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Preface

In the past few years the subject of variable exponent spaces has undergone
a vast development. Nevertheless, the standard reference is still the article
by Kovécik and Rékosnik from 1991. This paper covers only basic properties,
such as reflexivity, separability, duality and first results concerning embed-
dings and density of smooth functions. In particular, the boundedness of
the maximal operator, proved by Diening in 2002, and its consequences are
missing.

Naturally, progress on more advanced properties is scattered in a large
number of articles. The need to introduce students and colleagues to the
main results led around 2005 to some short survey articles. Moreover, Diening
gave lectures at the University of Freiburg in 2005 and Ruzicka gave a course
in 2006 at the Spring School NAFSA 8 in Prague. The usefulness of a more
comprehensive treatment was clear, and so we decided in the summer of 2006
to write a book containing both basic and advanced properties, with improved
assumptions. Two further lecture courses were given by Hésto based on our
material in progress (2008 in Oulu and 2009 at the Spring School in Paseky);
another summary is Diening’s 2007 habilitation thesis.

It has been our goal to make the book accessible to graduate students as
well as a valuable resource for researchers. We present the basic and advanced
theory of function spaces with variable exponents and applications to partial
differential equations. Not only do we summarize much of the existing liter-
ature but we also present new results of our most recent research, including
unifying approaches generated while writing the book.

Writing such a book would not have been possible without various sources
of support. We thank our universities for their hospitality and the Academy of
Finland and the DFG research unit “Nonlinear Partial Differential Equations:
Theoretical and Numerical Analysis” for financial support. We also wish to
express our appreciation of our fellow researchers whose results are presented
and ask for understanding for the lapses, omissions and misattributions that
may have entered the text. Thanks are also in order to Springer Verlag for
their cooperation and assistance in publishing the book.

We thank our friends, colleagues and especially our families for their
continuous support and patience during the preparation of this book.
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Finally, we hope that you find this book useful in your journey into the
world of variable exponent Lebesgue and Sobolev spaces.

Munich, Germany Lars Diening
Helsinki, Finland Petteri Harjulehto
Oulu, Finland Peter Histé
Freiburg, Germany Michael Ruzicka

November 2010
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Chapter 1
Introduction

The field of variable exponent function spaces has witnessed an explosive
growth in recent years. For instance, a search for “variable exponent” in
Mathematical Reviews yields 15 articles before 2000, 31 articles between 2000
and 2004, and 267 articles between 2005 and 2010. This is a crude measure
with some misclassifications, but it is nevertheless quite telling.

The standard reference for basic properties has been the article [258] by
Kovécik and Rakosnik from 1991. (The same properties were derived by
different methods by Fan and Zhao [149] 10 years later.) Some surveys of the
field exist, e.g. [99,345], but they are already quite dated. When we started
writing this book, in 2006, it seemed possible to derive a more coherent
foundation for the field with simpler and better proofs. This turned out to be
somewhat more challenging than we had anticipated, but it is fair to say that
the understanding of the basics of the field has now, in 2010, reached a certain
stability and maturity. Thus we have tried to write a usable, self-contained
monograph collecting all the basic properties of variable exponent Lebesgue
and Sobolev spaces, which fills the need of having a readily available reference
with unified notation and terminology.

Since most of the results contained in this book are no more than ten years
old, we have generally credited the original authors of results mid-text, often
noting also previous contributions. Our selection of topics is based to some
extent on our personal interests, but we have tried to include all the most
important and general results, and make note of several other ones along with
references to sources for further information.

Many of the very early contributions are largely superseded by more recent
results, and so we include here a brief history of the field from its inception
in 1931 to approximately 2000 in the next section. The second section of this
chapter provides an outline of the rest of the book.

In Sect. 1.3 we summarize the most important basic properties of variable
exponent spaces from the book, as well as some properties which do not hold.
We also provide a diagram which shows the connections between different
central assumptions on the exponent. This section is meant as a reference for
locating the results one needs, and is not self-contained.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents, 1
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8_1,
(© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

Finally, in Sect.1.4 we introduce some notation and conventions used
throughout the book; we also recall many well-known definitions and results
from real and functional analysis, topology and measure theory which are
needed later on. No proofs are included for these standard results, but refer-
ences are provided and they can be consulted if necessary. The results from
this section are used in many places later on; we also introduce some standard
results later in the book if they are needed only in a single proof or section.

1.1 History of Variable Exponent Spaces

Variable exponent Lebesgue spaces appeared in the literature for the first
time already in a 1931 article by Orlicz [319]. In this article the following
question is considered: let (p;) (with p; > 1) and (x;) be sequences of real
numbers such that ), z¥* converges. What are the necessary and sufficient
conditions on (y;) for >, z;y; to converge? It turns out that the answer is
that Zi(/\yi)pi should converge for some A > 0 and p; = p;/(p; — 1). This
is essentially Holder’s inequality in the space £7(). Orlicz also considered the
variable exponent function space L() on the real line, and proved the Holder
inequality in this setting.

However, after this one paper, Orlicz abandoned the study of variable
exponent spaces, to concentrate on the theory of the function spaces that
now bear his name (but see also [308]). In the theory of Orlicz spaces, one
defines the space L¥ to consist of those measurable functions u: 2 — R for
which

o(h) = / p(Mu(z)]) di < o0
Q

for some A > 0 (¢ has to satisfy certain conditions, see Example 2.3.12 (b)).
Abstracting certain central properties of o, we are led to a more general class
of so-called modular function spaces which were first systematically studied
by Nakano [309,310]. In the appendix [p. 284] of the first of these books,
Nakano mentions explicitly variable exponent Lebesgue spaces as an example
of the more general spaces he considers. The duality property mentioned
above is again observed.

Following the work of Nakano, modular spaces were investigated by sev-
eral people, most importantly by groups at Sapporo (Japan), Voronezh
(USSR), and Leiden (Netherlands). Somewhat later, a more explicit ver-
sion of these spaces, modular function spaces, were investigated by Polish
mathematicians, for instance Hudzik, Kaminska and Musielak. For a com-
prehensive presentation of modular function spaces, see the monograph [307]
by Musielak.

Variable exponent Lebesgue spaces on the real line have been inde-
pendently developed by Russian researchers, notably Sharapudinov. These
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investigations originated in a paper by Tsenov from 1961 [366], and were
briefly touched on by Portnov [325,326]. The question raised by Tsenov and
solved by Sharapudinov [351-353] is the minimization of

b
/ () — v()Pde,

where u is a fixed function and v varies over a finite dimensional subspace of
L0 ([a,b]). In [351] Sharapudinov also introduced the Luxemburg norm for
the Lebesgue space and showed that this space is reflexive if the exponent
satisfies 1 < p~ < p™ < oo. In the mid-1980s Zhikov [392] started a new
line of investigation, that was to become intimately related to the study of
variable exponent spaces, considering variational integrals with non-standard
growth conditions. Another early PDE paper is [257] by Kovécik, but this
paper appears to have had little influence on later developments.

The next major step in the investigation of variable exponent spaces was
the paper by Kovdcéik and Rékosnik in the early 1990s [258]. This paper
established many of the basic properties of Lebesgue and Sobolev spaces
in R™. During the following ten years there were many scattered efforts to
understand these spaces.

At the turn of the millennium various developments lead to the start of
a period of systematic intense study of variable exponent spaces: First, the
connection was made between variable exponent spaces and variational inte-
grals with non-standard growth and coercivity conditions (e.g., [4,393]). It
was also observed that these non-standard variational problems are related to
modeling of so-called electrorheological fluids, see [328, 329, 337]. Moreover,
progress in physics and engineering over the past ten year have made the
study of fluid mechanical properties of these fluids an important issue, see
[90,337,369]. (Later on, other applications have emerged in thermorheological
fluids [34] and image processing [1,53,70,269].)

Even more important from the point of view of the present book is the fact
that the “correct” condition for regularity of variable exponents was found.
This condition, which we call log-Hélder continuity, was used by Diening [91]
to show that the maximal operator is bounded on LP()(Q) when € is bounded.
He also showed that the boundedness holds in LP()(R™) if the exponent is
constant outside a compact set. The case of unbounded domains was soon
improved by Cruz-Uribe, Fiorenza and Neugebauer [84] and, independently,
Nekvinda [314] so that a decay condition replaces the constancy at infinity.
The boundedness of the maximal operator opens up the door for treating
a plethora of other operators. For instance one can then consider the Riesz
potential operator and thus prove Sobolev embeddings. Such results indeed
followed in quick succession starting from the middle of the 00s.

The boundedness of the maximal operator and other operators is a subtle
question and improvements on these initial results have been made since then
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in many papers. In this book we present mature versions of these results as
well as more recent advances. In particular, we would like to emphasize the
efforts to remove spurious bounds on the exponents from previous results
which were the consequence of technical rather than substantial issues. In
particular, we have made a point of replacing the assumptions 1 < p~ and
pt < 0o by 1 < p~ and pt < oo whenever possible.

1.2 Structure of the Book

This book is divided into three parts. The first part deals with variable
exponent Lebesgue spaces, and the second one deals with variable exponent
Sobolev spaces. These form the main content of the book. In the third part
we give a selection of applications of these results to partial differential equa-
tions. Some sections and one chapter are marked by an asterisk. These we
consider more advanced content which may be omitted on first reading.
Figure 1.1 illustrates the main dependencies among the chapters. As indi-
cated by the triple line, Chaps. 3, 4, 6 and 8 form the core of the book. They

Chapter 5 Chapter 6 Chapter 7
| | | |
Part 11 Chapter 8

| Chapter 9 | Chapter 10 | | Chapter 12 |
Part 111 | Chapter 13 | | Chapter 14

Fig. 1.1 The main dependencies among chapters
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deal with basic properties of Lebesgue spaces, the maximal operator, other
operators, and Sobolev spaces, respectively. Any course based on the book
would likely include at least these chapters, although Chap. 8 could be omit-
ted if one is not interested in differentiability. Results from Chap.5 and 7 are
used in Chap. 8 and later to some extent, but it is not unreasonable to skip
these at first reading if one is interested mainly in Sobolev spaces.

Chapter 2 is not properly about variable exponent spaces but rather intro-
duces the more general frameworks of semimodular spaces and Musielak—
Orlicz spaces. Since these topics have not been treated in this generality in
widely available sources we have included this preliminary chapter for com-
pleteness. It can be skipped by readers mostly interested in more advanced
properties of variable exponent spaces. On the other hand, many basic prop-
erties, including completeness, reflexivity, separability and uniform convexity,
follow in the variable exponent setting directly from the more general case.
It should also be stressed that the study of semimodular spaces, rather than
modular spaces, allows us to treat variable exponent spaces with unbounded
exponents in a uniform manner, in contrast to many previous investigations
which have used a more ad hoc approach (cf. Remark 3.2.3).

Chapter 3 relies heavily on Chap.2: we directly obtain completeness,
reflexivity, separability and uniform convexity. The more complicated general
conditions translate into simple (and optimal) assumptions on the variable
exponent (see Sect.1.3). Another important topic in these sections is the
norm dual formula, which we derive in the framework of associate spaces;
this is another component which allows us to avoid earlier restrictions on the
variable exponent that follow from dual space considerations.

Chapter 4 introduces a slate of new techniques to deal with the maxi-
mal function and averaging operators. These are the central advances of the
past few years which have made possible the rapid expansion of the field. In
contrast to previous investigations, our general techniques allow for the sys-
tematic inclusion of unbounded exponents. After introducing the logarithmic
Holder continuity condition, we derive “Holder”-type inequalities

p(y)
<][|f|dm> <f|f|p(m)d:r+err0r
Q Q

where y € @@ and “error” denotes an appropriate error term. This estimate
suffices for the boundedness of the maximal operator in unbounded domains
and for unbounded exponents. If we use the boundedness of the maximal
operator we always incur the restriction p~ > 1, which is in fact necessary by
Theorem 4.7.1. Therefore we also study two tools without this shortcoming;:
weak-type estimates and averaging operators. We prove, for instance, that

||1||LP('>(Q) ~ |Q|@
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for all cubes @Q, where % is log-Hélder continuous but p is possibly unbounded,
and pq is the harmonic average of p on (). Also convolution is shown to work
without bounds on the exponent.

Chapter 6 consists of a fairly straightforward application of the meth-
ods from Chap.4 to other operators such as the Riesz potential, the sharp
operator and singular integrals.

The first part includes two optional chapters. Chapter 5 contains a more
abstract treatment of the boundedness of the maximal operator in terms
of the so-called class A. This class consists of those exponents for which a
suitable collection of averaging operators are bounded. It provides the right
context for a necessary and sufficient condition of the boundedness of the
maximal operator similar to the Muckenhoupt classes for weighted Lebesgue
spaces. Working with averaging rather than maximal operators allows us
to remove superfluous restrictions on the exponent from below which had
appeared in various previous results. This is the case for instance for the
Poincaré inequality, which is considered in Chap. 8.

Chapter 7 is a collection of methods which we call “transfer techniques”.
The idea is that we start with a result in one setting and obtain it in another
setting “for free”. The best known example of such a technique is inter-
polation, which has played an important unifying role in the development
of the theory of constant exponent spaces. Unfortunately, it is not possi-
ble to interpolate from constant exponents to variable exponents. Therefore
other techniques are also included, namely, extrapolation and a result for
generalizing statements for balls to statements in (possible unbounded) John
domains.

The first chapter in the second part, Chap. 8, relies substantially on the
results from the first part. First we “translate” the results from Chap.3 to
results for Sobolev spaces. Hence we prove completeness, reflexivity, sep-
arability and uniform convexity, again under optimal assumptions on the
exponent. More sophisticated results like Sobolev embeddings and Poincaré
inequalities are proved by recourse to results on the maximal and other oper-
ators. We also include a short section on compact embeddings and present a
recent extension result. Again, several results are presented for the first time
including the cases p~ = 1 and/or p™ = co.

After the first chapter, the second part of the book splits into three rela-
tively independent strands. Chapter 9 deals with the density of smooth and
continuous functions in Sobolev spaces, which turns out to be an elusive and
difficult question which is not fully understood yet. We present several suffi-
cient conditions for density, as well as examples when density does not hold.

Chapter 10 introduces a Sobolev and a relative capacity, which measure
set size on a finer scale than the Lebesgue measure. We study their relation-
ship with each other and with the Hausdorff measure. The capacities are used
in Chap. 11 to the study of fine properties of Sobolev functions, such as qua-
sicontinuity, removability, Lebesgue points and function with zero boundary
value.
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The third strand, in Chap. 12, deals with other spaces of “Sobolev type”,
i.e. spaces of functions with at least some (possibly fractional) smoothness. In
particular, trace, homogeneous Sobolev, Bessel potential, Besov, and Triebel—-
Lizorkin spaces are considered.

In the third part, we consider applications to partial differential equations
of the theory developed in the first two parts. The third part consists of
two chapters. In Chap. 13, we consider PDE of non-standard growth, i.e.
differential equations where the main term is of the form — div(|Vu|P()~2Vu).
In this case W1P()(Q) is the natural space in which to look for solutions. The
approach of the chapter continues the minimal assumptions-theme of previous
chapters. In particular, we add continuity assumptions on the exponent only
as necessary. This part is based on capacity methods and fine properties of
the functions from Chaps. 10 and 11. Chapter 14 is the culmination of the
other strand in Part II: here we use traces and homogeneous spaces from
Chap. 12, Calderén—Zygmund operators (Sect.6.3), as well as the Lipschitz
truncation method (Sect.9.5), and the transfer technique from Sect. 7.4. We
first treat classical linear PDE with data in variable exponent spaces, namely
the Poisson and Stokes problems and the divergence equation. The latter
leads to generalizations of further classical results to variable exponent spaces.
Finally these results and the theory of pseudomonotone operators are applied
in Sect. 14.4 to prove the existence of solutions to the steady equations for
the motion of electrorheological fluids, which is again a PDE with a version
of the variable p(-)-Laplacian as a main elliptic term.

1.3 Summary of Central Results

In this section we highlight the similarities and differences between constant
exponent and variable exponent spaces; we also emphasize the assumptions
on the exponent needed for the properties. First we list properties which do
not require any regularity of the exponent. The second section features a dia-
gram which illustrates the quite complex relationship between the different
conditions used when dealing with more advanced properties such as bound-
edness of various operators. In the final section we list some properties which
essentially never hold in the variable exponent context.

Elementary Properties

Here we collect the most important properties of variable exponent Lebesgue
and Sobolev spaces which hold without advanced conditions on the exponent.
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For Any Measurable Exponent p

o LP() and WP() are Banach spaces (Theorem 3.2.7, Theorem 8.1.6).

¢ The modular gy.) and the norm [[-[|,., are lower semicontinuous with
respect to (sequential) weak convergence and almost everywhere conver-
gence (Theorem 3.2.9, Lemma 3.2.8, Lemma 3.2.10).

o Holder’s inequality holds (Lemma 3.2.20).

o LP0) is a Banach function space (Theorem 3.2.13).

o (LPO)) = LP'() and the norm conjugate formula holds (Theorem 3.2.13,
Corollary 3.2.14).

For Any Measurable Bounded Exponent p

LPC) and WHP() are separable spaces (Lemma 3.4.4, Theorem 8.1.6).

e The As-condition holds (Theorem 3.4.1).

e Bounded functions are dense in LP() and W1r() (Corollary 3.4.10,
Lemma 9.1.1).

o C° is dense in LP() (Theorem 3.4.12).

For Any Measurable Exponent p with 1 < p— < pt < oo

o LP() and WP() are reflexive (Theorem 3.4.7, Theorem 8.1.6).
o LP() and WP() are uniformly convex (Theorem 3.4.9, Theorem 8.1.6).

The log-Holder and Other Conditions

The diagram in Fig. 1.2 illustrates the relationship between more advanced
conditions imposed on the exponent p. Arrows represent implications, with
the relevant theorem or lemma number quoted. The three bullets are con-
junctions of the conditions, e.g., p~ > 1 and P'°8 together imply that the
maximal operator M is bounded, by Theorem 4.3.8.
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p->1 Pplog

4.7.1 [ ) 4.4.8
trivial
Mbounded 24

5.7.2 if 1<p~ <pt<oo

trivial

M weak type R Aloc °

4.5.7 7.3.3

||XQHP(<)||XQHP/(<) ~ Q|

‘ > xqQf
Qco

p() Qco “XQHP(.) o0

Fig. 1.2 The relationship between various conditions on the exponent

Warnings!

Here are some results and techniques from constant exponent spaces which
do not hold in the variable exponent setting even when the exponent is very
regular, e.g., p € P18 or p € C®(Q) with 1 < p~ < pt < 0.

e The space LP() is not rearrangement invariant; the translation operator
Ty, : LPC) — LPO) Ty, f(x) :== f(x+h) is not bounded; Young’s convolution
inequality || f * gl[,.) < c||fll1llgllp() does not hold (Sect. 3.6).

e The formula

oo

/If(x)l”dxzp/t”’ll{x €O |f(x) > t}|dt
Q

0

has no variable exponent analogue.
¢ Maximal, Poincaré, Sobolev, etc., inequalities do not hold in a modular
form. For instance, Lerner showed that

/|Mf|p("”) dr < c /|f|p(””) dx
R™ Rn



10 1 Introduction

if and only if p € (1,00] is constant [267, Theorem 1.1]. For the Poincaré
inequality see Example 8.2.7 and the discussion after it.

¢ Interpolation is not so useful, since variable exponent spaces never result
as an interpolant of constant exponent spaces (see Sect. 7.1).

o Solutions of the p(:)-Laplace equation are not scalable, i.e. Au need not be
a solution even if u is (Example 13.1.9).

1.4 Notation and Background

In this section we clarify the basic notation used in the book. Moreover we
give precise formulations of some basic results which are frequently used.

We use the symbol := to define the left-hand side by the right-hand side.
For constants we use the letters ¢, ¢1, ca, C, C1, Ca, .. ., or other letters specif-
ically mentioned to be constants. The symbol ¢ without index stands for
a generic constant which may vary from line to line. In theorems, propo-
sitions and lemmas we give precise dependencies of the constants on the
involved other quantities. We use x ~ y if there exist constants ¢y, ce such
that ¢; x < y < cox. The Euler constant is denoted by e and the imaginary
unit is denoted by i. For sets A and B the notation A C B includes also the
case A = B.

By R™ we denote the n-dimensional Euclidean space, and n € N always
stands for the dimension of the space. By U and V we denote open sets
and by F' closed sets of the topological space under consideration, usually
R™. A compact set will usually be denoted by K. For A, E C X we use the
notation A CC E if the closure A is compact and A C E. By Q we always
denote an open subset of R™. If the set has additional properties it will be
stated explicitly. A domain Q@ C R"™ is a connected open set. We will also
use domains with specific conditions on the boundary, such as John domains
(cf. Definition 7.4.1).

Balls will be denoted by B. The ball with radius r and center xy €
R™ will be denoted by B(zg,r). We usually denote cubes in R™ by @,
and by a cube we always mean a non-degenerate cube with faces paral-
lel to the coordinate ares. However, in many places @) stands for cubes
or balls, since the statements hold for both of them, but this will be
mentioned explicitly. For a ball B we will denote the ball with a times
the radius and the same center by aB. Similarly, for a cube @ we will
denote by a@) the cube with a times the diameter and same center as
Q. For half-spaces of R™ we use the notation RZ := {z ¢ R" : z, > 0},
RY :={z eR" : 2, 20}, RL := {z € R" : x, <0}, and RY := {z € R" :
zn, < 0}, where © = (21,...,2,). For a,b € R™ we use (a,b) and [a,b] to
denote the open and closed segment, respectively, connecting a and b.
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Functional Analysis

A Banach space (X, ||| x) is a normed vector space over the field of real num-
bers R or the field of complex numbers C, which is complete with respect the
norm ||-|| y. The Cartesian product X : vazl X of Banach spaces (X}, ||||XJ)
consists of points (z1,...,zy) and is equipped with any of the equivalent
norms |zf|x = [zllx, = (Zjvzl ||a:j||§(j)%, 1 < r < oo, and an obvious
modification for r = co. If X; = Y for j = 1,..., N, we write X = YV,
Sometimes it is useful to equip a vector space with a quasinorm instead of
a norm. A quasinorm satisfies all properties of a norm except the triangle
inequality which is replaced by ||z + y|| < ¢ (||z|| + [|y||) for some ¢ > 0.

Let X and Y be normed vector spaces. The mapping F': X — Y is bounded
if [|[F(a)|ly < C |la||x for all a € X. It is an isomorphism if F and F~1 are
bijective, linear and continuous. Clearly, a linear mapping is bounded if and
only if it is continuous.

Let X and Y be normed spaces, both subsets of a Hausdorff space Z
(i.e. distinct points possess disjoint neighborhoods). Then the intersection
X NY equipped with the norm ||z|| v, = max{||z[ y, ||z]y} and the sum
X+Y:={x+y: xeX,yecY} equipped with the norm

12l x4y = mf {[lzllx +llylly : 2 € X,y €Y,z =z +y}

are normed spaces. If X and Y are Banach spaces, then X NY and X +Y
are Banach spaces as well.

The dual space X* of a Banach space X consists of all bounded, linear
functionals F: X — R (or C). The duality pairing between X* and X is
defined by (F, X) y. y = (F, X) := F(x) for F' € X*, x € X. The dual space
is equipped with the dual norm |[F| . := supj, <1 (F, @), which makes
X* a Banach space. We have the following versions and consequences of the
Hahn-Banach theorem (cf. [58, Corollary 1.2, Theorem 1.7, Corollary I1.4],
[335]).

Theorem 1.4.1. Let X be a Banach space and let Y C X be a closed,
linear subspace. Every bounded, linear functional F' € Y* can be extended to
a bounded, linear functional F' € X* satisfying

[Fllx= = [[Flly-

Here we mean by extension that (F,y)y. y = <ﬁ7 Y)x« x forally eY.

Theorem 1.4.2. Let X be a Banach space and let E and K be convez,
disjoint non-empty subsets of X. If E is closed and K compact, then there
ezists a closed hyperplane which strictly separates E and K, i.e. there exists
FeX* acR ande >0 such that Re F(z) + ¢ < a < Re F(y) — ¢ for all
reFE, ye K.
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Corollary 1.4.3. Let X be a Banach space. Then we have for all x € X

lellx = sup  [(F,z)].
I1Fllx- <1

A Banach space is called separable if it contains a dense, countable
subset. We denote the bidual space by X** := (X*)*. A Banach space
X is called reflexive if the natural injection ¢: X — X**, given by
(1, F) o xo 1= (F. @) x. x, Is surjective. A norm [| - || on a Banach space X
is called uniformly convex if for every € > 0 there exists d(¢) > 0 such that
for all z,y € X satisfying ||z||, |ly|| < 1, the inequality ||z — y|| > & implies
II(z +v)/2|| < 1—0(g). A Banach space X is called uniformly convez, if there
exists a uniformly convex norm || ||, which is equivalent to the original norm
of X. These properties are inherited to closed linear subspaces and Cartesian
products. More precisely we have (cf. [11, Chap.1]):

Proposition 1.4.4. Let X be a Banach space and let Y denote either a
closed subset of X or a Cartesian product X~ . Then:

(i) Y is a Banach space.
(ii) If X is reflexive, then Y is reflexive.
(iil) If X is separable, then Y is separable.
(iv) If X is uniformly convex, then X is reflexive.
(v) If X is uniformly convex, then'Y is uniformly convez.

We say that a Banach space X is continuously embedded into a Banach
space Y, X — Y, if X C Y and there exists a constant ¢ > 0 such that
|z|ly < c||z||x for all z € X. The embedding of X into Y is called com-
pact, X —— Y if X — Y and bounded sets in X are precompact in Y.
A sequence (zp)reny C X is called (strongly) convergent to z € X, if
limg—oo |2k — || x =0. It is called weakly convergent if limy_oo (F,2r) = 0
for all F' € X*. An embedding X — Y is compact if and only if weakly con-
vergent sequences in X are mapped to strongly convergent sequences in Y.
Note that each set which is closed with respect the weak topology (con-
vergence) is also closed with respect to the strong topology (convergence).
The converse implication is in general false. However it holds for convex sets
(cf. [58, Theorem IIL.7]).

Let (X, ||-||x) be a Banach space and A C X a set. The closure of A with

respect to the norm ||| x, ZH'HX, is the smallest closed set Y that contains A.

The closure of a set A is denoted by A when the space is clear from the
context.
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Measures and Covering Theorems

We denote by (4,3, i) a measure space (cf. [184]). If not stated otherwise p
will always be a o-finite, complete measure on ¥ with pu(A) > 0. If there is
no danger of confusion we omit ¥ from the notation. We use the usual con-
vention of identifying two p-measurable functions on A if they agree almost
everywhere, i.e. if they agree up to a set of y-measure zero. The characteristic
function of a set £ C A will be denoted by xEg.

A measure p is called doubling if balls have finite and positive measure
and there is a constant ¢ > 1 such that

w(2B) < cu(B) for all balls B.

A measure p is called atom-less if for any measurable set A with p(A4) > 0
there exists a measurable subset A’ of A such that pu(A4) > u(A’) > 0. For
a sequence (Ag) of sets we write Ay / A if Ay C Agyq for k € N and
A=y, Ag. We write Ay \, A if Ay D A1 for k € Nand A = N, Ag.

The Lebesgue integral of a Lebesgue-measurable function f: A — K,
where K is either R or C, is defined in the standard way (cf. [334, Chap. 1])
and denoted by [, fdu. If there is no danger of confusion we will write
“measurable” instead of “u-measurable”; “almost everywhere” instead of
“p-almost everywhere”, etc. The most prominent example for our purposes
are: A = Q) is an open subset of R™, y is the n-dimensional Lebesgue measure,
and X is the o-algebra of Lebesgue-measurable subsets of Q; or A = Z"™, u is
the counting measure, and X is the power set of Z™. In the former case the
Lebesgue integral will be denoted by [, f dz and the measure of a measurable
subset E C Q will be denoted by |E].

We need some covering theorems. We state the basic covering theorem in
metric measure spaces. The stronger Besicovitch covering theorem does not
hold in general in metric measure spaces and hence it is stated in R™. For
the proof for the basic covering theorem see for example [217, Theorem 1.2]
or [129, Theorem 1, p. 27] and for the Besicovitch covering theorem [129,
Theorem 2, p. 30] or [288, Theorem 2.7, p. 30].

Theorem 1.4.5 (Basic covering theorem). Let F be any collection of
balls in a metric space with

sup{diam(B) : B € F} < cc.

Then there exists a countable subcollection G of pair-wise disjoint balls in F
such that

U Bc 5B

BeF Beg
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Theorem 1.4.6 (Besicovitch covering theorem). Let A be a bounded
set in R™. For each x € A a cube (or ball) Q, C R™ centered at x is
given. Then one can choose, from among the given sets {Qz}, .4 @ sequence
{Qj}jen (possibly finite) such that:

(a) The set A is covered by the sequence, A C Ujen@);.
(b) No point of R™ is in more than 6y, sets of the sequence {Q;},cy. i.e.

oo
> xa, < bn.
i=1

(¢) The sequence {Qj}jeN can be divided in &, families of disjoint sets.
The numbers 0,, and &, depend only on the dimension n.

A proof for the existence of a partition of unity can be found for example
in [11, Theorem 3.14, p. 51] or in [280, Theorem 1.44, p. 25].

Theorem 1.4.7 (Partition of unity). Let U be a family of open sets
which cover a closed set E C R™. Then there exists a family F of functions
in C§°(R™) with values in [0, 1] such that:

(a) Yofer f(x) =1 for every z € E.
(b) For each function f € F, there exists U € U such that spt f C U.
(c¢) If K C E is compact, then spt f N K # () for only finitely many f € F.

The family F is said to be a partition of unity of E subordinate to the open
covering U.

Integration

Let Q C R™ be an open set equipped with the n-dimensional Lebesgue mea-
sure. For s € [1,00] and k € N, we denote by L*(Q) and W*-$(Q) the classical
Lebesgue and Sobolev spaces, respectively (cf. [11]). If there is no danger of
confusion we omit the set  and abbreviate L* and W*#*. The gradient of a
Sobolev function u, i.e. a function belonging to some Sobolev space, is given by
Vu = (O1u,...,0hu), where ;u, i = 1,...,n, are the weak partial derivatives

of u. We also use the notation g—; for Qju. If u € W*#(Q) we denote higher

order weak derivatives by dyu := %7 where « is a multi-index with
|a| < k. By V*u we denote the tensor consisting of all weak derivatives of u
of order k, i.e. VFu := (Oatt)|a|=k- In most cases we do not distinguish in the
notation of the function spaces and the corresponding norms between scalar,
vector-valued or tensor-valued functions.

By L () we denote the space of all locally integrable functions f, i.e.

loc

f € L' (U) for all open UCC 2. We equip Li. . by the initial topology of those
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embeddings, i.e. the coarsest topology such that Li (Q) < L'(U) for every
open UCC ). Analogously, we define VV{Z:(Q) for k € N to consist of the
functions such that f € W*1(U) for all open UCC Q. We equip VVIIZ:(Q)
with the initial topology induced by the embeddings I/Vllf)’cl Q) — wkl()
for all open UCC €. A function f: Q — K has compact support if there exists
a compact set K C  such that f = fxg. For an exponent s € [1, 0] the
dual exponent s’ is defined by % + é = 1, with the usual convention é =0.

We denote by C(Q) the space of uniformly continuous functions equipped
with the supremum norm ||f|l, = sup,.g|f(z)|. By C*(Q), k € N, we
denote the space of functions f, such 9, f € C(Q) for all |a| < k. The space
is equipped with the norm sup|, < [|0a f||o- The set of smooth functions in
Q is denoted by C'*°(Q)—it consists of functions which are continuously dif-
ferentiable arbitrarily many times. The set C§°(Q?) is the subset of C*°(Q)
of functions which have compact support. We equip C§°(§2) with the ini-
tial topology of the embeddings C§°(Q) — C*(U) for all k € Ny and open
Uccq.

A standard mollifier is a non-negative, radially symmetric and radi-
ally decreasing function ¢ € C§°(B(0,1)) with fB(071)¢dx = 1. We call
{Yc} a standard mollifier family (on R™) if ¢ is a standard mollifier and
Ve (&) :=e7™p(€/e). By a modulus of continuity we mean an increasing,
continuous, concave function w: Ry — R with w(0) = 0. A real- or complex-
valued function f has modulus of continuity w if |f(z) — f(y)| < w(|z — y|)
for all  and y in the domain of f.

In the case of a measure space (A, p) we denote by L*(A, u), s € [1,00],
the corresponding Lebesgue space. A sequence (f;) of y-measurable functions
is said to converge in measure to the function f if to every € > 0 there exists
a natural number N such that

{ze A:|fix) — () > e} <e

for all i > N. For u(A) < oo, it is well known that if f; — f p-almost every-
where, then f; — f in measure; on the other hand lim;_, fA |fi— fldp=0
does not imply convergence in measure unless we pass to an appropriate
subsequence.

Theorem 1.4.8. Let (A, %, 1) be a o-finite, complete measure space. Assume
that f and (f;) are in L'(A, u), u(A) < oo and

tim [ 1fi = fldu=o.
A

Then there exists a subsequence (fi,) such that f;, — f p-almost everywhere.

We write a, /" a if (ay) is a sequence increasing to a. We frequently use
the following convergence results, which can be found e.g. in [11,184]:
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Theorem 1.4.9 (Monotone convergence). Let (A, X, u) be a o-finite,
complete measure space. Let (fr) be a sequence of p-measurable functions
with fi /[ p-almost everywhere and fA fidp > —oo. Then

lim /fkd,u:/fdu.
A A

Theorem 1.4.10 (Dominated convergence). Let (A, 3, u) be a o-finite,
complete measure space. Let (fi) be a sequence of p-measurable functions
with fi, — f p-almost everywhere. If there exists a function h € LY(A,u)
such that |fi| < h p-almost everywhere for all k € N, then f € L*(A,n) and

lim /fkd,u:/fdu.
A A

Lemma 1.4.11 (Fatou). Let (A, X, u) be a o-finite, complete measure
space. Let (fi) be a sequence of u-measurable functions and let g € LY (A, ).
If fr. > g p-almost everywhere for all n € N, then

/hmlnffk dp < hmlnf/fk du.

A

Let (fn) C L(A, ) and set A(E) := limsup,, ., [ |fnl®dp, for E C A
measurable. We say that (f,,) is equi-integrable if:

1. For all € > 0 there exists a > 0 with A(F) < ¢ for all measurable E
with p(E) < 0.

2. For all ¢ > 0 there exists a measurable set Ay with u(Ag) < oo and
AMAN\ Ay) < e.

Theorem 1.4.12 (Vitali). Let (A, %, u) be a o-finite, complete measure
space. Let 1 < s < oo. Let the sequence (fn,) C L°(A,u) converge
,u—almost everywhere to a p-measurable function f. Then f € L*(A,u) and
lfn — s(a,m) — 0 if and only if (fn) is equi-integrable.

Recall that v is absolutely continuous with respect to p if v(E) = 0 for all
E € ¥ with p(E) = 0. Another important result is the following (cf. [184]):

Theorem 1.4.13 (Radon—Nikodym). Let (A,%,u) be a finite measure
space and v be a finite, signed measure on (A, X). If v is absolutely continuous
with respect to u, then there exists a unique function g € L*(A, u) such that

v(E) = /gdu forall E € X.
E
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Theorem 1.4.14 (Jensen’s inequality). Let (A, 3, u) be a finite measure
space with pu(A) = 1. If f is a real function in L*'(A,p), a < f(x) < b for all
x € A, and if p is conver on (a,b), then

w(/fdu> </s00fdu.
A A

The classical sequence spaces®(Z"), s € [1, 0], are defined as the Lebesgue
spaces L*(Z", u) with p being the counting measure. It is well known that
for s,q € [1, 0] the embedding 1*(Z") < 19(Z™) holds if and only if s < g.

The space of distributions D'(§2) is a superset of the space Li () of
locally integrable functions. To state the definition, we first equip the space

D(Q) := C§° () with such a topology that fi — f if and only if

Uspt ficCcQ and lim sup
% k—oo

Oulfi = )] =0

for every multi-index «. Then D’(€) is the dual of D(Q), i.e. it consists of all
bounded linear functionals on D(Q). If f € L .(Q), then Ty € D'(Q2), where

Ty, ) = / f(@)p() de
Q

for ¢ € D(). For simplicity, one may denote this by (f, ) and write
LL (Q) c D(Q). If f € D(Q), then its distributional derivative is the
distribution g satisfying

(g,9) = —(f,¢)

for all ¢ € D(2). Note that this corresponds to partial integration if
fecCcta).
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Chapter 2
A Framework for Function Spaces

In this chapter we study modular spaces and Musielak—Orlicz spaces which
provide the framework for a variety of different function spaces, including clas-
sical (weighted) Lebesgue and Orlicz spaces and variable exponent Lebesgue
spaces. Although our aim mainly is to study the latter, it is important to see
the connections between all of these spaces. Many of the results in this chap-
ter can be found in a similar form in [307], but we include them to make this
exposition self-contained. Research in the field of Musielak—Orlicz functions
is still active and we refer to [69] for newer results and references.

Our first two sections deal with the more general case of semimodu-
lar spaces. Then we move to basic properties of Musielak—Orlicz spaces
in Sect.2.3. Sections 2.4 and 2.5 deal with the uniform convexity and the
separability of the Musielak—Orlicz spaces. In Sects.2.6 and 2.7 we study
dual spaces, and a related concept, associate spaces. Finally, we consider
embeddings in Sect. 2.8.

2.1 Basic Properties of Semimodular Spaces

For the investigation of weighted Lebesgue spaces it is enough to stay in
the framework of Banach spaces. In particular, the space and its topology
is described in terms of a norm. However, in the context of Orlicz spaces
this is not the best way. Instead, it is better to start with the so-called
modular which then induces a norm. In the case of classical Lebesgue spaces
the modular is [ |f(z)|” dz compared to the norm ([ |f(z)[" dz)7. In some
cases the modular has certain advantages compared to the norm, since it
inherits all the good properties of the integral. The modular spaces defined
below capture this advantage.

We are mainly interested in vector spaces defined over R. However, there is
no big difference in the definition of real valued and complex valued modular
spaces. To avoid a double definition we let K be either R or C.

The function g is said to be left-continuous if the mapping A — o(Az) is
left-continuous on [0, 00) for every x € X, i.e. limy_,;- o(Ax) = p(x). Here

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents, 21
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8-2,
(© Springer-Verlag Berlin Heidelberg 2011
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a — b~ means that a tends to b from below, i.e. a < b and a — b; a — bt is
defined analogously.

Definition 2.1.1. Let X be a K-vector space. A function g: X — [0, 00] is
called a semimodular on X if the following properties hold.

) 0(0) =
o(Azx) = ()forallx€X7)\€Kwith|)\|:1.

)
) o is convex.
)
)

(a
(b
(c
(d) o is left-continuous.
(e) o(Ax) =0 for all A > 0 implies x = 0.
A semimodular g is called a modular if
(f) o(z) =0 implies z = 0.

A semimodular g is called continuous if

(g) the mapping A — o(Az) is continuous on [0, c0) for every x € X.

Remark 2.1.2. Note that our semimodulars are always convex, in contrast
to some other sources.

Before we proceed let us provide a few examples.

Definition 2.1.3. Let (A4, X, i) be a o-finite, complete measure space. Then
by LO(A, 1) we denote the space of all K-valued, pu-measurable functions on
A. Two functions are identical, if they agree almost everywhere.

In the special case that p is the n-dimensional Lebesgue measure, € is a
p-measurable subset of R™, and ¥ is the o-algebra of u-measurable subsets
of  we abbreviate L°(Q) := L(Q, p).

Example 2.1.4.
(a) If 1 < p < oo, then
o= [ 1f@) do
Q
defines a continuous modular on L°((2).

(b) Let @oo(t) := 00 - X(1,00)(t) for t > 0, ie. poo(t) = 0 for t € [0,1] and
Yoo(t) = 00 for t € (1,00). Then

0 (f) ¢=/
Q

defines a semimodular on L°(£2) which is not continuous.

Poo(|f (2)]) dz



2.1 Basic Properties of Semimodular Spaces 23

(c) Let w € Li (Q) with w > 0 almost everywhere and 1 < p < co. Then

loc

olf) == / (@) Pw() da
Q

defines a continuous modular on L°(2).
(d) The integral expression

o(f) = /eXp(If(:r)D —ldx

Q

defines a modular on L°(Q). It is not continuous: if f € L?(Q) is such
that |f| > 2 and |f| € LP(Q) for any p > 2, then o(Alog|f|) = oo for
A > 2 but o(2log|f]) < oo.

(e) If 1 <p < o0, then

oo

op((5)) = |o|” dac

Jj=0

defines a continuous modular on RY.

(f) For f € L%) we define the decreasing rearrangement,
f*:[0,00) — [0,00) by the formula f*(s) := sup{¢: ||f| > ¢| > s}. For
1 < ¢ < p < oo the expression

o(f) = [ 1f*(s7/9)|" ds
/

defines a continuous modular on L°(2).

Let o be a semimodular on X. Then by convexity and non-negative of o
and ¢(0) = 0 it follows that A — p(Az) is non-decreasing on [0, 00) for every
x € X. Moreover,

o(Az) = o(|N[2) < [N o(x)  forall |\ <1, (2.1.5)
> | |21

o(At) = o(IAl@) > M o@)  for all |A

In the definition of a semimodular or modular the set X is usually chosen to
be larger than necessary. The idea behind this is to choose the same large set
X for different modulars like in our Examples 2.1.4(a), (b), (¢), (d) and (f).
Then depending on the modular we pick interesting subsets from this set X.

Definition 2.1.6. If p be a semimodular or modular on X, then

X, ={zeX: ;\iir%)g()\x) =0}
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is called a semimodular space or modular space, respectively. The limit A — 0
takes place in K.

Since o(Az) = o(|A| ) it is enough to require limy_,g o(Az) with A € (0, 00).
Due to (2.1.5) we can alternatively define X, by

X, = {z € X: o(Az) < 0o for some A > 0},

since for A < A we have by (2.1.5) that

o(Az) — 0

=) <

as X — 0.
In the next theorem, like elsewhere, the infimum of the empty set is by
definition infinity.

Theorem 2.1.7. Let o be a semimodular on X. Then X, is a normed
K-vector space. The norm, called the Luxemburg norm, is defined by

[zl, := inf {)\ >0: Q(;ﬁ) < 1}.

Proof. We begin with the vector space property of X,. Let =,y € X, and
a € K\ {0}. From the definition of X, and g(ax) = o(|a|z) it is clear that
ax € X,. By the convexity of p we estimate

0< Q(/\(a: + y)) < %9(2/\1‘) + %Q(Q)\y) 2200,

Hence, x +vy € X,. It is clear that 0 € X,. This proves that X, is a K-vector
space.
It is clear that ||z|[, < oo for all z € X, and [|0]|, = 0. For a € K we have

|z, = inf{)\ >0: Q(a—;> < 1} = |a] inf{/\ >0: Q(%x) < 1}

= laf flz[l,-

Let 2,y € X and u > |[z||, and v > [|y[|,.- Then o(z/u) < 1 and o(y/v) < 1,
hence, by the convexity of o,

x—|—y> ( U T v y) U (a:) v (y)
= — Z) < — =) < 1.
Q(u—l—v B u+vu+u+vv \u—i—vQ U +u+vg v/

Thus ||z +yl|, < u + v, and we obtain [z +yl, <[z, + lyl,-
If [z, = 0, then p(ax) < 1 for all & > 0. Therefore,

AT

o(Az) < 59( 3

)<#
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forall A > 0 and § € (0, 1], where we have used (2.1.5). This implies o(Az) = 0
for all A > 0. Thus « = 0. ad

The norm in the previous theorem is more generally known as the
Minkowski functional of the set {z € X : p(x) < 1}, see Remark 2.1.16. The
Minkowski functional was first introduced by Kolmogorov in [253] long before
the appearance of the Luxemburg norm. Nevertheless, we use the name
“Luxemburg norm” as it is customary in the theory of Orlicz spaces.

In the following example we use the notation of Example 2.1.4.

Example 2.1.8 (Classical Lebesgue spaces). Let 1 < p < co. Then the
corresponding modular space (L°(Q)),, coincides with the classical Lebesgue

space LP, i.e.
151, =151, = ([ 150 dz)".
Q

Similarly, the corresponding semimodular space (L°(2)),.. coincides with the
classical Lebesgue space L, i.e.

[/l = [If1l,.. = esssup|f(z)].
€

The norm ||-[|, defines our standard topology on X,. So for i,z € X, we
say that xx converges strongly or in norm to x if ||z, — z||, — 0. In this case
we write 2 — x. The next lemma characterizes this topology in terms of the
semimodular. Here it suffices to study null-sequences.

Lemma 2.1.9. Let ¢ be a semimodular on X and x € X,. Then xp — 0
for k — oo if and only if limg_ o o(Axg) = 0 for all A > 0.

Proof. Assume that [|2x||, — 0 and A > 0. Then [[K Azy||, <1 forall K >1
and large k. Thus o(K Azx) < 1 for large k, hence

o(Azy) <

for large k, by (2.1.5). This implies g(Azj) — 0.

Assume now that o(Azxg) — 0 for all A > 0. Then p(Azi) < 1 for large k.
In particular, [lzx[|, < 1/ for large k. Since A > 0 was arbitrary, we get
|zx|l, — 0. In other words xx — 0. O

Apart from our standard topology on X,, which was induced by the
norm, it is possible to define another type of convergence by means of the
semimodular.
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Definition 2.1.10. Let g be a semimodular on X and zx,z € X,. Then we
say that zj is modular convergent (¢-convergent) to x if there exists A > 0

such that o(A(zj — z)) — 0. We denote this by z - z.

It is clear from Lemma 2.1.9 that modular convergence is weaker than norm
convergence. Indeed, for norm convergence we have limy_, o, 0(A(zr —y)) =0
for all A > 0, while for modular convergence this only has to hold for some
A>0.

For some semimodular spaces modular convergence and norm convergence
coincide and for others they differ:

Lemma 2.1.11. Let X, be a semimodular space. Then modular conver-
gence and norm convergence are equivalent if and only if o(xy) — 0 implies
0(2z) — 0.

Proof. “=": Let modular convergence and norm convergence be equivalent
and let o(zy) — 0 with z; € X,. Then 23, — 0 and by Lemma 2.1.9 it follows
that o(2zy) — 0.

“<": Let xp € X, with p(xr) — 0. We have to show that g(Azy) — 0
for all A > 0. For fixed A > 0 choose m € N such that 2™ > A. Then by
repeated application of the assumption we get limg_.o 0(2™x) = 0. Then
0 < limg—oo 0(Ax) < A27" limy—oo 0(2™21) = 0 by (2.1.5). This proves
that xr — 0. O

If either of the equivalent conditions in the previous lemma hold, then we
say that the semimodular satisfies the weak As-condition.

If p is a semimodular that satisfies the weak As-condition, then g is already
a modular. Indeed, if g(x) = 0, then the constant sequence z is modular
convergent to 0 and therefore convergent to 0 with respect to the norm, but
this implies z = 0.

Lemma 2.1.12. Let be a semimodular on X that satisfies the weak As-
condition. Then for every e > 0 there exists 6 > 0 such that o(f) < ¢ implies

1fll, <e

Proof. This is an immediate consequence of the equivalence of modular and
norm convergence. O

Example 2.1.13. The weak As-condition of modulars is satisfied in Exam-
ples 2.1.4 (a) and (c). Examples 2.1.4 (b) and (d) do not satisfy this
condition.

Let us study the closed and open unit ball of X,. The left-continuity of g is
of special significance. The following lemma is of great technical importance.
We will invoke it by mentioning the unit ball property, or, when more clarity
is needed, the norm-modular unit ball property.
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Lemma 2.1.14 (Norm-modular unit ball property). Let ¢ be a semi-
modular on X. Then ||z||, < 1 and o(z) < 1 are equivalent. If ¢ is continuous,
then also ||z||, < 1 and o(x) < 1 are equivalent, as are||z|, =1 and o(x) = 1.

Proof. If o(z) < 1, then [|z|[, < 1 by definition of ||-[|,. If on the other hand
2], <1, then p(z/A) <1 for all A > 1. Since g is left-continuous it follows
that o(z) < 1.

Let ¢ be continuous. If ||z[|, < 1, then there exists A <1 with g(z/A) < 1.
Hence by (2.1.5) it follows that o(z) < Ao(z/A) < A < 1. If on the other
hand g(x) < 1, then by the continuity of g there exists v > 1 with o(yz) < 1.
Hence [|yz|[, < 1 and [lzf|, < 1/y < 1. The equivalence of [[z[[, = 1 and
o(z) = 1 now follows immediately from the cases “< 1” and “< 17. O

A simple example of a semimodular which is left-continuous but not con-
tinuous is given by 0o (t) = 00 - X(1,00)(t) on X = R. This is a semimodular
on R and |z, = |z].

Corollary 2.1.15. Let o be a semimodular on X and x € X,.

(a) If [lz]l, < 1, then o(z) < [z,
(b) If 1 <llzll,, then [lz[|, < o(x).
(©) lzll, < e(z) +1.

Proof. (a) The claim is obvious for z = 0, so let us assume that 0 < ||lz||, < 1.
By the unit ball property (Lemma 2.1.14) and ||x/||a:||g||g =1 it fol-

lows that o(z/|z[|,) < 1. Since ||lz[|, < 1, it follows from (2.1.5) that
o(@)/|lz], < L.

(b) Assume that [[z[|, > 1. Then o(z/A) > 1for 1 <A < |[|z||, and by (2.1.5)
it follows that 1 < o(x)/A. Since A was arbitrary, o(z) > ||z||,.

(c) This follows immediately from (b). O

Remark 2.1.16. Let K := {z € X,: o(z) < 1}. Then the unit ball property

states that K = B(0,1), the closed unit ball with respect to the norm. This
provides an alternative proof of the fact that [|||, is a norm. Indeed, K is a
balanced, i.e. AK := {A\z: ¢ € K} C K for all || < 1, convex set. Moreover,
by definition of X, the set K is absorbing for X,, i.e. [Jy5o(AK) = X,.
Therefore, the Minkowski functional of K, namely @ — inf {\ > 0: 1z € K},
defines a norm on X,. But this functional is exactly ||-||, which is therefore
a norm on X,.

We have seen in Remark 2.1.16 that {x € X,: p(x) < 1} is closed. This
raises the question whether {z € X: o(z) < a} is closed for every a € [0, 00).
This is equivalent to the lower semicontinuity of ¢ on X,, hence the next
theorem gives a positive answer.
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Theorem 2.1.17. Let ¢ be a semimodular on X. Then g is lower semicon-
tinuous on X,, i.e.

o(x) < lim inf o(zy,)

for all xy, x € X, with x, — x (in norm) for k — oo.

Proof. Let zp,x € X, with ;, — x for £ — oo. We begin with the case
o(xz) < oo. By Lemma 2.1.9, limg_, o(y(z — zx)) = 0 for all v > 0. Let
£ €(0,3). Then, by convexity of o,

o((1—e)x) = Q(%x—F ! _225(95 —x) + 1_22€a:k>

< o) + 5o((1 = 2)(z — za) + (1 - 22)a.)
< 300+ Fo(1 5w -0)) + 15 aw)

We pass to the limit £ — oo:

1—2¢

o((1 ~ £)a) < go(e) + -2 imint o(a).

Now letting ¢ — 0% and using the left-continuity of o, we get

o(z) < o(x) + %hkrriloglf o(xy).
Since o(x) < oo, we get o(z) < liminfy_ o o(zk). This completes the proof
in the case p(z) < 0.

Assume now that z € X, with o(z) = oco. If liminfs_ o o(zr) = oo,
then there is nothing to show. So we can assume liminfy_,o o(xr) < oo.
Let Ao :=sup{A > 0: p(Az) < oo}. Since x € X, we have Ao > 0. Moreover,
o(z) = oo implies Ag < 1. For all A € (0, Ag) the inequality o(A\z) < oo holds, so

o(Azx) < likm inf p(Azg) < likm inf o(xy)

for all A € (0, Ag) by the first part of the proof. The left-continuity of ¢ implies
that
o(Aoz) < liminf o(wy,).

If Ay = 1, then the proof is finished. Finally we show, by contradiction, that
Ao & (0,1). So let Ag € (0,1). Choose A; € (Mg, 1) and a € (0, 1) such that

A1 — Ao
Ao

+()[+/\0=1.
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The convexity of g implies

o(\z) = g(()\l — o)z + Ao(z —xx) + )\oxk>

AL — A A
< 220 000) + g 32— an)) + dngton)
0 «
We pass to the limit k£ — oo:

AL — Ao
Ao

o(A1z) < o(Aox) + Ao li}cnig.}f o(zr) < (1 —a) lilcnlgf o(xg).

Since lim infy o(zx) < 0o, we get p(A1z) < co. But this and Ay > A¢ contra-
dict the definition of Ag. a

Remark 2.1.18. It follows from Theorem 2.1.17 that the sets
{z € X: o(z) < a} are closed for every a € [0,00). Since these sets are con-
vex, it follows that they are also closed with respect to the weak topology
of X, (cf. Sect. 1.4, Functional analysis).

Remark 2.1.19. Let ¢ be a semimodular on X. Then

. 1
lell, = jut A1+ ¢(5) )

defines a norm on X, and
lzll, < MMl < 2fl,-

This norm is called the Amemiya norm. For a proof see [307].

2.2 Conjugate Modulars and Dual Semimodular
Spaces

The dual space of a normed space X is the set of all linear, bounded func-
tionals from X to K. It is denoted by X*. It is well known that X* equipped
with the norm

2] x- := sup [{z",z)|
el <1

is a Banach space. Here we use the notation (z*,z) := z*(x). The study of
the dual of X is a standard tool to get a better understanding of the space X
itself. In this section we examine the dual space of X,.
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Lemma 2.2.1. Let ¢ be a semimodular on X. A linear functional * on X,
is bounded with respect to ||-||, if and only if there exists v > 0 such that for
every v € X,

[(z*, z)| < v(o(z) +1).

Proof. If x* € Xj and z € X, then (z*2) < ||$*||Xg zlly, <

|lx* HX; (14 o(x)) by Corollary 2.1.15. Assume conversely that the inequality

holds. Then
el < (e(mrs) )
) < vlel ) +1) <2y
‘< lzll, +e lzll, +e

for every € > 0, hence ||z*|| . < 27. O
e

Definition 2.2.2. Let ¢ be a semimodular on X. Then by X we denote the
dual space of (X, [|-[|,). Furthermore, we define ¢*: X — [0, 00] by

o™(#7) = sup ({z", 2)] = o(=)).

3
We call o* the conjugate semimodular of o.

Note the difference between the spaces X; and X,«: the former is the dual
space of X,, whereas the latter is the semimodular space defined by o*.
By definition of the functional ¢* we have

[(@", )| < o(x) + 0" (27) (2.2.3)

for all z € X, and z* € X7. This inequality is a generalized version of the
classical Young inequality.

Theorem 2.2.4. Let o be a semimodular on X. Then o* is a semimodular
on X}.
0

Proof. 1t is easily seen that o*(0) = 0, o*(A\a*) = o*(z*) for |A| = 1, and
0" (x*) = 0 for every x* € X. Let 23,27 € X; and 6 € (0,1). Then

0" (1 = 0)x} + 023) = sup (€2 = 0)ag + b7, 2)| — o(x))
< (1-0) sup (|{z5,2)| - e(@))
+ 0 sup (|(z},2)| — o(2))
rzeX
= (1—0)0"(z}) + 00" (}).

Finally, let o*(Az*) = 0 for every A > 0. For € X, choose 17 > 0 such that
o(nz) < oo. Then by (2.2.3)
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A [(®, )| < e(nz) + 0" (Ax™) = o(nx).

Taking A — oo we obtain |(z*,z)| = 0. Hence z* = 0. It remains to show
that ¢* is left-continuous. For A — 17 and z* € X} we have

lim o*(Az*) = lim sup (|[(\z*,z)| — o(x))
A—1— A—=17 zeX

sup sup (|A|[(z",2)| — o(2))
0<A<lzeX

sup (| (", )] — o(x) = ¢ (z).

Thus ¢* is left-continuous. a

For a semimodular p on X we have defined the conjugate semimodular o*
on X7. By duality we can proceed further and define ¢** the conjugate semi-
modular of ¢* on the bidual X;* := (X;)*. The functional ¢** is called the
biconjugate semimodular of o on X;*. Using the natural injection ¢ of X, into
its bidual X;*, the mapping = — 0**(vx) defines a semimodular on X, which
we call the biconjugate semimodular of o on X,. For simplicity of notation it
is also denoted by o** neglecting the extra injection ¢. In particular, we have

o™ (x) = sup (|(z", )| —o"(z")) (2.2.5)
zreXy

for all z € X,. Certainly the formula is also valid for all z € X7*, by the
definition of o** on X}*, if we interpret (z*, ) as <m7x*>X;*><Xg‘

Analogously to the fact that ¢+ : X, — XJ* is an isometry, it turns out
that the biconjugate o** and g coincide on X,.

Theorem 2.2.6. Let o be a semimodular on X. Then o** = p on X,.

Proof. Exactly as in the proof of Theorem 2.2.4 we can prove that o** is a
semimodular on X,. By definition of ¢** and (2.2.3) we get for z € X,

o (x) = sup (|(a*,2)| — 0" (2"))
z*eX
= sup (I™, @) = o*(27))
w*EX;,g*(z*)<oo
< sup (e(z) + 0" (z") — 0"(2"))
z*€X ) 0" (z*)<oo
= o(x).

It remains to show o**(x) > o(x). We prove this by contradiction. Assume to
the contrary that there exists xy € X, with o**(zo) < o(z0). In particular,
0" (xo) < 0o. We define the epigraph of g by
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epi(o) = | J {(z,7) € X, x R: v = o()}.
AER

Since p is convex and lower semicontinuous (Theorem 2.1.17), the set epi(p)
is convex and closed (cf. [58, Sect.I.3]). Moreover, due to ¢**(zg) < o(zo)
the point (zq, 0**(x¢)) is not contained in epi(g). So by the Hahn-Banach
Theorem 1.4.2 there exists a functional on X, x R which strictly separates
epi(o) from (xg, 0"*(20)). So there exist o, 3 € R and x* € X with

(2%, ) = Po(r) < a < (2", 20) = Bo™ (z0)

for all z € X,. The choice x = zg and the estimate ¢**(x¢) < o(zo) imply
B > 0. We multiply by % and get

<%7x> —o(z) < % < <%7$0> — 0" (z0)

for all x € X,. Due to (2.2.5) the right-hand side is bounded by Q*(%) Now,
taking the supremum on the left-hand side over = € X, implies

(5)<3-065)
o 3 \6 o 3)

This is the desired contradiction. O

For two semimodulars g, x on X we write o < & if o(f) < (f) for every
feXx.

Corollary 2.2.7. Let g,k be semimodulars on X. Then o < k if and only if
K* < o*.

Proof. If o < k, then by definition of the conjugate semimodular follows
easily k* < p*. If however k* < p*, then ¢** < k** and by Theorem 2.2.6
follows o < k. a

From Theorem 2.1.17 we already know that the modular ¢ is lower semi-
continuous on X, with respect to convergence in norm. This raises the
question of whether p is also lower semicontinuous on X, with respect to
weak convergence. Let fi, f € X,. As usual we say that f, converges weakly
to fif (g%, fr) — (g%, f) for all g* € X7. In this case we write fr — f.

Theorem 2.2.8. Let o be a semimodular on X, then the semimodular o is
weakly (sequentially) lower semicontinuous, i.e. if fr — f weakly in X,, then

o(f) <liminfr_ o o(fx)-

Proof. Let fi, f € X, with fi = f. Then, by Theorem 2.2.6, o = ¢**, which
implies
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o(f) =0 (f) = sup (I(g", /)] —0"(9"))
g*EXEj

= sup ( lim [(g*, fi)| — 0" (g%))
gxeXz k—o0

ghminf( sup (|<9*7fk>|_9*(9*))>

k—oo g*eX;
~ liminf o™ (fo)
= likm inf o( fx). O

In the definition of p* the supremum is taken over all z € X,. However, it
is possible to restrict this to the closed unit ball of X,.

Lemma 2.2.9. If ¢ is a semimodular on X, then

(") = sup  (|(z"2)|—o(@) = sup (|(",2)] - o(z))
€X, o], <1 r€X,,0(2)<1

Jor x* € X7 with ||x*||Xg < 1.

Proof. The equivalence of the suprema follows from the unit ball property
(Lemma 2.1.14). Let ||z*|| y. < 1. By the definition of the dual norm we have

sup ([(27,2)| — o(x)) < sup ([l2"[|x, [l2ll, - o(=))
l=],>1 llzll,>1

< sup ([lzl, - e(x)).
o, >1

If ||z[|, > 1, then o(z) > [|z||, by Corollary 2.1.15, and so the right-hand side
of the previous inequality is non-positive. Since g* is defined as a supremum,
and is always non-negative, we see that the points with |[[z[|, > 1 do not
affect the supremum, and so the claim follows. a

Since ¢* is a semimodular on X, it defines another norm |-
We next want to compare it with the norm ||| y..
e

*
o+ 0N XQ.

Theorem 2.2.10. If ¢ be a semimodular on X, then for every x* € X}
[ < Ml27 M, < 20127

Proof. We first prove the second inequality. By the unit ball property
(Lemma 2.1.14) the inequalities ||z, < 1 and o(z) < 1 are equivalent. Hence,

|z*]| . = sup [(z*,2)| < sup (o*(z*)+ o(x)) < 0" (z*) + 1.
¢ l=]l, <1 o(z)<1
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If ||lz*]|,- < 1, then o*(2*) < 1 by the unit ball property and we conclude
that ||2*|| y. < 2. The conclusion follows from this by a scaling argument: if
e

|2*]|,- > 0, then set y* := 2*/[|z*[| .. Since [ly*||,- = 1, we conclude that
"l x= < 2[ly*[|,-- Multiplying by [|*|| . gives the result.
4
Assume now that ||*( y. <1. Then by Lemma 2.2.9 and Corollary 2.1.15 (c)
4

o'(@) = sw (o) —o@) < suwp (2], - oz) <1
zE€X,,0(z)<1 z€X,,0(x)<1
Hence, [lz*[|,. < 1. The scaling argument gives [[z*[| ,. < [lz*[| . 0
e

Note the scaling argument technique used in the previous proof. It is one
of the central methods for dealing with these kind of spaces, and it will be
used often in what follows.

With the help of the conjugate semimodular o* it is also possible to define
yet another norm on X, by means of duality. Luckily this norm is equivalent
to the norm ||| ,.

Theorem 2.2.11. Let ¢ be a semimodular on X. Then

][}, = sup {|(z*, )| : 2" € X, ||=*

*

= sup{|<a:*,x>|: z* e X;,Q*(Z‘ )

defines a norm on X,. This norm is called the Orlicz norm. For all x € X,
we have |lo]], < llo]l, < 2z,
Proof. By the unit ball property (Lemma 2.1.14) the two suprema are equal.
If lzf], < 1T and |lz*[|,- <1, then o(x) <1 and ¢*(z*) < 1. Hence, |(z,2)| <
o(z) + o*(z*) < 2. Therefore ||a:||/g < 2. A scaling argument proves ||x||/g <
2|l -

If |lz], < 1, then [(z*,z)| < 1 for all 2* € X} with [|z*]|,, < 1. In
particular, by Theorem 2.2.10 we have |(z*,z)| < 1 for all z* € X with
||a:*||Xg < 1. Hence, Corollary 1.4.3 implies ||z[|, < 1. We have thus shown

that |zl < 2] 0

2.3 Musielak—Orlicz Spaces: Basic Properties

In this section we start our journey towards more concrete spaces. Instead
of general semimodular spaces, we will consider spaces where the modular is
given by the integral of a real-valued function.

Definition 2.3.1. A convex, left-continuous function ¢: [0,00) — [0, 0]
with ¢(0) = 0, lim; o+ ¢(t) = 0, and limy;_, ¢(t) = oo is called a ®-function.
It is called positive if p(t) > 0 for all ¢ > 0.
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In fact, there is a very close relationship between ®-functions and semi-
modulars on R.

Lemma 2.3.2. Let ¢: [0,00) — [0,00] and let o denote its even extension
to R, i.e. o(t) := (|t]) for all t € R. Then ¢ is a ®-function if and only if o
is a semimodular on R with X, = R. Moreover, ¢ is a positive ®-function if
and only if o is a modular on R with X, = R.

Proof. “=": Let ¢ be a ®-function. Since lim,; o+ ¢(t) = 0, we have X, = R.
To prove that ¢ is a semimodular on R it remains to prove that o(Atg) = 0
for all A > 0 implies £y = 0. So assume that p(Atg) = 0 for all A > 0.
Since lim;— . ¢(t) = o0, there exists ¢; > 0 with ¢(t1) > 0. Thus there
exists no A > 0 such that t; = Atg, which implies that t; = 0. Hence o
is a semimodular. Assume that ¢ is additionally positive. If o(s) = 0, then
©(|s|) = 0 and therefore s = 0. This proves that g is a modular.

“<": Let ¢ be a semimodular on R with X, = R. Since X, = R, there
exists t2 > 0 such that p(t2) < oo. From (2.1.5) follows that
0 < p(t) < t/tap(ta) for all t € [0,¢2], which implies that lim,_ g+ ¢(t) = 0.
Since 1 # 0, there exists A > 0 such that o(A-1) # 0. In particular there
exists t3 > 0 with ¢(t3) > 0 and @p(kts) = ke(ts) > 0 by (2.1.5) for all
k € N. Since k is arbitrary, we get lim;_,o ¢(t) = 0o. We have proved that
p is a ®-function. Assume additionally that ¢ is a modular. In particular
o(t) = ¢(|t]) = 0 implies ¢t = 0. Hence by negation we get that ¢ > 0 implies
p(t) > 0, so ¢ is positive. O

Let us remark that if ¢ is a ®-function then on the set {t > 0: ¢(t) < 0o}
it has the form

t

o) = / a(r)dr, (2.3.3)

0

where a(t) is the right-derivative of ¢(t) (see [330], Theorem 1.3.1). Moreover,
the function a(t) is non-increasing and right-continuous.

The following lemma is an easy consequence of the left-continuity, convex-
ity, and monotonicity of ¢. However, it is also possible to use Lemma 2.3.2
and Theorem 2.1.17 to prove this.

Lemma 2.3.4. Every ®-function is lower semicontinuous.
Example 2.3.5. Let 1 < p < co. Define

1
t) = —tP,
©p(t) D

Poo(t) 1= 00 X(1,00) (1)
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for all t > 0. Then ¢, and ¢, are ®-functions. Moreover, ¢, is continuous
and positive, while ¢ is only left-continuous and lower semicontinuous but
not positive.

Remark 2.3.6. Let ¢ be a ®-function. As a lower semicontinuous function
o satisfies

¢(inf A) <infp(A)

for every non-empty set A C [0,00). The reverse estimate might fail as the
example o with A := (1, 00) shows. However, for every A > 1 we have

inf p(A) < o(Xinf A).

Indeed, if inf A = 0, then the claim follows by lim;_o+ ¢(¢) = 0. If inf A > 0,
then we can find ¢t € A such that inf A < ¢ < Ainf A. Now, the monotonicity
of ¢ implies inf p(A) < ¢(t) < p(Ainf A).

Remark 2.3.7. Let ¢ be a ®-function. Then, as a convex function, ¢ is

continuous if and only if ¢ is finite on [0, 00).

The following properties of ®-functions are very useful:
(2.3.8)

for any r € [0,1], s € [1,00) and ¢ > 0 (compare with (2.1.5)). This is a
simple consequence of the convexity of ¢ and ¢(0) = 0. Inequality (2.3.8)
further implies that ¢(a) + ¢(b) < fp¢(a+b) + aibgo(a +b) = p(a+0b) for
a+b > 0 for all a,b > 0 which combined with convexity yields

p(a) + o(b) < p(a+b) < 5(p(2a) + (2b)).

Although it is possible to define function spaces using ®-functions, these
are not sufficiently general for our needs. In the case of variable exponent
Lebesgue spaces (see Chap. 3) we need our function ¢ to depend also on the
location in the space. So we need to generalize ®-functions in such a way that
they may depend on the space variable.

Definition 2.3.9. Let (A4,%, 1) be a o-finite, complete measure space. A
real function ¢: A x [0, 00) — [0, c0] is said to be a generalized ®-function on
(A, %, p) if:

(a) ¢(y,-) is a ®-function for every y € A.

(b) y+— ¢(y,t) is measurable for every ¢t > 0.

If ¢ is a generalized ®-function on (A, X, u), we write p € ®(A,u). If Q
is an open subset of R™ and p is the n-dimensional Lebesgue measure we
abbreviate this as ¢ € ®(Q) or say that ¢ is a generalized ®-function on €.
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In what follows we always make the natural assumption that our measure
1 is not identically zero.

Certainly every ®-function is a generalized ®-function if we set p(y,t) :=
o(t) for y € A and ¢t € [0,00). Also, from (2.3.8) and Lemma 2.3.4 we see
that ¢(y, ) is non-decreasing and lower semicontinuous on [0, 00) for every
ye A

We say that a function is simple if it is the linear combination of charac-
teristic functions of measurable sets with finite measure, Zle sixa, (z) with
(A1), ..., u(Ag) < 00, s1,. .., € K. We denote the set of simple functions
by S(A, p). If © is an open subset of R™ and p is the n-dimensional Lebesgue
measure we abbreviate this by S(Q).

We next show that every generalized ®-function generates a semimodular
on LO(A, p).

Lemma 2.3.10. If ¢ € ®(A,u) and f € L°(A, u), then y — o(y,|f(y)|) is
u-measurable and

0o(f) = / o, 1F @) du(y)

A

is a semimodular on L°(A, ). If ¢ is positive, then g, is a modular. We call
0, the semimodular induced by ¢.

Proof. By splitting the function into its positive and negative (real and imag-
inary) part it suffices to consider the case f > 0. Let fi ' f point-wise where
fr are non-negative simple functions. Then

ey | iy Z ey, a5)  xar(y),

which is measurable and ¢(y, fx(v)) /" ©(y, f(y)). Thus ¢(-, f(-)) is measur-
able.

Obviously, 0,(0) = 0 and g,(Ax) = g,(z) for |A\| = 1. The convexity
of o, is a direct consequence of the convexity of ¢. Let us show the left-
continuity of g,: if Ay — 17 and y € A, then 0 < o(y, A f(v)) — ¢(y, f(y))
by the left-continuity and monotonicity of ¢(y, -). Hence g, (Axf) — 0, (f), by
the theorem of monotone convergence. So g, is left-continuous in the sense
of Definition 2.1.1 (d).

Assume now that f € L°(A,p) is such that g,(Af) = 0 for all A > 0.
So for any k € N we have ¢(y,kf(y)) = 0 for almost all y € A. Since N is
countable we deduce that ¢(y, kf(y)) = 0 for almost all y € A and all k € N.
The convexity of ¢ and ¢(y,0) = 0 imply that p(y, A\f(y)) = 0 for almost all
y € A and all A > 0. Since limy—,o p(y,t) = oo for all y € A, this implies
that | f(y)| = 0 for almost all y € A, hence f = 0. So g, is a semimodular
on LO(A, p).
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Assume now that ¢ is positive and that g,(f) = 0. Then ¢(y, f(y)) =0
for almost all y € A. Since ¢ is positive, f(y) = 0 for almost all y € A, thus
f = 0. This proves that g, is a modular on L°(A, y). O

Since every ¢ € ®(A, ) generates a semimodular it is natural to study
the corresponding semimodular space.

Definition 2.3.11. Let ¢ € ®(A, 1) and let g, be given by

0o(f) = / o 1F @) du(y)

A

for all f € LY(A, u). Then the semimodular space

(LA 1), = {f € LA, p): Jim 0,(Af) = 0}
={f € LA, p): 0,(\f) < oo for some A >0}

will be called Musielak—Orlicz space and denoted by L¥ (A, ) or L¥, for short.
The norm ||-||Q¢ is denoted by ||-[|,,, thus

11, = inf {3 > 0: 0, () <1}

The Musielak—Orlicz spaces are also called generalized Orlicz spaces. They
provide a good framework for many function spaces. Here are some examples.

Example 2.3.12. Let (A, X, i) be a o-finite, complete measure space.

(a) The (semi)modulars given in Example 2.1.4 (a)—(c) give rise to (weighted)
Lebesgue spaces.
(b) Let ¢ be a ®-function. Then

00(f) = / S W))) duy)
A

is a semimodular on L°(A, ). If ¢ is positive, then ¢ is a modular on
LO(A, 1) and the space L¥(A, p) is called an Orlicz space.
With suitable choices of ¢, A and p, this includes all modulars in
Example 2.1.4 except (f).

(c¢) Example 2.1.4 (f) is not a Musielak—Orlicz space.

As a semimodular space, L¥ = (L%, |||| ;) is a normed space, which, in
fact, is complete.

Theorem 2.3.13. Let ¢ € (A, ). Then L¥Y(A, u) is a Banach space.
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Before we get to the proof of Theorem 2.3.13 we need to prove two useful
lemmas.

Lemma 2.3.14. Let ¢ € ®(A, p) and p(A) < co. Then every ||-[|,-Cauchy
sequence is also a Cauchy sequence with respect to convergence in measure.

Proof. Fix e > 0 and let V; := {y € A: p(y,t) =0} for t > 0. Then V; is
measurable. For all y € A the function ¢ — ¢(y,t) is non-decreasing and
lim; 00 p(y,t) = 00, so V; \, 0 as t — oo. Therefore, limy_, o u(Vi) =
w(0) =0, where we have used that u(A) < co. Thus, there exists K € N such
that u(Vk) < e. Note that if ¢ is positive then V; = () for all ¢ > 0 and we
do not need this step in the proof.

For a pu-measurable set ¥ C A define

v (E) == 0o(K XE) = /so(va) dp(y)-
E

If £ is p-measurable with vi (F) = 0, then ¢(y, K) = 0 for py-almost every
y € E. Thus u(E \ Vi) = 0 by the definition of V. Hence, E is a 1| 4\ v~
null set, which means that the measure y1|4\v, is absolutely continuous with
respect to vg.

Since (A \ Vi) < u(A) < oo and 1| 4\ v is absolutely continuous with res-
pect to v, there exists 6 € (0, 1) such that vg (F) < J implies u(E\ Vi) <e
(cf. [184, Theorem 30.B]). Since fy is a ||-|| -Cauchy sequence, there exists
ko € N such that [|[K e 1671 (f, — fe)ll, < Lfor all m, k > ko. Assume in the
following m, k > ko, then by (2.1.5) and the norm-modular unit ball property
(Lemma 2.1.14)

Q@(Kgil(fm - fk)) < 594,0(K571571(fm - fk)) < d.

Let us write Ep, ke :={y € A: |fm(y) — fx(y)| = €}. Then

VK(Em,k,e) = / SD(yv K) dﬂ(y) < Qp (Kgil(fm - fk:)) < d.

Enz,k’,s

By the choice of §, this implies that pu(Ep ke \ Vx) < . With u(Vk) < ¢
we have pu(En k) < 2¢. Since € > 0 was arbitrary, this proves that fj is a
Cauchy sequence with respect to convergence in measure.

If || fxll, — O, then as above there exists K € N such that p({|fx| > €}) <2e
for all £ > K. This proves fiy — 0 in measure. O

Lemma 2.3.15. Let ¢ € ®(A, ). Then every ||-||,-Cauchy sequence (fx) C
L% has a subsequence which converges u-almost everywhere to a measurable
Sfunction f.
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Proof. Recall that p is o-finite. Let A = Ufil A; with A; pairwise disjoint
and p(A;) < oo for all ¢ € N. Then, by Lemma 2.3.14, (fx) is a Cauchy
sequence with respect to convergence in measure on A;. Therefore there
exists a measurable function f: A; — K and a subsequence of f; which
converges to f p-almost everywhere. Repeating this argument for every A;
and passing to the diagonal sequence we get a subsequence (fy,) and a
p-measurable function f: A — K such that fi, — f p-almost everywhere. 0O

Let us now get to the proof of the completeness of L¥.

Proof of Theorem 2.3.13. Let (fr) be a Cauchy sequence. By Lemma 2.3.15
there exists a subsequence fy, and a p-measurable function f: A — K such
that fi, — f for y-almost every y € A. This implies ¢(y, |fr;(y) — f(y)) — 0
p-almost everywhere. Let A > 0 and 0 < ¢ < 1. Since (fx) is a Cauchy
sequence, there exists K = K(A,¢) € N such that [[A(fim — fi)[l, < & for all
m, k > N, which implies 0, (A(fm — f&)) < € by Corollary 2.1.15. Therefore
by Fatou’s lemma

2o (A(fm = ) = /jliggo oy Alfm(y) = fi, W)1) dpaly)

A

< 1ijrgggf/so(y,A|fm(y) — fr; ()]) d(y)
A

<e.

So 0p(A(fm — f)) — 0 for m — oo and all A > 0 and |[fx — f||, — 0 by
Lemma 2.1.9. Thus every Cauchy sequence converges in L¥, as was to be
shown. a

The next lemma collects analogues of the classical Lebesgue integral
convergence results.

Lemma 2.3.16. Let p € ®(A,pn) and fi, f,g € L°(A, u).

(a) If fx — f w-almost everywhere, then o, (f) < lminfr_ o 0, (fr)-

(b) If | fx] /" |f| p-almost everywhere, then o, (f) = limg— o0 00 (fi)-

(¢) If fr — f p-almost everywhere and |fi| < |g| p-almost everywhere, and
0p(Ag) < o0 for every A >0, then fi, — f in L¥.

These properties are called Fatou’s lemma (for the modular), monotone
convergence and dominated convergence, respectively.

Proof. By Lemma 2.3.4 the mappings ¢(y, -) are lower semicontinuous. Thus
Fatou’s lemma implies
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0a(1) = [ . Jim 5] du(w)

A

< [ timinf (o)) du)
A

<timinf [ ol 1)) duy)
A
= hkn_l,gf Q¢ (fx)-

This proves (a).

To prove (b) let |fx| /' |f]. Then by the left-continuity and monotonicity
of v(y,-), we have 0 < (-, |fe()]) /" ¢(-, |f(-)]) almost everywhere. So, the
theorem of monotone convergence gives

0o(1) = [ oty Jim (o)) duty)

A

= [ Jim (. ) duy)

A

Jim. / oy, [frW)]) du(y)
A

= kli»ngo an(fk)-

To prove (c) assume that fr — f almost everywhere, |fx| < |g|, and
0(Ag) < oo for every A > 0. Then |f; — f| — 0 almost everywhere, |f| < |g|
and |fi — f| < 2|g]. Since p,(2Ag) < 00, we can use the theorem of dominated
convergence to conclude that

i 0,7 = fu) = [ (o Jim MF@) = 5u(w)]) dutw) = 0

A

Since A > 0 was arbitrary, Lemma 2.1.9 implies that f; — f in L¥. a

Let us summarize a few additional properties of L?. Properties (a), (b),
(c) and (d) of the next theorem are known as circularity, solidity, Fatou’s
lemma (for the norm), and the Fatou property, respectively.

Theorem 2.3.17. Let ¢ € ®(A, p). Then the following hold.

(@) IIfll, = |1/l H@ for all f € L¥.
(b) If f € L?, g € L°(A,p), and 0 < |g| < |f| p-almost everywhere, then
g € L¥ and g, < [If],-
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(¢) If f — [ almost everywhere, then | f||, < liminfr.oo || f&| -
(d) If|fel /" |f| p-almost everywhere with fr € L¥(A, p) and supy, || x|l ,<oo,
then f € L#(A, p) and || fxll, /" [If]l,-

Proof. The properties (a) and (b) are obvious. Let us now prove (c).
So let fr — f p-almost everywhere. There is nothing to prove for
liminfy oo || f[|, = 0o. Let A > liminfy .o || k|- Then || fi[|, < A for large
k. Thus by the unit ball property o,(fi/A) < 1 for large k. Now Fatou’s
lemma for the modular (Lemma 2.3.16) implies o0,(f/A) < 1. So | f[|, < A
again by the unit ball property, which implies || ||, < liminfx— oo || fil[,,-

It remains to prove (d). So let |fx| " |f| p-almost everywhere with
supy, || frl|, < oo. From (a) and (c) follows | f[|, < liminfyc [/fill, <
supy, || f[l, < oo, which proves f € L¥. On the other hand [fx|  [f| and (b)
implies that | foll, / limsupy__ [full, < IfIl,. Thus lmy o | fill, =
11, and Ll 2 F1L 0

2.4 Uniform Convexity

In this section we study sufficient conditions for the uniform convexity of a
modular space X, and the Musielak—Orlicz space L¥. We first show that the
uniform convexity of the ®-function implies that of the modular; and that
the uniform convexity of the semimodular combined with the As-condition
implies the uniform convexity of the norm. The section is concluded by
some further properties of uniformly convex modulars. Let us start with the
As-condition of the ®-function and some implications.

Definition 2.4.1. We say that ¢ € ®(A,u) satisfies the Ag-condition if
there exists K > 2 such that

e(y,2t) < Ko(y,t)

for all y € A and all ¢ > 0. The smallest such K is called the As-constant
of ¢.

Analogously, we say that a semimodular ¢ on X satisfies the Ay-condition
if there exists K > 2 such that o(2f) < K o(f) for all f € X,. Again, the
smallest such K is called the As-constant of o.

If ¢ € ®(A, p) satisfy the Ag-condition, then g, satisfies the As-condition
with the same constant. Moreover, o, satisfies the weak Aj-condition for
modulars, so by Lemma 2.1.11 modular convergence and norm convergence
are equivalent; and E C L?(Q, u) is bounded with respect to the norm if and
only if it is bounded with respect to the modular, i.e. sup ;¢ || f|| < oo if and
only if sup se i 0, (f) < oo.

Corollary 2.1.15 shows that a small norm implies a small modular. The
following result shows the reverse implication.
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Lemma 2.4.2. Let ¢ be a semimodular on X that satisfies the Ag-condition.
Let K be the Ag-constant of 0. Then for every e >0 there exists § =0(e, K) >0
such that o(f) <& implies || f||, <e.

Proof. For e > 0 choose j € N with 277 < e. Let 6 := K7 and o(f) < 6. Then
0(27f) < K7o(f) < 1 and the unit ball property yields [|f[|, < 27i<e. O

Lemma 2.4.3. Let ¢ be a semimodular on X that satisfies the Ao-condition
with constant K. Then g is a continuous modular and for every e > 0 there
exists § = 6(g, K) > 0 such that o( f) < 1—¢ implies || f||, < 1-0 for f € X,.

Proof. If o(f) =0, then (2™ f) < K™p(f) = 0, where K is the Ag-constant
of . This proves f = 0, so ¢ is a modular. We already know that o is left-
continuous, so it suffices to show o(z) = limy_,;+ g(Az). By monotonicity we
have o(z) < liminfy_,+ o(Az). It follows by convexity of o that

o(af) < (2—a)e(f) + (a—1)o(2f) < ((2—a) + K(a—1))o(f)

<
< (14 (K = D{a—1)e(f)
for every a € [1,2]. Hence o(x) > liminfy_ + o(Az), which completes the
proof of continuity.

Let ¢ > 0 and f € X, with o(f) < 1 —¢€. Fix a = a(K,¢) € (1,2) such
that the right-hand side of the previous inequality is bounded by one. Then
o(af) < 1 and the unit ball property implies [|af|[, < 1. The claim follows

with 1 — 4§ := % O

In the previous sections we worked with general ¢ € ®(A,u). The
corresponding Musielak—Orlicz spaces include the classical spaces LP with
1 < p < oo, see Example 2.1.8. Sometimes, however, it is better to work with
a subclass of ®(A, u), called N-functions. These functions will have better
properties (N stands for nice) but the special cases p = 1 and p = oo are
excluded. This corresponds to the experience that also in the classical case
the “borderline” cases p = 1 and p = oo are often treated differently.

Definition 2.4.4. A ®-function ¢ is said to be an N-function if it is
continuous and positive and satisfies lim;_, ‘p( ) =0 and limy_, o0 @ = 00.
A function ¢ € ®(A, ) is said to be a genemlzzed N-function if ¢(y,-) is
for every y € Q an N-function.
If p is a generalized N-function on (A, p1), we write ¢ € N(A, ) for short.
If © is an open subset of R™ and p is the n-dimensional Lebesgue measure
we abbreviate p € N(Q).

Definition 2.4.5. A function ¢ € N(A, ) is called uniformly convez if for
every € > 0 there exists § > 0 such that

u+1}> < (1 —5)<p(y’U) +<p(y,v)

|lu —v| < emax {u,v} or <p(y, 5 5

for all u,v > 0 and every y € A.
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Remark 2.4.6. If p(z,t) = t? with ¢ € (1,00), then ¢ is uniformly convex.
To prove this, we have to show that for u,v > 0 the estimate |u —v| >
emax {v,u} implies (“£2)? < (1 —§(e))% (uq + v7) with §(e) > 0 for every
e > 0. Without loss of generality we can assume ¢ € (0, %) By homogeneity
it suffices to consider the case v =1 and 0 < u < 1. So we have to shovxlz th%t
u € [0,1—¢) implies (14%)7 < (1—6(e))5(1+u?). Define f(r) := 2! qglizz)
Then f is continuous on [0,1] and has its maximum at 1. This proves as
desired f(u) < d(e) for all w € [0,1 — ¢€).

It follows by division with ¢ that ¢(x,t) = %tq with 1 < ¢ < oo is also
uniformly convex.

Definition 2.4.5 is formulated for u,v > 0. However, the following lemma
shows that this can be relaxed to values in K.

Lemma 2.4.7. Let ¢ € N(A, ) be uniformly convex. Then for every ea > 0
there exists 0o > 0 such that

a;rbD < _52)<p(y, lal) -QHD(% [b1)

la—b| < comax{lal, b} or (v,

for all a,b € K and every y € A.

Proof. Fix 2 > 0. For € := €3/2 let 6 > 0 be as in Definition 2.4.5. Let
la —b] > eamax {|al,[b[}. If ||a] — |b]| > emax{|al, ||}, then the claim fol-
lows by |a+b|] < |a| + |b] and choice of § with d2 = J. So assume in the
following ||a| — |b|| < e max {|al, |b|}. Then

|a = b] > e2 max {[al, [b|} = 2e max {|a], [b[} > 2[[a] —[b]]

Therefore,

‘a—&-b‘z_ al® |b|2_‘a—b‘2

2 2 2 2
<ol P ‘ ""_(Ial—lbl>2
s 2 2 4 2
la| + |b]

( |b ) 3 a—b‘
2 41 2 '
Since |a — b|] > eamax {|al, |b|} > e2(]a| + |b])/2, it follows that
a+bp? 3e2\ /lal + |b]\2
< (1—2=2) ()
‘ 2 ‘ = (1 16)( 2 )

Let 8 := 1 — /1= 22 > 0, then |%$2| < (1 — &) 2 This, (2.1.5) and

the convexity of ¢ 1mply
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a+b a+b 7a + ’b
o (v, ])<<1_52>¢(y,L2||)<(1_52)¢<y||> o)

2 2
Remark 2.4.8. If u, v € K satisfies |a — b| < e2 max {|al, |b|} with e2 € (0,1),
then Ia—;b‘ < 52% and by the convexity of ¢ follows

(y7 |a;b|) <o, 2 Ial);@(y, o) (2.4.9)

Therefore, we can replace the first alternative in Lemma 2.4.7 by the weaker
version (2.4.9).

We need the following concept of uniform convexity for the semimodular.

Definition 2.4.10. A semimodular g on X is called uniformly convex if for
every € > 0 there exists § > 0 such that

Q(f—g)ggg(fHQ(g) or Q(f+g><(1_5)9(f);9(9)

2 2 2

for all f,g € X,.

Theorem 2.4.11. Let ¢ € N(A,p) be uniformly convex. Then o, is uni-
formly conver.

Proof. Let 2,62 > 0 be as in Lemma 2.4.7 and let € := 2¢e5. There is nothing
to show if g, (f) = 00 or p,(g) = co. So in the following let g, (f), 0, (g) < oo,
which implies by convexity o ;g ), ( 1) < oo.

Assume that Q¢(u) > 5~M We show that

w(%) < (1—%)@

which proves that o, is uniformly convex. Define

E:= {y e A |f(y) —g(y)| > %maX{lf(y)L Ig(y)l}}

It follows from Remark 2.4.8 that (2.4.9) holds for almost all y € A\ E. In
particular,

f- g) < g exanf) + op(xavsg) _ € 0p(f) + 05(9)
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This and Qw(%) > 5% imply

w(XEf;g) _ w(%) B QLp(XA\Ef;g) - gw(f);w(g)_
(2.4.12)

On the other hand it follows by the definition of F and the choice of §; in
Lemma 2.4.7 that

00 (XEf;g> < (1 — 5y 2exES) ; 25(xE9) (2.4.13)

We estimate

20(f) + 04(9) _Qw<f+g> 5 2e(xef) + 00 (xr9)

f+g>
2 2 2 ’

— Q¢ (XE B
where we have split the domain of the involved integrals into the sets F and
A\ E and have used 1 (o(f) + ¢(9)) — @(%ﬁ) > 0on A\ E. This, (2.4.13),

the convexity and (2.4.12) imply

024 (f) ;r 05(9) Qw(f;_g) S 6, 04(XE[) ;r 24(XEY)
> 52Q¢(XE¥)

S % Qsa(f) + ng(g).

Z O
2 2

The question arises if uniform convexity of the semimodular g implies the
uniform convexity of X,. This turns out to be true under the As-condition.

Theorem 2.4.14. Let o be a uniformly convex semimodular on X that satis-
fies the Ag-condition. Then the norm |||, on X, is uniformly convex. Hence,
X, is uniformly convex.

Proof. Fix ¢ > 0. Let z,y € X with [lz[/,, [y, < 1 and [z —y|, > e
Then ||%5¥|| > § and by Lemma 2.4.2 there exists a = a(e) > 0 such that
o(*5%) > a. By the unit ball property we have o(z), o(y) < 1, so o(*5%) >
aw. Since g is uniformly convex, there exists 8 = 3(«) > 0 such that
Q(%ﬁ) < (1 - B)W < 1 — (. Now Lemma 2.4.3 implies the existence
of 6 = §(K, ) > 0 with ||%E||Q < 1 — 4. This proves the uniform convexity

of |1l 0

Remark 2.4.15. If ¢ € N(A,p) is uniformly convex and satisfies the
Asg-condition, then it follows by the combination of Theorems 2.4.11 and
2.4.14 that the norm ||-||, of L¥(A, p1) is uniformly convex. Hence, L¥(A, p1)
is also uniformly convex.
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We will later need that the sum of uniformly convex semimodulars is again
uniformly convex.

Lemma 2.4.16. If g1, 02 are uniformly conver semimodulars on X, then
0 := o1 + 02 is uniformly convex.

Proof. If € > 0, then there exists § > 0 such that

u(150) <880 o o (120) (oo palf) e

2 2 2 2

for j = 1,2. We show that

Q(fgg><289(f);r9(g) or Q(%><(1_5E)Q(f);9(g)

9

since this proves the uniform convexity of p. Fix f and g and assume that
o ﬂ) >2 EM Without loss of generality, we can assume that Ql(ﬂ)
92( ) for this specific choice of f and g. Therefore, 3 ( L= 59) > 5M>

w So the choice of § implies

o1 (%) <(1- 5)w.

Taking into account the convexity of g2, we obtain

f+yg o(f)+olg) .o1(f)+oi(g)
Q( 2 )g 2 -0 2 '

Since £ (f)-‘rQl(g) > o0 (LQ) > 80(f)+0(g) this implies

Q(%) <(1_56)9(f)-2w(9). -

It is well known that on uniformly convex spaces weak convergence
xp, — x combined with convergence of the norms ||z || — ||z| implies strong
convergence x; — . The following lemma is in this spirit.

Lemma 2.4.17. Let o be a uniformly conver semimodular on X . Let xy,x €
X, such that v, — z, o(zr) — o(z) and p(x) < co. Then

o(257) o




48 2 A Framework for Function Spaces

Proof. We proceed by contradiction. Assume that the claim is wrong and
there exists € > 0 and a subsequence xy; such that

Q(mkj; m) >e (2.4.18)

for all 7 € N. Since g is uniformly continuous, there exists é > 0 such that

Q(m;;m)<€ or Q(ack;-$><(l_5) Q(ﬁ:);@(m)

In particular, our subsequence always satisfies the second alternative. Together
with 1 (z +2) — =, the weak lower semicontinuity of o (Theorem 2.2.8) and
o(x) — o(x) implies that

< (1— 6) liming 280) F 2(@) ); o(2)
J—00

T 1T — (1-6)o(x).

o(x) < liminf 9(

J—00

Using o(x) < oo we get o(z) = 0. It follows by convexity and o(z) — o(x)
that

2 2
for n — oo. This contradicts (2.4.18). O

Remark 2.4.19. If p satisfies the (weak) As-condition, then under the con-
ditions of the previous lemma, o(A(xy —x)) — 0 for all A > 0 and 2 — = in
X, by Lemma 2.1.11.

2.5 Separability

We next prove basic properties of Musielak—Orlicz spaces that require some
additional structure. Since these properties do not even hold for the full range
p € [1,00] of classical Lebesgue spaces, it is clear that some restrictions are
necessary. In this section we consider separability.

We first define some function classes related to L¥. The set E¥ of finite
elements will be later important in the approximability by simple functions,
see Theorem 2.5.9.

Definition 2.5.1. Let p € ®(A, u). The set

Lic =L{o (A p) :={f €L¥: 0,(f) < o0} (2.5.2)
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is called the Musielak—Orlicz class. Let

E¥ :=FE?A,p) :={f € L¥: o,(\f) < oo for all A > 0}. (2.5.3)

The elements of E¥(A, u) are called finite.
Let us start with a few examples:

(a) Let o(y,t) =t with 1 <p < co. Then E¥ = L§, = L¥ = LP.
(b) Let @(yﬂf) =00 X(l,oo)(t) Then

E? = {0},
LEo =A{f:|f] <1 almost everywhere},
L?Y = L.

(c¢) Let o(y,t) = exp(t) — 1 and Q = (0,1). Then ¢ € ®(N) is positive and
continuous but E¥ # L. # L¥. Indeed, if f := > 7, %X(z—k)Q—k+l),
then f e LY.\ E¥ and 2f € L¥ \ L] ..

By definition of E¥, L., and L¥ it is clear that E¥ C L§, C L¥.
Moreover, by convexity of ¢ the set LY is convex and the sets E¥ and L¥
are linear subspaces of L9. There is a special relation of E¥ and L¥ to L
E? is the biggest vector space in L§, and L¥ is the smallest vector space
in L° containing Lic.

In some cases the inclusions E¥ C L§,, C L¥ are strict and in other cases
equality holds. In fact, it is easily seen that E¥ = L§ ., = L¥ is equivalent
to the implication f € L, = 2f € L§.. The Ay-condition (see Defini-
tion 2.4.1) implies that o, (2™ f) < K™p,(f), where K is the Ag-constant,
from which we conclude that

E¥ (A p) = LSC(A’ p) = L¥(A, p).

Remark 2.5.4. The set E¥ is a closed subset of L¥. Indeed, let fr, — f
in LY with fi € E¥. For A > 0 we have g,(2\(fx — f)) — 0 as k — oc.
In particular, o,(2A(fr, — f)) < 1 for some ky. By convexity o,(Af) <
206 (2A(fin — [)) + 304,(2A fry) < 3 + 20,(2Afr,) < o0, which shows that
feE”.

In the approximation of measurable functions it is very useful to work with
simple functions. To be able to approximate a function f by simple functions
we have to assume an additional property of ¢:

Definition 2.5.5. A function ¢ € ®(A, u) is called locally integrable on A if
0,(txE) < oo for all t > 0 and all g-measurable £ C A with p(EF) < oo.

Note that local integrability in the previous definition differs from the one
used in L, where we assume integrability over compact subsets.

If p € ®(A, p) is locally integrable, then the set of simple functions S(A, p)
is contained in E¥. Actually, the property S(A, ) C E¥ is equivalent to the
local integrability of .
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Example 2.5.6. Let ¢ € ®(A, u) with ¢(y,t) = 9(t) where ¢ is a contin-
uous P-function. Then ¢ is locally integrable. Indeed, due to the continuity
we know that ¢t — (t) is everywhere finite on [0, 00). Therefore, g, (txr) =
w(E)p(t) < oo for all t > 0 and p(F) < oo.

Proposition 2.5.7. Let p € ®(A, u) be locally integrable. Then for every
A >0 and € > 0 there exists 6 > 0 such that p(E) < 6 implies p,(AxE) < &
and [|xs|, < 3-

Proof. We begin with the proof of p,(Axe) < € by contradiction. Assume
to the contrary that there exist A > 0 and € > 0 and a sequence (Ef)
such that pu(Ey) < 27F and 0,(Axg,) > €. Let Gy, := Uo_, Em, and note
that u(Gy) < Yoo, 27™ = 217%F — 0 as k — oo. Since ¢ is locally inte-
grable and p(G1) <1, we have g,(Axa,) < co. Moreover, Axg, < Axg, and
Axc, — 0 almost everywhere. Thus, we conclude by dominated convergence
that o, (Axa,) — 0. This contradicts o, (Axa,) = 0o(AXxE,) > € for every k.

The claim |[xg[, < 1 follows from g,(Axg) < € by the choice e = 1 and
the unit ball property. a

Remark 2.5.8. If f € L¥ has the property that ||XEkf||<p — 0 if Ex\,0,
then we say that f has absolutely continuous norm. If follows easily by
dominated convergence (Lemma 2.3.16) that every f € E¥ has absolutely
continuous norm.

Theorem 2.5.9. Let ¢ € ®(A, n) be locally integrable and let S := S(A, )
be the set of simple functions. Then 3“”’ = E?(A, pn).

Proof. The local integrability implies that S C E¥. Since E¥ is closed by
Remark 2.5.4, it suffices to show that every f € E¥ is in the closure of S.
Let f € E¥ with f > 0. Since f € L(A), there exist fr, € S with 0 < fr /' f
almost everywhere. So fi, — f in L® by the theorem of dominated con-
vergence (Lemma 2.3.16). Thus, f is in the closure of S. If we drop the
assumption f > 0, then we split  into positive and negative parts (real and
imaginary parts) which belong again to E¥. a

We now investigate the problem of separability of E¥. Let (A4,%, u) be
a o-finite, complete measure space. Here, we need the notion of separable
measures: recall that a measure p is called separable if there exists a sequence
(Ex) C X with the following properties:

(a) u(Ey) < oo for all k € N.

(b) For every E € ¥ with p(E) < oo and every € > 0 there exists an index
k such that u(EAEL) < e, where A denotes the symmetric difference
defined through EAE) := (E\ E;) U (E; \ E).

For instance the Lebesgue measure on R™ and the counting measure on Z"
are separable. Recall that a Banach space is separable if it contains a dense,
countable subset.



2.5 Separability 51

Theorem 2.5.10. Let ¢ € ®(A, u) be locally integrable and let p be separa-
ble. Then E¥(A, ) is separable.

Proof. Let Sy be the set of all simple functions g of the form g = Zle aiXE;
with a; € Q and FE; is as in the definition of a separable measure. By Theorem
2.5.9 it suffices to prove that Sy is dense in S. Let f € S. Then we can write
f in the form f = Zle bixp, with b; € R, B; € ¥ pairwise disjoint and
w(B;) < oo. Let A > 0 be arbitrary and define b := maxigi<k |bs|. Since
@ is locally integrable, we know by Proposition 2.5.7 that the integral of
y — p(y,4kAb) is small over bmall sets. Hence, by the separability of u we
find measurable sets F; of finite measure such that

s By
o(y, 4kAb) du(y) < 1.

E;, AB;
Ji

Let B := U;C:l B;. Then [ o(y,2Mn) du(y) — 0 for n — 0, since p(B) <
and ¢ is locally integrable. Let § > 0 be such that [ ¢(y,2)X)du(y) <
Choose rational numbers a1, ..., ay such that |b; — a;| < § and |a;| < 2b for

i=1,...,k. Let g:= Zle ai Xg;,- Then

00
1.

If—gl= +

k k
> (i —ai)xs |+ Y _ai(xs —xz,)
i=1 i=1

k k
Z |b; — ailxB, + Z |ai| XE;, aB;
=1 =1
k
<oxB+ Z 20 XE;: A B; -

i=1

Hence, by the previous estimate and convexity,
1 1 &
05 (Mf = 9) < 500(200x8) + 5 Z 0 (4k>\b XEiABi)
1
=5 [ #r229) duty LS [ etwabw) dutw).
B =1p,AB;
The right-hand side of the previous estimate is at most 1 and so || f — g]|,, < 1

by the unit ball property. Since A > 0 was arbitrary, this completes the proof.
O
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2.6 Conjugate ®-Functions

In this section we specialize the results from Sect. 2.2 Conjugate modulars
and dual semimodular spaces to ®-functions and generalized ®-functions.
Apart from the general results, we are also able to prove stronger results in
this special case.

By Lemma 2.3.2 we know that every ®-function defines (by even extension)
a semimodular on R. This motivates to transfer the definition of a conjugate
semimodular in a point-wise sense to generalized ®-functions:

Definition 2.6.1. Let ¢ € ®(A, p). Then for any y € A we denote by ¢*(y, -)
the conjugate function of ¢(y,-) which is defined by

©* (y,u) = sup (tu — ¢(y, 1))
>0

for all w > 0 and y € .

This definition applies in particular in the case when ¢ isa (non-generalized)
®-function, in which case

©*(u) = sup (tu — (1))

concurs with the Legendre transformation of p. By definition of ¢*,
tu < @(t) + " (u) (2.6.2)

for every t,u > 0. This inequality is called Young’s inequality. If ¢ is a
d-function and o(t) := p(|t|) is its even extension to R, then o*(t) = ¢*(|¢|)
for all t € R.

As a special case of Theorem 2.2.6 we have

Corollary 2.6.3. Let ¢ € ®(A, ). Then (¢*)* = ¢. In particular,

o(y,t) = sup (tu — ¢*(y,u))
u=>0

for ally € Q and all t > 0.

Lemma 2.6.4. Let @, be ®-functions.

(a) The estimate @(t) < (t) holds for all t > 0 if and only if ¥* (u) < ¢*(u)
for all u > 0.

(b) Let a,b> 0. If ¥(t) = ap(bt) for all t > 0, then ¢*(u) = ap*(Z%) for all
u = 0.
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Proof. We begin with the proof of (a). Let ¢(t) < ¢(t) for all ¢ > 0. Then

P (u) = sup (tu — (1)) < Sup (tu — @(t)) = ¢*(u)

for all w > 0. The reverse claim follows using ¢** = ¢ and ¥** = 9 by
Corollary 2.6.3. Let us now prove (b). Let a,b > 0 and () = ap(bt) for all
t > 0. Then

P (u) =

~ U
She)

1>1 (tu — 4 (t)) = sup (tu — ap(bt)) = supa(t% — @(t))

t>0 t>0 a

for all u > 0. O

The following result is the generalization of the classical Holder inequality
J1fllgldp < [ £ll,llgll, to the Musielak-Orlicz spaces. The extra constant 2
cannot be omitted.

Lemma 2.6.5 (Holder’s inequality). Let ¢ € ®(A, ). Then

[ 191lslduto) < 21511
A
for all f € L¥(A, i) and g € L (A, ).

Proof. Let f € L¥ and g € L¥". The claim is obvious for f = 0 or g = 0, so we
can assume f # 0 and g # 0. Due to the unit ball property, Qw(f/||f||¢) <1
and 04+ (9/[|gll,-) < 1. Thus, using Young’s inequality (2.6.2), we obtain

W)l 1g9(y)] /()] o 19l
J WA Tall,- S Z ooy, )+ (g, ) )
= 0, (7/171,) + 2o 9/l

< 2.

Multiplying through by [/ f|[lg]|,- yields the claim. O

Let us recall the definitions of N-function and generalized N-function from
Definition 2.4.4. A ®-function ¢ is said to be an N-function if it is continuous
and positive and satisfies lim;_.q @ =0 and lim;_, @ = co. A function
p € (A, p) is said to be a generalized N-function if (y, -) is for every y € Q
an N-function.

Note that by continuity N-functions only take values in [0,00). Let
p € N(A, 1) be an N-function. As was noted in (2.3.3), the function has

a right-derivative, denoted by ¢'(y, -), and
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ey,t) = /@'(y, 7)dr
0

for all y € A and all ¢ > 0. The right-derivative ¢'(y, -) is non-decreasing and
right-continuous.

Lemma 2.6.6. Let ¢ be an N-function. Then
t / t !/
— — ) < op(t) <ty (t
5% (2) o(t) < te'(t)

forallt >0
Proof. Using the monotonicity of ¢’ we get

t t
o(t) = / o (r) dr < / o (t)dr =t/ (1),
0 0
t t
t t
o) = [ [ =1o(3)
0 t/2
for all ¢t > 0. O

Remark 2.6.7. If ¢ is a generalized N-function, which satisfies the As-
condition (Definition 2.4.1), then Lemma 2.6.6 implies ¢(y,t) =~ ¢'(y,t)t
uniformly in y € A and ¢t > 0.

Let ¢ € N(A, u). Then we already know that ¢'(y, -) is for any y € A non-
decreasing right-continuous, ¢’(y,0) = 0, and lim;—,+ ¢’ (y,t) = co. Define

b(y,u) :=1inf {t > 0: ¢'(y,t) > u}.

Then b(y,-) has the same properties, i.e. b(y,-) is for any y € A non-
decreasing, right-continuous, b(y,0) = 0, and lim; . b(y,t) = oo. The
function b(y,-) is the right-continuous inverse of ¢'(y,-) and we therefore
denote it by (¢’)~*(y,u). It is easy to see that the right-continuous inverse
of (¢')~!is again ¢, i.e. ((¢')71)~! = ¢'. The function (¢')~! is important,
since we can use it to represent the conjugate function ¢*.

Theorem 2.6.8. If o € N(A, ), then ¢* € N(A, u) and (¢*) = (¢')71. In
particular,

o (1) = / () My, 7) dr
0

forallye A andt > 0.
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Proof. Tt suffices to prove the claim point-wise, and thus we may assume

without loss of generality that ¢(y,t) is independent of y, i.e. an N-function.
It is easy to see that ¢’ is non-decreasing, right-continuous and satisfies

(¢")710) =0, (¢")71(t) > 0 for t > 0, and limy— (") " (¢) = co. Thus,

for t > 0 defines an N-function. In particular, ¢ and v are finite.
Note that o < ¢'(7) is equivalent to (¢')~!(c) < 7. Hence, the sets

are complementary with respect to [0, 00) X [0, 00). Therefore, we can estimate
with the help of the theorem of Fubini

t u
OStuz//dadT
0 0

= do dr + // dodr

{0<r<t,o<u: 0<o<¢/ (1)} {0<r<t,0<o<u: (¢/) "1 (0)27}
¢ min {u,¢" (1)} u min {t,(¢") (o)}

:/ / deT+/ / dr do
0 0 0 0
t u

< [¢mar+ [@)He)do
0 0

=¢(t) + ¥(u).

If u = ¢(t) or t = (¢)Hu), then min{u,¢'(1)} = ¢'(r) and

min{t, (¢') " (o)} = (¢’')7(0) in the integrals of the third line. So in this
case we have equality in the penultimate step. Since ¢*(u) = sup, (ut — ¢(t))
it follows that ¢* = 1. a

Remark 2.6.9. Let ¢ be an N-function. Then it follows from the previous
proof that the right-derivative (¢*)" of p* satisfies (¢*)" = (¢’)~! for all
t > 0. Young’s inequality tu < ¢(t) + ¢*(u) holds with equality if u = ¢'(t)
or t = (') (u).
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Theorem 2.6.8 enables us to calculate the conjugate function of N-functions.
Let us present three examples:
(a) Let p(t) = €' —t — 1. Then ¢'(t) = e — 1 and (¢*)(u) = ( N (u)
log(1 + w). Integration over u implies ¢*(u) = (1 +¢)1 g( t) —t.
(b) Let p(t) = ltp for 1 < p < o0. Then ¢/'(t) = t*~1 and (¢*) (u)
(@) t(u ) = urT =’ -1 with % + ;z% = 1. Integration over u implies
o*(u) =
(c) Let <p() tp for 1 <p < oo Then ’(t) = ptP~! and (p*)(u) =
(@)Y (u) = (u/p)r—T o= = pi- T 1 with L 5+ Z% = 1. Integration over u

implies ¢*(u) = pl—P I%up =p P (p—1)u?.

Remark 2.6.10. We have seen that the supremum in Remark 2.6.9 is
attained for any N-function . However, this is not the case if ¢ is only
a ®-function. Indeed, if ¢(t) = t, then ¢*(u) = oo - X{u>1}(u). However,
tu = ¢1(t) + (v1)*(u) only holds if u =1 and ¢t > 0 or if u € [0,1] and ¢t = 0.

There are a lot of nice estimates for N-functions. Let us collect a few.

Lemma 2.6.11. Let ¢ be an N-function. Then for allt > 0 and all € > 0

t < (t)(e*) () < 2, (2.6.12)
@) (¢ (t) —e) <t < (") (£'(1)), (2.6.13)
() (1) —e) <t <@ () (1), (2.6.14)

P (¢ (1) <t (1), (2.6.15)
w*(@) < (1), (2.6.16)

where we assumed t > 0 in (2.6.16).

Proof. We first note that (¢*)" = (¢')~! by Remark 2.6.9. Let ¢t > 0 and
€ > 0. The first part of (2.6.13) follows from

(¢") (¢ () —€) =inf{a > 0: /() > /(1) — <} <t

The second part of (2.6.13) follows from

o' () (1)) = ¢’ (inf {a >
= inf {¢'(a) >

0: ¢'(a) > t})
0: ¢'(a) >t} >t,

where we have used that ¢’ is right-continuous and non-decreasing.
Now, (2.6.14) is a consequence of (2.6.13) using (¢*)* = ¢. By Young’s
inequality (2.6.2) we estimate

e (P <t +t=2t.
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With Lemma 2.6.6 for ¢ and ¢* and (2.6.13) we deduce

¢ (@' (1) < (") (@' ) (1) <t (1),
) _

t
(B2 -e) < (B -y (B2 - o) < 2y (0 - o) < w0

Letting ¢ — 0 in the latter inequality yields (2.6.16). Setting t = ¢~ (u)
in (2.6.16) gives

u
wf_ % <u
? (gp—l(u))
From this it follows that u < ¢~ !(u)(¢*) ™ (u). O

Note that if ¢ and ¢* satisfy the As-condition (Definition 2.4.1), than all
the “<”-signs in Lemma 2.6.11 can be replaced by “~”-signs.

2.7 Associate Spaces and Dual Spaces

In the case of classical Lebesgue spaces it is well known that there is a natural
embedding of L7 into (L9)* for 1 € ¢ < oo and % + # = 1. In particular,
for every g € LY the mapping Jg: [+ [ fgdp is an element of (L?)*. Even
more, if 1 < ¢ < oo, then the mapping g — J, is an isometry from LY
to (L9)*. Besides the nice characterization of the dual space, this has the
consequence that

17, = sup /fgdu

llgll,s <1

for every 1 < ¢ < oo. This formula is often called the norm conjugate formula.
The cases ¢ = 1 and ¢ = oo need special attention, since (L')* = L> but
(L>=)* # L. However, the isometry (L!)* = L° suffices for the proof of the
formula when ¢ = 1 and g = oc.

In the case of Musielak—Orlicz spaces we have a similar situation. We will
see that L?" can be naturally embedded into (L¥)*. Moreover, the mapping
g — Jg is an isomorphism under certain assumptions on ¢, which exclude for
example the case LY = L°°. The mapping is not an isometry but its operator
norm lies in the interval [1, 2].

The norm conjugate formula above requires more attention in the case of
Musielak—Orlicz spaces. Certainly, we cannot expect equality but only equiv-
alence up to a factor of 2. Since the space L¥ can partly behave like L' and
partly like L™, there are cases, where (L¥)* # L¥ and L¥ # (L¥")*. This is
in particular the case for our generalized Lebesgue spaces LP() (see Chap. 3)
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when p take the values 1 and co on some subsets. To derive an equivalent
of the norm conjugate formula for L¥, we need to study the associate space,
which is a closed subspaces of (L¥)* generated by measurable functions.

Definition 2.7.1. Let ¢ € ®(A, u). Then

(L‘”(A, ,u))/ ={g € LO(A’ ) ||g||(L¢(A,M))’ < oo}

with norm

Mol oiany == sup /me
WA e <)

will be called the associate space of L?(A,u) or (L¥)" for short.

In the definition of the norm of the associate space (L¥)’ it suffices to take
the supremum over simple function from L¥:

Lemma 2.7.2. Let ¢ € ®(A,u). Then

lgll gy = /mmw
fe SﬁL“" HfH

for all g € (L¥(A, ).

Proof. For g € (L¥)" let |||g||| in this proof denote the right-hand side of the
expression in the lemma. It is obvious that ||g[ll, < [lgl(z¢ - To prove the
reverse let f € L¥ with || f[|, < 1. We have to prove that S 1f1 g dp < |llglll-
Let (fx) be a sequence of simple functions such that 0 < fi ' |f| almost
everywhere. In particular, fi € S(A,p) N LY and || fxll, < | f]l, < 1, since
L¥ is solid (Theorem 2.3.17 (b)). Since 0 < fxlg| /" | f|lg|, we can conclude
by the theorem of monotone convergence and the definition of |||g|| that

[ 181lgldn = tim [ silgldie < gl

The claim follows by taking the supremum over all possible f. a

As an immediate consequence of Holder’s inequality (Lemma 2.6.5) we
have
L#7 (A, p) = (L#(A, p)) and

||9||(Lw)/ <

for every g € L¥ (A, ).
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If g € (L¥) and f € L?, then fg € L' by definition of the associate space.
In particular, the integral [ fgdu is well defined and

\ / fgdu‘ <llglligor 171

Thus f — [ fgdp defines an element of the dual space (L¥)* with 91l (o) <

19]l(z¢y- Therefore, for every g € (L¥)’ we can define an element J, € (L¥)*
by

Jg f»—>/fgd,u (2.7.3)

and we have ||Jg||(L¢)* < |lgll(ey - Since L? is circular (Theorem 2.3.17 (a)),
we even have
||Jg||(Lw)* = sup

/ fgdu‘
feLe|fl,<1

— s / F11gldis = llgl gy
reLe i), <1

for every g € (L¥)". Obviously, g — J, is linear. Hence, g — J; defines an
isometric, natural embedding of (L¥)" — (L¥®)*. So the associate space (L¥)’
is isometrically isomorphic to a closed subset of the dual space (L¥)* and
therefore itself a Banach space. It is easy to see that (L¥) is circular and
solid. We have the following inclusions of Banach spaces

L — (L¥) — (L¥)*.

Under rather few assumptions on ¢, we will see that the first inclusion is
surjective and therefore an isomorphism even if L¥?" is not isomorphic to the
dual space (L¥)*. Therefore, the notion of the associate space is more flexible
than that of the dual space.

The mapping g — J, can also be used to define natural embeddings

LY = L¥ s (L¥") «— (L¥")".

if we replace above ¢ by ¢* and use ¢ = ¢** (Corollary 2.6.3).

Since L¥" — (L¥)' — (L¥)* via the embedding g — J,, we can evalu-
ate the conjugate semimodular (g,)* at J, for every g € L. As a direct
consequence of Young’s inequality (2.6.2) we have

(00)*(Jy) = sup, (Jg(f) = 04 (f)) < 04 (9)-
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Theorem 2.7.4. Let ¢ € @(A, w) be such that S(A,n) C LP(A,u). Then
L? (A, ) = (L9 (A, )5 00+ (9) = (04)*(Jy) and

o <Nl zoy = 1gll goy- < 21lg]l,-

for every g € L¥ (A, p), where Jg ¢+ f — fA fgdu. (or complex-valued
functions, the constant 2 should be replaced by 4.)

Proof. For the sake of simplicity we assume K = R. In the case K = C we
can proceed analogously by splitting g into its real and imaginary part.

We already know that L¥ C (Lﬁi)', lgllcrey = 9gll rey- < 21gll,- anii
(00)*(Jg) < 0p+(g) for every g € L¥ . Fix g € (L¥)". We claim that g € L¥
and 0,-(9) < (0,)* (Jy)-

Since p is o-finite, we find measurable sets Ap C A with u(Ag) < oo and
Ay C Ay C ... suchthat A = J;2, Ax. Let {q1, g2, ...} be a countable, dense
subset of [0,00) with ¢; # ¢i for j # k and ¢ = 0. For k € Nand y € A
define

re(y) = Xa,(y) max, (45 l9W)| — ¢y, q5))-

.....

The special choice ¢; = 0 implies r,(y) > 0 for all y > 0. Since {q1,¢2,...}
is dense in [0, 00) and ¢(y, ) is left-continuous, r4(y) / ©*(y,|g9(y)|) for any
y € A as k — oo. For every k € N there exists a simple function fj, with
fe(A) Cc{q1,...,q:} and fr(y) =0 for all y € A\ Ay such that

me(y) = fe(y) l9(v)] — (Y, fr(y))

for all y € A. As a simple function, fi belongs by assumption to L¥(A4, ).
Define hy(y) := fr(y) sgn(g(y)) for y € A, where sgn(a) denotes the sign of a.
Then also hy is a simple function (here we use K = R) and therefore

(00)(Jg) = Jy(hs) — 00 (i) = / o)) — oy 1)) dia(y).
A
By the definition of Ay it follows that
) > / 9] Fe(W) — oy, [ fe@)) diu(y) = / re(y) dpu(y).
A A

Since 1, = 0 and r(y) " ©*(y,|g9(y)|), we get by the theorem of monotone
convergence that

(04)"(J,) > limsup / r(y) du(y) = / & (0, 19(v)]) du(y) = 00 (9).

k—o0
A
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Together with (0,)*(Jg) < 0p+(g) We get (0,)"(Jg) = 04+ (9)-

Since g — Jy is linear, it follows that (o, )* (AJy) = 0,+(Ag) for every A > 0
and therefore ||| . = ”JQH(W)* < gl ey~ = llgll (1<) using in the second
step Theorem 2.2.10. O

Theorem 2.7.4 allows us to generalize the norm conjugate formula to L¥.

Corollary 2.7.5 (Norm conjugate formula). Let ¢ € ®(A, u). If S(A, p)
C L¥ (A, p), then

1l < sup / Fllgldu < 2117,
1

geL®e” t|igll .« <

for every f € L°(A,u). The supremum is unchanged if we replace the
condition g € L¥" by g € S(A, p).

Proof. Applying Theorem 2.7.4 to ¢* and taking into account that ¢** = ¢,
we have

171, < Il ey <2051,

for f € L¥. That the supremum does not change for g € S(A, ) follows by
Lemma 2.7.2. The claim also follows in the case f € L0\ L¥" = L%\ (L¥)’,
since both sides of the formula are infinite. a

Remark 2.7.6. Since p is o-finite it suffices in Theorem 2.7.4 and Corol-
lary 2.7.5 to assume S(Ax,p) C L¥(A, pu), where (Ag) is a sequence with
Ay /" Aand p(Ag) < oo for all k. This is important for example in weighted
Lebesgue spaces LI (R™) with Muckenhoupt weights.

Definition 2.7.7. A normed space (Y, ||-||y) with Y C L%(A, u) is called a
Banach function space, if

(a) (Y,[]|ly) is circular, solid and satisfies the Fatou property.

(b) If u(F) < oo, then xg €Y.
(c) If W(E) < oo, then xp € Y, ie. [, |fldu < c(E)|f|ly forall feY.

From Theorem 2.3.17 we know that L¥ satisfies (a) for every ¢ € ®(A, p)
so one need only check (b) and (c). These properties are equivalent to S C L¥
and S C (L®)’, where S is the set of simple functions. These inclusions may
or may not hold, depending on the function ¢.

Definition 2.7.8. A generalized ®-function ¢ € ®(A, ) is called proper if
the set of simple functions S(A, p) satisfies S(A, ) C LP(A, u) N (LP (A4, u))' .

So ¢ is proper if and only if L¥ is a Banach function space. More-
over, if ¢ is proper then the norm conjugate formula for L¥ and L¥ holds
(Corollary 2.7.5) and L¥" = (L¥)".
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Corollary 2.7.9. Let ¢ € ®(A, ). Then the following are equivalent:

(a) ¢ is proper.
(b) ©* is proper.
(c) S(A,p) CLP(A,p) N L? (A, ).

Proof. Tf (a) or (c) holds, then S C L¥. Hence (L¥)" = L¥" by Theorem 2.7.4,
which obviously implies the equivalence of (a) and (c).

Applying this equivalence for the function ¢*, and taking into account
that ¢** = ¢, yields the equivalence of (b) and (c). O

Remark 2.7.10. The conditions xg € L¥ and xg € (L?) for u(E) < oo in
Definition 2.7.7 can be interpreted in terms of embeddings. Indeed, xg € L¥
implies L¥" < LY(E). The condition xg € (L¥) is equivalent to L¥(E) —
LY(E). In particular, if ¢ is proper, then L¥(Q) — L{ (Q) and L¥ () —
L%OC(Q)'

Remark 2.7.11. Let ¢ € ® be proper; so L¥ is a Banach function space. It
has been shown in [43, Proposition 3.6] that f € L¥ has absolutely continuous
norm (see Remark 2.5.8) if and only if f has the following property: If g,
g € LY with |gx| < |f] and gx — ¢ almost everywhere, then gx — g in L¥.
Thus, f acts as a majorant in the theorem of dominated convergence.

It has been shown by Lorentz and Luxemburg that the second associate
space X" of a Banach function space coincides with X with equality of norms,
see [43, Theorem 2.7]. In particular, (L¥)” = L? with equality of norms if ¢
is proper. For the sake of completeness we include a proof of this result in
our setting.

Theorem 2.7.12. Let ¢ € ®(A, 1) be proper. Then L¥" (A, ) = (L¥(A, p))’
and (L¥" (A, p)) = L¥(A, ). Moreover, (L¥(A, )" = L¥(A, n) with equal-
ity of norms, i.e. |[fll, = [|fll(pe) for all f € L¥(A,p).

Proof. The equalities L¥" = (L¥)" and (L¥" )’ = L¥ follow by Theorem 2.7.4
and as a consequence (L¥)" = (L¥") = L¥ = L¥ using p** = ¢. It only
remains to prove the equality of norms. Let f € L¥, then

ooy = su [ ifllgldu <51,

ge(L#) : HgH(LkP)’gl

We now prove |[f|, < ||fll(ze),- We begin with the case u(A) < oo. If
f = 0, there is nothing to show, so assume f # 0. Let B denote the unit
ball of L¥. Due to Remark 2.7.10 and u(A) < oo, we have L¥(A) — L'(A),
so B C L'(A). Moreover, B is a closed, convex subset of L!(A). Indeed, if
uy, € B with u, — u in L'(A), then uy — u p-almost everywhere for a sub-
sequence, so Fatou’s lemma for the norm (Theorem 2.3.17) implies v € B.
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Let h := Af/| fll, with A > 1, then h & B, so by the Hahn-Banach Theo-

*

rem 1.4.2 there exists a functional on (L'(A))* separating B and f. In other
words, there exists a function g € L>°(A) and v € R such that

Re(/vgdu) <v<Re</hgd#>

for all v € B, where we have used the representation of (L!(A))* by L>(A).
From g € L*°(A) and x4 € (L¥)’ it follows by solidity of (L®)’ that g € (L¥)’.
Moreover, the circularity of L¥ implies that

A Ml ey 19l ey
/|U||9|d,“<7</|h||g|d,u:_/|f||g|d#< (o) 19l
171l 171,

for all v € B. In other words,

>\||f||(m)~||9||(w)/
91l (zey <
(= I1fll,

Using |||y < oo we get [|[f|l, < Al[fll(rey- This proves [[f[l, < [[fl(zey
and therefore [|f|[, = [|fl[ fe)-

It remains to consider the case p(A) = oo. Choose Ay, C A with p(Ax) < oo,
AicArC . and A= U2, A Then || fxa,lly = 1 £l neay = 1 pecapy
= fxa, ||(L¢(A)),, by the first part. Now, with the Fatou property of LY and
(L) we conclude [, = £y 0

Remark 2.7.13. Let ¢ € ®(A,u) be proper. Then we can use Theo-
rem 2.7.12 Holder’s inequality to derive the formula

1
SIflo<  swo [ifimlde <2,
heLe™ : IRl « <1

for all f € L°(A, ). This is a weaker version of the norm conjugate formula
in Corollary 2.7.5, with an extra factor % on the left-hand side.

We are now able to characterize the dual space of L¥.

Theorem 2.7.14. Let ¢ € ®(A, ) be proper and locally integrable, and sup-
pose that E¥ = LY. Then'V : g — Jg is an isomorphism from L¥ (A, p) to
(L?(A,p))*

Proof. By Theorem 2.7.4 V is an isomorphism from L¥ onto its image
Im(V) C (L¥)*. In particular, Im(V) is a closed subspace of (L?)*. Since
¢ is locally integrable S = E¥ by Theorem 2.5.9, so that S = E¥ = L¥.

We have to show that V' is surjective. We begin with the case p(A4) < oo.
Let J € (L¥)*. For any measurable set E C A we define 7(E) = J(xg),
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which is well defined since S C L¥. We claim that 7 is a signed, finite measure
on A. Obviously, 7 is a set function with 7(E1UFE>) = 7(E1 )+7(FE2) for Ey, Ey
disjoint measurable sets. Let (E;) be sequence of pairwise disjoint, measurable
sets. Let F := Ujil E;. Then Z§:1 XE;, — Xe almost everywhere and by
dominated convergence (Lemma 2.3.16) using yg € LY = E¥ we find that
ij:l XE; — Xg in L¥. This and the continuity of J imply

Jj=1 Jj=1

which proves that 7 is o-additive. The estimate

IT(E)] = [T(xe)l < 1l ey IIxell, < NIl pey-lIxall,

for all measurable E, proves that 7 is a signed, finite measure. If u(E) = 0,
then 7(E) = J(xg) = 0, so 7 is absolutely continuous with respect to . Thus
by the Radon-Nikodym Theorem 1.4.13 there exists a function g € L'(A)
such that

J(f)=[ fodu (2.7.15)
[

for all f = xyg with E measurable and therefore by linearity for all f € S. We
claim that [lgl ;¢) < [|/]|(z¢)-- Due to Lemma 2.7.2 it suffices to show that
J1fgldp < 1| ey~ for every f € S = SnL? with ||f[|, < 1. Fix such
an f. If K =R, then sgn g is a simple function. However, to include the case
K = C, we need to approximate sgng by simple function as follows. Since
sgng € L, we find a sequence (hy) of simple functions with hy — sgng
almost everywhere and |hy| < 1. Since |f|hy € S and || | f[ R, < [ f]l, <1,
we estimate [ |flhrgdz = J(|f|hi) < [J1[(r¢)- using (2.7.15). We have
|flhig — |f]|g] almost everywhere and |fhig| < |f|lg| € L', since g € L*
and f € L* as a simple function. Therefore, by the theorem of dominated
convergence we conclude [ |f|lg|dz = limp—.co [ |flhrgdz < ||J|(1e)-- This
yields [|gll ey < [J][(pe)-- Then g € L¢" follows from (L¥) = L¥" by The-
orem 2.7.4. By (2.7.3) and (2.7.15) the functionals J; and J agree on the
set S. So the continuity of J and J; and S = L¥ imply J = Jg proving the
surjectivity of g — J; in the case pu(A) < oo.

It remains to prove the surjectivity for p o-finite. Choose Ap C A with
pw(Ay) < 0o, Ay C Ay C ..., and A = [J;—, Ax. By restriction we see
that J € (L¥(Ag))* for each J € (L¥(A))*. Since u(Ag) < oo, there exists
gr € L¥ (A) such that J(f) = Jg. (f) for any f € L¥(Aj) and ||gk||w <
||J||(L¢)*. The injectivity of g — J; implies g; = g on A; for all k > j. So
g = g on Ay, is well defined and J(f) = J,(f) for all f € L¥(Ay) and every
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k. Since |gr| /" |g| almost everywhere and supy, [|gk/|,« < ||| (4)-, it follows

by the Fatou property of L¥" that ||g| o Sy

It remains to prove J = J,. Let f € L¥. Then by Fatou’s lemma
(Lemma 2.3.16), fxa, — f in L¥. Hence, the continuity of J and J; and
J(f xan) = Jg(f xa,) yields J(f) = J4(f) as desired. O

Remark 2.7.16. (a) If ¢ is proper and locally integrable, then the condition
L¥ = E¥ is equivalent to the density of the set S of simple functions in
L¥, see Theorem 2.5.9.

(b) If p is atom-free, then the assumptions “locally integrable” and “E¥ =
L#” are also necessary for V : g — J, from L¥ = (L¥) to (L¥)* to be
an isomorphism. Indeed, if V' is an isomorphism, then it has been shown
in [43, Theorem 4.1] that every function f € L% has absolutely contin-
uous norm (see Remark 2.5.8). In particular, every xg with p(E) < oo
has absolutely continuous norm. We prove that ¢ is locally integrable by
contradiction, so assume that there exists a measurable set F and A > 0
such that u(E) < oo and g, (Axg) = co. Since p is atom-free there exists
a sequence (Ey) of pairwise disjoint, measurable sets such that Ex \ 0
and 0,(Axg,) = oo. In particular, |[xg,ll, > 1. However, since yp has
absolutely continuous norm, we should have |xg, |, = Ixexg,l, — 0
which gives the desired contradiction. Thus, ¢ is locally integrable. If fol-
lows from Theorem 2.5.9 that E¥ = S, where S are the simple functions.
Moreover, since V' is an isomorphism, by the norm conjugate formula in
Lemma 2.7.2 it follows that S° = {0}, where S° is the annihilator of S.

This implies E¥ = § = §°° = L¥".

The reflexivity of L¥ can be reduced to the characterization of (L¥)* and
(L#)r.

Lemma 2.7.17. Let ¢ € ®(A,u) be proper. Then L% is reflexive, if and
only if the natural embeddings V: L¥" — (L¥)* and U: L¥ — (L¥")* are
isomorphisms.

Proof. Let ¢ denote the natural injection of L¥ into its bidual (L¥)**. It is
easy to see that V* or = U. Indeed,

(V*if.g) = (of Va) = (Va, f) = / F@)g(z)du = (U, g)

for f € L¥ and g € L¥ . If V and U are isomorphisms, then ¢ = (V*)~!1 o U
must be an isomorphism and L¥ is reflexive.

Assume now that L¥ is reflexive. We have to show that U and V are
isomorphisms. We already know from Theorem 2.7.4 (since ¢ is proper) that
U and V are isomorphisms from L¥ and L?  to their images Im(U) and
Im(V), respectively. In particular, V' is a closed operator and as a consequence
Im(V*) = (ker(V))°. The injectivity of V implies that V* is surjective. So
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U = V* o is surjective as well. This proves that U is an isomorphism. The
formula U = V* o implies that V* is also an isomorphism. Since V is a
closed operator, we have Im(V) = (ker(V*))°. The injectivity of V* proves
that V is surjective and therefore an isomorphism. a

By Theorem 2.7.14 and Lemma 2.7.17 we immediately get the reflexivity
of L¥.

Corollary 2.7.18. Let ¢ € ®(A,u) be proper. If ¢ and ¢* are locally
integrable, E¥ = L¥ and E¥" = L¥", then L¥ is reflexive.

2.8 Embeddings and Operators

In this section we characterize bounded, linear operators from one Musielak—
Orlicz space to another. Recall that the operator S is said to be bounded from
L¥ to LY if [Sfll, < C|f[l,- We want to characterize this in terms of the
modular. The study of embeddings is especially important to us, i.e. we want
to know when the identity is a bounded operator. Such embeddings, which
are denoted by L? < L%, can be characterized by comparing ¢ pointwise
with 1.

Let us begin with a characterization of bounded, sub-linear operators. Let
0, € ®(A,u) and let S: L¥(A, u) — LY (A, u) be sub-linear. By the norm-
modular unit ball property, S is bounded if and only if there exist ¢ > 0 such
that

00(f) <1 = 0y(Sf/c) < 1.
If ¢ and 1 satisfy the Ag-condition, then this is equivalent to the existence

of ¢1,co > 0 such that

0,(f) <er = 04(Sf) <2

(since the As-condition allows us to move constants out of the modular).

Theorem 2.8.1. Let v, € ®(A, ) and let the measure p be atom-less.
Then L¥(A, ) — LY (A, p) if and only if there exists ¢ > 0 and h € L*(A, i)
with ||h||; <1 such that

9 (5 5) <oly1) + hiy)

for almost ally € A and all t > 0.
Moreover, ¢ is bounded by the embedding constant, whereas the embedding
constant is bounded by 2c .

Proof. Let us start by showing that the inequality implies the embedding.
Let ”f”so < 1, which yields by the unit ball property that g, (f) < 1. Then



2.8 Embeddings and Operators 67

(i) < bou(8) < Lot 4 [

A

This and the unit ball property yield | f/(2¢')||,, < 1. Then the embedding
follows by the scaling argument.

Assume next that the embedding holds with embedding constant ¢;. For
y € Aand t > 0 define

— dj(ya é) - QD(yﬂf) if so(y,t) < o9,
0= {0 if p(y,t) = oo.

Since ¢(y,-) and ¥(y, ) are left-continuous for all y € A, also a(y, ) is left-
continuous for all y € A. Let (rx) be a sequence of distinct numbers with
{ri: k € N} =Qn[0,00) and r; = 0. Then

1/’(?47 %) < QD(yﬂ’k;) + Ol(yﬂ’]{;)

for all k € N and y € A. Define

bi(y) = max a(y,7;).

Since r1 = 0 and a(y,0) = 0, we have by > 0. Moreover, the functions by are
measurable and nondecreasing in k. The function b := sup,, by, is measurable,
non-negative, and satisfies

b(y) = sup a(y, ),
t>0

(Y, =) < @y, t) +b(y)
for all y € A and all t > 0, where we have used that «(y, -) is left-continuous
and the density of {ry: k € N} in [0, 00).

We now show that b € L' (A, u) with [|b]|, < 1. We consider first the case
|b] < oo a.e., and assume to the contrary that there exists € > 0 such that

/ b(y) du(y) > 1+ 2e.
A

Define

Vii={yeA: aly,r) > 1—41_619(3/)}7
Wit1 :=Vir1 \ (V1 U---UVg)
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for all & € N. Note that V; = 0 due to the special choice r1 = 0. Since
{rr: k € N} is dense in [0, 00) and a(y, -) is left-continuous for every y € A,
we have oy Vi = Upes Wi = {y € A: b(y) > 0}

Let f := > peyrkXw,. For every y € Wy we have a(y,r;) > 0 and
therefore p(y, ;) < co. If y is outside of (Jr_, Wi, then ¢(y, | f(y)|) = 0. This
implies that ¢(y, |f(y)|) is everywhere finite. Moreover, by the definition of
Wi and o we get

LFw)l

o ) > (v, 1fW)I) + L) (2.8.2)

¢(y7 14+¢€

for all y € A.
If 0o(f) < 1, then Qw(%) < 1 by the unit ball property since c¢; is the
embedding constant. However, this contradicts

1+ 2e
1+4+¢

ool ) = 00) + 1= [ b dule) >
A

where we have used (2.8.2) and [J;—, Wi = {y € A: b(y) > 0}. So we can
assume that o,(f) > 1. Since p is atom-less and ¢(y,|f(y)|) is almost
everywhere finite, there exists U C A with o, (fxuv) = 1. Thus

0u(Lx0) > 0o (f x0) + T / b(y) du(y)

U
(2.8.3)
=1+ /b(y) dp(y).
U

Now, 0,(fxv) = 1 implies that p(U N {f # 0}) > 0. Since {f # 0} =
Ureo Wi = {y € A: b(y) > 0} we get u(UN{y € A: b(y) > 0}) > 0 and

/ b(y) dpu(y) > 0.
U

This and (2.8.3) imply that

oy(f/eixuv) > 1.

which contradicts g (f/c1) < 1. Thus the case where |b] < 0o a.e. is complete.

If we assume that there exists F C A with b|g = oo and u(E) > 0,
then a similar argument with V, := {y € E : afy,r) > ﬁ} yields a
contradiction. Hence this case cannot occur, and the proof is complete by
what was shown previously. ad



Chapter 3
Variable Exponent Lebesgue Spaces

In this chapter we define Lebesgue spaces with variable exponents, LP().
They differ from classical L? spaces in that the exponent p is not constant
but a function from Q to [1,00]. The spaces LP() fit into the framework of
Musielak—Orlicz spaces and are therefore also semimodular spaces.

We first define the appropriate ®-function for variable exponent spaces
in Sect. 3.1 and study its properties. Then we are in a position to apply
the results of general Musielak—Orlicz spaces to our case in Sect.3.2. Sec-
tion 3.3 deals with embeddings between spaces with different exponents.
In Sect. 3.4 we have collected properties which are more restrictive in the
sense that they hold only for exponents bounded away from 1 and/or oo.
The final two sections are more technical. First we develop tools for deal-
ing with unbounded exponents in Sect. 3.5 and then we investigate failure of
convolution in Sect. 3.6. The latter is a major topic also of Chap. 4.

3.1 The Lebesgue Space ®-Function

For the definition of the variable exponent Lebesgue spaces it is necessary to
introduce the kind of variable exponents that we are interested in.

Let us also mention that many results on the basic properties on LP()
from this chapter were proved first by Kovacik and Rékosnik in [258]. These
results were later reproved by Fan and Zhao in [149].

Definition 3.1.1. Let (A4,%, 1) be a o-finite, complete measure space. We
define P(A4, 1) to be the set of all y-measurable functions p: A — [1,00].
Functions p € P(A,u) are called wvariable exponents on A. We define
p~i=p, = essinfyeap(y) and p* = p} = ess sup, e p(y). If pt < oo,
then we call p a bounded variable exponent.

If p € P(A,p), then we define p’ € P(A,u) by ﬁ + m = 1, where
1

= := 0. The function p’ is called the dual variable exponent of p.
In the special case that p is the n-dimensional Lebesgue measure and €2 is
an open subset of R, we abbreviate P(Q) := P(Q, p).

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents, 69
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8-3,
(© Springer-Verlag Berlin Heidelberg 2011
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For the definition of the space LP() we need the corresponding generalized
®-function. Interestingly, there are two natural choices. However, we will see
that both generate the same space up to isomorphism.

Definition 3.1.2. For ¢t > 0 and 1 < p < oo we define

- 1

1% (t) = _tP7
P p

@p(t) :=tP.

Moreover we set

Boo(t) = G (1) = 50 - X(1.00) (1) = {20 1: i E(i i)

For variable exponent p € P(A, ) we define for y € A and ¢ > 0
{ﬁp(')(yvt) = &p(y)(t) and @p(')(yvt) = @p(y)(t)'

It is easy to see that both ¢, and @, are ®-functions if ¢ € [1, 00]. So @y,
and @,.) are generalized ®-functions if p € P(A, u). Even more, if ¢ € (1, 00)
and p € P(A4, ) with 1 < p~ < p™ < oo, then ¢, and @, are N-functions and
@p() and @y are generalized N-functions. If ¢ € [1,00) , then ¢, and ¢, are
continuous and positive. The function Yo = P is only left-continuous and
it is not positive.

Both ¢, and ¢, have their advantages. The advantage of @, is that the cor-
responding Musielak—Orlicz space L?» agrees for constant p € [1, oc] exactly
with the classical LP spaces, see Example 2.1.8. In particular, for f € LP(Q)
we have ||f||, = [|fll;,- Additionally, the generalized ®-function @) has
been used in the vast majority of papers on variable exponent function spaces.

The advantages of ¢, are its nice properties regarding conjugation, conti-
nuity, and convexity with respect to the exponent p. First, for all £ > 0 the
mapping p — @,(t) is continuous with respect to p € [1, 00]. In particular,

Folt) = lim (1)
for all t > 0. This suggests that the expression %tp has for p = co a natural
interpretation, namely Qoo (t) = 00 - X(1,00)(t). Therefore, we sometimes will
just write @, (t) = %tp including the case p = oo.

Second, ¢, acts nicely with respect to conjugation. For future reference
we also need the corresponding result for (B,.))*.

Lemma 3.1.3. If 1 < g < oo, then (§4)* = g and

(Pg)"(8) < g (£) < (pq)"(20)

for all t > 0.
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Proof. We first show that ($4)* = ¢4 for ¢ € [1,00]. If ¢ € (1,00), then
the claim follows directly from Theorem 2.6.8 and example (b) thereafter.
Moreover,

(@1)"(u) = fgg(tu —t) = sup (tu—1)) = 00 X(1,00) (1) = P ()

for all w > 0. Thus, @1(t) = ($1)**(t) = (Poo)*(t) for all t > 0, where we have
used Corollary 2.6.3.

Since $1 = P1, Poo = Poo, and (Pg)* = @y for all ¢ € [1,00] by the
previous case, it suffices to consider the case 1 < ¢ < co. The estimates

7/t ’
‘Pq() :qqu71>1’

(Pg)*(t)

95!1’ (t) / q/ —1 —q’
s =49t 27T <1,
(pq)*(2t)
valid for all ¢ > 0, yield the last assertion. ad

Third, @, has a certain convexity property with respect to p, which will
turn out to be quite useful:

Lemma 3.1.4. The mapping a — $1,4(t) is continuous and convex on [0, 1]
for each t > 0, with the convention L.—0.

> :
Proof. The claim is obvious for ¢t = 0, so assume ¢ > 0. Define g(a) := at@

for a € [0,1]. Then g(a) = @1/4(t). We have to show that g is convex on [0, 1].
An easy calculation shows that g is continuous on [0, 1] and

(logt)?

a? >0

g"(a) =t=

for a € (0,1]. Thus, g is convex. O

Remark 3.1.5. Let go,q1 € [1,00]. For 6 € [0,1] let go € [qo, q1] be defined
through qlg = 1q;09 + qil. Then

Bao(t) < (1= 0)Pg, (t) + 004, (t),
min {@g, (), Pq, (t)} < g, (1) < max {@g, (t), g, (1)}

for all ¢ > 0. The estimate for @,, follows by convexity (Lemma 3.1.4) and
the estimate for @, (t) follows by direct calculation.

The two ®-functions ¢, and @, are related in the following way.

Lemma 3.1.6. Let 1 < g < oo. Then

Sﬂéq(t) < qu(t) < @q(%) for allt > 0.
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Proof. Since @oo = P it suffices to consider the case 1 < ¢ < oo. The case
t = 0 follows from @,(0) = 0 = @,(0). For ¢t > 0 we have

2all) 1y
Bq(t) q
pq(2 24
W_Q( ) =—>elog2>1
Pq(t) q
This proves the claim. a

Remark 3.1.7. It is also possible to show that for every A > 1 there exists
ex = 1 such that ¢4(t) < @4(t) < exgy(At) for every g € [1,00] and ¢ > 0.

In the following we will need the left-continuous inverse of a ®-function.
Definition 3.1.8. For a ®-function ¢ we define p=1 : [0,00) — [0,0) by
e ) :==inf{r >0 : (1) >t}
for all t > 0. We call ¢! the left-continuous inverse of .

For a generalized ®-function ¢ € ®(A, u) the left-continuous inverse is

defined pointwise in y, i.e. for all y € A let = (y,-) = (¢(y,)) L.

Let us collect a few properties of the left-continuous inverse, which follow
from the properties of . Let ¢ be a ®-function. Then ¢! is non-decreasing
and left-continuous on [0, 00). Moreover, ¢~(0) = 0 and

e(p~'(t) <t (3.1.9)
for all t > 0. We also have

t <o (1)) (3.1.10)
for all ¢ > 0 with ¢(t) < cc.

Lemma 3.1.11. If ¢ € [1,00), then &, '(t) = (qt)% et = t7 and
b M ) ) q Y q
Pt (B) = 2 () = X(0,00) (¢) for all £ > 0.
If g €1, 00 and%—}—% =1, then

t< ot (t) et (1) < 2t
for all t > 0.

Proof. The formulas for @;1, @;1, and ¢! follow easily by definition of the

left-continuous inverse. The second claim is clear for ¢, since @ ! (t)gé;,l (t)=t
for all ¢ € [1,00] and ¢ > 0. For ¢ and ¢ € (1,00), the claim follows from
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(¢q)* = ¢¢ and Lemma 2.6.11. If p = 1, then (1) 7' (¢)
X(0,00)(t) for all ¢t > 0. Thus, PrH() @t (t) =t for all t

Lemma 3.1.12. If q € [1,0], then

1 _ 4t __ — __
g0 <ot (3) <ot <50 <2670

for all t > 0. Moreover,
o (Ol <_> =1 and 1<g;' ()5, " (—) <3
for allt > 0.

Proof. If ¢ € [1,00), then ¢ (%) = 2_%@51(15) and the first claim fol-

lows from % < 2_% < 1 and Lemma 3.1.6. The case ¢ = oo follows from

5 (t) = X(1,00)- The second claim follows from Lemma 3.1.11 and 1 <
?1 < e?/e < 3. ad

For a € (0, 1], gbf/la (t) = t*. Thus we immediately obtain

Lemma 3.1.13. The mapping a — gbl_/la(t) is convez on (0,1] for all t > 0.

3.2 Basic Properties

We are now ready to define the variable exponents Lebesgue space.

Definition 3.2.1. Let p € P(A, i) and let either ¢,) := @y or @py 1=
@p(.)- Hence we obtain a semimodular:

eroF) = [ enn (5@ da.
A

We define the variable exponent Lebesgue space Lp(')(A, u) as the Musielak—
Orlicz space L) (A, p) with the norm [|-|| o) 4 ) = Il Loc) (4 0)-

In particular, the variable exponent Lebesgue space Lp(')(A, W) is
LPO(A, p) = {f € LA, p) : limy—o 000> (ay(Af) = 0}
or equivalently

LPO(A, ) = {feL%A,p): 0r»0)(4)(Af) < oo for some A > 0}
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equipped with the norm

||f||Lp<-)(A,H) = inf {)\ >0: OLr()(A) ({) < 1}.

Note that 0p»()(4) is @ modular if p is finite everywhere. We abbreviate
0rr0)(a) 10 0p(y and ||| ocy (4, tO [, if the set and the measure are clear
from the context. Moreover, if 3 C R™ and p is the Lebesgue measure we
simply write LP()(Q) and if p is the counting measure on Z", then we write
PO (7).

This definition seems ambiguous, since either ) = ©p.) OF ©p.) = Pp(.y-
However, due to Lemma 3.1.6 it is clear that L%0) = [%p0) and

1fllg, ., < Ifllg,, < 20fllg,,.,- (3.2.2)

Thus, the two definitions agree up to equivalence of norms with constant at
most 2.

Recall that we have two relevant ®-functions, ¢,y and @,.). Usually, the
exact norm of LP() is not important, so we just work with ©p(-) Wwithout
specifying whether ¢,y = ©p.) or @) = Pp(.). If there is a difference in the
choice of ), then the specific choice for ¢,.) will be specified.

Remark 3.2.3. Originally, the spaces LP(") have been introduced by Orlicz
[319] in 1931 with ¢,y = @) in the case 1 < p~ < pT < oo. The first
definition of LP(*) including the case p* = oo was given by Sharpudinov [351]
and then, in the higher dimensional case, by Kovaé¢ik and Rdkosnik [258]. For
measurable f they define

oxr(f) = Ty (f Xpoo) + |1 Xip=oo} [l -

If is easy to see that pxr is a modular on L°(Q), the set of measurable
functions. We denote the corresponding Luxemburg norm by

I7lher = 0t {7 > 0: o (5) < 1}

If u({p = oc}) = 0, then gkr = @)(.y- But if p({p =o0}) > 0, then oxr #
0,(.)- Note that kg is a modular, while our g, is a only semimodular. In
particular, gxr (f) = 0 implies f = 0. For 0p(.y we only have that Ep(_)()\f) =0
for all A > 0 implies f = 0. This is due to the fact that ¢, is not a positive
®-function. Since we developed most of the theory in Chap. 2 for semimodular
spaces, we do not have to treat the set {p = oo} differently and we can work
directly with g,(.y(f). This includes the case pT = 0o in a more natural way.

Although gkgr and Op() differ if p™ = oo, they produce the same space

up to isomorphism. Let us prove this: let f € L%(2) with [fll e < 1, SO
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okr(f) < 1 by the norm-modular unit ball property (Lemma 2.1.14). In

particular, ||f x{p=co}ll . < 1. Thus 2,y (f X{p=cc}) = 0, since P (t) = 0 for
all ¢ € [0,1]. This proves that

0p() () = 0p() (f X{proo}) T0p() (f X{p=00}) = Op() (f X{proo}) < Okr(f) < 1.

\

So it follows that || f||; o < 1. The scaling argument shows that || f|-
1/l

Assume now that || f[|, o
(.

particular, QDO(fX{p:oo}) = @p()(f X{p:oo})
everywhere on {p = co}. This proves that

Op()

< 1,50 0,y (f) < 1 by the unit ball property. In
<

1 and therefore |f| < 1 almost

QKR(f) = @p()(f X{p;éoo}) + ”fX{p:oo}Hoo < @p()(f) +1<2

This implies QKR(%f) < %QKR(f) < 1, 50 || fllgkr < 2 by the norm-modular
unit ball property. The scaling argument shows || f|lr < 2[|f|l; o

(-
Overall, we have shown that

105, < Iflce < 2071,

for all f € L°(Q). Thus okxr and 05, define the same space LPO)(Q), up to
equivalence of norms.

For a constant exponent the relation between the modular and the norm
is clear. For a variable exponent some more work is needed. We will invoke
it by mentioning the unit ball property, or, when more clarity is needed, the
norm-modular unit ball property.

Lemma 3.2.4 (Norm-modular unit ball property). If p € P(Q), then
[ £y <1 and o,y (f) <1 are equivalent. For f € LPO)(Q) we have

(@) If[[fllpy <15 then opey (f) <[ fllp0-
(b) If1< ||f||p(.); then ||,y < ep() (f)-

This lemma follows directly from Lemma 2.1.14 and Corollary 2.1.15. The
next lemma is a variant which is specific to the variable exponent context.

Lemma 3.2.5. Let p € P(Q) with p~ < co. If 0,y(f) >0 or ptT < oo, then

1

min {20, ()7 By (D7 | < Illgyer < max {B,0)(F)7 20 (F)7F }-

Proof. Suppose that p*™ < oco. If 0p(1(f) < 1, then we need to prove that

1

8oy (17 < U fllpe) < Bpiy ()77
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1
By homogeneity, the latter inequality is equivalent to || f /@, (f) " [lp) <1
which by the unit ball property is equivalent to

(@)
[ (MDY gy
o oo ()T

p(z)

But since 7, (f) »7 < Ep(_)(f)_l, this is clear. The other inequality and
the case 9,.y(f) > 1 are similar.
Consider now p* = oo and Ep(,)(f) > 0. In this case the upper inequality

becomes || f]|,(.) < max {@p(_)(f)l/p_, 1}. If Ep(,)(f) 1, then || f[/,) <1, so
the inequality holds. If @,.y(f) > 1, then we need to show that

[ o)<
Q

Since Ep(_)(f)’l < 1, we conclude that

_ —p(@) 0, if p(z) = oo,
o) (f) 7~ < {— -1 :
Op(y (), if p(z) < o0
Hence
p(@) p(@)
[ (M g [y
Qp()(f) p . Qp()(f)
The proof of the lower inequality is analogous. ad
Lemma 3.2.6. Let p € P(R™) and s > 0 be such that sp~ > 1. Then
1P, = I£15 -

Proof. This follows from @, (t) = ¢, (t*) and

171

S

= (inf{A >0 : Ty (f/N) < 1})°
=inf {A* >0 : g, (|f°/A°) <=7, - O

Pp(-)

Psp(-)

Let us begin with those properties of LP(*) which can be derived directly by
applying the results of Chap. 2. From Theorem 2.3.13 we immediately derive:

Theorem 3.2.7. If p € P(A, u), then LPC) (A, 1) is a Banach space.

Next we collect the continuity and lower semicontinuity results of Chap. 2.
Recall that EP()(A, i) denotes the set of finite elements of LPC)(A, ), see
Definition 2.3.11. From Lemma 2.3.16 we deduce.
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Lemma 3.2.8. Let p € P(A, ) and fr, f,g € L°(A, u).

(a) If fx — f p-almost everywhere, then oy (f) < liminfy oo 0pc)(fx)-

(b) If |fil /" |f| p-almost everywhere, then op.)(f) = limg oo 0p) (fx)-
(¢) If f — [ p-almost everywhere, |fr| < |g| w-almost everywhere and

g € EPO) | then fr, — f in LPC).

In analogy with the properties for the integral, the claims of the previous
lemma will be called Fatou’s lemma (for the modular), monotone convergence
and dominated convergence, respectively. From Theorem 2.2.8 we obtain.

Theorem 3.2.9. If p € P(A, ), then the modular is weakly (sequentially)
lower semicontinuous, i.e. op(y(f) < iminfy oo 0py(fx) if fr — [ weakly
in LPO(A, ).

Since strong convergence implies weak convergence, the conclusion of the
previous theorem holds also if fr — f in LP()(A, u). From Lemmas 2.3.14
and 2.3.15 we deduce.

Lemma 3.2.10. Let p € P(A, p) and let fi, € LPC) (A, p).

(a) If fr is a Cauchy sequence, then there exists a subsequence of fr which
converges p-almost everywhere to a measurable function f.
(b) If u(A) < oo and | fxll,.) — 0, then fr — 0 in measure.

Theorem 2.3.17 implies that Lp(')(A7ﬂ) is circular, solid, satisfies Fatou’s
lemma (for the norm) and has the Fatou property, i.e.

o 1f ey = A1, for all f € LPO(A, ).

o If f € LPO)(A, p), g € LO(A, ) and 0 < |g| < |f| p-almost everywhere,
then g € LPO(A, p) and [lgll, .y < [1FI]c)-

o If fr — f p-almost everywhere, then || f[,) < iminfy—oo || frll,()-

o If | fr| /| f] p-almost everywhere with f€LP()(A, 1) and sup,, [ fiell .y <00
Then f € LPO)(A, 1) and [ fkllpiy /" L1y, Tespectively.

In Definition 2.7.7 we introduced the notion of a Banach function space.
In addition to being circular, solid and having the Fatou property, a Banach
function space X has the property that all characteristic functions of p-finite
sets are elements of X and its associate space X’. In particular, all simple
functions should be contained in X and X'. See Sect. 2.7 for the definition of
the associate space X'.

Lemma 3.2.11. Let p € P(A,u). Then the set of simple functions S(A, p)
is contained in LPC)(A, ) and

min{la;“’(E)} < ”XE”@p(,) < max{L#(E)L

for every measurable set E C A.
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Proof. Let E C A be measurable with u(E) < co. Then

- XE _ 1 .
g”(')(max{lvu(E)J b/(max{l,u(E)})P(m)d

1
<) —— _dr<1.
/ max (L, p(B)}
E

Hence, by the unit ball property ||xgll,., < max{1,u(E)}. Since simple
functions are finite linear combinations of characteristic functions, we get
S(A, ) € LPO(A, i). Now, let X\ > 1, then

_ A\XE _ A\p() .
ot - E/ (i {1, (B}

A
> e — > .
//min{l,uw)}d““l
E

Hence, ||>\XE||¢F(_) > min {1, u(E)} for every A > 1 (by the unit ball prop-
erty), which proves ||XE||¢p(,> > min{1, u(E)}. O

The following lemma is an improved version of Lemma 3.2.11, which is
especially useful if = — ﬁ is small.

Lemma 3.2.12. Let s € P(A, ). Then

1 L L
5 min {u(A)7F, u(4)F= } < |

1 1
L0 (g < 2 max {u(A) 7, p(4) 7}
for every measurable set A with pu(A) > 0. If v, = @p, then we can omit the
factors % and 2.

Proof. The case ¢,y = Pp.) follows from Lemma 3.2.5. The case @,y = (.
then follows by (3.2.2). O

Let us apply the results of Sect. 2.7 to the spaces LP().

Theorem 3.2.13. Let p € P(A,p). Then @,y is proper and LPC)(A, p)
)

is a Banach function space. Its associate space satisfies (LPC)(A, )
LY O)(A, 1) and

||9||pf(.) < ||9||(Lp(->)/ <2 ||9||pf(.) if Pp() = Pp()s

1 . _
5”9”17/(.) < ||9||(Lp(->)/ <2 ||9||pf(,) if Op() = @p()

for every g € L°(A, ).
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Proof. 1f follows from Lemma 3.2.11 that simple functions are contained in
LPO) and LP'0). Thus ©p(.) 18 proper by Corollary 2.7.9 and therefore L) is
a Banach function space, see also Sect.2.7. We can apply Theorem 2.7.4 to
p() to get (LPO(A, p))' = LF'O)(A, p) and

9l )+ < Ngllzrory < 2lglleg, )

which is the first estimate of the claim if ) = @), since (Pp())* = Gpr(.).-
From Lemma 3.1.3 we deduce

19l < lalls,, < 2lallg,-

Pp/ ()

which in combination with the previous estimate proves the second estimate
of the claim. a

Similar to Corollary 2.7.5 we derive from Theorem 3.2.13 the following
norm conjugate formula of LP().

Corollary 3.2.14 (Norm conjugate formula). Let p € P(A, u). Then

1
Mo <  sw o [ifllaldn <20l
gGLP,('):Hng,(.)él

for all f € L°(A, p). The factor 3 can be omitted if Op() = Pp()-

The supremum is unchanged if we replace the condition g € Lp/(')(A,u)
by g € S(A,u) or even g € S.(Q) when p € P(Q), where S.(2) is the set of
simple functions with compact support in €.

Proof. The proof of the formula is exactly the same as in Corollary 2.7.5 if
we additionally use the estimates of Theorem 3.2.13. That the supremum
does not change for g € S(A, u) follows by Lemma 2.7.2. The case g € S.(Q)
requires a simple straightforward modification of Lemma 2.7.2. a

Since the norm conjugate formula can also be used for f € L° (just
measurable), it can be used to verify if a function belongs to LP().

A critical property which holds for classical and variable exponent
Lebesgue spaces, is Holder’s inequality, which we prove next. As usual, we
start with Young’s inequality.
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Lemma 3.2.15 (Young’s inequality). Let p,q, s € [1, 00] with

1 1 1
- = — + —
S p q
Then for all a,b >0
ps(ab) < pp(a) + ¢q(b), (3.2.16)
s s
Ps(ab) < 5%(@) + E%(b)’ (3.2.17)

where we use the convention % = 3 =1 for s = p = q = co. Moreover, if
1< s< oo then for alla >0

Ppla) = sup (@s(ab) — @q(b)). (3.2.18)

Proof. Assume first that s = oo. Then necessarily p = ¢ = oco. There is
nothing to show for a,b € [0, 1], since in this case ¢oo(ab) = 0. If a > 1 or
b > 1, then ¢,(a) = 0o or ¢q(b) = oo, respectively. Thus the claim holds in
this case also.

Assume then that 1 < s < co. In order to prove (3.2.16) for ¢ it suffices to
prove (3.2.18). If s = 1, then p = ¢’ and @, = (¢,)* by Lemma 3.1.3. Thus,

¢p(a) = (@¢)"(a) = sup (ab — ¢(b)) = sup ($1(ab) — 4(b))
b>0 b>0

for all a,b > 0. If 1 < s < oo, then

L,
p/s  q/s

)

so by Lemma 3.1.3 (,/5)* = ¢q4/s. Using the case s = 1 we deduce

-~ 1 ~ S 1 S1.8 -~ S - -~ -~
Po(a) = ~Fpys(a”) = S S (a®b® — G4/5(0%)) = sup (@s(ab) — @q(b))

for all a,b > 0.
It remains to prove (3.2.17), since this inequality is stronger than (3.2.16)
for ¢ = @. If s = 0o, then s = p = ¢ = 0o and (3.2.17) follows from (3.2.16),

since @oo = Poo- So in the following let 1 < s < 0o. Now s < p and s < ¢ and
we obtain using the previous case that

Ps(ab) < 58s(ab) < 5(Pp(a) + &4(b)) = f;<ﬁp(a) + g%(b) < ¢pla) + @q(0)
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for all a,b > 0. It remains to prove (3.2.16) with ¢ = @ for 1 < s < co. Now
s < p and s < ¢ and we obtain using the previous case that

s(ab) < s3s(ab) < 5(Pp(a) + F(b)) = %ﬁp(a) + §¢q<b>

for all a,b > 0. O

Remark 3.2.19. Note that (3.2.16) holds for both ¢ and @, but it is sharp
only for ¢ as is shown by (3.2.18) and this example: if s =1 and p = ¢ = 2,
then supysq (P1(ab) — @2(b)) = 1a* # a® = @3(a) for a > 0.

Lemma 3.2.20 (Hdélder’s inequality). Let p,q,s € P(A, u) be such that

for p-almost every y € A. Then

O (F9) < op() () + 24()(9), (3.2.21)
||f9||s() <2 |f||p()||9||q()a (3.2.22)
e, < () (5))Usl, Mol o G229

for all f € LPO(A, ) and g € LIV (A, 1), where in the case s = p = q = o0
we use the convention i = 5 =1.

In particular fg € L*C(A ). If additionally f € EPO(A,u) or
g€ B1O(A, ), then fg € ESO(A, ).

Proof. Let f € LP0) and g € L90). Since f and g are measurable, also fg is
measurable. Then (3.2.21) follows from (3.2.16) by integration over y € A.

The following argument applies to both &,y and @y.y. If ||f||p(,) < 1and
lgllyy < 1, then gp)(f) < 1 and g4¢)(g9) < 1 by the unit ball property.
Using (3.2.21) we estimate

() (3f9) < qu(fg) %(9p<.)(f)+9q(~>(g)) <L

This implies || fg||s(_) < 2 by the unit ball property. The scaling argument

proves (3.2.22).
Now let ||f||¢p(.) < 1 and ||g||¢q(.) < 1, then by the unit ball property

Op((f) < 1and g,.)(g9) < 1. Using (3.2.17) integrated over y € A we get

O (ab) < (§)+5P<~>(f) + (g)+?q(.)(9) < (£)+ + (§)+.
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This implies || fg|| < esssup > ° + ess sup & * by the unit ball property. The

Ps(y
scaling argument proves (3.2. 23)

Assume now that additionally f € EP0), ie. op()(Af) < oo for every
A > 0. Let v > 0 be such that g,(.y(g/v) < oc. Then for every A >0

0r(y(Af) < 0p() (V) + 04((9/7) < 0

Since A > 0 was arbitrary, this proves fg € E"(). The case g € E40) follows
by symmetry. a

The case s = 1 in Lemma 3.2.20 is of special interest:

/Ifllgldu o)+ 2wy (@),

/ 19l dix < 20 £l gl
A

1 1
[t < (14 = = sl ol
A

for all f € LPO(A, ) and g € LP' O)(A, ).

3.3 Embeddings

Tt is well known from the theory of classical Lebesgue spaces that LP(A) is a
subspace of LI(A) with p,q € [1,00] if and only if p > ¢ and |A| < oco. This
suggests that a similar condition characterizes the embedding Lp(')(A) —
L) (A) for p,q € P(A). Naturally, this question is closely related with the
generalized Holder inequality. We do not consider the case with different
measures on the two sides of the embedding, for some result on this see [40].

We use the results of Sect. 2.8 to characterize the embeddings of variable
exponent Lebesgue spaces. Recall that the norm of the embedding L?() (4) —
L) (A) is the smallest constant K > 0 for which £ llgcy < KN fllpey-

Theorem 3.3.1. Let p,q € P(A,u). Define the exponent r € P(A,u) by

1
T(y) max{m p(y),()} for all y € A.

(a) Ifq p p-almost everywhere and 1 € L™)(A, u), then LPO (A, pu) —
()(A, p) with norm at most 21| e A)

(b) If the measure p is atom-less and LPC) (A, u) — LI (A, p) with norm
K >0, then q < p p-almost everywhere and ||1||LT<) 4y <4 K.
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Proof. We begin with the proof of (a). Since ¢ < p almost everywhere and

% + % = %, we can apply Holder’s inequality, Lemma 3.2.20, to get

1 llgey < 20T 1Al

Let us now prove (b). We begin with the case y,.) = @p). Assume that

LPO)(A) < LIC)(A). Then by Theorem 2.8.1 there exists h € L'(A, u) with
h >0 and ||h|; <1 such that

Pa(y) (t/K) < Pp(y) () + h(y) (3.3:2)

for almost all y € A and all £ > 0. The limit ¢ — oo implies that ¢ < p almost
everywhere. If ¢(y) < oo, then (3.2.18) and (3.3.2) imply that

Pr(y) (1/K) = sup (Paw) (t/K) = Gy (1))

<UD () (£) = o (8) + 1lw)) (3.3.3)
= h(y)-
If the set E := {qg= o0} has measure zero, then we can integrate this
inequality over y € A and get g,(y(1/K) < ||h], < 1,801 € L"(Q) and

11,y < K.

If w(E) > 0, then it follows from (3.3.2) with ¢t = 1 that o (1/K) < h(y)
for almost all y € E. Since h is a.e. finite on E and pu(E) > 0, this implies
K > 1. Since 7 = oo on the set F, we get

Gr(y)(1/K) = poo(1/K) = 0 < h(y)

for almost every y € E. So (3.3.3) also holds on the set E. Thus we can
proceed exactly as in the previous case to conclude [|1]],, < K.
The case p,(.) = @p(.) follows from this using (3.2.2). O

If u(A) < oo, then by Lemma 3.2.11 and/or Lemma 3.2.12 the condition
1 € L") (A) of the last theorem is always satisfied. Hence,

Corollary 3.3.4. Let p,q € P(A, 1) and let the measure pu be atom-less with
pw(A) < co. Then LPO (A, pu) — LIO(A, u) if and only if ¢ < p p-almost
everywhere in A. The embedding constant is less or equal to 2(1+ u(A)) and

2 max {M(A) %7%)+’(§*i)_}.

However, the condition ;i(4) < oo is not needed for [[1[|, ) < oo. See
Proposition 4.1.8 for examples with A = R", which are closely related to the
following embedding result.
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Lemma 3.3.5. Let p € P(R™) and poo € [1,00]. Define s € P(R™) by
1 1
s(@) ’M Cp ‘
Then 1 € L*C)(R™) if and only if
[ e {p(-),pm}(Rn) s Lp(')(R”) o [min {p('),pm}(Rn).
Proof. If the embeddings hold, then Theorem 3.3.1 implies that 1 € L5().

Assume now that 1 € L*()(R"). Let v € (0,1) such that Os()(7) < 0.
Define 71,72 € P(R™) by

1 , 1 1) 1 1
N {O’E N p<x>} " max{p(z),pc}  p(x)’

1 : 1 11 1 1
@ mm{o’% e } = 2@  max (p(@), poc)

for all z € R™. Then s < r; and s < ro almost everywhere. Thus it follows
from the definition that @, (.)(v) < 04)(7) < 00 and 0,y (7) < 25y (7) < o0
for v € (0,1). In particular, 1 € L) and 1 € L"), This and Theorem 3.3.1
prove the embeddings. a

The situation changes if the measure is not atom-less. In particular, the
variable exponent Lebesque sequence space lp(')(Z”) counting measure repre-
sents this kind of situation. It is well known that for p, ¢ € [1, o] the classical
Lebesgue sequence space [P(Z™) is a subset of [9(Z™) if and only if p < q.
This condition generalizes to the cases of variable exponents.

Lemma 3.3.6. Let p,q € P(Z") with p < q on Z". Then PO)(Z") —
ZQ(')(ZH) and ||f||lq<-)(zn) <2 ||f||lp<-)(zn)-

Proof. Let @,y = @py and let f € PO(Z") with 1fllwor@ny < 1.
Then by the unit ball property we have g,.)(f) < 1. Since 9,,(f) =
> kezn Ppe) (|f(K)]), this implies @, (|f(k)[) < 1 for all k € N and therefore
|f(k)| <1 for all k € N. Since ¢ < p, we get

T, () = D Gam (IF) < 37 G (IFR)) =Ty (f) < 1.

keznr keznr

Therefore || f|| 19¢)(zny < 1. The claim follows by the scaling argument. The
case pp(.) = Pp(.) follows with the help of (3.2.2). O

We can combine Theorem 3.3.1 and Lemma 3.3.6 in a more general result
for sequence spaces.
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Theorem 3.3.7. Let p,q,r € P(Z™) with % = max {O,% — %} and
1€ 1"O(Z™). Then 1PO)(Z") — 190) (7).

Proof. Define s € P(Z") by s := max{p,q}. Then s > p, s > ¢ and %
% — 1. Thus by Lemma 3.3.6 and Theorem 3.3.1 it follows that PO (Z7) —

15Oz — 190 (Zm). 0

We next characterize the embeddings of the sum and the intersection of
variable exponent Lebesgue spaces. Let us introduce the usual notation. For
two normed spaces X and Y (which are both embedded into a Hausdorff topo-
logical vector spaces Z) we equip the intersection XNY :={f: fe X, f €Y}
and the sum X +Y :={g+h: g € X,h € Y} with the norms

max {[| fllx, [ flly 3,
(lgllx +1I2lly)-

||f||xmf :

= inf
1l f=g+hige X.heY
In the following let 1 < p < ¢ < r < 0o be constants. We need estimates
relating ¢, from above and below in terms of ¢, and ¢,. Since we can find
6 € [0, 1] such that % = 1%19 +2, it follows from the estimates in Remark 3.1.5
that

©q(t) < wp(t) + @r(t) (3.3.8)

for all t > 0. Moreover, we have the lower estimate min {@,(¢), &, (t)} < @q(1).
Although this lower estimate is sufficient for our purpose in the case of ¢,
it does not hold with ¢ replaced by . Instead we need the estimates

gop(max {t— 170}) < pq(t),

. (3.3.9)
©Or ( min {¢, 1}) < q(t)

for all ¢ > 0. We begin with the first part of (3.3.9). It ¢t € [0,1], then
¢p(max {t —1,0}) =0, so let us assume ¢ > 1. If ¢ = oo, then ¢4 (t) = o0, so
let us also assume g < co. As a consequence, also p < co. Define a :=t—1 > 0.
We estimate
Pq(t)

=

1 1 ayvp 1
=-(14+a)==-(14+a)) ==
q( ) q(( )?) .

/N
h=EES
)
N—
=
Vv

1
p
with a similar estimate for @4, which proves the first part of (3.3.9). We turn

to the second part of (3.3.9). If ¢ > 1, then the inequality is clear. For all
t € [0,1] we estimate

_ 1 1 _
orlt) = 1" < th = $q(t) (3.3.10)

with a similar estimate for @,. This concludes the proof of (3.3.9).
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Theorem 3.3.11. Let p,q,r € P(A, u) with p < q < r p-almost everywhere
in A. Then

LPO(A, ) NL"O(A, ) — LIO(A, ) — LPO(A,p) + L7O(A4, ).

The embedding constants are at most 2. More precisely, for g € Lq(')(A7LL)
the functions go := sgngmax{|g| — 1,0} and g1 := sgngmin{|g|, 1} satisfy
9 =90+ 91, |90l |91l < lgl. llgoll,y <1 and |[g1],.() < 1.

Proof. Let f € LP) 1 L") with max {|| f]|,, [If]l.y} < 1. Then it follows
by the norm-modular unit ball property that o,)(f) < 1 and o, )(f) < 1.
From (3.3.8) it follows that o40.)(f) < @p)(f) + or(y(f) < 2. This yields
0q()(f/2) < 2040)(f) < 1 using sub-linearity, (2.1.5), so [fll4y < 2 by the
unit ball property. The scaling argument proves that ||f||q(_) L2 fll Leranre) -
Now, let g € L1)(Q) with l9lly.) < 1 so that g,)(g) < 1 by the unit
ball property. Define go := sgn gmax {|g| — 1,0} and g; := sgngmin {|g|, 1}.
Then g = go + g1 and by (3.3.9) it follows that o0,(.)(g0) < 04(.y(9) < 1 and
0p()(91) < 04(9(9) < 1. The unit ball property implies ||90||T(.) < 1 and
lg1ll,() < 1. In particular, ||g[|;sc) -y < 2. The scaling argument proves
9l o4 prer < 2019llg)- U
The following result is needed later in Theorem 3.6.5 in the study of the
convolution operator.
Lemma 3.3.12. Letp € P(R") and poo € [1,00]. Assume that 1 € L*C)(R™),
where s € P(R™) is defined by T%L’) = |ﬁ - zt| Then

LPO@R™) N LPT(R™) = LP~(R") N LP" (R™),
LPO(R™) — LP>=(R™) + LP (R™).

Proof. Using Lemma 3.3.5, Theorem 3.3.11 twice, and then Lemma 3.3.5
again we deduce
LPO) A p < pmin{p()pe} A p"
< LPe N LP"
oy pmax{p()pec} A [ p*

— PO NP

This proves the first assertion. Analogously, by Lemma 3.3.5 and
Theorem 3.3.11

PO pmin{p()poc} y [P0 4 TP

This proves the second assertion. a
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3.4 Properties for Restricted Exponents

In this section we consider basic properties of variable exponent Lebesgue
spaces that hold only under some additional conditions, namely when p™ < oo
and/or p~ > 1. Recall that p~— and p™ denote the essential infimum and
supremum of p, respectively.

The following theorem shows that the condition p™ < oo plays an impor-
tant role for the properties of LP("). Indeed, it shows that p* < oo is equivalent
to EP() = LP() which is needed for example for the characterization of the
dual space (LP())*. Recall that L5" (A, o, 1) is the Musielak-Orlicz class of
the modular defined by ¢,.), see Definition 2.5.1.

Theorem 3.4.1. Let p € P(A, ). Then the following conditions are equiv-
alent:

) BPO(A,p) = pc (A, ).
) Lo (A, p) = LPO(A, p).
(c) EPO(A,p) = L”()(A 1)-
(d) @p( satisfies the Ag-condition with constant 2r"
) pt < oo.
) 0Op() satisfies the weak Ao-condition for modulars, i.e. modular conver-
gence and norm convergence are the same.
(8) op() is a continuous modular.

Proof. (¢) = (d): This follows from 2°() < 27" for all y € A.

(d) ) and (f): This is a consequence of g, (2% f) < 2%" o, (f).

(c) ) and (a): Follows from EP() ¢ LI < Lr0),
(d) g): Follows from Lemma 2.4.3.

(a) or (b) or (g) or (f) = (e): We prove the claim by contradiction: so let
pT = oo. We begin with the case pu({p =o0o}) > 0. Let f := X{p=co}, then
0p(y(f) = 0 and gpy(Af) = oo for A > 1. This proves f € Lo\ EPC)
and 2f € LPO\ LY, which contradicts (a) and (b), respectively. Moreover,
limy_,1+ 0p()(Af) = 00 # 0 = g, (f), which contradicts (g). If fx := f, then
0p() (fr) = O — 0 and g,(.)(2fx) = 0o # 0, which contradicts (f).

Assume now that u({p = co}) = 0. Since p* = oo, there exists a sequence
qr € [1,00) with g / oo and ¢y > k and pairwise disjoint sets Fj with
0 < u(Ey) <ooand E, C {y: gx < p(y) < gr+1}- Since p is bounded on the
set ), and 0 < p(Ey) < oo, the mapping ¢ — 0,(t xE,) is continuoub for

> 0 with image [0, c0). Hence there exists ¢, with o, (tx XE,) = W Let
fk = tpXm, then g,y (fr) = W and op,(.)(fx) — 0 as k — oo. On the other
hand p > qx > k on Ek implies for A > 1 using (2.1.5)

= (c) and
= (b) and
= (

)\k:
0p()(AMfk) = AP 0p()(fr) = 535 — 0.
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We have found a sequence fi with g,0)(fx) — 0 and g,(.y(2fx) — oo, which
contradicts (f). Define

k k > >
g =) Fi =) tixm, 9= fi= tixs
J=1 j=1 J=1 =t

Since t > 0, we have 0 < gr " g¢. Therefore monotone convergence,
Lemma 3.2.8, implies that for A > 1

oo oo 1
001 (9) =D 0oy (f)) =D 37 <1,
j:l j=1

N1
on()(Ag) = ZQp W) 23 G =

=1

This proves g € L5y \ EPC) and 2g € LPO) \ L5, which contradicts (a)
and (b), respectlvely Moreover, limy_,;+ gp(.)(Ag) = oo and g, )(g9) < 1,
which contradicts (g). O

With the aid of the previous result we can extend the unit ball property
(cf. Lemma 2.1.14):

Lemma 3.4.2 (Norm-modular unit ball property). If p € P(Q) is
bounded, then ||f|,.) <1 and oy)(f) <1 are equivalent, as are | f|,., <1

and op)(f) <1, and ||f||p(,) =1 and o, (f) = 1.

Remark 3.4.3. Let p € P(A,u) be a bounded exponent. Then ¢,y is
locally integrable, since

- ot
[ enn ) ) < (Bymax {0 ")
E
for every measurable E C A with p(E) < oo and every A > 0. However, the
local integrability of @p() does not imply that p* < co. Indeed, let 4 := R
and let E), C R be pairwise disjoint with |Ex| = exp(exp(—k)). Now, define

p(z) :=k for x € E), and k € N and p(z) =1 for x € R\ U;—, Ex. Then for
every A > 0 and every E C R with |E| < co we have

Bp()(AE) <A E|+ ) M exp (exp(—k)) < oo.
k=1

Thus ).y is locally integrable but pt = oo.
The boundedness of the exponent also suffices for separability:

Lemma 3 4.4. Letp € P(A, p) be a bounded exponent and let p be separable.
Then LPC)(A, ) is separable.
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Proof. Since .y is locally integrable by Remark 3.4.3, we can apply The-

orem 2.5.10 to show that EP() is separable. Since pt < 0o, we further have
EP() = LP() (Theorem 3.4.1). O

We can directly apply this lemma to LP()(Q) with @ € R™ and 1P()(Z"):

Corollary 3.4.5. If p € P(Q) and q € P(Z"™) are bounded exponents, then
LPO(Q) and 190)(Z™) are separable.

Recall that for all g € L'() the mapping Jg is defined as Jy(f) = [ fgdu,
where f € LP() | and belongs to (LP())* (cf. (2.7.3), Theorem 3.2.13).

Theorem 3.4.6. Let p € P(A, 1) be a bounded exponent, then V : g — J,
is an isomorphism from LV O)(A, 1) to (LPO) (A, p))*.

Proof. From p™ < oo it follows by Theorem 3.2.13, Remark 3.4.3 and Theo-
rem 3.4.1 that ¢,y is proper and locally integrable and EP() = LP0) Now
the claim follows by Theorem 2.7.14. a

Reflexivity and uniform convexity require even stronger assumptions on
the exponent. Note that Dinca and Matei [111] studied uniform convexity in
the case p > 2.

Theorem 3.4.7. Let p € P(A,p) with 1 < p~ < pt < oo. Then LPO)(A, i)
1s reflexive.

Proof. Let 1 < p~ < pt < oo. Then it follows from Remark 3.4.3 that ©p()
and (pp(.))* are locally integrable. Moreover, by Theorem 3.4.1 it follows that
ErC) = [20) and EP'0) = LP'0). Thus Corollary 2.7.18 shows that LP() is
reflexive. a

Remark 3.4.8. The condition 1 < p~ < p*™ < oo in Theorem 3.4.7 is
sharp if p is atom-free. This has been proved first by Kovacik and Rékosnik
[258, Corollary 2.7] for LP()(Q), i.e. in the case of the Lebesgue measure.
Indeed, if LPO)(A, p) is reflexive and u is atom free, then by Remark 2.7.16
(b) follows that EP() = L) and EP'() = LP'()_ Thus, Theorem 3.4.1 implies
1<p <pF <oo.

Theorem 3.4.9. Let p € P(Q) with 1 < p~ < p™ < oo. Then ¢,y is a
uniformly convex N-function, op.) is a uniformly conver semimodular and

[ll,.) is @ uniformly convex norm. Hence, LPO(Q) is uniformly convex.

Proof. Note that ©p() satisfies the As-condition since p™ < oo. In order to
apply Theorems 2.4.11 and 2.4.14 we have to show that ¢,y is uniformly
convex. In principle we have to show this for both @) and ¢,.), since the
equivalence of norms does not transfer the uniform convexity. However, since
Pp(y) and @p(,,) only differ for every y € Q by the multiplicative constant
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1
()’
Pp(.)- Thus it suffices to consider the case Pp(-)-

Fix € > 0. Let u,v > 0 be such that |u — v| > ¢ max {u, v}. It follows from
Remark 2.4.6 that the mapping ¢ ~— tP is uniformly convex, since p~ > 1.
Thus there exists 6 = d(¢,p~) > 0 such that

u+ov\? uP 4P
<(1l—-¢0)——.
() <0-9"—

the uniform convexity of @,y is equivalent to the uniform convexity of

p)
This and the convexity of t — ¢ »~ for y €  imply
()

(y) - -\ =
u+v\? uP 40P P
<|((1—-0)—

This proves that ¢,.) is uniformly convex. The semimodular g,.) is uni-
formly convex by Theorem 2.4.11 and the norm ||| p(-) 1s uniformly convex
by Theorem 2.4.14. O

wP®) 4 W)
2

N

(1-9)

It is often the case that results are easier to prove for nice functions and
then by density the results carry over to the general case. It is therefore of
interest to find nice subsets of LP(") which are dense in LP("). If the exponent is
bounded, then by Theorems 2.5.9 and 3.4.1 we immediately get the following
density result.

Corollary 3.4.10. If p € P(Q) with pt < oo, then simple functions are
dense in LP)(Q).

Remark 3.4.11. Since simple function are a subset of L>(Q) N LPO)(Q) it
follows from Corollary 3.4.10 that L>(Q)NLP()(Q) is also dense is LP()(Q) if
pt < oco. This fact was first shown by Kovacik and Rékosnik in [258] for the
case pT < oco. Later Kalyabin [227] has proved that the condition p™ < oo
is necessary and sufficient for the density of L>°(Q) N LP()(Q) in LPO)(Q) if
the variable exponent is finite almost everywhere. We can use this result to
characterize the density of L= (Q)NLP()(Q) in LP()(Q) for general p € P(Q):

Let p € P(Q) and Qo := {y € Q: p(y) < co}. Then L=(Q) N LPO)(Q) is
dense in LPO)(Q) if and only if ess sup,cq, p(y) < oo.

Hence, p might be unbounded when L>°(Q)N LP()(Q) is dense in LP()(Q),
but on the subset g, where p is finite, it must be bounded.

For an open set Q C R™ let C§°(€2) denote the set of smooth functions
with compact support in €.

Theorem 3.4.12. If p € P(Q) with pt < oo, then C§°(Q) is dense in
LrO(Q).
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Proof. Since pt < oo, simple functions are dense in LP()(Q) (Corollary 3.4.10).
Since a simple function belongs to LP~ () N LP" (), it can be approximated
by a sequence of C§°(2) functions in the same space, which yields the claim
since LP' (Q) N LP (Q) < LPO)(Q) by Theorem 3.3.11. O

As a consequence C5°(9) is dense in L ()(Q) if p~ > 1 and therefore the
norm conjugate formula in Corollary 3.2.14 is unchanged if we replace the
condition g € LP'()(Q) by g € C3°(Q).

Corollary 3.4.13 (Norm conjugate formula). Let p € P(Q2) withp~ > 1.
Then

1
Nl < sup ‘/WfIMIdw$£2HfH |
2000 e @)l < Pt

for all f € L°%(QY). The factor % can be omitted if P,y = Pp(.)-

In Corollary 4.6.6 we prove the norm conjugate formula without the
assumption p~ > 1, however, there we require other regularity of the space.

Sometimes it is necessary to consider the subspace of LP()(Q) consisting
of functions with a vanishing integral. For domains with |}| < co we denote
the space of such functions by

p(: - p(: . 2dr =0VY.
5@ = {re o !f(ﬂi o}

(In contrast to the definition of C§°, the index 0 in Lg(') does not indicate
compact support. However, in both cases the only constant within the space
is zero.) In the case that |Q] = oo we set Lg(')(ﬂ) = LPO)(Q). We will see
that for a large class of exponents this is sensible. The space of compactly
supported smooth functions with vanishing integral we denote by C§%(€2).

Proposition 3.4.14. Let Q be a domain and let p € P(Q) be a bounded
ezponent. If | < oo or p~ > 1, then C§%(S2) is dense in Lg(')(Q).

Proof. Let us first consider the case || < co. Choose ¢ € C§°(2) satisfy-
ing [,¢dx =1 For f € Lg(')(Q) Theorem 3.4.12 implies that there exists
a sequence (fr) C Cg°(Q) such that fr — f in LPO)(Q). Since |Q] < oo
we get by Holder’s inequality ||f — fill, < 2 Ixelly ) I1f = kap(.)- Conse-
quently, we have f, — f in L'(Q) and Jo fodz — Jo fdz = 0. Setting
fo = fu — Y [, fr dz we see that fj, € C5%() and that

)

nf—nmmsnf—ﬁm@+wmmﬁ/ﬁ@x
Q

which tends to zero for £ — oo in view of the above.
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Let now 2 satisfy |Q] = co and p~ > 1. Choose an increasing sequence of
bounded domains Q; CC Q with (J;2, Q; = Q, Q] > 1 and non-negative
functions v¢; € C§°(;) which satisfy fQj Yide = 1, ¢; < C|Qj|_1XQj.
This is possible since one can take a mollification of |Qj|71XQj. From
Y <c |Qj|_1XQj and Theorem 3.3.11 it follows that

-1
1931,y < e 121 I o s o

T (3.4.15)

S cemax{|Q;] L[ T -0
for j — oo. For f € Lg(')(Q) Theorem 3.4.12 implies that there exists a seq-
uence (f,) C C§°() such that f, — f in LP()(Q) and ||fk||p(,) < fllpey + 1.
We set fi := fk—%'k, ka fk dx, where ji is an increasing sequence in N, which
will be chosen below. By definition of fj. we have fi, € C§%(€2). With Holder’s
inequality we estimate

1F = Fellyy < IF = Fillyy + I8 2l o el
<IF = Fullygo + 13 20l (1 + 1)-

The first term converges to zero for k — oo. Since || < oo, we have
Xa,, € LP)(Q) as simple functions are contained in L () (€2) by Lemma 3.2.11.
According to (3.4.15), we can choose jj, such that |1, ||, [Ixe.lly ) < 27k,
With this choice also the second term in the previous estimate converges to
zero for k — oo. In particular, we have fy — f in LP()(Q). O

3.5 Limit of Exponents

In this section we collect some continuity results with respect to convergence
of the exponent. In particular, we examine the behavior of the semimodular
0p,.(-)(f) and the norm || f[[, ., if the exponent pj converges pointwise to an
exponent p. Let us mention that some other properties of the norm in the
case pT = oo were studied by Edmunds, Lang and Nekvinda [116].

We begin with the continuity property of ¢, with respect to ¢. If
k. q € [1,00] with g — ¢, then it is easily checked that

k;llm @qk (t) = @q(t)v
0 (3.5.1)

lim gy, (1) = gg(f)  if g < oo

for every t > 0.
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Remark 3.5.2. If ¢y — ¢ = o0, then limp_o @g, (t) = 0 = @oo(t)
for t€[0,1) and limg_.oo Pg, (t) = 0 = @oo(t) for ¢ > 1. However,
limg— o0 Gg, (1) =1 # 0 = @oo(1). This is the reason, why we had to exclude
the case ¢ = oo for @ in (3.5.1). Nevertheless, we have

]}EI;O Par (At) < @q(t) < ]}LH;O Pay (1)
for all t > 0 and all A € [0,1).
Remark 3.5.3. By Lemma 3.1.11 we have (5;1(15) = (qt)%, gb;l(t) = tu for
1< g <ooand 3 (t) = ¢ (t) = X(0,00)(t) for all t > 0. If follows easily

that @ () — @q(t) for all £ > 0 and ¢, — ¢. For the case @, and ¢ = oo,
loggy _
24)=1.

. 1 :
we use limg_ o g7 = exp(limg_ 00

We deduce the following lower semicontinuity results for the semimodular
and the norm.

Corollary 3.5.4. If pp,p € P(A,u) with pp — p p-almost everywhere,
then op()(f) <lminfi—oo 0p, () (f) and || f[|,y < liminfr_oo [ fll,, () for all
fe LA p).

Proof. The estimate g,.y(f) < liminfy . 0,,()(f) follows from (3.5.1) and
Fatou’s lemma in L'. In the case ¢,y = @) and p({p = oo}) > 0, we also
need @4(t) < im0 Pg, (1) from Remark 3.5.2.

Now, let o := liminfg—oc || f[[,, (.- There is nothing to prove for a = oo,
so let us assume that a < oo. For every A > a we have [|f||, ) < A for large
k and therefore by the unit ball property g,,)(f/A) < 1 for large k. The
first part of the corollary implies o,(.)(f/A) < 1 and hence || f|[,.) < A by the
unit ball property. Since A > « was arbitrary the claim follows. a

Under certain integrability conditions on f, the modular is also continuous
with respect to pointwise convergence of the exponent.

Lemma 3.5.5. Let r,s,pr,p € P(A,pu) with r < pr < s and py — p
p-almost everywhere. Let f € LO(A, p) with o,.)(f), 0s()(f) < oo. Then
limy, o0 Opy () () = Op() (f)-

If additionally pu({s = oo}) = 0, then limk—cc 0p, () (f) = py (f)-

Proof. By (3.3.8) we have ¢, )(f) < @) (f) +@s¢)(f) pointwise, where the
left-hand side converges pointwise by (3.5.1). Thus, the claim follows by the
theorem of dominated convergence. a

Remark 3.5.6. If we drop the condition u({s = co}) = 0, then it follows by
Remark 3.5.2 that limy—oc 0y, () (Af) < 0p()(f) < limg—oo 0y, (y(f) for all
A€[0,1).
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Theorem 3.5.7. Let pi,p € P(A, n) with py /' p p-almost everywhere and
suppose that j(A) < oo. Then for all f € LPC)(A, 1) holds

T (£l () = 1l

Proof. We know from Corollary 3.5.4 that ||f|| ) < liminfp o ||f||pk(_)7 SO
it suffices to prove lim supy,_, ., ||f||pk( ) S 11,

We begin with the proof for ¢,y = @, The case f = 0 is obvious, so we
can assume || f||,, > 0. Since p(A) < oo, it follows by Lemma 3.2.20 (with
s = pr and ¢ = 1) and the unit ball property that for all A € (0,1)

() i ) 0
%“@mm>\@>nm ToD) s 1Hpd) <oo

Therefore, we can apply Lemma 3.5.5 to get

li A=) <A A
A5, O Qum“> “(wmm S A% |un sAs<l

for all A € (0,1). Thus 9, () (Af/||fll,.)) <1 for large k, which implies that
fl oy < | fll, . /A for large k. Since A € (0,1) was arbitrary, this proves
Pk (+) p(-)

limsupg oo [1f1l,, ) < I llpe-
The proof of the case ¢,.) = @,(.) is similar if we start our estimates with

10 By )OS/ 1)) < By AL/ ) wsing Remark 356, 0

3.6 Convolution*

For two measurable functions f and g, we define the convolution by

>=/&u—ymwMy:/jwmu—
R™ R™

for every z € R" provided this formula makes sense. If the functions f and
g are only defined on a subset 2, then we extend them by zero outside of 2
before applying the convolution.

The operation of convolution on classical Lebesgue spaces is described by
Young’s inequality for convolution. It states that

1+ gll, < If1pllglly-
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for f € LP(R™) and g € L9(R™) when p,q,r € [1,00] with 1 +1 = 1—17—|- %. The
case ¢ = 1,

1+ gll, < 171, llgllys

is of special interest.

Unfortunately these inequalities cannot be generalized to the spaces LP(")
for non-constant p. This is a consequence of the fact that our spaces are not
translation invariant. In fact, with the help of Theorem 3.3.1 we show that
translations are bounded on LP()(Q) if and only if the variable exponent p is
constant, i.e. if we are in the setting of classical Lebesgue spaces.

Proposition 3.6.1. Let p € P(R™) and define the translation operator by
(thf)(y) :== f(y —h). Then 1, maps LPO)(R™) to LPC)(R™) for every h € R™
if and only if p is constant.

Proof. Suppose first that 7, is bounded on LP()(R™) for every h € R”. Since
170 fllpy = Ifll-,p)> this implies that LPO(R") — L7-+»P()(R™). From
Theorem 3.3.1 (b) we deduce that p > 7,p almost everywhere. Replacing h
by —h we see that p > 7,p > p almost everywhere. Since h is arbitrary, p has
to be constant. The opposite implication is immediate. a

If p € P(R™) is a non-constant exponent, then we can construct a sin-
gle function f € LPO)(R") with 7, f ¢ LP()(R™) by a standard procedure.
Namely, let h € R\ {0} be such that 7, is not bounded from LP()(R™)
to LPO)(R™). Choose f; € LPO(R™) with f; > 0, ||fj||p(_) < 277 and

Imfil,, > 27 and set f = S, £ Then [flly < Yo, Il < 1
and [[7f 0y > lim [[m ., = oo.

Remark 3.6.2. The previous proposition also holds if we replace R™ by
some open, non-empty set @ C R™. Arguing as in the proof of Proposi-
tion 3.6.1 we deduce that p > 7,p > p on the set (2 — h) N Q. Since h is
arbitrary this implies again that p is constant on all of 2.

Theorem 3.6.3. Let Q be bounded and p,r € P(R™) with 1 < p~ <pT < o0
and 1 < r~ <rT < oco. Then the convolution x : (f,g) — f* g is bounded as
a mapping from LPO)(Q) x LY(R™) to L™)(Q) if and only if p~ > r+.

Proof. “<”: Since p~ > r+, Corollary 3.3.4 implies LP()(Q) < L™ (Q) —
L™0)(€). By Young’s convolution inequality, % : L (Q) x L}(R™) — L™ ().
Combining these, we obtain the claim.

“=": We proceed by contradiction and assume p~ < r*. So there exists
h € R™ such that p > 7_r does not hold almost everywhere on Q2 N (2 — h).
Hence, it follows from Theorem 3.3.1 (b) and |74 fll,., = IfIl;_, .., that

7, does not map LPO)(Q) continuously to L"()(Q). By Proposition 3.6.1
and Remark 3.6.2 there exists f € LP()(Q) and h € R™ \ {0} such that
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mf & L"O(Q). For v € C&(R™), ¢ > 0 and Jwdz = 1 define 1.
by ¥:(y) := e "((y — h)/e), and note that f . — 7, f in LL _(R™). By
assumption on the convolution || f * ¢s||r(.) < fllpllvll < e Since Lr(.)(Q)
is reflexive, there exists a subsequence converging weakly in LT(')(Q) to a
function g € L™)(Q) as e — 0. Since L") (Q) — L (), we have g = 7, f.
In particular the subsequence converges weakly in L"()(Q) to 7, f. This con-
tradicts 7, f & L")(Q). O

This theorem has the following undesired consequence:

Corollary 3.6.4. Let p € P(R™) with 1 <p~ < pT < oo. Then
1 *gllpey < el fllpollgll

for some ¢ > 0 and all f € LP)(R™) and all g € L*(R™) if and only if p is
constant.

Proof. If the inequality holds, then by Theorem 3.6.3 we have pg > p$ for
all bounded, open subsets €2 C R™. Thus p~ > p™ and p has to be constant.
If on the other hand p is constant, then the inequality is a consequence of
Young’s inequality for convolution, which was stated in the beginning of the
section. a

Let f € LPO(R"). Then the preceding corollary shows that for f g
to belong to LP()(R™) it is in general not enough to assume g € L'(R™).
However, we can solve this problem by assuming more regularity for g. This
will be useful for instance when dealing with the Bessel potential in Sect. 12.4.

Theorem 3.6.5. Let p,qg € P(R™) and let poo,goo € [1,00] satisfy p~ <
pDO < oo < qt. Assume that 1 € L*O)(R™), where s € P(R™) is defined by
= |— — —Qo| Let rg,r1 € [1,00] be defined by

1 1 1 1 1 1
) Po  Geo 1 p q

Let % denote the convolution operator. Then the bilinear mapping
« 1 LPO(R™) x (L™(R™) N L™ (R™)) — LYO(R™) N LT (R™)
is bounded.

Proof. Note that p~ < poo < goo < ¢ ensures that ro,7; € [1,00] are well
defined and 79 < 1. Define 74, r3 € [1,00] by

1 1 1 1 1 1
—=1-—+— —=1—-— 4+ —.
r2 p oo r3 Po q+
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Young’s inequality for convolution for constant exponents implies the bound-
edness of the following bilinear mappings

- +
x P x L™ — LT |
% 1P x L™ — L9,
n
% 1 LPe x LT — L9,

k1 LP x [T0 — [,
Therefore,

« 1LP x (L™ NL™) — L9~ N LT,
x 1P x (L' N L") — LI~ N LT .

From ro < min {rz,r3} < max{ra,r3} < r1 and Theorem 3.3.11 we deduce
L°NL™ — L™NL" and LNL™ — L™ NL"™.
Combining these embeddings with our previous result implies that
« t(LP" 4+ LP~) x (LN L") — L N LY .

By Lemma 3.3.12, LP() « [P 4 [P~ and LI~ N L1 — [I0) A La",
Combining this with the previous formula concludes the proof. ad



Chapter 4
The Maximal Operator

In the previous chapters we studied the spaces LP() with general variable
exponent p. We have seen that many results hold for fairly wild exponents,
including discontinuous ones, in this general setting. We studied complete-
ness, separability, reflexivity, and uniform convexity. However, these are only
basic properties of LP(). For the study of partial differential equations it
is necessary to develop more advanced tools for the LP() spaces: we are
interested in mollification, the Riesz potential, singular integrals, and the
Hardy-Littlewood maximal operator. For general variable exponents p it is
not possible to transfer these tools to LP(), as our counterexample in Sect. 4.7
shows. It turns out that a certain regularity has to be assumed on p: the so-
called log-Hélder continuity of p. We will see that this regularity is in some
sense optimal and cannot be improved.

In Corollary 3.6.4 we saw that the inequality [|f * gl|,., < |l fll,llgll;
does not hold for non-constant p € P(2). This seems like a strong drawback
for the theory of LP()-spaces, since the version for constant exponents is used
in many applications. For example the technique of mollification or approxi-
mate identities relies on this fact and a failure of this technique would have
drastic consequences. But Corollary 3.6.4 only states that we have no control
of the convolution of an LP() function (p non-constant) with an arbitrary L!
function. The proof relied on the fact that we could approximate the transla-
tion operator by the convolution with a sequence of L' functions, i.e. we used
a shifted version of an approximate identity. So we used functions . which
concentrated in the limit ¢ — 0 in some point h, i.e. ¥ — dp in the sense
of distributions, where 0y is the d-distribution at h. The technique of molli-
fication or approximate identities is however restricted to the case . — o
for £ — 0. Since f * 69 = f, this does not contradict the discontinuity of
translations. Indeed, we will see below that for certain variable exponents p
we have fx1p. — f in LP0) for € — 0 if 1), is an approximate identity.

L. Diening et al., Lebesgue and Sobolev Spaces with Variable Exponents, 99
Lecture Notes in Mathematics 2017, DOI 10.1007/978-3-642-18363-8-4,
(© Springer-Verlag Berlin Heidelberg 2011
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4.1 Logarithmic Holder Continuity

In this section we introduce the most important condition on the exponent
in the study of variable exponent spaces, the log-Holder continuity condition.

Definition 4.1.1. We say that a function a: Q — R is locally log-Hélder
continuous on € if there exists ¢; > 0 such that

1
+ 1/l —y|)

o(e) ~a(y)] < o

for all z,y € Q). We say that « satisfies the log-Holder decay condition if there
exist s € R and a constant c¢o > 0 such that

C2
) = 0l S ot e

for all z € Q. We say that « is globally log-Holder continuous in § if it is
locally log-Holder continuous and satisfies the log-Holder decay condition.
The constants ¢; and ¢y are called the local log-Holder constant and the log-
Holder decay constant, respectively. The maximum max {c1, ca} is just called
the log-Hoélder constant of a.

The local log-Holder condition was first used in the variable exponent
context by Zhikov [392]. Various authors have used different names for this
condition, e.g. weak Lipschitz, Dini—Lipschitz, and 0-Hélder. However, we
think these terms are ambiguous and prefer the name log-Holder. Before
appearing in the variable exponent context, the same condition was used
with variable order Holder spaces [177,229,332]. It is unclear to what extent
these studies were known to researchers of variable exponent spaces, however.

If « is globally log-Holder continuous on an unbounded domain, e.g. R™,
then the constant a in Definition 4.1.1 is unique. Note that any globally
log-Holder continuous function is bounded.

Remark 4.1.2. We define the chordal metric d : R® x R*” — R by
[z —yl 1

= and d(zx,0) = ——
VIt zPy1+[y? (7o) V14 [zf?

for z,y € R". The motivation for the term “global log-Holder continuity”
comes from the fact that a: R® — R is globally log-Hélder continuous if and
only if

d(z,y)

e+ 1/d(z,y))

for all 2,y € R™. Since d(z,y) < |z — y| and |z| < 1/d(x,0), it is clear that
(4.1.3) implies log-Holder continuity. The other implication follows from the
inequality

la(z) —a(y)| < Toa( (4.1.3)
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1 oL |of? 1
_|y| +2/14 |z]2 < (1+|(E|4+m),

ENIE

which in turn follows since /1 + |y|? < 2/1+ |z]2 + 2|z — y|. The details
are left to the reader.

Definition 4.1.4. We define the following class of variable exponents
Ploe(Q) := ={peP(): % is globally log-Holder continuous}.

By ciog(p) or ciog we denote the log- Hélder constant of L Tf Q is unbounded,
then we define poo by - = hm|gc|éDO G . As usual we use the convention
= =0

Note that although % is bounded, the variable exponent p itself can be

unbounded. We would also like to remark that the definition of po, “commutes
with duality”, i.e. p € P°2(Q) if and only if p’ € P'°8(2) and

(Poe) = (P)oo-

Hence we do not have to distinguish between (poo)’ and (p’)so, and write p_
for short.

Remark 4.1.5. If p € P(Q) with p* < oo, then p € P°8(Q) if and only if
p is globally log-Hélder continuous. This is due to the fact that p — % is a

bilipschitz mapping from [p~, p™] to [p%r, pl_]

The following lemma provides a characterization of local log-Holder con-

tinuity. Recall the notation aj for the supremum and infimum of « over a
set A.

Lemma 4.1.6. Let « : R™ — R be continuous and bounded, i.e.
—o00 < a” < at <oo. The following conditions are equivalent:

a) « is locally log-Holder continuous.

b) For all balls B we have |B|a§_aE <e.

¢) For all balls B and all x € B we have |B|QB_(’($)
d) For all balls B and all x € B we have |B|*™)~ 5

/_\/\,.\

C.

<
B Le.

—

Instead of balls it is also possible to use cubes.

Proof. (a) = (b): Since ap — o is non-positive, the claim is clear for balls
of radius greater than 1 . If B is a ball with radius less than this, we use the
local log-Holder condltlon

c11og(1/|B|) . cinlog(1/|B|)
|B| ~ log(e +1/diam(B)) ~ log(c/|B|)

lap — apllog —
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(b) = (a): Fix z,y € R™ and choose a ball B, with radius r such that
z,y € B, and @ <r < |z —yl. Since |B,| < (2r)",

+

—a

ep=op 1
<IBA| T v <Lef.

—la(@)—a(y)]

(2|$ _ y|)7\a(:1:)7a(y)| < (2T)*|a(z)fa(y)| < |By|

Since |a — a~| < oo, this proves |z — y|~“@ =@ < ¢ for some ¢ > 1.

We take the logarithm of this inequality to deduce |a(x) — a(y)| < %.
This takes care of the claim when |z —y| < %; on the other hand, there the
claim is obvious when |z — y| > %7 since « is bounded by assumption.

The equivalence of (b), (c) and (d) is clear by the continuity of a. O

Many results below are stated for variable exponents p which are defined
on the whole space R™. However, sometimes initially the variable exponent
is only given on a subset O C R", i.e. ¢ € P'°8(€). The following result
ensures that such a variable exponent ¢ can always be extended to R™ without
changing the fundamental properties.

Proposition 4.1.7. If p € P'°5(Q), then it has an extension q € P8(R")
with clog(q) = cog(p), ¢~ = p~, and ¢t = p*. If Q is unbounded, then
additionally oo = Poo-

Proof. Let ¢; > 0 and p > 1 be such that

1 1 C1

Cc1
p@ o) S Togle + 1/ — 4]

log(e + [x])”

and  |p(z) = poo| <

for all points z,y € Q. Since t — 1/log(e + 1/t) is a modulus of continuity,
we can use the extension of McShane-type [289] to extend 1—17 to R™ with the
same modulus of continuity and lower and upper bound. More precisely, we
define a € C(R™) by

L up (- 4
aly) "~ 2eb\p(z)  logle+1/[z —y])

for y € R™. In particular, a is locally log-Hoélder continuous with local log-
Holder constant less or equal to ¢1, and a(y) = 1/p(y) for all y € Q.

In order to ensure that our extension satisfies also the log-Holder decay
condition and has the same lower and upper bound as p we define g by
truncation

1 mm{ma{l 1 co 1}1+ co 1}
— = XY 7~y T T T o () 1. 7N =
a(y) a(y) po  logle+|z])" ph J P logle + |2]) pg
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for all y € R™. Since z — is globally log-Hélder continuous with con-

C
Toge +1o)
stant co, we see the log-Holder constant of % does not exceed max{cy,ca} =

Clog(p). The decay condition of % ensures that le) = a(y) = @ for all

y € . Therefore ¢ is the variable exponent we are looking for. a

Proposition 4.1.7 was first proved by Diening and Ruzicka [103] under
the additional assumption that ¢ is constant outside a large ball. For a gen-
eral variable exponent ¢ € P'°8(Q) the result was first proved by Cruz-Uribe,
Fiorenza, Martell and Pérez [83, Lemma 4.3] by means of the Whitney decom-
position. The proof that we included is simpler and originates from Diening
and Hésto [96, Proposition 3.7].

Let p € P(R") and 1 := |% — ztl We saw in Lemma 3.3.5 that the
condition 1 € L*) is important for embeddings; we now show that this
condition follows from log-Hélder continuity. The condition turns out also to
be important for the boundedness of maximal operators.

Proposition 4.1.8. Let p,q € P8(R") with ps = Goo. If s € P(R") is

given by % = |% — % , then 1 € L*C)(R™) and for every m > 0 there exists

v € (0,1) only depending on ciog(p) and n such that
<:Os(y)(f)/) < (e + |y|)7m
for all y € R™. Moreover,
Lmax{p(')le(')}(Rn) N LQ(')(R”) N Lmin{P(~)7q(~)}(Rn)

Proof. We begin with the estimate for ¢,y (7). If s(y) = oo, then v (y) = 0.
So let us assume s(y) < oo. Since p € P°8(R"), we have

‘ 1 _i‘< Clog (P)
p(y) P! log(e+|yl)

for all y € R™. Let v := exp(—m ciog(p)). Since s(y) < 00, G5y (7) = o),
and so we estimate

B —m Clog(p m
Zat) (1) < exp Q_%) < exp (- mlog(e + [y)) = (e + [y) ™
p(y) P

This proves the estimate for @y, (7). Since @,y < Pp(y, the conclusion
holds also for @p,.y. If m > n, then ¢ () < (e + |-])™™ € L'(R™); hence
1€ LsO)(R™).

Define s1, s2 € P°8(R™) by gl—l = max{% - %,0} and 3—2 = max{% - %,0}.
If we use the already shown claims with p replaced by max {p(-),q(:)} and
min {p(-), ¢(-)}, then we get 1 € L=*()(R™) N L2()(R™), respectively. The
embeddings now follow directly from Theorem 3.3.1. a
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Combining the previous proposition with Lemma 3.3.12 we see that
LPOR™) N LP (R™) = LP=(R™) N LP' (R™)
when p € P8, From Theorem 3.3.7 we get an interesting corollary, see
[313,319].

Corollary 4.1.9. Ifp,q € P(Z"™) satisfy the log-Hélder decay condition and
Poo = oo, then IPU)(Z7) 2 190)(Z1).

4.2 Point-Wise Estimates

Recall that QD;} is the left-continuous inverse as defined in Definition 3.1.8.
Q

Lemma 4.2.1. Let p € P°8(R"). Then there exists 3 € (0,1) which only
depends on ciog(p) such that

euto) (B, QI ) < el
for all A € [0,1], any cube (or ball) @ C R™ and any x € Q.

Proof. If A = 0, then the claim follows from 90;5 (0) =0 and @p;)(0) = 0. So
let us assume in the following that A > 0. If p;, = oo, then, by continuity of %,
p(x) = oo for all x € R™ and @OO(%@gol(/\|Q|_l)) = Poo (%) = 0. Assume now

that p, < oo and p(z) < co. By Lemma 4.1.6 there exists 8 € (0,1) such
that

1 1

81QI" ra

rQ < 1.

Now, multiply this by |Q|_ﬁ and raise the result to the power of p(x) to
prove the claim for A =1 and ¢,y = @p(.)- The case 0 < A <1 follows from
this and

(=)

_ _— -1 bo = - -1 -1
By (B2, (MQIT)) = 272 B (82,2 (10171 < AQIT
It remains to consider the case p(z) = oo and pg, < occ. Since % is continuous
and p, < oo we can choose a sequence (zr) from @ which tend to 2’ with
p(rr) < oo for all k € N and p(z’) = oo. Then by Remark 3.5.2 @y (1) =
@p(z) (1) < liMp oo Pp(a,)(t) for all £ > 0. Hence, this case can be reduced to

the previous case. This proves the claim for ¢,.) = @,(.). By Lemmas 3.1.6
and 3.1.12,
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~ 6~7 —1 — —— —1 —1
@p<z><§sop;(x|@| )| <80 (87,2 (NQITY ) < 2@

This proves the claim for ¢,y = @,y with 3 replaced by 3/2. a

We now derive a generalized version of Jensen’s inequality for ¢, .). For
constant ¢ € [1,00], f € L4(Q) and a cube @ C R"™ we have by Jensen’s
inequality

gaq( f |f<y)|dy) < f el dy
Q Q

However, this inequality only holds if the exponent is constant. The following
lemma shows that it is possible to generalize the constant exponent case
to the setting of variable exponents p € P'°8(R"). The price to pay is a
multiplicative constant on the left-hand side and an extra additive term on
the right-hand side, which is independent of f as long as f is from the unit
ball of LP() + L,

Lemma 4.2.2. Let p € P(R") and let % be locally log-Hdolder continuous.
Define q € P8(R™ x R™) by

q(ﬂiy) - max{z% - @,0}.

Then for any v € (0,1) there exists 8 € (0, 1) only depending on v and ciog(p)
such that

Pp(a) (5][ |f(y)l dy) < ][@pw)(lf(y)l) dy + ][wqu,y)(v) X{o<|f(y)I<1} 4y
Q

Q Q

for every cube (or ball) Q C R™, x € Q, and f € LPO)(R™) + L®(R™) with
||f||Lp(')(R”)+L°0(]Rn) < 1.

Proof. We prove the claim for ¢,.) = @,). The case ¢,y = @,y then
follows easily by Lemma 3.1.6.

By convexity of @, it suffices to prove the claim separately for ||f||p(_) <1
and || f|l, < 1. Let @ C R™ be a cube and z € Q.

If pg = oo, then p(y) = oo for all y € Q and the claim is just Jensen’s
inequality for the convex function @., with an extra positive term on the
right-hand side. So we assume in the following pg < co.

Let 8 > 0 be as in Lemma 4.2.1. We can assume that 5 < . We split f
into three parts
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f1() == f) Xqyea: 1f)>13}>
f2(y) = f(¥) X{yeq: 11w)I<tpm)<p()}
f3(y) = f(¥) X{yeq: 171w)I<tpm)>p(x)}-

Then f = f1 + fo+ f3 and |f;| < [f], s0 0y (f5) < 0y (f) <1, =1,2,3.
By convexity of @)

T>< ][|f |dy> Zsom)( f|fj |dy)—§(h+fz+fa>

So it suffices to consider the functions f1, fo, and f3 independently. We start
with fi. The convexity of gbpé and Jensen’s inequality imply that

I < G <ﬂ<p;$ ( F 50D dy)>,
Q

where we have used that ©,,) and <p ! are non-decreasing. Since |f1(y)| > 1

or |fi(y)| = 0 and pg < p(y), we have G WD < Ppe) (L11(Y)]) B
Lemma 3.1.6 and thus

L < By (5@;5 ( ][ @) (LF1(W)]) dy)) :
Q

If | [l <1, then fy =0 and Iy = 0. If on the other hand |[f]|,, <1, then
Op(y(f) < 1 and fQ @p(y)(|f1(y)]) dy < 1. So by Lemma 4.2.1 it follows with

A= [ @pw(1f()]) dy that

L < ][ o (1)) dy < ][ ot (1F@)]) dy

Q Q

Jensen’s inequality implies that

L< ][ ooy (B F2(0)]) dy

Q
Since A1f2(y)| < |f2(y)] < 1 and Gy (t) < Py (£) for all ¢ € [0,1] when
p(y) < p(z) (see Lemma 3.1.6), we find that

][ ot (B o)) d <][¢p<y><|f2<y)|>dy<][¢p<y>(|f<y>|)dy

Q Q Q
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Finally, for I3 we get with Jensen’s inequality

I3 < ][sﬁp(m)(ﬂlf(y)l)X{yEQ: 0<|£ ()| <1,p(y)>p(x)} TY-
Q

Now, Young’s inequality (Lemma 3.2.15) and 8 < v give that

_ |f(y)l _
I3 < ][ <<ﬂp<y> (ﬂT + Paan) (V) | X{weQ: 0<|£(w)I<1,p(v)>p(x)} WY

Q
< ][sbp(y>(|f(y)l)dy + ][sbq(m,w(v) X{0<7 ()| <1p(y)>p(2)} 9Y-
Q Q
This proves the lemma. a

In the case where the limit pi = lim ;oo ﬁ exists, it is useful to split
the second integral in the previous estimate into two parts by means of the
following lemma:

Lemma 4.2.3. Le p € P8(R"). Let q be as in Lemma 4.2.2 and define

s € P(R™) _|%_zt|' Then

~ _ 1 1
Batw.)(t) < Ps(a) (17) + Paty) (1)
for every t € [0,1].

Proof. Let t € [0,1]. For all z,y € R"

Ss@ Tsy) e

Using (3.3.10) and the convexity of a +— ¢ /,(t) (Lemma 3.1.4) we estimate

—_

Fatean(t) < Py () < 5Pute

1_ ~ 1 ~ 1

The following theorem plays a central role in later proofs of strong and
weak type estimates, as well as estimates of convolutions.
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Theorem 4.2.4 (Key estimate). Let p € P'°8(R"). Then for every m > 0
there exists 5 € (0,1) only depending on m and ciog(p) such that

ot (ﬂ Zf ) dy)

F e ( (e b e xosismi<ads)

<l

Q
F e (£ + 5 £ ((e+ 1) ™ + e+ o)™ xtociricndy
Q Q

for every cube (or ball) Q C R™, all z € Q, and all f € LPC)(R™) + L=(R")

wzth ||f||LP(')(]R")+Loo(Rn) § 1

Note that if p* < oo then in the previous lemmas and theorem we can take
the constant 3 out from ¢,.). For example, in the later case of the previous
theorem we obtain

Pp(z) <][ |f(y)] dy)
Q

< c][sop(y>(|f(y)l) dy + C][ (e +12)™™ + (e + y) ™) xgo<ir(wi<1y W,
Q Q

where the constant ¢ depends only on m, ciog(p) and p™.

Proof of Theorem 4.2.4. Define q := £. As an immediate consequence of
Lemma 4.2.2, Lemma 4.2.3 and Proposition 4.1.8 with exponent ¢, we obtain

eate (ﬂ][ ) dy) < F a7y
Q Q

+ C][ ((e+|2[)™™ + (e + [y) ™) xq0<i £ (w)1<1y 4y
Q

for suitable 5 € (0,1). Raising both sides to the power of p~ and using
Jensen’s inequality on the first integral on the right-hand side yields the first
inequality. By Jensen’s inequality, p~ can be taken into the second integral
and absorbed into m’ := mp~, which gives the second inequality. ad

If we then integrate the estimate in Theorem 4.2.4 over a cube (or ball) @,
then we get the following result.
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Corollary 4.2.5. Let p € P°8(R"). Then for every m > 0 there exists
B € (0,1) only depending on m and ciog(p) such that

[ e (ﬂ Fis) dy) s < [ (5@ dy+ [+l dy

Q Q Q Q

[ e (ﬂ f If(y)ldy> o< [ (F@D dy+ 1y € Q50 < 17wl < 1)
Q Q Q

for every cube (0’/’ ball) Q C R and dll f € LP(')(RH) + LDO(R") with
||f||LP(')(]R")+Loo(Rn) § 1.

For later use we also record the following modification of Lemma 4.2.1.
Note that Po from Lemma 4.2.1 is replaced in Lemma 4.2.7 by pg, the
harmonic mean:

Definition 4.2.6. Let p € P(R™). For measurable £ C R™ with |E| € (0, c0)
we define the harmonic mean pg € [1, 0] by

1 ][ 1

— =4 ——dy.

PE p(y) Y
E

We derive further properties of the harmonic mean pqg in Sect. 4.5.

Lemma 4.2.7. Letp € P'°8(R™). Then for anym > 0 there exists 3 € (0,1),
which only depends on the local log-Hdolder continuity constant of %, such that

- - 1 _ 1 2
Pp(z) (ﬂ‘?;c;(lQ| 1)) < |Q| ! + i(e + |x|)fmp + 5(][(e—|— |y|)—m dy) ’
Q

for any cube (or ball) Q C R™ and any z € Q.

Proof. We prove the claim for ¢,y = @p.). The case @,y = pp.) follows
easily with the help of Lemmas 3.1.6 and 3.1.12.

Define f := XQ@;(%)(|Q|_1). Since @p(%) is the left-continuous inverse, we

find that o) (f) = X@@p) (8,0 (1Q17)) < x@ Q|- Hence g, (f) < 1
and || f ||p(,) < 1 by the unit ball property. The convexity of the mapping
q — $1/4 and Jensen’s inequality imply that

Zra(lQI7) < f@g(;)(lQl‘l)dy.
Q

By Theorem 4.2.4 there exists § > 0 such that
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uor (5 111 dy) < f @y (D o+ 5+ )™
Q

Q
+§(Z<e+ W)

Since Ep(_)(f) < 1, the first term on the right-hand side is less than or equal
to |Q|~!, which completes the proof. O

Remark 4.2.8. The decay condition can be slightly weakened. Assume that
p is locally log-Hélder continuous and satisfies 1 € L), where s is given by

. ’ 1 1 ‘
p(*)  Poo|

Then Lemma 4.2.2 holds, since it only requires the local log-Holder conti-
nuity of %. Moreover, Theorem 4.2.4 remains true. We only have to replace
(e+|x])~™ in the proof by ¢, () with v > 0 such that o(.y(7) < oc. Also,
all results that are solely based on the theorem hold under this weaker condi-
tion on p. The condition 1 € L*() has been studied by Nekvinda [314,316] in
the context of the Hardy-Littlewood maximal operator. Note that 1 € L5()
is equivalent to the existence of v > 0 with

2)(1) = [ 277 7 da < o
R’V‘L

4.3 The Boundedness of the Maximal Operator

In order to derive more sophisticated results for the spaces Lf"(')(R”), we
have to investigate the Hardy-Littlewood maximal operator M on LP()(R™).
This operator is a powerful tool and we will see that many properties will
follow from the boundedness of M. The most central property of the maximal
operator is that it is a bounded operator from L? to LY when ¢ € (1,00]. In
this section we prove the variable exponent generalization of this.

Let us start with some notation. Recall that our cubes are always with
sides parallel to the axis.

Definition 4.3.1. For a function f € L°(R") and an open, bounded set
U C R" (usually a cube or a ball) we define

U
U

Myf = ][ @)y = = / @) dy. (43.2)
U



4.3 The Boundedness of the Maximal Operator 111

The (non-centered) mazimal function Mf of f is defined by

Mf(x) = ng Mqf = ng ][ |f(y)| dy
“a

for all z € R™, where the supremum is taken over all cubes (or balls) @ C R™

which contain x. The operator M : f — Mf is called the Hardy-Littlewood

mazimal operator or just mazimal operator. Furthermore, for f € L (R™),
€ [1,00), and an open, bounded set U C R™ we define

Moo f = (Mu(f)* (f|f |dy>7

i
s

-

Remark 4.3.3. In Definition 4.3.1 it is possible to use balls instead of cubes.
Also, we could take the supremum only over those cubes (or balls) which are
centered around z, rather than the ones containing z. Up to constants all
of these versions are equivalent, e.g. ¢i Mpansf < Meubesf < coMpansf with
c1, co only depending on the dimension n.

Let us recall some classical results for the maximal operator M, see for
example Stein [360]. For f € L{ (R") the function Mf: R" — [0, cc] is lower
semicontinuous and satisfies | f| < Mf almost everywhere. For any 1 < ¢ < o0
and f € L1(R™) the function Mf is almost everywhere finite. Moreover, for
1 < ¢ < oo the mapping f — Mf is bounded from L?(R™) to LZ(R™). The
constant blows up as ¢ \, 1. Indeed, M is not bounded from L!(R") to
LY (R™). Actually, Mf ¢ L*(R") for every non-zero f € L'(R"). In the L?
case we have the weaker result

H)‘X{Mf>)\}||L1(Rn HfHLl (Rm)? (434)

for f € LY(R™) and A > 0, where ¢ depends only on n. Here, X{mf>x} denotes
the characteristic function of the set {y € R™: Mf(y) > A}. This set is open,
since Mf is lower semicontinuous. If inequality (4.3.4) holds for every A > 0,
then we say that M is of weak type 1.

The weak Lebesgue space w-L? with g € [1, 00] is defined by the quasinorm

[ llw-za = sup [[Axg s> apll,
A>0

The quasinorm satisfies the triangle inequality | f+ gl 0 <
2(1 flw-a+ 119/l pa ), While the other norm properties remain true. Obviously,
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“M is of weak type 1”7 if and only if M maps L'(R") to w-L!(R™). We have
LY(R™) — w-L'(R™), since X xq|7|>x} < |f| for all f € L'(R™). Another easy
embedding follows:

Lemma 4.3.5. Let p € P(R") with p~ > 1. Then w-L'(R") N L®°(R") —
LPO(R™).

Proof. We assume that p~ < oo, since the claim is trivial otherwise. Let
f € w-LL(R") 0 L%(R™) with max {|[fll,. 1z If]]c} < 1. Then

1
/gop(z) )d /|f|P da:—/tp {f) > 1) de
0

R

1
Wl [ 072t < 0
0

Next we have a version of Theorem 4.2.4 with maximal functions instead
of integral averages.

Lemma 4.3.6. Let p € P°8(R™). Then for any m > 0 there exists 3 € (0,1)
only depending on m and ciog(p) such that

Coy) (BMf(y)) < M () () (y) + h(y),
for all f € LPO(R™) + L®(R™) with || f|| Loy (gny 4 poo@ny < 1 and ally € R,
where h(y) := M((e + ||)_m)(y)

Proof. Let m > 0, then from Theorem 4.2.4 it follows that there exists 8 > 0
such that

oute (ﬂ ][ o dy)

1 —-m —-m
][%) (£@Ddy+ 5e-+1e) ™+ 5 Flet lyh ™ dy
Q

Q

DN =

for f € LPO(R™) + L (R™) with || f{| oe) (gn) 1 oo @) < 1 and all 2 € Q. We
take the supremum over all cubes (or balls) @ C R™ with « € @ and use that
©p(.) is non-decreasing and left-continuous:

Poe) (BMF (x)) < M (pp( () (@) + %(e + 27" + %M((e + 1)) ()

< M(pp(y (D) (@) + M((e+[[)7™) (). O
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If p is bounded and we are working in a bounded domain, then the following
simplified version of the previous lemma is often useful:

(Mf ()@ < eM(|fPY) + e (4.3.7)

This inequality holds under the same assumptions as in the lemma.
We are now ready to prove the main theorem of this section.

Theorem 4.3.8. Let p € P'°8(R™) with p~ > 1. Then there exists K > 0
only depending on the dimension n and ciog(p) such that

IMFlLey < K (07 1L

for all f € LPO)(R™).

Proof. Let q := 2, so that ¢ € P'°8(R") with ¢~ = 1. Let f € LPC)(R™)
with [| ], <4 and note that [|f|[1a)gn)4poe(®ny) <1 by Theorem 3.3.11.
This and Lemma 4.3.6 imply that

—

Py (BMF()) < 5M (g0 (1)) (&) + 5h(x)  (43.9)

with h(z) :== M ((e+ |-|)~™)(z), where we choose m > n. Furthermore, from
Lemma 3.1.6 it follows that

o) (1) < Py (£) = (Pg()(1)” < (g(a) (20))7

for all ¢ > 0 and all x € R™. Combining the results above, we find that

@mxﬂﬁu)g@m(@ﬁmﬁp

< (2ar(00(5) + 2h(2) '
2 90!1() 2 T
1

2

Integration over R™ yields

000y (MF) < 3IM oy (FDIEZ + SN

Since (e +||)~™ € LY(R") for m > n, and M is of weak type 1, we conclude
that M ((e+ ||)~ ) € w-L'(R"). Hence h? is integrable by Lemma 4.3.5.
Moreover, [|f|,.) < 1 implies [y (f) ||p_ < 1. So the classical result on the

boundedness of M on LP (R™) implies that || M (¢, (f))l|,- < c(p™)’, with
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boundedness constant depending only on n. Thus Qp(.)(ng) <lelp )P,
and by Lemma 3.2.5 ||Mf||,) < K (p~)’ for || f|l,) < . The proof is com-
pleted by the scaling argument. ad

The proof of Theorem 4.3.8 goes back to many authors. The first version
goes back to Diening [91], who proved the result for bounded exponents that
are constant outside a large ball. This condition has been later relaxed by
Cruz-Uribe, Fiorenza, Martell and Pérez [83, Lemma 4.3] to the log-Holder
decay condition and by Nekvinda [314] to the integral condition 1 € L) as
in Remark 4.2.8. The boundedness of the exponent was then removed in [95]
and [81]. The proof in this book is closest to the one in [95].

Remark 4.3.10. As in Remark 4.2.8 it is possible to replace the decay con-
dition on % in Lemma 4.3.6 and Theorem 4.3.8 by the weaker condition

1 e L*Y with = = |p(x) ool

Using a standard argument we obtain a local version of the previous result.
Note that the decay condition is vacuously true if the domain is bounded, so
in this case the local log-Hélder condition is sufficient for boundedness.

Corollary 4.3.11. Let p € P8(Q) with p~ > 1. Then there exists K > 0
only depending on ciog(p) and the dimension n such that

IMf || Loy < K (07) 1 fl o

for all f € LPO)(Q).

Proof. By Proposition 4.1.7 we extend the exponent to the whole space R™
with the same infimum and log-Hélder constant. A function f € LP()(Q) can
be extended to R™ by zero outside 2. Denote these extensions by p and f ,
respectively. Then

[Mfll pocr o) < ”Mf”Lﬁ(-)(]R") < K(pi)/”f”Lﬁ(-)(]R") =K (") [Iflzre) 0
by Theorem 4.3.8. a

If one assumes a weaker modulus of continuity than log-Holder, then it is
still possible to obtain the boundedness of the maximal operator, but the tar-
get space is larger than LP()(R™). Such results have been studied by Mizuta,
Shimomura and their colleagues, see, e.g., [298].

The boundedness of the maximal operator on metric measure spaces has
been investigated e.g. in [203,252] in the variable exponent context. The
discrete setting has been studied in [315]. Such results are not considered here.
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4.4 Weak-Type Estimates and Averaging Operators

We saw in Sect. 4.3 that the maximal operator is of strong type when p is
log-Hélder continuous with p~ > 1. In order to get around the latter restric-
tion we consider in this section weak-type estimates and averaging operators.
Averaging operators have been studied by Edmunds and Nekvinda in [119],
but here we undertake a much broader investigation of their properties.

Recall that a sublinear operator on a real vector space X is an operator
T which satisfies

T(f+g9) <Tf+Tg and T(tf)=tTf

for all f,g € X and all scalars ¢t > 0.

Definition 4.4.1. Let ¢ € ®(R™) and let T' be a sublinear operator which
maps L¥(R"™) into the space of measurable functions on R™. Then we say
that T is of weak type ¢ if there exists K7 > 0 such that

Mxrsisall ey < Bl £ Lo @n)

for all f € L¥(R™) and all A > 0. We say that T is of strong type ¢ if there
exists K5 > 0 such that

HTfHLv’(]R") < KQHfHLw(JRn)

for any f € L¥(R"™). If p € P(R™), then instead of weak type ¢,y and strong
type pp(.) we write weak type p(-) and strong type p(-), respectively.

For a operator T"and A > 0 we obviously have A x{rfj>x1 < |Tf|. There-
fore, if T' is of strong type p(-), then it is also of weak type p(+). For instance,
in classical Lebesgue spaces, M is of strong type ¢ for any ¢ € (1, 00] and of
weak type ¢ for any ¢ € [1, x0].

In this section we study weak and strong type results for M in the context
of LPO)(R™) with p € P'°8(R™). We first introduce the notation of averaging
operators Tgo and then deduce from their properties that M is of weak type

p(+).

Definition 4.4.2. A family Q of measurable sets U C R" is called locally
N-finite, where N € N| if

> xu<N

UeQ

almost everywhere in R™. We simply say that Q is locally finite if it is
N-locally finite for some N € N.
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Note that a family Q of open, bounded sets @ C R™ is locally 1-finite if
and only if the sets Q) € Q are pairwise disjoint.

Definition 4.4.3. For a family Q of open, bounded sets U C R™ we define
To: L (R") — LY(R™) and Ts o Lj . (R™) — LO(R™) with s € [1,00) by

Tof:=> xvMuf=> xuv ][|f ) dy,

UeQ UeQ

Toof =Y xvMsuf= ZXU(J[U |dy>

UeQ UeQ

The operators Tg and T o are called averaging operator and s-averaging
operator, respectively.

Note that To = T1,0. The functions Tgf and T, of are well defined
in LY(R™), since Mgf > 0, but might be infinite at many points or even
everywhere. However, if Q is locally finite and f € L] (R™) and g € L{ (R™),
then Tof € LL (R™) and Ts 09 € Li,.(R™). By Jensen’s inequality we have
Tof <Ts o fors>1.

Definition 4.4.4. Let ¢ € ®(R™). Then for any ¢ > 0 the mapping
x — @(z,t) is non-negative and measurable. Now, for a cube (or ball) @ C R"
and t > 0 we define

Molt) i= F (z.t)de

Q

For a measurable function f on R™ we define a function ¢(f) on R™ by
o(f) == (-, |f)]), Le. for all z € R™ we set

(e(N) (@) = (= f()])-

By Lemma 2.3.10, the function ¢(f) is measurable. If xg € L¥, then Mg
is a ®-function. This is certainly the case if ¢ is locally integrable. Also note
that in the sense of (4.3.2) we could write Mqy(t) = Mg(¢(-,t)). Instead
of [¢(x,|f(x)|) dz we can now write more compactly [ ¢(f)dz. Note that
whenever we have a generalized ®-function ¢ and a measurable function f,
then ¢(f) depends on x via f and ¢. For example, by ¢,)(f) we denote the

mapping @ — @) (|.f (2)])-
With this notatlon we can write an analogue of Corollary 4.2.5:

(Mqep)) (BMqf) < Mo (ppiy(f)) + Mg((e+1-1)7™) (4.4.5)

with the notation and assumptions of that lemma.
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Definition 4.4.6. By A we denote the set of all generalized ®-functions ¢
on R™ which have the property that the averaging operators Tg are bounded
from L¥(R™) to L¥(R™) uniformly for all locally 1-finite families Q of cubes
in R™. The smallest constant K for which

ITof|l, < KIS,

for all locally 1-finite families of cubes Q in R™ and all f € L¥(R"™), will be
called the A-constant of ¢. If ¢ € A, then we say that ¢ is of class A. In
the case p,(.y, p € P(R"), we denote ¢,y € A simply by p € A and call the
A-constant of .y also the A-constant of p.

By Ajoc we denote the set of all generalized ®-functions ¢ on R™ which
have the property that the averaging operators Tq) over single cubes @ are
uniformly bounded from L¥#(R") to L?(R"™), i.e. supg ||T{Q}f||<p < Ko fll,
for all f € L¥(R"™), where the supremum is taken over all cubes @ C R™.
The smallest constant K5 will be called the Ajo.-constant of ¢. If ¢ € Ajgc,
then we say that ¢ is of class Ajoc. In the case p,.y, p € P(R"), we denote
Pp(-) S A1OC Simply by pE -Aloc~

In Theorem 4.4.8 we will show that each exponent p € P'° satisfies p € A.

Lemma 4.4.7. Let p € P'°8(R"). Ifp€ A and s > 1, then sp € A. If M is
bounded on LPC)(R™), then it is bounded on L*PC)(R™).

Proof. Using Lemma 3.2.6, (Tof)* < (Ts.of)® = To(|f]°) and p € A we
estimate

ITof|

=@yl < ITelf )y, < cllfly,, = cllf]

;f"sp(-f
The claim for M follows similarly from (M f)* < M(|f]?). O

If ¢ € Ajpc or ¢ € A, then necessarily xg € L¥ for all cubes @ C R™.
Obviously, A C Aj.e. So naturally the question arises if the reverse holds
or not. Is it really necessary to consider locally 1-finite families of cubes
rather than just single cubes? At least for classical weighted Lebesgue spaces
L1(R™,wdz) as well as weighted Orlicz spaces there is no difference in using
families or single cubes. However, we will see in Theorem 5.3.4 that it is in
fact not possible to use only single cubes in the general case.

The properties class Ay, and class A will be studied in great detail in
Sects. 4.5 and 5.2. We will see in Sects. 5.2 and 5.7 that there is a strong con-
nection between class A and the boundedness of the maximal operator M.
At this point we only mention that classes A and A4),. are natural generaliza-
tions of the Muckenhoupt classes of weighted Lebesgue spaces (with constant
exponents). Using Corollary 4.2.5 we now derive an analogue of the maximal
theorem for the averaging operators To. Note that the assumption p~ > 1 is
not needed in this context.
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Theorem 4.4.8. If p € P°8(R"), then p € A with A-constant depending
only on ciog(p) and n. Moreover,

ITofllpey < e N[ flly

for every locally N-finite family Q of cubes (or balls) and all f € LPC)(R™).
The constant ¢ depends only on ciog(p).

Proof. Let f € LPO)(R™) with [ fll,() < 1andlet Qbe alocally N-finite fam-
ily of cubes (or balls). Then by the unit ball property o,.)(f) < 1. Let m >n
be such that [, (e + |y[)”™dy < 1. Choose 3 € (0,1) as in Corollary 4.2.5.
Then

Qp(')(%ﬁTQf) < % > /@p(x)(ﬂxca Mqf)dz

QGQQ
1 —m
<o 2 ([ o+ [+ a)
@2 "Q Q
1 —-m
<3([omotnaes [+l i)
R™ R7
1
< §(Qp(.)(f) + 1) < 1.
where we have used that Q is locally N-finite. This implies || Tofl],., < %
A scaling argument yields the [|Tofl|,., < %Hf”w The case N = 1 with
cubes implies p € A. O

Remark 4.4.9. As in Remark 4.2.8 it is possible to replace the decay con-
dition on % in Corollary 4.2.5, (4.4.5) and Theorem 4.4.8 by the weaker
el

For any locally 1-finite family of cubes Q in R™ and f € L{ _(R") the
inequality [Tof| < Mf holds almost everywhere. Therefore, [Tof||, <
|Mf]|,, and we conclude that ¢ € A whenever M is of strong type ¢. Thus
the class A is weaker than the boundedness of M. This fact was rather sim-
ple. More interesting is the following theorem, which shows that a weaker

version of the converse statement is true.

Theorem 4.4.10. If p € A, then M is of weak type ¢ and the constant
depends only on the A-constant of ¢ and the dimension n.

iti s() wi [ S D S
condition 1 € L with ok |p(x)

Proof. In the proof we need the centered maximal operator, Mcenterf (),
where the supremum is taken over all cubes with center x. This is indicated
by the notation Q.. Note that

Mcenterf < Mf < 2nMcenterf (4411)
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for every f € Li _(R™). Therefore, it suffices to prove the theorem with M
replaced by Mcenter-

Fix f € L¥O(R") with [|f]|, < 1 and A > 0. Let Qx := {Mecenterf > A}
Then Q) is open, since Mcenter is lower semicontinuous. Let K be a compact
subset of Q). For every x € K there exists a cube @, with center x such
that Mg, f > A. From the family {Q.},; we can select by the Besicovitch
covering theorem, Theorem 1.4.6, locally 1-finite families Q1,. .., Q¢,, which
together cover K. The natural number §,, depends only on the dimension n.
Then almost everywhere

€n €n n
Ak <D ) Axe< > Y ][|f(y)|dyXQ =Y To,f.
m=1Q€EQm m=1QeQm Q m=1
This and ¢ € A imply
E"L E’IL
IMxxll, <D0 Tenf| <D ITenfll, <& collfll,,
m=1 7 m=1

where ¢g is the A-constant of ¢. Now, let K;CC Q) with K;  Q,. By the
previous inequality and monotone convergence, Theorem 2.3.17, we conclude
that

IAxaull, = tim [|Axsll, < &aeoll £l 0

Theorems 4.4.8 and 4.4.10 have the following immediate consequence.

Corollary 4.4.12. Let p € P8(R"™). Then M is of weak type p(-) with
constant depending on p only via ciog(p).

We have seen that the uniform continuity of Tg from L¥ to L% for all
locally 1-finite families of cubes Q in R™ implies that M is of weak-type .
The following lemma is a weaker version of the converse direction.

Lemma 4.4.13. Let ¢ € ®(R"). If M is of weak type o, then ¢ € Ajqc.

Proof. Let f € L?(R™) and let @ C R™ be a cube. If A := %MQf > 0, then
1Ty fll, = lIxe Mo fll, < 2lxq>xAll, <cllfll,

where we have used that M is of weak type . a

The condition ¢ € Ajo. can also be characterized in terms of the norms of
characteristic functions, see Theorem 4.5.7.
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We have seen in Corollary 4.4.12 that M is weak type p(:) if p € P8(R").
In particular, we have the norm estimate ||>‘X{Mf>>\}||p(,) < K| I,y for all

f € LPO)(R™). However, often it is better not to work with the norm but
rather the modular g,.), since it behaves more like an integral. For example

the Sobolev embedding W»() < LP"() in Sect. 8.3 is based on weak type
estimates for the modular g,.).

Proposition 4.4.14. Let p € P°8(R"). Then for any m > 0 there exists
B € (0,1) depending only on the dimension n, m and ciog(p) such that

0p() (BAXMr>}) < 0p() () + / (e+ |z~ da
{Mf>4-")}

for all f € LPOR™) + L=(R™) with || f|| o) (gn) 4 poe @y < 1 and all X > 0.

Proof. We prove the claim for the centered maximal operator. The other
case follows from point-wise equivalence (4.4.11) of the centered and the
non-centered maximal operator.

Fix f € LPO(R™) with |[f]|,.; < 1 and A > 0. Then {Mf > A} is open,
since M is lower semicontinuous. Let K be an arbitrary compact subset
of {Mf > A}. For every x € K there exists a cube @, with center = such
that Mg, f > A. Note that Q, C {Mf >2""A} by (4.4.11). From the
family {Q,: x € K} we can select by the Besicovitch covering theorem, The-
orem 1.4.6, a locally &,-finite family Q, which covers K. The natural number
&, only depends on the dimension n. Let m > 0. By Corollary 4.2.5 there
exists 0 > 0 such that

[ ennrandn < [ en(t@)dy+ [ e+l dy
Q Q Q
for all Q € Q. Now, the convexity of the modular (2.1.5) and Mg f > A for

Q € Q imply that

op(y (N7 BAxK) S N7 /wp(x)(ﬂMQf) dy.
QEQQ

With the previous estimate we get

0p(H (N1 BAxK) S NTH D (/¢p<y)(f(y))dy+/(e+ )™ dy)
Q

< 0p0 (F) + / (e + [y) ™™ dy,
{Mf>2-nx}
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where we used that Q is locally N-finite. Let K;CC {Mf > A} with K; ~
{Mf > A}. Then monotone convergence (Lemma 3.2.8) implies that

0p()y (NT1BAX () < 0p() (F) + / (e+[y))~™ dy. O
(Mf>2-n2}

In Theorem 4.4.8 we have seen that p € P°8(R") gives control over
averaging operators over locally finite families of cubes in the sense that
||ZQEQ XQMQpr(_) <c ||f||p(_). In this situation we distribute the averages
of | f| exactly on the same cubes, where the average is calculated. However,
sometimes it is useful to take the average on one locally finite family and
transfer it another locally finite family that is similar in some sense. This is
the purpose of the following theorem. It is a stronger version of Theorem 4.4.8
and will be used for example for the extension of variable exponent Sobolev
functions in Sect. 8.5.

Theorem 4.4.15. Let p € P°8(R") and A > 1. Let Q be a locally N-finite
family of cubes (or balls) such that to every Q € Q, there is associated a cube
Q" with Q C AQ*. Further assume that ZQGQXQ* < N. Then

> xoMq-f

QeQ

< cA"N | f]]
()

p(+)

for all f € LPO)(R™), where ¢ only depends on ciog(p) and n.

Proof. Let f € LPO(R™) with [fll,¢) < 1. Then by the unit ball property

0p()(f) < 1. Let m > n be such that [, (e+]y|)~™ dy < 1. Choose 3 € (0,1)
as in Theorem 4.2.4. Let @ € Q. Then by assumption Q