty) block A<, since many elements may be equal to b

�
.

Third, sort the block A< by the procedure described in Sect. 2, using some
initial segments of ΠL and ΠR as a pointer memory and of B≥ as a buffer
memory, with b

�
as a buffer separator. This is possible, since b

�
has been selected

as an element of rank �ni/4�, and hence ni,< ≤ �ni/4�−1 ≤ ni/4, with ni,< +
ni,≥+1 = ni. But the required size of buffer is only 3ni,<−1 ≤ 3/4·ni−1 = ni−1−
ni/4 ≤ ni−1−ni,< = ni,≥. Therefore, the block B≥ of length ni,≥ is sufficiently
long. Similarly, the required number of bits for pointers is �4ni,</(lg ni,<)2� ≤
�4(n/4)/(lg(n/4))2� = P , and hence the pointer memory is also sufficiently large.
(If ni,<≤217, A< is sorted as a short block).

Fourth, restore the sorted order in ΠL and ΠR, by clearing all bits to zero.
Fifth, after sorting A<, the configuration of A′ is ASA<,SB

′
≥b

�
, where A<,S

denotes the sorted version of the block A< and B′
≥ a mixed up version of B≥. Now

put the first element in B′
≥ aside and move b

�
to the first position after A<,S.
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After that, collect all elements smaller than or equal to b
�

to the left part of B′
≥,

processing also the element put aside. This actually partitions B′
≥ into two blocks

A= and B> consisting, respectively, of elements equal to b
�

and of those strictly
greater than b

�
, of respective lengths ni,= and ni,>. Clearly, ni,= +ni,> = ni,≥.

The configuration has changed to ASA<,Sb
�
A=B>.

Sixth, observe that ASA<,Sb
�
A= and B> can be viewed as “new” variants

of blocks AS and AU. Thus, we can start a new iteration, with B> as a new
block AU, of length ni+1 = ni,>. The above process is iterated until the length
of unsorted part drops to 217, or below. This residue is then sorted as a short
block, without using a buffer or pointers.

Now we can derive computational costs. First, recall that b
�

has been selected
as an element of rank �ni/4�, and hence ni+1 = ni,> ≤ ni−�ni/4� ≤ 3/4 ·ni.
Taking into account that n0 ≤ n, we get ni ≤ (3/4)i ·n, for each i≥ 0. Second,
observe that in different iterations, the final locations occupied by A<,S, b

�
,

and A=, do not overlap. This gives: ∑I−1
i=0 ni ≤ 4n ,

I ≤ O(lg n) ,∑I−1
i=0 (ni,<+1+ni,=) + nI ≤ n ,

(11)

where I denotes the number of iterations and nI the length of the residual block.
Let us now present the costs for the ith iteration. Selection of b

�
in a block

of length ni, costs O(ni) comparisons and ε ·ni moves, by [3]. Partitioning of
A′

U into blocks A< and B≥ can be done with ni comparisons and 2ni,< + 1
moves, since the length of A′

U is ni−1, and the number of collected elements,
strictly smaller than b

�
, is ni,<. The cost of sorting the block A< is bounded

by ni,< ·lg ni,< + O(ni,< ·lg lg ni,<) ≤ ni,< ·lg n + O(ni,< ·lg lg n) comparisons and
(32+ ε) ·ni,< moves, by Thm. 3. Restoring the sorted order in ΠL and ΠR,
by clearing all bits, costs O(P ) ≤ O(n/(lg n)2) comparisons and moves. Po-
sitioning b

�
to the right of A<,S requires only 2 element moves. Finally, the

ith iteration is concluded by partitioning B′
≥ into blocks A= and B>, with at

most ni,≥≤ni comparisons and 2ni,=+1 moves, since the length of B′
≥ is ni,≥,

and the number of collected elements, equal to b
�
, is ni,=. The cost of sort-

ing the residual short block does not exceed the bounds for the standard case;
nI·lg nI +lg lg nI +3 ≤ nI·lg n+O(nI·lg lg n) comparisons and 20nI ≤ (32+ε)·nI
moves. Now we can sum the above costs over all iterations, using (11):

C(n) ≤
∑I−1

i=0 ni ·O(1) +
∑I−1

i=0 ni,< ·(lg n+O(lg lg n)) +
∑I−1

i=0 O(n/(lg n)2)
+ nI ·(lg n+O(lg lg n))

≤ O(n) + n·(lg n+O(lg lg n)) + O(n/ lg n) ≤ n·lg n + O(n·lg lg n) ,

M(n) ≤
∑I−1

i=0 ε·ni +
∑I−1

i=0 (34+ε)·ni,< +
∑I−1

i=0 2ni,= +
∑I−1

i=0 O(n/(lg n)2)
+ (32+ε)·nI

≤ ε·n + n·(34+ε) + O(n/ lg n) ≤ (34+ε)·n ,
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where ε>0 is an arbitrarily small, but fixed, real constant. The above analysis
did not include the costs of the initial building of pointer memory. However, this
can be done with only O(n) comparisons and O(n/ lg n) moves, and hence the
bounds displayed above represent the total computational costs of the algorithm.

Theorem 4. The given array, consisting of n elements, can be sorted in-place
by performing at most n·lg n + O(n·lg lg n) comparisons and (34+ε)·n element
moves, where ε > 0 denotes an arbitrarily small, but fixed, real constant. The
number of auxiliary arithmetic operations with indices is bounded by O(n·lg n).

4 Concluding Remarks

We have shown that sorting can be accomplished with almost optimal number
of comparisons, i.e., n·lg n + O(n·lg lg n), even if we keep the number of moves
bounded by O(n) and sorting in-place. Our algorithm is mainly of theoretical
interest, because of its complexity. A captivating problem would be to devise a
practical in-place sorting algorithm that matches the upper bounds of Thm. 4.
However, an algorithm with ε·n logn moves is relatively easy to implement [7].

Note that our algorithm does not sort stably, since the buffer elements can
be mixed up quite arbitrarily and the original order of equal buffer elements
cannot be recovered. Whether there exists a stable in-place sorting algorithm
performing, in the worst case, n·lg n + o(n·lg n) comparisons and O(n) element
moves is left as an open problem. So far, for stable in-place sorting, the best
known upper bounds are O(n·lg n) comparisons and O(n) moves [1].

The upper bounds of Thm. 4 are not optimal and can be improved, which is
left as another open problem.
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Abstract. In the d-regular path schematization problem we are given an embed-
ded path P (e.g., a route in a road network) and an integer d. The goal is to find
a d-schematized embedding of P in which the orthogonal order of all vertices
in the input is preserved and in which every edge has a slope that is an integer
multiple of 90◦/d. We show that deciding whether a path can be d-schematized
is NP-hard for any integer d. We further model the problem as a mixed-integer
linear program. An experimental evaluation indicates that this approach generates
reasonable route sketches for real-world data.

1 Introduction

Angular or C -oriented schematizations of graphs refer to a class of graph drawings, in
which the admissible edge directions are limited to a given set C of (usually evenly
spaced) slopes. This includes the well-known class of orthogonal drawings and ex-
tends more generally to k-linear drawings, e.g., octilinear metro maps. Applications of
schematic drawings can be found in various domains such as cartography, VLSI layout,
and information visualization.

In many schematization scenarios the input is not just a graph but a graph with an ini-
tial drawing that has to be schematized according to the given set of slopes. This is the
case, e.g., in cartography, where the geographic positions of network vertices and edges
are given [6], in sketch-based graph drawing, where a sketch of a drawing is given and
the task is to improve or schematize that sketch [3], or in dynamic graph drawing, where
each drawing in a sequence of drawings must be similar to its predecessor [5]. For such
a redrawing task it is crucial that the mental map [13] of the user is preserved, i.e., the
output drawing must be as similar as possible to the input. Misue et al. [13] suggested
preserving the orthogonal order of the input drawing as a simple criterion for main-
taining a set of basic spatial properties of the input, namely the relative above/below
and left/right positions of all pairs of input nodes. The orthogonal order has been used
successfully as a means for maintaining the mental map [4,7,9,11].

The motivation behind the work presented here is the visualization of routes in road
networks as sketches for driving directions. An important property of a route sketch is
that it focuses on road changes and important landmarks rather than exact geography
and distances. Typically the start and destination lie in populated areas that are locally
reached via a sequence of relatively short road segments. On the other hand, the majority
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I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 260–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



On d-Regular Schematization of Embedded Paths 261

of the route typically consists of long highway segments with no or only few road
changes. This property makes it difficult to display driving directions for the whole
route in a single traditional map since some areas require much smaller scales than
others. The strength of route sketches for this purpose is that they are not drawn to scale
but rather use space proportionally to the route complexity.

Related Work. Geometrically, we can consider a route to be an embedded path in the
plane. The simplification of paths (or polylines) in cartography is well studied and the
classic line simplification algorithm by Douglas and Peucker [8] is one of the most
popular methods. Two more recent algorithms were proposed for C -oriented line sim-
plification [12,14]. These line simplification algorithms, however, are not well suited
for drawing route sketches since they keep the positions of the input points fixed or
within small local regions around the input points and thus edge lengths are more or less
fixed. On the other hand, Agrawala and Stolte [1] presented a system called LineDrive
that uses heuristic methods based on simulated annealing to draw route sketches. Their
method allows distortion of edge lengths and angles. It does not, however, restrict the
set of edge directions and does not give hard quality guarantees for the mental map such
as the preservation of the orthogonal order.

A graph drawing problem that has similar constraints as drawing route sketches is
the metro-map layout problem, in which an embedded graph is to be redrawn octilin-
early. The problem is known to be NP-hard [15] but it can be solved successfully in
practice by mixed-integer linear programming [16]. The existing methods covered in a
survey by Wolff [17] do aim to keep the mental map of the input but no strict criterion
like the orthogonal order is applied. Brandes and Pampel [4] studied the path schema-
tization problem in the presence of orthogonal order constraints in order to preserve
the mental map. They showed that deciding whether a rectilinear schematization exists
that preserves the orthogonal order of the input path is NP-hard. They also showed that
schematizing a path using arbitrarily oriented unit-length edges is NP-hard. Delling et
al. [7] gave an efficient algorithm to compute C -oriented drawings of monotone paths
that preserve the orthogonal order and have minimum schematization cost. The schema-
tization cost counts the number of edges that are not drawn with their closest C -oriented
direction. The authors also sketch a heuristic approach for schematizing non-monotone
paths.

Contributions. In this paper we close the complexity gap of the path schematization
problem that remained open between the hardness result of Brandes and Pampel [4]
for rectilinear paths and the efficient algorithm of Delling et al. [7] for monotone C -
oriented paths. We prove that deciding whether a C -oriented orthogonal-order preserv-
ing drawing of an embedded input path exists is NP-hard, even if the path is simple. This
is true for every d-regular set C of slopes that have angles that are integer multiples of
90◦/d for any integer d. The case d = 1 is covered by Brandes and Pampel [4] but their
proof relies on the absence of diagonal edges and hence does not extend to other values
of d. We show the hardness in the octilinear case d = 2 in Section 3 and subsequently,
in Section 4, how this result extends to the general d-regular case for d > 2. We finally
design and evaluate a mixed integer-linear program (MIP) for solving the d-regular
path schematization problem in Section 5. Our experimental results show that routes in
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practice usually consist of only a small number of relevant road segments and that our
MIP is indeed able to quickly generate reasonable sketches for those routes. Omitted
proofs and details about the MIP are found in the appendix.

2 Preliminaries

A plane embedding of a graph G = (V,E) is a mapping π : G → R2 that maps every
vertex v ∈ V to a distinct point π(v) = (xπ(v),yπ(v)) and every edge e = uv ∈ E to
the line segment π(e) = π(u)π(v) such that no two edges e1,e2 cross in π except at
common endpoints. For simplicity we also use the terms vertex and edge to refer to
their images under an embedding.

We measure the slope of an edge uv as the counterclockwise angle formed between
the horizontal line through π(u) and the line segment π(uv). For a set of angles C we
say that a drawing is C -oriented if the slope of every edge e ∈ E is contained in C . A
set of slopes C is called d-regular for an integer d if C = Cd = {i ·90◦/d | i ∈ Z}.

Let π and ρ be two embeddings of the same graph G. We say that ρ respects the
orthogonal order [4] of π if for any two vertices u and v∈V it holds that xρ(u)≤ xρ(v)
if xπ(u) ≤ xπ(v) and yρ(u) ≤ yρ(v) if yπ(u) ≤ yπ(v). In other words, the orthogonal
order defines the relative above-below and left-right positions of any two vertices.

Let (G,π) be a graph G with a plane input embedding π . A d-regular schematiza-
tion (or d-schematization) of (G,π) is a plane embedding ρ that is Cd-oriented, that
preserves the orthogonal order of π and where no two vertices are embedded at the
same coordinates. We also call ρ valid if it is a d-schematization of (G,π).

3 Hardness of 2-Regular Path Schematization

In this section we show that the problem of deciding whether there is a 2-schematization
for a given embedded graph (G,π) is NP-hard, even if G is a simple path. In the lat-
ter case we denote the problem as the (d-regular) PATH SCHEMATIZATION PROBLEM

(PSP). We fix d = 2. To prove that 2-regular PSP is NP-hard we first show hardness of
the closely related 2-regular UNION OF PATHS SCHEMATIZATION PROBLEM (UPSP),
where (G,π) is a set P of k embedded disjoint paths P = {P1, . . . ,Pk}.

We show that 2-regular UPSP is NP-hard by a reduction from MONOTONE PLANAR

3-SAT, which is known to be NP-hard [2]. MONOTONE PLANAR 3-SAT is a special
variant of PLANAR 3-SAT where each clause either contains exactly three positive lit-
erals or exactly three negative literals and additionally, the variable-clause graph admits
a planar drawing such that all variables are on the x-axis, the positive clauses are em-
bedded below the x-axis and the negative clauses above the x-axis. An example instance
of MONOTONE PLANAR 3-SAT is depicted in Fig. 1. In a second step, we show how to
augment the set of paths P to form a single simple path P that has the same properties
as P and thus proves that PSP is NP-hard.

In the following, we assume that ϕ is a given MONOTONE PLANAR 3-SAT instance
with variables X = {x1, . . . ,xn} and clauses C = {c1, . . . ,cm}.
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x1 x2 x3 x4

x1 ∨ x2 ∨ x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

C1

C2

C3

Fig. 1. A MONOTONE PLANAR 3-SAT instance with four variables and three clauses

3.1 Hardness of the UNION OF PATHS SCHEMATIZATION PROBLEM

In the following we first introduce the different types of required gadgets and then show
how to combine them in order to prove the hardness of UPSP.

Border Gadget. For all our gadgets we need to control the placement of vertices on
discrete positions. Thus our first gadget is a path whose embedding is unique up to
scaling and translation. This path will induce a grid on which we subsequently place
the remaining gadgets.

Let Δx(u,v) be the x-distance between the two vertices u and v. Likewise, let Δy(u,v)
be the y-distance between u and v. We call a simple path P with embedding π rigid if a
2-schematization of (P,π) is unique up to scaling and translations. Further, we call an
embedding π of P regular if there exists a length � > 0 such that for any two vertices u,v
of P it holds that Δx(u,v)= zx ·� and Δy(u,v)= zy ·� for some zx,zy ∈Z. Thus in a regular
embedding of P all vertices are embedded on a grid whose cells have side length �. For
our border gadget we construct a simple path B of appropriate length with embedding
π that is both rigid and regular. Hence, π is essentially the unique 2-schematization of
(B,π), and after rescaling we can assume that all points of B lie on an integer grid.
The border gadget consists of a horizontal component Bh and a vertical component Bv

which share a common starting vertex v1 = v′1, see Fig. 2. The component Bh alternates
between a 45◦ edge to the upper right and a vertical edge downwards. The vertices are
placed such that their y-coordinates alternate and hence all odd, respectively all even,
vertices have the same y-coordinate. The vertical component consists of a copy of the
horizontal component rotated by 90◦ in clockwise direction around v1. To form B, we
connect Bv and Bh by identifying their starting points v1 and v′1.

Lemma 1. The border gadget B with its given embedding π is rigid and regular.

In the following we define the length of a grid cell induced by B as 1 so that we obtain
an integer grid. We choose B long enough to guarantee that any vertex of our subsequent
gadgets lies vertically and horizontally between two pairs of vertices in B.

The grid in combination with the orthogonal order gives us the following properties:

1. If we place a vertex v with two integer coordinates, i.e., on a grid point, its position
in any valid embedding is unique;

2. if we place a vertex v with one integer and one non-integer coordinate, i.e., on a
grid edge, its position in any valid embedding is on that grid edge;
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BvB

Bh

v1 = v′1

v2

v3

v4

v5

v′2v′3
v′4v′5

s e(a)

s e(b)

s e(c)

Fig. 2. Border gadget B that is rigid and reg-
ular. The horizontal component is denoted by
Bh and the vertical one by Bv.

Fig. 3. The switch s is linked with edge e; (a)
shows the input embedding, in (b) e is pulled
up and in (c) it is pulled down

3. if we place a vertex v with two non-integer coordinates, i.e., in the interior of a
grid cell, then its position in any valid embedding is in that grid cell (including its
boundary).

Basic Building Blocks. We will frequently make use of two basic building blocks that
rely on the above grid properties.

The first one is a switch, i.e., an edge that has exactly two valid embeddings. Let
s = uv be an edge within a single grid cell where u is placed on a grid point and v on
a non-incident grid edge. We call u the fixed and v the free vertex of s. Assume that u
is in the lower left corner and v on the right edge of the grid cell. Then in any valid
d-schematization s is either horizontal or diagonal, see Fig. 3 for an example.

The second basic concept is linking of vertices. We can synchronize two vertices in
different and even non-adjacent cells of the grid by assigning them the same
x- or y-coordinate. We call two vertices u and v linked, if in π either xπ(u) = xπ(v)
or yπ(u) = yp(v). Then the orthogonal order requires that u and v remain linked in any
valid embedding. This concept allows us to transmit information on local embedding
choices over distances. Two edges ei = uu′ and e j = vv′ are linked if there is a vertex of
ei that is linked to a vertex of e j. We use linking of edges in combination with switches.
Namely, we link a switch s via its free vertex with another edge e, as illustrated in
Fig. 3. Then the choice of the embedding of s determines one of the two coordinates
of the linked vertices in e. In the case depicted in Fig. 3 the switch s determines the
y-coordinate of both vertices of e; we say that s pulls e up (Fig. 3(b)) or down (Fig. 3(c)).
Such a switch is called a vertical switch. Analogously, edges can be pulled to the left
and to the right by a horizontal switch.

Variable Gadgets. The variable gadget for a variable x is a simple structure consisting
of a horizontal switch and a number of linked connector vertices on consecutive grid
lines below the switch, one for each appearance of x or ¬x in a clause of ϕ . We denote
the number of appearances as t(x). All connector vertices share the same x-coordinate in
π . Each one will be connected to a clause with a diagonal connector edge. A connector
edge spans the same number of grid cells horizontally and vertically and hence can only
be embedded at a slope of 45◦. In order to have the correct slope, the positions of both
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(a) Input embedding (b) State true (c) State false

Fig. 4. A variable gadget with three connector vertices

endpoints within their grid cell must be the same. The upper vertices will connect to
the gadgets of the negative clauses and the lower vertices to the gadgets of the positive
clauses. The variable gadget has two states, one in which the switch pulls all vertices to
the left (defined as true), and one in which it pulls them to the right (defined as false).
Figure 4 shows an example. A variable gadget gx for a variable x takes up one grid cell
in width and t(x)+ 1 grid cells in height.

Clause Gadgets. The general idea behind the clause gadget is to create a set of paths
whose embedding is influenced by three connector edges. Each of those edges carries
the truth value of the connected variable gadget. The gadget consists of three diagonal
edges e2,e3,e4, two vertical edges e1 and e5 and four switches s1,s2,s3,s4, see Fig. 5.
For positive clauses, we want that if all its connector edges are pulled to the right, i.e., all
literals are false, there is no valid embedding of the clause gadget. This is achieved by
placing the edges of the gadget in such a way that there are certain points, called critical
points, where two different non-adjacent edges can possibly place a vertex. Further, we
ensure with the help of switches that each of the three diagonal edges of the clause
gadget has exactly one vertex embedded on a critical point in a valid embedding.

Key to the gadget is the critical edge e3 that is embedded with one fixed vertex on a
grid point and one loose vertex in the grid cell A to the top left of the fixed vertex. Edge
e3 is linked with switches s2 and s4. These switches ensure that the loose vertex must
be placed on a free corner of the grid cell. The three free corners are all critical points.
It is clear that there is a valid embedding of e3 if and only if one of the three critical
points is available.

We use the remaining edges of the gadget to block one of the critical points of A for
each literal that is false. The lower vertex of the middle connector edge is placed just
to the left of the upper left corner of A such that it occupies a critical point if it is pulled
to the right. Both of the left and right connector edges have another linked vertical edge
e1 and e5 appended each. Now if e1 is pushed to the right by its connector edge, then
edge e2 is pushed upward since e1 and e2 share a critical point. Due to switch s1 edge e2

blocks the lower left critical point of A in that case. Similarly, edge e4 blocks the upper
right critical point of A if the third literal is false.

The clause gadget for a negative clause works analogously such that a critical point
is blocked for each connector edge that is pulled to the left instead of to the right. It
corresponds basically to the positive clause gadget rotated by 180◦.

Lemma 2. A clause gadget has a valid embedding if and only if at least one of its
literals is true.
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e2

e4
e3

e1

e5

s1

s2

s3

s4

x1 x2 x3 x4

C1

C2

C3

Fig. 5. Sketch of a clause gadget. Critical
points are marked as white disks.

Fig. 6. Sketch of the gadgets for the instance
ϕ from Fig.1

The size of a clause gadget (not considering the switches) depends on the horizontal
distances Δ1,Δ2 between the left and middle connector edge and between the middle
and right connector edge, respectively. The width of a gadget is 6 and its height is
Δ1 + Δ2−5.

Gadget Placement. The top and left part of our construction is occupied by the border
gadget that defines the grid. The overall shape of the remaining construction is similar
to a slanted version of the standard embedding of an instance of MONOTONE PLANAR

3-SAT as in Fig. 1.
We place the individual variable gadgets horizontally aligned in the center of the

drawing. Since variable gadgets do not move vertically there is no danger of acci-
dentally linking vertices of different variable gadgets by placing them at the same
y-coordinates. For the clause gadgets to work as desired, we must make sure that any
two connector edges to the same clause gadget have a minimum distance of seven grid
cells. This can easily be achieved by spacing the variable gadgets horizontally so that
connector edges of adjacent variables cannot come too close to each other.

To avoid linking between different clause gadgets or clause gadgets and variable
gadgets, we place each of them in its own x- and y-interval of the grid with the negative
clauses to the top left of the variables and the positive clauses to the bottom right. The
switches of each clause gadget are placed at the correct positions just next to the border
gadget. Figure 6 shows a sketch of the full placement of the gadgets for a MONOTONE

PLANAR 3-SAT instance ϕ . Since the size of each gadget is polynomial in the size of
the formula ϕ , so is the whole construction. The above construction finally yields the
following theorem.

Theorem 1. The 2-regular UNION OF PATHS SCHEMATIZATION PROBLEM is
NP-hard.
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(a) Variable gadget

e2

e4
e3

e1

e5

(b) Clause gadget

x1 x2 x3 x4

C1

C2

C3

(c) Sketch of full instance

Fig. 7. Augmented gadget versions. Additional path edges are highlighted in blue

3.2 Hardness of the PATH SCHEMATIZATION PROBLEM

Finally, to prove that 2-regular PSP is also NP-hard we have to show that we can aug-
ment the union of paths constructed above to form a single simple path that still has
the property that it has a valid embedding if and only if the corresponding MONOTONE

PLANAR 3-SAT formula ϕ is satisfiable.
The general idea is to start the path at the lower end of the border gadget and then

collect all the switches next to the border gadget. From there we enter the upper parts
of the variable gadgets and walk consecutively along all the connector edges into the
negative clause gadgets. Once all negative connectors have been traversed, the path
continues along the positive connectors and into the positive clauses. The additional
edges and vertices must be placed such that they do not interfere with any functional
part of the construction.

The only major change is that we double the number of connector vertices in each
variable gadget and add a parallel dummy edge for each connector edge. That way
we can walk into a clause gadget along one edge and back into the variable gadget
along the other edge. We also need a clear separation between the negative and positive
connector vertices, i.e., the topmost positive connector vertices of all variable gadgets
are assigned the same y-coordinate and we adjust the required spacing of the variable
gadgets accordingly. Figure 7(a) shows an example of an augmented variable gadget
with one positive and two negative connector edges.

The edges e1–e5 of each clause gadget are inserted into the path in between the
leftmost connector edge and its dummy edge and in between the rightmost connector
edge and its dummy edge, respectively. The details are illustrated in Fig. 7(b). It is clear
that by this construction we obtain a single simple path P that contains all the gadgets of
our previous reduction. Moreover, the additional edges are embedded such that they do
not interfere with the gadgets themselves. Rather they can move along with the flexible
parts without occupying grid points that are otherwise used by the gadgets. Hence we
can summarize:

Theorem 2. The 2-regular PATH SCHEMATIZATION PROBLEM is NP-hard.
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4 Hardness of d-Regular PSP for d > 2

In the previous section we have established that 2-regular PSP is NP-hard. Here we
show that d-regular PSP remains NP-hard for all d > 2 by modifying the gadgets of our
proof for d = 2.

An obvious problem for adapting the gadgets is that due to the presence of more
than one diagonal slope the switches do not work any more for uniform grid cells. In
a symmetric grid, we cannot ensure that the free vertex of a switch is always on a grid
point in any valid d-schematization. This means that we need to devise a different grid
in order to make the switches work properly. We construct a new border gadget that
induces a grid with cells of uniform width but non-uniform heights. We call the cells of
this grid minor cells and form groups of d−1 vertically consecutive cells to form meta
cells. Then all meta cells again have uniform widths and heights.

The d − 1 different heights of the minor cells are chosen such that the segments
connecting the upper left corner of a meta cell to the lower right corners of its minor
cells have exactly the slopes that are multiplies of (90/d)◦ and lie strictly between 0◦

and 90◦. This restores the functionality of switches whose fixed vertex is placed on
the upper left corner of a meta cell and whose free vertex is on a non-adjacent grid
line of the same meta cell. Although the underlying grid differs the functionality of
variable and clause gadgets as well as the overall structure stays the same. This yields
the following theorem. The detailed proof is included in the full version of this paper
[10].

Theorem 3. The d-regular PATH SCHEMATIZATION PROBLEM is NP-hard for any
d > 2.

5 Design and Evaluation of a MIP for d-Regular PSP

PSP can be formulated as a MIP that is similar to a MIP model for drawing octilinear
metro maps [16]. With a MIP we can not only decide PSP but also optimize the output
for resemblance with the input path if there is a feasible solution. We achieve this by (i)
minimizing for each edge the deviation between its input slope and its output slope, and
(ii) by minimizing the total path length subject to a certain minimum length for every
edge. See the full version of this paper [10] for the detailed MIP formulation.

We have implemented the MIP for simple input paths and evaluate its performance
by schematizing 1000 quickest routes in the German road network, where we select
source and target nodes uniformly at random. The average path length is 1020.7 nodes,
hence, a schematization would yield a route sketch with far too much detail. Therefore,
in a preprocessing step, we simplify the path using the Douglas-Peucker algorithm [8]
but keep all important nodes such as points of road and road category changes. More-
over, we shortcut self-intersecting subpaths whose lengths are below a threshold. This
is to remove over- or underpasses near slip roads of highways, which are considered
irrelevant for route sketches or would be depicted as an icon rather than a loop. Figure 8
illustrates an example of a route sketch obtained by our MIP. It clearly illustrates how a
schematic route sketch, unlike the geographic map, is able to depict both high-detail and
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(a) (b) (c) (d) (e)

Fig. 8. A sample route from Bremen to Cuxhaven in Germany: (a) output of Google Maps, (b)
simplified route after preprocessing, (c) output of our MIP for d = 2, (d) output of our MIP for
d = 3, and (e) output of the algorithm by Delling et al. [7]

low-detail parts of the route in a single picture. Comparing Figures 8(c) and 8(d) indi-
cates that using the parameter d = 2 for the schematization process yields route sketches
with a very high level of abstraction while using d = 3 results in route sketches which
resemble the overall shape of the route much better. For example, the route sketch in
Fig. 8(c) seems to suggest that there is a 90◦ turn while driving on the highway but this
is not the case. The route sketch depicted in Fig. 8(c) resembles the original route much
better. Generally, we found that using the parameter d = 3 yields route sketches with a
higher degree of readability.

For comparison, we show the output computed by the method of Delling et al. [7]
in Fig. 8(e). Recall that their original algorithm takes as input only monotone paths.
They describe, however, a heuristic approach to schematize non-monotone paths by
subdividing them into maximal monotone subpaths that are subsequently merged into a
single route sketch. In order to avoid intersections of the bounding boxes of the mono-
tone subpaths, additional edges of appropriate length must be inserted into the path;
the orthogonal order is preserved only within the monotone subpaths. This may lead to
undesired effects in sketches of non-monotone routes, see Fig. 8(e).

Evaluation. We performed two experiments that were executed on a single core of
an AMD Opteron 2218 processor running Linux 2.6.27.23. The machine is clocked at
2.6GHz, has 16GiB of RAM and 2×1MiB of L2 cache. Our implementation is written
in C++ and was compiled with GCC 4.3.2, using optimization level 3. As MIP solver
we use Gurobi 3.0.1.

In the first experiment we examine the performance of our MIP for d = 3 subject to
the amount of detail of the route, as controlled by the distance threshold ε between input
and output path in the path simplification step. We also set the threshold for removing
self-intersecting subpaths to ε . Table 1(a) reports our experimental results for values of
ε between 2−1 and 2−5.

We observe that with decreasing ε , the lengths of the paths increase from 20.04 nodes
to 32.81 nodes on average. This correlates with the running time of our MIP which
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Table 1. Results obtained by running 1000 random queries in the German road network and
schematizing the simplified paths with our MIP. The tables reports average path lengths, percent-
age of infeasible instances, average number of iterations, and average running times.

(a) Varying ε with d = 3.

ε ∼length % inf ∼iter ∼time [ms]
2−1 20.04 0.1 1.28 801.61
2−2 20.50 0.1 1.29 621.66
2−3 21.81 0.1 1.29 649.49
2−4 25.16 0.2 1.26 772.57
2−5 32.81 0.3 1.27 1102.20

(b) Varying d with ε = 2−3.

d % inf ∼iter ∼time [ms]
1 51.3 1.03 107.36
2 0.7 1.19 363.49
3 0.1 1.29 649.49
4 0.1 1.25 1075.82
5 0.1 1.21 1347.86

is between 801.61ms and 1102.20ms. Note that in practice a value of ε = 2−3 is a
good compromise between computation time and amount of detail. Further, we observe
that adding planarity constraints in a lazy fashion pays off since we need less than 1.3
iterations on average. constraints at all. The number of infeasible instances, i. e., paths
without a valid 3-schematization, is 0.1%. schematization respecting the orthogonal
order of the nodes together with the minimum edge lengths, or, if the input path is not
simple.

The second experiment evaluates the performance of our MIP when using different
values of d, see Table 1(b). We fix ε = 2−3. While for rectilinear drawings with d = 1
we need 107.36ms to compute a solution, the running time increases to 1347.86ms
when using d = 5. Interestingly, more than half of the paths do not have a valid recti-
linear schematization. By allowing one additional diagonal slope (d = 2), the number
of infeasible instances significantly decreases to 0.7% and for d = 3 only 0.1%, i. e.,
a single instance, is infeasible.

6 Conclusion

Motivated by drawing route sketches in road networks, we studied the d-regular path
schematization problem (PSP), which has two main goals: To preserve the user’s mental
map through maintaining the orthogonal order, and to reduce the visual complexity
using restricted edge slopes given by integer multiples of (90/d)◦. We analyzed the
complexity of the problem and showed that PSP is NP-hard for d ≥ 2, thus, closing
the complexity gap between the hardness result of Brandes and Pampel [4] for d = 1,
and the efficient algorithm of Delling et al. [7] for monotone paths. In the second part
of this work, we modeled and implemented the PSP as a mixed integer linear program
(MIP). An experimental evaluation with real-world data of the German road network
showed that we are indeed able to compute visually appealing route sketches within
approximately one second for values of d ≤ 5.

Using ideas of Nöllenburg and Wolff [16], our MIP can be further generalized to
handle both non-simple paths and general graphs, e. g., a set of alternative routes.
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7. Delling, D., Gemsa, A., Nöllenburg, M., Pajor, T.: Path schematization for route sketches. In:
Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 285–296. Springer, Heidelberg (2010)

8. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)

9. Dwyer, T., Koren, Y., Marriott, K.: Stress majorization with orthogonal ordering constraints.
In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 141–152. Springer,
Heidelberg (2006)
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Abstract. We study the problem of Upward Point-Set Embeddability,
that is the problem of deciding whether a given upward planar digraph
D has an upward planar embedding into a point set S. We show that any
switch tree admits an upward planar straight-line embedding into any
convex point set. For the class of k-switch trees, that is a generalization of
switch trees (according to this definition a switch tree is a 1-switch tree),
we show that not every k-switch tree admits an upward planar straight-
line embedding into any convex point set, for any k ≥ 2. Finally we show
that the problem of Upward Point-Set Embeddability is NP-complete.

1 Introduction

A planar straight-line embedding of a graph G into a point set S is a mapping of
each vertex of G to a distinct point of S and of each edge of G to the straight-
line segment between the corresponding end-points so that no two edges cross
each other. Gritzmann et al. [9] proved that outerplanar graphs is the class
of graphs that admit a planar straight-line embedding into every point set in
general position or in convex position. Efficient algorithms are known to embed
outerplanar graphs [3] and trees [4] into any point set in general or in convex
position. From the negative point of view, Cabello [5] proved that the problem of
deciding whether there exists a planar straight-line embedding of a given graph G
into a point set P is NP-hard even when G is 2-connected and 2-outerplanar. For
upward planar digraphs, the problem of constructing upward planar straight-line
embeddings into point sets was studied by Giordano et al. [8], later on by Binucci
et al. [2] and recently by Angelini et al. [1]. While some positive and negative
results are known for the case of upward planar digraphs, the complexity of
testing upward planar straight-line embeddability into point sets has not been
known.

In this paper we continue the study of the problem of upward planar straight-
line embedding of directed graphs into a given point set. Our results include:

– We extend the positive results given in [1,2] by showing that any directed
switch tree admits an upward planar straight-line embedding into every point
set in convex position.

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 272–283, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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– We study directed k-switch trees, a generalization of switch trees (a 1-switch
tree is exactly a switch tree). From the construction given in [2] (Theorem 5),
we know that for k ≥ 4 not every k-switch tree admits an upward planar
straight-line embedding into any convex point set. Then we fill the gap for 2
and 3-switch trees, by showing that, for any k ≥ 2 there is a class of k-switch
trees T k

n , and a point set S in convex position, such that any T ∈ T k
n does

not admit an upward planar straight-line embedding into S.
– We study the computational complexity of the upward embeddability prob-

lem. More specifically, given a n vertex upward planar digraph G and a set of
n points on the plane S, we show that deciding whether there exists an up-
ward planar straight-line embedding of G so that its vertices are mapped to
the points of S is NP-Complete. The decision problem remains NP-Complete
even when G has a single source and the longest simple cycle of G has length
four and, moreover, S is an m-convex point set, for some integer m > 0.

Due to space constraints we sketch or omit some of the proofs; for the detailed
version see [7].

2 Preliminaries

We mostly follow the terminology of [2]. Next, we give some definitions that are
used throughout this paper.

Let l be a line on the plane, which is not parallel to the x-axis. We say that
point p lies to the right of l (resp., to the left of l) if p lies on a semi-line that
originates on l, is parallel with the x-axis and is directed towards +∞ (resp.,
−∞). Similarly, if l is a line on the plane, which is not parallel to the y-axis, we
say that point p lies above l (resp., below l) if p lies on a semi-line that originates
on l, is parallel with the y-axis and is directed towards +∞ (resp., −∞).

A point set in general position, or general point set, is a point set such that no
three points lie on the same line and no two points have the same y-coordinate.
The convex hull H(S) of a point set S is the point set that can be obtained as a
convex combination of the points of S. A point set in convex position, or convex
point set, is a point set such that no point is in the convex hull of the others.
Given a point set S, we denote by b(S) and by t(S) the lowest and the highest
point of S, respectively. A one-sided convex point set S is a convex point set
in which b(S) and t(S) are adjacent in the border of H(S). A convex point set
which is not one-sided, is called a two-sided convex point set. In a convex point
set S, the subset of points that lie to the left (resp. right) of the line through
b(S) and t(S) is called the left (resp. right) part of S. A one-sided convex point
set S is called left-heavy (resp., right-heavy)convex point set if all the points of
S lie to the left (resp., to the right) of the line through b(S) and t(S). Note that,
a one-sided convex point set is either a left-heavy or a right-heavy convex point
set.

Consider a point set S and its convex hull H(S). Let S1 = S \ H(S), . . . ,
Sm = Sm−1 \ H(Sm−1). If m is the smallest integer such that Sm = ∅, we say
that S is an m-convex point set. A subset of points of a convex point set S is
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called consecutive if its points appear consecutive as we traverse the convex hull
of S in the clockwise or counterclockwise direction.

The graphs we study in this paper are directed. By (u, v) we denote an arc
directed from u to v. A switch-tree is a directed tree T , such that, each vertex
of T is either a source of a sink. Note that the longest directed path of a switch-
tree has length one1. Based on the length of the longest path, the class of switch
trees can be generalized to that of k-switch trees. A k-switch tree is a directed
tree, such that its longest directed path has length k. So, a switch tree is a
1-switch tree. A digraph D is called path-DAG, if its underlying graph is a
simple path. A monotone path (v1, v2, . . . , vk) is a path-DAG containing arcs
(vi, vi+1), 1 ≤ i ≤ k − 1.

An upward planar directed graph is a digraph that admits a planar draw-
ing where each edge is represented by a curve monotonically increasing in the
y-direction. An upward straight-line embedding (UPSE for short) of a graph into
a point set is a mapping of each vertex to a distinct point and of each arc to
a straight-line segment between its end-points such that no two arcs cross and
each arc (u, v) has y(u) < y(v). The following results were presented in [2] and
are used in this paper.

Lemma 1 (Binucci at al. [2]). Let T be an n-vertex tree-DAG and let S be
any convex point set of size n. Let u be any vertex of T and let T1, T2, . . . , Tk be
the subtrees of T obtained by removing u and its incident edges from T . In any
UPSE of T into S, the vertices of Ti are mapped into a set of consecutive points
of S, for each i = 1, 2, . . . , k.

Theorem 1 (Binucci at al. [2]). For every odd integer n ≥ 5, there exists a
(3n + 1)-vertex directed tree T and a convex point set S of size 3n + 1 such that
T does not admit an UPSE into S.

3 Embedding a Switch-Tree into a Point Set in Convex
Position

In this section we enrich the positive results presented in [1,2] by proving that,
any switch-tree has an UPSE into any point set in convex position. During the
execution of the algorithms, presented in the following lemmata, which embed
a tree T into a point set S, a free point is a point of S to which no vertex of
T has been mapped yet. The following two lemmata treat the simple case of a
one-sided convex point set and are immediate consequences of a result by Heath
et al. [10].

Lemma 2. Let T be a switch-tree, r be a sink of T , S be a one-sided convex
point set so that |S| = |T |, and p be S’s highest point. Then, T admits an UPSE
into S so that vertex r is mapped to point p.  !

1 The length of a directed path is the number of arcs in the path.
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Fig. 1. The construction of Lemma 4

Lemma 3. Let T be a switch-tree, r be a source of T , S be a one-sided convex
point set so that |S| = |T |, and p be S’s lowest point. Then, T admits an UPSE
into S so that vertex r is mapped to point p.  !

Now we are ready to proceed to the main result of the section.

Theorem 2. Let T be a switch-tree and S be a convex point set such that |S| =
|T |. Then, T admits an UPSE into S.

The proof of the theorem is based on the following lemma, which extends
Lemma 2 from one-sided convex point sets to convex point sets.

Lemma 4. Let T be a switch-tree, r be a sink of T , S be a convex point set such
that |S| = |T |. Then, T admits an UPSE into S so that vertex r is mapped to
the highest point of S.

Proof. Let T1, . . . , Tk be the sub-trees of T that are connected to r by an edge
(Figure 1.a) and let r1, . . . , rk be the vertices of T1, . . . , Tk, respectively, that are
connected to r. Observe that, since T is a switch tree and r is a sink, vertices
r1, . . . , rk are sources.

We draw T on S as follows. We start by placing the trees T1, T2, . . . on the left
side of the point set S as long as they fit, using the highest free points first. This
can be done in an upward planar fashion by Lemma 3 (Figure 1.b). Assume that
Ti is the last placed subtree. Then, we continue placing the trees Ti+1, . . . , Tk−1
on the right side of the point set S. This can be done due to Lemma 3. Note
that the remaining free points are consecutive point of S, denote these points by
S′. To complete the embedding we draw Tk on S′. Let T k

1 , . . . , T k
l the subtrees

of Tk, that are connected to rk by an arc. Let also rk
1 , . . . , rk

l be the vertices
of T k

1 , . . . , T k
l , respectively, that are connected to rk (Figure 1.a). Note that

rk
1 , . . . , rk

l are all sinks. We start by drawing T k
1 , T k

2 , . . . as long as they fit on the
left side of point set S′, using the highest free points first. This can be done in an
upward planar fashion by Lemma 2. Assume that T k

j is the last placed subtree
(Figure 1.c). Then, we continue on the right side of the point set S′ with the
trees T k

j+1, . . . , T
k
l−1. This can be done again by Lemma 2. Note that there are

exactly |T k
l |+1 remaining free points since we have not yet drawn T k

l and vertex
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rk of Tk. Denote by S′′ the remaining free points and note that S′′ consists of
consecutive points of S. If S′′ is a one-sided point set then we can proceed by
using the Lemma 2 again and the result follows trivially. Assume now that S′′ is
a two-sided convex point set and let p1 and p2 be the highest points of S′′ on the
left and on the right, respectively. W.l.o.g., let y(p1) < y(p2). Then, we map rk

to p1. By using the lemma recursively, we can draw T k
l on S′′ \ {p1} so that rk

l

is mapped to p2. The proof is completed by observing that all edges connecting
rk to rk

1 , . . . , rk
l and r1, . . . , rk to r are upward and do not cross each other.  !

4 K-Switch Trees

Binucci et al. [2] (see also Theorem 1) presented a class of trees and corresponding
convex point sets, such that any tree of this class does not admit an UPSE into
its corresponding point set.

The (3n + 1)-size tree T constructed in the proof of Theorem 1[2] has the
following structure. It consists of: (i) one vertex r of degree three, (ii) three
monotone paths of n vertices: Pu = (un, un−1, . . . , u1), Pv = (v1, v2, . . . , vn),
Pw = (w1, w2, . . . , wn), (iii) arcs (r, u1), (v1, r) and (w1, r).

The (3n + 1)-convex point set S, used in the proof of Theorem 1[2], consists
of two extremal points on the y-direction, b(S) and t(S), the set L of (3n− 1)/2
points l1, l2, . . . , l(3n−1)/2, comprising the left side of S and the set R of (3n −
1)/2 points r1, r2, . . . , r(3n−1)/2, comprising the right side of S. The points of
L and R are located so that y(b(S)) < y(r1) < y(l1) < y(r2) < y(l2) < . . . <
y(r(3n−1)/2) < y(l(3n−1)/2) < y(t(S)).

Note that the (3n + 1)-node tree T described above is a (n − 1)-switch tree.
Hence a straightforward corollary of Theorem 1[2] is the following statement.

Corollary 1. For k ≥ 4, there exists a k-switch tree T and a convex point set
S of the same size, such that T does not admit an UPSE into S.

From Section 3, we know that any switch tree T , i.e. a 1-switch tree, admits an
UPSE into any convex point set. The natural question raised by this result and
Corollary 1 is whether an arbitrary 2-switch or 3-switch tree has an UPSE into
any convex point set. This question is resolved by the following theorem.

Theorem 3. For any n ≥ 5 and for any k ≥ 2, there exists a class T k
n of 3n+1-

vertex k-switch trees and a convex point set S, consisting of 3n + 1 points, such
that any T ∈ T k

n does not admit an UPSE into S.

Proof. For any n ≥ 5 we construct the following class of trees. Let Pu be an
n-vertex path-DAG on the vertex set {u1, u2, . . . , un}, enumerated in the or-
der they are presented in the underlying undirected path of Pu, and such that
arcs (u3, u2), (u2, u1) are present in Pu. Let also Pv and Pw be two n-vertex
path-DAGs on the vertex sets {v1, v2, . . . , vn} and {w1, w2, . . . , wn} respectively,
enumerated in the order they are presented in the underlying undirected path of
Pv and Pw, and such that arcs (v1, v2), (v2, v3) and (w1, w2), (w2, w3) are present
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in Pv and Pw, respectively. Let T (Pu, Pv, Pw) be a tree consisting of Pu, Pv, Pw,
vertex r and arcs (r, u1), (v1, r), (w1, r).

Let T k
n = {T (Pu, Pv, Pw) | the longest directed path in Pu, Pv and Pw has

length k}, k ≥ 2. So, T k
n is a class of 3n + 1-vertex k-switch trees. Let S be a

convex point set as described in the beginning of the section. Then any T ∈ T k
n

does not admit an UPSE into point set S, see [7] for the detailed proof.  !

5 Upward Planar Straight-Line Point Set Embeddability
is NP-Complete

In this section we examine the complexity of testing whether a given n-vertex
upward planar digraph G admits an UPSE into a point set S. We show that
the problem is NP-complete even for a single source digraph G having longest
simple cycle of length at most 4. This result is optimal for the class of cyclic
graphs2, since Angelini et al. [1] showed that every single-source upward planar
directed graph with no cycle of length greater than three admits an UPSE into
every point set in general position.

Theorem 4. Given an n-vertex upward planar digraph G and a planar point set
S of size n in general position, the decision problem of whether there exists an
UPSE of G into S is NP -Complete. The decision problem remains NP-Complete
even when G has a single source and the longest simple cycle of G has length at
most 4 and, moreover, S is an m-convex point set for some m > 0.

Proof. The problem is trivially in NP. In order to prove the NP-completeness,
we construct a reduction from the 3-Partition problem.

Problem: 3-Partition
Input: A bound B ∈ Z+, and a set A = {a1, . . . , a3m} with ai ∈ Z+,
B
4 < ai < B

2 .
Output: m disjoint sets A1, . . . , Am ⊂ A with |Ai| = 3 and

∑
a∈Ai

a =
B, 1 ≤ i ≤ m.

We use the fact that 3-Partition is a strongly NP-hard problem, i.e. it is NP-hard
even if B is bounded by a polynomial in m [6]. Let A and B be the set of the
3m positive integers and the bound, respectively, that form the instance (A, B)
of the 3-Partition problem. Based on A and B, we show how to construct an
upward planar digraph G and a point set S such that G has an UPSE on point
set S if and only if the instance (A, B) of the 3-partition problem has a solution.

We first show how to construct G (see Figure 2.a for illustration). We start
the construction of G by first adding two vertices s and t. Vertex s is the single
source of the whole graph. We then add m disjoint paths from s to t, each of
length two. The degree-2 vertices of these paths are denoted by ui, i = 1, . . . , m.
For each a ∈ A, we construct a monotone directed path Pi of length a that has
a new vertices and s at its source. Totally, we have 3m such paths P1, . . . , P3m.
2 A digraph is cyclic if its underling undirected graph contains at least one cycle.
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Fig. 2. (a) The graph G of the construction used in the proof of NP-completeness. (b)
The point set S of the construction. (c) An UPSE of G on S.

We proceed to the construction of point set S. Let b(S) and t(S) be the lowest
and the highest points of S (see Figure 2.b). In addition to b(S) and t(S), S also
contains m one-sided convex point sets C1, . . . , Cm, each of size B + 1, so that
the points of S satisfy the following properties:

– Ci ∪ {b(S), t(S)} is a left-heavy convex point set, i ∈ {1, . . . , m}.
– The points of Ci+1 are higher than the points of Ci, i ∈ {1, . . . , m− 1}.
– Let li be the line through b(S) and t(Ci), i ∈ {1, . . . , m}. C1, . . . , Ci lie to

the left of line li and Ci+1, . . . , Cm lie to the right of line li.
– Let fi be the line through t(S) and t(Ci), i ∈ {1, . . . , m}. Cj , j ≥ i, lie to

the right of line fi.
– {t(Ci) : i = 1, . . . , m} is a left-heavy convex point set.

The next statement follows from the properties of point set S.

Statement 1. Let Ci be one of the left-heavy convex point sets comprising S
and let x ∈ Cj , j > i. Then, set Ci ∪ {b(S), x} is also a left-heavy convex point
set, with b(S) and x consecutive on its convex hull.  !

Statement 2. We can construct a point set S that satisfies all the above re-
quirements so that the area of S is polynomial on B and m.

Proof of Statement: For each i ∈ {0, . . . , m − 1} we let Cm−i to be the set of
B + 1 points

Cm−i =
{
(−j − i(B + 2), j2 − (i(B + 2))2) | j = 1, 2, . . . , B + 1

}
Then, we set the lowest point of the set S, called b(S), to be point (−(B +1)2 +
((m − 1)(B + 2))2, (B + 1)2 − (m(B + 2))2) and the highest point of S, called
t(S), to be point (0, (m(B + 2))2).
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It is easy to verify that all the above requirements hold and that the area of
the rectangle bounding the constructed point set is polynomial on B and m.  !

Statement 3. |S| = |V (G)| = m(B + 1) + 2.  !

We now proceed to show how from a solution for the 3-Partition problem we can
derive a solution for the upward point set embeddability problem. Assume that
there exists a solution for the instance of the 3-Partition problem and let it be
Ai = {a1

i , a
2
i , a

3
i }, i = 1 . . .m. Note that

∑3
j=1 aj

i = B. We first map s and t to
b(S) and t(S), respectively. Then, we map vertex ui on t(Ci), i = 1 . . .m. Note
that the path from s to t through ui is upward and C1, . . . , Ci lie entirely to the
left of this path, while Ci+1, . . . , Cm lie to the right of this path. Now each Ci

has B free points. We map the vertices of paths P 1
i , P 2

i and P 3
i corresponding

to a1
i , a

2
i , a

3
i to the remaining points of Ci in an upward fashion (see Figure 2.c).

It is easy to verify that the whole drawing is upward and planar.
Assume now that there is an UPSE of G into S. We prove that there is a

solution for the corresponding 3-Partition problem. The proof is based on the
following statements.

Statement 4. In any UPSE of G into S, s is mapped to b(S).  !

Statement 5. In any UPSE of G into S, only one vertex from set {u1,. . . , um}
is mapped to point set Ci, i = 1 . . .m.

Proof of Statement: For the sake of contradiction, assume that there are two
distinct vertices uj and uk that are mapped to two points of the same point set
Ci (see Figures 3). W.l.o.g. assume that uk is mapped to a point higher than
the point uj is mapped to. We consider three cases based on the placement of
the sink vertex t.

Case 1: t is mapped to a point of Ci (Figure 3.a). It is easy to see that arc
(s, uk) crosses arc (uj , t), a clear contradiction to the planarity of the embedding.

Case 2: t is mapped to t(S) (Figure 3.b). Similar to the previous case since
Ci ∪ {b(S), t(S)} is a one-sided convex point set.

Case 3: t is mapped to a point of Cp, p > i, denote it by pt (Figure 3.c).
By Statement 1 Ci ∪ {b(S), pt} is a convex point set and points pt, b(S) are
consecutive points of Ci ∪ {b(S), pt}. Hence, arc (s, uk) crosses arc (uj , t), a
contradiction.  !
By Statement 5, we have that each Ci, i = 1 . . .m, contains exactly one vertex
from set {u1, . . . um}. Without lost of generality, we assume that ui is mapped
to a point of Ci.

Statement 6. In any UPSE of G into S, vertex t is mapped to either a point
of Cm or to t(S).

Proof of Statement: Vertex t has to be mapped higher than any ui, i = 1 . . .m,
and hence higher than um, which is mapped to a point of Cm.  !
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Fig. 3. Mappings used in the proof of Statement 5

Statement 7. In any UPSE of G into S, vertex ui is mapped to t(Ci), 1 ≤ i ≤
m− 1, moreover, there is no arc (v, w) so that v is mapped to a point of Ci and
w is mapped to a point of Cj, j > i.

Proof of Statement: We prove this statement by induction on i, i = 1 . . .m− 1.
For the basis, assume that u1 is mapped to a point p1 different from t(C1) (see
Figure 4.a). Let pt be the point where vertex t is mapped. By Statement 6, pt

can be either t(S) or a point of Cm. In both cases, point set C1 ∪ {b(S), pt} is a
convex point set, due to the construction of the point set S and the Statement 1.
Moreover, the points b(S) and pt are consecutive on the convex hull of point set
C1 ∪ {b(S), pt}.

Denote by p the point of C1 that is exactly above the point p1. From State-
ment 5, we know that no uj , j �= 1 is mapped to the point p. Due to Statement 6,
t cannot be mapped to p. Hence there is a path Pk, 1 ≤ k ≤ 3m, so that one of
its vertices is mapped to p. Call this vertex u. We now consider two cases based
on whether u is the first vertex of Pk of not.

Case 1: Assume that there is a vertex v of Pk, such that there is an arc (v, u).
Since the drawing of S is upward, v is mapped to a point lower than p and lower
than p1. Since C1 ∪ {b(S), pt} is a convex point set, arc (v, u) crosses arc (u1, t).
A clear contradiction.

Case 2: Let u be the first vertex of Pk. Then, arc (s, u) crosses the arc (u1, t)
since, again, C1 ∪ {b(S), pt} is a convex point set, a contradiction.

So, we have that u1 is mapped to t(C1), see Figure 4.b. Observe now that any
arc (v, w), such that v is mapped to a point of C1 and w is mapped to a point
x ∈ C2 ∪ . . . ∪ Cm ∪ {t(S)} crosses arc (s, u1), since C1 ∪ {b(S), x} is a convex
point set. So, the statement is true for i = 1.

For the induction step, we assume that the statement is true for Cg and ug,
g ≤ i−1, i.e. vertex ug is mapped to t(Cg) and there is no arc connecting a point
of Cg to a point of Ck, k > g and this holds for any g ≤ i−1. We now show that
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it also holds for Ci and ui. Again, for the sake of contradiction, assume that ui

is mapped to a point pi different from t(Ci) (see Figure 4.c).
Denote by q the point of C1 that is exactly above point pi. From Statement 5,

we know that no ul, l �= i, is mapped to the point q. Due to Statement 6, t can
not be mapped to q. Hence, there is a path Pf , so that one of its vertices is
mapped to q. Call this vertex uf . We now consider two cases based on whether
uf is the first vertex of Pf of not.

Case 1: Assume that there is a vertex vf of Pk such that there is an arc
(vf , uf ). By the induction hypothesis, we know that vf is not mapped to any
Cl, l < i. Then, since the drawing of S is upward, vf is mapped to a point lower
than q and lower than pi. Since Ci ∪{b(S), pt} is a convex point set, arc (vf , uf)
crosses arc (ui, t). A clear contradiction.

Case 2: Let uf be the first vertex of Pk. Then, arc (s, uf ) crosses the arc
(ui, t) since, again, Ci ∪ {b(S), pt} is a convex point set, a contradiction.

So, we have shown that ui is mapped to t(Ci), see Figure 4.d. Observe now
that, any arc (v, w), such that v is mapped to a point of Ci and w is mapped to
a point x ∈ Ci+1 ∪ . . . ∪Cm ∪ {t(S)} crosses arc (s, ui), since Ci ∪ {b(S), x} is a
convex point set. So, the statement holds for i.  !
A trivial corollary of the previous statement is the following:

Statement 8. In any UPSE of G into S, any directed path Pj of G originating
at s, j ∈ {1, . . . , 3m}, has to be drawn entirely in Ci, for i ∈ {1, . . . , m}.  !
The following statement completes the proof of the theorem.

Statement 9. In any UPSE of G into S, vertex t is mapped to point t(S).

Proof of Statement: For the sake of contradiction, assume that t is not mapped to
t(S). By Statement 6 we know that t has to be mapped to a point in Cm. Assume
first that t is mapped to point t(Cm) (see Figure 5.a). Recall that um−2 and um−1
are mapped to t(Cm−2) and t(Cm−1), respectively, and that {t(Ci) : i = 1 . . .m}
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Fig. 5. (a-b) Mappings used in the proof of Statement 9

is a left-heavy convex point set. Hence, points {t(Cm−2), t(Cm−1), t(Cm), b(S)}
form a convex point set. It follows that segments (t(Cm−2), t(Cm)) and (t(Cm−1),
b(S)) cross each other, i.e. edges (s, um−1) and (um−2, t) cross, contradicting the
planarity of the drawing.

Consider now the case where t is mapped to a point of Cm, say p, differ-
ent from t(Cm) (see Figure 5.b). Since point p does not lie in triangle t(Cm−2),
t(Cm−1), b(S) and point t(Cm−1) does not lie in triangle t(Cm−2), p, b(S), points
{t(Cm−2), t(Cm−1), p, b(S)} form a convex point set. Hence, segments
(t(Cm−2), p) and (t(Cm−1), b(S)) cross each other, i.e. edges (s, um−1) and
(um−2, t) cross; a clear contradiction.  !
Let us now combine the above statements in order to derive a solution for the
3-Partition problem when we are given an UPSE of G into S. By Statement 4
and Statement 9, vertices s and t are mapped to b(S) and t(S), respectively. By
Statement 5, for each i = 1 . . .m, point set Ci contains exactly one vertex from
{u1, . . . , um} , say ui and, hence, the remaining points of Ci are occupied by
the vertices of some paths P 1

i , P 2
i , . . . , P c

i . By Statement 8, P 1
i , P 2

i , . . . , P c
i are

mapped entirely to the points of Ci. Since Ci has B + 1 points, the highest of
which is occupied by ui, we infer that P 1

i , P 2
i , . . . , P c

i contain exactly B vertices.
We set Ai = {a1

i , a
2
i , . . . , a

c
i}, where aj

i is the size of path P j
i , 1 ≤ j ≤ c. Since

B
4 < aj

i < B
2 we infer that c = 3. The subsets Ai are disjoint and their union

produces A.
Finally, we note that G has a single source s and the longest simple cycle of G

has length 4, moreover the point set S is an m-convex point set for some m > 1.
This completes the proof.  !

6 Open Problems

In this paper, we continued the study of the upward point-set embeddability
problem, initiated in [1,2,8]. We showed that the problem is NP-complete, even
if some restrictions are posed on the digraph and the point set. We also extended
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the positive and the negative results presented in [1,2] by resolving the problem
for the class of k-switch trees, k ∈ N. The partial results on the directed trees
presented in [1,2] and in the present work, may be extended in two ways: (i)
by presenting the time complexity of the problem of testing whether a given
directed tree admits an upward planar straight-line embedding (UPSE) to a
given general/convex point set and (ii) by presenting another classes of trees,
that admit/do not admit an UPSE to a given general/convex point set. It would
be also interesting to know whether there exists a class of upward planar digraphs
D for which the decision problem whether a digraph D ∈ D admits an UPSE
into a given point set P remains NP-complete even for a convex point set P .
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Abstract. A common problem for many database users is how to for-
mulate and submit correct queries in order to get useful responses from
the system, with little or no knowledge of the database structure and its
content. The notion of cooperative query answering has been explored
as an effective mechanism to address this problem. In this paper, we
propose a cooperative query answering scheme based on the Abstract
Interpretation framework. In this context, we address three key issues:
soundness, relevancy and optimality of the cooperative answers.

Keywords: Databases, Cooperative Query Answering, Abstract Inter-
pretation.

1 Introduction

Traditional query processing system enforces database-users to issue precisely
specified queries, while the system provides limited and exact answers, or no
information at all when the exact answer is unavailable in the database. There-
fore, it is important to the database-users to fully understand problem domain,
query syntax, database schema, and underlying database content.

To remedy such shortcomings and to enhance the effectiveness of the infor-
mation retrieval, the notion of cooperative query answering [5,6,8,15] has been
explored. The cooperative query answering system provides users an intelligent
database interface that allows them to issue approximate queries independent
to the underlying database structure and its content, and provides additional
useful information as well as the exact answers.

As an example, in response to the query about “specific flight departing at
10 a.m. from Rome Fiumicino airport to Paris Orly airport” the cooperative
query answering system may return “all flight information during morning time
from airports in Rome to airports in Paris”, and thus, the user will be able to
choose other flight if the specific flight is unavailable. Such query answering is also
known as neighborhood query answering, as instead of providing exact answers
it captures neighboring information as well. Cooperative query answering system
also gives users the opportunity to issue conceptual or approximate queries where
they might ask more general questions, for example, “how to travel from Rome
to Paris at a reasonable cost during morning time” or “find the flights that fly
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during night only” without knowing the exact database schema and its content.
One of the benefits of issuing conceptual queries is to avoid reissuing of the set
of concrete queries if the corresponding conceptual query returns empty result.

Cooperative query answering depends on the context in which queries are
issued. The context includes the identity of the issuer, the intent or purpose
of the query, the requirements that make explicit the answers relevant to the
user etc. The following example illustrates it clearly: suppose a user issues a
query asking the list of airports that are similar to “Venice Marcopolo” airport.
Different contexts define the meaning of “similarity between airports” differently.
For instance, to any surveyor “similarity” may refer in terms of the size and
facilities provided in the airport, whereas to any flight company “similarity”
may refer in terms of business point of view i.e. flight landing charges or other
relevant taxes.

Abstract Interpretation is a well known semantics-based static analysis tech-
nique [7,9,11], originally developed by Cousot and Cousot as a unifying frame-
work for designing and then validating static program analysis, and recently
it becomes a general methodology for describing and formalizing approximate
computation in many different areas of computer science, like model checking,
process calculi, security, type inference, constraint solving, etc [9].

In our previous work [11], we introduced Abstract Interpretation framework
to the field of database query languages as a way to provide sound approximation
of the query languages. In this paper, we extend this to the field of cooperative
query answering system: we propose a cooperative query answering scheme based
on the Abstract Interpretation framework that consists of three phases - trans-
formation of the whole query system by using abstract representation of the data
values, cooperative query evaluation over the abstract domain, and concretiza-
tion of the cooperative abstract result. The main contributions in this paper are:
(i) we express the cooperative query evaluation by abstract databases, (ii) we
express how to deal with cooperative query evaluation in presence of aggregate
and negation operations, (iii) we address three key issues: soundness, relevancy
and optimality of the cooperative answers.

The structure of the paper is as follows: Section 2 discusses related work in the
literature and motivation of our work. Section 3 describes the key issues in the
context of cooperative query answering. In Section 4, we discuss our proposed
scheme. In Section 5, we show how our proposal is able to address the key issues.
Finally, we draw our conclusions in Section 6.

2 Related Work and Motivation

Several techniques have been proposed in the literature based on logic model, se-
mantic distance, fuzzy set theory, abstraction, and so on. The logic-based models
[1,8] use first-order predicate logic to represent the database, the knowledge-base,
and the user’s queries. Content of the knowledge base helps in guiding query re-
formulation into more flexible and generalized query that provides relaxed, intel-
ligent cooperative answer. However, these approaches have limitations in guiding
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the query relaxation process and the less intuitive query answering process due
to lack of its expressiveness.

The semantic distance-based approaches [14,17] use the notion of semantic
distance to represent the degree of similarity between data values, and provide
ranked cooperative results sorted according to their semantic distances. For cate-
gorical data, distances between data values are stored in a table. However, since
every pair is supposed to have semantic distances, in realistic application do-
main these approaches are inefficient as the table size gets extremely larger and
becomes harder to maintain the consistency of the distance measures.

In [10], the initial queries are transformed into flexible form based on knowl-
edge base and fuzzy set theory. Finally, these queries are rewritten into boolean
queries and evaluated to the traditional database.

In abstraction-based models [4,6], the data are organized into multilevel ab-
straction hierarchies where nodes at higher level are the abstract representation
of the nodes at lower level. The cooperative query answering is accomplished by
generating a set of refined concrete queries by performing query abstraction and
query refinement process by moving upward or downward through the hierarchy.
Finally, the refined queries are issued to the database that provide additional
useful information. These approaches suffer from high overhead when the degree
of relaxation for a query is large, as the query abstraction-refinement process
produces a large set of concrete queries to be issued to the database. To remedy
this, fuzzy set theory or semantic distance approach is combined with abstraction
hierarchy [5,13,15] to control the abstraction-refinement process and to provide
a measure of nearness between exact and approximate answers.

However, all the above mentioned schemes do not provide any formal frame-
work to cooperative query answering system. In addition, none of these schemes
enlightens the key issues: soundness, relevancy and optimality in the context of
cooperativeness of the query answers. Most of the existing techniques [4,5,6,13,15]
suffer from the problem of soundness when query contains negation operation
MINUS. In case of conceptual or approximate queries where approximate results
are desirable, none of the schemes focuses on the way to compute aggregate func-
tions when appearing in a query so as to preserve the soundness.

3 Key Issues: Soundness, Relevancy, Optimality

Any cooperative query answering scheme should respect three key issues: sound-
ness, relevancy, and optimality. Intuitively, a cooperative query answer is sound
if it is equal to or it is a superset of the corresponding extensional query answer.
The relevancy of the answers w.r.t. the context concerns with avoiding the tu-
ples that have no value to the user: all the information in the cooperative answer
should have relevancy to the user. The third criteria optimality implies that the
system should return as much information as possible, while satisfying the first
two properties. Since there exist many cooperative answers corresponding to a
given query under given context, the optimality describes the “preferability” of
the query answers to the user.
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Given a cooperative query processing system B, a database dB, a context C,
and a query Q, the result obtained by the cooperative system is R = B(dB, C, Q).

Definition 1 (Soundness). Given a database dB, a query Q, and a context
C. Let R be the extensional query answer obtained by processing Q on dB. The
cooperative answer R′ = B(dB, C, Q) is sound if R′ ⊇ R.

The relevancy of the information to a user depends on his interests. These inter-
ests can be expressed in terms of constraints represented by well-formed formulas
in first order logic. If the information provided by a cooperative system satis-
fies the set of constraints representing user’s interests, it is treated as relevant.
For instance, “flight duration in the result set must be less than 3 hours” can
be used as a constraint that determines the relevancy of the information in the
cooperative answer.

Definition 2 (Relevancy). Given a database dB, a query Q, and a context C.
Let S(Q) be the set of constraints represented by well-formed formulas in first
order logic that make explicit the answers relevant to the user. The cooperative
answer R = B(dB, C, Q) respects the relevancy if ∀x ∈ R : x |= S(Q).

It is worthwhile to mention that the system relaxes users’ queries to obtain
neighboring and conceptually related answers in addition to the exact answer.
However, the formulas appearing in the pre-condition φ [11] of the query Q
is different from the set of constraints appearing in S(Q) that determines the
relevancy of the cooperative answers. The constraints in S(Q), in contrast to φ,
is strict in the sense that there is no question of relaxing them, and violation
of any of these constraints by the information in the cooperative answer will be
treated as irrelevant.

A cooperative system may return different cooperative answers to a user in
a given context. However, it is sensible to define a measure that describes the
“preferability” of each answer. A cooperative answer is called more optimal than
another answer if it is more preferable to the user in the given context than the
other.

Definition 3 (Optimality). Given a database dB, a query Q, a context C,
and a set of constraints S(Q) expressing user’s requirements. The cooperative
answer R = B(dB, C, Q) is more optimal than R′ = B′(dB, C, Q) if

{x ∈ R : x |= S(Q)} ⊇ {x ∈ R′ : x |= S(Q)} and {y ∈ R : y �|= S(Q)} ⊆ {y ∈ R′ : y �|= S(Q)}

In other words, a cooperative answer is called more optimal than another answer
when it contains more relevant information and less irrelevant information w.r.t.
S(Q) than the other.

4 Proposed Scheme

Our proposal consists of three phases: (i) Transforming the databases and its
query languages by using abstract representation of the data values, (ii) Cooper-
ative query evaluation over the abstract domain, and finally, (iii) Concretization
of the cooperative abstract result.
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4.1 Transforming from Concrete to Abstract Domain

In this section, we discuss how to lift databases and its query languages from
concrete to the abstract domain of interests. The level of approximation of the
database information obtained by abstraction gives a measure of the “preferabil-
ity” of the cooperative answers and depends on the context in which queries are
issued. The best correct approximation [9] of the database information according
to the context provides the optimal cooperative answers to the end-users.

Generally, traditional databases are concrete databases as they contain data
from the concrete domain, whereas abstract databases are obtained by replac-
ing concrete values by the elements from abstract domains representing specific
properties of interests. We may distinguish partially abstract database in con-
trast to fully abstract one, as in the former case only a subset of the data in the
database is abstracted. The values of the data cells belonging to an attribute
x are abstracted by following the Galois Connection (℘(Dcon

x ), αx, γx, Dabs
x ) [9],

where ℘(Dcon
x ) and Dabs

x represent the powerset of concrete domain of x and the
abstract domain of x respectively, whereas αx and γx represent the correspond-
ing abstraction and concretization functions (denoted αx : ℘(Dcon

x ) → Dabs
x and

γx : Dabs
x → ℘(Dcon

x )) respectively. In particular, partially abstract databases
are special case of fully abstract databases where for some attributes x the ab-
straction and concretization functions are identity functions id, and thus, follow
the Galois Connection (℘(Dcon

x ), id, id, Dabs
x ).

Table 1. Concrete and corresponding Abstract Databases

(a) Database containing concrete table “flight”
flight no. source destination cost ($) start-time reach-time availability
F001 Fiumicino

(FCO)
Orly (ORY) 210.57 8.05 10.45 N

F002 Marcopolo
(VCE)

Orly (ORY) 410.30 18.30 21.00 Y

F003 Ciampino (CIA) Roissy Charles de
Gaulle (CDG)

300.00 6.30 8.30 Y

F004 Urbe (LIRU) Lyon-Saint Exupéry
(LYS)

128.28 22.05 23.40 N

F005 Treviso (TSF) Granby-Grand
County (GNB)

200.15 16.00 17.20 Y

F006 Viterbo (LIRV) Beauvais (BVA) 310.30 7.20 9.30 Y

(b) Abstract database containing abstract table “flight	”

flight no.� source� destination� cost� start-time� reach-time� availability�

� Rome Paris [200.00-249.99] morning morning �
� Venice Paris [400.00-449.99] evening night �
� Rome Paris [300.00-349.99] morning morning �
� Rome Lyon [100.00-149.99] night night �
� Venice Lyon [200.00-249.99] afternoon evening �

Let us illustrate it by an example. The database in Table 1(a) consists of
concrete table “flight” that provides available flight information to the end-
users of a travel agent application. The corresponding abstract table “flight�”
is shown in Table 1(b) where source and destination airports are abstracted
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by the provinces they belong, the numerical values of the cost attribute are
abstracted by the elements from the domain of intervals, the values of the
start-time/reach-time attributes are abstracted by the periods from the abstract
domain PERIOD = {⊥, morning, afternoon, evening, night,%} where % rep-
resents “anytime” and ⊥ represents “don’t know”, the flight no. and availabil-
ity attributes are abstracted by the topmost element % of their corresponding
abstract lattices. Observe that the number of abstract tuples in an abstract
database may be less than that in the corresponding concrete database.

Definition 4 (Abstract Database). Let dB be a database. The database
dB� = α(dB) where α is the abstraction function, is said to be an abstract version
of dB if there exist a representation function γ, called concretization function
such that for all tuple 〈x1, x2, . . . , xn〉 ∈ dB there exist a tuple 〈y1, y2, . . . , yn〉 ∈
dB� such that ∀i ∈ [1 . . . n] (xi ∈ id(yi) ∨ xi ∈ γ(yi)).

4.2 Cooperative Query Evaluation

In [11], we proposed denotational semantics of database query languages in both
concrete and abstract level. We extend this to the context of cooperative query
answering, where the SQL queries are lifted into an abstract setting and instead
of working on concrete databases they are applied on the corresponding abstract
databases. However, in this paper, we restrict our discussions to the SELECT
statements only. Let us start with a simple example:

Example 1. Consider an online booking application interacting with the concrete
database depicted in Table 1(a). Suppose a user wants to travel from Rome
Fiumicino airport to Paris Orly airport by a flight such that flight cost is less
than or equal to 300 USD. So the following query satisfying the required criteria
can be issued:

Q1 =SELECT * FROM flight WHERE source = "Fiumicino" AND destination = "Orly" AND

cost ≤ 300.00 AND availability=Y;

Observe that the result ξ1 of the query Q1 is empty i.e. ξ1 = ∅, because seats
are not available in the flight from Rome Fiumicino to Paris Orly airport.

To obtain cooperative answers, we lift the whole query system from concrete
to the abstract domain of interests by abstracting the database information
and the associated query languages. The abstract database corresponding to the
concrete database (Table 1(a)) is depicted in Table 1(b), and the abstract query
corresponding to the concrete query Q1 is shown below:

Q�
1 =SELECT

�
* FROM flight

�
WHERE source

� =�
"Rome" AND destination

� =�
"Paris" AND

cost
� ≤�

[300.00, 349.99] AND availability
� =� �;

where the abstract operation ≤� for intervals is defined as follows:

[li, hi] ≤� [lj , hj ] �

⎧⎪⎨
⎪⎩

true if hi ≤ lj

false if li > hj

% otherwise

and the abstract equality =� is defined as usual.
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When the imprecise abstract query Q�
1 is executed over the abstract database

(Table 1(b)), it returns the flight information depicted in Table 2. This way, the
abstraction of the databases and its query languages helps in obtaining additional
information in the result.

Table 2. ξ	
1: Abstract Result of Q	

1

flight no.� source� destination� cost� start-time� reach-time� availability�

� Rome Paris [200.00-249.99] morning morning �
� Rome Paris [300.00-349.99] morning morning �

Consider a SELECT statement Q = 〈Asel, φ〉 where Asel is action part and
φ is pre-condition part of Q [11,12]. In the concrete domain, the pre-condition
φ evaluates to two-valued logic (true and false) and the active data set on
which Asel operates contains those tuples for which φ evaluates to true only.
In contrast, when we lift the whole query system to an abstract setting, the
evaluation of the abstract pre-condition φ� over the abstract database results
into a three-valued logic (true, false, and %). The logic value % indicates that
the tuple may or may not satisfy the semantic structure of φ�. Thus, in the
abstract domain, the active data set on which abstract SELECT action A�

sel

operates consists of those abstract tuples for which φ� evaluates to true or %.
For instance, in the query result ξ�

1 of Table 2, φ� evaluates to true for the first
tuple with cost� equal to [200.00, 249.99], whereas it evaluates to % for the last
tuple with cost� equal to [300.00, 349.99].

Soundness is preserved as the concretization of the abstract queries always
results into a sound approximation of the corresponding concrete queries.

Cooperative query evaluation with aggregate functions: In case of con-
ceptual or approximate queries where approximate results are desirable, none of
the existing techniques focuses on the way to compute aggregate functions when
appearing in a query so as to preserve the soundness. In this section, we discuss
how to compute the cooperative aggregate functions in an abstract setting to
provide the users a sound approximation of the aggregate results.

Let T �
φ be the set of abstract tuples for which φ� evaluates to true or %. The

application of abstract GROUP BY function g� on T �
φ yields to a set of abstract

groups {G�
1, G

�
2, . . . , G

�
n}. When no g� appears in abstract SELECT statement

Q�, we assume T �
φ as a single abstract group.

Given an abstract group G�, we can partition the tuples in G� into two parts:
G�

yes for which φ� evaluates to true, and G�
may for which φ� evaluates to %. Thus

we can write G� = G�
yes ∪G�

may, where G�
yes ∩G�

may = ∅.
Let s� be an abstract aggregate function and e� be an abstract expression.

To ensure the soundness, the computation of s�(e�) on G� is defined as fol-
lows: s�(e�)[G�] = [min�(a�), max�(b�)], where a� = fn�(e�)[G�

yes] and b� =
fn�(e�)[G�].

By fn�(e�)[G�
yes] and fn�(e�)[G�] we mean that the function fn� is applied on

the set of abstract values obtained by evaluating e� over the tuples in G�
yes and
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G� respectively, yielding to an abstract aggregate value as result. The computa-
tion of fn� is defined differently by considering two different situations that can
arise: (i) when the primary key is abstracted, yielding two or more tuples mapped
into a single abstract tuple, and (ii) when the primary key is not abstracted and
the identity of each tuples are preserved in abstract domain. Both the functions
min� and max� take single abstract value a� and b� respectively as parameters
which are obtained from fn�, and returns a concrete numerical value as out-
put. min�(a�) returns minimum concrete value from γ(a�) and max�(b�) returns
maximum concrete value from γ(b�), where γ is the concretization function.

Lemma 1. Let s and e be an aggregate function and an expression respectively.
Suppose the corresponding abstract representation of s and e are s� and e� re-
spectively. Let s�(e�)[G�] be an abstract aggregate value obtained by performing s�

parameterized with e� over an abstract group G�. The abstract aggregate function
s� is sound if

∀G ∈ γ(G�), s(e)[G] ∈ γ(s�(e�)[G�])
Example 2. Consider the database of Table 1(a) and the following query that
computes the average ticket price for all flights departing after 7 o’clock in the
morning from any airport in Rome to any airport in Paris region:

Q2 =SELECT AVG(cost), COUNT(*) FROM flight WHERE source IN (FCO, CIA, LIRU, LIRV)

and destination IN (ORY, CDG, BVA) and start-time ≥ 7.00

If we execute Q2 on the database of Table 1(a), we get the result ξ2 depicted in
Table 3.

Table 3. ξ2: Result of Q2 (concrete)

AV G(cost) COUNT (∗)
260.44 2

The abstract version of Q2 is defined as below:
Q�

2 =SELECT
�
AVG

�(cost�), COUNT�(∗) FROM flight
�
WHERE source

�
IN (Rome)

and destination
�
IN (Paris) and start-time

� ≥�
morning

The result of Q�
2 on the abstract database of Table 1(b) is shown in Table 4. The

Table 4. ξ	
2: Result of Q	

2

AV G�(cost�) COUNT �(∗)
[0, 349.99] [0, +∞]

evaluation of the abstract WHERE clause extracts two tuple with cost� equal
to [200.00, 249.99] and [300.00, 349.99] both belonging to G�

may. So, G�
yes = {}.

Thus, we get a� = fn�({}) = average�({}) = [0, 0] and b� = fn�({[200.00,
249.99], [300.00, 349.99]}) = average�({[200.00, 249.99], [300.00, 349.99]}) =
[200.00, 349.99]. Hence, AV G�(cost�) = [min�(a�), max�(b�)] = [0, 349.99]. In our
example the abstraction of two or more concrete tuples may result into a single
abstract tuple since the primary key is abstracted, so in such case COUNT �(∗) =
[min�(a�), +∞]. observe that the result is sound i.e. ξ2 ∈ γ(ξ�

2).
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Cooperative query evaluation with negation operation: Most of the
existing abstraction-based techniques [4,5,6,13,15] suffer from the problem of
soundness when query contains negation operation MINUS, because abstrac-
tion of the query appearing on right side of MINUS may remove more infor-
mation from the result of the query on left side of MINUS, yielding to a result
that does not satisfy the soundness. In this section, we discuss the way to treat
negation operation so as to preserve the soundness.

Given any abstract query Q� and an abstract database state dB�, the result
of the query can be denoted by ξ� = [[Q�]](dB�) = (ξ�

yes, ξ
�
may) where ξ�

yes is the
part of the query result for which semantic structure of φ� evaluates to true and
ξ�
may represents the remaining part for which φ� evaluates to %1. Observe that

we assume ξ�
yes ∩ ξ�

may = ∅.
Consider an abstract query of the form Q� = Q�

l MINUS� Q�
r. Let the result

of Q�
l and Q�

r be ξ�
l = (ξ�

yesl
, ξ�

mayl
) and ξ�

r = (ξ�
yesr

, ξ�
mayr

) respectively. The
difference operation MINUS� over an abstract domain is defined as follows:

ξ� = ξ�
l MINUS� ξ�

r = 〈ξ�
yesl

, ξ�
mayl

〉 MINUS� 〈ξ�
yesr

, ξ�
mayr

〉
= 〈ξ�

yesl
− (ξ�

yesr
∪ ξ�

mayr
), (ξ�

mayl
∪ ξ�

mayr
)− ξ�

yesr
〉 (1)

Observe that the first component (ξ�
yesl

− (ξ�
yesr

∪ ξ�
mayr

)) contains those tuples
for which the pre-condition φ� strictly evaluates to true, whereas for the second
component ((ξ�

mayl
∪ ξ�

mayr
)− ξ�

yesr
) it evaluates to %.

Example 3. Consider the database of Table 1(a) and the following query that
finds all flights with ticket price strictly less than 205 USD:
Q3 = Ql MINUS Qr , where Ql = SELECT * FROM flight; and Qr = SELECT * FROM flight WHERE cost

≥ 205.00;

The execution of Q3 on the database of Table 1(a) yields the result ξ3 shown in
Table 5.

Table 5. ξ3: Result of Q3 (concrete)

flight no. source destination cost ($) start-time reach-time availability
F004 Urbe (LIRU) Lyon-Saint

Exupéry (LYS)
128.28 22.05 23.40 N

F005 Treviso (TSF) Granby-Grand
County (GNB)

200.15 16.00 17.20 Y

The corresponding abstract version of Q3 is as follows:
Q�

3 = Q�
l MINUS� Q�

r, where Q�
l = SELECT� * FROM flight�; and Q�

r = SELECT� * FROM flight� WHERE

cost� ≥� [200.00, 249.99];

By following the abstract computation of MINUS� defined in Equation 1,
we get the result of Q�

3 depicted in Table 6 which is sound i.e. ξ3 ∈ γ(ξ�
3).

1 When abstract query Q	 uses aggregate functions s	, application of s	 over a group
G	 yields to a single row in ξ	. This row belongs to ξ	

may only if all rows of that
group belong to G	

may , otherwise it belongs to ξ	
yes.
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Table 6. ξ	
3: Result by performing abstract computation of Q	

3

flight no.� source� destination� cost� start-time� reach-time� availability�

� Rome Paris [200.00-249.99] morning morning �
� Rome Lyon [100.00-149.99] night night �
� Venice Lyon [200.00-249.99] afternoon evening �

4.3 Concretization of the Cooperative Abstract Result

Given a concrete and the corresponding abstract databases dB and dB� respec-
tively, let ξ� be the abstract answer obtained by executing the abstract query Q�

on dB�. The cooperative answer R = B(dB, C, Q) returned to the user is obtained
by: R = γ(ξ�) ∩ dB. That is, the cooperative answer is obtained by mapping the
abstract result into its concrete counterpart. For instance, after mapping ξ�

1 (Table
2), the user gets its concrete counterpart R1 shown in Table 7.

Table 7. R1: Concrete Result obtained by concretizing the abstract result ξ	
1

flight no. source destination cost ($) start-time reach-time availability
F001 Fiumicino

(FCO)
Orly (ORY) 210.57 8.05 10.45 N

F003 Ciampino (CIA) Roissy Charles de
Gaulle (CDG)

300.00 6.30 8.30 Y

F006 Viterbo (LIRV) Beauvais (BVA) 310.30 7.20 9.30 Y

5 Soundness, Relevancy, and Optimality

Suppose, dB and dB� represent a concrete database and its abstract version
respectively. If Q and Q� are representing the queries on concrete and abstract
domain respectively, let ξ and ξ� be the results of applying Q and Q� on the dB
and dB� respectively.

Definition 5. Let dB� be an abstract table and Q� be an abstract query. Q� is
sound iff ∀dB ∈ γ(dB�). ∀Q ∈ γ(Q�) : Q(dB) ∈ γ(Q�(dB�)).

Let us denote by the notation B � Dabs the fact that the cooperative system B
uses the abstract domain Dabs, and by Dabs

1 ) Dabs
2 the fact that the abstract

domain Dabs
1 is an abstraction of Dabs

2 .

Definition 6. Given two abstract domain Dabs
1 and Dabs

2 . The domain Dabs
1 is

an abstraction of Dabs
2 (denoted Dabs

1 ) Dabs
2 ) if ∀X� ∈ Dabs

2 , ∀x ∈ γ2(X�),
∃! l ∈ Dabs

1 : α1(x) = l, where α1 is the abstraction function corresponding to
Dabs

1 , and γ2 is the concretization functions corresponding to Dabs
2 .

The extensional query answering system uses zero level abstraction and it re-
turns only the exact answer if available. More relaxation of the query indicates
more abstraction used by the cooperative system, returning more cooperative
information to the users. Thus whenever we tune the level of abstraction from
lower to higher, the system returns monotonically increasing answer set, i.e.

If (B � Dabs
1 ) and (B′ � Dabs

2 ) and (Dabs
1 � Dabs

2 ), then B(dB,C, Q) ⊇ B′(dB, C, Q)
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When the term “relevancy” comes into the context, the tuning of abstraction
must end at a particular point, after which the system returns irrelevant ad-
ditional information that does not satisfy the constraints in S(Q), where S(Q)
is the set of constraints that make explicit the answers relevant to the user.
We call the abstraction used at that point as the best correct approximation
of the database information. Best correct approximation, thus, depends on the
context that defines S(Q). More abstraction beyond the best correct approxima-
tion level makes the answer partially relevant as it includes additional irrelevant
information w.r.t. S(Q).

Example 4. The cooperative answer R1 of the query Q1 in Example 1 is shown in
Table 7. Let the constraint set be S(Q)={flights must be destined in the airport
ORY/BVA/CDG/LYS, flight duration must be less than 3 hours}. Observe that
the cooperative answer in Table 7 is completely relevant as all tuples in the
answer satisfy S(Q). If we use an higher level of abstraction, for instance, if the
source and destination airports in Table 1(a) are abstracted by the nations they
belong (in our example, Italy and France), the corresponding cooperative answer
R′

1 of the query Q1 will contain all tuples of the concrete Table 1(a) except the
tuple with flight no. F002. The answer R′

1 is partially relevant because one tuple
among them (flight no. equal to F005) does not satisfy S(Q).

Our system can work together with a filtering system that can filter out those
tuples from the partially relevant results that do not satisfy S(Q), and ranks
the results based on the satisfiability of tuples w.r.t. S(Q). However, the level of
abstraction determines the efficiency of the system with respect to the processing
time.

5.1 Partial Order between Cooperative Answers

Given a database dB, a query Q, and a context C, the cooperative system
may return different cooperative answers to the user under context C depend-
ing on the level of abstraction of the abstract domain which is used. We de-
fine a partial order between any two cooperative answers: a cooperative answer
R = B(dB, C, Q) is said to be better than another answer R′ = B′(dB, C, Q)
(denoted R ≤ R′) if R is more optimal than R′ (see definition 3). The partial-
ordered set of all cooperative answers for a given query under given context
forms a lattice. The bottom most element R0 determines worst cooperative an-
swer which is completely irrelevant w.r.t. S(Q), whereas the top most element
Rn is the best cooperative answer which is completely relevant w.r.t. S(Q).

Example 5. The cooperative answer R1 of the query Q1 in Example 1 is shown
in Table 7. When we abstract the airports in Table 1(a) by the nations they
belong, the corresponding cooperative answer R′

1 of the query Q1 will contain
all tuples of the concrete Table 1(a) except the tuple with flight no. F002. Since
R′

1 contains one irrelevant tuple (tuple with flight no. F005) w.r.t. S(Q) as
depicted in Example 4, after filtering out the irrelevant tuple we get the result
R2 shown in Table 8. Observe that R2 is better than the result R1 (i.e. R2 < R1)
since R2 is more optimal than R1 according to definition 3.
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Table 8. R2: Cooperative result of Q1 while using more abstraction

flight no. source destination cost ($) start-time reach-time availability
F001 Fiumicino

(FCO)
Orly (ORY) 210.57 8.05 10.45 N

F003 Ciampino (CIA) Roissy Charles de
Gaulle (CDG)

300.00 6.30 8.30 Y

F004 Urbe (LIRU) Lyon-Saint Exupéry
(LYS)

128.28 22.05 23.40 N

F006 Viterbo (LIRV) Beauvais (BVA) 310.30 7.20 9.30 Y

There exists a wide variety of abstract domains with different expressiveness
and complexity that focus on the linear relationship among program variables,
such as Interval Polyhedra [3,2] to infer interval linear relationship, or Difference-
Bound Matrices [16] representing the constraints of the form x − y ≤ c and
±x ≤ c where x, y are program variables and c is constant. We can exploit
such abstract domains by focusing on the set of constraint S(Q) that make the
answers relevant to the users.

6 Conclusions

Our new cooperative query answering scheme needs to be further refined. In
particular, we are currently investigating its application to more sophisticated
scenarios on different abstract domains, in order to properly address the tradeoff
between accuracy and efficiency.
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Abstract. Nowadays mobile devices such as mobile phones, mp3 players
and PDAs are becoming evermore common. Most of them use flash chips
as storage. To store data efficiently on flash, it is necessary to adapt
ordinary file systems because they are designed for use on hard disks.
Most of the file systems use some kind of search tree to store index
information, which is very important from a performance aspect. Here
we improved the B+ search tree algorithm so as to make flash devices
more efficient. Our implementation of this solution saves 98%-99% of
the flash operations, and is now the part of the Linux kernel.

1 Introduction

These days mobile devices such as mobile phones, mp3 players, PDAs, GPS
receivers are becoming more and more common and indispensable, and this
trend is expected to continue in the future. New results in this area can be very
useful for the information society and the economy as well.

Most of the above-mentioned devices handle data files and store them on their
own storage device. In most cases this storage device is flash memory [3]. On
smart devices an operating system helps to run programs that use some kind of
file system to store data. The response time (how much time is needed to load a
program) and the boot time (how much time is needed to load all the necessary
code and data after power up) of the device both depend on the properties of
the file system. Both of these parameters are important from the viewpoint of
device usability.

Here we introduce a new data structure and algorithm designed for flash file
systems that work more efficiently than the previous technical solutions. We
begin by introducing the workings of flash chips, then describe the previously
most prevalent Linux flash file system, namely JFFS2. Its biggest weakness is its
indexing method: it stores the index in the RAM memory, not in the flash mem-
ory. This causes unnecessary memory consumption and performance penalties.
Next, we introduce the new method in a step-by-step fashion, with an efficient
combination of storing the index in memory and flash after taking factors like
data security and performance into account.

This new solution has been implemented in the UBIFS file system by our
department in cooperation with Nokia, and it is now an official part of the
Linux kernel.

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 297–307, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 How the Flash Memory Works

Flash memory is a non-volatile computer memory that can be electrically erased
and reprogrammed. One of the biggest limitations of flash memory is that al-
though it can be read or programmed one byte or word at a time in a random-
access fashion, it must be erased one ”block” at a time. The typical size of a
block is 8-256K.

The two common types of flashes are NOR and NAND flash memories, whose
basic properties are summarized in the following table [8].

NOR NAND
Can read/write Can read/write

Read/write size bytes individually only pages
(page size can be
512 or 2048 bytes)

I/O speed Slow write, fast read Fast write, fast read
Erase Very slow Fast

XIP (Execute in Place) Yes No
Fault tolerance, detection No Yes

Price/size Relatively expensive Relatively cheap

One of the drawbacks of the flash system is that its erase block can be erased
about 100,000 times, and afterwards the chip will be unstable. This is why most
of the ordinary file systems (FAT, ext2/3, NTFS, etc.) are unusable on flash
directly, because all of them have areas which are rarely rewritten (FAT, super
block, ), and this area would soon be corrupted.

One of the most common solutions to balance the burden of the erase blocks is
FTL (Flash Translation Layer) [6], which hides the physical erase blocks behind a
layer. This layer uses a map to store data about what the corresponding physical
erase block is for each logical number. Initially this map is identical, so for
example logical block 5 is mapped to physical block 5. This layer also contains
an erase counter for each block (how many times it was erased). If this counter
reaches a high number (relative to the average), the system will exchange two
erase blocks (using the map), selecting an erase block which has a relatively low
strain. This method is used in most pen drives to keep the burden low. It works
quite well in practice, but does not provide the optimal solution to performance
problems. For instance, to overwrite just a few bytes (such as a pointer in a search
tree), an entire erase block (∼128K) has to been erased and reprogrammed.

Accordingly, especially in the case of root file systems, it is worthwhile using
flash file systems which are designed specifically for flash devices. Now we will
discuss Linux flash files systems (JFFS and JFFS2), which are freely available
to everyone.

3 JFFS, JFFS2: Flash File System without Flash Index

The basic idea behind JFFS [2] is quite simple: the file system is just a concentric
journal. In essence, all of the modifications on the file system are stored as a
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journal entry (node). When mounting, the system scans this journal and then
replays the events in the memory, creating an index to register which file is
where. If the journal entries are such that the device is nearly full, the system
performs the following steps:

– From the beginning of the used area copy all of the journal entries which are
still valid, so the corresponding file is not deleted or overwritten.

– Erase the emptied area (erase block), so the there will be new space to store
the new journal entries.

This very simple approach eases the burden on the erase blocks, but it also has
its drawbacks:

1. If a dirty (deleted or overwritten) data area is in the middle of the current
journal area, to free it, it is necessary to copy half of the entire journal.

2. When mounting, it is necessary to scan the entire medium.

Problem 1 is solved by the new version of this file system called JFFS2. It utilizes
lists to register the dirty ratio of erase blocks, and if free space is required, it frees
the dirty erase blocks (after moving the valid nodes to another place). There is a
slight chance that it will free clean erase blocks as well, just to ease the burden,
but this will rarely occur.

Problem 2 is only partially solved by JFFS2. It collects information via erase
blocks needed when mounting, and it stores them at the end of the erase blocks,
so only this needs to be scanned. Afterwards it attempts to minimize the size
of the index in the RAM. However, the memory consumption and the mounting
time are still linearly proportional to the size of the flash, and in practice over
512M may be unusable, especially in the case of large files e.g. video films.

Because the root of this problem lies in the base data structures and operating
method of the JFFS2, we should construct a new file system to eliminate the
linear dependency. To achieve this, it is necessary to store index information on
the flash so as to avoid always having to rebuild it when mounting.

4 B+ Tree

Most file systems employ search-trees to index the stored data, and the B+ tree
[4] is a special search-tree with the following features:

– It stores records: r = (k, d); k = key, d = data. The key is unique.
– Data is stored only in leaves, inner-nodes are only index-nodes.
– In an index-node there are x keys, and also x + 1 pointers, each pointing to

the corresponding subtree.
– The B+ tree has one main parameter, namely its order. If the order of a B+

is d, then for each index node there is a minimum of d keys, and a maximum
of 2d keys, so there are minimum of d + 1 pointers, and maximum of 2d + 1
pointers in the node.

– From the above, if a B+ tree stores n nodes, its height must not be greater
than logd(n) + 1. The total cost of insertion and deletion is O(logd(n)).
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This data structure is used by some database systems like PostgreSQL and
MySQL, and file systems like ReiserFS, XFS, JF2 and NTFS. These file systems
are based on the behaviour of real hard disks; that is, each block can be over-
written an unlimited number of times. Thus if there is a node insertion, only
an update of the corresponding index node is needed at that location. Unfortu-
nately it does not work well with flash storage devices, so it was found necessary
to improve the flash-optimized version of the B+ tree.

5 Wandering Tree

A modified version of the B+ tree can be found in the LogFS file system [7],
which is a flash file system for Linux. It is still in the development stage, and
probably will be never finished, because UBIFS offers a much better alternative.
This B+ variant is called a wandering tree. The general workings of this tree
can be seen in Figure 1.

GF

E
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B

DC

A

E E’

A’

GF

B

DC

Fig. 1. Wandering tree before and after insertion

Like the ordinary B+ tree algorithm, during a node insertion it is normally
necessary to modify a pointer at just one index node. In the case of flash memory
the modification is costly, so this wandering algorithm writes out a new node
instead of modifying the old one. If there is a new node, it is necessary to modify
its parent as well, up to the root of the tree. It means that one node insertion
(not counting the miscellaneous balancing) requires h new nodes, where h is the
height of the tree. It also generates h dirty (obsolete) nodes, as well. Because h
is O(logd(n)), where n is the tree node number, the cost of this operand is still
O(logd(n)).

6 TNC: An Improved Wandering Tree

The above wandering tree algorithm still has performance issues, because its
insert method is inefficient: it requires logd(n) new nodes, and it also generates
a number of garbage nodes.

To solve these problems we decided to improve this algorithm, which now
works in the UBIFS file system [1]. Due to its efficient caching technique it
is able to collect node insertions and deletions in the memory, so fewer flash
operations are required. At the same time, the method can ensure that if there
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MEMORY

FLASH

Fig. 2. The TNC data structure

is a sudden power loss (in the case of an embedded system this could happen at
any time) there will be no data loss.

This new data structure and the algorithm are both called the TNC (Tree
Node Cache). It is a B+ tree, which is partly in the flash memory, and partly in
the memory (see Figure 2). Its operators are improved versions of those used in
the wandering tree algorithm.

6.1 Data Structure of TNC

When TNC is not in use (e.g. the file system is not mounted) all the data is
stored in the flash memory, in the ordinary B+ tree format.

When in use, some index nodes of the tree are loaded into the memory. The
caching works in such a way that the following statement is always true : if an
index node is in the RAM memory, its children may also be in the memory, or in
the flash memory. But if the index node is not in the memory, all of its children
are in the flash memory.

If an index node is in the memory, the following items are stored in it:

– Flag clean: it tells us whether it has been modified or not.
– The address of the flash area where the node was read from. (In

the case of being eliminated from the memory, and it was not modified, this
address will be registered in its parent in the memory. If it was modified,
a new node will be written out, and the old location will be marked as
garbage.)

– Pointers to its children. Each pointer stores information about whether
the child is on the flash or has been read into memory.
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6.2 TNC Operations

Using the data structures above, the following operators can be defined:
Search (read):

1. Read the root node of the tree into the memory, then point to it using the
pointer p.

2. If p is the desired node, return with the value of p.
3. Find at node p the corresponding child (sub tree), where the desired node

is.
4. If the child obtained is in the memory, set pointer p to it, and jump to point

2.
5. The child is in the flash memory, so read this into memory. Mark this child

in p as a memory node.
6. Set pointer p to this child, and jump to point 2.

Clean-cache clean-up (e.g. in the case of low memory):

1. Look for an index-node in the memory which has not yet been modified,
and for which all of its children are in the flash memory. If there is no such
index-node, exit.

2. Set the pointers in the identified node’s parent to the original flash address
of the node, and free it in the memory.

3. Jump to point 1, if more memory clean-up is needed.

Insert (write):

1. Write out the data as a leaf node immediately. UBIFS writes them out to
the BUD area1, which is specially reserved for leaf nodes, just to make it
easier to recover when necessary.

2. Read (search) all of the nodes into memory that need to be modified using
the B+ algorithm. (In most cases it is just one index node)

3. Apply the B+ tree modifications in the memory.
4. Mark all modified nodes as dirty.

In the method described above node insertions can be collected, and we can
apply them together with significantly lower flash overheads.

Commit (Dirty-cache clean-up):

1. Look for a dirty index node that has no dirty child. If found, call it node n.
2. Write out a new node n onto the flash, including its children’s flash addresses.
3. Mark the place dirty where the node n was previously located, and update

the flash pointer in the memory representation of the node to the new flash
address.

1 There are two kinds of data earase block in UBIFS: BUD erase block, and non-BUD
erase block. UBIFS stores only the leaf nodes in the BUD erase blocks, all other
type of data nodes are stored in non-BUD erase blocks.
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4. Mark the parent of node n as dirty (if it is not the root node), and mark
node n as clean.

5. Jump to point 1 until there is a dirty node.

Deletion:

1. Read (search) all of the nodes into memory that need to be modified using
the B+ algorithm. (In most cases it is just one index node)

2. Apply the B+ tree modifications in the memory.
3. Mark all modified nodes as dirty.

7 Power Loss Handling in TNC

In the case of power-loss, the information stored in the memory is lost. To prevent
this from happening, UBIFS combines TNC with a journal, where the following
information is stored:

– A journal entry with a pointer to new BUD erase blocks. BUD erase blocks
in UBIFS are reserved areas for leaf nodes. If the BUD area is full, a new
free erase block will be reserved for this purpose.

– Delete an entry after each node deletion.
– A journal entry after each commit with a list of still active BUD areas.

In the event of power loss, the correct TNC tree can be recovered by performing
the following steps:

1. Start with the tree stored on flash.
2. Look for the last commit entry in the journal. All of the events that occurred

from that point have to be scanned.
3. All of the node insertions stored in the BUD areas marked in the journal,

and all of the deletion nodes stored in the journal have to be replayed in the
memory.

8 Experiments

Measuring file system performance objectively is not a simple task, because it
depends on many factors like the architecture behaviour and caching of the
operation system. To avoid theese strong dependencies, we decided to measure
just the most important factor of the flash file system performance, namely the
size of flash I/O operands to evaluate different TNC configurations and examine
their properties using the UBIFS implementation.

The method applied was the following: we unpacked the source of Linux ker-
nel version 2.6.31.4 onto a clean 512M file system, and deleted data using the
commands below. During the test, the system counted how many flash operands
(in terms of node size) were made with and without TNC.
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mount /mnt/flash
mkdir /mnt/flash/linux1
tar xfz linux-2.6.31.4.tar.gz /mnt/flash/linux1
rm -rf /mnt/flash/linux1
umount /mnt/flash

We measured the performance using different TNC configuration. A TNC con-
figuration has the following parameters:

TNC buffer size: The maximal size of the memory buffer that TNC uses to
cache. If it is full, it calls commit and shrink operands. (In our test case, the
maximal size of TNC was 23158 (*sizeof(node)), so if the TNC buffer was
larger than 23158, shrink was not called.)

Shrink ratio: In the case of shrink, the shrink operand will be called until this
percentage of the TNC nodes is freed.

Fanout: B+ tree fanout number: the maximum number of children of a tree
node. (2d, where d is the order of the B+ tree.)

Table 1. TNC flash operations (measured in terms of node size)

Max. Without With Shrink With TNC /
TNC size TNC TNC Ratio without TNC

5000 2161091 38298 25 % 1.77 %
10000 2211627 31623 25 % 1.43 %
15000 2191395 24632 25 % 1.12 %
20000 2244013 20010 25 % 0.89 %
25000 2192044 12492 25 % 0.57 %
5000 2163769 36273 50 % 1.68 %
10000 2250872 31570 50 % 1.40 %
15000 2225334 22583 50 % 1.01 %
20000 2225334 20002 50 % 0.92 %
25000 2183596 12457 50 % 0.57 %
5000 2215993 36759 75 % 1.66 %
10000 2290769 32578 75 % 1.42 %
15000 2244385 29956 75 % 1.33 %
20000 2238633 20002 75 % 0.89 %
25000 2205709 12958 75 % 0.59 %

Table 1 and Figure 3 show the results of measuring flash performance when
the TNC buffer size and shrink ratio were varied. As can be seen, TNC saves
98.23-99.41% of the flash operands. Increasing the TNC size, more of the flash
operations are saved, but varying the shrink ratio has no noticeable effect here.

Table 2 shows what happens if we change the fanout value of the tree. The
number of TNC nodes decreases, but the size of a TNC node increases, because
a TNC node contains more pointers and keys. The size of the flash operations is
the product of these two factors, and it has a minimum fanout value of 32.
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Fig. 3. Performance of TNC flash operations compared to the simple wandering
algorithm

Table 2. Effect of varying the TNC fanout

Without With Max TNC TNC Max TNC Flash
Fanout TNC in TNC in in node in ops

nodes nodes nodes size MB in MB
4 1134784 48392 64801 176 10.88 8.12
8 2168308 12405 23189 304 6.72 3.6
16 1304212 3577 9662 560 5.16 1.91
32 1024363 1317 4669 1072 4.77 1.35
64 1140118 3420 3671 2096 7.34 2.35
128 767005 1245 1586 4144 6.27 3.35
256 930236 1641 980 8240 7.7 4.35

Table 3. TNC size depending on the tree fanout

I/O Size (MB) \ Fanout 8 16 32 64
50 3302 1456 703 351
100 6364 2818 1355 671
200 12925 4620 2224 1106
400 23518 8978 4282 2861
600 43320 18426 8846 5840
800 44948 22070 12273 8527

In the remaining tests we took different samples from the source code of
Linux kernel version 2.6.31.4. Table 3 and Figure 4 tell us the maximal TNC
size (setting no limit) when the fanout is varied, and the size of the I/O operands
(size of the ”file-set” above) as well.
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It is very helpful to know its behaviour, especially if we want to use this tech-
nique in an embedded system where the system performance and the maximal
memory usage of the file system are both of crucial importance.

9 Related Work

The authors of [9] outlined a method that has a similar goal to ours, namely
to optimize the B+ tree update on a flash drive. The method collects all the
changes in the memory (in LUP = lazy-update-pool), and after it has filled up,
data nodes are written out in groups. It also saves flash operations, but unlike
our method, using LUP means a lower read speed because, before searching in
the tree, it always has to scan the LUP. In the case of TNC, there is usually
a higher read speed because the nodes (at least the modified ones) are in the
memory. Our method is power-loss safe, but the authors of [1] do not discuss
what happens when the information is stored in the LUP. The advantage of their
method is the following: the node modifications can be grouped more freely (not
just sequentially), so it may be easier (and require less memory) to close the tree
operations intersecting the same tree-area.

The goal outlined in [10] is also a B+ tree optimization on a flash memory. It
collects as well any changes made in the memory. It calls this area the Reservation
Buffer. It is filled up and these changes are written out and grouped by Commit
Policy into flash as an Index Unit. It makes use of another data structure called
the Node translation table to describe which node has to be transformed by
which Index Unit. To search in the tree it is necessary to scan both the Node
Transaction Table and the Index Units.

The method described in [5] is essentially an improved version of that de-
scribed in [10]. Instead of the simple Reservation buffer it utilizes the Index
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Buffer, which monitors the tree modifications and if any intersect the same node,
it closes them or, where possible, deletes them. In the case of commit, it collects
data about the units belonging to the same nodes, and writes them out to one
page.

10 Summary

Here the author sought to improve the wandering tree algorithm used by flash file
systems, so as to make it more efficient and save over 98% of the flash operands.
It has a power-loss safe variant, and it has a much better performance than a
simple wandering tree.

The new generation of the Linux flash file system (UBIFS) uses this algorithm
and data structure, enabling one to use a flash file system efficiently on 512M or
larger flash chips. This implementation is now part of the Linux kernel mainline.

Acknowledgement. This research was supported by the TÁMOP-4.2.1/
B-09/1/KONV-2010-0005 program of the Hungarian National Development
Agency.
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Abstract. GPGPU (General Purpose Graphical Processing Unit) pro-
gramming is receiving more attention recently because of enormous com-
putations speed up offered by this technology. GPGPU is applied in many
branches of science and industry not excluding databases, even if this is
not the primary field of expected benefits.

In this paper a typical time consuming database algorithm, i.e. OLAP
cube creation, implemented on GPU is compared to its CPU counter-
part by analysis of performance, scalability, programming and optimisa-
tion ease. Results are discussed formulating roadmap for future GPGPU
applications in databases.

Keywords: OLAP cube, GPGPU, CUDA, GPGPU optimization.

1 Introduction

Recently we may observe an increasing interest in GPGPU (General Purpose
Graphical Processing Unit) systems and algorithms. This new paradigm in paral-
lel programming, placed somewhere between PCs and supercomputers, promises
enormous performance with low cost machines. For many algorithms a typical
stock graphical device may generate speed up of tens or in some cases of even
hundreds times. Numerical problems, computation centric algorithms with good
abilities for parallel execution are the most effective. Even the additional pro-
gramming effort and in many cases a need of reimplementation of whole appli-
cations is worth being done. Increasing volumes of data to be processed forces
all branches of science and industry to look for new computational capabilities.
This paper analyses a GPGPU application in databases on a typical algorithm,
i.e. OLAP cube creation including performance, scalability, evolution, program-
ming effort and optimisation ease. Further more, we shall compare it to a similar
serialized CPU solution.

Section 2 presents the implementation of the experiment on CPU and GPU.
Then, section 3 provide measured results and analysis of both solutions. Section
4 concludes.
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1.1 GPGPU Parallel Processing Capabilities

General Purpose Graphic Processing Unit (GPGPU) is a new parallel processing
technology developed by manufacturers traditionally colligated with graphics.
For example, NVIDIA company introduced CUDA (Compute Unified
Device Architecture) [1] technology that can be utilized on many popular graph-
ics cards to perform pure numerical computations. Similar technology is devel-
oped by ATI (ATI Stream) [2]. Established consortia work on a standard GPGPU
programming language called OpenCL [3].

According to the Flynn’s taxonomy [4] vector-based GPU parallel processing
can be classified as single instruction, multiple data (SIMD). In other words, the
very same operation is performed simultaneously on multiple data by multiple
processing units. Since a GPU may have hundreds cores, and each of the cores
is capable of running many threads simultaneously, the potential acceleration
of processing is huge. Current GPGPU devices go one step further and allow
single processors to choose different execution paths – single instruction multiple
threads (SIMT) architecture.

Execution of a GPGPU program usually consists of two parts: host code run-
ning on CPU and device code (also called a kernel) running on GPU. CPU code
may run many classical threads and many kernels asynchronously in the same
time (also on multiple GPU devices). This capabilities resulted in variety of inter-
esting applications such as fast sorting, face recognition, FFT implementation,
real-time image analysis, robust simulations and many others ([5]). As shown in
section 1.2, some attempts to harness the computational power of GPUs into
databases, business intelligence and particularly in OLAP applications have also
taken place.

1.2 GPGPU and Databases

Among many possible usages of GPGPU programming there were already many
successful applications in databases. Due to limitations of this very specific hard-
ware they were mostly focused on relational systems. In 2004, one of the first sig-
nificant papers presented several algorithms performing fast database operations
on GPUs [6]: relational query with predicates, range query, k-th largest number,
etc. There is also a SQLite query engine ported to GPU with average speed up at
x20 for various queries but with many other limitations [7]. Other authors build
a relational join composed of several GPGPU primitives [8]. This approach is
very flexible, open for further extensions and low level modifications. Authors
observe x2-7 speed-up when comparing to a highly optimized CPU counterpart.
Yet another work focuses on external sorting mechanisms which are important
for large databases. [9].

Parallel processing of the data for OLAP cubes has been discussed by
Raymond in [10], who used PC clusters. Approximately 50% speed-up was ob-
tained and the algorithm was nearly linear where the number of records per
processor exceeded 500 000. The other paper by Dehne [11] showed that the
cube creation can be paralleled by using multiple CPUs, but the scalability was
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not linear. These approaches focus on finding an optimal and equal load for all
processors in a cluster. GPU parallelism assures automatically optimum load of
all cores if only proper conditions when executing a parallel code are fulfilled.
Our implementation uses all available cores at 100% of instruction throughput.
An analysis of different execution configurations showed that this optimal load
of a multiprocessor is done well at the hardware level.

GPU usage for accelerating performance of In-Memory OLAP servers has
been proposed and developed by Jedox company [12]. The system is able of
huge acceleration of OLAP analyses. This approach is similar to ours but no
evidence on detailed algorithm and used data volume are available.

1.3 OLAP Cube Creation Problem

In order to evaluate performance of GPU and CPU we use a typical business in-
telligence problem: OLAP (On-Line Analytical Processing) cube creation, which
is a decision making process important support. These multidimensional data
structures contain aggregated data at different levels of aggregation (i.e. sales
per years, months or days). Thanks to preprocessing, building reports and ad-
hoc analyses can be very quick (”on-line”). However, creation of an OLAP cube
may be time-consuming and therefore OLAP cubes often have to be restricted
or limited in their size (i.e. scope, meaning that granularity of the cube has to
be lower).

Typical OLAP cubes used in professional projects contain millions of aggre-
gations. For example, an OLAP cube designed and deployed at a well-known
Polish supermarket ALMA S.A. contains dimensions of hundreds of levels (e.g.
SKU dimension). Although the underlying (detailed) data is not of exceptionally
huge volume, the cube creation would have lasted 10 hours even on a powerful
server ([13]). After optimization of the input data and reducing the number of
intersections within the cube this time has been reduced to 5 minutes, but still
it gives the idea of the nature of the problem.

The time of OLAP cube creation can be an issue on a heavily used configu-
ration or when the cube has to be frequently updated (Multidimensional OLAP
requires rebuilding to update). Even if this is not the case, the possibility of fast
OLAP cubes generating can be useful for ad-hoc analyses and reports performed
on local machines (even on laptops).

2 Implementation of OLAP Cube Creation

The data in the OLAP cubes is organized into dimensions and measures. Di-
mensions are categorical variables like year, month, product, region etc. The
measures are numerical values e.g. sales amount, transactions count, customers
count etc. The process of generating an OLAP cube involves:

1. finding all intersections of the dimensions
2. defining navigation paths according to the specified hierarchies
3. calculating the aggregates
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The measures which the aggregates are calculated for may be any additive func-
tions. Typically these are sum, average, maximum, minimum, median, count.
OLAP cubes are usually stored as multidimensional tables in the file system.
The actual file data structure contains the values of the aggregates for all se-
lected intersections of dimensions. If an NWAY generation was chosen, then all
possible combinations of dimensions values will be computed. The input data
for an OLAP cube is typically stored as: a star schema; a snowflake schema; a
constellation schema or single flat, denormalized data table (detailed table).

Since points 1 and 2 from the generation process may be precomputed and
derived from database meta data and indexes information we focus on the most
changing and time consuming point 3. To simplify memory storage we use only
the simplest, yet efficient way to store data: denormalized data table.

2.1 Sequential Approach

The sequential algorithm processes the data table records one by one updating
the values of aggregates at the dimensions’ intersections. As said before, this
process can be time consuming. In real-life situations generation times of several
hours can pose some difficulties, especially when there is a need to recreate the
cube frequently.

procedure calcCubeCPU(cube, data, data_size)

1 for k:=1 to data_size do

2 intersectionIdx := calcIntersectionIdx(data[k])

3 cube[intersectionIdx] := calcAggregate(cube[intersectionIdx], data[k])

Fig. 1. A sequential algorithm. k denotes indexes of input data set while
calcIntersectionIdx is responsible for calculating appropriate cube intersection upon
input data. calcAggregate calculates a new aggregate value from the previous value
and new data (min, max, sum, etc.).

Speed evaluation of the above very simple sequential solution for flat denor-
malized table shows that it is very fast if all data is stored in RAM. Here, we do
not discuss how data was transferred into RAM memory. For comparison with
GPU, which is anyway dependent on RAM, it is not important what techniques,
if any, were used, and what is the physical representation of the database. Since
RAM is now cheap and RAM-only databases are more and more popular, for
this experiment we can assume that we only deal with an in-memory database.
Memory caching, internal processors’ optimizations and optimal memory reads
and writes make CPU implementation really hard to be beaten by a parallel
procedure, which in most cases has to perform additional tasks. Consumed time
measurements for the sequential algorithm compared to parallel ones are pre-
sented in fig. 5.

2.2 A Naive GPGPU Solution

A typical way of creating a GPGPU algorithm is to start from a naive solution
and than optimize data structures, implementation or the algorithm itself.
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A naive parallel implementation of a sequential procedure leads to a very sim-
ple, yet very inefficient algorithm. If we consider a single database entry to be
processed by a single SIMD processor, all the data is computed (ideally) in the
same time. In the first step each processor reads its input data, in the second step
computes a cube intersection to be updated, and in the third stores appropriate
value (see fig. 2). This algorithm behaves poorly (about x20 times slower than
CPU) because of many conflicts between threads trying to update the same cube
intersection in the same time. Collisions may be solved by atomic addition func-
tion (available in NVIDIA CUDA). However, atomic operations degrade memory
bandwidth by serialization of parallel reads and writes. It is also impossible to
calculate all kinds of aggregate functions by currently available hardware level
atomic functions. One can try to implement software level exclusive writes [14]
but this again limits parallelism.

procedure calcCubeNaiveGPU(cube, data, data_size)

1 forall 1<=k<=data_size in parallel do

2 intersectionIdx := calcIntersectionIdx(data[k])

3 cube[intersectionIdx] := calcAggregate(cube[intersectionIdx], data[k])

Fig. 2. A naive parallel algorithm with many write conflicts. k denotes indexes of
input data set, processed concurrently, while calcIntersectionIdx is responsible for
calculating appropriate cube point upon input data. calcAggregate calculates a new
aggregate value from the previous value and new data.

2.3 Improved GPGPU Solution

Much better results can be obtained if only conflicts in accessing cube inter-
sections could be removed. They appear, because many threads read the data
influencing the same point in the cube. But if we could assure that a single thread
gets all the data for the single point, and only for this point, then there will be
no writing delays. All threads could do their jobs independently. At this point
we should notice that if the data is sorted, then all inputs needed for a single
cube intersection’s calculation lay together. Then the only difficulty is to find
these sequences (clusters) in the input data. This can be hard for a sequential
process but it is easy for the parallel SIMD algorithm. A single thread reads two
data records, say number n and n− 1. Then it calculates cube intersections for
them (ci, cj). If ci = cj then it means that index n is in the middle of a sequence
for given cube intersection, but if ci <> cj then there is a border of sequences
between n− 1 and n. The rest of the computations is as follows. Having the be-
ginning and end points of all the sequences for a given data set, we run another
parallel computations with one thread responsible for processing the single cube
intersection’s aggregation (fig. 3).

Algorithm Optimization. This algorithm is GPGPU efficient in a sense that
it uses the hardware according to its limitations. It is also theoretically effi-
cient since its parallel computational complexity is obviously asymptotically not
higher than the sequential one.
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procedure calcCubeImprovedGPU(cube, data, data_size, cube_size)

1 forall 1<k<=data_size in parallel do

2 intersectionIdx1 := calcIntersectionIdx(data[k-1])

3 intersectionIdx2 := calcIntersectionIdx(data[k])

4 if (intersectionIdx1 <> intersectionIdx2)

5 begins[intersectionIdx2] = k

6 ends[intersectionIdx1] = k-1

7 begins[calcIntersectionIdx(data[0])] := 0

8 ends[calcIntersectionIdx(data[data_size]) := data_size-1

9 acc := 0

10 forall 1<=c<=cube_size in parallel do

11 for begins[c]<=i<=ends[c] do

12 acc := calcAggregate(acc, data[i])

13 cube[c] : = acc

Fig. 3. An improved parallel algorithm without write conflicts. Assuming sorted input
data set. k denotes input data records. c denotes available cube intersections.

However, a closer look at the first part of the algorithm in fig 3 shows that
each thread reads two subsequent input data records. When multiplied by all n
threads we get all data records read twice, which is a waste of the global memory
bandwidth. This can be avoided only by using a thread block’s shared memory as
a short-term cache for the global memory data reads. On-chip shared memory
is about 100 times faster then GPU global memory. Although this technique
required programming manual transfers between global and shared memory, a
significant speed-up was observed. We should note there that limitations of fast
on-chip memory forced major changes in the algorithm itself. Its architecture
changed from straightforward data oriented to a cluttered memory-caching.

An important optimization for SIMD processing is coalesced memory reading
and writing (non-coalesced read may degrade memory access even by x16 times).
For NVIDIA devices, coalesced memory access is possible if threads within the
so-called half warp (16 threads for current devices) read from the same memory
segment (length from 32 to 256 bytes). If these circumstances are fulfilled, all
data read or write for all 16 threads is done in single instruction, which is a great
improvement for parallel algorithm, when compared to sequential one and CPU.
In case of our GPGPU algorithm we perform a parallel access of global memory
in lines 2, 3, 5, 6, 11, 12 and 13. In lines 2, 3 and 12 reading input data may be
properly organized to assure coalescing. Also reading sequence indexes in line 11
may be coalesced. Accessing cube cells for writing is rather random or we could
say data dependent. Coalescing for lines 5, 6 and 13 cannot not achieved due
to random character of cube intersections writing. The most important problem
with this optimization is that it is highly data-size dependent. If structure of
records changes (even by 1 byte) all the potential of coalescing may be lost. It
could be very hard, or even impossible to achieve a general and generic coalesced
memory access for varying record sizes.

Another possible place for optimization of the algorithm is calculation of ag-
gregation value for given intersection, which is done in lines 11 and 12. This
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simple for loop construct performed by one thread during optimization was ex-
changed with a parallel efficient reduction [15,16] on a set of processors with
logarithmic time complexity (observed a 2x speed-up).

All the mentioned optimizations of the parallel algorithm (especially shared
memory usage) make it much longer, less readable and too complicated to be
presented in a pseudo code version here. Its performance, which is overall about
10 times faster than CPU one is described in the section 3.

At this point we should have a look at the CPU algorithm again. Comparisons
of CPU and GPU algorithms are often not fair for CPU using not optimized code
and not efficient solutions [17]. We can notice that our CPU procedure is really
not efficient from the current double core CPU’s point of view. If we use all
the cores in GPU running parallel threads we should do the same with CPU,
especially if we consider that all currently available CPUs contain at least two,
four or more cores. This conclusion heads us toward a parallel CPU procedure.

procedure calcCubeParallel(cube, cube_size, data, data_size, no_threads)

1 ExecutionPlan plan[no_threads]

2 defParallelPlan(plan, data, data_size, cube, cube_size, no_threads)

3 for 1<=i<=no_threads in parallel do

4 calcCubeCPU(plan[i].data, plan[i].cube, plan[i].data_size)

Fig. 4. A CPU parallel algorithm. defParallelPlan procedure takes input data and
an array of execPlan and defines data ranges for independent threads. Then all threads
with different execution plans are started.

2.4 Parallel CPU Algorithm

A CPU parallel algorithm with many threads is almost as simple as sequential
one. If we have sorted input data then we can, in almost constant time (depen-
dent only on number of threads which is constant), find independent partitions
to assure that concurrent threads will not access the same cube intersection. This
task is done by procedure defParallelPlan in the fig. 4. It returns execution
plan for each CPU thread containing input data partition, output cube section,
data ranges, etc.

According to our expectations the multiple threads CPU algorithm behaves
properly when run on a dual core processor. Two threads increase the speed by
about 40%. Also as it was expected, four threads do not change anything when
run on thwo cores since two of four threads must wait for the processor’s time
all the time.

2.5 Parallel GPU Devices Algorithm

If we have successfully executed a parallel CPU procedure on double core pro-
cessor, can we do the same with two graphical devices? Modern motherboards
and devices with double GPU’s (like GeForce 295GTX) allows up to eight GPUs
in single PC box. This would give us a tremendous speed up.
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CUDA documentation says [1] that for each graphical device one must execute
single CPU thread which keeps the context and host code communicating with
the dedicated device. So, for two devices it seems fine to have a dual core CPU.
For four devices, a quad core system seems to be more sensible. A multiple GPU
test was created exactly in the same way as parallel CPU code except for the
line 4, where we call a GPU calculation algorithm. Limited space does not allow
us to present this straightforward procedure here.

Surprisingly, the results are exactly opposite to what we could expect. The
overall execution time of a cube calculation on two GPUs was longer than with
one GPU! This problem is widely discussed by CUDA programmers and seems to
be a limitation of current popular motherboards and CPUs. There are some an-
ticipated changes in Intel’s Nehalem i7 architecture but not yet evaluated widely
by the community. Also cost of this most powerful chip together with appropri-
ate GPU devices places all the system rather in advanced business market not
an average customer which is against the assumption of bringing supercomputer
power to the masses.

Why multiple GPU performance is so bad? The reason is in the specific task
we execute. As many other database algorithms it is highly data intensive. Pro-
cessing power is not so crucial. The most of the procedure is just reading or
writing data. Also important part of the code is only copying data from RAM to
the device’s global memory. This is where our program meets the PCI Express
(Peripheral Component Interconnect Express) standard bottleneck. Although
version 2.0 of the standard works with x16 speed that is about 3GB/s. If we
plug-in a double graphic card in a single slot it degrades to x8. Therefore, the
resulting times must be much worse than for a single GPU. But database ap-
plications are almost always data intensive and scalability of GPGPU database
solutions for multiple devices is right now questionable.

3 Results

3.1 Experiment Set Up

The test environment constituted a machine with Intell’s 3Ghz CPU Core2 Duo,
4GB of RAM and single NVIDIA GTX 295 card. This GPU device is build of
two multiprocessors (1.242 GHz, 240 cores and 896MB of DDR3 memory each).
Sequential algorithms was executed on CPU while parallel algorithm on one or
both GPU devices.

The data input used for testing was a flat data table (detailed table) with 25
millions records. Each record contained fields: Year, Month, Day, Group, Product
and Amount. The data has thus 2 dimensions: time and product with 3 levels
(year, month, day) in the time dimension and 2 levels in the product dimension
(product group, product). The measure used was a sum of sales amount. The
resulting OLAP cube with the highest granularity with all possible intersections
contained 1 424 016 aggregations.

In the experiment, for CPU code pure C as the only programming language,
while for GPU CUDA for C from SDK version 3.0 was used.
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Fig. 5. (left) Running time against data sample size. (right) Performance improve-
ment when adding more threads/GPU devices.

3.2 CPU and GPU Performance

The experiment was run on subsequent samples of the input data from 1 to
25 millions records. We divided performance comparison into two parts. The
first one focuses only on pure algorithm running times, the second compares
scalability of both algorithms and executing hardware.

The graph of running times, including only pure algorithm execution, without
any additional set up operations, are given in the fig. 5 (left). We measured only
the time spent by each thread inside the cube calculation procedure. Therefore
we performed the experiment with five different execution set-ups: one, two and
four CPU threads, one and two GPU devices. Since the algorithm is linear and
can be well divided into independent partitions the running times as expected
present a speed up of about 50% when run in multiple threads and multiple
devices configurations, as expected.

The GPU implementation of the algorithm is about 10 times faster than the
CPU one. Single GPU peek performance processes more than 1 million records
per millisecond, while single CPU thread achieved only about one hundred thou-
sands records per millisecond.

However, we must point out here that the GPU algorithm requires time con-
suming transfer of data between RAM and graphical device’s global memory.
This very time consuming operation performed over PCIE bus interface con-
sumes much more time than the algorithm itself and for 25M records took about
340ms (17 times longer than the algorithm itself), which make the overall GPU
execution pointless if the cube generation, or any other operation, is the only
task to be done. This problem is mostly not mentioned by many authors who
often show only ”computation time”. Utilization of GPGPU in databases may
be sensible if data may be stored in the device’s memory for longer time. Only
device memory based data storage and execution engine working both on CPU
and GPU sides could properly handle this mission.
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The second analysis presents results of the algorithm and execution engine
(CPU or GPU) scalability when switching from single to multiple processors
environment. The fig. 5 (right) presents percentage improvement of overall pro-
cedure execution time (including set up operations, memory allocation, cleaning,
data copying forth and back). As expected we can see good improvement around
40% for CPU, while for GPU we can observe degradation of overall speed. As
it was said earlier this problem is caused by PCI-Express interface which slows
down for concurrent data transfers. The final results for two graphical devices
running in parallel are about 5% slower than one graphical device. The only
benefit be could observe of using two devices is the doubled memory capacity,
which would enable us to execute tasks of more than 64M records.

4 Conclusions

In this paper we analysed CPU and GPU implementation of a typical database
computational algorithm. Both CPU and GPU code was highly optimised to
assure peek performance.

When comparing just database records processing time, the GPU version
proved to be significantly faster than its sequential CPU counterpart. In case of
NVIDIA CUDA capable devices number of threads physically executed in the
same clock cycle varies from 8 for the simplest mobile GPUs to hundreds for the
most advanced ones (like GPUs from Fermi or Tesla lines). In this case, since
most of the algorithm is concurrent, Amdahl’s law promises great performance
and it can be observed.

Our experiments proved that the practice of GPGPU programming is far from
theoretical capabilities if special care on implementation is desisted. Procedures
need to optimized at a very low level. The best results can be achieved only for
full memory bandwidth and instruction throughput.

The CPU version was much easier to be codded. It took only about 2 hours
to get it working with two threads, while GPU code took about 2 weeks of de-
bugging, profiling and optimizing. Although, there are API interfaces for many
programming languages still GPGPU programming is highly limited by hard-
ware capabilities. An inexperienced programmer may face an unbreakable barrier
of shared memory banks conflicts, memory bandwidth, number of registers per
processor, templates meta programming, limitations in task synchronization or
inter task communication.
Predicted advantages of utilization of GPU devices in databases:

– Enormous instruction throughput and data bandwidth. If there is a possibil-
ity of storing all the database in a GPU device memory (the most advanced
cards may offer together up to 16GB) one may expect really spectacular
results by minimizing time costly transfers between CPU RAM and device.
However, there is no clear idea how a generic database storage can be orga-
nized to optimize GPU performance.

– Possible speed up of algorithm building blocks when using many well docu-
mented APIs with primitives like sorting, prefix-sums, array packing, etc.
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– A GPU device may be often exchanged or multiplied up to 8 devices at low
cost. Even an average PC can be equipped with a high performance GPU
device achieving a low cost excellent improvement in performance.

Among properties of GPU devices we should enumerate sources of potential
problems for database management systems:

– GPGPU hardware and its programming languages are still at the beginning
of the evolution process. Programming is difficult and very low-level, highly
bound to hardware capabilities and internal construction of a particular
device.

– Implementations of memory intensive algorithms must be optimized for
given, fixed input data. This is very unpleasant for database applications,
which must cope with very different and changing data. Moreover, relational
databases with well defined, fixed columns are not the only ones on the mar-
ket. Unfortunately, due to the highly vector-like processing nature, GPUs
are not yet ready for unstructured data. So, there is no well known API
which could help to organize a general database storage and assure peek
GPU performance by for example memory coalesced reads and writes.

– There is no clear way how stored procedures can be implemented at the GPU
side. The same problem arises for object databases when objects’ behaviour
is to act concurrently for many objects in the same time.

– There are so far no evidences that indexes as structures, which must be often
randomly accessed and modified by many threads in the same time, can be
currently efficiently implemented at GPGPU side.

– Although a single thread in NVIDIA CUDA is executed independently from
other threads, a decrease of efficiency may be observed for highly branching
algorithms: when a single thread computes its branch, other threads at given
streaming processor must wait.

– Scalability of multiple devices systems suffer from PCI-E interface limitations
and may slow down the overall application.

– ACID properties need independent host threads running on single or many
devices in the same tine. To be evaluated if possible with current GPU
devices at proper level.

Last but not least, we believe that GPGPU processing will be important for
future DBMSs and we expect effort of both GPU and database communities to
achieve a significant cooperation of both technologies.

References

1. NVIDIA Corporation, CUDA programming guide (2009), www.nvidia.com/cuda
2. ATI Corporation, ATI stream sdk v2.2 documentation,

http://developer.amd.com/gpu/ATIStreamSDK

3. Khronos Group, OpenCL - the open standard for parallel programming of hetero-
geneous systems, http://www.khronos.org/opencl/

www.nvidia.com/cuda
http://developer.amd.com/gpu/ATIStreamSDK
http://www.khronos.org/opencl/


Comparing GPU and CPU in OLAP Cubes Creation 319

4. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers C-21, 948–960 (1972)

5. NVIDIA Corp., CUDA C posters, www.nvidia.com/object/SC09posters.html
6. Govindaraju, N.K., Lloyd, B., Wang, W., Lin, M.C., Manocha, D.: Fast compu-

tation of database operations using graphics processors. In: SIGMOD Conference,
pp. 215–226. ACM, New York (2004)

7. Bakkum, P., Skadron, K.: Accelerating sql database operations on a gpu with
cuda. In: Kaeli, D.R., Leeser, M. (eds.) GPGPU. ACM International Conference
Proceeding Series, vol. 425, pp. 94–103. ACM, New York (2010)

8. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N.K., Luo, Q., Sander, P.V.: Rela-
tional Joins on Graphics Processors. In: Wang, J.T.-L. (ed.) SIGMOD Conference,
pp. 511–524. ACM, New York (2008)

9. Govindaraju, N.K., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: high perfor-
mance graphics coprocessor sorting for large database management. In: SIGMOD,
pp. 325–336 (2006)

10. Raymond, T., Wagner, A., Yin, Y.: Iceberg-cube computation with pc clusters. In:
Proc. ACM SIGMOD Conf. (2001)

11. Dehne, S.H.F., Eavis, T., Chaplin, A.: Parallelizing the data cube. In: Proc. Eighth
Int’l Conf. Database Theory (January 2001)

12. Lauer, T., Datta, A., Khadikov, Z.: A CUDA-powered in memory OLAP server.
NVIDIA Research Summit (2009)

13. Koral, K.: Benefits from BI at ALMA. In: SAS Business Forum, Poland (2007)
14. Shams, R., Kennedy, R.A.: Efficient histogram algorithms for NVIDIA CUDA com-

patible devices. In: Proc. Int. Conf. on Signal Processing and Communications
Systems (ICSPCS), Gold Coast, Australia, pp. 418–422 (December 2007)

15. Blelloch, G.E.: Prefix sums and their applications. In: Sythesis of parallel algo-
rithms, pp. 35–60. Morgan Kaufmann, San Francisco (1990)

16. Harris, M.: Optimizing parallel reduction in CUDA (2008)
17. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish,

N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.:
Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on
cpu and gpu. SIGARCH Comput. Archit. News 38(3), 451–460 (2010)

www.nvidia.com/object/SC09posters.html


I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 320–331, 2011. 
© Springer-Verlag Berlin Heidelberg 2011  

A Power Consumption Analysis Technique Using  
UML-Based Design Models in Embedded Software 

Development* 

Doo-Hwan Kim1, Jong-Phil Kim1, and Jang-Eui Hong2 

1,2 Chungbuk National University, Dept. of Computer Science, 
410 Sungbongro, Heungdukgu, Cheongju, 361-763, Rep. of Korea 

{dhkim,kimjp}@selab.cbnu.ac.kr, jehong@chungbuk.ac.kr 

Abstract. Although the power consumption of embedded system depends on 
the operation of hardware devices, software behaviors give great effect to the 
power consumption because of its functionality and complexity growth. This 
paper proposes a power consumption estimation technique using design models 
of software to support energy-efficient embedded software development. Even 
though code-based power analysis techniques have been proposed, these 
techniques have demerits that the analysis time is long and feedback is not easy. 
Our proposed technique makes use of UML behavior models for the power 
consumption analysis in order to overcome the demerits of code-based analysis. 
When comparing with the existing code-based analysis, our technique can 
provide the power analysis result at earlier phase than implementation. 
Therefore, software engineer can apply our technique to select energy-efficient 
design decisions in embedded software development process. 

Keywords: Power consumption analysis, UML models, Embedded software. 

1   Introduction 

Embedded systems have a limited power supply because they make use of limited 
hardware devices and used in wireless environment, frequently. Accordingly, the 
importance of power consumption management has been emphasized in the practical 
application of embedded systems. So, there have been hardware-driven studies that 
develop long-lasting battery and low power device [1]. However, since software is 
recently forming a greater part of embedded system and becomes complicated in its 
functionality, several researches became interested in the power-related works of 
embedded software [2]-[3].  

The existing studies on power consumption analysis of embedded software have 
been conducted in the level of instructions or source codes. However, because of a 
large number of instruction cycles and its fine-grained analysis, these approaches 
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have shortcomings that the analysis time is long and the feedback of the analysis 
results is not easy, even though the analysis result is appropriate[3]-[9]. To 
complement these weaknesses, some studies have been conducted on model-based 
power analysis that provides the advantages of high power saving and fast analysis 
time, as shown in Fig. 1. 

 

Fig. 1. Power analysis efficiency by abstraction levels [10] 

Most studies on model-based power analysis are mainly performed using specific 
models which represent the power properties of embedded software [10]-[12]. 
However, these studies have hassles that not only require additional efforts to develop 
the model for power analysis only, but also difficult to reflect the analysis result to 
software design models. Therefore, this paper proposes a power consumption analysis 
technique using design models based on UML 2.0 [13] without developing any other 
specific model in the process of embedded software development. Our proposed 
technique can help designers to select efficient design decisions in the early phase of a 
development. Also, it provides the advantage of time reduction for power 
consumption analysis in comparison with source-code based techniques. 

The rest of the paper is organized as follows. In Section 2 we survey the related 
work. Section 3 explains the process of a model-based power consumption analysis 
which we are proposed. In Section 4, we illustrate the experiments of our technique 
and the results we obtained. Finally, in Section 5 we conclude this paper and present 
future work. 

2   Software Power Analysis 

The techniques of software power analysis are categorized into 3 classes: instruction- 
based analysis, code-based analysis and model-based analysis. There are many 
distinguishable researches in each category, but we survey on model-based analysis 
techniques which are related with our research approach. 

The power analysis techniques using software model are proposed by Tan [10], Jun 
[12], Dhouib [14] and Kim [15]. Tan analyzed the energy consumption of embedded 
software considering with the communication between tasks, which compose the 
architecture of embedded software. The architecture is represented by SAG (Software 
Architecture Graph), which nodes indicate executable tasks and the edges indicate the 
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communication links. After building the SAG, Tan showed that energy consumption 
can be reduced by graph reduction technique which uses to decrease the number of 
tasks and communication loads. However, even if Tan made use of the SAG as a 
software model, the nodes (tasks) in the graph are implemented with C language to 
estimate the power consumption.  

Jun [12] estimated the energy consumption of embedded software using the energy 
interface automata which models the states of a system. After defining the internal 
behavior of software component with the energy interface automata, they assigned 
energy consumption rates to the nodes and edges of the automata and then analyzed 
the energy consumption through automata simulation. However this technique has a 
limit of that the values of the nodes and edges, i.e., energy vector values were 
randomly assigned.   

The technique developed by Dhouib [14] is to analyze the energy consumption of 
software system using an extension of AADL (Architectural Analysis and Design 
Language). After describing software and hardware architecture models, the software 
model is deployed to hardware model to analyze energy consumption of a system. 
Although this paper claimed that the power consumption is analyzed with the data 
transfers that handled with IPC mechanisms, the technique is focused on the software 
model deployment onto the hardware model without the suggestion of an energy 
analysis technique.  

Although above techniques are model-based power consumption analysis 
approaches, additional effort is required to create the analysis model in the process of 
embedded software development, and also did not provide the seamless approach to 
support UML-based software modeling in model-driven development framework 
[16]. Kim [15] proposed UML model based power analysis technique. This 
proposition is our prior research and it just focused on the establishment of energy 
library and its usability. 

3   Proposed Estimation Process 

The power consumption analysis technique of embedded software proposed in this 
paper uses the behavioral models of UML 2.0[13]. The sequence diagram of UML 
can represent the details of software behaviors depending on the flow of time, and can 
describe the internal actions of a specific function with an action language [17]. 
Therefore we design the behaviors of embedded software using UML such as class 
diagram (CD), sequence diagram (SD), interaction overview diagram (IOD), and 
action language (AL), and then analyze power consumption using these models. Such 
behavioral models can intuitively depict the functional behaviors of embedded 
software, can occur in real operation. 

Our estimation process of model-based power consumption is shown in Fig. 2. The 
estimation process is started with UML design models, and the models transformed to 
CFG (Control Flow Graph) [18]. Through the traversal of the CFG, we find an EBU 
(Energy Behavioral Unit), which is defined as the basic unit of power consumption 
analysis. The sum of the power consumptions of every EBU is our estimation result.  
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Fig. 2. Model-based power consumption estimation process 

3.1   Transform UML Model to CFG 

The design model represented with UML is transformed to CFG which is a connected 
graph and has strong expressiveness for behavioral sequence of software function. 
This transformation is to unfold the hierarchical structure of UML diagrams, or to 
integrate diagrams drawn in several pages into one. Thus the CFG reveals 
synchronous action, asynchronous action, parallel action, branch action, fork and join 
actions, and etc which are inherent in the UML diagrams.  

Using the CFG is easier to identify power consumption factors than UML models. 
The CFG is used as the input of simulation that calculates the power consumption of 
software design model according to the behavior of software. The algorithm for 
creating CFG from UML models is presented in detail by the study of Garousi [18]. 
We define here the node structure of our CFG as follows: 

 
Struct CFG_NODE { 
Node_id := node identifier; 
Predecessor_Node := node identifiers; 
Successor_Node := node identifiers; 
BelongTo := diagram_name.object_name; 
Guard_Cond := condition clause to control the behaviors alt, loop, 

etc, appeared in SD. 
 
Node_Type := UML element node type;   
Node_Type_Start := boolean;   
Node_Type_End : = boolean; 
 
// to represent method call or action language appeared in SD. 
Included_Category := {FunCall, ActionLang} 
Included_Token_Set : = a linked list of terms, appeared in FunCall 

or ActionLang; 
  } End_Struct  

3.2   Building Energy Library 

The energy library as shown in Fig. 2 is a component of infrastructure that should be 
constructed in advance for our power consumption analysis. Our energy library is 
based on EBU, and defined as follows;  

[Definition] Energy library EL is defined with a tuple,  

EL = <E, V, α>                                                        (1) 
where, E is a set of EBUs, V is a set of virtual instructions, and α is a set of mapping 

actions such that e ∈ E  { v | v ∈ V }.  
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The EBU is the basic unit derived from the behavior analysis of UML model 
elements to calculate power consumption. To elicit the EBU, we investigate UML 
meta-models which define all structural components of UML diagrams [13]. EBUs 
are corresponding to class identifiers from the meta-models, and the identifier has its 
behavioral operations. This means that EBU can consume electric power by the 
operations. The identified EBUs are stored into our energy library, and the list of 
EBUs is shown in Table 1. 

Table 1. List of EBUs 

Diagrams EBUs 

SD Message (send, receive), MessageSort (SynchCall, AsynchCall, Signal), 
InteractionOperator (alt, opt, loop, par) 

IOD Fork, Join (wait), Invocation (Create), InterruptableActivityRegion 

AL Bitwise Operator (+, -, *, /, %, <<, |, !, ==, &&, >=, etc.), 
Function Operator (read, write, malloc, etc.) 

 
Virtual instruction, V in Definition (1) is a set of generalized instructions, which is 

defined to estimate power consumption caused by a program execution. The notion of 
virtual instruction is introduced by Bommie [19]. We extend the notion to 
discriminate instruction types. Our virtual instructions are divided into Virtual 
Primitive Instruction (VPI) and Virtual System Function (VSF). The VPI is also a set 
of generalized assembly instructions created from compiling AL on an ARM 
processor and VSF is a set of generalized system functions that are provided in 
Embedded Linux Operating System. The list of virtual instructions is shown in Table 
2. Even though more instructions can be identified than those of Table 2, those 
instructions can be implemented with the composition of the instructions in Table 2. 

Table 2. List of virtual instructions 

Types Instructions 

load, store, add. sub, call divide, call module, mult, compare, convertType, 
branch, bitNOT, bitAND, bitOR, bitXOR, bitShiftLeft, bitShiftRight VPI 
Process Manager fork(), waitpid(), wait(), signal() 

IPC msgsnd(), msgrcv(), msgget(), msgctl(), semget(), 
semctl(), semop(), pipe(), pipe open(), pipe write() 

File System fileopen(), fileclose(), fileread(), filewrite() VSF 

Memory Manager shmget(), shmat(), shmdt(), shmctl() 

 
The power consumption of these virtual instructions is profiled by EMSIM 2.0 

simulator [20]. EMSIM simulator generates the values of power consumption in nano 
Joule (nJ) which reflects the platform specific features. To obtain the power 
consumption for every virtual instruction, we develop test codes for each VPI and 
VSF by operand type and by parameter size, respectively. The simulation is 
performed 200 iterations for each operand types of char, short, int, float, and double 
and for each parameter size of 1, 2, 4, 8, 16, ..., 2048 bytes.  

Table 3 shows the sample of energy profiling results for virtual instructions. The 
whole profiling results can find at [21]. 
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Table 3. Estimated power consumption for VPI 

VPI Type Energy(nJ) VSF Parameters Macro-model (nJ) 

char 14.1 fork() - 132202.6 

short 28.1 waitpid() - 25077.3 

int 13.0 wait() - 24986.6 

float 13.0 signal() - 9460.6 

load 

double 13.7 File open() - 17886.6 

char 13.2 File close() - 8262.2 

short 26.4 File read() χ bytes 5.1χ +49308.5 

int 12.5 File write() χ bytes 5.6χ +32022.3 

float 12.8 shmget() - 126358.8 

store 

double 13.2 shmat() - 11599.9 

 
Each EBU is mapped with the combination of one or more virtual instructions at 

least. This mapping is performed by refining the EBU in the same instruction level as 
VPI and VSF. For example, an EBU “alt” is composed of the detail operations which 
are loading the condition variables, comparing the variables, and branching to result 
point. Therefore, the EBU “alt” is mapped with three VPI instructions of load, 
compare and branch. By using this energy library, we can acquire the power 
consumption of each EBU. 

3.3   EBU Detection 

To detect an EBU from the CFG, we traverse every nodes of the CFG sequentially. 
Using the definition of CFG node structure, described in Section 3.1, the EBU 
detection algorithm is shown in Fig. 3.  

 

 

Fig. 3. EBU detection algorithm 
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Like the algorithm depicted in Fig. 3, to be used as a criterion for EBU detection, 
the selected node of CFG is defined as S, which is a node of CFG. The term 
Node_Type_Start indicates that a node is the start node of CFG transformed from a 
UML element. That is used to select a criterion node for EBU detection. And the 
comparison between the node type of the S and EBUs is performed to find the 
corresponding EBU form energy library. Here we assume that an EBU in accordance 
with the node type always exists. The detected EBU is added into the EBU list, and 
the selected node is defined as a successor node of S. Finally, the EBU list will be 
returned as the result of the algorithm. 

3.4   Power Consumption of EBU 

If an EBU is detected from the CFG, the power consumption of the EBU is calculated 
by getting the energy values of the virtual instructions which mapped with the EBU 
within energy library. By repeating EBU detection until the traversal reaches at the 
final node of the CFG, we can calculate the total power consumption, TEC of 
embedded software as follows. 
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The total amount of power consumption, TEC is sum of energy values of all EBUs 
which can be calculated with the energy values Evpi and Evsf of VPI and VSF 
instructions for an EBU, respectively. In this calculation, the power consumption for 
the Evpi and the Evsf by loop iteration and parameter size is calculated prior to the 
final sum.  

4   Experiments 

We have experiments for our power analysis technique with some applications to 
show its applicability. In this section, we first explain our experiment environments, 
and then we show the experiment results to answer to following three questions; How 
about the accuracy of our analysis results with comparison of source-code based 
analysis results? How about the speed-up in the analysis time of our techniques? And 
how to apply our technique in embedded software design process?  

4.1   Experiment Environments 

We develop a tool to analyze power consumption of embedded application, which is 
called ESUML-EA (Embedded Software modeling with UML – Energy Analyzer). 
The ESUML-EA tool [21][22] is developed with Java-Eclipse 3.5 in Windows 2000, 
and supports software modeling with UML 2.0 and estimates the power consumption 
of the software. The code-based power analysis tool which we use to compare the 
analysis results is EMSIM 2.0 [20]. EMSIM 2.0 simulates C code execution based on 
strong-ARM processor architecture and embedded Linux kernel 2.4.x. There are four 
target applications in our experiment, which are popular functions in mobile products 
as follows: (App 1) data retrieval form phone book, (App 2) shortest path selection in 



 A Power Consumption Analysis Technique Using UML-Based Design Models 327 

road-navigator, (App 3) translate image [23] in digital camera, and (App 4) image 
encoding [24] using Huffman coding.  

4.2   Accuracy of Model-Based Analysis  

At first, we examine the accuracy of our proposed technique using four mobile 
applications to verify the applicability for practical embedded software development. 
In order to perform the experiment, we develop UML design models for those 
applications using ESUML-EA, and then analyze the power consumption of these 
applications with the design models (UML diagrams). Fig. 4 and Fig. 5 show one of 
the diagrams and analysis result for App 4 in ESUML-EA screen. 

 

Fig. 4. A diagram of App 4 using ESUML-EA 

Fig. 4 shows a sequence diagram of the encoding behaviors. In the diagram, the 
object TreeNode has their detail action which represents with action language, 
appeared in annotated notation. Also the loop construct can iterate until the given max 
number appeared in below property window. The power consumption for every EBU 
which consists of the encoding behaviors is shown Fig. 5. 

 

Fig. 5. The analysis result of App 4 using ESUML-EA 
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Also, we analyze the power consumptions of those four applications, implemented 
with C language to compare with our model-based analysis results. The code-based 
analysis is performed with EMSIM 2.0. The summary of the power consumption 
analysis results for those four applications is listed in Table 4. 

Table 4. Summary of the power consumption analysis results 

Target Module Input Data Estimated Energy Consumption (nJ) Deviation (%) 

 (Bytes) Code-based Model-based  

App. 1 80 113203.6 103936.8 8.91 

App. 2 288 136982.1 135419.3 1.15 

App. 3 262144 11143678.6 10168948.7 9.58 

App. 4 31323 190584749.8 183144624.3 3.91 

As shown in Table 4, the deviation of estimated energy consumption between two 
techniques is lower than 10%. From the results, we believe that our proposed model-
based power analysis technique has a capable of the applicability to embedded 
software development with supporting the change of design model and identifying the 
bottleneck of power consumption to gain the energy-efficient application. 

4.3   Elapsed Time for Analysis  

A model-based power consumption analysis technique is distinguishable in analysis 
time compared with code-based analysis technique because model is more abstract 
than code. To compare the analysis time, we measure the elapsed time of power 
analysis from EMSIM 2.0 and ESUML-EA which run on the same processor.  
Fig. 6(a) shows the elapsed time for the target four applications. 

 

 
(a)                                                    (b) 

Fig. 6. (a) Comparison of the elapsed time for 4 applications, (b) The elapsed time comparison 
by data size in App 4 

As shown in Fig. 6(a), the model-based estimation time is reduced to a half of 
source code-based one. This time reduction is obvious, but on the other hand, this 
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means that our model-based analysis technique is very useful in practical embedded 
software development. We also measure the difference of elapsed time by changing 
the size of input data in App 4 using ESUML-EA. The graph of the measurement is 
shown in Fig. 6(b). From the figure, the elapsed time for the analysis using  
ESUML-EA did not appear to be a big change. This causes that the elapsed time in 
ESUML-EA is calculated by just library retrieval time to get EBU energy values and 
multiply operation time for macro-models and loop iterations.  

4.4   Application of Model-Based Analysis Results  

ESUML-EA, a model-based power consumption analysis tool can report the analysis 
results by unit of diagrams or objects which are composed of design model. 
Therefore, we can identify which object or which function consumes a lot of power 
from the analysis report. This provides useful information to check whether the power 
requirement is satisfied in design phase of embedded software. Fig. 7 shows the 
results of power consumption analysis by the objects for App 4.  

 

Fig. 7. Power consumption by the objects in App 4 

From the Fig. 7, the object TreeMaker, which works to make the encoding tree, 
consumes a lot of power rather than other objects. Thus, when it is required to reduce 
the power consumption of the encoding application, we can investigate the object 
TreeMaker at first to gain high payoff. 

5   Conclusions and Future Work 

This paper describes a model-based power consumption analysis technique to develop 
energy-efficient embedded software. To analyze energy consumption of embedded 
software, our technique provides systematic process which consists of the functions of 
CFG generation from UML models, EBU detection from the CFG, and energy 
consumption calculation. Also we provide energy library which contains the energy 
value for every EBU.    
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The existing techniques of model-based power consumption analysis require 
exclusive models for just energy consumption analysis. However, our technique can 
analyze the power consumption without the development of specific analysis models 
in software development process because of using UML model. To support the 
automation of our technique, we developed ESUML-EA tool for UML-based power 
consumption analysis. We obtained the experimental results that our proposed 
technique can provide the accuracy of power consumption analysis within 10% 
deviation and the reduction of analysis time to a half with comparing of code-based 
analysis technique. 

We believe that our proposed technique gives the benefits of early consideration on 
the power consumption, fast analysis time, and seamless process support in energy-
efficient embedded software development. Future work following the current results 
is on the technique of power consumption analysis for MPSoC (Multi-Processor 
System on Chip) architecture.  
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Abstract. Recently, a new measurement – the advice complexity – was
introduced for measuring the information content of online problems.
The aim is to measure the bitwise information that online algorithms
lack, causing them to perform worse than offline algorithms. Among a
large number of problems, a well-known scheduling problem, job shop
scheduling with unit length tasks, and the paging problem were analyzed
within this model. We observe some connections between advice com-
plexity and randomization. Our special focus goes to barely random al-
gorithms, i. e., randomized algorithms that use only a constant number
of random bits, regardless of the input size. We adapt the results on
advice complexity to obtain efficient barely random algorithms for both
the job shop scheduling and the paging problem.

Furthermore, so far, it has not been investigated for job shop schedul-
ing how good an online algorithm may perform when only using a very
small (e. g., constant) number of advice bits. In this paper, we answer
this question by giving both lower and upper bounds, and also improve
the best known upper bound for optimal algorithms.

1 Introduction

In classical algorithmics, one is interested in designing fast algorithms that create
high-quality solutions for a large set of instances of specific problems. Moreover,
in many practical applications, another challenge arises for the algorithm de-
signer: Often, not the whole input is known at once, but it arrives piecewise in
consecutive time steps. After every such time step, a piece of output has to be
created which must not be changed afterwards, i. e., the algorithm has to com-
pute the output without knowing the whole input. We call such situations online
scenarios and the according strategies to cope with them online algorithms. We
do not give a detailed introduction, but point the reader to the standard litera-
ture, e. g., [4, 9].

Classically, the output quality of an online algorithm is measured by the
competitive ratio [4, 9], i. e., the quotient of the cost of the solution the online
algorithm computes for a particular problem instance and the cost of an optimal
(offline) solution for this instance.
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Here, we are dealing with online algorithms that have access to an additional
advice tape thought of as being written by an oracle O that sees the whole input
in advance and has unlimited computational power. The motivation behind this
setup is that O can give some information about the future parts of the input to
the algorithm. This allows us to measure the amount of such information that
is necessary/sufficient to obtain an online algorithm with a certain competitive
ratio, i. e., we can measure how much information about future the online algo-
rithm is really missing. In some sense, we can see this setup as a generalization
of randomized online algorithms where the algorithm has access to another tape
with random bits written on it. The concept of online algorithms with advice was
introduced in [6] and since then revised and applied to several online problems
in [2, 7]. In the following, we use the same notation as in [2].

Definition 1. An online algorithm A with advice computes the output sequence
Aφ = Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is
the content of the advice tape, i. e., an infinite binary sequence. A is
c-competitive with advice complexity s(n) if there exists a constant α such that,
for every n and for each input sequence I of length at most n, there exists some
φ such that cost(Aφ(I)) ≤ c · cost(Opt(I)) + α and at most the first s(n) bits of
φ have been accessed during the computation of Aφ(I).

Although φ is infinitely long, A only uses a finite prefix during its computation.
However, the length of this prefix is determined by the actual run of A.

Moreover, in this paper we are dealing also with randomized online algorithms,
i. e., online algorithms that are allowed to base some of their calculations on
random decisions.

Definition 2. A randomized online algorithm R computes the output sequence
Aφ = Rφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is
the content of the random tape, i. e., an infinite binary sequence where every bit
is chosen uniformly at random and independently of all the others. By cost(R(I))
we denote the random variable expressing the cost of the solution computed by
R on I. Algorithm R is c-competitive if there exists a constant α such that, for
every input sequence I, E[cost(R(I))] ≤ c · cost(Opt(I)) + α.

Generating random numbers might be expensive. Hence, we are interested in
designing good randomized algorithms that use as few random bits as possible.
It is possible to measure the amount of random bits needed by a randomized
algorithm as a function of the input length, in a similar way as the time complex-
ity, space complexity, or advice complexity is measured. Randomized algorithms
that use only a constant number of random bits, regardless of the input size,
are called barely random algorithms [4], introduced in [12]. The number of ran-
dom bits used by these algorithms is asymptotically minimal, hence they can be
considered the best algorithms with respect to the amount of randomness used.

It is very simple to observe that, if there is a c-competitive randomized al-
gorithm R solving some online problem P using r(n) random bits, where n is
the length of the input instance, there also exists a c-competitive algorithm with
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advice A solving P with advice complexity s(n) = r(n). Indeed, it is sufficient
to provide, for every input, the best possible choice of random bits as an ad-
vice for A, which then simulates R in a straightforward way. This result can be
used for propagating the lower bounds on advice complexity to lower bounds on
randomized algorithms using a restricted number of random bits:

Observation 1. Assume that there is no c-competitive algorithm with advice
that solves an online problem P with advice complexity s(n). Then there is no
c-competitive randomized algorithm that solves P with r(n) = s(n) random bits.

The opposite direction does not necessarily hold, i. e., it is not known if it is
always possible to transform an efficient algorithm with advice into an efficient
randomized algorithm. Nevertheless, the proofs used to construct efficient algo-
rithms with advice can sometimes be adapted to the randomized settings as well.
In this way, we obtain some interesting results about barely random algorithms.

1.1 Contribution and Organization of the Paper

In this paper, we deal with two online problems introduced below, the job
shop scheduling (Jss) problem and the paging (Paging) problem. For both,
we present efficient barely random algorithms in Section 2, which are the first
barely random algorithms known for these problems. The algorithm for Paging,
obtained by adapting the results on the advice complexity of Paging, has a com-
petitive ratio asymptotically equal to the best possible competitive ratio of any
randomized algorithm. The presented algorithm for Jss can reach a competitive
ratio of 1 + ε for any fixed constant ε > 0. This is, however, worse than the best
known unrestricted randomized algorithm, whose competitive ratio converges to
1 with growing input size. In Section 3, we discuss the advice complexity of Jss.
Due to Observation 1, our results presented here imply that our barely random
algorithm for Jss is asymptotically optimal.

1.2 Job Shop Scheduling

First, we are dealing with the following problem called job shop scheduling or
Jss for short (see [2,5,8,9,11] for a more detailed introduction and description).
Let there be two so-called jobs A and B, each of which consists of m tasks. Each
task needs to be processed on a specific machine. These are identified by their
indices 1, 2, . . . , m. Processing one task takes exactly 1 time unit and, since both
jobs need every machine exactly once, we may represent them as permutations
PA = (p1, p2, . . . , pm) and PB = (q1, q2, . . . , qm), where pi, qj ∈ {1, 2, . . . , m} for
every i, j ∈ {1, 2, . . . , m}. The meaning of such a permutation is that the tasks
must be performed in the order specified by it and that the k-th job must be
finished before one may start with job k + 1. If, at one time step, both jobs A
and B ask for the same machine, one of them has to be delayed. The costs of
a solution are measured as the total time needed by both machines to finish all
jobs. The goal is to minimize this time, which we also call the makespan.
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In an online scenario, the permutations PA and PB arrive successively, i. e.,
only p1 and q1 are known at the beginning and pi+1 [qj+1] is revealed after pi

[qj ] has been processed.
We use the following graphical representation, which was introduced in [5].

Consider an (m×m)-grid where we label the x-axis with PA and the y-axis with
PB. The cell (pi, qj) models that, in the corresponding time step, A processes
a task on machine pi while B processes a task on qj . A feasible schedule for
the induced instance of Jss is a path that starts at the upper left vertex of the
grid and leads to the bottom right vertex. It may use diagonal edges whenever
pi �= qj . However, if pi = qj , both A and B ask for the same machine at the
same time and therefore, one of them has to be delayed. In this case, we say
that A and B collide and call the corresponding cells in the grid obstacles (see
Fig. 1(a)). If the algorithm has to delay a job, we say that it hits an obstacle and
may therefore not make a diagonal move, but either a horizontal or a vertical
one. In the first case, B gets delayed, in the second case, A gets delayed.

Observation 2. The following facts are immediate [2,9].

(i) Since PA and PB are permutations, there is exactly one obstacle per row
and exactly one obstacle per column for every instance.

(ii) There are exactly m obstacles overall for any instance.
(iii) Every optimal solution has cost of at least m and therefore every online

algorithm is 2-competitive or better.
(iv) Every feasible solution makes exactly as many horizontal moves as it makes

vertical ones. We call the number of horizontal [vertical] moves the delay
of the solution.

(v) The cost of a solution is equal to m plus the delay of the solution.
(vi) Hitting an obstacle causes additional costs of at most 1 (in certain situations

even none) since one diagonal move can be simulated by exactly one vertical
and one horizontal move.

Furthermore, in [8] it was shown that, for every instance, there always exists a
solution with costs of at most m + �

√
m �.

Let diag0 be the main diagonal (from (1, 1) to (m, m)) in the grid. The diago-
nal that has a distance of i from diag0 and lies below [above] it, is called diag−i

[diagi]. Similar to [8], for any odd d, we consider a certain set of strategies

Dd =
{

Di

∣∣∣∣ i ∈
{
−d− 1

2
, . . . ,

d− 1
2

}}

where Dj is the strategy to move to the starting point of diagj with j steps, to
follow it when possible, and to avoid any obstacle by making a horizontal step
directly followed by a vertical one (thus returning to diagj).

Please note that it is crucial for our analysis that the algorithm returns to
the diagonal even though there might be situations where it is an advantage not
to take the vertical step after the horizontal one.
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(a) The strategies D
−3 and D2
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(b) A hard instance for D5

Fig. 1. An example with two jobs each of size 20. Obstacles are marked by filled cells.

1.3 Paging

The second problem we focus on is among the most-studied online problems with
great practical relevance. The paging problem, Paging for short, is motivated
by the following circumstance: the performance of today’s computers is limited
by the fact that the physical memory is a lot slower than the CPU (this fact is
known as the von Neumann bottleneck). Hence, the concept of a very fast (and
therefore more expensive and consequently smaller) cache is used to store as
much of the content of the physical memory as possible. We aim at maximizing
the communication between the CPU and the cache and thereby minimizing
the more costly communication between the CPU and the physical memory. A
similar situation occurs between the physical memory and the much slower hard
disc. Formally, we deal with the following problem.

Definition 3 (Paging Problem). The input is a sequence of integers repre-
senting requests to logical pages I = (x1, . . . , xn), xi > 0. An online algorithm
A maintains a buffer (content of the cache) B = {b1, . . . , bK} of K integers,
where K is a fixed constant known to A. Before processing the first request, the
buffer gets initialized as B = {1, . . . , K}. Upon receiving a request xi, if xi ∈ B,
then A creates the partial output yi = 0. If xi �∈ B, then a page fault occurs,
and the algorithm has to find some victim bj, i. e., B := (B \ {bj}) ∪ {xi}, and
yi = bj. The cost of the solution A = A(I) is the number of page faults, i. e.,
cost(A) = |{yi | yi > 0}|.

A more complete description of Paging can be found in [4]. Furthermore, in [2,6],
the problem was examined within the scope of advice complexity.

Throughout this paper, by log x we denote the logarithm of x with base 2.
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2 Barely Random Algorithms

In what follows, we construct barely random algorithms for both problems.

2.1 Job Shop Scheduling

We consider the class Dd of diagonal strategies as introduced in Section 1 for
some odd constant d > 1. Consider a barely random algorithm Rd that chooses
a strategy from this class uniformly at random, using at most log d random bits
to do so.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6
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Fig. 2. The competitive ratio of Rd depending on log d for m tending to infinity

Theorem 1. The algorithm Rd achieves an expected competitive ratio that tends
to 1 + 1/d for a growing number of tasks.

Proof. For every odd d, consider the following random variables X1, X2, X, Y :
Dd → �, where X1(Di) is the delay caused by the initial horizontal [vertical]
steps made by the strategy Di, X2(Di) is the delay caused by Di hitting obsta-
cles, X(Di) = X1(Di) + X2(Di) is Di’s overall delay, and Y (Di) = m + X(Di)
is Di’s overall cost. Recall that D−j and Dj make the same amount of vertical
[horizontal] moves at the beginning. Since there are exactly m obstacles in total
for every instance, we immediately get

E[X2] =
1
d

⎛
⎝X2(D0) + 2

(d−1)/2∑
i=1

X2(Di)

⎞
⎠ ≤ m

d

and since X1(D0) = 0, we get

E[X1] =
1
d

⎛
⎝X1(D0) + 2

(d−1)/2∑
i=1

X1(Di)

⎞
⎠ =

2
d

(d−1)/2∑
i=1

i =
d2 − 1

4d
.



338 D. Komm and R. Královič

Due to the linearity of expectation, it follows that

E[Y ] = m + E[X ] = m + E[X2] + E[X1] ≤ m +
m

d
+

d2 − 1
4d

.

Therefore, the expected competitive ratio of Rd is at most

(d+1)m
d + d2−1

4d

m
= 1 +

1
d

+
d2 − 1
4dm

which, for increasing m, tends to 1 + 1/d as claimed.  !

In Section 3 (see Theorem 5), we will prove a lower bound of 1+1/2b+3−ε for any
online algorithm with advice that reads b bits. Together with Observation 1, we
obtain that, for any ε > 0, no randomized algorithm that uses at most b random
bits can obtain a competitive ratio of 1 + 1/2b+3 − ε. Hence, barely random
algorithms for Jss cannot have a competitive ratio that tends to 1 with growing
m. This means they perform worse than the randomized algorithms from [8]
(using an unrestricted number of random bits), which can reach a competitive
ratio that tends to 1 with growing m.

2.2 Paging

Next, we look at Paging and show the existence of a barely random algorithm
that achieves a low competitive ratio. It is well known that no deterministic
algorithm for Paging can be better than K-competitive, where K is the size
of the cache, and that there exists an O(log K)-competitive randomized algo-
rithm [4]. More precisely, there is a Hk-competitive randomized algorithm for
Paging, where Hk =

∑k
i=1 1/i is the k-th harmonic number, and this bound

is tight [1]. To the best of our knowledge, however, all randomized algorithms
for Paging known so far that reach a competitive ratio of O(log K) use Ω(n)
random bits for inputs of length n, and no efficient barely random algorithm for
Paging is known up to now.

In [2, 3], it was shown that there exists an online algorithm with advice A
that reads log b bits of advice and has a competitive ratio of at most 3 log b +
2(K+1)

b +1, where K is the buffer size of A. This result can be easily adapted for
the randomized case:

Theorem 2. Consider Paging with buffer size K, and let b < K be a power
of 2. There exists a barely random algorithm for Paging that uses log b random
bits, regardless of the input size, and achieves a competitive ratio of

r ≤ 3 log b +
2(K + 1)

b
+ 1.

Proof. The proof is almost identical to the proof of Theorem 5 in [3]. The core
idea of this proof is to construct b deterministic algorithms A1, . . . , Ab such that,
for any input instance, the total number of page faults generated by all algo-
rithms together is limited. In particular, the proof of [3, Theorem 5] describes a
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set of b algorithms such that, for any input instance I, the total number of page
faults is bounded by

m
b

2
(3 log b + 1) + m(K + 1),

where m is a certain parameter depending on I. Furthermore, any algorithm
makes at least m/2 page faults on I. Hence, selecting one of the b algorithms
uniformly at random and running it yields a randomized algorithm with an
expected number of page faults m

(
K+1

b + 3
2 log b + 1

2

)
. Thus, the competitive

ratio of such a randomized algorithm is at most

m
(

K+1
b + 3

2 log b + 1
2

)
m
2

=
2(K + 1)

b
+ 3 log b + 1.

Obviously, selecting the algorithm can be done with log b bits.  !
The previous theorem shows that there exists a barely random algorithm for
Paging that uses only log K bits and reaches a competitive ratio of O(log K)
which is asymptotically equivalent to the best possible randomized algorithm.

3 Advice Complexity of Job Shop Scheduling

Here, we consider the advice complexity of Jss, that is, we give lower and upper
bounds on the number of advice bits needed to achieve a certain output quality.
Doing so, we improve and generalize some of the results obtained in [2].

3.1 Optimality

We quickly discuss the amount of information needed for an online algorithm to
produce an optimal output for Jss. Due to space limitations, we do not prove
the following theorem, but point the reader to [10].

Theorem 3. There exists an optimal online algorithm A with advice complexity
s(m) = 2�

√
m � − 1

4 log m for any instance of Jss.

3.2 Competitive Ratio

Consider the proof of Theorem 1: actually, this is a probabilistic proof for the
competitive ratio of an algorithm with advice Ad that uses log d bits of advice
to choose a strategy from Dd, instead of random bits. In fact, as shown in
Observation 1, the best random string for the input can be provided as the
advice. This immediately implies the following theorem.

Theorem 4. There exists an online algorithm with advice Ad that reads log d
advice bits and has a competitive ratio tending to 1 + 1/d.  !
In [10], we showed a slightly better bound which is left out here due to space
restrictions. It is not difficult to see that the above bound is almost tight for every
d. To show this, we give a construction that blocks all diagonals the algorithm
chooses from. Following any of the blocked diagonals causes the algorithm to
have costs of at least m + m/d, whereas an optimal solution has costs of exactly
m + 1.
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Lemma 1. For any d, the competitive ratio of the algorithm Ad is at least 1+1/d.

Proof. Let m be divisible by d and let m/d be even. We now describe how to
sufficiently delay every possible diagonal strategy. Suppose we want to make
sure that every strategy has a delay of at least l (where l is divisible by 2).
At first, we place l obstacles in the center of the main diagonal, i. e., in the
cells (m/2− l/2 + 1, m/2− l/2 + 1) to (m/2 + l/2, m/2 + l/2). For now, let us
focus on the cells which are in the bottom-right quadrant of the (m×m)-grid.
For each i ∈ {1, 2, . . . , (d − 1)/2}, we create one block of obstacles. The block
corresponding to i consists of l − i obstacles. All of these obstacles are put on
the i-th diagonal above the main one, in consecutive rows, just below the rows
used by the block i− 1. In particular, the obstacles of block 1 are located on(

m + l

2
+ 1,

m + l

2
+ 2
)

, . . . ,

(
m + l

2
+ l − 1,

m + l

2
+ l

)
,

the obstacles of block 2 are located on(
m + l

2
+ l,

m + l

2
+ l + 2

)
, . . . ,

(
m + l

2
+ 2l− 3,

m + l

2
+ 2l− 1

)
,

etc. Hence, we need to use l − i rows and l − i + 1 columns to build the block
i (the first column of the block is empty, since block i is on a different diagonal
than block i− 1). To be able to successfully build all of the blocks, we need at
least

l

2
+ 1 + (l − 1) + 1 + (l − 2) + 1 + . . . +

(
l − d− 1

2

)

columns (clearly, if there are enough columns available, there are enough rows
as well). Since we have exactly m/2 columns, we have to ensure that

l

2
+

(d−1)/2∑
i=1

1 + l − i ≤ m

2

⇐⇒ l

2
+

d− 1
2

(1 + l)− d2 − 1
8

≤ m

2
⇐⇒ l ≤ m + d2 − d

d
.

The same construction can be performed in the top-left quadrant in a symmetric
way. In every block, there is one free column. It remains to use the rows not used
by any block (nor the obstacles in the main diagonal) to put a single obstacle to
every such free column. To do so, we use the top-right and bottom-left quadrant.
It is straightforward to observe that this is always possible, even without using
any diagonal neighboring the main one.

An example of this construction for m = 20 and D5 shown in Fig. 1(b).
It is immediately clear that any optimal solution has costs of exactly m + 1.
An optimal solution follows the main diagonal until the first obstacle is hit.
Afterwards, the solution makes one vertical step and follows the first diagonal
below the main one (i. e., diag−1).
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We can therefore guarantee that the competitive ratio of Ad on this instance
is at least

m + m+d2−d
d

m + 1
=

(m + 1)(1 + 1
d)− 1− 1

d + d− 1
m + 1

= 1+
1
d

+
d2 − 2d− 1
d(m + 1)

≥ 1+
1
d
.

 !
Up to this point, we have shown that, with a small constant number of advice
bits, it is possible to perform very well. In [2], it was shown that at least⌊√

16m + 9− 11
8

⌋

bits are needed for any online algorithm with advice to be optimal.
A naturally arising question is whether we can be (1 + Θ(1/m))-competitive

with reading a constant number of advice bits, i. e., if it suffices to use a constant
number of bits to get arbitrarily close to the optimal solution. In the following,
we disprove this.

Theorem 5. For any ε > 0, any online algorithm with advice that reads b bits
of advice cannot be better than (1 + 1/2b+3 − ε)-competitive.

Proof. In [9], it was shown that any deterministic online algorithm A for Jss has
a competitive ratio of at least 9/8. There always exists an adversary that can
make sure that every second move A makes in the upper left quadrant is not a
diagonal move: The intuitive idea is that, after every diagonal move of A, the
algorithm reaches a column and a row in which the adversary has not yet placed
an obstacle. It follows that, if A leaves this quadrant, it already has made at
least m/4 non-diagonal moves and therefore has a delay of at least m/8. This
idea is shown in Fig. 3(a). Recall that we already know that there always exists
an optimal solution with costs of at most m + �√m � (see [8]).

Let m be a multiple of 2b+3. Suppose we are now dealing with any algorithm
Ab that reads b bits of advice while processing an input of size m. We impose
another virtual grid on the (m×m)-grid, where each virtual cell consists of m/2b

original cells. Let us now consider the 2b virtual cells on the main diagonal and
label them S1, S2, . . . , S2b .

We call all original cells that have a deviation of less than m/2b+1 from the
main diagonal the active zone (marked grey in Fig. 3(b)). Any strategy that
leaves this zone at any point makes at least m/2b+1 horizontal [vertical] moves.
We conclude

m + m
2b+1

m + �
√

m � ≥
(

1 +
1

2b+1

)
1

1 + √m �
m

≥ 1 +
1

2b+1 − ε

for sufficiently large m and we may therefore assume that no strategy leaves
the active zone. Observe that we may think of Ab as 2b deterministic algorithms
we have to deal with. We may label them A1, A2, . . . , A2b by sorting the cor-
responding advice in canonical order and assign each deterministic algorithm
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(a) A hard instance as used in [9]

A1

A2

A3

δ3

(b) An instance as used in the proof of The-
orem 5

Fig. 3. An example of how to place the obstacles in such a way that any determin-
istic algorithm cannot make two consecutive diagonal moves in the first quadrant as
presented in [9] and a hard instance for Ab that uses this construction 2b times

Ai to exactly one virtual cell Si. Algorithm A1 enters S1 right after receiving
the first request. We observe that, since S1 has size (m/2b × m/2b), S1’s first
quadrant has size (m/2b+1×m/2b+1). Thus, by applying the scheme used in [9],
we can guarantee that A1 makes at least 2b+2 non-diagonal moves within this
first quadrant, and this causes a delay of at least m/2b+3. Afterwards, we do
not consider A1 anymore. Since no algorithm leaves the active zone, Ai always
enters Si’s first quadrant at some point. If Ai enters Si at its upper left corner,
we can apply the same argumentation as for S1. Therefore, let δi denote the
deviation of Ai from the main diagonal where 0 < δi ≤ m/2b. Without loss of
generality, we assume that Ai is above D0 when it enters Si’s first quadrant. It
is then clear that Ai has already made at least δi horizontal moves (Fig. 3(b)
depicts this situation for i = 3 and δ3 = 2). We now shrink Si to S′

i such that
Ai enters S′

i at its left corner and that S′
i has a size of (m/2b − δi, m/2b − δi).

We can assure that Ai makes at least

⌊⌊ m
2b − δi

2

⌋
/2
⌋
≥
⌊ m

2b − δi − 1
4

⌋
≥

m
2b − δi − 5

4

non-diagonal moves in the first quadrant of Si and the overall delay is therefore
at least

m
2b − δi − 5

8
+ δi =

m

2b+3 +
7δi − 5

8
≥ m

2b+3 .
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It is straightforward to check that a similar strategy is possible if Ai is below D0.
Thus, we can conclude that Ab cannot achieve a competitive ratio better than

m + m
2b+3

m + �
√

m �

which is greater than 1+ 1
2b+3 −ε for sufficiently large m, finishing the proof.  !

Using this result, an easy calculation shows that the bound from Theorem 1
is tight up to a small multiplicative constant tending to 1 for an increasing b.
See [10] for the details omitted here due to space restrictions.
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Abstract. Given an undirected graph G and a nonnegative integer k,
the NP-hard Cluster Editing problem asks whether G can be trans-
formed into a disjoint union of cliques by applying at most k edge mod-
ifications. In the field of parameterized algorithmics, Cluster Editing

has almost exclusively been studied parameterized by the solution size k.
Contrastingly, in many real-world instances it can be observed that the
parameter k is not really small. This observation motivates our inves-
tigation of parameterizations of Cluster Editing different from the
solution size k. Our results are as follows. Cluster Editing is fixed-
parameter tractable with respect to the parameter “size of a minimum
cluster vertex deletion set of G”, a typically much smaller parameter
than k. Cluster Editing remains NP-hard on graphs with maximum
degree six. A restricted but practically relevant version of Cluster

Editing is fixed-parameter tractable with respect to the combined pa-
rameter “number of clusters in the target graph” and “maximum number
of modified edges incident to any vertex in G”. Many of our results also
transfer to the NP-hard Cluster Deletion problem, where only edge
deletions are allowed.

1 Introduction

The NP-hard Cluster Editing problem is among the best-studied parameter-
ized problems. It is usually defined as follows:

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Can G be transformed into a cluster graph by applying at
most k edge modifications?

Herein, an edge modification is either the deletion or insertion of an edge and
a cluster graph is a graph where every connected component is a clique. The
cliques of a cluster graph are referred to as clusters. Cluster Deletion is
defined analogously except that only edge deletions are allowed.

So far, the proposed fixed-parameter algorithms for Cluster Editing almost
exclusively examine the parameter solution size k. While several algorithmic
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improvements have led to impressive theoretical results, it has been observed
that the parameter k is often not really small for real-world instances [3]. Still,
the fixed-parameter algorithms can solve many of these instances [3], which raises
the question whether there are “hidden parameters” that are implicitly exploited
by these algorithms. In the spirit of multivariate algorithmics (cf. [15]), this work
aims at identifying promising new parameterizations for Cluster Editing that
help to separate easy from hard instances.

Related Work. The NP-hardness of Cluster Editing has been shown several
times [14, 17, 1]. The problem remains NP-hard even when the solution may
contain at most two clusters [17]. The parameterized complexity of Cluster

Editing with respect to the parameter k has been extensively studied. After a
series of improvements [10, 9, 16, 11, 2, 4], the currently fastest fixed-parameter
algorithm for this parameter has running time O(1.82k+n3) [2] and the currently
smallest problem kernel contains at most 2k vertices [4]. Several experimental
studies demonstrate that fixed-parameter algorithms can be applied to solve
real-world instances of Cluster Editing [6, 3]. Further theoretical studies have
dealt with the parameterized complexity of different generalizations of Cluster

Editing [5, 12, 8] for example by replacing the clique requirement in the cluster
graph with other models for dense graphs. The problem to transform a graph
into a cluster graph by a minimum number of vertex deletions is called Cluster

Vertex Deletion(CVD). Hüffner et al. [13] presented an O(2kk9 + nm)-time
iterative compression algorithm for CVD.

Our Results. Motivated by the observation that the parameter k is often very
large in practice and subsequent calls for “better parameterizations” [7], we con-
sider new parameters for Cluster Editing. Answering an open question by
Dehne [7], we show that Cluster Editing is fixed-parameter tractable with
respect to the parameter “cluster vertex deletion number” c of the input graph G.
Moreover, we consider the parameter t denoting the “maximal number of mod-
ified edges incident to any vertex”. First, we show that Cluster Editing is
NP-hard for maximum degree-six graphs. Since in an optimal solution the num-
ber of incident edge modifications of a vertex is bounded by its degree, there is
no hope for fixed-parameter tractability with respect to t. However, we can show
that a restricted version of Cluster Editing is fixed-parameter tractable when
combining t with the parameter d denoting the number of cliques in the final clus-
ter graph. Our methods include enumerative approaches, matching techniques,
and problem kernelization.

Due to lack of space, several proofs are deferred to a full version of the paper.

Preliminaries. Given a graph G = (V, E), we use V (G) to denote the vertex set
of G and E(G) to denote the edge set of G. Let n := |V | and m := |E|. The
(open) neighborhood N(v) of a vertex v is the set of vertices adjacent to v, and
the closed neighborhood is N [v] := N(v) ∪ {v}. For a vertex set W let EW :=
{{v, w} | {v, w} ⊆W} denote the set of all size-two subsets of W . We use G[V ′]
to denote the subgraph of G induced by V ′ ⊆ V , that is, G[V ′] := (V ′, EV ′ ∩E).
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Moreover, G − v := G[V \ {v}] for a vertex v ∈ V and G − e := (V, E \ {e}).
Let EΔF := (E \ F ) ∪ (F \ E) denote the symmetric difference of two sets E
and F . The edit distance between two graphs G1 and G2 on the same vertex set
is |E(G1)Δ E(G2)|. Given three graphs G1, G2, and G3, we say that G2 is closer
to G1 than G3 if the edit distance between G1 and G2 is strictly smaller than
the edit distance between G1 and G3. For a graph G = (V, E) and a set S ⊆ EV

let GΔS := (V, EΔS) denote the graph that results by modifying G according
to S. A set of pairwise adjacent vertices is called clique.

2 Cluster Vertex Deletion Number

In this section, we present fixed-parameter algorithms for Cluster Editing

(CE) and Cluster Deletion (CD) parameterized by the size of a minimum-
cardinality vertex set Y such that removing Y from the input graph G results in
a cluster graph. In the following, we will refer to this parameter as cluster vertex
deletion number c of G. Note that c is bounded from above by the size k of a
minimum-cardinality edge-modification set: deleting for each edge modification
one of the two vertices (arbitrarily chosen) clearly results in a cluster graph. Our
algorithms solve the optimization version of CE and CD, that is, they find a
minimum-cardinality edge modification or edge deletion set, respectively. Both
algorithms make use of the following observation for cliques that are large in
comparison to the size of their neighborhood. These cliques are preserved to
large extent by any optimal solution for CE or CD.

Lemma 1. Let K denote a clique in G of size at least 2 · |NG(K)|. Then, for ev-
ery optimal edge modification set (optimal edge deletion set) S, the graph GΔ S,
contains a cluster K ′ with

|K ∩K ′| ≥ |K| − 2|NG(K)|.
Proof. We show the lemma for the case of an optimal edge modification set S.
Let K ′

1, . . . , K
′
� denote the clusters in GΔ S with K ′

i ∩ K �= ∅. Furthermore,
define Bi := K ′

i ∩ K and observe that K =
⋃�

i=1 Bi. Note that in the case
that |K| ≤ 2|NG(K)| + 1 the lemma trivially holds since |B1| ≥ 1 and |K| −
2|NG(K)| ≤ 1.

Assume towards a contradiction that all Bi’s contain less than |K|−2|NG(K)|
vertices. This implies that—in order to separate the Bi’s from each other—the
solution contains at least

1/2
�∑

i=1

|Bi|(|K| − |Bi|) > 1/2
�∑

i=1

(|Bi| · 2|NG(K)|) = |NG(K)| · |K|

edge deletions. Hence, one obtains a cluster graph that is closer to G by deleting
in GΔ S all edges between K and N(K) (at most |N(K)| · |K|) and undoing all
edge deletions between vertices in K (at least |N(K)| · |K|+ 1); a contradiction
to the fact that S is optimal. It is easy to verify that all steps of the proof hold
for an optimal edge deletion set, too. 
�
Next, we present our fixed-parameter algorithm for Cluster Editing.
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2.1 Cluster Editing

Given an input graph G and a size-c cluster vertex deletion set Y of G, a key
observation used by our algorithm is that clusters in G−Y that are much larger
than Y will not be split by any optimal edge modification set. Recall that an
isolated clique of a cluster graph is called a cluster.

Lemma 2. Let Y denote a size-c cluster vertex deletion set and let K denote a
cluster in G−Y of size at least 3c+1. Then, for every optimal edge modification
set S, the graph GΔ S contains a cluster K ′ with

1. K ⊆ K ′ and
2. K ′ ⊆ K ∪ Y .

Proof. Let K1, . . . , K� (� ≥ 1) denote the clusters in GΔ S with Ki ∩ K �= ∅.
Let Bi := K ∩Ki and note that K =

⋃
Bi. Without loss of generality, assume

that B1 has maximum size of all Bi’s. Since NG(K) ⊆ Y and by Lemma 1, |B1| ≥
c + 1. First, we show that K1 \ B1 ⊆ Y . Let X := K1 \ (B1 ∪ Y ) and assume
towards a contradiction that X �= ∅. Since |B1| ≥ c + 1 one obtains a cluster
graph that is closer to G than GΔ S by making X an isolated clique, which
requires at most |X | · c additional edge deletions, however, allows one to undo
the edge insertions between B1 and X which amount to at least |X | · (c + 1).

Next, we prove that � = 1, directly implying the lemma. Assume towards
a contradiction that � > 1. Since |B1| > c one obtains a cluster graph that
is closer to G than GΔ S by deleting all edges between B2 and K2 \ B2 (at
most |K2 ∩ Y | · |B2| additional edge deletions), inserting all edges between B2
and K1 \ B1 (at most |B2| · |K1 ∩ Y | edge insertions since K1 \ B1 ⊆ Y ), and
undoing the edge deletions between B2 and B1 (at least |B2| · |B1| ). Since
|B2| · |K2 ∩ Y |+ |B2| · |K1 ∩ Y | ≤ |B2| · c < |B2| · (c + 1) ≤ |B2| · |B1|, this is a
contradiction to the fact that S is optimal. 
�

According to Lemma 2, a cluster in G − Y of size at least 3c + 1 will not be
split by any optimal edge modification set and also not “merged” with any other
clusters of G−Y . We refer to these clusters of G−Y as large clusters. The basic
idea to establish fixed-parameter tractability is as follows (see Alg. 1 for an out-
line). Given a cluster vertex deletion set Y , in a first step, we guess the partition
of Y “induced” by the clusters generated by an optimal edge modification set
(Line 5 of Alg. 1). We refer to the sets of such a partition as fixed subclusters in
the following. Then, in a second step, we guess which of these fixed subclusters
will end up in a cluster together with a large cluster (Line 10 of Alg. 1). From
Lemma 2, we know that the large clusters cannot be split, and since the sub-
clusters in Y are fixed, the large clusters end up in a final cluster with at most
one fixed subcluster. Hence, the “mapping” of the large clusters to the respec-
tive fixed subclusters can efficiently be done by computing a maximum weight
matching. To this end, Alg. 1 employs the subroutine SolveLarge (see Line 13).
The remaining instance is solved by the subroutine SolveSmall. This subroutine
uses data reduction to bound the number of small clusters in G−Y by a function
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Algorithm 1. An algorithm to find an optimal solution for Cluster Editing

Function CEbyCVD(G)

Input: A graph G = (V, E)
Output: Size of an optimal solution S for Cluster Editing

Y = SolveCVD (G) ;1

Let A1, . . . , Ap denote the clusters in G− Y of size at most 3d;2

Let B1, . . . , Bq denote the clusters in G− Y of size at least 3d + 1;3

m1 = +∞;4

forall partitions Q1, . . . , Qt of Y (1 ≤ t ≤ |Y |) do5

Add all edges between vertices in Qi, 1 ≤ i ≤ t;6

Delete all edges between Qi and Qj , 1 ≤ i < j ≤ t;7

Let c1 denote the number of these edge modifications;8

m2 = +∞;9

forall subsets I ⊆ {1, . . . , t} do10

Delete all edges between Qi and Aj , i ∈ I and 1 ≤ j ≤ p;11

Let c2 denote the number of these edge deletions;12

cl =SolveLarge ({Qi | i ∈ I}, B1, . . . , Bp) ;13

cs =SolveSmall ({Qi | i ∈ {1, . . . , t} \ I}, A1, . . . , Aq );14

m2 = min(m2, c2 + cl + cs);15

end16

m1 = min(m1, c1 + m2);17

end18

return m1;19

only depending on c, thus yielding a problem kernel for this subproblem. This
directly implies fixed-parameter tractability.

Next, we focus on the computation of an optimal solution for the subproblem
that has to be solved by SolveLarge. Formally, we have to find a solution to
the following problem Fixed Clique Cluster Editing: Let G = (V, E) be a
graph and let B�Q be a two partition of V such that G[B] and G[Q] are cluster
graphs. Furthermore, let B = {B1, . . . , Bq} be the set of clusters in G[B] and
let Q = {Q1, . . . , Qs} be the set of clusters in G[Q]. The task is to find a cluster
graph Gc on V such that the following cluster constraints are fulfilled:

1. each set in B ∪ Q is a subset of a cluster of Gc,
2. for every Bi ∈ B (Qi ∈ Q) the cluster containing Bi (Qi) does not contain

any other set from B (Q) and at most one set from Q (B), and
3. among all such cluster graphs Gc has minimum edit distance to G.

This problem can be formulated as a bipartite maximum weight matching prob-
lem and, hence, can be solved in polynomial time.

Lemma 3. Fixed Clique Cluster Editing can be solved in polynomial time.

Next, we focus on the problem that has to be solved by SolveSmall, where all
remaining clusters in G− Y have size at most 3c.

Lemma 4. Let Y denote a cluster vertex deletion set for G of size c. If all
clusters in G− Y have size at most 3c, then CE is fixed-parameter tractable.
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Proof. The basic idea to show fixed-parameter tractability is as follows. We
group the clusters of G−Y into different “types”, where two clusters Qi and Qj

of G−Y have the same type if there is a graph-isomorphism φ between G[Y ∪Qi]
and G[Y ∪Qj ] such that ∀v ∈ Y : φ(v) = v. We show that the number of types
of the clusters in G−Y is bounded by 2O(c2) and that if there is a type of which
there are more than O(c2) clusters, then one of these clusters will be a cluster
in the final cluster graph. Hence, we can delete all edges outgoing from this
cluster and remove it from G. Afterwards, since each cluster contains at most 3c
vertices the total number of vertices is bounded by a function only depending
on c, directly implying fixed-parameter tractability.

To bound the number of cluster types, we first classify the vertices in V \Y in 2c

types; two vertices in u, w ∈ V \Y have the same type if NG(u)∩Y = NG(w)∩Y .
Then, a cluster K can be described by a vector of length 2c with at most 3c non-
zero entries, where the ith entry contains the number of type-i vertices in K
(note that the sum of entries does not exceed 3c). Further, two clusters have
the same type if these corresponding vectors are identical. Finally, observe that
there are at most

∑3c
i=1

(3c·2c

i

)
≤ 3c · (3c · 2c)3c = 2O(c2) cluster types.

We now show that for each cluster type we can delete all but c2 clusters. First,
note that there are at most c clusters in a closest cluster graph that contain
vertices from Y . Second, we can assume that each cluster of a closest cluster
graph intersecting with Y contains vertices from at most c clusters of G− Y ; it
is straightforward to verify that otherwise separating the vertices of one cluster
results in a cluster graph with the same or smaller edit distance to G. As a
consequence, each of the at most c clusters intersecting with Y can contain
vertices from at most c clusters of each type. Finally, note that if there is a
cluster K of G − Y such that in a closest cluster graph no vertex of K is in
a cluster intersecting with Y , then K is a cluster of this closest cluster graph.
Hence, if there are c2 + i, 1 ≤ i, clusters of the same type in G − Y , then at
least i of these clusters are clusters in a closest cluster graph, and, hence, can be
deleted (together with the edges between these clusters and Y ). After deleting
these clusters there are at most 2O(c2)c2 + c = 2O(c2) vertices in G. 
�

Using these two results on the running times of SolveLarge and SolveSmall,
we can show the fixed-parameter tractability with respect to c.

Theorem 1. Cluster Editing is fixed-parameter tractable with respect to
the cluster vertex deletion number c of G.

Proof. We use Alg. 1 to compute an optimal solution for CE. First, we show
that Alg. 1 is correct. To this end, let G′ denote a cluster graph with closest edit
distance to G. Since Alg. 1 enumerates all partitions of Y , the sets Q1, . . . , Qt

(Line 5) once one-to-one correspond to the clusters in G′[Y ]. By Lemma 2, all
clusters of size at least 3c + 1 (“large cluster”) in G − Y either form a cluster
in G′ or are contained in a cluster of G′ together with vertices from Y . Since
the algorithm has already guessed the partition of Y , every such large cluster
is contained in a cluster of G′ with the vertices of at most one Qi. By trying
all two-partitions of {1, . . . , t}, Alg. 1 guesses the Qi’s that are clusters in G′
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or that are contained in a cluster together with one large cluster. Note that
the corresponding subproblem exactly corresponds to Fixed Clique Cluster

Editing since each clique Qi is in a cluster with at most one large cluster Bj

and vice versa. The remaining clusters in G−Y all have size at most 3c. Hence,
by Lemma 4 the remaining instance can be solved in fpt-time.

For the running time note that there are O(cc) partitions of Y . For each such
partition we try all two-partitions. Hence, Alg. 1 enters the body of the inner
for loop O(2c log(c)+c) times. Since by Lemma 3 the subroutine SolveLarge can
be applied in polynomial time and since subroutine SolveSmall runs in fpt-
time (by Lemma 4), Alg. 1 runs in fpt-time. A naive estimation gives a bound

of 22O(c2)
for the combinatorial explosion in the running time. 
�

2.2 Cluster Deletion

For Cluster Deletion parameterized by the cluster vertex deletion number,
we can achieve an algorithm with a better running time than the algorithm
for Cluster Editing (that in the subprocedure SolveSmall basically resorts
to brute-force). The main feature of Cluster Deletion that helps in achieving
this better algorithm is that none of the clusters in G−Y , where Y is the cluster
vertex deletion set, can be merged since only edge deletions are allowed.

Theorem 2. Cluster Deletion can be solved in c7c|V | ·poly(n) time, where c
is the cluster vertex deletion number of G.

3 Maximum Degree

We show that Cluster Editing is NP-hard even when restricted to graphs with
maximum degree six. To the best of our knowledge all previous NP-hardness
proofs require an unbounded degree. As an immediate consequence, Cluster

Editing is NP-hard even if each vertex is only incident to a constant number
of modified edges.

For the NP-hardness proof we present a reduction from 3-SAT. The basic idea
of the construction is as follows. For each variable xi of a given 3-CNF formula
we construct a so-called variable cycle of length 4m. It is easy to verify that only
deleting every second edge gives an optimal solution for an even-length cycle.
Thus, the two corresponding possibilities are used to represent the two choices
for the value of xi. Moreover, for each clause Cj containing the variables xp, xq,
and xr, we connect the three corresponding variable cycles by a clause gadget.
In doing so, the goal is to ensure that if the solutions for the variable gadgets
correspond to an assignment that satisfies Cj , then all P3s of the clause gadget
can be destroyed by four edge modifications and otherwise by at least five edge
modifications. This guarantees that there is a satisfying assignment for the 3-
CNF formula if and only if the constructed graph can be transformed into a
cluster graph by exactly 2mn + 4m edge modifications. The details follow.

Given a 3-CNF formula φ consisting of the clauses C0, . . . , Cm−1 over the
variables {x0, . . . , xn−1}, construct a CE-instance consisting of a graph G =
(V, E) and an integer k as follows.
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aj
q4j+1

q4j+2

p4j p4j+1

r4j

r4j+1

Fig. 1. Illustration of the clause gadget for a clause Cj = (xp ∨ xq ∨ xr)

For each variable xi, 0 ≤ i < n, G contains a variable cycle consisting of the
vertices V v

i := {i0, . . . , i4m−1} and the edges Ev
i := {{ik, ik+1} | 0 ≤ k < m}

(for ease of presentation let i4m = i0). So far, the constructed graph consists
of a disjoint union of cycles, each of length 4m. We use the following nota-
tion. The edges {i0, i1}, {i2, i3}, . . . , {i4m−2, i4m−1} of the variable cycle of xi

are called even and all others are called odd.
Moreover, for each clause Cj containing the variables xp, xq, and xr (either

negated or non-negated), we construct a clause gadget connecting the variable
gadgets of xp, xq, and xr. More specifically, let aj be a new vertex and let Ec

j

contain for each i ∈ {p, q, r} the edges {aj , i4j} and {aj , i4j+1} if xi occurs non-
negated in Cj or the edges {aj, i4j+1} and {aj , i4j+2}, otherwise. See Fig. 3 for
an illustration. Finally, let V :=

⋃n−1
i=0 V v

i ∪
⋃m−1

j=0 {aj} and E :=
⋃n−1

i=0 Ev
i ∪⋃m−1

j=0 Ec
j . This completes the construction of G = (V, E).

Theorem 3. Cluster Editing and Cluster Deletion are NP-complete
even when restricted to graphs with maximum vertex degree six.

4 Number of Clusters and Maximum Number of Edge
Modifications per Vertex

We show that a constrained version of Cluster Editing is fixed-parameter
tractable with respect to the combined parameter “number d of clusters in the
target graph” and “maximum number t of modifications per vertex”. The prob-
lem under consideration is a generalization of Cluster Editing:

(d, t)-Constrained-Cluster Editing ((d, t)-CCE)
Input: An undirected graph G = (V, E), a function τ : V → {0, . . . , t},
and nonnegative integers d and k.
Question: Can G be transformed into a cluster graph G′ by applying
at most k edge modifications such that G′ has at most d clusters and
each vertex v ∈ V is incident to at most τ(v) modified edges?

We use τ during our algorithm to keep track of the number of modifications that
each vertex has been incident to. We can initially set τ(v) := t for each v ∈ V and



352 C. Komusiewicz and J. Uhlmann

model directly the constraints described above. If only edge deletions are allowed,
the corresponding problem is called (d, t)-Constrained-Cluster Deletion.
Clearly, CE is exactly (n, n)-CCE. We investigate the parameterized complexity
of (d, t)-CCE with respect to the combined parameter (d, t). Before presenting
an algorithm for this problem, we discuss several aspects of both the problem
formulation and parameterization.

Concerning the problem formulation, in many application scenarios a reason-
able upper bound for the number of clusters d is given in advance. Furthermore,
constraining the maximum number t of modifications per vertex yields another
measure of closeness of the cluster graph to the input graph. In comparison to
Cluster Editing, (d, t)-Constrained-Cluster Editing allows to further
constrain the solution by adjusting the values of d and t. In certain application
scenarios this may help to obtain more reasonable clusterings.

Concerning the parameterization, we consider the combined parameter (d, t)
since Cluster Editing is NP-hard for t = 6 (which follows from Theorem 3).
Moreover, when comparing the parameterizations k and (d, t) one can observe
that for some instances, k is not bounded by a function in d and t. Consider
for example a graph G = (V, E) that consists of two cliques K1 and K2, each
of order |V |/2. Furthermore, let each v ∈ K1 have exactly one neighbor in K2
and vice versa. An optimal solution for this graph is to delete all |V |/2 edges
between K1 and K2. Hence, the parameter k is very large for this instance,
whereas d = 2 and t = 1. In general, we can always assume t ≤ k. The general
relation between d and k is a bit more tricky. For example, in case G is connected,
we can assume d ≤ k+1 since we can create at most k+1 connected components
by applying k edge modifications to G. Furthermore, in case G does not contain
isolated cliques, we can assume d ≤ 2k, since to each clique in the final cluster
graph at least one edge modification is incident. In summary, the parameters d
and t can be arbitrarily small compared to k and are bounded from above by a
linear function of k when G does not contain isolated cliques.

We now show that (d, t)-Constrained-Cluster Editing is fixed-parameter
tractable with respect to (d, t). More precisely, we present four data reduction
rules for (d, t)-Constrained-Cluster Editing that produce a kernel consist-
ing of at most 4dt vertices. The first two rules identify edge modifications that
have to be performed by every solution, since otherwise there would be vertices
to which more than t edge modifications are incident.

Reduction Rule 1. If G contains two adjacent vertices u, v ∈ V such that
|N(u) \N [v]| > 2t, then remove {u, v} from E and set τ(v) := τ(v)− 1, τ(u) :=
τ(u)− 1, and k := k − 1.

Reduction Rule 2. If G contains two non-adjacent vertices u, v ∈ V such
that |N(u) ∩N(v)| > 2t, then add {u, v} to E and set τ(v) := τ(v)− 1, τ(u) :=
τ(u)− 1, k := k − 1.

Lemma 5. Rules 1 and 2 are correct and can be exhaustively performed in O(n3)
time.
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Proof. Let (G = (V, E), d, t, k) be an input instance of (d, t)-Constrained-

Cluster Editing. We show the correctness of each rule and then bound the
running time of exhaustively applying both rules.

Let u and v be as described in Rule 1. We show that every solution deletes the
edge {u, v}. Suppose that there is some solution S that does not delete {u, v},
let G′ := GΔS be the resulting cluster graph, and let K be the cluster of G′

such that u, v ∈ K. Clearly, |K ∩N(u) \N [v]| ≤ t since at most t inserted edges
are incident to v. Then, however, more than t deleted edges are incident to u.
This contradicts that S is a solution.

Let u and v be as described in Rule 2. We show that every solution adds the
edge {u, v}. Suppose that there is some solution S that does not add {u, v},
let G′ := GΔS be the resulting cluster graph, and let K be the cluster of G′

such that u ∈ K and v �∈ K. Since at most t deleted edges are incident to u,
we have |N(u) ∩ N(v) ∩ K| > t. Then, however more than t deleted edges are
incident to v. This contradicts that S is a solution.

To achieve a running time of O(n3) we proceed as follows. First, we initialize
for each pair of vertices u, v ∈ V three counters, one counter that counts |N(u)∩
N(v)|, one counter that counts |N(u)\N [v]|, and one counter that counts |N(v)\
N [u]|. For each such pair, this is doable in O(n) time when an adjacency ma-
trix has been constructed in advance. Hence, the overall time for initializing
the counters for all possible vertex pairs is O(n3). All counters that warrant
an application of either Rule 1 or Rule 2 are stored in a list. We call these
counters active. Next, we apply the reduction rules. Overall, since k ≤ n2 the
rules can be applied at most n2 times. As long as the list of active counters is
non-empty, we perform the appropriate rule for the first active counter of the
list. It remains to update all counters according to the edge modification applied
by the rule. Suppose Rule 2 applies to u and v, that is {u, v} is added. Then,
we have to update the counters for each pair containing v or u. For v, this can
be done in O(n) time, by checking for each w �= v, whether u must be added
to N(v) ∩ N(w) or added to N(v) \ N [w] or removed from N(w) \ N [v] (for
each counter this can be done in O(1) time by using the constructed adjacency
matrix). For each updated counter, we also check in O(1) time whether it needs
to be added to/removed from the list of active counters. The case that Rule 1
applies to u and v can be shown analogously. Overall, we need O(n3) time initial-
ize the counters and O(n3) time for the exhaustive application of the rules. 
�

The following reduction rule simply checks whether the instance contains vertices
to which already more than t modifications have been applied. Clearly, in this
case the instance is a “no”-instance.

Reduction Rule 3. If there is a vertex v ∈ V with τ(v) < 0, then output “no”.

The final rule identifies isolated cliques whose removal does not destroy solutions
of (d, t)-Constrained-Cluster Editing.

Reduction Rule 4. If there is an isolated clique K in G such that |K| > 2t,
then remove K from G and set d := d− 1.
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Lemma 6. Rule 4 is correct and can be exhaustively performed in O(m) time.

We now show that the reduction rules above yield a problem kernel.

Theorem 4. (d, t)-Constrained-Cluster Editing admits a 4dt-vertex prob-
lem kernel which can be found in O(n3) time.

Proof. We first show the kernel size and then bound the running time of the
kernelization.

Let (G = (V, E), d, t, k) be an input instance of (d, t)-Constrained-Cluster

Editing and let G be reduced with respect to Rules 1–4. We show the following:

(G, d, t, k) is a yes-instance ⇒ G has at most 4dt vertices.

Let S be a solution of the input instance and let G′ be the cluster graph that
results from applying S to G. We show that every cluster Ki of G′ has size at
most 4t. Assume towards a contradiction that there is some Ki in G′ with |Ki| >
4t. Since G is reduced with respect to Rule 4, there must be either an edge {u, v}
in G such that u ∈ Ki and v ∈ V \ Ki or a pair of vertices u, v ∈ Ki such
that {u, v} is not an edge in G.
Case 1: u ∈ Ki, v ∈ V \Ki and {u, v} ∈ E. Since at most t− 1 edge additions
are incident to u, it has in G at least 3t + 1 neighbors in Ki. Furthermore, since
at most t edge deletions are incident to v, it has in G at most t neighbors in Ki.
Hence, there are at least 2t + 1 vertices in Ki that are neighbors of u but not
neighbors of v. Therefore, Rule 1 applies in G, a contradiction to the fact that G
is reduced with respect to this rule.
Case 2: u, v ∈ Ki and {u, v} �∈ E. Both u and v are in G adjacent to at
least |Ki| − (t− 1) vertices of Ki \ {u, v}. Since |Ki| > 4t they thus have in G at
least 2t + 1 common neighbors. Therefore, Rule 2 applies in G, a contradiction
to the fact that G is reduced with respect to this rule.

We have shown that |Ki| ≤ 4t for each cluster Ki of G′. Since G′ has at most d
clusters, the overall bound on the number of vertices follows.

It remains to bound the running time of exhaustively applying Rules 1–4. By
Lemma 5, the exhaustive application of Rules 1 and 2 runs in O(n3) time. After
these two rules have been exhaustively applied, Rules3 and 4 can be exhaustively
applied in O(m) time. 
�

Corollary 1. (d, t)-Constrained-Cluster Editing is fixed-parameter trac-
table with respect to the parameter (d, t).

The data reduction rules can be adapted to the case that only edge deletions
are allowed. Indeed, we can show a 2dt-vertex kernel for (d, t)-Constrained-

Cluster Deletion by just replacing 2t by t in Rules 1 and 4 (no further data
reduction rule is needed). Then, with a slightly modified analysis, we arrive at
the following (details omitted).

Theorem 5. (d, t)-Constrained-Cluster Deletion admits a 2dt-vertex
kernel which can be found in O(n3) time. It is thus fixed-parameter tractable
with respect to the parameter (d, t).
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Abstract. In modern decision-support systems, probabilistic networks
model uncertainty by a directed acyclic graph quantified by probabilities.
Two closely related problems on these networks are the Kth MPE and
Kth Partial MAP problems, which both take a network and a positive
integer k for their input. In the Kth MPE problem, given a partition
of the network’s nodes into evidence and explanation nodes and given
specific values for the evidence nodes, we ask for the kth most probable
combination of values for the explanation nodes. In the Kth Partial

MAP problem in addition a number of unobservable intermediate nodes
are distinguished; we again ask for the kth most probable explanation.
In this paper, we establish the complexity of these problems and show
that they are FPPP- and FPPPPP

-complete, respectively.

1 Introduction

For modern decision-support systems, probabilistic networks are rapidly becom-
ing the models of choice for representing and reasoning with uncertainty. Appli-
cations of these networks have been developed for a range of problem domains
which are fraught with uncertainty. Most notably, applications are being re-
alised in the biomedical field where they are designed to support medical and
veterinary practitioners in their diagnostic reasoning processes; examples from
our own engineering experiences include a network for diagnosing ventilator-
associated pneumonia in critically ill patients [1] and a network for the early
detection of an infection with the Classical Swine Fever virus in pigs [2].

A probabilistic network is a concise model of a joint probability distribution
over a set of stochastic variables [3]. It consists of a directed acyclic graph,
encoding the relevant variables and their probabilistic interdependencies, and an
associated set of conditional probabilities. Various algorithms have been designed
for probabilistic inference, that is, for computing probabilities of interest from
a probabilistic network. These algorithms typically exploit structural properties
of the network’s graph to decompose the computations involved. Probabilistic
inference is known to be PP-complete in general [4]. Many other problems to be
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solved in practical applications of probabilistic networks are also known to have
a quite unfavourable complexity.

In many practical applications, the nodes of a probabilistic network are par-
titioned into evidence nodes, explanation nodes and intermediate nodes. The
evidence nodes model variables whose values can be observed in reality; in a
medical application, these nodes typically model a patient’s observable symp-
toms. The explanation nodes model the variables for which a most likely value
needs to be found; these nodes typically capture possible diagnoses. The interme-
diate nodes are included in the network to correctly represent the probabilistic
dependencies among the variables; in a medical application, these nodes often
model physiological processes hidden in a patient. An important problem in
probabilistic networks now is to find the most likely value combination for the
explanation nodes given a specific joint value for the evidence nodes. When the
network’s set of intermediate nodes is empty, the problem is known as the most
probable explanation, or MPE, problem; the problem is coined the partial max-
imum aposteriori probability, or Partial MAP, problem otherwise. The MPE

problem is known to have various NP-complete decision variants [5,6]; for the
Partial MAP problem NPPP-completeness was established [7].

In many applications of probabilistic networks, the user is interested not just
in finding the most likely explanation for a combination of observations, but in
finding alternative explanations as well. In biomedicine, for example, a practi-
tioner may wish to start antibiotic treatment for multiple likely pathogens before
the actual cause of infection in a patient is known; alternative explanations may
also reveal whether or not further diagnostic testing can help distinguishing be-
tween possible diagnoses. In the absence of intermediate nodes in a network, the
problem of finding the kth most likely explanation is known as the Kth MPE

problem; it is called the Kth Partial MAP problem otherwise. While efficient
algorithms have been designed for solving the kth most probable explanation
problem with the best explanation as additional input [8], the Kth MPE prob-
lem without this extra information is NP-hard in general [9]. The complexity of
the Kth Partial MAP problem is unknown as yet.

In this paper, we study the computational complexity of the Kth MPE and
Kth Partial MAP problems in probabilistic networks and show that these
problems are complete for the complexity classes FPPP and FPPPPP

, respectively.
This finding suggests that the two problems are much harder than the (already
intractable) restricted problems of finding a most likely explanation. Finding the
kth most probable explanation in a probabilistic network given partial evidence
to our best knowledge is the first problem with a practical application that is
shown to be FPPPPP

-complete, which renders our result interesting at least from
a theoretical point of view.

The paper is organised as follows. In Section 2, our notational conventions
are introduced, as are the definitions used in the paper. We discuss the compu-
tational complexity of finding kth joint value assignments with full and partial
evidence in the Sections 3 and 4, respectively. Section 5 concludes the paper.
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2 Definitions

In this section, we provide definitions for the concepts used in the sequel. In
Section 2.1, we briefly review probabilistic networks and introduce our notational
conventions. In Section 2.2, we describe the problems under study. In Section 2.3,
we review some complexity classes and state complete problems for these classes.

2.1 Probabilistic Networks

A probabilistic network is a model of a joint probability distribution over a
set of stochastic variables. Before defining the concept of probabilistic network
more formally, we introduce some notational conventions. Stochastic variables
are denoted by capital letters with a subscript, such as Xi; we use bold-faced
upper-case letters X to denote sets of variables. A lower-case letter x is used
for a value of a variable X ; a combination of values for a set of variables X
is denoted by a bold-faced lower-case letter x and will be termed a joint value
assignment to X. In the sequel, we assume that all joint value assignments to a
set of variables X are uniquely ordered by their (possibly posterior) probability
in numerically descending order; if two joint value assignments xi and xj have
the same probability, they are ordered lexicographically in descending order by
their respective binary representation, taking the value for the variable X1 to be
the most significant element.

A probabilistic network now is a tuple B = (G, Γ ) where G = (V, A) is a
directed acyclic graph and Γ is a set of conditional probability distributions.
Each node Vi ∈ V models a stochastic variable. The set of arcs A of the graph
captures probabilistic independence: two nodes Vi and Vj are independent given
a set of nodes W, if either Vi or Vj is in W, or if every chain between Vi and
Vj in G contains a node from W with at least one emanating arc or a node Vk

with two incoming arcs such that neither Vk itself nor any of its descendants are
in W. For a topological sort V1, . . . , Vn of G, we now have that any node Vi is
independent of the preceding nodes V1, . . . , Vi−1 given its set of parents π(Vi).
The set Γ of the network includes for each node Vi the conditional probability
distributions Pr(Vi | π(Vi)) that describe the influence of the various assignments
to Vi’s parents π(Vi) on the probabilities of the values of Vi itself.

A probabilistic network B = (G, Γ ) defines a joint probability distribution
Pr(V) =

∏
Vi∈V Pr(Vi | π(Vi)) that respects the independencies portrayed by

its digraph. Since it defines a unique distribution, a probabilistic network allows
the computation of any probability of interest over its variables [10].

2.2 The kth Most Probable Explanation Problems

The main problem studied in this paper is the problem of finding a kth most
probable explanation for a particular combination of observations, for arbitrary
values of k. Formulated as a functional problem, it is defined as follows.
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Kth MPE

Instance: A probabilistic network B = (G, Γ ), where V is partitioned into a set
of evidence nodes E and a set of explanation nodes M; a joint value assignment
e to E; and a positive natural number k.
Output: The kth most probable joint value assignment mk to M given e; if no
such assignment exists, the output is ⊥, that is, the universal false.

Note that the Kth MPE problem defined above includes the MPE problem as
a special case with k = 1. From Pr(m | e) = Pr(m,e)

Pr(e) , we further observe that
Pr(e) can be regarded a constant if we are interested in the relative order only
of the conditional probabilities Pr(m |e) of all joint value assignments m.

While for the Kth MPE problem a network’s nodes are partitioned into
evidence and explanation nodes only, the Kth Partial MAP problem discerns
also intermediate nodes. We define a bounded variant of the latter problem.

Bounded Kth Partial MAP

Instance: A probabilistic network B = (G, Γ ), where V is partitioned into a
set of evidence nodes E, a set of intermediate nodes I, and a set of explanation
nodes M; a joint value assignment e to E; a positive natural number k; and
rational numbers a, b with 0 ≤ a ≤ b ≤ 1.
Output: The tuple (mk, pk), where mk is the kth most probable assignment
to M given e from among all joint value assignments mi to M with pi =
Pr(mi, e) ∈ [a, b]; if no such assignment exists, the output is ⊥.

Note that the original Kth Partial MAP problem without bounds is a special
case of the problem defined above with a = 0 and b = 1. Further note that the
bounded problem can be transformed into a problem without bounds in poly-
nomial time and vice versa, which renders the two problems Turing equivalent.
In the sequel, we will use the bounded problem to simplify our proofs.

2.3 Complexity Classes and Complete Problems

We assume throughout the paper that the reader is familiar with the standard
notion of a Turing machine and with the basic concepts from complexity theory.
We further assume that the reader is acquainted with complexity classes such
as NPPP, for which certificates of membership can be verified in polynomial time
given access to an oracle. For these classes, we recall that the defining Turing
machine can write a string to an oracle tape and takes the next step conditional
on whether or not the string on this tape belongs to a particular language; for
further details on complexity classes involving oracles, we refer to [11,12,13].

While Turing machines are tailored to solving decision problems, halting either
in an accepting state or in a rejection state, Turing transducers can generate
functional results: if a Turing transducer halts in an accepting state, it returns
a result on an additional output tape. The complexity classes FP and FNP now
are the functional variants of P and NP, and are defined using Turing transducers
instead of Turing machines. Just like a Turing machine, a Turing transducer can
have access to an oracle; for example, FPNP is the class of functions computable
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in polynomial time by a Turing transducer with access to an NP oracle. Since the
kth most probable explanation problems under study require the computation
of a result, we will use Turing transducers in the sequel.

Metric Turing machines are used to show membership in complexity classes
like PNPor PPP[12]. A metric Turing machine M̂ is a polynomial-time bounded
non-deterministic Turing machine in which every computation path halts with
a binary number on a designated output tape. OutM̂(x) denotes the set of
outputs of M̂ on input x; OptM̂(x) is the smallest number in OutM̂(x), and
KthValueM̂(x, k) is the k-th smallest number in OutM̂(x). Metric Turing trans-
ducers T̂ are defined likewise as Turing transducers with an additional output
tape; these transducers are used for proving membership in FPNP or FPPP.

A function f is polynomial-time one-Turing reducible to a function g, written
f ≤FP

1-T g, if there exist polynomial-time computable functions T1 and T2 such
that f(x) = T1(x, g(T2(x))) for every x [13]. A function f now is in FPNP if and
only if there exists a metric Turing transducer T̂ such that f ≤FP

1-T OptT̂ . Cor-
respondingly, a set L is in PNP if and only if a metric Turing machine M̂ can be
constructed, such that OptM̂(x) is odd if and only if x ∈ L. Similar observations
hold for FPPP and PPP, and the KthValueM̂ and KthValueT̂ functions [12,13].
FPNP- and FPPP-hardness can be proved by a reduction from a known FPNP- and
FPPP-hard problem, respectively, using a polynomial-time one-Turing reduction.

We define two functional variants of the well-known satisfiability problem and
state their completeness in terms of functional complexity classes.

Kth Sat

Instance: A Boolean formula φ(X1, . . . , Xn), n ≥ 1; and a positive natural num-
ber k.
Output: The lexicographically kth largest truth assignment xk to X =
{X1, . . . , Xn} that satisfies φ; if no such assignment exists, the output is ⊥.

The LexSat problem is the special case of the Kth Sat problem with k = 1.
LexSat and Kth Sat are complete for FPNP and FPPP, respectively [12,13].

KthNumSat

Instance: A Boolean formula φ(X1, . . . , Xm, . . . , Xn), m ≤ n, n ≥ 1; and posi-
tive natural numbers k, l.
Output: The lexicographically kth largest assignment xk to {X1, . . . , Xm} for
which exactly l assignments xl to {Xm+1, . . . , Xn} satisfy φ; the output is ⊥ if
no such assignment exists.

The LexNumSat problem is the special case of the KthNumSat problem with
k = 1. KthNumSat and LexNumSat are FPPPPP

- and FPNPPP

-complete; proofs
will be provided in a full paper [14].

To facilitate the reductions in our proofs in the sequel, we further introduce
slightly modified variants of the Kth Sat and KthNumSat problems which
serve to circumvent the need of explicitly dealing with outputs equal to ⊥.
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Kth Sat
′

Instance: A Boolean formula φ(X1, . . . , Xn), n ≥ 1, with

φ(X1, X2, . . . , Xn) = (¬X1) ∨ φ′(X2, . . . , Xn)

for some Boolean formula φ′(X2, . . . , Xn); and a positive natural number k ≤
2n−1.
Output: The lexicographically kth largest truth assignment xk to X =
{X1, . . . , Xn} that satisfies φ.

Note that the Kth Sat
′ problem differs from the original Kth Sat problem only

in that it never has the output ⊥ for its solution: since the problem’s formula φ
has at least 2n−1 satisfying truth assignments, a kth largest satisfying assignment
is guaranteed to exist for any value of k with k ≤ 2n−1. For the original Kth Sat

problem on the other hand, the number of values k for which a satisfying truth
assignment is returned, depends on the precise formula φ. For the Kth Sat

′

problem we observe moreover that, within the descending lexicographic order,
all satisfying truth assignments that set X1 to false come after all assignments
with X1 = true that satisfy φ′. We further note that a simple transformation
suffices to show that Kth Sat

′ is complete for the complexity class FPPP.
Using a similar yet slightly more involved construction, we pose a variant of

the KthNumSat problem which never has the output ⊥ for its solution.
KthNumSat

′

Instance: A Boolean formula φ(X1, . . . , Xm, . . . , Xn), m ≤ n, n ≥ 1, with

φ(X1, . . . , Xn) = φ′(X2, . . . , Xn) ∨ ((¬X1) ∧ ψl(Xm+1, . . . , Xn))

for some Boolean formula φ′(X2, . . . , Xn) and terms ψl(Xm+1, . . . , Xn) which
express that Xm+1 · · ·Xn seen as a binary number is at most l; and positive
natural numbers k ≤ 2m−1, l ≤ 2n−m−1.
Output: The lexicographically kth largest assignment xk to {X1, . . . , Xm} with
which exactly l assignments xl to {Xm+1, . . . , Xn} satisfy φ.

Note that each term ψl in the Boolean formula above has exactly l satisfying
truth assignments. We further note that a simple transformation again suffices
to show that the KthNumSat

′ problem is complete for FPPPPP

.

3 Complexity of Kth MPE

We study the complexity of the Kth MPE problem introduced in Section 2.2
and prove FPPP-completeness. To prove membership of FPPP, we show that the
problem can be solved in polynomial time by a metric Turing transducer; we
prove hardness by a reduction from the Kth Sat

′ problem defined above.
We begin by describing the construction of a probabilistic network Bφ from

the Boolean formula φ of an instance of the Kth Sat
′ problem; upon doing so,

we use the formula φex = (¬X1)∨ (¬X2 ∧ (X3 ∨¬X4)) for our running example.
For each Boolean variable Xi in φ, we include a root node Xi in the network
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X

T

X1 X2 X3 X4

¬ ¬¬

∨

∨

∧

Fig. 1. The acyclic directed graph of the probabilistic network Bφex constructed from
the Boolean formula φex = (¬X1) ∨ (¬X2 ∧ (X3 ∨ ¬X4))

Bφ, with true and false for its possible values; the nodes Xi with each other are
called the variable-instantiation part X of the network. The prior probabilities
pi = Pr(Xi = true) for the nodes Xi are chosen such that the prior probability
of a joint value assignment x to X is higher than that of x′ if and only if
the corresponding truth assignment x to the Kth Sat

′ variables X1, . . . , Xn is
ordered before x′ in descending lexicographic order. More specifically, we set pi =
1
2 + 2n+1−i−1

2n+1 ; in our running example with four variables, the prior probabilities
for the nodes X1, . . . , X4 thus are set to p1 = 31

32 , p2 = 23
32 , p3 = 19

32 , and p4 = 17
32 .

We observe that we have that p1 · . . . ·pi−1 ·pi > p1 · · · · ·pi−1 ·pi for every i. Since
the root nodes Xi are modelled as being mutually independent, the ordering
property stated above is thereby satisfied in the network under construction.
Further note that the assigned probabilities can be formulated using a number
of bits which is polynomial in the number of variables of the Kth Sat

′ instance.
For each logical operator in the Boolean formula φ, we create an additional

node in the network Bφ. The parents of this node are the nodes corresponding
with the subformulas joined by the operator; its conditional probability table
is set to mimic the operator’s truth table. The node associated with the top-
level operator of φ will be denoted by Vφ. The operator nodes with each other
constitute the truth-setting part T of the network. The probabilistic network
Bφex that is constructed from the example formula φex is shown in Figure 1. From
the above construction, it is now readily seen that, given a value assignment x
to the variable-instantiation part of the network, we have Pr(Vφ = true |x) = 1
if and only if the truth assignment x to the Boolean variables Xi satisfies φ.

Theorem 1. Kth MPE is FPPP-complete.

Proof. To prove membership of FPPP for the Kth MPE problem, we show that
a metric Turing transducer can be constructed to solve the problem. Let T̂
be a metric Turing transducer that on input (B, e, k) performs the following
computations: it traverses a topological sort of the network’s nodes V; in each
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step i, it non-deterministically chooses a value vi for node Vi (for a node Ei from
the set E of evidence nodes, the value conform e is chosen) and multiplies the
corresponding (conditional) probabilities along its path. Each computation path
thereby establishes a joint probability Pr(v) =

∏
Vi∈V Pr(vi | π(Vi)) for a thus

constructed joint value assignment v to V. Note that Pr(v) = Pr(m, e) for the
constructed assignment m to the explanation variables M. Further note that the
computations involved take a time which is polynomial in the number of variables
in the Kth MPE instance. The output of the transducer is, for each computation
path, a binary representation of 1 − Pr(m, e) with sufficient (but polynomial)
precision, combined with the logical inverse of the binary representation of the
assignment m itself. KthValueT̂ (B, e, k) now returns an encoding of the kth most
probable explanation for e. We conclude that Kth MPE is in FPPP.

To prove hardness for the class FPPP, we reduce the Kth Sat
′ problem defined

in Section 2.3 to Kth MPE. Let (φ, k) be an instance of Kth Sat
′. From

the Boolean formula φ we construct the probabilistic network Bφ as described
above; we further let E = {Vφ} and let e be the value assignment Vφ = true.
The thus constructed instance of the Kth MPE problem is (Bφ, Vφ = true, k);
note that the construction can be performed in polynomial time. For any joint
value assignment x to the variable-instantiation part X of Bφ, we now have that
Pr(X = x |Vφ = true) = Pr(X=x,Vφ=true)

Pr(Vφ=true) = α ·Pr(X = x, Vφ = true), where α =
Pr(Vφ = true)−1 can be regarded a normalisation constant. For any assignment
x to the variables X that satisfies φ, we further find that Pr(X = x |Vφ = true) =
α · Pr(X = x); for any non-satisfying assignment x on the other hand, we have
that Pr(X = x, Vφ = true) = 0 and hence Pr(X = x |Vφ = true) = 0. In terms of
their posterior probabilities given Vφ = true, therefore, all satisfying joint value
assignments are ordered before all non-satisfying ones. Since the values of the
nodes from the truth-setting part T are fully determined by the values of their
parents, we thus have that, given evidence Vφ = true, the kth MPE corresponds
to the lexicographically kth satisfying value assignment to the variables in φ,
and vice versa. Given an algorithm for solving Kth MPE, we can thus solve
KthSat

′ as well, which proves FPPP-hardness of Kth MPE. �

We now turn to the case where k = 1, that is, to the basic MPE problem, for
which we show FPNP-completeness by a similar construction as above.

Proposition 1. MPE is FPNP-complete.
Proof. To prove membership of FPNP, a metric Turing transducer as above is
constructed. OptT̂ (B, e) then returns the most probable explanation given the
evidence e. To prove hardness, we apply the same construction as above to
reduce, in polynomial time, the LexSat problem to the MPE problem. �

Note that the functional variant of the MPE problem is in FPNP, while its
decision variant is in NP [6]. This relation between the decision and functional
variants of a problem is quite commonly found in optimisation problems: if the
solution of a functional problem variant has polynomially bounded length, then
there exists a polynomial-time Turing reduction from the functional variant to
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the decision variant of that problem, and hence if the decision variant is in NP,
then the functional variant of the problem is in FPNP [15].

4 Complexity of K-th Partial MAP

While the decision variant of the MPE problem is complete for the class NP, the
decision variant of the Partial MAP problem is known to be NPPP-complete
[7]. In the previous section, we proved that the functional variant of the Kth

MPE problem is FPPP-complete. Intuitively, these results suggest that the Kth

Partial MAP problem is complete for the complexity class FPPPPP

. To the best
of our knowledge, no complete problems have been discussed in the literature
for this class. We will now show that the Kth Partial MAP problem indeed is
complete for the class FPPPPP

, by a reduction from the KthNumSat
′ problem.

We address the construction of a probabilistic network Bφ from the Boolean
formula φ of an instance of the KthNumSat

′ problem. We recall from Section
2.3 that we defined KthNumSat

′ so as to forestall the need of dealing with out-
puts equal to ⊥. While formally our reduction should be from KthNumSat

′,
we decided, for ease of exposition, to use an instance of the original KthNum-

Sat problem for our running example and to assume that the Boolean formula
involved has ‘sufficiently many’ satisfying truth assignments, that is, sufficiently
many in terms of the constants k, l. For our running example, we use the Boolean
formula φex = ((X1 ∨ ¬X2) ∧ X3) ∨ ¬X4, for which we want to find the lexi-
cographically second assignment to the variables {X1, X2} with which exactly
three truth assignments to {X3, X4} satisfy φex, that is, k = 2, l = 3; the reader
can verify that the instance has the solution X1 = true, X2 = false .

As before, we create a root node Xi for each Boolean variable Xi from the
formula φ, this time with a uniform prior probability distribution. The nodes
X1, . . . , Xm with each other constitute the variable-instantiation part X of the
network Bφ; the nodes from this part will be taken as the explanation nodes for
the Kth Partial MAP instance under construction. For the logical operators
from the formula φ, we add nodes to the probabilistic network as before, with
Vφ being the node associated with the top-level operator. Note that for any joint
value assignment x to the explanation nodes X, we now have that Pr(Vφ = true |
x) = s

2n−m , where s is the number of truth value assignments to the Boolean
variables {Xm+1, . . . , Xn} that, jointly with x, satisfy φ.

We further construct an enumeration part N for the network. For this purpose,
we add nodes Y1, . . . , Ym, with the possible values true and false, to the variable-
instantiation part X such that for all i = 1, . . . , m, node Yi has node Xi for its
unique parent; for each such node Yi, we set Pr(Yi = true |Xi = true) = 1

2i+n−m+1

and Pr(Yi = true |Xi = false) = 0. We further add a binary-tree structure to
the network, composed of nodes Ej mimicking the disjunction operator; the arcs
of this tree structure are directed from the leaves Y1, . . . , Ym to the root node,
which will be denoted by Eφ. For our running example, we thus add nodes Y1
and Y2 as successors to the nodes X1 and X2, respectively, with Pr(Y1 = true |
X1 = true) = 1

16 and Pr(Y2 = true | X2 = true) = 1
32 . In addition, a single
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Fig. 2. The acyclic directed graph of the probabilistic network Bφex constructed from
the KthNumSat instance with the Boolean formula φex = ((X1 ∨ ¬X2) ∧X3) ∨ ¬X4

and the explanation nodes X1, X2

root node Eφ is added to the network under construction, with Y1 and Y2 for its
parents. Note that for each joint value assignment x to the explanation nodes
X1, . . . , Xm, we now have that Pr(Eφ = true |x) < 1

2n−m ; more specifically, for
the jth lexicographically lowest ordered joint value assignment x to X1, . . . , Xm,
we have Pr(Eφ = true |x) = j−1

2n+1 .
To conclude the construction, we add to the network a node C with Vφ and

Eφ for its parents, with the following conditional probability distributions:

Pr(C = true |Vφ, Eφ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if Vφ = true, Eφ = true
1
2 if Vφ = true, Eφ = false
1
2 if Vφ = false , Eφ = true
0 if Vφ = false , Eφ = false

Note that since Pr(Eφ = true | x) < 1
2n−m for any joint value assignment x to

the explanation nodes X1, . . . , Xm, these probabilities ensure that the posterior
probability Pr(C = true |x) lies within the interval [ s

2n−m+1 , s+1
2n−m+1 ], where s is

the number of value assignments to the Boolean variables {Xm+1, . . . , Xn} that,
jointly with x, satisfy the formula φ. Figure 2 shows the graphical structure of
the probabilistic network that is thus constructed from the example formula φex.

Theorem 2. Bounded Kth Partial MAP is FPPPPP

-complete.

Proof. The membership proof for the Bounded Kth Partial MAP problem
is quite similar to the membership proof for the Kth MPE problem from The-
orem 1, that is, we construct a metric Turing transducer to solve the problem.
Note that for the complexity class FPPPPP

we are now allowed to consult a more
powerful oracle than for the class FPPP. We observe that for the Bounded Kth
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Partial MAP problem, we actually need an oracle of higher power, since we
need to solve the #P-complete problem of Exact Inference to compute the
required joint probabilities: while for the Kth MPE problem we could efficiently
compute probabilities for joint value assignments to all variables taking polyno-
mial time, we must now compute probabilities of joint value assignments to a
subset of the variables, which involves summing over all assignments to the in-
termediate variables involved. Now, if the probability Pr(m, e) obtained for a
joint value assignment m to the explanation variables M is within the interval
[a, b], the transducer outputs a binary representation of 1−Pr(m, e) along with
the logical inverse of the binary representation of m; otherwise, it outputs ⊥.
Clearly, KthValueT̂ returns an encoding of the kth most probable value assign-
ment to the explanation variables in view of the evidence e. We conclude that
Bounded Kth Partial MAP is in FPPPPP

.
To prove hardness for the class FPPPPP

, we reduce the KthNumSat problem
to Bounded Kth Partial MAP. Let (φ, k, l) be an instance of KthNum-

Sat. From the Boolean formula φ we construct a probabilistic network Bφ as
described above; we further let E = {C} and let e be the value assignment
C = true. The conditional probability distributions of the constructed network
ensure that the posterior probability Pr(C = true |x) for a joint value assignment
x to the nodes {X1, . . . , Xm} with which exactly l truth value assignments to
{Xm+1, . . . , Xn} satisfy φ, lies within the interval [ l

2n−m+1 , l+1
2n−m+1 ]. Moreover, if

two assignments x and x′ both are such that exactly l truth value assignments to
{Xm+1, . . . , Xn} serve to satisfy φ, then Pr(C = true |x) > Pr(C = true |x′) if
x is ordered before x′ in descending lexicographic order. For the constructed in-
stance of the Bounded Kth Partial MAP problem, we thus have that the kth
most probable joint value assignment to the explanation nodes X1, . . . , Xm cor-
responds with the lexicographically kth truth value assignment to the Boolean
variables {X1, . . . , Xm} with which exactly l assignments to {Xm+1, . . . , Xn}
satisfy φ. Clearly, the above reduction is a polynomial-time one-Turing reduc-
tion from KthNumSat to Kth Partial MAP. Given an algorithm for solving
Bounded Kth Partial MAP, we can thus solve the KthNumSat problem
as well, which proves FPPPPP

-hardness of Bounded Kth Partial MAP. �

FPNPPP

-completeness of Bounded Partial MAP, which is the special case of
Bounded Kth Partial MAP with k = 1, now follows by a very similar proof.

Proposition 2. Bounded Partial MAP is FPNPPP

-complete.

5 Conclusion

We addressed the computational complexity of two problems that arise in prac-
tical applications of probabilistic networks. Informally spoken, these problems
ask for the kth most likely explanation for a given collection of observations in
a network. For the Kth MPE problem, an explanation is defined as a joint
value assignment to all non-observed variables; we showed that this problem is
FPPP-complete. For the Kth Partial MAP problem, a designated subset of
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non-observed variables is distinguished; these variables are taken as the expla-
nation variables for which a joint value assignment is being sought. We showed
that this particular problem is FPPPPP

-complete. In the future, we would like
to further study the complexity of the two problems when the constant k is
bounded by a polynomial function in the number of variables involved.

By our results we pinpointed the precise complexity of two practical problems,
although it is fair to mention that from a practitioners’ point of view knowing
NP-hardness would have sufficed. Interesting from a theoretical point of view,
however, is the observation that our complexity results are among the very few
showing practically relevant problems to be complete for complexity classes that
are as special as FPPPand FPPPPP

.
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Abstract. We consider an optimisation problem which is motivated
from storage virtualisation in the Internet. While storage networks make
use of dedicated hardware to provide homogeneous bandwidth between
servers and clients, in the Internet, connections between storage servers
and clients are heterogeneous and often asymmetric with respect to up-
load and download. Thus, for a large file, the question arises how it
should be fragmented and distributed among the servers to grant “opti-
mal” access to the contents. We concentrate on the transfer time of a file,
which is the time needed for one upload and a sequence of n downloads,
using a set of m servers with heterogeneous bandwidths. We assume
that fragments of the file can be transferred in parallel to and from mul-
tiple servers. This model yields a distribution problem that examines
the question of how these fragments should be distributed onto those
servers in order to minimise the transfer time. We present an algorithm,
called FlowScaling, that finds an optimal solution within running time
O(m log m). We formulate the distribution problem as a maximum flow
problem, which involves a function that states whether a solution with
a given transfer time bound exists. This function is then used with a
scaling argument to determine an optimal solution within the claimed
time complexity.

Keywords: distributed storage, distribution problem, asymmetric band-
widths, distributed file system, flow scaling.

Categories: D.4.3 (Distributed file systems), F.2.2 (Computations on
discrete structures) G.1.6 (Linear programming), G.2.1 (Combinatorial
algorithms).

1 Introduction

This paper deals with the optimal distribution of fragments of a file across a
potentially heterogeneous network of file servers. Our objective is to minimise
the transfer time of a file, that is the time for one upload and a sequence of
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downloads. This goal and the underlying model are motivated from the con-
cept of storage virtualisation in data centres, where the accumulated hard disk
memory of multiple machines is to be provided as one large storage unit. Our
paper transfers these ideas from the homogeneous setting in data centres to the
heterogeneous situation in the Internet with highly differing bandwidth setups
of the individual machines.

In order to provide storage virtualisation, data centres have to implement
a distributed file system which has to provide file system operations like read,
write, delete, etc. but, in contrast to a disk-based file system, can distribute
files across multiple machines. For example, if a user, called client, wants to
store a file in the file system, one way of doing so on the implementation side is
that the data centre (the virtual server) stores the file as a whole on one of its
servers. Another way is that the file be split into fragments and these are stored
on different servers. This enables parallel up- and parallel download of the file,
which can provide significant speed-up and hence is of particular interest for
large files such as movies.

However, if connected to the Internet, the bandwidths of the individual users
usually vary significantly. Furthermore, another – so far neglected – aspect comes
into play: the asymmetry of end-users’ Internet connections. A typical DSL or T1
connection provides significantly higher download bandwidths compared to the
upload. When files are to be distributed through the Internet, and furthermore,
specific quality of service requirements (QoS) have to be met (such as transfer
time and throughput), the heterogeneity of the bandwidths certainly has to be
taken into consideration.

The QoS parameter of interest for our work is the transfer time: the time for one
file upload and multiple subsequent downloads as defined below. Hence, we con-
sider the question of how to distribute fragments of a file optimally in a potentially
heterogeneous network in a manner that minimises this transfer time.

The above problem contains several practical challenges, but due to the theo-
retic nature of our contribution, we shall abstract from most of them and focus
on the core of the problem. For example, we ignore the fact that for some users,
the actual bottleneck might not be the bandwidth of the accessed servers but
rather the own Internet connection. This extended problem will be dealt with in
a follow-up paper.

Related Work. In the seminal paper of Patterson et al. the case for redun-
dant arrays of inexpensive disks was made [1]. Since then, the development
of distributed file systems has lead to RAID-systems for small enterprises and
households, storage area networks, and file systems distributed over the Internet.

Ghewamat et al. introduced a highly scalable distributed file system called
Google File System (GFS) [2]. Being required to provide high data-throughput
rates, a large number (> 1000) of inexpensive commodity computers (chunk
servers) and a dedicated master server are connected by a high-speed network
to form a GFS Cluster. GFS is optimised for storing large files (> 100 MB) by
splitting them up into chunks of a fixed size (e.g. 64 MB) and storing multiple
copies of each chunk independently. Upon a file-retrieval request, the master
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server is asked and responds the locations of the replicas to the client. The client
then contacts one of the chunk servers and receives the desired chunk from this
single server, yielding that no parallel data transfer is used.

Another distributed file system is Dynamo which was developed by DeCandia
et al. for Amazon [3]. In contrast to GFS, it does not provide a directory structure
but implements a simple key-value structure, only. It also does not have a central
master server, but is completely decentralised by using consistent hashing to
assign key-value-pairs to the servers. Dynamo is able to cope with heterogeneous
servers by accounting for the storage capacity of each server in the hash-function.
Similar to GFS, different connection speeds are not taken into account since all
servers are (assumed to be) connected through the same network.

Various other distributed file systems are based on peer-to-peer networks.
However, they concentrated on the reputation based election of storage de-
vices [4], were optimised for high reliability of the stored files [5] or meant to be
applied in malicious environments where servers might be managed by adver-
saries and thus cannot be trusted [6].

The assumption that the underlying network infrastructure is homogeneous is
questionable. Firstly, data centre configurations “as such” evolve over time (i.e.
not all components are replaced at once). Secondly and more importantly, in
an Internet-based service, client connections and also the upload and download
bandwidth of a specific connection can be significantly different. Albeit being a
natural setting, only relatively few results on the heterogeneous variant of the
distribution problem are available. To the best of our knowledge, no work on the
asymmetric case exists.

One of the approaches for heterogeneous distributed storage is the Distributed
Parallel File System (DPFS) by Shen and Choudhary [7]. When a file is to be
stored, it is broken up into fragments called bricks that are then distributed
across a network of participating storage servers, where each server receives a
portion of the file. Of course, the striping-strategy affects the performance of
the system, as it yields a distribution of bricks on servers. To account for the
heterogeneous bandwidths of the involved servers, Shen and Choudhary proposed
a greedy algorithm that prefers fast servers over slow servers according to a pre-
calculated performance factor. Thus, if a server is k times as fast as another one,
it is also allotted k times as many bricks.

Karger et al. introduced the concept of Distributed Hash Tables (DHT) [8]
that are used to balance the network load on multiple mirror servers. Every avail-
able server receives a random value in the interval [0, 1] using a hash-function.
When a clients wants to access a server, it is also hashed into the interval [0, 1]
and then served by the “closest” server.

The idea of DHT was extended by Schindelhauer and Schomaker’s Distributed
Heterogeneous Hash Tables (DHHT) [9]. Instead of clients, the documents to be
stored are projected into [0, 1] using a hash function and are assigned to the
“closest” server. The two hash functions for hashing the servers and the clients
then account for the heterogeneity of the network (in terms of server capacity
and connection bandwidth).
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DHHT was further extended by its authors by the the notion of transfer
time [10]: Let a matrix (Ad,i) describe the amount of document d being stored
on server i, respectively. The bandwidth of server i is given by a quantity bi.
Then two different notions of transfer time of a document d are introduced. The
sequential time SeqTimeA(d) =

∑
i Ad,i/bi and the parallel time ParTimeA(d) =

maxi Ad,i/bi. Using popularity values assigned to the documents, the problems
of minimising the average as well as the worst-case time of both measures can
be solved optimally with linear programming. Additionally, closed solutions for
minimising the average sequential and parallel time were given. In their model
the time for uploading the data has not been considered at all, which is a major
concern of our paper.

Our Contribution. Based on work of Langner [11], we introduce a model,
which is motivated from the transfer time model, but also accounts for the fol-
lowing situation observed frequently in practise: Large files, e.g. movies, are
usually uploaded once and remain unchanged for a substantial amount of time.
In the meantime, they are downloaded many times. Moreover, our model cov-
ers asymmetric up- and download bandwidths and hence captures the actual
technological situation contrasting the DHHT- and DPFS-models.

We consider the Distribution Problem where a file f is split into m dis-
joint fragments that are then uploaded in parallel to m servers (with possibly
heterogeneous and asymmetric bandwidths) – one fragment per server. Our ob-
jective is to find the optimal partition of f that minimises the transfer time.
This time is the total time it takes to complete a sequence of a parallel upload of
the file and n subsequent parallel downloads. The parameter n is introduced in
order to reflect the typical “one-to-many” situation mentioned above. Our main
result is:

Theorem 1. Algorithm FlowScaling solves the Distribution Problem

optimally in time O(m log m).

Our approach is to formulate the problem as a linear program, which turns out to
be related to a maximum flow problem. This already yields a strongly polynomial
optimal algorithm. The central question is thus how to improve the running
time. We define a function which states whether a solution with a given transfer
time bound exists or not. This specific maximum flow problem is then solved
using a scaling argument (explained later), yielding the claimed O(m log m) time
complexity.

2 Preliminaries

We are given a distribution network N , i.e. a weighted directed graph G = (V, A)
where nodes represent computers and edges network connections between them.
Each edge has a positive weight b : A �→ R+ indicating the bandwidth of the
respective connection. The node set V := S∪{c} with S = {s1, . . . , sm} contains
the client node c and m server nodes in S. The edge set A := U ∪D consists of
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the upload edges in U = {(c, si) : i ∈ S} and the download edges in D = {(si, c) :
i ∈ S}. When convenient, we use a server si and its index i interchangeably.

The definition above implies that both in-degree and out-degree of the server
nodes are one. The in- and out-degree of the client node c is m, consequently.
Each server si has a pair of upload and download bandwidths which we denote
as ui and di. A graphical illustration of the above definition is given in Figure 1.

s1 sm

c

si

dm

um

diui

d1

u1

Fig. 1. Illustration of a distribution network. The upload bandwidths ui and download
bandwidths di denote the speed of the respective connection between client c and server
si.

The Distribution Problem poses the question how we have to split a file f
with size |f | into fragments x1, . . . , xm for the m servers in a distribution network
such that the time for one upload to the servers and n subsequent downloads
from the servers is minimised. Since we want to be able to recover f from the
fragments xi, we require

∑m
i=1 xi = |f |. We assume that the number of downloads

n is known (or can be estimated) beforehand. Of course, the model would be
more realistic, if n need not be known. However, we justify our assumption as
follows: If the number n of downloads is unknown, then the optimal transfer
time can not be approximated by any algorithm, see Lemma 1.

For a given distribution x = (x1, . . . , xm), we define the upload time tu(x) and
download time td(x) as the maximal upload/download time over all individual
servers, i.e.

tu(x) = max
i∈S

{xi

ui

}
and td(x) = max

i∈S

{xi

di

}
.

The objective value val(x) is the upload time of x plus n times the download
time,

val(x) = tu(x) + n · td(x) .

Realistically, the exact number of downloads n is not known beforehand. This
induces an online problem, where the value of n is learned gradually. Thus an
online algorithm has to find a file-distribution, which is “good” for all values of
n or adapt the current distribution on-the-fly when another download occurs.
More precisely, we say that an algorithm for the online problem is c-competitive,
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if its transfer time is at most c times larger than the optimal transfer time (with
n known beforehand). Lemma 1 states that there does not exist a c-competitive
algorithm for any constant c.

Lemma 1. There is no c-competitive algorithm for the online Distribution

Problem for any constant c ≥ 1.

Proof. Let I be an instance of a Distribution Problem with two servers s1
and s2 and bandwidths u1 = a, d1 = 1

a , u2 = 1, and d2 = 1 where a � 1.
If there is only an initial upload (and no download), the optimal solution is
xopt,0 =

(
a

a+1 , 1
a+1

)
with val(xopt,0) = 1

a+1 . An arbitrary c-competitive online
algorithm alg is allowed to upload at most c · 1

a+1 data units to s2, as then the
upload already takes time c · val(xopt,0). Consequently, in xalg at least a+1−c

a+1
data units have to be uploaded to s1 and we have

td(xalg) ≥
a+1−c

a+1
1
a

=
a(a + 1− c)

a + 1
.

If one download occurs after the upload, the optimal solution is given by xopt,1 =( 1
a+1 , a

a+1

)
with val(xopt,1) = 2 · a

a+1 . For the ratio of the objective values of
both solutions, we get

val(xalg)
val(xopt,1)

>
td(xalg)

val(xopt,1)
≥ a + 1− c

2
which means that alg is not c-competitive, since a can be arbitrarily large. 
�
If we assume the number n > 0 of downloads to be known beforehand, then we
can safely set n = 1, |f | = 1 and solve the resulting simplified problem instead,
Lemma 2 below. Thus, in the sequel, we will consider the simplified version only.

Lemma 2. Let I = (N , |f |, n) with n > 0 and I ′ = (N ′, 1, 1) be the Distribu-

tion Problem instances where N equals N ′ with the modification that for the
download edge weights in N ′ we have d′i = di/n. If x′ is an optimal solution for
I ′, then x = |f | · x′ is optimal for I.

Proof. For the objective value of the solution x within instance I, we have

valI(x) = tu(x) + n · td(x)

= max
i∈S

{
xi

ui

}
+ n ·max

i∈S

{
xi

di

}

= max
i∈S

{
xi

ui

}
+ max

i∈S

{
xi

di

n

}

= max
i∈S

{
x′

i · |f |
ui

}
+ max

i∈S

{
x′

i · |f |
di

n

}

= |f | ·
(

max
i∈S

{
x′

i

u′
i

}
+ max

i∈S

{
x′

i

d′i

})
= |f | · valI′(x′) .

Consequently, if x′ is minimal for I ′, we have that |f | · x′ is minimal for I. 
�
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The Distribution Problem can be formulated as a linear program by introduc-
ing two variables tu and td for the upload and download time of the solution x.

minimise tu + td

subject to
m∑

i=1

xi = 1

xi

ui
≤ tu for all i ∈ {1, . . . , m}

xi

di
≤ td for all i ∈ {1, . . . , m}

xi ≥ 0 for all i ∈ {1, . . . , m}

This already yields that the optimal solution for the Distribution Problem

can be found in polynomial time. In the next section, however, we shall prove
Theorem 1 by showing that the time complexity O(m log m) suffices.

3 Flow Scaling

We transfer an idea from Hochbaum and Shmoys [12] which yielded a polynomial
approximation scheme for Makespan Scheduling. In that problem, we are
given a set of identical processors and have to schedule a set of jobs, where the
objective is to minimise the maximum completion time, i.e. the makespan. The
principal approach is to “guess” the optimal makespan and then find a schedule
that does not violate this makespan by “too much”. The optimal makespan is
actually determined by using binary search.

Distribution- and Flow-Problems. We employ a similar approach (but are
able to avoid the binary search step). We assume that the total time T = tu + td
and the upload time tu are given. (Thus we obviously also have the download
time td = T − tu.) Then we can formulate a Distribution Problem instance
I as a Maximum Flow instance GI as given in Figure 2: We have a source s,
a sink t, and m intermediate vertices s1, . . . , sm. Source and sink correspond to
the client in Figure 1, and the si correspond to the servers. For i = 1, . . . , m,
the upload edge (s, si) of server si has capacity tu · ui. This is the maximum
amount of data that can be transferred to this server in time tu. Similarly, for
i = 1, . . . , m, the download edge (si, t) of server si has capacity td · di because
this is the maximum amount of data that can be transferred from this server to
the sink node t in time td.

The Maximum Flow formulation allows us to decide if it is possible to
transfer (i.e. upload and download) a file f (w.l.o.g. having size |f | = 1) in time
T . For this purpose, we define a function

fT,i(t) = min{t · ui, (T − t) · di}



Optimal File-Distribution in Heterogeneous 375

Upload Download︷ ︸︸ ︷ ︷ ︸︸ ︷

tu · ui td · disi

tu · um td · dmsm

s t

tu · u1 td · d1s1

Fig. 2. Flow network GI for given upload/download time tu, td, and distribution prob-
lem instance I

for i = 1, . . . , m and t ∈ [0, T ]. Notice that fT,i(t) equals the maximum value of
an s− si − t-flow, when the upload time is tu = t and the download time hence
td = T − t. Using these functions, we define the total data function by

δT (t) =
m∑

i=1

fT,i(t) . (1)

Lemma 3. An instance I = (N , 1, 1) of the Distribution Problem admits
a feasible solution x with transfer time T = tu + td if and only if

δT (t) ≥ 1 for some t ∈ [0, T ] . (2)

Proof. The famous Max-Flow-Min-Cut theorem tells us that the maximal amount
of data that can be uploaded to the servers and download again afterwards in
an instance I is given by the capacity of a minimum cut in the flow network GI

defined above, see Figure 2.
Consequently, there exists a solution for a distribution problem instance I

with upload time tu = t and download time td = T − t if and only if the capacity
of the minimum cut in the distribution flow graph GI is at least 1, i.e. the file
size. Observe that the function δT (t) equals the minimum cut capacity. 
�

Hence, we can use Equation 2 as the decision criterion that tells us whether
there exists a distribution satisfying given upload and download times tu and
td = T − tu.

For each summand fT,i of δT , we define the value pT,i by pT,i·ui = (T−pT,i)·di,
where its maximum is attained. That is, for i = 1, . . . , m we have

pT,i = T · di

ui + di
.

For convenience, we define pT,0 = 0 and pT,m+1 = T . Then, for i = 0, . . . , m + 1
we define

δT,i = δT (pT,i) .

For simplicity of notation, we shall write pi and δi instead of pT,i and δT,i,
respectively, in the sequel when appropriate.
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The function δT is concave and piecewise linear in the interval [0, T ], but not
differentiable at the pi defined above. The points (pi, δi) for i = 0, . . . , m + 1
are called the vertices of δT in the sequel. Figure 3 depicts an illustration of
a sample total data function along with its summands. To determine whether

δT

tup0 = 0 p4 = Tp1 p2 p3

I2 I3 I4I1

σ1

σ2

σ4

σ3

Fig. 3. The graph shows a sample total data function for m = 3 along with the three
summands it comprises and the intervals I1 to I4 induced by its vertices

a distribution with total time T exists for a given Distribution Problem

instance, we only have to check whether its maximum value is at least 1. If we
implement this by evaluating the δi-values näıvely, we arrive at O(m2) running
time. Thus we have to be careful in evaluating this function.

Lemma 4. The algorithm EvaluateTotalDataFunction computes the ver-
tices (pi, δi) for i = 1, . . . , m in time O(m log m).

Proof. The algorithm works as follows: It renumbers the servers such that for
two servers si and sj we have i < j if pi < pj . This takes time O(m log m).

Then the total data function is made up of m + 1 linear segments in the
intervals I1 to Im+1 where Ij = [pj−1, pj]. Let σj denote the slope of δT in the
interval Ij . Recalling the formulation of the total data function in Equation 1
we infer that the slope σ1 of δT in [p0, p1] is given by

σ1 =
m∑

i=1

ui .

For the slopes in the other intervals the following recursion formula holds (see
Figure 3):

σi = σi−1 − ui − di for i ∈ {2, . . . , m + 1} .

Using this observation, we get a recursive formula for the value of δT (pi).

δT (pi) =

{
σ1 · p1 if i = 1
δT (pi−1) + σi · (pi − pi−1) if i > 1

(3)
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This formula can be evaluated for the positions pi efficiently in O(m) steps
with a simple scan-line approach as implemented in Algorithm 1. The critical
step determining the overall run-time is the renumbering in line 4 that involves
sorting the servers according to their value of pi and thereby incurs a run-time
cost of O(m log m). 
�

Algorithm 1. EvaluateTotalDataFunction(N , T )
Input. A distribution network N and a total time bound T .

Output. A tuple of two m-dimensional vectors p and δ where δi is the total data
function value at pi.

1: for i← 1 to m do
2: pi ← T · di

ui+di
� Calculate the positions pi

3: end for
4: renumber(p, pi < pj for i < j) � Renumber servers according to p-values
5: σ ←∑m

i=1 ui

6: δ0 = 0
7: for i = 1 to m do
8: δi ← δi−1 + σ · (pi − pi−1)
9: σ ← σ − ui − di

10: end for
11: return (p, δ)

It is straightforward how Algorithm 1 can be modified in order to check
whether we have δT (pi) ≥ 1 for some pi and return the respective pi. Accord-
ing to the deliberations above, δT (pi) ≥ 1 implies that there is a solution to
the Distribution Problem with the time bounds tu = pi and td = T − pi.
So what remains to be shown is how we can find the actual distribution vector
x = (x1, . . . , xm) for a given pair (tu, td) specifying how the file f should be
distributed among the m servers. This is accomplished with Algorithm 2.

Lemma 5. For given values of tu and td = T − tu with δT (tu) ≥ 1, algorithm
CalculateDistribution computes a feasible distribution x in time O(m).

Proof. Algorithm 2 iterates through all m servers and assigns to each server the
maximum amount of data that can be uploaded to it in time tu and downloaded
from it in time td. More formally, the amount fT,i(tu) = min{tu · ui, td · di} (or
less if the file size is already almost exhausted) is assigned to server si. Recalling
Equation 2, a valid solution with upload time tu and download time td = T − tu
exists if the inequality

δT (tu) =
m∑

i=1

fT,i(tu) ≥ 1

is satisfied. If so, then Algorithm 2 terminates with a valid distribution for tu
and td within running time O(m). 
�
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Algorithm 2. CalculateDistribution(N , tu, td)
Input. A distribution network N and target upload and download times tu and td.

Output. A distribution x = (x1, . . . , xm) obeying the target times.

1: f ← 1, i← 1
2: x← (0, . . . , 0) � initialise x to be a zero vector of dimension m
3: while f > 0 do
4: xi ← min

{
f, min{tu · ui, td · di}

}
5: f ← f − xi

6: i← i + 1
7: end while
8: return x

Scaling. Using Algorithm 1 and 2, we can – for a fixed total time T – determine
whether a solution exists and if so, calculate it. However, it still remains to show
how we can find the minimal total time which still allows for a solution. One
way of doing so is binary search. However, we can do better by having a closer
look at δT yielding a scaling property.

Lemma 6. For t ∈ [0, 1] and T > 0 we have

δT (pT,i) = T · δ1(p1,i) .

Proof. Recall that we have pT,i = T · di/(ui + di) = T · p1,i and hence for any
j = 1, . . . , m

fT,j(pT,i) = min
{

T · ujdi

ui + di
,

(
T − T · di

ui + di

)
· dj

}

= T ·min
{

ujdi

ui + di
,

uidj

ui + di

}
= T · f1,j(p1,i) .

Using pT,i = T · p1,i and fT,j(pT,i) = T · f1,j(p1,i) yields

δT (pT,i) =
m∑

j=1

fT,j(pT,i) = T ·
m∑

j=1

f1,j(p1,i) = T · δ1(p1,i) .

Thus, as the vertices of the piecewise linear function scale, the whole function
scales. 
�

The geometric structure of the total data function δT is illustrated in Figure 4
where we can clearly see the straight edges of the polytope that represent the
points (pT,i, T, δT,i) for varying values of T .

Previously we have shown how the total data function δT for a fixed value
of T can be evaluated at the positions pT,i in time O(m log m) using Algorithm 1.
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δ

t

T

T1

T2

T3

T4

T5

(pT,1, T, δT,1) (pT,3, T, δT,3)

(pT,2, T, δT,2)

Fig. 4. The total data function δT as a two-variable function of upload time t and total
time T

Now we will show that evaluating δ1(t) and then using the scaling property given
in Lemma 6 yields an algorithm for computing the optimal total time T .

Lemma 7. Algorithm FlowScaling computes an optimal solution x for an
instance I = (N , 1, 1) of the Distribution Problem.

Proof. The algorithm FlowScaling evaluates the total data function using
Algorithm 1 for T = 1 and obtains coordinate pairs (pi, δi) for i = 1, . . . , m. Let
(pk, δk) be a pair, where δk is maximum among all δi. We now choose

T =
1
δk

,

and
tu = pT,k = T · p1,k = T · pk =

pk

δk

to obtain

δT (tu) = δT (pT,k) = T · δ1(p1,k) = T · δ1(pk) =
1
δk
· δk = 1 ,

by Lemma 6. Thus we have that the maximum value of δT is equal to one.
Lemma 5 yields that we can compute a feasible solution. The equality δT (tu) = 1
and Lemma 3 show that the solution is optimal, because there does not exist a
feasible solution with total transfer time strictly smaller than T . 
�

The asymptotic running time of Algorithm 3 is obviously determined by the call
to EvaluateTotalDataFunction and is thus O(m log m). As a consequence,
we have established Theorem 1.
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Algorithm 3. FlowScaling(N )
Input. A distribution network N .

Output. The optimal distribution x∗ = (x1, . . . , xm) for N .

1: (p, δ)← EvaluateTotalDataFunction(N , 1)
2: k ← arg maxi=1,...,m{δi}
3: T ← 1

δk

4: tu ← pk
δk

5: return CalculateDistribution(N , tu, T − tu)

4 Conclusion

We introduced a new distribution problem that asks how a file with given size
should be split and uploaded in parallel onto a set of servers such that the
time for this upload and a number of subsequent parallel downloads is min-
imised. In contrast to other work in this area, our problem setting resembles the
technological connection situation by allowing asymmetric upload and download
bandwidths of the individual servers. The FlowScaling algorithm determines
an optimal solution for this distribution problem by making use of a decision
criterion derived from maximum-flow theory stating whether a solution with
given time bounds exists. This predicate is then used to formulate the total data
function which gives the maximum amount of data that can be uploaded and
downloaded again within total time T . A natural scaling argument finally yields
an elegant algorithm for solving the distribution problem in time O(m log m).
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Abstract. We consider the metric Traveling Salesman Problem (Δ-TSP
for short) and study how stability (as defined by Bilu and Linial [3]) in-
fluences the complexity of the problem. On an intuitive level, an instance
of Δ-TSP is γ-stable (γ > 1), if there is a unique optimum Hamiltonian
tour and any perturbation of arbitrary edge weights by at most γ does
not change the edge set of the optimal solution (i.e., there is a signifi-
cant gap between the optimum tour and all other tours). We show that
for γ ≥ 1.8 a simple greedy algorithm (resembling Prim’s algorithm for
constructing a minimum spanning tree) computes the optimum Hamil-
tonian tour for every γ-stable instance of the Δ-TSP, whereas a simple
local search algorithm can fail to find the optimum even if γ is arbitrary.
We further show that there are γ-stable instances of Δ-TSP for every
1 < γ < 2. These results provide a different view on the hardness of
the Δ-TSP and give rise to a new class of problem instances which are
substantially easier to solve than instances of the general Δ-TSP.

1 Introduction

NP-hardness is a common concept of quantifying the complexity of an optimiza-
tion problem. It can be seen as quite a pessimistic approach, since it considers the
worst case running time of an algorithm for all instances of a problem. Hence,
many other views on the difficulty of algorithmic problems exist. Specifically,
Bilu and Linial [3] observed that an optimization problem that is NP-hard in
general may turn out to be easy (i.e., polynomial time solvable) if there is one
optimum solution that stands out. The notion of stability captures this idea:
If the solution to a combinatorial optimization problem does not change even
if we multiply the input parameters by a given factor, we call the problem in-
stance stable with respect to this factor. Stability models a variety of practical
considerations, such as measurement errors in input parameters. In this paper
we study the well-known Traveling Salesman Problem (TSP) in the context of
stability. We limit ourselves to the case in which edge weights satisfy the triangle
inequality, the NP-hard metric TSP (Δ-TSP).

Our Results. We show a tight upper bound of 2 on the stability of any Δ-TSP
instance. We prove that any 1.8-stable instance of Δ-TSP can be solved in poly-
nomial time by a greedy algorithm, but we provide instances of stability 5/3
on which the same algorithm fails. In the end, we provide a class of Euclidean
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instances that are 2-stable and we show that on these instances a simple lo-
cal search algorithm fails. This result also holds for non-Euclidean instances of
arbitrary stability.

Related Work. Bilu and Linial [3] considered the MAX-CUT Problem and
showed that γ-stable instances can be solved correctly in polynomial time on
(i) simple graphs of minimum degree δ, when γ > 2n/δ , where n is the num-
ber of vertices and (ii) weighted graphs of maximal degree ζ, when γ >

√
ζn.

Balcan et al. [2] studied clusterings and restricted themselves to instances that
have the (c, ε)-property, i.e., instances where any c-approximation of the given
objective function (e.g. k-median, k-means, etc.) is ε-close to the optimal clus-
tering; two clusterings are considered ε-close if they differ only in an ε-fraction of
points. They showed that for such instances one can produce ε-close clusterings
in polynomial time, even for values of c where a c-approximation is provably
NP-hard. Awasthi et al. [1] proved that for center-based clustering objectives a
constant stability (as defined by Bilu and Linial [3]) is sufficient to obtain an
optimal clustering in polynomial time. Further, they relaxed the requirements
of the (c, ε)-property and showed that one can still find optimal or near opti-
mal clusterings in polynomial time. Spielman and Teng [4] introduced smoothed
analysis, which on an intuitive level states that hard input instances occur very
rarely at discrete points in solution space and therefore a small perturbation
yields a polynomial time solvable input instance. Note that stability focuses on
the structure of an instance rather than on the topology of the solution space.

In the following we introduce some notation and provide formal definitions of
the required notions. Let Kn = (Vn, En) be the complete graph on n vertices
where Vn is the vertex set and En is the set of all undirected edges on Vn.
Let w : En → R+ be a function that assigns a positive weight to each edge.
Throughout this paper we assume that w satisfies the triangle inequality, i.e. for
any u, v, x ∈ Vn it holds that w(u, v) ≤ w(u, x) + w(x, v). To simplify notation,
we may write w′

i instead of w(e′i), as long as it does not affect readability, and
for the weight w(S) =

∑
e∈S w(e) of a set S of edges we may write wS . Any

sequence of n distinct vertices of Kn defines a Hamiltonian tour H . The set of
all Hamiltonian tours is denoted by S(Kn). The edge set of H is denoted by
E(H) and we may write wH instead of wE(H). Using the above notation the Δ-
TSP is defined as follows. For an input instance I = (Kn, w), find a Ĥ ∈ S(Kn)
such that for all H ′ ∈ S(Kn) we have wĤ ≤ wH′ . We call Ĥ an optimal solution
or optimal Hamiltonian tour of I.

We now formalize the notion of stability. When each edge weight of I is
multiplied by an individual factor of at least 1 and at most γ, we say that the
instance the instance I is perturbed by at most γ. Assume that I has a unique
optimal Hamiltonian tour Ĥ (this assumption is justified later). Consider a non-
optimal tour H and let A(H) be the set of edges that are part of H but not
of Ĥ . Further, let D(H) be the set of edges that are part of Ĥ but not of H .
A perturbation causes Ĥ to become non-optimal iff there is a non-optimal H
s.t. the perturbation causes wD(H) to become greater than wA(H). Thus, there
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exists a Hamiltonian tour H , s.t. the weight ratio of A(H) and D(H) limits the
size of a perturbation that does not change the optimal solution.

Definition 1. For a non-optimal Hamiltonian tour H we define the disjoint
ratio of H to be R(H) = wA(H)/wD(H).

The disjoint ratio is consequently always strictly greater than 1 as otherwise H
would be optimal. An instance is as stable as the smallest disjoint ratio w.r.t. all
non-optimal tours H (see Figure 3a).

Definition 2. Let I be an input instance of the Δ-TSP with a unique optimal
Hamiltonian tour Ĥ. We say I is γ-stable or has stability γ if for all non-optimal
Hamiltonian tours H it holds that R(H) > γ.

Now we can see why the requirement for an instance with unique optimal so-
lution is relevant to our definition. An instance I ′ with more than one optimal
Hamiltonian tour has the property that even a small perturbation on the edge
weights may transform any optimal solution H of the original instance I ′ to a
unique optimal solution of the perturbed instance. W.r.t. our definition such
instances are highly unstable, we may thus state that if I has more than one
optimal solution it is 1-stable.

In order to simplify some proofs in later sections, we mention an equivalent
view on stability and show some immediate consequences of the definitions. A
non-optimal Hamiltonian tour H can always be constructed out of Ĥ by two
consecutive steps. First, by deleting all edges D(H) from Ĥ , then by adding all
edges A(H). Note that |A(H)| = |D(H)| and |A(H)| > 1. The disjoint ratio of
any Hamiltonian tour H bounds the γ-stability of I from above. Further, if I is
γ-stable, then I is also γ1-stable for any γ1 ≤ γ. Likewise, if I is not γ-stable,
then I is not γ2-stable for any γ2 ≥ γ.

We conclude this section by stating a simple observation to bound fractions
of sums more tightly than trivial estimates.

Observation 1. Let a ≥ b > 0 and x ≥ c > 0 be real numbers. Then

a + x

b + x
≤ a + c

b + c
.

The rest of the paper is structured as follows. In Section 2 we show that the
stability of the Δ-TSP has a tight upper bound of 2. In Section 3 we show
that a simple greedy algorithm solves every 1.8-stable input instance correctly
in polynomial time, but it may fail for 5/3-stable instances as we show in Section
4. In Section 5 we show that a simple local search algorithm cannot exploit the
properties of stable instances.

2 A Tight Upper Bound on the Stability of Δ-TSP

In this section we show that any input instance of the Δ-TSP has stability
smaller than 2, and, to show tightness, we provide a sequence of instances with
stability converging to this bound.
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v1

v2

vn−1

vn−2

v0

v1 v2vn−1vn−2

v0

(a) (b)

e1

e′2

e′n−2

Fig. 1. Two input instances of Δ-TSP, where the solid line in the unique optimum tour
Ĥ, and the dashed line is a tour with disjoint ratio of at most 2. (a) shows the case
where n is even and (b) shows the case where n is odd.

Note that in any Hamiltonian tour H we can find an edge that has weight
greater than or equal to that of its two neighbors. We call such an edge a local
maximum for H .

In the following, we show that any input instance I with a unique optimal
Hamiltonian tour Ĥ of the Δ-TSP has stability of less than 2.

The basic idea is that for any I we can find a non-optimal Hamiltonian tour H
that has at most double the weight of Ĥ . We can construct such an H from Ĥ by
walking along the edges of Ĥ , and for any two consecutive edges (u, v), (v, x) ∈
E(Ĥ) we take the direct edge (u, x) for H .

Formally, we do a case differentiation between input instances of even and odd
number of vertices. W.l.o.g., let Ĥ = (v0, v1, . . . , vn−1) be the optimal Hamilto-
nian tour.

Case 1: (number of vertices n is even)
Consider the non-optimal Hamiltonian cycle

H = (v1, v2, v4, v6, . . . , vn−2, v0, vn−1, vn−3, vn−5, . . . , v5, v3) ,

which formalizes the intuitive construction from above. W.l.o.g. let the edge
e0 = (v0, v1) be a local maximum. Let ei = (vi, vi+1) for 1 ≤ i ≤ n−1, so that
the edges removed from the optimal cycle will be D(H) = {e0}∪

⋃n−2
i=2 {ei}.

Let e′i be the edges connecting every second vertex, i.e., e′i = (vi, vi+2) for
0 ≤ i ≤ (n − 1). Then the edges substituted for D(H) will be A(H) =⋃n−2

i=1 {e′i}. For illustration see Figure 1a. Since the triangle inequality holds,
we get w′

i ≤ wi + wi+1 and since e0 is a locally maximal edge, we get that
wn−1 + w1 ≤ 2w0. Then we can bound the disjoint ratio:

R(H) =
∑n−2

i=1 w′
i

w0+
∑n−2

i=2 wi

≤
∑n−2

i=1 (wi + wi+1)

w0 +
∑n−2

i=2 wi

=
w1 + wn−1 + 2

∑n−2
i=2 wi

w0 +
∑n−2

i=2 wi

≤ 2

Case 2: (number of vertices n is odd)
In this case we use all the edges e′i without reusing any edge of the optimal
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Hamiltonian cycle. H will be (v0, v2, . . . , vn−1, v1, v3, . . . , vn−2) (see Figure
1b, dashed edges). Then, again using triangle inequality, we get

R(H) =
∑n−1

i=0 w′
i∑n−1

i=0 wi

≤ wn−1 + w0 +
∑n−2

i=0 (wi + wi+1)∑n−1
i=0 wi

= 2

Thus, for any input instance one can find a non-optimal Hamiltonian tour with
disjoint ratio at most 2, which bounds the stability from above.

Now, to show the tightness of this bound, we provide an infinite sequence
(In)n≥4 of input instances that are at least γ(n)-stable and for which γ(n) con-
verges to 2 as n tends to infinity.

Intuitively, the n-th instance of the sequence is a complete graph Kn with
n vertices distributed equidistantly onto a unit circle, and edge weights that
correspond to the Euclidean distance. The stability of In grows monotonically
in n.

Formally, for the instance In = (Kn, wn) of a sequence (In)n≥4 we only need
to define wn. Let f : Vn → R2, f(vi) = i ∗ 2π/n map the i-th vertex of Kn to
the point that lies on a unit circle in two dimensional Euclidean space, and has
radian measure f(vi). Then, wn(u, v) = ||f(u)− f(v)||2.

Now, we bound the stability of In from below. By simple trigonometry the edges
(vi, vi+1), for 0 ≤ i ≤ n − 1, have weight 2 sin(π/n) and form a unique optimal
Hamiltonian tour Ĥ . All other edges have weight at least 2 sin(2π/n). Thus, the
disjoint ratio of any non-optimal tour H differing in k edges from Ĥ is

R(H) =
wA(H)

wD(H)
≥ k2 sin(2π/n)

k2 sin(π/n)
=

2 cos(π/n) sin(π/n)
sin(π/n)

= 2 cos (π/n) .

Therewith, instance In is (2 cos(π/n)− ε)-stable for any ε > 0. Since 2 cos(π/n)−
ε is monotonic increasing in n, any suffix of the sequence (In)n≥4 starting from
Im is (2 cos(π/m)− ε)-stable.

3 A Polynomial Time Algorithm for 1.8-Stable Instances

In this section we give a polynomial time algorithm for the Δ-TSP and prove
that it works correctly if the input is 1.8-stable.

The algorithm works similarly to Prim’s algorithm for computing a minimum
spanning tree: Intuitively, in each step it merges two paths until a Hamilto-
nian path is obtained, which can be connected to a Hamiltonian tour. In the
following we describe the algorithm formally. Let I = (Kn, w) be a γ-stable in-
put instance and let Ci = (vi0 , vi1 , . . . , vim) be a vertex disjoint path in Kn of
length m. Initially, the algorithm treats any vertex as a path of length 0. Let
Cj = (vj0 , vj1 , . . . , vjm′ ) be another vertex disjoint path in Kn. Paths Ci and Cj

can be merged to a path of length m+m′+1 by using one of the edges (vi0 , vj0),
(vi0 , vjm′ ), (vim , vj0) or (vim , vjm′ ) as a link. We call such edge an inter-path edge.
To find the two paths to merge, the algorithm runs through every combination
of two paths Ci, Cj to find a minimum weight inter-path edge. In case of ties
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we take the minimum weight inter-path edge which is found last. The algorithm
iterates until only one path is left. This is a Hamiltonian path and by connecting
its endpoints we obtain a Hamiltonian tour.

We prove the correctness of the described algorithm. The algorithm terminates
because in each step the number of paths decreases until there is only one path
left. The Hamiltonian path found by the algorithm consists of all n vertices of
the complete graph and therefore represents a Hamiltonian tour.

It remains to be shown that the obtained Hamiltonian tour has minimum weight
if the input is 1.8-stable. For the sake of contradiction, we assume that the algo-
rithm does notwork correctly andunder this assumption we show that the input in-
stance is not 1.8-stable. Let the optimalHamiltonian tour be Ĥ =(v0, v1, . . . , vn−1).
The algorithmerrs in some round for the first time when it chooses two paths which
are connected by an edge e of minimum weight but e is not a part of the optimal
Hamiltonian tour. Let the endpoints of e be vx and vy.

For each edge e′ ∈ E(Ĥ), that is adjacent to a vertex not contained in a path
of length greater than 0, it holds

we ≤ we′ , (1)

as otherwise e′ would have been chosen by the algorithm instead of e. We consider
two possible cases. First, e is chosen such that at least one endpoint, vx or vy, is
the only vertex of its path. The second case deals with the situation where both
vx and vy are not paths consisting of a single vertex. For each case we show that
the input is not 1.8-stable.

Case 1: (vx or vy is in a path of length 0)
W.l.o.g. assume that vy is in a path of length 0 and vx may or may not be
the only vertex of its path. Further, w.l.o.g. we assume that ex = (vx, vx+1)
has not yet been chosen (see Figure 2). Thus, condition (1) holds for ey−1 =
(vy−1, vy), ey = (vy, vy+1) and for ex. We consider the Hamiltonian tour H =
(vx, vy, vx+1, vx+2, . . . , vy−1, vy+1, . . . vx−1) that differs from Ĥ in the edges

e

CyCx

e

vx+1

vx−1

vy−1

Cy

vy+1Cx

vx vxvy
vy

vx−1

vx+1 vy−1

vy

vy+1

Fig. 2. The algorithm at some step of execution: There are paths already constructed
in previous rounds and the algorithm errs for the first time by chosing the edge e. Left:
vy is the only vertex of its path. Right: vx and vy are contained in paths with at least
two vertices. Note that the graph is complete, but not all edges are drawn.
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D(H) = {ex, ey−1, ey} and A(H) = {e, eh1, eh2} where eh1 = (vy, vx+1) and
eh2 = (vy−1, vy+1). Thus, the disjoint ratio of H is

R(H) =
w(e) + w(eh1) + w(eh2)

w(ex) + w(ey−1) + w(ey)
≤ 2w(e) + w(ex) + w(ey−1) + w(ey)

w(ex) + w(ey−1) + w(ey)
,

(2)
where the last inequality follows from the triangle inequality. Remember that
condition (1) holds for all edges of the latter equation. We further estimate
the disjoint ratio using Observation 1, since trivial estimates would yield a
much worse bound. We get R(H) ≤ 5w(e)/3w(e) = 5/3. In this case, the
input instance is not 5/3-stable (and thus not 1.8-stable).

Case 2: (vx and vy are contained in paths of length at least 1)
Denote the paths connected by e with Cx and Cy. Because vx is not the only
vertex in Cx we assume w.l.o.g. that vx−1 ∈ Cx and therefore ex−1 ∈ Cx.
By the same argument ey ∈ Cy. For ex−1 and ey it holds that w(e) ≥
w(ex−1) and w(e) ≥ w(ey), because otherwise e would have been chosen in
an earlier round of the algorithm, before ex−1 and ey were chosen. We now
partition all possible instances I by another case differentiation. Let l ≥ 1
be some real number.

Case 2a: ( w(ex)/w(ex−1) > l or w(ey−1)/w(ey) > l for l ≥ 1 )
W.l.o.g. assume that w(ex)/w(ex−1) > l. Then we can find three consec-
utive edges in Ĥ = (v1, v2, . . . , vn) denoted by ek1 , ek2 and ek3 for which
the following two conditions hold: Condition 1 is w(ek1 ) > lw(ek2) and
Condition 2 is w(ek2) ≤ lw(ek3). Otherwise each edge on the Hamilto-
nian tour would have to be larger than the previous one.
Consider the Hamiltonian tour H = (v1, . . . , vk1 , vk3 , vk2 , vk4 , . . . , vn)
that differs from Ĥ = (v1, . . . , vk1 , vk2 , vk3 , vk4 , . . . , vn) only in the two
edges ek1 and ek3 . The disjoint ratio of H is

R(H)=
w(vk1 , vk3) + w(vk2 , vk4)

w(ek1) + w(ek3)
≤ w(ek1) + w(ek2 ) + w(ek3 ) + w(ek2)

w(ek1 ) + w(ek3 )
,

where the last inequality is due to the triangle inequality. As in Case 1,
to get a better estimate on the disjoint ratio, we apply Observation 1.
Since w(ek1)/w(ek2 ) > l and w(ek2 )/w(ek3) ≤ l, we get,

R(H) ≤ lw(ek2) + 2w(ek2) + 1/l · w(ek2 )
lw(ek2) + 1/l · w(ek2 )

<
l2 + 2l + 1

l2 + 1
.

For the considered case this directly yields an upper bound for the
γ-stability of I, i.e., γ < l2+2l+1

l2+1 for l ≥ 1.
Case 2b: ( w(ex)/w(ex−1) ≤ l and w(ey−1)/w(ey) ≤ l for l ≥ 1 )

Again let Ĥ = (vx, vx+1 . . . , vy−1, vy, vy+1, . . . , vx−1) be the optimal
Hamiltonian tour in I. As in Case 1 let the suboptimal Hamiltonian
tour be H = (vx, vy, vx+1, . . . , vy−1, vy+1, . . . , vx−1) (see Figure 3b), and
consequently the disjoint ratio of H is also bounded by inequality (2).
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Fig. 3. (a) This is an input I = (K5, w) of the Δ-TSP with optimal Hamiltonian tour
Ĥ = (v0, v1, v2, v3, v4). (i) Consider the non-optimal tour H = (v0, v1, v4, v3, v2). Note
that A(H) = {(v0, v2), (v1, v4)} and D(H) = {(v0, v4), (v1, v2)}. The disjoint ratio is
R(H) = wA(H)/wD(H) = 2.5/2 = 1.25. (ii) Instance I is (1.25 − ε)-stable (ε > 0)
because there is no non-optimal tour H ′ with R(H ′) < R(H). (b) On the left: optimal
Hamiltonian cycle Ĥ and edge e. On the right: Other Hamiltonian cycle H differing
from Ĥ only in three edges (gray). Note that the graph is complete and unimportant
edges are omitted in the figure.

By using inequalities (1), the premise of this case, and by applying Ob-
servation 1, we obtain

R(H) ≤ w(e) + w(e) + w(e) + 1/l · w(e) + w(e)
w(e) + 1/l · w(e) + w(e)

=
4l + 1
2l + 1

.

Thus, the disjoint ratio of H is at most 4l+1
2l+1 , and consequently γ <

R(H) ≤ 4l+1
2l+1 for an arbitrary input instance I satisfying the conditions

of this case.

We combine the two cases (2a and 2b) to obtain an upper bound on the stability
of the input instance I. Because we do not know which case holds for I, we
search for an l that is best in both cases, i.e., we search for

min
l≥1

max
{

l2 + 2l + 1
l2 + 1

,
4l + 1
2l + 1

}
,

which is an upper bound for γ. The minimum of 1.8 is obtained for l = 2 and
thus γ < 1.8. This is now a contradiction to the assumption that I is 1.8-stable.
This completes the proof. 
�

4 The Algorithm Fails for (5/3 − ε)-Stable Instances

In this section we present a family FB of input instances for the Δ-TSP that
are (5/3 − ε)-stable for ε > 0 and for which the algorithm errs. We proceed by
defining FB formally and showing that the instances in FB obey the triangle
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inequality. Subsequently we prove that the greedy algorithm errs on any instance
in FB and that any instance is (5/3− ε)-stable.

Let G = (Vn, E′) be a graph on an even number of vertices where E′ =
{(vi, vi+1) ∈ En | 0 ≤ i ≤ n− 2} ∪ {(v0, vn−1)} ∪

{
(v0, vn/2)

}
(the solid lines in

Figure 4a). All edges in E′ have unit weight. We define wn(vi, vj) to be the
distance between vi and vj in G. Let FB = {In = (Kn, wn) | n = 2k, k ≥ 5}.
Note that wn defines the shortest-path metric of G on Kn and therefore it
satisfies the triangle inequality. Therefore every In ∈ FB is an instance of the
Δ-TSP.

1

1

1

1

1

1

1

. . .

. . . . . .

. . .

1

1

1

1

1

1

1

1

vx

vy

vx+1vx−1

vy−1vy+1

v0 v1

v2

v3

v4

v5

v6

vn−1

v7v8
v9

v10

v11

(a) (b)

Fig. 4. (a) The algorithm chooses the edge in the middle to merge to components. This
yields a non-optimal Hamiltonian tour. (b) The solid edges have weight 1, the dashed
edges weight 2. The solid lines form the optimal solution. A local optimum is the tour
(v0, v1, . . . , vn−1).

First notice that every instance In ∈ FB has exactly one optimal Hamiltonian
tour Ĥ = (v0, v1, . . . , vn−1). This follows from the following argument: A Hamil-
tonian cycle H cannot differ in only one edge, so it must differ in at least two.
Observe that all edges not in Ĥ have weight greater than 1 except for (v0, vn/2).
Thus, the weight of H must be greater than the weight of Ĥ .

We show that the algorithm errs on each instance in FB. In any step of its
execution, the algorithm identifies an edge of minimum weight among all edges
that can connect two paths. Let us suppose that the edge (v0, vn/2) (which is not
part of Ĥ) is chosen first by the algorithm. Thus, for all In ∈ FB the algorithm
fails.

In the following we show that In ∈ FB is (5/3 − ε)-stable, i.e., each non-
optimal Hamiltonian cycle H in In has a disjoint ratio greater or equal to 5/3.
We do a case differentiation and first consider every H that can be obtained by
deleting and adding k = 2 edges, i.e., |D(H)| = |A(H)| = 2. Then, we consider
every H with |D(H)| = |A(H)| ≥ 3.

Case 1: (|D(H)| = 2)
LetD(H) = {(vi, vi+1), (vj , vj+1)}with 0 ≤ i, j ≤ n−1. Note that j �= i+1 and
j + 1 �= i as otherwise H = Ĥ. We then have, A(H)= {(vi, vj), (vi+1, vj+1)}.
Note that all edges in D(H) have weight 1.
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Assume A(H) does not contain (v0, vn/2), thus by definition each added edge
has weight at least 2. Therewith, we derive R(H) ≥ 2.
Assume (v0, vn/2) is in A(H). Then both edges in D(H) must have the follow-
ing property: the edges must be adjacent to (v0, vn/2) as otherwise we cannot
get an Hamiltonian tour by adding (v0, vn/2). To avoid cycles, it follows that
the edges must either be (v0, v1), (vn/2, vn/2+1) or (vn−1, v0), (vn/2−1, vn/2).
Thus, for the second edge in A(H) there are only two choices, and for both
we obtain a weight of 3. This yields R(H) ≥ (1 + 3)/2 = 2.

Case 2: (|D(H)| > 2)
Recall that H can be constructed out of Ĥ by removing |D(H)| edges and
adding |A(H)| edges. The deletion of D(H) decomposes Ĥ in k > 2 paths Ci

for 1 ≤ i ≤ k. In Ĥ each Ci is connected to other paths by exactly two edges
of D(H) ⊂ E(Ĥ). The edges connecting Ci to other paths are denoted by
D(Ci). After removing all edges in D(H) we have to reconnect each path Ci

with exactly two edges of A(H) �⊂ E(Ĥ) so that we obtain the Hamiltonian
tour H . We denote these edges by A(Ci). Accordingly, the disjoint ratio is

R(H) =
∑k

i=1 wn(A(Ci))∑k
i=1 wn(D(Ci))

.

We say wn(D(Ci)) is the negative and wn(A(Ci)) is the positive contribution
of Ci to the disjoint ratio.
For any path the weight of the two edges disconnecting Ci from the optimal
Hamiltonian tour Ĥ is wn(D(Ci)) = 2. In the following we differentiate
between paths incident and not incident to (v0, vn/2).
Case 2a: ((v0, vn/2) is incident to a vertex in Ci)

In the worst case Ci could be connected to a path using (v0, vn/2),
i.e. (v0, vn/2) ∈ A(H). The second edge needed to connect Ci to another
path must have a weight of at least 2 since the only edges of weight 1
are those in E(Ĥ) ∪

{
(v0, vn/2)

}
. Thus, wn(A(Ci)) ≥ 1 + 2 = 3.

Case 2b: ((v0, vn/2) is not incident to a vertex in Ci)
To construct H we have to connect Ci to paths via edges that have
weight at least 2, as otherwise we would use an edge of D(Ci). Thus,
wn(A(Ci)) ≥ 2 + 2 = 4.

Below we combine both types of paths to get a lower bound for the disjoint ratio
of any non-optimal Hamiltonian tour H . In Case 1, where we only exchange 2
edges, we get a lower bound on the disjoint ratio of R(H) ≥ 2. In Case 2 we
remove k > 2 edges from Ĥ . Note that at most two of the emerging paths are
of type (2a). As a result, for the disjoint ratio H we have

R(H) =
∑k

i=1 wn(A(Ci))∑k
i=1 wn(D(Ci))

≥ 3 + 3 +
∑k−2

i=1 4∑k
i=1 2

.

This is minimized for k = 3 which yields R(H) ≥ 5
3 . Thus, the input instance

In is (5/3− ε)-stable for ananyy ε > 0.
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5 Stability is Not Good for Local Search

In this section we show that a local search algorithm does not benefit from
stable instances. The idea is to present a family FC of (2 − ε)-stable (ε > 0)
input instances which have local optima that are not global optima.

To introduce local search formally, let H be a not necessarily optimal Hamil-
tonian tour of the Δ-TSP. Then, a Hamiltonian tour H ′ is called a neighbor of
H , if one can substitute two non-adjacent edges (u, v), (x, y) of H by (u, y),(v, x)
to obtain H ′. The set of all neighbors of H is called the neighborhood of H . A
Hamiltonian tour H is called a local optimum if all neighbors H ′ have greater
or equal weight. A global optimum Ĥ is the optimal solution of the given input
instance I, i.e., ∀H ∈ S(I) : wĤ ≤ wH . Our local search algorithm takes as an
input a Hamiltonian tour H , and explores all O

(
n2
)

Hamiltonian tours of H ’s
neighborhood to find a minimum-weight Hamiltonian tour H ′. If wH′ < wH ,
then the algorithm recurs on H ′, otherwise it stops and outputs H .

Consider the family of stable instance FC = {In = (Kn, wn) | n ≥ 6 even}
(see Figure 4b) where the weight function on the edges is defined as:

wn(e) =

{
1 if e = (v2i, v2i+1) or e = (v2i, v2i+3) for 0 ≤ i ≤ n/2− 1
2 otherwise .

Any instance of this family satisfies the triangle inequality since there are only
weights 1 and 2.

To prove a stability of (2 − ε) for all instances in FC , note that all edges of
weight 1 define the unique optimal Hamiltonian tour Ĥ . All other edges have
weight 2. For any non-optimal Hamiltonian tour H we have that D(H) contains
edges of weight 1 only, and A(H) contains edges of weight 2 only. Since |D(H)| =
|A(H)| holds for any H , the disjoint ratio is R(H) = 2.

We show that an instance In in FC has a local optimum that is not a global
optimum. The idea is to prove that the solution HLO = (v0, v1, . . . , vn−1) has no
neighboring solution of strictly lower weight. We describe a best possible local
search step: one of the two added edges must have weight 1 as otherwise we would
have no improvement. Consider any edge e not in HLO with w(e) = 1 and add
it to HLO. The resulting graph HLO′

is not a cycle anymore. To obtain this
property again, we have to delete two edges adjacent to e that are not incident
to the same vertex and in different cycles in HLO. No matter which two edges
we choose, by the construction of the class FC we have to remove one edge with
weight 2 and one with weight 1. Finally, we must add an edge with weight 2
to obtain a Hamiltonian tour again. See Figure 4b for illustration. Our relative
improvement in weight is thus 1 − 2 − 1 + 2 = 0, which is not strictly better.
Thus, we are stuck in a local optimum that is not the global optimum Ĥ .

Note that if we abandoned the restriction to metric TSP and used arbitrary
weights for those edges that have weight 2 in the metric instance, we would see
that the local search algorithm can get stuck in local optima even for general
TSP instances of arbitrary stability.
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6 Conclusion

In this paper we studied properties of the metric TSP in the context of stability.
We showed that a Prim style algorithm works correctly for any instance which is
at least 1.8-stable. On the other hand, we showed that high stability does not lead
to very simple instances since there exist instances with arbitrary stability, on
which a local improvement algorithm will fail. There are many further questions
even in our very limited scope. Is there a polynomial time algorithm that can
determine the stability of a given instance? Are there any interesting classes of
graphs that are stable? What stability can be expected from instances generated
by randomly picking points in the Euclidean plane? Is it possible to eliminate
the gap between 5/3 and 1.8 in the analysis of the algorithm? Our conjecture is
that the lower bound of 1.8 can be improved further.

We believe that stability as defined earlier is worthy of research focus, since
it is a new way of dissecting NP-complete problems into smaller classes, some of
which are efficiently solvable.

Acknowledgments. We would like to thank the anonymous reviewers for their
useful comments and suggestions.
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Abstract. The metric traveling salesman problem is one of the most
prominent APX-complete optimization problems. An important partic-
ularity of this problem is that there is a large gap between the known up-
per bound and lower bound on the approximability (assuming P 
= NP ).
In fact, despite more than 30 years of research, no one could find a bet-
ter approximation algorithm than the 1.5-approximation provided by
Christofides. The situation is similar for a related problem, the metric
Hamiltonian path problem, where the start and the end of the path are
prespecified: the best approximation ratio up to date is 5/3 by an algo-
rithm presented by Hoogeveen almost 20 years ago.

In this paper, we provide a tight analysis of the combined outcome of
both algorithms. This analysis reveals that the sets of the hardest input
instances of both problems are disjoint in the sense that any input is
guaranteed to allow at least one of the two algorithms to achieve a sig-
nificantly improved approximation ratio. In particular, we show that any
input instance that leads to a 5/3-approximation with Hoogeveen’s al-
gorithm enables us to find an optimal solution for the traveling salesman
problem. This way, we determine a set S of possible pairs of approxima-
tion ratios. Furthermore, for any input we can identify one pair of ap-
proximation ratios within S that forms an upper bound on the achieved
approximation ratios.

1 Introduction

While being one of the hardest problems with respect to approximability in its
general formulation [21], the metric traveling salesman problem (ΔTSP) is well
know to be APX-complete. Unless P = NP , it does not permit an approxima-
tion ratio that is better than 220/219 [19]. The best algorithm available is a
1.5-approximation algorithm by Christofides [10]. The situation is very similar
for the metric Hamiltonian path problem with prespecified start and end ver-
tex (ΔHPP2): the lower bound is closely related to that of the ΔTSP and the
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5/3-approximative algorithm by Hoogeveen [16] was not improved so far. An
alternative proof for the same result was given by Guttmann-Beck et al. [15].
For both problems, the upper bounds on the approximability have resisted all
attempts of improvement for many years.

The two problems are closely related, since both of them take a complete
metric graph as input and the goal of both problems is to visit each of the
vertices. The ΔTSP is basically the ΔHPP2, where the start vertex and the end
vertex are the same.

In this paper, we significantly improve our former result from [8]. We char-
acterize hard input instances for both Christofides’ and Hoogeveen’s algorithm
and show that the sets of worst-case instances for these algorithms are disjoint
in the sense that a hard instance for one problem allows a significantly improved
approximation for the other one. We determine the set S of all possible pairs
of approximation ratios that are achieved this way (depicted in Figure 1). This
includes the guarantee that a worst-case input for Hoogeveen’s algorithm, for
which we can only compute a 5/3-approximative solution, enables us to com-
pute an optimal solution for ΔTSP on that input. We are guaranteed that the
cost of this optimal solution is exactly 4/3 times as high as that of an optimal
solution for ΔHPP2. In addition to the results on the structure of hard inputs,
we show that for each input, we can determine a pair of approximation ratios
from S that forms an upper bound on the achieved ratios.

To show that our analysis is tight, we present a class of hard input instances
for each of the possible pairs from S that forms an upper bound.

Our detailed analysis of these algorithms provides deep insight of the core of
the hardness involved in classes of input instances for which we cannot provide an
improved approximation. We show for instance that in any worst case instance
for Hoogeveen’s algorithm, the minimum spanning tree involved in the algorithm
contains a path between the end vertices of cost exactly 1/3 of the cost of
an optimal solution and a gradual relaxation of this bound for inputs that do
not cause worst-case behavior. This generalizes some of the results from [15].
The properties revealed in this work restrict the types of inputs that a possible
improved algorithm for the ΔHPP2 has to cope with. This might be helpful for
creating improved algorithms for the ΔHPP2 or the ΔTSP.

1.1 Related Known Results

The result of this paper is a win/win strategy for approximation algorithms. The
concept of win/win strategies is to specify a parameter of the input instance and
to guarantee — for any value of the parameter — that we can compute an im-
proved solution for one of two problems according to some complexity measure.
Here, the parameter is the computed bound on the approximation ratio for the
Hamiltonian path problem and the complexity measure is the approximation
ratio.

Win/win strategies fit well into the framework of parameterized complex-
ity [11,18] as well as stability of approximation [5,14,7], because all of these
approaches are based on studying the “hardness” of their problem instances.
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In parameterized algorithms, win/win strategies are a tool used for kernel-
ization [1], which is a technique used in order to reduce the size of the problem
instance and the parameter. Prieto and Sloper presented such a kernelization
of the k-internal spanning tree problem by using a win/win strategy that re-
lates the k-internal spanning tree problem and the vertex cover problem [20].
An overview on the use of win/win strategies in parameterized algorithms can
be found in [13].

The concept of win/win strategies relates to the design of hybrid algorithms as
proposed by Vassilevska et al. [22]. They presented algorithms that allow either
an improved approximation ratio or an improved (but still exponential) runtime
for computing exact solutions.

Win/win strategies for approximation were independently introduced in our
paper [8] and by Eppstein [12]. Eppstein uses the name paired approximation for
this concept. He was able to use win/win as an upper bound technique and he
showed for some pairs of problems that they do not have such a relation.

The win/win result from [8] is related to the result of this paper, but the
achieved pairs of approximation ratios of this paper are significantly improved
(see Figure 1). The result from [8] is existential in the sense that it does not
provide the possibility to identify pairs of approximation ratios within the given
boundaries.

Our results open an interesting connection to another field of algorithmics
called reoptimization. In reoptimization, one is given an optimal or almost op-
timal solution for some input instance. Now the problem is to find a solution
for a different input instance that is closely related to the given one. Some ap-
proximation results on reoptimization can be found in [2,3,4,6]. In [9], one can
find an overview on reoptimization. Let us consider the reoptimization problem
of ΔHPP2, where the modification is to change one of the end vertices. If there
is an approximation algorithm for this reoptimization problem that is better
than 5/3-approximative, then we can use this algorithm for ΔHPP2: for a given
worst-case instance I of Hoogeveen’s algorithm, we determine an optimal ΔTSP
solution and use this as input for the reoptimization problem by declaring the
start vertex of I to be the start vertex as well as the end vertex. Then I is the
modified instance that is to be solved by the reoptimization algorithm. However,
to improve the approximation ratio for ΔHPP2 by a constant factor, we depend
on the ability of the reoptimization algorithm to handle a broader range of input
instances: instead of requiring an optimal solution for the given input graph, it
has to be able to accept solutions that deviate by a (small) constant factor from
an optimal solution.

1.2 Organization of the Paper

Section 2 fixes the notation used in the paper. The core of this paper is located
in Section 3, where we show the combined upper bounds on the approximation
ratios achieved by Christofides’ and Hoogeveen’s algorithm. Section 4 then pro-
vides a more detailed analysis of hard instances. Finally, Section 5 shows that
the analyses of all upper bounds shown in this paper are tight.
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2 Preliminaries

For graphs, we use a notation similar to [23]. In a graph G = (V, E), the edges are
sets of two vertices. A trail from u to v is a sequence of adjacent edges leading
from u to v, where no edge may be used more than once. A trail is uniquely
defined by a list of vertices uw1w2 . . . wiv, where consecutive vertices describe
the edges of the trail. We say that w1 . . . wi are the inner vertices. The length of
a trail is the number of its edges. A trail, where each vertex is used at most once,
is a path. A closed trail, i. e., a trail that starts and ends with the same vertex,
is a circuit. A circuit, where each inner vertex is visited only once, is a cycle. In
a graph G = (V, E), a Hamiltonian path from u to v is a path of length |V | − 1
from u to v and a Hamiltonian tour is a cycle of length |V |. Let [n] denote the
set {1, 2, . . . , n}, where n is an integer.

We call a complete graph G = (V, E) with cost function c : E → Q+ metric,
if the edge costs satisfy the triangle inequality c({u, v}) ≤ c({u, w}) + c({w, v})
for any pairwise distinct vertices u, v, w ∈ V .

The metric traveling salesman problem, ΔTSP, is the problem of finding a
minimum-cost Hamiltonian tour in a complete metric graph. The metric min-
imum-cost Hamiltonian path problem in complete graphs, where the two end
vertices are fixed, is called ΔHPP2.

Given a graph G = (V, E) and two vertices u and v in G, then we define
G + {u, v} as (V, E ∪ {{u, v}}). In a graph, a vertex is odd or even, if its degree
is odd or even.

3 A Win/Win Strategy for ΔTSP and ΔHPP2

In this section, we provide an improved analysis of a simple algorithm that
combines the two well-known algorithms from [10] and [16]. The algorithm is
exactly that from [8]. For completeness, we state this algorithm here.

We first bound the costs of the matchings involved in the algorithm. Let OptP
and OptC be optimal solutions for the ΔHPP2 and the ΔTSP, respectively.

Algorithm 1. Path and Cycle [8]
Input: A complete graph G = (V, E), a metric cost function c : E → Q+, and two

vertices s and t.
1: Compute a minimum spanning tree T in G.
2: Compute a minimum perfect matching MC on the odd vertices of T in G.
3: Compute a minimum perfect matching MP on the odd vertices of the multigraph

T + {s, t} in G.
4: Compute an Eulerian tour EulC in the multigraph T ∪MC and an Eulerian path

EulP in the multigraph T ∪MP .
5: Shorten EulC and EulP to a Hamiltonian tour HC and a Hamiltonian path HP ,

respectively.
Output: HC and HP .
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Lemma 1.

c(MP ) + c(MC) ≤ min{c(OptP ), c(OptC)}

Proof. First we show that c(MP )+c(MC) ≤ c(OptP ) holds. Let P be an optimal
Hamiltonian path from s to t in G and let v1, v2, . . . , vk be the odd vertices of T .
Let us assume without loss of generality that they are in the order as they appear
in OptP. It is clear that k is even. Then we define the matching M ′

C as the set
of edges {vi, vi+1}, where i is odd. Analogously, M ′

P is the matching containing
the edges {vj, vj+1}, where j is even. Additionally, M ′

P contains {s, v1} if v1 �= s
and {vk, t} if vk �= t. Observe that M ′

C is a perfect matching on the odd vertices
of T and M ′

P is a perfect matching on the odd vertices of T + {s, t}. Since M ′
C

and M ′
P are disjoint, due to the triangle inequality c(M ′

P ) + c(M ′
C) ≤ c(OptP ).

Since MP and MC are minimal, c(MP ) ≤ c(M ′
P ) and c(MC) ≤ c(M ′

C).
Now we show that c(MP ) + c(MC) ≤ c(OptC). Note that MC is a minimum-

cost perfect matching of v1, v2, . . . , vk. By Christofides’ analysis, we have c(MC) ≤
c(OptC)/2: due to the triangle inequality, the cycle formed by v1, v2, . . . , vk in the
order as these vertices appear in an optimal Hamiltonian tour OptC is not more
expensive than OptC itself. Since this cycle has two disjoint perfect matchings, the
cheaper one has a cost of at most half of the cycle’s cost. An analogous analysis
shows

c(MP ) ≤ c(OptC)/2. (1)

The only difference is the set of vertices that forms the minimum cost perfect
matching which is composed of the odd vertices from T + {s, t}. 
�

Let α := c(HP )/c(OptP) be the approximation ratio for the computed Hamil-
tonian path and let β := c(HC)/c(OptC) be the approximation ratio for the
computed Hamiltonian tour for a given input G, c, s, t, where HP and HC are
the solutions of Algorithm 1. Furthermore, we determine a value p from the costs
of intermediate graphs in Algorithm 1 as

p := max{c(T ), c(MP ) + c(MC), 1.5c(MP )}.

We will show in the following, that p forms a lower bound on the cost of an
optimal solution for ΔHPP2.

Let α′ be the value such that c(HP ) = α′p. Thus, we can determine the value
of α′, whereas we do not know the value α. We will use α′ as a parameter that
determines a guarantee for the achieved approximation ratios for ΔTSP and
ΔHPP2.

Lemma 2. For any input of Algorithm 1,

(2α− 2)c(OptP ) ≤ (2α′ − 2)p ≤ c(OptC) ≤ (3− α′)p ≤ (3− α)c(OptP ).

Proof. We first show that p ≤ c(OptP) holds. Since OptP is a spanning tree,
c(T ) ≤ c(OptP). Due to Lemma 1, also c(MP ) + c(MC) ≤ c(OptP). Due to
the analysis of Hoogeveen’s algorithm in [16], c(MP ) ≤ 2c(OptP)/3 and thus
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3c(MP )/2 ≤ c(OptP). Therefore, also the maximum of the three values is at
most c(OptP).

Since p is a lower bound on c(OptP),

(2α− 2)c(OptP ) = 2c(HP )− 2c(OptP) ≤ 2c(HP )− 2p = (2α′ − 2)p,

which shows the first inequality of the lemma.
We continue the proof by showing (2α′−2)p ≤ c(OptC). Since c(HP ) = α′p ≤

c(T ) + c(MP ),

(2α′ − 2)p ≤ 2(c(T ) + c(MP ))− 2p ≤ 2(c(T ) + c(MP ))− 2c(T ) = 2c(MP ).

Now the second inequality follows because of (1).
For the third inequality c(OptC) ≤ (3 − α′)p, we note that c(HC) ≤ c(T ) +

c(MC). Due to the definition of p, c(MC)+ c(MP ) ≤ p and c(T ) ≤ p. Therefore,

c(T ) + c(MC) ≤ 2p− c(MP ).

Since c(MP ) ≥ c(HP )− c(T ) holds,

c(MP ) ≥ α′p− c(T ) =
(

α′ − c(T )
p

)
p ≥ (α′ − 1)p.

Therefore we get
c(HC) ≤ 2p− (α′ − 1)p = (3− α′)p. (2)

The last inequality follows, since

(3 − α′)p = 3p− α′p = 3p− c(HP ) ≤ 3c(OptP)− αc(OptP) = (3− α)c(OptP).


�

As a first consequence of Lemma 2, we can relate the actual approximation ratio
α that A achieved for the given input for ΔHPP2 to that for ΔTSP, β.

Theorem 1. For any input of A,

β ≤ min
{

1.5,
1

α− 1
− 1

2

}
and α ≤ min

{
5
3
,

1
β + 1/2

+ 1
}

.

Proof. Due to the analysis of Christofides and Hoogeveen, we can bound β and
α from above by 1.5 and 5/3. For the second bound of β we note that, due to
Lemma 2 and (2), c(HC) ≤ (3 − α)c(OptP). Since Lemma 2 also states that
c(OptC) ≥ (2α− 2)c(OptP), we get

β =
c(HC)

c(OptC)
≤ (3− α)c(OptP )

(2α− 2)c(OptP )
=

3− α

2α− 2
=

2− (α− 1)
2(α− 1)

=
1

α− 1
− 1

2
. (3)

The remaining statement of the theorem now follows immediately, since β ≤
1/(α− 1)− 1/2 implies α ≤ 1/(β + 1/2) + 1. 
�
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Fig. 1. The gray area describes the set S of all combinations of the approximation
ratios α and β for the ΔHPP2 and the ΔTSP achieved by Algorithm 1. The solid line
describes the upper bound on the approximation ratios achieved by that algorithm. The
dashed lines represent the upper bounds on the approximation ratios proven in [8]. The
hatched area contains the set of possible pairs of solutions given that α′ coincides with
the highest value of α within the area.

Figure 1 gives a graphical representation of the theorem. The set S of all valid
combinations of approximation ratios achieved by Algorithm 1 is represented as
the gray area.

The following corollary follows from Theorem 1 by setting α = 5/3.

Corollary 1. Any worst-case instance for Hoogeveen’s algorithm for ΔHPP2
allows us to compute an optimal Hamiltonian cycle in G.

Theorem 1 described properties that belong to the core of the relation between
the two problems. Now we will change the focus and describe how to use the
revealed relations in order to guarantee improved approximations according to
parameters that we can measure, namely α′. More precisely, we determine the
approximation ratios according to the spanning tree T and the matchings MP

and MC . Let δ = p− c(T ). Note that δ ≥ 0 and α ≤ α′ holds.

Theorem 2. For any input of A,

β ≤ min{1.5, 1/(α′ − 1)− 1/2} − δ/c(OptC).

Proof. Analogous to the proof of Theorem 1, c(HC) ≤ c(OptC) · (1/(α′ − 1) −
1/2) and c(HC) ≤ c(OptC) · 1.5. In this analysis, however, we estimated c(T )
by c(OptP). The cost of the actual solution HC is at least δ cheaper than we
estimated previously. Therefore, the claim of the theorem follows. 
�

The effect of Theorem 2 is depicted in the hatched area in Figure 1.
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4 Implications of the Win/Win Strategy

In this section, we classify hard input instances for the ΔHPP2. To this end,
similar to [15] we combine Algorithm 1 and a variant of the well-known tree-
doubling algorithm for the ΔTSP, namely Algorithm 2, which enables us to
restrict the class of hard input instances.

Algorithm 2. Tree Doubling
Input: A complete graph G = (V, E), a metric cost function c : E → Q+, and two

vertices s and t.
1: Compute a minimum spanning tree T in G.
2: Let Pst be the unique path in T that connects s and t.
3: Find an Eulerian tour EulP in the multi-graph T + (T − Pst).
4: Shorten EulP to a Hamiltonian path HP .

Output: HP .

In particular, we focus on the distance of s and t in G. Let A be the algorithm
that runs both Algorithm 1 and Algorithm 2. The output of A is the cycle HC

from Algorithm 1 and the path HP that is the smaller one of the two computed
Hamiltonian paths. We introduce α̃ and α̃′ similar to α and α′, but with a
slightly extended meaning: these values are based on A instead of Algorithm 1.
For simplicity, we assume both algorithms involved in A to use the same spanning
tree T .

Theorem 3. For any input of A,

(2α̃− 3)c(OptP ) ≤ (2α̃′ − 2)p− c(OptP ) ≤ c({s, t}) ≤ c(Pst)
≤ (2− α̃′)p ≤ (2 − α̃)c(OptP ).

Proof. The first and the last inequality hold, similar to Lemma 2, since c(HP ) =
α̃c(OptP) = α̃′p and p ≤ c(OptP).

For the second inequality, note that any Hamiltonian path from s to t can
be made a Hamiltonian cycle by adding the edge {s, t}. Therefore, c(OptC) ≤
c(OptP )+c({s, t}) and thus, applying Lemma 2, (2α̃′−2)p ≤ c(OptP )+c({s, t}),
which implies the second inequality.

The third inequality c({s, t}) ≤ c(Pst) trivially holds due to the triangle
inequality.

For the fourth inequality, we first have to analyze Algorithm 2. The algorithm
is correct because in T + (T −Pst), all vertices but s and t have an even degree,
which ensures the existence of EulP . Due to the triangle inequality, c(HP ) ≤
c(EulP ). Therefore, c(HP ) ≤ c(T + (T − Pst)).

By the definitions of α̃′ and p, we have α̃′p ≤ 2c(T )− c(Pst) and thus the fifth
inequality follows:

c(Pst) ≤ 2c(T )− α̃′p ≤ 2p− α̃′p.


�
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Theorem 3 reveals several properties of hard input instances. For instance, by
setting α̃ to 5/3 in Theorem 3, we conclude that in each worst-case instance for
ΔHPP2, c(Pst) = c({s, t}) = c(OptP)/3 holds. This means that according to
Theorem 1, adding the edge {s, t} to an optimal Hamiltonian path from s to t
yields an optimal Hamiltonian tour in the same graph.

Furthermore, since Pst is a part of T , we can take into account the number
of edges in Pst. Let γ be the value such that c(Pst) = γc(OptP). In other words
γ is the fraction of c(OptP) that is formed by Pst.

Theorem 4. Suppose that there are k or fewer edges in Pst. Then there exists
an algorithm that achieves an approximation ratio of

(3− α̃)
(

1
α̃− 1

− 1
2

)
+
(

1− 2
k

)
γ

for ΔHPP2.

Proof. Let e = {u, v} be the edge of maximal cost in Pst such that the four
vertices are in the order s, u, v, t within Pst. Given the Eulerian cycle EulC from
Algorithm 1, we remove e from EulC and add the two edges {s, u} and {v, t}.
The resulting graph has an Eulerian path from s to t. Let H ′

p be that tour
shortened to a Hamiltonian path. Then the cost of H ′

P is at most

c(T ) + c(MC)− c(e) + (c(Pst)− c(e)).

Since there are at most k edges in Pst, c(e) ≥ c(Pst)/k. The value of β is based
on the cost of HC , which is c(T )+c(MC). Therefore, Theorem 1 implicitly states
that c(T )+ c(MC) ≤ (1/(α̃−1)−1/2)c(OptC) holds and we can bound the cost
of H ′

P from above by

c(H ′
P ) ≤

(
1

α̃− 1
− 1/2

)
c(OptC) +

(
1− 2

k

)
c(Pst)

≤
(

1
α̃− 1

− 1/2
)

(3− α̃)c(OptP) +
(

1− 2
k

)
γc(OptP).

The last inequality holds because of Lemma 2. Dividing this value by c(OptP)
yields the claimed approximation ratio. 
�

Note that in the special case that α̃ = 5/3, Theorem 4 together with Theorem 3
implies that the cost of the computed Hamiltonian path is at most(

5
3
− 2

3k

)
· c(OptP ).

5 Combined Hard Input Instances

In this section, we show that the analysis of Theorem 1 is tight. To this end, we
construct a class of graphs that can be adapted to any choice of 1.5 < α̂ < 5/3,
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yj zj

tj

v2v3

v4v5

vi−3

vi−2vi−1

vi

Fig. 2. The graph Gα̂,i,k. The bold lines form a part of the spanning tree T .

where α̂ is the aimed-for lower bound on the approximation ratio achieved for
ΔHPP2. We define β̂ := max{1.5, 1/(α̂−1)−1/2}, the guaranteed upper bound
for ΔTSP according to Theorem 1. Hence, we aim for a lower bound β̂ on the
achieved approximation ratio for ΔTSP.

The basic building blocks of the graphs are the well known hard input in-
stances for Christofides’ algorithm from [10] (also described, e. g., in the textbook
[17]) and for Hoogeveen’s algorithm from [16].

Let i ≥ 4 be an even number. Then we construct the graph Hi,ρ = (Vi, Ei,ρ),
where Vi = {v1, v2, . . . , vi} and ρ is a value that depends on the specific pair of
bounds that we aim for. We specify Ei,ρ by determining the edges of cost ρ/i. All
remaining edges have the cost of the shortest path between the corresponding
vertices. We say that two vertices are connected, if they are connected by an
edge of cost ρ/i. For any j ∈ [i − 1], vj and vj+1 are connected. Furthermore,
for any j ∈ [i− 2], vj and vj+2 are connected.

Now, for k ∈ �, we construct a graph Gα̂,i,k with n = 1 + (i + 2)k vertices (k
copies of Hi,ρ and 2k + 1 additional vertices) as depicted in Figure 2.

For each j = 1, 2, . . . , k, we create a cycle sjyjzjtjsj such that each edge of
the cycle has cost 1. The remaining two edges between these vertices are of cost
2. To each vertex tj , we attach a copy of Hi,ρ with ρ = 5−3α̂

α̂−3/2 such that tj = v1.
Now we join all k components such that for j ∈ [k − 1], tj = sj+1. Again, all
remaining edges of the resulting graph cost as much as the shortest path between
the corresponding vertices. The end vertices are s = s1 and t = tj .

Theorem 5. For each 3/2 < α̂ < 5/3 and each ε > 0, there are integers i and
k such the combined result of Algorithm 1, Algorithm 2, and Theorem 4 is not
(α̂− ε)-approximative for ΔHPP2 and not (β̂ − ε)-approximative for ΔTSP for
the input Gα̂,i,k.
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6 Conclusion

We have shown a tight bound of the combined approximation ratio of Hooge-
veen’s algorithm and Christofides’ algorithm and for any input, we provided a
pair of approximation ratios that is guaranteed to be achieved. We revealed a
strong relation between the two problems and characterized properties of hard
instances. These properties might be helpful in order to find an improved al-
gorithm for ΔHPP2 or ΔTSP. Since the described properties of hard input
instances are very specific, the results of this paper show that for most of the
practical input instances, we can guarantee better approximation ratios than in
the worst-case.
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Abstract. We present a characterization of the class of context-
free trace languages in terms of cooperating distributed systems
(CD-systems) of stateless deterministic restarting automata with
window size 1 that are governed by an external pushdown store.

1 Introduction

In [10] we studied cooperating distributed systems (CD-systems) of stateless
deterministic restarting automata that have a read/write window of size 1. Al-
though the restarting automata of this type have a severely restricted expressive
power, we obtain a device that is surprizingly expressive by combining several
such automata into a CD-system. These systems accept a class of semi-linear
languages that contains all rational trace languages [10]. In fact, we derived a
characterization of the rational trace languages in terms of a particular class of
these CD-systems. Further, the class of languages that are accepted by these CD-
systems is closed under union, product, Kleene star, commutative closure, and
disjoint shuffle, but it is not closed under intersection with regular languages,
complementation, or ε-free morphisms. In addition, for these CD-systems the
emptiness and the finiteness problems are easily solvable, while the regularity,
the inclusion, and the equivalence problems are undecidable in general [11].

Here we extend these CD-systems by an external pushdown store that is used
to determine the successor of the current automaton. When the active automaton
performs a delete operation, then one of its successor automata is chosen based
on the symbol deleted and on the topmost symbol on this pushdown store. In
addition, after the successor has been chosen the pushdown content is modified
by either erasing the topmost symbol, or by replacing it by a symbol or a word of
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length 2. Essentially such a system can be interpreted as a traditional pushdown
automaton, in which the operation of reading an input symbol has been replaced
by a stateless deterministic R(1)-automaton. Hence, not the first symbol is nec-
essarily read, but some symbol that can be reached by this automaton by moving
across a prefix of the current input word. In this way our CD-systems can be
interpreted as pushdown automata with translucent letters. Other variants of
pushdown automata that do not simply read their input sequentially from left
to right have been studied before. For example, in [4] pushdown automata are
considered that can reverse their input.

2 CD-Systems of Stateless Deterministic R(1)-Automata
Governed by an External Pushdown

Stateless types of restarting automata were introduced in [8]. Here we are
only interested in the most restricted form of them, the stateless deterministic
R-automaton of window size 1. A stateless deterministic R(1)-automaton is a
one-tape machine that is described by a 5-tuple M = (Σ, c, $, 1, δ), where Σ is
a finite alphabet, the symbols c, $ �∈ Σ serve as markers for the left and right
border of the work space, respectively, the size of the read/write window is 1,
and δ : Σ ∪ {c, $} → {MVR, Accept, ε} is the (partial) transition function. There
are three types of transition steps: move-right steps (MVR), which shift the win-
dow one step to the right, combined rewrite/restart steps (denoted by ε), which
delete the content u of the window, thereby shortening the tape, and place the
window over the left end of the tape, and accept steps (Accept), which cause the
automaton to halt and accept. Finally we use the notation δ(a) = ∅ to express
the fact that the function δ is undefined for the symbol a. Some additional re-
strictions apply in that the sentinels c and $ must not be deleted, and that the
window must not move right on seeing the $-symbol.

A configuration of M is described by a pair (α, β), where either α = ε (the
empty word) and β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here
αβ is the current content of the tape, and it is understood that the head scans
the first symbol of β. A restarting configuration is of the form (ε, cw$), where
w ∈ Σ∗; to simplify the notation a restarting configuration (ε, cw$) is usually
simply written as cw$. By �M we denote the single-step computation relation
of M , and �∗M denotes the reflexive transitive closure of �M .

The automaton M proceeds as follows. Starting from an initial configura-
tion cw$, the window moves right until a configuration of the form (cx, uy$) is
reached such that δ(u) = ε. Now the latter configuration is transformed into
the restarting configuration cxy$. This sequence of computational steps, which
is called a cycle, is expressed as w �c

M xy. A computation of M now consists of
a finite sequence of cycles that is followed by a tail computation, which consists
of a sequence of move-right operations possibly followed by an accept step. An
input word w ∈ Σ∗ is accepted by M , if the computation of M which starts with
the initial configuration cw$ finishes by executing an accept step. By L(M) we
denote the language consisting of all words accepted by M .
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If M = (Σ, c, $, 1, δ) is a stateless deterministic R(1)-automaton, then we can
partition its alphabet Σ into four disjoint subalphabets:

(1.) Σ1 = { a ∈ Σ | δ(a) = MVR }, (3.) Σ3 = { a ∈ Σ | δ(a) = Accept },
(2.) Σ2 = { a ∈ Σ | δ(a) = ε }, (4.) Σ4 = { a ∈ Σ | δ(a) = ∅ }.

It has been shown in [10] that the language L(M) can be characterized as

L(M) =

⎧⎨
⎩

Σ∗, if δ(c) = Accept,
(Σ1 ∪Σ2)∗ ·Σ3 ·Σ∗, if δ(c) = MVR and δ($) �= Accept,
(Σ1 ∪Σ2)∗ · ((Σ3 ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept.

Cooperating distributed systems (CD-systems) of restarting automata were in-
troduced and studied in [9]. Here we study an extended variant of the CD-
systems of stateless deterministic R(1)-automata of [10].

A pushdown CD-system of stateless deterministic R(1)-automata, PD-CD-
R(1)-system for short, consists of a CD-system of stateless deterministic R(1)-
automata and an external pushdown store. Formally, it is defined as a tuple
M = (I, Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ), where

– I is a finite set of indices,
– Σ is a finite input alphabet,
– for all i ∈ I, Mi = (Σ, c, $, 1, δi) is a stateless deterministic R(1)-automaton

on Σ, and σi ⊆ I is a non-empty set of possible successors for Mi,
– Γ is a finite pushdown alphabet,
– ⊥ �∈ Γ is the bottom marker of the pushdown store,
– I0 ⊆ I is the set of initial indices, and
– δ : (I × Σ × (Γ ∪ {⊥})) → 2I×(Γ∪{⊥})∗ is the successor relation. For each

i ∈ I, a ∈ Σ, and A ∈ Γ , δ(i, a, A) is a subset of σi × Γ≤2, and δ(i, a,⊥) is
a subset of σi × (⊥ · Γ≤2).

A configuration ofM is a triple (i, cw$, α), where i ∈ I is the index of the active
component automaton Mi, the word cw$ (w ∈ Σ∗) is a restarting configuration
of Mi, and the word α ∈ ⊥ · Γ ∗ is the current content of the pushdown store
with the first symbol of α at the bottom and the last symbol of α at the top.
For w ∈ Σ∗, an initial configuration ofM on input w has the form (i0, cw$,⊥)
for any i0 ∈ I0, and an accepting configuration has the form (i, Accept,⊥).

The single-step computation relation ⇒M thatM induces on the set of config-
urations is defined by the following three rules, where i ∈ I, w ∈ Σ∗, α ∈ ⊥ ·Γ ∗,
A ∈ Γ , and, for each i ∈ I, Σ

(i)
1 and Σ

(i)
2 are the subsets of Σ according to the

above definition that correspond to the automaton Mi:

(1) (i, cw$, αA)⇒M (j, cw′$, αη) if ∃u ∈ Σ
(i)
1

∗
, a ∈ Σ

(i)
2 , v ∈ Σ∗ such that

w = uav, w′ = uv, and (j, η) ∈ δ(i, a, A);
(2) (i, cw$,⊥)⇒M (j, cw′$,⊥η) if ∃u ∈ Σ

(i)
1

∗
, a ∈ Σ

(i)
2 , v ∈ Σ∗ such that

w = uav, w′ = uv, and (j,⊥η) ∈ δ(i, a,⊥);
(3) (i, cw$,⊥)⇒M (i, Accept,⊥) if ∃u ∈ Σ

(i)
1

∗
, a ∈ Σ

(i)
3 , v ∈ Σ∗ such that

w = uav, or w ∈ Σ
(i)
1

∗
and δi($) = Accept.
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By ⇒∗
M we denote the computation relation ofM, which is simply the reflexive

and transitive closure of the relation ⇒M. The language L(M) accepted byM
consists of all words for whichM has an accepting computation, that is,

L(M) = {w ∈ Σ∗ | ∃i0 ∈ I0 ∃i ∈ I : (i0, cw$,⊥)⇒∗
M (i, Accept,⊥) }.

A PD-CD-R(1)-systemM = (I, Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) is called a one-counter
CD-system of stateless deterministic R(1)-automata (OC-CD-R(1)-system for
short), if |Γ | = 1, that is, if there is only a single pushdown symbol in addition
to the bottom marker ⊥. By L(PD-CD-R(1)) we denote the class of languages
that are accepted by PD-CD-R(1)-systems, and L(OC-CD-R(1)) is the class of
languages accepted by OC-CD-R(1)-systems.

Example 1. Let L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 }. As
L ∩ a∗ · b∗ · c∗ = { anbncn | n ≥ 0 } is not context-free, we see that L itself
is not context-free, either. Further, there is no regular sublanguage of L that
is letter-equivalent to L. Hence, L is not accepted by any stl-det-local-CR-R(1)-
system (see [10]). However, we claim that L is accepted by the OC-CD-R(1)-
systemM = (I, Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) that is defined as follows:

– I = {a, b, c, +}, Σ = {a, b, c}, and Γ = {C},
– Ma, Mb, Mc, and M+ are defined by the following transition functions:

δa(c) = MVR, δb(c) = MVR, δc(c) = MVR, δ+(c) = MVR,
δa(a) = ε, δb(b) = ε, δc(c) = ε, δ+($) = Accept,

δb(c) = MVR, δc(b) = MVR,

– σa = {a, b}, σb = {c}, σc = {b, +}, σ+ = {+}, and I0 = {a, +}, and
– δ is defined as follows:

(1) δ(a, a,⊥) = {(a,⊥C), (b,⊥C)}, (3) δ(b, b, C) = {(c, C)},
(2) δ(a, a, C) = {(a, CC), (b, CC)}, (4) δ(c, c, C) = {(b, ε), (+, ε)},

and for all other tripels, δ yields the empty set.

The automaton M+ just accepts the empty word, while Ma deletes the first
letter, if it is an a; otherwise, it gets stuck. The automaton Mb reads across c’s
and deletes the first b it encounters, and analogously, Mc reads across b’s and
deletes the first c it encounters. Thus, we see from the successor sets that M
can only accept certain words of the form amv such that v ∈ {b, c}∗. However,
when Ma deletes an a, then a symbol C is pushed onto the pushdown store, and
when Mc deletes a c, then a symbol C is popped from the pushdown store. As
Mb and Mc work alternatingly, this means that the same number of b’s and c’s
are deleted. Thus, if M is to accept, then |v|b = |v|c = n holds for some n ≥ 0.

If m < n, then after deleting the first m occurrences of b and c, the push-
down store only contains the bottom marker ⊥, and then M gets stuck as seen
from the definition of δ. On the other hand, if m > n, then the pushdown still
contains some occurrences of the symbol C when the word amv has been erased
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completely. Hence, in this situationM does not accept, either. Finally, if m = n,
then after erasing the last occurrence of c, also the last occurrence of the symbol
C is popped from the pushdown store, and then M+ accepts starting from the
configuration (+, c$,⊥). Hence, we see that L(M) = L holds.

Thus, already the language class L(OC-CD-R(1)) contains a language that is
neither context-free nor accepted by any stl-det-local-CD-R(1)-system. Next we
will show that the class of languages that are accepted by the latter type of
CD-systems is contained in L(OC-CD-R(1)).

Proposition 1. L(stl-det-local-CD-R(1)) � L(OC-CD-R(1)).

Proof. Let M = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system, and let
L = L(M). We obtain a OC-CD-R(1)-systemM′ = (I, Σ, (Mi, σi)i∈I , ∅,⊥, I0, δ),
where Σ is the tape alphabet ofM, by defining the transition function δ as fol-
lows for all i ∈ I:

δ(i, a,⊥) = { (j,⊥) | j ∈ σi } for all a ∈ Σ
(i)
2 ,

δ(i, a,⊥) = ∅ for all a ∈ Σ � Σ
(i)
2 .

Then there is a one-to-one correspondence between the accepting computations
ofM and the accepting computations ofM′. Thus, L(M′) = L. This yields the
announced inclusion. Its properness follows from the previous example. �

On the other hand, PD-CD-R(1)-systems accept all context-free languages.

Proposition 2. CFL � L(PD-CD-R(1)).

Proof. Let L ⊆ Σ+ be a context-free language. Then there exists a context-
free grammar G = (V, Σ, S, P ) in quadratic Greibach normal form for L, that
is, for each production (A → r) ∈ P , the right-hand side r is of the form
r = aα, where a ∈ Σ and α ∈ V ≤2. In addition, we can assume that the start
symbol S does not occur on the right-hand side of any production. The standard
construction of a pushdown automaton from a context-free grammar yields a
pushdown automaton A without ε-moves that, given a word w ∈ Σ+ as input,
simulates a left-most G-derivation of w from S. In analogy to this construction
we build a PD-CD-R(1)-system M = (I, Σ, (Mi, σi)i∈I , V,⊥, {S}, δ), where I =
V ∪ {+}, the stateless deterministic R(1)-automata MA (A ∈ V ) and M+ are
defined as follows:

δ+(c) = MVR, δA(c) = MVR,
δ+($) = Accept, δA(a) = ε, if there exists γ ∈ V ≤2 : (A→ aγ) ∈ P,

the sets of successors are defined by σA = σ+ = I for all A ∈ V , and the successor
relation δ is defined as follows, where A ∈ V and a ∈ Σ:

(1) δ(S, a,⊥) = { (+,⊥) | (S → a) ∈ P }
∪ { (B,⊥B) | (S → aB) ∈ P }
∪ { (B,⊥CB) | (S → aBC) ∈ P },

(2) δ(A, a, A) = { (B, ε) | B ∈ V � {S} and (A→ a) ∈ P }
∪ { (+, ε) | (A→ a) ∈ P }
∪ { (B, B) | (A→ aB) ∈ P }
∪ { (B, CB) | (A→ aBC) ∈ P },
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and δ yields the empty set for all other values. Then, for all w ∈ Σ∗ and all
a ∈ Σ,

wa ∈ L iff S ⇒+
G wA⇒G wa

iff (S, cwa$,⊥)⇒∗
M (A, ca$,⊥A)⇒M (+, c$,⊥)⇒M (+, Accept,⊥).

Hence, it follows that L(M) = L(G) = L.
If the given context-free language includes the empty word, then we can apply

the above construction to the language L � {ε}. The resulting PD-CD-R(1)-
system will accept this language. By adding the component + to the set of
initial components, we then obtain a PD-CD-R(1)-system for the language L.
This yields the intended inclusion, which is proper by Example 1. �

Next we consider the so-called one-counter automata and the class of languages
accepted by them. However, one finds several different non-equivalent definitions
for one-counter automata in the literature. Here we take a definition that is
equivalent to the one used by Jančar et. al. in [7] (see also [3]).

A pushdown automaton A = (Q, Σ, Γ, q0,⊥, δ, F ) is called a one-counter au-
tomaton if |Γ | = 1, and if the bottom marker ⊥ cannot be removed from the
pushdown store. Thus, if C is the only symbol in Γ , then the pushdown content
⊥Cm can be interpreted as the integer m for all m ≥ 0. Accordingly, the pop
operation can be interpreted as the decrement −1. It is assumed in addition that
the only other pushdown operations leave the value m unchanged or increase it
by 1, that is, the pushdown is not changed or exactly one additional C is pushed
onto it. Finally, A has to read an input symbol in each step, that is, it cannot
make any ε-steps.

A word w ∈ Σ∗ is accepted by A, if (q0, w,⊥) �∗A (q, ε,⊥) holds for some
final state q ∈ F . Observe that A can only distinguish between two states of its
pushdown store: either the topmost symbol is C, which is interpreted by saying
that the counter is positive, or it is the bottom marker ⊥, which is interpreted as
the counter is zero. By OCL we denote the class of languages that are accepted
by one-counter automata. It is well-known that REG � OCL � CFL holds.

Proposition 3. OCL � L(OC-CD-R(1)).

Proof. Let A = (Q, Σ, {C}, q0,⊥, δA, F ) be a one-counter automaton, and
let L = L(A) ⊆ Σ∗ be the language it accepts. We simulate A through a
OC-CD-R(1)-systemM = (I, Σ, (Mi, σi)i∈I , {C},⊥, {(q0, =), +}, δ), where

1. I = (Q× {=, >}) ∪ {+}, and σ(q,>) = σ(q,=) = σ+ = I for all q ∈ Q,
2. the stateless deterministic R(1)-automata M(q,>), M(q,=) (q ∈ Q), and M+

are defined as follows:

(1) δ(q,=)(c) = MVR,
(2) δ(q,=)(a) = ε if δA(q, a,⊥) is defined,
(3) δ(q,>)(c) = MVR,
(4) δ(q,>)(a) = ε if δA(q, a, C) is defined,
(5) δ+(c) = MVR,
(6) δ+($) = Accept,
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3. and the successor relation δ is defined as follows, where q ∈ Q, a ∈ Σ, and
i ∈ {1, 2}:

(1) δ((q, =), a,⊥) = { ((q′, =),⊥) | (q′,⊥) ∈ δA(q, a,⊥) }
∪ { (+,⊥) | ∃q′ ∈ F : (q′,⊥) ∈ δA(q, a,⊥) }
∪ { ((q′, >),⊥C) | (q′,⊥C) ∈ δA(q, a,⊥) },

(2) δ((q, >), a, C) = { ((q′, >), Ci) | (q′, Ci) ∈ δA(q, a, C) }
∪ { ((q′, >), ε), ((q′, =), ε) | (q′, ε) ∈ δA(q, a, C) }
∪ { (+, ε) | ∃q′ ∈ F : (q′, ε) ∈ δA(q, a, C) },

while δ yields the empty set for all other values.
Observe that each time A decreases its counter,M also decreases its counter,

and in addition it has the option of activating the final component M+, if the
state entered is final. However, M+ can only accept, if at that moment the input
has been processed completely, andM only accepts if, in addition, the counter is
zero. It follows that there is a one-to-one correspondence between the accepting
computations of the one-counter automaton A and the system M. Hence, we
have L(M) = L(A) = L. This yields the intended inclusion, which is proper by
Example 1. �

Definition 1. A PD-CD-R(1)-system M = (I, Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) is in
strong normal form if it satisfies the following conditions, where, for all i ∈ I,
Σ

(i)
1 , Σ

(i)
2 , Σ

(i)
3 , Σ

(i)
4 is the partitioning of alphabet Σ for the automaton Mi as

described above:

(1) ∃ i+ ∈ I : δi+(c) = MVR, δi+($) = Accept, and Σ
(i+)
4 = Σ;

(2) ∀i ∈ I � {i+} : δi(c) = MVR, |Σ(i)
2 | = 1, Σ

(i)
3 = ∅, and δi($) = ∅.

Thus, if M is in strong normal form, then it has a unique component Mi+

that can execute accept instructions, but it only accepts the empty word, while
all other components each delete a single kind of letter. In particular, a word
w ∈ L(M) is first erased completely by executing |w| many cycles, and then
the empty word is accepted by activating component Mi+ . As OC-CD-R(1)-
systems are a special type of PD-CD-R(1)-systems, this definition also applies to
them. The following technical result shows that we can restrict our attention to
PD-CD-R(1)-systems in strong normal form.

Lemma 1. From a PD-CD-R(1)-system M one can construct a PD-CD-R(1)-
system M′ in strong normal form such that L(M′)=L(M). If M is a OC-CD-
R(1)-system, then M′ can be constructed to be a OC-CD-R(1)-system, too.

Our next result implies that all languages from the language class
L(PD-CD-R(1)) are semi-linear, that is, if L ⊆ Σ∗ belongs to this language
class, and if |Σ| = n, then the Parikh image ψ(L) of L is a semi-linear subset
of Nn.

Theorem 1. Each language L ∈ L(PD-CD-R(1)) contains a context-free sub-
language E such that ψ(L) = ψ(E) holds. In fact, a pushdown automaton for E
can be constructed effectively from a PD-CD-R(1)-system for L.
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Proof. LetM = (I, Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-system, and let
L = L(M). By Lemma 1 we can assume thatM is in strong normal form, that
is, there exists a unique index + ∈ I such that M+ accepts the empty word,
and for each other index i ∈ Ir := I � {+}, Mi does not execute any accept
instructions and |Σ(i)

2 | = 1. To simplify the notation in the following we denote
the letter a ∈ Σ

(i)
2 simply by a(i). FromM we construct a pushdown automaton

P = (Q, Σ, Γ, q0,⊥, δP , F ) as follows:

– Q = I ∪ {q0}, where q0 is a new state, F = {+}, and
– the transition relation δP is defined as follows for all i ∈ Ir, a ∈ Σ, and

A ∈ Γ :
(1) δP (q0, ε,⊥) = { (i,⊥) | i ∈ I0 },
(2) δP (i, a,⊥) = { (j, η) | (j, η) ∈ δ(i, a,⊥) },
(3) δP (i, a, A) = { (j, α) | (j, α) ∈ δ(i, a, A) }.

Then E = L(P ) is a context-free language. It can be shown that it is a sublan-
guage of L that is letter-equivalent to L. �

In the proof of Theorem 1 the pushdown automaton P constructed from the
given PD-CD-R(1)-system M is in fact a one-counter automaton if M is a
OC-CD-R(1)-system. Thus, we also have the following result.

Corollary 1. Each language L ∈ L(OC-CD-R(1)) contains a sublanguage E that
is a one-counter language such that ψ(L) = ψ(E) holds. In fact, a one-counter
automaton for E can be constructed effectively from a OC-CD-R(1)-system for L.

As each context-free language has a semi-linear Parikh image, Theorem 1 has
the following consequence.

Corollary 2. The language class L(PD-CD-R(1)) only contains semi-linear
languages, that is, if a language L over Σ = {a1, . . . , an} is accepted by a PD-
CD-R(1)-system, then its Parikh image ψ(L) is a semi-linear subset of Nn.

The semi-linear language L = { anbncn | n ≥ 0 } does not contain a context-free
sublanguage that is letter-equivalent to the language itself. Hence, Theorem 1
yields the following negative result.

Proposition 4. The language L = { anbncn | n ≥ 0 } is not accepted by any
PD-CD-R(1)-system.

The language Lpal = {wcwR | w ∈ {a, b}∗ } is a context-free language that is not
a one-counter language (see, e.g., [2]). As a context-free language it is accepted
by some PD-CD-R(1)-system by Proposition 2, but based on Corollary 1 the
following result can be shown.

Proposition 5. The language Lpal = {wcwR | w ∈ {a, b}∗ } is not accepted by
any OC-CD-R(1)-system.
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3 Context-Free Trace Languages

Let Σ be a finite alphabet, and let D be a binary relation on Σ that is reflexive
and symmetric, that is, (a, a) ∈ D for all a ∈ Σ, and (a, b) ∈ D implies that
(b, a) ∈ D, too. Then D is called a dependency relation on Σ, and the relation
ID = (Σ × Σ) � D is called the corresponding independence relation. Obvi-
ously, the relation ID is irreflexive and symmetric. The dependency relation D
induces a binary relation ≡D on Σ∗ that is defined as the smallest congruence
relation (with respect to the operation of concatenation) containing the set of
pairs { (ab, ba) | (a, b) ∈ ID }. For w ∈ Σ∗, the congruence class of w mod ≡D is
denoted by [w]D, that is, [w]D = { z ∈ Σ∗ | w ≡D z }. These congruence classes
are called traces, and the factor monoid M(D) = Σ∗/≡D is a trace monoid. In
fact, M(D) is the free partially commutative monoid presented by (Σ, D) (see,
e.g., [6]). By ϕD we denote the morphism ϕD : Σ∗ → M(D) that is defined by
w �→ [w]D for all words w ∈ Σ∗.

We call a language L ⊆ Σ∗ a rational trace language, if there exists a depen-
dency relation D on Σ such that L = ϕ−1

D (S) for a rational subset S of the trace
monoid M(D) presented by (Σ, D), that is, if there exist a trace monoid M(D)
and a regular language R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D. By
LRAT we denote the class of all rational trace languages. In [10] it is shown
that LRAT � L(stl-det-local-CD-R(1)).

Here we are interested in more general trace languages. A language L ⊆ Σ∗ is
called a one-counter trace language, if there exist a dependency relation D on Σ
and a one-counter language R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D.
Analogously, a language L ⊆ Σ∗ is called a context-free trace language, if there
exist a dependency relation D on Σ and a context-free language R ⊆ Σ∗ such
that L = ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D [1,5]. By LOC(D) we denote the set of
one-counter trace languages obtained from (Σ, D), and LOC is the class of all
one-counter trace languages. Further, by LCF(D) we denote the set of context-
free trace languages obtained from (Σ, D), and LCF is the class of all context-free
trace languages. The next theorem states that all context-free trace languages
are accepted by PD-CD-R(1)-systems.

Theorem 2. If D is a dependency relation on a finite alphabet Σ, then
LCF(D) ⊆ L(PD-CD-R(1)).

Proof. Let L ⊆ Σ∗ be a context-free trace language, that is, there ex-
ists a context-free language R over Σ such that L = ϕ−1

D (ϕD(R)). As R is
context-free, there exists a grammar G = (V, Σ, S, P ) in quadratic Greibach
normal form for R′ = R � {ε}. From G we construct a PD-CD-R(1)-system
M = (I, Σ, (Mi, σi)i∈I , V,⊥, I0, δ) as follows (cf. the proof of Proposition 2):

– I = { (A, a) | A ∈ V, a ∈ Σ, ∃ γ ∈ V ≤2 : (A→ aγ) ∈ P } ∪ {+},
– I0 = { (S, a) | ∃ γ ∈ V ≤2 : (S → aγ) ∈ P } ∪ {+ | ε ∈ L },
– the stateless deterministic R(1)-automata M(A,a) ((A, a) ∈ I) and M+ are

defined as follows:
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δ+(c) = MVR, δ(A,a)(c) = MVR,
δ+($) = Accept, δ(A,a)(a) = ε,

δ(A,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,

– the sets of successor indices are defined as σ(A,a) = σ+ = I for all (A, a) ∈ I,
– and the successor relation δ is defined as follows, where A ∈ V and a ∈ Σ:

δ((S, a), a,⊥) = { (+,⊥) | (S → a) ∈ P }
∪ { ((B, b),⊥B) | (S → aB) ∈ P, (B, b) ∈ I }
∪ { ((B, b),⊥CB) | (S → aBC) ∈ P, (B, b) ∈ I },

δ((A, a), a, A) = { ((B, b), ε) | B ∈ V � {S}, (B, b) ∈ I, and (A→ a) ∈ P }
∪ { (+, ε) | (A→ a) ∈ P }
∪ { ((B, b), B) | (A→ aB) ∈ P, (B, b) ∈ I }
∪ { ((B, b), CB) | (A→ aBC) ∈ P, (B, b) ∈ I },

and δ yields the empty set for all other values.

It can now be shown that L(M) = ϕ−1
D (ϕD(R)) =

⋃
u∈R[u]D. �

Thus, we have the hierarchy of language classes depicted in the diagram in
Figure 1. As L(stl-det-local-CD-R(1)) contains the non-context-free language
{w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 0 }, and as this class does not contain the
one-counter language { anbn | n ≥ 0 }, we see that L(stl-det-local-CD-R(1)) is
incomparable under inclusion to the language classes OCL and CFL. From
Proposition 5 we see that the class L(OC-CD-R(1)) is incomparable under
inclusion to the language class CFL.

Let Σ = {a, b, c}, and let L′ = {wam | |w|a = |w|b = |w|c ≥ 1, m ≥ 1 }. As
shown in Example 4 of [11] the language L′ is accepted by a stl-det-local-CD-
R(1)-system. However, the following result can be derived.

L(PD-CD-R(1))

LCF

������������������ L(OC-CD-R(1))

��

CFL

�������������������� LOC

�� ������������������ L(stl-det-local-CD-R(1))

��

OCL

�� ������������������� LRAT

�� �����������������

REG

�� ������������������

Fig. 1. Hierarchy of language classes accepted by various types of CD-R(1)-systems.
Each arrow represents a proper inclusion, and classes that are not connected by a
sequence of arrows are incomparable under inclusion.
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Proposition 6. For each dependency relation D on Σ and each context-free
language R ⊆ Σ∗, L′ �=

⋃
w∈R[w]D.

Together with Proposition 5 this result shows that all the inclusions in the di-
agram in Figure 1 are proper, and that classes that are not connected in that
diagram are incomparable under inclusion.

Next we present a restricted class of PD-CD-R(1)-systems that accept exactly
the context-free trace languages.

Definition 2. Let M = (I, Σ, (Mi, σi)i∈I , V,⊥, I0, δ) be a PD-CD-R(1)-system
in strong normal form that satisfies the following condition:

(∗) ∀i, j ∈ I : Σ
(i)
2 = Σ

(j)
2 implies that Σ

(i)
1 = Σ

(j)
1 ,

that is, if two component automata erase the same letter, then they also read
across the same subset of Σ. With M we associate the binary relation

IM =
⋃
i∈I

(Σ(i)
1 ×Σ

(i)
2 ),

that is, (a, b) ∈ IM if and only if there exists a component automaton Mi such
that δi(a) = MVR and δi(b) = ε. Further, let DM = (Σ ×Σ) � IM.

Observe that the relation IM is necessarily irreflexive, but it will in general not
be symmetric. Now the following characterization can be established.

Theorem 3. Let M be a PD-CD-R(1)-system over Σ satisfying condition (∗)
above. If the associated relation IM is symmetric, then DM is a dependency
relation on Σ, and L(M) ∈ LCF (DM). In fact, from M one can construct a
pushdown automaton B over Σ such that L(M) =

⋃
u∈L(B)[u]DM .

If the given PD-CD-R(1)-systemM is a OC-CD-R(1)-system, then the pushdown
automaton B constructed in the proof above is actually a one-counter automa-
ton. Observe that the system M constructed in the proof of Theorem 2 is in
strong normal form, that it satisfies property (∗), and that the associated relation
IM coincides with the relation ID, and hence, it is symmetric. Thus, Theorems 2
and 3 together yield the following characterization.

Corollary 3. (a) A language L ⊆ Σ∗ is a one-counter trace language if and
only if there exists a OC-CD-R(1)-systemM in strong normal form satisfying
condition (∗) such that the relation IM is symmetric and L = L(M).

(b) A language L ⊆ Σ∗ is a context-free trace language if and only if there exists
a PD-CD-R(1)-systemM in strong normal form satisfying condition (∗) such
that the relation IM is symmetric and L = L(M).

4 Concluding Remarks

As seen above the language L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 } is
accepted by a OC-CD-R(1)-system, while L ∩ a∗ · b∗ · c∗ = { anbncn | n ≥ 0 } is
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not accepted by any PD-CD-R(1)-system (Prop. 4). Hence, the language classes
L(OC-CD-R(1)) and L(PD-CD-R(1)) are not closed under intersection with regu-
lar languages. In fact, they are not closed under intersection or complementation,
either, but they are closed under union and under the operation of taking the
commutative closure. However, it remains open whether these classes are closed
under product, Kleene star, ε-free morphisms, inverse morphisms or reversal.
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Abstract. Starting from version 2.0, UML introduced hierarchical com-
posite structures, which are a very expressive way of defining complex
software architectures, but which have a very loosely defined semantics
in the standard. In this paper we propose a set of consistency rules that
ensure UML composite structures are unambiguous and can be given a
precise semantics. Our primary application of the static consistency rules
defined in this paper is within the OMEGA UML profile [6], but these
rules are general and applicable to other hierarchical component models
based on the same concepts, such as MARTE GCM or SysML. The rule
set has been formalized in OCL and is currently used in the OMEGA
UML compiler.

1 Introduction

Composite structures are the language elements used in UML (since version 2.0)
for modelling hierarchically structured components and they are instrumental
in capturing the architecture of complex systems. In particular, real-time sys-
tems often exhibit static, albeit complex, hierarchical topologies. For this rea-
son, functional modelling languages dedicated to the real-time domain, such as
ROOM [19], SDL [8], or architecture description languages, such as AADL [18],
allow for hierarchical components.

This paper deals with the introduction of composite structures in the OMEGA
UML profile [6], an executable profile dedicated to the formal specification and
validation of real-time systems. Our main goal was to have an expressive and
unambiguous set of constructs for modelling hierarchical structures, with an
operational semantics that integrates smoothly in the existing execution model
of OMEGA. Due to limited space, this paper concentrates on the static typing
and consistency rules that form the basis of the operational semantics. The rules
formulated here may be applied, beyond the scope of the OMEGA profile, to
other component-based models such as SysML [14] or the Generic Component
Model of MARTE [15].

The typing and consistency rules presented in this paper have been formalized
in OCL and are used in the current version of the OMEGA UML compiler. We
are now working on a formalization within a proof assistant (Isabelle/HOL [17])
in order to prove the type safety of models observing this rule set.
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c© Springer-Verlag Berlin Heidelberg 2011



Unambiguous UML Composite Structures: The OMEGA2 Experience 419

Related Work. The idea of UML composite structures is rooted in previously
existing languages, notably ROOM [19] and SDL [8]. However, UML adds com-
plexity with respect to previous models, e.g., by allowing explicit port behaviour
specifications, multiple interfaces per port, typing of connectors with associations,
etc. Many problems identified in this paper stem from the added complexity. Po-
tential problems and ambiguities in UML composite structures have previously
been discussed by other authors [13, 3]. In [3], Cuccuru et al. proposed a set of
additional rules meant to further clarify the semantics of UML composite struc-
tures. While we fully subscribe to the solutions they propose, some issues remain
unsolved, and the present paper is complementary to their solutions.

Structure of the Paper. §2 introduces the original OMEGA profile. §3 presents
the main elements of UML 2.x composite structures. §4 presents the principles and
rules introduced for disambiguating UML composite structures in the context of
the extended OMEGA profile (henceforth named OMEGA2). In §5 we briefly dis-
cuss the principles of the operational semantics used in the OMEGA2/IFx simula-
tion and model-checking platform. Finally, in §6 we discuss the OCL formalization
of the rules and their application on a large example model for a space application,
before concluding.

2 Overview of OMEGA UML

OMEGA UML is an executable profile of UML used for formal specification
and validation of real-time systems. As the semantics of standard UML [16] is
intentionally underspecified in order to preserve the generality of the language,
one of the strong points of OMEGA UML for practical usability is its precise
operational semantics, defined in [4]. Thanks to this common semantics, differ-
ent tools implementing different analysis techniques can be applied to OMEGA
models as it has been shown in [6]; in particular, our IFx toolset [12] allows
to simulate and to verify OMEGA models by applying timed-automata model
checking techniques [2].

The original OMEGA profile is based on a subset of UML 1.5 containing the
main constructs of class diagrams (classes and their relationships, basic types,
signals), state machines and actions. State machines are attached to classes and,
together with operations, they define the behaviour of class instances. Actions
are used for describing transition effects and operation bodies. The profile defines
a concrete textual syntax for actions, which is compatible with the UML action
metamodel and implements its main elements: object creation and destruction,
operation calls, expression evaluation, variable assignment, signal output, etc.
The profile also extends standard UML with elements necessary for the specifi-
cation and verification of real-time systems. For more information, the reader is
referred to [6, 4, 12].

In answer to requests coming from industrial users of the IFx toolset, we have
undertaken an upgrade to the profile and the toolset to UML version 2. The
main challenge was to give an operational semantics to composite structures
and to find the static conditions under which this is possible.
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3 UML Composite Structures

Composite structures are introduced in UML 2.x for the specification of “struc-
tures of interconnected elements that are created within an instance of a contain-
ing classifier”. Composite structures are a powerful mechanism to increase the
expressiveness and the readability of UML class models. They are used for spec-
ifying the initialization of complex object structures. This is particularly useful
for real-time embedded systems, which are often structured as hierarchical block
models, with classes having a fixed number of instances with predefined roles.
Writing the initialization code for such object structures has indeed proved to
be one of the most tedious tasks with the previous version of OMEGA.

An example of a composite structure identifying the model elements involved
is given in Figure 1. A composite structure defines the structure of (instances
of) a class in terms of inner components, also called parts (b in Figure 1) and of
communication connectors, also called links (c,d,e,f). Connectors exist either
between inner components (d,e), or between inner components and the outside
environment of the composite structure (c,f). A connector has two end points;
an end point can be either an inner component or a port. A connector can be the
realization of an association, although this is not mandatory. UML introduces
the following terminology for connectors: delegation connectors are connectors
between a (port of a) part and a port of its containing composite structure (e.g.,
c,f) and assembly connectors are links between (ports of) two parts of the same
composite structure (e.g., d,e).

A port represents an interaction point between an object and its environment.
The allowed inbound requests that can travel through the port are specified by
the provided interface(s) (e.g., g), while the outbound requests are specified by
the required interface(s) (e.g., h).

For further technical details, the reader is referred to the UML standard [16].
Composite structures are a big evolution of the object-oriented paradigm,

which is the basis of UML. Their implications on the semantic level are huge
and not completely defined by the UML standard (see for example the problems
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outlined in [3]). For this reason, the OMEGA2 profile imposes some constraints
on the usage of composite structures, described in the next section.

4 Unambiguous Composite Structures for OMEGA UML

In a composite structure, every connector links two entities, which can be ei-
ther ports or components (parts). In both cases, the two entities are typed. In
addition, the modeller can specify that the connector realizes an association. It
is clear that, in general, connecting entities of arbitrary types does not make
sense, and there should be clear compatibility rules (based on types, link direc-
tion, etc.) specifying what are the well formed structures. However, these type
compatibility rules for connectors are not detailed in UML. The standard merely
states that “the connectable elements attached to the ends of a connector must
be compatible.” and that “what makes connectable elements compatible is a
semantic variation point.” ([16] pp. 175-176). Various causes of ambiguity, such
as the existence of several connectors starting from the same end-point are not
even mentioned.

The principle of the OMEGA profile is to have a clear and coherent executable
semantics for the chosen UML subset. Therefore, extending the profile to cover
composite structures necessitates first to fully disambiguate the meaning of such
structures, by setting well formedness constraints and by clarifying the run-time
behaviour of the structures.

4.1 Typing Problems with Bidirectional Ports

In UML, ports are bidirectional, i.e. they can specify a set of allowed incoming
requests (the provided interface) and a set of allowed outgoing requests (the
required interface)1. This is represented in the model as follows: the port has
a type, which is an arbitrary classifier (in practice, a class or an interface); all
the interfaces that are directly or indirectly realized by the type of the port are
considered to be provided interfaces. The required interfaces are those interfaces
for which there exists a Dependency stereotyped with <<Usage>> between the
port type (or one of its supertypes) and the respective interface(s). Figure 2-a
shows a simple example of bidirectional port.

In Figure 2-a, the type of the port port_0 is defined to be I (i.e., the provided
interface, as said before). However, the fact that the port is bidirectional raises
typing problems, as the port has to be treated as an entity of type I, and
sometimes as an entity of type J . This is apparent in the following practical
situations:

– When component A uses port_0 to send out requests (e.g., by an action such
as “port_0.op2()”), the type system has to ensure that the requests (here
op2) conform to the required interface J . Thus, port_0 has to be treated by
the type system as an entity of type J , although its declared type is I.

1 Here, incoming and outgoing are used from the point of view of the component
owning the port.
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Fig. 2. Example of bidirectional port (a) and equivalent in OMEGA2 (b)

– When specifying the behaviour of port_0 itself by a state machine2, the state
machine has to handle requests coming from both directions, i.e. requests
conforming both to I and to J .

These typing inconsistencies are not addressed by the UML standard. When
translating UML models to an implementation language (in our case, IF [1])
they raise homologous problems for the typing of the actual object that will
represent the port.

While it is possible to give a general solution based on qualifying the types
(I,J) with the corresponding directions (in, out) and on allowing the port entity
to comply to multiple types, such a solution greatly complicates the type check-
ing. For this reason, the solution we adopt here is to forbid bidirectional ports.
This restriction is made without loss of expressive power, as any bidirectional
port can be split in two unidirectional ports, like in the example in Figure 2-b,
although it can be argued that it leads to less convenient models.

In OMEGA2 models, the convention used for modelling a port with a required
interface J (such as port_0_out from Figure 2-b) is to declare J as the port’s
type and to stereotype the port with <<reversed>> (to distinguished it from a
port providing J).3

4.2 Directionality Rules

For this section and the following ones, the discussion is based on the running
example in Figure 3. The example is a composite A with two sub-components
of types D and E, one using ports for communication (E) and one not (D). For
both sub-components there are incoming links (links from port pIJL of A) and
outgoing links (links to ports rK and bak rA K of A).

Before discussing type compatibility issues for links, some simple directionality
rules must be observed by well-formed structures:

2 This is deemed possible by the UML 2.x standard [16], but without further detail.
3 A similar convention is used by the IBM Rhapsody tool [7], which also supports the

standard graphical symbol for required interfaces instead of the textual stereotype.
For convenience, we use this representation in Figure 2-b and in the following.
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Rule 1. If a delegation link exists between two ports, the direction (provided or
required) of the ports must be the same.

Rule 2. If an assembly link exists between two ports, one of the ports (the
source) must be a <<reversed>> port (required) and the other (the destination)
must be a provided port.

Rule 3. If a link is typed with an association, the direction of the association
must be conform to the direction of the link (derived from the direction of the
ports at the ends).

The reason behind these rules can be easily seen on the model in Figure 3. Rule 1
forbids to put a connector for example between pIJL and rK, since the direction
of the connector would be ambiguous. Rule 3 forces the direction of a connector
to be coherent with the direction of the realized association, like in the case of
the link between d and rA K (realizing association itsK).

4.3 Typing of Connectors

In programming or modelling languages, the purpose of the type system is to
determine what are the operations that are applicable to an entity. By analogy,
the purpose of a type system for composite structure connectors is to determine
which requests (operation calls or signals) can be sent through each connector.
In the following, we sketch the principles behind the OMEGA2 type system.
Some supporting constructs (interface groups, default delegation associations)
are defined first, followed by the definition of connector types and type-based
consistency rules.

Interface groups. Let us note that it is sometimes necessary to declare several
provided or required interfaces for one port (for example, pIJL of A which pro-
vides interfaces I, J and L, see Figure 3). In UML, this is done by declaring a
new interface that inherits from these interfaces and by using this new interface
as the port type (IJL in Figure 3). However, such interfaces are artificial syn-
tactic additions to the model, and they should not be taken in consideration by
the link compatibility rules stated in the following. In our example, d and e only
realize interfaces I and respectively J and L, so interface IJL is irrelevant for

Fig. 3. Connection rules in composite structures (running example)
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the semantics of the model. In OMEGA2, such interfaces must be stereotyped
with <<interfaceGroup>> to distinguish them from meaningful ones, as shown
in the upper part of Figure 3.

Default delegation associations. The default behaviour of a port is to for-
ward requests from one side to the other, depending on its direction. The min-
imum information needed by the port is, for each provided/required interface,
who the destination should be. For example in Figure 3, port pIJL needs to
know (and be able to refer to) the destination of requests belonging to interface
I (here, d) and the destination of requests belonging to J or L (here, pJL of
e). Similarly, rK needs to know that the destination of outgoing requests is by
default rA K.

It follows that, for each provided/required interface, the port has to possess an
association designating to whom the port should forward requests belonging to
that interface. In OMEGA2, every interface type I has by default an association
called deleg I pointing to itself, used for this purpose (for modelling convenience,
the semantics considers they exist by default if they are omitted in the model).
These associations are used to define the forwarding semantics of ports, described
later on.

The dynamic type of a connector. The type of a connector determines what
invocations (signals or operation calls) can travel through the connector and how
do port behaviour descriptions refer to the connector. In general, in the case of
a connector originating4 from a port (i.e., not directly from a part), its type
can be derived from the type of the entities situated at its two ends and does
not necessarily need to be statically specified using an association. The following
notion defines the dynamic type of the connector:

Definition 1 [Set of transported interfaces]. For a connector starting from
a port, the set of transported interfaces is defined as the intersection between
the two sets of interfaces provided/required at the two ends of the link.

As the ends of a link can be either ports or components, the meaning of
provided/required interfaces is defined for each case:

– For a Port, the set of required/provided interfaces is the set containing the
Port ’s type and all its supertypes, minus all the interfaces stereotyped as
<<interfaceGroup>>.

– For a component, the set of provided interfaces is the set of all interfaces
directly or indirectly realized by the component’s class. �

According to this definition, the set of transported interfaces for the links in
Figure 3 are as follows5:

4 According to link directionality.
5 Link d to rA K is not considered as it starts from a component and therefore must

be statically typed (see Rule 5 later on).
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– For link pIJL to d the set is {I}.
– For link pIJL to pJL the set is {J, L}.
– For link rK to rA K the set is {K}.

4.4 Type Coherence Rules

Let us note that the link from pIJL to d given as example above could have
been statically typed with association deleg I, because the set of transported
interfaces {I} contains only one element. However, in the general case when the
derived set contains several interfaces (like for example the link between pIJL
and pJL which transports {J, L}), statically typing a link with an association is
not necessary and may be restrictive.

If a static type is specified, it must be compatible with the dynamic type, as
stated in the following rule:

Rule 4. If a link outgoing from a port is statically typed with an association,
then the association is necessarily directed (cf. rule 3) and the type pointed at by
the association must belong to the set of transported interfaces for that link.

On the example in Figure 3, rule 4 implies that, for example, if the link pIJL
to pJL is statically typed with an association then the association must point
at either J or L.

While the type for a connector starting from a port does not need to be stati-
cally specified as it can be derived as shown before, if the connector starts directly
from a component (and not from a port) then the static type must be specified:

Rule 5. If a link originates in a component, then the link must be statically
typed with an association, and the type of the entity at the other end of the link
must be compatible with (i.e. be equal or a subtype of) the type at the correspond-
ing end of the association.

In Figure 3, only the link from d to rA K is in this case; the link has indeed to
be typed (here, with itsK) or otherwise the component would have no means to
refer to it for communication.

Finally, a link is meaningful only if it can transport some requests:

Rule 6. The set of transported interfaces of a link should not be void.

4.5 Port Behaviour and Further Type-Based Rules

In OMEGA2, the default behaviour of a port is to forward requests from one side
to the other, depending on the port’s direction. Each request (signal or operation
call) will be forwarded to a destination which depends on the interface to which
the signal or operation belongs, using the default deleg associations described
before. For example, the default forwarding behaviour of port pIJL from Figure 3
can be described by the state machine in Figure 4-a6.
6 deleg I!sI is the OMEGA2 syntax for the action of sending signal sI to the des-

tination deleg I (if the signal has formal parameters and no actual parameters are
specified in the sending action, the actual values that will be sent are those received
at the last reception – here the one that triggered the transition).



426 I. Ober and I. Dragomir

Fig. 4. (a) default state machine for port pIJL, (b) user-defined machine for port rK

The default behaviour is unambiguous only if for any interface the entity
to which the corresponding deleg association points at is clear. Therefore, the
following rule is necessary:

Rule 7. If several non-typed connectors start from one port, then the sets of
interfaces transported by each of these connectors have to be pairwise disjoint.

Note that this rule does not forbid the case where a port is connected to n
entities (n > 1) that provide or require the same interface: it merely says that in
this case at least n− 1 connectors have to be explicitly typed with associations.
In the example from Figure 3, port rK of e is in this situation: it has two links
to two ports (rA K and bak rA K), both typed with the same interface (K).
According to Rule 7, one of the links has to be explicitly typed; here, the second
one is statically typed with the association deleg backup.

In addition, for completeness of the port behaviour, we require the following:

Rule 8. The union of the sets of interfaces transported by each of the connectors
originating from a port P must be equal to the set of interfaces provided/required
by P .

Applied for example to port pIJL from Figure 3, this rule says that the two links
originating from the port must transport, together, the entire set of interfaces pro-
vided by the port, i.e. {I, J, L} (remember that IJL is an <<interfaceGroup>>
and does not count in type checks).

The default port behaviour may be redefined by attaching a state machine to
the port’s type. In OMEGA2, this state machine may use the implicitly typed
connectors (to which the behaviour may refer using the default deleg associa-
tions), as well as the explicitly typed connectors (via their defining association).
In Figure 4-b we show an example of port behaviour for port rK (from Figure 3),
which duplicates every sK signal on both the default connector (deleg K, com-
municating with rA K) and the secondary connector (deleg backup, communi-
cating with bak rA K).
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5 Compiling Composite Structures to IFx

While the operational semantics of composite structures is outside the scope
of this paper (which concentrates on structural well-formedness and typing), we
briefly discuss here their translation into an executable model, since the existence
of a feasible translation provides an empirical indication of the soundness of the
rules stated before.

The OMEGA/IFx toolset [11] implements the OMEGA2 profile and provides
simulation and model-checking functionality for OMEGA2 models. The toolset
relies on the translation of models towards a simple language based on asyn-
chronously communicating extended timed automata (IF [1]).

For the translation of composite structures, the main challenge was to fit
the relatively complex, hierarchical UML modelling constructs into the simple
and flat object space of IF automata. Our translation is based on the princi-
ple that the modelling elements involved in composite structures, namely ports
and connectors, should be handled as first class language citizens. This means
that we refrain from flattening the model during compilation and hard-wiring
all the communication paths (something that is done in certain SDL compilers).
Concretely, each port instance is implemented as an IF process instance (whose
behaviour corresponds to the routing behaviour described in §4.5) and each con-
nector is represented by attributes in the end-points (in ports or in components),
corresponding to the association defining the connector (the default deleg asso-
ciation or the explicitly specified one). A UML composite structure diagram is
thus used as an initialization scheme for instantiating components and ports and
for creating links. A composite structure is therefore translated to a constructor
(see [12] for a description of constructors in OMEGA).

6 Implementation and Evaluation

The rules presented in §4 have been formalised in OCL. While details are omitted
here, the entire OCL rule set with explanations can be found in [5]. The OCL
rule set can be evaluated over a UML model in standard XMI format using
the Topcased OCL Environment [9], and is also used by the OMEGA UML
compiler [11].

To validate the approach, we evaluated the rules on several complex models.
The most complex example we used is a model of the solar wings deployment
system of the ATV7 provided by Astrium Space Transportation. The model
features a 3-level hierarchical architecture with 37 classes (7 composite ones), 93
active objects at runtime and approximately 380 ports and 200 connectors.

The OCL formalization was applied on the model in order to test model
compliance with the OMEGA2 profile and to search for modelling errors. Since
the original model had not been built for simulation or verification, the first
issue pointed out by the rules was that ports and connectors were untyped. The

7 Automated Transfer Vehicle of the International Space Station,
http://www.esa.int/atv

http://www.esa.int/atv
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Fig. 5. Inconsistent port with respect to uniqueness and completeness rules

corrective action consisted in defining a total of 26 interfaces, and using them for
specifying port contracts. Only a few ports in the original model were bidirec-
tional and splitting them to unidirectional ports did not raise problems, resulting
in a clearer model. The evaluation of the OCL rules yielded the inconsistent ports
and connectors (cf. §4.1 and §4.2) which were either removed or redefined.

A second task was the verification of the uniqueness and completeness of ports,
(cf. §4.3-§4.5). Approximately 20% of the evaluated ports were inconsistent with
respect to rules 7 and 8. Figure 5 shows one such example, in which a port
(of iB03_FULL_DEPLOYMENT) was incorrectly typed with interface MVM_F011 in-
stead of MVM_F014, resulting in routing in the outer port that is both ambiguous
(for MVM_F011) and incomplete (for MVM_F014). This was detected using the OCL
rules.

Finally, the corrected model was given as input to the OMEGA2 compiler
and was simulated with the IFx toolset [11]. During simulation, deadlocks due
to missing connectors or unhandled requests by ports were not found. This pro-
vides strong empirical evidence that, under the constraints of the rule set, the
OMEGA2 type system is safe.

7 Conclusions

We presented an approach for defining an operational model of UML composite
structures, by defining structural well-formedness and typing rules which are
significantly more precise than the current UML standard [16], and by closing
the relevant semantic variation points left open in the standard. The approach
is based on :

– a set of static well-formedness rules, including type checking rules, which go
beyond the rule sets that may be found in the literature, such as [3],

– dynamic typing of connectors based on a derived set of transported interfaces,
– a full definition of the default behaviour of Ports, and the means for defining

port behaviour differing from the default.

The rule set is used by the type checker of the OMEGA UML compiler. In
addition, the compiler goes all the way down to an operational implementation
of composite structures, by translating OMEGA UML models (edited with any
XMI 2.0 compatible UML editor) into IF models, for which a simulation and
model-checking platform exists.
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Experiments with realistic models (see §6) show that the rules are able to catch
the most frequent modelling errors in composite structures. After correcting such
errors, simulation and exhaustive state-space search with the IF model-checker
show no cases of routing problems (deadlocks in ports due to missing links,
unexpected requests not conforming to object interfaces, etc.).

Future work – towards type safety. The purpose of the rules defined in
this paper is to ensure the type safety of OMEGA UML composite structures.
We are currently working on a formalization of the structure of the OMEGA
profile and of the rules described above within the Isabelle/HOL proof assistant
[17], as a first step towards proving type safety. Within this context, type safety
means that in composite structures obeying to the rules above, the following
two properties hold: (1) a request (signal or method invocation) can always
be deterministically routed by the intermediate ports up to a final destination
object, and (2) from routing, a destination object can only receive requests that
belong to its interface.
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Abstract. Linear conjunctive grammars define the same family of lan-
guages as one-way real-time cellular automata (Okhotin, “On the equiv-
alence of linear conjunctive grammars to trellis automata”, RAIRO ITA,
2004), and this family is known to be incomparable to the context-free
languages (Terrier, “On real-time one-way cellular array”, Theoret. Com-
put. Sci., 1995). This paper investigates subclasses of the context-free
languages for possible containment in this class. It is shown that every
visibly pushdown automaton (Alur, Madhusudan, “Visibly pushdown
languages”, STOC 2004 ) can be simulated by a one-way real-time cel-
lular automaton, but already for LL(1) context-free languages and for
one-counter DPDAs no simulation is possible.

1 Introduction

This paper contributes to the study of a family of formal languages notable
for having two equivalent definitions coming from different lines of research. By
the first definition, this is the family recognized by one of the simplest types
of cellular automata: the one-way real-time cellular automata, also known as
trellis automata, studied by Dyer [5], Čuĺık, Gruska and Salomaa [4], Ibarra and
Kim [6], Terrier [17], and others. These automata work in real time (that is,
make n − 1 steps on an input of length n), and the next value of each cell is
determined only by its own value and the value of its right neighbour.

The second definition is made in terms of formal grammars. Consider first
the context-free grammars augmented with a conjunction operation in the rules.
This model is called a conjunctive grammar [11], and, along with even more
general Boolean grammars [13], they are known to preserve the main practical
properties of the context-free grammars [15], have a greater expressive power,
and offer a new field for theoretical studies [8,9,16]. Consider their restriction,
in which concatenation can be taken only with terminal strings: such grammars
are known as linear conjunctive grammars [11], and they are computationally
equivalent to the above class of cellular automata [12].

An important progress in the study of this language family was made by Ter-
rier [17], who proved a general lemma asserting non-representability of some
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languages, and used it to show that the concatenation of a certain linear
context-free language L0 with itself—obviously a context-free language—is not
recognized by any trellis automaton. This showed that the family of linear con-
junctive languages is not closed under concatenation and is incomparable with
the context-free languages. However, the language L0 ·L0 constructed by Terrier
is inherently ambiguous [14], and this still leaves open a possibility that some
subclasses of the context-free languages can be simulated by trellis automata.

This paper continues the comparison between context-free grammars and
trellis automata, by considering the following most important subfamilies of
the context-free languages. These are the families defined by

– unambiguous context-free grammars;
– LR(1) context-free grammars (deterministic pushdown automata);
– LL(k) context-free grammars,
– deterministic counter automata,
– parenthesis grammars [10], balanced context-free grammars [2], as well as

their recently introduced generalization: visibly pushdown automata [1].

In Section 3 it is demonstrated that every visibly pushdown automaton (VPDA)
can be simulated by a trellis automaton. Note that VPDAs are deterministic
only when executed sequentially, as per their definition, while, on the other
hand, a trellis automaton attains its full power on parallel computations. Hence
the deterministic computation of a VPDA has to be simulated nondeterministi-
cally: the trellis automaton does not know the state, in which the VPDA begins
processing each substring, and so it calculates the result of the VPDA’s compu-
tation for every possible initial state. These computed behaviours on substrings
are gradually combined, until the behaviour on the entire string is obtained.

The second result, established in Section 4, is that the more potent known
subfamilies of the context-free languages are already not contained in the lin-
ear conjunctive languages. This is done by constructing an LL(1) context-free
language (which is at the same time recognized by a deterministic counter au-
tomaton), and proving that it is not linear conjunctive. The proof is carried out
using the lemma of Terrier [17].

2 Linear Conjunctive Grammars and Trellis Automata

All families of formal languages considered in this paper are subsets of the fam-
ily generated by conjunctive grammars, which directly extend the context-free
grammars by allowing a conjunction of syntactical conditions in any rule.

Definition 1 (Okhotin [11]). A conjunctive grammar is a quadruple G =
(Σ, N, P, S), in which: Σ and N are disjoint finite nonempty sets of terminal
and nonterminal symbols, respectively; P is a finite set of grammar rules, each
of the form

A→ α1& . . .&αn, (1)

with A ∈ N , n � 1 and α1, . . . , αn ∈ (Σ ∪ N)∗; S ∈ N is a nonterminal
designated as the start symbol.
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A rule (1) expresses that every terminal string that is generated by each αi

is hence generated by A. This understanding can be formalized in two ways.
One definition uses language equations with nonterminal symbols as unknown
languages, and using the least solution of the system

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N)

to define the languages generated by these nonterminals. The other definition
employs term rewriting that generalizes Chomsky’s string rewriting: according to
it, a rule (1) allows rewriting A with a term (α1& . . . &αn) over concatenation and
conjunction, and furthermore it is allowed to rewrite a conjunction (w& . . . &w)
of identical terminal strings with a single such string w.

The main facts about the conjunctive grammars (and the more general
Boolean grammars [13] that further allow negation) are that, on the one hand,
they can define some nontrivial non-context-free languages, such as {wcw | w ∈
{a, b}∗} [11] and {a4n | n � 0} [7], and on the other hand, they retain the key
practical properties of the context-free grammars: in particular, parse trees and
efficient parsing algorithms [14,15].

The family of conjunctive grammars has two important special cases. One of
these cases are the context-free grammars, in which there is a unique conjunct
in every rule, that is, every rule (1) has n = 1. The other case are the linear
conjunctive grammars, in which every conjunct α in every rule (1) may contain
at most one nonterminal symbol. Grammars obeying both restrictions are known
as linear context-free.

The family of languages defined by linear con-
junctive grammars is remarkable for being the same
as the family recognized by one of the basic kinds
of cellular automata. These are the one-way real-
time cellular automata [5], also known as trellis
automata [4]. Such an automaton is defined as a quin-
tuple M = (Σ, Q, I, Δ, F ), and processes an input
string of length n � 1 using a uniform triangular ar-
ray of n(n+1)

2 processor nodes, connected as in the figure. Each node computes a
value from a fixed finite set Q. The nodes in the bottom row obtain their values
directly from the input symbols, using a function I : Σ → Q. The rest of the
nodes compute the function Δ : Q×Q→ Q of the values in their predecessors.
The string is accepted if and only if the value computed by the topmost node
belongs to the set of accepting states F ⊆ Q.

Formally, I is extended to a letter-to-letter homomorphism I : Σ∗ → Q∗,
while the function Δ is inductively extended to the domain Q+, with Δ(qαq′) =
Δ(Δ(qα), Δ(αq′)). Then define L(M) = {w |Δ(I(w)) ∈ F}.

Proposition 1 (Okhotin [12]). A language L ⊆ Σ+ is generated by a linear
conjunctive grammar if and only if L is recognized by a trellis automaton.
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Proposition 2 (Čuĺık et al. [4]). For every linear conjunctive language L ⊆
Σ∗ and for every letter a ∈ Σ, the languages a−1 · L = {w | aw ∈ L} and
L · a−1 = {w | wa ∈ L} are linear conjunctive as well.

3 Visibly Pushdown Languages Are Linear Conjunctive

This section demonstrates the containment of a noteworthy subclass of the deter-
ministic context-free languages in the linear conjunctive languages. The subclass
in question is the most general model in the study of structured context-free
languages, in which the string itself contains a description of the structure of
its own parse tree. The basic such formalism are the parenthesis grammars of
McNaughton [10], which were extended by Berstel and Boasson [2] to the more
general balanced grammars. The latest model are the visibly pushdown automata,
defined by Alur and Madhusudan [1].

A visibly pushdown automaton (VPDA) is a special case of a deterministic
pushdown automaton, in which the input alphabet Σ is split into three disjoint
subsets Σc, Σr and Σi, and the type of the input symbol determines the type of
the operation with the stack. For an input symbol in Σc, the automaton always
pushes one symbol onto the stack. If the input symbol is in Σr, the automaton
pops one symbol. Finally, for a symbol in Σi, the automaton may not use the
stack (that is, neither modify it, nor even examine its contents).

Let Q denote the set of states of the automaton, with a subset of accepting
states F ⊆ Q, let Γ be its pushdown alphabet, and let ⊥ ∈ Γ be the initial
pushdown symbol. For each input symbol a ∈ Σc, the behaviour of the automa-
ton is described by partial functions δa : Q→ Q and γa : Q→ (Γ \ {⊥}), which
provide the next state and the symbol to be pushed onto the stack, respectively.
For every b ∈ Σr, there is a partial function δb : Q × Γ → Q specifying the
next state, assuming that the given stack symbol is popped from the stack. For
c ∈ Σi, the state change is described by a partial function δc : Q → Q. There
is an additional condition that whenever the stack contains only one symbol
(which will be ⊥), any attempts to pop this symbol will result in checking that
it is there, but not actually removing it. The acceptance is by reaching a state
in F after reading the last symbol of the input.

Before approaching the construction of a trellis automaton simulating any
given VPDA, its important elements will be illustrated on a simpler example.
This is a single trellis automaton, which recognizes the nested structure of strings
over a three-letter alphabet Σ = {a, b, c}, partitioned as Σc = {a}, Σr = {b}
and Σi = {c}. This nested structure is presented as the following variant of the
Dyck language:

Example 1. Let L0 ⊆ {a, b, c} be the language defined by the context-free gram-
mar S → aAb | c, A→ SA | ε. Then the trellis automaton with the set of states
{↗,↖,−, �}, illustrated in Figure 1, carries out computations sufficient to parse
L0. In particular, adding an extra accepting state ∗ with the extra transitions
shown outside of the table yields a trellis automaton recognizing (L0 ∪ {b})+$.
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Fig. 1. A trellis automaton processing L0

The state ↗ represents a letter a looking for a matching b to the right, and
similarly,↖ represents b looking for a matching a to the left. Once these arrows
meet, they produce a state �, and a single letter c produces the same state �.
The fourth state “−” is used to fill the areas, where no computations are done.

The initial function of the trellis automaton is defined by I(a) =↗, I(b) =↖,
I(c) = �. Now the goal is to compute � on each element of L0, as well as
to compute ↗ on each proper prefix of a string in L0, and ↖ on each proper
suffix. The computation is defined and proved inductively on the structure of
the strings in L0.

The base case is a one-symbol string c ∈ L0, on which the trellis automaton
computes the intended result. For a string of the form awk . . . w1b with wi ∈ L0,
the general plan is that the automaton computes the state � on each wi (which
holds by the induction hypothesis), and then these states are propagated to the
right, until they meet the arrows ↖ spawned from the last b. The diagonals, in
which no states � are propagated, are filled with the states “−”.

The computations carried out between every subsequent substrings wi+1 and
wi depend on the types of both strings. If wi+1 = c and wi = c, then the
propagation is done by

Δ(�, �) = �. (2a)

For wi+1 = awb and wi = aw′b, the middle zone between them is filled by the
transitions

Δ(↖,↗) = −, (2b)
Δ(↖,−) = −, (2c)
Δ(−,↗) = −, (2d)
Δ(−,−) = −, (2e)
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and then the state � computed for wi+1 is propagated by the transition

Δ(�,−) = �. (2f)

If wi+1 = c and wi = awb, the required transitions are

Δ(�,↗) = � (2g)

and (2a). The last case of wi+1 = awb and wi = c uses the transitions

Δ(↖, �) = −, (2h)
Δ(−, �) = −, (2i)

This concludes the propagation of signals from all wi.
On the right border, the diagonal spawned from b consumes the signals coming

from wi using the transitions

Δ(�,↖) =↖, (2j)
Δ(−,↖) =↖, (2k)

as well as one extra transition

Δ(↖,↖) =↖ (2l)

used if w1 = awb. The left border is maintained by the transitions

Δ(↗, �) =↗, (2m)
Δ(↗,↗) =↗, (2n)

of which the latter is used only for wk = awb.
Finally, once the left diagonal meets the right diagonal, the following transition

is employed:
Δ(↗,↖) = �. (2o)

The above trellis automaton shall now be generalized to establish the following
result:

Theorem 1. Let (Σc, Σr, Σi, Q, {(δa, γa)}a∈Σc , {δb}b∈Σr , {δc}c∈Σi, F ) be a
VPDA recognizing a language L ⊆ (Σc ∪ Σr ∪ Σi)∗. Then there exists a trel-
lis automaton that recognizes the same language.

Proof. The main construction produces a trellis automaton recognizing the lan-
guage cL$, where c and $ are two new symbols. This automaton operates by the
same principle as the one in Example 1, and each of its states represents one
of the states ↗,↖, �,−, with some attached data related to the input symbols
and internal states of a VPDA.

Though the state of a VPDA at each point of its computation is uniquely deter-
mined, it depends on all symbols of the input up to the current position. However,
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a trellis automaton will not have all this data available (except on the left diago-
nal of its computation, that is, almost never). Because of this, the deterministic
operation of a VPDA is simulated nondeterministically: for each substring of the
input with balanced parentheses, the constructed trellis automaton shall trace the
computation of a VPDA beginning with all possible states.

In accordance with this plan, a state � from the automaton in Example 1
now has to remember a function f : Q → Q, which maps a state, on which the
VPDA begins its computation on the current substring, to the resulting state
after reading this substring. Each arrow ↗ remembers the letter a ∈ Σc, from
each it has been spawned. Arrows↖ also remember their original symbol b ∈ Σr,
and besides it they calculate a function f : Q→ Q representing the behaviour of
the VPDA on the respective substrings. In overall, the constructed automaton
has the set of states

{↗a | a ∈ Σc} ∪ {↖f
b | b ∈ Σr, f : Q→ Q} ∪ {�f | f : Q→ Q} ∪ {−},

and its computations extend those in Example 1 by maintaining the following
information flow.

The initial function sets the
values I(a) =↗a for a ∈ Σc;
I(b) =↖id

b for b ∈ Σr, where id :
Q → Q is the identity function;
I(c) = �δc for c ∈ Σi. The tran-
sitions belong to the same fifteen
groups as in Example 1, but now
they have data to communicate
and transform. The analogues of
transitions (2a)–(2i), which sim-
ply propagate the data, are omit-
ted for brevity. The first nontriv-
ial transition is (2j), which now computes the composition of behaviours of
the VPDA on neighbouring substrings, thus producing the behaviour on their
concatenation:

Δ(�g,↖f
b ) =↖f◦g

b .

The second operation is calculating the behaviour of the VPDA on the entire
substring awk . . . w1b: the transition (2o) is expanded into

Δ(↗a,↖f
b ) = �g,

where the new function g(q) = δb

(
f(δa(q)), γa(q)

)
represents the behaviour of the

VPDA on this substring as follows. If the VPDA begins reading the substring
in the state q, it first reads a, pushes γa(q) and enters the state δa(q), then
processes wk . . . w1, finishing in the state f(δa(q)), and finally pops the symbol
γa(q) from the stack and uses it in its transition by b.
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The last step of the construction is to add new symbols c and $ and recognize
the language cL$. For all f : Q → Q, let �f and �f be new states, and define
I(c) =�id and I($) =�id. The purpose of the states �f is to collect returns
without calls, which are allowed as per the definition of VPDAs. This is done by
the transitions

Δ(�f ,↗a) =�f ,

Δ(�f , �g) =�f ,

Δ(�f ,↖g
b ) =�h, with h(q) = δb(f(q),⊥).

The states �f similarly compute the behaviour of the VPDA on the suffix be-
ginning after the last unmatched return:

Δ(↖g
b , �f ) =�f ,

Δ(−, �f ) =�f ,

Δ(�g, �f ) =�f◦g .

These two parts of the string are connected by the following transition leading
to a new accepting state ∗:

Δ(�f , �g) = ∗, if g(f(q0)) ∈ F .

Having constructed a trellis automaton recognizing cL$, the desired trellis au-
tomaton for L is obtained from it by applying Proposition 2 twice. 
�

4 Languages That Are Not Linear Conjunctive

Having found a subclass of deterministic context-free languages that can be
simulated by trellis automata, one naturally ponders on whether any larger
subclasses, such as LL(k) context-free languages, deterministic context-free lan-
guages, or even unambiguous context-free languages, can be simulated as well.
The answer, which turns out to be negative, shall now be obtained by using
the method of Terrier [17] to prove that there are no trellis automata for some
languages that are simpler than the previously known examples.

The method of Terrier is based upon a special complexity function of a lan-
guage, which reflects the necessary amount of calculations in the last few steps
of the computation of a trellis automaton. This complexity function is defined
for an arbitrary language as follows:

Definition 2. Let L ⊆ Σ∗ be a language, let k � 1 and let w = a1 . . . an be a
string with n � k. Define a set

SL,k,w = {(i, j) | i, j � 0, i + j < k, ai+1 . . . an−j ∈ L},

which represents the membership in L of all substrings of w longer than |w| − k
symbols. Next, define the set of all sets SL,k,w for all strings w:
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ŜL,k = {SL,k,w | w ∈ Σ∗, |w| � k}.

Let fL(k) = |ŜL,k|.

Each set SL,k,w has between 0 and k(k+1)
2 elements, and accordingly, the cardi-

nality of the set ŜL,k is between 1 (if L ∩Σ+ is ∅ or Σ+) and 2
k(k+1)

2 .
This measure exposes the following limitation of linear conjunctive languages:

their growth rate cannot get as high as 2Θ(k2), and is limited by 2O(k):

Lemma 1 (Terrier [17]). If L ∈ Σ∗ is linear conjunctive, then its complexity
measure fL(k) is bounded by an exponential function, that is,

fL(k) � pk, for some p � 1.

The reason for this limitation is that for every string w = a1 . . . an with n � k,
a trellis automaton has to determine the membership in L of all substrings
ai+1 . . . an−j with i, j � 0 and i+j < k, based only on the states it has computed
on the substrings with i + j = k − 1. The number p in the lemma reflects the
number of states in a trellis automaton recognizing L, and thus the automaton
can distinguish between pk possible situations.

Lemma 1 was accompanied with an example of a context-free language that
maximizes this complexity measure, and hence is recognized by no trellis au-
tomaton:

Example 2 (Terrier [17]). Consider the linear context-free language

L0 = {anwbn | n � 1; w ∈ b{a, b}∗a or w = ε}.

Then the language

L = L0 · L0 = {ai1bj1 . . . aimbjm |m � 2; it, jt � 1, ∃� : i1 = j	 and i	+1 = jm}

has fL(k) = 2
k(k+1)

2 and therefore is not linear conjunctive.

However, the language in Example 2 is inherently ambiguous [14, Prop. 8], and
in order to separate linear conjunctive languages from unambiguous context-free
languages and their subclasses, new examples are needed.

Lemma 2. The language

L = {cma	0b . . . a	m−1ba	mb . . . a	zbdn |m, n, �i � 0, z � 1, �m = n}

is generated by an LL(1) context-free grammar, as well as recognized by a de-
terministic one-counter automaton. However, fL(k) � (k + 1)! = 2Θ(k log k), and
therefore L is not linear conjunctive.

Proof. From the outlook of pushdown automata, the membership of a string
cmwdn with w ∈ {a, b}∗ in L can be determined as follows. First, the prefix
cm is read, and its length is stored in the stack. Then the automaton uses
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these stack contents to count the first m instances of b in w, skipping any as
encountered, Right after the m-th b, the automaton reads the next block of as,
storing its length in the stack, and then skips all remaining as and bs. Finally,
the stored length of the block of as is compared against the number of ds. This
is a deterministic three-turn one-counter automaton.

In order to construct an LL(1) context-free grammar for L, consider that this
language is representable as a concatenation of the following two languages:

L1 = {cma	1b . . . a	mb |m � 0, �i � 0},
L2 = {anbwdn | n � 0, w ∈ {a, b}∗}.

This leads to the following context-free grammar, which turns out to be LL(1):

S → CD

C → cCAb | ε
A→ aA | ε
D → aDd | bB
B → aB | bB | ε

The last claim about this language is that fL(k) � (k + 1)! for each k � 1. For
every k-tuple of integers (�0, . . . , �k−1) with k − 1− i � �i � k for each i, define
the corresponding string

w	0,...,	k−1 = ck−1a	0b . . . a	k−1bdk−1.

Then the set SL,k,w�0,...,�k−1
for this string contains all pairs (i, j) with i, j � 0

and i + j < k, which satisfy ck−1−ia	0b . . . a	k−1bdk−1−j ∈ L, that is, �k−1−i =
k−1−j. Thus different possible values of �k−1−i are indicated by the membership
of the pairs (i, 0), (i, 1), . . . , (i, k− 1− i) in SL,k,w�0,...,�k−1

: if �k−1−i is between
k−1− i and k−1, then exactly one of these pairs is in the set, and if �k−1−i = k,
then none of them are present.

Accordingly, the sets SL,k,w�0,...,�k−1
corresponding to different tuples

(�0, . . . , �k−1) are pairwise distinct, and since there are (k + 1)! such tuples,
fL(k) = |{SL,k,w | w ∈ Σ∗, |w| � k}| � (k + 1)!, as claimed. 
�

Theorem 2. The family of linear conjunctive languages is incomparable with
unambiguous context-free languages, deterministic context-free languages and
LL(k) context-free languages.

5 LL(k) Context-Free vs. Visibly Pushdown Languages

Lemma 2 suggests a further question of comparing LL(k) context-free languages
to visibly pushdown languages. An LL(1) context-free language without a VPDA
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is well-known: that is the language {anbn |n � 0}∪ {bnan |n � 0} [1]. The next
example shows that there is no converse inclusion either.

Lemma 3. The language {anbn | n � 0} ∪ {ancn | n � 0} is recognized by a
VPDA with Σc = {a}, Σr = {b, c}, Σi = ∅. On the other hand, there is no
LL(k) context-free grammar for this language.

Proof. The construction of a VPDA for this language requires no explanation.
To see that this language is not LL context-free, suppose that it is generated

by some LL(k) context-free grammar G = (Σ, N, P, S). Assume, without loss of
generality, that ε /∈ LG(A) for each A ∈ N : every LL context-free grammar can
be transformed to this form by increasing the lookahead length by one. For each
nonterminal A, let �A be the length of the shortest string generated by A, and
let � = maxA∈N �A.

For each n � k − 1, consider the computation of the LL(k) parser on the
strings anbn and ancn, and let αn ∈ (Σ ∪N)∗ be the stack contents at the point
when the prefix an−(k−1) has been read and ak−1bn or ak−1cn remains unread.
Up to this point, the computation does not depend upon whether there are bs
or cs ahead, because a parser with k symbols of lookahead could not yet see
them. So it must be ready to recognize these two possible continuations, that is,
LG(αn) must be exactly {ak−1bn, ak−1cn}. Therefore, the strings αn for different
n are pairwise distinct, and their length is accordingly unbounded. Fix n as the
smallest number with |αn| � k and n > �.

Since both ak−1bn and ak−1cn are in LG(αn), the last symbol of αn must be
a nonterminal. Denote αn = βA with A ∈ N , and consider the factorizations
ak−1bn = u1u2 and ak−1cn = v1v2 with u1, v1 ∈ LG(β) and u2, v2 ∈ LG(A).
Since |β| � k − 1, the string u1 contains at least the prefix ak−1, and similarly
v1 ∈ ak−1c∗. Then the factorization takes the form ak−1bn−i, ak−1cn−j ∈ LG(β)
and bi, cj ∈ LG(A) for some i, j ∈ {1, . . . , n}.

If i > �, then there is a shorter string x ∈ LG(A) with |x| < i, and hence
ak−1bn−ix ∈ LG(α), which further implies anbn−ix ∈ L(G), where |bn−ix| < n,
and this is a contradiction. Therefore, i � � < n, and for the same reason
j � � < n. Now the string ak−1bn−icj is in LG(α), and anbn−icj is in L(G),
where n− i > 0 and j > 0, which is a contradiction as well. 
�

Theorem 3. The family of LL context-free languages is incomparable with
visibly pushdown languages.

6 Conclusion

The relations between the language families studied in this paper is illustrated
in Figure 2. All inclusions are proper, except the ones marked with a question
mark, and any two families not connected by a directed path are now known
to be incomparable. This increases our knowledge of the basic families of for-
mal languages, and suggests further research on extending structured models in
formal language theory towards Boolean grammars.
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Fig. 2. The hierarchy of language families
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Abstract. As many problems can be solved in polynomial time on
graphs of bounded branchwidth, there is a need for efficient and practi-
cal algorithms that find branch decompositions of small width of given
graphs. In this paper, we give the first local search algorithm for this
problem. Using non-trivial combinatorial properties of the neighbour-
hood space, significant reductions in the search space can be obtained.
The fitness function can be easily tuned to express the expected cost in
the dynamic programming step for specific problems. The algorithm is
tested on a number of planar and non-planar graphs. For all tested planar
graphs the algorithm found an optimal branch decomposition. For most
non-planar graphs, we obtained branch decompositions of width equal
to or smaller than the treewidth. Our experiments indicate that local
search is a very suitable technique for finding branch decompositions of
small width.

1 Introduction

It is well known that many problems that are intractable (e.g., NP-hard) on
arbitrary graphs become polynomial or linear time solvable when restricted to
graphs of bounded branchwidth or treewidth. This technique has been used
in several theoretical as well as practical settings. We refer the reader to the
surveys [6,8,23,24] for more background. In many cases, a combinatorial problem
is solved in the following way: first a branch (or tree) decomposition of small
width is found, and then a dynamic programming algorithm is applied on it.
As the running time of the second step is usually exponential (or worse) in the
width of the decomposition obtained in the first step, there is the need of ’good’
algorithms that find branch (or tree) decompositions of small width.

Branchwidth and treewidth were first introduced by Robertson and Seymour
in their work on the graph minors theorem [26,27]. The branchwidth β(G)
and treewidth τ(G) of a graph G are related by β(G) ≤ τ(G) ≤ � 32β(G)�
(see [27,5].) In many cases, using tree decompositions instead of branch de-
compositions would give algorithms with the same asymptotic running time;
however, there can be significant differences in the constant factor, and thus in
the actual running time of programs using these decompositions. (See also [15].)

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 444–454, 2011.
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It should be noted that some of the theoretical algorithmic results for finding
tree or branch decompositions, e.g., the linear time algorithms for fixed values
of k are not useful in practice [4,10,28], as the constant factors, even for small
values of k, are much too large. Thus, there is the need for practical algorithms
that determine the branchwidth or treewidth of a graph, and find corresponding
small width decompositions. While much work has been done on finding tree
decompositions in practical settings (see e.g., the overviews in [7,9]), relatively
few such work has been carried out on finding branch decompositions. This is
probably due to the relative strong focus in the earlier theoretical results on
treewidth and the fact that tree decompositions have several equivalent for-
mulations that are easier to work with, e.g., with a representation of a linear
ordering of the vertices (see [5,11]), where such formulations are not known
for branchwidth.

Branch decomposition based algorithms with practical importance for prob-
lems in planar graphs have received a great deal of attention in the past decade
[14,17]. Seymour and Thomas gave an O(n2) time algorithm [29] for deciding if
the branchwidth of a planar graph is at most a given value β. Versions that also
compute minimum width branch decompositions use more time (O(n3) by Gu
and Tamaki [19]). Experimental studies show that these algorithms are efficient
in practice [21,22,3]. Hicks also gave a divide and conquer heuristic to make the
algorithm even more efficient in practice [22].

Branchwidth isNP-complete on general graphs [29]. Therefore we have to rely
on heuristics (or slow exact methods like [16]) to find branch decompositions for
general graphs. Cook and Seymour [12,13] gave a heuristic, based on spectral
graph theory and the work of Alon [1], to produce branch decompositions. Hicks
[20] also presented a heuristic that was comparable with the heuristic of Cook
and Seymour. The algorithm finds separations by minimal vertex separators
between diameter pairs.

In this paper we present a local search based algorithm for constructing branch
decompositions on general graphs. Although a significant amount of research has
been performed on local search for the related problem of finding tree decompo-
sitions [8,11,25], our algorithm is the first local search based heuristic for con-
structing branch decompositions. Our heuristic is an anytime algorithm that is
tested on a number of planar graphs for which the branchwidth is already known.
Moreover, we have tested our heuristic on a number of non planar graphs, some
taken in order to compare our results to heuristics by Hicks [20], and some taken
from the graphs that are nowadays used as benchmark for testing algorithms for
treewidth.

This paper is organised as follows. In section 2, we give some preliminary
definitions. We present our upperbound heuristic and prove its correctness in
Section 3. Section 4 describes our implementations. Computational results are
presented in Section 5. Conclusions and suggestions for future work can be found
in Section 6.
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2 Preliminaries

Throughout this paper we use n for the number of vertices and m for the number
of edges in the input graph G. All graphs in this paper are undirected. We also
assume that all graphs are biconnected as, the branchwidth of a graph equals
the branchwidth of its biconnected components1. A ternary tree is a tree where
every non-leaf node has degree 3.
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Fig. 1. An optimal branch decomposition for the Petersen graph

Consider a graph G with vertex set V (G) and edge set E(G). A branch decom-
position of G is a ternary tree T such that there is a bijective mapping between
the leaves of T and E(G). Removing an edge e from T separates T into two sub-
trees T ′ and T ′′. Let E′ and E′′ be the edges of G contained in the leaves of the
two subtrees. The middle set of e, denoted mid(e), is the set of vertices of G inci-
dent to some edge in both E′ and E′′. The width of an edge e is the size of mid(e).
The width of T is the maximum width over all edges in T . The branchwidth of G,
denoted by β(G), is the minimum width over all branch decompositions of G. An
optimal branch decomposition of G has branchwidth β(G).

The following fact is a consequence of the definitions:

Lemma 1. Let G be graph, and B be some branch decomposition of G. Then
for all v ∈ V (G) the edges e ∈ E(B) : v ∈ mid(e) induce a connected subgraph
of B.

Figure 1 illustrates an optimal branch decomposition for the Petersen graph.
The middle sets containing vertex d are highlighted.
1 This folklore fact can be shown by repeating the following step: suppose W ⊆ V

forms a biconnected component of G, with cutvertex v. If we have branch decom-
positions of G[W ] and G[(V −W ) ∪ {v}] of width k′ and k′′, respectively, then we
can build a branch decomposition of G of width max{k′, k′′} by subdividing in each
branch decomposition an edge that contains v in the middle set, and adding an edge
to the branch decomposition that connects the two new nodes.
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3 Local Search

Consider a biconnected graph G and a branch decomposition B of G. Our al-
gorithm repeatedly tries to move subtrees of B to another location to improve
its quality. For distinct edges s and t in E(B) we define the move operator,
denoted move(s, t), as follows. Let ei denote the edges on the simple path
P = (s, e1, . . . , ek, t), where 1 ≤ i ≤ k. Note that k ≥ 1 if s and t are not
connected. Let f1, . . . , fk+1 denote the edges incident to the internal vertices on
P . Let Vfi , Vs, Vt ⊆ V (G) be the vertices of G incident to some edge in the leaves
of the corresponding subtree. A move is performed by contracting e1, subdivid-
ing t by inserting a new vertex v, connecting s to v, and updating the middle
sets. See Figure 2 for an illustration. Observe that if s and t are adjacent the
move operator does not change the tree.
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Fig. 2. Example for move(s, t)

We will now show that for all branch decompositions B,B′ there is a series of
moves that transforms B to B′. We define a linear branch decomposition as a
branch decomposition whose non-leaf nodes induce a path. We need the following
lemma:

Lemma 2. Let P denote a linear branch decomposition. Then every branch de-
composition B can be transformed to P by a series of move operations.

Proof. We prove this by construction. Let di ∈ E(P), i = 1, . . . , m denote the
edges of P connected to the leaves of P , and let bi be the edges incident to the
leaves of B such that bi and di both connect to the leaf corresponding to the same
edge in G. Then a series of moves move(b2, b1), move(b3, b2), . . . , move(bm, bm−1)
will transform B to P . 
�

Theorem 1. The search space of the move operator is complete: for all branch
decompositions B,B′ there is a series of moves that transforms B to B′.
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Proof. We first observe that the move operator is invertible, as we can undo
move(s, t) by applying move(s′, f ′

1). Together with Lemma 2 this implies that
we can transform B to any linear branch decomposition P , and P to B′. 
�

After performing some move(s, t) we need to update the middle sets of the
branch decomposition. We use the same notation as before, see Figure 2. For
ease of notation we notate mid(e′1) = mid(ek+1) = ∅ for the non-existing edges
e′1 and ek+1. From the definition of the middle sets it immediately follows that
mid(s′) = mid(s), mid(t′) = mid(t) and mid(f ′

i) = mid(fi). Hence the only
middle sets that need to be updated are mid(e′i). Let Ai = mid(e′i) \ mid(ei)
denote the vertices added to mid(ei), and Bi = mid(ei) \ mid(e′i) denote the
removed vertices. Note that Ai, Bi ⊆ mid(s). We have the following:

Lemma 3. For all Ai, Aj with 1 ≤ i < j ≤ k + 1, it holds that Ai ⊆ Aj .

Proof. Suppose for a contradiction that Ai �⊆ Aj for some i < j. Let v be a
vertex in Ai that is not in Aj . Then v ∈ mid(e′i) and v /∈ mid(e′j). As v ∈
mid(s) = mid(s′) this means that the edges with middle sets containing v are
not connected, contradicting Lemma 1. 
�

Lemma 4. For all Bi, Bj with 1 ≤ i < j ≤ k + 1, it holds that Bj ⊆ Bi.

Proof. We will show that v ∈ Bj implies that v ∈ Bi, from which the lemma
directly follows. If v ∈ Bj obviously v ∈ mid(ej), and also v ∈ mid(s) = mid(s′).
Lemma 1 directly gives v ∈ mid(ei) for all i < j. Because v /∈ mid(e′j) then the
same theorem also implies that v /∈ mid(e′i) for all i < j, and hence v ∈ Bi,
proving the lemma. 
�

These lemmata show that the set of vertices we remove from the middle sets on
the path from s to t only shrinks, while the set of vertices added only increases.
We directly obtain the main theorem of this section:

Theorem 2. For all edges ei, ej with 1 ≤ i < j ≤ k+1, it holds that |mid(ei)|−
|mid(e′i)| ≥ |mid(ej)| − |mid(e′j)|.

3.1 Search Strategy

We will now show how the results from the previous section can be applied to
our local search strategy. Note that a branch decomposition has m leaves, m−2
internal nodes and 2m− 3 edges. A naive search strategy would try all O(m2)
possible edges s and t to find an improvement. We will show how the results
from the previous section can be used to improve this.

Suppose we want to move edge s to the best possible location in the tree.
We perform a depth first search on the tree edges, starting at s. Along the way
we construct At and Bt for all visited edges t. This can be done very efficiently
because of Lemmata 3 and 4. As soon as |Bt| < |At| for some visited edge t we
prune the search tree at t by Theorem 2.
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3.2 Fitness Function

A fitness function quantifies the optimality of a solution, which ideally correlates
closely with the algorithm’s goal, and yet may be computed quickly. For a branch
decomposition B the first idea would be to use branchwidth, but this would create
large parts of the search space with the same fitness. Instead, we take the width
of all edges into account as follows. Let Ei = {e ∈ E(B) : |mid(e) = i|} contain
all edges of B of width i. The fitness of B is defined as (|En|, |En−1|, . . . , |E1|),
using the lexicographical ordering for comparison (a lower value is better).

We can use a different fitness function if the branch decomposition will be
used to solve some specific problem modelled on a graph:

Fitness =
n∑

i=1

|Ei|f(i)

Usually f(i) should correspond to the amount of work necessary to process
middle sets of size i in the dynamic programming step. For most problems
f(i) ∼ ci, as this corresponds to the maximum size of the tables during dynamic
programming.

4 Implementation

Let G be a graph with n vertices and m edges. Our local search is started with a
linear branch decomposition B0 (remember that the leaves of B0 induce a path)
with the edges of G randomly assigned to its leaves. Starting with this (very
poor) initial solution we perform moves that lead us to neighbour solutions.

For each edge in the branch decomposition, we keep track of the nodes present
on both sides. We use a Boolean array to store on which side a node in the branch
decomposition is located. Furthermore we also keep track of the middle sets by
using two bits for each vertex of the original graph storing for each side if the
vertex is present at that side; for faster processing, we store these in an array
of bytes. When a move is performed, this allows us to update the middle set of
the edges in O(k ∗ n) time, where k is the length of the path. Notice that there
is room for improvement by using better data structures (e.g. sparse vectors).

Iterated Hill Climbing. The main part of the algorithm consists of a straightfor-
ward hill climbing approach. The function findBestTarget finds the target edge
t that optimises the fitness when moving edge s. If no such edge exists it returns
nil. We use the following algorithm:

i = 0; f0 = fitness(B0);
repeat

i++; Bi ⇐ Bi−1; fi = fi−1;
for all s ∈ E(Bi) do

t⇐findBestTarget(Bi, s);
if t �= nil then move(s, t); fi = fitness(Bi);

end for
until fi = fi−1;
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This algorithm terminates in a local optimum, which might not be the global
optimum. To escape from the attraction of the local optimum, we can perform
a number of random moves and start hill climbing again. We have carried out a
few experiments, and it appears that in most cases, just two or three such moves
are sufficient to obtain the desired effect. A further experimental study seems
interesting.

5 Results

All experiments are run on a Intel(R) Core(TM)2 Duo CPU P8400 @ 2.26 GHz
running a 32bit version of Windows XP. The algorithms are single threaded and
implemented in the C#.Net language. We noticed that C#.Net is not the most
efficient language, however our aim was not to set fast benchmark results, but
to show that local search techniques are a suitable approach for finding branch
decompositions on general graphs.

Table 1. Results for planar graphs

Graph Vertices Edges β(G) Result Heuristic Time (s)
a280 280 788 13 13 13 2138
bier127 127 368 14 14 14 177
ch130 130 377 10 10 10 142
ch150 150 432 12 12 12 266
d198 198 571 12 12 12 678
eil51 51 140 8 8 8 8
eil76 76 215 10 10 10 24
eil101 101 290 10 10/11 10 69
kroA100 100 285 9 9 9 64
kroA150 150 432 11 11 11 253
kroA200 200 586 11 11 11 707
kroB100 100 284 9 9 9 64
kroB150 150 436 10 10 10 227
kroB200 200 580 12 12 12 684
kroC100 100 286 9 9 9 73
kroE100 100 283 8 8 8 65
lin105 105 292 8 8/9 8 59
pr107 107 283 6 6/7 6 64
pr124 124 318 8 8 8 85
pr136 136 377 10 10 10 157
pr144 144 393 9 9 9 183
pr152 152 428 8 8 8 251
pr226 226 586 7 7 7 680
rat99 99 279 9 9 9 58
rd100 100 286 9 9 10 73
rd400 400 1183 17 17 18 9508
tsp225 225 622 12 12 12 862
u159 159 431 10 10/11 10 236
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Table 2. Results for non-planar graphs

Graph Vertices Edges τ (G) Result Heuristic Time (s)
alarm 37 65 4 4 5* 1
barley 48 126 7 6/7 7* 4
bcs01 48 176 13 12 12 17
bcs03 56 132 3 3 3 6
bcs04 132 1758 28-34 30 32 67644
bcs05 153 1135 20 18/19 20 10173
mildew 35 80 4 4 5* 1
myciel3 12 20 5 5 5* 1
myciel4 24 71 10 9/10 11* 1
myciel5 47 236 19 19/20 21* 72
myciel6 96 755 35 36/38 45* 4492
oesoca+ 67 208 11 9 11* 23
oow-bas 27 54 4 4 5* 1
oow-solo 40 87 6 5 7* 2
oow-trad 33 72 6 5 6* 1
petersen 10 15 4 4 5* 1
queen5 5 25 320 18 16/17 18* 89
queen6 6 36 580 25 24 26* 898
ship-ship 50 114 8 7 9* 5
vsd-hugin 38 62 4 4 5* 1
water 32 123 9 9 9* 5
wilson-hugin 21 27 3 3 3* 1

We have applied our local search to a number of planar graphs for which
the branchwidth can be found in [20,21]. The averaged results can be found in
Table 1. In this table β(G) is the branchwidth of the graph, Heuristic is the
branchwidth obtained by heuristics of Hicks, and Result contains the branch-
width found by our local search. The first number is the result obtained by
iterative hill climbing (performing random moves when stuck), and the sec-
ond number is the result obtained without random moves. If only one result
is mentioned then both methods yielded the same result. Time gives the av-
erage amount of time spent before reaching a local optimum. Our algorithm
was able to find an optimal branch decomposition for all tested planar graphs.
The heuristics of Hicks did not find an optimal branch decomposition for graphs
rd100 and rd400. Most of our graphs can be obtained from the TreewidthLIB
website: http://people.cs.uu.nl/hansb/treewidthlib.

We also tested our algorithm on a number of non-planar graphs. We used
graphs for which the treewidth is known from [18,2]. This implies that we have
a lower and upper bound for the branchwidth: a treewidth of τ ensures that
the branchwidth is between ! 23τ" and τ . We also used the non-planar fill-in
graphs from Hicks [20]. Table 2 gives the results of our algorithm. We only have
the results of Hicks’ heuristics for bcs01, bcs03, bcs04 and bcs05. For all other
graphs we used our own implementation of the eigenvector heuristic of Cook and
Seymour [12,13], those results are marked with a (∗). If the resulting branchwidth
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is larger than the treewidth τ(G) we know that the result is not optimal. For
only one non-planar graph (myciel6) this is observed.

For all cases our algorithm performs at least as well as the heuristics used for
comparison. Also note that not only the maximum width is minimised, but also
the width of all other edges in the branch decomposition. This implies that the
result is very suitable for use in a dynamic programming approach.

Scalability. The runtime of our algorithm highly depends on the number of
edges in the input graph. To analyse the scalability of our algorithm, we created
random graphs with 50 nodes and the number of edges varying between 50 and
1000, inclusive; each edge chosen uniformly over all not yet chosen pairs. Figure 3
illustrates the runtime of our implementation on these graphs. The drop at the
end can be explained by the fact that a graph with 50 nodes and 1000 edges
is almost a complete graph. The memory usage of our data structure is in the
order O(m2).
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Fig. 3. Scalability of our algorithm

Note that our local search algorithm can be parallelised in a straightforward
matter. One possible way to do this is to have several instances of findBestTarget
running at the same time, and distribute the edges of the branch decomposition.
As soon as an improvement is found the work of all other threads is discarded,
and then process is repeated.

6 Conclusions and Future Work

We presented the first local search based algorithm for finding branch decompo-
sitions on general graphs. Our heuristic found an optimal branch decomposition
for each planar graph used in our experiments. Moreover the heuristic also found
branch decompositions of width lower than or equal to the treewidth for non-
planar graphs with only one exception. Notice that the branchwidth of these
graphs is still unknown and we therefore do not know whether these results are
optimal or not. Furthermore our heuristic can be used to construct branch de-
compositions that are optimised for dynamic programming to solve a specific
NP-hard problem.
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In this paper we have shown that local search based techniques are a promising
approach to deal with the construction of branch decompositions. The behaviour
of our algorithm indicates that improvements can be easily found for branch
decompositions that are not in a local optimum. Moreover most local optima are
near optimal (i.e. their width is close to the branchwidth). Finally our algorithm
is capable of escaping the attraction of a local optimum, allowing iterated local
search.

Possible improvements to the algorithm can consist of using advanced local
search techniques, like simulated annealing or tabu search, or more refined selec-
tion criteria for which edges are moved. Another improvement could be to start
with a better initial solution, as we currently start with a random initial solu-
tion, which hence can be expected to be of poor quality. An alternative would
be to start with a solution generated by a heuristic, like one generated by the
eigenvector method of Cook and Seymour [12,13].
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Abstract. This paper presents a method to generate characterizing def-
initions for finite and parameterized structures. In particular, the method
is applied to generate a conjecture for the properties characterizing a spe-
cial class of graphs, called superpositional graphs.

The method can be used if the exact set of properties that describes
a given finite structure cannot be found by pure thought but we can find
the number of objects for small values of the parameter.

The next step is to codify the objects as assignments to a set of propo-
sitional variables, and the candidate properties as propositional formulae,
in such a way that an object satisfies the property if and only if the as-
signment satisfies the formula. The main idea of this method is to find
models that do not fit with the current approximation of the description
of the structure and stepwise refine the logical description.

Finally, we “translate” the logical description into a mathematical one
and prove it.

Keywords: superpositional graph, integer sequence, family of proposi-
tional formulae, #SAT .

1 Introduction

The development of the method presented in this paper was motivated by the
fact that the description of a special class of graphs, superpositional graphs with
classical properties could not be found. The amount of properties found turned
out to be incomplete.

Binary Decision Diagrams are graph representation of Boolean functions.
They were first introduced by C. Lee [3] as a data structure for representing
Boolean functions and further popularized by R. Bryant [1].

A good data structure is key to efficient Boolean function manipulation. In
1976, R. Ubar proposed in [10] a new data structure called Structurally Syn-
thesized Binary Decision Diagrams (SSBDDs). However, for the first time they
were introduced as Structural Alternative Graphs. The algorithms based on
SSBDDs are used in the programs of digital diagnostics; SSBDDs provide an
efficient opportunity for modeling digital systems for simulation purposes. One
of the fastest fault simulator in the world is based on SSBDDs [11].

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 455–466, 2011.
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SSBDDs are based on Superpositional Graphs [6], akin to the binary decision
diagrams that are based on binary graphs. Many properties of SSBDD depend on
the properties of superpositional graphs [2]. An important problem for many ap-
plications of simulation purposes is: given a binary graph, is it a superpositional
graph?

The purpose is to develop necessary and sufficient properties for describing
superpositional graphs without using the superposition. The necessary decision
problem for decomposing superpositional graphs – whether a binary graph is
a superpositional graph – would be easy to solve if we knew the sequence of
superpositions that was used for generating the graph. However, we do not have
this sequence.

To find similar structures we tried to count n-node superpositional graphs and
found from [7] that the resulting sequence coincides with the beginning of the
sequence of large Schröder numbers. Unfortunately, this observation is not very
helpful – we could not translate any of the problems, described by large Schröder
numbers, into the theory of superpositional graphs. We can use only the integer
sequence as a starting point of our search for a solution to the problem.

Our next goal is to describe a characteristic set of properties of the class
SPG, knowing that this set must generate the detected integer sequence. One
possibility to do it would be by means of propositional formulae [8]. We try
to find a family of propositional formulae Fn, which depends on parameter n
so that #SAT (Fn) is the number of n-node superpositional graphs. Choosing
the propositional variables so that every assignment corresponds to some binary
graph, we can interprete the formulae as the properties of the binary graphs.
Using a special translator and a counter of satisfying assignments [5] we find the
successive approximations until the corresponding integer sequence coincides
with the target sequence.

2 Superpositional Graphs. Definitions and Properties

Definition 1. A binary graph is an oriented acyclic connected graph with root
and two terminals (sinks) – 0 and 1. Every internal node v has two sucessors:
high(v) and low(v). Therefore, an edge a→ b is a 0-edge (1-edge) if low(a) = b
(high(a) = b).

Definition 2. Let G and E be two binary graphs. A superposition of E into G
instead of internal node v (denoted by Gv←E) is a graph, which we obtain by
deleting v from G and redirecting all edges, pointing to v, to the root of E, all
edges of E, pointing to the terminal node 1, to the node high(v) and all edges,
pointing to the terminal node 0, to the node low(v).

Let A, C, and D be binary graphs, depicted in Fig. 1.

Definition 3. A class of superpositional graphs (SPG) is defined inductively
as follows:

1◦ graph A ∈ SPG.
2◦ if G ∈ SPG and v ∈ V (G)\{0, 1}, then Gv←C ∈ SPG and Gv←D ∈ SPG.
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Fig. 1. Binary graphs A, C, and D.

Hereafter, if we say that G ∈ SPG has n nodes, then the terminal nodes 0 and 1
are not included in this count. In the figures we direct 1-edges from left to right
and 0-edges from up to down, without labels 1 and 0. The next theorem shows
that the class of superpositional graphs is closed under superposition.

Theorem 1 ([6]). If G, H ∈ SPG and v ∈ V (G) \ {0, 1}, then Gv←H ∈ SPG.

An example in Fig. 2 characterizes the process of finding the graph Gv←E .

a f

e

1

0

v

b

c

d 1

0

a b

c

d f

e

1

0

G

E

Fig. 2. The superposition v ← E in the graph G.

In the next theorem we list common properties of the class SPG:

Theorem 2 ([6]). Let G ∈ SPG. Then:

1. G has a unique root;
2. G is planar;
3. G is acyclic;
4. there exists a directed path through all intermediate nodes and this Hamilto-

nian path is unique (we say that G is uniquely traceable);
5. G is homogenous (only one type of edges enters into every node v ∈ V (G)).
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Since we could not find any more properties, we formulate a hypothesis:

Hypothesis 1. A binary graph is a superpositional graph if and only if it is
planar homogenous traceable graph.

3 Structure of the Class SPG

All attempts to prove the hypothesis failed. Furthermore, there exists a 4-node
binary graph, which has all these properties but is not a superpositional graph.
On the graph in Fig. 3 a 0-edge starting from the node v should enter into the
node z. This graph becomes planar if we draw the edge v → 0 in a way that it
does not cross edges w → z and z → 1. Nevertheless we cannot find a sequence

u v w

z

a d

b

c

1

0

1

0

Fig. 3. The graphs satisfying the properties of the Theorem 2, but not being SPGs.

of elementary superpositions generating it. Hence, some unlisted properties are
still missing.

To find similar structures, we try to count n-node superpositional graphs. By
counting manually we find that the number of 1-node superpositional graphs is
1, 2-node 2, 3-node 6, 4-node 22 and 5-node 90. The sequence 1, 2, 6, 22, 90, . . .
is long enough to check whether there exists a structure that describes the same
sequence. Sequences like this and references to similar structures can be found in
The Encyclopedia of Integer Sequences [7]. It turns out that the found sequence
matches with large Schröder numbers (Sequence A006318 in [7]).

This observation is not very helpful – we could not translate any of the prob-
lems, described by large Schröder numbers, into the properties of binary graphs.
We can use only the following integer sequence as a starting point of our search
for a solution to the problem:

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, . . . (1)

4 Logical Description of the Class SPG

Our next goal is to find such a family of propositional formulae Fn, which would
depend on parameter n (the number of nodes in superpositional graph), and,
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when valuating integers 1, 2, 3, . . . to the parameter n, would produce the Se-
quence (1) as the answer to the counting problem #SAT (Fn).

Let us suppose F∗
n is the required propositional formula. When searching for

the formula and getting some approximation Fn for it, it might happen that

#SAT (F∗
n) = #SAT (Fn)

holds if n < k, but does not hold if n = k. There are two possibilities:

– #SAT (F∗
k ) < #SAT (Fk), the described set of properties is undercon-

strained. Try to find some extra property or constrain some of them;
– #SAT (F∗

k ) > #SAT (Fk), the set of properties found is overconstrained.
Try to weaken some property.

In the first case, there exists an assignment α, where Fk(α) = true, but the
assignment α does not represent any superpositional graph. In the second case,
there exists the assignment β that represents a certain superpositional graph, but
Fk(β) = false. An analysis of the received problematical assignments (graphs)
provides us with information for improving the properties. The goal is to refine
the logical description until the received integer sequence coincides with the
Sequence (1). The last step is to prove by traditonal graph-theoretical methods
that the set of properties found describes exactly the class SPG.

A bottleneck of this method could be the fact that we must calculate man-
ually or write a separate program for each approximation, which constructs a
propositional formula for every value to the family parameter. The problem will
be solved by the translator for metaformulae [5], which translates the description
of the family of propositional formulae into propositional formula corresponding
to the value of the parameter.

4.1 Presentation of Binary Graph with Propositional Variables

According to Theorem 2, there exists a unique Hamiltonian path in G ∈ SPG,
which gives a canonical enumeration of the nodes of G. Hereafter, let the Hamil-
tonian path of an n-node superpositional graph G consist of nodes v1, . . . , vn;
and let vn+1 represent both the terminal 0 and the terminal 1. Such an ap-
proach is not restrictive (the 0-edges (1-edges) can not point to the node 1 (0))
but enables a simpler description of properties.

The meaning of the propositional variables xi,j and yi,j is, respectively, the
existence of 0-edge and 1-edge from node vi to node vj :

xi,j =

{
1, if there exists a 0-edge vi → vj ;
0, otherwise;

yi,j =

{
1, if there exists a 1-edge vi → vj ;
0, otherwise.
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Since superpositional graphs are acyclic, then in case there exists an edge from
node vi to node vj , certainly i < j. Therefore, propositional formulae for the
class SPG are defined on the set

X = {xi,j , yi,j : 1 ≤ i < j ≤ n + 1}

and the required formula F∗
n(X) should satisfy the condition

F∗
n(α) =

{
1, if the graph represented by α is a superpositional graph;
0, otherwise

for every assignment α to X .

4.2 Descriptive Properties of the Class SPG as Propositional
Formulae

The properties of the class SPG described in Sect. 2 now be expressed by means
of propositional formulae. In the descriptions, we use the operators and, or, xor,
→ (implication), ¬ (negation) and exactlyone (allowed operators and rules can
be found in [5]). In each successive approximation, we add a new property or
remove any excessive ones.

Approximation I: Binary graphs with unique Hamiltonian path. The
fact that the graph is acyclic is considered already when selecting the variables.

There is exactly one edges (0-edge or 1-edge) between the successive nodes of
Hamiltonian path (except between the last two nodes):

P1 ≡
∧

1≤i≤n−1

xor(xi,i+1 , yi,i+1) .

Each node (except the two last) has exactly one exiting 0-edge:

P2 ≡
∧

1≤i≤n

exactlyone(xi,j : i < j ≤ n + 1) .

Each node (except the two last) has exactly one exiting 1-edge:

P3 ≡
∧

1≤i≤n

exactlyone(yi,j : i < j ≤ n + 1) .

Considering that the previous properties must hold for every superpositional
graph, an approximation of F∗

n for the class SPG is

F ≡ P1&P2&P3 .

When applying the translator of propositional formulae to F and hereafter the
counter of satisfying assignments to the result, we get the Sequence A000165:

1, 2, 8, 48, 384, 3840, 46080, . . .
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With the use of the translator and the counter, we can be convinced that the
corrresponding members of sequences of formulae P1&P2, P2&P3 and P1&P3
are larger than in case of F . Hence, we cannot skip any of these properties.

Approximation II: Adding homogeneity. Every SPG is homogenous
(Theorem 2), i.e., 0-edges and 1-edges cannot enter the same internal node at
the same time. As there exists also the Hamiltonian path, we can equally say
that if a 0-edge vi → vj exists, then the edge vj−1 → vj is a 0-edge:

P4 ≡
∧

1≤i≤(n−2)

∧
(i+2)≤j≤n

(xi,j → xj−1,j) .

Similarly, if there exists a 1-edge vi → vj , then the edge vj−1 → vj is an 1-edge:

P5 ≡
∧

1≤i≤(n−2)

∧
(i+2)≤j≤n

(yi,j → yj−1,j) .

Now the approximation of F∗
n for the class SPG is

F ≡ P1&P2&P3&P4&P5

and the corresponding sequence for it is A000142:

1, 2, 6, 24, 120, 720, . . .

However, while the number of 4-node superpositional graphs must be 22, it is
obvious that in the set of received assignments there are 2 assignments that
do not represent any superpositional graph. Therefore, there must exist a yet
undeclared property that appears in case n ≥ 4.

Approximation III: Adding the strong planarity. To better visualize the
properties of superpositional graphs, hereafter, we draw them in such way that
their Hamiltonian paths are on straight lines. Analyzing the 24 assignments we
received in case n = 4, we see that 2 of them do not represent any superpositional
graph (Fig. 4). We guess that, in either case, the problem is caused by crossing

u v w z a db c1 01

0

0 0 1

1

11
1

0

1

0

1
0 0

1

00

Fig. 4. Forbidden situations in case F ≡ P1&P2&P3&P4&P5.

same type of edges. We raise a hypothesis that edges of the same type can not
cross and add the corresponding properties to the approximation. Let 1 ≤ k <
l < p < r ≤ n + 1. According to the hypothesis, there can not be a situation
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where there the 0-edges vk → vp and vl → vr exist at the same time, i.e., 0-edges
do not cross (Fig. 5):

P6 ≡
∧

1≤k<l<p<r≤n+1

(xk,p&xl,r) .

Herewith dually, 1-edges do not cross (Fig. 5):

P7 ≡
∧

1≤k<l<p<r≤n+1

(yk,p&yl,r) .

vv . . .. . . . . .v v
0 0

1 1

 k  l  p  r vv . . .. . . . . .v v k  l  p  r

Fig. 5. Situations forbidden by the properties P6 and P7.

Definition 4. We say that edges vk → vp and vl → vr are crossing edges if
k < l < p < r.

Definition 5. We say that a binary traceable graph is strongly planar if it has
no crossing 0-edges and no crossing 1-edges.

Obviously, the properties P6 and P7 express the strong planarity. In [6] we
see that if a binary graph is strongly planar, it is also planar. The opposite is
generally not true. Now for the formula

F ≡ P1&P2&P3&P4&P5&P6&P7

we get the Sequence A001181:

1, 2, 6, 22, 92, 422, . . .

We see that the situation is better, but our description is nevertheless incorrect
(the accurate sequence is 1, 2, 6, 22, 90, 394, . . .). One could suppose that either
some problem connected with the described properties is more general than the
one we described or some yet unknown property is missing.

Approximation IV: Removing the homogeneity. By using the translator
and the counter, we can see that one can omit the properties P4 and P5 from the
set of properties. Consequently, we can propose a hypothesis that the formula

P1&P2&P3&P6&P7 −→ P4&P5

is a tautology and it can be proved (Theorem 7 in [6]):

Theorem 3. If a binary traceable graph is strongly planar, then it is also ho-
mogenous.
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Fig. 6. A forbidden situation in case F ≡ P1&P2&P3&P6&P7.
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Fig. 7. Situation forbidden by the property P8.

Hence, the new approximation for the formula F∗
n is

F ≡ P1&P2&P3&P6&P7 .

Approximation V: Adding the cofinality. We analyze the two assignments
emerging from the last approximation in case n = 5. One of the found problem-
atic graphs is depicted in Fig. 6. The second problematic graph is obviously dual
to the first one, i.e., it can be found from the other by exchanging 0- and 1-edges.
We suppose that, due to existence of the 0-edge a → d, the 1-edges b → 1 and
c→ e should point to the same node, i.e., the situation in Fig. 7 is forbidden:

P8 ≡
∧

1≤k<s<l<p<r<t≤n+1

(xk,p&yl,r&ys,t) .

Analogically: all 0-edges that cross the same 1-edge must point to the same node:

P9 ≡
∧

1≤k<s<l<p<r<t≤n+1

(yk,p&xl,r&xs,t) .

Definition 6. We say that a binary traceable graph is 1-cofinal (0-cofinal) if all
1-edges (0-edges), starting between the endpoints of some 0-edge (1-edge) and
crossing it, are entering into the same node.

Definition 7. We say that a binary traceable graph is cofinal if it is 1-cofinal
and 0-cofinal.

After adding the properties expressing cofinality P8 and P9 to the approximation
and running the counter, we get the Sequence (1).

Using the translator and the counter, we establish that none cane be omitted
from the set of properties {P1,P2,P3,P6,P7,P8,P9}. We checked that in case
n = 1 . . . 9, this set of properties has exactly the same number of satisfying
assignments as is the number of n-noded superpositional graphs. Hence, the
class SPG can probably be described by the formula
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F ≡ P1&P2&P3&P6&P7&P8&P9

or written directly, not using composition:

F ≡
∧

1≤i≤n−1

xor(xi,i+1 , yi,i+1)

&
∧

1≤i≤n

exactlyone(xi,j : i < j ≤ n + 1)

&
∧

1≤i≤n

exactlyone(yi,j : i < j ≤ n + 1)

&
∧

1≤k<l<p<r≤n+1

(xk,p&xl,r)

&
∧

1≤k<l<p<r≤n+1

(yk,p&yl,r)

&
∧

1≤k<s<l<p<r<t≤n+1

(xk,p&yl,r&ys,t)

&
∧

1≤k<s<l<p<r<t≤n+1

(yk,p&xl,r&xs,t) .

It is clear that if the description is not correct, then an inaccuracy or even a
missing property can appear only in case n ≥ 10. Therefore, we can raise the
hypothesis:

Hypothesis 2. A binary graph is a superpositional graph if and only if it is a
strongly planar cofinal traceable graph.

We proved this hypothesis in [6] (Theorem 9).

5 Discussion

In the process of approximating the logical description we got some integer
sequences, characterizing certain subclasses of binary graphs. All these sequences
are present in The Encyclopedia of Integer Sequences. This indicates that these
subclasses of binary graphs may have some connections with mathemathical
structures described by these sequences. Therefore it might be interesting to
find bijections between

– double-downgrading permutations and traceable binary graphs (A000165);
– permutations and homogeneous binary graphs (A000142);
– Baxter permutations and strongly planar binary graphs (A001181);
– separable permutations and superpositional graphs (A006318).

We have to admit that the real process of finding the hypothesis was not so
smooth as described above. The SSBDD-community used to draw diagrams
without terminal nodes. The reason is that all edges, pointing to the terminal
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nodes can be restored unambiguously due to homogeneity of the superpositional
graph. In our first attempt [4] (see Sect. 4.2) we followed this tradition and
defined propositional variables only for edges between internal nodes.

Similarly to the previous description, let the Hamiltonian path of an n-node
SPG G consists of nodes v1, . . . , vn. The meaning of the propositional variables
xi,j and yi,j is, respectively, the existence of 0-edge and 1-edge from node vi to
node vj . After rather sophisticated series of iterations we received a formula,
which described the Sequence (1):

P ≡
∧

1≤i≤n−1

xor(xi,i+1 , yi,i+1)

&
∧

1≤i≤n−1

atmostone(xi,j : i < j ≤ n)

&
∧

1≤i≤n−1

atmostone(yi,j : i < j ≤ n)

&
∧

1≤i≤(n−2)

∧
(i+2)≤j≤n

(xi,j → xj−1,j)

&
∧

1≤i≤(n−2)

∧
(i+2)≤j≤n

(yi,j → yj−1,j)

&
∧

1≤k<l<p<r≤n

((xk,p&yl,r)→ (
∧

k≤s≤(l−1)

(
∨

(s+1)≤t≤r

ys,t)))

&
∧

1≤k<l<p<r≤n

((yk,p&xl,r)→ (
∧

k≤s≤(l−1)

(
∨

(s+1)≤t≤r

xs,t)))

&
∧

1≤i<j≤n−1

(yi,j+1 → (
∧

i≤k≤j−1

(xk,k+1 → (
∨

k+1≤p≤j+1

yk,p))))

&
∧

1≤i<j≤n−1

(xi,j+1 → (
∧

i≤k≤j−1

(yk,k+1 → (
∨

k+1≤p≤j+1

xk,p)))) .

Detailed description of the derivation of the formula and formulation of prop-
erties can be found in [4] (see Sect 4.2). It was impossible to define “nice”
graph-theoretic properties, corresponding to the parts of the formula, due to the
complexity of the formula. Hence, inevitably, the question arises whether our
chosen set of propositional variables was suitable.

It appeared that the reason of the complexity was the indirect description of
the properties of the edges, pointing to the terminal nodes. By enhancing the set
of variables (Sect 4.1 in this paper) we got the opportunity to describe explicitly
these properties.
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Abstract. For a finite, simple, undirected graph G and an integer d ≥ 1,
a mindeg-d subgraph is a subgraph of G of minimum degree at least d.
The d-girth of G, denoted gd(G), is the minimum size of a mindeg-d
subgraph of G. It is a natural generalization of the usual girth, which
coincides with the 2-girth. The notion of d-girth was proposed by Erdős
et al. [13, 14] and Bollobás and Brightwell [7] over 20 years ago, and
studied from a purely combinatorial point of view. Since then, no new
insights have appeared in the literature. Recently, first algorithmic stud-
ies of the problem have been carried out [2,4]. The current article further
explores the complexity of finding a small mindeg-d subgraph of a given
graph (that is, approximating its d-girth), by providing new hardness
results and the first approximation algorithms in general graphs, as well
as analyzing the case where G is planar.

Keywords: generalized girth, minimum degree, approximation algo-
rithm, hardness of approximation, randomized algorithm, planar graph.

1 Introduction

Degree-constrained subgraph problems have attracted considerable attention in
the last decades, resulting in a large body of literature (see e.g. [15,1,2,14,17,4,
13, 8, 23, 21]). Beyond the theoretical importance of these problems, the reasons
for such intensive study are mainly rooted in their wide applicability in the areas
of interconnection networks and routing algorithms, among others. This article
studies the computational complexity of one such problem, presented next.

For a finite, simple, undirected graph G and an integer d ≥ 1, a mindeg-d
subgraph is a subgraph of G of minimum degree at least d. The d-girth of G,
denoted gd(G), is the minimum size of a mindeg-d subgraph of G. The notion
of d-girth was proposed and studied by Erdős et al. [13, 14] and Bollobás and
Brightwell [7] (using different terminology). Combinatorial bounds on the d-girth
of a graph can also be found in [18,6]. For d = 2, g2(G) coincides with the girth
of G, hence the d-girth can be seen as a natural generalization of the usual
girth. Our interest is in the corresponding optimization problem of finding a
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minimum-size mindeg-d subgraph of a given graph (namely, one of size gd(G)).
For d = 1, this problem is trivial, as any edge constitutes an optimal solution.
For d = 2, the problem corresponds exactly to finding the shortest cycle in G (as
every subgraph of minimum degree at least 2 contains a cycle), and thus can be
solved in polynomial time. For a fixed integer d ≥ 1, our optimization problem
is formally defined as follows.

The d-girth Problem
Input: A simple undirected graph G = (V, E).
Output: A minimum-size subset S ⊆ V such that G[S] has minimum degree at
least d.

Note that OPTd-girth(G) = gd(G). Until very recently, the computational com-
plexity of the d-girth problem had not been studied in the literature. It has been
proved in [2] that for any fixed d ≥ 3, the d-girth of a graph cannot be approx-
imated within any constant factor, unless P = NP. Concerning approximation
algorithms, the only positive result is an O(n/ log n)-approximation algorithm
for minor-free graphs [2]; approximation algorithms for the d-girth problem
in general graphs were missing in the literature. On the other hand, the prob-
lem has been recently studied in [4] from the parameterized complexity point
of view [12], taking as the parameter the number of vertices in a solution. It
was shown that the problem is W [1]-hard in general graphs, and admits FPT

algorithms in minor-free families of graphs [4].
It is worth mentioning that the d-girth problem is closely related to the

traffic grooming problem, which is fundamental in modern optical networks.
Loosely speaking, an important particular case of the traffic grooming problem
can be stated, in graph-theoretical terms, as partitioning the edges of a given
graph into subgraphs with bounded number of edges, while minimizing the total
number of vertices in the partition. Traffic grooming has been proved to be a
computationally hard problem [3,9], and good approximation algorithms for the
d-girth problem would directly translate into efficient approximation algorithms
for traffic grooming. See [4] for more details about this relation.

Our results. Section 2 focuses on hardness results. The hardness results of [2]
are substantially improved by proving that for any d ≥ 3 and any ε > 0, there is
no polynomial-time algorithm for the d-girth problem with approximation ra-
tio 2O(log1−ε n) unless NP ⊆ DTIME

(
2O(log1/ε n)

)
. These hardness results hold

even in graphs with degrees d or d+1. Section 3 provides the first approximation
algorithms for the d-girth problem in general graphs. We first present a random-
ized algorithm with approximation ratio n/ logn in Section 3.1. We then present
another randomized algorithm with better performance in high-degree graphs
(Section 3.2), and a deterministic algorithm for low-degree graphs (Section 3.3).
In Section 4 we turn to the case where the input graph is planar. We prove that
the d-girth problem is NP-hard in planar graphs for d ∈ {3, 4, 5} (Section 4.1),
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present a deterministic approximation algorithm (Section 4.2), and show that the
problem can be solved exactly in subexponential time (Section 4.3). A concluding
discussion appears in Section 5.

We would like to point out that in view of our results, the d-girth problem
appears to be rather difficult. Although the approximation ratios obtained are
in some sense weak, the performance of our algorithms is not far from the best
approximation algorithms for other very hard graph optimization problems like
Maximum Clique, Chromatic Number, or Longest Path. Our work will
hopefully trigger further research on the d-girth problem.

Notation. All the graphs considered in this paper are finite, simple, and undi-
rected. We use standard graph terminology, see for instance [10]. Unless stated
otherwise, we denote the number of vertices of the input graph G by n. We use
degG(v), δ(G), and Δ(G) to denote the degree of a vertex v in G, the minimum
degree of G, and the maximum degree of G, respectively. We use H ⊆ G to de-
note the fact that H is a subgraph of G. Given a subset S ⊆ V (G), G[S] denotes
the subgraph of G induced by the vertices in S. For convenience, we use ‘log’ to
denote the natural logarithm.

2 Hardness Results for General Graphs

It is proved in [2] that for any d ≥ 3, the d-girth problem is not in Apx unless
P = NP. Theorem 2 given in this section improves the hardness results of [2],
relying on a slightly stronger complexity assumption. The ideas are inspired
mainly by [17], and the proof builds upon the reductions and the constructions
presented in [2]. Before proceeding to the improved hardness in Section 2.2, we
first describe in Section 2.1 the families of graphs constructed in [2].

2.1 Preliminaries: Some Families of Graphs

For the sake of intuition, it is helpful throughout this section to think about
the case d = 3. Given a fixed integer d ≥ 3, we proceed to construct a class of
graphs Gd starting from the class of d-regular graphs whose number of edges is
d · (d − 1)	 for some positive integer �. Given such a d-regular graph H , with
|V (H)| = n, we construct a graph G = f(H) ∈ Gd as follows. By assumption,
we have that |E(H)| = nd/2 = d · (d − 1)	 for some integer �. Let T be the
complete d-ary rooted tree (that is, internal vertices have degree d) with root r
and height �+1, which has d · (d−1)	 leaves and 1+d ·

(
(d− 1)	+1 − 1

)
/(d−2)

vertices overall. We identify the leaves of T with the elements in E(H), and
denote this set – slightly abusing notation – by E (that is, E ⊆ V (T )). We add
another copy of E, called F , and d−1 edge-disjoint perfect matchings on E∪F ,
inducing a bipartite graph with partition classes E and F . We also identify the
vertices of F with the elements in E(H). Now we add a set A of |V (H)| new
vertices identified with the elements in V (H), and join them to the vertices in
F according to the incidence relations in H : we add an edge between a vertex
in F corresponding to e ∈ E(H) and a vertex in A corresponding to u ∈ V (H)
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if and only if e contains u. This completes the construction of G. Note that the
vertices in E have degree d, and those in F have degree d + 1. An illustration of
such a graph G for d = 3 can be found in [22]. The important property of these
graphs is that any solution to the d-girth problem contains all vertices of G,
except possibly some vertices in set A (see [2] for more details).

We now define a graph squaring operation for graphs in the family Gd. Given
a graph G ∈ Gd, we describe the construction of G2, and repeating inductively
k times the same construction defines the graph G2k

, a typical element of the
class G2k

d = {G2k | G ∈ Gd}, for any k ≥ 0. For every vertex v in G, construct
a graph Gv as follows: first, take a copy of G, and choose dv = degG(v) other
arbitrary vertices x1, . . . , xdv of degree d in T ⊆ G. Then, replace each of these
vertices xi by the following:

• if d ≥ 3 is odd: a graph obtained from Kd+1 by removing a perfect matching
(e.g., a C4 for d = 3).
• if d ≥ 4 is even: a graph obtained from Kd+2 by removing a cycle going

through d + 1 vertices. Let v∗ be the vertex of degree d + 1 in this graph.

Next, join d of the vertices of this new graph (different from v∗) to the d neighbors
of xi, i = 1, . . . , dv. Let Gv be the graph obtained in this way. Note that Gv has
exactly dv vertices of degree d − 1. Now, take a copy of G, and replace each
vertex v by Gv. Then, join each of the dv neighbors of v in G to one of the dv

vertices of degree d− 1 in Gv. This completes the construction of the graph G2.
We have that |V (G2)| = |V (G)|2 + o(|V (G)|2), because each vertex of G gets
replaced by a copy of G where some of the vertices were replaced by a graph of
size d + 1 or d + 2. An illustration of G2 for d = 3 can be found in [22].

Theorem 1 ([2]). For any fixed d ≥ 3, finding a constant-factor polynomial-
time approximation algorithm for the d-girth problem in the class of graphs⋃

k≥0 G2k

d is NP-hard.

2.2 Improved Hardness Results

The following technical lemma is a consequence of the constructions of
Section 2.1.

Lemma 1. For any d ≥ 3, let G be a graph of the class Gd constructed in
Section 2.1, and let G2 be the graph constructed from G by the graph squaring
operation.

(i) If gd(G) = �, then gd(G2) ≤ 2�2; and
(ii) given a solution in G2 containing m vertices, we can obtain in polynomial

time a solution in G containing at most
√

m vertices.

Proof: The first claim follows from the fact that, given a solution S ⊆ V (G) to
the d-girth problem in G, a feasible solution S2 to the d-girth problem in the
square graph G2 can be obtained by choosing the copies of G corresponding to
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vertices in S, and by choosing again in each such copy the vertices defined by S.
From the construction of G2 it follows that |S2| ≤ |S| · (|S|+ (d + 1)2) ≤ 2|S|2,
as the degree of any vertex v ∈ V (G) is at most d + 1, and in the copy of G in
G2 corresponding to vertex v, deg(v) vertices are replaced by graphs on at most
d + 2 vertices.

In order to prove the second claim, let S2 ⊆ V (G2) be a solution to the
d-girth problem in G2, with |S2| = m. We distinguish two cases. First, if S2
contains vertices from fewer than

√
m copies of G, then the solution in G defined

by the vertices corresponding to these copies has size at most
√

m. Otherwise,
there exists a copy Gv of G intersecting S2 in which at most

√
m vertices belong

to S2. Then, the solution in G defined by the vertices in Gv belonging to S2
contains at most

√
m vertices. �

Theorem 2. For any d ≥ 3 and any ε > 0, there is no polynomial-time al-
gorithm for the d-girth problem with approximation ratio 2O(log1−ε n) unless
NP ⊆ DTIME

(
2O(log1/ε n)

)
. The theorem holds even for the class of graphs

with minimum degree d and maximum degree d + 1.

Proof: Let d ≥ 3 and ε > 0 be fixed, and suppose that there exists a polynomial-
time approximation algorithm A that approximates the d-girth problem within
a ratio 2O(log1−ε n). Let G = (V, E) be an instance of the d-girth problem be-
longing to the class of graphs Gd defined in Section 2.1, with |V | = n and
gd(G) = �. For a positive integer k, let G2k

be the graph obtained from G by
applying k times the graph squaring operation defined in Section 2.1. Note that
for any k ≥ 0, the vertices of G2k

have degree d or d + 1, and that |V (G2k

)| =
n2k

+o(n2k

) = Θ(n2k

). Let p be the smallest integer such that N = |V (G2p

)| ≥
2log1/ε n . Note that N = Θ(n2p

), so 2p = Θ(log N/ logn) = Θ(log1−ε N). Con-

sequently, 2O
(

log1−ε N
2p

)
= O(1). By repeatedly applying Lemma 1(i), it follows

that gd(G2p

) ≤ 22p−1 · �2p

. Then, algorithm A finds in time polynomial in N a
solution to the d-girth problem in G2p

of size at most 22p−1 · �2p · 2O(log1−ε N).
Then, by repeatedly applying Lemma 1(ii), we can find a solution to the d-girth

problem in G of size at most

(
22p−1 · �2p · 2O(log1−ε N)

)1/2p

≤ � · 2O
(

log1−ε N
2p

)
= O(�).

This implies that the d-girth problem can be approximated in the class⋃
k≥0 G2k

d within a constant factor in time polynomial in N , that is, in time

2O(log1/ε n). But since finding a constant-factor approximation algorithm for
the d-girth problem in

⋃
k≥0 G2k

d is NP-hard by Theorem 1, it follows that

NP ⊆ DTIME

(
2O(log1/ε n)

)
. �
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3 Approximation Algorithms for General Graphs

Section 3.1 presents a randomized approximation algorithm in general graphs
and a detailed analysis of its approximation ratio. Section 3.2 proposes another
randomized algorithm for graphs with high minimum degree, and discusses the
relation of this algorithm with a combinatorial result of Erdős et al. [14]. Finally,
Section 3.3 presents a deterministic approximation algorithm for graphs with low
maximum degree.

3.1 A Randomized (n/ log n)-Approximation

Theorem 3. For any d ≥ 3, the d-girth problem admits a polynomial-time
randomized approximation algorithm with ratio n/ logn.

Proof: A graph G is said to be valid if δ(G) ≥ d and V (G) �= ∅. Consider the
subroutine Reduce(G, v), that given a valid graph G and v ∈ V (G), finds the
maximum (not necessarily proper) induced subgraph of G \ {v} with δ(G′) ≥ d.

Procedure Reduce(G, v)
G′ = G
remove v and all its incident edges from G′

while(δ(G′) < d and V (G′) �= ∅)
{ choose an arbitrary node v′ ∈ V (G′) with degree less than d

remove v′ and all its incident edges from G′ }
return G′.

Clearly the graph returned by Procedure Reduce is either empty or valid. We
now consider the following randomized algorithm.

Algorithm RandomReduce(G)
while(G �= ∅)
{ RR← G

pick a node v of G uniformly at random
G← Reduce(G, v) }

return RR.

Clearly the algorithm returns a valid subgraph RR. We now analyze its perfor-
mance. Assume the algorithm performs k iterations. Let Gi be the graph after
iteration i, and ni = |V (Gi)|. Clearly, n

RR
= |V (RR)| = nk < nk−1 < . . . < n1 <

n0 = n. Let OPT be some minimum size valid subgraph of G, i.e., an optimal
solution to the d-girth problem in G, and let ρ(n) be the approximation ratio
of the algorithm (to be fixed later). Let n

OPT
= |V (OPT)| = gd(G). Consider the

event that the algorithm is successful in finding a valid subgraph of the desired
size, and the sub-event that the subgraph found by the algorithm happens to
contain the optimal solution OPT, namely,

Succ = (n
RR
≤ ρ(n) · n

OPT
),

Succ
+ = Succ ∧ (V (OPT) ⊆ V (RR)).
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Then

Pr[Succ] ≥ Pr[Succ
+] = Pr[ n

RR
≤ ρ(n) · n

OPT
∧ V (OPT) ⊆ V (RR) ]

=
k∏

i=0

(
ni − n

OPT

ni

)
.

The last equality holds because V (OPT) ⊆ V (Gi) for every i ≤ k. If V (OPT) ⊆
V (Gi), then V (OPT) ⊆ V (Gi+1) if and only if the node v chosen in iteration i
is not in V (OPT), which happens with probability (ni − n

OPT
)/ni.

Note that at each step at least one node is removed, thus k ≤ n − n
RR

. For
fixed RR, the minimum of the last expression is attained when k = n − n

RR
,

which implies ni = n− i. Therefore,

Pr[Succ] ≥
n−nRR∏

i=0

(
n− i− n

OPT

n− i

)
=

n− n
OPT

n
. . .

n
RR
− n

OPT

n
RR

.

If n
OPT

= Ω(n/ρ(n)), then any solution is a ρ(n)-approximation, so we assume
n

OPT
= o(n/ρ(n)), implying n

RR
= o(n), and therefore n− n

RR
≥ n

OPT
. Then the

highest n−n
RR
−n

OPT
factors of the nominator cancel out with the corresponding

lowest ones in the denominator. We obtain

Pr[Succ] ≥ n
RR
− 1

n
. . .

n
RR
− n

OPT

n− n
OPT

+ 1
≥
(

n
RR
− n

OPT

n

)nOPT

= Ω
((n

RR

n

)nOPT
)

= Ω

((
ρ(n) · n

OPT

n

)nOPT
)

. (1)

Let f(n) = log n/n
OPT

. Then log n/n ≤ f(n) ≤ log n. By taking ρ(n) = (n/ logn)·
(f(n)/ec·f(n)) for some constant c, and substituting n

OPT
and ρ(n) in (1), we get

Pr[Succ] ≥ Ω

((
1/ec·f(n)

) log n
f(n)

)
= Ω

(
e−c·log n

)
= Ω(n−c).

For any ε > 0, if we run Algorithm RandomReduce log(1/ε) · nc times and
choose the best solution, the probability of success is amplified to at least

1−
(

1− 1
nc

)log(1/ε)·nc

= 1− (1/e)log 1/ε = 1− ε ,

and the approximation ratio is at least ρ(n) = (n/ log n) · (f(n)/ec·f(n)). Note
that ρ(n) ≤ n/ logn. Indeed, this is achieved with equality (up to a constant
factor) when f(n) = 1, i.e., n

OPT
= log n. Otherwise, when f(n) > 1 we have

f(n)/ec·f(n) < 1, and when f(n) < 1 we have f(n)/ec·f(n) ≤ f(n) < 1. �

3.2 A Better Algorithm for High-Degree Graphs

In this section we provide another randomized algorithm for graphs with high
minimum degree, and make a connection with known combinatorial results
concerning subgraphs with given minimum degree.
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Proposition 1. For any d ≥ 3 and any function f(n) such that 8 log n ≤
f(n) ≤ n, there exists a polynomial-time randomized approximation algorithm
for the d-girth problem in the class of graphs with minimum degree at least
d · f(n), with approximation ratio 16n·log n

d·f(n) .

Proof: Let G be a graph with minimum degree at least d·f(n). The algorithm is
very simple: it chooses each vertex independently with probability 8 logn/f(n).
Let H be the graph induced in G by the vertices chosen by the algorithm, and
let n0 = |V (H)|. The variable n0 is the sum of n independent Boolean random
variables B1, . . . , Bn, and its expected value is 8n·logn/f(n). Therefore, applying
the Chernoff-Hoeffding bound we get

Pr
[
n0 > 2 · 8n · log n

f(n)

]
≤ e−

8n·log n
3f(n) = n− 8n

3f(n) ≤ 1
n2 ,

so |V (H)| ≤ 16n · log n/f(n) with high probability. Let us now argue about the
degree of a vertex v ∈ V (H). Since degG(v) ≥ d · f(n), the expected value of
degH(v) is at least d · f(n) · 8 log n/f(n) = 8d · log n. Applying the Chernoff-
Hoeffding bound again we get

Pr [degH(v) < d] ≤ Pr
[
degH(v) <

8d · log n

2

]
≤ e

−8d·log n
8 =

1
nd

<
1
n2 ,

relying on the fact that d ≥ 3. Therefore, using the union bound we get

Pr [δ(H) < d] ≤ |V (H)| · 1
n2 ≤

n

n2 =
1
n

.

Hence H is a valid solution to the d-girth problem with probability at least
1− 1/n. Finally, the approximation ratio follows from the fact that any solution
has at least d + 1 vertices. �
The proof of Proposition 1 implies that for a graph G with δ(G) ≥ d · k, one
can find w.h.p. a subgraph H with δ(H) ≥ d and |V (H)| ≤ 16n·log n

k . This can
be thought of as a weaker but constructive version of the following result about
subgraphs with minimum degree at least d.

Theorem 4 (Erdős et al. [14]). Let d ≥ 2 and k > 1 be given. Every n-vertex
graph G with at least !d · k · n" edges has a subgraph H with δ(H) ≥ d and
|V (H)| ≤ !n/k".

Note that the combinatorial result of Theorem 4 is stronger than the one that
follows from the proof of Proposition 1 in two ways. First, the required premise
concerns only the number of edges of G, instead of its minimum degree. Second,
the size of the subgraph obtained in the proof of Proposition 1 is greater by a
factor 16 logn than the one given by Theorem 4. However, the proof of Theorem 4
is non-constructive (at least, in polynomial time).
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3.3 A Deterministic Algorithm for Low-Degree Graphs

Note that the hardness results of Section 2 hold even if the degrees of the input
graph are either d or d+1. In the following proposition we provide a deterministic
approximation algorithm in the more general case where the input graph has
degree bounded by an appropriate function of the size of the input graph.

Proposition 2. For any integer d ≥ 3, there exists a deterministic polynomial-
time O

(
n·log log n

log n

)
-approximation algorithm for the d-girth problem in the class

of n-vertex graphs with maximum degree O
(

log n
log log n

)
.

Proof: The algorithm consists in an exhaustive search in order to try building
a solution to the d-girth problem of appropriate size, by trying all possibilities
of obtaining such a solution starting from each vertex of G. The algorithm stops
at some point in order to keep the running time polynomial, and if no solution
has been found so far, it outputs the whole graph.

Let the maximum degree of G be at most b, and let k be the maximum size
of a solution that the algorithm can find (both b and k will be specified later).
The algorithm proceeds as follows. Starting from a given vertex, it tries to build
a feasible solution S ⊆ V (G) by adding vertices one by one to S. At a given
moment, if some vertex v ∈ S has strictly less than d neighbors in S, it chooses
a neighbor of v in V (G)\S, and adds it to S. This process continues until either
all vertices of G have degree at least d in G[S], or |S| = k.

For an integer �, with 0 ≤ � ≤ k, we define f(�) to be the remaining running
time of the algorithm assuming that all possible solutions of size at most � have
been already considered. Therefore, by definition f(0) is the overall running time
of the algorithm. Once � vertices have been already chosen into S, with � ≥ 1,
the number of choices for a neighbor of each vertex of S in V (G) \ S is at most
b, so it holds

f(�) ≤ � · b · f(� + 1). (2)

On the other hand, at the beginning the algorithm chooses an arbitrary vertex
of G, so

f(0) ≤ n · f(1). (3)

Starting from Equation (3), using Equation (2) recursively, and assuming that
the algorithm stops when |S| = k, we get

f(0) ≤ n · bk · k! · f(k + 1). (4)

As the running time must be polynomial in n, from Equation (4) it follows that
n · bk ·k! = nO(1), that is, bk ·k! ≤ nc for some positive integer c. In other words,

k · log b + k · log k ≤ c · log n. (5)
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If we further impose that b ≤ k, a sufficient condition for Equation (5) to be
satisfied is that k = O

(
log n

log log n

)
. That is, for graphs with maximum degree

O
(

log n
log log n

)
, the above procedure constitutes a polynomial-time O

(
n·log log n

log n

)
-

approximation algorithm. �

4 Planar Graphs

In this section we focus on the case where the input graph is restricted to be a
planar graph. The first important observation is that as any planar graph has a
vertex of degree at most 5 [10], in a planar graph there exist feasible solutions
to the d-girth problem only for d ≤ 5. Note that the hardness results of [2],
and therefore also those of Section 2, do not apply to planar graphs, as the
constructed graphs are highly nonplanar. In Section 4.1 we prove that the d-
girth problem is NP-hard in planar graphs for d ∈ {3, 4, 5}. We then discuss
approximation algorithms in Section 4.2, and present a subexponential exact
algorithm in Section 4.3.

4.1 Hardness Results

Theorem 5. For d ∈ {3, 4, 5}, the d-girth problem is NP-hard in planar
graphs with maximum degree at most 3d.

Proof: The reduction is from Minimum Vertex Cover (VC for short) in pla-
nar graphs with maximum degree at most 3, which is known to be NP-hard [16].
Note that Minimum Vertex Cover admits a PTAS in planar graphs [5]. For
the sake of presentation, we first state the reduction for d = 3, and then we show
how to modify the gadgets for d ∈ {4, 5}.

Let H be a planar graph with Δ(H) ≤ 3, an instance of the Minimum Ver-

tex Cover problem, which we can assume to be connected (see Fig. 1(a) for an
example). To build G from H , we first replace each edge e = {u, v} ∈ E(H) by
the gadget depicted in Fig. 1(b), containing u, v, and 12 new vertices. Among
these vertices, let Su

e (resp. Sv
e ) be the three vertices adjacent to u (resp. v). Ver-

tices xe, ye, ze, x
′
e, y

′
e, z

′
e are colored white and vertices in Su

e and Sv
e are colored

black (see Fig. 1(b)). Now, for each face f of H (including the external one) con-
sisting of edges e0, e2, . . . , ek−1 such that ei is incident to ei+1 for i = 0, . . . , k−1
(indices taken modulo k), we add the following edges. Assume without loss of
generality that all the white vertices corresponding to f are of the form xe, ye, ze.
For i = 0, . . . , k−1, add an edge between vertex zei and vertex yei+1 , the indices
being taken modulo k. These edges between white vertices corresponding to dif-
ferent edges are called face edges. This completes the construction of G, which
is illustrated in Fig. 1(c). Note that G is a planar graph with maximum degree
at most 9.

Consider a solution S ⊆ V (G) to the 3-girth problem in G. By construction,
S cannot contain just black vertices or vertices corresponding to vertices in H ,
so at least one white vertex belongs to S, say xe for an edge e = {u, v} ∈ E(H).
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Fig. 1. Reduction in the proof of Theorem 5 for d = 3: (a) Instance H of Minimum

Vertex Cover. (b) Gadget corresponding to an edge e = {u, v} ∈ E(H). (c) Instance
G of the 3-girth problem built from H .

Due to the degree constraints and since xe is adjacent to only 2 white vertices,
vertex xe forces either all the vertices in Su

e or all the vertices in Sv
e to belong

to S, which in turn also forces vertex x′
e to be in S. Due to the face edges, once

a vertex xe is in S, so are all the white vertices corresponding to edges in the
same face as edge e ∈ E(H). Thus, white vertices inductively force all 6 · |E(H)|
white vertices to be in S. Now recall that for a pair of white vertices xe, x

′
e to

have degree at least 3 in G[S], either all the vertices in Su
e or in Sv

e must belong
to S, so any optimal solution to the 3-girth in G contains exactly 3 · |E(H)|
black vertices. Finally, note that if the vertices in Su

e (resp. Sv
e ) belong to S,

they force vertex u (resp. v) to belong to S. As for each edge e = {u, v} ∈ E(H),
either u or v must belong to S, we conclude that there is a bijection between
vertex covers of H and feasible solutions to the 3-girth in G.

The above discussion implies that g3(G) = 9 · |E(H)| + OPTVC(H). (For
instance, in the example of Fig. 1, any optimal vertex cover of H of size 3
defines an optimal subgraph of G on 57 vertices with minimum degree at least
3.) As Minimum Vertex Cover is NP-hard, so is the 3-girth problem.

For d ∈ {4, 5}, one just needs to modify the gadget of Fig. 1(b) with respect
to the reduction for d = 3; the corresponding gadgets for d ∈ {4, 5} can be found
in [22]. �

4.2 Approximation Algorithms

In this section we derive the existence of a deterministic approximation algo-
rithm with ratio n/f(n) and running time 2O(f(n)) · n when the input graph
G is restricted to be planar. In particular, this provides an alternative to the
polynomial-time n/ log n-approximation algorithm provided in [2] for minor-free
graphs.

Proposition 3. For any function f(n) ≤ n, there exists a deterministic ap-
proximation algorithm for the d-girth problem in n-vertex planar graphs with
approximation ratio n/f(n) and running time 2O(f(n)) · n.

Proof: It is well-known that the number of non-isomorphic planar graphs on k
vertices is 2O(k) [24]. In addition, this set of graphs can be generated in time
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proportional to its size using the algorithm in [19]. Given a planar graph G on
n vertices and an arbitrary function f(n) ≤ n, we generate all non-isomorphic
planar graphs on f(n) vertices in time 2O(f(n)). We remove from the list the
graphs with minimum degree less than d. Then, for each graph H in this list,
we test whether G contains a subgraph isomorphic to H using the recent results
for planar subgraph isomorphism [11], in time 2O(f(n)) · n. If none of these sub-
graphs is found, we output the whole graph G. This procedure clearly yields a
(n/f(n))-approximation algorithm running in time 2O(f(n)) · n. �

4.3 Exact Algorithms

In this section we show that the problem can be solved in subexponential time
when the input is restricted to planar graphs. Recall that there exist valid solu-
tions only for d ≤ 5.

Theorem 6. For any d ≥ 3, the d-girth problem can be solved exactly in planar
graphs in time 2O(

√
n·log n).

Proof: We use the classical divide-and-conquer approach. By the planar separa-
tor Theorem [20], every n-vertex planar graph has a vertex separator W of size
at most c

√
n, for some small constant c ≤ 2

√
2, such that after the removal of

W the graph is partitioned into two disconnected subgraphs on vertex sets Z1
and Z2, each of cardinality at most 2n/3. In addition, such separator W can be
found in time O(n).

Our algorithm proceeds recursively as follows. The separator given by [20] di-
vides the problem into two or more smaller problems. In order to build a feasible
solution to the d-girth problem, exhaustively check every subset of vertices in the
separator, and then for each subset check every possible set of up to d neighbors
in Z1 and Z2. As usual, the subproblems are solved by applying the method re-
cursively, and the solutions to the subproblems are combined to give a solution to
the original problem in the input graph G.

To analyze the running time, define the function f(�) to be the time required
by the algorithm to process a graph on � vertices. Hence f(n) is the overall
running time of our algorithm, and we can assume that f(1) = 1. As the number
of choices for a subset of the separator W is 2|W | ≤ 2c

√
n, and the number of

choices in Z1 or Z2 for a set of at most d neighbors of each vertex in the separator
is at most

(|Zi|
d

)
, i = 1, 2,

f(n) ≤ 2|W | ·
((
|Z1|
d

)
·
(
|Z2|
d

))|W |

· 2 · f(2n/3) ≤ 2c
√

n · (2n/3)2dc
√

n · 2 · f(2n/3)

= 2c1
√

n·log n · f(2n/3) ≤ 2c1

(√
n·log n+

√
2n/3·log(2n/3)+...

)
· f(1)

≤ 2c1 log n·
(√

n+
√

2n/3+
√

4n/9+...
)
≤ 2c1

√
n·log n·(∑∞

i=0(2/3)i) = 2c2
√

n·log n ,

where c1, c2 are suitable constants defined by the above equations, depending on
c and d. �
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5 Concluding Remarks

This article studies the problem of approximating the d-girth of a graph, the
order of a smallest subgraph with minimum degree at least d, for a fixed integer
d ≥ 3, and makes first steps towards understanding the computational complex-
ity of this apparently hard problem. We now summarize our results and present
several possible lines for further research.

We proved that for any d ≥ 3 and ε > 0, there is no polynomial-time algorithm
for the d-girth problem with approximation ratio 2O(log1−ε n) in graphs with
degrees d or d + 1 unless NP ⊆ DTIME

(
2O(log1/ε n)

)
. We suspect that the

problem is even harder than this. In the spirit of [17] for the Longest Path

problem, we present the following conjecture.

Conjecture 1. For every fixed d ≥ 3, there is no polynomial-time approximation
algorithm for the d-girth problem with ratio n1−δ, for some constant δ > 0
unless P = NP.

We provided the first approximation algorithms for the d-girth problem in
general graphs. Specifically, we presented a randomized algorithm with approx-
imation ratio n/ logn in any graph, another randomized algorithm with better
performance in high-degree graphs, and a deterministic algorithm for low-degree
graphs. These approximation ratios could hopefully be improved, although it
looks like a challenging task. Our latter two approaches for high- and low-degree
graphs complement each other in some sense, so it would be interesting to try
to combine them into a better algorithm.

We also studied the case where the input graph is planar. We proved that
the d-girth problem is NP-hard in planar graphs for d ∈ {3, 4, 5}, presented
a deterministic approximation algorithm (with the same ratio as the algorithm
for general graphs) based on a recent result for subgraph isomorphism [11], and
showed that the problem can be solved exactly in subexponential time. This
latter result may provide some clue to the possible existence of a PTAS in
planar graphs, which remains wide open. So far, none of the many approaches
to obtaining a PTAS in planar graphs seems to fit the d-girth problem.

We point out that some of our results do not strongly use specific properties
of the d-girth problem, and can be applied to the class of problems of the form
“minimum subgraph with property P”, in particular to the problem of finding a
d-regular subgraph of minimum size. It would be interesting also to study other
variants of the problem, like minimizing the number of edges of a subgraph
with minimum degree at least d (in planar graphs, this version is equivalent to
the original one, modulo a constant factor), or considering the vertex-weighted
version.

Finally, the reader is also referred to several nice combinatorial conjectures of
Erdős et al. [13,14] about the existence of small subgraphs with given minimum
degree.



480 D. Peleg, I. Sau, and M. Shalom

References

1. Addario-Berry, L., Dalal, K., Reed, B.A.: Degree constrained subgraphs. Discrete
Applied Mathematics 156(7), 1168–1174 (2008)
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Department of Computer Science and Engineering, Czech Technical University,
Charles square 13, 121 35 Prague 2, CZ

{prauspet,jaromsla,tomas.cerny}@fel.cvut.cz

Abstract. We present a framework for small-scale software architec-
ture comparison (SScAC). Although a considerable chunk of software
architectures are developed in small teams, not much related work exists
on this topic. The proposed framework introduces a method to formalize
these comparisons and aims to be simple enough to be used in small-scale
projects at the same time. Still we believe it is of sufficient complexity
to support comparisons that take into account different aspects of solved
problem. The main purpose of the framework is to ease certain architec-
tural choices by giving the designer a reasoned recommendation based on
previously specified requirements on system’s qualities. It can also help
validate the suitability of chosen design patterns. We show the practical
use of the framework on case study solving architectural decision for Key
Word In Context.

Keywords: Software reuse; Software quality metrics; Software integra-
tion.

1 Introduction

To architect a software application the developer has to face an important and
often not easy decisions. What architectural style should he apply? Which de-
sign patterns to use? The importance of these choices is obvious. Selection of
appropriate invariants can positively affect many aspects as well as cause nega-
tive impacts on system performance, behaviour and maintenance. Therefore all
architectural decisions have to respect requirements on such a system. In this
paper we introduce a comparison framework that helps to evaluate architectural
choices for development of a small-sized systems. When the developer hesitates
which architectural style [7] to select SScAC framework provides him with a rea-
soned recommendation based on previously specified requirements on system’s
qualities. To demonstrate the practical use of framework we present a case study
solving architectural decision for Key Word In Kontext (KWIC) problem (see
[12]) introduced by D. Parnas in 1972 that is still used as a classroom example.

2 Related Work

An existing method for analyzing software architectures called SAAM [9],
grounds its analysis in concrete domain – Human-Computer Interaction and

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 482–493, 2011.
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user interface domain. The method does not provide any metrics for predictive
evaluation. Instead they come up with example-based method for performing
qualitative evaluation. To evaluate the suitability of architecture in terms of
modifiability they prepare an example task to test the desired property (we call
this a goal), e.g. modifiability. Then it is measured how difficult (how many
changes in program) it is to achieve the desired task. This approach is accept-
able as long as we assess only one property but when we want to compare more
achitectures from broader point of view it becames cumbersome and possibly
time consuming.

Successor of SAAM, ATAM [10] provides a very comprehensive tool for analy-
sing software architectures including management of teams performing such an
analysis. In contrast, SScAC framework targets small projects with at most a half
dozen developers, who either woudn’t use any architecture evaluation method
at all or would drown in ATAM’s or similar large-scale method’s complexity.

An approach presented by [2,3] characterizes quality attributes (we call them
goals) and captures architectural patterns that are used to achieve these at-
tributes. They call these patterns attribute primitives. But applying a pattern
to achieve a certain quality can negatively affect other qualities1. Therefore all
qualities have to be assessed at once and all their dependencies must be consid-
ered which is non-trivial task. In our framework we break down these complex
relationships into smaller units (so called ”properties”) that are mapped to all
affected goals. Therefore the user does not have to take into account the depen-
dencies. [3] mentions following example:

An interpreter makes easier the creation of new functions or modification
of existing function. Macro recording and execution is an example of an
interpreter. This is an excellent mechanism for achieving modifiability
at run-time, but it also has a strong negative influence on performance.

If a designer’s primary goal was modifiability an interpreter would be a suitable
choice. Otherwise if one of your primary goals was also performance it would get
a poor grade which might negatively affect rating of the whole design. Direct
cause of such result would be usage of inappropriate attribute primitive. When
not using SScAC framework such an implication might escape your attention.

A model for predicting a set of most suitable architectural styles that are worth
considering when implementing a certain system is proposed by [4]. The selection
is based on use cases that need to be met by a system configuration. The fitness
of particular architectural style is represented by the Conformance Confidence
Index (CCI). The main drawback of this metric is that it does not reflect required
quality properties. However, this approach can be effectively combined with our
framework. First, designer chooses the prospective architectural styles based on
CCI. Then he compares them using our framework with respect to their qualities.

Another related approach to software quality metrics is [1] that is based on
goals and questions answerable in a measurable way.

1 For example, one might sacrifice reliability for the sake of the performance.
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3 Proposal of SScAC Framework

In our comparison framework we target smaller scale applications. User has sev-
eral architecture designs and this framework’s purpose is to assist the developer
in choosing the most suitable one for a specified problem. Successful framework
usage presumes equivalent input conditions for all designs. This means they must
have the same functionality achieved by very similar algorithms. User should be
aware the framework only provides comparison of properties resulting from ar-
chitectural features. For example we do not consider business point of view2 or
security3. In addition all grades are comparable only in context of one framework
use because user grading is expected to be relative to other compared architectures.
The solution to the given problem can be usually achieved by meeting variously
important goals. These goals are chosen by the designer and framework out-
puts grades representing how well compared designs fit the specified problem.
For describing common architectural goals our framework defines default set of
properties. These are subsequently graded by the developer based on how well
they are supported by each design. To justify a grade the developer might use
techniques outlined in [3]. For example by discovering design patterns associated
with certain properties.

To reach a certain goal we need a combination of relevant properties but
because they are not equivalent each one has a different weight. Framework
also provides predefined goals mapped to properties with respective weights.
One property can be used to achieve several goals – every time with a different
weight. In addition user has the freedom to extend framework with new goals
(perhaps even with new properties) but for common use cases he should not
have the need.

3.1 SScAC Use Guideline

Typical application of this framework consists of these steps:

– Prepare implementation drafts of your project based on various architectures
but keep functionality and algorithms as similar as possible.

– Choose goals you are interested in (such as performance) and give them
relative weights. Their summation should be always 1, the more important
the goal for you the higher the weight.

– Rate all the goal-relevant properties relatively for each design (0-4, the better
the support of the property in the design the higher the grade).

– Multiply grades of properties by their weight and sum the results within
each goal. This gives you grades for each goal you set. Repeat this step for
each design.

– Approximate comparison can be calculated by multiplying grade of each goal
with it’s weight (defined in step 1) and summing the results for each design.
This gives you rough idea how much each design is suitable for your purpose.

2 Developer skill set, available tools etc.
3 A security is in fact a set of functionalities. And because these are required to be

the same, there is nothing else left to solve.
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3.2 Default Goals

Since the most small-scale projects target similar architectural traits we define a
default set of goals that should cover common framework usage. In this section
we describe them. Numbering in brackets corresponds to Table 4 in appendix,
where the concrete weight values are defined.

The aim of the performance goal is to predict overall speed of the system.
Parallelization (1) property represents how often the parallelization concept oc-
cures in the given implementation draft. Bottlenecks can be either hardware
or logical. Typical hardware bottleneck would be hard-drive access or throttled
network connection. Logical bottlenecks are overloaded design components such
as trackers in BitTorrent[5] system. The no bottlenecks (2) property therefore
represents absence of these. Synchronization (3) property represents the sup-
port and simplicity for synchronization mechanisms such as locks. If you are
forced to maintain additional mechanisms to achieve synchronization, this prop-
erty should get a low grade. Robustness penalty (4) expresses how clumsy and
performance impeding the implementation of security mechanisms is. Among
these could be repeated checks, backups etc. Stable data format (5) gets a high
rating when for multiple reuse of the same data across the system the data’s
format does not need to be changed.

Multi-user responsiveness goal differs from performance in two properties –
instead of general parallelization property we define multiple request paralleliza-
tion (6). The criteria is whether the system uses mechanisms supporting stable
response time for the majority of users. Another difference is the definition of
synchronization (7). This time it expresses the ability of the system to cope
with simultaneous access to shared resources. The aim is to minimalize average
waiting time for the operation results.

Memory effiency is intended to be used in cases of limited hardware resources
or manipulation with large amounts of data. It encompasses no repeated data
copying (8), single copy of data (9)(e.g. Flyweight [6]) and effective object reuse
(10). For example instead of repeated creating of threads for each request one
might use a thread pool.

Modifiability consists of two equal goals (both weights 0.5)– changeability,
which enables easy strategy changes (replacement), and expanding functionality
concentrated on adding it. In general we are interested in how much work is
needed to make a change or to reuse a component. We measure this as number
of components but you should always take into account their size and complexity.

To evaluate changeability goal you should imagine a sample situation in which
you need to replace some functionality. You should count how many original com-
ponents needs to be changed (11) and how many new components you have to add
(12). The lower the numbers the higher the grades. Expanding functionality uses
the same properties as changeability although the model situation is different –
this time the user wants to add new functionality.

We understand reusability in two ways. First reusability in scope of the system,
second across multiple systems. They both capture how many components the
reused one is dependant on (13) (more precisely how many compoments must be
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added to reuse it – this definition is crucial in terms of one system), how much the
reused one must be changed (14) and how many additional components must be
added to integrate it (15) (e.g. adapter [6]). But all of them should be evaluated
in the right context – reuse in single or multiple systems.

Testability represents how easy it is to test that all components in the system
are functioning properly. Easily testable system should not need unnecessarily
complex mock objects (MO not required – 16) and it should be possible to test
small units of code (17). Reliability is quite complex goal. It encompasses bug pre-
vention (18), handling user errors, robustness features and maintainability (19).
Proper bug prevention can be achieved by good testability. The architectural
part of maintanability is strongly supported by good modifiability. Concerning
user errors the system should provide easy error handling (20) and achievable
recovery mechanisms (21). Reliable system should be robust. Therefore we need
to determine how much effort is necessary to capture state (22) of the system
and to create a failover (23).

4 Case Study: Keyword in Context (KWIC)

This case study provides some typical examples of comparison between different
software designs (Pipe and Filter, Event-based and Aspect). We will be interested
in performance, modifiability and realibility goals further described in subsec-
tion 4.2. As a demonstration example we chose widely known, simple and yet
illustrative enough problem of Keyword in Context thoroughly investigated by
Parnas in his 1972 article [12]. We extended standard set of architectural designs
of KWIC compared in [7] by David Garlan and Mary Shaw with the new one
based on aspect oriented programming (AOP) proposed by Gregor Kiczales and
collective [11] in 1997. It should serve as a representative of new programming
paradigms solving one of the Achilles heels of object-oriented programming –
the cross-cutting issue[11].

4.1 About KWIC

Parnas proposed the following solution in [12]:

Any line may be “circularly shifted” by repeatedly removing the first
word and appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical order.

Circular shifter and alphabetizer create a simple index with huge data redun-
dancy. We decided to update this idea and implement index using hash map.
Whereas hash map key is indexed keyword and its value is a list of occurrences
of the particular keyword in the source text. Based on this idea our solution
consists of the following actions:

1. line reading
2. splitting lines into tokens
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3. indexing and storing tokens (logically in parallel)
4. creating contexts using index and stored tokens
5. outputting contexts

It is essential that all compared implementations maintain the same functionality
level.

Pipe-and-Filter KWIC. Based on above actions we designed following filters:
Input, Tokenizer, Index, Context finder and Output. They correspond to actions
1-5. Exception to this is storing of tokens which ideally should be accomplished in
parallel with their indexation. Tokens must be passed through Index to Context
finder. This aspect forces designers into counterintuitive design decisions and
could lower performance. Hence it will be avoided in other implementations. To
leverage strong advantage of P&F style, each filter runs in it’s own thread.

Aspect KWIC. One of the biggest architectural advantages of P&F is com-
ponent isolation and resulting suitability for parallelization. Aspect KWIC is
designed to preserve these features. Components correspond to filters and they
run in their own thread. On the other hand multiple data formatting and pass-
ing is troublesome invariant of P&F style. This cross-cutting concern is easily
solved by AOP. Each logical communication relationship between components
is generalized as an abstract aspect. This aspect has its own provider and a list
of consumers. A “finished” pointcut is defined to set the state of the provider.
E.g. for Tokenizer as a provider, there is TokenizingAspect (supplying Index and
ContextFinder) whose “finished” pointcut watches for termination of Tokenizer
thread. To supply the consumers the aspect defines “action” pointcut respon-
sible for watching for product creation events of providing component. These
products are subsequently passed to each consumer. In Fig. 1 you can see the
logical relationship/data-flow structure among components. The black lines rep-
resent data flow (facilitated by their associated aspects) from providers (dots)
to their consumers (arrows).

Event-Based KWIC. The logical design of the third implementation is
similar to aspect KWIC but it applies more traditional technology – implicit
invocation. We used standard Java components: class Observer and interface
Observable. KWIC components (as defined previously: Input, Tokenizer...) use
Observer pattern to pass events between them. Similarly to aspect KWIC, To-
kenizer is observed by two components – Index and ContextFinder. The only
exception to implicit invocation is passing of index data structure from Index
component to ContextFinder. Unlike in two aforementioned implementations

Fig. 1. Aspect KWIC schema
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threads are not part of the design. Related figures of Event and P&F can be
found in [7] due to limited space.

4.2 Application of SScAC Framework

We demonstrate the use of the framework on two test examples. In the first one
(Table 1), we are interested in a system that has better-than-average performance
but is moderately modifiable at the same time. Therefore we are seeking two
properties: performance and modifiability with respective weights 0.6 and 0.4
based on previously outlined needs. Modifiablity is composite goal and consists
of changeability and expandability. In the second example we wish to achieve
highest possible reliability (Table 2).

Grades in the tables are based on following reasoning. Parallelization is sup-
ported by Aspect and P&F because they use threads in contrast to Event. They
got high grades even though their context finder and output components have
to wait until the previous threads are finished but important is the comparison
to Event. When comparing to a different approach (e.g. stream) they could get
lower grades (Paralellization). Neither implementation contains significant hard-
ware or logical bottlenecks (No bottlenecks). P&F and Aspect implementations
require synchronized queues to support multi-threaded working model which is
not essential for KWIC core functionality (Synchronization). Aspect uses rela-
tively costly mechanisms to bind pointcuts and advices together (see [8]). More-
over it contains additional components (aspects) to provide interaction between
core components. Event uses relatively cheaper mechanisms (standard Java API
observer pattern implementation) to achieve the same. P&F uses only explicit
method invocation (No robustness penalty). In P&F currently processed data

Table 1. Performance and modifiability related property evaluation - test 1

Goal-Subgoal/Property Weight P&F Aspect Event

Performance

Parallelization 0.25 3 3 1
No bottlenecks 0.25 4 4 4
Synchronization 0.2 2 2 4
No robustness penalty 0.2 4 2 3
Stable data format 0.1 1 4 4

Modifiablity - changeability

How many components to change 0.7 4 4 3
How many components to add 0.3 4 3 4

Modifiablity - expandability

How many components to change 0.7 4 4 3
How many components to add 0.3 4 3 4
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Table 2. Reliability related property evaluation - test 2

Goal/Property W1a W2b P&F Aspect Event

Reliability

Bug prevention (testability) 0.25 0.4 2.5 4 3
Capturable state of the system 0.125 0
Easy failover 0.125 0
Easy error handling 0.125 0.2 0 4 1
Achievable rec. mechanisms 0.125 0
Maintenance (modifiability) 0.25 0.4 4 3.7 3.3

Testability

No compl. mock objects 0.5 4 4 3
Small unit testing possible 0.5 1 4 3
a Default weights
b Recalculated weights

are parsed by each filter and subsequently passed to next filter in its standard
data format (Stable data format).

How many components do we need to change and add in order to change
functionality: In P&F we can simply replace a filter – 0 changed, 1 added; In
Aspect we need to replace a component and a related aspect – 0 changed, 2
added; In Event we need to replace one component. Because the components do
not have common interface we are forced to make larger (compared to others)
changes in initialization (e.g. statically binding observers and observables) – 1
changed, 1 added (Modifiability - changeability). Expandability is in this case
almost identical to changeability, therefore we will not elaborate this further.

Some of the properties of the reliability goal are irrelevant to our case study.
Therefore we need to discard them and recalculate weights of the remaining
properties while keeping the same ratio between them (default and recalculated
weights can be seen in Table 2). Maintainance in our framework is put for ar-
chitectural purposes on a par with modifiability. The modifiability grades have
been already explained (Maintainence). Bug prevention can be seen as testabil-
ity which is a separate goal consisting of two properties: no complicated objects
and small unit testing possible. To test the correct functionality of P&F filters
we just need to prepare an input string and its corresponding output string.
Testing the Aspect implementation is strongly supported by AOP mechanisms,
because testing in principle is cross-cutting concern. In Event implementation we
are forced to simulate events from observed components and create observers to
evaluate tested component’s behavior (No complicated mock objects). The Filter
implementation is the smallest unit we can test (no testable public methods) in
P&F. Aforementioned AOP mechanisms allow us to violate encapsulation and
thoroughly test each component. Event provides standard testing possibilities
but compared to Aspect we are limited by the necessity to obey encapsulation
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Table 3. Implementation evaluation results

Goal Weight P&F Aspect Event

Performance 0.6 3.05 2.95 3.05

Modifiability 0.4 4 3.7 3.3∑
weight · goal 3.43 3.25 3.15

Reliability 1 2.6 3.88 2.72

(Small unit testing possible). Feasible handling of errors in P&F without violat-
ing its architectural style’s contract is practically impossible. Error can either
propagate through all the remaining filters or to implement a listener to handle
exceptions occuring in filters. Again AOP principles allow us to easily implement
feasible and centralized error handling. Error handling in Event implementation
would require an extra layer of listeners and instead of throwing exceptions, an
error listeners is notified, while distinction them common listeners must exist.
Alternatively a large try-catch block in the initialization component could exist
(Easy error handling). Table 3 shows results of both tests. In the first one we
look for an implementation that would be performant and modifiable. Perfor-
mance was slightly more important. Overall grades gave us a hint that P&F
should be the most suitable option (score 3.43/4). On the other hand Event has
shown up as the worst choice (score 3.15/4), but as you can see the difference
is relatively small (just 7% of the total score). The aim of the second test was
to find the most reliable implementation. Aspect proved to be by far the best
choice (score 3.88/4, 29% better than Event).

4.3 Evaluation

We implement all three KWIC designs. To validate design performance scores
suggested by the SSCaC, we perform the following test. We measure the time
it takes to a given implementation to process a set of queries (A-H) on War
and Peace by Leo Tolstoy (572,633 words). Words included in queries are based
on simple frequency analysis. Results were normalized by removing minimum,
maximum and creating median from sample of 11 independent measurements.

Query A represents 15 most frequent words. Following queries then progres-
sively remove the most frequent word to discover the relation between the run-
time of application and the portion of query keywords in the entire text. See
axis in Fig. 2. Last three queries contain real-scenario combination of words.

When processing a short query, according to graph in Fig. 2 Event turns out to
be the quickest solution even though it does not implement multiple threads. In
contrast P&F is the best at longer queries. Aspect is slightly slower in all cases.
This could be possibly attributed to performance penalty introduced by AspectJ
which is further discussed in [8]. Table 3 (SScAC results) shows P&F and Event
are on a par from the performance point of view. This corresponds with results
of aforementioned measurement. An interesting observation can be made when
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Fig. 2. Relationship between the run-time of application and the portion of query
keywords in the whole text

looking at Event and Aspect graph behavior. They both tend to rise roughly at
the same values and keep the similar angle across all the queries. This could be
attributed to similar fundamental design characteristics – in both cases an event
occurs, someone notices and reacts by invoking an associated code. (Event : state
changed – observable notifies – observer reacts, Aspect : method invoked – poincut
– advice). Though similar in design characteristics they diametrically differ in
the way they are used by a developer. This is mainly reflected in testability
and easy error handling. It should be noted that graph can be misleading. The
spread of measured values is quite large, performance can be affected by other
influences and the difference between implementations is more or less constant.

5 Conclusion

We have presented SScAC framework for general small-scale architecture com-
parison. It was partialy inspired by [3] and [4]. Nonnegligible chunk of the soft-
ware development is done in small teams. However, none of the existing work
provides metrics for predictive evaluation on a small-scale level. SScAC frame-
work is designed to fill this gap and allows small teams to assess their design
in a more formal manner and taking into account multiple variously important
design goals at the same time. For our framework to be usable we had to avoid
steep learning curve and complexity associated with some of the more advanced
methods. On a negative side user of our framework has to develop at least draft
implementations of compared designs and maintain the same functionality across
all of them. Unfortunately it is sometimes hard to discern functionality from de-
sign aspects. Future work on framework might include elaboration of new goals
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Table 4. Goals and properties overview

Goal/Property Weight Comments on weights

Performance

(1) 0.25 Parallelization concepts directly increase performance.
(2) 0.25 Bottlenecks establish upper limits on speed.
(3) 0.2 Effective synch. mech. support higher performance.
(4) 0.2 Robustness is consuming computing time.
(5) 0.1 Changing data format is consuming computing time.
Responsiveness

(6) 0.3 Increase in performance, stable request-handling time.
(2) 0.25 Bottlenecks establish upper limits on speed.
(7) 0.25 Stable request-handling time for multiple users.
(4) 0.1 Robustness is consuming computing time.
(5) 0.1 Changing data format is consuming computing time.
Mem. efficiency

(8) 0.2 It improves memory fragmentation.
(9) 0.5 It strongly supports effective usage of memmory.
(10) 0.3 Poor object reuse could signify higher fragmentation.
Expandability

(11) 0.7 We never want to change the existing components.
(12) 0.3 The less work, the better.
Changeability

(11) 0.7 We never want to change the existing components.
(12) 0.3 The less work, the better.
Reus. in the sys.

(15) 0.4 It might be an indicator of bad design.
(13) 0.2 Sometimes necessary but the less the better.
(14) 0.4 We never want to change the existing components.
Reus. across sys.

(15) 0.3 It might be necessary but the less the better.
(13) 0.3 Sometimes necessary but the less the better.
(14) 0.4 We never want to change the existing components.
Testability

(16) 0.5 Unnecessary additional work.
(17) 0.5 It leads to simpler tests and lower mistake possibility.
Reliability

(18) 0.25 The less bugs the higher reliability.
(22) 0.125 Easy backup.
(23) 0.125 Easy failover enables redundancy.
(20) 0.125 If too difficult some errors might not be caught.
(21) 0.125 The easier the recovery the shorter the outage.
(19) 0.25 Lower probability of a bug while maintaining.
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such as clean & readable design or scalability in respect to medium-scale systems
and further extension of goal tests. In terms of further academic research the
proposed framework could contribute to work by L. Bass et al. [2,3] and elucidate
the amount of influence certain pattterns have on architectural properties.
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Abstract. Kripke Structures and Labelled Transition Systems are the
two most prominent semantic models used in concurrency theory. Both
models are commonly believed to be equi-expressive. One can find many
ad-hoc embeddings of one of these models into the other. We build upon
the seminal work of De Nicola and Vaandrager that firmly established
the correspondence between stuttering equivalence in Kripke Structures
and divergence-sensitive branching bisimulation in Labelled Transition
Systems. We show that their embeddings can also be used for a range
of other equivalences of interest, such as strong bisimilarity, simulation
equivalence, and trace equivalence. Furthermore, we extend the results by
De Nicola and Vaandrager by showing that there are additional trans-
lations that allow one to use minimisation techniques in one semantic
domain to obtain minimal representatives in the other semantic domain
for these equivalences.

1 Introduction

Concurrency theory, and process theory in general, deal with the analysis and
specification of behaviours of reactive systems, i.e., systems that continuously in-
teract with their environment. Over the course of the past decades, a rich variety
of formal languages have been proposed for modelling such systems effectively.
At the level of the semantics, however, consensus seems to have been reached
over the models used to represent these behaviours. Two of the most pervasive
models are the state-based model generally referred to as Kripke Structures and
the event-based model known as Labelled Transition Systems, henceforth referred
to as KS and LTS.

The common consensus is that both the KS and LTS models are on equal
footing. This is supported by several embeddings of one model into the other
that have been studied in the past, see below for a brief overview of the rele-
vant literature. As far as we have been able to trace, in all cases embeddings of
both semantic models were considered modulo a single behavioural equivalence.
For instance, in their seminal work [8], De Nicola and Vaandrager showed that
there are embeddings in both directions showing that stuttering equivalence [1]
in KS coincides with divergence-sensitive branching bisimulation [4] in LTS.
The embeddings, however, look a bit awkward from the viewpoint of concrete
equivalence relations.

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 494–505, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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On the basis of these results, one cannot arrive at the conclusion that the
embeddings also work for a larger set of equivalences. For instance, it is very
easy to come up with a mapping that reflects and preserves branching-time
equivalences while breaking linear-time equivalences, by exposing observations
of branching through the encodings. Note that it is equally easy to construct
encodings that break branching-time equivalences while reflecting and preserving
some linear-time equivalences, e.g., by including some form of determinisation
in the embeddings.

Our contributions are as follows. Using the KS-LTS embeddings lts and ks of
De Nicola and Vaandrager in [7], in Section 3 we formally establish the following
relations under these embeddings:

1. bisimilarity in KS reflects and preserves bisimilarity in LTS;
2. similarity in KS reflects and preserves similarity in LTS;
3. trace equivalence in KS reflects and preserves completed trace equivalence

in LTS.

These results add to the credibility that indeed both worlds are on equal footing,
and it may well be that the embeddings ks and lts are in fact canonical.

As already noted in [7], there is no immediate correspondence between the
embeddings lts and ks. For instance, one cannot move between KS and LTS and
back again by composing lts and ks. We mend this situation by introducing two
additional translations, viz., lts−1 and ks−1, that can be used to this end. More-
over, we show that combining these with the original embeddings enables one
to minimise with respect to an equivalence in KS by minimising the embedded
artefact in LTS (and vice versa).

From a practical point of view, our contributions allow one to smoothly move
between both semantic models using a single set of translations. This reduces
the need for implementing dedicated software in one setting when one can take
advantage of state-of-the-art machinery available in the other setting.

Related Work. In their seminal paper (see [8]) on logics for branching bisimilar-
ity, De Nicola and Vaandrager established, among others, a firm correspondence
between the divergence-sensitive branching bisimilarity of [4], and stuttering
equivalence [1]. Their results spawned an interest in the relation between tem-
poral logics in the LTS and the KS setting, see e.g. [6,7]. The latter both contain
the embeddings that we use in this paper, differing slightly from the ones pro-
posed in [8], which in turn were in part inspired by the (unpublished) embedding
by Emerson and Lei [2]. The tight correspondence between stuttering equivalence
and branching bisimilarity that was exposed, led Groote and Vaandrager to de-
fine algorithms for deciding said equivalences in [5]. Their algorithms (and their
correctness proofs), however, are stated directly in terms of the appropriate set-
ting, and do not appear to use the embeddings lts and ks (but they might have
acted as a source of inspiration).

Apart from the few documented cases listed above, many ad-hoc embeddings
are known to work for equivalences that are not sensitive to abstraction. For
instance, one can model the state labelling in a Kripke Structure by means of
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labelled self-loops, or directly on the edges to the next states, thereby exposing
the same information. Such embeddings, however, fail for equivalences that are
sensitive to abstraction, such as stuttering equivalence, which roughly compresses
sequences of states labelled with the same state information.

Outline. In Section 2, we formally introduce the computational models KS and
LTS, along with the embeddings ks and lts. The latter are proved to preserve
and reflect the additional three pairs of equivalence relations stated above. In
Section 4, we introduce the inverses ks−1 and lts−1, and we show that these can
be combined with ks and lts, respectively, to obtain our minimisation results.
We finish with a brief summary of our contributions and an outlook to some
interesting open issues. Details of the proofs for our results can be found in [9].

2 Preliminaries

Central in both models of computation that we consider, i.e., KS and LTS, are
the notions of states and transitions. While the KS model emphasises the infor-
mation contained in such states, the LTS model emphasises the state changes
through some action modelling a real-life event. Let us first recall both models
of computation.

Definition 1. A Kripke Structure is a structure 〈S, AP,→, L 〉, where

– S is a set of states;
– AP is a set of atomic propositions;
– →⊆ S×S is a total transition relation, i.e., for all s ∈ S, there exists t ∈ S,

such that (s, t) ∈→;
– L : S → 2AP is a state labelling.

By convention, we write s→ t whenever (s, t) ∈→.

Remark 1. The transition relation in the KS model is traditionally required to be
total. Our results do not depend on the requirement of totality, but we choose to
enforce totality in favour of a smoother presentation and more concise definitions.
Without totality, slightly more complicated treatments of the notions of paths
and traces (see also Section 3.4) are needed.

With the above restriction in mind, we define the LTS model with a similar
restriction imposed on it.

Definition 2 (Labelled Transition System). A structure 〈S, Act,−→〉 is an
LTS, where:

– S is a set of states;
– Act is a set of actions;
– −→⊆ S× (Act∪{τ})×S is a total transition relation, i.e., for all s ∈ S, there

are a ∈ Act, t ∈ S, such that (s, a, t) ∈−→.

In lieu of the convention for KS, we write s
a−→ t whenever (s, a, t) ∈−→.
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Note that in the setting of the LTS model, a special constant τ is assumed
outside the alphabet of the set of actions Act of any concrete transition system.
This constant is used to represent so-called silent steps in the transition system,
modelling events that are unobservable to any witness of the system.

In [7], De Nicola and Vaandrager considered embeddings called lts and ks,
which allowed one to move from KS models to LTS models, and, vice versa, from
LTS models to KS models. We repeat these embeddings below, starting with the
embedding from KS into LTS.

Definition 3. The embedding lts : KS→ LTS is defined as lts(K)=〈S′, Act,−→〉
for arbitrary Kripke Structures K = 〈S, AP,→ , L 〉, where:

– S′ = S ∪ {s̄ | s ∈ S}, where it is assumed that s̄ /∈ S for all s ∈ S;
– Act = 2AP ∪ {⊥};
– −→ is the smallest relation satisfying:

s
⊥−→ s̄

s→ t L(s) = L(t)
s

τ−→ t

s̄
L(s)−−−→ s

s→ t L(s) �= L(t)

s
L(t)−−−→ t

The fresh symbol ⊥ is used to signal a forthcoming encoding of the state infor-
mation of the Kripke Structure. Encoding the state information by means of a

self-loop s
L(s)−−−→ s introduces problems in preserving and reflecting equivalences

that are sensitive to abstraction.

Definition 4. The embedding ks : LTS → KS is formally defined as ks(T ) =
〈S′, AP,→ , L 〉 for Labelled Transition System T = 〈S, Act,−→〉, where:

– S′ = S ∪ {(s, a, t) ∈−→ | a �= τ};
– AP = Act ∪ {⊥}, where ⊥ /∈ Act;
– → is the least relation satisfying:

s→ (s, a, t) (s, a, t)→ t

s
τ−→ t

s→ t

– L(s) = {⊥} for s ∈ S, and L((s, a, t)) = {a}.

In ks, the fresh symbol ⊥ is used to label the states from the Labelled Transition
System. The τ -transitions are treated differently from concrete actions, allowing
one to reflect equivalences that abstract from sequences of τ -transitions.

Observe that, as already stated in [7], due to the artefacts introduced by the
embeddings, moving from LTS to KS and back again yields transition systems
incomparable to the original ones. Consequently, in LTS, one cannot take ad-
vantage of tools for minimising in the setting of KS, and vice versa. We defer
further discussions on this matter to Section 4.
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3 Preservations and Reflections of Equivalences under lts
and ks

The embeddings lts and ks have already been shown to preserve and reflect
stuttering equivalence [1] and divergence-sensitive branching bisimulation [4] by
De Nicola and Vaandrager. In this section, we introduce three additional pairs
of equivalences and show that these are also preserved by the embeddings lts
and ks. Our choice for these four equivalences is motivated largely by the limited
set of equivalences available in the KS model (contrary to the LTS model, which
offers a very fine-grained lattice of equivalence relations, see [3]).

Remark 2. For reasons of brevity, throughout this paper we define equivalence
relations on states within a single LTS (resp. KS) rather than equivalence rela-
tions between different models in LTS (resp. KS). Note that this does not incur
a loss in generality, as it is easy to define the latter in terms of the former.

3.1 Similarity

Both KS and LTS have well-developed theories revolving around the notion of
similarity. We first formally define both notions.

Definition 5. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. A relation B ⊆
S × S is a simulation relation iff for every s, s′ ∈ S satisfying (s, s′) ∈ B:

– L(s) = L(s′);
– for all t ∈ S, if s→ t, then s′ → t′ for some t′ ∈ S such that (t, t′) ∈ B.

For states s, s′ ∈ S, we say s is simulated by s′ if there is a simulation relation B,
such that (s, s′) ∈ B. States s, s′ ∈ S are said to be similar, denoted K |= s & s′

iff there are simulation relations B and B′, such that (s, s′) ∈ B and (s′, s) ∈ B′.

Remark 3. It should be noted that when lifting our notion of similarity to an
equivalence relation between different models in KS, the first requirement is
sometimes stated as L(s) = L′(s′) ∩ AP , where L′ is the state labelling of the
second KS model, and AP is the set of atomic propositions of the first KS model.
In this case, some form of abstraction is included, and care should be taken to
deal with this properly when lifting all our results to such a setting.

Definition 6. Let T = 〈S, Act,−→〉 be a Labelled Transition System. A relation
B ⊆ S × S is a simulation relation iff for every s, s′ ∈ S satisfying (s, s′) ∈ B:

– for all t ∈ S and a ∈ Act ∪ {τ}, if s
a−→ t, then s′ a−→ t′ for some t′ ∈ S′ such

that (t, t′) ∈ B.

State s ∈ S is said to be simulated by state s′ ∈ S if there is a simulation relation
B, such that (s, s′) ∈ B. States s, s′ ∈ S are similar, denoted T |= s & s′ iff
there are simulation relations B and B′, such that (s, s′) ∈ B and (s′, s) ∈ B′.

The theorems below state that indeed, embedding lts preserves and reflects KS-
similarity through LTS-similarity (see Theorem 1), and vice versa, embedding ks
preserves and reflects LTS-similarity through KS-similarity (Theorem 2).
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Theorem 1. Let K = 〈S, AP,→, L 〉 be an arbitrary Kripke Structure. Then,
for all s, s′ ∈ S, we have K |= s & s′ iff lts(K) |= s & s′.

Theorem 2. Let T = 〈S, Act,−→〉 be a Labelled Transition System. Then for
all s, s′ ∈ S, we have T |= s & s′ iff ks(T ) |= s & s′.

3.2 Bisimilarity

A stronger notion of equivalence that is rooted in the same concepts as similarity,
is bisimilarity. Again, bisimilarity has been defined in both KS and LTS, and we
here show that both definitions agree through the embeddings lts and ks.

Definition 7. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. States s, s′ ∈ S
are said to be bisimilar, denoted K |= s↔s′ iff there is a symmetric simulation
relation B, such that (s, s′) ∈ B.

Similarly, we define bisimilarity in the setting of LTS as follows:

Definition 8. Let T = 〈S, Act,−→〉 be a Labelled Transition System. States
s, s′ ∈ S are bisimilar, written T |= s↔s′ iff there is a symmetric simulation
relation B, such that (s, s′) ∈ B.

Theorem 3. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. Then for all s, s′ ∈
S, we have K |= s↔s′ iff lts(K) |= s↔s′.

Theorem 4. Let T = 〈S, Act,−→〉 be a Labelled Transition System. For all
s, s′ ∈ S, we have T |= s↔s′ iff ks(T ) |= s↔s′.

3.3 Stuttering Equivalence – Divergence-Sensitive Branching
Bisimilarity

In this section, we merely repeat the definitions for stuttering equivalence and
divergence-sensitive branching bisimilarity. In Section 4, we come back to these
equivalence relations and state several new results for these.

The following definition for stuttering equivalence is taken from [8], where it
is shown to coincide with the original definition by Brown, Clarke and Grum-
berg [1]. We prefer the former phrasing because of its coinductive nature.

Definition 9. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. A symmetric rela-
tion B ⊆ S×S is a divergence-blind stuttering equivalence iff for all (s, s′) ∈ B:

– L(s) = L(s′);
– for all t ∈ S, if s→ t, then there exist s′0, . . . , s

′
n ∈ S, such that s′ = s′0 and

(t, s′n) ∈ B, and for all i < n, s′i → s′i+1 and (s, s′i) ∈ B.

Definition 10. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. Let the Kripke
Structure Kd = 〈Sd, APd,→d, Ld 〉 be defined as follows:

– Sd = S ∪ {sd} for some fresh state sd /∈ S;
– APd = AP ∪ {d} for some fresh proposition d /∈ AP ;
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– →d=→ ∪{(s, sd) |s is on an infinite path of states labelled L(s), or s=sd};
– for all s ∈ S, Ld(s) = L(s), and Ld(sd) = {d}.

States s, s′ ∈ S are said to be stuttering equivalent, notation: K |= s ≈s s′ iff
there is a divergence-blind stuttering equivalence relation B on Sd of Kd, such
that (s, s′) ∈ B.

The origins of divergence-sensitive branching bisimilarity can be traced back
to [4]. In [10], Van Glabbeek et al demonstrate that various incomparable phras-
ings of the divergence property all coincide with the original definition. For our
purposes the following formulation is most suitable.

Definition 11. Let T = 〈S, Act,−→〉 be a Labelled Transition System. A sym-
metric relation B ⊆ S×S′ is a divergence-sensitive branching simulation relation
iff for all (s, s′) ∈ B:

– if there is an infinite sequence of states s0 s1 s2 · · · such that s = s0 and
si

τ−→ si+1 for all i, then there exist a mapping σ : N → N, and an infinite
sequence of states s′0 s′1 s′2 · · · such that s′ = s′0, s′k

τ−→ s′k+1 and (sσ(k), s
′
k) ∈

B for all k ∈ N;
– for all t ∈ S and a ∈ Act ∪ {τ}, if s

a−→ t, then a = τ and (t, s′) ∈ B, or

s′ τ∗
−→ s∗ a−→ t′ for some s∗, t′ ∈ S such that (s, s∗) ∈ B and (t, t′) ∈ B.

States s, s′ ∈ S are divergence-sensitive branching bisimilar, notation s↔dsbs′ iff
there is a symmetric divergence-sensitive branching simulation relation B, such
that (s, s′) ∈ B.

3.4 Trace Equivalence – Completed Trace Equivalence

Trace equivalence and completed trace equivalence are the only linear-time
equivalence relations that we consider in this paper. In defining these equiv-
alence relations, we require some auxiliary notions, basically defining what a
computation is in our respective models of computation.

Definition 12. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. A path starting
in state s ∈ S is an infinite sequence s0 s1 . . ., such that si → si+1 for all i,
and s = s0. The set of all paths starting in s is denoted Paths(s).

Basically, a path formalises how a single computation evolves in time. Actually,
it is the information contained in the states that are visited along such a com-
putation that is often of interest, as it shows how the state information evolves
in time. This is exactly captured by the notion of a trace.

Definition 13. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. Let π = s0 s1 . . .
be a path starting in s0. The trace of π, denoted Trace(π), is the infinite sequence
L(s0) L(s1) . . .. For a set of paths Π, we set

Traces(Π) = {Trace(π) | π ∈ Π}

States s, s′ ∈ S are trace equivalent, denoted K |= s &t s′, if Traces(Paths(s)) =
Traces(Paths(s′)).
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Remark 4. In the presence of non-totality of the transition relation of a Kripke
Structure, it no longer suffices to consider only the infinite paths as the basis
for defining trace equivalence. Instead, maximal paths are considered, which in
addition to the infinite paths, also contains paths made up of sequences of states
that end in a sink-state, i.e., a state without outgoing edges.

For models in LTS, we define similar-spirited concepts; for the origins of the
definition, we refer to Van Glabbeek’s lattice of equivalences [3].

Definition 14. Let T = 〈S, Act,−→〉 be a Labelled Transition System. A run
starting in a state s ∈ S is an infinite, alternating sequence of states and actions
s0 a0 s1 a1 . . . satisfying si

ai−→ si+1 for all i, and s = s0. The set of all runs
starting in s0 is denoted Runs(s0).

Definition 15. Let T = 〈S, Act,−→〉 be a Labelled Transition System. The trace
of a run ρ = s0 a0 s1 a1 . . ., denoted Trace(ρ), is the infinite sequence a0 a1 · · · .
For a set of runs R, we define

Traces(R) = {Trace(ρ) | ρ ∈ R}

States s, s′ ∈ S are completed trace equivalent, denoted by T |= s &t s′ iff
Traces(Runs(s)) = Traces(Runs(s′)).

Theorem 5. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. For all s, s′ ∈ S,
we have K |= s &t s′ iff lts(K) |= s &t s′.

In a similar vein, we obtain that completed trace equivalence in LTS is preserved
and reflected by trace equivalence in KS.

Theorem 6. Let T = 〈S, Act,−→〉 be a Labelled Transition System. Let s, s′ ∈ S
be arbitrary states. We have T |= s &t s′ iff ks(T ) |= s &t s′.

4 Minimisations in LTS and KS

As we concluded in Section 2, the mappings lts and ks cannot be used to freely
move to and fro the computational models. Instead, we introduce two additional
mappings, viz., lts−1 and ks−1 that act as inverses to lts and ks, respectively, and
we show that these can be used to come to our results for minimisation. Here,
we focus on the computationally most attractive equivalences, viz., bisimilarity
and stuttering equivalence.

Let ∼ ∈ {↔, ≈s } and ↔ ∈ {↔,↔dsb} be arbitrary equivalence relations
on KS and LTS, respectively. For a given model K in KS, its quotient with
respect to ∼ is denoted K/∼. Similarly, for a given model T in LTS, its quotient
with respect to ↔ is denoted T/↔. We assume unique functions ∼-minKS for
KS, and ↔-minLTS for LTS that uniquely determine transition systems that are
isomorphic to the quotient. If, from the equivalence relation ∼, the setting is
clear, we drop the subscripts and write ∼-min instead.
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4.1 Minimisation in KS via Minimisation in LTS

We first characterise a subset of models of LTS for which we can define our
inverse lts−1 of lts.

Definition 16. Let T = 〈S, Act,−→〉 be a Labelled Transition System. Then T
is reversible iff

1. Act = 2AP ∪ {⊥}, for some set AP ;
2. for all s, s′ ∈ S and a ∈ Act ∪ {τ}, if s

a−→ s′, then s′ ⊥−→;
3. for all s, s′, s′′ ∈ S such that s

⊥−→ s′ and s
⊥−→ s′′, we require that s′ a−→ and

s′′ a′
−→ implies a = a′ for all actions a, a′ ∈ Act.

Note that any embedding lts(K) of a Kripke Structure K is a reversible Labelled
Transition System. Reversibility is preserved by the quotients for ↔ and ↔dsb,
as stated by the following proposition.

Proposition 1. Let T be an arbitrary reversible Labelled Transition System.
Then T/↔, for ↔ ∈ {↔,↔dsb}, is reversible.

The embedding lts introduces a fresh, a priori known action label ⊥. We treat
this constant differently from all other actions in our reverse embedding.

Definition 17. Let T = 〈S, Act,−→〉 be a reversible Labelled Transition System.
We define the Kripke Structure lts−1(T ) as the structure 〈S′, AP,→, L 〉, where:

– S′ = {s ∈ S | s ⊥−→};
– AP is such that Act = 2AP ∪ {⊥};
– → is the least relation satisfying the single rule:

s
a−→ s′ a �= ⊥ s

⊥−→

s→ s′

– L(s) = a for the unique a such that s
⊥−→ s′ a−→.

The following proposition establishes that lts−1 is the inverse of embedding lts.

Proposition 2. We have lts−1 ◦ lts = Id.

Note that reversibility of a Labelled Transition System T is too weak to obtain
(lts ◦ lts−1)(T ) = T , as the following example illustrates:

Example 1. Consider the reversible Labelled Transition System left below.

⊥ {a} τ
⊥

{a}
{a}lts−1 lts

Following lts ◦ lts−1 leads to the LTS at the right, via the middle Kripke
Structure. It is clear that the latter is not isomorphic to the original LTS. 
�
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Lemma 1. We have ↔-minLTS ◦ lts ◦↔-minKS = lts ◦↔-minKS.

Lemma 2. We have ↔dsb-minLTS ◦ lts ◦ ≈s -minKS = lts ◦ ≈s -minKS.

Before we present the main theorems concerning the minimisations in KS through
minimisations in LTS, we first show that it suffices to prove such results for
Kripke Structures that are already minimal; see the lemma below.

Lemma 3. Let ∼ ∈ {↔, ≈s } and ↔ ∈ {↔,↔dsb} such that lts preserves and
reflects ∼ through ↔. Then

∼-min = lts−1 ◦↔-min ◦ lts ◦ ∼-min
implies

∼-min = lts−1 ◦↔-min ◦ lts

Proof. Assume that we have

∼-min = lts−1 ◦↔-min ◦ lts ◦ ∼-min (*)

By definition of ∼-min, we find ∀K : ∼-min(K) ∼ K. Since, by assumption,
lts preserves and reflects ∼ through↔, we derive ∀K : lts(K)↔ lts(∼-min(K)).
By definition of ↔-min, this means that we have:

↔-min ◦ lts = ↔-min ◦ lts ◦ ∼-min

As lts−1 is functional, and↔-min preserves reversibility, we immediately obtain:

lts−1 ◦↔-min ◦ lts = lts−1 ◦↔-min ◦ lts ◦ ∼-min (**)

The desired conclusion then follows by combining * and **. 
�

We finally state the two main theorems in this section.

Theorem 7. We have ↔-minKS = lts−1 ◦↔-minLTS ◦ lts.

Proof. Lemma 1 guarantees

↔-minLTS ◦ lts ◦↔-minKS = lts ◦↔-minKS

Functionality of lts−1, combined with Proposition 1, we find:

lts−1 ◦↔-minLTS ◦ lts ◦↔-minKS = lts−1 ◦ lts ◦↔-minKS

By Lemma 3, we then have our desired conclusion:

↔-minKS = lts−1 ◦↔-minLTS ◦ lts


�

Theorem 8. We have ≈s -minKS = lts−1 ◦↔dsb-minLTS ◦ lts.

Proof. Similar to Theorem 7, using Lemma 2 instead of Lemma 1. 
�
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4.2 Minimisation in LTS via Minimisation in KS

In the previous section, we showed that one can minimise in KS with respect
to bisimilarity or stuttering equivalence, using the embedding lts, a matching
equivalence relation in LTS and converting to KS again. In a similar vein, we
propose a reverse translation for ks, which allows one to return to LTS from KS.
We first characterise a set of Kripke Structures that are amenable to translating
to Labelled Transition Systems.

Definition 18. Let K = 〈S, AP,→, L 〉 be a Kripke Structure. Then K is
reversible iff

1. AP = Act ∪ {⊥} for some set Act;
2. |L(s)| = 1 for all s ∈ S;
3. for all s for which ⊥ /∈ L(s), we require that for all s′, s′′, s→ s′ and s→ s′′

implies both s′ = s′′ and L(s′) = {⊥}.

Proposition 3. Let K be an arbitrary reversible Kripke Structure. Then K/∼,
for ∼∈ {↔, ≈s }, is reversible.

Definition 19. Let K = 〈S, AP,→, L 〉 be a reversible Kripke Structure. The
Labelled Transition System ks−1(K) is the structure 〈S′, Act,−→〉, where:

– S′ = {s ∈ S | L(s) = {⊥}};
– Act is such that Act = AP \ {⊥};
– −→ is the least relation satisfying:

s→ s′ L(s) = L(s′)
s

τ−→ s′
s→ s′′ a ∈ L(s′′) \ {⊥} s′′ → s′

s
a−→ s′

Proposition 4. We have ks−1 ◦ ks = Id.

Without further elaboration, we state the final results.

Theorem 9. We have ↔-minLTS = ks−1 ◦↔-minKS ◦ ks.

Theorem 10. We have ↔dsb-minLTS = ks−1 ◦ ≈s -minKS ◦ ks.

5 Conclusions

Our results in Section 3 naturally extend the fundamental results obtained by De
Nicola and Vaandrager in [7,8]. In a sense, we could state that their embeddings
ks and lts are canonical for four commonly used equivalence relations.

While the stated embeddings have traditionally been used to come to results
about the correspondence between logics, the question whether they support
minimisation modulo behavioural equivalences was never answered. Thus, in
addition to the above stated results, we proved that indeed the embeddings
ks and lts can serve as basic tools in the problem of minimising modulo a be-
havioural equivalence relation. To this end, we defined inverses of the embeddings
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to compensate for the fact that composing ks and lts does not lead to transition
systems that are comparable (in whatever sense) to the one before applying the
embeddings. The latter results are clearly interesting from a practical perspec-
tive, allowing one to take full advantage of state-of-the-art minimisation tools
available for one computational model, when minimising in the other.

Our minimisation results are for two of the most commonly used equivalence
relations that are, arguably, still efficiently computable. However, we do intend
to extend our results also in the direction of (completed) trace equivalence and
similarity. As a slightly more esoteric research topic, one could look for improving
on the embedding lts, as, compared to the embedding ks, it introduces more
“noise”. For instance, it yields Labelled Transition Systems that have runs that
cannot sensibly be related to paths in the original Kripke Structure.
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Abstract. In various Internet applications, reputation systems are typical means
to collect experiences users make with each other. We present a reputation system
that balances the security and privacy requirements of all users involed. Our sys-
tem provides privacy in the form of information theoretic relationship anonymity
w.r.t. users and the reputation provider. Furthermore, it preserves liveliness, i. e.,
all past ratings can influence the current reputation profile of a user. In addition,
mutual ratings are forced to be simultaneous and self rating is prevented, which
enforces fairness. What is more, without performing mock interactions —even if
all users are colluding— users cannot forge ratings. As far as we know, this is the
first protocol proposed that fulfills all these properties simultaneously.

1 Introduction

Many Internet applications integrate reputation systems [1]. Before interacting with oth-
ers, users investigate their potential interaction partners’ reputation profiles to find out
whether they can trust them. As a reputation profile contains personal data, a
compromise is needed between:

Liveliness. That means reputation should always consider all interactions. In partic-
ular the reputation system should not offer users a final state in which bad behavior
no longer damages their reputation. This requirement addresses two problems many
privacy-preserving reputations systems have: the exclusion of negative feedback, and
the possible neglection of single ratings [2].

Fairness. Both interaction partners need to trust in the other one’s correct behavior
during rating. According to Camerer et al. and Dasgupta [3, 4] this is a trust game. This
trust game is fair if every user has equal possibilities for rating interaction partners.

Privacy. Explicit reputation is personal data (Bygrave [5]) and should only be accu-
mulated about users who agreed on this. Furthermore, reputation should be protected
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by means of technical data protection, as outlined by Mahler and Olsen [6]. In addi-
tion, privacy is in fact a pre-condition for fairness: To make a user’s rating reflect the
outcome of the trust game both users have to rate each other without any knowledge
of the other one except his previous reputation and the interaction rated. This prevents
retaliation based on the other one’s just given rating. Also on a long run, a user who got
a negative rating in the past must not be able to re-identify the user who rated her.

To our knowledge, none of the existing systems implements all these requirements.
After briefly describing related work in Sect. 2 we show in Sect. 3 a reputation sys-
tem that fulfills all: our system provides information-theoretic relationship anonymity,
it preserves liveliness of reputation, and it provides fairness by allowing mutual ratings
between interaction partners in such a way that none of the interaction partners can
avenge a negative rating. In this work we do explicitly exclude prevention of mock in-
teractions. Such prevention could be done outside the reputation system, e.g., by anony-
mously proving that an actual interaction took place, or by introducing transaction costs.

Further, our system fulfills the ‘usual’ requirements presented in [7]. We analyze our
system with respect to those requirements in Sect. 4. Finally, we summarize our results
and discuss open issues in Sect. 5.

2 Related Work

An overview on reputation system architectures is, e. g., provided by Voss in [8] while
possible reputation functions are, e. g., outlined by Mui in [9]. For an economic intro-
duction, we refer to Dellarocas’ work [10]. In [7, 11, 8] the design of reputation systems
is investigated from the perspective of privacy and security requirements, which is our
focus. Below, we outline related work on privacy friendly reputation systems. Finally,
we focus on incombinability of current approaches on liveliness and privacy with fair-
ness and privacy.

Privacy-respecting reputation systems aim at ensuring anonymity of all users in-
volved, namely the anonymity of the rater, the ratee and the users inquiring others’ rep-
utation. A ratee is anonymous if it is impossible to re-identify her in later transactions
even for the rater. Analogously, a rater is anonymous if it is impossible to re-identify her
in later transactions even for the ratee. On the other hand, an inquiring user is anony-
mous if it is impossible to re-identify her even if she inquires the reputation of a certain
user more than once. In [12], Pavlov et al. propose to use anonymity services to achieve
privacy for reputation systems; however, this approach only protects the inquiring user.
In order to obtain anonymity of raters and ratees, it needs to be ensured that many users
are indistinguishable by an attacker, so that they are in large anonymity sets. The pos-
sibility of recognizing users by reputation is limited if the set of possible reputations is
limited [11] or if the reputation is only published as an estimated reputation, as proposed
by Dellarocas in [13]. Androulaki et al. and Steinbrecher use transaction pseudonyms
to avoid linkability between transactions [14, 15].

In order to obtain anonymity of raters, interactions and ratings related to these inter-
actions need to be unlinkable. This can be reached by a reputation provider who only
calculates a new user reputation after it collected not only one but several ratings, as in
[16] by Dellarocas et al., or who only publishes an estimation of the actual reputation
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[13]. Further, a rater can be anonymous against the reputation provider by using con-
vertible credentials [11] or electronic cash [14, 2]. Furthermore, Kerschbaum proposed
in [17] a provable secure reputation system. This system uses two trusted third parties
to make ratings and reputations unlinkable, but does not provide anonymity for the in-
teraction partners as their use case is the physical world where addresses are needed for
good delivery and money transfer. From these systems none fulfils all our requirements.

Although fairness in addition to privacy can be reached by using fair exchange
protocols for ratings as suggested in [18], the systems described in [14, 2] cannot apply
this straight forward, because they make use of anonymous electronic cash, and most
e-cash protocols are interactive.

3 The Reputation System

System Overview

For our system environment, we assume a community system allowing interactions
among users. These interactions cause costs. An example of such a system is a mar-
ketplace where every user can be a seller (provider) or a buyer (client). Let U2 be such
a user offering interactions to other users. The community deploys a reputation sys-
tem provided by a reputation provider ReP, who is keeping overall reputation accounts
for all users of the community system. ReP collects positive and negative experiences
of users’ behavior during interactions in the form of interaction-derived reputation. If a
user U1 becomes interested in the interaction offered by U2, she inquires U2’s reputation
and based on this possibly signals her willingness to interact. U2 may then also inquire
U1’s reputation before she also agrees to the interaction. After their interaction, both
rate each other and their rating is included in the other’s reputation account at ReP. The
reputation accounts contain all past ratings a user got, hence the reputation function can
be arbitrary. The selection of an informative yet privacy-respecting reputation function
is beyond the scope of this work. In Fig. 1 the actions users can perform in their specific
roles are shown. Note the users are already registered with ReP.

System Details

In this section we detail our protocol. Users who want to use the system need to en-
roll as member with ReP to get a reputation account, which is bound to a long term

Fig. 1. Actions, user roles and items in the system



Privacy, Liveliness and Fairness for Reputation 509

pseudonym. Then, the system itself works round-based. We denote the number of users
in a round by N. Note that for every round this number can change, i. e., users can join
and leave the system. In every round, a user can interact with at most one other user.
During a round, this grouping of users into interaction partners cannot change. ReP
maintains a reputation account for every user under the long-term pseudonym Ui. In
this account it retains a chronological list that contains vectors of two bits for every
round. The first bit of each of these vectors is the registration bit, which is 1 if the user
registered an interaction for this round and 0 otherwise. The second bit is the received
rating bit, which is 1 if the user received a positive rating and 0 otherwise.

During membership enrollment, ReP exchanges with every user a symmetric encryp-
tion key for private communication between ReP and the user (for readability we do not
denote this encryption), and a message authentication key called MAC key that enables
ReP to sent authenticated multicast messages to all users. Moreover, it holds a key kRePUi
for confidential and anonymous sending (via a DC-Net, see [19] for a explanation of the
DC-Net) that it does not share with the user. We assume all keys to be long enough, so
that for every round a fixed new part can be used so that the key lasts for many rounds.

All users and ReP are part of a DC-Net, that is, they share DC-Net keys with some
users. Note, that the key sharing graph of a DC-Net only needs to be connected. How
many keys a single participant shares with peers is a matter of trust, since a DC-Net
participant can be de-anonymized if all users that share keys with her collude. For the
rating phase ReP shares two symmetric rating keys with every user, namely one for
a homomorphic encryption scheme and one for authenticating the rating token. The
following steps are done in every round.

A round consists of 3 phases each implemented by a protocol described below,
namely initialization, registration and rating. In addition there is a show reputation
protocol, which can be performed whenever needed. These protocols are explained in
detail in the following subsections.

Initialization. ReP generates a M > N long bit vector that consists of one bit for every
user initialized with 0. The vector needs to be longer than N to avoid random attacks,
as we will show in Sect. 4.1. Then ReP generates the following tokens for every user Ui

and sends these to him:
Registration token: ReP chooses a secret random number in the interval [1 : M] which

it has not chosen for another user. Then it forms M bit long vector Ui that is all 0, but
in the position indicated by the chosen number for this user. We denote this vector as
Ui, since it is in fact the ID of this user for this round. ReP encrypts this ID with the
symmetric key kRePUi

it generated for the user, but does not share with the user. The
encrypted token kRePUi

(Ui) is Ui’s registration token, which ReP sends to the user via a
secure channel and stores the position as the user’s round registration ID.

Rating token: Ui’s rating token is formed by a unique random number ReP assigned
to her for this round and a MAC suitable for an authenticated multicast. Hence, every
user can check whether the token is valid or not, but no adversary can test if a token is
valid for a user that is not controlled by him. The adversary would need the MAC key
of a user to check if a token would be accepted by this user. This token is both stored
and also securely sent to Ui as round rating ID.
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Fig. 2. Internal state of ReP with track of the past ratings and current user IDs

Internal state of ReP: In Fig. 2 an internal state of ReP is shown. Every user has a
registration and rating history. From this, ReP calculates the reputation of a user by us-
ing the reputation function. As outlined above we abstract from the concrete reputation
function used. In the column current round is shown which data needs to be stored in
every round, namely the registration ID, which represents the user as a position in a
vector and the rating ID, which is used as single-use return address for the rating phase.

Registration. Two users who are willing to interact establish a secure channel, e. g.,
using a authenticated Diffie-Hellman key exchange. Via this secure channel, they ex-
change their registration tokens encrypted with their DC-Net keys and their rating to-
kens. Both users check if the rating tokens are valid. For this, every user uses her MAC
key to verify the MAC generated by ReP for this rating token. If the rating token is
valid the encrypted registration tokens are sent to ReP via a secure channel (Fig. 3,
registration.) Otherwise the user refuses the interaction. All users who decided not to
interact in this round send a M bit long 0 vector encrypted with their DC-Net keys, and
the declaration that it is in fact a 0 vector, to ReP.

ReP calculates the sum of all received tokens. As a result it gets the sum of all vectors
encrypted with keys kRePUi

of all users Ui who want to interact with another user in this
round. Since the users who will not interact with any other user disclosed this to ReP,
ReP knows which keys to use to decipher.1 If all users acted correctly, the resulting
vector has a 1 at every position that represents a user who wants to interact. If a single
user sends a malformed message, or uses her registration token more than once, the
vector becomes meaningless with a high probability, i. e., the redundant bits are wrong.
In the first case ReP sends to every user an acknowledgment message and the respective
users can proceed with their interactions independently from ReP. In the second case
ReP sends a fail message to every user and the protocol stops or is restarted.

We are aware of techniques to make DC-Nets robust against malicious users, such
as presented in [20], but those are beyond the scope of this work. Fig. 3 illustrates the

1 So these messages are in fact dummy messages, which ReP does not need at all, but it prevents
from outsider attacks on the communication layer.
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Fig. 3. DC-Net-based interaction registration for a system with 2 users

initialization and registration protocol for two users U1 and U2 who know each other
by the pseudonyms PU1 and PU2 respectively. This is run by any two users who want to
interact.

Rating. After an interaction — in which ReP is not involved — the interaction part-
ners rate each other. Therefore, the rating token that was exchanged during registration,
viz. , the token the ratee sent to the rater, is used. As described before, the rating token
contains a random number which represents the ratee to ReP. The rater concatenates
a rating bit (1 for a positive rating and 0 otherwise) to the rating token and sends this
message via the DC-Net to ReP, thereby ReP does not publish its contribution to the
DC-round, to avoid that other users learn the value of the feedback. If ReP keeps its part
secret the message is effectively encrypted for it. Otherwise – as a DC-Net is a broadcast
– every entity having the contribution of all users could compute the resulting message.

Contrary to the registration, ReP needs to receive every single rating message, not
only their sum. For every rating a separate DC-Net round for sending is needed. Who
actually sends in the next DC-round, is determined by anonymous reservation. This
makes message collisions unavoidable. The most efficient collision resolving algorithm
[21, 22] broadcasts the result of the collision. In order to avoid that the users learn how
many positive feedback was given in a round, we use only the rating token part for re-
solving collisions and encrypt the feedback with the rating encryption key. Furthermore
the feedback needs to be secured against attacks that leverage the homomorphic prop-
erty of the encryption scheme. If the attacker adds an attack vector in the DC-round, the
feedback must be destroyed with a high probability. This can be done by a randomized
and redundant encoding of the two rating values. Thereby, a large pool of encodings is
needed, so that the attacker cannot guess which of the encodings is used and for every
encoding a different attack vector is needed to flip the rating. More formally, there must
not exist an attack vector such that for many pairs of encodings of positive rating and
negative rating, the sum of the negative rating and the attack vector results in a positive
rating (and vice versa).

Show Reputation. If a user wants to show her reputation to someone, she needs ReP.
First, the user sends the pseudonym, under which she wants to show the reputation
to an inquiring user, to ReP. ReP concatenates her current reputation, the pseudonym
received from the user and the current time. Further, for these concatenated parts ReP
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generates a MAC suitable for an authenticated multicast to all users. Then ReP sends
this authenticated message to the user. The user sends this message to the inquiring user.
The inquiring user can then decide whether she wants to interact or not. If she intends
to interact, she uses the transaction pseudonym to contact the other user.

4 System Analysis

Requirements. As pointed out in [2], the following requirements should be fulfilled
by a reputation system with regards to security (1-6) and privacy (7-9):

(1) Integrity of ratings: Ratings are preserved from manipulations.
(2) Authorizability of ratings: Only interaction partners may rate each other.
(3) Liveliness of reputation: Reputation considers all recent interactions.
(4) Availability of reputation: Inquirers are able to access other users’ reputation. This

problem is beyond the scope of this work.
(5) Absolute linkability of users’ registration: Users can register only once. This prob-

lem is solved outside the comunication network.
(6) Fairness of the underlying game-theoretic trust game: Every user has equal possi-

bilities for rating interaction partners but only them.
(7) Raters’ anonymity: Users can rate anonymously, this is:

(a) Attackers cannot link ratings and the respective raters.
(b) Attackers cannot link ratings and the corresponding interactions.

(8) Inquirers’ anonymity: Users can inquire reputation anonymously.
(9) Ratees’s anonymity: Ratees are unlinkable to their past interactions, except that

these contributed to their reputation.

Attackers. Because of the different attack goals we distinguish between security and
privacy attacker. Both outsiders and all parties involved (users and reputation provider)
can be interested in breaking security and privacy requirements.

Even though ReP behaves according to the protocol, it might be interested in who
rates whom, and it might be interested in building user profiles from this information.
As the privacy requirements (7), (8), and (9) aim at preventing this, ReP can be a privacy
attacker as well. Hence, we assume ReP to be a honest but curious attacker.

For the security attacker, we assume a global attacker who can observe as well as
modify all interactions between users and between users and ReP, but who cannot con-
trol ReP.

For the privacy attacker, we assume that he cannot observe who is communicating
with whom, that is, all users are using an anonymity service on the communication
layer. We further assume that the privacy attacker can only control a limited number of
users so that a sufficiently large anonymity set (which contains the users not controlled
by the attacker) is preserved. Finally, we assume that ReP does not cooperate with a user
who takes part in an interaction as this would allow ReP to de-anonymize the user who
interacts with this colluding user, because it can link received rating tokens to users.
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4.1 Security Analysis

In general, our proposed reputation system is designed to preserve fairness of the
underlying game-theoretic trust game (6), as it enables both interaction partners and
only them to rate each other and only for the interaction considered. We now need to
show that none can rate another user she has not interacted with and that none can
forge ratings. The latter would also damage the integrity of ratings (1).

The probabilities of a successful attack in the registration and the rating phase are
given in the following.

Probabilities of forged registrations. In the registration protocol for an interaction
users get a rating token that they need to give a rating in the rating phase. The reg-
istration protocol can only be performed successfully, if the initialization protocol has
been completed correctly. As we assume the ReP to behave correctly, the registration
tokens will be correctly formed. The submission of the tokens to the users is information-
theoretically secure encrypted and authenticity is secured by an information-theoretical-
ly secure MAC. We do not need a reliable message transmission here, as the registration
phase bases on a DC-Net which involves all users in the system. Thus, if a user received
no or a malformed registration token she will not cooperate in the DC-Net protocol, and
therefore a suppression of a registration token will lead to an invalid registration phase,
i. e., both registration and initialization phase need to be repeated. After the registration
protocol is completed successfully, all interacting users have a correct rating token.

The fairness of the registration protocol is provided by the all-or-nothing property of
the DC-Net, viz., only if all messages were summed up the keys sum up to 0. Hence,
it is not necessary to exchange registration tokens by fair exchange, since whenever a
message is missing or manipulated, the ReP will detect this with a high probability and
will send a fail message to all users. In the following paragraph we show how likely it
is that an attacker guesses a registration token which leads to an accepted registration.
Note that the attacker has no means to test whether the generated token is accepted
before sending the token to the ReP.

More formally, with respect to the registration protocol, we calculate the probability
that an attacker can manipulate a registration token in a meaningful way, i. e., that the
manipulated token would sum up with all other contributions to a meaningful registra-
tion vector, which makes the ReP accept the round. We assume that K users interact, N
users are taking part in this round and M is the length of the registration vector, hence
K ≤ N ≤ M. The number of all possible registration vectors is 2M , while the number
of all valid sums of all registration vectors is 2N

2 , since a valid sum can only have ones
at N positions and it needs to have an even number of ones. Given the number K of
interacting users, there are N−K positions left the attacker can manipulate. Since the
attacker cannot test whether his attack vector fullfills these properties the chance for a
successful attack equals the propability that he chooses the right attack vector at ran-
dom. A right vector is a vector which – when summed up with all other inputs – results
in an accepted sum of registration vectors. Since the vectors are summed up mod 2, for
every random vector of length M there are exactly as many attack vectors as there are
valid registration vectors. Hence the success probability is: 2N−K

2M .



514 S. Schiffner, S. Clauß, and S. Steinbrecher

Probabilities to forge a rating. When the registration protocol is completed success-
fully, both interaction partners have correct rating tokens. Now we need to analyze the
rating protocol with respect to requirement (6). Manipulations of the rating value by
users other than the rater should be detected, which provides integrity of ratings.

While the attack on the rating token forces a negative rating to some user that did not
intend to interact at all, guessing a rating token enables the attacker to give a negative
feedback to a user that interacts during this round, since the attacker could send this
token to ReP and it would be detected as self rating and lead to a negative rating. We
demonstrate below how likely manipulations of ratings are (1). With the method of
encoding and encrypting the rating presented in Sect. 3, a user could only guess another
bitstring for the encrypted rating, but she cannot verify her guess.

We now calculate the probability that a user can guess a correct rating token. Let K
be the number of interacting users and M the length of the rating token. Note that the
total number of users in the system is not important for this. As ReP would not accept a
rating token for an unregistered user, only users that have registered an interaction can
be attacked this way. Hence, the probability to correctly guess one token is K

2M .
Furthermore, a user may try to rate herself. This can be done without disrupting the

rating protocol, but if the interaction partner of this user also rated her, ReP will detect
two ratings for this user, and can penalize her, e. g., with a bad rating. On the other
hand, a user may send a 0-message instead of a rating value. Yet, this does not disrupt
the rating protocol, but enables her interaction partner to rate herself. That is why we
do not see any intention a user could have for sending a 0-message.

As for DC-Net in general, users can disrupt the communication by not behaving
according to the protocol, i. e., using wrong keys etc. This would lead to disable a rating
in this round. On the other hand, there exist techniques which make it possible to detect
and ban such DC-Net users, which have been published, e. g., in [20]. Such methods
can also be used here in order to eliminate users misbehaving in this protocol.

Liveliness, however, depends on the reputation function, but the reputation function
can only preserve it, if the protocol ensures that ReP really receives both positive and
negative ratings. This is ensured by providing fairness of the underlying game-theoretic
trust game (6) as described above.

Authorizability of Ratings (2) is preserved jointly by the registration protocol and
the rating protocol. During the registration protocol, every user receives a rating to-
ken from ReP, which can be used to rate her during the rating protocol. Also during
the registration protocol, interaction partners must exchange their rating tokens, thereby
the correctness of the tokens can be verified by the attached MAC. In this way, after
that the registration protocol has been finished successfully, both partners have the rat-
ing tokens of their interaction partners. As both partners now have their own and their
partner’s rating token, they could rate themselves as well. If only one partner rates her-
self, this will lead to a conflict detectable by ReP during the rating protocol, there will
be two ratings for one user, while another user got no ratings. However, if both interac-
tion partners rate themselves, this will not be detected.

Furthermore, authorizability is only computational secure, as an unbounded attacker
can observe the communication between two users and break the Diffie-Hellman key
exchange. Hence such an attacker can steal rating tokens and use those to give both
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interaction partners a negative feedback. However, the attacker needs to break the Diffie-
Hellman key exchange within the time between registration phase and rating phase of
the same round, since a rating token is only valid in the round it is issued. Moreover, the
attacker cannot link the tokens to usernames, but only to the transaction pseudonyms.

4.2 Privacy Analysis

We need to distinguish between the outside observer, the attacker who controls one or
more users and an attacker who controls the ReP and some users. For all of these at-
tackers, we need to analyze the different goals, namely inquirers’ anonymity (8), ratees’
anonymity (9) and raters’ anonymity (7).

Outside attacker. Our protocol is based on the DC-Net. If we assume that a DC-net
is used for the communication needed for the actual interaction, an outside attacker
can achieve as much as he can by observing a DC-Net. That is, if he observes all
communication lines, he can observe how many users are involved in total. However,
since in a DC-net essentially everybody always sends and receives he cannot reduce the
anonymity set further than this. This holds for all rolls, i. e., rater, ratee and inquiring
user since he cannot distinguish them.

Attacker controlling (some) users. We assume that an attacker cannot control too many
users; however, it is hard to quantify what ’too many’ exactly is, since it depends on
the security needs of the users. Furthermore, it is not sufficient to fix a certain fraction
of all users. Given an attacker that controls all but one user of a group of users that all
have the same reputation, the user who is not controlled by the attacker is effectively
de-anonymized, even if the controlled users are only a small fraction of all users.

Inquirers’ anonymity (8) is provided by the show reputation protocol: Both the in-
quirer and the user who shows the reputation act under pseudonym, and they commu-
nicate using an anonymous communication system as already described. If an attacker
controls the showing user, the only extra information he gets with respect to an outside
observer is that a user is interested in the reputation of the user under his control. This
does not help for attacks within the system, but depending on the actual application the
attacker might learn something about the inquirer, since she is interested in a certain
product or interaction the user who shows the reputation is offering. However, mini-
mizing the information needed within a interaction is beyond the scope of this work.

For Ratees’s anonymity (9) an anonymous communication system is needed. Fur-
thermore, all interactions are done under pseudonym, and different pseudonyms can be
used for every other round. However, an attacker who controls other users might try to
inquire all reputations of all other users. How much impact this has on the anonymity of
the ratee depends on the reputation function, more precisely, it depends on how many
different reputation values are possible and how those are distributed over the users.
Furthermore, it depends on whether an attacker can detect if he queries a user twice or
not, i. e., if users have one or more pseudonyms per round.2

The raters’ anonymity: The interaction partners are anonymous to each other, as all
communication between them is done under pseudonym, and they communicate using

2 Users can have more than one offer under different pseudonyms, but can only do one interac-
tion per round.
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an anonymous communication service. Hence, if the interaction partner is controlled by
the attacker, the only information the attacker learns more than an outside observer is
the information revealed by the interaction itself and the rating. However, most of the
time, the rating depends more on the interaction than on the user, so that the information
an attacker learns is hard to quantify.

Attacker controlling ReP. We assume that ReP does only attack privacy, not the se-
curity of the system. Indeed, ReP is a strong privacy attacker since it can observe all
registrations and all feedbacks. However, it cannot observe the actual interactions.

In the registration protocol, the users who do not intend to interact in this round in-
dicate this to ReP. Hence, ReP can distinguish between interacting and non-interacting
users. ReP will not get more information, as the registration process itself is anonymized
in a DC-Net-like way, as described in Sect. 3. If K is the number of users that intend
to interact, then for ReP it is equally likely with whom of the other K−1 other users a
user interacted. Note that if there are only a few users interacting, ReP has a very high
chance to guess correctly who is interacting with whom, e. g., ReP is certain about the
interaction relation for K = 2.

In the rating protocol, each interacting user sends the rating token she received from
her interaction partner to ReP. This is done using a DC-Net as well, so that the inter-
acting users are anonymous within their group. ReP only gets the rating tokens together
with the ratings. The rating token identifies the ratee, but it does not reveal with whom
the ratee interacted. However, as already described in Sect. 4, ReP may not cooperate
with one of the interacting users. Indeed, when they collude, they can de-anonymize
the interaction partner of this user by recognizing the rating token. Furthermore, the
ReP learns the value of the rating if the attacker can assume that ratings have a high
correlation, namely, the opinion over the outcome of a interaction is for both partners
often the same, the attacker can change the probabilities learned from the registration
phase. However, this knowledge depends on the actual system.

4.3 Efficiency

ReP needs to send one message to every user for initializing a round. During the regis-
tration protocol, users willing to interact need to send one message each to their inter-
action partner, therefore they need to agree on a key, e. g., using a Diffie-Hellman key
agreement protocol. Furthermore, only one message from every participant to ReP is
needed to register all interactions. Finally, every user who took part in an interaction
has to send a rating, which is only one DC-Net message per participant as well. This
means if K users interacted, the collision resolution needs at most K messages per user.

In order to take part in the DC-Net for registration and rating, users need to exchange
keys with each other as well as with ReP. The key exchange between the users needs
to be offline and, furthermore, secure from the ReP. The key exchange with ReP can be
done in parallel with the registration, which can be done by, e. g., paper mail. In order
to provide anonymity between the users of a DC-Net, the key graph between the users
of the DC-Net needs to be connected. However, the stronger the graph is connected
the better anonymity is protected against internal attackers. For information-theoretic
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anonymity within the DC-Net, the keys need to be random. Calculations within the
DC-Net are cheap, as these are only additions modulo the cardinality of the alphabet of
the DC-Net. Please refer to [19] for details regarding the DC-Net.

All other encryptions needed are one-time-pad encryptions, i. e., additions modulo
a given group. Such encryptions (and the corresponding decryptions) are done by ReP
for the registration tokens, for the rating tokens, and for the rating part of the DC-Net
message in every DC-round of the collision resolution during the rating protocol. As all
these crypto operations are done by ReP, no key exchange is needed for that.

Moreover, ReP has to calculate MACs for the registration token, for the rating token,
and for the message from ReP to the user during the show reputation protocol. For
every MAC the cost are the one of applying the respective universal hash functions,
that is usually cheap, and a one-time-pad [23].

5 Conclusion

In this paper we presented a reputation system that focuses particularly on fairness,
liveliness and privacy, without sacrificing general security requirements.

Liveliness is achieved by registration before the actual interaction, which prevents
silently suppressing bad ratings. Our system also provides fairness by enforcing simul-
taneous ratings between interaction partners, so that both partners have equal possibil-
ities to rate each other. Last but not least it preserves anonymity between interaction
partners and preserves privacy from the reputation provider, so that it does not get to
know who interacts with (and rates) whom. In contrast to previous approaches that
rely on the computational privacy of convertible credentials or anonymous cash our ap-
proach provides information-theoretic privacy. However, some information needs to be
disclosed, namely the users’ reputation. Given a sufficient number of interacting users
one needs to choose a reputation function that gives usable feedback to the users on one
side, but divides the user set in only a few large groups on the other side.

In Table 1 we compare our system with closely related ones, as described in Sect. 2.

Table 1. Comparison of reputation protocols

Monotonic [14] Non-monotonic [2] this work
Authorizability (2) no yes yes
Liveliness (3) no, only-positive ratings yes, negative ratings yes, negative ratings
Fairness (6) no no, mutual ratings yes
Anonymity (9) yes, but timing yes, less timing issues yes

For future work, we plan a formal analysis of the natural bounds with respect to the
tradeoff between privacy of the parties involved and the information needed. Second
we plan to work on practicability. For example we assume registration and rating to be
done synchronously. We will have to relax this in future work to asynchronism to make
the protocol more flexible.
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Abstract. Finding a low-interference connected topology is one of the
fundamental problems in wireless ad-hoc and sensor networks. The
receiver-centric interference on a node is the number of other nodes whose
transmission ranges cover the node. The problem of reducing interference
through adjusting the nodes’ transmission ranges in a connected network
can be formulated as that of connecting the nodes by a spanning tree
while minimizing interference. In this paper, we study minimization of
the average interference and the maximum interference for the high-way
model, where all the nodes are arbitrarily distributed on a line. Two exact
algorithms are proposed. One constructs the optimal topology that min-
imizes the average interference among all the nodes in polynomial time,
O(n3Δ3), where n is the number of nodes and Δ is the maximum node
degree. The other algorithm constructs the optimal topology that min-
imizes the maximum interference in sub-exponential time, O(n3ΔO(k)),
where k = O(

√
Δ) is the minimum maximum interference.

Keywords: wireless ad-hoc and sensor networks, interference minimiza-
tion,topologycontrol,combinatorialoptimization,dynamicprogramming.

1 Introduction

Wireless ad-hoc and sensor networks consist of a set of nodes deployed across a
region of interest. Each node has limited processing ability and is equipped with
a wireless radio for communication. Compared with traditional wired networks,
they do not have a fixed infrastructure. The nodes can adjust their transmission
powers to achieve their desired transmission ranges which then form a multi-hop
network. Wireless ad-hoc and sensor networks have many applications in real
life such as environmental monitoring, intrusion detection, and health care. It is
regarded as one of the most popular networking paradigms.

Due to the environments in which they are typically deployed, wireless nodes
can only use relatively weak batteries. Energy is therefore at a premium which
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however is critical for the network’s lifetime. One direction for energy conser-
vation is to reduce interference which occurs when communication between two
nodes is interfered by another concurrent transmission nearby. Different models
have been defined to depict the phenomenon [3,4,5,6,7]. Paper [14] proposed a
stable and realistic interference model, called the receiver-centric model, where
the interference on a node v is the number of other nodes whose transmission
ranges cover v (Figure 1). In this paper, unless specified, the receiver-centric
model is assumed.

Fig. 1. The receiver-centric interference: the numbers are interference on each node

Topology control refers to selecting only a subset of the available commu-
nication links for data transmission, which has been widely used to construct
networks with specific properties such as planarity, bounded node degree, the
spanner property and low interference [13,1,10,8]. Researchers are not only in-
terested in minimizing the average interference on the nodes, but also the max-
imum interference, because the maximum interference is closely related to the
time when the first node runs out of energy, which could mean a halt of the
entire network’s operation. The problem of minimizing the maximum interfer-
ence while preserving connectivity in two-dimensional networks has been proved
to be NP-complete [2]. Authors of [9] proposed an algorithm that could bound
the maximum interference by O(

√
Δ) using the ε−net theory in computational

geometry. Here, n is the number of nodes and Δ is the maximum node degree in
the topology when each node is set to the maximum transmission range and con-
nected to all the other nodes in its range (If all the nodes have the same maximum
transmission range, the topology is actually a unit-disk-graph). For minimizing
average interference in 2D networks, paper [12] developed an asymptotically op-
timal algorithm with an approximation ratio of O(logn). Researchers are also
interested in the interference problem in 1D networks as there are also many ap-
plication scenarios for 1D networks, such as bridges and tunnels. For minimizing
the maximum interference on the exponential chain, authors in [14,15] proposed
an asymptotically optimal algorithm and proved a tight lower bound of Ω(

√
Δ).

Here the exponential chain means the nodes are distributed on a 1D line with
the distances growing exponentially. Furthermore, for the general case, in which
the nodes are arbitrarily distributed on a line, the so called highway model,
they bounded the minimum maximum interference by O(

√
Δ) and presented an

approximation with ratio of O( 4
√

Δ).
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In this paper, we study minimization of the average and the maximum inter-
ference for the highway model. Two exact algorithms are proposed. One is to
construct the optimal connected topology with minimum average interference
in O(n3Δ3) time. The other constructs the connected topology with minimum
maximum interference. Here, minimizing the maximum interference is related to
the second open problem proposed in [11], but we restrict the model to one di-
mension and add a constraint on the maximum transmission range of the nodes.
Our algorithm runs in sub-exponential time, O(n3ΔO(k)), where k = O(

√
Δ)

is the minimum maximum interference. We can see when Δ is small, which
means a low maximum node degree, our algorithm is fast. To our knowledge,
the former algorithm is the first polynomial-time algorithm for minimizing the
average interference and the latter is the first sub-exponential-time algorithm
for minimizing the maximum for the highway model.

The rest of the paper is organized as follows. In Section 2, we give the formal
definitions of the interference model and the problem. Section 3 describes the
no-cross property and gives the algorithm to minimize the average interference
for the highway model. Section 4 describes how to minimize the maximum inter-
ference. Section 5 concludes the paper and points out some open problems and
possible future work.

2 Models and Problem Definitions

We assume a wireless ad-hoc and sensor network in which the nodes are station-
ary after deployment in a region. If at some point they need to be moved, we
can re-run the proposed algorithms using the new coordinates. The maximum
transmission radius of the nodes is denoted as rmax. Each node can self-adjusts
its transmission radius from 0 to rmax in a continuous manner. There are no
obstacles to block the communications. Therefore, the maximum transmission
range of a node v will be the disk centered at v with radius rmax. For the high-
way model, we assume rmax is not shorter than the farthest distance between
two consecutive nodes, or else it is not possible to construct connected topology.

The network is modeled as an undirected graph G = (V, E), where V is the
set of nodes and E is the set of communication links. For the highway model, the
n nodes in V = {v0, v1, ..., vn−1} are arbitrarily deployed along a line from left to
right. We can view the line as an x-axis, and v0 = 0. Then, each node u is denoted
as its x-coordinate. An edge (u, v) ∈ E exists only if both their transmission radii,
ru and rv, are not shorter than their Euclidean distance |u− v|. Therefore, in G,
the transmission radius of a node is equal to the distance to its farthest neighbor
(Two nodes are neighbors means there is an edge incident on them.). In addition,
we introduce the following terms. For a segment vsvt on the line, where s ≤ t, the
nodes located on vsvt are {vs, vs+1, ..., vt−1, vt}; the nodes outside vsvt are the
other nodes that are not on it; the nodes inside vsvt are {vs+1, vs+2, ..., vt−1}.

The receiver-centric interference model is adopted. The interference of a node
v, denoted as RI(v), is defined as the number of other nodes whose transmission
ranges can cover v:
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RI(v) = |{u|u ∈ V/{v}, |u− v| ≤ ru}|. (1)

The average node interference in G, RIavg(G), can be defined as:

RIavg(G) =
∑

v∈V RI(v)
|V | . (2)

The maximum node interference, RImax(G), can be defined as:

RImax(G) = maxv∈V RI(v). (3)

Besides minimizing interference, we also need to preserve the network connec-
tivity. Therefore, the optimal topology with the minimum interference should be
a spanning tree on V . Therefore, our problems can be defined as:

Given n nodes arbitrarily distributed on a 1D line, construct a spanning tree,
G = (V, E), to connect all the nodes with edges no longer than rmax. The min-
imization of the average interference problem is to construct a spanning tree
that minimizes RIavg(G), and the minimization of the maximum interference
problem is to construct a spanning tree that minimizes RImax(G).

3 Minimizing the Average Interference

3.1 No-Cross Property

For a spanning tree G = (V, E) constructed on the nodes along a line, we can
draw all the edges on one side of the line. A cross means there are two edges
that share at least a common point excluding their endpoints (Figure 2(a)). By

(a) (b) (c)

Fig. 2. a, b, c and d are four nodes distributed on a line, where l1 = c− a, l2 = b− c,
and l3 = d− b, and (a, b) and (c, d) are two edges: (a) (a,b) and (c, d) have a cross; (b)
the cross removed when l1 ≤ l2 + l3; (c) the cross removed when l1 > l2 + l3

adding and deleting edges, we show below that a cross can be removed without
increasing interference on any nodes while preserving the network connectivity.

Theorem 1. For a spanning tree connecting the nodes on a line with crosses,
there is always another spanning tree to remove the crosses without increasing
interference on any node.

Proof. We prove this theorem by illustrating how to remove a cross. Without
loss of generality, we handle the cross in Figure 2(a). Note that there can be
other nodes distributed at any other places on the line and the four nodes need
not be consecutive. For the case l1 ≤ l2+l3, we remove the cross by replacing the
edge (a, b) with (a, c) and adding (c, b) (Figure 2(b)). Firstly, we check whether
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the newly added edges, (a, c) and (c, b), are valid which means their lengths do
not exceed rmax. Since |a− c| = l1 < l1 + l2 = |a− b| and (a, b) is valid, (a, c) is
also valid. Similarly, (c, b) is also valid. Secondly, there are 3 nodes, a, b and c,
whose edges are changed. We check whether the changes potentially make them
interfere with any new nodes. For a, one of its longer edges (a, b) is replaced with
a shorter one (a, c), so a cannot interfere with more nodes in the new topology. A
similar conclusion can be arrived at for b. As for the node c, we add a new edge
(a, c) of length l1 and (b, c) of length l2. However, in both topologies, c already
has an edge (c, d) of length l2 + l3. Since l2 + l3 > l2 and l2 + l3 ≥ l1, the new
edges will not make c interfere with any new nodes. Therefore, the topology in
Figure 2(b) would not add to the interference on any nodes. Thirdly, since there
are still paths to connect the nodes a, b and the nodes c, d, the new topology
is connected as long as the topology in Figure 2(a) is connected. Further, since
deleting an edge will not increase any interference, we can destroy any cycles
in the new topology by deleting edges to form a spanning tree. Therefore, for
the case l1 ≤ l2 + l3, we can remove the cross to construct a new spanning tree
without adding to the interference on any nodes. Similarly, we can prove that
the above is also true when l1 > l2 + l3 as illustrated in Figure 2(c), and the
theorem is proved. 
�

According to the no-cross property, if there is already an edge (vs, vt), all the
nodes inside the segment vsvt can be only adjacent to nodes located on the
segment, but not to any other nodes on the line. (Two nodes are adjacent means
they are neighbors.) However, it does not mean that interference of the nodes
inside the segment is independent of the nodes outside. The nodes inside vsvt

can interfere with the ones outside, and vice versa. This gives an important clue
for us to design algorithms to minimize the average or the maximum interference
which are described in the following sections.

3.2 Algorithms to Minimize the Average Interference

General Ideas. Based on the no-cross property, in the optimal spanning tree
with minimum average interference, the nodes can be separated into segments.
The nodes inside each segment are only adjacent to the other nodes on the
same segment. However, as mentioned above, interference of the nodes inside a
segment is still independent of the outside. Therefore, we do not compute the
total interference by summing up the interference on each individual node, but
the interference created by each node. Here, interference created by a node v
with transmission radius rv, CI(v, rv), is defined as the number of other nodes
covered by the transmission range of v:

CI(v, rv) = |{u|u ∈ V/{v}, |u− v| ≤ rv}|, (4)

so that
∑

v∈V CI(v, rv) =
∑

v∈V RI(v). CI(v, rv) is only influenced by rv, which
is determined by the neighbors of v, and the locations of the other nodes. If all the
nodes inside vsvt can only be adjacent to the nodes on it, the total interference
created by the inside nodes will be independent of the topology of the outside
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nodes; and vice versa. Moreover, to compute the optimal spanning tree, we need
to determine 1) how to divide the line into segments and 2) how to connect the
nodes on each segment. Therefore, we can construct the optimal spanning tree
based on dynamic programming as follows.

Algorithms. Two auxiliary functions are defined. The function F (s, t)1, where
s < t, is to compute the topology on vsvt so that the total interference created
by the nodes inside vsvt is minimized with the following conditions satisfied:

1) the transmission radius of vs is rvs .
2) the transmission radius of vt is rvt .
3) all the nodes inside vsvt can be only adjacent to the ones on the segment vsvt.
4) each node inside vsvt has a path either to vs or to vt.

The function G(s, t), where s < t, is to compute the topology on vsvt so that
the total interference created by the nodes inside vsvt is minimized with the
following conditions satisfied:
1), 2), 3) are the same as the first three conditions of F (s, t).
4) all the nodes on vsvt are connected to each other directly or by nodes on vsvt.

Both the functions F and G return the minimum total interference created
by the nodes inside vsvt. If +∞ is returned, it means there is no such a topology
to satisfy all the conditions. Comparing the fourth conditions, for function F , to
achieve connectivity among all the nodes, we actually assume there is already
a path from vs to vt before adding any edges to the nodes inside vsvt. For G,
there is no such a path.

For a node v, the set of its potential neighbors, N(v), are the nodes covered
by v’s maximum transmission range:

N(v) = {u|u ∈ V/{v}, |u− v| ≤ rmax}. (5)

Recall that the transmission radius of v is the distance to its farthest neighbors.
So, the set of its potential transmission radii, R(v), is

R(v) = {|u− v||u ∈ N(v)}, (6)

and |R(v)| ≤ |N(v)| ≤ Δ. If v can only be adjacent to a subset nodes S,
its potential neighbors N(v, S) and its potential transmission radii R(v, S) are
N(v, S) = N(v)

⋂
S and R(v, S) = {|u − v||u ∈ N(v, S)} respectively. To com-

pute the functions F and G, we calculate and store each CI(v, rv) in an n×Δ
array. For F (s, t), the boundary condition is there are no nodes inside vsvt. For
the other cases, to satisfy the condition 4), there must be at least one node vm

inside vsvt that is adjacent to vp, where vp = vs or vt. Without loss of general-
ity, we set vp = vs. Since vs and vm are connected as well as vs and vt in the
assumption, there is already a path from vm to vt. Therefore, F (s, t) consist of
three parts, F (s, m), F (m, t) and CI(m, rvm). We can enumerate vm and rvm ,
so F can be computed in Algorithm 1. In line 1, we first check the boundary
1 For conciseness, we use F (s, t) to stand for F (vs, vt, s, t, rvs , rvt), and G(s, t) to stand

for G(vs, vt, s, t, rvs , rvt).
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condition. The set S is defined to store the nodes on vsvt in line 2. Lines 3–10
are to compute the minimum interference created by the nodes inside vsvt re-
cursively with the four conditions satisfied. As vm can only be adjacent to the
nodes on vsvt, its potential transmission radii are defined as R(vm, S) in line 4.
In line 7 we assume adding an edge (vm, vp), and line 8 is to compute F (s, t).

Algorithm 1. Compute F (s, t)
1. if s + 1 = t then return F = 0 /* the boundary condition*/
2. F = +∞ S = {vs, vs+1, ..., vt}
3. for each vm ∈ S/{vs, vt} do
4. R(vm, S) = {|u− vm||u ∈ N(vm)

⋂
S}

5. for each vp ∈ {vs, vt} do
6. for each rvm ∈ R(vm, S) do
7. if |vp − vm| ≤ min(rvm , rvp) then /* assume adding an edge (vm, vp) */
8. F = min(F, F (s, m) + F (m, t) + CI(m,rvm))
9. return F

As for the function G(s, t), in order to satisfy condition 4), there are two
choices. One is that vs is directly connected to vt, such that G(s, t) = F (s, t).
The other is vs and vt are connected by some other nodes inside vsvt. Then,
there must be at least one node vm inside vsvt which is adjacent to vs, and
G(s, t) can consist of F (s, m), G(m, t), and CI(m, rvm). Similar to Algorithm 1,
G(s, t) can be computed in Algorithm 2.

Algorithm 2. Compute G(s, t)
1. G = +∞
2. if |vs − vt| ≤ min(rvs , rvt) then /* assume adding an edge (vs, vt) */
3. G = F (s, t)
4. S = {vs, vs+1, ..., vt}
5. for each vm ∈ S/{vs, vt} do
6. R(vm, S) = {|u− vm||u ∈ N(vm)

⋂
S}

7. for each rvm ∈ R(vm, S) do
8. if |vs − vm| ≤ min(rvm , rvs) then /* assume adding an edge (vs, vm) */
9. G = min(G, F (s,m) + G(m, t) + CI(m,rvm))

10. return G

With F and G, the minimum average interference can be computed in Algo-
rithm 3 by calling G(0, n− 1).

Algorithm 3. Compute the minimum average interference
1. total = +∞
2. for each rv0 ∈ R(v0) do
3. for each rvn−1 ∈ R(vn−1) do
4. total = min(total,
5. CI(v0, rv0) + CI(vn−1, rvn−1) + G(0, n− 1))
6. return total

n

When computing the minimum average interference, we record vm and rvm

for each function G(s, t), and vp, vm and rvm for each function F (s, t). Through
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tracing backwards, we can construct a connected topology of n − 1 edges with
the minimum average interference, which is the optimal spanning tree. For con-
ciseness, we omit the traceback function here. The correctness of the above
algorithms are verified through comparing our results with the outputs gener-
ated by the brute-force search, which runs slowly in the exponential time O(nΔ).
Figure 3 gives an example of an optimal spanning tree for the 6-node exponential
chain. In our method, time is mainly spent on computing functions F and G.
Since the number of possible transmission radii of a node can not exceed Δ, the
time complexity to compute the optimal spanning tree with minimum average
interference is O(n3Δ3).

Fig. 3. The spanning tree for the 6-node exponential chain with minimum average
interference 13

6
: the numbers next to each node is interference it creates

4 Minimizing the Maximum Interference

4.1 General Ideas

For the n nodes, V = {v1, v2, ..., vn−1}, the minimum maximum node interfer-
ence in all the possible spanning trees is denoted as k, where k ≤ Δ ≤ n − 1
since all the nodes have the same maximum transmission radius rmax. In this
section, we first design an algorithm to check whether there is a spanning tree
with the maximum interference no larger than k set from 1 to n− 1. After com-
puting k, we can construct the optimal tree with such a maximum interference
by traceback.

For a segment vsvt, even when the nodes inside are not allowed to be adjacent
to the ones outside, they still interfere with the outside nodes. We record all the
interference from the nodes on vsvt to the outside nodes as a set C(vs, vt, k),
where s ≤ k. Each element c(vs, vt, k) ∈ C(vs, vt, k), called a skeleton of the
topologies on vsvt, stores the following nodes and their transmission radii:

1) if s > 0 and t < n− 1: the nodes on vsvt that interfere with vs−1 or vt+1;
2) if s = 0 and t < n− 1: the nodes on vsvt that interfere with vt+1;
3) if s > 0 and t = n− 1: the nodes on vsvt that interfere with vs−1;
4) if s = 0 and t = n− 1: meaningless.

Specifically, C(v, v, k) has |R(v)| elements that store the node v and its potential
transmission radii in R(v). Since there must be no more than k nodes on vsvt

that interfere with the left or the right nodes outside respectively, we call a
skeleton c(vs, vt, k) valid if and only if there are no more than k nodes in it that
interfere with the first node left or right to vsvt respectively. Figure 4 gives an
example of a valid skeleton c(vs, vt, 3) and two different topologies built according
to the skeleton on vsvt, where only vs and vs+2 interfere with vs−1, and only



528 H. Tan et al.

(a) (b)

Fig. 4. The skeleton c(vs, vt, 3) = {(vs, rvs = |vs − vs+2|), (vs+2, rvs+2 = |vt −
vs+2|), (vt, rvt = |vt− vs+2|)} on the segment vsvt. (a) and (b) are two possible topolo-
gies computed according to c(vs, vt, 3)

vt interferes with vt+1. Note that a valid skeleton does not guarantee that the
maximum interference in the whole topology would not exceed the maximum,
such as RI(vs+2) = 4 > 3 in Figure 4(a).

Further, given c(v0, vs, k), c(vs, vt, k) and c(vt, vn−1, k), to compute the topol-
ogy on vsvt, the following two requirements need to be satisfied: 1) together
with the interference from nodes in c(vs, vt, k), each node outside vsvt can not
be interfered with more than k nodes; and 2), together with interference from
nodes in c(v0, vs, k) and c(vt, vn−1, k), each node on vsvt can not be interfered
with more than k nodes. Considering the mutual interference among the nodes
on or outside each segment, we can design an algorithm to check whether there
is a spanning tree with maximum interference no greater than k by dynamic
programming as follows.

4.2 Algorithms

First of all, we define a function Merge(c(vp1 , vp2 , k), c(vp2+1, vp3 , k), ...,
c(vpm−1 , vpm , k)), where 0 ≤ p1 ≤ p2 ≤ ... ≤ pm ≤ n− 1, to merge the skeletons
on the consecutive segments and return c(vp1 , vpm , k). The method is to check
every node in the skeletons whether to interfere with the first node left or right to
vp1vpm . Note that after merging, the new skeleton c(vp1 , vpm , k) may not be valid.
Similar to compute the average interference, here we define two auxiliary boolean
functions. The function boolean F ∗(s, t, k)2, where s < t, is to check whether
there is a topology on vsvt that satisfies the following conditions simultaneously:

1) the transmission radius of vs is rvs .
2) the transmission radius of vt is rvt .
3) all the nodes inside vsvt can be only adjacent to the ones on vsvt.
4) the skeleton for vs+1vt−1 is c(vs+1, vt−1, k).
5) RI(v) ≤ k, for each v inside vs+1vt−1.
6) each node inside vsvt have a path either to vs or to vt.

Similarly, the function boolean G∗(s, t, k), where s < t, is to check whether
there is a topology on vsvt that satisfies the following conditions simultaneously:
1), 2), 3), 4) and 5) are the same as the first five conditions for F ∗(s, t, k). 6) all
the nodes on vsvt are connected to each other directly or by nodes on vsvt.
2 For conciseness, we use F ∗(s, t, k) to stand for F ∗(vs, vt, s, t, rvs , rvt , c(v0, vs, k),

c(vs+1, vt−1, k), c(vt, vn−1, k)), and G∗(s, t, k) to stand for G∗(vs, vt, s, t, rvs , rvt ,
c(v0, vs, k), c(vs+1, vt−1, k), c(vt, vn−1, k)).
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For F ∗(s, t, k), we still assume that there has been a path from vs to
vt before adding any edges to the nodes inside vsvt. When s < t − 1, to
satisfy the condition 6), there must be a node vm inside vsvt that is ad-
jacent to vp, where vp = vs or vt. Therefore, there is a path from vs to
vm as well as from vm to vt. With ensuring RI(vm) ≤ k, F ∗(s, t, k) is di-
vided to check F ∗(s, m, k) and F ∗(m, t, k). So it can be computed in Algo-
rithm 4. Lines 3–15 are to compute F ∗(s, t, k) recursively. In line 7, we as-
sume adding an edge (vm, vp). Line 8 and 9 enumerate the possible skeletons on
vs+1vm−1 and vm+1vt−1, and line 10 is to ensure the condition 4) is satisfied.
In line 11, c(v0, vm, k) = Merge(c(v0, vs, k), c(vs+1, vm−1, k), c(vm, vm, k)) and
c(vm, vn−1, k)= Merge(c(vm, vm, k), c(vm+1, vt−1, k), c(vt, vn−1, k)), and line 12
is to check their validity. All the three components for F ∗(s, m, k) are checked
in line 13, and line 16 returns the value of F ∗(s, t, k).

Algorithm 4. Compute boolean F ∗(s, t, k)
1. if s + 1 = t then return F ∗ = true /* the boundary condition*/
2. S = {vs, vs+1, ..., vt}
3. for each vm ∈ S/{vs, vt} do
4. R(vm, S) = {|u− vm||u ∈ N(vm)

⋂
S}

5. for each vp ∈ {vs, vt} do
6. for each rvm ∈ R(vm, S) do
7. if |vp − vm| ≤ min(rvm , rvp) then /* assume adding an edge (vm, vp) */
8. for each c(vs+1, vm−1, k) ∈ C(vs+1, vm−1, k) do
9. for each c(vm+1, vt−1, k) ∈ C(vm+1, vt−1, k) do

10. if Merge(c(vs+1, vm−1, k), c(vm, vm, k), c(vm+1, vt−1, k)) =
c(vs+1, vt−1, k) then

11. compute c(v0, vm, k) and c(vm, vn−1, k) by merging
12. if c(v0, vm, k) is valid && c(vm, vn−1, k) is valid
13. && no more than k nodes in c(v0, vs, k), c(vs+1, vm−1, k),

c(vm+1, vt−1, k) and c(vt, vn−1, k) that interfere with vm

14. && F ∗(s, m, k) && F ∗(m, t, k) then
15. return F ∗ = true
16. return F ∗ = false /* no topology on vsvt to satisfy the 6 conditions*/

To compute G∗(s, t, k), we actually assume there is no path from vs to vt

before adding edges to the nodes inside vsvt. In order to satisfy the condition
6), there must be a node vm inside vsvt that is adjacent to vs. Similarly, with
ensuring RI(vm) ≤ k, G∗(s, t, k) is divided to check F ∗(s, m, k) and G∗(m, t, k).
Algorithm 5 gives a detailed description on how to compute G∗(s, t, k).

By calling F ∗(s, t, k) and G∗(s, t, k), we design the main function,
FindMinMax(V ), to find the minimum maximum interference k. From 1 to
n− 1. We check and return k immediately when a spanning tree with the max-
imum interference of k is found. Algorithm 6 illustrates how to compute the
function FindMinMax(V ) by calling G∗(0, n − 1, k), where we only consider
the cases when |V | = n > 2.

After computing FindMinMax(V ), we can do traceback and construct the
optimal spanning tree with the minimum maximum interference by adding
exactly n− 1 edges. To save space, we omit the traceback function here.
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Algorithm 5. Compute boolean G∗(s, t, k)
1. if |vs − vt| ≤ min(rvs , rvt) && F ∗(s, t, k) = true then
2. return G∗ = true /* assume adding an edge (vs, vt) */
3. S = {vs, vs+1, ..., vt}
4. for each vm ∈ S/{vs, vt} do
5. R(vm, S) = {|u− vm||u ∈ N(vm)

⋂
S}

6. for each rvm ∈ R(vm, S) do
7. if |vs − vm| ≤ min(rvm , rvs) then /* assume adding an edge (vs, vm) */
8. for each c(vs+1, vm−1, k) ∈ C(vs+1, vm−1, k) do
9. for each c(vm+1, vt−1, k) ∈ C(vm+1, vt−1, k) do

10. if Merge(c(vs+1, vm−1, k), c(vm, vm, k), c(vm+1, vt−1, k)) =
c(vs+1, vt−1, k) then

11. compute c(v0, vm, k) and c(vm, vn−1, k) by merging
12. if c(v0, vm, k) is valid && c(vm, vn−1, k) is valid
13. && no more than k nodes in c(v0, vs, k), c(vs+1, vm−1, k),

c(vm+1, vt−1, k) and c(vt, vn−1, k) that interfere with vm

14. && F ∗(s, m, k) && G∗(m, t, k) then
15. return G∗ = true
16. return G∗ = false /* no topology on vsvt to satisfy the 6 conditions*/

Algorithm 6. Compute FindMinMax(V ), and return the minimum maximum
interference
1. k = 1
2. while k ≤ n− 1 do
3. for each rv0 ∈ R(v0) do
4. for each rvn−1 ∈ R(vn−1) do
5. for each c(v1, vn−2, k) ∈ C(v1, vn−2, k)
6. if no more than k nodes in c(v1, vn−2, k) and vn−1 that interfere with v0

7. && no more than k nodes in c(v1, vn−2, k) and v0 that interfere with
8. vn−1 && G∗(0, n− 1, k) then
9. return k

10. k=k+1
11. End While
12. return +∞ / *no connected topology on V with the constraint of rmax */

4.3 Analysis

Correctness. The method has been verified through comparing our optimal
topologies with the outputs generated by the brute-force search running in time
O(nΔ). Moreover, our algorithms can find all the topologies of minimum maxi-
mum interference without crosses. For example, we can find all the 17 optimal
topologies without a cross for the 6-node chain (Figure 5).

Time Complexity. Firstly, we analyze the size of the set C(vs, vt, k) when
s > 0 and t < n− 1. The nodes in each element c(vs, vt, k) can be divided as the
node sets CL and CR which contain the nodes on vsvt that interfere with vs−1
and vt+1 respectively. As the maximum interference is k, we get |CL| ≤ k ≤ Δ.
Each node has different transmission radii of Δ as many as possible. Thus, the
number of combinations for the nodes in CL and their transmission radii is
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(a) (b)

(c) (d)

Fig. 5. 4 different optimal spanning trees for the 6-node exponential chain with the
minimum maximum interference

(
Δ
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)
+
(

Δ

1

)
×Δ + ... +

(
Δ

k

)
×Δk = O(Δ2k). (7)

A similar result can be obtained for CR. Therefore, the size of C(vs, vt, k) is
O(Δ4k). Further, the total amount of the functions F ∗(s, t, k) and G∗(s, t, k) is
O(n2ΔO(k)). For each function, the computing time is O(nΔO(k)). As there are
no functions being repeatedly computed, the time to finish FindMinMax(V )
will be O(n3ΔO(k)). To construct the optimal spanning tree, the main time is
to compute k by FindMinMax(V ). Thus, the time complexity to construct the
spanning tree with the minimum maximum interference is O(n3ΔO(k)). Since
Δ ≤ n− 1 and k = O(

√
Δ) [14], the time is sub-exponential. However, when Δ

is small, which means a low maximum node degree, our algorithm is fast.

Space Complexity. The space is mainly for storing the functions F ∗ and G∗

as well as the sets C(vs, vt, k). Therefore, the space complexity is O(n2ΔO(k)).

5 Conclusion

In this paper, we study the problem to minimize the receiver-centric interfer-
ence for the highway model. Based on the no-cross property and using dynamic
programming, the first polynomial-time exact algorithm for constructing a con-
nected topology with minimum average interference is proposed. We give also the
first sub-exponential-time exact algorithm for constructing a connected topology
while minimizing the maximum interference. The question of whether it is NP-
hard to minimize the maximum interference for the highway model is still open.
Related open problems include how to design an approximation with a ratio bet-
ter than O( 4

√
Δ) for the highway model, how to design efficient approximations

to minimize the maximum interference in 2D networks, and how to combine the
interference minimization with other network properties.
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Abstract. A spatial join, a common query in Spatial Databases and Ge-
ographical Information Systems (GIS), consists in testing every possible
pair of data elements belonging to two spatial datasets against a spatial
predicate. This predicate might be “intersects”, “contains”, “is enclosed
by”, “distance”, “northwest”, “adjacent”, “meets”, etc. The large size of
datasets that appears in industrial and commercial modern applications
(e.g. GIS applications, where multiple instances of the datasets are kept)
raises the cost of join processing and the importance of the choice of the
data indexing method and the query processing technique. The family of
R-trees is considered a good choice (especially the R*-tree) for indexing a
spatial dataset. When joining two datasets, a common assumption is that
each dataset is indexed by a different R*-tree and the join is processed by
a synchronous traversal of the two trees. In this paper, we assume that
both datasets are indexed by a single R*-tree, so that spatial locality
between different datasets is embedded in data indexing, facilitating the
evaluation of join queries between the two datasets. We experimentally
compare the I/O and Response Time performance of join queries, using
this single tree indexing approach against the usual approach of indexing
each dataset by a different tree.

Keywords: Spatial Access Methods, R-trees, Query Processing, Joins.

1 Introduction

A Spatial Database is a database that offers spatial data types (for example,
types for points, line segments, regions, etc.), a query language with spatial
predicates, spatial indexing techniques and efficient processing of spatial queries.
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Among the most frequent queries appearing in spatial databases is the spatial
join query: given two collections R and S of spatial objects and a spatial predi-
cate θ, find all pairs of objects (O, O’) ∈ R×S, where θ(O.G, O’.G) evaluates to
true (O.G represents the spatial extent of spatial object O). Some examples of
the spatial predicate θ are: intersects, contains, is enclosed by, distance, north-
west, adjacent, meets, etc. For spatial predicates such as contains, encloses, or
adjacent, for example, the intersection join is an efficient filter that yields a set
of candidate solutions typically much smaller than the Cartesian product R×S.
The popularization of technology, as well as, the advancements of the computing
and telecommunication devices and infrastructure contribute to the production
of large datasets (e.g. datasets of Geographical Information Systems applica-
tions, where multiple instances of the positions of mobile phone users are kept,
or datasets of traffic control systems). The size of such datasets raises the cost of
join processing and, as a consequence, the importance of the choice of the data
indexing method and the query processing technique.

The multidimensional access methods belonging to the R-tree family (the R*-
tree [1] being the most popular one) are considered good choices for indexing
spatial data sets in order to process join queries in Spatial Databases. This is
accomplished by branch-and-bound algorithms that employ spatial predicates
and pruning heuristics based on MBRs (Minimum Bounding Rectangles), in
order to reduce the search space.

When joining two datasets, a common assumption is that each dataset is in-
dexed by a different R*-tree and the join is processed by a synchronous traversal
of the two trees. In this paper, we assume that both datasets are indexed by
a single R*-tree, so that spatial locality between different datasets is embed-
ded in data indexing, facilitating the evaluation of join queries between the two
datasets. We experimentally compare the I/O and Response Time performance
of Intersection Join, K Closest Pair Query (K-CPQ) and Buffer Query (see Sec-
tion 2), using this single tree indexing approach against the usual approach of
indexing each dataset by a different tree.

The contributions of this paper consist in the following:

1. We present an R*-tree variation able to index two datasets simultaneously,
taking advantage of the spatial locality between the different datasets.

2. We present a new algorithm for processing join queries on the two datasets
R*-tree variation by Breadth-First traversal, where at each level we follow
Best-First selection.

3. We present results of extensive comparative experimentation between a pair
of one dataset R*-trees and a two dataset R*-tree, when processing Intersec-
tion Join queries (on non-point datasets), K-CPQ and Buffer Queries (on
point datasets) and conclude about the winner structure, in each case, in
terms of disk accesses and response time.

The paper is organized as follows. In Section 2, we review the related literature
and motivate the research reported here. In Section 3, a brief description of the
R*-tree indexing one dataset is presented. In Section 4, the R*-tree variation
indexing two datasets are presented. In Section 5, we present the algorithms
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that perform the join processing in the two types of R*-trees. In Section 6, a
comparative performance study is reported. Finally, in Section 7, conclusions on
the contribution of this paper and future work are summarized.

2 Related Work and Motivation

There are numerous papers that study processing of join queries using R-trees.
Some of the most characteristic ones are mentioned in the following. Recently,
an exhaustive analysis of several techniques used to perform a spatial join taking
into account a filter-and-refinement approach has been published in [10]. We can
classify the spatial join methods depending on whether the sets of spatial objects
involved in the query are indexed or not. When both sets are indexed, the most
influential and known algorithm for joining two datasets indexed by R*-trees
was presented in [2], where several techniques to improve both CPU and I/O
time have been studied. This algorithm follows a Depth-First synchronized tree
traversal order. A Breadth-First synchronized tree traversal version to reduce
I/O cost was presented in [9].

An Intersection Join involves two spatial data sets and discovers the pairs of
objects from the two input datasets that intersect each other. An example of this
spatial join query is to “find all trails that go through some forest”, where the
two spatial datasets are trails and forests, and the spatial predicate is intersects.

The K Closest Pairs Query (K-CPQ), where each dataset is stored in an
R-tree is studied thoroughly in [5,6]. The K-CPQ discovers the K pairs of data
elements formed from two datasets that have the K smallest distances between
them. The K-CPQ is a combination of join and nearest neighbor queries. Like
a join query, all pairs of objects are candidates for the result. Like a nearest
neighbor query, proximity forms the basis for the final ordering.

A class of commonly asked queries in a spatial database is known as Buffer
Queries and they are studied in [3]. An example of such a query is to “find
house-power line pairs that are within 50 meters of each other”. A Buffer Query
involves two spatial data sets and a distance threshold ρ. The answer to this
query consists of pairs of objects from the two input sets that are within distance
ρ of each other.

A specialized index for speeding up processing of joins in spatial databases
has been presented in [15]. This is called a join-index. Join-indices use pre-
computation techniques to speed up online query processing and are useful for
datasets which are updated infrequently. The I/O cost of join computation using
a join-index with limited buffer space depends primarily on the page access
sequence used to fetch the pages of the base relations. In [15], methods based on
clustering to compute the joins are presented.

The idea of using one data structure for two datasets has been presented
in [16], where the Multi-Layer Quadtree (ML-Quadtree), a data structure that
allows the storage and processing of several layers at the same time, is pro-
posed. This structure is based on the PM-Quadtree (Polygonal Map Quadtree, a
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structure for storing points and edges), which allows the storage of only a single
layer map. The aim of the ML-Quadtree is to be able to manage, store and
perform queries among multiple layers simultaneously.

In this paper, we examine the effect of storing both datasets in a single R*-tree
(so that spatial locality between different datasets is inherent in data indexing)
on join processing (Intersection Join, K-CPQ and Buffer Query).

3 Background

R-trees [7,8] are hierarchical, height balanced multidimensional data structures,
designed for use in secondary storage, and are generalizations of B-trees [4] for
multidimensional data spaces. They are used for indexing or both for index-
ing and data storage of d-dimensional objects represented by their Minimum
Bounding d-dimensional hyper-Rectangle (MBRs). An MBR is determined by
two d-dimensional points that belong to its faces, one that has the d minimum
and one that has the d maximum coordinates (these are the endpoints of one of
the diagonals of the MBR). Each R-tree node corresponds to the MBR that con-
tains its children. The tree leaves contain pointers to the objects of the database,
instead of pointers to children nodes. The nodes are implemented as disk pages.
The rules obeyed by an R-tree are as follows: (1) Leaves reside on the same level.
(2) Each leaf node contains entries of the form (MBR, Oid), such that MBR is
the minimum bounding rectangle that encloses the spatial object determined by
the identifier Oid. (3) Every other node (internal) contains entries of the form
(MBR, Addr), where Addr is the address of the child node and MBR is the min-
imum bounding rectangle that encloses MBRs of all entries in that child node.
(4) An R-tree of class (m, M) has the characteristic that every node, except
possibly for the root, contains between m and M entries, where m ≤ ! M/2 "
(M and m are also called maximum and minimum branching factor or fan-out).
The root contains at least two entries, if it is not a leaf.

Like other tree-like index structures, an R-tree index partitions the multi-
dimensional space by grouping objects in a hierarchical manner. A subspace
occupied by a tree node in an R-tree is always contained in the subspace of
its parent node, i.e. the MBR enclosure property. According to this property, an
MBR of an R-tree node (at any level, except at the leaf level) always encloses the
MBRs of its descendent R-tree nodes. This characteristic of spatial containment
between MBRs of R-tree nodes is commonly used by spatial join algorithms as
well as distance-based query algorithms.

Many variations of R-trees have appeared in the literature (exhaustive surveys
can be found in [7,12,13]). One of the most popular and efficient variations is the
R*tree [1]. The R*-tree added two major enhancements to the original R-tree,
when a node overflow is caused. First, rather than just considering the area, the
node-splitting algorithm in R*-trees also minimizes the perimeter and overlap
enlargement of the MBRs. Second, an over flown node is not split immediately,
but a portion of entries of the node is reinserted from the top of the R*-tree
(forced reinsertion) [1]. In the rest of this paper, we use R*-trees.
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4 The R*-Tree Indexing Two Spatial Datasets

So far in the literature, the option to index two datasets using R*-trees was to
use a separate (isolated) tree for each dataset. In the rest of the paper, we call
this option 2D2T (2 Datasets in 2 Trees).

In order to examine the effect of storing both datasets in a single (common
to both datasets) R*-tree on join processing, an option called 2D1T (2 Datasets
in 1 Tree), we use one common R*-tree for datasets D1 and D2, where there is
no distinction between D1 data and D2 data during insertions. This means that
each datum to be inserted in the tree (point, or object) has a flag at each MBR
(so-called dataset) showing if it belongs to D1 (flag ‘a’) or D2 (flag ‘b’), or both
of them (flag ‘c’), but this flag does not affect the placement of this datum in the
R*-tree. For example, in Figure 1 a 2D1T R*-tree is depicted (for simplicity, only
the dataset flag of each MBR and not the MBR itself is depicted). At internal
nodes, flag ‘a’ (‘b’) determines that the internal node is the root of a subtree
with data elements belonging to dataset D1 (D2), only. Flag ‘c’ determines that
the internal node is the root of a subtree with some data elements belonging
to dataset D1 and some data elements belonging to dataset D2. At leaf nodes,
flag ‘a’ (‘b’) determines a data element belonging to dataset D1 (D2), while the
numeric subscript of ‘a’ or ‘b’ is the identifier of the data element, or pointer to
the detailed geometry of the data element.

Fig. 1. An example of a 2D1T

5 Algorithms for Processing Join-Queries

In the algorithms that are presented in the following, plane-sweep, a common
technique for computing intersections [14], is utilized to save CPU cost. The
basic idea is to move a line, the so-called sweep-line, perpendicular to one of the
dimensions, e.g. X-axis, from left to right. We apply this technique for restricting
all possible combinations of pairs of MBRs, taking into account the minimum
distance between MBRs (or whether both MBRs intersect) and excluding from
consideration several pairs. If this technique is not used, all possible combinations
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of pairs of MBRs or spatial objects that result at every step of an algorithm must
be processed with quadratic cost. For distance join queries (K-CPQ and Buffer
Query) a variant of this technique has been developed in [5,6], and it is called
distance-based plane-sweep.

When the R*-trees storing the two spatial datasets have different heights, the
algorithms are slightly more complicated. There are two approaches for treat-
ing different heights: fix-at-leaves and fix-at-roots [5,6] and one of them can be
adopted. In our implementations we are used fix-at-leaves.

It is well known that search algorithms (Best-First, Depth-First and Breadth-
First Search) can be applied on query processing over tree-like structures in
spatial databases, e.g. spatial query algorithms over R-trees [12]. We have im-
plemented all of them for all the three spatial join queries (Intersection Join,
K-CPQ and Buffer Query) that we study on 2D2T and 2D1T (in 2D1T, since
the tree is only one, Self-Join variations of the algorithms are utilized). Due to
limited space, we review only one search algorithm for each spatial join query.

For processing Intersection Join in 2D2T, the Breadth-First Traversal algo-
rithm works as follows [9]. BFT synchronously traverses both R-trees in breadth-
first order while processing join computation one level at a time. At each level,
BFT creates an intermediate join index (IJI) based on the intermediate join re-
sults and deploys global optimization strategies (e.g. orderings) to improve the
join computation at the next level.

For processing K-CPQ in 2D2T, the Depth-First Traversal algorithm works as
follows [5,6]. The DFT algorithm (K=1) visits the roots of the two R*-trees and
recursively follow the pair of entries, whose mindist (minimum distance between
two MBRs) is the minimum among all pairs. The process is repeated recursively
until the leaf levels are reached, where a potential closest pair is found. During
backtracking to the upper levels, the algorithm only visits pairs of entries whose
mindist is smaller than the distance of the closest pair found so far.

For processing the Buffer Query in 2D2T, the Best-First Traversal algorithm
works as follows (rho is the distance threshold) [3]. This query algorithm keeps
a heap (minimum binary heap) with the pairs of entries from the pairs of
nodes visited so far. The heap contains tuples of the form <Ei.mbr, Ej.mbr,
mindist(Ei.mbr, Ej.mbr)> and the entry pair with the minimum mindist is vis-
ited first. The corresponding tuple is replaced in the heap with new tuples (with
the same form) for each entry (mbr) in the node pointed by Ei.mbr and each
entry (mbr) in the node pointed by Ej.mbr (this action is usually called node
expansion). The process is repeated while the heap is not empty and mindist of
the selected pairs of entries is less than of equal to rho.

5.1 The New Algorithm for 2D1T

To compute the Intersection Join, K-CPQ and Buffer Query on 2D1T we have
devised a Breadth-First Traversal (BFT) algorithm, called New. It synchronously
traverses the R-tree in breadth-first order, while processing the join condition
one level at a time. At each level, New creates a list with the entries that satisfy
the spatial predicate, named Intermediate Candidate Entry (ICE), which will
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be accessed at the next level. The condition of the Intersection Join depends on
the value of the dataSet flag (‘a’, ‘b’ or ‘c’) and the intersection of the MBRs,
in order to read the nodes to the next level. When the leaf level is reached
(through ICE[1]), verifying the join condition, two separate lists (V1 and V2)
are created, one from each dataset. And finally, the intersection plane-sweep
technique is applied to both lists (according to the spatial predicate) in order
to get the final result. Global optimization has been applied level by level as
in [9]. The pseudocode of this algorithm for the case of Intersection Join follows.

New (rootAddr, height)
// ICE intermediate candidate entry at level i. Entry’s format is (mbr, addr, read)

// S1, S2, S3 are vectors of entries with the following format (index, mbr, read)

// V1, V2 are vectors of MBRs

01 node = readNode(rootAddr);
02 level = height;
03 for each entry Ei in node do
04 ICE[level - 1].add(Ei.mbr, Ei.addr, false);
05 level = level - 1;
06 while (level > 0) do
07 for each entry Ei in ICE[level] do
08 if (ICE[level][i].mbr.dataSet == ‘a’) S1.add(i, Ei.mbr, false);
09 if (ICE[level][i].mbr.dataSet == ‘b’) S2.add(i, Ei.mbr, false);
10 if (ICE[level][i].mbr.dataSet == ‘c’)
11 S3.add(i, Ei.mbr, false);
12 ICE[level][i].read = true;
13 SelectEntryToRead(&ICE[level], S1, S2, S3);
14 for each entry Ei in ICE[level] do
15 if(ICE[level][i].read == true)
16 node = readNode(ICE[level][i].addr);
17 if (level != 1) // Internal Nodes
18 for each entry Ej in node do
19 ICE[level - 1].add(Ej.mbr, Ej.addr, false);
20 else // Leaf Nodes
21 for each entry Ej in node do
22 if (Ej.mbr.dataSet == ‘a’) V1.add(Ej.mbr);
23 if (Ej.mbr.dataSet == ‘b’) V2.add(Ej.mbr);
24 level = level - 1;
25 if (level == 0) // intersection plane-sweep technique is applied

26 for each pair of entries (Ei, Ej) in V1 and V2 do
27 if (intersect(Ei.mbr, Ej.mbr))
28 output(Ei.mbr, Ej.mbr);
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SelectEntryToRead(ICE[level], S1, S2, S3)

01 for each entry Ei in S1 do
02 if (Ei overlaps with any entry of S2 or S3)
03 ICE[level][S1[i].index].read = true;
04 for each entry Ei in S2 do
05 if (Ei overlaps with any entry of S1 or S3)
06 ICE[level][S2[i].index].read = true;

6 Experimentation

In order to evaluate the behavior of the join algorithms on 2D2T and 2D1T, we
have used four large real spatial datasets of North America, representing roads
(NArd) consisting of 569,120 line-segments, and railroads (NArr) consisting of
191,637 line-segments. In order to have large datasets of points, we have trans-
formed the MBRs of line-segments from NArd and NArr into points by taking
the center of each MBR. We have also used datasets of Greece, representing
rivers (Grri) consisting of 24,650 line-segments and roads (Grrd) consisting of
23,268 line-segments. When using NArd and NArr, the page size of 2D2T and
2D1T was set to 4 Kbytes (M = 204, m = 81), while when using the other
datasets (that have lower cardinalities) the page size of 2D2T and 2D1T was set
to 1 Kbyte (M = 50, m = 20). All data are available through the R-tree portal
(http://www.rtreeportal.org/spatial.html). All experiments were performed on
a Mac BookPro (Intel Core 2 Duo, 2.4 GHz) with 4 GB RAM and several GBs
of secondary storage. The operating system supported was Mac OS X 10.5.8,
Leopard (version of kernel Darwin 9.8.0). The programs were created using the
GNU C++ compiler (gcc). The performance measurements are: (1) the number
of page accesses and (2) the response time (elapsed time) reported in seconds.

First of all, results we gathered during the creation of the trees show that the
2D1T is slightly smaller than the sum of the two R*-trees that make up 2D2T
(in terms of number of nodes). For example, for pairs of line segments (point)
datasets for NArd and NArr the 2D1T nodes are 5393 (5490), while the sum of
the 2D2T nodes are 5543 (5697).

Second, we studied the Intersection Join using as the two datasets NArd and
NArr and also using as the two datasets Grrd and Grri. The results are depicted
in Figure 2. The algorithm used for 2D2T was BFT, while the algorithms used for
2D1T were Self-BFT and New. As Figure 2 shows, the New algorithm (applied
on 2D1T) is 3.7 to 4.6 times better in I/O than the BFT (applied on 2D2T),
while it is 11.7 to 8.2 times worse than the BFT in response time. The Self-BFT
(applied on 2D1T) is more than 10 times worse than the New algorithm in I/O
and more than 3 times better than the New algorithm in response time.
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Fig. 2. Processing of the Intersection Join
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Third, we studied the K-CPQ using as the two sets of points NArd and NArr
(taking the center of each MBR), for K values ranging from 1 to 1000. The
results are depicted in Figure 3. The algorithm used for 2D2T was Heap, while
the algorithms used for 2D1T were Self-Heap and New. As Figure 3 shows, the
New algorithm (applied on 2D1T) is 3.8 times better in I/O than the Heap and
2 times worse in response time. The Self-Heap (applied on 2D1T) is more than
3.8 times worse than the New algorithm in I/O and more than 1.4 times better
than the New algorithm in response time.

Forth, we studied the Buffer Query using as the two datasets of points NArd
and NArr (taking the center of each MBR), for rho (distance threshold) values
ranging from 0.01 to 0.1. The results are depicted in Figure 4. The algorithm
used for 2D2T was Heap, while the algorithms used for 2D1T were Self-Heap
and New. As Figure 4 shows, the New algorithm (applied on 2D1T) 3.6 to 4.3
times better in I/O than the Heap algorithm and 4.2 to 5.2 times in response
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Fig. 5. The effect of the use of a variable LRU buffer

time. The Self-Heap (applied on 2D1T) is more than 9 times worse than the
New algorithm in I/O and more than 1.6 times better than the New algorithm
in response time.

Fifth, we studied the effect of using an LRU buffer on I/O performance on
2D2T and 2D1T join algorithms. We performed experiments of computing Inter-
section Join and K-CPQ by using DFT (that exhibits the best I/O performance
in combination with an LRU buffer, according to [6]) for 2D2T and by using
Self-BFT and New (Intersection Join) and Self-Heap and New (K-CPQ) for
2D1T. The results are depicted in Figure 5 (the left chart is for Intersection
Join and the right chart is for K-CPQ, where K = 100) for NArd and NArr
datasets, varying the buffer size (B = 0, 4, 16, 64, 256, 1024). It is very inter-
esting to observe that both charts follow the same trend for these two different
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types of spatial queries, which indicates that the combination of the traversal
order of the indexes and the increment of the buffer size affect in the same way
these two spatial queries. We can notice that the I/O performance of the New
algorithm was always the best and invariant to the buffer size (contrary to DFT
that improves its I/O performance, up to a buffer size and then exhibits stable
I/O performance). The Self-BFT and Self-Heap had the worst behaviour in
presence of an LRU buffer, mainly due to the special treatment at the leaf
level and the traversal order. In summary, this excellent behaviour of the New
algorithm is a clear indication that it accesses only once the disk pages that are
necessary to answer the queries and does not make unnecessary accesses.

The above experimental results show that, for several join queries (Intersec-
tion Join, K-CPQ, Buffer Query), by using a computer with a faster CPU and
RAM, the New algorithm will probably become better in response time then the
algorithms applied on 2D2T. In any case, these results show that it is possible to
solve these queries with fewer disk accesses. We plan to study the CPU cost of
the new algorithm and focus on reducing its CPU cost. An initial examination
of the algorithm shows that the most time consuming stage is processing at the
leaf level, where a large number of MBR combinations are performed.

7 Conclusions and Future Work

The large size of datasets that appears in industrial and commercial modern
applications raises the importance of the cost of query processing and, as a
consequence, the choice of the data indexing method and the query process-
ing technique. In this paper, we present an R*-tree variation able to index two
datasets simultaneously, taking advantage of the spatial locality between the
different datasets and a new algorithm for join queries (based on Breadth-First
traversal, where at each level we follow Best-First selection) that is applied on
this variation. Moreover, we presented results of extensive comparative experi-
mentation between the one dataset R*-tree and the two dataset R*-trees, when
processing the Intersection Join (on non-point datasets), K-CPQ and Buffer
Query (on point datasets). Our experimentation shows that the tree storing two
datasets simultaneously exhibits a much better I/O performance, while indepen-
dent structures storing separate datasets exhibit better CPU performance. The
winner depends on the balance between CPU power and I/O efficiency of the
computing system used.

In the future, we plan to consider 2D1T variants of structures with non-
overlapping nodes, such as R+-trees, or Quadtrees, as they have been used in [11]
for studying k nearest neighbour and distance join queries. Variations of such
structures are promising. Note that in [11] it is concluded that “an often dis-
missed index structure (the Quadtree) can be a better choice than the widely
used R*-tree for index-based kNN query and distance join algorithms when
indices are constructed dynamically”.
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Abstract. Protecting the confidentiality of information stored in a com-
puter system or transmitted over a public network is a relevant problem
in computer security. The approach of information flow analysis involves
performing a static analysis of the program with the aim of proving that
there will not be leaks of sensitive information. In this paper we pro-
pose a new domain that combines variable dependency analysis, based
on propositional formulas, and variables’ value analysis, based on polyhe-
dra. The resulting analysis is strictly more accurate than the state of the
art abstract interpretation based analyses for information leakage detec-
tion. Its modular construction allows to deal with the tradeoff between
efficiency and accuracy by tuning the granularity of the abstraction and
the complexity of the abstract operators.

1 Introduction

Protecting the confidentiality of information stored in a computer system or
transmitted over a public network is a relevant problem in computer security.

Any information flow analysis involves performing a static analysis of the pro-
gram with the aim of proving that there will not be leaks of sensitive information.
There is an information flow from object x to object y whenever the informa-
tion stored in x is transferred to, or used to derive information transferred to,
object y. Flows would be explicit or implicit. An explicit flow occurs whenever
the operations generating it are independent of the value of x; whereas an im-
plicit flow occurs whenever a statement specifies a flow from some arbitrary z
to y, but the execution depends on the value of x. The starting point in secure
information flow analysis is the classification of program variables into different
security levels. In the simplest case, two levels are used: public (or low, L) and
secret (or high, H). The main purpose is to prevent leak of sensitive information
from an hight variable to a lower one. More generally, we might work with a
lattice of security levels, and we would aim to ensure that sensitive information
flows only upwards in the lattice [8].

In 1982 Goguen and Meseguer introduced in [10] the notion of non-interference:
“one group of users/processes/variables, using a certain set of commands, is non-
interfering with another group of users if what the first group does with those
commands has no effect on what the second group of users/processes/variables
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can see”. The idea behind non-interference is that someone observing the final
values of public variables cannot conclude anything about the initial values of
secret variables [14].

There is a widespread literature on methods and techniques for checking secure
information flows in software: from standard control flow analysis to type infer-
ence. In a security-typed language Volpano, Irvine and Smith [16] were the first
to develop a type system to enforce information flow policies, where a type is in-
ductively associated at compile-time with program statements in such a way that
well-typed programs satisfy the non-interference property. Moreover, the same
problem was handled also in different situation, for example with multi-threaded
programs or with programs that employ explicit cryptographic operations.

A different approach is the use of standard control flow analysis to detect
information leakage, e.g. [2]. Some of these works are applied to specific system,
e.g. mobile ambients [3], or to specific programs, e.g. written in VHDL [15],
where the analysis of information flow is closely related to the context.

The use of abstract interpretation in language-based security is not new, even
though there aren’t many work that use the lattice of abstract interpretations for
evaluating the security of programs. Giacobazzi and Mastroeni in [9] generalize
the notion of non-interference making it parametric relatively to what an attacker
can observe and use it to model attackers as abstract interpretations.

In this paper we present an information flow analysis by abstract interpre-
tation through a combination of two analysis: a syntactic variable dependency
analysis, based on propositional formulas domain, and a variable value depen-
dency using a Polyhedra analysis. An interesting aspect is that the polyhedra
analysis can be replaced with other kinds of analysis which use different domains
to represent the relations among variables’ values.

The idea is to use logic formulas to represent dependency between variables,
refine the analysis in order to reduce as much as possible “false alarms” and
detect information leakages evaluating formulas on truth-assignment functions.

The analysis of a program involves the following steps:

– For each program instruction construct: a propositional formula (φi), through
a fixpoint algorithm, which show an over-approximation of dependencies that
occur between variables, and a polyhedron (Pi) which represent an over-
approximation of dependencies among variables value, through a classical
polyhedra analysis.

– Refine each propositional formulas φi through the information in Pi.
– Consider the public/private partitions of variables and the truth-assignment

function Υ , that assigns to a propositional variable the value T (true) or the
value F (false) if the corresponding variable is respectively private or public.
If Υ does not satisfy φi, there could be some information leakages.

In order to better understand how our new dependency analysis works, consider
the following example.

Example 1. When a credit card PIN reaches the issuing bank, its correspondence
with the validation data (i.e. the user PAN, and possibly other public data, such
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as the card expiration date or the customer name) is checked via a verification
API. Consider the case study showed in [4], where a strict subset of the real PIN
verification function named Encrypted PIN Verify is considered.

This function checks the equality of the actual user PIN and the trial PIN
inserted at the ATM, and it returns either the result of the verification or an
error code. The former PIN is derived through the PIN derivation key pdk and
from the public data offset, vdata, dectab, while the latter comes encrypted
under the key k as EPB (Encrypted PIN Block). Variable counter counts the
number of executed test. Note that the two keys are pre-loaded in the HSM
(Hardware Security Module), and they are never exposed to the untrusted ex-
ternal environment.

PIN V(PAN, EPB, len, offset, vdata, dectab, counter ) {
x1 := encpdk(vdata);
x2 := left(len, x1);
x3 := decimalize(dectab, x2);
x4 := sum mod10(x3, offset);
x5 := deck(EPB);
x6 := fcheck(x5);
i f (x4 = x6){

counter := counter + 1; result := ′′PIN correct ′′ ;
} else{

counter := counter + 1; result := ′′PIN wrong ′′;
}
return result;

}

When we apply our analysis we obtain, at the end of the program, the following
formula, where the implication symbol can be read as possible information flow
dependency.

φ =(vdata→ x1) ∧ (len→ x2) ∧ (x1 → x2) ∧ (dectab→ x3) ∧ (x2 → x3)∧
(offset→ x4) ∧ (x3 → x4) ∧ (EPB → x5) ∧ (x5 → x6)∧
(x6 → result) ∧ (x4 → result) ∧ (x6 → result)

Let Υ : V → {L, H} be a function that assign “L” class to counter variable and
“H” class to other variables. Through a traditional information flow analysis we
would find as a false positive a warning of information leakage from variables
x4 and x6 to variable counter, whereas with our analysis we obtain that Υ , the
correspondent truth-assignment function, satisfies φ. In fact there is no informa-
tion leakage in the program: the final value of variable counter is independent
from the value of variables x4 and x6.

The rest of this paper is organized as follows. In the next two sections
(Section 2 and 3) we define the concrete and the abstract domain, respectively,
and in Section 4 we introduce our information leakage analysis. Finally, Section
5 concludes.
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2 Concrete Domain

2.1 Sintax

We consider a simple imperative language where programs are labelled com-
mands with the following syntax:

C ::=� skip |� x := E | C1; C2 | if �B then C1 else C2
�′endif | while �B do C �′done

With E denoting expressions evaluated in the set of values V with standard
operations, i.e. if V = IN then E can be any arithmetical expression. In the
following we will denote by V�P � the set of variables of the program P , by
i�C� and f �C� the initial and final label of a command C respectively and by
A = {	skip,	 x := E,	 B,	 notB,	 endif,	 done}, the set of actions.

2.2 Semantics

An environment ρ ∈ E is a function with signature: V→ V . A state σ ∈ Σ ≡ L×E
is a pair 〈�, ρ〉 where the environment ρ ∈ E defines the current value ρ(x) of
the program variable x ∈ V�C� and the program label � ∈ L specifies which
part of the program remains to be executed. We denote by E�E�ρ and B�B�ρ the
expression and the condition evaluation of E ∈ E and B ∈ B, respectively.

The execution of a program starts at its initial label with any possible value
of the variables. Therefore, the set I of possible initial states of a program P is
I�P � ≡ {〈i�P �, ρ〉 | ρ ∈ E}. In the same way, we can define F�P � as the set of
possible final state of P : F�P � ≡ {〈f �P �, ρ〉 | ρ ∈ E}.

The labelled transition semantics T 	�C� of a command C in a program P is a
set of transitions 〈σ1, A, σ2〉 between a state σ1 and its next states σ2 by action
A, satisfying the transition rule σ1

A−→ σ2.

T ���skip� ≡ {〈
, ρ〉
�skip−−−→ 〈f ��skip�, ρ〉 | ρ ∈ E}

T ���X := E� ≡ {〈
, ρ〉 �X:=E−−−−→ 〈f ��X := E�, ρ[X ← v]〉 | ρ ∈ E ∧ v ∈ E�E�ρ}
T ��if �B then C1 else C2

�′endif� ≡ T ��C1� ∪ T ��C2�∪
{〈
, ρ〉 �B−−→ 〈i�C1�, ρ〉 | ρ ∈ E ∧ true ∈ B�B�ρ}∪

{〈
′, ρ〉
�endif−−−−→ 〈f �if �B then C1 else C2

�′endif�, ρ〉 | ρ ∈ E}
T ��C1; C2� ≡ T ��C1� ∪ T ��C2�

T ��while �B do C �′done� ≡ {〈
, ρ〉 �not B−−−−→ 〈
′, ρ〉 | ρ ∈ E ∧ false ∈ B�B�ρ}∪
{〈
, ρ〉 �B−−→ 〈i�C�, ρ〉 | ρ ∈ E ∧ true ∈ B�B�ρ} ∪ T ��C�∪
{〈
′, ρ〉 �done−−−−→ 〈f �while �B do C �′done�, ρ〉 | ρ ∈ E}
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2.3 Concrete Domain

A labelled transition system is a tuple 〈Σ, I,F , A, T 	〉, where Σ is a nonempty
set of states, I ⊆ Σ is a nonempty set of initial states, F ⊆ Σ is a set of final
states, A is a nonempty set of actions, and T 	 ∈ ℘(Σ × A × Σ) is the labelled
transition relation.

We define the partial trace semantics of a transition system as the set of all
possible traces, denoted by Σ�, recording the observation of an execution during
a finite time, starting from an initial state and possibly reaching a final state.

Σ� ∈ ℘(Σ × A×Σ)

Σ� = {σ0
A0−−→ . . .

An−1−−−−→ σn | n ≥ 1 ∧ σ0 ∈ I ∧ ∀i ∈ [0, n− 1] : σi
Ai−−→ σi+1 ∈ T �}

This set, with order relation “+” and meet operator“�”, forms the meet semi
lattice (Σ�,+, �). Let π0, π1 ∈ Σ� be two partial traces, π0 + π1 if and only
if π0 is a subtrace of π1 and π0 � π1 = π such that (π + π1) ∧ (π + π2) and
(∀π′ : (π′ + π1) ∧ (π′ + π2)).π′ + π.
This partial trace semantics can be expressed also in fixpoint form.

Σ� = lfp⊆F t where

F ∈ ℘(Σ × A×Σ)→ ℘(Σ × A×Σ)

Where

F (X) ≡ {σ A′−→ σ′ ∈ T � | σ ∈ I}∪
{σ0

A0−−→ . . .
An−2−−−−→ σn−1

An−1−−−−→ σn |σ0
A0−−→ . . .

An−2−−−−→ σn−1 ∈ X ∧σn−1
An−1−−−−→ σn ∈ T �}

Let 〈℘(Σ�),,, ∅, Σ�,
,�〉 be a complete lattice of partial execution traces, where
“,”, “
” and “�” are defined as follows. Consider Π0, Π1 ∈ ℘(Σ�), Π0 , Π1 if
and only if ∀π0 ∈ Π0.∃π1 ∈ Π1 such that π0 + π1; Π0 �Π1 = {π ∈ Π0 ∪Π1 |
∀π′ ∈ Π0 ∪ Π1, π′ + π} and Π0 
 Π1 = {π | (∃π0 ∈ Π0 ∧ π1 ∈ Π1).π =
π0 � π1 ∧ (∀π′ : (π′ + π0) ∧ (π′ + π1)).π′ + π}.

3 Abstract Domain

Our information leakage analysis combines a variable dependency analysis, based
on propositional formulas, and variables’ value analysis, based on polyhedra,
through the reduced product of the corresponding representation domains.

3.1 Variables Dependency Analysis

Propositional Formulas. Let Vp = {x, y, z, . . .} be a countably infinite set of
propositional variables and let FP (Vp) be the set of finite subset of variables
of Vp. The set of propositional formulas constructed over the variables of Vp

and the logical connectives in Γ ⊆ {∧,∨,→,¬} is denoted by Ω(Γ ). For any
U ∈ FP (Vp), ΩU (Γ ) consists of formulas using only the variables of U and the
connectives of Γ .
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A truth-assignment is a function r : Vp → {true, false}. Given a formula
f ∈ Ω({∧,∨,→,¬}), r 	 f means that r satisfies f , and f1 	 f2 is a shorthand
for “r 	 f1 implies r 	 f2”. Ω({∧,∨,→,¬}) is ordered by f1 
 f2 if f2 	 f1.
Two formulas f1 and f2 are logically equivalent, denoted f1 ≡ f2 if f1 	 f2 and
f2 	 f1.

The unit assignment u is defined by u(x) = true for all x ∈ Vp. We define the
set of positive formulas by: Pos = {f ∈ Ω({∧,∨,→,¬}) | u |= f}, as in [5].
Some obvious examples: T, x1 ∈ Pos and F,¬x1 /∈ Pos.

We can consider the propositional formula φ as a conjunction of subfor-
mulas (ζ0 ∧ . . . ∧ ζn). We denote the set of subformulas of φ as Subφ. Let
� be least upper bound operator on propositional formula, �{φ0, . . . , φn} =∧
{Subφ0, . . . , Subφn}. Therefore (Pos, 
, �) is a join semi lattice. Moreover,

consider - : Pos × Pos → Pos: a binary operator defined as subtraction be-
tween two propositional formulas: φ0 - φ1 =

∧
(Subφ0 \ Subφ1).

Abstract Domain. An abstract state σ� ∈ Σ� ≡ L×Pos is a pair 〈�, φ〉 which
denotes the dependencies that occur among program variables, up to label � ∈ L,
expressed by the propositional formula φ ∈ Pos. Given a pair σ� = 〈�, φ〉, we
define l(σ�) = � and r(σ�) = φ. Notice that the propositional variables are
denoted by �̄. Let BV (C) be the set of bound variables of command C.

BV (�skip) = {∅}
BV (�x := E) = {x}
BV (C0; C1) = BV (C0) ∪BV (C1)

BV (if �B then C0 else C1
�′endif) = BV (C0) ∪BV (C1)

BV (while �B do C �′done) = BV (C)

The abstract transition semantics T 	�C� of a command C is a set of transition
〈σ�

1, σ
�
2〉 between abstract states σ�

1 and σ�
2. Similarly to the concrete domain we

denote this transition by σ�
1 → σ�

2.

T ���skip� = {〈
, φ〉 → 〈f ��skip�, φ〉}
T ���x := E� = {〈
, φ〉 → 〈f ��x := E�, φ′〉}
T ��C0; C1� = T ��C0� ∪ T ��C1�

T ��if �B then C0 else C1
�′endif� = T ��C0� ∪ T ��C1�∪

{〈
, φ〉 → 〈i�C0�, φ〉} ∪ {〈
, φ〉 → 〈i�C1�, φ〉}∪
{〈
′, φ〉 → 〈f �if �B then C0 else C1

�′endif�, φ′′
C0〉}

{〈
′, φ〉 → 〈f �if �B then C0 else C1
�′endif�, φ′′

C1〉}
T ��while �B do C �′done� = T ��C� ∪ {〈
, φ〉 → 〈i�C�, φ〉}∪
{〈
′, φ〉 → 〈f �while �B do C �′done�, φ′′′〉}
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where:
φ′ =

∧{y → x | y ∈ Vp�E� ∧ y 
= x} ∧ (φ�∧{y → x | y ∈ Vp ∧ x /∈ Vp�E�})
φ′′

C0 =
∧{y → x | y ∈ Vp�B� ∧ x ∈ BV (C0) ∧ y 
= x} ∧ φ

φ′′
C1 =

∧{y → x | y ∈ Vp�B� ∧ x ∈ BV (C1) ∧ y 
= x} ∧ φ
φ′′′ =

∧{y → x | y ∈ Vp�B� ∧ x ∈ BV (C) ∧ y 
= x} ∧ φ

Consider the set ℘(Σ�), S1 and S2, two sets of abstract state, such that

S1 = {〈
10, φ1
0〉, . . . , 〈
1n, φ1

n〉} S2 = {〈
20, φ2
0〉, . . . , 〈
2m, φ2

m〉}

and S1 ,� S2 if and only if n ≤ m, ∀i ∈ [0, n], �1
i = �2

i and ∀i ∈ [0, n], φ1
i 
 φ2

i .
We can define a join and a meet operation on this set. Let S0, . . . Sn ∈ ℘(Σ�)

be sets of abstract states, the join operation “��” is defined as:

��{S0, . . . , Sn} =
⋃

(S0, . . . , Sn)

∪ {〈
, φ〉 | φ = �{φ′ | 〈
, φ′〉 ∈
⋃

(S0, . . . , Sn)}}
\ {〈
, φ〉 ∈

⋃
(S0, . . . , Sn) | ∃〈
, φ′〉 ∈

⋃
(S0, . . . , Sn) ∧ φ 
= φ′}

and the meet operation “
�”:

��{S0, . . . , Sn} ={〈
, φ〉 ∈ S′ | S′ ∈ {S0, . . . , Sn}∧
∀i ∈ [0, n].∃〈
, φ′

i〉 ∈ Si ∧ φ 
 φ′
i}

Therefore, 〈℘(Σ�),,�, ∅, Σ�,
�,��〉 is a complete lattice.
Let I��P � = {〈i�P �, φ〉 | φ ∈ Pos} be the set of possible initial abstract

state of program P . We define the abstract semantics as the set of all finite
sets of abstract states, denoted by Σ��, which can occur during one or more
execution, in a finite time. For each element S ∈ Σ�� we can denote by S� the
set of terminal states, defined as S� = {σ�

0 | �σ�
1 ∈ S.σ�

0 → σ�
1 ∈ T 	} and by

�(S) all labels of the set S. Letting Sσ�
0,σ�

n
denote a set of states, called abstract

sequence, that contains a starting state σ�
0 and an ending state σ�

n such that
∀i ∈ [0, n− 1], σ�

i → σ�
i+1 ∈ T 	. Notice that S�

σ�
0,σ�

n
= {σ�

n}.
We express the abstract semantics in fixpoint form.

Σ�� = lfp�F �where

F � ∈ Σ�� → Σ��

where

F �(X) ≡{σ� | σ� ∈ I�}∪
{S

σ
�
0,σ

�
n
| n ≥ 1 ∧ σ�

0 ∈ I� ∧ S
σ

�
0,σ

�
n−1
∈ X ∧ σ�

n−1 → σ�
n ∈ T �}∪

{��{S
σ

�
0,σ

�
n
| S

σ
�
0,σ

�
n
∈ X}}

Let 〈Σ��,,�, ∅, Σ�,
�,��〉 be a lattice of abstract state sets, our abstract domain.
To simplify the definition of Galois connection we present another domain,

isomorphic to the concrete domain. Let σ� ∈ Σ� ≡ L × A be a pair 〈�, A〉



552 M. Zanioli and A. Cortesi

where A is the action which occur at program label � ∈ L. Consider the set
Σ�� which contains all the possible sequence of σ� that can occur during a finite
computation, and the lattice 〈℘(Σ��),,�, ∅, Σ��,∩,∪〉. We define for Π�

0 , Π�
1 ∈

℘(Σ��), Π�
0 ,� Π�

1 if and only if for each π�
0 ∈ Π�

0 exists π�
1 ∈ Π�

1 such that
π�

0 +� π�
1 , while π�

0 +� π�
1 if and only if π�

0 is a subsequence of π�
1 . Moreover, we

denote by π�� the last state of the sequence.
We can express the relation between ℘(Σ�) and ℘(Σ��) by two funcions: the

abstraction function, α� ∈ ℘(Σ�) → ℘(Σ��), and the concretization function,
γ� ∈ ℘(Σ��)→ ℘(Σ�).

Let X ={π0, . . . , πn} ∈ ℘(Σ�) be a set of partial trace and let Y ={π�
0 , . . . , π�

n}
∈ ℘(Σ��) be a set of sequences of σ�.

α�(X) ≡{〈
0, A0〉 → . . .→ 〈
m, Am〉 | σ0

�0A0−−−→ . . .
�m Am−−−−→ σm+1 ∈ X}

γ�(Y ) ≡{π ∈ ℘(Σ�) | α�({π}) ∈ Y }
Notice that (γ�, ℘(Σ�), ℘(Σ��), α�) is an isomorphism: in fact it’s simple to prove
that γ� ◦ α� = α� ◦ γ� = id, where id is the identity function.

Then, we can define the relation between ℘(Σ��) and Σ�� by the abstraction
function α� and γ�. Let X ∈ ℘(Σ��) be a set of sequences of σ�, α� : ℘(Σ��)→
Σ�� is defined as α�(X) = ��{θ(π�) | π� ∈ X}, where θ : Σ�� → Σ�� is defined
ad follows.

θ(X) ={〈
, φ〉 | ∀π ∈ X.∀π′ = 〈
0, A0〉 → 〈
m, Am〉 �� π :

m ≥ 0 ∧ 
 = 
m ∧ φ = f0 ∧ . . . ∧ fn}

such that:

– (∀〈
, x := E〉 ∈ π′ : ∀〈
′, x := E′〉 ∈ π′.
′ ≤ 
).∃fi = y → x : y ∈ Vp�E�
– ∀((〈
i, B〉 → . . . → 〈
j , endif〉) ∨ (〈
i, not B〉 → . . . → 〈
j , endif〉)) �� π� which

represents an if statement and ∀〈
k, x := Ek〉 : i < k < j exists fh = y → x such
that y ∈ Vp�B�.

– ∀((〈
i, B〉 → . . . → 〈
j , done〉) ∨ (〈
i, not B〉 → . . . → 〈
j , done〉)) �� π� which
represents an while statement and ∀〈
k, x := Ek〉 : i < k < j exists fh = y → x
such that y ∈ Vp�B�.

Notice that 〈�i, B〉 → . . . → 〈�j , endif〉 (or 〈�i, not B〉 → . . . → 〈�j, endif〉)
represents an if statement if and only if ∀(〈�p, B〉 ∨ 〈�p, not B〉) : i < p <
j.∃(〈�q, endif〉 ∨ 〈�q, done〉) : p < q < j and ∀(〈�q, endif〉 ∨ 〈�q, done〉) : i < q <
j.∃(�pB ∨ 〈�p, not B〉) : i < p < q. Similarly for while statement.

On the other hand, the concretization function γ� : Σ�� → ℘(Σ��) is defined
as follows. Let Y ∈ Σ��:

γ�(Y ) = {π� ∈ Σ�� | θ(π�) �� Y ∧ l(π��) ∈ 
(Y �)}
It’s simple to prove that γ� and α� are monotone, γ� ◦ α� is extensive, α� ◦ γ� is
equivalent to the identity and that (γ�, ℘(Σ��), Σ��, α�) is a Galois insertion.

Finally, we can express the relation between ℘(Σ�) and Σ�� by the composi-
tion of above functions, α = α� ◦ α� and γ = γ� ◦ γ�.

By property of function composition we can assert that (γ, ℘(Σ�), Σ��, α) is
a Galois insertion.
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3.2 Polyhedra Analysis

Convex polyhedra are regions of some n-dimensional space that are bounded by a
finite set of hyperplanes. A convex polyhedron in IRn describes a relation between
n quantities. In the seminal work [7], P. Cousot and N. Halbwachs applied the
theory of abstract interpretation to the static determination of linear equality
and inequality relations among program variables and introduced the use of
convex polyhedra as a domain of descriptions to solve a number of important
data-flow analysis problems.

There are many works in literature on the use of the polyhedra domain and
relative Galois connection and on its implementations [1,12]. Therefore we can
omit a comprehensive presentation of polyhedra analysis and provide only some
basic notions.

For n > 0 we denote by v = (v0, . . . vn−1) ∈ IRn an n-tuple (vector) of real
numbers; v · w denotes the scalar product of vectors v,w ∈ IRn; the vector
0 ∈ IRn has all components equal to zero. Let x be a n-tuple of distinct variable.
Then β = (a ·x �� b) denotes a linear equality and inequality constraint, for each
vector a ∈ IRn, where a �= 0, each scalar b ∈ IR and ��= {=,≥, >}. A linear
inequality constraint β defines an affine half-space of IRn, denoted by con({β}).

A set P ∈ IRn is a (convex) polyhedron if and only if P can be expressed
as the intersection of a finite number of affine half-spaces of IRn, i.e. as the
solution P = con(C) of a finite set of linear inequality constraints C. The set of
all polyhedra on the vector space IRn is denoted as Pn. Let 〈Pn,⊆, ∅, IRn,�,∩〉 be
a lattice of convex polyhedra, where “⊆” is the set-inclusion, the empty set and
IRn as the bottom and top elements, respectively; the binary meet operation,
returning the greatest polyhedron smaller than or equal to the two arguments,
correspond to set-intersection and “�” is the binary join operation and return
the least polyhedron greater than or equal to the two arguments, called convex
polyhedral hull. Moreover let G

℘(Σ	),Pn
= (γ

Pn,℘(Σ	) , ℘(Σ�), Pn, α
℘(Σ	),Pn

) be a
Galois connection between the concrete domain ℘(Σ�) and abstract domain Pn.

3.3 Reduced Product

We combine the abstract domains 〈Σ��,,�, ∅, Σ��,
�,��〉 and 〈Pn,⊆, ∅, IRn,�,∩〉
through a reduced product operator [6].

Let G
℘(Σ	),Σ	�

and G
℘(Σ	),Pn

be Galois connection and let � : Σ�� × Pn →
Σ�� × Pn be a reduction operator defined as follows: let X ∈ Σ�� be a set of
partial traces and let P ∈ Pn be a polyhedra.

�(〈X,P〉) = 〈X ′,P〉

such that

X ′ ={σ�
new | ∀σ� ∈ X.l(σ�

new) = l(σ�)∧
∧ r(σ�

new) = (r(σ�)� {x→ y | y = z ∈ P , z ∈ Vp ∪ ZZ ∧ z 
= x})}
Then, the reduced product D� is defined as follows:

D� = {�(〈X,P〉) | X ∈ Σ��,P ∈ Pn}
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Consider X0, X1 ∈ Σ��,P0,P1 ∈ Pn and 〈X0,P0〉, 〈X1,P1〉 ∈ D�: 〈X0,P0〉 ,�

〈X1,P1〉 if and only if X0 ,� X1 and P0 ⊆ P1. Let �� : D� → D� and 
� : D� →
D� be the least upper bound and greatest lower bound operator, respectively,
defined as 〈X0,P0〉�� 〈X1,P1〉 = 〈X0�� X1,P0�P1〉 and 〈X0,P0〉
� 〈X1,P1〉 =
〈X0 
� X1,P0 ∩ P1〉.

Therefore 〈D�,,�, ∅, �(〈Σ��, IRn〉),��,
�〉 is a complete lattice.
The reduce operator showed above is aimed at excluding pointless dependen-

cies for all variables which have the same value during the execution, without
the loss of purposeful relations (by the condition “x �= z”). In order to better
understand the improvements yielded by the combination of the two domains
consider the following example.

Example 2.

foo(){
0n = 0; 1x = 1; 2i = 0; 3y = x− 1; 4sum = p;
while(5i ≤ k) do

if(6n%2 == 0) then
7sum = y + p; 8n = n + 1;

else
9sum = x + (p− 1); 10n = n + 3;

11endif
12i = i + 1;

13done
}14

For the sake of simplicity, we show a partial representations through proposi-
tional formula and polyhedra of the variables dependency. In particular we take
in account the labels 4, 5, 8, 10, 12 and 14.

Polyhedra
4 n = 0; x− 1 = 0; i = 0; y = 0
5 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0; 3i− n ≥ 0;
8 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0;−i + k ≥ 0; 3i− n ≥ 0;
10 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0;−i + k ≥ 0; 3i− n ≥ 0;
12 −p + sum = 0; y = 0; x− 1 = 0;−i + n− 1 ≥ 0;−i + k ≥ 0;

i ≥ 0; 3i− n + 3 ≥ 0;
14 −p + sum = 0; y = 0; x− 1 = 0;−i + n ≥ 0;−i + k − 1 ≥ 0; 3i− n ≥ 0;

Propositional formula
4 x→ y
5 p→ sum
8 (x→ y) ∧ (p→ sum) ∧ (y → sum)
10 (x→ y) ∧ (p→ sum) ∧ (x→ sum)
12 (x→ y) ∧ (p→ sum) ∧ (x→ sum) ∧ (y → sum)
14 (x→ y) ∧ (p→ sum) ∧ (x→ sum) ∧ (y → sum) ∧ (n→ sum)∧

(i→ sum) ∧ (i→ n) ∧ (k→ sum) ∧ (k→ n)

When we apply the reduce operator defined above we obtain the following propo-
sitional formulas:
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4 T

5 p→ sum
8 p→ sum
10 p→ sum
12 p→ sum
14 (p→ sum) ∧ (i→ n) ∧ (k→ n)

By using the reduce operator we simplified the propositional formulas, removing
some implication which could in fact generate false alarms when using the direct
product of the domains instead of the reduced product.

4 Analysis

An information flow analysis can be carried out by considering different attacker
abilities. In this paper, we consider two scenarios: when the attacker can read
public variables only at the beginning and at the end of the computation, and
when the attacker can read public variables after each step of the computation.
Consider that the attacker, in both cases, knows the source code of the program.

Let ΥP : V → {L, H} be a function which assigns to each variable of pro-
gram P a security class: public (L) or private (H). We say that program P is
secure if and only if it does not contain any information leakage with respect to
the function ΥP , i.e. there is no information that moves from private to public
variables.

Let ΥP : Vp → {T, F} be the truth-assignment function associated with ΥP .
ΥP (x) assigns to x the value T or F if the security class, assigned by ΥP , is H or
L respectively.

The aim of this analysis is to formally verify if the program is secure, therefore
we look for all subsets of the prefix partial trace that do not have any information
leakage. For the first case, in which the attacker can read public variables only at
the beginning and at the end of the computation, the property is χ1 = {S ∈ Σ�� |
Υp 	 r(S�)} which is all abstract sequences in Σ�� such that the propositional
formula of the last abstract state is satisfied by truth-assignment function Υp.
Whereas in the second case, when the attacker can read public variables at each
step of the computation, the property is χ2 = {S ∈ Σ�� | ∀σ� ∈ S.Υp 	 r(σ�)}
the set of all abstract sequences in Σ�� which contains all the abstract states
that are satisfied by the truth-assignment function Υp.

4.1 Complexity

In order to evaluate the efficiency of our analysis, we have to consider the two
main components: Pos formulas and polyhedra.

Variables dependency analysis through propositional formulas involves two
different aspects: on the one hand, the logical equivalence of two boolean ex-
pressions, a co-NP-complete problem, and on the other hand the fact that the
complexity of Pos domain is bounded because we work only with the variables
appearing in the program, whose number is, in the practice, reasonably small
[11]. Moreover, it is possible to reduce the complexity using the ordered binary



556 M. Zanioli and A. Cortesi

decision diagrams (BDDs) to provide a compact representation of many boolean
functions and by using algorithms based on that.

About polyhedra analysis, the complexity is well and completely treated in
many works [1] and heavily depends on its implementation.

For example many implementation, e.g. Polylib and New Polka, use matrices
of coefficients, that cannot grow dynamically, and the worst case space complex-
ity of the methods employed is exponential. In PPL library, instead, all data
structures are fully dynamic and automatically expand (in amortized constant
time) ensuring the best use of available memory. Comparing the efficiency of the
polyhedra libraries is not simple, the pay-off depends on the targeted applica-
tions: in [1] the authors presented many test results about it.

In this paper we considered the polyhedra analysis, but, as already observed,
the modular construction allows to tune efficiency and accuracy changing the
domain which represents the relations among variables’ values.

For instance, we can use the analysis proposed by Karr in [13]: in this way we
may get a loss of precision, as this domain represnts only linear combination of
the variables, but we achieve an improvement of the computational cost of the
analysis (it is polynomial).

The complexity of reduced product, and more precisely of reduction operator
�, is strictly connected with the complexity of the operations on the domains we
combine.

5 Conclusions

In this paper, we presented an information flow analysis through abstract inter-
pretation based on a new domain that combines variable dependency analysis,
based on the reduced product of a propositional formulas domain, and a poly-
hedra domain. The techniques used in our analysis are frequently applied in the
context of generic code analysis; the main contribution of our work consists in
combining these techniques in a novel way to solve a specific security problem:
the detection of information leakages.

Moreover, the structure of our analysis allow easily some generalization, e.g.
for multi-level security policies or for other kind of analysis (for example, knowing
which variables depends on others, regardless of the security classes).
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Abstract. We consider the Partition Into Triangles problem on
bounded degree graphs. We show that this problem is polynomial time
solvable on graphs of maximum degree three by giving a linear time algo-
rithm. We also show that this problem becomes NP-complete on graphs
of maximum degree four. Moreover, we show that there is no subexpo-
nential time algorithm for this problem on maximum degree four graphs
unless the Exponential Time Hypothesis fails. However, the partition into
triangles problem for graphs of maximum degree at most four is in many
cases practically solvable as we give an algorithm for this problem that
runs in O(1.02220n) time and linear space. In this extended abstract, we
will only give an O(1.02445n) time algorithm.

1 Introduction

In his weblog of February 2009 [8], R. J. Lipton quotes Alan J. Perlis, the first
Turing Award winner:

For every polynomial-time algorithm you have, there is an exponential
algorithm that I would rather run.

His point is simple: if your algorithm runs in n4 time, then an algorithm that
runs in n2n/10 time (alternatively denoted as n1.07178n time) is faster if for
example n = 100 (this holds for all n ≤ 236).

The same observation for NP-hard problems instead of polynomial time solv-
able problems was made by Woeginger in his well known survey on exact expo-
nential time algorithms [12]. Woeginger considers the fact that algorithms for
NP-hard problems with exponential running times may actually lead to practi-
cal algorithms: he compares O(n4) with O(1.01n). We, however, are not aware
of any papers on natural1 NP-hard problems with exponential time algorithms
with running times anywhere near O(1.01n) without involving huge polynomial
factors (either visible, hidden in the notation, or hidden in the decimal rounding
of the exponent in the big-O). In this extended abstract, we will give such an
1 I.e., without making artificial constructions like Independent Set restricted to

graphs in which 99% of the vertices have degree at most two.

I. Černá et al. (Eds.): SOFSEM 2011, LNCS 6543, pp. 558–569, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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algorithm running in time O(1.02445n) or O(2n/28.69) for the Partition Into

Triangles problem restricted to maximum degree four graphs. In the full ver-
sion [10], we show through some case analysis that there also is an O(1.02220n)
or O(2n/31.58) time algorithm for this problem.

The Partition Into Triangles problem a classical NP-complete problem
[4]. In this paper, we study this problem restricted to bounded degree graphs
and obtain a series of results. On graphs of maximum degree three, we show
that the problem is linear time solvable. On graphs of maximum degree four,
we show that there exists a strong and interesting relation between Partition

Into Triangles and the Exact 3-Satisfiability problem. We exploit this
relation in several ways. First, we use it to show that the Partition Into

Triangles problem becomes NP-complete on graphs of maximum degree four.
Second, we use it to show that there exists no subexponential time algorithm
for Partition Into Triangles on maximum degree four graphs unless the
Exponential Time Hypothesis [5] fails. Thus it seems that Partition Into

Triangles restricted to graphs of maximum degree four is a hard problem.
However, as a third application of the relation to Exact 3-Satisfiability, we
give an O(1.02445n) time algorithm for our problem by combining the fastest
known algorithms for Exact Satisfiability [3] and Exact 3-Satisfiability

[11]. The faster algorithm in the full version [10], is also based on this relation.
We note that the running times of these algorithms involve no large hidden
polynomial factors, which makes them effective in practice.

On general graphs, the Partition Into Triangles problem can be solved
using set partitioning via inclusion-exclusion [2] in O(2nnO(1)) time and poly-
nomial space. Better running times for Partition Into Triangles can be
obtained as a side result of two recent papers. Koivisto [7] has given a general
covering algorithm that can be used to solve the problem in O(1.7693n) time and
space. And, Björklund [1] has given a general randomised partitioning algorithm
that can be used to solve the problem in O(1.496n) time and polynomial space
while having a probability of failure that is exponentially small in n. On bounded
degree graphs, we are unfamiliar with any results besides the hardness result of
Kann: he proved that the optimisation variant (cover by maximum number of
triangles) is Max-SNP-complete on graphs of maximum degree at least six [6].

Notation and definitions. We assume the reader to be familiar with standard
notation and terminology from graph theory and computer science related logic.

A triangle is a collection of three vertices in G in which each pair is joined by
an edge. A triangle partition of G is a partitioning of V in n/3 disjoint subsets
such that each such subset forms a triangle. This paper considers the problem
Partition Into Triangles: given a graph G, does G have a triangle partition?

We will often use reasoning involving the Exact 3-Satisfiability problem
(X3SAT) while the 3-Satisfiability problem (3SAT) is also used. To avoid
confusion, in the X3SAT problem exactly one variable in each clause must be set
to True, while in the 3SAT problem at least one variable in each clause must be
set to True. When there is the possibility of confusion, we denote a 3SAT clause
by SAT(x, y, z) and an X3SAT clause by XSAT(x, y, z).
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1 2 3 4

v v v v

Fig. 1. Possible edges within the local neighbourhood of a vertex in a cubic graph

We denote the frequency of a variable x by f(x), that is, f(x) is the number
of occurrences of the literals x and ¬x.

Paper organisation. We first give a linear time algorithm for Partition Into

Triangles on graphs of maximum degree three in Section 2. Then, we relate
the problem on graphs of maximum degree four to Exact 3-Satisfiability in
Section 3. We use this relation to prove our hardness results in Section 4. In this
extended abstract we give a simple O(1.02445n) time algorithm in Section 5. In
the same section, an O(1.02220n) time algorithm is claimed without proof. The
proof can be found in the full paper [10]. Finally, some conclusions are given in
Section 6.

2 A Linear Time Algorithm on Graphs with Δ(G) ≤ 3

We begin by considering Partition Into Triangles on graphs of maximum
degree three. We will prove that this problem is polynomial time solvable on this
graph class by giving a linear time algorithm: Algorithm 1.

Algorithm 1. A linear time algorithm for graphs of maximum degree three
Input: A graph G = (V, E) of maximum degree three.
Output: A triangle partition T of G or No if no such partition exists.
1: if |V | is not a multiple of three then return No

2: while G is non-empty do
3: Take any vertex v ∈ V .
4: if N [v] contains a vertex of degree at most two then
5: Reduce the graph using Lemma 1. If a triangle is selected, then add it to T .
6: else if N [v] corresponds to cases 1, 3, or 4 of Fig. 1 then
7: return No

8: else //case 2 of Fig. 1
9: Add the triangle in N [v] to T and remove its vertices from G.

10: return T

Lemma 1. Let G = (V, E) be an instance of Partition Into Triangles

restricted to graphs of maximum degree d containing a vertex v of degree at most
two. In constant time, we can either decide that G is a No-instance, or we can
transform G into an equivalent smaller instance.
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Proof. If v has degree at most one, then this vertex cannot be in any triangle and
the instance is a No-instance. Otherwise, let u, w be the neighbours of v. As G is
of constant maximum degree, we can test in constant time whether (u, w) ∈ E.
If (u, w) ∈ E, then {u, v, w} is the unique triangle containing v, and we remove
this triangle from G to obtain a smaller equivalent instance. If (u, w) �∈ E, then
v is not part of any triangle, and we again have a No-instance. 
�

Theorem 1. Algorithm 1 solves Partition Into Triangles on graphs of
maximum degree three in linear time.

Proof. For correctness, we note that the number of vertices must be a multiple
three in order to partition G into triangles. Furthermore, correctness of the first
case in the main loop follows from Lemma 1. For the other two cases, we observe
that any local neighbourhood of v must equal one of the four cases in Fig. 1. In
case 1, no triangle containing v exists, and, in cases 3 and 4, the fact that G is
cubic results in that removing any triangle would lead to vertices of degree at
most 1 which can no longer be in a triangle. Hence, these are all No-instances.
In case 2, v can only be part of one triangle, which Algorithm 1 selects.

Each iteration of the main loop requires constant time, since inspecting a
neighbourhood in a cubic graph can be done in constant time. In each iteration,
Algorithm 1 either terminates, or removes three vertices from G. Hence, there
are at most a linear number of iterations and Algorithm 1 runs in linear time. 
�

3 The Relation between Partition into Triangles on
Graphs with Δ(G) ≤ 4 and Exact 3-Satisfiability

When we restrict the Partition Into Triangles problem to graphs of maxi-
mum degree four, an interesting relation with Exact 3-Satisfiability emerges.
This relation will be the topic of this section.

We will first give three lemmas used to either decide that an instance of
Partition IntoTriangles on maximum degree four graphs is a No-instance, or
that it can be reduced to an equivalent smaller instance. These lemmas will apply
to any instance unless all vertices in the instance have a local neighbourhood that
is identical to one of two possible options. If we cannot reduce an instance in this
way, connected series of one of the remaining locals neighbourhoods can be inter-
preted as a variable that can be set to true or false depending on in which of the
two possible ways it will be partitioned into triangles. Under this interpretation,
the other possible local neighbourhood can be interpreted as a clause of size three
in which exactly one variable must be set to true. In this way, remaining instances
can be interpreted as an Exact 3-Satisfiability instance.

Lemma 2. Let G be an instance of Partition Into Triangles of maximum
degree four with a vertex v of degree at most three. In constant time, we can
either decide that G is a No-instance, or obtain an equivalent smaller instance.

Proof. We can assume that v has degree three: otherwise we apply Lemma 1.
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Similar to in the proof of Theorem 1, the local neighbourhood of v corresponds
to one of the four cases in Fig. 1. If this neighbourhood corresponds to case 1,
then all edges incident to v are not part of any triangle. If this neighbourhood
corresponds to case 2, then the edge between v and the bottom vertex is not part
of any triangle. In these two cases, we remove these edges and apply Lemma 1 to
v, which now has degree at most two. If this neighbourhood corresponds to case
4, then, since G is of maximum degree four, selecting any triangle in the solution
results in the creation of a vertex of degree at most one: we can conclude that
we have a No-instance. The same holds for case 3 unless the vertices a and b
(see Fig. 2) are of degree four.

v

u a

b

v

u a

b

ab

Fig. 2. Reducing an instance with a degree three vertex by merging its neighbours

In this last case, we reduce the graph as in Fig. 2. Either vertex a or vertex b
must be in a triangle with u and v. Thus, the other vertex from a and b must
be in a triangle with its other two neighbours. We distinguish three subcases
depending on the number of common neighbours of a and b.

Let a and b have no other common neighbours than u and v. Observe that
an edge between a neighbour of a and a neighbour of b outside the shown part
of the graph cannot be in a triangle in any solution: we remove these if any
exist. Next, we merge the vertices a and b to a single vertex and remove both u
and v. Now, the new vertex is part of only two different triangles, and both
possibilities corresponds to taking one of the two possible triangles containing v
in the original graph. Also, no extra triangles are introduced as we have removed
the edge between the neighbours of the merged vertices. We conclude that the
new smaller instance is equivalent.

Alternatively, let a and b have a third common neighbour, say w. Since we
must pick a triangle with u, v and either a or b, we can remove the two edges
incident to a and not incident to u or v if they are not on a common triangle
together. If we do so, we obtain a vertex of degree two and can apply Lemma 1.
The same goes for the two edges incident to b and not incident to u or v. Hence,
we can assume that both a and b lie on a triangle with their third common
neighbour w. Moreover, depending on which vertex from a and b we pick in a
triangle with u and v, the other must be in a triangle with w. Now, we remove
u and v and merge a and b to a single vertex and remove double edges. In the
new instance, the edge between ab and w can be in two triangles and the choice
corresponds directly to either taking the triangle u, v, a and the triangle with b
and w, or taking the triangle u, v, b and the triangle with a and w.

Finally, let a and b have four common neighbour called u, v, w and x. Again,
the two pairs of edges incident to a and b not incident to u and v must be pairwise
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in triangles or we can remove them and apply Lemma 1. In the remaining case,
each of these pairs of edges forms a triangle with the edge between w and x.
Now, we must either pick the triangles u, v, a and b, w, x or we must pick u,
v, b, and a, w, x. Both options involve the same vertices, hence we can remove
these to obtain an equivalent smaller instance. 
�

As a result, we can reduce any non 4-regular instance. In a 4-regular graph, a
vertex v can have a number of possible local neighbourhoods, all shown in Fig. 3.
We will now show that we can reduce any instance having a vertex whose local
neighbourhood does not correspond to cases 2b or 3a in Fig. 3.

1 22 a 2 b 3

4 a 4 b 5

0

6

v v v v v v

v v v v

u w

v

3a b

3c

Fig. 3. Possible edges within the local neighbourhood of a degree four vertex. Notice
that the numbering corresponds to the number of edges between the neighbours of v.

Lemma 3. Let G = (V, E) be a 4-regular instance of Partition Into Tri-

angles containing a vertex v whose local neighbourhood is different from cases
2b, 3a and 3b in Fig. 3. In constant time, we can either decide that G is a
No-instance, or we can transform G into an equivalent smaller instance.

Proof. Consider the possible local neighbourhoods around v shown in Fig. 3.
If the local neighbourhood of v equals case 0, 1, 2a, or 3c, then v is incident

to an edge that is not part of any triangle in G since both endpoints do not have
a common neighbour. For these cases, we remove the edge and apply Lemma 2
to v. If this local neighbourhood equals case 5 or 6, then we have a No-instances
since picking any triangle containing v results in a vertex of degree at most one.

To complete the proof, we consider the remaining two cases: 4a, and 4b.
Case 4a: Consider the edge from the top left vertex to the bottom right vertex.

This edge is part of two triangles, one with the centre vertex v and one with
the top right vertex. If we would take any of these two triangles in the solution,
a vertex of degree at most one remains. Hence, this edge cannot be part of a
triangle in the solution and we can apply Lemma 2 after removing this edge.

Case 4b: Consider one of the four edges in N [v] not incident to v, say the edge
between the top two vertices. This edge is part of one or two triangles, one with
v, and one with a possible third vertex outside of N [v]. Assume that we take
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the triangle with this edge and v in a solution, then the remaining two vertices
will get degree two and thus they can only be in a triangle together and with
a common neighbour. Hence, for each of the four edges in N [v], we remove it if
the endpoints of both the edge and the opposite edge (edge between the other
two vertices in N [v] \ {v}) have no common neighbour except for v.

Note that there is no instance in which all four edges remain since each of
the four corner vertices has only one neighbour outside of N [v]. Hence there can
be at most two such common neighbours, and if there are two then they must
involve the endpoints of opposite edges. We can now apply Lemma 2. 
�

Having reduced the number of possible local neighbourhoods of a vertex in an
instance to three, we now remove one more such possibility.

Lemma 4. Let G be a 4-regular instance of Partition Into Triangles in
which the local neighbourhood of each vertex equals case 2b, 3a or 3b in Fig. 3.
Then, vertices whose local neighbourhood equal case 3b form separate connected
components in G. We can either decide that G is a No-instance, or remove these
components to obtain an equivalent smaller instance in linear time.

Proof. Let v be a vertex whose local neighbourhood corresponds to case 3b
of Fig. 3. Let u be the top left vertex in this picture and consider the local
neighbourhood of u. This neighbourhood cannot equal case 2b of Fig. 3 as it
contains one vertex adjacent to two other vertices in the neighbourhood. The
neighbourhood can also not equal case 3a, since v is of degree four and thus
cannot have an extra edge to the neighbour of u outside N [v]. We conclude that
the local neighbourhood of u must equal that of case 3b in Fig. 3. Thus, the top
two vertices have a common neighbour outside N [v].

We can repeat this argument and apply it to u to conclude that the top
right vertex in the picture w also has the same local neighbourhood. This shows
that w and the new vertex created in the previous step must have another
common neighbour. In this way, we conclude that every vertex in the connected
component containing v has this local neighbourhood. Moreover, this connected
component consists of a circular chain of these configurations as shown in Fig. 4.

Fig. 4. A connected component with all local neighbourhoods equal to case 3b of Fig. 3

It is not hard to see that such a connected component can be partitioned into
triangles if and only if its number of vertices is a multiple of three. Therefore,
we can decide that we have a No-instance if this is not the case, and otherwise
we can remove it in linear time to obtain an equivalent smaller instance. 
�
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Let a reduced instance of Partition Into Triangles on maximum degree
four graphs be an instance to which Lemmas 2, 3 and 4 do not apply, i.e., an
instance in which each local neighbourhood corresponds to case 2b or 3a in
Fig. 3.

Let v be a vertex in a reduced instance whose neighbourhood equals case 3a
in Fig. 3. Note that v has one neighbour with the same neighbourhood and it
has three neighbours which neighbourhoods are equal to case 2b. We refer to a
pair of two vertices with neighbourhood 3a as a fan. And, we refer to adjacent
series of vertices with the other local neighbourhood as a cloud of triangles. See
Fig. 5.

Fig. 5. A fan and a cloud with the two ways in which it can be partitioned into triangles

Observe how these reduced instances can be partitioned into triangles. In a
fan, we must select a triangle containing the middle two vertices and exactly
one of the three vertices on the boundary. And in a cloud, each triangle is
either selected or all its neighbouring (cloud or fan) triangles are selected. Hence,
adjacent triangles will alternate between being selected and not being selected
in a triangle partition of a cloud; see Fig. 5. As a result, an instance with a
cloud that contains a cycle of triangles of odd length is a No-instance since
there cannot be such an alternating cycle. Every other cloud has two groups of
boundary vertices connecting it to fans: in any solution all fan triangles connected
to one group will be selected and all fan triangles connected to the other group
will not (see also Fig. 5). The only exception to this is the single vertex cloud that
directly connects two fans; here the single vertex is in both groups of endpoints.

Now, the relation between Partition Into Triangles on graphs of maxi-
mum degree four and Exact 3-Satisfiability emerges. Namely, we can inter-
pret a reduced instance as an X3SAT instance. We interpret a fan as a clause
containing three literals represented by its adjacent clouds: exactly one fan tri-
angle must be selected and this choice determines exactly which triangles in the
adjacent clouds will be selected. In this way, we interpret a cloud as a variable
that can be set to true or false. Both truth assignments correspond to one of
the two possible ways to partition the cloud into triangles. The two groups of
vertices on the boundary of a cloud then form the positive and the negative
literals; these are contained in the clauses represented by adjacent fans. It is not
hard to see that this X3SAT interpretation of a reduced instance is satisfiable if
and only if the partition into triangles instance has a solution.

Note that an Exact 3-Satisfiability instance obtained in this way can have
multiple identical clauses. Such an instance also satisfies Property 1.
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Property 1. For any variable x, the number of positive f+(x) and negative f−(x)
literals differ a multiple of three.

Proposition 1. An Exact 3-Satisfiability instance obtained in the above
way from an instance of Partition Into Triangles satisfies Property 1.

Proof. Let t+, t− be the number of triangles selected within the cloud represent-
ing x when x is set to true or false, respectively. A cloud has a fixed number of ver-
tices and for each corresponding truth assignment each vertex is either selected
in a triangle or part of a corresponding literal, thus: 3t+ + f+(x) = 3t− + f−(x).
Hence, f+(x) ≡ f−(x) (mod 3). 
�

The following lemma shows how we can model instances of X3SAT by reduced
instances of Partition Into Triangles of maximum degree four.

Lemma 5. Any variable satisfying Property 1 can be represented by a cloud.
Such a cloud consists of 2f(x)− 3 vertices.

Proof. Consider a cloud representing a variable x, without considering its adja-
cent fans. Note that we can increase f+(x) or f−(x) by 3 in the following way:
take a chain of three triangles connected by common endpoints and identify the
loose endpoint of the middle triangle with a vertex representing a literal of x.

Without loss of generality let f+(x) > 0. It is not hard to see that in this way
we can create any combination F (x) = (f+(x), f−(x)) given that f+(x) ≡ f−(x)
(mod 3) by starting from the single vertex cloud with F (x) = (1, 1), a single
triangle with F (x) = (3, 0), two adjacent triangles with F (x) = (2, 2), or a chain
of four triangles with F (x) = (3, 3).

One easily checks that the statement on the number of vertices holds for the
initial cases and is maintained every time three triangles are added. 
�

We conclude by formally expressing the relation between Partition Into Tri-

angles on graphs of maximum degree four and Exact 3-Satisfiability. The
proof of the resulting theorem directly follows from the above discussion.

Theorem 2. There exist linear time transformations between instances of
Partition Into Triangles on graphs of maximum degree four and instances
of Exact 3-Satisfiability satisfying Property 1 such that the following holds:

1. A given instance is equivalent to its transformed instance.
2. An Exact 3-Satisfiability instance with variable set X and clause set C

obtained form an n-vertex Partition Into Triangles instance of maxi-
mum degree four satisfies: 2|C|+

∑
x∈X (2f(x)− 3) ≤ n.

3. A Partition Into Triangles instance on n vertices obtained form an
Exact 3-Satisfiability instance satisfying Property 1 with variable set X
and clauses set C satisfies: 2|C|+

∑
x∈X (2f(x)− 3) = n.
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4 Hardness Results on Graphs of Maximum Degree Four

Having formalised the relation between Partition Into Triangles on graphs
of maximum degree four and Exact 3-Satisfiability in the previous sec-
tion, we are now ready to prove some hardness results. In this section, we will
show that Partition Into Triangles on graphs of maximum degree four is
NP-complete, and that no subexponential algorithm for this problem exists
unless the Exponential Time Hypothesis (ETH) [5] fails.

Theorem 3. Partition Into Triangles on graphs of maximum degree four
is NP-complete.

Proof. Clearly, the problem is in NP . For hardness, we reduce from the NP-
complete problem Exact 3-Satisfiability [4]. Given an instance of Exact

3-Satisfiability, we enforce Property 1 by making three copies of each clause.
Then, the result follows from Theorem 2. 
�

Next, we show that no subexpoential time algorithm for our problem exists. We
note that although we prove that, under the ETH, no algorithm subexponential
in n exists, this also implies that no algorithm subexponential in m exists as
m = O(n) on bounded degree graphs.

Theorem 4. Under the ETH, there exists no algorithm for Partition Into

Triangles on graphs of maximum degree four with a running time subexponen-
tial in n.

Proof. Consider an arbitrary 3SAT instance with m clauses. We create an equiv-
alent X3SAT instance with 4m clauses by using an equivalence from [9].

SAT(x, y, z)⇐⇒XSAT(x, v1, v2)∧XSAT(y, v2, v3)∧XSAT(v1, v3, v4)∧XSAT(¬z, v2, v5)

We then transform this Exact 3-Satisfiability instance into an equivalent
instance of Partition Into Triangles of maximum degree four using the
construction in the proof of Theorem 3. This construction triples the number of
clauses to 12m, and thus the total sum of the number of literal occurrences is
at most 36m. By Lemma 5, variables x can be represented by clouds using less
than 2f(x) vertices each. This gives at most 96m vertices: 72m for the variables
and another 24m for the two vertices of a fan for each clause.

Suppose there exists a subexponential time algorithm for Partition Into

Triangles on graphs of maximum degree four, i.e, an O(2δn) time algorithm
for all δ > 0. Then, this algorithm solves 3SAT problems in O(2εm) for all ε > 0
using the above construction and δ = ε/96. However, the sparsification lemma
in [5] shows that, assuming the ETH, no such algorithm can exist. 
�

5 Exponential Time Algorithms

In the previous section, we have given two hardness results for Partition

Into Triangles on graphs of maximum degree four. Despite these results, this
problems seems to admit very fast, though exponential time, algorithms.
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In this extended abstract, we give a simple O(1.02445n) time algorithm for
this problem based on the algorithm for Exact Satisfiability by Byskov et
al. [3] and the algorithm for Exact 3-Satisfiability from Wahlström’s PhD
thesis [11]. We also claim a faster O(1.02220n) time algorithm. This algorithm
is based on the same principles combined with an extensive analysis; it is given
in the full paper [10].

Proposition 2. There exists an O(1.02445n) time algorithm algorithm for
Partition Into Triangles on graphs of maximum degree four.

Proof. Use Theorem 2 to obtain an instance of X3SAT with variable set X and
clause set C satisfying n ≥ 2|C| +

∑
x∈X (2f(x)− 3). Let γ1 be the number of

variables x with f+(x) = f−(x) = 1 and let γ3 be the number of variables x with
f(x) ≥ 3; by Property 1 the total number of variables γ equals γ1 + γ3. Since
clauses have size three, we find that n ≥ 2(2γ1 +3γ3)/3+γ1 +3γ3 = 2 1

3γ1 +5γ3.
If γ1 ≤ 0.10746n, then apply the O(1.0984γ) algorithm for X3SAT from

Wahlström’s PhD thesis [11]. Now, γ = γ1 + γ3 ≤ 0.10746n + (n − 2 1
3 ×

0.10746n)/5 < 0.25732n by basic calculus. Therefore, the problem is solved in
O(1.09840.25732n) = O(1.02445n) time.

Otherwise γ1 > 0.10746n. Then, we apply the O(20.2325γ) XSAT algorithm
from Byskov et al. [3]. This algorithm first reduces the instance in polynomial
time removing, among others, variables x with f+(x) = f−(x) = 1, see [3] for
details. Hence, the algorithm solves our instance in O(20.2325γ3) = O(1.02445n)
time as γ3 ≤ (n− 2 1

3 × 0.10746n)/5 < 0.14986n by basic calculus. 
�

Theorem 5 ([10]). There exists an O(1.02220n) time algorithm algorithm for
Partition Into Triangles on graphs of maximum degree four.

6 Conclusion

We have shown that the Partition Into Triangles problem is linear time
solvable on graphs of maximum degree three, that it is NP-complete on graphs
of maximum degree at least four, and that no subexponential time algorithm
for this last problem exists unless the Exponential Time Hypothesis fails. For
this seemingly hard problem on graphs of maximum degree four, we have given
an efficient O(1.0222n) time algorithm using only linear space, and without any
large hidden polynomial factors in the running time. In practical situations with
reasonable input sizes, this would mean that our algorithm will probably be
faster than polynomial time algorithms for the same problem on, for example,
graphs whose treewidth is bounded by 10. We would be interested to find more
problems on which such fast, yet exponential time, algorithms exists.

We have used an interesting relation between Partition Into Triangles on
graphs of maximum degree four and Exact 3-Satisfiability to obtain these
results. This relationship emerges by reducing Partition Into Triangles in-
stances of maximum degree four until each vertex can have only two different
local neighbourhoods. Connected series of vertices with one of these local neigh-
bourhoods then form the variables of an Exact 3-Satisfiability instance and



Partition into Triangles on Bounded Degree Graphs 569

pairs vertices with the other local neighbourhood form the clauses of this Exact

3-Satisfiability instance. Since such a structure seems to disappear on graphs
with a higher degree bound, we wonder whether similar ideas could be used for
triangle packing or triangle covering.
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Jaroměřská, Slávka 482

Kaczmarski, Krzysztof 308
Karanikolas, Nikitas N. 533
Kari, Lila 166
Kaufmann, Michael 111, 272
Kempkes, Barbara 178
Kim, Doo-Hwan 320
Kim, Jong-Phil 320
Klaas, Alexander 178
Kling, Peter 178
Komm, Dennis 332
Komusiewicz, Christian 344
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