

Lecture Notes in Computer Science 6539
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ricardo Rocha John Launchbury (Eds.)

Practical Aspects
of Declarative
Languages

13th International Symposium, PADL 2011
Austin, TX, USA, January 24-25, 2011
Proceedings

13

Volume Editors

Ricardo Rocha
University of Porto, CRACS & INESC-Porto LA, Faculty of Sciences
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
E-mail: ricroc@dcc.fc.up.pt

John Launchbury
Galois, 421 SW 6th Ave. Suite 300, Portland, OR 97204, USA
E-mail: john@galois.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-18377-5 e-ISBN 978-3-642-18378-2
DOI 10.1007/978-3-642-18378-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010942579

CR Subject Classification (1998): D.3, D.1, F.3, D.2, I.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 13th International Symposium on
Practical Aspects of Declarative Languages (PADL 2011), held in Austin, Texas,
during January 24–25, 2011. PADL is a yearly forum where researchers and prac-
titioners present original work emphasizing new ideas and approaches pertaining
to applications and implementation techniques of declarative languages.

This year, PADL accepted both full technical papers and shorter application
papers. In both categories, 40 papers were submitted (35 technical papers and
5 application papers) and each submission was reviewed by at least 3 Program
Committee members. At the end, the Program Committee decided to accept 18
papers, 1 of them being an application paper.

The set of accepted papers present a variety of contributions ranging from
message-passing and mobile networks, concurrent and parallel programming,
event processing and reactive programming, profiling and portability in Prolog,
constraint programming, grammar combinators, belief set merging and work
on new language extensions and tools. The conference program also included
two invited talks, “Intel Core i7 Processor Execution Engine Validation in a
Functional Language Based Formal Framework”by Roope Kaivola and“Learning
Language from Its Perceptual Context” by Raymond J. Mooney.

As traditionally, the PADL symposium was co-located with the ACM Sym-
posium on Principles of Programming Languages (POPL 2011). We thank ACM,
the POPL organizers and the University of Texas at Dallas for their support,
as well as the EasyChair conference management system for making the life of
the Program Committee Chairs easier. Thanks should go also to the authors
of all submitted papers for their contribution to making PADL alive and to the
participants for making the event a meeting point for a fruitful exchange of ideas
and feedback on recent developments. Finally, we want to express our gratitude
to the Program Committee members and external reviewers, as the symposium
would not have been possible without their dedicated and outstanding work. This
gratitude is extended to Gopal Gupta for his advice and guidance in making the
symposium a successful event.

November 2010 Ricardo Rocha
John Launchbury

Organization

Program Chairs

John Launchbury Galois, USA
Ricardo Rocha University of Porto, Portugal

Program Committee

Salvador Abreu University of Évora, Portugal
Byron Cook Microsoft Research, UK
Maria Garcia de la Banda Monash University, Australia
Agostino Dovier University of Udine, Italy
Martin Erwig Oregon State University, USA
Neal Glew Intel Corporation, USA
Xavier Leroy INRIA, France
Yitzhak Mandelbaum AT&T Labs Research, USA
Bryan O’Sullivan Serpentine Green Design, USA
Germán Puebla Technical University of Madrid, Spain
C.R. Ramakrishnan SUNY Stony Brook, USA
Sukyoung Ryu Advanced Institute of Science and Technology,

Korea
Konstantinos Sagonas National Technical University of Athens,

Greece
André Santos Federal University of Pernambuco, Brazil
Tom Schrijvers Katholieke Universiteit Leuven, Belgium
Neng-Fa Zhou CUNY Brooklyn College, USA

External Reviewers

Jesus M.
Almendros-Jimenez

Tim Bauer
Clara Benac Earle
Sheng Chen
Maria Christakis
Raffaele Cipriano
João Costa Seco
Giovanna D’Agostino
Carlos Damásio
Conal Elliott
Andrea Formisano
Massimo Franceschet

Hai-Feng Guo
Steffen Jost
Hai Liu
Matthieu Martel
Chris Mears
Marino Miculan
José F. Morales
Yang Ni
Henrik Nilsson
Vı́tor Nogueira
Dominic Orchard
Nikolaos Papaspyrou
Jorge A. Perez

Leaf Petersen
Carla Piazza
Nicolas Pouillard
André Rauber du Bois
Gianfranco Rossi
Pedro Salgueiro
Vı́tor Santos Costa
Joachim Schimpf
Josep Silva
Guido Tack
Eric Walkingshaw
Mark Wallace
Michael Wybrow

Table of Contents

Invited Talks

Intel� CoreTM i7 Processor Execution Engine Validation in a
Functional Language Based Formal Framework . 1

Roope Kaivola

Learning Language from Its Perceptual Context . 2
Raymond J. Mooney

Message-Passing and Mobile Networks

Detection of Asynchronous Message Passing Errors Using Static
Analysis . 5

Maria Christakis and Konstantinos Sagonas

Combinators for Message-Passing in Haskell . 19
Neil C.C. Brown

Analysing a Publish/Subscribe System for Mobile Ad Hoc Networks
with ProbLog . 34

Theofrastos Mantadelis, Koosha Paridel, Gerda Janssens,
Yves Vanrompay, and Yolande Berbers

Profiling and Implementation

Profiling for Run-Time Checking of Computational Properties and
Performance Debugging in Logic Programs . 38

Edison Mera, Teresa Trigo, Pedro Lopez-Garćıa, and
Manuel Hermenegildo

Plato: A Compiler for Interactive Web Forms . 54
Timothy L. Hinrichs

On the Portability of Prolog Applications . 69
Jan Wielemaker and Vı́tor Santos Costa

Grammars, Merging and Constraint Programming

Explicitly Recursive Grammar Combinators: A Better Model for
Shallow Parser DSLs . 84

Dominique Devriese and Frank Piessens

VIII Table of Contents

Declarative Belief Set Merging Using Merging Plans 99
Christoph Redl, Thomas Eiter, and Thomas Krennwallner

Using Constraints for Intrusion Detection: The NeMODe System 115
Pedro Salgueiro, Daniel Diaz, Isabel Brito, and Salvador Abreu

Language Extensions and Tools

A Declarative API for Particle Systems . 130
Pavel Krajcevski and John Reppy

Integrating XPath with the Functional-Logic Language Toy 145
Rafael Caballero, Yolanda Garćıa-Ruiz, and Fernando Sáenz-Pérez

Sloth—A Tool for Checking Minimal-Strictness . 160
Jan Christiansen

Concurrent and Parallel Programming

The F# Asynchronous Programming Model . 175
Don Syme, Tomas Petricek, and Dmitry Lomov

Kanor: A Declarative Language for Explicit Communication 190
Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler,
Arun Chauhan, and Andrew Lumsdaine

Joinads: A Retargetable Control-Flow Construct for Reactive, Parallel
and Concurrent Programming . 205

Tomas Petricek and Don Syme

Event Processing and Reactive Programming

Results on Out-of-Order Event Processing . 220
Paul Fodor, Darko Anicic, and Sebastian Rudolph

Nettle: Taking the Sting Out of Programming Network Routers 235
Andreas Voellmy and Paul Hudak

Determining Actual Response Time in P-FRP . 250
Chaitanya Belwal and Albert M.K. Cheng

Author Index . 265

Intel� CoreTM i7 Processor Execution Engine Validation
in a Functional Language Based Formal Framework

Roope Kaivola

Intel Corporation, JF4-451, 2111 NE 25th Avenue, Hillsboro, OR 97124, USA

Abstract. Formal verification of microprocessor components has been pursued
in Intel processor development projects in various forms for over a decade. Usu-
ally formal verification has been used to supplement more traditional coverage
oriented testing activities. For the Intel� CoreTM i7 design we took a step fur-
ther and used formal verification as the primary validation vehicle for the core
execution cluster, the component responsible for the functional behaviour of all
microinstructions. We applied symbolic simulation based formal verification tech-
niques for full datapath, control and state validation for the cluster, and dropped
coverage driven testing entirely [2]. The project, involving some twenty person
years of verification work, is one of the most ambitious formal verification efforts
in the hardware industry to date, and shows that under the right circumstances,
full formal verification of a major design component is a feasible, industrially
viable and competitive validation approach.

Technically the verification work was carried out in the Forte verification
framework, originally built on top of the Voss system [1]. It is based on a strongly
typed ML-like [4] lazy functional programming language reFLect. Most of the
verification code is written in reFLect: specifications, whether they are functional
specifications or relational constraints, verification facilities, analysis routines etc.
The execution of an individual verification task in the framework amounts to the
evaluation of a reFLect program, and the entire verification initiative involves
significant software engineering aspects [3]. In the reFLect language binary deci-
sion diagrams are first-class objects: the type Bool includes not just the constants
T and F, but arbitrary BDD’s. For verification purposes, a very important fea-
ture of the language is that it allows symbolic evaluation of objects containing
BDD’s and symbolic circuit simulation using BDD’s. Similar facilities exist for
non-canonical graph representations of Booleans, used for interfacing with satis-
fiability solvers.

References

1. Hazelhurst, S., Seger, C.-J.H.: Symbolic trajectory evaluation. In: Kropf, T. (ed.) Formal Hard-
ware Verification. LNCS, vol. 1287, pp. 3–78. Springer, Heidelberg (1997)

2. Kaivola, R., et al.: Replacing testing with formal verification in Intel Core i7 processor exe-
cution engine validation. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
414–429. Springer, Heidelberg (2009)

3. Kaivola, R., Kohatsu, K.: Proof engineering in the large: formal verification of Pentium R© 4
floating-point divider. Int’l J. on Software Tools for Technology Transfer 4, 323–334 (2003)

4. Paulson, L.: ML for the Working Programmer. Cambridge University Press, Cambridge (1996)

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Learning Language from Its Perceptual Context

Raymond J. Mooney

Department of Computer Science, The University of Texas at Austin

1616 Guadalupe, Suite 2.408, Austin, TX 78701

mooney@cs.utexas.edu

Abstract. Current systems that learn to process natural language re-

quire laboriously constructed human-annotated training data. Ideally, a

computer would be able to acquire language like a child by being exposed

to linguistic input in the context of a relevant but ambiguous perceptual

environment. As a step in this direction, we present a system that learns

to sportscast simulated robot soccer games by example. The training

data consists of textual human commentaries on Robocup simulation

games. A set of possible alternative meanings for each comment is auto-

matically constructed from game event traces. Our previously developed

systems for learning to parse and generate natural language (KRISP and

WASP) were augmented to learn from this data and then commentate

novel games. Using this approach, the system has learned to sportscast

in both English and Korean. The system has been evaluated based on

its ability to properly match sentences to the events being described,

parse sentences into correct meanings, and generate accurate linguis-

tic descriptions of events. Human evaluation was also conducted on the

overall quality of the generated sportscasts and compared to human-

generated commentaries, demonstrating that its sportscasts are on par

with those generated by humans.

Developing systems that can communicate in natural human language is a long
standing goal of computer science and artificial intelligence that has proven in-
credibly challenging due to the complexity and ambiguity of human languages.
Compared to manual programming, machine learning has proven to be a sig-
nificantly more effective approach to constructing accurate and robust natural
language processing (NLP) systems [2,8]. Therefore, most current NLP systems
are built using statistical learning algorithms trained on large annotated corpora.
However, annotating sentences with the requisite parse trees [9], word senses [5]
and semantic roles [7] is a difficult and expensive undertaking. By contrast, chil-
dren acquire language through exposure to linguistic input in the context of a
rich, relevant, perceptual environment. Also, by connecting words and phrases
to objects and events in the world, the semantics of language is grounded in
perceptual experience [4]. Ideally, a machine learning system would be able to
acquire language in a similar manner without explicit human supervision. As a
step in this direction, we present a system that can describe events in a simu-
lated soccer game by learning only from sample language commentaries paired
with traces of simulated activity without any language-specific prior knowledge.
A screenshot of our system with generated commentary is shown in Figure 1.

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 2–4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Learning Language from Its Perceptual Context 3

Fig. 1. Screenshot of our commentator system

We study the problem of perceptually-grounded language learning in a simu-
lated environment that retains many of the important properties of a dynamic
world with multiple agents and actions while avoiding many of the complexi-
ties of robotics and computer vision. Specifically, we use the RoboCup simulator
which provides a fairly detailed physical simulation of robot soccer. While sev-
eral groups have constructed RoboCup commentator systems [1] that provide
a textual natural-language transcript of the simulated game, their systems use
manually-developed templates and are not based on learning.

Our commentator system learns to semantically interpret and generate lan-
guage in the RoboCup soccer domain by observing an on-going commentary of
the game paired with the evolving simulator state. By exploiting existing tech-
niques for abstracting a symbolic description of the activity on the field from
the detailed states of the physical simulator [1], we obtain a pairing of natural
language with a symbolic description of the perceptual context in which it was
uttered. However, such training data is highly ambiguous because each comment
usually co-occurs with several events in the game. We have integrated and en-
hanced our existing methods for learning semantic parsers and natural-language
generators [6,10] in order to learn to understand and generate language from
such ambiguous training data. We have also developed a system that, from the
same ambiguous training data, learns which events are worth describing, so that
it can also perform strategic generation, that is, deciding what to say as well as
how to say it (tactical generation).

We have evaluated our system and demonstrated its language-independence
by training it to generate soccer commentaries in both English and Korean.
Experiments on test data (annotated for evaluation purposes only) have demon-
strated that the system learns to accurately semantically parse sentences into
formal logical representations, generate natural-language sentences from such

4 R.J. Mooney

logical representations, and decide which events are worth describing. Finally,
subjective human evaluation of commentated game clips demonstrate that the
system generates sportscasts that are generally similar in quality to those pro-
duced by humans. In particular, for English commentaries, human judges re-
cruited using Amazon’s Mechanical Turk could not reliably distinguish human
from machine generated sportscasts. A full description of the system and de-
tailed experimental evaluation results are presented in a recent article in the
Journal of Artificial Intelligence Research [3].

Acknowledgements

I would like to thank David Chen, Joohyun Kim, and Rohit Kate for their sig-
nificant contributions to this work. This research was supported by the National
Science Foundation uner grants IIS-0712097 and IIS-1016312. All opinions ex-
pressed are solely those of the author.

References

1. André, E., Binsted, K., Tanaka-Ishii, K., Luke, S., Herzog, G., Rist, T.: Three

RoboCup simulation league commentator systems. AI Magazine 21(1), 57–66

(2000)

2. Brill, E., Mooney, R.J.: An overview of empirical natural language processing. AI

Magazine 18(4), 13–24 (1997)

3. Chen, D.L., Kim, J.H., Mooney, R.J.: Training a multilingual sportscaster: Using

perceptual context to learn language. Journal of Artificial Intelligence Research 37,

397–435 (2010)

4. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

5. Ide, N.A., Jéronis, J.: Introduction to the special issue on word sense disambigua-

tion: The state of the art. Computational Linguistics 24(1), 1–40 (1998)

6. Kate, R.J., Mooney, R.J.: Learning language semantics from ambiguous supervi-

sion. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence

(AAAI 2007), Vancouver, Canada, pp. 895–900 (July 2007)

7. Kingsbury, P., Palmer, M., Marcus, M.: Adding semantic annotation to the Penn

treebank. In: Proceedings of the Human Language Technology Conference, San

Diego, CA (2002)

8. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-

ing. MIT Press, Cambridge (1999)

9. Marcus, M., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus

of English: The Penn treebank. Computational Linguistics 19(2), 313–330 (1993)

10. Wong, Y.W., Mooney, R.J.: Generation by inverting a semantic parser that uses

statistical machine translation. In: Proceedings of Human Language Technologies:

The Conference of the North American Chapter of the Association for Computa-

tional Linguistics (NAACL-HLT 2007), Rochester, NY, pp. 172–179 (2007)

Detection of Asynchronous Message Passing

Errors Using Static Analysis

Maria Christakis1 and Konstantinos Sagonas1,2

1 School of Electrical and Computer Engineering,

National Technical University of Athens, Greece
2 Department of Information Technology, Uppsala University, Sweden

{mchrista,kostis}@softlab.ntua.gr

Abstract. Concurrent programming is hard and prone to subtle errors.

In this paper we present a static analysis that is able to detect some

commonly occurring kinds of message passing errors in languages with

dynamic process creation and communication based on asynchronous

message passing. Our analysis is completely automatic, fast, and strikes

a proper balance between soundness and completeness: it is effective in

detecting errors and avoids false alarms by computing a close approx-

imation of the interprocess communication topology of programs. We

have integrated our analysis in dialyzer, a widely used tool for detecting

software defects in Erlang programs, and demonstrate its effectiveness

on libraries and applications of considerable size. Despite the fact that

these applications have been developed over a long period of time and are

reasonably well-tested, our analysis has managed to detect a significant

number of previously unknown message passing errors in their code.

1 Introduction

Concurrent execution of programs is more or less a necessity these days. To
cater for this need, most programming languages come with built-in support
for creating processes or threads. Depending on the concurrency model of the
language, interprocess communication takes place through synchronized shared
structures (as in C/Pthreads, Java and Haskell), synchronous message passing
on typed channels (as in Concurrent ML), or asynchronous message passing (as
in Erlang). Even though certain problems associated with concurrent execution
of programs are completely avoided in some of these models, each of them comes
with its own set of gotchas and possibilities for programming errors. Indepen-
dently of the concurrency model which is employed by the language, concurrent
programming is fundamentally more difficult than its sequential counterpart.

Tools that detect software errors early in the development cycle can help in
making concurrent programming more robust and easier for programmers. In
particular, tools based on static analysis seem promising as they are completely
automatic and in principle scale better than, for example, those based on model
checking. Unfortunately, designing and implementing an effective static analysis
for a concurrent language which has not been designed with analysis in mind is a

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 5–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

6 M. Christakis and K. Sagonas

challenging task. For example, in a language based on processes communicating
using asynchronous message passing such as Erlang, it is possible to create an
unbounded number of processes, send any term as a message, communicate with
processes located on any machine, local or remote, selectively retrieve messages
from a process’ mailbox using pattern matching, monitor other processes and
register to receive their messages when they die, etc. On top of all that, the lan-
guage is dynamically typed and higher-order, which makes the task of computing
precise type and control-flow information very difficult, if not impossible.

In the context of such a real-world language, we aim to statically detect er-
rors that arise from the use of asynchronous message passing. To do so, we have
designed an effective analysis that determines the interprocess communication
topology of Erlang programs, discovers which occurrences of the sending prim-
itives match which occurrences of the receiving primitives, and emits warnings
accordingly. Besides tailoring the analysis to the characteristics of the language,
the main challenges for our work have been to develop an analysis that: 1) is
completely automatic and requires no guidance from its user; 2) strikes a proper
balance between soundness and completeness in order to be: 3) fast and scalable.
As we will soon see, we have achieved these goals.

The contributions of our work are as follows:

– we document some of the most important kinds of errors associated with
concurrency via asynchronous message passing;

– we present an effective and scalable analysis that detects these errors, and
– we demonstrate the effectiveness of our analysis on a set of widely used and

reasonably well-tested libraries and open source applications by reporting a
number of previously unknown message passing errors in their code bases.

The next section overviews the Erlang language and the defect detection tool
which is the implementation platform for our work. Sect. 3 describes commonly
occurring kinds of message passing errors in Erlang programs, followed by Sect. 4
which presents in detail the analysis we use to detect them. The effectiveness
and performance of our analysis is evaluated in Sect. 5 and the paper ends with
a review of related work (Sect. 6) and some final remarks.

2 Erlang and Dialyzer

Erlang [1] is a strict, dynamically typed functional programming language with
support for concurrency, communication, distribution, fault-tolerance, on-the-fly
code reloading, automatic memory management and support for multiple plat-
forms. Erlang’s primary application area has been in large-scale embedded con-
trol systems developed by the telecom industry. The main implementation of
the language, the Erlang/OTP (Open Telecom Platform) system from Ericsson,
has been open source since 1998 and has been used quite successfully both by
Ericsson and by other companies around the world to develop software for large
commercial applications. Nowadays, applications written in the language are
significant, both in number and in code size, making Erlang one of the most
industrially relevant declarative languages.

Static Detection of Asynchronous Message Passing Errors 7

Erlang’s main strength is that it has been built from the ground up to support
concurrency. Its concurrency model differs from most other programming lan-
guages out there as it is not based on shared memory but on asynchronous mes-
sage passing between extremely light-weight processes (lighter than OS threads).
Erlang comes with a spawn family of primitives to create new processes, and
with ! (send) and receive primitives for interprocess communication via mes-
sage passing. Any data can be sent as a message and processes may be located
on any machine. Each process has a mailbox, essentially a message queue, where
each message sent to the process will arrive. Message selection from the mailbox
occurs through pattern matching. To support robust systems, a process can reg-
ister to receive a message if another one terminates. Erlang provides mechanisms
for allowing a process to timeout while waiting for messages, a try/catch-style
exception mechanism for error handling, and ways to organize processes in su-
pervision hierarchies to restart or take over the duties of dead or unresponsive
processes when things go wrong.

Since 2007, the Erlang/OTP distribution includes a static analysis tool, called
dialyzer [2,3], for finding software defects (such as type errors, exception-raising
code, code which has become unreachable due to some logical error, etc.) in sin-
gle Erlang modules or entire applications. Nowadays, dialyzer is used extensively
in the Erlang programming community and is often integrated in the build en-
vironment of many applications. The tool is totally automatic, easy to use and
supports various modes of operation: command-line vs. GUI, starting the anal-
ysis from source vs. byte code, focussing on some kind of defects only, etc. In
sequential programs notable characteristics of dialyzer’s core analysis are that
it is sound for defect detection (i.e., it produces no false alarms), fast and scal-
able. Its core analyses that detect defects are supported by various components
for creating and manipulating function call graphs for a higher-order language,
control-flow analyses, efficient representations of sets of values, data structures
optimized for computing fixpoints, etc. Since November 2009, dialyzer’s analysis
has been enhanced with a component that automatically detects data races in
Erlang programs [4]. Before we describe how we extended dialyzer’s analyses to
also detect message passing errors, let us first see how concurrency with asyn-
chronous message passing works and the kinds of related defects that may exist
in Erlang programs.

3 Message Passing in Erlang

As described in Sect. 2, Erlang’s concurrency primitives spawn, ! (send) and
receive allow a process to spawn new processes and communicate with others
through asynchronous message passing. Let’s see these primitives in detail:

Spawn. The spawn primitive creates a process and returns a process identifier
(pid) for addressing the newly spawned process. The new process executes
the code of the function denoted in the arguments of the spawn. In the
example program shown in Fig. 1, a process is spawned that will execute the
code of the function closure Fun.

8 M. Christakis and K. Sagonas

-export([hello_world/0]).

hello_world() ->
Fun = fun() -> world(self()) end,
Pid = spawn(Fun),
register(world, Pid),
world ! hello.

world(Parent) ->
receive

hello -> Parent ! hi
end.

Fig. 1. Simple example program

Send. The expression Pid ! Msg sends the message Msg, that may refer to any
valid Erlang term, to the process with pid Pid in a non-blocking operation.
Besides addressing a process by using its pid, there is also a mechanism,
called the process registry, which acts as a node-local name server, for reg-
istering a process under a certain name so that messages can be sent to
the process using that name. Names of processes are currently restricted to
atoms. In our example program, the spawned process is registered under the
name world which is then used to send the message hello to the process.

Receive. Messages are received with the receive construct. Each process has
its own input queue for messages it receives. Any new messages are placed at
the end of the queue. When a process executes a receive, the first message
in the queue is matched against the patterns of the receive in sequential
order. If the message matches some pattern, it is removed from the queue and
the actions corresponding to the matching pattern are executed. However, if
it does not match, the message is kept in the queue and the next message is
tried instead. If this matches any pattern, it is removed from the queue while
keeping the previous and any other message in the queue. In case the end of
the queue is reached and no messages have been matched, the process blocks
(i.e., stops execution) and waits to be rescheduled to repeat this procedure.

Misuse of these concurrency and communication primitives may lead to the
following kinds of message passing errors in Erlang programs:

Receive with no messages (RN). A receive statement in the code exe-
cuted by some process whose mailbox will be empty. This defect could reveal
the occurrence of possible deadlocks in the patterns of interprocess commu-
nication — processes mutually waiting for messages from other processes.

Receive of the wrong kind (RW). A receive statement in the code of some
process whose mailbox will contain messages of different kinds than the ones
expected by the receive. Currently, such a defect can have devastating
effects on a running system, overflowing the mailbox of some process and
bringing the node down. To avoid being bitten by this, many Erlang pro-
grams adopt a defensive programming style and include a catch-all clause
in receives whose only purpose is to consume any unwanted messages.

Static Detection of Asynchronous Message Passing Errors 9

This practice is not ideal because it might hide real communication prob-
lems. Additionally, it makes this kind of message passing errors hard to
find.

Receive with unnecessary patterns (RU). A receivewith clauses contain-
ing patterns that will never match messages sent to the process executing
that code. This problem may be harmless (i.e., just some unreachable code
in the receive) or, in conjunction with the existence of a catch-all pattern
which consumes all messages as the last clause of the statement, may hide
a serious functionality error.

Send nowhere received (SR). A send operation to a process whose code
does not contain any (matching) receives. This defect can also result in
the overflow of some mailbox and bring a node down.

Being able to statically detect such types of concurrency defects is crucial in
safety-critical systems such as those developed in the telecommunications sector.

4 The Analysis

In a higher-order language with unlimited dynamic process creation, the kinds
of message passing errors we described in the previous section are not simple to
detect. In order to detect which message emissions match which receptions, it is
necessary to determine the communication topology of processes, which will then
be used as a basis for detecting these errors. We have designed and implemented
such an analysis and describe it in this section.

Conceptually, our analysis has three distinct phases: an initial phase that
scans the code to collect information needed by the subsequent phases, a phase
where a communication graph is constructed, and a phase where message pass-
ing errors are detected. For efficiency reasons, the actual implementation blurs
the lines separating these phases and employs some optimizations. False alarms
are avoided by taking language characteristics and messages generated by the
runtime system into account. Let’s see all these in detail.

4.1 Collecting Information

We have integrated our analysis in dialyzer because many of the components that
it relies upon were already available or could be easily extended to provide the
information that the analysis needs. The analysis starts with the user specifying
a set of directories/files to be analyzed. Rather than operating directly on Erlang
source, all of dialyzer’s passes operate at the level of Core Erlang [5], the language
used internally by the Erlang compiler. Core Erlang significantly eases the anal-
ysis of Erlang programs by removing syntactic sugar and by introducing a let
construct which makes the binding occurrence and scope of all variables explicit.

As the source code is translated to Core Erlang, dialyzer constructs the control-
flow graph (CFG) of each function and function closure and then uses the escape
analysis of Carlsson et al. [6] to determine values, in particular closures, that
escape their defining function. For example, for the code of Fig. 1 the escape

10 M. Christakis and K. Sagonas

Fig. 2. Call graph of example program

analysis will determine that function hello world defines a function closure that
escapes from this function as it is passed as argument to a spawn. Given this
information, dialyzer also constructs the inter-modular call graph of all functions
and closures, so that subsequent analyses can use this information to speed
up their fixpoint computations. For the example in the same figure, the call
graph will contain three nodes for functions whose definitions appear in the
code (functions hello world, world, and the closure) and an edge from the
node of the function closure to that of world, as shown in Fig. 2.

Besides control-flow, the analysis also needs data-flow information and more
specifically it needs information on whether variables can possibly refer to the
same data item or not. This information is computed and explicitly maintained
by the sharing/alias analysis component in dialyzer’s race analysis [4]. In addi-
tion, our analysis exploits the fact that dialyzer computes type information at a
very fine-grained level. For example, different atoms a1, . . . , an are represented as
different singleton types in the type domain and their union a1| . . . |an is mapped
to the supertype atom() only when the size of the union exceeds a relatively high
limit [7]. We will see how this information is used by the message analysis in
Sect. 4.2 and 4.3.

4.2 Constructing the Communication Graph

The second phase of the analysis determines the interprocess communication
topology in the form of a graph.

Each vertex of the graph represents an escaping function whose code may be
run by a separate process at runtime. This information is computed by a pre-
processing step during the construction of the call and control-flow graphs. The
code of any function that is either a root node in the call graph or an argument
to a spawn is assumed to be executed by a separate process. For our example
program, the communication graph will contain two nodes, one for function
hello world and one for the closure.

Every edge of the communication graph is directed and corresponds to a
communication channel between two processes. Naturally, its direction of com-
munication is from the source to the target process, meaning that messages are
sent in that direction. Each edge is annotated with the type information of the
messages that are sent through the channel.

In order to determine the graph edges, we need to inspect every possible
execution path of the program for messages that are passed between processes.

Static Detection of Asynchronous Message Passing Errors 11

Fig. 3. Communication graph of example program

To this end, we start by traversing the CFGs of the functions corresponding to
the vertices in the communication graph using depth-first search. The depth-first
search starts by identifying program points containing a call to a pid-yielding
primitive (i.e., the self primitive, that returns the pid of the calling process, and
the spawn family of primitives), and then tries to find program points “deeper”
in the graph containing send operations to the process with this pid. In case
the search encounters either a call to or a spawn of some other statically known
function, the traversal continues by examining its CFG, otherwise it is ignored.
Built-ins for registering a pid under a certain name require special attention
since the registered name may then be used to send a message to the process.
A pre-processing step associates names with their registered pids so that the
analysis can use this information to replace all name occurrences. Finally, if the
traversal finds a send operation to some pid, the analysis takes variable sharing
into account to determine whether this pid refers to the same process as the
pid yielded by the primitive that initially triggered the depth-first search. If this
is the case, an edge is added to the communication graph emanating from the
vertex of the process whose CFG is traversed and incident on the vertex of the
process identified by the pid, otherwise nothing is done. An annotation is added
to the new edge indicating the type information of the message. If such an edge
already exists in the graph, then the analysis simply updates its annotation to
also include the type information of the new message. In the end, this traversal
creates the complete set of edges in the communication graph.

For the code of Fig. 1, the communication graph will have two edges, one from
vertex hello world to the closure and one from the closure to hello world. The
annotations for these edges will be hello and hi, respectively. The communica-
tion graph for the example program is illustrated in Fig. 3.

4.3 Detecting Message Passing Errors

At this stage of the analysis, the CFG of each function that corresponds to a
vertex in the communication graph is traversed anew to detect any message
passing errors.

Each vertex in the communication graph has an in-degree that is either equal
to or greater than zero. A vertex with in-degree equal to zero indicates that no
messages are sent to the process it represents. Hence, the traversal of the CFG
emits a warning for each receive construct it encounters. A vertex with in-
degree greater than zero indicates that messages are sent to the process and the
analysis determines whether these messages will be received. In case the process
does not expect any messages (i.e., there are no receives in the CFG), a warning
is emitted for each sent message. In case the process expects to receive messages,

12 M. Christakis and K. Sagonas

the analysis takes into account the type information of the messages and the
receive patterns in order to decide whether they match. A message S matches
a receive pattern R if the infimum (i.e., the greatest lower bound) of their type
information is a non-empty subtype of R. Note that S is the annotation of the
edge in the communication graph, while R is found in the CFG. As an example
consider a sent tuple message with type S :: {gazonk, integer()} and a receive
pattern with type R :: {atom(), 42}. The analysis computes the infimum of these
types, {gazonk, 42}, which is a subtype of R in this case. Actually, this message
will only be received if the second element of the tuple is 42, but the analysis,
aiming at being sound for defect detection, will flag this as an error only if it can
statically determine that the second element of the message is a term other than
the integer 42. In short, at the end of the CFG traversal, warnings are emitted
for receive patterns or entire constructs that do not match any messages and
for messages that do not match any receive patterns.

Loops in the communication graph indicate that messages are sent and re-
ceived by the same process and require special treatment. If no messages sent
by other processes match a receive pattern or construct, then messages sent
to the process by itself at program points “higher” in the CFG should match,
otherwise a warning is emitted.

Note that the traversal that searches for receives, unlike the traversal that
searches for send operations described in the previous section, ignores any spawns
of statically known functions since spawned processes cannot receive messages
in place of the process being analyzed, although they may send messages to it.

For the example program, the analysis inspects the CFG of the hello world
vertex, which has in-degree one, and finds that there is no receive in the code
executed by the process. Consequently, it emits a warning with the filename and
line number of the send operation of the hi message reporting that this message
will be nowhere received.

4.4 Some Optimizations

Although we have described the second and third phases of the analysis as being
distinct, our implementation blurs this distinction, thereby avoiding redundant
searches and speeding up the analysis. In addition, we also employ the following
optimizations:

Control-flow graph minimization. The CFGs that dialyzer constructs by default
contain the complete Core Erlang code of functions. This makes sense as most
of its analyses, including the type and sharing analyses, need this information.
However, note that the path traversal procedure of Sect. 4.2 and 4.3 requires
only part of this information. For example, in the program illustrated on the left
box of Fig. 4, the io:format call is irrelevant both for determining the complete
set of edges in the communication graph and for detecting any message passing
errors. Our analysis takes advantage of this by a pre-processing step that removes
all this code from the CFGs and by recursively removing CFGs of leaf functions
that do not contain any concurrency primitives either directly or indirectly.

Static Detection of Asynchronous Message Passing Errors 13

Avoiding repeated traversals. After the CFGs are minimized as described above,
the depth-first traversal starts from some vertex in the communication graph.
The traversal of all paths from this vertex often encounters a split in the CFG
(e.g., a point where a case statement begins) which is followed by a CFG join
(the point where the case statement ends). All the straight-line code which lies
between the join point and the next split, including any straight-line code in
the CFGs of functions called there, does not need to be repeatedly traversed if
it is found to contain no concurrency primitives during the traversal of its first
depth-first search path. This optimization effectively prunes common sub-paths
by condensing them to a single program point.

Avoiding redundant traversals. Another optimization is to collect, during the
construction of the CFGs of functions, a set of program points containing send
operations and another set of program points containing receive constructs.
The first set is used in the construction of the communication graph to determine
whether the CFG of a statically known function that is either called or spawned
needs to be inspected. If no program point in the set is reachable from the
function directly or indirectly (i.e., via some call or spawn), then the CFG is
not traversed. The elements of the second set act like pointers and replace the
vertices of the communication graph in the error detection phase of the analysis,
thereby avoiding unnecessary traversals of the control flow graphs.

4.5 False Alarms and Their Avoidance

The analysis we have described so far may produce false alarms in case the avail-
able static information is too limited to construct the exact interprocess com-
munication graph. To this effect, we employ techniques for completely avoiding
false alarms, thus making the analysis sound for defect detection.

A factor that could limit the precision of our analysis is lack of precise knowl-
edge about the behaviour of built-in functions (BIFs). For example, Erlang/OTP
comes with BIFs, implemented in C, that create messages inside the VM and
send them to processes in a non-transparent way. The left box of Fig. 4 shows
a function from the code of the ibrowse application (file ibrowse test.erl).
On this code, a näıve implementation of the analysis would warn that the
{‘DOWN’, ...} pattern of the receive statement is unused because no such mes-
sages are ever constructed in the entire application, let alone in this module
(whose code is only partly shown in the figure). However, such messages are
created by the spawn monitor BIF inside the VM and are placed in the message
queue of the monitoring process when the spawned process dies. We have taken
special care to provide our analysis with precise information about such BIFs and
their behaviour. This information is fairly complete at this point so we entirely
avoid this kind of false alarms. For similar reasons, the analysis can either have a
priori knowledge about the behaviour of heavily used Erlang/OTP libraries, or
pre-compute this information so as to avoid having to re-analyze these libraries
in each run.

Another limiting factor is dialyzer’s sharing/alias analysis component. Since
the computation of variables referring to the same data is static, it may not

14 M. Christakis and K. Sagonas

unit_tests(Opts) ->
Opts1 = Options ++ [{connect_timeout, 5000}],
{Pid, Ref} = spawn_monitor(?MODULE, ut1, [self(), Opts1]),
receive

{done, Pid} -> ok;
{‘DOWN’, Ref, _, _, Info} ->
io:format("Crashed: ~p~n", [Info])

after 60000 ->
...

end.

ut1(Parent, Opts) ->
lists:foreach(...),
Parent ! {done, self()}. % the only send operation

-export([start/0]).

start() ->
Pid = spawn(fun pong/0),
ping(Pid).

ping(Pid) ->
Pid ! {self(), ping},
receive pong -> pang end.

pong() ->
receive

{Pid, ping} -> Pid ! pong
end.

Fig. 4. Programs susceptible to false alarms

always be possible to find the complete sets of these variables. The right box of
Fig. 4 shows a made up example of Erlang code for which the first implementa-
tions of our analysis incorrectly warned that the receive statement in the ping
function would block. This false alarm was emitted because the sharing/alias
analysis is unable to statically determine whether the {self(), ping} message
will actually be received by the pong process. The analysis was therefore unable
to conclude that the Pid variable in the received message is the pid of the start
process. This was also the case when the analysis lost track of terms because
data was stored in data structures (usually records, lists or ETS tables) and
then retrieved from them. Again, we have taken special care to avoid these false
alarms by acknowledging that the sharing/alias component has lost the data
item — specifically the pid — assigned to a variable and thereby suppressing
any warnings that would be emitted as a result of this inaccuracy.

Clearly, the optimization ideas and the techniques to avoid false alarms have
a heavy impact on the effectiveness, performance and precision of our method.
Let us therefore evaluate it on a suite of large, widely used Erlang applications.

5 Experimental Evaluation

The analysis we described in the previous section has been fully implemented
and incorporated in the development version of dialyzer. We have paid special
attention to integrate it smoothly with the existing analyses, reuse as much of
the underlying infrastructure as possible, and fine-tune the analysis so that it
incurs relatively little additional overhead to dialyzer’s default mode of use. The
core of the message analysis is about 2,000 lines of Erlang code and the user can
turn it on either via a GUI button or a command-line option.

We have measured the effectiveness and performance of the analysis by ap-
plying it on a corpus of Erlang code bases of significant size; in total more than
a million lines of code.1 As these code bases have been developed and tested
over a long period of time, it is perhaps not surprising that our analysis did not

1 The source of Erlang/OTP distribution alone is about 800k lines of code.

Static Detection of Asynchronous Message Passing Errors 15

Table 1. Applications for which the analysis detected message passing errors

Application libraries from the Erlang/OTP R14A distribution

inets A set of Internet clients and servers

observer Tools for tracing and investigating distributed systems

Open source Erlang applications

disco A map/reduce framework for distributed computing

dynomite A Dynamo clone

effigy A mocking library for testing

eldap An LDAP API

enet A network stack

erlang js A driver for SpiderMonkey (the Mozilla JavaScript engine)

etap A TAP (Test Anything Protocol) client library

iserve An HTTP server

log roller A distributed logging system

natter An XMPP client

pgsql A PostgreSQL driver

stoplight A mutex server based on the SIGMA algorithm

ubf Universal binary format

find errors in most of them. Still, there are Erlang/OTP libraries and applica-
tions for which the analysis has detected concurrency errors in their code. The
rest of this section focusses on these code bases. A short description of them
appears in Table 1; most are heavily used and reasonably well-tested. For open
source applications, we used the code from their public repositories at the end
of October 2010.

The left part of Table 2 shows the lines of code (LOC) for each application
and the number of message passing problems identified by the analysis. These
are shown categorized as in Sect. 3: namely, as related to a receive that will
block either because no messages are sent to the process (RN) or because the
messages sent there are of the wrong kind (RW), as related to a receive with
unnecessary patterns (RU), or related to a send operation to a process without
a receive (SR). The right part of the table shows the elapsed wall clock time
(in seconds), and memory requirements (in MB) for running dialyzer without
and with the analysis component that detects message passing errors in these
programs.2 The evaluation was conducted on a machine with an Intel Core2
Quad CPU @ 2.66GHz with 3GB of RAM, running Linux. (But currently the
analysis utilizes only one core.)

As can be seen in the table, the analysis detects a number of message
passing problems, some of which can be detrimental to the functionality and

2 The relatively high memory requirements of the enet application are due to an (au-

tomatically generated?) file containing just two functions of about 10,000 LOC each.

When excluding this file, dialyzer needs 2.0 secs and 74MB in its default mode and

2.4 secs and 75MB with the analysis that detects message passing errors.

16 M. Christakis and K. Sagonas

Table 2. Effectiveness and performance of the message analysis

Errors Time (secs) Space (MB)

Application LOC RN RW RU SR w/o msg w msg w/o msg w msg

inets 29,389 - - 2 - 26.1 60.1 89 119

observer 6,644 - - 1 - 23.6 35.1 78 88

disco 11,846 - - 2 - 17.3 20.8 85 126

dynomite 19,384 1 - - - 7.2 7.9 72 74

effigy 568 1 - - - 0.8 0.9 21 21

eldap 5,148 - - 1 - 9.9 11.5 110 112

enet 23,028 - - 1 - 15.0 15.8 765 766

erlang js 1,720 - - 1 - 11.0 12.2 73 80

etap 665 - - - 1 0.4 0.4 17 19

iserve 788 - - 2 2 1.3 1.4 30 30

log roller 2,539 - 1 - - 3.1 3.5 33 46

natter 1,494 - - 2 - 1.7 1.9 30 32

pgsql 1,253 - - 1 - 1.6 3.0 31 41

stoplight 1,462 1 - - - 1.6 1.6 39 40

ubf 7,052 - - 1 - 18.7 23.7 70 81

robustness of these applications. We have manually examined the source code of
these applications and all these problems are genuine bugs.

Regarding performance, in most cases, the additional time and memory over-
head of the message passing error detection component of the analysis is too
small to care about. The only exception is inets on which the analysis takes
about twice as much time to complete. Still the analysis times are reasonable.
Given that the analysis is totally automatic and smoothly integrated in a defect
detection tool which is widely used by the community, we see very little reason
not to use it regularly when developing Erlang programs.

6 Related Work

Static analysis [8] is a fundamental and well studied technique for discovering
program properties and reasoning about program behaviour, independently of
language. Besides being the basis for most compiler optimizations, in recent years
static analysis has been extensively used to detect software errors in programs,
both sequential and concurrent.

In the context of higher-order functional languages, and starting with the work
of Shivers [9], control-flow analyses aim to approximate which functions may be
applied at runtime as a result of some computation. When concurrency comes
into the picture, processes are dynamically created and functions are passed
between processes and executed by any receiving process, the task becomes more
complicated as a piece of code in the source program may be executed by any
process and the control-flow analysis may need to be infinitary [10].

Static Detection of Asynchronous Message Passing Errors 17

Some researchers have proposed using effect-based type systems to analyze
the communication behaviour of message passing programs; an early such work
is the analysis by Nielson and Nielson for detecting when programs written
in CML have finite topology [11]. There has also been a number of abstract
interpretation based analyses that are closer in spirit to the analysis we employ.
Mercouroff designed and implemented an analysis for CSP programs with a static
structure based on an approximation of the number of messages sent between
processes [12] and Martel and Gengler an analysis that statically determines
an approximation of the communication topology of a CML program [13]. The
abstract interpretation based whole program analysis of Colby uses control paths
to identify threads [14]. Unlike earlier work which collapsed multiple threads
created at the same spawn point to a single approximate thread, control paths
are able to distinguish multiple threads created at the same spawn point and
thus compute a more precise interprocess communication topology of a program.
Still, the precision problem was not completely solved.

A more precise, but also more complex and less scalable, control-flow analy-
sis was proposed by Martel and Gengler [13]. Contrary to what we do, in their
work the accuracy of the analysis is enhanced by building finite automata. More
specifically, the analysis orders the synchronization primitives of any sequential
processes in the system by building an automaton for each process. It then ap-
proximates how the different processes may interact with each other by building
a reduced product automaton from the process automata. As a result, the anal-
ysis eliminates some impossible communication channels, computes the possibly
matching emissions for each reception, and thus the possibly received values. An
interesting future direction for our analysis is to see how we can use some of these
ideas to enhance the precision of our analysis without sacrificing its soundness
for defect detection (i.e., its “no false alarms” property) or its scalability.

7 Concluding Remarks and Future Work

We have presented a new analysis for identifying some commonly occurring kinds
of concurrency errors that arise from the use of asynchronous message passing
in a higher-order language with unlimited process creation, message queues and
selective message reception based on pattern matching. By computing a close
approximation of the interprocess communication topology of programs and by
effectively matching occurrences of send with receive primitives, our analysis
manages to achieve a good balance between precision and scalability. As shown
in the experimental evaluation section of the paper, the analysis has managed
to detect a significant number of message passing errors in widely used and
reasonably well-tested applications written in Erlang.

The implementation of our analysis is fast and robust; we expect that it will
be included in some upcoming release of Erlang/OTP. Still, there are some engi-
neering issues to address. Among them, the most challenging one is to design and
implement a framework for the explanation of message passing errors, perhaps
by maintaining more information in the analysis and designing a component to

18 M. Christakis and K. Sagonas

visualize the communication topology of an application. But this is a general
problem for static analyses that detect program errors: the more sophisticated
the errors that an analysis detects are, the more difficult it is for programmers
to trust the analysis results and, more importantly, to reason about the program
change that will correct the error. Tools that help them in this task are needed.

References

1. Armstrong, J.: Programming Erlang: Software for a Concurrent World. The Prag-

matic Bookshelf, Raleigh (2007)

2. Lindahl, T., Sagonas, K.: Detecting software defects in telecom applications

through lightweight static analysis: A war story. In: Chin, W.-N. (ed.) APLAS

2004. LNCS, vol. 3302, pp. 91–106. Springer, Heidelberg (2004)

3. Sagonas, K.: Experience from developing the Dialyzer: A static analysis tool detect-

ing defects in Erlang applications. In: Proceedings of the ACM SIGPLAN Work-

shop on the Evaluation of Software Defect Detection Tools (2005)

4. Christakis, M., Sagonas, K.: Static detection of race conditions in Erlang. In: Carro,

M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 119–133. Springer, Heidelberg

(2010)

5. Carlsson, R.: An introduction to Core Erlang. In: Proceedings of the PLI 2001

Workshop on Erlang (2001)

6. Carlsson, R., Sagonas, K., Wilhelmsson, J.: Message analysis for concurrent pro-

grams using message passing. ACM Transactions on Programming Languages and

Systems 28(4), 715–746 (2006)

7. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:

Proceedings of the 8th ACM SIGPLAN International Conference on Principles

and Practice of Declarative Programming, pp. 167–178. ACM, New York (2006)

8. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-

Verlag New York, Inc., Secaucus (1999)

9. Shivers, O.: Control Flow Analysis in Scheme. In: Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation, pp.

164–174. ACM, New York (1988)

10. Nielson, F., Nielson, H.R.: Infinitary Control Flow Analysis: a Collecting Seman-

tics for Closure Analysis. In: Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pp. 332–345. ACM, New

York (1997)

11. Nielson, F., Nielson, H.R.: Higher-Order Concurrent Programs with Finite Com-

munication Topology. In: Proceedings of the ACM-SIGPLAN Symposium on Prin-

ciples of Programming Languages, pp. 84–97. ACM, New York (1994)

12. Mercouroff, N.: An Algorithm for Analyzing Communicating Processes. In:

Schmidt, D., Main, M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS

1991. LNCS, vol. 598, pp. 312–325. Springer, Heidelberg (1992)

13. Martel, M., Gengler, M.: Communication Topology Analysis for Concurrent Pro-

grams. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885,

pp. 265–286. Springer, Heidelberg (2000)

14. Colby, C.: Analyzing the Communication Topology of Concurrent Programs.

In: Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-Based Program Manipulation, pp. 202–213. ACM, New York (1995)

Combinators for Message-Passing in Haskell

Neil C.C. Brown

School of Computing, University of Kent, UK

neil@twistedsquare.com

Abstract. Much code in message-passing programs is tedious, verbose

wiring code. This code is error prone and laborious – and tends to be

repeated across many programs with only slight variations. By using

type-classes, higher-order and monadic functions in Haskell, most of this

code can be captured in re-usable high-level combinators that shorten

and simplify message-passing programs. We motivate the design and use

of these combinators via an example of a concurrent biological simula-

tion, and explain their implementation in the Communicating Haskell

Processes library.

1 Introduction

Message-passing programming is a type of imperative concurrent programming
that eschews mutable shared state in favour of passing messages between concur-
rent processes. This paper is particularly concerned with systems featuring syn-
chronous message-passing over point-to-point unbuffered channels (rather than
address-based systems such as mailboxes). This style of concurrent program-
ming has recently been successfully applied to biological and complex systems
simulation [13], robotics [8], and can achieve good parallel speed-up on multicore
machines [16]. Implementations exist as libraries in several functional languages,
e.g. Concurrent ML [15] and Communicating Haskell Processes [2].

Message-passing programming supports a compositional model of program-
ming, with processes comprised of sub-networks of communicating processes.
However, message-passing languages and libraries do not typically provide easy
ways in which to compose processes together, even when the composition is reg-
ular (e.g. a pipeline). Process wiring must be done “long hand”, declaring chan-
nel variables/arrays and passing them to the appropriate process. This style of
wiring is tedious, verbose and error-prone.

In contrast, higher-order functional programming allows common coding pat-
terns to be captured and re-used. For example, operations on lists can typically
be implemented using some combination of map, filter, or a fold. It is rare to
write a function that directly processes a list via pattern-matching, because the
operation can often be expressed using one of the aforementioned functions.

Haskell has seen a proliferation of further abstractions based on type-classes,
such as applicative functors [10], monads [12] and arrows [7]. These abstractions
capture particular patterns of computation, and allow general helper functions

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 19–33, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

20 N.C.C. Brown

(e.g. mapM) to act on all instances of this pattern; code re-use is supported by
parameterising the helper functions with the type-class in question.

This paper contends that patterns in message-passing programming can be
captured using functional programming techniques such as higher-order func-
tions and type-classes. This paper’s contribution is the introduction of new
combinators for message-passing systems which shorten and simplify code:
wiring functions for common process topologies (section 4), which can be gen-
eralised into a composition monad for more flexible wiring (section 5).

These abstractions are motivated and demonstrated using a central biolog-
ical simulation example introduced in section 3. All of these new abstractions
have been implemented using standard Haskell, and have been added to the
Communicating Haskell Processes library, which is introduced in section 2.

2 Background: Communicating Haskell Processes

Communicating Haskell Processes (CHP) is a Haskell library that supports con-
current synchronous message-passing [2], and is based on the Communicating
Sequential Processes calculus [6,17]. As with most imperative Haskell libraries,
it provides a monad (named CHP) in which all of its actions take place. Its basic
API provides channel creation and communication:

newChannelWR :: CHP (Chanout a, Chanin a)
writeChannel :: Chanout a -> a -> CHP ()

readChannel :: Chanin a -> CHP a

Note how the channels are used via two ends: the outgoing end (Chanout) on
which values are sent, and the incoming end (Chanin) on which values are re-
ceived. This separation between the two ends at the type level helps prevent
mistakes – such as connecting two reading processes together with a channel,
resulting in deadlock. It also promotes code clarity: making it clear from the
type of a process whether it will send or receive on each channel.

We refer to something that has type CHP r as being a complete CHP process
(one that is ready to run). Anything that will be a complete CHP process when
given further arguments (e.g. Chanin a ->Chanout a ->CHP ()) is referred to sim-
ply as a CHP process. An example of a basic CHP process is the identity process
that forwards values from one channel to another1:

idP :: Chanin a -> Chanout a -> CHP ()

idP input output = forever (readChannel input >>= writeChannel output)

CHP processes can be composed in parallel using the commutative, associative
runParallel function which waits for all the parallel processes to terminate before
returning a list of their results:

runParallel :: [CHP a] -> CHP [a]; runParallel :: [CHP a] -> CHP ()

1 In this paper we suffix these simple processes with “P” to avoid confusion, here with

the Haskell identity function (id ::a ->a).

Combinators for Message-Passing in Haskell 21

The version with an underscore suffix discards the results of the parallel com-
putations. The type of these functions exactly matches that of the standard
monadic sequence functions, specialised to the CHP monad:

sequence :: [CHP a] -> CHP [a]; sequence :: [CHP a] -> CHP ()

2.1 Barriers and Enrolling

As well as channels, CHP also features barriers. A barrier is a synchronisation
primitive that can only be used by processes enrolled on (i.e. members of) the
barrier. When an enrolled process wishes to synchronise on the barrier, it must
wait for all other enrolled processes to also do so. Barriers are created with an
enrollment count of zero, using one of the functions:

newBarrier :: CHP Barrier; newBarrierPri :: Int -> CHP Barrier

The latter function features priority: the default is 0, and larger numbers indicate
higher priority. When a process can choose between completing two barriers,
the higher priority barrier will be chosen. Barriers feature a “scoped” API for
enrolling, that eschews explicit enroll and resign (de-enroll) calls in favour of
taking as an argument the block of code to execute while enrolled:

enroll :: Barrier -> (EnrolledBarrier -> CHP a) -> CHP a

The enroll function takes a barrier and a CHP process that operates on the
enrolled barrier. The returned completed CHP process enrolls the given process
on the barrier for the duration of its execution and resigns afterwards. To prohibit
attempts to synchronise without first enrolling, synchronisation is only possible
on the EnrolledBarrier type:

syncBarrier :: EnrolledBarrier -> CHP ()

As an example, the following code enrolls twice on a barrier, then runs two
corresponding processes in parallel that repeatedly synchronise on the barrier:

do bar <- newBarrier
enroll bar (\eb0 -> enroll bar (\eb1 ->

runParallel [replicateM 100 $ syncBarrier eb0, replicateM 100 $ syncBarrier eb1]))

Note that it is crucial that both enrollments happen before the parallel compo-
sition (rather than in each parallel branch). Consider the alternative code:

do bar <- newBarrier
runParallel [enroll bar (replicateM 100 . syncBarrier)

,enroll bar (replicateM 100 . syncBarrier)]

The barrier begins with an enrollment count of zero. When, in the above code,
the first parallel branch runs, it will enroll, increasing the enrollment count to
one. When it then tries to synchronise on the barrier, it may do so by itself.
Thus one branch can enroll and (potentially) perform all 100 synchronisations

22 N.C.C. Brown

before the other branch starts to run (and do the same). Thus, for the branches
to synchronise together, the enrollment of both processes must occur before the
parallel composition begins.

CHP already features two helper functions for enrolling, which hint at the
combinator-based approach seen later in the paper. The enrollList function enrolls
a single process on a whole list of barriers (nesting the process inside all the
enrollments), while the enrollAll function enrolls each of a list of processes on a
single barrier:

enrollList :: [Barrier] -> ([EnrolledBarrier] -> CHP a) -> CHP a
enrollList [] f = f []
enrollList (b:bs) f = enroll b (\eb -> enrollList bs (\ebs -> f (eb:ebs)))

enrollAll :: Barrier -> [EnrolledBarrier -> CHP a] -> CHP [a]
enrollAll b ps = enrollList (replicate (length ps) b) (runParallel . zipWith ($) ps)

The previous example can thus also be written as:

newBarrier >>= flip enrollAll [replicateM 100 . syncBarrier, replicateM 100 . syncBarrier]

3 Motivating Example: Blood Clotting Simulation

Section 2 introduced the existing Communicating Haskell Processes library. This
section provides a motivating example for the design and inclusion of the new
features in the library introduced in future sections. The example is a concur-
rent simulation of blood clotting, with “sticky” platelets moving down a one-
dimensional pipeline of site processes. It is inspired by the example presented
by Schneider et al. [19], and has been converted to CHP to use some advanced
concurrency features such as conjunction [3].

Fig. 1. Illustration of how the blood example is connected together. The first (left-

most) process is a platelet generator, and the last (right-most) is a platelet consumer.

The three processes in the centre are examples of the site processes (there are 100 in

the real model). The processes are connected to their neighbours with a channel (the

arrows) carrying platelets, and a barrier (drawn as a line with perpendicular ends). All

the processes also enroll on a shared “tick” barrier (shown above the processes).

Platelets move (in a consistent direction) along a one dimensional pipeline.
On each time-step a platelet may move or not move, with the following rule: if
there are platelets immediately before or immediately after it in the pipeline, a

Combinators for Message-Passing in Haskell 23

platelet will only move forwards if they do so too. Each platelet may refuse to
move on a given time-step with probability 5%. We model the sites (locations
which can either hold a single platelet, or be empty) as active processes, and the
platelets as passive data that passes between the sites. An illustration of their
connectivity is given in figure 1.

The new features introduced later in this paper will demonstrate the power of
a functional combinator-based approach. To provide a contrast to the existing
methods that must be used in other imperative languages, such as occam or
libraries for Java, we first present the example in figure 6 using idioms from
imperative languages, such as numeric indexing. The exact definitions of the
processes are not relevant in this paper and are thus omitted for brevity.

4 Wiring: Process Composition

In message-passing systems with typed channels, a substantial part of the pro-
gramming model is the composition of processes using channels. For example,
we may want to compose together the mapP and filterP processes (analogues of
the standard list-processing functions) into a process that filters out negative
numbers and then turns the remaining positive numbers into strings:

showPosP :: Chanin Int -> Chanout String -> CHP ()

showPosP input output = do (w, r) <- newChannelWR
runParallel [filterP (> 0) input w, mapP show r output]

Fig. 2. The composition of filterP and mapP, as shown in the left-hand diagram. This

composition becomes an opaque box to other components, as shown progressively in the

middle and right diagrams. This component can then be further composed in a similar

manner. The programming model used in CHP is thus compositional, allowing complex

networks to be built from joining together different components without regard to their

internal implementation.

This is shown diagrammatically in figure 2. It is instructive to note that
the composition of two such processes with a single input channel and single
output channel is itself a process with a single input channel and a single output
channel. This component can then be re-used without requiring any knowledge
of its internally concurrent implementation.

4.1 Simple Composition Operator

This composition of two single-input, single-output processes is so common that
it is worth capturing in an associative operator:

24 N.C.C. Brown

(==>) :: (Chanin a -> Chanout b -> CHP ()) -> (Chanin b -> Chanout c -> CHP ())
-> (Chanin a -> Chanout c -> CHP ())

(==>) p q r w = newChannelWR >>= \(mw, mr) -> runParallel [p r mw, q mr w]

The previous showPosP process can be written using this operator as follows:

showPosP = filterP (> 0) ==> mapP show

This point-free style is clearer and more elegant. By not introducing extra vari-
able names we eliminate potential mistakes (mis-wiring). It can be seen that this
process composition operator is an analogue of function composition.

We do not, however, always want to connect processes merely with a single
unidirectional channel. We may want to connect processes with a pair of channels
(one in each direction) or three channels, or a channel and a barrier, etc., as for
example in the main function in our blood clotting example in figure 6 – which
means that we need a more general operator than the one above.

4.2 Richer Composition Operator

Figure 3 shows another example of process composition, requiring different con-
nections than figure 2. The types and directions of the channels needed to com-
pose the processes are readily apparent – it should be just as easy to join these
processes with two channels as it was to join filterP and mapP with one.

Fig. 3. An example of slightly different process composition than figure 2. The letters

indicate the types of the channel-ends that each process takes. It is readily apparent,

both that these processes can be composed, and how they should be composed: with

a pair of channels.

To generalise the variety of composition possible, we use Haskell’s type-class
mechanism. We define a two parameter type-class, Connectable, an instance of
which indicates that the two parameters can be wired together in some fashion,
and provide a function that must be implemented to do so:

class Connectable l r where
connect :: ((l, r) -> CHP a) -> CHP a

Instances for channels (in both directions) are trivial:

instance Connectable (Chanout a) (Chanin a) where
connect p = newChannelWR >>= p

instance Connectable (Chanin a) (Chanout a) where
connect p = newChannelWR >>= (p . swap)

where swap (x, y) = (y, x)

Combinators for Message-Passing in Haskell 25

We choose this style of function to compose the processes, rather than say
connect ::CHP (l, r), because we may need to enroll the processes on the synchro-
nisation object for the duration of their execution. Our chosen style of function
allows us to do just that for an instance involving barriers:

instance Connectable EnrolledBarrier EnrolledBarrier where
connect p = do b <- newBarrier

enroll b (\b0 -> enroll b (\b1 -> p (b0, b1)))

The instance that grants much greater power to the Connectable interface is the
one that works for any pair of Connectable items:

instance (Connectable lA rA,Connectable lB rB) => Connectable (lA, lB) (rA, rB) where
connect p = connect (\(ax, ay) -> connect (\(bx, by) -> p ((ax, bx), (ay, by))))

This instance means that two processes can easily be wired together if they need
to be connected by a channel and a barrier, for example. Similar instances can
also be constructed for triples and so on. Programmers may also create their
own instances (as with any Haskell type-class) for synchronisation primitives
not known to the library, or for compound data structures that feature several
synchronisation primitives that need to be wired together differently.

A particularly powerful way to enhance this operator would be to use session
types on CHP channels. Session types generalise from carrying a particular type
on a one-way channel (as CHP currently does) to specifying the series of com-
munications that can take place in both directions between two participants,
encapsulating the entire protocol between two parties in the channel type. It has
been shown that session types can be embedded well in a Haskell setting [14].

The Connectable interface is a suitable basic API, but it is too unwieldy to
compose processes together. We can use it to define a more general version of
the composition operator seen earlier:

(<=>) :: Connectable l r =>
(a -> l -> CHP ()) -> (r -> b -> CHP ()) -> (a -> b -> CHP ())

(<=>) p q x y = connect (\(l, r) -> runParallel [p x l, q r y])

The type of this operator is very general. No restrictions are placed on the
“outer” types a and b (which may be channels, but are not required to be so).
This operator composes together any pair of two-argument processes where the
second argument of the first process can be connected to the first argument of
the second process. We can also trivially define other operators that are useful
at the start and end of a process pipeline, respectively, and that compose just a
start and end process:

(|<=>) :: Connectable l r => (l -> CHP ()) -> (r -> b -> CHP ()) -> (b -> CHP ())
(<=>|) :: Connectable l r => (a -> l -> CHP ()) -> (r -> CHP ()) -> (a -> CHP ())
(|<=>|) :: Connectable l r => (l -> CHP ()) -> (r -> CHP ()) -> CHP ()

We also provide a pipelineComplete function in the next section to support com-
bining one start process and one end process with multiple middle processes.

26 N.C.C. Brown

Fig. 4. The pipeline topology (left) and cycle topology (right). It can be seen that a

cycle can be formed simply by connecting the two end points of a pipeline together.

The processes are illustrated here by connecting them with a single channel, but any

regular interface could be connected together using the Connectable class.

4.3 Capturing Common Topologies

We do not always want to simply compose two adjacent processes. Another
common requirement is to wire together a pipeline of processes. We can do
this by building on top of our connectable operator, meaning that the helper
function is parameterised by the type of connection between processes, but fixes
the topology – we can then easily extend this to a cycle (also known as a ring):

pipeline :: Connectable r l => [l -> r -> CHP ()] -> l -> r -> CHP ()

pipeline = foldr1 (<=>)

cycle :: Connectable r l => [l -> r -> CHP ()] -> CHP ()

cycle ps = connect (\(l, r) -> pipeline ps l r)

Both topologies are depicted in figure 4. We can also define a function for con-
necting a complete pipeline, as discussed at the end of the previous section:

pipelineComplete :: Connectable l r =>
(l -> CHP ()) -> [r -> l -> CHP ()] -> (r -> CHP ()) -> CHP ()

pipelineComplete begin middle end = (begin |<=> pipeline middle) |<=>| end

This idea of capturing topology extends beyond such one-dimensional structures.
A common requirement when building concurrent simulations with the CHP li-
brary is to form a regular two-dimensional (or three-dimensional) grid, either
with or without diagonal connections. Producing such wiring, especially with
diagonal connections, is verbose and error prone. Without the Connectable inter-
face, it would have to be replicated for each type of channel used, increasing the
possibility for error (this was originally the case in the CHP library [2]). But we
can now write the function once, test it to show its correctness once, and re-use
it repeatedly in different programs. We show an example type here but omit the
lengthy definition2:

grid4way :: (Connectable right left, Connectable bottom top) =>
[[above -> below -> left -> right -> CHP r]] -> CHP [[r]]

2 It can be found in the library at http://hackage.haskell.org/package/chp-plus;

an alternate short implementation is given in section 5.2 of this paper.

http://hackage.haskell.org/package/chp-plus

Combinators for Message-Passing in Haskell 27

The parameter is a list of rows of processes (which must be rectangular); the
result is a corresponding list of rows of results. The processes are wired together
into a regular grid where the far right edge also connects to the far left edge,
and the bottom edge to the top: this forms a torus shape.

Any topology (especially regular topologies) can be captured in helper func-
tions like those given above, and re-used regardless of the channel types required
to connect the processes.

4.4 Improved Process Wiring: Blood Clotting Example

The blood clotting example shown in figure 6 wired up its pipeline of processes
by creating a list of channels and a list of barriers. List indexing was used to
access the corresponding channels and barriers for each process. The connectable
operators and functions introduced in the previous sections allow the processes to
be wired together using a couple of the new operators and the pipeline combinator.
This combinator is a list fold which replaces imperative-style list indexing.

The main feature of programming with CHP that enables the process wiring
operators is the use of first-class processes3. In other languages where processes
cannot be passed around, a function such as pipeline would not be possible to
define. For example, the occam language does not have first-class processes. The
C++CSP concurrent programming library allows complete processes (instances
of classes that inherit from a CSProcess class) to be passed around, but pro-
cesses still requiring channels is neither a straightforward nor natural idiom to
support.

The revised version of the main process of the blood clotting example using the
connectable operators where possible is shown in figure 7 and can be contrasted
to figure 6. The new code using the connectable operators is much shorter. It is
also instructive to note that there is no longer a call to the runParallel function in
the main wiring function. The concurrency, which is a central primitive of CHP,
has been captured in the pipelineComplete wiring function. This is indicative of
the higher-level nature of the new process wiring, which abstracts away the
details of the parallelism (and removes the channel declarations) in favour of
operators that capture the connectivity pattern being used to join together the
processes.

5 Compositional Wiring

Section 4 outlined ways to compose processes into a complete whole. We often
have situations where a process needs not just one set of connections, but also
some other cross-cutting connection. For example, a cycle of processes may all be
connected to their neighbours with a channel – but they may also all be enrolled
together on a barrier (as illustrated in figure 5). We have a similar situation in
our blood clotting example, depicted in figure 1.
3 Since a CHP process is a function/monadic action, these being first-class in Haskell

means that CHP has first-class processes.

28 N.C.C. Brown

Consider how to implement such an arrangement with the combinators that
we have introduced thus far; we have (with specialised types for illustration):

enrollAll :: Barrier -> [EnrolledBarrier -> CHP a] -> CHP [a]
pipeline :: [Chanin a -> Chanout a -> CHP ()] -> Chanin a -> Chanout a -> CHP ()

Both processes expect a list of processes that take exactly the required arguments
(a barrier or a channel pair, respectively) and return a CHP process. Neither
supports partial application that would return a process ready to be wired up
by the other function: in short, these combinators do not compose.

We cannot simply create a function without the CHP monad, such as:

pipeline’ :: [Chanin a -> Chanout a -> b] -> Chanin a -> Chanout a -> [b]

We require access to the CHP monad in order to run the processes in parallel,
and to create the channels used to connect them together. This means that we
need a different strategy in order to support composing these combinators in a
useful way. To that end, we introduce a Composed monad.

5.1 The Composed Monad

We need to abstract over the return types of the processes being composed
together while still allowing access to the functionality in the CHP monad. We
therefore create functions such as (again with types specialised for illustration):

enrollAllR :: Barrier -> [EnrolledBarrier -> a] -> Composed [a]
pipelineR :: [Chanin a -> Chanout a -> b] -> Chanin a -> Chanout a -> Composed [b]
cycleR :: [Chanin a -> Chanout a -> b] -> Composed [b]

Fig. 5. A ring of processes connected to their neighbours with a single channel, and

also all enrolled together on the same central barrier

Given a list of processes ::[EnrolledBarrier ->Chanin a ->Chanout a ->CHP ()], we
can compose them, as depicted in figure 5, simply using:

enrollAllR b processes >>= cycleR

Combinators for Message-Passing in Haskell 29

The meaning of composition in this monad is not intuitively the sequencing
of actions as is often the case for monads (in fact, the monad is conceptually
commutative in many cases). It is instead a form of nesting – the code above
enrolls the processes on the barrier, and inside the scope of that enrollment
it wires them together in a cycle. From a user’s perspective the monad can
be thought of as a series of wiring instructions. Each command composes the
processes further until finally the complete processes are returned: the output
of any Composed block is almost always such a list of complete CHP processes
ready to be run in parallel. The type of the Composed monad is:

newtype Composed a = Composed { runWith :: forall b. (a -> CHP b) -> CHP b }

instance Monad Composed where
return x = Composed (\r -> r x)
(>>=) m f = Composed (\r -> m ‘runWith‘ ((‘runWith‘ r) . f))

This type is not without precedence as a monad; it is equivalent to the
continuation-passing monad transformer on top of CHP, forall b.ContT b CHP a,
and is technically the codensity monad of CHP. The monad is not used to pass
continuations, however. The intuition is that any type wrapped in Composed

needs to be told how it can be turned into a CHP action, and then it becomes
that CHP action. At the outer-level this is accomplished with runParallel:

run :: Composed [CHP a] -> CHP [a]
run ps = ps ‘runWith‘ runParallel

5.2 Composed Wiring Functions

We can re-define all the wiring functions seen earlier in the new Composed monad.
The most basic are the connectR and enrollR functions:

connectR :: Connectable l r => ((l, r) -> a) -> Composed a
connectR p = Composed (\r -> connect (r . p))

enrollR :: Barrier -> (EnrolledBarrier -> a) -> Composed a
enrollR b p = Composed (\r -> enroll b (r . p))

The latter can easily be expanded into an enrollAllR function:

enrollAllR :: Barrier -> [EnrolledBarrier -> a] -> Composed [a]
enrollAllR b ps = mapM (enrollR b) ps

The enrollAllR function enrolls a list of processes on the given barrier. Without
the Composed monad it is an intricate recursive function, but with the Composed

monad it is a non-recursive and straightforward mapM call.
We can define the pipelineR function as follows:

pipelineR :: Connectable l r => [r -> l -> a] -> Composed (r -> l -> [a])
pipelineR [] = return (\ -> [])
pipelineR (firstP:restP) = foldM adj (\x y -> [firstP x y]) restP
where adj p q = connectR (\(l, r) x y -> (p x l) ++ [q r y])

30 N.C.C. Brown

As before, the cycleR function is a small addition to the pipelineR function:

cycleR :: Connectable l r => [r -> l -> a] -> Composed [a]
cycleR [] = return []
cycleR ps = pipelineR ps >>= connectR . uncurry . flip

With these composition operators we can now easily define the 4-way grid com-
position discussed earlier in section 4.3:

grid4wayR :: (Connectable below above, Connectable right left) =>

[[above -> below -> left -> right -> a]] -> Composed [[a]]
grid4wayR = (mapM cycleR . transpose) <=< (mapM cycleR . transpose)

The inherent symmetry, and regularity, of the combinator is exposed, and its
cycleR-based definition trivial with the help of the standard list function transpose

that swaps rows for columns in a list of lists and the (<=<) :: Monad m =>(b ->m c)

->(a ->m b) ->a ->m c function that composes two monadic functions.)
It is possible for users to define their own wiring functions using this monad.

For example, a user may have a repeated pattern in their program, such as a list
of processes where they wish to enroll all the processes at odd positions in the
list on one barrier, but all the processes at even positions in the list on another
barrier. They could write a function to do this, and use it in different situations
in combination with other functions – for example, one such list may further be
wired into a pipeline, while another may be wired into a star topology.

The use of wiring combinators avoids explicitly declaring and naming
the channels and barriers required to construct the process network. This makes
the code shorter, and prevents errors (such as passing the wrong channel-end
to the wrong process, which will compile if they have the same type). It also
means that common topologies (such as pipelineR) can be recognised by name
when reading code – it is not straightforward to recognise wiring patterns when
they are written out “long-hand” with individual named channels.

5.3 Further Improved Process Wiring: Blood Clotting Example

The motivation behind the Composed monad was that our original combinators
did not easily compose. Certain combinators, such as enrollAll and pipeline, cannot
easily be used together. For this reason our previous simplification of the blood
platelets’ wiring in figure 7 used enrollList instead. Often, nesting the combinators
like this can lead to code nested many levels deep that is hard to follow, with
many extra named parameters that are hard to track.

Our new Composed monad allows us to simplify the wiring in our blood clotting
example even further by using two combinators: see figure 8 for the result. It can
be seen that the only communication primitive that is named is the tick barrier.
There are no manipulations involving list indexing as before. All of the creation
of channels and barriers (except for tick) and all of the concurrency is hidden in
the combinators for the Composed monad; pipelineCompleteR and enrollAllR create
the channels and barriers, while the run function runs all the resulting processes
concurrently.

Combinators for Message-Passing in Haskell 31

plateletGenerator :: (Chanout Platelet, EnrolledBarrier) -> EnrolledBarrier -> CHP ()

plateletConsumer :: (Chanin Platelet, EnrolledBarrier) -> EnrolledBarrier -> CHP ()

site :: (Chanin Platelet, EnrolledBarrier) -> (Chanout Platelet, EnrolledBarrier)
-> EnrolledBarrier -> CHP ()

numSites = 100

main :: IO ()

main = runCHP $ do
(writers, readers) <- unzip <$> replicateM (numSites + 1) newChannelWR
bars <- replicateM (numSites + 1) newBarrier
tick <- newBarrierPri (-1)
enrollList (replicate (numSites + 2) tick) $ \ticks ->

enrollList bars $ \ebars -> runParallel $
[site (readers !! i, ebars !! i)

(writers !! succ i, ebars !! succ i)
(ticks !! i) | i <- [0..numSites-1]] ++

[plateletGenerator (writers !! 0, ebars !! 0) (ticks !! numSites)
,plateletConsumer (readers !! numSites, ebars !! numSites)

(ticks !! succ numSites)]

Fig. 6. An example version of the blood clotting example that uses array-like indexing

idioms for wiring. The internal definition of the processes being wired together is not

relevant (their types are given here to aid understanding), and the network is depicted

in figure 1.

main = runCHP $ do
tick <- newBarrierPri (-1)
enrollList (replicate (numSites + 2) tick) $ \ticks ->

pipelineComplete (flip plateletGenerator (ticks !! numSites))
(map (flip2 site) (take numSites ticks))
(flip plateletPrinter (ticks !! succ numSites))

where flip2 f c a b = f a b c

Fig. 7. A revised version of the wiring code originally shown in figure 6, which uses

the pipeline combinator and other new operators to simplify the wiring of the process

network.

main = runCHP $ newBarrierPri (-1) >>= \tick -> run $

pipelineCompleteR plateletGenerator (replicate numSites site) plateletConsumer
>>= enrollAllR tick

Fig. 8. A further revised version of the wiring code shown originally in figure 6 (and

previously revised in figure 7). This time the Composed monad is used to reduce the

complete wiring code to just a few lines.

32 N.C.C. Brown

6 Related Work

Several other message-passing libraries exist in functional programming lan-
guages. Concurrent ML is the most obvious precursor [15], and it has since been
converted to Haskell, too [18,4]. Given support for type-classes or a comparable
mechanism, there is no reason why the programming patterns captured in this
paper could not also be captured in Concurrent ML.

Erlang is a functional programming language with a strong message-passing
component. However, Erlang uses asynchronous messages sent to a particular
process address, rather than channels. This difference is vital with respect to
the work described in this paper; the process composition described here does
not apply to Erlang, and the styles of process that are composed in this paper
are not common in Erlang. Additionally, Erlang is dynamically typed, which
precludes the type-based connectable operators seen in this paper.

Lava is a hardware design domain-specific language embedded in Haskell [1].
Lava featured operators to compose together digital circuit components. This
is an analogue of the Connectable operators seen in this paper – although Lava
featured different combinators depending on data-flow direction, whereas the
Connectable class abstracts away details such as directionality and types.

At an abstract level, CHP can be thought of as a way to represent interac-
tive computations. Another way to do so is Functional Reactive Programming
(FRP) [11]. There are various implementations of FRP [11,5,9], but broadly they
represent interaction as a function from timed observations/inputs to timed out-
puts. This neatly removes explicit state and imperative constructs, but can cause
problems with causality (where future events can affect past behaviour).

7 Conclusions

The Communicating Haskell Processes library is an imperative message-passing
library built in a functional programming language. This paper has shown how
the ideas of higher-order functions, type-class-based abstractions and re-usable
combinators can be taken from functional programming and applied to message-
passing programming, with all of the same benefits.

CHP programs are made up of many components composed together concur-
rently, and connected by channels and barriers. The “long-hand” way of compos-
ing these processes – manually declaring channels and passing the ends to the
right processes – is tedious, verbose and error prone. The combinators discussed
in this paper allow for an elegant and concise point-free style, composing pro-
cesses together without ever naming the primitives that connect the processes.

The Connectable type-class allows the wiring functions to abstract away from
the primitives used to compose processes and to instead focus on capturing
topology. This allows complicated functions (such as two-dimensional grids with
diagonal connections) to be written once and re-used. The Composed monad takes
this further and allows complicated composition with several cross-cutting con-
cerns to be done easily and compositionally, which makes for completely flexible
wiring of processes. Both of these mechanisms could generalise to composing
processes with any Haskell communication primitive such as MVar or TChan.

Combinators for Message-Passing in Haskell 33

All of this work is only possible because functions and processes are first-class
in CHP, and can thus be passed as arguments. Implementing these combinators
in message-passing frameworks in other languages would either be overly verbose
and awkward (e.g. using interfaces and classes in Java) or simply not possible
(e.g. in the language occam, where higher-order programming is not possible).

References

1. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell.

In: ICFP 1998, pp. 174–184. ACM, New York (1998)

2. Brown, N.C.C.: Communicating Haskell Processes: Composable explicit concur-

rency using monads. In: Communicating Process Architectures 2008, pp. 67–83

(September 2008)

3. Brown, N.C.C.: Conjoined Events. In: Advances in Message Passing. ACM, New

York (2010)

4. Chaudhuri, A.: A concurrent ML library in concurrent Haskell. In: ICFP 2009, pp.

269–280. ACM, New York (2009)

5. Elliott, C.M.: Push-pull functional reactive programming. In: Haskell 2009, pp.

25–36. ACM, New York (2009)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)

7. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–111

(2000)

8. Jadud, M., Jacobsen, C.L., Simpson, J., Ritson, C.G.: Safe parallelism for be-

havioral control. In: 2008 IEEE Conference on Technologies for Practical Robot

Applications, pp. 137–142. IEEE, Los Alamitos (2008)

9. Liu, H., Cheng, E., Hudak, P.: Causal commutative arrows and their optimization.

In: ICFP 2009, pp. 35–46. ACM, New York (2009)

10. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-

gram. 18(1), 1–13 (2008)

11. Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming, contin-

ued. In: Haskell 2002, pp. 51–64. ACM, New York (2002)

12. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: POPL

1993, pp. 71–84. ACM, New York (1993)

13. Polack, F.A., Andrews, P.S., Sampson, A.T.: The engineering of concurrent simu-

lations of complex systems. In: 2009 IEEE Congress on Evolutionary Computation

(CEC 2009), pp. 217–224. IEEE Press, Los Alamitos (2009)

14. Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In: Haskell

2008, pp. 25–36. ACM, New York (2008)

15. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press, Cam-

bridge (1999)

16. Ritson, C.G., Sampson, A.T., Barnes, F.R.M.: Multicore Scheduling for Lightweight

Communicating Processes. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION

2009. LNCS, vol. 5521, pp. 163–183. Springer, Heidelberg (2009)

17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs (1997)

18. Russell, G.: Events in haskell, and how to implement them. In: ICFP 2001, pp.

157–168. ACM, New York (2001)

19. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A Layered Behavioural

Model of Platelets. In: ICECCS 2006, pp. 98–106. IEEE, Los Alamitos (2006)

Analysing a Publish/Subscribe System for

Mobile Ad Hoc Networks with ProbLog

Theofrastos Mantadelis, Koosha Paridel, Gerda Janssens, Yves Vanrompay,
and Yolande Berbers

Departement Computerwetenschappen, K.U. Leuven. Celestijnenlaan 200A,

B-3001 Heverlee, Belgium

firstname.lastname@cs.kuleuven.be

Abstract. Fadip is a Publish/Subscribe system for Mobile Ad hoc Net-

works which uses probabilistic routing of messages to deal with the

volatile nature of the network. It uses controlled propagation of pub-

lications and subscriptions, with the fading gossip technique to reduce

the number of broadcasts. We present a probabilistic logic program in

ProbLog that models Fadip. This allows us to calculate the probabilities

that messages are successfully received by subscribers and to analyse the

performance of the Fadip system.

Keywords: Probabilistic logic programming, ProbLog, Mobile Ad hoc

Networks, Publish/Subscribe System.

1 Introduction

We use ProbLog [1], a probabilistic extension of Prolog, to analyse Fadip [2],
a Publish/Subscribe protocol for Mobile Ad hoc Networks (MANETs). Pub-
lish/Subscribe systems for MANETs are used commonly in disaster recovery,
smart city and vehicular networks. We model a MANET as a probabilistic graph
representing connections between nodes by ProbLog’s probabilistic facts. The
Fadip protocol can be seen as a special kind of path finding in such a probabilis-
tic graph. As there can be multiple non-mutually exclusive paths between two
nodes, ProbLog is an appropriate probabilistic system to model this application.

Our main contribution is to show how a simple ProbLog program can encode
this Fadip application for the case of one publisher and one subscriber, and how
simple ProbLog queries can then compute the probabilities of message delivery
for different parameter settings. Before, simulations were needed to estimate
delivery ratios, while now they are inferred analytically.

We analytically investigate the delivery probability among random node pairs
and show the effects of the fading gossip technique. We also evaluate different
parameter settings and conclude on what their impact is.

2 Problem Statement

Publish/Subscribe systems have been intensively studied for wired networks and
infrastructured mobile networks [3]. When used in MANETs they suffer from

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 34–37, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Analysing a Publish/Subscribe System for Mobile Ad Hoc Networks 35

scalability issues. Fadip [2] is a Publish/Subscribe system for MANETs and is
designed to be lightweight in terms of the network topology (i.e. fixing routing
information and maintaining logical structures of nodes) and the number of
messages exchanged for communication. To achieve a reasonable delivery ratio,
Fadip uses a hybrid model which propagates subscriptions and publications as
bounded as possible and makes matching in intermediary nodes which act as
undedicated rendezvous points. In Fadip, the routing is done probabilistically
and neither the publishers nor the subscribers have any information about where
their publication or subscription might be matched.

3 ProbLog

ProbLog [1] is a probabilistic framework that extends Prolog with probabilistic
facts. A ProbLog program specifies a probability distribution over all possible
non-probabilistic subprograms of the ProbLog program. The success probability
of a query is defined as the probability that it succeeds in these subprograms.

ProbLog has been motivated by the real-life application of mining large bio-
logical networks where edges are labelled with probabilities. An edge represents a
probabilistic link between the concepts represented by its nodes. The probabilis-
tic links are mutually independent. ProbLog typically computes the probability
of the existence of a path between two nodes [4]. The contribution of common
parts in different paths between two nodes to the final probability is dealt ac-
cording to the inclusion-exclusion principle from set theory.

4 Fadip Model in ProbLog

We model the MANET as a probabilistic graph. The graph nodes are the nodes
of the mobile network. The graph edges model the connectivity between nodes.
In a MANET this connectivity is not permanent. To model this, we attach to
the edges probabilities which express the fraction of the time the connections
are present. These probabilistic edges are represented by probabilistic facts.

We extend the path program to model the Publisher/Subscriber propagation
of Fadip as a bounded bidirectional search of a path among two nodes. The
parameters MaxHopp and MaxHops are used as bounds when propagating the
message of the Publisher and the subscription of the Subscriber, respectively.
We used tabling as in [5] to avoid re-computations and to handle loops.

To integrate the fading gossip, we also need to express the fact that sending a
message has a probability which decreases with the distance from its source [2].
We model this by flexible probabilistic facts, whose probability is determined at
runtime. The delivery of a message between two nodes depends on the connection
being present and the distance from the Publisher.

The model results in a relatively simple ProbLog program that allow us to
query for the probability of a message delivery from a Publisher to a Subscriber1.
1 The ProbLog program and the analysis results can be found at:

http://people.cs.kuleuven.be/ theofrastos.mantadelis/appendixs/

PADL2011.pdf

http://people.cs.kuleuven.be/~theofrastos.mantadelis/appendixs/PADL2011.pdf
http://people.cs.kuleuven.be/~theofrastos.mantadelis/appendixs/PADL2011.pdf

36 T. Mantadelis et al.

5 Analysing the Model

We present how ProbLog can be used to analyse Fadip. The base operation is
to calculate delivery probabilities. Fadip aims to reduce network traffic. For this
it is beneficial to retain MaxHop parameters as low as possible and to use fad-
ing gossip while retaining a good delivery probability. We used the OMNeT++
simulation log of a 150 node WiFi network, moving randomly at 1m/s in a
playground of 1.5km× 1km. For the selection of Publisher and Subscriber, we
considered two settings based on the distance between them. For the first, we
randomly selected pairs of nodes which have paths with a minimum hop from
4 to 6 and for the second, pairs that have paths with a minimum hop from 8
to 10. We used ProbLog to query the delivery probability for these pairs with
multiple values for MaxHopp and MaxHops and activating or not fading gos-
sip. The results of these queries are first used to evaluate the impact of the
MaxHop parameters. We observed that increasing MaxHops has more effect
on improving the delivery probability than increasing MaxHopp. We also used
the results to infer optimal values for MaxHopp and MaxHops. For example, in
the first setting both are 3 and for the second setting are 4, 5 respectively. Our
analysis showed that fading gossip retains a high delivery probability for close
distances up to 3−4 hops and the delivery probability rapidly decreases for longer
paths.

6 Conclusions

We presented an application of ProbLog that models and analyses the perfor-
mance of Fadip. In [6] Bayesian Networks are used to analyse MANETs. By
analysing the model one can infer delivery probabilities for different settings
and use this information to chose optimal parameter settings and do evalua-
tions. For our example network we concluded that MaxHops is more impor-
tant for obtaining a high delivery probability than MaxHopp and that the
fading gossip technique has a good delivery probability for small hop counts
while the message rapidly fades for larger hop counts. In [2] similar results are
attained by simulating the behaviour of the network, in this work we attain
them analytically. For future work we want to extend the ProbLog program
to support multiple publishers and subscribers and study the impact of their
interaction.

References

1. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient

execution of ProbLog programs. In: Proceedings of ICLP, pp. 175–189 (2008)

2. Paridel, K., Vanrompay, Y., Berbers, Y.: Fadip: Lightweight publish/Subscribe for

mobile ad hoc networks. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010.

LNCS, vol. 6427, pp. 798–810. Springer, Heidelberg (2010)

3. Baldoni, R., Virgillito, A.: Distributed event routing in publish/subscribe communi-

cation systems: a survey. DIS, Universita di Roma“La Sapienza”, Tech. Rep. (2005)

Analysing a Publish/Subscribe System for Mobile Ad Hoc Networks 37

4. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its

application in link discovery. In: Proceedings of IJCAI, pp. 2462–2467 (2007)

5. Mantadelis, T., Janssens, G.: Dedicated tabling for a probabilistic setting. In: Tech-

nical Communications of ICLP, pp. 124–133 (2010)

6. Buchegger, S., Boudec, J.Y.L.: The effect of rumor spreading in reputation systems

for mobile ad-hoc networks. In: Proceedings of WiOpt (2003)

Profiling for Run-Time Checking

of Computational Properties and
Performance Debugging in Logic Programs

Edison Mera1, Teresa Trigo2,
Pedro Lopez-Garćıa2,3, and Manuel Hermenegildo2,4

1 Complutense University of Madrid (UCM), Spain
2 IMDEA Software Institute, Spain

3 Spanish Research Council (CSIC), Spain
4 School of Computer Science, Technical University of Madrid (UPM), Spain

edison@fdi.ucm.es, herme@fi.upm.es,

{teresa.trigo,pedro.lopez,manuel.hermenegildo}@imdea.org

Abstract. Although several profiling techniques for identifying perfor-

mance bottlenecks in logic programs have been developed, they are gener-

ally not automatic and in most cases they do not provide enough informa-

tion for identifying the root causes of such bottlenecks. This complicates

using their results for guiding performance improvement. We present a

profiling method and tool that provides such explanations. Our profiler

associates cost centers to certain program elements and can measure dif-

ferent types of resource-related properties that affect performance, pre-

serving the precedence of cost centers in the call graph. It includes an

automatic method for detecting procedures that are performance bottle-

necks. The profiling tool has been integrated in a previously developed

run-time checking framework to allow verification of certain properties

when they cannot be verified statically. The approach allows checking

global computational properties which require complex instrumentation

tracking information about previous execution states, such as, e.g., that

the execution time accumulated by a given procedure is not greater than

a given bound. We have built a prototype implementation, integrated

it in the Ciao/CiaoPP system and successfully applied it to performance

improvement, automatic optimization (e.g., resource-aware specialization

of programs), run-time checking, and debugging of global computational

properties (e.g., resource usage) in Prolog programs.

Keywords: profiling, run-time checking, performance debugging, resource

usage estimation/verification, logic programming.

1 Introduction

Profilers have been developed in the context of several programming paradigms:
imperative [5,16] (including object oriented [7]), functional [15,14], logic [3,9,4],
or integrations of some of them, such as the functional logic languages Curry and
Toy [1]. In this paper we focus our attention on profilers for logic programs, and
in particular for the Prolog language. The implementation of Prolog profilers has

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 38–53, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Profiling for Run-Time Checking of Computational Properties 39

the added complexity w.r.t. more traditional paradigms of having to deal with
its specific features such as non-determinism and the possibility of failure, which
makes it necessary to deal with backtracking (and, hence, with choice points),
and search pruning operators (like the cut). There exist some implementations
of profilers for the Prolog language (e.g., [4,3]). However, in order to fill some
gaps and to broaden the range of applications, we have developed a profiler for
Prolog that has the following original features:

1. It is based on the concept of cost center. We have adapted the cost center
definition of Morgan [14], developed in the context of functional program-
ming, to support the unique features of logic programming. A cost center, as
we will explain later in detail, is a program point (such as a procedure or a
call in a clause body) where data about computational events is accumulated
each time the point is reached by the program execution control flow. This
allows measuring accumulated execution time of program procedures that do
not overlap, i.e., the total resource usage of a program can be computed in
a compositional way, by adding the execution time associated to each cost
center. A cost center-based profiler with this property has been developed for
functional programming [15], however, as far as we know, no implementation
of this kind of profiler has been developed for logic programs.

2. It allows preserving the precedence of cost centers in the call graph. It pro-
vides separate accumulated resource usage information for a given procedure
depending on where it is called from, i.e., it is a call graph profiler for Prolog.
We have taken the call graph profiling approach of [16] as starting point and
we have adapted it in order to deal with the more complex execution model
of Prolog, taking failure, backtracking, and pruning operators into account.
The SWI profiler is to our knowledge the only Prolog profiler that keeps the
precedence between the caller and the callee, but it does not support the
concept of cost center.

3. It can measure a wide range of computational properties and events, such as
execution time, execution steps, numbers of calls, failures, exits, redos, choice
point creations, cut executions, choice points removed by the cut operator,
or the percentage of the accumulated cost of a predicate with respect to the
total cost of the program. We use in the rest of the paper the term “resources”
to refer to any of these properties. Although the current implementation is
not fully parametric w.r.t. resources, it can be easily generalized as it was
done with the static resource analysis integrated in CiaoPP [12].

4. It is used for run-time checking of computational properties. For this purpose,
it is tightly integrated in an advanced program development framework which
incorporates in a uniform way run-time checking, static verification, unit
testing, debugging, and optimization. To our knowledge, no profiler has been
used for this purpose or integrated in such an environment to date.

5. It includes a (configurable) automatic method for detecting procedures that
are performance bottlenecks following several heuristics. The method auto-
matically associates cost centers to procedures in an iterative process. Previ-
ous approaches are not automatic (e.g., [3,15,1]), so that the programmer is
responsible for configuring cost centers iteratively based on the information

40 E. Mera et al.

returned by the profiler until the root cause of the bottleneck is detected.
We show that the configuration of cost centers can be automated, as we will
explain further, by exploring a (static or dynamically) generated call graph
until the root cause of the bottleneck is detected.

6. It is able to point at the part of the program that is responsible for the bottle-
neck, guided by any arbitrary resource (like time, event counts, etc.) and to
provide explanations at different granularity levels. This information includes
an automatically generated picture of (a sub-graph of) the call graph (see
Section 6). Existing profilers only provide information about where the bot-
tlenecks of the programs are without any kind of explanation about the root
causes, requiring that additional techniques be applied in order to identify
such causes.

7. It combines time profiling with count profiling, which has proved to be non-
trivial [9], and supports modularity, allowing the specification of which
modules should be instrumented for profiling. This feature of our profiler
is possible thanks to the usage of Ciao’s module system and the automatic
code transformation provided through Ciao’s semantic packages.

8. It uses global static analysis to reduce the overhead of the profiling process.

2 A Cost Center-Based Approach to Profiling

Fundamental to our approach to profiling is the concept of cost center, which is
inspired by the one defined by Morgan [14] in the context of functional languages.

A cost center for us is a program point where data about computational events
is accumulated each time the point is reached by the program execution control
flow. In our current implementation both predicates and literals in body clauses
can be marked as cost centers. However, for the sake of brevity, in this paper
we will only describe cost centers at the predicate level. We also introduce a
special cost center, named remainder cost center (denoted rcc), which is used for
accumulating data about events not corresponding to any defined cost center.

In order to deal with the control flow of Prolog, we adopt the “box model” of
Byrd [2], where predicates (procedures) are seen as “black boxes” in the usual
way. Since the simple call/return view of procedures is not enough to capture
backtracking, this model uses a “4-port box view.” Namely, given a goal (i.e., a
unique run-time call to a predicate), the four ports (events) in Prolog execution
are: (1) call (start to execute the goal), (2) exit (succeed in producing a solution
to the goal), (3) redo (attempt to find an alternative solution to the goal), and
(4) fail (exit with failure, if no further solutions to the goal are found). Thus,
there are two ports for “entering” the box (call and redo), and two ports for
“leaving” it (exit and fail).

Definition 1 (Calls relation). We define the calls relation between predicates
in a program as follows: p calls q, written p � q, if and only if a literal with
predicate symbol q appears in the body of a clause defining p. Let �+ denote the
transitive closure of �.1

1 For simplicity we provide a static definition of the call graph. However, in practice,

it is dynamically built, and thus it deals safely with meta-calls.

Profiling for Run-Time Checking of Computational Properties 41

Definition 2 (Cost center set). Given a program P to be profiled, the cost
center set for P (denoted CP), is defined as CP = {p | p is a predicate of P
marked as a cost center} ∪ {rcc}, where rcc is the remainder cost center.

Definition 3 (Cost center graph). The cost center graph of a program P
(denoted GP) is the graph defined by the set of nodes CP and the set of edges
E = E′ ∪ {(rcc, rcc)}, such that (p, q) ∈ E′ iff:
1. p is not the remainder cost center (i.e., p �= rcc), q �= rcc, and p �+ q

through some path where all of its nodes (except the origin and destination)
are not in CP ; or

2. p = rcc and: (a) q is an entry point of program P such that q ∈ CP , or (b)
for some predicate r being an entry point of P , r �+ q through some path
where all of its nodes (except the destination) are not in CP .

Definition 4 (Edge-accumulated resource usage). Each edge (c, d) ∈ GP

has a data structure Rcd, which contains the addition of resource usages over all
the times that the cost center d was entered from cost center c, until a new cost
center is entered or the computation finishes. This allows giving separate resource
usage information for a given procedure depending on where it is called from.

Our profiler is parametric w.r.t. the enter/leave ports, i.e., Rcd contains matrices
of the form Resource[enter][leave] (enter ∈ {call, redo}, leave ∈ {exit, fail}),
whose elements are counters to keep track of the usage of several resources for the
four possible “enter/leave” port combination (cf. the “4-port box” of node d). For
example we keep track of the number of times that each of the four “enter/leave”
port combination happens during program execution in Counts[enter][leave].
Execution times are also tracked in T icks[enter][leave].

Example 1. We are going to illustrate how the resource usage information is
stored in the edges of the cost center graph during the profiling process. At any
time in this process, only one edge is active. When execution enters a predicate
which is defined as a cost center, the resource usage monitored so far is stored in
the active edge, it is deactivated, and then another edge is activated. Consider
program p, and its call graph and cost center graph in Figure 1. Before starting
program execution, the active edge is (rcc, rcc). Then, when execution starts,
the partial counters are reset and p is called. Since p is defined as a cost center,
the resource usage monitored so far in the partial counters is accumulated in
the active edge (rcc, rcc), the partial counters are reset, and the active edge
changes to (rcc, p). Then, the execution of the body of p starts by executing
q. Since q is not defined as a cost center, the active edge remains the same as
before, (rcc, p) (and the partial counters are not reset). When the execution
of q finishes, r is called. Since r is defined as a cost center, the resource us-
age monitored so far in the partial counters is accumulated in the active edge
(rcc, p), the partial counters are reset, and the active edge changes to (p, r).
Since r is the last call in the definition of p, when the execution of r finishes, the
resource usage monitored so far in the partial counters is accumulated in (p, r)
and program execution finishes.

42 E. Mera et al.

:− cost center p/0 , r /0 .
p :− q , r . p q r rcc p r

Fig. 1. Source code, call graph and cost center graph for Example 1

Definition 5 (Accumulated resource usage of a cost center). The accu-
mulated resource usage of a given cost center d (denoted Rd) is the sum of the
resource usage for all times cost center d is entered either in forwards (i.e., via
the call port) or backwards (i.e., via the redo port) execution, until a new cost
center is entered or the computation finishes.

The accumulated resource usage of a cost center can be obtained as the sum of
the accumulated resource usages of its incoming edges: Rd =

∑
(c,d)∈E Rcd.

Our definition of accumulated resource of a cost center is compositional, in the
sense that the total resource usage of a program P , denoted RP , is the addition
of the accumulated resource usage of all its cost centers: RP =

∑
c∈CP

Rc. In
contrast, in traditional profilers, the accumulated execution times for different
predicates may overlap (and thus adding them may yield a result greater than
their actual resource usage).

3 Integrating Profiling with Verification and Debugging

In this section we explain how our profiler is integrated within the Ciao/CiaoPP
verification/debugging framework, which incorporates in a uniform way run-time
checking, static verification, unit testing, debugging, and optimization [6,10]. The
run-time checking of program state properties such as traditional types or modes
can be performed relatively easily. This is in part due to the fact that properties
are written in the source language and runnable (facilitated by the underlying
logic engine), which simplifies the program transformation that adds run-time
checks. However, the run-time checking of global computational properties re-
quires monitoring, which is performed by our profiler. Figure 2 gives an overall

Fig. 2. The Ciao assertion framework (CiaoPP’s verification/testing architecture)

Profiling for Run-Time Checking of Computational Properties 43

:− cost center qsort1 /2 , qsort2 /2 .

qsort1 (A,B) :− qso r t (A,B) .
qsort2 (A,B) :− qso r t (A,B) .

q so r t ([] , []) .
q so r t ([X|L] ,R):−

pa r t i t i o n (L ,X, L1 , L2) ,
qsort1 (L1 ,R1) ,
qsort2 (L2 ,R2) ,

append (R1 , [X |R2] ,R) .

p a r t i t i o n ([] , , [] , []) .
p a r t i t i o n ([H|L] ,X, [H|L1] , L2):−

H < X, ! ,
p a r t i t i o n (L ,X, L1 , L2) .

p a r t i t i o n ([H|L] ,X, L1 , [H|L2]) : −
H >= X,
pa r t i t i o n (L ,X, L1 , L2) .

append ([] , B,B) .
append ([H|A] ,B , [H|C]) :−

append (A,B,C) .

Fig. 3. Source code for qsort with cost center declarations (at predicate level)

view of such framework, placing the profiling tool in context. Hexagons repre-
sent the tools involved while arrows indicate the communication paths among
them. The process input is the user program, optionally including a set of asser-
tions that always includes the assertions present for predicates exported by any
libraries used (left part of Figure 2), and, optionally, it can include unit tests.

In this paper we are interested in a subset of the versatile Ciao assertion
language which allows expressing global computational properties whose run-
time checking requires the use of our profiler. A detailed description of the full
assertion language can be found in [6]. For brevity, we only introduce the class of
pred assertions, which describes a particular predicate and, in general, follows
the schema:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free variables and Precond
and Postcond are logic formulae about execution states. An execution state is
defined by the bindings of values to variables in a given execution step (in logic
programming terminology, a substitution). Precond is the precondition under
which the pred assertion is applicable. Postcond expresses that in any call to Pred,
if Precond holds in the calling state and the computation of the call succeeds, then
Postcond also holds in the success state. Finally, the Comp-Props field is used
to describe properties of the whole computation of the calls to predicate Pred
that meet Precond (e.g., resource usage properties). For example, the following
assertion for the quick-sort program in Figure 3:
:− pred qso r t (A,B) : (l i s t (A,num) ,var (B)) => (l i s t (A,num) , l i s t (B,num))

+(cost (ub , s teps , length (A)∗ l o g (length (A))) , not fa i ls , i s det) .

states that for any call to predicate qsort/2 with the first argument bound to
a list of numbers and the second one a free variable, if the call succeeds, then
the second argument is also bound to a list of numbers. It also states that (for
any of such calls) an upper bound on the number of resolution steps required
to execute qsort/2, is length(A) × log(length(A)), a function on the length of
list A. This is of course false, but we will see later in this section how we can
detect it using our profiler. Additionally, not fails and is det express that the
previous calls do not finitely fail (i.e., they produce at least one solution or do
not terminate) and are deterministic (i.e., they produce at most one solution at

44 E. Mera et al.

most once), respectively. The cost construct for expressing resource usages, as
illustrated in the previous sample assertion, follows the schema:

cost(Approx, Res Name, Arith Expr)

where the Res Name field expresses which resource the assertion refers to. It is
a user-provided identifier which gives a name to each particular resource that
needs to be tracked, verified, or checked. Arith Expr is an arithmetic function
that expresses the resource usage of the predicate as a function of input data
sizes. The Approx field states, for example, whether Arith Expr is providing an
exact value (eq), an upper bound (ub), or a lower bound (lb).

Each assertion can be in a particular verification status, marked with the
keyword prefixes check, checked, false, trust or true (see the ellipses in
Figure 2). The (default) status check determines that the assertion is to be
checked. checked and false express that the assertion has already been proved
correct or incorrect respectively by the system (a compile-time error is reported
in the last case). trust expresses that the assertion is to be trusted (it provides
information coming from the programmer), and true that the provided infor-
mation is the result of static analysis and thus correct (safely approximated).
We herein introduce a new status, obs, which means that an assertion expresses
observed information (in this case, by the profiler).

In this paper we focus on the run-time checking of computational (resource-
related) properties within the CiaoPP unified framework, giving an intuitive short
description using the following example.

Example 2. Assume that we want the CiaoPP system to check whether the follow-
ing assertion, which gives a logarithmic upper bound on the number of resolution
steps of qsort/2 as a function of the length of the input list, holds or not:
:− pred qso r t (A,B) : (l i s t (A,num) , var (B))

+ cost (ub , s teps , length (A)∗ l o g (length (A))) .

First, the CiaoPP system tries to statically verify the assertion. This is done by run-
ning a static resource usage analysis (see [12]) that computes safe lower and upper
bounds on the resource usage (number of resolution steps in this case), and then
by comparing the analysis results with the specification given in the assertion. A
full description of the static verification of computational/resource-related prop-
erties is given in [8]. The quick-sort program is of the kind of divide-and-conquer
programs that may cause the analysis to lose precision. As a consequence, the as-
sertion cannot be proved to be false, since the lower bound resource usage function
derived by the analysis (which is linear) is not greater than the upper bound func-
tion given in the assertion. Conversely, the assertion cannot be proved to hold,
because the upper bound resource usage function derived by the analysis (which
is exponential) is not less or equal than the upper bound function given in the as-
sertion. Thus, the outcome of the static verification process is “unknown” and the
assertion status remains as check.2 However, if the run-time checking option is se-
lected, CiaoPP instruments the program with checks to be performed at run-time
2 This can optionally produce a verification warning (also known as an “alarm”).

Profiling for Run-Time Checking of Computational Properties 45

for (parts of) assertions which cannot be verified statically. Failure of these checks
raises run-time errors referring to the corresponding assertion. In our example, us-
ing input data automatically generated (or taken from existing unit tests [10]) the
profiler performs different calls to the quick-sort program. If for some of these calls
the computed number of steps is greater than the one specified in the assertion,
then such assertion is false (in fact, CiaoPP was easily able to prove it).

4 Proposing New Computational Properties

In order to support cumulative properties, we extend the set of properties used in
the assertion language, starting with the addition of rel cost, which expresses
relative resource usages. For example, assuming that the qsort/2 procedure is
part of a given main program, the assertion (with no postcondition):

:− pred qso r t (A,B) : (l i s t (A,num) ,var (B)) + r e l c o s t (ub , exect ime , 2 0) .

expresses that the execution time of qsort/2 is at most 20% of the total execution
time of the main program. The rel cost construct follows the schema:

rel cost(Approx,Res Name,Percentage)

where Approx is as before, denoting an upper bound, a lower bound, or an exact
value on the Percentage of the procedure resource (Res Name) usage with respect
to the total resource usage of the whole main program (from which the predicate
is called) respectively.

We have also extended the cost and rel cost property constructs with an
extra argument Type specifying the kind of cost information we are interested in:

{cost,rel cost}(Approx,Type,Res Name,Arith Expr)

defined as follows:

– sol(I): The cost of obtaining the I-th solution without considering the cost
of obtaining the previous one. By definition, if I is greater than the number
of solutions, then the related cost is zero.

– allsols: The cost of obtaining all the solutions. It is equivalent to the cost
of applying findall/3 over the given predicate, but subtracting the cost of
findall/3 itself.

– call: The cost of calling the predicate, regardless of whether it fails or suc-
ceeds (this is the value by default).

– call exit: The cost of calling the predicate when it succeeds.
– call fail: The cost of calling the predicate when it fails.
– redo: The cost of backtracking over the predicate, regardless of whether it

fails or succeeds.
– redo exit: The cost of backtracking over the predicate when it succeeds.
– redo fail: The cost of backtracking over the predicate when it fails.

The following example illustrates how the CiaoPP system (with our profiler in-
tegrated and our extended run-time checking operations), monitors and checks
relative resource usages at run-time.

46 E. Mera et al.

Example 3. Consider again the qsort/2 predicate in Figure 3, and assume that
we want to know how the execution times of its recursive calls are distributed.
Although as mentioned before it is possible to define cost centers at literal level,
for the sake of clarity we have defined two bridge predicates (qsort1/2 and
qsort2/2) that are used in place of the recursive calls of qsort/2, and have
marked them as cost centers using the following declaration:

:− cost center qsort1 /2 , qsort2 /2 .

Assume that we profile the execution of qsort/2 with an input list of 2500
randomly generated elements, and that our profiler outputs the assertions:

:− obs pred qsort1 /2 + r e l c o s t (eq , exec t ime , 4 8) .
:− obs pred qsort2 /2 + r e l c o s t (eq , exec t ime , 4 7) .

which mean that the observed execution times of qsort1/2 and qsort2/2 are
48% and 47% of the total execution time respectively.

Assume now that we want the CiaoPP system to check at run time whether
the two (recursive) calls in the body of the (original) qsort/2 are balanced (i.e.,
whether each recursive call consumes more or less 50% of the total execution
time). For this purpose, we write the following assertions:

:− check pred qsort1 /2 + r e l c o s t (ub , exec t ime , 5 5) .
:− check pred qsort2 /2 + r e l c o s t (ub , exec t ime , 5 5) .

Assume that we call qsort/2 with a non-uniformly distributed input list, and
that the execution accumulates 65.01% and 8.16% of the time in the two cost
centers associated to the two calls respectively. In this case, the CiaoPP dynamic
comparator will throw a run-time checking error informing that the assertion for
cost center qsort1/2 is violated (because the monitored execution time is greater
than the one expressed in the assertion), and, thus the two calls in the body of
qsort/2 are not balanced.

In contrast to non-cumulative global properties, the previously illustrated kind of
cumulative properties cannot be checked immediately at run-time, but rather at
the proper time instant in the program execution. In the current implementation,
such checking is done at the end of the program execution (when the program
control reaches an output port where there are no pending choice points). How-
ever, some scenarios require other rules for expressing the time instant in which
the checking is performed. Consider for example a service that requires the check
to be made periodically at certain time intervals, or when a certain number of
client requests has been reached. Also, so far the operation for accumulating re-
source usages has been addition. However, it is desirable to have more complex
operations. For example, old measurements could be discarded, or the events
weighted according to their ages or other properties.

5 Program Transformation for Profiling

Source-to-Source Transformation for (High-Level) Profiling. A predi-
cate marked as a cost center is transformed into an equivalent one that preserves
its semantics while intercepting occurrences of events inside it, by using some

Profiling for Run-Time Checking of Computational Properties 47

Program Cost center transformation for profiling

:− module(ap , [append /3] ,
[p r o f i l e r]) .

:− cost center append /3 .

append ([] , B,B) .
append ([H|A] ,B , [H |C]) :−

append (A,B,C) .

’ cc ’ (ap , append , 3) .
append (E, L , R) :−

h c c c a l l (’ ap : append ’ , 3 , PrevCCE , CutTo) ,
h c c f a i l (PrevCCE , ChPt0) ,
’ ccappend ’ (A,B,C) ,
h c c ex i t (PrevCCE , ActiveCCE , ChPt1) ,
hcc redo (ActiveCCE , ChPt0 , ChPt1 , CutTo) .

’ ccappend ’ ([] , B,B) .
’ ccappend ’ ([H|A] ,B , [H|C]) :−

’ ccappend ’ (A,B,C) .

Fig. 4. Cost center transformation for profiling (at predicate level)

instrumentation procedures introduced by the transformation. For example, the
predicate append/3 in Figure 4 is marked as a cost center (left hand side), and, in
its transformation (right hand side), it is uniquely renamed to ’ccappend’/3.
In order to avoid calls to instrumentation procedures along all recursive calls to
append/3, the body of the recursive clause of ’ccappend’/3 is transformed so
that it calls ’ccappend’/3 instead of append/3 (this also avoids the destruc-
tion of last call optimization.).

A brief description of the instrumentation predicates follows. They operate
on the cost center graph. Any edge in such graph (CC-edge in the following),
contains the already described (non backtrackable) arrays Counts[enter][leave]
and T icks[enter][leave] (Section 2). An implicit stack whose elements are pairs
of CC-edges (variables PrevCCE and ActiveCCE) is used to keep the active CC-
edge, and to restore the previous CC-edge when the control flow leaves the active
one (so that the precedence of cost centers in the call graph is preserved):
– hcc call(+Name,+Arity,-PrevCCE,-CutTo): activates the CC-edge whose

destination is Name/Arity and origin the destination of the previous CC-
edge. Unifies PrevCCE with a pointer to the previous CC-edge. Sets the flag
named “entryport” (associated to the active CC-edge) to the value “call”,
in order to track that the predicate Name/Arity has been entered through
the call port. Unifies CutTo with a pointer to the top of the current choice
point stack.

– hcc fail(+PrevCCE,-ChPt0): pushes a choice point on the stack in or-
der to execute instrumentation code upon backtracking (after failure oc-
curs), and unifies ChPt0 with a pointer to such choice point. The instru-
mentation code executed upon backtracking increments by one the value of
Counts[entryport][fail] associated to the active CC-edge, 3 and changes the
active CC-edge to PrevCCE.

– hcc exit(+PrevCCE,-ActiveCCE,-ChPt1): increments by one the value of
Counts[entryport][exit] associated to the active CC-edge. Unifies ActiveCCE
with a pointer to the active CC-edge and ChPt1 with a pointer to the top of
the current choice point stack. Changes the active CC-edge to PrevCCE.

– hcc redo(+ActiveCCE,+ChPt0,+ChPt1,+CutTo): pushes a choice point on
the stack to execute instrumentation code upon backtracking. Checks whether

3 Note that the entryport flag can take the values call or redo.

48 E. Mera et al.

ChPt0 and ChPt1 point to the same choice point, in which case the goal is
deterministic (i.e., no choice points have been created during its execution),
and all choice points up to CutTo are removed (namely, the ones introduced
by hcc fail/2 and hcc redo/4 itself). The instrumentation code executed
upon backtracking sets the “entryport” flag (associated to the active CC-
edge) to the value “redo,” and changes the active CC-edge to ActiveCCE.

Static Cost Center Optimization using CiaoPP. The overhead introduced
by the transformation of cost centers described before can be reduced by us-
ing static analysis. There are situations where it can be ensured that some of
the instrumentation predicates (or combinations of them) introduced by such
transformation will never be reached. For example, when a predicate (or literal)
marked as a cost center does not introduce choice points, always succeeds, or
always fails. Thus, such unreachable instrumentation predicates can be removed.
Our profiler detects these situations by using the information inferred by the
CiaoPP analyzers [6] (such as non-determinism and non-failure). It also intro-
duces specialized versions for reachable combinations of instrumentation predi-
cates. Although these specialized versions increase the size of the instrumented
program, they can significantly reduce the overhead introduced by the profiler.
Figure 5 shows (right hand side) some of the optimized cost center transforma-
tions (which introduce specialized versions of the instrumentation predicates)
performed by using information inferred by CiaoPP analyzers, that is expressed
as assertions (left hand side).

Assertion Specialized Cost Center Transformation

:− true pred Goal
+ (no choicepoint , not fa i l s) .

h c c c a l l n c n f (Name, Arity , PrevCCE) ,
ca l l (Goal) ,
h c c e x i t n c n f (PrevCCE) .

:− true pred Goal
+ no choicepoint .

h c c c a l l (Name, Arity ,PrevCCE , CutTo) ,
h c c f a i l n c (PrevCCE) ,
ca l l (Goal) ,
h c c e x i t n c (PrevCCE , CutTo) .

:− true pred Goal + not fa i l s .

h c c c a l l n f (Name, Arity ,PrevCCE , CutTo) ,
ca l l (Goal) ,
h c c ex i t (PrevCCE , ActiveCCE , ChPt1) ,
h c c r edo n f (ActiveCCE , ChPt1 , CutTo) .

Fig. 5. Cost center transformation optimization

Enriching Information with Low-level Profiling. We set up several hooks
at some relevant points in the engine. Their implementation is located in a
separate module. To avoid run-time overhead, such hooks are made available
by compiling the engine with an option that enables them. For example, there
are hooks that are called when a fail causes the next choice point to be tried
(lph fail redo(wam)), when a cut is executed (lph cut(wam)), and when a
given predicate pred is called (lph exit call(wam, pred), where the variable
wam is a structure that represents the current state of the virtual machine).
Such hooks remain uninstantiated until the procedure profile/1 is used over
a given goal, in which case they are instantiated to actual functions that per-
form the profiling itself. The end of the profiling leaves the hooks uninstantiated

Profiling for Run-Time Checking of Computational Properties 49

again. When performing low-level profiling, each edge of the cost center graph
contains the following (non backtrackable) data structures: (1) the already des-
cribed ones used in high-level profiling; (2) two matrices, Cuts[enter][leave] and
SCuts[enter][leave], that keep the number of cut executions that remove or do
not remove choice points respectively (which allows for example detecting useless
pruning operations and checking that a cut actually prunes branches); and (3) a
hash table used to track the execution of predicates. The key of each entry in the
table is a predicate name/arity, and its fields are: (a) two matrices similar to the
already described Counts[enter][leave] and T icks[enter][leave]), but referred to
“predicate heads,” and (b) a counter (Skips) to keep the number of choice points
that are removed for that predicate by some pruning operator (cut) execution.

The low-level profiling allows tracking information on predicates that have not
been marked as cost centers (e.g., library predicates), and therefore, to detect that
certain low-level or library predicates are being used by our program without us
being aware (which could happen if syntactic expansions are used). It also allows
detecting backtracking in predicate heads (useful to detect predicates that do
not succeed in the first clause, or that are not indexed by the first argument).

6 Automatic Performance Bottleneck Detection

Defining cost centers by hand in order to detect performance bottlenecks is a
time-consuming task. As mentioned before, one of the original features of our
profiling tool is a method for identifying performance bottlenecks in an automatic
way, which uses an iterative process that defines cost centers at each iteration.
For space reasons, we give a high-level description of the algorithm and refer the
reader to [11] for details and examples. The method provides the sub-graph (a
tree in fact) of the cost center graph that is responsible for the performance leak.
It can be applied to modular programs and allows providing a list of modules
whose predicates must be taken into account. The input call graph to the method
is dynamically constructed (defining cost centers for all predicates in the selected
modules, and executing once with profiling activated).

Starting with the initial goal as the current predicate, at each iteration the
children of the current predicate in the call graph (i.e., its called predicates) are
computed. They and the previous cost centers in the current branch of the cost
center graph (including the current predicate), are marked as cost centers. Then,
the goal is profiled, and, after that, the set of cost centers called by the current
predicate and the amount of resource that each one consumes are computed. To
ensure termination, any predicate previously defined as a cost center (including
the current predicate) is removed from this set. If after this removal there are no
cost centers left in the set, then the process finishes returning the graph built so
far. Otherwise, it selects the relevant cost centers of the called cost centers set,
according to a heuristic (which is a parameter of the method), provided by the
user. Some examples of heuristic selection rules are: (1) select the N predicates
that consume more resources, (2) select the ones whose resource consumption
is larger than a given percentage of the total resource usage, or (3) select the
predicates whose number is not larger than a percentage X of the number of pro-
gram predicates, and which together consume a percentage of the total resource

50 E. Mera et al.

usage greater than a given bound Y . Independently of the heuristic used, a given
predicate is selected at most once (and thus, the sub-graph returned is a tree).

We have also developed a method for drawing automatically the sub-graph of
the cost center graph that is responsible for the performance leak, where different
colors and sizes are used to express the accumulated resource usage in each cost
center.

7 Experimental Results

We have performed an experimental assessment of our profiler. The results are
shown in Table 1 for two different platforms with different processors and OS: an
Intel Core i7, 4 cores x 2.67GHz (2 threads per core), 12GB of RAM, Ubuntu
Linux 10.10 (kernel 2.6.35) and an UltraSparc-T1, 8 cores x 1GHz (4 threads
per core), 8GB of RAM, SunOS 5.10. In both platforms, the execution has been
locked to a single core in order to avoid erroneous execution time measurements.
The profiler measures execution times using a high-resolution timer, which al-
lows giving relevant values in situations where other methods would get a zero
value. The first and second columns of the table show the benchmarks used4

and the number of predicates defined in them respectively. For each platform,
the Obs column shows the observed execution time without profiling (given in
milliseconds). The following two columns grouped under (Est.Dev.) are meant
to assess the accuracy of our profiler in monitoring execution times. They show
the ratio between the execution time estimated by the profiler and Obs for two
levels of profiling instrumentation: hl, which only performs the high level source-
to-source transformation, and ll, which besides performing this transformation,
also introduces hooks in the engine (i.e., it also performs low-level profiling). The
columns grouped under Bot.D. refer to the automatic performance bottleneck
detection process (described in Section 6), where the performance is measured in
terms of execution time, the heuristic of selecting the goal with the largest execu-
tion time in each iteration has been followed, and the profiling has been performed
without engine hooks (since they do not improve execution time measurements).
Column #it shows the number of iterations needed to complete such process,
and column ovb shows its overhead, calculated as ovb = Ttot−Tpr−Tco

#it×Obs
, where the

total time due to executing the program with profiling (Tpr =
∑#it

i=1 Profi) and
the total time due to its compilation (Tco =

∑#it
i=1 Compi) have been subtracted

from the total time (Ttot) in order to isolate the time due to the bottleneck
detection process itself. Averages are also provided in the last row of the table.5

The columns under Profiling Ov. relate to the run-time overhead intro-
duced by the different program transformations/instrumentations described in
Section 5. They are grouped into two sub-columns, showing the results when the
instrumentation has been optimized using CiaoPP’s static analyzers (Optim.),
and without such optimization (N.Op.). In both cases we present the results
with (ll) and without (hl) engine hooks activated respectively. The overheads

4 Source code for the examples is available at http://www.clip.dia.fi.upm.es/profiling/
5 Weighted average taking the observed execution time as weight in all cases.

Profiling for Run-Time Checking of Computational Properties 51

Table 1. Experimental assessment of the profiler

Program
#
P.

mem 5
guardians 9
color map 5
bignums 4
wumpus 65
solve jugs 6
qsort 4
sudoku 12
zebra 5
hanoi 3
flat 4
substitute 3
queens 16

Average

Intel

Obs
Est. Bot.D. Profiling Ov.

(ms)
Dev. # ovb Optim. N.Op.
hl ll it (%) hl ll hl ll

67 1.0 1.4 4 2.40 1.0 4.6 1.0 4.6
182 1.0 1.6 4 0.95 1.0 3.8 1.0 3.8
99 1.0 1.8 2 1.26 1.0 4.3 1.0 4.3

102 1.0 2.4 3 1.46 1.0 2.6 1.0 2.6
211 1.0 1.6 4 1.53 1.0 5.6 1.0 5.6
255 1.0 1.6 4 0.52 1.0 4.0 1.0 4.0
76 1.1 2.1 3 1.82 1.3 6.3 1.3 6.3
72 1.3 1.7 7 2.42 1.5 5.3 1.6 5.6
40 1.3 1.5 3 3.53 1.5 5.7 1.5 5.7

128 1.2 1.9 3 1.12 1.6 8.3 2.1 9.6
65 1.5 1.8 4 2.41 2.9 10.0 4.2 14.2

187 2.0 2.3 3 0.71 2.9 12.7 2.9 12.6
92 2.0 2.2 6 1.79 3.1 15.7 3.1 15.7

121 1.2 1.8 3 1.34 1.5 6.7 1.6 7.0

Sparc

Obs
Est. Bot.D. Profiling Ov.

(ms)
Dev. # ovb Optim. N.Op.
hl ll it (%) hl ll hl ll

377 1.0 1.4 4 4.65 1.0 7.8 1.0 7.8
959 1.0 1.3 4 1.31 1.0 6.1 1.0 6.1
558 1.0 1.3 2 2.24 1.0 6.4 1.0 6.4

2178 1.0 1.0 3 0.33 1.0 1.1 1.0 1.1
1018 1.0 1.7 4 1.56 1.0 11.4 1.0 11.4
1237 1.0 1.5 4 0.98 1.0 7.1 1.0 7.1
402 1.1 2.2 3 1.46 1.4 10.5 1.5 10.6
359 1.2 1.5 7 4.44 1.7 8.7 1.8 9.4
184 1.4 1.4 3 7.16 1.9 10.6 1.9 10.6
665 1.2 1.7 3 1.57 1.9 14.6 2.4 16.9
323 1.5 1.6 4 2.54 3.8 17.2 5.4 24.7

1102 2.0 2.0 3 0.51 3.4 19.6 3.4 19.7
429 2.3 1.9 6 4.30 4.4 28.4 4.4 28.4

753 1.2 1.5 3 1.59 1.6 9.5 1.7 10.0

(ll and hl) are given as a ratio Prof
Obs

, where Prof refers to the execution time
when the profiler is activated, with the cost centers assigned by the automatic
bottleneck detection process reported in the columns grouped under Bot.D. (the
number of selected cost centers is #it −1), and Obs is the value in the third co-
lumn described before. The overhead ratio hl is very close to 1 (i.e., almost no
overhead is introduced) for the first six programs in the table, while it is larger
for the rest. This is because the latter perform recursive calls between cost cen-
ters. As expected, the overhead ratios (for both platforms) grow as we increase
the degree of information that we want to obtain from the profiler.

It can be argued that the overhead introduced by our profiler is small for a
reasonable level of profiling information, and that global static analysis indeed
reduces such overhead. Interestingly, if we compare our results with those re-
ported in [16] (which is the closest related previous work that we are aware of
for which there is available data, although applied to imperative programs), the
overheads of the hl columns under Profiling Ov./Optim. are of similar mag-
nitude to those reported therein: 2.95 in the worst case, while in our results the
worst overhead for the Intel platform is 3.1 (queens). However, our approach
provides a richer (and more detailed) variety data.

8 Discussion and Future Work

Since its development our profiler has proved to be quite useful in practice by
identifying the root causes of performance bottlenecks in several complex, real-
life situations. For example, it was the key for identifying a difficult to locate
performance bug in the (Ciao) CHR implementation (a complex and relatively
large piece of code): a dereferencing chain for the attribute of a variable was
constructed, instead of modifying the value of the attribute. Thus, the time
needed for getting the value of such attribute was directly proportional to the

52 E. Mera et al.

number of times that the attribute was modified. Our profiler has also been suc-
cessfully applied to resource-aware poly-controlled partial evaluation [13]. This
technique combines different control strategies to obtain optimizations that can-
not be obtained using a single control technique. Once the optimizations have
been obtained they are compared using some values (called fitness values). Our
implementation has been successfully used for estimating such values.

Note that in some cases, bottlenecks can only be detected using the fine-grain
information provided by our low-level profiling (via engine hooks). For example,
assume that we have a read-only library which is responsible for lack of perfor-
mance. In this case we are unable to define cost centers on it to perform high-level
profiling. Alternatively, we can activate the engine hooks to track information
about all the subroutines invoked in such library, and use it to diagnose the per-
formance problem. Engine hooks can also profile more properties, like the number
of cut executions that remove (or do not remove) choice points, failures during
head unification, or choice points removed for a given predicate (see Section 5).

Although our profiler already supports several computational properties and
events, these are predefined. However, as future work, it should be straightfor-
ward to extend it to allow measuring user-defined resources, in the sense of the
static resource analysis currently integrated in the CiaoPP framework [12].

Acknowledgments. This research has been partially funded by the EU 7th. FP
NoE S-Cube 215483, FET IST-231620 HATS, MICINN TIN-2008-05624 DOVES
and CM project P2009/TIC/1465 PROMETIDOS. Teresa Trigo has been sup-
ported by CAM grant CPI/0621/2008.

References

1. Brassel, B., Hanus, M., Huch, F., Silva, J., Vidal, G.: Run-Time Profiling of Func-

tional Logic Programs. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp.

182–197. Springer, Heidelberg (2005)

2. Byrd, L.: Understanding the Control Flow of Prolog Programs. In: Tärnlund, S.-A.

(ed.) Proceedings of the 1980 Logic Programming Workshop, Debrecen, Hungary,

pp. 127–138 (July 1980)

3. Debray, S.K.: Profiling Prolog Programs. Software Practice and Experience 18(9),

821–839 (1983)

4. Ducassé, M., Noyé, J.: Tracing Prolog Programs by Source Instrumentation is Ef-

ficient Enough. Journal of Logic Programming 43, 157–172 (2000)

5. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a Call Graph Execution Pro-

filer. In: SIGPLAN 1982: Proc. of the 1982 SIGPLAN Symp. on Compiler Con-

struction, pp. 120–126. ACM, New York (1982)

6. Hermenegildo, M., Puebla, G., Bueno, F., López-Garćıa, P.: Integrated Program

Debugging, Verification, and Optimization Using Abstract Interpretation (and The

Ciao System Preprocessor). Science of Computer Programming 58(1-2), 115–140

(2005)

7. Kazi, I.H., Jose, D.P., Ben-Hamida, B., Hescott, C.J., Kwok, C., Konstan, J.A.,

Lilja, D.J., Yew, P.-C.: JaViz: A Client/Server Java Profiling Tool. IBM Syst.

J. 39(1), 96–117 (2000)

Profiling for Run-Time Checking of Computational Properties 53

8. López-Garćıa, P., Darmawan, L., Bueno, F.: A Framework for Verification and

Debugging of Resource Usage Properties. In: Technical Communications of ICLP.

LIPIcs, vol. 7, pp. 104–113. Schloss Dagstuhl (July 2010)

9. Matos, A.B.: A matrix model for the flow of control in prolog programs with ap-

plications to profiling. Software Practice and Experience 24(8), 729–746 (1994)

10. Mera, E., López-Garćıa, P., Hermenegildo, M.: Integrating Software Testing and

Run-Time Checking in an Assertion Verification Framework. In: Hill, P.M., Warren,

D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009)

11. Mera, E., Trigo, T., López-Garćıa, P., Hermenegildo, M.: An Approach to Profiling

for Run-Time Checking of Computational Properties and Performance Debugging.

Technical Report CLIP3/2010.0, Technical University of Madrid (UPM), School of

Computer Science, UPM (March 2010)

12. Navas, J., Mera, E., López-Garćıa, P., Hermenegildo, M.: User-Definable Resource

Bounds Analysis for Logic Programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.

LNCS, vol. 4670, pp. 348–363. Springer, Heidelberg (2007)

13. Ochoa, C., Puebla, G.: Poly-Controlled Partial Evaluation in Practice. In: ACM

Partial Evaluation and Program Manipulation (PEPM 2007), pp. 164–173. ACM

Press, New York (2007)

14. Jarvis, S.A., Morgan, R.G.: Profiling large-scale lazy functional programs. Journal

of Functional Programing 8(3), 201–237 (1998)

15. Sansom, P.M., Peyton Jones, S.L.: Formally Based Profiling for Higher-Order

Functional Languages. ACM Transactions on Programming Languages and Sys-

tems 19(2), 334–385 (1997)

16. Spivey, J.M.: Fast, accurate call graph profiling. Software Practice and Experi-

ence 34(3), 249–264 (2004)

Plato: A Compiler for Interactive Web Forms

Timothy L. Hinrichs

University of Chicago

Abstract. Modern web forms interact with the user in real-time by detecting er-
rors and filling-in implied values, which in terms of automated reasoning amounts
to SAT solving and theorem proving. This paper presents PLATO, a compiler that
automatically generates web forms that detect errors and fill-in implied values
from declarative web form descriptions. Instead of writing HTML and JavaScript
directly, web developers write an ontology in classical logic that describes the re-
lationships between web form fields, and PLATO automatically generates HTML
to display the form and browser scripts to implement the requisite SAT solving
and theorem proving. We discuss PLATO’s design and implementation and evalu-
ate PLATO’s performance both analytically and empirically.

1 Introduction

Modern web forms, implemented using a combination of HTML and browser scripts
(e.g., JavaScript, Flash, Silverlight), solicit information from users on the World Wide
Web. While many web forms are simple to build and maintain, the trend toward interac-
tive web forms has significantly complicated web form development. For example, web
forms are now routinely used as a platform for configuration management applications,
which help users explore the permissible combinations of components for complex sys-
tems, e.g., for a personal computer the processor, hard drive, and memory.

The two types of web-form interactions studied in this paper both occur each time
the user changes the web form data: identifying errors and computing implied values.
An error arises when the user data conflicts with the intended semantics of the web
form, e.g., a credit card’s expiration date must be in the future, but the user entered a
date in the past. Errors are often highlighted for the user in red. An implied value arises
when all possible error-free completions of the form assign a specific value to a specific
form field. Implied values are usually filled-in for the user automatically.

Browser scripts that detect errors and compute implied values are difficult to write
because, in general, error-detection amounts to SAT solving (SAT), and implied value
computation amounts to theorem proving (TP), e.g., [32, 22]. Of course, not all error-
detection/implied-value scripts implement the full machinery of SAT/TP; rather, the
scripts for each form embody the fragment of SAT/TP necessary to address the form
at hand. Conceptually, error-detection and implied-value scripts specialize SAT and TP
algorithms to the web form’s semantics. The specialization process, however, is error-
prone and the resulting scripts can be difficult to maintain.

To complicate matters further, traditional TP is inadequate for computing implied
values because web form errors amount to inconsistencies. Recall that in traditional TP
an inconsistent premise set implies everything; hence, with traditional TP, all values
would be implied for all web form fields anytime a single error was present. Instead,

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 54–68, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Plato: A Compiler for Interactive Web Forms 55

implied values are computed using paraconsistent TP: where an inconsistent premise
set does not necessarily imply every possible conclusion. Thus, in addition to special-
izing SAT/TP algorithms to implement error-detection/implied-value scripts, the web
developer must choose an appropriate version of paraconsistent TP.

Techniques that can be applied to simplify web form construction and maintenance
have been investigated by researchers in web engineering [33,34,30,6], computer secu-
rity [31,8] formal methods [9], programming languages [19,18,5,26,10,17], databases
[7, 14], artificial intelligence [20, 23, 22], and configuration management [32, 28, 27, 1].
Most of the related work either prohibits web form users from causing errors or forces
web form developers to define a paraconsistent version of implication by dictating
which direction implied values can propagate (e.g., through the syntax for form de-
scriptions, through priorities, or by requiring web form fields to be structured hierar-
chically). Techniques that disallow errors are obviously inadequate for forms that allow
errors, and forcing developers to dictate the direction implied values propagate results
in forms where, for reasons unknown to the user, values only propagate in certain ways.
Three notable exceptions [32, 22, 20] allow errors and utilize omni-directional versions
of paraconsistent implication; however, [32] advocates approximate SAT/TP algorithms
whose accuracy is unknown and [22] details only semantic definitions (for the special
case where all form fields have a single value) without algorithmic results. The algo-
rithms in [20] are the starting point for the work reported here; we have applied and
tailored them to the web form domain and qualitatively improved their performance.

In this paper we describe PLATO, a tool that automatically constructs web forms from
declarative descriptions provided by the web developer. Instead of writing HTML and
browser scripts directly, the developer writes an ontology in classical logic that cap-
tures the constraints the web form data must satisfy. PLATO then compiles the ontology
to (i) a SAT implementation customized to the ontology, (ii) a paraconsistent TP also
customized to the ontology, and (iii) an HTML page that displays the form, highlights
errors, and automatically fills-in implied values omni-directionally. The compilation
process centers around the well-known resolution algorithm and utilizes an ontology-
compression pre-processor to produce speed-ups of several orders of magnitude.

This paper is organized as follows. We begin with an example and our approach
(Section 2). Our technical contributions, summarized below, follow.

– We report novel computational complexity results for a paraconsistent version of
implication over a particular logical ontology language: the quantifier-free, function-
free monadic fragment of first-order logic. (Section 3)

– We introduce the first compiler for web forms that generates error-detection and
implied-value code specialized to the web form’s ontology, outline its architecture,
and discuss the challenges it addresses. (Section 4)

– We tailor and enhance existing compilation algorithms [20] to the web form prob-
lem. In particular, we introduce a compression algorithm that produces speed-ups
of 105. (Section 5)

– We report the complexity for our algorithms, identify a special case for which our
algorithms are optimal, and empirically evaluate our approach. (Section 6)

Subsequently, we report on related work (Section 7) and conclude (Section 8). Proofs
have been omitted for lack of space but are available in the associated technical report.

56 T.L. Hinrichs

2 Overview

Example. Figure 1 depicts a web form soliciting (a portion of) shipping and billing ad-
dresses for an e-commerce website. Notice that the shipping address is set to 〈Chicago,
Illinois〉 and that the form includes a checkbox that indicates the shipping and billing
addresses should be the same. If the user checks the checkbox, the form automatically
copies 〈Chicago, Illinois〉 to the billing address. Had the user set the billing address
instead of the shipping address, checking the checkbox would have propagated values
in the opposite direction, exemplifying omni-directional implied value propagation.

Fig. 1. Example web form

Starting with 〈Chicago, Illinois〉 for the shipping address and an empty billing ad-
dress, suppose the user checks the checkbox, causing the form to fill-in 〈Chicago,
Illinois〉 for the billing address. Now, suppose the user enters San Francisco for the
billing city, thereby overriding the Chicago that was automatically filled-in. An error
occurs because the two cities, Chicago and San Francisco, are supposed to be the same
but are not. Without deleting one of three pieces of user-supplied data (Chicago, San
Francisco, or the checkmark), there is no way to repair the error; hence, the form simply
highlights the error for the user.

Approach. Traditionally, developers build such web forms by writing HTML to
display the widgets and browser scripts to detect/highlight errors and compute/fill-in
implied values. With PLATO, the developer provides a logical ontology describing the
constraints the user-supplied data must satisfy (in addition to information about the
display and range of permissible values for each field), and PLATO generates the corre-
sponding HTML and browser scripts automatically.

For the example above, the developer provides PLATO with the following sentence
that encodes the semantics of the checkbox. Below Scity denotes the shipping address
city, Sstate the shipping state, Bcity and Bstate the billing city and state, and same
the checkbox. PLATO then generates the form described above.

same⇒
(∧ Scity(x)⇔ Bcity(x)

Sstate(x)⇔ Bstate(x)

)

3 Logical Foundations of Web Forms

Here we give the logical foundations of web forms, errors, and implied values, and
analyze the computational complexity of paraconsistent implication.

Plato: A Compiler for Interactive Web Forms 57

Fundamentally, the information web forms solicit from users is a set of key-value
pairs1. Keys (form field names) are drawn from some predefined set F , and values
are strings from some character set Σ (e.g., Latin-1 or UTF-8). A web form sub-
mission, which we call a payload, is represented mathematically as a finite subset of
F × Σ∗. Logically, a payload is a set of sentences of the form f(v) where f ∈ F
and v ∈ Σ∗. For example, the payload shown in Figure 1 is represented logically as
{Scity(Chicago), Sstate(Illinois)}.

A server receiving a web form payload only accepts certain kinds of payloads, e.g.,
those where the credit card’s expiration date is in the future; all others are rejected.
Mathematically, the set of acceptable payloads is simply a specific set of payloads, i.e.,
a set of finite subsets of F ×Σ∗. Logically, the acceptable payloads correspond to the
models satisfying a logical ontology.

In this paper we study a simple, first-order ontology language: monadic, quantifier-
free, equality-free first-order logic. More precisely, the terms in our language are vari-
ables and object constants. Atoms take the form p(t) where p is a predicate and t is a
(single) term. Sentences are either atoms or {∧,∨,¬,⇒,⇐,⇔} applied to sentences in
the usual way. All variables are implicitly universally quantified. MON denotes all such
sentences, and an ontology is a consistent subset of MON. The semantics are standard.

Web forms detect errors each time the user enters or edits data. A web form er-
ror arises whenever the current payload cannot be extended to an acceptable payload.
Mathematically, a payload is consistent if it is a subset of some acceptable payload. All
other payloads are inconsistent. A payload is minimally inconsistent if it is inconsistent
and none of its subsets are inconsistent. There is one error in a payload for every min-
imally inconsistent subset contained within it. Logically, Λ is a consistent payload if it
is logically consistent with the ontology Δ.

Web forms also fill-in implied values for the user automatically. For consistent pay-
loads, implication is defined as usual. Suppose Δ is the web form ontology, and Λ is a
consistent payload. The key-value pair f(v) is positively implied by Λ with respect to
Δ, written Λ |=Δ f(v), if f(v) belongs to every consistent superset of Λ. The key-value
pair f(v) is negatively implied, written Λ |=Δ ¬f(v) if f(v) belongs to no consistent
superset of Λ.

Note that the above definition for implication is restricted to consistent payloads.
When applied to an inconsistent payload (i.e., a payload with errors), the definition
results in all key-value pairs being both positively and negatively implied. Thus, for
inconsistent payloads we say that a key-value pair is implied whenever there is a con-
sistent fragment of the payload that implies the pair. Formally, an inconsistent Λ implies
f(v), written Λ |=Δ

E f(v), if there is a consistent Λ0 ⊆ Λ such that Λ0 |=Δ f(v); like-
wise, Λ |=Δ

E ¬f(v) if there is a consistent Λ0 ⊆ Λ such that Λ0 |=Δ ¬f(v).
Though strict implication was studied previously [22, 20], its computational com-

plexity was unknown. Below we show that as long as P �= NP, the optimal algorithm is
singly exponential, even with a number of strong restrictions. More positively, we show
that if the size of the ontology is constant, strict impliciation is in included in P because
it is included in LOGSPACE and AC0.

1 HTML 4.01 form specification: http://www.w3.org/TR/html401/interact/forms.html

58 T.L. Hinrichs

Theorem 1 (Strict Implication Complexity). Suppose Δ is in MON, and Λ is a finite
set of ground atoms. Λ |=Δ

E p(a) is Πp
2-hard and included in Σp

3 . If the number of
variables appearing in Δ is bounded by a constant, strict implication is both Σp

1- (NP-
) and Πp

1- (coNP-) hard and is included in Σp
2 . If Δ is in clausal form, contains a single

variable, and includes no object constants, strict implication is Πp
1- (coNP-) hard. If Δ

is of constant size, Λ |=Δ
E p(a) is included in AC0.

Proof. (Sketch) For the polynomial hierarchy results, the inclusion proofs are straight-
forward: guess a subset of Λ0 (contributing an existential quantifier) and check if all
models (contributing a universal quantifier) satisfy ∀∗Δ ⇒ p(a). (Since the language
is monadic, each model is polynomial in the size of the signature.) If the number of
variables is bounded by a constant, the check for satisfaction does not contribute a
quantifier; otherwise, checking the satisfaction of ∃∗¬Δ ∨ p(a) (which is equivalent to
the implication above) requires an additional existential quantifier.

For the polynomial hierarchy hardness proofs, we first show that strict implication is
at least as hard as the well-known existential entailment. Then we embed the satisfiabil-
ity of ∀∗∃∗.φ into existential entailment over MON, where φ is monadic, quantifier-free,
equality-free, function-free (which is Πp

2-hard). For the restrictions, we embed both
satisfiability and unsatisfiability of propositional logic.

For the AC0 result, suppose Δ is of constant size. Slight modifications to the algo-
rithms presented in this paper construct database queries by analyzing just Δ (which
are therefore of constant size) that when evaluated over Λ compute strict implication.
Since database query evaluation is included in AC0 when the size of the queries is a
constant, strict implication is included in AC0. ��

4 PLATO

PLATO is a tool that generates fully-functional web forms that provide real-time user
feedback about errors (minimal inconsistencies) and implied values (strict implication).
Below we discuss the high-level opportunities, challenges, and design decisions that
lead to PLATO and follow up with PLATO’s architecture. We describe PLATO’s algo-
rithms in Section 5.

4.1 Opportunities, Challenges, and Design Decisions

PLATO’s design was dictated by two desires: (i) to provide users with a fast, powerful
interface for entering web form data and (ii) to provide web developers with simple
tools for constructing and maintaining such web forms. We begin by discussing the
problem of programming the web browser to compute implied values.

Theorem proving versus knowledge compilation. Conceptually, the simplest way for
the web browser to compute implied values is with a paraconsistent theorem prover
written in JavaScript that takes as input the ontology, the current web form data, and a
query. This approach fails to leverage a powerful property of the web form domain: the
ontology is fixed for the lifetime of the form. Hundreds or thousands of users might all
use the same form and in so doing pose millions of queries, all over the same ontology.

Plato: A Compiler for Interactive Web Forms 59

An implementation that analyzes the ontology anew for each query will repeat the same
work over and over. Moreover, the computational complexity of implication when the
ontology is fixed is strictly less than the complexity when it is not (see Theorem 1).

To leverage the static nature of the ontology, PLATO employs knowledge compila-
tion [11] to construct JavaScript code that implements a paraconsistent theorem prover
specialized to the given ontology. Intuitively, the manipulation of the ontology, which
would normally happen at run time, happens at compile time, and the resulting code
avoids performing that work for each query.

Compiling ontologies to JavaScript. Without errors, strict implication coincides with
traditional implication; hence, constructing a theorem prover for paraconsistent impli-
cation specialized to a given ontology implicitly involves constructing a specialized
theorem prover for traditional implication. Specializing a theorem prover for traditional
implication requires generating JavaScript code that answers implication queries about
that ontology. Despite the fact that an ontology can be interpreted as a set of boolean
conditionals, this task is difficult because JavaScript and classical logic use disjunction
differently. In JavaScript, once p and q are assigned values, p || q is a query asking if
either p or q (or both) is true; in contrast, in classical logic, p∨q is akin to an assignment
that makes p or q (or both) true without specifying which.

To address this challenge, PLATO decomposes the compilation of an ontology to
JavaScript into two steps: compiling the ontology to database queries and compiling
those database queries into JavaScript. Database queries are a useful intermediary be-
cause the database and JavaScript meanings of disjunction are the same, and techniques
for translating database evaluation to imperative code are well-known [25].

Traditional implication to paraconsistent implication. A compiler for traditional im-
plication that generates database queries can easily be adapted to strict implication:
augment each database query with an auxiliary consistency-checking query that en-
sures the data used to answer the original query is consistent with the ontology. The
problem is that if the queries are evaluated top-down, the same consistency checks may
be executed repeatedly; similarly, if the consistency checks are evaluated bottom-up,
many irrelevant consistency checks might be computed.

While standard techniques such as memoization and magic sets are applicable, PLATO

utilizes the fact that the web forms it generates always maintain a list of errors, i.e., a
list of minimally inconsistent data sets. Consistency can then be checked with special-
purpose code that detects whether a given data set contains no errors.

4.2 Architecture

PLATO’s architecture is shown in Figure 2. The web developer provides an ontology
and the set of web form field predicates (along with display and typing information
about those predicates). The Classical Compiler constructs database queries that com-
pute minimal inconsistencies and strict implication when evaluated over a web form
payload. The Database Compiler then translates those queries into JavaScript code,
which is then embedded in the HTML produced by the HTML Generator.

The novel component of PLATO, the Classical Compiler, solves two conceptually
distinct problems: database-query generation for error-detection and database-query

60 T.L. Hinrichs

Ontology JavaScript

HTML
Form
Fields

Classical
Compiler

Database
Compiler

DB
Queries

HTML Generator

Fig. 2. PLATO architecture

generation for implied-values. However, our solutions to the two problems are almost
identical; hence, we focus on the more complex of the two: implied-values.

Formally, the implied-value problem the compiler addresses closely resembles the
notation we use for strict implication: Λ |=Δ

E f(v). Given an ontology Δ, the compiler
must compute database queries that implement |=Δ

E , i.e., when given a web form pay-
load (the database), the queries must answer strict implication questions with respect to
the ontology Δ. To simplify the exposition and proofs, we utilize the well-known equiv-
alence of evaluating database queries on a database and evaluating first-order formulae
on an interpretation.

Definition 1 (Web Form Constraint Compiler). A web form constraint compiler is a
function α that maps an ontology and a set of predicates to a set of first-order formulae.
α is a compiler if for any ontology Δ, predicate set F , and predicate f ∈ F , there are
sentences φ+

f (x) and φ−
f (x) in α[Δ, F] such that for any payload Λ and any v ∈ Σ∗,

Λ |=Δ
E f(v) if and only if |=Λ φ+

f (v) and
Λ |=Δ

E ¬f(v) if and only if |=Λ φ−
f (v)

5 Algorithms

Here we explain the difficulty of compiling classical logic to database queries for error-
detection and then discuss algorithms for strict implication and minimal inconsistency.

The naı̈ve conversion of a classical ontology to database queries for detecting errors
is straightforward: convert the ontology to conjunctive normal form, and treat each of
the resulting clauses as a database query. For example, below is a simple ontology and
the corresponding database (or logic programming) queries.

Ontology Database Queries
p(x) ⇒ q(x) error :− p(x) ∧ ¬q(x)
q(x) ⇒ ¬r(x) error :− q(x) ∧ r(x)

This conversion fails to preserve the semantics of the ontology because classical logic
uses the open world assumption, but databases use the closed world assumption (CWA);
thus, classical logic allows form fields to be unknown, but databases require every form
field value to be either true or false.

Plato: A Compiler for Interactive Web Forms 61

The queries above are unsound for the payload {p(a)}, i.e., where p is assigned a and
both q and r unknown. To see this, notice that the first database query evaluates to true,
thereby signaling an error, because the CWA deems ¬q(a) true; however, the payload is
consistent with the ontology. Such errors can be eliminated by only evaluating queries
whose form fields are all known.

Assuming the only evaluated queries are those with known form fields, the queries
above are incomplete for the payload {p(a), r(a)} (where q is unknown). Neither of the
database queries above can be evaluated because both rely on q, an unknown value, yet
the payload is inconsistent with the ontology. Such incompleteness can be eliminated
by accounting for the interaction of the constraints.

PLATO’s compilation algorithms expand the ontology to take constraint interaction
into account. Whenever an error or implied value arises, the expanded ontology includes
a single constraint that detects it without any unknown form fields. For the example
above, PLATO generates an additional query: error :− p(x) ∨ r(x).

This example also illustrates an inadequacy of today’s HTML forms: without using
additional fields or special values, there is no way to differentiate selecting zero values
for a field and leaving that field unknown. Both are communicated to the server in the
same way. Currently, PLATO treats a field with zero values as unknown.

5.1 Strict Implication

PLATO’s basic algorithm for constructing database queries implementing strict impli-
cation is a five-step process: compute the resolution closure of the web form ontology,
compute the contrapositives of each clause in the closure, eliminate all rules with nega-
tion in the body, augment each contrapositive with a consistency check, and invoke
predicate completion.

We illustrate with the ontology from above: (¬p(x) ∨ q(x)) ∧ (¬q(x) ∨ ¬r(x)).
The resolution closure adds a single clause: p(x) ∨ ¬r(x). Computing the contraposi-
tives, eliminating rules with negation in the body, and appending consistency checks is
straightforward and produces the following rules.

q(x) ⇐ p(x) ∧ consistentp(x)(x)
¬q(x) ⇐ r(x) ∧ consistentr(x)(x)
¬r(x) ⇐ q(x) ∧ consistentq(x)(x)
¬p(x) ⇐ r(x) ∧ consistentr(x)(x)
¬r(x) ⇐ p(x) ∧ consistentp(x)(x)

The consistency checks ensure that witnesses for implication are consistent with the
entire ontology.

Definition 2 (consistentφ(x̄) [20]). For the ontology Δ and sentence φ(x̄),
consistentφ(x̄)(t̄) is true if and only if {φ(t̄)} ∪Δ is consistent.

Predicate completion then constructs the first-order formula defining strict implication
for each signed predicate ρ: the disjunction of all the rules with ρ in the head.

φ+
q (x) ≡ p(x) ∧ consistentp(x)(x)

φ−
q (x) ≡ r(x) ∧ consistentr(x)(x)

62 T.L. Hinrichs

φ−
r (x) ≡ (q(x) ∧ consistentq(x)(x)) ∨ (p(x) ∧ consistentp(x)(x))

φ−
p (x) ≡ r(x) ∧ consistentr(x)(x)

⊥ ≡ φ+
p (x) ≡ φ+

r (x)

This basic algorithm is easy to implement, though there are obvious efficiency problems
with computing the resolution closure. To mitigate the expense of resolution, PLATO

first compresses the ontology. Consider the following example.

Ontology Compression

∨ p(a) ∧ q(b) ∧ r(c)
p(b) ∧ q(d) ∧ r(e)
p(d) ∧ q(c) ∧ r(a)

p(x) ∧ q(y) ∧ r(z)⇒ t(x, y, z)
t(a, b, c)
t(b, d, e)
t(d, c, a)

The ontology on the left lists the possible combinations of p, q, and r in disjunctive
normal form. The compression on the right represents the ontology as a single con-
straint over p, q, and r together with a new predicate t and a database table defining t’s
semantics as the permitted combinations of p, q, and r. Importantly, the database table
t is not included when the resolution closure is computed; rather, it is treated as part
of the database representing the web form data. Instead of computing the closure of 28
clauses, PLATO computes the closure of 1 clause; the drawback is that the 1 clause is
not monadic because of t(x, y, z).

Algorithm 1, named IMPLCOMPILE, formalizes the algorithm outlined here.

Algorithm 1. IMPLCOMPILE [Δ, F]
Outputs: A set of first-order equivalences.
1: Δ := RES[COMPRESS[Δ]]
2: Γ s

p := ∅ for all predicates p ∈ F and all s ∈ {+,−}
3: for all contrapositives d in

⋃
p∈F{p(x) ∨ ¬p(x)} ∪ Δ do

4: write d as ±p(x) ⇐ φ(x, ȳ)

5: if p ∈ F and ¬ does not occur in φ(x, ȳ) then
6: Γ±

p := {∃ȳ.φ(x, ȳ) ∧ consistentΔ
φ(x,ȳ)} ∪ Γ±

p

7: end if
8: end for
9: print φs

p ≡ ∨
Γ s

p for all predicates p ∈ F and all s ∈ {+,−}

Theorem 2 (Soundness and Completeness). Without compression, algorithm
IMPLCOMPILE is a web form constraint compiler for MON ontologies.

5.2 Minimal Inconsistencies

Computing minimal inconsistencies is useful for two reasons: to identify errors and to
implement the consistency checks described above. PLATO’s algorithm identifies the
minimal inconsistent subsets by computing an over-approximation and then throwing
out non-minimal subsets.

Plato: A Compiler for Interactive Web Forms 63

More precisely, the algorithm computes an update to the set of minimally incon-
sistent subsets as opposed to computing the entire set from scratch. The web form
paradigm supports such updates naturally. Each time a user changes a form field, it
is only the minimally inconsistent sets involving that field that need to be changed.

The algorithm, called CONSCOMPILE, is identical to IMPLCOMPILE except it adds
no consistency check to the database queries that are generated and eliminates all rules
with positive heads. It consists of five steps: compress the ontology, compute the reso-
lution closure, compute the contrapositives of each clause in the closure, eliminate all
rules with a positive head or with negation in the body, and perform predicate comple-
tion. For lack of space, we omit the formal definition.

The only difference between the queries generated by CONSCOMPILE and the error
queries in the example at the start of the section is that instead of having a collection of
statements of the form error :− q(x) ∧ r(x), each form field is associated with a set
of queries, e.g., field q is associated with ¬q(x) :− r(x) and field r is associated with
¬r(x) :− q(x). If the user makes q(a) true, the form evaluates ¬q(a) using the queries
associated with q, records all the form data subsets responsible for making ¬q(a) true,
adds q(a) to each subset, and eliminates any subsets that are non-minimal.

6 Evaluation

Our evaluation of plato includes an analytical component, where we focus on resolution,
and an empirical component, where we focus on ontology compression.

6.1 Analytical

PLATO’s performance has two components: the performance of the compiler and the
performance of the code the compiler produces. The performance of the compiler is
polynomial in the performance of the resolution theorem prover; the performance of
the code the compiler produces is directly related to the size of the resolution closure.
Since the performance of the theorem prover is bounded from below by the size of the
closure, the closure size (i.e., output complexity of resolution) is of paramount interest.

The main reason PLATO’s ontology language is no more expressive than MON is that
the resolution closure of MON is finite. In particular, resolution’s output complexity is
either singly or doubly exponential in the size of the input.

Proposition 1 (Resolution Complexity). The output complexity of resolution for MON

is EXPSPACE-hard and included in 2EXPSPACE. When the premises are in clausal
form, contain one variable, and include no object constants, the output complexity is
EXPSPACE-complete.

Proof. (Sketch) For inclusion in 2EXPSPACE, count the number of monadic clauses.
Because a monadic clause may include multiple variables, e.g., p(x)∨q(x)∨¬r(y), each
such clause corresponds to a set of propositional clauses, e.g., {p∨ q,¬r}. The number
of distinct sets of propositional clauses is 23n

, where n is the number of propositions
(corresponding to the number of monadic predicates). Object constants only introduce
a single exponential factor. For hardness, we embed propositional logic, where resolu-
tion proofs and therefore resolution closures are well-known to be exponential. For the
special case, the closure is the same size as the closure of propositional logic. ��

64 T.L. Hinrichs

This result has two consequences. The first is that the run-time of the compiler is expo-
nential, which means it will not scale to large ontologies; however, that does not mean
PLATO fails to scale to large web forms. Large web forms often have relatively small on-
tologies or have large ontologies that consist of many small, almost independent ontolo-
gies. Large web forms with large, complex ontologies are rare simply because people
have trouble filling them out; those that exist (e.g., TurboTax) are usually professionally
designed to help people navigate them successfully.

Second, the set of database queries the compiler outputs is exponentially larger than
the ontology. Fortunately, it turns out that evaluating one MON database query is singly
exponential (in combined complexity), ensuring that the implementations of strict im-
plication and inconsistency detection run in a singly exponential factor of the size of the
resolution closure. Because strict implication and inconsistency detection are NP-hard,
for any class of ontologies for which resolution’s output complexity is EXPSPACE,
PLATO produces singly exponential implementations of strict implication and incon-
sistency detection, which is optimal with respect to time if P �= NP. Furthermore,
ontologies written in clausal form with a single variable and no object constants enjoy
the EXPSPACE result.

Proposition 2. For any class of MON for which resolution’s output complexity is in
EXPSPACE, without compression PLATO produces time-optimal implementations of
strict implication and inconsistency detection, unless P = NP.

Corollary 1 (Optimality). For ontologies written in clausal form with a single vari-
able and no object constants, without compression PLATO generates time-optimal im-
plementations of strict implication and inconsistency detection, unless P = NP.

6.2 Empirical

To test the effectiveness of the pre-resolution compression step of IMPLCOMPILE and
CONSCOMPILE, we compared the performance of resolution both with and without
compression on ontologies from CLib2, a library of configuration management prob-
lems. We chose to test configuration management problems because they represent
some of the most complex ontologies PLATO could be expected to handle. We analyzed
all 5 of the problems in the Configit format that were supported by our Configit parser at
the time of writing. Some Configit problems are decomposed into several components,
each of which contains its own ontology. Moreover, for each ontology, we tested two
versions: one requiring each form field to have a single value and one that does not. All
told, the 5 Configit problems produced 26 distinct ontologies.

We tested both a compressed and an uncompressed version of each ontology. We
timed both the conversion to clausal form (CNF), with a max of 900 seconds, and the
computation of the resolution closure, again with a 900 second max. For 17 ontologies,
either the compressed version, the uncompressed version, or both finished before timing
out on either step; we report results for those 17 ontologies.

Figure 3(a) shows three ratios of uncompressed performance to compressed perfor-
mance, where high numbers mean compression is beneficial: the time for computing

2 http://www.itu.dk/research/cla/externals/clib/

Plato: A Compiler for Interactive Web Forms 65

(a) Ratio of uncompressed performance to
compressed performance

(b) Ratio of uncompressed size to compressed
size

Fig. 3. Impact of compression

clausal form, the time for computing the resolution closure, and the total time. The 17
test cases are ordered from low to high in terms of total-time performance improvement.
(Note there is no relationship between ontologies; however, we find the graphs easier to
read when points are ordered and connected with lines.) The resolution and total-time
results are virtually identical, indicating that the performance change in CNF conver-
sion due to compression is negligible. The total-time results are mixed. For 9 ontologies,
compression improves performance with speed-ups between 10x and 150,000x. For 6
ontologies, compression has little impact. For 2 ontologies, compression is harmful,
with slow-downs of 7,000x and 100,000x. Slow downs arise because, despite the fact
that the ontology is smaller, it contains predicates with more than one argument.

Compression is therefore sometimes quite useful, but it can also be harmful.
Figure 3(b) shows the size ratio of the uncompressed to compressed ontologies for
each of the 17 test cases, where size is measured as sentence complexity, i.e., number
of boolean connectives and atomic sentences. We conjectured that a high compression
ratio would indicate high performance benefits, but some of the instances that benefited
most from compression have ratios similar to those for the instances most harmed by
compression.

Because it is unclear how to predict when compression will be beneficial, PLATO

compresses every ontology and then attempts to compute the closure for some small
period of time, e.g., one minute. If the closure of the compressed ontology has not been
computed before time expires, it computes the closure of the uncompressed ontology.

The current compression algorithm runs in time linear in the size of the ontology, and
for all examples, compression time was negligible. To generate the resolution closure,
we used the SNARK automated reasoning kit. All tests were run on a MacBook Pro
with a 2.66 GHz Intel Core i7 and 8 GB of memory.

7 Related Work

Related work touches on three topics: web application development, inconsistency tol-
erance for classical logic, and knowledge compilation. See Section 1 for a discussion
of work related to web application development.

Inconsistency tolerance for classical logic has received significant attention over the
last decade (see [4] for a recent overview). Because this paper focuses on detecting and

66 T.L. Hinrichs

tolerating inconsistencies instead of repairing them (e.g., [13,2,29]), the closest related
work centers around definitions and implementations for paraconsistent implication.
Perhaps the closest definition to our strict implication is the well-known existential
entailment. Strict implication is better suited for the web-form setting because it dif-
ferentiates the ontology from the data, whereas existential entailment does not; more-
over, our implementation utilizes specific properties of the MON ontology language,
which is better suited to the web form domain than propositional logic (the ubiquitous
choice for studying existential entailment) but is more implementable than full first-
order logic [12, 3]. Another related topic is argumentation theory. Whereas that work
is usually concerned with establishing the relationships between all possible arguments
with an argument tree, e.g., [12, 4], PLATO constructs two arguments for each atomic
conclusion: one supporting and one undermining.

In the context of knowledge compilation, our work is differentiated from most be-
cause it addresses inconsistency tolerance. The other efforts we are aware of that ad-
dress both inconsistency and compilation [15, 21, 16, 20] fail to address the web form’s
real-time performance demands or fail to capitalize on the properties of the web form
domain. Ignoring inconsistency tolerance, the most relevant knowledge compilation
work transforms description logic ontologies into relational databases to efficiently rea-
son about large data sets. In their terminology, the web form’s constraints correspond
to a TBox, the web form data corresponds to an ABox, and the web form domain only
requires (positive and negative) instance queries. Our algorithms infuse the TBox into
all possible instance queries at compilation-time but leave the database untouched; thus,
according to [24], it is a form of FO-rewriting, as opposed to combined FO-rewriting.

8 Conclusion and Future Work

This paper introduced PLATO, a compiler for constructing web forms that detect errors
and compute implied values. In essence, PLATO specializes an inconsistency-tolerant
(i.e., paraconsistent) theorem prover to a given ontology to capitalize on the fact that
hundreds or thousands of users might combine to ask millions of queries all about
the same ontology. We materialized this intuition in formal terms by showing that the
parameterized complexity of the web form problem is polynomial when the size of
the ontology is fixed. We introduced easy-to-implement compilation algorithms and
analyzed how they scale under non-parameterized complexity assumptions. We identi-
fied a class of ontologies for which PLATO constructs time-optimal code and demon-
strated compression algorithms yielding speed-ups of 105. PLATO is available online at
http://tlh.cs.uchicago.edu:5000/plato/.

Our long-term goal is to provide web developers with a practical tool for building
and maintaining web forms. In the future we plan to investigate ontology languages that
are more expressive than the monadic, first-order logic studied here but that retain some
of the same computational properties. We hope to guide that work by investigating a
version of PLATO that simplifies the construction of a common class of web forms:
those that solicit data for a back-end database. The improved PLATO would accept a
declarative description of the database view the user is intended to augment and would
automatically extract the appropriate ontology from the database integrity constraints.

http://tlh.cs.uchicago.edu:5000/plato/

Plato: A Compiler for Interactive Web Forms 67

References

1. Axling, T., Haridi, S.: A tool for developing interactive configuration applications. Proceed-
ings of the Journal of Logic Programming, 147–168 (1996)

2. Benferhat, S., Lagrue, S., Rossit, J.: An egalitarist fusion of incommensurable ranked belief
bases under constraints. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 367–372 (2007)

3. Besnard, P., Hunter, A.: Practical first-order argumentation. In: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 590–595 (2005)

4. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)
5. Braßel, B., Hanus, M., Müller, M.: High-level database programming in curry. In: Hudak, P.,

Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 316–332. Springer, Heidelberg (2008)
6. Brabrand, C., Moller, A., Ricky, M., Schwartzbach, M.: Powerforms: Declarative client-side

form field validation. In: World Wide Web, pp. 205–214 (2000)
7. Brambilla, M., Ceri, S., Comai, S., Dario, M., Fraternali, P., Manolescu, I.: Declarative spec-

ification of web applications exploiting web services and workflows. In: Proceedings of the
ACM SIG for the Management of Data, pp. 909–910 (2004)

8. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure web ap-
plications via automatic partitioning. In: Proceedings of the ACM Symposium on Operating
Systems Principles, pp. 31–44 (2007)

9. Cooper, E., Lindley, S., Yallop, J.: Links: Web programming without tiers. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 266–
296. Springer, Heidelberg (2007)

10. Cox, P.T., Nicholson, P.: Unification of arrays in spreadsheets with logic programming. In:
Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 100–115. Springer, Hei-
delberg (2008)

11. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence
Research 17, 229–264 (2002)

12. Efstathiou, V., Hunter, A.: Algorithms for effective argumentation in classical propositional
logic: A connection graph approach. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008.
LNCS, vol. 4932, pp. 272–290. Springer, Heidelberg (2008)

13. Everaere, P., Konieczny, S., Marquis, P.: Conflict-based merging operators. In: Proceedings
of the International Conference on Principles of Knowledge Representation and Reasoning,
pp. 348–357 (2008)

14. Fernandez, M., Florescu, D., Levy, A., Suciu, D.: Declarative specification of web sites with
strudel. The VLDB Journal, 38–55 (2000)

15. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and
changes in ontologies. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 1295–1300 (2006)

16. Gomez, S.A., Chesnevar, C.I., Simari, G.R.: An argumentative approach to reasoning with
inconsistent ontologies. In: Proceedings of the KR Workshop on Knowledge Representation
and Ontologies, pp. 11–20 (2008)

17. Gupta, G., Akhter, S.F.: Knowledgesheet: A graphical spreadsheet interface for interactively
developing a class of constraint programs. In: Pontelli, E., Santos Costa, V. (eds.) PADL
2000. LNCS, vol. 1753, pp. 308–323. Springer, Heidelberg (2000)

18. Hanus, M., Kluß, C.: Declarative programming of user interfaces. In: Gill, A., Swift, T. (eds.)
PADL 2009. LNCS, vol. 5418, pp. 16–30. Springer, Heidelberg (2008)

19. Hanus, M., Koschnicke, S.: An ER-based framework for declarative web programming. In:
Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 201–216. Springer, Heidelberg
(2010)

68 T.L. Hinrichs

20. Hinrichs, T.L., Kao, J.Y., Genesereth, M.R.: Inconsistency-tolerant reasoning with classical
logic and large databases. In: Proceedings of the Symposium of Abstraction, Reformulation,
and Approximation (2009)

21. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (2005)

22. Kassoff, M., Genesereth, M.R.: PrediCalc: A logical spreadsheet management system.
Knowledge Engineering Review 22(3), 281–295 (2007)

23. Kassoff, M., Valente, A.: An introduction to logical spreadsheets. Knowledge Engineering
Review 22(3), 213–219 (2007)

24. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: Combined FO
rewritability for conjunctive query answering in DL-Lite. In: Proceedings of the International
Workshop on Description Logic (2009)

25. Levy, M.R., Horspool, R.N.: Translating Prolog to C: a WAM-based approach. In: Proceed-
ings of the Compulog Network Area Meeting on Programming Languages (1993)

26. Serrano, M., Gallesio, E., Loitsch, F.: Hop, a language for programming the web 2.0. In: Pro-
ceedings of the International Conference on Object Oriented Programming, Systems, Lan-
guages and Applications, pp. 975–985 (2006)

27. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product
configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer,
Heidelberg (1999)

28. Subbarayan, S., Jensen, R., Hadzic, T., Andersen, H., Hulgaard, H., Moller, J.: Comparing
two implementations of a complete and backtrack-free interactive configurator. In: Proceed-
ings of the CP Workshop on CSP Techniques with Immediate Application, pp. 97–111 (2004)

29. Subrahmanian, V.S., Amgoud, L.: A general framework for reasoning about inconsistency.
In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 599–604
(2007)

30. Suzuki, T., Tokuda, T.: Automatic generation of intelligent javascript programs for handling
input forms in html documents. In: Proceedings of the International Conference on Web
Engineering (2005)

31. Vikram, K., Prateek, A., Livshits, B.: Ripley: Automatically securing distributed web appli-
cations through replicated execution. In: Proceedings of the ACM Conference on Computer
and Communications Security, pp. 173–186 (2009)

32. Vlaeminck, H., Vennekens, J., Denecker, M.: A logical framework for configuration soft-
ware. In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, pp. 141–148 (2009)

33. Yang, F., Gupta, N., Gerner, N., Qi, X., Demers, A., Gehrke, J., Shanmugasundaram, J.: A
unified platform for data driven web applications with automatic client-server partitioning.
In: Proceedings of the International World Wide Web Conference, pp. 341–350 (2007)

34. Yang, F., Shanmugasundaram, J., Riedewald, M., Gehrke, J.: Hilda: A high-level language
for data-driven web applications. In: Proceedings of the International Conference on Data
Engineering (2006)

On the Portability of Prolog Applications

Jan Wielemaker1 and Vı́tor Santos Costa2

1 VU University Amsterdam, The Netherlands

J.Wielemaker@cs.vu.nl
2 DCC-FCUP & CRACS-INESC Porto LA

Universidade do Porto, Portugal

vsc@dcc.fc.up.pt

Abstract. The non-portability of Prolog programs is widely considered

one of the main problems facing Prolog programmers. Although since

1995, the core of the language is covered by the ISO standard 13211-1,

this standard has not been sufficient to support large Prolog applications.

As an approach to address this problem, since 2007, YAP and SWI-

Prolog have established a basic compatibility framework. The aim of the

framework is running the same code on Edinburgh-based Prolog systems

rather than having to migrate an application. This article describes the

implementation and evaluates this framework by studying how it can be

used on a number of libraries and an important application.

1 Introduction

Prolog has a long history, and its user community has seen a large number of
implementations that evolved largely independently. This is in contrast to more
recent languages such as Java, Python, or Perl. These language either have a
single implementation (Python, Perl) or are controlled centrally (a language can
only be called Java if it satisfies a set of standards [9]). The Prolog world knows
dialects that are radically different, with different syntax and different semantics
(e.g., Visual Prolog [12]). Arguably, this is a handicap for the language because
every publicly available significant piece of code must be carefully examined for
portability issues before it can be applied. As an anecdotal example, answers
to questions on comp.lang.prolog typically include “on Prolog XYZ, this can be
done using . . . ” or “which Prolog implementation are you using?”.

In this work we propose an approach for improving the portability of appli-
cations in modern Prolog systems. Our approach has been implemented in the
SWI-Prolog [22] and YAP [16] systems. The approach requires (i) support of
the Prolog ISO standard to a large extent [2,18]; (ii) a module system close
to Quintus Prolog module system; (iii) and a term-expansion approach; and,
whenever this is not sufficient, (iv) a preprocessor, that allows one to explicitely
state system-dependent regions of code. Except for the second requirement, we
expect most of these features to be available or easy to implement in modern
Prolog systems. On the other hand, arguably module support is a controversial
issue in the Prolog community. Although any program larger than a few pages

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 69–83, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

70 J. Wielemaker and V. Santos Costa

requires modularity, the ISO standard for modules was never accepted by most
Prolog developers. In our case, we follow the approach of using the Quintus mod-
ule system, to better or worse arguably the closest to a standard in the Prolog
community. This module system is supported by Quintus Prolog [1], SICStus
Prolog [4], and Ciao [6], besides SWI-Prolog [22], and YAP [16]. Other Prolog
systems, such as XSB-Prolog [15], have limited compatibility with this module
system.

The key ideas of our approach are as follows. First, each program will belong
to a dialect, such as swi, yap, or sicstus. Second, loading a program declared to
belong to a dialect sets up a compile-time emulation layer that works as follows:

– load an extra set of built-ins and libraries;
– redefine conflicting built-ins;
– change system flags, if necessary.

The emulation layer will then be active while loading the file.
Our technique has been implemented in the SWI-Prolog [22] and YAP [16].

In YAP it has been used to implement a very extensive emulation layer for
SWI-Prolog. This has allowed YAP to support a large number of SWI-Prolog
packages, including the Java interface jpl, the chr, clpfd and clpqr extensions,
several web interface packages, and the plunit package. SWI-Prolog includes
emulation layers for several Prolog dialects, such as yap, sicstus, and ciao.
The sicstus layer has been used to port a large natural language package from
SICStus Prolog to SWI-Prolog, maintaining a single source for the package.

The paper is organized as follows. First, we discuss the key concepts in porta-
bility work. Second, we present our approach in more detail. Then, we present
the YAP and SWI-Prolog case studies in more detail. We finish with some con-
clusions.

2 Portability Approaches and Related Work

Software portability is a problem since the day the second computer was built.
In our case, we expect that at least basic portability requirements are fulfilled:
there are few syntactic incompatibilities, and the core language primitives have
to a large extent the same semantics. This is the case for the family of im-
plementations that is subject in this study. Beyond that, the implementations
vary widely; notably in (i) the organisation of the libraries; (ii) available library
primitives; and (iii) access to external resources such as C-code, processes, etc.

Our problem is to some extent related to the problem of porting C-programs
between different compilers and operating systems. Although today’s C has made
significant progress in standardizing the structure of the library (e.g., C99 in-
ternationalisation support) and POSIX has greatly simplified operating sys-
tem portability, writing portable C-code still relies on judicious use of the C-
preprocessor and a principled approach to portability. We therefore will take
advantage of the underlying principles and choices that affect portability in the
C-world, both because we believe the examples are widely known and because
the C-community has a long-standing experience with portability issues.

On the Portability of Prolog Applications 71

The abstraction approach. A popular approach to make an application portable
is to define an interface for facilities that are needed by the application and that
are typically not portable. Next, the interface is implemented for the various
target platforms. Targets that are completely different (e.g. Windows vs. X11
graphics) use completely distinct implementations, while small differences are
handled using compile-time or run-time conditions. Typically, the “portable”
part of the application still needs some conditional statements, for example if
vital features are simply not available on one of the target platforms.

Abstractions come in two flavors: specifically designed and implemented in the
context of an application; and designed as high-level general-purpose abstrac-
tions. We find instances of the latter class notably in areas where portability is
hard, such as user-interface components (e.g., WxWindows, Qt, various libraries
for threading).

Logtalk [10] is an example from the Prolog world: it provides a portable
program-structuring framework (objects) and extensive libraries that are
portable over a wide range of Prolog implementation. On the other hand, we
could claim that Logtalk is a language developed by a community that just hap-
pens to be using a variety of Prolog implementations as backend. The portability
of Logtalk itself is based on application-specific abstraction.

The emulation approach. Another popular approach is to write applications for
environment X and completely emulate environment X on top of the target
environment Y . Comparing with the previous approaches, arguably, one system
can be seen as an abstraction to other. One of the most extreme examples here
is Wine1, that completely emulates the Windows-API on top of POSIX systems.
The opposite is Cygwin [13], that emulates the POSIX API on Windows plat-
forms. To the best of our knowledge, SEPIA was the first system to use this
approach, in this case to emulate other Prolog systems [14].

Emulation has large advantages in reducing the porting effort. However, it
comes at a price. Cygwin and Wine are very large projects because emulating
one OS API can approach the complexity of an OS itself. This means that
applications ported using this approach become heavyweight. Moreover, they
tend to become slow due to small mismatches. For example, both Windows and
POSIX provide a function to enumerate members of a directory and a function
to get details on each member. The initial enumeration already provides more
than just the name, but the set of attributes provided differs. This implies that
a full emulation of the directory-scanning function also needs to call the ‘get-
details’ function to fill the missing attributes, causing a huge slow-down. The
real difficulty is that, often, the application is not interested in these painfully
extracted attributes. Similar arguments hold for the differences between the
thread-synchronisation primitives. For example, the initial implementation of
SWI-Prolog message-queues that establish a FIFO queue between threads was
based on POSIX thread ‘condition variables’ and ported using the pthread-
win322 library. The Windows version was over 100 times slower than the POSIX
1 http://www.winehq.org
2 http://sourceware.org/pthreads-win32/

http://www.winehq.org
http://sourceware.org/pthreads-win32/

72 J. Wielemaker and V. Santos Costa

version. Rewriting the queue logic using Windows ‘Event’ object duplicates a
large part of the queue-handling code, but provides comparable performance.

The conditional approach. Traditionally, (small) compatibility problems are ‘fixed’
using conditional code. There are two approaches: compile-time and run-time. In
the Prolog world, we’ve seen mostly run-time solutions with the promise that par-
tial evaluation can turn this into the equivalent of the compile-time approach.

Conditions themselves often come from version information (e.g. if (cur-
rentBrowser == IE && browserVersion == 6.0) ...). At some point in time,
the variation in the Unix-world was so large that this was no longer feasible.
Large packages came with a configuration file where the installer could indicate
which features where supported by the target Unix version. Of course, most sys-
tem managers found it hard to obtain a reasonable configuration. A major step
forward was GNU autoconf [21], a package that provides clear guidelines for
portability, plus a collectively maintained suite of tests that can automatically
execute in the target environment (configure).

There is one important lesson to be learned from GNU autoconf: do not test
versions, but features. E.g. if you want to know whether member/2 is available
without loading library(lists), use a test like the one below rather than a test for
a specific Prolog system:

catch(member(a, [a]), _, fail)

Feature tests work regardless of your knowledge of the availability of a predicate
in a specific Prolog implementation and they keep working if implementations
change this aspect or new implementations arrive on the market.

3 Prolog Portability Status

Before we can answer the question on the best approach for Prolog, we must
investigate the current situation.

Our target Prolog systems have been influenced by the Edinburgh tradition,
namely through Quintus Prolog, C-Prolog, DEC10-Prolog and its DEC10 Prolog
library. They all at least partially support the ISO core standard. In addition,
resources such as Logtalk, and the Leuven and Vienna constraint libraries have
recently helped enhancing the compatibility of Prolog dialects due to a mutual
interest of the resource developers (a wider audience) and Prolog implementors
(valuable resources). Logtalk has pioneered this field, pointing Prolog implemen-
tors at non-compliance with the ISO standard and other incompatibilities. The
constraint libraries have settled around the attributed variable and global vari-
able API designed for hProlog ([5]). These APIs are either directly implemented
or easily emulated.

The language. All systems can run programs satisfying the ISO standard as long
as they do not depend on corner cases. There are cases where ISO demands an
exception and implementations take the liberty to provide meaningful semantics.

On the Portability of Prolog Applications 73

Table 1. Core features provided by the target Prolog environment

Ciao SICStus SWI-Prolog YAP

ISO yes yes yes yes

module/2 yes yes yes yes

module/3 yes no no no

use module/2 yes yes yes yes

use module/3 no yes no no

operators and modules local global both both

export built-in no no yes yes

redefine built-in yes no yes yes

Term-expansion yes yes yes yes

Goal-expansion yes yes yes yes

Compilation-modela file direct direct direct

Directives special goal goal goal

Attributed variables yes yes yes yes

Coroutining (dif/2, freeze/2) yes yes yes yes

Global variables yes yes yes yes

Tabling yes no no yes

Threads yes no yesb yesb

Unicode no yes yes yes

Set unknown flag fail error yesc yesc

Get unknown flag fail fail fail fail

Provide unknown optiond error error ignore error

Library license GPL Proprietary GPLe Artistic & GPL

a File: compile .pl to object and load object code.
b Provides create prolog flag/3.
c Following ISO technical report.
d E.g. write term(foobar, [hello(true)]).
e With an additional statement that allows for use in proprietary code, based on the

GCC runtime library.

E.g., SWI-Prolog supports the mode arg(-,+,?); many systems support ‘options’
to predicates such as open/4 and write term/4 that are not described by the ISO
standard (e.g. ‘encoding’ in open/4 to indicate the character-set encoding of the
file). Additional options are explicitly allowed by the standard, but there is no
good mechanism to know which options are allowed by a specific implementation
and it is not easy to find an elegant way to deal with different option-list require-
ments in different implementations. Similarly, most systems provide prolog-flags
(current prolog flag/2) in addition to the standard flags. Finally, systems differ
in the relation between operators and modules. Table 1 provides an overview of
features that we consider most relevant to porting code in the four Prolog di-
alects considered. The table discusses approaches to modularity, term and goal
expansion, major extensions in the code, and flag handling.

The libraries. The situation of the Prolog libraries is unfortunate. Although
much of the code is derived from the public domain ‘DEC10’ library, a long

74 J. Wielemaker and V. Santos Costa

period of independent development makes this barely recognizable. Currently,
the way predicates are spread over the libraries and system built-ins differs enor-
mously. Also different is the status of built-in predicates (can you redefine them,
can you export them from a library, etc.) differs. Fortunately, there are only few
cases where we find predicates with the same name but different semantics (e.g.
delete/33). In the last few years, cooperation around Logtalk and the CLP li-
braries as well as discussions in the community [11] have enhanced the situation
somewhat.

Foreign code. As Bagnara ([3]) pointed out, the design of the foreign language
interface is largely settled. All target systems use ‘term-handles’; opaque han-
dles to Prolog terms that must be allocated and thus ensure that the Prolog
engine knows which terms are referenced by foreign code. On the other hand,
the naming, coverage of the API functions to interact with terms as well as the
way foreign code is made visible as Prolog predicates varies widely. We identify
two problem areas.

– All Prolog systems allow binding external I/O channels to Prolog streams.
The design of these interfaces however differs so widely that emulation is
non-trivial and likely to cause severe performance degradation. See Sect. 5.

– The SWI-Prolog and YAP APIs allow for creating non-deterministic pred-
icates in C. SICStus and Ciao require the non-determinism to be moved to
Prolog. It is hard to make a SWI-Prolog/YAP non-deterministic implemen-
tation run of SICStus/Ciao without major work.

4 The YAP/SWI-Prolog Approach

Ideally, we would hope for a standardized full definition of the Prolog language
and its libraries. However, getting agreement on such a library and proper im-
plementations for all platforms has shown not to be trivial. Even if this library
eventually exists, a lot of legacy applications may require extensive rewriting. In
general, our goal is to run the same code on multiple Prolog systems, with the
least possible rewriting effort.

As far as we are aware, there are none or very few cases where emulation leads
to poor performance due to mismatches in the APIs as explained in Sect. 2. So,
as a good shared abstraction is hard to achieve and application-abstractions
are too limited in scope for our purposes, we follow emulation whenever possi-
ble. Note that, given a good framework, an emulation layer can be established
incrementally and on ‘as needed’ basis.

The need for macro-expansion. Macro-processing is key to performing emula-
tion efficiently. Dealing with incompatibilities only through runtime tests and,
optionally, partial evaluation is insufficient. First of all, runtime tests can only
deal with predicates and not with declarations (directives). Second, portable and

3 http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

On the Portability of Prolog Applications 75

adequate partial evaluation is not provided. Without partial evaluation, runtime
testing is not acceptable for time-critical code and static analysis tools, even the
simple cross-referencers available for SWI-Prolog, will complain about the code
intended for other dialects. Term- and goal-expansion are provided by all target
systems, but the details vary, making it rather awkward to use in application
code. For example, Ciao requires special attention to make the rules available
to the compiler. SWI-Prolog expansion follows its module-inheritance rules, first
expanding in the module, then in the user module and finally in the system
module. SICStus provides additional arguments to deal with source-location,
and so on.

Conditional Compilation. Following the emulation-approach, compatibility li-
braries can use all machinery available to the hosting Prolog environment to
emulate the target. Unfortunately, we still need a way to achieve portable con-
ditional compilation in the application. As an example, features of one system
allow for realizing a better (e.g., faster, more compact) implementation for a
certain subsystem. In the case of SWI-Prolog, nb setarg/3 allows for a clean
reentrant and thread-safe implementation of counting proofs that is faster and
requires less space than portable solutions. We will code this as below.

:- meta_predicate proof_count(0, -).

:- if(current_predicate(nb_setarg/3)).

proof_count(Goal, Count) :-

State = count(0),

(call(Goal),

arg(1, State, C0),

C1 is C0 + 1,

nb_setarg(1, State, C1),

fail

; arg(1, State, Count)

).

:- else.

proof_count(Goal, Count) :-

findall(x, Goal, Xs),

length(Xs, Count).

:- endif.

Notice the use of the if, else, and endif primitives for conditional compilation.

4.1 The SWI-Prolog/YAP Portability Framework

We can now present the key features of our framework:

– Support :- if(Goal). . . . [:- else. . . .] :- endif. conditional compila-
tion. This is built-in in several systems, such as ECLiPSe [17], and can easily
be provided on top of term-expansion for other systems.

– Provide :- expects_dialect(Dialect). to state that a module is designed
for the given dialect. The effect of this directive is threefold.

76 J. Wielemaker and V. Santos Costa

1. Load and import library(dialect/Dialect), which provides emulation for
built-ins of the dialect and term/goal expansion rules to resolve compat-
ibility issues.

2. Make the current dialect available through prolog load context(dialect,
Dialect) for term and goal-expansion.

3. Push a new library directory before the current library path. The new
directory can provide additional and replacement libraries that provide
the interface of the target and use the implementation techniques of the
host (currently, we assume confliting libraries are not loaded yet).

– Synchronise some vital features, such as identifying the running dialect using
the Prolog flag dialect.

– Provide a C-header to emulate the target foreign interface and C-code to
implement the foreign interface.

5 Running SWI-Prolog Packages in YAP

YAP currently can run several SWI-Prolog packages, such as clib, http, sgml,
RDF, plunit, jpl, chr, and clpqr. Some of these packages, such as clib and
jpl, are mostly written in C. Other packages, such as chr and clpqr are Prolog
code. The YAP library approach was as follows.

The C-Interface. The first step is to implement the SWI-Prolog C-interface. No-
tice that the SWI-Prolog interface contains significant duplicate functionality, as
old functions are replaced by more powerful newer ones. Correctly implement-
ing the whole functionality in a single go would have been a major endeavour.
Instead, the YAP implementors have implemented functions as they are needed,
and in some case only partially. Error messages are used to inform users that an
interface function is only partially implemented.

A second challenge were the differences in internal objects that were exported
through the interface. For example, YAP strings are 0-terminated C-strings.
SWI-Prolog uses an additional length parameter to accommodate 0-bytes in
atoms. SWI-Prolog internally supports an integer Prolog object that is always
64 bits long. YAP supports an integer that has word size.

There are also major differences in functionality between the two systems, that
are simply almost impossible to cover. For example, the debugging infrastructure
is much richer in SWI-Prolog. A second typical example are blobs. In SWI-Prolog,
a blob is a symbol (like an atom) that is used to store external data, such as
image-pixels or a handle to C-managed data. SWI-Prolog goes much further, and
has a sizable infrastructure for blobs that accommodates user defined blobs with
extensions over input, output, garbage-collection, etc. In contrast, in YAP a blob
is an opaque object kept on the stacks. In cases such as this, supporting the SWI-
Prolog interface will require defining a new type of objects and supporting them.
The advantage is that YAP will benefit from the decisions made by SWI-Prolog.
The drawback is that the YAP design is bound by these decisions.

On the Portability of Prolog Applications 77

PLStream. The next step was to support Input/Output. SWI-Prolog basically
exports its Input/Output data structures, which are very different from YAP’s.
A first try at using the standard emulation layer approach was very painful: first
because the interface is complex; and second because it involves reimplementing
a large number of data structures that had to be working before anything could
be experimented with. On the other hand, we could observe that SWI-Prolog’s
I/O was largely self-contained and almost exclusively written in C. This sug-
gested an alternative approach, where it was decided to simply port the whole
I/O subsystem as a C library. The process worked surprisingly well: the I/O
routines are much independent of the rest of the system, and we only required
reimplementing some internal interface functions. The interface layer required
800 lines of code, but much of this code is in fact reused from files in SWI-Prolog.
We did observe several difficulties:

– some I/O functions build lists of characters using low-level abstract machine
functionality; we just abstracted these operations without loss of efficiency.

– the code relies on the address of some atoms being known at compile-time.
This required changes to the C-interface layer.

– SWI-Prolog and YAP streams are different: we allow limited access from
YAP streams to SWI-Prolog streams, but not vice-versa.

The last challenge is simply keeping track of the changes in SWI-Prolog func-
tionality. SWI-Prolog is a living object: new functions are being added in, and
from time to time, preexisting functions do change. This is a good thing, and
just a small problem with the external interface, but it is a major problem with
the I/O library. As YAP-6 stabilises, we expect to be able to merge the YAP
changes to the main SWI-Prolog distribution, and use git to track down changes
in the SWI-Prolog distribution, with no negative impact on SWI-Prolog.

Evaluation. Table 2 gives an idea of the porting effort. There are about 200
Prolog source files, and a similar number of C source files. Altogether, we needed
28 if statements for cases of conditional code. We discuss some of these problems
in more detail below.

The size of the C-code is similar to the size of the Prolog code. We only have 15
cases of conditional compilation, with most of these belonging to the PLStream

Table 2. Metrics on the SWI-Prolog Libraries

Prolog source-files 244

Prolog source-lines 67,532

Prolog clauses ≈14,000

if directives ≈28

C source-files 215

C source-lines 66,437

C predicates 267

YAP conditional compilation 15

78 J. Wielemaker and V. Santos Costa

package, which is unsurprising as this package is SWI-Prolog code. We believe
this shows that most of the compatibility issues have been addressed at the
emulation layer.

6 A First Case-Study: Portable Constraint Libraries

We have been able to share three major constraint libraries between the two
systems using this framework: clpfd [19], clpr [7], and chr [8]. YAP originally
implemented a SICStus mechanism for domain variables, so the first step was
to also support the hProlog/SWI-Prolog mechanism [5]. From YAP-6.0.4, YAP
implements the SICStus interface as mostly an extension of the SWI-Prolog
interface (with some extra built-ins). Following SWI-Prolog, YAP now simply
searches the global stack for attributed variables for realizing call residue vars/2,
which is used by the toplevel to report residual constraints.

Given a common infrastructure, the goal was to reduce to a minimum the
amount of effort in porting the constraint libraries between the two different
systems. In the case of chr this was simplified because chr already supported
by two systems: SICStus and SWI-Prolog. Difficulties had to do with the term
expansion mechanism, which is different in the two systems, with SWI-Prolog
having a more liberal syntax, and with supporting SWI-Prolog’s message-writing
mechanism.4 Last, chr was originally implemented in hProlog and expects an
hProlog compatibility library to provide list functionality. This forces YAP to
be both compatible with SWI-Prolog and hProlog.

Markus Triska’s clpfd is a SWI-Prolog native application. It was interesting
that although the two applications were written independently, the challenges
were very much similar: the term expansion mechanism, the message-writing
system, and attribute predicates.

7 A Second Case-Study: The Alpino Dependency-Tree
Parser Suite

The Alpino dependency-tree parser suite [20] is a large and complex program
developed in SICStus Prolog over a long period of time. Table 3 gives some
metrics of the application. The initiative to port Alpino came from the SWI-
Prolog side based on a desire to use Alpino components as a library in a larger
SWI-Prolog based application. On first contact, the Alpino team was interested,
but had two major worries: “does SWI-Prolog support our current application
without major rewrites”, and “can we achieve one source that compiles and
runs on both”. The first was accompanied with a list of requirements. Most of
these could be answered positively without hesitation. SWI-Prolog however lacks
call residue/2 and a Tcl/Tk interface. SWI-Prolog has a partial implementa-
tion of call residue vars/3.5 Later copy term/3 proved the correct and portable
4 Based on Quintus Prolog. See print message/2.
5 The implementation may report variables that are inaccessible due to backtracking

if the application uses non-backtrackable assignment as defined by nb setarg/3 and

nv setval/2.

On the Portability of Prolog Applications 79

solution for the application’s purposes. Tcl/Tk was no hard requirement and we
hoped that the Ciao implementation might be able to solve this issue. A short
summary of the SWI-Prolog/YAP portability framework convinced the Alpino
team that future maintenance based on a common source could de dealt with.

Table 3. Metrics on the Alpino Parser

Prolog source-files 304

Prolog source-lines 473,593

Prolog predicates ≈ 5,500

Prolog clauses ≈ 290,000

C source-files 14

C++ source-files 27

C/C++-defined predicates 46

Below we summarize the non-trivial issues encountered and their resolution.

– The SICStus block directive declares predicates to suspend until an instan-
tiation pattern is reached. SWI-Prolog has no such concept. Term-expansion
was used to rename the clauses and generate a wrapper that implements the
coroutining using when/2.6

– Operator declarations are mapped to declarations in the user module, SWI-
Prolog’s deprecated support for system-wide operators. The code below il-
lustrates dialect handling here:

system:goal_expansion(op(Pri,Ass,Name),

op(Pri,Ass,user:Name)) :-

\+ qualified(Name),

prolog_load_context(dialect, sicstus).

qualified(Var) :- var(Var), !, fail.

qualified(_:_).

– Alpino depends on predicates from library(lists) that exist under a different
name in SWI-Prolog and that we do not consider for including into SWI-
Prolog. Therefore, we add library(dialect/sicstus/lists) with the following
content

:- module(sicstus_lists,

[substitute/4, % +Elem, +List, +NewElem, -List

nth/3

]).

:- reexport(’../../lists’).

<implementation>

6 Eventually, it was decided that using when/2 directly was more elegant and natively

supported by both target Prolog systems.

80 J. Wielemaker and V. Santos Costa

Note that in addition, we must map explicitly qualified calls (e.g., lists:
nth(N,L,E)) to sicstus lists:nth(N,L,E) if the current dialect is sicstus. The
mapping rule is in sicstus.pl, while clauses for the mapping are provided
by the renamed modules.

– database references (assert/2, clause/3, recorda/3, erase/1) are safe in SIC-
Stus and goals fail if the reference does not exist. SWI-Prolog references
used to be unsafe: references were heuristically tested for validity and an
existence error was raised if the reference was known to be invalid. In case
the heuristics incorrectly claims that a reference is valid, the system could
crash. Programming around this in Alpino was considered more effort than
providing a compatible API in SWI-Prolog, so we decided for the latter.7

– We added support for the mode recorded(-,+,-) to the SWI-Prolog runtime.
We also resolved that 〈m〉:clause(H,B) does not qualify H if the predicate is
in module 〈m〉.

– SICStus (and Ciao) provide Prolog streams that can both be read and writ-
ten to. SWI-Prolog’s streams are either read or write. This makes it hard to
provide a compatible emulation of the sockets library. We decided to support
stream-pairs in the SWI-Prolog runtime system. All I/O predicates are aware
of these pairs and will pick the appropriate member (close/1 addresses both
streams). After this addition, emulating the required features of the socket
library was simple.

– SICStus assert and friends can deal with attributed variables, as illustrated
below.

?- dif(X, 3), assert(not_3(X)).

SWI-Prolog has no such support and adding this is a non-trivial exercise.
As a work-around, we use the goal-expansion mechanism to map calls to the
assert-predicates onto clp assert. This predicate uses copy term(
)+Attributed, -Plain, -Constraints to extract the constraints from the term
and inserts all constraints at the start of the body, creating the clause below.

not_3(X) :- dif(X, 3).

We consider the approach so specific that we decided to make the emulation
part of the Alpino source-tree rather than the SWI-Prolog system.

– We provide an implementation for the libraries arrays.pl, system.pl and
timeout.pl using SWI-Prolog primitives.

– At some places, we decided that both SICStus and SWI-Prolog provided
already compatible alternatives for legacy SICStus code and adjusted the
Alpino sources accordingly.

– We emulate the declaration of foreign predicates using the SICStus primitives
foreign resource/2, foreign/3 and load foreign resource/1. The wrapper-
generation is an extension of the older generator for Quintus (qpforeign.pl).
In addition we wrote a script emulating the features of splfr that we need.

7 The necessary infrastructure was developed several years ago.

On the Portability of Prolog Applications 81

This SICStus program extracts the foreign declaration from a Prolog file,
generates a wrapper and calls the C-compiler to create a loadable foreign
module. The SWI-Prolog replacement swipl-lfr.pl takes the same steps, using
the C-compiler and linker front-end swipl-ld for the platform-specific linking.

In addition, we added sicstus.h to the SWI-Prolog include directory that
provides the necessary mapping from SP * API functions to PL * API func-
tions. The total amount of code involved is 664 lines of Prolog code and 244
lines of C-header (which satisfies our requirements, but is otherwise incom-
plete). No changes were required to the Alpino C-files, neither to the Prolog
code. For the Alpino zlib-interface, creating a compressed serialization of a
Prolog term based on SICStus fastrw.pl library and zlib, we decided on an
alternative route for SWI-Prolog that was easier to realise than providing
fastrw for SWI-Prolog. The Alpino code selects the implementation using
the if/1 conditional compilation.

– Alpino uses the SICStus tcl/tk interface. License issues make it impossible
to use the SICStus library here, while reimplementing from scratch is non-
trivial. Initially, we ported library(tcltk) from Ciao Prolog using the same
emulation-approach. Because Ciao uses a much finer grained module infras-
tructure, emulating enough of Ciao to run the tcltk library requires 17 files
containing 971 lines of Prolog. In addition, SWI-Prolog’s write term/3 had to
be modified to (by default) omit an extra space after a comma that separates
two arguments (e.g., term(a,b) instead of term(a, b)).8

Unfortunately, Ciao’s tcltk library could not sufficiently emulate the SIC-
Stus library for running Alpino. Eventually, the Ciao code was used to realise
a new and portable tcl/tk interface that could support Alpino. This interface
is part of the Alpino source-tree.

The above changes required about 20 person-days joint effort from the SWI-
Prolog team and the Alpino team and resulted in a fully operational application
running on the two target platforms. As mentioned above, SWI-Prolog was en-
hanced in several places. Also the Alpino code has been improved. It now relies
less on SICStus legacy code; the application now supports UTF-8 on both Prolog
platforms; the modularity was enhanced and the performance has been improved,
also on SICStus.

The initial Alpino source contained 19 places of conditional compilation based
of the if/1-directive. Since then, more conditional code was added to enhance
performance on SWI-Prolog and use additional features of SWI-Prolog, such
as (partial) support for multi-threading and its interface to GNU readline. The
current code contains 59 places of conditional compilation. This small amount of
conditional code has no significant impact of the maintainability of the Alpino
code-base.

8 This issue also affected Alpino, which contains C-code that relied on the exact term-

layout. The 13211-1 standard describes spaces in the output of write term to separate

tokens where needed. Other spaces are not explicitly forbidden.

82 J. Wielemaker and V. Santos Costa

8 Conclusions

Portability of Prolog source-code is important. Portability prevents vendor lock-
in, provides backup if an implementation is discontinued or is no longer suitable
for sustaining an application because it lacks features that are important for
future development. Portability is also needed if we want to combine packages
developed on different Prolog implementations. For a long time, the Prolog com-
munity consisted of separated sub-communities associated to an implementation.
The ISO standard has resolved many low-level compatibility issues. Logtalk and
the Leuven/Vienna constraint libraries have created bridges, causing participat-
ing Prolog systems to resolve various incompatibilities. Currently, portability
among four systems with common inspiration (YAP, SICStus, Ciao and SWI-
Prolog) is comparable to other multi-vendor programming environments such as
C on Unix in the 90s.

We present an approach for porting complex libraries and applications be-
tween systems. First, we make an argument for the need of an emulation layer
between different systems. Often, such an emulation can not be complete. In this
case, we propose using the reflexive approaches of Prolog in the fashion of the
autoconf approach.

A number of issues that hinder the development of portable Prolog resources.
Some of these involve major decisions and require major effort. Examples are
non-portable types such as string-objects, advanced numeric types (unbounded,
rationals, complex), and non-portable features (e.g., Unicode support, threads,
tabling). There are a number of issues that are less involved and can greatly
facilitate portability if agreement is reached and implemented. Examples are
‘environment predicates’, such as absolute file name/3, prolog load context/2,
a mechanism to deliver (translated) messages to the user, further standardis-
ation of Prolog flags, including a mechanism to define new flags and a clear
vision on handling extensions to the option-list processed by predicates such as
write term/3.

We strongly advice anyone interested in porting a Prolog resource to get into
contact with the vendors of the targeted Prolog systems. Many incompatibilities
are much easier resolved by the vendor(s) and as a result both systems improve
and get more compatible.

Acknowledgments. This work has been partially supported by the project
STAMPA (PTDC/EIA/67738/2006), HORUS (PTDC/EIA-EIA/100897/2008),
and by the Fundação para a Ciência e Tecnologia.

References

1. AI International ltd., Berkhamsted, UK. Quintus Prolog, User Guide and Reference

Manual (1997)

2. Bagnara, R.: Is the ISO prolog standard taken seriously? ALP newsletter, 10–12

(February 1999)

3. Bagnara, R., Carro, M.: Foreign language interfaces for Prolog: A terse survey.

ALP newsletter (May 2002)

On the Portability of Prolog Applications 83

4. Carlsson, M., Widén, J., Andersson, J., Anderson, S., Boortz, K., Nilson, H.,

Sjöland, T.: SICStus Prolog (v3) Users’s Manual. SICS, PO Box 1263, S-164 28

Kista, Sweden (1995)

5. Demoen, B.: Dynamic attributes, their hProlog implementation, and a first eval-

uation. Report CW 350, Dep. of Comp. Science, K.U.Leuven, Leuven, Belgium

(October 2002)

6. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Morales, J.F., Puebla, G.:

An overview of the CIAO multiparadigm language and program development en-

vironment and its design philosophy. In: Degano, P., De Nicola, R., Bevilacqua, V.

(eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 209–237. Springer,

Heidelberg (2008)

7. Holzbaur, C.: Metastructures versus attributed variables in the context of ex-

tensible unification. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS,

vol. 631, pp. 260–268. Springer, Heidelberg (1992)

8. De Koninck, L., Schrijvers, T., Demoen, B.: A flexible search framework for CHR.

In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Handling Rules. LNCS, vol. 5388,

pp. 16–47. Springer, Heidelberg (2008)

9. SUN Microsystems. The java compatibility test tools (2001)

10. Moura, P.: Logtalk - Design of an Object-Oriented Logic Programming Language.

PhD thesis, Department of Informatics, University of Beira Interior, Portugal

(September 2003)

11. Pontelli, E., Schrijvers, T., Demoen, B., Moura, P., Swift, T.: Uniting the Prolog

Community. ALP newsletter (February 2009)

12. Puls, T.L.: New features in Visual Prolog 7.2. In: Proceedings of the VIP-ALC

2008: Visual Prolog Applications And Language Conference, pp. 6–9. Prolog De-

velopment Center (July 2008)

13. Racine, J.: Review: The cygwin tools: A gnu toolkit for windows. Journal of Applied

Econometrics 15(3), 331–341 (2000)

14. Meier, M., Aggoun, A., Chan, D., et al.: SEPIA An Extendible Prolog System. In:

11th World Computer Congress IFIP 1989 (August 2009)

15. Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database

Engine. In: Proc. of the ACM SIGMOD Int. Conf. on the Management of Data,

pp. 442–453 (1994)

16. Costa, V.S., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual (2002),

http://www.ncc.up.pt/~vsc/Yap

17. Schimpf, J., Shen, K.: ECLiPSe by Example. Tutorial given at CP 2007 (2007)

18. Szabó, P., Szeredi, P.: Improving the ISO prolog standard by analyzing compliance

test results. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,

pp. 257–269. Springer, Heidelberg (2006)

19. Triska, M.: Generalising constraint solving over finite domains. In: Garcia de la

Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 820–821. Springer,

Heidelberg (2008)

20. van Noord, G.: At Last Parsing is Now Operational. In: TALN 2006 Verbum Ex

Machina, Actes De La 13e Conference sur Le Traitement Automatique des Langues

Naturelles, Leuven, pp. 20–42 (2006)

21. Vaughan, G.V., Elliston, B., Tromey, T., Taylor, I.L.: GNU Autoconf, Automake,

and Libtool. Pearson Education (October 2000)

22. Wielemaker, J.: SWI-Prolog: Reference Manual. University of Amsterdam, VU Uni-

versity Amsterdam, Kruislaan 419, 1098 VA Amsterdam/De Boelelaan 1081a, 1081

HV Amsterdam (1997-2010), http://www.swi-prolog.org/pldoc/index.html

http://www.ncc.up.pt/~vsc/Yap
http://www.swi-prolog.org/pldoc/index.html

Explicitly Recursive Grammar Combinators

A Better Model for Shallow Parser DSLs

Dominique Devriese and Frank Piessens

Distrinet, K.U. Leuven

{dominique.devriese,frank.piessens}@cs.kuleuven.be

Abstract. We propose a novel context-free grammar representation for

parsing libraries in a pure programming language. Our representation

explicitizes the recursion in the grammar, thus avoiding fundamental

limitations of the grammar model currently employed by parser combi-

nator libraries. Additionally, we decouple the grammar from its semantic

actions using techniques from the Multirec generic programming library.

The look and feel of the grammar and semantic actions remain close to

traditional EBNF and syntax-directed definitions respectively.

In an accompanying technical report, we demonstrate that our repre-

sentation supports more declarative implementations of grammar trans-

formations than other work. The ideas described in this paper form the

basis for our freely available grammar-combinators parsing library1.

1 Introduction

1.1 Arithmetic Expressions

Let us start this paper with a standard example from the parser literature: a
simple language of arithmetic expressions of the form “(6 ∗ (4 + 2)) + 6”. The
following grammar defines this language in a formalism similar to (E)BNF [1,
section 2.2]:

Line → Expr EOF

Expr → Expr ‘+ ’ Term

→ Term

Term → Term ‘∗ ’ Factor

→ Factor

Factor → ‘ (’ Expr ‘) ’

→ Dig i t+

Dig i t → ‘0 ’ | ‘1 ’ | ‘2 ’ | . . . | ‘8 ’ | ‘9 ’

The definitions of Expr and Term are such that “a+b*c” can only be interpreted
interpreted as “a+(b*c)” and “a+b+c” only as “(a+b)+c”. This modelling of
operator precedence and left-associativity is idiomatic for LR-style grammars,
but fundamentally relies on left-recursion: one of the productions of non-terminal
Expr, for example, refers back to Expr itself in the first position.
1 http://projects.haskell.org/grammar-combinators

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 84–98, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://projects.haskell.org/grammar-combinators

Explicitly Recursive Grammar Combinators 85

In order to obtain a parser for this grammar (without manually writing it
ourselves), parser generators like Yacc [2] and ANTLR [3] are typically used to
translate the grammar (provided in an EBNF-like formalism) into source code
in the developer’s programming language. This technique has proven succesful
in practice, but suffers from various downsides: little assurance for syntax- and
type-correctness of generated code, little reuse of the developer’s existing pro-
gramming environment (editor, type-checker, debugger, build system etc.) etc.

1.2 Parser Combinators

An elegant alternative are parser combinators. In this approach, the grammar is
defined directly in a general purpose programming language. Parsers are consid-
ered first-class values and can be combined, extended, reused etc. With Swierstra
and Duponcheel’s well-known parser combinator library UUParse [4], our arith-
metic expressions language can be expressed with the following definitions:

line = expr ⊂∗ pEnd
expr = foldr ($) �$ term � many exprTail
exprTail = (+)⊂$ pSym ’+’� term
term = foldr ($) �$ factor � many termTail
termTail = (∗)⊂$ pSym ’*’� factor
factor = read �$ some digit

� pSym ’(’ ∗⊃ expr ⊂∗ pSym ’)’
digit = pSym (’0’, ’9’)

For every non-terminal, a parser function is defined directly as a Haskell value,
by combining primitive parser functions such as pSym (in this case produces a
primitive parser for a single character in a given range). These are then combined
using the Applicative and Alternative operators � (sequence, apply left result
to right result) and � (disjunction) and shorthands �$ (apply value to result),
⊂$ (substitute value for result), and ∗⊃ and ⊂∗ (sequence, ignore left resp. right
result). The many and some combinators return parsers that respectively match
zero or more or one or more times a given parser.

Note that the parser functions above mix semantic actions in the definitions
of the parser functions. All parsers return the semantic value of the non-terminal
they represent: the integer or char (for the digit parser) value of the matched
string. We consider this mixing of grammar and semantics non-ideal and we will
come back to this problem in section 2.4.

Important to notice about the definitions above, is that we have (manually)
removed left-recursion from the grammar and replaced it with a different mod-
elling of the left-associativity and precedence of the operators. This alternative
modelling is typical for LL-style grammars and traditional parser combinator
libraries indeed require the user to perform such a transformation by hand.

1.3 ω-Regular Grammars Considered Harmful

The UUParse parser definitions above express recursion between non-terminals
using recursively defined Haskell values. Haskell supports this thanks to its call-
by-need (lazy) evaluation strategy. At first sight, it seems that this allows the

86 D. Devriese and F. Piessens

UUParse parser to faithfully represent the recursive structure of the original
grammar. However, closer inspection reveals that what the Haskell values rep-
resent is in fact not so much a graph than an infinite tree. We can see this by
considering the expr parser function. Because of Haskell’s purely functional na-
ture [5], expr is observationally equivalent to what we get if we expand it to its
definition, and likewise if we expand subexpressions to their definitions:

expr ≡ foldr ($) �$ term � many exprTail
≡ foldr ($) �$ (foldr ($) �$ factor � many termTail) � many exprTail
≡ foldr ($) �$ (foldr ($) �$

(read �$ some digit � pSym ’(’ ∗⊃ expr ⊂∗ pSym ’)’) �
many termTail) � many exprTail

In this way, we find an expansion of the definition of expr containing expr itself
as a subexpression. We can continue expanding forever, obtaining an infinite
number of expanded expressions, growing in size, and each indistinguishable
from the original definition of expr . For any n, it is in fact possible to construct
a different expression which cannot be distinguished from the original in less
than n evaluation steps: simply take the original definition of expr , perform
n + 1 expansions, and then make a change in the result of the final expansion.

These observations have very real practical consequences. A parser library
working with such parser definitions, and respecting referential transparency
(see section 4.3), is fundamentally limited. It cannot, for example, print a rep-
resentation of the grammar in any finite number of evaluation steps n, because
it might be looking at another grammar that can only be distinguished from
the original after more than n computation steps. Similarly, no parsing library
using this grammar model can calculate parsing tables upfront, fully execute a
grammar transformation, or perform a sanity check for LL(1)-ness.

Because of the similarity of “infinite-tree” grammar definitions to infinite
regular grammars, we will refer to this grammar model as ω-regular.

1.4 Toward Context-Free Grammars

Given these fundamental limitations, we define in this paper an alternative rep-
resentation that does not suffer from them. We will do this without jeopardising
the advantages of a parser combinator library (stay in the developer’s program-
ming language, keep the close relation of grammar definitions to the original
grammar, ensure type safety, keep purely functional style).

The most important change is that we make the recursion in the grammar
explicit. More concretely, we want to be able to distinguish the different expan-
sions of the expr parser above. Even if they can all be considered functionally
equivalent from a strict parsing point of view, we need to be able to treat them
differently if we want to be able to print grammars, analyse or transform them.

So, what could be a better way to represent context-free grammars? A simple
attempt to construct a better representation of our example grammar starts by
defining the non-terminals as first class values:

Explicitly Recursive Grammar Combinators 87

data Domain = Line | Expr | Term | Factor | Digit

Our grammar can then be defined as a function that maps every non-terminal to
its production rules. With unspecified primitive operations token , endOfInput ,
〈·〉, ||| and >>> in a ProductionRule type class, we would like it to look somewhat
like the following pseudo-code:

grammarArith :: (ProductionRule p) ⇒ Domain → p ()
grammarArith Line = 〈Expr〉>>> endOfInput
grammarArith Expr = 〈Expr〉>>> token ’+’>>> 〈Term〉

||| 〈Term〉
...

With non-terminals as first-class values, we avoid the problems related to ω-
regular grammars discussed before: for a recursive position in a production rule,
we do not embed that non-terminal’s production rules directly (as we would do
in traditional parser combinator libraries), but instead, we use an abstract 〈·〉
operator that just marks the position where the recursion appears.

Let’s now suppose that we want our grammar to generate an Abstract Syntax
Tree (AST) using the following data types.

newtype Line = SExpr Expr
data Expr = Sum Expr Term

| STerm Term
data Term = Product Term Factor

| SFactor Factor
data Factor = Paren Expr

| Number [Digit]
newtype Digit = MkDigit Char

If the grammar produces AST result values, then it is not coupled to any con-
crete set of semantic actions. Semantic actions can be implemented as functions
mapping parsed AST values to their semantic values.

grammarArith :: (ProductionRule p) ⇒ Domain → p ()
grammarArith Line = SExpr $>> 〈Expr〉>>> endOfInput
grammarArith Expr = Sum $>> 〈Expr〉>>>∗ token ’+’>>> 〈Term〉

||| STerm $>> 〈Term〉
...

Unfortunately, the above grammar does not type check. Essentially, the problem
is that all our non-terminals are of type Domain , so that all references 〈idx 〉
must share a single result type. With the simple non-terminal representation
above, we cannot express that non-terminal Line corresponds to a different type
of semantic values than non-terminal Expr .

Additionally, making the grammar produce AST result values is not necessar-
ily a good idea. First, in cases where semantic values are small, it is not memory

88 D. Devriese and F. Piessens

efficient, as the AST will be kept around in its entirety throughout the parsing
process, even those parts which have already been processed by the semantic
processor and are no longer needed. As long as the top node of the tree is being
referenced, a garbage collector cannot deallocate any of the child nodes, since
all of them are still being referenced. Secondly, this solution is also inherently
linked to a top-down matching order, as it can only start producing semantic
actions starting from the root node.

In this paper, we propose a solution to these problems based on a repre-
sentation of non-terminals not all sharing the same type, which we present in
section 2.1. In section 2.3, we define a well-typed primitive recursion operator 〈·〉
and in section 2.4, we abstract grammars from their semantics without working
with a full intermediate AST. Section 2.5 shows what the resulting grammar
and semantic actions look like. In section 3, we discuss the expressive power and
performance that can be expected from a library using our grammar model and
in sections 4 and 5, we discuss related work and offer a conclusion.

In this text, we rely on a set of Haskell extensions that is currently only
supported by the GHC Haskell compiler2. These are all well-accepted extensions
that do not make type-checking undecidable. Our library supports the use of
Template Haskell [6] for performing grammar transformations at compile-time
(but TH is not needed if you don’t use this).

2 An Explicitly Recursive Representation

2.1 Representing Non-terminals

We will model the set of non-terminals (the domain) as a “subkind” with proof
terms, using the technique employed by Yakushev et al. to model indices into a
set of mutually recursive data types in Multirec [7]. The GADT [8] φarith is a
“subkind” that represents the domain of our arithmetic expressions grammar:

data φarith ix where Line :: φarith Line
Expr :: φarith Expr
Term :: φarith Term
Factor :: φarith Factor
Digit :: φarith Digit

We use the previously defined AST types Line, Expr , Term, Factor and Digit
to represent the non-terminals at the type-level. The GADT [8] φarith defines,
for each non-terminal ix , a term of type φarith ix , serving as a proof that ix is
part of the domain φarith . With this “subkind” representation, we can express
that a function is polymorphic over precisely the five non-terminal types in the
domain, if it has type f :: ∀ ix . φ ix → . . . Note also that Haskell’s separation
between type and function name spaces allows the data constructor Expr and
the type Expr to share the same name.
2 TypeFamilies, GADTs, MultiParamTypeClasses, FunctionalDependencies, Flexible-

Contexts and RankNTypes.

Explicitly Recursive Grammar Combinators 89

Because our non-terminal identifiers (Line, Expr etc.) all have different types,
we can represent semantic values as a data family [9] over these types, associating
each non-terminal type with the type of its semantic value. We will refer to such
a family as a semantic value family. We define one such family for the φarith

domain, written ��value· .

data family ��value· ix
newtype instance ��value· Line = �·�valueLine Int
newtype instance ��value· Expr = �·�valueExpr Int
newtype instance ��value· Term = �·�valueTerm Int
newtype instance ��value· Factor = �·�valueFactor Int
newtype instance ��value· Digit = �·�valueDecimal Char

This semantic value family specifies that for each non-terminal an Int value is
kept (its calculated value), except for Digit , for which a character is kept.

2.2 Production Rules

We represent a grammar as a function mapping each non-terminal onto its
production rules. To construct these production rules, we use combinators
based on UUParse. We define them in type classes ProductionRule and
CharProductionRule, so that algorithms can implement them as they need to.

class ProductionRule p where
(>>>) :: p (a → b)→ p a → p b
(|||) :: p va → p va → p va
ε
[
·
]

:: a → p a
endOfInput :: p ()
die :: p a

class CharProductionRule p where
token :: Char → p Char

Many of the functions above correspond directly to functions in the standard
Applicative or Alternative type classes, but we avoid them for stylistic consis-
tency, because we want to avoid the (ω-regular style) some and many operators
in Alternative and for technical reasons related to a specific feature in our li-
brary (Template Haskell lifting of grammars). The >>> operator (corresponds
to �) represents sequencing of rules, applying the function result of the first
rule to the result of the second (idiomatic for an applicative parser combinator
style). The ||| operator (�) represents disjunction of parser rules, ε

[
v
]

(pure v)
represents a rule matching the empty string and returning v as the parse result.
The operator die (empty) returns a rule that always fails and endOfInput only
matches the end of the string being parsed, returning a unit value. The token
function in the CharProductionRule type class operator produces a rule that
matches a single character and returns it. In the grammar-combinators library,
a more complex version of the latter type class is used, that is polymorphic in
the token type.

90 D. Devriese and F. Piessens

We omit the definitions for shorthand operators $>>, >>>∗ and $>>∗, respectively
applying a given function to the result of a rule, ignoring a sequenced rule’s
result, and replacing a rule’s result with a given value.

2.3 A Different Take on Recursion

The crux to representing recursion properly in our grammars is the primitive
recursion construct 〈·〉, defined in the RecProductionRule type class below. The
expression 〈idx 〉 represents a recursive reference to non-terminal idx . Its result
type is defined as r ix , where r is the semantic value family carried around by the
production rule type p. The RecProductionRule class’s functional dependencies
φ and r will make sure that all rules in a grammar use the same domain and
have consistent type requirements for references.

class RecProductionRule p φ r | p → φ, p → r where
〈·〉 :: φ ix → p (r ix)

It is important to note that we do not define the 〈·〉 operator in a type class just
to add superficial polymorphism. On the contrary, it is this ability to overload
the 〈·〉 operator that will allow our algorithms to handle recursion in the way
they need to. Some algorithms will simply unfold the recursion completely, ef-
fectively reverting back to the ω-regular representation, but others will handle
the recursion in a fundamentally different way (e.g. limiting recursion depth,
printing a string “<...>” in a grammar printer).

2.4 Semantic Value Family Polymorphism

Semantic value families allow us to impose a consistent typing of production
rules in a grammar, but a remaining problem is that we do not actually want
to couple a grammar to a single semantic value family. For example, for our
arithmetic expressions grammar, we will further on define the calcArith set of
semantic actions (we will refer to such a set as a semantic processor), that
uses the ��value· family defined above to calculate the result of expressions as
they are recognized. Other useful semantic processors could transform the same
expressions into reverse polish notation, construct an AST or perform some
form of side effects in a Monad . We will improve the modularity of grammars
by decoupling them from their semantic processors.

As discussed in section 1.4, we do not want to solve this problem with the AST
as a mandatory intermediate representation for parse results, because it is not
memory efficient and limited to a top-down matching order. A better approach
uses (again) techniques from the Multirec generic programming library[7]. They
use a representation of mutually recursive data types as the fixed point of a
pattern functor to manipulate them in generic algorithms. The AST data types
shown previously are an example of such a family of mutually recursive data
types, and the following is its pattern functor:

Explicitly Recursive Grammar Combinators 91

data PFarith r ix where
SExprF :: r Expr → PFarith r Line
SumF :: r Expr → r Term → PFarith r Expr
STermF :: r Term → PFarith r Expr
ProductF :: r Term → r Factor → PFarith r Term
SFactorF :: r Factor → PFarith r Term
ParenF :: r Expr → PFarith r Factor
NumberF :: [r Digit] → PFarith r Factor
MkDigitF :: Char → PFarith r Digit

type instance PF φarith = PFarith

The GADT PFarith defines constructors analogous to the constructors of our
AST data types, but recursive positions of type ix are replaced with values r ix of
the argument semantic value family r . As such, the semantic value family r plays
the role of a subtree representation functor (our terminology), defining what
values to keep for subtrees of AST nodes. Pattern functor values are tagged with
the AST node type they represent. The type family instance registers PFarith as
the pattern functor for domain φarith .

Like for simply recursive types, data types isomorphic to our original AST
data types can be recovered from this pattern functor by taking its fixed point
using a type-level fixpoint combinator HFix . But the pattern functor also allows
to do more with the AST values. Yakushev et al. demonstrate how to go back
and forth between a type ix in a domain φ and its one-level unfolding of type
PF φ I∗ ix (where I∗ is a wrapping identity functor: I∗ ix ∼ ix). For our example,
they could convert a value of the AST type Expr into an unfolded value of type
PFarith I∗ Expr , exposing the top-level of its structure (similar, if you will, to the
unfold operation for iso-recursive types [10, pp. 276-277]). Generic operations on
instances of the pattern functor then allow them to implement various general-
purpose generic algorithms. All of this gives an impressive, elegant and powerful
generic programming machinery, but for our purposes, it is actually more useful
to work with the pattern functor in a different way.

A powerful feature of the pattern functor is in fact the abstraction of the sub-
tree representation functor r , allowing subtrees to be represented differently than
as full subtrees. If we take our semantic value family ��value· as this subtree repre-
sentation functor (instead of the wrapping identity functor I∗), then subtrees in
the one-level unfolding of an AST are represented just by their calculated value
(instead of a full sub-AST). For example, the value (SumF �15�valueExpr �3�valueTerm) of
type (PFarith ��value· Expr) represents an Expr value, constructed as the sum of
another Expr and a Term, where we only know that the value of the left hand
side Expr is 15 and the right hand side Term has value 3. In general, the pattern
functor PFarith allows us to represent an AST where subtrees have already been
processed into a semantic value, and this turns out to be precisely the vehicle we
need for modelling the collaboration between a grammar, a parsing algorithm
and a semantic processor.

Let us consider production rule Expr → Expr ‘+’Term as an example. Figure 1
shows a graphical illustration of this collaboration (for a semantic processor

92 D. Devriese and F. Piessens

· · · Expr

Expr · · ·
’+’ · · ·

Term · · ·

r Expr

Char

r Term

(a) Parser.

· · · Expr

Expr · · ·
’+’ · · ·

Term · · ·

r Expr

Char

r Term

PFarith r Expr

SumF

(b) Grammar.

· · · Expr

Expr · · ·
’+’ · · ·

Term · · ·

r Expr

Char

r Term

PFarith r Expr

r Expr

(c) Semantic Processor.

Fig. 1. A graphical representation of the collaboration between parser, grammar and

semantic processor, using φarith ’s pattern functor over a semantic value family r as an

intermediate representation

working with a semantic value family r). In Figure 1a, the parser has matched the
right-hand side elements of the production rule and has obtained their semantic
values, typed r Expr , Char and r Term . In 1b, the grammar specifies how to
combine these three values to the top of an AST, constructing a value of type
PFarith r Expr . For this production rule, the SumF constructor is used, throwing
away the parse result for token ’+’. Note that the grammar does not know
anything about semantic value family r . In Figure 1c, the semantic processor
accepts the constructed PFarith r Expr value, calculates the combined semantic
value and returns a processed value of type r Expr to the parser for use in
subsequent matches. Note that nothing here assumes a top-down matching order.

2.5 So What Do We Get?

With all of this, the machinery for our context-free grammar combinators is in
place, and we can define our running example grammar as follows:

type ExtendedContextFreeGrammar φ = ∀ p r ix . (ProductionRule p,
CharProductionRule p,RecProductionRule p φ r ,
LoopProductionRule p φ r) ⇒ φ ix → p (PF φ r ix)

grammarArith :: ExtendedContextFreeGrammar φarith

grammarArith Line = SExprF $>> 〈Expr〉>>>∗ endOfInput
grammarArith Expr = STermF $>> 〈Term〉

||| SumF $>> 〈Expr〉>>>∗ token ’+’ >>> 〈Term〉
grammarArith Term = SFactorF $>> 〈Factor〉

||| ProductF $>> 〈Term〉>>>∗ token ’*’>>> 〈Factor 〉
grammarArith Factor = NumberF $>> 〈Digit〉+

||| ParenF $>>∗ token ’(’>>> 〈Expr〉>>>∗ token ’)’
grammarArith Digit = MkDigitF $>> tokenRange [’0’ . .’9’]

Explicitly Recursive Grammar Combinators 93

We first define a general ExtendedContextFreeGrammar type synonym, express-
ing that an extended context-free grammar is a function returning a production
rule for every non-terminal. The ∀ · quantification expresses that it must be de-
fined for any production rule interpretation type p supporting the context-free
grammar operations of type classes ProductionRule, CharProductionRule and
RecProductionRule, and a type class LoopProductionRule that we have not en-
countered yet. It must also work with any semantic value family r , producing
values of the pattern functor PF φ with r as the subtree representation type.

Our grammar grammarArith is typed ExtendedContextFreeGrammar φarith ,
neatly expressing exactly what it is: an extended context-free grammar for the
domain φarith . The production rules are defined using combinators we saw be-
fore, and values of PFarith r are produced using the pattern functor’s con-
structors. The one thing we have not yet discussed is the use of 〈Digit〉+ in
the production rule for Factor , representing one or more times the Digit non-
terminal. The 〈·〉+ operator (and its companion 〈·〉∗) is defined in the type class
LoopProductionRule, and it is the use of this class that makes the grammar an
extended context-free grammar. One of the algorithms we discuss in our techni-
cal report [11] automates the standard translation of such an extended grammar
into a grammar using only normal references over an enlarged domain.

Stylistically, the pattern functor constructors end up at the beginning of each
production rule, giving a nice visual tagging of the rules, and defining for each
production rule what kind of AST node it corresponds with. The shorthand
operators >>>∗ and $>>∗ allow us to indicate that the result of their right-hand
side rules are not significant for the construction of the AST without distracting
attention from the grammar. Note finally that this grammar is closer to the
original grammar than the UUParse version on page 85, because we have done
nothing to remove left recursion from the grammar and because semantics are
kept separate from the grammar definition.

Our semantic processors become remarkably similar to syntax-directed defi-
nitions traditionally used with parser generators [1, pp. 303–323]:

type Processor φ r = ∀ ix . φ ix → PF φ r ix → r ix
calcArith :: Processor φarith ��value·
calcArith Line (SExprF �e�valueExpr) = �e�valueLine

calcArith Expr (SumF �e�valueExpr �t�valueTerm) = �e + t�valueExpr

calcArith Expr (STermF �t�valueTerm) = �t�valueExpr

calcArith Term (ProductF �e�valueTerm �t�valueFactor) = �e ∗ t�valueTerm

calcArith Term (SFactorF �t�valueFactor) = �t�valueTerm

calcArith Factor (ParenF �e�valueExpr) = �e�valueFactor

calcArith Factor (NumberF ds)
= �read $ map (λ�d�valueDecimal → d) ds�valueFactor

calcArith Digit (MkDigitF c) = �c�valueDecimal

This processor implements the direct calculation of Int values for subexpres-
sions that we have previously described. Note its type Processor φarith ��value· ,

94 D. Devriese and F. Piessens

expressing that it is a processor for domain φarith , producing semantic values of
family ��value· . Like in traditional parser combinator libraries, a semantic proces-
sor can also produce side effects, simply by working with monadic calculations
as semantic values instead of simple values.

Another example of a semantic processor, for which we do not need to provide
any code, can be found in Yakushev et al.’s Multirec paper [7]. They define a
function to :: φ ix → PF φ I∗ ix → ix in the Fam type class, transforming a
single-level unfolding of an AST (as described earlier) back into the traditional
AST data type. Serendipitously, composing to with the I∗ constructor yields a
ready-to-use and important semantic processor for our grammars. The function
(I∗ .) . to (applying I∗ to the result of applying to to two arguments) is precisely
the semantic processor that produces a wrapped version of the AST as its se-
mantic value. This elegant correspondence illustrates that our use of Multirec
pattern functors to abstract semantic actions is a natural and powerful fit.

3 The Proof of the Pudding

3.1 Features

A grammar representation can only ever be as useful as the algorithms that it
supports. Because of space constraints, we discuss the implementation of three
important grammar algorithms in an accompanying technical report [11]:

printGrammar . Pretty-print a grammar definition in an (E)BNF like notation.
foldLoops . Perform the standard translation of an extended context-free gram-

mar to a normal context-free grammar over an enlarged domain.
transformLeftCorner . Apply the left-corner transform [12] to convert a

left-recursive grammar to an equivalent non-left-recursive grammar. Con-
trary to other work, our implementation of the transformation uses a func-
tional style.

Furthermore, we have implemented an elaborate grammar analysis, transfor-
mation and parsing Haskell library called grammar-combinators, that is freely
available online. This library is designed as a collection of independently us-
able, purely functional grammar algorithms that together form a comprehensive
grammar library. The library provides various features that, to the best of our
knowledge, are unavailable in any existing parser EDSL library.

Some practical features are a powerful transformation library (including the
left-corner transform and a uniform version of Paull’s left-recursion removal [1,
p. 177], support for performing grammar transformations at compile time using
Template Haskell [6]), a packrat parser [13] and basic compatibility components
for UUParse[4] and Parsec[14].

A lot of interesting work remains to be done using the grammar-combinators
library. It is published as an open source (GNU LGPL) library in the hope to
attract people interested in parsing practice and/or EDSLs, both from research
and practical perspectives. In the accompanying technical report [11], we dis-
cuss some ideas for future work (e.g. automatic inference of branches requiring

Explicitly Recursive Grammar Combinators 95

backtracking for Parsec, checking LL(*)-ness and absence of left-recursion in
grammars, penalty-based error handling for interactive scenario’s).

3.2 Limitations

Defining the domain, pattern functor, semantic value family (families) and se-
mantic processors for a grammar adds complexity, abstraction, and some extra
work. On top of that, some limitations need to be taken into account.

A compelling feature of parser combinators that we have not looked at, is the
ease with which you can combine unrelated parsers into new ones. We require
a full view of grammars, and this makes us lose the simple compositionality of
parser combinators. We think a grammar combination primitive can be intro-
duced to partly recover this, but this remains future work.

Another limitation is that the added abstraction inevitably has a performance
cost. In some initial tests, we have effectively noticed an important performance
impact, even though general optimizations for generic code [15] seem to reduce it
considerably. Performing grammar transformations at compile-time using Tem-
plate Haskell limited the performance impact further. A more detailed perfor-
mance analysis remains future work.

4 Related Work

For background material on context-free grammars, parsing and grammar trans-
formations, we refer to Aho, Sethi and Ullman [1].

4.1 Parser Combinators

Parser combinators have a long history (see Leijen and Meijer [14] for references),
but most work employs an ω-regular representation of grammars, with the asso-
ciated downsides that we have discussed in section 1. Here, we limit ourselves to
work that uses a representation of grammars in which recursion is observable.

TTTAS. Baars and Swierstra [16] (previous work [17]) implement the left-
corner grammar transform [12] using type-level natural numbers as the repre-
sentation of non-terminals. They ensure type-safety using a type environment
encoded as a list of types. They propose a transformation library based on the
arrows abstraction, which they use essentially for the generation of fresh type-
level identifiers. Like ours, their grammar representation explicitly represents
the grammar’s recursion in a well-typed way and allows them to implement the
left-corner transform and support left-recursive grammars.

Nevertheless, we believe our work provides significant improvements over
theirs. Our representation of non-terminals as a “subkind with proof terms”
[7] and type environments as data families is much less complex. We provide se-
mantic value family polymorphism, which they do not. Contrary to their stateful
Trafo transformation arrows, our grammar transformations do not require fresh
non-terminal identifiers and feature a purely functional style [11].

96 D. Devriese and F. Piessens

Furthermore, Baars and Swierstra’s grammars seem designed for compiler-
generation in Viera et al.’s alternative for the standard Haskell read -function [18]
and they are less easily human-readable than our grammars. Finally, Baars and
Swierstra only discuss an implementation of the left-corner grammar transform,
while we show the importance of our approach for a wider parsing library and
discuss implementations of a variety of useful algorithms for grammar analysis,
transformation and parsing [11].

Dependently typed parser combinators. Brink, Holdermans and Löh de-
scribe a dependently typed parser combinator library [19], implemented in the
Agda programming language [20]. Agda’s dependently typed nature simplifies
the requirements on the representation of non-terminals (types of production
rules can more simply depend on non-terminals). They implement the left-corner
transformation in their formalism, and provide a machine-checkable proof of a
language-inclusion property for the transformation.

The proof of correctness properties beyond type-safety is out of range in a
language like Haskell and we think that Brink et al.’s provably correct grammar
transformation shows that dependently typed functional programming is the way
of the future, fulfilling old promises of practical provably correct programming.
When looking at the modelling of grammars however, our model does provide
some advantages over theirs, such as a nicer syntax for grammars and semantic
value polymorphism.

4.2 Squiggolist Attribute Grammars

Our modelling of semantic processors (see section 2.5) is related to Fokkinga et
al.’s account of attribute grammars as catamorphisms [21]. The functor F they
define corresponds to our pattern functors PF φ, but we do not need their third
simplifying assumption (all non-terminals have the same semantic value) because
of our use of Multirec. Their production and evaluation rule labels correspond
(even visually) to AST pattern functor constructors in our model, which is a
more meaningful concept. The main difference is that we do not model general
attribute grammars with both upward and downward information flow, but only
allow upward information flow (resulting in so-called S-attributed grammars),
making our processors independent from a matching order.

4.3 Observable Sharing

Observing recursion in recursively defined values is sometimes referred to as
“observable sharing”. It is an open problem how this can be done in general in
functional languages like Haskell. Several solutions have been explored, ranging
from observing sharing within the IO monad [22] to adding referential identity
as a fundamental language feature [23]. Our solution does not provide observable
sharing for Haskell code but instead models the recursion in the parsing EDSL
with a representation that is observable in Haskell. We think our approach is a
compelling alternative for many of the applications of observable sharing.

Explicitly Recursive Grammar Combinators 97

4.4 Finally Tagless DSLs

Finally, our work is related to Carette, Kiselyov and Shan’s tagless modelling
of a typed object-language in a typed meta-language, in two interesting ways.
First, if we look at our grammar definitions as expressions in a typed ob-
ject language, then our ProductionRule and CharProductionRule type classes
correspond directly to their final tagless model. From this point of view, our
RecProductionRule type class improves upon their work by extending the fi-
nal tagless model in a type-safe way to support meta-language-observable re-
cursion in the object language. This extension achieves most of the benefits
of their representation except that it depends on GADTs which they try to
avoid.

On the other hand, if we consider the AST as the representation of an ex-
pression in an embedded typed object language, we see that the semantics of
our grammars could also be expressed using a final tagless representations. In
this model, the call to the SumF pattern functor constructor in the grammar
would for example be replaced by a call to a sum function in a grammar-specific
ArithSemantics type class. Such a final tagless encoding is more extensible than
a standard encoding using GADTs, but our representation using the Multirec
pattern functor features this extensibility as well (because the pattern functor
is parametric in the representation of recursive sub-data). Additionally, it offers
some benefits of its own that seem unavailable in a finally tagless style (e.g.
supports generic algorithms using MultiRec [7]).

5 Conclusion

In summary, in this paper we make the following contributions:

– We discuss the fundamental limitations of the “ω-regular” grammar model
used by current parser combinator libraries and argue for a richer model.

– We propose one novel such richer context-free grammar model, featuring type
safety, referential transparency, natural grammar and semantic processor
definitions and memory efficient semantic value family polymorphism.

– We discuss evidence that (contrarily to current parser combinator models)
our representation supports a wide range of grammar algorithms, referring
to an accompanying technical report and the implementation in our freely
available grammar-combinators library.

Acknowledgements. This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund K.U.Leuven. Dominique Devriese holds a Ph. D. fellowship of
the Research Foundation - Flanders (FWO). We thank Arie Middelkoop, Tom
Schrijvers, Adriaan Moors, Doaitse Swierstra and the anonymous reviewers for
their comments.

98 D. Devriese and F. Piessens

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques

and Tools, 2nd edn. Addison-Wesley, Reading (2006)

2. Johnson, S.C.: YACC. Unix Programmer’s Manual 2b (1979)

3. Parr, T., Quong, R.: ANTLR: A predicated-LL(k) parser generator. Software: Prac-

tice and Experience 25(7), 789–810 (1995)

4. Swierstra, S., Duponcheel, L.: Deterministic, error-correcting combinator parsers.

In: Advanced Functional Programming, pp. 184–207 (1996)

5. Sabry, A.: What is a purely functional language? JFP 8(1), 1–22 (1998)

6. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. SIGPLAN

Notices 37(12), 75 (2002)

7. Yakushev, A., Holdermans, S., Löh, A., Jeuring, J.: Generic programming with

fixed points for mutually recursive datatypes. In: ICFP, pp. 233–244 (2009)

8. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-

based type inference for GADTs. In: ICFP, pp. 61 (2006)

9. Schrijvers, T., Peyton Jones, S., Chakravarty, M., Sulzmann, M.: Type checking

with open type functions. In: ICFP, pp. 51–62 (2008)

10. Pierce, B.: Types and programming languages. MIT Press, Cambridge (2002)

11. Devriese, D., Piessens, F.: Explicitly recursive grammar combinators - Implemen-

tion of some grammar algorithms. Technical Report CW594, KULeuven CS (2010)

12. Moore, R.: Removing left recursion from context-free grammars. In: NAACL,

pp. 249–255 (2000)

13. Ford, B.: Packrat parsing: simple, powerful, lazy, linear time - functional pearl. In:

ICFP, pp. 36–47 (2002)

14. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the real

world. Technical Report UU-CS-2001-27, Universiteit Utrecht CS (2001)

15. Magalhaes, J., Holdermans, S., Jeuring, J., Löh, A.: Optimizing generics is easy!

In: Workshop on Partial Evaluation and Program Manipulation, pp. 33–42 (2010)

16. Baars, A., Swierstra, S., Viera, M.: Typed transformations of typed abstract

syntax. In: TLDI, pp. 15–26 (2009)

17. Baars, A., Swierstra, S.: Type-safe, self inspecting code. In: HASKELL (2004)

18. Viera, M., Swierstra, S., Lempsink, E.: Haskell, do you read me? constructing and

composing efficient top-down parsers at runtime. In: HASKELL, pp. 63–74 (2008)

19. Brink, K., Holdermans, S., Löh, A.: Dependently typed grammars. In: Bolduc, C.,

Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 58–79. Springer,

Heidelberg (2010)

20. Norell, U.: Towards a practical programming language based on dependent type

theory. PhD thesis, Chalmers University of Technology (2007)

21. Fokkinga, M., Jeuring, J., Meertens, L., Meijer, E.: A translation from attribute

grammars to catamorphisms. The Squiggolist 2(1), 20–26 (1991)

22. Gill, A.: Type-safe observable sharing in Haskell. In: Haskell, pp. 117–128 (2009)

23. Claessen, K., Sands, D.: Observable sharing for functional circuit description.

In: Thiagarajan, P.S., Yap, R.H.C. (eds.) ASIAN 1999. LNCS, vol. 1742, p. 62.

Springer, Heidelberg (1999)

Declarative Belief Set Merging Using Merging Plans�

Christoph Redl, Thomas Eiter, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{redl,eiter,tkren}@kr.tuwien.ac.at

Abstract. We present a declarative framework for belief set merging tasks over
(possibly heterogeneous) knowledge bases, where belief sets are sets of literals.
The framework is designed generically for flexible deployment to a range of ap-
plications, and allows to specify complex merging tasks in tree-structured merg-
ing plans, whose leaves are the possible belief sets of the knowledge bases that
are processed using merging operators. A prototype is implemented in MELD
(MErging Library for Dlvhex) on top of the dlvhex system for HEX-programs,
which are nonmonotonic logic programs with access to external sources. Plans
in the task description language allow to formulate different conflict resolution
strategies, and by shared object libraries, the user may also develop and integrate
her own merging operators. MELD supports rapid prototyping of merging tasks,
providing a computational backbone such that users can focus on operator op-
timization and evaluation, and on experimenting with merging strategies; this is
particularly useful if a best merging operator or strategy is not known. Exam-
ple applications are combining multiple decision diagrams (e.g., in biomedicine),
judgment aggregation in social choice theory, and ontology merging.

1 Introduction

Merging knowledge from multiple knowledge bases has gained increasing attention
over the years, given that more and more knowledge from (possibly heterogeneous)
different sources must be combined into a coherent view. As knowledge bases are asso-
ciated with sets of beliefs, i.e., statements an agent believes to be true (which need not
to be the case), in particular merging the belief sets of knowledge bases into a single
belief set is an issue. This problem has been widely studied, and there are many dif-
ferent approaches, e.g., [10]; for an introduction and a distinction from belief revision,
see [11].

Roughly, the merging approaches fall into two classes. The one class adheres to base-
oriented, syntactic strategies where the result of merging is a knowledge base, such that
its belief sets are the merged belief sets (e.g., [8]). The other class performs merging at
the semantic level, i.e., at the level of models of the knowledge bases, and aims to con-
struct a merged set of models with associated syntactic belief sets (e.g., [13,16]). Sev-
eral approaches are based on measuring distances between models resp. formulas [9];
however, appropriate distance functions are usually application dependent.

� Support: Austrian Science Fund P20841 and Vienna Science and Technology Fund ICT
08-020.

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 99–114, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

100 C. Redl, T. Eiter, and T. Krennwallner

Apparently there is no single approach which is superior to all others in arbitrary sce-
narios and applications. Lack of domain knowledge may make it very hard to predict
which choice will work out best. It is then reasonable, or also necessary, to experiment
with various choices and to evaluate the results empirically. Furthermore, it may be nec-
essary to combine different merging operators, taking the specific needs and criteria of
some of the knowledge bases into account. However, despite many theoretical frame-
works for belief merging, support for merging in practice is scarce, and the user has the
burden to develop merging procedures and implement a workflow (e.g. perform syn-
tactic alignment of the knowledge bases, apply a binary merging operator repeatedly,
etc), as well as to cope with issues of heterogeneity. Changes for experimenting with
different operators and workflows are cumbersome and require major efforts.

To alleviate this problem, we have developed a practical framework for belief set
merging. It allows the declarative specification of a merging task in a formaland machine-
readable way, using merging plans in a dedicated language. Application-dependent
parts of the specification are defined by the user, i.e., the application developer, while
routine tasks are managed by our framework. To encompass wide applicability, the
framework is generically based on beliefs that are literals, i.e., possibly negated atomic
formulas, following the semantic direction; via suitable encodings and operators, also
sources with non-logical content may be handled (e.g., decision diagrams as we show).

Our main contributions are briefly summarized as follows.

• We define a simple, generic framework for belief set merging tasks where belief sets
are sets of ground literals in predicate logic; they may also be viewed as models of
the knowledge bases, which are sets of formulas (we will use the term belief bases
synonymously) (Section 2). We provide the formal syntax and semantics of merging
plans in a dedicated merging task language (Section 3). A merging plan is, like an
arithmetic expression, a hierarchical arrangement of merging operators of arity n ≥
1 which describe how to merge n sets of belief sets into a single one; allowing n = 1
is convenient to accommodate also transformations (conversion, data cleaning, etc.)
on sets of belief sets. An operator is either applied on merging sub-plans, i.e., the
result of previous operator applications, or on the input knowledge bases.

• We have implemented the formal framework in the MELD system (MErging Library
for Dlvhex) [14] (Section 4), which has been developed as plugin for the dlvhex
reasoner.1 The systems allows the automatic evaluation of merging plans written in
our merging language, i.e., the computation of the merged belief sets according to the
merging plans. MELD is based on HEX-programs [5], which are non-monotonic logic
programs that allow to access external sources (for our concerns, knowledge bases
at an extensional level). In fact, we extended HEX-programs to nested HEX-programs
that allow to evaluate HEX-programs and access the resulting models as first class
citizens; such an extension is novel and of independent interest for non-monotonic
logic programs in general. Via abstract interfacing, also merging of heterogeneous
knowledge bases can be handled in a flexible way.

• To explore the usefulness of the approach, we have considered various applications,
which currently include decision diagram merging in life sciences (e.g., for DNA
classification or screening tests), judgment aggregation, and merging of knowledge

1 www.kr.tuwien.ac.at/research/systems/dlvhex/mergingplugin.html

www.kr.tuwien.ac.at/research/systems/dlvhex/mergingplugin.html

Declarative Belief Set Merging Using Merging Plans 101

bases in the Semantic Web (Section 6). We focus here on decision diagrams, which
are encoded to belief sets via a natural encoding into a factual representation. The
support for rapid prototyping and experimenting with merging scenarios could be
fruitfully exploited to arrive for real-world data at a merging result that outperforms
other results, and could have hardly been obtained without automated support.

To our knowledge, no comparable framework for belief merging in practice exists.
MELD aims at providing a user-friendly interface for rapid prototyping of belief set
merging tasks with large flexibility, such that the application developer can focus on the
selection, optimization, and workflow of the merging strategy. The merging operators
can be selected from a predefined library or defined by the user, using a simple plugin
interface. We believe implementations of our framework like MELD will greatly alle-
viate to determine the right merging strategy in prototyping for a range of applications.

2 Preliminaries

We consider merging of belief sets that are close to model-based semantics of classical
logic, in a finite setting. In our view, we abstract from a concrete language for knowl-
edge bases and identify the latter with associated sets of belief sets. In this context, the
term belief bases is used as a synonym for knowledge bases. To formulate beliefs, we
assume a signature Σ = (Σc, Σp) of a set Σc of constant symbols and a set Σp of
predicate symbols of arity ≥ 0. For practical concerns, Σ is finite.

Definition 1. A belief is an atomic formula p(c1, . . . , cn) or negated atomic formula
¬p(c1, . . . , cn) (i.e., a literal) over Σ. The set of all beliefs over Σ is denoted by LitΣ

(i.e., the set of all literals over Σ). A belief set is a set B ⊆ LitΣ of literals. The set of
all belief sets is denoted by A(Σ) = 2LitΣ .

The semantic abstraction of knowledge bases is then as follows.

Definition 2. Given a knowledge base KB (in some language), it has associated belief
sets BS (KB) ⊆ A(Σ).

Intuitively, each belief set B ∈ BS (KB) coherently collects conclusions from the
knowledge base. There might be different possibilities, e.g., in a model-based view,
or as common in non-monotonic logics. The following examples illustrate this.

Example 1. Consider the knowledge base KB = {dog(sue) ∨ cat(sue), male(sue)}
in classical logic. Adopting as belief sets the maximal sets of literals consistent with KB
(i.e., the Herbrand models of KB), we have BS (KB) = { {dog(sue), ¬cat(sue),
male(sue)}, {¬dog(sue), cat(sue), male(sue)} }. Alternatively, if a belief set con-
sists of all classically entailed literals, we obtain BS (KB) = { {male(sue)} }.

Example 2. Consider the logic program P = {dog(sue) ∨ cat(sue)., eat fish(X) ←
cat(X), notabnormal (X).}. Adopting as belief sets the answer sets AS(P) of this
program [7], we obtain BS (P) = AS (P) = {{dog(sue)}, {cat(sue), eat fish(sue)}}.

102 C. Redl, T. Eiter, and T. Krennwallner

While we abstract from concrete languages, it will be convenient to refer with KBΣ to
the implicitly defined signature of BS (KB).

HEX-programs. Our implementation employs HEX-programs [5], which consist of
rules

a1 ∨ · · · ∨ an ← b1, . . . , bm, not bm+1, . . . , not bn,

where each ai is a classical literal and each bj is either a classical literal or an exter-
nal literal of the form &p[q1, . . . , qk](t1, . . . , tl), where p is the name of an external
predicate, the qi are predicate names, and the tj are terms;2 intuitively, p is evaluated
externally, where the value of q1, . . . , qk is passed as input. The atom succeeds for vari-
able binding if the external evaluation succeeds. Via such atoms, in particular abstract
belief set computation is conveniently facilitated, also across the Web.

Example 3. Suppose an external knowledge base consists of an RDF file located on the
web at “http:// . . . /data.rdf .” Using an external atom &rdf [< url >](X, Y, Z), we
may access all RDF triples (s, p, o) at the URL specified with <url >. To form belief
sets of pairs that drop the third argument from RDF triples, we may use the rule

bel(X, Y)← &rdf [“http:// . . . /data.rdf”](X, Y, Z).

The semantics of HEX-programs generalizes the answer set semantics of logic pro-
grams [7], but we omit a further account (as it is less relevant) and refer to [5,6] for
background and details. For execution, we use the dlvhex system [6], which imple-
ments HEX-programs providing a plugin mechanism for library and user defined exter-
nal atoms.

3 Belief Set Merging Using Merging Plans

We now develop our formal framework for merging belief sets, which introduces merg-
ing plans and merging tasks. In the following, we suppose to have a collection KB =
KB1, . . . ,KBn of knowledge bases with associated sets of belief sets BS (KB1), . . . ,
BS (KBn). For illustration, we use logic programs under answer set semantics.

Recall that we aim at merging the belief sets BS (KB i) as such, rather than the
underlying knowledge bases KB i. This may be necessary if the knowledge base access
is limited, for instance in the Web context. There also frequently the source formats may
be not aligned, such that beliefs and belief sets are similar but not identical. Possible
mismatches have to be overcome and conflicts resolved.

A closer look at the problem reveals that two basic types of mismatches need atten-
tion, viz. language (syntactic) incompatibilities and logical inconsistencies.

Syntactic Incompatibilities. A first problem is that the belief sets may use differ-
ent vocabularies to encode the same information. For example, the programs P1 =
{degree(john , “MSc”) ←} and P2 = {deg(john , “Master of Science”) ←} have a
single answer set with a single fact encoding the same information, but syntactically
their answer sets are different. The problem may concern constants or predicate names.

2 Strictly, [5] considers only positive literals but the extension to negative literals is trivial; fur-
thermore, [5], also allows variables for predicate names which we do not need.

Declarative Belief Set Merging Using Merging Plans 103

We resolve this problem by introducing a so called common signature, which acts as
a vocabulary shared by all sources, and applying mapping functions.

The common signature ΣC = (ΣC
c , ΣC

p) is a signature which suffices to define
mappings from the collections of belief sets BS (KB i) over ΣKBi to new collections
of belief sets B′

i over ΣC , such that B′
i = B′

j if and only if the user considers B′
i

and B′
j to represent equivalent information, with respect to the application in mind.

A belief set conversion is then a function μi : 2A(ΣKBi) → 2A(ΣC). Informally, μi

maps the semantics of KB i, expressed in the signature ΣKBi , to a semantics in the
common signature ΣC . The mapping has to provided by the user, who must ensure that
converted sets of belief sets are identical only if she wishes them to be treated the same
for merging.

Continuing our previous example, suitable mapping functions are

μ1(B) = B,

μ2(B) = {{degree(X, “MSc”) | deg(X, “Master of Science”) ∈ B}∪
{degree(X, Y) | deg(X, Y) ∈ B, Y �= “Master of Science”} | B ∈ B};

i.e., the belief sets of P1 are unchanged while all occurrences of “Master of Science”
in the belief sets of P2 are changed to “MSc”, and predicate deg is changed to degree .

The above notion of conversion is very general, but as in the example, often simple
modular conversions at the level of belief sets (μi(B) =

⋃
B∈B μ′

i(B)) or even at the
level of atoms (μ′

i(B) = {τi(b) | b ∈ B}), for instance by mapping ΣKBi via τi to ΣC)
may be used. More involved mappings may exploit schema matching and alignment (if
possible), which however we omit here. After the mappings have been applied, we can
safely assume that all sources are given over the same vocabulary.

Logical Inconsistencies. The second and more complicated type of conflicts concerns
logical mismatches. While syntactic incompatibilities could be resolved by translating
each source independently into the common language, logical inconsistencies only ap-
pear when multiple belief sets with contradicting contents are united.

We abstractly model application-dependent integrity constraints on sets of belief
sets B as a set C ⊆ 2A(ΣC), such that B ⊆ A(ΣC) satisfies the integrity constraints
iff B ∈ C. Then, collections B1,B2 ⊆ A(ΣC) of belief sets over the common signa-
ture ΣC violate the constraints (i.e., are inconsistent) iff (B1 ∪ B2) �∈ C.

The resolution of such inconsistencies is only possible during the incorporation of
the sources. For this purpose we introduce the concept of merging operators.

Definition 3. An n-ary operator with parameters fromD1, . . . ,Dm, m≥0, is a function

◦n,m :
(
2A(ΣC)

)n

︸ ︷︷ ︸
collections of belief sets

× D1 × . . .×Dm︸ ︷︷ ︸
additional parameters

→ 2A(ΣC) .

The first n arguments are the collections of belief sets the operator is applied on. We
assume that they have already been mapped to the common signature by applying the
functions μi. The other m arguments over arbitrary domains Di (like integers, enum
types or strings) may provide additional information to control the behavior of the op-
erator, e.g., by guiding it in special cases. The result of the operator is a further set of
belief sets over the common signature ΣC .

104 C. Redl, T. Eiter, and T. Krennwallner

◦2\

◦3∪

◦1¬

μ1(P1)

μ2(P2) μ3(P3)

◦2∪

μ4(P4) μ4(P4)

Fig. 1. Merging plan

Example 4. The naive union operator, which has no parameter (m = 0), is defined as

◦2,0
∪ (B1,B2) = {B1 ∪B2 | B1 ∈ B1, B2 ∈ B2, �A : {A,¬A} ⊆ (B1 ∪B2)} ,

where the parameters B1 and B2 are sets of belief sets. The operator unions the belief
sets of both sources pairwise, where classically inconsistent pairs are skipped.

If this operator is applied on the belief sets of the programs P1 = {p ∨ ¬p ← ; q ←}
and P2 = {p ∨ r ← ; s ←} under the answer set semantics, the result is

◦2,0
∪ (AS (P1),AS(P2)) = {{p, q, s}, {p, q, r, s}, {¬p, q, r, s}} .

The belief sets of the knowledge bases are AS(P1) = {{p, q}, {¬p, q}} and AS(P2) =
{{p, s}, {r, s}}. This yields four pairs B1 ∪B2; one is inconsistent and thus skipped.

3.1 Merging Plans and Tasks

The result of an operator could be input to a further operator, similar as sub-expressions
and numbers in complex arithmetic expressions. This leads to a hierarchical tree-
structure with the converted belief sets μi(BS (KB i)) at the leaf nodes, and merging
operators at the inner nodes. We call such a structure a merging plan, formally defined
next.

Definition 4. The setMKB ,Ω of merging plans over knowledge bases KB = KB1, . . . ,
KBn and a set Ω = {◦1, . . . , ◦n} of operators is the smallest set such that

(i) each M ∈ KB , called atomic merging plan, is inMKB,Ω;
(ii) if ◦n,m

i ∈ Ω, sj ∈ MKB ,Ω and ak ∈ Di for 1 ≤ j ≤ n, 1 ≤ k ≤ m, then
(◦n,m

i , s1, . . . , sn, a1, . . . , am) ∈MKB,Ω .

Example 5. Fig. 1 shows a graphical representation of a merging plan over logic pro-
grams P1, . . . , P5 with primitive merging operators of different arities. It informally
computes the negation of P1 using the unary operator ◦1¬, and unions this with P2

and P3 (using a ternary version of the operator). It then subtracts from this the union
of P4 and P5, using set difference. The formal expression for this merging plan is

M = (◦2\, (◦3∪, (◦1¬, P1), P2, P3), (◦2∪, P4, P5)).

With merging plans available, we now formalize merging tasks.

Declarative Belief Set Merging Using Merging Plans 105

Definition 5. A merging task is a quintuple T = 〈KB , ΣC , μ, Ω, M〉, where KB =
KB1, . . . ,KBn are knowledge bases, ΣC is a common signature, μ = μ1, . . . , μn are
belief set conversions μi : 2A(ΣKBi) → 2A(ΣC), Ω is a set of operators, and M ∈
MKB,Ω is a merging plan over KB and Ω.

The set of merging operators Ω is the only component that is, even though it is part
of the formal task definition, usually not specific for a certain merging task in practice.
It rather consists of approved operators which are probably useful in many different
scenarios. The knowledge bases KB will mostly exist before merging is planned and
are often provided by third parties. The components ΣC , μi and M must be defined by
the user as part of he merging scenario formalization.

Using our previous definitions, we define the outcome of a merging task next.

Definition 6. The result of a merging task T = 〈KB , ΣC , μ, Ω, M〉, denoted as [[T]],
is

[[T]] =

{
[μi(BS(M))]ΣC

p
, if M ∈ KB ,

[◦n,m([[T1]], . . . , [[Tn]], a1, . . . , am)]ΣC
p

, if M = (◦n,m, s1, . . . , sn, a1, . . . , am),

where [B]ΣC
p

= {{p(a1, . . . , an) ∈ BS | p = (¬)p′, p′ ∈ ΣC
p } | BS ∈ B} denotes

the projection of B to the atoms over ΣC
p , and Ti = 〈KB , ΣC , μ, Ω, si〉, 1 ≤ i ≤ n.

Informally, if M is an atomic merging plan (i.e., a knowledge base), then it can be
evaluated directly and the result is just the associated set of belief sets, mapped to the
common signature. Otherwise, M contains at least one operator application, and the
result is the one of the topmost operator, applied on the results of the merging sub-
plans.

Example 6 (cont’d). Let M be the merging plan from Example 5 and consider programs

P1 = {a., b.}, P2 = {x., y.}, P3 = {¬a., c.}, P4 = {a., x.}, P5 = {c., x., y.}
that consist only of facts (rules p ←, omitting ←). The complete merging task is T =〈
{P1, . . . , P5}, ΣC , μid, Ω, M

〉
, where the common signature contains the proposi-

tional (0-ary) atoms a, b, c, x and y, all mappings in μid are identity functions (since all
knowledge bases use already the common vocabulary), and Ω = {◦3∪, ◦2\ ◦1¬}.

Now we compute the result [[T]] of this merging task as follows. For the sake of
readability, we use [[[M]]] as an abbreviation for [[{P1, . . . , P5}, ΣC , μid, Ω, M]]:

[[〈{P1, . . . , P5}, ΣC, μid, Ω, M〉]] =

◦2\
(

[[[(◦3∪, (◦1¬, P1), P2, P3)]]], [[[(◦2∪, P4, P5)]]]
)

=

◦2\
(
◦3∪([[[(◦1¬, P1)]]], [[[P2]]], [[[P3]]]), [[[(◦2∪, P4, P5)]]]

)
=

· · · = ◦2\ ({{¬a,¬b, c, x, y}}, {{a, c, x, y}}) = {{¬a,¬b}}.

We may view a merging task T as a knowledge base per se by casting it into a knowl-
edge base in some logic language; e.g., T may be cast to the classical formula ¬a∧¬b.

The examples above are trivial and involve only simple set operations, but still illus-
trate the principles. We clearly can use advanced belief merging operators, showing the
usefulness of the framework. We will see this in the following sections.

106 C. Redl, T. Eiter, and T. Krennwallner

MTL parser
HEX-

program P ∗
external atoms

for nested
HEX-programs

belief bases
KB1,...,KBn

Merging
Task T

dlvhex core
answer

sets

Fig. 2. MELD System Architecture (control flow −→, data flow ���)

4 The MELD System

We have implemented our framework in MELD (MErging Library for Dlvhex), using
the infrastructure and possibilities of the dlvhex system to transparently access hetero-
geneous (possibly dispersed) knowledge sources. In MELD, we assume that the knowl-
edge bases KB i are given as HEX-programs [6]. This has the great advantage that by
using external atoms, the belief sets (which then are answer sets) may contain informa-
tion from virtually any knowledge source, e.g. the tuples of a relational database, the
triplets of an RDF ontology, or a model of a propositional formula. The HEX-programs
only serve as an interface to these sources, enabling access to their belief sets (in fact,
using nested HEX-programs described below).

The architecture of MELD is shown in Fig. 2. Essentially the system consists of three
major components: (1) a language for specifying merging tasks in a machine-readable
format; (2) a compiler which translates declarative task descriptions into semantically
equivalent nested HEX-programs, i.e., HEX-programs with program nesting. The pro-
gram constructed computes the merged belief sets in its answer sets; and (3) a suite
of specific external atoms developed in dlvhex which allow for executing nested HEX-
programs.

The system is realized as a plugin to dlvhex, and provides a user-friendly interface
for the specification of a merging task T = 〈KB , ΣC , μ, Ω, M〉 as defined above. The
knowledge bases KB are given as (nested) HEX-programs, and the merging operators
Ω are implemented as C++ classes. MELD comes with a few predefined operators, and
can be easily extended, using a plugin-mechanism, with user-defined operators in C++.
The components ΣC , μi and R are the most specific parts of a certain merging scenario.
All components are declaratively specified in an INI-style text file (we use here filename
extension .mt), in a dedicated merging task language (MTL), which we discuss below.
Then MELD can be used to compute merging task result according to the semantics
above by executing the command: dlvhex --merging task.mt. The evaluation
of merging tasks will be described below.

Merging Task Language (MTL). To specify merging tasks in a machine-readable
way, we defined the merging task language (MTL). For space reasons, here an in depth
presentation is not possible, and we will illustrate it on examples. More details, includ-
ing the complete syntax, can be found on the system’s website (see footnote 1).

Declarative Belief Set Merging Using Merging Plans 107

[common signature]
predicate:foo/1; predicate:bar/3;

[belief base]
name: input1;
mapping: "bar(X, Y, Z) :- &rdf[\’http://...\’](X, Y, Z).";
mapping: "foo(Y) :- &rdf[\’http://...\’](X, Y, Z).";

[belief base]
name: input2;
source: "P2.lp";

[belief base]
name: input3;
mapping: "foo(X) :- &dlC[\’http://...\’,a,b,c,d,\’student\’](X)";

[merging plan] {
operator: setminus;
source: {

operator: setunion; source: {input1}; source: {input2};
};
source: {input3};

}

Fig. 3. Merging Task Description

Example 7. Consider the merging task description in Fig. 3. It consists of three parts.
– [common signature]: The first part is the common signature, which is a list of

all predicate names with associated arities. Only atoms over these predicates will be
regarded during belief set merging.

– [belief base]: The second part is the declaration of the belief bases. For each
belief base, a unique name and the mapping function to the common signature are
specified, via arbitrarily many mapping rules under the HEX-semantics. The mapping
may be done directly, as for belief bases input1 and input3, or outsourced as in
case of input2. Note that the actual belief sources are not defined directly, as they
are given implicitly and accessed by queries in the rule bodies. E.g., in input1 we
access an RDF file on the web using the external atom &rdf. The mapping rules can
derive arbitrary atoms in the heads (also intermediate atoms), but only those using
predicates listed in the common signature will be regarded during merging.

– [merging plan]: The third part is a tree-structured merging plan, which defines
how to combine the sources, described as a nested expression, with names of be-
lief bases at the bottom and operators applied to inputs (source). In the exam-
ple, we first compute the union of input1 and input2, and subsequently subtract
input3.

MELD allows the automatic computation of the merged belief sets according to a merg-
ing plan of this kind a more elaborate example is discussed in Section 5.

Translation to Nested HEX-Programs. We briefly describe how merging task descrip-
tion are evaluated in MELD. The key concept are nested HEX-programs.

We designed a suite of external atoms which allow to evaluate a (possibly nested)
HEX-program P given as input, and to access each answer set of P like an object in the
host program. Thus, processing the answer sets and reasoning over them, inside another
program, is possible. To our knowledge, this is the first ASP language featuring this and

108 C. Redl, T. Eiter, and T. Krennwallner

of independent interest. The sub-programs can be executed independently of the host
program, such that their answer is imported into the main program and computation
continued afterwards. We realized nested HEX-programs using handles that refer to sub-
programs, answer sets and their constituents; this is best explained with an example.

Example 8. Consider the following two rules.

h(H ,S)← &hex [“node(a). node(b). edge(a, b).”, “”](H), &answersets[H](S).

p(P, A) ← h(H ,S), &predicates [H ,S](P, A).

The external atom &hex in the first rule is used to execute the sub-program Q given as
string literal “node(a). node(b). edge(a, b).”. It will “return” a unique integer value H
that can be used later on to investigate the answer to Q. Here, this done in the evaluation
of the external atom &answersets , which in turn returns, one by one, a set of unique
handles S that point to the answer sets of Q. In the second rule, we pass each pair
(H ,S) retrieved by the first rule to the external atom &predicates which finds out the
names and arities of the predicates contained in the respective answer set. This well lead
to the atoms p(node, 1) and p(edge , 2). We could go a step further and also retrieve the
arguments of the atoms in Q’s answer sets, using further external atoms provided by our
plugin. Moreover, by using &hexfile, sub-programs in external files can be included.

Evaluation of merging tasks. We have implemented a transformation which parses a
declarative merging task, specified in MTL, and assembles a semantically equivalent
HEX-program P ∗ that uses program nesting, reflecting the merging plan structure. The
translation is complex and we omit the details here.

Briefly, &hex resp. &hexfile atoms serve as starting point for evaluating atomic
merging plans, i.e., merging plans which consist of a single belief base without opera-
tor applications. For non-atomic merging plans, we compute the result bottom-up like
an arithmetic expression. To this end, we realized an external atom &operator which
allows us to call operators implemented as C++ classes. As answer sets are accessible
objects in our extension, we can pass them from operator to operator until we finally
retrieve the result of the topmost operator, which yields the outcome of the merging
plan.

Our implementation automatically assembles and evaluatesP ∗ when dlvhex is started
with the --merging option. The input files must contain a merging task description.
For details of the transformation and a proof of the correctness, we refer to [14].

5 Belief Merging in Action

We now consider a more realistic belief merging example in fault diagnosis, which is
a classical KR problem. In the course of this, we consider different merging operators,
which are based on distance functions and give rise to a hierarchically constructed a
family of such operators, and we report how the problem can be solved in MELD.

Example 9 (Circuit Diagnosis). Consider the full adder circuit shown in Fig. 4. Given
input values x = y = 1 and carry input cin = 1, the value of the output carry cout =
1 is correct, but the output sum s should be 1 instead of 0. Any component in the

Declarative Belief Set Merging Using Merging Plans 109

&

= 1

= 1

&
≥ 1

•x = 1

•y = 1
•cin = 1

•

s = 0
�

cout=1
�

Fig. 4. Malfunctioning full adder (expected output: s = 1 and cout = 1)

circuit may be broken, leading to different possible abductive explanations (i.e., fault
assumptions that logically entail the observation): either (1) the XOR gate on the lower
left (xor1), (2) the XOR gate located middle top (xor2), or (3) both xor1 and xor2 are
malfunctioning; the result is not unique.

Here our framework comes into play: different experts may find different explana-
tions. For a collective diagnosis, we must integrate the individual opinions such that
(i) the group explanation is still a valid explanation, and (ii) it is close to the individual
opinions (under a suitable notion).

Suppose we have three experts inspecting the malfunctioning full adder, with indi-
vidual explanations AS(P1) = {ab(xor1)}, AS (P2) = {ab(xor 2)} and AS(P3) =
{ab(xor1), ab(xor2)}. Informally, expert 1 believes that xor1 is broken, expert 2 sus-
pects xor2 is broken, and expert 3 believes both are broken. Clearly, besides on these
opinions, the overall result depends on the merging operator.

Distance-based merging operators. A popular class of operators is defined using a
distance function for between two interpretations resp. sets of literals. We call such
operators distance-based operators. An example is an adaption of Dalal’s distance be-
tween interpretations [2] (which is their Hamming distance) to |B1�B2|, the cardinality
of the symmetric difference of belief sets B1 and B2. For more discussion, see [9].

We build a distance function Dd,d(B,KB) between a belief set B and knowledge
bases KB = KB1, . . . ,KBn in three steps:

1. We start from a distance function d(B1, B2) between two belief sets. Besides the
adapted Dalal distance, which we denote with dal , many other choices are possible
(e.g., weighted distance; we consider two other options below).

2. Next, we define a distance function d on top of d to measure the distance of belief set
B to a knowledge base KB , denoted dd(B,KB), by aggregating the values d(B, B′)
for all belief sets of B′ ∈ BS (KB). Here a popular choice is d = min :

mind(B,KB i) = min
B′∈BS(KBi)

d(B, B′)

i.e., we informally take the distance of B to the closed belief set of KB .
3. For each 1 ≤ i ≤ n, the function dd(B,KB i) yields a distance value; these n values

are aggregated into a single value Dd,d(B,KB). A popular choice for D is the sum:

sumd,d(B,KB) = Σn
i=1dd(B,KB i)

Summarizing, in each step some parameter (d, d, D) can be chosen to arrive at
Dd(B,KB). Given the latter, the following merging operator is straightforward:

Δd,d,D(KB , C) = arg min
B∈C

Dd,d(B,KB),

110 C. Redl, T. Eiter, and T. Krennwallner

[common signature]
predicate:ab/1;

[belief base]
name: expert1;
source: "P1.lp";

[belief base]
name: expert2;
source: "P2.lp";

[belief base]
name: expert3;
source: "P3.lp";

[merging plan] {
operator: dbo; bsdistance: "ignoring";
constraintfile: "fulladder.lp";
constraintfile: "fault.obs";
{expert1}; {expert2}; {expert3};

}

Fig. 5. Group decision problem

i.e., selecting among all possible belief sets that satisfy the (application dependent)
constraints C, a belief set B which is at minimum overall distance to KB .

Solving the group decision problem. In MELD, a group decision of the three experts
can be obtained using the above operator Δd,d,D(KB , C) (named dbo for distance-
based operator there), where the constraints C ensure that the result is still an abductive
explanation. The merging task is specified as follows.

The belief bases with respective belief sets (as answer sets) are in external files Pj.lp.
with answer sets as described above (either hard-coded or suitable computed). As all
external programs deliver belief sets over predicate ab, no mapping functions are spec-
ified; this makes the implementation use identity mappings. The merging plan applies
the previously defined operator on the three individual belief sets, where in MELD dd =
mind and Dd,d = sumd,d by default, and d (the distance between two belief sets) is
defined in the bsdistance-statement. Setting bsdistance to dal gives us the adapted
Dalal distance dal. The group decision is then {{ab(xor 1)}, {ab(xor2)}}; either xor1

or xor2 is defect. Omitting formal details, the value ignoring for bsdistance penal-
izes situations where atoms from individual belief sets are missing in the group decision
candidate. This results in the group decision {{ab(xor 1), ab(xor2)}}: it satisfies all
three experts completely - no beliefs are ignored, thus has distance 0.

Besides ignoring and dal, MELD supports the option unfounded, which penal-
izes situations where the group decision candidate contains atoms not occurring in an
individual belief set. This will yield the result {{ab(xor1)}, {ab(xor2)}}. Each expla-
nation is minimal, as its single atom is unfounded for only one of the experts.

This example demonstrates the advantages of the framework and its implementation
compared to hard-coding: It is easy to prototype merging scenarios and quickly change
merging operators and parameters. If we would like to add further expert opinions or
sub-divide the group into sub-groups and aggregate the decisions hierarchically, this
could be easily done by modifying the .mt file accordingly.

6 Evaluation and Experiments

We take a closer look at MELD regarding performance and usefulness in practice. The
runtime behavior is less an issue for two reasons. First, the system is intended to serve
as a rapid prototyping tool to support the user when experimenting and evaluating dif-
ferent merging strategies. For a production version, a hard-coded implementation can

Declarative Belief Set Merging Using Merging Plans 111

be considered after an optimal setting has been found. Second, the behavior is largely
determined by the merging operators in use, as the information flow in between and
the translation of formal merging tasks to nested HEX-programs are both linear in the
number of belief bases and the sizes of their answer sets. Also evaluating the assembled
program P ∗ is not a big issue as its structure is fairly simple. The merging operators
are application dependent and can be implemented and optimized by the user, so our
framework does not cause notable overhead. We now describe real world tasks which
can be solved by MELD with merging task descriptions similar to Example 9.

Decision diagram merging. Decision diagrams are an important tool for decision mak-
ing in many fields of science. This is because compared to other formalisms (e.g. pro-
duction rules) they are intuitive even for non-professionals in knowledge engineering.
Biomedical examples include severity ratings of diseases depending on patient data (in
particular tumor staging systems [19]), DNA classification (coding vs. junk DNA), and
aids for therapy selection. Another frequent application domain is business and econ-
omy (e,g., liquidity appraisal in economics [1]).

Informally, a decision diagram is are rooted directed acyclic graph D = (V, R).
Each edge in E is labeled with a condition X�Y , where � is a comparison operator
and X and Y are variables or values from suitable domains. For example, b ≤ 12.5
may compare a blood value b of a patient to the maximum value for healthy people, and
each leaf (a node without out-edges) of D is tagged with a class label. Clearly, D must
satisfy further structural and semantic conditions, but we simply omit this here.

To classify an instance, one starts at the root (the only node without in-edges) and
follows an edge iff its condition is satisfied. This is repeated until a leaf is reached; there
one reads the assigned class. Sometimes we have multiple similar but non-equivalent
diagrams, e.g. due to different expert opinions or different training sets if the diagrams
stem from machine-learning tools. It becomes then necessary to incorporate the input
classifiers into a single one. If we encode decision diagrams as sets of facts (e.g., over
predicates leaf (X, C), innernode(X, Y), etc.) and provide merging operators tailored
for decision diagrams (and decode the encodings internally), the merging can clearly be
done automatically using MELD. This is a great advantage if it is not clear right from
the beginning which training algorithms and merging strategies behave best.

As a concrete example we consider a popular approach to classify protein-coding
DNA sequences [17]. One first computes numerical features of the sequences in a
large annotated training set T , which are known to vary significantly between coding
and non-coding DNA for biological reasons. We used 20 numerical features proposed
by [12]. They are computed for a set of sequences of 54 bases each. Subsequently,
one trains a decision diagram D over these features; we will work with decision trees
here, which are a special form of decision diagrams. When a new sequence needs to be
classified, one computes the feature values and runs through D.

Here our framework comes into play, realizing an idea discussed in [18]. Instead
of training a single decision tree over T , first split T into subsets T1, . . . , Tn and train
classifiers D1, . . . , Dn on them (thus fostering parallelization); then merge the Di into a
single tree D. We found that combining several classifiers trained by different machine-
learning algorithms may significantly improve the final result. This is not always true,
but depends on the training set T , the selection of learners, and the merging procedure.

112 C. Redl, T. Eiter, and T. Krennwallner

Some combinations may increase the accuracy compared to a single tree trained over T ,
while others decrease it. However, this exactly demonstrates the strengths of our frame-
work: it is easy to try out several different scenarios and evaluate the results empirically,
while the technical details of the merging process are managed by MELD.

For training data extracted from the Human-Genome Project, we achieved our op-
timal result using a merging operator inspired by the algorithm in [1] and three input
trees trained over only 10 sequences each (hence each tree queried only the feature with
highest entropy), gaining an accuracy increase from 48.85% to 65.25%; see [15] for
details. Many other approaches based on statistical features were developed; in com-
parison, our result is fairly good. Most of them produce a classifier with accuracy only
slightly above 70%, see e.g., [17], including recent ones [20,21]; this suggests that there
may be a close by natural limit for statistical features.

A further finding of our experiments is that by training multiple classifiers and merg-
ing them afterwards, mostly a much smaller training set (in total) suffices to gain the
same accuracy as by training a single classifier; e.g., for an accuracy of 65.25%, the
latter needed several hundred sequences (compared to 30). Furthermore, the merged
decision tree usually has a lower depth than a tree created over a single, but larger
training set. Obtaining these results would have been much harder without the frame-
work, since the merging of the classifiers had to be done by hand after each change of
parameters.

Our merging operator implements an algorithm developed in [18] and realized in the
MORGAN system. But in contrast to MORGAN, where the algorithm is implemented
directly as part of the main system, MELD sources it out into an operator library. This
simplifies the implementation of further merging strategies and exchanging them easily.

Judgment aggregation. In Section 4 we have seen how to incorporate individual be-
liefs into a group decision; this is a common problem in social choice theory [3]. Real-
istic applications include planning of group activities with individual preferences, and
diagnosis making by teams of several doctors.

Syntactic belief merging. We distinguished syntactic belief merging approaches, i.e.,
merging sets of formulas or programs, and semantic approaches. Even if our framework
is essentially semantic, we may also use it for syntactic tasks by using an appropriate
encoding of formulas or programs. That is, we encode the knowledge base as sets of
literals. This allows us to use MELD for (e.g. talking about the same domain but focus-
ing on different details), we need to combine them into a single ontology [22]. Given
appropriate merging operators which decode the ontologies represented by literal sets
internally, this task can clearly be supported by MELD. To vary the ordering of the
sources is then easy. If the merging operator is not commutative and associative or if we
have multiple alternative operators, the quality of the final ontology can vary as well,
and we may find the best one by empirically using MELD.

7 Related Work and Conclusion

While the theory of belief merging has a rich literature, only few implemented systems
are available. In [8], the authors present an implementation of Removed Set Fusion

Declarative Belief Set Merging Using Merging Plans 113

based merging of logic programs by translating sets of logic programs into a single logic
program, whose answer sets correspond to removed sets. Compared to our approach,
this method uses a syntactic strategy for merging belief bases and has a fixed semantics.

COBA [4] handles belief revision rather than merging. Its approach to finding con-
sistent models is similar to our implementation of distance-based operators in Section 4.
In contrast to our generic framework, COBA uses a fixed semantics.

The MORGAN system [18] was used to merge DNA classification trees. The merg-
ing operator we used for our experiments is almost equivalent to this system. However,
while we implemented the algorithm as merging operator for our flexible framework,
MORGAN is hard-coded. Therefore it is easy to modify parameters and make experi-
ments with different settings in our system. The changes only concern the declarative
task description, while in MORGAN one needs to rewrite the main source files.

Our approach works semantically, i.e., it does not merge logic programs but inter-
pretations of the programs. Nevertheless, by encoding formulas as literals one can also
implement syntactic strategies within the framework. Future work will include address-
ing performance issues which was neglected so far since the main goal was flexibility.
Another possible extension is the implementation of additional merging operators. This
increases the chance that the user will find a suitable one and avoids that she needs to
implement it on his own. Also support for syntactic strategies for belief merging may
be fruitfully deployed in our framework. Additionally, the merging task language may
be extended by further language constructs like iterative application of operators.

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.:
Algebraic decision diagrams and their applications. In: ICCAD 1993, pp. 188–191 (1993)

2. Dalal, M.: Investigations into a theory of knowledge base revision. In: AAAI, pp. 475–479
(1988)

3. Dasgupta, P.S., Hammond, P.J., Maskin, E.S.: The implementation of social choice rules:
Some general results on incentive compatibility. Rev. Econ. Stud. 46(2), 185–216 (1979)

4. Delgrande, J.P., Liu, D.H., Schaub, T., Thiele, S.: COBA 2.0: A Consistency-Based Belief
Change System. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 78–
90. Springer, Heidelberg (2007)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In: IJCAI 2005, pp. 90–96
(2005)

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A system for integrating multiple
semantics in an answer-set programming framework. In: WLP 2006, pp. 206–210 (2006)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generat. Comput. 9(3-4), 365–385 (1991)

8. Hué, J., Papini, O., Würbel, E.: Merging belief bases represented by logic programs. In:
Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 371–382. Springer,
Heidelberg (2009)

9. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. AIJ 157(1-2), 49–79 (2004)
10. Konieczny, S., Pérez, R.P.: On the logic of merging. In: KR 1998, pp. 488–498 (1998)
11. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE Trans.

Knowl. Data Eng. 10(1), 76–90 (1998)

114 C. Redl, T. Eiter, and T. Krennwallner

12. Liew, A.W.C., Wu, Y., Yan, H.: Selection of statistical features based on mutual information
for classification of human coding and non-coding DNA sequences. In: ICPR, pp. 766–769
(2004)

13. Lin, J., Mendelzon, A.: Knowledge base merging by majority. In: Dynamic Worlds: From
the Frame problem to Knowledge Management. Kluwer, Dordrecht (1999)

14. Redl, C.: Development of a belief merging framewerk for dlvhex. Master’s thesis, Vienna
University of Technology, A-1040 Vienna, Karlsplatz 13 (June 2010),
http://media.obvsg.at/AC07808210-2001

15. Redl, C.: Merging of biomedical decision diagrams. Master’s thesis, Vienna University of
Technology, A-1040 Vienna, Karlsplatz 13 (October 2010),
http://media.obvsg.at/AC07808795-2001

16. Revesz, P.: On the semantics of arbitration. Intl. J. Algebra Comput. 7(2), 133–160 (1997)
17. Salzberg, S.: Locating protein coding regions in human DNA using a decision tree algorithm.

J. Comput. Biol. 2, 473–485 (1995)
18. Salzberg, S., Delcher, A.L., Fasman, K.H., Henderson, J.: A decision tree system for finding

genes in DNA. J. Comput. Biol. 5(4), 667–680 (1998)
19. Sobin, L., Gospodarowicz, M., Wittekind, C.: TNM Classification of Malignant Tumours,

7th edn. Wiley, Chichester (2009)
20. Sree, P.K., Babu, I.R., Murty, J.V.R., Rao, P.S.: Towards an artificial immune system to iden-

tify and strengthen protein coding region identification using cellular automata classifier. Intl.
J. Comput. Commun. 1(2), 26–34 (2007)

21. Sree, P.K., Babu, I.R.: Identification of protein coding regions in genomic DNA using
unsupervised FMACA based pattern classifier. Intl. J. Comp. Sci. Netw. Secur. 8(1), 305–
309 (2008)

22. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-Up Merging of Ontologies. In: IJCAI
2001, pp. 225–230 (2001)

http://media.obvsg.at/AC07808210-2001
http://media.obvsg.at/AC07808795-2001

Using Constraints for Intrusion Detection:
The NeMODe System

Pedro Salgueiro1, Daniel Diaz2, Isabel Brito3, and Salvador Abreu1

1 Departamento de Informática, Universidade de Évora
and CENTRIA FCT/UNL, Portugal

{pds,spa}@di.uevora.pt
2 University of Paris 1-Sorbonne, Paris, France

Daniel.Diaz@univ-paris1.fr
3 Departamento de Engenharia, Escola Superior de Tecnologia e Gestão,

Instituto Politécnico de Beja, Portugal
isabel.sofia@estig.ipbeja.pt

Abstract. In this work we present NeMODe a declarative system for
Computer Network Intrusion detection which provides a declarative Do-
main Specific Language for describing computer network intrusion signa-
tures that could spread across several network packets, which allows to
state constraints over network packets, describing relations between sev-
eral packets, and providing several back-end detection mechanisms which
relies on Constraint Programming (CP) methodologies to find those
intrusions.

Keywords: Constraint Programming, Intrusion Detection Systems, Do-
main Specific Languages.

1 Introduction

Network Intrusion Detection Systems are one of the most important tools in
computer network management to maintain the security, integrity and quality
of computer networks and keep the users data safe. To maintain the quality and
integrity of the services provided by a computer network, some aspects must be
verified in order to maintain the security of the users data. The description of
those conditions, together with a verification that they are met can be seen as
an Intrusion Detection task. These conditions, specified in terms of properties
of parts of the (observed) network traffic, will amount to a specification of a
desired or an unwanted state of the network, such as that brought about by a
system intrusion or another form of malicious access.

Those conditions can naturally be described using a declarative programming
approach, such as Constraint Programming [1], enabling the description of these
situations in a natural, declarative and expressive way. To help the description
of those network situations, we created a declarative, very expressive, Domain
Specific Language (DSL) [2], enabling an easy description of intrusion signa-
tures that spread across several network packets, allowing to state constraints

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 115–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

116 P. Salgueiro et al.

over network entities and express relations across several network packets. This
DSL will then translate the program into constraints that will be solved by more
than one constraint solving techniques, including Constraint Based Local Search
and Propagation-based systems such as Gecode [3]. It also have the capabilities
of running several solvers in parallel, in order to benefit from the earliest pos-
sible solution. We have already made some preliminary work on using network
constraints to perform intrusion detection [4], and have also developed a pre-
liminary implementation of such a DSL[5,6]. In this work we present a new and
more complete version version of such a DSL (NeMODe) as well as a its complete
specification to a better comprehension.

This paper is organized as follows. Section 2 presents the state of the art
and a brief description of Intrusion Detection Systems, Constraint Based Local
Search, Adaptive Search and Domain Specific Languages. Section 3 demonstrates
how to model and perform Intrusion Detection using Constraint Programming.
Section 4 details the DSL provided by NeMODe and provides some examples.
Section 5 shows the experimental results obtained by NeMODe. Section 6 evalu-
ates NeMODe and Section 7 presents the conclusions and future work. Through-
out this paper, we mention technical terms pertaining to TCP/IP and UDP/IP
network packets, such as packet flags ,URG, ACK, PSH, RST, SYN, FIN, ac-
knowledgment, source port, destination port, source address, destination address,
payload, which are described in [7].

2 State of the Art

2.1 Intrusion Detection Systems

Intrusion Detection Systems(IDS) play a very important role in computer net-
work security, which focus on traffic monitoring trying to inspect traffic to look
for anomalies or undesirable communications in order to keep the network a safe
place. There are two major methods to detect intrusions in computer networks;
(1) based on the network intrusion signatures, and (2) based on the detection
of anomalies on the network [8]. With Signature Based Intrusion Detection, in-
trusions are described using their signatures, particular properties of network
packets used by the intrusion. These properties are then looked in the network
traffic to find the desired intrusion. In Anomaly-Detection Based, the systems
models the normal behavior of the network using statistical methods and/or
data mining approaches. The network behavior is then monitored, and if it is
considered anomalous according the network model, there is a great probability
of and attack. In this work, we adopted an approach based on signatures.

Snort [9] is a widely used Intrusion Detection System that relies on efficient
pattern-matching techniques to detect the desired intrusion signature. Snort is
primarily designed to detect signatures that can be identified in a single network
packet. Although it provides some basic mechanisms to write rules that spread
across several network packets, the relations between those network packets are
very simple and limited.

Snort presents some pre-processors that help to relate separate network pack-
ets; Stream4 is such a pre-processor: it gives Snort the ability to be stateful,

Using Constraints for Intrusion Detection: The NeMODe System 117

allowing the trace of network packets on its session and use its state on the
given session to create a rule that describes the desired signature. The Flow pre-
processor also allows snort rules to relate with other rules by using the flowbits
keyword, allowing one rule to set some flag, and later other rule can check if that
flag is set, and, if so, complete the rule to describe the desired signature.

These two pre-processors help Snort to describe network attack signatures
that span several network packets, but they do so in a very limited way, not
allowing the description of more complex relations between packets, such as the
temporal distance between two packets. Also, the way that the relation between
several rules is expressed is awkward and often counter-intuitive.

Most of the work in the area of Intrusion Detection Systems consists in the
development of faster detection methods [10]. The work described in [11] is
such an example, which implements a regular expression matching algorithm
using graphics hardware (GPUs) to perform intrusion detection. There is also
some work focused on how the network signatures are described detected. [10]
presents an algorithm and an implementation method for performing flow aware
content search based on Bloom Filters which allows to search signatures that
spread across several packets. In [12], the authors present a declarative approach
to specify intrusion signatures which are represented as a specialized graph,
allowing the description of signatures that spread across several network packets.

2.2 Constraint Programming

Constraint Programming (CP) is a declarative programming paradigm which
consists in the formulation of a solution to a problem as a Constraint Satisfaction
Problem (CSP) [1], in which a number of variables are introduced, with well-
specified domains and which describe the state of the system. A set of relations,
called constraints, is then imposed on the variables which make up the problem.
These constraints are understood to have to hold true for a particular set of
bindings for the variables, resulting in a solution to the CSP.

There are several types of constraint solvers, in this work we use: (1) Propa-
gation Based solvers; and (2) Constraint Based Local Search(CBLS).

Propagation-Based solvers. Using Propagation-Based [1] solvers, the prob-
lem is described by stating constraints over each variable that composes the
problem, which states what values are allowed to be assigned to each vari-
able, then, the constraint solver will propagate all the constraints and reduce
the domain of each network variables in order to satisfy all the constraints
and instantiate the variables that compose the problem with valid results,
thus reaching a solution to the initial problem. Gecode [13] is a constraint
solver library based on propagation, implemented in C++ and designed to
be interfaced with other systems or programming languages.

Constraint Based Local Search. CBLS [14] is a fundamental approach
to solve combinatorial problems such as Constraint Satisfaction Problems.
CBLS is a method that can solve very large problems, although not a com-
plete algorithm and unable to provide a complete or optimal solution. Usu-
ally, this approach initiates with an initial, candidate solution to the problem

118 P. Salgueiro et al.

which is then iteratively improved though small modifications until some cri-
teria is satisfied. The modifications to the candidate solution is usually driven
by heuristics that guide the solver to a solution.

Adaptive Search (AS) [15] is a Constraint Based Local Search [14] algo-
rithm, taking into account the structure of the problem and using variable-
based information to design general heuristics which help solve the problem.
The iterative repairs to the candidate solution in Adaptive Search are based
on variable and constraint error information which seeks to reduce errors
on the variables used to model the problem. AS computes the error of all
constraints in which it appears, projecting the errors on each individual vari-
ables. Based on this information, the variable with the highest cost is the one
that will be chosen to change its value. After the variable with the highest
cost have been calculated, the min_conflict [1] heuristic is used to select the
new value to that variable, which is the value that provides the minimum
total error to the next solution. Adaptive Search has recently been ported
to Cell/BE, presented in [16].

2.3 Domain Specific Languages

Domain Specific Languages(DSLs) [2] allows to easily create programs to a spe-
cific and well defined domain with efficiency, generating easy to understand and
maintain programs, by using a specific jargon. Most IDSs, like Snort and Bro [17],
also a widely used IDS, provide custom languages to describe the signatures, but
they are usually scripting languages, based mostly on pattern matching and reg-
ular expressions, counter-intuitive, and don’t use a declarative approach, making
them less expressive.

3 Intrusion Detection with Constraints
Our approach to intrusion detection relies on describing the desired signatures
through the use of constraints and then identify a set of packets that match the
target network situation in the network traffic window, which is a log of the
network traffic in a given time interval.

The network intrusion needs to be modeled as a Constraint Satisfaction Prob-
lem (CSP) in order to use the constraint programming mechanisms. A CSP which
models a network situation is composed by a set of variables, V , which repre-
sents the network packets involved necessary to describe the network situation;
the domain of the network packet variables, D; and a set of constraints, C, which
relates the variables in order to describe the network situation. We call such a
CSP a network CSP. On a network CSP, each network packet variable is a tuple
of integer variables, 19 variables for TCP/IP 1 packets and 12 variables for UDP
packets 2, which represent the significant fields of a network packet necessary to
model the intrusion signatures used in our experiments.
1 Here, we are only considering the “interesting” fields in TCP/IP packets, from an

IDS point-of-view.
2 Here, we are only considering the “interesting” fields in UDP packets, from an IDS

point-of-view.

Using Constraints for Intrusion Detection: The NeMODe System 119

The domain of the network packet variables, D, are the values actually seen
on the network traffic window, which is a set of tuples of 19 integer values (for
the TCP variables) and 12 integer values (for the UDP variables), each tuple
representing a network packet actually observed on the traffic window and each
integer value represents each field relevant to intrusion detection. The packets
payload is stored separately in an array containing the payload of all packets seen
on the traffic window. The correspondence between the packet and its payload
is achieved by matching the packet number, i, which is the first variable in the
tuple representing the packets and the ith position of the array containing the
payloads.

Listing 1 shows a representation of such CSP, where P represents the set of
network packet variables, where Pn,z, is each of the individual integer variables
of the network packet variable, in a total of z fields for each network of the n
variables, with z = 19 for TCP packets and z = 12 for UDP packets.

D is the network traffic window, where Di = (Vi,1, . . . , Vi,z) ∈ D is one of the
real network packets on the network traffic window, which is part of the domain
of the packet variables P .

Data is the payloads of the network packets present in the network window,
where Datai is the payload of the packet Pi = (Vi,1, . . . , Vi,z) ∈ D.

The associated domains of the network packet variables is represented by
∀Pi ∈ P ⇒ Pi ∈ D, forcing all variables belonging to P to obtain values from
the set of packets in the network window D.

A solution to a network CSP, if it exists, is an assignment of network packet
values, Di = (Vi,1, . . . , Vi,z) ∈ D, to each packet variable, Pi = (Pj,1, . . . , Pj,z) ∈
P , that models the desired situation, thus identifying the network packets that
identify the intrusion being detected.

Listing 1. Representation of a network CSP

P = {(P1,1, . . . , P1,z), . . . , (Pn,1, . . . , Pn,z)}
D = {(V1,1, . . . , V1,z), . . . , (Vx,1, . . . , Vx,z)}
Data = {Data1, . . . , Datax}
∀Pi ∈ P ⇒ Pi ∈ D

4 NeMODe - A DSL to Describe Network Signatures

In this work we present a declarative, intuitive domain-specific programming
language for the Network Intrusion Detection [2] of NeMODe, which talks about
network entities, their properties and relations between them, allowing to de-
scribe network intrusion signatures, and, with base on those descriptions, gen-
erate Intrusion Detection mechanisms.

The key characteristic of this DSL is to ease the way how network attack sig-
natures are described using constraint programming, hiding from the user all the
constraint programing aspects and complexity of modeling network signatures
in a Constraint Satisfaction Problem(CSP), but still using the methodologies of

120 P. Salgueiro et al.

CP to describe the problem at a much higher level, describing how the network
entities should relate among each other and what properties they should verify.

Maintaining the declaritivity and expressiveness of the CP, allows an easy
and intuitive way of describing the network attack signatures, by describing the
properties that must or must not be seen on the individual network packets,
as well as the relationships that should or should not exist between each of the
network packets.

The DSL is a front-end to several back-ends, one to each intrusion detection
mechanism. This allows to generate several recognizers based on different con-
straint solver methods, from a single description. With several recognizers, it
is possible run each of them in parallel, allowing to select the first produced
solution, as the behavior of each solver depends on the problem being solved.

NeMODe provides two back-end detection mechanisms; (1) based on the
Gecode constraint solver; and (2) based on the Adaptive Search algorithm. Each
of these detection mechanisms are based on Constraint Programming techniques,
but they are completely different in the way they perform the detection, and also
the way the signatures are described. In Sec. 2.2 each of these approaches are
explained.

4.1 NeMODe Specification

A NeMODe program is composed by an optional set of initial declarations, fol-
lowed by a network case(line 1 of Listing 2), which describes the network situ-
ation to be modeled.

Those initial declarations is a comma separated list of declarations port num-
bers and/or hostnames, which can later be used later on the description of the
problem, making the program more readable, by referring to hostnames instead
of ip addresses, and port or service names instead of port numbers.

A network case is the main part of a NeMODe program and is composed by
two parts; (1) the solver_list , (line 3 of Listing 2) containing the description of
the intrusion signature to be found and the identification of the tool which will be
used to solve the problem; and (2) the actions to take when the desired network
situation is detected, the stmt_action_list(line 1 of Listing 6). There are two
types of solvers,(line 5 of Listing 2), the filter and the solver . The solver is
used to describe and solve complex network intrusion signatures, while the filter
is only used to perform simple filtering tasks, accomplished by using a packet
analyzer tool, such as tcpdump [18].

A solver(line 5 of Listing 2) is composed by 3 parts; (1) the network traffic
source; (2) the identification of the tools that will be used to perform the filtering;
and (3) the description of the filtering/solving process. The result of this filtering
process is then stored in a variable, which could later be used as an input to
other filtering stage. The most important part of a NeMODe program is the
list of statements, stmt_list (line 8 of Listing 2), where the signatures are
described.

Using Constraints for Intrusion Detection: The NeMODe System 121

Listing 2. NeMODe simplified grammar - The beginning of a program
1 case → ID { solver_list } => { stmt_action_list };
2
3 solver_list → solver | solver_list , solver
4 solver → ID = filter (ID , ID) { primitive_list }
5 | ID = solve (ID , ID) { stmt_list }
6
7 stmt_list → stmt | stmt_list , stmt
8 stmt → primitive | connective | ID = { stmt_list } | ID | macro_stmt | logic_stmt

There are 6 types of statements(line 8 of Listing 2); (1) the primitive state-
ments; (2) the connective statements; (3) the definition statements; (4) the
use statements; (5) the macro statements; and (6) the logical statements.

Listing 3. NeMODe simplified grammar - The most important statements
1 primitive → primitive_type (var)
2 | data (var) ~= STRING | data (var , NUMBER) == STRING
3 | address eq_op ID | address eq_op ip_address
4 | port eq_op NUMBER | port eq_op ID
5
6 primitive_type → tcp_packet | udp_packet | urg | ack | psh | rst | syn | fin | nak
7
8 connective → ack (var) eq_op var
9 | port eq_op port | address eq_op address

10 | time rel_op time
11 | data (var , NUMBER , NUMBER) == data (var , NUMBER , NUMBER)

The primitive statements (line 1 of Listing 3) allows to force some specific
properties of a network packets to hold true. This statements allows to force a
network packet to be tcp/udp packet; to have any of its tcp flags set; not to
acknowledge another tcp packet; force a packet to have a specific data on its
payload; and assure that a network packet have a specific source/destination
address or a specific source/destination port.

The connective statements (line 8 of Listing 3) allows to relate two network
packets by forcing the existence of some relations between the two of them. They
allow to force: (1) a tcp packet to acknowledge other tcp packet; (2) a destina-
tion/source port of a packet to be equal/different to other destination/source
port of other packet; (3) a destination/source address to be equal/different to
a destination/source address of other packet; (4) the payload of two network
packets to be equal/different at specific positions; and (5) two network packets
to have a temporal relation, such as their temporal distance to be inferior to a
given amount of time.

The primitive and connective can describe most of network intrusion sig-
natures, but NeMODe provides some more types of statements to help the de-
scription of such signatures, the definition statements, the use statements and
the macro statements.

The definition statements (line 8 of Listing 2) allows to define a variable as
a group of statements, which can later be used in the description of a network
situation. This type of statements have no effect on the program unless they are
used latter on the program, being only the definition of a variable.

122 P. Salgueiro et al.

The use statement (line 8 of Listing 2) is just the simple use of a definition
previously defined. As for the macro statements (line 1 of Listing 4), these are
built with the purpose of avoiding the repetition of unnecessary code.

Listing 4. NeMODe simplified grammar - The macro statements
1 macro_stmt → ID := repeat
2 | interval (var) eq_op time | duration (var) eq_op time
3 | connection (var , var)
4
5 repeat → repeat (NUMBER , var)

The repeat(line 5 of Listing 4) statement is one of the available macro state-
ments, which allows to repeat a previously defined variable a given number of
times. That repetitions are then stored under a variable, i.e. R := repeat(3,C), so
that later be possible to state constraints over a specific variable of an iteration
of the repetition.

The macro statement duration (line 2 of Listing 4) forces the overall du-
ration of a repetition to a be higher or lower than a certain amount o time,
i.e. duration(R) < secs(60). As for the macro statement interval(line 2 of
Listing 4), it forces the time between two iterations of a repetition to be high-
er/lower than a given amount of time, i.e. interval(R) < secs(60). Finally,
the last macro statement, connection(line 3 of Listing 4), forces two network
packets to be related, so that the source/destination of one packet be the desti-
nation/source of other packet.

The last type of statements is the logical statements(line 1 of Listing 5), which
allows to specify logic operations(and, or) over primitives and connective
statements.

Listing 5. NeMODe simplified grammar - Logic statements
1 logic_stmt → logic_stmt logic_op logic_stmt | (logic_stmt)
2 | primitive | connective

The stmt_action_list(line 1 of Listing 6) part of a case, allows to describe
the actions to take when an intrusion is detected, which is a coma separated list
of statements, being allowed to use a previously described primitive and/or
connective statements, as well as the alert statement. This list of statements
allows to specify a set of properties over a set of network packets, being possible
to relate them with variables used in the description of the network intrusion
signature. Those new variables can later be used in the alert statement, together
with some strings to alert the network administrator for an intrusion.

Listing 7 describes some basic entities, such as port addresses, ip address and
time, used in several types of statements.

Variables
NeMODe variables, (line 1 of Listing 8), are always upper case, and can be cate-
gorized in several types: (1) the initial declarations variables; (2) the solver/-
filters variables; (3) the definitions variables; (4) the repetitions variables

Using Constraints for Intrusion Detection: The NeMODe System 123

Listing 6. NeMODe simplified grammar - Action statements
1 stmt_action_list → stmt_action | stmt_action_list , stmt_action
2 stmt_action → primitive | connective | actions
3
4 actions → alert (alert_arg_list)
5 alert_arg_list → alert_arg | alert_arg_list , alert_arg
6 alert_arg → var | STRING

Listing 7. NeMODe simplified grammar - Basic entities
1 port → dst_port (var) | src_port (var)
2 address → src (var) | dst (var)
3 time → usecs (NUMBER) | secs (NUMBER) | time_arith
4 time_arith → time (var) | NUMBER
5 | time (var) arith_op time_arith

Listing 8. NeMODe simplified grammar - Variables
1 var → ID | repeat_var | filter_var
2 repeat_var → ID [NUMBER] : ID
3 filter_var → ID . ID | ID . repeat_var

and the network packet variables. The declaration of the variables is implicit,
being defined the first time they are referenced or used.

Variable scope
A NeMODe program is composed by several scopes, the first one the program
itself, then, a second scope for the solvers/filters, and inside each solver there
might exist a third scope, the repetition of a definition. At each scope level,
it might be necessary to access a variable of a higher scope level. Accessing a
higher scope level variable is transparent if there is no other variable with the
same name on the current scope level, otherwise there is the need to access that
variable using a special syntax.

Accessing a variable inside a repetition. To access a variable defined in a
definition , assigned to a variable, one starts to refer the repetition vari-
able, then the number of the iteration and finally the variable name, e.g.
r[2].A.

Accessing a variable inside a solver. Sometimes it is necessary to access a
variable defined inside a solver or filter , to do this, one starts to refer the
filter and then the desired variable, which can be either a simple variable,
e.g. gecode.A or a variable inside a repetition , e.g. gecode.R[2].A.

4.2 Examples

So far, we have worked with some simple network intrusion signatures: (1) a
DHCP spoofing, (2) a DNS spoofing and (3) a SYN flood attack. All of these
intrusion patterns can be described using NeMODe and the generated code was
successful in finding the desired situations in the network traffic logs. A Portscan
attack and an SSH Password brute-force attack are further explained in [5].

124 P. Salgueiro et al.

DHCP spoofing. DHCP Spoofing is a Man in The Middle(MITM) attack,
where the attacker tries to reply to a DHCP request faster than the legit DHCP
server of the local network, allowing the attacker to provide false network config-
urations to the target host, such as the default gateway, forcing all traffic from/to
the target to pass though an attacker controlled machine, allowing it to capture
or modify the important data. This kind of intrusion can be detected by looking
for several answers to a single DHCP request, originated in different machines,
although, if the attacker spoofs its addresses, invalidates this detection method.
A NeMODe program to model a DHCP spoofing is shown in Listing 9. Line 2
describes the packet that initiates a requests a DHCP, line 3 the first reply to
the request and line 4 the second reply the DHCP request. Finally, on line 6
is stated that packets B and C(the first and second reply) should have different
source addresses.

Listing 9. A DHCP Spoofing attack programmed in NeMODe
1 dhcp_spoofing {
2 udp_packet(A), dst_port(A)==67,
3 udp_packet(B), dst_port(B)==68,
4 udp_packet(C), dst_port(C)==68,
5

6 src(B) != src(C)
7 } => {
8 alert(’DHCP Spoofing attempt’)
9 };

DNS spoofing. DNS Spoofing is also a Man in The Middle (MITM) attack. In
this attack, the attacker tries to provide a false DNS query posted by the victim,
if succeeded the victim could access a machine under the control of the attacker,
thinking that it is accessing the legit machine, allowing the attacker to obtain
crucial data from the victim. In order to arrange this attack, the attacker tries
to respond with a false DNS query faster than the legit DNS server, providing
a false IP address to the name that the victim was looking for. This kind of
attacks is possible to detect by looking for several replies to the same DNS
query. Listing 10 shows how this attack can be programmed using NeMODe.
Line 2 describes the packet that makes the DNS request. Lines 4-5, describes
a first reply to the DNS request and lines 7-8 describes the second reply. Lines
10-12 states that packets B and C should be different and that the DNS id of the
replies should be the equal to the DNS request, which is the first two bytes of
the packets data.

SYN flood attack. A SYN flood attack happens when the attacker initiates
more TCP/IP connections than the server can handle and then ignoring the
replies from the server, forcing the server to have a large number of half open
connections in standby, which leads the service to stop when this number reach
the limit of number of connections. This attack can be detected if a large number
of connections is made from a single machine to other in a very short time inter-
val. Listing 11 shows how a SYN flood attack can be described using NeMODe.

Using Constraints for Intrusion Detection: The NeMODe System 125

Listing 10. A DNS Spoofing attack programmed in NeMODe
1 dns_spoofing {
2 udp_packet(A), dst_port(A) == 53
3
4 udp_packet(B), src_port(B) == 53,
5 dst(B) == src(A), dst_port(B) == src_port(A),
6
7 udp_packet(C), src_port(C) == 53,
8 dst(C) == src(A), dst_port(C) == src_port(A),
9

10 B != C,
11 data(B,0,2) == data(A,0,2),
12 data(C,0,2) == data(A,0,2)
13 } => {
14 alert(’DNS Spoofing attempt’)
15 };

Lines 2-3 describes a TCP/IP packet with the SYN flag and assigns those prop-
erties to variable C. In line 4, the macro statement repeat is used to repeat
the properties of definition C 30 times, and assign it to variable R. Line 5 states
that the time interval between each repetition of C should be less than to 500
micro-seconds.

Listing 11. A SYN flood attack programmed with NeMODe
1 syn_flood {
2 C = { tcp_packet(A),
3 syn(A), nak(A) },
4 R := repeat(30,C),
5 max_interval(R) < usecs(500)
6 } => {
7 alert(’SYN flood attack attempt’)
8 };

4.3 Code Generation

The current implementation of NeMODe is able to generate code for the Gecode
solver and for the Adaptive Search algorithm. These two approaches to constraint
solving are completely different as well as the description of the problems, forcing
us to have several code generators for each of back-end available. We were able to
minimize this difference by creating custom libraries for each constraint solver
so that the code generation process is not completely different for each back-
end. Fig. 1 represents the architecture of the system; starting with a NeMODe
program, which is parsed into a semantic model, then it is generated code to
the appropriate back-ends used. Them, the generated code receives as input the
network traffic and produces a valid solution, if the described intrusion exists on
the current network traffic.

Generating a Gecode program: This goal is achieved by generating code
based on Gecode constraint propagators that describe the desired network
signatures. We created a custom library that defines functions that combine

126 P. Salgueiro et al.

Fig. 1. NeMODe system architecture

several stock arithmetic Gecode constraints with element and extensional
constraints to define custom, network related macro constraints. The same
library includes definitions for a few network-related constraint propagators
useful to implement some of the constraints needed to describe and solve
IDS problems.

Generating an A.S. program: The task of generating Adaptive Search re-
sumes to create the proper error functions so that Adaptive Search be able
to solve the problem; the cost_of_solution and cost_on_variable. To
ease the generation of this functions, a small library was created which im-
plements small error functions, specific to the network intrusion detection
domain, which are then used to generate the code for the error functions.

5 Experimental Results

While developing this work, several experiments were done. We have tested the
examples of Sect. 4.2, a DHCP Spoofing attack, a DNS Spoofing attack and
a SYN flood attack. All these network intrusions were successfully described
using NeMODe and valid Gecode and Adaptive Search code was produced for
all network signatures and then executed in order to validate the code and ensure
that it could indeed find the desired network intrusions.

The code generated for Gecode was run on a dedicated computer, an HP Pro-
liant DL380 G4 with two Intel(R) Xeon(TM) CPU 3.40GHz and with 4 GB of
memory, running Debian GNU/Linux 4.0 with Linux kernel version 2.6.18-5. As
for the Adaptive Search code, it run on an IBM BladeCenter H equipped with
QS21 dual-Cell/BE blades, each with two 3.2 GHz processors, 2GB of RAM,
running RHEL Server release 5.2. The reason to run both detection mechanisms
in different machines with a completely different architecture is because Adap-
tive Search has recently been ported to Cell/BE, and we choose this version of
Adaptive Search to run our experiments, forcing us to use the QS21 dual-Cell/BE
blades, which is incompatible with the implementation of Gecode, forcing us to
use a machine with x86 architecture to run Gecode.

In all the experiments we used log files representing network traffic which
contains the desired signatures to be detected. These log files were created with

Using Constraints for Intrusion Detection: The NeMODe System 127

the help of tcpdump, which is a packet sniffer, during actual attacks to a computer
to simulate the real attacks described in this work.

DHCP and DNS spoofing attacks: We programmed these two attacks
using the DSL of The attack was provided by NeMODe, which successfully
generated code for Adaptive Search as well as for Gecode and successfully
detected the intrusions. Both problems were modeled using 3 udp network
packets, each one composed of 12 integer variables, in a total of 36 integer
variables. The search space for both this problems was a set of 400 udp
network packets, each composed of 12 integer values, in a total of 4800
values.

SYN flood attack: In the SYN flood attack, we programmed with the DSL
of NeMODe which in turn generated code for Adaptive Search and Gecode.
This code was then used to successfully detect the intrusion. The problem
was modeled by 30 tcp network packet variables, each comprised of 19 integer
variables, in a total of 570 integer values. The the search space of the problem
was composed by 100 tcp network packets, each composed of 19 integer
values, in a total of 1900 values.

Table 1 presents the time(user time, in seconds) required to find the desired
network situation for the attacks presented in the present work, using both
detection mechanisms, Gecode and Adaptive Search. The times presented are
the average of 128 runs.

Table 1. Average time(in seconds) necessary to detect the intrusions using Gecode
and Adaptive Search

Intrusion to detect Gecode (seconds) A.S (seconds)
DHCP Spoofing 0.0082 0.3924
DNS Spoofing 0.0069 0.3512

SYN flood 0.0566 0.0466

6 Evaluation

The experimental results described in Sec. 5 shows that the performance varies
in a great scale depending on the problem and the recognizer. Table 1 shows
that that Gecode usually performs better than Adaptive Search, except in the
SYN flood attack. The SYN flood attack performed better in Adaptive Search
due to the fact that the network packets of the attack are close together and
there aren’t almost any other packets between the packets of the attack. The
results obtained with Gecode, are quite good, allowing us to start the detection
of intrusions in real network traffic instead of log files. Adaptive Search inferior
performance figures are explained by the lack of good heuristic, as precise tuning
of the sensitive algorithm of AS has yet to be done.

128 P. Salgueiro et al.

As for the DSL provided by NeMODe, it revealed to be very expressive and
powerful, allowing an easy description of all the three network intrusions and
generate valid code that could detect the desired network situation. Although
other intrusion detection systems like Snort could detect the attacks presented
in this work, they don’t allow to describe the problems with the expressiveness
used by NeMODe or even relate the several packets that make part of the attack.

7 Conclusions and Future Work

The work presented in this paper presents NeMODe, a system for Network Intru-
sion detection, which provide a declarative Domain Specific Language that gen-
erates intrusion detection recognizers based on Constraint Programming, more
specifically, using Gecode and Adaptive Search. NeMODe presents a very ex-
pressive DSL that allows to describe network intrusion signatures by expressing
relations between network packets simply by stating constraints over network
packets.

This work shows that it is possible to use a single signature description
based on CP to generate several recognizers, each one based on a different CP
paradigms, and with that recognizers detect the desired intrusions.

We proved that we can easily describe network signature attacks that spread
across several network packets, which can not me done in friendly and declarative
way in systems like Snort. Although the intrusions mentioned in this work can
be detected with other intrusion detection systems, they are modeled/described
with out relating the several network packets of the intrusion, much of the times
using a single network packet to describe the intrusion, which could in some
situations produce a large number of false positives.

A very important future work is to model more network situations as a CSP
in order to evaluate the performance of the system while working with a larger
diversity of problems. Although the DSL allows to describe a broad range of
attacks, it still needs more flexibility to cope with more types of signatures and
include more back-ends. We also need to better evaluate the the work presented
in this paper by comparing the obtained results with systems like Snort.

Also a very important future step is to start performing network intrusion
tasks on live network traffic link, allowing to apply this method in a real network
to assess its performance.

Acknowledgments

Pedro Salgueiro acknowledges FCT –Fundação para a Ciência e a Tecnologia– for
supporting him with scholarship SFRH/BD/35581/2007. The IBM QS21 dual-
Cell/BE blades used in this work were donated by IBM Corporation, in the
context of a SUR (Shared University Research) grant awarded to Universidade
de Évora and CENTRIA.

Using Constraints for Intrusion Detection: The NeMODe System 129

References

1. Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier
Science, Amsterdam (2006)

2. Van Deursen, A., Visser, J.: Domain-specific languages: An annotated bibliography.
ACM Sigplan Notices 35(6), 26–36 (2000)

3. Gecode Team: Gecode: Generic constraint development environment (2008),
http://www.gecode.org

4. Salgueiro, P., Abreu, S.: Network Monitoring with Constraint Programming: Pre-
liminary Specification and Analysis. In: Proceedings of the 18th International Con-
ference on Applications of Declarative Programming and Knowledge Management
(2009)

5. Salgueiro, P., Abreu, S.: A DSL for Intrusion Detection based on Constraint Pro-
gramming. In: SIN 2010: Proceedings of the 3rd International Conference on Se-
curity of Information and Networks. ACM, New York (2010)

6. Salgueiro, P., Abreu, S.: On using Constraints for Network Intrusion Detection. In:
INForum 2010 - Simpósio de Informática, Braga, Portugal (2010)

7. Comer, D.: Internetworking With TCP/IP, 5th edn. Principles Protocols, and Ar-
chitecture, vol. 1. Prentice Hall, Englewood Cliffs (2006)

8. Zhang, Y., Lee, W.: Intrusion detection in wireless ad-hoc networks. In: Proceedings
of the 6th Annual International Conference on Mobile Computing and Networking,
p. 283. ACM, New York (2000)

9. Roesch, M.: Snort - lightweight intrusion detection for networks. In: LISA 1999:
Proceedings of the 13th USENIX Conference on System Administration, Berkeley,
CA, USA, pp. 229–238. USENIX Association (1999)

10. Arun, K.S.P.: Flow-aware cross packet inspection using bloom filters for high speed
data-path content matching. In: IEEE International Advance Computing Confer-
ence, IACC 2009, pp. 1230–1234 (June 6-7, 2009)

11. Vasiliadis, G., Polychronakis, M., Antonatos, S., Markatos, E.P., Ioannidis, S.:
Regular Expression Matching on Graphics Hardware for Intrusion Detection. In:
Balzarotti, D. (ed.) RAID 2009. LNCS, vol. 5758, pp. 265–283. Springer, Heidelberg
(2009)

12. Kumar, S., Spafford, E.H.: A software architecture to support misuse intrusion
detection. In: Proceedings of the 18th National Information Security Conference,
pp. 194–204 (1995)

13. Schulte, C., Stuckey, P.J.: Speeding up constraint propagation. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 619–633. Springer, Heidelberg (2004)

14. Van Hentenryck, P., Michel, L.: Constraint-based local search. MIT Press, Cam-
bridge (2005)

15. Codognet, P., Díaz, D.: Yet another local search method for constraint solving. In:
Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer, Heidelberg
(2001)

16. Abreu, S., Diaz, D., Codognet, P.: Parallel local search for solving constraint prob-
lems on the cell broadband engine (preliminary results). CoRR, abs/0910.1264
(2009)

17. Paxson, V.: Bro: a system for detecting network intruders in real-time* 1. Computer
networks 31(23-24), 2435–2463 (1999)

18. tcpdump web page at http://www.tcpdump.org (April 2009)

http://www.gecode.org
http://www.tcpdump.org

A Declarative API for Particle Systems

Pavel Krajcevski1 and John Reppy2

1 Disney Interactive Studios
Pavel.Krajcevski@disney.com

2 University of Chicago
jhr@cs.uchicago.edu

Abstract. Recent trends in computer-graphics APIs and hardware have made
it practical to use high-level functional languages for real-time graphics appli-
cations. Thus we have the opportunity to develop new approaches to computer
graphics that take advantage of the high-level features of functional languages.
This paper describes one such project that uses the techniques of functional pro-
gramming to define and implement a combinator library for particle systems.
Particle systems are a popular technique for rendering fuzzy phenomena, such as
fire, smoke, and explosions. Using our combinators, a programmer can provide
a declarative specification of how a particle system behaves. This specification
includes rules for how particles are created, how they evolve, and how they are
rendered. Our library translates these declarative specifications into a low-level
intermediate language that can be compiled to run on the GPU or interpreted by
the CPU.

Keywords: Computer Graphics, Embedded DSL, Particle Systems.

1 Introduction

In recent years, real-time computer graphics APIs, such as OpenGL, have shifted from
working in terms of individual vertices to working with large batches of geometry.
Furthermore, the computational load has shifted from the CPU to specialized GPUs that
have supercomputer performance at commodity prices. These trends make it practical to
use high-level functional languages to program real-time graphics and to take advantage
of features like higher-order functions and polymorphic type systems [2]. This paper
describes one such project: a declarative library for defining particle systems.

Particle systems are a technique for animating and rendering fuzzy phenomena such
as fire, smoke, explosions, etc. in 3D graphics [9]. Because these phenomena have a
fluid and dynamic appearance, traditional polygon-based rendering techniques are not
well suited for rendering them. A particle system is a stochastic system that represents
these phenomena as a cloud of simple particles. Each particle has state, i.e., position,
color, velocity, etc., that is evolving over time according to some “physics” model [13].

Many animation systems today (e.g., Blender 1 and Terminal Reality’s Infernal En-
gine 2) provide support for particle effects by requiring the user to specify a set of prop-
erties that are the interpreted by the underlying architecture. These methods for creating

1 http://wiki.blender.org/index.php/Doc:Manual/Physics/Particles
2 http://www.infernalengine.com/tech_particles.php

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 130–144, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://wiki.blender.org/index.php/Doc:Manual/Physics/Particles
http://www.infernalengine.com/tech_particles.php

A Declarative API for Particle Systems 131

particle systems are designed to give artists much more creative control through a large
variety of properties but discourage the creation of quick, dynamic particle systems that
are easily simulated with many particles. In contrast, McAllister has described a C++
library for particle systems that provides a higher level of abstraction than hand-written
effects and is more flexible than the canned systems found in animation tools [8]. In his
system, one uses a sequence of action functions to specify how the state of the current
particle system is modified. But his system has some limitations: it is not declarative,
does not use runtime compilation techniques, and does not (yet) support running parti-
cle systems on the GPU.

This paper presents a declarative approach to implementing particle systems, which
is inspired by McAllister’s work, but which addresses the limitations of his library. Us-
ing our API, one specifies the physics of a particle system as the composition of actions,
which represent particle state to state functions. These functions are then compiled to
run on either the CPU or GPU (via OpenCL [5]). Our library is implemented as part of
the SML3d library [12], which is a library for OpenGL-based graphics for the MLton
version of Standard ML.

The remainder of the paper is organized as follows. In the next section, we provide
a more detailed description of how particle systems work and give a simple example
of such a system in pseudo code. In Section 3, we describe our combinator library
for particle systems and illustrate its use with several examples. This section is fol-
lowed by a description of the implementation, which includes a discussion of the opti-
mizations that we perform. We then discuss related work in Section 6 and conclude in
Section 7.

2 Particle Systems

A particle system is a technique in computer graphics that is used to render fuzzy
phenomena, such as rain, fire, explosions, etc. [9]. Particle Systems consist of a set of
individual particles that each have their own state. The state of a particle is defined by a
list of variables defining attributes that are used in either the physical simulation of the
particle or in its rendering. A typical implementation of a particle system executes the
following steps for each frame of animation:

1. New particles are generated by means of a stochastic process that determines the
number of new particles and their initial states.

2. Particle states are updated.
3. Particles that have exceeded the qualifications for their existence are deleted.
4. Particles are rendered in the scene.

The most common state variables of a particle system are position, velocity, color, and
age. A particle is considered alive if it exists within some predetermined boundary of
the particle system and its age is below the maximum age of a particle.

The physical simulation of the particle system is defined by a set of rules that af-
fect the particles. Some rules may be applied to only a subset of the particles while
others affect all of the particles. An example of this is having particles bounce off of a

132 P. Krajcevski and J. Reppy

platform versus gravity. In order to get the particle state for frame i + 1, we apply these
rules to the state of the particles for frame i in relation to the time elapsed between
rendering.

2.1 A Simple Particle System

As a simple example, let us consider a particle system that models a geyser or foun-
tain.3 In this system, particles represent water that is being ejected into the air from the
ground. Particles will be emitted from a ground plane (the XZ plane) with some initial
velocity vector pointing mostly up. As their state evolves, gravity slows their upward
velocity until they eventually fall to earth and die when they reach the ground. For vi-
sual effect, we also want the color of the particle to evolve as it ages (i.e., starting as
white and then darkening to blue).

Simulating the basic physics of particle motion requires tracking the particle’s veloc-
ity (vel) and position (pos) and checking to see if the particle has outlived its lifespan
or hit the ground. The SML code for updating the physics state of a particle is as fol-
lows, where NONE is returned if the particle has died:

fun updateParticle ({pos, v, life} : particle, dt) =
if (life = 0) then NONE
else let

val pos = Vec3f.add(pos, Vec3f.scale(dt, v))
in
if (#y pos <= 0.0) then NONE
else SOME{

pos = pos,
v = Vec3f.sub(v, Vec3f.scale(dt, gravity)),
life = life-dt

}
end

Using our library, the physics of this particle system is specified as follows:

P.sequence [
P.accelerate gravityVec,
P.inside {

d = groundPlane,
thenStmt = P.move,
elseStmt = P.die

}
]

The physics is defined as a sequence (composition) of two actions (an action is just
a function from particle states to particle states). The first action applies gravitational
acceleration to the particle’s state and the second tests to see if the particle is in the half-
space defined by the ground plane. If it is, then the particle is moved (i.e., its position
is updated), otherwise it dies. The lifetime of the particle is set when it is created and is
tracked automatically.

3 SML source code for this example can be found in the SML3d source code.

A Declarative API for Particle Systems 133

2.2 Specifying Particle Systems

Specifying a particle system using our library is a staged process. First, the components
for birth, simulation, and rendering are conglomerated into a single program. Each of
these variables will be discussed in detail in Section 3

val create : {emit: emitter, physics : action, render : renderer}
-> program

To run the program on a specific target (e.g., CPU or GPU), we must first compile it
to an executable. This involves breaking down the higher level combinators into a form
representable on the target. In order to execute the program, it is instantiated with its
own set of run-time variables. Each target supports a standard interface for compiling,
instantiating, and running a program.

type exec (* executable program *)
type psys (* instance of an exec *)

val compile : Particles.program -> exec
val new : {exec : exec, maxParticles : int} -> psys
val step : {psys: psys, t : Time.time} -> unit
val render : psys -> unit

Lastly, we have a mechanism to delete a particle system when it is no longer needed.

val delete : psys -> unit

3 Particle-System Combinators

An SML3d particle system is specified by three components: an emitter, which de-
scribes the generation of new particles, an action, which describes how the state of
a particle evolves, and a renderer, which defines how a particle’s state is visualized.
This section describes how these components are specified and gives an example of a
complete specification.

3.1 Variables

Particle systems are parameterized by variables, which have one of four possible types.

type ’a ty

val boolTy : bool ty
val intTy : int ty
val floatTy : float ty
val vec3fTy : Vec3f.vec3 ty

We use phantom types [7] to ensure type correctness for particle-system variables.

type ’a var

val new : string * ’a ty -> ’a var

Whenever a new variable is created, its type is specified. Subsequent uses of variables
must match the specified type.

134 P. Krajcevski and J. Reppy

Our system has two kinds of variables: constants and parameters. Constants are vari-
ables that are created with an initial value.

val constb : bool -> bool var
val consti : int -> int var
val constf : float -> float var
val const3f : (float * float * float) -> Vec3f.vec3 var

Parameters are initially created without values associated to them. The act of associating
a value with a variable is called binding. Variables that are bound before a program is
compiled are treated as constants; unbound variables are bound on a per-instance basis.

The binding of variables can be done at any point during the execution of the particle
system and must be done prior to execution. The program will abort at runtime if it
encounters any unbound variables, and there are no static guarantees at runtime to detect
unbound variables. Due to this freedom in variable definition, anything that is defined in
terms of particle system variables can be made time-varying by re-binding the variable
after given time intervals.

3.2 Domains

We use McAllister’s notion of a domain to specify many of the properties of a particle
system. In the abstract, a domain is a subset of �3; examples of domains include line
segments, discs, cylinders, and half-spaces (i.e., planes). Domains are created by spec-
ifying a series of particle system variables as parameters to a constructor. Domains are
used to specify three dimensional objects that the particles interact with and random
vector generators by defining a space containing all possible values. Some examples of
how domains are specified are

type domain
val point : vec3f var -> domain
val plane : {pt: vec3f var, n : vec3f var} -> domain
val sphere : {c : vec3f var, r : float var} -> domain

3.3 Emitters

In our particle system definition, we use the notion of an emitter to denote a collec-
tion of domains from which the particle state variables generate their values. Since the
domains are specified using particle system variables, whose values are not fixed, the
conditions under which particles are generated can change over the course of a parti-
cle system’s lifetime. Along with the domains, the emitter also takes a particle system
variable parameter that defines the rate at which the particles should be created.

One example in which these variables may change is a geyser that emits particles
in bursts. Over the course of the animation, the domain specifying the initial velocity
of the particles could be specified by a cylinder whose radius changes with the rate
of particle creation. Both of the radius of the cylinder and rate of emission would be
specified by particle system variables.

A Declarative API for Particle Systems 135

type action

val move : action
val die : action
val nop : action
val accelerate : Vec3f.vec PSV.var -> action

val bounce : {
friction : float PSV.var,
resilience : float PSV.var,
cutoff : float PSV.var,
d : domain

} -> action

Fig. 1. Common actions used in SML3D particle systems

Particle state. The state of a particle consists of a number of properties. The initial
domain of each of the following properties is specified upon the creation of an emitter:

position a vector of three floats that specifies the current position of the particle
velocity a vector of three floats that specifies the current velocity of the particle
size a vector of three floats that specifies the size of the particle for each axis.
color a vector of four floats that specifies the color (RGB plus alpha) of the particle
lifetime a float which represents the number of seconds left for this particle to live. If

this value is less than or equal to zero, then the particle does not get rendered.

3.4 Actions

The main part of a particle system is the specification of its physics. An action rep-
resents a function from particle states to particle states. We have three kinds of action
combinators: basic actions, such as move a particle; sequences of actions; and predicate
actions. The semantics of particle-physics simulation can be described by applying the
physics action to the state of each particle to get a new state (or ⊥ if it dies; we assume
that for an action a, a(⊥) = ⊥).

Basic actions. Basic actions are operations that modify the state of the particle. Fig-
ure 1 gives a few examples of common actions that are used by particle systems. These
include move, which updates the particle’s position by adding its scaled velocity, die,
which kills the particle, and accelerate, which adds a vector to the particle’s ve-
locity. A more complicated example is bounce, which reflects the particle’s velocity
when it reaches the edge of the specified domain.

Sequences. Sequences of actions are combined using the sequence combinator

val sequence : action list -> action

which returns the composition of its arguments.

136 P. Krajcevski and J. Reppy

val inside : {
d : domain, thenStmt : action, elseStmt : action

} -> action

val faster : {
t : Time.time, thenStmt : action, elseStmt : action

} -> action

Fig. 2. Some predicate actions

Predicates. Predicates are constructs that take a high level conditional statement and
use it to determine which sub-action to apply. Figure 2 gives an example of two pred-
icates. The first tests to see if a particle’s position is inside a domain and the second
tests the particle’s speed. Each predicate has two subactions: the thenStmt is applied
if the predicate’s condition is true for the particle and the elseStmt is applied if the
predicate’s condition is false.

The die action is often used in combination with predicates to mark particles as
dead when they meet certain conditions such as their velocity gets too high or they
enter (or exit) a specified domain.

3.5 Renderers

Renderers describe the mechanisms used to render the particle system. These are not
complex in terms of particle systems and do not take any parameters (except perhaps
textures). The main function of the renderer is to translate the particle state into pixels
on the screen. The mechanisms required to do this vary based on the renderer, e.g., the
points renderer maps particles to points rendered at the particle’s position with its color.
Some examples of renderers are

type renderer
val points : renderer
val texQuads : Texture.texture_id list -> renderer

3.6 A Complete Example

To illustrate the use of these combinators in practice, we examine an example of a
fountain implemented as a particle system. Figure 3 gives a screen shot of this system
in action. The fountain consists of an emitter just above the XZ plane that launches
particles into the air, a disc on the XZ plane that the particles bounce off of when they
fall, and a cutoff plane three units below the XZ plane.

First, we define variables for the parts of the particle system that vary between
instances.

val gravityVec = PSVar.new ("g", PSVar.vec3fTy)
val bounceFriction = PSVar.new ("bf", PSVar.floatTy)
val bounceRes = PSVar.new ("br", PSVar.floatTy)
val emitterRate = PSVar.new ("er", PSVar.intTy)

A Declarative API for Particle Systems 137

Fig. 3. The fountain particle system in action

Next, we specify the emitter. Each of the values of the emitter specifies a domain for
vector properties and constants for the scalar variables. Note that these values do not
all have to be constants. For example, the emitterRate variable, which specifies the
number of particles to generate per-frame, is not a constant variable. Hence, we may
change the variable to simulate higher or lower water pressure of the fountain.

val emitterFountain = P.newEmitter {
maxNum = emitterRate, (* emission rate *)
positionD = P.line(

const3f (0.0, 0.01, 0.0), const3f (0.0, 0.4, 0.0)),
velocityD = P.cylinder(

const3f (0.0, 0.25, ˜0.01), const3f (0.0, 0.27, ˜0.01),
constf 0.021, constf 0.019),

colorD = P.line(
const3f (0.8, 0.9, 1.0), const3f (1.0, 1.0, 1.0))

sizeD = P.point(const3f (1.0, 1.0, 1.0)),
lifetime = PSVar.constf 100.0

}

Each of the values that are specified by a domain uses the 3D primitive to randomly
generate a point within the domain using a uniform distribution. Following the emitter,
the action list describes the physics simulation of the particle system. For this system,
we simulate a fountain that bounces off of the ground plane. Hence, since the emitter
provides the initial upwards velocity, we specify gravity, the bounce off of the ground,
and finally death.

val bounceDisc = P.disc(
const3f (0.0, 0.0, 0.0), const3f (0.0, 1.0, 0.0),
constf 5.0, constf 0.0)

val actionFountain = P.sequence [
P.accelerate gravityVec,

138 P. Krajcevski and J. Reppy

P.bounce {
fiction = bounceFriction,
resilience = bounceRes,
cutoff = constf(0.0),
d = bounceDisc

},
P.inside {

d = P.plane(
PSVar.const3f (0.0, ˜3.0, 0.0),
PSVar.const3f (0.0, 1.0, 0.0)),

thenStmt = P.move,
elseStmt = P.die

}
]

Finally, we create the hooks that will incorporate the particle system into the desired
runtime environment. First, we package all three components by calling the P.create
function. Then, we compile the particle system for the desired environment. At this
point, the system is converted first to an internal representation and then to a represen-
tation that caters to the chosen runtime. Finally, we create an instance of the particle
system, specifying the total number of particles that we want to use for that particular
instance.

val fountain = P.create {
emitter = emitterFountain,
physics = actionFountain,
render = P.points

}

val fountainExe = PsysCL.compile fountain

val fountainPsys = PsysCL.new {
exec = fountainExe,
maxParticles = 10000

}

Before we are ready to enter the main loop of the program, some of the variables need to
be initialized. First, we bind values to the particle system variables that were not initial-
ized during compilation but will not be changing during the actual program execution.

PsysCL.bind3f (fountainPsys, gravityVec, (0.0, ˜9.8, 0.0));
PsysCL.bindf (fountainPsys, bounceFriction, ˜0.05);
PsysCL.bindf (fountainPsys, bounceRes, 0.35);

Then, we define a function that renders the system at the current time.

fun runsOnce (inst, emitRate) = (
PsysCL.bindi (inst, emitterRate, emitRate);
PsysCL.step {inst=inst, t = Time.now()};
PsysCL.render inst)

A Declarative API for Particle Systems 139

In order to actually animate the particle system, all we need to do is update it with our
desired emitter rate. Since the emitter rate is bound each time the system runs, we are
free to vary the value dynamically.

4 Implementation

Once the particle system has been compiled into an internal representation (IR), we
perform a number of optimizations on the IR itself before we go to code generation.
During code generation, we allow the user to specify different backends on which the
particle system will run: OpenCL, GLSL, or the CPU.

4.1 Internal Representation

Execution of the particle system is handled in a number of steps. First, the emitter and
physics components are compiled down into an internal representation. The IR repre-
sents programs as a DAG of blocks, where each block is a list of statements. Variables
in the IR are single assignments and we use explicit parameter passing (instead of φ-
nodes) to represent live variables in control-flow between blocks. Each block contains
a list of statements, which are procedures used to manipulate IR variables. Then, if ap-
plicable, the IR is compiled down onto the host runtime environment, e.g. OpenCL on
the GPU.

Due to the nature of the variables in the particle state, all of the operations performed
by the particle system’s emitter and physics can be described by primitive vector and
scalar operations. This is another reason why this representation of a particle system
lends itself to the GPU. But more importantly, it means that all of our higher level
constructs involving domains can be represented by a relatively minor set of vector
operations.

Variables. The IR has its own class of variables to parameterize its operations. Some
of these variables correspond to the user-defined variables described in Section 3.1 and
others are internal. Similar to the particle system variables, the IR variables have a
name, type, and scope associated with them. The scope of the IR variables is restricted
to the following:

Constant — a variable that represents a constant value. These variables have global
scope and correspond to either user-defined constants and internal constants.

Global — a variable whose value is defined outside the IR and has global scope. These
include the unbound user variables and the particle state variables.

Parameter — a parameter to a block. The scope of the variable is its block.
Local — a variable defined by an IR binding in a block. The scope of the variable is the

remainder of the block (e.g., similar to a let-bound variable in a lexically-scoped
language).

The translation to the IR generates a mapping from user-defined variables to IR globals.
This mapping is used to supply instance-specific values for these variables when the
particle system is run.

140 P. Krajcevski and J. Reppy

Emitter
Physics

Renderer

Fig. 4. The IR graph for a simple particle system

Blocks. The IR representation of an emitter or physics component is a DAG of blocks.
Each block has a list of parameter variables and a body, which consists of a tree of
statements. The five basic types of statements are:

PRIM(y, p, xs, s)
is a binding of y to the result of applying primitive operator p to the argument
variables xs. The scope of y is the statement s.

IF(x, s1, s2)
is a conditional where x is a boolean variable that is tested, s1 is the then branch,
and s2 is the else branch.

GOTO(b, xs)
is an unconditional control transfer to block b with arguments xs.

RETURN(xs)
is a statement that marks the completion of the component’s execution. The vari-
ables xs represent the results of the computation and correspond to the particle
state variables.

DISCARD
is a statement that terminates the particle and discards its state.

State variables. State variables are a specific set of IR variables used by the imple-
mentation to track the state of the particle. These variables are special because they
are passed to the root block as parameters. Then, after the processing is completed, a
RETURN statement is called with parameters matching those that were passed into the
root block of the program.

The state variables are those specified by the emitter (position, velocity, size, color,
and life) plus an extra one, called secondary position, which contains the value of the
particle’s position on the previous frame. As described below, some of these variables
may be eliminated by optimzation.

4.2 Optimizations

We perform a number of optimizations on the IR to eliminate unused computations
and reduce the memory requirements of representing particles. These optimizations
are performed in light of the implicit data and control-flow between the components.
Figure 4 illustrates these dependencies for a simple example. The dashed edge from the
return node of the emitter code to the entry of the physics code represents the fact that
the particle state created by the emitter is used by the physics. Likewise, the backedge
from the return node in the physics code to its own entry represents the fact that the

A Declarative API for Particle Systems 141

resulting state from one physics step is the input to the next. Lastly, there is an edge
from the physics return node to the renderer, which represents the fact that the renderer
renders the particle state.

Contraction. Our optimization performs a number of standard contractive optimiza-
tions that serve to simplify and reduce the code. These include eliminating unused local
variables, merging blocks that have only one predecessor into their predecessor, and
constant folding.

Useless variable elimination. One of our most important optimizations is useless vari-
able elimination (UVE). Many particle systems only use a subset of the state variables,
but the translation to the IR must be conservative and include code to support all of
them. We use UVE to prune out state variables that cannot possibly affect the rendering
of the system.

We use a simplified version of Shivers’ UVE algorithm [11], that starts by marking
the inputs to the renderer as useful (e.g., if we are rendering the system as points, then
the position and color are marked as useful). This information is then propagated back
through the physics code’s control flow, with the right hand side variables of a PRIM
node being marked as useful if the left hand side is useful, arguments to conditionals
are marked as useful, and the useful parameters of a block cause the corresponding
arguments to GOTOs to be marked useful. Because the physics code is implicitly in
a loop, we must propagate usefulness from the root block’s parameters back to the
corresponding arguments of the RETURN statements. Once a fixed point is reached, we
propagate the useful variable information into the RETURN statements of the emitter
and apply the analysis to the emitter code. Since the emitter is run only once per particle,
we do not need to iterate to a fixed point. Once the analysis is complete, we rewrite the
code to remove any variable that is not marked as useful.

Domain-specific optimizations. Many optimizations can be performed on geometric
operations to simplify the actual execution of the code. For example, if we take the dot
product of a vector v and the unit vector pointing along the y-axis, this is identical to
just extracting the y-coordinate from v. We can avoid many superfluous operations in
this manner. This optimization is mostly useful in conjunction with constant folding,
since many of the available optimizations do not become apparent until one or the other
happens.

5 Targetting GPUs

Our system is designed to support multiple backend targets for executing particle sys-
tems. These include a CPU target that interprets the IR, a planned backend that trans-
lates the IR to GLSL [10] to run on the GPU, and a backend that generates OpenCL [5]
code that can run on either the CPU or GPU. These backends implement the standard
interface that was described in Section 2.2. In this section, we discuss some of the issues
in generating code for the OpenCL target.

142 P. Krajcevski and J. Reppy

Code Generation. Generating OpenCL code from the IR is complicated by the fact
that the IR is a control-flow graph, while the OpenCL is a block-structured language.
Fortunately, however, our combinators do not produce cyclic graphs, so the process is
possible. We do a prepass that matches blocks with the IF statements (if any) that they
are a join continuation for. We then use this information to translate the IR into an AST
representation that can be pretty printed as OpenCL code. The code generation also
deals with mapping IR variables to OpenCL variables, etc..

Representing particles. Particles are represented as an array of OpenCL structs,
where each field corresponds to a particle state variable. We also create arrays of
OpenGL attributes to hold those particle state variables that are used by the renderer.
While using separate arrays for the renderer results in some redundancy, it is necessary
because some rendering methods require multiple vertices, each with their own set of
attributes, per particle. For example, line segments require two vertices per particle,
which are defined by the position and secondary position state variables.

Random numbers. To support random-number generation, each particle has a random
seed as part of its state. The OpenCL translation uses a functional random-number
generator that takes a seed and produces both a random number and a new seed. We
then thread the seed state through the generated code and save it back in the particle
state at the end of the execution.

Particle birth and death. Another tricky issue is managing particle birth and death,
since the size of the total population affects the number of new particles generated each
iteration. Because we want to avoid moving data from the GPU back to the CPU, we
have to use a parallel-scan algorithm to compute for each particle the number of live
particles with lower IDs [4]. This information can then be used to manage births as
follows. Assume that we want to add k new particles, then a dead particle with ID i is
reborn if i− j ≤ k, where j is the number of live particles with IDs lower than i.

6 Related Work

Reeves was the first researcher to suggest the combination of stochastic processes and
particles to render fuzzy phenomena. His seminal paper describes the basic ideas that
underly all modern particle systems [9]. He describes several applications, including
the use of particle systems to render the wall of fire caused by the “Genesis bomb” in
the movie Star Trek II: The Wrath of Kahn (Paramount 1982).

Our work was inspired by McAllister’s C++ library for building particle systems [8].
In this library, McAllister introduced the notion of domains as a type associated with
particle systems. From this, we were able to abstract a functional approach to creat-
ing particle systems at a high level. Another contribution was Kipfer et al.’s method of
simulating particles on the GPU [6]. In their paper, they used the GPU to handle both
sorting and particle interaction, motivating the design for how we should present our
data in order to streamline it on the GPU. Finally, Yi and Froemke’s Ticker Tape li-
brary provided an example for how particle systems can be created using more intuitive
methods [14]. In this library, each operation on a particle system was defined by having

A Declarative API for Particle Systems 143

a user-defined creation, physics, and rendering operation, which was later composted
into one system.

Animation tools, such as Blender, define particle systems by manipulating their prop-
erties directly. Many of these tools specify particle systems in similar ways. They re-
quire the user to define methods for creation and rendering, and then have mechanisms
by which the appearance of the particle system is specified. For example, Blender’s
particle system animation allows for splines and other user-defined particle paths. This
method is useful for artists, but it also is limited in that the animations generally target
non-real time rendering. As a result, performance and ease of creation are not measures
by which we judge the tool’s effectiveness.

7 Conclusion

In this paper we have presented a declarative approach to defining particle systems.
Our implementation provides a set of combinators for specifying the physics of a par-
ticle system; these combinators are then compiled into an internal representation that
can either be interpreted on the CPU or translated to code that can run on the GPU.
This approach takes advantage of the high-level features of functional languages and
demonstrates a way that high-level languages can provide a better programming model
for computer graphics.

In practical environments, this method of defining particle systems could be used to
create tools that provide a much more visual approach to creating particle systems to be
used in the field. Visual programming languages have been used to create procedural
animations before, such as Apple’s Quartz Composer [1]. Such a programming tool
would increase the ease of creating particle systems in both video game and movie
production.

7.1 Future Work

There are many features of particle systems that are not implemented in the program-
ming model that we have introduced in this paper. Most notably, there is no way to
specify the sorting of particles in our programming model. Also, allowing the user
to pass state variables into the particle system run-time environment would introduce
many new opportunities for more dynamic definitions of particle systems.

User-defined state variables. Actions, such as accelerate and move, are specific
cases of the vector operation xi+1 = xi + tyi, where the x and y are bound to specific
state variables. By exposing state variables to the user, we can use a smaller set of
actions to support our current behaviors. Furthermore, we can allow user-defined state
variables and renderers to increase the flexibility of the system. This generalization
only requires changes to the user API, since the IR and backends already deal with the
general case.

Sorting. When rendering a group of translucent polygons, it is generally assumed that
the polygons are sorted by their distance from the camera. Kipfer et al. introduced a nice

144 P. Krajcevski and J. Reppy

way to sort particles on the GPU using a bitonic sort [6]. This sorting algorithm lends
itself fairly well to the GPU and would not require an extensive overhaul of our current
system. Their implementation, however, leverages the technical aspects of GLSL and
does not provide a platform independent way of representing the sorting of particles.

Particle-particle interaction. Finally, one last feature of particle systems that should
be supported is the idea of particle-particle interaction. Such interactions are a challenge
to GPUs, but there are techniques for spatial sorting that can be applied to handle them,
such as Kipfer et al.s Uberflow system [6]. Using the particles’ sorting to determine
proximity would allow for many other effects as well, such as flocking.

References

1. Apple Inc.: Quartz Composer Programming Guide (October 2008),
http://developer.apple.com

2. Elliott, C.: Programming graphics processors functionally. In: Haskell 2004. ACM Press,
New York (2004)

3. Elliott, C., Hudak, P.: Functional reactive animation. In: ICFP 1997, pp. 263–273. ACM
Press, New York (1997)

4. Harris, M.: Parallel prefix sum (scan) with CUDA. In: GPU Gems 3. Addison-Wesley, Read-
ing (2007)

5. Khronos OpenCL Working Group: The OpenCL Specification (Version 1.1) (2010),
http://www.khronos.org/opencl

6. Kipfer, P., Segal, M., Westermann, R.: Uberflow: a gpu-based particle engine. In: HWWS
2004, pp. 115–122. ACM, New York (2004)

7. Leijen, D., Meijer, E.: Domain specific embedded compilers. In: DSL 1999, pp. 109–122.
ACM, New York (1999)

8. McAllister, D.K.: The design of an API for particle systems. Tech. rep., University of North
Carolina (January 2000), www.particlesystems.org

9. Reeves, W.T.: Particle systems—a technique for modeling a class of fuzzy objects. ACM
Trans. Graph. 2(2), 91–108 (1983)

10. Rost, R.J., Licea-Kane, B.: OpenGL Shading Language, 3rd edn. Addison-Wesley, Reading
(2010)

11. Shivers, O.: Useless-variable elimination. In: WSA 1991 (October 1991)
12. The SML3d library, http://sml3d.cs.uchicago.edu
13. Witkin, A.: An introduction to physically based modeling: Particle system dynamics (1997),

http://www.cs.cmu.edu/˜baraff/pbm/constraints.pdf
14. Yi, M., Froemke, Q.: Ticker tape: A scalable 3d particle system with wind and air resistance

(May 2010), http://software.intel.com/en-us/articles/tickertape

http://developer.apple.com
http://www.khronos.org/opencl
www.particlesystems.org
http://sml3d.cs.uchicago.edu
http://www.cs.cmu.edu/~baraff/pbm/constraints.pdf
http://software.intel.com/en-us/articles/tickertape

Integrating XPath with the Functional-Logic

Language Toy

Rafael Caballero1, Yolanda Garćıa-Ruiz1, and Fernando Sáenz-Pérez2,�

1 Departamento de Sistemas Informáticos y Computación,
2 Departamento de Ingenieŕıa del Software e Inteligencia Artificial

Universidad Complutense de Madrid, Spain

Abstract. This paper presents a programming framework for incorpo-

rating XPath queries into the functional-logic language T OY . The pro-

posal exploits the language characteristics, including non-determinism,

logic variables, and higher-order functions and patterns. Our setting cov-

ers a wide range of standard XPath axes and tests. In particular reverse

axes are implemented thanks to the double nature of XPath queries,

which are both higher-order functions and data terms in our setting. The

combination of these two different worlds, the functional-logic paradigm

and the XML query language XPath, is very enriching for both of them.

From the point of view of functional-logic programming, the language is

now able to deal with XML documents in a very simple way. From the

point of view of XPath, our approach presents several nice properties as

the generation of XML test-cases for XPath queries, which can be useful

for finding bugs in erroneous queries.

Keywords: Functional-Logic Programming, Non-Deterministic Func-

tions, XPath Queries, Higher-Order Patterns.

1 Introduction

In the last few years the Extensible Markup Language XML [12] has become
the de facto standard for the exchange of different types of data. Thus, query-
ing XML documents from different languages as become a convenient feature.
XQuery [14,15] has been defined as a query language for finding and extract-
ing information from XML documents. It extends XPath [13], a domain-specific
language that has become part of general-purpose languages. Although less ex-
pressive than XQuery, the simplicity of XPath makes it a perfect tool for many
types of queries. In this paper, we address the task of incorporating XPath into
the functional-logic system T OY [8]. The usual approach for integrating XPath
in an existing programming language first represents the XPath query by means
of some suitable data type, and then employs some evaluator which takes the
XPath query and the XML document as inputs, and produces the desired result

� This work has been supported by the Spanish projects TIN2008-06622-C03-01, S-

0505/TIC/0407, S2009TIC-1465, and UCM-BSCH-GR58/08-910502.

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 145–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

146 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

as output. However, in functional and functional-logic languages, a different ap-
proach is possible: XPath queries can be represented by higher-order functions
connected by higher-order combinators. Using this approach, an XPath query be-
comes at the same time implementation (code) and representation (data term).
In this paper we follow this idea, which has been used in the past, for instance
for defining parsers in functional and functional-logic languages [3,7].

The specific characteristics of functional-logic languages match perfectly the
nature of XPath queries:
- Non-deterministic functions are used to nicely represent the evaluation of an
XPath query, which consists of fragments of the input XML document.
- Logic variables are employed for instance when obtaining the contents of XPath
text nodes. Also, they play an important role when defining XML test-cases for
XPath queries, one of the most appealing features of our setting.
- By defining rules with higher-order patterns XPath queries become truly first-
class citizens in our setting. This allows us to define the transformation for
introducing reverse axes as parent or checking that the query is constructed
using XPath standard components.

The rest of the paper is organized as follows. Section 2.1 briefly introduces the
functional-language T OY and the XPath subset considered in this work. Section
3 defines the basic components of XPath queries in T OY . Section 4 shows how
XML test-cases for XPath queries can be readily generated, while Section 5
takes advantage of higher-order patterns for introducing some improvements in
our framework. Finally, Section 6 presents some conclusions.

2 Preliminaries

Next we introduce briefly the functional-logic language T OY and the subset of
XPath that we intend to integrate with T OY .

2.1 The Functional-Logic Language T OY

All the examples in this paper are written in the concrete syntax of the lazy
functional-logic language T OY [8], but most of the code can be easily adapted
to other similar languages as Curry [5]. We start explaining a possible repre-
sentation of basic XML documents in T OY . A T OY program is composed of
data type declarations, type alias, infix operators, function type declarations and
defining rules for functions symbols. Data type declarations and type alias are
useful for representing XML documents in T OY, as illustrated next:

data node = txt string
| comment string
| tag string [attribute] [node]

data attribute = att string string
type xml = node

Integrating XPath with the Functional-Logic Language Toy 147

<?xml version=’1.0’?>

<food>

<item type="fruit">

<name>watermelon</name>

<price>32</price>

</item>

<item type="fruit">

<name>oranges</name>

<variety>navel</variety>

<price>74</price>

</item>

<item type="vegetable">

<name>onions</name>

<price>55</price>

</item>

<item type="fruit">

<name>strawberries</name>

<variety>alpine</variety>

<price>210</price>

</item>

</food>

tag "root" [att "version" "1.0"] [

tag "food" [] [

tag "item" [att "type" "fruit"] [

tag "name" [] [txt "watermelon"],

tag "price" [] [txt "32"]

],

tag "item" [att "type" "fruit"] [

tag "name" [] [txt "oranges"],

tag "variety" [] [txt "navel"],

tag "price" [] [txt "74"]

],

tag "item" [att "type" "vegetable"] [

tag "name" [] [txt "onions"],

tag "price" [] [txt "55"]

],

tag "item" [att "type" "fruit"] [

tag "name" [] [txt "strawberries"],

tag "variety" [] [txt "alpine"],

tag "price" [] [txt "210"]

]

]]

Fig. 1. XML example (left) and its representation in T OY (right)

The data type node represents nodes in a simple XML document. It distin-
guishes three types of nodes: texts, tags (element nodes), and comments, each
one represented by a suitable data constructor and with arguments representing
the information about the node. For instance, constructor tag includes the tag
name (an argument of type string) followed by a list of attributes, and finally a
list of child nodes. The data type attribute contains the name of the attribute
and its value (both of type string). The last type alias, xml, renames the data
type node. Of course, this list is not exhaustive, since it misses several types of
XML nodes, but it is enough for this presentation. Notice that in this paper we
do not consider the adequacy of the document to its underlying Schema def-
inition [11]. This task has been addressed in functional programming defining
regular expression types [10]. However, in this work we assume well-formed input
XML documents.

The T OY primitive load xml file loads an XML file returning its represen-
tation as a value of type node. Figure 1 shows an example of XML file and its
representation in T OY .

Each rule for a function f has the form:

f t1 . . . tn︸ ︷︷ ︸
left-hand side

→ r︸︷︷︸
right-hand side

where s1 = u1, . . . , sm = um︸ ︷︷ ︸
local definitions

where ui and r are expressions (that can contain new extra variables) and ti,
si are patterns. The overall idea is that a function call (f e1 . . . en) returns an
instance rθ of r, if:

148 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

– Each ei can be reduced to some pattern ai, i = 1 . . . n, such that (f t1 . . . tn)
and (f a1 . . . an) are unifiable with most general unifier θ, and

– uiθ can be reduced to pattern siθ for each i = 1 . . .m.

In T OY , variable names must start with either an uppercase letter or an under-
score (for anonymous variables), whereas other identifiers start with lowercase.
Infix operators are also allowed as particular case of program functions. Consider
for instance the definitions:

infixr 30 /\ infixr 30 \/ infixr 45 ?
false /\ X = false true \/ X = true X ? _Y = X
true /\ X = X false \/ X = X _X ? Y = Y

The /\ and \/ operators represent the standard conjunction and disjunction,
respectively, while ? represents the non-deterministic choice. For instance the
infix declaration infixr 45 ? indicates that ? is an infix operator that associates
to the right (the r in infixr) and that its priority is 35. The priority is used
to assume precedences in the case of expressions involving different operators.
Computations in T OY start when the user inputs some goal as

Toy> 1 ? 2 ? 3 ? 4 == R

This goal asks T OY for values of the logical variable R that make true the
(strict) equality 1 ? 2 ? 3 ? 4 == R. This goal yields four different answers
{R �→ 1 }, {R �→ 2 }, {R �→ 3 }, and {R �→ 4 }. The next function extends
the choice operator to lists: member [X|Xs] = X ? member Xs. For instance,
the goal member [1,2,3,4] == R has the same four answers that were obtained
by trying 1 ? 2 ? 3 ? 4 == R. T OY is a typed language. Types do not need
to be annotated explicitly by the user, they are inferred by the system, which
rejects ill-typed expressions. However, function type declarations can also be
made explicit by the user, which improves the clarity of the program and helps
to detect some bugs at compile time. For instance, a function type declaration
is: member :: [A] -> A which indicates that member takes a list of elements of
type A, and returns a value which must be also of type A. As usual in functional
programming languages, T OY allows partial applications in expressions and
higher order parameters like apply F X = F X.

A particularity of T OY is that partial applications with pattern parameters
are also valid patterns. They are called higher-order patterns. For instance, a
program rule like foo (apply member) = true is valid, although foo (apply
member []) = true is not because apply member [] is a reducible expression
and not a valid pattern. Higher-order variables and patterns play an important
role in our setting. Functional-logic programming share with logic programming
the possibility of using logic variables as parameters. For instance, the goal
member L == 3 asks for lists containing the value 3. The first solution is L
-> [3 | A], which indicates that L can be a list starting by 3 and followed
by any list (represented by the anonymous variable A). The second answer is L
-> [A, 3 | B], indicating that 3 can be the second element of the list as

Integrating XPath with the Functional-Logic Language Toy 149

well. In this way a (potentially) infinite number of answers can be obtained. The
possibility of generating values for the parameters is employed for generating
test-cases in Section 4.

2.2 The XML Query Language XPath

XPath is a typed functional language. We consider XPath queries of the form
(a complete description of XPath 2.0 can be found at [13]):

XPath = doc(file) / Relative
Relative = Step1 / . . ./ Stepn | Relative |Relative
Step = Axis :: Test | Axis :: Test[XPath]
Axis = self | ForwardAxis | ReverseAxis
ForwardAxis = child | descendant | descendant-or-self | . . .
ReverseAxis = parent | ancestor | ancestor-or-self | . . .
Test = node() | name | text() | comment() | *

The grammar above specifies a subset of the XPath language, enough for rep-
resenting easily most XPath queries. There are other axes that can be used in
XPath, as following-sibling, but according to [15], implementations are not
required to support them. Absolute XPath location paths start with doc(file),
which loads the XML file, and sets the context node to the root, followed by a
relative location path. A relative location path can be either a sequence of steps
or two relative location paths combined by the disjunction operator |. Each step
takes as starting node the context node, and it is composed by an axis that
changes the context node, and by a test that returns only those nodes satisfying
the test. Tests can be kind tests as comment() which holds for comment nodes,
or name tests which check the name of the node. A special kind test is * which
holds for element nodes. For instance, the query:

doc("food.xml")/child::food/
child::item[child::name/child::text()="onions"]/
child::price/child::text()

returns the price of onions in file "food.xml". Assuming the XML document of
Figure 1, this query returns in a XQuery/XPath system the value "55". Observe
the presence of the filter [child::name/child::text()="onions"]. Filters se-
lect some context nodes that verify certain conditions. In this case it means that
we select all the element nodes item such that they have a children element with
tag name containing a text "onions". However, filters do not change the context
node, that is, the item node verifying the filter is kept as context after the step.
The rest of the location path navigates to the children of the item node with
tag price, returning its text value. XPath allows also abbreviated forms. For
instance the previous query can be written as:

doc("food.xml")/food/item[name="onions"]/price/text()

150 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

3 XPath Queries in T OY

In this section we present the basis of our setting, including the type for XPath
queries, the step combinators, tests and forward axes. Reverse axes are consid-
ered in Section 5.

3.1 The Type xPath

Typically, XPath expressions return several fragments of the XML document.
Thus, the expected type for XPath could be type xPath = xml -> [xml]
meaning that a list or sequence of results is obtained. This is the approach
considered in [1] and also the usual in functional programming [4]. However, in
our case we take advantage of the non-deterministic nature of our language, re-
turning each result individually and avoiding the introduction of lists. We define
an XPath expression as a function taking a (fragment of) XML as input and
returning a (fragment of) XML as its result: type xPath = xml -> xml.

3.2 Loading XML Documents and Combining XPath Queries

In order to apply an XPath expression to a particular document, we use the
following infix operator definition:

(<--) :: string -> xPath -> xml S <-- Q = Q (load_xml_file S)

The input arguments of this operator are the string S representing the file name
and an XPath query Q. The function applies Q to the XML document contained
in file S. This operator plays in T OY the role of doc in XPath.

Next, we define the XPath combinators / and :: which correspond to the
connection between steps and between axis and tests, respectively. In T OY ,
these symbols are defined simply as function composition:

infixr 55 .::. infixr 40 ./.
(.::.) :: xPath -> xPath -> xPath (./.) :: xPath -> xPath -> xPath
(F .::. G) X = G (F X) (F ./. G) X = G (F X)

We use the function operator names .::. and ./. because :: and / are already
defined in T OY . The variable X represents the input XML fragment (the context
node). The rules specify how the combinator applies the first XPath expression
(F) followed by the second one (G). Observe that due to the precedence and asso-
ciativity, an expression like: A.::.B ./. C.::.D ./. E.::.F is understood
by T OY as: (A.::.B) ./. ((C.::.D) ./. (E.::.F)) . The disjunction op-
erator | of XPath is is represented in T OY simply by the choice operator ?
defined in Subsection 2.1.

3.3 Basic Axes and Tests

Figure 2 shows the representation in T OY of some basic axes. The first one is
self, which returns the context node. In our setting, it corresponds simply to the

Integrating XPath with the Functional-Logic Language Toy 151

self,child,descendant :: xPath

descendant or self :: xPath

self X = X

child (tag L) = member L

descendant X = child X

descendant X = if child X == Y

then descendant Y

descendant or self =

self ? descendant

nodeT,elem :: xPath

nameT,textT,commentT::string->xPath

nodeT X = X

nameT S (tag S Att L) = tag S Att L

textT S (txt S) = txt S

commentT S (comment S) = comment S

elem = nameT

Fig. 2. XPath axes and tests in T OY

identity function. A more interesting axis is child which returns, using the non-
deterministic function member, all the children of the context node. Observe that
in XML only element nodes have children, and that these nodes correspond in
T OY representation to terms rooted by constructor tag. Once child has been
defined, descendant is just a generalization. The first rule for this function spec-
ifies that child must be used once, while the second rule corresponds to two or
more applications of child. In this rule, the if statement is employed to ensure
that child succeeds applied to the input XML fragment, thus avoiding possi-
bly infinite recursive calls. Finally, the definition of axis descendant-or-self is
straightforward. The first test defined in Figure 2 is nodeT, which corresponds to
node() in the usual XPath syntax. This test is simply the identity. For instance,
here is the XPath expression that returns all the nodes in an XML document,
together with its T OY equivalent:

XPath → doc("food.xml")/descendant-or-self::node()
T OY → ("food.xml" <-- descendant or self.::.nodeT)==R

The only difference is that the T OY expression returns one result at a time in
the variable R, asking the user if more results are needed. If the user wishes to
obtain all the solutions at a time, as usual in XPath evaluators, then it is enough
to use the primitive collect. For instance, the answer to the T OY goal:

Toy> collect ("food.xml" <-- descendant_or_self.::.nodeT) == R

produces a single answer, with R instantiated to a list whose elements are the
nodes in "food.xml". The name test checks if the context node is an element
with a certain name S. The test either returns as output the same XML fragment
received as input, or fails. An example of a relative location path using this
test:

XPath → child::food/child::item
T OY → child.::.nameT "food"./.child.::.nameT "item"

Notice that the expression in T OY is longer in length due to the presence of
the identifier nameT, which is not required in XPath. In the next subsection

152 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

we see how this situation improves when introducing abbreviated forms. Other
useful tests are textT and commentT, which correspond to text() and comment(),
respectively, in XPath. In the case of T OY , the text (respectively comment)
string is obtained by means of a logic variable as, for instance, in:

XPath → child::food/child::item/child::price/child::text()
T OY → child.::.nameT "food"./.child.::.nameT "item" ./.

child.::.nameT "price"./.child.::.textT P

The logic variable P obtains the prices contained in the example document.
Finally, the text elem represents in T OY the XPath test * which is satisfied
only for element nodes. Notice in its definition (cf. Figure 2) the use of the
anonymous variable in its right-hand side indicating that any tag name is
accepted.

3.4 Abbreviations

A number of abbreviations are used frequently in XPath expressions. The most
important abbreviation is that child:: can be omitted from a location step.
This is usually done when child:: is followed by a name test. Thus, the query
child::food/child::price/child::item becomes simply food/price/item.
In T OY we cannot do that directly because we are in a typed language and
the combinator ./. expects xPath expressions and not strings. However, we can
introduce a similar abbreviation by defining new unitary operators name and
text, which transform strings in XPath expressions:

name :: string -> xPath name S = child.::.(nameT S)

An example:

XPath → food/item/price
T OY → name "food"./.name "item"./.name "price"

The same idea can be applied to commentT and textT. Another XPath abbrevi-
ation is // which stands for /descendant-or-self::node()/. In T OY :

infixr 30 .//.
(.//.) :: xPath -> xPath -> xPath
A .//. B = append A (descendant_or_self .::. nodeT ./. B)
append :: xPath -> xPath -> xPath
append (A.::.B) C = (A.::.B) ./. C
append (X ./.Y) C = X ./. (append Y C)

Notice that a new function append is used for concatenating the XPath expres-
sions. This function is analogous to the well-known append for lists, but defined
over xPath terms. This is our first example of the usefulness of higher-order
patterns since for instance pattern (A.::.B) has type xPath, i.e. xml -> xml.

Integrating XPath with the Functional-Logic Language Toy 153

The next example uses both name, .//. and the disjunction operator, asking for
all the elements with name either ”price” or ”variety”:

XPath → food//(price | variety)
T OY → name "food".//.(name "price" ? name "variety")

Another possible improvement is to define a new version of ./. whose left-hand
side is an XML name (a string):

infixr 35 /.
(/.) :: string -> xPath -> xPath S /. X = name S ./. X

For instance:

XPath → food/item/price/text()
T OY → "food"/."item"/."price"/.text P

Now the queries in XPath and in T OY look quite similar. In XPath we obtain
the output: 32 74 55 210, while in T OY we get the associated four solutions:
P �→ 32, P �→ 74, P �→ 55, and P �→ 210.

3.5 Filters

Optionally, XPath tests can include a predicate or filter. Filters in XPath are
enclosed between square brackets. In T OY , they are enclosed between round
brackets and connected to its associated XPath expression by the operator .#:

infixr 60 .#
(.#) :: xPath -> xPath -> xPath
(Q .# F) X = if F Y == _ then Y where Y = Q X

This definition can be understood as follows: first the query Q is applied to the
context node X, returning a new context node Y. Then the if condition checks
whether Y satisfies the filter F, simply by checking that F Y does not fail, which
means that it returns some value represented by the anonymous variable in
F Y == . Although XPath filter predicates allow several possibilities, in this
presentation we restrict to XPath expressions. As in the previous subsection, it
is convenient to define a version of .# accepting strings instead of XPath queries:

infixr 60 #
(#) :: string -> xPath -> xPath S # F = child.::.(nameT S) .# F

Filters in XPath are defined usually by means of comparison operators, as = or
>. For instance, the following XPath query asks for the price of watermelons:
food/item[name="watermelon"]/price. The expression name="watermelon"
means: check whether the context node has a children name, which has a children
text watermelon. In T OY we can mimic this behavior by defining:

154 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

(.=) :: string -> string -> xPath
(.=) A B = (A /. text B)

This operator takes as input parameters both sides of the equality, represented
by the strings A and B, and the input XML context X. The strict equality with
anonymous variable at the right-hand side is used to check whether A has a text
child B in the XPath context X. An example of application of this operator:

XPath → food/item[name="onions"]
T OY → "food"/."item"#("name".="onions")

The same approach can be used for other operators, as >. Filters selecting at-
tributes with certain values are of particular interest, and are represented in
XPath by symbol @. In T OY they are represented by the operator @=:

(@=) :: xmlName -> xmlName -> xPath
(@=) S V X = if (xmlAtt S V == member Attr) then X

where (xmlTag _Name Attr _L) = X

This filter checks if the attribute S of the context element takes the value V. The
next example shows the items of type fruit:

XPath → food/item[@type="fruit"]
T OY → "food"/."item"#("type"@="fruit")

Or course, other comparison operators as @> can be defined analogously. As
T OY is a typed language, several versions of the operators would be needed for
the different involved types (strings, numbers, . . .).

4 Generating Test-Cases for XPath Expressions

Suppose that we wish to know the price of onions as stored in our XML docu-
ment. According to the previous section, we can write in T OY:

Toy>("food.xml" <--
name "food"./."item"#("type"@="onions")./.name "price") == R

The goal returns no answer, but we know that "food.xml" includes the price
of onions. Where is the error? Sometimes it is useful to have a test-case, i.e.,
an XML file which contains some answer for the query. Comparing the test-case
and the original XML document can help to find the error. In our setting, such
test-cases are obtained for free. For instance, we can submit the goal:

Toy>(name "food"./."item"#("type"@="onions")./.name "price") X== _

asking for an XML document X such that the query succeeds. The anonymous
variable at the right-hand side of the strict equality indicates that we are not
interested in the output. However, the answer is difficult to read and understand:

Integrating XPath with the Functional-Logic Language Toy 155

X -> tag _A _B [tag "food" _C [
tag "item" [att "type" "onions" | _D]

[tag "price" _E _F | _G] | _H] | _I]

The logic variables indicate that replacing them by any valid XML fragment
produces a valid XML test-case for the query. In particular, in the case of lists,
they indicate that other elements can be added, and the smaller test-case cor-
responds to substituting these variables by the empty list. In order to enhance
the readability of the result we define a function:

generateTC :: xPath -> string -> bool
generateTC F S = if (F X == _) then write_xml_file X S

This function receives the XPath expression and the file name S as input param-
eters, looks for an XML test-case X, and writes it to the file using the primitive
write xml file. The goal:

Toy> generateTC (name "food"./."item"#("type"@="onions")./.
name "price") "tc.xml" == R

produces the following XML file ”tc.xml”:

<food>
<item type="onions">
<price />

</item>
</food>

It is worth noticing that the primitive has replaced the logic variables by empty
elements. Comparing this file and our example "food.xml", we see that ”onions”
is not an attribute, but a child node. Therefore, the correct query should be:

Toy> ("food.xml"<--
name "food"./."item"#("name".="onions")./.name "price")==R

which returns the answer: R → tag "price" [] [text "55"].

5 Higher Order Patterns

The possibility of employing higher order patterns in T OY allows the user to
consider XPath queries as truly data terms. Queries can be examined and modi-
fied before and during its evaluation, as any constructed term. In this section, we
take advantage of this feature in two ways. First, we define a function that checks
if an XPath query follows the XPath standard. Then, we apply a transformation
similar to those described in [9] for introducing the reverse axis parent.

156 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

5.1 Validating XPath Queries

So far, we have described several different tests and axes that can be combined for
defining XPath queries. Moreover, our setting allows the user to define their own
combinators, axes and tests, or to use the existing ones in a non-standard way.
For instance, the query nodeT.::.child is allowed, although it does not follows
the XPath grammar (it should be child.::.nodeT, first the axis and then the
test). The reason is that the expression is well-typed from the point of view of
a T OY expression. Although in principle such unusual queries can work and
even be useful in some cases, it is convenient to define a function that indicates
whether a query conforms to the XPath standard or not. However, in the previous
sections we have defined many different abbreviations. Should we consider all
of them for detecting standard queries? Fortunately, the answer is ‘no’. It is
enough to recognize the few basic axes and tests, because the abbreviations are
automatically reduced to these basis forms during computations. For instance,
the goal Toy> ("name" /. text T) == R yields:

R -> child.::.nameT "name" ./. child.::.textT T

Now we are ready to define the function standard using higher-order patterns:

standard,step,test:: xPath -> bool
simpleTest,axis::xPath -> bool

standard A = step A
standard (A ./. B) = step A /\ standard B
step (Axis.::.Test) = (axis Axis) /\ (test Test)
axis A = (A==child)\/(A==self)\/(A==descendant)
test A = simpleTest A
test (A .# B) = simpleTest A /\ standard B
simpleTest nodeT = true
simpleTest (nameT S) = true
simpleTest (textT S) = true
simpleTest (commentT S)= true

Function standard succeeds if the query is either a single step of several steps
combined by the operator (./.). Steps are defined by an axis and a test con-
nected by (.::.). Finally, the definition of functions test, simpleTest and axis
is self-explanatory. For instance, the goal: Toy> standard ("food" /. name
"item") produces the answer yes, but standard (nodeT.::.child) produces
the answer no, meaning that the query is not standard.

5.2 Reverse Axes

The queries defined so far only use forward axes such as descendant or child.
However, in XPath reverse axes such as parent are also allowed. Implementing
these axes is not trivial in our approach, since each xPath function receives

Integrating XPath with the Functional-Logic Language Toy 157

delParent :: xPath -> xPath ->xPath

delParent (X./.self.::.T1) T2 = addFilter (delParent X T2) (self.::.T1)

delParent (X./.child.::.T1) T2 = X./.self.::.(T2.#(child.::.T1)

delParent (X./.descendant.::.T1) T2= X./.self.::.T2.#(child.::.T1)

delParent (X./.descendant.::.T1) T2= X./.descendant.::.T2.#(child.::.T1)

preprocess :: xPath -> xPath

preprocess A = rev (foldl transform (self.::.nodeT) A)

foldl :: (xPath -> xPath -> xPath) -> xPath -> xPath -> xPath

foldl F Z (A.::.T) = F Z (A.::.T)

foldl F Z (G ./. H) = foldl F (F Z G) H

transform :: xPath -> xPath -> xPath

transform X (self.::.T) = X ./.(self.::.T)

transform X (child.::.T) = X ./.(child.::.T)

transform X (descendant.::.T) = X ./.(descendant.::.T)

transform X (parent.::.T) = delParent X T

addFilter :: xPath -> xPath -> xPath

addFilter (X./.A.::.(T.#F)) G = X ./. (A.::. (T.# (F ./. G)))

rev :: xPath -> xPath

rev (A.::.B) = A.::.B

rev (F./.G) = rev’ F G

rev’ (A.::.B) G = (A.::.B) ./. G

rev’ (X ./. Y) G = rev’ X (Y./. G)

Fig. 3. Preprocessing parent axis

as input the fragments of the XML document that satisfied the previous steps.
These fragments corresponds to a subtree of the XML document and thus it is not
possible to obtain the parent of the current XML fragment. A possible solution
is to include the whole XML document and a representation of the path leading
to the context node as input parameters, following by instance the ideas in [6].
Nevertheless, this complicates the implementation, and the simple definitions of
the previous sections would be no longer valid. An alternative is to preprocess
the query, replacing the reverse axes by predicate filters including forward axes,
as shown in [9]. For the sake of space we only include the rules for removing
parent outside filter predicates, although the same approach can be extended
to parent in filter predicates, to ancestor, and to following-sibling.

(P1) child::T1/S/parent::T2 ≡ self::T2[child::T1/S]
(P2) descendant::T1/S/parent::T2 ≡ self::T2[child::T1/S]
(P3) descendant::T1/S/parent::T2 ≡ descendant::T2[child::T1/S]

where T1 and T2 are tests that optionally can include filters, and S is a (pos-
sibly empty) sequence of steps using the self axis. For instance the relative
location path child::variety/parent::node() is transformed by (P1) into
the equivalent expression self::node()[child::variety]. The equations are

158 R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez

implemented in T OY through the program rules for delParent which can be
found in Figure 3. The first program rule is used for skipping the sequence S,
while the three following rules resemble closely (P1), (P2), (P3) when S is the
empty sequence. In order to apply this function, we change the definition of the
operator <--, which now preprocesses the query before applying it to the XML
document: S <-- F = (preprocess F) (load xml file S). Then we define
an initial version of parent that indicates that it fails without preprocessing:

parent::xPath parent S = if false then S

Function preprocess uses a version of the well-known catamorphism fold acting
over XPath queries to apply a function transform to each individual steps, which
in turn employs delParent as auxiliary function. The result is obtained with the
steps associated to the left, as in (S1./.S2)./.S3. This is corrected by function
rev which is the analogous to the reverse function used in functional program
for lists. All this code is possible thanks to the use of higher-order patterns. The
next example looks for nodes having at least one ”variety” child.

XPath → doc("food.xml")/food//variety/parent::node()
T OY → name "food".//."variety"/.parent.::.nodeT

6 Conclusions

We have shown how the declarative nature of the XML query language XPath
fits in a very natural way in functional-logic languages. XPath queries are repre-
sented in this setting by non-deterministic higher-order expressions, thus becom-
ing first-class citizens of the language that can be readily extended and adapted
by the programmer. In the case of the functional-logic language T OY, the possi-
bility of using higher-order patterns make this affirmation even more valid, since
XPath expressions manipulated directly as data terms. The result is enriching
for both XPath and T OY users:

- For the users of the functional-logic T OY the advantage is clear: they can
use XPath queries in their programs in a natural way. The queries are writ-
ten in T OY and thus using them requires little effort. Moreover, since the
combinators, tests and axes are written in T OY they can be freely modified
and extended. The situation can be analogous to the introduction of parsers
in functional [7] and functional-logic languages [3].

- From the point of view of the XPath apprentices, the tool can be useful,
specially if they have some previous knowledge of declarative languages. The
possibility of generating test-cases for XPath queries is an easy and powerful
tool that can be very helpful for understanding the basics of XPath.

- The framework can also be interesting for designers of XPath environments,
because it allows the users to easily define prototypes of new features such
as new combinators or functions.

Integrating XPath with the Functional-Logic Language Toy 159

Our proposal also contains some drawbacks that deserve to be discussed. First
of all, the syntax of the queries resembles quite closely XPath, but the differ-
ences can be confusing at first. However, in our experience this difficulty is soon
overcome by practice, and in any case is easy to write a parser converting stan-
dard XPath format to the format explained in this paper. Another difficulty
arises from the implementation of features using the position of the node in the
sequence. This features can be introduced in our non-deterministic setting, but
only using some impure primitive like collect that bundles in a list the results
of a non-deterministic expression. The problem with this impure primitive is
that cannot deal with logic variables, which can be a problem for instance for
the generation of test-cases.

A description of how to download and install the T OY system including the
source code of the XPath library, and a description of some extensions like the
ancestor axis, position filters, and more, can be found at [2].

References

1. Almendros-Jiménez, J.M.: An Encoding of XQuery in Prolog. In: Bellahsène, Z.,

Hunt, E., Rys, M., Unland, R. (eds.) XSym 2009. LNCS, vol. 5679, pp. 145–155.

Springer, Heidelberg (2009)

2. Caballero, R., Garćıa-Ruiz, Y., Sáenz-Pérez, F.: Integrating XPath with the

Functional-Logic Language Toy (Extended Version). Technical Report SIP-05/10,

Facultad de Informática, Universidad Complutense de Madrid (2010), http://

federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/SIC-5-10.pdf

3. Caballero, R., López-Fraguas, F.J.: A functional-logic perspective on parsing. In:

Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 85–99. Springer, Heidel-

berg (1999)

4. Guerra, R., Jeuring, J., Swierstra, S.D.: Generic validation in an XPath-Haskell

data binding. In: Proceedings Plan-X (2005)

5. Hanus, M.: Curry: An Integrated Functional Logic Language (version 0.8.2) (March

28, 2006), http://www.informatik.uni-kiel.de/~mh/curry/ (2003)

6. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (1997)

7. Hutton, G., Meijer, E.: Monadic parsing in Haskell. J. Funct. Program. 8(4), 437–

444 (1998)

8. López-Fraguas, F.J., Hernández, J.S.: TOY: A Multiparadigm Declarative System.

In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 244–247.

Springer, Heidelberg (1999)

9. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking forward. In: Chaudhri,

A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490,

pp. 109–127. Springer, Heidelberg (2002)

10. Sulzmann, M., Lu, K.Z.: Xhaskell — adding regular expression types to haskell.

In: Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 75–92.

Springer, Heidelberg (2008)

11. W3C. XML Schema 1.1

12. W3C. Extensible Markup Language, XML (2007)

13. W3C. XML Path Language (XPath) 2.0 (2007)

14. W3C. XQuery 1.0: An XML Query Language (2007)

15. Walmsley, P.: XQuery. O’Reilly Media, Inc., Sebastopol (2007)

http://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/SIC-5-10.pdf
http://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/SIC-5-10.pdf
http://www.informatik.uni-kiel.de/~mh/curry/

Sloth – A Tool for Checking Minimal-Strictness

Jan Christiansen

Christian-Albrechts-Universität Kiel

jac@informatik.uni-kiel.de

Abstract. We present a light-weight tool called Sloth which assists pro-

grammers in identifying unnecessarily strict first order functions. Sloth

reports counterexamples in form of a partial value, the corresponding

result of the tested function and a recommended result. We present ex-

amples where the hints reported by Sloth can be used to improve a

function with respect to memory behaviour, non-termination, and per-

formance in the context of functional-logic programming. Furthermore

we give an example-driven introduction into the basics of the imple-

mentation of Sloth. To improve the results in comparison to an existing

approach we use additional constraints to assure that Sloth’s suggestions

are implementable without employing parallelism.

Keywords: Haskell, Curry, testing, non-strictness, minimal-strictness,

sequentiality.

1 Introduction

In a non-strict programming language like Haskell the production of data by one
function and the consumption of this data by another function can be interleaved.
As soon as the data is consumed the memory can be freed by the garbage
collector. This way, functions in a modular programming style, which is very
commonly used in Haskell, often have a small memory footprint (Hughes 1989).
In contrast, in a strict programming language data is always produced completely
by one function before it is consumed by another function.

But, although Haskell is a non-strict language, functions may be unnecessarily
strict. Consider the function intersperse from the standard library Data.List . It
intersperses an element between all pairs of succeeding elements of a list.

intersperse :: α→ [α] → [α]
intersperse [] = []
intersperse [x] = [x]
intersperse sep (x : xs) = x : sep : intersperse sep xs

Furthermore consider the function chop :: (α → Bool) → [α] → [[α]] from
the hackage package utility-ht by Thielemann, which splits a list into a list of
sublists. For example, we have chop (== ’a’) "abcada" ≡ ["", "bc", "d", ""].
By means of intersperse and chop we define a function replaceBy which replaces
all occurrences of a specific element in a list by a given list.

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 160–174, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sloth – A Tool for Checking Minimal-Strictness 161

replaceBy :: Eq α ⇒ α→ [α] → [α]→ [α]
replaceBy x sep xs = concat (intersperse sep (chop (== x) xs))

Let us consider an application of this function. In HTML you have to replace all
occurrences of German umlauts by a specific HTML encoding. For this example
we only replace all occurrences of the character ’\228’ which is the German
umlaut ä by the corresponding encoding "ä". We process a large file (about
6MB), namely the collected works of Shakespeare. The run-time system of the
Glasgow Haskell Compiler (ghc) reports a maximum memory usage of 40MB for
this task.

40,339,120 bytes maximum residency (7 sample(s))

This is quite contrary to the expectations about memory behaviour in a non-
strict programming language. Unexpected consumption of memory like this is
called a space leak. In this case the space leak is caused by an unnecessarily strict
implementation of intersperse. We can use Sloth to observe that the presented
implementation of intersperse is too strict.

Sloth provides a function called strictCheck to check whether a function is as
non-strict as possible for inputs up to a specific size. The size of a term is the
number of constructors in the term. That is, strictCheck (intersperse :: Bool →
[Bool]→ [Bool]) 2 checks whether the Boolean instance of intersperse is as non-
strict as possible for inputs whose size in sum is at most two. We can employ free
theorems (Wadler 1989) and quite a lot of reasoning to show that a polymorphic
function is minimally strict if and only if its monomorphic Boolean instance is
minimally strict. But for the lack of space we do not present these results here.

> strictCheck (intersperse :: Bool -> [Bool] -> [Bool]) 2

2: \⊥ (⊥:⊥) -> ⊥:⊥
4: \⊥ (⊥:⊥:⊥) -> ⊥:⊥:⊥:⊥
Finished 4 tests.

Sloth presents two argument result pairs which show that intersperse is unnec-
essarily strict. The first counterexample states that intersperse yields ⊥ if it is
applied to ⊥ and ⊥ :⊥ while a minimally strict implementation yields ⊥ :⊥ in-
stead1. Sloth highlights the subterm on the right hand side of -> where the tested
function is too strict. That is, it highlights a non-bottom term which is bottom
for the current implementation while there exists a less strict implementation
that yields the highlighted value instead.

We can define a less strict implementation of intersperse by yielding the first
element of the list “before” performing pattern matching on the tail.

intersperse ′ :: α→ [α]→ [α]
intersperse ′ [] = []
intersperse ′ sep (x : xs) = x : go xs

where
go [] = []
go (y : ys) = sep : y : go ys

1 For readibility we use ⊥ in the output while Sloth actually uses the symbol _ instead.

162 J. Christiansen

The run-time system reports a maximum memory usage of only 12KB for pro-
cessing Shakespeare’s work using this less strict implementation of intersperse.

12,312 bytes maximum residency (91 sample(s))

That is, one delay of a pattern matching improves the memory usage by a factor
of 3,000. Obviously, you seldomly generate HTML from a 6MB text file. Fur-
thermore we did not choose a file that does not contain any umlauts by accident.
The presented space leak is linear in the size of the longest substring that does
not contain the character that is replaced. Nevertheless this is not an artificial
example. The presented space leak is a modification of a space leak discovered
by Fischer (2010) in his searchstring package (Fischer et al.). This example is
supposed to emphasise that being too strict can have a tremendous effect with
respect to memory behaviour when processing large amounts of data.

The rest of this paper is organized as follows.

– In Section 2 we present the less-strict relation which has originally been in-
troduced by Chitil (2006). Besides the basic idea Chitil (2006) has presented
a light-weight tool, called StrictCheck, to check whether a function is least
strict. We argue that, in practice, least strict implementations are often not
desirable as they have to employ features like concurrency.

– In Section 3 we present the definition of sequentiality by Vuillemin (1974).
We use this definition to avoid functions that require the use of concurrency.
In this case we have to consider minimal-strictness instead of least-strictness.
Furthermore we give an example-driven explanation of the basics of the
implementation of Sloth.

– In Section 4 we present some examples of unnecessarily strict functions. First,
we present two non-standard functions, one from functional programming
and one from functional logic programming. These examples demonstrate
benefits of less strict functions besides memory behaviour. Furthermore we
discuss some standard functions which are not minimally strict.

2 Least-Strictness

Chitil (2006) has originally presented the idea of checking whether a function is
as non-strict as possible. In this section we present his approach and argue that
his least-strictness is often not desirable in practice.

For the sake of simplicity we do not strictly separate syntax and semantics.
For example, we use the less strict ordering on syntactic objects rather than
semantic objects although its formal definition is based on semantics. We as well
relate syntactic objects by the cpo ordering , which relates elements of the
interpretation of a data type . Furthermore, ≡ denotes semantic equivalence and
⊥ denotes a non-terminating expression.

Two functions f and g of the same type are related by the less-strict ordering
! if and only if f and g yield the same results for total inputs and the results
for partial inputs are related by the semantic ordering "2. For an n-ary function
2 Note that we use the reversed order � on purpose as ≺ denotes “less strict than”.

Sloth – A Tool for Checking Minimal-Strictness 163

by partial input we denote n values of which at least one is a partial value. As
two functions are only related by ! if they agree for total inputs we assume that
non-total results for total inputs are intended. For example, the division yields a
non-total result for a total input, namely if it’s second argument is zero. Thus the
division is least strict (with respect to the presented definition of less-strictness)
although it could yield a more defined result if its second argument is zero.

Example 1 (Less-Strictness). Let us consider the Boolean conjunction andL, like
it is implemented in Haskell (where it is called (&&)) and the strict Boolean
conjunction and .

andL :: Bool → Bool → Bool
andL False y = False
andL True y = y
and :: Bool → Bool → Bool
and False False = False
and False True = False
and True False = False
and True True = True

For all total inputs, namely for False and False, False and True, True and False,
and True and True, andL yields the same results as and . For the partial input
False and ⊥, andL yields False while and yields ⊥. For all other partial inputs
andL yields the same results as and . Therefore, andL is less strict than and , that
is, andL ≺ and .

Let us consider the symmetric counterpart of andL, called andR. While andL
performs pattern matching on its first argument, andR performs pattern match-
ing on its second argument.

andR :: Bool → Bool → Bool
andR x False = False
andR x True = x

Like we have shown that andL is less strict than and we can show that andR is
less strict than and . But andL and andR are incomparable. While andL yields
a more defined result than andR for the input False and ⊥, andR yields a
more defined result than andL for the input ⊥ and False. Summing up, we have
andL ≺ and and andR ≺ and , but andR �! andL and andL �! andR.

So how can we check whether a function is least strict? We consider a function
f of type τ → τ ′. Because f is monotonic, for every value v of type τ and every
total value tv of type τ with v tv we have f v f tv. Therefore, f v is
a lower bound of the set {f tv | tv total value, v tv}. Thus, f v is less or
equally defined than the corresponding greatest lower bound, in other words,
f v

�
{f tv | tv total value, v tv}3. Chitil (2006) employs this inequality to

3 An analogous statement holds for functions with an arbitrary number of arguments.

164 J. Christiansen

check whether a function is least strict. For all inputs a least strict function is
supposed to agree with the corresponding greatest lower bound.

If the argument type of f has infinitely many values Sloth has to approximate
the infimum. As the infimum operator is monotonically decreasing the infimum
may be smaller if we consider a larger set for the approximation. Therefore a
counterexample may not be a counterexample if we consider a more precise
approximation.

Consider the following definition.

potential :: [Bool]→ Bool
potential [] = True
potential (: xs) = potential xs

Obviously this function is too strict. It performs pattern matching although it
yields True for all total inputs. Sloth reports the following counterexamples if
we check potential for Boolean lists up to size one.

> strictCheck potential 1

1: \⊥ ->
����
True

2: \(⊥:⊥) ->
����
True

Finished 2 tests.

In contrast to the counterexamples for intersperse from the introduction these
counterexamples are highlighted differently. We refer to counterexamples

�����������
highlighted this way as potential counterexamples. A potential counterexam-
ple might be no counterexample if we consider inputs of larger sizes. That is,
there might be a size greater than one such that Sloth does not report some of
the counterexamples it reports for size one. One way to confirm a potential coun-
terexample is to increase the size. But, for example, Sloth reports only potential
counterexamples for the function potential no matter what size we use.

We can verify a potential counterexample by hand. A potential counterexam-
ple is definitely a counterexample if all more defined total inputs lead to results
that are at least as defined as the recommended result. For example, consider
the first counterexample. For all total inputs that are more defined than ⊥ the
function potential yields True, which is as defined as the recommended value
True. Therefore, the first counterexample is definitely a counterexample.

Nevertheless there are cases in which a finite approximation is sufficient to
identify a definite counterexample. For example, consider the following function.

definite :: [Bool]→ [Bool]
definite [] = [True]
definite (: xs) = True : definite xs

Both counterexamples reported by Sloth are definite.

> strictCheck definite 1

1: \⊥ -> True:⊥
2: \(⊥:⊥) -> True:True:⊥
Finished 2 tests.

Sloth – A Tool for Checking Minimal-Strictness 165

Sloth employs the monotonicity of the tested function to identify definite
counterexamples. Let us consider the first counterexample. Sloth observes that
the evaluation of definite [] yields True : [] and the evaluation of definite (⊥ :⊥)
yields True : ⊥. As definite is monotonic we have definite bs " True : ⊥ for
all total Boolean lists bs with bs " ⊥ : ⊥. Therefore we have

�
{definite tv |

tv total value,⊥ tv} " True : ⊥. Furthermore we have definite ⊥ ≡ ⊥ �
True : ⊥. Thus, we know that definite is too strict for the input ⊥ by only
considering two applications of definite4.

The definition of least-strictness, as it is used by StrictCheck, has a shortcom-
ing. Some functions that one would consider to be as non-strict as possible are
not least strict.

Example 2 (Least-Strictness). Let us consider the function andL from Example 1
again. On the one hand we have andL ⊥ False ≡ ⊥. On the other hand we
consider the infimum

�
{andL False False, andL True False}. As this infimum

equals False, andL is not least strict since andL ⊥ False does not agree with the
corresponding infimum.

In fact, andL is not as non-strict as possible. We can define a Boolean conjunction
in Haskell that yields False for False and ⊥ as well as for ⊥ and False. For
example, we can use the unamb operator, presented by Elliott (2009), which
employs concurrency and unsafePerformIO .

In practice we often want to know whether there is a less strict implementation
that avoids the use of such features. In fact, many functions are not least strict
because there is often a bias towards one argument with respect to non-strictness.
For example, StrictCheck identifies (&&), (||), (++), and , or , zip, as well as
the list instances of (==) and compare as too strict. In contrast, Sloth does
identify these functions as minimally strict as it checks whether a function is too
strict without considering features like concurrency. To restrict the considered
functions we employ the concept of sequentiality by Vuillemin (1974).

3 Sequentiality and Minimal-Strictness

The definition of sequentiality employs contexts, which we only informally intro-
duce here. Let Σ be the set of constructor and function symbols. A context is a
term over Σ and the additional symbol [], called hole. Let c be a context with n
holes, that is, n occurrences of the symbol [] and e1, . . . , en be expressions. Then
c[e1, . . . , en] denotes the context c where the i-th hole is filled in with expression
ei. Vuillemin (1974) has given the following definition of sequentiality.

Definition 1 (Sequentiality). A functional language is sequential if the fol-
lowing holds. Let c be a context with n holes such that c[⊥, . . . ,⊥] ≡ ⊥. Then
there exists at least one i ∈ {1, . . . , n}, called sequential position, such that

c[e1, . . . , ei−1,⊥, ei+1, . . . , en] ≡ ⊥

for all expressions e1, . . . , en of appropriate types.
4 Note that StrictCheck does not distinguish potential and definite counterexamples.

166 J. Christiansen

By distinguishing three cases we illustrate that there in deed always exists a
sequential position. If the evaluation of c[⊥, . . . ,⊥] causes a pattern matching on
position i, then, if the term at position i is ⊥, the result is ⊥. That is, position
i is a sequential position. If the context c projects to position i then position i
is a sequential position. If the evaluation of c[⊥, . . . ,⊥] neither causes a pattern
matching nor c projects to one of the positions then the semantics of c[e1, . . . , en]
is independent of the terms e1 to en and therefore all positions are sequential.

We refer to the first two cases of sequential positions as demanded positions
of the term c[⊥, . . . ,⊥] in the following. Note that there are sequential positions
that do not fall in any of the three cases above. That is, there are sequential
positions which are neither demanded positions of c[⊥, . . . ,⊥] nor the semantics
of c[e1, . . . , en] is independent of the terms e1 to en. For example, consider the
strict Boolean conjunction and again. We have and ⊥ ⊥ ≡ ⊥ and consider the
context and [] [] which has two holes. We have and ⊥ b ≡ ⊥ for all values
of type Bool because and performs pattern matching on its first argument5.
That is, position 1 is a demanded position of and ⊥ ⊥. But obviously we have
and b ⊥ ≡ ⊥ for all values of type Bool , too. That is, position 1 as well as position
2 are sequential positions of and . Note that position 2 is not a demanded position
of and ⊥ ⊥.

In the following we consider a sequential sublanguage of Haskell.

Example 3 (Sequentiality). Let us consider the Boolean conjunction andL from
Example 1 again. We have andL ⊥ ⊥ ≡ ⊥ and can apply Definition 1 with
the context andL [] [] which has two holes. The definition states that one of the
arguments of andL is a sequential position, that is, we have

∀b :: Bool . andL b ⊥ ≡ ⊥ or ∀b :: Bool . andL ⊥ b ≡ ⊥.

As we have andL False ⊥ ≡ False �≡ ⊥ the former statement is false and,
therefore, the latter statement is true. Thus, position 1 is a sequential position.
That is, by sequentiality we have andL ⊥ False ≡ ⊥ and andL ⊥ True ≡ ⊥.

The idea behind the implementation of Sloth is to search for witnesses that
prove, that a certain position is not sequential. For example, andL False ⊥ is a
witness that the second position is not a sequential position of andL. If we do
not discover a witness we assume that the position is sequential.

Besides the function strictCheck , which we have used in the introduction
already, Sloth provides the function verboseCheck , which additionally reports
successful test cases. When we check andL using verboseCheck Sloth reports the
following test cases.

> verboseCheck andL 4

1: \⊥ ⊥ -> ⊥
2: \True ⊥ -> ⊥
Finished 2 tests.

5 This is due to the left to right pattern matching order used in Haskell.

Sloth – A Tool for Checking Minimal-Strictness 167

Sloth does not check andL ⊥ False as well as andL ⊥ True as the witness
andL False ⊥ ≡ False shows that position 2 is not a sequential position of
andL ⊥ ⊥. Therefore the only sequential position of andL ⊥ ⊥ is position 1
and andL ⊥ False as well as andL ⊥ True are determined by sequentiality.
Furthermore, Sloth does not check andL False ⊥ as andL yields a total value
and it obviously cannot be too strict in this case.

In Example 2 we have observed that andL is not least strict. According to
the criterion for least-strictness a least strict Boolean conjunction and ′ has to
satisfy the following equations.

and ′ ⊥ ⊥ ≡ ⊥ and ′ False ⊥ ≡ False and ′ ⊥ False ≡ False

In Example 3 we have observed that, if and′ is sequential, the first two equa-
tions imply and ′ ⊥ False ≡ ⊥. Thus there is no sequential, least strict Boolean
conjunction.

Let us consider andL again. We have andL ⊥ ⊥ ≡ ⊥ and andL False ⊥ ≡
False. Furthermore these equations imply andL ⊥ False ≡ ⊥ and andL ⊥ True ≡
⊥ by sequentiality. As andL satisfies all these equations and obviously all Boolean
conjunctions yield ⊥ for the input True and ⊥ there is no sequential Boolean
conjunction that is less strict than andL. A similar argument shows that there
is no sequential Boolean conjunction that is less strict than andR. As andL
and andR are incomparable (see Example 1) we are looking for minimally strict
Boolean conjunctions in the context of sequentiality and not for a least strict
Boolean conjunction.

Example 4 (Multiple Sequential Positions). In the following we consider and
from Example 1 again. Argument position 1 as well as argument position 2 are
sequential positions. In contrast to the previous examples, we cannot exclude
any test cases as all positions are sequential. Although, when we check and
using verboseCheck only position 1 is considered in the test cases.

> verboseCheck and 4

1: \⊥ ⊥ -> ⊥
2: \False ⊥ -> False

3: \True ⊥ -> ⊥
Finished 3 tests.

The counterexamples reported by strictCheck and verboseCheck are satisfiable
by a single sequential function. If there is more than one sequential position we
cannot satisfy the counterexamples with respect to both positions. Therefore, if
there are counterexamples with respect to multiple sequential positions, Sloth
applies a heuristic. If one of the positions is a demanded position it chooses this
position. For example, as and performs pattern matching on its first argument
Sloth considers position 1 in the presented test cases. This way the suggested
minimal strict implementation preserves the pattern matching order if possible.
For example, the minimally strict Boolean conjunction that satisfies the coun-
terexamples presented above is andL and andL, as well as and , performs pattern
matching on its first argument. If none of the considered sequential positions is
a demanded position Sloth chooses the leftmost position.

168 J. Christiansen

Sloth identifies demanded positions of a function by “attaching” unique labels
to errors which are passed to the function. By exception handling Sloth checks
which of the errors is evaluated by the function. For example, if we consider
the application andL ⊥1 ⊥2 the evaluation of this application yields ⊥1. That
is, position 1 is the demanded position of andL ⊥ ⊥. The block-box test tool
Lazy SmallCheck (Runciman et al. 2009) uses a similar approach to efficiently
generate test cases.

So far we have only consider examples with flat result types. When we consider
a function that yields a non-flat type like a tuple or a list we have to instantiate
the context in Definition 1 with the function and a projection to a ⊥-position
to apply the definition of sequentiality.

Example 5 (Non-Flat Result Types). Consider the following function.

andTuple :: Bool → Bool → (Bool ,Bool)
andTuple x y = (andL x y, andR x y)

If we consider andTuple ⊥ ⊥ ≡ (⊥,⊥) we can use the context fst (andTuple [] [])
as well as snd (andTuple [] []) to apply Definition 1. That is, a function may
have different sequential positions for the same input but with respect to dif-
ferent result positions. Sloth handles non-flat types by applying the approach
presented so far to every result position that is ⊥. The check of andTuple using
verboseCheck yields the following result.

verboseCheck andTuple 4

1: \⊥ ⊥ -> (⊥,⊥)
2: \True ⊥ -> (⊥,⊥)
3: \⊥ True -> (⊥,⊥)
Finished 3 tests.

Sloth additionally highlights subterms that have been checked by coloring the
corresponding underscores. We omit these highlights for readability. Here, both
underscores on the right hand side of -> of the first test case are highlighted.
Furthermore the first component of the tuple of the second test case as well as
the second component of the tuple of the third test case are highlighted. Thus,
the test cases with respect to the first tuple component resemble the test cases
for andL. The test cases with respect to the second tuple component resemble
the test cases for andR.

As we have already observed the set of demanded positions is a subset of the set
of sequential positions. That is, instead of considering all sequential positions we
may consider only demanded positions. The following example shows that we
get false positives if we only consider demanded positions.

Example 6 (Demanded Positions). Consider the following function.

second :: Bool → Bool → Bool
second False y = y
second True y = y

Sloth – A Tool for Checking Minimal-Strictness 169

We have second ⊥ b ≡ ⊥ for all values of type Bool because second performs
pattern matching on its first argument. But obviously we have second b ⊥ ≡ ⊥
for all values of type Bool , too. That is, position 1 as well as position 2 are
sequential positions of second . If we check second using verboseCheck we get the
following result.

verboseCheck second 4

1: \⊥ ⊥ -> ⊥
2: \⊥ False -> False

3: \⊥ True -> True

Finished 3 tests.

Sloth additionally checks second for the input False and ⊥ as well as True and
⊥. It does not report these test cases as it presents only test cases with respect to
one sequential position. The application second False ⊥ as well as second True ⊥
are as non-strict as possible. If Sloth would only consider demanded positions it
would not check the applications second ⊥ False and second ⊥ True. That is,
Sloth would state that second is minimally strict although it is not.

4 Case Studies

In this section we present case studies for the application of Sloth. First we
present two monomorphic functions that are not part of the standard Haskell
libraries. These functions demonstrate examples for benefits of less strict func-
tions beside memory behaviour. Furthermore we present some results for Haskell
functions from the Prelude and from the standard library Data.List .

Consider the following data type of Peano numbers.

data Peano = Zero | Succ Peano

We define multiplication of Peano numbers by means of a standard implemen-
tation of the addition.

multP :: Peano → Peano → Peano
multP Zero = Zero
multP (Succ x) y = addP y (multP x y)

Furthermore we define an infinite Peano number as follows.

infinity :: Peano
infinity = Succ infinity

This is a standard implementation of Peano numbers. For example, the numbers
package by Augustsson provides an identical Peano implementation.

The evaluation of multP Zero infinity yields Zero in a non-strict program-
ming language like Haskell. On the contrary the evaluation of multP infinity Zero
does not terminate. But do all implementations of the multiplication of Peano
numbers behave this way? That is, can we give an implementation of Peano mul-
tiplication in Haskell that yields Zero in both cases (without using parallelism)?

170 J. Christiansen

We use Sloth to check whether multP is minimally strict. Sloth enumerates
partial values to check a function for all values up to a specific size. To enumerate
values we use instances of the type class Data. Therefore we have to provide
instances of the type classes Typeable and Data for Peano6.

Sloth reports two counterexamples if we check multP up to size three.

> strictCheck multP 3

3: \(Succ ⊥) Zero ->
�����
Zero

5: \(Succ (Succ ⊥)) Zero ->
����
Zero

Finished 7 tests.

As the counterexamples presented by Sloth are potential counterexamples we
have to verify them. For all total inputs that are more defined than Succ ⊥ and
Zero the function multP yields Zero, which is as defined as the recommended
result Zero. Therefore, the counterexamples presented by Sloth are definitely
counterexamples.

In particular the counterexamples show that a minimally strict implementa-
tion of Peano multiplication yields Zero for the arguments infinity and Zero.
Thus, now we are able to answer the question. There is an implementation of
the multiplication of Peano numbers that terminates no matter whether it is
applied to Zero and infinity or to infinity and Zero.

The evaluation of multP infinity Zero does not terminate because multP is
inductively defined over its first argument. Hence, even if the second argument
is Zero, the first argument is completely evaluated. Note that it therefore takes
linear time in the size of p to evaluate multP p Zero for any Peano number p.

We can define an improved implementation by simply adding an additional
rule to the definition of multP . We could replace the pattern Succ by , but
we use the former to emphasize that there is still a bias towards the second
argument with respect to non-strictness.

multP ′ :: Peano → Peano → Peano
multP ′ Zero = Zero
multP ′ (Succ) Zero = Zero
multP ′ (Succ x) y = addP y (multP ′ x y)

Sloth does not report any counterexamples if we check multP ′ for Peano numbers
up to size 50. Note that for any Peano number p it takes only constant time to
evaluate multP ′ p Zero rather than linear time as for multP p Zero.

In contrast, StrictCheck identifies multP ′ as unnecessarily strict. For the input
Succ (Succ Zero) and Succ ⊥, multP ′ yields Succ ⊥ while StrictCheck suggests
Succ (Succ ⊥). This “improvement” can only be achieved by employing an
operator like unamb (Elliott 2009).

The next example is supposed to emphasize that the presented tool is of
interest for all kinds of non-strict declarative programming languages. A func-
tional logic programming language like Curry (Hanus 2006) can be considered
as a functional language with non-determinism and free variables. The syntax
6 By using the option DeriveDataTypeable the ghc can derive these instances.

Sloth – A Tool for Checking Minimal-Strictness 171

of Curry is very similar to the syntax of Haskell and the deterministic subset of
Curry resembles Haskell.

Let us consider an algebraic data type for binary natural numbers like it is
defined by Brassel et al. (2007).

data Nat = One | O Nat | I Nat

This is a little-endian representation of binary numbers without leading zeros.
For example, the term O (I One) represents the decimal number six. Note that
in contrast to Peano the data type Nat does not include zero. Brassel et al.
(2007) furthermore define the following multiplication of binary numbers where
addN is the addition of binary numbers.

multN :: Nat → Nat → Nat
multN One y = y
multN (O x) y = O (multN x y)
multN (I x) y = addN (O (multN x y)) y

We use Sloth to check whether multN is minimally strict for inputs up to size
three. Note that we, in fact, check the corresponding Haskell implementation as
Sloth is implemented in Haskell. As multN is deterministic it behaves identically
in Haskell and Curry.

> strictCheck multN 3

27: \(I ⊥) (O One) -> O (I ⊥)
28: \(I ⊥) (O (O ⊥)) -> O (O ⊥)
29: \(I ⊥) (O (I ⊥)) -> O (I ⊥)
Finished 32 tests.

Sloth reports two counterexamples. As these counterexamples are definite we
do not have to verify them by hand. For lack of space we do not provide a
detailed explanation why multN is unnecessarily strict. Instead we only present
a minimally strict implementation. If we swap the arguments of the recursive
application of multN ′ in the last rule the resulting function is minimally strict.

multN ′ :: Nat → Nat → Nat
multN ′ One y = y
multN ′ (O x) y = O (multN ′ x y)
multN ′ (I x) y = addN (O (multN ′ y x)) y

Sloth does not report any counterexamples for multN ′ for inputs up to size ten.
But why do we bother whether multN is too strict? Brassel et al. (2007) have

introduced the Nat data type to guess numbers. In a functional logic program-
ming language you can non-deterministically guess elements of a specific type by
employing free variables. But no Curry system can guess values of the primitive
integer type. By employing the data type Nat it is possible to guess numbers
while the performance of the arithmetic operations for Nat is still reasonable.

As an example, consider the following implementation of the generation of
Pythagorean triples in Curry.

172 J. Christiansen

pythagorean :: (Nat ,Nat ,Nat)
pythagorean | addN (multN a a) (multN b b) == multN c c = (a, b, c)

where a, b, c free

Here a, b, and c are defined to be free variables by the keyword free. You can
consider free variables as generators that non-deterministically enumerate all
possible values of a type (Antoy and Hanus 2006). That is, pythagorean yields
all triples of binary numbers a, b, and c such that a ∗ a + b ∗ b = c ∗ c. For all
numbers that do not satisfy this equation the guard yields a failure, that is, the
empty result set.

Because of non-strict evaluation, free variables are only evaluated as far as
necessary. That is, if a function is more strict than necessary, it leads to more
non-determinism. Note that this never leads to more non-deterministic results.
In fact, if a function is too strict, we only get the same result more than once or
more derivations fail.

For example, consider the following implementations of constant functions.
When we apply const1 to a free variable we get the result 1 twice, while const2
applied to a free variable yields only a single result.

const1 :: Bool → Int const2 :: Bool → Int
const1 False = 1 const2 = 1
const1 True = 1

Thus, minimally strict functions are advantageous in a functional logic program-
ming language. We can observe this advantage when we compare run-times for
the generation of Pythagorean triples, using multN and multN ′ respectively7.

number of triples 100 200 300
multN 3.87s 17.81s 33.42s
multN ′ 1.10s 5.87s 12.78s

It takes three times as long to enumerate Pythagorean triples if we use the
unnecessarily strict implementation of multiplication. In fact, using Sloth we
have discovered that most of the functions presented by Brassel et al. (2007) are
more strict than necessary.

Because neither StrictCheck nor Sloth can handle higher order functions we
only consider first order functions8 in the following.

The Prelude functions, splitAt , unzip, reverse, unlines and unwords are too
strict. Furthermore, in the module Data.List the first order functions inits , tails ,
intersperse and intercalate are too strict. As an interesting example we only
consider reverse in the following. For example, we can improve inits in a similar
way as we have improved intersperse in the introduction.

Let’s consider the tail recursive, linear complexity implementation of reverse.
If we check reverse Sloth reports two potential counterexamples.

7 The run-times are measured with the Curry compiler KiCS (Brassel and Huch 2007).
8 Note that we consider type class contexts as higher order types.

Sloth – A Tool for Checking Minimal-Strictness 173

> strictCheck (reverse :: [Bool] -> [Bool]) 2

2: \(⊥:⊥) ->
����
⊥:⊥

4: \(⊥:⊥:⊥) ->
������
⊥:⊥:⊥

Finished 4 tests.

If we check reverse for Boolean lists up to size ten all these potential counterex-
amples remain potential counterexamples. And indeed reverse is not minimally
strict. When we apply reverse to a total list that is more defined than ⊥ : ⊥,
that is, a total list with at least one element, the result is always a list with at
least one element.

We can easily define a minimally strict reverse function with quadratic com-
plexity by employing last and init . We can also define a minimally strict imple-
mentation of reverse with linear complexity if we employ that a minimally strict
implementation of reverse preserves the shape of a list. But, in most cases the
memory behaviour of this implementation is worse than the behaviour of the
original implementation. This shows that we should not blindly aim for mini-
mally strict implementations but have to consider every case individually.

5 Directions for Future Research

While Sloth tries to identify as many sequential positions as possible, we could as
well consider demanded positions only. The resulting criterion is computationally
less intensive but for the price of more false positives. We plan an empirical
evaluation to check whether it is worth to pay this price.

An obvious improvement of the presented approach is the integration of
higher-order functions. This extension is of particular interest as it enables the
handling of type classes. For example, consider the Haskell function intersect .

intersect :: Eq α ⇒ [α]→ [α] → [α]
intersect xs ys = [x | x ← xs, any (x ==) ys]

This function shows a similar behavior as multP presented in Section 4. While
the evaluation of intersect [] [0 . .] yields [], the evaluation of intersect [0 . .] []
does not terminate. Furthermore the evaluation of intersect xs [] takes linear
time in the size of xs. We can improve both aspects by adding an additional rule
to the definition like we have done for multP .

There are a couple of other interesting observations with respect to minimal-
strictness that are worth to investigate. For example, default definitions in type
classes are not aware of type-specific information and, therefore, sometimes,
cannot be as non-strict as type-specific implementations. The function (<=) ::
Bool → Bool → Bool , which implements the Boolean implication, is too strict
because it is implemented by means of compare :: Bool → Bool → Ordering .
That is, we have False <= ⊥ ≡ ⊥ as well as ⊥ <= True ≡ ⊥, while a naive
implementation would yield a defined value in one of these cases. For the same
reason most instances of (<=) are too strict, for example, the instances for
(Bool ,Bool), Maybe Bool , and [Bool] are too strict. Note that this also implies

174 J. Christiansen

that min and max for these data types are unnecessarily strict. But this is a
very fine line because we have to trade modularity for minimal-strictness.

Last but not least Sloth provides lots of space for improvements. For example,
Sloth treats all potential counter examples equally. But if the number of values
that were used for the approximation of the infimum is very small it is very likely
that a potential counterexample is not a counterexample. In these cases it might
be a good choice to not present these unlikely counter examples. Furthermore,
we assume that there is room for improvements with respect to the presentation
of counter examples.

Acknowledgement. I wish to thank Daniel Fischer for discovering and sharing
the space leak in his searchstring package.

References

Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic programs.

In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 87–101.

Springer, Heidelberg (2006)

Augustsson, L.: numbers Package, hackage.haskell.org/package/numbers/ (Version

2009.8.9)

Brassel, B., Huch, F.: The Kiel Curry System KiCS. In: WLP 2007 Preproceedings,

Technical Report 434 (2007)

Brassel, B., Fischer, S., Huch, F.: Declaring Numbers. In: WFLP 2004 Proceedings

(2007)

Chitil, O.: Promoting Non-Strict Programming. In: IFL 2006 Draft Proceedings (2006)

Elliott, C.: Push-pull functional reactive programming. In: Haskell Symposium 2009

Proceedings (2009)

Fischer, D.: Unnecessarily strict implementations. Haskell-Cafe Mailing List (Septem-

ber 2010)

Fischer, D., Kuklewicz, C., Bailey, J.: Sringsearch Package,

http://hackage.haskell.org/package/stringsearch/ (Version 0.3.1)

Hanus, M.: Curry: An Integrated Functional Logic Language, Vers. 0.8.2 (2006),

curry-language.org

Hughes, J.: Why Functional Programming Matters. Computer Journal (1989)

Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: automatic

exhaustive testing for small values. In: Haskell Workshop 2008 Proceedings (2009)

Thielemann, H.: Utility-ht Package,

http://hackage.haskell.org/package/utility-ht/

(Version 0.0.5.1)

Vuillemin, J.E.: Proof-techniques for recursive programs. PhD thesis, Stanford Univer-

sity (1974)

Wadler, P.: Theorems for free! In: FPCA 1989 Proceedings (1989)

hackage.haskell.org/package/numbers/
http://hackage.haskell.org/package/stringsearch/
curry-language.org
http://hackage.haskell.org/package/utility-ht/

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 175–189, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The F# Asynchronous Programming Model

Don Syme1, Tomas Petricek2, and Dmitry Lomov3

1 Microsoft Research, Cambridge, United Kingdom
2 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

3 Microsoft Corporation, Redmond WA, USA
{dsyme,dmilom}@microsoft.com, tomas@tomasp.net

With one breath, with one flow, you will know, asynchronicity. [The Police, 1983, adapted]

Abstract. We describe the asynchronous programming model in F#, and its ap-
plications to reactive, parallel and concurrent programming. The key feature
combines a core language with a non-blocking modality to author lightweight
asynchronous tasks, where the modality has control flow constructs that are
syntactically a superset of the core language and are given an asynchronous se-
mantic interpretation. This allows smooth transitions between synchronous and
asynchronous code and eliminates callback-style treatments of inversion of con-
trol, without disturbing the foundation of CPU-intensive programming that al-
lows F# to interoperate smoothly and compile efficiently. An adapted version of
this approach has recently been announced for a future version of C#.

1 Introduction

Writing applications that react to events is becoming increasingly important. A
modern application needs to carry out a rich user interaction, communicate with web
services, react to notifications from parallel processes, or participate in cloud compu-
tations. The execution of reactive applications is controlled by events. This principle
is called inversion of control or the Hollywood principle (“Don’t call us, we’ll call
you”).Even the internal architecture of multi-core machines is approaching that of an
event-based distributed computing environment [2].

For this paper, asynchronous (also called “non-blocking” or “overlapped”) pro-
gramming is characterized by many simultaneously pending reactions to internal or
external events. These reactions may or may not be processed in parallel. Today,
many practically-oriented languages have reached an “asynchronous programming
impasse”:

• OS threads are expensive, while lightweight threading alone is less intero-
perable. Despite many efforts to make them cheap, OS threads allocate system
resources and large stacks [16] and their use is insufficient for problems that re-
quire a large number of pending reactions of outstanding asynchronous commu-
nications. For this reason many advocate either complete re-implementations of
OS threading [3] or language runtimes supporting only light-weight threads.
However, both are difficult without affecting performance of CPU-intensive

176 D. Syme, T. Petricek, and D. Lomov

native code, and in any case interoperating with OS threads is a fundamental re-
quirement for languages that interoperate smoothly with virtual machines such as
C#, F#, Scala [12, 19], so in this paper we assume it as an axiom. So these lan-
guages must look to add an additional light weight-tasking model that is not 1:1
with OS threads, a starting point for this paper.

• Asynchronous programming using callbacks is difficult. The usual approach
to address asynchronous programming is to use callbacks. However, without lan-
guage support, callback-based code inverts control, is awkward and is limited in
expressivity. In normal use, asynchronous programming on .NET and Java leads
to a tangle of threads, callbacks, exceptions and data-races.

What is to be done about this? The answer proposed in this paper, and adopted by F#
since 20071, is to add an asynchronous modality as a first-class feature to a general
purpose language design. By “modality” we mean reusing the control flow syntax of a
host language with a different computational interpretation.2 The key contribution of
this paper is to give a recipe for how to augment a core language (e.g. an ML-like
language, with no threading or tasks) with a non-blocking modality to author
lightweight asynchronous tasks in a relatively non-intrusive way. The modality has
control constructs that are syntactically a superset of the core language and these are
given an asynchronous semantic interpretation. For F#, this allows asynchronous code
to be described fluently in familiar language syntax, without disturbing the foundation
of CPU-intensive programming that allows F# to compile efficiently to Common IL,
and hence to native code, and to interoperate well with .NET and C libraries.

2 An Overview of F# Asynchronous Programming

In this section we give an overview of the elements of F# asynchronous program-
ming, element by element. We assume familiarity with ML-like core languages and
use expr to indicate ordinary expressions in F# programming [17]. The F# asynchron-
ous programming extension adds a new syntactic category aexpr to indicate the added
syntax of asynchronous expressions:

expr := async { aexpr }

The foundation of F# asynchronous programming is the Async<T> type, which
represents an asynchronous computation. All expressions of the form async { ... }
are of type Async<T> for some T. When executed, an async value will eventually pro-
duce a value of type T and deliver it to a continuation.

In asynchronous expressions, control-flow constructs can be used to form values
that represent asynchronous computations, and additions are made to this syntax to
await the completion of other asynchronous computations and bind their results. The

1 This paper describes the asynchronous support in F# 2.0. While the core idea was released and

published in book form 2007, the model has not been described in the conference literature.
This paper aims to rectify this and to help enable replication in other languages.

2 Other examples of language modalities are C# iterators (where the control syntax of C# is
used to write programs that generate sequences) and F# sequence expressions (a similar use).

 The F# Asynchronous Programming Model 177

grammar of asynchronous expressions for F# is shown below3. Importantly, this is a
superset of F# core language syntax, where control flow constructs are preferred to
have an asynchronous interpretation.

aexpr :=
| do! expr execute async
| let! pat = expr in aexpr execute & bind async
| let pat = expr in aexpr execute & bind expression
| return! expr tailcall to async
| return expr return result of async expression
| aexpr; aexpr sequential composition
| if expr then aexpr else aexpr conditional on expression
| match expr with pat -> aexpr match expression
| while expr do aexpr asynchronous loop on synchronous guard
| for pat in expr do aexpr asynchronous loop on synchronous list
| use val = expr in aexpr execute & bind & dispose expression
|use! val = expr in aexpr execute & bind & dispose async
| try aexpr with pat -> aexpr asynchronous exception handling
| try aexpr finally expr asynchronous compensation
| expr execute expression for side effects

The signatures of the library functions used in this section are:

Async.RunSynchronously : Async<'T> → 'T
Async.StartImmediate : Async<unit> → unit
Async.StartInThreadPool

4
 : Async<unit> → unit

Async.Parallel : Async<'T>[] → Async<'T[]>
Async.Sleep : int → Async<unit>

We also assume a function that takes a URL address and fetches the contents of a web
page – we show later in this section how this function is defined.

getWebPage: string -> Async<string>

2.1 Writing, Composing and Running Asynchronous Computations

Asynchronous computations form a monad and can bind a result from another asyn-
chronous computation using let! v = expr in aexpr. To return a result, we use the
return expr syntax, which lifts an expression into asynchronous computation. The
following example downloads a web page and returns its length:

async { let! html = getWebPage "http://www.google.com"

 return html.Length }

The expected types are as follows:

let! pat T= expr Async<T> in aexpr: Async<U> : Async<U>
return exprT : Async<T>

The syntax do! expr indicates the execution of a subordinate asynchronous operation
of type Async<unit>, the type of an asynchronous operation that does not return a

3 F# indentation aware syntax allows the omission of the in keyword.
4 Async.StartInThreadPool is called Async.Start in F# 2.0. We use the former for clarity.

178 D. Syme, T. Petricek, and D. Lomov

useful result.The following example sleeps 5sec., resumes, performs a side effect, and
sleeps another 5 sec. Note F# is an impure, strict functional language, and, as with
other operations in F#, asynchronous computations may have side effects.

async { do! Async.Sleep 5000
 printfn "between naps"
 do! Async.Sleep 5000 }

The typings for the syntactic elements used here are as follows:

do! Expr Async<unit> : Async<unit>
aexpr Async<unit> ; aexpr Async<T> : Async<T>
expr unit : Async<unit>

Asynchronous computations can also bind the results of core language expressions
using let v = expr in aexpr, executed using normal expression evaluation:

async { let! html = getWebPage "http://www.bing.com"

 let words = html.Split(' ', '\n', '\r')

 printfn "the number of words was %d" words.Length }

For the F# version of asynchronous programming, a value of type Async<_> is best
thought of as a “task specification” or “task generator”. Consider this:

let sleepThenReturnResult =

 async { printfn "before sleep"

 do! Async.Sleep 5000

 return 1000 }

This declaration does not start a task and has no side effects. An Async<_> must be
explicitly run, and side effects will be observed each time it is run. For example, we
can explicitly run an asynchronous computation and block for its result as follows:

let res = Async.RunSynchronously sleepThenReturnResult

printfn "result = %d" res

This runs, as a background operation, a task that prints “before sleep”, then does a
non-blocking sleep for 5 sec., and then delivers the result 1000 to the blocking opera-
tion. In this case, the function is equivalent to standard blocking code with a pause,
but we’ll see a more interesting use in Section 3. The choice to have asyncs be task
generators is an interesting one. Alternatives are possible: “hot tasks” that run imme-
diately, i.e. futures, or “cold tasks” that must be started explicitly, but can only be run
once. Task-generators are more suitable for a functional language as they eliminate
state (e.g. whether a task has been started).

When an asynchronous computation does not produce a result, it can be started as a
co-routine, running synchronously until the first point that it yields:

Let printThenSleepThenPrint =
 async { printfn "before sleep"
 do! Async.Sleep 5000

 printfn "wake up" }

Async.StartImmediate printThenSleepThenPrint
printfn "continuing"

 The F# Asynchronous Programming Model 179

This program runs a task that prints “before sleep”, then schedules a callback and
prints “continuing”. After 5 sec., the callback is invoked and prints “wake up”.

This raises the question of how the callback is run: is it on a new thread? In a thread
pool? Fortunately, .NET has an answer to this. Each running computation in .NET
implicitly has access to a synchronization context, which for our purposes is a way of
taking a function closure and running it “somewhere”. We use this to execute asyn-
chronous callbacks. Contexts feature in the semantics in Section 3.

An asynchronous computation can also be started “in parallel” by scheduling it for
execution using the .NET thread pool. The operation is queued and eventually exe-
cuted through a pool of OS threads using pre-emptive multi-tasking.

Async.StartInThreadPool printThenSleepThenPrint

2.2 Asynchronous Functions

An asynchronous function is a design idiom where a normal F# function or method
returns an asynchronous computation. The typical type signature of an asynchronous
function f is ty1 → ... → tyn → Async<tyreturn>. For example:

let getWebPage (url:string) =

 async { let req = WebRequest.Create url

 let! resp = req.AsyncGetResponse()

 let stream = resp.GetResponseStream()

 let reader = new StreamReader(stream)

 return! reader.AsyncReadToEnd() }

This uses additional .NET primitives. It is common that functions are written entirely
in this way, i.e. the whole body of the function or method is enclosed in async
{ ... }. (Indeed, in Java/C# versions of an asynchronous language modality, it is
natural to support only asynchronous methods, and not asynchronous blocks or
expressions).

The above example uses several asynchronous operations provided by the F# li-
brary, namely AsyncGetResponse and AsyncReadToEnd. Both of these are I/O primitives
that are typically used at the leaves of asynchronous operations. The key facet of an
asynchronous I/O primitive is that it does not block an OS thread while executing, but
instead schedules the continuation of the asynchronous computation as a callback in
response to an event.5 Indeed, in the purest version of the mechanism described here,
every composite async also has this property: asyncs don’t block at all, not even I/O,
except where performing useful CPU computations.

Tail Recursive Functions and Loops. A very common pattern in functional prog-
ramming is the use of recursive functions. Let’s assume we have a function receive of
type unit -> Async<int> that asynchronously returns an integer, for example by
awaiting a message. Now consider an asynchronous function that accumulates a pa-
rameter by repeatedly awaiting a message:

5 The .NET library provides operations through the “Asynchronous Programming Model”

(APM) pattern of BeginFoo/EndFoo methods. The F# library provides Async.FromBeginEnd
to map these to functions and uses this to wrap primitives to await basic operating signals
such as semaphores, toread and write socket connections, and to await database requests.

180 D. Syme, T. Petricek, and D. Lomov

let rec count n =
 async { printfn "count = %d" n
 let! msg = receive()
 return! count (n + msg) }

Here, return! expr is an asynchronous tailcall that yields control to the sub-ordinate
async, with finite overall resource usage (neither the stack nor the heap holding con-
tinuations grows indefinitely).Note expr has type Async<T> for some T.

Recursive asynchronous functions with asynchronous tailcalls give a very general
way to define asynchronous loops. However, the F# and OCaml syntax also allows
the direct use of for and while loops, often combined with the use of imperative data
structures such as reference cells. It is useful to extend these to asynchronous code. A
variation on a count function can be defined as follows:

let count =
 async { let n = ref 0
 while true do

 printfn "count = %d" n.Value
 let! msg = receive()

 n := n.Value + msg }

2.3 Exception Handling and Resource Compensation

Without a language support, the exception handling in asynchronous computations is
extremely difficult [10]. With language support it becomes simple: the try…with and
try…finally constructs can be used in async expressions in the natural way:

async { try
 let! primary = getWebPage "http://primary.server.com"
 return primary.Length
 with e ->
 let! backup = getWebPage "http://backup.server.com"
 return backup.Length }

Here, a failure anywhere in the download from the primary server results in the exe-
cution of the exception handler and download from the backup server.

Deterministic resource disposal is a language construct that ensures that resources
(such as file handles) are disposed at the end of a lexical scope. In F# this is the con-
struct use val = expr in expr, translated to let val = expr in try expr finally
val.Dispose(). The resource val is freed on exit from the lexical scope.

Resource cleanup in asynchronous code is also difficult without language support
[10]. Many OO design patterns for async programming use a “state” object to hold the
state elements of a composed asynchronous computation, but this is non-
compositional. With language support, state becomes implied by closure, and re-
source cleanup becomes simple. For example, the getWebPage function defined above
can be improved as follows:

let getWebPage (url:string) =

 async { let req = WebRequest.Create url
 use! resp = req.AsyncGetResponse()
 use stream = resp.GetResponseStream()
 use reader = new StreamReader(stream)
 return! reader.AsyncReadToEnd() }

 The F# Asynchronous Programming Model 181

Here the connection, the network stream and reader are closed regardless of whether
the asynchronous computation succeeds, fails or is cancelled, even though callbacks
and asynchronous responses are implied by the use of the asynchronous syntax.

2.4 Cancellation

A cancellation mechanism allows computations to be sent a message to “stop” execu-
tion, e.g. “thread abort” in .NET. Cancellation mechanisms are always a difficult topic
in imperative programming languages, because compiled, efficient native code often
exhibits extremely subtle properties when pre-emptively cancelled at arbitrary ma-
chine instructions. However, for asynchronous computations we can assume that
primitive asynchronous operations are the norm (e.g. waiting on a network request),
and it is reasonable to support reliable cancellation at these operations. Furthermore, it
is reasonable to implicitly support cooperative cancellation at specific syntactic
points, and additionally through user-defined cancellation checks.

One test of asynchronous programming support in a language is whether
cancellation of asynchronous operations is handled without additional plumbing. F#
async supports the implicit propagation of a cancellation token through the execution
of an asynchronous computation. Each cancellation token is derived from a
cancellation capability (a CancellationTokenSource in .NET), used to set the overall
cancellation condition. A cancellation token can be given to Async.RunSynchronously,
Async.StartImmediate, Async.StartInThreadPool and Agent.Start, e.g.

let capability = new CancellationTokenSource()

let tasks = Async.Parallel [getWebPage "http://www.google.com"

 getWebPage "http://www.bing.com"]

// Start the work…

Async.Start (tasks, cancellationToken=capability.Token)

// OK, the work is in progress, now cancel it…

capability.Cancel()

Cancellation is checked at each I/O primitive, subject to underlying .NET library and
O/S support, and before the execution of each return, let!, use!, try/with,
try/finally, do! and async { ... } construct, and before each iteration of an asyn-
chronous while or for loop. For getWebPage this means cancellation can occur at sev-
eral places. But it cannot occur during core-language code (e.g. expressions such as
library calls, executed for side-effects), and it cannot occur in such a way that the
resource-reclamation implied by the use and use! expression constructs is skipped.
Cancellation is not necessarily immediately effective: in a multi-core or distributed
setting it may take arbitrarily long to propagate the cancellation message.

3 Semantics

We now present a semantics for a simplified version of F# async programming, with
the following aims:

• To give a formal reference model that is close to an ideal implementation, yet
fairly neutral w.r.t. the core language.

182 D. Syme, T. Petricek, and D. Lomov

• To differentiate between computations that are pending on I/O, waiting in work
queues, and actively burning the CPU. These are the operational characteristics
that matter most to working programmers, as they have different cost models.

• To give a semantics that can be reduced to (a) the “single-threaded” model,
where one thread serves all reactions, or the “thread-pool” model, where a pool of
threads serves all reactions.

We do not present formal proofs based on the given semantics. The semantics is as
follows. We first perform a CPS conversion to reduce async expressions to core lan-
guage expressions (Fig. 1). We assume the “core” language has appropriate contex-
tual reduction rules (see Fig. 2). An async expression becomes a function λ , , , . body accepting success, exception and cancellation continuations , and , and a cancellation token . The only asynchronous action is which raises a wake-up event after an arbitrary time period. Starting an
async provides continuations to reify errors and cancellation as exceptions in the core
language.

Fig. 2 presents semantics for our asynchronous extension. We assume a core lan-
guage whose semantics is given as a standard small-step reduction relation .
The semantics for the asynchronous extension is then specified as a relation on , , , , , where

(a) is a set of active computations @ . Each conceptually corresponds to an
active OS thread contending for the CPU, evaluating . Each is labeled with a
synchronization context indicating how suspended async operations are re-
queued. Multiple computations may share the same context (e.g. a thread pool).

(b) is a set of queued computations @ . Each conceptually corresponds to a
queued work item awaiting execution in . For each context we assume an op-
eration dequeue , Q′, ′ which activates one queued evaluation.

(c) is a set of pending reactions @ . Each conceptually corresponds to a
pending callback when occurs, e.g. pending reactions to UI events. We as-
sume event descriptors are unique strings indicating a wakeup signal.

REDUCTION performs one step of an active computation in . SUSPENSION schedules a
pending reaction to an event. ACTIVATION activates a queued computation in .
EVENT queues a pending reaction in response to an event. Evaluation is non-
deterministic: more than one reduction rule may apply to a given triple. We do not
specify when events are raised: we assume they happen at an arbitrary number of
steps once created by evaluations of asyncsleep.

Some important ramifications of the semantics is as follows:

• When there is one ctxt, with one thread, the semantics degenerates to a determi-
nistic queue of event reactions, each run to completion or to an asyncsleep.

• When there is one ctxt, and multiple threads, the semantics degenerates to a
thread pool, running reactions to events in parallel.

 The F# Asynchronous Programming Model 183

• Cancellation cannot be caught, though finally clauses are run when cancellation
occurs. If an exception happens in a finally clause, then if the finally is being
executed during cancellation, the exception is ignored, otherwise it is propagated.

• Cancellation checks are implicit at specific, well-defined places. Regular non-
asynchronous expressions can be used for non-interruptible operations.

Fig. 1. CPS Translation of Asynchronous Expressions6,7

4 Patterns for Concurrent and Reactive Programming

We now present some common patterns built on top of the F# asynchronous model.

4.1 Parallel Composition

Parallel composition of asynchronous computations is efficient because of the scal-
ability properties of the .NET thread pool and the controlled, overlapped execution of
operations such as web requests by modern OSs. The F# library provides two simple
options for parallel composition, though it is easy to author additional patterns, par-
ticularly through the use of agents (see below).

Fork-join parallelism. The library function Async.Parallel takes a list of asynchro-
nous computations and creates a single asynchronous computation that starts the indi-
vidual computations in parallel and waits for their completion:

6 ∅ indicates a cancellation check, given a cancellation continuation c and a cancellation token

t. Φ and Κ indicate detecting and ignoring an exception in core-language code respectively. Δ
represents catching an exception and passing it to an exception continuation.

7 We omit do!, aexpr; aexpr and expr: they are syntactic sugar for let!. No cancellation check
is inserted for the sub-case expr; aexpr. For match, for and use see the F# spec [17].

184 D. Syme, T. Petricek, and D. Lomov

Fig. 2. Expression Reduction

lettask =

 Async.Parallel [getWebPage "http://www.yahoo.com";

 getWebPage "http://www.bing.com"]

let result = Async.RunSynchronously task

It is possible to create computations that fetch tens of thousands of web pages in
parallel. Assuming that urls is a list of URLs:

letall = Async.Parallel [for url in urls -> getWebPage url]

Promise-based parallelism. The F# library primitive for parallel execution is
Async.StartChild. Its type is:

Async.StartChild : Async<'T> → Async<Async<'T>>
It takes an async representing a child task and returns an async that represents the
completion of the task, a form of promise [5]. Two-way parallel composition is then:

let parallel2 (job1, job2) =

 async { let! task1 = Async.StartChild job1

 let! task2 = Async.StartChild job2

 let! res1 = task1

 let! res2 = task2

 return (res1, res2)

On the first bind, StartChild starts the computation and returns a promise, also repre-
sented as an async, which is awaited on the second bind. The inferred type is:

val parallel2 : Async<'T> * Async<'U> -> Async<'T * 'U>

4.2 Reactive Agents Using State Machines

One primary motivation for including the async modality in F# is that it allows a
faithful and simple representation of asynchronous message-receiving agents. An
agent encapsulates a message queue and asynchronously reacts to messages received
from other components. The signature of the F# library type for agents is as follows:

 The F# Asynchronous Programming Model 185

type Agent<'T> =

 static member Start: (Agent<'T> -> Async<unit>) -> Agent<'T>

 member Receive : Async<'T>

 member Post : 'T -> unit

(Agent<T> is a recommended type alias for the type MailboxProcessor<T> in F# 2.0.)
One litmus test of an asynchronous programming modality is writing reactive state
machines using a set of mutually recursive asynchronous functions. This is a common
pattern for reactive agents [20]. For example, consider an agent that adds numbers and
can be activated and deactivated. The type of messages sent to the agentis:

type Message =

 | Toggle

 | Add of int

 | Get of AsyncReplyChannel<int>

The agent has states active and inactive, which are represented as functions. Both
states are parameterized by the current number maintained by the agent. The follow-
ing example creates and starts the agent (initially active with value 0):

let agent = Agent<Message>.Start (fun inbox ->

 let recactive n =

 async { printfn "active %d" n

 let! msg = inbox.Receive()

 match msg with

 | Toggle->return! inactive n

 | Add m ->return! active (n + m)

 | Get ch -> ch.Reply n; return! active n }

 and inactive n =

 async { printfn "inactive %d" n

 let! msg = inbox.Receive()

 match msg with

 | Toggle ->return! active n

 | Add _ ->return! inactive n

 | Get ch -> ch.Reply n; return! inactive n }

 active 0)

We can use the Post member of the agent to send messages to the state machine, e.g.

agent.Post (Add 10) // Prints "active 10"

agent.Post Toggle // Prints "inactive 10"

agent.Post (Add 20) // Prints "inactive 10"

Results can be retrieved by agents using PostAndAsyncReply:

async { agent.Post (Add 30) // prints: "active 30"

 let! n = agent.PostAndAsyncReply Get // calls & waits

 printfn "got: %d" n } // prints: "got: 30"

4.3 Reactive User Interface Programming

Typical reactive GUI code should not perform CPU intensive calculations, but needs
to promptly react to the user activity. This is an area where the F# asynchronous
model works well as it enables a co-routine style of programming with a rich set of

186 D. Syme, T. Petricek, and D. Lomov

control constructs [13]. Most of GUI frameworks allow accessing widgets only from a
single thread (or do not support threads at all, e.g. JavaScript), making cooperative
resumption-based asynchronous tasks are a perfect match for GUI programming.

In F#, user interface events are exposed as values [18] and we can use the
Async.AwaitObservable primitive to use them as asyncs that will resume as soon as an
event occurs. For example, assume an event wnd.LeftButtonDown representing clicks
on a window. The following prints information about the first click event:

Async.StartImmediate

 async { let! me = Async.AwaitObservable wnd.LeftButtonDown

 printfn "clicke at (%d, %d) in %s" me.X me.Y wnd.Text }

The code registers a callback that will be called when the event occurs. The callback
is scheduled through the GUI message queue. The example above waits only for the
first occurrence of the event. To implement more complex logic, we can use control
flow constructs available in the asynchronous modality. For example, consider a
computation that reactively loops through three colors, in response to mouse clicks.

let semaphoreStates =

 async { while true do

 for light in [green; orange; red] do

 let!_ = Async.AwaitObservable wnd.LeftButtonDown

 wnd.BackgroundColor <- light }

Async.StartImmediate semaphoreStates

5 Implementation

At its core, the F# 2.0 implementation of the F# async model is as follows:

• The async syntax is de-sugared by the compiler as a “computation expression”.
• The Async<T> type is represented as a function that, when run, is given three con-

tinuations for success, exceptions and cancellation, and will eventually call one of
these. A cancellation token is also supplied as an argument.

Together these perform a localized continuation-passing translation of control-flow
and a heap-based allocation of the closures. This is a simple and efficient implementa-
tion that also builds on the uniform tailcall support of .NET 4.0.This is in essence a
direct implementation of the semantics described in Section 3, though many local
optimizations are added, and additional protection is made against some cases where
.NET does not guarantee tailcalls, e.g. in some partial-trust execution.

The async { ... } construct is an instance of an F# computation expression [19], a
form of retargetable syntacticcontrol-flow, c.f. Haskell monadic syntax and LINQ
query syntax [11]. We have de-emphasized this here, as adding an asynchronous
syntactic modality to a language is independent of its implementation. For example:

async { let l = ref []

 for url in urls do

 let! result = getWebPage url

 l := result :: !l

 return !l }

 The F# Asynchronous Programming Model 187

is de-sugared to
 async.Delay(fun () ->

 let l = ref []

 async.Combine(

 async.For(urls, fun url ->

 async.Bind(getWebPage url, fun result ->

 l := result :: l

 async.Zero())),

 async.Delay(fun () -> async.Return(!l))))

5.1 Some Usability and Performance Indicators

The role of F# async is to replace the direct use of OS threads in scalable .NET pro-
gramming, and to be a “nicer” way of writing the event-based code necessary to
achieve true scalability. This is hard to quantify, but one way to see this is to look at
the results of a small study [10]. This implements a TCP server using four techniques:
C#+OS threads, C#+callback async, F#+OS threads and F# + F# async. Approximate
coding time and code lengths were recorded, and the developer was an expert in all
areas. This study keeps many variables constant: the VM, GC, OS and underlying
library, only the language support changes. The results are below:

 max clients C# LoC C# coding F# LoC F# coding
OS Threads ~1200 ~90 lines ~20 mins ~60 lines ~20 mins
Async > 8000 ~330 lines + ~3 hours ~60 lines + ~10 mins

Comparing scalability and development time for a .NETpseudo-stock quote server
[10], .NET 3.5, Dell Optiplex 745, Win 7 Enterprise, 4 GB, 32-bit

The advantages of F# async are clear: > 7x improvement in scalability, and ~18x
decrease in time to transition to event/async implementation. This is consistent with
the authors’ experience of using the mechanism in practice.

The above illustrates the primary benefits of F# async programming against its
immediate comparison point on .NET. It is also somewhat useful to compare to other
systems implementing agent models. Some comparison points are shown below.

 pingpong105, 1msg pingpong1, 107 msg
F# 2.0 async actors 8.2s/211Mb 5.9s/5.6Mb
Scala 2.8.1 actors 5.5s/166Mb 21.4s/23Mb
Erlang 5.8 processes (exceeds max agents) 16.8s/6Mb

Agent creation and messaging statistics, Windows 7.
pingpong n creates n pairs of agent and bounces messages between them. Memory use is steady
state private working set. Dell E6400, Intel P9500 2.53Ghz, 2 Core, .NET 4.0, Win7 Enterprise

F# 2.0 per-agent overheads are marginally higher, but message processing is faster.
However, a word of caution! In reality, for all these languages, the in-memory
processing costs are nearly always “good enough” for real-world asynchronous
programming. In real-world applications the overheads are often swamped by I/O
latencies, I/O waits, graphical rendering or other CPU computations. Further, in clien-
tapps, a non-blocking UI can be much more important than reducing CPU usage.

188 D. Syme, T. Petricek, and D. Lomov

6 Summary

Two major themes run through today’s programming landscape: Web and Multi-core.
Asynchronous/overlapped/non-blocking network programming is a critical problem
for optimizing today’s web programming, and compositional, functionally-oriented
parallel programming is critical for multi-core programming. The F# async model
makes significant practical contributions in both these areas, delivering a clean, effi-
cient and scalable implementation of a compositional asynchronous programming
model in the context of a viable applied functional programming language, without
disturbing compilation via .NET and interoperability with .NET libraries.

To recap, why is such a modality useful? There are three ways to look at this:

• Expressivity: Compositional asynchronous reactions are expressed using se-
quencing, recursion, pattern matching, conditionals and exception handling. State
machines, reactive UIs and agents are simple instantiations of these.

• Semantic Separation: Adding an asynchronous modality gives language support
to a methodology that separates network I/O and asynchronous message passing
from “local” effects such as memory access and console I/O.

• Scalability: Event-based programming is still essential to scaling for server-side
systems which use OS threads. The performance indicators of Section 5 show
how using F# async allows both scaling and efficient coding in this domain.

In practice, the F# asynchronous programming model has consistently proved itself to
be an effective tool for multi-core, I/O and agent-programming problems [19, 13, 10].

6.1 Related Work

The topics of parallel, reactive, concurrent and distributed programming have given
rise to a vast literature. Some of the key techniques are co-routines, promises, futures
and actors [20, 1], synchronous languages [4], functional reactive programming, Join-
based thread co-ordination, orchestration languages [22]and light-weight threading,
especially Erlang [20]. Task, event, async and fork-join libraries abound, with no
language integration. Using monadic delimited continuations for event-based pro-
gramming is not new [9, 7, 15, 21]. Events v. threads is a major topic in systems re-
search, with papers highlighting the duality of the two approaches, or advocating each
[8, 9, 3]. The focus is mostly on systems performance, and less on expressivity.

The F# model ranks as a language integrated implementation of a lightweight task
mechanism specifically designed to fluently integrate with high-performance code
and interoperate well with existing virtual machines. Others with similar goals in-
clude Thorn, the “react” and “continuation” models of Scala and Kilim [6, 14, 16] and
the F# model shares much in common with the latter two in the use of a localized CPS
transform. This achieves conceptual efficiency by re-utilizing the control syntax of
the core language with an asynchronous interpretation.

Acknowledgements. We thank Brian McNamara, Nikolaj Bjorner, Niklas Gustafs-
son, Simon Peyton Jones, Gregory Neverov, Laurent le Brun, Luke Hoban, Jomo
Fisher, Tobias Gedell, and others for their help and advice on the design of the F#
async model, and LAMP EPFL for a 2006 sabbatical where this work started.

 The F# Asynchronous Programming Model 189

References

[1] Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge (1986)

[2] Baumann, A.: et al.: The multikernel: a new OS architecture for scalable multicore sys-
tems. In: SOSP 2009: Proc. of the ACM SIGOPS 22nd Symp. on OS Principles (2009)

[3] von Behren, R., Condit, J., Brewer, E.: Why events are a bad idea (for high-concurrency
servers). In: HOTOS 2003: Proc. of the 9th Conf. on Hot Topics in OS (2003)

[4] Berry, G., Gonthier, G.: The ESTEREL synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

[5] Friedman, D.P., Wise, D.S.: Aspects of applicative programming for parallel
processing. IEEE Trans. Computers 27(4), 289–296 (1978)

[6] Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based program-
ming. Theor. Comput. Sci. 410(2-3), 202–220 (2009)

[7] Kiselyov, O.: Delimited control in OCaml, abstractly and concretely. In: Blume, M.,
Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 304–320. Springer,
Heidelberg (2010)

[8] Lauer, H.C., Needham, R.M.: On the duality of operating system structures. SIGOPS
Oper. Syst. Rev. 13(2), 3–19 (1979)

[9] Li, P., Zdancewic, S.: Combining events and threads for scalable network services im-
plementation. SIGPLAN Not. 42(6), 189–199 (2007)

[10] McNamara, B.: F# async on the server side (March 2010),
http://tinyurl.com/fsasyncserver (retrieved 5/9/2010)

[11] Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and XML in
the.NET framework. In: SIGMOD 2006: Int. ACM Conf. on Mgmt. of Data. ACM,
New York (2006)

[12] Odersky, M., Spoon, L., Venners, B.: Programming in Scala, Artima, USA (2008)
[13] Petricek, T., Skeet, J.: Real World Functional Programming: With Examples in F# and

C#. Manning, USA (2009)
[14] Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delimited con-

tinuations by a type-directed selective CPS-transform. In: ICFP 2009: Proc. of the 14th
ACM SIGPLAN Int. Conf. on Func. Prog. (2009)

[15] Srinivasan, S.: Kilim: A Server Framework with Lightweight Actors, Isolation Types &
Zero-copy Messaging. Ph.D. thesis, University of Cambridge (2010)

[16] Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for java. In: Ryan, M. (ed.)
ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

[17] Syme, D.: F# 2.0 Language Specification, http://tinyurl.com/fsspec
[18] Syme, D.: Simplicity and compositionality in asynchronous programming through first

class events (March 2006), http://tinyurl.com/composingevents, (re-
trieved: January 2010)

[19] Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress (2007)
[20] Virding, R., et al.: Concurrent programming in ERLANG, 2nd edn. Prentice Hall, En-

glewood Cliffs (1996)
[21] Vouillon, J.: OCaml light weight threading library (2002),

http://ocsigen.org/lwt/
[22] Wehrman, I., Kitchin, D., Cook, W.R., Misra, J.: A timed semantics of Orc. Theor.

Comput. Sci. 402, 234–248 (2008)

Kanor
A Declarative Language for Explicit Communication

Eric Holk1, William E. Byrd1, Jeremiah Willcock1, Torsten Hoefler2, Arun Chauhan1,
and Andrew Lumsdaine1

1 School of Informatics and Computing
Indiana University

Bloomington, IN 47405, U.S.A.
{eholk,webyrd,jewillco,achauhan,lums}@cs.indiana.edu

2 Blue Waters Directorate
University of Illinois at Urbana-Champaign

Urbana, IL 61801, U.S.A.
htor@illinois.edu

Abstract. Programmers of high-performance applications face two major im-
plementation options: to use a high-level language which manages communica-
tion implicitly or to use a low-level language while specifying communication
explicitly. The high-level approach offers safety and convenience, but forces pro-
grammers to give up control, making it difficult to hand-tune communications or
to estimate communication cost. The low-level approach retains this control, but
forces programmers to express communication at a verbose, tedious, and error-
prone level of detail.

We advocate a complementary third approach in which the programmer declar-
atively, but explicitly, specifies the essence of the communication pattern. The
programmer lets the implementation handle the details when appropriate, but re-
tains enough control to hand-encode communications when necessary. In this
paper we present Kanor, a language for declaratively expressing explicit commu-
nication patterns, and demonstrate how Kanor safely, succinctly, and efficiently
expresses both point-to-point and collective communications.

1 Introduction

Large parallel computers, and the software that runs on them, are important to many
areas of science and engineering. The largest of these computers consist of many sep-
arate nodes, connected by a high-performance network. These computers implement
a message passing model for parallelism: processes have separate address spaces and
communicate through messages. Programming languages and libraries can abstract this
model, exposing instead a model with a global address space and implicit communica-
tion of data. Thus, programmers face a choice between these two approaches.

The implicit approach to communication is exemplified by languages such as X10 [4],
UPC [14], and Co-array Fortran [12]; the de facto standard for explicit communication
is the Message Passing Interface (MPI) [11]. There is a tradeoff between the implicit
and explicit approaches to message passing, however. Implicit approaches are easier to

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 190–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Kanor: A Declarative Language for Explicit Communication 191

program, but have more opaque performance characteristics, and thus their performance
is harder to predict or tune. Explicit approaches are more difficult to program, requiring
communication to be specified at a very fine-grained level of detail and thus leading to
more errors, but allow more knowledge and control over a program’s behavior and thus
its performance.

In this paper we advocate a third, complementary approach in which the programmer
uses a high-level declarative language to explicitly specify communication within an
otherwise imperative program. This approach allows both programmer control and ease
of programming, while allowing programs to be incrementally converted from fully
explicit approaches to our declarative language.

Many, if not most, MPI applications are written in a bulk synchronous parallel (BSP)
style [15]: each process runs the same program—Single-Program, Multiple Data
(SPMD)—and alternates between steps of purely local computation and communica-
tion. One compute/communicate phase is called a superstep; there is a global syn-
chronization at the end of each superstep. Examples of programs that are conveniently
expressed in BSP style include iterative solvers, sparse matrix-vector multiplication,
and many n-body algorithms.

We have designed a high-level, declarative language, Kanor, for specifying collective
communication in BSP-style programs. Kanor provides a balance between declarative-
ness and performance predictability and tunability. We have implemented a prototype
compiler for Kanor which infers the types and sizes of the data being sent automatically
and generates efficient code. As a result, the programmer can express communication
safely, simply, and concisely, while paying little to no abstraction penalty, as shown by a
performance evaluation. The declarative, high-level nature of Kanor, combined with its
simple parallel assignment semantics, exposes opportunities for future optimizations.

Our paper makes the following contributions:

– A declarative language, Kanor, for explicitly expressing collective communication
within BSP-style programs concisely and declaratively (Section 4). Kanor extends
C++’s type enforcement to communication patterns, and avoids deadlocks, unin-
tentional race conditions, non-deterministic behavior based on message size, and
other semantic pitfalls of MPI.

– A categorization of common communication patterns based on the knowledge avail-
able to the communicating processes (Section 3). We then show how Kanor takes
advantage of this classification to communicate efficiently (Sections 5 and 6).

– Evaluation rules for Kanor (Section 4.1). The details of these rules are important to
the language’s properties: even a small change to the evaluation rules can radically
change the language’s expressiveness.

– A set of core algorithms that can be used to implement Kanor’s evaluation scheme
efficiently (Section 5).

– A prototype implementation of Kanor, which compiles Kanor expressions into C++
and MPI code (Section 6).

– A performance evaluation of Kanor against MPI, demonstrating that the conve-
nience of Kanor’s abstractions imposes minimal abstraction penalty when com-
pared to point-to-point MPI communication (Section 7).

192 E. Holk et al.

2 Motivation

Despite MPI’s utility and popularity, MPI has its shortcomings. Consider this BSP-
style MPI communication, in which every processor sends a different value to every
processor whose process identifier (or rank) is even.

r = 0;
if(rank % 2 == 0)

for(j = 0; j < P; j++)
MPI Irecv(&A[j], 1, MPI INT, j, tag, MPI COMM WORLD, &reqs[r++]);

for(i = 0; i < P; i++)
if(i % 2 == 0)

MPI Isend(&B[i], 1, MPI INT, i, tag, MPI COMM WORLD, &reqs[r++]);
MPI Waitall(r, reqs, MPI STATUSES IGNORE);

The MPI Isend and MPI Irecv functions perform nonblocking sends and receives, respec-
tively, while MPI Waitall returns once all of the sends and receives have completed.

As this example shows, MPI requires programmers to write a considerable amount
of code at an error-prone level of detail to express even very simple communication
pattens. MPI does provide functions to concisely perform a fixed set of collective com-
munications, such as broadcasts. Collective statements are desirable because they are
concise, and can be optimized in system-specific ways to vastly outperform their point-
of-point equivalents. Even the simple communication pattern above, however, is awk-
ward to express using these collectives.

The programmer needs the ability to express collective communication succinctly
and declaratively, allowing the compiler to infer details such as the type of data being
sent. Ideally, the programmer would write the communication above as similarly to:

@communicate {
A[j]@i <<= B[i]@j where i in world, j in world, i % 2 == 0
}
The semantics of this idealized language would be based on parallel assignment, reliev-
ing the programmer from worries about deadlock and race conditions.

In addition to its verbosity, another problem with MPI is that it defeats C++’s type
enforcement. Consider this MPI snippet:

double b = 0.0;
float a = 1.0;

if(recv rank == rank)
MPI Recv(&b, 1, MPI DOUBLE, send rank, 0, MPI COMM WORLD,

MPI STATUS IGNORE);
if(send rank == rank)

MPI Send(&a, 1, MPI FLOAT, recv rank, 0, MPI COMM WORLD);

This example compiles and runs, but the result is clearly unintended. In some MPI im-
plementations, rank 0 may end with the value 5.26354e−315 for b, rather than the desired
value of 1.0. Not only is this result incorrect, this program’s behavior is undefined ac-
cording to the MPI specification, meaning the program may misbehave in subtle and
mysterious ways on different implementations. It is easy to see how this error might

Kanor: A Declarative Language for Explicit Communication 193

occur in a large program—a programmer might initially write a program using floats,
then change it to use doubles. If the programmer misses a float, the program will likely
produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;
float a = 1.0;

@communicate { b@recv rank <<= a@send rank }
and let the compiler and runtime ensure the float value is implicitly converted to double,
preserving the intended behavior for compatible data types. When the data types are
incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate
blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be efficient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge. Each process can determine the entire communication pattern.
This global knowledge may enable tree-based communication with logarithmic
rather than linear overhead. An advantage of Kanor is that it allows the compiler
to generate tree-based communication as an optimization, without forcing the pro-
grammer to write special-case code for efficiency.

Corresponding Knowledge. Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge. Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge. Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to no-
tify the sender processes from which it wishes to receive data. After this notification,
communication then becomes equivalent to the corresponding knowledge case.

These categories do not cover all possible applications or communication patterns. For
example, some communications might fit a third-party knowledge pattern. However,
these categories cover the majority of today’s parallel applications [15], and thus sim-
plify and direct our language design. It is important to note that other types of com-
munication patterns can be transformed into to one of the three categories that Kanor
supports by performing additional communication steps.

194 E. Holk et al.

Communication in Kanor is sender-driven. Each @communicate block corresponds to
either the global knowledge, corresponding knowledge, or sender knowledge case; in
all three cases, the sender knows the destination. The receiver knowledge case, which is
not as common as the first three cases, and requires an additional communication step,
can be expressed in Kanor as two independent @communicate blocks. In the current
Kanor implementation, the programmer may annotate each @communicate block with
an optional pragma indicating the global, corresponding, or sender knowledge case;
if no pragma is supplied, the compiler assumes the sender knowledge case. A future
version of the compiler should be able to infer this pragma in most cases. Incorrectly
specifying the hint is erroneous, and can lead to unspecified program behavior.

4 The Kanor Language

Figure 1 contains the grammar for Kanor. The nonterminals integer, variable, and expr
represent standard C++ integer literals, identifiers and expressions. The grammar ex-
tends C++ by allowing statements to also include the collective stmt.

Kanor allows set comprehensions, similar to the comprehensions found in Python
and Haskell. The comprehension contains generator clauses, which bind variables to
values in a set, and filter clauses, which restrict messages to be sent only when the
filters’ Boolean expressions evaluate to true. As might be expected, data is sent from the
sender’s process to the storage location on the receiver process; the complete evaluation
rules are given in Section 4.1.

Each top-level @communicate block encapsulates a logical communication, which
comprises one or more logically independent reductions (described below). The
@communicate form supports an optional compiler hint, which must be either global,
corresponding, or sender. These hints correspond to the first three classes of communica-
tion knowledge described in Section 3; the compiler’s use of these hints is essential for
good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on

collective stmt � @communicate hint comprehension
hint � ε | global | corresponding | sender
remote ref � expr @ expr
reduction � remote ref <<= remote ref

| remote ref << variable << remote ref
| reduction , reduction

comprehension � { reduction where (clause ,)∗ clause }
| { reduction }

set expr � expr | { expr ... expr }
clause � variable in set expr | expr

Fig. 1. Grammar for Kanor

Kanor: A Declarative Language for Explicit Communication 195

the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses the
“control structure” of a communication pattern more succinctly than conditionals or
loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn in e

where x0 through xn are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through xn are
independently assigned values from the set S, in effect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref τ0, e2 : τ1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in
Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;
}

196 E. Holk et al.

We assume user-defined reduction operators are both commutative and associative. The
behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and be-
tween e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]
︸︷︷︸

storage
location

@ i
︸︷︷︸

receiver
rank

<<=
︸︷︷︸

reduction
operator

B[i]
︸︷︷︸

data

@ j
︸︷︷︸

sender
rank

where i in world,
︸���������︷︷���������︸

generator

j in {0...i},
︸��������︷︷��������︸

generator

i% 2 == 0
︸��������︷︷��������︸

f ilter

It may seem that this information is sufficient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where
and in which environment each of these sub-expressions should be evaluated.

An important note about terminology: when we say that an expression e is evaluated
on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely different evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-effecting expressions
within a communication block should be avoided, as their behavior is unspecified.)

The programmer could be required to specify explicitly where expressions should be
evaluated—for example, indicating whether the storage location expression should be
evaluated on the sender or the receiver. Although this is the most general approach, the
level of detail required would make even the simplest communication cumbersome to
write. Instead, the rules for evaluating Kanor expressions are fixed and implicit:

A[j]
︸︷︷︸

A:receiver,
j:sender

@ i
︸︷︷︸

sender

<<=
︸︷︷︸

receiver

B[i]
︸︷︷︸

sender

@ j
︸︷︷︸

all

where i in world, j in {0...i}, i% 2 == 0
︸���︷︷���︸

all

Kanor: A Declarative Language for Explicit Communication 197

The sender’s rank, along with where-bound generators and filters, are evaluated by
every process; this is necessary to determine which processes are senders. Furthermore,
the where-bound clauses are evaluated from left to right—this ordering is necessary
since clauses may reference variables introduced in previous clauses. The data expres-
sion and the receiver’s rank are evaluated on the sender’s process. Evaluation of the
storage expression is more complicated: the expression is evaluated on the receiver’s
process, except for where-bound variables, which are evaluated on the sender’s process
and sent if necessary.

The evaluation rules presented above are subtle: the slightest change can radically
change the expressiveness of the language. For example, it may seem that the receiver
rank should be evaluated on every processor, rather than just on the sender:

A[j] @ i
︸︷︷︸

all

<<= B[i] @ j where i in world, j in {0...i}, i% 2 == 0

The symmetry of this approach is intuitively appealing: the expressions for both sender
and receiver ranks use the same evaluation rules. However, using this scheme the pro-
grammer cannot directly express the sender knowledge case, in which the ranks of
receiver processes are known only to the senders.

Consider another example of changing the evaluation rules. If all subexpressions,
other than op, are evaluated only on the sender, the evaluation model is equivalent to
a remote memory put or accumulate operation. If all subexpressions are evaluated on
the receiver, the model is equivalent to a remote memory get. Some collectives, such
as MPI Alltoallv, cannot be expressed using only one stage of communication using put
or get, but can be expressed as a single stage in Kanor. (Kanor supports, but is not re-
stricted to, put.) For this reason, some operations from other languages and interfaces
that superficially resemble Kanor’s transfer statement, such as MPI 2’s one-sided oper-
ations, actually have very different properties because of the different locations at which
the subexpressions are evaluated.

5 Core Algorithms

The evaluation semantics described in Section 4.1 can be implemented in a straight-
forward manner, using the algorithms presented below. We present algorithms for both
the corresponding and sender communication cases. Communication blocks that are
marked as global or corresponding use the Corresponding Communication Algorithm.
Sender-knowledge communication blocks use the Sender Communication Algorithm.

The Corresponding Communication Algorithm is given in Figure 2. In the corre-
sponding case, both parties are able to determine which messages will be sent and in
what order. This allows the receiver to post nonblocking receives ahead of time and
thereby avoid more complicated communication protocols. For each environment gen-
erated by the where clauses, each process p checks to see if it is sending, receiving, or
both. The algorithm then evaluates and applies the reduction operator to the received
messages.

Sender-knowledge communication blocks use the algorithm given in Figure 3. This
is a slight modification of the NBX algorithm [8]. The algorithm first posts nonblocking

198 E. Holk et al.

1 Algorithm: Corresponding Communication Algorithm

2 Input: Receiver rank expression: Ee

Sender rank expression: Es

Data expression: Ed

Storage location expression: El

List of environments for where clauses: EnvSet
Local environment: L
My rank: m

3 receives← empty list
4 foreach e in EnvSet do
5 e′ ← extend env (L, e)
6 sender ← eval (Es , e′)
7 receiver ← eval (Er , e′)
8 if sender = m then
9 data← eval (Ed , e′)

10 start sending data to receiver

11 if receiver = m then
12 begin receiving data from sender
13 loc← eval (El , e′)
14 operator ← eval (Eo, e′)
15 receives← append(receives, 〈loc, data, operator〉)
16 wait for all sends and receives to complete
17 foreach 〈loc, data, operator〉 in receives do
18 apply operator to 〈loc, data〉

Fig. 2. Algorithm for the corresponding knowledge case

sends as before, but the sends in this case require an acknowledgment from the receiver
before completing the send. It then enters the NBX termination loop. This loop tests
to see if an incoming message is pending, and if so receives the message and stores
the result in the output list. It then checks if all pending sends have completed. If so,
the algorithm begins a nonblocking barrier which will signal that all processes have
finished communicating. Each process continues to receive messages until the barrier
is completed.

In this case, receivers do not know how many messages they will receive, in which
order the messages will arrive, or the environments used on the senders to generate the
messages. For this reason, the sender must include the values of where-bound variables
that are used by the receiver. As a message is received, the reduction operator is applied
within the environment included in the message rather than the one available locally.

6 Implementation

Our prototype implementation consists of two parts: a compiler written in Scheme and
a runtime library written in C++. The Scheme portion of the compiler converts Kanor
expressions into C++. The resulting code relies heavily on the runtime library, which
performs most of the work in the communication and reduction operations.

Kanor: A Declarative Language for Explicit Communication 199

1 Algorithm: Sender Communication Algorithm

2 Input: Receiver rank expression: Ee

Sender rank expression: Es

Data expression: Ed

Storage location expression: El

List of environments for where clauses: EnvSet
Local environment: L
My rank: m

3 foreach e in EnvSet do
4 e′ ← extend env (L, e)
5 sender ← eval (Es , e′)
6 if sender = m then
7 data← eval (Ed , e′)
8 fv← vars(e) ∩ free vars(El)
9 vals← lookup(fv, e′)

10 send 〈data, vals〉 to eval (Er , e′)

11 done← false
12 barrier active← false
13 while not done do
14 probe for message
15 if message waiting then
16 receive 〈data, e′, sender〉
17 send acknowledgment to sender
18 e′ ← extend env (L, e′)
19 loc← eval (El , e′)
20 operator ← eval (Eo, e′)
21 apply operator to 〈loc, data〉
22 if barrier active then
23 if barrier is complete then
24 done← true

25 else
26 if all sends have been acknowledged then
27 start nonblocking barrier
28 barrier active← true

Fig. 3. Algorithm for the sender knowledge case

6.1 Compiler

There is a small wrapper script for the compiler that extracts Kanor @communicate
blocks, converts them into S-expressions, and passes them to the main Kanor compiler,
which compiles them into C++ using MPI. The resulting C++ code then replaces the
@communicate block. The design of the Scheme portion of the compiler is modeled after
the nanopass framework [13]. Structuring the compiler into many passes, each of which
performs very little work, enables rapid experimentation with a variety of implementa-
tion approaches, which is crucial during this early prototype implementation phase.

200 E. Holk et al.

At a high level, the compiler converts where clauses into C++ for loops or if statements
as appropriate. The innermost body adds transfer expressions to a context implemented
by the runtime. For example,

@communicate corresponding { a@i <<= b@0 where i in world, (i % 2) == 0 }
would compile into something like:

{
corresponding communicate ctx;
for(int i = 0; i < world.size(); i++)

if((i % 2) == 0) { ctx.add transfer(a, i, b, 0); }
}
The other main function performed by the compiler is synthesis of message struc-
tures and associated reduction operators. This is necessary for sender-only knowledge
@communicate blocks in order to handle environments correctly. For example, consider
the statement:

@communicate sender {
A[k]@i <<= B[k]@j
where i in world, j in world, k in {0 ... 10}, k % stride == 0
}
Here, receivers cannot predict where to store values they receive, because the location
depends on the value of stride on the sender processor. Thus, when a sender sends the
value of B[k], it must also send the associated value of k so the receiver can store it in
the correct location. In order to do this, the compiler generates a structure such as:

struct send data {
int k;
double B k;
send data(int k, double B k) : k(k), B k(B k) {}
};
The compiler also wraps the user-specified reduction operator (assignment in this case)
with a new operator that unpacks the message structure, such as:

void set array(double ∗A, send data msg) { A[msg.k] = msg.B k; }
Finally, the compiler also generates serialization code for messages, such as those using
array slices, that might have variable lengths.

6.2 Runtime

The primary purpose of the runtime library is to implement the various communication
protocols. This is facilitated by a context class, as mentioned previously. The context
class provides an add transfer method, which indicates that a certain data transfer will
take place. The context class then executes the set of transfers. We provide contexts
for both corresponding and sender communication protocols, and the compiler selects
the correct context based on the user-supplied hint. The context is also responsible for
managing any temporary buffer space needed to realize Kanor’s semantics.

Kanor: A Declarative Language for Explicit Communication 201

The corresponding context implements the algorithm in Figure 2. For corresponding
communication, the receiver can always tell how many messages it will receive, and
therefore can start a receive for each transfer in which it is the receiver. Likewise, the
context initiates a send for each transfer where a given processor is sending.

The sender context is somewhat more complicated because the communication pro-
tocol is more complex. Since receivers cannot determine the amount of data to expect,
we must use the algorithm given in Figure 3. This algorithm handles, with minimal
overhead, the case where each processor may receive an unknown amount of data. For
each transfer in which a given processor is sending, the sender context initiates a syn-
chronous send—i.e., a send that will not complete unless the message is received and
acknowledged. After all sends have been started, the context enters a receive and termi-
nation loop. If messages are waiting to be received, the context receives the message and
applies the reduction operator. Once all of a process’s sends have completed, it starts a
nonblocking barrier [5]. The barrier completes only after all processes have received all
the data that they will receive.

7 Performance

Programmers using a declarative language for communication can enjoy the benefits
discussed in Section 2 while paying little or no abstraction penalty. That is, the resulting
communication can be as efficient as the MPI equivalent. Furthermore, the declarative
approach enables optimizations that can make some communications more efficient
than their lower-level equivalents.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(µ

s)

Number of nodes

Kanor (Corresponding)
Kanor (Dynamic)

MPI

Fig. 4. Time required to execute the first example communication statement from Section 1 as
the number of processes increases. This graph compares point-to-point MPI communication with
Kanor versions using both the corresponding sender algorithms.

202 E. Holk et al.

To show that our approach is feasible, we have conducted preliminary benchmarks
for our unoptimized Kanor implementation. Evidence that Kanor is competitive with
point-to-point MPI code can be seen in Figure 4, which shows the time in microseconds
to execute the first example from Section 1 as the number of processors increases. The
graph shows three communication variants: a Kanor version using the corresponding-
knowledge algorithm, a Kanor version using the sender-knowledge algorithm (NBX),
and a point-to-point MPI version. The reported time is the arithmetic mean of four runs,
each of 15,000 collective operations. Measurements were performed on Odin, a 128-
node InfiniBand cluster (Single Data Rate). Each node is equipped with two 2 GHz Dual
Core Opteron 270 CPUs and 4 GiB RAM. In order to emphasize the communication
cost, we limited the program to only one task per node. Figure 4 shows that there is
minimal overhead as a result of using Kanor.

8 Related Work

Partitioned Global Address Space (PGAS) languages, such as UPC [14], Co-array For-
tran [12], X10 [4], and Chapel [3], provide programmers with explicit control over data
placement, but still use shared-memory-like semantics with implicit communication.
They distinguish between references to local vs. remote memory, however; the earlier
High-Performance Fortran (HPF) language was similar to PGAS, but without this ex-
plicit distinction [9]. These languages differ from Kanor in several ways: they provide a
global address space, they do not allow (or expect) programmers to specify communi-
cation explicitly, they do not segregate communication from computation, and they do
not provide collective semantics for general communications. Kanor, on the other hand,
exposes a distributed address space without direct access to remote memory; communi-
cation operations must be specified explicitly, rather than implicitly through a memory
consistency model. Kanor also has separate communication blocks, separated from an
application’s computation. These communication operations are collective, matching
the BSP model often used in message-passing programs.

Kanor @communicate blocks are similar to sparse collective operations as proposed
for the upcoming MPI-3 standard [6]. The main difference is that Kanor allows a simpler
high-level specification of the patterns while retaining all optimization possibilities.

Erlang is a declarative programming language designed for developing highly
scalable, reliable concurrent applications [1]. Erlang supports dynamic creation and
destruction of processes. Although Erlang is a declarative, functional programming lan-
guage, its message passing abstractions resemble those in imperative languages since
programmers write individual sends and receives. Unlike Kanor, Erlang does not pro-
vide or encourage collective communication.

Eden [10] is a high-level declarative language for parallel programming. Their ap-
proach is to start with a more declarative language (Haskell) and add support for par-
allelism. In contrast, we are adding declarative features to C++. While performing on
par with MPI is an explicit non-goal for Eden, there is nothing fundamental about the
design of Kanor that prevents it from achieving performance similar to pure MPI pro-
grams. Eden has a much richer processor abstraction than is provided by Kanor.

Data Parallel Haskell (DPH) adds parallel arrays to Haskell along with operations
on parallel arrays, e.g., fold. DPH lacks mechanisms to send messages explicitly, and

Kanor: A Declarative Language for Explicit Communication 203

lacks X10- or Chapel-like constructs to express locality. However, it supports nested
parallelism, similar to NESL, which is a nested data-parallel language [2].

XcalableMP’s [16] gmove construct specifies collective communications as pragmas
using concepts similar to those in Kanor. However, a single gmove statement cannot
perform data reductions and covers only the global knowledge case while other cases
require a mix of multiple pragmas and serial code.

9 Conclusion and Future Work

We demonstrated it is both feasible and desirable to use a declarative domain-specific
language to express communication patterns explicitly. Programs that use Kanor are
shorter, simpler, and safer than their MPI equivalents.

Perhaps the greatest limitation of our approach is that some problems are not nat-
urally expressed in BSP style. Another limitation is that receiver-only knowledge pat-
terns can’t be expressed within a single @communicate block. Receiver-only patterns are
inherently inefficient, however, so this limitation is minor.

Our model is not restricted to message passing over distributed memory. We also
hope to explore a shared memory version of Kanor. There are two obvious approaches
to integrating shared memory into the Kanor model. The first is to allow multiple threads
per Kanor process. The second is to allow multiple Kanor processes within a single
address space, but allow them to communicate only through Kanor.

We also plan to add communication optimizations to the Kanor execution engine.
Those optimizations are similar to optimizations for sparse collective operations [6].

We intend to continue exploring different evaluation rules, to better understand their
effects on the expressiveness of Kanor. We plan to explore one-sided and non-blocking
communication to exploit the communication/computation overlap inherent in BSP ap-
plications. An interesting problem is to infer the global/corresponding/sender annotations.
We may also allow additional programmer annotations (for example, whether a reduc-
tion operator is commutative) to enable additional optimizations.

Acknowledgments. This research was supported in part by NSF grant CSR-0834722
and by a grant from the Lilly Foundation. The Odin cluster used for our benchmarks
was purchased using NSF grant EIA-0202048.

We thank Pushkar Ratnalikar and Nilesh Mahajan for porting several MPI programs
to Kanor, investigating several papers describing related work, and for their comments
on the paper. Amr Sabry and Dan Friedman provided helpful comments on earlier
drafts. We also thank Nick Edmonds, Josh Hursey, Joseph Cottam, and members of
Indiana’s Open Systems Lab and PL Wonks groups for many helpful suggestions. We
appreciate the insightful comments provided by the anonymous referees.

References

1. Armstrong, J.: The development of Erlang. In: International Conference on Functional Pro-
gramming, pp. 196–203. ACM, New York (1997)

2. Blelloch, G.: NESL: A nested data-parallel language (version 3.1). Tech. Rep. CMU-CS-95-
170, CMU (January 1995)

204 E. Holk et al.

3. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel language.
Int’l. Journal of High Performance Computing Applications 21(3), 291–312 (2007)

4. Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In:
Object-Oriented Programming, Systems, Languages, and Applications, pp. 519–538 (2005)

5. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and performance analysis of non-
blocking collective operations for MPI. In: Supercomputing. IEEE/ACM (November 2007)

6. Hoefler, T., Traeff, J.L.: Sparse collective operations for MPI. In: International Parallel &
Distributed Processing Symposium, HIPS 2009 Workshop, Rome, Italy (May 2009)

7. Hoefler, T., Willcock, J., Chauhan, A., Lumsdaine, A.: The Case for Collective Pattern Spec-
ification. In: 1st ACM Workshop on Advances in Message Passing (AMP 2010) (June 2010)

8. Hoefler, T., Siebert, C., Lumsdaine, A.: Scalable communication protocols for dynamic
sparse data exchange. In: Principles and Practice of Parallel Programming, pp. 159–168.
ACM, New York (2010)

9. Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of High Performance Fortran: An
historical object lesson. In: History of Programming Languages III, p. 7-1–7-22. ACM, New
York (2007)

10. Loogen, R., Ortega-Mallén, Y., Peña-Marı́, R.: Parallel functional programming in Eden.
Journal of Functional Programming (15), 431–475 (2005)

11. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (September 4, 2009)
12. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN Fortran Fo-

rum 17(2), 1–31 (1998)
13. Sarkar, D., Waddell, O., Dybvig, R.K.: A nanopass infrastructure for compiler education.

SIGPLAN Not. 39(9), 201–212 (2004)
14. UPC Consortium: UPC Language Specification, v1.2 (May 2005),
http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

15. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33(8), 103–111 (1990)

16. XcalableMP Specification Working Group: Application Program Interface Version 1, Draft
0.7. Tech. rep. (November 2009)

http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 205–219, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Joinads: A Retargetable Control-Flow Construct for
Reactive, Parallel and Concurrent Programming

Tomas Petricek1 and Don Syme2

1 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
2 Microsoft Research, Cambridge, United Kingdom

tomas@tomasp.net, dsyme@microsoft.com

Abstract. Modern challenges led to a design of a wide range of programming
models for reactive, parallel and concurrent programming, but these are often
difficult to encode in general purpose languages. We present an abstract type of
computations called joinads together with a syntactic language extension that
aims to make it easier to use joinads in modern functional languages.

Our extension generalizes pattern matching to work on abstract computa-
tions. It keeps a familiar syntax and semantics of pattern matching making it
easy to reason about code, even in a non-standard programming model. We
demonstrate our extension using three important programming models – a reac-
tive model based on events; a concurrent model based on join calculus and a pa-
rallel model using futures. All three models are implemented as libraries that
benefit from our syntactic extension. This makes them easier to use and also
opens space for exploring new useful programming models.

1 Introduction

Today, we often write programs for environments that are in some way non-standard
when contrasted to traditional expression-based computation. In parallel program-
ming, multiple functions can execute at one time; in concurrent programming, we
need to express synchronization of multiple processes; in reactive programming, we
write code that waits for events from the GUI or completion of background tasks and
acts in response. Academia offers many programming models for these domains, and
more and more of them are being used by main-stream developers, though often awk-
wardly through object-model, library-based encodings.

This raises the question of providing language support for those models. Speciali-
zed languages become overly specific, while library-based solutions often result in
unnatural encodings where the declarative intent of the program is lost. We believe
that the best option lies in between. If we identify a repeating pattern, we can provide
a syntactic extension that enables a large number of programming models. This ap-
proach is successfully utilized by Haskell’s monads [2], computation expressions in
F# [1] and LINQ queries in C# [25]. Language supported, pattern-based approaches
are particularly appealing in the area of reactive, parallel and concurrent program-
ming, where we need to choose between different programming models.

206 T. Petricek and D. Syme

In this paper, we identify a repeating pattern that we call joinad. It arises when we
need to pattern match on abstract computations as opposed to pattern matching on
concrete values. The key contributions of our work are the following:

Practically useful. Joinads naturally fit with many important programming models.
Section 2 supports this claim by showing a reactive programming model (Section 2.1)
inspired by imperative streams and FRP [17, 23]; a concurrent programming model
(Section 2.2) based on join calculus [5] bearing similarities to JoCaml and Cω [6, 7];
and a parallel programming model (Section 2.3) based on futures, which can nicely
express some aspects of Manticore [12].

Lightweight extension. We present a construct that allows pattern matching on
abstract computations (e.g. event, channel or future). The construct is just a syntactic
sugar and is translated into calls to two simple operations provided by a joinad. We
describe the two operations as well as the translation procedure (Section 3).

Well-founded. As usual when describing abstract computation types, we identify a
set of laws that needs to be followed by joinad operations. We chose laws such that
our generalized pattern matching construct keeps the familiar semantics of ML-style
pattern matching (Section 4) and we describe the relationship between joinads and
other abstract computations (Section 5), most notably commutative monads.

This paper presents joinads as an extension to F# computation expressions. Thanks to
their relations with monads, the presented ideas could be applied to any language with
support for monads. We start by giving background on F# computation expressions.

1.1 Computation Expressions

Computation expressions [1, 3] are a syntactic mechanism in F# that provides conve-
nient syntax for a range of computations. As with Haskell monadic syntax and LINQ
queries, F# computation expressions are just a syntactic mechanism. In practice, they
are usually used with established computation type (e.g. monoids, monads or additive
monads [4; Ch. 2]) which satisfies specific laws.

We demonstrate computation expressions using a reactive programming model de-
scribed in detail in [4]. As we’ll see later, the work presented in this paper can be used
(among other things) to encode complex interaction patterns in this reactive pro-
gramming model. We work with values of type Event<'T>, which represents running
computations that emit values of type 'T along the way. The type can be modeled as a
sequence of time-value pairs. The following example shows a counter of button clicks
that limits the rate of clicks to one per second:

1: let rec counter n = event {
2: let! me = btn.Click
3: let! _ = Event.sleep 1000
4: return n + 1
5: return! counter (n + 1) }

Let’s look what the code does assuming appropriate definitions of event, Event.sleep
and the Click property. The recursive function returns a computation Event<int>. Its
body is wrapped in an event { ... } block, which provides the meaning of constructs

 Joinads: A Retargetable Control-Flow Construct 207

such as return, return! and let! The computation starts by waiting for the btn.Click
event (line 2). The meaning of the let! construct is that it waits for the first occur-
rence of the specified event and runs the rest of the code once afterwards. Next, we
create an event that will occur after 1 second and wait for its occurrence (line 3).

The return construct is used to emit values from the event (line 4). We can call it
multiple times because an event may be triggered repeatedly. The return! construct
performs a tail-call to implement looping and wait for the next Click.

In computation expressions, the semantics of the control-flow in the syntactic
fragment enclosed by event { .. } is determined by the operations on the event val-
ue. The expected types of operations and translation rules are defined in [3], and in
this case the event value supports the following operations:

event.Bind : M<'T> → ('T → M<'R>) → M<'R>
event.Combine : M<'T> * M<'T> → M<'T>
event.Return : 'T → M<'T>
event.ReturnFrom : M<'T> → M<'T>

The type signatures bare similarity to the MonadPlus typeclass in Haskell, although the
library for events described above does not satisfy the usual MonadPlus laws. The
following snippet demonstrates how the translation looks for the above example.

let rec counter n =

 event.Bind (btn.Click, fun me ->

 event.Bind (Event.sleep 1000, fun _ ->

 event.Combine (

 event.Return n,

 event.ReturnFrom (counter (n + 1)))))

Uses of the let! construct are translated into calls to the Bind operation and the rest of
the computation is transformed to a continuation. In this example, binding waits for
the first occurrence of an event, and so the continuation will be called at most once,
but other computations may run it multiple times (e.g. each time an event occurs).

The return construct is translated into calls to the Return operation, which has the
same type signature as monadic unit and lifts a value 'T into a computation M<'T>. The
return! construct translates to the ReturnFrom operation, in this case implemented as
an identity function. Finally, when we sequence multiple event generators, the com-
putations are combined using the Combine construct.

2 Joinads by Example

In this section, we introduce our lightweight syntactic extension and we’ll explore
several practically useful programming models that can benefit from it. The trans-
lation to underlying operations will be discussed later in section 3.

2.1 Reactive Programming with Events

First we show a more complicated example of user interaction logic using the reactive
programming model from the previous section. Let’s say that we want to reset the
counter by pressing the Esc key. In practice, this means that we need to wait for either

208 T. Petricek and D. Syme

Click event or KeyDown event that carries the Esc key code as a value. Unfortunately,
this cannot be written directly using existing constructs. Using let! we can wait for
multiple events only sequentially, but not in parallel.

What do we do about this? One approach is to use a combinator library that allows
us to filter and compose events. However, a combinator approach to waiting for mul-
tiple events makes the syntax more involved and forces the programmer to leave the
computation expression syntax. A solution using this approach is available in Appen-
dix A [27] for a comparison. The alternative approach described in this paper is to add
a new syntactic control flow construct to computation expressions to express joining
computations. What should this control flow operator look like? It should

• accept multiple computations as inputs,
• select a computation path based on the values produced by computations, and
• enable its use with different computation types (be retargetable).

In functional languages, the similarity to pattern matching is easy to note. In ML-
like languages, the match construct accepts multiple values as inputs, and selects a
computation path based on the inputs. In our proposal, the match! construct plays
an analogous role for computations. Similarly, just as let! allows binding on com-
putation values, match! allows pattern matching on computation values. The re-
settable counter can be written as follows:

1: let rec counter n = event {

2: match! btn.Click, win.KeyDown with

3: | !_, _ -> let! _ = Event.sleep 1000

4: return n + 1

5: return! counter (n + 1)

6: | _, !Esc -> return! counter 0 }

The match! construct takes one or more computations as arguments (line 2). In our
example, we give it two values of type Event<'T>. The patterns (lines 3, 6) belong to a
syntactic category that we call computation patterns. The form “!<pat>” means that
we need to obtain a matching value from the computation (in case of events, we wait
until the event emits a value matching the underlying ML-style pattern <pat>). We
call this form a binding pattern. The second form (written as “_”) is called ignore
pattern. It specifies that we don’t need to obtain any value from the computation.
Note that there is a difference between “_” and “!_” (line 3). In the first case, we don’t
need the value at all, while in the second case, we need to obtain the value (i.e. wait
for an event), but we ignore it afterwards.

The meaning of match! in the event-based reactive programming model is that it
waits for the first combination of event occurrences that enables a particular clause
(when waiting for multiple events, the values of last occurrences are remembered). In
the previous example, each clause has only a single binding pattern meaning that each
clause waits only for a single event. In the second clause (line 7), the value has to
match the pattern Esc, so some occurrences of the KeyDown event will be ignored.

As we’ll see in section 4, match! should generalize the let! construct. This is in-
deed the case for events – if we pattern match only on a single computation and speci-
fy an irrefutable pattern, the behavior is the same as when using let!

 Joinads: A Retargetable Control-Flow Construct 209

2.2 Concurrent Programming with Joins

Our second example is based on Join calculus [5], which provides a declarative way
for expressing synchronization patterns. Joins have been used as a basis for language
features [6, 7], but it is also possible to implement them as a library [8, 10].

Programming model based on Join calculus expresses synchronization using chan-
nels and join patterns. A channel can be viewed as a thread-safe container into which
we can put values without blocking the caller. A join pattern is a rule saying that a
certain combination of values in channels should trigger a specified reaction (and
remove values from the channels). We can use match! to specify the combinations of
values by pattern matching on multiple channels of type Channel<'T>. A simple un-
bounded buffer can be implemented as follows:

1: let put = new Channel<int>()
2: let get = new Channel<ReplyChannel<int>>()
3:
4: let buffer = join {
5: match! put, get with
6: | !num, !chnl -> chnl.Reply num }

We start by defining two channels (lines 1, 2). The first one is used for putting values
into the buffer, and the second one for obtaining them. The type ReplyChannel<int> is
essentially a continuation taking int. In our example, the continuation will be invoked
by the buffer as soon as a value (provided by a call to put) is available.

The buffer is implemented using the match! construct provided by the join compu-
tation expression. Join patterns are encoded as clauses of match! In our example, we
have a single clause (line 6) consisting of two bindings. This means that the body will
be called when there is a value in the put channel and also a continuation in the get
channel. When the join pattern fires, we pass the num value to the continuation.

The match! construct becomes essential when we have multiple join patterns, each
of them binding on one or more channels. The next example shows a buffer that al-
lows storing of two distinct types of values using two input channels. Values can be
read using a get channel that returns them as strings. This logic can be encoded using
two join patterns that bind on the get channel and one (putInt) or the other (put-
String) channel for storing values:

1: let putInt = new Channel<int>()

2: let putString = new Channel<string>()

3: let get = new Channel<ReplyChannel<string>>()

4: let buffer = join {

5: match! get, putInt, putString with

6: | !chnl, !n, _ -> chnl.Reply ("Number: " + (string n))

7: | !chnl, _, !s -> chnl.Reply ("String:" + s) }

Each clause combines two channels (lines 6 and 7) and ignores the third one. If we get
an integer value and a reply channel chnl in the first join pattern (line 6), we send a
number converted to a string as the reply. The second clause is quite similar.

210 T. Petricek and D. Syme

2.3 Parallel Programming with Futures

The next example shows how to multiply values in a binary tree. We use futures –
values of type Future<'T> that represent a computation that is (or may be) running in
the background and eventually produces a value of type 'T. A computation future
creates a future and can wait for the results of another future using let! The match!
extension allows us to wait for multiple features and pattern matches on the results:

1: let rec treeProd t = future {

2: match t with

3: | Node(lt, rt) ->

4: match! treeProd lt, treeProd rt with

5: | !0, _ -> return 0

6: | _, !0 -> return 0

7: | !a, !b -> return a * b

8: | Leaf(n) -> return n }

The function creates a future. It starts by standard pattern matching on the tree (line
2), which is just a discriminated union. If the tree is a node, we recursively call the
treeProd function to create two futures to process both of the branches (line 4). Then
we need to wait for both of the futures to produce a value, which is done using pattern
matching on computations with two binding patterns (line 7). In case when one future
completes earlier and produces 0, we know the overall result immediately, and we can
return it (lines 5 and 6) and the computation automatically cancels remaining futures.

When using match! with futures, it waits for the first future to produce a value and
then checks whether it can run any of the clauses. If yes, it follows the selected clause
and cancels remaining futures. In the other case, it waits for more futures to complete.
This behavior is in many ways similar to the pcase construct in Manticore [12].

3 A Language Extension for Joinads

In this section, we present our language extension for F# in detail. Just like other
aspects of F# computation expressions, it is a retargetable control flow construct
implemented by a syntactic translation to function calls. We first show how the trans-
lation works on the examples from the previous section and then present formal trans-
lation rules. The joinad operations and laws are discussed in section 4.

3.1 Introducing Operations

The translation of match! requires three functions – the usual map operation and two
additional operations that we call merge and choose. In this section, we gradually
introduce how the translation works, starting with a case where we need only map and
a slightly simplified choose that doesn’t allow refutable patterns in match! clauses.

Simplified choose. We start by looking at the example from section 2.1, but we ig-
nore the fact that the second clause contains a pattern that may fail – we reset the
counter whenever KeyDown occurs. This way, we get an example with multiple clauses
where each clause contains a single binding with an irrefutable pattern.

 Joinads: A Retargetable Control-Flow Construct 211

In this case, we only need an operation that allows us to select one of the clauses.
This is the purpose of the choose operation, which is explained in figure 1. The trans-
lation also needs the map operation, which allows us to transform values “inside the
computation” and has the usual type ('T → 'R) → M<'T> → M<'R>.

Fig. 1. The choose operation takes a list of computations. Each of the computations in the list
carries (or produces) other computations. These wrapped computations represent the body of
the clause that should be called when the clause is selected.

If you’re familiar with the definition of monads in terms of join, map and unit, you
probably noticed that our choose operation looks similar to join, except that it takes a
list of M<M<'a> computations instead of just a single one. As we’ll see in section 4,
when a joinad is also a monad, choose should be a generalization of join. The follow-
ing code shows desugared version of the example from section 2.1:

1: let rec counter n =

2: choose [

3: map (fun me -> event {

4: let! _ = Event.sleep 1000

5: return n + 1

6: return! counter (n + 1) }) btn.Click;

7: map (fun ke -> event {

8: return! counter 0 }) win.KeyDown]

The two clauses are translated into two elements of a list passed as the argument to
choose (line 2). Each computation representing a clause is constructed by taking the
source event and projecting values emitted by the event into event computations
representing the body that should be executed when the clause is selected. This is
done using the map operation (lines 3 and 7).

Merge. In the previous example each clause contained only a single binding pattern.
This means that we didn’t need to obtain values from a combination of computations.
If we wanted to do that, we would need some way of merging two computations into
a single one carrying tuples. To enable this, we need a merge operation with the
following type signature:

val : M<'T> → M<'U> → M<'T * 'U>

The merge operation takes two computations that may produce value of different
types and constructs a single computation that produces a tuple of values. The mean-
ing of the operation depends on the computation, but as we’ll see in section 4, it

212 T. Petricek and D. Syme

should obey certain laws. We’ll discuss how the operation relates to monads in sec-
tion 5 and focus on the translation for now. The following example shows a translated
version of the first join pattern example from section 2.2:

1: let buffer =

2: choose [map (fun (num, chnl) ->

3: join { chnl.Reply num }) (put get)]

The example uses only a single clause, so the list passed to choose consists of a single
element. However, the clause binds on multiple channels, so we need to obtain values
from both of the channels simultaneously. This is achieved by merging the channels
using the operator (line 3) and then passing the merged channel as an argument to
the map operation.

The implementation of the merge operation for join channels is perhaps the most
complicated of the three examples presented in this paper. It creates a new channel,
but when a clause is selected in choose, we need to remove values from the original
channels (e.g. put and get). This can be done by creating an alias channel that keeps
reference to the two merged channels.

Choose with failures. Earlier we wrote that choose takes a list of computations that
contain computations to be used if the clause is selected. This simplification does not
take failure into account. The outer computation consists of pattern matching that may
fail or succeed. In the second case, it produces an inner computation that can be used
to continue with. As a result, the actual type signature of choose is the following1:

val choose : list<M<Option<M<'T>>>> -> M<'T>

When compared with the signature shown earlier, the only change is that the inner
computation of type M<'T> is now wrapped in the Option<'T> type. This allows us to
represent pattern matching failure using the None case.

We show the handling of patterns by looking at the translation of an example from
section 2.3, which used futures to multiply leaves of a tree. The next snippet shows
the code generated for the last two clauses of the example (one that returns 0 when the
second future yields 0 and the general case where we wait for both of the futures).
The values f1 and f2 store the result of calling treeProd on lt and rt respectively:

1: choose [

2: ...

3: map (function

4: | 0 -> Some(future { return 0 })

5: | _ -> None) f2;

6: map (function

7: | a, b -> Some(future {

8: return a * b })) (f1 f2)]

1 In a strict language like F#, we also need to delay the inner M<'T> value to ensure that its

side-effects are evaluated only when a clause is actually selected. We omit this detail for
simplicity.

 Joinads: A Retargetable Control-Flow Construct 213

The first clause is translated into a computation that applies the map operation to the f2
value (lines 3-5). The function given as an argument to map will be called with a value
produced by the future. If the value is 0, it returns Some with a future computation to
run (line 4) otherwise it returns None (line 5). The second clause is similar, with the
exception that it first combines two futures using the operator. Also, the pattern
matching always succeeds, so we can omit the None case.

The interesting case is when f2 produces a value. As a result, the first computation
of the list we gave to choose also finishes. If it produces Some, the choose operation
cancels all other futures in the list (which in turn cancels the f1 future) and runs the
body provided in the Some discriminator. In case of non-zero result, it continues wait-
ing until some other clause produces Some. If all clauses produce None, then the choose
operation throws a match failure exception.

3.2 Syntax Extension

Let’s now look at the syntax of the extension. In addition the standard constructs des-
cribed in [3], we add a single new case to the cexpr category. The match! construct
takes one or more expressions as arguments and has one or more computation clauses.

cpat = _ Ignore pattern

 !pat Binding pattern

ccl = cpat1, …, cpatk → cexpr Computation match clause

cexpr = match! expr1, …, exprk with Computation pattern matching

 ccl1 | … cclp …consisting of several clauses

Clauses do not consist of standard patterns, but are formed by computation patterns.
As a result, we need to introduce a new syntactic category for clauses (ccl) and a

new category for computation patterns (cpat). A computation clause looks like an
ordinary clause with the exception that it consists of computation patterns (instead of
usual patterns) and the body is computation expression (instead of standard expres-
sion). Finally, a computation pattern can be either an ignore pattern (written as “_”) or
a binding pattern, which is a standard F# pattern [3] prefixed with “!”. In the next
section, we describe a translation that transforms computation expressions that in-
clude match! into ordinary F# expressions.

3.3 Translation Semantics

We extend the translation defined in the F# specification [3] by adding a case for the
match! construct. The translation is defined in terms of three functions. The first one
translates an expression into an expression that does not contain computation expres-
sions. The next two deal with the body of a computation expression and with a com-
putation clause respectively: ⟦ – ⟧ : expr → expr ⟪ – ⟫ : cexpr → ident → expr ⟨ – ⟩ : ccl → ident [ident] → expr

214 T. Petricek and D. Syme

In section 1.1, we saw that computation expressions are wrapped in blocks denoted by
an expression. The result of this expression is a computation builder, which exposes
operations defining the computation. In the translation, we pass the builder to fun-
ctions as an identifier and we write mergem to denote the merge operation provided by
the builder m. When translating a clause, we also need the parameters of match! These
are stored in fresh values and passed to the function as a list of identifiers: ⟦ expr { cexpr } ⟧ ≡ let m = expr in ⟪ cexpr ⟫m ⟪ match! expr1, …, exprk with ccl1 | … cclp ⟫m ≡ (1)

 let v1 = expr1 in … let vk = exprk in

 choosem [⟨ ccl1 ⟩m, (v1, …, vk); … ; ⟨ cclp ⟩m, (v1, …, vk)] ⟨ cpat1, …, cpatk -> cexpr ⟩m, (v1, …, vk) ≡ (2)

 mapm (function (pat1, …), patn → Some ⟪ cexpr ⟫m

 | _ → None) cargs

 where { (pat1, v1), … , (patn, vn) } = { (pat, vi) | cpati = !pat; 1 ≤ i ≤ k} (3)

 cargs = v1 m … m vn-1 m vn for n ≥ 1 (4)

When translating match! (1), we construct a fresh value for each of the arguments.
This guarantees that any side-effects of an expression used as an argument will be
executed only once. The rest of the rule translates all clauses of the pattern matching
and creates an expression that chooses one clause using the choosem operation.

When translating a clause (2), we need to identify which of the arguments are
matched against a binding pattern. This is done in (3) where we construct a list con-
taining an ordinary pattern (extracted from the binding pattern) and a computation, to
be matched against it. Next we combine all needed computations into a single value
using the merge operator (4). The operator is left-associative, so when combining for
example three values, the resulting value will be of type M<('a * 'b) * 'c>.

Finally, we pass the combined computation as an argument to a mapm operation. In
the projection function, we match the actual value against the patterns extracted earli-
er. If the matching succeeds we return Some containing a delayed and translated body
of the clause. The result of translating a computation clause will be of a type
M<Option<M<'T>>>.

4 Reasoning About Joinads

So far we described the types of operations that a joinad defines and a translation of
our lightweight language extension. Since joinad is an abstract type, we cannot speci-
fy the semantics of its operations in general. However, we can specify that they
should follow certain algebraic laws. In this paper, we identify some of the laws that
we would expect to hold about joinad operations. We do not claim a completeness
result for these laws (c.f. Haskell Arrows [22, 26] where equations have been iden-
tified, but a completeness result is elusive).

When using standard pattern matching, we have an intuition about transformations
that do not change the meaning of program. Since our match! construct bears a close
resemblance to an ordinary match, we want to be able to perform similar syntactic
transformations without affecting the semantics:

 Joinads: A Retargetable Control-Flow Construct 215

 match! mp(1), … , mp(n) with
| cpat1, p(1), … , cpat1, p(n) → cexpr1 | …

 | cpatk, p(1), … , cpatk, p(n) → cexprk

 …are equivalent for
 any permutation p of n numbers

(1)

match! m with
| !var1 -> cexpr1
| !var2 -> cexpr2

≡
 match! m with
 | !var1 -> cexpr1

(2)

match! m with
| !var → cexpr

≡
 let! var = m
 cexpr

(3)

 match! m {return e1},
 m {return e2} with

| !var1, !var2 → cexpr
≡

 m { match e1, e2 with
 | var1, var2 → cexpr }

(4)

We first give a brief overview of the equations and then look at simpler laws about
the underlying joinad operations that are imposed by these equations. Many joinads
are also monads, so the equations (3) and (4) relate match! to operations that are pro-
vided by monad (namely map and join used by let! and unit that enables return).

1. Reordering. The equation specifies that we can arbitrarily reorder the arguments
and patterns of the match! construct. By analyzing the translation, we can see that
this only changes the order in which the merge operations are applied to computa-
tions, so this equation imposes laws about the merge operation.

2. Match first. In ML-style pattern matching, we can have overlapping patterns and
the compiler can identify unreachable clauses. This equation provides similar guar-
antees for the match! construct. The equation matches on a single computation, so
it talks only about the choose operation.

3. Correspondence to binding. When the computation provides the let! construct, the
meaning of match! in the degenerated case should be the same as the meaning of
let! This equation describes a relation between choose and monadic join.

4. Matching on units. If the computation is a monad and provides the unit operation,
we can specify the meaning of matching on two unit computations. This equation
specifies an important aspect of merge operation.

As already mentioned, joinad needs to provide the map operation. This is common to
all functors and follows usual laws [9], so we only discuss laws specific to joinads.

4.1 Merge Operation Laws

The laws that should hold about the merge operation are shown below. The first two
laws follow from the equation 1 (reordering of arguments). The last law should hold
only when the computation is a monad. In that case, the third law is required by the
equation 4 (matching on units).

 u (v w) ≡ map assoc ((u v) w) (associativity)

 u v≡ map swap (v u) (commutativity)

 unit (a, b) ≡ (unit a) (unit b) (unit merge)

 where assoc ((a, b), c) = (a, (b, c))

 swap (a, b) = (b, a)

216 T. Petricek and D. Syme

The first two laws can be used to arbitrarily rearrange elements of a sequence of com-
putations that is aggregated using the merge operation. Together with properties of the
translation, this guarantees that the equation 1 will hold. The commutativity law re-
veals an interesting connection with commutative monads as discussed in section 5.

The third law (unit merge) specifies how the merge operation behaves with respect
to monadic unit. In general, we cannot say anything about matching on multiple com-
putations, so this law provides some cue in the case when the computation is a monad.
We can apply the law to the equation 4 to get an equation that uses match! with only a
single argument. The rest of the equation follows from the fact that choose is a gene-
ralization of the monadic join (as discussed in section 4.2). It may be of interest that
this law is very similar to the product law of causal commutative arrows [24].

4.2 Choose Operation Laws

The equation 2 (match first) talks almost directly about the choose operation, but we
can express it in simpler terms. The equation 3 (correspondence to binding) shows a
property that must hold when a joinad computation also forms a monad. The laws
about choose are less obvious due to the complexity of the operation:

 choose [map (λv → Some expr1) m;

 map (λv → Some expr2) m] (ordering)

 ≡ choose [map (λv → Some expr1) m]

 join ≡ choose [map (λv → Some v)] (correspondence)

The ordering law is essentially the result of direct translation of the equation 3. It
specifies that the order of elements in the list given as the argument to choose matters.
In particular, when there are multiple clauses that always succeed, the body of the
first clause will be used. Notably, this law doesn’t hold for proposals based on the
MonadPlus typeclass [11, 13]. However, we believe that this property of ML-style
pattern matching is essential for pattern matching on computations as well.

The correspondence law is applicable only when the computation in question is al-
so a monad meaning that it defines operations join and unit in addition to map, choose
and merge. This is a very important special case that deserves our attention. As men-
tioned in section 3.1, the choose operation bears similarity with monadic join. The
type of the argument of choose is list<M<Option<M<'T>>>>, while the type of join is
just M<M<'T>>. The correspondence law essentially says that the natural restriction of
choose to a compatible type is equivalent to join.

5 Related Notions of Computations

In this section, we discuss the relationship between joinads and monads. We also
discuss an interesting special case when a computation is joinad and a commutative
monad. Due to the space restrictions, we do not cover relationships with idioms (also
called applicative functors), which use an operation similar to our merge, but with a
different set of laws. The thesis [4; Ch. 5] contains more information on this topic.

 Joinads: A Retargetable Control-Flow Construct 217

5.1 Relation with Monads

When the computation is a monad, it needs to follow a set of monad laws that can be
formulated in terms of join, map and unit (see for example [20]). As we saw earlier, if
a joinad is also a monad, the join operation can be expressed in terms of choose. This
means that a computation which is both joinad and monad can be defined just in terms
of choose, merge, map and unit.

In that case, the computation needs to obey the laws of joinads (discussed in the
previous section), but also the laws of monads [20]. We need to reformulate monad
laws that involve join in terms of choose, but this can be easily done by replacing join
with the definition from the correspondence law.

5.2 Commutative Monads

Judging just from the type signature, it appears that the merge operation could be im-
plemented in terms of bind and unit in a monad. We would use bind to obtain values
of both of the arguments in a sequence and then use unit to return a tuple. This defini-
tion has the right type, but if we look at the merge laws, we find a problem.

The commutativity law of joinads states that reordering the arguments of merge
should not change the meaning of code. This is not, in general, true for the imple-
mentation described above. However, if the monad is commutative, we can change
the order of bindings and as a result, the described implementation is correct. A more
detailed discussion including a proof can be found in [4].

In a retrospective on Haskell, Peyton-Jones considered working with commutative
monads as an interesting open problem [15]. Although they are not sequential, the do-
notation in Haskell [18] allows only a sequential use. Our work makes it possible to
write code that works with commutative monads using match! in a less sequential
fashion. If we have four values of type Option<float> representing possibly missing
values that specify a location of a rectangle, we can calculate the center as follows:

maybe { match! mleft, mtop, mwid, mhgt with

 | !l, !t, !w, !h -> return (l + w/2), (t + h/2) }

We cannot write the calculation directly because the values are not numeric types. We
first need to extract their content. Using match! we can obtain values of all four com-
putations at once. In commutative monads, the order doesn’t matter, so the arguments
to match! can be rearranged in any way. The syntax still requires rebinding of all
symbols, but it offers an interesting alternative to the do-notation.

6 Related Work

We describe operations and laws of abstract computation type that makes it possible
to pattern match on computations when composing computations. We discussed how
our work relates to monads [2] and in particular commutative monads. Other related
computation types include applicative functors [16] and arrows [22, 24]. We believe
that it may be interesting to consider whether a generalized pattern matching could be
provided for these computation types as well.

218 T. Petricek and D. Syme

The existing work on pattern matching mainly focused on providing better abstrac-
tion when pattern matching on standard values [14, 21]. Extensible patterns in Scala
[19] can be composed using custom operators. Some authors propose a generalization
based on MonadPlus typeclass. This is an interesting alternative to our work, but it does
not obey all equations that we intuitively expect (as discussed in section 4).

7 Conclusions

The key claim of this paper is that a range of important modern programming models
can be encoded using a simple, retargetable and theoretically well founded extension.
We describe an abstract computation joinad and present a lightweight syntax that
makes it easy to write computations based on joinads. We use it for encoding declara-
tive programming models for concurrent, reactive and parallel programming.

Our extension is based on pattern matching and we made a special effort to pre-
serve the user’s existing intuition about pattern matching. By requiring several laws
about basic operations, we guarantee that usual reasoning about pattern matching
applies in our generalized scenario. Finally, joinads are related to monads and in par-
ticular commutative monads which are considered as an interesting open problem. We
show that our construct can be used for binding on multiple monadic values in a less
sequential fashion than the one provided by the usual do-notation.

Acknowledgements. We thank to Simon Peyton Jones, Gregory Neverov, Dmitry
Lomov and James Margetson as well as anonymous reviewers of this and earlier
version of this paper for useful comments and suggestions. Tomas is grateful to
Microsoft Research for an internship invitation, which made this work possible.

References

1. Syme, D., Granicz, A., Cisternino, A.: Expert F#, ch. 9. Apress (2007)
2. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.) AFP

1995. LNCS, vol. 925. Springer, Heidelberg (1995)
3. Syme, D.: F# Language Specification, http://tinyurl.com/fsspec
4. Petricek, T.: Reactive Programming with Events (Master thesis), Charles University

(2010)
5. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: POPL 1996

(1996)
6. Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: A language for concurrent

distributed and mobile programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS,
vol. 2638, pp. 129–158. Springer, Heidelberg (2003)

7. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#. ACM
Trans. Program. Lang. Syst 26(5), 769–804 (2004)

8. Russo, C.: The Joins concurrency library. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 260–274. Springer, Heidelberg (2006)

9. Yorgey, B.: The Typeclassopedia. The Monad.Reader Issue 13,
 http://tinyurl.com/tycls
10. Haller, P., Van Cutsem, T.: Implementing Joins Using Extensible Pattern Matching. In:

Wang, A.H., Tennenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 135–
152. Springer, Heidelberg (2008)

 Joinads: A Retargetable Control-Flow Construct 219

11. Tullsen, M.: First class patterns. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000.
LNCS, vol. 1753, p. 1. Springer, Heidelberg (2000)

12. Fluet, M., Rainey, M., Reppy, J., Shaw, A.: Implicitly-threaded parallelism in Manticore.
In: Proceedings of ICFP 2008 (2008)

13. Syme, D., Neverov, G., Margetson, J.: Extensible Pattern Matching via a Lightweight
Language Extension. In: ICFP (2007)

14. Wadler, P: Views: A way for pattern matching to cohabit with data abstraction. In: POPL
1987 (1987)

15. Peyton Jones, S.: Wearing the hair shirt - A retrospective on Haskell. Invited talk POPL
(2003), Slides available online at http://tinyurl.com/haskellretro

16. McBride, C., Paterson, R.: Applicative programming with effects. Journal of Func. Pro-
gramming 18 (2008)

17. Scholz, E.: Imperative streams - a monadic combinator library for synchronous program-
ming. In: Proc. ICFP (1998)

18. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, Cambridge (2003)

19. Emir, B., Odersky, M., Williams, J.: Matching Objects with Patterns. In: Bateni, M. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007)

20. King, D., Wadler, P.: Combining Monads. In: Proceedings of Glasgow Workshop on
Functional Programming (1992)

21. Okasaki, C.: Views for Standard ML. In: Proc. of Workshop on ML, pp. 14–23 (1998)
22. Hughes, J.: Generalising Monads to Arrows. Sci. of Comput. Prog. 37, 67–111 (2000)
23. Elliott, C.: Declarative event-oriented programming. In: Proceedings of PPDP 2000 (2000)
24. Liu, H., Cheng, E., Hudak, P.: Causal commutative arrows and their optimization. In:

ICFP 2009 (2009)
25. Bierman, G.M., Meijer, E., Torgersen, M.: Lost In Translation: Formalizing Proposed Ex-

tensions to C#. In: Proc. of OOPSLA 2007 (2007)
26. Lindley, S., Wadler, P., Yallop, J.: The arrow calculus, Technical Report EDI-INF-RR-

1258, School of Informatics, University of Edinburgh (2008)
27. Petricek, T., Syme, D.: Joinads (Extended version), http://tinyurl.com/joinads

Results on Out-of-Order Event Processing

Paul Fodor1, Darko Anicic2, and Sebastian Rudolph3

1 State University of New York at Stony Brook, USA
2 FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

3 Institut AIFB, Universität Karlsruhe, Karlsruhe, Germany

Abstract. Complex Event Processing (CEP) has the task of processing streams
of events with the goal of detecting event patterns of interest. Today’s CEP sys-
tems typically assume the total order of streaming events. In practice, real-time
processing often faces delays caused by network latencies, sensor and machine
failures etc. By handling out-of-order events a CEP processor needs to keep cer-
tain events longer than they are normally needed (in order to handle late events).
Therefore, an effective removal of overdue events is needed. This work provides a
framework for processing events, including also out-of-order events. The frame-
work also implements a general low-level garbage collector. Our approach is
based on deductive rules where detection of complex events amounts to an in-
ference procedure. Therefore the framework features reasoning capabilities. We
provide an open source implementation, and present experimental results of the
proposed framework.

1 Introduction

In recent years there has been made a significant paradigm shift toward real-time com-
puting. Traditionally, databases and data warehouses are used to analyze what happened
in the past. On the other hand, Complex Event Processing (CEP) is about processing
real-time events, i.e. CEP is about what has just happened or what is about to happen in
the future. Moreover, the CEP systems may provide intelligence by means of automated
deduction that happen in real time.

An event represents something that occurs, happens or changes the current state
of affairs. For example, an event may signify a problem or an impending problem, a
threshold, an opportunity, information becoming available, a deviation, etc. We distin-
guish between atomic (simple) and complex events. An atomic event is defined as an
instantaneous occurrence of interest at a point in time. In order to describe more com-
plex dynamic matters that involve several atomic events, formalisms have been created
which allow for combining atomic into complex events, using event operators and tem-
poral relationships. The field of Complex Event Processing has the task of processing
streams of atomic events with the goal of detecting complex events according to mean-
ingful event patterns.1 However, in most cases it is typically assumed that events in an
event stream are totally ordered: the order in which events are received by the system

1 Apart from this task (also known as pattern matching), CEP further addresses other issues like
event filtering, routing, transformation, etc.

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 220–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Results on Out-of-Order Event Processing 221

is the same as their timestamp order. This assumption is called total order assumption
[7]. In reality events may arrive out-of-order due to network latencies, different sources
and even machine failures. Many event processing and experimental systems [1,6,3]
cannot handle out-of-order events properly. They process events at the time when they
come. Hence, a late event will have a larger timestamp than the events which have al-
ready arrived earlier. As a consequence, systems not considering out-of-order arrival
will disregard the timestamp and may either detect incorrect complex events or fail to
detect some valid patterns that occurred [7]. To solve this problem, other systems [7,4,5]
propose to use buffers to keep event history for a certain time window. If out-of-order
events occur, they will be reordered in the buffer so that the event stream afterwards can
be threated (and processed) as an in-order stream. While this approach works in general,
it causes a certain delay in event processing. The main requirement of CEP systems is
to process data (events) at near real-time. This implies that keeping the whole or parts
of unnecessary history of events is undesired or even unacceptable. Such approaches
rather belongs to database processing, and do not comply with the CEP philosophy of
efficient, real-time event detection.

In this paper we present a solution for out-of-order event processing which does
not delay events. A complex event is split up into a set of binary goals, i.e. each goal
represents a subpattern of two events. Goals are chained so that in order to fulfill a
goal, previous goals in the chain need to be already fulfilled. A complex event is de-
tected when the top goal is achieved. Our approach is based on deductive rules. Rules
are triggered by relevant events, and they insert certain goals (showing the progress of
a complex event detection). In this paper we show how this approach can effectively
handle both, in-order and out-of-order CEP. Moreover, since it is grounded on deduc-
tive rules, our approach can evaluate background knowledge (while detecting complex
events) in order to derive real time situations of interest.

1.1 Motivating Example

We present the following possible use-case to motivate and exemplify the rationale of
this paper: A large hedge fund consists of multiple independent but closely cooperating
agents and branches. Its main fund is trading stock instruments and is international in
scope. Its investment strategy employs complex event processing and automated math-
ematical models to analyze and execute trades purely electronically. The hedge fund
uses CEP based models to predict price changes in stocks. These models are based on
analyzing event streams as they are gathered, then looking for movements to make pre-
dictions. One such program might monitor stocks of two companies (e.g., Google Inc.
with symbol “G”, and Microsoft Corporation, “M”). For instance, one rule detects com-
plex event ce1 when there is increase in Google stock price for more than 20%, see rule
(1). Likewise, complex event ce2 detects the increase in Microsoft stocks of the same
percentage, see rule (2). Event ce3 is represented by rule (3) and triggered when both,
ce1 and ce2 occur.

To allow more expressive patterns which go beyond of the state-of-the-art [1,6,7,4,5],
we integrate temporal knowledge (events) with static or updatable knowledge (for in-
stance, background knowledge related to liquidity of the company). The latter knowledge
may be represented as a set of facts and rules, and can be reasoned about when certain
events occur. For example, rule (4) checks a special condition proving that

222 P. Fodor, D. Anicic, and S. Rudolph

company C is transactional and not banned from trading. Such a company can be de-
termined by additional rules, defining what is a transactional and for trading company
(which we omit for space reasons). We see that these rules are domain specific knowl-
edge as they, for example, specifies stock trade policies specific for certain hedge fonds.
We also see that we do not talk only about detection of complex events (e.g., an event
a is followed by event b in last 10 seconds), but rather about detection of real-time sit-
uations, e.g., stocks of company A increased by 15% in the period when stocks of its
competitor decreased for 20% and/or are banned from trading. What is a competitor to
certain company, and when is a company banned from trading is specified as domain
knowledge. Further, it is worth noting that the liquidity of the company may change in
time. Therefore to detect this situation, rule (4) (as well as other policy rules) need to
be evaluated every time when complex events (ce1, ce2 and ce3) occur. Hence to detect
real-time situations of interest we combine CEP with an on-line evaluation of the back-
ground knowledge. Detection of a real-time situation can be useful for triggering external
actions, e.g., whenever complex event ce3 is detected buy “G”stocks, see rule (5).

ce1 ← (
stock(Agent1,′ G′, P r1, V ol1) SEQ stock(Agent2,′ G′, P r2, V ol2)

)
WHERE (Pr1 < 1.20 ∗ Pr2, verify company cat(“G′′)).

(1)

ce2 ← (
stock(Agent1,′ M ′, P r1, V ol1) SEQ stock(Agent2,′ M ′, P r2, V ol2)

)
WHERE (Pr1 < 1.20 ∗ Pr2, verify company cat(“G′′)).

(2)

ce3 ← ce1 AND ce2. (3)

verify company cat(C) : −category(C, transactional), not prohibited(C). (4)

ce3 : −trigger external action(buy stock(“G′′, 100)). (5)

One significant problem of the model is that stock events (multiplexed from all their
traders, agents, sources and observers) may arrive in an out-of-order fashion. This hap-
pens due to latencies in the network connections form the different sources, or due
to different system clocks under events have been generated. As a consequence, out-
of-order events may cause a CEP system to detect wrong complex events, and hence
produce wrong predictions of stock changes.

The out of order event processing problem has two obvious solutions: one is to im-
plement a multiplexer with a delay period (i.e., delay propagation of events for a few
seconds, while events are received and ordered in the proper order of their creation
date); the other one is to change the event composition algorithm so to accept out-
of-order events in the same way as in-order events. The first solutions has the main
disadvantage that it has to delay processing (while the main requirement for CEP is
efficiency in response time) and it needs to store events (which breaks another impor-
tant requirement of CEP, i.e., to process events as they come and to store as little of
the history data as possible). Event processing deals with huge amounts of events (e.g.,
tens of thousands per second and more), so a delaying mechanism is not optimal. While
related work [7,4,5] so far has relayed on that line of research, in this paper we propose
a solution founded on the second approach.

Results on Out-of-Order Event Processing 223

The problem of processing of out-of-order events is strongly connected to another
important issue. Namely by handling out-of-order events a CEP processor needs to keep
certain events longer than they are usually needed (in order to handle late events). There-
fore, an effective garbage collection of overdue events (from the temporary history of
events) is needed. This work also provides the design and implementation of a general
low-level garbage collector for events, integrated with an out-of-order event processor.

2 Event Processing in ETALIS

Before we present the solution for out-of-order events, we introduce the reader with our
open-source complex event processing system ETALIS2. The syntax of ETALIS Lan-
guage for Events allows for the description of event patterns as event rules of the form:
complexEvent ← EventPattern. Events occur over time intervals. Time instants
as well as durations are modeled as nonnegative rational numbers q ∈ Q+. Events
can be atomic or complex, while no distinction is made in their applicability to rules.
An atomic event refers to an instantaneous occurrence, i.e., the time interval length is
zero. Althought not a requirement, atomic events are ground (i.e. predicates followed
by arguments which are terms not containing variables). Intuitively, the arguments of a
ground atom describing an atomic event denote information items (i.e. event data) that
provide additional information about the event.

Events participate in composition rules to trigger complex events. When an event
stream of atomic events is fed into the system, all patterns are considered and complex
events are triggered. The event stream is formalized as a mapping ε : Ground → 2Q+

from ground predicates into sets of nonnegative rational numbers. It thereby indicates at
what time instants what simple events occur. As a side condition, it is required that ε is
free of accumulation points, i.e. for every q ∈ Q+, the set {q′ ∈ Q+ | q′ < q and q′ ∈
ε(g) for some g ∈ Ground} is finite.

Given an event stream ε, an interpretation I is called a model for a rule set R –
written as I |=ε R – if the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Ground with q ∈ ε(g)
C2 for every rule atom ← pattern and every variable assignment μ , Iμ(atom) ⊆

Iμ(pattern) where Iμ is inductively defined as displayed in Figure 1.

It is worth noting that Figure 1 defines the pattern language which subsumes the set
of all possible relations of Allen’s Interval Algebra [2]. This set can be used for rich
temporal reasoning. However, further analysis of the language is out of the scope of
this paper. Instead, we focus how the language constructs from Figure 1 can be detected,
not only in streams of “in-order” events but also with the existence out-of-order events.
We continue first by briefly explaining how “in-order” events are processed in ETALIS
(Subsection 2.1); then in Section 3 we develop an algorithm for dealing with out-of-
order events.

2.1 In-Order Event Processing in ETALIS

Given a set of event patterns and a stream of input events, the ETALIS system can
compute the final model of all events. To achieve this, ETALIS implements event-driven

2 ETALIS: http://code.google.com/p/etalis

http://code.google.com/p/etalis

224 P. Fodor, D. Anicic, and S. Rudolph

pattern Iµ(pattern)
pr(t1, . . . , tn) I(pr(µ∗(t1), . . . , µ∗(tn)))
p WHERE t Iµ(p) if µ∗(t) = true

∅ otherwise.

q {〈q, q〉} for all q ∈ Q+

(p).q Iµ(p) ∩ {〈q1, q2〉 | q2 − q1 = q}
p1 SEQ p2 {〈q1, q4〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2) for some q2, q3 ∈ Q+ with q2 < q3}
p1 AND p2 {〈min(q1, q3), max(q2 , q4)〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2) for some q2, q3 ∈ Q+}
p1 PAR p2 {〈min(q1, q3), max(q2 , q4)〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2)

for some q2, q3 ∈ Q+ with max(q1 , q3) < min(q2 , q4)}
p1 OR p2 Iµ(p1) ∪ Iµ(p2)
p1 EQUALS p2 Iµ(p1) ∩ Iµ(p2)
p1 MEETS p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q2, q3〉 ∈ Iµ(p2) for some q2 ∈ Q+}
p1 DURING p2 {〈q3, q4〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2) for some q2, q3 ∈ Q+ with q3 < q1 < q2 < q4}
p1 STARTS p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q1, q3〉 ∈ Iµ(p2) for some q2 ∈ Q+ with q2 < q3}
p1 FINISHES p2 {〈q1, q3〉 | 〈q2, q3〉 ∈ Iµ(p1) and 〈q1, q3〉 ∈ Iµ(p2) for some q2 ∈ Q+ with q1 < q2}
NOT(p1).[p2, p3] Iµ(p2 SEQ p3) \ Iµ(p2 SEQ p1 SEQ p3)

Fig. 1. Definition of extensional interpretation of event patterns.

backward chaining rules (which will be explained below). These rules are executed in
a data-driven fashion. That is, the inference system incrementally furthers the pattern
completion as relevant events occur. As soon as the last event required for a pattern
fulfillment is observed, the inference system triggers the complex event.

A user defines event patterns of the form given in the left column of Figure 1. When
submitted, ETALIS automatically transforms these patterns into event-driven backward
chaining rules. These are executable rules that enable detection of complex events at
run time. The transformation is performed as follows.

First, an event pattern is binarized left associatively, i.e., operations are coupled to
generate only binary formulas, introduce intermediate events for every binary formula
and replace these formulas in the original program. This eases the process of automatic
construction of event-driven rules and helps in implementation of various event oper-
ators defined by the language semantics (Figure 1). Apart from this, the consideration
of events on “two by two” basis enhances the computation sharing in the pattern detec-
tion, and hence helps in achieving better run-time performance. For instance, a formula:
e ← p1 SEQ p2 SEQ p3... SEQ pn (e is detected when an event p1 is followed by p2,..,
followed by pn) is binarized by introducing intermediate events (goals) as:

e ← tempn−1 SEQ pn

tempn−1 ← tempn−2 SEQ pn−1

...
temp1 ← p1 SEQ p2

(6)

Second, each binary formula is then compiled into a set of event-driven backward
chaining rules. Each operator, defined by the language semantics, has a specific trans-
formation which is provided by ETALIS system. Due to the space restriction, only
the transformation for the sequential conjunction is sketched below. Implementation of
other operators follow similar design patterns.

Transformation 2.1 accepts as input a binary sequence ei ← a SEQ b, and produces
event-driven backward chaining rules3. These rules are represented by r(a)1 and r(b)1
in Transformation 2.1. They belong to two different classes of rules. We refer to the first
class as to rules used to generate goals. The second class correspond to checking rules.

3 Here we assume that the process of binarization (which is trivial) has already been completed
so that Transformation 2.1 accepts as input only binary patterns.

Results on Out-of-Order Event Processing 225

r(a)1 is a rule that generates goals of type goal(b[,], a[T1,T2], e
[,]
i) when an event a

occurs (i.e., when the rule head r(a)1 is satisfied) at some [T1, T2]. Its interpretation is
that “an event a has occurred at [T1, T2]4, and we are waiting for b to happen, in order
to detect ei”. Obviously the goal does not carry information about times for b and ei,
as we don’t know when they will occur. In general, the second event in a goal always
denotes an event that has just occurred, whereas the role of the first event is to specify
what we are waiting for, to detect an event that is on the third position. Now when an
event b happens at some [T3, T4], the rule r(b)1 will execute. The rule checks whether
goal(b[,], a[T1,T2], e

[,]
i) is true (meaning that an a occurred prior to the occurrence of

b, if T2 < T3) in which case it triggers a (more) complex event e
[T1,T4]
i . Additionally

the rule deletes goal(b[,], a[T1,T2], e
[,]
i) to free up the memory (this is an optional

operation, and in certain applications it may be omitted).

Transformation 2.1. Sequential conjunction.
Input: event binary goal ei ← a SEQ b.

Output: event-driven backward chaining rules for SEQ operator.

For each event binary goal ei ← a SEQ b {
whenever a occurs at some [T1, T2], apply all rules r(a)i:

r(a)1:- insert goal(b[,], a[T1,T2], e
[,]
i);

whenever b occurs at some [T3, T4], apply all rules r(b)j :

r(b)1:- if goal(b[,], a[T1,T2], e
[,]
i) exist and T2 < T3 then

delete that goal, and trigger event e
[T1,T4]
i end if

}

We have implemented Transformation 2.1, as well as transformations for other op-
erations from Figure 1. Each rule from Transformation 2.1 has been represented as a
Prolog rule. In this sense ETALIS is a compiler of event pattern formulas into Pro-
log rules. ETALIS executes complied rules in a top-down execution mode finding all
(complex) events that are triggered as consequences of an event stream.

Although it is out of scope of this paper, let us mention that in our approach event
processing is considered under different consumption policies [6]. For example, we
want to detect event a followed by event b, and the stream contains events: a, a, b. It is a
question which event a will be taken for the pattern detection, the first or the second in-
stance. In event processing, consumption policies (or event contexts) deal with an issue
of selecting particular events occurrences when there are more than one event instance
applicable and consuming events after they have been used in patterns. In ETALIS we
have implemented recent, chronological, and unrestricted policy (see [6]); and for prac-
tical use with out-of-order events, recent and chronological policies are used.

3 Out-of-Order Events

Let us consider an example event stream from Figure 2. The figure shows four events5 in
the order they have arrived. The time scale shows that the first event occurred at a time

4 Apart from the time stamp, an event may carry other data parameters that are omitted here in
order to make rules more readable.

5 Here each event has the same format as events from Subsection 1.1.

226 P. Fodor, D. Anicic, and S. Rudolph

EventOrder.jpg

Fig. 2. Received vs. real order of events

point t1=2, the second one at t2=4 and so on. We see that stock(agent1,′′ G′′, 100, 10)
has arrived after stock(agent2,′′ G′′, 125, 10), however the arrow over the event, indi-
cates its correct position on the time scale. Therefore, this event is said to have arrived
out-of-order. The dot in the figure shows the correct position of the event (i.e., if it was
an “in-order” event). Similarly stock(agent2,′′ M ′′, 125, 10) is also an out-of-order
event, and should have been reported before stock(agent1,′′ M ′′, 100, 10).

When the given event stream is used for detection of complex event patterns defined
by the rules (1)-(3), the following two issues arise.

Missed complex event pattern due to an out-of-order stream. We see that a se-
quence stock(agent1,′′ G′′, 100, 10), stock(agent2,′′G′′, 125, 10) should be detected
as a valid pattern. However, with the execution model presented in Section 2 this will
not be possible. The problem is that when stock(agent2,′′ G′′, 125, 10) arrives, the sys-
tem checks whether some stock(agent1,′′ G′′, 100, 10) has previously happened. Since
there was no goal inserted by any occurrence of stock(agent1,′′ G′′, 100, 10) (at the
time of the check), stock(agent2,′′ G′′, 125, 10) will simply be discarded. At the mo-
ment when the event stock(agent1,′′ G′′, 100, 10) is received, the event
stock(agent2,′′ G′′, 125, 10) is gone. Thus the sequence stock(agent1,′′ G′′, 100, 10)
SEQ stock(agent2,′′ G′′, 125, 10) is missed.

False positives complex event pattern due to out-of-order stream. Evaluating rule
(2) for the given stream of events, the pattern stock(agent1,′′ M ′′, 100, 10) SEQ

stock(agent2,′′ M ′′, 125, 10) for ce2 is detected. However these pattern represents an
incorrect sequence. It should not have been detected if the out-of-order had been pro-
cessed correctly.

3.1 Out-of-Order Event Processing in ETALIS

In this subsection we present a solution for handling out-of-order events. To explain our
approach which deals with late events let us consider a simple event binary goal: ei ←
a SEQ b (using the binarization, other more complicated examples can also be reduced
to this case). The solution modifies the initial Transformation 2.1. by adding additional
rules. A rule that generates a goal (i.e., r(a)1) is accompanied by a checking rule (i.e.,
r(a)2) and vise versa (the checking rule, r(b)1, is now added a rule that generates a goal,
r(b)2, see also Section 2.1). Therefore we process the sequence in both directions: an
in-order direction (as in Transformation 2.1); and an out-of-order direction (with newly
added rules in Transformation 3.1.). Although, we show here just the transformation for
the sequence operator, we have implemented transformations for all thirteen operators
inspired from Allen’s Interval Algebra and also our additional various operators dealing
with negation, constraints on event rules and aggregates.

Results on Out-of-Order Event Processing 227

Transformation 3.1. Sequence with Out-of-Order Events.
Input: event binary goal ei ← a SEQ b.

Output: event-driven backward chaining rules for SEQ operator.

For each event binary goal ei ← a SEQ b {
whenever a[T1,T2] occurs apply all rules r(a)i:

r(a)1:- insert goal(b[,], a[T1,T2], e
[,]
i);

r(a)2:- if goal out(a[,], b[T3,T4], e
[,]
i) exist and T2 < T3 then

delete that goal and trigger event e
[T1,T4]
i ;

end if

whenever b[T3,T4] occurs apply all rules r(b)j :

r(b)1:- if goal(b[,], a[T1,T2], e
[,]
i) exist and T2 < T3 then

delete that goal and trigger event e
[T1,T4]
i ;

end if

r(b)2:- insert goal out(a[,], b[T3,T4], e
[,]
i);

}

Rules r(a)1 and r(a)2 will be evaluated when an eventa[T1,T2] occurs (i.e., at [T1, T2]).
Rule r(a)1 will insert a goal goal(b[,], a[T1,T2], e

[,]
i) into the database. Additionally

rule r(a)2 will check whether the event a is an out-of-order event, in which case the
system will also trigger an event ei. The event a is an out-of-order event if a goal
goal out(a[,], b[T3,T4], e

[,]
i) exists in the database, and T2 < T3. The latter condition

says that although event a[T1,T2] just happened (at some [T1, T2]), there is an event b[T3,T4]

that has already happened such that its timestamp is bigger that the a’s timestamp. This
suggests that event a is an out-of-order event, and an event e

[T1,T4]
i should be indeed

triggered.
Rules, that will fire when an event b[T3,T4] occurs (at some [T3, T4]), work similarly as

those for a[T1,T2]. Rule r(b)1 will check whether an event a[T1,T2] has already happened

(i.e., goal(b[,], a[T1,T2], e
[,]
i) exists in the database); and if yes, it will trigger an event

e
[T1,T4]
i . That is an in-order case of processing events a and b. Additionally rule r(b)2

will insert a goal goal out(a[,], b[T3,T4], e
[,]
i), which will be used by r(a)2 if an out-

of-order event a occurs.
Effectively, the price paid for handling out-of-order events is mainly reflected

throughout insertion of out-of-order goals (e.g., goal out(a[,], b[T3,T4], e
[,]
i)) and the

fact that they need to be cleared up after certain time (to free up the memory). There-
fore, in the next section we discuss a solution for the effective garbage collection of
outdated out-of-order goals.

4 Windowing and Pruning the Outdated Events

To deal with out-of-order events safely, no data can ever be purged from memory [7]
since event processing assumes processing of infinite streams of data. However, this
requirement is an exaggeration in reality and is impracticable due to overuse of memory.
Network latencies can be approximated, so it is clear that, at some point, data must
be deleted from memory. In the transformation above, occurrences of each event are
recorded by inserting a goal in memory. Some of these goals are removed at the time

228 P. Fodor, D. Anicic, and S. Rudolph

they are “consumed” to build more complex events, while the others can be pruned
using a time window6. Due to the requirement in CEP that patterns are defined on time
windows, we have developed time-based garbage collection strategies. The time-based
garbage collection is the natural approach for CEP to release the memory necessary for
the execution of events.

We have implemented the time guarantees for out-of-order event detection in dif-
ferent ways: pushed constraints; general garbage collection; and event-pattern garbage
collection.

The common way to deal with garbage collection of overdue events is to define a time
window for the event pattern and check this constraint during the composition of the
complex event. For instance, an event binary goal: ruleId([ooo window(10)])rule :
ei ← a SEQ b SEQ c specifies that the length of a time window for out-of-order events is
10 seconds (i.e., ooo window(10)). This means the system guarantees that out-of-order
events will be processed correctly if their delay is shorter that the specified window.

4.1 Pushed Constraints

Our first implementation for out-of-order complex event detection in ETALIS modifies
the binarization by pushing the constraints for time guarantees into binary events dur-
ing binarization, and Transformation 3.1 with checking the constraints before triggering
composed events. Pushing the constraints during binarization ensures that time guaran-
tees are checked at each step, so unnecessary intermediary sub-complex events are not
generated if the time guarantees are not satisfied. For predicative rules, we push variants
for all the terms and variables used in the rule to ensure that all bindings are satisfied
during execution (equivalent to a lifting from propositional to predicative logic).

One advantage of this approach is that any constraints can be verified, not only for
out-of-order event detection. Such constraints are common in event processing, e.g., the
event detection started after or before a certain time. Moreover, this approach is declara-
tive, i.e., new constraints can be defined for any rule and the handling of the constraints
is defined by writing a user defined check constraint rule for that constraint type.
However, the approach also has important disadvantages. First, ETALIS enables shar-
ing of common formulas during binarization (i.e., shared intermediate complex events
are computed only once and shared in multiple event formulas). Pushing the constraints
and labels for each rule makes sharing not possible anymore. However, a bigger dis-
advantage is the fact that the time guarantee is checked for each detected event. An
efficient solution would clear events when they are overdue, i.e., not every time an
event is detected. For instance, if the system detects 100,000 events in two seconds and
the time window is set to 2 seconds, then the system is expected to clean the overdue
events only once (after two seconds), i.e., without performing 100,000 checks.

4.2 General and Pattern-Based Garbage Collection

We prune expired goals periodically using alarm predicates. The general approach for
garbage collection (GC) is utilized to reduce an event path on which out-of-order events
are processed. Essentially it enables an out-of-order event to be late for a fixed window

6 When specified time elapses, goals from unfulfilled patterns can be deleted.

Results on Out-of-Order Event Processing 229

Transformation 4.1. Sequence with constraint checks.
Input: event binary goal RuleLabelConditionsei ← a SEQ b.

Output: event-driven backward chaining rules for SEQ operator.

For each event binary goal RuleLabelConditionsei ← a SEQ b {
whenever a[T1,T2] occurs apply all rules r(a)i:

r(a)1:- insert goal(b[,], a[T1,T2], e
[,]
i);

r(a)2:- if goal out(a[,], b[T3,T4], e
[,]
i) exist and T2 < T3

and check constraints(RuleLabelConditions) then

delete that goal and trigger event e
[T1,T4]
i ;

end if

whenever b[T3,T4] occurs apply all rules r(b)j :

r(b)1:- if goal(b[,], a[T1,T2], e
[,]
i) exist and T2 < T3

and check constraints(RuleLabelConditions) then

delete that goal and trigger event e
[T1,T4]
i ;

end if

r(b)2:- insert goal out(a[,], b[T3,T4], e
[,]
i);

}

of time with respect to system clock, denoted by SystemClock. The GC window W
specifies the maximum time range between the first and last event for any pattern de-
tection (i.e., infinitely long complex patterns are of no interest). Every event e

[T1,T2]
i

should be kept in memory at least the time defined by W , and all events are allowed to
be purged if SystemClock > [T1 + W]. GC is applied for all intermediate goals, not
only for out-of-order event processing.

We use an alarm rule (7) to prune unnecessary goals. This, sort of, garbage collector
is triggered by the system generated events (defined by the system time SystemClock
and the GC window W).

garbageCollector(SystemClock) ←
findAll(goal(, X([T1, T2], W),) SEQ SystemClock > [T1 + W],
goal(, X([T1, T2]), , L)),

while do(member(goal(, X([T1, T2]), , L)))(

del(goal(, X([T1, T2]),)))

and alarm(garbageCollector(SystemClock + W),W).

(7)

This means that for a time window of 10 seconds, the following sequence of events
will not be detected by the rule (1): stock(agent1,′′ G′′, 110, 10), that is triggered and
received at time 2; and stock(agent1,′′ G′′, 100, 10), that is triggered at time 1 and
received at time 21. The general garbage collection works well when there is a single
garbage collection window W for the whole system (e.g., the network delay is the same
for all sources).

The window essentially specifies what is a guaranteed ”minimum” time, ensured by
the system, that out-of-order events will be processed correctly: if the GC via alarms is
set to W time window, the presented procedure correctly handles out-of-order events
within that window.

Let us consider now a case when different elements in the system have different de-
lays and time guarantees, i.e., there exist different garbage collection times for different
patterns. In this case, the garbage collection alarms are defined at the level of each rule.

230 P. Fodor, D. Anicic, and S. Rudolph

The procedure starts GC alarms for each rule separately, looking for intermediate goals
for those rules checking the condition SystemClock > [T1 + Window(ei)].

Similarly to the pushed constraints case, rules are defined with properties, and the
binarization pushes the rule properties to sub-components. However, alarm events for
garbage collection are scheduled to happen in Window(ei) time. The scheduling of
alarms is done right after the compilation of pattern rules in an event program. The
approach is conservative: if one writes patterns without garbage collection window, no
alarm is generated. However, we also permit dynamic properties by inserting/deleting
properties on-the-fly ins/del(property(RuleId, PropertyName, PropertyV alue)).
In this case, the GC is started automatically during the execution (depending on the
situation). This means that if the system currently has more available memory it can
extend the window time W (which guarantees correct out-of-order event processing);
and opposite, if system is currently short with memory (due to other tasks), it can tem-
porarily shorten the window. In this respect, our approach offers possibility for both,
the time-based as well as the memory-based GC and out-of-order processing.

5 Performance Evaluation

We have implemented techniques for dealing with out-of-order events (see Section 3
and Section 4) in ETALIS. It is a Prolog-based system that serves as a testbed for val-
idating the proposed approach. ETALIS automatically compiles the user-defined com-
plex event program into Prolog rules suitable for event-driven pattern detection (e.g.,
Transformation 3.1 for sequence).

The test cases presented here were carried out on a workstation with Pentium dual-
core processor 2GHz CPU and 3GB memory running on Ubuntu Linux. The ETALIS
was tested using Yap Prolog version 5.1.37. To test out-of-order event processing in
our system, we have developed an automatic event stream generator. We have created
different sets of event streams where probability of occurrences of out-of-order events
varies between p=0 and p=0,33, i.e., between 0% and 33% of events are out-of-order.
We also show a test, conducted with real data set.

In the remaining part of this section we report the results obtained from the ex-
periments. Results are produced by ETALIS system, which is an open source project.
Unfortunately, since related approaches for dealing with out-of-order events [7,4,5] are
not open source systems we could not compare performance of ETALIS with them.

Out-of-order experiments. As a test program in this experiment, we consider rules
(1)-(2). The test program is executed in two modes: first with the in-order events, and
second with streams that contain out-of-order events.

Figure 3 shows experimental results we obtained for sequence operator (i.e., rules
(1)-(2)). In particular, Figure 3 shows the throughput comparison with in-order and out-
of-order event streams achieved by ETALIS (the y-axis). The x-axis shows different
percentages of out-of-order events, ranging between 0% (in-order events) until 33% (in
average, every third event in the stream is an out-of-order event). We see that the perfor-
mance loss when out-of-order events are handled is moderate even for high percentage

7 Yap Prolog: http://www.dcc.fc.up.pt/˜vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/

Results on Out-of-Order Event Processing 231

0.0

10.0

20.0

30.0

40.0

50.0

0% 10% 20% 33%

Percentage of out of order

Th
ro

ug
hp

ut
(1

00
0

x
Ev

en
ts

/S
ec

)
Out of order In order

Fig. 3. Sequence: throughput comparison

80.0

82.0

84.0

86.0

88.0

90.0

92.0

94.0

0% 10% 20% 33%

Percentage of out of order

M
em

or
y

co
ns

um
pt

io
n

in
M

B

Out of order In order

Fig. 4. Sequence: memory consumption

of out-of-order events. It happens mainly due to the fact that more events (goals) are
kept in memory; hence more data needs to be indexed and processed. This is evident
in Figure 4 which shows considerable bigger memory consumption with out-of-order
events. However ETALIS was capable to keep memory consumption constant, even for
frequent out-of order events.

For example, an approach presented in [7] completes a similar test with a 60,000
stream in 200 seconds, a 80,000 stream in 400 seconds, i.e., approximatively between
200 and 300 events/second (see Figure 9 in [7]). It is also evident that the presented
throughput depends exponentially on number of events. The results were obtained on
two Pentium4 3,0GHz machines, each with 512M RAM. Our tests on ETALIS were
performed on an 100000 event streams, and we have achieved a linearly-dependent
throughput ranging between 30000 and 40000 events per second (for different per-
centages of out-of-order events). Moreover our approach, when processing out-of-order
events, does not introduces delay through buffering and reordering as it occurs in related
work in [7,4,5] (see Section 1). Unfortunately the source code from [7] (as well as form
[7,4,5]) is not open source, hence we could not access and compare that implementation
with ETALIS on the same machine.

0

10

20

30

40

50

250 450 650 850

Stream length (1000 x events)

Sec

No GC GC Window 2.5sec

Fig. 5. The execution time for garbage col-
lection

0

200

400

600

800

1000

250 450 650 850

Stream length (1000 x events)

MB

No GC GC Window 2.5sec

Fig. 6. The memory consumption for
garbage collection

Garbage collection test. Figure 5 compares processing of out-of-order events for the
previous test but with significantly larger event streams. We run the test with no GC,
and with the GC set to pruning window of to 2.5 seconds. The data sets for the garbage

232 P. Fodor, D. Anicic, and S. Rudolph

collection tests are significantly larger (up to one million of events). From Figure 5 we
see that the execution with the GC takes longer. It is due to the fact that garbage col-
lection requires additional processing (i.e., kicks in and releases memory by processing
alarm events). However, in may cases this processing overhead is necessary as for large
event stream system quickly exceeds the available memory.

Figure 6 shows a memory consumption for the given test. We see that for a 500,000
event stream the memory consumption with no GC is as double as the memory con-
sumption of a GC version with W=2.5 seconds. This test consists of simple non-recursive
sequence patterns, but for complex programs and recursive event patterns an efficient
resource management is necessary.

Knowledge-based CEP with out-of-order. CEP can be combined with evaluation of
the background knowledge to detect real-time situations of interest. To demonstrate
this functionality, let us consider the following example. Suppose we want to detect
the stock price increase in a supply chain system of companies. The following pattern
monitors two stock price increases in two companies (occurred within certain time win-
dow), and checks whether the companies are parts of the supply chain system.

trendIncrease() ← (
stockIcr(CompanyA) SEQ stockIcr(CompanyB)

)
.10

AND inSupChain(CompanyA,CompanyB).

The supply chain system is represented as a set of explicit links between companies,
e.g., with linked(CompanyA, CompanyB) we represent two interconnected busi-
nesses involved in the ultimate provision of a product. We assume that such explicit
relationships are continuously being updated via according information events (e.g., a
data mining tool processes different information sources and generates these events).
The following transitive closure pattern can then be used to span over semantic rela-
tionships between companies scenario where direct supply relationships are represented
explicitly, and hence discover implicit relationships.

inSupChain(X, Y) ← linked(X, Y).
inSupChain(X, Z) ← linked(X, Y) AND inSupChain(Y, Z).

We tested this application scenario with presence of out-of-order events, and results are
shown in Figure 7 and Figure 8. In particular, Figure 7 shows throughput obtained for
stockIcr complex events. To detect stockIcr event, ETALIS needs to detect stock price
increases of two companies and check the supply-chain connectivity (inSupChain
relations) among them. To prove inSupChain relations the system needs to traverse
up to 1000 links between companies’ relations in real time (on-the-fly) when respective
events occur. Percentage of out-of-order events was 20%. For this, rather hard test, we
see that throughput declines as ETALIS needs to evaluate more background knowledge
(and out-of-order events occur), though memory consumption is kept constant.

Test with real dataset and out-of-order events. All presented tests so far were carried
out with probabilistic synthetic data streams. We could not find real out-of-order data
sets available (as they are usually kept proprietarily). Still to present a more realistic sce-
nario, we took a history stream of IBM stocks, recorded since 1962 up to now and pro-

Results on Out-of-Order Event Processing 233

0

10

20

30

100 500 1000

Recursion depth

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

) Throughput change

Fig. 7. Throughput change as the size of
companies’ relations varies from 100 to
1000

0

40

80

120

100 500 1000

Recursion depth

M
em

or
y

co
ns

um
p

on
 in

 M
B

Memory change

Fig. 8. Memory consumption in the
knowledge-based CEP test

0
5

10
15
20
25
30
35

0% 0.50% 1% 2% 5% 10%
Price increase

Th
ro

ug
hp

ut
(e

ve
nt

s/
se

c)

In order Out of order

0
10

20
30

40
50

60
70

0% 0.50% 1% 2% 5% 10%

Price increase

M
em

or
y

co
ns

um
pt

io
n

in
M

B

In order Out of order

Fig. 9. Stock price change on a real data set

vided by Yahoo Finance8. We have modified timestamps of 20% of events so to appear
as out-of-order. Format of events provided by Yahoo Finance is stock(ID, Date, Opn,
High, Low, Cls, V ol, Adj) where ID is a company ID; Date is a current date; Opn,
High, Low, Cls denote the opening, the highest, the lowest, and closing price, respec-
tively; Adj is the closing price adjusted for dividends and splits. The event pattern is
represented by rule (8). We monitored the price increase of two successive stock up-
dates w.r.t Adj data. Additionally a filter for the price increase was specified by X ,
where X varied between 0% and 10%. Figure 9 compares results obtained for the orig-
inal stream (in-order) and the one modified with out-of-order timestamps. The second
graph in Figure 9 shows memory consumption for these two cases.

stockIncr(ID, Adj1, Adj2) ←
stock(ID, Date1, Opn1, High1, Low1, Cls1, V ol1, Adj1)
SEQ

stock(ID, Date2, Opn2, High2, Low2, Cls2, V ol2, Adj2)
WHERE (Adj1 ∗ X < Adj2).

(8)

We see that the throughput with in-order and out-of-order events is different due to the
price we pay for computation of delayed events. We can also observe that the through-
put with and without out-of-order events slightly increases as the filter condition gets

8 Yahoo Finance: http://finance.yahoo.com/

http://finance.yahoo.com/

234 P. Fodor, D. Anicic, and S. Rudolph

tighter. This result is understandable since in this case less complex events is being
computed and the throughput (based on the input stream) raises up.

6 Conclusion

We have described an approach for event processing and inferencing over event streams
that may also contain out-of-order events. Due to the fact that in real applications one
can approximate the latency of the network and other causes for out-of-order events, it
is possible to define certain time windows as limits for out-of-order events. We studied
various ways to realize these time windows. We presented the design and implemen-
tation of out-of-order event processing, combined with general low-level garbage col-
lectors in ETALIS system. We have conducted an experimental study which shows the
effectiveness of our approach in minimizing the CPU cost and memory consumption.

Acknowledgments. The work of one of the authors, Darko Anicic, was partially sup-
ported by European Commission funded project SYNERGY (FP7-216089). We thank
Ahmed Khalil Hafsi and Jia Ding for their help in testing the ETALIS prototype.

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event
streams. In: SIGMOD (2008)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

3. Alves, A.: Extensions to logic programming inference engines to support cep. In: RuleML
2009 (2009)

4. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through time: A vision
for event stream processing. In: CIDR (2007)

5. Brito, A., Fetzer, C., Sturzrehm, H., Felber, P.: Speculative out-of-order event processing with
software transaction memory. In: DEBS 2008. ACM, New York (2008)

6. Chakravarthy, S., Krishnaprasad, V., et al.: Composite events for active databases: Semantics,
contexts and detection. In: VLDB. Stanford University, USA (1994)

7. Li, M., Liu, M., Ding, L., Rundensteiner, E.A., Mani, M.: Event stream processing with out-
of-order data arrival. In: ICDCSW (2007)

Nettle: Taking the Sting

Out of Programming Network Routers

Andreas Voellmy and Paul Hudak

Yale University

andreas.voellmy@yale.edu, paul.hudak@yale.edu

Abstract. We describe a language-centric approach to solving the com-

plex, low-level, and error-prone problem of network control. Specifically,

we have designed a domain-specific language called Nettle, embedded

in Haskell, that allows programming OpenFlow networks in an elegant,

declarative style. Nettle is based on the principles of functional reac-
tive programming (FRP), and as such has both continuous and discrete

abstractions, each of which is leveraged in the design. We have imple-

mented Nettle and tested it on real OpenFlow switches. We demonstrate

our methodology by writing several non-trivial OpenFlow controllers.

1 Introduction

Networks continue to increase in importance and complexity, yet the means to
configure them remain primitive and error prone. There is no precise language
for describing what a network should do, nor how it should behave. At best,
network operators document their complex requirements informally, but then
are faced with the daunting and unreliable task of translating their specifications
by hand into the low-level, device-specific, often arcane scripts used to control
today’s commercial switches and routers. This low-level programming model
often results in devices and protocols interacting in unexpected ways [6], and
gives little hope in validating high-level protocols and policies such as traffic
engineering, business relationships, and security policies [14,3].

We believe that these problems can be overcome through the use of advanced
high-level programming languages and tools that allow one to express overall
network behavior as a single program expressed in a declarative style. Although
this idea has been suggested by several researchers [3,11], the development of
an actual solution has been elusive. There are two aspects of our approach that
we believe will result in a successful outcome: First, we abandon conventional
switches in favor of flexible, dynamically adaptable programmable switches. In
particular, we have focused our efforts on OpenFlow switches [1], which present
a flexible, dynamic, remotely programmable interface that allows them to be
controlled from a logically centralized location.

Second, we use advanced programming language ideas to ensure that our
programming model is expressive, natural, concise, and designed precisely for
networking applications. Specifically, we borrow ideas from functional reactive

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 235–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

236 A. Voellmy and P. Hudak

programming (FRP) and adopt the design methodology of domain-specific lan-
guage (DSL) research.

Our overall approach, which we call Nettle, allows us to radically rethink the
problem of network configuration. Indeed, we like the mantra, “Don’t configure
the network, program it !” [15]. In doing this at a high level, we enable the devel-
opment of new, powerful, and natural network policies, protocols, and control
algorithms.

2 Overall Approach

In this paper, we focus on the problem of configuring a network of OpenFlow
switches, varying in size from a single router to several hundred. Such a network
may belong to a commercial entity, an Internet service provider (ISP), a uni-
versity, etc. Typically, certain border routers of such a network interface to the
Internet, but our focus is on the internal interactions and coordination between
local switches. Unlike most conventional networks, all of the OpenFlow switches
communicate with a centralized controller. It is here that a Nettle program runs,
thus implementing a global control policy for the entire local network. Although
a centralized controller will ultimately present problems as the network is scaled
upward in size, it is adequate to handle most moderately-sized networks.

Figure 1 illustrates our software architecture. At the bottom are OpenFlow
switches themselves. One level up is Haskell, our host language. Above that is a
library, Nettle/OpenFlow, that abstractly captures the OpenFlow protocol.

OpenFlow

Haskell

Nettle/OpenFlow

Nettle/FRP

T
ra

ffi
c

E
ng

in
ee

ri
ng

R
ou

ti
ng

C
on

tr
ac

ts

Se
cu

ri
ty

..
..

..
..

.

Fig. 1. Nettle layered system architecture

The next layer in our stack is an instantiation of the Functional Reactive
Programming (FRP) paradigm. FRP is a family of languages that provide an
expressive and mathematically sound approach to programming reactive systems
in a declarative manner. FRP has been used successfully in computer animation,

Nettle: Taking the Sting Out of Programming Network Routers 237

robotics, control systems, GUIs, interactive multimedia, and other areas in which
there is a combination of both continuous and discrete entities [13,4].

Above the FRP layer, we plan to implement an extensible family of DSLs,
each member capturing a different network abstraction. For example, we may
have one DSL for access control, another for traffic engineering, and another
for interdomain contracts. As a concrete example, in [15] we describe a DSL
for expressing a class of dynamic security policies for campus networks and its
implementation on Nettle’s FRP layer.

In this paper we focus on the Nettle components that are shaded in Figure 1.
Our contributions, as outlined in this paper, include:

1. A core Nettle/FRP language that supports the development of higher-level
control languages by providing two key abstractions:
(a) A discrete, event-based abstraction that declaratively captures commu-

nication patterns to and from OpenFlow switches.
(b) A notion of continous, time-varying quantities that capture higher-level

abstractions such as traffic volume on individual network links.
2. A simple, declarative approach to dynamic routing, based on Nettle/FRP’s

discrete communication abstraction.
3. A simple, declarative approach to traffic engineering, based on Nettle/FRP’s

abstraction of continuous quantities.
4. An implementation of Nettle/FRP in the context of the software architecture

of Figure 1. We have tested our system on reference implementations of the
OpenFlow switches, as well as on real OpenFlow switches.

3 Functional Reactive Programming

In this section we briefly introduce the key ideas and constructs of Nettle/FRP,
whose design is strongly influenced by Yampa [8], an FRP-based DSL that we
previously designed for robotics and animation.

The simplest way to understand Nettle/FRP is to think of it as a language for
expressing electrical circuits. We refer to the wires in a typical circuit diagram as
signals, and the boxes (that convert one signal into another) as signal functions.
For example, this very simple circuit has two signals, x and y, and one signal
function, sigfun :

sigfun xy

This is written as a code fragment in Nettle simply as: y ← sigfun −≺ x , which
uses Haskell’s arrow syntax [9,12]. It is beyond the scope of this paper to describe
arrows in detail, but note that signal functions such as sigfun will have a type
of the form SF T1 T2, for some types T1 and T2, in which case x will have type
T1, and y will have type T2. Although signal functions act on signals, the arrow
notation allows one to manipulate the instantaneous values of the signals, such
as x and y.

238 A. Voellmy and P. Hudak

Nettle/FRP has many built-in signal functions, including ones for integration
and differentiation. Of course one can also define new signal functions. For ex-
ample, here is a definition for sigfun that integrates a signal that is one greater
than its input:

sigfun :: SF Double Double
sigfun = proc x → do

y ← integral −≺ x + 1
returnA−≺ y

The first line is a type signature that declares sigfun to be a signal function that
converts time-varying values of type Double into time-varying values of type
Double. The notation proc x → do... introduces a signal function, giving the
name x for the instantaneous values of the input. The third line adds one to this
instantaneous value, and sends the resulting signal to the integrator. Finally, we
specify the output of the signal function by feeding y into returnA, a special
signal function that returns the final result.

We can also create and use signal functions that operate on tuples of signals.
For example, a signal function exp :: SF (Double,Double) Double that raises its
first argument to the power of its second, at every point in time, could be used
as follows:

z ← exp −≺ (x , y)
In Section 7 we will see how continuous signals can be used to program controllers
that alter traffic flow based on signals representing message volume on a link.
However, we first wish to focus on a different use of signals, namely to represent
streams of control messages flowing to and from OpenFlow switches. Nettle/FRP
represents message streams as continuous signals that are only defined at discrete
points in time. A discrete signal that periodically carries information of some
type T has type Event T , whose values are either NoEvent or Event T (the word
Event is overloaded). Therefore, for example, a signal function that converts a
stream carrying messages of type M1 into a stream carrying messages of type
M2 has type SF (Event M1) (Event M2).

In a conventional language, an event-based system might be implemented by
some kind of call-back mechanism and a loop that handles messages as they
arise, one by one. But in Nettle, it is done much more declaratively, where we
think of, and program with, message streams as a whole.

Nettle/FRP provides a powerful collection of signal functions and event op-
erators, most of which we introduce as we encounter them in this paper. For
reference, they are summarized in Figure 2.

4 FRP for OpenFlow Control

OpenFlow switches maintain a flow table containing flow entries consisting of
a match condition, a list of forwarding actions, expiration settings, and flow
statistics. The match condition can optionally match on most Ethernet, IP, or
transport protocol header fields. The forwarding actions include forwarding to

Nettle: Taking the Sting Out of Programming Network Routers 239

never :: SF a (Event b)

hold :: a → SF (Event a) a
accum :: a → SF (Event (a → a)) (Event a)

integral :: SF Double Double
tag :: Event a → b → Event b
liftE :: (a → b) → Event a → Event b
mapFilterE :: (a → Maybe b) → Event a → Event b
mergeEventsBy :: (a → a → a) → [Event a] → Event a

Fig. 2. Signal function and event combinators

specific ports on the switch, flooding the packet, dropping the packet and many
other options. When a packet is received by a switch, it searches for a matching
entry. If matches are found, the highest priority one is chosen, its forwarding
actions are executed and its statistics are updated. If the list of actions is empty,
the packet is dropped. If no match is found, the packet is encapsulated and sent
to the controller in an OpenFlow message. Optional expiration settings cause a
flow entry to expire after some prescribed time.

OpenFlow switches attempt to establish a TCP connection with a controller
at a pre-configured IP address. This connection typically takes place over a
control network that is separate from the main data network. The OpenFlow
protocol defines a variety of messages, including messages to query a switch for
information, to command a switch to send a packet and to modify the flow table
of a switch. Other messages allow a switch to inform the controller of relevant
events, such as the arrival of a packet not matching any flow rule.

We can think of a controller abstractly as a black box which transforms a
stream of messages from switches into a stream of commands for switches. We
therefore define a Nettle controller as any value having the type:

SF (Event (SwitchID ,SwitchMessage)) (Event SwitchCommand)
Here we model messages from switches with the SwitchMessage data type and
commands to switches with the SwitchCommand data type. The SwitchMessage
data type is a sum of several message types. Typically a user is interested in a
particular kind of event, and we provide projection functions for each variant in
the SwitchMessage sum type. For example, the function switchJoinE extracts
just the messages that occur when a switch connects with the controller. This
particular message carries information about the joining switch in the form of
a SwitchFeatures record. Figure 3 lists the particular projections we will use in
this paper. We will explain their meaning as we encounter them in the examples.

SwitchCommand s are commands that send packets, modify flow tables, and
request information. Among the most important of these is insertRule, which can

switchJoinE :: Event (SwitchID ,SwitchMessage) → Event (SwitchID ,SwitchFeatures)

packetInE :: Event (SwitchID ,SwitchMessage) → Event (SwitchID ,PacketIn)

Fig. 3. Nettle event projections used in this paper

240 A. Voellmy and P. Hudak

be used to insert a FlowRule into a switch’s flow table. We write a FlowRule as
predicate =⇒ actions , where predicate has type PacketPredicate and actions has
type ForwardingAction . For example, the following is a flow rule that forwards
packets with source Ethernet address addr to port port :

ethSourceIs addr =⇒ sendOnPort port
Commands can be combined to create compound commands with the command
sequencing operator ⊕. Figure 4 summarizes the commands used in this paper.
We will explain their meaning as we encounter them in the examples.

clearTable :: SwitchID → SwitchCommand
sendPacketIn :: ForwardingAction → (SwitchID, PacketIn) → SwitchCommand
insertRule :: FlowRule → SwitchID → SwitchCommand
deleteRules :: PacketPredicate → SwitchID → SwitchCommand
(⊕) :: SwitchCommand → SwitchCommand → SwitchCommand
(=⇒) :: PacketPredicate → ForwardingAction → FlowRule

Fig. 4. Nettle commands used in this paper

4.1 Basic Event Handling and Switch Commands

The simplest possible controller is one that does nothing at all:

controller 0 = proc msgE → do
cmdE ← never −≺msgE
returnA−≺ cmdE

We use the never signal function which never outputs any events.
It is a good idea to clear the flow table of every switch as soon as it connects

with the controller, so that our switches start in a known state. We can do this
by executing a clearTable command whenever a SwitchJoin event occurs:

clearOnJoin = proc msgE → do
returnA−≺ liftE f (switchJoinE msgE)
where f (sid ,) = clearTable sid

Here we use switchJoinE to extract the switch join events from the input message
stream. For each such event, we apply the function f to the event, which in turn
applies clearTable to the SwitchID of the joining switch, giving a command that
will delete all entries from the flow table of the joining switch. In order to apply
a function to each event in an event stream, we use liftE :: (a → b) → Event a →
Event b.

Having cleared the table of all connected switches, the switches will send any
incoming packets to the controller. In a network that doesn’t contain any cycles
among its switches, it is safe to simply flood packets, and we can accomplish this
in Nettle by writing:

floodPackets1 = proc msgE → do
returnA−≺ liftE f (packetInE msgE)
where f = sendPacketIn flood

Nettle: Taking the Sting Out of Programming Network Routers 241

Here we use packetInE to extract only the PacketIn messages from the incoming
message stream. For each such event, we apply sendPacketIn flood , instruct-
ing the switch to send the referenced packet using the action flood (of type
ForwardingAction), which results in the switch forwarding the packet on every
port except the incoming port (i.e. the port on which the packet was received).

We can now create a single controller that combines both the table clearing
and packet flooding controllers, as follows:

controller 1 = proc msgE → do
clearE ← clearOnJoin −≺msgE
floodE ← floodPackets1 −≺msgE
returnA−≺mergeEventsBy (⊕) [clearE ,floodE]

In this signal function we feed the incoming message stream to both signal func-
tions, naming events in the resulting message streams clearE and floodE . We
then merge these two command streams, resolving the simultaneous occurrence
of commands with ⊕, and output the merged command stream.

4.2 Programming the Flow Table

In the previous controller, the switches sent a PacketIn message to the con-
troller for every incoming packet, and the controller responded with an explicit
command for the switch to flood the packet. We can dramatically improve the
performance of the network by installing a flow rule at the switch to flood every
packet, thereby avoiding the need for the switch to communicate with the con-
troller for every packet and taking advantage of specialized packet forwarding
hardware at the switch. We install the flow rule, whenever a switch joins the
network:

floodPackets2 = proc msgE → do
returnA−≺ liftE f (switchJoinE msgE)
where f (sid ,) = insertRule (anyPacket =⇒ flood) sid

insertRule rule sid is a command that installs rule rule on switch sid and
anyPacket is a packet predicate that matches every packet. Again, we can com-
bine this in parallel with clearOnJoin to form a complete controller:

controller2 = proc msgE → do
clearE ← clearOnJoin −≺msgE
tableModE ← floodPackets2 −≺msgE
returnA−≺mergeEventsBy (⊕) [clearE , tableModE]

5 Learning Switch

In this section, we will program a so-called learning switch. Traditionally, a
learning switch is an Ethernet switch which initially acts much like an Ethernet
hub, flooding frames received on one port to all other ports. However, a learning
switch also maintains a table of Ethernet addresses and ports, such that if (a, p)
is in the table, then p is the port at which the switch most recently received a

242 A. Voellmy and P. Hudak

frame from the host with address a. Since the switch received a packet from a
on port p, port p must be on the path to a (assuming our network is loop-free).
Consequently, when a switch receives a frame addressed to a, it forwards the
frame on port p if (a, p) is in its table at that time, or else floods it on all ports
other than the incoming one. In addition, a learning switch typically expires
entries in the flow table after some period of inactivity.

As a first step to building our learning switch controller, we will program a
component which performs the “learning” part; that is, it builds the table de-
scribed above for each switch, inferring the direction of each host from every
switch in the network. We implement this table using the Map data type from
Haskell’s standard library, which implements maps from keys to values (dictio-
naries). We will use that data type’s insert function to add or update the value
associated with a key. We will build the table by transforming each packet-in
event into a table update and accumulating these updates with accum:

nextHopsSF = proc msgE → do
hostMapE ← accum empty −≺ liftE updateMap (packetInE msgE)
returnA−≺ hostMapE

accum empy takes as input an event stream carrying state-modifying functions.
At each event in its input stream, it applies the state-modifying function carried
by the event to the current state, updates the current state with that new value,
and outputs an event carrying the updated value. As a result, the output signal
will start out as the empty map, and will output an updated map whenever a
packet in event occurs. The function updateMap is straightforward: it updates
the table for key (sid , addr) to be the port ID of the port on which the packet
was received:

updateMap (sid ,PacketIn {receivedOnPort , enclosedFrame }) =
insert (sid , sourceAddress enclosedFrame) receivedOnPort

We can now use nextHopsSF to program our controller. The controller will
monitor the packet in events, and for each such event, if it has learned the
direction the packet should travel, it will install appropriate flow rules at the
switches to forward similar packets in the learned direction. If it has not learned
the direction the packet should travel, it will simply flood the packet on all ports,
without installing flow rules in any switches:

controller3 = proc msgE → do
nextHopsE ← nextHopsSF −≺msgE
nextHops ← hold empty −≺ nextHopsE
let tableModE = mapFilterE (packetToCmd nextHops) (packetInE msgE)
clearE ← clearOnJoin −≺msgE
floodE ← floodPackets1 −≺msgE
returnA−≺mergeEventsBy (⊕) [clearE , tableModE ,floodE]

Here we pass the output stream of nextHopsSF through hold empty , which
turns the event stream into a signal defined at all times by starting off as
empty and then holding the value of the last event in its input signal. We
evaluate packetToCmd nextHops on every incoming packet, which results in a

Nettle: Taking the Sting Out of Programming Network Routers 243

Maybe SwitchCommand value. Applying mapFilterE (packetToCmd nextHops)
filters out those packet events for which packetToCmd nextHops evaluates to
Nothing , and evaluates to an event carrying x whenever packetToCmd nextHops
evaluates to Just x . The function packetToCmd looks up the source and desti-
nation ports in the nextHops and if these are both present, returns a command,
and otherwise returns nothing:

packetToCmd nextHops (sid ,PacketIn {enclosedFrame }) =
case lookup (sid , s) nextHops of

Just ps → case lookup (sid , r) nextHops of
Just pr → Just (makeCommand sid s ps r pr)
Nothing → Nothing

Nothing → Nothing
where (s , r) = (sourceAddress enclosedFrame, destAddress enclosedFrame)

In turn, the function makeCommand outputs a command consisting of three
commands in sequence:

makeCommand sid s ps r pr =
deleteRules (ethSourceDestAre s r ∨ ethSourceDestAre r s) sid ⊕
insertRule (flowFromTo s ps r pr 30) sid ⊕
insertRule (flowFromTo r pr s ps 30) sid

The first deletes any existing rules matching packets from source s to destination
r or vice versa. The second command inserts a rule that forwards any incoming
traffic on port ps from s with destination r on outgoing port pr . The third rule
is similar. Both inserted flows are set to expire after 30 seconds of inactivity. We
omit the straightforward definition of flowFromTo here.

The inserted rules match on both the destination and the source address of a
packet. Matching on the source is in fact crucial to the correctness of the con-
troller. If we omit matching on the source address, then the switch will forward
traffic from any sources — including sources whose location is unknown to the
controller — toward the destination, bypassing the controller. This may result in
the controller not learning the location of some hosts and consequently flooding
packets unnecessarily.

6 Declarative Routing

The learning switch router in the previous section is arguably too low-level: the
overall goal of the program is lost in the details of stream transformers. It would
be preferrable to express our program by simply describing the forwarding table
of each switch in our network at every moment in time. To do this, we will
describe the forwarding tables in terms of quantities which themselves vary over
time. We illustrate this idea by rewriting our learning switch in this fashion.

The essential feature of the learning switch controller is that it inserts flow
rules in switches so that, at any time, the packets for any pair of hosts whose
location is known at that time are forwarded directly between them with no
flooding. Thus, the collection of rules present in a switch at any time depends

244 A. Voellmy and P. Hudak

on which host locations are known and where those hosts are at that time. If we
name the current values of these quantities knownHosts and nextHops , we can
express the desired collection of rules for switch sid as the following set:

{inPortIs sp ∧ ethSourceIs s ∧ ethDestIs d =⇒ sendOnPort dp
| s , d ∈ knownHosts, s �= d , sp ∈ nextHops sid s , dp ∈ nextHops sid d }

Motivated by this, we define a SwitchProgram to be a signal function that peri-
odically outputs updated flow rules for each switch:

type SwitchProgram =
SF (Event (SwitchID ,SwitchMessage)) (Event (SwitchID → [FlowRule]))

A collection of switches governed by a SwitchProgram should forward traffic at
any moment according to the flow rules of the most recent event of the output
stream of the program. For example, we can implement the program for the
learning switch as follows:

program1 = proc msgE → do
knownHosts ← knownHostsSF −≺msgE
nextHopsE ← nextHopsSF −≺msgE
nextHops ← hold empty −≺ nextHopsE
let rules1 sid =

[inPortIs sp ∧ ethSourceIs s ∧ ethDestIs d =⇒ sendOnPort dp
| s ← knownHosts , d ← knownHosts, s �≡ d ,
Just sp ← lookup (nextHops (sid , s)),
Just dp ← lookup (nextHops (sid , d))

]
returnA−≺ tag nextHopE rules1

Here we use a Haskell list comprehension to simulate the set we wrote previ-
ously. Generators such as s ← knownHosts introduce a variable to range over
a given list. The left hand sides of generators can be patterns, such as in the
final generator in the example above. In this case, the results include only those
elements for which the pattern match succeeds. Guards, such as s �≡ d filter
elements from the resulting list.

We use nextHopsSF to output an event stream carrying updated next hop
maps for the network. knownHostsSF outputs a list of hosts whose location is
known, and is easily implementable in terms of nextHopsSF . Since both the
knownHosts and nextHops values change precisely when the output stream of
nextHopSF has an event, we output an updated list of flow rules at exactly that
moment, using tag to output the value of rules1 at exactly the moments when
nextHopE carries a value.1

This approach allows us to easily extend our program in various ways. For
example, we can modify the previous controller to have switches simply flood
all ARP (Address Resolution Protocol) Ethernet frames as follows: (unchanged
parts are elided):
1 In addition to the rules that a switch should follow, the user must also specify how

the controller should process packets for which no rule applies. Specifying this is

straightforward, and we omit the description here due to space constraints.

Nettle: Taking the Sting Out of Programming Network Routers 245

program2 = proc msgE → do
...
let rules1 sid = ...
let rules2 sid = [arp =⇒ flood]
let rules sid = rules1 sid ++ rules2 sid
returnA−≺ tag nextHopE rules

Although in this case no packet will match more than one rule, we adopt the con-
vention that the first rule in the list matching a packet applies. This convention
allows us to compose rule sets with one taking precedence over another.

There are many feasible ways to implement a SwitchProgram . Due to space
constraints we omit discussion of our simple implementation. However, we note
that our implementation converts a SwitchProgram into a signal function:

runSP :: SwitchProgram →
SF (Event (SwitchID ,SwitchMessage)) (Event SwitchCommand)

Thus, we are able to implement the run-time envionment for our higher-level ab-
straction within Nettle/FRP. In this way, Nettle/FRP provides a convenient and
powerful tool for exploring and implementing high level networking languages
and abstractions.

7 Time-Varying Quantities

In this section we show how we can use continuous values in programming a
dynamic load-balancing controller. This is a feature that other controller frame-
works do not provide, but which we expect to be very useful in programming
dynamic network controllers.

Consider a load balancing problem in which a single switch S has three links
l1, l2 and l3, as shown in Fig. 5. We assume that there are many traffic sessions
in the network so that we can approximately model the network traffic using
traffic flow rates. We will name the flow rates for links l2 and l3 as f2 and f3,
respectively. In this highly simplified scenario, we imagine that traffic enters the
system on link l1 and that the switch can reach all destinations of this traffic by
forwarding on either l2 or l3. Let rideal be the desired ratio of traffic that should
flow over link l2, ractual be the actual ratio, and e be the error. That is:

ractual = f2
f2+f3

e = rideal − ractual

We would like our controller to maintain a balance of traffic such that e ≈ 0.
Note that the sign of e indicates whether the flow on port 2 should be increased
or decreased: when e < 0, the flow should be decreased, otherwise it should be
increased.

We implement a simple “dial” to control our switch. We will have a “dial”,
named a, that ranges over IP addresses, viewed as 32 bit integers. At any moment
in time, we will forward all traffic destined to addresses less than or equal to a
via link 2 and any traffic destined toward address greater than a via link 3. This

246 A. Voellmy and P. Hudak

Switch

Controller

l3, f3

f2f3

l1
l2, f2

unhandled packetscontrol

rideal

Fig. 5. Control system for Sec. 7. Solid lines correspond to physical links used by the

network to send data traffic. Dashed lines indicate switch-controller communication.

dial is depicted in Fig. 6. Note that the ratio of addresses less than a to the total
addresses does not indicate how much traffic will flow over links 2 and 3, since
traffic could be unevenly distributed over the address space. Still, under a given
traffic distribution, the dial’s setting will determine how much traffic flows on each
link: increasing a increases traffic on link 2 while decreasing it increases traffic on
link 3, and it makes some sense to change the dial setting in proportion to the size
of the current error. Furthermore, since traffic patterns change over time, there
is no single right setting, and we will have to adjust it as our system evolves.

0.0.0.0, 0.0.0.1, ... 99.1.17.243, ... 255.255.255.255

to link 2 to link 3a

Fig. 6. The “dial” of Sec. 7

ε−ε e

ê

Fig. 7. Graph of the dead zone in ê

In order to use traditional control theory techniques, we first turn the problem
into a continuous one. We define a new, real-valued version of our dial, u, ranging
over [0, 1]. We can translate from u to a as follows:

a = &232 ∗ u' .

As we argued above, we would like to change u in proportion to the error. We
can write this as a simple differential equation:

u̇ = ke

Integrating, we find that:

u(t) = k

∫ t

0

e(τ)dτ + u(0)

We have now arrived at a familiar integral control. However, due to the discrete
nature of our system, our control will be unstable. At any time there are a finite

Nettle: Taking the Sting Out of Programming Network Routers 247

number of flows, and it will not be possible to split these flows in two groups so
that the error is zero. We can mitigate this problem by introducing a dead zone
into the error signal. We define a new error signal ê(t) as follows:

ê(t) =

⎧⎨
⎩

e(t)− ε if e(t) > ε
e(t) + ε if e(t) < −ε

0 otherwise

Fig. 7 graphs the relationship between e and ê. Introducing the dead zone into
the error term effectively turns the error signal off, once the controller is suffi-
ciently close to reducing the error to 0. The size ε we need will depend on our
assumptions about the minimum number and size of flows in our network.

We can now directly translate this mathematical model into Nettle code. The
following defines a signal function implementing u, assuming the initial value
u0, gain k , dead zone size eps , and a suitable definition of deaden are defined
elsewhere:

uSF = proc (f2, f3, rideal) → do
let ractual = f2 / (f2 + f3)
let error = rideal − ractual

i ← integral −≺ deaden eps error
returnA−≺ k ∗ i + u0

We omit the overall controller, which includes signal functions providing the
flow rates f2, f3 and the user determined rideal. Although the simplistic control
algorithm presented here does not perform well in practice (because of a delay
in observing port flow rates), it nevertheless illustrates how continuous quanti-
ties can be used to implement network control algorithms; a more sophisticated
controller would have the same structure.

8 Discussion and Related Work

We have implemented all of the ideas in this paper (and more) using standard
Haskell using the GHC Haskell compiler. We have tested our controllers using a
reference implementation of OpenFlow version 1.0. We have also done prelimi-
nary tests of some of our controllers on real OpenFlow switches, which demon-
strate that our controllers perform comparably with existing control frameworks,
such as NOX [2]. All of our code is available on hackage.haskell.org

Future work includes refinements to Nettle/FRP and improvements to our
dynamic continuous controller design. We also plan to develop more DSLs at
the top-most layer of our software architecture, to capture more domain specific
features, such as security and business relationships. We are also interested in
studying the problem of protocol and policy verification techniques.

We previously used the name “Nettle” for an embedded DSL in Haskell for
describing BGP router configurations [16]. At the risk of creating some confusion

hackage.haskell.org

248 A. Voellmy and P. Hudak

(since the languages are entirely distinct and have different purposes), we have
reused that name for the language we present in this paper.

NOX [2] is an open-source library for writing controllers for OpenFlow switches
in C++ and Python. Both NOX and Nettle provide a framework for writing con-
trollers that hide low-level details from the user, allow fine-grained control over
switch behavior, and provide an event-based programming model with extensible
collections of events.

Nettle provides a more declarative approach to event-based programming by
handling entire message streams, instead of individual messages. Nettle has a
more expressive language for composing controllers – in parallel as in NOX, but
also in sequence, and in many other combinations. The interactions between
controllers is made explicit through lightweight input and output types of the
components. In contrast, the interaction of NOX components requires investi-
gating the internals of each component, since modules may interact imperatively
by method invocation. Nettle also provides an elegant, declarative mechanism
for describing time-sensitive and time-varying behaviors, whereas in NOX these
must be simulated by delays and timers. Finally, Nettle has continuous quantities
that reflect abstract properties of a network, such as the volume of messages on
a network link. We are not aware of any other language that has this capability.

Flow-based Management Language (FML) [7] is a declarative policy language
for configuring networks. An FML program is a Datalog-like set of rules that
ultimately describe which forwarding actions should hold of flows. Although
FML provides a higher-level abstraction than Nettle, many applications cannot
be expressed in FML. In particular, FML has no way of expressing dynamic
policies, where forwarding decisions change over time. Nettle provides a more
concrete abstraction that exposes the message-passing interface to OpenFlow
switches, but within a strongly typed language, Haskell, and within an expressive
FRP layer. This allows Nettle users to extend Nettle and program in ways very
similar to FML, as seen in Section 6.

Frenetic [5] is an FRP-based language for controlling OpenFlow networks,
embedded in Python. Frenetic presents a “program like you see every packet”
abstraction, thus providing a higher-level abstraction than Nettle. Nettle on the
other hand, introduces FRP at the message stream level, while leveraging the
embedding in Haskell to enable the development of higher level abstractions.

The Declarative Networking [10] approach uses a Datalog-like language to
express routing protocols as recursive queries executing over a distributed col-
lection of routers. Declarative Networking thus targets a different type of system
than Nettle, since Nettle is aimed at OpenFlow-based systems in which switches
have no query-processing capabailities.

Acknowledgements. This research was supported in part by STTR grant number
ST061-002 from the Defense Advanced Research Projects Agency. We thank our
STTR industrial partner, Galois, Inc. for its support, Ashish Agarwal for help
with the Haskell/OpenFlow layer, and Nick Feamster and Sam Burnett with
feedback and help testing Nettle on their OpenFlow network.

Nettle: Taking the Sting Out of Programming Network Routers 249

References

1. http://www.openflowswitch.org/

2. http://noxrepo.org/wp/

3. Caesar, M., Rexford, J.: BGP routing policies in ISP networks. IEEE Net-

work 19(6), 5–11 (2005)

4. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference

on Functional Programming, pp. 263–273 (June 1997)

5. Foster, N., Harrison, R., Meola, M.L., Freedman, M.J., Rexford, J., Walker, D.:

Frenetic: A high-level langauge for openflow networks. In: ACM Workshop on Pro-

grammable Routers for Extensible Services of Tomorrow (PRESTO) (November

2010)

6. Griffin, T.G., Jaggard, A.D., Ramachandran, V.: Design principles of policy lan-

guages for path vector protocols. In: SIGCOMM 2003: Proceedings of the 2003

Conference on Applications, Technologies, Architectures, and Protocols for Com-

puter Communications. pp. 61–72. ACM, New York(2003)

7. Hinrichs, T.L., Gude, N.S., Casado, M., Mitchell, J.C., Shenker, S.: Practical

declarative network management. In: WREN 2009: Proceedings of the 1st ACM

Workshop on Research on Enterprise Networking, pp. 1–10. ACM, New York (2009)

8. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Robots, arrows, and func-

tional reactive programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS,

vol. 2638. Springer, Heidelberg (2003)

9. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1-3), 67–111

(2000)

10. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative routing:

extensible routing with declarative queries. In: SIGCOMM 2005: Proceedings of

the 2005 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, pp. 289–300. ACM, New York (2005)

11. Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfiguration.

In: SIGCOMM, Pittsburgh, PA, pp. 3–17 (August 2002)

12. Paterson, R.: A new notation for arrows. In: ICFP 2001: Proceedings of the sixth

ACM SIGPLAN International Conference on Functional Programming, pp. 229–

240. ACM, New York (2001)

13. Peterson, J., Hager, G., Hudak, P.: A language for declarative robotic program-

ming. In: International Conference on Robotics and Automation (1999)

14. Ramachandran, V.: Foundations of Inter-Domain Routing. Ph.D. thesis, Yale Uni-

versity (May 2005)

15. Voellmy, A., Agarwal, A., Hudak, P., Feamster, N., Burnett, S., Launchbury, J.:

Don’t configure the network, program it! domain-specific programming languages

for network systems. Tech. Rep. YALEU/DCS/RR-1432, Yale University (July

2010)

16. Voellmy, A., Hudak, P.: Nettle: A language for configuring routing networks. In:

Taha, W.M. (ed.) DSL 2009. LNCS, vol. 5658, pp. 211–235. Springer, Heidelberg

(2009)

http://www.openflowswitch.org/
http://noxrepo.org/wp/

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 250–264, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Determining Actual Response Time in P-FRP*

Chaitanya Belwal and Albert M.K. Cheng

Department of Computer Science,
University of Houston, TX, USA

{cbelwal,cheng}@cs.uh.edu

Abstract. A purely functional model of computation, called Priority-based
Functional Reactive Programming (P-FRP), has been introduced as a new para-
digm for building real-time software. Unlike the classical preemptive model1 of
real-time systems, preempted events in P-FRP are aborted and have to restart
when higher priority events have completed, making the response time of
events dependent on the execution pattern of higher priority events. Though
methods to determine approximate values for the response time of P-FRP
events have been presented, no convenient method has yet been established to
determine actual response time. A common method for computing actual re-
sponse time in the preemptive model does not give guaranteed results in P-FRP.
A simulation based approach is computationally expensive and not feasible in
most practical situations. We show that an exhaustive enumeration technique
for idle periods is a more efficient technique, and can be easily adopted to de-
termine actual response time in P-FRP.

Keywords: real-time systems, embedded systems, response time, schedulability
analysis, functional programming.

1 Introduction

Functional Reactive Programming (FRP) [22] is a declarative programming language
for modeling and implementing reactive systems. It has been used for a wide range of
applications, notably, graphics [7], robotics [15], and vision [16]. FRP elegantly cap-
tures continuous and discrete aspects of a hybrid system using the notions of behavior
and event, respectively. Because this language is developed as an embedded language
in Haskell [9], it benefits from the wealth of abstractions provided in this language.
Unfortunately, Haskell provides no real-time guarantees, and therefore, neither does
FRP.

To address this limitation, resource-bounded variants of FRP were studied
[13,20,21]. Recently, it was shown that a variant called priority-based FRP (P-FRP)

* This work is supported in part by U.S. National Science Foundation under Award no.

0720856.
1 In this paper the classical preemptive model refers to a real-time system in which tasks can be

preempted by higher priority tasks, and can resume execution from the point they were
preempted.

 Determining Actual Response Time in P-FRP
 251

[13], combines both the semantic properties for FRP, guarantees resource bounded-
ness, and supports assigning different priorities to different events.

In P-FRP, higher priority events can preempt lower-priority ones. However, a re-
quirement [19] in the functional programming model is that the state of the system
cannot be changed, and no function can have side effects. Hence, to maintain this
guarantee of stateless execution, the functional programming paradigm requires the
execution of a function to be atomic in nature. To comply with this requirement, as
well as allow preemption of lower priority events, P-FRP implements a transactional
model of execution. Using only a copy of the state during event execution and atomi-
cally committing these changes at the end of the event handler, P-FRP ensures that
handling an event is an “all or nothing” proposition. This preserves the easily under-
standable semantics of the FRP and provides a programming model where response
times to different events can be tweaked by the programmer, without ever affecting
the semantic soundness of the program. Thus, a clear separation between the seman-
tics of the program and responsiveness of each handler is achieved.

This transactional execution model used in P-FRP is not new, and such models
have been presented in the past. These are the transactional memory systems [11] and
lock-free execution for critical sections [1]. The development of these systems was
primarily motivated by the need to avoid concurrency or precedence constraint issues,
which have been a problem in the classical preemptive model [18]. Studies on the
temporal properties of the transactional model are being done by some research
groups. However, the response time studies currently available [1,8] provide only
basic schedulability analysis by modifying existing methods developed for the pre-
emptive model. A study to find actual response time for this execution model has not
been presented yet.

Previous work on P-FRP [13,17] provided basic results on schedulability and ap-
proximate upper bounds on response times. Though approximate upper bounds pro-
vide only a general idea on the schedulability of events, the methods to compute them
are much faster [4,6,17]. In this paper we use the term ‘actual’ to differentiate from
approximate or bounded response time. Actual response time is a more accurate indi-
cator of the temporal properties of events in the system. Hence, actual response time
is more useful when an accurate modeling of the system is required , such as in the
design phase of a real-time system, or in developing exact schedulability tests.

An iterative method first presented by Audsley et al in [2] (termed Audsley’s
method in this paper), is a common approach for determining actual response time in
the preemptive model. In this method, it is assumed that the amount of processor time
taken by an event to execute, is constant and equal to its worst-case execution time
(WCET). However, since a preempted event is aborted, the amount of processor time
taken by a lower priority event in P-FRP to complete execution, can be larger than its
WCET, and thus not known a priori. Due to this reason the method in [2] is not guar-
anteed to work with P-FRP (see section 3 for example), and new methods for deter-
mining actual response time in P-FRP are required.

1.1 Contributions

This paper presents an efficient algorithm that can be used in place of a simulation, to
determine the actual response times of events in P-FRP. This is an essential step for
making this technology practically usable since it is not feasible to work out these

252 C. Belwal and A.M.K. Cheng

response times by hand or ad-hoc methods. To conform to terminology used in refer-
enced real-time system papers, P-FRP events will be referred to as tasks in the rest of
this paper.

After reviewing basic concepts and the P-FRP execution model (Section 2) we:

• Present Audsley’s iterative method for computing actual response time in the
preemptive model (Section 3)

• Present an enumeration technique for idle periods, which has been termed as the
gap-enumeration method (Section 4)

• Present an algorithm that determines the actual response time of a task using the
gap-enumeration method (Section 5)

• Provide performance analysis between the time accurate and gap-enumeration
algorithms (Section 6)

And conclude by reviewing related work (Section 7) and a reflection on these results
(Section 8).

2 Basic Concepts and Execution Model of P-FRP

In this section, we introduce the basic concepts and the notation used to denote these
concepts in the rest of the paper. In addition, we review the P-FRP execution model
and assumptions made in this study.

2.1 Basic Concepts

Essential concepts for P-FRP are tasks and their associated priority, their associated
time period and the dual concept of arrival rate, and their processing time; the concept
of a time interval and release offset therein. In our task model, all these assumed to be
known a priori. The notation and formal definitions for these concepts as well as a
few others used in the paper are as follows:

• Let task set Γn = {τ1, τ2,…, τn} be a set of n periodic tasks
• The priority of τk ∈ Γn is the positive integer k, where a higher number implies

higher priority
• Tk is the arrival time period between two successive jobs of τk
• Ck is the worst-case execution time for τk
• tcopy(k) is the time taken to make a copy of the state before τk starts execution

(see section 2.2.1)
• trestore(k) is the time taken to restore the state after τk has completed execution

(see section 2.2.1)
• Pk is the processing time for τk. Processing of a task includes execution as well

as copy and restore operations. Hence, Pk = tcopy(k) + Ck + trestore(k)
• Rk,m represents the release time of the mth job of τk
• Φk represents the release offset which is the release time of the first job of τk. Or,

Φk = Rk,1. Hence, Rk,m = Φk + (m-1)·Tk
• A level-k idle point is a point in time, t in which no task having a priority k or

higher is awaiting execution and ready to execute strictly before t

 Determining Actual Response Time in P-FRP
 253

• A finite contiguous interval of non-zero length [t1,t2) is a k-gap, if every t∈[t1,t2),
is a level-(k+1) idle point.

• The threshold of the k-gap [t1, t2) is time t1

• 2

1
|T t
t represent the time window for analyzing gaps, such that: ∀t∈ 2

1
|T t
t , t1 ≤ t

< t2 ∧ t1 ≠ t2. This new notation is used to differentiate from k-gap time intervals
• Dk is the relative deadline of τk. If some job of τk is released at time Rk,m then τk

should complete processing by time Rk,m + Dk, otherwise τk will have a deadline
miss. In this paper, Dk = Tk

• A gap set σk(2

1
|T t
t) contains all the unique k-gaps present in the time interval

2

1
|T t
t . The k-gaps present in σk(2

1
|T t
t) are also disjoint:

for any two gaps [tx1,ty1), [tx2,ty2) ∈ σk(2

1
|T t
t), if t∈[tx1,ty1) then t∉ [tx2,ty2)

• |σk(2

1
|T t
t)| represents the number of k-gaps present in σk(2

1
|T t
t)

• The gap-transformation function λ(σk(2

1
|T t
t), Γn) takes as input the gap set σk,

and task set Γn. The function returns the gap set of the next lower priority task:

 σk-1(2

1
|T t
t) = λ(σk(2

1
|T t
t))

• The gap-search function μ(σk(2

1
|T t
t), Pk) takes as input, the gap set σk(2

1
|T t
t) and

Pk, and returns the earliest k-gap larger than or equal to Pk present in σk :

[tx1,ty1) = μ(σk(2

1
|T t
t), Pk), such that:

 ty1 – tx1 ≥ Pk ∧∄[tx,ty) ∈ σk(2

1
|T t
t)∧ ty – tx > Pk ∧ tx < tx1

If the gap search function returns a k-gap with threshold less than 0, then a k-gap

larger than Pk does not exist in σk(2

1
|T t
t)

• The computational steps of an algorithm is a numerical measurement of the
number of times major iterations of the algorithm have been performed during
execution. This value gives us a general idea of the performance of the algo-
rithms considered in this paper

• The response time of a τk written as RTk is the relative time after its release at
which τk completes processing

• Interference on τk is the action where the processing of τk is interrupted by the
release of a higher priority task. In P-FRP, an interference forces τk to abort and
re-process later.

2.2 Execution Model and Assumptions

In this study all tasks are assumed to execute in a uniprocessor system with no prece-
dence constraints. When a job of higher priority task τi is released, it can immediately
preempt an executing lower priority task, and changes made by the lower priority task
are rolled back. The lower priority task will be restarted when the higher priority task
has completed processing. Due to P-FRP’s transactional nature of execution, all tasks

254 C. Belwal and A.M.K. Cheng

are assumed to run without concurrency constraints. In the algorithms to derive the
actual response time of task τj, we have considered the release offset of τj to be 0.

When some task is released, it enters a processing queue Q which is arranged by
priority order, such that all arriving higher priority tasks are moved to the head of the
queue. The length of the queue is bounded, and no two instances of the same task can
be present in the queue at the same time. This requires a task to complete processing
before the release of its next job. To maintain this requirement we assume a hard real-
time system with task deadline equal to the time period between jobs. Hence, ∀τk∈Γn,
Dk = Tk. A task set is schedulable in some time interval, only if no task in the set has a
deadline miss.

Once τi enters Q two situations are possible. If a task of lower priority than i is be-
ing processed, it will be immediately preempted and τi will start processing. If a task
of higher priority than τi is being processed, then τi will wait in the Q and start proc-
essing only after the higher priority task has completed. An exception to the immedi-
ate preemption is made during copy and restore operations which is explained in the
following paragraph.

2.2.1 Copy and Restore Operations
In P-FRP, when a task starts processing it creates a ‘scratch’ state, which is a copy of
the current state of the system. Changes made during the processing of this task are
maintained inside such a state. When the task has completed, the ‘scratch’ state is
restored into the final state in an atomic operation. Therefore, during the restoration
and copy operations, the task being processed cannot be preempted by higher priority
tasks. If the task is preempted after copy but before the restore operation, the scratch
state is simply discarded. The context-switch between tasks only involves a state copy
operation for the task that will be commencing processing. The time taken for copy
(tcopy(k)) and restore (trestore(k)) operations of τk is part of the processing time of the
task, Pk.

Our current methods do not yet account for situations where higher priority tasks
cannot preempt lower priority tasks. Hence, for the methods presented in this paper,
the values of tcopy(k) and trestore(k) for all tasks are kept same and equal to a single dis-
crete time unit. Hence, ∀k∈Γn, tcopy(k)= trestore(k) =1.

Such small values of tcopy(k) and trestore(k) are reasonable as copy and restore opera-
tions are only a fraction of the worst-case execution time of the task. However, for
greater precision of results, in ongoing work we are developing methods where the
values of trestore(k) and tcopy(k) could be variable.

2.2.2 Critical Instant in P-FRP
In response time analysis for fixed-priority scheduling, a critical-instant of release is
assumed. Critical instant is the time, at which task releases lead to the worst-case re-
sponse time (WCRT) [14] of the task being analyzed. In their seminal work, Liu and
Layland [14] showed that in fixed-priority scheduling for the preemptive model, the
critical-instant for a lower priority task τi occurs when it is released at the same time
as all higher priority tasks. Or, the release offset of task τj and higher priority tasks is
the same. This is also termed as a synchronous release of tasks. As shown in [3], for
P-FRP, a synchronous release of τj and higher priority tasks is not guaranteed to re-
sult in the WCRT of τj.

 Determining Actual Response Time in P-FRP
 255

The methods presented in this paper, determine the response time of a task only for
a user specified release offset of higher priority tasks. Hence, the release offsets re-
quired by the methods presented in this paper, are assumed to be known a priori.
These release offsets, may or may not lead to the WCRT for the task being analyzed.
To determine the WCRT for a given P-FRP task, all possible combinations of release
offsets of higher priority tasks have to be generated. Then the time-accurate or gap-
enumeration algorithms, presented in this paper, have to be used to compute the actual
release time under each of the possible release offset combinations. Finally, the high-
est value of the response time computed under each release offset combination will be
the WCRT for the task.

3 Computing Actual Response Time in the Preemptive Model

In an important paper, Audsley et al [2] demonstrated that if tasks are synchronously
released, the response time of τi (RTi) can be determined using the following equation:

RTi = Pi + Bi + j
ij j

i P
T

RT ⋅
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑

>∀

 (3.1)

Bi is the blocking time due to concurrency control protocols, which is not applicable
in our case. Since RTi appears on both sides of the equation, an iterative approach

using initial approximate values of RTi can be used. If n
iRT represents the nth ap-

proximate value of RTi, and ignoring the blocking time, equation 3.1 can be written
as:

1+n
iRT = Pi + j

ij j

n
i

P
T

RT
⋅

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑

>∀

 (3.2)

The iteration starts with 0
iRT = 0 and terminates when 1+n

iRT = n
iRT . Since, in the

preemptive model a synchronous release leads to the WCRT, equation 3.1 also com-
putes the WCRT for a task. As shown in [2], equation 3.1 can also be modified to
determine response time when tasks have non-zero offsets (tasks are released asyn-
chronously) or encounter release jitter.

Let’s take a simple application of this equation, using the following P-FRP task set:

Task P T
τ1 20 100
τ2 20 70
τ3 10 40

We have to compute the response time of τ1 using equation 3.1, assuming a synchro-
nous release of tasks. The iterations of the computation are given below:

 #1, n=0: 1
1RT = 20+(20

70

0
10

40

0 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡

) = 20 #3, n=2: 3
1RT =20 +(20

70

50
10

40

50 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡

)= 60

 #2, n=1: 2
1RT =20+(20

70

20
10

40

20 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡

) = 50 #4,n=3: 4
1RT =20 + (20

70

60
10

40

60 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡

)= 60

256 C. Belwal and A.M.K. Cheng

Since, 3
1RT = 4

1RT , the iteration will terminate giving us the response time for τ1 as

60. In Figure 1 we show how P-FRP processes the tasks in the time window 100
0|T ,

resulting in the response time of τ1 as 70. Figure 1 also illustrates the fact that, even
though the processing time of τ1 if 20 and is known a priori, it takes a total processor
time of 30 to complete processing due to an abort at time 40.

Fig. 1. Task execution graph showing τ1 completing processing at time 70. T1, T2 and T3
represent tasks τ1, τ2 and τ3 respectively.

3.1.1 Ras and Cheng’s Modification for P-FRP
An attempt to apply Audsley’s method in P-FRP was made by Ras and Cheng in [17].
An abort cost to the original equation has been added. The modified equation is given
as:

WCRTi = Pi + Bi + j
hpj j

i P
T

WCRT

i

⋅
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑
∈∀

 +
1

max
−

=∈∀

⋅
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
∑

j

ik
k

hpj j

i P
T

WCRT

i

 (3.3)

hpi represents the set of tasks having a higher priority than τi. The initial value for
WCRTi is set to Pi. This equation computes the response time under a synchronous
release. However, it could converge for only a few cases. Also, the authors’ assertion
that eq. 3.3 can compute the WCRT, is not quite correct. This is because in P-FRP a
synchronous release is not guaranteed to lead to WCRT. Applying equation 3.3 to our

example, and setting 0
1WCRT =20:

1: 1
1WCRT = 20 + (20

70

20
10

40

20 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡) + 20

70

20
20

40

20 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡ = 90

2: 2
1WCRT = 20 + (20

70

90
10

40

90 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡) + 20

70

90
20

40

90 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡ = 190

3: 3
1WCRT = 20 + (20

70

190
10

40

190 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡)+ 20

70

190
20

40

190 ⋅⎥⎥
⎤

⎢⎢
⎡

+⋅⎥⎥
⎤

⎢⎢
⎡ =290

This computation will go on indefinitely and will never converge.
Clearly, Audsley’s method, and its modified version are not guaranteed to compute

the actual response time in P-FRP, and a different approach is required.
A straightforward way for computing the response time in P-FRP, is to use a time-

accurate simulation that progresses through every time tick, and runs tasks based on
the P-FRP execution model. Due to limited space, the pseudo-code for such an algo-
rithm is given in [3]. The computational complexity of this algorithm is bounded by
O((Tj – Pj) · (n–j) 2 · Tk

2), derivation of which is also provided in [3].

 Determining Actual Response Time in P-FRP
 257

4 Gap-Enumeration Method

The time-accurate simulation method iterates through every time step till the response
time of the task being analyzed is found. This approach is computationally intensive,
since several iterations have to be performed. We present a different method using
enumeration of k-gaps, based on the following characteristics of the P-FRP execution
model. Due to limited space, we have not given proofs and detailed pseudo-code of
some of our methods. These are available in [3].

Lemma 4.1 [3, 5.1]. A task τj can be processed only in elements of the set σj(2

1
|T t
t).

Lemma 4.2 [3, 5.2]. For task τj to be schedulable, one j-gap of at least length Pj will
exist between any two successive jobs of τj.

Lemma 4.3 [3, 5.3]. In the gap set σj(
j|T

Tt
t
+

) one element will be more than Pj for τj

to be schedulable.

The mechanism of the gap-enumeration method works as follows: Let, task set Γn =
{τ1, τ2,…,τn}. We have to determine the response time of the first job of τj (RTj) (j <
n). Without loss of generality, assume all tasks are released at the same time as τj
(time 0). From lemma 4.1, we know that τj can only be processed inside the elements

of the set σj(jT
0|T). These elements are all the j-gaps available after the processing of

tasks τn to τj+1. From lemma 4.2, we know that one of the j-gaps in the time interval
jT

0|T , has to be larger than Pj for τj to be schedulable. We will first find the set

σj(jT
0|T), and then search through this set for the first j-gap which is larger than Pj. τj

will be processed in this j-gap making the response time of τj equal to t1 + Pj, where t1
is the threshold of this j-gap.

To find σj(jT
0|T) we progressively analyze gap sets of all higher priority tasks. The

n-gap that is available for τn to run, is the entire length of the time interval jT
0|T .

Hence, σn(jT
0|T) = {[0, Tj)}. The first job of τn will be released at time 0, and the sec-

ond at time Tn. The mth job of τn will be released at (m–1)·Tn. The (n–1)-gap left be-
tween the 1st and 2nd job is [Pn, Tn). Similarly the (n–1)-gap left between the 2nd and

3rd job is [Tn+Pn, 2·Tn). Therefore, σn-1(jT
0|T) = {[Pn, Tn), [Tn+Pn,2·Tn)… ,[(m–2)·Tn ,

(m–1)·Tn) }: (m–1)·Tn ≤ Tj.

We see that the gap set σn-1(jT
0|T) is created after accounting for the processing of

all jobs of τn, in the gap set σn(jT
0|T). Hence, the gap set σn(jT

0|T) has been trans-

formed by the processing of all jobs of τn to result in σn-1(jT
0|T). We use the gap

transformation function to account for the processing of the current task, and get the
gap set for the next lower priority task. Or,

σn-1(jT
0|T) = λ (σn(jT

0|T),Γn).

258 C. Belwal and A.M.K. Cheng

Fig. 2(a). 3-gap available for processing of τ3,

σ3(
100
0|T) = {[0,100)}

Fig. 2(b). 2-gaps available for processing of

τ2, σ2(
100
0|T) = {[10,40), [50,80), [90,100)}

Fig. 2(c). 1-gaps available for processing of τ1, σ1(
100
0|T) = {[30,40), [50,70)}

From lemma 4.1, we know that τn-1 can only be processed in the gaps present in σn-

1(jT
0|T). When we process all jobs of τn-1 in jT

0|T , some of the (n–1) gaps present in

σn-1(jT
0|T) will be used or reduce in size, leading to the formation of (n–2)-gaps.

Hence, after accounting for the processing of all jobs of τn-1 in jT
0|T , the gap set σn-

2(jT
0|T) is created. The gap-transformation function can also be used to get the set σn-

2(jT
0|T). Hence,

 σn-2(jT
0|T) = λ (σn-1(jT

0|T),Γn)

Similarly,

 σn-3(jT
0|T) = λ (σn-2(jT

0|T),Γn)

 …

 σj(jT
0|T) = λ (σj+1(jT

0|T),Γn)

Once σj(jT
0|T) is available we use the gap search function to give us the first j-gap in

which τj can complete processing. Hence,

[t1, t2) = μ(σj(T), Pj).
Therefore,

RTj = t1+Pj

Let us illustrate this method by a simple case. Consider the example given in Section
3. Here, Γ3 ={τ1, τ2, τ3} and T1,T2,T3 are 100,70,40 respectively. The processing times
P1,P2,P3 are 20,20,10 respectively and all tasks are released at time 0. We have to
determine the actual response time for τ1.

 Determining Actual Response Time in P-FRP
 259

In the time interval 100
0|T , the 3-gap available to process τ3 is the entire length of

the time interval period. Therefore, σ3(
100
0|T) = {[0,100)} (Figure 2(a)). τ3 will be

processed at times 0,40 and 80 leaving 2-gaps in between each job. Therefore,

σ2(
100
0|T) = {[10,40), [50,80) ,[90,100)} (Figure 2(b)). The first job of τ2 is processed

in the 2-gap [10,30), and the second job starts processing at time 70, but is aborted by
second job of τ3 at time 80. τ2 will restart processing in the 2-gap [90,100). Hence,

σ1(
100
0|T) = {[30,40), [50,70)} (Figure 2(c)). Since the length of the 1-gap [50,70) is

more or equal to P1, τ1 will complete processing in this gap. Therefore,

 RT1 = 50 + 20 = 70.

5 Algorithm to Determine Actual Response Time

We now present an algorithm that can determine the actual response time of τj, using
the gap-enumeration method. The pseudo-code of the algorithm is given below. The
algorithm takes Γn and τj as input and returns the actual response time of τj. In line 3,

we assign an initial value to σn(jT
0|T). Between lines 4 to 7, we successively compute

the gap sets σn-1(jT
0|T) to σj(jT

0|T). Once the gap set for τj is known, we retrieve the

earliest j-gap larger than Pj, using the gap search function μ(jT
0|T , Pj) (line 8), and

then compute the response time of τj (line 10).
If k-gaps to process lower priority tasks are not present, then the task set is not

schedulable. In line 6, we check if gaps to process the lower priority task are present.
If an i-gap to process a task τi is not present, –1 is returned, signifying that the task
set is not schedulable. A similar check in line 9 returns –1, if no j-gap is found to run
τj.

Algorithm 5.1

1. input: Γn, τj
2. output: RTj or -1

3. σn(
jT

0|T) ← {[0,Tj)}
4. loop i ← n to j+1

5. σi-1(
jT

0|T)←λ (σi(
jT

0|T),Γn)

6. if(|σi-1(
jT

0|T)| = 0) return -1

7. end loop

8. [t1,t2)← μ(σj(
jT

0|T), Pj)

9. if(t1 < 0) return -1
10. RTj = t1 + Pj
11. return RTj

260 C. Belwal and A.M.K. Cheng

5.1 Gap-Enumeration with Dynamic Window Size

Algorithm 5.1 enumerates all the gaps present in the time window jT
0|T . In certain

cases, the time window jT
0|T could be large and much higher number of gaps than

required, could be enumerated. If jT
0|T is divided into smaller slices, the gap-

enumeration algorithm can be made more efficient. We can divide the time window

jT
0|T into m windows (1 ≤ m ≤ Tj), of size ⎥

⎥

⎤
⎢
⎢

⎡
m

Tj and enumerate the gaps starting

from window ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

m

T j

0|T . If no j-gap to run τj is found, then the length of the window is

progressively incremented by ⎥
⎥

⎤
⎢
⎢

⎡
m

Tj . A modified form of algorithm 5.1, which uses

dynamic size windows is given in [3]. The time complexity of this algorithm is

bounded by O(Tj· (n-j) ·|σi(
1

0|T
+jT

)|·jobsi ·log(!2·2·|σi(
1

0|T
+jT

)|)), derivation of which

is available in [3].

5.2 Gap-Transformation Function

The gap transformation function λ(σi(
L
0|T),Γn), for a task τi, is an important compo-

nent in determining the response time of tasks in P-FRP. It analyzes the gap-set

σi(
L
0|T) for gaps in which τi could be processed, changes those gaps and returns the

transformed gap-set. The pseudo-code for the implementation of this function is
available in [3].

5.3 Gap-Search Function

The gap search function μ(σk(
L
0|T), Pk) does a simple search on σk(

L
0|T) and re-

trieves the first k-gap whose size is larger than Pk. The algorithm for the search de-
pends on the type of data structure used to store the gaps. Due to its guaranteed
bounds for search and insertion time, we use a red-black tree (RB-tree) [5] to store the
gap. A red-black tree, is a self balancing binary tree where each node has a color at-
tribute of red or black. Other properties of a RB-tree are:

• The root node is black
• All leave nodes are black
• Children of every red node are black
• Path from leaf to root contain same number of black nodes

The gaps are stored in a RB-tree with threshold as the index. Figure 3 shows the RB-
tree for a sample gap set: σk(T)={[10,40), [50,80), [90,100), [120,140), [170,190),
[230,260), [300,320)}. The search function μ(σk(T), Pk) is reduced to transversing the
RB-tree from the left most leaf node (earliest gap), to the right most leaf node. The
search order for the sample set based on node index is 10, 50, 90, 120, 170, 230, 300.

 Determining Actual Response Time in P-FRP
 261

Fig. 3. RB-tree for sample gap set. The shaded nodes denote a black node while the non-shaded
are red nodes. The null nodes do not contain any data.

6 Analysis

Since the Time-accurate simulation (TAS) method is the only other known method
for computing actual response time in P-FRP, we present an experimental analysis of
the performance of the Gap-enumeration (GE) algorithm, relative to TAS. For every
addition and deletion operation in the RB-tree, the computational step is incremented
by log(m), where m is the dynamically changing size of the RB-tree. Using computa-
tional steps for performance measurement is sufficient for this analysis, as it gives us
a distinct idea of time that each algorithm will take to give the desired results.

We randomly generated 3 groups (groups A, B and C) of 500 schedulable task sets.
Task sets in group A have 3 tasks, group B, 5 tasks and group C, 7 tasks. Each of the
task sets in each group is unique in the sense, that at least 1 task is different between
any two task sets. The arrival period for each of the tasks in all the 3 groups were se-
lected from the range [40,60], while the processing times were selected from [4,10].
All tasks were assumed to be released simultaneously and the response time of the
lowest priority task (τ1) in each group was determined using the TAS and GE algo-
rithms. In the GE algorithm, m was set to 1 for this analysis.

The difference in computational steps between the TAS and GE algorithms for task
set of sized 3,5 and 7 are shown in figures 4(a),5(a) and 6(a). The Δ in the y-axis is
given as:

Δ = Computational Steps in TAS - Computational steps in GE

It can be seen clearly that GE takes less number of computation steps as compared to
the TAS algorithm. The delta values tend to increase as the number of tasks present in
the set increase. This could be attributed to a generally larger response time when the
number of tasks are high. In figures 4(b), 5(b) and 6(b) we show the relation between
response time and Δ. It is clear, that as the response time increases, the delta values
increase showing that the GE algorithm becomes much more efficient relative to
TAS. Additional results of out analysis are available in [3].

262 C. Belwal and A.M.K. Cheng

0

2 0

4 0

6 0

8 0

10 0

12 0

14 0

0 10 0 2 0 0 3 0 0 4 0 0 50 0
Ta s k S e t Nu mbe r

D
el

ta

0

2 0

4 0

6 0

8 0

10 0

12 0

14 0

0 5 10 15 2 0 2 5 3 0
A c tu a l Re s p o n s e Tim e

D
el

ta

Fig. 4(a). Delta (Steps TAS – Steps GE) for
tasks sets with 3 tasks

Fig. 4(b). Delta (Steps TAS – Steps GE)
vs. response time for tasks sets with 3
tasks

0

50

10 0

150

2 0 0

2 50

3 0 0

3 50

4 0 0

0 10 0 2 0 0 3 0 0 4 0 0 50 0
Ta s k S e t Nu mb e r

D
el

ta

0

50

10 0

150

2 0 0

2 50

3 0 0

3 50

4 0 0

0 10 2 0 3 0 4 0 50
A c tu a l Re s p o n s e T ime

D
el

ta

Fig. 5(a). Delta (Steps TAS – Steps GE) for
tasks sets with 5 tasks

Fig. 5(b). Delta (Steps TAS – Steps GE) vs.
response time for tasks sets with 5 tasks

0

10 0 0

2 0 0 0

3 0 0 0

4 0 0 0

50 0 0

6 0 0 0

70 0 0

8 0 0 0

9 0 0 0

0 10 0 2 0 0 3 0 0 4 0 0 50 0
Ta s k S e t Nu mb e r

D
el

ta

0

10 0 0

2 0 0 0

3 0 0 0

4 0 0 0

50 0 0

6 0 0 0

70 0 0

8 0 0 0

9 0 0 0

0 10 0 2 0 0 3 0 0 4 0 0
A c tu a l Re s p o n s e T ime

D
el

ta

Fig. 6(a). Delta (Steps TAS – Steps GE) for
tasks sets with 7 tasks

Fig. 6(b). Delta (Steps TAS – Steps GE) vs.
response time for tasks sets with 7 tasks

7 Related Work

Response time analysis was first studied by Joseph and Pandya [12] and fixed priority
scheduling was independently studied by Audsley et al [2]. In [2], an iterative method
to compute actual response time in the preemptive model is given. Kaibachev et al [13]
present a basic response time analysis for P-FRP by placing restrictions on execution
times of higher priority tasks. The authors have derived the response time bound of a
task, as equal to its arrival period. Ras and Cheng [17] have presented response time
analysis and have compared the performance of P-FRP execution with priority inver-
sion strategies. The authors present a method to derive upper bound on response time
by extending the iterative method developed by Audsley et al [2]. However, as shown
in this paper, this method is unusable for most task sets. The flaw is that the authors

 Determining Actual Response Time in P-FRP
 263

make explicit assumptions on the abort cost from higher priority tasks. The abort cost
is different for individual task sets and cannot be generally applied. Both [13, 17] do
not define any method to compute actual response times for P-FRP.

Transactional memory systems have been described by Herlihy and Moss [11]. Re-
sponse time analysis for transaction memory using dynamic scheduling for multiproc-
essor systems has been done by Fahmy et al [8]. Davis and Burns [6] derive upper
bounds on response time for fixed priority scheduling building upon the work done by
Bini and Baruah [4]. Anderson et al [1] do response time analysis of the lock-free
mechanism. Lock-free is a mechanism to avoid priority inversion [18] the implemen-
tation of which is via an unconditional loop that terminates when the necessary up-
dates to the shared resource are complete. The schedulability conditions given for
fixed-priority scheduling in [1] assume a constant ‘extra computation time’ in case of
a failed update. If we consider this equivalent to an abort cost in P-FRP it cannot be a
constant as the abort cost varies for every task. Comparisons between transaction
memory based systems and lock-free processing and benefits of the former have been
shown in Herlihy and Moss [11].

8 Conclusions and Future Work

A common method for determining actual response time in the preemptive model
cannot be applied to the execution model of P-FRP, due to the abort of preempted
tasks. A straightforward approach is to run a time accurate simulation of the P-FRP
execution model. However the time complexity of this approach is high and, therefore
it is not feasible in most practical situations.

The gap-enumeration method is a different approach for computing actual response
time in the P-FRP execution model. Comparisons with the time-accurate method
show that the gap-enumeration method is much more efficient than the former. For P-
FRP systems with numerically higher response times, the gap-enumeration method
offers engineers a fast alternative for the computation of actual response times. The
performance of this method is directly proportional to the number of k-gaps present in
the system. The number of k-gaps has no impact on the time accurate simulation
method, whose computational complexity is primarily governed by the number of
time steps that have to be covered.

While the gap-enumeration algorithm is faster than the time-accurate simulation, it
is clearly not as efficient as Audsley’s method [2]. However, we feel that due to the
abort nature of tasks, computing response time using fixed iterations on a mathemati-
cal expression, as developed by Audsley et al, might not be feasible for P-FRP.
Hence, algorithm based approaches, such as the gap-enumeration method, are per-
haps, the only way to compute actual response time in P-FRP.

We have presented the gap-enumeration algorithm in its simple form. Several
changes could be made to improve the efficiency of this method. The main computa-
tional cost incurred by the gap-enumeration method is during insertion, deletion and
search of the data structure used to store k-gaps. A hash table could be used in conjunc-
tion with the RB-tree to index the locations of k-gaps thereby making the search, inser-
tion and deletion operation more efficient. In ongoing work, we are also exploring a
method where a 2-dimensional array is used to keep track of gaps created for each task.

264 C. Belwal and A.M.K. Cheng

References

1. Anderson, J.H., Ramamurthy, S., Jeffay, K.: Real-time computing with Lock-free Shared
Objects. ACM Transactions on Comp. Sys. 5(6), 388–395 (1997)

2. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.: Applying new schedul-
ing theory to static priority preemptive scheduling. Software Engineering Journal 8(5),
284–292 (1993)

3. Belwal, C., Cheng, A.M.K.: Determining Actual Response Time in P-FRP. Technical Re-
port: UH-CS-10-05, Dept. Of Computer Science, University of Houston (2010)

4. Bini, E., Baruah, S.K.: Efficient Computation of Response Time Bounds under Fixed-
priority Scheduling. In: Proc. of the 15th Conference on Real-Time and Network Systems,
pp. 95–104 (2007)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Red-Black Trees. In: Introduction
to Algorithms, 2nd edn., ch. 13, pp. 273–301. MIT Press/McGraw-Hill (2001)

6. Davis, R.I., Burns, A.: Response Time Upper Bounds for Fixed Priority Real-Time Sys-
tems. In: RTSS 2008, pp. 407–418 (2008)

7. Elliott, C., Hudak, P.: Functional reactive animation. In: ICFP 1997, pp. 263–273 (1997)
8. Fahmy, S.F., Ravindran, B., Jensen, E.D.: Response time analysis of software transactional

memory-based distributed real-time systems. ACM SAC Operating Systems (2009)
9. Hammond, K.: Chapter 1 – Is it Time for Real-Time Functional Programming. In:

Gilmore, S. (ed.) Trends in Functional Programming, vol. 4. Intellect Ltd. (2005)
10. Haskell, http://www.haskell.org
11. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data

structures. ACM SIGARCH Computer Architecture New 21(2), 289–300 (1993)
12. Joseph, M., Pandya, P.: Finding Response Times in a Real-Time System. BCS Computer

Journal 29(5), 390–395 (1986)
13. Kaiabachev, R., Taha, W., Zhu, A.: E-FRP with Priorities. In: EMSOFT 2007, pp. 221–

230 (2007)
14. Liu, C.L., Layland, L.W.: Scheduling Algorithms for Multiprogramming in a Hard-Real-

Time Environment. Journal of the ACM 20(1), 46–61 (1973)
15. Peterson, J., Hager, G.D., Hudak, P.: A Language for Declarative Robotic Programming.

In: ICRA 1999. IEEE, Los Alamitos (1999)
16. Peterson, J., Hudak, P., Reid, A., Hager, G.D.: FVision: A Declarative Language for

Visual Tracking. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, p. 304.
Springer, Heidelberg (2001)

17. Ras, J., Cheng, A.: Response Time Analysis for the Abort-and-Restart Task Handlers of
the Priority-Based Functional Reactive Programming (P-FRP) Paradigm. In: RTCSA 2009
(2009)

18. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority Inheritance Protocols: An approach to Real
Time Synchronization. Transactions on Computers 39(9), 1175–1185 (1990)

19. Swaine, M.: It’s Time to Get Good at Functional Programming. Dr. Dobbs Journal (De-
cember 2008), http://www.drdobbs.com

20. Wan, Z., Taha, W., Hudak, P.: Real - time FRP. In: ICFP 2001, pp. 146–156. ACM Press,
New York (2001)

21. Wan, Z., Taha, W., Hudak, P.: Task Driven FRP. In: Adsul, B., Ramakrishnan, C.R. (eds.)
PADL 2002. LNCS, vol. 2257, p. 155. Springer, Heidelberg (2002)

22. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp. 242–
252 (2000)

Abreu, Salvador 115

Anicic, Darko 220

Belwal, Chaitanya 250

Berbers, Yolande 34

Brito, Isabel 115

Brown, Neil C.C. 19

Byrd, William E. 190

Caballero, Rafael 145

Chauhan, Arun 190

Cheng, Albert M.K. 250

Christakis, Maria 5

Christiansen, Jan 160

Devriese, Dominique 84

Diaz, Daniel 115

Eiter, Thomas 99

Fodor, Paul 220

Garćıa-Ruiz, Yolanda 145

Hermenegildo, Manuel 38

Hinrichs, Timothy L. 54

Hoefler, Torsten 190

Holk, Eric 190

Hudak, Paul 235

Janssens, Gerda 34

Kaivola, Roope 1

Krajcevski, Pavel 130

Krennwallner, Thomas 99

Lomov, Dmitry 175

Lopez-Garćıa, Pedro 38

Lumsdaine, Andrew 190

Mantadelis, Theofrastos 34

Mera, Edison 38

Mooney, Raymond J. 2

Paridel, Koosha 34

Petricek, Tomas 175, 205

Piessens, Frank 84

Redl, Christoph 99

Reppy, John 130

Rudolph, Sebastian 220

Sáenz-Pérez, Fernando 145

Sagonas, Konstantinos 5

Salgueiro, Pedro 115

Santos Costa, Vı́tor 69

Syme, Don 175, 205

Trigo, Teresa 38

Vanrompay, Yves 34

Voellmy, Andreas 235

Wielemaker, Jan 69

Willcock, Jeremiah 190

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Intel$$ CoreTM i7 Processor Execution Engine Validation in a Functional Language Based Formal Framework
	References

	Learning Language from Its Perceptual Context
	References

	Message-Passing and Mobile Networks
	Detection of Asynchronous Message Passing Errors Using Static Analysis
	Introduction
	Erlang and Dialyzer
	Message Passing in Erlang
	The Analysis
	Collecting Information
	Constructing the Communication Graph
	Detecting Message Passing Errors
	Some Optimizations
	False Alarms and Their Avoidance

	Experimental Evaluation
	Related Work
	Concluding Remarks and Future Work
	References

	Combinators for Message-Passing in Haskell
	Introduction
	Background: Communicating Haskell Processes
	Barriers and Enrolling

	Motivating Example: Blood Clotting Simulation
	Wiring: Process Composition
	Simple Composition Operator
	Richer Composition Operator
	Capturing Common Topologies
	Improved Process Wiring: Blood Clotting Example

	Compositional Wiring
	The Composed Monad
	Composed Wiring Functions
	Further Improved Process Wiring: Blood Clotting Example

	Related Work
	Conclusions
	References

	Analysing a Publish/Subscribe System for Mobile Ad Hoc Networks with ProbLog
	Introduction
	Problem Statement
	ProbLog
	Fadip Model in ProbLog
	Analysing the Model
	Conclusions
	References

	Profiling and Implementation
	Profiling for Run-Time Checking of Computational Properties and Performance Debugging in Logic Programs
	Introduction
	A Cost Center-Based Approach to Profiling
	Integrating Profiling with Verification and Debugging
	Proposing New Computational Properties
	Program Transformation for Profiling
	Automatic Performance Bottleneck Detection
	Experimental Results
	Discussion and Future Work
	References

	Plato: A Compiler for InteractiveWeb Forms
	Introduction
	Overview
	Logical Foundations of Web Forms
	plato
	Opportunities, Challenges, and Design Decisions
	Architecture

	Algorithms
	Strict Implication
	Minimal Inconsistencies

	Evaluation
	Analytical
	Empirical

	Related Work
	Conclusion and Future Work
	References

	On the Portability of Prolog Applications
	Introduction
	Portability Approaches and Related Work
	Prolog Portability Status
	The YAP/SWI-Prolog Approach
	The SWI-Prolog/YAP Portability Framework

	Running SWI-Prolog Packages in YAP
	A First Case-Study: Portable Constraint Libraries
	A Second Case-Study: The Alpino Dependency-Tree Parser Suite
	Conclusions
	References

	Grammars, Merging and Constraint Programming
	Explicitly Recursive Grammar Combinators A Better Model for Shallow Parser DSLs
	Introduction
	Arithmetic Expressions
	Parser Combinators
	ω-Regular Grammars Considered Harmful
	Toward Context-Free Grammars

	An Explicitly Recursive Representation
	Representing Non-terminals
	Production Rules
	A Different Take on Recursion
	Semantic Value Family Polymorphism
	So What Do We Get?

	The Proof of the Pudding
	Features
	Limitations

	Related Work
	Parser Combinators
	Squiggolist Attribute Grammars
	Observable Sharing
	Finally Tagless DSLs

	Conclusion
	References

	Declarative Belief Set Merging Using Merging Plans
	Introduction
	Preliminaries
	Belief Set Merging Using Merging Plans
	Merging Plans and Tasks

	The MELD System
	Belief Merging in Action
	Evaluation and Experiments
	Related Work and Conclusion
	References

	Using Constraints for Intrusion Detection: The NeMODe System
	Introduction
	State of the Art
	Intrusion Detection Systems
	Constraint Programming
	Domain Specific Languages

	Intrusion Detection with Constraints
	NeMODe - A DSL to Describe Network Signatures
	NeMODe Specification
	Examples
	Code Generation

	Experimental Results
	Evaluation
	Conclusions and Future Work
	References

	Language Extensions and Tools
	A Declarative API for Particle Systems
	Introduction
	Particle Systems
	A Simple Particle System
	Specifying Particle Systems

	Particle-System Combinators
	Variables
	Domains
	Emitters
	Actions
	Renderers
	A Complete Example

	Implementation
	Internal Representation
	Optimizations

	Targetting GPUs
	Related Work
	Conclusion
	Future Work

	References

	Integrating XPath with the Functional-Logic Language Toy
	Introduction
	Preliminaries
	The Functional-Logic Language TOY
	The XML Query Language XPath

	XPath Queries in TOY
	The Type xPath
	Loading XML Documents and Combining XPath Queries
	Basic Axes and Tests
	Abbreviations
	Filters

	Generating Test-Cases for XPath Expressions
	Higher Order Patterns
	Validating XPath Queries
	Reverse Axes

	Conclusions
	References

	Sloth – A Tool for Checking Minimal-Strictness
	Introduction
	Least-Strictness
	Sequentiality and Minimal-Strictness
	Case Studies
	Directions for Future Research
	References

	Concurrent and Parallel Programming
	The F# Asynchronous Programming Model
	Introduction
	An Overview of F# Asynchronous Programming
	Writing, Composing and Running Asynchronous Computations
	Asynchronous Functions
	Exception Handling and Resource Compensation
	Cancellation

	Semantics
	Patterns for Concurrent and Reactive Programming
	Parallel Composition
	Reactive Agents Using State Machines
	Reactive User Interface Programming

	Implementation
	Some Usability and Performance Indicators

	Summary
	Related Work

	References

	Kanor A Declarative Language for Explicit Communication
	Introduction
	Motivation
	Exploiting Communication Knowledge
	The Kanor Language
	Evaluation Rules

	Core Algorithms
	Implementation
	Compiler
	Runtime

	Performance
	Related Work
	Conclusion and Future Work
	References

	Joinads: A Retargetable Control-Flow Construct for Reactive, Parallel and Concurrent Programming
	Introduction
	Computation Expressions

	Joinads by Example
	Reactive Programming with Events
	Concurrent Programming with Joins
	Parallel Programming with Futures

	A Language Extension for Joinads
	Introducing Operations
	Syntax Extension
	Translation Semantics

	Reasoning About Joinads
	Merge Operation Laws
	Choose Operation Laws

	Related Notions of Computations
	Relation with Monads
	Commutative Monads

	Related Work
	Conclusions
	References

	Event Processing and Reactive Programming
	Results on Out-of-Order Event Processing
	Introduction
	Motivating Example

	Event Processing in ETALIS
	In-Order Event Processing in ETALIS

	Out-of-Order Events
	Out-of-Order Event Processing in ETALIS

	Windowing and Pruning the Outdated Events
	Pushed Constraints
	General and Pattern-Based Garbage Collection

	Performance Evaluation
	Conclusion
	References

	Nettle: Taking the Sting Out of Programming Network Routers
	Introduction
	Overall Approach
	Functional Reactive Programming
	FRP for OpenFlow Control
	Basic Event Handling and Switch Commands
	Programming the Flow Table

	Learning Switch
	Declarative Routing
	Time-Varying Quantities
	Discussion and Related Work
	References

	Determining Actual Response Time in P-FRP
	Introduction
	Contributions

	Basic Concepts and Execution Model of P-FRP
	Basic Concepts
	Execution Model and Assumptions

	Computing Actual Response Time in the Preemptive Model
	Gap-Enumeration Method
	Algorithm to Determine Actual Response Time
	Gap-Enumeration with Dynamic Window Size
	Gap-Transformation Function
	Gap-Search Function

	Analysis
	Related Work
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

