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Preface

In the past few years the subject of variable exponent spaces has undergone
a vast development. Nevertheless, the standard reference is still the article
by Kováčik and Rákosńık from 1991. This paper covers only basic properties,
such as reflexivity, separability, duality and first results concerning embed-
dings and density of smooth functions. In particular, the boundedness of
the maximal operator, proved by Diening in 2002, and its consequences are
missing.

Naturally, progress on more advanced properties is scattered in a large
number of articles. The need to introduce students and colleagues to the
main results led around 2005 to some short survey articles. Moreover, Diening
gave lectures at the University of Freiburg in 2005 and Růžička gave a course
in 2006 at the Spring School NAFSA 8 in Prague. The usefulness of a more
comprehensive treatment was clear, and so we decided in the summer of 2006
to write a book containing both basic and advanced properties, with improved
assumptions. Two further lecture courses were given by Hästö based on our
material in progress (2008 in Oulu and 2009 at the Spring School in Paseky);
another summary is Diening’s 2007 habilitation thesis.

It has been our goal to make the book accessible to graduate students as
well as a valuable resource for researchers. We present the basic and advanced
theory of function spaces with variable exponents and applications to partial
differential equations. Not only do we summarize much of the existing liter-
ature but we also present new results of our most recent research, including
unifying approaches generated while writing the book.

Writing such a book would not have been possible without various sources
of support. We thank our universities for their hospitality and the Academy of
Finland and the DFG research unit “Nonlinear Partial Differential Equations:
Theoretical and Numerical Analysis” for financial support. We also wish to
express our appreciation of our fellow researchers whose results are presented
and ask for understanding for the lapses, omissions and misattributions that
may have entered the text. Thanks are also in order to Springer Verlag for
their cooperation and assistance in publishing the book.

We thank our friends, colleagues and especially our families for their
continuous support and patience during the preparation of this book.
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vi Preface

Finally, we hope that you find this book useful in your journey into the
world of variable exponent Lebesgue and Sobolev spaces.

Munich, Germany Lars Diening
Helsinki, Finland Petteri Harjulehto
Oulu, Finland Peter Hästö
Freiburg, Germany Michael R̊užička
November 2010
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Chapter 1

Introduction

The field of variable exponent function spaces has witnessed an explosive
growth in recent years. For instance, a search for “variable exponent” in
Mathematical Reviews yields 15 articles before 2000, 31 articles between 2000
and 2004, and 267 articles between 2005 and 2010. This is a crude measure
with some misclassifications, but it is nevertheless quite telling.

The standard reference for basic properties has been the article [258] by
Kováčik and Rákosńık from 1991. (The same properties were derived by
different methods by Fan and Zhao [149] 10 years later.) Some surveys of the
field exist, e.g. [99, 345], but they are already quite dated. When we started
writing this book, in 2006, it seemed possible to derive a more coherent
foundation for the field with simpler and better proofs. This turned out to be
somewhat more challenging than we had anticipated, but it is fair to say that
the understanding of the basics of the field has now, in 2010, reached a certain
stability and maturity. Thus we have tried to write a usable, self-contained
monograph collecting all the basic properties of variable exponent Lebesgue
and Sobolev spaces, which fills the need of having a readily available reference
with unified notation and terminology.

Since most of the results contained in this book are no more than ten years
old, we have generally credited the original authors of results mid-text, often
noting also previous contributions. Our selection of topics is based to some
extent on our personal interests, but we have tried to include all the most
important and general results, and make note of several other ones along with
references to sources for further information.

Many of the very early contributions are largely superseded by more recent
results, and so we include here a brief history of the field from its inception
in 1931 to approximately 2000 in the next section. The second section of this
chapter provides an outline of the rest of the book.

In Sect. 1.3 we summarize the most important basic properties of variable
exponent spaces from the book, as well as some properties which do not hold.
We also provide a diagram which shows the connections between different
central assumptions on the exponent. This section is meant as a reference for
locating the results one needs, and is not self-contained.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 1,
c© Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

Finally, in Sect. 1.4 we introduce some notation and conventions used
throughout the book; we also recall many well-known definitions and results
from real and functional analysis, topology and measure theory which are
needed later on. No proofs are included for these standard results, but refer-
ences are provided and they can be consulted if necessary. The results from
this section are used in many places later on; we also introduce some standard
results later in the book if they are needed only in a single proof or section.

1.1 History of Variable Exponent Spaces

Variable exponent Lebesgue spaces appeared in the literature for the first
time already in a 1931 article by Orlicz [319]. In this article the following
question is considered: let (pi) (with pi > 1) and (xi) be sequences of real
numbers such that

∑
i x

pi
i converges. What are the necessary and sufficient

conditions on (yi) for
∑

i xiyi to converge? It turns out that the answer is
that

∑
i(λyi)

p′i should converge for some λ > 0 and p′i = pi/(pi − 1). This
is essentially Hölder’s inequality in the space �p(·). Orlicz also considered the
variable exponent function space Lp(·) on the real line, and proved the Hölder
inequality in this setting.

However, after this one paper, Orlicz abandoned the study of variable
exponent spaces, to concentrate on the theory of the function spaces that
now bear his name (but see also [308]). In the theory of Orlicz spaces, one
defines the space Lϕ to consist of those measurable functions u : Ω → R for
which

�(λu) =
ˆ

Ω

ϕ(λ|u(x)|) dx < ∞

for some λ > 0 (ϕ has to satisfy certain conditions, see Example 2.3.12 (b)).
Abstracting certain central properties of �, we are led to a more general class
of so-called modular function spaces which were first systematically studied
by Nakano [309, 310]. In the appendix [p. 284] of the first of these books,
Nakano mentions explicitly variable exponent Lebesgue spaces as an example
of the more general spaces he considers. The duality property mentioned
above is again observed.

Following the work of Nakano, modular spaces were investigated by sev-
eral people, most importantly by groups at Sapporo (Japan), Voronezh
(USSR), and Leiden (Netherlands). Somewhat later, a more explicit ver-
sion of these spaces, modular function spaces, were investigated by Polish
mathematicians, for instance Hudzik, Kamińska and Musielak. For a com-
prehensive presentation of modular function spaces, see the monograph [307]
by Musielak.

Variable exponent Lebesgue spaces on the real line have been inde-
pendently developed by Russian researchers, notably Sharapudinov. These
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investigations originated in a paper by Tsenov from 1961 [366], and were
briefly touched on by Portnov [325,326]. The question raised by Tsenov and
solved by Sharapudinov [351–353] is the minimization of

bˆ

a

|u(x) − v(x)|p(x)dx,

where u is a fixed function and v varies over a finite dimensional subspace of
Lp(·)([a, b]). In [351] Sharapudinov also introduced the Luxemburg norm for
the Lebesgue space and showed that this space is reflexive if the exponent
satisfies 1 < p− � p+ < ∞. In the mid-1980s Zhikov [392] started a new
line of investigation, that was to become intimately related to the study of
variable exponent spaces, considering variational integrals with non-standard
growth conditions. Another early PDE paper is [257] by Kováčik, but this
paper appears to have had little influence on later developments.

The next major step in the investigation of variable exponent spaces was
the paper by Kováčik and Rákosńık in the early 1990s [258]. This paper
established many of the basic properties of Lebesgue and Sobolev spaces
in R

n. During the following ten years there were many scattered efforts to
understand these spaces.

At the turn of the millennium various developments lead to the start of
a period of systematic intense study of variable exponent spaces: First, the
connection was made between variable exponent spaces and variational inte-
grals with non-standard growth and coercivity conditions (e.g., [4, 393]). It
was also observed that these non-standard variational problems are related to
modeling of so-called electrorheological fluids, see [328, 329, 337]. Moreover,
progress in physics and engineering over the past ten year have made the
study of fluid mechanical properties of these fluids an important issue, see
[90,337,369]. (Later on, other applications have emerged in thermorheological
fluids [34] and image processing [1, 53, 70, 269].)

Even more important from the point of view of the present book is the fact
that the “correct” condition for regularity of variable exponents was found.
This condition, which we call log-Hölder continuity, was used by Diening [91]
to show that the maximal operator is bounded on Lp(·)(Ω) when Ω is bounded.
He also showed that the boundedness holds in Lp(·)(Rn) if the exponent is
constant outside a compact set. The case of unbounded domains was soon
improved by Cruz-Uribe, Fiorenza and Neugebauer [84] and, independently,
Nekvinda [314] so that a decay condition replaces the constancy at infinity.
The boundedness of the maximal operator opens up the door for treating
a plethora of other operators. For instance one can then consider the Riesz
potential operator and thus prove Sobolev embeddings. Such results indeed
followed in quick succession starting from the middle of the 00s.

The boundedness of the maximal operator and other operators is a subtle
question and improvements on these initial results have been made since then



4 1 Introduction

in many papers. In this book we present mature versions of these results as
well as more recent advances. In particular, we would like to emphasize the
efforts to remove spurious bounds on the exponents from previous results
which were the consequence of technical rather than substantial issues. In
particular, we have made a point of replacing the assumptions 1 < p− and
p+ < ∞ by 1 � p− and p+ � ∞ whenever possible.

1.2 Structure of the Book

This book is divided into three parts. The first part deals with variable
exponent Lebesgue spaces, and the second one deals with variable exponent
Sobolev spaces. These form the main content of the book. In the third part
we give a selection of applications of these results to partial differential equa-
tions. Some sections and one chapter are marked by an asterisk. These we
consider more advanced content which may be omitted on first reading.

Figure 1.1 illustrates the main dependencies among the chapters. As indi-
cated by the triple line, Chaps. 3, 4, 6 and 8 form the core of the book. They

Chapter 2

Chapter 3

Chapter 4

Chapter 7Chapter 5 Chapter 6

Chapter 8

Chapter 12

Chapter 14

Chapter 9 Chapter 10

Chapter 11

Chapter 13

Part I

Part II

Part III

Fig. 1.1 The main dependencies among chapters
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deal with basic properties of Lebesgue spaces, the maximal operator, other
operators, and Sobolev spaces, respectively. Any course based on the book
would likely include at least these chapters, although Chap. 8 could be omit-
ted if one is not interested in differentiability. Results from Chap. 5 and 7 are
used in Chap. 8 and later to some extent, but it is not unreasonable to skip
these at first reading if one is interested mainly in Sobolev spaces.

Chapter 2 is not properly about variable exponent spaces but rather intro-
duces the more general frameworks of semimodular spaces and Musielak–
Orlicz spaces. Since these topics have not been treated in this generality in
widely available sources we have included this preliminary chapter for com-
pleteness. It can be skipped by readers mostly interested in more advanced
properties of variable exponent spaces. On the other hand, many basic prop-
erties, including completeness, reflexivity, separability and uniform convexity,
follow in the variable exponent setting directly from the more general case.
It should also be stressed that the study of semimodular spaces, rather than
modular spaces, allows us to treat variable exponent spaces with unbounded
exponents in a uniform manner, in contrast to many previous investigations
which have used a more ad hoc approach (cf. Remark 3.2.3).

Chapter 3 relies heavily on Chap. 2: we directly obtain completeness,
reflexivity, separability and uniform convexity. The more complicated general
conditions translate into simple (and optimal) assumptions on the variable
exponent (see Sect. 1.3). Another important topic in these sections is the
norm dual formula, which we derive in the framework of associate spaces;
this is another component which allows us to avoid earlier restrictions on the
variable exponent that follow from dual space considerations.

Chapter 4 introduces a slate of new techniques to deal with the maxi-
mal function and averaging operators. These are the central advances of the
past few years which have made possible the rapid expansion of the field. In
contrast to previous investigations, our general techniques allow for the sys-
tematic inclusion of unbounded exponents. After introducing the logarithmic
Hölder continuity condition, we derive “Hölder”-type inequalities

(  

Q

|f | dx
)p(y)

�
 

Q

|f |p(x) dx+ error

where y ∈ Q and “error” denotes an appropriate error term. This estimate
suffices for the boundedness of the maximal operator in unbounded domains
and for unbounded exponents. If we use the boundedness of the maximal
operator we always incur the restriction p− > 1, which is in fact necessary by
Theorem 4.7.1. Therefore we also study two tools without this shortcoming:
weak-type estimates and averaging operators. We prove, for instance, that

‖1‖Lp(·)(Q) ≈ |Q|
1
pQ
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for all cubes Q, where 1
p is log-Hölder continuous but p is possibly unbounded,

and pQ is the harmonic average of p on Q. Also convolution is shown to work
without bounds on the exponent.

Chapter 6 consists of a fairly straightforward application of the meth-
ods from Chap. 4 to other operators such as the Riesz potential, the sharp
operator and singular integrals.

The first part includes two optional chapters. Chapter 5 contains a more
abstract treatment of the boundedness of the maximal operator in terms
of the so-called class A. This class consists of those exponents for which a
suitable collection of averaging operators are bounded. It provides the right
context for a necessary and sufficient condition of the boundedness of the
maximal operator similar to the Muckenhoupt classes for weighted Lebesgue
spaces. Working with averaging rather than maximal operators allows us
to remove superfluous restrictions on the exponent from below which had
appeared in various previous results. This is the case for instance for the
Poincaré inequality, which is considered in Chap. 8.

Chapter 7 is a collection of methods which we call “transfer techniques”.
The idea is that we start with a result in one setting and obtain it in another
setting “for free”. The best known example of such a technique is inter-
polation, which has played an important unifying role in the development
of the theory of constant exponent spaces. Unfortunately, it is not possi-
ble to interpolate from constant exponents to variable exponents. Therefore
other techniques are also included, namely, extrapolation and a result for
generalizing statements for balls to statements in (possible unbounded) John
domains.

The first chapter in the second part, Chap. 8, relies substantially on the
results from the first part. First we “translate” the results from Chap. 3 to
results for Sobolev spaces. Hence we prove completeness, reflexivity, sep-
arability and uniform convexity, again under optimal assumptions on the
exponent. More sophisticated results like Sobolev embeddings and Poincaré
inequalities are proved by recourse to results on the maximal and other oper-
ators. We also include a short section on compact embeddings and present a
recent extension result. Again, several results are presented for the first time
including the cases p− = 1 and/or p+ = ∞.

After the first chapter, the second part of the book splits into three rela-
tively independent strands. Chapter 9 deals with the density of smooth and
continuous functions in Sobolev spaces, which turns out to be an elusive and
difficult question which is not fully understood yet. We present several suffi-
cient conditions for density, as well as examples when density does not hold.

Chapter 10 introduces a Sobolev and a relative capacity, which measure
set size on a finer scale than the Lebesgue measure. We study their relation-
ship with each other and with the Hausdorff measure. The capacities are used
in Chap. 11 to the study of fine properties of Sobolev functions, such as qua-
sicontinuity, removability, Lebesgue points and function with zero boundary
value.
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The third strand, in Chap. 12, deals with other spaces of “Sobolev type”,
i.e. spaces of functions with at least some (possibly fractional) smoothness. In
particular, trace, homogeneous Sobolev, Bessel potential, Besov, and Triebel–
Lizorkin spaces are considered.

In the third part, we consider applications to partial differential equations
of the theory developed in the first two parts. The third part consists of
two chapters. In Chap. 13, we consider PDE of non-standard growth, i.e.
differential equations where the main term is of the form − div(|∇u|p(·)−2∇u).
In this case W 1,p(·)(Ω) is the natural space in which to look for solutions. The
approach of the chapter continues the minimal assumptions-theme of previous
chapters. In particular, we add continuity assumptions on the exponent only
as necessary. This part is based on capacity methods and fine properties of
the functions from Chaps. 10 and 11. Chapter 14 is the culmination of the
other strand in Part II: here we use traces and homogeneous spaces from
Chap. 12, Calderón–Zygmund operators (Sect. 6.3), as well as the Lipschitz
truncation method (Sect. 9.5), and the transfer technique from Sect. 7.4. We
first treat classical linear PDE with data in variable exponent spaces, namely
the Poisson and Stokes problems and the divergence equation. The latter
leads to generalizations of further classical results to variable exponent spaces.
Finally these results and the theory of pseudomonotone operators are applied
in Sect. 14.4 to prove the existence of solutions to the steady equations for
the motion of electrorheological fluids, which is again a PDE with a version
of the variable p(·)-Laplacian as a main elliptic term.

1.3 Summary of Central Results

In this section we highlight the similarities and differences between constant
exponent and variable exponent spaces; we also emphasize the assumptions
on the exponent needed for the properties. First we list properties which do
not require any regularity of the exponent. The second section features a dia-
gram which illustrates the quite complex relationship between the different
conditions used when dealing with more advanced properties such as bound-
edness of various operators. In the final section we list some properties which
essentially never hold in the variable exponent context.

Elementary Properties

Here we collect the most important properties of variable exponent Lebesgue
and Sobolev spaces which hold without advanced conditions on the exponent.
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For Any Measurable Exponent p

• Lp(·) and W 1,p(·) are Banach spaces (Theorem 3.2.7, Theorem 8.1.6).
• The modular �p(·) and the norm ‖·‖p(·) are lower semicontinuous with

respect to (sequential) weak convergence and almost everywhere conver-
gence (Theorem 3.2.9, Lemma 3.2.8, Lemma 3.2.10).

• Hölder’s inequality holds (Lemma 3.2.20).
• Lp(·) is a Banach function space (Theorem 3.2.13).
• (Lp(·))′ ∼= Lp

′(·) and the norm conjugate formula holds (Theorem 3.2.13,
Corollary 3.2.14).

For Any Measurable Bounded Exponent p

• Lp(·) and W 1,p(·) are separable spaces (Lemma 3.4.4, Theorem 8.1.6).
• The Δ2-condition holds (Theorem 3.4.1).
• Bounded functions are dense in Lp(·) and W 1,p(·) (Corollary 3.4.10,

Lemma 9.1.1).
• C∞

0 is dense in Lp(·) (Theorem 3.4.12).

For Any Measurable Exponent p with 1 < p− � p+ < ∞

• Lp(·) and W 1,p(·) are reflexive (Theorem 3.4.7, Theorem 8.1.6).
• Lp(·) and W 1,p(·) are uniformly convex (Theorem 3.4.9, Theorem 8.1.6).

The log-Hölder and Other Conditions

The diagram in Fig. 1.2 illustrates the relationship between more advanced
conditions imposed on the exponent p. Arrows represent implications, with
the relevant theorem or lemma number quoted. The three bullets are con-
junctions of the conditions, e.g., p− > 1 and P log together imply that the
maximal operator M is bounded, by Theorem 4.3.8.
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Fig. 1.2 The relationship between various conditions on the exponent

Warnings!

Here are some results and techniques from constant exponent spaces which
do not hold in the variable exponent setting even when the exponent is very
regular, e.g., p ∈ P log or p ∈ C∞(Ω) with 1 < p− � p+ < ∞.

• The space Lp(·) is not rearrangement invariant; the translation operator
Th : Lp(·) → Lp(·), Thf(x) := f(x+h) is not bounded; Young’s convolution
inequality ‖f ∗ g‖p(·) � c ‖f‖1‖g‖p(·) does not hold (Sect. 3.6).

• The formula

ˆ

Ω

|f(x)|p dx = p

∞̂

0

tp−1|{x ∈ Ω : |f(x)| > t}| dt

has no variable exponent analogue.
• Maximal, Poincaré, Sobolev, etc., inequalities do not hold in a modular

form. For instance, Lerner showed that
ˆ

Rn

|Mf |p(x) dx � c

ˆ

Rn

|f |p(x) dx
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if and only if p ∈ (1,∞] is constant [267, Theorem 1.1]. For the Poincaré
inequality see Example 8.2.7 and the discussion after it.

• Interpolation is not so useful, since variable exponent spaces never result
as an interpolant of constant exponent spaces (see Sect. 7.1).

• Solutions of the p(·)-Laplace equation are not scalable, i.e. λu need not be
a solution even if u is (Example 13.1.9).

1.4 Notation and Background

In this section we clarify the basic notation used in the book. Moreover we
give precise formulations of some basic results which are frequently used.

We use the symbol := to define the left-hand side by the right-hand side.
For constants we use the letters c, c1, c2, C, C1, C2, . . ., or other letters specif-
ically mentioned to be constants. The symbol c without index stands for
a generic constant which may vary from line to line. In theorems, propo-
sitions and lemmas we give precise dependencies of the constants on the
involved other quantities. We use x ≈ y if there exist constants c1, c2 such
that c1 x � y � c2 x. The Euler constant is denoted by e and the imaginary
unit is denoted by i. For sets A and B the notation A ⊂ B includes also the
case A = B.

By R
n we denote the n-dimensional Euclidean space, and n ∈ N always

stands for the dimension of the space. By U and V we denote open sets
and by F closed sets of the topological space under consideration, usually
R
n. A compact set will usually be denoted by K. For A,E ⊂ X we use the

notation A ⊂⊂ E if the closure A is compact and A ⊂ E. By Ω we always
denote an open subset of R

n. If the set has additional properties it will be
stated explicitly. A domain Ω ⊂ R

n is a connected open set. We will also
use domains with specific conditions on the boundary, such as John domains
(cf. Definition 7.4.1).

Balls will be denoted by B. The ball with radius r and center x0 ∈
R
n will be denoted by B(x0, r). We usually denote cubes in R

n by Q,
and by a cube we always mean a non-degenerate cube with faces paral-
lel to the coordinate axes. However, in many places Q stands for cubes
or balls, since the statements hold for both of them, but this will be
mentioned explicitly. For a ball B we will denote the ball with α times
the radius and the same center by αB. Similarly, for a cube Q we will
denote by αQ the cube with α times the diameter and same center as
Q. For half-spaces of R

n we use the notation R
n
> := {x ∈ R

n : xn > 0},
R
n
� := {x ∈ R

n : xn � 0}, R
n
< := {x ∈ R

n : xn < 0}, and R
n
� := {x ∈ R

n :
xn � 0}, where x = (x1, . . . , xn). For a, b ∈ R

n we use (a, b) and [a, b] to
denote the open and closed segment, respectively, connecting a and b.
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Functional Analysis

A Banach space (X, ‖·‖X) is a normed vector space over the field of real num-
bers R or the field of complex numbers C, which is complete with respect the
norm ‖·‖X . The Cartesian product X :

∏N
j=1Xj of Banach spaces (Xj , ‖·‖Xj )

consists of points (x1, . . . , xN ) and is equipped with any of the equivalent
norms ‖x‖X = ‖x‖X,r := (

∑N
j=1 ‖xj‖rXj )

1
r , 1 � r < ∞, and an obvious

modification for r = ∞. If Xj = Y for j = 1, . . . , N , we write X = Y N .
Sometimes it is useful to equip a vector space with a quasinorm instead of
a norm. A quasinorm satisfies all properties of a norm except the triangle
inequality which is replaced by ‖x+ y‖ � c

(
‖x‖ + ‖y‖

)
for some c > 0.

Let X and Y be normed vector spaces. The mapping F : X → Y is bounded
if ‖F (a)‖Y � C ‖a‖X for all a ∈ X . It is an isomorphism if F and F−1 are
bijective, linear and continuous. Clearly, a linear mapping is bounded if and
only if it is continuous.

Let X and Y be normed spaces, both subsets of a Hausdorff space Z
(i.e. distinct points possess disjoint neighborhoods). Then the intersection
X ∩ Y equipped with the norm ‖z‖X∩Y = max {‖z‖X , ‖z‖Y } and the sum
X + Y := {x+ y : x ∈ X, y ∈ Y } equipped with the norm

‖z‖X+Y = inf {‖x‖X + ‖y‖Y : x ∈ X, y ∈ Y, z = x+ y}

are normed spaces. If X and Y are Banach spaces, then X ∩ Y and X + Y
are Banach spaces as well.

The dual space X∗ of a Banach space X consists of all bounded, linear
functionals F : X → R (or C). The duality pairing between X∗ and X is
defined by 〈F,X〉X∗,X = 〈F,X〉 := F (x) for F ∈ X∗, x ∈ X . The dual space
is equipped with the dual norm ‖F‖X∗ := sup‖x‖X�1 〈F, x〉, which makes
X∗ a Banach space. We have the following versions and consequences of the
Hahn–Banach theorem (cf. [58, Corollary I.2, Theorem I.7, Corollary I.4],
[335]).

Theorem 1.4.1. Let X be a Banach space and let Y ⊂ X be a closed,
linear subspace. Every bounded, linear functional F ∈ Y ∗ can be extended to
a bounded, linear functional F̃ ∈ X∗ satisfying

‖F̃‖X∗ = ‖F‖Y ∗ .

Here we mean by extension that 〈F, y〉Y ∗,Y = 〈F̃ , y〉X∗,X for all y ∈ Y .

Theorem 1.4.2. Let X be a Banach space and let E and K be convex,
disjoint non-empty subsets of X. If E is closed and K compact, then there
exists a closed hyperplane which strictly separates E and K, i.e. there exists
F ∈ X∗, α ∈ R and ε > 0 such that ReF (x) + ε � α � ReF (y) − ε for all
x ∈ E, y ∈ K.
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Corollary 1.4.3. Let X be a Banach space. Then we have for all x ∈ X

‖x‖X = sup
‖F‖X∗�1

|〈F, x〉| .

A Banach space is called separable if it contains a dense, countable
subset. We denote the bidual space by X∗∗ := (X∗)∗. A Banach space
X is called reflexive if the natural injection ι : X → X∗∗, given by
〈ιx, F 〉X∗∗,X∗ := 〈F, x〉X∗,X , is surjective. A norm ‖ · ‖ on a Banach space X
is called uniformly convex if for every ε > 0 there exists δ(ε) > 0 such that
for all x, y ∈ X satisfying ‖x‖, ‖y‖ � 1, the inequality ‖x− y‖ > ε implies
‖(x+ y)/2‖ < 1−δ(ε). A Banach space X is called uniformly convex, if there
exists a uniformly convex norm ‖ ·‖′, which is equivalent to the original norm
of X . These properties are inherited to closed linear subspaces and Cartesian
products. More precisely we have (cf. [11, Chap. I]):

Proposition 1.4.4. Let X be a Banach space and let Y denote either a
closed subset of X or a Cartesian product XN . Then:

(i) Y is a Banach space.
(ii) If X is reflexive, then Y is reflexive.

(iii) If X is separable, then Y is separable.
(iv) If X is uniformly convex, then X is reflexive.
(v) If X is uniformly convex, then Y is uniformly convex.

We say that a Banach space X is continuously embedded into a Banach
space Y , X ↪→ Y , if X ⊂ Y and there exists a constant c > 0 such that
‖x‖Y � c ‖x‖X for all x ∈ X . The embedding of X into Y is called com-
pact, X ↪→↪→ Y , if X ↪→ Y and bounded sets in X are precompact in Y .
A sequence (xk)k∈N ⊂ X is called (strongly) convergent to x ∈ X , if
limk→∞ ‖xk − x‖X = 0. It is called weakly convergent if limk→∞ 〈F, xk〉 = 0
for all F ∈ X∗. An embedding X ↪→ Y is compact if and only if weakly con-
vergent sequences in X are mapped to strongly convergent sequences in Y .
Note that each set which is closed with respect the weak topology (con-
vergence) is also closed with respect to the strong topology (convergence).
The converse implication is in general false. However it holds for convex sets
(cf. [58, Theorem III.7]).

Let (X, ‖·‖X) be a Banach space and A ⊂ X a set. The closure of A with

respect to the norm ‖·‖X , A
‖·‖X , is the smallest closed set Y that contains A.

The closure of a set A is denoted by A when the space is clear from the
context.
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Measures and Covering Theorems

We denote by (A,Σ, μ) a measure space (cf. [184]). If not stated otherwise μ
will always be a σ-finite, complete measure on Σ with μ(A) > 0. If there is
no danger of confusion we omit Σ from the notation. We use the usual con-
vention of identifying two μ-measurable functions on A if they agree almost
everywhere, i.e. if they agree up to a set of μ-measure zero. The characteristic
function of a set E ⊂ A will be denoted by χE .

A measure μ is called doubling if balls have finite and positive measure
and there is a constant c � 1 such that

μ(2B) � c μ(B) for all balls B.

A measure μ is called atom-less if for any measurable set A with μ(A) > 0
there exists a measurable subset A′ of A such that μ(A) > μ(A′) > 0. For
a sequence (Ak) of sets we write Ak ↗ A if Ak ⊂ Ak+1 for k ∈ N and
A =

⋃∞
k=1 Ak. We write Ak ↘ A if Ak ⊃ Ak+1 for k ∈ N and A =

⋂∞
k=1 Ak.

The Lebesgue integral of a Lebesgue-measurable function f : A → K,
where K is either R or C, is defined in the standard way (cf. [334, Chap. 1])
and denoted by

´
A
f dμ. If there is no danger of confusion we will write

“measurable” instead of “μ-measurable”, “almost everywhere” instead of
“μ-almost everywhere”, etc. The most prominent example for our purposes
are: A = Ω is an open subset of R

n, μ is the n-dimensional Lebesgue measure,
and Σ is the σ-algebra of Lebesgue-measurable subsets of Ω; or A = Z

n, μ is
the counting measure, and Σ is the power set of Z

n. In the former case the
Lebesgue integral will be denoted by

´
Ω
f dx and the measure of a measurable

subset E ⊂ Ω will be denoted by |E|.
We need some covering theorems. We state the basic covering theorem in

metric measure spaces. The stronger Besicovitch covering theorem does not
hold in general in metric measure spaces and hence it is stated in R

n. For
the proof for the basic covering theorem see for example [217, Theorem 1.2]
or [129, Theorem 1, p. 27] and for the Besicovitch covering theorem [129,
Theorem 2, p. 30] or [288, Theorem 2.7, p. 30].

Theorem 1.4.5 (Basic covering theorem). Let F be any collection of
balls in a metric space with

sup{diam(B) : B ∈ F} < ∞.

Then there exists a countable subcollection G of pair-wise disjoint balls in F
such that

⋃

B∈F
B ⊂

⋃

B∈G
5B.
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Theorem 1.4.6 (Besicovitch covering theorem). Let A be a bounded
set in R

n. For each x ∈ A a cube (or ball) Qx ⊂ R
n centered at x is

given. Then one can choose, from among the given sets {Qx}x∈A a sequence
{Qj}j∈N

(possibly finite) such that:

(a) The set A is covered by the sequence, A ⊂ ∪j∈NQj.
(b) No point of R

n is in more than θn sets of the sequence {Qj}j∈N
, i.e.

∞∑

j=1

χQj � θn.

(c) The sequence {Qj}j∈N
can be divided in ξn families of disjoint sets.

The numbers θn and ξn depend only on the dimension n.

A proof for the existence of a partition of unity can be found for example
in [11, Theorem 3.14, p. 51] or in [280, Theorem 1.44, p. 25].

Theorem 1.4.7 (Partition of unity). Let U be a family of open sets
which cover a closed set E ⊂ R

n. Then there exists a family F of functions
in C∞

0 (Rn) with values in [0, 1] such that:

(a)
∑

f∈F f(x) = 1 for every x ∈ E.
(b) For each function f ∈ F , there exists U ∈ U such that spt f ⊂ U .
(c) If K ⊂ E is compact, then spt f ∩K �= ∅ for only finitely many f ∈ F .

The family F is said to be a partition of unity of E subordinate to the open
covering U .

Integration

Let Ω ⊂ R
n be an open set equipped with the n-dimensional Lebesgue mea-

sure. For s ∈ [1,∞] and k ∈ N, we denote by Ls(Ω) and W k,s(Ω) the classical
Lebesgue and Sobolev spaces, respectively (cf. [11]). If there is no danger of
confusion we omit the set Ω and abbreviate Ls and W k,s. The gradient of a
Sobolev function u, i.e. a function belonging to some Sobolev space, is given by
∇u := (∂1u, . . . , ∂nu), where ∂iu, i = 1, . . . , n, are the weak partial derivatives
of u. We also use the notation ∂u

∂xi
for ∂iu. If u ∈ W k,s(Ω) we denote higher

order weak derivatives by ∂αu := ∂α1+...+αnu
∂α1x1···∂αnxn , where α is a multi-index with

|α| � k. By ∇ku we denote the tensor consisting of all weak derivatives of u
of order k, i.e. ∇ku := (∂αu)|α|=k. In most cases we do not distinguish in the
notation of the function spaces and the corresponding norms between scalar,
vector-valued or tensor-valued functions.

By L1
loc(Ω) we denote the space of all locally integrable functions f , i.e.

f ∈ L1(U) for all open U⊂⊂Ω. We equip L1
loc by the initial topology of those
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embeddings, i.e. the coarsest topology such that L1
loc(Ω) ↪→ L1(U) for every

open U⊂⊂Ω. Analogously, we define W k,1
loc (Ω) for k ∈ N to consist of the

functions such that f ∈ W k,1(U) for all open U⊂⊂Ω. We equip W k,1
loc (Ω)

with the initial topology induced by the embeddings W k,1
loc (Ω) ↪→ W k,1(U)

for all open U⊂⊂Ω. A function f : Ω → K has compact support if there exists
a compact set K ⊂ Ω such that f = fχK . For an exponent s ∈ [1,∞] the
dual exponent s′ is defined by 1

s + 1
s′ = 1, with the usual convention 1

∞ = 0.
We denote by C(Ω) the space of uniformly continuous functions equipped

with the supremum norm ‖f‖∞ = supx∈Ω |f(x)|. By Ck(Ω), k ∈ N, we
denote the space of functions f , such ∂αf ∈ C(Ω) for all |α| � k. The space
is equipped with the norm sup|α|�k ‖∂αf‖∞. The set of smooth functions in
Ω is denoted by C∞(Ω)—it consists of functions which are continuously dif-
ferentiable arbitrarily many times. The set C∞

0 (Ω) is the subset of C∞(Ω)
of functions which have compact support. We equip C∞

0 (Ω) with the ini-
tial topology of the embeddings C∞

0 (Ω) ↪→ Ck(U) for all k ∈ N0 and open
U⊂⊂Ω.

A standard mollifier is a non-negative, radially symmetric and radi-
ally decreasing function ψ ∈ C∞

0 (B(0, 1)) with
´
B(0,1) ψ dx = 1. We call

{ψε} a standard mollifier family (on R
n) if ψ is a standard mollifier and

ψε(ξ) := ε−nψ(ξ/ε). By a modulus of continuity we mean an increasing,
continuous, concave function ω : R� → R� with ω(0) = 0. A real- or complex-
valued function f has modulus of continuity ω if |f(x) − f(y)| � ω(|x − y|)
for all x and y in the domain of f .

In the case of a measure space (A, μ) we denote by Ls(A, μ), s ∈ [1,∞],
the corresponding Lebesgue space. A sequence (fi) of μ-measurable functions
is said to converge in measure to the function f if to every ε > 0 there exists
a natural number N such that

μ
{
x ∈ A : |fi(x) − f(x)| � ε

}
� ε

for all i � N . For μ(A) <∞, it is well known that if fi → f μ-almost every-
where, then fi → f in measure; on the other hand limi→∞

´
A
|fi − f | dμ = 0

does not imply convergence in measure unless we pass to an appropriate
subsequence.

Theorem 1.4.8. Let (A,Σ, μ) be a σ-finite, complete measure space. Assume
that f and (fi) are in L1(A, μ), μ(A) < ∞ and

lim
i→∞

ˆ

A

|fi − f | dμ = 0.

Then there exists a subsequence (fik) such that fik → f μ-almost everywhere.

We write ak ↗ a if (ak) is a sequence increasing to a. We frequently use
the following convergence results, which can be found e.g. in [11, 184]:



16 1 Introduction

Theorem 1.4.9 (Monotone convergence). Let (A,Σ, μ) be a σ-finite,
complete measure space. Let (fk) be a sequence of μ-measurable functions
with fk ↗ f μ-almost everywhere and

´
A f1 dμ > −∞. Then

lim
n→∞

ˆ

A

fk dμ =
ˆ

A

f dμ.

Theorem 1.4.10 (Dominated convergence). Let (A,Σ, μ) be a σ-finite,
complete measure space. Let (fk) be a sequence of μ-measurable functions
with fk → f μ-almost everywhere. If there exists a function h ∈ L1(A, μ)
such that |fk| � h μ-almost everywhere for all k ∈ N, then f ∈ L1(A, μ) and

lim
n→∞

ˆ

A

fk dμ =
ˆ

A

f dμ.

Lemma 1.4.11 (Fatou). Let (A,Σ, μ) be a σ-finite, complete measure
space. Let (fk) be a sequence of μ-measurable functions and let g ∈ L1(A, μ).
If fk � g μ-almost everywhere for all n ∈ N, then

ˆ

A

lim inf
n→∞ fk dμ � lim inf

n→∞

ˆ

A

fk dμ.

Let (fn) ⊂ Ls(A, μ) and set λ(E) := lim supn→∞
´
E
|fn|s dμ, for E ⊂ A

measurable. We say that (fn) is equi-integrable if:

1. For all ε > 0 there exists a δ > 0 with λ(E) < ε for all measurable E
with μ(E) < δ.

2. For all ε > 0 there exists a measurable set A0 with μ(A0) < ∞ and
λ(A \A0) < ε.

Theorem 1.4.12 (Vitali). Let (A,Σ, μ) be a σ-finite, complete measure
space. Let 1 � s < ∞. Let the sequence (fn) ⊂ Ls(A, μ) converge
μ-almost everywhere to a μ-measurable function f . Then f ∈ Ls(A, μ) and
‖fn − f‖Ls(A,μ) → 0 if and only if (fn) is equi-integrable.

Recall that ν is absolutely continuous with respect to μ if ν(E) = 0 for all
E ∈ Σ with μ(E) = 0. Another important result is the following (cf. [184]):

Theorem 1.4.13 (Radon–Nikodym). Let (A,Σ, μ) be a finite measure
space and ν be a finite, signed measure on (A,Σ). If ν is absolutely continuous
with respect to μ, then there exists a unique function g ∈ L1(A, μ) such that

ν(E) =
ˆ

E

g dμ for all E ∈ Σ.
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Theorem 1.4.14 (Jensen’s inequality). Let (A,Σ, μ) be a finite measure
space with μ(A) = 1. If f is a real function in L1(A, μ), a < f(x) < b for all
x ∈ A, and if ϕ is convex on (a, b), then

ϕ

( ˆ

A

f dμ

)

�
ˆ

A

ϕ ◦ f dμ.

The classical sequence spaces ls(Zn), s ∈ [1,∞], are defined as the Lebesgue
spaces Ls(Zn, μ) with μ being the counting measure. It is well known that
for s, q ∈ [1,∞] the embedding ls(Zn) ↪→ lq(Zn) holds if and only if s � q.

The space of distributions D′(Ω) is a superset of the space L1
loc(Ω) of

locally integrable functions. To state the definition, we first equip the space
D(Ω) := C∞

0 (Ω) with such a topology that fk → f if and only if

⋃

k

spt fk ⊂⊂ Ω and lim
k→∞

sup
Ω

∣
∣
∣∂α(fk − f)

∣
∣
∣ = 0

for every multi-index α. Then D′(Ω) is the dual of D(Ω), i.e. it consists of all
bounded linear functionals on D(Ω). If f ∈ L1

loc(Ω), then Tf ∈ D′(Ω), where

〈Tf , ϕ〉 :=
ˆ

Ω

f(x)ϕ(x) dx

for ϕ ∈ D(Ω). For simplicity, one may denote this by 〈f, ϕ〉 and write
L1

loc(Ω) ⊂ D′(Ω). If f ∈ D′(Ω), then its distributional derivative is the
distribution g satisfying

〈g, ϕ〉 = −〈f, ϕ′〉

for all ϕ ∈ D(Ω). Note that this corresponds to partial integration if
f ∈ C1(Ω).
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Lebesgue Spaces



Chapter 2

A Framework for Function Spaces

In this chapter we study modular spaces and Musielak–Orlicz spaces which
provide the framework for a variety of different function spaces, including clas-
sical (weighted) Lebesgue and Orlicz spaces and variable exponent Lebesgue
spaces. Although our aim mainly is to study the latter, it is important to see
the connections between all of these spaces. Many of the results in this chap-
ter can be found in a similar form in [307], but we include them to make this
exposition self-contained. Research in the field of Musielak–Orlicz functions
is still active and we refer to [69] for newer results and references.

Our first two sections deal with the more general case of semimodu-
lar spaces. Then we move to basic properties of Musielak–Orlicz spaces
in Sect. 2.3. Sections 2.4 and 2.5 deal with the uniform convexity and the
separability of the Musielak–Orlicz spaces. In Sects. 2.6 and 2.7 we study
dual spaces, and a related concept, associate spaces. Finally, we consider
embeddings in Sect. 2.8.

2.1 Basic Properties of Semimodular Spaces

For the investigation of weighted Lebesgue spaces it is enough to stay in
the framework of Banach spaces. In particular, the space and its topology
is described in terms of a norm. However, in the context of Orlicz spaces
this is not the best way. Instead, it is better to start with the so-called
modular which then induces a norm. In the case of classical Lebesgue spaces
the modular is

´
|f(x)|p dx compared to the norm (

´
|f(x)|p dx)

1
p . In some

cases the modular has certain advantages compared to the norm, since it
inherits all the good properties of the integral. The modular spaces defined
below capture this advantage.

We are mainly interested in vector spaces defined over R. However, there is
no big difference in the definition of real valued and complex valued modular
spaces. To avoid a double definition we let K be either R or C.

The function � is said to be left-continuous if the mapping λ �→ �(λx) is
left-continuous on [0,∞) for every x ∈ X , i.e. limλ→1− �(λx) = �(x). Here

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 2,
c© Springer-Verlag Berlin Heidelberg 2011
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a → b− means that a tends to b from below, i.e. a < b and a → b; a → b+ is
defined analogously.

Definition 2.1.1. Let X be a K-vector space. A function � : X → [0,∞] is
called a semimodular on X if the following properties hold.

(a) �(0) = 0.
(b) �(λx) = �(x) for all x ∈ X,λ ∈ K with |λ| = 1.
(c) � is convex.
(d) � is left-continuous.
(e) �(λx) = 0 for all λ > 0 implies x = 0.

A semimodular � is called a modular if

(f) �(x) = 0 implies x = 0.

A semimodular � is called continuous if

(g) the mapping λ �→ �(λx) is continuous on [0,∞) for every x ∈ X .

Remark 2.1.2. Note that our semimodulars are always convex, in contrast
to some other sources.

Before we proceed let us provide a few examples.

Definition 2.1.3. Let (A,Σ, μ) be a σ-finite, complete measure space. Then
by L0(A, μ) we denote the space of all K-valued, μ-measurable functions on
A. Two functions are identical, if they agree almost everywhere.

In the special case that μ is the n-dimensional Lebesgue measure, Ω is a
μ-measurable subset of R

n, and Σ is the σ-algebra of μ-measurable subsets
of Ω we abbreviate L0(Ω) := L0(Ω, μ).

Example 2.1.4.

(a) If 1 � p < ∞, then

�p(f) :=
ˆ

Ω

|f(x)|p dx

defines a continuous modular on L0(Ω).
(b) Let ϕ∞(t) := ∞ · χ(1,∞)(t) for t � 0, i.e. ϕ∞(t) = 0 for t ∈ [0, 1] and

ϕ∞(t) = ∞ for t ∈ (1,∞). Then

�∞(f) :=
ˆ

Ω

ϕ∞(|f(x)|) dx

defines a semimodular on L0(Ω) which is not continuous.
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(c) Let ω ∈ L1
loc(Ω) with ω > 0 almost everywhere and 1 � p < ∞. Then

�(f) :=
ˆ

Ω

|f(x)|pω(x) dx

defines a continuous modular on L0(Ω).
(d) The integral expression

�(f) :=
ˆ

Ω

exp(|f(x)|) − 1 dx

defines a modular on L0(Ω). It is not continuous: if f ∈ L2(Ω) is such
that |f | > 2 and |f | �∈ Lp(Ω) for any p > 2, then �(λ log |f |) = ∞ for
λ > 2 but �(2 log |f |) < ∞.

(e) If 1 � p < ∞, then

�p
(
(xj)
)

:=
∞∑

j=0

|xj |p dx

defines a continuous modular on R
N.

(f) For f ∈ L0(Ω) we define the decreasing rearrangement,
f∗ : [0,∞) → [0,∞) by the formula f∗(s) := sup{t : | |f | > t| > s}. For
1 � q � p < ∞ the expression

�(f) :=

∞̂

0

|f∗(sp/q)|q ds

defines a continuous modular on L0(Ω).

Let � be a semimodular on X . Then by convexity and non-negative of �
and �(0) = 0 it follows that λ �→ �(λx) is non-decreasing on [0,∞) for every
x ∈ X . Moreover,

�(λx) = �(|λ|x) � |λ| �(x) for all |λ| � 1,
�(λx) = �(|λ|x) � |λ| �(x) for all |λ| � 1.

(2.1.5)

In the definition of a semimodular or modular the set X is usually chosen to
be larger than necessary. The idea behind this is to choose the same large set
X for different modulars like in our Examples 2.1.4(a), (b), (c), (d) and (f).
Then depending on the modular we pick interesting subsets from this set X .

Definition 2.1.6. If � be a semimodular or modular on X , then

X� :=
{
x ∈ X : lim

λ→0
�(λx) = 0

}
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is called a semimodular space or modular space, respectively. The limit λ→ 0
takes place in K.

Since �(λx) = �(|λ| x) it is enough to require limλ→0 �(λx) with λ ∈ (0,∞).
Due to (2.1.5) we can alternatively define X� by

X� :=
{
x ∈ X : �(λx) < ∞ for some λ > 0

}
,

since for λ′ < λ we have by (2.1.5) that

�(λ′x) = �
(λ′

λ
λx
)

� λ′

λ
�(λx) → 0

as λ′ → 0.
In the next theorem, like elsewhere, the infimum of the empty set is by

definition infinity.

Theorem 2.1.7. Let � be a semimodular on X. Then X� is a normed
K-vector space. The norm, called the Luxemburg norm, is defined by

‖x‖� := inf
{
λ > 0: �

(1
λ
x
)

� 1
}
.

Proof. We begin with the vector space property of X�. Let x, y ∈ X� and
α ∈ K \ {0}. From the definition of X� and �(αx) = �(|α|x) it is clear that
αx ∈ X�. By the convexity of � we estimate

0 � �
(
λ(x+ y)

)
� 1

2�(2λx) + 1
2�(2λy) λ→0−−−→ 0.

Hence, x+ y ∈ X�. It is clear that 0 ∈ X�. This proves that X� is a K-vector
space.

It is clear that ‖x‖� < ∞ for all x ∈ X� and ‖0‖� = 0. For α ∈ K we have

‖αx‖� = inf
{
λ > 0: �

(αx

λ

)
� 1
}

= |α| inf
{
λ > 0: �

( 1
λ
x
)

� 1
}

= |α| ‖x‖�.

Let x, y ∈ X and u > ‖x‖� and v > ‖y‖�. Then �(x/u) � 1 and �(y/v) � 1,
hence, by the convexity of �,

�
(x+ y

u+ v

)
= �
( u

u+ v

x

u
+

v

u+ v

y

v

)
� u

u+ v
�
(x

u

)
+

v

u+ v
�
(y

v

)
� 1.

Thus ‖x+ y‖� � u+ v, and we obtain ‖x+ y‖� � ‖x‖� + ‖y‖�.
If ‖x‖� = 0, then �(αx) � 1 for all α > 0. Therefore,

�(λx) � β�
(λx

β

)
� β
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for all λ > 0 and β ∈ (0, 1], where we have used (2.1.5). This implies �(λx) = 0
for all λ > 0. Thus x = 0. ��

The norm in the previous theorem is more generally known as the
Minkowski functional of the set {x ∈ X : �(x) � 1}, see Remark 2.1.16. The
Minkowski functional was first introduced by Kolmogorov in [253] long before
the appearance of the Luxemburg norm. Nevertheless, we use the name
“Luxemburg norm” as it is customary in the theory of Orlicz spaces.

In the following example we use the notation of Example 2.1.4.

Example 2.1.8 (Classical Lebesgue spaces). Let 1 � p < ∞. Then the
corresponding modular space (L0(Ω))�p coincides with the classical Lebesgue
space Lp, i.e.

‖f‖p := ‖f‖�p =
( ˆ

Ω

|f(x)|p dx
) 1
p

.

Similarly, the corresponding semimodular space (L0(Ω))�∞ coincides with the
classical Lebesgue space L∞, i.e.

‖f‖∞ := ‖f‖�∞ = ess sup
x∈Ω

|f(x)|.

The norm ‖·‖� defines our standard topology on X�. So for xk, x ∈ X� we
say that xk converges strongly or in norm to x if ‖xk − x‖� → 0. In this case
we write xk → x. The next lemma characterizes this topology in terms of the
semimodular. Here it suffices to study null-sequences.

Lemma 2.1.9. Let � be a semimodular on X and xk ∈ X�. Then xk → 0
for k → ∞ if and only if limk→∞ �(λxk) = 0 for all λ > 0.

Proof. Assume that ‖xk‖� → 0 and λ > 0. Then ‖K λxk‖� < 1 for all K > 1
and large k. Thus �(K λxk) � 1 for large k, hence

�(λxk) � 1
K
�(K λxk) � 1

K

for large k, by (2.1.5). This implies �(λxk) → 0.
Assume now that �(λxk) → 0 for all λ > 0. Then �(λxk) � 1 for large k.

In particular, ‖xk‖� � 1/λ for large k. Since λ > 0 was arbitrary, we get
‖xk‖� → 0. In other words xk → 0. ��

Apart from our standard topology on X�, which was induced by the
norm, it is possible to define another type of convergence by means of the
semimodular.
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Definition 2.1.10. Let � be a semimodular on X and xk, x ∈ X�. Then we
say that xk is modular convergent (�-convergent) to x if there exists λ > 0
such that �(λ(xk − x)) → 0. We denote this by xk

�→ x.

It is clear from Lemma 2.1.9 that modular convergence is weaker than norm
convergence. Indeed, for norm convergence we have limk→∞ �(λ(xk − y)) = 0
for all λ > 0, while for modular convergence this only has to hold for some
λ> 0.

For some semimodular spaces modular convergence and norm convergence
coincide and for others they differ:

Lemma 2.1.11. Let X� be a semimodular space. Then modular conver-
gence and norm convergence are equivalent if and only if �(xk) → 0 implies
�(2xk) → 0.

Proof. “⇒”: Let modular convergence and norm convergence be equivalent
and let �(xk) → 0 with xk ∈ X�. Then xk → 0 and by Lemma 2.1.9 it follows
that �(2xk) → 0.

“⇐”: Let xk ∈ X� with �(xk) → 0. We have to show that �(λxk) → 0
for all λ > 0. For fixed λ > 0 choose m ∈ N such that 2m � λ. Then by
repeated application of the assumption we get limk→∞ �(2mxk) = 0. Then
0 � limk→∞ �(λxk) � λ2−m limk→∞ �(2mxk) = 0 by (2.1.5). This proves
that xk → 0. ��

If either of the equivalent conditions in the previous lemma hold, then we
say that the semimodular satisfies the weak Δ2-condition.

If � is a semimodular that satisfies the weak Δ2-condition, then � is already
a modular. Indeed, if �(x) = 0, then the constant sequence x is modular
convergent to 0 and therefore convergent to 0 with respect to the norm, but
this implies x = 0.

Lemma 2.1.12. Let be a semimodular on X that satisfies the weak Δ2-
condition. Then for every ε > 0 there exists δ > 0 such that �(f) � δ implies
‖f‖� � ε.

Proof. This is an immediate consequence of the equivalence of modular and
norm convergence. ��

Example 2.1.13. The weak Δ2-condition of modulars is satisfied in Exam-
ples 2.1.4 (a) and (c). Examples 2.1.4 (b) and (d) do not satisfy this
condition.

Let us study the closed and open unit ball of X�. The left-continuity of � is
of special significance. The following lemma is of great technical importance.
We will invoke it by mentioning the unit ball property, or, when more clarity
is needed, the norm-modular unit ball property.
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Lemma 2.1.14 (Norm-modular unit ball property). Let � be a semi-
modular on X. Then ‖x‖� � 1 and �(x) � 1 are equivalent. If � is continuous,
then also ‖x‖� < 1 and �(x) < 1 are equivalent, as are ‖x‖� = 1 and �(x) = 1.

Proof. If �(x) � 1, then ‖x‖� � 1 by definition of ‖·‖�. If on the other hand
‖x‖� � 1, then �(x/λ) � 1 for all λ > 1 . Since � is left-continuous it follows
that �(x) � 1.

Let � be continuous. If ‖x‖� < 1, then there exists λ < 1 with �(x/λ) � 1.
Hence by (2.1.5) it follows that �(x) � λ�(x/λ) � λ < 1. If on the other
hand �(x) < 1, then by the continuity of � there exists γ > 1 with �(γx) < 1.
Hence ‖γx‖� � 1 and ‖x‖� � 1/γ < 1. The equivalence of ‖x‖� = 1 and
�(x) = 1 now follows immediately from the cases “� 1” and “< 1”. ��

A simple example of a semimodular which is left-continuous but not con-
tinuous is given by �∞(t) = ∞ · χ(1,∞)(t) on X = R. This is a semimodular
on R and ‖x‖�∞ = |x|.

Corollary 2.1.15. Let � be a semimodular on X and x ∈ X�.

(a) If ‖x‖� � 1, then �(x) � ‖x‖�.
(b) If 1 < ‖x‖�, then ‖x‖� � �(x).
(c) ‖x‖� � �(x) + 1.

Proof. (a) The claim is obvious for x = 0, so let us assume that 0 < ‖x‖� � 1.
By the unit ball property (Lemma 2.1.14) and ‖x/‖x‖�‖� = 1 it fol-
lows that �(x/‖x‖�) � 1. Since ‖x‖� � 1, it follows from (2.1.5) that
�(x)/‖x‖� � 1.

(b) Assume that ‖x‖� > 1. Then �(x/λ) > 1 for 1 < λ < ‖x‖� and by (2.1.5)
it follows that 1 < �(x)/λ. Since λ was arbitrary, �(x) � ‖x‖�.

(c) This follows immediately from (b). ��

Remark 2.1.16. Let K := {x ∈ X� : �(x) � 1}. Then the unit ball property
states that K = B(0, 1), the closed unit ball with respect to the norm. This
provides an alternative proof of the fact that ‖·‖� is a norm. Indeed, K is a
balanced, i.e. λK := {λx : x ∈ K} ⊂ K for all |λ| � 1, convex set. Moreover,
by definition of X� the set K is absorbing for X�, i.e.

⋃
λ>0(λK) = X�.

Therefore, the Minkowski functional of K, namely x �→ inf {λ > 0: 1
λx ∈ K},

defines a norm on X�. But this functional is exactly ‖·‖� which is therefore
a norm on X�.

We have seen in Remark 2.1.16 that {x ∈ X� : �(x) � 1} is closed. This
raises the question whether {x ∈ X : �(x) � α} is closed for every α ∈ [0,∞).
This is equivalent to the lower semicontinuity of � on X�, hence the next
theorem gives a positive answer.
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Theorem 2.1.17. Let � be a semimodular on X. Then � is lower semicon-
tinuous on X�, i.e.

�(x) � lim inf
k→∞

�(xk)

for all xk, x ∈ X� with xk → x (in norm) for k → ∞.

Proof. Let xk, x ∈ X� with xk → x for k → ∞. We begin with the case
�(x) < ∞. By Lemma 2.1.9, limk→∞ �(γ(x − xk)) = 0 for all γ > 0. Let
ε ∈ (0, 1

2 ). Then, by convexity of �,

�
(
(1 − ε)x

)
= �

(
1
2
x+

1 − 2ε
2

(x − xk) +
1 − 2ε

2
xk

)

� 1
2
�(x) +

1
2
�
(

(1 − 2ε)(x− xk) + (1 − 2ε)xk
)

� 1
2
�(x) +

2ε
2
�

(
1 − 2ε

2ε
(x− xk)

)

+
1 − 2ε

2
�(xk).

We pass to the limit k → ∞:

�
(
(1 − ε)x

)
� 1

2
�(x) +

1 − 2ε
2

lim inf
k→∞

�(xk).

Now letting ε → 0+ and using the left-continuity of �, we get

�
(
x
)

� 1
2
�(x) +

1
2

lim inf
k→∞

�(xk).

Since �(x) < ∞, we get �(x) � lim infk→∞ �(xk). This completes the proof
in the case �(x) <∞.

Assume now that x ∈ X� with �(x) = ∞. If lim infk→∞ �(xk) = ∞,
then there is nothing to show. So we can assume lim infk→∞ �(xk) < ∞.
Let λ0 := sup {λ > 0: �(λx) <∞}. Since x ∈ X�, we have λ0 > 0. Moreover,
�(x) =∞ implies λ0 � 1. For all λ∈ (0, λ0) the inequality �(λx) < ∞ holds, so

�(λx) � lim inf
k→∞

�(λxk) � lim inf
k→∞

�(xk)

for all λ ∈ (0, λ0) by the first part of the proof. The left-continuity of � implies
that

�(λ0x) � lim inf
k→∞

�(xk).

If λ0 = 1, then the proof is finished. Finally we show, by contradiction, that
λ0 �∈ (0, 1). So let λ0 ∈ (0, 1). Choose λ1 ∈ (λ0, 1) and α ∈ (0, 1) such that

λ1 − λ0

λ0
+ α+ λ0 = 1.
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The convexity of � implies

�(λ1x) = �

(

(λ1 − λ0)x + λ0(x− xk) + λ0xk

)

� λ1 − λ0

λ0
�(λ0x) + α�

(
λ0

α
(x− xk)

)

+ λ0�(xk).

We pass to the limit k → ∞:

�(λ1x) � λ1 − λ0

λ0
�(λ0x) + λ0 lim inf

k→∞
�(xk) � (1 − α) lim inf

k→∞
�(xk).

Since lim infk �(xk) < ∞, we get �(λ1x) < ∞. But this and λ1 > λ0 contra-
dict the definition of λ0. ��

Remark 2.1.18. It follows from Theorem 2.1.17 that the sets
{x ∈ X : �(x) � α} are closed for every α ∈ [0,∞). Since these sets are con-
vex, it follows that they are also closed with respect to the weak topology
of X� (cf. Sect. 1.4, Functional analysis).

Remark 2.1.19. Let � be a semimodular on X . Then

|||x|||� := inf
λ>0

λ

(

1 + �
( 1
λ
x
))

defines a norm on X� and

‖x‖� � |||x|||� � 2‖x‖�.

This norm is called the Amemiya norm. For a proof see [307].

2.2 Conjugate Modulars and Dual Semimodular
Spaces

The dual space of a normed space X is the set of all linear, bounded func-
tionals from X to K. It is denoted by X∗. It is well known that X∗ equipped
with the norm

‖x∗‖X∗ := sup
‖x‖X�1

|〈x∗, x〉|

is a Banach space. Here we use the notation 〈x∗, x〉 := x∗(x). The study of
the dual of X is a standard tool to get a better understanding of the space X
itself. In this section we examine the dual space of X�.
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Lemma 2.2.1. Let � be a semimodular on X. A linear functional x∗ on X�

is bounded with respect to ‖·‖� if and only if there exists γ > 0 such that for
every x ∈ X�

|〈x∗, x〉| � γ
(
�(x) + 1

)
.

Proof. If x∗ ∈ X∗
� and x ∈ X�, then 〈x∗, x〉 � ‖x∗‖X∗

�
‖x‖X� �

‖x∗‖X∗
�
(1 + �(x)) by Corollary 2.1.15. Assume conversely that the inequality

holds. Then
∣
∣
∣
〈
x∗,

x

‖x‖� + ε

〉∣
∣
∣ � γ

(

�
( x

‖x‖� + ε

)
+ 1
)

� 2γ

for every ε > 0, hence ‖x∗‖X∗
�

� 2γ. ��

Definition 2.2.2. Let � be a semimodular on X . Then by X∗
� we denote the

dual space of (X�, ‖·‖�). Furthermore, we define �∗ : X∗
� → [0,∞] by

�∗(x∗) := sup
x∈X�

(
|〈x∗, x〉| − �(x)

)
.

We call �∗ the conjugate semimodular of �.

Note the difference between the spaces X∗
� and X�∗ : the former is the dual

space of X�, whereas the latter is the semimodular space defined by �∗.
By definition of the functional �∗ we have

|〈x∗, x〉| � �(x) + �∗(x∗) (2.2.3)

for all x ∈ X� and x∗ ∈ X∗
� . This inequality is a generalized version of the

classical Young inequality.

Theorem 2.2.4. Let � be a semimodular on X. Then �∗ is a semimodular
on X∗

� .

Proof. It is easily seen that �∗(0) = 0, �∗(λx∗) = �∗(x∗) for |λ| = 1, and
�∗(x∗) � 0 for every x∗ ∈ X∗

� . Let x∗0, x∗1 ∈ X∗
� and θ ∈ (0, 1). Then

�∗
(
(1 − θ)x∗0 + θx∗1

)
= sup

x∈X

(∣
∣
〈
(1 − θ)x∗0 + θx∗1, x

〉∣
∣− �(x)

)

� (1 − θ) sup
x∈X

(∣
∣
〈
x∗0, x

〉∣
∣− �(x)

)

+ θ sup
x∈X

(∣
∣
〈
x∗1, x

〉∣
∣− �(x)

)

= (1 − θ)�∗(x∗0) + θ�∗(x∗1).

Finally, let �∗(λx∗) = 0 for every λ > 0. For x ∈ X� choose η > 0 such that
�(ηx) < ∞. Then by (2.2.3)
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λη |〈x∗, x〉| � �(ηx) + �∗(λx∗) = �(ηx).

Taking λ → ∞ we obtain |〈x∗, x〉| = 0. Hence x∗ = 0. It remains to show
that �∗ is left-continuous. For λ → 1− and x∗ ∈ X∗

� we have

lim
λ→1−

�∗(λx∗) = lim
λ→1−

sup
x∈X

(
|〈λx∗, x〉| − �(x)

)

= sup
0<λ<1

sup
x∈X

(
|λ| |〈x∗, x〉| − �(x)

)

= sup
x∈X

(
|〈x∗, x〉| − �(x)

)
= �∗(x).

Thus �∗ is left-continuous. ��

For a semimodular � on X we have defined the conjugate semimodular �∗

on X∗
� . By duality we can proceed further and define �∗∗ the conjugate semi-

modular of �∗ on the bidual X∗∗
� := (X∗

� )∗. The functional �∗∗ is called the
biconjugate semimodular of � on X∗∗

� . Using the natural injection ι of X� into
its bidual X∗∗

� , the mapping x �→ �∗∗(ιx) defines a semimodular on X�, which
we call the biconjugate semimodular of � on X�. For simplicity of notation it
is also denoted by �∗∗ neglecting the extra injection ι. In particular, we have

�∗∗(x) = sup
x∗∈X∗

�

(
|〈x∗, x〉| − �∗(x∗)

)
(2.2.5)

for all x ∈ X�. Certainly the formula is also valid for all x ∈ X∗∗
� , by the

definition of �∗∗ on X∗∗
� , if we interpret 〈x∗, x〉 as 〈x, x∗〉X∗∗

� ×X∗
�
.

Analogously to the fact that ι : X� → X∗∗
� is an isometry, it turns out

that the biconjugate �∗∗ and � coincide on X�.

Theorem 2.2.6. Let � be a semimodular on X. Then �∗∗ = � on X�.

Proof. Exactly as in the proof of Theorem 2.2.4 we can prove that �∗∗ is a
semimodular on X�. By definition of �∗∗ and (2.2.3) we get for x ∈ X�

�∗∗(x) = sup
x∗∈X∗

�

(
|〈x∗, x〉| − �∗(x∗)

)

= sup
x∗∈X∗

� ,�
∗(x∗)<∞

(
|〈x∗, x〉| − �∗(x∗)

)

� sup
x∗∈X∗

� ,�
∗(x∗)<∞

(
�(x) + �∗(x∗) − �∗(x∗)

)

= �(x).

It remains to show �∗∗(x) � �(x). We prove this by contradiction. Assume to
the contrary that there exists x0 ∈ X� with �∗∗(x0) < �(x0). In particular,
�∗∗(x0) <∞. We define the epigraph of � by
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epi(�) :=
⋃

λ∈R

{
(x, γ) ∈ X� × R : γ � �(x)

}
.

Since � is convex and lower semicontinuous (Theorem 2.1.17), the set epi(�)
is convex and closed (cf. [58, Sect. I.3]). Moreover, due to �∗∗(x0) < �(x0)
the point (x0, �

∗∗(x0)) is not contained in epi(�). So by the Hahn–Banach
Theorem 1.4.2 there exists a functional on X� × R which strictly separates
epi(�) from (x0, �

∗∗(x0)). So there exist α, β ∈ R and x∗ ∈ X∗
� with

〈x∗, x〉 − β�(x) < α < 〈x∗, x0〉 − β�∗∗(x0)

for all x ∈ X�. The choice x = x0 and the estimate �∗∗(x0) < �(x0) imply
β > 0. We multiply by 1

β and get

〈x∗

β
, x
〉
− �(x) <

α

β
<
〈x∗

β
, x0

〉
− �∗∗(x0)

for all x ∈ X�. Due to (2.2.5) the right-hand side is bounded by �∗(x
∗
β ). Now,

taking the supremum on the left-hand side over x ∈ X� implies

�∗
(
x∗

β

)

� α

β
< �∗

(
x∗

β

)

.

This is the desired contradiction. ��

For two semimodulars �, κ on X we write � � κ if �(f) � κ(f) for every
f ∈ X .

Corollary 2.2.7. Let �, κ be semimodulars on X. Then � � κ if and only if
κ∗ � �∗.

Proof. If � � κ, then by definition of the conjugate semimodular follows
easily κ∗ � �∗. If however κ∗ � �∗, then �∗∗ � κ∗∗ and by Theorem 2.2.6
follows � � κ. ��

From Theorem 2.1.17 we already know that the modular � is lower semi-
continuous on X� with respect to convergence in norm. This raises the
question of whether � is also lower semicontinuous on X� with respect to
weak convergence. Let fk, f ∈ X�. As usual we say that fk converges weakly
to f if 〈g∗, fk〉 → 〈g∗, f〉 for all g∗ ∈ X∗

� . In this case we write fk ⇀ f .

Theorem 2.2.8. Let � be a semimodular on X, then the semimodular � is
weakly (sequentially) lower semicontinuous, i.e. if fk ⇀ f weakly in X�, then
�(f) � lim infk→∞ �(fk).

Proof. Let fk, f ∈ X� with fk ⇀ f . Then, by Theorem 2.2.6, � = �∗∗, which
implies



2.2 Conjugate Modulars and Dual Semimodular Spaces 33

�(f) = �∗∗(f) = sup
g∗∈X∗

�

(
|〈g∗, f〉| − �∗(g∗)

)

= sup
g∗∈X∗

�

(
lim
k→∞

|〈g∗, fk〉| − �∗(g∗)
)

� lim inf
k→∞

(
sup
g∗∈X∗

�

(
|〈g∗, fk〉| − �∗(g∗)

))

= lim inf
k→∞

�∗∗(fk)

= lim inf
k→∞

�(fk). ��

In the definition of �∗ the supremum is taken over all x ∈ X�. However, it
is possible to restrict this to the closed unit ball of X�.

Lemma 2.2.9. If � is a semimodular on X, then

�∗
(
x∗
)

= sup
x∈X�,‖x‖��1

(
|〈x∗, x〉| − �(x)

)
= sup

x∈X�,�(x)�1

(
|〈x∗, x〉| − �(x)

)

for x∗ ∈ X∗
� with ‖x∗‖X∗

�
� 1.

Proof. The equivalence of the suprema follows from the unit ball property
(Lemma 2.1.14). Let ‖x∗‖X∗

�
� 1. By the definition of the dual norm we have

sup
‖x‖�>1

(
|〈x∗, x〉| − �(x)

)
� sup

‖x‖�>1

(
‖x∗‖X∗

�
‖x‖� − �(x)

)

� sup
‖x‖�>1

(
‖x‖� − �(x)

)
.

If ‖x‖� > 1, then �(x) � ‖x‖� by Corollary 2.1.15, and so the right-hand side
of the previous inequality is non-positive. Since �∗ is defined as a supremum,
and is always non-negative, we see that the points with ‖x‖� > 1 do not
affect the supremum, and so the claim follows. ��

Since �∗ is a semimodular on X∗
� , it defines another norm ‖·‖�∗ on X∗

� .
We next want to compare it with the norm ‖·‖X∗

�
.

Theorem 2.2.10. If � be a semimodular on X, then for every x∗ ∈ X∗
�

‖x∗‖�∗ � ‖x∗‖X∗
�

� 2‖x∗‖�∗ .

Proof. We first prove the second inequality. By the unit ball property
(Lemma 2.1.14) the inequalities ‖x‖� � 1 and �(x) � 1 are equivalent. Hence,

∥
∥x∗
∥
∥
X∗
�

= sup
‖x‖��1

|〈x∗, x〉| � sup
�(x)�1

(
�∗(x∗) + �(x)

)
� �∗(x∗) + 1.
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If ‖x∗‖�∗ � 1, then �∗(x∗) � 1 by the unit ball property and we conclude
that ‖x∗‖X∗

�
� 2. The conclusion follows from this by a scaling argument : if

‖x∗‖�∗ > 0, then set y∗ := x∗/‖x∗‖�∗ . Since ‖y∗‖�∗ = 1, we conclude that
‖y∗‖X∗

�
� 2‖y∗‖�∗ . Multiplying by ‖x∗‖�∗ gives the result.

Assume now that ‖x∗‖X∗
�
�1. Then by Lemma 2.2.9 and Corollary 2.1.15 (c)

�∗
(
x∗
)

= sup
x∈X�,�(x)�1

(
|〈x∗, x〉| − �(x)

)
� sup
x∈X�,�(x)�1

(
‖x‖� − �(x)

)
� 1.

Hence, ‖x∗‖�∗ � 1. The scaling argument gives ‖x∗‖�∗ � ‖x∗‖X∗
�

��

Note the scaling argument technique used in the previous proof. It is one
of the central methods for dealing with these kind of spaces, and it will be
used often in what follows.

With the help of the conjugate semimodular �∗ it is also possible to define
yet another norm on X� by means of duality. Luckily this norm is equivalent
to the norm ‖·‖�.
Theorem 2.2.11. Let � be a semimodular on X. Then

‖x‖′� := sup
{
|〈x∗, x〉| : x∗ ∈ X∗

� , ‖x∗‖�∗ � 1
}

= sup
{
|〈x∗, x〉| : x∗ ∈ X∗

� , �
∗(x∗) � 1

}

defines a norm on X�. This norm is called the Orlicz norm. For all x ∈ X�

we have ‖x‖� � ‖x‖′� � 2‖x‖�.
Proof. By the unit ball property (Lemma 2.1.14) the two suprema are equal.
If ‖x‖� � 1 and ‖x∗‖�∗ � 1, then �(x) � 1 and �∗(x∗) � 1. Hence, |〈x, x∗〉| �
�(x) + �∗(x∗) � 2. Therefore ‖x‖′� � 2. A scaling argument proves ‖x‖′� �
2‖x‖�.

If ‖x‖′� � 1, then |〈x∗, x〉| � 1 for all x∗ ∈ X∗
� with ‖x∗‖�∗ � 1. In

particular, by Theorem 2.2.10 we have |〈x∗, x〉| � 1 for all x∗ ∈ X∗
� with

‖x∗‖X∗
�

� 1. Hence, Corollary 1.4.3 implies ‖x‖� � 1. We have thus shown

that ‖x‖� � ‖x‖′�. ��

2.3 Musielak–Orlicz Spaces: Basic Properties

In this section we start our journey towards more concrete spaces. Instead
of general semimodular spaces, we will consider spaces where the modular is
given by the integral of a real-valued function.

Definition 2.3.1. A convex, left-continuous function ϕ : [0,∞) → [0,∞]
with ϕ(0) = 0, limt→0+ ϕ(t) = 0, and limt→∞ ϕ(t) = ∞ is called a Φ-function.
It is called positive if ϕ(t) > 0 for all t > 0.
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In fact, there is a very close relationship between Φ-functions and semi-
modulars on R.

Lemma 2.3.2. Let ϕ : [0,∞) → [0,∞] and let � denote its even extension
to R, i.e. �(t) := ϕ(|t|) for all t ∈ R. Then ϕ is a Φ-function if and only if �
is a semimodular on R with X� = R. Moreover, ϕ is a positive Φ-function if
and only if � is a modular on R with X� = R.

Proof. “⇒”: Let ϕ be a Φ-function. Since limt→0+ ϕ(t) = 0, we have X� = R.
To prove that � is a semimodular on R it remains to prove that �(λt0) = 0
for all λ > 0 implies t0 = 0. So assume that �(λt0) = 0 for all λ > 0.
Since limt→∞ ϕ(t) = ∞, there exists t1 > 0 with ϕ(t1) > 0. Thus there
exists no λ > 0 such that t1 = λt0, which implies that t0 = 0. Hence �
is a semimodular. Assume that ϕ is additionally positive. If �(s) = 0, then
ϕ(|s|) = 0 and therefore s = 0. This proves that � is a modular.

“⇐”: Let � be a semimodular on R with X� = R. Since X� = R, there
exists t2 > 0 such that �(t2) < ∞. From (2.1.5) follows that
0 � ϕ(t) � t/t2ϕ(t2) for all t ∈ [0, t2], which implies that limt→0+ ϕ(t) = 0.
Since 1 �= 0, there exists λ > 0 such that �(λ · 1) �= 0. In particular there
exists t3 > 0 with ϕ(t3) > 0 and ϕ(kt3) � kϕ(t3) > 0 by (2.1.5) for all
k ∈ N. Since k is arbitrary, we get limt→∞ ϕ(t) = ∞. We have proved that
ϕ is a Φ-function. Assume additionally that � is a modular. In particular
�(t) = ϕ(|t|) = 0 implies t = 0. Hence by negation we get that t > 0 implies
ϕ(t) > 0, so ϕ is positive. ��

Let us remark that if ϕ is a Φ-function then on the set {t � 0: ϕ(t) <∞}
it has the form

ϕ(t) =

tˆ

0

a(τ) dτ, (2.3.3)

where a(t) is the right-derivative of ϕ(t) (see [330], Theorem 1.3.1). Moreover,
the function a(t) is non-increasing and right-continuous.

The following lemma is an easy consequence of the left-continuity, convex-
ity, and monotonicity of ϕ. However, it is also possible to use Lemma 2.3.2
and Theorem 2.1.17 to prove this.

Lemma 2.3.4. Every Φ-function is lower semicontinuous.

Example 2.3.5. Let 1 � p < ∞. Define

ϕp(t) :=
1
p
tp,

ϕ∞(t) := ∞ · χ(1,∞)(t)
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for all t � 0. Then ϕp and ϕ∞ are Φ-functions. Moreover, ϕp is continuous
and positive, while ϕ∞ is only left-continuous and lower semicontinuous but
not positive.

Remark 2.3.6. Let ϕ be a Φ-function. As a lower semicontinuous function
ϕ satisfies

ϕ
(

inf A) � inf ϕ(A)

for every non-empty set A ⊂ [0,∞). The reverse estimate might fail as the
example ϕ∞ with A := (1,∞) shows. However, for every λ > 1 we have

inf ϕ(A) � ϕ
(
λ inf A).

Indeed, if inf A = 0, then the claim follows by limt→0+ ϕ(t) = 0. If inf A > 0,
then we can find t ∈ A such that inf A � t � λ inf A. Now, the monotonicity
of ϕ implies inf ϕ(A) � ϕ(t) � ϕ

(
λ inf A).

Remark 2.3.7. Let ϕ be a Φ-function. Then, as a convex function, ϕ is
continuous if and only if ϕ is finite on [0,∞).

The following properties of Φ-functions are very useful:

ϕ(rt) � rϕ(t),
ϕ(st) � sϕ(t),

(2.3.8)

for any r ∈ [0, 1], s ∈ [1,∞) and t � 0 (compare with (2.1.5)). This is a
simple consequence of the convexity of ϕ and ϕ(0) = 0. Inequality (2.3.8)
further implies that ϕ(a) + ϕ(b) � a

a+bϕ(a+ b) + b
a+bϕ(a+ b) = ϕ(a+ b) for

a+ b > 0 for all a, b � 0 which combined with convexity yields

ϕ(a) + ϕ(b) � ϕ(a+ b) � 1
2 (ϕ(2a) + ϕ(2b)).

Although it is possible to define function spaces using Φ-functions, these
are not sufficiently general for our needs. In the case of variable exponent
Lebesgue spaces (see Chap. 3) we need our function ϕ to depend also on the
location in the space. So we need to generalize Φ-functions in such a way that
they may depend on the space variable.

Definition 2.3.9. Let (A,Σ, μ) be a σ-finite, complete measure space. A
real function ϕ : A× [0,∞) → [0,∞] is said to be a generalized Φ-function on
(A,Σ, μ) if:

(a) ϕ(y, ·) is a Φ-function for every y ∈ A.
(b) y �→ ϕ(y, t) is measurable for every t � 0.

If ϕ is a generalized Φ-function on (A,Σ, μ), we write ϕ ∈ Φ(A, μ). If Ω
is an open subset of R

n and μ is the n-dimensional Lebesgue measure we
abbreviate this as ϕ ∈ Φ(Ω) or say that ϕ is a generalized Φ-function on Ω.
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In what follows we always make the natural assumption that our measure
μ is not identically zero.

Certainly every Φ-function is a generalized Φ-function if we set ϕ(y, t) :=
ϕ(t) for y ∈ A and t ∈ [0,∞). Also, from (2.3.8) and Lemma 2.3.4 we see
that ϕ(y, ·) is non-decreasing and lower semicontinuous on [0,∞) for every
y ∈ A.

We say that a function is simple if it is the linear combination of charac-
teristic functions of measurable sets with finite measure,

∑k
i=1 siχAi(x) with

μ(A1), . . . , μ(Ak) < ∞, s1, . . . , sk ∈ K. We denote the set of simple functions
by S(A, μ). If Ω is an open subset of R

n and μ is the n-dimensional Lebesgue
measure we abbreviate this by S(Ω).

We next show that every generalized Φ-function generates a semimodular
on L0(A, μ).

Lemma 2.3.10. If ϕ ∈ Φ(A, μ) and f ∈ L0(A, μ), then y �→ ϕ(y, |f(y)|) is
μ-measurable and

�ϕ(f) :=
ˆ

A

ϕ(y, |f(y)|) dμ(y)

is a semimodular on L0(A, μ). If ϕ is positive, then �ϕ is a modular. We call
�ϕ the semimodular induced by ϕ.

Proof. By splitting the function into its positive and negative (real and imag-
inary) part it suffices to consider the case f � 0. Let fk ↗ f point-wise where
fk are non-negative simple functions. Then

ϕ(y, |fk(y)|) =
∑

j

ϕ(y, αkj ) · χAkj (y),

which is measurable and ϕ(y, fk(y)) ↗ ϕ(y, f(y)). Thus ϕ(·, f(·)) is measur-
able.

Obviously, �ϕ(0) = 0 and �ϕ(λx) = �ϕ(x) for |λ| = 1. The convexity
of �ϕ is a direct consequence of the convexity of ϕ. Let us show the left-
continuity of �ϕ: if λk → 1− and y ∈ A, then 0 � ϕ(y, λkf(y)) → ϕ(y, f(y))
by the left-continuity and monotonicity of ϕ(y, ·). Hence �ϕ(λkf) → �ϕ(f), by
the theorem of monotone convergence. So �ϕ is left-continuous in the sense
of Definition 2.1.1 (d).

Assume now that f ∈ L0(A, μ) is such that �ϕ(λf) = 0 for all λ > 0.
So for any k ∈ N we have ϕ(y, kf(y)) = 0 for almost all y ∈ A. Since N is
countable we deduce that ϕ(y, kf(y)) = 0 for almost all y ∈ A and all k ∈ N.
The convexity of ϕ and ϕ(y, 0) = 0 imply that ϕ(y, λf(y)) = 0 for almost all
y ∈ A and all λ > 0. Since limt→∞ ϕ(y, t) = ∞ for all y ∈ A, this implies
that |f(y)| = 0 for almost all y ∈ A, hence f = 0. So �ϕ is a semimodular
on L0(A, μ).
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Assume now that ϕ is positive and that �ϕ(f) = 0. Then ϕ(y, f(y)) = 0
for almost all y ∈ A. Since ϕ is positive, f(y) = 0 for almost all y ∈ A, thus
f = 0. This proves that �ϕ is a modular on L0(A, μ). ��

Since every ϕ ∈ Φ(A, μ) generates a semimodular it is natural to study
the corresponding semimodular space.

Definition 2.3.11. Let ϕ ∈ Φ(A, μ) and let �ϕ be given by

�ϕ(f) :=
ˆ

A

ϕ(y, |f(y)|) dμ(y)

for all f ∈ L0(A, μ). Then the semimodular space

(L0(A, μ))�ϕ = {f ∈ L0(A, μ) : lim
λ→0

�ϕ(λf) = 0}

=
{
f ∈ L0(A, μ) : �ϕ(λf) <∞ for some λ > 0

}

will be called Musielak–Orlicz space and denoted by Lϕ(A, μ) or Lϕ, for short.
The norm ‖·‖�ϕ is denoted by ‖·‖ϕ, thus

‖f‖ϕ = inf
{
λ > 0: �ϕ

(x

λ

)
� 1
}
.

The Musielak–Orlicz spaces are also called generalized Orlicz spaces. They
provide a good framework for many function spaces. Here are some examples.

Example 2.3.12. Let (A,Σ, μ) be a σ-finite, complete measure space.

(a) The (semi)modulars given in Example 2.1.4 (a)–(c) give rise to (weighted)
Lebesgue spaces.

(b) Let ϕ be a Φ-function. Then

�ϕ(f) =
ˆ

A

ϕ(|f(y)|) dμ(y)

is a semimodular on L0(A, μ). If ϕ is positive, then � is a modular on
L0(A, μ) and the space Lϕ(A, μ) is called an Orlicz space.
With suitable choices of ϕ, A and μ, this includes all modulars in
Example 2.1.4 except (f).

(c) Example 2.1.4 (f) is not a Musielak–Orlicz space.

As a semimodular space, Lϕ = (Lϕ, ‖·‖ϕ) is a normed space, which, in
fact, is complete.

Theorem 2.3.13. Let ϕ ∈ Φ(A, μ). Then Lϕ(A, μ) is a Banach space.
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Before we get to the proof of Theorem 2.3.13 we need to prove two useful
lemmas.

Lemma 2.3.14. Let ϕ ∈ Φ(A, μ) and μ(A) < ∞. Then every ‖·‖ϕ-Cauchy
sequence is also a Cauchy sequence with respect to convergence in measure.

Proof. Fix ε > 0 and let Vt := {y ∈ A : ϕ(y, t) = 0} for t > 0. Then Vt is
measurable. For all y ∈ A the function t �→ ϕ(y, t) is non-decreasing and
limt→∞ ϕ(y, t) = ∞, so Vt ↘ ∅ as t → ∞. Therefore, limk→∞ μ(Vk) =
μ(∅) = 0, where we have used that μ(A) < ∞. Thus, there exists K ∈ N such
that μ(VK) < ε. Note that if ϕ is positive then Vt = ∅ for all t > 0 and we
do not need this step in the proof.

For a μ-measurable set E ⊂ A define

νK(E) := �ϕ(K χE) =
ˆ

E

ϕ(y,K) dμ(y).

If E is μ-measurable with νK(E) = 0, then ϕ(y,K) = 0 for μ-almost every
y ∈ E. Thus μ(E \ VK) = 0 by the definition of VK . Hence, E is a μ|A\VK -
null set, which means that the measure μ|A\VK is absolutely continuous with
respect to νK .

Since μ(A \VK) � μ(A) < ∞ and μ|A\VK is absolutely continuous with res-
pect to νK , there exists δ ∈ (0, 1) such that νK(E) � δ implies μ(E \VK) � ε
(cf. [184, Theorem 30.B]). Since fk is a ‖·‖ϕ-Cauchy sequence, there exists
k0 ∈ N such that ‖K ε−1δ−1(fm − fk)‖ϕ � 1 for all m, k � k0. Assume in the
following m, k � k0, then by (2.1.5) and the norm-modular unit ball property
(Lemma 2.1.14)

�ϕ
(
K ε−1(fm − fk)

)
� δ�ϕ

(
K ε−1δ−1(fm − fk)

)
� δ.

Let us write Em,k,ε := {y ∈ A : |fm(y) − fk(y)| � ε}. Then

νK(Em,k,ε) =
ˆ

Em,k,ε

ϕ(y,K) dμ(y) � �ϕ
(
K ε−1(fm − fk)

)
� δ.

By the choice of δ, this implies that μ(Em,k,ε \ VK) � ε. With μ(VK) < ε
we have μ(Em,k,ε) � 2ε. Since ε > 0 was arbitrary, this proves that fk is a
Cauchy sequence with respect to convergence in measure.

If ‖fk‖ϕ→ 0, then as above there exists K ∈N such that μ({|fk|� ε}) � 2ε
for all k � K. This proves fk → 0 in measure. ��

Lemma 2.3.15. Let ϕ ∈ Φ(A, μ). Then every ‖·‖ϕ-Cauchy sequence (fk) ⊂
Lϕ has a subsequence which converges μ-almost everywhere to a measurable
function f .
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Proof. Recall that μ is σ-finite. Let A =
⋃∞
i=1Ai with Ai pairwise disjoint

and μ(Ai) < ∞ for all i ∈ N. Then, by Lemma 2.3.14, (fk) is a Cauchy
sequence with respect to convergence in measure on A1. Therefore there
exists a measurable function f : A1 → K and a subsequence of fk which
converges to f μ-almost everywhere. Repeating this argument for every Ai
and passing to the diagonal sequence we get a subsequence (fkj ) and a
μ-measurable function f : A→K such that fkj → f μ-almost everywhere. ��

Let us now get to the proof of the completeness of Lϕ.

Proof of Theorem 2.3.13. Let (fk) be a Cauchy sequence. By Lemma 2.3.15
there exists a subsequence fkj and a μ-measurable function f : A → K such
that fkj → f for μ-almost every y ∈ A. This implies ϕ(y, |fkj (y) − f(y)|) → 0
μ-almost everywhere. Let λ > 0 and 0 < ε < 1. Since (fk) is a Cauchy
sequence, there exists K = K(λ, ε) ∈ N such that ‖λ(fm − fk)‖ϕ < ε for all
m, k � N , which implies �ϕ(λ(fm − fk)) � ε by Corollary 2.1.15. Therefore
by Fatou’s lemma

�ϕ
(
λ(fm − f)

)
=
ˆ

A

lim
j→∞

ϕ
(
y, λ|fm(y) − fkj (y)|

)
dμ(y)

� lim inf
j→∞

ˆ

A

ϕ
(
y, λ|fm(y) − fkj (y)|

)
dμ(y)

= lim inf
j→∞

�ϕ
(
λ(fm − fkj )

)

� ε.

So �ϕ(λ(fm − f)) → 0 for m → ∞ and all λ > 0 and ‖fk − f‖ϕ → 0 by
Lemma 2.1.9. Thus every Cauchy sequence converges in Lϕ, as was to be
shown. ��

The next lemma collects analogues of the classical Lebesgue integral
convergence results.

Lemma 2.3.16. Let ϕ ∈ Φ(A, μ) and fk, f, g ∈ L0(A, μ).

(a) If fk → f μ-almost everywhere, then �ϕ(f) � lim infk→∞ �ϕ(fk).
(b) If |fk| ↗ |f | μ-almost everywhere, then �ϕ(f) = limk→∞ �ϕ(fk).
(c) If fk → f μ-almost everywhere and |fk| � |g| μ-almost everywhere, and

�ϕ(λg) <∞ for every λ > 0, then fk → f in Lϕ.

These properties are called Fatou’s lemma (for the modular), monotone
convergence and dominated convergence, respectively.

Proof. By Lemma 2.3.4 the mappings ϕ(y, ·) are lower semicontinuous. Thus
Fatou’s lemma implies
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�ϕ(f) =
ˆ

A

ϕ(y, lim
k→∞

|fk(y)|) dμ(y)

�
ˆ

A

lim inf
k→∞

ϕ(y, |fk(y)|) dμ(y)

� lim inf
k→∞

ˆ

A

ϕ(y, |fk(y)|) dμ(y)

= lim inf
k→∞

�ϕ(fk).

This proves (a).
To prove (b) let |fk| ↗ |f |. Then by the left-continuity and monotonicity

of ϕ(y, ·), we have 0 � ϕ(·, |fk(·)|) ↗ ϕ(·, |f(·)|) almost everywhere. So, the
theorem of monotone convergence gives

�ϕ(f) =
ˆ

A

ϕ(y, lim
k→∞

|fk(y)|) dμ(y)

=
ˆ

A

lim
k→∞

ϕ(y, |fk(y)|) dμ(y)

= lim
k→∞

ˆ

A

ϕ(y, |fk(y)|) dμ(y)

= lim
k→∞

�ϕ(fk).

To prove (c) assume that fk → f almost everywhere, |fk| � |g|, and
�(λg) < ∞ for every λ > 0. Then |fk − f | → 0 almost everywhere, |f | � |g|
and |fk − f | � 2|g|. Since �ϕ(2λg) < ∞, we can use the theorem of dominated
convergence to conclude that

lim
k→∞

�ϕ(λ|f − fk|) =
ˆ

A

ϕ
(
y, lim
k→∞

λ|f(y) − fk(y)|
)
dμ(y) = 0.

Since λ > 0 was arbitrary, Lemma 2.1.9 implies that fk → f in Lϕ. ��

Let us summarize a few additional properties of Lϕ. Properties (a), (b),
(c) and (d) of the next theorem are known as circularity, solidity, Fatou’s
lemma (for the norm), and the Fatou property, respectively.

Theorem 2.3.17. Let ϕ ∈ Φ(A, μ). Then the following hold.

(a) ‖f‖ϕ =
∥
∥ |f |

∥
∥
ϕ

for all f ∈ Lϕ.
(b) If f ∈ Lϕ, g ∈ L0(A, μ), and 0 � |g| � |f | μ-almost everywhere, then

g ∈ Lϕ and ‖g‖ϕ � ‖f‖ϕ.
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(c) If fk → f almost everywhere, then ‖f‖ϕ � lim infk→∞ ‖fk‖ϕ.
(d) If |fk| ↗ |f | μ-almost everywhere with fk ∈ Lϕ(A, μ) and supk ‖fk‖ϕ<∞,

then f ∈ Lϕ(A, μ) and ‖fk‖ϕ ↗ ‖f‖ϕ.

Proof. The properties (a) and (b) are obvious. Let us now prove (c).
So let fk → f μ-almost everywhere. There is nothing to prove for
lim infk→∞ ‖fk‖ϕ = ∞. Let λ > lim infk→∞ ‖fk‖ϕ. Then ‖fk‖ϕ < λ for large
k. Thus by the unit ball property �ϕ(fk/λ) � 1 for large k. Now Fatou’s
lemma for the modular (Lemma 2.3.16) implies �ϕ(f/λ) � 1. So ‖f‖ϕ � λ
again by the unit ball property, which implies ‖f‖ϕ � lim infk→∞ ‖fk‖ϕ.

It remains to prove (d). So let |fk| ↗ |f | μ-almost everywhere with
supk ‖fk‖ϕ < ∞. From (a) and (c) follows ‖f‖ϕ � lim infk→∞ ‖fk‖ϕ �
supk ‖fk‖ϕ < ∞, which proves f ∈ Lϕ. On the other hand |fk| ↗ |f | and (b)
implies that ‖fk‖ϕ ↗ lim supk→∞ ‖fk‖ϕ � ‖f‖ϕ. Thus limk→∞ ‖fk‖ϕ =
‖f‖ϕ and ‖fk‖ϕ ↗ ‖f‖ϕ. ��

2.4 Uniform Convexity

In this section we study sufficient conditions for the uniform convexity of a
modular space X� and the Musielak–Orlicz space Lϕ. We first show that the
uniform convexity of the Φ-function implies that of the modular; and that
the uniform convexity of the semimodular combined with the Δ2-condition
implies the uniform convexity of the norm. The section is concluded by
some further properties of uniformly convex modulars. Let us start with the
Δ2-condition of the Φ-function and some implications.

Definition 2.4.1. We say that ϕ ∈ Φ(A, μ) satisfies the Δ2-condition if
there exists K � 2 such that

ϕ(y, 2t) � Kϕ(y, t)

for all y ∈ A and all t � 0. The smallest such K is called the Δ2-constant
of ϕ.

Analogously, we say that a semimodular � on X satisfies the Δ2-condition
if there exists K � 2 such that �(2f) � K �(f) for all f ∈ X�. Again, the
smallest such K is called the Δ2-constant of �.

If ϕ ∈ Φ(A, μ) satisfy the Δ2-condition, then �ϕ satisfies the Δ2-condition
with the same constant. Moreover, �ϕ satisfies the weak Δ2-condition for
modulars, so by Lemma 2.1.11 modular convergence and norm convergence
are equivalent; and E ⊂ Lϕ(Ω, μ) is bounded with respect to the norm if and
only if it is bounded with respect to the modular, i.e. supf∈E ‖f‖ < ∞ if and
only if supf∈E �ϕ(f) < ∞.

Corollary 2.1.15 shows that a small norm implies a small modular. The
following result shows the reverse implication.
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Lemma 2.4.2. Let � be a semimodular on X that satisfies the Δ2-condition.
Let K be the Δ2-constant of �. Then for every ε> 0 there exists δ= δ(ε,K)> 0
such that �(f) � δ implies ‖f‖� � ε.

Proof. For ε > 0 choose j ∈ N with 2−j � ε. Let δ := Kj and �(f) � δ. Then
�(2jf) � Kj�(f) � 1 and the unit ball property yields ‖f‖� � 2−j � ε. ��
Lemma 2.4.3. Let � be a semimodular on X that satisfies the Δ2-condition
with constant K. Then � is a continuous modular and for every ε > 0 there
exists δ = δ(ε,K) > 0 such that �(f) � 1−ε implies ‖f‖� � 1−δ for f ∈ X�.

Proof. If �(f) = 0, then �(2mf) � Km�(f) = 0, where K is the Δ2-constant
of ϕ. This proves f = 0, so � is a modular. We already know that � is left-
continuous, so it suffices to show �(x) = limλ→1+ �(λx). By monotonicity we
have �(x) � lim infλ→1+ �(λx). It follows by convexity of � that

�(af) � (2 − a)�(f) + (a− 1)�(2f) �
(
(2 − a) +K(a− 1)

)
�(f)

�
(
1 + (K − 1)(a− 1)

)
�(f)

for every a ∈ [1, 2]. Hence �(x) � lim infλ→1+ �(λx), which completes the
proof of continuity.

Let ε > 0 and f ∈ X� with �(f) � 1 − ε. Fix a = a(K, ε) ∈ (1, 2) such
that the right-hand side of the previous inequality is bounded by one. Then
�(af) � 1 and the unit ball property implies ‖af‖� � 1. The claim follows
with 1 − δ := 1

a . ��

In the previous sections we worked with general ϕ ∈ Φ(A, μ). The
corresponding Musielak–Orlicz spaces include the classical spaces Lp with
1 � p � ∞, see Example 2.1.8. Sometimes, however, it is better to work with
a subclass of Φ(A, μ), called N-functions. These functions will have better
properties (N stands for nice) but the special cases p = 1 and p = ∞ are
excluded. This corresponds to the experience that also in the classical case
the “borderline” cases p = 1 and p = ∞ are often treated differently.

Definition 2.4.4. A Φ-function ϕ is said to be an N-function if it is
continuous and positive and satisfies limt→0

ϕ(t)
t = 0 and limt→∞

ϕ(t)
t = ∞.

A function ϕ ∈ Φ(A, μ) is said to be a generalized N-function if ϕ(y, ·) is
for every y ∈ Ω an N-function.

If ϕ is a generalized N-function on (A, μ), we write ϕ ∈ N(A, μ) for short.
If Ω is an open subset of R

n and μ is the n-dimensional Lebesgue measure
we abbreviate ϕ ∈ N(Ω).

Definition 2.4.5. A function ϕ ∈ N(A, μ) is called uniformly convex if for
every ε > 0 there exists δ > 0 such that

|u− v| � εmax {u, v} or ϕ
(
y,
u+ v

2

)
�
(
1 − δ

)ϕ(y, u) + ϕ(y, v)
2

for all u, v � 0 and every y ∈ A.
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Remark 2.4.6. If ϕ(x, t) = tq with q ∈ (1,∞), then ϕ is uniformly convex.
To prove this, we have to show that for u, v � 0 the estimate |u− v| >
εmax {v, u} implies (u+v

2 )q � (1 − δ(ε))1
2 (uq + vq) with δ(ε) > 0 for every

ε > 0. Without loss of generality we can assume ε ∈ (0, 1
2 ). By homogeneity

it suffices to consider the case v = 1 and 0 � u � 1. So we have to show that
u ∈ [0, 1−ε) implies (1+u

2 )q � (1−δ(ε))1
2 (1+uq). Define f(τ) := 21−q (1+u)q

(1+uq) .
Then f is continuous on [0, 1] and has its maximum at 1. This proves as
desired f(u) � δ(ε) for all u ∈ [0, 1 − ε).

It follows by division with q that ϕ(x, t) = 1
q t
q with 1 < q < ∞ is also

uniformly convex.

Definition 2.4.5 is formulated for u, v � 0. However, the following lemma
shows that this can be relaxed to values in K.

Lemma 2.4.7. Let ϕ ∈ N(A, μ) be uniformly convex. Then for every ε2 > 0
there exists δ2 > 0 such that

|a− b| � ε2 max {|a|, |b|} or ϕ
(
y,
∣
∣
∣
a+ b

2

∣
∣
∣
)

�
(
1 − δ2

)ϕ(y, |a|) + ϕ(y, |b|)
2

.

for all a, b ∈ K and every y ∈ A.

Proof. Fix ε2 > 0. For ε := ε2/2 let δ > 0 be as in Definition 2.4.5. Let
|a− b| > ε2 max {|a|, |b|}. If

∣
∣|a| − |b|

∣
∣ > εmax {|a|, |b|}, then the claim fol-

lows by |a+ b| � |a| + |b| and choice of δ with δ2 = δ. So assume in the
following ||a| − |b|| � εmax {|a|, |b|}. Then

|a− b| > ε2 max {|a|, |b|} = 2εmax{|a|, |b|} � 2||a| − |b||.

Therefore,

∣
∣
∣
a+ b

2

∣
∣
∣
2

=
|a|2

2
+

|b|2

2
−
∣
∣
∣
a− b

2

∣
∣
∣
2

� |a|2

2
+

|b|2

2
− 3

4

∣
∣
∣
a− b

2

∣
∣
∣
2

−
( |a| − |b|

2

)2

=
( |a| + |b|

2

)2

− 3
4

∣
∣
∣
a− b

2

∣
∣
∣
2

.

Since |a− b| > ε2 max {|a|, |b|} � ε2(|a| + |b|)/2, it follows that

∣
∣
∣
a+ b

2

∣
∣
∣
2

�
(

1 − 3ε22
16

)( |a| + |b|
2

)2

.

Let δ2 := 1 −
√

1 − 3ε22
16 > 0, then |a+b2 | � (1 − δ2) |a|+|b|

2 . This, (2.1.5) and
the convexity of ϕ imply
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ϕ
(
y,
∣
∣
∣
a+ b

2

∣
∣
∣
)

� (1 − δ2)ϕ
(
y,

|a| + |b|
2

)
� (1 − δ2)

ϕ(y, |a|) + ϕ(y, |b|)
2

. ��

Remark 2.4.8. If u, v∈K satisfies |a− b|� ε2 max {|a|, |b|} with ε2 ∈ (0, 1),
then |a−b|

2 � ε2
|a|+|b|

2 and by the convexity of ϕ follows

ϕ
(
y,

|a− b|
2

)
� ε2

ϕ(y, |a|) + ϕ(y, |b|)
2

. (2.4.9)

Therefore, we can replace the first alternative in Lemma 2.4.7 by the weaker
version (2.4.9).

We need the following concept of uniform convexity for the semimodular.

Definition 2.4.10. A semimodular � on X is called uniformly convex if for
every ε > 0 there exists δ > 0 such that

�

(
f − g

2

)

� ε
�(f) + �(g)

2
or �

(
f + g

2

)

� (1 − δ)
�(f) + �(g)

2

for all f, g ∈ X�.

Theorem 2.4.11. Let ϕ ∈ N(A, μ) be uniformly convex. Then �ϕ is uni-
formly convex.

Proof. Let ε2, δ2 > 0 be as in Lemma 2.4.7 and let ε := 2 ε2. There is nothing
to show if �ϕ(f) = ∞ or �ϕ(g) = ∞. So in the following let �ϕ(f), �ϕ(g) < ∞,
which implies by convexity �(f+g

2 ), �(f−g2 ) < ∞.
Assume that �ϕ(f−g2 ) > ε

�ϕ(f)+�ϕ(g)
2 . We show that

�ϕ

(f + g

2

)
�
(

1 − δ2ε

2

)�ϕ(f) + �ϕ(g)
2

,

which proves that �ϕ is uniformly convex. Define

E :=
{

y ∈ A : |f(y) − g(y)| > ε

2
max

{
|f(y)|, |g(y)|

}
}

.

It follows from Remark 2.4.8 that (2.4.9) holds for almost all y ∈ A \ E. In
particular,

�ϕ

(

χA\E
f − g

2

)

� ε

2
�ϕ(χA\Ef) + �ϕ(χA\Eg)

2
� ε

2
�ϕ(f) + �ϕ(g)

2
.
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This and �ϕ(f−g2 ) > ε
�ϕ(f)+�ϕ(g)

2 imply

�ϕ

(
χE

f − g

2

)
= �ϕ

(f − g

2

)
− �ϕ

(
χA\E

f − g

2

)
>
ε

2
�ϕ(f) + �ϕ(g)

2
.

(2.4.12)

On the other hand it follows by the definition of E and the choice of δ2 in
Lemma 2.4.7 that

�ϕ

(

χE
f + g

2

)

� (1 − δ2)
�ϕ(χEf) + �ϕ(χEg)

2
. (2.4.13)

We estimate

�ϕ(f) + �ϕ(g)
2

− �ϕ

(f + g

2

)
� �ϕ(χEf) + �ϕ(χEg)

2
− �ϕ

(
χE

f + g

2

)
,

where we have split the domain of the involved integrals into the sets E and
A \ E and have used 1

2 (ϕ(f) + ϕ(g)) − ϕ( f+g
2 ) � 0 on A \ E. This, (2.4.13),

the convexity and (2.4.12) imply

�ϕ(f) + �ϕ(g)
2

− �ϕ

(f + g

2

)
� δ2

�ϕ(χEf) + �ϕ(χEg)
2

� δ2�ϕ

(
χE

f − g

2

)

� δ2ε

2
�ϕ(f) + �ϕ(g)

2
. ��

The question arises if uniform convexity of the semimodular � implies the
uniform convexity of X�. This turns out to be true under the Δ2-condition.

Theorem 2.4.14. Let � be a uniformly convex semimodular on X that satis-
fies the Δ2-condition. Then the norm ‖·‖� on X� is uniformly convex. Hence,
X� is uniformly convex.

Proof. Fix ε > 0. Let x, y ∈ X with ‖x‖�, ‖y‖� � 1 and ‖x− y‖� > ε.
Then ‖x−y2 ‖ > ε

2 and by Lemma 2.4.2 there exists α = α(ε) > 0 such that
�(x−y2 ) > α. By the unit ball property we have �(x), �(y) � 1, so �(x−y2 ) >
α�(x)+�(y)2 . Since � is uniformly convex, there exists β = β(α) > 0 such that
�(x+y2 ) � (1 − β)�(x)+�(y)2 � 1 − β. Now Lemma 2.4.3 implies the existence
of δ = δ(K,β) > 0 with ‖x+y2 ‖

�
� 1 − δ. This proves the uniform convexity

of ‖·‖�. ��

Remark 2.4.15. If ϕ ∈ N(A, μ) is uniformly convex and satisfies the
Δ2-condition, then it follows by the combination of Theorems 2.4.11 and
2.4.14 that the norm ‖·‖ϕ of Lϕ(A, μ) is uniformly convex. Hence, Lϕ(A, μ)
is also uniformly convex.
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We will later need that the sum of uniformly convex semimodulars is again
uniformly convex.

Lemma 2.4.16. If �1, �2 are uniformly convex semimodulars on X, then
� := �1 + �2 is uniformly convex.

Proof. If ε > 0, then there exists δ > 0 such that

�j

(
f − g

2

)

� ε
�j(f) + �j(g)

2
or �j

(
f + g

2

)

� (1 − δ)
�j(f) + �j(g)

2

for j = 1, 2. We show that

�

(
f − g

2

)

� 2 ε
�(f) + �(g)

2
or �

(
f + g

2

)

� (1 − δε)
�(f) + �(g)

2
,

since this proves the uniform convexity of �. Fix f and g and assume that
�(f−g2 )> 2 ε�(f)+�(g)

2 . Without loss of generality, we can assume that �1(f−g2 )
� �2(f−g2 ) for this specific choice of f and g. Therefore, �1(f−g2 )>ε�(f)+�(g)

2 �
ε�1(f)+�1(g)

2 . So the choice of δ implies

�1

(
f + g

2

)

� (1 − δ)
�1(f) + �1(g)

2
.

Taking into account the convexity of �2, we obtain

�

(
f + g

2

)

� �(f) + �(g)
2

− δ
�1(f) + �1(g)

2
.

Since �1(f)+�1(g)
2 � �1(f−g2 ) > ε�(f)+�(g)

2 , this implies

�

(
f + g

2

)

� (1 − δε)
�(f) + �(g)

2
. ��

It is well known that on uniformly convex spaces weak convergence
xk ⇀ x combined with convergence of the norms ‖xk‖ → ‖x‖ implies strong
convergence xk → x. The following lemma is in this spirit.

Lemma 2.4.17. Let � be a uniformly convex semimodular on X. Let xk, x ∈
X� such that xk ⇀ x, �(xk) → �(x) and �(x) <∞. Then

�
(xk − x

2

)
→ 0.
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Proof. We proceed by contradiction. Assume that the claim is wrong and
there exists ε > 0 and a subsequence xkj such that

�
(xkj − x

2

)
> ε (2.4.18)

for all j ∈ N. Since � is uniformly continuous, there exists δ > 0 such that

�
(xk − x

2

)
� ε or �

(xk + x

2

)
� (1 − δ)

�(xk) + �(x)
2

.

In particular, our subsequence always satisfies the second alternative. Together
with 1

2 (xk +x) ⇀ x, the weak lower semicontinuity of � (Theorem 2.2.8) and
�(xk) → �(x) implies that

�(x) � lim inf
j→∞

�
(xkj + x

2

)
� (1 − δ) lim inf

j→∞
�(xkj ) + �(x)

2
= (1 − δ)�(x).

Using �(x) < ∞ we get �(x) = 0. It follows by convexity and �(xk) → �(x)
that

�
(xk − x

2

)
� �(xk) + �(x)

2
→ �(x) = 0

for n → ∞. This contradicts (2.4.18). ��

Remark 2.4.19. If � satisfies the (weak) Δ2-condition, then under the con-
ditions of the previous lemma, �(λ(xk − x)) → 0 for all λ > 0 and xk → x in
X� by Lemma 2.1.11.

2.5 Separability

We next prove basic properties of Musielak–Orlicz spaces that require some
additional structure. Since these properties do not even hold for the full range
p ∈ [1,∞] of classical Lebesgue spaces, it is clear that some restrictions are
necessary. In this section we consider separability.

We first define some function classes related to Lϕ. The set Eϕ of finite
elements will be later important in the approximability by simple functions,
see Theorem 2.5.9.

Definition 2.5.1. Let ϕ ∈ Φ(A, μ). The set

LϕOC := LϕOC(A, μ) := {f ∈ Lϕ : �ϕ(f) <∞} (2.5.2)
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is called the Musielak–Orlicz class. Let

Eϕ := Eϕ(A, μ) := {f ∈ Lϕ : �ϕ(λf) <∞ for all λ > 0}. (2.5.3)

The elements of Eϕ(A, μ) are called finite.

Let us start with a few examples:
(a) Let ϕ(y, t) = tp with 1 � p < ∞. Then Eϕ = LϕOC = Lϕ = Lp.
(b) Let ϕ(y, t) = ∞ · χ(1,∞)(t). Then

Eϕ = {0},
LϕOC = {f : |f | � 1 almost everywhere},
Lϕ = L∞.

(c) Let ϕ(y, t) = exp(t) − 1 and Ω = (0, 1). Then ϕ ∈ Φ(Ω) is positive and
continuous but Eϕ �= LϕOC �= Lϕ. Indeed, if f :=

∑∞
k=1

k
2χ(2−k,2−k+1),

then f ∈ LϕOC \ Eϕ and 2f ∈ Lϕ \ LϕOC .

By definition of Eϕ, LϕOC , and Lϕ it is clear that Eϕ ⊂ LϕOC ⊂ Lϕ.
Moreover, by convexity of ϕ the set LϕOC is convex and the sets Eϕ and Lϕ

are linear subspaces of L0. There is a special relation of Eϕ and Lϕ to LϕOC :
Eϕ is the biggest vector space in LϕOC and Lϕ is the smallest vector space
in L0 containing LϕOC .

In some cases the inclusions Eϕ ⊂ LϕOC ⊂ Lϕ are strict and in other cases
equality holds. In fact, it is easily seen that Eϕ = LϕOC = Lϕ is equivalent
to the implication f ∈ LϕOC ⇒ 2f ∈ LϕOC . The Δ2-condition (see Defini-
tion 2.4.1) implies that �ϕ(2mf) � Km�ϕ(f), where K is the Δ2-constant,
from which we conclude that

Eϕ(A, μ) = LϕOC(A, μ) = Lϕ(A, μ).

Remark 2.5.4. The set Eϕ is a closed subset of Lϕ. Indeed, let fk → f
in Lϕ with fk ∈ Eϕ. For λ > 0 we have �ϕ(2λ(fk − f)) → 0 as k → ∞.
In particular, �ϕ(2λ(fkλ − f)) � 1 for some kλ. By convexity �ϕ(λf) �
1
2�ϕ
(
2λ(fkλ − f)

)
+ 1

2�ϕ(2λfkλ) � 1
2 + 1

2�ϕ(2λfkλ) < ∞, which shows that
f ∈ Eϕ.

In the approximation of measurable functions it is very useful to work with
simple functions. To be able to approximate a function f by simple functions
we have to assume an additional property of ϕ:

Definition 2.5.5. A function ϕ ∈ Φ(A, μ) is called locally integrable on A if
�ϕ(tχE) < ∞ for all t � 0 and all μ-measurable E ⊂ A with μ(E) < ∞.

Note that local integrability in the previous definition differs from the one
used in L1

loc, where we assume integrability over compact subsets.
If ϕ ∈ Φ(A, μ) is locally integrable, then the set of simple functions S(A, μ)

is contained in Eϕ. Actually, the property S(A, μ) ⊂ Eϕ is equivalent to the
local integrability of ϕ.
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Example 2.5.6. Let ϕ ∈ Φ(A, μ) with ϕ(y, t) = ψ(t) where ψ is a contin-
uous Φ-function. Then ϕ is locally integrable. Indeed, due to the continuity
we know that t �→ ψ(t) is everywhere finite on [0,∞). Therefore, �ϕ(tχE) =
μ(E)ψ(t) < ∞ for all t � 0 and μ(E) < ∞.

Proposition 2.5.7. Let ϕ ∈ Φ(A, μ) be locally integrable. Then for every
λ > 0 and ε > 0 there exists δ > 0 such that μ(E) � δ implies �ϕ(λχE) � ε
and ‖χE‖ϕ � 1

λ .

Proof. We begin with the proof of �ϕ(λχE) � ε by contradiction. Assume
to the contrary that there exist λ > 0 and ε > 0 and a sequence (Ek)
such that μ(Ek) � 2−k and �ϕ(λχEk) > ε. Let Gk :=

⋃∞
m=k Em, and note

that μ(Gk) �
∑∞

m=k 2−m = 21−k → 0 as k → ∞. Since ϕ is locally inte-
grable and μ(G1) � 1, we have �ϕ(λχG1) < ∞. Moreover, λχGk � λχG1 and
λχGk → 0 almost everywhere. Thus, we conclude by dominated convergence
that �ϕ(λχGk) → 0. This contradicts �ϕ(λχGk) � �ϕ(λχEk) > ε for every k.

The claim ‖χE‖ϕ � 1
λ follows from �ϕ(λχE) � ε by the choice ε = 1 and

the unit ball property. ��

Remark 2.5.8. If f ∈ Lϕ has the property that ‖χEkf‖ϕ → 0 if Ek↘∅,
then we say that f has absolutely continuous norm. If follows easily by
dominated convergence (Lemma 2.3.16) that every f ∈ Eϕ has absolutely
continuous norm.

Theorem 2.5.9. Let ϕ ∈ Φ(A, μ) be locally integrable and let S := S(A, μ)
be the set of simple functions. Then S

‖·‖ϕ = Eϕ(A, μ).

Proof. The local integrability implies that S ⊂ Eϕ. Since Eϕ is closed by
Remark 2.5.4, it suffices to show that every f ∈ Eϕ is in the closure of S.
Let f ∈ Eϕ with f � 0. Since f ∈ L0(A), there exist fk ∈ S with 0 � fk ↗ f
almost everywhere. So fk → f in Lϕ by the theorem of dominated con-
vergence (Lemma 2.3.16). Thus, f is in the closure of S. If we drop the
assumption f � 0, then we split x into positive and negative parts (real and
imaginary parts) which belong again to Eϕ. ��

We now investigate the problem of separability of Eϕ. Let (A,Σ, μ) be
a σ-finite, complete measure space. Here, we need the notion of separable
measures: recall that a measure μ is called separable if there exists a sequence
(Ek) ⊂ Σ with the following properties:

(a) μ(Ek) < ∞ for all k ∈ N.
(b) For every E ∈ Σ with μ(E) < ∞ and every ε > 0 there exists an index

k such that μ(E�Ek) < ε, where � denotes the symmetric difference
defined through E�Ek := (E \ Ek) ∪ (Ek \ E).

For instance the Lebesgue measure on R
n and the counting measure on Z

n

are separable. Recall that a Banach space is separable if it contains a dense,
countable subset.
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Theorem 2.5.10. Let ϕ ∈ Φ(A, μ) be locally integrable and let μ be separa-
ble. Then Eϕ(A, μ) is separable.

Proof. Let S0 be the set of all simple functions g of the form g =
∑k

i=1 aiχEi
with ai ∈ Q and Ei is as in the definition of a separable measure. By Theorem
2.5.9 it suffices to prove that S0 is dense in S. Let f ∈ S. Then we can write
f in the form f =

∑k
i=1 biχBi with bi ∈ R, Bi ∈ Σ pairwise disjoint and

μ(Bi) < ∞. Let λ > 0 be arbitrary and define b := max1�i�k |bi|. Since
ϕ is locally integrable, we know by Proposition 2.5.7 that the integral of
y �→ ϕ(y, 4kλb) is small over small sets. Hence, by the separability of μ we
find measurable sets Ej1 , . . . , Ejk of finite measure such that

ˆ

Eji	Bi

ϕ(y, 4kλb) dμ(y) � 1.

Let B :=
⋃k
i=1Bi. Then

´
B ϕ(y, 2λη) dμ(y) → 0 for η → 0, since μ(B) < ∞

and ϕ is locally integrable. Let δ > 0 be such that
´
B
ϕ(y, 2λδ) dμ(y) � 1.

Choose rational numbers a1, . . . , ak such that |bi − ai| < δ and |ai| � 2b for
i = 1, . . . , k. Let g :=

∑k
i=1 ai χEji . Then

|f − g| =
∣
∣
∣
∣

k∑

i=1

(bi − ai)χBi

∣
∣
∣
∣+
∣
∣
∣
∣

k∑

i=1

ai
(
χBi − χEji

)
∣
∣
∣
∣

�
k∑

i=1

|bi − ai|χBi +
k∑

i=1

|ai|χEji	Bi

� δ χB +
k∑

i=1

2b χEi	Bi .

Hence, by the previous estimate and convexity,

�ϕ
(
λ(f − g)

)
� 1

2
�ϕ
(
2λδ χB

)
+

1
2k

k∑

i=1

�ϕ

(

4kλb χEi	Bi

)

=
1
2

ˆ

B

ϕ(y, 2λδ) dμ(y) +
1
2k

k∑

i=1

ˆ

Ei	Bi

ϕ(y, 4kλb) dμ(y).

The right-hand side of the previous estimate is at most 1 and so ‖f − g‖ϕ � 1
λ

by the unit ball property. Since λ > 0 was arbitrary, this completes the proof.
��
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2.6 Conjugate Φ-Functions

In this section we specialize the results from Sect. 2.2 Conjugate modulars
and dual semimodular spaces to Φ-functions and generalized Φ-functions.
Apart from the general results, we are also able to prove stronger results in
this special case.

By Lemma 2.3.2 we know that every Φ-function defines (by even extension)
a semimodular on R. This motivates to transfer the definition of a conjugate
semimodular in a point-wise sense to generalized Φ-functions:

Definition 2.6.1. Let ϕ ∈ Φ(A, μ). Then for any y ∈ A we denote by ϕ∗(y, ·)
the conjugate function of ϕ(y, ·) which is defined by

ϕ∗(y, u) = sup
t�0

(
tu− ϕ(y, t)

)

for all u � 0 and y ∈ Ω.

This definition applies in particular in the case when ϕ is a (non-generalized)
Φ-function, in which case

ϕ∗(u) = sup
t�0

(
tu− ϕ(t)

)

concurs with the Legendre transformation of ϕ. By definition of ϕ∗,

tu � ϕ(t) + ϕ∗(u) (2.6.2)

for every t, u � 0. This inequality is called Young’s inequality. If ϕ is a
Φ-function and �(t) := ϕ(|t|) is its even extension to R, then �∗(t) = ϕ∗(|t|)
for all t ∈ R.

As a special case of Theorem 2.2.6 we have

Corollary 2.6.3. Let ϕ ∈ Φ(A, μ). Then (ϕ∗)∗ = ϕ. In particular,

ϕ(y, t) = sup
u�0

(
tu− ϕ∗(y, u)

)

for all y ∈ Ω and all t � 0.

Lemma 2.6.4. Let ϕ, ψ be Φ-functions.

(a) The estimate ϕ(t) � ψ(t) holds for all t � 0 if and only if ψ∗(u) � ϕ∗(u)
for all u � 0.

(b) Let a, b > 0. If ψ(t) = aϕ(bt) for all t � 0, then ψ∗(u) = aϕ∗( uab ) for all
u � 0.
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Proof. We begin with the proof of (a). Let ϕ(t) � ψ(t) for all t � 0. Then

ψ∗(u) = sup
t�0

(
tu− ψ(t)

)
� sup

t�0

(
tu− ϕ(t)

)
= ϕ∗(u)

for all u � 0. The reverse claim follows using ϕ∗∗ = ϕ and ψ∗∗ = ψ by
Corollary 2.6.3. Let us now prove (b). Let a, b > 0 and ψ(t) = aϕ(bt) for all
t � 0. Then

ψ∗(u) = sup
t�0

(
tu− ψ(t)

)
= sup

t�0

(
tu− aϕ(bt)

)
= sup

t�0
a
(
t
u

ab
− ϕ(t)

)

= aψ∗
( u

ab

)

for all u � 0. ��

The following result is the generalization of the classical Hölder inequality´
|f ||g| dμ � ‖f‖q‖g‖q′ to the Musielak–Orlicz spaces. The extra constant 2

cannot be omitted.

Lemma 2.6.5 (Hölder’s inequality). Let ϕ ∈ Φ(A, μ). Then

ˆ

A

|f | |g|dμ(y) � 2‖f‖ϕ ‖g‖ϕ∗

for all f ∈ Lϕ(A, μ) and g ∈ Lϕ
∗
(A, μ).

Proof. Let f ∈ Lϕ and g ∈ Lϕ
∗
. The claim is obvious for f = 0 or g = 0, so we

can assume f �= 0 and g �= 0. Due to the unit ball property, �ϕ(f/‖f‖ϕ) � 1
and �ϕ∗(g/‖g‖ϕ∗) � 1. Thus, using Young’s inequality (2.6.2), we obtain

ˆ

A

|f(y)|
‖f‖ϕ

|g(y)|
‖g‖ϕ∗

dμ(y) �
ˆ

A

ϕ
(
y,

|f(y)|
‖f‖ϕ

)
+ ϕ∗

(
y,

|g(y)|
‖g‖ϕ∗

)
dμ(y)

= �ϕ(f/‖f‖ϕ) + �ϕ∗(g/‖g‖ϕ∗)

� 2.

Multiplying through by ‖f‖ϕ‖g‖ϕ∗ yields the claim. ��

Let us recall the definitions of N-function and generalized N-function from
Definition 2.4.4. A Φ-function ϕ is said to be an N-function if it is continuous
and positive and satisfies limt→0

ϕ(t)
t = 0 and limt→∞

ϕ(t)
t = ∞. A function

ϕ ∈ Φ(A, μ) is said to be a generalized N-function if ϕ(y, ·) is for every y ∈ Ω
an N-function.

Note that by continuity N-functions only take values in [0,∞). Let
ϕ ∈ N(A, μ) be an N-function. As was noted in (2.3.3), the function has
a right-derivative, denoted by ϕ′(y, ·), and
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ϕ(y, t) =

tˆ

0

ϕ′(y, τ) dτ

for all y ∈ A and all t � 0. The right-derivative ϕ′(y, ·) is non-decreasing and
right-continuous.

Lemma 2.6.6. Let ϕ be an N-function. Then

t

2
ϕ′
( t

2

)
� ϕ(t) � tϕ′(t)

for all t � 0

Proof. Using the monotonicity of ϕ′ we get

ϕ(t) =

tˆ

0

ϕ′(τ) dτ �
tˆ

0

ϕ′(t) dτ = tϕ′(t),

ϕ(t) =

tˆ

0

ϕ′(τ) dτ �
tˆ

t/2

ϕ′(t/2) dτ =
t

2
ϕ′
( t

2

)

for all t � 0. ��
Remark 2.6.7. If ϕ is a generalized N-function, which satisfies the Δ2-
condition (Definition 2.4.1), then Lemma 2.6.6 implies ϕ(y, t) ≈ ϕ′(y, t)t
uniformly in y ∈ A and t � 0.

Let ϕ ∈ N(A, μ). Then we already know that ϕ′(y, ·) is for any y ∈ A non-
decreasing right-continuous, ϕ′(y, 0) = 0, and limt→∞ ϕ′(y, t) = ∞. Define

b(y, u) := inf {t � 0: ϕ′(y, t) > u}.

Then b(y, ·) has the same properties, i.e. b(y, ·) is for any y ∈ A non-
decreasing, right-continuous, b(y, 0) = 0, and limt→∞ b(y, t) = ∞. The
function b(y, ·) is the right-continuous inverse of ϕ′(y, ·) and we therefore
denote it by (ϕ′)−1(y, u). It is easy to see that the right-continuous inverse
of (ϕ′)−1 is again ϕ′, i.e. ((ϕ′)−1)−1 = ϕ′. The function (ϕ′)−1 is important,
since we can use it to represent the conjugate function ϕ∗.

Theorem 2.6.8. If ϕ ∈ N(A, μ), then ϕ∗ ∈ N(A, μ) and (ϕ∗)′ = (ϕ′)−1. In
particular,

ϕ∗(y, t) =

tˆ

0

(ϕ′)−1(y, τ) dτ

for all y ∈ A and t � 0.
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Proof. It suffices to prove the claim point-wise, and thus we may assume
without loss of generality that ϕ(y, t) is independent of y, i.e. an N-function.

It is easy to see that ϕ′ is non-decreasing, right-continuous and satisfies
(ϕ′)−1(0) = 0, (ϕ′)−1(t) > 0 for t > 0, and limt→∞(ϕ′)−1(t) = ∞. Thus,

ψ(t) :=

tˆ

0

(ϕ′)−1(τ) dτ

for t � 0 defines an N-function. In particular, ϕ and ψ are finite.
Note that σ < ϕ′(τ) is equivalent to (ϕ′)−1(σ) < τ . Hence, the sets

{
(τ, σ) ∈ [0,∞) × [0,∞) : σ < ϕ′(τ)

}

{
(τ, σ) ∈ [0,∞) × [0,∞) : (ϕ′)−1(σ) � τ

}

are complementary with respect to [0,∞)×[0,∞). Therefore, we can estimate
with the help of the theorem of Fubini

0 � tu =

tˆ

0

û

0

dσ dτ

=
¨

{0�τ�t,σ�u : 0�σ<ϕ′(τ)}

dσ dτ +
¨

{0�τ�t,0�σ�u : (ϕ′)−1(σ)�τ}

dσ dτ

=

tˆ

0

min {u,ϕ′(τ)}ˆ

0

dσ dτ +

uˆ

0

min {t,(ϕ′)−1(σ)}ˆ

0

dτ dσ

�
tˆ

0

ϕ′(τ) dτ +

uˆ

0

(ϕ′)−1(σ) dσ

= ϕ(t) + ψ(u).

If u = ϕ′(t) or t = (ϕ′)−1(u), then min {u, ϕ′(τ)} = ϕ′(τ) and
min{t, (ϕ′)−1(σ)} = (ϕ′)−1(σ) in the integrals of the third line. So in this
case we have equality in the penultimate step. Since ϕ∗(u) = supt(ut−ϕ(t))
it follows that ϕ∗ = ψ. ��

Remark 2.6.9. Let ϕ be an N-function. Then it follows from the previous
proof that the right-derivative (ϕ∗)′ of ϕ∗ satisfies (ϕ∗)′ = (ϕ′)−1 for all
t � 0. Young’s inequality tu � ϕ(t) + ϕ∗(u) holds with equality if u = ϕ′(t)
or t = (ϕ′)−1(u).
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Theorem 2.6.8 enables us to calculate the conjugate function of N-functions.
Let us present three examples:

(a) Let ϕ(t) = et − t − 1. Then ϕ′(t) = et − 1 and (ϕ∗)′(u) = (ϕ′)−1(u) =
log(1 + u). Integration over u implies ϕ∗(u) = (1 + t) log(1 + t) − t.

(b) Let ϕ(t) = 1
p t
p for 1 < p < ∞. Then ϕ′(t) = tp−1 and (ϕ∗)′(u) =

(ϕ′)−1(u) = u
1
p−1 = up

′−1 with 1
p + 1

p′ = 1. Integration over u implies
ϕ∗(u) = 1

p′ u
p′ .

(c) Let ϕ(t) = tp for 1 < p < ∞. Then ϕ′(t) = ptp−1 and (ϕ∗)′(u) =
(ϕ′)−1(u) = (u/p)

1
p−1 = p

1
1−p up

′−1 with 1
p + 1

p′ = 1. Integration over u

implies ϕ∗(u) = p
1

1−p 1
p′ u

p′ = p−p
′
(p− 1)up

′
.

Remark 2.6.10. We have seen that the supremum in Remark 2.6.9 is
attained for any N-function ϕ. However, this is not the case if ϕ is only
a Φ-function. Indeed, if ϕ(t) = t, then ϕ∗(u) = ∞ · χ{u>1}(u). However,
tu = ϕ1(t) + (ϕ1)∗(u) only holds if u = 1 and t � 0 or if u ∈ [0, 1] and t = 0.

There are a lot of nice estimates for N-functions. Let us collect a few.

Lemma 2.6.11. Let ϕ be an N-function. Then for all t � 0 and all ε > 0

t � ϕ−1(t)(ϕ∗)−1(t) � 2t, (2.6.12)

(ϕ∗)′
(
ϕ′(t) − ε

)
� t � (ϕ∗)′

(
ϕ′(t)

)
, (2.6.13)

ϕ′((ϕ∗)′(t) − ε
)

� t � ϕ′((ϕ∗)′(t)
)
, (2.6.14)

ϕ∗(ϕ′(t)
)

� tϕ′(t), (2.6.15)

ϕ∗
(ϕ(t)

t

)
� ϕ(t), (2.6.16)

where we assumed t > 0 in (2.6.16).

Proof. We first note that (ϕ∗)′ = (ϕ′)−1 by Remark 2.6.9. Let t � 0 and
ε > 0. The first part of (2.6.13) follows from

(ϕ∗)′
(
ϕ′(t) − ε

)
= inf {a � 0: ϕ′(a) > ϕ′(t) − ε} � t.

The second part of (2.6.13) follows from

ϕ′((ϕ∗)′(t)
)

= ϕ′( inf {a � 0: ϕ′(a) > t}
)

= inf {ϕ′(a) � 0: ϕ′(a) > t} � t,

where we have used that ϕ′ is right-continuous and non-decreasing.
Now, (2.6.14) is a consequence of (2.6.13) using (ϕ∗)∗ = ϕ. By Young’s

inequality (2.6.2) we estimate

ϕ−1(t)(ϕ∗)−1(t) � t+ t = 2t.
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With Lemma 2.6.6 for ϕ and ϕ∗ and (2.6.13) we deduce

ϕ∗(ϕ′(t)
)

� (ϕ∗)′(ϕ′(t))ϕ′(t) � tϕ′(t),

ϕ∗
(ϕ(t)

t
− ε
)

�
(ϕ(t)

t
− ε
)

(ϕ∗)′
(ϕ(t)

t
− ε
)

� ϕ(t)
t

(ϕ∗)′
(
ϕ′(t) − ε

)
� ϕ(t).

Letting ε → 0 in the latter inequality yields (2.6.16). Setting t = ϕ−1(u)
in (2.6.16) gives

ϕ∗
( u

ϕ−1(u)

)
� u.

From this it follows that u � ϕ−1(u)(ϕ∗)−1(u). ��

Note that if ϕ and ϕ∗ satisfy the Δ2-condition (Definition 2.4.1), than all
the “�”-signs in Lemma 2.6.11 can be replaced by “≈”-signs.

2.7 Associate Spaces and Dual Spaces

In the case of classical Lebesgue spaces it is well known that there is a natural
embedding of Lq

′
into (Lq)∗ for 1 � q � ∞ and 1

q + 1
q′ = 1. In particular,

for every g ∈ Lq
′

the mapping Jg : f �→
´
fg dμ is an element of (Lq)∗. Even

more, if 1 � q < ∞, then the mapping g �→ Jg is an isometry from Lq
′

to (Lq)∗. Besides the nice characterization of the dual space, this has the
consequence that

‖f‖q = sup
‖g‖q′�1

ˆ
f g dμ

for every 1 � q � ∞. This formula is often called the norm conjugate formula.
The cases q = 1 and q = ∞ need special attention, since (L1)∗ = L∞ but
(L∞)∗ �= L1. However, the isometry (L1)∗ = L∞ suffices for the proof of the
formula when q = 1 and q = ∞.

In the case of Musielak–Orlicz spaces we have a similar situation. We will
see that Lϕ

∗
can be naturally embedded into (Lϕ)∗. Moreover, the mapping

g �→ Jg is an isomorphism under certain assumptions on ϕ, which exclude for
example the case Lϕ = L∞. The mapping is not an isometry but its operator
norm lies in the interval [1, 2].

The norm conjugate formula above requires more attention in the case of
Musielak–Orlicz spaces. Certainly, we cannot expect equality but only equiv-
alence up to a factor of 2. Since the space Lϕ can partly behave like L1 and
partly like L∞, there are cases, where (Lϕ)∗ �= Lϕ

∗
and Lϕ �= (Lϕ

∗
)∗. This is

in particular the case for our generalized Lebesgue spaces Lp(·) (see Chap. 3)



58 2 A Framework for Function Spaces

when p take the values 1 and ∞ on some subsets. To derive an equivalent
of the norm conjugate formula for Lϕ, we need to study the associate space,
which is a closed subspaces of (Lϕ)∗ generated by measurable functions.

Definition 2.7.1. Let ϕ ∈ Φ(A, μ). Then

(
Lϕ(A, μ)

)′ := {g ∈ L0(A, μ) : ‖g‖(Lϕ(A,μ))′ < ∞}

with norm

‖g‖(Lϕ(A,μ))′ := sup
f∈Lϕ : ‖f‖ϕ�1

ˆ

A

|f | |g| dμ,

will be called the associate space of Lϕ(A, μ) or (Lϕ)′ for short.

In the definition of the norm of the associate space (Lϕ)′ it suffices to take
the supremum over simple function from Lϕ:

Lemma 2.7.2. Let ϕ ∈ Φ(A, μ). Then

‖g‖(Lϕ)′ = sup
f∈S∩Lϕ : ‖f‖ϕ�1

ˆ

A

|f | |g| dμ

for all g ∈ (Lϕ(A, μ))′.

Proof. For g ∈ (Lϕ)′ let |||g||| in this proof denote the right-hand side of the
expression in the lemma. It is obvious that |||g|||ϕ � ‖g‖(Lϕ)′ . To prove the
reverse let f ∈ Lϕ with ‖f‖ϕ � 1. We have to prove that

´
|f | |g|dμ � |||g|||.

Let (fk) be a sequence of simple functions such that 0 � fk ↗ |f | almost
everywhere. In particular, fk ∈ S(A, μ) ∩ Lϕ and ‖fk‖ϕ � ‖f‖ϕ � 1, since
Lϕ is solid (Theorem 2.3.17 (b)). Since 0 � fk|g| ↗ |f ||g|, we can conclude
by the theorem of monotone convergence and the definition of |||g||| that

ˆ
|f ||g|dμ = lim

k→∞

ˆ
fk|g|dμ � |||g|||.

The claim follows by taking the supremum over all possible f . ��

As an immediate consequence of Hölder’s inequality (Lemma 2.6.5) we
have
Lϕ

∗
(A, μ) ↪→ (Lϕ(A, μ))′ and

‖g‖(Lϕ)′ � 2 ‖g‖ϕ∗

for every g ∈ Lϕ
∗
(A, μ).
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If g ∈ (Lϕ)′ and f ∈ Lϕ, then fg ∈ L1 by definition of the associate space.
In particular, the integral

´
fg dμ is well defined and

∣
∣
∣
∣

ˆ
fg dμ

∣
∣
∣
∣ � ‖g‖(Lϕ)′‖f‖ϕ.

Thus f �→
´
fg dμ defines an element of the dual space (Lϕ)∗ with ‖g‖(Lϕ)∗ �

‖g‖(Lϕ)′ . Therefore, for every g ∈ (Lϕ)′ we can define an element Jg ∈ (Lϕ)∗

by

Jg : f �→
ˆ
fg dμ (2.7.3)

and we have ‖Jg‖(Lϕ)∗ � ‖g‖(Lϕ)′ . Since Lϕ is circular (Theorem 2.3.17 (a)),
we even have

‖Jg‖(Lϕ)∗ = sup
f∈Lϕ : ‖f‖ϕ�1

∣
∣
∣
∣

ˆ
fg dμ

∣
∣
∣
∣

= sup
f∈Lϕ : ‖f‖ϕ�1

ˆ
|f | |g|dμ = ‖g‖(Lϕ)′

for every g ∈ (Lϕ)′. Obviously, g �→ Jg is linear. Hence, g �→ Jg defines an
isometric, natural embedding of (Lϕ)′ ↪→ (Lϕ)∗. So the associate space (Lϕ)′

is isometrically isomorphic to a closed subset of the dual space (Lϕ)∗ and
therefore itself a Banach space. It is easy to see that (Lϕ)′ is circular and
solid. We have the following inclusions of Banach spaces

Lϕ
∗
↪→ (Lϕ)′ ↪→ (Lϕ)∗.

Under rather few assumptions on ϕ, we will see that the first inclusion is
surjective and therefore an isomorphism even if Lϕ

∗
is not isomorphic to the

dual space (Lϕ)∗. Therefore, the notion of the associate space is more flexible
than that of the dual space.

The mapping g �→ Jg can also be used to define natural embeddings

Lϕ = Lϕ
∗∗
↪→ (Lϕ

∗
)′ ↪→ (Lϕ

∗
)∗.

if we replace above ϕ by ϕ∗ and use ϕ = ϕ∗∗ (Corollary 2.6.3).
Since Lϕ

∗
↪→ (Lϕ)′ ↪→ (Lϕ)∗ via the embedding g �→ Jg, we can evalu-

ate the conjugate semimodular (�ϕ)∗ at Jg for every g ∈ Lϕ
∗
. As a direct

consequence of Young’s inequality (2.6.2) we have

(�ϕ)∗(Jg) = sup
f∈Lϕ

(
Jg(f) − �ϕ(f)

)
� �ϕ∗(g).
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Theorem 2.7.4. Let ϕ ∈ Φ(A, μ) be such that S(A, μ) ⊂ Lϕ(A, μ). Then
Lϕ

∗
(A, μ) = (Lϕ(A, μ))′, �ϕ∗(g) = (�ϕ)∗(Jg) and

‖g‖ϕ∗ � ‖g‖(Lϕ)′ = ‖Jg‖(Lϕ)∗ � 2 ‖g‖ϕ∗

for every g ∈ Lϕ
∗
(A, μ), where Jg : f �→

´
A
fg dμ. (or complex-valued

functions, the constant 2 should be replaced by 4.)

Proof. For the sake of simplicity we assume K = R. In the case K = C we
can proceed analogously by splitting g into its real and imaginary part.

We already know that Lϕ
∗ ⊂ (Lϕ)′, ‖g‖(Lϕ)′ = ‖Jg‖(Lϕ)∗ � 2 ‖g‖ϕ∗ , and

(�ϕ)∗(Jg) � �ϕ∗(g) for every g ∈ Lϕ
∗
. Fix g ∈ (Lϕ)′. We claim that g ∈ Lϕ

∗

and �ϕ∗(g) � (�ϕ)∗(Jg).
Since μ is σ-finite, we find measurable sets Ak ⊂ A with μ(Ak) < ∞ and

A1 ⊂ A2 ⊂ . . . such that A =
⋃∞
k=1Ak. Let {q1, q2, . . .} be a countable, dense

subset of [0,∞) with qj �= qk for j �= k and q1 = 0. For k ∈ N and y ∈ A
define

rk(y) := χAk(y) max
j=1,...,k

(
qj |g(y)| − ϕ(y, qj)

)
.

The special choice q1 = 0 implies rk(y) � 0 for all y � 0. Since {q1, q2, . . .}
is dense in [0,∞) and ϕ(y, ·) is left-continuous, rk(y) ↗ ϕ∗(y, |g(y)|) for any
y ∈ A as k → ∞. For every k ∈ N there exists a simple function fk with
fk(A) ⊂ {q1, . . . , qk} and fk(y) = 0 for all y ∈ A \Ak such that

rk(y) = fk(y) |g(y)| − ϕ(y, fk(y))

for all y ∈ A. As a simple function, fk belongs by assumption to Lϕ(A, μ).
Define hk(y) := fk(y) sgn(g(y)) for y ∈ A, where sgn(a) denotes the sign of a.
Then also hk is a simple function (here we use K = R) and therefore

(�ϕ)∗(Jg) � Jg(hk) − �ϕ(hk) =
ˆ

A

g(y)hk(y) − ϕ(y, |hk(y)|) dμ(y).

By the definition of hk it follows that

(�ϕ)∗(Jg) �
ˆ

A

|g(y)| fk(y) − ϕ(y, |fk(y)|) dμ(y) =
ˆ

A

rk(y) dμ(y).

Since rk � 0 and rk(y) ↗ ϕ∗(y, |g(y)|), we get by the theorem of monotone
convergence that

(�ϕ)∗(Jg) � lim sup
k→∞

ˆ

A

rk(y) dμ(y) =
ˆ

A

ϕ∗(y, |g(y)|) dμ(y) = �ϕ∗(g).
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Together with (�ϕ)∗(Jg) � �ϕ∗(g) we get (�ϕ)∗(Jg) = �ϕ∗(g).
Since g �→ Jg is linear, it follows that (�ϕ)∗(λJg) = �ϕ∗(λg) for every λ > 0

and therefore ‖g‖ϕ∗ = ‖Jg‖(�ϕ)∗ � ‖Jg‖(Lϕ)∗ = ‖g‖(Lϕ)′ using in the second
step Theorem 2.2.10. ��

Theorem 2.7.4 allows us to generalize the norm conjugate formula to Lϕ.

Corollary 2.7.5 (Norm conjugate formula). Let ϕ ∈ Φ(A, μ). If S(A, μ)
⊂ Lϕ

∗
(A, μ), then

‖f‖ϕ � sup
g∈Lϕ∗ : ‖g‖ϕ∗�1

ˆ
|f | |g| dμ � 2 ‖f‖ϕ

for every f ∈ L0(A, μ). The supremum is unchanged if we replace the
condition g ∈ Lϕ

∗
by g ∈ S(A, μ).

Proof. Applying Theorem 2.7.4 to ϕ∗ and taking into account that ϕ∗∗ = ϕ,
we have

‖f‖ϕ � ‖f‖(Lϕ∗ )′ � 2 ‖f‖ϕ

for f ∈ Lϕ. That the supremum does not change for g ∈ S(A, μ) follows by
Lemma 2.7.2. The claim also follows in the case f ∈ L0 \ Lϕ∗

= L0 \ (Lϕ)′,
since both sides of the formula are infinite. ��

Remark 2.7.6. Since μ is σ-finite it suffices in Theorem 2.7.4 and Corol-
lary 2.7.5 to assume S(Ak, μ) ⊂ Lϕ(A, μ), where (Ak) is a sequence with
Ak ↗ A and μ(Ak) < ∞ for all k. This is important for example in weighted
Lebesgue spaces Lqω(Rn) with Muckenhoupt weights.

Definition 2.7.7. A normed space (Y, ‖·‖Y ) with Y ⊂ L0(A, μ) is called a
Banach function space, if

(a) (Y, ‖·‖Y ) is circular, solid and satisfies the Fatou property.
(b) If μ(E) < ∞, then χE ∈ Y .
(c) If μ(E) < ∞, then χE ∈ Y ′, i.e.

´
E
|f |dμ � c(E)‖f‖Y for all f ∈ Y .

From Theorem 2.3.17 we know that Lϕ satisfies (a) for every ϕ ∈ Φ(A, μ)
so one need only check (b) and (c). These properties are equivalent to S ⊂ Lϕ

and S ⊂ (Lϕ)′, where S is the set of simple functions. These inclusions may
or may not hold, depending on the function ϕ.

Definition 2.7.8. A generalized Φ-function ϕ ∈ Φ(A, μ) is called proper if
the set of simple functions S(A, μ) satisfies S(A, μ) ⊂ Lϕ(A, μ)∩ (Lϕ(A, μ))′.

So ϕ is proper if and only if Lϕ is a Banach function space. More-
over, if ϕ is proper then the norm conjugate formula for Lϕ and Lϕ

∗
holds

(Corollary 2.7.5) and Lϕ
∗

= (Lϕ)′.
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Corollary 2.7.9. Let ϕ ∈ Φ(A, μ). Then the following are equivalent:

(a) ϕ is proper.
(b) ϕ∗ is proper.
(c) S(A, μ) ⊂ Lϕ(A, μ) ∩ Lϕ∗

(A, μ).

Proof. If (a) or (c) holds, then S ⊂ Lϕ. Hence (Lϕ)′ = Lϕ
∗

by Theorem 2.7.4,
which obviously implies the equivalence of (a) and (c).

Applying this equivalence for the function ϕ∗, and taking into account
that ϕ∗∗ = ϕ, yields the equivalence of (b) and (c). ��

Remark 2.7.10. The conditions χE ∈ Lϕ and χE ∈ (Lϕ)′ for μ(E)<∞ in
Definition 2.7.7 can be interpreted in terms of embeddings. Indeed, χE ∈ Lϕ

implies Lϕ
∗
↪→ L1(E). The condition χE ∈ (Lϕ)′ is equivalent to Lϕ(E) ↪→

L1(E). In particular, if ϕ is proper, then Lϕ(Ω) ↪→ L1
loc(Ω) and Lϕ

∗
(Ω) ↪→

L1
loc(Ω).

Remark 2.7.11. Let ϕ ∈ Φ be proper; so Lϕ is a Banach function space. It
has been shown in [43, Proposition 3.6] that f ∈ Lϕ has absolutely continuous
norm (see Remark 2.5.8) if and only if f has the following property: If gk,
g ∈ L0 with |gk| � |f | and gk → g almost everywhere, then gk → g in Lϕ.
Thus, f acts as a majorant in the theorem of dominated convergence.

It has been shown by Lorentz and Luxemburg that the second associate
spaceX ′′ of a Banach function space coincides with X with equality of norms,
see [43, Theorem 2.7]. In particular, (Lϕ)′′ = Lϕ with equality of norms if ϕ
is proper. For the sake of completeness we include a proof of this result in
our setting.

Theorem 2.7.12. Let ϕ ∈ Φ(A, μ) be proper. Then Lϕ
∗
(A, μ) = (Lϕ(A, μ))′

and (Lϕ
∗
(A, μ))′ = Lϕ(A, μ). Moreover, (Lϕ(A, μ))′′ = Lϕ(A, μ) with equal-

ity of norms, i.e. ‖f‖ϕ = ‖f‖(Lϕ)′′ for all f ∈ Lϕ(A, μ).

Proof. The equalities Lϕ
∗

= (Lϕ)′ and (Lϕ
∗
)′ = Lϕ follow by Theorem 2.7.4

and as a consequence (Lϕ)′′ = (Lϕ
∗
)′ = Lϕ

∗∗
= Lϕ using ϕ∗∗ = ϕ. It only

remains to prove the equality of norms. Let f ∈ Lϕ, then

‖f‖(Lϕ)′′ = sup
g∈(Lϕ)′ : ‖g‖(Lϕ)′�1

ˆ
|f | |g| dμ � ‖f‖ϕ.

We now prove ‖f‖ϕ � ‖f‖(Lϕ)′′ . We begin with the case μ(A) < ∞. If
f = 0, there is nothing to show, so assume f �= 0. Let B denote the unit
ball of Lϕ. Due to Remark 2.7.10 and μ(A) < ∞, we have Lϕ(A) ↪→ L1(A),
so B ⊂ L1(A). Moreover, B is a closed, convex subset of L1(A). Indeed, if
uk ∈ B with uk → u in L1(A), then uk → u μ-almost everywhere for a sub-
sequence, so Fatou’s lemma for the norm (Theorem 2.3.17) implies u ∈ B.
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Let h := λf/‖f‖ϕ with λ > 1, then h �∈ B, so by the Hahn–Banach Theo-
rem 1.4.2 there exists a functional on (L1(A))∗ separating B and f . In other
words, there exists a function g ∈ L∞(A) and γ ∈ R such that

Re
( ˆ

vg dμ

)

� γ < Re
( ˆ

hg dμ

)

for all v ∈ B, where we have used the representation of (L1(A))∗ by L∞(A).
From g ∈ L∞(A) and χA ∈ (Lϕ)′ it follows by solidity of (Lϕ)′ that g ∈ (Lϕ)′.
Moreover, the circularity of Lϕ implies that

ˆ
|v||g|dμ � γ <

ˆ
|h||g| dμ =

λ

‖f‖ϕ

ˆ
|f ||g|dμ �

λ‖f‖(Lϕ)′′‖g‖(Lϕ)′

‖f‖ϕ

for all v ∈ B. In other words,

‖g‖(Lϕ)′ �
λ‖f‖(Lϕ)′′‖g‖(Lϕ)′

‖f‖ϕ
.

Using ‖g‖(Lϕ)′ <∞ we get ‖f‖ϕ � λ‖f‖(Lϕ)′′ . This proves ‖f‖ϕ � ‖f‖(Lϕ)′′

and therefore ‖f‖ϕ = ‖f‖(Lϕ)′′ .
It remains to consider the case μ(A) =∞. Choose Ak ⊂A with μ(Ak)<∞,

A1 ⊂A2 ⊂ . . . , andA =
⋃∞
k=1 Ak. Then ‖fχAk‖ϕ = ‖f‖Lϕ(Ak)

= ‖f‖(Lϕ(Ak))′′

= ‖fχAk‖(Lϕ(A))′′ by the first part. Now, with the Fatou property of Lϕ and
(Lϕ)′′ we conclude ‖f‖ϕ = ‖f‖(Lϕ)′′ . ��

Remark 2.7.13. Let ϕ ∈ Φ(A, μ) be proper. Then we can use Theo-
rem 2.7.12 Hölder’s inequality to derive the formula

1
2
‖f‖ϕ � sup

h∈Lϕ∗ : ‖h‖ϕ∗�1

ˆ
|f | |h| dμ � 2 ‖f‖ϕ.

for all f ∈ L0(A, μ). This is a weaker version of the norm conjugate formula
in Corollary 2.7.5, with an extra factor 1

2 on the left-hand side.

We are now able to characterize the dual space of Lϕ.

Theorem 2.7.14. Let ϕ ∈ Φ(A, μ) be proper and locally integrable, and sup-
pose that Eϕ = Lϕ. Then V : g �→ Jg is an isomorphism from Lϕ

∗
(A, μ) to

(Lϕ(A, μ))∗.

Proof. By Theorem 2.7.4 V is an isomorphism from Lϕ
∗

onto its image
Im(V ) ⊂ (Lϕ)∗. In particular, Im(V ) is a closed subspace of (Lϕ)∗. Since
ϕ is locally integrable S = Eϕ by Theorem 2.5.9, so that S = Eϕ = Lϕ.

We have to show that V is surjective. We begin with the case μ(A) < ∞.
Let J ∈ (Lϕ)∗. For any measurable set E ⊂ A we define τ(E) := J(χE),
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which is well defined since S ⊂ Lϕ. We claim that τ is a signed, finite measure
on A. Obviously, τ is a set function with τ(E1∪E2) = τ(E1)+τ(E2) for E1, E2

disjoint measurable sets. Let (Ej) be sequence of pairwise disjoint, measurable
sets. Let E :=

⋃∞
j=1 Ej . Then

∑k
j=1 χEj → χE almost everywhere and by

dominated convergence (Lemma 2.3.16) using χE ∈ Lϕ = Eϕ we find that
∑k

j=1 χEj → χE in Lϕ. This and the continuity of J imply

∞∑

j=1

τ(Ej) =
∞∑

j=1

J(χEj ) = J(χE) = τ(E),

which proves that τ is σ-additive. The estimate

|τ(E)| = |J(χE)| � ‖J‖(Lϕ)∗‖χE‖ϕ � ‖J‖(Lϕ)∗‖χA‖ϕ

for all measurable E, proves that τ is a signed, finite measure. If μ(E) = 0,
then τ(E) = J(χE) = 0, so τ is absolutely continuous with respect to μ. Thus
by the Radon–Nikodym Theorem 1.4.13 there exists a function g ∈ L1(A)
such that

J(f) =
ˆ

A

fg dμ (2.7.15)

for all f = χE with E measurable and therefore by linearity for all f ∈ S. We
claim that ‖g‖(Lϕ)′ � ‖J‖(Lϕ)∗ . Due to Lemma 2.7.2 it suffices to show that´
|f | |g|dμ � ‖J‖(Lϕ)∗ for every f ∈ S = S ∩ Lϕ with ‖f‖ϕ � 1. Fix such

an f . If K = R, then sgn g is a simple function. However, to include the case
K = C, we need to approximate sgn g by simple function as follows. Since
sgn g ∈ L∞, we find a sequence (hk) of simple functions with hk → sgn g
almost everywhere and |hk| � 1. Since |f |hk ∈ S and ‖ |f |hk‖ϕ � ‖f‖ϕ � 1,
we estimate

´
|f |hkg dx = J(|f |hk) � ‖J‖(Lϕ)∗ using (2.7.15). We have

|f |hkg → |f | |g| almost everywhere and |fhkg| � |f ||g| ∈ L1, since g ∈ L1

and f ∈ L∞ as a simple function. Therefore, by the theorem of dominated
convergence we conclude

´
|f ||g| dx = limk→∞

´
|f |hkg dx � ‖J‖(Lϕ)∗ . This

yields ‖g‖(Lϕ)′ � ‖J‖(Lϕ)∗ . Then g ∈ Lϕ
∗

follows from (Lϕ)′ = Lϕ
∗

by The-
orem 2.7.4. By (2.7.3) and (2.7.15) the functionals Jg and J agree on the
set S. So the continuity of J and Jg and S = Lϕ imply J = Jg proving the
surjectivity of g �→ Jg in the case μ(A) < ∞.

It remains to prove the surjectivity for μ σ-finite. Choose Ak ⊂ A with
μ(Ak) < ∞, A1 ⊂ A2 ⊂ . . . , and A =

⋃∞
k=1 Ak. By restriction we see

that J ∈ (Lϕ(Ak))∗ for each J ∈ (Lϕ(A))∗. Since μ(Ak) < ∞, there exists
gk ∈ Lϕ

∗
(Ak) such that J(f) = Jgk(f) for any f ∈ Lϕ(Ak) and ‖gk‖ϕ∗ �

‖J‖(Lϕ)∗ . The injectivity of g �→ Jg implies gj = gk on Aj for all k � j. So
g := gk on Ak is well defined and J(f) = Jg(f) for all f ∈ Lϕ(Ak) and every
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k. Since |gk| ↗ |g| almost everywhere and supk ‖gk‖ϕ∗ � ‖J‖(Lϕ)∗ , it follows
by the Fatou property of Lϕ

∗
that ‖g‖ϕ∗ � ‖J‖(Lϕ)∗ .

It remains to prove J = Jg. Let f ∈ Lϕ. Then by Fatou’s lemma
(Lemma 2.3.16), f χAk → f in Lϕ. Hence, the continuity of J and Jg and
J(f χAk) = Jg(f χAk) yields J(f) = Jg(f) as desired. ��

Remark 2.7.16. (a) If ϕ is proper and locally integrable, then the condition
Lϕ = Eϕ is equivalent to the density of the set S of simple functions in
Lϕ, see Theorem 2.5.9.

(b) If μ is atom-free, then the assumptions “locally integrable” and “Eϕ =
Lϕ” are also necessary for V : g �→ Jg from Lϕ

∗
= (Lϕ)′ to (Lϕ)∗ to be

an isomorphism. Indeed, if V is an isomorphism, then it has been shown
in [43, Theorem 4.1] that every function f ∈ Lϕ has absolutely contin-
uous norm (see Remark 2.5.8). In particular, every χE with μ(E) < ∞
has absolutely continuous norm. We prove that ϕ is locally integrable by
contradiction, so assume that there exists a measurable set E and λ > 0
such that μ(E) <∞ and �ϕ(λχE) = ∞. Since μ is atom-free there exists
a sequence (Ek) of pairwise disjoint, measurable sets such that Ek ↘ ∅
and �ϕ(λχEk) = ∞. In particular, ‖χEk‖ϕ � 1

λ . However, since χE has
absolutely continuous norm, we should have ‖χEk‖ϕ = ‖χEχEk‖ϕ → 0,
which gives the desired contradiction. Thus, ϕ is locally integrable. If fol-
lows from Theorem 2.5.9 that Eϕ = S, where S are the simple functions.
Moreover, since V is an isomorphism, by the norm conjugate formula in
Lemma 2.7.2 it follows that S◦ = {0}, where S◦ is the annihilator of S.
This implies Eϕ = S = S◦◦ = Lϕ

∗
.

The reflexivity of Lϕ can be reduced to the characterization of (Lϕ)∗ and
(Lϕ

∗
)∗.

Lemma 2.7.17. Let ϕ ∈ Φ(A, μ) be proper. Then Lϕ is reflexive, if and
only if the natural embeddings V : Lϕ

∗ → (Lϕ)∗ and U : Lϕ → (Lϕ
∗
)∗ are

isomorphisms.

Proof. Let ι denote the natural injection of Lϕ into its bidual (Lϕ)∗∗. It is
easy to see that V ∗ ◦ ι = U . Indeed,

〈V ∗ιf , g〉 = 〈ιf , V g〉 = 〈V g, f〉 =
ˆ
f(x)g(x) dμ = 〈Uf, g〉

for f ∈ Lϕ and g ∈ Lϕ
∗
. If V and U are isomorphisms, then ι = (V ∗)−1 ◦ U

must be an isomorphism and Lϕ is reflexive.
Assume now that Lϕ is reflexive. We have to show that U and V are

isomorphisms. We already know from Theorem 2.7.4 (since ϕ is proper) that
U and V are isomorphisms from Lϕ and Lϕ

∗
to their images Im(U) and

Im(V ), respectively. In particular, V is a closed operator and as a consequence
Im(V ∗) = (ker(V ))◦. The injectivity of V implies that V ∗ is surjective. So
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U = V ∗ ◦ ι is surjective as well. This proves that U is an isomorphism. The
formula U = V ∗ ◦ ι implies that V ∗ is also an isomorphism. Since V is a
closed operator, we have Im(V ) = (ker(V ∗))◦. The injectivity of V ∗ proves
that V is surjective and therefore an isomorphism. ��

By Theorem 2.7.14 and Lemma 2.7.17 we immediately get the reflexivity
of Lϕ.

Corollary 2.7.18. Let ϕ ∈ Φ(A, μ) be proper. If ϕ and ϕ∗ are locally
integrable, Eϕ = Lϕ and Eϕ

∗
= Lϕ

∗
, then Lϕ is reflexive.

2.8 Embeddings and Operators

In this section we characterize bounded, linear operators from one Musielak–
Orlicz space to another. Recall that the operator S is said to be bounded from
Lϕ to Lψ if ‖Sf‖ϕ � C ‖f‖ψ. We want to characterize this in terms of the
modular. The study of embeddings is especially important to us, i.e. we want
to know when the identity is a bounded operator. Such embeddings, which
are denoted by Lϕ ↪→ Lψ, can be characterized by comparing ϕ pointwise
with ψ.

Let us begin with a characterization of bounded, sub-linear operators. Let
ϕ, ψ ∈ Φ(A, μ) and let S : Lϕ(A, μ) → Lψ(A, μ) be sub-linear. By the norm-
modular unit ball property, S is bounded if and only if there exist c > 0 such
that

�ϕ(f) � 1 =⇒ �ψ(Sf/c) � 1.

If ϕ and ψ satisfy the Δ2-condition, then this is equivalent to the existence
of c1, c2 > 0 such that

�ϕ(f) � c1 =⇒ �ψ(Sf) � c2

(since the Δ2-condition allows us to move constants out of the modular).

Theorem 2.8.1. Let ϕ, ψ ∈ Φ(A, μ) and let the measure μ be atom-less.
Then Lϕ(A, μ) ↪→ Lψ(A, μ) if and only if there exists c′ > 0 and h ∈ L1(A, μ)
with ‖h‖1 � 1 such that

ψ
(
y,
t

c′
)

� ϕ(y, t) + h(y)

for almost all y ∈ A and all t � 0.
Moreover, c′ is bounded by the embedding constant, whereas the embedding

constant is bounded by 2c′.

Proof. Let us start by showing that the inequality implies the embedding.
Let ‖f‖ϕ � 1, which yields by the unit ball property that �ϕ(f) � 1. Then
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�ψ

( f

2c′
)

� 1
2
�ψ

( f

c′
)

� 1
2
�ϕ(f) +

1
2

ˆ

A

h(y) dy � 1.

This and the unit ball property yield ‖f/(2c′)‖ψ � 1. Then the embedding
follows by the scaling argument.

Assume next that the embedding holds with embedding constant c1. For
y ∈ A and t � 0 define

α(y, t) :=

{
ψ(y, tc1 ) − ϕ(y, t) if ϕ(y, t) < ∞,

0 if ϕ(y, t) = ∞.

Since ϕ(y, ·) and ψ(y, ·) are left-continuous for all y ∈ A, also α(y, ·) is left-
continuous for all y ∈ A. Let (rk) be a sequence of distinct numbers with
{rk : k ∈ N} = Q ∩ [0,∞) and r1 = 0. Then

ψ(y, rkc1 ) � ϕ(y, rk) + α(y, rk)

for all k ∈ N and y ∈ A. Define

bk(y) := max
1�j�k

α(y, rj).

Since r1 = 0 and α(y, 0) = 0, we have bk � 0. Moreover, the functions bk are
measurable and nondecreasing in k. The function b := supk bk is measurable,
non-negative, and satisfies

b(y) = sup
t�0

α(y, t),

ψ(y, tc1 ) � ϕ(y, t) + b(y)

for all y ∈ A and all t � 0, where we have used that α(y, ·) is left-continuous
and the density of {rk : k ∈ N} in [0,∞).

We now show that b ∈ L1(A, μ) with ‖b‖1 � 1. We consider first the case
|b| < ∞ a.e., and assume to the contrary that there exists ε > 0 such that

ˆ

A

b(y) dμ(y) � 1 + 2ε.

Define

Vk :=
{
y ∈ A : α(y, rk) > 1

1+εb(y)
}
,

Wk+1 := Vk+1 \
(
V1 ∪ · · · ∪ Vk)
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for all k ∈ N. Note that V1 = ∅ due to the special choice r1 = 0. Since
{rk : k ∈ N} is dense in [0,∞) and α(y, ·) is left-continuous for every y ∈ A,
we have

⋃∞
k=1 Vk =

⋃∞
k=2Wk = {y ∈ A : b(y) > 0}.

Let f :=
∑∞

k=2 rk χWk
. For every y ∈ Wk we have α(y, rk) > 0 and

therefore ϕ(y, rk) <∞. If y is outside of
⋃∞
k=2Wk, then ϕ(y, |f(y)|) = 0. This

implies that ϕ(y, |f(y)|) is everywhere finite. Moreover, by the definition of
Wk and α we get

ψ
(
y,

|f(y)|
c1

)
� ϕ
(
y, |f(y)|

)
+

1
1 + ε

b(y) (2.8.2)

for all y ∈ A.
If �ϕ(f) � 1, then �ψ( fc1 ) � 1 by the unit ball property since c1 is the

embedding constant. However, this contradicts

�ψ( fc1 ) � �ϕ(f) +
1

1 + ε

ˆ

A

b(y) dμ(y) � 1 + 2ε
1 + ε

> 1,

where we have used (2.8.2) and
⋃∞
k=2Wk = {y ∈ A : b(y) > 0}. So we can

assume that �ϕ(f) > 1. Since μ is atom-less and ϕ(y, |f(y)|) is almost
everywhere finite, there exists U ⊂ A with �ϕ(fχU ) = 1. Thus

�ψ( fc1 χU ) � �ϕ(f χU ) + 1
1+ε

ˆ

U

b(y) dμ(y)

= 1 + 1
1+ε

ˆ

U

b(y) dμ(y).
(2.8.3)

Now, �ϕ(fχU ) = 1 implies that μ(U ∩ {f �= 0}) > 0. Since {f �= 0} =⋃∞
k=2Wk = {y ∈ A : b(y) > 0} we get μ(U ∩ {y ∈ A : b(y) > 0}) > 0 and

ˆ

U

b(y) dμ(y) > 0.

This and (2.8.3) imply that

�ψ(f/c1 χU ) > 1.

which contradicts �ψ(f/c1) � 1. Thus the case where |b| < ∞ a.e. is complete.
If we assume that there exists E ⊂ A with b|E = ∞ and μ(E) > 0,

then a similar argument with Vk := {y ∈ E : α(y, rk) � 2
μ(E)} yields a

contradiction. Hence this case cannot occur, and the proof is complete by
what was shown previously. ��



Chapter 3

Variable Exponent Lebesgue Spaces

In this chapter we define Lebesgue spaces with variable exponents, Lp(·).
They differ from classical Lp spaces in that the exponent p is not constant
but a function from Ω to [1,∞]. The spaces Lp(·) fit into the framework of
Musielak–Orlicz spaces and are therefore also semimodular spaces.

We first define the appropriate Φ-function for variable exponent spaces
in Sect. 3.1 and study its properties. Then we are in a position to apply
the results of general Musielak–Orlicz spaces to our case in Sect. 3.2. Sec-
tion 3.3 deals with embeddings between spaces with different exponents.
In Sect. 3.4 we have collected properties which are more restrictive in the
sense that they hold only for exponents bounded away from 1 and/or ∞.
The final two sections are more technical. First we develop tools for deal-
ing with unbounded exponents in Sect. 3.5 and then we investigate failure of
convolution in Sect. 3.6. The latter is a major topic also of Chap. 4.

3.1 The Lebesgue Space Φ-Function

For the definition of the variable exponent Lebesgue spaces it is necessary to
introduce the kind of variable exponents that we are interested in.

Let us also mention that many results on the basic properties on Lp(·)

from this chapter were proved first by Kováčik and Rákosńık in [258]. These
results were later reproved by Fan and Zhao in [149].

Definition 3.1.1. Let (A,Σ, μ) be a σ-finite, complete measure space. We
define P(A, μ) to be the set of all μ-measurable functions p : A → [1,∞].
Functions p ∈ P(A, μ) are called variable exponents on A. We define
p− := p−A := ess infy∈A p(y) and p+ := p+

A := ess supy∈A p(y). If p+ < ∞,
then we call p a bounded variable exponent.

If p ∈ P(A, μ), then we define p′ ∈ P(A, μ) by 1
p(y) + 1

p′(y) = 1, where
1
∞ := 0. The function p′ is called the dual variable exponent of p.

In the special case that μ is the n-dimensional Lebesgue measure and Ω is
an open subset of R

n, we abbreviate P(Ω) := P(Ω, μ).

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 3,
c© Springer-Verlag Berlin Heidelberg 2011
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For the definition of the space Lp(·) we need the corresponding generalized
Φ-function. Interestingly, there are two natural choices. However, we will see
that both generate the same space up to isomorphism.

Definition 3.1.2. For t � 0 and 1 � p <∞ we define

ϕ̃p(t) :=
1
p
tp,

ϕ̄p(t) := tp.

Moreover we set

ϕ̄∞(t) := ϕ̃∞(t) := ∞ · χ(1,∞)(t) =

{
0 if t ∈ [0, 1],

∞ if t ∈ (1,∞).

For variable exponent p ∈ P(A, μ) we define for y ∈ A and t � 0

ϕ̃p(·)(y, t) := ϕ̃p(y)(t) and ϕ̄p(·)(y, t) := ϕ̄p(y)(t).

It is easy to see that both ϕ̃q and ϕ̄q are Φ-functions if q ∈ [1,∞]. So ϕ̃p(·)
and ϕ̄p(·) are generalized Φ-functions if p ∈ P(A, μ). Even more, if q ∈ (1,∞)
and p ∈ P(A, μ) with 1 < p− � p+ <∞, then ϕ̃q and ϕ̄q are N-functions and
ϕ̃p(·) and ϕ̄p(·) are generalized N-functions. If q ∈ [1,∞) , then ϕ̃q and ϕ̄q are
continuous and positive. The function ϕ̃∞ = ϕ̄∞ is only left-continuous and
it is not positive.

Both ϕ̃p and ϕ̄p have their advantages. The advantage of ϕ̄p is that the cor-
responding Musielak–Orlicz space Lϕ̄p agrees for constant p ∈ [1,∞] exactly
with the classical Lp spaces, see Example 2.1.8. In particular, for f ∈ Lp(Ω)
we have ‖f‖p = ‖f‖ϕ̄p . Additionally, the generalized Φ-function ϕ̄p(·) has
been used in the vast majority of papers on variable exponent function spaces.

The advantages of ϕ̃p are its nice properties regarding conjugation, conti-
nuity, and convexity with respect to the exponent p. First, for all t � 0 the
mapping p �→ ϕ̃p(t) is continuous with respect to p ∈ [1,∞]. In particular,

ϕ̃∞(t) = lim
p→∞ ϕ̃p(t)

for all t � 0. This suggests that the expression 1
p t
p has for p = ∞ a natural

interpretation, namely ϕ̃∞(t) = ∞ · χ(1,∞)(t). Therefore, we sometimes will
just write ϕ̃p(t) = 1

p t
p including the case p = ∞.

Second, ϕ̃p acts nicely with respect to conjugation. For future reference
we also need the corresponding result for (ϕ̄p(·))∗.

Lemma 3.1.3. If 1 � q � ∞, then (ϕ̃q)∗ = ϕ̃q′ and

(ϕ̄q)∗(t) � ϕ̄q′ (t) � (ϕ̄q)∗(2t)

for all t � 0.
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Proof. We first show that (ϕ̃q)∗ = ϕ̃q′ for q ∈ [1,∞]. If q ∈ (1,∞), then
the claim follows directly from Theorem 2.6.8 and example (b) thereafter.
Moreover,

(ϕ̃1)∗(u) = sup
t�0

(tu− t) = sup
t�0

(
t(u− 1)

)
= ∞ · χ(1,∞)(u) = ϕ̃∞(u)

for all u � 0. Thus, ϕ̃1(t) = (ϕ̃1)∗∗(t) = (ϕ̃∞)∗(t) for all t � 0, where we have
used Corollary 2.6.3.

Since ϕ̄1 = ϕ̃1, ϕ̄∞ = ϕ̃∞, and (ϕ̃q)∗ = ϕ̃q′ for all q ∈ [1,∞] by the
previous case, it suffices to consider the case 1 < q <∞. The estimates

ϕ̄q′(t)
(ϕ̄q)∗(t)

= q′qq
′−1 � 1,

ϕ̄q′(t)
(ϕ̄q)∗(2t)

= q′qq
′−12−q

′ � 1,

valid for all t > 0, yield the last assertion. ��

Third, ϕ̃p has a certain convexity property with respect to p, which will
turn out to be quite useful:

Lemma 3.1.4. The mapping a �→ ϕ̃1/a(t) is continuous and convex on [0, 1]
for each t � 0, with the convention 1

∞ := 0.

Proof. The claim is obvious for t = 0, so assume t > 0. Define g(a) := at
1
a

for a ∈ [0, 1]. Then g(a) = ϕ̃1/a(t). We have to show that g is convex on [0, 1].
An easy calculation shows that g is continuous on [0, 1] and

g′′(a) = t
1
a

(log t)2

a3
� 0

for a ∈ (0, 1]. Thus, g is convex. ��
Remark 3.1.5. Let q0, q1 ∈ [1,∞]. For θ ∈ [0, 1] let qθ ∈ [q0, q1] be defined
through 1

qθ
:= 1−θ

q0
+ θ

q1
. Then

ϕ̃qθ (t) � (1 − θ)ϕ̃q0 (t) + θϕ̃q1 (t),
min {ϕ̄q0(t), ϕ̄q1(t)} � ϕ̄qθ (t) � max {ϕ̄q0(t), ϕ̄q1 (t)}

for all t � 0. The estimate for ϕ̃qθ follows by convexity (Lemma 3.1.4) and
the estimate for ϕ̄qθ (t) follows by direct calculation.

The two Φ-functions ϕ̃p and ϕ̄p are related in the following way.

Lemma 3.1.6. Let 1 � q � ∞. Then

ϕ̃q(t) � ϕ̄q(t) � ϕ̃q(2t) for all t � 0.
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Proof. Since ϕ̃∞ = ϕ̄∞ it suffices to consider the case 1 � q < ∞. The case
t = 0 follows from ϕ̃q(0) = 0 = ϕ̄q(0). For t > 0 we have

ϕ̃q(t)
ϕ̄q(t)

=
1
q

� 1,

ϕ̃q(2t)
ϕ̄q(t)

=
2q

q
� e log 2 � 1.

This proves the claim. ��

Remark 3.1.7. It is also possible to show that for every λ > 1 there exists
cλ � 1 such that ϕ̃q(t) � ϕ̄q(t) � cλϕ̃q(λt) for every q ∈ [1,∞] and t � 0.

In the following we will need the left-continuous inverse of a Φ-function.

Definition 3.1.8. For a Φ-function ϕ we define ϕ−1 : [0,∞) → [0,∞) by

ϕ−1(t) := inf {τ � 0 : ϕ(τ) � t}

for all t � 0. We call ϕ−1 the left-continuous inverse of ϕ.
For a generalized Φ-function ϕ ∈ Φ(A, μ) the left-continuous inverse is

defined pointwise in y, i.e. for all y ∈ A let ϕ−1(y, ·) = (ϕ(y, ·))−1.

Let us collect a few properties of the left-continuous inverse, which follow
from the properties of ϕ. Let ϕ be a Φ-function. Then ϕ−1 is non-decreasing
and left-continuous on [0,∞). Moreover, ϕ−1(0) = 0 and

ϕ
(
ϕ−1(t)

)
� t (3.1.9)

for all t � 0. We also have

t � ϕ−1
(
ϕ(t)

)
(3.1.10)

for all t � 0 with ϕ(t) < ∞.

Lemma 3.1.11. If q ∈ [1,∞), then ϕ̃−1
q (t) = (q t)

1
q , ϕ̄−1

q (t) = t
1
q and

ϕ̃−1
∞ (t) = ϕ̄−1

∞ (t) = χ(0,∞)(t) for all t � 0.
If q ∈ [1,∞] and 1

q + 1
q′ = 1, then

t � ϕ−1
q (t)ϕ−1

q′ (t) � 2t,

for all t � 0.

Proof. The formulas for ϕ̃−1
q , ϕ̄−1

q , and ϕ̃−1
∞ follow easily by definition of the

left-continuous inverse. The second claim is clear for ϕ̄, since ϕ̄−1
q (t)ϕ̄−1

q′ (t) = t
for all q ∈ [1,∞] and t � 0. For ϕ̃ and q ∈ (1,∞), the claim follows from
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(ϕ̃q)∗ = ϕ̃q′ and Lemma 2.6.11. If p = 1, then (ϕ̃1)−1(t) = t and (ϕ̃∞)−1(t) =
χ(0,∞)(t) for all t � 0. Thus, ϕ̃−1

1 (t) ϕ̃−1∞ (t) = t for all t � 0. ��

Lemma 3.1.12. If q ∈ [1,∞], then

1
2
ϕ−1
q (t) � ϕ−1

q

(
t

2

)

� ϕ̄−1
q (t) � ϕ̃−1

q (t) � 2 ϕ̄−1
q (t)

for all t � 0. Moreover,

ϕ̄−1
q (t)ϕ̄−1

q

(
1
t

)

= 1 and 1 � ϕ̃−1
q (t) ϕ̃−1

q

(
1
t

)

� 3

for all t > 0.

Proof. If q ∈ [1,∞), then ϕ−1
q ( t2 ) = 2−

1
qϕ−1

p (t) and the first claim fol-
lows from 1

2 � 2−
1
q � 1 and Lemma 3.1.6. The case q = ∞ follows from

ϕ−1∞ (t) = χ(1,∞). The second claim follows from Lemma 3.1.11 and 1 �
q2/q � e2/e < 3. ��

For a ∈ (0, 1], ϕ̄−1
1/a(t) = ta. Thus we immediately obtain

Lemma 3.1.13. The mapping a �→ ϕ̄−1
1/a(t) is convex on (0, 1] for all t � 0.

3.2 Basic Properties

We are now ready to define the variable exponents Lebesgue space.

Definition 3.2.1. Let p ∈ P(A, μ) and let either ϕp(·) := ϕ̃p(·) or ϕp(·) :=
ϕ̄p(·). Hence we obtain a semimodular:

�Lp(·)(A)(f) =
ˆ

A

ϕp(x)(|f(x)|) dx.

We define the variable exponent Lebesgue space Lp(·)(A, μ) as the Musielak–
Orlicz space Lϕp(·)(A, μ) with the norm ‖·‖Lp(·)(A,μ) := ‖·‖Lϕp(·)(A,μ).

In particular, the variable exponent Lebesgue space Lp(·)(A, μ) is

Lp(·)(A, μ) =
{
f ∈ L0(A, μ) : limλ→0 �Lp(·)(A)(λf) = 0

}

or equivalently

Lp(·)(A, μ) =
{
f ∈ L0(A, μ) : �Lp(·)(A)(λf) < ∞ for some λ > 0

}



74 3 Variable Exponent Lebesgue Spaces

equipped with the norm

‖f‖Lp(·)(A,μ) = inf
{
λ > 0 : �Lp(·)(A)

(f

λ

)
� 1
}
.

Note that �Lp(·)(A) is a modular if p is finite everywhere. We abbreviate
�Lp(·)(A) to �p(·) and ‖·‖Lp(·)(A,μ) to ‖·‖p(·) if the set and the measure are clear
from the context. Moreover, if Ω ⊂ R

n and μ is the Lebesgue measure we
simply write Lp(·)(Ω) and if μ is the counting measure on Z

n, then we write
lp(·)(Zn).

This definition seems ambiguous, since either ϕp(·) = ϕ̃p(·) or ϕp(·) = ϕ̄p(·).
However, due to Lemma 3.1.6 it is clear that Lϕ̃p(·) = Lϕ̄p(·) and

‖f‖ϕ̃p(·) � ‖f‖ϕ̄p(·) � 2‖f‖ϕ̃p(·) . (3.2.2)

Thus, the two definitions agree up to equivalence of norms with constant at
most 2.

Recall that we have two relevant Φ-functions, ϕ̃p(·) and ϕ̄p(·). Usually, the
exact norm of Lp(·) is not important, so we just work with ϕp(·) without
specifying whether ϕp(·) = ϕ̃p(·) or ϕp(·) = ϕ̄p(·). If there is a difference in the
choice of ϕp(·), then the specific choice for ϕp(·) will be specified.

Remark 3.2.3. Originally, the spaces Lp(·) have been introduced by Orlicz
[319] in 1931 with ϕp(·) = ϕ̄p(·) in the case 1 � p− � p+ < ∞. The first
definition of Lp(·) including the case p+ = ∞ was given by Sharpudinov [351]
and then, in the higher dimensional case, by Kováčik and Rákosńık [258]. For
measurable f they define

�KR(f) := �p(·)(f χ{p�=∞}) +
∥
∥f χ{p=∞}

∥
∥
∞.

If is easy to see that �KR is a modular on L0(Ω), the set of measurable
functions. We denote the corresponding Luxemburg norm by

‖f‖KR = inf
{
λ > 0: �KR

( 1
λ
f
)

� 1
}
.

If μ({p = ∞}) = 0, then �KR = �p(·). But if μ({p = ∞}) > 0, then �KR �=
�p(·). Note that �KR is a modular, while our �p(·) is a only semimodular. In
particular, �KR(f) = 0 implies f = 0. For �p(·) we only have that �p(·)(λf) = 0
for all λ > 0 implies f = 0. This is due to the fact that ϕ̄∞ is not a positive
Φ-function. Since we developed most of the theory in Chap. 2 for semimodular
spaces, we do not have to treat the set {p = ∞} differently and we can work
directly with �p(·)(f). This includes the case p+ = ∞ in a more natural way.

Although �KR and �p(·) differ if p+ = ∞, they produce the same space
up to isomorphism. Let us prove this: let f ∈ L0(Ω) with ‖f‖�KR

� 1, so
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�KR(f) � 1 by the norm-modular unit ball property (Lemma 2.1.14). In
particular, ‖f χ{p=∞}‖∞ � 1. Thus �p(·)(f χ{p=∞}) = 0, since ϕ̄∞(t) = 0 for
all t ∈ [0, 1]. This proves that

�p(·)(f) = �p(·)(f χ{p�=∞})+�p(·)(f χ{p=∞}) = �p(·)(f χ{p�=∞}) � �KR(f) � 1.

So it follows that ‖f‖�p(·) � 1. The scaling argument shows that ‖f‖�p(·) �
‖f‖KR.

Assume now that ‖f‖�p(·) � 1, so �p(·)(f) � 1 by the unit ball property. In
particular, �∞(fχ{p=∞}) = �p(·)(f χ{p=∞}) � 1 and therefore |f | � 1 almost
everywhere on {p = ∞}. This proves that

�KR(f) = �p(·)(f χ{p�=∞}) + ‖f χ{p=∞}‖∞ � �p(·)(f) + 1 � 2.

This implies �KR(1
2f) � 1

2�KR(f) � 1, so ‖f‖KR � 2 by the norm-modular
unit ball property. The scaling argument shows ‖f‖KR � 2‖f‖�p(·) .

Overall, we have shown that

‖f‖�p(·) � ‖f‖KR � 2‖f‖�p(·) ,

for all f ∈ L0(Ω). Thus �KR and �ϕ̄p(·) define the same space Lp(·)(Ω), up to
equivalence of norms.

For a constant exponent the relation between the modular and the norm
is clear. For a variable exponent some more work is needed. We will invoke
it by mentioning the unit ball property, or, when more clarity is needed, the
norm-modular unit ball property.

Lemma 3.2.4 (Norm-modular unit ball property). If p ∈ P(Ω), then
‖f‖p(·) � 1 and �p(·)(f) � 1 are equivalent. For f ∈ Lp(·)(Ω) we have

(a) If ‖f‖p(·) � 1, then �p(·)(f) � ‖f‖p(·).
(b) If 1 < ‖f‖p(·), then ‖f‖p(·) � �p(·)(f).

This lemma follows directly from Lemma 2.1.14 and Corollary 2.1.15. The
next lemma is a variant which is specific to the variable exponent context.

Lemma 3.2.5. Let p ∈ P(Ω) with p− <∞. If �p(·)(f) > 0 or p+ < ∞, then

min
{
�p(·)(f)

1
p− , �p(·)(f)

1
p+
}

� ‖f‖ϕ̄p(·) � max
{
�p(·)(f)

1
p− , �p(·)(f)

1
p+
}
.

Proof. Suppose that p+ <∞. If �p(·)(f) � 1, then we need to prove that

�p(·)(f)
1
p− � ‖f‖p(·) � �p(·)(f)

1
p+ .
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By homogeneity, the latter inequality is equivalent to ‖f/�p(·)(f)
1
p+ ‖p(·) � 1,

which by the unit ball property is equivalent to

ˆ

Ω

(
|f(x)|

�p(·)(f)
1
p+

)p(x)
dx � 1.

But since �p(·)(f)−
p(x)
p+ � �p(·)(f)−1, this is clear. The other inequality and

the case �p(·)(f) � 1 are similar.
Consider now p+ = ∞ and �p(·)(f) > 0. In this case the upper inequality

becomes ‖f‖p(·) � max
{
�p(·)(f)1/p

−
, 1
}

. If �p(·)(f) � 1, then ‖f‖p(·) � 1, so
the inequality holds. If �p(·)(f) > 1, then we need to show that

ˆ

Ω

( |f(x)|
�p(·)(f)1/p−

)p(x)
dx � 1.

Since �p(·)(f)−1 < 1, we conclude that

�p(·)(f)
−p(x)
p− �

{
0, if p(x) = ∞,

�p(·)(f)−1, if p(x) < ∞.

Hence

ˆ

Ω

( |f(x)|
�p(·)(f)1/p−

)p(x)
dx �

ˆ

Ω

|f(x)|p(x)

�p(·)(f)
dx = 1.

The proof of the lower inequality is analogous. ��
Lemma 3.2.6. Let p ∈ P(Rn) and s > 0 be such that sp− � 1. Then
‖|f |s‖ϕ̄p(·) = ‖f‖sϕ̄sp(·) .

Proof. This follows from ϕ̄sp(t) = ϕ̄p(ts) and

∥
∥f
∥
∥s
ϕ̄sp(·)

=
(

inf {λ > 0 : �sp(·)(f/λ) � 1}
)s

= inf {λs > 0 : �p(·)(|f |
s
/λs) � 1} =

∥
∥|f |s

∥
∥
ϕ̄p(·)

. ��

Let us begin with those properties of Lp(·) which can be derived directly by
applying the results of Chap. 2. From Theorem 2.3.13 we immediately derive:

Theorem 3.2.7. If p ∈ P(A, μ), then Lp(·)(A, μ) is a Banach space.

Next we collect the continuity and lower semicontinuity results of Chap. 2.
Recall that Ep(·)(A, μ) denotes the set of finite elements of Lp(·)(A, μ), see
Definition 2.3.11. From Lemma 2.3.16 we deduce.
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Lemma 3.2.8. Let p ∈ P(A, μ) and fk, f, g ∈ L0(A, μ).

(a) If fk → f μ-almost everywhere, then �p(·)(f) � lim infk→∞ �p(·)(fk).
(b) If |fk| ↗ |f | μ-almost everywhere, then �p(·)(f) = limk→∞ �p(·)(fk).
(c) If fk → f μ-almost everywhere, |fk| � |g| μ-almost everywhere and

g ∈ Ep(·), then fk → f in Lp(·).

In analogy with the properties for the integral, the claims of the previous
lemma will be called Fatou’s lemma (for the modular), monotone convergence
and dominated convergence, respectively. From Theorem 2.2.8 we obtain.

Theorem 3.2.9. If p ∈ P(A, μ), then the modular is weakly (sequentially)
lower semicontinuous, i.e. �p(·)(f) � lim infk→∞ �p(·)(fk) if fk ⇀ f weakly
in Lp(·)(A, μ).

Since strong convergence implies weak convergence, the conclusion of the
previous theorem holds also if fk → f in Lp(·)(A, μ). From Lemmas 2.3.14
and 2.3.15 we deduce.

Lemma 3.2.10. Let p ∈ P(A, μ) and let fk ∈ Lp(·)(A, μ).

(a) If fk is a Cauchy sequence, then there exists a subsequence of fk which
converges μ-almost everywhere to a measurable function f .

(b) If μ(A) < ∞ and ‖fk‖p(·) → 0, then fk → 0 in measure.

Theorem 2.3.17 implies that Lp(·)(A, μ) is circular, solid, satisfies Fatou’s
lemma (for the norm) and has the Fatou property, i.e.

• ‖f‖p(·) =
∥
∥ |f |

∥
∥
p(·) for all f ∈ Lp(·)(A, μ).

• If f ∈ Lp(·)(A, μ), g ∈ L0(A, μ) and 0 � |g| � |f | μ-almost everywhere,
then g ∈ Lp(·)(A, μ) and ‖g‖p(·) � ‖f‖p(·).

• If fk → f μ-almost everywhere, then ‖f‖p(·) � lim infk→∞ ‖fk‖p(·).
• If |fk|↗|f | μ-almost everywhere with fk∈Lp(·)(A, μ) and supk ‖fk‖p(·)<∞.

Then f ∈ Lp(·)(A, μ) and ‖fk‖p(·) ↗ ‖f‖p(·), respectively.

In Definition 2.7.7 we introduced the notion of a Banach function space.
In addition to being circular, solid and having the Fatou property, a Banach
function space X has the property that all characteristic functions of μ-finite
sets are elements of X and its associate space X ′. In particular, all simple
functions should be contained in X and X ′. See Sect. 2.7 for the definition of
the associate space X ′.

Lemma 3.2.11. Let p ∈ P(A, μ). Then the set of simple functions S(A, μ)
is contained in Lp(·)(A, μ) and

min {1, μ(E)} � ‖χE‖ϕ̄p(·) � max {1, μ(E)},

for every measurable set E ⊂ A.
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Proof. Let E ⊂ A be measurable with μ(E) <∞. Then

�p(·)

(
χE

max {1, μ(E)}

)

=
ˆ

E

1
(max {1, μ(E)})p(x)

dx

�
ˆ

E

1
max {1, μ(E)} dx � 1.

Hence, by the unit ball property ‖χE‖p(·) � max {1, μ(E)}. Since simple
functions are finite linear combinations of characteristic functions, we get
S(A, μ) ⊂ Lp(·)(A, μ). Now, let λ > 1, then

�p(·)

(
λχE

min {1, μ(E)}

)

=
ˆ

E

λp(x)

(min {1, μ(E)})p(x)
dx

�
ˆ

E

λ

min {1, μ(E)} dx � λ > 1.

Hence, ‖λχE‖ϕ̄p(·) > min {1, μ(E)} for every λ > 1 (by the unit ball prop-
erty), which proves ‖χE‖ϕ̄p(·) � min {1, μ(E)}. ��

The following lemma is an improved version of Lemma 3.2.11, which is
especially useful if 1

s− − 1
s+ is small.

Lemma 3.2.12. Let s ∈ P(A, μ). Then

1
2

min
{
μ(A)

1
s+ , μ(A)

1
s−
}

� ‖1‖Ls(·)(A,μ) � 2 max
{
μ(A)

1
s+ , μ(A)

1
s−
}

for every measurable set A with μ(A) > 0. If ϕp = ϕ̄p, then we can omit the
factors 1

2 and 2.

Proof. The case ϕp(·) = ϕ̄p(·) follows from Lemma 3.2.5. The case ϕp(·) = ϕ̃p(·)
then follows by (3.2.2). ��

Let us apply the results of Sect. 2.7 to the spaces Lp(·).

Theorem 3.2.13. Let p ∈ P(A, μ). Then ϕp(·) is proper and Lp(·)(A, μ)
is a Banach function space. Its associate space satisfies (Lp(·)(A, μ))′ =
Lp

′(·)(A, μ) and

‖g‖p′(·) � ‖g‖(Lp(·))′ � 2 ‖g‖p′(·) if ϕp(·) = ϕ̃p(·),

1
2
‖g‖p′(·) � ‖g‖(Lp(·))′ � 2 ‖g‖p′(·) if ϕp(·) = ϕ̄p(·)

for every g ∈ L0(A, μ).
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Proof. If follows from Lemma 3.2.11 that simple functions are contained in
Lp(·) and Lp

′(·). Thus ϕp(·) is proper by Corollary 2.7.9 and therefore Lp(·) is
a Banach function space, see also Sect. 2.7. We can apply Theorem 2.7.4 to
ϕp(·) to get (Lp(·)(A, μ))′ = Lp

′(·)(A, μ) and

‖g‖(ϕp(·))∗ � ‖g‖(Lp(·))′ � 2 ‖g‖(ϕp(·))∗ ,

which is the first estimate of the claim if ϕp(·) = ϕ̃p(·), since (ϕ̃p(·))∗ = ϕ̃p′(·).
From Lemma 3.1.3 we deduce

‖g‖(ϕ̄p(·))∗ � ‖g‖ϕ̄p′(·) � 2 ‖g‖(ϕ̄p(·))∗ ,

which in combination with the previous estimate proves the second estimate
of the claim. ��

Similar to Corollary 2.7.5 we derive from Theorem 3.2.13 the following
norm conjugate formula of Lp(·).

Corollary 3.2.14 (Norm conjugate formula). Let p ∈ P(A, μ). Then

1
2
‖f‖p(·) � sup

g∈Lp′(·) : ‖g‖p′(·)�1

ˆ
|f | |g| dμ � 2 ‖f‖p(·)

for all f ∈ L0(A, μ). The factor 1
2 can be omitted if ϕp(·) = ϕ̃p(·).

The supremum is unchanged if we replace the condition g ∈ Lp
′(·)(A, μ)

by g ∈ S(A, μ) or even g ∈ Sc(Ω) when p ∈ P(Ω), where Sc(Ω) is the set of
simple functions with compact support in Ω.

Proof. The proof of the formula is exactly the same as in Corollary 2.7.5 if
we additionally use the estimates of Theorem 3.2.13. That the supremum
does not change for g ∈ S(A, μ) follows by Lemma 2.7.2. The case g ∈ Sc(Ω)
requires a simple straightforward modification of Lemma 2.7.2. ��

Since the norm conjugate formula can also be used for f ∈ L0 (just
measurable), it can be used to verify if a function belongs to Lp(·).

A critical property which holds for classical and variable exponent
Lebesgue spaces, is Hölder’s inequality, which we prove next. As usual, we
start with Young’s inequality.
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Lemma 3.2.15 (Young’s inequality). Let p, q, s ∈ [1,∞] with

1
s

=
1
p

+
1
q
.

Then for all a, b � 0

ϕs(ab) � ϕp(a) + ϕq(b), (3.2.16)

ϕ̄s(ab) � s

p
ϕ̄p(a) +

s

q
ϕ̄q(b), (3.2.17)

where we use the convention s
p = s

q = 1 for s = p = q = ∞. Moreover, if
1 � s < ∞ then for all a � 0

ϕ̃p(a) = sup
b�0

(
ϕ̃s(ab) − ϕ̃q(b)

)
. (3.2.18)

Proof. Assume first that s = ∞. Then necessarily p = q = ∞. There is
nothing to show for a, b ∈ [0, 1], since in this case ϕ∞(ab) = 0. If a > 1 or
b > 1, then ϕp(a) = ∞ or ϕq(b) = ∞, respectively. Thus the claim holds in
this case also.

Assume then that 1 � s <∞. In order to prove (3.2.16) for ϕ̃ it suffices to
prove (3.2.18). If s = 1, then p = q′ and ϕ̃p = (ϕ̃q)∗ by Lemma 3.1.3. Thus,

ϕ̃p(a) = (ϕ̃q)∗(a) = sup
b�0

(
ab− ϕ̃q(b)

)
= sup

b�0

(
ϕ̃1(ab) − ϕ̃q(b)

)

for all a, b � 0. If 1 < s < ∞, then

1 =
1
p/s

+
1
q/s

,

so by Lemma 3.1.3 (ϕ̃p/s)∗ = ϕ̃q/s. Using the case s = 1 we deduce

ϕ̃p(a) =
1
s
ϕ̃p/s(as) =

1
s

sup
b�0

(
asbs − ϕ̃q/s(bs)

)
= sup

b�0

(
ϕ̃s(ab) − ϕ̃q(b)

)

for all a, b � 0.
It remains to prove (3.2.17), since this inequality is stronger than (3.2.16)

for ϕ = ϕ̄. If s = ∞, then s = p = q = ∞ and (3.2.17) follows from (3.2.16),
since ϕ̄∞ = ϕ̃∞. So in the following let 1 � s < ∞. Now s � p and s � q and
we obtain using the previous case that

ϕ̄s(ab) � sϕ̃s(ab) � s
(
ϕ̃p(a) + ϕ̃q(b)

)
=
s

p
ϕ̄p(a) +

s

q
ϕ̄q(b) � ϕ̄p(a) + ϕ̄q(b)



3.2 Basic Properties 81

for all a, b � 0. It remains to prove (3.2.16) with ϕ = ϕ̄ for 1 � s < ∞. Now
s � p and s � q and we obtain using the previous case that

ϕ̄s(ab) � sϕ̃s(ab) � s
(
ϕ̃p(a) + ϕ̃q(b)

)
=
s

p
ϕ̄p(a) +

s

q
ϕ̄q(b)

for all a, b � 0. ��

Remark 3.2.19. Note that (3.2.16) holds for both ϕ̃ and ϕ̄, but it is sharp
only for ϕ̃ as is shown by (3.2.18) and this example: if s = 1 and p = q = 2,
then supb�0

(
ϕ̄1(ab) − ϕ̄2(b)

)
= 1

4a
2 �= a2 = ϕ̄2(a) for a > 0.

Lemma 3.2.20 (Hölder’s inequality). Let p, q, s ∈ P(A, μ) be such that

1
s(y)

=
1
p(y)

+
1
q(y)

for μ-almost every y ∈ A. Then

�s(·)(fg) � �p(·)(f) + �q(·)(g), (3.2.21)
‖fg‖s(·) � 2 ‖f‖p(·)‖g‖q(·), (3.2.22)

‖fg‖ϕ̄s(·) �
((s

p

)+

+
(s

q

)+
)

‖f‖ϕ̄p(·)‖g‖ϕ̄q(·) , (3.2.23)

for all f ∈ Lp(·)(A, μ) and g ∈ Lq(·)(A, μ), where in the case s = p = q = ∞
we use the convention s

p = s
q = 1.

In particular, fg ∈ Ls(·)(A, μ). If additionally f ∈ Ep(·)(A, μ) or
g ∈ Eq(·)(A, μ), then fg ∈ Es(·)(A, μ).

Proof. Let f ∈ Lp(·) and g ∈ Lq(·). Since f and g are measurable, also fg is
measurable. Then (3.2.21) follows from (3.2.16) by integration over y ∈ A.

The following argument applies to both ϕ̃p(·) and ϕ̄p(·). If ‖f‖p(·) � 1 and
‖g‖q(·) � 1, then �p(·)(f) � 1 and �q(·)(g) � 1 by the unit ball property.
Using (3.2.21) we estimate

�s(·)
(

1
2fg
)

� 1
2
�s(·)(fg) � 1

2
(
�p(·)(f) + �q(·)(g)

)
� 1.

This implies ‖fg‖s(·) � 2 by the unit ball property. The scaling argument
proves (3.2.22).

Now let ‖f‖ϕ̄p(·) � 1 and ‖g‖ϕ̄q(·) � 1, then by the unit ball property
�p(·)(f) � 1 and �q(·)(g) � 1. Using (3.2.17) integrated over y ∈ A we get

�s(·)(ab) �
(s

p

)+

�p(·)(f) +
(s

q

)+

�q(·)(g) �
(s

p

)+

+
(s

q

)+

.
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This implies ‖fg‖ϕ̄s(·) � ess sup s
p + ess sup s

q by the unit ball property. The
scaling argument proves (3.2.23).

Assume now that additionally f ∈ Ep(·), i.e. �p(·)(λf) < ∞ for every
λ > 0. Let γ > 0 be such that �q(·)(g/γ) < ∞. Then for every λ > 0

�r(·)(λfg) � �p(·)(λγf) + �q(·)(g/γ) < ∞.

Since λ > 0 was arbitrary, this proves fg ∈ Er(·). The case g ∈ Eq(·) follows
by symmetry. ��

The case s = 1 in Lemma 3.2.20 is of special interest:
ˆ

A

|f | |g| dμ � �p(·)(f) + �p′(·)(g),

ˆ

A

|f | |g| dμ � 2‖f‖p(·)‖g‖p′(·),

ˆ

A

|f | |g| dμ �
(

1 +
1
p−

− 1
p+

)

‖f‖ϕ̄p(·)‖g‖ϕ̄p′(·)

for all f ∈ Lp(·)(A, μ) and g ∈ Lp
′(·)(A, μ).

3.3 Embeddings

It is well known from the theory of classical Lebesgue spaces that Lp(A) is a
subspace of Lq(A) with p, q ∈ [1,∞] if and only if p � q and |A| < ∞. This
suggests that a similar condition characterizes the embedding Lp(·)(A) ↪→
Lq(·)(A) for p, q ∈ P(A). Naturally, this question is closely related with the
generalized Hölder inequality. We do not consider the case with different
measures on the two sides of the embedding, for some result on this see [40].

We use the results of Sect. 2.8 to characterize the embeddings of variable
exponent Lebesgue spaces. Recall that the norm of the embedding Lp(·)(A) ↪→
Lq(·)(A) is the smallest constant K > 0 for which ‖f‖q(·) � K‖f‖p(·).

Theorem 3.3.1. Let p, q ∈ P(A, μ). Define the exponent r ∈ P(A, μ) by
1

r(y) := max
{

1
q(y) − 1

p(y) , 0
}

for all y ∈ A.

(a) If q � p μ-almost everywhere and 1 ∈ Lr(·)(A, μ), then Lp(·)(A, μ) ↪→
Lq(·)(A, μ) with norm at most 2‖1‖Lr(·)(A).

(b) If the measure μ is atom-less and Lp(·)(A, μ) ↪→ Lq(·)(A, μ) with norm
K > 0, then q � p μ-almost everywhere and ‖1‖Lr(·)(A) � 4K.
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Proof. We begin with the proof of (a). Since q � p almost everywhere and
1
r + 1

p = 1
q , we can apply Hölder’s inequality, Lemma 3.2.20, to get

‖f‖q(·) � 2‖1‖r(·)‖f‖p(·).

Let us now prove (b). We begin with the case ϕp(·) = ϕ̃p(·). Assume that
Lp(·)(A) ↪→ Lq(·)(A). Then by Theorem 2.8.1 there exists h ∈ L1(A, μ) with
h � 0 and ‖h‖1 � 1 such that

ϕ̃q(y)(t/K) � ϕ̃p(y)(t) + h(y) (3.3.2)

for almost all y ∈ A and all t � 0. The limit t → ∞ implies that q � p almost
everywhere. If q(y) < ∞, then (3.2.18) and (3.3.2) imply that

ϕ̃r(y)(1/K) = sup
t�0

(
ϕ̃q(y)(t/K) − ϕ̃p(y)(t)

)

� sup
t�0

(
ϕ̃p(y)(t) − ϕ̃p(y)(t) + h(y)

)

= h(y).

(3.3.3)

If the set E := {q = ∞} has measure zero, then we can integrate this
inequality over y ∈ A and get �̃r(·)(1/K) � ‖h‖1 � 1, so 1 ∈ Lr(·)(Ω) and
‖1‖r(·) � K.

If μ(E) > 0, then it follows from (3.3.2) with t = 1 that ϕ̃∞(1/K) � h(y)
for almost all y ∈ E. Since h is a.e. finite on E and μ(E) > 0, this implies
K � 1. Since r = ∞ on the set E, we get

ϕ̃r(y)(1/K) = ϕ∞(1/K) = 0 � h(y)

for almost every y ∈ E. So (3.3.3) also holds on the set E. Thus we can
proceed exactly as in the previous case to conclude ‖1‖r(·) � K.

The case ϕp(·) = ϕ̄p(·) follows from this using (3.2.2). ��

If μ(A) < ∞, then by Lemma 3.2.11 and/or Lemma 3.2.12 the condition
1 ∈ Lr(·)(A) of the last theorem is always satisfied. Hence,

Corollary 3.3.4. Let p, q ∈ P(A, μ) and let the measure μ be atom-less with
μ(A) < ∞. Then Lp(·)(A, μ) ↪→ Lq(·)(A, μ) if and only if q � p μ-almost
everywhere in A. The embedding constant is less or equal to 2(1 +μ(A)) and
2 max

{
μ(A)(

1
q− 1

p )+,( 1
q− 1

p )−
}
.

However, the condition μ(A) < ∞ is not needed for ‖1‖r(·) < ∞. See
Proposition 4.1.8 for examples with A = R

n, which are closely related to the
following embedding result.
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Lemma 3.3.5. Let p ∈ P(Rn) and p∞ ∈ [1,∞]. Define s ∈ P(Rn) by

1
s(x)

:=
∣
∣
∣
∣

1
p(x)

− 1
p∞

∣
∣
∣
∣.

Then 1 ∈ Ls(·)(Rn) if and only if

Lmax{p(·),p∞}(Rn) ↪→ Lp(·)(Rn) ↪→ Lmin {p(·),p∞}(Rn).

Proof. If the embeddings hold, then Theorem 3.3.1 implies that 1 ∈ Ls(·).
Assume now that 1 ∈ Ls(·)(Rn). Let γ ∈ (0, 1) such that �s(·)(γ) < ∞.

Define r1, r2 ∈ P(Rn) by

1
r1(x)

:= min
{

0,
1
p∞

− 1
p(x)

}

=
1

max {p(x), p∞} − 1
p(x)

,

1
r2(x)

:= min
{

0,
1

p(x)
− 1
p∞

}

=
1

p(x)
− 1

max {p(x), p∞}

for all x ∈ R
n. Then s � r1 and s � r2 almost everywhere. Thus it follows

from the definition that �r1(·)(γ) � �s(·)(γ) < ∞ and �r2(·)(γ) � �s(·)(γ) < ∞
for γ ∈ (0, 1). In particular, 1 ∈ Lr1(·) and 1 ∈ Lr2(·). This and Theorem 3.3.1
prove the embeddings. ��

The situation changes if the measure is not atom-less. In particular, the
variable exponent Lebesgue sequence space lp(·)(Zn) counting measure repre-
sents this kind of situation. It is well known that for p, q ∈ [1,∞] the classical
Lebesgue sequence space lp(Zn) is a subset of lq(Zn) if and only if p � q.
This condition generalizes to the cases of variable exponents.

Lemma 3.3.6. Let p, q ∈ P(Zn) with p � q on Z
n. Then lp(·)(Zn) ↪→

lq(·)(Zn) and ‖f‖lq(·)(Zn) � 2 ‖f‖lp(·)(Zn).

Proof. Let ϕp(·) = ϕ̄p(·) and let f ∈ lp(·)(Zn) with ‖f‖lp(·)(Zn) � 1.
Then by the unit ball property we have �p(·)(f) � 1. Since �p(·)(f) =∑

k∈Zn
ϕ̄p(k)(|f(k)|), this implies ϕ̄p(k)(|f(k)|) � 1 for all k ∈ N and therefore

|f(k)| � 1 for all k ∈ N. Since q � p, we get

�q(·)(f) =
∑

k∈Zn

ϕ̄q(k)(|f(k)|) �
∑

k∈Zn

ϕ̄p(k)(|f(k)|) = �p(·)(f) � 1.

Therefore ‖f‖lq(·)(Zn) � 1. The claim follows by the scaling argument. The
case ϕp(·) = ϕ̃p(·) follows with the help of (3.2.2). ��

We can combine Theorem 3.3.1 and Lemma 3.3.6 in a more general result
for sequence spaces.
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Theorem 3.3.7. Let p, q, r ∈ P(Zn) with 1
r = max {0, 1

q − 1
p} and

1 ∈ lr(·)(Zn). Then lp(·)(Zn) ↪→ lq(·)(Zn).

Proof. Define s ∈ P(Zn) by s := max {p, q}. Then s � p, s � q and 1
r =

1
q − 1

s . Thus by Lemma 3.3.6 and Theorem 3.3.1 it follows that lp(·)(Zn) ↪→
ls(·)(Zn) ↪→ lq(·)(Zn). ��

We next characterize the embeddings of the sum and the intersection of
variable exponent Lebesgue spaces. Let us introduce the usual notation. For
two normed spacesX and Y (which are both embedded into a Hausdorff topo-
logical vector spaces Z) we equip the intersectionX∩Y := {f : f ∈ X, f ∈ Y }
and the sum X + Y := {g + h : g ∈ X,h ∈ Y } with the norms

‖f‖X∩Y := max {‖f‖X , ‖f‖Y },
‖f‖X+Y := inf

f=g+h,g∈X,h∈Y
(
‖g‖X + ‖h‖Y

)
.

In the following let 1 � p � q � r � ∞ be constants. We need estimates
relating ϕq from above and below in terms of ϕp and ϕr. Since we can find
θ ∈ [0, 1] such that 1

q = 1−θ
q + θ

r , it follows from the estimates in Remark 3.1.5
that

ϕq(t) � ϕp(t) + ϕr(t) (3.3.8)

for all t � 0. Moreover, we have the lower estimate min {ϕ̄p(t), ϕ̄r(t)} � ϕ̄q(t).
Although this lower estimate is sufficient for our purpose in the case of ϕ̄q,
it does not hold with ϕ̄ replaced by ϕ̃. Instead we need the estimates

ϕp
(

max {t− 1, 0}
)

� ϕq(t),

ϕr
(

min {t, 1}
)

� ϕq(t)
(3.3.9)

for all t � 0. We begin with the first part of (3.3.9). It t ∈ [0, 1], then
ϕp
(

max {t− 1, 0}
)

= 0, so let us assume t > 1. If q = ∞, then ϕq(t) = ∞, so
let us also assume q < ∞. As a consequence, also p < ∞. Define a := t−1 > 0.
We estimate

ϕ̃q(t) =
1
q

(1 + a)q =
1
q

(
(1 + a)

q
p
)p � 1

q

(q

p
a
)p

� 1
p
ap = ϕ̃p(t)

with a similar estimate for ϕ̄q, which proves the first part of (3.3.9). We turn
to the second part of (3.3.9). If t > 1, then the inequality is clear. For all
t ∈ [0, 1] we estimate

ϕ̃r(t) =
1
r
tr � 1

q
tq = ϕ̃q(t) (3.3.10)

with a similar estimate for ϕ̄q. This concludes the proof of (3.3.9).
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Theorem 3.3.11. Let p, q, r ∈ P(A, μ) with p � q � r μ-almost everywhere
in A. Then

Lp(·)(A, μ) ∩ Lr(·)(A, μ) ↪→ Lq(·)(A, μ) ↪→ Lp(·)(A, μ) + Lr(·)(A, μ).

The embedding constants are at most 2. More precisely, for g ∈ Lq(·)(A, μ)
the functions g0 := sgn gmax {|g| − 1, 0} and g1 := sgn gmin {|g|, 1} satisfy
g = g0 + g1, |g0|, |g1| � |g|, ‖g0‖p(·) � 1 and ‖g1‖r(·) � 1.

Proof. Let f ∈ Lp(·) ∩ Lr(·) with max {‖f‖p(·), ‖f‖r(·)} � 1. Then it follows
by the norm-modular unit ball property that �p(·)(f) � 1 and �r(·)(f) � 1.
From (3.3.8) it follows that �q(·)(f) � �p(·)(f) + �r(·)(f) � 2. This yields
�q(·)(f/2) � 1

2�q(·)(f) � 1 using sub-linearity, (2.1.5), so ‖f‖q(·) � 2 by the
unit ball property. The scaling argument proves that ‖f‖q(·) � 2‖f‖Lp(·)∩Lr(·) .

Now, let g ∈ Lq(·)(Ω) with ‖g‖q(·) � 1 so that �p(·)(g) � 1 by the unit
ball property. Define g0 := sgn gmax {|g| − 1, 0} and g1 := sgn gmin {|g|, 1}.
Then g = g0 + g1 and by (3.3.9) it follows that �r(·)(g0) � �q(·)(g) � 1 and
�p(·)(g1) � �q(·)(g) � 1. The unit ball property implies ‖g0‖r(·) � 1 and
‖g1‖p(·) � 1. In particular, ‖g‖Lp(·)+Lr(·) � 2. The scaling argument proves
‖g‖Lp(·)+Lr(·) � 2‖g‖q(·). ��

The following result is needed later in Theorem 3.6.5 in the study of the
convolution operator.

Lemma 3.3.12. Let p ∈ P(Rn) and p∞ ∈ [1,∞]. Assume that 1 ∈ Ls(·)(Rn),
where s ∈ P(Rn) is defined by 1

s(x) := | 1
p(x) − 1

p∞
|. Then

Lp(·)(Rn) ∩ Lp+(Rn) ∼= Lp∞(Rn) ∩ Lp+(Rn),

Lp(·)(Rn) ↪→ Lp∞(Rn) + Lp
−

(Rn).

Proof. Using Lemma 3.3.5, Theorem 3.3.11 twice, and then Lemma 3.3.5
again we deduce

Lp(·) ∩ Lp+ ↪→ Lmin {p(·),p∞} ∩ Lp+

↪→ Lp∞ ∩ Lp+

↪→ Lmax{p(·),p∞} ∩ Lp+

↪→ Lp(·) ∩ Lp+ .

This proves the first assertion. Analogously, by Lemma 3.3.5 and
Theorem 3.3.11

Lp(·) ↪→ Lmin {p(·),p∞} ↪→ Lp∞ + Lp
−
.

This proves the second assertion. ��
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3.4 Properties for Restricted Exponents

In this section we consider basic properties of variable exponent Lebesgue
spaces that hold only under some additional conditions, namely when p+ < ∞
and/or p− > 1. Recall that p− and p+ denote the essential infimum and
supremum of p, respectively.

The following theorem shows that the condition p+ < ∞ plays an impor-
tant role for the properties of Lp(·). Indeed, it shows that p+ < ∞ is equivalent
to Ep(·) = Lp(·) which is needed for example for the characterization of the
dual space (Lp(·))∗. Recall that Lϕp(·)OC (A, σ, μ) is the Musielak–Orlicz class of
the modular defined by ϕp(·), see Definition 2.5.1.

Theorem 3.4.1. Let p ∈ P(A, μ). Then the following conditions are equiv-
alent:

(a) Ep(·)(A, μ) = L
ϕp(·)
OC (A, μ).

(b) L
ϕp(·)
OC (A, μ) = Lp(·)(A, μ).

(c) Ep(·)(A, μ) = Lp(·)(A, μ).
(d) ϕp(·) satisfies the Δ2-condition with constant 2p

+
.

(e) p+ < ∞.
(f) �p(·) satisfies the weak Δ2-condition for modulars, i.e. modular conver-

gence and norm convergence are the same.
(g) �p(·) is a continuous modular.

Proof. (e) ⇒ (d): This follows from 2p(y) � 2p
+

for all y ∈ A.
(d) ⇒ (c) and (f): This is a consequence of �ϕ(2kf) � 2kp

+
�ϕ(f).

(c) ⇒ (b) and (a): Follows from Ep(·) ⊂ L
ϕp(·)
OC ⊂ Lp(·).

(d) ⇒ (g): Follows from Lemma 2.4.3.
(a) or (b) or (g) or (f) ⇒ (e): We prove the claim by contradiction: so let

p+ = ∞. We begin with the case μ({p = ∞}) > 0. Let f := χ{p=∞}, then
�p(·)(f) = 0 and �p(·)(λf) = ∞ for λ > 1. This proves f ∈ L

ϕp(·)
OC \ Ep(·)

and 2f ∈ Lp(·) \Lϕp(·)OC , which contradicts (a) and (b), respectively. Moreover,
limλ→1+ �p(·)(λf) = ∞ �= 0 = �p(·)(f), which contradicts (g). If fk := f , then
�p(·)(fk) = 0 → 0 and �p(·)(2fk) = ∞ �→ 0, which contradicts (f).

Assume now that μ({p = ∞}) = 0. Since p+ = ∞, there exists a sequence
qk ∈ [1,∞) with qk ↗ ∞ and qk � k and pairwise disjoint sets Ek with
0 < μ(Ek) < ∞ and Ek ⊂ {y : qk � p(y) < qk+1}. Since p is bounded on the
set Ek and 0 < μ(Ek) < ∞, the mapping t �→ �p(·)(t χEk) is continuous for
t � 0 with image [0,∞). Hence, there exists tk with �p(·)(tk χEk) = 1

2k2 . Let
fk := tkχEk then �p(·)(fk) = 1

2k2 and �p(·)(fk) → 0 as k → ∞. On the other
hand p � qk � k on Ek implies for λ > 1 using (2.1.5)

�p(·)(λfk) � λk�p(·)(fk) =
λk

2k2
→ ∞.
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We have found a sequence fk with �p(·)(fk) → 0 and �p(·)(2fk) → ∞, which
contradicts (f). Define

gk :=
k∑

j=1

fj =
k∑

j=1

tj χEj , g :=
∞∑

j=1

fj =
∞∑

j=1

tj χEj .

Since tk � 0, we have 0 � gk ↗ g. Therefore monotone convergence,
Lemma 3.2.8, implies that for λ > 1

�p(·)(g) =
∞∑

j=1

�p(·)(fj) =
∞∑

j=1

1
2j2

� 1,

�p(·)(λg) =
∞∑

j=1

�p(·)(λfj) �
∞∑

j=1

λj−1

2j2
= ∞.

This proves g ∈ L
ϕp(·)
OC \ Ep(·) and 2g ∈ Lp(·) \ Lϕp(·)OC , which contradicts (a)

and (b), respectively. Moreover, limλ→1+ �p(·)(λg) = ∞ and �p(·)(g) � 1,
which contradicts (g). ��

With the aid of the previous result we can extend the unit ball property
(cf. Lemma 2.1.14):

Lemma 3.4.2 (Norm-modular unit ball property). If p ∈ P(Ω) is
bounded, then ‖f‖p(·) � 1 and �p(·)(f) � 1 are equivalent, as are ‖f‖p(·) < 1
and �p(·)(f) < 1, and ‖f‖p(·) = 1 and �p(·)(f) = 1.

Remark 3.4.3. Let p ∈ P(A, μ) be a bounded exponent. Then ϕp(·) is
locally integrable, since

ˆ

E

ϕp(y)(λ) dμ(y) � μ(E) max
{
λp

−
, λp

+}

for every measurable E ⊂ A with μ(E) < ∞ and every λ > 0. However, the
local integrability of ϕp(·) does not imply that p+ < ∞. Indeed, let A := R

and let Ek ⊂ R be pairwise disjoint with |Ek| = exp(exp(−k)). Now, define
p(x) := k for x ∈ Ek and k ∈ N and p(x) = 1 for x ∈ R \

⋃∞
k=1 Ek. Then for

every λ > 0 and every E ⊂ R with |E| < ∞ we have

ϕ̄p(·)(λE) � λ |E| +
∞∑

k=1

λk exp
(

exp(−k)
)
<∞.

Thus ϕ̄p(·) is locally integrable but p+ = ∞.

The boundedness of the exponent also suffices for separability:

Lemma 3.4.4. Let p ∈ P(A, μ) be a bounded exponent and let μ be separable.
Then Lp(·)(A, μ) is separable.
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Proof. Since ϕp(·) is locally integrable by Remark 3.4.3, we can apply The-
orem 2.5.10 to show that Ep(·) is separable. Since p+ < ∞, we further have
Ep(·) = Lp(·) (Theorem 3.4.1). ��

We can directly apply this lemma to Lp(·)(Ω) with Ω ⊂ R
n and lp(·)(Zn):

Corollary 3.4.5. If p ∈ P(Ω) and q ∈ P(Zn) are bounded exponents, then
Lp(·)(Ω) and lq(·)(Zn) are separable.

Recall that for all g ∈ Lp
′(·) the mapping Jg is defined as Jg(f) =

´
fg dμ,

where f ∈ Lp(·), and belongs to (Lp(·))∗ (cf. (2.7.3), Theorem 3.2.13).

Theorem 3.4.6. Let p ∈ P(A, μ) be a bounded exponent, then V : g �→ Jg
is an isomorphism from Lp

′(·)(A, μ) to (Lp(·)(A, μ))∗.

Proof. From p+ < ∞ it follows by Theorem 3.2.13, Remark 3.4.3 and Theo-
rem 3.4.1 that ϕp(·) is proper and locally integrable and Ep(·) = Lp(·). Now
the claim follows by Theorem 2.7.14. ��

Reflexivity and uniform convexity require even stronger assumptions on
the exponent. Note that Dinca and Matei [111] studied uniform convexity in
the case p � 2.

Theorem 3.4.7. Let p ∈ P(A, μ) with 1 < p− � p+ < ∞. Then Lp(·)(A, μ)
is reflexive.

Proof. Let 1 < p− � p+ < ∞. Then it follows from Remark 3.4.3 that ϕp(·)
and (ϕp(·))∗ are locally integrable. Moreover, by Theorem 3.4.1 it follows that
Ep(·) = Lp(·) and Ep

′(·) = Lp
′(·). Thus Corollary 2.7.18 shows that Lp(·) is

reflexive. ��

Remark 3.4.8. The condition 1 < p− � p+ < ∞ in Theorem 3.4.7 is
sharp if μ is atom-free. This has been proved first by Kováčik and Rákosńık
[258, Corollary 2.7] for Lp(·)(Ω), i.e. in the case of the Lebesgue measure.
Indeed, if Lp(·)(A, μ) is reflexive and μ is atom free, then by Remark 2.7.16
(b) follows that Ep(·) = Lp(·) and Ep

′(·) = Lp
′(·). Thus, Theorem 3.4.1 implies

1 < p− � p+ <∞.

Theorem 3.4.9. Let p ∈ P(Ω) with 1 < p− � p+ < ∞. Then ϕp(·) is a
uniformly convex N-function, �p(·) is a uniformly convex semimodular and
‖·‖p(·) is a uniformly convex norm. Hence, Lp(·)(Ω) is uniformly convex.

Proof. Note that ϕp(·) satisfies the Δ2-condition since p+ < ∞. In order to
apply Theorems 2.4.11 and 2.4.14 we have to show that ϕp(·) is uniformly
convex. In principle we have to show this for both ϕ̄p(·) and ϕ̃p(·), since the
equivalence of norms does not transfer the uniform convexity. However, since
ϕ̄p(y) and ϕ̃p(y) only differ for every y ∈ Ω by the multiplicative constant
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1
p(y) , the uniform convexity of ϕ̄p(·) is equivalent to the uniform convexity of
ϕ̃p(·). Thus it suffices to consider the case ϕ̄p(·).

Fix ε > 0. Let u, v � 0 be such that |u− v| > εmax {u, v}. It follows from
Remark 2.4.6 that the mapping t �→ tp

−
is uniformly convex, since p− > 1.

Thus there exists δ = δ(ε, p−) > 0 such that

(
u+ v

2

)p−

� (1 − δ)
up

−
+ vp

−

2
.

This and the convexity of t �→ t
p(y)
p− for y ∈ Ω imply

(
u+ v

2

)p(y)
�
(

(1 − δ)
up

−
+ vp

−

2

) p(y)
p−

� (1 − δ)
up(y) + vp(y)

2
.

This proves that ϕ̄p(·) is uniformly convex. The semimodular �p(·) is uni-
formly convex by Theorem 2.4.11 and the norm ‖·‖p(·) is uniformly convex
by Theorem 2.4.14. ��

It is often the case that results are easier to prove for nice functions and
then by density the results carry over to the general case. It is therefore of
interest to find nice subsets of Lp(·) which are dense in Lp(·). If the exponent is
bounded, then by Theorems 2.5.9 and 3.4.1 we immediately get the following
density result.

Corollary 3.4.10. If p ∈ P(Ω) with p+ < ∞, then simple functions are
dense in Lp(·)(Ω).

Remark 3.4.11. Since simple function are a subset of L∞(Ω) ∩ Lp(·)(Ω) it
follows from Corollary 3.4.10 that L∞(Ω)∩Lp(·)(Ω) is also dense is Lp(·)(Ω) if
p+ < ∞. This fact was first shown by Kováčik and Rákosńık in [258] for the
case p+ < ∞. Later Kalyabin [227] has proved that the condition p+ < ∞
is necessary and sufficient for the density of L∞(Ω) ∩ Lp(·)(Ω) in Lp(·)(Ω) if
the variable exponent is finite almost everywhere. We can use this result to
characterize the density of L∞(Ω)∩Lp(·)(Ω) in Lp(·)(Ω) for general p ∈ P(Ω):

Let p ∈ P(Ω) and Ω0 := {y ∈ Ω: p(y) <∞}. Then L∞(Ω) ∩ Lp(·)(Ω) is
dense in Lp(·)(Ω) if and only if ess supy∈Ω0

p(y) <∞.
Hence, p might be unbounded when L∞(Ω)∩Lp(·)(Ω) is dense in Lp(·)(Ω),

but on the subset Ω0, where p is finite, it must be bounded.

For an open set Ω ⊂ R
n let C∞

0 (Ω) denote the set of smooth functions
with compact support in Ω.

Theorem 3.4.12. If p ∈ P(Ω) with p+ < ∞, then C∞
0 (Ω) is dense in

Lp(·)(Ω).
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Proof. Since p+ <∞, simple functions are dense inLp(·)(Ω) (Corollary 3.4.10).
Since a simple function belongs to Lp

−
(Ω)∩Lp+(Ω), it can be approximated

by a sequence of C∞
0 (Ω) functions in the same space, which yields the claim

since Lp
+

(Ω) ∩ Lp−(Ω) ↪→ Lp(·)(Ω) by Theorem 3.3.11. ��

As a consequence C∞
0 (Ω) is dense in Lp

′(·)(Ω) if p− > 1 and therefore the
norm conjugate formula in Corollary 3.2.14 is unchanged if we replace the
condition g ∈ Lp

′(·)(Ω) by g ∈ C∞
0 (Ω).

Corollary 3.4.13 (Norm conjugate formula). Let p ∈ P(Ω) with p−> 1.
Then

1
2
‖f‖p(·) � sup

g∈C∞
0 (Ω) : ‖g‖p′(·)�1

ˆ
|f | |g| dx � 2 ‖f‖p(·)

for all f ∈ L0(Ω). The factor 1
2 can be omitted if ϕp(·) = ϕ̃p(·).

In Corollary 4.6.6 we prove the norm conjugate formula without the
assumption p− > 1, however, there we require other regularity of the space.

Sometimes it is necessary to consider the subspace of Lp(·)(Ω) consisting
of functions with a vanishing integral. For domains with |Ω| < ∞ we denote
the space of such functions by

L
p(·)
0 (Ω) :=

{

f ∈ Lp(·)(Ω) :
ˆ

Ω

f(x) dx = 0
}

.

(In contrast to the definition of C∞
0 , the index 0 in L

p(·)
0 does not indicate

compact support. However, in both cases the only constant within the space
is zero.) In the case that |Ω| = ∞ we set Lp(·)0 (Ω) := Lp(·)(Ω). We will see
that for a large class of exponents this is sensible. The space of compactly
supported smooth functions with vanishing integral we denote by C∞

0,0(Ω).

Proposition 3.4.14. Let Ω be a domain and let p ∈ P(Ω) be a bounded
exponent. If |Ω| < ∞ or p− > 1, then C∞

0,0(Ω) is dense in L
p(·)
0 (Ω).

Proof. Let us first consider the case |Ω| < ∞. Choose ψ ∈ C∞
0 (Ω) satisfy-

ing
´
Ω
ψ dx = 1. For f ∈ L

p(·)
0 (Ω) Theorem 3.4.12 implies that there exists

a sequence (f̃k) ⊂ C∞
0 (Ω) such that f̃k → f in Lp(·)(Ω). Since |Ω| < ∞

we get by Hölder’s inequality ‖f − f̃k‖1 � 2 ‖χΩ‖p′(·)‖f − f̃k‖p(·). Conse-
quently, we have f̃k → f in L1(Ω) and

´
Ω
f̃k dx →

´
Ω
f dx = 0. Setting

fk := f̃k − ψ
´
Ω f̃k dx we see that fk ∈ C∞

0,0(Ω) and that

‖f − fk‖p(·) � ‖f − f̃k‖p(·) + ‖ψ‖p(·)
∣
∣
∣
∣

ˆ

Ω

f̃k dx

∣
∣
∣
∣ ,

which tends to zero for k → ∞ in view of the above.
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Let now Ω satisfy |Ω| = ∞ and p− > 1. Choose an increasing sequence of
bounded domains Ωj ⊂⊂ Ω with

⋃∞
j=1 Ωj = Ω, |Ωj | � 1 and non-negative

functions ψj ∈ C∞
0 (Ωj) which satisfy

´
Ωj
ψj dx = 1, ψj � c |Ωj |−1

χΩj .

This is possible since one can take a mollification of |Ωj |−1
χΩj . From

ψj � c |Ωj |−1χΩj and Theorem 3.3.11 it follows that

‖ψj‖p(·) � c |Ωj |−1‖χΩj‖Lp−+Lp+

� c max {|Ωj|−1+ 1
p− , |Ωj |−1+ 1

p+ } → 0
(3.4.15)

for j → ∞. For f ∈ L
p(·)
0 (Ω) Theorem 3.4.12 implies that there exists a seq-

uence (f̃k) ⊂ C∞
0 (Ω) such that f̃k → f in Lp(·)(Ω) and ‖f̃k‖p(·) � ‖f‖p(·) + 1.

We set fk := f̃k−ψjk
´
Ωk
f̃k dx, where jk is an increasing sequence in N, which

will be chosen below. By definition of fk we have fk ∈ C∞
0,0(Ω). With Hölder’s

inequality we estimate

‖f − fk‖p(·) � ‖f − f̃k‖p(·) + ‖ψjk‖p(·)2‖χΩk‖p′(·)‖f̃k‖p(·)
� ‖f − f̃k‖p(·) + ‖ψjk‖p(·)2‖χΩk‖p′(·)

(
‖f‖p(·) + 1

)
.

The first term converges to zero for k → ∞. Since |Ωk| < ∞, we have
χΩk ∈Lp′(·)(Ω) as simple functions are contained in Lp

′(·)(Ω) by Lemma 3.2.11.
According to (3.4.15), we can choose jk such that ‖ψjk‖p(·)‖χΩk‖p′(·) � 2−k.
With this choice also the second term in the previous estimate converges to
zero for k → ∞. In particular, we have fk → f in Lp(·)(Ω). ��

3.5 Limit of Exponents

In this section we collect some continuity results with respect to convergence
of the exponent. In particular, we examine the behavior of the semimodular
�pk(·)(f) and the norm ‖f‖pk(·) if the exponent pk converges pointwise to an
exponent p. Let us mention that some other properties of the norm in the
case p+ = ∞ were studied by Edmunds, Lang and Nekvinda [116].

We begin with the continuity property of ϕq with respect to q. If
qk, q ∈ [1,∞] with qk → q, then it is easily checked that

lim
k→∞

ϕ̃qk (t) = ϕ̃q(t),

lim
k→∞

ϕ̄qk (t) = ϕ̄q(t) if q <∞
(3.5.1)

for every t � 0.
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Remark 3.5.2. If qk → q = ∞, then limk→∞ ϕ̄qk(t) = 0 = ϕ̄∞(t)
for t ∈ [0, 1) and limk→∞ ϕ̄qk(t) = ∞ = ϕ̄∞(t) for t > 1. However,
limk→∞ ϕ̄qk (1) = 1 �= 0 = ϕ̄∞(1). This is the reason, why we had to exclude
the case q = ∞ for ϕ̄ in (3.5.1). Nevertheless, we have

lim
k→∞

ϕ̄qk(λt) � ϕ̄q(t) � lim
k→∞

ϕ̄qk(t)

for all t � 0 and all λ ∈ [0, 1).

Remark 3.5.3. By Lemma 3.1.11 we have ϕ̃−1
q (t) = (q t)

1
q , ϕ̄−1

q (t) = t
1
q for

1 � q < ∞ and ϕ̃−1
∞ (t) = ϕ̄−1

∞ (t) = χ(0,∞)(t) for all t � 0. If follows easily
that ϕ−1

qn (t) → ϕq(t) for all t � 0 and qn → q. For the case ϕ̃q and q = ∞,

we use limq→∞ q
1
q = exp(limq→∞ log q

q ) = 1.

We deduce the following lower semicontinuity results for the semimodular
and the norm.

Corollary 3.5.4. If pk, p ∈ P(A, μ) with pk → p μ-almost everywhere,
then �p(·)(f) � lim infk→∞ �pk(·)(f) and ‖f‖p(·) � lim infk→∞ ‖f‖pk(·) for all
f ∈ L0(A, μ).

Proof. The estimate �p(·)(f) � lim infk→∞ �pk(·)(f) follows from (3.5.1) and
Fatou’s lemma in L1. In the case ϕp(·) = ϕ̄p(·) and μ({p = ∞}) > 0, we also
need ϕ̄q(t) � limk→∞ ϕ̄qk (t) from Remark 3.5.2.

Now, let α := lim infk→∞ ‖f‖pk(·). There is nothing to prove for α = ∞,
so let us assume that α < ∞. For every λ > α we have ‖f‖pk(·) � λ for large
k and therefore by the unit ball property �pk(·)(f/λ) � 1 for large k. The
first part of the corollary implies �p(·)(f/λ) � 1 and hence ‖f‖p(·) � λ by the
unit ball property. Since λ > α was arbitrary the claim follows. ��

Under certain integrability conditions on f , the modular is also continuous
with respect to pointwise convergence of the exponent.

Lemma 3.5.5. Let r, s, pk, p ∈ P(A, μ) with r � pk � s and pk → p
μ-almost everywhere. Let f ∈ L0(A, μ) with �r(·)(f), �s(·)(f) < ∞. Then
limk→∞ �̃pk(·)(f) = �̃p(·)(f).

If additionally μ({s = ∞}) = 0, then limk→∞ �pk(·)(f) = �p(·)(f).

Proof. By (3.3.8) we have ϕpk(·)(f) � ϕr(·)(f)+ϕs(·)(f) pointwise, where the
left-hand side converges pointwise by (3.5.1). Thus, the claim follows by the
theorem of dominated convergence. ��

Remark 3.5.6. If we drop the condition μ({s = ∞}) = 0, then it follows by
Remark 3.5.2 that limk→∞ �pk(·)(λf) � �p(·)(f) � limk→∞ �pk(·)(f) for all
λ ∈ [0, 1).
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Theorem 3.5.7. Let pk, p ∈ P(A, μ) with pk ↗ p μ-almost everywhere and
suppose that μ(A) < ∞. Then for all f ∈ Lp(·)(A, μ) holds

lim
k→∞

‖f‖pk(·) = ‖f‖p(·).

Proof. We know from Corollary 3.5.4 that ‖f‖p(·) � lim infk→∞ ‖f‖pk(·), so
it suffices to prove lim supk→∞ ‖f‖pk(·) � ‖f‖p(·).

We begin with the proof for ϕp(·) = ϕ̃p(·). The case f = 0 is obvious, so we
can assume ‖f‖p(·) > 0. Since μ(A) < ∞, it follows by Lemma 3.2.20 (with
s = pk and q = 1) and the unit ball property that for all λ ∈ (0, 1)

�̃p1(·)

(
λf

‖f‖p(·)

)

� �̃p(·)

(
λf

‖f‖p(·)

)

+ �̃1(1) � 1 + μ(A) <∞

Therefore, we can apply Lemma 3.5.5 to get

lim
k→∞

�̃pk(·)

(
λf

‖f‖p(·)

)

= �̃p(·)

(
λf

‖f‖p(·)

)

� λ�̃p(·)

(
f

‖f‖p(·)

)

� λ < 1

for all λ ∈ (0, 1). Thus �̃pk(·)(λf/‖f‖p(·)) � 1 for large k, which implies that
‖f‖pk(·) � ‖f‖p(·)/λ for large k. Since λ ∈ (0, 1) was arbitrary, this proves
lim supk→∞ ‖f‖pk(·) � ‖f‖p(·).

The proof of the case ϕp(·) = ϕ̄p(·) is similar if we start our estimates with
limk→∞ �pk(·)(λ

2f/‖f‖p(·)) � �p(·)(λf/‖f‖p(·)) using Remark 3.5.6. ��

3.6 Convolution*

For two measurable functions f and g, we define the convolution by

f ∗ g(z) :=
ˆ

Rn

f(z − y)g(y) dy =
ˆ

Rn

f(y)g(z − y) dy

for every z ∈ R
n provided this formula makes sense. If the functions f and

g are only defined on a subset Ω, then we extend them by zero outside of Ω
before applying the convolution.

The operation of convolution on classical Lebesgue spaces is described by
Young’s inequality for convolution. It states that

‖f ∗ g‖r � ‖f‖p‖g‖q.
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for f ∈ Lp(Rn) and g ∈ Lq(Rn) when p, q, r ∈ [1,∞] with 1
r + 1 = 1

p + 1
q . The

case q = 1,

‖f ∗ g‖p � ‖f‖p‖g‖1,

is of special interest.
Unfortunately these inequalities cannot be generalized to the spaces Lp(·)

for non-constant p. This is a consequence of the fact that our spaces are not
translation invariant. In fact, with the help of Theorem 3.3.1 we show that
translations are bounded on Lp(·)(Ω) if and only if the variable exponent p is
constant, i.e. if we are in the setting of classical Lebesgue spaces.

Proposition 3.6.1. Let p ∈ P(Rn) and define the translation operator by
(τhf)(y) := f(y− h). Then τh maps Lp(·)(Rn) to Lp(·)(Rn) for every h ∈ R

n

if and only if p is constant.

Proof. Suppose first that τh is bounded on Lp(·)(Rn) for every h ∈ R
n. Since

‖τhf‖p(·) = ‖f‖τ−hp(·), this implies that Lp(·)(Rn) ↪→ Lτ−hp(·)(Rn). From
Theorem 3.3.1 (b) we deduce that p � τhp almost everywhere. Replacing h
by −h we see that p � τhp � p almost everywhere. Since h is arbitrary, p has
to be constant. The opposite implication is immediate. ��

If p ∈ P(Rn) is a non-constant exponent, then we can construct a sin-
gle function f ∈ Lp(·)(Rn) with τhf �∈ Lp(·)(Rn) by a standard procedure.
Namely, let h ∈ R

n \ {0} be such that τh is not bounded from Lp(·)(Rn)
to Lp(·)(Rn). Choose fj ∈ Lp(·)(Rn) with fj � 0, ‖fj‖p(·) � 2−j and
‖τhfj‖p(·) � 2j and set f :=

∑∞
j=1 fj. Then ‖f‖p(·) �

∑∞
j=1 ‖fj‖p(·) � 1

and ‖τhf‖p(·) � lim ‖τhfj‖p(·) = ∞.

Remark 3.6.2. The previous proposition also holds if we replace R
n by

some open, non-empty set Ω ⊂ R
n. Arguing as in the proof of Proposi-

tion 3.6.1 we deduce that p � τhp � p on the set (Ω − h) ∩ Ω. Since h is
arbitrary this implies again that p is constant on all of Ω.

Theorem 3.6.3. Let Ω be bounded and p, r ∈ P(Rn) with 1 < p− � p+ < ∞
and 1 < r− � r+ < ∞. Then the convolution ∗ : (f, g) �→ f ∗ g is bounded as
a mapping from Lp(·)(Ω) × L1(Rn) to Lr(·)(Ω) if and only if p− � r+.

Proof. “⇐”: Since p− � r+, Corollary 3.3.4 implies Lp(·)(Ω) ↪→ Lr
+

(Ω) ↪→
Lr(·)(Ω). By Young’s convolution inequality, ∗ : Lr

+
(Ω)×L1(Rn) → Lr

+
(Ω).

Combining these, we obtain the claim.
“⇒”: We proceed by contradiction and assume p− < r+. So there exists
h ∈ R

n such that p � τ−hr does not hold almost everywhere on Ω ∩ (Ω − h).
Hence, it follows from Theorem 3.3.1 (b) and ‖τhf‖r(·) = ‖f‖τ−hr(·) that
τh does not map Lp(·)(Ω) continuously to Lr(·)(Ω). By Proposition 3.6.1
and Remark 3.6.2 there exists f ∈ Lp(·)(Ω) and h ∈ R

n \ {0} such that
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τhf �∈ Lr(·)(Ω). For ψ ∈ C∞
0 (Rn), ψ � 0 and

´
ψ dx = 1 define ψε

by ψε(y) := ε−nψ((y − h)/ε), and note that f ∗ ψε → τhf in L1
loc(R

n). By
assumption on the convolution ‖f ∗ ψε‖r(·) � ‖f‖p(·)‖ψ‖1 � c. Since Lr(·)(Ω)
is reflexive, there exists a subsequence converging weakly in Lr(·)(Ω) to a
function g ∈ Lr(·)(Ω) as ε → 0. Since Lr(·)(Ω) ↪→ L1

loc(Ω), we have g = τhf .
In particular the subsequence converges weakly in Lr(·)(Ω) to τhf . This con-
tradicts τhf �∈ Lr(·)(Ω). ��

This theorem has the following undesired consequence:

Corollary 3.6.4. Let p ∈ P(Rn) with 1 < p− � p+ <∞. Then

‖f ∗ g‖p(·) � c‖f‖p(·)‖g‖1

for some c > 0 and all f ∈ Lp(·)(Rn) and all g ∈ L1(Rn) if and only if p is
constant.

Proof. If the inequality holds, then by Theorem 3.6.3 we have p−Ω � p+
Ω for

all bounded, open subsets Ω ⊂ R
n. Thus p− � p+ and p has to be constant.

If on the other hand p is constant, then the inequality is a consequence of
Young’s inequality for convolution, which was stated in the beginning of the
section. ��

Let f ∈ Lp(·)(Rn). Then the preceding corollary shows that for f ∗ g
to belong to Lp(·)(Rn) it is in general not enough to assume g ∈ L1(Rn).
However, we can solve this problem by assuming more regularity for g. This
will be useful for instance when dealing with the Bessel potential in Sect. 12.4.

Theorem 3.6.5. Let p, q ∈ P(Rn) and let p∞, q∞ ∈ [1,∞] satisfy p− �
p∞ � q∞ � q+. Assume that 1 ∈ Ls(·)(Rn), where s ∈ P(Rn) is defined by

1
s(x) :=

∣
∣ 1
p(x) − 1

p∞

∣
∣. Let r0, r1 ∈ [1,∞] be defined by

1
r0

= 1 − 1
p∞

+
1
q∞

and
1
r1

= 1 − 1
p−

+
1
q+
.

Let ∗ denote the convolution operator. Then the bilinear mapping

∗ :Lp(·)(Rn) × (Lr0(Rn) ∩ Lr1(Rn)) → Lq(·)(Rn) ∩ Lq+(Rn)

is bounded.

Proof. Note that p− � p∞ � q∞ � q+ ensures that r0, r1 ∈ [1,∞] are well
defined and r0 � r1. Define r2, r3 ∈ [1,∞] by

1
r2

= 1 − 1
p−

+
1
q∞

,
1
r3

= 1 − 1
p∞

+
1
q+
.
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Young’s inequality for convolution for constant exponents implies the bound-
edness of the following bilinear mappings

∗ :Lp
− × Lr1 → Lq

+
,

∗ :Lp
− × Lr2 → Lq∞ ,

∗ :Lp∞ × Lr3 → Lq
+
,

∗ :Lp∞ × Lr0 → Lq∞ .

Therefore,

∗ :Lp
− × (Lr2 ∩ Lr1) → Lq∞ ∩ Lq+ ,

∗ :Lp∞ × (Lr0 ∩ Lr3) → Lq∞ ∩ Lq+ .

From r0 � min {r2, r3} � max {r2, r3} � r1 and Theorem 3.3.11 we deduce

Lr0 ∩ Lr1 ↪→ Lr2 ∩ Lr1 and Lr0 ∩ Lr1 ↪→ Lr0 ∩ Lr3 .

Combining these embeddings with our previous result implies that

∗ : (Lp
−

+ Lp∞) × (Lr0 ∩ Lr1) → Lq∞ ∩ Lq+ .

By Lemma 3.3.12, Lp(·) ↪→ Lp
−

+ Lp∞ , and Lq∞ ∩ Lq
+
↪→ Lq(·) ∩ Lq

+
.

Combining this with the previous formula concludes the proof. ��



Chapter 4

The Maximal Operator

In the previous chapters we studied the spaces Lp(·) with general variable
exponent p. We have seen that many results hold for fairly wild exponents,
including discontinuous ones, in this general setting. We studied complete-
ness, separability, reflexivity, and uniform convexity. However, these are only
basic properties of Lp(·). For the study of partial differential equations it
is necessary to develop more advanced tools for the Lp(·) spaces: we are
interested in mollification, the Riesz potential, singular integrals, and the
Hardy–Littlewood maximal operator. For general variable exponents p it is
not possible to transfer these tools to Lp(·), as our counterexample in Sect. 4.7
shows. It turns out that a certain regularity has to be assumed on p: the so-
called log-Hölder continuity of p. We will see that this regularity is in some
sense optimal and cannot be improved.

In Corollary 3.6.4 we saw that the inequality ‖f ∗ g‖p(·) � c ‖f‖p(·)‖g‖1

does not hold for non-constant p ∈ P(Ω). This seems like a strong drawback
for the theory of Lp(·)-spaces, since the version for constant exponents is used
in many applications. For example the technique of mollification or approxi-
mate identities relies on this fact and a failure of this technique would have
drastic consequences. But Corollary 3.6.4 only states that we have no control
of the convolution of an Lp(·) function (p non-constant) with an arbitrary L1

function. The proof relied on the fact that we could approximate the transla-
tion operator by the convolution with a sequence of L1 functions, i.e. we used
a shifted version of an approximate identity. So we used functions ψε which
concentrated in the limit ε → 0 in some point h, i.e. ψε → δh in the sense
of distributions, where δh is the δ-distribution at h. The technique of molli-
fication or approximate identities is however restricted to the case ψε → δ0
for ε → 0. Since f ∗ δ0 = f , this does not contradict the discontinuity of
translations. Indeed, we will see below that for certain variable exponents p
we have f ∗ ψε → f in Lp(·) for ε → 0 if ψε is an approximate identity.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 4,
c© Springer-Verlag Berlin Heidelberg 2011
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4.1 Logarithmic Hölder Continuity

In this section we introduce the most important condition on the exponent
in the study of variable exponent spaces, the log-Hölder continuity condition.

Definition 4.1.1. We say that a function α : Ω → R is locally log-Hölder
continuous on Ω if there exists c1 > 0 such that

|α(x) − α(y)| � c1
log(e+ 1/|x− y|)

for all x, y ∈ Ω. We say that α satisfies the log-Hölder decay condition if there
exist α∞ ∈ R and a constant c2 > 0 such that

|α(x) − α∞| � c2
log(e + |x|)

for all x ∈ Ω. We say that α is globally log-Hölder continuous in Ω if it is
locally log-Hölder continuous and satisfies the log-Hölder decay condition.
The constants c1 and c2 are called the local log-Hölder constant and the log-
Hölder decay constant, respectively. The maximum max {c1, c2} is just called
the log-Hölder constant of α.

The local log-Hölder condition was first used in the variable exponent
context by Zhikov [392]. Various authors have used different names for this
condition, e.g. weak Lipschitz, Dini–Lipschitz, and 0-Hölder. However, we
think these terms are ambiguous and prefer the name log-Hölder. Before
appearing in the variable exponent context, the same condition was used
with variable order Hölder spaces [177,229,332]. It is unclear to what extent
these studies were known to researchers of variable exponent spaces, however.

If α is globally log-Hölder continuous on an unbounded domain, e.g. R
n,

then the constant α∞ in Definition 4.1.1 is unique. Note that any globally
log-Hölder continuous function is bounded.

Remark 4.1.2. We define the chordal metric d : Rn × Rn → R by

d(x, y) =
|x− y|

√
1 + |x|2

√
1 + |y|2

and d(x,∞) =
1

√
1 + |x|2

for x, y ∈ R
n. The motivation for the term “global log-Hölder continuity”

comes from the fact that α : Rn → R is globally log-Hölder continuous if and
only if

|α(x) − α(y)| � c

log(e + 1/d(x, y))
(4.1.3)

for all x, y ∈ Rn. Since d(x, y) � |x − y| and |x| � 1/d(x,∞), it is clear that
(4.1.3) implies log-Hölder continuity. The other implication follows from the
inequality
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1
d(x, y)

� 2
1 + |x|2
|x− y| + 2

√
1 + |x|2 � c

(
1 + |x|4 +

1
|x− y|2

)
,

which in turn follows since
√

1 + |y|2 � 2
√

1 + |x|2 + 2 |x − y|. The details
are left to the reader.

Definition 4.1.4. We define the following class of variable exponents

P log(Ω) :=
{
p ∈ P(Ω): 1

p is globally log-Hölder continuous
}
.

By clog(p) or clog we denote the log-Hölder constant of 1
p . If Ω is unbounded,

then we define p∞ by 1
p∞

:= lim|x|→∞ 1
p(x) . As usual we use the convention

1
∞ := 0.

Note that although 1
p is bounded, the variable exponent p itself can be

unbounded. We would also like to remark that the definition of p∞ “commutes
with duality”, i.e. p ∈ P log(Ω) if and only if p′ ∈ P log(Ω) and

(p∞)′ = (p′)∞.

Hence we do not have to distinguish between (p∞)′ and (p′)∞, and write p′∞
for short.

Remark 4.1.5. If p ∈ P(Ω) with p+ < ∞, then p ∈ P log(Ω) if and only if
p is globally log-Hölder continuous. This is due to the fact that p �→ 1

p is a
bilipschitz mapping from [p−, p+] to [ 1

p+ ,
1
p− ].

The following lemma provides a characterization of local log-Hölder con-
tinuity. Recall the notation α±

A for the supremum and infimum of α over a
set A.

Lemma 4.1.6. Let α : R
n → R be continuous and bounded, i.e.

−∞ < α− � α+ < ∞. The following conditions are equivalent:

(a) α is locally log-Hölder continuous.
(b) For all balls B we have |B|α

−
B−α+

B � c.
(c) For all balls B and all x ∈ B we have |B|α

−
B−α(x) � c.

(d) For all balls B and all x ∈ B we have |B|α(x)−α+
B � c.

Instead of balls it is also possible to use cubes.

Proof. (a) ⇒ (b): Since α−
B − α+

B is non-positive, the claim is clear for balls
of radius greater than 1

4 . If B is a ball with radius less than this, we use the
local log-Hölder condition:

|α−
B − α+

B| log
1
|B| � c1 log(1/|B|)

log(e+ 1/ diam(B))
� c1n log(1/|B|)

log(c/|B|) � c.
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(b) ⇒ (a): Fix x, y ∈ R
n and choose a ball Br with radius r such that

x, y ∈ Br and |x−y|
2 < r < |x− y|. Since |Br| � (2r)n,

(
2|x− y|

)−|α(x)−α(y)|� (2r)−|α(x)−α(y)|� |Br|
−|α(x)−α(y)|

n � |Br|
α
−
B

−α+
B

n � c
1
n
1 .

Since |α+ − α−| < ∞, this proves |x− y|−|α(x)−α(y)| � c for some c > 1.
We take the logarithm of this inequality to deduce |α(x) − α(y)| � log c

|log |x−y|| .
This takes care of the claim when |x − y| < 1

2 ; on the other hand, there the
claim is obvious when |x− y| � 1

2 , since α is bounded by assumption.
The equivalence of (b), (c) and (d) is clear by the continuity of α. ��

Many results below are stated for variable exponents p which are defined
on the whole space R

n. However, sometimes initially the variable exponent
is only given on a subset Ω ⊂ R

n, i.e. q ∈ P log(Ω). The following result
ensures that such a variable exponent q can always be extended to R

n without
changing the fundamental properties.

Proposition 4.1.7. If p ∈ P log(Ω), then it has an extension q ∈ P log(Rn)
with clog(q) = clog(p), q− = p−, and q+ = p+. If Ω is unbounded, then
additionally q∞ = p∞.

Proof. Let c1 > 0 and p∞ � 1 be such that

∣
∣
∣

1
p(x)

− 1
p(y)

∣
∣
∣ � c1

log(e + 1/|x− y|) and |p(x) − p∞| � c1
log(e + |x|) .

for all points x, y ∈ Ω. Since t �→ 1/ log(e + 1/t) is a modulus of continuity,
we can use the extension of McShane-type [289] to extend 1

p to R
n with the

same modulus of continuity and lower and upper bound. More precisely, we
define a ∈ C(Rn) by

1
a(y)

:= sup
z∈Ω

( 1
p(z)

− c1
log(e + 1/|z − y|)

)

for y ∈ R
n. In particular, a is locally log-Hölder continuous with local log-

Hölder constant less or equal to c1, and a(y) = 1/p(y) for all y ∈ Ω.
In order to ensure that our extension satisfies also the log-Hölder decay

condition and has the same lower and upper bound as p we define q by
truncation

1
q(y)

:= min
{

max
{

1
a(y)

,
1
p∞

− c2
log(e + |x|) ,

1
p+
Ω

}

,
1
p∞

+
c2

log(e + |x|) ,
1
p−Ω

}
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for all y ∈ R
n. Since x �→ c2

log(e+|x|) is globally log-Hölder continuous with con-
stant c2, we see the log-Hölder constant of 1

q does not exceed max{c1, c2} =
clog(p). The decay condition of 1

p ensures that 1
q(y) = a(y) = 1

p(y) for all
y ∈ Ω. Therefore q is the variable exponent we are looking for. ��

Proposition 4.1.7 was first proved by Diening and Růžička [103] under
the additional assumption that q is constant outside a large ball. For a gen-
eral variable exponent q ∈ P log(Ω) the result was first proved by Cruz-Uribe,
Fiorenza, Martell and Pérez [83, Lemma 4.3] by means of the Whitney decom-
position. The proof that we included is simpler and originates from Diening
and Hästo [96, Proposition 3.7].

Let p ∈ P(Rn) and 1
s := | 1p − 1

p∞ |. We saw in Lemma 3.3.5 that the
condition 1 ∈ Ls(·) is important for embeddings; we now show that this
condition follows from log-Hölder continuity. The condition turns out also to
be important for the boundedness of maximal operators.

Proposition 4.1.8. Let p, q ∈ P log(Rn) with p∞ = q∞. If s ∈ P(Rn) is
given by 1

s := | 1p − 1
q |, then 1 ∈ Ls(·)(Rn) and for every m > 0 there exists

γ ∈ (0, 1) only depending on clog(p) and n such that

ϕs(y)(γ) � (e + |y|)−m

for all y ∈ R
n. Moreover,

Lmax{p(·),q(·)}(Rn) ↪→ Lq(·)(Rn) ↪→ Lmin {p(·),q(·)}(Rn)

Proof. We begin with the estimate for ϕs(y)(γ). If s(y) = ∞, then ϕ∞(γ) = 0.
So let us assume s(y) < ∞. Since p ∈ P log(Rn), we have

∣
∣
∣

1
p(y)

− 1
p∞

∣
∣
∣ � clog(p)

log(e + |y|)

for all y ∈ R
n. Let γ := exp(−mclog(p)). Since s(y) < ∞, ϕ̄s(y)(γ) = γs(y),

and so we estimate

ϕ̄s(y)(γ) � exp
(

−mclog(p)
| 1
p(y) − 1

p∞
|

)

� exp
(
−m log(e + |y|)

)
= (e + |y|)−m.

This proves the estimate for ϕ̄s(y)(γ). Since ϕ̃p(·) � ϕ̄p(·), the conclusion
holds also for ϕ̃p(·). If m > n, then ϕs(·)(γ) � (e + |·|)−m ∈ L1(Rn); hence
1 ∈ Ls(·)(Rn).

Define s1, s2 ∈ P log(Rn) by 1
s1

= max { 1
q − 1

p , 0} and 1
s2

= max { 1
p − 1

q , 0}.
If we use the already shown claims with p replaced by max {p(·), q(·)} and
min {p(·), q(·)}, then we get 1 ∈ Ls1(·)(Rn) ∩ Ls2(·)(Rn), respectively. The
embeddings now follow directly from Theorem 3.3.1. ��
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Combining the previous proposition with Lemma 3.3.12 we see that

Lp(·)(Rn) ∩ Lp+(Rn) ∼= Lp∞(Rn) ∩ Lp+(Rn)

when p ∈ P log. From Theorem 3.3.7 we get an interesting corollary, see
[313,319].

Corollary 4.1.9. If p, q ∈ P(Zn) satisfy the log-Hölder decay condition and
p∞ = q∞, then lp(·)(Zn) ∼= lq(·)(Zn).

4.2 Point-Wise Estimates

Recall that ϕ−1

p−Q
is the left-continuous inverse as defined in Definition 3.1.8.

Lemma 4.2.1. Let p ∈ P log(Rn). Then there exists β ∈ (0, 1) which only
depends on clog(p) such that

ϕp(x)

(
βϕ−1

p−Q

(
λ|Q|−1)

)
� λ|Q|−1

,

for all λ ∈ [0, 1], any cube (or ball) Q ⊂ R
n and any x ∈ Q.

Proof. If λ = 0, then the claim follows from ϕ−1

p−Q
(0) = 0 and ϕp(x)(0) = 0. So

let us assume in the following that λ > 0. If p−Q = ∞, then, by continuity of 1
p ,

p(x) = ∞ for all x ∈ R
n and ϕ̄∞

(
1
2 ϕ̄

−1
∞ (λ|Q|−1)

)
= ϕ̄∞

(
1
2

)
= 0. Assume now

that p−Q < ∞ and p(x) < ∞. By Lemma 4.1.6 there exists β ∈ (0, 1) such
that

β|Q|
1

p(x)− 1
p
−
Q � 1.

Now, multiply this by |Q|−
1

p(x) and raise the result to the power of p(x) to
prove the claim for λ = 1 and ϕp(·) = ϕ̄p(·). The case 0 � λ < 1 follows from
this and

ϕ̄p(x)

(
βϕ̄−1

p−Q

(
λ|Q|−1)

)
= λ

p(x)

p
−
Q ϕ̄p(x)

(
βϕ̄−1

p−Q

(
|Q|−1)

)
� λ|Q|−1

,

It remains to consider the case p(x) = ∞ and p−Q < ∞. Since 1
p is continuous

and p−Q < ∞ we can choose a sequence (xk) from Q which tend to x′ with
p(xk) < ∞ for all k ∈ N and p(x′) = ∞. Then by Remark 3.5.2 ϕ̄p(x)(t) =
ϕ̄p(x′)(t) � limk→∞ ϕ̄p(xk)(t) for all t � 0. Hence, this case can be reduced to
the previous case. This proves the claim for ϕp(·) = ϕ̄p(·). By Lemmas 3.1.6
and 3.1.12,
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ϕ̃p(x)

(
β

2
ϕ̃−1

p−Q

(
λ|Q|−1)

)

� ϕ̄p(x)

(
βϕ̄−1

p−Q

(
λ|Q|−1)

)
� λ|Q|−1

.

This proves the claim for ϕp(·) = ϕ̃p(·) with β replaced by β/2. ��

We now derive a generalized version of Jensen’s inequality for ϕp(·). For
constant q ∈ [1,∞], f ∈ Lq(Q) and a cube Q ⊂ R

n we have by Jensen’s
inequality

ϕq

(  

Q

|f(y)| dy
)

�
 

Q

ϕq(|f(y)|) dy.

However, this inequality only holds if the exponent is constant. The following
lemma shows that it is possible to generalize the constant exponent case
to the setting of variable exponents p ∈ P log(Rn). The price to pay is a
multiplicative constant on the left-hand side and an extra additive term on
the right-hand side, which is independent of f as long as f is from the unit
ball of Lp(·) + L∞.

Lemma 4.2.2. Let p ∈ P(Rn) and let 1
p be locally log-Hölder continuous.

Define q ∈ P log(Rn × R
n) by

1
q(x, y)

:= max
{

1
p(x)

− 1
p(y)

, 0
}

.

Then for any γ ∈ (0, 1) there exists β ∈ (0, 1) only depending on γ and clog(p)
such that

ϕp(x)

(

β

 

Q

|f(y)|dy
)

�
 

Q

ϕp(y)(|f(y)|) dy +
 

Q

ϕq(x,y)(γ)χ{0<|f(y)|�1} dy

for every cube (or ball) Q ⊂ R
n, x ∈ Q, and f ∈ Lp(·)(Rn) + L∞(Rn) with

‖f‖Lp(·)(Rn)+L∞(Rn) � 1.

Proof. We prove the claim for ϕp(·) = ϕ̄p(·). The case ϕp(·) = ϕ̃p(·) then
follows easily by Lemma 3.1.6.

By convexity of ϕ̄p(y) it suffices to prove the claim separately for ‖f‖p(·) � 1
and ‖f‖∞ � 1. Let Q ⊂ R

n be a cube and x ∈ Q.
If p−Q = ∞, then p(y) = ∞ for all y ∈ Q and the claim is just Jensen’s

inequality for the convex function ϕ̄∞ with an extra positive term on the
right-hand side. So we assume in the following p−Q < ∞.

Let β > 0 be as in Lemma 4.2.1. We can assume that β � γ. We split f
into three parts
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f1(y) := f(y)χ{y∈Q : |f(y)|>1},
f2(y) := f(y)χ{y∈Q : |f(y)|�1,p(y)�p(x)},
f3(y) := f(y)χ{y∈Q : |f(y)|�1,p(y)>p(x)}.

Then f = f1 + f2 + f3 and |fj | � |f |, so �p(·)(fj) � �p(·)(f) � 1, j = 1, 2, 3.
By convexity of ϕ̄p(x)

ϕ̄p(x)

(
β

3

 

Q

|f(y)| dy
)

� 1
3

3∑

j=1

ϕ̄p(x)

(

β

 

Q

|fj(y)| dy
)

=:
1
3
(
I1 + I2 + I3

)
.

So it suffices to consider the functions f1, f2, and f3 independently. We start
with f1. The convexity of ϕ̄p−Q and Jensen’s inequality imply that

I1 � ϕ̄p(x)

(

βϕ̄−1

p−Q

(  

Q

ϕ̄p−Q
(|f1(y)|) dy

))

,

where we have used that ϕ̄p(x) and ϕ̄−1

p−Q
are non-decreasing. Since |f1(y)| > 1

or |f1(y)| = 0 and p−Q � p(y), we have ϕ̄p−Q
(|f1(y)|) � ϕ̄p(y)(|f1(y)|) by

Lemma 3.1.6 and thus

I1 � ϕ̄p(x)

(

βϕ̄−1

p−Q

(  

Q

ϕ̄p(y)(|f1(y)|) dy
))

.

If ‖f‖∞ � 1, then f1 = 0 and I1 = 0. If on the other hand ‖f‖p(·) � 1, then
�p(·)(f) � 1 and

´
Q ϕ̄p(y)(|f1(y)|) dy � 1. So by Lemma 4.2.1 it follows with

λ =
´
Q ϕ̄p(y)(|f(y)|) dy that

I1 �
 

Q

ϕ̄p(y)(|f1(y)|) dy �
 

Q

ϕ̄p(y)(|f(y)|) dy.

Jensen’s inequality implies that

I2 �
 

Q

ϕ̄p(x)
(
β|f2(y)|

)
dy.

Since β|f2(y)| � |f2(y)| � 1 and ϕ̄p(x)(t) � ϕ̄p(y)(t) for all t ∈ [0, 1] when
p(y) � p(x) (see Lemma 3.1.6), we find that

I2 �
 

Q

ϕ̄p(y)
(
β|f2(y)|

)
dy �

 

Q

ϕ̄p(y)
(
|f2(y)|

)
dy �

 

Q

ϕ̄p(y)
(
|f(y)|

)
dy.



4.2 Point-Wise Estimates 107

Finally, for I3 we get with Jensen’s inequality

I3 �
 

Q

ϕ̄p(x)
(
β|f(y)|)χ{y∈Q : 0<|f(y)|�1,p(y)>p(x)} dy.

Now, Young’s inequality (Lemma 3.2.15) and β � γ give that

I3 �
 

Q

(

ϕ̄p(y)

(

β
|f(y)|
γ

)

+ ϕ̄q(x,y)(γ)

)

χ{y∈Q : 0<|f(y)|�1,p(y)>p(x)} dy

�
 

Q

ϕ̄p(y)(|f(y)|) dy +
 

Q

ϕ̄q(x,y)(γ)χ{0<|f(y)|�1,p(y)>p(x)} dy.

This proves the lemma. ��

In the case where the limit 1
p∞

= lim|x|→∞ 1
p(x) exists, it is useful to split

the second integral in the previous estimate into two parts by means of the
following lemma:

Lemma 4.2.3. Let p ∈ P log(Rn). Let q be as in Lemma 4.2.2 and define
s ∈ P(Rn) by 1

s(x) := | 1
p(x) − 1

p∞
|. Then

ϕ̃q(x,y)(t) � ϕ̃s(x)
(
t

1
2
)

+ ϕ̃s(y)
(
t

1
2
)

for every t ∈ [0, 1].

Proof. Let t ∈ [0, 1]. For all x, y ∈ R
n

0 � 1
q(x, y)

= max
{

0,
1

p(x)
− 1
p(y)

}

� 1
s(x)

+
1
s(y)

=:
1
qx,y

.

Using (3.3.10) and the convexity of a �→ ϕ̃1/a(t) (Lemma 3.1.4) we estimate

ϕ̃q(x,y)(t) � ϕ̃qx,y(t) � 1
2
ϕ̃ s(x)

2
(t) +

1
2
ϕ̃ s(y)

2
(t) = ϕ̃s(x)

(
t

1
2
)

+ ϕ̃s(y)
(
t

1
2
)
. ��

The following theorem plays a central role in later proofs of strong and
weak type estimates, as well as estimates of convolutions.
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Theorem 4.2.4 (Key estimate). Let p ∈ P log(Rn). Then for every m > 0
there exists β ∈ (0, 1) only depending on m and clog(p) such that

ϕp(x)

(

β

 

Q

|f(y)| dy
)

�

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

 

Q

ϕp(y)(|f(y)|)dy+
1
2

(  

Q

(
(e + |x|)−m+(e+|y|)−m

)
χ{0<|f(y)|�1}dy

)p−

 

Q

ϕp(y)(|f(y)|)dy +
1
2

 

Q

(
(e + |x|)−m + (e + |y|)−m

)
χ{0<|f(y)|�1}dy

for every cube (or ball) Q ⊂ R
n, all x ∈ Q, and all f ∈ Lp(·)(Rn) + L∞(Rn)

with ‖f‖Lp(·)(Rn)+L∞(Rn) � 1.

Note that if p+ < ∞ then in the previous lemmas and theorem we can take
the constant β out from ϕp(·). For example, in the later case of the previous
theorem we obtain

ϕp(x)

(  

Q

|f(y)| dy
)

� c

 

Q

ϕp(y)(|f(y)|) dy + c

 

Q

(
(e + |x|)−m + (e + |y|)−m

)
χ{0<|f(y)|�1} dy,

where the constant c depends only on m, clog(p) and p+.

Proof of Theorem 4.2.4. Define q := p
p− . As an immediate consequence of

Lemma 4.2.2, Lemma 4.2.3 and Proposition 4.1.8 with exponent q, we obtain

ϕq(x)

(

β

 

Q

|f(y)|dy
)

�
 

Q

ϕq(y)(|f(y)|) dy

+ c

 

Q

(
(e + |x|)−m + (e + |y|)−m

)
χ{0<|f(y)|�1} dy

for suitable β ∈ (0, 1). Raising both sides to the power of p− and using
Jensen’s inequality on the first integral on the right-hand side yields the first
inequality. By Jensen’s inequality, p− can be taken into the second integral
and absorbed into m′ := mp−, which gives the second inequality. ��

If we then integrate the estimate in Theorem 4.2.4 over a cube (or ball) Q,
then we get the following result.
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Corollary 4.2.5. Let p ∈ P log(Rn). Then for every m > 0 there exists
β ∈ (0, 1) only depending on m and clog(p) such that

ˆ

Q

ϕp(x)

(

β

 

Q

|f(y)| dy
)

dx �
ˆ

Q

ϕp(y)(|f(y)|) dy +
ˆ

Q

(e + |y|)−m dy,

ˆ

Q

ϕp(x)

(

β

 

Q

|f(y)| dy
)

dx �
ˆ

Q

ϕp(y)(|f(y)|) dy + |{y ∈ Q : 0 < |f(y)| � 1}|

for every cube (or ball) Q ⊂ R
n and all f ∈ Lp(·)(Rn) + L∞(Rn) with

‖f‖Lp(·)(Rn)+L∞(Rn) � 1.

For later use we also record the following modification of Lemma 4.2.1.
Note that p−Q from Lemma 4.2.1 is replaced in Lemma 4.2.7 by pQ, the
harmonic mean:

Definition 4.2.6. Let p ∈ P(Rn). For measurable E ⊂ R
n with |E| ∈ (0,∞)

we define the harmonic mean pE ∈ [1,∞] by

1
pE

=
 

E

1
p(y)

dy.

We derive further properties of the harmonic mean pQ in Sect. 4.5.

Lemma 4.2.7. Let p ∈ P log(Rn). Then for any m > 0 there exists β ∈ (0, 1),
which only depends on the local log-Hölder continuity constant of 1

p , such that

ϕp(x)

(
βϕ−1

pQ

(
|Q|−1)

)
� |Q|−1 +

1
2

(e + |x|)−mp
−

+
1
2

(  

Q

(e + |y|)−m dy
)p−

,

for any cube (or ball) Q ⊂ R
n and any x ∈ Q.

Proof. We prove the claim for ϕp(·) = ϕ̄p(·). The case ϕp(·) = ϕ̃p(·) follows
easily with the help of Lemmas 3.1.6 and 3.1.12.

Define f := χQϕ̄
−1
p(·)(|Q|−1). Since ϕ̄−1

p(·) is the left-continuous inverse, we

find that ϕ̄p(·)(f) = χQϕ̄p(·)(ϕ̄
−1
p(·)(|Q|−1)) � χQ |Q|−1. Hence �p(·)(f) � 1

and ‖f‖p(·) � 1 by the unit ball property. The convexity of the mapping
q �→ ϕ̄1/q and Jensen’s inequality imply that

ϕ̄−1
pQ

(
|Q|−1) �

 

Q

ϕ̄−1
p(y)

(
|Q|−1) dy.

By Theorem 4.2.4 there exists β > 0 such that
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ϕ̄p(x)

(

β

 

Q

|f(y)| dy
)

�
 

Q

ϕ̄p(y)(|f(y)|) dy +
1
2

(e + |x|)−mp
−

+
1
2

(  

Q

(e + |y|)−m dy
)p−

.

Since �p(·)(f) � 1, the first term on the right-hand side is less than or equal
to |Q|−1, which completes the proof. ��

Remark 4.2.8. The decay condition can be slightly weakened. Assume that
p is locally log-Hölder continuous and satisfies 1 ∈ Ls(·), where s is given by

1
s(x)

:=
∣
∣
∣
∣

1
p(x)

− 1
p∞

∣
∣
∣
∣.

Then Lemma 4.2.2 holds, since it only requires the local log-Hölder conti-
nuity of 1

p . Moreover, Theorem 4.2.4 remains true. We only have to replace
(e + |x|)−m in the proof by ϕs(x)(γ) with γ > 0 such that �s(·)(γ) < ∞. Also,
all results that are solely based on the theorem hold under this weaker condi-
tion on p. The condition 1 ∈ Ls(·) has been studied by Nekvinda [314,316] in
the context of the Hardy–Littlewood maximal operator. Note that 1 ∈ Ls(·)

is equivalent to the existence of γ > 0 with

�s(·)(γ) =
ˆ

Rn

γ
1

| 1
p(x)− 1

p∞ |
dx < ∞.

4.3 The Boundedness of the Maximal Operator

In order to derive more sophisticated results for the spaces Lp(·)(Rn), we
have to investigate the Hardy–Littlewood maximal operator M on Lp(·)(Rn).
This operator is a powerful tool and we will see that many properties will
follow from the boundedness of M . The most central property of the maximal
operator is that it is a bounded operator from Lq to Lq when q ∈ (1,∞]. In
this section we prove the variable exponent generalization of this.

Let us start with some notation. Recall that our cubes are always with
sides parallel to the axis.

Definition 4.3.1. For a function f ∈ L0(Rn) and an open, bounded set
U ⊂ R

n (usually a cube or a ball) we define

MUf :=
 

U

|f(y)| dy =
1
|U |

ˆ

U

|f(y)| dy. (4.3.2)
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The (non-centered) maximal function Mf of f is defined by

Mf(x) := sup
Q�x

MQf = sup
Q�x

 

Q

|f(y)| dy

for all x ∈ R
n, where the supremum is taken over all cubes (or balls) Q ⊂ R

n

which contain x. The operator M : f �→ Mf is called the Hardy–Littlewood
maximal operator or just maximal operator. Furthermore, for f ∈ Lsloc(R

n),
s ∈ [1,∞), and an open, bounded set U ⊂ R

n we define

Ms,Uf :=
(
MU (|f |s)

) 1
s =

( 

U

|f(y)|s dy
) 1
s

,

Msf :=
(
M(|f |s)

) 1
s .

Remark 4.3.3. In Definition 4.3.1 it is possible to use balls instead of cubes.
Also, we could take the supremum only over those cubes (or balls) which are
centered around x, rather than the ones containing x. Up to constants all
of these versions are equivalent, e.g. c1Mballsf � Mcubesf � c2Mballsf with
c1, c2 only depending on the dimension n.

Let us recall some classical results for the maximal operator M , see for
example Stein [360]. For f ∈ L1

loc(R
n) the function Mf : R

n → [0,∞] is lower
semicontinuous and satisfies |f | � Mf almost everywhere. For any 1 � q � ∞
and f ∈ Lq(Rn) the function Mf is almost everywhere finite. Moreover, for
1 < q � ∞ the mapping f �→ Mf is bounded from Lq(Rn) to Lq(Rn). The
constant blows up as q ↘ 1. Indeed, M is not bounded from L1(Rn) to
L1(Rn). Actually, Mf �∈ L1(Rn) for every non-zero f ∈ L1(Rn). In the L1

case we have the weaker result

∥
∥λχ{Mf>λ}

∥
∥
L1(Rn)

� c
∥
∥f
∥
∥
L1(Rn)

, (4.3.4)

for f ∈ L1(Rn) and λ > 0, where c depends only on n. Here, χ{Mf>λ} denotes
the characteristic function of the set {y ∈ R

n : Mf(y) > λ}. This set is open,
since Mf is lower semicontinuous. If inequality (4.3.4) holds for every λ > 0,
then we say that M is of weak type 1.

The weak Lebesgue space w-Lq with q ∈ [1,∞] is defined by the quasinorm

‖f‖w-Lq := sup
λ>0

‖λχ{|f |>λ}‖q.

The quasinorm satisfies the triangle inequality ‖f + g‖w-Lq �
2
(
‖f‖w-Lq+‖g‖w-Lq

)
, while the other norm properties remain true. Obviously,
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“M is of weak type 1” if and only if M maps L1(Rn) to w-L1(Rn). We have
L1(Rn) ↪→ w-L1(Rn), since λχ{|f |>λ} � |f | for all f ∈ L1(Rn). Another easy
embedding follows:

Lemma 4.3.5. Let p ∈ P(Rn) with p− > 1. Then w-L1(Rn) ∩ L∞(Rn) ↪→
Lp(·)(Rn).

Proof. We assume that p− < ∞, since the claim is trivial otherwise. Let
f ∈ w-L1(Rn) ∩ L∞(Rn) with max {‖f‖w-L1(Rn), ‖f‖∞} � 1. Then

ˆ

Rn

ϕp(x)(|f |) dx �
ˆ

Rn

|f |p− dx =

1ˆ

0

tp
−−1|{|f | > t}| dt

� ‖f‖w-L1

1ˆ

0

tp
−−2 dt <∞. ��

Next we have a version of Theorem 4.2.4 with maximal functions instead
of integral averages.

Lemma 4.3.6. Let p ∈ P log(Rn). Then for any m > 0 there exists β ∈ (0, 1)
only depending on m and clog(p) such that

ϕp(y)
(
βMf(y)

)
� M

(
ϕp(·)(f)

)
(y) + h(y),

for all f ∈ Lp(·)(Rn) +L∞(Rn) with ‖f‖Lp(·)(Rn)+L∞(Rn) � 1 and all y ∈ R
n,

where h(y) := M
(
(e + |·|)−m

)
(y).

Proof. Let m > 0, then from Theorem 4.2.4 it follows that there exists β > 0
such that

ϕp(x)

(

β

 

Q

|f(y)| dy
)

�
 

Q

ϕp(y)(|f(y)|) dy +
1
2

(e + |x|)−m +
1
2

 

Q

(e + |y|)−m dy

for f ∈ Lp(·)(Rn) +L∞(Rn) with ‖f‖Lp(·)(Rn)+L∞(Rn) � 1 and all x ∈ Q. We
take the supremum over all cubes (or balls) Q ⊂ R

n with x ∈ Q and use that
ϕp(·) is non-decreasing and left-continuous:

ϕp(x)
(
βMf(x)

)
� M

(
ϕp(·)(f)

)
(x) +

1
2

(e + |x|)−m +
1
2
M
(
(e + |·|)−m

)
(x)

� M
(
ϕp(·)(f)

)
(x) +M

(
(e + |·|)−m

)
(x). ��
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If p is bounded and we are working in a bounded domain, then the following
simplified version of the previous lemma is often useful:

(Mf(x))p(x) � cM(|f |p(·)) + c. (4.3.7)

This inequality holds under the same assumptions as in the lemma.
We are now ready to prove the main theorem of this section.

Theorem 4.3.8. Let p ∈ P log(Rn) with p− > 1. Then there exists K > 0
only depending on the dimension n and clog(p) such that

‖Mf‖p(·) � K (p−)′ ‖f‖p(·)

for all f ∈ Lp(·)(Rn).

Proof. Let q := p
p− , so that q ∈ P log(Rn) with q− = 1. Let f ∈ Lp(·)(Rn)

with ‖f‖p(·) � 1
4 , and note that ‖f‖Lq(·)(Rn)+L∞(Rn) � 1 by Theorem 3.3.11.

This and Lemma 4.3.6 imply that

ϕq(x)
(
β
2Mf(x)

)
� 1

2
ϕq(x)

(
βMf(x)

)
� 1

2
M
(
ϕq(·)(f)

)
(x) +

1
2
h(x) (4.3.9)

with h(x) := M
(
(e + |·|)−m

)
(x), where we choose m > n. Furthermore, from

Lemma 3.1.6 it follows that

ϕp(x)(t) � ϕ̄p(x)(t) =
(
ϕ̄q(x)(t)

)p− �
(
ϕq(x)(2t)

)p−

for all t � 0 and all x ∈ R
n. Combining the results above, we find that

ϕp(x)

(
β
4Mf(x)

)
�
(

ϕq(x)

(
β
2Mf(x)

))p−

�
(

1
2
M
(
ϕq(·)(f)

)
+

1
2
h(x)

)p−

� 1
2
M
(
ϕq(·)(f)

)p− +
1
2
h(x)p

−
.

Integration over R
n yields

�p(·)(
β
4Mf) � 1

2‖M(ϕp(·)(f))‖p
−

p− + 1
2‖h‖

p−

p− .

Since (e + |·|)−m ∈ L1(Rn) for m > n, and M is of weak type 1, we conclude
that M

(
(e + |·|)−m

)
∈ w-L1(Rn). Hence hp

−
is integrable by Lemma 4.3.5.

Moreover, ‖f‖p(·) � 1
4 implies ‖ϕq(·)(f)‖

p− � 1. So the classical result on the

boundedness of M on Lp
−

(Rn) implies that ‖M(ϕp(·)(f))‖p− � c (p−)′, with
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boundedness constant depending only on n. Thus �p(·)(
β
4Mf) � [c (p−)′]p

−
,

and by Lemma 3.2.5 ‖Mf‖p(·) � K (p−)′ for ‖f‖p(·) � 1
4 . The proof is com-

pleted by the scaling argument. ��

The proof of Theorem 4.3.8 goes back to many authors. The first version
goes back to Diening [91], who proved the result for bounded exponents that
are constant outside a large ball. This condition has been later relaxed by
Cruz-Uribe, Fiorenza, Martell and Pérez [83, Lemma 4.3] to the log-Hölder
decay condition and by Nekvinda [314] to the integral condition 1 ∈ Ls(·) as
in Remark 4.2.8. The boundedness of the exponent was then removed in [95]
and [81]. The proof in this book is closest to the one in [95].

Remark 4.3.10. As in Remark 4.2.8 it is possible to replace the decay con-
dition on 1

p in Lemma 4.3.6 and Theorem 4.3.8 by the weaker condition
1 ∈ Ls(·) with 1

s(x) := | 1
p(x) − 1

p∞ |.

Using a standard argument we obtain a local version of the previous result.
Note that the decay condition is vacuously true if the domain is bounded, so
in this case the local log-Hölder condition is sufficient for boundedness.

Corollary 4.3.11. Let p ∈ P log(Ω) with p− > 1. Then there exists K > 0
only depending on clog(p) and the dimension n such that

‖Mf‖Lp(·)(Ω) � K (p−)′‖f‖Lp(·)(Ω)

for all f ∈ Lp(·)(Ω).

Proof. By Proposition 4.1.7 we extend the exponent to the whole space R
n

with the same infimum and log-Hölder constant. A function f ∈ Lp(·)(Ω) can
be extended to R

n by zero outside Ω. Denote these extensions by p̃ and f̃ ,
respectively. Then

‖Mf‖Lp(·)(Ω) � ‖Mf̃‖Lp̃(·)(Rn) � K (p−)′‖f̃‖Lp̃(·)(Rn) = K (p−)′‖f‖Lp(·)(Ω)

by Theorem 4.3.8. ��

If one assumes a weaker modulus of continuity than log-Hölder, then it is
still possible to obtain the boundedness of the maximal operator, but the tar-
get space is larger than Lp(·)(Rn). Such results have been studied by Mizuta,
Shimomura and their colleagues, see, e.g., [298].

The boundedness of the maximal operator on metric measure spaces has
been investigated e.g. in [203, 252] in the variable exponent context. The
discrete setting has been studied in [315]. Such results are not considered here.
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4.4 Weak-Type Estimates and Averaging Operators

We saw in Sect. 4.3 that the maximal operator is of strong type when p is
log-Hölder continuous with p− > 1. In order to get around the latter restric-
tion we consider in this section weak-type estimates and averaging operators.
Averaging operators have been studied by Edmunds and Nekvinda in [119],
but here we undertake a much broader investigation of their properties.

Recall that a sublinear operator on a real vector space X is an operator
T which satisfies

T (f + g) � Tf + Tg and T (tf) = t T f

for all f, g ∈ X and all scalars t � 0.

Definition 4.4.1. Let ϕ ∈ Φ(Rn) and let T be a sublinear operator which
maps Lϕ(Rn) into the space of measurable functions on R

n. Then we say
that T is of weak type ϕ if there exists K1 > 0 such that

∥
∥λχ{|Tf |>λ}

∥
∥
Lϕ(Rn)

� K1

∥
∥f
∥
∥
Lϕ(Rn)

for all f ∈ Lϕ(Rn) and all λ > 0. We say that T is of strong type ϕ if there
exists K2 > 0 such that

∥
∥Tf

∥
∥
Lϕ(Rn)

� K2

∥
∥f
∥
∥
Lϕ(Rn)

for any f ∈ Lϕ(Rn). If p ∈ P(Rn), then instead of weak type ϕp(·) and strong
type ϕp(·) we write weak type p(·) and strong type p(·), respectively.

For a operator T and λ > 0 we obviously have λχ{|Tf |>λ} � |Tf |. There-
fore, if T is of strong type p(·), then it is also of weak type p(·). For instance,
in classical Lebesgue spaces, M is of strong type q for any q ∈ (1,∞] and of
weak type q for any q ∈ [1,∞].

In this section we study weak and strong type results for M in the context
of Lp(·)(Rn) with p ∈ P log(Rn). We first introduce the notation of averaging
operators TQ and then deduce from their properties that M is of weak type
p(·).

Definition 4.4.2. A family Q of measurable sets U ⊂ R
n is called locally

N -finite, where N ∈ N, if

∑

U∈Q
χU � N

almost everywhere in R
n. We simply say that Q is locally finite if it is

N -locally finite for some N ∈ N.



116 4 The Maximal Operator

Note that a family Q of open, bounded sets Q ⊂ R
n is locally 1-finite if

and only if the sets Q ∈ Q are pairwise disjoint.

Definition 4.4.3. For a family Q of open, bounded sets U ⊂ R
n we define

TQ : L1
loc(R

n) → L0(Rn) and Ts,Q : Lsloc(R
n) → L0(Rn) with s ∈ [1,∞) by

TQf :=
∑

U∈Q
χU MUf =

∑

U∈Q
χU

 

U

|f(y)|dy,

Ts,Qf :=
∑

U∈Q
χU Ms,Uf =

∑

U∈Q
χU

(  

U

|f(y)|s dy
) 1
s

.

The operators TQ and Ts,Q are called averaging operator and s-averaging
operator, respectively.

Note that TQ = T1,Q. The functions TQf and Ts,Qf are well defined
in L0(Rn), since MQf � 0, but might be infinite at many points or even
everywhere. However, if Q is locally finite and f ∈ L1

loc(R
n) and g ∈ Lsloc(R

n),
then TQf ∈ L1

loc(R
n) and Ts,Qg ∈ Lsloc(R

n). By Jensen’s inequality we have
TQf � Ts,Q for s � 1.

Definition 4.4.4. Let ϕ ∈ Φ(Rn). Then for any t � 0 the mapping
x �→ ϕ(x, t) is non-negative and measurable. Now, for a cube (or ball)Q ⊂ R

n

and t � 0 we define

MQϕ(t) :=
 

Q

ϕ(x, t) dx.

For a measurable function f on R
n we define a function ϕ(f) on R

n by
ϕ(f) := ϕ(·, |f(·)|), i.e. for all x ∈ R

n we set

(
ϕ(f)

)
(x) = ϕ(x, |f(x)|).

By Lemma 2.3.10, the function ϕ(f) is measurable. If χQ ∈ Lϕ, then MQϕ
is a Φ-function. This is certainly the case if ϕ is locally integrable. Also note
that in the sense of (4.3.2) we could write MQϕ(t) = MQ(ϕ(·, t)). Instead
of

´
ϕ(x, |f(x)|) dx we can now write more compactly

´
ϕ(f) dx. Note that

whenever we have a generalized Φ-function ϕ and a measurable function f ,
then ϕ(f) depends on x via f and ϕ. For example, by ϕp(·)(f) we denote the
mapping x �→ ϕp(x)(|f(x)|).

With this notation we can write an analogue of Corollary 4.2.5:

(MQϕp(·))
(
βMQf

)
� MQ

(
ϕp(·)(f)

)
+MQ

(
(e + |·|)−m

)
(4.4.5)

with the notation and assumptions of that lemma.
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Definition 4.4.6. By A we denote the set of all generalized Φ-functions ϕ
on R

n which have the property that the averaging operators TQ are bounded
from Lϕ(Rn) to Lϕ(Rn) uniformly for all locally 1-finite families Q of cubes
in R

n. The smallest constant K for which

∥
∥TQf

∥
∥
ϕ

� K‖f‖ϕ,

for all locally 1-finite families of cubes Q in R
n and all f ∈ Lϕ(Rn), will be

called the A-constant of ϕ. If ϕ ∈ A, then we say that ϕ is of class A. In
the case ϕp(·), p ∈ P(Rn), we denote ϕp(·) ∈ A simply by p ∈ A and call the
A-constant of ϕp(·) also the A-constant of p.

By Aloc we denote the set of all generalized Φ-functions ϕ on R
n which

have the property that the averaging operators T{Q} over single cubes Q are
uniformly bounded from Lϕ(Rn) to Lϕ(Rn), i.e. supQ

∥
∥T{Q}f

∥
∥
ϕ

� K2‖f‖ϕ
for all f ∈ Lϕ(Rn), where the supremum is taken over all cubes Q ⊂ R

n.
The smallest constant K2 will be called the Aloc-constant of ϕ. If ϕ ∈ Aloc,
then we say that ϕ is of class Aloc. In the case ϕp(·), p ∈ P(Rn), we denote
ϕp(·) ∈ Aloc simply by p ∈ Aloc.

In Theorem 4.4.8 we will show that each exponent p ∈ P log satisfies p ∈ A.

Lemma 4.4.7. Let p ∈ P log(Rn). If p ∈ A and s � 1, then sp ∈ A. If M is
bounded on Lp(·)(Rn), then it is bounded on Lsp(·)(Rn).

Proof. Using Lemma 3.2.6, (TQf)s � (Ts,Qf)s = TQ(|f |s) and p ∈ A we
estimate

‖TQf‖sϕ̄sp(·) = ‖(TQf)s‖ϕ̄p(·) � ‖TQ(|f |s)‖ϕ̄p(·) � c ‖|f |s‖ϕ̄p(·) = c ‖f‖sϕ̄sp(·) .

The claim for M follows similarly from (Mf)s � M(|f |s). ��

If ϕ ∈ Aloc or ϕ ∈ A, then necessarily χQ ∈ Lϕ for all cubes Q ⊂ R
n.

Obviously, A ⊂ Aloc. So naturally the question arises if the reverse holds
or not. Is it really necessary to consider locally 1-finite families of cubes
rather than just single cubes? At least for classical weighted Lebesgue spaces
Lq(Rn, ω dx) as well as weighted Orlicz spaces there is no difference in using
families or single cubes. However, we will see in Theorem 5.3.4 that it is in
fact not possible to use only single cubes in the general case.

The properties class Aloc and class A will be studied in great detail in
Sects. 4.5 and 5.2. We will see in Sects. 5.2 and 5.7 that there is a strong con-
nection between class A and the boundedness of the maximal operator M .
At this point we only mention that classes A and Aloc are natural generaliza-
tions of the Muckenhoupt classes of weighted Lebesgue spaces (with constant
exponents). Using Corollary 4.2.5 we now derive an analogue of the maximal
theorem for the averaging operators TQ. Note that the assumption p− > 1 is
not needed in this context.
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Theorem 4.4.8. If p ∈ P log(Rn), then p ∈ A with A-constant depending
only on clog(p) and n. Moreover,

‖TQf‖p(·) � cN ‖f‖p(·)

for every locally N -finite family Q of cubes (or balls) and all f ∈ Lp(·)(Rn).
The constant c depends only on clog(p).

Proof. Let f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1 and let Q be a locally N -finite fam-
ily of cubes (or balls). Then by the unit ball property �p(·)(f) � 1. Let m > n
be such that

´
Rn

(e + |y|)−m dy � 1. Choose β ∈ (0, 1) as in Corollary 4.2.5.
Then

�p(·)
( 1

2N
βTQf

)
� 1

2N

∑

Q∈Q

ˆ

Q

ϕp(x)(β χQMQf) dx

� 1
2N

∑

Q∈Q

( ˆ

Q

ϕp(y)(|f(y)|) dy +
ˆ

Q

(e + |y|)−m dy
)

� 1
2

(ˆ

Rn

ϕp(x)(f) dx+
ˆ

Rn

(e + |x|)−m dx
)

� 1
2
(
�p(·)(f) + 1

)
� 1.

where we have used that Q is locally N -finite. This implies ‖TQf‖p(·) � 2N
β .

A scaling argument yields the ‖TQf‖p(·) � 2N
β ‖f‖ϕ. The case N = 1 with

cubes implies p ∈ A. ��
Remark 4.4.9. As in Remark 4.2.8 it is possible to replace the decay con-
dition on 1

p in Corollary 4.2.5, (4.4.5) and Theorem 4.4.8 by the weaker
condition 1 ∈ Ls(·) with 1

s(x) := | 1
p(x) − 1

p∞ |.

For any locally 1-finite family of cubes Q in R
n and f ∈ L1

loc(R
n) the

inequality |TQf | � Mf holds almost everywhere. Therefore, ‖TQf‖ϕ �
‖Mf‖ϕ and we conclude that ϕ ∈ A whenever M is of strong type ϕ. Thus
the class A is weaker than the boundedness of M . This fact was rather sim-
ple. More interesting is the following theorem, which shows that a weaker
version of the converse statement is true.

Theorem 4.4.10. If ϕ ∈ A, then M is of weak type ϕ and the constant
depends only on the A-constant of ϕ and the dimension n.

Proof. In the proof we need the centered maximal operator, Mcenterf(x),
where the supremum is taken over all cubes with center x. This is indicated
by the notation Qx. Note that

Mcenterf � Mf � 2nMcenterf (4.4.11)
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for every f ∈ L1
loc(R

n). Therefore, it suffices to prove the theorem with M
replaced by Mcenter.

Fix f ∈ Lϕ(·)(Rn) with ‖f‖ϕ � 1 and λ > 0. Let Ωλ := {Mcenterf > λ}.
Then Ωλ is open, since Mcenter is lower semicontinuous. Let K be a compact
subset of Ωλ. For every x ∈ K there exists a cube Qx with center x such
that MQxf > λ. From the family {Qx}x∈K we can select by the Besicovitch
covering theorem, Theorem 1.4.6, locally 1-finite families Q1, . . . ,Qξn , which
together cover K. The natural number ξn depends only on the dimension n.
Then almost everywhere

λχK �
ξn∑

m=1

∑

Q∈Qm
λχQ �

ξn∑

m=1

∑

Q∈Qm

 

Q

|f(y)| dy χQ =
ξn∑

m=1

TQmf.

This and ϕ ∈ A imply

∥
∥λχK

∥
∥
ϕ

�
∥
∥
∥
∥
∥

ξn∑

m=1

TQmf

∥
∥
∥
∥
∥
ϕ

�
ξn∑

m=1

∥
∥TQmf

∥
∥
ϕ

� ξn c0 ‖f‖ϕ,

where c0 is the A-constant of ϕ. Now, let Kj⊂⊂Ωλ with Kj ↗ Ωλ. By the
previous inequality and monotone convergence, Theorem 2.3.17, we conclude
that

∥
∥λχΩλ

∥
∥
ϕ

= lim
j→∞

∥
∥λχKj

∥
∥
ϕ

� ξnc0‖f‖ϕ. ��

Theorems 4.4.8 and 4.4.10 have the following immediate consequence.

Corollary 4.4.12. Let p ∈ P log(Rn). Then M is of weak type p(·) with
constant depending on p only via clog(p).

We have seen that the uniform continuity of TQ from Lϕ to Lϕ for all
locally 1-finite families of cubes Q in R

n implies that M is of weak-type ϕ.
The following lemma is a weaker version of the converse direction.

Lemma 4.4.13. Let ϕ ∈ Φ(Rn). If M is of weak type ϕ, then ϕ ∈ Aloc.

Proof. Let f ∈ Lϕ(Rn) and let Q ⊂ R
n be a cube. If λ := 1

2MQf > 0, then

‖T{Q}f‖ϕ = ‖χQMQf‖ϕ � 2 ‖χ{Mf>λ}λ‖ϕ � c ‖f‖ϕ,

where we have used that M is of weak type ϕ. ��

The condition ϕ ∈ Aloc can also be characterized in terms of the norms of
characteristic functions, see Theorem 4.5.7.
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We have seen in Corollary 4.4.12 that M is weak type p(·) if p ∈ P log(Rn).
In particular, we have the norm estimate ‖λχ{Mf>λ}‖p(·) � K‖f‖p(·) for all

f ∈ Lp(·)(Rn). However, often it is better not to work with the norm but
rather the modular �p(·), since it behaves more like an integral. For example
the Sobolev embedding W 1,p(·) ↪→ Lp

∗(·) in Sect. 8.3 is based on weak type
estimates for the modular �p(·).

Proposition 4.4.14. Let p ∈ P log(Rn). Then for any m > 0 there exists
β ∈ (0, 1) depending only on the dimension n, m and clog(p) such that

�p(·)(β λχ{Mf>λ}) � �p(·)(f) +
ˆ

{Mf>4−nλ}

(e + |x|)−m dx

for all f ∈ Lp(·)(Rn) + L∞(Rn) with ‖f‖Lp(·)(Rn)+L∞(Rn) � 1 and all λ > 0.

Proof. We prove the claim for the centered maximal operator. The other
case follows from point-wise equivalence (4.4.11) of the centered and the
non-centered maximal operator.

Fix f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1 and λ > 0. Then {Mf > λ} is open,
since M is lower semicontinuous. Let K be an arbitrary compact subset
of {Mf > λ}. For every x ∈ K there exists a cube Qx with center x such
that MQxf > λ. Note that Qx ⊂ {Mf > 2−nλ} by (4.4.11). From the
family {Qx : x ∈ K} we can select by the Besicovitch covering theorem, The-
orem 1.4.6, a locally ξn-finite family Q, which covers K. The natural number
ξn only depends on the dimension n. Let m > 0. By Corollary 4.2.5 there
exists β > 0 such that

ˆ

Q

ϕp(y)(βMQf) dy �
ˆ

Q

ϕp(y)(f(y)) dy +
ˆ

Q

(e + |y|)−m dy

for all Q ∈ Q. Now, the convexity of the modular (2.1.5) and MQf > λ for
Q ∈ Q imply that

�p(·)(N−1βλχK) � N−1
∑

Q∈Q

ˆ

Q

ϕp(x)(βMQf) dy.

With the previous estimate we get

�p(·)(N−1βλχK) � N−1
∑

Q∈Q

( ˆ

Q

ϕp(y)(f(y)) dy +
ˆ

Q

(e + |y|)−m dy
)

� �p(·)(f) +
ˆ

{Mf>2−nλ}

(e + |y|)−m dy,



4.4 Weak-Type Estimates and Averaging Operators 121

where we used that Q is locally N -finite. Let Kj⊂⊂{Mf > λ} with Kj ↗
{Mf > λ}. Then monotone convergence (Lemma 3.2.8) implies that

�p(·)(N−1βλχ{Mf>λ}) � �p(·)(f) +
ˆ

{Mf>2−nλ}

(e + |y|)−m dy. ��

In Theorem 4.4.8 we have seen that p ∈ P log(Rn) gives control over
averaging operators over locally finite families of cubes in the sense that
‖
∑
Q∈Q χQMQf‖p(·) � c ‖f‖p(·). In this situation we distribute the averages

of |f | exactly on the same cubes, where the average is calculated. However,
sometimes it is useful to take the average on one locally finite family and
transfer it another locally finite family that is similar in some sense. This is
the purpose of the following theorem. It is a stronger version of Theorem 4.4.8
and will be used for example for the extension of variable exponent Sobolev
functions in Sect. 8.5.

Theorem 4.4.15. Let p ∈ P log(Rn) and λ � 1. Let Q be a locally N -finite
family of cubes (or balls) such that to every Q ∈ Q, there is associated a cube
Q∗ with Q ⊂ λQ∗. Further assume that

∑
Q∈Q χQ∗ � N . Then

∥
∥
∥
∥
∥

∑

Q∈Q
χQMQ∗f

∥
∥
∥
∥
∥
p(·)

� c λnN ‖f‖p(·)

for all f ∈ Lp(·)(Rn), where c only depends on clog(p) and n.

Proof. Let f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1. Then by the unit ball property
�p(·)(f) � 1. Let m > n be such that

´
Rn

(e+ |y|)−m dy � 1. Choose β ∈ (0, 1)
as in Theorem 4.2.4. Let Q ∈ Q. Then by assumption Q ⊂ λQ∗. We apply
Theorem 4.2.4 to the cube λQ∗ and the function fχQ∗ and integrate over
x ∈ Q. This gives

ˆ

Q

ϕp(x)

(

β

 

λQ∗

χQ∗ |f |dy
)

dx � |Q|
 

λQ∗

ϕp(y)(χQ∗ |f |) dy

+
1
2

ˆ

Q

(e + |x|)−m dx +
1
2
|Q|

 

λQ∗

χQ∗(y)(e + |y|)−m dy,

where we have used {0 < |χQ∗f | � 1} ⊂ Q∗. Since λ � 1, it follows that
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ˆ

Q

ϕp(y)
(
βλ−nχQMQ∗f

)
dy

�
ˆ

Q∗

ϕp(y)(|f |) dy +
1
2

ˆ

Q

(e + |x|)−m dx+
1
2

ˆ

Q∗

(e + |y|)−m dy,

Then the convexity of the modular implies that

�p(·)

(
β

2Nλn
∑

Q∈Q
χQMQ∗f

)

� 1
2N

∑

Q∈Q

ˆ

Q

ϕp(y)
(
βλ−nχQMQ∗f

)
dy

� 1
2
�p(·)(f) +

1
2

ˆ

Rn

(e + |z|)−m dz

� 1,

where we also used that Q is locally N -finite and
∑

Q∈Q χQ∗ � N . This
implies that ‖

∑
Q∈Q χQMQ∗f‖

p(·) � 2Nλn

β . A scaling argument completes
the proof. ��

Remark 4.4.16. If P log(Rn) with p− > 1, then by Theorem 4.3.8 the
maximal operatorM is bounded from Lp(·)(Rn) to Lp(·)(Rn). In this case The-
orem 4.4.15 is a simple consequence of the estimate χQMQ∗f � λ−nχQMf
and the boundedness of M . However, we cannot use this argument in the
general case P log(Rn) with p− � 1.

Using the choice f :=
∑
Q∈Q χQ∗tQ in Theorem 4.4.15 we immediately

get the following result.

Corollary 4.4.17. Let p ∈ P log(Rn) and λ � 1. Let Q be a locally N -finite
family of cubes (or balls) such that to every Q ∈ Q, there is associated a cube
Q∗ such that Q ⊂ λQ∗. Further assume that

∑
Q∈Q χQ∗ � N . Then

∥
∥
∥
∥
∥

∑

Q∈Q
χQtQ

∥
∥
∥
∥
∥
p(·)

� c λnN

∥
∥
∥
∥
∥

∑

Q∈Q
χQ∗tQ

∥
∥
∥
∥
∥
p(·)

for all families {tQ} ∈ R
Q, where c only depends on clog(p) and n.

4.5 Norms of Characteristic Functions

In classical Lebesgue spaces ‖χE‖q = |E|
1
q . We would like to generalize this

to the case of a variable exponent p ∈ P(Rn). For general p it is not clear
how to replace 1

q in the formula by something in terms of p. However, it turns
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out that if p ∈ Aloc, then ‖χQ‖p(·) ≈ |Q|
1
pQ for any cube Q, where pQ is the

harmonic mean from Definition 4.2.6.
Before we come to the proof of ‖χQ‖p(·) ≈ |Q|

1
pQ for cubes Q we need a

few auxiliary results. First we note that the calculation

1
(pE)′

= 1 − 1
pE

= 1 −
 

E

1
p(y)

dy =
 

E

1
p′(y)

dy =
1

(p′)E
.

This implies that (pE)′ = (p′)E for every measurable E ⊂ R
n with

|E| ∈ (0,∞). Thus we do not have to distinguish between (pE)′ and (p′)E
and just write p′E for short.

Lemma 4.5.1. Let p ∈ P(Rn) and let E ⊂ R
n be measurable with

|E| ∈ (0,∞). Then

ϕ̄pE

(
t

2

)

� ϕ̃pE (t) �
 

E

ϕ̃p(y)(t) dy �
 

E

ϕ̄p(y)(t) dy,

1
2
ϕ̃−1
pE (t) � ϕ̄−1

pE (t) �
 

E

ϕ̄−1
p(y)(t) dy �

 

E

ϕ̃−1
p(y)(t) dy

for all t � 0.

Proof. The mappings 1
q �→ ϕ̃q(y, t) and 1

q �→ ϕ̄−1
q (y, t) are convex for all

y ∈ R
n and t � 0 due to Lemmas 3.1.4 and 3.1.13. Thus, Jensen’s inequality

implies the middle parts of the inequalities. The remaining inequalities follow
with the help of Lemmas 3.1.6 and 3.1.12. ��

Lemma 4.5.2. Let p ∈ P(Rn) and let E ⊂ R
n be measurable with

|E| ∈ (0,∞). Then for all t � 0

t �
 

E

ϕ−1
p(x)(t) dx

 

E

ϕ−1
p′(x)(t) dx.

Proof. It suffices to prove the case t > 0. By Lemma 3.1.11,

ϕ−1
p(x)(t) � t

ϕ−1
p′(x)(t)

for all t > 0 and all x ∈ E. Therefore
 

E

ϕ−1
p(x)(t) dx � t

 

E

1
ϕ−1
p′(x)(t)

dx � tffl
E ϕ

−1
p′(x)(t) dx

,



124 4 The Maximal Operator

where we have used in the last step Jensen’s inequality for z �→ 1/z. This
proves the lemma. ��

We can now calculate ‖χQ‖p(·) for cubes Q.

Lemma 4.5.3. Let p ∈ Aloc and let A be the Aloc-constant of p. Then

1 � |Q|
 

Q

ϕ−1
p(x)′

(
1

|Q|
)
dx

 

Q

ϕ−1
p(x)

(
1
|Q|
)
dx � 2‖χQ‖p(·)

 

Q

ϕ−1
p(x)

(
1

|Q|
)
dx � 2A

(4.5.4)

and

1
6
ϕ−1
pQ (|Q|) � |Q|

 

Q

ϕ−1
p′(x)

(
1
|Q|
)
dx � 2‖χQ‖p(·) � 4Aϕ−1

pQ (|Q|) (4.5.5)

for all cubes Q ⊂ R
n. Moreover,

1
12 |Q|

1
pQ � ‖χQ‖p(·) � 4A|Q|

1
pQ , (4.5.6)

where we use the usual convention λ
1
∞ = λ0 = 1 for all 0 < λ < ∞ if

pQ = ∞.

Proof. Let Q ⊂ R
n be a cube. Define f := χQ ϕ

−1
p(·)(1/|Q|) and g :=

χQ ϕ
−1
p′(·)(1/|Q|), and note that �p(·)(f) � 1 and �p′(·)(g) � 1 by (3.1.9).

Thus, ‖f‖p(·) � 1 and ‖g‖p′(·) � 1 by the unit ball property.
The first inequality in (4.5.4) follows directly from Lemma 4.5.2. The

second one follows from Hölder’s inequality (Lemma 3.2.20):

|Q|
 

Q

ϕ−1
p′(x)

(
1
|Q|
)
dx =

ˆ

Q

g dx � 2‖χQ‖p(·)‖g‖p′(·) � 2‖χQ‖p(·).

The third inequality can be derived as follows

‖χQ‖p(·)
 

Q

ϕ−1
p(x)

(
1
|Q|
)
dx = ‖χQ‖p(·)MQf = ‖T{Q}f‖p(·) � A‖f‖p(·) � A.

Since
´
Q ϕ

−1
p(x)

(
1
|Q|
)
dx > 0, we obtain

|Q|
 

Q

ϕ−1
p′(x)

(
1

|Q|
)
dx � 2‖χQ‖p(·) � 2Kffl

Q ϕ
−1
p(x)

(
1
|Q|
)
dx
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from the second and third inequalities of (4.5.4). By Lemmas 4.5.1, 3.1.11
and 3.1.12 we estimate the left-hand side:

|Q|
 

Q

ϕ−1
p′(x)

(
1
|Q|
)
dx � 1

2
|Q|ϕ−1

p′Q

(
1

|Q|
)

� 1
2

1
ϕ−1
pQ

(
1
|Q|
) � 1

6
ϕ−1
pQ (|Q|).

Combining these two inequalities yields the first inequality in (4.5.5). Simi-
larly we derive

Kffl
Q
ϕ−1
p(·)
(

1
|Q|
)
dx

� 2A
ϕ−1
pQ

(
1

|Q|
)
dx

� 2Aϕ−1
pQ (|Q|),

which gives the second inequality in (4.5.5). If ϕp(·) = ϕ̄p(·), then (4.5.5)
directly implies

1
6
|Q|

1
pQ � ‖χQ‖ϕ̄p(·) � 4A|Q|

1
pQ

which is stronger than (4.5.6). This and (3.2.2) imply the result in the
case ϕp(·) = ϕ̃p(·). ��

Note that Lemma 4.5.3 remains valid if we use balls rather than cubes
with a possible change of constants. This is due to the fact that every cube
is contained in a ball of similar size and vice versa.

Theorem 4.5.7. Let p ∈ P(Rn). Then the following are equivalent:

(a) p ∈ Aloc

(b) p′ ∈ Aloc.
(c) ‖χQ‖p(·) ‖χQ‖p′(·) ≈ |Q| uniformly for all cubes Q ⊂ R

n.

(d) ‖χQ‖p(·) ≈ |Q|
1
pQ and ‖χQ‖p′(·) ≈ |Q|

1
p′
Q uniformly for all cubes Q ⊂ R

n.

The statement remains true if we replace cubes by balls.

Proof. (a) ⇔ (b): For all:w non-negative f, g ∈ L1
loc(R

n) we have´
gT{Q}fdx =

´
fT{Q}g dx. Thus by the norm conjugate formula (Corol-

lary 3.2.14) T{Q} is bounded on Lp(·) if and only if it is bounded on
Lp

′(·).
(c) ⇒ (a): Using Hölder’s inequality (Lemma 3.2.20) we get

‖T{Q}f‖p(·) = ‖χQMQf‖p(·) = ‖χQ‖p(·)|Q|−1
ˆ

Rn

χQ(y)|f(y)| dy

� ‖χQ‖p(·) 2 |Q|−1 ‖χQ‖p′(·) ‖f‖p(·)

for all f ∈ Lp(·). Now, ‖χQ‖p(·) ‖χQ‖p′(·) ≈ |Q| yields the boundedness of
T{Q}.
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(a) ⇒ (c): We estimate with the norm conjugate formula of Lp(·) (Corol-
lary 3.2.14)

‖χQ‖p(·)‖χQ‖p′(·) � 2‖χQ‖p(·) sup
‖g‖p(·)�1

ˆ
χQg dx

= 2 sup
‖g‖p(·)�1

|Q| ‖χQMQg‖p(·)

� 2A sup
‖g‖p(·)�1

|Q| ‖g‖p(·)

= 2A|Q|

uniformly for all cubes Q ⊂ R
n, where A is the Aloc-constant of p.

(a) + (b) ⇒ (d): This follows from Lemma 4.5.3 and 1
p′Q

= 1 − 1
pQ

.

(d) ⇒ (c): This is obvious. ��

Remark 4.5.8. If ϕ is a proper generalized Φ-function on R
n, then the norm

conjugate formula is valid for Lϕ(Rn) and Lϕ
∗
(Rn) (Corollary 2.7.5). In such

a situation the equivalence of (a), (b) and (c) in the previous theorem remains
valid. More precisely, if ϕ ∈ A with Aloc-constant A, then ‖χQ‖ϕ‖χQ‖ϕ∗ �
A|Q| for all cubes Q.

In Theorem 4.5.7 and Remark 4.5.8 it is also possible to use balls instead
of cubes. By Theorem 4.4.8, p ∈ A ⊂ Aloc if p ∈ P log(Rn). Combining this
with the previous theorem yields:

Corollary 4.5.9. Let p ∈ P log(Rn). Then ‖χQ‖p(·) ≈ |Q|
1
pQ for every cube

(or ball) Q ⊂ R
n. More concretely,

‖χQ‖p(·) ≈
{
|Q|

1
p(x) if |Q| � 2n and x ∈ Q,

|Q|
1
p∞ if |Q| � 1

for every cube (or ball) Q ⊂ R
n. The implicit constants only depend on clog(p).

Proof. The first claim follows from the previous theorem. It remains only
to prove that |Q|

1
pQ ≈ |Q|

1
p(x) for small cubes and |Q|

1
pQ ≈ |Q|

1
p∞ for

large cubes. The former claim follows directly from Lemma 4.1.6 since
p−Q� pQ� p+

Q. The latter follows if we prove that

∣
∣
∣

1
pQ

− 1
p∞

∣
∣
∣ log |Q| � c

for all cubes with |Q| � 1. By the triangle inequality and the decay condition
we have
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∣
∣
∣

1
pQ

− 1
p∞

∣
∣
∣ �

 

Q

∣
∣
∣

1
p(x)

− 1
p∞

∣
∣
∣ dx �

 

Q

c2
log(e + |x|) dx.

Denote R = diamQ. Note that the integrand increases if we move from a
arbitrary cube to a cube of the same size centered at the origin. For simplicity
we then move to a ball and change to scaled spherical coordinates (with
r = Rs, s ∈ [0, 1]):

∣
∣
∣

1
pQ

− 1
p∞

∣
∣
∣ �

 

B(0,R)

c2
log(e + |x|) dx =

1ˆ

0

c2s
n−1

log(e +Rs)
ds.

Since sn−1 log(e+R)
log(e+Rs) � c uniformly in s ∈ [0, 1] and R > 0, we see that the

integral on the right-hand side is bounded by c 1
log(e+R) . Since log |Q|

log(e+R) � c,
the claim follows. ��

4.6 Mollification and Convolution

In this section we again start with the key estimate for norms of averages,
Theorem 4.2.4. Now we move in the direction of mollifications. Convolutions
were first considered in this context by Samko [340], although the sufficiency
of the log-Hölder condition was established by Diening [91].

Lemma 4.6.1. Let p ∈ A. Then
∥
∥
∥
∥f ∗ χQ|Q|

∥
∥
∥
∥
p(·)

�
∥
∥
∥
∥|f | ∗

χQ
|Q|

∥
∥
∥
∥
p(·)

� 3nA‖f‖p(·)

for all f ∈ Lp(·)(Rn) and all cubes (or balls) Q ⊂ R
n with center at 0. Here

A is the A-constant of p.

Proof. Let Q ⊂ R
n be a cube with center at 0 and f ∈ Lp(·)(Rn). For k ∈ Z

n

let Qk := �(Q)k + Q, be the translation of Q by the vector �(Q)k. Then the
cubes {Qk}k are disjoint and cover R

n (up to a null set). Moreover, we can
split the set {3Qk}k into 3n locally 1-finite families Qj , j = 1, . . . , 3n. For
every k ∈ Z

n and every x ∈ Qk we have

f ∗ χQ|Q| � |f | ∗ χQ|Q| � 1
|Q|

ˆ

3Qk

|f(y)| dy = 3nM3Qkf � 3n
3n∑

j=1

TQjf,

where we have used that Q has center at zero. Therefore,
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∥
∥
∥
∥f ∗ χQ|Q|

∥
∥
∥
∥
p(·)

�
∥
∥
∥
∥|f | ∗

χQ
|Q|

∥
∥
∥
∥
p(·)

� 3n
3n∑

j=1

∥
∥TQjf

∥
∥
p(·) � 3nA‖f‖p(·),

where A is the A-constant of p. ��

With this lemma we can prove convolution estimates for bell shaped
functions.

Definition 4.6.2. A function ψ ∈ L1(Rn) with ψ � 0 is called bell shaped
if it is radially decreasing and radially symmetric. The function Ψ(x) :=

sup
y �∈B(0,|x|)

|f(y)| is called the least bell shaped majorant of f .

Recall that we defined

ψε(x) :=
1
εn
ψ
(x

ε

)
,

for ε > 0.

Lemma 4.6.3 (Mollification). Let p ∈ A or p ∈ P log(Rn), and let
ψ ∈ L1(Rn). Assume that the least bell shaped majorant Ψ of ψ is integrable.
Then

‖f ∗ ψε‖p(·) � cK ‖Ψ‖1‖f‖p(·)

for all f ∈ Lp(·)(Rn), where K is the A-constant of p and c depends only
on n. Moreover, |f ∗ ψε| � 2 ‖Ψ‖1Mf for all f ∈ L1

loc(R
n).

Proof. By Theorem 4.4.8 we always have p ∈ A. We may assume without loss
of generality that f, ψ � 0. Since ψ(x) � Ψ(x), we may further assume that
ψ is already bell shaped. Any bell shaped function ψ can be approximated
from above by functions of type

h :=
∞∑

k=1

ak
χBk
|Bk|

,

where ak ∈ [0,∞), Bk are balls with center at zero and

‖h‖L1(Rn) =
∞∑

k=1

ak � 2 ‖ψ‖L1(Rn).

Let hε(x) := ε−nh(x/ε). Then 0 � ψε � hε and

hε =
∞∑

k=1

ak
χεBk
|εBk|

.
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Using Lemma 4.6.1 we estimate

∥
∥f ∗ ψε

∥
∥
p(·) �

∥
∥f ∗ hε

∥
∥
p(·) =

∥
∥
∥
∥

∞∑

k=1

|f | ∗
(
ak
χεBk
|εBk|

)∥∥
∥
∥
p(·)

�
∞∑

k=1

ak

∥
∥
∥
∥|f | ∗

χεBk
|εBk|

∥
∥
∥
∥
p(·)

�
∞∑

k=1

ak 3nK ‖f‖p(·)

� 2 3nK ‖ψ‖1‖f‖p(·).

Analogously, for f ∈ L1
loc(R

n) we estimate pointwise

|f ∗ ψε| �
∞∑

k=1

|f | ∗
(
ak
χεBk
|εBk|

)
�

∞∑

k=1

akMf � 2 ‖ψ‖1Mf. ��

Using the previous lemma we can in fact get better control of f ∗ψε when
ε is small as we show in the following results.

Theorem 4.6.4 (Mollification). Let p ∈ A and ψ ∈ L1(Rn). Assume that
the least bell shaped majorant Ψ of ψ is integrable and

´
Rn
ψ(x) dx = 1. Then

f ∗ ψε → f a.e. as ε → 0 for f ∈ Lp(·)(Rn). If additionally p+ < ∞, then
f ∗ ψε → f in Lp(·)(Rn).

Proof. Let f ∈ Lp(·) with ‖f‖p(·) � 1. By Theorem 3.3.11 we can split f into
f = f0 + f1 with f0 ∈ L1 and f1 ∈ L∞. From [359, Theorem 2, p. 62] we
deduce fj ∗ ψε → fj almost everywhere, j = 0, 1. This proves f ∗ ψε → f
almost everywhere.

It remains to prove ‖f ∗ ψε − f‖p(·) → 0 for ε → 0 if p+ < ∞. Let δ > 0 be
arbitrary. Then by density of simple functions in Lp(·)(Rn), Corollary 3.4.10,
we can find a simple function g with ‖f − g‖p(·) � δ. This implies that

‖f ∗ ψε − f‖p(·) � ‖g ∗ ψε − g‖p(·)+‖(f − g) ∗ ψε − (f − g)‖p(·) =: (I) + (II).

Since g is a simple function, we have g ∈ L1(Rn) ∩ Lp+(Rn). Thus the clas-
sical theorem on mollification, see [359] again, implies that g ∗ ψε → g in
L1(Rn) ∩ Lp+(Rn). Thus g ∗ ψε → g in Lp(·)(Rn) by Theorem 3.3.11. This
proves (I) → 0 for ε → 0. On the other hand, Lemma 4.6.3 implies that

(II) = ‖(f − g) ∗ ψε − (f − g)‖p(·) � c ‖f − g‖p(·) � c δ.
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This implies

lim sup
ε→0

‖f ∗ ψε − f‖p(·) � c δ.

Since δ > 0 was arbitrary, this yields ‖f ∗ ψε − f‖p(·) → 0 as ε → 0. ��

The previous theorem allows us to use the usual proof based on convolution
to prove the density of C∞

0 (Ω) in Lp(·)(Ω) is the usual fashion. Since this result
is weaker than Theorem 3.4.12, the proof, which is an easy modification of
the standard proof, is omitted.

Corollary 4.6.5. If p ∈ A with p+ <∞, then C∞
0 (Ω) is dense in Lp(·)(Ω).

The density of C∞
0 (Ω) in Lp(·)(Ω) was used in Corollary 3.4.13 to improve

the norm conjugate formula to test functions from C∞
0 (Ω). This was done

under the restriction p− > 1, which ensured the density ofC∞
0 (Ω) in Lp

′(·)(Ω).
The mollification estimates allow us to replace the assumption p− > 1 with
p ∈ A at the cost of extra constants in the formula.

Corollary 4.6.6 (Norm conjugate formula). Let Ω ⊂ R
n be open and

p ∈ A or p ∈ P log(Ω). Then

c ‖f‖p(·) � sup
g∈C∞

0 (Ω) : ‖g‖p′(·)�1

ˆ

Ω

|f | |g| dμ � 2 ‖f‖p(·)

for all f ∈ L0(Ω), where c only depends on the A-constant of p.

Proof. The upper estimate follows by Hölder’s inequality. For f ∈ Lp(·)

let |||f ||| denote the supremum in the formula. Due to the norm conjugate
formula, Corollary 3.2.14, it suffices to prove

ˆ

Ω

|f ||g| dx � c |||f ||| ‖g‖p′(·)

for all simple functions g ∈ S with compact support. Let ψε denote a stan-
dard mollifier family on R

n. Let gj := g ∗ ψ1/j for j ∈ N; then gj → g
almost everywhere and ‖gj‖p′(·) � c ‖g‖p′(·) by Lemma 4.6.3. Since g has
compact support and sptψ1/j ⊂ B(0, 1/j), there exists Ω′⊂⊂Ω and j0 such
that spt gj ⊂ Ω′ for all j � j0. As g is bounded, the function χΩ′‖g‖∞
is an integrable majorant of |gj|. Since Lp(·)(Ω′) ↪→ L1(Ω′) (by Corol-
lary 3.3.4), |f |χΩ′‖g‖∞ is an L1 majorant of |f ||gj|. Therefore, by dominated
convergence,

´
Ω
|f ||gj| dx →

´
Ω
|f ||g| dx and hence

ˆ

Ω

|f ||g| dx = lim
j

ˆ

Ω

|f ||gj| dx � lim
j

|||f ||| ‖gj‖p′(·) � c |||f ||| ‖g‖p′(·) . ��



4.7 Necessary Conditions for Boundedness* 131

4.7 Necessary Conditions for Boundedness*

Since the maximal operator is a central tool in later chapters, it is obviously
of interest to obtain its boundedness under optimal assumptions.

We have seen in Theorem 4.4.10 that the maximal operator M is of weak
type p(·) if p ∈ P log(Rn). So the natural question arises if it is also of
strong type p(·). Theorem 4.3.8 gives an affirmative answer to this ques-
tion if p ∈ P log(Rn) and p− > 1. Thus the question arises if the latter
condition can be weakened. The theory of classical Lebesgue spaces, i.e. with
constant exponent, shows that the boundedness of M cannot be expected for
all p ∈ P log(Rn). In particular M is not bounded from L1(Rn) to L1(Rn).
Indeed, M is bounded from Lq(Rn) to Lq(Rn) if and only if 1 < q � ∞. It is
natural to conjecture that the boundedness of M from Lp(·)(Rn) to Lp(·)(Rn)
would also require p to be bigger than 1. But in the context of variable expo-
nents this could either mean p > 1 almost everywhere or p− > 1, where the
second condition is obviously the stronger one. The next theorem shows that
indeed the boundedness of M requires p− > 1.

Theorem 4.7.1. Let p ∈ P(Rn) be such that M is bounded from Lp(·)(Rn)
to Lp(·)(Rn). Then p− > 1.

Proof. It suffices to prove the claim for ϕp(·) = ϕ̄p(·). The proof will rely
on the following fact: although M is bounded from Lq(Rn) to Lq(Rn) for all
q ∈ (1,∞], the constant blows up as q → 1. We show that p− = 1 also implies
a blow up of the boundedness constant of M .

Assume for a contradiction that p− = 1 and that M : Lp(·)(Ω) ↪→ Lp(·)(Ω)
is bounded with constant K � 1.

Fix ε ∈ (0, 1). Since p− = 1, the set
{

1
p >

1
1+ε/2

}
has positive measure

and therefore some point z0 has measure density 1, i.e.

lim
Q→{z0}

∣
∣
∣Q ∩

{
1
p >

1
1+ε/2

}∣
∣
∣

|Q| = 1,

where the limit is taken over all cubes containing z0. Therefore, there exists
a cube Q0 ⊂ Ω with z0 ∈ Q0 and �(Q0) � 1 such that 1

pQ0
=

ffl
Q0

1
p(y) dy �

1/(1 + ε), i.e. pQ0 � 1 + ε. Here �(Q0) denotes the side length of Q0. Let
m ∈ N be large and split Q0 into N := 2mn disjoint cubes Q1, . . . , QN of
side length �(Qj) = 2−m �(Q0). By renumbering we assume without loss of
generality that

pQ1 = min
1�j�N

pQj .

In particular pQ1 � pQ0 � 1 + ε < 2. Define f ∈ L1
loc(Q0) by
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f := 1
4K

−2 |Q1|−1/pQ1 χQ1 .

Then Lemma 4.5.3 and the fact that the A-constant of p is smaller than
the boundedness constant of M imply ‖f‖p(·) = 1

4K
−2|Q1|−1/pQ1‖χQ1‖p(·) �

K−1. Especially, we have f ∈ Lp(·)(Rn) and ‖Mf‖p(·) � K ‖f‖p(·) � 1. We
arrive at a contradiction by showing that �p(·)(βMf) is large if ε > 0 is small
enough and m ∈ N is large enough, for fixed β ∈ (0, 1).

Let xj denote the center of Qj for j = 1, . . . , N . Then for j = 2, . . . , N ,
and for all y ∈ Qj one easily checks that

βMf(y) � c β K−2 |Q1|1−1/pQ1

︸ ︷︷ ︸
=:K2

|xj − x1|−n,

where c depends only on the dimension n. Therefore, by Lemma 4.5.1,

ˆ

Q0\Q1

ϕ̄p(y)
(
βMf(y)

)
dy �

∞∑

j=2

ˆ

Qj

ϕ̄p(y)

(
K2 |xj − x1|−n

)
dy

�
∞∑

j=2

|Qj| ϕ̄pQj
(

1
2K2 |xj − x1|−n

)
.

Since pQj � pQ1 , we have tpQ1 = ϕ̄pQ1
(t) � ϕ̄pQj (t) + 1. Hence,

ˆ

Q0\Q1

ϕ̄p(y)
(
βMf(y)

)
dy �

∞∑

j=2

|Qj|
((

1
2K2 |xj − x1|−n

)pQ1 − 1
)

� −|Q0| +
∞∑

j=2

|Qj |
(

1
2K2 |xj − x1|−n

)pQ1

� −1 + c

ˆ

Q0\Q1

(
K2 |y − x1|−n

)pQ1 dy.

We can essentially calculate the integral in the previous estimate:

ˆ

Q0\Q1

|y − x1|−npQ1 dy ≈
�(Q0)/2ˆ

�(Q1)

rn−1−npQ1 dr

≈ 1
(pQ1 − 1)n

(
|Q1|1−pQ1 − (|Q0|/2n)1−pQ1

)
.
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We use this and the expression of K2 in our previous estimate and conclude
that

1 +
ˆ

Q0

ϕ̄p(y)
(
βMf(y)

)
dy

� c β K−2pQ1
|Q1|pQ1−1

pQ1 − 1
(
|Q1|1−pQ1 − (|Q0|/2n)1−pQ1

)

=
β K−2pQ1

pQ1 − 1
(
1 − 2−n(m−1)(pQ1−1)

)
,

where we used that |Q1|/|Q0| = 2−nm in the last step. Now we choose m so
large that 2−n(m−1)(pQ1−1) � 1/2 and recall that 1 � pQ1 � 1 + ε < 2. Then

1 +
ˆ

Q0

ϕ̄p(y)
(
βMf(y)

)
dy � c β K−4ε−1.

As ε → 0 this contradicts ‖Mf‖p(·) � 1, which means that the assumption
p− = 1 was wrong, as was to be shown. ��

Remark 4.7.2. The proof of Theorem 4.7.1 shows that even a stronger,
localized result holds: let Ω ⊂ R

n be an open, non-empty set. For f ∈ Lp(·)(Ω)
and x ∈ Ω define

MΩf(x) := sup
Q : x∈Q,2Q⊂Ω

MQf,

where the supremum is taken over all cubes (or balls) with 2Q ⊂ Ω. If MΩ is
bounded from Lp(·)(Ω) to Lp(·)(Ω), then p−Ω > 1.

We have seen that log-Hölder continuity implies p ∈ A and the bound-
edness of the maximal operator M for p− > 1. Since these are fundamental
tools for many results, it is natural to ask if log-Hölder continuity is optimal
or if it can be weakened. The answer to this question is quite subtle, since
log-Hölder continuity is in some sense optimal and in another sense not. We
will see later in Sect. 5.1 that there exists a variable exponent p ∈ P(Rn)
with is neither continuous at zero nor at infinity but still M is bounded from
Lp(·)(Rn) to Lp(·)(Rn). Therefore, log-Hölder continuity is only sufficient and
not necessary for the boundedness of M .

However, in some sense log-Hölder continuity is optimal. We show that if
the local log-Hölder continuity is replaced by a weaker uniform modulus of
continuity or if the decay log-Hölder condition is replaced by a weaker decay
condition, then the this new condition is not sufficient in the sense that there
exists a variable exponent with this modulus of continuity such that M is
not bounded from Lp(·)(Rn) to Lp(·)(Rn).
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Furthermore, we show in Lemma 4.7.3 that the crucial pointwise estimate
in Theorem 4.2.4 and Lemma 4.3.6 can only hold if the variable exponent
is local log-Hölder continuous. So the locally log-Hölder continuity is neces-
sary for this kind of pointwise estimate. It follows from Remark 4.3.10 that
the log-Hölder decay condition is not necessary for the pointwise estimate
in Lemma 4.3.6 but can be replaced by the weaker integral condition of
Nekvinda, see Remark 4.2.8.

Lemma 4.7.3. Let p ∈ P(Rn) with 1 < p− � p+ < ∞, β > 0 and
h ∈ L∞(Rn) such that

ϕp(x)

(

β

 

Q

|f(y)|dy
)

�
 

Q

ϕp(y)(|f(y)|) dy + h(x),

ϕp′(x)

(

β

 

Q

|g(y)|dy
)

�
 

Q

ϕp′(y)(|g(y)|) dy + h(x)

for all f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1, all g ∈ Lp
′(·)(Rn) with ‖g‖p′(·) � 1, all

cubes Q ⊂ R
n, and all x ∈ Q. Then 1

p is locally log-Hölder continuous.

Proof. It suffices to prove the case ϕp(·) = ϕ̄p(·). Let x1, x2 ∈ R
n with

|x1 − x2| � 1. LetQ be a cube containing x1 and x2 with |x1 − x2|n ≈ |Q| and
|Q| � 1. Let f := 1

4χQ (e + 1/|Q|)
1
p(·) . Then �p(·)(f) � 1

4 |Q|(e + 1/|Q|) � 1,
so ‖f‖p(·) � 1. Note that

 

Q

ϕp(y)(|f(y)|) dy � 1
4

(

e +
1
|Q|

)

.

So the first inequality in the assumptions implies that

(

β

 

Q

(

e +
1
|Q|

) 1
p(y)

dy

)p(x1)

� 1
4

(

e +
1
|Q|

)

+ ‖h‖∞ � c

(

e +
1
|Q|

)

,

where c depends on ‖h‖∞. As a consequence

 

Q

(

e +
1
|Q|

) 1
p(y)− 1

p(x1)

dy � c(β).

Note that the mapping s �→ (e + |Q|)s is convex, so by Jensen’s inequality

(

e +
1
|Q|

)ffl
Q

1
p(y)− 1

p(x1) dy

� c.



4.7 Necessary Conditions for Boundedness* 135

This implies that
 

Q

1
p(y)

− 1
p(x1)

dy � c

log(e + 1
|Q|)

.

If we repeat the calculations with p′ and x2, then we obtain
 

Q

1
p(x2)

− 1
p(y)

dy � c

log(e + 1
|Q|)

.

Adding the last two inequalities leads to

1
p(x1)

− 1
p(x2)

� c

log(e + 1
|Q| )

� c

log(e + 1
|x1−x2|)

.

Switching x1 and x2 then gives
∣
∣
∣
∣

1
p(x2)

− 1
p(x1)

∣
∣
∣
∣ �

c

log(e + 1
|x1−x2|)

. ��

The following lemma shows that p ∈ Aloc implies an estimate on the mean
oscillation of 1

p which is very similar to the log-Hölder continuity condition
(both the local and the decay condition). See Theorem 4.5.7 for equivalent
conditions for ϕ ∈ Aloc.

Proposition 4.7.4. Let p ∈ Aloc. Then

 

Q

 

Q

∣
∣
∣
∣

1
p(y)

− 1
p(z)

∣
∣
∣
∣ dy dz � c

log(e + |Q| + 1
|Q| )

(4.7.5)

for all cubes Q ⊂ R
n, where the constant depends on the Aloc-constant of p

and n.

Proof. For a cube Q define f := χQ |Q|−1/p and g := χQ |Q|−1/p′ . Then
�p(·)(f) � 1 and �p′(·)(g) � 1, which implies ‖f‖p(·) � 1 and ‖g‖p′(·) � 1. So
with Hölder’s inequality and the boundedness of T{Q}, we get

|Q|MQ(f)MQ(g) = |Q|
 

Q

MQ(f)MQ(g) dx � 2‖T{Q}f‖p(·)‖T{Q}g‖p′(·) � c.
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By definition of f and g this implies that
 

Q

 

Q

|Q|
1

p(z)− 1
p(y) dy dz � c.

By symmetry in y and z we get
 

Q

 

Q

|Q|
1

p(z)− 1
p(y) + |Q|

1
p(y)− 1

p(z) dy dz � c.

From this we conclude that

 

Q

 

Q

(

e + |Q| +
1
|Q|

)| 1
p(y)− 1

p(z) |
dy dz � c,

The mapping s �→ (e + |Q| + 1/|Q|)s is convex, so by Jensen’s inequality

(

e + |Q| +
1
|Q|

)ffl
Q

ffl
Q

| 1
p(y)− 1

p(z) | dy dz
� c.

Taking the logarithm, we obtain the claim. ��

Remark 4.7.6. If p ∈ P log(Rn), then we know by Theorem 4.4.8 that
p ∈ A and by Lemma 4.4.12 that M is of weak-type p(·). If p− > 1, then
by Theorem 4.7.1 also the maximal operator is bounded from Lp(·)(Rn) to
Lp(·)(Rn). All of these properties are stronger than the assumption p ∈ Aloc

of Proposition 4.7.4, see Lemma 4.4.13.

With Proposition 4.7.4 we can show now that neither the local log-Hölder
continuity condition nor the log-Hölder decay condition can be replaced by
weaker versions in terms of modulus of continuity and a decay condition.

Let us begin with the local log-Hölder condition. Let ω2 be a modulus of
continuity that is weaker than the one for local log-Hölder continuity, denoted
by ω, in the sense that limt→0 ω2(t)/ω(t) = ∞. Further, let η ∈ C∞

0 (−1, 1)
with χB(0,1/2) � η � χB(0,1). Define q ∈ P(R) by

1
q(y)

:=

{
1
2 for y � 0,

min
{

1
2 + η(y)ω2(y), 2

3

}
for y � 0.

Then q is continuous with modulus of continuity ω2, 3
2 � q− � q+ � 2, and

q(y) = 2 for all |y| � 1. But q fails to satisfy (4.7.5) uniformly for all cubes
Q ⊂ R

n. To see this, consider the cubes Qt = (−t, t) for t ∈ (0, 1/2). Then
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Qt

 

Qt

∣
∣
∣
∣

1
q(y)

− 1
q(z)

∣
∣
∣
∣ dy dz � ct−2

0ˆ

−t

tˆ

t/2

ω2(y) dy dz � cω2(t/2).

Due to the assumptions on ω2 the inequality (4.7.5) cannot be uniform with
respect to t ∈ (0, 1/2). This example goes back to Pick and Růžička [323],
who used it to prove the unboundedness of the maximal operator for such an
exponent.

Let us now turn to the optimality of the decay condition. Let ψ2 : [0,∞) →
(0,∞) be a non-increasing function with limt→∞(ψ2(t) log(e + t)) = ∞ and
limt→∞ ψ2(t) = 0. Since we are only interested in the decay condition, we can
assume without loss of generality that ψ2 is smooth and that ψ2(0) � 1/4.
Define s ∈ P(R) by

1
s(y)

:=

{
1
2 for y � 0,
1
2 + (1 − η(y))ψ2(t) for y � 0.

Then s is smooth, 4
3 � s− � s+ � 2, and 1

s(t) −
1
2 decays as ψ2(t) for t → ∞.

But s fails to satisfy (4.7.5) uniformly for all cubes Q ⊂ R
n. To see this,

consider the cubes Qt = (−t, t) for t → ∞. Then

 

Qt

 

Qt

∣
∣
∣
∣

1
s(y)

− 1
s(z)

∣
∣
∣
∣ dy dz � ct−2

0ˆ

−t

tˆ

1

ψ2(y) dy dz � cψ2(t).

Due to the assumptions on ψ2 the inequality (4.7.5) cannot be uniform with
respect to t → ∞. This example goes back to Cruz-Uribe, Fiorenza, Martell,
and Pérez [83], who used it to prove the unboundedness of the maximal
operator for such an exponent.

Remark 4.7.7. Let p ∈ Aloc. Then it follows from Proposition 4.7.4 that
1
p ∈ BMOlog(e+1/t). Here BMOω(t)(Rn) consists of all functions h ∈ L1

loc(R
n)

such that
 

B

 

B

|h(y) − h(z)| dy dz � c ω
(
|B|

1
n
)

for all balls B ⊂ R
n, where ω is some modulus of continuity. For a modulus

of continuity ω, let C0,ω(t)(Rn) denote the space of continuous functions on
R
n with uniform modulus of continuity ω. It is easy to see that C0,ω(t)(Rn) is

a subspace of BMOω(t)(Rn). It is a well known result of Campanato [65] that
C0,tα(Rn) = BMOtα(Rn) for α ∈ (0, 1]. The relation between C0,ω(t)(Rn) and
BMOω(t)(Rn) for arbitrary modulus of continuity has been studied intensively
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by Spanne [358]. He showed that the spaces C0,ω(t)(Rn) and BMOω(t)(Rn)
coincide if and only if

1ˆ

0

ω(t)
t

dt < ∞.

Since

1ˆ

0

1
t log(e + 1

t )
dt = ∞,

this shows that the spaces C0,log(Rn) and BMO1/ log(e+1/t)(Rn) disagree.
Thus, Proposition 4.7.4 does not imply that log-Hölder continuity is nec-
essary for p ∈ Aloc. Indeed, we will see in Sect. 5.1 that there exists a variable
exponent p with 1

p ∈ BMO1/ log(e+1/t)(Rn) and 1
p �∈ C log(Rn) such that M is

bounded from Lp(·)(Rn) to Lp(·)(Rn), which in particular implies p ∈ Aloc.

4.8 Preimage of the Maximal Operator*

In Theorem 4.3.8 we saw that the maximal operator is bounded on Lp(·)(Rn)
when p ∈ P log(Rn) with p− > 1. In Theorem 4.7.1 we further saw that the
condition p− > 1 is necessary for the boundedness. Since M : L1 �↪→ L1,
the latter result is not so surprising. One may ask, however, what space M
maps onto Lp(·)(Rn)? This question was answered in [95] and as extensions
we mention [207, 279]. Earlier papers on the maximal operator in the case
p− = 1 include [165,215].

The relevant classical results [359, Sect. 1] are that

Mf ∈ Lp if and only if f ∈ Lp (p > 1) andMf ∈ L1 if and only if f ∈ L logL.

The latter result is, of course, restricted to bounded domains: if Mf ∈ L1(Rn),
then f ≡ 0.

How, then, can we characterize the space M−1[Lp(·)]? On an intuitive level
we need some kind of modified scale of spaces L̃p(·) where p = 1 corresponds to
L logL, not L1, if we want to characterize functions f for which Mf ∈ Lp(·). It
is possible to construct such a space within the framework of Orlicz–Musielak
spaces.

We need a function which behaves like a logarithm when p = 1 and fades
away when p > 1. Since the embedding constant of M : Lp ↪→ Lp is p′, the
function

min
{
p′, log(e+ |t|)

}
,
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would be a natural choice. Unfortunately, it does not yield a convex modular.
The following variant fixes this problem:

ψp(t) =

{
log(e + |t|), for |t| < ep

′ − e

2p′ − ep
′

e+|t|p
′, for |t| � ep

′ − e.

Note that t �→ tpψp(t) is convex on [0,∞) and that

1
2
ψp(t) � min

{
p′, log(e + |t|)

}
� ψp(t),

so ψp is equivalent up to a constant to the natural choice of the modular.
The norm ‖f‖Lp(·)ψp(·)[L] is given by the generalized Φ-function

Φ(x, t) = |t|p(x)ψp(x)(t).

Note that ‖f‖Lp(·)ψp(·)[L] ≈ ‖f‖Lp(·) if p− > 1, but the constant of propor-
tionality blows up as p− → 1.

We are now ready to state the main theorem of this section:

Theorem 4.8.1. Let B ⊂ R
n be a ball and let p ∈ P log(B). Then

‖f‖Lp(·)ψp(·)[L](B) ≈ ‖Mf‖Lp(·)(B).

Here we will prove the sufficiency of the conditions. The essential new
result needed for the proof is the following proposition. The trick in its proof
is to use a reverse triangle inequality to recombine terms that were originally
split using the triangle inequality. This is possible since our exponent tends
to 1 in the critical parts of the domain.

Proposition 4.8.2. Let Ω ⊂ R
n be bounded and let p ∈ P log(Ω) with

1 � p− � p+ � 2. Then there exists a constant c depending only on p,
Ω and the dimension n such that

‖Mf‖Lp(·)(Ω) � c ‖f‖Lp(·)ψp(·)[L](Ω)

for every f ∈ Lp(·)ψp(·)[L](Ω).

Proof. By a scaling argument, it suffices to consider such non-negative
functions f that ˆ

Ω

f(x)p(x)ψp(x)(f(x)) dx � 1.

Then we must show that ‖Mf‖Lp(·) � c, which is equivalent to �Lp(·)(Mf) � c.
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We split f into small and large parts as follows:

fs := fχ{f�ep′(·)−e} and fl := fχ{f>ep′(·)−e}.

Note that �p(·)(Mf) � c �p(·)(Mfs) + c �p(·)(Mfl). By (4.3.7) we have

Mfs(x)p(x) � cM
[
fp(·)s

]
(x) + c

for x ∈ Ω. Then the embedding L logL ↪→ L1 implies that
ˆ

Ω

Mfs(x)p(x) dx � c

ˆ

Ω

fs(y)p(y) log
(
e + fs(y)p(y)

)
dy + |Ω|

� c p+

ˆ

Ω

fs(y)p(y) log
(
e+ fs(y)

)
dy + |Ω|

� c

ˆ

Ω

f(y)p(y)ψp(y)(f(y)) dy + |Ω| � c.

This takes care of fs
Next we treat fl. Let us define ri := 1 + 1/i for i � 1 and Ωi :={
ri < p � ri−1

}
so that

⋃∞
i=1 Ωi = {p > 1}. The sequences (1)∞i=0 and

(ri)∞i=0 satisfy the criterion of Corollary 4.1.9 so we conclude that l1 ∼= l(ri).
We fix K > 0 so that

∞∑

i=1

xi � K whenever
∞∑

i=1

xrii � L (4.8.3)

where L will be specified later.
Define fi := fl χΩi and pi := max{ri, p} for i � 2. Since fl = 0 in {p = 1},

we see that
∑∞
i=1 fi = fl. By the subadditivity of the maximal operator, the

triangle inequality and the embedding Lpi(·)(Ω) ↪→ Lp(·)(Ω) (Corollary 3.3.4),
we conclude that

‖Mfl‖p(·) �
∞∑

i=2

‖Mfi‖p(·) � 2(1 + |Ω|)
∞∑

i=2

‖Mfi‖pi(·).

Next, Theorem 4.3.8 and the norm-modular inequality, Lemma 3.2.5, imply
that

‖Mfl‖p(·) � c
∞∑

i=2

(ri − 1)−1‖fi‖Lpi(·)(Ωi) � c
∞∑

i=2

(ri − 1)−1�Lpi(·)(Ωi)(fi)
1

ri−1 .

By (4.8.3) the right-hand side is bounded by K provided we show that
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∞∑

i=2

(ri − 1)−ri−1�Lpi(·)(Ωi)(fi) � L. (4.8.4)

But for this we just need to estimate as follows:

∞∑

i=2

(ri − 1)−ri−1�Lpi(·)(Ωi)(fi) � c

∞∑

i=2

ˆ

Ωi

(ri − 1)−1fi(x)pi(x)dx

� c

∞∑

i=2

ˆ

Ωi

(p(x) − 1)−1f(x)p(x)dx

� c�Lp(·)ψp(·)[L](Ω)(f) � c,

where we have used n1/n � c in the first inequality. We collect the implicit
absolute constants from these estimates and define L by them. Thus (4.8.4)
holds, and so (4.8.3) concludes the proof. ��

To prove the main theorem of the section we use the following lemma,
whose proof can be found in [95].

Lemma 4.8.5. Let p ∈ P log(Ω) with 1 � p− � p+ � ∞ in a ball Ω ⊂ R
n. If

Mf ∈ Lp(·)(Ω), then f ∈ Lp(·)ψp(·)[L](Ω).

Proof of Theorem 4.8.1. Lemma 4.8.5 states that if Mf ∈ Lp(·)(B) for a ball
B, then f ∈ Lp(·)ψp(·)[L](B). We proceed to show how the reverse implication
can be pieced together from the previous results.

By a scaling argument, it suffices to consider such non-negative functions
f that ˆ

B

f(x)p(x)ψp(x)(f(x)) dx � 1.

Then we must show that ‖Mf‖Lp(·) � c, which is equivalent to
�Lp(·)(B)(βMf) � c, β ∈ (0, 1). Denote B−

a = {p < a}, B+
a = {p�a} and

d0 = min{dist(B−
4/3, B

+
5/3), dist(B−

5/3, B
+
2 )}.

The uniform continuity of the exponent implies that d0 > 0. Denote by D
the set of points x ∈ B for which Mf(x) =

ffl
B(x,r)

f(y) dy with some r � d0.
We note that

�Lp(·)(B)(βMf) � �Lp(·)(B−
5/3\D)(Mf)+�Lp(·)(B+

5/3\D)(βMf)+�Lp(·)(D)(βMf).

For x ∈ D we have Mf(x) � c d−n0 ‖f‖1 and so �Lp(·)(D)(βMf) � c. For
the other two terms only points where p < 2 or p � 4/3 affect the max-
imal function. Thus Theorem 4.3.8 implies that �Lp(·)(B+

5/3\D)(βMf) � c

and Proposition 4.8.2 implies that �Lp(·)(B−
5/3\D)(Mf) � c, which completes

the proof. ��



Chapter 5

The Generalized Muckenhoupt
Condition*

The boundedness of the maximal operator M is closely linked to very impor-
tant properties of the spaces Lp(·). Indeed, we will see in Chaps. 6 and 8 that
the boundedness ofM is needed for the Sobolev embeddings W 1,p(·) ↪→ Lp

∗(·),
boundedness singular integrals on Lp(·) and Korn’s inequality. Moreover, the
extrapolation result in Sect. 7.2 shows that most of the results for weighted
Lebesgue spaces can be generalized to the setting of Lebesgue spaces with
variable exponents as long as the maximal operator M is bounded.

It is the aim of this chapter to provide a full characterization of the bound-
edness of M which is closely related to the concept of Muckenhoupt classes.
It is clear from the estimate TQf � Mf for locally 1-finite families of cubes
that the boundedness of M on Lp(·) implies p ∈ A. In Theorem 5.7.2 we prove
the reverse statement: if p ∈ P(Rn) with 1 < p− � p+ < ∞ and p ∈ A, then
M is bounded on Lp(·). The condition p− > 1 is necessary for the bounded-
ness of M by Theorem 4.7.1. However, we need the condition p+ <∞, since
we use duality arguments and p+ < ∞ is equivalent to (p′)− > 1. We also
present partial results for the case of generalized Φ-functions. These results
are extensions of [93].

5.1 Non Sufficiency of log-Hölder Continuity*

We saw in Theorem 4.3.8 that p ∈ P log(Rn) with p− > 1 is sufficient for
the boundedness of M on Lp(·)(Rn). We have seen in Sect. 4.7 that the con-
dition p− > 1 is necessary for the boundedness of M . As a consequence of
Proposition 4.7.4 it was shown in Sect. 4.7 that neither the local log-Hölder
continuity condition nor the log-Hölder decay condition can be replaced by
weaker moduli of continuity. However, the log-Hölder continuity is not nec-
essary for the boundedness of M , although the stronger pointwise estimate
does imply the local log-Hölder continuity (Lemma 4.7.3).

One of the problems is summarized in Remark 4.7.7, namely that

C0,1/(log(e+1/t)(Rn) � BMO1/(log(e+1/t)(Rn).

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 5,
c© Springer-Verlag Berlin Heidelberg 2011
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In this context is has been observed by Nekvinda that the counterexample
of Pick and Růžička showing “almost optimality” (Sect. 4.7) relies strongly
on the non-symmetry of the exponent: p is constant in (−∞)-direction and
decays slightly slower than log(e + |x|) at +∞. Nekvinda (private communi-
cation) found symmetric, continuous exponents p(x) = p(|x|), which decay
slower at ∞ than log(e + |x|) but still guarantee the boundedness of M
on Lp(·)(Rn). Based on this observation and his own study on sufficient
conditions it has been conjectured by Diening [93] that there exist even expo-
nents p, which are discontinuous and have no limit at infinity, but for which
M is bounded on Lp(·)(Rn). Such an example was constructed by Lerner [267]
in a very clever way. He showed that the boundedness of M in Lp(·)(Rn) is
closely related to the class of pointwise multipliers for BMO. In this section
we present this result. We follow [267] rather closely, although some proofs
have been simplified at the expense of worse constants.

The result is related to the well-known function space BMO consisting of
functions of bounded mean oscillation. More precisely, we set

M �
Qf := MQ(f − 〈f〉Q) =

 

Q

|f(x) − 〈f〉Q| dx

for a cube Q and define a norm on a subset of L1
loc(R

n) by

‖f‖BMO := sup
Q⊂Rn

M �
Qf.

The space BMO consists of those functions with ‖f‖BMO < ∞.
Let Q1 ⊂ Q2 ⊂ R

n be two cubes. Let j be the smallest integer for which
ej+1Q1 ⊃ Q2. Then n(j − 1) � log(|Q2|/|Q1|) � n(j + 1). Thus we conclude
that

|〈f〉Q1 − 〈f〉Q2 | � |fejQ1 − 〈f〉Q2 | +
j−1∑

k=0

|〈f〉ek+1Q1 − 〈f〉ekQ|

� MejQ1

(
|f − 〈f〉Q2 |

)
+
j−1∑

k=0

MekQ1

(
|f − 〈f〉ek+1Q|

)

� enMQ2

(
|f − 〈f〉Q2 |

)
+ en

j−1∑

k=0

Mek+1Q1

(
|f − 〈f〉ek+1Q|

)

� enj ‖f‖BMO

� en

n

(

1 + log
|Q2|
|Q1|

)

‖f‖BMO.

Let us denote by Q0 the unit cube centered at zero. Let Q ⊂ R
n be some

cube, and let Q̃ be the smallest cube containing Q and Q0. Applying the
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previous inequality, we find that

|〈f〉Q−〈f〉Q0 |� |〈f〉Q−〈f〉Q̃|+|〈f〉Q0−〈f〉Q̃|� c
(

1+log
|Q̃|
|Q|+log |Q̃|

)
‖f‖BMO.

In addition, we can estimate the size of Q̃ by diam Q̃ � | cen(Q)| + 1
2

diamQ+ 1
2 , where cen(Q) denotes the center of Q. Hence we conclude that

|〈f〉Q − 〈f〉Q0 | � c log
(
e + | cen(Q)| + |Q| + |Q|−1

)

︸ ︷︷ ︸
=:L(Q)

‖f‖BMO. (5.1.1)

We need the following result of Coifman and Rochberg [77].

Proposition 5.1.2. Let Mf < ∞ almost everywhere on R
n. Then

log(Mf)∈BMO(Rn), and ‖log(Mf)‖BMO � γn, where γn only depends on n.

We need one more observation before the main lemma of the section. For
f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1 we have f ∈ Lp

−
2Q0 (2Q0) and hence

ˆ

Q0

log(1+Mf(x)) dx � c

ˆ

Q0

1 +M<f(x)p
−
2Q0 dx+ c |Q0| supM�f(x) � c,

(5.1.3)

where M<f(x) = sup|Q|<1MQf and M�f(x) = sup|Q|�1MQf . Now we get
to the lemma:

Lemma 5.1.4. Let p and r be measurable functions, with 1 < p− � p+ <∞.
Let f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1 and set f̃ := f + χQ0 , where Q0 is the
unit cube centered at 0. Then

‖r logMf̃‖BMO � cn,p−
(
‖r‖∞ + sup

Q
L(Q)M �

Qr
)
.

Proof. We start by observing that fχ{|f |>1} ∈ L1(Rn) and hence

Mf̃ � MχQ0 + 1 +M(fχ{|f |>1}) < ∞ a.e.

Set ψ := log(Mf̃). It follows by Proposition 5.1.2 that ‖ψ‖BMO � γn. Since
ψ � log(1 +Mf), (5.1.3) implies that ψQ0 � c. Thus (5.1.1) gives

|ψQ| � |ψQ − ψQ0 | + |ψQ0 | � c L(Q) γn + c � c L(Q).
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We now estimate the oscillation of rψ and use this inequality:

M �
Q(rψ) � 2 inf

c∈R

 

Q

|rψ − c| dx

� 2
 

Q

|rψ − rQψQ| dx

� 2
 

Q

|r(ψ − ψQ)| dx+ 2 |ψQ|M �
Qr

� 2‖r‖∞‖ψ‖BMO + c L(Q)M �
Qr.

The claim follows from this when we take the supremum over Q and use
‖ψ‖BMO � γn. ��

The proof of Lerner’s theorem is based on Muckenhoupt weights. Recall
the definition of the A2 norm:

‖ω‖A2 := sup
Q

 

Q

ω dx

 

Q

1
ω
dx,

where the supremum is taken over all cubes Q in R
n. The next lemma com-

bined with our knowledge from the previous result allows us to conclude that
in some cases Mf̃ r(x) is an A2 weight.

Lemma 5.1.5. There exists a constant cn for which ‖ψ‖BMO < cn implies
that ‖eψ‖A2 � 4.

Proof. The John–Nirenberg inequality [223] implies that there exists a con-
stant ξn such that

∣
∣{|ψ − 〈ψ〉Q| > λ}

∣
∣ � 2 |Q| e−

λ
ξn‖ψ‖BMO .

For ‖ψ‖BMO � 1
3ξn

we then obtain

ˆ

Q

e|ψ−〈ψ〉Q| dx = |Q|+
∞̂

1

∣
∣{e|ψ(·)−〈ψ〉Q| > λ}

∣
∣ dλ � |Q|+2 |Q|

∞̂

1

λ−3dλ = 2 |Q|.

Therefore the claim follows for cn = 1
3ξn

by the inequality

‖eψ‖A2 = sup
Q⊂Rn

MQ(eψ)MQ

(
e−ψ
)

= sup
Q⊂Rn

MQ(eψ−〈ψ〉Q)MQ

(
e〈ψ〉Q−ψ)

� sup
Q⊂Rn

(
MQ(e|ψ−〈ψ〉Q|)

)2

� 4. ��
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Theorem 5.1.6. There exists a small constant μn > 0 depending only on the
dimension n such that M : Lp(·)(Rn) → Lp(·)(Rn) is bounded when p = 2− r,
r � 0 is measurable and ‖r‖∞ + supQ L(Q)M �

Qr � μn.

Proof. Let μn := min{cn/cn,3/2, 1/2}, where cn and cn,3/2 are the con-
stants from Lemmas 5.1.5 and 5.1.4, respectively. Suppose r and p are as
in the statement of the theorem and f ∈ Lp(·)(Rn) has norm at most one.
Then Lemma 5.1.4 implies that ‖r logMf̃‖BMO � cn. Hence it follows from
Lemma 5.1.5 that exp(r logMf̃) = (Mf̃)r(·) is an A2 weight; the definition of
A2 directly implies that also Mf̃−r(·) is an A2 weight. Therefore, the weighted
L2 boundedness of the maximal operator [305] yields

ˆ

Rn

|Mf(x)|p(x) dx �
ˆ

Rn

|Mf̃(x)|2−r(x) dx =
ˆ

Rn

|Mf̃(x)|2 |Mf̃(x)|−r(x) dx

� c

ˆ

Rn

|f̃(x)|2 |Mf̃(x)|−r(x) dx.

Since Mf̃ � f a.e. and r � 0, we obtain |Mf̃(x)|−r(x) � |f̃(x)|−r(x) and
hence

ˆ

Rn

|Mf(x)|p(x) dx � c

ˆ

Rn

|f̃(x)|p(x) dx � c|Q0| +
ˆ

Rn

|f(x)|p(x) dx � c.

Thus Mf ∈ Lp(·)(Rn), as claimed. ��

Remark 5.1.7. The condition r � 0 in Theorem 5.1.6 is not needed. If
p = 2 + s with ‖s‖∞ + supQ L(Q)M �

Qs � μn, then q := 2(2+s)
2+s+ satisfies

the assumptions of Theorem 5.1.6, which implies the boundedness of M on
Lq(·)(Rn). So Lemma 4.4.7 proves the boundedness of M on Lp(·)(Rn).

Kapanadze and Kopaliani showed that it is possible in bounded domains
to require the smallness condition in terms of μn only for small cubes [228].

Example 5.1.8. Lerner [267] showed that

p(x) := 2 − a(1 + sin(log log(e + |x| + 1/|x|)))

satisfies the requirement of Theorem 5.1.6 if a > 0 is small enough. This is

an example of an exponent p ∈ A which is discontinuous at zero and infinity.
In particular, the log-Hölder continuity of 1

p is not needed for p ∈ A.

Remark 5.1.9. Based on these results Lerner raised the question of whether
the smallness condition on μn in Theorem 5.1.6 is really needed: is μn < ∞
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already sufficient for the boundedness of M . He showed that the smallness
of r in Theorem 5.1.6 expressed by μn should be understood relatively to
the 2 used in the construction p = 2 − r. Instead of the smallness of r it is
also possible to take p = p0 − r with p0 sufficiently large. Alternatively, we
could take p = λ(1 + r) with λ ∈ (1,∞) large. This gives rise to several ques-
tions:

(a) Is it possible to remove the smallness assumption on μn in Theorem 5.1.6?
(b) Let p ∈ P(Rn) with 1 < p− � p+ < ∞ and α > 0 such that M is bounded

on Lα+p(·)(Rn). Does this implies the boundedness of M on Lp(·)(Rn)?
(c) Let p ∈ P(Rn) with 1 < p− � p+ < ∞ and λ > 1 such that M is bounded

on Lλp(·)(Rn). Does this implies the boundedness of M on Lp(·)(Rn)?

However, it has been shown by Lerner [268] and Kopaliani [256] that all
of these questions have a negative answer. We present slightly modified
examples:

Let θ(t) := min {max {0, t+ 1
2}, 1}, so that θ is Lipschitz with con-

stant 1, θ(t) = 0 for t � − 1
2 and θ = 1 for t � 1

2 . Let p(x) :=
2 + 6 θ(sin(π log log(1/|x|))) on (−1, 1). Note that p = 2 when the sine is
less than − 1

2 and p = 8 when the sine is greater than 1
2 . It follows as in [267]

that ‖r‖∞ + supQ L(Q)M �
Qr < ∞, where r := 2 − p.

For k ∈ N define ak := exp(− exp(2k + 5
4 )), bk := exp(− exp(2k + 3

4 )),
ck := exp(− exp(2k + 1

4 )), dk := exp(− exp(2k − 1
4 )), and note that p(x) = 8

on (ak, bk) and p(x) = 2 on (ck, dk). Also, a simple calculation shows
that 8ak < 4bk < 2ck < dk for all k ∈ N. Let Qk := (0, dk); then
1/pQk � 1

2
dk−ck
dk

� 1
4 and therefore pQk � 4. Thus, for every λ > 1,

ˆ

Qk

(
1

λ|Qk|−1/pQk

)p(x)
dx � λ−8

bkˆ

ak

d
− 8

4
k dx � λ−8(bk − ak)d−2

k � 1
2
λ−8d−1

k ,

which tends to ∞ as k → ∞. As a consequence there exists no constant λ > 1
such that ‖χQk‖p(·) � λ|Q|1/pQk . However, by Theorem 4.5.7 this would be
a consequence of p ∈ Aloc, so it follows that p �∈ Aloc. This means that the
answer to question (a) is in the negative.

Moreover, there exists p0 ∈ (1,∞) and λ0 > 1 such that (p0+p)/λ0 satisfies
the condition of Theorem 5.1.6 so that (p0 + p)/λ0 ∈ A. By Lemma 4.4.7 we
obtain p0 + p ∈ A. Since p �∈ A, this shows that (b) does not hold.

We show that (c) does not hold by contradiction, so assume that (c) holds.
Define q ∈ P(Rn) by q := 2λ1−1

λ1
(λ1p)′ for large λ1 > 1. Then q = 2 + 2−p

λ1p−1

satisfies the assumptions of Remark 5.1.7 and therefore q ∈ A. Now, (c)
implies (λ1p)′ ∈ A, Lemma 5.2.2 below implies λ1p ∈ A, and (c) implies
p ∈ A. This is the desired contradiction.
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5.2 Class A *

In this section we study class A in greater detail. Recall, that ϕ ∈ A if the
averaging operators TQ are bounded from Lϕ(Rn) to Lϕ(Rn) uniformly for
all locally 1-finite families Q of cubes in R

n, where

TQf =
∑

Q∈Q
χQMQf =

∑

Q∈Q
χQ

 

Q

|f(y)| dy

for f ∈ L1
loc(R

n). See Definitions 4.4.3 and 4.4.6 for more details.
The averaging operators have the interesting property that they are

selfdual with respect to non-negative functions, i.e.
ˆ

Rn

TQf g dx =
∑

Q∈Q
|Q|MQfMQg =

ˆ

Rn

f TQg dx (5.2.1)

for all f ∈ Lϕ(Rn), g ∈ Lϕ
∗
(Rn) with f, g � 0 and every locally 1-finite

family Q of cubes. As a consequence class A behaves well with respect to
duality.

Lemma 5.2.2. Let ϕ ∈ Φ(Rn) be proper. Then ϕ ∈ A if and only if ϕ∗ ∈ A.
Moreover, the A-constants of ϕ and ϕ∗ are comparable up to a factor of 4.

Proof. Let ϕ ∈ A. Then by (5.2.1) and the norm conjugate formula and
Hölder’s inequality,

‖TQ‖Lϕ∗→Lϕ∗ � 2 sup
‖g‖ϕ∗�1

sup
‖f‖ϕ�1

ˆ

Rn

TQg |f | dx

= 2 sup
‖f‖ϕ�1

sup
‖g‖ϕ∗�1

ˆ

Rn

|g|TQf dx � 4 ‖TQ‖Lϕ→Lϕ .

The reverse estimate follows by replacing ϕ with ϕ∗ since (ϕ∗)∗ = ϕ. ��

Let us point out that the concept of class A is a generalization of the Muck-
enhoupt classes. Recall that for 1 < q <∞ a weight ω is in the Muckenhoupt
class Aq if and only if

 

Q

ω(x) dx
(  

Q

ω(x)
1

1−q dx

)q−1

� C (5.2.3)

uniformly for all cubes Q ⊂ R
n. This condition is equivalent to the following:

‖T{Q}f‖Lq(ω dx) = ‖χQMQf‖Lq(ω dx) � C ‖f‖Lq(ω dx) (5.2.4)
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uniformly for all cubes Q ⊂ R
n and f ∈ Lq(ω dx). Indeed, if (5.2.4) holds,

then the choice f := ω
1

1−q implies (5.2.3). On the other hand if (5.2.3) holds,
then by Hölder’s inequality

‖χQMQf‖Lq(ω dx) =
1
|Q|

ˆ

Q

f dx

( ˆ

Q

ω dx

) 1
q

� 1
|Q|

( ˆ

Q

|f |q ω dx
) 1
q
( ˆ

Q

ω
1

1−q dx

) q−1
q
( ˆ

Q

ω dx

) 1
q

� C ‖f‖Lq(ω dx).

Hence, (5.2.4) is equivalent to ω ∈ Aq. Let us translate this into the language
of Musielak–Orlicz spaces. Define ϕ(x, t) := tqω(x). Then ω ∈ Aq if and only
if ϕ ∈ Aloc. For more information on Ap weights we refer to [174].

The difference between ϕ ∈ Aloc and ϕ ∈ A is that the uniform bounded-
ness of the averaging operators is only required for single cubes rather than
locally 1-finite families of cubes. But in the context of Lq(ω dx) there is no
difference. Indeed, let Q be a locally 1-finite family of cubes and let ω ∈ Aq
with 1 < q <∞. Then the boundedness of the operators T{Q} imply

∥
∥
∥
∥
∥

∑

Q∈Q
χQMQf

∥
∥
∥
∥
∥

q

Lq(ω dx)

=
∑

Q∈Q

∥
∥T{Q}f

∥
∥q
Lq(ω dx)

�
∑

Q∈Q
c
∥
∥χQ f

∥
∥q
Lq(ω dx)

� c ‖f‖qLq(ω dx).

Hence, for ϕ(x, t) = tqω(x) the three conditions ω ∈ Aq, ϕ ∈ Aloc and ϕ ∈ A
are equivalent. It is therefore reasonable to say that class Aloc and A are
generalizations of the Muckenhoupt classes. In particular, if M is bounded on
Lqω(Rn), then ϕ ∈ A and therefore w ∈ Aq. Surprisingly, the reverse holds:
if w ∈ Aq with 1 < q < ∞, then M is bounded on Lq(ω dx). This is the
fundamental result of Muckenhoupt, see for example [305]. The aim of this
chapter is, to provide a similar result for the spaces Lϕ(Rn) and Lp(·)(Rn).
So far, we have shown (cf. Theorem 4.4.10 and Lemma 4.4.13) that

M is strong type ϕ ⇒ ϕ ∈ A ⇒ M is weak type ϕ ⇒ ϕ ∈ Aloc.

Note that the first and the last implication is strict, as can be seen by the
example p = 1 and Theorem 5.3.4 below.

As an extension of Definition 4.4.4 we introduce the following notation.
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Definition 5.2.5. Let ϕ ∈ Φ(Rn) and s ∈ [1,∞). Then we define
Ms,Qϕ : R → [0,∞] by

Ms,Qϕ(t) :=
(  

Q

(
ϕ(x, t)

)s
dx

) 1
s

(5.2.6)

for all t � 0 and every cube (open set) Q ⊂ R
n. We also write MQϕ instead

of M1,Qϕ (see Definition 4.4.4).

Lemma 5.2.7. If ϕ ∈ Φ(Rn) be proper, then t �→ MQϕ(t) is a Φ-function
for every cube (open set) Q.

Proof. It follows from MQϕ(t) = |Q|−1 ´
Q ϕ(x, t) dx = |Q|−1

�ϕ(tχQ) and
Lemma 2.3.10 that MQϕ is a semimodular on R. Since ϕ is proper and
|Q| < ∞, we have χQ ∈ Lϕ. This implies that RMQϕ = R, so by Lemma 2.3.2
follows that MQϕ is a Φ-function. ��

In the following we denote by Yn1 the set of all locally 1-finite families
of cubes in R

n. If Q ∈ Yn1 , then μ(Q) := |Q| defines a natural, atomic
measure on Q. Analogously to Definition 2.3.9 we define Φ(Q) to be the set
of generalized Φ-functions on the measure space (Q, μ).

Let eQ denote the function on Q that is one at Q and zero elsewhere. Since
Q is at most countable, every function on Q is μ-measurable, i.e.

L0(Q) := L0(Q, μ) =
{∑

Q∈Q
tQeQ : tQ ∈ R

}

= R
Q

If ψ ∈ Φ(Q), then the semimodular induced by ψ on L0(Q) is given by

ψ

( ∑

Q∈Q
tQeQ

)

:=
∑

Q∈Q
|Q|ψ(Q, tQ).

We denote the corresponding Musielak–Orlicz space by lψ(Q). Recall that
the norm

∥
∥
∥
∥
∥

∑

Q∈Q
tQeQ

∥
∥
∥
∥
∥
lψ(Q)

:= inf
{

λ > 0 :
∑

Q∈Q
|Q|ψ

(
Q, |tQ/λ|

)
� 1
}

.

makes lψ(Q) a Banach space (Theorem 2.3.13).
Let ϕ ∈ Φ(Rn). Then it follows from Lemma 5.2.7 thatMQϕ ∈ Φ(Q). Since

ϕ∗ ∈ Φ(Rn), also MQϕ
∗ := MQ(ϕ∗) ∈ Φ(Q). Therefore, the conjugate func-

tions (MQϕ)∗ and (MQϕ
∗)∗ are also from Φ(Q). Of particular interest for us

is the function (MQϕ
∗)∗. In contrast to MQϕ the function (MQϕ

∗)∗ involves
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two conjugations: Pass to the conjugate function ϕ∗ (defined on R
n), take

the mean average MQ (now defined on Q), and pass again to the conjugate
function (defined on Q). If ϕ(x, t) is independent of x (translation invariant
case), then (MQϕ

∗)∗ = (ϕ∗)∗ = ϕ = MQϕ. This is not the case if ϕ(x, t) is
x-dependent. So in a sense, we can use the difference of MQϕ and (MQϕ

∗)∗

to measure the failure of translation invariance of the space. The func-
tion (MQϕ

∗)∗ might look awkward at first glance, but the following lemma
provides a concrete characterization of the “abstract” function (MQϕ

∗)∗.

Lemma 5.2.8. Let ϕ ∈ Φ(Rn) be proper. Then

(MQϕ
∗)∗(t) = inf

f∈L0 :MQf�t
MQ(ϕ(·, f))

= inf
f∈L0 :MQf=t

MQ(ϕ(·, f)) � (MQϕ)(t)

for every t � 0 and all cubes (or open sets) Q.

Proof. Let us denote the four terms in the claim by (I), (II), (III) and (IV ).
Obviously, (II) � (III). The choice f = χQt implies (III) � (IV ). We
estimate using Young’s inequality

(MQϕ
∗)∗(MQf) = sup

u�0

(
uMQf − (MQϕ

∗)(u)
)

= sup
u�0

(
MQ(u f) − (MQϕ

∗)(u)
)

� sup
u�0

(
MQ

(
ϕ(·, f)

)
+ (MQϕ

∗)(u) − (MQϕ
∗)(u)

)

= MQ

(
ϕ(·, f)

)

proving (I) � (II). We define ψ(t) := (III). It follows easily from the
convexity of ϕ that ψ is convex. This and the already proven estimate
(MQϕ

∗)∗(t) � ψ(t) � (MQϕ)(t) for all t � 0 ensures that ψ is a Φ-function.
For the conjugate of ψ we calculate

ψ∗(u) = sup
t�0

(
ut− inf

f∈L0 :MQf=t
MQ

(
ϕ(·, f)

))

= sup
t�0

sup
f∈L0 :MQf=t

(
ut−MQ

(
ϕ(·, f)

))

= sup
f∈L0

(
uMQf −MQ

(
ϕ(·, f)

))

=
1
|Q| sup

f∈L0

( ˆ

Q

uf dx−
ˆ

Q

ϕ(·, f) dx
)

=
1
|Q|(�ϕ)∗(JuχQ)
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for u � 0. By Theorem 2.7.4 we have (�ϕ)∗(JuχQ) = �ϕ∗(uχQ), so

ψ∗(u) = (MQϕ
∗)(u)

for all u � 0. This proves ψ(t) = (MQϕ
∗)∗(t) since (ψ∗)∗ = ψ and so

(III) = (I). ��

Remark 5.2.9. If ϕ is a generalized N-function, then the infima in Lemma
5.2.8 are attained. Indeed, for t � 0 let ut :=

(
(MQϕ

∗)∗
)′(t) and ft(x) :=

(ϕ∗)′(x, ut) for x ∈ Q. Then by Remark 2.6.9 (MQϕ
∗)∗(t) = t ut−(MQϕ

∗)(ut)
and ut ft(x) = ϕ(x, ft(x)) + ϕ∗(x, ut) for x ∈ Q. As a consequence MQft =
MQ

(
(ϕ∗)′(ut)

)
= (MQϕ

∗)′(ut) = t, where we have used that (MQϕ
∗)′ is the

right-continuous inverse of ((MQϕ
∗)∗)′. So f is admissible in the infima in

Lemma 5.2.8 and

(MQϕ
∗)∗(t) = t ut − (MQϕ

∗)(ut)
= MQ(ft ut) − (MQϕ

∗)(ut)

= MQ

(
ϕ(·, ft)

)
+ (MQϕ

∗)(ut) − (MQϕ
∗)(ut)

= MQ

(
ϕ(·, ft)

)
.

Thus the infima are attained by the function ft.

We have the following relation between MQϕ and (MQϕ
∗)∗.

Lemma 5.2.10. Let ϕ ∈ Φ(Rn) be proper. Then

(MQϕ
∗)∗(t) � (MQϕ)(t),

(MQϕ)∗(t) � (MQϕ
∗)(t).

for all t � 0 and all cubes (or open sets) Q.

Proof. The first estimate follows from Lemma 5.2.8 with f := χQ t. The
second one follows from the first, if we replace ϕ by ϕ∗ and use ϕ∗∗ = ϕ and
(MQϕ

∗)∗∗ = MQϕ
∗. ��

We have seen in Theorem 3.2.13 that Lϕ(Rn) is a Banach function space
if ϕ ∈ Φ(Rn) is proper. We will see in the following that ϕ inherits this
property to MQϕ.

Lemma 5.2.11. Let ϕ ∈ Φ(Rn) be proper and Q ∈ Yn1 . Then MQϕ ∈ Φ(Q)
is proper. In particular, lMQϕ(Q) is a Banach function space.

Moreover, if ϕ is a generalized N-function, then so is MQϕ.

Proof. Due to Corollary 2.7.9 we have to show that the simple functions S
are contained in lMQϕ(Q) and l(MQϕ)∗(Q). We begin with S ⊂ lMQϕ(Q).
It suffices to show that characteristic functions of measurable sets with
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finite measures are contained in lMQϕ. Let U ⊂ Q with μ(U) < ∞ and
let t > 0. We have to show

∑
Q∈U eQ ∈ lMQϕ(Q). Let A :=

⋃
Q∈U Q ⊂ R

n.
Then |A| = μ(Q) < ∞. Since ϕ is proper we have χA ∈ Lϕ(Rn). Thus
�MQϕ(t

∑
Q∈U eQ) =

∑
Q∈Q |Q|MQϕ(t) = �ϕ(t χA) < ∞ for some t > 0. It

follows that
∑

Q∈U eQ ∈ lMQϕ(Q). This proves S ⊂ lMQϕ(Q). Since ϕ∗ is
also proper it similarly follows that S ⊂ lMQϕ

∗
(Q). Now, (MQϕ)∗ � MQϕ

∗

(Lemma 5.2.10) implies S ⊂ l(MQϕ)∗(Q).
Now assume that ϕ is a generalized N-function. It remains to show that

limt→0
MQϕ(t)

t = 0 and limt→∞
MQϕ(t)

t = ∞. Fix Q ∈ Xn. Since MQϕ is
proper, there exists λ > 0 with (MQϕ)(λ) < ∞. Now limt→0

ϕ(x,t)
t = 0

for all x ∈ Q and the theorem of dominated convergence with majo-
rant ϕ(·,λ)

λ ∈ L1(Q) implies that limt→0
MQϕ(t)

t = 0. On the other hand
limt→∞

ϕ(x,t)
t = ∞ for all x ∈ Q and the theorem of monotone convergence

implies that limt→∞
MQϕ(t)

t = ∞. ��

As a consequence of Lemma 5.2.11 also MQϕ
∗, (MQϕ)∗ and (MQϕ

∗)∗ are
proper if ϕ ∈ Φ(Rn) is proper.

Corollary 5.2.12. Let ϕ ∈ Φ(Rn), Q ∈ Yn1 and s � 1. If ϕs is proper, then
Ms,Qϕ ∈ Φ(Q).

Proof. If follows from Lemma 5.2.11 that MQϕ,MQ(ϕs) ∈ Φ(Q). Since
ϕ(x, ·) is convex and f �→ Ms,Qf is convex, so is Ms,Qϕ. The left-continuity
of MQ(ϕs) implies the left-continuity of Ms,Qϕ. Moreover, limt→0(Ms,Qϕ)
(t) = 0 and limt→∞(Ms,Qϕ))(t) = ∞ follow from the corresponding limits of
MQ(ϕs). Thus, Ms,Qϕ ∈ Φ(Xn). ��

The following lemma is a generalization of Lemma 5.2.8.

Lemma 5.2.13. Let ϕ ∈ Φ(Rn) be proper and Q ∈ Yn1 . Then

�(MQϕ∗)∗

( ∑

Q∈Q
tQeQ

)

= inf
f∈L0 :MQf=tQ

�ϕ(f)

and
∥
∥
∥
∥

∑

Q∈Q
tQ eQ

∥
∥
∥
∥
l(MQϕ

∗)∗
= inf

f∈L0 :MQf=tQ

‖f‖ϕ. (5.2.14)

The infimum is taken over all f ∈ L0 which satisfy MQf = tQ for all Q ∈ Q.

Proof. The first estimate follows when we apply Lemma 5.2.8 in each cube
Q. In particular, for all f ∈ Lϕ,

�(MQϕ∗)∗

( ∑

Q∈Q
MQf eQ

)

� �ϕ(f).
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This and the unit ball property proves the case “�” of (5.2.14). Let us
prove equality. If the left-hand side of (5.2.14) is zero, then the right-hand
side is zero since f = 0. Therefore, we can assume by a scaling argument
that the left-hand side of (5.2.14) is equal to 1 and we have the show that
the right-hand side is smaller or equal to 1. The unit ball property implies
�(MQϕ∗)∗(

∑
Q∈Q λtQeQ) � 1. Thus for every λ > 1 we conclude using (2.1.5)

that �(MQϕ∗)∗(
∑

Q∈Q
tQ
λ eQ) � 1

λ < 1. So by the first estimate of the lemma
there exists gλ ∈ L0 with MQgλ = tQ/λ such that �ϕ(gλ) < 1. This proves
‖gλ‖ϕ � 1 by the unit ball property. The function fλ := λgλ satisfies
MQfλ = tQ and ‖fλ‖ϕ � λ. Since λ > 1 was arbitrary, it follows that
the right-hand side of (5.2.14) is bounded by 1. ��

We are now able to characterize class A in terms of the generalized
Φ-functions MQϕ and (MQϕ

∗)∗.

Theorem 5.2.15. Let ϕ ∈ Φ(Rn) be proper. Then ϕ is of class A if and
only if the embeddings

l(MQϕ
∗)∗(Q) ↪→ lMQϕ(Q)

are uniformly bounded for all Q ∈ Yn1 . Moreover, for every Q ∈ Yn1

‖TQ‖Lϕ→Lϕ = ‖Id‖
l(MQϕ

∗)∗ (Q)↪→lMQϕ(Q)
.

In particular, the A-constant of ϕ equals

sup
Q∈Yn1

‖Id‖
l(MQϕ

∗)∗ (Q)↪→lMQϕ(Q)
.

Proof. For all f ∈ Lϕ,

�MQϕ

( ∑

Q∈Q
MQf eQ

)

=
∑

Q∈Q
|Q|(MQϕ)(MQf) = �ϕ(TQf)

and as a consequence of the unit ball property
∥
∥
∥
∥

∑

Q∈Q
MQf eQ

∥
∥
∥
∥
lMQϕ

= ‖TQf‖ϕ. (5.2.16)

Assume first that l(MQϕ
∗)∗(Q) ↪→ lMQϕ(Q) and with embedding con-

stant A. Then by Lemma 5.2.13

‖TQf‖ϕ =

∥
∥
∥
∥
∥

∑

Q∈Q
MQfeQ

∥
∥
∥
∥
∥
lMQϕ

� A

∥
∥
∥
∥
∥

∑

Q∈Q
MQfeQ

∥
∥
∥
∥
∥
l(MQϕ

∗)∗
� A ‖f‖ϕ

for all f ∈ Lϕ.
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Assume now, that ϕ ∈ A with A-constant A2. Then for all f ∈ Lϕ, which
satisfy MQf = tQ for all Q ∈ Q, it holds that

∥
∥
∥
∥
∥

∑

Q∈Q
tQeQ

∥
∥
∥
∥
∥
lMQϕ

=

∥
∥
∥
∥
∥

∑

Q∈Q
MQfeQ

∥
∥
∥
∥
∥
lMQϕ

= ‖TQf‖ϕ � A2‖f‖ϕ,

where we used (5.2.16) in the second step. Taking the infimum over all such f
proves that

∥
∥
∥
∥
∥

∑

Q∈Q
tQeQ

∥
∥
∥
∥
∥
lMQϕ

� A2

∥
∥
∥
∥
∥

∑

Q∈Q
tQeQ

∥
∥
∥
∥
∥
l(MQϕ

∗)∗
,

where we used Lemma 5.2.13. ��

Let us introduce the following useful notation about embeddings.

Definition 5.2.17. By Xn we denote the set of all open cubes in R
n. Let

ϕ, ψ : Xn × R� → R� be generalized Φ-functions on Yn1 . Then we say that
ψ is dominated by ϕ and write ψ � ϕ if the embeddings

lϕ(Q)(Q) ↪→ lψ(Q)(Q)

are uniformly bounded with respect to Q ∈ Yn1 . We write ψ ∼= ϕ if ψ � ϕ
and ϕ � ψ.

If ψ � κ and κ � ϕ, then ψ � ϕ. With the new notation we can rewrite
Theorem 5.2.15 as follows:

Theorem 5.2.18. Let ϕ ∈ Φ(Rn) be proper. Then ϕ is of class A if and
only if MQϕ � (MQϕ

∗)∗.

Remark 5.2.19. Let ϕ and ψ be generalized Φ-functions on Yn1 such that
for every Q ∈ Yn1 the functions (Q, t) �→ ϕ(Q, t) and (Q, t) �→ ψ(Q, t) as
elements of Φ(Q) are proper. Then ϕ � ψ is equivalent to ψ∗ � ϕ∗. Indeed,
if lϕ(Q)(Q) ↪→ lψ(Q)(Q), then (lϕ(Q)(Q))′ ↪→ (lψ(Q)(Q))′ and therefore
(lϕ

∗(Q)(Q)) ↪→ (lψ
∗(Q)(Q)) using Theorem 2.7.4. This implies ψ∗ � ϕ∗.

Remark 5.2.20. Let ϕ ∈ Φ(Rn) be proper. Then (MQϕ
∗)∗ � MQϕ holds by

Lemma 5.2.10 for every cube Q. Thus,MQϕ � (MQϕ
∗)∗ from Theorem 5.2.18

is equivalent to MQϕ ∼= (MQϕ
∗)∗.

Remark 5.2.21. Let ϕ ∈ Φ(Rn) be proper. We have seen in Lemma 5.2.2
that ϕ ∈ A if and only if ϕ∗ ∈ A. This “stability under conjugation” also
follows from Theorem 5.2.18, since MQϕ � (MQϕ

∗)∗ is by conjugation (see
Remark 5.2.19) equivalent to MQϕ

∗ � (MQϕ)∗ = (MQ(ϕ∗)∗)∗.
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5.3 Class A for Variable Exponent Lebesgue Spaces*

In the case of variable exponent Lebesgue spaces Lp(·)(Rn) we can provide
another characterization of class A, which avoids the use of (MQϕ

∗
p(·))

∗. This
characterization is based on the following refined version of Lemma 5.2.10:

Lemma 5.3.1. Let p ∈ P(Rn). Then

(MQϕ̃
∗
p(·))

∗(t) � ϕ̃pQ(t) � (MQϕ̃p(·))(t) (5.3.2)

for all t � 0 and all cubes (or open sets) Q. Recall that 1
pQ

=
ffl
Q

1
p(x) dx for

every cube Q.

Proof. The second inequality is just Lemma 4.5.1. If we apply this inequality
to (ϕ̃p(·))∗ = ϕ̃p′(·), then ϕ̃p′Q(t) � (MQϕ̃

∗
p(·))(t) all t � 0. So by conjugation

(MQϕ̃
∗
p(·))

∗(t) � (ϕ̃p′Q)∗(t) = ϕ̃pQ(t). ��

The use of ϕpQ enables us to avoid (MQϕ
∗)∗, as can be seen in (c) of the

following theorem.

Theorem 5.3.3. Let p ∈ P(Rn). Then the following statements are equiva-
lent:

(a) p ∈ A.
(b) MQϕp(·) � (MQϕ

∗
p(·))

∗.
(c) MQϕp(·) � ϕpQ and MQϕp′(·) � ϕp′Q .

Proof. It suffices to prove the theorem for ϕp(·) = ϕ̃p(·). The equivalence of (a)
and (b) is just the statement of Theorem 5.2.18. If (b) holds, then MQϕ̃p(·) ∼=
ϕ̃pQ

∼= (MQϕ̃
∗
p(·))

∗ by Lemma 5.3.1. If (c) holds, then also MQϕ̃p(·) ∼= ϕ̃pQ
and MQϕ̃p′(·) ∼= ϕ̃p′Q by Lemma 5.3.1. Conjugation of the second equivalence
and ϕ̃p′(·) = ϕ̃∗

p(·) gives (MQϕ̃
∗
p(·))

∗ ∼= ϕ̃pQ . Combining the results we get
(MQϕ̃

∗
p(·))

∗ ∼= ϕ̃pQ
∼= MQϕ̃p(·). ��

We now see that the uniform boundedness of the averaging T{Q} over single
cubes Q is not enough to ensure the boundedness of the averaging operators
TQ uniformly with respect to locally 1-finite families of cubes. Especially,
the uniform boundedness of T{Q} on Lp(·)(R) with respect to single cubes
cannot imply boundedness of M on Lp(·)(R). This is reflected in the following
counterexample. We refer to Definition 7.3.2 below for the definition of G.

Theorem 5.3.4. There exists an exponent p ∈ P(R) which is uniformly
Lipschitz continuous and satisfies 3

2 � p− � p+ � 3 such that p ∈ Aloc \ A.

Proof. Let η ∈ C∞
0 (B(0, 1/2)) with ‖η‖∞ � 1

6 , η �= 0,
´
η(x) dx = 0, and

η(x) = − 1
6 for all x ∈ B(0, 1/4). Let xj := exp(10 j2) for j ∈ N. Define

p ∈ P(R) by 1
p(x) := 1

2 +
∑∞
j=1 η(x − xj). Then p is uniformly Lipschitz

continuous and satisfies 3
2 � p− � p+ � 3.
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First, we show that p �∈ A. Let Qj := B(xj , 2) and Q := {Qj : j ∈ N}. For
(ak) ∈ l3(N) define a function G({ak}) by G({ak})(x) :=

∑∞
j=1 ajχB(0,1/4)

(x − xj) for x ∈ R. If p ∈ A, then ‖TQ(G({ak}))‖p(·) � K ‖G({ak})‖p(·)
for some K > 0. Now, ‖G({ak})‖p(·) = ‖{ak}‖l3(N). On the other hand
TQ(G({ak}) � 1

8

∑∞
j=1 |aj |χB(0,1/4)(x− xj − 1), so

∥
∥TQ

(
G({ak})

)∥
∥
p(·) �

∥
∥
∥
∥

1
8

∞∑

j=1

|aj |χB(0,1/4)(x − xj − 1)
∥
∥
∥
∥
p(·)

=
1

8
√

2
‖{ak}‖l2(N).

Therefore, if p ∈ A, we have shown that ‖{ak}‖l2(N) � 8
√

2K ‖{ak}‖l3(N) for
all sequences ak. This is impossible and thus p �∈ A.

Second, we show that M is not of weak type p(·). We proceed again
by contradiction. So let us assume that ‖λχ{Mf>λ}‖p(·) � K‖f‖p(·) for all

f ∈Lp(·)(R). Let (ak) ∈ l3(N) and defineG({ak}) as above, so ‖G({ak})‖p(·) =
‖{ak}‖l3(N). Then for λ > 0 define J := {j ∈ N : |aj | > λ}. Then as above
M(G({ak})) �

∑
j∈J

1
8λχB(0,1/4)(x − xj). This proves that

∥
∥1

8λχ{Mf> 1
8λ}
∥
∥
p(·) �

∥
∥
∥
∥

1
8
λ
∑

j∈J
χB(0,1/4)(x− xj − 1)

∥
∥
∥
∥
p(·)

=
1

8
√

2

(∑

j∈J
λ2
) 1

2

=
1

8
√

2

( ∑

j∈N : |aj|>λ
λ2
) 1

2
.

Since λ > 0 was arbitrary, this proves ‖{ak}‖w-l2(N) � 8
√

2K ‖{ak}‖l3(N)

where ‖{ak}‖w-l2 := supλ>0 ‖λχ{|ak|>λ}‖�2 . This is the desired contradiction.
Third, we show that p ∈ Aloc. We have to show that for some constant

K2 > 0 and for all cubes Q

‖TQ(f χQ)‖p(·) � K2 ‖f χQ‖p(·).

We start with small cubes. So let Q be a cube with diamQ � 2. If Q does
not intersect any of the sets B(xj , 1), then p(x) = 2 for all x ∈ Q, then there
is nothing to show, since TQ is bounded on L2(R). Otherwise, Q intersects
exactly one of the sets B(xj , 1), whose index we call j0. Define q ∈ P(R) by

1
q(x) := 1

2 + η(x − xj0 ), then q(x) = p(x) for all x ∈ Q. By definition of q
we have q ∈ P log(R) with 3

2 � q− � q+ � 3. So by Theorem 4.4.8, T{Q} is
bounded on Lq(·)(R) with continuity constant independent of j0. Since p = q
on Q, the operator T{Q} is also bounded on Lp(·)(R). This proves the claim
for small cubes, i.e. diamQ � 2.

Now, let Q be a large cube, i.e. diam(Q) � 2. Then there exists a cube
W with Q ⊂ W ⊂ 2Q such that every B(xj , 1) that intersects W is com-
pletely contained in W . By definition of p and

´
η(x) dx = 0, it follows that
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1
pW

=
ffl
W

1
p(x) dx = 1

2 . Since TQf � 2TW f , it suffices to show the bounded-

ness of TW . Due to Theorem 4.5.7 is suffices to show ‖χW ‖p(·) � c |W |
1
pW

and ‖χW ‖p′(·) � c |W |
1
p′
W with constants independent of W . Fix k ∈ N such

that exp(k − 1) � diam(W ) � exp(k). Then by definition of xk fewer than√
k+1 of the cubes Qj = B(xj , 2) intersect W . So U := W ∩

⋃∞
j=1Qj satisfies

|U | � 2 (
√
k + 1). We estimate

ˆ

W

|W |−
p(x)
pW dx =

ˆ

U

|W |−
p(x)

2 dx+
ˆ

W\U

|W |−1
dx

� |U | |W |−
p−
2 + 1

� 2 (
√
k + 1) |exp(k)|−

3
4 + 1

� c.

This gives ‖χW ‖p(·) � c |W |
1
pW . The proof of ‖χW ‖p′(·) � c |W |

1
p′
W is analo-

gous. This finishes the argument for large cubes. ��

Remark 5.3.5. Kopaliani gave in [256] a two-dimensional example of an
exponent p ∈ A \ Aloc of the form p(x, y) = q(x) with q ∈ P log(R).

Kopaliani [255] and Lerner [268] showed that if p ∈ Aloc is such that the
support of p− p∞ has finite Lebesgue measure, then p ∈ A.

5.4 Class A∞*

In this section we define an analogy of the classical Muckenhoupt class A∞.
We show that, as in the case of classical Muckenhoupt class A∞, our new
condition A∞ implies an improvement of integrability, i.e. we prove that
ϕ ∈ A∞ implies ψ ∈ A∞ with ϕ(·, t) ≈ ψ(·, ts) for some s > 1. This is
the analogue of the reverse Hölder’s inequality for (classical) Muckenhoupt
weights.

Definition 5.4.1. By A∞ we denote the set of all generalized Φ-functions
on R

n which have the following property: For every 0 < α < 1 there exists
0 < β < 1 such that if N ⊂ R

n (measurable) and Q ∈ Yn1 satisfy

|N ∩Q| � α|Q| for all Q ∈ Q, (5.4.2)

then
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χN∩Q

∥
∥
∥
∥
∥
ϕ

� β

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

(5.4.3)
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for any sequence {tQ}Q∈Q ∈ R
Q. The smallest constant β for α = 1

2 is called
the A∞-constant of ϕ.

We show below in Lemma 5.4.4 that the class A∞ coincides with the
Muckenhoupt classA∞ of the classical weighted Lebesgue spaces. Let us recall
one of the equivalent characterizations of the Muckenhoupt classA∞: ω ∈ A∞
if and only if for every ε > 0 there exists δ > 0 such that ω(N) < δ ω(Q)
for all cubes Q and all N ⊂ Q with |N | < ε |Q|. (Here we used the notation
ω(N) =

´
N ω(x) dx.)

Lemma 5.4.4. Let ω be a weight on R
n, 1 � q < ∞, and ϕ(x, t) = tq ω(x)

for every x ∈ R
n and t � 0. Then ϕ ∈ A∞ if and only if ω ∈ A∞.

Proof. Assume that ϕ ∈ A∞ and let ε > 0. Further, let the cube Q and
N ⊂ Q be such that |N | < ε|Q|. Since ϕ ∈ A∞ there exists β > 0 (only
depending on ε) such that ‖χN∩Q‖ϕ � β ‖χQ‖ϕ. Since N ∩ Q = N , we
obtain that

ω(N) = ‖χN‖qϕ � βq ‖χQ‖qϕ = βq ω(Q).

The choice δ := βq in the definition of A∞ shows that ω ∈ A∞.
Assume now that ω ∈ A∞ and α > 0. Let Q ∈ Yn1 and N ⊂ R

n be such
that (5.4.2) is satisfied. Further, let {tQ}Q∈Q ∈ R

Q. Since ω ∈ A∞, there
exists δ > 0 (only depending on α) such that for every cube Q the inequality
|N ∩Q| < α |Q| implies ω(N ∩Q) < δ ω(Q). Hence,

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χN∩Q

∥
∥
∥
∥
∥

q

ϕ

=
∑

Q∈Q
|tQ|qω(N ∩Q) � δ

∑

Q∈Q
|tQ|qω(Q) = δ

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥

q

ϕ

.

So the choice β = δ
1
q gives ϕ ∈ A∞. ��

We would like to mention that the original definition of A∞ from [93],
denoted below by A′

∞, slightly differs from Definition 5.4.1 above: (5.4.2) is
reversed to (5.4.6) and the condition for the Φ-function is modified accord-
ingly. However, if ϕ satisfies the Δ2-condition, then both definitions agree.

Definition 5.4.5. By A′∞ we denote the set of all generalized Φ-functions
on R

n, which have the following property: For every 0 < α2 < 1 there exists
0 < β2 < 1 such that if P ⊂ R

n (measurable) and Q ∈ Yn1 satisfy

|P ∩Q| � α2|Q| for all Q ∈ Q, (5.4.6)



5.4 Class A∞* 161

then
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χP∩Q

∥
∥
∥
∥
∥
ϕ

� β2

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

(5.4.7)

for any sequence {tQ}Q∈Q ∈ R
Q.

The relation between A∞ and A′
∞ is the following:

Lemma 5.4.8. Let ϕ ∈ Φ(Rn).

(a) If ϕ ∈ A∞, then ϕ ∈ A′
∞. Moreover, β2(α2) in Definition 5.4.5 only

depends on β(α).
(b) If ϕ ∈ A′∞ and ϕ satisfies the Δ2-condition, then ϕ ∈ A∞. Moreover,

β(α) in Definition 5.4.1 only depends on β2(α2) and the Δ2-constant
of ϕ.

Proof. (a): Let α′ ∈ (0, 1) and let P , Q satisfy (5.4.6). Define N :=
⋃
Q∈Q

(Q \ P ). Then N and Q satisfy (5.4.2). Let α := α′ and let β be the
constant from the definition of A∞. Then

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

�
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χP∩Q

∥
∥
∥
∥
∥
ϕ

+

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χN∩Q

∥
∥
∥
∥
∥
ϕ

�
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χP∩Q

∥
∥
∥
∥
∥
ϕ

+ β

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

.

This proves (5.4.7) with β2 := (1 − β).
(b): LetK be the Δ2-constant of ϕ. Let α ∈ (0, 1) and letN , Q satisfy (5.4.2).

Define P :=
⋃
Q∈Q(Q \ N). Then P , Q satisfy (5.4.6). Let α′ := α.

Then ϕ ∈ A′
∞ implies the existence of β′ ∈ (0, 1) (only depending

on α′) such that (5.4.7) holds. Without loss of generality we can assume
‖
∑

Q∈Q tQ χQ‖ϕ = 1. So �ϕ(
∑

Q∈Q tQ χQ) = 1 by the unit ball property.
Then (5.4.7) implies that

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χP∩Q

∥
∥
∥
∥
∥
ϕ

� β2.

It follows by Lemma 2.4.2 that there exists β3 ∈ (0, 1) (only depending
on β2 and K) such that

�ϕ

( ∑

Q∈Q
tQ χP∩Q

)

� β3.

This and �ϕ(
∑

Q∈Q tQ χQ) = 1 imply that
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�ϕ

( ∑

Q∈Q
tQ χN∩Q

)

= �ϕ

( ∑

Q∈Q
tQ χQ

)

− �ϕ

( ∑

Q∈Q
tQ χP∩Q

)

� 1 − β3.

If follows by Lemma 2.4.3 that there exists β4 ∈ (0, 1) which only
depends on β3 and K such that

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χN∩Q

∥
∥
∥
∥
∥
ϕ

� β4.

This proves (5.4.3) with β := β4. ��

It is important for us that class A∞ and A′
∞ are weaker than A.

Lemma 5.4.9. Let ϕ ∈ Φ(Rn). If ϕ ∈ A, then ϕ ∈ A′∞. Moreover, β2(α2)
in Definition 5.4.5 only depends on the A-constant of ϕ.

Proof. Let K be the A-constant of ϕ. Let α2, Q and P as in (5.4.6). Let
f :=

∑
Q∈Q sQ χP∩Q with ‖f‖ϕ < ∞. Then

α2

∑

Q∈Q
sQ χQ �

∑

Q∈Q
sQ

|P ∩Q|
|Q| χQ =

∑

Q∈Q
(MQf)χQ = TQf.

Since ϕ is of class A,

α2

∥
∥
∥
∥
∥

∑

Q∈Q
sQ χQ

∥
∥
∥
∥
∥
ϕ

� ‖TQf‖ϕ � K ‖f‖ϕ = K

∥
∥
∥
∥
∥

∑

Q∈Q
sQ χP∩Q

∥
∥
∥
∥
∥
ϕ

.

This is (5.4.7) with β2 := α2/K. Thus ϕ is of class A′
∞. ��

In view of Lemma 5.4.8 this has the following direct consequence:

Corollary 5.4.10. Let ϕ ∈ Φ(Rn) satisfy the Δ2-condition. If ϕ ∈ A, then
ϕ ∈ A∞. Moreover, β(α) in Definition 5.4.5 and the A∞-constant only
depend on the A-constant and the Δ2-constant of ϕ.

For the proof of the next lemma it is convenient to work with dyadic cubes.

Definition 5.4.11. We say that the cube Q is dyadic if there exists k =
(k1, . . . , kd) ∈ Z

n and z ∈ Z such that Q = 2z
(
(0, 1)n + k

)
. Let Q0 be a

cube and let τ : R
n → R

n be the affine mapping τ(x) = r x + x0, r > 0,
x0 ∈ R

n that maps Q0 onto the unit cube (0, 1)n. We say that the cube Q
is Q0-dyadic, if τ(Q) is dyadic. For q � 1 we define the Q-dyadic maximal
function MΔ,Q

q by
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MΔ,Q
q f(x) := sup

Q′�x
and Q′ is Q-dyadic

MQ′,qf.

In the special case q = 1 we define MΔ,Qf := MΔ,Q
1 f . Moreover, the (0, 1)n-

dyadic maximal functions will simply be denoted MΔ
q and MΔ.

Note that MΔ,Q has the same properties as the usual dyadic maximal
function. Let Ω ⊂ R

n be an open set. Then Q1 ⊂ Ω is called a maximal
Q-dyadic cube of Ω if and only if Q1 is Q-dyadic and there exists no Q-dyadic
cube Q2 with Q1 � Q2 ⊂ Ω. If Q = (0, 1)n we just speak of a maximal
dyadic cube of Ω. Note that every maximal Q-dyadic cube Q1 of the set
{MΔ,Qf > λ}, with f ∈ L1

loc(R
n) and λ > 0, satisfies λ < MQ1f � 2n λ.

Lemma 5.4.12. Let ϕ ∈ Φ(Rn) with ϕ ∈ A∞. Then there exists δ > 0 and
K � 1 which only depend on the A∞-constant of ϕ such that

∥
∥
∥
∥
∥

∑

Q∈Q
tQ

∣
∣
∣
∣
f

MQf

∣
∣
∣
∣

δ

χQ

∥
∥
∥
∥
∥
ϕ

� K
∥
∥
∑

Q∈Q
tQχQ

∥
∥
ϕ

for all Q ∈ Yn1 , all {tQ}Q∈Q, tQ � 0, and all f ∈ L1
loc(R

n) with MQf �= 0,
Q ∈ Q.

Proof. Let Q ∈ Yn1 , {tQ}Q∈Q with tQ � 0, and f ∈ L1
loc with MQf �= 0

for all Q ∈ Q. We will fix δ > 0 and K � 1 later. For all Q ∈ Q we define
fQ ∈ L1

loc(R
n) by fQ := f χQ. Since Q is Q-dyadic, fQ is zero outside of Q

and MQf > 0, we obtain

{
MΔ,QfQ > 2

3 MQf
}

= Q.

Let

EkQ :=
{
x ∈ R

n : MΔ,QfQ(x) > 2
3 2(n+1)kMQf

}
,

where k ∈ N0. Then

Ek+1
Q ⊂ EkQ ⊂ · · · ⊂ E0

Q = Q.

Auxiliary claim: For every maximal Q-dyadic cube V of Ek−1
Q

|EkQ ∩ V | � 1
2 |V |.

Proof of auxiliary claim. Let V be a maximal Q-dyadic cube of Ek−1
Q and let

W be a maximal Q-dyadic cube of EkQ that intersects V . Since EkQ ⊂ Ek−1
Q ,

W ⊂ V so that W ⊂ EkQ∩V . Since W is maximal Q-dyadic in EkQ there holds
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(special property of the dyadic maximal function) MW fQ > 2
3 2(n+1)kMQf .

This implies that

|W |MQf � 3
2 2−(n+1)k

ˆ

W

|fQ| dx.

Summing over all maximal Q-dyadic cubes W of EkQ that intersect V yields
that

|EkQ ∩ V |MQf � 3
2 2−(n+1)k

ˆ

V

|fQ| dx.

Since V is maximal Q-dyadic in Ek−1, M2V fQ � 2
3 2(n+1)(k−1)MQf , where

2V exceptionally denotes the dyadic cube containing V with twice the side-
length of V . Thus

ˆ

V

|fQ| dx � 2n |V |M2V fQ � 2
3 2n 2(n+1)(k−1)|V |MQf.

Using MQf �= 0 we derive from our estimates

|EkQ ∩ V | � 1
2 |V |.

This proves the auxiliary claim and we continue the original proof. ��

Let {V k−1
Q,l }

l
be the collection of maximal Q-dyadic cubes of Ek−1

Q . Then

|EkQ ∩ V k−1
Q,l | � 1

2 |V k−1
Q,l |.

Since Ek−1
Q ⊂ Q and the family Q is pairwise disjoint, it follows that the

collection {V k−1
Q,l }

Q,l
is pairwise disjoint with respect to Q, l. Let

Gk :=
⋃

Q∈Q
EkQ,

Ωk :=
⋃

Q,l

V k−1
Q,l .

Then

|Gk ∩ V k−1
Q,l | = |EkQ ∩ V k−1

Q,l | � 1
2 |V k−1

Q,l |.
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Thus it follows from the definition of A∞ that Ωk to get
∥
∥
∥
∥
∥

∑

Q∈Q

∑

l

tQ χGk∩V k−1
Q,l

∥
∥
∥
∥
∥
ϕ

� β

∥
∥
∥
∥
∥

∑

Q∈Q

∑

l

tQ χV k−1
Q,l

∥
∥
∥
∥
∥
ϕ

,

where β ∈ (0, 1) is the A∞-constant of ϕ.
Since

⋃
l V

k−1
Q,l = Ek−1

Q ,
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χGk∩Ek−1

Q

∥
∥
∥
∥
∥
ϕ

� β

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χEk−1

Q

∥
∥
∥
∥
∥
ϕ

.

The definition of Gk and the monotonicity of EkQ imply Gk ∩ Ek−1
Q =

EkQ ∩ Ek−1
Q = EkQ. Thus,

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χEkQ

∥
∥
∥
∥
∥
ϕ

� β

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χEk−1

Q

∥
∥
∥
∥
∥
ϕ

.

By induction
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χEkQ

∥
∥
∥
∥
∥
ϕ

� βk

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χE0

Q

∥
∥
∥
∥
∥
ϕ

= βk

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

.

From this and the definition of EkQ we conclude that
∥
∥
∥
∥
∥

∑

Q∈Q
tQ

∣
∣
∣
∣
fQ
MQf

∣
∣
∣
∣

δ

χEkQ\Ek+1
Q

∥
∥
∥
∥
∥
ϕ

�
∥
∥
∥
∥
∥

∑

Q∈Q
tQ

(
MΔ,QfQ
MQf

)δ
χEkQ\Ek+1

Q

∥
∥
∥
∥
∥
ϕ

�
∥
∥
∥
∥
∥

∑

Q∈Q
tQ
(

2
3 2(n+1)(k+1)

)δ
χEkQ\Ek+1

Q

∥
∥
∥
∥
∥
ϕ

� 2(n+1)(k+1)δ

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χEkQ

∥
∥
∥
∥
∥
ϕ

� 2(n+1)(k+1)δβk

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

.

We fix δ > 0 such that ε := 2(n+1)δβ < 1 and (n + 1)δ � 1. In particular,
δ > 0 only depends on β and the dimension n. Then

∥
∥
∥
∥
∥

∑

Q∈Q
tQ

∣
∣
∣
∣
fQ
MQf

∣
∣
∣
∣

δ

χEkQ\Ek+1
Q

∥
∥
∥
∥
∥
ϕ

� 2 εk
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

.
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This implies with the monotonicity of EkQ that

∥
∥
∥
∥
∥

∑

Q∈Q
tQ

∣
∣
∣
∣
fQ
MQf

∣
∣
∣
∣

δ

χE0
Q

∥
∥
∥
∥
∥
ϕ

=

∥
∥
∥
∥
∥

∞∑

k=0

∑

Q∈Q
tQ

∣
∣
∣
∣
fQ
MQf

∣
∣
∣
∣

δ

χEkQ\Ek+1
Q

∥
∥
∥
∥
∥
ϕ

�
∞∑

k=0

∥
∥
∥
∥
∥

∑

Q∈Q
tQ

∣
∣
∣
∣
fQ
MQf

∣
∣
∣
∣

δ

χEkQ\Ek+1
Q

∥
∥
∥
∥
∥
ϕ

�
∞∑

k=0

2 εk
∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

=
2

1 − ε

∥
∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
∥
ϕ

.

Since E0
Q = Q, this is the claim with K = 2

1−ε . ��

With the help of this lemma we now derive improved properties for ϕ ∈ A,
which correspond to the left-openness of the classical Muckenhoupt classes.
We need the s-averaging operators Ts,Q from Definition 4.4.3.

Theorem 5.4.13. Let ϕ ∈ Φ(Rn) be proper such that ϕ∗ satisfy the Δ2-
condition. Then there exists s > 1 which only depends on the Δ2-constant of
ϕ∗ and the A-constant of ϕ, such that Ts,Q is uniformly bounded on Lϕ with
respect to Q ∈ Yn1 . Moreover, the boundedness constant of Ts,Q only depends
on the Δ2-constant and the A-constant of ϕ and the A∞-constant of ϕ∗.

Proof. Due to Lemma 5.2.2 and Corollary 5.4.10 it follows from ϕ ∈ A that
ϕ∗ ∈ A and ϕ∗ ∈ A∞, where the A-constant and the A∞-constant of ϕ∗ are
bounded in terms of the A-constant and the Δ2-constant of ϕ∗. Let δ > 0
and K > 0 be as in Lemma 5.4.12 and define s := 1 + δ.

Let Q ∈ Yn1 and g ∈ Lϕ(Rn). We want to show ‖Ts,Qg‖ϕ � c ‖g‖ϕ.
Without loss of generality we can assume that Ms,Qg �= 0 for all Q ∈ Q. In
particular, MQg �= 0 for all Q ∈ Q. We use the norm conjugate formula to
estimate ‖Ts,Qg‖ϕ, so let h ∈ Lϕ

∗
(Rn). Then

〈
Ts,Q g, h

〉
�
〈∑

Q∈Q
χQMs,Qg, |h|

〉

�
〈∑

Q∈Q
χQ

(Ms,Qg)s

(MQg)s−1
, |h|
〉

=
〈∑

Q∈Q
χQ

MQ(|g|s)
(MQg)s−1

, |h|
〉

=
〈

TQ

( ∑

Q∈Q
χQ

|g|s

(MQg)s−1

)

, |h|
〉

=
〈∑

Q∈Q
χQ

|g|s

(MQg)s−1
, TQ|h|

〉

=
〈∑

Q∈Q
χQ |g|,

∑

Q

χQMQh

(
|g|

MQ|g|

)s−1〉

.
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By Hölder’s inequality

〈
Ts,Q g, h

〉
� 2 ‖g‖ϕ

∥
∥
∥
∥

∑

Q

χQMQh

(
|g|
MQg

)s−1∥∥
∥
∥
ϕ∗
.

With the help of Lemma 5.4.12 and ϕ,ϕ∗ ∈ A it follows that

〈
Ts,Q g, h

〉
� 2K ‖g‖ϕ ‖TQh‖ϕ∗ � 2K ‖g‖ϕ ‖h‖ϕ∗ .

The norm conjugate formula concludes the proof. ��

Remark 5.4.14. Let ψ, ϕ be proper, generalized Φ-functions on R
n with

ψ(·, t) ≈ ϕ(·, ts) for some s � 1. Then it follows as in Lemma 3.2.6 that
‖f‖sψ ≈

∥
∥|f |s

∥
∥
ϕ

.

The previous theorem is our first analogue to the left-openness of classical
Muckenhoupt classes. Indeed, if we apply it to the function ϕ(x, t) = tq ω(x)
with 1 < q < ∞ and ω ∈ Aq, it would imply that ω ∈ Aq/s. The following
theorem is another version of the left-openness.

Theorem 5.4.15. Let ϕ ∈ Φ(Rn) be proper such that ϕ∗ satisfies the Δ2-
condition. Suppose that ψ ∈ Φ(Rn) is proper and s ∈ (0, 1] such that ψ(x, t) ≈
ϕ(x, ts) for all x ∈ R

n and t > 0. There exists s0 ∈ (0, 1) which only depends
on the A-constant of ϕ and the Δ2-constant of ϕ∗, such that ψ ∈ A if s � s0.

Proof. Due to Theorem 5.4.13 there exists s0 ∈ (0, 1) such that Ts0,Q is
uniformly bounded on Lϕ with respect to Q ∈ Yn1 . Let s ∈ [s0, 1] and ψ(·, t) ≈
ϕ(·, ts). Then Ts,Q is also uniformly bounded on Lϕ. By assumption on ψ and
Remark 5.4.14 we have ‖f‖sϕ ≈ ‖|f |s‖ψ for every f ∈ Lϕ. Hence,

‖TQg‖ψ =
∥
∥
(
Ts,Q(|g|1/s)

)s∥∥
ψ

� c
∥
∥Ts,Q(|g|1/s)

∥
∥
s

ϕ
� c
∥
∥|g|1/s

∥
∥
s

ϕ
� c ‖g‖ψ .

Hence, ψ ∈ A. ��

Remark 5.4.16. Note that Theorem 5.4.15 is the counterpart to Lem-
mas 5.5.9 and 4.4.7. Here, the latter tell us about the easy situation, i.e.
s � 1, while Theorem 5.4.15 considers the difficult part of the left-openness,
i.e. 0 < s < 1.

In the case of Lebesgue spaces with variable exponent with exponent
p− > 1 it is clear that for every ϕ(x, t) = tp(x) there exists a function ψ with
ψ(x, t) ≈ ϕ(x, ts) and s ∈ (0, 1). Just take ψ(x, t) = tq(x) with s ∈ (1/p−, 1)
and q(x) := sp(x) for all x. In the general case the existence of such a
ψ with s ∈ (0, 1) is not obvious. However, if ϕ∗ satisfy the Δ2-condition,
then the existence of such a function ψ follows from the results from [239,
Lemmas 1.2.2 and 1.2.3].
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If we apply Theorems 5.4.13 and 5.4.15 to the variable exponent Lebesgue
spaces, we immediately get the following result.

Theorem 5.4.17. Let p ∈ P(Rn) with 1 < p− � p+ � ∞ and p ∈ A. Then
there exists s ∈ (1, p−) such that ϕp(·)/s ∈ A and the operators Ts,Q are
uniformly bounded on Lp(·)(Rn) with respect to Q ∈ Yn1 .

5.5 A Sufficient Condition for the Boundedness of M *

Let ϕ be a proper generalized Φ-function on R
n such that M is bounded

from Lϕ(Rn) to Lϕ(Rn). Then ϕ ∈ A and it follows from Theorem 5.2.18
that MQϕ � (MQϕ

∗)∗. Therefore, MQϕ � (MQϕ
∗)∗ is necessary for the

boundedness of M . In the following we define a new relation � which is
stronger than � and use it to state a sufficient condition for the boundedness
of M .

Definition 5.5.1. Let ϕ, ψ : Xn×R� → R� be generalized Φ-functions on
Yn1 . We say that ψ is strongly dominated by ϕ, ψ � ϕ, if for every A1 > 0
there exist A2 > 0 such that the following holds:

For all families Qj ∈ Yn1 , j ∈ Z, with

∞∑

k=−∞

∑

Q∈Qk
|Q|ϕ

(
Q, 2k

)
� A1 (5.5.2)

there holds

∞∑

k=−∞

∑

Q∈Qk
|Q|ψ

(
Q, 2k

)
� A2. (5.5.3)

Remark 5.5.4. Let ϕ be a proper, generalized Φ-function on R
n that satis-

fies the Δ2-condition. Then due to the Δ2-condition it is possible to replace
2k in Definition 5.5.1 by αk for any α > 1. Also due to the Δ2-condition it
suffices to verify Definition (5.5.1) for a single choice of A1 > 0.

The next lemma shows that strong domination � is stronger than domi-
nation �, as the name indicates.

Lemma 5.5.5. Let ϕ, ψ : Xn × R� → R� be generalized Φ-functions on
Yn1 . If ϕ� ψ, then ϕ � ψ.

Proof. Let A1 := 1 and choose A2 > 0 such that (5.5.2) implies (5.5.3). Let
Q ∈ Yn1 and t ∈ lϕ(Q) with ‖t‖lϕ(Q) � 1, so that
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∑

Q∈Q
ϕ(Q, tQ) � 1.

For every Q ∈ Q there exists kQ ∈ N such that 2kQ � tQ < 2kQ+1. Define
Qk ∈ Yn1 for k ∈ Z by Qk := {Q ∈ Q : kQ = k}. Then

∞∑

k=−∞

∑

Q∈Qk
ϕ(Q, 2k) �

∑

Q∈Q
ϕ(Q, tQ) � 1.

Let m ∈ Z such that 2m−1 < A2 � 2m. Then

∞∑

k=−∞

∑

Q∈Qk
ψ(Q, 2k−m) � 2−m

∞∑

k=−∞

∑

Q∈Qk
ψ(Q, 2k) � 2−mA2 � 1.

This gives

∑

Q∈Q
ψ
(
Q, 2−1−mtQ

)
�

∞∑

k=−∞

∑

Q∈Qk
ψ(Q, 2k−m) � 1.

This proves ‖t‖lϕ(Q) � 2m+1 � 4A2. Therefore, lϕ(Q) ↪→ lψ(Q) uniformly in
Q ∈ Yn1 . In other words ϕ � ψ. ��

From Theorem 5.2.18 we know that ϕ ∈ A is equivalent to MQϕ �
(MQϕ

∗)∗. Since by the previous Lemma MQϕ � (MQϕ
∗)∗ is a stronger

assumption, we can define a more restrictive class than A, namely Astrong.

Definition 5.5.6. By Astrong we denote the set of all generalized Φ-functions
ϕ on R

n such that MQϕ � (MQϕ
∗)∗.

In the context of Lebesgue spaces with variable exponents there is a
close connection between A and Astrong. Indeed, we show in Theorem 5.7.1
that p ∈ A is equivalent to p ∈ Astrong as long as p ∈ P(Rn) with
1 < p− � p+ <∞.

Lemma 5.5.7. Let ϕ ∈ A be proper. For every λ > 0 and f ∈ Lϕ(Rn) there
exists Q1, . . . ,Qξn ∈ Yn1 , where ξn only depends on the dimension n, such
that

MQf > 2−nλ for all Q ∈ Qj , j = 1, . . . , ξn,

and
ˆ
ϕ(x, λ)χ{Mf>λ} dx � 2

ξn∑

j=1

∑

Q∈Qj
|Q| (MQϕ)(λ),

where c only depends on the Δ2-constant of ϕ and the dimension n.
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Proof. Let f ∈ Lϕ(Rn) and λ > 0. According to Theorem 4.4.10,M is of weak
type ϕ, since ϕ ∈ A. In particular

´
Rn
ϕ(x, λ)χ{Mf>λ} dx < ∞. Due to the

absolute continuity of the integral there exists a compact set K⊂⊂{Mf > λ}
such that

ˆ

Rn

ϕ(x, λ)χ{Mf>λ} dx � 2
ˆ

Rn

ϕ(x, λ)χK dx. (5.5.8)

Since K is compact, it is bounded. For every x ∈ K we have Mf(x) > λ, so
by (4.4.11), Mcenterf(x) > 2−nλ. Thus, there exists a cube Qx with center x
such that MQxf > 2−nλ. The collection {Qx}x∈K covers the compact set K.
From the family {Qx}x∈K we can select by the Besicovitch covering theorem,
Theorem 1.4.6, locally 1-finite families Q1, . . . ,Qξn , which together cover K.
The natural number ξn only depends on the dimension n. We estimate

ˆ

Rn

ϕ(x, λ)χK dx �
ˆ

Rn

ϕ(x, λ)
ξn∑

j=1

∑

Q∈Qj
χQ dx =

ξn∑

j=1

∑

Q∈Qj
|Q| (MQϕ)(λ).

This and (5.5.8) prove the assertion. ��

Lemma 5.5.9. Let ψ, ϕ be proper, generalized Φ-functions on R
n with

ψ(·, t) ≈ ϕ(·, ts) for some s � 1. Then

(MQψ)(t) ≈ (MQϕ)(ts),

(MQψ
∗)∗(t) � c (MQϕ

∗)∗(ts).
(5.5.10)

If ψ ∈ A, then ϕ ∈ A. If ψ ∈ Astrong, then ϕ ∈ Astrong.

Proof. The estimate (MQψ)(t) ≈ (MQϕ)(ts) is an immediate consequence of
ψ(t) ≈ ϕ(ts). We estimate with Lemma 5.2.8.

(MQϕ
∗)∗(ts) = inf

f :MQf�ts
MQ

(
ϕ(·, f)

)

� c inf
f :MQf�ts

MQ

(
ψ(·, |f |1/s)

)

= c inf
g :Ms,Qg�t

MQ

(
ψ(·, g)

)

� c inf
f :MQg�t

MQ

(
ψ(·, g)

)

= c (MQψ
∗)∗(t).

The claims for ϕ ∈ A and ϕ ∈ Astrong follow from (5.5.10), Theorem 5.2.18,
and Definition 5.5.1. ��
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Corollary 5.5.11. If p ∈ Astrong and s � 1, then sp ∈ Astrong.

We are now prepared to prove the main result of this section. The tech-
nique is similar to the real interpolation result of Marcinkiewicz (see for
example [360]). However, due to the additional difficulties in the context of
Musielak–Orlicz spaces we have to rely on the class Astrong rather than A.
Note that it would be sufficient to use A if we would stay in the context of
weighted Lebesgue spaces.

Theorem 5.5.12. Let ψ0 and ϕ be proper, generalized N-functions on R
n

such that ψ0, ϕ, ψ∗
0 and ϕ∗ satisfy the Δ2-condition and ψ0(x, t) ≈ ϕ(x, ts0 )

for all x ∈ R
n and t � 0 and for some s0 ∈ (0, 1). If ψ0 ∈ Astrong, then M is

bounded from Lϕ(Rn) to Lϕ(Rn).

Proof. For s1 > 1 define ψ1(·, t) := ϕ(·, ts1 ). Then ψ1 is an N-function
and ψ1(·, t) = ϕ(·, ts1 ) ≈ ψ0(·, ts1/s0). Moreover ψj(·, t) ≈ ϕ(·, tsj ) for
j = 0, 1. From (MQψ0) � (MQψ

∗
0)∗ and ψ1(·, t) = ψ0(·, ts1/s0) we deduce

by Lemma 5.5.9 that (MQψ1) � (MQψ
∗
1)∗. It suffices to show that there

exists A > 0 such that for all f ∈ Lϕ(Rn)

ˆ

Rn

ϕ(x, f) dx � 1 ⇒
ˆ

Rn

ϕ(x,Mf) dx � A.

Let f ∈ Lϕ(Rn) with
´
ϕ(x, f) dx � 1. We estimate

ˆ

Rn

ϕ(x,Mf) dx =

∞̂

0

ˆ

Rn

ϕ′(x, λ)χ{Mf>λ} dx dλ

�
∞̂

0

∞∑

k=−∞
ϕ(x, 2k+2)χ{Mf>2k+1} dx.

For k ∈ Z > 0 define f0,k, f1,k : R
n → R by

f0,k := f χ{|f |>2k+1},

f1,k := f χ{|f |�2k+1}.

Then

{Mf > 2k+1} ⊂ {Mf0,k > 2k} ∪ {Mf1,k > 2k}.
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Hence
ˆ

Rn

ϕ(x,Mf) dx � c

1∑

j=0

∞∑

k=−∞

ˆ

Rn

ϕ(x, 2k+2)χ{Mfj,k>2k} dx

� c
1∑

j=0

∞∑

k=−∞

ˆ

Rn

ϕ(x, 2k)χ{Mfj,k>2k} dx,

where we used that ϕ satisfies the Δ2-condition. Due to Lemma 5.5.7 there
exist for each k ∈ Z and j = 0, 1 families Qj,k,1, . . . ,Qj,k,ξn , where ξn only
depends on the dimension d, such that

MQf > 2k for all Q ∈
ξn⋃

l=1

Qj,k,l

ˆ

Rn

ϕ(x, 2k)χ{Mfj,k>2k} dx � 2
ξn∑

l=1

∑

Q∈Qj,k,l
|Q|(MQϕ)(2k).

Hence,
ˆ

Rn

ϕ(x,Mf) dx � c

1∑

j=0

ξn∑

l=1

∞∑

k=−∞

∑

Q∈Qj,k,l
|Q| (MQϕ)(2k)

� c

1∑

j=0

ξn∑

l=1

∞∑

k=−∞

∑

Q∈Qj,k,l
|Q| (MQψj)(2k/sj ).

(5.5.13)

We will show that for any j = 0, 1 and l = 1, . . . , ξn

(Ij,l) :=
∞∑

k=−∞

∑

Q∈Qj,k,l
|Q|
(
MQψ

∗
j

)∗(2k/sj ) � c, (5.5.14)

where c does not depend on f , j, and l. Once we have proven this, MQψj �
(Mψ∗

j )∗ for j = 0, 1 and Remark 5.5.4 imply the boundedness of the right-
hand side of (5.5.13). This concludes the proof of the theorem. It remains to
prove (5.5.14).

The definition of fj,k and 0 < s0 < 1 < s1 imply, for j = 0, 1 and k ∈ Z,
that

0 � |fj,k|1−1/sj 2k(1/sj−1) χ{fj,k �=0} � 1, (5.5.15)

where we use the convention that the term in the middle is zero outside the
set {fj,k �= 0} regardless of whether the factor in front of it is undefined. This,
the convexity of ψj and ψj(·, t) ≈ ϕ(·, tsj ) imply
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ψj

(
|fj,k| 2k(1/sj−1)

)
� ψj

(
|fj,k|1/sj

)
|fj,k|1−1/sj 2k(1/sj−1) χ{fj,k �=0}

� c ϕ
(
·, |fj,k|

)
|fj,k|1−1/sj 2k(1/sj−1) χ{fj,k �=0} (5.5.16)

We use MQfj,k > 2k, Lemma 5.2.8, (5.5.16), and the definition of fj,k to
estimate

(Ij,l) � c

∞∑

k=−∞

∑

Q∈Qj,k,l
|Q|
(
MQψ

∗
j

)∗(2k(1/sj−1)MQfj,k
)

� c

∞∑

k=−∞

∑

Q∈Qj,k,l
|Q|MQ

(
ψj
(
fj,k 2k(1/sj−1)

))

� c

∞∑

k=−∞

ˆ

Rn

(
ψj
(
fj,k 2k(1/sj−1)

))
dx

� c

∞∑

k=−∞

ˆ

Rn

ϕ(|fj,k|) |fj,k|1−1/sj 2k(1/sj−1) χ{fj,k �=0} dx

= c

ˆ

Rn

ϕ(x, |f |) |f |1−1/sj
∞∑

k=−∞
2k(1/sj−1) χ{fj,k=f,f �=0} dx.

By definition of fj,k and 0 < s0 < 1 < s1,

∞∑

k=−∞
2k(1/s0−1)χ{f0,k=f,f �=0} =

∞∑

k=−∞
2k(1/s0−1)χ{|f |>2k+1} � c |f |1/s0−1

,

∞∑

k=−∞
2k(1/s1−1)χ{f1,k=f,f �=0} =

∞∑

k=−∞
2k(1/s1−1)χ{0<|f |�2k+1} � c |f |1/s1−1

,

where c depends on s0 and s1. In combination with the previous estimate
this gives

(Ij,l) � c

ˆ

Rn

ψj
(
|f |1/sj

)
dx � c

ˆ

Rn

ϕ
(
x, |f |

)
dx.

This proves the theorem. ��

If we apply Theorem 5.5.12 to the variable exponent Lebesgue spaces, we
immediately get the following result.

Corollary 5.5.17. Let p ∈ P(Rn) with 1 < p− � p+ < ∞. If there exists
s ∈ (1/p−, 1) such that sp ∈ Astrong, then M is bounded from Lp(·)(Rn) to
Lp(·)(Rn).
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If ϕ ∈ Φ(Rn) is proper such that M is bounded on Lϕ(Rn), then obvi-
ously ϕ ∈ A. The following theorem extends this result to the stronger
condition Astrong.

Theorem 5.5.18. Let ϕ be a proper, generalized N-function on R
n such that

ϕ and ϕ∗ satisfy the Δ2-condition. If M is bounded from Lϕ(Rn) to Lϕ(Rn),
then ϕ ∈ Astrong.

Proof. Let Qj ∈ Yn1 , j ∈ Z, be such that

∞∑

k=−∞

∑

Q∈Qj
|Q|
(
MQϕ

∗)∗(2j) � 1.

For every j ∈ Z and Q ∈ Qj we can choose due to Remark 5.2.9 a function
fQ ∈ L1(Q) such that MQfQ = 2j and (MQϕ

∗)∗(MQfQ) = MQ(ϕ(fQ)). Set

f := ϕ−1

(

·,
∞∑

j=−∞

∑

Q∈Qj
χQ ϕ(·, fQ)

)

.

Then ˆ

Rn

ϕ(x, f) dx =
ˆ

Rn

∞∑

j=−∞

∑

Q∈Qj
χQ ϕ(x, fQ) dx

=
∞∑

j=−∞

∑

Q∈Qj
|Q|MQ

(
ϕ(·, fQ)

)

=
∞∑

j=−∞

∑

Q∈Qj
|Q| (MQϕ

∗)∗(2j)

� 1.

The boundedness of M on Lϕ implies
´

Rn
ϕ(Mf) dx � c. Then

MQf � MQ

(
ϕ−1
(
·, χQϕ(·, fQ)

))
= MQfQ = 2j

every j ∈ Z and Q ∈ Qj. In particular Q ⊂ {Mf > 2j} and consequently⋃
Q∈Qj Q ⊂ {Mf > 2j}. This implies that

∞∑

j=−∞

∑

Q∈Qj
|Q| (MQϕ)(2j) �

∞∑

j=−∞

ˆ
ϕ(2j+1)χ{Mf>2j} dx

� c

ˆ

Rn

ϕ(x,Mf) dx

� c.

This proves the assertion. ��
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Remark 5.5.19. Let us consider the case of classical weighted Lebesgue
spaces, i.e. ϕ(x, t) = tp ω(x) with 1 � p < ∞. Then ϕ ∈ A immediately
implies ϕ ∈ Astrong: Indeed, by Theorem 5.2.18 MQϕ � (MQϕ

∗)∗. For a
cube Q let t0,Q := 1/‖χQ‖ϕ; then it follows from Lemma 5.7.14 that

(MQϕ)(t) ≈
(

t

t0,Q

)p
(MQϕ)(t0,Q) ≈

(
t

t0,Q

)p

≈
(

t

t0,Q

)p
(MQϕ

∗)∗(t0,Q) ≈ (MQϕ
∗)∗(t)

uniformly in t > 0 and Q. Thus (5.6.14) holds (for the choice ϕ(Q, 2k) :=
(MQϕ)(2k) and ψ(Q, 2k) := (MQϕ

∗)∗(2k)) with b := 0. Therefore, MQϕ �
(MQϕ

∗)∗ and ϕ ∈ Astrong.
As a consequence we can deduce from our theorems the well known left-

openness results for the Muckenhoupt classes Ap: Let ω ∈ Ap with 1 < p < ∞
and let ϕ(x, t) := tp ω(x). Due to the remarks after equation (5.2.4) we know
that ϕ ∈ A if and only if ω ∈ Ap, so ϕ ∈ A. Due to Theorem 5.4.15 and p > 1
we find q ∈ (1, p) such that ψ(x, t) := tq ω(x) satisfies ψ ∈ A. This proves that
ω ∈ Aq and proves the left-openness of the Muckenhoupt class Ap. By the
considerations in the beginning of this remark we know that ψ ∈ A implies
ψ ∈ Astrong. So we can use Theorem 5.5.12 to conclude that M is bounded
on Lϕ = Lp(ω dx). Overall, we have shown that ω ∈ Ap with p > 1 implies
that M is bounded on Lp(ω dx).

Remark 5.5.20. Let ϕ be a proper, generalized N-function on R
n such that

ϕ and ϕ∗ satisfy the Δ2-condition. We know that ϕ ∈ A and ϕ ∈ Astrong

(see Theorem 5.5.18) are both necessary for the boundedness of the Hardy–
Littlewood maximal operator M from Lϕ(Rn) to Lϕ(Rn). However, it is
an open problem if ϕ ∈ A or ϕ ∈ Astrong is in general sufficient for
the boundedness of M . Theorems 5.4.13 and 5.4.13 provide the necessary
left-openness result for A. But in Theorem 5.5.12 we need the correspond-
ing left-openness for Astrong. In the case of weighted Lebesgue spaces, i.e.
ϕ(x, t) = ω(x) tq, it is easily seen (Remark 5.5.19) that ϕ ∈ A if and only if
ϕ ∈ Astrong. In the case of Lebesgue spaces with variable exponents the sit-
uation is much more difficult. However, in Sect. 5.7 we will see that if p ∈ A
and p− > 1, then ϕ ∈ Astrong. The proof for this result is elaborate. Due to
these two fundamental examples we conjecture that ϕ ∈ A is sufficient for
the boundedness of M . This of course is topic to further research.

5.6 Characterization of (Strong-)Domination*

In this section we characterize the property of domination and strong dom-
ination in a “pointwise” sense, i.e. for proper generalized Φ-functions ϕ, ψ
on Xn × R� with ψ � ϕ or ψ � ϕ we estimate ψ(Q, t) in terms of ϕ(Q, t).
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This is similar to the characterization of the embeddings in Theorem 2.8.1.
We need this in Sect. 5.7 in order to show that domination is equivalent to
strong domination in the context of Lebesgue spaces with variable exponents
Lp(·)(Rn) with p− > 1. We begin with a general lemma.

Lemma 5.6.1. Let X be an arbitrary set. Let Y be a subset of the power set
of X such that M1 ⊂ M2 ∈ Y implies M1 ∈ Y . Let ϕ, ψ : X → R� and
A1 > 0 and A2, A3 � 0 be such that

∑

ω∈M
ϕ(ω) � A1 ⇒

∑

ω∈M
ψ(ω) � A2

∑

ω∈M
ϕ(ω) +A3 (5.6.2)

for all M ∈ Y . Then there exists b : X → R� such that

ϕ(ω) � A1

4
⇒ ψ(ω) � max

{
4A3

A1
, 2A2

}

ϕ(ω) + b(ω) (5.6.3)

for all ω ∈ X, and

sup
M∈Y

∑

ω∈M
b(ω) � A3. (5.6.4)

Proof. For ω ∈ X , γ, δ > 0 define

G(ω, γ, δ) :=

⎧
⎨

⎩

ψ(ω) − γ

2
ϕ(ω) if ϕ(ω) < min

{
δ, γ−1 ψ(ω)

}
,

0 otherwise.

Then G(ω, γ, δ) � 0.
Claim 1: For all ω ∈ X

ϕ(ω) < δ ⇒ ψ(ω) � γ ϕ(ω) +G(ω, γ, δ). (5.6.5)

Proof of Claim 1. We prove the claim by contradiction. Assume there exists
ω ∈ X with ϕ(ω) � δ and ψ(ω) > γ ϕ(ω) + G(ω, γ, δ). Especially,
ψ(ω) − γ

2 ϕ(ω) > G(ω, γ, δ). From this and the definition of G(ω, γ, δ) we
deduce ϕ(ω) � min {δ, γ−1ψ(ω)}. Since ϕ(ω) < δ, this implies ϕ(ω) �
γ−1ψ(ω). Thus ψ(ω) � γ ϕ(ω) � γ ϕ(ω) + G(ω, γ, δ) which contradicts the
assumptions. ��

Claim 2: Let δ0 := A1/4, γ0 := max {4A3/A1 , 2A2}. Then

sup
M∈Y

∑

ω∈M
G(ω, γ0, δ0) � A3.
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Proof of Claim 2. We prove the claim by contradiction, so assume that the
claim does not hold. Then there exists M0 ∈ Y such that

∑

ω∈M0

G(ω, γ0, δ0) > A3.

Therefore there exists M1 ⊂ M0 and ω0 ∈ M1 such that

G(ω, γ0, δ0) > 0 for all ω ∈ M1,
∑

ω∈M1\{ω0}
G(ω, γ0, δ0) � A3,

∑

ω∈M1

G(ω, γ0, δ0) > A3. (5.6.6)

Since M1 ⊂ M0 ∈ Y , M1 ∈ Y . From the positivity of G we deduce that M1

is at most countable and that

G(ω, γ0, δ0) = ψ(ω) − γ0

2
ϕ(ω) for all ω ∈M1, (5.6.7)

ϕ(ω) < min
{
δ0, γ

−1
0 ψ(ω)

}
for all ω ∈M1.

This implies that

∑

ω∈M1

ϕ(ω) � δ0 +
∑

ω∈M1\{ω0}
γ−1
0 ψ(ω)

= δ0 +
∑

ω∈M1\{ω0}
γ−1
0

(

G(ω, γ0, δ0) +
γ0

2
ϕ(ω)

)

� δ0 + γ−1
0 A3 +

1
2

∑

ω∈M1\{ω0}
ϕ(ω).

Note that this inequality remains true if we replace M1 by an arbitrary finite
subset M ⊂ M1. For all such sets the last term is finite and can be absorbed
by the left-hand side. By exhausting M1 by finite subsets we can pass back
to M1. We get

∑

ω∈M1

ϕ(ω) � 2 δ0 + 2 γ−1
0 A3 � A1. (5.6.8)

On the other hand (5.6.7), (5.6.6), and γ0 � 2A2 imply that

∑

ω∈M1

ψ(ω) =
∑

ω∈M1

(

G(ω, γ0, δ0) +
γ0

2
ϕ(ω)

)

> A3 +A2

∑

ω∈M1

ϕ(ω).

Now this and (5.6.8) contradict (5.6.2). This proves Claim 2. ��
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We complete the proof by choosing b(Q) := G(Q, γ0, δ0). Then the claim
follows from Claims 1 and 2 in view of the definition of G. ��

Suppose there exist b : X → R�, A1 > 0, and A2, A3 � 0 such that (5.6.3)
and (5.6.4) hold. Then

∑

ω∈M
ϕ(ω) � A1

4
⇒

∑

ω∈M
ψ(ω) � max

{
4A3

A1
, 2A2

} ∑

ω∈M
ϕ(ω) +A3

for all M ∈ Y .

Definition 5.6.9. For b : Xn → R� we define

‖b‖Yn1 ,1 := sup
Q∈Yn1

∑

Q∈Q
|Q| b(Q) and ‖b‖Yn1 ,∞ := sup

Q∈Q
b(Q).

Theorem 5.6.10. Let ϕ, ψ be proper, generalized Φ-functions on Yn1 such
that ϕ,ϕ∗, ψ, ψ∗ satisfy the Δ2-condition. Then ϕ � ψ if and only if there
exists b : Xn → R� with ‖b‖Yn1 ,1 � A2 such that

|Q|ϕ(Q, t) � A1

4
⇒ ψ(Q, t) � 4A2

A1
ϕ(Q, t) + b(Q) (5.6.11)

for all Q ∈ Xn and all t � 0.

Proof. Assume first that ϕ � ψ. Let X := Xn and Y := Yn1 . Then X and
Y are admissible for Lemma 5.6.1. For u : Xn → R� define ϕ[u], ψ[u] :
Xn → R� by

ϕ[u](Q) := |Q|ϕ
(
Q, u(Q)

)
, ψ[u](Q) := |Q|ψ

(
Q, u(Q)

)
.

Since ϕ � ψ,

∑

Q∈Q
ϕ[u](Q) � A1 ⇒

∑

Q∈Q
ψ[u](Q) � A2 (5.6.12)

for all Q ∈ Yn1 . Thus we can apply Lemma 5.6.1 to X , Y , and ϕ[u], ψ[u].
Hence there exists a[u] : Xn → R� with ‖a[u]‖Yn1 ,1 � A2 such that

ϕ[u](Q) � A1

4
⇒ ψ[u](Q) � 4A2

A1
ϕ[u](Q) + a[u](Q)

for all Q ∈ Xn.
Thus for all Q ∈ Xn

|Q|ϕ
(
Q, u(Q)

)
� A1

4
⇒ |Q|ψ

(
Q, u(Q)

)
� 4A2

A1
|Q|ϕ

(
Q, u(Q)

)
+ a[u](Q).
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Define b : Xn × R� → R by

b(Q, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

|Q|−1 inf
u :Xn→R�
with u(Q)=t

a[u](Q) if |Q|ϕ(Q, t) � A1

4
,

0 otherwise.

Then for all Q ∈ Xn and all t � 0

|Q|ϕ
(
Q, t
)

� A1

4
⇒ ψ

(
Q, t
)

� 4A2

A1
ϕ
(
Q, t
)

+ b(Q, t)

and for all Q ∈ Yn1 and all sequences {tQ}Q∈Q, tQ � 0, holds

sup
Q∈Q

∑

Q∈Q
|Q| b(Q, tQ) � A2.

Finally, we define b : Xn → R� by

b(Q) := sup
t�0

b(Q, t).

Then the claim follows directly from the previous two estimates.
If on the other hand there exists b : Xn → R� and A1, A2 > 0 such that

‖a[u]‖Yn1 ,1 � A2 and (5.6.11) hold, then

∑

Q∈Q
|Q|ϕ(Q, tQ) � A1

4
⇒

∑

Q∈Q
|Q|ψ(Q, tQ) � 2A2,

The strong Δ2-condition for ϕ and ψ implies that ϕ � ψ. ��
Theorem 5.6.13. Let ϕ, ψ : Xn × R� → R�. Then ψ � ϕ if and only if
there exists b : Xn × {2k : k ∈ Z} → R� such that

|Q|ϕ
(
Q, 2k

)
� A1

4
⇒ ψ

(
Q, 2k

)
� 4A2

A1
ϕ
(
Q, 2k

)
+ b
(
Q, 2k

)
(5.6.14)

for all Q ∈ Xn and k ∈ Z, and

∞∑

k=−∞

∑

Q∈Qk
|Q| b

(
Q, 2k

)
� A2 (5.6.15)

for all Qk ∈ Yn1 and all sequences {tQ}Q∈Qk with tQ � 0.
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Proof. Assume that ψ � ϕ, and let A1 and A2 be the constants from
(5.5.2) and (5.5.3). We want to prove (5.6.14) and (5.6.15). Let X :=
Xn × {2k : k ∈ Z} and define πk : X → Xn by

πk(M) :=
{
Q ∈ Xn : (k,Q) ∈M

}
.

Further let

Y :=
{
M ⊂ X : πk(M) ∈ Yn1 for all k ∈ Z

}
.

Then X,Y are admissible for Lemma 5.6.1 and so there exists b : X → R�
which satisfies (5.6.14).

If on the other hand (5.6.14) holds, then summation of (5.6.14) over k ∈ Z

and Q ∈ Qk yield that

∞∑

k=−∞

∑

Q∈Qk
|Q|ϕ

(
Q, 2k

)
� A1

4
⇒

∞∑

k=−∞

∑

Q∈Qk
|Q|ψ

(
Q, 2k

)
� 2A2,

i.e. ψ � ϕ. ��

5.7 The Case of Lebesgue Spaces with Variable
Exponents*

It is clear that for the boundedness of M on Lp(·)(Rn) it is necessary that p
is of class A. We want to show in this section that p ∈ A is also sufficient
for the boundedness of M on Lp(·)(Rn) as long as 1 < p− � p+ < ∞. With
the results so far this is not directly possible and there is still a small gap
to close. Let us point out what remains to show: Assume that p ∈ A. Then
due to Theorem 5.4.15 it is possible to choose s ∈ (1/p−, 1) such that q ∈ A
with q(x) := sp(x) for all x ∈ R

n. If additionally q ∈ Astrong, then we can
use Theorem 5.5.12 to conclude that M is bounded on Lp(·)(Rn). So we have
q ∈ A but need q ∈ Astrong. We close this gap by showing that q ∈ A implies
q ∈ Astrong. The proof of this result relies on the special structure of Lp(·).

Theorem 5.7.1. Let p ∈ P(Rn) with 1 < p− � p+ <∞. Then p ∈ A if and
only if p ∈ Astrong.

Before we get to the proof of this theorem let us present the following
important implication.
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Theorem 5.7.2. Let p ∈ P(Rn) with 1 < p− � p+ < ∞. Then the following
are equivalent

(a) p ∈ A.
(b) p′ ∈ A.
(c) M is bounded on Lp(·)(Rn).
(d) Ms1 is bounded on Lp(·)(Rn) for some s1 > 1 (“left-openness”).
(e) M is bounded on Lsp(·)(Rn) for some s ∈ (1/p−, 1) (“left-openness”).
(f) M is bounded on Lp

′(·)(Rn).

Proof. (a) ⇔ (b): It suffices to show the equivalence for ϕ̃p(·). Due to
Lemma 3.1.3 we know that (ϕ̃p(·))∗ = ϕ̃p′(·), so the equivalence follows
directly from Lemma 5.2.2.
(c) ⇒ (a): This is obvious, since TQf � Mf .
(a) ⇒ (c): Let p ∈ A. Then by Theorem 5.4.17 there exists s ∈ (1/p−, 1)
such that q ∈ A with q(x) := sp(x) for all x ∈ R

n. So Theorem 5.7.1 implies
that q ∈ Astrong, which, by Corollary 5.5.17, implies that M is bounded on
Lp(·)(Rn).
(a) ⇒ (e): By the argument of the previous case, q ∈ A. So the implication
“(a) ⇔ (c)” implies that M is bounded on Lq(·)(Rn).
(d) ⇔ (e): It suffices to prove this for ϕp(·) = ϕ̄p(·). Let s = 1/s1; then the
claim follows from the identity

‖Ms1f‖p(·) =
∥
∥(M(|f |s1))

1
s1
∥
∥
p(·) =

∥
∥M
(
|f |s1

)∥
∥

1
s1
p(·)
s1

=
∥
∥M
(
|f |s1

)∥
∥

1
s1
sp(·).

(d) ⇒ (c): This follows from Mf � Ms1f , since s1 > 1.
(b) ⇔ (f): This follows from (a) ⇔ (c) with p replaced by p′. ��
Remark 5.7.3. A careful tracking of the constants reveals that the operator
norm of M in Lp(·) and Lp

′(·) in the previous theorem only depends on n,
p−, p+ and the A-constant of p. Moreover, the operator norm of M on Lsp(·)

and Ms1 on Lp(·) depend additionally on s1 and s.

Before we get to the proof of Theorem 5.7.1 we need some auxiliary results.

Lemma 5.7.4. Let ϕ ∈ A be proper and satisfy the Δ2-condition. Then there
exists s > 1 such that (Ms,Qϕ)(t) � (MQϕ)(t).

Proof. Due to Corollary 5.4.10 we have ϕ ∈ A∞. So by Lemma 5.4.12 there
exists δ > 0 and A � 1 such that

∥
∥
∥
∥
∥

∑

Q∈Q
tQ

∣
∣
∣
∣
f

MQf

∣
∣
∣
∣

δ

χQ

∥
∥
∥
∥
∥
ϕ

� A

∥
∥
∥
∥

∑

Q∈Q
tQ χQ

∥
∥
∥
∥
ϕ

(5.7.5)

for all Q ∈ Yn1 , all {tQ}Q∈Q with tQ � 0, and all f ∈ L1
loc with MQf �= 0,

Q ∈ Q. Define s := 1 + δ. Let Q ∈ Yn1 and {uQ}Q∈Q with uQ > 0 be such
that
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∑

Q∈Q
|Q| (MQϕ)(uQ) � 1

so that

�ϕ

( ∑

Q∈Q
χQ uQ

)
� 1 and

∥
∥
∥
∥

∑

Q∈Q
χQ uQ

∥
∥
∥
∥
ϕ

� 1. (5.7.6)

We have to show that

∑

Q∈Q
|Q| (Ms,Qϕ)

(
uQ
A2

)

� 1, (5.7.7)

where A2 � 1 does not depend on Q or {uQ}Q∈Q. Define f ∈ L1
loc(R

n) by

f :=
∑

Q∈Q
χQ ϕ

(

·, uQ
2A

)

,

so that MQf �= 0 for all Q ∈ Q. Now (5.7.5) implies that

∥
∥
∥
∥
∥

∑

Q∈Q
uQ

∣
∣
∣
∣
f

MQf

∣
∣
∣
∣

δ

χQ

∥
∥
∥
∥
∥
ϕ

� A.

The unit ball property and the convexity of ϕ imply that

1 �
∑

Q∈Q

ˆ

Q

ϕ

(
uQ
A

∣
∣
∣
∣
f

MQf

∣
∣
∣
∣

δ)

dx � 2
∑

Q∈Q

ˆ

Q

ϕ

(
uQ
2A

)∣
∣
∣
∣
f

MQf

∣
∣
∣
∣

δ

χ{|f |�MQf} dx.

On the other hand (5.7.6) implies that

1 �
∑

Q∈Q

ˆ

Q

ϕ

(
uQ
A

)

dx � 2
∑

Q∈Q

ˆ

Q

ϕ

(
uQ
2A

)∣
∣
∣
∣
f

MQf

∣
∣
∣
∣

δ

χ{|f |<MQf} dx.

Combining the two previous estimates we obtain, with s = 1 + δ,

1 �
∑

Q∈Q

ˆ

Q

ϕ

(
uQ
2A

)∣
∣
∣
∣
f

MQf

∣
∣
∣
∣

δ

dx

=
∑

Q∈Q

ˆ

Q

ϕ

(
uQ
2A

)1+δ

dx

(

(MQϕ)
(
uQ
2A

))−δ
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=
∑

Q∈Q
|Q|
(

(Ms,Qϕ)
(
uQ
2A

))1+δ (

(MQϕ)
(
uQ
2A

))−δ

�
∑

Q∈Q
|Q| (Ms,Qϕ)

(
uQ
2A

)

.

This proves (5.7.7), and concludes the proof. ��

Remark 5.7.8. Lemma 5.7.4 in particular shows thatMs,Qϕ is a generalized
Φ-function on Q for every Q ∈ Yn1 . Indeed, the convexity and the left-
continuity of Ms,Qϕ follow as in Corollary 5.2.12. Now,
limt→∞(Ms,Qϕ))(t) = ∞ follows from Ms,Qϕ(t) � MQϕ(t) and the corre-
sponding limit for MQϕ(t). The limit limt→0(Ms,Qϕ)(t) = 0, however, follows
from the estimate Ms,Qϕ � MQϕ of Lemma 5.7.4.

Note that Lemma 5.7.4 is not restricted to the case of Lebesgue spaces with
variable exponents. The lemma provides a kind of reverse Hölder estimate.
In the case of weighted (classical) Lebesgue spaces, i.e. ϕ(x, t) = tq ω(x),
it matches exactly the reverse Hölder estimate for Muckenhoupt weights
ω ∈ Aq. Let us summarize our results so far.

Lemma 5.7.9. Let ϕ be a proper, generalized N-function on R
n such that ϕ

and ϕ∗ satisfy the Δ2-condition. Then the following conditions are equivalent:

(a) ϕ ∈ A.
(b) MQϕ �

(
MQϕ

∗)∗.
(c) There exists s > 1 such that Ms,Qϕ � MQϕ �

(
MQϕ

∗)∗ �
(
Ms,Qϕ

∗)∗.

Proof. The implication (a) ⇔ (b) follows from Theorem 5.2.18 while (c)⇒ (b)
is obvious. To show (a), (b) ⇒ (c), let ϕ ∈ A or equivalently MQϕ �
(MQϕ

∗)∗. Then by Lemma 5.2.2 also ϕ∗ ∈ A. Thus Lemma 5.4.9 implies
that ϕ and ϕ∗ are of class A∞. Hence, by Lemma 5.7.4 there exists s > 1
such that Ms,Qϕ � MQϕ and Ms,Qϕ

∗ � MQϕ
∗. From Remark 5.2.19 it fol-

lows that (MQϕ
∗)∗ � (Ms,Qϕ

∗)∗, which completes the proof. ��

For the proof of Theorem 5.7.1 we need more auxiliary results.

Lemma 5.7.10. Let ϕ ∈ Φ(Rn) be proper and satisfy the Δ2-condition.
Then Ms,Qϕ and (Ms,Qϕ

∗)∗ satisfy the Δ2-condition with the same Δ2-
constant as ϕ.

Proof. Let K denote the Δ2-constant of ϕ. The estimate ϕ(2t) � Kϕ(t)
immediately implies (Ms,Qϕ)(2t) � K(Ms,Qϕ)(t).

Due to Lemma 2.6.4 the estimate ϕ(x, 2t) � Kϕ(x, t) for all x ∈ R
n and

t � 0 is equivalent to ϕ∗(x, t/2)� Kϕ∗(x, t/K). This implies (Ms,Qϕ
∗)(t/2) �

K(Ms,Qϕ
∗)(t/K), which is by Lemma 2.6.4 equivalent to (Ms,Qϕ

∗)∗(2t) �
K (Ms,Qϕ

∗)∗(t). ��
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Lemma 5.7.11. Let ψj : Xn × R� → R�, j = 1, 2 be proper, generalized
N-functions with ψ1

∼= ψ2. Furthermore, let ψ1, ψ2, ψ∗
1 and ψ∗

2 satisfy the
Δ2-condition. Then for all d1, D1 > 0 there exist d2, D2 > 0 such that the
following holds: If Q ∈ Yn1 and {tQ}Q∈Q with tQ � 0 satisfy

d1 �
∑

Q∈Q
|Q|ψ1(tQ) � D1 (5.7.12)

then

d2 �
∑

Q∈Q
|Q|ψ2(tQ) � D2. (5.7.13)

Proof. Since ψ1 and ψ2 satisfy the Δ2-condition, it suffices to prove the case
d1 = D1 = 1. In particular we have

∑
Q∈Q |Q|ψ1(tQ) = 1. Let A2 > 0 be the

constant from the definition of ψ2 � ψ1 and ψ1 � ψ2 with A1 := 1. Further
let C0 > 0 be such that ψ2(Q, 2t) � C0 ψ2(Q, t) for all Q ∈ Xn and t � 0.
Let Q ∈ Yn1 and {tQ}Q∈Q with tQ � 0 be such that (5.7.12) holds. Then
the second inequality of (5.7.13) holds with D2 := A2. Let m ∈ N such that
2m � A2 and let d2 := C−m

0 . We proceed by contradiction. Assume that∑
Q∈Q |Q|ψ2(tQ) < d2. Then, by the Δ2-condition and convexity,

∑

Q∈Q
|Q|ψ2(2mtQ) � Cm0

∑

Q∈Q
|Q|ψ2(tQ) < Cm0 d2 = 1,

∑

Q∈Q
|Q|ψ1(2mtQ) � 2m

∑

Q∈Q
|Q|ψ1(tQ) = 2m � A2.

This contradicts the choice of A1, A2 for ψ1 � ψ2. This proves the lemma. ��
Lemma 5.7.14. Let ϕ be a proper, generalized N-function on R

n and s � 1.
Furthermore, let ϕs and (ϕ∗)s be proper and let ϕ and ϕ∗ satisfy the Δ2-
condition and (Ms,Qϕ) � (Ms,Qϕ

∗)∗. Then, uniformly in Q ∈ Xn,

|Q| (Ms,Qϕ)
(

1
‖χQ‖ϕ

)

≈ 1, |Q| (Ms,Qϕ
∗)∗
(

1
‖χQ‖ϕ

)

≈ 1.

Proof. For Q ∈ Xn define t0,Q := 1/‖χQ‖ϕ. Then

|Q| (MQϕ)(t0,Q) =
ˆ

Q

ϕ

(
1

‖χQ‖ϕ

)

dx = 1. (5.7.15)

By Jensen’s inequality we have MQϕ � Ms,Qϕ and MQϕ
∗ � Ms,Qϕ

∗.
Thus, (Ms,Qϕ

∗)∗ � (MQϕ
∗)∗ by conjugation. From (MQϕ

∗)∗ � MQϕ
(Lemma 5.2.10) we deduce

MQϕ ∼= ψ
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where ψ : Xn × R� → R� is either Ms,Qϕ or (Ms,Qϕ
∗)∗. Thus (5.7.15) and

Lemma 5.7.11 prove the lemma. ��

Lemma 5.7.16. Let p ∈ P(Rn) with 1 < p− � p+ < ∞. Further assume
Ms,Qϕp(·) � (Ms,Qϕ

∗
p(·))

∗ for some s � 1. Define αs : Xn × R>0 → R>0 by

αs(Q, t) :=
(Ms,Qϕp(·))(t)
(Ms,Qϕ∗

p(·))
∗(t)

. (5.7.17)

Then, uniformly in Q ∈ Xn and t > 0,

αs

(

Q,
1

‖χQ‖p(·)

)

≈ 1, αs(Q, 1) ≈ 1. (5.7.18)

Moreover, there exists C5 � 1 such that for all Q ∈ Xn

αs(Q, t2) � C5 (αs(Q, t1) + 1) for 0 < t1 � t2 � 1,
αs(Q, t3) � C5 (αs(Q, t4) + 1) for 1 � t3 � t4.

(5.7.19)

Furthermore, for all C6, C7 > 0 there exists C8 � 1 such that for all Q ∈ Xn

t ∈
[

C6 min
{

1,
1

‖χQ‖p(·)

}

, C7 max
{

1,
1

‖χQ‖p(·)

}]

⇒ αs(Q, t) � C8.

Proof. It suffices to prove the claim for ϕp(·) = ϕ̄p(·). The first part of
(5.7.18) follows from Lemma 5.7.14. Recall that (ϕ̄∗

p(·))
′ = (ϕ̄′

p′(·))
−1. Due

to Lemma 2.6.11 applied to (Ms,Qϕ̄
∗
p(·)) and the Δ2-condition,

(
Ms,Qϕ̄

∗
p(·)
)∗((

Ms,Q(ϕ̄∗
p(·))

′)(t)
)
≈
(
Ms,Qϕ̄

∗
p(·)
)∗
(
Ms,Qϕ̄

∗
p(·)(t)

t

)

≈
(
Ms,Qϕ̄

∗
p(·)
)
(t) ≈ t

(
Ms,Q(ϕ̄∗

p(·))
′)(t).

Thus

αs

(
Q,
(
Ms,Q(ϕ̄∗

p(·))
′)(t)

)
=

(Ms,Qϕ̄p(·))
(
(Ms,Q(ϕ̄∗

p(·))
′)(t)

)

(
Ms,Qϕ̄∗

p(·)
)∗((Ms,Q(ϕ̄∗

p(·))
′)(t)

)

≈
(Ms,Qϕ̄p(·))

(
(Ms,Q(ϕ̄∗

p(·))
′)(t)

)

t
(
Ms,Q(ϕ̄∗

p(·))
′)(t)

≈
(Ms,Qϕ̄

′
p(·))
(
(Ms,Q(ϕ̄∗

p(·))
′)(t)

)

t

≈
(  

Q

(  

Q

t
s(p(y)−p(z))

(p(z)−1)(p(y)−1) dz

) 1
p(y)−1

dy

) 1
s

.
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Since (Ms,Q(ϕ̄∗
p(·))

′)(1) ≈ 1 this proves (5.7.18). Define

β>s (Q, t) :=
(  

Q

(  

Q

t
s(p(y)−p(z))

(p(z)−1)(p(y)−1) χ{p(y)>p(z)} dz
) 1
p(y)−1

dy

) 1
s

,

β�
s (Q, t) :=

(  

Q

(  

Q

t
s(p(y)−p(z))

(p(z)−1)(p(y)−1) χ{p(y)�p(z)} dz
) 1
p(y)−1

dy

) 1
s

,

then

αs
(
Q, (Ms,Q(ϕ̄∗

p(·))
′)(t)

)
≈ β>s (Q, t) + β�

s (Q, t) uniformly in Q,t,

0 � β>s (Q, t) � 1 for 0 < t � 1,

0 � β�
s (Q, t) � 1 for t � 1,

β>s (Q, t) is increasing on [1,∞),

β�
s (Q, t) is decreasing on (0, 1],

where we have used that 1 < p− � p+ < ∞. Thus there exists C5 � 1 such
that

αs
(
Q, (Ms,Q(ϕ̄∗

p(·))
′)(t2)

)
�C5

(
αs
(
Q, (Ms,Q(ϕ̄∗

p(·))
′)(t1)

)
+1
)
for 0<t1�t2�1,

αs
(
Q, (Ms,Q(ϕ̄∗

p(·))
′)(t3)

)
� C5

(
αs
(
Q, (Ms,Q(ϕ̄∗

p(·))
′)(t4)

)
+1
)
for 1�t3�t4.

This, (Ms,Q(ϕ̄∗
p(·))

′)(1) ≈ 1, and the strong Δ2-condition prove (5.7.19). The
last claim follows immediately from (5.7.18), (5.7.19), and the Δ2-condition.
This completes the proof. ��

Lemma 5.7.20. Let p ∈ P(Rn) with 1 < p− � p+ < ∞. Further assume
Ms,Qϕp(·) � (Ms,Qϕ

∗
p(·))

∗ for some s > 1. Then there exists b : Xn → R�
and K > 0 such that ‖b‖Yn1 ,1 + ‖b‖Yn1 ,∞ < ∞ and

|Q| (Ms,Qϕ
∗
p(·))

∗(t) � 1

⇒ (Ms,Qϕp(·))(t) � K (Ms,Qϕ
∗
p(·))

∗(Q, t) + b(Q)χ{t<1}

for all Q ∈ Xn and all t � 0.

Proof. Due to Theorem 5.6.10 there exist b2 : Xn → R� with ‖b2‖Yn1 ,1 < ∞
and K2 > 0 such that, for all Q ∈ Xn and all t � 0,

|Q| (Ms,Qϕ
∗
p(·))

∗(t) � 1

⇒ (ms,Qϕp(·))(t) � K2 (Ms,Qϕ
∗
p(·))

∗(Q, t) + b2(Q). (5.7.21)
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Assume that |Q| (Ms,Qϕ
∗
p(·))

∗(t) � 1. Then due to Lemma 5.7.14 and the Δ2-
condition of Ms,Qϕp(·) there exists A � 0 (independent of Q and t) such that
t � A/‖χQ‖p(·). Now Lemma 5.7.16 holds for some C8 � 1 with the choice
C6 := 1, C7 := A. Let K := max {C8,K2} and define b : Xn → R�0 by

b(Q) := min {(Ms,Qϕp(·))(1), b2(Q)}. (5.7.22)

Since (Ms,Qϕp(·))(1) ≈ 1, ‖b‖Yn1 ,1 + ‖b‖Yn1 ,∞ < ∞. If 0 � t � 1 then by
(5.7.21) and (5.7.22) we obtain the claim.

If on the other hand 1 < t � A/‖χQ‖p(·), then by Lemma 5.7.16 we deduce
αs(Q, t) � C8. The definition of αs and C8 � K immediately imply the claim
without the term b(Q). ��

Lemma 5.7.23. Let Ω either be R
n or Xn and let r, s > 0. Let ϕ be a

generalized N-function on Ω such that ϕ and ϕ∗ satisfy the Δ2-condition. Let
γ : Ω × R� → R� be defined by

γ(t) :=

tˆ

0

(
ϕ′(u

1
r

))s
du.

Then γ is a generalized N-function on Ω with

γ
(
ω, tr

)

tr
≈
(
ϕ(ω, t)
t

)s
,

γ∗(ω, ts)
ts

≈
(
ϕ∗(ω, t)

t

)r

uniformly in ω ∈ Ω and t > 0. Furthermore, γ and γ∗ satisfy the Δ2-
condition. If ψ is another N-function on Ω such that

ψ
(
ω, tr

)

tr
≈
(
ϕ(ω, t)
t

)s
(5.7.24)

uniformly in ω ∈ Ω and t > 0, then ψ∗ is an N-function on Ω and

ψ∗(ω, ts)
ts

≈
(
ϕ∗(ω, t)

t

)r
(5.7.25)

uniformly in ω ∈ Ω and t > 0. Moreover, ψ and ψ∗ satisfy the Δ2-condition.
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Proof. Since all following calculations are uniform with respect to ω, we omit
the dependence on ω. From the definition of γ it follows immediately that γ
is an N-function on Ω. This implies

γ
(
tr
)

tr
≈ γ′

(
tr
)

=
(
ϕ′(t)

)s ≈
(
ϕ(t)
t

)s
. (5.7.26)

Here we used Remark 2.6.7, i.e. γ(t) ≈ γ′(t) t uniformly in t � 0. From
γ′(tr) = ϕ′(t)s we deduce ϕ′−1(t)r = (γ′)−1(ts). Thus

(ϕ∗)′(t)r = (ϕ′)−1(t)r = (γ′)−1(ts) = (γ∗)′(ts).

Hence
(
ϕ∗(t)
t

)r
≈
(
(ϕ∗)′(t)

)r = (γ∗)′(ts) ≈ γ∗(ts)
ts

. (5.7.27)

Since ϕ and ϕ∗ satisfy the strong Δ2-condition, we immediately deduce from
(5.7.26) and (5.7.27) that γ and γ∗ satisfy the Δ2-condition. From (5.7.24)
and (5.7.26) we deduce that ψ ≈ γ. Thus there exist c0, c1 > 0 with

c0 γ(t) � ψ(t) � c1 γ(t).

Thus by Lemma 2.6.4

c1 γ
∗
(
t

c1

)

� ψ∗(t) � c0 γ
∗
(
t

c0

)

.

Since γ∗ satisfies the Δ2-condition, this implies γ∗ ≈ ψ∗. Overall, we have
shown γ ≈ ψ and γ∗ ≈ ψ∗. So (5.7.25) and the Δ2-condition follow from the
properties of γ. This proves the lemma. ��
Lemma 5.7.28. Let p ∈ P(Rn) with 1 < p− � p+ < ∞. Further assume
Ms2,Qϕp(·) � (Ms2,Qϕ

∗
p(·))

∗ for some 1 � s2. Let α1, αs2 be defined as in
(5.7.17). Then uniformly in Q ∈ Xn and t > 0

(

αs2

(
Q, t

1
s2

))s2
≈ α1(Q, t).

Proof. Note that for any r � 1, ϕp(x)(tr) ≈ ϕp(x)(t)r and ϕ∗
p(x)(t

r) ≈
(ϕ∗
p(x)(t))

r uniformly in x ∈ R
n and t � 0, since 1 < p− � p+ < ∞. Thus

(MQϕp(·))(t) ≈ (MQϕp(·))(t) ≈
(

(Ms2,Qϕp(·))
(
t

1
s2
))s2

, (5.7.29)

(MQϕ
∗
p(·))(t) ≈ MQϕ

∗
p(·))(t) ≈

(
(Ms2,Qϕ

∗
p(·))
(
t

1
s2
))s2

, (5.7.30)
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uniformly in Q ∈ Xn and t � 0. It is easy to see that (Q, t) �→ ((Ms2,Qϕ
∗
p(·))

(t
1
s2 ))s2 is a generalized N-function. Lemma 5.7.10 implies that this N-function

and its conjugate satisfy the Δ2-condition. Thus it follows from (5.7.30) and
Lemma 5.7.23 that

(MQϕ
∗
p(·))

∗(t) ≈
(

(Ms2,Qϕ
∗
p(·))

∗(t
1
s2
))s2

.

This and (5.7.29) imply

(

αs2

(
Q, t

1
s2

))s2
≈ α1(Q, t).��

We are now ready to prove the equivalence of A and Astrong

Proof of Theorem 5.7.1. Due to Lemma 5.7.9 there exists s2 > 1 with

Ms2,Qϕp(·) � MQϕp(·) � (MQϕ
∗
p(·))

∗ � (Ms2,Qϕ
∗
p(·))

∗.

Due to Lemma 5.7.20 there exist b2 : Xn→ R� with ‖b2‖Yn1 ,1 + ‖b2‖Yn1 ,∞<∞
and K2 � 1 such that the inequality of the lemma holds (for the choice
s = s2 and b = b2). Due to Lemma 5.7.14 and the strong Δ2-condition of
(Ms2,Qϕ

∗
p(·))

∗ there exists 0 < D2 � 1 (independent of Q and t) such that
t � D2/‖χQ‖p(·) implies |Q| (Ms2,Qϕ

∗
p(·))

∗(t) � 1. Due to Lemma 5.7.16 there
exists C8 � 1 such that

t ∈
[

D2 min
{

1,
1

‖χQ‖p(·)

}

,max
{

1,
1

‖χQ‖p(·)

}]

⇒ αs2(Q, t) � C8.

(5.7.31)

Moreover, by Lemma 5.7.28 and the strong Δ2-condition there exists A0 � 1
such that for all Q ∈ Xn and all t > 0

α1(Q, t) � A0

(
αs2
(
Q, t

1
s2
))s2

. (5.7.32)

Define K1 := A0

(
max {2K2, C8}

)s2 .

Auxiliary claim: For all Q ∈ Xn and t > 0 with

|Q| (MQϕ
∗
p(·))

∗(t) � 1, (5.7.33)



190 5 The Generalized Muckenhoupt Condition*

we have

(MQϕp(·))(t) �
{

max
{
K1 (MQϕ

∗
p(·))

∗(Q, t), 2 b2(Q) t1−
1
s2
}

for 0 < t < 1,

K1 (MQϕ
∗
p(·))

∗(Q, t) for t � 1.

Proof of auxiliary claim. Assume that (5.7.33) is satisfied, then by Jensen’s
inequality

|Q| (Ms2,Qϕ
∗
p(·))

∗(t) � 1.

If t � 1, then by Lemma 5.7.20 and Jensen’s inequality

(MQϕp(·))(t) � (Ms2,Qϕp(·))(t) � K2 (Ms2,Qϕp(·))(t) � K1 (MQϕ
∗
p(·))

∗(Q, t),

so the claim holds in this case. If 0 < t < 1 and α1(Q, t) � K1, then

(MQϕp(·))(t) = α1(Q, t) (MQϕ
∗
p(·))

∗(t) � K1 (MQϕ
∗
p(·))

∗(t),

so the claim holds also in this case. It remains to consider the case

0 < t < 1 and α1(Q, t) > K1.

From (5.7.32) we deduce that

A0

(
max {2K2, C8}

)s2 = K1 < α1(Q, t) � A0

(
αs2
(
Q, t

1
s2
))s2

.

Especially,

0 < t
1
s2 < 1 and αs2(Q, t

1
s2 ) > max {2K2, C8}. (5.7.34)

From (5.7.31) we deduce that

0 < t
1
s2 <

D2

‖χQ‖p(·)
.

Now the choice of D2 implies that

|Q| (Ms2,Qϕ
∗
p(·))

∗(t
1
s2
)

� 1.

From Lemma 5.7.20 we deduce that
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(Ms2,Qϕp(·))
(
t

1
s2
)

� K2 (Ms2,Qϕ
∗
p(·))

∗(t
1
s2
)

+ b2(Q)

=
K2

αs2
(
Q, t

1
s2
) (Ms2,Qϕp(·))

(
t

1
s2
)

+ b2(Q).

Since αs2(Q, t
1
s2 ) � 2K2 by (5.7.34), we can absorb the first term of the

right-hand side on the left-hand side, whence

(Ms2,Qϕp(·))
(
t

1
s2
)

� 2 b2(Q). (5.7.35)

It follows from 0 < t < 1, s2 > 1, Jensen’s inequality, the convexity of ϕp(·),
and (5.7.35) that

(MQϕp(·))(t) � (Ms2,Qϕp(·))(t)

� (Ms2,Qϕp(·))
(
t

1
s2

)
t
1− 1

s2

� 2 b2(Q) t1−
1
s2 .

So the claim holds also in this case, which completes the proof of the auxiliary
claim. ��

We now deduce from the auxiliary claim that (MQϕp(·)) � (MQϕ
∗
p(·))

∗.
Let Qk ∈ Yn1 for k ∈ Z be such that

∞∑

k=−∞

∑

Q∈Qk
|Q|
(
MQϕ

∗
p(·)
)∗(2k) � 1.

Then by the auxiliary claim

∞∑

k=−∞

∑

Q∈Qk
|Q| (MQϕp(·))

(
2k
)

�
−1∑

k=−∞

∑

Q∈Qk
|Q| max

{
K1

(
MQϕ

∗
p(·)
)∗

(2k), 2 b2(Q) 2k(1−
1
s2

)}

+
∞∑

k=0

∑

Q∈Qk
|Q|K1

(
MQϕ

∗
p(·)
)∗(2k)

� K1

∞∑

k=−∞

∑

Q∈Qk
|Q|
(
MQϕ

∗
p(·)
)∗(2k

)
+

−1∑

k=−∞
2 ‖b2‖Yn1 ,1 2k(1−

1
s2

)

� K1 + c(s2) ‖b2‖Yn1 ,1,
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where we have used s2 > 1. This and Remark 5.5.4 prove MQϕp(·) �
(MQϕ

∗
p(·))

∗. Thus, p ∈ Astrong. ��

5.8 Weighted Variable Exponent Lebesgue Spaces*

A measurable function ω : R
n → (0,∞) is called a weight. For p ∈ P(Rn)

we define

ϕp(·),ω(x, t) := ϕp(·)
(
x, tω(x)

)
= ϕp(x)

(
tω(x)

)
.

We define the corresponding Musielak–Orlicz by

Lp(·)ω (Ω) := Lϕp(·),ω (Ω).

The norm ‖·‖p(·),ω of Lp(·)ω (Ω) satisfies

‖f‖p(·),ω = ‖fω‖p(·). (5.8.1)

We want to examine for which weights the maximal operator is bounded
from L

p(·)
ω (Rn) to Lp(·)ω (Rn). Kokilashvili, Samko and their collaborators have

proved several boundedness results with particular classes of weights: initially
in the case of power-type weights [248,346–348,365] and more recently in the
case of weights which are controlled by power-type functions [25,240,244,245,
247,249,250,327,339]. Other investigations with such weights include [57,66,
123,230,273,286]; more general metric measure spaces have been studied for
instance in [167, 199, 204, 251, 301]. The discrete weighted case was studied
in [315].

A more comprehensive framework was recently introduced in [97], along
the line of Muckenhoupt in the constant exponent case. This allowed us
to characterize weights for which the maximal operator is bounded when
p ∈ P log and 1 < p− � p+ < ∞. In this section we give a new proof for this
characterization based on our results on classes A and G.

Note that the proofs in this section are partly based on results of Sect. 7.3
below.

The conjugate function of ϕp(·),ω is given by

ϕ∗
p(·),ω(x, t) = ϕ∗

p(·)
(
x, t/ω(x)

)
= ϕ∗

p(x)

(
t/ω(x)

)
.

Moreover, we have ϕ̃∗
p(·),ω = ϕ̃p′(·),1/ω. Unfortunately, for general weights the

spaces Lp(·)ω is not a Banach function space, since simple functions need not
be contained in L

p(·)
ω . However, if ω ∈ L

p(·)
loc , then all characteristic functions

of cubes are contained in L
p(·)
ω . As a consequence the restriction L

p(·)
ω (Q)
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is a Banach function space for every cube Q. Hence, the norm conjugate
formula holds for Lp(·)ω (Q) in the form of Corollary 2.7.5. Using monotone
convergence we conclude that the norm conjugate formula also holds for
L
p(·)
ω (Rn) if ω ∈ L

p(·)
loc even if Lp(·)ω (Rn) might not be a Banach function

space.
We already know from Sect. 4.4 that we need ϕp(·),ω ∈ A for the bounded-

ness of the maximal operator. On the other hand, if ϕp(·),ω ∈ A, then M is
of weak type ϕp(·),ω. However, to verify the condition ϕp(·),ω ∈ A, we need to
check the uniform boundedness of the averaging operators TQ with respect
to all locally 1-finite families of cubes in R

n. The following observation allows
us to reduce this condition to single cubes.

Lemma 5.8.2. Let p ∈ G and let ω be a weight. Then ϕp(·),ω ∈ G. If
ϕp(·),ω ∈ Aloc, then ϕp(·),ω ∈ A.

Proof. The property ϕp(·),ω ∈ G follows immediately from the definition of G
and (5.8.1). If ϕp(·),ω ∈ Aloc, then Corollary 7.3.7 implies ϕp(·),ω ∈ A. ��

By Theorem 4.5.7 we know that ϕp(·),ω ∈ Aloc if and only if

‖χQ‖ϕp(·),ω‖χQ‖ϕ∗
p(·),ω

≈ |Q|.

In other words ϕp(·),ω ∈ Aloc if and only if

‖χQω‖p(·)‖χQ/ω‖p′(·) ≈ |Q|. (5.8.3)

Lemma 5.8.4. Let p ∈ Aloc and let ω be a weight. Then ϕp(·),ω ∈ Aloc if
and only if

Mp(·),Q(ω)Mp′(·),Q(ω−1) ≈ 1

uniformly for all cubes (or balls) Q ⊂ R
n.

Proof. Due to Theorem 4.5.7, ‖χQ‖p(·) ‖χQ‖p′(·) ≈ |Q|. On the other hand
ϕp(·),ω ∈ Aloc is by (5.8.3) equivalent to ‖χQω‖p(·) ‖χQω−1‖p′(·) ≈ |Q|. Tak-
ing the quotient of these equivalences proves the claim. ��

Due to Theorem 4.5.7, ‖χQ‖p(·) ‖χQ‖p′(·) ≈ |Q|. This and Hölder’s inequal-
ity applied to

ffl
Q fg dx yields that

MQ(fg) =
 

Q

|fg| dx � cMp(·),Qf Mp′(·),Qg (5.8.5)

for p ∈ Aloc and all f ∈ L
p(·)
loc (Rn) and g ∈ L

p′(·)
loc (Rn), where the constant

only depends on the Aloc-constant of p.
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The following result is the main result of this section and goes back to
Cruz-Uribe, Diening and Hästo [82]. It has been shown first using a different
technique by Diening and Hästo [97] with the notation as in Remark 5.8.10

Theorem 5.8.6. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞. Then M is
bounded from L

p(·)
ω (Rn) to Lp(·)ω (Rn) if and only if ϕp(·),ω ∈ Aloc.

Before we get to the proof of Theorem 5.8.6 we need the following
Calderón–Zygmund decomposition which goes back to Aimar and Maćıas [16,
Lemma 2].

Lemma 5.8.7. Let p ∈ P log(Rn) with p+ < ∞, b � 2 · 153n, and
f ∈ Lp(·)(Rn). Let Dk := {bk+1 � Mf > bk} for k ∈ Z, where M denotes
the non-centered maximal function with respect to balls.

Then R
n =

⋃
k∈Z

Dk up to measure zero and there exists a family
{Bki }k∈Z,i∈N of balls such that the following holds.

(a) Dk ⊂
⋃
i∈N

5Bki for all k ∈ Z.
(b) Bki ∩Bkj = ∅ for i �= j.
(c) For γ � 5,

bk+1 �
 

Bki

|f | dx > bk �
 

γBki

|f |dx.

(d) Let Iki := {(l, j) ∈ Z × N : l � k + 1, 5Blj ∩ 5Bki �= ∅} and define Aki :=
⋃

(l,j)∈Iki 5Bli. Then |Aki | � 1
2 |Bki |.

(e) Let F ki := Bki \Aki . Then the family {F ki }i,k is disjoint.

Proof. Define Ωk := {Mf > bk}. Since p ∈ P log, we know that M is of weak
type p(·), by Corollary 4.4.12. Therefore ‖χDk‖p(·) � ‖χΩk‖p(·) � c ‖f‖p(·)/bk
and it follows by Lemma 3.2.12 that |Dk| � |Ωk| <∞ and that |Ωk| → 0 for
k → ∞. Especially, R

n =
⋃
kDk up to measure zero. For every x ∈ Dk we can

choose a ball Bx such that bk+1 �
ffl
Bx

|f | dx > bk �
ffl
γBx

|f | dx for every γ �
5. Denote by Wk the set of all such balls. Since M is the non-centered max-
imal function, we have B ⊂ Ωk for every B ∈ Wk. So |Ωk| < ∞ implies that
sup {diam(B) : B ∈ Wk} < ∞. Thus we can apply the basic covering theo-
rem, Theorem 1.4.5, to find a countable, pair-wise disjoint family subfamily
{Bki }i of Wk such that Dk ⊂

⋃
i∈N

5Bki . This subfamily satisfies (a)–(c).
Let (l, j) ∈ Iki . Suppose for a contradiction that 5Blj �⊂ 15Bki .

Since 5Blj ∩ 5Bki �= ∅, this implies that diamBki � diamBlj . Let B be the
ball concentric with Bki and diameter equal to 15 diamBlj . Then Blj ⊂ B and
B = γBki for some γ � 5. Hence, by (c),

bl �
 

Blj

|f | dx � 15n
 

γBki

|f | dx � 15nbk.
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Since l � j + 1 and b > 15, this is a contradiction and so we conclude that
5Blj ⊂ 15Bki . This, (b) and (c) imply that

|Akj | �
∑

(l,j)∈Iki

|5Blj| <
∑

(l,j)∈Iki

5nb−l
ˆ

Blj

|f | dx �
∑

l�k+1

5nb−l
ˆ

15Bki

|f |dx

� 5n
b−k−1

1 − 1/b
|15Bki |

 

15Bki

|f |dx � 5n15n
b−1

1 − 1/b
|Bki | � 1

2
|Bki |,

i.e. (d) holds.
Since the family {Bki }i is disjoint, it follows that {F ki }i is disjoint. Suppose

that F lj ∩ F ki �= ∅, and assume by symmetry that l � j + 1. Since F lj ⊂ 5Blj ,
this means that (j, l) ∈ Iki ; but, by the definition of Iki , this implies that
5Blj ⊂ Aki , so that 5Blj ∩ F ki = ∅ contradicting the assumption. Therefore,
also the family {F ki }i,k is disjoint with respect to both indices. ��

Proof of Theorem 5.8.6. Since p ∈ P log(Rn), we have p ∈ G ∩ A by Theo-
rems 4.4.8 and 7.3.22. Let ϕp(·),ω ∈ Aloc, so that ϕp(·),ω ∈ A by Lemma 5.8.2
and by conjugation ϕp′(·),1/ω ∈ A. Then the left-openness of A (The-
orem 5.4.15) ensures the existence of s ∈ (min {1/p−, 1/(p′)−}, 1) such
that ϕsp(·),ω1/s , ϕsp′(·),ω−1/s ∈ A, where we have used that ϕ̄sp(·),ω1/s(t) =
ϕ̄p(·),ω(ts) and ϕ̄sp′(·),ω−1/s(t) = ϕ̄p′(·),ω(ts). Define u, v ∈ P log(Rn) by

1
u′(x)

= s− 1
p(x)

and
1

v(x)
= s− 1

p′(x)

for all x ∈ R
n. Since s ∈ (min {1/p−, 1/(p′)−}, 1) the exponents u and v are

well defined. Moreover, u′ = 1
s (sp)′ and v := 1

s (sp′)′ and

p′(x)
v′(x)

= p′(x)(1 − s) + 1 � (p′)−(1 − s) + 1,

p(x)
u(x)

= p(x)(1 − s) + 1 � p−(1 − s) + 1.

Thus, by Theorem 7.3.27, Mu(·) is bounded on Lp(·)(Rn) and Mv′(·) is
bounded on Lp

′(·)(Rn).
Let f ∈ Lp(·)(Rn) and b, Dk, Bkj and F kj be as in Lemma 5.8.7. Further let

g ∈ Lp
′(·)(Rn) and abbreviate B̂kj := 5Bkj . Then by (a) and (c) of the lemma

it follows that
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ˆ

Rn

|Mf ||g| dx �
∑

k

ˆ

Dk

bk+1|g| dx

�
∑

j,k

bk+1

ˆ

B̂kj

|g|dx

� b
∑

j,k

 

Bkj

|f |dx
ˆ

B̂kj

|g|dx

= b 5n
∑

j,k

|B̂kj |MB̂kj
f MB̂kj

g

We use (5.8.5) with exponents u and v to get

ˆ

Rn

|Mf ||g|dx

� c
∑

j,k

|B̂kj |Mu(·),B̂kj (fω)Mu′(·),B̂kj (ω−1)Mv′(·),B̂kj (gω−1)Mv(·),B̂kj (ω).

We claim that

Mu′(·),B̂kj (ω−1)Mv(·),B̂kj (ω) ≈ 1. (5.8.8)

This estimate corresponds to the reverse Hölder estimate of (classical) Muck-
enhoupt weights. Lemma 5.8.4 applied to the exponents sp(·) and sp′(·) and
weights ω1/s and ω−1/s, respectively, implies that

Msp(·),B̂kj (ω1/s)M(sp(·))′,B̂kj (ω−1/s) ≈ 1,

Msp′(·),B̂kj (ω−1/s)M(sp′(·))′,B̂kj (ω1/s) ≈ 1.

Using ‖h‖ssq(·) ≈ ‖|h|s‖q(·) for any h ∈ Lsq(·)(Rn) we rewrite this as

Mp(·),B̂kj (ω)Mu′(·),B̂kj (ω−1) ≈ 1,

Mp′(·),B̂kj (ω−1)Mv(·),B̂kj (ω) ≈ 1.

This combined with Mp(·),B̂kj (ω)Mp′(·),B̂kj (ω−1) ≈ 1 (Lemma 5.8.4) implies
(5.8.8). Therefore,

ˆ

Rn

|Mf ||g| dx � c
∑

j,k

|B̂kj |Mu(·),B̂kj (fω)Mv′(·),B̂kj (gω−1).
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Using that |B̂kj | = 5n|Bkj | � 2 · 5n|F kj | and that {F kj }j,k is locally 3-finite we
get

ˆ

Rn

|Mf ||g|dx � c

ˆ

Rn

∑

j,k

χFkj Mu(·)(fω)Mv′(·)(gω−1) dx

� c

ˆ

Rn

Mu(·)(fω)Mv′(·)(gω−1) dx.

Now, Hölder’s inequality with p and p′ and the boundedness of Mu(·) on
Lp(·)(Rn) and of Mv′(·) on Lp

′(·)(Rn) imply that

ˆ

Rn

|Mf ||g| dx � c ‖fω‖p(·)‖gω−1‖p′(·) = c ‖f‖p(·),ω‖g‖p′(·),ω−1 .

The result follows by the norm conjugate formula of Lp(·)ω . ��

Remark 5.8.9. Note that in Theorem 5.8.6 we do not require explicitly
ϕp(·),ω ∈ A but only ϕp(·),ω ∈ Aloc (although the later follows automatically
by the theorem). This appears to be in contrast to the fact that p ∈ Aloc and
1 < p− � p+ <∞ does not imply p ∈ A (see Theorem 5.3.4).

However, it has been shown by Kopaliani [255] that p ∈ Aloc implies
p ∈ A if one additionally requires that p in constant outside a large set
(i.e. around ∞). Based on arguments as in Sect. 7.3 this extra requirement
can be relaxed to the log-Hölder decay condition. This decay condition is also
responsible in Theorem 5.8.6 for the implication ϕp(·),ω ∈ Aloc ⇒ ϕp(·),ω ∈ A.

Remark 5.8.10. The definition above of Lp(·)ω considers the weights as mul-
tipliers. This approach fits nicely to the theory of Banach function spaces.
However, it is also possible to treat the weights as change of measure, which
leads to the spaces Lp(·)(Ω, σ dx), where σ is a weight. This approach leads
naturally to the theory of Muckenhoupt weights, see (5.2.3). Analogously, we
define as in [97] the variable exponent Muckenhoupt classes Ap(·) and Ap(·),loc

to consist of those weights σ, which satisfy σ dx ∈ A and σ dx ∈ Aloc, respec-
tively. Note that for bounded exponents ϕp(·),ω ∈ A and ϕp(·),ω ∈ Aloc if and
only ω

1
p ∈ Ap(·) and ω

1
p ∈ Ap(·),loc, respectively.



Chapter 6

Classical Operators

In this section we treat some of the most important operators of harmonic
analysis in a variable exponent context. The results build on the boundedness
of the maximal operator. We treat the Riesz potential operator, the sharp
maximal function and singular integral operators in the three sections of the
chapter. Several further operators are considered in Sect. 7.2. These results
are applied in the second part of the book for instance to prove Sobolev
embeddings and in the third part to prove existence and regularity of solutions
to certain PDEs.

6.1 Riesz Potentials

In this section we derive natural generalizations of boundedness results for the
Riesz potential operator in the context of variable exponents. Riesz potential
operators have been studied in the variable exponent context e.g. in [22, 92,
115,118,163,341]. Our proof is based on Hedberg’s trick.

Definition 6.1.1. Let 0 < α < n. For measurable f we define Iαf :
R
n → [0,∞] by

Iαf(x) :=
ˆ

Rn

|f(y)|
|x− y|n−α

dy.

The operator Iα is called the Riesz potential operator and the kernel |x|α−n
is called the Riesz kernel.

If the function f is defined on Ω only, then the integral should be taken
over Ω, i.e. Iαf = Iα(χΩf) using the zero extension.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 6,
c© Springer-Verlag Berlin Heidelberg 2011
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Definition 6.1.2. For k ∈ Z we define the averaging operator Tk by

Tkf :=
∑

Q dyadic

diam(Q)=2−k

χQM2Qf

for all f ∈ L1
loc(R

n).

Remark 6.1.3. Note that Tk can be written as the sum of 2n-averaging
operators TQj with locally 1-finite families of shifted dyadic cubes, namely,
each 2Q is split into 2n disjoint cubes of the same size as Q. This property
ensures the boundedness of Tk on Lϕ(Rn) if ϕ ∈ A.

The following result relates part of the Riesz potential operator Iα to the
Hardy–Littlewood maximal operator M .

Lemma 6.1.4. Let x ∈ R
n, δ > 0, 0 < α < n, and f ∈ L1

loc(R
n). Then

ˆ

B(x,δ)

|f(y)|
|x− y|n−α

dy � c(α) δα
∞∑

k=0

2−αkTk+k0f(x) � c(α) δαMf(x),

where k0 ∈ Z is chosen such that 2−k0−1 � δ � 2−k0 .

Proof. We split the integration domain into annuli and use the definition of
Tk:

ˆ

B(x,δ)

|f(y)|
|x− y|n−α

dy �
∞∑

k=1

(
δ2−k

)α−n
ˆ

2−kδ�|x−y|<2−k+1δ

|f(y)| dy

� c
∞∑

k=1

(
δ2−k

)α
 

|x−y|<2−k+1δ

|f(y)| dy

� c δα
∞∑

k=0

2−αkTk+k0f(x)

This is the first inequality. Since Tk+k0f � Mf , the second inequality follows
by convergence of the geometric series. ��

For 0 � α < n
p+ and p ∈ P(Rn) we define p� ∈ P(Rn) point-wise by

1
p�(y)

:=
1
p(y)

− α

n
for y ∈ R

n.
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Then p� ∈ P(Rn) with

1 <
np−

n− αp−
= (p�)− � (p�)+ =

np+

n− αp+
<∞.

Also, it is clear that p� ∈ P log(Rn) with clog(p) = clog(p�) if p ∈ P log(Rn).

Lemma 6.1.5. Let p ∈ P log(Rn) with 1 < p− � p+ < n
α for α ∈ (0, n). Let

x ∈ R
n, δ > 0, and f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1. Then

ˆ

Rn\B(x,δ)

|f(y)|
|x− y|n−α

dy � c

(
n− α

n− αp+

)n−α
n

|B(x, δ)|
− 1
p
�
B(x,δ) ,

where the constant depends on clog(p).

Proof. Set B := B(x, δ). We start with Hölder’s inequality and take into
account that ‖f‖p(·) � 1:

ˆ

Rn\B

|f(y)|
|x− y|n−α

dy � 2 ‖f‖p(·)
∥
∥χRn\B|x− ·|α−n

∥
∥
p′(·)

� 2
∥
∥χRn\B|x− ·|−n

∥
∥
n−α
n

q(·) ,

where q := n−α
n p′. Next we note that

M
(
χB|B|−1)(y) �

 

B(y,2|x−y|)

χB(z)|B|−1 dz

=
∣
∣B(y, 2|x− y|)

∣
∣−1

= c |x− y|−n

for all y ∈ R
n \B. Therefore

c χRn\B(y)|x − y|−n � M(χB|B|−1)(y)

for all y ∈ R
n. Combining the previous estimates, we find that

ˆ

Rn\B

|f(y)|
|x− y|n−α

dy � c
∥
∥M
(
χB |B|−1)∥∥

n−α
n

q(·)

= c |B|
α−n
n
∥
∥M(χB)

∥
∥
n−α
n

q(·)

� c
(
(q−)′

)n−α
n |B|

α−n
n ‖χB‖

n−α
n

q(·) ,
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where we used Theorem 4.3.8 for the boundedness of M on Lq(·)(Rn), which
holds since q ∈ P log(Rn) satisfies 1 < q− � q+ < ∞.

Given that χB takes only values 0 and 1, we conclude that

‖χB‖
n−α
n

q(·) = ‖χB‖p′(·) � c |B|
1
p′
B ,

where the second estimate follows from Corollary 4.5.9. Combining these
estimates yields

ˆ

Rn\B

|f(y)|
|x− y|n−α

dy � c
(
(q−)′

)n−α
n |B|

α−n
n + 1

p′
B

� c
( n− α

n− αp+

)n−α
n |B|

− 1

p
�
B . ��

For future reference we record the following point-wise estimate:

Proposition 6.1.6. Let Ω ⊂ R
n be a bounded, open set and 0 < α < n. Let

p ∈ P log(Ω) with 1 < p− � p+ < n
α . If k � max

{
p+

n−αp+ , 1
}
, then

Iαf(x) � c k
1

(p+)′Mf(x)1−
α
n p(x).

for every f ∈ Lp(·)(Ω) with ‖f‖p(·) � 1 and every x ∈ Ω. The constant
depends only on α, n, clog(p), and diam(Ω).

Proof. Let x ∈ Ω and let 0 < δ � 2 diam Ω be a number to be specified later.
We extend p to R

n by Proposition 4.1.7. Then it follows from Lemmas 6.1.4
and 6.1.5 that

Iαf(x) � c δαMf(x) + c k
1

(p+)′ δ
− n

p
�
B(x,δ) . (6.1.7)

Since δ � 2 diam Ω, δ−n/p
�
B(x,δ) ≈ δ−n/p

�(x).
If [Mf(x)]−p(x)/n < 2 diam(Ω), we choose δ = [Mf(x)]−p(x)/n. Then

inequality (6.1.7) gives the claim. On the other hand, if [Mf(x)]−p(x)/n �
2 diam(Ω), we choose δ = 2 diam(Ω). Now we have δα � [Mf(x)]−(αp(x))/n,
so the claim follows directly from Lemma 6.1.4. ��

Lemma 6.1.8. Let p ∈ P log(Rn), 0 < α < n, and 1 < p− � p+ < n
α . For

any m > n there exists c > 0 only depending on clog(p), p+, α, and n such
that

Iαf(x)p
�(x) � cMf(x)p(x) + h(x),

for all f ∈ Lp(·) with ‖f‖p(·) � 1 and all x ∈ R
n, where h ∈ L1(Rn)∩L∞(Rn).
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Proof. Define q ∈ P log(Rn) by q := n−α
n p′ and note that 1 < q− � q+ < ∞.

Therefore, by Theorem 4.3.8, M is bounded on Lq(·)(Rn). Recall that (pB)′ =
(p′)B and (pB)� = (p�)B . Let ‖f‖p(·) � 1 and x ∈ R

n. By Lemma 6.1.4,

ˆ

B(x,δ)

|f(y)|
|x− y|n−α

dy � c δαMf(x)

for every δ > 0. We can assume that f �= 0, since the claim is obvious for

f = 0. Fix δ :=
(
Mf(x)

)−p(x)
n , so that

(
δαMf(x)

)p�(x) = Mf(x)p(x). Then

( ˆ

B(x,δ)

|f(y)|
|x− y|n−α

dy

)p�(x)
� cMf(x)p(x).

We then estimate the remaining part of the integral, outside the ball
B(x, δ). By Lemma 6.1.5,

ˆ

Rn\B(x,δ)

|f(y)|
|x− y|n−α

dy � c |B(x, δ)|
− 1
p
�
B(x,δ) .

Continuing with Lemma 4.2.7 for the exponent p�, we see that there exist
c > 0 and m > n such that

( ˆ

Rn\B(x,δ)

|f(y)|
|x− y|n−α

dy

)p�(x)

� c |B(x, δ)|−1 + c (e + |x|)−m + c

(  

B(x,δ)

(e + |y|)−m dy
)p−

.

By definition of δ, the first term on the right-hand side equals cMf(x)p(x).
Let us set h′(x) := cM((e + | · |)−m)(x)p

−
. Since M((e + | · |)−m) ∈

w-L1(Rn) ∩ L∞(Rn), it belongs to Lp
−

(Rn) (Lemma 4.3.5), hence h′ ∈
L1(Rn). Then we have seen that both parts of the Riesz potential can
been estimated by cMf(x)p(x) + h(x), where h := h′ + (e + | · |)−m ∈
L1(Rn) ∩ L∞(Rn). ��

Theorem 6.1.9. Let p ∈ P log(Rn), 0 < α < n, and 1 < p− � p+ < n
α .

Then

‖Iαf‖p�(·) � c(n, α, p) ‖f‖p(·),

where the constant depends on p only via clog(p), p− and p+.



204 6 Classical Operators

Proof. Let h ∈ w-L1(Rn) ∩ L∞(Rn) be as in Lemma 6.1.8. Let ‖f‖p(·) � 1
and thus �p(·)(f) � 1 by the unit ball property

Integrating the inequality in Lemma 6.1.8 over x ∈ R
n yields

�p�(·)
(
Iαf) � �p(·)(Mf) + �1(h) � �p(·)(Mf) + c.

By Theorem 4.3.8, M is bounded on Lp(·)(Rn) and so �p(·)(f) � 1 implies
�p(·)(Mf) � c, where we used p+ < ∞. Hence �p�(·)(Iαf) � c and therefore
‖Iαf‖p�(·) � c, where we used (p�)+ < ∞. Since Iα is sublinear, a scaling
argument completes the proof. ��

Remark 6.1.10. As in Remark 4.2.8, it is possible to replace the log-Hölder
decay condition of 1

p in Lemma 6.1.8 and Theorem 6.1.9 by the weaker
condition 1 ∈ Ls(·) with 1

s(x) :=
∣
∣ 1
p(x) − 1

p∞

∣
∣ =
∣
∣ 1
p�(x)

− 1
(p�)∞

∣
∣.

Next we prove a weak type estimate for the Riesz potential. The proof
shares the idea with Proposition 4.4.14.

Theorem 6.1.11. Let Ω ⊂ R
n be a bounded, open set. Suppose that

p ∈ P log(Ω), 0 < α < n, and 1 < p− � p+ < n
α . Let f ∈ Lp(·)(Ω) be

such that 2(1 + |Ω|)‖f‖p(·) � 1. Then for every t > 0 we have

ˆ

{Iαf>t}

tp
�(x)dx � c

ˆ

Ω

|f(y)|p(y)dy +
∣
∣{x ∈ Ω : 0 < |f | � 1}

∣
∣.

Proof. We obtain by Proposition 6.1.6 that

{Iαf(x) > t} ⊂
{
c [Mf(x)]

p(x)
p�(x) > t

}
=: E.

For every z ∈ E we choose Bz := B(z, r) such that c (MBzf)
p(z)
p�(z) > t.

Let x ∈ Bz and raise this inequality to the power p�(x). Let us write
q(x) := p(z)p�(x)/p�(z). Assume first that q(x) � p(x), i.e. p(x) � p(z). Since
2(1 + |Ω|)‖f‖p(·) � 1 we get MBzf � |Bz|−1, and thus we obtain

tp
�(x) � c (MBzf)p(x)(MBzf)q(x)−p(x) � c (MBzf)p(x)|Bz|p(x)−q(x)

= c (MBzf)p(x)|Bz |
αp(x)(p(z)−p(x))

n−αp(x) .

The term |Bz|
αp(x)(p(z)−p(x))

n−αp(x) is uniformly bounded since p is log-Hölder
continuous. By Theorem 4.2.4 this yields

tp
�(x) � cMBz

(
|f |p(·) + χ{0<|f |�1}

)
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for every x ∈ Bz such that q(x) � p(x). Assume now that q(x) < p(x). By
Theorem 4.2.4 we obtain

tp
�(x) � c

(
MBz

(
|f |p(·) + χ{0<|f |�1}

)) q(x)p(x) � cMBz

(
|f |p(·) + χ{0<|f |�1}

)
,

where the last inequality follows since MBz

(
|f |p(·) + χ{0<|f |�1}

)
� 1 and

q(x)/p(x) < 1.
By the Besicovitch covering theorem (Theorem 1.4.6) there is a countable

covering subfamily (Bi), with the bounded overlap-property. Thus

ˆ

E

tp
�(x)dx �

∞∑

i=1

ˆ

Bi

tp
�(x)dx � c

∞∑

i=1

ˆ

Bi

 

Bi

|f(y)|p(y) + χ{0<|f |�1}(y) dy dx

= c
∞∑

i=1

ˆ

Bi

|f(y)|p(y) + χ{0<|f |�1}(y) dy

� c

ˆ

Ω

|f(y)|p(y)dy + |{x ∈ Ω : 0 < |f | � 1}|. ��

The following Jensen type inequality will be needed later in Sect. 8.2 to
prove a special type Poincaré inequality, Proposition 8.2.11. The result is
from [350].

Lemma 6.1.12 (Jensen inequality with singular measure). Let
p ∈ P log(Rn). For every m > 0 there exists β ∈ (0, 1) only depending on
m and clog(p) such that

ϕp(x)

(

β

ˆ

B

|f(y)|
r |x− y|n−1 dy

)

�
ˆ

B

ϕp(y)(|f(y)|)
r |x− y|n−1 dy +M

(
(e + |·|)−m

)
(x)

for every R > 0, B := B(z, r), x ∈ B and every f ∈ Lp(·)(B) ∩ L∞(B) with
‖f‖Lp(·)(B)+L∞(B) � 1.

Proof. Fix r > 0 and let B be a ball with radius r. Define annuli Ak :=
{y ∈ B : 2−k � |x− y|R−1 � 21−k} for k � 0. As in the proof of Lemma 6.1.4
we split the B into the annuli Ak and obtain

ˆ

B

|f(y)|
r |x− y|n−1 dy � c1

∞∑

k=0

2−k
 

B(x,21−k)

χAk |f |dy.
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Let β2 > 0 be the β from the key estimate Lemma 4.2.4. Since
∑∞

k=0 2−k � 1,
it follows by convexity that

(I) := ϕp(x)

(
β2

c1

ˆ

B

|f(y)|
r |x− y|n−1 dy

)

�
∞∑

k=1

2−kϕp(x)

(

β2

 

B(x,21−k)

χAk |f |dy
)

.

So the key estimate, Lemma 4.2.4, yields

(I) �
∞∑

k=1

2−k
(  

B(x,21−k)

χAkϕp(y)(|f |) dy

+
1
2

(e + |x|)−m +
1
2

 

B(x,21−k)

(e + |y|)−m dy
)

�
 

B

ϕp(y)(|f(y)|)
r |x− y|n−1 dy +M

(
(e + |·|)−m

)
(x). ��

6.2 The Sharp Operator M �f

In this section we prove the fundamental estimate that the norm ‖f‖p(·) of
an Lp(·)(Rn) function f (scalar or vectorial) can be estimated by ‖M �f‖p(·)
as long as p ∈ A satisfies 1 < p− � p+ < ∞. We introduce the following
maximal operators: let 0 < s < ∞ and f ∈ Lsloc(R

n). Then for all balls (or
cubes) B we define

Ms,Bf =
(  

B

|f(y)|s dy
) 1
s

, Msf(x) = sup
B�x

Ms,Bf,

M �
s,Bf :=

(  

B

|f(y) − fB|s dy
) 1
s

, M �
sf(x) := sup

B�x
M �
s,Bf,

for all x ∈ R
n, where the supremum is taken over all balls (or cubes) B ⊂ R

n

which contain x. Then the sharp operator M �f is defined by M �f := M �
1f .

Note that f ∈ BMO(Rn) if and only if M �f ∈ L∞(Rn).
Further note that M1f = Mf and that Ms1f � Ms2f and M �

s1f � M �
s2f

for s1 � s2 by Jensen’s or Hölder’s inequality. Since |M �f | � 2Mf , it is easy
to see that f �→ M �f is bounded on Ls(Rn) for all 1 < s < ∞, and that this
generalizes to the variable exponent context due to Theorem 5.7.2:
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Lemma 6.2.1. For p ∈ A with 1 < p− � p+ < ∞, M �f is bounded on
Lp(·)(Rn).

A more interesting fact about M �f is that

‖f‖s � c ‖M �f‖s, (6.2.2)

for all f ∈ Ls(Rn) and constant s ∈ (1,∞) (cf. [360]). Hence f ∈ Ls(Rn) if
and only if M �f ∈ Ls(Rn) when 1 < s < ∞. We now generalize this to the
variable exponent context.

The original proof of (6.2.2) uses the grand maximal function, however,
in our case we can circumvent this by the following lemma, which combines
[360, Sect. II.2.1] and [360, Sect. IV.2].

Lemma 6.2.3. For all f ∈ L∞(Rn) and g ∈ C∞
0,0(Rn),

∣
∣〈f, g〉

∣
∣ � c 〈M �f,Mg〉.

Using approximation by smooth functions, this is generalized to Lebesgue
functions:

Lemma 6.2.4. Let p ∈ A with 1 < p− � p+ < ∞. Then

∣
∣〈f, g〉

∣
∣ � c 〈M �f,Mg〉

for all f ∈ Lp(·)(Rn) and g ∈ Lp
′(·)(Rn)

Proof. Let f ∈ Lp(·)(Rn) and g ∈ Lp
′(·)(Rn). Then by the Theorem 3.4.12 and

Proposition 3.4.14 there exist sequences (fi) ⊂ C∞
0 (Rn) and (gi) ⊂ C∞

0,0(Rn)
such that fi → f in Lp(·)(Rn) and gi → g in Lp

′(·)(Rn). Since M � is a bounded
operator, M �fi → M �f in Lp(·)(Rn). As p′ ∈ A by Theorem 5.7.2, the maxi-
mal operator is bounded on Lp

′(·)(Rn) and so Mgi → Mg in Lp
′(·)(Rn). Thus

it follows from Lemma 6.2.3 that

|〈f, g〉| = lim
n→∞ |〈fi, gi〉| � lim

n→∞ c 〈M �fi,Mgi〉 = c |〈M �f,Mg〉|. ��

Theorem 6.2.5. If p ∈ A with 1 < p− � p+ < ∞, then

‖f‖p(·) � c ‖M �f‖p(·)

for all f ∈ Lp(·)(Rn).
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Proof. From Lemma 6.2.4 it follows that

|〈f, g〉| � c ‖M �f‖p(·)‖Mg‖p′(·) � c ‖M �f‖p(·)‖g‖p′(·)

for all f ∈ Lp(·)(Rn) and g ∈ Lp
′(·)(Rn). The assertion now follows from the

norm conjugate formula (Corollary 3.2.14). ��

6.3 Calderón–Zygmund Operators

We now turn to the examination of singular integral operators on Lp(·)(Rn).
These operators are very useful in the study of partial differential equations.
In a classical application they are used to prove that the Poisson problem
−Δu = f with f ∈ Lq(Rn) has a solution u ∈ W 2,q(Rn). We will generalize
this statement to the variable exponent setting in Sect. 14.1. Singular integral
operators have been studied in the variable exponent setting for instance in
[231,241–243,247].

Definition 6.3.1. A kernel k on R
n × R

n is a locally integrable complex-
valued function k, defined off the diagonal. We say that k satisfies standard
estimates if there exists δ > 0 and c > 0, such that the following inequalities
hold for all distinct x, y ∈ R

n and all z ∈ R
n with |x− z| < 1

2 |x− y|:

|k(x, y)| � c |x− y|−n,
|k(x, y) − k(z, y)| � c |x− z|δ|x− y|−n−δ,
|k(y, x) − k(y, z)| � c |x− z|δ|x− y|−n−δ.

(6.3.2)

In this case we call k a standard kernel.

We say that a linear and bounded operator T : C∞
0 (Rn) → D′(Rn), where

D′ is the space of distributions, is associated to a kernel k, if

〈Tf, g〉 =
ˆ

Rn

ˆ

Rn

k(x, y)f(y)g(x) dx dy,

whenever f, g ∈ C∞
0 (Rn) with spt(f)∩spt(g) = ∅. We say that T is a singular

integral operator if T is associated to a standard kernel. If in addition T
extends to a bounded, linear operator on L2(Rn), then it is a Calderón–
Zygmund operator. The following result is proved in [74, 76].

Proposition 6.3.3. Every Calderón–Zygmund operator is of strong type s,
s ∈ (1,∞), and of weak type 1.

Since most of the classical convolution operators are defined by principal
value integrals, we define the truncated kernels kε for ε > 0 by
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kε(x, y) :=

{
k(x, y) for |x− y| > ε,

0 for |x− y| � ε.

Furthermore we define for ε > 0

Tεf(x) :=
ˆ

Rn

kε(x, y)f(y) dy ,

and we say that Tε is associated to the kernel kε. In [63] it is shown that

Proposition 6.3.4. Let k be a kernel on R
n × R

n. Assume that N(x, z) :=
k(x, x− z) is homogeneous of degree −n in z and that

(a) for every x, N(x, z) is integrable over the sphere |z| = 1 and its integral
equals zero; and

(b) for some σ > 1 and every x, |N(x, z)|σ is integrable over the sphere
|z| = 1 and its integral is bounded uniformly with respect to x.

Then for every s ∈ [σ′,∞) the operators Tε are uniformly bounded on Ls(Rn)
with respect to ε > 0. Moreover,

Tf(x) := lim
ε→0+

Tεf(x) (6.3.5)

exists almost everywhere and Tεf → Tf in Ls(Rn). In particular T is bounded
on Ls(Rn).

Remark 6.3.6. If k is a standard kernel which satisfies (a) and (b) in Propo-
sition 6.3.4, and T is defined by the principal value integral of (6.3.5), then
T is a Calderón–Zygmund operator: Indeed, due to Proposition 6.3.4 the
operator T is bounded on Ls(Rn) for all s ∈ [σ′,∞) and Tεf → Tf almost
everywhere and in measure for all f ∈ Ls(Rn). Moreover, (6.3.2) implies for
all x, y, z ∈ R

n with |x− z| < r that

ˆ

|y−x|�2r

|k(y, x) − k(y, z)| dy � c

ˆ

|y−x|�2r

|x− z|δ|x− y|−n−δ dy

� c rδ
ˆ

|w|�2r

|w|−n−δ dw

� c .

Thus, [360, Corollary I.7.1, p. 33] implies that the operators Tε are of weak
type 1 uniformly with respect to ε > 0, i.e.

∣
∣{|Tεf | > α}

∣
∣ � c

‖f‖1

α
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for all f ∈ L1(Rn) ∩ Lσ′
(Rn) and all α > 0. Thus

∣
∣{|Tf | > α}

∣
∣ �
∣
∣{|(Tε − T )f | > α

2 }
∣
∣+
∣
∣{|Tεf | > α

2 }
∣
∣

�
∣
∣{|(Tε − T )f | > α

2 }
∣
∣+ c

‖f‖1

α

for all α > 0. Since Tεf → Tf in measure, this implies that T is of weak
type 1. Since T is also bounded on Ls(Rn) for all s with s ∈ [σ′,∞), this
implies that T is bounded on L2(Rn). Thus T is a Calderón–Zygmund
operator.

Although the class of Calderón–Zygmund operators will be our model case
we use the following definition of Alvarez and Pérez [29].

Definition 6.3.7 (Condition (D)). For a kernel k on R
n × R

n we define

DB(x0,r)k(y) :=
 

B(x0,r)

 

B(x0,r)

|k(z, y) − k(x, y)| dx dz.

The kernel k is said to satisfy condition (D) if there are constants c,N > 0
such that

sup
r>0

ˆ

|y−x0|>Nr

|f(y)|DB(x0,r)k(y) dy � cMf(x0)

for all f ∈ C∞
0 (Rn) and x0 ∈ R

n.

Note that a standard kernel satisfies condition (D). This is easily seen by
the following argument: Let r > 0 and B := B(x0, r). If |x0 − y| > 5r, then
|x− z| < 2r < 1

2 |x− y| and |x− y| > 4
5 |x0 − y| for x, z ∈ B. Thus, by (6.3.2),

DBk(y) �
 

B

 

B

c |x− z|δ|x− y|−n−δ dx dz � c rδ|x0 − y|−n−δ.

Let A := 10B \ 5B denote an annulus. Then

ˆ

2jA

|f |DBk dy � c

ˆ

2jA

|f |
(
r/|y − x0|

)δ|y − x0|−n dy � c 2−δjMf(x0)

for j � 0, since
(
r/|y − x0|

)δ ≈ 2−δj and |y − x0|−n ≈ |2jA|−1 for y ∈ 2jA.
Therefore
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ˆ

Rn\5B

|f |DBk dy =
∞∑

j=0

ˆ

2jA

|f |DBk dy � c
∞∑

j=0

2−δjMf(x0) = c(δ)Mf(x0).

Thus condition (D) is verified.
In [29] it is shown that

Proposition 6.3.8. Let T be an operator associated to a kernel k on R
n×R

n

satisfying condition (D). Let us suppose that T extends to a bounded operator
from L1(Rn) to w-L1(Rn). Then, for each 0 < s < 1, there exists c = c(s) > 0
such that

(
M �(|Tf |s)

) 1
s (x) � cMf(x)

for all f ∈ C∞
0 (Rn) and x ∈ R

n.

We now show the boundedness of such operators on Lp(·)(Rn) under the
usual assumptions.

Theorem 6.3.9. Let p ∈ A with 1 < p− � p+ < ∞. Let T be an operator
associated to a kernel k on R

n×R
n satisfying condition (D). Let us suppose

that T extends to a bounded operator from L1(Rn) to w-L1(Rn). Then T is
of strong type p(·).

Proof. By Theorem 5.7.2 there exists 0 < s < 1 such that (ps )′ ∈ A. Then it
follows from Theorem 6.2.5 that

‖Tf‖p(·) =
∥
∥|Tf |s

∥
∥

1
s
p(·)
s

� c
∥
∥M �(|Tf |s)

∥
∥

1
s
p(·)
s

= c
∥
∥(M �(|Tf |s)) 1

s

∥
∥
p(·) .

From Proposition 6.3.8 it follows that

(
M �(|Tf |s)

) 1
s (x) � cMf(x)

for all f ∈ C∞
0 (Rn) and all x ∈ R

n. Thus ‖Tf‖p(·) � c
∥
∥Mf

∥
∥
p(·) � c

∥
∥f
∥
∥
p(·)

for all f ∈ C∞
0 (Rn). Since C∞

0 (Rn) is dense in Lp(·)(Rn) (Theorem 3.4.12),
this proves the theorem. ��

Since every Calderón–Zygmund kernel is a standard kernel, it satisfies
condition (D), and hence we immediately obtain the following

Corollary 6.3.10. Let T be a Calderón–Zygmund operator with kernel k on
R
n × R

n and let p ∈ A with 1 < p− � p+ < ∞. Then T is bounded on
Lp(·)(Rn).

To transfer the statements about the principal value integral limε→0+ Tεf
to the spaces Lp(·)(Rn) we make use of the maximal truncated operator T ∗,
which is defined by
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T ∗f(x) := sup
ε>0

∣
∣Tεf(x)

∣
∣.

It is shown e.g. in [74] that

Proposition 6.3.11. Let T be a Calderón–Zygmund operator with kernel k
on R

n × R
n. Then there exists c = c(s) > 0, such that

T ∗f(x) � c
(
M(Tf)(x) +Mf(x)

)

for all f ∈ Ls(Rn) and all x ∈ R
n, where 1 � s < ∞.

Corollary 6.3.12. Let p ∈ A with 1 < p− � p+ < ∞, and let T be a
Calderón–Zygmund operator with kernel k on R

n × R
n. Then T ∗ is bounded

on Lp(·)(Rn).

Proof. Let f ∈ C∞
0 (Rn) with ‖f‖p(·) � 1. By Theorem 5.7.2 the operator

M is bounded on Lp(·)(Rn) and by Corollary 6.3.10 ‖Tf‖p(·) � c. Therefore
‖M(Tf)‖p(·) + ‖Mf‖p(·) � c. Now, Proposition 6.3.11 yields ‖T ∗f‖p(·) � c.
Since C∞

0 (Rn) is dense in Lp(·)(Rn) (Theorem 3.4.12), the same holds also
for arbitrary f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1. The last restriction is removed
by a scaling argument, which proves the corollary. ��

Corollary 6.3.13. Let k be a standard kernel on R
n × R

n which satisfies
condition (a) and (b) of Proposition 6.3.4. Let p ∈ A with 1 < p− � p+ <∞.
Then the operators Tε are uniformly bounded on Lp(·)(Rn) with respect to
ε > 0. Moreover,

Tf(x) := lim
ε→0+

Tεf(x) (6.3.14)

exists almost everywhere and Tεf → Tf in Lp(·)(Rn). In particular, T is
bounded on Lp(·)(Rn).

Proof. By Corollary 6.3.10 and Corollary 6.3.12 the operators T and T ∗ are
bounded on Lp(·)(Rn). Since |Tεf(x)| � T ∗f(x) for all f ∈ Lp(·)(Rn) and all
x ∈ R

n by definition of T ∗, it follows that the operators Tε are uniformly
bounded on Lp(·)(Rn) with respect to ε > 0. Now fix g ∈ C∞

0 (Rn). By
Proposition 6.3.4, limε→0+ Tεg = Tg in Lp

−
(Rn) and Lp

+
(Rn), hence also in

Lp(·)(Rn) by Theorem 3.3.11. By the density of smooth functions in Lp(·)(Rn)
(Theorem 3.4.12) and the boundedness of T and Tε, the claim follows also
for f ∈ Lp(·)(Rn). Due to Theorem 3.3.11 each f ∈ Lp(·)(Rn) belongs to
Lp

−
(Rn) + Lp

+
(Rn), which together with Proposition 6.3.4 shows that the

convergence in (6.3.14) holds also almost everywhere. ��



Chapter 7

Transfer Techniques

This chapter is a collection of various techniques with the common theme
“transfer”. In other words we study methods which allow us to take results
from one setting and obtain corresponding results in another setting “for
free”. The best known example of such a technique is interpolation, which
has played an important unifying role in the development of the theory
of constant exponent spaces [362–364]. Complex interpolation is presented
in Sect. 7.1. Unfortunately, interpolation is not so useful in the variable
exponent setting, since it is not possible to interpolate from constant expo-
nents to variable exponents. Therefore other techniques are also included,
namely, extrapolation (Sect. 7.2), a tool for going from bounded to unbounded
domains (Sect. 7.3), and a tool for going from results in balls to results in John
domains (Sect. 7.4).

7.1 Complex Interpolation

Interpolation is a useful tool for linear, bounded operators on Banach spaces.
The idea is the following: if S is a linear operator which is bounded as an
operator from X0 to Y0 and as an operator from X1 to Y1, then automati-
cally S is linear and bounded as an operator from X[θ] to Y[θ] for all 0<θ< 1,
where X[θ] and Y[θ] are the complex interpolation spaces of the Banach cou-
ples (X0, X1) and (Y0, Y1). Here Banach couple means that both spaces are
continuously embedded into the same Hausdorff topological vector space. To
use this result, we need to know what Lebesgue space [Lp(·), Lq(·)][θ] is. In
this section we characterize this interpolation space.

We refer to Bergh and Löfström [45] for an exposition on interpolation
theory. Given p0, p1 ∈ P(A, μ), we define pθ ∈ P(A, μ) point-wise by the
expression

1
pθ

:=
1 − θ

p0
+

θ

p1

for θ ∈ [0, 1].

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 7,
c© Springer-Verlag Berlin Heidelberg 2011
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Lemma 7.1.1. If q0, q1 ∈ [1,∞] and θ ∈ (0, 1), then

ϕ̄−1
qθ

(t) =
(
ϕ̄−1
q0 (t)

)1−θ(
ϕ̄−1
q1 (t)

)θ

for all t � 0.

Proof. If q0, q1 < ∞, then the claim follows directly from ϕ̄−1
q (t) = t

1
q for

q ∈ [1,∞) and t � 0. The assertion is also obvious if q0 = q1 = ∞. Now, let
q0 < ∞ and q1 = ∞. Since ϕ−1

∞ (t) = χ(0,∞)(t) we have

(
ϕ̄−1
q0 (t)

)1−θ(
ϕ̄−1
∞ (t)

)θ =
(
ϕ̄−1
q0 (t)

)1−θ = t
1−θ
q0 = ϕ̄−1

qθ
(t)

for all t � 0, as claimed. ��

We recall the definition of the norm in the interpolation space [Lp(·), Lq(·)][θ].
Let S := {z ∈ C : 0 < Re z < 1}, so that S = {z ∈ C : 0 � Re z � 1}, where
Re z is the real part of z. Let F be the space of functions on S with values
in Lp0(·) + Lp1(·) which are analytic on S and bounded and continuous on S
such that F (it) and F (1 + it) tend to zero for |t| → ∞. (Recall that i denotes
the imaginary unit. Also, F is analytic with values in a Banach space means
that d

dz̄F = 0 in the Banach space.) For F ∈ F we set

‖F‖F := sup
t∈R

max
{∥
∥F (it)

∥
∥
p0(·),

∥
∥F (1 + it)

∥
∥
p1(·)
}
.

Then we define

‖f‖[θ] := inf
{
‖F‖F : F ∈ F and f = F (θ)

}
.

We are now prepared to study the space [Lp(·), Lq(·)][θ].

Theorem 7.1.2 (Complex interpolation). Let p0, p1 ∈ P(A, μ) and
θ ∈ (0, 1). Then

[
Lp0(·)(A, μ), Lp1(·)(A, μ)

]
[θ]

∼= Lpθ(·)(A, μ)

and ‖g‖[θ] � ‖g‖pθ(·) � 4 ‖g‖[θ] if ϕp(·) = ϕ̄p(·).

Proof. We proceed along the lines of [45]. For z ∈ S define ϕ̄[z] ∈ Φ(A, μ) by

ϕ̄−1
[z] (y, t) :=

(
ϕ̄−1
p0(y)

(t)
)1−z(

ϕ̄−1
p1(y)(t)

)z
.

Then z �→ ϕ̄−1
[z] is analytic on S and continuous on S. Note that ϕ̄−1

[θ] = ϕ̄−1
pθ(·)

if θ ∈ [0, 1] by Lemma 7.1.1.
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Let θ ∈ (0, 1) and g ∈ Lpθ(·) with ‖g‖pθ(·) � 1. Then �pθ(·)(g) � 1 by the
unit ball property and therefore ϕpθ(y)(|g(y)|) is a.e. finite. For ε > 0, z ∈ S,
and y ∈ A, define

Fε(z; y) = exp(−ε+ εz2 − εθ2) ϕ̄−1
[z]

(
y, ϕ̄pθ(y)

(
|g(y)|

))
sgn g(y).

Then Fε(θ; y) = exp(−ε) g(y). Clearly, Fε(z; y) is analytic in z for a.e. y.
Hence, d

dz̄Fε(z) = 0 in Lp0(·) + Lp1(·). Note that

∣
∣exp

(
− ε+ ε(it)2 − ε θ2

)∣
∣ =
∣
∣exp

(
ε(−1 − t2 − θ2)

)∣
∣ � 1,

∣
∣exp

(
− ε+ ε(1 + it)2 − ε θ2

)∣
∣ =
∣
∣exp

(
ε(−t2 − θ2)

)∣
∣ � 1

(7.1.3)

for all t ∈ R. Thus

∣
∣Fε(it; y)

∣
∣ � ϕ̄−1

p0(y)

(
ϕ̄pθ(y)

(
|g(y)|

))
,

∣
∣Fε(1 + it; y)

∣
∣ � ϕ̄−1

p1(y)

(
ϕ̄pθ(y)

(
|g(y)|

))

for all y ∈ A and all t ∈ R. If we apply ϕ̄p0 and ϕ̄p1 to the penultimate line
and the last line, respectively, use ϕ(ϕ−1(t)) � t from (3.1.9), and integrate
over y ∈ A, then we get

�p0(·)
(
Fε(it)

)
� �pθ(·)(g) � 1,

�p1(·)
(
Fε(1 + it)

)
� �pθ(·)(g) � 1

for all t ∈ R. Hence by the unit ball property

‖Fε(it)‖p0(·) � 1,

‖Fε(1 + it)‖p1(·) � 1

for all t ∈ R. Thus

∥
∥Fε
∥
∥
F = sup

t∈R

max
{∥
∥Fε(it)

∥
∥
p0(·),

∥
∥Fε(1 + it)

∥
∥
p1(·)
}

� 1.

Since Fε(θ) = exp(−ε) g, this implies that
∥
∥exp(−ε) g

∥
∥

[θ]
� 1. As ε > 0 was

arbitrary, we deduce ‖g‖[θ] � 1. A scaling argument yields ‖g‖[θ] � ‖g‖pθ(·).
Assume now that θ ∈ (0, 1) and ‖g‖[θ] < 1. By definition of ‖·‖[θ] there

exists F : S → (Lp0(·) + Lp(·)) with ‖F‖F � 1 such that F is analytic
on S and continuous on S with

∥
∥F
∥
∥
F < 1, F (it) and F (1 + it) tend

to zero for |t| → ∞, and F (θ) = g. So the unit ball property implies
supt∈R

max
{
�p0(·)(F (it)), �p1(·)(F (1 + it))

}
� 1. Let b be a simple function

on R
n with ‖b‖p′θ(·) � 1. Then �p′θ(·)(b) � 1 by the unit ball property and
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using ϕ̄∗
pθ

(t) � ϕ̄p′
θ
(t) (Lemma 3.1.3) we see that ϕ̄∗

pθ(y)
(|b(y)|) is finite almost

everywhere. For ε > 0 define hb,ε : S → (Lp
′
0(·)∩Lp′1(·)) and Hb,ε : S → C by

hb,ε(z, y) := exp(−ε+ εz2 − εθ2) (ϕ̄∗
[z])

−1
(
y, ϕ̄∗

pθ(y)

(
|b(y)|

))
sgn g(y),

Hb,ε(z) :=
ˆ

A

hb,ε(z, y)F (z; y) dμ(y),

where we define (ϕ̄∗)[z] analogously to ϕ̄[z] by

(ϕ̄∗)−1
[z] (y, t) =

((
ϕ̄∗
p0(y)

)−1(t)
)1−z((

ϕ̄∗
p1(y)

)−1(t)
)z
.

Then Hb,ε is analytic on S and continuous on S, Hb,ε(it) and Hb,ε(1 + it)
tend to zero for |t| → ∞, and

Hb,ε(θ) �
ˆ

A

hb,ε(θ, y)F (θ; y) dμ(y) =
ˆ

A

exp(−ε) b(y)g(y) dμ(y).

We estimate using (7.1.3), Young’s inequality, ϕ(ϕ−1(t)) � t, and ϕ̄∗
pθ (t) �

ϕ̄p′
θ
(t) from Lemma 3.1.3:

∣
∣Hb,ε(it)

∣
∣ =

ˆ

A

∣
∣hb,ε(it, y)F (it; y)

∣
∣ dμ(y)

�
ˆ

A

(ϕ̄∗
p0(y))

−1
(
y, ϕ̄∗

pθ(y)

(
|b(y)|

))
|F (it; y)| dμ(y)

�
ˆ

A

ϕ̄∗
pθ(y)

(
|b(y)|

)
+ ϕ̄∗

p0(y)

(
|F (it; y)|

)
dμ(y)

� �p′
θ
(·)(b) + �p0(·)

(
F (it)

)

� 1 + 1 = 2.

Analogously,

|Hb,ε(1 + it)| � �p′θ(·)(b) + �p1(·)
(
F (1 + it)

)
� 2.

Overall, we know that Hb,ε is analytic on S, continuous on S and bounded
on the boundary of S by 2. The three line theorem [45, Lemma 1.1.2] implies
that Hb,ε is globally bounded by 2. In particular,

|Hb,ε(θ)| =
ˆ

A

exp(−ε) (ϕ̄∗
pθ(y)

)−1
(
ϕ̄∗
pθ(y)

(
|b(y)|

))
|g(y)| dy � 2.
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Since ϕ̄∗
pθ(y)

(
|b(y)|

)
is finite almost everywhere, we have the lower estimate

(ϕ̄∗
pθ(y)

)−1(ϕ̄∗
pθ(y)

|b(y)|)) � |b(y)| almost everywhere using (3.1.10). Letting
ε → 0, we thus find that

ˆ

A

|b(y)||g(y)| dy � 2,

for all simple functions b with ‖b‖p′θ(·) � 1. So the norm conjugate formula
(Corollary 3.2.14) yields ‖g‖pθ(·) � 4. ��

Theorem 7.1.2 has the following consequence.

Corollary 7.1.4. Let p0, p1 ∈ P(A, μ) and θ ∈ (0, 1). Let S be a linear,
bounded mapping S : Lpj(·)(A, μ) → Lpj(·)(A, μ) for j = 0, 1. Then S :
Lpθ(·)(A, μ) → Lpθ(·)(A, μ) is bounded. Moreover,

‖S‖Lpθ(·)→Lpθ(·) � 4 ‖S‖1−θ
Lp0(·)→Lp0(·)‖S‖θLp1(·)→Lp1(·)

for ϕp(·) = ϕ̄p(·).

Proof. Let X :=
[
Lp0(·)(A, μ), Lp1(·)(A, μ)

]
[θ]

with ‖·‖[θ]. Then by the com-
plex interpolation theorem of Riesz–Thorin (e.g., [45, Theorem 4.1.2]), we
obtain

‖S‖X→X � ‖S‖1−θ
Lp0(·)→Lp0(·)‖S‖θLp1(·)→Lp1(·) .

By Theorem 7.1.2 we conclude that

‖Sf‖pθ(·) � 4 ‖Sf‖[θ] � 4 ‖S‖1−θ
Lp0(·)→Lp0(·)‖S‖θLp1(·)→Lp1(·)‖f‖[θ]

� 4 ‖S‖1−θ
Lp0(·)→Lp0(·)‖S‖θLp1(·)→Lp1(·)‖f‖pθ(·),

for all f ∈ Lpθ(·). ��

Using Corollary 7.1.4 we obtain that A is convex with respect to the
reciprocal of the exponents:

Corollary 7.1.5. If p0, p1 ∈ A, then pθ ∈ A for every θ ∈ (0, 1).

Proof. If p0, p1 ∈ A, then by definition the averaging operators TQ are
bounded from Lpj(·)(Rn) to Lpj(·)(Rn) with j = 0, 1 uniformly for all locally
1-finite families of cubes Q in R

n. So by Corollary 7.1.4 these operators are
also bounded from Lpθ(·)(Rn) to Lpθ(·)(Rn), which implies pθ ∈ A. ��
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Under suitable circumstances, complex interpolation also generates com-
pact mappings if one of the two initial mappings is compact. In what follows
we need the following version:

Corollary 7.1.6. Let q0, q1 ∈ P(A, μ), θ ∈ (0, 1) and let X be a Banach
space. Let S be a linear mapping with

S : X ↪→ Lq0(·)(A, μ) and S : X ↪→↪→ Lq1(·)(A, μ)

Then S : X ↪→↪→ Lqθ(·)(A, μ).

Proof. The result follows as in Corollary 7.1.4, but now we use the abstract
theorem of Calderón [62] for interpolation of Banach spaces instead of the
Riesz–Thorin theorem; Calderón’s result says that if

S : X ↪→ Y0 and S : X ↪→↪→ Y1

then S : X ↪→↪→ [Y0, Y1]θ (here (Y0, Y1) is a Banach couple). ��

7.2 Extrapolation Results

For extrapolation we need to consider Muckenhoupt weights, which were
already introduced in Chap. 5. Recall that a locally integrable function
w : R

n → (0,∞) is an Ap-weight, 1 < p <∞, if

 

Q

w(x) dx
(  

Q

w(x)1−p
′
dx

)p−1

� c

for every cube Q. Also, w is an A1-weight if Mw � cw almost every-
where. The smallest constant c for which the inequality holds is known as the
Ap-constant of the weight. Recall also that Ap is increasing in p, i.e. Ap ⊂ Aq
if p � q. Moreover, the class has a self-improving property: if w ∈ Ap, then
there exists q < p so that w ∈ Aq. For more information on Ap weights we
refer to [174].

The following is the main result of [83, Theorem 1.3] by Cruz-Uribe,
Fiorenza, Martell and Pérez:

Theorem 7.2.1 (Extrapolation theorem). Given a family F of pairs of
measurable functions and an open set Ω ⊂ R

n, suppose for some p0 ∈ (0,∞)
that

ˆ

Ω

|f(x)|p0w(x) dx � c1

ˆ

Ω

|g(x)|p0w(x) dx for every (f, g) ∈ F ,
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and for every weight w ∈ A1, where c1 > 0 depends only on the A1-constant
of w. Let p ∈ P(Ω) be a bounded exponent with p− � p0 such that the maximal
operator is bounded on L(p(·)/p0)′(Ω). Then

‖f‖Lp(·)(Ω) � c2‖g‖Lp(·)(Ω),

for all (f, g) ∈ F , where c2 only depends on the operator norm of M on
L(p(·)/p0)′(Ω) and c1.

Proof. It suffices to prove the claim for ϕp(·) = ϕ̄p(·). The proof depends only
on the following two specific properties of the norm:

‖f‖rp(·) = ‖ |f |r‖ p(·)
r
,

for any r ∈ (0, p−] and the norm conjugate formula, Corollary 3.2.14.
Define s ∈ P(Ω) by s := p/p0 and let h ∈ Ls

′(·)(Ω). By assumption
‖Mh‖s′(·) � A‖h‖s′(·) for some constant independent of h. Thus we may
define the Rubio de Francia operator R by

Rh(x) :=
∞∑

k=0

Mkh(x)
(2A)k

,

where Mk denotes the iterated maximal operator, i.e. M0 = id and
M i = M ◦M i−1 for i � 1. We note the following properties of the Rubio
de Francia operator which are easily proved:
(a) |h| � Rh.
(b) ‖Rh‖s′(·) � 2‖h‖s′(·).
(c) M(Rh) � 2ARh, so that Rh is an A1-weight, with A1-constant indepen-

dent of h ∈ Ls
′(·)(Ω).

From these properties and Hölder’s inequality it follows that
ˆ

Ω

|f |p0 |h|dx �
ˆ

Ω

|f |p0Rh dx

� c1

ˆ

Ω

|g|p0Rh dx

� 2c1 ‖|g|p0‖s(·)‖Rh‖s′(·)
� 4Ac1 ‖g‖p0p(·)‖h‖s′(·).

Now the norm conjugate formula (Corollary 3.2.14) yields that |f |p0 in
Ls(·)(Ω) with

‖|f |p0‖s(·) � 4Ac1‖g‖p0p(·).

The claim follows since ‖|f |p0‖s(·) = ‖f‖p0p(·). ��
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Remark 7.2.2. In contrast to [83, Theorem 1.3] the estimate ‖|f |p0‖s(·) �
c2‖g‖p0p(·) is valid for all (f, g) ∈ F . In the original version the estimate only
holds for those (f, g) ∈ F with f ∈ Lp(·)(Ω). We overcome this technicality
by the use of the norm conjugate formula Corollary 3.2.14, which is valid for
all measurable functions. Moreover, the use of the associate space instead of
the dual space allows us to include the case p− = p0. This for example allows
us in Corollary 7.2.5 below to handle the case p− = 1.

A similar argument, for which we refer the reader to [83], yields a ver-
sion of the extrapolation theorem with different exponents on f and g
[83, Theorem 1.8], as well as a result valid for vector valued functions [83,
Corollary 1.10]:

Theorem 7.2.3. Given a family F of pairs of measurable functions and an
open set Ω ⊂ R

n, suppose for some fixed 0 < p0 < q0 < ∞ that

( ˆ

Ω

|f(x)|q0w(x) dx
) 1
q0

� c1

(ˆ

Ω

|g(x)|p0w(x)
p0
q0 dx

) 1
p0

for every (f, g) ∈ F ,

and every weight w ∈ A1, where c1 depends only on the A1-constant of w.
Let p ∈ P(Ω) be a variable exponent with p0 � p− and 1

p0
− 1

q0
< 1

p+ , and
define the exponent q ∈ P(Ω) through

1
q(x)

− 1
p(x)

=
1
q0

− 1
p0
.

Assume also that the maximal operator M is bounded on L(q(·)/q0)′(Ω). Then

‖f‖q(·) � c2‖g‖p(·),

for all (f, g) ∈ F , where c2 only depends on the operator norm of M in
L(q(·)/q0)′(Ω) and c1.

Theorem 7.2.4. Under the assumptions of Theorem 7.2.1 we also have
∥
∥
∥
∥
∥fj
∥
∥
lq

∥
∥
∥
p(·)

� C
∥
∥
∥
∥
∥gj
∥
∥
lq

∥
∥
∥
p(·)

for every sequence {(fj, gj)} ⊂ F .

As an example of an application of the extrapolation results we give here
another proof of the boundedness of the Riesz potential operator and of the
fractional maximal operator,

Mαf(x) := sup
r>0

rα−n
ˆ

B(x,r)

|f(y)| dy.
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To apply the extrapolation results, we need the corresponding weighted
estimates in the constant exponent case. For these operators it was shown by
Muckenhoupt and Wheeden [306] that

( ˆ

Rn

|Iαf(x)|qw(x) dx
)1/q

� c

( ˆ

Rn

|f(x)|pw(x)p/q dx
)1/p

and ( ˆ

Rn

Mαf(x)qw(x) dx
)1/q

� c

( ˆ

Rn

|f(x)|pw(x)p/q dx
)1/p

where w ∈ A1+q/p′ and c depends on the A1+q/p′ -constant of w, thus in
particular for every w ∈ A1. As in Corollary 4.3.11 this result extends trivially
to the case Ω ⊂ R

n.
Suppose now that p is a variable exponent with p+ < n/α and define q

by 1/q(x) = 1/p(x) − α/n. If there is a constant q0 ∈ ( n
n−α ,∞) for which

the maximal operator is of strong type (q/q0)′, then all the assumptions of
Theorem 7.2.3 are satisfied. We showed in Theorem 5.7.2 that the maximal
operator is bounded on Lp(·)(Rn) if and only if it is bounded on Lp

′(·)(Rn).
Taking also this into account, we obtain:

Corollary 7.2.5. Let p ∈ A with p+ < n
α . Then

‖Iαf‖p�(·) � c ‖f‖p(·) and ‖Mαf‖p�(·) � c ‖f‖p(·).

Based on the same results and appropriate constant exponent, weighted
estimates, boundedness results for several other operators were given in [83].
They read as follows:

Corollary 7.2.6. Let p ∈ A with 1 < p− � p+ <∞. Then

‖Mf‖p(·) � c ‖M �f‖p(·).

For the definition of M �f and a direct proof of this result see Theo-
rem 6.2.5.

Corollary 7.2.7. Let p ∈ A with 1 < p− � p+ <∞. Then

‖K ∗ f‖p(·) � c ‖f‖p(·),

where K is a standard singular integral kernel (cf. Definition 6.3.1).

Results for Fourier multipliers, square functions and commutators were
also given in [83].

As a final example we present a result for vector valued maximal inequal-
ities [83, Corollary 2.1], which was proved for the first time in the variable
exponent setting by this method.
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Corollary 7.2.8. Let p ∈ A with 1 < p− � p+ <∞. Then

∥
∥
∥
∥

( ∞∑

j=0

Mf qj

)1/q∥∥
∥
∥
p(·)

� c

∥
∥
∥
∥

( ∞∑

j=0

|fj|q
)1/q∥∥

∥
∥
p(·)

for every q ∈ (1,∞).

Corollary 7.2.9. Let k be a kernel on R
n of the form

k(x) :=
P (x/|x|)

|x|n , (7.2.10)

where P ∈ Lr0(∂B(0, 1)) for some r ∈ (1,∞] (with the (n − 1)-dimensional
Hausdorff measure). Moreover, let p ∈ P log(Rn) with p− > r′. Then the
operator T , defined for almost everywhere by

Tf(x) := lim
ε→0

ˆ

(B(x,ε))c

k(x− y)f(y) dy,

is bounded on Lp(·)(Rn).

7.3 Local-to-Global Results

In this section we present a simple and convenient method to pass from local
to global results. The idea is simply to generalize the following two properties
of the Lebesgue norm:

‖f‖q =
(∑

i

‖χΩif‖
q
q

) 1
q

∑

i

‖χΩif‖q‖χΩig‖q′ � ‖f‖q‖g‖q′

for any partition of R
n into measurable sets Ωi and 1 � q <∞ with obvious

modification for q = ∞.
First we note that all terms with |Ωi| = 0 can be dropped from the sums,

since their contribution is zero. If each Ωi has positive measure, then we can
restate the first equation as

‖f‖q =

∥
∥
∥
∥
∥

∑

i

χΩi

‖χΩif‖q
‖χΩi‖q

∥
∥
∥
∥
∥
q

.
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This raises the question if for some variable exponents

‖f‖p(·) ≈
∥
∥
∥
∥
∥

∑

i

χΩi

‖χΩif‖p(·)
‖χΩi‖p(·)

∥
∥
∥
∥
∥
p(·)

∑

i

‖χΩif‖p(·)‖χΩig‖p′(·) � c ‖f‖p(·)‖g‖p′(·).
(7.3.1)

Unfortunately, these estimate cannot hold for arbitrary choices of the sets Ωi.
However, we show in Theorem 7.3.22 that they hold when p ∈ P log(Rn) and
(Ωi) is a locally N -finite family of cubes (or balls).

The first generalizations of these estimates to the variable exponent con-
text were due to Kopaliani and Hästö. Kopaliani showed in [254] that if
p ∈ P log([0, 1]), then (7.3.1) holds for all f ∈ Lp(·)([0, 1]) and g ∈ Lp

′(·)([0, 1]).
He later generalized this to the case P log(Rn), f ∈ Lp(·)(Rn) and
g ∈ Lp

′(·)(Rn). Hästö showed in [216] that

‖f‖p(·) ≈
(∑

i

‖χΩif‖
p∞
p(·)

) 1
p∞

if p ∈ P log(Rn) and Ωi are cubes of the same size.
The equivalence and the estimate in (7.3.1) are very powerful tools. They

allow us to extend many estimates and results known for cubes or balls to
more complicated domains. This transfer technique is explained in detail in
Sect. 7.4.

Definition 7.3.2. By G we denote the set of all generalized Φ-functions ϕ
on R

n which have the property that

∑

Q∈Q
‖χQf‖ϕ‖χQg‖ϕ∗ � K ‖f‖ϕ‖g‖ϕ∗

for all f ∈ Lϕ(Rn), g ∈ Lϕ
∗
(Rn), and all locally 1-finite families Q of cubes.

The smallest constant K, is called the G-constant of ϕ. If ϕ ∈ G, then we say
that ϕ is of class G. In the case ϕp(·), we denote ϕp(·) ∈ G simply by p ∈ G.

The name “class G” is derived from the works of Berezhnoi for ideal Banach
spaces [44]. In the notation of Berezhnoi ϕ ∈ G is just (Lϕ, Lϕ

∗
) ∈ G(Xn),

where Xn is the set of all cubes in R
n.

The following result shows that the second part of (7.3.1) implies the
first one.
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Theorem 7.3.3. Assume that ϕ ∈ G and Q is a locally 1-finite family of
cubes. Then

1
4K

∥
∥
∥
∥

∑

Q∈Q
χQf

∥
∥
∥
∥
ϕ

�
∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQf‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
∥
ϕ

� 4K
∥
∥
∥
∥

∑

Q∈Q
χQf

∥
∥
∥
∥
ϕ

(7.3.4)

for all f ∈ Lϕ(Rn).

Proof. Using the norm conjugate formula and Hölder’s inequality, we esti-
mate

∥
∥
∥
∥

∑

Q∈Q
χQf

∥
∥
∥
∥
ϕ

� 2 sup
‖g‖ϕ∗�1

∑

Q∈Q

ˆ

Q

χQ|f | |g| dx

� 4 sup
‖g‖ϕ∗�1

∑

Q∈Q
‖χQf‖ϕ‖χQg‖ϕ∗

= 4 sup
‖g‖ϕ∗�1

∑

Q∈Q

∥
∥
∥
∥
∥
χQ

‖χQf‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
∥
ϕ

‖χQg‖ϕ∗ .

Then the upper bound follows from ϕ ∈ G.
Using the same tools, we also estimate

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQf‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
∥
ϕ

� 2 sup
‖g‖ϕ∗�1

∑

Q∈Q

ˆ

Q

‖χQf‖ϕ
‖χQ‖ϕ

g dx

� 4 sup
‖g‖ϕ∗�1

∑

Q∈Q
‖χQf‖ϕ‖χQg‖ϕ∗

� 4K
∥
∥
∥
∥

∑

Q∈Q
χQf

∥
∥
∥
∥
ϕ

. ��

We show now that the estimate of Theorem 7.3.3 is stable under duality
if we additionally assume ϕ ∈ Aloc.

Proposition 7.3.5. Let ϕ ∈ Aloc with Aloc-constant A and let Q be a locally
1-finite family of cubes (or balls). If (7.3.4) holds for all f ∈ Lϕ(Rn), then

1
16AK

∥
∥
∥
∥

∑

Q∈Q
χQg

∥
∥
∥
∥
ϕ∗

�
∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQg‖ϕ∗

‖χQ‖ϕ

∥
∥
∥
∥
∥
ϕ∗

� 256K2

∥
∥
∥
∥

∑

Q∈Q
χQg

∥
∥
∥
∥
ϕ∗
.

holds for all g ∈ Lϕ
∗
(Rn).

Proof. We begin with the first estimate of the claim. Let ‖f‖ϕ � 1. Then

ˆ

Rn

∣
∣
∣
∣

∑

Q∈Q
χQg

∣
∣
∣
∣|f |dx �

∑

Q∈Q

ˆ

Q

|g| |f | dx � 2
∑

Q∈Q
‖χQg‖ϕ∗‖χQf‖ϕ.
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Since ϕ ∈ Aloc, it follows by Remark 4.5.8 that ‖χQ‖ϕ‖χQ‖ϕ∗ � A|Q| for
all cubes Q ⊂ R

n, where A is the Aloc-constant of ϕ. Using this, Hölder’s
inequality and (7.3.4) we estimate

ˆ

Rn

∣
∣
∑

Q∈Q
χQg

∣
∣|f | dx � 2A

∑

Q∈Q

ˆ

Q

‖χQg‖ϕ∗

‖χQ‖ϕ∗

‖χQf‖ϕ
‖χQ‖ϕ

dx

� 4A

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQg‖ϕ∗

‖χQ‖ϕ∗

∥
∥
∥
∥
∥
ϕ∗

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQf‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
∥
ϕ

� 16AK

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQg‖ϕ∗

‖χQ‖ϕ∗

∥
∥
∥
∥
∥
ϕ∗

‖f‖ϕ.

If we take the supremum over all f with ‖f‖ϕ � 1, then the norm conjugate
formula gives the first estimate of the claim.

Let us consider the second estimate of the claim. Let h ∈ Lϕ with ‖h‖ϕ � 1
and zQ ∈ Lϕ(Q) with ‖zQ‖ϕ � 1. Then

(I) :=
∑

Q∈Q

ˆ

Rn

χQ(x)
‖χQ‖ϕ∗

|h(x)|
ˆ

Rn

χQ(y)|g(y)||zQ(y)| dy dx

=
ˆ

Rn

|g(y)|
∑

Q∈Q

χQ(y)
‖χQ‖ϕ∗

|zQ(y)|
ˆ

Q

|h(x)| dx dy

� 2 ‖g‖ϕ∗

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

|zQ(y)|
‖χQ‖ϕ∗

ˆ

Q

|h(x)| dx
∥
∥
∥
∥
∥
ϕ

,

where we used Fubini’s theorem and Hölder’s inequality. Now, the first
inequality in (7.3.4) implies

(I) � 8K ‖g‖ϕ∗

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖zQ‖ϕ
‖χQ‖ϕ‖χQ‖ϕ∗

ˆ

Q

|h(x)| dx
∥
∥
∥
∥
∥
ϕ

.

So with ‖zQ‖ϕ � 1, Hölder’s inequality and the second estimate in (7.3.4)
we get

(I) � 16K ‖g‖ϕ∗

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQh‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
∥
ϕ

� 64K2‖g‖ϕ∗‖h‖ϕ.



226 7 Transfer Techniques

If we first take in (I) the supremum over all zQ ∈ Lϕ(Q) with ‖zQ‖ϕ � 1
and then take supremum over all h ∈ Lϕ with ‖h‖ϕ � 1, then by the norm
conjugate formula

(I) � 1
2

∑

Q∈Q

ˆ

Rn

χQ(x)
‖χQ‖ϕ∗

|h(x)| ‖χQg‖ϕ∗ dx

� 1
4

∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQg‖ϕ∗

‖χQ‖ϕ∗

∥
∥
∥
∥
ϕ∗
.

Combining the upper and lower estimate for (I) proves the second estimate
of the claim. ��

We show now that the estimate of Theorem 7.3.3 implies that ϕ belongs
to the class G if we additionally assume ϕ ∈ Aloc.

Proposition 7.3.6. Let ϕ ∈ Aloc. If (7.3.4) holds for all locally 1-finite
families Q of cubes (or balls) and all f ∈ Lϕ(Rn), then ϕ ∈ G.

Proof. Let Q be a locally 1-finite family of cubes (or balls), f ∈ Lϕ and g ∈
Lϕ

∗
. From ϕ ∈ Aloc it follows by Proposition 7.3.5 that (7.3.4) holds for ϕ∗.

The requirement ϕ ∈ Aloc also yields, as in the proof of Proposition 7.3.5,

∑

Q∈Q
‖χQf‖ϕ‖χQg‖ϕ∗ � A

∑

Q∈Q

ˆ

Q

‖χQf‖ϕ
‖χQ‖ϕ

‖χQg‖ϕ∗

‖χQ‖ϕ∗
dx.

We now use Hölder’s inequality and (7.3.4) for ϕ and ϕ∗ to conclude

∑

Q∈Q
‖χQf‖ϕ‖χQg‖ϕ∗ � 2A

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQf‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
∥
ϕ

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQg‖ϕ∗

‖χQ‖ϕ∗

∥
∥
∥
∥
∥
ϕ∗

� c ‖f‖ϕ‖g‖ϕ∗.

In particular, ϕ ∈ G. ��

We know from Theorem 5.3.4 that p ∈ Aloc is not enough to ensure p ∈ A.
However, the following Corollary shows that if p ∈ G, then Aloc and A are
equivalent.

Corollary 7.3.7. G ∩ Aloc ⊂ A.

Proof. If ϕ ∈ G∩Aloc, then Theorem 7.3.3, ϕ ∈ Aloc and again Theorem 7.3.3
imply
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‖TQf‖ϕ =
∥
∥
∥
∥

∑

Q∈Q
χQMQf

∥
∥
∥
∥
ϕ

≈
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQMQf‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
ϕ

� c

∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQf‖ϕ
‖χQ‖ϕ

∥
∥
∥
∥
ϕ

� c ‖f‖ϕ

for all f ∈ Lϕ(Rn) and all locally 1-finite families Q of cubes. ��

Remark 7.3.8. The exponent p = 2 + χ(0,∞) satisfies p ∈ G \ Aloc ⊂ G \ A.
Recall that the exponent p in Theorem 5.3.4 satisfies p ∈ Aloc\A; since

G ∩ Aloc⊂A by the previous corollary, we conclude that p ∈ Aloc\G.
Thus neither of the classes Aloc and G is a subset of the other.
Even more, the example p(x) := 2 − a(1 + sin(log log(e + |x| + 1/|x|)))

of Lerner, see Example 5.1.8, satisfies p ∈ A \ G for sufficiently small a: We
already know from the example that p ∈ A. Now, choose intervals Qj, Aj
and Bj with p−Aj = 2 − 1

4a and p+
Bj

= 2 − 3
4a and |Aj | = |Bj | = 1 such

that Aj , Bj ⊂ Qj and the Qj are pairwise disjoint. For any sequence (tj),
define f :=

∑∞
j=1 tjχAj and g :=

∑∞
j=1 tjχBj . Then ‖f‖p(·) � c ‖tj‖

l2−
1
4 a

and
‖g‖p(·) � c ‖tj‖

l2−
3
4 a

. Moreover,

∥
∥
∥
∥
∥

∞∑

j=1

χQj
‖χQjf‖p(·)
‖χQj‖p(·)

∥
∥
∥
∥
∥
p(·)

≈
∥
∥
∥
∥
∥

∞∑

j=1

χQj
‖χQjg‖p(·)
‖χQj‖p(·)

∥
∥
∥
∥
∥
p(·)

,

since ‖χQjf‖p(·) ≈ ‖χQjg‖p(·). So if p ∈ G, then Theorem 7.3.3 would imply
‖tj‖

l2−
1
4 a

� c ‖tj‖
l2+

3
4 a

for all sequences tj , but this is not possible. Hence,
p �∈ G.

For f ∈ Lϕloc(R
n) and an open, bounded set U ⊂ R

n we define

Mϕ,Uf :=
‖fχU‖ϕ
‖χU‖ϕ

. (7.3.9)

For a family Q of open, bounded sets U ⊂ R
n we define the averaging operator

Tϕ,Q : Lϕloc(R
n) → L0(Rn) by

Tϕ,Qf :=
∑

U∈Q
χUMϕ,Uf =

∑

Q∈Q
χU

‖fχU‖ϕ
‖χU‖ϕ

.

The function Tϕ,Qf is well defined in L0(Rn), since Mϕ,Qf � 0, but Tϕ,Qf
might be infinite at many points of even everywhere. However, if Q is locally
finite and f ∈ Lϕloc(R

n), then Tϕ,Qf ∈ L1
loc(R

n).
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Furthermore, we define the maximal operator Mϕ by

Mϕf(x) := sup
Q�x

Mϕ,Qf,

for f ∈ Lϕloc(R
n) and x ∈ R

n, where the supremum is taken over all cubes (or
balls) containing x. With this terminology the estimate in Theorem 7.3.3 can
be rewritten as

∥
∥∑

Q∈Q χQf
∥
∥
ϕ
≈
∥
∥Tϕ,Qf

∥
∥
ϕ

for ϕ ∈ G and all locally 1-finite
families Q of cubes (or balls).

For p ∈ P(Rn) and f ∈ L
p(·)
loc (Rn) we define

Mp(·),Qf := Mϕp(·),Qf, Tp(·),Qf := Tϕp(·),Qf, Mp(·)f := Mϕp(·)f.

We can either use ϕ̄p(·) or ϕ̃p(·), since

1
2
Mϕ̃p(·),Qf � Mϕ̄p(·),Qf � 2Mϕ̃p(·),Qf

by (3.2.2). We observe that

Mϕ̄q,Qf =
(  

Q

|f(y)|q dy
) 1
q

for q ∈ [1,∞). Therefore the definition of Mq,Q by (7.3.9) agrees (up to a
constant if ϕq = ϕ̃q) with the one in Definition 4.3.1.

Lemma 7.3.10. Let q ∈ [1,∞], let Q ⊂ R
n be a cube (or ball), and let

f ∈ Lq(Q). Then

ϕq(Mq,Qf) =
 

Q

ϕq(|f(y)|) dy.

Proof. It suffices to prove the equation for ϕ̄, since ϕ̄q = cqϕ̃q for some
constant. The case 1 � q < ∞ is simple. Let q = ∞. If ‖χQf‖∞ � 1, then
both sides of the claim are zero. If ‖χQf‖∞ > 1, then both sides of the claim
are infinity. ��

Lemma 7.3.11. Let p ∈ P log(Rn). Then for every m > 0 there exists
β ∈ (0, 1) which only depends on clog(p), n and m such that

ϕp(x)(βs) � ϕp(y)(s) +
1
2

(e+ |x|)−m +
1
2

(e+ |y|)−m,

ϕp(x)(βt) � ϕp∞(t) + (e+ |x|)−m,
ϕp∞(βt) � ϕp(x)(t) + (e + |x|)−m,
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for all s ∈ [0,max{1, 1/‖χQ‖p(·)}], t ∈ [0, 1], and every x, y ∈ Q, where
Q ⊂ R

n is a cube or a ball.

Proof. Assume without loss of generality that ϕp(·) = ϕ̃p(·). Let us begin with
the case t = s ∈ [0, 1]. If p(x) � p(y), then by Lemmas 3.2.15 and 4.2.3

ϕ̃p(x)(βt) � ϕ̃p(y)(t) + ϕ̃q(x,y)(β) � ϕ̃p(y)(t) + ϕ̃s(x)(β
1
2 ) + ϕ̃s(y)(β

1
2 )

for β > 0. Now, the first claim follows from Proposition 4.1.8 for suitable
β ∈ (0, 1). The two other assertions follow analogously.

If on the other hand p(x) � p(y), then the claim follows for any β � 1
2 by

Lemma 3.1.6.
It remains to consider the case 1 < t � 1/‖χQ‖p(·). In particular, |Q| < 1

and we can apply Corollary 4.5.9 to find γ1 ∈ (0, 1) which only depends on
clog(p) such that

ϕp(x)

(
γ1

‖χQ‖p(·)

)

� ϕp(y)

(
1

‖χQ‖p(·)

)

for all x, y ∈ Q. Choose α ∈ (0, 1] such that t = ‖χQ‖−αp(·). Then

ϕp(x)(γ1t) �
(

ϕp(x)

(
γ1

‖χQ‖p(·)

))α

�
(

ϕp(y)

(
1

‖χQ‖p(·)

))α

� ϕp(y)(t)

for all x, y ∈ R
n. ��

Lemma 7.3.12. Let p ∈ P log(Rn). Then for every m > 0 there exists
β ∈ (0, 1) which only depends on clog(p), n and m such that

ϕp(x)
(
βMp(·),Qf

)
�
 

Q

ϕp(y)(|f(y)|) dy +
 

Q

(e+ |y|)−m dy, (7.3.13)

 

Q

ϕp(y)(β|f(y)|) dy � ϕp(x)
(
Mp(·),Qf

)
+
 

Q

(e+ |y|)−m dy. (7.3.14)

for every cube (or ball) Q ⊂ R
n with |Q| � 2n, all x ∈ Q, and all

f ∈ Lp(·)(Rn) + L∞(Rn) with ‖χQf‖Lp(·)(Rn)+L∞(Rn) � 1.

Proof. Assume without loss of generality that ϕp(·) = ϕ̄p(·). Since Mp(·),Q is
subadditive it suffices to prove the claim independently for ‖χQf‖p(·) � 1
and ‖χQf‖∞ � 1. Since L∞(Q) ↪→ Lp(·)(Ω), we always have ‖χQf‖p(·) < ∞.
If ‖χQf‖p(·) = 0, then χQf = 0 and there is nothing to show. So we assume
in the following that ‖χQf‖p(·) > 0.
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For the sake of simplicity we start with the case p+ < ∞ and thus have
ϕ̄p(y)(t) = tp(y). Later we show how to deduce the case p+ = ∞ from this by
a limiting argument. For that it is certainly important that the constants in
the estimates do not depend on p+.

Since |Q| � 2n we conclude from Lemma 3.2.11 that ‖χQ‖p(·) � 2n+1. If

‖χQf‖p(·) � 1, then Mp(·),Qf � ‖χQ‖−1
p(·). If ‖χQf‖∞ � 1, then Mp(·),Qf�1.

Therefore, in both case Mp(·),Qf � max {1, ‖χQ‖−1
p(·)} and we can apply

Lemma 7.3.11 with s = Mp(·),Qf . Thus there exists α ∈ (0, 1) such that

(αMp(·),Qf)p(z1) � (Mp(·),Qf)p(z2) +
1
2

(e + |z1|)−m +
1
2

(e+ |z2|)−m

for every z1, z2 ∈ Q. Since |Q| � 2n, we have e + |z1| ≈ e + |z2| ≈ e + |y|
for all y ∈ Q. Therefore, the previous estimate implies

(αMp(·),Qf)p(z1) � (Mp(·),Qf)p(z2) + c1

 

Q

(e + |y|)−m dy (7.3.15)

for every z1, z2 ∈ Q and some c1 � 1.
By Corollary 4.5.9 with |Q| � 2n

1
γ
|Q|

1
p(y) � ‖χQ‖p(·) � γ|Q|

1
p(y)

for all y ∈ Q, where γ � 1 only depends on the clog-constant of 1
p .

Since we assumed that p+ < ∞, the continuity of the modular gives
1 = �p(·)(χQf/‖χQ‖p(·)). This together with the previous equivalence implies
that

 

Q

(
|f(y)|

γMp(·),Qf

)p(y)
dy � 1 �

 

Q

(
γ|f(y)|
Mp(·),Qf

)p(y)
dy. (7.3.16)

From now on let x ∈ Q be fixed. We distinguish in the following two cases:

Case 1: (αMp(·),Qf)p(x) � 2c1
ffl
Q

(e+ |y|)−m dy.
In this case (7.3.13) holds with β = α/(2c1), and it remains to show (7.3.14).
Using that (7.3.15) also holds for f replaced by αf we estimate

(
α2Mp(·),Qf

)p(z) � 3 c1
 

Q

(e+ |y|)−m dy

for all z ∈ Q. Using this in the first inequality of (7.3.16), we obtain
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Q

(
α2|f(y)|

γ

)p(y)
dy � 3 c1

 

Q

(e+ |y|)−m dy.

This proves (7.3.14) with β = α2/(3c1γ).

Case 2: 2c1
ffl
Q

(e+ |y|)−m dy � (αMp(·),Qf)p(x).
In this case we deduce from (7.3.15) that

2
3

(α2Mp(·),Qf)p(z) � (αMp(·),Qf)p(x) � 2 (Mp(·),Qf)p(z) (7.3.17)

for all z ∈ Q. Using this in the second inequality (7.3.16), we obtain

(α

2
Mp(·),Qf

)p(x)
�
 

Q

(
γ|f(y)|

)p(y)
dy.

This applied to γ−1f proves (7.3.13) with β = α/(2γ). Using the other
inequality from (7.3.17) in (7.3.16), we find that (7.3.14) holds with β = 2

3
α
γ .

We have proved that the lemma holds in the case p+ < ∞ with β inde-
pendent of p+. We explain now how the case p+ = ∞ can be recovered
from this. For N > 1 define pN ∈ P log(Rn) by pN := min {p,N} so that
clog(pN ) � clog(p). Let fN := fχ{p�N}. Then

‖χQfN‖LpN (·)(Rn)+L∞(Rn) = ‖χQfN‖Lp(·)(Rn)+L∞(Rn)

Therefore, there exists β ∈ (0, 1) independent of N such that (7.3.13)
and (7.3.14) hold with f and p replaced by fN and pN , respectively. Now,
‖χQfN‖pN (·) = ‖χQfN‖p(·) → ‖χQf‖p(·) for N → ∞ by the Fatou prop-
erty of Lp(·)(Rn). This and ‖χQ‖pN (·) → ‖χQ‖p(·) by Theorem 3.5.7 give
MpN (·),QfN → Mp(·),Qf . Using this, the continuity of q �→ ϕ̃q(t), and
|fN | ↗ |f | for N → ∞, we can easily pass to the limit N → ∞ in (7.3.13)
and (7.3.14) by monotone convergence. ��

Corollary 7.3.18. Let p ∈ P log(Rn). If Q is a locally 1-finite family of cubes
with |Q| � 2n for all Q ∈ Q, then

∥
∥Tp(·),Qf

∥
∥
p(·) ≈

∥
∥
∥
∥
∥

∑

Q∈Q
χQf

∥
∥
∥
∥
∥
p(·)

for all f∈Lp(·)loc (Rn), where the implicit constant depends only on clog(p) and n.

Proof. Choosem > n and let β > 0 be as in Lemma 7.3.12. It suffices to prove
the claim under the condition that one of the two terms is finite. We begin
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with the case that the term on the right-hand side is finite. By scaling we
can assume that ‖

∑
Q∈Q χQf‖p(·) � 1. Thus ‖χQf‖p(·) � 1 for each Q ∈ Q.

Integrating (7.3.13) over Q with respect to x and summing over Q ∈ Q we get

�p(·)
(
βTp(·),Qf

)
� �p(·)

( ∑

Q∈Q
χQf

)

+
ˆ

Rn

(e + |x|)−m dx � c.

A scaling argument therefore yields ‖Tp(·),Qf‖p(·) � c/β‖f‖p(·). Assume now
‖Tp(·),Qf‖p(·) � 1. Again we obtain ‖χQf‖p(·) � 1 for each Q ∈ Q. Now
we proceed as before with (7.3.14) instead of (7.3.13) and obtain the other
inequality. ��

Lemma 7.3.19. Let p ∈ P log(Rn). If Q is a locally 1-finite family of cubes
with |Q| � 1 for every Q ∈ Q, then

∥
∥
∥
∥
∥

∑

Q∈Q
χQtQ

∥
∥
∥
∥
∥
p∞

≈
∥
∥
∥
∥
∥

∑

Q∈Q
χQtQ

∥
∥
∥
∥
∥
p(·)

for any family tQ � 0 with Q ∈ Q, where the implicit constant depends only
on clog(p) and n.

Proof. We assume without loss of generality that ϕp(·) = ϕ̄p(·). By Lemma
3.2.11 we have ‖χQ‖p(·) � 1 and ‖χQ‖p∞ � 1 for every Q ∈ Q.

Let m > n be such that
´

Rn
(e + |y|)−m dy � 1 and let β > 0 be as in

Lemma 7.3.11. We begin with the case that the right-hand side is finite. By
scaling we can assume that ‖

∑
Q∈Q χQtQ‖p(·) � 1. In particular, we have

0 � tQ‖χQ‖p(·) � 1, so tQ ∈ [0, 1] since ‖χQ‖p(·) � 1. Thus Lemma 7.3.11
implies that

�p∞

(

β
∑

Q∈Q
χQtQ

)

� �p(·)

( ∑

Q∈Q
χQtQ

)

+
ˆ

Rn

(e+ |y|)−m dy � 2.

This and a scaling argument yield ‖
∑
Q∈Q χQtQ‖p∞ � 1

2β ‖
∑
Q∈Q χQtQ‖p(·).

The estimate ‖
∑
Q∈Q χQtQ‖p(·) � 1

2β ‖
∑
Q∈Q χQtQ‖p∞ follows analogously.

��

We are now in a position to prove a version of Lemma 7.3.11 without the
size restriction on the cubes.
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Theorem 7.3.20. Let p ∈ P log(Rn). Then for every m > 0 there exists
β ∈ (0, 1) which only depends on clog(p), n and m such that

ϕp(x)
(
βMp(·),Qf

)
�
 

Q

ϕp(y)(|f(y)|) dy +
 

Q

(e+ |y|)−m dy + (e + |x|)−m,

 

Q

ϕp(y)(β|f(y)|) dy � ϕp(x)
(
Mp(·),Qf

)
+
 

Q

(e+ |y|)−m dy + (e + |x|)−m

for every cube Q ⊂ R
n, all x ∈ Q, and all f ∈ Lp(·)(Rn) + L∞(Rn) with

‖χQf‖Lp(·)(Rn)+L∞(Rn) � 1.

Proof. Exactly as in the proof of Lemma 7.3.12 it suffices to consider the
case ϕp(·) = ϕ̄p(·) and p+ < ∞ with β independent of p+, since we can
recover the case p+ = ∞ by a limiting argument. By Lemma 7.3.12 it suffices
to consider the case |Q| � 2n.

Let m > n. As in Lemma 7.3.12 we obtain Mp(·),Qf � max{1, 1/‖χQ‖p(·)}.
Since ‖χQ‖p(·) � 1 by Lemma 3.2.11, we find that Mp(·),Qf � 1

As Mp(·),Q is subadditive it suffices to prove the claim independently for
‖χQf‖p(·) � 1 and ‖χQf‖∞ � 1. Choose a locally 1-finite family W of cubes
such that 1 � |W | � 2n for every W ∈ W and

⋃
W∈W W = Q up to a nullset.

Define g := Tp(·),Wf . If ‖χQf‖∞ � 1, then Mp(·),W f � 1 and consequently
‖g‖∞ � 1. If ‖χQf‖p(·) � 1, then ‖g‖∞ � 1, since ‖χW ‖p(·) � 1 for every
W ∈ W by Lemma 3.2.11. So in both cases ‖g‖∞ � 1. This immediately
implies that Mp(·),Qg � 1.

By Corollary 7.3.18, ‖χQf‖p(·) ≈ ‖Tp(·),Wf‖p(·) so that Mp(·),Qf ≈
Mp(·),Qg. By Lemma 7.3.19 for g and Corollary 4.5.9, ‖g‖p∞ ≈ ‖g‖p(·) and
‖χQ‖p∞ ≈ ‖χQ‖p(·). Hence Mp∞,Qg ≈Mp(·),Qg. Let then β1 ∈ (0, 1) be such
that β1Mp(·),Qf � Mp∞,Qg.

Let β2, β3 ∈ (0, 1) be the β of Lemmas 7.3.11 and 7.3.12, respectively.
Note that the former lemma is applicable to g since ‖g‖∞ � 1. Then Lem-
mas 7.3.10, 7.3.11, and 7.3.12 (the last one applied to Mp(·),W f on each
W ∈ W) imply that

ϕ̄p∞(β1β2β3Mp(·),Qf) � ϕ̄p∞(β2β3Mp∞,Qg) =
 

Q

ϕ̄p∞(β2β3|g(y)|) dy

�
 

Q

ϕ̄p(y)(|β3g(y)|) dy +
 

Q

(e+ |y|)−m dy

�
 

Q

ϕ̄p(y)(|f(y)|) dy + 2
 

Q

(e+ |y|)−m dy.

An application of Lemma 7.3.11 gives us the first inequality of the theorem.
The same steps in reversed order we yield the other inequality. ��
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Corollary 7.3.21. Let p ∈ P log(Rn) and Q be a locally N -finite family of
cubes or balls Q ⊂ R

n. Then

‖Tp(·),Qf‖p(·) ≈
∥
∥
∥
∥
∥

∑

Q∈Q
χQf

∥
∥
∥
∥
∥
p(·)

for all f ∈ L
p(·)
loc (Rn). The implicit constants only depend on clog(p), n and

N . The dependence on N is linear.

Proof. Choose m > n and let β > 0 be as in Theorem 7.3.20. It suffices
to prove the claim under the condition that one of the two terms is finite.
We begin with the case that the right-hand side is finite. By scaling we
can assume that ‖

∑
Q∈Q χQf‖p(·) � 1. Thus we get that �p(·)(χΩf) � 1,

where Ω := ∪Q∈QQ, and that ‖χQf‖p(·) � 1 for each Q ∈ Q. Using that the
family Q is locally N -finite, the convexity of ϕp(·), and the first inequality in
Theorem 7.3.20, we get

�p(·)
( β

N
Tp(·),Qf

)
=
ˆ

Rn

ϕp(x)

( β

N

∑

Q∈Q
χQ(x)Mp(·),Qf

)
dx

� 1
N

∑

Q∈Q

ˆ

Q

ϕp(x)(βMp(·),Qf) dx

� 1
N

∑

Q∈Q

( ˆ

Q

ϕp(x)(f) dx+ 2
ˆ

Q

(e+ |x|)−m dx
)

� �p(·)
(
χΩf

)
+ 2

ˆ

Rn

(e + |x|)−m dx � c.

A scaling argument gives ‖Tp(·),Qf‖p(·) � cN/β‖f‖p(·). The other inequality
is proved similarly, by the other inequality of Theorem 7.3.20. ��
Theorem 7.3.22. If p ∈ P log(Rn), then p ∈ G and the G-constant only
depends on clog(p) and n.

Proof. Remark 4.1.5 implies that p′ ∈ P log(Rn). Thus Corollary 7.3.21 yields
‖Tp(·),Qf‖p(·) ≈ ‖

∑
Q∈Q χQf‖p(·) and ‖Tp′(·),Qg‖p′(·) ≈ ‖

∑
Q∈Q χQg‖p′(·) for

all f ∈ L
p(·)
loc (Rn) and g ∈ L

p′(·)
loc (Rn). Moreover, by Theorem 4.4.8, p ∈ A and

therefore Theorem 4.5.7 implies that |Q| ≈ ‖χQ‖p(·)‖χQ‖p′(·). Thus

∑

Q∈Q
‖χQf‖p(·)‖χQg‖p′(·) ≈

ˆ

Rn

∑

Q∈Q
χQ

‖χQf‖p(·)
‖χQ‖p(·)

‖χQg‖p′(·)
‖χQ‖p′(·)

dx

�
ˆ

Rn

Tp(·),Qf Tp′(·),Qg dx
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� c ‖Tp(·),Qf‖p(·)‖Tp(·),Qg‖p′(·)
≈ ‖f‖p(·)‖g‖p′(·). ��

Using this result, we easily obtain the following version of the result from
[216]:

Corollary 7.3.23. Let p ∈ P log(Rn). Then

‖f‖p(·) ≈
∥
∥‖χQf‖p(·)

∥
∥
lp∞

for every f ∈ L
p(·)
loc (Rn) and every locally 1-finite partition of R

n into a family
Q of cubes (up to measure zero) satisfying 1 � |Q| for every Q ∈ Q. The
implicit constants only depend on clog(p) and n.

Proof. Using Theorem 7.3.22, Lemma 7.3.19, and we obtain

‖f‖p(·) ≈ ‖Tp(·),Qf‖p(·) ≈ ‖Tp(·),Qf‖p∞ =

(
∑

Q∈Q
|Q|

‖χQf‖p∞p(·)
‖χQ‖p∞p(·)

) 1
p∞

.

Since ‖χQ‖p∞p(·) ≈ |Q| by Corollary 4.5.9, the right-hand side is equivalent to
∥
∥‖χQf‖p(·)

∥
∥
lp∞

, so the claim follows. ��

Corollary 7.3.24. Let p ∈ P log(Rn), let Q be a locally N -finite family Q of
cubes (or balls) in R

n, and let fQ ∈ Lp(·)(Q). Then

∥
∥
∥
∥

∑

Q∈Q
χQfQ

∥
∥
∥
∥
p(·)

� c

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖χQfQ‖p(·)
‖χQ‖p(·)

∥
∥
∥
∥
∥
p(·)

, (7.3.25)

with a constant only depending on clog(p), N and n.

Proof. We denote f :=
∑
Q∈Q χQfQ. From the assumptions f ∈ L

p(·)
loc (Rn).

Thus we obtain from the norm conjugate formula (Corollary 3.2.14), Hölder’s
inequality, and Theorem 7.3.22 in the last step, that

‖f‖p(·) � 2 sup
‖g‖p′(·)�1

ˆ
|f | |g| dx

� 4 sup
‖g‖p′(·)�1

∑

Q∈Q
‖χQfQ‖p(·)‖χQg‖p′(·)

= 4 sup
‖g‖p′(·)�1

∑

Q∈Q

∥
∥
∥
∥χQ

‖χQfQ‖p(·)
‖χQ‖p(·)

∥
∥
∥
∥
p(·)

‖χQg‖p′(·)

� 4 sup
‖g‖p′(·)�1

∑

Q∈Q

∥
∥
∥
∥χQ

∑

B∈Q
χB

‖χBfB‖p(·)
‖χB‖p(·)

∥
∥
∥
∥
p(·)

‖χQg‖p′(·)
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� c sup
‖g‖p′(·)�1

∥
∥
∥
∥

∑

B∈Q
χB

‖χBfB‖p(·)
‖χB‖p(·)

∥
∥
∥
∥
p(·)

‖g‖p′(·)

� c

∥
∥
∥
∥

∑

B∈Q
χB

‖χBfB‖p(·)
‖χB‖p(·)

∥
∥
∥
∥
p(·)

. ��

If q ∈ [1,∞), then by Jensen’s inequality MQf � Mq,Qf since Mq,Qf =
(
ffl
Q |f(y)|q dx)1/q . This is in general not true if we replace Mq,Q by Mp(·),Q,

however, we have a generalization for the case Aloc:

Lemma 7.3.26. If p ∈ Aloc, then MQf � cMp(·),Qf and Mf � cMp(·)f for
all f ∈ L

p(·)
loc (Rn), where c only depends on the Aloc-constant of p.

Proof. Let f ∈ L
p(·)
loc (Rn). Hölder’s inequality and Theorem 4.5.7 imply

MQf =
1
|Q|

ˆ

Q

|f(x)| dx � 2
‖χQf‖p(·)‖χQ‖p′(·)

|Q| � c
‖χQf‖p(·)
‖χQ‖p′(·)

= cMp(·),Qf,

which proves the assertion for MQ. Taking the supremum over all cubes Q
proves the assertion for M . ��

If r ∈ (1,∞] and q ∈ [1, r), then it follows from the boundedness of M
from Lr/q(Rn) to Lr/q(Rn) that Mq is bounded from Lr(Rn) to Lr(Rn). The
following theorem generalizes this feature to variable exponents.

Theorem 7.3.27. Let p, q, s ∈ P log(Rn) such that p = qs and s− > 1. Then
Mq(·) is bounded from Lp(·)(Rn) to Lp(·)(Rn). The operator norm of Mq(·)
depends only on clog(p), clog(q), clog(s), and s−.

Proof. We prove the claim for ϕp(·) = ϕ̄p(·). The case ϕp(·) = ϕ̃p(·) then
follows by Lemma 3.1.6. Fix m > n. Let f ∈ Lp(·)(Rn) with ‖f‖p(·) � 1

2 ; then
by Theorem 3.3.11, ‖f‖Lq(·)(Rn)+L∞(Rn) � 1.

Let β1 be the β of Theorem 7.3.20 for q(·). Taking the supremum over all
cubes Q containing x in Theorem 7.3.20 implies that

ϕ̄q(x)(β1Mp(·)f) � M
(
ϕ̄q(·)(f)

)
(x) + 2M

(
(e+ |·|)−m

)
(x)

for all x ∈ R
n. Let β2 ∈ (0, 1) be such that Lemma 4.3.6 holds with β2 for the

exponent s/s−. We multiply the previous inequality by 1
4β2, use the convexity

of ϕ̄q(x), apply the convex function ϕ̄s(x) to it, and use Lemma 4.3.6 for s/s−:

ϕ̄p(x)(
1
4
β1β2Mp(·)f) � ϕ̄s(x)

(
1
4
β2ϕq(x)(β1Mp(·)f)

)

� ϕ̄s(x)

(
1
4
β2

(
M
(
ϕ̄q(·)(f)

)
(x) + 2 M

(
(e + |·|)−m

)
(x)
))

� ϕ̄s(x)

(
1
2
β2M

(
ϕ̄q(·)(f)

)
(x)
)

+ ϕ̄s(x)

(
β2M

(
(e + |·|)−m

)
(x)

� (M(ϕ̄p(·)/s−(f)
)
(x))s−+ c (M(ϕ̄s(·)/s−((e + |·|)−m))(x))s− .
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We integrate this over x ∈ R
n, use the boundedness of M from Ls

−
(Rn) to

Ls
−

(Rn), and obtain

�p(·)(
1
4β1β2Mp(·)f) � c�p(·)(f) + c�s(·)

(
(e+ |·|)−m

)
� c.

This implies ‖Mp(·)f‖q(·) � c/(β1β2). The claim follows by a scaling argu-
ment. ��

7.4 Ball/Cubes-to-John

In the previous section we presented results for going from a regular bounded
domain (e.g., cube) to the whole space R

n. In this section we consider to what
extent we can deduce from results on cubes results on more general domains.
In contrast to the previous section, we have to worry about the boundary of
our domain. Hence we need to restrict our attention to fairly nice domains. We
use John domains in the sense of Martio and Sarvas [283]. Several equivalent
characterizations for John domains can be found in [311].

Definition 7.4.1. A bounded domain Ω ⊂ R
n is called an α-John domain,

α > 0, if there exists x0 ∈ Ω (the John center) such that each point in Ω
can be joined to x0 by a rectifiable path γ (the John path) parametrized by
arc-length such that

B
(
γ(t),

1
α
t
)
⊂ Ω

for all t ∈ [0, �(γ)], where �(γ) is the length of γ. The ball B(x0,
1
2α diam(Ω))

is called the John ball.

Example 7.4.2. There are many examples of John domains. Clearly every
ball is a 1-John domain and every cube is a

√
n-John domain with its cen-

ter as John center. Also every bounded domain that satisfies the uniform
interior cone condition is a John domain. John domains may possess fractal
boundaries or internal cusps while external cusps are excluded. The interior
of Koch’s snowflake is a John domain.

In a bounded α-John domain any point can be selected as the John center,
possibly with different α. By definition, the John ball B satisfies Ω ⊂ 2αB
and therefore |B| � |Ω| � (2α)n|B|.

For future reference, we also define here domains with Ck,λ-boundary,
where Ck,λ is the space of k times continuously differentiable functions with
λ-Hölder continuous k-th derivative. A domain with C0,1-boundary is called
a Lipschitz domain. Any bounded Lipschitz domain is a John domain, so that
the results derived in this section apply in particular to Lipschitz domains.
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Definition 7.4.3. We say that a domain Ω ⊂ R
n has Ck,λ-boundary, k ∈ N0,

λ ∈ (0, 1], if there exists.
Cartesian coordinate systems Xj, j = 1, . . . ,m,

Xj = (xj,1, . . . , xj,n−1, xj,n) =: (x′j , xj,n) ,

positive real numbers α, β > 0, and m functions aj ∈ Ck,λ([−α, α]n−1),
j = 1, . . . ,m, such that the sets

Λj :=
{

(x′j , xj,n) ∈ R
n : |x′j | < α , xj,n = aj(x′j)

}
,

V j+ :=
{

(x′j , xj,n) ∈ R
n : |x′j | < α , aj(x′j) < xj,n < aj(x′j) + β

}
,

V j− :=
{

(x′j , xj,n) ∈ R
n : |x′j | < α , aj(x′j) − β < xj,n < aj(x′j)

}
,

satisfy:

Λj ⊂ ∂Ω, , V j+ ⊂ Ω , V j− ⊂ R
n \ Ω , j = 1, . . . ,m ,

m⋃

j=1

Λj = ∂Ω .

Example 7.4.4. Every ball and cube is a Lipschitz domain. There exist John
domains which are not Lipschitz, for instance the unit ball with a segment
removed, B(0, 1) \ [0, e1), where e1 is a unit vector.

We now return to the more general class of John domains.

Lemma 7.4.5. Let Ω be a bounded α-John domain and let p ∈ P log(Ω).
Then

‖1‖Lp(·)(Ω)‖1‖Lp′(·)(Ω) ≈ |Ω|,

where the constant only depends on clog(p), α, and n.

Proof. Extend p by Proposition 4.1.7 to R
n preserving clog(p). Let B be the

John ball of Ω, then B ⊂ Ω ⊂ 2αB. By Theorem 4.5.7 we find that

‖1‖Lp(·)(Ω)‖1‖Lp′(·)(Ω) � ‖1‖Lp(·)(2αB)‖1‖Lp′(·)(2αB) � c |2αB| � c (2α)n|Ω|.

On the other hand by Hölder’s inequality |Ω| � 2 ‖1‖Lp(·)(Ω)‖1‖Lp′(·)(Ω). ��

Closely related to the definition of a John domain is the following definition
using a chain condition.

Definition 7.4.6. Let Ω ⊂ R
n and let σ2 > σ1 > 1. Then we say that Ω

satisfies the emanating chain condition with constants σ1 and σ2 if there exists
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a countable covering Q of Ω consisting of open cubes (or balls) such that:

(B1) We have σ1Q ⊂ Ω for all Q ∈ Q and
∑
Q∈Q χσ1Q � σ2 χΩ on R

n.
(B2) If Ω is bounded:

There exists a central cube Q∞ ∈ Q with Ω ⊂ σ2Q∞. For every
Q ∈ Q there exists a chain Q1, . . . , Qm emanating from Q ending in
Q∞: Q1, . . . , Qm are pairwise distinct such that Q1 = Q, Qm = Q∞
and Qi ⊂ σ2Qj for 1 � i � j � m. Moreover, Qi ∩ Qi+1 contains a
ball Bi such that Qi ∪Qi+1 ⊂ σ2Bi for i = 1, . . . ,m− 1.

If Ω is unbounded:
For everyQ ∈ Q there exists an unending chain Q1, Q2, . . . emanating
from Q: Q1, Q2, . . . are pairwise distinct such that Q1 = Q and Qi ⊂
σ2Qj for 1 � i � j. Moreover, Qi ∩Qi+1 contains a ball Bi such that
Qi ∪Qi+1 ⊂ σ2Bi for i � 1.

(B3) The set {Q ∈ Q : Q ∩K �= ∅} if finite for every compact subset K ⊂ Ω.

The family Q is called the chain-covering of Ω.

If Ω is bounded, then the emanating chain condition is equivalent to the
Boman chain condition, which appears in the preprint of Boman [54]. In his
version only the conditions (B1) and (B2) were included. The technical but
useful property (B3) was added by Diening, Růžička and Schumacher [108].

Remark 7.4.7. Let Ω be a domain satisfying the emanating chain condition
with chain-covering W . Then it is possible, see [108, Remark 3.15], to choose
the balls Bk in (B2) from a family B of balls with

∑
B∈B χB � σ2 χΩ.

It has been shown by Buckley, Koskela and Lu [60] that a bounded domain
satisfies the emanating chain condition if and only if it is a John domain. The
constants σ1 and σ2 only depend on α and n, or vice versa. In [108] it is shown
that the equivalence holds also when condition (B3) is included.

Remark 7.4.8. An unbounded domain Ω ⊂ R
n is an α-John domain, if

there exists an increasing sequences of α-John domains Ωk with
⋃∞
k=1 Ωk = Ω.

The whole space and the half space are 1-John domains.
It has been shown in [108, Theorem 3.12, Remark 3.14] that also unbounded

John domains satisfy the emanating chain condition. However, the converse
is not true. Indeed, the aperture domain

{
(x1, x2) ∈ R

2 : x2 �= 0 or |x1| < 1
}

and domains with (at least two) conical outlets satisfy the emanating chain
condition but are not John domains.

It is often convenient to prove a result in a simple domain such as a cube.
The next result allows us to transfer it to domains satisfying the John or
emanating chain conditions.



240 7 Transfer Techniques

Theorem 7.4.9 (Decomposition theorem). Let Ω ⊂ R
n be a domain

satisfying the emanating chain condition with constants σ1 and σ2 and
with chain covering Q. Then there exists a family of linear operators SQ :
L∞

0 (Ω) → L∞
0 (Q) with Q ∈ Q which also maps C∞

0,0(Ω) → C∞
0,0(Q), such that

for every p ∈ P log(Ω) with p− > 1 the following holds:

(a) For each Q ∈ Q, the operator norm of SQ : Lp(·)0 (Ω) ↪→ L
p(·)
0 (Q) depends

only on α, p−, clog(p) and n.
(b) For every f ∈ L

p(·)
0 (Ω), |SQf | � c σ2 χQMf a.e.

(c) The family SQf is a decomposition of f , i.e.

f =
∑

Q∈Q
SQf a.e. and in L1

loc(Ω)

for all f ∈ L
p(·)
0 (Ω). If p+ < ∞, then the sum converges unconditionally

in L
p(·)
0 (Ω), i.e. every permutation of the series converges in L

p(·)
0 (Ω).

(d) For all f ∈ L
p(·)
0 (Ω)
∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖SQf‖Lp(·)0 (Q)

‖χQ‖p(·)

∥
∥
∥
∥
∥
p(·)

≈ ‖f‖
L
p(·)
0 (Ω)

with constant only depending on α, p−, clog(p) and n.
(e) For all f ∈ L

p(·)
0 (Ω) and g ∈ Lp

′(·)(Ω)

ˆ

Ω

fg dx =
∑

Q∈Q

ˆ

Q

SQf g dx =
∑

Q∈Q

ˆ

Q

SQf (g − 〈g〉Q) dx.

(f) If Ω is bounded and f ∈ C∞
0,0(Ω), then {Q ∈ Q : SQf �= 0} is finite.

Proof. Most of the proof is the same as the one in [108]. We only sketch
the ideas of those parts. The case of bounded and unbounded domains are
treated simultaneously. Let p ∈ P log(Ω) with p− > 1. We use the nota-
tion Q = {Qi : i ∈ N0}, Qi,k, k = 1, . . . ,mi, for the chain emanating from
Qi and Bi,k for the corresponding balls as in Definition 7.4.6. Within the
proof the operators are denoted by Si instead of SQi .

We begin with the construction of our operators Si. Let f ∈ L∞
0 (Ω).

Due to (B1) and Ω =
⋃∞
i=0Qi, there exists a smooth partition of unity

{ξi}i�0 subordinate to the covering {Qi}i�0, cf. [12, Theorem 3.15]. Due
to Remark 7.4.7 we can assume that the Bi,k are from a family B of balls
which satisfies

∑
B∈B χB � σ2 χΩ. For every B ∈ B let ηB ∈ C∞

0 (B) with
ηB � 0,

´
ηB dx = 1, and ‖ηB‖∞ � c/|B|, where c = c(n). For Bi,k ∈ B we

define ηi,k := ηBi,k . In the case of a bounded domain Ω we pick a function
η0 ∈ C∞(Q∞) with η0 � 0,

´
η0 dx = 1 and ‖η0‖∞ � c/|Q∞|, where c = c(n).

Then we define ηi,mi := η0 for every i � 0. We define Sif for f ∈ L
p(·)
0 (Ω) by
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Sif := ξif −
ˆ

Qi

ξif dx ηi,0 +
∑

j�0
j �=i

( ˆ

Qj

ξjf dx
∑

k:0<k�mj
Qj,k=Qi

(
ηj,k−1 − ηj,k

)
)

.

The sum over j could be restricted to all j such that Qi is contained in the
chain emanating from Qj , since for all other j the sum over k is empty. Note
that the sum over k consists of at most one summand, since all cubes in a
chain are pairwise different. Since the sum over j may still be countable, it
is a priori not clear that Sif is well defined. However, using (B1) and (B2) it
has been shown in [108, Theorem 4.2] that the Sif are well defined, satisfy

|Sif | � c σ2 χQiMf, and
∞∑

i=0

Sif = f (7.4.10)

almost everywhere and
´
Sif dx = 0. Corollary 4.3.11 gives Mf ∈ Lp(·)(Ω).

Thus the operators Si are bounded from L
p(·)
0 (Ω) to L

p(·)
0 (Qi) yielding (a).

Since Mf ∈ Lp(·)(Ω) and Lp(·)(Ω) ↪→ L1
loc(Ω), we deduce further from (7.4.10)

that
∑∞
i=0 Sif = f in L1

loc(Ω). This proves (b). Furthermore, it has been
shown in [108, Theorem 4.2] that Si maps C∞

0,0(Ω) to C∞
0,0(Qi). The special

choice p = ∞ proves that Si also maps L∞
0 (Ω) to L∞

0 (Qi).
Let f ∈ L

p(·)
0 (Ω) with p+ < ∞ and let σ be a permutation of N0. Then as

in [108] it follows that
∥
∥
∥
∥
∥
f −

k∑

i=0

Sσ(i)f

∥
∥
∥
∥
∥
L
p(·)
0 (Ω)

� c

∥
∥
∥
∥
∥

∞∑

i=k+1

χWσ(i)Mf

∥
∥
∥
∥
∥
L
p(·)
0 (Ω)

.

Using (B1), p+ < ∞ and Corollary 4.3.11 the right-hand side tends to zero for
k → ∞. This proves the unconditional convergence of

∑∞
i=0 Sif in L

p(·)
0 (Ω)

for f ∈ L
p(·)
0 (Ω) with p+ < ∞. We have proved (c).

For every f ∈ L
p(·)
0 (Ω) and g ∈ Lp

′(·)(Ω) we obtain by (c):

ˆ

Ω

fg dx =
ˆ

Ω

∞∑

i=0

Sif g dx.

Since
∑∞

i=0 |Sif | � cMf ∈ Lp(·)(Ω) by Corollary 4.3.11 and g ∈ Lp
′(·)(Ω),

the sum
∑∞
i=0 Sif g converges not only almost everywhere but also in L1(Ω).

Thus,

ˆ

Ω

fg dx =
∞∑

i=0

ˆ

Qi

Sif g dx =
∞∑

i=0

ˆ

Qi

Sif
(
g − 〈g〉Qi

)
dx,

which proves (e).



242 7 Transfer Techniques

For f ∈ L
p(·)
0 (Ω) we estimate using (b), Theorem 7.3.22, (B1) and

Corollary 4.3.11
∥
∥
∥
∥
∥

∞∑

i=0

χQi
‖Sif‖Lp(·)0 (Qi)

‖χQi‖p(·)

∥
∥
∥
∥
∥
p(·)

� c

∥
∥
∥
∥
∥

∞∑

i=0

χQi
‖χQiMf‖p(·)
‖χQi‖p(·)

∥
∥
∥
∥
∥
p(·)

� c
∥
∥Mf

∥
∥
L
p(·)
0 (Ω)

� c ‖f‖
L
p(·)
0 (Ω)

.

This proves one part of (d). The other part follows immediately from
Corollary 7.3.24 and (c).

The proof of (f) is given in [108, Theorem 4.2]. It is based on the fact that
for f ∈ C∞

0,0 only finitely many chains start in the support of f due to (B3)
and that by the boundedness of Ω those chains have finite length. ��

The decomposition theorem has the following useful consequences.

Proposition 7.4.11. Let Ω ⊂ R
n be a domain satisfying the emanating

chain condition with constants σ1 and σ2 and with chain covering Q. Let
p ∈ P log(Rn) with p+ <∞. Then

‖f − 〈f〉Ω‖
L
p(·)
0 (Ω)

≈
∥
∥
∥
∥

∑

Q∈Q
χQ

‖f − 〈f〉Q‖Lp(·)(Q)

‖χQ‖p(·)

∥
∥
∥
∥
Lp(·)(Ω)

for all f ∈ Lp(·)(Ω). The constant only depends on p+, clog(p) and the chain
condition constants.

Proof. Let f ∈ Lp(·)(Ω) and g ∈ L
p′(·)
0 (Ω). We use (e) of the decomposition

theorem for the space Lp
′(·)

0 (Ω), Hölder’s inequality, and Theorem 7.3.22 to
conclude that
ˆ

Ω

(f − 〈f〉Ω) g dx =
∑

Q∈Q

ˆ

Q

(f − 〈f〉Q)SQg dx

� 2
∑

Q∈Q
‖f − 〈f〉Q‖Lp(·)(Q)‖χQSQg‖Lp′(·)0 (Ω)

� c

∥
∥
∥
∥

∑

Q∈Q
χQ

‖f − 〈f〉Q‖Lp(·)(Q)

‖χQ‖p(·)

∥
∥
∥
∥
p(·)

∥
∥
∥
∥

∑

Q∈Q
χQSQg

∥
∥
∥
∥
L
p′(·)
0 (Ω)

Note that
∑
Q∈Q χQSQg = g, so the right-hand side simplifies. Then we

take the supremum over g with ‖g‖
L
p′(·)
0 (Ω)

� 1 and use the norm conjugate
formula (Corollary 3.2.14):
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‖f − 〈f〉Ω‖
L
p(·)
0 (Ω)

≈ sup
‖g‖

L
p′(·)
0 (Ω)

�1

ˆ

Ω

(f − 〈f〉Ω)g dx

� c

∥
∥
∥
∥

∑

Q∈Q
χQ

‖f − 〈f〉Q‖Lp(·)(Q)

‖χQ‖p(·)

∥
∥
∥
∥
p(·)

.

This proves the first direction of the claim. Since p ∈ P log(Ω) we have p ∈ A
and therefore

‖f − 〈f〉Q‖Lp(·)(Q) � ‖f − 〈f〉Ω‖Lp(·)(Q) + ‖χQMQ(f − 〈f〉Ω)‖Lp(·)(Q)

� c ‖f − 〈f〉Ω‖Lp(·)(Q)

This and Theorem 7.3.22 prove the other direction of the claim. ��

In Sect. 8.2 after Theorem 8.2.4 we will show that the decomposition the-
orem and its consequences easily yield the Poincaré inequality. In Sect. 14.3
we will use it to prove estimates for the divergence equation, the negative
norm theorem and Korn’s inequality.

Let us finish the section by showing how the operators SQ, defined on
L
p(·)
0 (Ω), can be modified in such a way that they are defined on Lp(·)(Ω).

Lemma 7.4.12. Let Ω ⊂ R
n be a bounded α-John domain, and let

p ∈ P log(Ω). Let η ∈ L∞(Ω) with
´
Ω
η dx = 1. Then Vη : f �→ η

´
Ω
f dx

and Uη := I − Vη are bounded, linear mappings from Lp(·)(Ω) to Lp(·)(Ω)
and to Lp(·)0 (Ω), respectively. The operator norms depend only on clog(p), α,
and |Ω| ‖η‖∞. Moreover, the mapping Uη is onto and if η ∈ C∞

0 (Ω), then
Uη : C∞

0 (Ω) → C∞
0,0(Ω).

Proof. To prove the boundedness of Vη, we note by Hölder’s inequality that
Vηf = η

´
Ω f dy � 2‖η‖∞‖f‖Lp(·)(Ω)‖1‖Lp′(·)(Ω) almost everywhere. Thus by

Lemma 7.4.5 we get

∥
∥Vηf

∥
∥
Lp(·)(Ω)

� 2‖η‖∞‖f‖Lp(·)(Ω)‖1‖Lp′(·)(Ω)‖1‖Lp(·)(Ω)≈ |Ω| ‖η‖∞‖f‖Lp(·)(Ω).

This proves the boundedness of the operators Uη and Vη. The mapping Uη
is onto, since it is the identity on L

p(·)
0 (Ω). Since

´
Ω η dx = 1, we have´

Ω
Uηf dx = 0. That Uη maps C∞

0 (Ω) into C∞
0,0(Ω) for η ∈ C∞

0 (Ω) is obvi-
ous. ��

Remark 7.4.13. If Ω ⊂ R
n is a bounded John domain and p ∈ P log(Ω)

satisfies p− > 1, then we can combine Lemma 7.4.12 with Theorem 7.4.9 to
extend our operators SQ : Lp(·)0 (Ω) → L

p(·)
0 (Q) to ŜQ : Lp(·)(Ω) → L

p(·)
0 (Q)
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for Q ∈ Q. Indeed, let η be as in Lemma 7.4.12, then the operators ŜQ :=
SQ ◦ Uη have the desired property. Moreover,

∑

Q∈Q
ŜQf =

∑

Q∈Q
SQ(Uηf) = Uηf = f − η

ˆ

Ω

f dx

with unconditional convergence in Lp(·)0 (Ω) for p+ <∞. It is easily seen that
the operators ŜQ satisfy (a), (b), and (d) of Theorem 7.4.9.

If additionally η ∈ C∞
0 (Ω), then ŜQ : C∞

0 (Ω) → C∞
0,0(Ω) and the ŜQ also

satisfy (f) of Theorem 7.4.9.

The following result will also be useful for applications.

Lemma 7.4.14. Let Ω ⊂ R
n be a bounded John domain, let p ∈ P log(Ω)

and let η ∈ L∞(Ω) satisfy
´
Ω
η dx = 1. Then

‖f‖Lp(·)(Ω) � c ‖f − 〈f〉Ω‖
L
p(·)
0 (Ω)

+ 4 ‖1‖Lp(·)(Ω)

∣
∣
∣
∣
∣

ˆ

Ω

f η dx

∣
∣
∣
∣
∣

for all f ∈ Lp(·)(Ω). The constant depends only on clog(p), α and |Ω| ‖η‖∞.

Proof. For f ∈ Lp(·)(Ω) we estimate using the norm conjugate formula
(Corollary 3.2.14)

‖f‖Lp(·)(Ω) � 2 sup
‖g‖

Lp
′(·)(Ω)

�1

∣
∣
∣
∣

ˆ

Ω

f g dx

∣
∣
∣
∣

= 2 sup
‖g‖

Lp
′(·)(Ω)

�1

∣
∣
∣
∣
∣

ˆ

Ω

f Uηg dx+
ˆ

Ω

f η dx

ˆ

Ω

g dy

∣
∣
∣
∣
∣
,

where Uηg = g − η
´
Ω
g dy ∈ L

p′(·)
0 (Ω). With Lemma 7.4.12 and Hölder’s

inequality we get

‖f‖Lp(·)(Ω) � c sup
‖h‖

L
p′(·)
0 (Ω)

�1

∣
∣
∣
∣

ˆ

Ω

f h dx

∣
∣
∣
∣+ 2 sup

‖g‖
Lp

′(·)(Ω)
�1

∣
∣
∣
∣

ˆ

Ω

f η dx

∣
∣
∣
∣

ˆ

Ω

|g|dy

� c ‖f − 〈f〉Ω‖
L
p(·)
0 (Ω)

+ 4 ‖1‖Lp(·)(Ω)

∣
∣
∣
∣

ˆ

Ω

f η dx

∣
∣
∣
∣.��
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Sobolev Spaces



Chapter 8

Introduction to Sobolev Spaces

In this chapter we begin our study of Sobolev functions. The Sobolev space is
a vector space of functions with weak derivatives. One motivation of studying
these spaces is that solutions of partial differential equations belong naturally
to Sobolev spaces (cf. Part III). In Sect. 8.1 we study functional analysis-type
properties of Sobolev spaces, in particular we show that the Sobolev space
is a Banach space and study its basic properties as reflexivity, separability
and uniform convexity. In Sect. 8.2 we prove several versions of the Poincaré
inequality under various assumption on the regularity of the exponent. In
Sect. 8.3 we study Sobolev embeddings of the type W 1,p(·) ↪→ Lp

∗(·) in the
case that p is log-Hölder continuous and 1 � p− � p+ < n or n < p− �
p+ < ∞. In Sect. 8.4 compact embeddings W 1,p(·) ↪→↪→ Lp

∗(·)−ε are proved.
In Sect. 8.5 we show that Sobolev functions defined in a sufficiently smooth
domain can be extended to the whole space. In the last section, Sect. 8.6, we
study Sobolev embeddings in the limit cases when either p+ = n or n = p−.

There are some topics which could not be included. This includes the
theory of variable exponent Sobolev spaces on metric measure spaces studied
for example in [28, 162,168,198,199,204,301]; a mean continuity type result
by Fiorenza [155]; and Hardy’s inequality in Sobolev space [192, 286, 287]
(Hardy’s inequality in Lebesgue spaces has been considered, e.g., in [109,114,
117,344]).

8.1 Basic Properties

In this section we define Sobolev spaces and prove functional analysis-type
properties for them. The results are from [91] by Diening, [149] by Fan and
Zhao, and [258] by Kováčik and Rákosńık.

Let Ω ⊂ R
n be an open set. We start by recalling the definition of weak

derivatives.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 8,
c© Springer-Verlag Berlin Heidelberg 2011
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Definition 8.1.1. Assume that u ∈ L1
loc(Ω). Let α := (α1, . . . , αn) ∈ N

n
0 be

a multi-index. If there exists g ∈ L1
loc(Ω) such that

ˆ

Ω

u
∂α1+...+αnψ

∂α1x1 · · · ∂αnxn
dx = (−1)α1+...+αn

ˆ

Ω

ψg dx

for all ψ ∈ C∞
0 (Ω), then g is called a weak partial derivative of u with respect

to α. The function g is denoted by ∂αu or by ∂α1+...+αnu
∂α1x1···∂αnxn . Moreover, we

write ∇u to denote the weak gradient
(
∂u
∂x1

, . . . , ∂u∂xn

)
of u and we write short

∂ju for ∂u
∂xj

with j = 1, . . . , n. More generally we write ∇ku to denote the
tensor with entries ∂αu, |α| = k.

If a function u has classical derivatives then they are also weak derivatives
of u. Also by definition ∇u = 0 almost everywhere in an open set where
u = 0.

Definition 8.1.2. The function u ∈ Lp(·)(Ω) belongs to the spaceW k,p(·)(Ω),
where k ∈ N0 and p ∈ P(Ω), if its weak partial derivatives ∂αu with |α| � k
exist and belong to Lp(·)(Ω). We define a semimodular on W k,p(·)(Ω) by

�Wk,p(·)(Ω)(u) :=
∑

0�|α|�k
�Lp(·)(Ω)(∂αu)

which induces a norm by

‖u‖Wk,p(·)(Ω) := inf
{
λ > 0 : �Wk,p(·)(Ω)

(u

λ

)
� 1
}
.

For k ∈ N the space W k,p(·)(Ω) is called Sobolev space and its elements are
called Sobolev functions. Clearly W 0,p(·)(Ω) = Lp(·)(Ω).

Remark 8.1.3. It is also possible to define the semimodular �Wk,p(·)(Ω)

on the larger set W k,1
loc (Ω) or even L1

loc(Ω). Then W k,p(·)(Ω) is just the
corresponding semimodular space.

We define local Sobolev spaces as usual:

Definition 8.1.4. A function u belongs to W k,p(·)
loc (Ω) if u ∈ W k,p(·)(U) for

every open U⊂⊂Ω. We equip W
k,p(·)
loc (Ω) with the initial topology induced

by the embeddings W k,p(·)
loc (Ω) ↪→ W k,p(·)(U) for all open U⊂⊂Ω.

Sobolev functions, as Lebesgue functions, are defined only up to measure
zero and thus we identify functions that are equal almost everywhere. If the
set Ω is clear from the content, we abbreviate ‖u‖Wk,p(·)(Ω) to ‖u‖k,p(·) and
�Wk,p(·)(Ω) to �k,p(·).
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Remark 8.1.5. (i) Note that in W k,p(·)(Ω)

k∑

m=0

�Lp(·)(Ω)(|∇mu|) and
k∑

m=0

‖|∇mu|‖Lp(·)(Ω)

define a semimodular and a norm equivalent to the Sobolev semimodular
and the Sobolev norm, respectively. We abbreviate ‖|∇mu|‖Lp(·)(Ω) as
‖∇mu‖Lp(·)(Ω), m ∈ N.

(ii) One easily proves, using Lemma 3.2.4, that for each 1-finite partition
(Ωi)i∈N of Ω we have

‖u‖Wk,p(·)(Ω) �
∞∑

i=1

‖u‖Wk,p(·)(Ωi)

for all u ∈ W k,p(·)(Ω).

Theorem 8.1.6. Let p ∈ P(Ω). The space W k,p(·)(Ω) is a Banach space,
which is separable if p is bounded, and reflexive and uniformly convex if
1 < p− � p+ <∞.

Proof. We proof only the case k = 1, the proof for the general case is sim-
ilar. We first show that the Sobolev spaces is a Banach space; for that
let (ui) be a Cauchy sequence in W 1,p(·)(Ω). We have to show that there
exists u ∈W 1,p(·)(Ω) such that ui → u in W 1,p(·)(Ω) as i → ∞. Since
the Lebesgue space Lp(·)(Ω) is a Banach space (Theorem 3.2.7), there exist
u, g1, . . . , gn ∈ Lp(·)(Ω) such that ui → u and ∂jui → gj in Lp(·)(Ω) for every
j = 1, . . . , n. Let ψ ∈ C∞

0 (Ω). Since ui is in W 1,p(·)(Ω) we have

ˆ

Ω

ui ∂jψ dx = −
ˆ

Ω

ψ ∂jui dx.

Strong convergence in Lp(·)(Ω) implies weak convergences and hence we have

ˆ

Ω

ui ∂jψ dx→
ˆ

Ω

u ∂jψ dx and
ˆ

Ω

ψ ∂jui dx→
ˆ

Ω

ψ gj dx

as i → ∞. Thus the right-hand sides on the previous line yield that
(g1, . . . , gn) is the weak gradient of u. It follows that u ∈W 1,p(·) and uj → u
in W 1,p(·).

By Theorem 3.4.4, Lp(·)(Ω) is separable if p+ < ∞ and by Theorem 3.4.7,
Lp(·)(Ω) is reflexive if 1 < p− � p+ < ∞. By the mapping u �→ (u,∇u),
the space W 1,p(·)(Ω) is a closed subspace of Lp(·)(Ω) ×

(
Lp(·)(Ω)

)n. Thus
W 1,p(·)(Ω) is separable if p+ < ∞, and reflexive if 1 < p− � p+ < ∞ by
Proposition 1.4.4.
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For the uniform convexity we note that W 1,p(·)(Ω) satisfies the Δ2-
condition provided that p+ < ∞. The Lp(·)-modular is uniformly convex for
p− > 1 by Theorem 2.4.11 and the proof of Theorem 3.4.9. Thus �Wk,p(·) is
uniform convex as a sum of uniform convex modulars (Lemma 2.4.16). Thus
W 1,p(·)(Ω) is uniform convex with its own norm by Theorem 2.4.14. ��

A normed space X has the Banach–Saks property if 1
m

∑m
i=1 ui → u

whenever ui ⇀ u. By [226] every uniformly convex space has the Banach–
Saks property. This together with the previous theorem implies the following
corollary.

Corollary 8.1.7. Let p ∈ P(Ω) with 1 < p− � p+ < ∞. Then the Sobolev
space W k,p(·)(Ω) has the Banach–Saks property.

Lemma 8.1.8. Let p ∈ P(Ω). Then W k,p(·)(Ω) ↪→ W k,p−
loc (Ω). If |Ω| < ∞,

then W k,p(·)(Ω) ↪→ W k,p−(Ω).

Proof. This follows immediately from the embedding Lp(·)(Ω) ↪→ Lp
−

(Ω),
see Corollary 3.3.4. ��

A (real valued) function space is a lattice if the point-wise minimum and
maximum of any two of its elements belong to the space. Next we show that
the variable exponent Sobolev space of first order has this property.

Proposition 8.1.9. Let p ∈ P(Ω). If u, v ∈W 1,p(·)(Ω), then max{u, v} and
min{u, v} are in W 1,p(·)(Ω) with

∇max(u, v)(x) =

{
∇u(x), for almost every x ∈ {u � v};

∇v(x), for almost every x ∈ {v � u};

and

∇min(u, v)(x) =

{
∇u(x), for almost every x ∈ {u � v};

∇v(x), for almost every x ∈ {v � u}.

In particular, |u| belongs to W 1,p(·)(Ω) and |∇|u|| = |∇u| almost everywhere
in Ω.

Proof. It suffices to prove the assertions for max{u, v} since min{u, v} =
−max{−u,−v}. By Lemma 8.1.8 we know that W 1,p(·)(Ω) ↪→ W 1,1

loc (Ω)
and so the formulas for ∇max(u, v) and ∇min(u, v) follow from [219, The-
orem 1.20]. We next note that ‖max{u, v}‖p(·) � ‖u‖p(·) + ‖v‖p(·) and
‖∇max{u, v}‖p(·) � ‖∇u‖p(·) + ‖∇v‖p(·). Thus it follows that max{u, v} ∈
W 1,p(·)(Ω). Analogously, we get min{u, v} ∈ W 1,p(·)(Ω). The claims for |u|
follow by noting that |u| = max{u, 0} − min{u, 0}. ��
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Note that the previous proposition yields that ∇u = 0 almost everywhere
in a set where u is constant.

We close this section by defining Sobolev spaces with zero boundary values
and proving basic properties for them.

Definition 8.1.10. Let p ∈ P(Ω) and k ∈ N. The Sobolev space W k,p(·)
0 (Ω)

with zero boundary values is the closure of the set of W k,p(·)(Ω)-functions
with compact support, i.e.

{
u ∈ W k,p(·)(Ω): u = uχK for a compact K ⊂ Ω

}

in W k,p(·)(Ω).

Warning 8.1.11. The closure of C∞
0 (Ω) in the space W k,p(·)(Ω) is denoted

by Hk,p(·)
0 (Ω).

Clearly C∞
0 (Ω) ⊂ W

k,p(·)
0 (Ω). Later in Sect. 11.2 we will study in more

detail Sobolev functions with zero boundary values. We will show in Propo-
sition 11.2.3 that if p is bounded and smooth functions are dense in the
Sobolev space then W k,p(·)

0 (Ω) = H
k,p(·)
0 (Ω). In particular we will obtain that

if p ∈ P log(Ω) is bounded, then W
k,p(·)
0 (Ω) = H

k,p(·)
0 (Ω) (Corollary 11.2.4).

Remark 8.1.12. In contrast to H
1,p(·)
0 (Ω), the space W

1,p(·)
0 (Ω) has the

following fundamental property: if u ∈W 1,p(·)(Ω) and v is a Lipschitz contin-
uous function with compact support in Ω, then uv ∈ W

1,p(·)
0 (Ω). In Sect. 11.5

we will see that for certain exponents p the product uv need not to be in
H

1,p(·)
0 (Ω) and thus it may hold that H1,p(·)

0 (Ω) � W
1,p(·)
0 (Ω).

Theorem 8.1.13. Let p ∈ P(Rn). The space W k,p(·)
0 (Ω) is a Banach space,

which is separable if p is bounded, and reflexive and uniformly convex if
1 < p− � p+ <∞.

Proof. Since W
k,p(·)
0 (Ω) is a closed subspace of W k,p(·)(Ω), the properties

follow by Proposition 1.4.4 and Theorem 8.1.6. ��

Lemma 8.1.14. Let p ∈ P(Rn) and u ∈ W
k,p(·)
0 (Ω). Then u extended by

zero to R
n \ Ω belongs to W k,p(·)(Rn).

Proof. Let u ∈ W k,p(·)(Ω) with compact support, i.e. there exists a compact
set K ⊂ Ω such that u = χKu almost everywhere. We define Eu to be the
extension of u (as a measurable function) by zero outside of Ω. We claim
that Eu ∈ W k,p(·)(Rn) and ∂αE(u) = E(∂αu) almost everywhere for |α| � k.
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Choose η ∈ C∞
0 (Ω) such that χK � η � χΩ. Then for all ψ ∈ C∞

0 (Rn) and
|α| � k we have

ˆ

Rn

Eu ∂αψ dx =
ˆ

Ω

u ∂α(ψη) dx = (−1)|α|
ˆ

Ω

(∂αu)ψη dx

= (−1)|α|
ˆ

Rn

(
E(∂αu)

)
ψ dx,

where we used that u = 0 and ∂αu = 0 outside of K and η = 1 on K.
This proves ∂αE(u) = E(∂αu). Since E(∂αu) ∈ Lp(·)(Rn), it follows that
Eu ∈W k,p(·)(Rn). Moreover, ‖u‖Wk,p(·)(Ω) = ‖Eu‖Wk,p(·)(Rn), so E is a isom-
etry on the set of compactly supported W k,p(·)(Ω) functions. Since those
functions are by definition dense in W k,p(·)

0 (Ω), the extension operator is also
an isometry from W

k,p(·)
0 (Ω) to W k,p(·)(Rn). In particular, u ∈ W

k,p(·)
0 (Ω)

implies Eu ∈W k,p(·)(Rn). ��

8.2 Poincaré Inequalities

We start this section by showing that for log-Hölder continuous exponents we
get the Poincaré inequality with a constant proportional to diam(Ω). After
that we give a relatively mild condition on the exponent for the Poincaré
inequality to hold. We also show that this condition is, in a certain sense, the
best possible.

Concerning the regularity of the domain we consider in particular bounded
John domains (cf. Definition 7.4.1). The constant exponent Poincaré inequal-
ity is known to hold for more irregular domains but the inequality is mostly
used in John domains.

We recall the following well-known lemma that estimates u in terms of the
Riesz potential, due to Bojarski [52, Chap. 6]. For completeness we provide
a proof. Recall that I1 denotes the Riesz potential operator (cf. Defini-
tion 6.1.1); note also the convention that I1f denotes I1(χΩf) if the function
f is defined only in Ω.

Lemma 8.2.1. (a) For every u ∈ W 1,1
0 (Ω), the inequality

|u| � c I1|∇u|

holds a.e. in Ω with the constant c depending only on the dimension n.
(b) If Ω ⊂ R

n is a bounded α-John domain, then there exists a ball B ⊂ Ω
and a constant c such that

|u(x) − 〈u〉B| � c I1|∇u|(x)
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holds a.e. in Ω for every u ∈ W 1,1(Ω). The ball B satisfies |B| � |Ω| �
c′|B| and the constants c and c′ depend only on the dimension n and α.

Proof. We prove only (b). The proof of (a) is similar, see for example [176,
Lemma 7.14, p. 154].

We consider first claim (b) when Ω is a ball. Assume that u ∈ C∞(Ω) ∩
W 1,1(Ω). We have

u(x) − u(y) = −
|x−y|ˆ

0

∇u
(

x+ r
y − x

|y − x|

)

· y − x

|y − x| dr.

Integrating with respect to y over Ω and dividing the result by |Ω|, we obtain

u(x) − 〈u〉Ω = − 1
|Ω|

ˆ

Ω

|x−y|ˆ

0

∇u
(

x+ r
y − x

|y − x|

)

· y − x

|y − x| dr dy.

Using the notation

D(z) =

{
∇u(z) if z ∈ Ω;

0 if z �∈ Ω;

we obtain

|u(x) − 〈u〉Ω| � 1
|Ω|

ˆ

{|x−y|�diam(Ω)}

∞̂

0

∣
∣
∣
∣D

(

x+ r
y − x

|y − x|

)∣
∣
∣
∣ dr dy

=
1
|Ω|

∞̂

0

ˆ

∂B(0,1)

diam(Ω)ˆ

0

|D(x+ rw)|�n−1 d� dw dr

�
∞̂

0

ˆ

∂B(0,1)

|D(x+ rw)| dw dr

=
ˆ

Ω

|D(y)|
|x− y|n−1

dy = I1|∇u|(x).

This concludes the proof in the ball when u is smooth. For u ∈ W 1,1(Ω),
we take smooth approximations ψi such that ψi → u in W 1,1(Ω) and almost
everywhere. Then 〈ψi〉Ω → 〈u〉Ω and I1|∇ψi|(x) → I1|∇u|(x), where we also
used the continuity of the Riesz potential in L1(Ω) (cf. [280, Theorem 1.1.31]).
This yields the claim for u.

Suppose now that Ω is a bounded α-John domain. Then Ω satisfies the
emanating chain condition with constants depending only on α. Let Q0 be
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the central emanating ball. If x ∈ Q0, then the claim follows by what was just
proved. Otherwise, let (Qj)mj=0 be the emanating chain connecting x and Q0.
Let Bj be the balls in the intersection Qj ∩Qj+1 as in the Definition 7.4.1.
Then

|u(x) − 〈u〉Q0 | � |u(x) − 〈u〉Qm | +
m−1∑

j=0

|〈u〉Qj+1 − 〈u〉Bj | + |〈u〉Bj − 〈u〉Qj |

� I|∇u|(x) + 2
m−1∑

j=0

|〈u〉Bj − 〈u〉Qj |

Let us estimate the second term:

|〈u〉Bj − 〈u〉Qj | �
 

Bj

|u− 〈u〉Qj | dy

� σn2

 

Qj

|u− 〈u〉Qj | dy

� c σn2 diam(Qj)
 

Qj

|∇u| dy.

Since |x − y| � σ2 diam(Qj) and (Qj) has overlap less than or equal to σ1,
we obtain

m−1∑

j=0

diam(Qj)
 

Qj

|∇u| dy � c σn−1
2

m−1∑

j=0

ˆ

Qj

|∇u|
|x− y|n−1

dy � c σ1σ
n−1
2 I|∇u|(x).

The assertion follows when we combine the previous three estimates. ��

Remark 8.2.2. One easily checks that the assertions in Lemma 8.2.1 (b)
also holds for u ∈ L1

loc(Ω) with |∇u| ∈ Lp(·)(Ω).

Lemma 8.2.3. Let Ω be a bounded α-John domain and let p ∈ P log(Ω). If
A ⊂ Ω has positive finite measure, then

c
|A|
|Ω| ‖u− 〈u〉A‖Lp(·)(Ω) � ‖u− 〈u〉Ω‖Lp(·)(Ω) � c ‖u− 〈u〉A‖Lp(·)(Ω)

for u ∈ Lp(·)(Ω), where c depends on the dimension n, clog(p) and α.

Proof. By the triangle inequality, ‖u − 〈u〉Ω‖Lp(·)(Ω) � ‖u − 〈u〉A‖Lp(·)(Ω) +
‖〈u〉A − 〈u〉Ω‖Lp(·)(Ω). We estimate the second term by Hölder’s inequality:



8.2 Poincaré Inequalities 255

‖〈u〉A − 〈u〉Ω‖Lp(·)(Ω) = |〈u〉A − 〈u〉Ω| ‖1‖Lp(·)(Ω)

= |Ω|−1‖u− 〈u〉A‖L1(Ω)‖1‖Lp(·)(Ω)

� c
‖1‖Lp′(·)(Ω)‖1‖Lp(·)(Ω)

|Ω| ‖u− 〈u〉A‖Lp(·)(Ω).

Since p ∈ P log(Ω), the fraction in the last estimate is bounded by a constant
according to Lemma 7.4.5. The lower bound is proved similarly. ��

Theorem 8.2.4 (Poincaré inequality). Let p ∈ P log(Ω) or p ∈ A.

(a) For every u ∈ W
1,p(·)
0 (Ω), the inequality

‖u‖Lp(·)(Ω) � c diam(Ω)‖∇u‖Lp(·)(Ω)

holds with a constant c depending only on the dimension n and clog(p).
(b) If Ω is a bounded α-John domain, then

‖u− 〈u〉Ω‖Lp(·)(Ω) � c diam(Ω)‖∇u‖Lp(·)(Ω)

for u ∈ W 1,p(·)(Ω). The constant c depends only on the dimension n, α
and clog(p).

Proof. We prove only the latter case. The proof for the first case is similar;
the only difference is to use in Lemma 8.2.1 case (a) instead of case (b). We
note that p ∈ P log(Ω) can be extended to R

n so that p ∈ A (Proposition 4.1.7
and Theorem 4.4.8).

By Lemma 8.2.1 (b) and Lemma 6.1.4 we obtain

|u(x) − 〈u〉B| � I1|∇u|(x) � c diam(Ω)
∞∑

k=0

2−kTk+k0 |∇u|(x)

for every u ∈ W 1,p(·)(Ω) and almost every x ∈ Ω, where k0 ∈ Z is chosen such
that 2−k0−1 � diam(Ω) � 2−k0 . Since p ∈ A, the averaging operator Tk+k0
is bounded on Lp(·)(Ω) (cf. Remark 6.1.3). Using also the triangle inequality,
we obtain

‖u− 〈u〉B‖Lp(·)(Ω) � c diam(Ω)
∞∑

k=0

2−k‖Tk+k0 |∇u|‖Lp(·)(Ω)

� c diam(Ω)‖∇u‖Lp(·)(Ω).

The estimate for ‖u− 〈u〉Ω‖Lp(·)(Ω) follows from this and Lemma 8.2.3. ��

In the case that p ∈ P log(Rn) with p+ < ∞ we give an alternative proof
for Theorem 8.2.4 (b) based on the decomposition Theorem 7.4.9. The proof
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is not self-contained since it uses the variable exponent Poincaré inequality
in cubes.

Proof of Theorem 8.2.4 (b) for p ∈ P log(Rn) with p+ < ∞. Let p ∈ P log(Rn)
with p+ < ∞. Let Q be the chain covering of Ω. Let u ∈ W 1,p(·)(Ω) with´
Ω
u dx = 0. Then Proposition 7.4.11, the Poincaré inequality in cubes,

diam(Q) � diam(Ω) for Q ∈ Q, and Theorem 7.3.22 yield

‖u‖
L
p(·)
0 (Ω)

� c

∥
∥
∥
∥

∑

Q∈Q
χQ

‖u− 〈u〉Q‖Lp(·)(Q)

‖χQ‖p(·)

∥
∥
∥
∥
Lp(·)(Ω)

� c

∥
∥
∥
∥

∑

Q∈Q
χQ

diam(Q)‖∇u‖Lp(·)(Q)

‖χQ‖p(·)

∥
∥
∥
∥
Lp(·)(Ω)

� c diam(Ω)
∥
∥
∥
∥

∑

Q∈Q
χQ

‖∇u‖Lp(·)(Q)

‖χQ‖p(·)

∥
∥
∥
∥
Lp(·)(Ω)

� c diam(Ω)‖∇u‖Lp(·)(Ω). ��

Theorem 8.2.4 (a) immediately yields.

Corollary 8.2.5. Let Ω be bounded and p ∈ P log(Ω) or p ∈ A. For every
u ∈W

1,p(·)
0 (Ω) the inequality

‖∇u‖Lp(·)(Ω) � ‖u‖W 1,p(·)(Ω) �
(
1 + c diam(Ω)

)
‖∇u‖Lp(·)(Ω)

holds with constant c depending only on the dimension n, and clog(p).

Theorem 8.2.4 (b) and Remark 8.2.2 yields the following corollary, which
will be important in Sect. 12.2.

Corollary 8.2.6. Let Ω be a bounded α-John domain and let p ∈ P log(Ω)
or p ∈ A. Furthermore, let A ⊂ Ω be such that |A| ≈ |Ω|. Then

‖u− 〈u〉A‖Lp(·)(Ω) � c diam(Ω)‖∇u‖Lp(·)(Ω)

for u ∈ L1
loc(Ω) with |∇u| ∈ Lp(·)(Ω). The constant c depends only on the

dimension n, α and clog(p).

Let us next consider modular versions of the Poincaré inequality. In the
constant exponent case there is an obvious connection between modular and
norm versions of the inequality, which does not hold in the variable expo-
nent context. Indeed, the following one-dimensional example shows that the
Poincaré inequality can not, in general, hold in a modular form.
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Example 8.2.7. Let p : (−2, 2) → [2, 3] be a Lipschitz continuous exponent
that equals 3 in (−2,−1)∪ (1, 2), 2 in (− 1

2 ,
1
2 ) and is linear elsewhere. Let uλ

be a Lipschitz function such that uλ(±2) = 0, uλ = λ in (−1, 1) and |u′λ| = λ
in (−2,−1) ∪ (1, 2). Then

�p(·)(uλ)
�p(·)(u′λ)

=

´ 2

−2
|uλ|p(x) dx´ 2

−2 |u′λ|p(x) dx
�

´ 1/2

−1/2 λ
2 dx

2
´ −1

−2 λ
3 dx

=
1

2λ
→ ∞

as λ → 0+.

In fact, Fan, Zhao and Zhang [145] have shown that the modular Poincaré
inequality �p(·)(u) � c�p(·)(∇u) does not hold if p is continuous and has a
minimum or maximum. Allegretto [21] has shown that the inequality holds
if there exists a function ξ ∈ W 1,1(Ω) such that ∇p · ∇ξ � 0 and ∇ξ �= 0.
This holds if p is suitably monotone. Next we prove another version of the
modular Poincaré inequality; our inequality applies for log-Hölder continuous
exponents, and it includes the radius of the domain; the price to pay is
an additional, additive term on the right-hand side. This kind of Poincaré
inequality has been used in [211].

Proposition 8.2.8. Let p ∈ P log(Ω) be a bounded exponent.

(a) Let Ω be bounded. For m > 0 there exist a constant c depending on the
dimension n, clog(p), m, and p+ such that

ˆ

Ω

(
|u|

diam(Ω)

)p(x)
dx � c

ˆ

Ω

|∇u|p(x) dx+ c

ˆ

B(z,diam(Ω))

(e + |x|)−m dx

for all u ∈ W
1,p(·)
0 (Ω) with ‖∇u‖Lp(·)(Ω) � 1 and all z ∈ Ω.

(b) Let Ω be a bounded α-John domain. For m > 0 there exist a constant c
depending on the dimension n, clog(p), m, p+, α, |Ω| and diam(Ω) such
that

ˆ

Ω

(
|v − 〈v〉B |
diam(Ω)

)p(x)
dx � c

ˆ

Ω

|∇v|p(x) dx+ c

ˆ

B(z,diam(Ω))

(e + |x|)−m dx

for all v ∈ W 1,p(·)(Ω) with ‖∇v‖Lp(·)(Ω) � 1 and all z ∈ Ω. The ball B is
from Lemma 8.2.1.

Proof. Assume that u ∈ W
1,p(·)
0 (Ω) is extended by zero outside Ω (Lemma

8.1.14). By Lemmas 8.2.1 (a) and 6.1.4 we obtain

|u(x)| � c

ˆ

Ω

|∇u(y)|
|x− y|n−1

dy � c diam(Ω)
∞∑

k=0

2−kTk+k0 |∇u|(x),
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where k0 ∈ Z is chosen such that 2−k0−1 � diam(Ω) � 2−k0 . Exactly the
same estimate holds with u replaced by v − 〈v〉B using Lemma 8.2.1 (b), so
it suffices to derive the estimate of the first claim involving u.

We divide by diam(Ω) and raise both sides of this inequality to the power
p(x), integrate over Ω, and use p+ < ∞ to obtain

ˆ

Ω

(
|u|

diam(Ω)

)p(x)
dx � c

ˆ

Ω

( ∞∑

k=0

2−kTk+k0 |∇u|
)p(x)

dx

� c

∞∑

k=0

2−k
ˆ

Ω

(
Tk+k0 |∇u|

)p(x)
dx,

where we used convexity in the second step. Since �Lp(·)(Ω)(∇u) � 1 by
the unit ball property, we may use Corollary 4.2.5 for |∇u|χΩ on the ball
B(z, diam(Ω)) and get

ˆ

Ω

(
Tk+k0 |∇u|

)p(x)
dx � c

ˆ

Ω

|∇u|p(x) dx+ c

ˆ

B(z,diam(Ω))

(e + |x|)−m dx,

where we also used that the dyadic cubes 2Q are locally N -finite. Combining
the last two inequality proves the claim. ��
Remark 8.2.9. If p ∈ P log(Ω) with no restriction on p+, then the first
estimate in Proposition 8.2.8 reads

ˆ

Ω

ϕp(x)

(

β
|u|

diam(Ω)

)

dx �
ˆ

Ω

ϕp(x)(|∇u|) dx +
ˆ

B(z,diam(Ω))

(e + |x|)−m dx

for some β ∈ (0, 1) and all u ∈ W
1,p(·)
0 (Ω) with ‖∇u‖Lp(·)(Ω) � 1. The

constant β depends only on clog(p), m and n. The second estimate in
Proposition 8.2.8 has to be changed accordingly. The proof is the same.

Remark 8.2.10. It is possible to replace 〈u〉B in Lemma 8.2.1 (b) and
Proposition 8.2.8 by 〈u〉Ω or even 〈u〉A, where A ⊂ Ω is a set with |A| ≈ |Ω|.
Indeed, it follows from Jensen’s inequality and Corollary 8.2.6 for p = 1 that

|〈u〉A − 〈u〉B | �
 

A

|u− 〈u〉B |dy � c

 

Ω

|u− 〈u〉B| dy � c diam(Ω)
 

Ω

|∇u|dy

for all u ∈W 1,1(Ω). In particular, this implies

|〈u〉A − 〈u〉B | � c

ˆ

Ω

|∇u(y)|
(diam(Ω))n−1

dy � c I1(∇u)(x).
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for any x ∈ Ω. This proves the modified version of Lemma 8.2.1 (b). With
this new estimate we get the modified version of Proposition 8.2.8 with no
change in the proof.

The following improvement of Proposition 8.2.8 is useful in the study of
p(·)-minimizers and is the starting point for reverse Hölder estimates. The
result is from Schwarzacher [350].

Proposition 8.2.11. Let p ∈ P log(Rn) satisfy 1 < p− � p+ < ∞ and let
s � p− satisfy s ∈ [1, n

n−1 ). Then for every m > 0 there exist a constant c
depending on n, clog(p), m, and s such that

 

BR

(
|u|
R

)p(x)
dx � c

(  

BR

|∇u|
p(·)
s dx

)s
+ c

 

BR

(e+ |x|)−ms dx

 

BR

(
|v − 〈v〉BR |

R

)p(x)
dx � c

(  

BR

|∇v|
p(·)
s dx

)s
+ c

 

BR

(e+ |x|)−ms dx

for every ball BR with radius R, and every u ∈W
1, p(·)s
0 (BR), v ∈W 1,

p(·)
s (BR)

with ‖∇u‖Lp(·)/s+L∞ , ‖∇v‖Lq(·)/s+L∞ � 1.

Proof. By Jensen’s inequality the case s > 1 implies the case s = 1 and thus
we may assume that s > 1. By Lemma 8.2.1 we have, for x ∈ BR,

|u(x)| � c

ˆ

BR

|∇u(y)|
|x− y|n−1

dy, |v(x) − 〈v〉BR | � c

ˆ

BR

|∇v(y)|
|x− y|n−1

dy.

Starting from here the proofs for u and v are the same, so we just present the
estimate for u. With the previous estimate, the help of Lemma 6.1.12 applied
to p(·)/s and p+ < ∞ we get

(I) :=
 

BR

(
|u(x)|
R

)p(x)
dx � c(p+)

 

BR

( ˆ

BR

|∇u(y)|
R|x− y|n−1 dy

)p(x)
dx

� c

 

BR

( ˆ

BR

|∇u(y)|
p(y)
s

R|x− y|n−1 dy

)s

dx+ c

 

BR

(
M
(
(e + |·|)−m

)
(x)
)s
dx

=: (II) + (III).

In order to estimate (II) we set J :=
´
BR

|∇u|p(·)/sdx. We can assume J > 0
in the following, since otherwise ∇u = 0 and there is nothing to estimate.
We apply Jensen’s inequality for the probability measure μ := |∇u|p(·)/s/J
and the convex function t �→ ts, then we use Fubini’s theorem to change the
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integration order and
´
BR

dx
|x−y|s(n−1) ≈ R−s(n−1)+n for a.e. y ∈ BR using

s < n
n−1 :

(II) � c

 

BR

Js−1

ˆ

BR

|∇u(y)|
p(y)
s

Rs|x− y|s(n−1)
dy dx

� c Js−1Rn−sn
 

BR

|∇u(y)|
p(y)
s dy � c

(  

BR

|∇u(y)|
p(y)
s dy

)s
.

Since s > 1, we can use the boundedness of M on Ls(BR) to conclude

(III) � c

 

BR

(e + |x|)−ms dx

Combining the estimates for (I)–(III) we obtain the result. ��

Remark 8.2.12. Exactly as in the Remarks 8.2.9 and 8.2.10 it is possible
to modify Proposition 8.2.11 to include the case p+ = ∞: we have to replace
the constant c on the right-hand side by a constant β on the left-hand side.
As in Proposition 8.2.8 and Remark 8.2.10 we can replace the integration
domain BR by a bounded John domain Ω and the mean value 〈v〉BR by 〈v〉A
for any A ⊂ Ω with |A| ≈ |Ω|.

In the remainder of the section, we generalize the norm-type Poincaré
inequalities to more general exponents. Again, there is a price to pay, namely,
we do not get the factor “diam(Ω)” on the right-hand side. These results are
from Harjulehto and Hästö [188].

Let us recall the following constant exponent result, which in the case
r < n and q = r∗ is due to B. Bojarski [52, (6.6)] and in the case q < r∗

follows from it by Hölder’s inequality. By r∗ we denote the Sobolev conjugate
exponent of r < n, r∗ := nr/(n− r).

Lemma 8.2.13. Let Ω ⊂ R
n be a bounded α-John domain. If 1 � r < n and

r � q � r∗ or if r � n and q < ∞ , then

‖u− 〈u〉Ω‖Lq(Ω) � c |Ω| 1
n+ 1

q− 1
r ‖∇u‖Lr(Ω)

for all u ∈ W 1,r(Ω). In the first case the constant c depends only on n, r and
α, while in the second case it depends also on q.

Using the previous constant exponent Sobolev–Poincaré inequality we are
able to prove the Poincaré inequality in bounded John domains for variable
exponents.

Lemma 8.2.14. Let Ω ⊂ R
n be a bounded α-John domain. If p ∈ P(Ω) is

bounded with p+ � (p−)∗ or p− � n, then there exists a constant c depending
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on the dimension n, p−, p+, and α such that for every u ∈ W 1,p(·)(Ω) we
have

‖u− 〈u〉Ω‖Lp(·)(Ω) � c (1 + |Ω|)2|Ω|
1
n+

1
p+ − 1

p− ‖∇u‖Lp(·)(Ω).

Proof. Assume first that p+ � (p−)∗. Since p(x) � p+ � (p−)∗ we deduce
from Corollary 3.3.4 and Lemma 8.2.13 that

‖u− 〈u〉Ω‖p(·) � 2
(
1 + |Ω|

)
‖u− 〈u〉Ω‖p+

� c(n, p−, α)
(
1 + |Ω|

)
|Ω|

1
n+

1
p+ − 1

p− ‖∇u‖p−

� c(n, p−, α)
(
1 + |Ω|

)2|Ω|
1
n+

1
p+ − 1

p− ‖∇u‖p(·).

Let p− � n. We choose a constant q ∈ [1, n) such that p+ = q∗. We obtain
the result by using similar arguments than in the previous case. The only
difference is that the constant in the second inequality in the above chain of
inequalities is c(n, p+, α). ��

The following lemma will be generalized (with proof) in Proposition 10.2.10
to the variable exponent case; this version can be found e.g. in [219, Exam-
ple 2.12, p. 35].

Lemma 8.2.15. For a constant q ∈ (1, n), arbitrary x ∈ R
n and R > r > 0

we have

inf
ˆ

B(x,R)

|∇u|q dx = c
∣
∣
∣
q − n

q − 1

∣
∣
∣
q−1∣
∣R

q−n
q−1 − r

q−n
q−1
∣
∣1−q,

where the infimum is taken over all u ∈ C∞
0 (B(x,R)) with u|B(x,r) = 1. Here

the constant c depends only on the dimension n.

The following proposition shows that for general non-constant exponents
the Poincaré inequality does not hold.

Proposition 8.2.16. Let B be a unit ball in the plane. For every q1 ∈ [1, 2)
and q2 ∈ (2,∞) there exists p ∈ P(B) with p− = q1 and p+ = q2 such that
the norm-version of the Poincaré inequality,

‖u− 〈u〉Ω‖Lp(·)(B) � c ‖∇u‖Lp(·)(B),

does not hold.

Proof. Our aim is to construct a sequence of functions in B ⊂ R
2 for which

the constant in the Poincaré inequality goes to infinity. Let e1 = (1, 0), Bi :=
B(2−ie1, 1

42−i) ⊂ B and B′
i := B(2−ie1, 1

82−i
2
) ⊂ B for every i ∈ N. Let

ui ∈ C∞
0 (Bi) with ui|B′

i
= 1. Define p := q2 in every B′

i and p := q1 otherwise
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in B with positive first coordinate. Since ∇ui = 0 in B′
i we obtain

‖∇ui‖Lp(·)(Bi) = ‖∇ui‖Lq1(Bi).

Let B̃i := B(−2−ie1, 1
42−i). We extend ui to B as an odd function of the

first coordinate in B̃i and by zero elsewhere. We extend p to B as an even
function of the first coordinate. We denote these extensions by ũi and p∗

n′ .
By Lemma 8.2.15 we may choose the functions ui such that

‖∇ũi‖
L
p∗(·)
n′ (B)

� c(q1)
∣
∣
∣
(

1
42−i

) q1−2
q1−1 −

(
1
82−i

2
) q1−2
q1−1
∣
∣
∣

1−q1
q1

.

For large i, the right-hand side is approximately equal to c(q1)2−i
2 2−q1

q1 . Since
〈ũi〉B = 0, we obtain

‖ũi − 〈ũi〉B‖
L
p∗(·)
n′ (B)

= ‖ũi‖
L
p∗(·)
n′ (B)

� |B′
i|

1
q2 � c 2−i

2 2
q2 .

Combining the previous two inequalities, we find that

‖ũi − 〈ũi〉B‖
L
p∗(·)
n′ (B)

‖∇ũi‖
L
p∗(·)
n′ (B)

� c(q1) 2i
2( 2
q1

−1− 2
q2

) → ∞

as i → ∞ if 2
q1

− 1 − 2
q2
> 0, that is, if q2 > 2q1

2−q1 > 2. ��

The following theorem shows that the condition p+ � (p−)∗ in Lemma
8.2.14 can be replaced by a set of local conditions.

Theorem 8.2.17. Let Ω ⊂ R
n be a bounded John domain and p ∈ P(Ω) be

bounded. Assume that there exist John domains Di, i = 1, . . ., j, such that
Ω = ∪ji=1Di and either p+

Di
� (p−Di)

∗ or p−Di � n for every i. Then there
exists a constant c such that

‖u− 〈u〉Ω‖Lp(·)(Ω) � c ‖∇u‖Lp(·)(Ω)

for every u ∈W 1,p(·)(Ω). The constant c depends on n, diam(Ω), |Di|, p and
the John constants of Ω and Di, i = 1, . . ., j.

Proof. Using the triangle inequality we obtain

‖u− 〈u〉Ω‖Lp(·)(Ω) �
j∑

i=1

‖u− 〈u〉Ω‖Lp(·)(Di)

�
j∑

i=1

‖u− 〈u〉Di‖Lp(·)(Di) +
j∑

i=1

‖〈u〉Ω − 〈u〉Di‖Lp(·)(Di).
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We estimate the first part of the sum using Lemma 8.2.14. This yields for
every i = 1, . . . , j

‖u− 〈u〉Di‖Lp(·)(Di) � c ‖∇u‖Lp(·)(Di) � c ‖∇u‖Lp(·)(Ω)

with constants depending on n, p+
Di
, p−Di , |Di|, αi, where αi is the John con-

stant of Di. Therefore it remains only to estimate the sum of the terms
‖〈u〉Ω − 〈u〉Di‖Lp(·)(Di). We use the constant exponent Poincaré inequality
(in the third inequality):

‖〈u〉Ω − 〈u〉Di‖Lp(·)(Di) � ‖1‖Lp(·)(Di)
 

Di

|u(x) − 〈u〉Ω| dx

� ‖1‖Lp(·)(Di)|Di|−1

ˆ

Ω

|u(x) − 〈u〉Ω| dx

� c(n, diam(Ω), α)|Di|−1‖1‖Lp(·)(Di)‖∇u‖L1(Ω)

� c(n, diam(Ω), α)|Di|−1‖1‖Lp(·)(Di)‖∇u‖Lp(·)(Ω)

for every i = 1, . . . , j. Here α is the John constant of Ω. By Corollary 3.3.4
‖1‖Lp(·)(Di) depends only on p and |Di|, which completes the proof. ��

Next we prove the Poincaré inequality for Sobolev functions with zero
boundary values using Lemma 8.2.14.

Theorem 8.2.18. Let Ω be bounded. Assume that p ∈ P(Ω) and there exists
δ > 0 such that for every x ∈ Ω either

p+
B(x,δ)∩Ω �

n p−B(x,δ)∩Ω

n− p−B(x,δ)∩Ω

or p−B(x,δ)∩Ω � n. (8.2.19)

Alternatively, assume that p is uniformly continuous in Ω. Then the inequality

‖u‖Lp(·)(Ω) � c ‖∇u‖Lp(·)(Ω),

holds for every u ∈ W
1,p(·)
0 (Ω). Here the constant c depends on p, Ω, δ and

the dimension n.

Proof. Note that if p is continuous in Ω or uniformly continuous in Ω, then
p satisfies the first set of conditions of the theorem for some δ > 0.

By the assumptions there exist x1, . . ., xj and δ > 0 such that

Ω ⊂
j⋃

i=1

B(xi, δ)
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and each ball B(xi, δ) satisfies either of the two inequalities in (8.2.19). We
write Bi := B(xi, δ) and denote by χi the characteristic function of Bi ∩ Ω.
In each Bi we define pi(x) := p(x)χi + p−Bi∩Ω(1−χi). Then in each Bi either

p+
i � (p−i )∗ or p−i � n. Let ũ be the zero extension of u ∈ W

1,p(·)
0 (Ω) to

R
n \ Ω (Lemma 8.1.14). By the triangle inequality we obtain

‖u‖Lp(·)(Ω) �
∥
∥
∥ũ

j∑

i=1

χi

∥
∥
∥
Lp(·)(Ω)

�
j∑

i=1

‖ũ‖Lpi(·)(Bi)

�
j∑

i=1

‖ũ− 〈ũ〉Bi‖Lpi(·)(Bi) +
j∑

i=1

|〈ũ〉Bi | ‖1‖Lpi(·)(Bi).

We estimate the first sum on the right-hand side of the previous inequality.
By Lemma 8.2.14 we obtain

‖ũ− 〈ũ〉Bi‖Lpi(·)(Bi) � c (1 + |Bi|)2|Bi|
1
n+

1
p+i

− 1
p−i ‖∇ũ‖Lpi(·)(Bi)

� c (1 + |Bi|)2|Bi|
1
n+

1
p+i

− 1
p−i ‖∇u‖Lp(·)(Ω).

for every i = 1, . . . j. To estimate the second sum,
∑j

i=1 |〈ũ〉Bi | ‖1‖Lpi(·)(Bi),
in the above inequality we use Lemma 3.2.12 to estimate ‖1‖Lpi(Bi) by a
constant depending only on p and δ. Further, the constant exponent Poincaré
inequality implies that

|〈ũ〉Bi | � c(n)
δn

ˆ

Ω

|u| dx � c

δn
diam(Ω)

ˆ

Ω

|∇u| dx

� c(n)
δn

diam(Ω)(1 + |Ω|)‖∇u‖Lp(·)(Ω),

again for every i = 1, . . . j. Combining the last three estimates yields the
assertion. ��

Remark 8.2.20. Assume that Ω is convex and p ∈ P(Ω) is uniform con-
tinuous (or p ∈ C(Ω)). As in the proof of Theorem 8.2.18 we may cover Ω
by finitely many balls B(xi, δ) so that (8.2.19) holds. Since Ω is convex so is
B(xi, δ)∩ Ω and thus it is a John domain. Hence Theorem 8.2.17 yields that
the Poincaré inequality

‖u− 〈u〉Ω‖Lp(·)(Ω) � c ‖∇u‖Lp(·)(Ω)

holds for every u ∈ W 1,p(·)(Ω).
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8.3 Sobolev-Poincaré Inequalities and Embeddings

In this section we assume that the exponent p is log-Hölder continuous with
1 � p− � p+ < n. We prove that the Sobolev-Poincaré inequality holds for
general Sobolev functions in bounded John domains and for Sobolev functions
with zero boundary values in open sets. Bounded John domains are almost the
right class of irregular domains for the constant exponent Sobolev–Poincaré
inequality, see [52,59]. We give an example which shows that Sobolev embed-
dings do not hold for every continuous p. We close this section by studying
the Sobolev embedding in the case p− > n. Sobolev embeddings in the case
p+ = n need a target space that is not a variable exponent Lebesgue space,
and are studied in Sect. 8.6 together with the other limit case p− = n.

We define the Sobolev conjugate exponent point-wise, i.e.

p∗(x) :=
np(x)
n− p(x)

when p(x) < n and p∗(x) = ∞ otherwise. This section is based on [92, 190,
258], see also [121,122,141,166,246,285,299,302].

Theorem 8.3.1. Let p ∈ P log(Ω) satisfy 1 � p− � p+ < n.

(a) For every u ∈ W
1,p(·)
0 (Ω), the inequality

‖u‖Lp∗(·)(Ω) � c ‖∇u‖Lp(·)(Ω)

holds with a constant c depending only on the dimension n, clog(p), and
p+.

(b) If Ω is a bounded α-John domain, then

‖u− 〈u〉Ω‖Lp∗(·)(Ω) � c ‖∇u‖Lp(·)(Ω)

for u ∈ W 1,p(·)(Ω). The constant c depends only on the dimension n, α,
clog(p) and p+.

If we add the extraneous assumption p− > 1, then we immediately obtain
a proof using results on operators that we proved earlier: the inequalities
follow from Lemma 8.2.1, Lemma 8.2.3 and Theorem 6.1.9; the constant in
this case also depends on p−.

We obtain the Sobolev embedding as a corollary.

Corollary 8.3.2. Let Ω be a bounded α-John domain and let p ∈ P log(Ω).
Let q ∈ P(Ω) be bounded and assume that q � p∗. Then

W 1,p(·)(Ω) ↪→ Lq(·)(Ω) ,

where the embedding constant depends only on α, |Ω|, n, clog(p) and q+.
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Proof. Let r ∈ (1, n) be such that r∗ � q+. Corollary 3.3.4 and Lemma 3.2.12
yield

‖u‖q(·) � ‖u− 〈u〉Ω‖q(·) + ‖〈u〉Ω‖q(·)
� 2(1 + |Ω|)‖u− 〈u〉Ω‖min{p∗(·),r∗} + max{|Ω|

1
q+

−1
, 1}‖u‖1

� 2(1 + |Ω|) max{|Ω|
1
q+

−1
, 1}
(
‖u− 〈u〉Ω‖min{p∗(·),r∗} + ‖u‖p(·)

)
.

Since min{p∗(·), r∗} ∈ P log(Ω), Theorem 8.3.1 (b) and Corollary 3.3.4 yield

‖u− 〈u〉Ω‖min{p∗(·),r∗} � c ‖∇u‖min{p(·),r} � c (1 + |Ω|)‖∇u‖p(·).

The claim follows by combining these two inequalities. ��

Now we move on to the complete proof, covering also the case p− = 1.
In this case the Riesz potential is not strong type p(·), i.e. Theorem 6.1.9
is not available. Our proof is based on the weak type estimate for the Riesz
potential. We first give a proof of Theorem 8.3.1 (b) in which the constant
additionally depends on diam(Ω).

Lemma 8.3.3. Let Ω be a bounded α-John domain and let p ∈ P log(Ω)
satisfy 1 � p− � p+ < n. Then

‖u− 〈u〉Ω‖Lp∗(·)(Ω) � c ‖∇u‖Lp(·)(Ω)

for every u ∈ W 1,p(·)(Ω). The constant c depends only on the dimension n,
p+, clog(p), α and diam(Ω).

Proof. By a scaling argument we may assume without loss of generality that(
1+|Ω|

)
‖∇u‖p(·) � 1. We need to show that �Lp∗(·)(Ω)(|u−〈u〉Ω|) is uniformly

bounded. For every j ∈ Z we set Ωj := {x ∈ Ω : 2j < |u(x) − 〈u〉Ω| � 2j+1}
and vj := max

{
0,min{|u− 〈u〉Ω| − 2j , 2j}

}
. From Proposition 8.1.9 follows

vj ∈ W 1,p(·)(Ω). By Lemma 8.2.1 (b) we have

|vj(x) − 〈vj〉B| � c I1|∇vj |(x)

for almost every x ∈ Ω. Here the radius of B ⊂ Ω depends on α. We obtain
by the pointwise inequality vj � |u − 〈u〉Ω| and by the constant exponent
Poincaré inequality Lemma 8.2.13 that

vj(x) � |vj(x) − 〈vj〉B | + 〈vj〉B � c I1|∇vj |(x) +
 

B

|u− 〈u〉Ω| dx

� c I1|∇vj |(x) + c

ˆ

Ω

|u− 〈u〉Ω| dx � c I1|∇vj |(x) + c

ˆ

Ω

|∇u| dx

� c I1|∇vj |(x) + c (1 + |Ω|)‖∇u‖p(·) � c1 (I1|∇vj |(x) + 1).

(8.3.4)
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For the rest of this proof we fix the constant c1 to denote the constant on
the last line. It depends only on n, α and diam(Ω).

Using the definition of Ωj we get

ˆ

Ω

|u(x) − 〈u〉Ω|p∗(x) dx =
∞∑

j=−∞

ˆ

Ωj

|u(x) − 〈u〉Ω|p∗(x) dx

�
∞∑

j=−∞

ˆ

Ωj

2(j+1)p∗(x) dx .

For every x ∈ Ωj+1 we have vj(x) = 2j and thus obtain by (8.3.4) the
pointwise inequality c1I1|∇vj |(x) + c1 > 2j for almost every x ∈ Ωj+1. Note
that if a+ b > c, then a > 1

2c or b > 1
2c. Thus

∞∑

j=−∞

ˆ

Ωj

2(j+1)p∗(x) dx

�
∞∑

j=−∞

ˆ

{x∈Ωj : c1I1|∇vj |(x)+c1>2j−1}

2(j+1)p∗(x) dx

�
∞∑

j=−∞

ˆ

{x∈Ω: c1I1|∇vj |(x)>2j−2}

2(j+1)p∗(x) dx

+
∞∑

j=−∞

ˆ

{x∈Ωj : c1>2j−2}

2(j+1)p∗(x) dx.

Since (1 + |Ω|)‖∇u‖p(·) � 1, we obtain by Theorem 6.1.11 for the first term
on the right-hand side that

∞∑

j=−∞

ˆ

{x∈Ω: c1I1|∇vj(y)|(x)>2j−2}

2(j+1)p∗(x) dx

� c

∞∑

j=−∞

( ˆ

Ω

|∇vj(y)|p(y) dy +
∣
∣{0 < |∇vj | � 1}

∣
∣
)

� c

∞∑

j=−∞

( ˆ

Ωj

|∇u|p(y) dy + |Ωj |
)

= c

ˆ

Ω

|∇u|p(y) dy + c |Ω|.
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Let j0 be the largest integer satisfying c1 > 2j0−2. Hence

∞∑

j=−∞

ˆ

{x∈Ωj :c1>2j−2}

2(j+1)p∗(x) dx �
ˆ

Ω

j0∑

j=−∞
2(j+1)p∗(x) dx � c |Ω|,

which concludes the proof. ��

Next we use the local-to-global trick to generalize the previous lemma,
removing the dependence of the constant on diam(Ω).

Proof of Theorem 8.3.1. We prove only part (a) of the theorem; the second
part follows by essentially identical arguments.

Let u ∈ W
1,p(·)
0 (Ω) and extend it by 0 to R

n \ Ω (Lemma 8.1.14). By
a scaling argument we may assume that ‖u‖W 1,p(·)(Rn) = 1. Let (Qj) be a
partition of R

n into unit cubes. As was noted in Example 7.4.2, every Qj is
a John domain with the same constant. Thus Lemma 8.3.3 implies that

‖u‖Lp∗(·)(Qj) � ‖u− 〈u〉Qj‖Lp∗(·)(Qj) + |〈u〉Qj | ‖1‖Lp∗(·)(Qj)

� c ‖∇u‖Lp(·)(Qj) + c |〈u〉Qj |.

Next we apply Corollary 7.3.23, the previous inequality, and the triangle
inequality in �p

∗
∞ :

‖u‖Lp∗(·)(Rn) � c

(∑

j

‖u‖p
∗
∞
Lp∗(·)(Qj)

)1/p∗∞

� c

(∑

j

(
‖∇u‖Lp(·)(Qj) + |〈u〉Qj |

)p∗∞
)1/p∗∞

� c

(∑

j

‖∇u‖p
∗
∞
Lp(·)(Qj)

)1/p∗∞
+ c

(∑

j

|〈u〉Qj |p
∗
∞

)1/p∗∞
.

Note that we end up with the wrong power after the inequality for using
Corollary 7.3.23 a second time: we would want the norm to be raised to the
power of p∞ instead of p∗∞. However, since ‖∇u‖Lp(·)(Qj) � ‖u‖W 1,p(·)(Rn) = 1

and p∞ � p∗∞, we conclude that ‖∇u‖p
∗
∞
Lp(·)(Qj)

� ‖∇u‖p∞
Lp(·)(Qj)

. Then we can
use Corollary 7.3.23 again:

∑

j

‖∇u‖p
∗
∞
Lp(·)(Qj)

�
∑

j

‖∇u‖p∞
Lp(·)(Qj)

≈ ‖∇u‖p∞
Lp(·)(Rn)

= 1.

It remains to control
∑
j |〈u〉Qj |p

∗
∞ . For this we define an auxiliary function

v := |u| ∗χQ(0,1/2). Then |〈u〉Qj | � c |〈v〉Qj |, so it suffices to consider the sum
over |〈v〉Qj |. Using also Hölder’s inequality, we conclude that
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∑

j

|〈u〉Qj |p
∗
∞ � c

∑

j

|〈v〉Qj |p
∗
∞ � c

∑

j

ˆ

Qj

|v(x)|p∗∞ dx = c

ˆ

Rn

|v(x)|p∗∞ dx.

Then it follows from the constant exponent Sobolev inequality (see for
example [176, Chap. 7]) that

(∑

j

|〈u〉Qj |p
∗
∞

)1/p∗∞
� c ‖v‖Lp∗∞(Rn) � c ‖∇v‖Lp∞(Rn).

Next we notice that

|∇v(x)| �
ˆ

B(x,1)

∣
∣∇|u(y)|

∣
∣ dy � 2‖∇u‖p(·)‖1‖Lp′(·)(B(x,1)) � c < ∞,

so |∇v| ∈ L∞(Rn). Since Lp∞ ∩L∞ ∼= Lp(·) ∩L∞ (Lemma 3.3.12), it follows
that ‖∇v‖Lp∞(Rn) � c ‖∇v‖Lp(·)(Rn) + c � c ‖∇u‖Lp(·)(Rn) + c � c, where we
used the boundedness of convolution (Lemma 4.6.1) in the second step. ��

Remark 8.3.5. Using Hölder’s inequality we see that the Sobolev-Poincaré
inequality implies the Poincaré inequality also in the variable exponent con-
text. By a suitable choice of intermediate exponent, we can relax the condition
1 � p− � p+ < n to arbitrary bounded exponents in this case.

The following proposition is due to Kováčik and Rákosńık [258]. The expo-
nent p∗ is the best possible for constant p, see for example [11, Example 5.25];
using this we show that it is also the best possible for a variable continuous
exponent p.

Proposition 8.3.6. Let p, q ∈ P(Ω)∩C(Ω) satisfy p+ < n. If W 1,p(·)(Ω) ↪→
Lq(·)(Ω), then q � p∗.

Proof. Suppose that q(x) > p∗(x) for some x ∈ Ω. By the continuity of
p and q, there exist s ∈ (1, n), t ∈ (1,∞) and r > 0 such that

p∗(y) < s∗ < t < q(y)

for every y ∈ B(x, r). By Corollary 3.3.4, W 1,s(B(x, r)) ↪→ W 1,p(·)(B(x, r))
and Lq(·)(B(x, r)) ↪→ Lt(B(x, r)). Since s∗ < t we have W 1,s(B(x, r)) �↪→
Lt(B(x, r)). Thus W 1,p(·)(B(x, r)) �↪→ Lq(·)(B(x, r)), which is a contradiction,
and so q(x) � p∗(x). ��

Next we construct a continuous exponent for which the Sobolev embedding
W 1,p(·)(Ω) ↪→ Lp

∗(·)(Ω) does not hold.
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Proposition 8.3.7. Let Ω ⊂ R
2 be the intersection of the upper half-

plane and the unit disk. There exists a continuous exponent p ∈ P(Ω) with
1 < p− � p+ < 2 such that

W 1,p(·)(Ω) �↪→ Lp
∗(·)(Ω).

Proof. Fix t and s such that 1 < t < s < 2 and define f(τ) := 2( τt − 1) for
τ ∈ [t, 2]. Denoting by (r, ψ) spherical coordinates in Ω (with ψ ∈ (0, π)) we
define the variable exponent p as follows:

p(r, ψ) :=

⎧
⎪⎪⎨

⎪⎪⎩

t, if ψ � rf(t) = 1;

τ, for τ ∈ (t, s) satisfying ψ = rf(τ);

s, if ψ � rf(s).

We consider the function u(x) = |x|μ, where μ := s−2
t . Note that u does not

belong to Lp
∗(·)(Ω), because

�p∗(·)(u) =
ˆ

Ω

|x|μp
∗(x) dx �

1ˆ

0

rf(s)ˆ

0

r
2sμ
2−s r dψdr

=

1ˆ

0

r
2sμ
2−s+f(s)+1 dr = ∞.

The last equality follows since 2sμ
2−s + f(s) + 1 = −1. However, u belongs to

W 1,p(·)(Ω). We easily calculate that |∇u(x)| = |μ||x|μ−1. Since |μ| < 1, we
find that ˆ

Ω

|∇u(x)|p(x) dx <
1ˆ

0

π̂

0

r(μ−1)p(r,ψ)dψ r dr.

We first estimate the parts of the domain where p(x) = t or p(x) = s:

1ˆ

0

π̂

1

r(μ−1)tdψ r dr = (π − 1)

1ˆ

0

r(μ−1)t+1dr < ∞,

since (μ− 1)t+ 1 > −1, and

1ˆ

0

rf(s)ˆ

0

r(μ−1)sdψ r dr =

1ˆ

0

r(μ−1)s+f(s)+1dr <∞

since (μ − 1)s + f(s) + 1 > −1. Let us denote the integral over these parts
by K < ∞.
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In the remaining part we have p(r, ψ) = τ and ψ = rf(τ). Solving this
equation for τ we find that p(r, ψ) = (1

2
logψ
log r + 1) t. Thus we have

1ˆ

0

π̂

0

r(μ−1)p(r,ψ)dψ r dr � K +

1ˆ

0

1ˆ

0

e(μ−1)( 1
2 logψ+log r)tdψ r dr

= K +

1ˆ

0

1ˆ

0

ψ(μ−1)t/2dψ r(μ−1)t+1 dr

= K +
2

s− t

1
s− t

<∞.

So we have shown that |∇u| ∈ Lp(·)(Ω). For our function u we find that
|u(x)| = 1

|μ| |∇u(x)||x| � 1
|μ| |∇u(x)| and so it also follows that u ∈ Lp(·)(Ω),

and we are done. ��

If a variable exponent is locally greater than the dimension n, then we
have locally an embedding to a constant exponent Sobolev space with expo-
nent greater than n (Lemma 8.1.8) and thus W 1,p(·)(Ω) ⊂ C(Ω). It follows
immediately that if p ∈ P(Ω) is continuous and p(x) > n for every x ∈ Ω,
then W 1,p(·)(Ω) ⊂ C(Ω). In fact, we can obtain a better result in terms of a
Hölder-type continuity modulus with varying exponent. The following result
was originally proved by Edmunds and Rákosńık [121]; we present here a new,
much simpler proof. This question has been more systematically studied by
Almeida and Samko in [27, 28].

Theorem 8.3.8. We write δ(x) := min{1, dist{x, ∂Ω}}. Let p ∈ P log(Ω)
satisfy p− > n. Then there exists a constant c such that

sup
y∈B(x,δ(x))

|u(x) − u(y)|
|x− y|1−

n
p(x)

� c ‖∇u‖Lp(·)(Ω)

for every u ∈W 1,p(·)(Ω) and for every x ∈ Ω. The constant depends only on
the dimension n, p− and clog(p).

Proof. Let x ∈ Ω. If |x − y| < δ(x), then there exists r < δ(x) such that
1
2r < |x− y| < r. Denote B := B(x, r). Since

W 1,p(·)(B) ↪→ W 1,p−B (B),

we obtain by the constant exponent result [129, Theorem 3, p. 143] that

|u(x) − u(y)| � c r
1− n

p
−
B ‖∇u‖

Lp
−
B (B)

� c (1 + |B(0, 1)|) r
1− n

p
−
B ‖∇u‖Lp(·)(Ω).
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Since r < 1 the log-Hölder continuity of p implies that r
1− n

p
−
B � c r1−

n
p(x) .

Using r < 2|x− y| we obtain the claim. ��

8.4 Compact Embeddings

We start this section by examining compact embeddings of W 1,p(·)(Ω) into
Lp(·)(Ω). This section is based on Diening [92], see also Fan, Zhao and
Zhao [152] for further results. We first prove a quantitative version of
Theorem 4.6.4 (b) for Sobolev functions.

Lemma 8.4.1. Let p ∈ A be bounded, and let ψ be a standard mollifier.
There exists A > 0, depending only on the A-constant of p, such that

‖u ∗ ψε − u‖p(·) � εA ‖∇u‖p(·)

for all u ∈ W 1,p(·)(Rn) and all ε > 0.

Proof. Let u ∈ C∞
0 (Rn). Using the properties of the mollifier, Fubini’s

theorem and a change of variables we deduce

u ∗ ψε(x) − u(x) =
ˆ

Rn

1ˆ

0

ψε(y)∇u(x − ty) · y dt dy

=

1ˆ

0

ˆ

Rn

ψεt(y)∇u(x− y) · y
t
dy dt.

This yields the pointwise estimate

∣
∣u ∗ ψε(x) − u(x)

∣
∣ � ε

1ˆ

0

ˆ

Rn

|ψεt(y)| |∇u(x− y)| dy dt

= ε

1ˆ

0

|∇u| ∗ |ψεt|(x) dt

for all u ∈ C∞
0 (Rn). Since sptψtε ⊂ B(0, ε) for all t ∈ [0, 1], the estimate is

of a local character. Due to the density of C∞
0 (Rn) in W 1,1

loc (Rn) the same
estimate holds almost everywhere for all u ∈ W 1,1

loc (Rn). Hence, it holds in
particular for all u ∈W 1,p(·)(Rn). The pointwise estimate thus yields a norm
inequality, which due to the properties of the Bochner integral implies
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‖u ∗ ψε − u‖p(·) � ε

∥
∥
∥
∥

1ˆ

0

|∇u| ∗ |ψεt| dt
∥
∥
∥
∥
p(·)

� ε

1ˆ

0

∥
∥|∇u| ∗ |ψεt|

∥
∥
p(·) dt.

By Lemma 4.6.3 we obtain
∥
∥|∇u| ∗ |ψεt|

∥
∥
p(·) � K‖ψ‖1‖∇u‖p(·). Now, the

claim follows due to ‖ψ‖1 = 1. ��

Theorem 8.4.2. Let Ω ⊂ R
n be a bounded domain and let p ∈ P log(Ω) or

p ∈ A be bounded. Then

W
1,p(·)
0 (Ω) ↪→↪→ Lp(·)(Ω).

Proof. By Theorem 4.4.8 we always have p ∈ A. Let uk ⇀ u in W
1,p(·)
0 (Ω).

We write vk := uk − u and hence vk ⇀ 0 in W
1,p(·)
0 (Ω). Thus ‖vk‖1,p(·) is

uniformly bounded. Furthermore, we extend the functions vk by zero outside
of Ω (Theorem 8.1.14). We have to show that vk → 0 in Lp(·)(Ω). Let ψε be
the standard mollifier. Then we have vk(x) = (vk − ψε ∗ vk)(x) + ψε ∗ vk(x)
and Lemma 8.4.1 implies

‖vk‖p(·) � ‖vk − vk ∗ ψε‖p(·) + ‖vk ∗ ψε‖p(·)
� c ε ‖∇vk‖p(·) + ‖vk ∗ ψε‖p(·).

(8.4.3)

Since vk ⇀ 0 and ε > 0 is fixed we obtain

vk ∗ ψε(x) =
ˆ

Rn

ψε(x− y)vk(y) dy → 0

as k → ∞. Let Ωε := {x ∈ R
n : dist(x,Ω) � ε}. Thus vk ∗ ψε(x) = 0 for all

x ∈ R
n \ Ωε. By Hölder’s inequality we obtain for all x ∈ Ωε that

∣
∣vk ∗ ψε(x)

∣
∣ =
∣
∣
∣

ˆ

Rn

ψε(x − y)vk(y) dy
∣
∣
∣ � c ‖vk‖p(·)‖ψε(x− ·)‖p′(·).

Since ψ ∈ C∞
0 (Rn) we have |ψ| � c and thus |ψε| � c ε−n. This yields

‖ψε(x− ·)‖p′(·) � c ε−n‖χΩε‖p′(·) � c(ε, p) independently of x ∈ R
n and k.

Using the uniform boundedness of vk in Lp(·) we all together proved

∣
∣vk ∗ ψε(x)

∣
∣ � c(ε, p)χΩε(x)

for all x ∈ R
n. Since χΩε ∈ Lp(·)(Rn) and vk ∗ψε(x) → 0 almost everywhere,

we obtain by the theorem of dominated convergence that vk ∗ ψε → 0 in
Lp(·)(Rn) as k → ∞. Hence it follows from (8.4.3) that
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lim sup
k→∞

‖vk‖p(·) � c ε lim sup
k→∞

‖∇vk‖p(·).

Since ε > 0 was arbitrary and ‖∇vk‖p(·) was uniformly bounded this yields
that vk → 0 in Lp(·)(Rn) and thus uk → u in Lp(·)(Ω). ��

In fact, it is easy to improve the previous result to deal with higher
exponents in the Lebesgue space:

Corollary 8.4.4. Let Ω be a bounded domain and let p ∈ P log(Ω) satisfy
p+ < n. Then

W
1,p(·)
0 (Ω) ↪→↪→ Lp

∗(·)−ε(Ω)

for every ε ∈ (0, n′).

We give two alternative proofs. The first one is based on interpolation.
The later one is a straight forward, but it uses Corollary 3.3.4 for the expo-
nent αp∗(·)(p∗(·)−ε)

ε that is less than 1. However, it is easy to check that
Corollary 3.3.4 holds also in this case.

Proof 1. We extend the exponent p to the whole space by Proposition 4.1.7.
Due to Theorems 8.3.1 and 8.4.2 we have W

1,p(·)
0 (Ω) ↪→↪→ Lp(·)(Ω) and

W
1,p(·)
0 (Ω) ↪→ Lp

∗(·)(Ω), respectively. Therefore, by complex interpolation,
see Theorem 7.1.2, W 1,p(·)

0 (Ω) ↪→↪→ Lqθ(·)(Ω), where qθ ∈ P(Ω) is defined
for θ ∈ (0, 1) by 1

qθ
= 1−θ

p∗ + θ
p = 1

p − 1−θ
n . Instead of interpolation, one can

also use Hölder’s inequality in this argument. For θ small enough, we have
p∗ − ε � qθ � p∗ and therefore by Corollary 3.3.4 Lqθ(·)(Ω) ↪→ Lp

∗(·)−ε(Ω).
The claim follows as the composition of a compact and a bounded embedding
is compact. ��

Proof 2. Fix ε ∈ (0, n′). As in the previous proof, it suffices to show
that uk → 0 in Lp

∗(·)−ε(Ω) whenever uk ⇀ 0 in W
1,p(·)
0 (Ω). Define α :=

ε((p+)∗)−2. Then an application of Hölder’s inequality (3.2.22) yields

‖uk‖p∗(·)−ε � 2‖ |uk|α‖ p∗(·)(p∗(·)−ε)
ε

‖ |uk|1−α‖p∗(·).

By Corollary 3.3.4 and 8.3.1, ‖ |uk|1−α‖p∗(·) < ∞. On the other hand,

‖ |uk|α‖ p∗(·)(p∗(·)−ε)
ε

= ‖uk‖ααp∗(·)(p∗(·)−ε)
ε

� 2(1 + |Ω|)‖uk‖1 → 0

since W 1,p(·)
0 (Ω) ↪→↪→ L1(Ω). ��

When p is (almost) continuous, it is possible to prove Theorem 8.4.2 by a
different argument. We present the method here for general Sobolev functions.
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Theorem 8.4.5. Let Ω ⊂ R
n be a bounded convex open set. Let p ∈ P(Ω)

and assume that there exists δ > 0 such that

p+
B(x,δ)∩Ω <

(
p−B(x,δ)∩Ω

)∗ or p−B(x,δ)∩Ω � n

for every x ∈ Ω. Then

W 1,p(·)(Ω) ↪→↪→ Lp(·)(Ω).

Proof. We may cover Ω by finitely many balls Bi, with radius δ, such that
either p+

Bi∩Ω < (p−Bi∩Ω)∗ or p−Bi∩Ω � n. Let ε > 0 be so small that p �
(p−Bi∩Ω)∗ − ε in each Bi ∩ Ω. We obtain

W 1,p(·)(Bi ∩ Ω) ↪→ W
1,p−Bi∩Ω(Bi ∩ Ω)

↪→↪→ L
(p−Bi∩Ω)∗−ε(Bi ∩ Ω) ↪→ Lp(·)(Bi ∩ Ω),

where the convexity of Bi ∩ Ω is used in the second embedding. Since there
was only finitely many balls, we obtain the claim. ��

It is well-known that the embedding W 1,p ↪→↪→ Lq holds in the constant
exponent case if and only if q < p∗. Surprisingly, we sometimes have a com-
pact embedding in the variable exponent case even if q(x) = p∗(x) at some
point. This was first shown by Kurata and Shioji [259] and generalized to
more complicated sets by Mizuta, Ohno, Shimomura and Shioji in [300]. We
present here, without proof, only a simplified version of [300, Theorem 3.4].

Theorem 8.4.6. Let p ∈ P log(Rn) be bounded, let q ∈ P(Rn) be bounded
and suppose that

q(x) � p∗(x) − ω(|x|)
log(e+ 1/|x|)

where ω : [0,∞) → [0,∞) is increasing and continuous with ω(0) = 0. Then
W 1,p(·)(Rn) ↪→↪→ Lq(·)(Rn).

Let us point out that the exponent q in the previous theorem cannot be
locally log-Hölder continuous, i.e. q �∈ P log(Rn).

8.5 Extension Operator

In this section we study extension operators for variable exponent Sobolev
functions. We show that for certain domains Ω there exists a bounded exten-
sion operator E from Wm,p(·)(Ω) to Wm,p(·)(Rn) for everym∈N0 and all p∈A.
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Definition 8.5.1. A domain Ω ⊂ R
n is called an (ε,∞)-domain, 0<ε� 1,

if every pair of points x, y ∈ Ω can be joined by a rectifiable path γ
parametrized by arc-length such that

�(γ) � 1
ε
|x− y|,

B

(

γ(t),
ε|x− γ(t)||y − γ(t)|

|x− y|

)

⊂ Ω for all t ∈ [0, �(γ)],

where �(γ) is the length of γ.

These domains are also known as uniform domains [283] or Jones domains.
Every bounded Lipschitz domain and the half-space are (ε,∞)-domain for
some value of ε. The boundary of an (ε,∞)-domain can be non-rectifiable
as in the case of the Koch snowflake domain. For us it is important to know
that |∂Ω| = 0 for every (ε,∞)-domain Ω [224, Lemma 2.3].

We start with an easy extension result which follows from extrapolation.
The theorem works also in the case P log(Ω), since we can then extend p to
all of R

n by Proposition 4.1.7.

Theorem 8.5.2. Let Ω be an (ε,∞)-domain and suppose that p ∈ A with
1 < p− � p+ < ∞. If u ∈ W k,p(·)(Ω), then it can be extended to a function
in W k,p(·)(Rn), with

‖u‖Wk,p(·)(Rn) � c ‖u‖Wk,p(·)(Ω),

where the constant c depends on n, ε, p+, p− and the A-constant of p.

Proof. Let Λ : W k,1(Ω) ↪→ W k,1(Rn) be the extension operator of Jones
[224]. Chua generalized Jones’ extension result to the weighted case:

ˆ

Rn

|∂α(Λu)|w dx � c

ˆ

Ω

|g|w dx

for all w ∈ A1, where |α| � k, g :=
∑

|β|�k |∂βu| and the constant depends
on w only through ‖w‖A1 [75, Theorem 1.1]. Note also that M is bounded by
Theorem 5.7.2 since p ∈ A. Hence the extrapolation theorem, Theorem 7.2.1,
implies that

‖∂α(Λu)‖Lp(·)(Rn) � c ‖g‖Lp(·)(Ω).

This applies to every |α| � k, so by the triangle inequality we obtain

∑

|α|�k
‖∂α(Λu)‖Lp(·)(Rn) � c ‖g‖Lp(·)(Ω) � c

∑

|β|�k
‖∂βu‖Lp(·)(Ω),

which implies the claim. ��
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The disadvantage of the previous theorem is that there is a condition
on p− and p+. Next we show that these restrictions are not necessary. The
technique is based on the works of Jones [224] for classical Sobolev spaces
and of Chua [75] for Ap-weighted Sobolev spaces. The results presented below
where first developed by Fröschl [159].

The following proposition shows that every open set can be decomposed
(up to measure zero) into a union of cubes whose lengths are proportional to
the distance from the boundary of the open set. For a proof see for example
[359, Theorem 1, p.167] or [179, Appendix J]. We say that two open sets A
and B touch if A ∩B = ∅ and A ∩B �= ∅.

Proposition 8.5.3 (Dyadic Whitney decomposition). Let Ω � R
n be

an open non-empty set. Then there exists a countable family F of dyadic
cubes such that

(a)
⋃
Q∈F Q = Ω and the cubes from F are pairwise disjoint.

(b)
√
n�(Q) < dist(Q,Ω�) � 4

√
n�(Q) for all Q ∈ F .

(c) If Q,Q′ ∈ F intersect, then

1
4

� �(Q)
�(Q′)

� 4.

(d) For given Q ∈ F , there exists at most 12n cubes Q′ ∈ F touching Q.

Using this Whitney decomposition the following property for (ε,∞)-
domains has been shown in [224, Lemmas 2.4 and 2.8].

Lemma 8.5.4. Let Ω � R
n be a non-empty (ε,∞)-uniform domain, and

let W1 and W2 denote the dyadic Whitney decomposition of Ω and R
n \ Ω.

Further, let

W3 :=
{

Q ∈ W2 : �(Q) � ε diam(Ω)
16n

}

.

Then for every Q ∈ W3 there exists a reflected cube Q∗ ∈ W1 such that

1 � �(Q∗)
�(Q)

� 4,

dist(Q,Q∗) � c �(Q),

where c = c(n, ε). Moreover, if Q,Q2 ∈ W3 touch, then there exists a chain
FQ,Q2 = {Q∗ = S1, S2, . . . , SjQ = Q∗

2} of touching cubes in W2 with jQ �
jmax(ε, n) connecting Q∗ and Q∗

2 with

1
4

� �(Sj)
�(Sj+1)

� 4 for j = 1, . . . , jQ − 1.
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Observe that all cubes in a chain FQ1,Q2 are of comparable size.
We need some preparation before we can define our extension operator.

Let ω ∈ C∞
0 ([0, 1]n) with ω � 0 and

´
Rn
ω(x) dx = 1. For Q ∈ W1 let

ωQ ∈ C∞
0 (Q) be defined by ωQ := �(Q)−nω◦L−1

Q , where LQ is the affine linear
mapping from [0, 1]n onto Q. In particular, ωQ � 0 and

´
Rn
ωQ dx = 1. For

m ∈ N0 and v ∈ Wm,1(Q) let Πm
Qv denote the Q-averaged Taylor polynomial

of degree m, i.e.

(Πm
Qv)(x) =

∑

|α|�m

ˆ

Q

ωQ(y)∇αv(y)
(x− y)α

α!
dy. (8.5.5)

In the definition of Πm
Q it suffices to assume v ∈ L1

loc(Q), if all derivatives are
moved by partial integration to ω(y) and (x−y)α using also that ω ∈ C∞

0 (Q).
If α ∈ N

n
0 with 0 � |α| � m, then ∂αΠm

Qv = Πm−|α|
Q (∂αv). The averaged

Taylor polynomial has the following nice properties [75, Theorem 4.7]. If
Q ∈ W1, 1 � q � ∞ and 0 � |β| � k � m, then

∥
∥Πm

Qv
∥
∥
Lq(Q)

� c
∥
∥v
∥
∥
Lq(Q)

for all v ∈ Lq(Q),
∥
∥∂β(v − Πm

Qv)
∥
∥
Lq(Q)

� c �(Q)k−|β|∥∥∇kv
∥
∥
Lq(Q)

for all v ∈W k,q(Q).
(8.5.6)

We only need the case q = 1.
We need a partition of unity for W3, see Theorem 1.4.7. For each Q ∈ W3

choose ϕQ ∈ C∞
0 (17

16Q) with 0 � ϕQ � 1 such that

∑

Q∈W3

ϕQ = 1 for all x ∈
⋃

Q∈W3

Q,

0 �
∑

Q∈W3

ϕQ � 1,

|∇kϕQ| � c �(Q)−k for all 0 � k � m.

Then ϕQϕQ′ �= 0 if and only if Q ∩Q′ �= ∅.
We can now define our extension operator Em : L1(Ω) → L1

loc(R
n) by

Emv :=

{
v on Ω,
∑

Q∈W3
ϕQΠm

Qv on R
n \ Ω.

(8.5.7)

Chua showed in [75, Theorem 1.2], using the method presented by Jones [224],
that the operator Em defines a bounded extension operator from Wm,q(Ω) to
Wm,q(Rn) for every 1 � q < ∞. It is important for our considerations that
the extension operator Em is of local type in the sense that for every ball
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B1 ⊂ R
n, there exists a ball B2 ⊂ R

n such that Emu = Emv on B1 if u = v
on B2 ∩Ω. Since Wm,p(·)(Ω∩B2) ↪→ Wm,1(Ω∩B2) for every ball B2, we can
apply Chua’s result for q = 1 to conclude that Emv ∈ Wm,1

loc (Rn) for every
v ∈ Wm,p(·)(Ω). So we already know that Emv has weak derivatives up to
order m in L1

loc and it remains to prove the estimates of these derivatives in
Lp(·)(Rn). This saves us the trouble of approximation by smooth functions.

We begin with some local estimates.

Lemma 8.5.8. If Q ∈ W3, then

‖∇kEmv‖L∞(Q) � c |Q|−1∥∥∇kv
∥
∥
L1(F (Q))

for all 0 � k � m with c = c(ε, n,m), where

F (Q) :=
⋃

Q2∈W3
Q and Q2 touch

⋃

S∈FQ,Q2

S.

Proof. Let Q ∈ W3 and k ∈ N
n
0 with 0 � |k| � m. Using

∑
Q2∈W3

ϕQ2 = 1
on Q, the product rule and the estimates for ∂βϕQ2 , we get

‖∇kEmv‖L∞(Q) =
∥
∥
∥
∥∇

k
∑

Q2∈W3

ϕQ2Πm
Q2
v

∥
∥
∥
∥
L∞(Q)

�
∥
∥
∥
∥
∥
∇k

∑

Q2∈W3 :Q2∩Q�=∅
ϕQ2

(
Πm
Q2
v − Πm

Qv
)
∥
∥
∥
∥
∥
L∞(Q)

+ ‖∇kΠm
Qv‖L∞(Q)

� c
k∑

j=0

�(Q)j−k
∑

Q2∈W3 :Q2∩Q�=∅

∥
∥∇j

(
Πm
Q2
v − Πm

Qv
)∥
∥
L∞(Q)

+ ‖∇kΠm
Qv‖L∞(Q)

.

The terms in the norms are polynomials of order at most m. For any poly-
nomial z of order m, ‖z‖L∞(Q) � c |Q|−1‖z‖L1(Q2)

if Q and Q2 are cubes of
similar size and with a maximal distance of Q and Q2 comparable to the size
of Q. This is a consequence of the fact that all norms on a finite dimensional
space are equivalent. The independence of c of Q and Q2 follows by a scaling
argument. We use this fact and ∂αΠm

Qv = Πm−|α|
Q (∂αv) for 0 � |α| � m, to

estimate

∥
∥∇j

(
Πm
Q2
v − Πm

Qv
)∥
∥
L∞(Q)

� c |Q|−1∥∥Πm−j
Q2

(∇jv) − Πm−j
Q (∇jv)

∥
∥
L1(Q)

considering also that Q and Q2 are of comparable size. Let FQ,Q2 =
{S1, . . . , SjQ} denote the chain connecting Q∗ and Q∗

2. Then
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∥
∥Πm−j

Q2
(∇jv) − Πm−j

Q (∇jv)
∥
∥
L1(Q)

�
jQ−1∑

i=1

∥
∥Πm−j

Si+1
(∇jv) − Πm−j

Si
(∇jv)

∥
∥
L1(Q)

� 2
jQ∑

i=1

∥
∥Πm−j

Si
(∇jv) − Pi

∥
∥
L1(Q)

for any function Pi. We then set Pi := Πm−j
Si∪Si+1

(∇jv).
Again we use the fact that we are working with polynomials. Namely let P

be a polynomial of degree m and let E and F be measurable subsets of a cube
Q with |E|, |F | � γ|Q|, for some γ > 0, then ‖P‖L1(E) � c(γ,m)‖P‖L1(F ).
For the proof of this fact see [224, Lemma 2.1]. Using this in the first step,
and (8.5.6) in the last step, we get

∥
∥Πm−j

Si
(∇jv) − Pi

∥
∥
L1(Q)

� c
∥
∥Πm−j

Si+1
(∇jv) − Πm−j

Si∪Si+1
(∇jv)

∥
∥
L1(Si)

� c
∥
∥∇jv − Πm−j

Si+1
(∇jv)

∥
∥
L1(Si)

+
∥
∥∇jv − Πm−j

Si∪Si+1
(∇jv)

∥
∥
L1(Si∪Si+1)

� c �(Q)k−j
∥
∥∇kv

∥
∥
L1(

⋃
i Si)

where we have also used that all cubes in the chain FQ,Q2 are of comparable
size. On the other hand it follows from the L∞-L1 estimate for polynomials
and (8.5.6) that

‖∇kΠm
Qv‖L∞(Q)

� c |Q|−1‖Πm−k
Q ∇kv‖

L1(Q)
� c |Q|−1‖∇kv‖L1(Q).

Combining the above estimates we get

‖∇kEmv‖L∞(Q) � c |Q|−1
∑

Q2∈W3 :Q2∩Q�=∅

∥
∥∇kv

∥
∥
L1(

⋃
FQ,Q2 )

+ c |Q|−1‖∇kv‖L1(Q),

which yields the claim by the definition of F (Q). ��

In order to use that p ∈ A, we have to reformulate the previous lemma in
terms of averaging operators.

Corollary 8.5.9. There exists c = c(ε, n,m) > 0 such that

∑

Q∈W3

χQ|∇kEmv| � c
∑

Q∈W3

χQMQ∗
(
T 17

16W1
◦ · · · ◦ T 17

16W1
︸ ︷︷ ︸

(jmax + 1)-times

◦TW1(∇kv)
)
,

where jmax is the maximal chain length in Lemma 8.5.4.
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Proof. We show that it follows from the definition of F (Q) that

1
|Q|

ˆ

F (Q)

|∇kv| dx � c
(
T 17

16W1
◦ · · · ◦ T 17

16W1
︸ ︷︷ ︸

(jmax + 1)-times

◦TW1(∇kv)
)

(z)

for all z ∈ Q∗. First, the application of TW1 ensures that the L1-averages
over all cubes participating in a chain starting from Q are calculated. Then
these averages are accumulated at Q∗ by passing them along the chains by
the (jmax + 1)-fold application of T 17

16W1
, where we use that the neighboring

cubes in 17
16W1 have sufficiently big overlap. Finally, this value is transported

by the operator
∑

Q∈W3
χQMQ∗ from Q∗ to Q. Together with Lemma 8.5.8

the claim follows. ��

We turn to the case Q ∈ W2 \ W3.

Lemma 8.5.10. Let Q ∈ W2 \ W3, then

‖∇kEmv‖L∞(Q) � c |Q|−1
k∑

j=0

�(Q)j−k
∑

Q2∈W3 :Q2∩Q�=∅

∥
∥∇jv

∥
∥
L1(Q2)

for all 0 � k � m with c = c(ε, n,m).

Proof. Let Q ∈ W2 \W3 and k ∈ N
n
0 with 0 � k � m. Using the product rule

and the estimates for ∂βϕQ2 , we get

‖∇kEmv‖L∞(Q) =
∥
∥
∥
∥∇

k
∑

Q2∈W3

ϕQ2Πm
Q2
v

∥
∥
∥
∥
L∞(Q)

� c

k∑

j=0

�(Q)j−k
∑

Q2∈W3 :Q2∩Q�=∅

∥
∥∇jΠm

Q2
v
∥
∥
L∞(Q)

using also that Q and Q2 are of comparable size. Now, the claim follows as
in the proof of Lemma 8.5.8. ��

As before we reformulate this in terms of averaging operators.

Corollary 8.5.11. Let Q ∈ W2 \ W3, then

∑

Q∈W2\W3

χQ|∇kEmv| � c

k∑

j=0

�(Q)j−k T 17
16W1

◦ T 17
16W1

( ∑

Q∈W3

χQMQ∗(∇jv)
)

for all 0 � k � m with c = c(ε, n,m).
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Proof. The proof is similar to the one of Corollary 8.5.9. The application
of
∑

Q∈W3
χQMQ∗ ensures that the L1-averages over all cubes in W1 are

calculated and transported from Q∗ to Q. Then the values of the neighboring
cubes Q2 are transported by two applications of T 17

16W1
to Q. Together with

Lemma 8.5.10 the claim follows. ��

We are now prepared to prove our extension result.

Theorem 8.5.12. Let Ω be an (ε,∞)-domain and m ∈ N0. Then for every
p ∈ P log(Rn) the operator Em defined in (8.5.7) is a bounded extension
operator from Wm,p(·)(Ω) to Wm,p(·)(Rn). In particular,

‖Emv‖Wm,p(·)(Rn) � c ‖v‖Wm,p(·)(Ω) (8.5.13)

for all v ∈ Wm,p(·)(Ω), where c only depends on ε, diam(Ω), n, m, and
clog(p). Moreover, if Ω is unbounded, then

‖∇kEmv‖Lp(·)(Rn) � c ‖∇kv‖Lp(·)(Ω) (8.5.14)

for all v ∈ Wm,p(·)(Ω) and 0 � k � m, where c only depends on ε, n, m, and
clog(p).

Proof. Let v ∈Wm,p(·)(Ω). Then Emv ∈Wm,1
loc (Rn) by the discussions before

Lemma 8.5.8. It follows from Proposition 8.5.3 that the families W1, 17
16W1

and 17
16W2 are locally (12n + 1)-finite. By Theorem 4.4.8 the corresponding

averaging operators TW1 , T 17
16W1

, T 17
16W2

are bounded on Lp(·)(Rn). Moreover,
it follows from p ∈ P log(Rn) and Theorem 4.4.15 that the operator f �→∑

Q∈Q χQMQ∗f is bounded on Lp(·)(Rn). Now, the estimates for ∇kEmv
on R

n \ Ω follow from Corollaries 8.5.9 and 8.5.11 using also that �(Q) >
ε

16n diam(Ω) for all Q ∈ W2 \ W3. The estimates on Ω follow from Emv = v
on Ω. If Ω is unbounded, then

⋃
Q∈W3

Q = R
n \ Ω up to measure zero. So

in this case it suffices to rely on Corollary 8.5.9, which results in the sharper
estimates and the independence of the constants of diam(Ω). ��

Remark 8.5.15. The dependence of the constant in (8.5.13) on diam(Ω) is
similar as in Chua’s paper [75]: the constant blows up as diam(Ω) → 0.

Remark 8.5.16. The previous theorem can be directly generalized to the
case of (ε, δ)-domains (see [75,224] for the definition). These sets are similar to
(ε,∞)-domains, except that (ε, δ)-domains do not have to be connected and
the conditions on γ in Definition 8.5.1 have to be checked only for x, y ∈ Ω
with |x− y| � δ. Theorem 8.5.12 remains valid for such (ε, δ)-domains whose
connected components have a diameter bounded away from zero.



8.6 Limiting Cases of Sobolev Embeddings* 283

8.6 Limiting Cases of Sobolev Embeddings*

The results so far have dealt mostly with the case p+ < n, and to some extent
with p− > n. Obviously, it would be interesting to have one result which deals
with all cases, irrespective of how p relates to n. Unfortunately, it has not
yet been possible to archive such a result. In this section we consider results
which are somewhat closer to the general case, in that they allow the critical
value n to be reached, if not crossed; i.e. we consider the cases p− = n and
p+ = n.

Assume first that n � p− � p+ < ∞. Harjulehto and Hästö studied a
simple sufficient condition for the embedding W 1,p(·)(Ω) ↪→ L∞(Ω) to hold
in a regular domain [188, Theorem 4.6]. We state here their result in a ball.

Theorem 8.6.1. Suppose that B is a ball. If p ∈ P(B) is bounded such that

p(x) � n+ (n− 1 + ε)
log log(c/ dist(x, ∂B))

log(c/ dist(x, ∂B))

for some fixed ε > 0 and sufficiently large constant c > 0, then W 1,p(·)(B) ↪→
L∞(B).

Futamura, Mizuta and Shimomura studied the Riesz potential in a similar
situation. They showed in [166] that if

p(x) :=
n

α
+ a

log(log(e + 1/|x|))
log(1/|x|) ,

where a > n−α
α2 , then the Riesz potential Iα is continuous at the origin. Note

that this gives the same condition as in the previous theorem when α = 1.
The next example and remark show that the growth condition in Theo-

rem 8.6.1 is essentially sharp; we do not know what happens when ε= 0.

Example 8.6.2. Let B := B
(
0, 1

16

)
⊂ R

n, ε ∈ (0, n− 1) and suppose that

p(x) := n+ (n− 1 − ε)
log log(1/|x|)

log(1/|x|)

for x ∈ B \ {0} and p(0) > n. We show that W 1,p(·)(B) �⊂ C(B).
Define u(x) = cos

(
log
∣
∣ log |x|

∣
∣
)

for x ∈ B \ {0} and u(0) = 0. Clearly u is
not continuous at the origin. So we have to show that u ∈ W 1,p(·)(B). It is
clear that u has partial derivatives, except at the origin. Since u is bounded
it follows that u ∈ Lp(·)(B). We next estimate the gradient:

|∇u(x)| �
∣
∣
∣
∣sin
(

log
∣
∣ log |x|

∣
∣
) 1
|x| log |x|

∣
∣
∣
∣ �
∣
∣
∣

1
|x| log |x|

∣
∣
∣.
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We therefore find that
ˆ

B

|∇u(x)|p(x) dx �
ˆ

B

dx

(|x|| log |x||)p(x)

= c

1
16ˆ

0

rn−1

(r| log r|)p(r) dr

� c

∞∑

j=2

e−jˆ

e−j−1

rn−1

(r| log r|)p(r) dr.

Since 1/(r| log r|) > 1 we may increase the exponent p for an upper bound.
In the annulus B(0, e−j) \B(0, e−j−1) we have j � log(1/|x|) � j + 1. Since
y �→ log(y)/y is decreasing we find that

p(x) � n+ (n− 1 − ε)
log j
j

in the same annulus. We can therefore continue our previous estimate by

ˆ

B

|∇u(x)|p(x) dx � c
∞∑

j=2

e−jˆ

e−j−1

rn−1 dr

(r| log r|)n+(n−1−ε) log(j)/j

� c

∞∑

j=2

e−jˆ

e−j−1

e−j(n−1)dr

((j − 1)e−j−1)n+(n−1−ε) log(j)/j

� c
∞∑

j=2

e(n−1−ε) log(j)(j − 1)−n−(n−1−ε) log(j)/j

= c

∞∑

j=2

j−1−ε(j − 1)−(n−1−ε) log(j)/j � c

∞∑

j=2

j−1−ε < ∞.

Remark 8.6.3. Define D := B
(
0, 1

16

)
\ {0} ⊂ R

n and let p be as in
Example 8.6.2. Then the standard example u(x) := log | log(x)| shows that
W 1,p(·)(D) �↪→ L∞(D), the calculations being as in the example.

If p− > n, then Sobolev functions are known to be continuous. The case
p− � n is more precarious. In the paper [164], Futamura and Mizuta showed
that points where p(x) = n are points of continuity of a weakly monotone
Sobolev function provided p approaches n sufficiently fast (from below) in
some neighborhood of x.
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Next we want to generalize the Sobolev embedding Theorem 8.3.1 to the
case 1 � p− � p+ = n. Recall that the relevant classical result says that
W 1,n

0 (Ω) ↪→ expLn
′
(Ω).

We follow the approach of Harjulehto and Hästö [190]. We define

F ∗
p (t) :=

⌊
p∗
n′
⌋
−1

∑

j=1

1
j!
|t|jn′

+
1

⌊
p∗
n′
⌋
!
|t|p∗

for 1 � p � n, with the understanding that the last term disappears if p = n
and hence F ∗

n(t) = exp(|t|n′
)−1. Here  x! is the largest natural number that

is less than or equal to x. Note that the function F ∗
p(·) does not satisfy the

Δ2-condition if p+ = n. Using this function we define a new Orlicz–Musielak
space.

Definition 8.6.4. We define a convex modular by setting

�
L
p(·)
∗ (Ω)

(f) :=
ˆ

Ω

F ∗
p(x)(f(x)) dx,

where p is a variable exponent satisfying p+ � n. The norm in L
p(·)
∗ (Ω) is

defined as usual,

‖f‖
L
p(·)
∗ (Ω)

:= inf
λ>0

{
λ > 0: �

L
p(·)
∗ (Ω)

(
f

λ

)

� 1
}
.

Let Ω ⊂ R
n be bounded. This new variable exponent Lebesgue space of

exponential type has the following obvious properties:

(a) If p ∈ [1, n) is a constant, then Lp∗(Ω) ∼= Lp
∗
(Ω).

(b) If p = n, then Ln∗ (Ω) ∼= expLn
′
.

Thus we always have W 1,p(Ω) ↪→ Lp∗(Ω) for a constant exponent 1 � p � n.
We further note that Lp(·)∗ (Ω) ∼= Lp

∗(·)(Ω) if p is an exponent with p+ < n.
Thus also W

1,p(·)
0 (Ω) ↪→ L

p(·)
∗ (Ω) for p in the same range (Theorem 8.3.1).

Next we show that this embedding holds also when the restriction p+ < n is
relaxed to p+ � n.

Theorem 8.6.5. Let Ω ⊂ R
n be bounded. Suppose that p ∈ P log(Ω) with

1 � p− � p+ � n. Then

‖u‖
L
p(·)
∗ (Ω)

� c ‖∇u‖p(·)

for every u ∈ W
1,p(·)
0 (Ω). The constant depends only on the dimension n, p

and diam(Ω).
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One can also derive an analogous estimate for ‖u − 〈u〉Ω‖
L
p(·)
∗ (Ω)

which

holds for all u ∈ W 1,p(·)(Ω). See [190] for details.
The proof of Theorem 8.6.5 is based on Theorem 8.3.1 (1 � p− � p+ < n)

and the following proposition (1 < p− � p+ � n).

Proposition 8.6.6. Suppose that p ∈ P log(Ω) satisfies 1 < p− � p+ � n.
Then ‖u‖

L
p(·)
∗ (Ω)

� c ‖∇u‖p(·) for every u ∈W
1,p(·)
0 (Ω). The constant depends

only on n, p−, clog(p) and |Ω|.

Proof. In this proof it is necessary to keep close track on the dependence of
constants on various exponents. We will therefore make the dependence on
the upper bounds of the exponents explicit in our constants.

Let u ∈ W
1,p(·)
0 (Ω) be a function with 2(1 + |Ω|)‖∇u‖p(·) � 1. Then the

claim follows if we can prove that �
L
p(·)
∗ (Ω)

(λu) � 1 for some constant, which
is λ > 0 independent of u. Recall that, |u(x)| � c(n)I1|∇u(x)| for almost
every x ∈ Ω by Lemma 8.2.1 (a). Thus

�
L
p(·)
∗ (Ω)

(λu) =
ˆ

Ω

⌊
p∗(x)
n′
⌋
−1

∑

j=1

1
j!
|λu|jn′

dx

+
ˆ

{p<n}

1
⌊p∗(x)

n′
⌋
!
|λu|p

∗(x)dx

� c

∞∑

j=1

1
j!

ˆ
{
j� p∗

n′
}

(λI1|∇u|)jn
′
dx

+
ˆ

{p<n}

1
⌊p∗(x)

n′
⌋
!
(λI1|∇u|)p

∗(x)dx.

Fix the variable exponent qj in such a way that q∗j (x) := min{jn′, p∗(x)}
in Ω. Since qj � p we have ‖∇u‖qj(·) � 2(1 + |Ω|)‖∇u‖p(·) � 1, and since
q∗j = jn′ in {j � p∗

n′ } we have

ˆ
{
j� p∗

n′
}

(λI1|∇u|)jn
′
dx � λjn

′
ˆ

Ω

(I1|∇u|)q
∗
j (x) dx.

Now Lemma 6.1.6 applied with the exponent qj and k = max{ j
n−1 , 1} � j

yields
(
I1|∇u|(x)

)q∗(x) � cjn
′
i
q∗j (x)

(q+)′ (M |∇u|(x))qj(x) .
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Since q∗j � jn′, we easily derive that q∗j (x)/(q+j )′ � j − 1. Hence we obtain

ˆ

{j� p∗
n′ }

(λI1|∇u|)jn
′
dx � (c0λ)jn

′
jj−1

ˆ

Ω

(M |∇u|)qj(x)dx

� c cj0λ
in′
jj
( ˆ

Ω

(M |∇u|)p(x)dx+ |Ω|
)

.

By Corollary 4.3.11 the maximal operator is bounded, and hence we conclude
that �Lp(·)(Ω)(M |∇u|) � c. It follows that

1
j!

ˆ
{
j� p∗

n′
}

(λI1|∇u|)jn
′
dx � c

1
j!
cj0λ

jn′
jj � c j−j−1/2ejcj0λ

jn′
jj � c cj1λ

jn′

where we used Stirling’s formula in the second step. The right-hand-side is
bounded by 4−j if we choose λ � (cn

′
4c1)−1/n′

. Therefore, we have control
of the sum in the previous estimate:

∞∑

j=1

1
j!

ˆ

{j� p∗
n′ }

(λI1|∇u|)jn
′
dx �

∞∑

j=1

4−j � 1
2
.

It remains to estimate the term

ˆ

{p<n}

1
⌊p∗(x)

n′
⌋
!
(λI1|∇u|)p

∗(x)dx =
∞∑

j=1

1
j!

ˆ
{
j� p∗

n′ <j+1
}

(λI1|∇u|)p
∗(x)dx

�
∞∑

j=1

1
j!

ˆ

Ω

λjn
′
(I1|∇u|)p

∗
j (x) dx, (8.6.7)

where pj(x) := min
{
p(x), nj+nn+j

}
. Since pj � p, we note that ‖∇u‖pj(·) �

2(1 + |Ω|)‖∇u‖p(·) � 1. By Lemma 6.1.6 we have

(
I1|∇u|(x)

)p∗j (x) � c c
p∗j (x)
2 kp

∗
j (x)/(p

+
j )′ (M |∇u|(x))pj(x) ,

where k = max{p+
j /(n−p+

j ), 1}. Since pj � nj+n
n+j , we conclude that k � j+1

and p∗j (x)
(p+j )′

� n(p+j −1)

n−p+j
� j. Therefore

ˆ

Ω

(
I1|∇u|(x)

)p∗j (x)dx � c (c2k)j
ˆ

Ω

(
M |∇u|(x)

)pj(x)
dx � c (c2j)j ,
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where we used the same arguments for M as in the previous paragraph. Using
this in (8.6.7), with Stirling’s formula as before, gives

ˆ

{p<n}

1
⌊p∗(x)

n′
⌋
!
(λI1|∇u|)p

∗(x)dx � c

∞∑

j=1

1
j!
λjn

′
(c2j)j � 1

2
,

provided λ is chosen small enough. This completes the proof. ��

Proof of Theorem 8.6.5. We choose a Lipschitz function ϕ : Ω → R with
0 � ϕ � 1, ϕ = 1 in p−1([1, 4

3 ]) and ϕ = 0 in Ω\p−1([1, 5
3 ]). This can be done

since p−1
(
[1, 4

3 ]
)

and p−1
(
[ 53 , n]

)
are closed disjoint sets in Ω. Let ψ := 1−ϕ.

We write A := {ϕ > 0} and B := {ψ > 0}, and define p1 := min
{
p, 5

3

}
and

p2 := max
{

4
3 , p
}

. Then p1 = p in A and p2 = p in B. To prove the claim,
we calculate:

‖u‖
L
p(·)
∗ (Ω)

� ‖ϕu‖
Lp

∗
1(·)(Ω)

+ ‖ψu‖Lp2(·),∗(Ω)

� c ‖∇(ϕu)‖Lp1(·)(Ω) + c ‖∇(ψu)‖Lp2(·)(Ω)

� c ‖u‖W 1,p(·)(Ω),

where the second step follows from Theorem 8.3.1 and Proposition 8.6.6.
Finally, we see that ‖u‖W 1,p(·)(Ω) � c ‖∇u‖Lp(·)(Ω) by the Poincaré inequality,
Theorem 8.2.4 (a). ��



Chapter 9

Density of Regular Functions

This chapter deals with the delicate question of when every function in a
Sobolev space can be approximated by a more regular function, such as a
smooth or Lipschitz continuous function. For the Lebesgue space, this ques-
tion was solved in Theorem 3.4.12. An important fact is that log-Hölder
continuity is sufficient for density of smooth functions. This is shown in
Sect. 9.1. However, for the density question log-Hölder continuity is by no
means necessary. Despite the contributions of many researchers, there remain
substantial gaps in our understanding of this question. Indeed, it is fair to say
that the results are in a transitory state and will hopefully be improved and
unified in the future. We nevertheless endeavor to present in Sects. 9.2–9.4
the current state of the art, theorems by Fan, Wang and Zhao [142], Hästö
[214] and Zhikov [397]. We also include an overview of the most important
techniques and ideas used in the proofs.

The density of smooth functions was one of the questions that was consid-
ered early on (from 1986) in the context of minimizers of variational integrals.
If such a minimizer turns out not to be smooth, then we say that the Lavren-
tiev phenomenon occurs. This was precisely the object of Zhikov’s [392–394]
studies. It turns out that the Lavrentiev phenomenon is related to the density
of smooth functions in the corresponding function space [393].

Density of smooth functions was also one of the first questions investigated
in the function space setting, as early as 1992, by Edmunds and Rákosńık
[120]. Samko [342, 343] and Diening [91] have shown, independently, that
log-Hölder continuity of the exponent is sufficient for the density of smooth
functions.

Zhikov [392] was also first to present a counter example to density, for
a piece-wise constant exponent. Hästö [212] later gave a counter example
with a uniformly continuous exponent. Other features of the Sobolev space
determined by his exponent are that not quasievery point is a Lebesgue point
(see Sect. 11.5), and that not every minimizer of the Dirichlet energy integral
is continuous.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 9,
c© Springer-Verlag Berlin Heidelberg 2011

289
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9.1 Basic Results on Density

We start with some density results which hold under minimal restrictions on
the exponent. Correspondingly, the spaces which are dense do not consist of
very regular functions.

Lemma 9.1.1. If p ∈ P(Ω) is bounded, then bounded Sobolev functions are
dense in W 1,p(·)(Ω).

Proof. Let u ∈ W 1,p(·)(Ω). We define the truncation um ∈ W 1,p(·)(Ω)
(cf. Proposition 8.1.9) by

um(x) := max{min{u(x),m},−m}

for m > 0. For ˆ

Ω

|g|p(x) dx <∞,

we obtain |{x ∈ Ω : |g(x)|p(x) � m}| → 0 as m → ∞. If |u(x)| � 1 then
|u(x)| � |u(x)|p(x) and thus {x ∈ Ω : |u(x)| � m} ⊂ {x ∈ Ω : |u(x)|p(x) � m}
for all m � 1. Hence

�1,p(·)
(
u− um

)
�

ˆ

{x∈Ω:|u(x)|�m}

(
|u|p(x) + |∇u|p(x)

)
dx → 0

as m → ∞. Since p is bounded this yields that ‖u− um‖W 1,p(·)(Ω) → 0. ��
Theorem 9.1.2. If p ∈ P(Rn) is bounded, then Sobolev functions with
compact support in R

n are dense in W k,p(·)(Rn), k ∈ N.

Proof. Let us denote Bt := B(0, t), t � 1. Let ψr ∈ C∞
0 (Rn) be a cut-off

function with ψr = 1 on Br, ψr = 0 on R
n \ Br+1, 0 � ψr(x) � 1 and

|∇mψr| � c, m = 0, . . . , k. We show that uψr → u in W k,p(·)(Rn) as r → ∞.
Note first that

‖u− uψr‖Wk,p(·)(Rn) � ‖u‖Wk,p(·)(Rn\Br+1) + ‖u− uψr‖Wk,p(·)(Br+1\Br).

The absolute continuity of the integral implies that

�Wk,p(·)(Rn\Br+1)(u) → 0

as r → ∞. Since p+ < ∞ we get that ‖u‖Wk,p(·)(Rn\Br+1) → 0 as r → ∞. To
handle the second term in the above inequality we observe that

∣
∣∇mu−∇m(uψr)

∣
∣ � (1 − ψr)|u| +

m∑

j=1

|∇jψr| |∇m−ju| � c

m∑

j=0

|∇ju|
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for m = 0, . . . , k. This, the absolute continuity of the integral, and p+ < ∞
imply

�Wk,p(·)(Br+1\Br)(u) � c �Wk,p(·)(Rn\Br)(u) → 0

as r → ∞. Since p+ < ∞ also the second term in the above inequality
converges to 0 as r → ∞. ��

Corollary 9.1.3. If p ∈ P(Rn) is bounded, then W k,p(·)
0 (Rn) = W k,p(·)(Rn),

k ∈ N.

Combining the proofs of Lemma 9.1.1 and of Theorem 9.1.2 for k = 1 we
immediately deduce:

Corollary 9.1.4. If p ∈ P(Rn) is bounded, then bounded Sobolev functions
with compact support in R

n are dense in W 1,p(·)(Rn).

We now give an example where p is unbounded and functions with compact
support are not dense in W 1,p(·)(R).

Example 9.1.5. Let p(x) := max{|x|, 1} and u(x) := 1/2 for every x ∈ R.
Then ∞̂

−∞
|u(x)|p(x) dx = 2

∞̂

1

(1
2

)x
dx+ 1 <∞

and hence u ∈ W 1,p(·)(R). Let g be a function with compact support in
(−a, a). We find that

�p(·)
(u− g

λ

)
�

∞̂

a

( 1
2λ

)x
dx = ∞

for 0 < λ � 1
2 and hence ‖u− g‖Lp(·)(R) � 1

2 .

Next we give short proofs for the density of smooth functions based on
the boundedness of convolution. For Lebesgue spaces this has been shown in
Corollary 4.6.5.

Theorem 9.1.6. Let p ∈ P be a bounded exponent. If p ∈ A or p ∈ P log,
then C∞

0 (Rn) is dense in W k,p(·)(Rn), k ∈ N.

Proof. Let u ∈ W k,p(·)(Rn) and let ε > 0 be arbitrary. By Theorem 9.1.2 we
may assume that u is has compact support in R

n. Let ψε be the standard
mollifier. Thus u ∗ ψε belongs to C∞

0 (Rn) and

∇m(u ∗ ψε) −∇mu = (∇mu) ∗ ψε −∇mu
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for m = 1, . . . , k. By Theorem 4.6.4 we obtain that ‖u ∗ ψε − u‖Lp(·)(Rn) → 0
ε → 0, and

‖∇m(u ∗ ψε) −∇mu‖Lp(·)(Rn) = ‖∇mu ∗ ψε −∇mu‖Lp(·)(Rn) → 0

for m = 1, . . . , k, as ε → 0. ��

From this we easily derive the density of smooth functions also in “nice”
domains. Recall that extension domains include in particular domains with
Lipschitz boundary (see Sect. 8.5).

Theorem 9.1.7. Let Ω be an extension domain. Assume that p ∈ P log(Ω)
satisfies 1 � p− � p+ <∞. Then C∞(Ω) is dense in W k,p(·)(Ω), k ∈ N.

Proof. We extend first p to all of R
n by Proposition 4.1.7. Let u ∈W k,p(·)(Ω).

Since Ω is an extension domain, we find ũ ∈W k,p(·)(Rn) with ‖ũ‖Wk,p(·)(Rn) �
c ‖u‖Wk,p(·)(Ω). Due to Theorem 9.1.6 we can choose ũε ∈ C∞

0 (Rn) with
ũε → ũ in W k,p(·)(Rn). We set uε := ũε|Ω. Then

‖u− uε‖W 1,p(·)(Ω) � ‖ũ− ũε‖W 1,p(·)(Rn) → 0,

so uε ∈ C∞(Ω) are the required approximating functions. ��

For arbitrary open sets we still can prove that smooth Sobolev functions
are dense. More precisely we have:

Theorem 9.1.8. Let p ∈ P(Ω) be a bounded exponent. If p ∈ P log(Ω) or
p ∈ A, then C∞(Ω) ∩W k,p(·)(Ω) is dense in W k,p(·)(Ω), k ∈ N.

Proof. Let u ∈W k,p(·)(Ω). Fix ε > 0 and define Ω0 := ∅ and

Ωm =
{
x ∈ Ω : dist(x, ∂Ω) > 1

m

}
∩B(x0,m)

for m = 1, 2, . . . and a fixed x0 ∈ Ω. We write

Um := Ωm+1 \ Ωm−1 for m = 1, 2, . . . .

Let (ξm) be a partition of unity corresponding to the covering (Um), i.e.
ξm ∈ C∞

0 (Um) and
∑∞
m=1 ξm(x) = 1 for every x ∈ Ω (Theorem 1.4.7). Let

ψδ be a standard mollifier. For every m there exists δm such that

spt
(
(ξmu) ∗ ψδm

)
⊂ Um

and Theorem 4.6.4 yields, by choosing a smaller δm if necessary, that

‖(ξmu) − (ξmu) ∗ ψδm‖Wk,p(·)(Ω) � ε 2−m.
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We define

uε :=
∞∑

m=1

(ξmu) ∗ ψδm .

Every point x ∈ Ω has a neighborhood such that the above sum has only
finitely many nonzero terms and thus uε ∈ C∞(Ω). Furthermore, this is an
approximating sequence, since

‖u−uε‖Wk,p(·)(Ω) �
∞∑

m=1

‖ξmu−(ξmu)∗ψδm‖Wk,p(·)(Ω) � ε. ��

Another simple situation was considered by Harjulehto and Hästö [187],
who showed that smooth functions are dense on open intervals of the real line
irrespective of the variation of the bounded exponent. This result is based on
first approximating the derivative, which is an Lp(·) function in this case.

9.2 Density with Continuous Exponents

Zhikov [397] proved that log-Hölder continuity is not a necessary continuity
modulus for density of smooth functions, but that in fact a slightly weaker
modulus will suffice. We present his results in this section. As far as we
know, the optimal modulus of continuity for density is unknown, although
Corollary 9.2.7 shows that Zhikov’s modulus of continuity is at least close to
optimal.

The next simple lemma shows that it suffices to prove the density of Lip-
schitz functions, since the density of smooth functions always follows from
this.

Lemma 9.2.1. Let p ∈ P(Ω) be bounded. If W 1,∞(Ω) is dense in W 1,p(·)(Ω),
then so are smooth Sobolev functions.

Proof. By the assumption, it suffices to show that every Lipschitz func-
tion can be approximated by smooth functions. Let u ∈ W 1,p(·)(Ω) be a
K-Lipschitz function. Arguing as in Theorem 9.1.1 and Corollary 9.1.4, we
may assume that u is bounded and has bounded support in R

n. By McShane
extension [289] we may extend u as a bounded K-Lipschitz function to R

n

and by using a suitable cut off function, that is one in sptu, we may assume
that the extension has a compact support in R

n. Next, we let uε be a standard
mollification of u. Clearly uε → u and ∇uε → ∇u almost everywhere. Since
uε ∈ L∞(Ω), and |∇uε| is bounded by K, and all functions vanish outside a
bounded set determined by the support of u, we see that the claim follows
by the theorem of dominated convergence. ��
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Theorem 9.2.2 (Theorem 3.1, [397]). Suppose that p ∈ P(Rn) has a
modulus of continuity ω which satisfies

1/2ˆ

0

t
−1+ n

p− ω(t)
dt = ∞

and that 1 < p− � p+ < ∞. Then smooth compactly supported functions are
dense in the Sobolev space W 1,p(·)(Rn).

Let us briefly consider the condition in the theorem before moving on
to the proof. Suppose that p is log-Hölder continuous. Then we may take
ω(t) = c/ log(e + 1/t). The integral in the previous theorem becomes

1/2ˆ

0

t
−1+ n

p− ω(t)
dt =

1/2ˆ

0

t−1+c/ log(e+1/t) dt �
1/2ˆ

0

t−1e−c dt = ∞,

so the condition is satisfied. Moreover, some weaker moduli of continuity
satisfy the condition as well; for instance ω with

lim
t→0

ω(t)
log(1/t)

log log(1/t)
=: c

satisfies the condition if and only if 0 < c < p−

n .
We now proceed with the proof of the theorem. The proof largely follows

the arguments given in [397], although minor changes have been made in the
interest of clarity.

Proof of Theorem 9.2.2. By Theorem 9.1.2 we know that Sobolev functions
with compact support are dense. Hence it suffices to consider the case of a
function u ∈ W 1,p(·)(Rn) with support in the ball B(0, R). Thus we have
that u ∈ W 1,p−(Rn) and the following calculations are justified. Define f :=
|u| + |∇u|. By dividing the function be a suitable constant, we may assume
without loss of generality that ‖f‖p(·) � 20−n/(2 + 2|B(0, R)|).

As usual, we introduce the level-sets of the maximal function:

E(λ,Mf) := {x ∈ R
n : Mf(x) � λ}

for λ � 0. We denote Fλ = R
n \ E(λ,Mf). By [129, p. 255] we know that u

is cλ-Lipschitz in Fλ, where the constant c depends only on the dimension.
By McShane extension [289] we get a cλ-Lipschitz function uλ on R

n which
agrees with u on the set Fλ. It follows that ∇u = ∇uλ a.e. in Fλ, and hence
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ˆ

Rn

|∇u−∇uλ|p(x) dx =
ˆ

E(λ,Mf)

|∇u−∇uλ|p(x) dx

� c

ˆ

E(λ,Mf)

|∇u|p(x) dx+ c

ˆ

E(λ,Mf)

λp(x) dx.

Since |∇u| ∈ Lp(·)(Rn) and |E(λ,Mf)| → 0, it is clear that the first integral
tends to zero as λ → ∞. So it remains to control the second term. We do this
by showing that there exists a sequence (λi) tending to infinity such that

Θ(λi) :=
ˆ

E(λi,Mf)

λ
p(x)
i dx → 0. (9.2.3)

Then the previous inequality implies that ∇uλi → ∇u in Lp(·)(Rn). Since p is
uniformly continuous and the functions vanish outside B(0, 2R), the Poincaré
inequality in B(0, 2R) (Theorem 8.2.18) implies that uλi → u in Lp(·)(Rn).
Hence uλi is an approximating Lipschitz sequence, and claim then follows
by Lemma 9.2.1. We will show that there exists a continuous non-negative
function θ such that

∞̂

2

θ(λ) dλ = ∞ and

∞̂

2

θ(λ)Θ(λ) dλ <∞,

where Θ is as in (9.2.3). If lim infλ→∞ Θ(λ) > 0, then Θ(λ) > c > 0, so this
is not possible. Thus lim infλ→∞ Θ(λ) = 0, which implies the existence of a
suitable sequence (λi) satisfying (9.2.3).

By the basic covering theorem (cf. Theorem 1.4.5) there exist disjoint balls
Bi := B(xi, ri), ri < 1/10, such that {5Bi} covers E(λ,Mf) and

ˆ

Bi

f dx > λ |Bi|

for each i. We may split Bi into a part where f < λ
2 and another part which

is contained in E(λ2 , f). Hence

λ |Bi| <
ˆ

Bi∩E(λ2 ,f)

f dx+
λ

2
|Bi|.
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Note that we are now using the level sets of f , not of Mf . From this we
conclude that

λ

2
� 1

|Bi|

ˆ

Bi∩E(λ2 ,f)

f dx

We combine this estimate with Hölder’s inequality for p− to deduce that

λ

2
<

(
1

|Bi|

ˆ

Bi

fp
−
dx

) 1
p−

� |Bi|−
1
p− 20−n, (9.2.4)

where we used that ‖f‖p− � 2(1 + |B(0, R)|)‖f‖p(·) � 20−n in the second
inequality. Define next pi := p+

5Bi
. For λ � 1 we have

Θ(λ) �
∞∑

i=1

ˆ

5Bi

λp(x) dx � 5n
∞∑

i=1

λpi |Bi| � c

∞∑

i=1

ˆ

Bi∩E(λ2 ,f)

λpi−1f(x) dx.

Since p has continuity modulus ω, we have λpi � cλp(x)+ω(5ri) for x ∈ 5Bi.
Using this in the previous estimate gives

Θ(λ) � c

∞∑

i=1

λω(5ri)

ˆ

Bi∩E(λ2 ,f)

λp(x)−1f(x) dx.

From (9.2.4) we calculate 5ri � λ−p
−/n; then we see that ω(5ri) � ω(λ−p

−/n).
Now our previous estimate becomes

Θ(λ) � c λω(λ−p−/n)
∞∑

i=1

ˆ

Bi∩E(λ2 ,f)

λp(x)−1f(x) dx

� c
1

θ(λ)

ˆ

E(λ2 ,f)

λp(x)−2f(x) dx,

where we defined θ(λ) := λ−1−ω(λ−p−/n). Multiplying this inequality by θ(λ)
and integrating with respect to λ over [2,∞) gives

∞̂

2

θ(λ)Θ(λ) dλ � c

∞̂

2

ˆ

E(λ2 ,f)

λp(x)−2f(x) dx dλ.
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From this we continue by

∞̂

2

θ(λ)Θ(λ) dλ � c

∞̂

2

ˆ

Rn

λp(x)−2f(x)χE( λ2 ,f)(x) dx dλ

=
ˆ

Rn

∞̂

2

λp(x)−2f(x)χE(λ2 ,f)(x) dλ dx

�
ˆ

Rn

2p(x)−1

p(x) − 1
(
f(x)p(x) − f(x)

)
χ{f�1}(x) dx.

Since 1 < p− � p+ < ∞ and f has bounded support, we conclude that the
right-hand side of the previous inequality is finite.

The change of variables t = λ−p
−/n shows that the condition

´
θ dλ = ∞

is equivalent with the assumption

1/2ˆ

0

t
−1+ n

p− ω(t)
dt = ∞

in the theorem, so we have found a suitable function θ and are thus done
with the proof. ��

The next result, which is [397, Theorem 5.1], gives us an example of a
variable exponent Sobolev spaces in which not every function can be approx-
imated by smooth functions. Earlier examples are due to Zhikov [392] and
Hästö [212]. By a sector we mean a set of the type {x ∈ B(0, 1) : 〈x, z〉 > |x|}
for some vector z ∈ R

2 \B(0, 1).

Theorem 9.2.5. Consider Ω := B(0, 1) ⊂ R
2 and let A1, A2, A3 and A4 be

four disjoint sectors numbered in clockwise order. If p ∈ P(Ω) with

ˆ

A1∪A3

|x|−p
′(x) dx < ∞ and

ˆ

A2∪A4

|x|−p(x) dx < ∞,

then smooth functions are not dense in W 1,p(·)(Ω).

Proof. We use polar coordinates, (r, θ), and denote Ai(R) = Ai∩B(0, R). We
denote by Θi an interval of θ-values such that {(r, θ) : r ∈ (0, 1), θ ∈ Θi} = Ai.
Let u ∈ C∞(Ω). Then

u(R, θ) =

R̂

0

∂u

∂r
(r, θ) dr + u(0).
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Integration of the previous equation with respect to θ over Θ1 gives
ˆ

Θ1

|u(R, θ) − u(0)| dθ �
ˆ

A1(R)

|∇u| r−1 dr

�
ˆ

A1(R)

|∇u|p(x) dr +
ˆ

A1(R)

r−p
′(x) dr,

where we applied Young’s inequality in the second step. By assumption,
|∇u|p(x), r−p′(x) ∈ L1, so we see that

lim
R→0

 

Θ1

|u(R, θ)| dθ = u(0).

Since the average over arcs tends to u(0), the same holds for the average over
sectors, hence

lim
R→0

 

A1(R)

|u(x)| dx = u(0).

The same argument works for A3(R), hence

lim
R→0

 

A1(R)

|u(x)| dx = lim
R→0

 

A3(R)

|u(x)| dx.

The last claim holds also for Sobolev functions that can be approximated by
smooth functions.

However, consider the function u(r, θ) = Ψ(θ), where Ψ ∈ C∞(R) is a
2π-periodic function which equals 0 in A1, 1 in A3 and whose derivative is
supported in A2 ∪ A4. Then |∇u| � cr−1χA2∪A4 where c does not depend
on r, and the assumption of the theorem implies that |∇u| ∈ Lp(·)(Ω). The
function u is bounded, hence in W 1,p(·)(Ω). On the other hand,

0 = lim
R→0

 

Θ1

|u(R, θ)| dθ �= lim
R→0

 

Θ3

|u(R, θ)| dθ = 1

for this function. Thus, by what was said above, u cannot be approximated
by smooth functions. ��

Example 9.2.6. Let B(0, 1) ⊂ R
2 and let Ai, i = 1, 2, 3, 4, denote the quad-

rants in B(0, 1). The exponent is defined as p1 > 2 in A1 and A3, and p2 < 2
in A2 and A4. Then clearly the assumptions of the previous theorem are satis-
fied. This was the first example of non-density, presented by Zhikov in [392].
A function u from the theorem which cannot be approximated by smooth
functions in this setting is shown in Fig. 9.1.
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Fig. 9.1 A function which cannot be approximated by a continuous function

Corollary 9.2.7. Consider B(0, 1) ⊂ R
2 and let A1, A2, A3 and A4 be four

disjoint sectors numbered in clockwise order. Let ω be a modulus of continuity
and suppose that p ∈ P(B(0, 1)) satisfies p(x) := 2 + ω(|x|) on A1 ∪ A3 and
p(x) := 2 − ω(|x|) on A2 ∪A4. If

1/2ˆ

0

t−1+ω(t)−ω(t)2 dt < ∞,

then smooth functions are not dense in W 1,p(·)(B(0, 1)).

Proof. We check that the exponent p satisfies the conditions of the previous
theorem. We have

ˆ

A1∪A3

|x|−p′(x) dx = c

1ˆ

0

r−(2+ω(r))′ r dr = c

1ˆ

0

r−1+ω(r)− ω(r)2

1+ω(r) dr < ∞.

The other integral is handled similarly. ��

9.3 Density with Discontinuous Exponents*

We have seen in the previous section that we have a quite good understand-
ing of the modulus of continuity necessary for density results. However, it
turns out that we have density also in many other cases, including many
discontinuous exponents.
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One way to approach such exponents is to use smoothing by convolution
with an appropriately chosen, anisotropic kernel. This idea was first used
by Edmunds and Rákosńık [120] already in 1992 for exponents which satisfy
a suitable cone monotonicity condition. As described in Sect. 9.1, the log-
Hölder condition was later found to imply among other things density of
smooth functions. Thus it was not surprising that the cone monotonicity
condition could be weakened to a condition which says that the exponent
decreases at most as much as allowed by the log-Hölder continuity condition.
This result was stated independently by Fan, Wang and Zhao [142] and Hästö
[214]. The proof below is from the latter article.

Lemma 9.3.1. Let B′ := B(0, 7/6), B := B(0, 1), ê be a unit vector, and
let p ∈ P(B′) be bounded. Suppose that there exist K � 0, r ∈ (0, 1/12) and
h ∈ (0, 1) such that

p(y) − p(x) � − K

log(e + 1/|x− y|)

for every x ∈ B when y lies in the cone

⋃

0<t�r
B(x+ tê, ht).

Then for every u ∈ W 1,p(·)(B′) there exists a sequence (ui) in C∞(B) ∩
W 1,p(·)(B) such that ui → u in W 1,p(·)(B).

Proof. Let ψ ∈ C∞
0 (B) be a non-negative function with

´
B
ψ dx = 1. For an

integrable function u : B′ → R and δ ∈ (0, r) we define

Rδu(x) =
ˆ

B

u(x+ δ (hz + ê))ψ(z) dz.

The usual integration-by-parts argument shows that Rδu is smooth in B.
For u ∈ Lp(·)(B′) we show that ‖Rδu − u‖p(·) → 0. In fact it suffices to

show that �p(·)(Rδu− u) → 0, since p is bounded. Using that ψ is bounded,
we estimate

�p(·)(Rδu− u) =
ˆ

B

∣
∣
∣

ˆ

B

(
u(x+ δ (hz + ê)) − u(x)

)
ψ(z) dz

∣
∣
∣
p(x)

dx

� c

ˆ

B

( ˆ

B

|u(x+ δ (hz + ê)) − u(x)| dz
)p(x)

dx =: c I

Let us denote Bδ := B(x + δê, hδ) and q := min{p−
Bδ
, p−B}. Using Hölder’s

inequality for the fixed exponent q and the fact that
´
Bδ

|u(y)−u(x)|q dy � 1
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for small enough δ (uniformly), we find that

I =
ˆ

B

(

c

 

Bδ

|u(y) − u(x)| dy
)p(x)

dx

� c

ˆ

B

(  

Bδ

|u(y) − u(x)|q dy
)p(x)/q

dx

� c

ˆ

B

(hδ)−np(x)/q
( ˆ

Bδ

|u(y) − u(x)|q dy
)p(x)/q

dx

� c

ˆ

B

(hδ)−n(p(x)−q)/q
 

Bδ

|u(y) − u(x)|q dy dx.

By assumption we have

q � p−
Bδ

� p(x) − K

log(e + 1/|x− y|) � p(x) − K

log(e + 1/δ)
.

Thus δq−p(x) is bounded by a constant independent of δ and x; of course,
hq−p(x) � h1−p+ � c(h) even without the assumption on p in the lemma.
Using this, we continue our previous estimate:

ˆ

B

( ˆ

B

|u(x+ δ (hz + ê)) − u(x)| dz
)p(x)

dx

� c

ˆ

B

 

Bδ

|u(y) − u(x)|q dy dx

= c

ˆ

B

ˆ

B

|u(x+ δ (hz + ê)) − u(x)|q dx dz.

Now we continue as in the proof by Edmunds–Rákosńık. Fix ε > 0. Since
1 + |u(x)|p(x) is an integrable function, we can choose τ > 0 such that

ˆ

V

1 + |u(x)|p(x) dx < ε/2

for every V ⊂ B with |V | < τ . For a fixed z ∈ B this implies that

ˆ

V

2 + |u(x+ δ (hz + ê))|p(x+δ (hz+ê)) + |u(x)|p(x) dx < ε,
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for |V | < τ , since the translation of V also satisfies |V + δ (hz+ ê)| < τ . Since
u is measurable there exists, by Luzin’s theorem, an open set U ⊂ B(7/6)
such that u is continuous in B(7/6) \ U and |U | < τ/2. By choosing δ small
enough we get for all x, y ∈ B \ U with |x − y| < δ that |u(y) − u(x)| < ε.
For z ∈ B we denote by Uz the set of those points x ∈ B for which x ∈ U or
x+ δ (hz + ê) ∈ U . Note that |Uz| < τ for every z. We find that

ˆ

B

ˆ

B

|u(x+ δ (hz + ê)) − u(x)|q dx dz

�
ˆ

B

ˆ

B

εp
−
B dx dz +

ˆ

B

ˆ

Uz

|u(x+ δ (hz + ê)) − u(x)|q dx dz

� c

ˆ

B

ˆ

B

max{ε, εp
+
} dx dz +

ˆ

B

ˆ

Uz

|u(x+ δ (hz + ê))|p
−
Bδ + |u(x)|p

−
Bδ dx dz

� cmax{ε, εp+} +
ˆ

B

ˆ

Uz

2 + |u(x+ δ (hz + ê))|p(x+δ (hz+ê)) + |u(x)|p(x) dx dz

� max{ε, εp+} +
ˆ

B

ε dz,

where, for the third inequality, we used that

|u(x)|p
−
Bδ � 1 + |u(x)|p(x),

and similarly for |u(x+ δ (hz + ê))|p−B . Thus we have an upper bound which
tends to zero with ε. To complete the proof of the lemma we still have to
show that ‖Rδu − u‖1,p(·) → 0 for a function u in the Sobolev space. This
follows easily by applying the Lp(·)-result to u and |∇u| separately, since
∇[Rδu] = Rδ[∇u]. ��

The idea of the next proof is to patch up the balls from the previous lemma
following the proof of [120, Theorem 1].

Theorem 9.3.2. Let Ω ⊂ R
n. Suppose that for every point x ∈ Ω there are

four quantities

rx ∈
(
0, 1

2 min{1, d(x, ∂Ω)}
)
,

hx ∈ (0, 1), ξx ∈ S(0, 1) and Kx ∈ [0,∞) such that

p(z) − p(y) � − Kx

log(e + 1/|y − z|)
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for every point y ∈ B(x, rx), where z lies in the cone

C(y) =
⋃

0<t�rx
B(y + tξx, hxt).

Then C∞(Ω) ∩W 1,p(·)(Ω) is dense in W 1,p(·)(Ω).

Proof. Let Bx := B(x, rx/10) for x ∈ Ω. By the basic covering theorem
(Theorem 1.4.5) we find a countable subfamily consisting of disjoint B′

i = Bxi
such that

⋃∞
i=1 5B′

i = Ω. We define Bi = 6B′
i and B∗

i = 7B′
i. We note that

we still have ∞⋃

i=1

Bi =
∞⋃

i=1

B∗
i = Ω

and we see (by the disjointness of the balls B′
i) that any point x ∈ Ω is

contained in at most N balls B∗
i . Thus there exists a partition of unity by

smooth functions ψi such that ψi are supported in Bi and |∇ψi| is bounded
by Li � 1.

Fix u ∈ W 1,p(·)(Ω) and ε > 0. By Lemma 9.3.1 we can choose
vi ∈W 1,p(·)(Bi) ∩ C∞(Bi) such that

‖u− vi‖W 1,p(·)(Bi) < 2−iε/Li.

Define v :=
∑∞

i=1 ψivi. Since at most finitely many of the ψi are non-zero in
a neighborhood of any point, we see that v is smooth. We easily calculate
that

‖u− v‖W 1,p(·)(Bi) �
∞∑

i=1

‖ψi (u − vi)‖W 1,p(·)(Bi)

�
∞∑

i=1

(1 + Li)‖u− vi‖W 1,p(·)(Bi) � 2ε. ��

Notice that if we set Kx ≡ 0 in the preceding theorem, then we regain the
result of Edmunds and Rákosńık.

A special case of the previous theorem is the following:

Corollary 9.3.3. Let r : Ω → [0,∞) be monotone in the sense of Edmunds–
Rákosńık (i.e. satisfy the condition of the previous theorem with Kx ≡ 0), and
let q ∈ P log(Ω) be such that p := q + r � 1 a.e. Then C∞(Ω) ∩W 1,p(·)(Q) is
dense in W 1,p(·)(Ω).

Example 9.3.4. Consider the exponent shown in Fig. 9.2: here we have
added the log-Hölder continuous function 1 + x1 + |x2| (xi refers to the
i-th coordinate of x) to the monotone characteristic function χ{x∈Q : x1<0}
in the unit square Q. This exponent satisfies the assumptions of the previous
corollary.



304 9 Density of Regular Functions

−1
−0.5

0
0.5

1−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

Fig. 9.2 The exponent p which is neither monotone nor continuous at the origin

As is shown by this corollary and example, the previous theorem is stronger
than just saying that the exponent is log-Hölder continuous in one part of
the domain and monotone in the rest – the exponent in the example satisfies
the assumptions of the theorem only because the exponent is allowed to be
either monotone or continuous within a single cone. This flexibility is needed
at the origin.

Another approach to the density question for discontinuous exponents is
to divide the domain into disjoint pieces Ωi. Suppose we know that smooth
functions are dense in each W 1,p(·)(Ωi). Does it follow that it is also dense in
the whole domain? This question was studied by Fan, Wang and Zhao [142].

In general the answer is negative, as shown by Example 9.2.6. In some
special cases, however, the answer is affirmative.

Theorem 9.3.5 (Theorems 2.4 and 2.7, [142]). Let p ∈ P(Ω) be bounded
and suppose that there exist sets Ωi, i = 1, . . . , k, such that:

(a) Every Ωi is open and bounded, and the sets are pairwise disjoint.
(b) Ω = int

(⋃k
i=1 Ωi

)
.

(c) Ω \
⋃k
i=1 Ωi has measure zero.

(d) Ωi = Ω \
⋃
j �=i Ωj.

We assume that p|Ωi ∈ P log(Ωi) and p+
Ωi

� p−Ωj for all i < j.

Define, for i = 1, . . . , k − 1, Qi = Ω \
⋃k
j=i+1 Ωj and Q′

i = Ω \ Qi. Also,
assume that each Qi and Q′

i has Lipschitz boundary, and Qi∩Q′
i is an (n− 1)-

Lipschitz manifold. Then C∞(Ω) is dense in W 1,p(·)(Ω).

Let us next consider an example where Theorem 9.2.2 is not applicable.

Example 9.3.6. Let B(0, 1) ⊂ R
2 and let Ai, i = 1, 2, 3, 4, denote the quad-

rants in B(0, 1). The exponent is defined by p :=
∑4

i=1 iχAi . This exponent
is discontinuous on the coordinate axes, and does not satisfy a cone mono-
tonicity property at the origin. However, the conditions of Theorem 9.3.5 are
clearly fulfilled, and so smooth functions are indeed dense.
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Let us conclude this section by noting that the density of smooth functions
is invariant under a bilipschitz change of coordinates:

Recall that the mapping f : A → R
n is said to be L–bilipschitz if

1
L |x− y| � |f(x) − f(y)| � L|x− y|

for all x, y ∈ A.

Proposition 9.3.7. Let Ω ⊂ R
n and let f : Ω → R

n be L–bilipschitz. Let
p ∈ P(Ω) be a bounded variable exponent such that C∞(Ω) ∩W 1,p(·)(Ω) is
dense in W 1,p(·)(Ω). Define q := p ◦ f−1. Then C∞(f(Ω)) ∩W 1,q(·)(f(Ω)) is
dense in W 1,q(·)(f(Ω)).

Proof. This is just a change of variables. Let u ∈ W 1,p(·)(Ω) and define
v := u ◦ f−1. We have

�1,q(·)(v) =
ˆ

Q

|v(y)|q(y) + |∇v(y)|q(y) dy

�
ˆ

Ω

(
|u(x)|p(x) + |L∇u(x)|p(x)

)
|Jf (x)| dx � Ln+p+�1,p(·)(u).

It follows that if ψi → u is an approximating sequence of smooth functions
in W 1,p(·)(Ω), then ψi ◦ f−1 is an approximating sequence of locally Lips-
chitz functions of the function v in W 1,p(·)(f(Ω)). Now the claim follows by
Lemma 9.2.1 ��

9.4 Density of Continuous Functions*

In this section we introduce a method which is based on convolution only in
the level-sets of the exponent; the results are from Hästö [214]. Once we
restrict our attention to the level-set of the exponent, convolution again
becomes a very natural operation which does not impose any additional
restrictions on the exponent. However, to patch up our approximations on
level-sets we have to assume that the level-sets are bilipschitz images of
parallel planes or concentric circles. In contrast to previous results, Theo-
rem 9.4.7 allows us to conclude only that continuous, but not necessarily
smooth, functions are dense.

Lemma 9.4.1. Let Q := (−1, 1)n and let p ∈ P(Q) be bounded. Suppose that
the exponent p depends only on the n-th coordinate. Then C(Q)∩W 1,p(·)(Q)
is dense in W 1,p(·)(Q).
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Proof. In this proof dx, dmn−1(x) and dm1(x) stand for integration with
respect to the n-, (n− 1)- and 1-dimensional Lebesgue measures. We denote
the n-th coordinate of x ∈ R

n by xn and use B := B(0, 1)∩{x ∈ R
n : xn = 0}

to denote the (n− 1)-dimensional unit ball which lives in the xn = 0 plane.
Let u ∈ W 1,p(·)(Q) and assume first that u has compact support in Q. We

consider only ε smaller than the distance between the support of u and ∂Q.
Let ψ : B → [0,∞) be a standard mollifier on R

n−1. We define an (n− 1)-
dimensional convolution by

uε(x) =
ˆ

B

u(x+ εy)ψ(y) dmn−1(y).

Then clearly uε is continuous (even smooth) in the plane orthogonal to the
xn-axis. Consider two points differing in the xn coordinate. Using that u is
absolutely continuous on almost every line parallel to the coordinate axes
(see, e.g., Theorem 11.1.12 below), we find that

|uε(x) − uε(x+ δen)| =
∣
∣
∣

ˆ

B

[u(x+ εy) − u(x+ δen + εy)]ψ(y) dmn−1(y)
∣
∣
∣

� c

ˆ

B

|u(x+ εy) − u(x+ δen + εy)| dmn−1(y)

� c

ˆ

B

δˆ

0

|∇u(x+ εy + ten)| dm1(t) dmn−1(y)

= c

ˆ

B×[0,δ/ε]

|∇u(x+ εz)| dz.

Since |∇u| ∈ L1(Q), the last integral tends to zero as δ → 0. Therefore uε is
uniformly continuous in the en direction as well, hence in all of Q.

It remains to show that uε → u in W 1,p(·)(Q). Denote by Qt the intersec-
tion of Q with the hyperplane {x ∈ R

n : xn = t}. Since p is constant in Qt
(let’s call it pt), we find by the continuity of the shift operator in the fixed
exponent Lebesgue space that

ˆ

Qt

|u(x+ z) − u(x)|pt dmn−1(x) =: Fz(t) → 0
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as z → 0 for those values of t with u ∈ Lpt(Qt,mn−1). Clearly

Fεy(t) �
ˆ

Qt

|u(x+ εy)|pt + |u(x)|pt dmn−1(x) = 2
ˆ

Qt

|u(x)|pt dmn−1(x)

︸ ︷︷ ︸
=:G(t)

,

so that
´

R
Fεy(t) dt � 2�p(·)(u) < ∞. Therefore u ∈ Lpt(Qt,mn−1) for almost

every t ∈ R and Fεy has an integrable upper bound G. Thus we find by
Fubini’s theorem that

ˆ

Q

|uε(x) − u(x)|p(x) dx � c

ˆ

Q

 

εB

|u(x+ z) − u(x)|p(x) dmn−1(z) dx

=
 

εB

ˆ

R

Fz(x) dt dmn−1(z).

Since Fz → 0 and Fz � G ∈ L1(R) the inner integral tends to 0 as |z| → 0
by the theorem of dominated convergence. Hence it follows that uε → u in
Lp(·)(Q).

The approximation result for the gradient is analogous, using the identity

∇uε(x) =
ˆ

B

[∇u(x+ εy)]ψ(y) dmn−1(y).

Therefore the previous argument applies to ∇u, and so ‖∇(u− uε)‖p(·) → 0.
Thus uε ∈W 1,p(·)(Q) approximate the compactly supported function u.

Let then u ∈W 1,p(·)(Q) be a general, not compactly supported, function.
Let Qi be the cube centered at the origin with side-length 2 − 21−i. Define
A2 := Q2 and Ai := Qi \ Qi−2 for larger i. Then we can find a partition of
unity by Lipschitz functions ψi such that ψi is compactly supported in Ai.
Let Li � 1 be the Lipschitz constant of ψi. The function ψiu has compact
support in Q, so the previous argument implies that there exists vi ∈ Q
supported in Ai such that ‖ψiu − vi‖1,p(·) � 2−iε/Li. Then v =

∑∞
i=2 vi is

continuous and

‖u− v‖1,p(·) �
∞∑

i=2

‖ψiu− vi‖1,p(·) �
∞∑

i=2

(1 + Li)2−iε/Li � 2ε. ��

Remark 9.4.2. The original proof of this result which appears in [214] was
erroneous. The claim uε → u was not correctly proved. This passage of the
proof has been replaced above with a new and correct one.
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Remark 9.4.3. If p− > 1, then we can say a bit more about the continuity
of uε: in the previous proof we derived the estimate

|uε(x) − uε(x+ δen)| � c

ˆ

B×[0,δ/ε]

|∇u(x+ εy)|dy.

Since |∇u| ∈ Lp
−

(Q), this implies, by Hölder’s inequality, that

|uε(x) − uε(x+ δen)|

� c
∣
∣B × [0, δε ]

∣
∣1−

1
p−
( ˆ

B×[0,δ/ε]

|∇u(x+ εy)|p−dy
) 1
p−

� c
(
δ
ε

)1− 1
p− ,

so that uε is (1 − 1
p− )-Hölder continuous on compact subsets of Q.

By Proposition 9.3.7 we have

Corollary 9.4.4. Let Q := (0, 1)n and let f : Q → R
n be L–bilipschitz. Let

q ∈ P(Q) be a bounded variable exponent which depends only on the nth

coordinate. Define p := q ◦ f−1. Then C(f(Q)) ∩W 1,p(·)(f(Q)) is dense in
W 1,p(·)(f(Q)).

If an exponent has a strict local extremum, then it will never satisfy the
assumptions of the previous corollary. For that we need a different model.

Lemma 9.4.5. Suppose that the bounded exponent p ∈ P(B(0, R)) depends
only on |x|. Then C(B(0, R))∩W 1,p(·)(B(0, R)) is dense in W 1,p(·)(B(0, R)).

The main idea of the proof is the same as of the proof of the previous
lemma. It is consequently omitted. As before, Proposition 9.3.7 gives

Corollary 9.4.6. Let f : B → R
n be L–bilipschitz in B := B(0, R). Let

q ∈ P(B) be a bounded exponent which depends only on |x|. Define p :=
q ◦ f−1. Then C(f(B)) ∩W 1,p(·)(f(B)) is dense in W 1,p(·)(f(B)).

We can combine the results from the corollaries in this section. The state-
ment of the following theorem is quite complicated, but the intuition behind
it is simple. We must be able to split the domain into regular pieces with
sufficient overlap, such that every piece comes from one of the previous corol-
laries. Notice that the partition of unity need not be uniformly bilipschitz.
This means that we can also handle cases where the regularity of the exponent
decreases toward the boundary of the domain.

Theorem 9.4.7. Let Ω ⊂ R
n be open and let (Ωi) be an open covering of Ω

with a subordinate partition of unity by bilipschitz functions ψi such that the
number of indices i for which ψi(x) > 0 is locally bounded. Suppose further
that for every i the set Ωi satisfies the conditions of Corollary 9.4.4 or 9.4.6.
Then C(Ω) ∩W 1,p(·)(Ω) is dense in W 1,p(·)(Ω).
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Proof. Denote the bilipschitz constant of ψi by Li. Fix u ∈ W 1,p(·)(Ω) and
ε > 0. By Corollary 9.4.4 or 9.4.6 we conclude that C(Ωi) ∩W 1,p(·)(Ωi) is
dense in W 1,p(·)(Ωi). Therefore we can choose vi ∈ C(Ωi)∩W 1,p(·)(Ωi) so that
‖u−vi‖W 1,p(·)(Ωi) � ε 2−i/Li. Then v =

∑∞
i=1 ψivi is continuous and satisfies

‖u− v‖p(·) �
∞∑

i=1

‖ψi(u− vi)‖W 1,p(·)(Ωi) �
∞∑

i=1

(1 + Li)‖u− vi‖W 1,p(·)(Ωi) � ε,

which proves the assertion. ��

Remark 9.4.8. If the bilipschitz mappings in Theorem 9.4.7 could be
replaced by homeomorphisms, then the result would be essentially sharp,
since it would cover all cases except when the exponent has a saddle-point,
which seem to be the only cases of non-density.

We consider next some examples which show that the results in this section
apply in some cases when the previous ones do not.

Example 9.4.9. Let Q := (−1, 1)2 and define p(x) := 2−
(

log(100/|x2|)
)−a

for some a > 1. This exponent is shown in Fig. 9.3. A bilipschitz deforma-
tion of the exponent p(x) := 2 +

(
log(100/|x2|)

)−a is shown in Fig. 9.4.
Corollary 9.4.4 allows us to conclude that continuous functions are dense in
W 1,p(·)(Q) in both cases.

Example 9.4.10. Define p(x) := 2 −
(

log(1/|x|)
)−a for some a > 1. Then

Lemma 9.4.5 allows us to conclude that continuous functions are dense in
W 1,p(·)(B), whereas the other results are not applicable. Another example is
given by p(x) := 2 + sin(1/|x|).

Fig. 9.3 The exponent p with a ridge
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Fig. 9.4 The exponent p with a through

9.5 The Lipschitz Truncation Method*

The purpose of this section is to show that a weakly convergent sequence of
Sobolev functions can be approximated by a sequence of Lipschitz functions
such that certain additional convergence properties hold. This approximation
property holds for a large class of domains Ω. We say that a bounded domain
Ω ⊂ R

n has a A-fat complement, A � 1, if

|B(z, r)| � A |B(z, r) \ Ω|

for all z ∈ ∂Ω and all r ∈ (0, diam Ω). Note that a bounded domain Ω ⊂ R
n

with Lipschitz continuous boundary has this property.
The proof of the following theorem can be found in Diening, Málek and

Steinhauer [102, Theorem 2.3]. It is based on the ideas from Acerbi and
Fusco [2] and Landes [262], or the monograph Maý and Ziemer [280]. We
roughly speaking restrict v to the set {−θ � v � θ} ∩ {M(∇u) � λ} and
denote by vθ,λ the McShane extension (cf. [289]) of this restriction to R

n, for
the exact definition see the above references.

Theorem 9.5.1. Let Ω be bounded with A-fat complement. Let v ∈ W 1,1
0 (Ω).

Then for every θ, λ > 0 there exist truncations vθ,λ ∈ W 1,∞
0 (Ω) such that

‖vθ,λ‖L∞(Ω) � θ,

‖∇vθ,λ‖L∞(Ω) � cAλ,

where c only depends on the dimension n. Moreover, up to a set of Lebesgue
measure zero

{vθ,λ �= v} ⊂ {Mv > θ} ∪ {M(∇v) > λ}.
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Our version of fatness is slightly different than that used in [102], but it
implies the desired condition. We then move on to the truncation result itself.

Theorem 9.5.2. Let Ω be a bounded domain with A-fat complement and let
p ∈ A or p ∈ P log(Ω) with 1 < p− � p+ < ∞. Let v ∈ W

1,p(·)
0 (Ω), fix θ > 0

and let K � ‖v‖W 1,p(·)(Ω). Then there exists a sequence (λj)∞j=0 with

22j � λj � 22j+1

and functions vj ∈ W 1,∞
0 (Ω) such that the following hold for all j ∈ N:

‖vj‖L∞(Ω) � θ,

‖∇vj‖L∞(Ω) � c1Ac0K λj ,

∥
∥λj χ{vj �=v}

∥
∥
Lp(·)(Ω)

� c0
λj
θ

‖v‖Lp(·)(Ω) + 21− j

p+ ,

∥
∥∇vj χ{vj �=v}

∥
∥
Lp(·)(Ω)

� c1Ac0K
(c0
θ

22j‖v‖Lp(·)(Ω) + 21− j

p+
)

and, up to a set of measure zero,

{vj �= v} ⊂ {Mv > θ} ∪
{
M(∇v) > c0K λj

}
.

Here c0 denotes the operator norm of the maximal operator in Lp(·)(Rn) and
c1 is the constant from Theorem 9.5.1.

Proof. If p ∈ P log(Ω) then we extend it by Proposition 4.1.7 to the whole
space and denote it again by p. Moreover, by Theorem 4.4.8 we obtain
p ∈ A. We extend v by zero outside of Ω and obtain v ∈ W

1,p(·)
0 (Rn) (The-

orem 8.1.14). The assumptions on p imply that the maximal operator is
bounded (Theorem 5.7.2) and thus

‖Mv‖Lp(·)(Rn) + ‖M(∇v)‖Lp(·)(Rn) � c0 ‖v‖W 1,p(·)(Rn) � c0K,

so that ‖ Mv
c0K

‖Lp(·)(Ω) + ‖M(∇v)
c0K

‖Lp(·)(Ω) � 1. Next, we observe that for
g ∈ Lp(·)(Rn) with ‖g‖Lp(·)(Rn) � 1 we have

∞∑

j=1

2j+1−1∑

k=2j

ˆ

Rn

2kp(x) χ{2k<|g|} dx

�
∞∑

k=1

ˆ

Rn

2kp(x) χ{2k<|g|} dx =
∞∑

k=1

ˆ

Rn

∞∑

i=k

2kp(x) χ{2i<|g|�2i+1} dx
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=
∞∑

i=1

i∑

k=1

ˆ

Rn

2kp(x)χ{2i<|g|�2i+1}dx � 2p
+

∞∑

i=1

ˆ

Rn

2ip(x)χ{2i<|g|�2i+1}dx

� 2p
+
ˆ

Rn

|g(x)|p(x) dx � 2p
+
.

This inequality implies, in particular, that each term in the outer sum on the
left-hand side is at most 2p

+
. Since the inner sum has 2j terms, we can find

for every j an index kj ∈ {2j, . . . , 2j+1 − 1} such that

ˆ

Rn

2kjp(x) χ{|g|>2kj } dx � 2p
+−j .

Let us choose the indices kj for the function g = M(∇v)
c0K

, and denote λj := 2kj .

By construction it is clear that 22j � λj < 22j+1
. The previous inequality can

be written as
ˆ

Rn

λ
p(x)
j χ{|M(∇v)/(c0K)|>λj} dx � 2p

+−j =: εp
+

j .

By Lemma 3.2.5, this yields

∥
∥λj χ{|M(∇v)|>c0Kλj}

∥
∥
Lp(·)(Rn)

� εj . (9.5.3)

For each j ∈ N we apply Theorem 9.5.1 with θ and c0Kλj and denote vj :=
vθ,c0Kλj . The theorem directly implies the following conclusions:

‖vj‖L∞(Ω) � θ and ‖∇vj‖L∞(Ω) � c1Ac0Kλj ,

and, up to a set of measure zero,

{vj �= v} ⊂ {Mv > θ} ∪
{
M(∇v) > c0K λj

}
.

Obviously the second inequality implies that

‖∇vj χ{vj �=v}‖Lp(·)(Rn)
� c1Ac0K ‖λj χ{vj �=v}‖Lp(·)(Rn)

.

Thus it remains only to estimate ‖λj χ{vj �=v}‖Lp(·)(Rn)
. The set inclusion

above implies that

∥
∥λj χ{vj �=v}

∥
∥
Lp(·)(Rn)

�
∥
∥λj χ{Mv>θ}∪{M(∇v)>c0Kλj}

∥
∥
Lp(·)(Ω)

.
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Then we estimate, using also (9.5.3),

∥
∥λj χ{Mv>θ}∪ {M(∇v)>c0Kλj}

∥
∥
Lp(·)(Rn)

� λj
θ

∥
∥θ χ{Mv>θ}

∥
∥
Lp(·)(Rn)

+
∥
∥λj χ{M(∇v)>c0Kλj}

∥
∥
Lp(·)(Rn)

� λj
θ

‖Mv‖Lp(·)(Rn) + εj

which combined with the continuity of the maximal operator completes the
proof. ��

We next show how the theorem can be applied to a sequence to yield nice,
uniform conclusions.

Corollary 9.5.4. Let Ω be a bounded domain with A-fat complement and let
p ∈ A or p ∈ P log(Ω) with 1 < p− � p+ < ∞. Let vk ∈ W

1,p(·)
0 (Ω) be such

that vk ⇀ 0 weakly in W
1,p(·)
0 (Ω). Set

K := sup
k

‖vk‖
W

1,p(·)
0 (Ω)

< ∞ ,

γk := ‖vk‖Lp(·)(Ω) → 0 .

Then there exists a null-sequence (εj) and for every j, k ∈ N there exists a
function vk,j ∈W 1,∞

0 (Ω) and a number λk,j ∈
[
22j , 22j+1]

such that

lim
k→∞

(
sup
j∈N

‖vk,j‖L∞(Ω)

)
= 0 ,

‖∇vk,j‖L∞(Ω) � cAK λk,j � cAK 22j+1
,

lim sup
k→∞

∥
∥λk,j χ{vk,j �=vk}

∥
∥
Lp(·)(Ω)

� εj ,

lim sup
k→∞

∥
∥∇vk,j χ{vk,j �=vk}

∥
∥
Lp(·)(Ω)

� εj ,

The constant c depends only on n, p−, p+ and the A-constant of p. Moreover,
for fixed j ∈ N, ∇vk,j ⇀ 0 in Ls(Ω) when s < ∞ and ∇vk,j ∗

⇀ 0 in L∞(Ω)
as k → ∞.

Proof. The compact embedding W
1,p(·)
0 (Ω) ↪→↪→ Lp(·)(Ω) (Theorem 8.4.2)

and v ⇀ 0 imply that vk → 0 in Lp(·)(Ω) and K < ∞. Setting θk :=
√
γk,

we can apply Theorem 9.5.2 to each function vk with θk. The statements are
an immediate consequence of the assertions in that theorem since γk → 0,
θk → 0 and γk/θk → 0. It remains only to prove the claims regarding the
weak convergence of the gradient.
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If ψ ∈ C∞
0 (Ω), then

∣
∣
∣
∣

ˆ

Ω

∇vk,j ψ dx
∣
∣
∣
∣ =
∣
∣
∣
∣

ˆ

Ω

vk,j ∇ψ dx
∣
∣
∣
∣ � θk ‖∇ψ‖L1(Ω) .

Clearly this tends to zero as k → ∞. Since C∞
0 (Ω) is dense in Ls

′
(Ω) for

s′ ∈ [1,∞) it follows that 〈∇vk,j , ψ〉 → 0 as k → ∞, for all ψ ∈ Ls
′
(Ω). By

definition of weak (star) convergence, this means that ∇vk,j ⇀ 0 in Ls(Ω)
when s ∈ (1,∞) and ∇vk,j ∗

⇀ 0 in L∞(Ω) when s = ∞. The case s = 1
follows from the case s = 2 and the embedding L2(Ω) ↪→ L1(Ω). ��



Chapter 10

Capacities

Capacities are needed to understand point-wise behavior of Sobolev functions.
They also play an important role in studies of solutions of partial differential
equations. In this chapter we study two kinds of capacities: Sobolev capacity
in Sect. 10.1 and relative capacity in Sect. 10.2. Both capacities have their
advantages. The Sobolev capacity is independent of the underlying set, but
extremal functions are difficult to find. The situation for relative capacity
is the opposite and it is a Choquet capacity for every measurable expo-
nent. For a constant exponent, our definitions of the Sobolev and relative
capacities coincide with the classical ones. In Sect. 10.3 we compare the capac-
ities with each other and in Sect. 10.4 with the variable dimension Hausdorff
measure. Later in Sect. 11.1 we define a capacity based on quasicontinuous
representatives.

10.1 Sobolev Capacity

In this section we define the Sobolev capacity. The results are based on [194]
by Harjulehto, Hästö, Koskenoja and Varonen. Further studies of variable
exponent capacities are contained in Alkhutov and Krasheninnikova [20],
Harjulehto and Latvala [211], and Mashiyev [284].

Definition 10.1.1. Let p ∈ P(Rn) satisfy p(x) ∈ [1,∞) for almost every x.
For E ⊂ R

n we denote

Sp(·)(E) :={u ∈W 1,p(·)(Rn) : u � 1 in an open set containing E & u � 0}.

Functions u ∈ Sp(·)(E) are said to be p(·)-admissible for the capacity of the
set E. The Sobolev p(·)-capacity of E is defined by

Cp(·)(E) := inf
u∈Sp(·)(E)

�1,p(·)(u) = inf
u∈Sp(·)(E)

ˆ

Rn

|u|p(x) + |∇u|p(x) dx.

In case Sp(·)(E) = ∅, we set Cp(·)(E) = ∞.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 10,
c© Springer-Verlag Berlin Heidelberg 2011
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If u ∈ Sp(·)(E), then min{1, u} ∈ Sp(·)(E) and �1,p(·)(min{1, u}) �
�1,p(·)(u). Thus it is enough to test the Sobolev capacity by u ∈ Sp(·)(E)
with 0 � u � 1.

The Sobolev p(·)-capacity enjoys all relevant properties of general capac-
ities; specifically, it will be seen that Cp(·)(E) defines a Choquet capacity if
1 < p− � p+ < ∞. We start with some properties that hold for arbitrary
measurable exponents p : R

n → [1,∞).

Theorem 10.1.2. Let p ∈ P(Rn) with p(x) ∈ [1,∞) for every x. The set
function E �→ Cp(·)(E) has the following properties:

(C1) Cp(·)(∅) = 0.
(C2) If E1 ⊂ E2, then Cp(·)(E1) � Cp(·)(E2).
(C3) If E is a subset of R

n, then

Cp(·)(E) = inf
E⊂U
U open

Cp(·)(U).

(C4) If E1 and E2 are subsets of R
n, then

Cp(·)(E1 ∪ E2) + Cp(·)(E1 ∩ E2) � Cp(·)(E1) + Cp(·)(E2).

(C5) If K1 ⊃ K2 ⊃ · · · are compact sets, then

lim
i→∞

Cp(·)(Ki) = Cp(·)

( ∞⋂

i=1

Ki

)

.

Proof. Since the constant function 0 belongs to Sp(·)(∅), assertion (C1)
follows.

To prove (C2), let E1 ⊂ E2. Then Sp(·)(E1) ⊃ Sp(·)(E2), and hence by
definition

Cp(·)(E1) = inf
u∈Sp(·)(E1)

�p(·)(u) � inf
u∈Sp(·)(E2)

�p(·)(u) = Cp(·)(E2).

To prove (C3), fix E ⊂ R
n. By property (C2),

Cp(·)(E) � inf
E⊂U
U open

Cp(·)(U).

Fix ε > 0 and a function u ∈ Sp(·)(E) so that �1,p(·)(u) � Cp(·)(E)+ε. Denote
U := int{u � 1}. Then E ⊂ U , and Cp(·)(U) � �1,p(·)(u) � Cp(·)(E) + ε, and
thus the claim follows as ε→ 0.
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To prove (C4), let ε > 0. Choose u1 ∈ Sp(·)(E1) such that �1,p(·)(u1) �
Cp(·)(E1) + ε, and u2 ∈ Sp(·)(E2) such that �1,p(·)(u2) � Cp(·)(E2) + ε. We
have max{u1, u2} ∈ Sp(·)(E1 ∪E2) and min{u1, u2} ∈ Sp(·)(E1 ∩E2), and, by
Theorem 8.1.9,

ˆ

Rn

|∇max{u1, u2}|p(x) dx+
ˆ

Rn

|∇min{u1, u2}|p(x) dx

=
ˆ

Rn

|∇u1|p(x) dx +
ˆ

Rn

|∇u2|p(x) dx.

This and an analogous for �p(·)(max{u1, u2}) + �p(·)(min{u1, u2}) yields

Cp(·)(E1 ∪ E2) + Cp(·)(E1 ∩ E2) � �1,p(·)(u1) + �1,p(·)(u2)

� Cp(·)(E1) + Cp(·)(E2) + 2ε,

from which (C4) follows as ε tends to zero.
To prove (C5), let K1 ⊃ K2 ⊃ · · · be compact sets. Since

⋂∞
i=1Ki ⊂ Kj

for each j = 1, 2, . . . , property (C2) gives

Cp(·)

( ∞⋂

i=1

Ki

)

� lim
i→∞

Cp(·)(Ki).

To prove the opposite inequality, choose an open set U with
⋂
iKi ⊂ U .

Because every Ki is compact (so that
⋂
iKi is compact, as well), there is a

positive integer k such that Ki ⊂ U for all i � k. Thus

lim
i→∞

Cp(·)(Ki) � Cp(·)(U),

and by property (C3)

lim
i→∞

Cp(·)(Ki) � Cp(·)

( ∞⋂

i=1

Ki

)

.

This completes the proof. ��

A set function which has the properties (C1), (C2) and (C3) from the pre-
vious theorem is called an outer capacity. Theorem 10.1.2 thus yields that the
Sobolev p(·)-capacity is an outer capacity. In order to get the remaining Cho-
quet property (that is, (C6) in the next theorem) we need extra assumptions
for the variable exponent.
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Theorem 10.1.3. If p ∈ P(Rn) with 1 < p− � p+ < ∞, then the set
function E �→ Cp(·)(E) has the following additional properties:

(C6) If E1 ⊂ E2 ⊂ · · · are subsets of R
n, then

lim
i→∞

Cp(·)(Ei) = Cp(·)

( ∞⋃

i=1

Ei

)

.

(C7) For Ei ⊂ R
n, i ∈ N, we have

Cp(·)

( ∞⋃

i=1

Ei

)

�
∞∑

i=1

Cp(·)(Ei).

Proof. To prove (C6), denote E :=
⋃∞
i=1 Ei. Note first that (C2) implies that

lim
i→∞

Cp(·)(Ei) � Cp(·)(E). (10.1.4)

To prove the opposite inequality we may assume that limi→∞ Cp(·)(Ei) < ∞.
Let ui ∈ Sp(·)(Ei) and �1,p(·)(ui) � Cp(·)(Ei) + 2−i for every i ∈ N.
Since W 1,p(·)(Rn) is reflexive (Theorem 8.1.6) and since the sequence (ui)
is bounded in W 1,p(·)(Rn), there is a subsequence of (ui) which converges
weakly to a function u ∈ W 1,p(·)(Rn). We obtain by the Banach-Saks prop-
erty (Corollary 8.1.7) that 1

m

∑m
i=1 ui → u in the Sobolev space W 1,p(·)(Rn)

as m → ∞. We write vj := 1
j(j−1)

∑j2

i=j+1 ui and obtain

∥
∥
∥
∥

1
j2

j2∑

i=1

ui − vj

∥
∥
∥
∥

1,p(·)
�
∥
∥
∥
∥

1
j2

j∑

i=1

ui

∥
∥
∥
∥

1,p(·)
+
∥
∥
∥
∥

1
j2(j−1)

j2∑

i=j+1

ui

∥
∥
∥
∥

1,p(·)

� 1
j

∥
∥
∥
∥

1
j

j∑

i=1

ui

∥
∥
∥
∥

1,p(·)
+ 1

j−1

∥
∥
∥
∥

1
j2

j2∑

i=1

ui

∥
∥
∥
∥

1,p(·)
,

which converges to zero as j goes to infinity. Thus vj → u in W 1,p(·)(Rn).
Since Ej is an increasing sequence, it follows that ui � 1 in an open set
containing Ej for every j � i. Hence Ej ⊂ int{vj � 1}. By the convexity of
the modular and (C2) we obtain

�1,p(·)(vj) � 1
j(j−1)

j2∑

i=j+1

ˆ

Rn

|ui|p(x) + |∇ui|p(x) dx

� sup
i�j

�1,p(·)(ui) � sup
i�j

(
Cp(·)(Ei) + 2−i

)
� lim
i→∞

Cp(·)(Ei) + 2−j .
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By considering a subsequence, if necessary, we may assume that
‖vj+1 − vj‖1,p(·) � 2−j. We set

wj := vj +
∞∑

i=j

|vi+1 − vi|,

and observe that wj ∈W 1,p(·)(Rn). Since wj � supi�j vi, we see that wj � 1
in the open set

∞⋃

i=j

int{vi � 1} ⊃ E,

so wj ∈ Sp(·)(E). This yields Cp(·)(E) � �1,p(·)(wj) for j = 1, 2, . . . We also
find that

‖wj − vj‖1,p(·) �
∞∑

i=j

‖vi+1 − vi‖1,p(·) �
∞∑

i=j

2−i = 2−j+1,

and hence
�1,p(·)(wj − vj) → 0 as j → ∞.

Therefore

Cp(·)(E) � lim
j→∞

�1,p(·)(wj) = lim
j→∞

�1,p(·)(vj)

� lim
j→∞

lim
i→∞

Cp(·)(Ei) + 2−j = lim
i→∞

Cp(·)(Ei).

The previous inequality and inequality (10.1.4) yield property (C6).
It remains to prove (C7). From (C4) it follows by induction that

Cp(·)

( k⋃

i=1

Ei

)

�
k∑

i=1

Cp(·)(Ei) �
∞∑

i=1

Cp(·)(Ei)

for any finite family of subsets E1, E2, . . . , Ek in R
n. Since

⋃k
i=1Ei increases

to
⋃∞
i=1Ei, (C6) implies (C7). ��

Remark 10.1.5. The assumptions of Theorem 10.1.3 can be relaxed: we
need only that p− > 1 holds locally, see [195].

By the definition of outer measure (cf. [184]), properties (C1), (C2),
and (C7) of the Sobolev p(·)-capacity yield:

Corollary 10.1.6. If p ∈ P(Rn) with 1 < p− � p+ < ∞, then the Sobolev
p(·)-capacity is an outer measure.

A set function which satisfies properties (C1), (C2), (C5), and (C6) is
called a Choquet capacity. A set E ⊂ R

n is capacitable if
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sup
K⊂E

K compact

Cp(·)(K) = Cp(·)(E) = inf
E⊂U
U open

Cp(·)(U).

For a Choquet capacity every Suslin set is capacitable [73]. The definition of
Suslin sets can be found, for example, in [154, Sect. 2.2.10, p. 65]. For us it
is enough to know that each Borel set is a Suslin set. Thus we obtain the
following result:

Corollary 10.1.7. Let p ∈ P(Rn) with 1 < p− � p+ < ∞. Then the set
function E �→ Cp(·)(E), E ⊂ R

n, is a Choquet capacity. In particular, all
Borel sets E ⊂ R

n are capacitable.

We can derive a weak form of the subadditivity (property (C7)) even if we
dispense with the lower bound assumption on the variable exponent p.

Proposition 10.1.8. Let p ∈ P(Rn) be bounded. If every Ei is a subset of
R
n with Cp(·)(Ei) = 0, i ∈ N, then

Cp(·)

( ∞⋃

i=1

Ei

)

= 0.

Proof. Fix ε ∈ (0, 1). Since modular and norm convergence are equivalent
(Theorem 3.4.1), we can find functions ui ∈ Sp(·)(Ei) with ‖ui‖1,p(·) � ε 2−i.
Define vi := u1+. . .+ui. Then (vi) is a Cauchy sequence and sinceW 1,p(·)(Rn)
is a Banach space (Theorem 8.1.6) there exists v ∈ W 1,p(·)(Rn) such that
vi → v. By Lemma 2.3.15 we have for a subsequence (vi) that vi → v almost
everywhere. Define Ui := int{ui � 1}. Since vj |Ui � 1 for j � i, we conclude
that v|Ui � 1 a.e. Since

⋃
Ei ⊂

⋃
Ui, and the latter set is open, we find that

v ∈ Sp(·)
(⋃∞

i=1 Ei

)
. On the other hand,

‖v‖1,p(·) � lim
i→∞

‖vi‖1,p(·) �
∞∑

i=1

‖ui‖1,p(·) �
∞∑

i=1

ε 2−i � ε.

This and Lemma 3.2.4 implies

Cp(·)

( ∞⋃

i=1

Ei

)

� �1,p(·)(v) � ‖v‖1,p(·) � ε,

which yields the claim, as ε tends to zero. ��

Lemma 10.1.9. Let p ∈ P(Rn) be a bounded exponent and assume that
C∞(Rn) ∩W 1,p(·)(Rn) is dense in W 1,p(·)(Rn). If K is compact, then

Cp(·)(K) = inf
u∈S∞

p(·)(K)

ˆ

Rn

|u|p(x) + |∇u|p(x) dx,

where S∞
p(·)(K) := Sp(·)(K) ∩C∞(Rn).
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Proof. Let u ∈ Sp(·)(K) with 0 � u � 1. We choose a sequence of functions
ϕj ∈ C∞(Rn) ∩W 1,p(·)(Rn) converging to u in W 1,p(·)(Rn). Choose an open
bounded neighborhood U of K such that u = 1 in U . Let ψ ∈ C∞(Rn),
0 � ψ � 1, be such that ψ = 1 in R

n \U and ψ = 0 in an open neighborhood
of K. Then the functions ψj := 1 − (1 − ϕj)ψ converge to u in W 1,p(·)(Rn)
since u− ψj = (u− ϕj)ψ + (1 − ψ)(u− 1) = (u− ϕj)ψ. This establishes the
assertion since ψj ∈ S∞

p(·)(K). ��

Proposition 10.1.10. Let E ⊂ R
n and let p, q ∈ P(Rn) be bounded with

p � q. If Cp(·)(E) = 0, then Cq(·)(E) = 0.

Proof. Let η ∈ C∞
0 (B(0, R+ 1)) be a cut-off function with η = 1 in B(0, R),

0 � η � 1 and |∇η| � 2. Let u ∈ Sp(·)(E ∩ B(0, R)). Then uη ∈ Lq(·)(Rn)
since by Corollary 3.3.4 we get

‖uη‖Lq(·)(Rn) = ‖uη‖Lq(·)(B(0,R+1))

� 2
(
1 + |B(0, R+ 1)|

)
‖u‖Lp(·)(B(0,R+1)).

Since ∇(uη) = η∇u+ u∇η, we find that

‖∇(uη)‖Lq(·)(Rn) = ‖∇(uη)‖Lq(·)(B(0,R+1))

� 2‖u‖W 1,q(·)(B(0,R+1))

� 4
(
1 + |B(0, R+ 1)|

)
‖u‖W 1,p(·)(B(0,R+1))

� 4
(
1 + |B(0, R+ 1)|

)
‖u‖W 1,p(·)(Rn).

Since η is one inB(0, R) we obtain that uη is greater than or equal to one in an
open set containingE∩B(0, R). Thus we have uη ∈ Sq(·)(E∩B(0, R)). Taking
a minimizing sequence from Sp(·)(E∩B(0, R)), we get Cq(·)(E∩B(0, R)) = 0
for every R > 0. Since E = ∪∞

i=1

(
E ∩ B(0, i)

)
, Proposition 10.1.8 yields the

claim. ��

We close this section by showing that a lower estimate for the capacity of
a ball can be easily derived from a suitable test function.

Remark 10.1.11. Let B(x, r) ⊂ R
n with r � 1. Assume that p ∈ P log(Rn)

is bounded. Let u be a function which equals 1 on B(x, r), 3 − 2|y − x|/r on
B(x, 3r/2) \ B(x, r) and 0 otherwise. The function u is not a suitable test
function for Cp(·)(B(x, r)) but for every ε > 0 the function (1 + ε)u is. Thus

Cp(·)(B(x, r)) � (1 + ε)p
+
�Lp(·)(B(x,2r)(u) + (1 + ε)p

+
�Lp(·)(B(x,2r)(∇u).

For the first modular we obtain, since r � 1, that

�Lp(·)(B(x,2r)(u) � |B(x, 2r)| � c rn � c rn−p(x).
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For the second modular we calculate

�p(·)(∇u) � c

ˆ

B(x,2r)

r−p(y) dy

� c

ˆ

B(x,2r)

r
−p+

B(x,2r) dy = c r
n−p+

B(x,2r) .

Since p is log-Hölder continuous we obtain r
n−p+

B(x,2r) � c rn−p(x). Letting
ε → 0 we see that

Cp(·)(B(x, r)) � c rn−p(x).

10.2 Relative Capacity

In this section we introduce an alternative to the Sobolev p(·)-capacity, in
which the capacity of a set is taken relative to a surrounding open subset of
R
n. This section is based on Harjulehto, Hästö and Koskenoja [193].

Definition 10.2.1. Let p ∈ P(Ω) and suppose that K is a compact subset
of Ω. We denote

Rp(·)(K,Ω) := {u ∈W 1,p(·)(Ω) ∩ C0(Ω): u > 1 on K and u � 0}

and define
cap∗

p(·)(K,Ω) := inf
u∈Rp(·)(K,Ω)

�p(·)(∇u).

Further, if U ⊂ Ω is open, then we set

capp(·)(U,Ω) := sup
K⊂U

compact

cap∗
p(·)(K,Ω),

and for an arbitrary set E ⊂ Ω we define

capp(·)(E,Ω) := inf
E⊂U⊂Ω
U open

capp(·)(U,Ω).

The number capp(·)(E,Ω) is called the variational p(·)-capacity of the con-
denser (E,Ω) or the relative p(·)-capacity of E with respect to Ω.

If p is bounded we may use a different set of test functions familiar from
the constant exponent case.
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Proposition 10.2.2. If p ∈ P(Ω) is bounded, then

cap∗
p(·)(K,Ω) = inf

u∈R̃p(·)(K,Ω)

ˆ

Ω

|∇u|p(x) dx,

where R̃p(·)(K,Ω) := {u ∈W 1,p(·)(Ω) ∩ C0(Ω): u � 1 on K}.

Proof. Since Rp(·)(K,Ω) ⊂ R̃p(·)(K,Ω) we obtain infu∈R̃p(·)(K,Ω) �p(·)(∇u) �
cap∗

p(·)(K,Ω). To prove the opposite inequality fix ε> 0 and let u∈ R̃p(·)(K,Ω)
be such that �p(·)(∇u) � infu∈R̃p(·)(K,Ω) �p(·)(∇u)+ε. Then v := (1+ε)u > 1
in K. Thus

cap∗
p(·)(K,Ω) � (1 + ε)p

+
�p(·)(∇u)

� (1 + ε)p
+
(

inf
u∈R̃p(·)(K,Ω)

�p(·)(∇u) + ε
)
,

from which the conclusion follows as ε → 0. ��

It is not clear form the definition that cap∗
p(·)(K,Ω) and capp(·)(K,Ω) give

the same value for any compact set. Next we show that they are the same
i.e. we show that the relative capacity is well defined on compact sets. Note
that the test function set R̃p(·) does not work in this proof if p is unbounded.

Proposition 10.2.3. Let p ∈ P(Ω). Then cap∗
p(·)(K,Ω) = capp(·)(K,Ω) for

every compact set K ⊂ Ω.

Proof. The inequality cap∗
p(·)(K,Ω) � capp(·)(K,Ω) follows directly from the

definition. To prove the opposite inequality fix ε > 0 and let u ∈ Rp(·)(K,Ω)
be such that �p(·)(∇u) � cap∗

p(·)(K,Ω) + ε. Then u is greater than one in
U = u−1(1,∞), which is open, since u ∈ C0(Ω), and contains K. Thus u is
also greater than one in every compact K ′ ⊂ U , and it follows that

capp(·)(U,Ω) � �p(·)(∇u).

This implies that

capp(·)(K,Ω) � capp(·)(U,Ω) � cap∗
p(·)(K,Ω) + ε,

from which the conclusion follows as ε → 0. ��

We want to show that the variational capacity has the same basic proper-
ties as the Sobolev capacity even without the assumption 1 < p− � p+ < ∞.
Let us record the following immediate consequences of the definition:
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(C1) capp(·)(∅,Ω) = 0;
(C2) If E1 ⊂ E2 ⊂ Ω2 ⊂ Ω1, then capp(·)(E1,Ω1) � capp(·)(E2,Ω2); and
(C3) For an arbitrary set E ⊂ Ω

capp(·)(E,Ω) = inf
E⊂U⊂Ω
U open

capp(·)(U,Ω).

Thus the relative p(·)-capacity is an outer capacity.
The proofs of the following properties (C4) and (C5) are the same as the

proofs of the properties (C4) and (C5) in Theorem 10.1.2.

Theorem 10.2.4. Suppose that p ∈ P(Ω). The set function E �→ capp(·)
(E,Ω) has the following properties:

(C4) If K1 and K2 are compact subsets of Ω, then

capp(·)(K1 ∪K2,Ω) + capp(·)(K1 ∩K2,Ω) � capp(·)(K1,Ω)
+ capp(·)(K2,Ω).

(C5) If K1 ⊃ K2 ⊃ · · · are compact subsets of Ω, then

lim
i→∞

capp(·)(Ki,Ω) = capp(·)

( ∞⋂

i=1

Ki,Ω
)

.

To prove the next property, we need the following lemma, which is based
on iterated use of (C4).

Lemma 10.2.5. Suppose that p ∈ P(Ω) and E1, . . . , Ek ⊂ Ω. Then

capp(·)

( k⋃

i=1

Ei,Ω
)

− capp(·)

( k⋃

i=1

Ai,Ω
)

�
k∑

i=1

(

capp(·)(Ei,Ω) − capp(·)(Ai,Ω)
)

whenever Ai ⊂ Ei, i = 1, 2, . . . , k, and capp(·)(
⋃k
i=1 Ei,Ω) < ∞.

Proof. Assume first that eachEi and eachAi is compact. Note that if K ′ ⊂ K
and F are compact subsets of Ω, then it follows by properties (C2) and (C4)
that

capp(·)(K ∪ F,Ω) + capp(·)(K
′,Ω)

� capp(·)(K ∪ (K ′ ∪ F ),Ω) + capp(·)(K ∩ (K ′ ∪ F ),Ω)

� capp(·)(K,Ω) + capp(·)(K
′ ∪ F,Ω)
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or, equivalently,

capp(·)(K ∪ F,Ω) − capp(·)(K
′ ∪ F,Ω) � capp(·)(K,Ω) − capp(·)(K

′,Ω).

By choosing E1 = K and A1 = K ′ = F we obtain the claim for k = 1. We
prove the claim for k � 2 by induction. Using the previous inequality we
obtain

capp(·)

( k⋃

i=1

Ei,Ω
)

− capp(·)

( k⋃

i=1

Ai,Ω
)

= capp(·)

(( k−1⋃

i=1

Ei

)

∪Ek,Ω
)

− capp(·)

(( k−1⋃

i=1

Ai

)

∪ Ek,Ω
)

+ capp(·)

(

Ek ∪
k−1⋃

i=1

Ai,Ω
)

− capp(·)

(

Ak ∪
k−1⋃

i=1

Ai,Ω
)

= capp(·)

( k−1⋃

i=1

Ei

)

− capp(·)

( k−1⋃

i=1

Ai,Ω
)

+ capp(·)
(
Ek,Ω

)
− capp(·)

(
Ak,Ω

)
.

By the induction assumption we obtain

capp(·)

( k⋃

i=1

Ei,Ω
)

− capp(·)

( k⋃

i=1

Ai,Ω
)

�
k−1∑

i=1

(

capp(·)(Ei,Ω) − capp(·)(Ai,Ω)
)

+ capp(·)(Ek,Ω) − capp(·)(Ak,Ω)

=
k∑

i=1

(

capp(·)(Ei,Ω) − capp(·)(Ai,Ω)
)

.

Thus the assertion of the lemma is proved if all Ei and Ai are compact sets.
Assume now that each Ei and each Ai is open. Let ε > 0. We choose

compact sets Fi ⊂ Ai such that

capp(·)(Fi,Ω) � capp(·)(Ai,Ω) − ε

and a compact set K ⊂
⋃
iEi such that Fi ⊂ K for every i = 1, . . . , k and

capp(·)(K,Ω) � capp(·)

( k⋃

i=1

Ei,Ω
)

− ε.
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We define
Ki := {x ∈ K ∩ Ei : dist(x, ∂Ei) � δ}

where δ := min
{

dist(K,Rn\∪∞
i=1Ei), dist(F1, ∂A1), . . . ,dist(Fk, ∂Ak)

}
. Now

we have Fi ⊂ Ki and K =
⋃k
i=1Ki. Using the previous case we get

capp(·)

( k⋃

i=1

Ei,Ω
)

− capp(·)

( k⋃

i=1

Ai,Ω
)

� capp(·)

( k⋃

i=1

Ki,Ω
)

− capp(·)

( k⋃

i=1

Fi,Ω
)

+ ε

�
k∑

i=1

(

capp(·)(Ki,Ω) − capp(·)(Fi,Ω)
)

+ ε

�
k∑

i=1

(

capp(·)(Ei,Ω) − capp(·)(Ai,Ω)
)

+ (k + 1) ε.

Letting ε → 0 we obtain the claim for open sets Ei and Ai.
Assume now that Ei and Ai are arbitrary sets. Let ε > 0. We choose open

sets Ui such that Ei ⊂ Ui and capp(·)(Ui,Ω) � capp(·)(Ei,Ω) + ε for every
i = 1, . . . k. Then we choose open sets Vi such that Ai ⊂ Vi ⊂ Ui and

capp(·)

( k⋃

i=1

Vi,Ω
)

� capp(·)

( k⋃

i=1

Ai,Ω
)

+ ε.

Now it follows by the previous case that

capp(·)

( k⋃

i=1

Ei,Ω
)

− capp(·)

( k⋃

i=1

Ai,Ω
)

� capp(·)

( k⋃

i=1

Ui,Ω
)

− capp(·)

( k⋃

i=1

Vi,Ω
)

+ ε

�
k∑

i=1

(

capp(·)(Ui,Ω) − capp(·)(Vi,Ω)
)

+ ε

�
k∑

i=1

(

capp(·)(Ei,Ω) − capp(·)(Ai,Ω)
)

+ (k + 1)ε.

Letting ε → 0 we obtain the claim for arbitrary setsEi andAi. This completes
the proof. ��
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Theorem 10.2.6. Let p ∈ P(Ω). The set function E �→ capp(·)(E,Ω) has
the following properties:

(C6) If E1 ⊂ E2 ⊂ · · · are subsets of Ω, then

lim
i→∞

capp(·)(Ei,Ω) = capp(·)

( ∞⋃

i=1

Ei,Ω
)

.

(C7) For Ei ⊂ Ω, i ∈ N, we have

capp(·)

( ∞⋃

i=1

Ei,Ω
)

�
∞∑

i=1

capp(·)(Ei,Ω).

Proof. Denote E :=
⋃∞
i=1 Ei. Note first that (C2) implies

lim
i→∞

capp(·)(Ei,Ω) � capp(·)(E,Ω).

To prove the opposite inequality we may assume that lim
i→∞

capp(·)(Ei,Ω) < ∞.

Consequently, it follows by (C2) that capp(·)(Ei,Ω) <∞ for each i. Fix ε > 0
and choose open sets Ui such that Ei ⊂ Ui ⊂ Ω and

capp(·)(Ui,Ω) � capp(·)(Ei,Ω) + ε 2−i.

Using Lemma 10.2.5 we derive from this

capp(·)

( k⋃

i=1

Ui,Ω
)

− capp(·)

( k⋃

i=1

Ei,Ω
)

�
k∑

i=1

ε 2−i < ε.

If K ⊂
⋃∞

1=i Ui is compact, then K ⊂
⋃k

1=i Ui for some k, and we have

capp(·)(K,Ω) � capp(·)

( k⋃

i=1

Ui,Ω
)

� capp(·)

( k⋃

i=1

Ei,Ω
)

+ ε

= capp(·)(Ek,Ω) + ε � lim
k→∞

capp(·)(Ek,Ω) + ε,

where we used that
⋃k
i=1 Ei = Ek. Since

⋃∞
i=1 Ui is open, we obtain that

capp(·)(E,Ω) � capp(·)

( ∞⋃

i=1

Ui,Ω
)

= sup
K

capp(·)(K,Ω)

� lim
k→∞

capp(·)(Ek,Ω) + ε,

where the supremum is taken over all compact sets K ⊂
⋃∞
i=1 Ui. So (C6) is

proved.
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The proof of property (C7) is exactly the same as the proof of prop-
erty (C7) in Theorem 10.1.3. ��

In analogy with Corollaries 10.1.6 and 10.1.7 we have

Corollary 10.2.7. If p ∈ P(Ω), then the relative p(·)-capacity is an outer
measure and a Choquet capacity. In particular, all Borel sets E ⊂ Ω are
capacitable, this is,

sup
K⊂E

K compact

capp(·)(K,Ω) = capp(·)(E,Ω) = inf
E⊂U⊂Ω
U open

capp(·)(U,Ω).

In contrast to the Sobolev capacity, where 1 < p− � p+ < ∞ was needed
for these properties, here we need only measurability of the exponent p.

As has been explained in Chap. 9, smooth functions are not always dense
in the variable exponent Sobolev space. However, when they are, we can use
the usual change of test-function set. The proof is the same as in the Sobolev
capacity case, Lemma 10.1.9, and hence omitted.

Proposition 10.2.8. Suppose that p ∈ P(Ω) is a bounded exponent and that
C∞(Ω) ∩W 1,p(·)(Ω) is dense in W 1,p(·)(Ω). If K ⊂ Ω is compact, then

capp(·)(K,Ω) = inf
u∈R∞

0 (K,Ω)

ˆ

Ω

|∇u(x)|p(x) dx,

where R∞
0 (K,Ω) := {u ∈ C∞

0 (Ω) : u > 1 on K}.
Using a suitable test function, it is easy to obtain an upper estimate for

capp(·)(B(x, r), B(x, 2r)).

Lemma 10.2.9. Let p ∈ P log(Ω) be bounded. For every ball B(x, 2r) ⊂ Ω
with r � 1 we have

capp(·)
(
B(x, r), B(x, 2r)

)
� c rn−p(x),

where c depends on n and the log-Hölder constant of p.

Proof. Let u be a function which equals 1 on B(x, r), 3 − 2|y − x|/r on
B(x, 3r/2) \ B(x, r) and 0 otherwise. Since u is a suitable test function for
the capacity of the pair (B(x, r), B(x, 2r)) (Proposition 10.2.2), we find that

capp(·)(B(x, r), B(x, 2r)) � �p(·)(∇u) � c

ˆ

B(x,2r)

r−p(y) dy

� c

ˆ

B(x,2r)

r
−p+

B(x,2r) dy = c r
n−p+

B(x,2r) .

Since p is log-Hölder continuous we obtain rn−p
+
B(x,2r) � c rn−p(x). ��
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The following proposition gives a lower bound for capp(·)(B(x, r), B(x,R)).
In particular we prove that

capp(·)(B(x, r), B(x, 2r)) � c(n, p) rn−p(x)

for p(x) < n. The result is from Alkhutov and Krasheninnikova [20, Proposi-
tion 5.2].

Proposition 10.2.10. Let p ∈ P log(B(x,R)) satisfy 1 < p− � p+ < ∞.
Assume that B(x, r) ⊂ B(x,R). If p(x) �= n, then

capp(·)(B(x, r), B(x,R)) � c

∣
∣
∣
∣
p(x) − 1
n− p(x)

∣
∣
∣
1−p(x)∣∣

∣
∣R

p(x)−n
p(x)−1 − r

p(x)−n
p(x)−1

∣
∣
∣
1−p(x)

.

If p(x) = n, then

capp(·)(B(x, r), B(x,R)) � c log
(R

r

)1−n
.

In both cases the constant depends only on the dimension n, p and R.

Proof. We assume without loss of generality that x = 0. We change to
spherical coordinates z = (�, ω) with |ω| = 1. Then we have

capp(·)(B(0, r), B(0, R)) � inf
u

ˆ

∂B(0,1)

R̂

r

∣
∣
∣
∂u

∂�

∣
∣
∣
p(z)

�n−1 d� dω

where the infimum is taken over continuous Sobolev functions u with compact
support in B(0, R) being equal to one on B(0, r). We are therefore led to
minimize the integral

R̂

r

|ψ′(�)|p(�)�n−1 d�

among functions ψ ∈ W 1,p(·)(r,R) with ψ(r) = 1 and ψ(R) = 0. It is clear
that we can assume ψ′ � 0 when looking for the minimizer. Let (ψi) be a
minimizing sequence. Then it is bounded in W 1,p(·)(r,R). Since the variable
exponent Sobolev space is reflexive (Theorem 8.1.6), we find a subsequence,
denoted by (ψi) again, converging weakly to ψ ∈ W 1,p(·)(r,R) and by the
weak (sequential) lower semicontinuity of the modular (Theorem 3.2.9) we
have

R̂

r

|ψ′(�)|p(�)�n−1 d� � lim
i→∞

R̂

r

|ψ′
i(�)|p(�)�n−1 d�.
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By the Banach-Saks property, Corollary 8.1.7, we find a sequence (Ψi) of
convex combinations of ψi converging to ψ in W 1,p(·)(r,R), and hence 0 �
ψ � 1 and

R̂

r

|ψ′(�)|p(�)�n−1 d� = lim
i→∞

R̂

r

|Ψ′
i(�)|p(�)�n−1 d�.

Since each Ψi is a linear combination, we find
´ R
r Ψ′

i(�)d� � 1. This yields´ R
r ψ′(�)d� � 1 and thus ψ is the minimizer. Using �n−1 d� as a measure,

we obtain as in the proof of Lemma 13.1.3 that p(�)(ψ′(�))p(�)−1 is a con-
stant almost everywhere. Thus it follows that every radial minimizer has a
derivative of the form

ξ(�) :=
( c

p(�)

) 1
p(�)−1

,

where the constant c depends on the direction. Since 1 < p− � p+ < ∞ and´ R
r

|ξ|d� = 1, we obtain

c � min
{

1,
1

Rp+−1

}
.

From now on we assume that this lower bound is used in the definition of ξ.
By the log-Hölder continuity of p we obtain |ξ|p(�,ω) � c |ξ|p(0). We therefore
conclude that

capp(·)(B(0, r), B(0, R)) � c

ˆ

∂B(0,1)

R̂

r

|ξ(�)|p(0)�n−1 d� dω

� c

R̂

r

|ξ(�)|p(0)�n−1 d�.

Hölder’s inequality gives

1 �
R̂

r

|ξ| d� �
( R̂

r

|ξ|p(0)�n−1 d�

) 1
p(0)
( R̂

r

�
1−n
p(0)−1 d�

) 1
p(0)′

.

Raising this to the power p(0) and rearranging gives

( R̂

r

�
1−n
p(0)−1 d�

)1−p(0)
�

R̂

r

|ξ|p(0)�n−1 d�.
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Thus we obtain

capp(·)(B(0, r), B(0, R)) � c

( R̂

r

�
1−n
p(0)−1 d�

)1−p(0)
.

By a simple computation we obtain

R̂

r

�
1−n
p(0)−1 d� =

⎧
⎨

⎩

∣
∣ p(0)−1
p(0)−n

∣
∣
∣
∣R

p(0)−n
p(0)−1 − r

p(0)−n
p(0)−1

∣
∣, for p(0) �= n,

log
(
R
r

)
, for p(0) = n.

Combining these estimates yields the claim. ��

10.3 The Relationship Between the Capacities

The following two theorems associate the Sobolev p(·)-capacity and relative
p(·)-capacity. Specifically, we give sufficient conditions on the exponent p that
sets of capacity zero coincide. This section is based on Harjulehto, Hästö and
Koskenoja [193].

Lemma 10.3.1. Assume that p ∈ P(Rn) is bounded. If Ω is bounded and
K ⊂ Ω is compact, then

Cp(·)(K) � cmax
{

capp(·)(K,Ω)
1
p+ , capp(·)(K,Ω)

}
,

where the constant c depends on the dimension n and diam(Ω).

Proof. We may assume that capp(·)(K,Ω) < ∞. Let u ∈ Rp(·)(K,Ω) be a
function with �p(·)(|∇u|) < ∞. Let us extend u by zero outside of Ω and set
v := min{1, u}. Since u is greater than one in an open set containing K we
obtain that v ∈ Sp(·)(K) and thus

Cp(·)(K) �
ˆ

Rn

|v(x)|p(x) + |∇v(x)|p(x) dx

�
ˆ

Rn

|v(x)|p(x) + |∇u(x)|p(x) dx.

Since 0 � v � 1, we haveˆ

Ω

|v(x)|p(x) dx �
ˆ

Ω

|v(x)| dx �
ˆ

Ω

|u(x)| dx.
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Using the classical Poincaré inequality in L1(Ω) and the embedding Lp(·)(Ω)
↪→ L1(Ω) we obtain that

‖u‖1 � c diam(Ω)‖∇u‖1 � c diam(Ω)
(
1 + |Ω|

)
‖∇u‖Lp(·)(Ω).

Since Lemma 3.2.5 implies

‖∇u‖Lp(·)(Ω) � max
{
�p(·)(|∇u|)

1
p+ , �p(·)(|∇u|)

1
p−
}
,

the result follows by taking a minimizing sequence. ��
Theorem 10.3.2. Assume that p ∈ P(Rn) with 1 < p− � p+ < ∞. If Ω is
bounded and E ⊂ Ω, then

Cp(·)(E) � cmax{capp(·)(E,Ω)
1
p+ , capp(·)(E,Ω)},

where the constant c depends on the dimension n and diam(Ω).

Proof. Let E ⊂ Ω be a set with capp(·)(E,Ω) < ∞. By the definition of
capp(·)(E,Ω) there exists open sets Ui ⊃ E with capp(·)(Ui,Ω) → capp(·)(E,Ω)
as i → ∞. Let U :=

⋂∞
i=1 Ui. Then U is a Borel set and hence by the Choquet

property (Corollary 10.1.7)

Cp(·)(E) � Cp(·)(U) = sup
K
Cp(·)(K)

where the supremum is taken over all compact sets K ⊂ U . Using Lemma
10.3.1 and the Choquet property (Corollary 10.2.7) we obtain

Cp(·)(E) � c sup
K

max{capp(·)(K,Ω)
1
p+ , capp(·)(K,Ω)}

� cmax{capp(·)(U,Ω)
1
p+ , capp(·)(U,Ω)}.

Since capp(·)(U,Ω) = capp(·)(E,Ω) the claim follows. ��

Remark 10.3.3. Assume that p ∈ P(Rn) with 1 < p− � p+ < ∞ is such
that the Poincaré inequality holds, for example p ∈ A with 1 < p− � p+ < ∞.
We have, using the notation of Lemma 10.3.1,

‖v‖Lp(·)(Ω) � ‖u‖Lp(·)(Ω) � c ‖∇u‖Lp(·)(Ω).

Thus the proofs of Lemma 10.3.1 and Theorem 10.3.2, and Lemma 3.2.5 yield

Cp(·)(E) � cmax{capp(·)(E,Ω)
p−
p+ , capp(·)(E,Ω)

p+

p− },

where c depends on n and the constant in the Poincaré inequality.
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To get the converse implication we need to assume that continuous
functions are dense in the variable exponent Sobolev space.

Proposition 10.3.4. Let p ∈ P(Rn) be a bounded exponent. Suppose that
W 1,p(·)(Rn) ∩ C(Rn) is dense in W 1,p(·)(Rn). If E ⊂ Ω with Cp(·)(E) = 0,
then capp(·)(E,Ω) = 0.

Proof. Let K ⊂ Ω be compact with Cp(·)(K) = 0. By the density of con-
tinuous functions, it follows as in Lemma 10.1.9 that the set of admissible
functions in the definition of the Sobolev p(·)-capacity can be replaced by the
subset S0

p(·)(K) := Sp(·)(K) ∩ C(Rn). Therefore we may choose a sequence
(ui) of functions belonging to S0

p(·)(K) such that ‖ui‖W 1,p(·)(Rn) → 0. Let
η ∈ C∞

0 (Ω) be a cut-off function that is one in K. It is easy to show that ηui
is in Rp(·)(K,Ω), so we obtain capp(·)(K,Ω) = 0.

Let E ⊂ Ω with Cp(·)(E) = 0. Since the Sobolev capacity is an outer
capacity, there exists a sequence of open sets Ui ⊃ E with Cp(·)(Ui) → 0 as
i → ∞. Let U :=

⋂∞
i=1 Ui ∩ Ω. Then U is a Borel set containing E which

satisfies Cp(·)(U) = 0. By the Choquet property (Corollary 10.2.7) we obtain

capp(·)(E,Ω) � capp(·)(U,Ω) = sup
K

capp(·)(K,Ω)

where the supremum is taken over all compact sets K ⊂ U . By the first part
of the proof we obtain capp(·)(K,Ω) = 0 and hence the claim follows. ��
Theorem 10.3.5. Let p ∈ P(Rn) be a bounded exponent and suppose that
W 1,p(·)(Rn)∩C(Rn) is dense in W 1,p(·)(Rn). Let B be a ball. For E ⊂ B we
have

capp(·)(E, 2B) � c
(

1 + max
{

diam(B)−p
+
2B , diam(B)−p

−
2B
})

Cp(·)(E),

where the constant c depends only on p+.

Proof. Let K ⊂ B be compact. As in the previous proof we note that
S0
p(·)(K) can be used as admissible functions for the Sobolev capacity. Fix
u ∈ S0

p(·)(K). Let η ∈ C∞
0 (2B) be a cut-off function that is one in K and

|∇η| � c diam(B)−1. It is easy to show that ηu belongs to R̃p(·)(K, 2B). We
obtainˆ

2B

|∇(uη)|p(x) dx

�
ˆ

2B

|η∇u|p(x) dx+
ˆ

2B

|u∇η|p(x) dx

�
ˆ

2B

|∇u|p(x) dx+ max
{( c

diam(B)

)p+2B
,
( c

diam(B)

)p−2B
} ˆ

2B

|u|p(x) dx.

By taking a minimizing sequence we obtain the claim for compact sets.
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Let E ⊂ B. Since the Sobolev capacity is an outer capacity, there exists
a sequence of open sets E ⊂ Ui ⊂ 2B with Cp(·)(Ui) → Cp(·)(E) as i → ∞.
Let U :=

⋂∞
i=1 Ui. Then U is a Borel set with Cp(·)(U) = Cp(·)(E). By the

Choquet property (Corollary 10.2.7) we obtain

capp(·)(E, 2B) � capp(·)(U, 2B) = sup
K

capp(·)(K, 2B)

where the supremum is taken over all compact sets K ⊂ U . By the first part
of the proof and property (C2) of the Sobolev capacity we obtain

capp(·)(E, 2B) � c sup
K⊂U

Cp(·)(K) � cCp(·)(U) = cCp(·)(E),

where the constant c is the one from the first part of the proof. ��

10.4 Sobolev Capacity and Hausdorff Measure

In this section we study how the Sobolev p(·)-capacity relates to the Hausdorff
measure. We start with some trivial conclusions which do not really use the
variability of the exponent.

The following lemma follows easily from the definition of the capacity.

Lemma 10.4.1. Let p ∈ P(Rn). Every measurable set E ⊂ R
n satisfies

|E| � Cp(·)(E).

Proof. If u ∈ Sp(·)(E), then there is an open set U ⊃ E such that u � 1 in U
and hence

|E| � |U | � �p(·)(u) � �1,p(·)(u).

We obtain the claim by taking the infimum over all p(·)-admissible functions
for E. ��

The s-dimensional Hausdorff measure of a set E ⊂ R
n is denoted by

Hs(E), see [129, Sect. 2.1] or [288] or Definition 10.4.4 which is classic when
s is a constant function.

Proposition 10.4.2. Suppose that p ∈ P(Rn) is bounded, and let E ⊂ R
n.

If Cp(·)(E) = 0, then Hs(E) = 0 for all s > n− p−. If Hn−p+(E) < ∞, then
Cp(·)(E) = 0.

Proof. If Cp(·)(E) = 0 we obtain by Proposition 10.1.10 that Cp−(E) = 0.
But we know from [129, Theorem 4, p. 156] that this implies the first claim.

It follows from [129, Theorem 3, p. 154] that Cp+(E) = 0. And thus the
second claim follows by Proposition 10.1.10. ��
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Corollary 10.4.3. Suppose that p ∈ P(Rn) satisfies n < p− � p+ < ∞, and
let E ⊂ R

n. Then Cp(·)(E) = 0 if and only if E = ∅.

Proof. Since H0 is a counting measure [129, Theorem 2, p. 63], the implica-
tion ‘⇒’ follows directly from Theorem 10.4.2. The implication in the other
direction is (C1). ��

Next we define the variable dimension Hausdorff measure that has earlier
been used in Harjulehto, Hästö and Latvala [199].

Definition 10.4.4. Let s : R
n → (0, n] be a continuous function. We define

the variable dimension Hausdorff measure by first letting

Hs(·)
δ (E) := inf

{∑

i

diam(Bi)s(xi) : E ⊂
⋃

i

Bi, diam(Bi) � δ
}
,

where xi is the center of the ball Bi, and then taking the limit:

Hs(·)(E) := lim
δ→0

Hs(·)
δ (E).

Note that the limit exists since for δ′ < δ we have Hs(·)
δ (E) � Hs(·)

δ′ (E).
This construction is just a special case of a measure construction due to
Carathéodory, hence Hs(·) is a Borel regular outer measure [154, Sect. 2.10.1,
p. 169].

There is some degree of arbitrariness in choosing the value of s at the
center of the ball. We can similarly define lower and upper variable Hausdorff
measures by taking the limit δ → 0 of

Hs(·)
δ (E) := inf

{∑

i

diam(Bi)
s+Bi : E ⊂

⋃

i

Bi, diam(Bi) � δ
}

and

Hs(·)
δ (E) := inf

{∑

i

diam(Bi)
s−Bi : E ⊂

⋃

i

Bi, diam(Bi) � δ
}
.

However, we have the following uniqueness result:

Proposition 10.4.5. If s : R
n → (0, n] is log-Hölder continuous, then

c1 Hs(·)(E) � Hs(·)(E) � Hs(·)
(E) � c2 Hs(·)(E)

for every E ⊂ R
n. The constants c1 and c2 depend only on the log-Hölder

constant of p.
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Proof. For any x ∈ R
n and r < 1/2 we have

1 � diam(B(x, r))s
−
B(x,r)−s+B(x,r) � c

by the log-Hölder continuity condition, so the claim follows. ��

The following lemma is a modification of [129, Chap. 2.4.3, Theorem 2,
p. 77].

Lemma 10.4.6. Let p ∈ P(Rn) be bounded and s : R
n → (0, n] be continu-

ous. Then

Hs(·)
({
x ∈ R

n : lim sup
r→0

r−s(x)
ˆ

B(x,r)

|f |p(y)dy = ∞
})

= 0

for every f ∈ Lp(·)(Rn).

Proof. Let λ > 0 and
Eλ :=

{
x ∈ R

n : lim sup
r→0

r−s(x)
ˆ

B(x,r)

|f |p(y)dy > λ
}
.

Let δ > 0. For every x ∈ Eλ there exists rx � δ such that
ˆ

B(x,rx)

|f |p(y)dy > λ rs(x)x .

By the basic covering theorem (Theorem 1.4.5) there exists a countable
subfamily of pair-wise disjoint balls B(xi, rxi) such that

Eλ ⊂
∞⋃

i=1

B(xi, 5rxi).

Since E ⊂ Eλ for all λ > 0, we obtain

Hs
δ(E) � c

∑

i

rs(xi)xi � c
∑

i

λ−1

ˆ

B(x,rxi)

|f |p(y) dy

� c λ−1

ˆ

Rn

|f |p(y) dy

and by letting δ → 0

Hs(E) � c λ−1

ˆ

Rn

|f |p(y) dy .

This yields the claim, since λ can be chosen arbitrary large. ��
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Theorem 10.4.7. Let p ∈ P log(Rn) be bounded and let s : R
n → (0, n] be

continuous and satisfy s > n− p. If Cp(·)(E) = 0, then Hs(·)(E) = 0.

Proof. Let ui ∈ W 1,p(·)(Rn), i ∈ N, be such that E ⊂ int{ui � 1} and
‖ui‖1,p(·) � 2−i. We write u :=

∑
i ui and note that u ∈ W 1,p(·)(Rn). For

every natural number k and x ∈ E we find r such that ui(y) � 1 for every
i = 1, . . . , k and almost every y ∈ B(x, r). Thus we conclude

lim sup
r→0

 

B(x,r)

u dy = ∞. (10.4.8)

Suppose that x is such that

lim sup
r→0

r−
s(x)
p(x) ‖∇u‖Lp(·)(B(x,r)) =: c < ∞.

Next we choose R ∈ (0, 1) so small that

‖∇u‖Lp(·)(B(x,r)) < c r
s(x)
p(x)

for every 0 < r � R. Denote Bi := B(x, 2−iR). By the classical Poincaré
inequality and Hölder’s inequality, we obtain

|〈u〉Bi+1 − 〈u〉Bi | �
 

Bi+1

|u− 〈u〉Bi | dy � c 2(i+1)n

ˆ

Bi

|u− 〈u〉Bi | dy

� c 2−i(1−n)̂

Bi

|∇u| dy � c 2−i(1−n)‖1‖Lp′(·)(Bi)‖∇u‖Lp(·)(Bi).

Lemma 4.5.3 and the log-Hölder continuity yield ‖1‖Lp′(·)(Bi) � c (2−iR)
n

p′(x) .
Thus

|〈u〉Bi+1 − 〈u〉Bi | � c 2−i
(
1−n+ n

p′(x)+
s(x)
p(x)

)

= c 2−i
p(x)+s(x)−n

p(x) .

Hence, for k > j we have

|〈u〉Bk − 〈u〉Bj | �
k−1∑

i=j

|〈u〉Bi+1 − 〈u〉Bi | � c
k−1∑

i=j

2−i
p(x)+s(x)−n

p(x)

and thus (〈u〉Bi) is a Cauchy sequence since s > n− p. We obtain

lim sup
r→0

 

B(x,r)

u dy < ∞,
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which yields by (10.4.8) that x �∈ E. Thus we conclude that

E ⊂
{
x ∈ R

n : lim sup
r→0

r−
s(x)
p(x) ‖∇u‖Lp(·)(B(x,r)) = ∞

}
.

For r � 1 we obtain by the log-Hölder continuity of p that

r−
s(x)
p(x) ‖∇u‖Lp(·)(B(x,r)) � c

∥
∥r−

s(x)
p(·) |∇u|

∥
∥
Lp(·)(B(x,r))

.

Since p is bounded the norm is finite if and only if the modular is and hence
we conclude

E ⊂
{
x ∈ R

n : lim sup
r→0

r−s(x)
ˆ

B(x,r)

|∇u|p(y) dy = ∞
}
,

and the claim follows by Lemma 10.4.6. ��

Theorem 10.4.9. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞. If E ⊂ R
n,

then
Cp(·)(E) � cHmax{n−p(·),0}(E).

Here the constant c depends on n and p.

Proof. Fix δ > 0. We cover the set E by balls (B(xi, ri))∞i=1, where xi ∈ E
and ri < min{δ, 1}, for every i ∈ N. Using the same test function as in the
proof of Lemma 10.2.9 we obtain

Cp(·)(B(xi, ri)) � c rn−p(xi).

When p(xi) > n the previous estimate is bad and hence we derive a better
one. Using max{2 − |x− xi|, 0} as a test function we obtain

Cp(·)(B(xi, ri)) � (2p
+

+ 1)|B(0, 2)|

for ri < 1. Thus the subadditivity of the capacity (C7) yields

Cp(·)(E) �
∞∑

i=1

Cp(·)(B(xi, ri)) � c

∞∑

i=1

min{rn−p(xi)i , 1}.

The claim follows by letting δ → 0. ��



Chapter 11

Fine Properties of Sobolev Functions

In this chapter we study fine properties of Sobolev functions. By definition,
Sobolev functions are defined only up to Lebesgue measure zero and thus it
is not always clear how to use their point-wise properties. We pick a good
representative from every equivalence class of Sobolev functions and show
that this representative, called quasicontinuous, has many good properties.
Our main tools are the capacities studied in Chap. 10. Our results general-
ize classical ones to the variable exponent case. In Sect. 11.1 we show that
each Sobolev function has a quasicontinuous representatives under natural
conditions on the exponent p and define a capacity based on quasicontinuous
functions. In Sect. 11.2 we study different definitions of Sobolev spaces with
zero boundary values. We continue by studying removable sets for Sobolev
spaces in terms of capacity in Sect. 11.3. Then in Sect. 11.4 we show that
quasievery point is a Lebesgue point of a Sobolev function when p is globally
log-Hölder continuous. We end this chapter in Sect. 11.5 with an example
which shows that for more general exponents this is not the case.

11.1 Quasicontinuity

We show that each Sobolev function has a quasicontinuous representative
if p is log-Hölder continuous. Then we define the Sobolev capacity using
these representatives. Since we use the Sobolev capacity we have to assume
1 < p− � p+ < ∞. This section is based on [194, 196, 202] by Harjulehto,
Hästö, Koskenoja, Varonen and Martio.

Definition 11.1.1. A claim is said to hold p(·)-quasieverywhere if it holds
everywhere except in a set of Sobolev p(·)-capacity zero. A function u : Ω → R

is said to be p(·)-quasicontinuous if for every ε > 0 there exists an open set
U with Cp(·)(U) < ε such that u restricted to Ω \ U is continuous.

Let u and v be quasicontinuous. It is clear that u+v, au (a ∈ R), min{u, v}
and max{u, v} are quasicontinuous.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 11,
c© Springer-Verlag Berlin Heidelberg 2011

339
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The following lemma and theorem give sufficient conditions for the exis-
tence of a p(·)-quasicontinuous representative.

Lemma 11.1.2. Let p ∈ P(Rn) satisfy 1 < p− � p+ < ∞. For each Cauchy
sequence with respect to the W 1,p(·)(Rn)-norm of functions from C(Rn) ∩
W 1,p(·)(Rn) there is a subsequence which converges pointwise p(·)-quasievery-
where in R

n. Moreover, the convergence is uniform outside a set of arbitrary
small Sobolev p(·)-capacity.

Proof. Let (ui) be a Cauchy sequence in C(Rn) ∩W 1,p(·)(Rn). We assume
without loss of generality, by considering a subsequence if necessary, that
‖ui − ui+1‖1,p(·) � 4−i, i ∈ N. We denote

Ui := {x ∈ R
n : |ui(x) − ui+1(x)| > 2−i},

for i ∈ N and

Vj :=
∞⋃

i=j

Ui.

Using Proposition 8.1.9 it is easy to show that v := 2i|ui−ui+1| ∈W 1,p(·)(Rn)
and by assumption we have ‖v‖1,p(·) � 2−i. Since �p(·)(u) � ‖u‖p(·) if
‖u‖p(·) � 1, it follows that

Cp(·)(Ui) � �1,p(·)(v) � 2i‖ui − ui+1‖1,p(·) � 2−i.

The subadditivity of the Sobolev p(·)-capacity (Theorem 10.1.3 (C7)) implies
that

Cp(·)(Vj) �
∞∑

i=j

Cp(·)(Ui) �
∞∑

i=j

2−i � 21−j.

Hence we obtain

Cp(·)
( ∞⋂

j=1

Vj

)
� lim

j→∞
Cp(·)(Vj) = 0.

Since (ui) converges pointwise in R
n \
⋂∞
j=1 Vj , we have proved the first claim

of the lemma. Moreover, we have

|ul(x) − uk(x)| �
k−1∑

i=l

|ui(x) − ui+1(x)| �
k−1∑

i=l

2−i < 21−l

for every x ∈ R
n \ Vj and every k > l > j. Therefore the convergence is

uniform in R
n \ Vj . ��
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Theorem 11.1.3. Let p ∈ P(Rn) with 1 < p− � p+ < ∞ be such that
C(Rn)∩W 1,p(·)(Rn) is dense in W 1,p(·)(Rn). Then for each u ∈W 1,p(·)(Rn)
there exists a p(·)-quasicontinuous function v ∈ W 1,p(·)(Rn) such that u = v
almost everywhere in R

n.

Proof. Let u ∈ W 1,p(·)(Rn). It follows from the density condition that there
exist functions ui ∈ C(Rn)∩W 1,p(·)(Rn) such that ui → u in W 1,p(·)(Rn). By
Lemma 11.1.2 there exists a subsequence that converges uniformly outside a
set of arbitrarily small capacity. But uniform convergence implies continuity
of the limit function and so we get a function continuous restricted outside a
set of arbitrarily small capacity, as was to be shown. ��

We recall the following lemma. For the proof of (a) we refer to [233]; (b)
follows directly from (a) by using it for the function max{u− v, 0}.

Lemma 11.1.4. Let p ∈ P(Rn) with 1 < p− � p+ < ∞, and let u and v be
p(·)-quasicontinuous functions in R

n. Suppose that U ⊂ R
n is open.

(a) If u = v almost everywhere in U , then u = v p(·)-quasieverywhere in U .
(b) If u � v almost everywhere in U , then u � v p(·)-quasieverywhere in U .

Corollary 11.1.5. Let p ∈ P log(Ω) with 1 < p− � p+ < ∞. Then for every
u ∈ W 1,p(·)(Ω) there exists a p(·)-quasicontinuous function v ∈ W 1,p(·)(Ω)
such that u = v almost everywhere in Ω.

Proof. Let z ∈ Ω and let (ψi) be a sequence of C∞
0 (Ω) functions that equal

one in Ωi := {x ∈ Ω : dist(x, ∂Ω) > 1
i } ∩ B(z, i). Then uψi belongs to

W 1,p(·)(Rn) and uψi = u in Ωi.
By Theorem 11.1.3 there exist quasicontinuous functions vi ∈W 1,p(·)(Rn)

such that vi equals to uψi almost everywhere in R
n. Let j > i. Since vi and

vj coincide almost everywhere in Ωi, they coincide p(·)-quasieverywhere in
Ωi by Lemma 11.1.4 (a). Let ε > 0 and Vi ⊂ R

n be such that vi restricted to
R
n \Vi is continuous, vi coincides with vi−1 in Ωi−1 \Vi and Cp(·)(Vi) � 2−iε.

Set ũ(x) = vi(x), where i ∈ N is the smallest number with x ∈ B(z, i) and
dist(x, ∂Ω) > 1

i . Then ũ equals to u almost everywhere in Ω, ũ restricted to
Ω \
⋃
i Vi is continuous and

Cp(·)
(⋃

i

Vi

)
�
∑

i

Cp(·)(Vi) � ε. ��

We next consider a Sobolev p(·)-capacity in terms of p(·)-quasicontinuous
functions.

Definition 11.1.6. For p ∈ P(Rn), 1 < p− � p+ < ∞, and E ⊂ R
n we

denote
C̃p(·)(E) := inf

u∈S̃p(·)(E)

ˆ

Rn

|u|p(x) + |∇u|p(x) dx
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where

S̃p(·)(E) := {u ∈ W 1,p(·)(Rn) : u is p(·)-quasicontinuous,
u � 1 p(·)-quasieverywhere in E, andu � 0}.

We use the convention that C̃p(·)(E) = ∞ if S̃p(·)(E) = ∅.

Note that we can always calculate the infimum over quasicontinuous func-
tions that are one quasieverywhere in E: this is not restrictive, since if u
is quasicontinuous and greater than or equal to one in E, then min{u, 1} is
quasicontinuous and equal to one quasieverywhere in E.

Lemma 11.1.7. Let p ∈ P(Rn) with 1 < p− � p+ < ∞, and let E be a
subset of R

n. Suppose that u ∈ S̃p(·)(E). Then for every ε ∈ (0, 1) there
exists a function v ∈ Sp(·)(E) such that �1,p(·)(u− v) < ε.

Proof. Let δ := ε/(2p
+

(1 + �1,p(·)(u))), and let U ⊂ R
n be an open set such

that u restricted to R
n \ U is continuous and Cp(·)(U) < δ. Moreover, let

w ∈ Sp(·)(U) be such that �1,p(·)(w) < δ, and write v := (1 + δ)u + w. It is
easy to show that v ∈ W 1,p(·)(Rn). The set

G := {x ∈ R
n \ U : (1 + δ)u(x) > 1} ∪ U

is open and contains E. Since v � 1 on G, we get v ∈ Sp(·)(E). Moreover we
obtain

�1,p(·)(u− v) =
ˆ

Rn

|w(x) + δ u(x)|p(x) + |∇(w(x) + δ u(x))|p(x) dx

� 2p
+(
�1,p(·)(w) + δp

+
�1,p(·)(u)

)

< 2p
+(
δ + δ �1,p(·)(u)

)
� ε.

��

Next we show that if continuous functions are dense in the Sobolev space,
then we can calculate the Sobolev capacity by using the quasicontinuous
representatives.

Theorem 11.1.8. Let p ∈ P(Rn) satisfy 1 < p− � p+ <∞ and E ⊂ R
n.

(a) We have Cp(·)(E) � C̃p(·)(E).
(b) If C(Rn)∩W 1,p(·)(Rn) is dense in W 1,p(·)(Rn), then Cp(·)(E) = C̃p(·)(E).

Proof. The first claim follows by Lemma 11.1.7.
For the proof of the reverse inequality, assume that continuous functions

are dense in W 1,p(·)(Rn). Let E ⊂ R
n. Take u ∈ Sp(·)(E) and let U ⊃ E
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be an open set such that u � 1 on U . By Theorem 11.1.3, there exists a
p(·)-quasicontinuous function ũ in R

n such that u = ũ almost everywhere in
R
n and thus ũ � 1 almost everywhere in U . Lemma 11.1.4 (b) yields ũ � 1

p(·)-quasieverywhere in U . Hence ũ � 1 p(·)-quasieverywhere in E and thus
ũ ∈ S̃p(·)(E). This yields C̃p(·)(E) � Cp(·)(E), and combining this with the
first claim gives Cp(·)(E) = C̃p(·)(E). ��

Next we show that every quasicontinuous Sobolev function satisfies a weak
type capacity inequality.

Corollary 11.1.9. Let p ∈ P(Rn) satisfy 1 < p− � p+ < ∞. If
u ∈W 1,p(·)(Rn) is a p(·)-quasicontinuous function and λ > 0, then

Cp(·)({x ∈ R
n : |u(x)| > λ}) � �1,p(·)

(u

λ

)
.

Proof. Since |u| is quasicontinuous and |u|/λ is greater than one in the set
{x ∈ R

n : |u(x)| > λ}, we obtain the claim by Theorem 11.1.8 (a). ��

Also the relative capacity can be calculated over quasicontinuous functions.

Theorem 11.1.10. Let p ∈ P(Rn) with 1 < p− � p+ < ∞ be such that
C∞

0 (Ω) is dense in W 1,p(·)(Ω) and let K ⊂ Ω be compact. Then

capp(·)(K,Ω) = inf
ˆ

Ω

|∇u|p(x) dx,

where the infimum is taken over all p(·)-quasicontinuous functions u that
belong to W 1,p(·)(Ω), have compact support in Ω, and are greater than or
equal to one p(·)-quasieverywhere in K.

Proof. By definition, Propositions 10.2.2 and 10.2.3

inf
ˆ

Ω

|∇u|p(x) dx � capp(·)(K,Ω).

For the opposite inequality, let u ∈ W 1,p(·)(Ω) be a quasicontinuous function
that has compact support in Ω and that is greater than or equal to one p(·)-
quasieverywhere in K. Let u restricted to Ω \ U be continuous and let w be
a test function for U . Let η ∈ C∞

0 (Ω) be a cut of function that is one in the
support of u. Let ε > 0. We can easily calculate that if Cp(·)(U) � ε then
�1,p(·)(ηw) � c ε, where the constant c is independent of U . As in the proof
of Lemma 11.1.7 we obtain that (1 + ε)u+wη is greater than or equal to one
in an open set containing K. Then using the density of smooth functions and
the method presented in the proof of Lemma 10.1.9 we obtain a sequence
of C∞

0 (Ω) functions that are greater than or equal to one in an open set
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containing K and converging to (1 + ε)u+ wη. The claim follows since (1 +
ε)u+ wη converges to u as ε → 0. ��

For the future use we present a sharpening of Lemma 11.1.2.

Lemma 11.1.11. Let p ∈ P(Rn) satisfy 1 < p− � p+ < ∞. Suppose that
(ui) is a Cauchy sequence of p(·)-quasicontinuous functions in W 1,p(·)(Rn).
Then there is a subsequence of (ui) which converges pointwise p(·)-quasi-
everywhere to a p(·)-quasicontinuous u ∈W 1,p(·)(Rn).

Proof. There is a subsequence of (ui), denoted again by (ui), such that

∞∑

i=1

2ip
+
‖ui − ui+1‖1,p(·) < 1.

For i ∈ N denote Ei := {x ∈ R
n : |ui(x)−ui+1(x)| > 2−i} and Fj :=

⋃∞
i=j Ei.

Clearly 2i|ui−ui+1| ∈ S̃p(·)(Ei) and hence using Theorem 11.1.8 (a) we obtain

Cp(·)(Ei) �
ˆ

Rn

(2i|ui − ui+1|)p(x) + |∇(2i|ui − ui+1|)|p(x) dx

� 2ip
+
�1,p(·)(ui − ui+1).

Using the subadditivity of the Sobolev p(·)-capacity (Theorem 10.1.3 (C7))
and the unit ball property Lemma 3.2.4 (a) we obtain

Cp(·)(Fj) �
∞∑

i=j

Cp(·)(Ei) �
∞∑

i=j

2ip
+
�1,p(·)(ui − ui+1)

�
∞∑

i=j

2ip
+
‖ui − ui+1‖1,p(·).

Since
⋂∞
k=1 Fk ⊂ Fj for each j, the monotonicity of the Sobolev p(·)-capacity

(Theorem 10.1.2 (C2)) yields

Cp(·)
( ∞⋂

k=1

Fk

)
� lim

j→∞
Cp(·)(Fj) = 0.

Moreover, (ui) converges pointwise in R
n \
⋂∞
j=1 Fj , and so the conver-

gence p(·)-quasieverywhere in R
n follows. Let u be this pointwise limit. Since

W 1,p(·)(Ω) is a Banach space (Theorem 8.1.6), we obtain u ∈W 1,p(·)(Ω).
To prove the p(·)-quasicontinuity of u, let ε > 0. By the first part of this

proof, there is a set Fj ⊂ R
n such that Cp(·)(Fj) < ε

2 and that ui → u
pointwise in R

n \ Fj . Since every ui is p(·)-quasicontinuous in R
n, we may

choose open sets Gi ⊂ R
n, i ∈ N, such that Cp(·)(Gi) < ε

2i+1 and ui|Rn\Gi
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are continuous. Setting G :=
⋃
iGi we have

Cp(·)(G) = Cp(·)
( ∞⋃

i=1

Gi

)
<
ε

2
,

and
Cp(·)(Fj ∪G) � Cp(·)(Fj) + Cp(·)(G) <

ε

2
+
ε

2
= ε.

Moreover,

|ul(x) − uk(x)| �
k−1∑

i=l

|ui(x) − ui+1(x)| �
k−1∑

i=l

2−i < 21−l

for every x ∈ R
n \ (Fi ∪G) and every k > l > i. Therefore the convergence is

uniform in R
n \ (Fi ∪G), and it follows that u|Rn\(Fi∪G) is continuous. This

completes the proof. ��

We close this section by studying the continuity of Sobolev functions on
curves. A function u : Ω → R is absolutely continuous on lines, denoted by
u ∈ ACL(Ω), if u is absolutely continuous on almost every line segment in Ω
parallel to the coordinate axes. By almost every line segment we mean that
intersection of lines, that contains a line segment where u is not absolutely
continuous, and (n− 1)-dimensional hyperplane has zero Hausdorff (n− 1)-
measure for every direction. Note that an ACL function has classical partial
derivatives almost everywhere.

An ACL function is said to belong to ACLp(·)(Ω) if u, |∇u| ∈ Lp(·)(Ω).
Since W 1,p(·)(Ω) ↪→ W 1,1

loc (Ω), we obtain the following theorem by [129,
Chap. 4.9] or [399, Theorem 2.1.4].

Theorem 11.1.12. Let p ∈ P(Ω). If u ∈ ACLp(·)(Ω), then it has classical
partial derivatives almost everywhere and these coincide with the weak partial
derivatives as distributions so that u ∈ W 1,p(·)(Ω). If u ∈ W 1,p(·)(Ω), then
there exists v ∈ ACLp(·)(Ω) such that u = v almost everywhere. In short,
ACLp(·)(Ω) = W 1,p(·)(Ω).

The above theorem can be generalized to the case of curves. As in the
constant exponent case, it is possible to show that every Sobolev function is
absolute continuous on almost all rectifiable curves, see Harjulehto, Hästö,
and Martio [202] for details.

11.2 Sobolev Spaces with Zero Boundary Values

In this section we study different definitions of variable exponent Sobolev
space with zero boundary values in an open subset of R

n. This section is
based on Harjulehto [186].
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Recall that W k,p(·)
0 (Ω) is the closure of compactly supported Sobolev func-

tions in the space W k,p(·)(Ω). In Theorem 8.1.13 it is proved that W k,p(·)
0 (Ω)

is a Banach space.
The following definition for another Sobolev space with zero boundary

values uses C∞
0 -functions.

Definition 11.2.1. Let p ∈ P(Ω) and k ∈ N. The space Hk,p(·)
0 (Ω) is defined

as the closure of C∞
0 (Ω) in W k,p(·)(Ω).

Clearly Hk,p(·)
0 (Ω) ⊂W

k,p(·)
0 (Ω). The following theorem presents the basic

properties of Hk,p(·)
0 (Ω).

Theorem 11.2.2. Let p ∈ P(Ω). Then H
k,p(·)
0 (Ω) is a Banach space. If p

is bounded, then H
k,p(·)
0 (Ω) is separable and if 1 < p− � p+ < ∞, then it is

reflexive and uniformly convex.

Proof. Since Hk,p(·)
0 (Ω) is a closed subspace of W k,p(·)(Ω), separability, reflex-

ivity and uniform convexity follow from Proposition 1.4.4 and Theorem 8.1.6.
��

The following proposition shows that Definition 11.2.1 is natural if smooth
functions are dense in the Sobolev space.

Proposition 11.2.3. Let p ∈ P(Ω) be bounded such that C∞(Ω)∩W k,p(·)(Ω)
is dense in W k,p(·)(Ω). Then H

k,p(·)
0 (Ω) = W

k,p(·)
0 (Ω).

Proof. We prove only the case k = 1, the proof for the general case is
similar. Clearly H

1,p(·)
0 (Ω) ⊂ W

1,p(·)
0 (Ω). To show the other inclusion, fix

u ∈ W 1,p(·)(Ω) with a compact support in Ω. Let ψ ∈ C∞
0 (Ω) be such that

0 � ψ � 1 and ψ = 1 in spt(u). By assumption there exists a sequence
(ui) ⊂ C∞(Ω) ∩ W 1,p(·)(Ω) converging to u in W 1,p(·)(Ω). We show that
ψui → u in W 1,p(·)(Ω). First we estimate

‖u− ψui‖1,p(·) � ‖u− ui‖1,p(·) + ‖ui − ψui‖1,p(·).

The first term on the right-hand side converges to zero as i tends to infinity.
The function in the second term is zero in spt(u). We obtain

‖ui − ψui‖W 1,p(·)(Ω) = ‖ui − ψui‖W 1,p(·)(Ω\spt(u)) � c(ψ)‖ui‖W 1,p(·)(Ω\spt(u))

= c(ψ)‖ui − u‖W 1,p(·)(Ω\spt(u)),

and thus the second term also converges to zero as i tends to infinity.
Since each u ∈ W

1,p(·)
0 (Ω) can be approximated by compactly supported

Sobolev functions, we find a sequence in C∞
0 (Ω) converging to u. Thus we

obtain W 1,p(·)
0 (Ω) ⊂ H

1,p(·)
0 (Ω). ��
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We obtain the following corollary by Proposition 11.2.3 and Theorem 9.1.8.

Corollary 11.2.4. If p ∈ P log(Ω) is bounded, then

H
k,p(·)
0 (Ω) = W

k,p(·)
0 (Ω).

Note that max{1 − |x|, 0} is in W 1,∞
0 (B(0, 1)) but it can not be approx-

imated by C1-functions and it does not belong to H1,∞
0 (B(0, 1)). Thus the

restriction p+ < ∞ in the previous corollary is natural. In Sect. 11.5 we give
an uniformly continuous exponent p for the spaces H1,p(·)

0 (Ω) and W 1,p(·)
0 (Ω)

differ.
In Lemma 8.1.14 we showed that each u ∈W

k,p(·)
0 (Ω) has a zero extension

to R
n \ Ω. Next we generalize this result for k = 1.

Corollary 11.2.5. Let p ∈ P(Ω) with 1 < p− � p+ < ∞ be such that
C∞(Ω) ∩W 1,p(·)(Ω) is dense in W 1,p(·)(Ω). Then for each u ∈ W

1,p(·)
0 (Ω)

there exists a p(·)-quasicontinuous ũ ∈ W 1,p(·)(Rn) that equals u almost
everywhere in Ω and zero p(·)-quasieverywhere in R

n \ Ω.

Proof. Let u ∈ W
1,p(·)
0 (Ω). Then by Proposition 11.2.3 we find a sequence

(vi) from C∞
0 (Ω) converging to u in W 1,p(·)(Ω). Clearly (vi) is a Cauchy

sequence in W 1,p(·)(Rn). By Lemma 11.1.2, (vi) has a subsequence that con-
verges pointwise quasieverywhere and uniformly outside a set of arbitrary
small capacity. Thus the limit function ũ is quasicontinuous and zero quasi-
everywhere in R

n \ Ω. ��

Theorem 11.2.6. Let p ∈ P(Rn) satisfy 1 < p− � p+ < ∞. If the func-
tion u ∈ W 1,p(·)(Rn) is p(·)-quasicontinuous and zero p(·)-quasieverywhere in
R
n \ Ω, then u ∈W

1,p(·)
0 (Ω).

Proof. We show that u can be approximated by Sobolev functions with com-
pact support in Ω. If we can construct such a sequence for max{u, 0}, then we
can do it for min{u, 0}, as well. Combining these results proves the assertion
for u = max{u, 0}+min{u, 0}. We therefore assume that u is non-negative. By
Corollary 9.1.4 we may assume that u is bounded and has compact support
in R

n.
Let δ > 0 and let U be an open set such that u restricted to R

n \ U
is continuous and Cp(·)(U) < δ. Let E := {x ∈ R

n \ Ω : u(x) �= 0}. By
the assumption we have Cp(·)(E) = 0. Let ωδ ∈ Sp(·)(U ∪ E) be such that
0 � ωδ � 1 and �1,p(·)(ωδ) < δ. Then ωδ = 1 in an open set V containing
U ∪ E. For 0 < ε < 1 define uε(x) := max{u(x) − ε, 0}. Since the function
u is zero at x ∈ ∂Ω \ V and u restricted to R

n \ V is continuous, we find
rx > 0 so that uε vanishes in B(x, rx) \ V . Thus the function (1 − ωδ)uε
vanishes in B(x, rx)∪ V for each x ∈ ∂Ω \V , which yields that it vanishes in
a neighborhood of R

n \ Ω. We have
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‖u− (1 − ωδ)uε‖1,p(·) � ‖u− uε‖1,p(·) + ‖ωδuε‖1,p(·).

Since
‖u− uε‖1,p(·) � ε‖χsptu‖p(·) + ‖χ{0<u(x)�ε}∇u‖p(·),

we see that this term goes to zero with ε. Since u is bounded we find that

�1,p(·)(ωδu) �
ˆ

Rn

|ωδ(x)u(x)|p(x) dx+ 2p
+
ˆ

Rn

ωδ(x)p(x)|∇u(x)|p(x) dx

+ 2p
+
ˆ

Rn

|∇ωδ(x)|p(x)|u(x)|p(x) dx

� (2p
+

+ 1)δ sup
x∈Rn

{
|u(x)|p(x)

}
+ 2p

+
ˆ

Rn

ωδ(x)p(x)|∇u(x)|p(x) dx.

Since ωδ → 0 in Lp(·)(Rn), as δ → 0, we can choose a sequence ωδ′ which tends
to 0 pointwise almost everywhere. Then

´
Rn
ωδ′(x)p(x)|∇u(x)|p(x) dx → 0 by

the dominated convergence theorem with |∇u|p(x) as a dominant. Therefore
�1,p(·)(ωδ′u) → 0 and so also ‖ωδ′u‖1,p(·) → 0 as δ′ → 0. Thus we see that
(1 − ωδ′)uε → u as ε, δ′ → 0.

We have shown that u can be can be approximated by functions in
W 1,p(·)(Ω) with compact support in Ω and thus the claim follows. ��

Assume that p ∈ P(Rn) satisfies 1 < p− � p+ < ∞. A function u belongs
to Q1,p(·)

0 (Ω) if there exists a p(·)-quasicontinuous function ũ ∈ W 1,p(·)(Rn)
such that u = ũ almost everywhere in Ω and ũ = 0 p(·)-quasieverywhere in
R
n \ Ω. The set Q1,p(·)

0 (Ω) is endowed with the norm

‖u‖
Q

1,p(·)
0 (Ω)

:= ‖ũ‖W 1,p(·)(Rn).

This definition of a Sobolev spaces with zero boundary values, which is com-
mon in the theory of metric measure spaces is due to Kilpeläinen, Kinnunen
and Martio [234].

It easy to show that Q1,p(·)
0 (Ω) is a closed subspace of W 1,p(·)(Rn), and

hence it is a separable, reflexive and uniformly convex Banach space. It follows
from the definitions that H1,p(·)

0 (Ω) ⊂ Q
1,p(·)
0 (Ω). Using also Theorem 11.2.6

we obtain
H

1,p(·)
0 (Ω) ⊂ Q

1,p(·)
0 (Ω) ⊂ W

1,p(·)
0 (Ω).

Under the assumptions of Corollary 11.2.5 (in particular if p ∈ P log(Ω) with
1 < p− � p+ <∞) we have

H
1,p(·)
0 (Ω) = Q

1,p(·)
0 (Ω) = W

1,p(·)
0 (Ω)

by Proposition 11.2.3, Corollary 11.2.5 and Theorem 11.2.6.
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The last theorem of this section shows that if the complement is fat, then
for a function from W 1,p(·) it is enough to have zero boundary values in the
W 1,1

0 -sense to belong to W 1,p(·)
0 .

Theorem 11.2.7. Let Ω be a bounded domain with a fat complement in the
sense that there exists a constant c such that

|B(x, r) \ Ω| � c |B(x, r)|

for every x ∈ ∂Ω and r > 0. Let p ∈ P log(Ω) satisfy 1 < p− � p+ < ∞. If
u ∈W 1,1

0 (Ω) ∩W 1,p(·)(Ω), then u ∈ W
1,p(·)
0 (Ω).

Proof. We first extend p outside Ω so that the assumptions of the theo-
rem hold in R

n (Proposition 4.1.7). We denote the extension still by p.
Since u ∈ W 1,1

0 (Ω) we get that the extension by zero belongs to W 1,1(Rn)
(Lemma 8.1.14). Thus u has distributional derivatives in R

n and therefore
u ∈ W 1,p(·)(Rn). Let ũ be the quasicontinuous representative of u (Theo-
rem 11.1.3). By Theorem 11.4.4 the quasicontinuous representative is given by

lim
r→0

 

B(x,r)

u dy.

Since u is zero almost everywhere in R
n \ Ω we find by Lemma 11.1.4 that

ũ is zero p(·)-quasieverywhere in R
n \ Ω. By Theorem 11.2.6 we obtain

u ∈W
1,p(·)
0 (Ω) once we have shown that

lim
r→0

 

B(x,r)

u dy = 0

for quasievery x ∈ ∂Ω. Clearly it is enough to verify the last statement for |u|.
Let x ∈ ∂Ω. Using the fatness of the complement we obtain by [261,

Lemma 3.4] or by [178, Lemma 3.8] that

ˆ

B(x,r)

|u| dy � c r

ˆ

B(x,r)

|∇u| dy

and furthermore by Hölder’s inequality and log-Hölder continuity
 

B(x,r)

|u| dy � c r1−n‖1‖Lp′(·)(B(x,r))‖∇u‖Lp(·)(B(x,r))

� c r
1−n+ n

p′(x) ‖∇u‖Lp(·)(B(x,r))

= c
∥
∥
∥r

p(x)−n
p(x) |∇u|

∥
∥
∥
Lp(·)(B(x,r))

.
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Since p is bounded, it is enough to show that
ˆ

B(x,r)

r
p(x)−n
p(x) ·p(y)|∇u|p(y) dy � c rp(x)

 

B(x,r)

|∇u|p(y) dy

converges to zero as r → 0 for quasievery x ∈ ∂Ω (in the inequality we used
log-Hölder continuity of p) but this follows from Lemma 11.4.6. ��

11.3 Exceptional Sets in Variable Exponent
Sobolev Spaces

Let E ⊂ Ω be a relatively closed set of measure zero. By W 1,p(·)(Ω \ E) =
W 1,p(·)(Ω) we mean that the zero extension of every u ∈ W 1,p(·)(Ω \ E)
belongs to W 1,p(·)(Ω). In fact, since |E| = 0, we could extend u from Ω \ E
to Ω in an arbitrary way. The essential question for the validity of the above
identity is whether a function from W 1,p(·)(Ω\E) has a gradient in the larger
set Ω. For u ∈W 1,p(·)(Ω \ E), extended by zero to Ω, we know that

ˆ

Ω

ψ
∂u

∂xi
dx = −

ˆ

Ω

u
∂ψ

∂xi
dx

for every i = 1, . . . , n and for every ψ ∈ C∞
0 (Ω \ E). In order for u to have

a gradient also in Ω we need this equation to hold also for ψ ∈ C∞
0 (Ω). If

W 1,p(·)(Ω \E) = W 1,p(·)(Ω), then E is called a removable set for W 1,p(·)(Ω).
This section is based on Harjulehto, Hästö, and Koskenoja [193]. We start
with some results for zero boundary values Sobolev spaces.

Theorem 11.3.1. Let p ∈ P(Rn) be such that 1 < p− � p+ < ∞. Suppose
that E ⊂ Ω is a relative closed subset. Then W

1,p(·)
0 (Ω) = W

1,p(·)
0 (Ω \ E) if

and only if Cp(·)(E) = 0.

Proof. Suppose first that Cp(·)(E) = 0. It follows from Lemma 10.4.1 that
|E| = 0 so that the notation W

1,p(·)
0 (Ω) = W

1,p(·)
0 (Ω \ E) makes sense.

It is clear that W 1,p(·)
0 (Ω \ E) ⊂ W

1,p(·)
0 (Ω). Let u ∈ W

1,p(·)
0 (Ω) and let

ui ∈ W 1,p(·)(Ω) be bounded functions with compact support in Ω such that
ui → u in W 1,p(·)(Ω) (we may assume that ui are bounded by Lemma 9.1.1).
Let wj ∈ Sp(·)(E) be such that 0 � wj � 1 and wj → 0 in W 1,p(·)(Rn) and
also pointwise almost everywhere. We note that ui(1−wj) has compact sup-
port in Ω\E and estimate ‖u−ui(1−wj)‖1,p(·) � ‖u−ui‖1,p(·)+‖uiwj‖1,p(·).
The first term tends to zero by the choice of ui. For the second term we calcu-
late ‖uiwj‖1,p(·) � ‖wj∇ui‖p(·) + ‖ui‖∞‖wj‖1,p(·). Since |∇ui| ∈ W 1,p(·)(Ω)
and wj → 0 a.e., dominated convergence implies that ‖wj∇ui‖p(·) → 0 as
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j→∞. Thus ‖uiwj‖1,p(·) → 0 as j→∞. Hence we have found approximations
of u with compact support, so u ∈W

1,p(·)
0 (Ω \ E).

To prove the other implication, let x0 ∈ Ω and let i0 ∈ N be such that
dist(x0,R

n \ Ω) > 1
i0

. For i � i0 we define

Ωi := B(x0, i) ∩
{
x ∈ Ω : dist(x,Rn \ Ω) >

1
i

}

and ui : R
n → R by

ui(x) := dist(x,Rn \ Ω2i).

Then ui ∈ W
1,p(·)
0 (Ω) is continuous and ui � 1

2i in E ∩ Ωi. By assumption,
ui ∈ W

1,p(·)
0 (Ω\E). Fix i and let vj → ui be Sobolev functions with compact

support in Ω \ E. Since 3i(ui − vj) is greater than 1 in a neighborhood of
E ∩ Ωi, we obtain Cp(·)(E ∩ Ωi) � �1,p(·)(3i(ui − vj)) → 0 as j → ∞. Thus
Cp(·)(E ∩ Ωi) = 0, and property (C7) of the Sobolev p(·)-capacity yield

Cp(·)(E) = Cp(·)
( ∞⋃

i=1

(E ∩Ωi)
)

�
∞∑

i=1

Cp(·)(E ∩Ωi) = 0. ��

Next we consider the problem of removability in the variable exponent
Sobolev space W 1,p(·)(Ω) without the zero boundary value assumption. The
proof given in terms of the Sobolev p(·)-capacity follows the proof in the
fixed-exponent case from [219, Chap. 2].

Theorem 11.3.2. Let p ∈ P(Rn) satisfy 1 < p− � p+ < ∞. Suppose that
E ⊂ Ω is a relatively closed set. If E is of Sobolev p(·)-capacity zero, then

W 1,p(·)(Ω) = W 1,p(·)(Ω \ E).

Proof. Let Cp(·)(E) = 0 and let u ∈ W 1,p(·)(Ω \ E). Assume first that u
is bounded. Choose a sequence (vj) of functions in Sp(·)(E), 0 � vj � 1,
such that vj = 1 in an open neighborhood Uj of E, j ∈ N, and vj → 0 in
W 1,p(·)(Rn) and also pointwise almost everywhere. Since u and 1 − vj are
bounded functions we find that uj := (1 − vj)u ∈ W 1,p(·)(Ω \ E). Moreover
uj = 0 in Uj and thus uj ∈ W 1,p(·)(Ω). We easily calculate

�p(·)(Ω)

(
|∇(ui − uj)|

)
=

ˆ

Ω\E

|∇((vj − vi)u)|p(x) dx

�
ˆ

Ω\E

(|vj | + |vi|)p(x)|∇u|p(x) dx+
ˆ

Ω\E

(|∇vj | + |∇vi|)p(x)|u|p(x) dx

�
ˆ

Ω\E

(|vj | + |vi|)p(x)|∇u|p(x) dx+ 2p
+

(sup |u|)p
+
ˆ

Ω\E

(|∇vj | + |∇vi|)p(x) dx.
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Clearly the second integral tends to zero as i, j → ∞. Since p is bounded and
0 � vj � 1 for every i, we easily see that 2p

+ |∇u|p(x) is a majorant of the first
integrand which do not depend on i and j. Since vi(x) → 0 for almost every
x ∈ R

n, this implies, by the theorem of dominated convergence, that the
second integral tends to zero as i, j → ∞. Hence �p(·)(Ω)

(
|∇(ui − uj)|

)
→ 0

as i, j → ∞. The same holds for �p(·)(Ω)(ui−uj), so (ui) is a Cauchy sequence.
Since W 1,p(·)(Ω) is a Banach space, we see that the limit u of (ui) belongs to
this space too.

The same Banach space argument also allows us to get the general case
from the case of bounded functions proven above, since bounded Sobolev
functions are dense in the Sobolev space (Lemma 9.1.1). ��

Remark 11.3.3. The assumption Cp(·)(E) = 0 in Theorem 11.3.1 can be
replaced by capp(·)(E,Ω) = 0, see Theorem 10.3.2 and Proposition 10.3.4.

In Theorem 11.3.2 removability of a relatively closed set E ⊂ Ω with
measure zero can be characterized also in terms of relative p(·)-capacity. In
fact, with respect to the relative p(·)-capacity of E ⊂ Ω, the assumption
p− > 1 is not needed to prove that W 1,p(·)(Ω) = W 1,p(·)(Ω \ E). This can
be shown similarly to the proof of Theorem 11.3.2 if assumed that E ⊂ Ω is
compact with capp(·)(E,Ω) = 0.

Corollary 11.3.4. Let p∈P(Rn) with 1<p− � p+<∞. Then W 1,p(·)(Ω) =
W

1,p(·)
0 (Ω) if and only if R

n \ Ω has zero Sobolev p(·)-capacity.

Proof. Suppose first that Cp(·)(Rn \ Ω) = 0. Note that W 1,p(·)(Rn) =W
1,p(·)
0

(Rn) by Corollary 9.1.3. Theorems 11.3.2 and 11.3.1 now yield

W 1,p(·)(Ω) = W 1,p(·)(Rn \ (Rn \ Ω)) = W 1,p(·)(Rn)

= W
1,p(·)
0 (Rn) = W

1,p(·)
0 (Rn \ (Rn \ Ω)) = W

1,p(·)
0 (Ω).

Suppose then that W 1,p(·)(Ω) = W
1,p(·)
0 (Ω). Let u = max{0, 2r − |x|} for

r > 0. Then u|Ω ∈ W 1,p(·)(Ω) = W
1,p(·)
0 (Ω). Let ui → u in W 1,p(·)(Ω) have

compact supports in Ω. Then u − ui is a test function for the capacity of
(Rn \ Ω) ∩ B(0, r), hence Cp(·)((Rn \ Ω) ∩ B(0, r)) = 0, and subadditivity
implies the claim. ��

11.4 Lebesgue Points

In this section we consider Lebesgue points of functions in Sobolev spaces.
We proceed as follows: First we use a result that shows that the Hardy-
Littlewood maximal function of a Sobolev function is a Sobolev function.
This yields a capacity weak type estimate of the Hardy-Littlewood maximal
function. Using these results we prove that
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lim
r→0

 

B(x.r)

u(y) dy =: u∗(x)

exists quasieverywhere for every u ∈ W 1,p(·)(Rn) and u∗ is the quasicontinu-
ous representative of u. Finally, we show that

lim
r→0

 

B(x,r)

|u(y) − u∗(x)|p∗(y) dy = 0 (11.4.1)

quasieverywhere in {x ∈ R
n : p(x) < n}. Here p∗ is the pointwise Sobolev

conjugate exponent. A point satisfying (11.4.1) is said to be a Lebesgue point
for the Sobolev function u. This section is based on [189] by Harjulehto and
Hästö that generalizes the constant exponent proof of Kinnunen and Latvala
[237] to the variable exponent case.

In this section we use the centered Hardy–Littlewood maximal operator
that is calculated over balls. For every f ∈ L1

loc(R
n) we denote

Mf(x) := sup
r>0

 

B(x,r)

|f(y)| dy.

We need that M : Lp(·)(Rn) → Lp(·)(Rn) is bounded and hence we first
assume that p ∈ A and later strengthen it to p ∈ P log(Rn).

The following proposition is an adaptation to the variable exponent case
of results of Haj�lasz and Onninen [183, Theorem 3], see also Kinnunen [236],
and Kinnunen and Lindqvist [238].

Proposition 11.4.2. Let p ∈ A be such that 1 < p− � p+ < ∞. If
u ∈ W 1,p(·)(Rn), then Mu ∈ W 1,p(·)(Rn) and |∇Mu| � M |∇u| almost
everywhere.

In the remaining part of this section we will adapt the proof of [237,
Theorem 4.5] by Kinnunen and Latvala to variable exponent spaces. For
simplicity of exposition, we split their result into two parts, Theorems 11.4.4
and 11.4.10. The proof of the former is nearly the same as in the constant
exponent case.

Proposition 11.4.3. Let p ∈ A be such that 1 < p− � p+ < ∞. Then for
every u ∈ W 1,p(·)(Rn) and every λ > 0 we have

Cp(·)
(
{x ∈ R

n : Mu(x) > λ}
)

� cmax
{∥
∥
∥
u

λ

∥
∥
∥
p−

1,p(·)
,
∥
∥
∥
u

λ

∥
∥
∥
p+

1,p(·)

}
,

where the constant depends only on n, the A-constant of p, p− and p+.
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Proof. Since Mu is lower semicontinuous, the set {x ∈ R
n : Mu(x) > λ} is

open for every λ > 0. By Proposition 11.4.2 we can use Mu
λ = M u

λ as a test
function for the capacity. This yields

Cp(·)
(
{x ∈ R

n : Mu(x) > λ}
)

� �1,p(·)
(
M
u

λ

)

� max
{∥
∥
∥M

u

λ

∥
∥
∥
p−

1,p(·)
,
∥
∥
∥M

u

λ

∥
∥
∥
p+

1,p(·)

}
.

Now the claim follows by Proposition 11.4.2 since M is bounded (Theo-
rem 5.7.2). ��

Theorem 11.4.4. Let p ∈ A be such that 1 < p− � p+ < ∞, and let
u ∈W 1,p(·)(Rn). Then there exists a set E ⊂ R

n of zero Sobolev p(·)-capacity
such that

u∗(x) := lim
r→0

 

B(x,r)

u(y) dy

exists for every x ∈ R
n \ E. The function u∗ is the p(·)-quasicontinuous

representative of u.

Proof. Since smooth functions are dense in W 1,p(·)(Rn) (Theorem 9.1.6), we
can choose a sequence (ui) of continuous functions in W 1,p(·)(Rn) such that
‖u − ui‖1,p(·) � 2−2i. By considering a subsequence, if necessary, we may
assume that ui → u pointwise almost everywhere. For i ∈ N we denote

Ui :=
{
x ∈ R

n : M(u− ui)(x) > 2−i
}
, Vi :=

∞⋃

j=i

Uj , and E :=
∞⋂

j=1

Vj .

Proposition 11.4.3 implies that Cp(·)(Ui) � c 2−i, the subadditivity of the
Sobolev capacity (Theorem 10.1.3 (C7)) implies that Cp(·)(Vi) � c 21−i and
Theorem 10.1.2 (C2) implies that Cp(·)(E) = 0.

We next consider the relationship between u and ui outside these sets. We
have

|ui(x) − uB(x,r)| �
 

B(x,r)

|ui(x) − ui(y)| dy +
 

B(x,r)

|ui(y) − u(y)| dy.

Since ui is continuous, the first term on the right-hand side goes to zero for
r → 0, and so we get

|ui(x) − uj(x)| � lim sup
r→0

|ui(x) − uB(x,r)| + lim sup
r→0

|uj(x) − uB(x,r)|

� M(ui − u)(x) +M(uj − u)(x).
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Thus we have |ui(x) − uj(x)| � 2 2−k for i, j � k and x ∈ R
n \ Uk. It

follows that (ui) converges uniformly on R
n \ Vj for every j > 0. Denote the

limit function, which restricted to R
n \ Vj is continuous, by ũ. Since ui → u

pointwise almost everywhere, we obtain ũ = u almost everywhere in R
n \Vj .

If x ∈ R
n \ Vj , then

|ũ(x) − lim
r→0

uB(x,r)| � |ũ(x) − ui(x)| + lim sup
r→0

|ui(x) − uB(x,r)|

� |ũ(x) − ui(x)| + 2−i.

As i → ∞ the right-hand side of the previous inequality tends to zero. Since
the left-hand side does not depend on i, this means that it equals zero, so
that ũ(x) = u∗(x) for all x ∈ R

n \ Vj , where u∗ was defined in (11.4.1).
Since this holds in the complement of every Vj , it holds in the complement
of E as well. Since E has capacity zero, we are done with the existence part.
Since ũ restricted to R

n \ Vj is continuous for every j, the claim regarding
quasicontinuity is clear. ��

Using the quasicontinuous representative of Sobolev functions it makes
sense to study Lusin type approximations: Harjulehto, Kinnunen and Tuhka-
nen showed in [209] that the quasicontinuous representative of a Sobolev
function coincides with a Hölder continuous Sobolev function outside a
small open exceptional set. Roughly speaking the (p(·) − ε)-capacity of the
exceptional set can be chosen to be arbitrary small.

Next we move to study the Lebesgue point property, (11.4.1), using the
quasicontinuous representative. We need global log-Hölder continuity of p
instead of assuming p ∈ A. Since rp(x)−p(y) ≈ 1 for x and y with y ∈ B(x, r),
there exists a constant c such that

1
c

� lim inf
r→0

rp(x)
 

B(x,r)

r−p(y) dy � lim sup
r→0

rp(x)
 

B(x,r)

r−p(y) dy � c (11.4.5)

for every x ∈ R
n.

Lemma 11.4.6. Suppose that p ∈ P log(Rn) satisfies 1 < p− � p+ < ∞ and
let u ∈ W 1,p(·)(Rn). Then

Cp(·)

({

x ∈ R
n : lim sup

r→0
rp(x)

 

B(x,r)

|∇u(y)|p(y) dy > 0
})

= 0.

Proof. Let δ ∈ (0, 1), ε > 0 and set

Eε :=
{

x ∈ R
n : lim sup

r→0
rp(x)

 

B(x,r)

|∇u(y)|p(y) dy > ε

}

.
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For every x ∈ Eε there exists an arbitrarily small rx ∈ (0, δ) such that

rp(x)x

 

B(x,rx)

|∇u(y)|p(y) dy > ε. (11.4.7)

By choosing smaller rx if necessary, we may, on account of (11.4.5) and the
previous inequality, assume that

ˆ

B(x,rx)

|∇u(y)|p(y) dy > ε

c

ˆ

B(x,rx)

r−p(y)x dy, (11.4.8)

where c does not depend on x or rx.
By the basic covering theorem (Theorem 1.4.5) there exists a countable

subfamily of pair-wise disjoint balls B(xi, rxi) such that

Eε ⊂
∞⋃

i=1

B(xi, 5rxi).

Denote ri := rxi and Bi := B(xi, ri). Using Remark 10.1.11 and the log-
Hölder continuity, we obtain

Cp(·)(B(xi, 5ri)) � c r
n−p(x)
i � c

ˆ

Bi

r
−p(y)
i dy.

By subadditivity of the Sobolev capacity (Theorem 10.1.3 (C7)) we conclude
that

Cp(·)(Eε) �
∞∑

i=1

Cp(·)(B(xi, 5ri)) � c

∞∑

i=1

ˆ

Bi

r
−p(y)
i dy.

It follows from this and (11.4.8) that

Cp(·)(Eε) � c

ε

∞∑

i=1

ˆ

Bi

|∇u(y)|p(y) dy =
c

ε

ˆ

∪∞
i=1Bi

|∇u(y)|p(y) dy, (11.4.9)

where the disjointness of the balls Bi was used in the last step. We then find,
by the disjointness of the balls Bi again and (11.4.7), that

∣
∣
∣

∞⋃

i=1

Bi

∣
∣
∣ =

∞∑

i=1

|Bi| <
∞∑

i=1

r
p(xi)
i

ε

ˆ

Bi

|∇u(y)|p(y) dy

� δp
−

ε

ˆ

Rn

|∇u(y)|p(y) dy.
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Hence | ∪∞
i=1 Bi| → 0 as δ → 0, which by (11.4.9) implies that Cp(·)(Eε) = 0

for every ε > 0. Since

{

x ∈ R
n : lim sup

r→0
rp(x)

 

B(x,r)

|∇u(y)|p(y) dy > 0
}

=
∞⋃

i=1

E 1
i
,

the claim follows by the subadditivity of the Sobolev capacity. ��

Theorem 11.4.10. Let p ∈ P log(Rn) satisfy 1 < p− � p+ < ∞ and let
u ∈ W 1,p(·)(Rn). Then there exists a set E ⊂ R

n with Cp(·)(E) = 0, such
that

lim
r→0

 

B(x,r)

|u(y) − u∗(x)|p∗(y) dy = 0

for every x ∈
{
x ∈ R

n : p(x) < n
}
\ E and

lim
r→0

 

B(x,r)

|u(y) − u∗(x)|q dy = 0

for every x ∈
{
x ∈ R

n : p(x) � n
}
\ E and for any finite q � 1.

Proof. Define

E :=
{

x ∈ R
n : lim sup

r→0
rp(x)

 

B(x,r)

|∇u(y)|p(y) dy > 0
}

.

Then Cp(·)(E) = 0 by Lemma 11.4.6. Assume first that p(x) < n. We show
that

lim sup
r→0

rp(x)
 

B(x,r)

|∇u(y)|p(y) dy = 0 ⇒

lim sup
r→0

 

B(x,r)

|u(y) − uB(x,r)|p
∗(y) dy = 0

when p(x) < n, from which the claim clearly follows by Theorem 11.4.4, since
p ∈ A by Theorem 4.4.8.

The Sobolev-Poincaré inequality (Theorem 8.3.1 and Example 7.4.2)
implies that

‖u− 〈u〉B‖Lp∗(·)(B) � c ‖∇u‖Lp(·)(B),
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where we denoted B := B(x, r) and where the constant c is independent of
B. We may assume that r is so small the p(·)-modular of ∇u over B is less
than one, so we conclude that

�Lp∗(·)(B)(u− 〈u〉B)
1

(p∗
B

)− � c �Lp(·)(B)(∇u)
1
p
+
B .

Hence we obtain
 

B

|u(y) − 〈u〉B |p
∗(y) dy = c r−n�Lp∗(·)(B)(u− 〈u〉B)

� c r−n�Lp(·)(B)(∇u)
(p∗B)−

p
+
B

= c r
(n−p(x)) (p∗B)−

p
+
B

−n
(

rp(x)
 

B

|∇u(y)|p(y) dy
) (p∗B)−

p
+
B

.

It suffices to show that r(n−p(x))(p
∗
B)−/p+B−n � c as r → 0. Since (p∗B)− =

(p−B)∗ we see that this is equivalent to

n
(n− p(x)
n− p−B

p−B
p+
B

− 1
)

log r � c

at the same limit. By choosing the radius smaller if necessary, we may assume
that p+

B < n. We have

0 � n− p(x)
n− p−B

p−B
p+
B

− 1 � n− p+
B

n− p−B

p−B
p+
B

− 1 =
n

p+
B(n− p−B)

(p−B − p+
B)

� 1
n− 1

(p−B − p+
B).

Thus

lim sup
r→0

n
(
n−p(x)
n−p−B

p−B
p+B

− 1
)

log r � n′ lim sup
r→0

(p−B − p+
B) log r � c,

where the last inequality follows by the log-Hölder continuity of p.
Assume now that p(x) � n and q � n. Let q̃ < n be such that

q̃∗ = q. Assume that |B| � 1 is so small that q̃ < p−B. By the Sobolev-
Poincaré inequality (Lemma 8.2.13), Hölder’s inequality and Theorem 3.3.1
we obtain
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( 

B

|u− 〈u〉B|q dy
) 1
q � c |B|− 1

q ‖∇u‖Lq̃(B) � c |B|
− 1
q+ 1

q̃− 1
p
−
B ‖∇u‖

Lp
−
B (B)

� c (1 + |B|)|B|
1
n− 1

p
−
B ‖∇u‖Lp(·)(B)

� c (1 + |B|)|B|
1
p
+
B

− 1
p
−
B ‖∇u‖Lp(·)(B).

Since p is log-Hölder continuous |B|
1
p
+
B

− 1
p
−
B is uniformly bounded. By Theo-

rem 11.4.4 this yields the claim for q > n as r → 0. For 1 � q � n the claim
follows by Hölder’s inequality. ��
Remark 11.4.11. If p(x) > n in Theorem 11.4.10, then there exists rx > 0
such that

W 1,p(·)(B(x, rx)) ↪→ W 1,n+(p(x)−n)/2(B(x, rx)).

Hence u is continuous in a neighborhood of x and

lim
r→0

ess sup
y∈B(x,r)

|u(y) − u∗(x)| = 0.

Theorems 11.4.4 and 11.4.10 imply the following corollary.

Corollary 11.4.12. Let p ∈ P log(Ω) satisfy 1 < p− � p+ <∞. Assume that
u ∈ W 1,p(·)(Ω). Then there exists a set E ⊂ Ω with capp(·)(E,Ω) = 0, such
that u∗ exists for every x ∈ Ω\E, u∗ is the p(·)-quasicontinuous representative
of u,

lim
r→0

 

B(x,r)

|u(y) − u∗(x)|p
∗(y) dy = 0

for every x ∈
{
x ∈ R

n : p(x) < n
}
\ E and

lim
r→0

 

B(x,r)

|u(y) − u∗(x)|qdy = 0

for every x ∈
{
x ∈ R

n : p(x) � n
}
\ E and for any finite q � 1.

Proof. All the claims have a local nature, so it is enough to prove them in
all open balls B with 2B ⊂ Ω. Since the arguments are the same for every
claim, we prove only the first one.

Fix such a ball. We first extend p as p̃ outside 2B so that the assump-
tions of Theorem 11.4.4 hold (Proposition 4.1.7). Let ψ ∈ C∞

0 (2B) be a
cut off-function that is one in B. By Theorem 11.4.4 (ψu)∗ exists p̃(·)-
quasieverywhere. Since u∗ = (ψu)∗ for every x ∈ B, we obtain by Propo-
sition 10.3.4 that u∗ exists in B outside a set of zero relative capacity. We
can cover Ω by countably many balls and hence the claim follows by the
subadditivity of the capacity. ��
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11.5 Failure of Existence of Lebesgue Points*

In this section we will give an example of a uniformly continuous exponent
for which not quasievery point is a Lebesgue point. The example is from
Hästö [212].

We start by two technical lemmas.

Lemma 11.5.1. Let (ai)∞i=1 be a partition of unity and k > m− 1. Then

∞∑

i=1

ami i
k �

( ∞∑

i=1

i−k/(m−1)
)1−m

.

Proof. Let (ai) be a minimal sequence of the sum
∑∞

i=1 a
m
i i

k. Fix an integer
i and consider the function

a �→ (ai + a)mik + (ai+1 − a)m(i + 1)k,

for −ai < a < ai+1. We find that this function has a minimum at a = 0 if
and only if

ikam−1
i = (i+ 1)kam−1

i+1 . (11.5.2)

Thus we find that (11.5.2) holds for every ai, i � 1. This partition is given
by ai = i−k/(m−1)a0 for i > 1 and a1 = (

∑∞
i=1 i

−k/(m−1))−1 and so we easily
calculate the lower bound as given in the lemma. ��

Lemma 11.5.3. Let S be a subset of ∂B(0, 1
5 ) of positive (n − 1)-measure.

Let
C :=

⋃

x∈S
[0, x].

Suppose that p ∈ P(B(0, 1
5 )) is bounded and satisfies

p(x) � n+ (n− 1 + ε)
log log(1/|x|)

log(1/|x|)

in C for some fixed ε > 0. Then

inf �1,p(·)(u) � c(n, p+),

where the infimum is taken over all continuous functions u that satisfy u = 0
in S, u = 1 in 0 and |∇u| ∈ Lp(·)(C).

Proof. We divide C into annuli, Ai := {x ∈ C : e−i � |x| < e1−i} for i ∈ N,
i � 3. We set

q(x) := n+ (n− 1 + ε)
∞∑

i=3

log i
i
χAi(x).
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Since q � p we have ‖u‖q(·) � (1 + |C|)‖u‖p(·) and thus

min
{
�1,q(·)(u)

1
q− , �1,q(·)(u)

1
q+
}

� (1 + |C|) max
{
�1,p(·)(u)

1
p− , �1,p(·)(u)

1
p+
}
.

Therefore we see that it suffices to show that �1,q(·)(u) > c(n) for every u

that satisfies u = 0 in S, u = 1 in 0 and |∇u| ∈ Lq(·)(C).
The next step is crucial in making this lemma work even with possibly

very irregular domains C. We estimate the gradient of u from below by
the radial component of the derivative: |∇u| � |∂u/∂r|. (We are using that
u is classically differentiable almost everywhere in C by Theorem 11.1.12.)
Therefore ˆ

C

|∇u(x)|q(x) dx �
ˆ

C

∣
∣
∣
∂u(x)
∂r

∣
∣
∣
q(x)

dx.

It is then easy to see that the function minimizing the integral should depend
only on the distance from the origin, not on the direction. If u is such a
function, then

ˆ

C

|∇u(x)|q(x) dx =
ˆ

S

dmn−1

1ˆ

0

|∇u(rs)|q(rs)dr,

where s is any fixed element in S. Thus the problem at hand is essentially a
one-dimensional one.

Let e1 be the first coordinate unit vector. We choose r > 0 such that

mn−1

(
B(e1/5, r) ∩ ∂B(0, 1/5)

)
= mn−1(S),

since S ⊂ ∂B(0, 1/5) this is clearly possible. Define S′ := B(e1/5, r) ∩
∂B(0, 1/5) and

C′ :=
⋃

x∈S′
[0, x].

Since mn−1(S) = mn−1(S′), the formula in the previous paragraph implies
that ˆ

C

|∇u(x)|q(x) dx =
ˆ

C′

|∇u(x)|q(x) dx,

where u is radially symmetric.
Since the exponent q is fixed on Ai, we can use constant exponent

capacity estimates for each annulus. This turns out to equal c ei(qi−n) by
Lemma 8.2.15, where qi is the value of q on Ai. This means that if the func-
tion u increases by 1 from the inner to the outer boundary of the annulus
Ai, then �qi(|∇u|) � c ei(qi−n). Therefore, if the function increases by ai on
Ai, then the modular of its gradient is at least c aqii ei(qi−n). Thus we seek to
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choose the ai’s so as to minimize

c

∞∑

i=3

aqii ei(qi−n) = c

∞∑

i=3

aqii i
n−1+ε. (11.5.4)

Let N be such that

qi − n = (n− 1 + ε)
log i
i

� ε

3

for every i � N .
We write

∑N−1
i=3 ai = b. The total increment of the function over all Ai’s

is at least 1 (by definition), so
∑∞

i=N ai = (1 − b). By the reverse Hölder’s
inequality for sums and Lemma 11.5.1 we obtain

∞∑

i=3

aqii i
n−1+ε �

N−1∑

i=3

ap
+

i +
∞∑

i=N

aqii i
n−1+ε

�
(N−1∑

i=3

ai
)p+(N − 1)1−p

+
+

∞∑

i=N

a
n+ε/3
i in−1+ε

=
bp

+

(N − 1)p+−1
+ (1 − b)n+ε/3

∞∑

i=N

( ai
1 − b

)n+ε/3

in−1+ε

� bp
+

Np+
+ (1 − b)n+ε/3c > 0.

��

We start with the unit disk D and divide it into the four quadrants. In
the example of Zhikov [392, Sect. 1], the exponent is defined to be a constant
α2 > 2 on quadrants A1 and A3 and a constant α1 ∈ (1, 2) on the remain-
ing two quadrants. In this case Zhikov proved that continuous functions are
not dense in W 1,α(·)(D). We will start from this and construct a uniformly
continuous exponent for which the non-density still holds.

For technical reasons let’s actually take D := B(0, 1/4). We further parti-
tion the first and third quadrants into three parts by lines through the origin,
see Fig. 11.1. For 0 < ε < 1 we define an exponent q : D → [1,∞) as follows:
On A′

1 and A′
3 we set p(x) := 2 + (1 + ε) log2(i)/i for |x| ∈ [2−i, 21−i). On A2

and A4 we set p(x) := 2 − (1 + ε) log2(log2(1/|x|))/ log2(1/|x|). We extend
the exponent linearly to the remaining domain. The exponent is sketched in
Fig. 11.1.

Proposition 11.5.5. For the previously defined uniformly continuous expo-
nent p there exists a function u ∈ W 1,p(·)(B

(
0, 1

4

))
such that the origin has

positive p(·)-capacity but it is not a Lebesgue point of u. Thus not quasievery
point is a Lebesgue point of u.
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Fig. 11.1 A contour sketch of the exponent p

Proof. Define an exponent q ∈ P(B) which equals p on A1 ∪ . . . ∪ A4 and 2
otherwise. Note that q is not continuous. Define the function u : D → [0, 1]
by

u(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for x ∈ A1

x2/|x| for x ∈ A2

0 for x ∈ A3

x1/|x| for x ∈ A4

where x = (x1, x2). The function is shown in Fig. 11.2. Since u is bounded, it
is clear that u ∈ Lq(·)(D). We easily calculate |∇u(x)| = |x|−1 for x ∈ A2∪A4.
Using the substitution s = log2(1/r) we calculate

ˆ

D

|∇u(x)|q(x) dx = π

1/4ˆ

0

r1−q(r)dr = π

1/4ˆ

0

2−(1+ε) log2(log2(1/r))+log2(1/r)dr

= π log 2

∞̂

2

s−1−εds = π log(2)2−εε−1 < ∞.

Therefore |∇u| ∈ Lq(·)(D), and so u ∈W 1,q(·)(D).
Let us next show that u cannot be approximated by a continuous function

in the space W 1,q(·)(D). Let v ∈ C(D) ∩W 1,q(·)(D) with v(0) = a. We will
use the estimate

‖u− v‖W 1,q(·)(D) � ‖v‖W 1,q(·)(A′
3) + ‖1 − v‖W 1,q(·)(A′

1)
. (11.5.6)
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Fig. 11.2 A function u without the Lebesgue point property

By symmetry, we may then assume that a � 1/2 and consider only the first
term on the right-hand-side of this inequality.

We can estimate |∇v| from below by the radial derivative, which we will
denote by a prime. (Note that it makes sense to speak of the radial deriva-
tive, since v is classically differentiable almost everywhere in A′

3 by [359,
Theorem VIII.1.1].) Then we have

ˆ

A′
3

|v(x)|q(x) + |v′(x)|q(x) dx �
ˆ

A′
3

|v1(x)|q(x) + |v′1(x)|q(x) dx,

where v1(x) := miny∈[0,x] v(y) and [0, x] denotes the segment between 0 and x.
We may therefore assume that v is radially decreasing. Let L be the subset
of ∂B(0, 1/5) ∩A′

3 where v(x) > 1/4. Then

ˆ

A′
3

|v(x)|q(x) dx � 4−q
+ m1(L)

2π m2(B(1/5)),

where m1 denotes the 1-dimensional Lebesgue measure. On the other hand,
on S :=

(
∂B(0, 1/5)∩A′

3

)
\L the function v has value 1/4 or less. Therefore

the function ϕ(x) := (v(x)− 1/4)/a is continuous, ϕ(0) = 1 and ϕ(x) � 0 for
x ∈ S. Using Lemma 11.5.3, we conclude that

ˆ

A′
3

|v′(x)|q(x) dx � cm1(S).
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Combining these estimates we have shown that

�q(·)(v − u) + �q(·)
(
|∇(v − u)|

)
> cm1(L) + cm1(S) � c > 0

for all continuous functions v. Since �p(·)(ui) → 0 if and only if ‖ui‖p(·) → 0,
this means that ‖u−v‖1,p(·) > c > 0 for all continuous v. Therefore continuous
functions are not dense in W 1,q(·)(D). But q is not a continuous exponent,
so there is still some work to be done.

We want to show that changing the exponent from q to p does not affect
the properties we just proved for W 1,q(·)(D). Since p = q on A2∪A4, it is easy
to see that u ∈W 1,p(·)(D) (u is as defined before). On A′

1∪A′
3 we have p � q.

We therefore have an embedding from Lp(·)(A′
1 ∪A′

3) to Lq(·)(A′
1 ∪A′

3) whose
norm is at most 2(1 + |D|) (Theorem 3.3.1). If v is a continuous function this
implies that

‖u− v‖W 1,p(·)(B) � ‖u− v‖W 1,p(·)(A′
1∪A′

3)
�

‖u− v‖W 1,q(·)(A′
1∪A′

3)

2(1 + |D|) � c > 0,

so we still can not approximate by continuous functions. Thus W 1,p(·)(D) is
the Sobolev space we were trying to construct. Note that in our example we
have

|p(x) − p(0)| ≈ log2 log2(1/x)
− logx

, (11.5.7)

which is just barely worse than log-Hölder continuity. Incidentally, we have
now proved the following result (cf. Example 9.2.6):

There exists a variable exponent Sobolev space in a bounded domain
with uniformly continuous exponent such that continuous (or smooth)
functions are not dense.

We continue the proof. Let ũ ∈ W 1,p(·)(D) be a function which equals u
almost everywhere. Then

lim
r→0

 

B(0,r)

|ũ(y) − ũ(0)| dy �

lim
r→0

1
|B(0, r)|

( ˆ

A1∩B(0,r)

|1 − ũ(0)| dy +
ˆ

A3∩B(0,r)

|ũ(0)| dy
)
> c > 0,

irrespective of the value of ũ(0). This proves that 0 is not a Lebesgue point
of any representative of u.

We will show that Cp(·)({0}) > 0. For this it suffices to show that

inf �Lp(·)(A′
1)

(v) + �Lp(·)(A′
1)(∇v) � c > 0
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with a lower bound independent of r, where the infimum is taken over
functions in W 1,p(·)(A′

1) which equal 1 on the set B(0, r) ∩ A′
1. In the set

A′
1 \ B(0, 1

2r) the exponent p is bounded away from 2, the dimension of
the space. Therefore the functions we are minimizing over are continuous in
A′

1 \ B(0, 1
2r). We can then enlarge the set of functions we are considering

and take the infimum over functions in W 1,p(·)(A′
1) which are continuous and

equal 1 at the origin. But we showed beginning with inequality (11.5.6) that
precisely this infimum is positive, so we are done. ��

Remark 11.5.8. Let u be the function from Proposition 11.5.5. Let η ∈
C∞

0

(
B
(
0, 1

4

))
be a cut off -function that is one in B

(
0, 1

8

)
. It is easy to

calculate uη ∈ W 1,p(·)(B
(
0, 1

4

))
. Moreover uη belongs to W

1,p(·)
0

(
B
(
0, 1

4

))

but not to Q1,p(·)
0

(
B
(
0, 1

4

))
and not to H1,p(·)

0

(
B
(
0, 1

4

))
.



Chapter 12

Other Spaces of Differentiable
Functions

We have considered spaces of measurable functions in the first part of the
book and spaces of functions with a certain number of derivatives in the
second part. In the final chapter of this part we look at more general spaces
with other kinds of differentiability.

Although it might at first seem esoteric and perhaps unmotivated to study
spaces of fractional derivatives, such spaces arise naturally in many contexts.
Probably the most prominent example is the so-called “loss of 1

p -th of a
derivative at the boundary”. To describe the precise meaning of this state-
ment we recall the concept of trace spaces: By the trace of a function we
mean its restriction to a subset of the original set of definition. For a contin-
uous function this statement can be taken literally. For a Sobolev function
some more care is needed, especially if the subset has measure zero; see the
beginning of Sect. 12.1 for the exact definition.

According to classical constant exponent theory the restriction of a func-
tion u ∈W 1,p(Ω) to the boundary behaves as if it possessed 1− 1

p derivatives
on ∂Ω. In the first section of this chapter we generalize this result to vari-
able exponents in the case of the half-space R

n+1
> := R

n × (0,∞) . This may
be thought of as a prototypical situation when the boundary is smooth or
Lipschitz.

When we work with unbounded domains it is often not natural to assume
that the function and the gradient belong to the same Lebesgue space.
To avoid additional, superfluous assumptions, we introduce homogeneous
Sobolev spaces in Sect. 12.2. These spaces are used in the study of PDEs
in Chap. 14. In Sect. 12.3 we consider the dual spaces of both homogeneous
and inhomogeneous Sobolev spaces, and show that the dual space can be
thought of as spaces of negative smoothness.

In the constant exponent case Besov and Triebel–Lizorkin spaces have
been studied both in the homogeneous and inhomogeneous case and with
both positive and negative smoothness. However, in the variable exponent
case only the theory of inhomogeneous Besov and Triebel–Lizorkin spaces
has thus far been developed. It is presented in Sect. 12.5. These scales of

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 12,
c© Springer-Verlag Berlin Heidelberg 2011
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function spaces include Lebesgue, Sobolev, Bessel and trace spaces, and has
the advantage that it is closed under taking traces.

Let us now be a bit more precise about the meaning of a fractional deriva-
tive. Recall that the Schwartz class S consists of rapidly decaying smooth
functions. If f ∈ S, the Fourier transform of f is the function Ff or f̂
defined by

Ff(ξ) = f̂(ξ) :=
ˆ

Rn

f(x) e−2πiξ·xdx.

If f is sufficiently differentiable and β is a multi-index, then the Fourier
transform turns derivatives into multiplication by powers of ξ according to
the well-known formula:

F(∂βf)(ξ) = (−2πi)|β| ξβ f̂(ξ).

For ξβ it is not necessary that β consist only of integers. Using this idea we
can define fractional derivatives and corresponding spaces. This is the basic
idea behind the Bessel spaces defined in Sect. 12.4.

Let us note here that some authors have also studied Morrey spaces with
variable exponents, but we will not deal with them here; see [23,303] for more
information on this topic.

12.1 Trace Spaces

As mentioned above, the trace of a function is in some sense a restriction of
the function to a subset of the original set of definition. Lebesgue functions are
only defined almost everywhere, so it makes no sense to look at the function
on a set of measure zero. A Sobolev function is, a priori, likewise only defined
up to a set of measure zero. However, as we have seen in Sect. 11.1, a Sobolev
function has a distinguished representative which is defined up to a set of
capacity zero. Therefore it is possible to look at traces of Sobolev functions
on sufficiently large measure-zero sets. Of particular interest is the trace of a
function on the boundary of the set of definition, which is usually possible,
since the boundary is typically of dimension at least n−1, hence its capacity
is positive (Proposition 10.4.2).

The study of boundary trace spaces is very important in the theory of
partial differential equations. Indeed, a partial differential equation is in many
cases solvable if and only if the boundary values are in the corresponding trace
space.

Let us start by recalling the definition of a W 1,1-trace in the half-space.
By R

n+1
� we denote the closure of R

n+1
> . For F ∈W 1,1(Rn+1

> ) ∩C(Rn+1
� ) we

set TrF := F |Rn . Then

F (x, 0) = −
∞̂

0

d

dt
F (x, t) dt
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for x ∈ R
n and hence

|F (x, 0)| �
∞̂

0

|∇F (x, t)| dt.

Integrating this over x ∈ R
n gives ‖TrF‖L1(Rn) � ‖∇F‖L1(Rn+1

> ). Thus

Tr: W 1,1(Rn+1
> ) ∩ C1(Rn+1

� ) → L1(Rn) is a bounded, linear operator. Since
the set W 1,1(Rn+1

> ) ∩ C1(Rn+1
� ) is dense in W 1,1(Rn+1

> ), we can extend
Tr uniquely to a bounded, linear operator on W 1,1(Rn+1

> ). The function
TrF ∈ L1(Rn) is called the trace of F .

Let Ω ⊂ R
n+1 be a Lipschitz domain and let U ∈W 1,1(Ω). In a neighbor-

hood of a boundary point x0 ∈ ∂Ω we have a local bilipschitz chart which
maps part of the boundary to R

n. Thus the trace can be defined as in the
previous paragraph and transported back to ∂Ω using the inverse chart. In
this way we can define the trace TrU as a function in L1

loc(∂Ω). It is also
possible to define traces in more general domains such as (ε,∞)-domains, cf.
[225, Chap. VIII].

Next we define the variable exponent trace space and show that it only
depends on the value of the exponent on the boundary, provided the exponent
is log-Hölder continuous.

Let Ω ⊂ R
n+1 be a Lipschitz domain and let F ∈ W 1, p(·)(Ω) be a function.

Since F is locally a W 1,1 function TrF is defined as a function in L1
loc(∂Ω)

according to what was explained above. Note that if F ∈W k,p(·)(Ω) ∩C(Ω),
then we still have TrF = F |∂Ω. The trace space TrW k,p(·)(Ω) consists of
the traces of all functions F ∈W k,p(·)(Ω). The elements of TrW k,p(·)(Ω) are
functions defined on ∂Ω – to emphasize this we always use lowercase letters
for functions on ∂Ω, whereas uppercase letters are used for functions in Ω
and R

n+1. The quotient norm

‖f‖TrWk,p(·)(Ω) := inf
{
‖F‖Wk,p(·)(Ω) : F ∈ W 1,p(·)(Ω) and TrF = f

}

makes TrW k,p(·)(Ω) a Banach space.
The first appearance of trace spaces using this definition in the context of

Sobolev spaces with variable exponents is in [104,105], where the solvability
of the Laplace equation −Δu = f on the half-space with given boundary
values is studied.

Notice that this definition allows us to treat the trace spaces as an abstract
object: we simply define the boundary value function space as consisting of
those functions which are the boundary values of some function. This is of
course not very useful in terms of understanding the trace space. Thus the
main purpose of this section is to provide an intrinsic norm for the trace
space, i.e. a norm which is defined only in terms of f and not in terms of its
extensions F .
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Furthermore, intuitively we would expect that this intrinsic norm only
depends on p|∂Ω and not on p on the whole domain Ω. Nevertheless, the
definition of TrW k,p(·)(Ω) above is dependent on the values of p on all of Ω.
Throughout the book, we have seen that log-Hölder continuity is often suf-
ficient for variable exponent spaces to behave in a very nice way. This turns
out to hold also with trace spaces:

Theorem 12.1.1. Let Ω ⊂ R
n+1 be a Lipschitz domain, let p1, p2 ∈ P log(Ω)

with p1|∂Ω = p2|∂Ω, and let k � 1. Then TrW k,p1(·)(Ω) = TrW k,p2(·)(Ω) with
equivalent norms.

Proof. We prove the result for Ω = R
n+1
> . The general result is reduced to

this by the chart mappings.
Define the lower half-space R

n+1
< := R

n × (−∞, 0). Set q(x, t) := p1(x, t)
for t � 0 and q(x, t) := p2(x,−t) for t < 0. Then q ∈ P log(Rn+1). By
Theorem 8.5.12 there exists a bounded, linear extension

E : W k,p1(·)(Rn+1
> ) → W k,q(·)(Rn+1),

Let R denote the reflection (Rv)(t, x) := v(−t, x). Then

W k,p1(·)(Rn+1
> ) E−→ W k,q(·)(Rn+1) R−→ W k,Rq(·)(Rn+1)

|
R
n+1
>−−−→ W k,p2(·)(Rn+1

> )

continuously. Since clearly Tr((REF )|
R
n+1
>

) = TrF (e.g. by the ACL property,

this proves TrW k,p1(·)(Rn+1
> ) ↪→ TrW k,p2(·)(Rn+1

> ). The opposite inclusion
follows by symmetry. ��

Proposition 4.1.7 and Theorem 12.1.1 imply that the following definition
makes sense (up to equivalence of norms) for Lipschitz domains.

Definition 12.1.2. Let p ∈ P log(∂Ω) and let q ∈ P log(Ω) be an arbitrary
extension of p. Then we define an intrinsic trace space by

(
TrW k,p(·))(∂Ω) := TrW k,q(·)(Ω).

So far we have seen that the trace space on R
n does not really depend on

values of the exponent on R
n+1\(Rn×{0}) if p is globally log-Hölder continu-

ous. This considerably simplifies studying the space (TrW 1,p(·))(Rn). Indeed,
for x ∈ R

n and t ∈ [0, 2] define q(x, t) := p(x). Then q is globally log-Hölder
continuous on R

n × [0, 2]. By Proposition 4.1.7 we can extend q to the set
R
n+1
� so that q ∈ P log(Rn+1

� ). We have (TrW 1,p(·))(Rn) = TrW 1,q(·)(Rn+1
> ).

So we can as well assume from the beginning that the exponent p(x, t) is
independent of t when t ∈ [0, 2].

Since we use balls in different spaces, we denote by Bn(x, r) and Bn+1(x, r)
the balls in R

n and R
n+1, respectively. Notice the difference between the
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spaces C∞
0 (Rn+1

� ) and C∞
0 (Rn+1

> ): in the former space functions simply have
bounded support, in the latter the support of the function is bounded and
disjoint from the boundary R

n of R
n+1
> .

Recall from Sect. 6.2 the definition of the sharp operator:

M �
Bn(x,r)f =

 

Bn(x,r)

∣
∣f(y) − 〈f〉Bn(x,r)

∣
∣ dy,

for a function f ∈ L1
loc(R

n). Using the triangle inequality it is easy to show
the equivalence

M �
Bn(x,r)f �

 

Bn(x,r)

 

Bn(x,r)

∣
∣f(y) − f(z)

∣
∣ dy dz � 2M �

Bn(x,r)f. (12.1.3)

We define the trace modular �Tr,p(·) by

�Tr,p(·)(f) :=
ˆ

Rn

|f(x)|p(x) dx+

1ˆ

0

ˆ

Rn

(
1
rM

�
Bn(x,r)f

)p(x)
dx dr.

Obviously, �Tr,p(·) is a modular. Thus

‖f‖Tr,p(·) := inf
{
λ > 0 : �Tr,p(·)(f/λ) � 1

}

is a norm.
The following theorem characterizes the traces of W 1,p(·)(Rn+1

> )-functions
in terms of an intrinsic norm.

Theorem 12.1.4. Let p ∈ P log(Rn+1
� ) with 1 < p− � p+ < ∞ and let f ∈

L1
loc(R

n). Then f belongs to TrW 1,p(·)(Rn+1
> ) if and only if ‖f‖Tr,p(·) < ∞,

or, equivalently,

ˆ

Rn

|f(x)|p(x) dx+

1ˆ

0

ˆ

Rn

(
1
rM

�
Bn(x,r)f

)p(x)
dx dr < ∞,

where p(x) := p(x, 0). Moreover, ‖f‖Tr,p(·) is equivalent to the quotient norm
‖f‖TrW 1,p(·)(Rn+1

> ).

Before the proof of the theorem, we note that it directly generalizes to the
case of Lipschitz domains:

Corollary 12.1.5. Let Ω ⊂ R
n be a Lipschitz domain, let p ∈ P log(Ω) with

1 < p− � p+ < ∞ and let f ∈ L1
loc(∂Ω). Then f ∈ TrW 1,p(·)(Ω) if and only

if
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ˆ

∂Ω

|f(x)|p(x) dx+

κˆ

0

ˆ

∂Ω

(
1
rM

�
Bn(x,r)f

)p(x)
dx dr < ∞,

where the constant κ > 0 depends only on Ω. Moreover, ‖f‖Tr,p(·) is equivalent
to the quotient norm ‖f‖TrW 1,p(·)(Ω).

Proof. It follows from the definition of Lipschitz domain that the boundary
of Ω can be covered by balls Bj in such a way that there exists a bilipschitz
mapping Gj : Bj → R

n with Gj(Ω ∩ Bj) ⊂ R
n
> and Gj(∂Ω ∩ Bj) ⊂ R

n−1.
Since the boundary is covered by a finite number of balls, we can choose
functions ψ0 ∈ C∞

0 (Ω) and ψj ∈ C∞
0 (Bj) for j � 1 such that

∑
j ψj = 1

in Ω.
Suppose first that f ∈ TrW 1,p(·)(Ω), and let F ∈ W 1,p(·)(Ω) be such

that TrF = f . Then (Fψj) ◦G−1
j ∈ W 1,p◦G−1

j (·)(Rn>) and Tr(Fψj) ◦G−1
j =

(fψj) ◦G−1
j . Hence

ˆ

Rn

|(fψj) ◦G−1
j (x)|p(G

−1
j (x))

dx+

1ˆ

0

ˆ

Rn

(
1
rM

�
Bn(x,r)(fψj) ◦G

−1
j

)p(G−1
j (x))

dx dr

is finite by Theorem 12.1.4. A change of variables y = G−1
j (x) combined with

the fact that Gj is bilipschitz yields

ˆ

∂Ω

|fψj|p(y) dy +

κˆ

0

ˆ

∂Ω

(
1
rM

�
Bn(y,κr)(fψj)

)p(y)
dy dr < ∞,

where κ > 0 is the reciprocal of the bilipschitz constant. Combining the
estimates for all j � 1 yields the inequality on all of ∂Ω, since this set is
covered by the balls Bj .

The proof of the converse implication is similar, and thus skipped. ��

To prove Theorem 12.1.4 we proceed as follows. First, for F ∈W 1,p(·)(Rn+1
> )

and f := TrF we show that ‖f‖Tr,p(·) � c ‖F‖W 1,p(·)(Rn+1
> ). Therefore, we

estimate |f | and M �
Bn(x,t)f in terms of |F | and |∇F |. Second, for f ∈ Tr

W 1,p(·)(Rn+1
> ) we show the existence of some F ∈ W 1,p(·)(Rn+1

> ) with
TrF = f and ‖F‖W 1,p(·)(Rn+1

> ) � c ‖f‖Tr,p(·). We will define the extension
F by F (x, t) := (ψt ∗ f)(x) for x ∈ R

n and t > 0, where (ψt) is a standard
mollifier family in R

n. In order to estimate ‖F‖W 1,p(·)(Rn+1
> ) we need to esti-

mate |F | and |∇F | in terms of |f | and M �
Bn(x,t)f . The following two lemmas

provide these estimates.



12.1 Trace Spaces 373

Lemma 12.1.6. There exists a constant c > 0, such that

M �
Bn(z,r) TrF � c r

 

Bn+1((z,0),r)∩R
n+1
>

|∇F (ξ)| dξ

for all z ∈ R
n, r > 0 and F ∈ W 1,1

(
Bn+1((z, 0), r) ∩ R

n+1
>

)
.

Proof. Since smooth functions are dense in W 1,1(Bn+1(z, r)) it suffices to
prove the claim for smooth F . As usual we denote f = TrF = F |Rn . Let us
estimate |f(x) − f(y)| for x, y ∈ R

n by integrating the gradient over the path
γζ = [x, ζ] ∪ [ζ, y] for ζ ∈ R

n+1
> :

|f(x) − f(y)| �
ˆ

γζ

|∇F (ξ)| dξ. (12.1.7)

Define Bx,y := Bn+1(x+y2 + |x−y|
4 en+1,

|x−y|
8 ) ∩ P , where P is the mid-point

normal plane of the segment [x, y] and en+1 is the unit vector in direction
n+1, and let Ax,y =

⋃
ζ∈Bx,y γζ . Next we take the average integral of (12.1.7)

over ζ ∈ Bx,y. This so-called Riesz potential estimate (e.g. [218]) yields

|f(x) − f(y)| � c

ˆ

Ax,y

|∇F (ξ)|
(
|x− ξ|−n + |y − ξ|−n

)
dξ.

Let z ∈ R
n and r > 0. Using the previous estimate together with (12.1.3)

gives

M �
Bn(z,r)f � c

 

Bn(z,r)

 

Bn(z,r)

ˆ

Ax,y

|∇F (ξ)| t−n dξ dx dy, (12.1.8)

where ξ = (w, t) ∈ R
n × R and we used that t � min{|y − ξ|, |x − ξ|} when

ξ ∈ Ax,y.
The set Ax,y consists of two cones, one emanating from y and the other

from x, denoted by A′
x,y and A′′

x,y, respectively. By picking the larger integral
we can replace Ax,y by A′

x,y or A′′
x,y by doubling the constant. By symmetry

it is enough to consider in the following the case with Ax,y replaced by A′
x,y.

We want to change the order of integration. So suppose that ξ ∈ A′
x,y. Then

certainly ξ ∈ Bn+1(z, r). Also, ξ lies in a cone emanating from y whose
direction depends on x − y. Thus we see that y lies in the cone emanating
from ξ with the same base-angle but opposite direction. This means that for
a fixed ξ the variable y varies in a ball Bn(w, c′t) and c′ > 0 depends only on
the dimension n (recall that (w, t) = ξ). Hence
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M �
Bn(z,r)f � c r−2n

ˆ

Bn(z,r)

ˆ

Bn(z,r)

ˆ

A′
x,y

|∇F (ξ)| t−n dξ dx dy

� c r−2n

ˆ

Bn+1((z,0),r)

χ
R
n+1
>

(ξ) |∇F (ξ)| t−n
ˆ

Bn(w,c′t)

ˆ

Bn(z,r)

dx dy dξ

= c r

 

Bn+1((z,0),r)

χ
R
n+1
>

(ξ) |∇F (ξ)| dξ. ��

Recall that if p ∈ P log(Rn) and {ψt} is a standard mollifier family, then
ψt ∗ f → f in W 1,p(·)(Rn) for every f ∈ W 1,p(·)(Rn). This follows by the
Lebesgue space result (Theorem 4.6.4) and ∇(f ∗ ψt) = (∇f) ∗ ψt.

Lemma 12.1.9. Let {ψt} be a standard mollifier family on R
n. Let f ∈

L1
loc(R

n) and define F (x, t) := (ψt ∗ f)(x) for x ∈ R
n and t ∈ (0,∞). Then

there exists a constant c depending only on ‖ψ‖1,∞ and n such that

|F (x, t)| � cMBn(x,t)f,

|∇F (x, t)| � c

t
M �
Bn(x,t)f,

for all x ∈ R
n and t ∈ (0,∞).

Proof. Since |ψt| � ‖ψ‖∞ t−n χBn(0,t), the first inequality is immediate.
Let T = T{2Q} denote an averaging operator where {Q} is the family of

dyadic cubes, whose side length is equal to its distance to R
n × {0}.

In the following we denote ξ := (x, t) ∈ R
n+1
> . Since

´
Rn

∇ψ dy = 0, we
obtain

∇xF (ξ) = ∇ψt ∗ f(x) =
ˆ

Rn

∇xψt(x − y)(f(y) − 〈f〉Bn(x,t)) dx.

We use |∇ψt| � ‖∇ψ‖∞ t−n−1χBn(0,t) to derive |∇xF (x, t)| � c t−1M �
Bn(x,t)f .

For the t-derivative we need a slightly more involved calculation: for all a ∈ R

we have

∂tF (ξ) = ∂t(f ∗ ψt)(x) = ∂t
(
(f − a) ∗ ψt

)
(x) = (f − a) ∗ d

dt
ψt

=
ˆ

Rn

[
− n

t
ψt(x− y) − (∇xψ)t(x − y) · x− y

t2

](
f(y) − a

)
dy,

where (∇xψ)t(y) := t−n∇ψ(y/t). Setting a = 〈f〉Bn(x,t) we find that
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∣
∣
∣∂tF (ξ)

∣
∣
∣ �

ˆ

Bn(x,t)

( n

tn+1
‖ψ‖∞ +

|x− y|
tn+2

‖∇xψ‖∞
)∣
∣f(y) − 〈f〉Bn(x,t)

∣
∣ dy

� t−n−1
(
n‖ψ‖∞ + ‖∇xψ‖∞

)
ˆ

Bn(x,t)

∣
∣f(y) − 〈f〉Bn(x,t)

∣
∣ dy

� c

|t|

 

Bn(x,t)

∣
∣f(y) − 〈f〉Bn(x,t)

∣
∣ dy.

Since |∇F | � |∇xF | + |∂tF |, this completes the proof ��

Thus we are ready for the proof of the main result of the section.

Proof of Theorem 12.1.4. Due to Theorem 12.1.1 and the discussion after it
we can assume without loss of generality that p(x, t) = p(x, 0) = p(x) for
x ∈ R

n and t ∈ [0, 2].
Let {ψt} be a standard mollifier family on R

n, and let f ∈ L1
loc(R

n) with
‖f‖Tr,p(·) � 1, which by the unit ball property implies

ˆ

Rn

|f(x)|p(x) dx+

1ˆ

0

ˆ

Rn

(
1
rM

�
Bn(x,r)f

)p(x)
dx dr � 1.

We have to show the existence of an extension F̃ ∈ W 1,p(·)(Rn+1
> ) which

satisfies ‖F̃‖W 1,p(·)(Rn+1
> ) � c, where c is independent of f . As mentioned

above, we would like to consider the extension (x, t) �→ ψt ∗ f(x). But in
order to avoid difficulties as t → ∞ we cut off the part for large t. Let
η ∈ C∞

0 ([0,∞)) with χ[0,1/2] � η � χ[0,1]. Then our extension F̃ is given by
F̃ (x, t) := (ψt ∗ f)(x) η(t) = F (x, t) η(t), where we used the notation from
Lemma 12.1.9.

We now estimate the norm of F̃ in W 1,p(·)(Rn+1
> ). Using Lemma 12.1.9

and noting that MBn(x,t)f � Mf(x), we find that

�Lp(·)(Rn+1
> )(F̃ ) =

1ˆ

0

ˆ

Rn

|F̃ (x, t)|
p(x)

dx dt � c

ˆ

Rn

Mf(x)p(x) dx.

Our assumptions on p imply that the maximal operator is bounded on
Lp(·)(Rn) (Theorem 4.3.8). Since �p(·)(f) � 1, it follows from the previ-
ous inequality that �Lp(·)(Rn+1

> )(F̃ ) � c. It remains to estimate the norm

of the gradient of F̃ . Using |∇F̃ | � |∇F |η + |F ||∂tη|, Lemma 12.1.9 again,
MBn(x,t)f � Mf(x), and the continuity of the maximal operator, we estimate
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�Lp(·)(Rn+1
> )(∇F̃ ) =

1ˆ

0

ˆ

Rn

|∇F̃ (x, t)|
p(x)

dx dt

� c

1ˆ

0

ˆ

Rn

∣
∣ 1
t M

�
Bn(x,t)f

∣
∣p(x) dx dt+ c(η)

1ˆ

0

ˆ

Rn

∣
∣Mf

∣
∣p(x) dx dt � c.

Thus we have shown that F ∈ W 1,p(·)(Rn+1
> ). Furthermore, it follows easily

that f = TrF , so we have proved one of the implications in the theorem.
To prove the opposite implication, we use the density of smooth func-

tions (Theorem 9.1.7) and restrict ourselves without loss of generality to
F ∈W 1,p(·)(Rn+1

> )∩C∞(Rn+1
� ). Replacing F by F η, where η is as above, we

see that it suffices to consider F supported in R
n× [0, 1]. By homogeneity, it

suffices to consider the case ‖F‖W 1,p(·)(Rn+1
> ) � 1 and to prove ‖f‖Tr,p(·) � c

for f := TrF . Since p is bounded, the latter condition is equivalent to
�Tr,p(·)(f) � c, which is what we now prove. We find that

|f(x)| = |F (x, 0)| �
1ˆ

0

|∂tF (x, t)| dt.

Hence using Hölder’s inequality with respect to the variable t for the constant
exponent p(x) we get

|f(x)|p(x) �
1ˆ

0

|∂tF (x, t)|p(x) dt.

Integrating this inequality over x ∈ R
n yields

�p(·)(f) =
ˆ

Rn

|f(x)|p(x) dx �
ˆ

Rn

1ˆ

0

|∂tF (x, t)|p(x) dt dx � �Lp(·)(Rn+1
> )(∇F ).

Thus we have bounded the Lp(·) part of the trace norm.
Since f = TrF , we get by Lemma 12.1.6 that

1ˆ

0

ˆ

Rn

(
1
rM

�
Bn(x,r)f

)p(x)
dx dr

� c

1ˆ

0

ˆ

Rn

(  

Bn+1((x,0),r)∩R
n+1
>

|∇F (ξ)| dξ
)p(x)

dx dr
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� c

1ˆ

0

ˆ

Rn

(  

Bn+1((x,r),2r)∩R
n+1
>

|∇F (ξ)| dξ
)p(x)

dx dr

� c

ˆ

Rn×[0,1]

(
M
(
χ

R
n+1
>

|∇F |
)
(z)
)p(z)

dz.

Extending the exponent to the lower half-space by reflection, we immediately
see that p ∈ P log(Rn+1) and

1ˆ

0

ˆ

Rn

(
1
rM

�
Bn(x,r)f

)p(x)
dx dr � c

ˆ

Rn+1

(
M
(
χ

R
n+1
>

|∇F |
)
(z)
)p(z)

dz.

Since the maximal operator is bounded on Lp(·)(Rn+1), the right-hand-side
of the previous inequality is bounded by a constant, which concludes the
proof. ��

In the final part of the section we work with the weaker assumption that
the exponent is such that smooth functions are dense in our Sobolev space (cf.
Chap. 9). This means that we have to invoke a different machinery, in partic-
ular the capacity from Chap. 10. Recall that H1,p(·)

0 (Rn+1
> ) is the completion

of C∞
0 (Rn+1

> ) in W 1,p(·)(Rn+1
> ), whereas W 1,p(·)

0 (Rn+1
> ) is the completion of

the set of Sobolev functions with compact support (cf. Sect. 11.2).

Lemma 12.1.10. If p ∈ P(Rn+1
> ) is bounded and F ∈ H

1,p(·)
0 (Rn+1

> ), then
TrF = 0.

Proof. If F ∈ H
1,p(·)
0 (Rn+1

> ), then there exists by definition a sequence (Ψi) ⊂
C∞

0 (Rn+1
> ) with F = limi→∞ Ψi in W 1,p(·)(Rn+1

> ). Since Tr Ψi = Ψi|Rn ≡ 0,
the claim follows by continuity of Tr : W 1,p(·)(Rn+1

> ) → TrW 1,p(·)(Rn+1
> ).

��

For the converse, we need to assume the density of smooth functions, which
is guaranteed e.g. for p ∈ P log (cf. Theorem 9.1.7). For a version with weaker
assumptions see [98].

Theorem 12.1.11. Let p ∈ P log(Rn+1
� ) be bounded. Then F ∈W 1,p(·)(Rn+1

> )

with TrF = 0 if and only if F ∈ W
1,p(·)
0 (Rn+1

> ).

Proof. Suppose first that F ∈ W 1,p(·)(Rn+1
> ) with TrF = 0. We extend p

to R
n+1
< by reflection. Since W 1,p(·)(Rn+1

> ) ↪→ W 1,1(Rn+1
> ∩ K), for every

compact set K ⊂ R
n+1, it follows by classical theory that F extended by 0

to the lower half-space R
n+1
< is differentiable in the sense of distributions in

R
n+1, and hence F is in W 1,p(·)(Rn+1). Let ψ be a standard mollifier with

support in Bn+1(en+1/2, 1/3), where en+1 is the unit vector in direction
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n+1. Then ψr ∗F has support in R
n+1
> and is smooth. Since p ∈ P log(Rn+1),

it follows that ψr ∗ F → F in W 1,p(·)(Rn+1) as r → 0 (Theorem 4.6.4).
If ηR is a Lipschitz function with χB(0,R) � ηR � χB(0,2R) and Lipschitz
constant 2/R, then ηRψr ∗ F → ψr ∗ F in W 1,p(·)(Rn+1) as R → ∞. Since
ηRψr ∗ F ∈ C∞

0 (Rn+1
> ), it follows that F ∈ H

1,p(·)
0 (Rn+1

> ). The converse
follows from Lemma 12.1.10, Proposition 11.2.3 and Theorem 9.1.7. ��

We conclude the section by noting that the trace space inherits the density
of smooth functions from the ambient space.

Theorem 12.1.12. Suppose that C∞
0 (Rn+1

� ) is dense in W 1,p(·)(Rn+1
> ). Then

C∞
0 (Rn) is dense in TrW 1,p(·)(Rn+1

> ).

Proof. Let f ∈ TrW 1,p(·)(Rn+1
> ), and let F ∈ W 1,p(·)(Rn+1

> ) be such that
TrF = f . Then if Ψi ∈ C∞

0 (Rn+1
� ) tend to F in W 1,p(·)(Rn+1

> ), the definition
of the quotient norm directly implies that also Tr Ψi → f in TrW 1,p(·)(Rn+1

> ).
��

12.2 Homogeneous Sobolev Spaces

When working with unbounded domains it is often not natural to assume
that the function and the gradient belong to the same Lebesgue space. This
phenomenon is well known already in the case of constant exponents as illus-
trates the following example. One easily checks that u(x) = |x|−1 is a solution
of the Poisson problem

−Δu = 0 in Ω = R
3 \B(0, 1) ,

u = 1 on ∂Ω ,

lim
|x|→∞

u(x) = 0 .

Moreover, we see that ∇2u ∈ Lq(Ω), ∇u ∈ Lr(Ω), and u ∈ Ls(Ω) where
q ∈ (1,∞), r ∈ (3/2,∞), and s ∈ (3,∞), respectively. In particular u does
not belong to the Sobolev spaces W 2,r(Ω), r ∈ (1, 3]. This example shows
that derivatives of different orders of solutions of the Poisson problem in
unbounded domains belong to different Lebesgue spaces. The very same phe-
nomenon occurs in Sobolev embedding theorems for unbounded domains. In
fact from ∇u ∈ Lq(Ω) one can in general not conclude that u ∈ Lq(Ω). These
phenomena are the motivation for the introduction of homogeneous Sobolev
spaces.

For a domain Ω ⊂ R
n, an exponent p ∈ P log(Ω), and k ∈ N we define

D̃k,p(·)(Ω) := {u ∈ L1
loc(Ω) : ∇ku ∈ Lp(·)(Ω)}.
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The linear space D̃k,p(·)(Ω) is equipped with the seminorm

‖u‖D̃k,p(·)(Ω) := ‖∇ku‖Lp(·)(Ω) ,

where ∇ku is the tensor with entries ∂αu, |α| = k. Note, that ‖u‖D̃k,p(·)(Ω) = 0
implies that u is a polynomial of degree k− 1. Let us denote the polynomials
of degreem ∈ N0 by Pm. It is evident that the seminorm ‖·‖D̃k,p(·)(Ω) becomes

a norm on the equivalence classes [u]k defined for u ∈ D̃k,p(·)(Ω) by

[u]k := {w ∈ D̃k,p(·)(Ω) : w − u ∈ Pk−1} .

Now we can define homogeneous Sobolev spaces Dk,p(·)(Ω).

Definition 12.2.1. Let Ω ⊂ R
n be a domain, p ∈ P log(Ω) a variable expo-

nent, and let k ∈ N. The homogeneous Sobolev space Dk,p(·)(Ω) consists of all
equivalence classes [u]k where u ∈ D̃k,p(·)(Ω). We identify u with its equiv-
alence class [u]k and thus write u instead of [u]k. The space Dk,p(·)(Ω) is
equipped with the norm

‖u‖Dk,p(·)(Ω) := ‖∇ku‖Lp(·)(Ω) .

The natural mapping i : C∞
0 (Ω) → Dk,p(·)(Ω): u �→ [u]k implies that

C∞
0 (Ω) is isomorphic to a linear subspace of Dk,p(·)(Ω). We define Dk,p(·)

0 (Ω)
as the closure of C∞

0 (Ω) in Dk,p(·)(Ω).

Remark 12.2.2. If u ∈ Dk,p(·)(Ω) then ∇ku is a well defined Lebesgue
function, while ∇lu, 0 � l < k, are equivalence classes (Lebesgue function
plus space of polynomials Pk−l−1).

Theorem 12.2.3. Let Ω ⊂ R
n be a domain and let p ∈ P log(Ω). The

spaces Dk,p(·)(Ω) and D
k,p(·)
0 (Ω) are Banach spaces, which are separable if

p is bounded, and reflexive and uniformly convex if 1 < p− � p+ < ∞.

Proof. We prove only the case k = 1, since the general case follows along
the same line of arguments. Let ([uj ]) be a Cauchy sequence in D1,p(·)(Ω).
One easily checks that it is sufficient to show that for any vj ∈ [uj] there
exists u ∈ D̃1,p(·)(Ω) such that ∇vj → ∇u in Lp(·)(Ω) as j → ∞. By the
completeness of Lp(·)(Ω) we find w ∈ (Lp(·)(Ω))n such that ∇vj → w in
(Lp(·)(Ω))n as j → ∞. Now we choose an increasing sequence of bounded
John domains Ωm such that Ωm ⊂ Ω, and ∪m∈NΩm = Ω. For fixed m ∈ N

we modify the sequence (vj) by constants cmj such that (vj + cmj )Ωm = 0.
Using the embedding Lp(·)(Ωm) ↪→ Lp

−
(Ωm) (Corollary 3.3.4) and Poincaré’s

inequality 8.2.13 for p− we deduce that there exists a function hm such that
vj − cmj → hm in Lp

−
(Ωm) as j → ∞. Moreover, we easily deduce that

∇hm = w a.e. in Ωm. Thus hm and hl differ only by a constant. Define
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h̃m := hm − 〈hm〉Ω1 . Then h̃m = h̃l on Ωl for m � l. Thus the function u
defined as u(x) := h̃m(x) if x ∈ Ωm belongs to L1

loc(Ω) and satisfies ∇u = w
a.e. in Ω. This proves that D1,p(·)(Ω) is a Banach space.

By Theorem 3.4.4, Lp(·)(Ω) is separable if p+ <∞ and by Theorems 3.4.7
and 3.4.9, it is reflexive and uniformly convex if 1 < p− � p+ < ∞. Via the
mapping u �→ ∇u, the space D1,p(·)(Ω) is a closed subspace of (Lp(·)(Ω))n.
Thus we can prove that D1,p(·)(Ω) is separable, if p+ < ∞, and reflexive and
uniformly convex, if 1 < p− � p+ < ∞, in the same way as in the proof of
Theorem 8.1.6.

The statements for D1,p(·)
0 (Ω) follow from the statements for D1,p(·)(Ω)

since D1,p(·)
0 (Ω) is a closed subspace of D1,p(·)(Ω). ��

The spaces D̃k,p(·)(Ω) and W k,p(·)(Ω) essentially do not differ for bounded
domains. More precisely we have:

Proposition 12.2.4. Let Ω be a bounded John domain and let p ∈ P log(Ω).
Then we have the algebraic identity

D̃k,p(·)(Ω) = W k,p(·)(Ω) .

Proof. We show the assertion only for k = 1, since the case k � 2 follows
by iteration. It is sufficient to show that D̃1,p(·)(Ω) ⊂ W 1,p(·)(Ω). Since Ω is
bounded, Corollary 8.2.6 implies that there exists a ball B ⊂ Ω such that for
each u ∈ D̃1,p(·)(Ω)

‖u− 〈u〉B‖Lp(·)(Ω) � c diam(Ω)‖∇u‖Lp(·)(Ω) ,

which implies u ∈W 1,p(·)(Ω). ��

Remark 12.2.5. The previous lemma also implies that in the case of
unbounded domains each u ∈ D̃k,p(·)(Ω) belongs to W k,p(·)

loc (Ω) if p ∈ P log(Ω).
This follows by restricting the function u to bounded subdomains.

Remark 12.2.6. As in the previous proposition, one can deduce from the
density of C∞

0 (Ω) in D
k,p(·)
0 (Ω) and W

k,p(·)
0 (Ω), and the Poincaré inequality

with zero boundary values the topological identity D
k,p(·)
0 (Ω) = W

k,p(·)
0 (Ω)

for bounded John domains.

As in the case of classical Sobolev spaces we have that Dk,p(·)(Rn) and
D
k,p(·)
0 (Rn) coincide:

Proposition 12.2.7. Let p ∈ P log(Rn) satisfy 1 � p− � p+ < ∞ and
let k ∈ N. Then C∞

0 (Rn) is dense in Dk,p(·)(Rn). Consequently we have
Dk,p(·)(Rn) = D

k,p(·)
0 (Rn).
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Proof. First, consider the case k = 1. Let η ∈ C∞
0 (B(0, 2)) satisfy 0 � η � 1

and η|B(0,1) = 1. For m ∈ N we set Am := {x ∈ R
n : m < |x| < 2m} and

ηAm(x) := η(m−1x). One easily sees that there is a constant c = c(η) such
that

|∇ηAm(x)| � cm−1 χAm(x)

for all j ∈ N. For u ∈ D1,p(·)(Rn) we set um := ηAm (u − c0m) where c0m :=
〈u〉Am , so that

∇um = ηAm∇u+ ∇ηAm (u− c0m) .

Note that the definition of um is independent of the choice of the function
from the equivalence class of u. In order to show that um → u in D1,p(·)(Rn)
for m → ∞ we observe that by the theorem of dominated convergence we
have

ˆ

Rn

|1 − ηAm |p(x)|∇u|p(x) dx → 0 .

Due to the Poincaré inequality (Corollary 8.2.6) and the properties of Am we
get

‖∇ηAm(u− 〈u〉Am)‖Lp(·)(Rn) � cm−1 ‖u− 〈u〉Am‖Lp(·)(Am)

� c ‖∇u‖Lp(·)(Am) → 0

for m → ∞. For m ∈ N we choose εm > 0 and mollify um with a standard
mollifier (cf. Theorem 4.6.4) such that ‖um − um ∗ ψεm‖D1,p(·)(Rn) � m−1.
Obviously, the sequence (um ∗ ψεm) belongs to C∞

0 (Rn) and converges to u
in D1,p(·)(Rn).

The case k > 1 is treated analogously by subtracting higher order poly-
nomials defined by mean values of higher order gradients (cf. [356, proof of
Theorem 2.15, Chap. III], proof of Proposition 12.2.12). ��

Remark 12.2.8. From the proof of the previous proposition it also follows
that C∞(Rn) ∩D1,p(·)(Rn) is dense in D1,p(·)(Rn).

For the treatment of the Stokes system and general elliptic problems of
second order we also have to deal with trace spaces of homogeneous Sobolev
spaces at least in the case of the half-space R

n+1
> . Traces are defined in

Sect. 12.1 for functions from W 1,1
loc (Rn+1

> ) and thus the notion of a trace of
a function from D̃1,p(·)(Rn+1

> ) is well defined. Consequently, the trace space
Tr(D1,p(·)(Rn+1

> )) consists of equivalence classes modulo constants of traces
of all functions F ∈ D̃1,p(·)(Rn+1

> ). The quotient norm



382 12 Other Spaces of Differentiable Functions

‖f‖Tr(D1,p(·)(Rn+1
> )) := inf

{
‖F‖D1,p(·)(Rn+1

> ) : F ∈D1,p(·)(Rn+1
> ) and TrF = f

}

makes Tr(D1,p(·)(Rn+1
> )) a Banach space. The identity TrF = f is to

be understood as an identity of equivalence classes. Also for homogeneous
Sobolev spaces the trace space depends only on the values of p on ∂R

n+1
> .

The proof is identical to that of Theorem 12.1.1 except that we use (8.5.14)
instead of (8.5.13) for the extension.

Theorem 12.2.9. Let p1, p2 ∈ P log(Rn+1
� ) with p1|Rn = p2|Rn . Then

TrD1,p1(·)(Rn+1
> ) = TrD1,p2(·)(Rn+1

> ) with equivalent norms.

In application, as e.g. the Poisson problem, it happens that for a function
u ∈ L1

loc(Ω) one can show that ∇u,∇2u ∈ Lp(·)(Ω). Because of the spe-
cial nature of the homogeneous space this information is covered neither by
D1,p(·)(Ω) nor by D2,p(·)(Ω). Thus we introduce a new space containing the
full information.

Definition 12.2.10. Let Ω ⊂ R
n be a domain and let p ∈ P log(Ω) be a

variable exponent. The space D(1,2),p(·)(Ω) consists of all equivalence classes
[u]0 with u ∈ D̃1,p(·)(Ω) ∩ D̃2,p(·)(Ω). We identify u with its equivalence class
[u]0 and thus write u instead of [u]0. We equip D(1,2),p(·)(Ω) with the norm

‖u‖D(1,2),p(·)(Ω) := ‖∇u‖Lp(·)(Ω) + ‖∇2u‖Lp(·)(Ω) .

Note that D(1,2),p(·)(Ω) is a subspace of D1,p(·)(Ω) but not of D2,p(·)(Ω),
because it consists of equivalence classes modulo constants.

The natural mapping i : C∞
0 (Ω) → D(1,2),p(·)(Ω): u �→ [u]0 implies that

C∞
0 (Ω) is isomorphic to a linear subspace of D(1,2),p(·)(Ω). We define

D
(1,2),p(·)
0 (Ω) as the closure of C∞

0 (Ω) in D(1,2),p(·)(Ω).
In the same way as in the proof of Theorem 12.2.3 one can show the

following fundamental properties of D(1,2),p(·)(Ω) and D
(1,2),p(·)
0 (Ω).

Theorem 12.2.11. Let Ω ⊂ R
n be a domain and let p ∈ P log(Ω). The spaces

D(1,2),p(·)(Ω), and D(1,2),p(·)
0 (Ω) are Banach spaces, which are separable if p

is bounded, and reflexive and uniformly convex if 1 < p− � p+ < ∞.

Proposition 12.2.12. Let p ∈ P log(Rn) with 1 � p− � p+ < ∞, and let
u ∈ D(1,2),p(·)(Rn). Then there exists a sequence (um) ⊂ C∞

0 (Rn) such that
um → u in D(1,2),p(·)(Rn). Thus we have D(1,2),p(·)(Rn) = D

(1,2),p(·)
0 (Rn).

Proof. The proof of the assertion uses the arguments and notation from the
proof of Proposition 12.2.7. We already know that

ηAm
(
u− c0m

)
→ u in D1,p(·)(Rn),

um := ηAm
(
u− c0m −

n∑

i=1

cimxi
)
→ u in D2,p(·)(Rn),
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where c0m := 〈u〉Ak and cim := 〈∂iu〉Ak . Note that the definition of um is
independent of the choice of the representative from the equivalence class
of u. To prove the convergence um → u also in D1,p(·)(Rn) it suffices to show
that

∂l(ηAmc
i
mxi) = (∂lηAm)cimxi + ηkc

i
mδil → 0 in Lp(·)(Rn).

Since |xi| < 2m in Am, we have

∥
∥(∂lηAm)cimxi

∥
∥
Lp(·)(Rn)

� c
2m
m

 

Am

|∂iu| dx ‖1‖Lp(·)(Am)

� c

|Am| ‖∇u‖Lp(·)(Am) ‖1‖Lp′(·)(Am) ‖1‖Lp(·)(Am)

� c ‖∇u‖Lp(·)(Am) → 0

for m → ∞, where we used Theorem 4.5.7. Analogously we get

‖ηAmcim‖Lp(·)(Rn) �
 

Am

|∂iu| dx ‖1‖Lp(·)(Am)

� c ‖∇u‖Lp(·)(Am) → 0

for m→ ∞. As in the proof of Proposition 12.2.7 we choose for m ∈ N num-
bers εm > 0 and mollify um with a standard kernel (cf. Theorem 4.6.4)
such that ‖um − um ∗ ψεm‖D(1,2),p(·)(Rn) � m−1. Obviously, the sequence
(um ∗ ψεm) belongs to C∞

0 (Rn) and converges to u in D(1,2),p(·)(Rn). ��

Remark 12.2.13. If we add to the assumptions of Proposition 12.2.12 that
u ∈ Lq(·)(Rn) with q ∈ P log(Rn), 1 < q− � q+ < ∞, then we obtain that
the sequence (um) ⊂ C∞

0 (Rn) converges also in L
q(·)
loc (Rn) to u. For that one

shows that ‖ηAmc0m‖Lq(·)(Rn) � c ‖u‖Lq(·)(Am) → 0 for m → ∞. Moreover,
for each fixed cube Q ⊂ R

n, ‖ηAmcimxi‖Lq(·)(Q) � c(Q)
ffl
Am

|∇u| dx → 0 as
m → ∞, where we again used Theorem 4.5.7.

12.3 Sobolev Spaces with Negative Smoothness

In this section we study the dual spaces of Sobolev spaces. We show that
these spaces can be identified with Sobolev spaces of negative smoothness.
We consider both the homogeneous and inhomogeneous case.

Definition 12.3.1. Let Ω ⊂ R
n be a domain, let p ∈ P log(Ω) satisfy

1 < p− � p+ � ∞ and let k ∈ N. We denote the dual spaces of the
inhomogeneous and homogeneous Sobolev spaces as follows
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W−k,p(·)(Ω) := (W k,p′(·)
0 (Ω))∗ and D−k,p(·)(Ω) := (Dk,p′(·)

0 (Ω))∗.

Note that under the assumptions on p in Definition 12.3.1 the space
W

k,p′(·)
0 (Ω) andHk,p′(·)

0 (Ω) coincide by Corollary 11.2.4. In particular,C∞
0 (Ω)

is dense in W
k,p′(·)
0 (Ω).

Proposition 12.3.2. Let Ω ⊂ R
n be a domain, let p ∈ P log(Ω) satisfy

1 < p− � p+ � ∞ and let k ∈ N. For each F ∈ W−k,p(·)(Ω) there exists
fα ∈ Lp(·)(Ω), |α| � k, such that

〈F, u〉 =
∑

|α|�k

ˆ

Ω

fα∂αu dx

for all u ∈ W
k,p′(·)
0 (Ω). Moreover,

‖F‖W−k,p(·)(Ω) ≈
∑

|α|�k
‖fα‖Lp(·)(Ω).

Proof. For u ∈ W
k,p′(·)
0 (Ω) we define Pu := (∂αu) ∈ (Lp

′(·)(Ω))N(k), where
N(k) is the number of multi-indexes α with |α| � k. Clearly P maps
W

k,p′(·)
0 (Ω) into a closed linear subspace W of (Lp

′(·)(Ω))N(k) and we have
‖Pu‖(Lp′(·)(Ω))N(k) = |||u|||

W
k,p′(·)
0 (Ω)

if we equip W
k,p′(·)
0 (Ω) with the equiv-

alent norm |||u|||
W
k,p′(·)
0 (Ω)

:=
∑

|α|�k ‖∂αu‖Lp′(·)(Ω). By the Hahn–Banach
Theorem we can extend the bounded linear functional F ∗ ∈ W ∗, defined by
〈F ∗, Pu〉 := 〈F, u〉 for all u ∈ W

k,p′(·)
0 (Ω), to a bounded linear functional

F̃ ∈ ((Lp
′(·)(Ω))N(k))∗ satisfying

‖F̃‖((Lp′(·)(Ω))N(k))∗ = ‖F ∗‖W � ‖F‖W−k,p(·)(Ω). (12.3.3)

From Theorem 3.4.6 we deduce the existence of fα ∈ Lp(·)(Ω), |α| � k, such
that

〈F̃ ,v〉 =
∑

|α|�k

ˆ

Ω

fαvα dx

for all v ∈ (Lp
′(·)(Ω))N(k). From this and the definition of F ∗ we immediately

conclude that

〈F, u〉 = 〈F ∗, Pu〉 = 〈F̃ , Pu〉 =
∑

|α|�k

ˆ

Ω

fα∂αu dx
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for all u ∈ W
k,p(·)
0 (Ω). This proves the representation for F . This represen-

tation together with (12.3.3), the equivalence of norms for (Lp(·)(Ω))∗ and
Lp

′(·)(Ω) (cf. Theorem 3.4.6), and Hölder’s inequality proves the equivalence
of norms in the assertion. ��
Proposition 12.3.4. Let Ω ⊂ R

n be a domain, and let p ∈ P log(Ω) satisfy
1 < p− � p+ <∞. Then C∞

0 (Ω) is dense in W−k,p(·)(Ω), k ∈ N.

Proof. Let F ∈ W−k,p(·)(Ω). Then Proposition 12.3.2 implies the existence
of fα ∈ Lp(·)(Ω), |α| � k, such that

〈F, u〉 =
∑

|α|�k

ˆ

Ω

fα∂αu dx

for all u ∈ W
k,p′(·)
0 (Ω). Due to Corollary 4.6.5 there exists f jα ∈ C∞

0 (Ω) with
‖fα − f jα‖Lp(·)(Ω) � j−1. We set F j :=

∑
|α|�k(−1)|α|∂αf jα ∈ C∞

0 (Ω), which

defines, due to the density of C∞
0 (Ω) in W k,p′(·)

0 (Ω) (cf. Corollary 11.2.4), an
element fromW−k,p(·)(Ω) through 〈F j , u〉 :=

∑
|α|�k

´
Ω f

j
α∂αudx, u∈C∞

0 (Ω).
One easily checks that ‖F j − F‖W−k,p(·)(Ω) � c j−1 → 0 for j → ∞ and the
assertion follows. ��

We have analogous statements of Propositions 12.3.2 and 12.3.4 in the case
of the dual spaces D−k,p(·)(Ω) of the homogeneous Sobolev spaces Dk,p(·)

0 (Ω).
The proof of the next proposition is completely analogous to the proof of
Proposition 12.3.2 and thus we omit it.

Proposition 12.3.5. Let Ω ⊂ R
n be a domain, let p ∈ P log(Ω) satisfy

1 < p− � p+ � ∞ and let k ∈ N. For each F ∈ D−k,p(·)(Ω) there exists
fα ∈ Lp(·)(Ω), |α| = k, such that

〈F, u〉 =
∑

|α|=k

ˆ

Ω

fα∂αu dx

for all u ∈ D
k,p′(·)
0 (Ω). Moreover,

‖F‖D−k,p(·)(Ω) ≈
∑

|α|=k
‖fα‖Lp(·)(Ω).

Remark 12.3.6. The last equality also implies that

〈F, u〉
D−k,p(·)(Ω),D

k,p′(·)
0 (Ω)

= −
∑

|α|=k
〈∂αfα, u〉D∗(Ω),C∞

0 (Ω)

for all u ∈ C∞
0 (Ω), i.e. the space D−k,p(·)(Ω) can be viewed as a subspace of

the space of distributions D∗(Ω).
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Recall that we denote the subspace of functions f ∈ C∞
0 (Ω) satisfying´

Ω f dx = 0 by C∞
0,0(Ω). For simplicity we restrict ourselves until the end

of this section to the study of the homogeneous Sobolev space D1,p(·)(Ω),
i.e. we consider only the case k = 1. For a function f ∈ L1

loc(Ω), we define a
functional f̃ by 〈f̃ , u〉 :=

´
Ω
fu dx for u ∈ C∞

0 (Ω). From Proposition 3.4.14
we know that C∞

0,0(Ω) is dense in Lp(·)0 (Ω). Next we show that this also holds
for D−1,p(·)(Ω).

Proposition 12.3.7. Let Ω be a domain and let p ∈ P log(Ω) with 1 < p− �
p+ < ∞. Then C∞

0,0(Ω) is dense in D−k,p(·)(Ω), k ∈ N.

Proof. Let F ∈ D−k,p(·)(Ω). Then Proposition 12.3.5 implies the existence of
fα ∈ Lp(·)(Ω), |α| = k, such that

〈F, u〉 =
∑

|α|=k

ˆ

Ω

fα∂αu dx

for all u ∈ D
k,p′(·)
0 (Ω). Due to Proposition 3.4.14 there exists f jα ∈ C∞

0,0(Ω)
with ‖fα − f jα‖Lp(·)(Ω) � j−1. We set F j :=

∑
|α|�k(−1)k∂αf jα ∈ C∞

0,0(Ω),
which defines through 〈F j , u〉 :=

∑
|α|=k

´
Ω
f jα∂αu dx, u ∈ C∞

0 (Ω), an ele-
ment fromD−k,p(·)(Ω). One easily checks that ‖F j−F‖D−k,p(·)(Ω) � c j−1 → 0
for j → ∞ and the assertion follows. ��

Let us restrict ourselves for the remainder of this section to the case k = 1.
Even though C∞

0,0(Ω) is dense in D−1,p(·)(Ω) and Lp(·)0 (Ω) it is in general not

clear that it is also dense in D−1,p(·)(Ω) ∩ L
p(·)
0 (Ω). However we have the

following result:

Lemma 12.3.8. Let Ω ⊂ R
n be a domain, let p ∈ P log(Ω) satisfy 1 < p− �

p+ � ∞, and let A ⊂ Ω be a bounded John domain.

(a) The space Lp(·)0 (A) embeds intoD−1,p(·)(A) which embeds intoD−1,p(·)(Ω).
We have

‖f‖D−1,p(·)(Ω) � c ‖f‖D−1,p(·)(A) � c(diamA)‖f‖
L
p(·)
0 (A)

,

where we have extended f by zero outside of A.
(b) If p+ < ∞ then for each f ∈ L

p(·)
0 (A), extended f by zero outside of A,

there exists a sequence (fk) ⊂ C∞
0,0(A) with fk → f in Lp(·)(Ω) and in

D−1,p(·)(Ω).

Proof. The embedding D−1,p(·)(A) ↪→ D−1,p(·)(Ω) and first inequality in (a)
follow by duality from the obvious embedding D1,p(·)

0 (A) ↪→ D
1,p(·)
0 (Ω). Using

Hölder’s inequality and Poincaré’s inequality (Corollary 8.2.6) we find that
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〈f̃ , u〉
D−1,p(·)(A),D

1,p′(·)
0 (A)

=
ˆ

A

fu dx =
ˆ

A

f (u− 〈u〉A) dx

� c(diamA) ‖f‖Lp(·)(A)‖∇u‖Lp′(·)(A)

for each u ∈ C∞
0 (A). This and the density of C∞

0 (A) in D
1,p′(·)
0 (A) prove

that f̃ defines a linear bounded functional on D
1,p′(·)
0 (A) which satisfies the

inequality in (a). The density of C∞
0,0(A) in L

p(·)
0 (A) (Proposition 3.4.14)

together with the embedding in (a) proves (b). ��

Remark 12.3.9. From the previous result and Proposition 3.4.14 it follows
immediately that for bounded John domains C∞

0,0(Ω) is dense in D−1,p(·)(Ω)∩
L
p(·)
0 (Ω) if p ∈ P log(Ω) satisfies 1 < p− � p+ < ∞.

If the domain Ω has a sufficiently large and nice boundary it is not neces-
sary to require as in the previous results that the function f has a vanishing
integral. For simplicity we formulate the results only for the half-space R

n+1
> .

Lemma 12.3.10. Let p ∈ P log(Rn+1
> ) satisfy 1 < p− � p+ � ∞ and let

A ⊂ R
n+1
� be a bounded John domain.

(a) The space Lp(·)(A) embeds into D−1,p(·)(Rn+1
> ) and we have the estimate

‖f‖D−1,p(·)(Rn+1
> ) � c(A)‖f‖Lp(·)(A) ,

where we have extended f by zero outside of A.
(b) If p+ < ∞ then for each f ∈ Lp(·)(A) there exists a sequence (fk) ⊂

C∞
0 (A) with fk → f in Lp(·)(Rn+1

> ) and in D−1,p(·)(Rn+1
> ).

Proof. We choose x0 ∈ ∂R
n+1
> and a ball B(x0, R) such that A ⊂ B(x0, R).

We choose an appropriate ball B ⊂ R
n+1
< ∩B(x0, R) with |B| ≈ |A| and note

that u|B = 0 for u ∈ C∞
0 (Rn+1

> ). Now we use Lemma 8.2.3 and the Poincaré
inequality (Theorem 8.2.4 (b)) and obtain for f ∈ Lp(·)(A) that

〈f̃ , u〉 =
ˆ

B(x0,R)

fu dx � c ‖f‖Lp(·)(B(x0,R))‖u− 〈u〉B‖Lp′(·)(B(x0,R))

� c ‖f‖Lp(·)(A)‖∇u‖Lp′(·)(Rn+1
> )

for all u ∈ C∞
0 (Rn+1

> ). This and the density of C∞
0 (Rn+1

> ) in D
1,p′(·)
0 (Rn+1

> )
proves that f̃ defines a linear bounded functional on D1,p′(·)

0 (Rn+1
> ) which sat-

isfies the estimate in (a). The density of C∞
0 (A) in Lp(·)(A) (Theorem 3.4.12)

together with the embedding in (a) prove (b). ��

Proposition 12.3.11. Let p ∈ P log(Rn+1
> ) with 1 < p− � p+ < ∞. Then

C∞
0 (Rn+1

� ) and C∞
0 (Rn+1

> ) are dense in D−1,p(·)(Rn+1
> ).
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Proof. The previous lemma implies that C∞
0,0(Rn+1

> ) ⊂ C∞
0 (Rn+1

> ) ⊂
C∞

0 (Rn+1
> ) ⊂ D−1,p(·)(Rn+1

> ); hence the statement follows from Proposi-
tion 12.3.7. ��

12.4 Bessel Potential Spaces*

Almeida and Samko [26], and Gurka, Harjulehto and Nekvinda [181] have
extended variable integrability Sobolev spaces to Bessel potential spaces
Lα,p(·) for constant but potentially non-integer α. The presentation in this
section follows the latter reference.

The Bessel kernel gα of order α > 0 is defined by

gα(x) :=
πn/2

Γ(α/2)

∞̂

0

e−s−π
2|x|2/s s(α−n)/2 ds

s
, x ∈ R

n.

The Bessel potential space with variable exponent Lα,p(·)(Rn) is defined, for
p ∈ P(Rn) and α > 0, by

Lα,p(·)(Rn) := {gα ∗ f : f ∈ Lp(·)(Rn)},

and is equipped with the norm

‖gα ∗ f‖Lα,p(·)(Rn) := ‖f‖p(·).

If α = 0 we put g0 ∗ f := f and L0,p(·)(Rn) := Lp(·)(Rn).
The main result of this section is the following theorem.

Theorem 12.4.1. If p ∈ A with 1 < p− � p+ < ∞ and k ∈ N, then

Lk,p(·)(Rn) ∼= W k,p(·)(Rn).

Before we prove the main theorem we need a few auxiliary results. Some
basic properties of the Bessel kernel gα, α > 0 are:

gα is nonnegative, radially decreasing and ‖gα‖1 = 1,

ĝα(ξ) = (1 + |ξ|2)−α/2, ξ ∈ R
n,

gα ∗ gα′ = gα+α′ , α, α′ > 0.

For α > 0 we define the measure μα on Lebesgue measurable sets E ⊂ R
n by

μα(E) := δ0(E) +
∞∑

k=1

b(α, k)
ˆ

E

g2k(y) dy,
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where δ0 is the Dirac delta measure at zero and b(α, k) := (−1)k
(
α/2
k

)
=

(−1)k

k!

∏k−1
j=0 (α2 − j), k ∈ N. Since

∞∑

k=1

|b(α, k)| < ∞,

the measure μα is a finite signed Borel measure on R
n. For α = 0 we set

μ0 = δ0. The origin of the coefficients is in the Taylor expansion of the
function t �→ (1 − t)α/2, α > 0, t ∈ (0, 1]. Indeed, for x ∈ R

n we have

|x|α
(1 + |x|2)α/2

=
(

1 − 1
1 + |x|2

)α/2
= 1 +

∞∑

k=1

b(α, k) (1 + |x|2)−2k/2,

which implies that

μ̂α(x) :=
ˆ

Rn

e−ix·ξ dμα(ξ) =
|x|α

(1 + |x|2)α/2

for α > 0. Obviously, this holds for α = 0, too. (For more details see [317,
p. 32] and [359, p. 134].)

We define the Riesz transform Rjf , j = 1, . . . , n, of a function f ∈ S by
the formula

Rjf(x) :=
Γ((n+ 1)/2)
π(n+1)/2

lim
ε→0+

ˆ

|y|>ε

yj
|y|n+1

f(x− y) dy.

Note that Rj is a Calderón–Zygmund operator. Recall that (cf. [359])

F(Rjf)(ξ) =
−iξj
|ξ| f̂(ξ).

Let β = (β1, . . . , βn) ∈ N
n
0 be a multi-index. Then the multi-Riesz transform

Rβ is defined by
Rβf := Rβ1

1 ◦ · · · ◦ Rβn
n f. (12.4.2)

For f ∈ S it is easy to verify (cf. [317]) that

F(Rβf)(ξ) =
(−iξ1

|ξ|

)β1

. . .
(−iξn

|ξ|

)βn
f̂(ξ),

F(Rβ(Dβf))(ξ) =
(−2πξ21

|ξ|

)β1

. . .
(−2πξ2n

|ξ|

)βn
f̂(ξ),

F(Dβf)(ξ) = (−2πi)|β| ξβ f̂(ξ),

where we used the multi-index notation ξβ := ξβ1
1 · · · ξβnn .
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Lemma 12.4.3. Suppose that p ∈ A with 1 < p− � p+ < ∞, α � 0 and
β ∈ N

n
0 . Then there exists a positive constant c such that

‖gα ∗ f‖p(·) � c ‖f‖p(·),
‖μα ∗ f‖p(·) � c ‖f‖p(·),
‖Rβf‖p(·) � c ‖f‖p(·).

for f ∈ Lp(·)(Rn).

Proof. We noted earlier that gα is radially symmetric and decreasing. Fur-
thermore, ‖gα‖1 = ‖g1‖1 = 1. Hence gα is its own radially decreasing
majorant. It follows from Lemma 4.6.3 that

‖gα ∗ f‖p(·) � c ‖gα‖1‖f‖p(·),

which yields the first inequality.
From the definition of μα we obtain that

μα ∗ f(x) = f(x) +
∞∑

k=1

b(α, k) g2k ∗ f(x).

Then the triangle inequality and the previous case complete the proof of the
second claim:

‖μα ∗ f‖p(·) � ‖f‖p(·) +
∞∑

k=1

|b(α, k)| ‖g2k ∗ f‖p(·)

�
(

1 + c

∞∑

k=1

|b(α, k)|
)
‖f‖p(·) � c ‖f‖p(·).

To prove the third inequality we note that by Corollary 6.3.13 and p ∈ A
there exists a positive constant c such that

‖Rjf‖p(·) � c ‖f‖p(·)

for j = 1, . . . , n and f ∈ Lp(·)(Rn). Iterating this inequality completes the
proof. ��

Proposition 12.4.4. Suppose that p ∈ P(Rn) is bounded. Then the Schwartz
class S is dense in Lα,p(·)(Rn), α � 0.

Proof. There is nothing to prove when α = 0. Let α > 0 and u ∈ Lα,p(·)(Rn).
Then there is a function f ∈ Lp(·)(Rn) such that u = gα ∗ f . By density
of C∞

0 (Rn) in Lp(·)(Rn) (Theorem 3.4.12) we can find a sequence (fj)∞j=1 ⊂
C∞

0 (Rn) ⊂ S converging to f in Lp(·)(Rn). Since the mapping f �→ gα ∗ f
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maps S onto S (cf. [359]), the functions uj := gα ∗ fj, j ∈ N, belong to S.
Moreover,

‖u− uj‖Lα,p(·)(Rn) = ‖f − fj‖p(·) → 0 as j → ∞

and the assertion follows. ��

Lemma 12.4.5 (cf. [317, Lemma 5.15]). Let f ∈ S and k ∈ N. Then

f = gk ∗
k∑

m=0

(
k
m

)
gk−m ∗ μm ∗ (−2π)−m

∑

|β|=m

(
m
β

)
Rβ(Dβf),

where
(
m
β

)
= m!

β1!β2!···βn! .

Proof. Using the binomial theorem for (ξ21 + . . .+ ξ2n)m we derive

|ξ|2mf̂(ξ) =
∑

|β|=m

(
m

β

)

ξ2β1
1 · · · ξ2βnn f̂(ξ)

=
( |ξ|
−2π

)m ∑

|β|=m

(
m
β

)
F(Rβ (Dβf))(ξ).

Then we use the binomial theorem for (1 + |ξ|2)k and the previous equation
to derive

(1 + |ξ|2)kf̂(ξ) =
k∑

m=0

(
k

m

)( |ξ|
−2π

)m ∑

|β|=m

(
m
β

)
F(Rβ(Dβf))(ξ).

Next we note that |ξ|m
(1+|ξ|2)k = ĝk(x)ĝk−m(x) μ̂m(x). Thus we obtain

f̂(ξ) = ĝk(ξ)
k∑

m=0

(
k
m

)
ĝk−m(ξ) μ̂m(ξ) (−2π)−m

∑

|β|=m

(
m
β

)
F(Rβ(Dβf))(ξ)

by dividing the previous equation by (1+|ξ|2)k. The claim follows by applying
the inverse Fourier transform. ��

Lemma 12.4.6 (cf. [317, Lemma 5.17]). Let f ∈ S, k ∈ N and β ∈ N
n
0 ,

|β| � k. Then

Dβ(gk ∗ f) = (2π)|β| gk−|β| ∗ μ|β| ∗ Rβf.
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Proof. We again work on the Fourier side:

F(Dβ(gk ∗ f))(ξ)

= (−2πi)|β| ξβ ĝk(ξ) f̂(ξ)

= (2π)|β| 1
(1+|ξ|2)(k−|β|)/2

|ξ||β|
(1+|ξ|2)|β|/2

(−iξ1
|ξ|
)β1

. . .
(−iξn

|ξ|
)βn

f̂(ξ)

= (2π)|β| ĝk−|β|(ξ) μ̂|β|(ξ)F(Rβf)(ξ).

The result follows by taking inverse Fourier transforms. ��

Proof of Theorem 12.4.1. By Proposition 12.4.4 it suffices to consider the
case when f ∈ S. Suppose first that f ∈ Lk,p(·)(Rn). Then there is a function
h ∈ S such that f = gk ∗ h. By Lemmas 12.4.6 and 12.4.3, and the definition
of the Bessel norm we obtain

‖f‖k,p(·) =
∑

|β|�k
‖Dβf‖p(·) =

∑

|β|�k

∥
∥Dβ(gk ∗ h)

∥
∥
p(·)

=
∑

|β|�k

∥
∥(2π)|β| gk−|β| ∗ μ|β| ∗ Rβh

∥
∥
p(·) � c ‖h‖p(·) = c ‖f‖Lk,p(·)(Rn).

We next prove the reverse inequality. Let f ∈ W k,p(·)(Rn). Then, by
Lemmas 12.4.5 and 12.4.3,

‖f‖Lk,p(·)(Rn) =
∥
∥
∥

k∑

m=0

gk−m ∗ μm ∗ (−2π)−m
∑

|β|=m

(
m
β

)
Rβ(Dβf)

∥
∥
∥
p(·)

� c
∑

|β|�k
‖Dβf‖p(·) = c ‖f‖k,p(·). ��

12.5 Besov and Triebel–Lizorkin Spaces*

From a vast array of different function spaces a well ordered superstruc-
ture appeared in the 1960s and 1970s based on two three-index spaces: the
Besov space Bαp,q and the Triebel–Lizorkin space Fαp,q. These spaces include
as special cases Lebesgue spaces, Sobolev spaces, Bessel potential spaces,
(real) Hardy spaces, and the trace spaces of these spaces. In this section we
introduce Besov and Triebel–Lizorkin spaces with variable indices, denoted
by B

α(·)
p(·), q(·) and F

α(·)
p(·), q(·). In the constant exponent case the Besov space

was considered slightly earlier than the Triebel–Lizorkin space. However, for
variable exponent spaces the order was reversed – the reason for this is the
difficulty involved in having a variable secondary integrability index q, as we
explain below in more detail.
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Except as noted, the results on Triebel–Lizorkin spaces are based on work
by Diening, Hästö and Roudenko [100] whereas the results on Besov spaces
are from [24] by Almeida and Hästö. In addition to various variable exponent
spaces, these scales include also variable smoothness spaces studied, e.g., by
Beauzamy [41], Besov [46, 47] and Leopold [265,266].

In order to define these spaces we need some notation. For a cube Q let
�(Q) denote the side length of Q and xQ the “lower left corner”. Let D be the
collection of dyadic cubes in R

n and denote by D+ the subcollection of those
dyadic cubes with side-length at most 1. Let Dν := {Q ∈ D : �(Q) = 2−ν}.
Note that in this section ϕ is not used for the Φ-function of the space but
instead as admissible in the sense of the following definition.

Definition 12.5.1. We say a pair (ϕ,Φ) is admissible if ϕ,Φ ∈ S(Rn) satisfy

• spt ϕ̂ ⊂ {ξ ∈ R
n : 1

2 � |ξ| � 2} and |ϕ̂(ξ)| � c > 0 when 3
5 � |ξ| � 5

3 ,
• spt Φ̂ ⊂ {ξ ∈ R

n : |ξ| � 2} and |Φ̂(ξ)| � c > 0 when |ξ| � 5
3 .

We set ϕν(x) := 2νnϕ(2νx) for ν ∈ N and ϕ0(x) := Φ(x). For Q ∈ Dν we set

ϕQ(x) :=

{
|Q|1/2ϕν(x− xQ) if ν � 1,

|Q|1/2Φ(x − xQ) if ν = 0.

We define ψν and ψQ analogously.

According to [158], given an admissible pair (ϕ,Φ) we can select another
admissible pair (ψ,Ψ) such that

̂̃Φ(ξ) Ψ̂(ξ) +
∞∑

ν=1

̂̃ϕ(2−νξ) ψ̂(2−νξ) = 1 for all ξ ∈ R
n.

Here, Φ̃(x) = Φ(−x) and similarly for ϕ̃.
For each f ∈ S′(Rn) we define the (inhomogeneous) ϕ-transform Sϕ as

the map taking f to the sequence (Sϕf)Q∈D+ by setting (Sϕf )Q = 〈f, ϕQ〉.
Here, 〈·, ·〉 denotes the usual inner product on L2(Rn; C).

Using the admissible functions (ϕ,Φ) we can define the norms

‖f‖Fαp, q :=
∥
∥
∥
∥
∥2να ϕν ∗ f

∥
∥
lq

∥
∥
∥
Lp

and ‖f‖Bαp, q :=
∥
∥
∥
∥
∥2να ϕν ∗ f

∥
∥
Lp

∥
∥
∥
lq
,

for constants p, q ∈ (0,∞) and α ∈ R. The Triebel–Lizorkin space Fαp, q
and the Besov space Bαp, q consist of those distributions f ∈ S′ for which
‖f‖Fαp, q < ∞ and ‖f‖Bαp, q < ∞, respectively. The classical theory of these
spaces is presented for instance in the books of Triebel [362–364].

Throughout this section we use the following assumptions.
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Assumption 12.5.2. We assume that p, q ∈ P log(Rn) satisfy 0 < p− �
p+ < ∞ and 0 < q− � q+ < ∞. We also assume that α ∈ L∞(Rn) is
non-negative, locally log-Hölder continuous and has a limit at infinity.

For a family of functions fν : R
n → R, ν ∈ N0, we define

∥
∥fν(x)

∥
∥
l
q(x)
ν

:=
( ∞∑

ν=0

|fν(x)|q(x)
) 1
q(x)

.

Note that this is just an ordinary discrete Lebesgue space, since q(x) does
not depend on ν. The mapping x �→ ‖fν(x)‖

l
q(x)
ν

is a function of x and can

be measured in Lp(·). We write Lp(·)x to indicate that the integration variable
is x.

Definition 12.5.3. Let ϕν , ν ∈ N0, be as in Definition 12.5.1. The Triebel–
Lizorkin space F

α(·)
p(·), q(·)(R

n) is defined to be the space of all distributions
f ∈ S′ with ‖f‖

F
α(·)
p(·), q(·)

<∞, where

‖f‖
F
α(·)
p(·), q(·)

:=
∥
∥
∥
∥
∥2να(x) ϕν ∗ f(x)

∥
∥
l
q(x)
ν

∥
∥
∥
L
p(·)
x

.

Note that, a priori, the function space depends on the choice of admissible
functions (ϕ,Φ). We soon show that, up to equivalence of norms, every pair
of admissible functions in fact produces the same space.

In the classical case it has proved to be very useful to consider discrete
Triebel–Lizorkin spaces fαp, q. Intuitively, this is achieved by viewing the func-
tion as a constant on dyadic cubes. The size of the appropriate dyadic cube
varies according to the level of smoothness. We now present a formulation of
the Triebel–Lizorkin norm which is similar in spirit.

For a sequence of real numbers {sQ}Q we define

∥
∥{sQ}Q

∥
∥
f
α(·)
p(·), q(·)

:=

∥
∥
∥
∥
∥

∥
∥
∥
∥2

να(x)
∑

Q∈Dν
|sQ| |Q|−

1
2 χQ

∥
∥
∥
∥
l
q(x)
ν

∥
∥
∥
∥
∥
L
p(·)
x

.

The space fα(·)
p(·), q(·) consists of all those sequences {sQ}Q for which this norm

is finite. The discrete representation of Fαp, q as sequence spaces through the
ϕ-transform is due to Frazier and Jawerth [158].

One of the main results of Diening, Hästö and Roudenko [100] is the fol-
lowing isomorphism between F

α(·)
p(·), q(·) and a subspace of fα(·)

p(·), q(·) via the Sϕ
transform. For a proof we refer to [100, Corollary 3.9].
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Corollary 12.5.4. Under Assumption 12.5.2,

‖f‖
F
α(·)
p(·), q(·)

≈ ‖Sϕf‖fα(·)
p(·), q(·)

for every f ∈ F
α(·)
p(·), q(·)(R

n).

With this kind of discrete representation, one can prove that Fα(·)
p(·), q(·)(R

n)
is well-defined, see [100, Theorem 3.10] for details:

Theorem 12.5.5. Under Assumption 12.5.2, Fα(·)
p(·), q(·)(R

n) is well-defined,
i.e., the definition does not depend on the choice of the functions ϕ and Φ
satisfying the conditions of Definition 12.5.1, up to equivalence of norms.

We have seen in Chap. 9 that smooth functions are dense in the variable
exponent space if p+ < ∞ and p ∈ P log(Rn). These conditions are also
sufficient for density in the Triebel–Lizorkin space. The proof follows easily
from the atomic decomposition of the space; we refer to [100] for this.

Corollary 12.5.6. Under Assumption 12.5.2, the space C∞
0 (Rn) is dense in

F
α(·)
p(·), q(·)(R

n).

The Triebel–Lizorkin scale Fα(·)
p(·), q(·) includes as special cases spaces with

variable differentiability or integrability which have been studied by various
authors. As a first result we show that Lebesgue spaces with variable exponent
are included.

Theorem 12.5.7. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞. Then
F 0
p(·), 2(Rn) ∼= Lp(·)(Rn).

Proof. Since C∞
0 (Rn) is dense in Lp(·)(Rn) (Theorem 3.4.12) and also in

F 0
p(·), 2(Rn) by Corollary 12.5.6, it suffices to prove the claim for all f ∈
C∞

0 (Rn). Fix r ∈ (1, p−). Then

∥
∥‖ϕν ∗ f‖l2ν

∥
∥
Lr0(Rn;ω)

≈ ‖f‖Lr0(Rn;ω),

for all ω ∈ A1 by [260, Theorem 1], where the constant depends only on
the A1-constant of the weight ω. Thus the assumptions of the extrapolation
result, Theorem 7.2.1, are satisfied. Applying this theorem with F equal to
either

{(
‖ϕν ∗ f‖l2ν , f

)
: f ∈ C∞

0 (Rn)
}

or {
(
f, ‖ϕν ∗ f‖l2ν

)
: f ∈ C∞

0 (Rn)}

completes the proof. ��
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The next result states that the Bessel potential spaces studied in the
previous section are also included in the scale. Xu [371–373] has studied
Triebel–Lizorkin spaces with variable p, but fixed q and α. We denote these
spaces by FXu,α

p(·),q(R
n); they are also included in the Triebel–Lizorkin scale.

For the proof of the next result we refer to [100, Theorem 4.5].

Theorem 12.5.8. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞.

(a) Fαp(·), q(R
n) ∼= FXu,α

p(·),q(R
n) if α ∈ [0,∞); in particular,

(b) Fαp(·), 2(Rn) ∼= Lα,p(·)(Rn) if α ∈ [0,∞); in particular,
(c) Fαp(·), 2(Rn) ∼= Wα,p(·)(Rn) if α ∈ N0.

As an example of the power of having a unified scale of variable index
function spaces we consider another trace theorem. Recall that we saw in
Sect. 12.1 that the trace space of a first order variable exponent Sobolev
space is not a Sobolev space. The Triebel–Lizorkin scale does not have this
problem: it is, in fact, closed under taking of traces. For the proof we refer
to [100, Theorem 3.13].

Theorem 12.5.9. Let the functions p, q, and α be as in Assumption 12.5.2.
If α− 1

p − (n− 1) max
{

1
p − 1, 0

}
> 0, then

TrFα(·)
p(·), q(·)(R

n) = F
α(·)− 1

p(·)
p(·), p(·) (Rn−1).

Note that the assumption α − 1
p − (n − 1) max

{
1
p − 1, 0

}
> 0 is optimal

also in the constant smoothness and integrability case, cf. [157, Sect. 5]
Vyb́ıral [367] has recently derived a Sobolev embedding in the variable

index Triebel–Lizorkin setting. In view of the above trace result, this gen-
eralizes Fan’s [134] and Liu’s [273] Sobolev-type trace embeddings in the
variable exponent setting. The following is his Theorem 3.5 from [367]:

Theorem 12.5.10. Let the functions p0, p1, q0, q1 and α0, α1 be as in
Assumption 12.5.2. If α0 − n

p0
= α1 − n

p1
and (α0 − α1)− > 0, then

F
α0(·)
p0(·), q0(·)(R

n) ↪→ F
α1(·)
p1(·), q1(·)(R

n).

In the special case when q0 = q1 = c, the assumption (α0 − α1)− > 0
can be replaced by α0 � α1 [367, Theorem 3.4]. In particular, the choice
q0 = q1 = 2 gives, by Theorem 12.5.8 (b), that

Lα0,p0(·)(Rn) ↪→ Lα1,p1(·)(Rn)

if α0 − n
p0

= α1 − n
p1

and α0 � α1.

In order to define Besov spaces, we introduce a generalization of the iter-
ated function space �q(Lp(·)) for the case of variable q. We give a general
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but quite strange looking definition for the mixed Lebesgue-sequence space
modular. This is not strictly an iterated function space-indeed, it cannot be,
since then there would be no space variable left in the outer function space.

For all the remaining results in this section we refer to Almeida and
Hästö [24].

Definition 12.5.11. Let p, q ∈ P(Rn). The mixed Lebesgue-sequence space
�q(·)(Lp(·)) is defined on sequences of Lp(·)-functions by the modular

��q(·)(Lp(·))
(
(fν)ν

)
:=

∞∑

ν=0

inf
{
λν > 0 : �p(·)

(
fν/λ

1
q(·)
ν

)
� 1
}
.

Here we use the convention λ1/∞ = 1. The norm is defined from this as usual:

‖(fν)ν‖�q(·)(Lp(·)) := inf
{
μ > 0 : ��q(·)(Lp(·))

(
1
μ (fν)ν

)
� 1
}
.

To motivate this definition, we mention that

∥
∥(fν)ν

∥
∥
�q(Lp(·)) =

∥
∥
∥
∥
∥fν
∥
∥
p(·)

∥
∥
∥
�q

if q ∈ (0,∞] is constant. Let p, q ∈ P log(Rn) with p−, q− > 0. Then ��q(·)(Lp(·))
is a semimodular. Additionally:

(a) It is a modular if p+ < ∞.
(b) It is continuous if p+, q+ < ∞.

Of course, most importantly, ��q(·)(Lp(·)) defines a quasinorm.

Theorem 12.5.12. If p, q ∈ P log(Rn), then ‖ · ‖�q(·)(Lp(·)) is a quasinorm on
�q(·)(Lp(·)).

We are now able to state the definition of the Besov space without further
difficulties:

Definition 12.5.13. Let ϕν , ν ∈ N0, be as in Definition 12.5.1. For α :
R
n → R and p, q ∈ P log(Rn), the Besov space Bα(·)

p(·), q(·)(R
n) consists of all

distributions f ∈ S′(Rn) such that

‖f‖ϕ
B
α(·)
p(·), q(·)

:=
∥
∥(2να(·)ϕν ∗ f)ν

∥
∥
�q(·)(Lp(·)) <∞.

If p and α satisfy Assumption 12.5.2, then the Besov and Triebel–Lizorkin
spaces with equal primary and secondary indices agree:

B
α(·)
p(·), p(·)(R

n) = F
α(·)
p(·), p(·)(R

n).
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In particular, the Besov spaces can also be used to describe the traces of
Sobolev functions.

The following independence of the basis functions-property holds under
weaker conditions than the corresponding one in the Triebel–Lizorkin case:

Theorem 12.5.14. Let p, q ∈ P log(Rn) and α be locally log-Hölder con-
tinuous and bounded. Then the space B

α(·)
p(·), q(·)(R

n) does not depend on
the admissible basis functions ϕν , i.e. different functions yield equivalent
quasinorms.

The following two embedding theorems generalize the constant exponent
versions in the expected (and optimal) way:

Theorem 12.5.15. Let α, α0, α1 ∈ L∞(Rn) and p, q0, q1 ∈ P(Rn).

(i) If q0 � q1, then

B
α(·)
p(·), q0(·)(R

n) ↪→ B
α(·)
p(·), q1(·)(R

n).

(ii) If (α0 − α1)− > 0, then

B
α0(·)
p(·), q0(·)(R

n) ↪→ B
α1(·)
p(·), q1(·)(R

n).

(iii) If p+, q+ <∞, then

B
α(·)
p(·),min{p(·),q(·)}(Rn) ↪→ F

α(·)
p(·), q(·)(R

n) ↪→ B
α(·)
p(·),max{p(·),q(·)}(Rn).

Theorem 12.5.16 (Sobolev inequality). Let p0, p1, q ∈ P(Rn) and α0,
α1 ∈ L∞(Rn) with α0 � α1. If 1/q and

α0(x) − n

p0(x)
= α1(x) − n

p1(x)

are locally log-Hölder continuous, then

B
α0(·)
p0(·),q(·)(R

n) ↪→ B
α1(·)
p1(·),q(·)(R

n).

Kempka [232] has studied so-called micro-local versions of both variable
index Besov and Triebel–Lizorkin spaces. This setting includes also some
range of weights as well as slightly more general smoothness. However, he
does not include the case of Besov spaces with variable q.



Part III
Applications to Partial Differential

Equations



Chapter 13

Dirichlet Energy Integral
and Laplace Equation

For a constant q ∈ (1,∞), the Dirichlet energy integral is
ˆ

Ω

|∇u(x)|q dx.

The problem is to find a minimizer for the energy integral among all
Sobolev functions with a given boundary value function. The Euler–Lagrange
equation of this problem is the q-Laplace equation,

div(|∇u|q−2∇u) = 0,

which has to be understand in the weak sense. The energy integral and
q-Laplace equation have been widely studied, see for example [219,235,280].
The q-Laplace equation is a prototype of a non-linear elliptic equation. By
non-linearity we mean that if q �= 2 then the weak solutions do not form
a linear space. However the set of weak solutions is closed under constant
multiplication. By celebrated De Giorgi’s method and Moser’s iteration the
minimizers and the weak solutions are locally Hölder continuous and satisfy
Harnack’s inequality:

sup
B
u � c inf

B
u,

where c is independent of u and the ball B.
The Dirichlet energy integral and the Laplace equation can be generalize

to the variable exponent case as
ˆ

Ω

|∇u(x)|p(x) dx and div(p(x)|∇u(x)|p(x)−2∇u) = 0.

It turns out that the minimizer exists for a given boundary value function
under mild conditions of p. The minimizers and the weak solutions are locally
Hölder continuous when p is log-Hölder continuous with 1 < p− � p+ < ∞.
Harnack’s inequality does not hold by the mentioned form: in the variable

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 13,
c© Springer-Verlag Berlin Heidelberg 2011
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exponent case the constant can not be independent of the function u. The
minimizers or the weak solutions are not scalable, i.e. λu need not be a
minimizer or a weak solution even if u is. These effects are visible already in
the one dimensional case where the minimizers need not to be linear as in
the constant exponent case.

In the first section, Sect. 13.1, we study minimizers on an interval with
detailed proofs. In Sects. 13.2 and 13.3 we give a rough overview of properties
of minimizers and solutions of the prototype equality. In the last section,
Sect. 13.4, we generalize, with detailed proofs, Harnack’s inequality to all
elliptic type Laplace equations with growth conditions of a non-standard
form.

The material is selected by the personal taste of the writers; it concentrates
to the variable exponent Laplace equation from the potential theoretical
viewpoint and all results concerning Harnack’s inequality are included. In
particular this chapter does not include solutions to the obstacle problems,
e.g., [125,126,205,331], systems, e.g., [8,13,49,106,180,185,272,318,374,382,
383,388], eigenvalues, e.g., [21,88,89,112,113,130,133,135,136,145,259,290,
290,291,381], parabolic equations, e.g., [9, 36–39,71, 257,324,379,380]; regu-
larity of solutions, e.g., [3, 5, 10, 19, 31, 72, 124,131,146,147,150,156,182,276,
370,395,396,398].

Existence and uniqueness of solutions has been studied in a large number
of papers. For instance:

• [139, 143,368,385,389,390] deal with the one-dimensional case.
• [32, 35, 61, 80, 132, 170, 270, 282, 295, 322, 377, 384, 386, 387, 392] deal with

existence of solutions to the p(·)-Laplacian.
• [17, 30, 33, 33, 42, 55, 56, 64, 68, 78, 85–87,110,137,138,140,144,151,160,161,

170–173,175,220–222,273,274,292–294,320,321,333,349,354,375–377] deal
with existence related to more general equations.

A wider scope can be found from the recent surveys [201,297].

13.1 The One Dimensional Case

Let us start by stating the Dirichlet energy integral problem on an interval.
These results are mainly from [191]. We assume that the bounded interval
under consideration is (r,R). Since every element in the space W 1,p(·)(r,R)
has a continuous representative, we assume that every Sobolev function is
continuous. We denote u ∈W

1,p(·)
0 (r,R) and say that u belongs to the variable

exponent Sobolev space with zero boundary values if it can be continuously
continued by 0 outside (r,R) (the extension is again denoted by u). Thus
u ∈W

1,p(·)
0 (r,R) if and only if u(r) = u(R) = 0.

Definition 13.1.1. A function u ∈ W 1,p(·)(r,R) is a p(·)-minimizer for the
boundary values a and b if u(r) = a, u(R) = b and
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R̂

r

|u′|p(y) dy �
R̂

r

|v′|p(y) dy

for every v with u− v ∈W
1,p(·)
0 (r,R).

If p is a constant, then the minimizer is linear, u(x) = b−a
R−r (x − r) + a.

The next example shows that the variable exponent adds some interest to
this minimization question.

Example 13.1.2. We define

p(x) :=

{
3, for 0 < x � 1/2;

2, for 1/2 < x < 1.

Suppose that u ∈ W 1,p(·)(0, 1) is the minimizer for the boundary values 0
and b > 0. Denote u(1/2) = λ.

Then u|(0,1/2) is the solution to the classical energy integral problem with
boundary values 0 and λ, and u|(1/2,1) is the solution with boundary values
λ and b. Therefore these functions are linear, and so

u(x) =

{
2λx, for 0 < x � 1/2;

2λ+ 2(b− λ)(x − 1/2), for 1/2 < x < 1.

For this u we have the Dirichlet energy 4λ3+2(b−λ)2. It is easy to see that
the function λ �→ 2λ3+(b−λ)2 has a minimum at λ = (

√
1 + 12b−1)/6, which

determines the minimizer of the variable exponent problem. The minimizing
functions for some b’s are shown in Fig. 13.1.

As can be seen in the figure, and confirmed by calculation, the minimizer
is convex if b > 2/3, concave if b < 2/3 and linear for b = 2/3.

It is in fact possible to give an explicit formula for the minimizer by solving
the corresponding Euler–Lagrange equation, as shown in the next theorem.
The formula is not quite transparent, however, so we prove some properties
of the minimizers later on. We start with preliminary results.

Lemma 13.1.3. Let p ∈ P(r,R) be bounded and strictly greater than one
almost everywhere. If u ∈ W 1,p(·)(r,R) is a p(·)-minimizer, then p(x)
(u′(x))p(x)−1 is a constant almost everywhere.

Proof. Suppose that p(x)(u′(x))p(x)−1 is not a constant almost everywhere.
Let then d1 < d2 be such that

A1 :=
{
x ∈ (r,R) : p(x)|u′(x)|p(x)−1 < d1

}
,

A2 :=
{
x ∈ (r,R) : p(x)|u′(x)|p(x)−1 > d2

}
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Fig. 13.1 Energy integral minimizers

have positive measure. Let A′
1 ⊂A1 and A′

2 ⊂A2 be such that |A′
1| = |A′

2|> 0.
Define ξ := χA′

1
− χA′

2
.

Let 0 < ε < 1. Using
∣
∣|x+h|p−|x|p

∣
∣ � p

∣
∣|x+h|− |x|

∣
∣
(
|x+h|p−1 + |x|p−1

)

and ε−1
∣
∣|u′ + εξ| − |u′|

∣
∣ � c we obtain

∣
∣
∣
∣
|u′(x) + εξ(x)|p(x) − |u′(x)|p(x)

ε

∣
∣
∣
∣

�
p(x)

∣
∣
∣|u′(x) + εξ(x)| − |u′(x)|

∣
∣
∣
(
|u′(x) + εξ(x)|p(x)−1 + |u′(x)|p(x)−1

)

ε

� c
(
|u′(x)|p(x)−1 + εp(x)−1

)
� c
(
|u′(x)|p(x) + ε+ 1

)
.

Since p is bounded |u′|p(·) ∈ L1(r,R) and the dominated convergence theorem
yields

lim
ε→0

R̂

r

|u′ + εξ|p(x) − |u′|p(x)
ε

dx =

R̂

r

p(x)|u′|p(x)−1ξ dx

� (d1 − d2)|A′
1| < 0.

Note that ξ is the classical derivative of v(x) :=
´ x
r χA′

1
− χA′

2
dy. Since

v′ is bounded and v(r) = v(R) = 0 we obtain that v ∈ W
1,p(·)
0 (r,R).

Thus the previous inequality contradicts that u is the minimizer and hence
p(x)(u′(x))p(x)−1 is a constant almost everywhere. ��

Lemma 13.1.4. Let p ∈ P(r,R) be bounded and strictly greater than one
almost everywhere. Let u ∈ W 1,p(·)(r,R). If p(x)(u′(x))p(x)−1 is a constant
almost everywhere then u is a p(·)-minimizer for its own boundary values.
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Proof. Since p(x)(u′(x))p(x)−1 is a constant almost everywhere we have for
every v with v − u ∈W

1,p(·)
0 (r,R) that

R̂

r

p(x)(u′)p(x)−1(v′ − u′) dx = 0.

By the inequality |b|p � |a|p + p|a|p−1(b − a) we obtain

R̂

r

|v′|p(x) dx �
R̂

r

|u′|p(x) dx+

R̂

r

p(x)(u′)p(x)−1(v′ − u′) dx.

Since the last integral is zero we have

R̂

r

|u′|p(x) dx �
R̂

r

|v′|p(x) dx. ��

The next theorem gives an explicit form for the minimizers. The original
formulation in [191] included a mistake, so we reformulate the theorem here.

Theorem 13.1.5 ([191, Theorem 3.2]). Let p ∈ P(r,R) be bounded and
strictly greater than one almost everywhere and let a, b ∈ R, a < b, be the
boundary values at r and R. Then there exists a unique minimizer for these
boundary values if and only if there exists m̃ � 0 such that

b− a �
R̂

r

(
m̃

p(x)

) 1
p(x)−1

dx < ∞. (13.1.6)

In this case the minimizer is given by

u(x) :=

xˆ

r

(
m

p(y)

) 1
p(y)−1

dy + a,

for appropriate m ∈ (0, m̃].

Note that for m we have

R̂

r

(
m

p(y)

) 1
p(y)−1

dy = b− a.
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Proof. Let fm(x) :=
(
m
p(x)

) 1
p(x)−1 . We first show that m can be chosen so that´ R

r fm dx = b − a. If m̃ is such that
´ R
r fm̃ dx = b− a, then m̃ = m. Assume

then that
´ R
r fm̃ dx > b − a. It is enough to show that m �→

´ R
r fm dx is

continuous on [0, m̃]. Fix ε > 0 and define

Aλ :=
{
x ∈ (r,R) : p(x) > λ

}
.

We choose λ > 1 such that
ˆ

(r,R)\Aλ

fm̃ dx < ε.

In Aλ the exponent 1
p(x)−1 is bounded from above and so we can choose a

small real number d, m + |d| < m̃, such that
´
Aλ

|fm − fm+d| dx < ε. Since

m �→
´ R
r fm dx is increasing, we find that

∣
∣
∣
∣

R̂

r

fm − fm+d dx

∣
∣
∣
∣ �

ˆ

Aλ

|fm − fm+d| dx+
ˆ

(r,R)\Aλ

(fm + fm+d) dx � 3ε.

Hence m �→
´ R
r fm dx is continuous.

Let fm be such that
´ R
r fm dx = b − a. If u ∈ W 1,p(·)(r,R) is such that

fm = u′ and u(r) = a, then by Lemma 13.1.4 the function u is the minimizer
we are looking for. Define therefore u(x) :=

´ x
r fm(y) dy + a for x ∈ (r,R].

Since a � u � b, u ∈ Lp(·)(r,R). Further,

�p(·)(u
′) =

R̂

r

( m

p(x)

) p(x)
p(x)−1

dx � m̃

R̂

r

( m̃

p(x)

) 1
p(x)−1

dx < ∞.

Therefore u ∈W 1,p(·)(r,R) is a minimizer.
To prove the other direction, let u be a minimizer. Then by Lemma 13.1.3

fm = u′ with
´ R
r
fm dy = b−a. So then (13.1.6) holds. Therefore the condition

is both necessary and sufficient.
Finally we show that the minimizer is unique. Assume that we have two

minimizers u and v with same boundary values. Since y �→ yp(x) is strictly
convex when p(x) > 1,

∣
∣
∣
1
2
u′ +

1
2
v′
∣
∣
∣
p(x)

<
1
2
|u′|p(x) +

1
2
|v′|p(x)
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for almost every x ∈ I with u′(x) �= v′(x). The function 1
2u + 1

2v has the
same boundary values than u and v. If the set {u′(x) �= v′(x)} has positive
measure then

R̂

r

∣
∣
∣
1
2
u′ +

1
2
v′
∣
∣
∣
p(x)

dx <
1
2

R̂

r

|u′|p(x) dx+
1
2

R̂

r

|v′|p(x) dx =

R̂

r

|u′|p(x) dx.

Since u is a minimizer, we have u′ = v′ almost everywhere. We obtain
u = v. ��

The gradient of the minimizer is uniformly bounded if 1 < p− � p+ < ∞.
Thus we obtain the following corollary.

Corollary 13.1.7. If p ∈ P(r,R) with 1 < p− � p+ < ∞ then for every
a, b ∈ R, a < b, there exists a unique minimizer with these boundary values.
The minimizer is given by

u(x) :=

xˆ

r

(
m

p(y)

) 1
p(y)−1

dy + a,

for some constant m > 0.

The following example shows that the Dirichlet energy integral does not
always have a minimizer.

Example 13.1.8. For p(x) := 1 + x in (0, 1) the minimizer does not exists
when the difference between the boundary values is large enough. Fix a = 0
and let m > 1. Then

1ˆ

0

m
1

p(x)−1 dx =

1ˆ

0

m
1
x dx � max{1, logm}

1ˆ

0

dx

x
= ∞.

Since p1/(1−p) lies between 1/e and 1, the condition of Theorem 13.1.5 is not
satisfied for b >

´ 1

0 p(x)
1

1−p(x) dx.

Example 13.1.9. Using Theorem 13.1.5 we plot some minimizers of the
energy integral for p(x) := 1.1 + x in (0, 1) (Fig. 13.2). The left boundary
value is 0 and the number on the right is again the second boundary value, b.
It is easy to see that if we multiply a minimizer by a real number the result
need not to be a minimizer.

Next we study regularity of minimizers.

Corollary 13.1.10. If p ∈ P(r,R) with 1 < p− � p+ < ∞, then the
minimizers are bi-Lipschitz continuous.
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Fig. 13.2 Minimizers when p(x) = 1.1 + x

Proof. By Theorem 13.1.5, the minimizer has derivative (m/p(x))1/(p(x)−1)

for some constant m � 0. Since

(
m

p(x)

) 1
p(x)−1

� m
1

p(x)−1 � max{m
1

p−−1 ,m
1

p+−1 } < ∞

and

(
m

p(x)

) 1
p(x)−1

�
(
m

p+

) 1
p(x)−1

� min
{(

m

p+

) 1
p−−1

,

(
m

p+

) 1
p+−1

}

> 0

for all x ∈ (r,R), it follows from the mean-value theorem that the minimizer
is bi-Lipschitz continuous. ��
Corollary 13.1.11. If p ∈ P(r,R) with 1 < p− � p+ < ∞, then the deriva-
tive of the minimizer is α-Hölder continuous if and only if the exponent p is
α-Hölder continuous.

Proof. Let us denote F (y) := (m/y)1/(y−1). Then the derivative of the
minimizer equals F (p(x)). Since F is differentiable on (1,∞) we obtain

|F (p(x)) − F (p(y))| = F ′(ξ)|p(x) − p(y)|,

where ξ ∈ (p(x), p(y)), by the mean-value theorem. It is easy to see that F ′

is bounded and bounded away from 0 on [p−, p+], so that F (p(x)) possesses
the same degree of regularity as p(x). ��

The next result shows that if we relax the assumption p− > 1 then we are
a liable to lose a lot of the regularity of the minimizer.

Example 13.1.12. Let p(x) := 1 + (log(1/x))−1 in (0, 1). Fix the left
boundary value be 0 and let b > 0 be the right boundary value. We have



13.1 The One Dimensional Case 409

1ˆ

0

m
1

p(x)−1 dx =

1ˆ

0

x− logmdx =
1

1 − logm
,

provided m < e, so condition (13.1.6) is satisfied for any b > 0. Therefore
the derivative of the minimizer is (m/p(x))1/(p(x)−1) for some m > 0, by
Theorem 13.1.5. Thus for 0 < y < x < 1 we have

|u(x) − u(y)| =
∣
∣
∣

xˆ

y

x− logmp(x)−
1

p(x)−1 dx
∣
∣
∣ � x1−logm − y1−logm

1 − logm

� (x− y)1−logm

1 − logm
.

We see that u is (1 − logm)-Hölder continuous. Moreover, if b is such that
m > 1, then the derivative is unbounded, hence not uniformly continuous.

Some minimizers are plotted in Fig. 13.3. The number on the right is
again the second boundary value, b. The lower three curves are Lipschitz
continuous, the following two are 0.738- and 0.530-Hölder continuous.

Theorem 13.1.13 (Harnack’s inequality, [200]). Let p ∈ P(r,R) with
1 < p− � p+ < ∞. If u ∈ W 1,p(·)(r,R) is a minimizer with boundary values
a and b, 0 � a < b, then

sup
y∈B(x,r′)

u(y) � c inf
y∈B(x,r′)

u(y)

for every x ∈ (r,R) and every r′ with 2B(x, r′) ⊂ (r,R). The constant c
depends only on p−, p+, b− a, and R − r.
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Fig. 13.3 Minimizers when p(x) = 1 + (− log(x))−1
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Proof. We note that t−1/(t−1) lies between e−1 and 1 for all t � 1. By
Theorem 13.1.5 we obtain

sup
B(x,r′)

u =

x+r′ˆ

r

(
m

p(y)

) 1
p(y)−1

dy + a �
x+r′ˆ

r

m
1

p(y)−1 dy + a

� (x + r′ − r) max
{
m

1
p+−1 ,m

1
p−−1

}
+ a

and

inf
B(x,r′)

u =

x−r′ˆ

r

(
m

p(y)

) 1
p(y)−1

dy + a � e−1

x−r′ˆ

r

m
1

p(y)−1 dy + a

� (x− r′ − r) min
{
m

1
p+−1 ,m

1
p−−1

}
+ a.

Since 2B(x, r′) ⊂ (r,R), we deduce

x+ r′ − r

x− r′ − r
� 3.

Using this and the fact c+a
c′+a � max{ cc′ , 1}, the supremum and infimum

estimates yield

supB(x,r′) u

infB(x,r′) u
� 3e max

{
m

− 1
p−−1 ,m

1
p−−1

}
.

Here the constant m is from Theorem 13.1.5 and it depends on the boundary
values of u and p. Moreover m can be estimated in terms of p−, p+, b − a
and R− r. ��

The following example shows that the constant in the Harnack inequality
can not be independent of the minimizer even if the exponent is Lipschitz
continuous. The example is from [208].

Example 13.1.14. We define

p(x) :=

{
3 for 0 < x � 1

2 ;

3 − 2(x− 1
2 ) for 1

2 < x < 1.

Suppose that ub ∈ W 1,p(·)(0, 1) is the minimizer of the Dirichlet energy
integral for the boundary values 0 and b > 0 given by Theorem 13.1.5:

ub(x) =

xˆ

0

(
m(b)
p(y)

) 1
p(y)−1

dy.
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Fig. 13.4 Minimizers when p is Lipschitz continuous on the whole interval and constant
on (0, 1

2
]

Note that if b → ∞ then m(b) → ∞. Three minimizers with m(b) = 2, 4, 8
are presented in Fig. 13.4.

In
(
0, 1

2

)
the minimizer is linear, ub(x) =

√
m(b)

3 x. In
(

1
2 ,

3
5

)
the gradient

of ub increases from
√

m(b)
3 to

(
5m(b)

14

) 5
9
. At 11

20 , the midpoint of
(

1
2 ,

3
5

)
, the

gradient of ub equals
(

10m(b)
29

) 10
19

. Hence

ub(3
5 ) �

√
m(b)

3

1
2

+
1
20

(
10m(b)

29

) 10
19
.

Let B := B
(

1
2 ,

1
10

)
=
(

2
5 ,

3
5

)
. Then

supx∈B |ub(x)|
infx∈B |ub(x)| �

√
m(b)

3
1
2 + 1

20

(
10m(b)

29

) 10
19

√
m(b)

3
2
5

= 5
4 +

1
8
√

3

(10
29

) 10
19
m(b)

1
38 → ∞

as b → ∞.

Fan and Fan [139] have considered more complicated one-dimensional
variable exponent differential equations.
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Theorem 13.1.15 (Theorem 1.1, [139]). Let I := [0, T ] ⊂ R and g ∈
C(I×R

N ,RN ), and suppose that there exists r > 0 such that zg(x, z) � 0 for
all x ∈ I and z ∈ R

N with |z| = r. If p ∈ C(I) and p− > 1, then the equation

{(
|u′|p(x)−2u′

)′
= g(x, u), x ∈ I,

u(0) − u(T ) = u′(0) − u′(T ) = 0,
(13.1.16)

has at least one weak solution u ∈ C1(I,RN ) such that |u(x)| � r for all
x ∈ I.

We refer to the survey [201] for further variants of this result.

13.2 Minimizers

We start this section by discussing existence of minimizers for given boundary
values. Then we move to regularity of minimizers and Harnack’s inequal-
ity. These results are collected from many papers and for every theorem a
reference is given.

Definition 13.2.1. A function u ∈ W 1,p(·)(Ω) is a minimizer for a boundary
value function w ∈ W 1,p(·)(Ω) if u− w ∈W

1,p(·)
0 (Ω) and

ˆ

Ω

|∇u|p(x) dx �
ˆ

Ω

|∇v|p(x) dx

for every function v with u− v ∈W
1,p(·)
0 (Ω).

Theorem 13.2.2 ([196]). Let Ω be bounded and let p ∈ P(Ω) with
1 < p− � p+ < ∞ be such that the p(·)-Poincaré inequality holds. Assume
that w ∈ W 1,p(·)(Ω). Then there exists a unique minimizer for the boundary
value function w.

Let n � 3, q1 ∈ (1, n/(n − 1)) and q2 ∈ (q∗1 , n). Hästö [213] constructed
a bounded domain Ω, a continuous exponent p ∈ P(Ω) with p− = q1 and
p+ = q2, and a boundary value function w ∈ W 1,p(·)(Ω) such that there does
not exists a minimizer for the boundary value function w.

Note that if we had q2 � q∗1 in the previous theorem, then a minimizer
would always exist, by Lemma 8.2.14 and Theorems 13.2.2, so in this sense
Theorem 13.2.2 is the best possible.

Theorem 13.2.3 ([213]). Let Ω be bounded and let p ∈ P(Ω) with
1 < p− � p+ < ∞. Suppose that w ∈ W 1,p(·)(Ω) ∩ L∞(Ω). Then there
exists a unique minimizer for the boundary value function w.
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The proofs of Theorems 13.2.2 and 13.2.3 are based on a well known func-
tional analysis result: in a reflexive Banach spaces there exists an element
that minimizes every convex, lower semicontinuous and coercive operator.
The space W 1,p(·)(Ω) is a reflexive Banach space by Theorem 8.1.6. Convex-
ity follows since t �→ tp is convex for every 1 < p < ∞. Theorem 3.2.9 yields
lower semicontinuity. Therefore, we need only worry about coercivity. In this
setting coercivity means that ‖u‖p(·) → ∞ implies ‖∇u‖p(·) → ∞. Clearly
this holds if the Poincaré inequality holds, see Sect. 8.2. If the boundary
value function is bounded we may restrict our studied to uniformly bounded
Sobolev functions and use the Poincaré inequality in the constant exponent
case p = 1.

Assume that p is a bounded variable exponent with p− = 1. For λ > 1 we
set pλ := max{p, λ}; we can find Dirichlet pλ(·)-energy minimizers uλ for the
given bounded boundary value function f ∈W 1,pδ(·)(Ω) for some δ > 1. The
following result says that (uλ) has a converging subsequence as λ → 1. We
denote Y := {x ∈ Ω : p(x) = 1}.

Theorem 13.2.4 ([206]). Let p ∈ P(Ω) be bounded with p− = 1 and let
(λj) be a sequence decreasing to 1. Let (uλj ) be a sequence of Dirichlet pλj (·)-
minimizers in Ω for a boundary value function f ∈ W 1,pδ(·)(Ω)∩L∞(Ω), for
some δ > 1.

Then there exists a subsequence (λj) and u ∈ L∞(Ω) such that:

(a) uλj → u in L
pδ(·)
loc (Ω) for δ ∈ [1, n

n−1 );

(b) uλj ⇀ u in W
1,p(·)
loc (Ω \ Y );

(c) u is a weak solution of the p(·)-Laplace equation in Ω \ Y (see the next
section for the definition of weak solutions).

If, in addition, p is log-Hölder continuous and

lim
x→y

|p(x) − 1| log
1

|x− y| = 0

for every y ∈ Y , then the limit function u belongs to a variable exponent
mixed BV-Sobolev space in Ω and it minimizes the BV-Sobolev energy among
all functions with the same boundary values.

The limit function u form the previous theorem can be discontinuous as
presented in Fig. 13.5 that is from [206].

At the opposite limit, when p → ∞, we have the following result, where
pλ := min{p, λ}, see also [270,281].

Theorem 13.2.5 ([200]). Let p ∈ P(Ω) with n < p− � p+ = ∞. Assume
that f ∈W 1,p(·)(Ω)∩L∞(Ω) with

´
Ω |∇f |p(x)dx < ∞. Let uλ be the Dirichlet

pλ(·)-energy minimizer for the boundary value function f . Then there exist
a sequence (λi) converging to infinity and a function u∞ ∈ W 1,p(·)(Ω) such
that (uλi) converges locally uniformly to u∞ in Ω. Moreover,

´
Ω
|∇u∞|p(x) dx

is finite and |∇u∞| � 1 almost everywhere in {p = ∞}.
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Fig. 13.5 Four BV-Sobolev-minimizers for p(x) = 1 + |x| with different boundary values
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Fig. 13.6 A limit function and two solutions with λ = 10, 100

The next example shows that Harnack’s inequality need not to hold for
the limit function u∞ in the form of Theorem 13.1.13. The example is from
[200, Example 4.9].

Example 13.2.6. We define p ∈ P(0, 1) by

p(x) =

{
3

|x|− 1
4
, |x| > 1

4

∞, |x| � 1
4

and choose boundary values 0 and 1
2 . Figure 13.6 presents the limit function

u∞ (line) and pλ(·)-solutions with λ equal to 10 (dot) and 100 (dash). Note
that the limit function u∞ equals 0 on (−1,− 1

4 ).

Next we study continuity of the minimizer and its gradient. A function
F : Ω × R

n → R
n is a Carathéodory function if x �→ F (x, z) is measurable
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for every z ∈ R
n and z �→ F (x, z) is continuous for almost every x ∈ Ω. Let

F : Ω × R
n → R

n be a Carathéodory function such that

c−1|z|p(x) � F (x, z) � c(1 + |z|p(x))

for some c � 1.

Definition 13.2.7. A function u ∈ W 1,1
loc (Ω) is a local minimizer of F if

|∇u| ∈ L
p(·)
loc (Ω) and

ˆ

sptψ

F (x,∇u) dx �
ˆ

sptψ

F (x,∇u+ ∇ψ) dx

for every ψ ∈W 1,1(Ω) with compact support in Ω.

Every minimizer from Definition 13.2.1 satisfies the conditions of Defini-
tion 13.2.7.

In the excellent series of paper, Acerbi, Coscia and Mingione proved the
fundamental C1,α regularity for the model equation [4, 79] and extended it
to more general equations and systems [5,7,8]. We refer here only some their
theorems and recommend reader to look the nice survey of Mingione [297].

Fan and Zhao showed [147] that if the exponent is continuous and 1 <
p− � p+ < ∞, then every local minimizer of F is locally bounded. Their
proofs are based on De Giorgi’s method.

Theorem 13.2.8 ([4, 147]). Let Ω be bounded and p ∈ P log(Ω) with
1 < p− � p+ < ∞. Then every local minimizer of F is locally α-Hölder
continuous for α ∈ (0, 1) depending the log-Hölder constant of p.

The proof of Acerbi and Mingione [4] gives also a slightly different version
of the previous theorem. Namely if for every x ∈ Ω we have

|p(x) − p(y)| log |x− y| → 0 as y → x,

then every local minimizer of F is locally α-Hölder continuous for every
0 < α < 1.

Using the higher integrability of the gradients of local minimizers of F ,
Coscia and Mingione show that in some cases the gradients are continuous.

Theorem 13.2.9 ([79]). Let Ω be bounded and p ∈ P(Ω) be α-Hölder con-
tinuous with 1 < p− � p+ < ∞ and 0 < α � 1. Then every local minimizer
of F has locally β-Hölder continuous derivatives for some β < α.

Corollary 13.1.11 shows that in Theorem 13.2.9 β can not be strictly larger
than α.
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Definition 13.2.10. A function u ∈W
1,p(·)
loc (Ω) is called a quasiminimizer if

there exists a constant κ � 1 such that
ˆ

{v �=0}

|∇u|p(x) dx � κ

ˆ

{v �=0}

|∇(u+ v)|p(x) dx

for every open set D⊂⊂Ω and for every v ∈ W 1,p(·)(D) with compact support
in D.

In the previous section we noted that a constant multiple of a minimizers
need not be a minimizer. If u is a quasiminimizer with a constant κ, then −u
is also a quasiminimizer with the same constant, and if α ∈ R then αu is a
quasiminimizer with a constant max{αp+−p−κ, αp

−−p+κ}.
If u ∈ W 1,p(·)(Ω) is a quasiminimizer and κ = 1, then u is a minimizer

in a sense of Definition 13.2.1 for its own boundary values. Examples of the
quasiminimizers:

• Local minimizers and minimizers with a given boundary value function of

ˆ

Ω

|∇u|p(·)
p(x)

dx.

These are quasiminimizers with constant p+

p− .
• Local minimizers of a Carathéodory function with a growing conditions

c−1|z|p(x) � F (x,∇u) � c|z|p(x).

These are quasiminimizers with constant c2.

Fan and Zhao studied quasiminimizers in [148]. They proved higher inte-
grability for gradients and showed that each quasiminimizer is locally Hölder
continuous. Their proofs are based on De Giorgi’s method.

Theorem 13.2.11 ([148]). Let Ω be bounded and p ∈ P log(Ω) with
1 < p− � p+ < ∞. Let u be a quasiminimizer. Then u is locally Hölder
continuous and |∇u| ∈ L

p(·)+ε
loc (Ω) for some ε > 0.

Harjulehto, Kuusi, Lukkari, Marola and Parviainen [210] extend works of
Fan and Zhao [147, 148] and showed that De Giorgi’s method can be fully
adapted to the variable exponent case.

Theorem 13.2.12 (Harnack’s inequality, [210]). Let Ω be bounded and
p ∈ P log(Ω) with 1 < p− � p+ < ∞. Let u be a nonnegative p(·)-
quasiminimizer in Ω. Further, we consider only cubes Q so small that
10Q ⊂ Ω,
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ˆ

Q

|u|p(y) dy � 1 and
ˆ

Q

|∇u|p(y) dy � 1.

Then there exists a constant c such that

ess sup
y∈Q

u(y) � c (ess inf
y∈Q

u(y) + diam(Q)).

The constant c depends on n, p(·), q, s > p+
10Q − p−10Q, the quasiminimizing

constant and the Lns(10Q)-norm of u.

Since p is uniformly continuous we may choose the radius of Q so that
ns � p−, and hence the Lns(10Q)-norm of u is finite. Note that Harnack’s
inequality implies that u is continuous, for the proof see [18]. For bounded
quasiminimizers the result can be write in a slightly different form:

ess sup
y∈Q

u(y) � c (ess inf
y∈Q

u(y) + diam(Q)α)

for any α � 1, where the constant c depends on n, p(·), q, α, the quasimini-
mizing constant and the L∞-norm of u [210].

13.3 Harmonic and Superharmonic Functions

The Euler–Lagrange equation of the Dirichlet energy integral minimization
problem is the p(·)-Laplace equation

div(p(·)|∇u|p(·)−2∇u) = 0.

Next we discuss its weak solutions.

Definition 13.3.1. A function u ∈ W
1,p(·)
loc (Ω) is a (weak) p(·)-supersolution

in Ω, if ˆ

Ω

p(x)|∇u|p(x)−2∇u · ∇ψ dx � 0

for every non-negative test function ψ ∈ C∞
0 (Ω). A function u is a subsolution

in Ω if −u is a supersolution in Ω. A function u is a (weak) p(·)-solution in
Ω if u and −u are supersolutions in Ω.

Note that in some paper, and also in our next section, the test functions
are on from W 1,p(·)(Ω) with a compact support in Ω. For a function u ∈
W 1,p(·)(Ω) these two test classes as well H1,p(·)

0 (Ω) and W
1,p(·)
0 (Ω) give the

same result provided that smooth functions are dense in the Sobolev space.
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If u ∈ W 1,p(·)(Ω) is a minimizer of the Dirichlet energy integral for given
boundary value function or if u ∈ W

1,p(·)
loc (Ω) is a local minimizer of |∇u|p(·)

then it is a solution. If u is a solution, then it is a local minimizer and if a
solution belongs to W 1,p(·)(Ω), then it is a minimizer of the Dirichlet energy
integral for its own boundary values. Minimizers of the Dirichlet energy
integral with an obstacle are supersolutions [205].

A more general equation which has also been considered is

div(p(·)|∇u|p(·)−2∇u) = B(x, u). (13.3.2)

Weak solutions are defined analogously. There are several results on the exis-
tence of various functions B. As a preliminary result we mention that the
equation with homogeneous Dirichlet boundary data has a unique weak solu-
tion if B = B(x) ∈ L(p∗)′(1+ε)(Ω) is independent of u [144, Theorem 4.2].
Sanchón and Urbano [349] have shown that the same conclusion holds for
entropy solutions even if only B ∈ L1(Ω).

Theorem 13.3.3 (Theorem 4.3, [144]). Suppose that p ∈ C(Ω) and
|B(x, u)| � c + c|u|p−−ε−1. Then (13.3.2) has a weak solution for Dirichlet
boundary values g ∈ W 1,p(·)(Ω).

To the best of our knowledge, this is the most general result which does
not require a largeness assumption on B. Newer results, by contrast, place
restrictions on the growth of B at the origin or at ∞; in particular, these
results do not include as a special case B = 0.

Theorem 13.3.4 (Theorem 4.7, [144]). Let p ∈ C(Ω) with 1 < p− �
p+ < ∞. Suppose that the following three conditions hold.

(a) |B(x, u)| � c+ c|u|p∗(x)−1−ε for some ε > 0.
(b) There exist R > 0 and θ > p+ such that 0 < θ

´ u
0 B(x, v) dv � uB(x, u)

for all u ∈ R \ (−R,R) and x ∈ Ω.
(c) B(x, u) = o

(
|u|p+−1

)
as u → 0 uniformly in x.

Then (13.3.2) has a weak solution in W
1,p(·)
0 (Ω).

In Theorem 4.8 of the same paper it is shown that there exist infinitely
many solutions if the third condition is replaced by the assumption that B
is odd in the second argument, see also [220]. A variant of this result was
proved in [68]: there it is assumed that B(x, u) = −λ(x)|u|p(x)−2u + b(x, u),
where λ ≈ 1 and b satisfies the same conditions as B in the previously stated
theorem.

We now return to the p(·)-Laplace equation. Alkhutov showed in [18] that
solutions are locally bounded, locally bounded supersolutions satisfy the weak
Harnack inequality and locally bounded solutions satisfy Harnack’s inequal-
ity, see also [391]. Harjulehto, Kinnunen and Lukkari extended his result to
unbounded supersolutions. Moser’s iteration are used in both papers. The
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key estimate in Moser’s iteration is the Caccioppoli estimate. In the proof of
Harnack’s inequality the Caccioppoli estimate is used for the function u+R,
where R is a radius of a ball. The extra term R is used to handle negative
powers which comes for putting together the variable exponent Caccioppoli
estimate and a constant exponent modular form Sobolev inequality. Several
different versions of the Caccioppoli estimate can be found from the literature,
see for example [18, Lemma 1.1], [20, Proposition 6.1] and [206, Lemma 5.3].

Theorem 13.3.5 (The weak Harnack inequality, [208]). Let Ω be
bounded and p ∈ P log(Ω) with 1 < p− � p+ < ∞. Assume that u is a
p(·)-supersolution which is nonnegative in a ball 4B ⊂ Ω and s > p+

4B − p−4B.
Then there exists q0 such that

(  

2B

uq0 dx

) 1
q0

� c
(

ess inf
B

u(x) + diam(B)
)
,

where c depend on n, p(·), q and Lns(4B)-norm of u.

Since the exponent p(·) is uniformly continuous, we can take for example
ns = p−4B by choosing 4B small enough. Thus the constants in the estimates
are finite for all supersolutions u on a scale that depends only on p(·).

Combining techniques from [18] and [208] we obtain the following result.
Recently Harjulehto, Hästö and Latvala noted that it can be extended to the
case p− = 1 [197].

Theorem 13.3.6. Let Ω be bounded and p ∈ P log(Ω) with 1 � p− � p+<∞.
Let B be a ball such that 4B⊂⊂Ω and let u be a p(·)-solution in Ω. Assume
that s > p+

4B − p−4B. Then

ess sup
B

|u| � c

((  

2B

|u|t dx
) 1
t

+ diam(B)

)

for every t > 0. The constant c depends only on n, p, t and Lns(4B)-norm
of u.

Theorems 13.3.5 and 13.3.6 yields the following full version of Harnack’s
inequality.

Theorem 13.3.7 (Harnack’s inequality [18, 208]). Let Ω be bounded
and p ∈ P log(Ω) with 1 < p− � p+ < ∞. Assume that B is a ball such
that 4B⊂⊂Ω, and assume that s > p+

4B − p−4B. Let u be a solution which is
nonnegative in 4B. Then

sup
x∈B

u(x) � c
(

inf
x∈B

u(x) + diam(B)
)
,

where the constant c depends on n, p and the Lns(4B)-norm of u.
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The solutions are locally bounded, and hence the dependence of the
Lns(4B)-norm of u can be replaced by dependence of the supremum of u, as
has been done in [18].

This Harnack inequality implies, as pointed out in [18], that solutions are
locally Hölder continuous. Since there is the extra diameter term on the right-
hand side, the inequality does not imply the strong maximum principle; by
the strong maximum principle we mean that a solution can attain neither
its minimum nor its maximum. Fan, Zhao and Zhang showed the strong
maximum principle for weak solutions of div(|∇u(x)|p(x)−2∇u) = 0 when
p ∈ C1(Ω) with 1 < p− � p+ < ∞ [153]. Their proof is based on choosing a
suitable test function.

Since the constant in Harnack’s inequality depends on the norm of u, many
results that follows from Harnack’s inequality have slightly different forms
than in the constant exponent case even if p ∈ P log(Ω) with 1<p− � p+<∞.
Assume, for example, that ui is an increasing sequence of solutions and let
u be its point-wise limit. If p is a constant, then u is solution provided it is
finite at some point. If p is a variable exponent, then u is solution provided
that u ∈ Ltloc for some t > 0 [205].

Alkhutov and Krashennikova studied boundary regularity of solutions in
[20]. They proved a Wiener type capacity condition for boundary regularity.
Behavior of solutions up to the boundary have also been studied in [127,277].

Next we define superharmonic functions by the comparison principle.

Definition 13.3.8. We say that a function u : Ω → (−∞,∞] is p(·)-
superharmonic in Ω if:

(a) u is lower semicontinuous;
(b) u is finite almost everywhere and;
(c) The comparison principle holds: if h is a solution in D⊂⊂Ω, continuous

in D and u � h on ∂D, then u � h in D.

Every p(·)-supersolution in Ω which satisfies

u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω is p(·)-superharmonic in Ω. On the other hand if u is a p(·)-
superharmonic function, then min{u, λ} is a p(·)-supersolution for every λ.
For the proofs see [205]. Lukkari showed in [275] that the weak solutions of

−div(p(x)|∇u(x)|p(x)−2∇u) = μ (μ is a finite Radon measure)

are p(·)-superharmonic. See also [48] for similar equations in the case of a
system. Next we list properties of p(·)-superharmonic functions. We assume
that Ω is bounded and p ∈ P log(Ω) with 1 < p− � p+ < ∞.
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• Let u be a p(·)-superharmonic in Ω and D⊂⊂Ω. Then there exists an
increasing sequence (ui) of continuous p(·)-supersolutions converging to u
point-wise everywhere in D [205].

• Higher integrability properties of p(·)-superharmonic functions and their
point-wise defined “gradient” has been studied in [205].

• Superharmonic functions can be point-wise estimated by Wolff’s potential
[278].

• The balayage is a superharmonic function [263].
• Assume that u ∈ Ltloc(Ω), for some t > 0. If u is a non-negative p(·)-

superharmonic function in Ω, then u < ∞ p(·)-quasieverywhere in Ω [208].
Here the assumption u ∈ Ltloc(Ω) is needed to adapt the weak Harnack
inequality.

• If u is a p(·)-superharmonic function, then it is p(·)-quasicontinuous [211].

13.4 Harnack’s Inequality for A-harmonic Functions

Harnack’s inequality, as stated in Theorem 13.3.7 and in the existence litera-
ture, is formulated only for weak solutions of p(·)-Laplace equation, although
the method covers all elliptic equations with Laplace type structural condi-
tions. Hence we prove, by Moser’s iteration, Harnack’s inequality here. Let
Ω ⊂ R

n be an open bounded set. We study elliptic equation of the form

− div A(x,∇u) = 0,

where the operator A : Ω × R
n → R

n satisfies the following structural
conditions for constants c1, c2 > 0:

x �→ A(x, ξ) is measurable for all ξ ∈ R
n.

ξ �→ A(x, ξ) is continuous.
A(x,−ξ) = −A(x, ξ) for all x ∈ Ω and ξ ∈ R

n.

A(x, ξ) · ξ � c1|ξ|p(x) for all x ∈ Ω and ξ ∈ R
n.

|A(x, ξ)| � c2|ξ|p(x)−1 for all x ∈ Ω and ξ ∈ R
n.

(A(x, η) − A(x, ξ)) · (η − ξ) > 0 for all x ∈ Ω and η, ξ ∈ R
n, η �= ξ.

By choosing c2 larger, if necessary, we may assume that c2 � c1. For example
the equations

− div(p(x)|∇u|p(x)−1∇u) = 0 and − div(|∇u|p(x)−1∇u) = 0

satisfy the above conditions.
Following Definition 13.3.1 we define weak solutions in this case as follows.
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Definition 13.4.1. A function u ∈ W
1,p(·)
loc (Ω) is a (weak) A-supersolution

in Ω, if ˆ

Ω

A(x,∇u) · ∇ψ dx � 0

for every non-negative ψ ∈ W 1,p(·)(Ω) with a compact support in Ω. A func-
tion u is a A-subsolution in Ω if −u is a supersolution in Ω. A function u is
a (weak) A-solution in Ω if u and −u are A-supersolutions in Ω.

We start by the following technical lemma that is need later.

Lemma 13.4.2. Let f be a positive measurable function and assume that
the exponent p ∈ P log(Ω) is bounded. Then

 

B

fp
+
B−p−B dx � c ‖f‖p

+
B−p−B
Ls(B)

for any s > p+
B − p−B and B ⊂ Ω. Here the constant depends only on the

dimension n and clog(p).

Proof. Let q := p+
B − p−B and let R be the radius of the ball B. Hölder’s

inequality implies that

 

B

fp
+
B−p−B dx �

(  

B

fs dx

) q
s

= cR−nq
s ‖f‖qLs(B).

By log-Hölder continuity, R− q
s � R−q < c < ∞ and hence the claim

follows. ��

Later we apply Lemma 13.4.2 with f = uq
′
. In this case the upper bound

written in terms of u is
c‖u‖q

′(p+B−p−B)

Lq′s(B)
.

First we show that A-subsolutions are locally bounded above. We fix a ball
B := B(z,R) such that R � 1 and 4B⊂⊂Ω. We write

v := max{u, 0} +R,

where u is a A-subsolution; also,

Φ(f, q, A) :=
(  

A

f q dx
)1/q

for a nonnegative measurable function f and q �= 0.
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Lemma 13.4.3. Let p ∈ P log(Ω) with 1 < p− � p+ < ∞. Let 1 � τ <κ� 3.
Then

(  

τB

vβn
′p−4B dx

) 1
n′

� cβp
−
4B

(
κ

κ− τ

)p+4B  

κB

v(β−1)p−4B+p(x) dx

for β � 1. The constant c depends only on n, p−, p+, clog(p) and the
structural constants c1 and c2.

Proof. We choose η ∈ C∞
0 (κB) such that 0 � η � 1. Let G be a function

on [0,∞) with G′(t) = βtβ−1. The function Gj is defined by the cut-off
derivative, G′

j(t) := βmin{t, j}β−1. Fixing the origin, we see that

Gj(t) =

{
tβ, for 0 � t � j,

jβ + βjβ−1(t− j), for t � j.

We further define

Hj(ξ) :=

ξˆ

R

G′
j(t)

p−4B dt

for ξ � R.
First we show that ψ := Hj(v)ηp

+
4B belongs to W

1,p(·)
0 (Ω). Since η has

compact support in Ω, it suffices to show that ψ ∈ W 1,p(·)(Ω). Note that ψ
is non-negative, because η and v are. Since

|Hj(v)| � βp
−
4B

(β − 1)p−4B + 1
j(β−1)p−4B+1 + βp

−
4B j(β−1)p−4Bv,

we find that ψ ∈ Lp(·)(Ω). For the gradient we have

|∇ψ| � p+
4Bη

p+4B−1|∇η|Hj(v) + ηp
+
4B |G′

j(v)|p
−
4B |∇v|

� c(η)p+
4BHj(v) + ηp

+
4B (βjβ−1)p

−
4B |∇v|,

and hence |∇ψ| ∈ Lp(·)(Ω).
Since u is a A-subsolution and ψ is an admissible test function, we have

ˆ

Ω

A(x,−∇u) · ∇ψ dx � 0

and furthermore
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ˆ

Ω

G′
j(v)p

−
4Bηp

+
4BA(x,∇u) · ∇v dx �

∣
∣
∣
∣
∣
∣

ˆ

Ω

p+
4Bη

p+4B−1Hj(v)A(x,∇u) · ∇η dx

∣
∣
∣
∣
∣
∣

� c2

ˆ

Ω

p+
4Bη

p+4B−1Hj(v)|∇u|p(x)−1|∇η| dx.

Note that ∇v = 0 and Hj(v) = Hj(R) = 0 whenever u � 0. If u > 0, then
∇v = ∇u. Hence we obtain

c1

ˆ

Ω

|∇v|p(x)|G′
j(v)|p

−
4Bηp

+
B dx � c2

ˆ

Ω

p+
4B|∇v|p(x)−1Hj(v)|∇η|ηp

+
4B−1 dx.

We estimate the integrand on the right-hand side by Young’s inequality,

ab �
(1
ε

)p−1

ap + εbp
′
,

for the exponents p(x) and p′(x). For p(x) > 1 this yields that

p+
4BHj(v)|∇v|p(x)−1ηp

+
4B−1|∇η|

= p+
4B|G′

j(v)|−
p
−
4B

p′(x)Hj(v)|∇η|ηp
+
4B− p

+
4B

p′(x)−1|G′
j(v)|

p
−
4B

p′(x) |∇v|p(x)−1η
p
+
4B

p′(x)

� ε1−p(x)p+
4B

p(x)|G′
j(v)|−p

−
4B(p(x)−1)Hj(v)p(x)|∇η|p(x)ηp

+
4B−p(x)

+ ε|G′
j(v)|p

−
4B |∇v|p(x)ηp

+
4B .

Combining this with the previous inequality and using η � 1 we obtain

c1

ˆ

Ω

|∇v|p(x)|G′
j(v)|p

−
4Bηp

+
4B dx

� c2ε
1−p+4B

ˆ

Ω

p+
4B

p(x)|G′
j(v)|−p

−
4B(p(x)−1)Hj(v)p(x)|∇η|p(x) dx

+ εc2

ˆ

Ω

|G′
j(v)|p

−
4B |∇v|p(x)ηp

+
4B dx.

Next we choose ε so small that εc2 = c1/2. Then we can absorb the second
integral on the right-hand side into the left-hand side. Thus
ˆ

Ω

|∇v|p(x)|G′
j(v)|p

−
4Bηp

+
4B dx � c

ˆ

Ω

|G′
j(v)|−p

−
4B (p(x)−1)Hj(v)p(x)|∇η|p(x) dx.
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Then we can use the trivial estimate |∇v|p−4B � 1 + |∇v|p(x) and the previous
estimate to derive

ˆ

Ω

|∇v|p
−
4B |G′

j(v)|p
−
4Bηp

+
4B dx

�
ˆ

Ω

|G′(v)|p
−
4Bηp

+
4B dx+ c

ˆ

Ω

|G′
j(v)|−p

−
4B (p(x)−1)Hj(v)p(x)|∇η|p(x) dx.

Since η � 1 vanishes outside κB, we get
 

κB

|∇(Gj(v)ηp
+
4B )|p

−
4B dx

=
 

κB

|Gj(v)p+
4Bη

p+4B−1∇η + ηp
+
4BG′

j(v)∇v|p
−
4B dx

� 2p
−
4Bp+

4B

p−4B
 

κB

|Gj(v)|p
−
4B |∇η|p

−
4B dx+ 2p

−
4B

 

κB

|G′
j(v)|p

−
4B dx

+ 2p
−
4Bc

 

κB

|G′
j(v)|−p

−
4B (p(x)−1)Hj(v)p(x)|∇η|p(x) dx.

Next we use the constant exponent Sobolev-Poincaré inequality

(  

κB

(
|w|
R

)n′p−4B
dx

) 1
n′p−4B

� c

(  

κB

|∇w|p
−
4B dx

) 1
p
−
4B

with the function w = Gj(v)ηp
+
4B ∈W

1,p−4B
0 (κB). We obtain that

(  

κB

(
Gj(v)ηp

+
4B

R

)n′p−4B
dx

)n−1
n

� c

 

κB

|∇(Gj(v)ηp
+
4B )|p

−
4B dx

� c

 

κB

|Gj(v)|p
−
4B |∇η|p

−
4B dx+ c

 

κB

|G′
j(v)|p

−
4B dx

+ c

 

κB

|G′
j(v)|−p

−
4B(p(x)−1)Hj(v)p(x)|∇η|p(x) dx.

Since Gj � G and G′
j � G′, we may replace the functions Gj on the right-

hand side by the function G. Then the right-hand side does not depend on
j, and we may use monotone convergence on the left-hand side to conclude
that
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(  

κB

(
vβηp

+
4B

R

)n′p−4B
dx

) 1
n′

� c

 

κB

vβp
−
4B |∇η|p

−
4B dx + c

 

κB

βp
−
4Bv−p

−
4Bvβp

−
4B dx + I ,

where I is given as

I = c

 

κB

β(1−p(x))p−4Bv(β−1)(p−4B−p(x)p−4B)×

×
(

βp
−
4B

(β − 1)p−4B + 1

)p(x)
v((β−1)p−4B+1)p(x)|∇η|p(x) dx.

We choose η so that η = 1 in τB and |∇η| � c
R(κ−τ) � cκ

R(κ−τ) . Since

v � R, we obtain v−p
−
4B � R−p−4B and

vβp
−
4B = v(β−1)p−4B+p(x)vp

−
4B−p(x) � v(β−1)p−4B+p(x)Rp

−
4B−p(x).

By the log-Hölder continuity we have Rp
−
4B−p(x) � c. Thus there is a common

integral average over v(β−1)p−4B+p(x) on the right-hand side. Since the measure
of τB is comparable with the measure of κB, we can change the average on
the left-hand side to the smaller ball. Multiplying both sides of the inequality
by Rp

−
4B now implies

(  

τB

vβn
′p−4B dx

) 1
n′

� c

[(
κ

κ− τ

)p−4B
+ βp

−
4B + βp

−
4B

(
κ

κ− τ

)p+4B
Rp

−
4B−p+4B

]

×
 

κB

v(β−1)p−4B+p(x) dx.

By the log-Hölder continuity of the exponent, the term Rp
−
4B−p+4B is bounded

by a constant and hence the claim follows. ��

Lemma 13.4.4. Let p ∈ P log(Ω) with 1 < p− � p+ < ∞. Let 1 � τ <κ� 3.
Then

Φ(v, n′β, τB) � c
1
β β

p
−
4B
β

(
r

r − �

) p
+
4B
β

Φ(v, qβ, κB)

for every β � p−4B, 1 < q < n′ and s > p+
4B − p−4B. The constant c depends

only on n, p−, p+, clog(p), and the Lq
′s(4B)-norm of v and the structural

constants c1 and c2.
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Proof. Replacing β by β/p−4B in Lemma 13.4.3 we obtain

(  

τB

(
v

β

p
−
4B

)n′p−4B
dx

) 1
n′β

�
(

cβp
−
4B

(
κ

κ− τ

)p+4B  

κB

v

(
β

p
−
4B

−1
)
p−4B+p(x)

dx

) 1
β

.

This yields by Hölder’s inequality and Lemma 13.4.2 that

(  

τB

vβn
′
dx

)n−1
nβ

� c
1
β β

p
−
4B
β

(
κ

κ− τ

) p
+
4B
β
(  

κB

vq
′(p(x)−p−4B) dx

) 1
βq′
(  

κB

vβq dx

) 1
βq

� c
1
β β

p
−
4B
β

(
κ

κ− τ

) p
+
4B
β (

1 + ‖v‖q
′(p+4B−p−4B)

Lq′s(4B)

) 1
βq′
(  

κB

vβq dx

) 1
βq

.

To conclude the claim we include the term
(

1 + ‖v‖q
′(p+4B−p−4B)

Lq′s(4B)

) 1
q′ � 1 +

‖v‖q
′(p+4B−p−4B)

Lq′s(4B)
into the constant c. ��

Theorem 13.4.5. Let p ∈ P log(Ω) with 1 < p− � p+ < ∞. Let B be a ball
with a radius R � 1 such that 4B⊂⊂Ω and let u be a A-subsolution in Ω.
Assume that s > p+

4B − p−4B. Then

ess sup
B

u � c

((  

2B

|u|t dx
) 1
t

+R

)

for every t > 0. The constant c depends only on n, p−, p+, clog(p), t,
Lns(4B)-norm of u and the structural constants c1 and c2.

Since the exponent p is uniformly continuous, we can take for example
ns = p−Ω by choosing B small enough. Thus the constants in the estimates
are finite for all solutions u in a scale that depends only on p.

Proof. By making s slightly smaller if necessary, we may assume that there
exists q ∈ (1, n′) such that ‖u‖Lq′s(4B) < ∞. Let 1 � τ < κ � 3. For
j = 0, 1, 2, . . ., we write rj := τ + 2−j(κ− τ) and

ξj :=
(
n′

q

)j
qp−4B.
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By Lemma 13.4.4 with β =
(
n′
q

)j
p−4B we obtain

Φ(v, ξj+1, rj+1B) � c
q
ξj ξ

qp
−
4B
ξj

j

(
rj

rj − rj+1

) qp
+
4B
ξj

Φ(v, ξj , rjB).

Iterating and letting j → ∞ we find that

ess sup
τB

|v| �
∞∏

j=0

c
q
ξj ξ

qp
−
4B
ξj

j

(

2j
κ

κ− τ

) qp
+
4B
ξj

Φ(v, qp−4B , κB)

� c
qn

p
−
4B (n′)

qp
+
4B

p
−
4B

∑∞
j=0

j

(n′)j 2
qp

+
4B

p
−
4B

∑∞
j=0

j

(n′)j
(

κ

κ− τ

) qnp
+
4B

p
−
4B Φ(v, qp−4B , κB).

By the root test the sums in the previous inequality are finite and hence

ess sup
τB

|v| � c
(
1 − τ

κ

)−λ
s Φ(v, s, κB), (13.4.6)

where λ :=
p+B4R

n′q
(n′−q) and s := qp−B4R

. By Hölder’s inequality we see that
Φ(v, s, κB) � cΦ(v, t, κB) when t � s.

We then consider t < s. Let us show that

ess sup
B

|v| � cΦ(v, t, 2B),

for any t ∈ (0, s). We adapt the argument of [280, Corollary 3.10]. Let
σ ∈ (1

3 , 1). Denote

T (σ) := ess sup
σ2B

|v| and S(σ) := (1 − σ)
λ
t−λ

s Φ(v, s, σ2B).

Set σ′ := 1+σ
2 . We rewrite the conclusion of the previous paragraph as

T (σ) � c
(
1 − σ

σ′
)−λ

s Φ(v, s, σ′2B) ≈ (1 − σ)−
λ
s Φ(v, s, σ′2B).

Since 1 − σ′ = 1−σ
2 , we further obtain that

T (σ) � c(1 − σ)−
λ
t S(σ′).

Using this in the second step, we estimate
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(  

σ2B

vs dx

) 1
s

�
(

T (σ)s−t
 

σ2B

vt dx

) 1
s

� c(1 − σ)
λ
s−λ

t S(σ′)1−
t
s

(  

σ2B

vt dx

) 1
s

.

Dividing both sides by (1 − σ)
λ
s−λ

t , we obtain

S(σ) � cS(σ′)1−
t
s

(  

σ2B

vt dx

) 1
s

� cS(σ′)1−
t
s

(  

2B

vt dx

) 1
s

,

where we used σ ≈ 1 in the second step. Iterating this inequality, we find
that

S(σ) � c

(  

2B

vt dx

) 1
s

∑
j(1− t

s )j

=
(  

2B

vt dx

) 1
t

.

We choose τ = 1 and κ = 3
2 in (13.4.6) and σ = 3

4 in the above estimate.
Combining these give the claim for the function v.

The same estimate holds also for −min{u, 0}, since −u is a solution. Thus
the claim follows. ��

If u is a solution then the above theorem holds also for −min{u, 0} and
hence we obtain the following corollary by coveringD⊂⊂Ω by a finitely many
balls satisfying the conditions of the previous theorem.

Corollary 13.4.7. Let p ∈ P log(Ω) with 1 < p− � p+ < ∞. Then every
A-solution is locally bounded.

Next we show that non-negative A-supersolutions satisfy the weak Harnack
inequality. We write

v := u+R,

where u is a non-negative A-supersolution. Remember that B = B(z,R) is
fixed and 4B⊂⊂Ω.

We derive a suitable Caccioppoli type estimate with variable exponents.

Lemma 13.4.8 (Caccioppoli estimate). Let p ∈ P(Ω) with 1 < p− �
p+ < ∞. Let E be a measurable subset of 4B⊂⊂Ω and η ∈ C∞

0 (4B) such
that 0 � η � 1. Then for every γ0 < 0 there is a constant c depending only
on p+, clog(p), c1, c2 and γ0 such that

ˆ

E

vγ−1|∇u|p
−
Eηp

+
4B dx � c

ˆ

4B

(
ηp

+
4Bvγ−1 + vγ+p(x)−1|∇η|p(x)

)
dx

for every γ < γ0 < 0.
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Proof. We want to test with the function ψ := vγηp
+
4B . Next we show that

ψ ∈ W
1,p(·)
0 (4B). Since η has compact support in 4B it suffuces to show

that ψ ∈ W 1,p(·)(Ω). We observe that ψ ∈ Lp(·)(Ω) since |vγ |ηp+4B � Rγ .
Furthermore, we have

|∇ψ| � |γvγ−1ηp
+
4B∇u+ vγp+

4Bη
p+4B−1∇η| � |γ|Rγ−1|∇u| + p+

4BR
γ |∇η|,

from which we conclude that |∇ψ| ∈ Lp(·)(Ω).
Using the fact that u is a A-supersolution and ψ is a nonnegative test

function we find that

0 �
ˆ

4B

A(x,∇u) · ∇ψ(x) dx

=
ˆ

4B

γηp
+
4Bvγ−1A(x,∇u) · ∇u dx+

ˆ

4B

p+
4Bv

γηp
+
4B−1A(x,∇u) · ∇η dx.

Since γ is a negative number this implies by the structural conditions that

|γ0|c1
ˆ

4B

ηp
+
4Bvγ−1|∇u|p(x) dx � p+

4Bc2

ˆ

4B

vγηp
+
4B−1|∇u|p(x)−1 |∇η| dx.

We denote the right-hand side of the previous inequality by I. Using Young’s
inequality, 0 < ε � 1, we obtain

I � p+
4Bc2

ˆ

4B

(1
ε

)p(x)−1(
v
γ+p(x)−1
p(x) |∇η|ηp

+
4B− p

+
4B

p′(x)−1
)p(x)

+ ε
(
|∇u|p(x)−1η

p
+
4B

p′(x) vγ−
γ+p(x)−1
p(x)

)p′(x)
dx

� p+
4Bc2

(1
ε

)p+4B−1
ˆ

4B

vγ+p(x)−1|∇η|p(x)ηp
+
4B−p(x) dx

+ p+
4Bc2ε

ˆ

4B

|∇u|p(x)ηp
+
4Bvγ−1 dx.

By combining these inequalities we arrive at

|γ0|c1
ˆ

4B

|∇u|p(x)ηp
+
4Bvγ−1 dx

� p+
4Bc2

(1
ε

)p+4B−1
ˆ

4B

vγ+p(x)−1|∇η|p(x)ηp
+
4B−p(x) dx

+ p+
4Bc2ε

ˆ

4B

|∇u|p(x)ηp
+
4Bvγ−1 dx.
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By choosing

ε = min
{

1,
|γ0|c1
2p+

4Bc2

}

we can absorb the last term to the left-hand side and obtain
ˆ

4B

|∇u|p(x)ηp
+
4Bvγ−1 dx

� p+
4Bc2

(
2p+

4Bc2
|γ0|c1

+ 1
)p+4B−1 2

|γ0|c1

ˆ

4B

vγ+p(x)−1|∇η|p(x) dx.

Taking f = vγ−1ηp
+
4B and g = |∇u| in the point-wise inequality

f(x)g(x)p
−
E � f(x) + f(x)g(x)p(x)

and using the previous inequality we obtain the claim. ��

Lemma 13.4.9. Let p ∈ P log(Ω) with 1 < p− � p+ < ∞. Assume that u is
a nonnegative A-supersolution in 4B and let 1 � τ < κ � 3. Then

Φ(v, qβ, κB) � c
1

|β| (1 + |β|)
p
+
4B
|β|
( κ

κ− τ

) p
+
4B
|β|

Φ(v, n′β, τB)

for every β < 0 and 1 < q < n′. The constant c depends on n, p−, p+, clog(p),
the Lq

′s(4B)-norm of u with s > p+
4B − p−4B and the structural constants c1

and c2.

Proof. In the Caccioppoli estimate, Lemma 13.4.8, we take E = 4B and
γ = β − p−4B + 1. Then γ < 1 − p−4B and thus

ˆ

4B

vβ−p
−
4B |∇u|p

−
4Bηp

+
4B dx � c

ˆ

4B

(
ηp

+
4Rvβ−p

−
4B + vβ−p

−
4B+p(x)|∇η|p(x)

)
dx.

Next we take a cutoff function η ∈ C∞
0 (κB) with 0 � η � 1, η = 1 in τB

and

|∇η| � c

R(κ− τ)
� cκ

R(κ− τ)
.

By the log-Hölder continuity of p we have

|∇η|−p(x) � cR−p(x)
( κ

κ− τ

)p+4B � cR−p−4B
( κ

κ− τ

)p+4B
. (13.4.10)
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With this choice of η we have

 

κB

∣
∣
∣∇
(
v

β

p
−
4B η

p
+
4B
p
−
4B

)∣
∣
∣
p−
4B

dx

� c

 

κB

|β|p−
4B vβ−p−

4B |∇u|p−
4Bηp+

4B dx + c

 

κB

vβηp+
4B−p−

4B |∇η|p−
4B dx

� c|β|p−
4B

 

κB

(
ηp+

4Bvβ−p−
4B + vβ−p−

4B+p(x)|∇η|p(x)
)
dx + c

 

κB

vβ|∇η|p−
4B dx

� c(1 + |β|)p+
4B

[  

κB

vβ−p−
4B dx +

 

κB

vβ−p−
4B+p(x)|∇η|p(x) dx +

 

κB

vβ|∇η|p−
4B dx

]

.

Now the goal is to estimate each integrals in the brackets by

(  

κB

vqβ dx
)1/q

.

The first integral can be estimated with Hölder’s inequality. Since v−p
−
4B �

R−p−4B , we have

 

κB

vβ−p
−
4B dx � R−p−4B

(  

κB

vqβ dx
)1/q

.

By (13.4.10), Hölder’s inequality and Lemma 13.4.2 for the second integral
we have

 

κB

vβ−p
−
4B+p(x)|∇η|p(x) dx

�cR−p−4B
( κ

κ− τ

)p+4B
 

κB

vβ−p
−
4B+p(x) dx

�cR−p−4B
( κ

κ− τ

)p+4B(
 

κB

vq
′(p(x)−p−4B) dx

)1/q′(  

κB

vqβ dx
)1/q

�cR−p−4B
( κ

κ− τ

)p+4B(
1 + ‖v‖q

′(p+4B−p−4B)

Lq′s(4B)

)1/q′(  

κB

vqβ dx
)1/q

.

Finally, for the third integral we obtain the estimate by Hölder’s inequality.
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Now we have arrived at the inequality

 

κB

∣
∣
∣∇
(
v

β

p
−
4B η

p
+
4B
p
−
4B

)∣
∣
∣
p−4B

dx � c(1 + |β|)p
+
4BR−p−4B

( κ

κ− τ

)p+4B(
 

κB

vqβ dx
)1/q

,

where the term 1 + ‖v‖q
′(p+4B−p−4B)

Lq′s(4B)
is inside the constant c.

By the constant exponent Sobolev inequality

(  

κB

|u|n′p−4B dx
) 1
n′p−4B � cR

(  

κB

|∇u|p
−
4B dx

) 1
p
−
4B ,

where u ∈W
1,p−4B
0 (κB), we obtain

(  

τB

vβn
′
dx
)n−1

n �
(
c

 

κB

(
v

β

p
−
4B η

p
+
4B
p
−
4B

)n′p−4B
dx
) n−1

n

� cRp
−
4B

 

κB

∣
∣
∣∇
(
v

β

p
−
4B η

p
+
4B
p
−
4B

)∣
∣
∣
p−4B

dx

� c(1 + |β|)p
+
4B

( κ

κ− τ

)p+4B(
 

κB

vqβ dx
)1/q

,

where the term 1 + ‖v‖q
′(p+4B−p−4B)

Lq′s(4B)
is inside the constant c. The claim follows

from this since β is a negative number. ��

The next lemma is the crucial passage from positive exponents to negative
exponents in the Moser iteration scheme.

Lemma 13.4.11. Let p ∈ P log(Ω) with 1 < p− � p+ <∞. Assume that u is
a nonnegative supersolution in 4B⊂⊂Ω and s > p+

4B − p−4B. Then there exist
constants q0 > 0 and c depending on n, p−, p+, clog(p) and Ls(4B)-norm of
u such that

Φ(v, q0, 2B) � cΦ(v,−q0, 2B).

Proof. Choose a ball B′ with a diameter r such that 2B′ ⊂ 4B and a cutoff
function η ∈ C∞

0 (2B′) such that η = 1 in B′ and |∇η| � c/r. Taking E = B′

and γ = 1 − p−B′ in Caccioppoli estimate, Lemma 13.4.8, we have

 

B′

|∇ log v|p
−
B′ dx � c

(  

2B′

v−p
−
B′ +

 

2B′

vp(x)−p
−
B′ r−p(x) dx

)
.



434 13 Dirichlet Energy Integral and Laplace Equation

Using the estimate v−p
−
B′ � R−p−

B′ � cr−p
−
B′ , the log-Hölder continuity of p

and Lemma 13.4.2 we find that
 

B′

|∇ log v|p
−
B′ dx � c

(
r−p

−
B′ + r−p

−
2B′

 

2B′

vp(x)−p
−
B′ dx

)

� c
(
r−p

−
B′ + r−p

−
2B′ (1 + ‖v‖p

+
4B−p−4B
Ls(4B)

)
.

Let f := log v. By the constant exponent Poincaré inequality, Hölder’s
inequality and the above estimate we obtain

 

B′

|f − fB′ |dx �
(
rp

−
B′

 

B′

|∇f |p
−
B′ dx

)1/p−
B′

� c
(
1 + rp

−
B′−p−2B′ (1 + ‖v‖p

+
4B−p−4B
Ls(4B)

)1/p−
B′ .

(13.4.12)

Note that p−B′ � p−2B′ since B′ ⊂ 2B′, so that the right-hand side is bounded
(and f ∈ BMO(2B)).

Since the BMO-estimate (13.4.12) holds for all balls B′ ⊂ 4B, the measure
theoretic John-Nirenberg lemma (see for example [219, Corollary 19.10, p. 371
in Dover’s edition] or [280, Theorem 1.66, p. 40]) implies that there exist
positive constants c3 and c4 depending on the right-hand side of (13.4.12)
such that  

2B

ec3|f−f2B | dx � c4.

Using this we can conclude that

(  

2B

ec3f dx
)(  

2B

e−c3f dx
)

=
(  

2B

ec3(f−f2B) dx
)(  

2B

e−c3(f−f2B) dx
)

�
(  

2B

ec3|f−f2B | dx
)2

� c24,

which implies that

(  

2B

vc3 dx
)1/c3

=
(  

2B

ec3f dx
)1/c3

� c
2/c3
4

(  

2B

e−c3f dx
)−1/c3

= c
2/c3
4

(  

2B

v−c3 dx
)−1/c3

,

so that we can take q0 = c3. ��
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Note that the exponent q0 in Lemma 13.4.11 also depends on the Ls(4B)-
norm of u. More precisely, the constant c3 obtained from the John-Nirenberg
lemma is a universal constant divided by the right-hand side of (13.4.12).
Thus

q0 =
c

c′ + ‖u‖p
+
4B−p−4B
Ls(4B)

.

Theorem 13.4.13 (The weak Harnack inequality). Let p ∈ P log(Ω)
with 1 < p− � p+ < ∞. Let B be a ball with a radius R � 1 such that
4B⊂⊂Ω. Assume that u is a nonnegative A-supersolution in 4B⊂⊂Ω and
s > p+

4B − p−4B. Then

(  

B2R

uq0 dx

)1/q0

� c (ess inf
BR

u(x) +R),

where q0 is the exponent from Lemma 13.4.11 and c depends on n, p−, p+,
clog(p), q, Lns(4B)-norm of u and the structural constants c1 and c2.

Since the exponent p is uniformly continuous, we can take for example
ns = p−Ω by choosing R small enough. Thus the constants in the estimates
are finite for all supersolutions u in a scale that depends only on p.

Proof. By making s slightly smaller if necessary, we may assume that there
exists q ∈ (1, n′) such that ‖u‖Lq′s(4B) < ∞. Let q0 be as in the previous
lemma, and assume without loss of generality that q0 < 1.

Let 1 � τ < κ � 3, rj := τ + 2−j(κ− τ) and

ξj := −
(n′

q

)j
q0

for j = 0, 1, 2, . . . By Lemma 13.4.9 with β = ξj
q , we have

Φ(v, ξj , rjB) � c
q

|ξj | (1 + |ξj |)
qp

+
4B

|ξj |
( rj
rj − rj+1

) qp
+
4B

|ξj | Φ(v, ξj+1, rj+1B).

Iterating this inequality, and observing that 1 + |ξj | � 2(n
′
q )j since q0 � 1,

we obtain

Φ(v,−q0, κB) �
∞∏

j=0

c
q

|ξj | (1 + |ξj |)
qp

+
4B

|ξj|
( rj
rj − rj+1

) qp
+
4B

|ξj | ess inf
x∈τB

v(x)

� c
∑∞
j=0

q
|ξj |
(2n′

q

)∑∞
j=0 j

qp
+
4B

|ξj|
( κ

κ− τ

)∑∞
j=0

qp
+
4B

|ξj| ess inf
x∈τB

v(x).
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All the series in the sums converge by the root test, so

Φ(v,−q0, κB) � c ess inf
x∈τB

v(x).

Next we choose τ := 1 and κ := 2 and use Lemma 13.4.11 to get the
claim. ��

Combining Theorems 13.4.5 and 13.4.13 we obtain the following theorem.

Theorem 13.4.14 (Harnack’s inequality). Let p ∈ P log(Ω) with 1 <
p− � p+ <∞. Let B be a ball with a radius R � 1 such that 4B⊂⊂Ω. Let u
be a non-negative A-solution in 4B and s > p+

4B − p−4B. Then

ess sup
x∈B

u(x) � c
(

ess inf
x∈B

u(x) +R
)
,

where the constant c depends on n, p−, p+, clog(p), the Lns(4B)-norm of u
and the structural constants c1 and c2.



Chapter 14

PDEs and Fluid Dynamics

We use the theory of Calderón–Zygmund operators to prove regularity results
for the Poisson problem and the Stokes problem, to show the solvability of the
divergence equation, and to prove Korn’s inequality. These problems belong
to the most classical problems treated in the theory of partial differential
equations and fluid dynamics. It turns out that the treatment, especially of
the whole space problems requires the notion of homogeneous Sobolev spaces,
which have been studied in Sect. 12.2. The Poisson problem and the Stokes
system are studied in the first two sections. After that we study the divergence
equation and its consequences. The last section is devoted to the existence
theory of electrorheological fluids. This section nicely illustrates how all the
previously developed theory is used. Throughout the chapter we assume that
p ∈ P log.

14.1 Poisson Problem

The Poisson problem is one of the most classical problems treated in the
theory of partial differential equations. Beside its importance in itself it is
also very often used as an auxiliary problem in the treatment of nonlinear
problems. The well established theory for the Poisson problem includes among
many other results that under appropriate assumptions on the data there
exists a unique strong solution u ∈ W 2,q(Ω) of the problem, provided 1 <
q < ∞. We want to generalize this result to the setting of Lebesgue spaces
with variable exponents. Of course the results below apply to a much larger
class of elliptic problems and we have chosen to explain the ideas only for the
example of the Poisson problem. Note however, that the proof in the general
case has to be modified, since the corresponding fundamental solution does
not have the symmetry of the Newton potential and thus the estimates near
the boundary have to be derived differently (cf. the treatment of the Stokes
problem in the next section). This section is based on [103] and [264, Chap. 3],
[101] where all the missing details can be found.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8 14,
c© Springer-Verlag Berlin Heidelberg 2011

437



438 14 PDEs and Fluid Dynamics

In this section we always assume that Ω is a bounded domain in R
n, n � 2,

with C1,1-boundary. We want to show that the Poisson problem

−Δu = f in Ω,
u = g on ∂Ω

(14.1.1)

possesses a strong solution u, i.e. u ∈ W 2,p(·)(Ω) satisfies (14.1.1) almost
everywhere, provided that the data have appropriate regularity. More pre-
cisely we prove:

Theorem 14.1.2. Let Ω ⊂ R
n, n � 2, be a bounded domain with C1,1-

boundary and let p ∈ P log(Ω) with 1 < p− � p+ < ∞. For arbitrary data
f ∈ Lp(·)(Ω) and g ∈ Tr(W 2,p(·)(Ω)) there exists a unique strong solution
u ∈W 2,p(·)(Ω) of the Poisson problem (14.1.1) which satisfies the estimate

‖u‖W 2,p(·)(Ω) � c
(
‖f‖Lp(·)(Ω) + ‖g‖Tr(W 2,p(·)(Ω))

)
,

where the constant c depends only on the domain Ω and the exponent p.

Due to the linearity of the problem and the assumption on g it is sufficient
to treat the case g = 0. Indeed, let v ∈ W 2,p(·)(Ω) ∩ W

1,p(·)
0 (Ω) be the

solution of the problem −Δu = f + Δḡ in Ω with a corresponding estimate
in terms of the right-hand side, where ḡ ∈W 2,p(·)(Ω) is a suitable realization
of g ∈ Tr(W 2,p(·)(Ω)) (cf. Sect. 12.1). Then we see that u := v + ḡ satisfies
the assertions of Theorem 14.1.2.

In the proof of Theorem 14.1.2 we rely on the fact that the result is well
known for constant exponents (cf. [356, Theorem II.9.1] or [355]). With the
usual localization technique the problem is reduced to corresponding prob-
lems in the whole space R

n and the half-space R
n
> with right-hand sides f

which have bounded support. Since the structure of the Newton potential is
different for n = 2 and n � 3, we restrict ourselves to the latter case. The
methods presented here can be easily adapted to the case n = 2.

We extend the exponent p defined on Ω using Proposition 4.1.7 to an
exponent defined on R

n, which we again denote by p. Solutions of the problem

−Δu = f in R
n (14.1.3)

are obtained by convolution of f with the Newton potential

Kn(x) = K(x) :=
1

(n− 2)|∂B(0, 1)|
1

|x|n−2
. (14.1.4)

It is well-known and easy to see that the second derivatives of the Newton
potential satisfy the assumptions of Corollary 7.2.9. Consequently we get:
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Proposition 14.1.5. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞ and let
f ∈ C∞

0,0(Rn). Then the convolution u := K ∗ f solves the problem (14.1.3)
and belongs to the space C∞(Rn). The first and second weak derivatives have
the representations (i, j = 1, . . . , n)

∂iu(x) =
ˆ

Rn

∂xiK(x− y)f(y) dy,

∂i∂ju(x) = lim
ε↘0

ˆ

(B(x,ε))c

∂xi∂xjK(x− y)f(y) dy − 1
n
δijf(x).

(14.1.6)

Moreover, u ∈ D(1,2),p(·)(Rn) and it satisfies the estimates

‖∇u‖Lp(·)(Rn) � c ‖f‖D−1,p(·)(Rn),

‖∇2u‖Lp(·)(Rn) � c ‖f‖Lp(·)(Rn),

with a constant c = c(p, n).

Proof. Since f ∈ C∞
0,0 the formulas (14.1.6), u ∈ C∞(Rn), and that u

is a solution of (14.1.3) follow from the classical theory (cf. [304]). The
second estimate is a direct consequence of the representation in the sec-
ond line of (14.1.6) and Corollary 7.2.9. Using the norm conjugate formula
(Corollary 3.4.13) and Fubini’s theorem we get

‖∂iu‖Lp(·)(Rn) � 2 sup
ξ∈C∞

0 (Rn),
‖ξ‖

Lp
′(·)(Rn)

�1

ˆ

Rn

ξ ∂iu dx

= cn sup
ξ∈C∞

0 (Rn),
‖ξ‖

Lp
′(·)(Rn)

�1

ˆ

Rn

f(y)
ˆ

Rn

∂xi
1

|x− y|n−2
ξ(x) dx

︸ ︷︷ ︸
=:Φ(y)

dy.

Note that Φ ∈ C∞(Rn) and that Corollary 7.2.9 yields

‖∇Φ‖Lp′(·)(Rn) � c ‖ξ‖Lp′(·)(Rn),

with c = c(p, n). Thus Φ ∈ D1,p(·)(Rn) and the first estimate follows from
the above calculation. ��

Proposition 14.1.5 shows that the linear operator L : C∞
0,0(Rn) → C∞(Rn)

defined through
L : f �→ K ∗ f

is bounded as an operator from D−1,p(·)(Rn) into D1,p(·)(Rn) and from
Lp(·)(Rn) into D2,p(·)(Rn). Due to the density of C∞

0,0(Rn) in Lp(·)(Rn) and
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D−1,p(·)(Rn) (Propositions 3.4.14 and 12.3.7) we thus can extend the opera-
tor L to a bounded operator in these spaces. Moreover, for f ∈ Lp(·)(Rn) with
compact support and

´
Rn
f dx = 0 we know from Lemma 12.3.8 that f also

belongs to the space D−1,p(·)(Rn) and thus both estimates of the previous
proposition apply. More precisely we have:

Corollary 14.1.7. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞ and let L be
the operator defined above.

(a) If f ∈ Lp(·)(Rn), then u = Lf ∈ D2,p(·)(Rn) solves the problem (14.1.3)
a.e. and

‖Lf‖D2,p(·)(Rn) = ‖∇2u‖Lp(·)(Rn) � c ‖f‖Lp(·)(Rn) (14.1.8)

with a constant c = c(p).
(b) If f ∈ D−1,p(·)(Rn) then u = Lf ∈ D1,p(·)(Rn) solves the problem (14.1.3)

in a distributional sense and

‖Lf‖D1,p(·)(Rn) = ‖∇u‖Lp(·)(Rn) � c ‖f‖D−1,p(·)(Rn). (14.1.9)

with a constant c = c(p).
(c) If f ∈ Lp(·)(Rn) has support in a bounded John domain A ⊂ R

n and
satisfies

´
Rn
f dx = 0 then u = Lf ∈ D(1,2),p(·)(Rn) solves the problem

(14.1.3) a.e. and

‖Lf‖D1,p(·)(Rn) = ‖∇u‖Lp(·)(Rn) � c(p) ‖f‖D−1,p(·)(Rn) ,

‖Lf‖D2,p(·)(Rn) = ‖∇2u‖Lp(·)(Rn) � c(diamA, p) ‖f‖Lp(·)(Rn) .
(14.1.10)

Proof. The first two assertions follow immediately from Proposition 14.1.5
and the discussion before the corollary. For the third statement one has to
use Lemma 12.3.8 to approximate f by a sequence (fk) ⊂ C∞

0,0(Rn) in both
spaces Lp(·)(Rn) and D−1,p(·)(Rn) and to observe that the corresponding
sequence (Lfk) is a Cauchy sequence inD1,p(·)(Rn) and in the closed subspace
D(1,2),p(·)(Rn). The common limit satisfies the first estimate (14.1.10) due to
(b), and also ‖Lf‖D(1,2),p(·)(Rn) � c

(
‖f‖Lp(·)(Rn) + ‖f‖D−1,p(·)(Rn)

)
due to

(a) and (b). This estimate together with Lemma 12.3.8 implies the second
estimate in (14.1.10). ��

For f ∈ Lp(·)(Rn) with compact support we get that f also belongs to
Lq(Rn) for all q ∈ (1,min {p−, n/2}) and again classical theory of the Poisson
problem can be used. In particular, the uniqueness of the Poisson problem
follows in the classical theory from the mean value property of harmonic
functions and the Theorem of Liouville (cf. [128]). More precisely, if we set
L(Rn) :=

⋃
q∈[1,∞) L

q(Rn) we then get that there exists at most one solution
u ∈ L(Rn) which satisfies (14.1.3) in a distributional sense. Using this and
the previous corollary we get:
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Corollary 14.1.11. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞ and let
f ∈ Lp(·)(Rn) have support in a bounded John domain A ⊂ Ω and satisfy´

Rn
f dx = 0. Let u ∈ L(Rn) be a distributional solution of (14.1.3). Then

u ∈ D(1,2),p(·)(Rn) satisfies the estimates (14.1.10).

From the previous results we immediately get interior estimates for the
Poisson problem.

Proposition 14.1.12. Let Ω be a bounded domain and let p ∈ P log(Ω) with
1 < p− � p+ < ∞, f ∈ Lp(·)(Ω) and let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω. Moreover, let
u ∈W 2,p(·)(Ω) be a solution of −Δu = f in Ω. Then

‖∇u‖Lp(·)(Ω0) � c
(
‖f‖W−1,p(·)(Ω1) + ‖u‖Lp(·)(Ω1\Ω0)

)
,

‖∇2u‖Lp(·)(Ω0) � c
(
‖f‖Lp(·)(Ω1) + ‖u‖W 1,p(·)(Ω1\Ω0)

)
,

(14.1.13)

with constants c = c(p, dist(Ω0,Ω1), diam(Ω)).

Proof. Without loss of generality we can assume that Ω1 is a John domain.
Let τ ∈ C∞(Rn) with τ = 1 in Ω0 and spt(τ) ⊂⊂ Ω1. For ū := uτ we have

−Δū = fτ − 2∇u · ∇τ − uΔτ =: T in R
n.

Since ū ∈ W 2,p(·)(Rn), T ∈ Lp(·)(Rn) has bounded support and satisfies´
Rn
T dx = 0, we can use Corollary 14.1.11 to get

‖∇2u‖Lp(·)(Ω0) � ‖∇2ū‖Lp(·)(Ω1) � ‖∇2ū‖Lp(·)(Rn) � c ‖T ‖Lp(·)(Rn)

� c
(
‖f‖Lp(·)(Ω1) + ‖u‖W 1,p(·)(Ω1\Ω0)

)
,

which proves the second estimate in (14.1.13), and

‖∇u‖Lp(·)(Ω0) � ‖∇ū‖Lp(·)(Ω1)
� ‖∇ū‖Lp(·)(Rn) � c ‖T ‖D−1,p(·)(Rn) .

Since
´

Rn
T dx = 0, the Poincaréinequality (Theorem 8.2.4) implies that

‖τ (ξ − ξΩ1)‖
W

1,p′(·)
0 (Ω1)

� c(∇τ) ‖ξ‖D1,p′(·)(Rn) for all ξ ∈ C∞
0 (Rn). We use

this for the first integral and partial integration in the second one to derive

‖T ‖D−1,p(·)(Rn) = sup
ˆ

Ω1

T (ξ − ξΩ1 ) dx (14.1.14)

= sup
( ˆ

Ω1

fτ (ξ − ξΩ1 ) dx+
ˆ

Ω1\Ω0

uΔτ (ξ − ξΩ1) + 2u∇τ · ∇ξ dx
)

� c
(
‖f‖W−1,p(·)(Ω1) + ‖u‖Lp(·)(Ω1\Ω0)

)
,
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where the suprema are taken over all ξ ∈ C∞
0 (Rn), ‖ξ‖D1,p′(·)(Rn) � 1. The

last two estimates prove the first estimate in (14.1.13). ��

Due to the symmetry of the Newton potential we can derive estimates of
the Poisson problem in the half-space with an odd reflection from Proposi-
tion 14.1.5.

Proposition 14.1.15. Let p ∈ P log(Rn>) with 1 < p− � p+ < ∞ and let
f ∈ C∞

0 (Rn>). Let p̃ be the even reflection of p and f̃ be the odd reflection
of f . Then the convolution u := K ∗ f̃ solves the problem −Δu = f in R

n
>

and u = 0 on Σ := ∂R
n
> and belongs to the space C∞(Rn�). Furthermore,

u ∈ D(1,2),p(·)(Rn>) satisfies the estimates

‖∇u‖Lp(·)(Rn>) � c ‖f‖D−1,p(·)(Rn>),

‖∇2u‖Lp(·)(Rn>) � c ‖f‖Lp(·)(Rn>),
(14.1.16)

with constants c = c(p, n).

Proof. Note that f̃ ∈ C∞
0,0(Rn). Thus Proposition 14.1.5 yields that u ∈

C∞(Rn�) satisfies −Δu = f in R
n
>. Moreover, Proposition 14.1.5 and the

estimates
‖f̃‖Lp̃(·)(Rn) � 2 ‖f‖Lp(·)(Rn>) ,

‖f̃‖D−1,p̃(·)(Rn) � 2 ‖f‖D−1,p(·)(Rn>)

(14.1.17)

prove the estimates (14.1.16). These inequalities can be easily obtained using
the definition of the norms and a decomposition of the function in an even
and an odd part. Since f̃ is an odd function we see that u = K ∗ f̃ is an odd
function too and thus we have u = 0 on Σ = ∂R

n
>. ��

Proposition 14.1.15 shows that the linear operator H : C∞
0 (Rn>)→C∞(Rn�)

defined through
H : f �→ K ∗ f̃ ,

where f̃ is the odd reflection of f , is bounded as an operator fromD−1,p(·)(Rn>)
into D1,p(·)(Rn>) and from Lp(·)(Rn>) into D2,p(·)(Rn>). Due to the density of
C∞

0 (Rn>) in Lp(·)(Rn>) andD−1,p(·)(Rn>), respectively, (Corollary 4.6.5, Propo-
sition 12.3.11) we thus can continue the operator L to a bounded operator
in these spaces. Moreover, for f ∈ Lp(·)(Rn>) with compact support in R

n
�

we know from Lemma 12.3.8 that f also belongs to the space D−1,p(·)(Rn>)
and thus both estimates of the previous proposition apply. Thus it is clear
that Corollary 14.1.7 also holds for R

n
> if we replace the operator L there by

the operator H defined above. Of course the corresponding u = Hf solves
the problem −Δu = f in R

n
> and u = 0 on Σ = ∂R

n
>. In the statement

(c) of Corollary 14.1.7 it is not necessary to require that f has a vanishing
integral. However the constant in the second estimate in (14.1.10) depends
on A instead of diam(A) (cf. Lemma 12.3.10).
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In analogy to the whole space case we set L(Rn>) :=
⋃
q∈[1,∞) L

q(Rn>)
and note that we also have uniqueness for the half-space problem in the
appropriate class (cf. [128]). More precisely, a solution u ∈ L(Rn>) with first
and second weak derivatives from L1

loc(R
n
�) of −Δu = f in R

n
> and u = 0 on

Σ = ∂R
n
> is unique. Thus we obtain in a analogous way to Corollary 14.1.11:

Corollary 14.1.18. Let p ∈ P log(Rn>) with 1 < p− � p+ < ∞ and let
f ∈ Lp(·)(Rn>) have support in a bounded John domain A ⊂ Ω. Let u ∈ L(Rn>)
with first and second weak derivatives from L1

loc(R
n
�) be a solution of the

problem −Δu = f in R
n
> and u = 0 on Σ = ∂R

n
>. Then u ∈ D(1,2),p(·)(Rn>)

satisfies the estimates

‖∇u‖Lp(·)(Rn>) � c(p) ‖f‖D−1,p(·)(Rn>) ,

‖∇2u‖Lp(·)(Rn>) � c(A, p) ‖f‖Lp(·)(Rn>) .
(14.1.19)

Using the half-space estimates and a usual localization procedure we get
now estimates near the boundary for the Poisson problem. Recall that the
boundary ∂Ω of a domain with boundary ∂Ω ∈ C1,1 is locally described
by a function a ∈ C1,1([−α, α]n−1), α > 0. One can always choose the
function a such that a(0) = ∇a(0) = 0. Moreover, the sets V = V+ :=
{(x′, xn) ∈ R

n : |x′| < α , a(x′) < xn < a(x′) + β}, β > 0, and
V ′ = V ′

+ := {(x′, xn) ∈ R
n : |x′| < α′ , a(x′) < xn < a(x′) + β′}, where

0 < β < β′, 0 < α < α′, satisfy V ⊂ V ′ ⊂ Ω.

Proposition 14.1.20. Let Ω be a bounded domain with C1,1-boundary, let
p ∈ P log(Ω) with 1 < p− � p+ < ∞, f ∈ Lp(·)(Ω), and let u ∈ W 2,p(·)(Ω) be
a strong solution of (14.1.1) with g = 0. Then

‖∇u‖Lp(·)(V ) � c
(
‖f‖W−1,p(·)(V ′) + ‖u‖Lp(·)(V ′)

)
,

‖∇2u‖Lp(·)(V ) � c
(
‖f‖Lp(·)(V ′) + ‖u‖W 1,p(·)(V ′)

)
,

(14.1.21)

with constants c = c(p,Ω, V ′, V ), where V and V ′ were defined above.

Proof. We define V ′′ analogously with 0 < α < α′′ < α′ and 0 < β <
β′′ < β′. Let τ ∈ C∞(Ω) satisfy τ = 1 in V and τ = 0 outside of V ′′. Let
us straighten the boundary with the help of the coordinate transformation
F : V ′ → F(V ′) =: V̂ ′ ⊂ R

n, where (y′, yn) := F(x′, xn) := (x′, xn − a(x′))
(cf. Fig. 14.1). We set V̂ := F(V ), τ̂ := τ ◦F−1, and analogously û, f̂ , p̂. One
easily computes

‖f̂‖Lp̂(·)(V̂ ′) = ‖f‖Lp(·)(V ′),

so f̂ ∈ Lp̂(·)(Rn>), and f̂ has bounded support. Setting ū := û τ̂ one checks
analogously that ū ∈ W 2,p̂(·)(Rn>) and ū = 0 on Σ. A straightforward
computation, using the properties of the transformation F, yields
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Ω

V̂ ′

V̂

V ′

V

F

Fig. 14.1 The mapping F

Δū = −τ̂ f̂ +
n−1∑

i=1

∂2
inū2∂ia− ∂2

nū

n−1∑

i=1

(∂ia)2 +
n−1∑

i=1

∂iû (−2∂ia∂nτ̂ + 2∂iτ̂)

+ ∂nû

(

2∂nτ̂ +
n−1∑

i=1

(

τ̂∂2
i a− 2∂ia∂iτ̂ + 2∂nτ̂ (∂ia)2

))

+ û

n−1∑

i=1

(
−2∂ia∂2

inτ̂ + ∂2
nτ̂ (∂ia)2 + ∂2

i τ̂
)

=: −τ̂ f̂ +
n∑

i=1

Ai∂
2
inū+

n∑

i=1

Bi∂iû+ Cû =: T in R
n
>.

Note that due to the assumptions on u, τ , and ∂Ω, the function T ∈ Lp̂(·)(Rn>)
has support in V̂ ′ and Bi and C are bounded on V̂ ′ depending on τ and a.
Moreover, due to ∇a(0) = 0, A := max{‖Ai‖L∞(V̂ ′)} tends to 0 for α → 0.
Now Corollary 14.1.18 applied to ū and T yields for sufficiently small A (such
that the term can be absorbed in the left-hand side)

‖∇2ū‖Lp̂(·)(V̂ ) � ‖∇2ū‖Lp̂(·)(V̂ ′) � c
(
‖f̂ ‖Lp̂(·)(V̂ ′) + ‖û‖W 1,p̂(·)(V̂ ′)

)
.

Transforming back with the help of F−1 we obtain

‖∇2u‖Lp(·)(V ) � c
(
‖f‖Lp(·)(V ′) + ‖u‖W 1,p(·)(V ′)

)
.
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The first inequality in (14.1.21) is proved analogously if one additionally
uses ideas from the proof of (14.1.14) to estimate T in the negative norm.
Moreover, one has to use partial integration to get rid of the normal derivative
from the function ū in the term with Ai (note that Ai depends only on y′)
and to choose again A sufficiently small. This finishes the proof. ��

Now we have at our disposal everything what we need for the proof of the
main result of this section.

Proof of Theorem 14.1.2. Since C∞
0 (Ω) is dense in Lp(·)(Ω) it is sufficient

to construct a linear solution operator on C∞
0 (Ω), which is bounded from

Lp(·)(Ω) into W 2,p(·)(Ω). For f ∈ C∞
0 (Ω) there exists a unique strong solution

u ∈W 2,p+(Ω) ∩W 1,p+

0 (Ω) of (14.1.1) with g = 0 [356, Theorem 9.1]. This
defines the linear solution operator. From the definition of ∂Ω ∈ C1,1 it follows
that there exists a finite covering of ∂Ω with sets Λi. Using the corresponding
sets V i we choose open sets Ω0 ⊂⊂ Ω1 ⊂⊂ Ω such that Ω = Ω0 ∪

⋃m
i=1 V

i.
Propositions 14.1.12 and 14.1.20 now imply

‖∇u‖Lp(·)(Ω) � ‖∇u‖Lp(·)(Ω0) +
∑

i

‖∇u‖Lp(·)(V i)

� c
(
‖f‖W−1,p(·)(Ω1) +

∑

i

‖f‖W−1,p(·)((V i)′) + ‖u‖Lp(·)(Ω)

)

� c
(
‖f‖W−1,p(·)(Ω) + ‖u‖Lp(·)(Ω)

)
,

and consequently

‖u‖W 1,p(·)(Ω) � c
(
‖f‖W−1,p(·)(Ω) + ‖u‖Lp(·)(Ω)

)
. (14.1.22)

Analogously we obtain

‖u‖W 2,p(·)(Ω) � c
(
‖f‖Lp(·)(Ω) + ‖u‖W 1,p(·)(Ω)

)

� c
(
‖f‖Lp(·)(Ω) + ‖u‖Lp(·)(Ω)

)
,

where we also used the previous estimate and ‖f‖W−1,p(·)(Ω) � c ‖f‖Lp(·)(Ω).
From a standard contradiction argument, using also the reflexivity of the
space W 1,p(·)(Ω) and the compact embedding W 1,p(·)(Ω) ↪→↪→ Lp(·)(Ω), we
deduce using (14.1.22) that

‖u‖Lp(·)(Ω) � c ‖f‖W−1,p(·)(Ω).

This together with the previous estimate implies the estimate in Theo-
rem 14.1.2 in the case g = 0 for f ∈ C∞

0 (Ω). The general result for
f ∈ Lp(·)(Ω), g = 0 now follows by continuation, since C∞

0 (Ω) is dense in
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Lp(·)(Ω). The case of arbitrary g ∈ Tr(W 2,p(·)(Ω)) follows by the definition
of Tr(W 2,p(·)(Ω)) and the linearity of the problem. ��

Remark 14.1.23. Using the estimates in the previous results we also have
shown that a unique weak solution u ∈ W 1,p(·)(Ω) of the Poisson problem
(14.1.1) exists if the data satisfy f ∈ W−1,p(·)(Ω) and g ∈ Tr(W 1,p(·)(Ω)).
This solution satisfies (14.1.1) in the usual weak sense, i.e. for test functions
from the space W 1,p′(·)

0 (Ω), and satisfies the estimate

‖u‖W 1,p(·)(Ω) � c
(
‖f‖W−1,p(·)(Ω) + ‖g‖Tr(W 1,p(·)(Ω))

)
,

with a constant c = c(p,Ω).

14.2 Stokes Problem

In this section we treat the Stokes problem and prove also for this system the
existence of strong solutions in spaces with variable exponents. The Stokes
problem is of fundamental importance for the mathematical treatment of fluid
dynamics. The treatment essentially follows along the lines in the previous
section and is based on the Calderón–Zygmund theory of singular integral
operators and the Agmon–Douglis–Nirenberg theory of operators in the half-
space. In contrast to the previous section one cannot use in the construction of
the half-space solutions the symmetry of the kernel. This problem occurs since
the solution of the Stokes problem has a given divergence. It can be overcome
by a generalization of the classical approach of Agmon–Douglis–Nirenberg
(cf. [14,15]) to the case of spaces with variable exponents. Moreover, one has
to notice that an efficient adaptation of this method requires the usage of
homogeneous Sobolev spaces (cf. Sect. 12.2). This section is based on [103], an
improved version of [104,105] and [264, Chap. 4], [101] where all the missing
details can be found. For the classical theory we refer the reader to [67] or
[169, Chap. IV].

Also in this section we always assume that Ω is a bounded domain in R
n,

n � 2, with C1,1-boundary. We want to show that the Stokes problem

Δv −∇π = f in Ω,
div v = g in Ω,

v = v0 on ∂Ω,
(14.2.1)

possesses a unique strong solution (v, π) ∈ (W 2,p(·)(Ω))n ×W 1,p(·)(Ω) with´
Ω π dx = 0 provided that the data have appropriate regularity. More pre-

cisely we prove:
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Theorem 14.2.2. Let Ω ⊂ R
n, n � 2, be a bounded domain with C1,1-

boundary and let p ∈ P log(Ω) with 1 < p− � p+ < ∞. For arbitrary data
f ∈ (Lp(·)(Ω))n, g ∈ W 1,p(·)(Ω) and v0 ∈ Tr(W 2,p(·)(Ω))n satisfying the
compatibility condition

´
Ω
g dx =

´
∂Ω

v0 · ν dω, where ν is the outer unit
normal to ∂Ω, there exists a unique strong solution (v, π) ∈ (W 2,p(·)(Ω))n ×
W 1,p(·)(Ω) with

´
Ω
π dx = 0 of the Stokes problem (14.2.1) which satisfies

the estimate

‖v‖W 2,p(·)(Ω) + ‖π‖W 1,p(·)(Ω)

� c
(
‖f‖Lp(·)(Ω) + ‖v0‖Tr(W 2,p(·)(Ω)) + ‖g‖W 1,p(·)(Ω)

)
,

where the constant c depends only on the domain Ω and the exponent p.

As in the treatment of the Poisson problem it is sufficient to consider
homogeneous boundary conditions, i.e. v0 = 0. For the general case one again
uses the linearity of the problem and modifies the other data by a suitable
representant of the boundary condition v0. The usual localization procedure
reduces the problem on bounded domains to the treatment of the problem
in the whole space and in the half-space with data having bounded support.
For that we extend the exponent p defined on Ω by Proposition 4.1.7 to an
exponent defined on R

n, which we again denote by p. Since the structure of
the fundamental solutions of the Stokes problem is different for n = 2 and
n � 3, we restrict ourselves to the latter case. The methods presented here
can be easily adapted to treat also the case n = 2. We refer the reader to
[67] and [169, Chap. IV] for the assertion in the classical case of a constant
exponent.

For sufficiently smooth data, the solutions of the problem

Δv −∇π = f in R
n,

div v = g in R
n,

(14.2.3)

are obtained by convolution with the fundamental solutions of the Stokes
problem V = (V rl)r,l=1,...,n and Q = (Ql)l=1,...,n given by

V rl(x) :=
1

2|∂B(0, 1)|

(
1

n− 2
δrl

|x|n−2
+
xrxl
|x|n

)

,

and

Ql(x) :=
1

|∂B(0, 1)|
xl
|x|n .

More precisely, set F := f + ∇g. Then v := V ∗ F +K ∗ ∇g, where K is the
Newton potential (14.1.4), and π := Q ∗F solve (14.2.3). From Sect. 14.1 we
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already know that K ∗ ∇g has the desired properties. Thus it is sufficient to
consider the convolution of the fundamental solutions of the Stokes problem
with given data from (Lp(·)(Rn))n. From the classical theory it is well known
that the kernels ∂i∂jV rl and ∂iQl satisfy the assumptions of Corollary 7.2.9.
Consequently we get:

Proposition 14.2.4. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞ and let
f ∈ (C∞

0,0(Rn))n. Then the convolutions u(x) :=
´

Rn
V(x − y)f(y) dy and

�(x) :=
´

Rn
Q(x− y) · f(y) dy belong to (C∞(Rn))n. Moreover, their first and

second derivatives have the representations (i, j, r = 1, . . . , n)

∂iur(x) =
∑

l

ˆ

Rn

∂xiV
rl(x− y)fl(y) dy,

∂i∂jur(x) =
∑

l

lim
ε↘0

ˆ

(B(x,ε))c

∂xi∂xjV
rl(x− y)fl(y) dy

+
1

n(n+ 2)
(
− (n+ 1)δijfr(x) + δirfj(x) + δrjfi(x)

)
,

∂i�(x) =
∑

l

lim
ε↘0

ˆ

(B(x,ε))c

∂xiQ
l(x− y)fl(y) dy +

1
n
fi(x),

(14.2.5)

and satisfy the estimates

‖∇u‖Lp(·)(Rn) + ‖�‖Lp(·)(Rn) � c ‖f‖D−1,p(·)(Rn) ,

‖∇2u‖Lp(·)(Rn) + ‖∇�‖Lp(·)(Rn) � c ‖f‖Lp(·)(Rn) ,
(14.2.6)

with a constant c = c(p, n).

Proof. The proof of the statements follows, as in the proof of Proposi-
tion 14.1.5, from the classical theory and the estimates for singular integral
operators (Corollary 7.2.9). ��

Proposition 14.2.4 shows that the linear operator U : (C∞
0,0(Rn))n →

(C∞(Rn))n defined through

U : f �→ V ∗ f

is bounded from (D−1,p(·)(Rn))n into (D1,p(·)(Rn))n and from (Lp(·)(Rn))n

into (D2,p(·)(Rn))n. Similarly we see that the operator and P : (C∞
0,0(Rn))n →

(C∞(Rn))n defined through

P : f �→ Q ∗ f
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is bounded from (D−1,p(·)(Rn))n into (Lp(·)(Rn))n and from (Lp(·)(Rn))n into
(D1,p(·)(Rn))n. Due to the density of C∞

0,0(Rn) in Lp(·)(Rn) and D−1,p(·)(Rn)
(Propositions 3.4.14 and 12.3.7) we thus can continue the operators U,P to
bounded operators in these spaces. Moreover, a function f ∈ (Lp(·)(Rn))n

with compact support and
´

Rn
f dx = 0 belongs to (D−1,p(·)(Rn))n by

Lemma 12.3.8. Thus both estimates of the previous proposition apply. More
precisely like Proposition 14.1.7 we can prove:

Corollary 14.2.7. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞ and let U,P be
the operators defined above.

(a) If f ∈ (Lp(·)(Rn))n then U f ∈ (D2,p(·)(Rn))n and P f ∈ D1,p(·)(Rn)
satisfy the estimate

‖U f‖D2,p(·)(Rn) + ‖P f‖D1,p(·)(Rn) � c ‖f‖Lp(·)(Rn)

with a constant c = c(p, n).
(b) If f ∈ (D−1,p(·)(Rn))n then U f ∈ (D1,p(·)(Rn))n and P f ∈ Lp(·)(Rn)

satisfy the estimate

‖U f‖D1,p(·)(Rn) + ‖P f‖Lp(·)(Rn) � c ‖f‖D−1,p(·)(Rn)

with a constant c = c(p, n).
(c) If f ∈ (Lp(·)(Rn))n has support in a bounded John domain A ⊂ R

n and
satisfies

´
Rn

f dx = 0 then U f ∈ (D(1,2),p(·)(Rn))n and P f ∈ W 1,p(·)(Rn)
satisfy the estimates

‖U f‖D2,p(·)(Rn) + ‖P f‖D1,p(·)(Rn) � c(p) ‖f‖Lp(·)(Rn) ,

‖U f‖D1,p(·)(Rn) + ‖P f‖Lp(·)(Rn) � c(p, diamA) ‖f‖D−1,p(·)(Rn) .

Based on this corollary and the representation of a solution of (14.2.3)
before Proposition 14.2.4 we obtain:

Corollary 14.2.8. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞ and let
f ∈ (Lp(·)(Rn))n and g ∈ W 1,p(·)(Rn) have support in a bounded John
domain A ⊂ R

n. Moreover, let f have vanishing mean value and let (v, π) ∈
(W 2,p−(Rn))n×W 1,p−(Rn) be a solution of the Stokes problem (14.2.3). Then
v ∈ (D(1,2),p(·)(Rn))n and π ∈W 1,p(·)(Rn) satisfy the estimates

‖∇v‖Lp(·)(Rn) + ‖π‖Lp(·)(Rn) � c
(
‖f‖D−1,p(·)(Rn) + ‖g‖Lp(·)(Rn)

)
,

‖∇2v‖Lp(·)(Rn) + ‖∇π‖Lp(·)(Rn) � c
(
‖f‖Lp(·)(Rn) + ‖∇g‖Lp(·)(Rn)

)
,

(14.2.9)

with a constants c = c(p, diamA).
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Proof. From the properties of f and g follows that they belong to the
spaces (Lp(·)(Rn))n ∩ (Lp

−
(Rn))n ∩ (D−1,p(·)(Rn))n ∩ (D−1,p−(Rn))n and

W 1,p(·)(Rn) ∩W 1,p−(Rn), respectively. This, Corollary 14.2.7(c), Corollary
14.1.7(c), and the obvious estimate ‖∇g‖D−1,p(·)(Rn) � c ‖g‖Lp(·)(Rn) imply
(14.2.9) with v and π replaced by ṽ := UF + L∇g, L is the continu-
ation of the convolution with the Newton kernel (Corollary 14.1.7), and
π̃ := PF, where F := f + ∇g. Note that there holds analogous estimates
with p(·) replaced by p−. Using these estimates, the fact that solutions
(v, π) ∈ (D1,q(Rn))n × Lq(Rn), 1 < q < ∞, of the Stokes problem (14.2.3)
are unique up to a constant (cf. [169, Theorem IV.2.2]), and the integrability
of π and π̃ we obtain (14.2.9). ��

Now we are ready to prove interior estimates for solutions of the Stokes
problem.

Proposition 14.2.10. Let p ∈ P log(Ω) with 1 < p− � p+ < ∞ and let
f ∈ (Lp(·)(Ω))n and g ∈ W 1,p(·)(Ω). Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω be open sets.
Moreover, let (v, π) ∈ (W 2,p(·)(Ω))n ×W 1,p(·)(Ω) be a solution of the Stokes
problem (14.2.1).Then there exists a constant c = c(p,Ω0,Ω1) such that (v, π)
satisfy the estimates

‖∇v‖Lp(·)(Ω0) + ‖π‖Lp(·)(Ω0)

� c
(
‖f‖W−1,p(·)(Ω1) + ‖g‖Lp(·)(Ω1) + ‖v‖Lp(·)(Ω1\Ω0) + ‖π‖W−1,p(·)(Ω1\Ω0)

)
,

‖∇2v‖Lp(·)(Ω0) + ‖∇π‖Lp(·)(Ω0)

� c
(
‖f‖Lp(·)(Ω1)

+ ‖g‖W 1,p(·)(Ω1) + ‖v‖W 1,p(·)(Ω1\Ω0) + ‖π‖Lp(·)(Ω1\Ω0)

)
.

Proof. Let τ ∈ C∞(Rn) with τ = 1 in Ω0 and spt(τ) ⊂⊂ Ω1. For v̄ := vτ
and π̄ := πτ we have

Δv̄ −∇π̄ = 2∇v∇τ + Δτv − π∇τ + fτ =: T in R
n,

div v̄ = v · ∇τ + gτ =: G in R
n.

Due to the choice of τ we see that v̄ ∈ W 2,p(·)(Rn), π̄ ∈ W 1,p(·)(Rn), G ∈
W 1,p(·)(Rn) and T ∈ Lp(·)(Rn) satisfy the assumptions of Corollary 14.2.8,
which yields

‖∇v‖Lp(·)(Ω0) + ‖π‖Lp(·)(Ω0) � c
(
‖T‖D−1,p(·)(Rn) + ‖G‖Lp(·)(Ω1)

)
,

‖∇2v‖Lp(·)(Ω0) + ‖∇π‖Lp(·)(Ω0) � c
(
‖T‖Lp(·)(Ω1) + ‖∇G‖Lp(·)(Ω1)

)
.

This estimate and the definition of T and G immediately imply the above
estimates for v and π. For the estimate of ‖T‖D−1,p(·)(Rn) we use that T has
a vanishing mean value and proceed as in the estimate (14.1.14). ��
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Now we turn our attention to the Stokes problem in the half-space

Δv −∇π = f in R
n
>,

div v = g in R
n
>,

v = 0 on Σ.
(14.2.11)

In order to derive estimates for this problem we cannot proceed as for
the Poisson problem, since the convolution of the fundamental solutions of
the Stokes problem with odd reflected data does not satisfy the divergence
constraint.

Thus we proceed differently. Namely, we reflect the data in an even manner
and produce by convolution a whole space solution v of (14.2.3). This solution
does not satisfy the homogeneous boundary condition v = 0 on Σ = ∂R

n
>.

To achieve this we add to v a solution of the problem in the half-space

Δw −∇θ = 0 in R
n
>,

div w = 0 in R
n
>,

w = h on Σ,
(14.2.12)

with the special choice h = −v|Σ. In order to obtain appropriate esti-
mates of solutions of (14.2.12) we need to prove the analogue of the famous
Agmon, Douglis, Nirenberg result (cf. [14]) for spaces with variable expo-
nents. Before we proceed with the treatment of the Stokes problem in the
half-space we derive this result. Recall that C∞

0 (Rn�) is the space of smooth
function with compact support in R

n
�. Moreover, we set S := ∂B(0, 1),

Sn−2 := ∂B(0, 1)n−1 ⊂ R
n−1, S> := S ∩ R

n
> and S� := S ∩ R

n
�.

Theorem 14.2.13. Let k be a kernel on R
n
� of the form

k(x) =
P (x/|x|)

|x|n ,

where P : S� → R is continuous and satisfies

ˆ

Sn−2

P (x′, 0) dx′ = 0.

Assume that k possesses continuous derivatives ∂ik, i = 1, . . . , n, and ∂2
nk

in R
n
>, which are bounded on the hemisphere S>. Let p ∈ P log(Rn>) with

1 < p− � p+ <∞. For f ∈ C∞
0 (Rn�) we define Hf : R

n
> → R through

(Hf |Σ)(x) :=
ˆ

Σ

k(x′ − y′, xn)f(y′, 0) dy′. (14.2.14)
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Then

‖∇Hf |Σ‖Lp(·)(Rn>) � c ‖∇f‖Lp(·)(Rn>), (14.2.15)

for all f ∈ C∞
0 (Rn�) with constant c = c(p, n, P ). In particular, H defines (by

extension) a linear, bounded operator H : D1,p(·)(Rn>) → D1,p(·)(Rn>).

From the definition of the norm in the trace space TrD1,p(·)(Rn>) (cf.
Sect. 12.2) we immediately get from the previous theorem:

Corollary 14.2.16. Under the assumptions of the Theorem 14.2.13 the
operator H defines a linear, bounded operator H : TrD1,p(·)(Rn>) →
D1,p(·)(Rn>).

The proof of Theorem 14.2.13 makes use of the following consequence of
the Calderón–Zygmund theorem (Corollary 7.2.9):

Lemma 14.2.17. Let Q : R
n
> → R be a measurable function, which satisfies

|Q(x)| � P (x/|x|)
|x|n ,

where P ∈ Lr(S+), r ∈ (1,∞], is non-negative. Let p ∈ P log(Rn>) with r′ <
p− � p+ <∞. For f ∈ Lp(·)(Rn>) we define If : R

n
> → R through

If(x) :=
ˆ

R
n
>

Q(x′ − y′, xn + yn)f(y) dy.

Then I defines a the linear operator I : Lp(·)(Rn>) → Lp(·)(Rn>), which satisfies
the estimate

‖If‖Lp(·)(Rn>) � c ‖f‖Lp(·)(Rn>),

with a constant c = c(r, p, n, P ).

Proof. Note that for x = (x′, xn) ∈ R
n
> the kernel Q(x′ − ·, xn + ·) belongs to

Lp
′(·)(Rn>) and thus If is well defined. We extend p by even reflection, Q(x)

and P (x/|x|)
|x|n by odd reflection, and f by 0 to R

n. Thus p ∈ P log(Rn) and

f ∈ Lp(·)(Rn). Moreover, the extended kernel k(x) := P (x/|x|)
|x|n on R

n satisfies
the assumptions of Corollary 7.2.9, which due to
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|If(x)| �
ˆ

R
n
>

k(x′ − y′, xn + yn)|f(y)| dy

=
ˆ

Rn

k(x′ − y′, xn + yn)|f(y)| dy

=
ˆ

Rn

k(x′ − y′, xn − yn)|f(y′,−yn)| dy =: Ĩf(x)

yields the estimate

‖If‖Lp(·)(Rn>) � ‖Ĩf‖Lp(·)(Rn) � c ‖f‖Lp(·)(Rn>),

which proves the lemma. ��

This lemma is the analogue of [14, Lemma 3.2] which is sufficient to handle
the tangential derivatives in the assertion of Theorem 14.2.13. In order to
handle also the normal derivative we need the following result:

Lemma 14.2.18. Let J be a continuous kernel on R
n
>, which is homogeneous

of degree −(n+ 1) on R
n
>, i.e. J(αx) = α−(n+1)J(x), α > 0, bounded on S>

and satisfies for all xn > 0
ˆ

Rn−1

J(x′, xn) dx′ = 0. (14.2.19)

Let p ∈ P log(Rn>) with 1 < p− � p+ < ∞ and q ∈ (1,∞). For f ∈ C∞
0 (Rn�)

we define the function If : R
n
> → R, through

If(x) :=
ˆ

R
n
>

J(x′ − y′, xn + yn)f(y) dy.

Then I satisfies

‖If‖Lp(·)(Rn>) � c ‖∇f‖Lp(·)(Rn>)

for all f ∈ C∞
0 (Rn�) with a constant c = c(p, n, J). In particular, I defines

(by extension) a linear, bounded operator I : D1,p(·)(Rn>) → Lp(·)(Rn>).

Proof. Note that for x = (x′, xn) ∈ R
n
> the kernel J(x′ − ·, xn + ·) belongs

to Lr(Rn>), 1 � r � ∞, and thus I is well defined. The proof of the assertion
of the lemma is identical with the proof of [14, Lemma A.3.1] if one uses
Lemma 14.2.17 instead of [14, Lemma 3.2]. The proof is based on the obser-
vation that one can assume without loss of generality that J additionally
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satisfies for i < n and xn > 0
ˆ

Rn−1

xiJ(x′, xn) dx′ = 0.

Such J can be represented in the form

J(x′, xn) =
n−1∑

i=1

∂i

ˆ

Rn−1

J(y′, xn)∂iKn−1(x′ − y′) dy′

︸ ︷︷ ︸
=:Li(x′,xn)

,

where Kn−1 is the Newton potential in R
n−1. Consequently we can write If

as

If(x) =
n−1∑

i=1

ˆ

R
n
>

Li(x′ − y′, xn + yn)∂if(y) dy

and the assertion follows from Lemma 14.2.17. ��

Now we are ready to prove Theorem 14.2.13.

Proof of Theorem 14.2.13. The proof of this theorem is analogous to the
proof of [14, Theorem 3.3]. We extend P to R

n
> through P (x) = P (x/|x|).

From the assumptions on the kernel one easily checks that for i = 1, . . . , n

|k(x)| � c

|x|n−1
, |∂ik(x)| � c

|x|n , |∂2
nk(x)| � c

|x|n+1
. (14.2.20)

For f ∈ C∞
0 (Rn�) and x ∈ R

n
> we consider the function g : R

n
> → R defined

through g(y) := k(x′ − y′, xn + yn)f(y). Since the kernel k(x′ − ·, xn + ·) and
its first derivatives belongs to Lr(Rn−1 × (0, T )), T > 0, 1 � r � ∞, and
due to the assumptions on f we see that ∂yng ∈ L1(Rn−1 × (0, T )). This
enables us to derive in the same way as in the proof of [14, Theorem 3.3] the
equations

−∂i(Hf)(x) =
ˆ

R
n
>

(
∂xik(x′ − y′, xn + yn)∂nf(y)

+ ∂xnk(x′ − y′, xn + yn)∂if(y)
)
dyndy

′,

(14.2.21)

−∂n(Hf)(x) =
ˆ

Rn−1

T̂

0

(
∂xnk(x′ − y′, xn + yn)∂nf(y)

+ ∂2
xnk(x′ − y′, xn + yn)f(y)

)
dyndy

′

(14.2.22)
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for i = 1, . . . , n− 1. Now Lemma 14.2.17 applied to (14.2.21) and to the first
term in (14.2.22) and Lemma 14.2.18 applied to second term in (14.2.22) yield
the estimate (14.2.15). The remaining assertions follow from the density of
C∞

0 (Rn�) in D1,p(·)(Rn>). ��

Now we have at our disposal the tools we need for the treatment of
the Stokes problem (14.2.12) in the half-space. The solutions of this prob-
lem are obtained as usual by a convolution of the fundamental solutions
Z = (Zrl)r,l=1,...,n and z in the half-space, which are given by

Zrl(x) :=
2

|B(0, 1)|
xnxrxl
|x|n+2

,

and

z :=
4

|∂B(0, 1)|
xn
|x|n ,

with the boundary data h from (14.2.12). From the classical theory it is well
known that the kernels Zrl and z satisfy the assumptions of Theorem 14.2.13.
This is the basis for the half-space estimates for these kernels. The result is
formulated in such a way that it fits to the application in Proposition 14.2.25
showing half-space estimates for the Stokes problem. Note that the next
lemma can be also shown for data h ∈ D(1,2),p(·)(Rn>). For that one needs to
use the density of C∞

0 (Rn�) in D1,p(·)(Rn>) and D(1,2),p(·)(Rn>), which holds
due to Propositions 12.2.7 and 12.2.12 and Theorem 8.5.12.

Lemma 14.2.23. Let p ∈ P log(Rn) with 1 < p− � p+ < ∞, and h ∈
(D(1,2),p(·)(Rn))n. Then there exists a solution

(w, θ) ∈ (D(1,2),p(·)(Rn>))n ×W 1,p(·)(Rn>)

of the Stokes problem (14.2.12) on the half-space with boundary data h|Σ,
which satisfy the estimates

‖∇w‖Lp(·)(Rn>) + ‖θ‖Lp(·)(Rn>) � c ‖∇h‖Lp(·)(Rn>), (14.2.24)

‖∇2w‖Lp(·)(Rn>) + ‖∇θ‖Lp(·)(Rn>) � c
(
‖∇2h‖Lp(·)(Rn>) + ‖∇h‖Lp(·)(Rn>)

)
,

with a constant c = c(p, n).

Proof. Since C∞
0 (Rn) is dense in D(1,2),p(·)(Rn) and D1,p(·)(Rn) (Proposi-

tions 12.2.12 and 12.2.7) it suffices to show the existence of a linear solution
operator satisfying the estimates (14.2.24) and then to argue by density simul-
taneously in D(1,2),p(·)(Rn) and D1,p(·)(Rn) (cf. the proof of Corollary 14.1.7).
Thus let h ∈ C∞

0 (Rn). Then the functions w : R
n
> → R

n and θ : R
n
> → R

defined through
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w(x) :=
ˆ

Σ

Z(x′ − y′, xn)h(y′, 0) dy′,

θ(x) := −
n∑

i=1

∂i

ˆ

Σ

z(x′ − y′, xn)hi(y′, 0) dy′

︸ ︷︷ ︸
=:qi(x)

,

are smooth solutions of (14.2.12), which is easily shown as in the classical
theory. The first estimate in (14.2.24) now follows from Theorem 14.2.13
applied to w and qi, i = 1, . . . , n. In order to prove the second estimate in
(14.2.24) we notice that

∂kw(x) =
ˆ

Σ

Z(x′ − y′, xn)∂kh(y′, 0) dy′,

∂kθ(x) = −
∑

i

∂i

ˆ

Σ

z(x′ − y′, xn)∂khi(y′, 0) dy′

︸ ︷︷ ︸
=:qik(x)

for 1 � k < n. Again Theorem 14.2.13 applied to ∂kw and qik gives

‖∂k∇w‖Lp(·)(Rn>) + ‖∂kθ‖Lp(·)(Rn>) � c ‖∇2h‖Lp(·)(Rn>).

Using the first two equations of (14.2.12) we compute ∂2
nwn = −

∑n−1
i=1 ∂niwi,

∂2
nwi = ∂iθ −

∑n−1
j=1 ∂

2
jwi, 1 � i < n, and ∂nθ = Δwn, which together with

the last estimate for ∂k∇w and ∂kθ gives also the missing estimate for ∂2
nw

and ∂nθ. This finishes the proof of the proposition. ��

Using the whole space result Corollary 14.2.8 and the previous lemma we
get half-space estimates for the Stokes problem (14.2.11).

Proposition 14.2.25. Let p ∈ P log(Rn>) with 1 < p− � p+ < ∞, and
let f ∈ (Lp(·)(Rn>))n and g ∈ W 1,p(·)(Rn>) have support in a bounded John
domain A ⊂⊂ R

n
�. Let (v, π) ∈ (W 2,p−(Rn>))n ×W 1,p−(Rn>) be a solution

of the Stokes problem in the half-space (14.2.11) corresponding to the data
f and g. Then v belongs to the space D(1,2),p(·)(Rn>) and π belongs to the
space W 1,p(·)(Rn>). Moreover, they satisfy the estimates

‖∇v‖Lp(·)(Rn>)+‖π‖Lp(·)(Rn>) � c
(
‖f‖D−1,p(·)(Rn>)+‖g‖Lp(·)(Rn>)

)
,

‖∇2v‖Lp(·)(Rn>)+‖∇π‖Lp(·)(Rn>) � c
(
‖f‖Lp(·)(Rn>)+‖∇g‖Lp(·)(Rn>)

)
,

(14.2.26)

with a constant c = c(p,A) > 0.
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Proof. From the assumptions on f and Lemma 12.3.10 we obtain that
f ∈ D−1,p(·)(Rn>). We extend p and g by even reflection, and f by odd reflec-
tion to R

n. Thus p ∈ P log(Rn), f ∈ Lp(·)(Rn) and g ∈ W 1,p(·)(Rn) with
corresponding estimates of the whole space norms by the half-space norms.
Moreover, f has mean value zero and f and g still have bounded support.
Due to Lemma 12.3.8, f ∈ D−1,p(·)(Rn) with an estimates of the whole space
norm by the half-space norm (14.1.17). Let ṽ := V∗F+K ∗∇g, K being the
Newton kernel, and π̃ := Q ∗F, where F := f −∇g, be whole space solutions
of the Stokes problem (14.2.3) corresponding to the extended data. Corol-
laries 14.2.8 and 14.1.7 and the above mentioned estimates of the extended
data by the original data yield the estimates

‖∇ṽ‖Lp(·)(Rn>) + ‖π̃‖Lp(·)(Rn>) � ‖∇ṽ‖Lp(·)(Rn) + ‖π̃‖Lp(·)(Rn)

� c
(
‖f‖D−1,p(·)(Rn>) + ‖∇g‖D−1,p(·)(Rn>)

)
,

‖∇2ṽ‖Lp(·)(Rn>) + ‖∇π̃‖Lp(·)(Rn>) � ‖∇2ṽ‖Lp(·)(Rn) + ‖∇π̃‖Lp(·)(Rn)

� c
(
‖f‖Lp(·)(Rn>) + ‖∇g‖Lp(·)(Rn>)

)
.

Thus ṽ ∈ D(1,2),p(·)(Rn) and Proposition 14.2.23 yields the existence of a solu-
tion (w, θ) of the Stokes problem in the half-space (14.2.12) with boundary
data −ṽ|Σ satisfying the estimates

‖∇w‖Lp(·)(Rn>) + ‖θ‖Lp(·)(Rn>) � c ‖∇ṽ‖Lp(·)(Rn>),

‖∇2w‖Lp(·)(Rn>) + ‖∇θ‖Lp(·)(Rn>) � c
(
‖∇2ṽ‖Lp(·)(Rn>) + ‖∇ṽ‖Lp(·)(Rn>)

)
.

These last four estimate together with ‖∇g‖D−1,p(·)(Rn>) � c ‖g‖Lp(·)(Rn>) and
Lemma 12.3.10 applied to f and ∇g imply that v̄ := ṽ + w and π̄ := π̃ + θ
satisfy the estimates (14.2.26) and solve the problem

Δv̄ = Δṽ + Δw = f + ∇π̄ in R
n
>,

div v̄ = g in R
n
>,

v̄ = ṽ − ṽ = 0 on Σ.

If we replace in the above arguments p(·) by p− we get that v̄ and π̄ also
satisfy the corresponding estimates (14.2.26) with p(·) replaced by p−. Due
to the uniqueness results in classical spaces in [169, Theorem IV.3.3] and the
integrability of π we get that also v and π satisfy estimates (14.2.26). ��

Now we are ready to prove estimates near the boundary for solutions of
the Stokes problem (14.2.1) with homogeneous boundary data.
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Proposition 14.2.27. Let Ω be a bounded domain with C1,1-boundary, let
p ∈ P log(Ω) with 1 < p− � p+ < ∞ and let f ∈ (Lp(·)(Ω))n and g ∈
W 1,p(·)(Ω). Let (v, π) ∈ (W 2,p(·)(Ω))n×W 1,p(·)(Ω) be a solution of the Stokes
problem (14.2.1) with v0 = 0. Let V and V ′ be as in Proposition 14.1.20.
Then there exists a constant c = c(p, V, V ′,Ω) such that (v, π) satisfy the
estimates

‖∇v‖Lp(·)(V ) + ‖π‖Lp(·)(V )

� c
(
‖f‖W−1,p(·)(V ′) + ‖g‖Lp(·)(V ′) + ‖v‖Lp(·)(V ′) + ‖π‖W−1,p(·)(V ′)

)
,

‖∇2v‖Lp(·)(V ) + ‖∇π‖Lp(·)(V )

� c
(
‖f‖Lp(·)(V ′) + ‖g‖W 1,p(·)(V ′) + ‖v‖W 1,p(·)(V ′) + ‖π‖Lp(·)(V ′)

)
.

Proof. The proof of this proposition is analogous to the proof of Proposi-
tion 14.1.20. We use and adapt the notations and conventions introduced
there. Thus let v̂, π̂, f̂ , ĝ and p̂ the transformed quantities defined on R

n
>.

With the transformed cut-off function τ̂ we define v̄ := v̂τ̂ ∈ W 2,p̂(·)(Rn>)
and π̄ := π̂τ̂ ∈ W 1,p̂(·)(Rn>). The couple (v̄, π̄) solves the Stokes problem in
the half-space with data (T, G) defined through

Tj := τ̂ f̂j +
n∑

i=1

Ai∂
2
inv̄j +

n∑

i=1

Bi∂iv̂j + Cv̂j + Dj∂nπ̄ + Ej π̂,

G := τ̂ ĝ +
n∑

i=1

Riv̂i +
n∑

i=1

Si∂nv̄i,

where the functions Ai, Bi, C are defined in the proof of Proposition 14.1.20
and where Dj := −∂ja, Ej := ∂nτ̂ ∂ja − ∂j τ̂ , Ri := ∂iτ̂ − ∂nτ̂ ∂ia,
and Si = ∂ia. Note that Dj and Si are as well as Ai transformations of
first derivatives of the boundary description a, which can be made arbi-
trarily small such that they can be absorbed in the left-hand side. Since
(T, G) ∈ (Lp̂(·)(Rn>))n × W 1,p̂(·)(Rn>) have bounded support we can use
Proposition 14.2.25 and proceed as in the proof of Proposition 14.1.20 to
obtain

‖∇2v̄‖Lp̂(·)(V̂ ) + ‖∇π̄‖Lp̂(·)(V̂ )

� c
(
‖f̂‖Lp̂(·)(V̂ ′) + ‖ĝ‖W 1,p̂(·)(V̂ ′) + ‖v̂‖W 1,p̂(·)(V̂ ′) + ‖π̂‖Lp̂(·)(V̂ ′)

)
.

From this estimate we derive in the same way as in the proof of Proposi-
tion 14.1.20 the second estimate of the proposition. Proposition 14.2.25 also
gives
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‖∇v̄‖Lp̂(·)(V̂ ) + ‖π̄‖Lp̂(·)(V̂ ) � c
(
‖T‖D−1,p̂(·)(Rn>) + ‖G‖Lp̂(·)(V̂ ′)

)
.

Proceeding as in the end of the proof of (14.1.14) one can show that

‖T‖D−1,p̂(·)(Rn>) � c
(
‖f‖W−1,p(·)(V ′) + ‖π‖W−1,p(·)(V ′) + ‖v‖Lp(·)(V ′)

)

+A‖∇v̄‖Lp̂(·)(V̂ ) +D‖π̄‖Lp̂(·)(V̂ ),

where A is defined in the proof of Proposition 14.1.20 and can be made
arbitrarily small. The quantity D is defined analogously and can also be
made arbitrarily small. Similarly we get

‖G‖Lp̂(·)(V̂ ) � c ‖g‖Lp(·)(V ′) + c ‖v‖Lp(·)(V ′) + S ‖∇v̄‖Lp̂(·)(V̂ ),

where S is defined analogously to A and can also be made arbitrarily small.
Absorbing the appropriate terms and proceeding as in the proof of Proposi-
tion 14.1.20 we can derive from the last three estimates the first estimate of
the proposition. This finishes the proof of the proposition. ��

Now the Theorem 14.2.2 follows from Propositions 14.2.10 and 14.2.27
in the same way as Theorem 14.1.2 follows from Propositions 14.1.12 and
14.1.20.

Remark 14.2.28. Using the corresponding estimates in the previous results
we also have shown that a unique weak solution (v, π) ∈ (W 1,p(·)(Ω))n ×
Lp(·)(Ω) of the Stokes problem (14.2.1) with

´
Ω
π dx = 0 exists if the data

satisfy f ∈ (W−1,p(·)(Ω))n, g ∈ Lp(·)(Ω), v0 ∈ Tr(W 1,p(·)(Ω))n and the
compatibility condition

´
∂Ω

v0 · ν dω =
´
Ω
g dx. This solution satisfies the

problem (14.2.1) in the usual weak sense, i.e. for test functions from the space
(W 1,p′(·)

0 (Ω))n, and satisfies the estimate

‖v‖W 1,p(·)(Ω) + ‖π‖Lp(·)(Ω)

� c
(
‖f‖W−1,p(·)(Ω) + ‖g‖Lp(·)(Ω) + ‖v0‖Tr(W 1,p(·)(Ω))

)
,

with a constant c = c(p,Ω).

14.3 Divergence Equation and Consequences

In this section we deal with the divergence equation, which is of great impor-
tance in the theory of incompressible fluids. Moreover, we will derive from
the main result important consequences such as the negative norm theorem
and Korn’s inequality.
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For given f with mean value zero we seek a solution u with zero boundary
values of

div u = f in Ω , (14.3.1)

where Ω is a bounded domain. This problem has been studied by many
authors. The Ls–theory in Lipschitz domains is based on an explicit represen-
tation formula is due to Bogovskíı [50,51]. We generalize these results to the
case of Lebesgue spaces with variable exponents and bounded John domains
using the theory of Calderón–Zygmund operators, developed in Sect. 6.3 and
the transfer technique from Sect. 7.4. This involves showing that in the unit
ball B(0, 1) the solution u ∈W

1,p(·)
0 (B(0, 1)) of (14.3.1), which is given by

u(x) =
ˆ

Ω

f(y)
(

x− y

|x− y|n

∞̂

|x−y|

ω
(
y + ζ

x− y

|x− y|

)
ζn−1 dζ

)

dy ,

where ω ∈ C∞
0 (B(0, 1)),

´
B(0,1)

ω dx = 0, satisfies the estimate

‖∇u‖p(·) � c ‖f‖p(·) .

For that we need to show that the corresponding kernels satisfy the necessary
assumptions. The properties of the kernel are well known and can be found
e.g. in [50, 51, 103,169].

Lemma 14.3.2. Let ω ∈ C∞
0 (Rn) be a standard mollifier. For i, j =

1, . . . , n, we define

Nij(x, z) :=
δij
|z|n

∞̂

0

ω
(
x+ r

z

|z|

)
rn−1 dr +

zi

|z|n+1

∞̂

0

∂jω
(
x+ r

z

|z|

)
rn dr,

kij(x, y) := Nij(x, x − y)
(14.3.3)

for all x, y, z ∈ R
n with z �= 0 and x �= y. Then kij is C∞ off the diagonal

and

kij(x, y) = 0 (14.3.4)

for all x, y ∈ R
n with |x| > 1 + |y|. For 1 � σ < ∞, there exists a constant c,

depending on ‖ω‖W 1,∞ and n, such that
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Nij(x, αz) = α−nNij(x, z),ˆ

|z|=1

Nij(x, z) dz = 0,

( ˆ

|z|=1

|Nij(x, z)|σ dz
) 1
σ

� c (1 + |x|)n.

(14.3.5)

Furthermore for all x, y, z ∈ R
n with x �= y, y �= z, and |x− z| < 1

2 |x− y|

|kij(x, y)| � c (1 + |x|)n |x− y|−n,
|kij(x, y) − kij(z, y)| � c (1 + |y|)n+1 |x− z||x− y|−n−1

,

|kij(y, x) − kij(y, z)| � c (1 + |y|)n+1 |x− z| |x− y|−n−1
,

(14.3.6)

for all α > 0 and x ∈ R
n. Especially the kij are kernels on R

n × R
n in the

sense of Definition 6.3.1.

We now show that the kernel k satisfies a condition similar to the condition
(D) from Definition 6.3.7.

Lemma 14.3.7 (Condition (D’)). Let k be a kernel satisfying the second
condition in (14.3.6). Then there exist constants c > 0 and N > 0, depending
on ‖ω‖W 1,∞ and n, such that

sup
r>0

ˆ

|y−x0|>Nr

|f(y)|DB(x0,r)k(y) dy � cMf(x0)

for all f ∈ C∞
0 (B(0, 1)) and x0 ∈ R

n.

Proof. Note that for all y ∈ Ω, x, z ∈ R
n with x �= y �= z, and |x− z| <

1
2 |x− y| there holds

|kij(x, y) − kij(z, y)| � c 2n+1 |x− z||x− y|−n−1.

The rest of the proof follows exactly as in the discussion after Definition 6.3.7
that a standard kernel satisfies condition (D). ��

Note that in contrast to condition (D) of Definition 6.3.7 the condition
(D’) is only fulfilled for smooth f with compact support in Ω not in R

n.

Lemma 14.3.8. Let ω, kij , Nij be as in Lemma 14.3.2, let kij,ε denote the
truncated kernels, and let p ∈ P log(Ω) satisfy 1 < p− � p+ < ∞. Then the
operators Tij,ε, defined by
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Tij,εf(x) :=
ˆ

B(0,1)

kij,ε(x, y)f(y) dy

for f ∈ Lp(·)(B(0, 1)), are bounded on Lp(·)(B(0, 1)) uniformly with respect
to ε > 0. For all f ∈ Lp(·)(B(0, 1))

Tijf(x) := lim
ε→0+

Tij,εf(x) = lim
ε→0+

ˆ

B(0,1)

kij,ε(x, y)f(y) dy

exists almost everywhere and limε→0+ Tij,εf = Tijf in Lp(·)(B(0, 1)) norm.
In particular the Tij are bounded on Lp(·)(B(0, 1)).

Proof. By Theorem 5.7.2 we know that the maximal operator M is contin-
uous from Lp(·)(Rn) to Lp(·)(Rn). Let η ∈ C∞

0 ([0,∞)) with η(t) = 1 for all
0 � t � 3 and η(t) = 0 for all t � 4. Now define k̃ij and Ñij by

Ñij(x, z) := η(x)N(x, z),

k̃ij(x, y) := Ñij(x, x − y),

so that k̃ij(x, y) = kij(x, y) for all x ∈ B(0, 1) and all y ∈ R
n. From (14.3.5),

(14.3.6) and the definition of Ñij we deduce:

(a) (14.3.5) clearly holds.
(b) For all x, y, z ∈ R

n with x �= y �= z, and |x− z| < 1
2 |x− y| there holds

|k̃ij(x, y)| � c |x− y|−n,
|k̃ij(y, x) − k̃ij(y, z)| � c |x− z||x− y|−n−1.

(c) For all y ∈ B(0, 1) and x, z ∈ R
n with x �= y �= z, and |x− z| < 1

2 |x− y|
there holds

|k̃ij(x, y) − k̃ij(z, y)| � c |x− z||x− y|−n−1.

Let k̃ij,ε denote the truncated kernels and define T̃ij,ε by

T̃ij,εf(x) :=
ˆ

Rn

k̃ij,ε(x, y)f(y) dy.

Due to the properties (a) the kernel k̃ij fulfills all requirements of Proposi-
tion 6.3.4. Thus the operators T̃ij,ε are uniformly bounded on Lσ

′
(Rn) with

respect to ε > 0. Moreover
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T̃ijf(x) = lim
ε→0+

T̃ij,εf(x) = lim
ε→0+

ˆ

Rn

k̃ij,ε(x, y)f(y) dy (14.3.9)

exists almost everywhere and limε→0+ T̃ij,εf = T̃ijf in Lσ
′
(Rn) norm. In

particular T̃ij is bounded on Lσ
′
(Rn). From this and the estimates (b) one

deduces as in the classical theory (cf. [360, p. 33], [103] or Remark 6.3.6)

∣
∣{x ∈ R

n : |T̃ijf(x)| > α}
∣
∣ � c ‖f‖1

α

for all α > 0 and all f ∈ L1(Rn) ∩ Lσ′
(Rn). Hence T̃ij extends to a bounded

operator from L1(Rn) to w-L1(Rn). Further recall that T̃ij fulfills condi-
tion (D’). Thus exactly as in the proof of Proposition 6.3.8 in [29] we get

(
M �

1(|T̃ijf |
s
)
) 1
s (x) � cMf(x)

for fixed 0 < s < 1, and all f ∈ C∞
0 (B(0, 1)), x ∈ R

n. The restriction
to smooth f with compact support in B(0, 1) originates from the substitu-
tion of (D) by (D’). From the previous inequality we deduce exactly as in
Theorem 6.3.9 that

‖T̃ijf‖p(·) � c ‖f‖p(·)

for all f ∈ C∞
0 (B(0, 1)). Since C∞

0 (B(0, 1)) is dense in Lp(·)(B(0, 1)) by
Theorem 3.4.12, this implies

‖T̃ijf‖Lp(·)(Rn) � c ‖f‖Lp(·)(B(0,1)) (14.3.10)

for all f ∈ Lp(·)(B(0, 1)). We now show that limε→0+ T̃ij,εf = T̃ijf in
Lp(·)(Rn) for all f ∈ Lp(·)(B(0, 1)). As an intermediate step we prove

T̃ ∗
ijf(x) � c

(
Ms(T̃ijf)(x) +Mf(x)

)
(14.3.11)

for all f ∈ Lp(·)(B(0, 1)), where T̃ ∗
ij is the maximal truncated operator cor-

responding to T̃ij and 0 < s � 1: This will be done almost exactly as in the
proof of Proposition 2 in [360, pp. 34–36]. The only difference in our case
is that property (c) above only holds for y ∈ B(0, 1) and not all y ∈ R

n.
Therefore, we have to adapt the derivation of inequality (31) in [360, p. 35],
i.e. we have to show the following: There exists c > 0 such that

|T̃ijf2(z) − T̃ijf2(x)| � cMf(x)

for all ε > 0, x ∈ R
n, f2 := χRn\B(x,ε)f and all z ∈ R

n with |x− z| < c ε. So
let f ∈ Lp(·)(B(0, 1)), ε > 0, and set f2 := χRn\B(x,ε)f . Then for all x ∈ R

n

and z ∈ B(x, ε2 ) we have with property (c) above
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|T̃ijf2(z) − T̃ijf2(x)| �
ˆ

|y−x|�ε

|k̃ij(x, y) − k̃ij(z, y)| |f(y)|dy

=
∞∑

k=0

ˆ

2k+1ε>|y−x|�2kε

|k̃ij(x, y) − k̃ij(z, y)| |f(y)| dy

� c

∞∑

k=0

ˆ

2k+1ε>|y−x|�2kε

|f(y)| ε |y − x|−n−1
dy

� c ε

∞∑

k=0

|B(0, 1)|(2k+1ε)nMf(x) (2kε)−n−1

= cMf(x) .

Using the boundedness of T̃ij on Lσ
′
(Rn), the growth conditions in (b), and

the previous inequality, we conclude from [360, Proposition 2, p. 34] that
(14.3.11) for all f ∈ Lp(·)(B(0, 1)). The boundedness of M on Lp(·)(Rn),
inequalities (14.3.10), (14.3.11) (with s = 1), and the previous inequality
imply

‖T̃ ∗
ijf‖Lp(·)(Rn)

� c ‖f‖Lp(·)(B(0,1))

for all f ∈ Lp(·)(B(0, 1)). We have already shown that limε→0+ T̃ij,εf =
T̃ijf almost everywhere. As in Corollary 6.3.13, the pointwise convergence,
the last estimate, and the density of C∞

0 (B(0, 1)) in Lp(·)(B(0, 1)) imply
limε→0+ T̃ij,εf = T̃ijf also in Lp(·)(Rn)-norm.

Overall we have shown that Lemma 14.3.8 holds with Tij replaced by T̃ij .
But by the definition of k̃ij and T̃ij we have for all x ∈ B(0, 1)

T̃ijf(x) = Tijf(x),

whenever T̃ijf(x) exists. Thus all results for T̃ij on R
n transfer to results for

Tij on B(0, 1). This proves the lemma. ��

Since we are looking for solutions u of (14.3.1) with zero boundary values
we need to assume that the right-hand side has a vanishing integral. For
bounded domains we have denoted the space of such functions by

L
p(·)
0 (Ω) :=

{

f ∈ Lp(·)(Ω) :
ˆ

Ω

f(x) dx = 0
}

.

Due to Proposition 3.4.14 smooth function with compact support and van-
ishing integral are dense in L

p(·)
0 (Ω).
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Proposition 14.3.12. Let B(0, 1) ⊂ R
n, n � 2, and let p ∈ P log(B(0, 1))

satisfy 1 < p− � p+ < ∞. Then there exists a linear, bounded operator
B : Lp(·)0 (B(0, 1)) → W

1,p(·)
0 (B(0, 1)) such that for each f ∈ L

p(·)
0 (B(0, 1))

the function Bf ∈ W
1,p(·)
0 (B(0, 1)) is a solution of the divergence equation

(14.3.1), i.e. div(Bf) = f , satisfying the estimate

‖∇Bf‖Lp(·)(B(0,1)) � c ‖f‖Lp(·)(B(0,1)) . (14.3.13)

The operator B is independent of p, although the constant c is not. Also, B
maps C∞

0,0(B(0, 1)) to C∞
0 (B(0, 1)).

Proof. By Theorem 5.7.2 we know that M is continuous from Lp(·)(Rn)
to Lp(·)(Rn). By Proposition 3.4.14 we know that C∞

0,0(B(0, 1)) is dense in

L
p(·)
0 (B(0, 1)) and thus we can assume f ∈ C∞

0,0(B(0, 1)). In this case we
have an explicit representation (We follow the approach outlined in [169,
Sect. III.3] and use the same notation.) of the solution given by

u(x) = Bf(x) :=
ˆ

B(0,1)

f(y)
(

x− y

|x− y|n

∞̂

|x−y|

ω
(
y + ζ

x− y

|x− y|

)
ζn−1 dζ

)

dy ,

where ω ∈ C∞
0 (B),

´
B ω dx = 0. Note that the operator B itself only depends

on the choice of ω. From [51] we know that u ∈ C∞
0 (B(0, 1)). Due to the

continuous embedding Lp(·)(B(0, 1)) ↪→ Lp
−

(B(0, 1)) we can use the classical
Lp

−
theory and justify (cf. [51]) the formula

∂jui(x) =
ˆ

B(0,1)

kij(x, x− y)f(y) dy +
ˆ

B(0,1)

Gij(x, y)f(y) dy

+ f(x)
ˆ

B(0,1)

(x − y)i(x− y)j
|x− y|2 ω(y) dy

=: F1(x) + F2(x) + F3(x) ,

(14.3.14)

where kij(x, y) is given by (14.3.3), and where Gij(x, y) satisfies

|Gij(x, y)| � c

|x− y|n−1

for all x, y ∈ B(0, 1). By Lemma 14.3.8,

‖F1‖Lp(·)(B(0,1)) � c ‖f‖Lp(·)(B(0,1)) ,

and
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‖F3‖Lp(·)(B(0,1)) � c ‖f‖Lp(·)(B(0,1)) .

By the estimate of Gij , it is clear that F2 � I1f � cMf , where I1 is the
Riesz potential. Hence

‖F2‖Lp(·)(B(0,1)) � c ‖Mf‖Lp(·)(Rn) � c ‖f‖Lp(·)(Rn) = c ‖f‖Lp(·)(B(0,1)) .

From (14.3.14), and the estimates for F1, F2 and F3 we immediately obtain
(14.3.13). ��

Using the previous proposition and Theorem 7.4.9 we get the following
result:

Theorem 14.3.15. Let Ω ⊂ R
n, n � 2, be domain satisfying the emanat-

ing chain condition and let p ∈ P log(Ω) satisfy 1 < p− � p+ < ∞. Then
there exists a linear, bounded operator B : C∞

0 (Ω) → L1
loc(Ω) which extends

uniquely to an operator B : Lp(·)0 (Ω) → D
1,p(·)
0 (Ω) with

div(Bf) = f (14.3.16)
‖∇Bf‖p(·) � c ‖f‖p(·) . (14.3.17)

The operator B is independent of p, but the constant c is not. If Ω is bounded,
and f ∈ C∞

0,0(Ω), then Bf ∈ C∞
0 (Ω).

Proof. Since Ω satisfies the emanating chain condition we can find a chain-
covering Q of Ω consisting of balls Q (cf. Sect. 7.4). Let SQ : Lp(·)0 (Ω) →
L
p(·)
0 (Q) be as in Theorem 7.4.9. In Proposition 14.3.12 we have shown that

there exists a linear operator Bref which maps C∞
0,0(B(0, 1)) to C∞

0 (B(0, 1))

and Lp(·)0 (B(0, 1)) to W 1,p(·)
0 (B1(0)), and satisfies div(Bf) = f and (14.3.13).

By a simple translation and scaling argument it follows that there exist linear
operators BQ : Lp(·)0 (Q) → W

1,p(·)
0 (Q) which satisfy div BQg = g in Q and

‖∇BQg‖Lp(·)(Q) � c ‖g‖
L
p(·)
0 (Q)

,

with a constant c independent of Q. Moreover, BQ maps C∞
0,0(Q) to C∞

0 (Q).

Let f ∈ L
p(·)
0 (Ω). We extend BQSQf outside of Q by zero, so that

BQSQf ∈ D
1,p(·)
0 (Ω). We define our operator B almost everywhere by

Bf :=
∑

Q∈Q
BQSQf .

Due to (B3), the fact that the cover Q is locally σ1-finite (B1), and the pre-
vious estimate we see that the sum converges in L1

loc(Ω) and therefore in the
sense of distributions. The same argument ensures that ∇Bf =

∑
Q∇BQSQf
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in L1
loc(Ω). Moreover, ∇Bf ∈ L

p(·)
loc (Ω). Thus Corollary 7.3.24, the previous

estimate and (d) of Theorem 7.4.9 imply

‖∇Bf‖Lp(·)(Ω) =

∥
∥
∥
∥
∥

∑

Q∈Q
∇BQSQfχQ

∥
∥
∥
∥
∥
Lp(·)(Ω)

� c

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖∇BQSQf‖Lp(·)(Q)

‖χQ‖p(·)

∥
∥
∥
∥
∥
Lp(·)(Ω)

� c

∥
∥
∥
∥
∥

∑

Q∈Q
χQ

‖SQf‖Lp(·)0 (Q)

‖χQ‖p(·)

∥
∥
∥
∥
∥
Lp(·)(Ω)

� c ‖f‖
L
p(·)
0 (Ω)

,

which proves (14.3.17). From ∇Bf =
∑

Q∇BQSQf in Lp(·)(Ω) it follows
that

div Bf =
∑

Q∈Q
div BQSQf =

∑

Q∈Q
SQf = f

for f ∈ L
p(·)
0 (Ω). This proves (14.3.16).

Assume now that Ω is bounded and f ∈ C∞
0 (Ω). Then SQf ∈ C∞

0 (Q) for
all Q ∈ Q and SQf �= 0 for only finitely many Q ∈ Q. Therefore, by the
properties of BQ, BQSQf ∈ C∞

0 (Q) for all Q ∈ Q and BQSQf �= 0 for only
finitely many Q ∈ Q. Thus Bf ∈ C∞

0 (Ω). ��

Theorem 14.3.15 is very useful in the theory of fluid dynamics. To avoid
technical problems with the pressure one uses mostly divergence free test
functions ξ in the weak formulation of the fluid system. Sometimes however,
these test functions have to be perturbed by functions h with compact sup-
port with small norm of divergence. Then Theorem 14.3.15 can be used to
find a function u with compact support with div u = div h whose full norm
‖u‖1,p is controlled only in terms of ‖div h‖p which is small. The function
h− u is then again divergence free and the necessary correction u has small
norm. We will use this in Sect. 14.4.

As a consequence of Theorem 14.3.15 we are able the generalize Nečas
theorem on negative norms (Lions-Lemma) to variable exponent spaces and
domains satisfying the emanating chain condition.

Theorem 14.3.18 (Negative norm theorem). Let Ω ⊂ R
n be a domain

satisfying the emanating chain condition and let p ∈ P log(Ω) satisfy
1 < p− � p+ <∞. Then

‖∇f‖D−1,p(·)(Ω) � ‖f‖
L
p(·)
0 (Ω)

� c ‖∇f‖D−1,p(·)(Ω) (14.3.19)
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for all f ∈ L
p(·)
0 (Ω). If Ω is additionally bounded, then

‖f‖Lp(·)(Ω) � c ‖∇f‖D−1,p(·)(Ω) +
c

diam(Ω)
‖f‖D−1,p(·)(Ω) (14.3.20)

for all f ∈ Lp(·)(Ω).

Proof. Let f ∈ L
p(·)
0 (Ω). Then

‖∇f‖D−1,p(·)(Ω) = sup
‖h‖

D
1,p′(·)
0 (Ω)

�1

〈∇f,h〉 = sup
‖h‖

D
1,p′(·)
0 (Ω)

�1

ˆ

Ω

f div h dx,

which implies by Hölder’s inequality

‖∇f‖
D

−1,p(·)
0 (Ω)

� ‖f‖
L
p(·)
0 (Ω)

.

On the other hand the above equalities and Theorem 14.3.15 yield

‖f‖
L
p(·)
0 (Ω)

� sup
‖g‖

L
p′(·)
0 (Ω)

�1

ˆ

Ω

f g dx � c sup
‖Bg‖

D
1,p′(·)
0 (Ω)

�1

ˆ

Ω

f g dx

= c sup
‖Bg‖

D
1,p′(·)
0 (Ω)

�1

ˆ

Ω

f div Bg dx � c ‖∇f‖D−1,p(·)(Ω)

where we used the norm conjugate formula. This proves (14.3.19).
Assume in the following that Ω is bounded. Let Q0 be the central cube of Ω

and choose η ∈ C∞
0 (Q0) with η � 0,

´
Q0
η(x) dx = 1, ‖η‖∞ � c/|Q0|, and

‖∇η‖∞ � c/(|Q0|diam(Q0)), where c = c(n). For f ∈ Lp(·)(Ω) we estimate
with Lemma 7.4.14 and (14.3.19)

‖f‖
L
p(·)
w (Ω)

� c ‖f − 〈f〉Ω‖
L
p(·)
0 (Ω)

+ 4 ‖χΩ‖Lp(·)(Ω)

∣
∣
∣
∣
∣

ˆ

Ω

f η dx

∣
∣
∣
∣
∣

� c ‖∇f‖D−1,p(·)(Ω) + 4 ‖f‖D−1,p(·)(Ω)‖η‖D1,p′(·)
0 (Ω)

‖χΩ‖Lp(·)(Ω).

By Lemma 7.4.5,

‖η‖
D

1,p′(·)
0 (Ω)

‖χΩ‖Lp(·)(Ω) � ‖∇η‖∞‖χΩ‖Lp′(·)(Ω)‖χΩ‖Lp(·)(Ω) � c σ2

diam(Ω)
.

This and the previous estimate yield (14.3.20). ��
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Let us now turn our attention to Korn’s inequality. In the context of fluid
dynamics and elasticity the governing partial differential equation gives only
control of the symmetric part of the gradient rather of the full gradient itself.
For u ∈ W 1,1

loc (Rn) we define the symmetric gradient Du by

Du :=
1
2
(∇u + (∇u)�

)
.

In particular the partial differential equation only ensures that the norm of
Du can be controlled. However, from a point of view of Sobolev spaces it is
desirable to have control of the gradient ∇u. Although it is not possible to
estimate |∇u| point-wise by |Du|, it is in some cases possible to bound the
norm of ∇u in terms of the norm of Du. In particular, for all u ∈ W 1,q(Rn)
with 1 < q <∞ we have Korn’s inequality (see for example [312])

‖∇u‖q � c ‖Du‖q.

We will generalize Korn’s inequality to the variable exponent spaces Lp(·)(Ω).
In the case of zero boundary value no assumption on the domain is needed,
while for the general case we need a bounded John domain. The approach
presented here is based on Theorem 14.3.18 (cf. [108]). A completely different
proof can be found in [103].

Theorem 14.3.21 (Korn’s inequality; first case). Let p ∈ P log(Ω) with
1 < p− � p+ <∞. Then

‖∇u‖Lp(·)(Ω) � c ‖Du‖Lp(·)(Ω) (14.3.22)

for all u ∈ D
1,p(·)
0 (Ω).

Proof. Since every function u ∈ D
1,p(·)
0 (Ω) can be extended by zero to a

function u ∈ D
1,p(·)
0 (Rn), it suffices to consider the case Ω = R

n.
By the vector valued version of Theorem 14.3.18 and the identity ∂j∂kui =

∂jDkiu + ∂kDiju − ∂iDjku (in the sense of distributions) it follows that

‖∇u‖Lp(·)(Rn) � c‖∇∇u‖D−1,p(·)(Rn) � c‖∇Du‖D−1,p(·)(Rn) � c‖Du‖Lp(·)(Rn),

where we used that Lp(·)(Rn) = L
p(·)
0 (Rn). ��

Theorem 14.3.23 (Korn’s inequality; second case). Let Ω ⊂ R
n be a

bounded John domain and let p ∈ P log(Ω) satisfy 1 < p− � p+ <∞. Then

∥
∥∇u − 〈∇u〉Ω

∥
∥
Lp(·)(Ω)

� c
∥
∥Du − 〈Du〉Ω

∥
∥
Lp(·)(Ω)

,
∥
∥∇u

∥
∥
Lp(·)(Ω)

� c
∥
∥Du − 〈Du〉Ω

∥
∥
Lp(·)(Ω)

+
c

diam(Ω)

∥
∥u − 〈u〉Ω

∥
∥
Lp(·)(Ω)

for all u ∈W 1,p(·)(Ω).
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Proof. We use the identity ∂j∂kui = ∂jDkiu+∂kDiju−∂iDjku (in the sense
of distributions). Thus

‖∇u − 〈∇u〉Ω‖
L
p(·)
0 (Ω)

� c ‖∇∇u‖D−1,p(·)(Ω) � c ‖∇Du‖D−1,p(·)(Ω)

� c ‖Du − 〈Du〉Ω‖
L
p(·)
0 (Ω)

.

Then the first inequality follows from Theorem 14.3.18. The proof of the
second one is similar to the one of (14.3.20). Let Q0 be the central cube of Ω
and choose η ∈ C∞

0 (Q0) with η � 0,
´
Q0
η(x) dx = 1, ‖η‖∞ � c/|Q0|, and

‖∇η‖∞ � c/(|Q0| diam(Q0)), where c = c(n). For u ∈W 1,p(·)(Ω) we estimate
with Lemma 7.4.14

‖∇u‖Lp(·)(Ω) � c ‖∇u − 〈∇u〉Ω‖
L
p(·)
0 (Ω)

+ c
n∑

j=1

n∑

k=1

∣
∣
∣
∣

ˆ

Ω

∂kuj η dx

∣
∣
∣
∣‖χΩ‖Lp(·)(Ω).

Since
´
Ω
∂kuj η dx =

´
Ω
∂k(uj − 〈uj〉Ω) η dx, we get with the already proven

Korn’s inequality

‖∇u‖Lp(·)(Ω)

� c ‖Du−〈Du〉Ω‖
L
p(·)
0 (Ω)

+c
n∑

j=1

n∑

k=1

∣
∣
∣
∣

ˆ

Ω

(uj−〈uj〉Ω)∂kη dx
∣
∣
∣
∣‖χΩ‖Lp(·)(Ω)

� c ‖Du − 〈Du〉Ω‖Lp(·)0 (Ω)
+ c ‖u − 〈u〉Ω‖

L
p(·)
0 (Ω)

‖∇η‖Lp′(·)(Ω)‖χΩ‖Lp(·)(Ω).

Exactly as in the proof of Theorem 14.3.18 we get ‖∇η‖Lp′(·)(Ω)‖χΩ‖Lp(·)(Ω) �
c/diam(Ω). This and the previous estimate give the second inequality. ��

14.4 Electrorheological Fluids

One of the driving forces for the rapid development of the theory of variable
exponent function spaces has been the model of electrorheological fluids intro-
duced by Rajagopal and Růžička [328,329,337]. This model leads naturally to
a functional setting involving function spaces with variable exponents. Elec-
trorheological fluids change their mechanical properties dramatically when
an external electric field is applied. They are one example of smart mate-
rials, whose development is currently one of the major task in engineering
sciences. Also in the mathematical community such materials are intensively
investigated in the recent years [4, 6, 7, 9, 90, 94, 102,106,107,296].

In the case of an isothermal, homogeneous, incompressible electrorheolog-
ical fluid the governing equations read
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∂tv + [∇v]v − div S + ∇π = g + [∇E]P ,

div v = 0 ,
(14.4.1)

where v is the velocity, [∇v]v =
(∑3

j=1 vj∂jvi
)
i=1,2,3

denotes the convective
term, π the pressure, S the extra stress tensor, g the external body force,
E the electric field, and P the electric polarization. The latter two fields are
subject to the quasi-static Maxwell’s equations

div(ε0 E + P) = 0 ,
curlE = 0 ,

(14.4.2)

where ε0 is the dielectric constant in vacuum. Equations (14.4.1) and (14.4.2)
are supplemented with appropriate boundary conditions. Moreover, we have
to specify constitutive relations for S and P. One possibility is to assume
that the polarization P is linear in E, i.e., P = χEE and that the extra
stress tensor S is given by

S = α21

(
(1 + |D|2)

p−1
2 − 1

)
E ⊗ E + (α31 + α33|E|2)(1 + |D|2)

p−2
2 D

+ α51(1 + |D|2)
p−2
2 (DE ⊗ E + E ⊗ DE) , (14.4.3)

where αij are material constants and p = p(|E|2) is a Hölder continuous
function with 1 < p− � p+ < ∞. The constant coefficients αij have to
satisfy certain conditions which ensure the validity of the second law of ther-
modynamics. These requirements also ensure that the operator induced by
− div S(D,E) is coercive and satisfies appropriate growth conditions. For the
mathematical treatment we have additionally to assume that the operator
induced by − div S(D,E) is strictly monotone. For simplicity and clarity we
will restrict ourselves here to the treatment of the steady version of the gov-
erning equations, i.e., in (14.4.1) we omit the time derivative ∂tv. For results
concerning the unsteady problem we refer to [336,337], and [338].

From now on we consider the steady version of the problem. Note, that
the system (14.4.1) and (14.4.2) is separated. Thus we can first solve the
Maxwell’s equation and obtain under appropriate assumptions on the bound-
ary data that the solution E is so regular that |E| is Hölder continuous. Thus
in the following we will assume that E is given and that we consider only the
steady version of the equation of motion equipped with Dirichlet boundary
conditions, i.e.,

− div S + div(v ⊗ v) + ∇π = f in Ω ,

div v = 0 in Ω ,

v = 0 on ∂Ω ,

(14.4.4)
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where we have set f := g+[∇E]P and have re-written the convective term as
div(v⊗v) with v⊗v denoting the tensor product of the vector v with itself
defined as (vivj)i,j=1,...,n. For simplicity, we denote p(x) := p(|E(x)|2) which
from now on is assumed to be log-Hölder continuous with 1 < p− � p+ < ∞.
We refrain from considering the concrete form of the extra stress tensor in
(14.4.3), but assume only that S(x,D) satisfies the following coercivity and
growth conditions

S(x,D) · D � C1 (1 + |D|)p(x)−2|D|2 , (14.4.5)

|S(x,D)| � C2 (1 + |D|)p(x)−2|D| (14.4.6)

for all D ∈ R
n×n
sym := {D ∈ R

n×n : D = D�}, and all x ∈ Ω, with Ω being a
bounded domain in R

n, n � 2, and is strictly monotone, i.e.,

(S(x,D) − S(x,C)) · (D − C) > 0 (14.4.7)

for all D �= C ∈ R
n×n
sym and all x ∈ Ω. In the above formulas we have used the

notation A ·B for the usual scalar product between two tensors. Analogously
we denote the usual scalar product between two vectors by v · w.

In this situation one can use the theory of monotone operators to show
the existence of a weak solution. Before we do so let us introduce the relevant
functions space for the treatment of problems for incompressible fluids. We
denote by V the space of mappings u from C∞

0 (Ω) which additionally satisfy
div u = 0 and set

Vp(·)(Ω) := closure of V in ‖D ·‖Lp(·)(Ω) − norm,

where Du = 1
2 (∇u+∇u�) is the symmetric velocity gradient. Due to Korn’s

inequality (Theorem 14.3.21 and Corollary 8.2.5) the space Vp(·)(Ω) can be
equivalently equipped with the ‖·‖W 1,p(·)(Ω)-norm or the ‖∇ ·‖Lp(·)(Ω)-norm.
Consequently the space Vp(·)(Ω) is identical with the subspace of divergence
free functions from D

1,p(·)
0 (Ω).

Theorem 14.4.8. Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary

∂Ω and let p : Ω → (1,∞) be log-Hölder continuous with 3n
n+2 � p− � p+<∞.

Assume that f ∈ W−1,p′(·)(Ω) and that S satisfies (14.4.5)–(14.4.7). Then
there exists a weak solution (v, π) of the problem (14.4.4) such that

v ∈ Vp(·)(Ω) and π ∈ L
p′(·)
0 (Ω) ,

satisfy the weak formulation
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ˆ

Ω

S(x,Dv) · Dψ dx−
ˆ

Ω

v ⊗ v · ∇ψ dx −
ˆ

Ω

π divψ dx = 〈f ,ψ〉 (14.4.9)

for all ψ ∈W
1,p(·)
0 (Ω).

Proof. The proof follows from an easy adaptation of Brezis’ theorem on
pseudo-monotone operators (cf. [58, 378]). The main obstacle is the iden-
tification of the limit in the nonlinear elliptic operator induced by − div S
for a sequence of approximate solutions. In view of the divergence con-
straint div v = 0 we use first, instead of the weak formulation above, a weak
formulation with divergence-free test functions, namely

ˆ

Ω

S(x,Dv) · Dψ dx−
ˆ

Ω

v ⊗ v · ∇ψ dx− 〈f ,ψ〉 = 0 (14.4.10)

has to be satisfied for allψ ∈ Vp(·)(Ω). Later we will recover from this equation
the pressure π.

By Theorem 12.2.3 and the above remarks the space Vp(·)(Ω) is a reflexive,
separable Banach space. The growth condition (14.4.6) and the monotonicity
condition (14.4.7) imply that − div S defines a strictly monotone operator
from Vp(·)(Ω) to (Vp(·)(Ω))∗ and from W

1,p(·)
0 (Ω) to W−1,p′(·)

0 (Ω). Using the

embeddings W 1,p(·)
0 (Ω) ↪→ W 1,p−

0 (Ω) ↪→↪→ Lq(Ω), for all 1 � q < np−

n−p− one
easily checks that the convective term div(v⊗v) induces a strongly continuous
operator from Vp(·)(Ω) to (Vp(·)(Ω))∗ and from W

1,p(·)
0 (Ω) to W−1,p′(·)

0 (Ω), if
3n
n+2 � p− � p+ < ∞ (cf. [271]). Moreover one easily checks, using that v is
divergence-free, that

ˆ

Ω

v ⊗ v · ∇v dx = 0 . (14.4.11)

From the assumption on f and the remarks above it follows that f can be
viewed also as a linear bounded functional on the space D1,p(·)

0 (Ω) equipped
with the ‖D·‖Lp(·)(Ω)-norm. A straightforward modification of the proof of
Proposition 12.3.5 implies that there exists F ∈ (Lp

′(·)(Ω))n×n with F = F�,
such that

〈f ,ψ〉 =
ˆ

Ω

F · ∇ψ dx =
ˆ

Ω

F · Dψ dx (14.4.12)

for all ψ ∈W
1,p(·)
0 (Ω). This representation also implies that f ∈ (Vp(·)(Ω))∗.

The only point which has to be modified is the derivation of the a pri-
ori estimate, due to the different behaviour of the modular and the norm,
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compared to classical Sobolev spaces with constant exponents. We derive
the a priori estimate only formally, since it can be easily justified using the
Galerkin method (cf. [58, 378]). Using v as a test function in (14.4.10) we
obtain

ˆ

Ω

|Dv|p(x) dx � c
(

1 +
ˆ

Ω

|F · Dv| dx
)
,

where we used the property (14.4.11) of the convective term, (14.4.12), and
(14.4.5), which implies that there exists a constant depending on p and
C1 such that S(x,D) · D � c (|D|p(x) − 1). Now we apply point-wise
Young’s inequality to estimate |F · Dv| � ε |D|p(·) + c(ε−1)|F|p

′(·). Choosing
ε sufficiently small and using F ∈ (Lp

′(·)(Ω))n×n we thus obtain

ˆ

Ω

|Dv|p(x) dx � c
(
‖F‖Lp′(·)(Ω)

)
. (14.4.13)

Having at our disposal this a priori estimate one can now proceed exactly as
in the proof of Brezis’ theorem of pseudo-monotone operators to obtain the
existence of a weak solution v ∈ Vp(·)(Ω) satisfying (14.4.10).

It remains to recover the pressure. Since the left-hand side of (14.4.10)
defines a bounded linear functional on W 1,p+

0 (Ω), which vanishes for all
ψ ∈ V, we obtain from deRahm’s theorem (cf. [361, Chap. 1] or [357, Chap. 2])
the existence of an associated pressure π ∈ L

(p+)′
0 (Ω) such that the weak for-

mulation (14.4.9) is satisfied for all ψ ∈ C∞
0 (Ω). From the properties of v we

deduce in the following way that π ∈ L
p′(·)
0 (Ω):

‖π‖
L
p′(·)
0 (Ω)

� 2 sup
η∈C∞

0,0(Ω)

‖η‖
Lp(·)(Ω)

�1

∣
∣
∣

ˆ

Ω

πη dx
∣
∣
∣ � c sup

ψ∈C∞
0 (Ω)

‖∇ψ‖
Lp(·)(Ω)

�1

∣
∣
∣

ˆ

Ω

π divψ dx
∣
∣
∣

= 2 sup
ψ∈C∞

0 (Ω)
‖∇ψ‖

Lp(·)(Ω)
�c

∣
∣
∣

ˆ

Ω

S(x,Dv) · Dψ − v ⊗ v · ∇ψ dx− 〈f ,ψ〉
∣
∣
∣

� c
(
‖S(x,Dv)‖Lp′(·)(Ω) + ‖v‖2

L2(p−)′ (Ω)
+ ‖f‖W−1,p′(·)(Ω)

)

� c
(
‖S(x,Dv)‖Lp′(·)(Ω) + ‖v‖2

Vp(·)(Ω) + ‖f‖W−1,p′(·)(Ω)

)
< ∞ ,

where we used the norm conjugate formula in Lp
′(·)

0 (Ω) (Corollary 3.4.13), the
solvability of the divergence equation (Theorem 14.3.15), the weak formula-
tion (14.4.9), Hölder’s inequality, the embeddings Vp(·)(Ω) ↪→ (W 1,(p−)(Ω))n

↪→ (L2(p−)′(Ω))n valid for 3n
n+2 � p− � p+ < ∞, and the growth condition

(14.4.6) together with (14.4.13). Since now all terms in (14.4.9) are finite for
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test functions ψ ∈ (W 1,p(·)(Ω))n we obtain (14.4.9) by continuity also for
such test functions. ��

The lower bound p− � 3n
n+2 in Theorem 14.4.8 comes from the fact that

the convective term is well defined for test functions ψ from the energy space
Vp(·)(Ω) only for such values of the exponent. If we relax the requirements on
the space of test functions, then we obtain results for lower bounds for p−. In
this case however, one cannot use the theory of monotone operators to iden-
tify the limit in the nonlinear operator induced by − div S for a sequence of
approximate solutions. This problem can be overcome by using the Theorem
of Vitali (Theorem 1.4.12). The application of this theorem requires us
to show the almost everywhere convergence of gradients of approximate
solutions. This is possible due to the monotonicity of the operator induced
by − div S and the approximation property of Sobolev functions by Lipschitz
functions from Sect. 9.5. Using these ideas one can prove the following result:

Theorem 14.4.14. Let Ω ⊂ R
n be a bounded domain with Lipschitz bound-

ary ∂Ω and let p be log-Hölder continuous with 2n
n+2 < p− � p+ <∞. Define

the variable exponent s by 1
s′(·) := max

{
1 − 1

p(·) , 2( 1
p(·) − 1

n )
}
. Assume that

f ∈ W−1,p′(·)(Ω) and that S satisfies (14.4.5)–(14.4.7). Then there exists a
weak solution (v, π) of the problem (14.4.4) with

v ∈ Vp(·)(Ω) and π ∈ L
s′(·)
0 (Ω) .

The proof of this result is based on the weak stability of the system (14.4.4).

Lemma 14.4.15. Let Ω ⊂ R
n be a bounded domain with Lipschitz contin-

uous boundary ∂Ω, let p be globally log-Hölder continuous with 1 < p− �
p+ < ∞ and let S satisfy (14.4.6) and (14.4.7). Let vn,v ∈ Vp(·)(Ω) with
vk ⇀ v in Vp(·)(Ω). Let uk := vk − v and let uk,j be the approximations
of uk as in Theorem 9.5.2. Assume that

lim
k→∞

∣
∣
∣
∣

ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Duk,j dx

∣
∣
∣
∣ � δj (14.4.16)

for all j ∈ N, where limj→∞ δj = 0. Then, for any 0 < θ < 1,

lim sup
k→∞

ˆ

Ω

((
S(x,Dvk) − S(x,Dv)

)
· (Dvk − Dv)

)θ
dx = 0 .

Proof. Recall that a bounded domain with Lipschitz boundary ∂Ω has a
fat complement and thus Theorem 9.5.2 is applicable. The monotonicity
(S(x,Dvk)−S(x,Dv)) ·Duk � 0 and Hölder’s inequality yield for 0 < θ < 1
and all j ∈ N,
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ˆ

Ω

((
S(x,Dvk) − S(x,Dv)

)
· Duk

)θ
dx

�
( ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Dukχ{uk=uk,j} dx

)θ
|Ω|1−θ

+
(ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Dukχ{uk �=uk,j} dx

)θ ∣
∣{uk �= uk,j}

∣
∣1−θ

=: Y θk,j,1 |Ω|1−θ + Y θk,j,2
∣
∣{uk �= uk,j}

∣
∣1−θ.

In order to estimate the last two terms we first notice that vk ⇀ v in Vp(·)(Ω)
implies supk ‖vk‖Vp(·)(Ω) � c , which together with the growth condition of S
(14.4.6) yields

sup
k

‖S(·,Dvk)‖Lp′(·)(Ω) , ‖S(·,Dv)‖Lp′(·)(Ω) � c .

Hölder’s inequality and the last estimate yield for all j ∈ N

Yk,j,1 =
ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Duk,jχ{uk,j=uk} dx

�
∣
∣
∣
∣

ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Duk,j dx

∣
∣
∣
∣

+
∣
∣
∣
∣

ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Duk,jχ{uk,j �=uk} dx

∣
∣
∣
∣

�
∣
∣
∣
∣

ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Duk,j dx

∣
∣
∣
∣

+ c ‖∇uk,jχ{uk,j �=uk}‖Lp(·)(Ω) .

Using similar estimates, we also get from Hölder’s inequality and the
estimates for S(·,Dvk), S(·,Dv) and Dvk, Dv in (Lp

′(·)(Ω))n×n and
(Lp(·)(Ω))n×n, respectively, that

Yk,j,2 � c .

From the vector valued version of Corollary 9.5.4, the embedding Lp(·)(Ω) ↪→
L1(Ω), and λk,j � 1 we deduce

lim sup
k→∞

∣
∣{uk �= uk,j}

∣
∣ = lim sup

k→∞
‖χ{uk �=uk,j}‖L1(Ω)

� c lim sup
k→∞

‖λk,j χ{uk �=uk,j}‖Lp(·)(Ω)
� εj
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and

‖∇uk,jχ{uk,j �=uk}‖Lp(·)(Ω) � c εj .

These estimates together with (14.4.16) imply for all j ∈ N

lim sup
k→∞

ˆ

Ω

((
S(x,Dvk) − S(x,Dv)

)
· Duk

)θ
dx � c

(
εθj + δθj + ε1−θj

)
.

Since the last estimate holds for all j ∈ N and limj→∞ εj = limj→∞ δj = 0,
we obtain the assertion of the lemma. ��

Corollary 14.4.17. Let all assumptions of Lemma 14.4.15 be satisfied.
Then there exists a subsequence, labeled again vk, satisfying

Dvk → Dv a.e. in Ω

as k → ∞.

Proof. From Lemma 14.4.15 we know that

lim sup
k→∞

ˆ

Ω

((
S(x,Dvk) − S(x,Dv)

)
· (Dvk − Dv)

)θ
dx = 0.

By monotonicity, the integrand is non-negative, hence it tends to zero almost
everywhere. ��

Now we can prove the existence of weak solutions for the case p− > 2n
n+2 .

Proof of Theorem 14.4.14. We will only consider the case that p− < 3n
n+2 � n,

since the other case is covered by Theorem 14.4.8. Choose q > 2p−

p−−1 = 2(p−)′

and let vk ∈ Vp(·)(Ω)∩Lq(Ω) be a weak solution of the approximate problem

ˆ

Ω

S(x,Dvk) · Dψ − vk ⊗ vk · ∇ψ +
1
k
|vk|q−2vk · ψ dx = 〈f ,ψ〉 (14.4.18)

for all ψ ∈ Vp(·)(Ω) ∩ Lq(Ω) .

The existence of a weak solution to this approximate problem can be obtained
in the same way as in the proof of Theorem 14.4.8, if one replaces the energy
space Vp(·)(Ω) there with the natural energy space Vp(·)(Ω) ∩ Lq(Ω) of the
problem (14.4.18). The choice of the value for q is due to the convective term
since



478 14 PDEs and Fluid Dynamics

ˆ

Ω

vk ⊗ vk · Dψ dx � ‖vk‖2
L2(p−)′ (Ω)

‖∇ψ‖Lp−(Ω) � C(k)

for k ∈ N and ψ ∈ Vp(·)(Ω) by Hölder’s and Korn’s inequality and the
embedding Lp(·)(Ω) ↪→ Lp

−
(Ω).

Choosing ψ = vk in (14.4.18) we easily obtain as in the derivation of
(14.4.13) that

ˆ

Ω

|Dvk|p(x) dx+
1
k
‖vk‖qLq(Ω) � c

(
‖F‖Lp′(·)(Ω)

)
. (14.4.19)

Consequently, due to the growth condition (14.4.6), the embedding Vp(·)(Ω) ↪→
Vp−(Ω), the comments before Theorem 14.4.8, and the classical Sobolev
embedding theorem

‖S(·,Dvk)‖Lp′(·)(Ω) � c
(
‖F‖Lp′(·)(Ω)

)
,

‖vk‖
L

np−
n−p− (Ω)

� c
(
‖F‖Lp′(·)(Ω)

)
,

‖vk ⊗ vk‖
L

np−
2(n−p−) (Ω)

� c
(
‖F‖Lp′(·)(Ω)

)
.

(14.4.20)

Obviously, the estimate (14.4.19) implies the existence of v ∈ Vp(·)(Ω), and a
subsequence, which will be denoted again by vk such that

vk ⇀ v weakly in Vp(·)(Ω) ,
1
k

ˆ

Ω

|vk|q−2vk ·ψ dx → 0 for all ψ ∈ Lq(Ω) , (14.4.21)

and due to the compact embeddings Vp(·)(Ω) ↪→ Vp−(Ω) ↪→↪→ Lσ(Ω),

σ ∈ [1, np−

n−p− ), and Vp(·)(Ω) ↪→↪→ Lp(·)(Ω) (Theorem 8.4.2)

vk → v strongly in Lσ(Ω) ∩ Lp(·)(Ω) . (14.4.22)

Note that σ � 2 provided p− > 2n
n+2 , which is the lower bound for p− in

Theorem 14.4.14. For these exponents p we fix some σ ∈ (2, np−

n−p− ) and thus
obtain

ˆ

Ω

vk ⊗ vk · ∇ψ dx→
ˆ

Ω

v ⊗ v · ∇ψ dx (14.4.23)

for all ψ ∈W
1,(σ/2)′

0 (Ω). Our next goal is to prove that also
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ˆ

Ω

S(x,Dvk) · Dψ dx →
ˆ

Ω

S(x,Dv) · Dψ dx (14.4.24)

for all ψ ∈ W 1,p++1
0 (Ω). By virtue of (14.4.13), (14.4.6), Hölder’s inequality

(Lemma 3.2.20) and Lemma 3.2.5 the integrands in (14.4.24) are equi-
integrable. Thus, it suffices in view of Vitali’s theorem (Theorem 1.4.12),
to show at least for a subsequence that

Dvk → Dv a.e. in Ω . (14.4.25)

In view of Lemma 14.4.15, Corollary 14.4.17, and (14.4.21) we thus have to
verify the assumption (14.4.16) of Lemma 14.4.15. As in that lemma we set

uk := vk − v

and denote the Lipschitz approximations from Theorem 9.5.2 applied to the
vector valued functions uk by (uk,j)j∈N. Note that the functions uk,j are
in general not divergence free and we have to correct them in order to use
them as a test function in (14.4.18). For that we use the Bogovskíı operator B,
whose existence is ensured by Theorem 14.3.15. This linear, bounded operator
maps Lp(·)0 (Ω) into W 1,p(·)

0 (Ω) and simultaneously Lq0(Ω) into W 1,q
0 (Ω), 1 <

q < ∞. The function Bh is a solution of the divergence equation div(Bh) = h
and satisfies the estimates

‖∇Bh‖Lp(·)(Ω) � c ‖h‖Lp(·)(Ω) ,

‖∇Bh‖Lq(Ω) � c ‖h‖Lq(Ω) ,
(14.4.26)

with constants c depending only on Ω, p and Ω, q, respectively. We define

ξk,j := B(div uk,j) .

From Corollary 9.5.4 we know that for each fixed j ∈ N, ∇uk,j ⇀ 0 in
Lq(Ω). This together with the fact that continuous linear operators preserve
weak convergence and classical compact embedding theorems implies, for
each j ∈ N, that

ζk,j ⇀ 0 weakly in W 1,q(Ω) as k → ∞ ,

ζk,j → 0 strongly in Lq(Ω) as k → ∞ .
(14.4.27)

Due to ∇uk = ∇uk,j on the set {uk = uk,j} [280, Corollary 1.43] and
div uk = 0 we get div uk,j = χ{uk �=uk,j} div uk,j . Consequently,

‖ξk,j‖W 1,p(·)(Ω) � c ‖div uk,j χ{uk �=uk,j}‖Lp(·)(Ω)
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and Corollary 9.5.4 yields

lim sup
k→∞

‖ξk,j‖W 1,p(·)(Ω) � c lim sup
k→∞

‖ div uk,j χ{uk �=uk,j‖Lp(·)(Ω)

� c lim sup
k→∞

‖∇uk,jχ{uk �=uk,j}‖Lp(·)(Ω)

� c εj .

(14.4.28)

Now we set

ηk,j := uk,j − ξk,j

and observe that we have in view of the above construction ηk,j ∈ Vp(·) ∩
L2(p−)′(Ω). Moreover, from the properties of uk,j proved in Corollary 9.5.4,
and (14.4.27) we have for each j ∈ N,

ηk,j ⇀ 0 weakly in W 1,q(Ω) as k → ∞ ,

ηk,j → 0 strongly in Lq(Ω) as k → ∞ .
(14.4.29)

Thus we can use the test function ηk,j in the weak formulation (14.4.18).
This equation can be re-written as

ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Duk,j dx

=
ˆ

Ω

S(x,Dvk) · Dξk,j dx −
ˆ

Ω

S(x,Dv) · Duk,j dx

− 1
k

ˆ

Ω

|vk|q−2vk · ηk,j dx+ 〈f ,ηk,j〉 +
ˆ

Ω

vk ⊗ vk · ∇ηk,j dx

=: J1
k,j + J2

k,j + J3
k,j + J4

k,j .

Using the first estimate in (14.4.20), ∇uk,j ⇀ 0 in Lq(Ω); (14.4.19), (14.4.29),
the assumption of f ; and (14.4.22), (14.4.29) we deduce for all j ∈ N

lim
k→∞

|J2
k,j | + |J3

k,j | + |J4
k,j | = 0 .

On the other hand with Hölder’s inequality, the first estimate in (14.4.20),
and (14.4.28) we get

lim sup
k→∞

|J1
k,j | � c(K) εj .

Thus we have shown for all j ∈ N
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lim sup
k→∞

ˆ

Ω

(
S(x,Dvk) − S(x,Dv)

)
· Duk,j dx � c(K) εj ,

which is assumption (14.4.16) of Lemma 14.4.15. Consequently, Corollary
14.4.17 yields (14.4.25), which in view of Vitali’s theorem (Theorem 1.4.12)
proves (14.4.24). This and (14.4.23), as well as (14.4.21) prove that the weak
formulation (14.4.10) is satisfied for all sufficiently smooth divergence-free
test functions ψ. By continuity and the growth properties of the extra stress
tensor and the convective term we than get that (14.4.10) is satisfied for all
ψ ∈ Vs(·)(Ω). The existence of a pressure with the stated properties now
follows as in the proof of Theorem 14.4.8. The proof of Theorem 14.4.14 is
complete. ��

Remark 14.4.30. Note that in both Theorems 14.4.8 and 14.4.14 the
assumption that Ω has a Lipschitz continuous boundary is not needed if
one is only interested in the existence of a velocity v satisfying the weak
formulation for divergence-free test functions only. This is due to the fact
that we treat homogeneous boundary conditions and thus Korn’s inequality
and the properties of the function spaces also hold for arbitrary bounded
domains. In Theorem 14.4.14 one has additionally to localize the Lipschitz
truncation theorem (Theorem 9.5.2, Corollary 9.5.4) and the stability result
(Lemma 14.4.15). Details can be found in [107].
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10. T. Adamowicz and P. Hästö. Mappings of finite distortion and p(·)-harmonic
functions. Int. Math. Res. Not., pages 1940–1965, 2010.

11. R. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace
Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics,
Vol. 65.

12. R. Adams and J. Fournier. Sobolev spaces, volume 140 of Pure and Applied
Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,
2003.

13. G. Afrouzi and H. Ghorbani. Existence of positive solutions for p(x)−Laplacian
problems. Electron. J. Differential Equations, 177:1–9, 2007.

14. S. Agmon, A. Douglis, and L.Nirenberg. Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions. I. Comm.
Pure Appl. Math., 12:623–727, 1959.

15. S. Agmon, A. Douglis, and L.Nirenberg. Estimates near the boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions. II.
Comm. Pure Appl. Math., 17:35–92, 1964.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents,
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8,
c© Springer-Verlag Berlin Heidelberg 2011

483



484 References
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53. E. Bollt, R. Chartrand, S. Esedoḡlu, P. Schultz, and K. Vixie. Graduated adaptive
image denoising: local compromise between total variation and isotropic diffusion.
Adv. Comput. Math., 31(1-3):61–85, 2009.

54. J. Boman. Lp-estimates for very strongly elliptic systems. Department of
Mathematics, University of Stockholm, Sweden, Reports no 29, 1982.

55. M.-M. Boureanu. Existence of solutions for an elliptic equation involving the
p(x)−Laplace operator. Electron. J. Differential Equations, 97:1–10, 2006.

56. M.-M. Boureanu and M. Mihăilescu. Existence and multiplicity of solutions for a
Neumann problem involving variable exponent growth conditions. Glasg. Math. J.,
50:565–574, 2008.

57. S. Boza and J. Soria. Weighted Hardy modular inequalities in variable Lp spaces for
decreasing functions. J. Math. Anal. Appl., 348:383–388, 2008.
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65. S. Campanato. Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola
Norm. Sup. Pisa (3), 17:175–188, 1963.



486 References
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198. P. Harjulehto, P. Hästö, and V. Latvala. Lebesgue points in variable exponent Sobolev
spaces on metric measure spaces. Zb. Pr. Inst. Mat. NAN Ukr., 1(3):87–99, 2004.
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213. P. Hästö. On the variable exponent Dirichlet energy integral. Comm. Pure Appl.
Anal., 5:413–420, 2006.
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Poincaré inequality, 255, 256, 262
counter example, 256
for zero boundary values functions, 263
in a modular form, 257



508 Index

Poisson problem, 378, 437, 438

Polynomial, 379
Proper, 61, 78

Quasicontinuity, 339

Quasicontinuous representative, 341, 354
Quasieverywhere, 339
Quasiminimizer, 416
Quasinorm, 11

Quotient norm, 369, 381

Reflexive space, 12
Regularity, 402

Removable set for Sobolev space, 350
Riesz

kernel, 199

potential operator, 199
transform, 389

Right-continuous inverse, 54

Rubio de Francia operator, 219

Scaling argument, 34
Schwartz class, 368

Semimodular, 22
induced by ϕ, 37
space, 24

Separable

measure, 50
space, 12

Sequence space, 84

Sharp operator, 206, 221, 371
Signum, 60
Simple function, 37

Singular integral, 208, 221
Smooth function, 15

C∞
0,0, 91, 386

C∞, 15
C∞

0 , 15
Sobolev conjugate exponent, 265

Sobolev embedding, 265, 396
compact, 273, 274
Hölder continuity, 271

non-existence, 269
Sobolev-Poincaré inequality, 265
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Paul-André Meyer - Séminaire de Probabilités XXXIX
(2006)
Vol. 1875: J. Pitman, Combinatorial Stochastic Processes.
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M. Lachowicz, J. Miȩkisz, Multiscale Problems in the Life
Sciences. From Microscopic to Macroscopic. Bȩdlewo,
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