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Preface

Infimum and supremum are indispensable concepts in optimization. Never-
theless their role in vector optimization has been rather marginal. This seems
to be due the fact that their existence in partially ordered vector spaces is
connected with restrictive assumptions. The key to an approach to vector
optimization based on infimum and supremum is to consider set-valued ob-
jective functions and to extend the partial ordering of the original objective
space to a suitable subspace of the power set. In this new space the infimum
and supremum exist under the usual assumptions.

These ideas lead to a novel exposition of vector optimization. The reader is
not only required to familiarize with several new concepts, but also a change
of philosophy is suggested to those being acquainted with the classical ap-
proaches. The goal of this monograph is to cover the most important con-
cepts and results on vector optimization and to convey the ideas, which can
be used to derive corresponding variants of all the remaining results and
concepts. This selection ranges from the general theory including solution
concepts and duality theory, through to algorithms for the linear case.

Researchers and graduate-level students working in the field of vector opti-
mization belong to the intended audience. In view of many facts and notions
that are recalled, the book is also addressed to those who are not famil-
iar with classical approaches to vector optimization. However, it should be
taken into account that a fundamental motivation of vector optimization and
applications are beyond the scope of this book.

Some basic knowledge in (scalar) optimization, convex analysis and general
topology is necessary to understand the first part, which deals with general
and convex problems. The second part is a self-contained exposition of the
linear case. Infimum and supremum are not visible but present in the back-
ground. The connections to the first part are explained at several places, but
they are not necessary to understand the results for the linear case. Some
knowledge on (scalar) linear programming is required.

The results in this book arose from several research papers that have been
published over the last five years. The results and ideas of this exposition

vii



viii Preface

are contributed by Andreas Hamel, Frank Heyde and Christiane Tammer
concerning the first part as well as Frank Heyde, Christiane Tammer and
Matthias Ehrgott concerning the second part. A first summary, extension
and consolidation of these results has been given in the author’s habilitation
thesis, which appeared in 2010. This book is an extension. It contains one new
chapter with extended variants of algorithms and more detailed explanations.

I thank all persons who supported me to write this book. In particular, I’m
greatly indebted to Matthias Ehrgott, Gabriele Eichfelder, Andreas Hamel,
Frank Heyde, Johannes Jahn and Christiane Tammer for their valuable com-
ments, important corrections and all their advice that entailed a considerable
increase of quality.

Halle (Saale), Andreas Löhne
November 2010
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Introduction

From a mathematical point of view, vector optimization is the theory of op-
timization problems with a vector-valued objective function. Instead of the
extended real numbers R := R∪ {+∞,−∞}, one considers an extended par-
tially ordered vector space as the image space of the objective map. One of
the main difficulties is the lack of a suitable infimum and supremum. For
many instances of extended partially ordered vector spaces, even in finite
dimensions, an infimum does not exist at all. But even if the infimum in the
sense of a greatest lower bound exists, it is usually not related to the typi-
cal optimality notions which are motivated by applications in multiobjective
optimization.

The idea of multiobjective optimization is to present a decision maker
all or at least a representative selection of minimal or efficient vectors. The
decision maker’s job is to choose one of these vectors. An infimum in an
extended partially ordered vector space, if it exists, is of course a vector. But
the requirement from an applicational point of view is to evaluate a set of
efficient points in order to present them to the decision maker.

The infimum of a fixed subset is generally changing when the partially
ordered set, say the universal set, is extended to a larger partially ordered
set. The reason is that more candidates for greatest lower bounds are available
in a larger set. This basic idea is applied to vector optimization as we create
a suitable notion of infimum by embedding the extended partially ordered
vector space into a larger partially ordered set, in fact, into a subset of the
power set. This allows us to develop a theory of vector optimization which
is based on infimum and supremum. This leads to new insights and a high
degree of analogy to the scalar optimization theory.

theory and utility theory. The foundations are connected with the names
Vilfredo Pareto (1848-1923) and Francis Ysidro Edgeworth (1845-1926). In-
dependently vector optimization also arose from game theory which was ini-
tiated by Émile Borel (1871-1956), Maurice René Fréchet (1878-1973) and

Vector optimization has its origin in economics, in particular, in welfare
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2 Introduction

John von Neumann (1903-1957). For more details the reader is referred to
the survey paper by Stadler (1979). From a theoretical perspective the foun-
dations of vector optimization were laid by Georg Cantor (1845-1918) by his
famous intersection theorem; by Felix Hausdorff (1868-1942), who showed
the existence of utility functions in the context of partially ordered sets; and
by Max Zorn (1906-1993), who gave conditions for the existence of maximal
elements without using a utility function (see Göpfert et al., 2009). What
is today considered to be vector optimization, multiobjective optimization
or multicriteria optimization has its origin in the 1950s. The notion of ef-
ficient points was introduced (compare Stadler, 1979) by Koopmans (1951,
Definition 4.2): “A possible point in the commodity is called efficient when-
ever an increase in the one of its coordinates (the net output of one good)
can be achieved only at the cost of a decrease in some other coordinate (the
net output of another good)”. Kuhn and Tucker (1951) introduced (compare
Stadler, 1979) the term vector maximum problem. Today there exists a num-
ber of textbooks on vector optimization, among them (Sawaragi et al., 1985;
Jahn, 1986, 2004; Luc, 1988; Göpfert and Nehse, 1990; Ehrgott, 2000, 2005;
Göpfert et al., 2003; Chen et al., 2005; Eichfelder, 2008; Boţ et al., 2009).
There are several thousands of research papers on this subject.

This monograph differs from the literature as it is based on the complete
lattice (I,�) of self-infimal subsets of the original objective space (Y,≤) of
a given extended vector-valued objective function. Starting with a vector
optimization problem

minimize f : X → Y with respect to ≤ over S ⊆ X, (V)

we assign to f an I-valued objective function

f̄ : X → I, f̄(x) := Inf {f(x)}

and consider the related problem

minimize f̄ : X → I with respect to � over S ⊆ X. (V)

There is a close connection between the values of f and f̄ ; that is, for all
x1, x2 ∈ X we have

f(x1) ≤ f(x2) ⇐⇒ f̄(x1) � f̄(x2).

Since the objective space I in Problem (V) is a complete lattice, the latter
correspondence allows us to develop the theory of vector optimization based
on infimum and supremum.

This approach was firstly pointed out in (Löhne and Tammer, 2007; Heyde
et al., 2009a), but it is based on a couple of pre-investigations, such as (Hamel
et al., 2004; Hamel, 2005; Löhne, 2005a,b). It turned out that it is possible
to formulate and prove vectorial duality theorems very similar to the corre-
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sponding scalar results if the vectorial image space is replaced by the com-
plete lattice I. But, the space I of self-infimal sets does not only provide
a complete lattice; the infimum with respect to this complete lattice is also
closely related to the standard solution concepts in vector optimization. Even
though infimal sets were used before (see e.g. Nieuwenhuis, 1980; Sawaragi
et al., 1985; Tanino, 1988, 1992; Song, 1997, 1998), in particular in duality
theory, the deeper context was not pointed out: the complete lattice I.

An approach to vector optimization based on infimum and supremum leads
to the question how to integrate conventional solution concepts into the the-
ory. It turned out that there is no standard way to say what is a solution
to a vector optimization problem from a mathematical point of view. On
the one hand this is concerned with the question whether a solution is a set
of vectors or just a single vector (see also the introduction to Chapter 2).
On the other hand there are different types of efficient vectors depending on
different possible interpretations of “less than” when the ordering relation is
more complex than the one in R.

It might be worth noting that the solution concept proposed in this work
involves two different types of minimality notions: weakly minimal and min-
imal vectors. This could shed a new light on the role of weakly efficient
solutions in vector optimization. Jahn (2004, p. 110) writes that “the con-
cept of weak minimality is of theoretical interest, and it is not an appropriate
notion for applied problems.” This is in accordance with the fact that weak
minimality is essential to construct the complete lattice I, but our solution
concept itself is based on minimality. One can say that the theoretical bene-
fits of weak minimality and the application-oriented properties of minimality
are involved in one concept.

This monograph is organized as follows. Part I is devoted to the general
ideas and to convex problems. In Chapter 1 we introduce the complete lattice
I, which is the basis of this exposition. We also provide several concepts and
facts from the literature as far as they are needed in this book. Chapter 2 is
devoted to solution concepts and Chapter 3 is concerned with duality. Part II
deals with linear problems. Even though the connections to the first part are
often discussed, the second part is a self-contained exposition of the linear
theory. In Chapter 4 we focus on solution concepts and duality. The concepts
from Part I are adapted and special features of the linear duality theory are
shown. Chapter 5 is devoted to algorithms to solve linear problems. Each
chapter begins with a specific introduction and ends with several notes on
the literature; in particular, the origin of the results is discussed.

This book offers a systematic introduction and a summary of recent devel-
opments in the theory of vector optimization with infimum and supremum.
It is based on the cited papers, but the theory is presented in a more general
setting and with several extensions. This book aims to be a self-contained
summary and an extension of recent results.
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General and Convex Problems



Chapter 1

A complete lattice for vector optimization

Extended real-valued objective functions are characteristic for scalar opti-
mization problems. The space of extended real numbers R := R ∪ {+∞} ∪
{−∞} enjoys several properties which are quite important for optimization:

(i) R is a vector space, but R is not. The linear operations can be partially
extended to R.

(ii) The linear operations on R are continuous, i.e., the topology is com-
patible with the linear structure.

(iii) R is totally ordered by the usual ordering ≤. The ordering on R is
compatible with the linear operations.

(iv) R is a complete lattice, i.e., every subset has an infimum and a supre-
mum.

In vector optimization we have to replace R and R by a more general space.
Certain properties can be maintained, others must be abandoned. Underlying
a partially ordered topological vector space Y and its extension Y := Y ∪
{±∞} := Y ∪ {−∞,+∞}, we obtain all the mentioned properties up to the
following two exceptions: First, Y is not totally but partially ordered only.
Secondly, a complete lattice is obtained by Y only in special cases. This
depends on the choice of Y and the choice of the partial ordering. But even
in the special cases where Y is a complete lattice (e.g. Y = Rq equipped
with the “natural” componentwise ordering), the infimum is different to the
typical vectorial minimality notions, which arise from applications. This is
illustrated in Figure 1.1.

As a consequence, infimum and supremum (at least in the sense of greatest
lower and least upper bounds) do not occur in the standard literature on
vector optimization. Some authors, among them Nieuwenhuis (1980); Tanino
(1988, 1992), used a generalization of the infimum in R. Although the same
notion is also involved into this work, the new idea is that we provide an
appropriate complete lattice. To this end we work with a subset of the power
set of a given partially ordered topological vector space. The construction
and the properties of this complete lattice are the subject of this chapter. We

7
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8 1 A complete lattice for vector optimization

complete lattice

infimum with respect

vector optimization

in the sense of

minimal elements subset of R
2

to the “natural”

Fig. 1.1 R2 equipped with the natural ordering provides a complete lattice. But,
the infimum can be far away from the minimal elements.

recall in this chapter several standard notions and results but we also present
the basics of a set-valued approach to vector optimization.

1.1 Partially ordered sets and complete lattices

This section is a short summary of several concepts and results related to
ordered sets as they are required for this exposition.

Definition 1.1. Let Z be a nonempty set. A relation R ⊆ Z × Z is called a
partial ordering on Z if the following properties are satisfied:

(i) R is reflexive: ∀z ∈ Z : (z, z) ∈ R,
(ii) R is transitive: [(z1, z2) ∈ R ∧ (z2, z3) ∈ R] =⇒ (z1, z3) ∈ R,
(iii) R is antisymmetric: [(z1, z2) ∈ R ∧ (z2, z1) ∈ R] =⇒ z1 = z2.

Instead of (z1, z2) ∈ R, we write z1 ≤R z2.

The index R is usually omitted or replaced (for instance, if the ordering is
generated by a cone C, we write z1 ≤C z2 whenever z2−z1 ∈ C) and we just
say that ≤ is a partial ordering. A nonempty set Z equipped with a partial
ordering on Z is called a partially ordered set. It is denoted by (Z,≤). The
following convention is used throughout: If (Z,≤) is a partially ordered set
and A ⊆ Z, we speak about a subset of the partially ordered set (Z,≤).

Definition 1.2. Let (Z,≤) be a partially ordered set and let A ⊆ Z. An
element l ∈ Z is called a lower bound of A if l ≤ z for all z ∈ A. An upper
bound is defined analogously.
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Next we define an infimum and a supremum for a subset A of a partially
ordered set (Z,≤).

Definition 1.3. Let (Z,≤) be a partially ordered set and let A ⊆ Z. An
element k ∈ Z is called a greatest lower bound or infimum of A ⊆ Z if k is a
lower bound of A and for every other lower bound l of A we have l ≤ k. We
use the notation k = inf A for the infimum of A, if it exists.

The least upper bound or supremum is defined analogously and is denoted
by supA. The lower (upper) bound of Z, if it exists, is called least (greatest)
element.

Proposition 1.4. Let (Z,≤) be a partially ordered set and let A ⊆ Z. If the
infimum of A exists, then it is uniquely defined.

Proof. Let both k and l be infima of A. Then, l and k are lower bounds of A.
The definition of the infimum yields l ≤ k and k ≤ l. As ≤ is antisymmetric,
we get l = k. ��

Definition 1.5. A partially ordered set (Z,≤) is called a complete lattice if
the infimum and supremum exist for every subset A ⊆ Z.

Note that a one-sided condition is already sufficient to characterize a com-
plete lattice.

Proposition 1.6. A partially ordered set (Z,≤) is a complete lattice if and
only if the infimum exists for every subset A ⊆ Z.

Proof. Let A ⊆ Z be a given set and let B ⊆ Z be the set of all upper bounds
of A. By assumption, p := inf B exists. As p is a lower bound of B, z ≥ p
holds for every upper bound z of A. Every z ∈ A is a lower bound of B. By
the definition of the infimum we get p ≥ z for every z ∈ A. Together we have
p = supA. ��

Example 1.7. The extended real numbers R := R∪ {±∞} equipped with the
usual ordering ≤ provide a complete lattice.

Example 1.8. Let ≤ be the componentwise ordering relation in Rq. If the
ordering relation ≤ is extended to Z := Rq∪{±∞} by setting −∞ ≤ z ≤ +∞
for all z ∈ Z, (Z,≤) provides a complete lattice. The infimum of a subset
A ⊆ Z is

inf A =



(

inf
z∈A

z1, . . . , inf
z∈A

zq

)T

if ∃b ∈ Rq, ∀z ∈ A : b ≤ z

+∞ if A = ∅
−∞ otherwise.

Example 1.9. Let Z = R3 and let C be the polyhedral (convex) cone which
is spanned by the vectors (0, 0, 1)T , (0, 1, 1)T , (1, 0, 1)T , (1, 1, 1)T . Then
(Z,≤C) is not a complete lattice. For instance, there is no supremum of the
finite set {(0, 0, 0)T , (1, 0, 0)T}.
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Note that the previous example is a special case of the following result
by Peressini (1967): Rn is an Archimedean vector lattice with respect to the
order generated by a cone C if and only if there are n linearly independent
vectors vi such that

C :=
{
x ∈ Rn| ∀i = 1, . . . , n :

〈
x, vi

〉
≥ 0
}
. (1.1)

Note further that, as pointed out by Anderson and Annulis (1973), the word
“Archimedean” is inadvertently omitted in (Peressini, 1967). A vector lattice
is Archimedean if

(∀n ∈ N : 0 ≤ nx ≤ z) =⇒ x = 0.

The pair (R2, L), where

L :=
{
x ∈ R2| x1 > 0 ∨ [x1 = 0 ∧ x2 ≥ 0]

}
is the lexicographic ordering cone provides an example of a vector lattice,
which is not Archimedean. As demonstrated in (Anderson and Annulis, 1973),
L cannot be expressed as in (1.1).

Example 1.10. Let X be a nonempty set and let P(X) = 2X be the power
set of X . (P(X),⊇) provides a complete lattice. The infimum and supremum
of a nonempty subset A ⊆ P(X) are given as

inf A =
⋃

A∈A
A supA =

⋂
A∈A

A.

Note that X ∈ P(X) is the least element and ∅ ∈ P(X) is the greatest
element in (P(X),⊇). If A is empty, we set supA = X and inf A = ∅.

Example 1.11. Let X be a vector space and let C(X) be the family of all
convex subsets of X . (C(X),⊇) provides a complete lattice. The infimum
and supremum of a nonempty subset A ⊆ C(X) are given as

inf A = co
⋃

A∈A
A supA =

⋂
A∈A

A.

If A is empty, we set again supA = X and inf A = ∅.

Example 1.12. Let X be a topological space and let F(X) be the family of
all closed subsets of X . (F(X),⊇) provides a complete lattice. The infimum
and supremum of a nonempty subset A ⊆ F(X) are given as

inf A = cl
⋃

A∈A
A supA =

⋂
A∈A

A.

If A is empty, we set again supA = X and inf A = ∅.
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Example 1.13. Let X be a set, L a complete lattice and L(X) be the set of
all L-valued functions on X . A partial ordering on L(X) is defined by

l1 ≤ l2 : ⇐⇒ ∀x ∈ X : l1(x) ≤ l2(x).

Then (L(X),≤) provides a complete lattice. The infimum and supremum are
given by the pointwise infimum and supremum.

1.2 Conlinear spaces

Convexity is one of the most important concepts in optimization. A convex
set C is usually defined to be a subset of a vector space X satisfying the
condition

[λ ∈ [0, 1] ∧ x, y ∈ C] =⇒ λx + (1 − λ)y ∈ C. (1.2)

A very important special case of a convex set is a convex cone, where a cone
is defined to be a set K satisfying

[λ ∈ R+, x ∈ K] =⇒ λx ∈ K, (1.3)

where R+ := {λ ∈ R| λ ≥ 0}.
We observe that neither of the definitions require a multiplication by a

negative real number. It is therefore consistent to define convexity on more
general spaces. This can be motivated by the examples below showing convex
sets and convex cones which cannot be embedded into a linear space (vector
space). The natural framework for convexity seems to be a conlinear space
rather than a linear one.

Definition 1.14. A nonempty set Z equipped with an addition + : Z×Z →
Z and a multiplication · : R+ × Z → Z is said to be a conlinear space with
the neutral element θ ∈ Z if for all z, z1, z2 ∈ Z and all α, β ≥ 0 the following
axioms are satisfied:

(C1) z1 +
(
z2 + z

)
=
(
z1 + z2

)
+ z,

(C2) z + θ = z,
(C3) z1 + z2 = z2 + z1,
(C4) α · (β · z) = (αβ) · z,
(C5) 1 · z = z,
(C6) 0 · z = θ,
(C7) α ·

(
z1 + z2

)
=
(
α · z1

)
+
(
α · z2

)
.

An instance of a conlinear space is given in Example 1.31 below. The
axioms of a conlinear space (Z,+, · ) are appropriate to deal with convexity.
A convex set and a cone in a conlinear space are defined, respectively, by (1.2)
and (1.3). The convex hull coA of a subset A of a conlinear space (Z,+, · )
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is the intersection of all convex sets in Z containing A. The convex hull of a
set A coincides with set of all (finite) convex combinations of elements of A
(Hamel, 2005, Theorem 3).

Additionally to the axioms (C1) to (C7), it is sometimes useful to use a
second distributive law, that is, for all z ∈ Z and all α, β ≥ 0 we can suppose
additionally that

(C8) α · z + β · z = (α+ β) · z.
In a conlinear space, singleton sets are not necessarily convex, see Example
1.17 below. Indeed this requirement is equivalent to (C8).

Proposition 1.15. For every conlinear space, the following statements are
equivalent:

(i) Every singleton set is convex,
(ii) (C8) holds.

Proof. This is obvious. ��

Definition 1.16. An element z̄ of a conlinear space Z is said to be convex,
if the set {z̄} is convex.

Example 1.17. An element of a conlinear space can be nonconvex. Indeed, let
Z = P(R) and consider the element A := {0, 1} ∈ Z. We have 1

2A + 1
2A ={

0, 1
2 , 1
}
�= A.

If (Z,+, · ) is a conlinear space, we denote by Zco the subset of all z ∈ Z
satisfying (C8).

Proposition 1.18. (Zco ,+, · ) is a conlinear space.

Proof. Let z1, z2 ∈ Zco . For α, β ≥ 0, we have

α(z1 + z2) + β(z1 + z2) (C7), (C3)= αz1 + βz1 + αz2 + βz2

(C8)= (α+ β)z1 + (α+ β)z2

(C7)= (α+ β)(z1 + z2),

i.e., z1 + z2 ∈ Zco . Similarly we obtain γ · z1 ∈ Zco for γ ≥ 0. ��

If a conlinear space is equipped with an ordering relation, it is useful to
require that this ordering relation is compatible with the conlinear structure.
The same procedure is well-known for partially ordered vector spaces.

Definition 1.19. Let (Z,+, · ) be a conlinear space and let ≤ be a partial
ordering on the set Z. (Z,+, · ,≤) is called a partially ordered conlinear space
if for every z1, z2, z ∈ Z and every α ∈ R+ the following conditions hold:
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(O1) z1 ≤ z2 =⇒ z1 + z ≤ z2 + z,
(O2) z1 ≤ z2 =⇒ αz1 ≤ αz2.

Of course, a partially ordered vector space is a special case of a partially
ordered conlinear space. Let us define convex functions in the general setting
of conlinear spaces.

Definition 1.20. LetW be a conlinear space and let Z be a partially ordered
conlinear space. A function f : W → Z is said to be convex if

∀λ ∈ [0, 1], ∀w1, w2 ∈W :

f
(
λ · w1 + (1 − λ) · w2

)
≤ λ · f(w1) + (1 − λ) · f(w2).

Concave functions are defined likewise.

1.3 Topological vector spaces

A well-known concept is that of a topological vector space, also called topo-
logical linear space or linear topological space (see e.g. Kelley et al., 1963;
Köthe, 1966; Schaefer, 1980). The idea is to equip a linear space with a topol-
ogy and to require that the topology is compatible with the linear structure.
Many useful results depend on this compatibility.

Definition 1.21. Let Y be a real linear space (vector space) and let τ be a
topology on Y . The pair (Y, τ) is called a topological vector space (or linear
topological space) if the following two axioms are satisfied:

(L1) (y1, y2) �−→ y1 + y2 is continuous on Y × Y into Y ,
(L2) (λ, y) �−→ λy is continuous on R × Y into Y .

If there is no risk of confusion, a topological vector space (Y, τ) is simply
denoted by Y . We write intA and clA, respectively, for the interior and
closure of a subset A of a topological vector space Y . The boundary of A ⊆ Y
is the set bdA := clA \ intA.

Proposition 1.22. Let Y be a topological vector space.

(i) For any subset A of Y and any base U of the neighborhood filter of
0 ∈ Y , the closure of A is given by

clA =
⋂

U∈U
A+ U.

(ii) If A is an open subset of Y and B is any subset of Y , then A + B is
open.

Proof. See e.g. Schaefer (1980). ��
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A collection of useful results concerning the closure of the convex hull is
next provided.

Proposition 1.23. Let Y be a topological vector space, let Ai, A,B ⊆ Y and
let I be an arbitrary index set, then

(i) cl coA ⊇ co clA,
(ii) cl coA = cl co clA,
(iii) cl co

⋂
i∈I Ai ⊆

⋂
i∈I cl coAi,

(iv) cl co
⋃

i∈I Ai ⊇
⋃

i∈I cl coAi,
(v) cl co

⋃
i∈I Ai = cl co

⋃
i∈I cl coAi,

(vi) cl (A+B) ⊇ clA+ clB,
(vii) cl (A+B) = cl (clA+ clB),
(viii) cl co (A+B) ⊇ cl coA+ cl coB,
(ix) cl co (A+B) = cl (cl coA+ cl coB).

Proof. These statements are standard in the literature. A collection of de-
tailed proofs can be found in (Löhne, 2005a). ��

Proposition 1.24. Let Y be a topological vector space, A,B ⊆ Y and
intB �= 0. Then

A+ intB = clA+ intB.

Proof. Of course, A + intB ⊆ clA + intB. To show the opposite inclusion
let y ∈ clA + intB. We have y − a ∈ intB for some a ∈ clA. For all
neighborhoods U of 0 there exists some ā ∈ A such that −ā ∈ {−a} + U .
Since intB is nonempty and open, there exists some neighborhood U of 0
such that y − ā ∈ {y − a} + U ⊆ intB. ��

The following statements require convexity.

Proposition 1.25. Let Y be a topological vector space and let A ⊆ Y be
convex. Then

(i) clA is convex,
(ii) intA is convex,
(iii) intA �= ∅ implies that clA = cl (intA) and int (clA) = intA.

Proof. See e.g. (Schaefer, 1980, page 38). ��

The next result is useful to show the existence of boundary points, in
particular, it is used in Section 1.4 to show the existence of weakly minimal
points and to prove several results on infimal sets.

Theorem 1.26. Let A and B be subsets of a topological vector space Y . Let
B be convex and assume that clA ∩B �= ∅. Then

clA ∩B ⊆ intA =⇒ A ⊇ B.
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Proof. Let a ∈ clA∩B and assume there is some b ∈ B \A. We consider the
expression

λ̄ := inf{λ ≥ 0| λa+ (1 − λ)b ∈ A}.
There exists a sequence (λn) → λ̄ such that λna+(1−λn)b ∈ A for all n ∈ N.
As B is convex and λ̄ ∈ [0, 1], we get

λ̄a+ (1 − λ̄)b ∈ clA ∩B ⊆ intA.

In particular, we see that λ̄ > 0. On the other hand, there is a sequence
(µn) → λ̄ such that µna+ (1 − µn)b �∈ A for all n ∈ N. This yields

λ̄a+ (1 − λ̄)b �∈ intA.

This is a contradiction. ��

A topological vector space is now equipped with a partial ordering ≤ on Y .
It is required that the linear structure is compatible with both the topology
and the ordering.

Definition 1.27. Let Y be a vector space, τ a topology and ≤ a partial
ordering on Y . The triple (Y, τ,≤) is called a partially ordered topological
vector space if the axioms (L1), (L2), (O1) and (O2) are satisfied.

It is well-known that in a partially ordered vector space (Y,≤) (this notion
involves the axioms (O1) and (O2) from Definition 1.19) the cone C :=
{y ∈ Y | y ≥ 0} is convex and pointed (i.e. C ∩ (−C) = {0}). Vice versa,
given a convex, pointed cone C ⊆ Y , we obtain by the relation

x ≤C y : ⇐⇒ y − x ∈ C

a partially ordered space (Y,≤C) with C := {y ∈ Y | y ≥C 0}, see e.g. Per-
essini (1967). The situation in conlinear spaces is more complicated, see
Hamel (2005).

Let Y be a partially ordered vector space. We consider the extension by
two new elements +∞ and −∞. The extended space is denoted by Y :=
Y ∪ {±∞}. The ordering is extended as

∀y ∈ Y : −∞ ≤ y ≤ +∞. (1.4)

The linear operations are extended by the following calculus rules:

0 · (+∞) = 0, 0 · (−∞) = 0, (1.5)
∀α > 0 : α · (+∞) = +∞, (1.6)
∀α > 0 : α · (−∞) = −∞, (1.7)

∀y ∈ Y : y + (+∞) = +∞ + y = +∞, (1.8)
∀y ∈ Y ∪ {−∞} : y + (−∞) = −∞ + y = −∞. (1.9)
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The extended space Y is a conlinear space, but not a linear space. This can be
seen as there is no inverse element for +∞ and −∞. Of course, +∞ and −∞
play the role of the greatest and least element in

(
Y ,≤

)
, respectively. The

following result shows that a linear extension by a greatest or least element
is generally not possible.

Theorem 1.28. There is no partially ordered vector space besides the trivial
case Y = {0} having a greatest element.

Proof. Let Y be a partially ordered vector space and let l be the greatest
element. Then we have l+ l ≤ l. It follows l ≤ 0 and hence l = 0. Let y ∈ Y .
Then

y + y ≤ l = 0 =⇒ y ≤ −y
−y − y ≤ l = 0 =⇒ −y ≤ y

}
=⇒ y = −y =⇒ y = 0.

Hence, Y = {0}. ��

In contrast to many authors, we do not avoid the sum of −∞ and +∞.
Our rules imply the so-called inf-addition (see Rockafellar and Wets, 1998)

+∞ + (−∞) = −∞ + (+∞) = +∞.

The inf-addition is the preferable choice for minimization problems. Analo-
gously, one can define the sup-addition, where we have to permute the role of
−∞ and +∞ with respect to the addition. The calculus rules are analogous
to the above rules.

Definition 1.29. Let (Y, τ,≤) be a partially ordered topological vector space
and let Y := Y ∪ {±∞}. If the linear operations on Y are extended to Y
by the rules (1.5) to (1.9) and if the partial ordering on Y is extended to
Y by (1.4), then the triple

(
Y , τ,≤

)
is called an extended partially ordered

topological vector space. We also say that Y is the extension of the partially
ordered topological vector space Y by the inf-addition, shortly, the extension
of Y .

We next consider the convex hull of subsets of an extended partially or-
dered (topological) vector space.

Proposition 1.30. Let Y be an extended partially ordered (topological) vec-
tor space. The convex hull of a subset A ⊆ Y can be expressed as

coA = co
(
A \ {±∞}

)
∪
(
A ∩ {±∞}

)
.

Proof. This is elementary. ��

Example 1.31. Let P(Y ) be the power set of a vector space Y . The Minkowski-
addition is defined as
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+ : P(Y ) × P(Y ) → P(Y ),

A+B = {y ∈ Y | ∃a ∈ A, ∃b ∈ B : y = a+ b} .
We define a multiplication by nonnegative real numbers by

· : R+ × P(Y ) → P(Y ),

α · A =
{
{y ∈ Y | ∃a ∈ A : y = αa} if α > 0
{0} if α = 0.

In particular, this implies the rule 0·∅ = {0}. The triple (P(Y ), + , · ) provides
a conlinear space. Moreover, the set inclusion ⊇ is a partial ordering on P(Y )
and (P(Y ), + , · ,⊇) provides a partially ordered conlinear space.

Example 1.32. Let P
(
Y
)

be the power set of an extended (partially ordered)
vector space Y , whereas the ordering relation is not relevant for the moment.
We underlie the rules (1.5) to (1.9) (i.e. the inf-addition). Using the operations

+ : P
(
Y
)
× P

(
Y
)
→ P

(
Y
)
,

A+B =
{
y ∈ Y | ∃a ∈ A, ∃b ∈ B : y = a+ b

}
,

and
· : R+ × P

(
Y
)
→ P

(
Y
)
,

α · A =
{
{y ∈ Y | ∃a ∈ A : y = αa} if α > 0
{0} if α = 0,

we obtain a conlinear space
(
P
(
Y
)
, + , ·

)
. Moreover,

(
P
(
Y
)
, + , · ,⊇

)
provides a partially ordered conlinear space with the greatest element ∅ and
the least element Y . In particular we have the rules 0·∅ = {0}, 0·{+∞,−∞} =
{0}, {+∞} + {−∞} = {+∞}.

We continue with a well-known separation theorem for topological vector
spaces.

Definition 1.33. Let Y be a linear space. We say a nonzero linear functional
y∗ : Y → R properly separates two subsets A and B of Y if

sup
x∈A

y∗(x) ≤ inf
y∈B

y∗(y) and inf
x∈A

y∗(x) < sup
y∈B

y∗(y).

Theorem 1.34. Let Y be a topological vector space. Two nonempty disjoint
convex subsets of Y can be properly separated by a nonzero continuous linear
functional, provided one of them has an interior point.

Proof. See e.g. (Aliprantis and Border, 1994, Theorem 4.46).

Let Y ∗ be the topological dual of the topological vector space (Y, τ), i.e.,
Y ∗ is the set of all linear continuous functionals on Y . The polar cone of a
cone C ⊆ Y is defined by
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C◦ := {y∗ ∈ Y ∗| ∀y ∈ C : y∗(y) ≤ 0} . (1.10)

We will assume frequently that Y is a partially ordered topological vector
space, where the ordering is generated by a cone C (which is consequently
convex and pointed) such that ∅ �= intC �= Y . Theorem 1.34 implies that the
polar cone of C contains nonzero elements.

We continue with an important subclass of topological vector spaces. The
essential idea is that a stronger hypothesis leads to a stronger separation
property.

Definition 1.35. A topological vector space (Y, τ) is said to be a locally
convex space if every neighborhood of zero includes a convex neighborhood
of zero.

Definition 1.36. Let Y be a vector space. We say a nonzero linear functional
y∗ : Y → R strongly separates two subsets A and B of Y if

sup
x∈A

y∗(x) < inf
y∈B

y∗(y).

Theorem 1.37. Let Y be a locally convex space. Two disjoint nonempty con-
vex subsets of Y can be strongly separated by a nonzero continuous linear
functional, provided one is compact and the other closed.

Proof. See e.g. (Aliprantis and Border, 1994, Theorem 4.54).

Let (Y, τ) be a locally convex space and let Y ∗ be the topological dual.
The support function σA : Y ∗ −→ R with respect to A ⊆ Y is defined by

σA(y∗) := σ(y∗|A) := sup
y∈A

y∗(y),

where R is equipped with the sup-addition, in particular this means

−∞ + (+∞) = +∞ + (−∞) = −∞.

Moreover, this ensures that the expression

∀y∗ ∈ Y ∗ : σ(y∗|A+ B) = σ(y∗|A) + σ(y∗|B)

is valid for all (not necessarily nonempty) sets A,B ⊆ Y . Of course,

∀y∗ ∈ Y ∗ : σ(y∗|αA) = ασ(y∗|A)

holds for all sets A ⊆ Y and all nonnegative real numbers α ≥ 0, where we
use the conventions 0 · ∅ = {0} and 0 · (±∞) = 0. From Theorem 1.37, we
immediately obtain for all A,B ⊆ Y the important assertion

A ⊆ cl coB ⇐⇒ ∀y∗ ∈ Y ∗ : σA(y∗) ≤ σB(y∗).
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If Ai ⊆ Y for all i ∈ I, where I is an arbitrary index set, then

∀y∗ ∈ Y ∗ : σ

(
y∗
∣∣∣∣ ⋃

i∈I

Ai

)
= sup

i∈I
σ (y∗| Ai)

and

∀y∗ ∈ Y ∗ : σ

(
y∗
∣∣∣∣ ⋂

i∈I

Ai

)
≤ inf

i∈I
σ (y∗| Ai) .

A net (yα) in Y is convergent to y ∈ Y with respect to the weak topology w
if y∗(yα) converges to y∗(y) in R for all y∗ ∈ Y ∗. A net (y∗α) in Y ∗ is convergent
to y∗ ∈ Y ∗ with respect to the weak∗ topology w∗ if y∗α(y) converges to y∗(y)
for all y ∈ Y . Both (Y,w) and (Y ∗, w∗) are Hausdorff (i.e., different elements
have different neighborhoods) locally convex spaces. A linear functional φ
on Y ∗ is weak∗-continuous if and only if there exists some y ∈ Y such that
φ(y∗) = y∗(y) for all y∗ ∈ Y ∗ (see e.g. Kelley et al., 1963, Theorem 7.6).

Definition 1.38. A dual pair 〈Y, Y ∗〉 is a pair of vector spaces (Y, Y ∗) to-
gether with a function (y, y∗) �→ 〈y, y∗〉, from Y × Y ∗ into R (called the
duality of the pair), satisfying:

(i) The mapping y∗ �→ 〈y, y∗〉 is linear for each y ∈ Y ;
(ii) The mapping y �→ 〈y, y∗〉 is linear for each y∗ ∈ Y ∗;
(iii) If 〈y, y∗〉 = 0 for each y∗ ∈ Y ∗, then y = 0;
(iv) If 〈y, y∗〉 = 0 for each y ∈ Y , then y∗ = 0.

If (Y, τ) is a Hausdorff locally convex space, and Y ∗ is its topological dual,
i.e., Y ∗ is the set of all linear continuous functionals on Y , then 〈Y, Y ∗〉
provides a dual pair (follows from Theorem 1.37). Vice versa, every dual
pair 〈Y, Y ∗〉 is obtained from a locally convex Hausdorff space (Y, τ) and its
topological dual Y ∗ (compare Aliprantis and Border, 1994, Theorem 4.69).
Locally convex spaces are naturally obtained by the weak topology, which is
induced by a family of linear functionals. A locally convex Hausdorff topology
τ is said to be consistent with the dual pair 〈Y, Y ∗〉 if the topological dual
of (Y, τ) is just Y ∗. All topologies consistent with a given dual pair have the
same closed convex sets. If (Y, τ) is a locally convex Hausdorff space and Y ∗

is its topological dual, then both τ and the weak topology w are consistent
with the dual pair 〈Y, Y ∗〉.

1.4 Infimal and supremal sets

This section is devoted to infimal and supremal sets of subsets of a topo-
logical vector space Y and its extension Y . These concepts were introduced
by Nieuwenhuis (1980) as a generalization of the infimum and supremum in
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R to a partially ordered vector space Y . An infimal subset of Y cannot be
an infimum in Y . This already follows from the fact that an infimum is an
element and not a subset of the underlying partially ordered set. However, it
turned out that infimal and supremal sets are essential for the construction of
a complete lattice, which can be used in vector optimization. This complete
lattice is not Y but a subset of the power set of Y .

Definition 1.39. Let Y be an extended partially ordered topological vector
space and let the ordering cone C of Y satisfy ∅ �= intC �= Y . The upper
closure of a subset A ⊆ Y (with respect to C) is defined by

Cl +A :=



Y if −∞ ∈ A
∅ if A = {+∞}
{y ∈ Y | {y} + intC ⊆ A \ {+∞} + intC} otherwise.

The upper closure is illustrated in Figure 1.2. It is clear from the definition
that Cl +A is always a subset of Y even if A is a subset of the extended space
Y . The following characterization is useful and can serve as a definition, when
the ordering cone has an empty interior.

A

Cl +A

Fig. 1.2 The upper closure of a set A ⊆ R
2 with respect to the ordering cone

C = R
2
+.

Proposition 1.40. Let Y be an extended partially ordered topological vector
space with an ordering cone C such that ∅ �= intC �= Y and let A ⊆ Y . Then

Cl +A =



Y if −∞ ∈ A
∅ if A = {+∞}
cl
(
A \ {+∞} + C

)
otherwise.

Proof. Without loss of generality we can assume that +∞ �∈ A. It remains
to show that

B1 := {y ∈ Y | {y} + intC ⊆ A+ intC} = cl
(
A+ C

)
=: B2.
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(i) Let y ∈ B1 and let c ∈ intC. We have y + 1
nc ∈ A + intC for all n ∈ N.

Taking the limit for n→ ∞, we obtain y ∈ B2.
(ii) Let y ∈ B2. Using Proposition 1.24 we obtain

{y} + intC ⊆ cl
(
A+ C

)
+ intC = A+ C + intC = A+ intC,

and hence y ∈ B1. ��

Definition 1.41. Let Y be an extended partially ordered topological vector
space with an ordering cone C such that ∅ �= intC �= Y . The set of weakly
minimal points of a subset A ⊆ Y (with respect to C) is defined by

wMinA := {y ∈ A| ({y} − intC) ∩A = ∅} .

The next lemma shows the existence of weakly minimal elements. It is
based on Theorem 1.26.

Lemma 1.42. Let Y be an extended partially ordered topological vector space,
ordered by a cone C with ∅ �= intC �= Y . Let A ⊆ Y be an arbitrary set and
let B ⊆ Y be a convex set. Let Cl +A ∩B �= ∅ and B \ Cl +A �= ∅. Then

wMin(Cl +A ∩B) �= ∅.

Proof. Assuming that wMin(Cl +A ∩B) is empty, we get

∀y ∈ Cl +A ∩B, ∃z ∈ Cl +A ∩B : y ∈ {z} + intC.

This implies
Cl +A ∩B ⊆ (Cl +A ∩B) + intC.

It follows

Cl +A ∩B ⊆ (Cl +A ∩B) + intC
⊆ (Cl +A+ intC) ∩ (B + intC)
⊆ Cl +A+ intC
⊆ intCl +A.

Since B is convex, Theorem 1.26 yields Cl +A ⊇ B, which contradicts the
assumption B \ Cl +A �= ∅. ��

We continue with a further lemma concerning weakly minimal elements.

Lemma 1.43. Let Y be an extended partially ordered topological vector space
ordered by a cone C with ∅ �= intC �= Y . Let A ⊆ Y be an arbitrary set and
let B ⊆ Y be an open set. Then

wMin(Cl +A ∩B) = (wMin Cl +A) ∩B.
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Proof. In order to prove the inclusion wMin(Cl +A∩B) ⊆ (wMin Cl +A)∩B,
let y ∈ wMin(Cl +A ∩ B). Of course, this implies y ∈ B and y ∈ Cl +A. It
remains to show that ({y} − intC) ∩ Cl +A = ∅. Assuming the contrary,
we get some z ∈ Cl +A such that c := y − z ∈ intC. As B is open, there
exists some ε ∈ (0, 1) such that w := y − εc ∈ B. From z ∈ Cl +A we get
w ∈ Cl +A + intC ⊆ Cl +A. Thus, we have w ∈ ({y} − intC) ∩ (Cl +A ∩B)
and hence y �∈ wMin(Cl +A ∩B), a contradiction.

The opposite inclusion ⊇ follows directly from the definition. ��

The following conclusion of Lemma 1.42 plays a crucial role in the follow-
ing.

Corollary 1.44. Let Y be an extended partially ordered topological vector
space with an ordering cone C such that ∅ �= intC �= Y . For every set A ⊆ Y
the following statements are equivalent:

(i) ∅ �= Cl +A �= Y ,
(ii) wMin Cl +A �= ∅.

Proof. (i) ⇒ (ii). Follows from Lemma 1.42 for the choice B = Y .
(ii) ⇒ (i). This is a direct consequence of the definition of wMin. ��

We now define a central concept of this book, an infimal set for a subset
of the extended space Y .

Definition 1.45. Let Y be an extended partially ordered topological vector
space with an ordering cone C such that ∅ �= intC �= Y . The infimal set of
A ⊆ Y (with respect to C) is defined by

Inf A :=




wMin Cl +A if ∅ �= Cl +A �= Y
{−∞} if Cl +A = Y
{+∞} if Cl +A = ∅.

An infimal set is illustrated in Figure 1.3. If A is a nonempty subset of Y
and cl (A+C) �= Y , then Inf A = wMin cl (A+C). By Corollary 1.44, Inf A is
always a nonempty set. Clearly, if −∞ belongs to A, we have Inf A = {−∞},
in particular, Inf {−∞} = {−∞}. Moreover, we have Inf ∅ = Inf {+∞} =
{+∞}. Furthermore, Cl +A = Cl +(A ∪ {+∞}) holds and hence Inf A =
Inf(A ∪ {+∞}) for all A ⊆ Y .

We close this section with several useful results concerning the infimal set
and the upper closure. We derive them from Lemma 1.42 (based on Theorem
1.26) and Lemma 1.43.

Lemma 1.46. Let Y be an extended partially ordered topological vector space
with an ordering cone C such that ∅ �= intC �= Y . For A ⊆ Y with ∅ �=
Cl +A �= Y , it is true that

Cl +A+ intC ⊆ Inf A+ intC.
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A

Inf A

Fig. 1.3 The infimal set of a set A ⊆ R
2 with respect to the ordering cone C = R

2
+.

Proof. Let y ∈ Cl +A + intC, then
(
{y} − intC

)
∩ Cl +A �= ∅. We set B :=

{y} − intC. As B is convex and open, Lemma 1.42 and Lemma 1.43 imply
that

∅ �= wMin(Cl +A ∩B) = (wMin Cl +A) ∩B.

Thus, there exists some z ∈ wMin Cl +A = Inf A such that y ∈ {z} + intC,
whence y ∈ Inf A+ intC. ��

Lemma 1.47. Let Y be an extended partially ordered topological vector space
with an ordering cone C such that ∅ �= intC �= Y . For A ⊆ Y with ∅ �=
Cl +A �= Y , the following statement holds true:

Cl +A ∪ (Inf A− intC) = Y.

Proof. We have Cl +A− intC ⊇ {z}+intC− intC = Y for every z ∈ Cl +A.
Let y ∈ Y \ Cl +A. The set B := {y} + intC is open and convex. Moreover,
we have Cl +A∩B �= ∅, since otherwise we get the contradiction y �∈ Cl +A−
intC = Y . We show that B \ Cl +A �= ∅. Indeed, assuming the contrary, we
obtain B ⊆ Cl +A which implies the contradiction y ∈ clB ⊆ Cl +A. Lemma
1.42 and Lemma 1.43 imply

∅ �= wMin(Cl +A ∩B) = (wMin Cl +A) ∩B.

Consequently, there exists some z ∈ wMin Cl +A = Inf A such that z ∈ B =
{y} + intC, whence y ∈ Inf A− intC. ��

The next corollary provides several useful consequences of the preceding
two lemmas.

Corollary 1.48. Let Y be an extended partially ordered topological vector
space with an ordering cone C such that ∅ �= intC �= Y . If A,B ⊆ Y with
∅ �= Cl +A �= Y and ∅ �= Cl +B �= Y , then

(i) Cl +A+ intC = Inf A+ intC,
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(ii) Inf A = {y ∈ Y | {y} + intC ⊆ Cl +A+ intC ∧ y �∈ Cl +A+ intC},
(iii) intCl +A = Cl +A+ intC,
(iv) Inf A = bd Cl +A,
(v) Inf A = Cl +A \ (Cl +A+ intC),
(vi) Cl +A = Cl +B ⇐⇒ Inf A = Inf B,
(vii) Cl +A = Cl +B ⇐⇒ Cl +A+ intC = Cl +B + intC,
(viii) Inf A = Inf B ⇐⇒ Inf A+ intC = Inf B + intC,
(ix) Cl +A = Inf A ∪ (Inf A+ intC),
(x) Inf A, (Inf A− intC) and (Inf A+ intC) are pairwise disjoint,
(xi) Inf A ∪ (Inf A− intC) ∪ (Inf A+ intC) = Y .

Proof. (i) We have Inf A = wMin Cl +A ⊆ Cl +A and hence Inf A + intC ⊆
Cl +A+ intC. The opposite inclusion is just the statement of Lemma 1.46.

(ii) Follows from the definitions of upper closure and weakly minimal
points.

(iii) Let y ∈ intCl +A and let c ∈ intC. There is some t > 0 such that
y − tc ∈ Cl +A and hence y ∈ Cl +A + intC. On the other hand, we have
Cl +A+intC ⊆ Cl +A. The set Cl +A+intC is open, whence Cl +A+intC ⊆
intCl +A.

(iv) Follows from (ii) and (iii).
(v) Follows from (ii).
(vi) Taking the closure, Cl +A + intC = Cl +B + intC implies Cl +A =

Cl +B. By definition this yields Inf A = Inf B.
On the other hand, Inf A = Inf B implies Inf A + intC = Inf B + intC

which is by (i) equivalent to Cl +A+ intC = Cl +B + intC.
(vii) By Proposition 1.40, we have

cl
(
Cl +A+ intC

)
= cl

(
cl (A \ {+∞} + C) + intC

)
= cl

(
A \ {+∞} + C

)
= Cl +A.

The statement is now obvious.
(viii) Follows from (i), (vi) and (vii).
(ix) Let y ∈ Cl +A. In the case where y ∈ Cl +A + intC, (i) implies

y ∈ Inf A+ intC. Otherwise, if y �∈ Cl +A+ intC, we get y ∈ wMin Cl +A =
Inf A. On the other hand, it is obvious that Inf A = wMin Cl +A ⊆ Cl +A
and Inf A+ intC ⊆ Cl +A+ intC ⊆ Cl +A.

(x) Let y ∈ Inf A−intC. There is some z ∈ Inf A such that y ∈ {z}−intC.
We have ({z} − intC) ∩ Cl +A = ∅ and hence y �∈ Cl +A. By (ix) we get
(Inf A− intC)∩ Inf A = ∅ and (Inf A− intC)∩ (Inf A+ intC) = ∅. From (i)
and the definition of an infimal set we get Inf A ∩ (Inf A+ intC) = ∅.

(xi) Follows from (ix) and Lemma 1.47. ��

In the following result we use in (ii) and (iii) the calculus rules (1.5) to
(1.9) from Section 1.3, in particular we use the inf-addition, which involves
the rule +∞ + (−∞) = +∞.
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Corollary 1.49. Let A ⊆ Y . Then

(i) Inf Inf A = Inf A, Cl +Cl +A = Cl +A, Inf Cl +A = Inf A, Cl + Inf A =
Cl +A,

(ii) Inf(Inf A+ Inf B) = Inf(A+B),
(iii) α Inf A = Inf(αA) for α > 0.

Proof. This follows from the definitions and results of this section. ��

The sets wMaxA of weakly maximal elements of A ⊆ Y , as well as the
lower closure Cl−A and the supremal set SupA of a subset A ⊆ Y are defined
likewise. One has

SupA = − Inf(−A) (1.11)

and analogous results hold true, where the sup-addition has to be used.

1.5 Hyperspaces of upper closed sets and self-infimal
sets

In this section we introduce two complete lattices. They are shown to be
partially ordered conlinear spaces which are isomorphic and isotone. It turns
out that they are suitable to act as image spaces for vector optimization
problems. We start with the definition of the elements these spaces.

Let Y be an extended partially ordered topological vector space with an
ordering cone C such that ∅ �= intC �= Y . Note that C is automatically
convex and pointed because we assume that C generates a partial ordering
on Y .

Definition 1.50. A set A ⊆ Y is called an upper closed set if Cl +A = A. A
subset B ⊆ Y is called self-infimal if Inf B = B holds.

Let F := FC(Y ) be the family of all upper closed subsets of Y . In F we
introduce an addition ⊕ : F × F → F and a multiplication by nonnegative
real numbers � : R+ ×F → F as

A1 ⊕A2 := cl (A1 +A2),
α�A := Cl +(α ·A).

Note that the power set P(Y ) is supposed to be a conlinear space with re-
spect to the Minkowski-addition and the usual multiplication by nonnegative
numbers, compare Example 1.31. In particular, we use the rule 0 · ∅ = {0},
which implies that 0 � ∅ = Cl + {0} = clC.

Proposition 1.51. The space (F ,⊕,�,⊇) is a partially ordered conlinear
space with the neutral element clC.
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Proof. Of course, the relation ⊇ provides a partial ordering on F . The axioms
of a conlinear space can be verified directly. ��

Let I := IC

(
Y
)

be the family of all self-infimal subsets of Y . In I we
introduce an addition ⊕ : I × I → I, a multiplication by nonnegative real
numbers � : R+ × I → I and an order relation � by

B1 ⊕B2 := Inf(B1 +B2),
α�B := Inf(α ·B),

B1 � B2 : ⇐⇒ Cl +B
1 ⊇ Cl +B

2.

Note that the definition of the addition ⊕ in I is based on the inf-addition
in Y . As a consequence we obtain {−∞} ⊕ {+∞} = {+∞}. Moreover, we
get 0 � B = Inf {0} = bdC for all B ∈ I. The addition and the ordering in
I are illustrated in Figure 1.4.

B1

B2

B1

B1 � B2

B1 � B3

B2 �� B3

B3

B2

B1 ⊕ B2

Fig. 1.4 The addition and the ordering in I for C = R
2
+.

Proposition 1.52. The space (I,⊕,�,�) is a partially ordered conlinear
space with the neutral element Inf {0} = bdC. The spaces (F ,⊕,�,⊇) and
(I,⊕,�,�) are isomorphic and isotone. The corresponding bijection is given
by

j : F → I, j( · ) = Inf( · ), j−1( · ) = Cl +( · ).

Proof. By Corollary 1.49 (i), j is a bijection between F and I. From Corollary
1.49 (ii) we obtain that j

(
A1
)
⊕ j
(
A2
)

= j
(
A1 ⊕A2

)
for all A1, A2 ∈ F . It

can easily be verified that α � j(A) = j(α �A) for all α ≤ 0 and all A ∈ F .
It follows from the definition of the ordering � in I that we have A1 ⊇ A2 if
and only if j

(
A1
)

� j
(
A2
)
. ��
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Proposition 1.53. (F ,⊇) and (I,�) are complete lattices. For nonempty
subsets A ⊆ F and B ⊆ I the infimum and supremum can be expressed by

inf A = cl
⋃

A∈A
A, supA =

⋂
A∈A

A,

inf B = Inf
⋃

B∈B
Cl +B, supB = Inf

⋂
B∈B

Cl +B.

Proof. For the space (F ,⊇) the statements are obvious and for (I,�) they
follow from Proposition 1.52. ��

As usual, if A ⊆ F and B ⊆ I are empty, we define the infimum (supremum)
to be the greatest (least) element in the corresponding complete lattice, i.e.,
inf A = ∅, supA = Y , inf B = {+∞} and supB = {−∞}.

It follows the main result of this section, which is illustrated in Figure 1.5.

B ⊆ I

supB = Sup
⋃

B∈B
B

inf B = Inf
⋃

B∈B
B

Fig. 1.5 The infimum and supremum in I for C = R
2
+

Theorem 1.54. For nonempty sets B ⊆ I, we have

inf B = Inf
⋃

B∈B
B, supB = Sup

⋃
B∈B

B.

Proof. (i) The expression for the infimum can be shown as follows:

inf B = Inf
⋃

B∈B
Cl +B = Inf Cl +

⋃
B∈B

Cl +B

= Inf Cl +

⋃
B∈B

B = Inf
⋃

B∈B
B.
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(ii) Let us prove the expression for the supremum. By Proposition 1.53, it
remains to show that Sup

⋃
B∈B B = Inf

⋂
B∈B Cl +B. We distinguish three

cases:
a) If {+∞} ∈ B, we have +∞ ∈

⋃
B∈B B and hence Sup

⋃
B∈B B = {+∞}.

On the other hand, since Cl + {+∞} = ∅, we have Inf
⋂

B∈B Cl +B = Inf ∅ =
{+∞}.

b) Let {+∞} �∈ B but {−∞} ∈ B. If {−∞} is the only element in B, the
assertion is obvious. Otherwise we can omit this element without changing
the expressions.

c) Let {+∞} �∈ B and {−∞} �∈ B. Then, B ⊆ Y and ∅ �= Cl +B �= Y for
all B ∈ B, i.e., we can use the statements of Corollary 1.48. We define the
sets

V :=
⋃

B∈B
(B − intC) =

( ⋃
B∈B

B

)
− intC, W :=

⋂
B∈B

Cl +B.

We show that V ∩ W = ∅ and V ∪ W = Y . Assume there exists some
y ∈ V ∩W . Then there is some B̄ ∈ B such that y ∈

(
B̄−intC

)
∩Cl +B̄ = ∅, a

contradiction. Let y ∈ Y \W (we have W �= Y , because otherwise Cl +B = Y
holds for all B ∈ B). Then there exists some B̄ ∈ B such that y �∈ Cl +B̄. By
Corollary 1.48 (ix), (xi), we obtain y ∈ B̄ − intC ⊆ V .

If Cl−V = Y , we get (using Proposition 1.24) V = Cl−V − intC = Y ,
whence W = ∅. It follows

Sup
⋃

B∈B
B = Sup V = {+∞} = Inf ∅ = Inf W.

Otherwise, we have ∅ �= Cl−V �= Y and ∅ �= Cl +W �= Y . By Corollary 1.48,
we obtain

Sup
⋃

B∈B
B = {y ∈ Y | y �∈ V, {y} − intC ⊆ V }

= {y ∈ Y | y ∈ W, ({y} − intC) ∩W = ∅}
= wMinW = wMin Cl +W = Inf W,

which completes the proof. ��
Even though I is not a linear space we have the following result.

Corollary 1.55. The following assertion is true:

A ∈ I ⇐⇒ −A ∈ I.

Proof. Let A ∈ I. Of course, we have sup {A} = A and Theorem 1.54 yields
SupA = A. It follows −A = − SupA = Inf(−A) and hence −A ∈ I. ��

Note that the last statement is not true for A ∈ F . Nevertheless, it is
sometimes easier to work with the complete lattice F in the proofs. Then,
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the corresponding results for the space I can be obtained by Proposition
1.52.

In the following proposition we use a generalization of the Minkowski sum.
For A,B ⊆ I, we set

A⊕ B := {I ∈ I| ∃A ∈ A, ∃B ∈ B : I = A⊕B} .

Proposition 1.56. Let A,B ⊆ I, then

(i) inf A⊕ B = inf A⊕ inf B,
(ii) supA⊕ B � supA⊕ supB .

Proof. (i) If A = ∅, we have inf A⊕B = inf A = {+∞} and thus inf A⊕B =
inf A⊕ inf B = {+∞}. Otherwise, we get

inf A⊕ B = Inf
⋃

A∈A,B∈B
A⊕B = Inf

⋃
A∈A,B∈B

A+B

= Inf

( ⋃
A∈A

A+
⋃

B∈B
B

)
= Inf

⋃
A∈A

A⊕ Inf
⋃

B∈B
B

= inf A⊕ inf B.

(ii) For all A ∈ A, B ∈ B we have A ⊕ B � supA ⊕ supB. Taking the
supremum, we obtain the desired statement. ��

The following example shows that Proposition 1.56 (ii) does not hold with
equality.

Example 1.57. We consider the space I for Y = R2 and C = R2
+. Let A ={

A1, A2
}

and B = {B}, where we set

A1 = Inf
{
(0, 1)T

}
, A2 = Inf

{
(1, 0)T

}
, B =

{
y ∈ R2| y1 + y2 = 0

}
.

Then we have

A1 ⊕B = A2 ⊕B =
{
y ∈ R2| y1 + y2 = 1

}
,

supA⊕ B = sup
{
A1 ⊕B,A2 ⊕B

}
=
{
y ∈ R2| y1 + y2 = 1

}
,

supA⊕ supB = sup
{
A1, A2

}
⊕B =

{
y ∈ R2| y1 + y2 = 2

}
.

Whence supA⊕ B �= supA⊕ supB.

1.6 Subspaces of convex elements

We next investigate subspaces of F and I which turned out to be useful,
in particular, for convex and linear problems. As shown in Section 1.2, the
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subsets Fco and Ico of all convex elements are again conlinear spaces. Recall
that

Fco = {A ∈ F| ∀λ ∈ (0, 1) : λ�A⊕ (1 − λ) �A = A}
and

Ico = {B ∈ I| ∀λ ∈ (0, 1) : λ�B ⊕ (1 − λ) �B = B} .

Proposition 1.58. The spaces (Fco ,⊕,�,⊇) and (Ico ,⊕,�,�) are isomor-
phic and isotone.

Proof. This is an immediate consequence of the fact that (F ,⊕,�,⊆) and
(I,⊕,�,�) are isomorphic and isotone, and the fact that Fco and Ico are
defined by the additional axiom (C8) from Section 1.2. ��

The conlinear space Fco can be characterized using the convex hull.

Proposition 1.59. Let Y be a partially ordered topological vector space with
an ordering cone C such that ∅ �= intC �= Y and let F = FC(Y ), then

Fco = {A ⊆ Y | Cl +coA = A} .

Proof. We have

A = Cl +coA ⇐⇒
A = coA ∧ A = Cl +A ⇐⇒
∀λ ∈ [0, 1] : A = Cl +

(
λA+ (1 − λ)A

)
⇐⇒

∀λ ∈ [0, 1] : A = λ� A⊕ (1 − λ) �A.

The result now follows from Proposition 1.15. ��

Taking into account the relation

coB = co
(
B \ {±∞}

)
∪
(
B ∩ {±∞}

)
(compare Proposition 1.30), we can also work with the convex hull of a subset
B ⊆ Y and we obtain a similar characterization of the conlinear space Ico .
To this end we need the following result.

Proposition 1.60. Let Y be an extended partially ordered topological vector
space with an ordering cone C such that ∅ �= intC �= Y . For every subset
B ⊆ Y , the following assertion is true:

Inf co Inf coB = Inf co Inf B = Inf coB.

Proof. The cases Cl +coB = Y and Cl +coB = ∅ can be verified directly.
Therefore, let ∅ �= Cl +coB �= Y , which implies ∅ �= Cl +B �= Y , −∞ �∈ B
and B �= {+∞}. By Corollary 1.48 (i), we have
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Inf coB + intC = Cl +coB + intC = co (Cl +coB + intC)
= co (Inf coB + intC) = co Inf coB + intC

and similarly

Inf coB + intC Cor. 1.48 (i)= Cl +coB + intC
Pr. 1.40= cl (coB \ {+∞} + C) + intC
Pr. 1.24= coB \ {+∞} + intC

= co (B \ {+∞}) + intC

= co ((B \ {+∞}) + intC)

= co (Cl +B + intC)
Cor. 1.48 (i)= co (Inf B + intC) = co Inf B + intC.

Taking the closure in both equalities and using Proposition 1.40, we get
Cl + Inf coB = Cl +co Inf coB and Cl + Inf coB = Cl +co Inf B. The state-
ment now follows from Corollary 1.49 (i) . ��

Proposition 1.61. Let Y be an extended partially ordered topological vector
space with an ordering cone C such that ∅ �= intC �= Y and let I = IC(Y ),
then

Ico =
{
B ⊆ Y | Inf coB = B

}
.

Proof. The spaces Fco and Ico are isomorphic by the bijection j : Fco → Ico ,
j(·) = Inf(·). By Proposition 1.59,

A ∈ Fco ⇐⇒ A = Cl +coA ⇐⇒ [A = coA ∧ A = Cl +A].

Thus, we have A ∈ Fco if and only if

Inf A = Inf Cl +coA Cor. 1.49= Inf coA
Pr. 1.60= Inf co Inf coA A convex= Inf co Inf A.

This means j(A) = Inf co j(A). Since j : Fco → Ico is a bijection, the
statement follows. ��

An element of Ico is in general not a convex subset of Y , for instance,
B := Inf {0} = bdC is usually non-convex. However, it can be easily seen
that we have B ∈ Ico if and only if B = Inf B and Cl +B is a convex set.

We continue with properties of Fco and Ico with respect to the ordering.

Proposition 1.62. The space (Fco ,⊇) is a complete lattice. The infimum
and supremum of a nonempty subset A ⊆ Fco are given by
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inf A = cl co
⋃

A∈A
A and supA =

⋂
A∈A

A.

Proof. Let A ⊆ Fco be nonempty. By Proposition 1.59 we have A = Cl +coA
for all A ∈ A. We obtain

cl co
⋃

A∈A
A = cl co

⋃
A∈A

Cl +coA = cl co
⋃

A∈A
cl co (A+ C)

= cl co
⋃

A∈A
(A+ C) = cl

((
co
⋃

A∈A
A

)
+ C

)

= Cl +co
⋃

A∈A
A.

Thus cl co
⋃

A∈AA ∈ Fco . As
⋂

A∈AA is convex and upper closed, we get⋂
A∈AA ∈ Fco . Now the statements are easy to verify. ��

The next theorem is similar to Theorem 1.54, but it refers to Ico rather
than I. The only difference is the convex hull in the expression of the infimum.
The infimum and supremum in the space Ico are illustrated in Figure 1.6.

Theorem 1.63. The space (Ico ,�) is a complete lattice. The infimum and
supremum of a nonempty subset B ⊆ Ico are given by

inf B = Inf co
⋃

B∈B
B and supB = Sup

⋃
B∈B

B.

Proof. The conlinear spaces Fco and Ico are isomorphic and isotone, where
the bijection is j : Fco → Ico with j(·) = Inf(·) and j−1(·) = Cl +(·). In view
of Proposition 1.62, it remains to show

j−1

(
Inf co

⋃
B∈B

B

)
= cl co

⋃
B∈B

j−1(B),

which follows from

j
(
Cl +co

⋃
B∈B j

−1(B)
) Cor. 1.49= Inf co

⋃
B∈B

j−1(B)

Pr. 1.62= Inf co Inf
⋃

B∈B
j−1(B)

Cor. 1.49= Inf co Inf
⋃

B∈B
B

Pr. 1.62= Inf co
⋃

B∈B
B.
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For the supremum it remains to show that Sup
⋃

B∈BB ∈ Ico . But in
Theorem 1.54 (see also Proposition 1.53) it is shown that

Sup
⋃

B∈B
B = Inf

⋂
B∈B

Cl +B.

As Cl +B is convex for B ∈ Ico , we get

Inf
⋂

B∈B
Cl +B = Inf co

⋂
B∈B

Cl +B.

The statement follows from Proposition 1.61 and Proposition 1.60. ��

B ⊆ Ico

inf B

supB

Fig. 1.6 Illustration of Theorem 1.63 for Y = R
2 and C = R

2
+.

The following result is important for convex minimization problems. It
states that the space Ico rather than I is also adequate for these problems.
We set

inf
x∈S

f(x) := inf {f(x)| x ∈ S} .

Proposition 1.64. Let X be a vector space, S ⊆ X a convex subset of X
and f : X → I a convex function. Then

(i) f : X → Ico ,
(ii) inf

x∈S
f(x) ∈ Ico .

Proof. Since (i) is a special case (set S = {x}), it remains to show (ii). For
all λ ∈ [0, 1], we have

inf
x∈S

f(x) = inf
y,z∈S

f(λy + (1 − λ)z)

� inf
y,z∈S

(λ� f(y) ⊕ (1 − λ) � f(z))

Pr. 1.56 (i)= λ� inf
x∈S

f(x) ⊕ (1 − λ) � inf
x∈S

f(x).
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Hence infx∈S f(x) ∈ Ico . ��

1.7 Scalarization methods

Scalarization is an important tool in vector optimization. In the conventional
theory of vector optimization, convex problems are usually scalarized by lin-
ear functionals. As we consider set-valued problems (more precisely I-valued
problems), we use (a modification of) the support function rather than linear
functionals for scalarization.

Let Y be an extended partially ordered locally convex space with an or-
dering cone C such that ∅ �= intC �= Y and let Y ∗ be its topological dual.
Furthermore, let F = FC(Y ) and I = IC(Y ). Based on the support function
as introduced in Section 1.3, we define a scalarizing functional depending on
a parameter y∗ ∈ C◦ \ {0}. For A ∈ I, we set

ϕA(y∗) := ϕ(y∗|A) := −σ(y∗|Cl +A). (1.12)

For fixed y∗, we get by (1.12) a functional from I into R. For fixed A ∈ I,
we consider ϕA to be a function from C◦ \ {0} into R, that is,

ϕA : C◦ \ {0} → R.

For some γ ∈ R we write ϕA ≡ γ whenever ϕA(y∗) = γ for all y∗ ∈ C◦ \
{0}. The addition, the multiplication by positive real numbers, the ordering
relation, the infimum and the supremum for the extended real-valued function
ϕA are defined pointwise for all y∗ ∈ C◦ \ {0}. We use the inf-addition, i.e.,
−∞ + (+∞) = +∞ + (−∞) = +∞.

We continue with a collection of useful properties of the functional ϕA.

Theorem 1.65. Let A,B ∈ I and α > 0, then

(i) [A ∈ Ico ∧ ϕA ≡ −∞] ⇐⇒ A = {−∞},
(ii) ϕA ≡ +∞ ⇐⇒

[
∃y∗ ∈ C◦ \ {0} : ϕA(y∗) = +∞

]
⇐⇒ A = {+∞},

(iii) A � B =⇒ ϕA ≤ ϕB ,
(iv)

[
A ∈ Ico ∧ ϕA ≤ ϕB

]
=⇒ A � B,

(v) ϕA⊕B = ϕA + ϕB,
(vi) α · ϕA = ϕα�A.

Let A ⊆ I be nonempty, then

(vii) ϕinf A = inf
A∈A

ϕA,

(viii) ϕsupA ≥ sup
A∈A

ϕA.

Proof. The proof is based on the properties of the support function, see Sec-
tion 1.3.
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(i) As Cl + {−∞} = Y , we get ϕ{−∞} = −σ(y∗ |Y ) = −∞ for all y∗ ∈
C◦ \ {0}. On the other hand, ϕA ≡ −∞ implies that σ(y∗ |Cl +A) = +∞ for
all y∗ ∈ C◦ \ {0}. Moreover, σ(y∗ |C) = +∞ for all y∗ ∈ Y \ C◦. We get

+∞ = σ(y∗ |Cl +A) + σ(y∗ |C) = σ(y∗ |Cl +A+ C) = σ(y∗ |Cl +A)

for all y∗ ∈ Y \{0}. It follows Cl +A = cl coCl +A = Y and hence A = {−∞}.
(ii) We have Cl + {+∞} = ∅ and so A = {+∞} implies ϕA(y∗) =

−σ(y∗| ∅ ) = +∞ for all y∗ ∈ C◦ \ {0}. If σ(y∗|Cl +A) = −∞ for some
y∗ ∈ C◦ \ {0}, then Cl +A = ∅. Since A ∈ I, this implies A = {+∞}.

(iii) Let A � B. We get Cl +A ⊇ Cl +B and hence

ϕA(y∗) = −σ(y∗|Cl +A) ≤ −σ(y∗|Cl +B) = ϕB(y∗)

for all y∗ ∈ Rq, in particular, for all y∗ ∈ C◦ \ {0}.
(iv) Let ϕA ≤ ϕB, i.e., for all y∗ ∈ C◦\{0}, −σ(y∗|Cl +A) ≤ −σ(y∗|Cl +B)

holds. By similar arguments as in the proof of (i), the latter inequality is valid
for all y∗ ∈ Y . As Cl +A is convex and closed we get Cl +A = cl coCl +A ⊇
cl coCl +B ⊇ Cl +B and thus A � B.

In order to prove the statements (v) to (vii), let y∗ ∈ C◦\{0} be arbitrarily
given.

(v) If A or B equals {+∞}, then A⊕B = {+∞} and the statement follows
as Cl + {+∞} = ∅. If A and B are not {+∞} but one of them or both equal
{−∞}, then the result follows from the fact Cl + {−∞} = Y . Thus we can
assume A,B ⊆ Y . In this case we have Cl +A = cl (A+ C). It follows

ϕA+B(y∗) = −σ(y∗| cl (A+B + C))
= −σ(y∗| cl (A+ C)) − σ(y∗| cl (B + C))
= ϕA(y∗) + ϕB(y∗).

(vi) If A = {+∞}, then α�A = {+∞} and hence

α · ϕA(y∗) = ϕα�A(y∗) = +∞.

If A = {−∞}, then α�A = {−∞} and thus

α · ϕA(y∗) = ϕα�A(y∗) = −∞.

If A ⊆ Y , then we have

α · ϕA(y∗) = −ασ(y∗| cl (A+ C)) = −σ(y∗| cl (αA+ C)) = ϕα�A(y∗).

(vii) It remains to show the statement for the case {+∞} �∈ A, because
omitting {+∞} does not change anything. If {−∞} ∈ A the equality can be
easily shown. Therefore, let A ⊆ Y for all A ∈ A. We obtain
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ϕinf A(y∗) = −σ
(
y∗
∣∣∣∣Cl +

⋃
A∈A

A

)
= −σ

(
y∗
∣∣∣∣ cl ⋃

A∈A
(A+ C)

)

= inf
A∈A

−σ
(
y∗| cl (A+ C)

)
= inf

A∈A
ϕA(y∗).

(viii) We have supA � A and hence ϕsupA ≥ ϕA for all A ∈ A. Taking the
supremum we obtain the desired statement. ��

Statement (viii) in the last theorem does not hold with equality as the
following example shows.

Example 1.66. Let Y = R2 and C = R2
+. If we set A := Inf

{
(0, 1)T

}
and

B := Inf
{
(1, 0)T

}
, then sup {A,B} = Inf

{
(1, 1)T

}
. For y∗ = (−1,−1)T , we

get ϕA(y∗) = ϕB(y∗) = 1 but ϕsup{A,B}(y∗) = 2.

It is well-known that a convex extended real-valued function ξ : X → R is
said to be proper if

∀x ∈ X : ξ(x) �= −∞ ∧ ∃x̄ ∈ X : ξ(x̄) �= +∞.

Similarly, a concave extended real-valued function η : X → R is called proper
if the convex function −η is proper, that is

∀x ∈ X : η(x) �= +∞ ∧ ∃x̄ ∈ X : η(x̄) �= −∞.

The domain of a convex extended real-valued function ξ : X → R is the set

dom ξ := {x ∈ X | ξ(x) �= +∞} ,

whereas the domain of the concave extended real-valued function η : X → R

is the set dom (−η), i.e.,

dom η := {x ∈ X | η(x) �= −∞} .

We introduce similar notions for I-valued functions.

Definition 1.67. A convex function f : X → I is said to be proper if

∀x ∈ X : f(x) �= {−∞} ∧ ∃x̄ ∈ X : f(x̄) �= {+∞} .

The domain of the convex function f : X → I is the set

dom f := {x ∈ X | f(x) �= {+∞}} .

Taking into account that ϕA : C◦ \ {0} → R is a concave function, we get
the following statement.

Corollary 1.68. Let A ∈ Ico . Then

A ∈ Ico \ {{−∞} , {+∞}} ⇐⇒ ϕA is proper.
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Proof. This follows from Theorem 1.65 (i), (ii). ��

Corollary 1.69. Let f : X → I be a function. The following statements are
equivalent:

(i) f : X → I is convex;
(ii) For all y∗ ∈ C◦ \ {0}, ϕf(·)(y∗) : X → R is convex.

Moreover, for all y∗ ∈ C◦ \ {0}, we have dom f = domϕf(·)(y∗).

Proof. The equivalence of (i) and (ii) follows from Theorem 1.65 (v), (vi).
The second statement follows from Theorem 1.65 (i), (ii). ��

Note that in the preceding result, both spaces I and R are equipped with
the inf-addition.

1.8 A topology on the space of self-infimal sets

In this section we introduce a topology for the space I which will be used
to define continuous I-valued functions. If the reader is not interested in the
topology the continuity notion is based on, the characterization of continuous
I-valued functions in Theorem 1.75 can be used as a definition.

First, we recall some facts on uniform spaces. Further information on the
notions used in this section can be found, for instance, in (Kelley, 1955).

Definition 1.70. Let Z be a nonempty set and let N be a system of subsets
N of Z × Z := {(z, y) : z, y ∈ Z}. For N ⊆ Z × Z we set

N−1 := {(y, z) : (z, y) ∈ N}

and
N ◦N := {(z, y) ∈ Z × Z : ∃w ∈ Z : (z, w), (w, y) ∈ N} .

The set ∆ := {(z, z) ∈ Z × Z} is called the diagonal. The set Z is said to be
a uniform space if there exists a filter N on Z × Z satisfying

(N1) ∀N ∈ N : ∆ ⊆ N ,
(N2) N ∈ N =⇒ N−1 ∈ N ,
(N3) ∀N ∈ N , ∃M ∈ N : M ◦M ⊆ N .

The system N is called a uniformity on Z. By the sets U(z) := {UN(z) :
N ∈ N} where UN(z) := {y ∈ Z : (z, y) ∈ N}, a topology is given, called the
uniform topology on Z.

Of course, a uniform space is already well-defined by a base of its unifor-
mity N , i.e., a filter base B of the uniformity N .

Proposition 1.71. The topology of a uniform space is separated (or Haus-
dorff) if and only if



38 1 A complete lattice for vector optimization

(N4)
⋂

N∈N
N = ∆.

Proof. See e.g. (Köthe, 1966, p. 32). ��

We recall a well-established result, the characterization of uniform spaces
using families of pseudo-metrics, see e.g. Kelley (1955).

Definition 1.72. Let Z be a nonempty set. A function p : Z × Z → [0,∞)
is called pseudo-metric on Z if and only if for all z, y, w ∈ Z the following
conditions are satisfied:

(P1) p(z, z) = 0,
(P2) p(z, y) = p(y, z),
(P3) p(z, y) ≤ p(z, w) + p(w, y).

Moreover, let (Λ,≺) be a directed set. A system {pλ}λ∈Λ of pseudo-metrics
pλ : Z × Z → [0,∞) satisfying

(P4) λ ≺ µ =⇒ (∀z, y ∈ Z : pλ(z, y) ≤ pµ(z, y))

is called a family of pseudo-metrics. If additionally the condition

(P5) (∀λ ∈ Λ : pλ (z, y) = 0) =⇒ z = y

holds, the family of pseudo-metrics is said to be separating.

Proposition 1.73. A topological space (Z, τ) is a (separated) uniform space
if and only if its topology τ can be generated by a (separating) family of
pseudo-metrics.

Proof. See (Kelley, 1955, p. 187f.) and take into account that by (P4) we deal
with bases instead of subbases. ��

We now consider the case Z = I = IC

(
Y
)
, where

(
Y ,≤C

)
is an extended

partially ordered locally convex space with an ordering cone C such that
∅ �= intC �= Y . Furthermore, let Y ∗ be the topological dual space of Y .
Using the scalarization functional ϕA : C◦ \ {0} → R as defined in Section
1.7, we introduce a pseudo-metric py∗ : I ×I → R depending on a parameter
y∗ ∈ C◦ \ {0} by

py∗(A,B) :=
∣∣∣∣ ϕA(y∗)
1 + |ϕA(y∗)| −

ϕB(y∗)
1 + |ϕB(y∗)|

∣∣∣∣ ,
where we set

+∞
1 + | + ∞| := 1 and

−∞
1 + | −∞| := −1.

Note that the extended real numbers R are typically topologized by the metric
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m : R × R → R : m(r, s) :=
∣∣∣∣ r

1 + |r| −
s

1 + |s|

∣∣∣∣ ,
where m generates on R the usual topology (see e.g. Bourbaki, 1989, p. 342).

For a given vector c ∈ intC we consider the index set

Λ :=
{
W ⊆ Y ∗|W is a finite subset of {y∗ ∈ C◦| y∗(c) = −1}

}
.

Of course, (Λ,⊆) is a directed set. For each λ ∈ Λ we obtain by

pλ : I × I → R, pλ(A,B) := max{py∗(A,B)| y∗ ∈ λ}

again a pseudo-metric. It can be easily verified that the family of pseudo-
metrics {pλ}λ∈Λ satisfies the axioms (P1) to (P4). Therefore, the family of
pseudo-metrics {pλ}λ∈Λ generates a uniformity N on I, where the sets

N(λ, t) := {(A,B) ∈ I × I| pλ(A,B) < t}

for λ ∈ Λ and t > 0 form a base for N . Denoting the uniform topology of
(I,N ) by τ , (I, τ) is a topological space. In the following, τ is simply called
the uniform topology on the space I of self-infimal subsets of Y .

Proposition 1.74. Let I be equipped with the uniform topology τ and let
τ ′ ⊆ τ be the relative topology on the subspace Ico ⊆ I. The topological space
(Ico , τ

′) is Hausdorff.

Proof. Let A,B ∈ Ico and let pλ(A,B) = 0 for all λ ∈ Λ. We obtain ϕA(y∗) =
ϕB(y∗) for all y∗ ∈ C◦ \ {0}. By Theorem 1.65 (iv), we get A = B, i.e., (P5)
is satisfied. ��

By the proof of the latter result it becomes clear that the topological
space (I, τ) is not Hausdorff, at least for a nontrivial choice of the space Y .
To see this take A,B ∈ I, A �= B such that coA = coB, which implies that
ϕA ≡ ϕB .

The next theorem shows that continuity of an I-valued function with
respect to the uniform topology on I can be characterized by continuity of
the scalarizations.

Theorem 1.75. Let (X,σ) be a topological space and let I be equipped with
the uniform topology τ . Furthermore, let R be equipped with the topology gen-
erated by the metric m. A function f : X → I is continuous at x̄ ∈ X if and
only if ϕf(·)(y∗) : X → R is continuous at x̄ for all y∗ ∈ C◦ \ {0}.

Proof. Let V be a subbase of a neighborhood system of f(x̄) and let U be a
neighborhood system of x̄. The function f : X → I is continuous at x̄ if and
only if

∀V ∈ V , ∃U ∈ U , ∀u ∈ U : f(u) ∈ V.

As py∗(A,B) = m (ϕA(y∗), ϕB(y∗)), this is equivalent to
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∀y∗ ∈ C◦ \ {0}, ∀ε > 0, ∃U ∈ U , ∀u ∈ U : m
(
ϕf(u)(y∗), ϕf(x̄)(y∗)

)
< ε.

Of course, this is equivalent to ϕf(·)(y∗) : X → R being continuous at x̄ for
all y∗ ∈ C◦ \ {0}. ��

The following situation is of interest in vector optimization. We consider
a function f : X → Y , where X is a topological space and Y is a partially
ordered locally convex space with ordering cone C such that ∅ �= intC �= Y .
Furthermore, let Y ∗ be the topological dual space of Y and let w be the weak
topology on Y generated by Y ∗.

We are interested in a relationship between continuity of f and continuity
of the extension

f̄ : X → I, f̄(x) := Inf {f(x)} .

To this end, let us recall the concept of a cone being normal with respect
to a topology. For more details the reader is referred to (Göpfert et al., 2003).

Definition 1.76. Let (Y, τ) be a topological vector space and let C ⊆ Y
be a convex cone. Then, C is called τ-normal if the origin 0 ∈ Y has a
neighborhood base formed by full sets with respect to C, i.e., sets A of the
form

A = (A+ C) ∩ (A− C).

Theorem 1.77. If f : X → Y is continuous at x̄ ∈ X with respect to the
weak topology w on Y , then f̄ : X → I is continuous. If the ordering cone C
is w-normal, then the opposite implication also holds true.

Proof. The function f : X → Y is continuous at x̄ ∈ X with respect to the
weak topology on Y if and only if

∀y∗ ∈ Y ∗ : y∗(f(·)) is continuous at x̄. (1.13)

The function f̄ : X → I is continuous at x̄ ∈ X if and only if

∀y∗ ∈ C◦ : ϕf(·)(y∗) is continuous at x̄.

Because of the special form of f̄ , this is equivalent to

∀y∗ ∈ −C◦ : y∗(f(·)) is continuous at x̄. (1.14)

Of course (1.13) implies (1.14). The ordering cone C is w-normal if and only
if C◦ − C◦ = Y ∗ (compare e.g. Isac, 1987; Göpfert et al., 2003). In this case
(1.14) implies (1.13). ��

Of course, f̄ : X → I is continuous at x̄ whenever f : X → Y is continuous
at x̄ with respect to the given topology τ of the locally convex space Y . This
is due to the fact that continuity of f : X → Y with respect to τ implies
continuity f : X → Y with respect to the weak topology w.
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1.9 Notes on the literature

This chapter is on the one hand a collection of well-known facts and standard
notions. On the other hand it contains several recent and even new concepts
and results. It provides the theoretical foundations and the basic tools for
dealing with infimum and supremum in the field of vector optimization.

Section 1.1 contains several well-known facts on ordered sets and complete
lattices, which can be found in the literature, see e.g. Birkhoff (1979).

The notion of a conlinear space, which is introduced in Section 1.2, is due
to Hamel (2005). It is related to other similar concepts in the literature, see
Hamel (2005) for an overview and a comparison. This concept seems to be
fundamental for a set-valued convex analysis as it was developed by Hamel
(2005, 2009a,b) and Schrage (2009). Some related studies on convex functions
with values in a conlinear space can be found in (Löhne, 2006).

A topological vector space, which is the subject in Section 1.3, is a standard
concept (see e.g. Kelley et al., 1963; Köthe, 1966; Schaefer, 1980; Aliprantis
and Border, 1994; Zălinescu, 2002). Theorem 1.28 appeared in (Löhne, 2006)
and Theorem 1.26, which is used to derive properties of the upper closure
and the infimal set, might be new in this form. The end of Section 1.3 is
concerned to well-known facts on locally convex spaces, which can be found,
for instance, in (Aliprantis and Border, 1994).

The concept of infimal sets, introduced in Section 1.4, is due to Nieuwen-
huis (1980). A similar but different notion was introduced by Gros (1978).
An infimal set was considered in (Nieuwenhuis, 1980) to be a generalization
of the infimum, which is no longer an infimum in the context of a complete
lattice. But an infimal set reduces to the ordinary infimum in the special case
Z = R. Nieuwenhuis also observed that infimal sets are useful for the duality
theory in vector optimization. This idea was captured, for instance, by Tanino
(1992); Song (1997, 1998); Chen and Li (2009); Li et al. (2009), see also Boţ
et al. (2009). Tanino (1988) extended the concept of infimal sets. He worked
with an extended space Y ∪ {±∞} and demonstrated several advantages of
this extension. It turned out, however, that Tanino’s calculus rules for the
elements ±∞ are not adequate for our reasons. Therefore, we proposed to
adapt them in (Löhne and Tammer, 2007). The properties of infimal sets in
the Lemma 1.46, Lemma 1.47, Corollary 1.48 and Corollary 1.49 are essen-
tially due to Nieuwenhuis (1980). Here they are derived by short proofs from
Lemma 1.42 (based on Theorem 1.26) and Lemma 1.43. Upper closed sets
can be defined and used in a more general framework, see e.g. Dolecki and
Malivert (1993) and Hamel (2005).

Optimization of functions with values in ordered hyperspaces seems to
have its origin in (Kuroiwa, 1998a,b). This approach was also continued by
Hernández and Rodŕıguez-Maŕın (2007); Hernández et al. (2009). Kuroiwa
extended the ordering of a partially ordered vector space to its power set. It
turned out to be beneficial to work with suitable equivalence classes of the
power set. This is equivalent to the usage of the space (F ,⊇) of upper closed
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sets as introduced in Section 1.5 (see e.g. Löhne, 2005a,b; Hamel, 2009a,b;
Schrage, 2009; Löhne, 2010). These authors used, in contrast to Kuroiwa, the
lattice structure of the space. The space I of self-infimal sets and the cor-
responding main result in Theorem 1.54 in a finite dimensional framework
are due to Löhne and Tammer (2007). Hamel (2009a,b) and Schrage (2009)
considered upper-closed-valued optimization problems under weaker assump-
tions. There is also a considerable amount of literature on set optimization,
which is based on a vectorial ordering relation rather than an ordering re-
lation on the power set, see e.g. Part V of the book by Jahn (2004). An
interesting application of F -valued optimization problems in mathematical
finance can be found in (Hamel and Rudloff, 2008; Hamel and Heyde, 2010).

The definition of the space Fco and the related results in Section 1.6 can be
found in Hamel (2005). The space Ico as well as the corresponding statements
seem to be new.

The scalarization methods in Section 1.7 were used in the framework of
set-valued optimization by Löhne (2005a,b); Löhne and Tammer (2007) and
Schrage (2009). Hamel (2009a,b) used different methods in order to prove
duality results which are based on separation, but he gave alternative proofs
using this scalarization method. Another scalarization method for functions
into hyperspaces can be found in (Hamel and Löhne, 2006)

The concepts and results related to the uniform topology on I, as presented
in Section 1.8, are new insofar as the space I is new. Nevertheless, they are
related to the so-called scalar convergence of closed convex sets, see e.g. Beer
(1993); Sonntag and Zălinescu (1992); Löhne and Zălinescu (2006); Löhne
(2008).



Chapter 2

Solution concepts

For more than five decades, vector optimization has been a subject of inten-
sive research. A common notation for a vector optimization problem is

Min
x∈S

f(x), (VOP)

where f is a vector-valued function and S is a feasible set. The central ques-
tion of this chapter is the following:

What is a solution to (VOP)?

It is rather surprising that there is no standard answer to this fundamental
question in textbooks on vector optimization. Luc (1988) states that (VOP)
“amounts to finding a point x ∈ S, called an optimal solution of” (VOP),
where f(x) is required to be minimal in the set f [S] := {f(x)| x ∈ S} for
such a point x. Similarly, Jahn (2004, p. 105) writes that (VOP) “is to be
interpreted in the following way: Determine a minimal solution x ∈ S which
is defined as the inverse image of a minimal element f(x) of the image set
f(S).” Ehrgott (2000) writes in the same situation that “a solution x ∈ S is
called Pareto optimal”, which means that the term solution seems to refer to
a feasible solution rather than a solution to (VOP). In the recent textbook
by Boţ et al. (2009) it is stated that (VOP) “consists in determining the
minimal [...] elements of the image set of S” and that one is “also interested
in finding the so-called efficient [...] solutions to” (VOP), where an efficient
solution is what Luc called “optimal solution”1. It is also stated by Boţ et al.
(2009) that “in practice a decision maker is only interested to have a subset
or even a single element” of the set of efficient solutions.

Therefore, it is not clear whether a single efficient solution, a subset or
even the set of all efficient solutions is a “solution to (VOP)”. This dilemma
is underlined by the following lines, taken from an online encyclopedia2:

1 It is not relevant in this discussion that there are different types of efficient solutions.
2 Wikipedia, the free online encyclopedia, “Multiobjective optimization”, english ver-
sion, 2010-10-10
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“The solution to [a multiobjective optimization problem3] is a set of Pareto
points. Pareto solutions are those for which improvement in one objective can
only occur with the worsening of at least one other objective. Thus, instead
of a unique solution to the problem (which is typically the case in traditional
mathematical programming), the solution to a multiobjective problem is a
(possibly infinite) set of Pareto points.

Even though this definition gives the precise statement that a solution to
(VOP) is a set of efficient (or Pareto) points there is no further requirement
to this set; a singleton set is therefore also a solution. For typical vector opti-
mization problems, however, a single efficient point can be already obtained
by solving a scalarized optimization problem. Only a fraction of the theory
on vector optimization would be necessary for this reason.

The main idea of vector optimization is that a decision maker chooses
an efficient solution from the set of all efficient solutions. This decision is
supported by the solution to the vector optimization problem. This means,
the problem must be solved prior to the decision.

We prepend this chapter two postulates.

(1) The goal of vector optimization is to provide a decision maker with a
sufficient amount of information on the problem in terms of efficient
elements.

(2) A solution concept for a vector optimization problem should provide a
specification of the term “sufficient” in (1).

The second hypothesis consists of two aspects.

(a) Does the set of all efficient elements provide enough information?
(b) If so, are there proper subsets of the set of efficient elements that already

contain enough information?

The first aspect (a) is a question of existence. The second question (b) is
concerned with uniqueness, i.e., if the set of all efficient elements is the only
choice, we can say the solution is unique.

Scalar optimization is of course a special case of vector optimization, so
that a solution concept should reduce to the standard concept in this special
case. To this end, let us first consider a general scalar optimization problem.
Let X be a nonempty set and let f : X → R be a proper function on X ,
i.e., f(x) �= −∞ for all x ∈ X and f �≡ +∞. We denote by S ⊆ X the set of
feasible elements. Let us

minimize f : X → R with respect to ≤ over S. (2.1)

The following statements are equivalent characterizations of x̄ ∈ X being
a solution to (2.1):

3 The term “multiobjective optimization” is stands for optimization problems with
more than one real-valued objective functions. These functions can be interpreted as
a single vector-valued objective function.
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(i) x̄ ∈ S and f(x̄) ≤ f(x) for all x ∈ S,
(ii) x̄ ∈ S and f(x̄) �> f(x) for all x ∈ S,
(iii) x̄ ∈ S and f(x̄) = infx∈S f(x).

Since in vector optimization the ordering relation is more complex than in
scalar optimization, the latter conditions do not coincide any longer. While
condition (i) is obviously too restrictive for vector optimization problems
(utopia points), the common “solution concepts” in the literature are mainly
based on (ii). There are several possibilities to interpret the relation �> (“not
greater than”), which leads to a variety of different notions, such as efficient,
weakly efficient and properly efficient elements. All these concepts don’t take
into account the infimum and supremum, which is quite important in scalar
optimization. The usage of infimal sets in the literature is related to condition
(iii), but the complete lattice has not been pointed out.

The solution concept for vector optimization problems, which is introduced
in the next two sections, involves all the conditions (i), (ii) and (iii).

2.1 A solution concept for lattice-valued problems

A complete-lattice-valued optimization problem provides the abstract frame-
work for solution concepts based on the attainment of the infimum or supre-
mum.

Let f : X → Z, where X is an arbitrary nonempty set and, unless other-
wise indicated, (Z,≤) is a complete lattice. For a nonempty subset S ⊆ X ,
called feasible set, we consider the optimization problem

minimize f : X → Z with respect to ≤ over S. (L)

A standard concept is the following, where (Z,≤) is only supposed to be a
partially ordered set in the following definition.

Definition 2.1. An element x̄ ∈ S is called an efficient solution to (L) if

[x ∈ S ∧ f(x) ≤ f(x̄)] =⇒ f(x) = f(x̄).

The set of all efficient solutions to (L) is denoted by Eff (L).

For A ⊆ Z we denote by

MinA := {z ∈ A| (y ∈ A ∧ y ≤ z) ⇒ y = z}

the set of minimal elements of A. Using the notation

f [V ] := {f(x)| x ∈ V },

we obtain
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Min f [S] = f [Eff (L)].

It is demonstrated by the following two examples that the set Eff (L) without
any further requirement is unsatisfactory as a solution concept for vector
optimization problems.

Example 2.2. Let X = Z = R2 and let Z be partially ordered by the natural
ordering cone R2

+. Let f be the identity map and

S =
{
x ∈ R2| x1 > 0, x2 > 0, x1 + 10x2 > 10

}
∪
{
(13, 0)T

}
.

We have Eff (L) =
{
(13, 0)T

}
. But the nonempty set Eff (L) does not yield a

sufficient amount of information about the problem. From a practical point
of view, for instance, the feasible, non-efficient point (1, 1)T could be more
interesting than the set of efficient solutions, see Figure 2.1.

1

105

Eff (L)

(1, 1)T

f [S]

Fig. 2.1 Illustration of Example 2.2. The set of efficient points is not a useful solution
concept.

On the other hand, there are vector optimization problems where it is
already sufficient for the decision maker to know a proper subset of Eff (L).

Example 2.3. Let X = Z = R2, Z partially ordered by R2
+, and

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
.

The objective f : X → Z is given as f(x) = (0, x2)T . Then

Eff (L) =
{
x ∈ R2| x1 ≥ 2, x2 = 0

}
.

In typical applications the decision maker selects a point in the image
f [Eff (L)] of Eff (L) with respect to f . We have f [Eff (L)] =

{
(0, 0)T

}
. But,

the same image is already obtained by any nonempty subset of Eff (L), see
Figure 2.2.

Example 2.3 indicates that the condition f [X̄] = Min f [S] could be one
suitable requirement for a set X̄ ⊆ S to be a solution. But additionally, the
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Eff (L)

f [S]

Min f [S] = f [Eff (L)]

S

Fig. 2.2 Illustration of Example 2.3. Every nonempty subset of Eff (L) generates the
same image.

situation in Example 2.2 must be avoided. This would be possible by as-
suming the well-known domination property, which is recalled and discussed
below. We choose, however, a weaker condition, which is connected with the
attainment of the infimum. To ensure the existence of the infimum, we need
to assume (Z,≤) to be a complete lattice.

The infimum of f over a set S ⊆ X is defined by

inf
x∈S

f(x) := inf {f(x)| x ∈ S} = inf f [S].

Definition 2.4. Let S ⊆ X and x̄ ∈ X . We say the infimum of f over S is
attained at x̄ if

x̄ ∈ S ∧ f(x̄) = inf
x∈S

f(x).

In case such an element x̄ exists (does not exist), we say the infimum of f
over S is (not) attained.

The attainment of the infimum is an important concept in optimization.
In vector optimization it is, however, very hard to fulfill as the following
example shows.

Example 2.5. Let X = R2, Z = R2∪{±∞}, R2 partially ordered by the cone
R2

+. The ordering is denoted by ≤ and extended to Z by setting −∞ ≤ z ≤
+∞ for all z ∈ Z. Then, (Z,≤) is a complete lattice. Let

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
and let f be the identity map. Then the infimum of f over S is not attained.
Indeed, we have infx∈S f(x) = {0, 0}T , but there is no x̄ ∈ S with f(x̄) =
{0, 0}T , see Figure 2.3.

A further aspect can be observed in the previous example. We enforce that
the infimum is attained in a single vector. In vector optimization we intend
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f [S]

inf
x∈S

f(x)

S

Fig. 2.3 Illustration of Example 2.5. The infimum is not attained.

to present the decision maker all or at least a representative choice of efficient
vectors. Therefore, we expect a solution to be a set of feasible vectors.

This requirement is taken into account by a concept that we call canonical
extension.

Definition 2.6. The canonical extension of the objective function f : X → Z
in the complete-lattice-valued optimization problem (L) is the function

F : 2X → Z, F (A) := inf
x∈A

f(x).

Of course, we have f(x) = F ({x}) for all x ∈ X . Working with the canon-
ical extension F instead of f , we make the following two observations: First,
we see that attainment of the infimum is easier to realize. The second differ-
ence is that the infimum is attained in a set rather than in a single element
of X .

We now give a characterization of the attainment of the infimum of the
canonical extension F in terms of the given function f .

Proposition 2.7. Let S ⊆ X. The following statements are equivalent.

(i) The infimum of F over 2S is attained at X̄, i.e.,

X̄ ∈ 2S ∧ F (X̄) = inf
A∈2S

F (A).

(ii) X̄ ⊆ S ∧ inf
x∈X̄

f(x) = inf
x∈S

f(x).

Proof. It remains to prove the equality

inf
A∈2S

F (A) = inf
x∈S

f(x). (2.2)

For all x ∈ S we have

inf
A∈2S

F (A) ≤ F ({x}) = f(x).
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The infimum over x ∈ S yields ≤ in (2.2). For all A ⊆ S we have

F (A) = inf
x∈A

f(x) ≥ inf
x∈S

f(x).

Taking the infimum over all A ∈ 2S we get ≥ in (2.2). ��

Next we define a solution concept for the complete-lattice-valued problem
(L).

Definition 2.8. A nonempty set X̄ with f [X̄] = Min f [S] is called a solution
to (L) if the infimum of the canonical extension F over 2S is attained in X̄.

In terms of f a solution can be characterized as follows.

Corollary 2.9. A nonempty set X̄ is a solution to (L) if and only if the
following conditions hold:

(i) X̄ ⊆ S,
(ii) f [X̄] = Min f [S],
(iii) inf

x∈X̄
f(x) = inf

x∈S
f(x).

Proof. Follows from Proposition 2.7. ��

It can easily be seen that, if a solution to (L) exists, then Eff (L) is a
solution to (L). Of course, if Eff (L) is a solution to (L), every subset X̄ of
Eff (L) with f [X̄] = Min f [S] is a solution to (L), too.

Definition 2.10. If X̄ = Eff (L) is the only solution to (L), we say X̄ is a
unique solution.

Example 2.11. Let X = R2, Y = R2 partially ordered by the cone R2
+ and

Z = Y . Then, (Z,≤) is a complete lattice. Let

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
and let f be the identity map. Then, X̄ := Eff (L) = Min f [S] is the unique
solution to (L). For the same problem with the choice f(x) := (0, x2)T , we get
Eff (L) =

{
x ∈ R2| x1 ≥ 2, x2 = 0

}
. But, every nonempty subset of Eff (L)

is also a solution. Thus the solution is not unique in this case. Both cases
are illustrated in Figure 2.4. Note that this example is not based on a useful
solution concept for vector optimization, because the current complete lattice
is not suitable.

Let us consider Problem (L) for the special case (Z,≤) = (R,≤).

Proposition 2.12. Let (Z,≤) = (R,≤). For a nonempty set X̄, the following
is equivalent:



50 2 Solution concepts

two different solutions

the unique solution

inf
x∈S

f(x)

S

S
f [S]

f [S]

inf
x∈S

f(x)

Fig. 2.4 Illustration of Example 2.11. Unique and non-unique solutions.

(i) f [X̄] = Min f [S],
(ii) ∀x̄ ∈ X̄ : {f(x̄)} = Min f [S].

Proof. (i) ⇒ (ii). This follows from the fact that Min f [S] is a singleton set,
which is a consequence of ≤ being a total ordering in R (i.e. arbitrary elements
y1, y2 satisfy either y1 ≤ y2 or y2 ≤ y1).

(ii) ⇒ (i). By (ii), f is constant on X̄. Hence we have {f(x̄)} = f [X̄] for
all x̄ ∈ X̄ . ��

We next show the connection between a solution to the complete-lattice-
valued problem (L) for the case (Z,≤) = (R,≤) and solutions to the classical
extended real-valued optimization problem (2.1).

Theorem 2.13. Consider Problem (L) for the special case (Z,≤) = (R,≤)
and the corresponding real-valued optimization problem (2.1). For a nonempty
set X̄, the following is equivalent:

(i) X̄ is a solution to (L),
(ii) x̄ is a solution to (2.1) for every x̄ ∈ X̄.

An element x̄ is a unique solution to (2.1) if and only if {x̄} is a unique
solution to (L).

Proof. (i) is equivalent to

X̄ ⊆ S ∧ inf
x∈X̄

f(x) = inf
x∈S

f(x) ∧ f [X̄] = Min f [S].
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By Proposition 2.12, this is equivalent to

∀x̄ ∈ X̄ : x̄ ∈ S ∧ f(x̄) = inf
x∈S

f(x) ∧ {f(x̄)} = Min f [S],

which is an alternative way to express (ii). ��

In Example 2.2 (where a complete lattice Z is obtained by extending R2

by two elements ±∞), Eff (L) is not a solution to (L); whence a solution
does not exist. A natural condition ensuring that Eff (L) is a solution is the
well-known domination property (see e.g. Dolecki and Malivert, 1993).

Definition 2.14. Let (Z,≤) be a partially ordered set. We say that the dom-
ination property holds for Problem (L) if

∀x ∈ S, ∃x̄ ∈ Eff (L) : f(x̄) ≤ f(x). (2.3)

Proposition 2.15. The set Eff (L) is a solution to (L) if the domination
property holds.

Proof. Set X̄ := Eff (L). Of course, we have X̄ ∈ 2S . According to Proposi-
tion 2.7, the attainment of the infimum of the canonical extension F over 2S

in X̄ is equivalent to
inf

x∈X̄
f(x) = inf

x∈S
f(x). (2.4)

From (2.3) we get infx∈X̄ f(x) ≤ infx∈S f(x) and the opposite inequality in
(2.4) follows from X̄ ⊆ S. ��

The domination property is not necessary for the existence of a solution.
An example is given below (Example 2.23).

2.2 A solution concept for vector optimization

A vector optimization problem is now transformed such that it becomes a
special case of the complete-lattice-valued problem (L). One can infer from
the examples in the previous section that the choice of a suitable complete
lattice (Z,≤) is rather essential. Originally, the image space of a vector opti-
mization problem is a partially ordered vector space (Y,≤). In some cases, Y
can be extended to a complete lattice by setting Z := Y ∪ {±∞}, where the
ordering is extended in the usual way by setting −∞ ≤ z ≤ +∞ for all z. We
already mentioned the two drawbacks of this procedure. On the one hand, in
many (even finite dimensional) cases we do not obtain a complete lattice in
this way, see Example 1.9. On the other hand, even if a complete lattice is
acquired in this way, our solution concept is unsatisfactory with this choice
of Z. This is demonstrated by the following example.
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Example 2.16. Let X = R2, (Z,≤) the complete lattice from Example 2.5, f
the identity map and

S =
{
x ∈ R2| x1 > 0, x2 > 0, x1 + x2 > 1

}
∪ {x ∈ R2| x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 2}.

Then X̄ :=
{
(0, 2)T , (2, 0)T

}
is a solution. This is unsatisfactory from the

viewpoint of vector optimization, because this set does not contain enough
information, see Figure 2.5.

the solution

f [S]

inf
x∈S

f(x)

S

Fig. 2.5 Illustration of Example 2.16. The extended vector space R
2 ∪ {±∞} is a

complete lattice, but not suitable for vector optimization.

The loophole is the usage of the complete lattice I of self-infimal subsets
of Y instead of the space Y as the image space. The space I was introduced
in Section 1.5. Recall further that we denote by Inf A the infimal set of a
set A ⊆ Y , see Section 1.4. We can identify a vector y in Y by the element
Inf {y} of I. In this way the ordering relation in I is an extension of the
ordering relation in Y . Note that the partial ordering on Y is generated by
a pointed, convex cone C with ∅ �= intC �= Y , which is involved in the
definition of infimal sets. The new image space I is a complete lattice even
if Y is not a complete lattice. Moreover, an infimum is now an element of
I, which contains more information than a single vector. In particular, an
infimum contains the information which is required by a solution concept
based on the above postulates.

Let X be a nonempty set and S ⊆ X . Let Y be an extended partially
ordered topological vector space, let the ordering cone C of Y be closed and
let ∅ �= intC �= Y . Note that C is automatically pointed and convex, compare
the remark after Definition 1.27. We consider the vector optimization problem

minimize f : X → Y with respect to ≤C over S. (V)

We assign to (V) a corresponding I-valued-problem, i.e., a problem of type
(L), where the complete lattice (Z,≤) = (I,�) is used. Note that (I,�)
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is defined with respect to the ordering cone C of the vector optimization
problem.

Given a function f : X → Y , we set

f̄ : X → I, f̄(x) := Inf{f(x)}

and we assign to (V) the problem

minimize f̄ : X → I with respect to � over S. (V)

Problem (V) is said to be the lattice extension, or more precisely the I-
extension, of the vector optimization problem (V). This terminology can be
motivated by the fact that the lattice extension of the vector optimization
problem allows us to handle the problem in the framework of complete lat-
tices. The ordering relation of the original objective space Y is extended to
the complete lattice I as shown in the following proposition. Note that this
extension is the reason for the assumption of C being closed.

Proposition 2.17. For all x, v ∈ X we have

f(x) ≤C f(v) ⇐⇒ f̄(x) � f̄(v).

Proof. Let Inf {y} � Inf {z}, then Cl + {y} ⊇ Cl + {z}. By Proposition 1.40,
we get z ∈ cl ({z}+C) ⊆ cl ({y}+C). Since C is closed, we obtain z ∈ {y}+C.
This means y ≤C z. The opposite inclusion is obvious. ��

We next see that both problems (V) and (V) are related as they have the
same efficient solutions.

Proposition 2.18. A feasible element x̄ ∈ S is an efficient solution to the
vector optimization problem (V) if and only if it is an efficient solution to its
lattice extension (V).

Proof. This is a direct consequence of Proposition 2.17. ��

Proposition 2.19. The domination property holds for the vector optimiza-
tion problem (V) if and only it holds for its lattice extension (V).

Proof. Follows from Proposition 2.17. ��

We now define a solution concept for the vector optimization problem (V).

Definition 2.20. A nonempty set X̄ ⊆ X is called a solution to the vector
optimization problem (V) if X̄ is a solution to its lattice extension (V).

The next theorem provides a characterization of a solution to the vector
optimization problem (V) by standard notations.

Theorem 2.21. A nonempty set X̄ ⊆ X is a solution to the vector optimiza-
tion problem (V) if and only if the following three conditions are satisfied:
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(i) X̄ ⊆ S,
(ii) f [X̄] = Min f [S],
(iii) Inf f [X̄] = Inf f [S].

Proof. This is a direct consequence of Proposition 2.7 and Theorem 1.54. ��

Example 2.22. Consider the vector optimization problem (V) with a linear
objective function f and a polyhedral convex feasible set S. Then, the set
Eff (L) is a solution whenever it is nonempty. As shown in (Hamel et al., 2004,
Lemma 2.1) (note that the cone has to be pointed there) the domination
property is fulfilled in this case. Thus Proposition 2.15 yields that Eff (L) is
a solution.

Example 2.23. Consider the vector optimization problem (V) with f : R2 →
R2 being the identity map, let C = R2

+ and

S = {x ∈ R2| x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1} \ {(0, 1)T}.

Then X̄ := Eff (L) = {λ (0, 1)T + (1 − λ) (1, 0)T | 0 ≤ λ < 1} is a solution,
but the domination property is not satisfied.

As we will see in Chapter 3 the solution concept of Definition 2.8 is also
relevant for problems which are not a lattice extension of a given vector
optimization problem. There we consider a set-valued dual problem of a given
vector optimization problem. In special cases, the values of the dual objective
map are self-infimal hyperplanes.

Another lattice extension will be of interest in this work. The I-valued
extension f̄ : X → I of a vectorial objective (as introduced above) is actually
Ico -valued, see Section 1.6. Therefore, we also consider the lattice extension

minimize f̄ : X → Ico with respect to � over S. (Vco )

If f̄ is regarded to be Ico -valued, we have a different infimum and thus a
different solution concept. Problem (Vco ) is said to be the convex lattice
extension, or more precisely, the Ico -extension of the vector optimization
problem (V).

Definition 2.24. A nonempty set X̄ ⊆ X is called a convexity solution or
Ico -solution to the vector optimization problem (V) if X̄ is a solution to the
corresponding convex lattice extension (Vco ).

Convexity solutions can be characterized as follows.

Theorem 2.25. A nonempty set X̄ ⊆ X is a convexity solution to the vector
optimization problem (V) if and only if the following three conditions are
satisfied:

(i) X̄ ⊆ S,
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(ii) f [X̄] = Min f [S],
(iii) Inf co f [X̄] = Inf co f [S].

Proof. This is a direct consequence of Proposition 2.7 and Theorem 1.63. ��

Proposition 2.26. Every solution to (V) is also a convexity solution to (V).

Proof. This follows from the fact that, by Proposition 1.60, Inf f [X̄] =
Inf f [S] implies Inf co f [X̄] = Inf co f [S]. ��

Example 2.27. Let X = R2, Y = R2 partially ordered by the cone R2
+ and

Z = Y . Then, (Z,≤) is a complete lattice. Let

S =
{
x ∈ R2| x1 > 0, x2 > 0, 2x1 + x2 > 2, x1 + 2x2 > 2

}
∪
{

(0, 2)T , (2, 0)T ,

(
2
3
,
2
3

)T
}

and let f be the identity map. Then, X̄ =
{
(0, 2)T , (2, 0)T ,

(
2
3 ,

2
3

)T} is a
convexity solution but not a solution to (V), see Figure 2.6.

inf
x∈X̄

f(x)X̄

f [S]S

Fig. 2.6 Illustration of Example 2.27. The set X̄ is a convexity solution but not a
solution. The infimum on the right refers to the complete lattice Ico . It coincides
with infx∈S f(x).

This example looks somewhat artificial. Convexity solutions will play a role
in Section 2.5, where we introduce mild solutions by relaxing the condition
f [X̄] = Min f [S]. Mild convexity solutions will naturally occur in linear vector
optimization problems.

2.3 Semicontinuity concepts

Lower semicontinuity of the objective function is typically required as an
assumption for the existence of minimal solutions. This section provides a
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summary of different notions of lower semicontinuity for functions with values
in Z, where Z is a partially ordered set and sometimes even a complete lattice.
We are mainly interested in the general case without any a priori topology on
Z. However, we also consider the special case where Z = Y := Y ∪ {±∞} is
the extension of a partially ordered topological vector space Y . In particular,
we examine Y - and F -valued functions. Note that (F ,⊇) is isomorphic and
isotone to (I,�), see Proposition 1.52.

If f : X → Z = Y is a function from a topological space X into the
extended real numbers R, i.e., Y = R and Z = R, then the following five
properties are equivalent characterizations of lower semicontinuity of f .

(a) For all z ∈ Z the level sets Lf (z) := {x ∈ X | f(x) ≤ z} are closed.
(b) For all y ∈ Y the level sets Lf(y) are closed.
(c) For all x̄ ∈ X ,

f(x̄) ≤ sup
U∈U(x̄)

inf
x∈U

f(x) =: lim inf
x→x̄

f(x)

holds true, where U(x̄) is a neighborhood base of x̄ (that is, for every
neighborhood U of x̄, there exists some Ū ∈ U(x̄) such that Ū ⊆ U).

(d) For every x̄ ∈ X , every ȳ ∈ Y with ȳ ≤ f(x̄) and every neighborhood
V of ȳ there is some neighborhood U of x̄ such that

∀x ∈ U, ∃y ∈ V : f(x) ≥ y.

(e) The epigraph of f , epi f := {(x, y) ∈ X × Y | f(x) ≤ y}, is closed.

For more general instances of Z these five properties do not coincide any
longer. If Z is merely a complete lattice without any additional structure,
then only the properties (a) and (c) are applicable.

Definition 2.28. Let X be a topological space, and let (Y,≤) and (Z,≤) be
partially ordered sets. A function f : X → Z is called level closed if property
(a) holds. f : X → Y is called weakly level closed if property (b) holds. In
case Z is a complete lattice, a function f : X → Z is called lattice lower
semi-continuous (lattice-l.s.c.) if property (c) holds. In case Y is a partially
ordered topological space f : X → Y is called topologically l.s.c. if property
(d) holds and epi-closed if (e) holds.

In the following we investigate the relationships between these properties.
First we clarify the connection between the two notions that do not require
further structural assumptions for the image space Z in addition to the lattice
property.

Proposition 2.29. Let X be a topological space and (Z,≤) a complete lattice.
If a function f : X → Z is lattice-l.s.c., then it is level closed.
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Proof. Assume that f is lattice-l.s.c. but not level closed, i.e., there is some
z̄ ∈ Z such that Lf (z̄) is not closed. Then there is some x̄ ∈ X with x̄ �∈ Lf (z̄)
such that for all U ∈ U(x̄) there exists some x ∈ U with x ∈ Lf (z̄). This
implies

sup
U∈U(x̄)

inf
x∈U

f(x) ≤ z̄.

Since f is lattice-l.s.c., we conclude f(x̄) ≤ z̄. But this means x̄ ∈ Lf(z̄), a
contradiction. ��

The converse is generally not true as the following example shows.

Example 2.30. Let X = R and Z = R2, where R2 is partially ordered by R2
+.

The function f : X → Z defined by

f(x) =

{
(1, 0)T if x ≥ 0
(0,−1/x)T if x < 0

is level closed since

Lf(y) = {x ∈ X | f(x) ≤ y}

=




[0,+∞) if y2 = 0, y1 ≥ 1
(−∞,−1/y2] ∪ [0,+∞) if y2 > 0, y1 ≥ 1
(−∞,−1/y2] if y2 > 0, 0 ≤ y1 < 1
R if y = +∞
∅ otherwise.

But f is not lattice-l.s.c. at x̄ = 0. Indeed, if we take the set of open ε-intervals
as a neighborhood base of x̄ = 0, i.e., U(0) = {(−ε,+ε)| ε > 0}, we obtain
for every U = (−ε,+ε) ∈ U(0),

inf
x∈U

f(x) = inf
{
(0, 1/ε)T , (1, 0)T

}
= (0, 0)T .

We conclude
sup

U∈U(0)

inf
x∈U

f(x) = (0, 0)T �≥ (1, 0)T = f(0)

i.e., the condition of f being lattice-l.s.c. at x̄ = 0 is violated.

The following relations between epi-closedness, weak level closedness and
level closedness follow immediately from the definitions.

Proposition 2.31. Let X be a topological space, (Y,≤) a partially ordered
topological space and f : X → Y . The following statements hold.

(i) If f is epi-closed, then it is weakly level closed.
(ii) If f is level closed, then it is weakly level closed.
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The converse implications are only true under additional assumptions.

Proposition 2.32. Let X be a topological space.

(i) Assume that (Y,≤C) is a topological vector space ordered by a pointed
closed convex cone C with nonempty interior. If a function f : X → Y
is weakly level closed, then it is epi-closed.

(ii) Assume that (Y,≤) is a partially ordered set having no least element.
If a function f : X → Y is weakly level closed, then it is level closed.

Proof. (i) Assume that f is weakly level closed, i.e., for every x̄ ∈ X and
y ∈ Y we have

[∀U ∈ U(x̄), ∃x ∈ U : f(x) ≤C y] =⇒ f(x̄) ≤C y. (2.5)

In order to prove that f is epi-closed we assume that (x̄, ȳ) ∈ cl (epi f), i.e.,

∀U ∈ U(x̄), ∀V ∈ V , ∃x ∈ U, ∃y ∈ V : f(x) ≤C ȳ + y, (2.6)

where V denotes a neighborhood base of 0 in Y . We have to show that
f(x̄) ≤C ȳ. Since for every c ∈ intC there is some V ∈ V with V ⊆ c−C we
obtain from (2.6),

∀c ∈ intC, ∀U ∈ U(x̄), ∃x ∈ U : f(x) ≤C ȳ + c.

Now, (2.5) implies that f(x̄) ≤C ȳ + c holds for all c ∈ intC. Therefore, we
have f(x̄) ≤C ȳ as C is closed.

(ii) It remains to show that Lf(+∞) and Lf (−∞) are closed. Lf (+∞) =
X is closed by definition. Since Y has no least element, for z ∈ Y we have
z = −∞ if and only if z ≤ y for all y ∈ Y . Hence

Lf (−∞) =
⋂

y∈Y

Lf (y)

is a closed set as well. ��
In general, there is no inclusion between the sets of lattice-l.s.c., topolog-

ically l.s.c. and epi-closed functions (Gerritse, 1997, appendix). Some of the
inclusions are valid under additional assumptions (Penot and Théra, 1982;
Gerritse, 1997; Ait Mansour et al., 2007). In this context we only mention
the following two results.

Proposition 2.33. Let X be a topological space and let (Y,≤) be a partially
ordered topological space that has no greatest element. If the ordering of Y
is closed (i.e., the set G := {(z, y) ∈ Y × Y | z ≤ y} is closed) then every
topologically l.s.c. function f : X → Y is epi-closed.

Proof. In order to prove that epi f is closed we take a pair (x̄, ȳ) ∈ (X ×Y ) \
(epi f) and show that there are neighborhoods U ∈ U(x̄) and W ∈ V(ȳ) such
that (U ×W ) ∩ (epi f) = ∅.
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If (x̄, ȳ) ∈ (X×Y )\ (epi f), then f(x̄) �= −∞ and (f(x̄), ȳ) �∈ G. Let ŷ ∈ Y
be chosen such that ŷ ≤ f(x̄) and (ŷ, ȳ) �∈ G. Such an element ŷ always exists.
Indeed, if f(x̄) ∈ Y , we can use ŷ = f(x̄). On the other hand, assuming that
no such ŷ exists in the case f(x̄) = +∞, we obtain that ȳ is the greatest
element of Y , a contradiction.

Since (ŷ, ȳ) �∈ G and G is closed there exist neighborhoods V of ŷ and W
of ȳ such that (V ×W ) ∩G = ∅. Since f is topologically l.s.c. there exists a
neighborhood U ∈ U(x̄) such that

∀x ∈ U, ∃y ∈ V : y ≤ f(x). (2.7)

This implies (U×W )∩(epi f) = ∅. Otherwise there would exist x̂ ∈ U, ŷ ∈ W
with f(x̂) ≤ ŷ. By (2.7) there would exist y ∈ V with y ≤ f(x̂). Hence we
obtain y ≤ ŷ, which contradicts (V ×W ) ∩G = ∅. ��

Let us summarize the connections between the different notions. If Y is a
partially ordered topological space with a closed ordering that has no greatest
element such that Y is a complete lattice, then for functions f : X → Y the
concept of weak level closedness is the weakest one. It is equivalent to level
closedness if Y has no least element. Moreover, epi-closedness, level closedness
and weak level closedness coincide and the first two concepts are stronger than
the last three.

We next study the relationship between the different concepts for functions
with values in the complete lattice (Z,≤) = (F ,⊇), where F := FC (Y ) is the
space of upper closed subsets of a partially ordered topological vector space
Y with an ordering cone C such that ∅ �= intC �= Y . Moreover, the ordering
cone C is supposed to be closed. By Proposition 1.52, the corresponding
results for the space I follow immediately.

In Propositions 2.34 and 2.35 the assumption ∅ �= intC �= Y could be
relaxed so that C is only required to be proper. In this case we would need
a new definition of the upper closure, because our definition involves the
interior of C. For this purpose the condition in Proposition 1.40 could be
used.

We only consider the notions of (weakly) level closedness and lattice-
semicontinuity in the case of F -valued functions. A topology for F is not con-
sidered, but we investigate the connections to semi-continuity notions based
on the topology of the underlying topological vector space Y . If we identify
a function f : X → F with a corresponding multivalued map f : X ⇒ Y ,
the set

gr f := {(x, y) ∈ X × Y | y ∈ f(x)} ,
is called the graph of f .

Proposition 2.34. A function f : X → F is lattice-l.s.c. if and only if gr f
is closed.

Proof. We have
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sup
U∈U(x̄)

inf
x∈U

f(x) =
⋂

U∈U(x̄)

cl
⋃

x∈U

f(x).

It follows that
ȳ ∈ sup

U∈U(x̄)

inf
x∈U

f(x)

is equivalent to

∀U ∈ U(x̄), ∀V ∈ V(ȳ), ∃x ∈ U, ∃y ∈ V : y ∈ f(x), (2.8)

where V(ȳ) denotes a neighborhood base of ȳ in Y . Consequently f is lattice-
l.s.c. if and only if for all (x̄, ȳ) satisfying (2.8) one has ȳ ∈ f(x̄). But, this is
equivalent to gr f being closed. ��

Proposition 2.35. A function f : X → F is level closed if and only if for
all y ∈ Y the sets {x ∈ X | y ∈ f(x)} are closed.

Proof. If f is level closed then the sets Lf (Cl + {y}) are closed for all y ∈ Y .
We have y ∈ f(x) if and only if Cl + {y} ⊆ Cl +f(x) = f(x). Thus the “only
if”-part follows. The “if”-part follows from

Lf (A) =
⋂
y∈A

{x ∈ X | y ∈ f(x)}

and the fact that the intersection of closed sets is closed. ��

Corollary 2.36. Let f : X → Y be an extended vector-valued function and
f̃ : X → F its F-valued extension, defined by f̃(x) := Cl + {f(x)}. Then f̃ is
level closed if and only if f is weakly level closed.

Proof. By Proposition 2.35, f̃ is level closed if and only if for all y ∈ Y the
sets {x ∈ X | y ∈ f̃(x)} are closed. Similarly to Proposition 2.17, we have
y ∈ f̃(x) if and only if y ≥C f(x), where we use that C is closed. Thus the
statement follows. ��

By Proposition 2.29, every lattice-l.s.c. function is also level closed. For
functions with values in F the converse implication also holds. As seen in
Example 2.30 this is generally not true.

Proposition 2.37. A function f : X → F is lattice-l.s.c. if and only if it is
level closed.

Proof. Assume that f is level closed. We show that gr f is closed. By Propo-
sition 2.34, this implies that f is lattice-l.s.c.. Assume that (x̄, ȳ) ∈ X × Y
is given such that for all U ∈ U(x̄), V ∈ V(ȳ) there exist x ∈ U, y ∈ V with
y ∈ f(x). We have to show that ȳ ∈ f(x̄).

Take z ∈ {ȳ} + intC arbitrarily. Then there exists some neighborhood
Ṽ ∈ V(ȳ) such that y ≤C z, i.e., z ∈ Cl + {y} holds for all y ∈ Ṽ . Thus, for
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all U ∈ U(x̄) there exist some x ∈ U and some y ∈ Ṽ with y ∈ f(x), hence
z ∈ Cl + {y} ⊆ f(x). By Proposition 2.35 we get

x̄ ∈ cl {x ∈ X | z ∈ f(x)} = {x ∈ X | z ∈ f(x)} .

Thus we have ȳ+intC ⊆ f(x̄) and consequently ȳ ∈ cl (ȳ+intC) ⊆ f(x̄). ��

We next formulate a sufficient condition for the domination property of the
general optimization problem (L). As in the classical Weierstrass theorem,
the assumptions are lower semicontinuity of f and compactness of the feasible
set. The appropriate semicontinuity condition for the function f in the general
case is level closedness.

Proposition 2.38. Let X be a compact topological space, (Z,≤) be a par-
tially ordered set and f : X → Z a level closed function. Then the domination
property holds, i.e., for every x ∈ X there exists a minimal element y ∈ f [X ]
with y ≤ f(x).

Proof. We have to show that for every x ∈ X the set {y ∈ f [X ]| y ≤ f(x)} =
f [Lf(f(x))] has minimal elements. Because of Zorn’s lemma it suffices to
show that every chain in f [Lf(f(x))] has a lower bound in f [Lf(f(x))]. Since
every lower bound (in f [X ]) of a subset W of f [Lf(f(x))] is obviously in
f [Lf(f(x))], it is sufficient to prove that every chain in f [X ] has a lower
bound.

Let W be a chain in f [X ]. A subset W of f [X ] has a lower bound in f [X ]
if and only if the set

{x ∈ X | ∀w ∈W : f(x) ≤ w} =
⋂

w∈W

Lf (w)

is nonempty. If B is a finite subset of W then
⋂

b∈B Lf(b) is nonempty since
every finite chain in f [X ] has a least element and hence a lower bound. Since
all the sets Lf(w) are closed, X being compact implies that

⋂
w∈W Lf(w) is

nonempty, too. Hence W has a lower bound. ��

For special cases of the complete lattice Z, the semicontinuity assumption
in the latter result can be replaced by other concepts. For the case (Z,≤) =
(I,�) this is pointed out in the next section. As a consequence we obtain the
existence of solutions based on a variety of different semicontinuity notions.
This matches the situation in scalar optimization.

2.4 A vectorial Weierstrass theorem

The results of the previous section can be applied to the vector optimization
problems (V) and its lattice extension (V) in order to obtain conditions for
the existence of solutions.
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Let X be a topological space and S ⊆ X . Moreover, let Y be an extended
partially ordered topological vector space, let the ordering cone C of Y be
closed and let ∅ �= intC �= Y . We consider the vector optimization problem
(V) as introduced in Section 2.2 as well as its lattice extension (V). The
semicontinuity concept required for the existence result can be characterized
in terms of the objective function f : X → Y of (V) and in terms of the
objective function f̄ : X → I of the lattice extension (V) of (V), where f̄ is
defined by f as

f̄(x) := Inf {f(x)} . (2.9)

Theorem 2.39. For a function f : X → Y and the corresponding function
f̄ : X → I according to (2.9), the following statements are equivalent:

(i) f is epi-closed, i.e., the epigraph of f is closed;
(ii) f is level closed, i.e., f has closed level sets for all levels in Y ;
(iii) f is weakly level closed, i.e., f has closed level sets for all levels in Y ;
(iv) f̄ is level closed, i.e., f̄ has closed level sets for all levels in I;
(v) f̄ is lattice-l.s.c., i.e., for all x̄ ∈ X one has f̄(x̄) � lim infx→x̄ f̄(x).

Proof. The equivalence of (i), (ii) and (iii) follows directly from Proposition
2.31 and Proposition 2.32. The equivalence of (iii), (iv) and (v) follows from
Corollary 2.36, Proposition 2.37, the fact (see Proposition 1.52) that a func-
tion g : X → F is level closed (lattice l.s.c.) if and only if j ◦ g : X → I is
level closed (lattice l.s.c.) and the fact that for the I-valued extension f̄ and
the F -valued extension f̃ of a function f : X → Y , f̄ = j ◦ f̃ holds true. ��
Applying Proposition 2.38 we can formulate the following existence result for
a solution to a vector optimization problem. The result is a vectorial analogue
of the famous Weierstrass theorem.

Theorem 2.40. If one of the equivalent characterizations of lower semiconti-
nuity in the preceding theorem is satisfied for the objective function f : X → Y
of (V) and if S is a compact subset of X, then there exists a solution to (V).

Proof. This is a direct consequence of Proposition 2.15, Proposition 2.38 and
Theorem 2.39. ��

It is remarkable that f̄ : X → I being lattice-l.s.c. is an adequate semicon-
tinuity assumption for a vectorial Weierstrass existence result. The condition
that f : X → Y is lattice-l.s.c. is usually (if it is well-defined at all) too strong
and not satisfiable.

2.5 Mild solutions

For a solution X̄ to the complete-lattice-valued optimization problem (L) as
defined in Section 2.1, the condition f [X̄] = Min f [S] is part of the defini-
tion. This requirement can be by several reasons too strong. Relaxing this
condition, we obtain an alternative solution concept.
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Definition 2.41. A nonempty set X̂ with f [X̂] ⊆ Min f [S] is called a mild
solution to (L) if the infimum of the canonical extension F over 2S is attained
at X̂.

The idea of a mild solution can be explained as follows. A mild solution
X̂ is allowed to be a smaller set than a solution. However, as the attainment
of the infimum is required, the set X̂ cannot become arbitrarily small. This
ensures that X̂ contains a sufficient amount of information. Of course, every
solution to (L) is also a mild solution to (L). But a mild solution can be a
proper subset of a solution.

Theorem 2.42. If a mild solution to (L) exists, then there exists a solution
to (L).

Proof. Let X̂ be a mild solution to (L). Set X̄ := Eff (L), then S ⊇ X̄ ⊇
X̂ �= ∅. Since infx∈S f(x) = infx∈X̂ f(x), we get infx∈S f(x) = infx∈X̄ f(x).
Thus X̄ is a solution to (L). ��

We now consider the vector optimization problem (V) as defined in Section
2.2.

Definition 2.43. A set X̂ is called mild solution to the vector optimization
problem (V) if it is a mild solution to its lattice extension (V).

For the special case of a vector optimization problem, we have the following
characterization of a mild solution.

Theorem 2.44. Assume that a solution to (V) exists. A set X̂ ⊆ S is a mild
solution to (V) if and only if

f [X̂] ⊆ Min f [S] ⊆ Inf f [X̂]. (2.10)

Proof. If {x ∈ X̂| f(x) = −∞} �= ∅, then

{−∞} = Min f [S] = Inf f [S] = Inf f [X̂].

Hence X̂ is a mild solution if and only if f [X̂] = {−∞}.
In case that f(x) = +∞ for all x ∈ S we have

{+∞} = f [X̂] = Min f [S] = Inf f [S] = Inf f [X̂]

for every nonempty subset X̂ ⊆ S. Therefore, every nonempty subset X̂ ⊆ S
is a mild solution.

We can assume that f [S] ⊆ Y because otherwise we have

Min f [S] = Min(f [S] \ {+∞}) and Inf f [S] = Inf(f [S] \ {+∞}).

If X̂ is a mild solution to (V), we have
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∅ �= X̂ ⊆ S ∧ f [X̂] ⊆ Min f [S] ∧ Inf f [X̂] = Inf f [S].

It remains to show Min f [S] ⊆ Inf f [X̂]. Let y ∈ Min f [S], i.e.,

y ∈ f [S] ∧ y �∈ f [S] + C \ {0}.

It follows

{y} + intC ⊆ f [S] + intC ∧ y �∈ f [S] + intC.

We have ∅ �= Cl +f [S] �= Y . By Corollary 1.48 (ii) we get y ∈ Inf f [S] =
Inf f [X̂].

Let X̄ be a solution to (V) and let (2.10) be satisfied. It follows f [X̂] ⊆
f [X̄] ⊆ Inf f [X̂]. From Corollary 1.49 (i), we get Cl +f [X̄] = Cl +f [X̂].
Proposition 1.52 yields Inf f [X̄] = Inf f [X̂]. Hence X̂ is a mild solution to
(V). ��

We next focus on a relationship to properly efficient solutions (e.g. Luc,
1988; Göpfert et al., 2003; Jahn, 2004). The famous theorem by Arrow et al.
(1953) and related results state that, under certain assumptions, the set of
properly minimal vectors is a dense subset of the set of minimal vectors. In
the literature, there are many density results for different types of proper ef-
ficiency (e.g. Borwein, 1980; Jahn, 1988; Ferro, 1999; Fu, 1996; Göpfert et al.,
2003). The following theorem shows that the set of proper efficient solutions
is just an instance of a mild solution, whenever (under certain assumptions)
a corresponding density result holds.

Theorem 2.45. Assume that a solution to (V) exists. Let X̂ ⊆ S be a set
such that f [X̂] ⊆ Y and

f [X̂] ⊆ Min f [S] ⊆ cl f [X̂]. (2.11)

Then X̂ is a mild solution to (V).

Proof. Let X̄ be a solution to (V). Then Min f [S] is nonempty, hence cl f [X̂]
is nonempty and thus X̂ is nonempty, too. We have

f [X̂] ⊆ Min f [S] = f [X̄] ⊆ cl f [X̂].

Using Corollary 1.49 (i) and the fact Cl +cl f [X̂] = Cl +f [X̂], we get
Cl +f [X̄] = Cl +f [X̂]. Proposition 1.52 yields Inf f [X̄] = Inf f [X̂]. Hence
X̂ is a mild solution to (V). ��

In general, (2.11) does not hold for a mild solution X̂ to (V).

Example 2.46. Let X = R2, Y = R2 partially ordered by C = R2
+, f the

identity map and

S =
{
x ∈ R2| x1 > 0, x2 > 0, x1 + x2 ≥ 1

}
∪ {x ∈ R2| x1 = 0, x2 ≥ 2}.
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Then X̂ := {λ (0, 1)T + (1 − λ) (1, 0)T | λ ∈ (0, 1)} is a mild solution. But
(0, 2)T ∈ Min f [S] \ cl f [X̂], hence (2.11) is violated, see Figure 2.7.

f [S]

mild solution X̂ Min f [S]

S

Fig. 2.7 Illustration of Example 2.46. The mild solution X̂ does not satisfy the
density condition (2.11).

If we additionally assume that f [S] +C is closed and Y is a finite dimen-
sional space, say Y = Rq, we obtain that a mild solution satisfies (2.11). For
instance, if S is a polyhedral convex set, C is polyhedral and f linear (see
Chapter 4), then f [S] +C is closed (Rockafellar, 1972, Theorem 19.3). Also,
the assumptions of the Weierstrass existence result, Theorem 2.40, imply that
f [S] + C is closed (this follows from epi f being closed and S compact).

Theorem 2.47. Let Y = Rq. If X̂ is a mild solution to (V), f [S] ⊆ Rq and
f [S] + C is closed, then

f [X̂] ⊆ Min f [S] ⊆ cl f [X̂].

Proof. It remains to show the second inclusion. Let y ∈ Min f [S], i.e.,

y ∈ f [S] ⊆ cl (f [S] + C) = Cl +f [S].

and (take into account that the cone C is pointed and convex and f [S] + C
is closed)

y �∈ f [S] + C \ {0} = (f [S] + C) + C \ {0}
= cl (f [S] + C) + C \ {0} = Cl +f [S] + C \ {0}.

This yields y ∈ Min Cl +f [S]. As X̂ is a mild solution, we have Inf f [X̂] =
Inf f [S]. Proposition 1.52 implies Cl +f [X̂] = Cl +f [S]. Thus we have y ∈
Min Cl +f [X̂].

It remains to show that Min Cl +f [X̂] ⊆ cl f [X̂]. Assuming the contrary,
there exists some y ∈ Cl +f [X̂] = cl (f [X̂ ] + C) such that y �∈ cl f [X̂] and(

y − C \ {0}
)
∩ cl (f [X̂] + C) = ∅. (2.12)
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Let (bn) and (cn) be sequences, respectively, in f [X̂] and C such that bn +
cn → y. There is no subsequence of cn that converges to 0, because otherwise
we get the contradiction y ∈ cl f [X̂]. Hence there exists n0 ∈ N and α > 0
such that ‖cn‖ ≥ α for all n ≥ n0. There is a subsequence (cn)n∈M (M an
infinite subset of {n ∈ N| n ≥ n0}) such that

c̃n :=
αcn
‖cn‖

M−→ c̃ ∈ C \ {0}.

It follows

bn +
(

1 − α

‖cn‖

)
cn = bn + cn − c̃n

M−→ y − c̃.

We obtain y − c̃ ∈ cl (f [X̂] + C) which contradicts (2.12). ��

In Section 2.2 we introduced convexity solutions to (V). To this end the
complete lattice I is replaced by the complete lattice Ico . We proceed in the
same way and introduce mild convexity solutions to (V).

Definition 2.48. A nonempty set X̂ ⊆ X is called a mild convexity solution
or mild Ico -solution to the vector optimization problem (V) if X̂ is a mild
solution to the corresponding convex lattice extension (Vco ).

Parallel to Theorem 2.25, mild convexity solutions can be characterized in
terms of the vectorial objective function f .

Theorem 2.49. A set X̂ ⊆ X is a mild convexity solution to the vector
optimization problem (V) if and only if the following three conditions are
satisfied:

(i) X̂ ⊆ S,
(ii) f [X̂] ⊆ Min f [S],
(iii) Inf co f [X̂] = Inf co f [S].

Proof. This follows in the same way as Theorem 2.25. ��

Corollary 2.50. Every convexity solution to (V) is also a mild convexity
solution to (V).

Proof. This follows from Theorem 2.25 and Theorem 2.49. ��

Corollary 2.51. Every mild solution to (V) is also a mild convexity solution
to (V).

Proof. This follows from the fact that, by Proposition 1.60, Inf f [X̂] =
Inf f [S] implies Inf co f [X̂] = Inf co f [S]. ��

The different solution concepts to (V) are compared in Figure 2.8.
The next example illustrates a mild convexity solution to a linear vector

optimization problem. An essential advantage of mild convexity solutions is
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X̄ is a mild convexity

solution to (V)

X̄ is a mild

X̄ is a

X̄ is a convexity

⇒

⇒

⇒

⇒

solution to (V)

solution to (V)

solution to (V)

Fig. 2.8 Connections between different solution concepts to (V)

that finite sets sometimes are sufficient. In Chapter 4 we consider a modifi-
cation of this concept in order to ensure that a “solution” to a linear vector
optimization problem can always be a finite set. To this end we have to involve
directions of the feasible set.

Example 2.52. Let X = R2, Y = R2 partially ordered by the cone R2
+. Con-

sider Problem (V) with

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
and let f be the identity map. Then

X̂ :=

{
(0, 2)T , (2, 0)T ,

(
2
3
,
2
3

)T
}

is a mild convexity solution to (V), see Figure 2.9.

2.6 Maximization problems and saddle points

Saddle points play a crucial role in duality theory. The goal of this section is
to introduce saddle points in the framework of complete-lattice-valued opti-
mization problems. As a consequence we obtain a corresponding saddle point
notion for vector optimization problems, which differs from those in the lit-
erature. It is necessary to consider minimization and maximization problems
simultaneously and it should be initially clarified how the solution concepts
apply in this case.
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X̂ inf
x∈X̂

f(x)

S f [S]

Fig. 2.9 Illustration of Example 2.52. On the left we see a mild convexity solution
X̂. On the right, the infimum of f over X̂ with respect to the complete lattice Ico is
shown. It coincides with infx∈S f(x).

Let V be a nonempty set, T ⊆ V and let (Z,≤) be a complete lattice. Par-
allel to the minimization problem (L) introduced in Section 2.1, we consider
the complete-lattice-valued maximization problem

maximize g : V → Z with respect to ≤ over T. (Lmax)

The canonical extension of the function g : V → Z in the complete-lattice-
valued maximization problem (Lmax) is the function

G : 2V → Z, G(B) := sup
v∈B

g(v).

The set of maximal elements of a set B ⊆ Z is defined by

MaxB := {z ∈ B| (y ∈ B ∧ y ≥ z) ⇒ y = z}.

A solution to (Lmax) can now be defined in the same way as for Problem (L)
in Definition 2.8.

Definition 2.53. A nonempty set V̄ with g[V̄ ] = Max g[T ] is called a so-
lution to (Lmax) if the supremum of the canonical extension G over 2T is
attained in V̄ .

In terms of g a solution can be characterized as follows.

Corollary 2.54. A nonempty set V̄ is a solution to (Lmax) if and only if the
following conditions hold:

(i) V̄ ⊆ T ,
(ii) g[V̄ ] = Max g[T ],
(iii) sup

v∈V̄

g(v) = sup
v∈T

g(v).

Proof. This follows from an analogous result to Proposition 2.7. ��
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Let X also be a nonempty set. We consider a function l : X × V → Z
depending on two variables, where we minimize with respect to the first
variable and we maximize with respect to the second one. It turns out to be
useful to distinguish between two types of canonical extensions for a function
l depending on two variables. The function

Ll : 2X × 2V → Z, Ll(X̄, V̄ ) := sup
v∈V̄

inf
x∈X̄

l(x, v)

is called the lower canonical extension of l : X × V → Z, and

Lu : 2X × 2V → Z, Lu(X̄, V̄ ) := inf
x∈X̄

sup
v∈V̄

l(x, v)

is called the upper canonical extension of l : X × V → Z. This notion can be
motivated by the fact that for all (X̄, V̄ ) ∈ 2X × 2V one has

Ll(X̄, V̄ ) ≤ Lu(X̄, V̄ ),

which is an easy consequence of Z being a complete lattice.
Denoting by +∞ and −∞, respectively, the largest and the smallest ele-

ment in Z, we set

S :=
{
x ∈ X

∣∣∣∣ sup
v∈V

l(x, v) �= +∞
}

and

T :=
{
v ∈ V

∣∣∣∣ inf
x∈X

l(x, v) �= −∞
}
.

Let p : X → Z and d : V → Z be two functions such that

∀x ∈ S : p(x) = sup
v∈V

l(x, v),

∀v ∈ T : d(u) = inf
x∈X

l(x, v).

We assign to l : X × V → Z the pair of dual optimization problems

minimize p : X → Z with respect to ≤ over S ⊆ X, (2.13)

maximize d : V → Z with respect to ≤ over T ⊆ V. (2.14)

Problem (2.13) corresponds to minimize l : X × V → Z with respect to
the first variable and likewise, Problem (2.14) corresponds to maximize l :
X × V → Z with respect to the second variable. Note that weak duality
relation always holds, that is

inf
x∈S

p(x) = inf
x∈X

sup
v∈V

l(x, v) ≤ sup
v∈V

inf
x∈X

l(x, v) = sup
v∈T

d(v).
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According to our solution concept we propose the following notion of a saddle
point for complete-lattice-valued problems.

Definition 2.55. Let X,V be two nonempty sets, (Z,≤) a complete lattice
and let a function l : X × V → Z be given. An element (X̄, V̄ ) ∈ 2S × 2T ,
where X̄ �= ∅ and V̄ �= ∅, is called a saddle point of l if the following conditions
are satisfied:

(i) p[X̄ ] = Min p[S],
(ii) d[V̄ ] = Max d[T ],
(iii) ∀A ∈ 2X , ∀B ∈ 2V : Lu(X̄, B) ≤ Lu(X̄, V̄ ) = Ll(X̄, V̄ ) ≤ Ll(A, V̄ ).

Condition (iii) in the latter definition is a generalization of the well-known
saddle point condition for an extended real-valued function, i.e., (x̄, v̄) ∈
X × V with l(x̄, v̄) ∈ R is a saddle point of l : X × V → R if

∀a ∈ X, ∀b ∈ V : l(x̄, b) ≤ l(x̄, v̄) ≤ l(a, v̄). (2.15)

Note that in the extended real-valued case, (x̄, v̄) ∈ S×T implies l(x̄, v̄) ∈ R.
Vice versa, (2.15) and l(x̄, v̄) ∈ R implies (x̄, v̄) ∈ S × T . Note further that
condition (2.15) implies

Min p[S] = {p(x̄)} and Max d[T ] = {d(v̄)} .

Consequently, conditions like (i) and (ii) of Definition 2.55 do not occur in
the scalar case.

In our general setting, (X̄, V̄ ) ∈ 2S × 2T implies the following two condi-
tions:

∀a ∈ X̄ : Lu({a} , V̄ ) �= +∞ (2.16)

∀b ∈ V̄ : Ll(X̄, {b}) �= −∞. (2.17)

Vice versa, if (iii) in Definition 2.55 holds, (2.16) ∧ (2.17) implies (X̄, V̄ ) ∈
2S × 2T .

The following equivalent characterization of condition (iii) in Definition
2.55 is useful.

Lemma 2.56. For nonempty sets X̄ ⊆ X and V̄ ⊆ V , statement (iii) in
Definition 2.55 is equivalent to

sup
v∈V̄

d(v) = inf
x∈X̄

p(x). (2.18)

Proof. From (iii) in Definition 2.55, we get

Lu(X̄, V ) ≤ Ll(X, V̄ )

and hence
inf

x∈X̄
sup
v∈V

l(x, v) ≤ sup
v∈V̄

inf
x∈X

l(x, v).
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Moreover, we have

sup
v∈V̄

inf
x∈X

l(x, v) ≤ inf
x∈X

sup
v∈V̄

l(x, v) ≤ inf
x∈X̄

sup
v∈V

l(x, v).

This means that (2.18) is obtained from (iii) in Definition 2.55.
Now, let (2.18) be satisfied. It follows that

∀A ∈ 2X , ∀B ∈ 2V : inf
x∈X̄

sup
v∈B

l(x, v) ≤ sup
v∈V̄

inf
x∈A

l(x, v).

In particular, this implies

∀A ∈ 2X : Lu(X̄, V̄ ) ≤ Ll(A, V̄ ),

∀B ∈ 2V : Lu(X̄, B) ≤ Ll(X̄, V̄ ),

Lu(X̄, V̄ ) ≤ Ll(X̄, V̄ ).

Moreover, we have
Ll(X̄, V̄ ) ≤ Lu(X̄, V̄ ).

The last four statements imply statement (iii) in Definition 2.55. ��

We are now able to relate saddle points to solutions of (2.13) and (2.14).

Theorem 2.57. The following statements are equivalent:

(i) X̄ is a solution to (2.13), V̄ is a solution to (2.14) and

sup
v∈T

d(v) = inf
x∈S

p(x);

(ii) (X̄, V̄ ) is a saddle point of l.

Proof. Condition (i) can be equivalently expressed as

(a) Min p[S] = p[X̄], ∅ �= X̄, X̄ ⊆ S,

(b) inf
x∈X̄

p(x) = inf
x∈S

p(x),

(c) Max d[T ] = d[V̄ ], ∅ �= V̄ , V̄ ⊆ T ,

(d) sup
v∈V̄

d(v) = sup
v∈T

d(v),

(e) sup
v∈T

d(v) = inf
x∈S

p(x).

In view of Lemma 2.56 it remains to show that (b)∧(d)∧(e) is equivalent to
(2.18) in the present situation. Of course, (b)∧(d)∧(e) implies (2.18). On the
other hand, since X̄ ⊆ S and V̄ ⊆ T , (2.18) implies that

inf
x∈X̄

p(x) = sup
v∈V̄

d(v) ≤ sup
v∈T

d(v) ≤ inf
x∈S

p(x) ≤ inf
x∈X̄

p(x).
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The last expression holds with equality. This yields (b)∧(d)∧(e). ��

We next focus on the special case (Z,≤) = (R,≤) and show that an
ordinary saddle point is obtained.

Theorem 2.58. For l : X × V → R the following is equivalent.

(i) (X̄, V̄ ) is a saddle point of l in the sense of Definition 2.55.
(ii) Every (x̄, v̄) ∈ X̄ × V̄ is a saddle point of l in the classic sense, that is

(x̄, v̄) ∈ X × V with l(x̄, v̄) ∈ R such that (2.15) holds.

Proof. As discussed above, (x̄, v̄) ∈ S × T corresponds to l(x̄, v̄) ∈ R in the
present situation. By Theorem 2.57 and Theorem 2.13, (i) is equivalent to

∀x̄ ∈ X̄, ∀v̄ ∈ V̄ : p(x̄) = inf
x∈S

p(x) = sup
v∈T

d(v) = d(v̄). (2.19)

From the definition of p and d we get p(x̄) ≥ l(x̄, v̄) ≥ d(v̄) and (2.19) yields
p(x̄) = l(x̄, v̄) = d(v̄) for all x̄ ∈ X̄ and all v̄ ∈ V̄ . This implies (ii).

On the other hand, (ii) implies that for all x̄ ∈ X̄ and all v̄ ∈ V̄ one has

inf
x∈S

p(x) ≤ p(x̄) = sup
b∈V

l(x̄, b) ≤ l(x̄, v̄)

≤ inf
a∈X

l(a, v̄) = d(v̄) ≤ sup
v∈T

d(v).

Weak duality yields equality. This implies (2.19). ��

Similarly to mild solutions we can define mild saddle points by relaxing
the conditions (i) and (ii) in Definition 2.55.

Definition 2.59. Let X,V be two nonempty sets, (Z,≤) a complete lattice
and let a function l : X × V → Z be given. An element (X̂, V̂ ) ∈ 2S × 2T ,
where X̂ �= ∅ and V̂ �= ∅, is called a mild saddle point of l if the following
conditions are satisfied:

(i) p[X̂ ] ⊆ Min p[S],
(ii) d[V̂ ] ⊆ Max d[T ],
(iii) ∀A ∈ 2X , ∀B ∈ 2V : Lu(X̂, B) ≤ Lu(X̂, V̂ ) = Ll(X̂, V̂ ) ≤ Ll(A, V̂ ).

A corresponding characterization follows immediately.

Theorem 2.60. The following statements are equivalent:

(i) X̂ is a mild solution to (2.13), V̂ is a mild solution to (2.14) and

sup
v∈T

d(v) = inf
x∈S

p(x);

(ii) (X̂, V̂ ) is a mild saddle point of l.

Proof. Similarly to the proof of Theorem 2.57. ��
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The notion of a saddle point introduced in this section can be used for
arbitrary I-valued problems. In case of a vector optimization problem we
consider its lattice extension which yields an I-valued problem. We obtain
an I-valued Lagrangian and an I-valued dual problem. Thus, the saddle
point notions introduced in this section easily apply to vector optimization.

2.7 Notes on the literature

In the framework of a mathematical optimization theory, the notion of an ef-
ficient element seems to be first used by Koopmans (1951), compare (Stadler,
1979), but the ideas can be traced back to the early works by Pareto and
Edgeworth. Modifications of efficient solutions, such as weakly or properly ef-
ficient solutions, are commonly considered in the literature (Luc, 1988; Jahn,
1986, 2004; Ehrgott, 2000; Boţ et al., 2009). The idea to compute a subset
of the efficient solutions in order to present it to a decision maker is stan-
dard in the literature on vector optimization. Nevertheless, there is no unique
and precise specification of such a subset, which is understood as a solution
concept.

The solution concept for complete-lattice-valued problems in Section 2.1
and its application to vector optimization in Section 2.2 including the notion
of a mild solution first appeared in (Heyde and Löhne, 2010). It should be
mentioned that these ideas arose from several discussions about solution con-
cepts for set-valued optimization problems between Andreas H. Hamel and
the mentioned authors. The notion of (mild) convexity solutions and all the
related results are new in this book.

Section 2.3 is a collection of results on semicontinuity concepts for set-
valued maps which can be found similarly in the literature. The results and
proofs in the presented form are taken from Heyde and Löhne (2010) and
are due to the first author. Definition 2.28 follows the articles by Gerritse
(1997) and Ait Mansour et al. (2007). Note that in (Ait Mansour et al.,
2007) the term “level closed” is used for property (b). We call a function
level closed if all level sets are closed and we speak about weak level closed-
ness if the weaker property (b) holds. The notions of lattice- and topological
semicontinuity are introduced in (Gerritse, 1997). The definition of lattice
semicontinuity coincides with that of Gerritse (1997). The definition of topo-
logical semicontinuity differs slightly from that in (Gerritse, 1997) since we do
not require a topological structure on the whole set Y . It coincides, however,
with the concept denoted simply by lower semicontinuity in (Ait Mansour
et al., 2007). Note also that Gerritse (1997) deals with upper rather than
lower semicontinuity. Proposition 2.33 is slightly different from (Penot and
Théra, 1982, Proposition 1.3.a) but the proof follows essentially the lines of
the one in (Penot and Théra, 1982). Note further that it was shown by Liu
and Luo (1991, Theorem 3.6.) that every level closed function f : X → Z
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is lattice-l.s.c. if and only if Z is a completely distributive lattice (compare
Proposition 2.29).

The existence result in Section 2.4, the notion of mild solutions as well
as all related results in Section 2.5 are due to Heyde and Löhne (2010).
There are other existence results in the literature; partially they are related
to the domination property (e.g. Jahn, 1986, 2004; Luc, 1988; Sonntag and
Zălinescu, 2000).

Saddle points for complete-lattice-valued problems as well as all related
concepts and results in Section 2.6 seem to be new and arose from discussions
with Andreas H. Hamel. In the literature (see e.g. Rödder, 1977; Luc, 1988;
Tanaka, 1990, 1994; Li and Wang, 1994; Tan et al., 1996; Li and Chen, 1997;
Ehrgott and Wiecek, 2005b; Adán and Novo, 2005) there are other notions
of saddle points for vector optimization problems which are not based on the
structure of a complete lattice.



Chapter 3

Duality

The dual of a scalar optimization problem is again a scalar optimization
problem. This simple fact seems to be the reason that the dual of a vector
optimization problem is commonly expected to be a vector optimization prob-
lem. But the following is also true: The dual of a scalar optimization problem
is a hyperplane-valued optimization problem. This is due to the simple fact
that every hyperplane in R consists of a single real number. It is also true
that in scalar optimization the values of the dual objective function are self-
infimal sets, because the space of self-infimal sets in R is just the family of all
singleton sets in R, which can be identified with R. This demonstrates that
hyperplane-valued or I-valued dual problems are by no means unnatural.

Duality for vector optimization problems can be developed on the basis
of the complete lattice I. In this way a vectorial counterpart to the scalar
duality theory with a high degree of analogy can be established. In contrast
to many other approaches to duality theory of vector optimization problems
in the literature (see e.g. the recent book by Boţ et al., 2009) the most results
are formulated completely parallel to their scalar versions. The infimum and
supremum are consequently used and the dual variables are kept to be lin-
ear functionals rather than operators. The dual problems are I-valued and
can typically not be derived from vector optimization problems, at least not
in the way as the primal I-valued problem is derived from a given vector
optimization problem (but compare Section 4.5).

The content of this chapter can be understand as a demonstration how a
scalar duality theory can be transformed into a vectorial framework. Out of
a variety of possibilities, we only consider conjugate duality and an instance
of Lagrange duality with set-valued constraints as well as a related saddle
point theorem.

Two types of I-valued dual problems are studied. The main feature of
the type I dual problem is a simple variable space, in fact, the same as for
the corresponding scalar dual problem. Type II dual problems have slightly
more complex dual variables, but therefore, the values of the dual objective
function have a simpler structure, in fact, they are essentially hyperplanes. In
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this sense, the type II dual objective functions are not more complicated than
the (original) vector-valued primal objective functions. Dual problems of type
II also have the advantage that, as in scalar duality theory, the existence of
a solution to the dual problem can be shown as a part of the strong duality
theorem.

3.1 A general duality concept applied to vector
optimization

We consider a complete-lattice-valued optimization problem and introduce
a general duality concept, where vector optimization problems constitute a
special case.

Let p : X → Z, where X is an arbitrary nonempty set and (Z,≤) is a
complete lattice. For a nonempty subset S ⊆ X , we consider the optimization
problem

minimize p : X → Z with respect to ≤ over S, (P)

which is called the primal problem. Simultaneously, we consider a dual op-
timization problem. Let d : V → Z, where V is an arbitrary nonempty set
and T ⊆ V is a nonempty subset, called the dual feasible set. We consider
the dual problem

maximize d : V → Z with respect to ≤ over T. (D)

Definition 3.1. We say that weak duality holds for the pair of problems (P)
and (D) if we have the implication

(x ∈ S ∧ v ∈ T ) =⇒ d(v) ≤ p(x).

Definition 3.2. We say that strong duality holds for the pair of problems
(P) and (D) if we have

sup
v∈T

d(v) = inf
x∈S

p(x).

It is clear that weak duality can equivalently be characterized by the in-
equality

sup
v∈T

d(v) ≤ inf
x∈S

p(x).

Hence strong duality implies weak duality.
We next show that duality is invariant with respect to the canonical ex-

tension, which we introduced in Section 2.1 and in Section 2.6. We consider
the extended problems

minimize P : 2X → Z with respect to ≤ over 2S, (P)
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maximize D : 2V → Z with respect to ≤ over 2T , (D)

where we set
P : 2X → Z, P (A) := inf

x∈A
p(x),

D : 2V → Z, D(B) := sup
v∈B

d(v).

Proposition 3.3. Weak (strong) duality holds for the pair of problems (P)
and (D) if and only if weak (strong) duality holds for the pair of their canon-
ical extensions (P) and (D); that is

sup
v∈T

d(v) ≤ inf
x∈S

p(x) ⇐⇒ sup
B∈2T

D(B) ≤ inf
A∈2S

P (A),

sup
v∈T

d(v) = inf
x∈S

p(x) ⇐⇒ sup
B∈2T

D(B) = inf
A∈2S

P (A).

Proof. Since
sup

B∈2T

D(B) = sup
B∈2T

sup
v∈B

d(v) = sup
v∈T

d(v)

and
inf

A∈2S
P (A) = inf

A∈2S
inf
x∈A

p(x) = inf
x∈S

p(x),

the statement is obvious. ��

We now apply the general duality principle to vector optimization prob-
lems. Let X be a nonempty set and Y an extended partially ordered topo-
logical vector space. Assume that the ordering cone C of Y is closed and
∅ �= intC �= Y . Note that C is automatically convex and closed since we
suppose a partial ordering.

Let p : X → Y a given vectorial objective function and S ⊆ X a given
feasible set. The primal problem is considered to be the vector optimization
problem

minimize p : X → Y with respect to ≤C over S. (VOP)

We assign to (VOP) a corresponding I-valued problem, i.e., a problem of type
(P), where the complete lattice (Z,≤) = (I,�) is used. As already seen in
Section 2.2, we obtain a closely related complete-lattice-valued problem, even
if Y is not a complete lattice with respect to the ordering relation generated
by C.

We set
pI : X → I, pI(x) := Inf{p(x)}

and assign to (VOP) the problem

minimize pI : X → I with respect to � over S. (PI)
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Based on the properties of the complete lattice I, a dual problem can be
derived for special classes of problems such that weak and strong duality can
be shown. We consider a set V and a feasible subset T ⊆ V , a dual objective
function dI : V → I and the dual problem

maximize dI : V → I with respect to � over T. (DI)

The optimal values of (PI) and (DI) are defined, respectively, by

p̄I := inf
x∈S

pI(x) and d̄I := sup
v∈T

dI(v).

In the case that duality assertions can be shown for a class of problems, the
dual problem (DI) can usually not be re-interpreted as a vector optimization
problem, at least not in the way as (PI) is obtained from (VOP) (but compare
Section 3.5 and Section 4.5). Therefore, (DI) itself is considered to be the
dual problem to (VOP). It is possible to obtain set-valued dual problems with
an easy structure; for certain classes of problems we get a hyperplane-valued
dual objective function.

Subsequently we consider special classes of problems and derive weak and
strong duality statements between (PI) and (DI). A duality theory for I-
valued problems is developed which applies to the lattice extension (PI)of a
vector optimization problem (VOP). However, the duality theory also works
for I-valued problems which do not arise from a vector optimization problem.

3.2 Conjugate duality

As a first instance of duality, conjugate duality (also called Fenchel duality)
is studied in this section.

Throughout this section let Y be an extended partially ordered locally
convex space with an ordering cone C ⊆ Y such that ∅ �= intC �= Y and
let Y ∗ be the topological dual space. We set I := IC

(
Y
)
. In general, C

is not required to be closed. However, if the lattice extension of a vector
optimization problem is considered, C being closed ensures that the ordering
in I is an extension of the ordering in the vector space Y , compare Proposition
2.17.

Furthermore, we assume X and U to be locally convex Hausdorff spaces.
We denote by X∗ and U∗ their topological dual spaces and by 〈X,X∗〉 and
〈U,U∗〉 the corresponding dual pairs, see Definition 1.38. Let B : X → U be
a linear continuous function. The map B∗ : U∗ → X∗, defined by

∀u∗ ∈ U∗, ∀x ∈ X : 〈u∗, Bx〉U = 〈B∗u∗, x〉X ,
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is called the adjoined function of B. As shown, for instance, in (Göpfert, 1973,
p. 75f), the adjoined map is well-defined, linear and continuous (where X∗

and U∗ are equipped with their weak∗ topologies).

Definition 3.4. The conjugate of a function f : X → I (with respect to
some fixed c ∈ Y ) is defined by

f∗
c : X∗ → I, f∗

c (x∗) := sup
x∈X

(
〈x∗, x〉 {c} − f(x)

)
.

We know that if f is an I-valued function, so is −f . This follows from the
fact

A ∈ I ⇐⇒ −A ∈ I,
which has been shown in Corollary 1.55. So the term 〈x∗, x〉 {c}−f(x) stands
for a shift of −f(x) ∈ I. This means that the minus sign has to be interpreted
in the sense of Minkowski-addition. As a result we have 〈x∗, x〉 {c}−f(x) ∈ I
and the supremum in the definition of the conjugate is well-defined.

3.2.1 Conjugate duality of type I

Let f : X → I, g : U → I and let B : X → U be a continuous linear map.
The primal problem (PI) in Section 3.1 is now considered for the objective
function

p : X → I, p(x) := f(x) ⊕ g(Bx).

For the dual problem (DI), we specify the objective function as

dc : U∗ → I, dc(u∗) := −f∗
c (B∗u∗) ⊕−g∗c (−u∗). (3.1)

If we set S = X and T = U∗, the problems (PI) and (DI) turn into the
following problems; the conjugate (or Fenchel) primal problem

minimize p : X → I with respect to � over X (PF)

and the type I dual problem associated to (PF)

maximize dc : U∗ → I with respect to � over U∗. (DI
F)

The optimal values of (PF) and (DI
F) are denoted, respectively, by

p̄ := inf
x∈X

p(x) ∈ I and d̄c := sup
u∗∈U∗

dc(u∗) ∈ I.

Continuity of an I-valued function is defined with respect the uniform topol-
ogy in I introduced in Section 1.8. Subsequently, we set
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Bc := {y ∈ C◦| y∗(c) = −1} , (3.2)

where C◦ is the polar cone as defined in (1.10). If c ∈ intC, then Bc is a base
of C◦, that is, each nonzero element y∗ of C◦ has a unique representation by
an element b∗ of the convex set Bc by y∗ = λb∗ for some λ > 0 (Peressini,
1967, p. 25). For a comparison of different types of bases of cones the reader
is referred to Göpfert et al. (2003).

We continue with a conjugate duality theorem. The formulation is exactly
the same as in the scalar case. This high degree of analogy is one of the essen-
tial advantages of using the supremum and infimum in vector optimization.

Theorem 3.5. The problems (PF) and (DI
F) (with arbitrary c ∈ Y ) satisfy

the weak duality inequality, that is, d̄c � p̄. Furthermore, let f and g be proper
convex functions, c ∈ intC, and let the following constraint qualification be
satisfied:

There exists u ∈ dom g ∩B(dom f) such that g is continuous at u. (3.3)

Then strong duality holds, that is, d̄c = p̄.

Proof. For all u∗ ∈ U∗, x ∈ X and u ∈ U ,

−f∗(B∗u∗) ⊕−g∗(−u∗) � (f(x) − 〈B∗u∗, x〉) ⊕ (g(u) + 〈u∗, u〉).

Setting u := Bx and recollecting that 〈B∗u∗, x〉 = 〈u∗, Bx〉, we get dc(u∗) �
p(x) for all u∗ ∈ U∗ and all x ∈ X . Taking the supremum over u∗ ∈ U∗ and
the infimum over x ∈ X , we obtain the weak duality inequality d̄c � p̄.

If p̄ = {−∞}, strong duality follows from weak duality. Note further that
dom p is nonempty, hence p̄ �= {+∞}. Therefore, it remains to prove strong
duality for the case p̄ ∈ I \ {{−∞} , {+∞}}.

We use the scalarization functional ϕA : C◦ \ {0} → R (A ∈ I) as intro-
duced in Section 1.7. As p : X → I is convex, Proposition 1.64 implies that
p̄ ∈ Ico .

By Corollary 1.68, (the concave function) ϕp̄ is proper, in particular
domϕp̄ �= ∅. As c ∈ intC, for every y∗ ∈ C◦ \ {0} we have y∗(c) < 0. We
fix some y∗ ∈ domϕp̄ ∩ Bc and consider the extended real-valued functions
ξ : X → R and η : U → R being defined, respectively, by ξ(x) := ϕ

(
y∗| f(x)

)
and η(u) := ϕ

(
y∗| g(u)

)
. It follows

ϕ(y∗| p̄) = inf
x∈X

(
ξ(x) + η(Bx)

)
. (3.4)

By Corollary 1.69, ξ and η are convex, dom f = dom ξ and dom g = dom η.
As y∗ ∈ domϕp̄ (that is ϕp̄(y∗) > −∞ as ϕp̄ : C◦ \ {0} → R is concave), ξ
and η are proper. By Theorem 1.75, the constraint qualification (3.3) implies
a corresponding condition for the scalar problem;

There exists u ∈ dom η ∩B(dom ξ) such that η is continuous at u.
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A scalar duality result (see e.g. Göpfert, 1973, Chapter 3, Theorems 6 and
7) yields

ϕ(y∗| p̄) = sup
u∗∈U∗

(−ξ∗(B∗u∗) − η∗(−u∗)) .

Moreover, if ϕ(y∗| p̄) is finite, the supremum is attained, that is

∃ū∗ ∈ U∗ : ϕ(y∗| p̄) = −ξ∗(B∗ū∗) − η∗(−ū∗). (3.5)

Furthermore, it is true that

∀t ∈ R : ϕ
(
y∗|t · {c}

)
= −y∗(t · c) = t. (3.6)

We have

ϕ (y∗| p̄) = −ξ∗(B∗ū∗) − η∗(−ū∗)

= inf
x∈X

(
−〈B∗ū∗, x〉 + ξ(x)

)
+ inf

u∈U

(
〈ū∗, u〉 + η(u)

)
(3.6)= inf

x∈X

(
ϕ
(
y∗
∣∣−〈B∗ū∗, x〉 · {c}

)
+ ϕ
(
y∗
∣∣f(x)

))
+ inf

u∈U

(
ϕ
(
y∗
∣∣〈ū∗, u〉 · {c})+ ϕ

(
y∗
∣∣g(u)

))
= ϕ

(
y∗
∣∣∣∣ inf

x∈X

(
−〈B∗ū∗, x〉{c} + f(x)

)
⊕ inf

u∈U

(
〈ū∗, u〉{c}+g(u)

))

= ϕ

(
y∗
∣∣∣∣− sup

x∈X

(
〈B∗ū∗, x〉{c} − f(x)

)
⊕− sup

u∈U

(
〈−ū∗, u〉{c}−g(u)

))

= ϕ
(
y∗
∣∣− f∗

c (B∗ū∗) ⊕−g∗c (−ū∗)
)

= ϕ (y∗|dc(ū∗)) .

We deduce that

∀y∗ ∈ domϕp̄ ∩Bc, ∃ū∗ ∈ U∗ : ϕ(y∗|dc(ū∗)) = ϕ(y∗| p̄ ). (3.7)

For every A ∈ I and α > 0, we have ϕ(α ·y∗|A ) = −αϕ(y∗|A ). We conclude
from (3.7) that ϕ(y∗| d̄c ) ≥ ϕ(y∗| p̄ ) for all y∗ ∈ C◦ \ {0}. As p̄ ∈ Ico ,
Theorem 1.65 (iv) yields d̄c � p̄ . By the weak duality inequality we obtain
d̄c = p̄. ��

We know from the scalar optimization theory that strong duality results
usually consist of two statements. The first one is the equality of the primal
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and dual optimal values and the second one is the dual attainment, that is, if
the primal optimal value is finite, then a solution to the dual problem exists
(see e.g. Borwein and Lewis, 2000, Theorem 3.3.5). In the current framework
we cannot answer the question whether the dual attainment holds or not.

Open Problem 3.6 Let the assumptions of Theorem 3.5 be satisfied. Does
a solution to the dual problem (DI

F) exists, whenever p̄ �= {−∞}?

However, a surrogate result can be shown. Usually, the dual optimal value
can be expressed as

d̄c = sup
u∗∈U∗

dc(u∗) = Sup
⋃

u∗∈U∗
dc(u∗).

It is shown in the following result that the supremal set can be replaced by the
set of weakly maximal elements. Of course this result is rather unsatisfactory,
because it is not compatible with the solution concepts introduced in Chapter
2. However, the dual attainment can be obtained for type II dual problems
as considered in the next section.

Theorem 3.7. Let all the assumptions of Theorem 3.5 be satisfied and let
p̄ �= {−∞}, then

d̄c = wMax
⋃

u∗∈U∗
dc(u∗).

Proof. We have p̄ �∈ {{−∞} , {+∞}} and hence ∅ �= Cl +p̄ �= Y . Let

ȳ ∈ Sup
⋃

u∗∈U∗
dc(u∗) = d̄c = p̄.

By Proposition 1.64 we have p̄ ∈ Ico . We get ȳ �∈ p̄+intC and the set p̄+intC
is convex. By the separation theorem 1.34, there exists some ȳ∗ ∈ Y ∗ \ {0}
such that

ȳ∗(ȳ) ≥ sup
y∈p̄+int C

ȳ∗(y).

Assuming that y∗ �∈ C◦, we get a contradiction as the supremum becomes
+∞. Thus we have y∗ ∈ C◦ \ {0} and hence

ȳ∗(ȳ) ≥ σp̄+int C(ȳ∗) = σCl +p̄(ȳ∗) = −ϕp̄(ȳ∗).

Without loss of generality we can assume that ȳ∗(c) = −1. By (3.7) there
exists some ū∗ ∈ U∗ such that

ȳ∗(ȳ) ≥ −ϕp̄(ȳ∗) = −ϕdc(ū∗)(ȳ∗).

Assuming that ȳ ∈ dc(ū∗) + intC = dc(ū∗) + intC + intC, we obtain

∀y∗ ∈ C◦ \ {0} : y∗(ȳ) < σdc(ū∗)+int C(y∗) = −ϕdc(ū∗)(y∗),
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a contradiction. It follows ȳ �∈ dc(ū∗) + intC.
On the other hand, {ȳ} + intC ⊆ p̄ + intC ⊆ dc(ū∗) + intC. We

get ȳ ∈ Inf dc(ū∗) = dc(ū∗) ⊆
⋃

u∗∈U∗ dc(u∗). Together we have ȳ ∈
wMax

⋃
u∗∈U∗ dc(u∗). ��

3.2.2 Duality result of type II and dual attainment

A modified dual problem is now introduced. The advantage is that the dual
objective function has an easier structure, in fact, it is essentially hyperplane-
valued. Another benefit is that the strong duality result now includes the
dual attainment. The larger variable space (pre-image space of the objective
function) is the downside of the type II duality.

It is shown in this section that both types of dual problems are closely
related. Duality results of the one type can be easily obtained from the results
of the other type1.

Let us start with some auxiliary results. Consider the function

h : Y ∗ → Ico , h(y∗) := Inf {y ∈ Y | y∗(y) ≤ 0} ,

the values of which are either hyperplanes or {−∞}.

Proposition 3.8. The following statement is true:

h(y∗) =
{
{y ∈ Y | y∗(y) = 0} if y∗ ∈ C◦ \ {0}
{−∞} otherwise.

Proof. First, let y∗ ∈ C◦ \ {0}. Then we have

Cl + {y ∈ Y | y∗(y) ≤ 0} = {y ∈ Y | y∗(y) ≤ 0}

and
{y ∈ Y | y∗(y) ≤ 0} + intC = {y ∈ Y | y∗(y) < 0} .

According to Corollary 1.48 (v), we have y ∈ h(y∗) if and only if

y ∈ Cl + {y ∈ Y | y∗(y) ≤ 0} ∧ y �∈ Cl + {y ∈ Y | y∗(y) ≤ 0} + intC.

This is equivalent to y ∈ {y ∈ Y | y∗(y) = 0}.
Secondly, let y∗ �∈ C◦ \ {0}. There exists some y ∈ −intC such that

y∗(y) ≤ 0. Indeed, if y∗ �= 0, we get some z ∈ −C such that y∗(z) < 0. The
convex combination λw + (1− λ)z for some w ∈ −intC provides the desired
vector y if λ ∈ (0, 1) is chosen sufficiently small. The case y∗ = 0 is obvious.

We conclude that

1 Roughly speaking, the results are equivalent.
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Y ⊆ {µy | µ > 0} + intC ⊆ {y ∈ Y | y∗(y) ≤ 0} + intC ⊆ Y.

This implies Inf {y ∈ Y | y∗(y) ≤ 0} = {−∞}. ��

Also the sum of some A ∈ I and h(y∗) gives either a hyperplane or {−∞}.

Proposition 3.9. For every A ∈ I \ {{+∞}} we have

A⊕ h(y∗) =
{
{y ∈ Y | y∗(y) + ϕA(y∗) = 0} if y∗ ∈ domϕA

{−∞} otherwise.

Proof. Let y∗ ∈ domϕA ⊆ C◦ \ {0}. Theorem 1.65 (i) yields A �= {−∞}. For
z∗ ∈ C◦ \ {0}, we have

ϕh(y∗)(z∗) =
{

0 if z∗ = αy∗ for some α > 0
−∞ otherwise.

The first case is obvious. In the second case we have z∗ �∈ cone {y∗}. The
set cone {y∗} := {λy∗| λ ≥ 0} is a convex w∗-closed set, since (Y ∗, w∗) is
Hausdorff. The separation theorem 1.37 yields some nonzero w∗-continuous
linear functional φ such that

φ(z∗) > sup
λ≥0

λφ(y∗) = 0.

There is some y ∈ Y such that y∗(y) = φ(y∗) for all y∗ ∈ Y ∗ (e.g. Kelley et al.,
1963, Theorem 17.6). We have y∗(y) = φ(y∗) ≤ 0 and thus y ∈ Cl +h(y∗).
From z∗(y) > 0, we obtain ϕh(y∗)(z∗) = −∞.

As y∗ ∈ domϕA, we have y∗ ∈ domϕA⊕h(y∗). We deduce that A⊕h(y∗) �∈
{{−∞} , {+∞}} and equivalently ∅ �= Cl +(A + h(y∗)) �= Y . By Corollary
1.48 (v) we have

ȳ ∈ A⊕ h(y∗) ⇐⇒
[ȳ ∈ Cl +(A+ h(y∗)) ∧ ȳ �∈ Cl +(A+ h(y∗)) + intC] . (3.8)

Using Proposition 3.8, we get

Cl +(A+ h(y∗)) = cl
(
A+ h(y∗) + C

)
= cl

(
A+ {y| y∗(y) ≤ 0}

)
,

which shows that A + h(y∗) is convex. This implies A ⊕ h(y∗) ∈ Ico . Using
Theorem 1.65 (iii), (iv) we obtain

ȳ ∈ Cl +(A+ h(y∗)) ⇐⇒ A⊕ h(y∗) � Inf {ȳ} ⇐⇒ ϕA⊕h(y∗) ≤ ϕInf{ȳ}.

Taking into account that

ϕA⊕h(y∗)(z∗) =
{
ϕA(z∗) if z∗ = αy∗ for some α > 0
−∞ otherwise,
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we get the equivalence

ϕA⊕h(y∗) ≤ ϕInf{ȳ} ⇐⇒ y∗(ȳ) + ϕA(y∗) ≤ 0.

Summarizing these results, we obtain

ȳ ∈ Cl +(A+ h(y∗)) ⇐⇒ y∗(ȳ) + ϕA(y∗) ≤ 0. (3.9)

As an easy consequence of (3.9) we have

ȳ ∈ Cl +(A+ h(y∗)) + intC ⇐⇒ y∗(ȳ) + ϕA(y∗) < 0. (3.10)

From (3.8), (3.9) and (3.10) we conclude

ȳ ∈ A⊕ h(y∗) ⇐⇒ y∗(ȳ) + ϕA(y∗) = 0.

Let y∗ ∈ Y ∗ \ domϕA. Then we have ϕA(y∗) = −∞. It follows that
ϕA⊕h(y∗) ≡ −∞. Since A⊕h(y∗) ∈ Ico , Theorem 1.65 (i) yields A⊕h(y∗) =
{−∞}. ��

An element A ∈ Ico can be re-obtained from the sum A⊕h(y∗) by taking
the supremum over all y∗.

Proposition 3.10. If A ∈ Ico , then

sup
y∗∈Y ∗

(A⊕ h(y∗)) = sup
y∗∈dom ϕA

(A⊕ h(y∗)) = A.

Proof. If A = {+∞}, we have domϕA �= ∅ and the statement is obvious. If
A = {−∞} we have domϕA = ∅. Since sup ∅ = {−∞}, the second equality
follows directly and the first one follows from Proposition 3.9.

We now assume that A ∈ Ico \ {{−∞} , {+∞}}; by Corollary 1.68 this
means that ϕA is proper. By Proposition 3.9 the first equality is obvious.
For y∗ ∈ domϕA ⊆ C◦ \ {0} we have h(y∗) = {y ∈ Y | y∗(y) = 0} and thus
0 ∈ h(y∗). It follows h(y∗) � Inf {0}. We get A ⊕ h(y∗) � A and hence
supy∗∈dom ϕA

(
A⊕ h(y∗)

)
� A.

Suppose now that A � supy∗∈dom ϕA

(
A⊕ h(y∗)

)
is not true. As A ∈ Ico ,

Theorem 1.65 (iv) implies that

ϕ( · | A) �≤ ϕ

(
·
∣∣∣∣ sup

y∗∈dom ϕA

(A⊕ h(y∗))

)
.

Hence there exists some ȳ∗ ∈ domϕA such that

ϕ(ȳ∗|A) > ϕ

(
y∗
∣∣∣∣ sup

y∗∈dom ϕA

(A⊕ h(y∗))
)

≥ ϕ
(
ȳ∗
∣∣A⊕ h(ȳ∗)

)
= ϕ(ȳ∗|A) ⊕ ϕ(ȳ∗|h(ȳ∗)) = ϕ(ȳ∗|A),
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which is a contradiction. ��

The supremum in the preceding result is sufficient to be taken over a base
Bc of the polar cone C◦ as defined in (3.2). This is pointed out in the following
result.

Corollary 3.11. Let c ∈ intC and A ∈ Ico , then

sup
y∗∈Bc∩dom ϕA

(A⊕ h(y∗)) = A.

Proof. We have ϕA(αy∗) = αϕA(y∗) and h(y∗) = h(αy∗) for all α > 0. Thus,
the statement follows from Proposition 3.10. ��

The type II dual problem is now introduced. It is derived from the type I
dual problem (DI

F). For c ∈ intC we consider the dual objective function

d : U∗ × C◦ \ {0} → I, d(u∗, y∗) := dc

(
−u∗
y∗(c)

)
⊕ h(y∗), (3.11)

and the dual problem

maximize d : U∗ × C◦ \ {0} → I w. r. t. � over U∗ × C◦ \ {0}. (DII
F )

We will show in Theorem 3.14 below that the new dual objective function
d is independent of the choice of the parameter c ∈ intC. Note further that
it is sufficient for many reasons to consider d on the set U∗ × Bc. Then, the
definition has the simpler form

d : U∗ ×Bc → I, d(u∗, y∗) := dc (u∗) ⊕ h(y∗).

The optimal value of Problem (DII
F ) is defined as

d̄ := sup
(u∗, y∗)∈U∗×C◦\{0}

d(u∗, y∗).

Let us show some properties of the dual objective d. In the following proposi-
tion we state that a value of d is either a hyperplane or {−∞}. From Theorem
3.14 below, we deduce that the expression of the hyperplane does not depend
on the choice of c ∈ intC.

Proposition 3.12. Suppose that the primal optimal value p̄ in Problem (PF)
is not {+∞}. For the function d as defined in (3.11) we have

d(u∗, y∗) =

{
y ∈ Y

∣∣∣∣ y∗(y) = −ϕ
(
y∗
∣∣∣∣dc

(
−u∗
y∗(c)

))}
if ϕ

(
y∗
∣∣∣∣dc

(
−u∗
y∗(c)

))
�= −∞

{−∞} otherwise.
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Proof. By the weak duality we have dc(v∗) �= {+∞} for all v∗ ∈ U∗. Propo-
sition 3.9 yields the result. ��

Let us combine formula (3.11) with the expression of the dual objective
function of Problem (DI

F) in (3.1). We have h(y∗) = h(y∗) ⊕ h(y∗) for all
y∗ ∈ Y ∗. If y∗(c) �= 0, we get

d(u∗, y∗) =
(
−f∗

c

(
−B∗u∗

y∗(c)

)
⊕ h(y∗)

)
⊕
(
−g∗c

(
u∗

y∗(c)

)
⊕ h(y∗)

)
.

It is natural to define a conjugate of type II by

−f∗ : X∗ × C◦ \ {0} → I, −f∗(x∗, y∗) := −f∗
c

(
−x∗
y∗(c)

)
⊕ h(y∗). (3.12)

Again we can work with a base Bc of the polar cone C◦. This yields the
alternative and simpler definition

−f∗ : X∗ ×Bc → I, −f∗(x∗, y∗) := −f∗
c (x∗) ⊕ h(y∗).

As a consequence of (3.12), the dual objective d : U∗ × Y ∗ → I can be
expressed as

d(u∗, y∗) = −f∗(B∗u∗, y∗) ⊕−g∗(−u∗, y∗).

We next show that the conjugate defined by (3.12) coincides with a conju-
gate introduced by Hamel (2009a) in a more general set-valued framework.
Since we work in the space I instead of the space F of upper closed sets like
in Hamel (2009a), we have to suppose additional assumptions to the order-
ing cone C. For instance, we assume that intC �= ∅. The advantage of our
approach, based on the complete lattice I, is a closer connection to vector
optimization. The following notion has been introduced and used by Hamel
(2009a). For x∗ ∈ X∗, y∗ ∈ C◦, let

S(x∗,y∗) (x) := {y ∈ Y : 〈x∗, x〉 + y∗(y) ≤ 0} .

This map can be understood as a generalization of a linear function which
maps from X into the conlinear space F . We adopt this concept to our I-
valued framework. To this end the map S is modified in the following way.
For x∗ ∈ X∗, y∗ ∈ Y ∗, we consider the expression

M(x∗,y∗) (x) := Inf {y ∈ Y : 〈x∗, x〉 + y∗(y) ≤ 0} .

Proposition 3.13. Let c ∈ Y and y∗ ∈ Y ∗ be given such that y∗(c) = −1,
then

M(x∗,y∗) (x) = 〈x∗, x〉 {c} + h(y∗).

Proof. Clearly, we have
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{y ∈ Y : 〈x∗, x〉 + y∗(y) ≤ 0} = 〈x∗, x〉 {c} + {y ∈ Y | y∗(y) ≤ 0} .

It follows

M(x∗,y∗) (x) = Inf
(
〈x∗, x〉 {c} + {y ∈ Y | y∗(y) ≤ 0}

)
= 〈x∗, x〉 {c} + Inf {y ∈ Y | y∗(y) ≤ 0} ,

which completes the proof. ��

The independence of the type II conjugate from the parameter c is shown
next.

Theorem 3.14. Let c ∈ intC. The type II conjugate defined by (3.12) can
be expressed as

−f∗ : X∗ × C◦ \ {0} → I, −f∗(x∗, y∗) = inf
x∈X

(
f(x) ⊕M(x∗,y∗) (−x)

)
.

In particular, −f∗ does not depend on the choice of c ∈ intC.

Proof. As c ∈ intC and y∗ ∈ C◦\{0}, we have y∗(c) < 0. Using the preceding
result, we conclude

−f∗(x∗, y∗) (3.12)= −f∗
c

(
−x∗
y∗(c)

)
⊕ h(y∗)

= inf
x∈X

(
f(x) − 〈x∗, x〉

{
−c
y∗(c)

})
⊕ h(y∗)

= inf
x∈X

(
f(x) ⊕

(
〈x∗,−x〉

{
−c
y∗(c)

}
+ h(y∗)

))

Pr. 3.13= inf
x∈X

(
f(x) ⊕M(x∗,y∗) (−x)

)
,

which completes the proof. ��

Theorem 3.14 shows that our conjugate is closely related to the conjugate
introduced by Hamel (2009a). The connection becomes clear by the fact that,
under our assumptions, (I,�) (our choice) is isomorphic and isotone to (F ,⊇)
(Hamel’s choice).

Theorem 3.15. Let f : X → I and g : U → I be convex and let c ∈ intC.
Then both dual problems (DI

F) and (DII
F ) have the same optimal values, that

is, d̄c = d̄.

Proof. We show that

dc(u∗) = sup
y∗∈Bc

d(u∗, y∗) = sup
y∗∈C◦\{0}

d(u∗, y∗). (3.13)
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Indeed, the statement follows from Corollary 3.11 and Proposition 3.10 if
we can verify that dc(u∗) ∈ Ico . The type I dual objective dc is defined
by dc(u∗) = −f∗(B∗u∗) ⊕ −g∗(−u∗). But −f∗(B∗u∗) = infx∈X

(
f(x) −

〈B∗u∗, x〉 {c}
)
, where

(
f( · ) − 〈B∗u∗, · 〉 {c}

)
: X → I is convex. By Propo-

sition 1.64, we have −f∗(B∗u∗) ∈ Ico . Likewise we get −g∗(−u∗) ∈ Ico . As
Ico is a conlinear space, we obtain dc(u∗) ∈ Ico .

From (3.13) we get

d̄c = sup
u∗∈U∗

dc(u∗) = sup
u∗∈U∗

sup
y∗∈C◦\{0}

d(u∗, y∗)

= sup
(u∗, y∗)∈U∗×C◦\{0}

d(u∗, y∗) = d̄,

which completes the proof. ��

From the preceding theorem we immediately obtain a duality theorem
which is closely related to (Hamel, 2009b, Theorems 1 and 2). Vice versa,
we see that Hamel’s result in the form of the following theorem implies the
duality theorem 3.5.

Theorem 3.16. The problems (PF) and (DII
F ) (with arbitrary c ∈ Y ) satisfy

the weak duality inequality d̄ � p̄. Furthermore, let f and g be proper convex
functions, c ∈ intC, and let the constraint qualification (3.3) be satisfied.
Then strong duality between (PF) and (DII

F ) holds; that is, d̄ = p̄.

Proof. Follows from Theorems 3.5 and 3.15.

The advantage of the type II duality theorem is that the dual problem can
be shown to have a solution; that is, we have dual attainment in (DII

F ).

Theorem 3.17. Let all the assumptions of Theorem 3.16 be satisfied and let
p̄ �= {−∞}. Then, the dual problem (DII

F ) has a solution.

Proof. Let c ∈ intC and consider the set-valued map Q : Bc ⇒ U∗, defined
by

Q(y∗) := {u∗ ∈ U∗| ϕ(y∗|p̄) = ϕ(y∗|dc(u∗)) ∈ R} .

By (3.7) we have

∀y∗ ∈ domϕp̄ ∩Bc : Q(y∗) �= ∅.

Note further that dom p �= ∅ and thus p̄ �= {+∞}. Moreover, we have p̄ �=
{−∞} as well as p̄ ∈ Ico . By Corollary 1.68, ϕp̄ is proper; hence domϕp̄ �= ∅.
We show that the nonempty set

V̄ := grQ−1 =
{
(u∗, y∗) ∈ U∗ ×Bc

∣∣ u∗ ∈ Q(y∗)
}

is a solution to the dual problem (DII
F ), where we have to verify the conditions

(i) to (iii) of Corollary 2.54.
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(i) Of course, V̄ is a subset of the feasible set T := U∗ × C◦ \ {0}.
Before we show (ii), we consider some auxiliary assertions. Let some

(ū∗, ȳ∗) ∈ T with d(ū∗, ȳ∗) �= {−∞} be given and let (u∗, y∗) ∈ T such
that d(ū∗, ȳ∗) � d(u∗, y∗). By the weak duality, we have d(u∗, y∗) �= {+∞}.
Proposition 3.9 yields

ȳ∗ ∈ domϕdc(ū∗) ∧ d(ū∗, ȳ∗) = {y ∈ Y | ȳ∗(y) + ϕ(ȳ∗| dc(ū∗)) = 0}

and

y∗ ∈ domϕdc(u∗) ∧ d(u∗, y∗) = {y ∈ Y | y∗(y) + ϕ(y∗| dc(u∗)) = 0} .

It follows that {−∞} �= d(ū∗, ȳ∗) � d(u∗, y∗) is equivalent to (note that
d(u∗, y∗) �= {+∞})

ȳ∗ = y∗ ∈ domϕdc(ū∗) ∧ ϕ(ȳ∗| dc(ū∗)) ≤ ϕ(y∗| dc(u∗)).

Therefore, {−∞} �= d(ū∗, ȳ∗) ∈ Max d[T ] is equivalent to

ȳ∗ ∈ domϕdc(ū∗) ∧ ∀u∗ ∈ U∗ : ϕ(ȳ∗|dc(u∗)) ≤ ϕ(ȳ∗|dc(ū∗)). (3.14)

(ii) Let A ∈ d[V̄ ]. There exits some (ū∗, ȳ∗) ∈ U∗ ×
(
domϕp̄ ∩ Bc

)
such that ϕ(ȳ∗|p̄) = ϕ(ȳ∗|dc(ū∗)) and A = d(ū∗, ȳ∗) = dc(ū∗) ⊕ h(ȳ∗). As
ϕ(ȳ∗| dc(ū∗)) �= −∞, we obtain dc(ū∗) �= {−∞} and hence d(ū∗, ȳ∗) �=
{−∞}. Moreover, weak duality implies

∀u∗ ∈ U∗ : ϕ(ȳ∗|dc(u∗)) ≤ ϕ(ȳ∗|p̄) = ϕ(ȳ∗|dc(ū∗)).

Hence A = d(ū∗, ȳ∗) ∈ Max d[T ].
Conversely, let A ∈ Max d[T ]. If A = {−∞}, we get d(u∗, y∗) = {−∞} for

all (u∗, y∗) ∈ T and by the strong duality this contradicts the assumption
p̄ �= {−∞}. Otherwise there exists some (ū∗, ȳ∗) ∈ T with A = d(ū∗, ȳ∗) such
that (3.14) is satisfied. By the strong duality it follows that ϕ(ȳ∗|dc(ū∗)) =
ϕ(ȳ∗|p̄). Without loss of generality we can assume ȳ∗(c) = −1. Consequently,
we have A ∈ d[V̄ ].

(iii) It remains to show

sup
(u∗, y∗)∈V̄

d(u∗, y∗) = sup
(u∗, y∗)∈T

d(u∗, y∗).

Let (u∗, y∗) ∈ T . If y∗ �∈ domϕdc(u∗), we have d(u∗, y∗) = {−∞}. Otherwise,
we get y∗ ∈ domϕp̄ and without loss of generality we can assume that y∗(c) =
−1. By (3.7) there exists some ū∗ ∈ U∗ such that

ϕdc(u∗)(y∗) ≤ ϕdc(ū∗)(y∗) = ϕp̄(y∗).
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By Proposition 3.9 we get d(u∗, y∗) � d(ū∗, y∗), where (ū∗, y∗) ∈ V̄ . This
implies

sup
(u∗, y∗)∈V̄

d(u∗, y∗) � sup
(u∗, y∗)∈T

d(u∗, y∗).

The opposite inequality is obvious. ��

3.2.3 The finite dimensional and the polyhedral case

As known from the scalar theory, the constraint qualification can be relaxed in
the finite dimensional case. If we suppose finite dimensional pre-image spaces
X = Rn and U = Rm we get the following duality theorem. We denote by
riA the relative interior of a convex set A.

Theorem 3.18. The problems (PF) and (DI
F) (with arbitrary c ∈ Y ) satisfy

the weak duality inequality d̄c � p̄. Furthermore, let f and g be proper convex
functions, c ∈ intC, and let

0 ∈ ri (dom g −B(dom f)). (3.15)

Then strong duality holds, that is, d̄c = p̄.

Proof. The proof is the same as the proof of Theorem 3.5 (in particular ξ and
η are defined there) but using a finite dimensional scalar result, for instance
(Borwein and Lewis, 2000, Theorem 3.3.5). The constraint qualification 0 ∈
ri (dom η − B(dom ξ)) of the scalar duality theorem is easily obtained as we
have dom f = dom ξ and dom g = dom η ��

In the scalar duality theory, the constraint qualification (3.15) can be fur-
ther weakened if the objective function is polyhedral. In this case it suffices
to assume

dom g ∩B(dom f) �= ∅ (3.16)

(compare e.g. Borwein and Lewis, 2000, Corollary 5.1.9). This is important
for linear problems. Let us consider the special case X = Rn, U = Rm,
Y = Rq, P ∈ Rq×n,

f : Rn → I, f(x) = Inf {Px}

and

g : Rm → I, g(u) :=
{

Inf {0} if u ≥ b
{+∞} otherwise.

The constraint qualification (3.15) in Theorem 3.18 can be weakened to
(3.16), which can be expressed as

∃x ∈ Rn : Bx ≥ 0.
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This follows by similar considerations as in the proof of Theorem 3.18, but
using an adapted scalar result.

3.3 Lagrange duality

In this section, I-valued optimization problems with set-valued constraints
are studied. As shown in Section 2.2, vector optimization problems can be
regarded as a subclass of I-valued problems. Like in the previous section,
duality results are derived from corresponding scalar results. Of course, other
variants of scalar Lagrange duality could serve as a template. This section
can be understood as a further demonstration, how vectorial duality results
can be derived from corresponding scalar results.

Throughout this section, let Y be an extended partially ordered locally
convex space with an ordering cone C ⊆ Y such that ∅ �= intC �= Y . The
topological dual space of Y is denoted by Y ∗. We set I := IC

(
Y
)
. Let X

be a linear space, U a Hausdorff locally convex space with topological dual
space U∗. We denote by 〈U,U∗〉 the corresponding dual pair, see Definition
1.38.

Let f : X → I, let g : X ⇒ U be a set-valued map and let D ⊆ U be a
nonempty closed convex cone. The primal problem is given as

minimize f : X → I w.r.t. � over S := {x ∈ X | g(x) ∩ −D �= ∅} . (PL)

The optimal value of (PL) is

p̄ := inf
x∈S

f(x).

The set-valued map g is said to be D-convex (see e.g. Jahn, 2003) if

∀x1, x2 ∈ X, ∀λ ∈ [0, 1] : g
(
λx1 + (1 − λ)x2

)
+D ⊇ λg(x1) + (1 − λ)g(x2).

Of course, the set-valued map g can be understood as a function from X into
2U . The power set 2U equipped with the usual Minkowski operations provides
a conlinear space. The conlinear space is quasi-ordered (i.e., the ordering is
reflexive and transitive) by

A ≤ B : ⇐⇒ A+D ⊇ B +D.

Therefore, the notion of D-convexity can be interpreted as convexity of a
function with values in this quasi-ordered conlinear space. For the origin of
the mentioned quasi-ordering the reader is referred to Hamel (2005).
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3.3.1 The scalar case

Initially, a scalar Lagrange duality result with set-valued constraints is pro-
vided. The scalar result is used to prove strong duality for I-valued problems.
Let us consider the scalar case of Problem (PL), i.e., let the objective function
be f : X → R, where R is equipped with the inf-addition (see Section 1.3).
Commonly, a scalar optimization problem is shortly denoted by

p̂ := inf
x∈S

f(x). (3.17)

The Lagrangian is defined (compare Oettli, 1982) by

L : X × U∗ → R, L(x, u∗) = f(x) + inf
u∈g(x)+D

〈u∗, u〉 . (3.18)

The dual objective is defined as

φ : U∗ → R, φ(u∗) := inf
x∈X

L(x, u∗)

and the dual problem is

d̂ := sup
u∗∈U∗

φ(u∗). (3.19)

Of course, weak duality holds, i.e., d̂ ≤ p̂. Under convexity assumptions and
some constraint qualification, we get the following strong duality assertion,
which we prove in a common way (e.g. Borwein and Lewis, 2000, Proposition
4.3.5).

Theorem 3.19. Let f : X → R be convex, let g : X ⇒ U be D-convex and
let

g(dom f) ∩ −intD �= ∅. (3.20)

Then, we have strong duality between (3.17) and (3.19); that is, d̂ = p̂. If p̂
is finite, then there exists a solution to the dual problem (3.19).

Proof. The value function is defined by

v : U → R : v(u) := inf {f(x)| x ∈ X : g(x) ∩ ({u} −D) �= ∅} .

As f is convex and g is D-convex, v is convex. Moreover, we have v(0) = p̂.
If p̂ = −∞, we obtain d̂ = p̂ from the weak duality. Therefore, let p̂ > −∞.
For the conjugate v∗ : U∗ → R of v, we have
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−v∗(−u∗) = inf {〈u∗, u〉 + v(u)| u ∈ U}
= inf {〈u∗, u〉 + f(x)| u ∈ U, x ∈ X : g(x) ∩ ({u} −D) �= ∅}
= inf {〈u∗, u〉 + f(x)| x ∈ X, u ∈ g(x) +D}
= inf

x∈X
L(x, u∗) = φ(u∗).

It follows v∗∗(0) = d̂. We next show that v is lower semi-continuous at 0
(even continuous). Indeed, by (3.20) there is some x̄ ∈ dom f and some
z̄ ∈ −intD such that z̄ ∈ g(x̄). There exists some neighborhood U of 0 such
that {z̄} − U ⊆ −intD. It follows that f(x̄) is an upper bound of v on U .
This implies that v is continuous at 0 (see e.g. Ekeland and Temam, 1976,
Lemma 2.1).

We have v(0) = (lsc v)(0) = (cl v)(0) (compare Rockafellar, 1974, Theo-
rem 4). By the biconjugation theorem, see e.g. (Ekeland and Temam, 1976,
Proposition 4.1) or (Zălinescu, 2002, Theorem 2.3.4), we have cl v = v∗∗. This
yields p̂ = v(0) = v∗∗(0) = d̂.

If p̂ is finite, there exists ū∗ ∈ ∂v(0) (see e.g. Ekeland and Temam, 1976,
Proposition 5.2). It follows v(0) + v∗(ū∗) = 〈ū∗, 0〉 and hence d̂ = φ(−ū∗).
Thus, −ū∗ solves the dual problem. ��

Typically, in Lagrange duality it is shown that the primal problem is re-
obtained from the Lagrangian. To this end we need the additional assumption
that g(x) +D is closed and convex for every x ∈ X . If g is D-convex, like in
the strong duality theorem, we have convexity of the values, but in general
not the closedness. As D is assumed to be closed, the sum g(x) +D is closed
whenever g(x) is compact. Of course, the important case of single-valued
maps g is also covered.

Proposition 3.20. Let f : X → R be a proper function and let the set
g(x) +D be closed and convex for every x ∈ X. Then

sup
u∗∈U∗

L(x, u∗) =
{
f(x) if x ∈ S
+∞ otherwise.

Proof. Note first that x ∈ S is equivalent to 0 ∈ g(x) +D. If x ∈ S we get

sup
u∗∈U∗

L(x, u∗) = sup
u∗∈U∗

(
f(x) + inf

u∈g(x)+D
〈u∗, u〉

)
≤ sup

u∗∈U∗
(f(x) + 〈u∗, 0〉) = f(x).

On the other hand

sup
u∗∈U∗

L(x, u∗) ≥ L(x, 0) = f(x),

i.e., we have equality.
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Assuming x �∈ S, we obtain 0 �∈ g(x) +D. As the latter set is closed and
convex, there exists by Theorem 1.37 (separation theorem) some ū∗ ∈ U∗

such that infu∈g(x)+D 〈ū∗, u〉 > 0. If we consider multiples u∗n := n · ū∗ ∈ U∗,
the latter expression tends to +∞ for n → +∞. As f is supposed to be
proper, we have f(x) �= −∞ for every x. Hence we get L(x, u∗n) → +∞,
which proves the statement. ��

Note that the assumptions in the last proposition are only used for the
proof in the case x �∈ S. They cannot be dropped as the following examples
show.

Example 3.21. Let f : R2 → R be a proper function such that 0 ∈ dom f , let
U = R2, D = R2

+ and g(x) = {x} +A, where

A :=
{
a ∈ R2| a1 > 0 ∧ a1a2 ≤ −1

}
.

Note that the sets g(x) and D are closed for all x, but the sum g(x) +D is
not. We have supu∗∈R2 L(0, u∗) = f(0) ∈ R, but g(0) ∩ −D = ∅, i.e., 0 �∈ S.

Example 3.22. Let f : R → R be a function such that f(1) = −∞, let
U = R, D = R+ and g(x) = {x}. We have supu∗∈R L(1, u∗) = −∞, but
g(1) ∩ −D = ∅, i.e., 1 �∈ S.

3.3.2 Lagrange duality of type I

An I-valued version of Theorem 3.19 is now considered. The Lagrangian of
Problem (PL) (with respect to c ∈ Y ) is defined by

Lc : X × U∗ → I, Lc(x, u∗) = f(x) ⊕ inf
u∈g(x)+D

(
〈u∗, u〉 {c} + bdC

)
. (3.21)

Recall that bdC = Inf {0} plays the role of the zero element in the space I.
It is used in (3.21) to transform the vector 〈u∗, u〉 {c} into an element of I.
This ensures the infimum being well-defined. Note that the vector c and the
zero element bdC are the only structural differences to the Lagrangian (3.18)
in the scalar case. In the special case Y = R, C = R+, c = 1, the Lagrangian
coincides with the Lagrangian (3.18) of the scalar problem (3.17).

The vector c ∈ Y can be arbitrarily chosen for the moment. For the most
assertions, however, we have to assume c ∈ intC. For every choice of c ∈
intC we may have a different Lagrangian and a different corresponding dual
problem, but the same duality results hold for all these problems.

The scalar counterpart of the following result is well known, compare
Proposition 3.20.

Proposition 3.23. For every x ∈ S,
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sup
u∗∈U∗

Lc(x, u∗) = f(x).

Proof. Note that x ∈ S is equivalent to 0 ∈ g(x) +D. It follows

sup
u∗∈U∗

Lc(x, u∗) = sup
u∗∈U∗

(
f(x) ⊕ inf

u∈g(x)+D

(
〈u∗, u〉 {c} + bdC

))
� sup

u∗∈U∗
(f(x) ⊕ (〈u∗, 0〉 {c} + bdC)) = f(x).

From
sup

u∗∈U∗
Lc(x, u∗) ≥ Lc(x, 0) = f(x)

we get equality. ��

We are also interested in the case where x �∈ S. Likewise to the scalar case
in Proposition 3.20 we need some additional assumptions.

Proposition 3.24. Let f : X → I be a proper function, let the set g(x) +D
be closed and convex for every x ∈ X and let c ∈ intC. Then

sup
u∗∈U∗

Lc(x, u∗) =
{
f(x) if x ∈ S
{+∞} otherwise.

Proof. The first case has already been shown in Proposition 3.23.
Let x �∈ S. For all u∗ ∈ U∗, we have

A := sup
u∗∈U∗

Lc(x, u∗) � f(x) ⊕ inf
u∈g(x)+D

(〈u∗, u〉 {c} + bdC) .

From Theorem 1.65 (iii), (v) and (vii) we get

ϕA ≥ ϕf(x) + inf
u∈g(x)+D

ϕ{〈u∗,u〉{c}+bd C}.

Let ȳ∗ ∈ domϕf(x) ∩Bc. Then,

ϕ{〈u∗,u〉{c}+bd C}(ȳ∗) = 〈u∗, u〉 .

As shown in the proof of Proposition 3.20 (using a separation theorem), in
case of x �∈ S there exists a sequence (u∗n) in U∗ such that infu∈g(x)+D 〈u∗n, u〉
tends to +∞. It follows that ϕA(ȳ∗) = +∞. By Theorem 1.65 (ii) we get
A = {+∞}. ��

We next define the dual problem. The dual objective function (with respect
to c ∈ Y ) is defined by

φc : U∗ → I, φc(u∗) := inf
x∈X

Lc(x, u∗).

The dual problem (with respect to c ∈ Y ) associated to (PL) is
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maximize φ : U∗ → I with respect to � over T ⊆ U∗, (DI
L)

where T is subset of U∗, such that {u∗ ∈ U∗| φ(u∗) �= {−∞}} ⊆ T . The set
T is called the dual feasible set. There are important special cases, where
the set T can be determined explicitly. In the linear case, for instance, a
description by inequalities is possible. In the present framework we do not
loose generality by setting T = U∗. The dual optimal value is denoted by

d̄c := sup
u∗∈U∗

φc(u∗). (3.22)

Theorem 3.25 (weak duality). Let c ∈ intC. Then the problems (PL) and
(DI

L) satisfy the weak duality inequality d̄c � p̄.

Proof. Since I is a complete lattice, we immediately have

sup
u∗∈U∗

inf
x∈X

Lc(x, u∗) � inf
x∈X

sup
u∗∈U∗

Lc(x, u∗) (3.23)

(even if Lc would be replaced by an arbitrary function from X ×U∗ into I).
By Proposition 3.23 we know that infx∈X supu∗∈U∗ Lc(x, u∗) � p̄ in case of
c ∈ intC. ��

The main result of this section is the following Lagrange duality result of
type I.

Theorem 3.26 (strong duality). Suppose that f is convex and g is D-
convex. Let

g(dom f) ∩ −intD �= ∅, (3.24)

and c ∈ intC. Then strong duality between (PL) and (DI
L) holds; that is,

p̄ = d̄c.

Proof. If p̄ = {−∞}, strong duality follows from weak duality. Note further
that dom f is nonempty, hence p̄ �= {+∞}. Therefore, it remains to prove
strong duality for the case p̄ ∈ I \ {{−∞} , {+∞}}. We use the scalarization
functional ϕA : C◦ \ {0} → R (A ∈ I) as introduced in Section 1.7. As
f : X → I is convex and S is a convex set (as g is D-convex), Proposition 1.64
implies p̄ ∈ Ico . By Corollary 1.68, ϕp̄ is proper, in particular domϕp̄ �= ∅.

For y∗ ∈ Bc we have

ϕ

(
y∗
∣∣∣∣ inf

u∈g(x)+D

(
〈u∗, u〉 {c} + bdC

))
Th. 1.65 (vii)= inf

u∈g(x)+D
ϕ
(
y∗
∣∣ 〈u∗, u〉 {c} + bdC

)
= inf

u∈g(x)+D
−σ
(
y∗
∣∣ 〈u∗, u〉 {c} + C

)
= inf

u∈g(x)+D
〈u∗, u〉 .
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Let y∗ ∈ domϕp̄ ∩ Bc. By Theorem 3.19 there exists some ū∗ (a solution to
the scalar dual problem) such that

ϕ(y∗|p̄) = ϕ

(
y∗
∣∣∣∣ inf

g(x)∩−D =∅
f(x)

)
Th. 1.65 (vii)= inf

g(x)∩−D =∅
ϕ
(
y∗
∣∣ f(x)

)
Th. 3.19= inf

x∈X

(
ϕ
(
y∗
∣∣ f(x)

)
+ inf

u∈g(x)+D
〈ū∗, u〉

)

= inf
x∈X

(
ϕ
(
y∗
∣∣ f(x)

)
+ ϕ

(
y∗
∣∣∣∣ inf

u∈g(x)+D
(〈ū∗, u〉 {c} + bdC)

))
Th. 1.65 (v), (vii)= ϕ

(
y∗
∣∣ φc(ū∗)

)
.

Together we have

∀y∗ ∈ domϕp̄ ∩Bc, ∃ū∗ ∈ U∗ : ϕ(y∗|φc(ū∗)) = ϕ(y∗| p̄ ). (3.25)

For every A ∈ I and α > 0 it is true that ϕ(α · y∗|A ) = −αϕ(y∗|A ). We
conclude from (3.25) that ϕ(y∗| d̄c ) ≥ ϕ(y∗| p̄ ) for all y∗ ∈ C◦ \ {0}. As
p̄ ∈ Ico , Theorem 1.65 (iv) yields d̄c � p̄ . By the weak duality inequality we
obtain d̄c = p̄. ��

Note that strong duality implies that (3.23) is satisfied with equality.
As for type I conjugate duality, the existence of a solution of the dual

problem remains an open problem. Similarly to Theorem 3.7 we obtain the
following result.

Theorem 3.27. Let all the assumptions of Theorem 3.26 be satisfied and let
p̄ �= {−∞}, then

d̄c = wMax
⋃

u∗∈U∗
φc(u∗).

Proof. The proof is the same as the proof of Theorem 3.7 but using (3.25)
instead of (3.7). ��

3.3.3 Lagrange duality of type II

A type II variant, compare Section 3.2.2, can also be proven for Lagrange
duality. As in the case of conjugate duality, we obtain the existence of a
solution to the dual problem, whereas it remains open whether a solution to
the type I dual problem always exists.
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Based on the original definition in (3.21), we redefine the Lagrangian of
(PL) by

L : X × U∗ × C◦ \ {0} → I, L(x, u∗, y∗) := Lc

(
x,

−u∗
y∗(c)

)
⊕ h(y∗), (3.26)

where we assume c ∈ intC. Note that it is sufficient for many reasons to
consider the following simplified Lagrangian

L : X × U∗ ×Bc → I, L(x, u∗, y∗) := Lc(x, u∗) ⊕ h(y∗).

The Lagrangian is independent of the choice of the parameter c ∈ intC and
can be expressed using the map

M(u∗,y∗) (u) := Inf {y ∈ Y : 〈u∗, u〉 + y∗(y) ≤ 0} ,

which we already introduced in Section 3.2.2.

Theorem 3.28. Let c ∈ intC. The Lagrangian L as defined in (3.26) can be
expressed as

L(x, u∗, y∗) = f(x) ⊕ inf
u∈g(x)+D

M(u∗,y∗)(u). (3.27)

In particular, L is independent of the choice of c ∈ intC.

Proof. We have c ∈ intC and y∗ ∈ C◦ \ {0}, hence y∗(c) < 0. We obtain

L(x, u∗, y∗) (3.26)= Lc

(
x, −u∗

y∗(c)

)
⊕ h(y∗)

(3.21)= f(x) ⊕ inf
u∈g(x)+D

(
〈u∗, u〉

{
−c
y∗(c)

}
+ bdC

)
⊕ h(y∗)

Pr. 1.56 (i)= f(x) ⊕ inf
u∈g(x)+D

(
〈u∗, u〉

{
−c
y∗(c)

}
+ h(y∗)

)
Pr. 3.13= f(x) ⊕ inf

u∈g(x)+D
M(u∗,y∗)(u),

which completes the proof. ��

For feasible x, f(x) is re-obtained from the Lagrangian. In contrast to the
corresponding result for the type I Lagrangian, we need f(x) ∈ Ico in the
next result because we use Proposition 3.10 in the proof. This assumption
cannot be dropped, because the special case g ≡ {0}, D = {0} implies the
statement of Proposition 3.10 and the assumption cannot be dropped there.

Proposition 3.29. Let f : X → Ico and x ∈ S, then

sup
(u∗,y∗)∈U∗×C◦\{0}

L(x, u∗, y∗) = f(x).



100 3 Duality

Proof. We have

sup
(u∗,y∗)∈U∗×C◦\{0}

L(x, u∗, y∗)

(3.26)= sup
y∗∈C◦\{0}

sup
u∗∈U∗

(
h(y∗) ⊕ Lc

(
x,

−u∗
y∗(c)

))
Pr. 1.56 (ii)

� sup
y∗∈C◦\{0}

(
h(y∗) ⊕ sup

u∗∈U∗
Lc

(
x,

−u∗
y∗(c)

))
Pr. 3.23= sup

y∗∈C◦\{0}
(h(y∗) ⊕ f(x)) Pr. 3.10= f(x),

Conversely, we have

sup
(u∗,y∗)∈U∗×C◦\{0}

L(x, u∗, y∗) � sup
y∗∈C◦\{0}

L(x, 0, y∗)

= sup
y∗∈C◦\{0}

(h(y∗) ⊕ f(x))

Pr. 3.10= f(x).

Together we obtain the desired equality. ��

Likewise to Proposition 3.24 (type I) and Proposition 3.20 (scalar problem)
we now consider the case x �∈ S. Again we need an assumption to g.

Proposition 3.30. Let f : X → Ico be a proper function, let the set g(x)+D
be closed and convex for every x ∈ X and let c ∈ intC. Then

sup
(u∗,y∗)∈U∗×C◦\{0}

L(x, u∗, y∗) =
{
f(x) if x ∈ S
{+∞} otherwise.

Proof. The first case has been shown in Proposition 3.29.
Let x �∈ S. We set

A := sup
(u∗,y∗)∈U∗×C◦\{0}

L(x, u∗, y∗).

For all u∗ ∈ U∗ and all y∗ ∈ C◦ \ {0}, we have

A � f(x) ⊕ h(y∗) ⊕ inf
u∈g(x)+D

(〈u∗, u〉 {c} + bdC) .

From Theorem 1.65 (iii), (v) and (vii) we get

ϕA ≥ ϕf(x) + ϕh(y∗) + inf
u∈g(x)+D

ϕ{〈u∗,u〉{c}+bdC}.

Let ȳ∗ ∈ domϕf(x) ∩Bc. Then
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ϕ{〈u∗,u〉{c}+bdC}(ȳ∗) = 〈u∗, u〉 and ϕh(ȳ∗)(ȳ∗) = 0.

As shown in the proof of Proposition 3.20 (using a separation theorem), in
case of x �∈ S there exists a sequence (u∗n) in U∗ such that infu∈g(x)+D 〈u∗n, u〉
tends to +∞. It follows that ϕA(ȳ∗) = +∞. By Theorem 1.65 (ii) we get
A = {+∞}. ��

The dual objective function of type II is defined by

φ : U∗ × C◦ \ {0} → I, φ(u∗, y∗) := inf
x∈X

L(x, u∗, y∗).

By Proposition 1.56 (i), the dual objective function can be equivalently ex-
pressed as

φ : U∗ × C◦ \ {0} → I, φ(u∗, y∗) = φc

(
−u∗
y∗(c)

)
⊕ h(y∗). (3.28)

If the type I dual objective function φc is Ico -valued, it can be re-obtained
from φ using Corollary 3.11 as

φc(u∗) = sup
y∗∈Bc

φ(u∗, y∗). (3.29)

The type II dual problem associated to (PL) is defined as

maximize φ : U∗ × C◦ \ {0} → I w.r.t. � over U∗ × C◦ \ {0}. (DII
L )

The optimal value of (DII
L ) is denoted by

d̄ := sup
(u∗,y∗)∈U∗×C◦\{0}

φ(u∗, y∗). (3.30)

The relationship to the type I dual problem is now pointed out.

Theorem 3.31. Let f : X → I be convex, let g : X → U be D-convex and
c ∈ intC. Then both dual problems (DI

L) and (DII
L ) have the same optimal

values; that is, d̄c = d̄.

Proof. It is a straightforward exercise to show that the convexity assumptions
to f and g imply that L(·, u∗) is a convex function for every u∗ ∈ U∗. By
Proposition 1.64, we get φc(u∗) ∈ Ico for all u∗ ∈ U∗. From (3.29) we obtain

d̄c = sup
u∗∈U∗

φc(u∗) = sup
u∗∈U∗

sup
y∗∈C◦\{0}

φ(u∗, y∗)

= sup
(u∗, y∗)∈U∗×C◦\{0}

φ(u∗, y∗) = d̄,

which completes the proof. ��
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Now we immediately obtain a type II duality theorem from the corre-
sponding type I result (Theorem 3.26). Conversely, we see that the following
result implies the type I result.

Theorem 3.32 (strong duality of type II). Let f be convex, let g be
D-convex and

g(dom f) ∩ −intD �= ∅.

Then, strong duality holds between (PL) and (DII
L ); that is, p̄ = d̄.

Proof. Follows from Theorems 3.26 and 3.31.

As for the conjugate duality, we can show that the Lagrange dual problem
of type II has a solution, whenever the primal optimal value is finite.

Theorem 3.33. Let all the assumptions of Theorem 3.32 be satisfied and let
p̄ �= {−∞}. Then the dual problem (DII

L ) has a solution.

Proof. The proof is almost the same as the proof of Theorem 3.17 but using
(3.25) instead of (3.7). ��

3.4 Existence of saddle points

In the scalar theory the existence of a saddle point implies the existence of
a solution to the primal and the dual problem. Under convexity assumptions
and if a constraint qualification holds, the converse is also true: The existence
of a solution to the primal problem implies the existence of a saddle point of
the Lagrangian. We show in this section that analogous results are true for
vector optimization problems. To this end the lattice extension of the vector
optimization problem and the Lagrangian of type II has to be considered.

In Section 2.6, saddle points of a complete-lattice-valued function have
been studied. The notion of a saddle point for the two types of I-valued La-
grangians, as introduced in the preceding sections, is immediately obtained.
The primal problem (2.13) in Section 2.6 is defined by the Lagrange-type
function l : X × V → Z, which is now replaced by the Lagrangians of type I
or II. The objective function in Section 2.6 is defined by

∀x ∈ S : p(x) = sup
v∈V

l(x, v).

Moreover, the primal feasible set is introduced by the Lagrange-type function
l : X × V → Z as

S :=
{
x ∈ X

∣∣∣∣ sup
v∈V

l(x, v) �= +∞
}
.
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In order to can use the concepts and results of Section 2.6, it is important
to ensure that the statements of Propositions 3.24 and 3.30 hold. This is
realized by the following assumptions: Let f : X → I be proper and let the
sets g(x) + D be closed and convex for each x ∈ X . In case of the type II
dual problem, we assume additionally that f : X → Ico .

It is clear from Theorem 2.57 that the existence of a saddle point (X̄, Ū∗) ∈
2X × 2U∗

of the Lagrangian (3.21) implies that X̄ is a solution to (PL).
Similarly the existence of a saddle point (X̄, V̄ ∗) ∈ 2X × 2U∗×C◦\{0} of the
Lagrangian (3.26) implies that X̄ is a solution to (PL).

Under convexity assumptions and a constraint qualification, the opposite
implication holds for the type II Lagrangian in (3.26).

Theorem 3.34. Let X̄ be a solution to (PL), where f is convex, g is D-
convex and

g(dom f) ∩ −intD �= ∅.

Then there exists V̄ ∗ ⊆ U∗ ×C◦ \ {0} such that (X̄, V̄ ∗) is a saddle point of
the Lagrangian (3.26).

Proof. By Theorem 3.33 there exists a solution V̄ to (DII
L ). Theorem 3.32

yields the equality infx∈S f(x) = sup(u∗,y∗)∈T φ(u∗, y∗). The result now fol-
lows from Theorems 2.57. ��

It remains an open problem whether or not a corresponding result is valid
for the type I Lagrangian (3.21). Of course this problem is equivalent to the
open problem 3.6.

3.5 Connections to classic results

In the literature one can find duality results with a vector-valued dual ob-
jective function (e.g. Boţ et al., 2009, Chapter 4). We demonstrate in this
section, how results of this type can be obtained from the I-valued duality
theory.

Let X be a set and let Y be an extended partially ordered topological
vector space, let the ordering cone C of Y be closed and let ∅ �= intC �= Y .
Let p : X → Y be the objective function and S ⊆ X be the feasible set of a
vector optimization problem

wMin
x∈S

p(x), (PY )

where we assume that p[S] ⊆ Y . One is interested in finding weakly efficient
solutions to (PY ). A vector x̄ ∈ S is called a weakly efficient solution to (PY )
if p(x̄) ∈ wMin p[S].

We consider the lattice extension (PI) with the objective function
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pI : X → I, pI(x) := Inf {p(x)}

as well as the dual problem (DI) as defined in Section 3.1. Let dI : V → I
be the objective function and T ⊆ V the feasible set of Problem (DI). For
simplicity we assume that dI [T ] ⊆ I \{{−∞} , {+∞}}. We consider the dual
vector optimization problem

wMax
(v,y)∈T

d(v, y), (DY )

where we set

d : V × Y → Y , d(v, y) := y and T := {(v, y) ∈ T × Y | y ∈ dI(v)} .

A vector (v̄, ȳ) ∈ T is called a weakly efficient solution to (DY ) if d(v̄, ȳ) ∈
wMax d[T ]. Note that we have

dI(T ) =
⋃
v∈T

dI(v) = {y | (y, v) ∈ T } = d[T ]. (3.31)

In order to formulate a weak duality assertion, we write y1 <C y2, whenever
y2 − y1 ∈ intC.

Theorem 3.35 (weak duality). The following statements are equivalent:

(i) Weak duality between (PI) and (DI) holds, that is, if x̄ ∈ S and v̄ ∈ T ,
then dI(v̄) � pI(x̄);

(ii) Weak duality between (PY ) and (DY ) holds, that is, there is no x ∈ X
and no (v, y) ∈ T such that p(x) <C d(v, y).

Proof. Let (i) be satisfied and let x̄ ∈ S and (v̄, ȳ) ∈ T be given. We get ȳ ∈
dI(v̄) and dI(v̄) � pI(x̄). By assumption we have dI(v̄) ∈ I\{{−∞} , {+∞}}
and p[S] ⊆ Y implies pI(x̄) ∈ I \ {{−∞} , {+∞}}. We get ∅ �= Cl +pI(x̄) ⊆
Cl +dI(v̄) �= Y and hence p(x̄) ∈ Cl +dI(v̄). Corollary 1.48 (ix) and (x)
yield p(x̄) �∈ dI(v̄) − intC. Thus we get p(x̄) �∈ {ȳ} − intC. It follows that
p(x̄) �<C d(v̄, ȳ), i.e., (ii) holds.

Let (ii) be satisfied and let x̄ ∈ S and v̄ ∈ T be given. By assumption we
have dI(v̄) ∈ I \ {{−∞} , {+∞}}. Hence dI(v̄) is a nonempty subset of Y .
For all ȳ ∈ dI(v̄) we have p(x̄) �<C d(v̄, ȳ) = ȳ. We get p(x̄) �∈ dI(v̄) − intC.
Corollary 1.48 (ix) and (xi) yield p(x̄) ∈ Cl +dI(v̄). Hence dI(v̄) � pI(x̄). ��

In Theorems 3.7 and 3.27 we have shown that the dual optimal value d̄I
for both of the type I dual problems (DI

F) and (DI
L) can be expressed as

d̄I := sup
v∈T

dI(v) = wMax dI(T ). (3.32)

As a consequence, strong duality between (PI) and (DI) entails a classical
scheme of strong duality.
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Theorem 3.36 (strong duality). Assume that strong duality holds between
(PI) and (DI), that is, p̄I = d̄I , and let (3.32) be satisfied. Then, strong
duality between (PY ) and (DY ) holds; that is, if x̄ is a weakly efficient solution
to (PY ), then there exists a weakly efficient solution (v̄, ȳ) to (DY ) such that
p(x̄) = d(v̄, ȳ).

Proof. Let ȳ = p(x̄) ∈ wMin p[S]. We get

wMin p[S] ⊆ Inf p[S] = Inf
⋃
x∈S

Inf {p(x)} = inf
x∈S

pI(x)

= p̄I = d̄I
(3.32)= wMax dI(T ) (3.31)= wMax d[T ].

It follows ȳ ∈ wMax d[T ] ⊆ d[T ]. Hence there exists v̄ ∈ T such that (v̄, ȳ) ∈
T and p(x̄) = ȳ = d(v̄, ȳ). ��

Under the common (but restrictive) assumption that p[S] + C is closed,
we get also the so-called converse duality.

Theorem 3.37 (converse strong duality). Assume that strong duality
holds between (PI) and (DI) and let p[S] + C be closed. Then, converse
strong duality between (PY ) and (DY ) holds; that is, if (v̄, ȳ) is a weakly
efficient solution to (DY ), then ȳ ∈ wMin(p[S] + C).

Proof. Let ȳ = d(v̄, ȳ) ∈ wMax d[T ]. As p[S] + C is closed, we get

Inf p[S] = wMin cl (P [S] + C) = wMin(p[S] + C).

It follows

wMax d[T ] (3.31)= wMax dI(T ) ⊆ Sup dI(T ) = d̄I

= p̄I = Inf p[S] = wMin(p[S] + C),

which completes the proof. ��

The opposite direction of the statements in the last two theorems can be
shown when p[S] + C is assumed to be closed.

Theorem 3.38. Assume that strong duality and converse strong duality hold
between (PY ) and (DY ). Further let (3.32) be satisfied and let p[S] =
cl (p[S] + C). Then strong duality between (PI) and (DI) holds.

Proof. By the assumption p[S] = cl (p[S] + C), we get

wMin p[S] = wMin cl (p[S] + C) = Inf p[S] = p̄I

and (3.32) yields
wMax d[T ] = wMax dI(T ) = d̄I .



106 3 Duality

Strong duality between (PY ) and (DY ) yields wMin p[S] ⊆ wMax d[T ]. Con-
verse strong duality between (PY ) and (DY ) yields wMax d[T ] ⊆ wMin(p[S]+
C).

We have p[S] ⊆ p[S]+C ⊆ cl (p[S]+C) ⊆ p[S] and hence p[S] = p[S]+C.
Together we obtain p̄I = d̄I . ��

We observe that duality between (PY ) and (DY ) involves the existence of
weakly minimal elements. In the scalar duality theory (and likewise in the
I-valued theory) we obtain the existence of a solution to the dual problem
as a result. But a solution to the primal problem is not required to exist in
order to get duality assertions.

3.6 Notes on the literature

A general classification of vectorial duality can be found in the recent book by
Boţ et al. (2009) on duality in vector optimization. The authors distinguish
between duality via scalarization, Wolfe and Mond-Weir duality concepts and
duality based on vector conjugacy. Some results of this chapter are related
to results of the first and third class of problems in Boţ et al. (2009), but our
philosophy is a different one. Among all other approaches to duality in vector
optimization the one by Tanino (1992) seems to be the closest. This paper
is followed, for instance, by (Song, 1997, 1998; Chen and Li, 2009; Li et al.,
2009). The paper by Tanino (1992) is partially based on several earlier works
(Nieuwenhuis, 1980; Kawasaki, 1981, 1982; Sawaragi et al., 1985; Tanino,
1988).

The conjugate in Definition 3.4 can be seen as a combination of the k-
conjugate introduced by Tanino and Sawaragi (1980) and the conjugate con-
sidered by Tanino (1992), see also Chapter 7 in (Boţ et al., 2009). One can
sometimes observe similarities between the mentioned results from the lit-
erature and the results of this chapter. The difference is, however, that the
infimality concept used by Nieuwenhuis (1980); Tanino (1992) and others was
not considered to be an infimum in a complete lattice.

Another approach to vectorial duality is to suppose the existence of the
supremum of every bounded subset of the vector space (least upper bound
property) (e.g. Zowe, 1975; Zălinescu, 1983; Pallaschke and Rolewicz, 1997).
This approach seems to be only of theoretical interest (compare e.g. Jahn,
2004, p. 107: “The notion of strong minimality is very restrictive and is
often not applicable in practice.”). Duality on a very abstract level, but with
connections to our approach has been studied by Mart́ınez-Legaz and Singer
(1994).

The general duality concept in Section 3.1 seems to be new, in particular,
in view of its application in vector optimization. The canonical extension has
been introduced in (Heyde and Löhne, 2010).
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The conjugate duality of type I has been published in a finite dimensional
setting in (Löhne and Tammer, 2007). Similar proof techniques have been
already used in (Löhne, 2005b). The type II conjugate duality is due to
Hamel (2009a,b); Schrage (2009), where the complete lattice F is used and the
assumptions to the cone C are therefore weaker. The existence of a solution
to the dual problem has been proven by Hamel (2009a,b) with respect to
another but related solution concept. In particular, the generalized affine map
M(x∗,y∗)(x), compare Proposition 3.13, has been introduced and studied by
Hamel (2009a). A new aspect in our exposition is that Y does not need to
be Hausdorff.

Lagrange duality and saddle points in vector optimization and set-valued
optimization have been investigated by Tanaka (1990); Martein (1990); Tam-
mer (1991); Li and Wang (1994); Tanaka (1994); Tan et al. (1996); Li and
Chen (1997); Götz and Jahn (1999); Adán and Novo (2005); Ehrgott and
Wiecek (2005b); Ha (2005) and many others. The set-valued constraints in
Section 3.3 were used by several authors, among them Oettli (1982), Borwein
(1977); Corley (1987); Luc (1988); Götz and Jahn (1999). In (Löhne, 2005a)
similar Lagrange duality results in a set-valued framework can be found. The
saddle point theorem in Section 3.4 is a new result based on the definition of
a saddle point due to Andreas H. Hamel and the author. It seems to be the
first ever saddle point theorem in vector optimization, which is based on the
notion of infimum and supremum.

The classical duality scheme which is considered in Section 3.5 is due to
Jahn (1983) and is discussed in (Boţ et al., 2009, Section 4.3.4), where specific
classes of problems are considered.
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Linear Problems



Chapter 4

Solution concepts and duality

Linear vector optimization problems provide an important subclass of convex
vector optimization problems that is of special importance. On the one hand,
they occur in a wide range of applications in economics, engineering, finance
and other fields. On the other hand, in contrast to the general case, the linear
structure allows to use special methods and yields specific results. It is an
important feature of linear vector optimization problems that one can deal
with only polyhedral sets.

Even though several results of this chapter are already covered by the
convex theory in the first part of this book, the following exposition of the
linear case is self-contained. The concepts already introduced in the first part
are recalled and all the results are proven directly. Nevertheless, at several
places the relationship to results and concepts of Part I is discussed.

We consider the problem to minimize q linear objective maps Pi : Rn → R

under linear constraints. The objective functions Pi can be regarded as the
rows of a (q × n)-matrix P . The feasible set is given by

S := {x ∈ Rn| Bx ≥ b} ,

where B ∈ Rm×n and b ∈ Rm. The problem can be expressed as

minimize P : Rn → Rq with respect to ≤ over S, (P)

where ≤ stands for the corresponding componentwise ordering relation in Rq

and Rm.
This chapter is organized as follows. We start with scalarization methods

in Section 4.1. A solution concept for (P) is introduced in Section 4.2. In par-
ticular, we point out that the solution concepts introduced in Chapter 2 are
meaningful and useful in the linear case. Motivated by the ideas of Chapter
3, we present in Section 4.3 a duality theory for linear vector optimization
problems. In Section 4.4, the theory is related to the type II duality results for
the convex case, which have been studied in Chapter 3. We shall demonstrate
that the concepts and results for the linear case can be reformulated using
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infimum and supremum. In Section 4.5 it is shown that the set-valued dual
problem has a vector-valued counterpart, which is called the geometric dual
problem. Homogeneous problems shall be studied in Section 4.6. We continue
in Section 4.7 with a criterion to identify those faces of the polyhedral im-
age set of a linear vector optimization problem that consist of only minimal
elements.

4.1 Scalarization

One of the most important techniques in vector optimization is scalarization.
In this section we point out two basic scalarization methods. Moreover, we will
study solutions of scalarized problems. Several basic techniques, which will
be frequently used throughout this chapter, are provided. The scalarization
methods are also motivated from an applicational point of view. It turns out
that it is beneficial to consider both scalarization methods simultaneously.
This can be understood as a kind of duality.

4.1.1 Basic methods

Two fundamental scalarization methods are introduced in this subsection.
Subsequently, both methods will play a crucial role. By the way we will
recall several duality statements for scalar linear programs.

For the first method, we create a new objective map based on the given
q linear objective functions x �→ Pix. To this end we assign a nonnegative
weightwi ∈ R+ to each of the objective maps. The weighted sum is considered
to be our new objective map

q∑
i=1

wiPix = wTPx.

This method is called weighted sum scalarization. For each vector w ∈
Rq, w ≥ 0, we obtain a scalar linear program

minwTPx subject to Bx ≥ b. (P1(w))

The weights can be normalized so that we can assume
∑q

i=1 wi = 1, which
can be written as eTw = 1 for eT = (1, . . . , 1). If one weight wi is zero, then
the corresponding objective map has no influence. Therefore, it can be useful
to assume wi > 0 in certain situations.

The dual problem of (P1(w)) is obtained as
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max bTu subject to
{
BTu = PTw

u ≥ 0. (D1(w))

The scalar duality theory turns out to be a principal tool in the following
sections. Thus let us recall the basic facts. If x is feasible for P1(w) and u
is feasible for D1(w), then we have bTu ≤ wTPx (weak duality). Moreover,
solutions to both problems exist in this case. If a solution to P1(w) exists,
then there also exists a solution to D1(w) and vice versa. The optimal values
coincide in this case (strong duality). The same is true for other pairs of dual
linear programs.

Note that the term solution always means optimal solution in this book.
The term feasible solution, which is often used in the literature on linear
programming, is not used here. Instead, we speak about feasible points (or
feasible elements, or feasible vectors).

We next consider a second scalarization method. The q linear objective
functions are associated to a single reference variable. The i-th objective
function is restrained from being larger than a common reference variable z
plus a fixed real number yi, that is,

P1x ≤ y1 + z
P2x ≤ y2 + z

. . .
Pqx ≤ yq + z.

The reference variable z becomes the objective function that has to be min-
imized. This standard method is called scalarization by a reference variable.
Setting e = (1, . . . , 1)T , we get for each vector y ∈ Rq the scalar linear pro-
gram

min z subject to
{
Bx ≥ b
Px ≤ y + z · e. (P2(y))

The dual program is easily obtained as

max bTu− yTw subject to



BTu− PTw = 0

eTw = 1
(u,w) ≥ 0.

(D2(y))

Both pairs of dual problems (P1(w)), (D1(w)) and (P2(y)), (D2(y)) will play
a crucial role in the following. In the subsequent results and proofs, both
pairs often occur together. In some sense, the pairs can therefore considered
to be dual to each other.
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4.1.2 Solutions of scalarized problems

We recall in this section the classical notions of weakly efficient solutions and
efficient solutions. It is shown that they correspond to solutions of scalar-
ized problems. Even though the term “solution” is used, we distinguish these
concepts from solutions to vector optimization problems, which shall be in-
troduced in the subsequent sections.

For vectors ȳ, ŷ ∈ Rq, we write ȳ < ŷ for the componentwise strict order,
which is equivalent to ŷ − ȳ ∈ int R

q
+. Recall that a feasible vector x̄ ∈ S is

called weakly efficient solution to (P) if there is no feasible vector x ∈ S with
Px < Px̄. The set of weakly efficient solutions to (P) is denoted by wEff (P).

The following result shows that a weakly efficient solution to (P) can be
characterized by solutions to both types of scalarized problems (P1(w)) and
(P2(y)) for suitable parameters w and y. The notation w � 0 stands for
[w ≥ 0 ∧ w �= 0] or equivalently w ∈ R

q
+ \ {0}.

Theorem 4.1. For the linear vector optimization problem (P) the following
statements are equivalent.

(i) There is a weight vector w � 0 such that x̄ solves (P1(w)).
(ii) There is a vector y ∈ Rq such that (x̄, 0) solves (P2(y)).
(iii) x̄ is a weakly efficient solution to (P).

Proof. (i) ⇒ (iii). There is no x ∈ S with wTPx < wTP x̄. Hence there is no
x ∈ S with Px < Px̄ because otherwise w � 0 would imply wTPx < wTP x̄.

(iii) ⇒ (ii). We set y := P x̄. Then (x̄, 0) is feasible for (P2(y)). Suppose
that (x̄, 0) is not optimal for (P2(y)). Then there is some feasible (x, z) for
(P2(y)) such that z < 0. This implies Px ≤ y+ ze = P x̄+ ze < P x̄, i.e., (iii)
does not hold.

(ii) ⇒ (i). Let (x̄, 0) be a solution to (P2(y)). From the scalar duality
theorem we obtain a solution (ū, w̄) of (D2(y)) and the optimal values of
both problems coincide, that is, bT ū − yT w̄ = 0. It can be seen that ū is
a solution to (D1(w̄)). Applying again the scalar duality theorem we get a
solution x̂ to (P1(w̄)). The optimal values coincide, that is, bT ū = w̄TP x̂. It
follows w̄TP x̂ = yT w̄. Since (x̄, 0) is feasible for (P2(y)), we have P x̄ ≤ y and
hence w̄TP x̄ ≤ w̄T y = yT w̄. It follows that w̄TP x̄ ≤ w̄TP x̂. Thus, x̄ solves
(P1(w̄)). ��

Recall that

wMinA =
{
y ∈ A| ({y} − int R

q
+) ∩A = ∅

}
is the set of weakly minimal vectors of a set A ⊆ Rq with respect to R

q
+.

The set of weakly maximal vectors of A is wMaxA = −wMin(−A). For a
function f : X → Y and a set A ⊆ X , we use the notation

f [A] := {f(x) ∈ Rq| x ∈ A}.
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The set P [S] is called image of Problem (P). It can easily be seen that

P [wEff (P)] = wMinP [S].

We proceed with similar considerations for efficient solutions, which we
already introduced in a more general framework. A feasible vector x̄ ∈ S is
an efficient solution to (P) if and only if there is no feasible vector x with
Px � P x̄. The set of efficient solutions to (P) is denoted by Eff (P).

It is possible to give a characterization of efficient solutions similar to the
characterization of weakly efficient solutions in Theorem 4.1. To this end we
consider the following dual pair of scalar problems:

min eTPx subject to
{
Bx ≥ b
Px ≤ y,

(P3(y))

max bTu− yT v subject to
{
BTu− PT v = PT e

(u, v) ≥ 0. (D3(y))

Again, the weighted sum scalarization (P1(w)) is involved in the characteri-
zation, but in contrast to Theorem 4.1 non-zero weights are not allowed.

Theorem 4.2. For the linear vector optimization problem (P) the following
statements are equivalent:

(i) There exists a weight vector w > 0 such that x̄ solves (P1(w));
(ii) There exists some y ∈ Rq such that x̄ solves (P3(y));
(iii) x̄ is an efficient solution to (P).

Proof. (i) ⇒ (iii). There is no x ∈ S such that wTPx < wTP x̄. Hence, there
is no x ∈ S with Px � P x̄. Otherwise, w > 0 would imply wTPx < wTP x̄,
which contradicts (i).

(iii) ⇒ (ii). We set y := P x̄. Then x̄ is feasible for (P3(y)). Assuming that
x̄ is not a solution to (P3(y)), we get a feasible x with eTPx < eTP x̄. Taking
into account Px ≤ y ≤ P x̄, we obtain Px � P x̄. This is a contradiction as
(iii) is not satisfied.

(ii) ⇒ (i). There exists some y ∈ Rq such that x̄ solves (P3(y)). From
a scalar duality result we get the existence of a solution (ū, v̄) to (D3(y)).
Moreover, the optimal values of both problems coincide, that is, bT ū−yT v̄ =
eTP x̄. It can be shown that ū is an optimal solution to (D1(w̄)), where
w̄ := v̄ + e > 0. Applying again the duality theorem, we get the existence
of a solution x̂ to (P1(w̄)). As the optimal values of both problems coincide,
we get bT ū = (v̄ + e)TP x̂. It follows (v̄ + e)TP x̂ = v̄T y + eTP x̄. Since x̄
is feasible for (P3(y)), we get P x̄ ≤ y and hence v̄TP x̄ ≤ v̄T y. We obtain
w̄TP x̄ ≤ w̄TP x̂. Thus x̄ solves (P1(w̄)), too. ��

Recall that
MinA =

{
y ∈ A|

(
{y} − R

q
+ \ {0}

)
∩A = ∅

}
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is the set of minimal vectors of a set A ⊆ Rq with respect to R
q
+. The set

of maximal vectors of A is MaxA := −Min(−A). From the definitions we
immediately get

P [Eff (P)] = MinP [S].

The following statement is a special result for the linear case.

Corollary 4.3. Let Eff (P) be nonempty. Then

MinP [S] + R
q
+ = P [S] + R

q
+.

Proof. The inclusion ⊆ is obvious. To show the opposite inclusion let y ∈
P [S] + R

q
+. Choose some x̄ ∈ Eff (P). By Theorem 4.2, there exists some

ȳ ∈ Rq such that x̄ solves (P3(ȳ)). From the scalar duality theory, we conclude
that (D3(ȳ)) has a solution. It follows that (D3(y)) has a feasible point. Since
y ∈ P [S] + R

q
+, there exists x ∈ S such that y ≥ Px. This means that

x is feasible for (P3(y)). From the scalar duality theory, we deduce that an
optimal solution x̂ to (P3(y)) exists. We have y ≥ P x̂ and Theorem 4.2 yields
P x̂ ∈ MinP [S]. Hence y ∈ MinP [S] + R

q
+. ��

4.2 Solution concept for the primal problem

A solution concept for the primal linear vector optimization problem (P)
is now introduced. This concept is related (but slightly different) to those
introduced in Chapter 2. Taking into account the polyhedral structure of the
problem, a solution is envisioned to be a finite subset of the feasible set. In
order to realize this, not only vectors but also directions have to be considered.
A solution S̄ ⊆ S is intended to be a subset of the efficient solutions. This
condition can be written as

P [S̄] ⊆ MinP [S].

On the other hand we expect that enough information is contained in a
solution S̄ in order to characterize the set

P := P [S] + R
q
+,

which is called the upper image of (P). Note that in scalar optimization, the
upper image is completely determined by a single minimal solution but this
is typically not the case in vector optimization. Moreover, bear in mind that
the latter requirement refers to the attainment of the infimum in Chapter 2.

Finitely many vectors are not adequate to fix a polyhedral set, which is
defined to be the intersection of finitely many halfspaces1. However, a finite

1 This is commonly called a polyhedral convex set. Since we only consider convex
sets, we use the shorter term, likewise for related concepts.
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characterization is possible by directions and vectors. Given a nonempty con-
vex set A ⊆ Rn, we say that y ∈ Rn \ {0} is a direction (of recession) in A
if the half-line L(x, y) := {x+ λy| λ ≥ 0} belongs to A for all vectors x ∈ A.
For closed convex sets it is sufficient to require the existence of some x ∈ A
such that L(x, y) ⊆ A in order to obtain a direction (Rockafellar, 1972, The-
orem 8.3). The set of all directions in A ⊆ Rn together with 0 ∈ Rn is called
the recession cone (or asymptotic cone). It is denoted by A∞. A direction y
in A is called extreme if there are no directions ȳ, ŷ in A with ȳ �= αŷ for all
α > 0 such that y = ȳ + ŷ.

A vector x̂ ∈ Rn \ {0} is a direction of the feasible set S of Problem
(P), called a feasible direction if and only if x̂ is a nonzero solution of the
homogeneous system of inequalities, that is,

0 �= x̂ ∈ Sh := {x ∈ Rn| Bx ≥ 0} .

It is known (Rockafellar, 1972, Theorem 19.1) that every polyhedral set A
can be expressed as

S = Q+K,

where Q is a polytope (that is a bounded polyhedral set) and K a polyhedral
cone having the same directions as A. Recall that each polytope is the convex
hull of finitely many vectors and each polyhedral cone is the conical hull of
finitely many directions. The conical hull of directions k1, . . . , ks ∈ Rn \ {0}
is the set

cone
{
k1, . . . , ks

}
:=

{
s∑

i=1

µik
i

∣∣∣∣µ1, . . . , µs ≥ 0

}
.

Furthermore, we set cone ∅ := {0}. If A ⊆ Rn is a nonempty polyhedron,
there are x1, . . . , xr ∈ Rn (r ≥ 1) and k1, . . . , ks ∈ Rn \ {0} (s ≥ 0) such that

A = co
{
x1, . . . , xr

}
+ cone

{
k1, . . . , ks

}
.

In case of s = 0, no directions occur. This is exactly the case when the set A
is bounded (see e.g. Rockafellar, 1972, Theorem 8.4). The recession cone of
A can be expressed as

A∞ = cone
{
k1, . . . , ks

}
.

As a consequence, for a linear map L : Rn → Rp we have

L (A∞) = L(A)∞, (4.1)

and two nonempty polyhedral sets A1, A2 satisfy

A1
∞ +A2

∞ =
(
A1 +A2

)
∞ . (4.2)
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The feasible set S ⊆ Rn can be represented by a finite set S̄ ⊆ S and a
finite set S̄h ⊆ Sh \ {0} as

S = co S̄ + cone S̄h.

This implies the following finite description of the upper image of (P),

P = P [S] + R
q
+ = coP [S̄] + coneP [S̄h] + R

q
+.

We next propose a solution concept for the linear vector optimization
problem (P), which is based on the above ideas.

Definition 4.4. A nonempty set S̄ ⊆ Rn together with a (possibly empty)
set S̄h ⊆ Rn \ {0} is called a finitely generated solution to the linear vector
optimization problem (P) if

(i) S̄ is a finite subset of S,
(ii) S̄h is a finite subset of Sh,
(iii) P [S̄] ⊆ MinP [S],
(iv) P [S̄h] ⊆ MinP [Sh],
(v) P [S] ⊆ coP [S̄] + coneP [S̄h] + R

q
+.

Note that, if S̄h = ∅, the conditions (ii) and (iv) disappear (as they are
obviously satisfied) and (v) reduces to P [S] ⊆ coP [S̄] + R

q
+.

If the there is no risk of confusion, in particular, in the context of linear
vector optimization, a finitely generated solution can also be called a solution
to (P). In the general context of vector optimization we have to distinguish
solutions (as defined in Section 2.2) from finitely generated solutions. The
relationship to the solution concepts from Chapter 2 is pointed out below.

If the feasible set S in the linear vector optimization problem (P) is re-
placed by Sh, we obtain the homogeneous problem

minimize P : Rn → Rq with respect to ≤ over Sh. (Ph)

The upper image of (Ph) is defined as

Ph := P [Sh] + R
q
+.

We also consider the corresponding scalarized problem

minwTPx subject to Bx ≥ 0 (Ph
1 (w))

as well as its dual problem

max0Tu subject to
{
BTu = PTw

u ≥ 0. (Dh
1 (w))

A nonzero efficient solution to (Ph) is called an efficient direction to (P). This
notion is motivated by the following result.
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Proposition 4.5. The following statements are equivalent:

(i) S �= ∅ and k ∈ Eff (Ph),
(ii) ∃x ∈ S, ∀λ ≥ 0 : x+ λk ∈ Eff (P).

Proof. Let (i) be satisfied. By Theorem 4.2, there exists w > 0 such that k
solves (Ph

1 (w)). Hence there exists a solution to the dual problem (Dh
1 (w)).

It follows that the feasible set of (D1(w)) is nonempty. Since S �= ∅, (P1(w))
has a solution x. We have Pk = 0 (by duality), hence x+ λk is a solution to
(P1(w)) for all λ ≥ 0. Theorem 4.2 implies that x+λk is an efficient solution
to (P).

Let (ii) be satisfied. We have B(x + λk) ≥ b for all λ ≥ 0 and hence

∀λ > 0 : B
(x
λ

+ k
)
≥ b

λ
.

Taking the limit for λ→ ∞, we get k ∈ Sh. Let d ∈ Sh such that Pd ≤ Pk.
We have P (x+ d) ≤ P (x+ k). Since P (x+ k) ∈ MinP [S], we get P (x+ d) =
P (x+ k) and hence Pd = Pk, i.e., k ∈ Eff (Ph). ��

We next show that extreme directions of the upper image Ph of (P) are
minimal except the unit vectors, which are the extreme directions of the
ordering cone.

Lemma 4.6. Let MinPh �= ∅. If k ∈ Rq \ {0} is an extreme direction of Ph

such that k �∈ R
q
+, then k ∈ MinPh.

Proof. Assume that k is not minimal in Ph. There exists some

z ∈
(
{k} − R

q
+ \ {0}

)
∩ Ph.

We conclude that y := k+(k−z) ∈ Ph +R
q
+ = Ph and z = k− (k−z) ∈ Ph.

Since 1
2y + 1

2z = k and k is an extreme direction of Ph there exists α > 0
such that y = αz. We obtain

(α− 1)k = (1 + α)(k − z) ∈ R
q
+ \ {0}.

Thus α �= 1. Since k �∈ R
q
+ we get α < 1 and hence k ∈ −R

q
+ \ {0}. This

means that Ph has a direction that belongs to −R
q
+ \ {0}. Hence Ph has no

minimal element, which contradicts the assumption MinPh �= ∅. ��

In the present setting, the solution concepts introduced in Chapter 2 can
be characterized by weaker conditions. The reader who is interested in a self-
contained theory of linear vector optimization can consider Proposition 4.7
as a definition and can continue with Theorem 4.11.

Proposition 4.7. A nonempty set X̄ ⊆ Rn is a solution to (P) (in the sense
of Definition 2.20) if and only if
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(i) X̄ ⊆ S,
(ii) P [X̄] = MinP [S],

Proof. In view of Theorem 2.21 we have to show that (i) and (ii) imply
Inf P [X̄] = Inf P [S]. By Corollary 4.3, we have MinP [S] + R

q
+ = P [S] + R

q
+.

From (ii) we get P [X̄]+ R
q
+ = P [S]+ R

q
+. This implies Cl +P [X̄] = Cl +P [S]

and hence Inf P [X̄] = Inf P [S]. ��

Proposition 4.8. A nonempty set X̄ ⊆ Rn is a mild solution to (P) if and
only if

(i) X̄ ⊆ S,
(ii) P [X̄] ⊆ MinP [S],
(iii) P [S] ⊆ cl

(
P [X̄] + R

q
+

)
.

Proof. The proof is similar to the proof of Proposition 4.7 (even easier). Note
that (iii) cannot be omitted, because (ii) does not hold with equality. ��

Proposition 4.9. For a nonempty set S̄ ⊆ Rn the following statements are
equivalent:

(i) X̄ is a convexity solution to (P),
(ii) X̄ is a solution to (P).

Proof. This follows from the fact that P [X̄]+R
q
+ = MinP [S]+R

q
+ is convex,

which is a consequence of Corollary 4.3. ��

Proposition 4.10. A nonempty set S̄ ⊆ Rn is a mild convexity solution to
(P) if and only if

(i) X̄ ⊆ S,
(ii) P [X̄] ⊆ MinP [S],
(iii) P [S] ⊆ cl co

(
P [X̄] + R

q
+

)
.

Proof. The proof is similar to the proof of Proposition 4.7 (even easier). But
(iii) cannot be omitted, because (ii) does not hold with equality. ��

We proceed with existence results with respect to the solution concepts
introduced in the second chapter.

Theorem 4.11. If Eff (P) �= ∅, then there exists a solution (in the sense of
Definition 2.20) to the linear vector optimization problem (P).

Proof. The nonempty set X̄ := Eff (P) satisfies (i) and (ii) of Proposition 4.7
and is therefore a solution. ��

Corollary 4.12. If Eff (P) �= ∅, then there exist a mild solution, a convexity
solution and a mild convexity solution to (P).

Proof. This is immediate by the above characterizations of the solution con-
cepts and Corollary 4.3. ��
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We next show the existence of a finitely generated solution to the linear
vector optimization problem (P).

Theorem 4.13. Let vertS �= ∅ and Eff (P) �= ∅ and set

S̄ := vertS ∩ Eff (P),

S̄h := extdirS ∩ Eff (Ph),

where extdirS denotes the set of extreme directions of S. Then (S̄, S̄h) is a
finitely generated solution to (P).

Proof. Conditions (i) to (iv) of Definition 4.4 are obviously satisfied. It re-
mains to show (v) and S̄ �= ∅.

Set X̄ := Eff (P) which is nonempty by assumption. Since S is a polyhe-
dron, we obtain that P [S] + R

q
+ is a polyhedron (see e.g. Rockafellar, 1972,

Theorem 19.3). By Corollary 4.3, we have MinP [S]+R
q
+ = P [S]+R

q
+. Using

P [X̄] = MinP [S], we obtain

P [X̄] + R
q
+ = P [S] + R

q
+.

Let y ∈ P [S]. There exists some x̄ ∈ X̄ = Eff (P) such that y ∈ {P x̄} + R
q
+.

By Theorem 4.2, there exists some w > 0 such that x̄ solves (P1(w)). Let

F :=
{
x ∈ S| wTP x̄ = wTPx

}
be the solution set of (P1(w)). Of course, F ⊆ S is a polyhedron. As vertS �=
∅, S contains no lines (follows from Rockafellar, 1972, Theorem 8.3). Hence
F contains no lines and by (Rockafellar, 1972, Theorem 18.5) we know that
F can be expressed as

F = covertF + cone extdirF.

In particular, we get vertF �= ∅. We next show that

vertF ⊆ vertS ∩ Eff (P).

Clearly, we have vertF ⊆ Eff (P). To show that vertF ⊆ vertS, let x ∈
vertF ⊆ S, let x1, x2 ∈ S and λ ∈ (0, 1) such that x = λx1 + (1 − λ)x2.
Assuming that x1 �∈ F , we get wTPx1 > wTP x̄. Since x ∈ F , we have
wTP x̄ = wTPx and hence wTPx2 < wTP x̄. This contradicts x̄ being a
solution to (P1(w)). We conclude that x1 ∈ F . Likewise we obtain x2 ∈ F .
Since x ∈ vertF , we obtain x1 = x = x2. This means that x ∈ vertS. In
particular, we see that S̄ is nonempty.

Let us show that

extdirF ⊆ extdirS ∩ Eff (Ph).
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By Proposition 4.5, every direction of F ⊆ Eff (P) belongs to Eff (Ph). Let
x̂ ∈ extdirF ⊆ S∞ and let x̂1, x̂2 be directions of S such that x̂ = x̂1 + x̂2.
Let x ∈ F be fixed. Assuming that x̂1 is not a direction of F , we obtain
some µ > 0 such that wTP (x + µx̂1) > wTP x̄. Since x̂ is a direction of
F have wTP x̄ = wTP (x + µx̂) and hence wTP (x + µx̂2) < wTP x̄. Since
x + µx̂2 ∈ S, this contradicts x̄ being a solution to (P1(w)). We conclude
that x̂1 and likewise x̂2 are directions of F . Since x̂ ∈ extdirF we obtain
some α > 0 such that x̂1 = αx̂2. This means x ∈ extdirS.

We now conclude that

y ∈ {P x̄} + R
q
+ ⊆ P [F ] + R

q
+

⊆ coP [vertF ] + cone [extdirF ] + R
q
+

⊆ coP [S̄] + coneP [S̄h] + R
q
+.

Thus, (v) of Definition 4.4 holds. ��

4.3 Set-valued duality

A set-valued dual problem is now assigned to the linear vector optimization
problem (P) and duality results are established. We choose a hyperplane-
valued dual objective function. In order to determine a hyperplane in Rq, we
need the same amount of information as for a vector in Rq, in fact, q real
numbers. From this point of view hyperplane-valued functions are not more
complicated than vector-valued functions.

We consider the following dual objective map

D : Rm × R
q
+ \ {0} ⇒ Rq, D(u,w) :=

{
y ∈ Rq| wT y = bTu

}
.

The following notation is used for a subset T of Rm × R
q
+ \ {0}:

D[T ] := {D(u,w)| (u,w) ∈ T } .

Note the important fact that D[T ] is a collection of hyperplanes (and not the
union). The union is denoted by

D(T ) :=
⋃

(u,w)∈T

D(u,w).

We use the following ordering relation in 2R
q

:

A1 � A2 : ⇐⇒ A2 ⊆ A1 + R
q
+ ⇐⇒ A2 + R

q
+ ⊆ A1 + R

q
+.

Note that the ordering � is an extension of the usual vector ordering in Rq

to the power set, i.e., for singleton sets it reduces to the usual vector ordering
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≤ with respect to the cone R
q
+. The following lemma points out the typical

usage of the ordering.

Lemma 4.14. Let be given two hyperplanes H̄ :=
{
y ∈ Rq| w̄T y = γ̄

}
(w̄ �=

0) and Ĥ :=
{
y ∈ Rq| ŵT y = γ̂

}
(ŵ �= 0). If w̄, ŵ ≥ 0 such that eT w̄ =

eT ŵ = 1, then

H̄ � Ĥ ⇐⇒ (w̄ = ŵ ∧ γ̄ ≤ γ̂) .

Proof. Let H̄ � Ĥ, i.e., Ĥ + R
q
+ ⊆ H̄ + R

q
+. From (4.2) and the fact that

A ⊆ B implies A∞ ⊆ B∞ for closed convex sets (follows from Rockafellar,
1972, Theorem 8.3), we deduce Ĥ∞ + R

q
+ ⊆ H̄∞ + R

q
+. Using (Rockafellar,

1972, Corollary 16.4.2), we obtain (Ĥ∞)◦ ∩R
q
− ⊇ (H̄∞)◦ ∩ R

q
−. As w̄, ŵ ≥ 0,

we get R−ŵ ⊇ R−w̄. Since eT w̄ = eT ŵ = 1, we conclude ŵ = w̄. The
inequality γ̂ ≥ γ̄ is now immediate.

The opposite implication is obvious. ��

Note that, in the situation of the preceding lemma, the ordering relation �
coincides with the ordering � of the complete lattice I, introduced in Section
1.5.

We consider the following dual problem to (P):

maximize D : Rm × R
q
+ \ {0} ⇒ Rq with respect to � over T, (D)

where

T :=
{
(u,w) ∈ Rm×Rq| (u,w) ≥ 0, eTw = 1, BTu = PTw

}
.

Let us define a solution concept for the dual problem (D). The upper image
P of the primal problem (P) is a polyhedral set in Rq. We expect the closure
of the complement of a polyhedral set to be the dual counterpart. Such a set
is also fully determined by a finite number of hyperplanes so that a solution
is envisioned to be a finite subset of the feasible set. This set is intended to
consist of efficient solutions, which are defined as follows.

Definition 4.15. A feasible vector v̄ ∈ T is called an efficient solution to (D)
if there is no feasible vector v ∈ T such that D(v̄) � D(v) and D(v̄) �= D(v).
The set of efficient solutions to (D) is denoted by Eff (D). Further we write
MaxD[T ] := D[Eff (D)] for the set of maximal elements in D[T ] with respect
to �.

Note that this definition is in accordance with Definition 2.1. One should
bear in mind that an efficient solution is not regarded to be a solution to (D).
It is rather connected to a solution of a scalarized problem. This is shown in
Theorem 4.19 below.

The set
D := D(T ) − R

q
+
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is called the lower image of Problem (D). We expect that a solution T̄ ⊆ T ,
based on a suitable solution concept, determines the lower image, that is,

D = D(T ) − R
q
+ = D(T̄ ) − R

q
+.

Following these ideas we introduce a solution concept for (D).

Definition 4.16. A nonempty set T̄ ⊆ Rm+q is called a finitely generated
solution to (D) if

(i) T̄ is a finite subset of T ,
(ii) D[T̄ ] ⊆ MaxD[T ],
(iii) D(T ) ⊆ D(T̄ ) − R

q
+.

If the context of linear vector optimization is clear, we can simply speak
about a solution to (D). The relationship to the solution concepts introduced
in the second chapter can be found in Section 4.4. To this end it is necessary
to work with a suitable complete lattice and to indicate the corresponding
infimum and supremum.

Subsequently, we use the following notation, where P denotes the upper
image of (P) as introduced in Section 4.2:

F (u,w) := D(u,w) ∩ P .

The next statement is a kind of weak duality. The relationship to the scalar
case can be seen by the lattice theoretical interpretation in Theorem 4.35
below.

Lemma 4.17. If (u,w) ∈ T and y ∈ P, then wT y ≥ bTu. Moreover, we have

D ∩
(
P + int R

q
+

)
= ∅.

Proof. Since y ∈ P , there is some x ∈ S such that y ≥ Px. Hence (x, 0) is
feasible for (P2(y)). Duality between (P2(y)) and (D2(y)) implies bTu−yTw ≤
0.

Assume that there exist (u,w) ∈ T , z ∈ D(u,w), d ∈ R
q
+, c ∈ int R

q
+ and

y ∈ P such that z−d = y+ c. We get bTu = wT z = wT y+wT (c+d) > wT y,
which contradicts the first statement. ��

The counterpart to weakly minimal elements of P are weakly maximal
elements of the set D(T ).

Lemma 4.18. If (ū, w̄) ∈ T and ȳ ∈ F (ū, w̄), then ȳ ∈ wMaxD(T ).

Proof. Let (ū, w̄) ∈ T and ȳ ∈ F (ū, w̄). Then, ȳ ∈ D(T ) ∩ P . We show that(
{ȳ} + int R

q
+

)
∩D(u,w) = ∅ for all (u,w) ∈ T . Assuming the contrary, we

obtain (u,w) ∈ T and y ∈ D(u,w) such that y > ȳ. Since w � 0, this implies
wT y > wT ȳ ≥ bTu = wT y, a contradiction. ��
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The following theorem provides different characterizations of efficient so-
lutions to (D).

Theorem 4.19. Let (ū, w̄) ∈ T . Then the following statements are equiva-
lent:

(i) (ū, w̄) is an efficient solution to (D),
(ii) ū solves (D1(w̄)),
(iii) there exists x̄ ∈ S such that w̄TP x̄ = bT ū,
(iv) F (ū, w̄) is nonempty,
(v) D(ū, w̄) ∩ wMaxD(T ) �= ∅.

Proof. (i) ⇒ (ii). Let u be feasible for D1(w̄) and let bT ū ≤ bTu. Then we
have D(ū, w̄) � D(u, w̄). From (i) we get bT ū = bTu, i.e., ū solves D1(w̄).

(ii) ⇒ (iii). If ū solves (D1(w̄)) then by duality between the linear programs
(P1(w̄)) and (D1(w̄)) there is some x̄ ∈ S such that w̄TP x̄ = bT ū.

(iii) ⇒ (iv). The condition w̄TP x̄ = bT ū can be written as P x̄ ∈ D(ū, w̄).
Since P x̄ ∈ P , we get P x̄ ∈ F (ū, w̄).

(iv) ⇒ (v). This follows from Lemma 4.18.
(v) ⇒ (i). Assume that (i) is not true, i.e., there exists (u,w) ∈ T such

that D(ū, w̄) � D(u,w) and D(ū, w̄) �= D(u,w). This implies w̄ = w and
bT ū < bTu. But for each y ∈ D(ū, w̄), we get

y + e(bTu− bT ū) ∈
(
{y} + int R

q
+

)
∩D(u, w̄),

which contradicts (v). ��

We continue with a strong duality theorem in the sense that the set of
weakly minimal vectors of the upper image P of (P) and the set of weakly
maximal vectors of the set D(T ) coincide.

Theorem 4.20. The following statements are equivalent:

(i) ȳ ∈ wMinP,
(ii) there is some x̄ ∈ Rn such that (x̄, 0) solves (P2(ȳ)),
(iii) there is some (ū, w̄) ∈ T with bT ū = ȳT w̄ solving (D2(ȳ)),
(iv) ȳ ∈ wMaxD(T ).

Proof. (ii) ⇒ (i). If (x̄, 0) solves (P2(ȳ)), then x̄ ∈ S and P x̄ ≤ ȳ. Hence
ȳ ∈ P . Assume that there is some y ∈ P (i.e. there is some x ∈ S with
Px ≤ y) with y < ȳ. Then there is some z < 0 such that y ≤ ȳ + ez. This
implies Px − ez ≤ y − ez ≤ ȳ, i.e., (x, z) is feasible for (P2(ȳ)) and z < 0
contradicts the optimality of (x̄, 0).

(i) ⇒ (ii). If ȳ ∈ wMinP , then there exists some x̄ ∈ S with P x̄ ≤ ȳ,
i.e., (x̄, 0) is feasible for (P2(ȳ)). Assume that there is some (x, z) ∈ Rn+1

with z < 0 being feasible for (P2(ȳ)). Let y := ȳ + ze. Then y < ȳ and
Px ≤ ȳ + ez = y, i.e., y ∈ P . This contradicts the weak minimality of ȳ.

(ii) ⇔ (iii). By duality of (P2(ȳ)) and (D2(ȳ)).
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(iii) ⇔ (iv). We have ȳ ∈ wMaxD(T ) if and only if

ȳ ∈ D(T ) and ȳ �∈ D(T ) − int R
q
+. (4.3)

Condition (4.3) is equivalent to

∃(ū, w̄) ∈ T : ȳT w̄ = bT ū and ∀(u,w) ∈ T : ȳTw ≥ bTu. (4.4)

Since (iii) is equivalent to (4.4), the statement follows. ��

A more symmetric variant of the preceding result can be formed, where
the set D(T ) is replaced by the lower image D of (D). This is a consequence
of the following lemma.

Lemma 4.21. We have wMaxD = wMaxD(T ).

Proof. We know that

y ∈ wMaxD(T ) ⇐⇒
[
y ∈ D(T ) ∧ y �∈ D(T ) − int R

q
+

]
and

y ∈ wMax
(
D(T ) − R

q
+

)
⇐⇒

[
y ∈ D(T ) − R

q
+ ∧ y �∈ D(T ) − int R

q
+

]
.

Thus it remains to show that[
y ∈ D(T ) − R

q
+ ∧ y �∈ D(T ) − int R

q
+

]
=⇒ y ∈ D(T ).

Indeed, y �∈ D(T ) − int R
q
+ implies yTw ≥ bTu for all (u,w) ∈ T and y ∈

D(T ) − R
q
+ implies the existence of some (ū, w̄) ∈ T with yT w̄ ≤ bT ū. Thus

we obtain yT w̄ = bT ū, i.e., y ∈ D(T ). ��

We next prove several statements showing the relationship between proper
faces (in particular facets) of P and efficient solutions to (D). Let us recall
some facts concerning the facial structure of polyhedral sets. Let A ⊆ Rq be
a convex set. A convex subset F ⊆ A is called a face of A if

(ȳ, ŷ ∈ A ∧ λ ∈ (0, 1) ∧ λȳ + (1 − λ)ŷ ∈ F ) =⇒ ȳ, ŷ ∈ F.

A face F of A is called proper if ∅ �= F �= A. A set E ⊆ A is called an
exposed face of A if there are w ∈ Rq \ {0} and γ ∈ R such that A ⊆{
y ∈ Rq| wT y ≥ γ

}
and E =

{
y ∈ Rq| wT y = γ

}
∩ A. The proper (r − 1)-

dimensional faces of an r-dimensional polyhedral set A are called facets of A.
A point y ∈ A is called a vertex of A if {y} is a face of A. We denote by riA
the relative interior of a convex set A, that is, the interior if A is regarded to
be a subset of its affine hull (see e.g. Rockafellar, 1972). The relative boundary
is the set

rbdA := clA \ riA.
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Theorem 4.22. Let A be a polyhedral set in Rq. Then A has a finite number
of faces, each of which is exposed and a polyhedral set. Every proper face of
A is the intersection of those facets of A that contain it, and rbdA is the
union of all the facets of A. If A has a nonempty face of dimension s, then
A has faces of all dimensions from s to dimA.

Proof. See (Webster, 1994, Theorem 3.2.2).

If P �= ∅, then P is a q-dimensional polyhedral set. Hence the facets of
P are the (q − 1)-dimensional faces of P , i.e., the maximal (w.r.t. inclusion)
proper faces. A subset F ⊆ P is a proper face if and only if it is a proper
exposed face, i.e., F is a proper face if and only if there is a supporting
hyperplane H to P such that F = H ∩ P . We call a hyperplane H :={
y ∈ Rq| wT y = γ

}
(w �= 0) supporting to P if wT y ≥ γ for all y ∈ P and

there is some ȳ ∈ P such that wT ȳ = γ.

Lemma 4.23. If H =
{
y ∈ Rq| wT y = γ

}
is a supporting hyperplane to P,

then w � 0.

Proof. We have w �= 0 since otherwise H is not a hyperplane. If H is a
supporting hyperplane to P , then there exists some ȳ ∈ P such that wT ȳ = γ
and wT y ≥ γ for all y ∈ P . By definition of P , we have ȳ + z ∈ P for all
z ∈ R

q
+, hence wT z ≥ 0 for all z ∈ R

q
+. This implies w ≥ 0. ��

The next result states that proper faces of P are generated by efficient
solutions to (D).

Lemma 4.24. A set F ⊆ P is a proper face of P if and only if there is an
efficient solution (u,w) ∈ T to (D) such that F = F (u,w).

Proof. (i) If (u,w) ∈ T is an efficient solution to (D), then (by Theorem
4.19) there is some x̄ ∈ S such that P x̄ ∈ D(u,w). Hence P x̄ ∈ F (u,w).
Moreover, if y ∈ P then wT y ≥ bTu, by Lemma 4.17. Consequently, D(u,w)
is a supporting hyperplane to P and F (u,w) is a proper face of P .

(ii) If F is a proper face of P , then there is some w ∈ Rq \ {0} and some
γ ∈ R such that H :=

{
y ∈ Rq| wT y = γ

}
is a supporting hyperplane to P

and F = H ∩ P . By Lemma 4.23, we have w ≥ 0. Since w �= 0, we obtain
eTw > 0. Without loss of generality we can assume that eTw = 1. Since H
is a supporting hyperplane, we have wT y ≥ γ for all y ∈ P and wT ȳ = γ for
some ȳ ∈ P . Hence there is some x̄ ∈ S such that wTP x̄ = wT ȳ = γ, i.e.,

γ = wTP x̄ = min
{
wTPx| x ∈ S

}
.

By duality between (P1(w)) and (D1(w)), Problem (D1(w)) has a solution u
such that bTu = γ = wTP x̄. Thus (u,w) ∈ T is an efficient solution to (D)
by Theorem 4.19, and D(u,w) = H . Hence F = F (u,w). ��
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As a result of strong duality in Theorem 4.20, we obtain that proper faces
of P consist of only weakly minimal elements. Those faces are called weakly
minimal faces.

Corollary 4.25. Every proper face of P is weakly minimal.

Proof. Let F be a proper face of P . By the preceding lemma there is an
efficient solution (u,w) ∈ T to (D) such that F = F (u,w). Let y ∈ F =
F (u,w). Then y ∈ P (implying the existence of x ∈ S such that Px ≤ y,
i.e., (x, 0) is feasible for (P2(y))) and bTu = wT y. Duality between (P2(y))
and (D2(y)) implies that (u,w) is optimal for (D2(y)) and (x, 0) is optimal
for (P2(y)). By Theorem 4.20, y is weakly minimal. ��

The next result has already been shown in a more general context in
Section 1.4, see Corollary 1.44.

Corollary 4.26. wMinP �= ∅ if and only if ∅ �= P �= Rq.

Proof. This is a direct consequence of Corollary 4.25, Theorem 4.22 and the
fact that a nonempty set in A ⊆ Rq has a nonempty boundary if and only if
A �= Rq. ��

The following lemma shows that the set of facets of P is completely de-
termined by those efficient solutions to (D) that are vertices of the feasible
set T .

Lemma 4.27. If F is a facet of P then there is an efficient solution (ū, w̄)
to (D) that is a vertex of T such that F = F (ū, w̄).

Proof. Let
T̄ := {(u,w) ∈ T | F (u,w) = F} .

By Theorem 4.19, all points of T̄ are efficient solutions to (D) because F is
nonempty as a facet of P . Let y ∈ riF be arbitrary. Since F is a (q − 1)-
dimensional face we have (u,w) ∈ T̄ if and only if (u,w) ∈ T and y ∈ D(u,w),
i.e., bTu = yTw. Hence T̄ = T ∩Dy where

Dy :=
{
(u,w) ∈ Rm × Rq| yTw − bTu = 0

}
.

Since y ∈ wMinP by Corollary 4.25, Theorem 4.20 implies that Dy is a
supporting hyperplane to T , hence T̄ is a nonempty face of T . Since T̄ ⊆
T ⊆ R

m+q
+ contains no lines, there is a vertex (ū, w̄) of T̄ (Rockafellar, 1972,

Corollary 18.5.3). Hence (ū, w̄) is also a vertex of T . ��
Now we can extend the strong duality result in Theorem 4.20. We relate

the duality statement to the solution concepts introduced in this chapter. A
finitely generated solution of the dual problem is shown to exist. In particular,
it is indicated that this solution consists of those vertices of the dual feasible
set T that correspond to facets of the upper image P of the primal problem
(P). We denote by bdP the boundary of P and by vertT the set of all vertices
of T .
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Theorem 4.28. For the set T̄ := Eff (D)∩vertT we have the following chain
of equalities:

wMinP = bdP = F (T̄ ) = wMaxD(T̄ ) = wMaxD(T ) = wMaxD. (4.5)

If S �= ∅ and T �= ∅, then T̄ is a finitely generated solution to (D), in
particular, the sets in (4.5) are nonempty.

If (S̄, S̄h) is a finitely generated solution to (P) and T̄ is a finitely generated
solution to (D), then

wMinP = wMin
(
coP [S̄] + coneP [S̄h] + R

q
+

)
= wMaxD(T̄ ) = wMaxD.

Proof. We set
F := {F ⊆ P| F is a proper face of P}

and
G := {F ⊆ P| F is a facet of P} .

Theorem 4.22, Lemma 4.27, Lemma 4.24 and Corollary 4.25 imply the fol-
lowing chain of inclusions:

bdP =
⋃

F∈G
F ⊆

⋃
(u,w)∈T̄

F (u,w) ⊆
⋃

(u,w)∈Eff (D)

F (u,w)

=
⋃

F∈F
F ⊆ wMinP ⊆ bdP .

Hence the first two equalities of (4.5) hold.
The equalities wMinP = wMaxD(T ) = wMaxD have already been

proven in Theorem 4.20 and in Lemma 4.21. Thus it remains to show that
F (T̄ ) = wMaxD(T̄ ). If y ∈ F (T̄ ) then there exists some (ū, w̄) ∈ T̄ ⊆ T
such that y ∈ F (ū, w̄) = D(ū, w̄) ∩ P , i.e., y ∈ D(T̄ ). From Lemma 4.18
we obtain y ∈ wMaxD(T ) and hence ({y} + int R

q
+) ∩D(T ) = ∅. It follows

({y} + int R
q
+) ∩D(T̄ ) = ∅. Together we obtain y ∈ wMaxD(T̄ ).

On the other hand, if y ∈ wMaxD(T̄ ), then y ∈ D(T̄ ) and y �∈ D(T̄ ) −
int R

q
+. This is equivalent to

∃(ū, w̄) ∈ T̄ : yT w̄ = bT ū (4.6)

and
∀(u,w) ∈ T̄ : yTw ≥ bTu. (4.7)

By Theorem 4.19, ū solves (D1(w̄)), hence S �= ∅ by duality between (P1(w̄))
and (D1(w̄)). Thus the feasible set of (P2(y)) is nonempty as well. Since
(ū, w̄) ∈ T , i.e., T �= ∅, Problem (D2(y)) has an optimal solution (û, ŵ)
that is a vertex of T . Optimality of (û, ŵ) for (D2(y)) implies optimality of
û for (D1(ŵ)), hence (û, ŵ) ∈ T̄ by Theorem 4.19. Now, (4.7) implies that
yT ŵ ≥ bT û. Moreover, optimality of (û, ŵ) for (D2(y)) implies bT û− yT ŵ ≥
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bT ū − yT w̄ = 0, i.e., yT ŵ = bT û. Consequently, we have y ∈ D(û, ŵ) and
y ∈ wMinP ⊆ P by Theorem 4.20, i.e., y ∈ F (T̄ ).

Let us prove the second assertion. Since S �= ∅ and T �= ∅, we deduce that
∅ �= P �= Rq (e.g. by Lemma 4.17). Hence P has a facet and by Lemma 4.27,
we get T̄ �= ∅. We conclude that the sets in (4.5) are nonempty. Conditions
(i) and (ii) of Definition 4.16 are obviously satisfied. It remains to show that
D(T ) ⊆ D(T̄ ) − R

q
+. Let y ∈ D(T ). There exists some (u,w) ∈ T such that

y ∈ D(u,w), in particular, (u,w) is a feasible vector for (D2(y)). As S is
assumed to be nonempty, there is a feasible vector for (P2(y)). Hence there
is an optimal solution (x̄, z̄) to (P2(y)), where z̄ ≥ 0. It follows that (x̄, 0) is
an optimal solution to (P2(y+ z̄ ·e)), i.e., y+ z̄ ·e ∈ wMaxD(T ), by Theorem
4.20. Hence

y ∈ wMaxD(T ) − R
q
+ = wMaxD(T̄ ) − R

q
+ ⊆ D(T̄ ) − R

q
+.

For the third statement we still have to show the first equality. Taking into
account P [S] ⊇ coP [S̄] + coneP [S̄h] and condition (v) in Definition 4.4, we
obtain P = coP [S̄]+coneP [S̄h]+R

q
+, which implies the desired equality. ��

4.4 Lattice theoretical interpretation of duality

The more general convex case of the vectorial duality theory was developed on
the basis of the complete lattice I of self-infimal sets as introduced in Section
1.5. The goal of this section is a corresponding approach to the linear case. To
this end we reformulate the above results using the infimum and supremum
in the complete lattice (I,�). We also relate the notion of a finitely generated
solution of (D) to the solution concepts developed in Chapter 2 for general
complete-lattice-valued problems. This section is based on several concepts
and results of the first part of this book. The section can be skipped if the
reader is interested in a self-contained theory for linear problems.

Subsequently, we use the complete lattice I = IC

(
Y
)

for the sets Y = Rq

and C = R
q
+, compare Section 1.5. Based on the primal problem (P), we

consider the I-valued objective function

p : Rn → I, p(x) := Inf {Px} = {Px} + bd R
q
+.

Of course, the ordering in I is just an extension of the vector ordering. Thus,
for all x1, x2 ∈ Rn, we have

Px1 ≤ Px2 ⇐⇒ p(x1) � p(x2).

This yields
Eff (P) = Eff (P′).
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By Theorem 1.54, we obtain

inf
x∈S

p(x) = Inf
⋃
x∈S

Inf {Px} = Inf
⋃
x∈S

{Px} = Inf P [S],

where the second equality is follows easily using Corollaries 1.48 and 1.49. It
follows from Definition 1.45 and Proposition 1.40 that wMinP = Inf P [S] if
and only if S �= ∅ and P �= Rq and hence

inf
x∈S

p(x) =




{+∞} if S = ∅
{−∞} if P = Rq

wMinP otherwise.

Note that, by Corollary 4.26, wMinP �= ∅ if and only if ∅ �= P �= Rq. This
means, if the set wMinP is nonempty, it coincides with infx∈S p(x). Otherwise
if wMinP is empty, we distinguish between two cases: infx∈S p(x) = {+∞}
if S = ∅ and infx∈S p(x) = {+∞} if S �= ∅. Thus, (P) is closely related to the
following I-valued problem:

minimize p : Rn → I with respect to � over S. (P′)

Moreover, it is easy to see that x̄ ∈ S is an efficient solution to (P) if and
only if it is an efficient solution to (P′), that is[

x ∈ S, p(x) � p(x̄)
]

=⇒ p(x) = p(x̄).

Let us introduce a solution concept for the I-valued problem (P′) taking
into account its linear (or polyhedral) structure.

Definition 4.29. A nonempty set S̄ ⊆ Rn together with a (possibly empty)
set S̄h ⊆ Rn \ {0} is said to be finitely generated solution to (P′) if

(i) S̄ is a finite subset of S,
(ii) S̄h is a finite subset of Sh,
(iii) p[S̄] ⊆ Min p[S],
(iv) p[S̄h] ⊆ Min p[Sh],
(v) inf

x∈S
p(x) = inf

x∈co S̄
p(x) ⊕ inf

x∈cone S̄h
p(x).

We show that the problems (P) and (P′) are equivalent in the sense that
they have the same solutions.

Proposition 4.30. Consider (P) and (P′) based on the same data. The fol-
lowing statements are equivalent:

(i) (S̄, S̄h) is a finitely generated solution to (P),
(ii) (S̄, S̄h) is a finitely generated solution to (P′).
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Proof. Let us denote the five conditions of Definition 4.4 by (i)◦, ... , (v)◦,
whereas the five condition of Definition 4.29 are denoted by (i)′, ... , (v)′. It
is clear that (i)◦ to (iv)◦ are satisfied if and only if (i)′ to (iv)′ hold.

Note first that (i)◦ and (ii)◦ imply that (v)◦ is equivalent to

P [S] + R
q
+ = coP [S̄] + coneP [S̄h] + R

q
+.

By Proposition 1.40 and the fact that the sum of polyhedral sets is closed,
this is equivalent to

Cl +P [S] = Cl +

(
coP [S̄] + coneP [S̄h]

)
. (4.8)

We have

coP [S̄] = P [co S̄] and coneP [S̄h] = P [cone S̄h].

Using Corollary 1.49, we obtain that (4.8) holds if and only if

Inf P [S] = Inf
(
Inf P [co S̄] + Inf P [S̄h]

)
. (4.9)

For arbitrary nonempty sets A ⊆ Rn, we have

Inf P [A] = Inf
⋃

x∈A

{Px} = Inf
⋃

x∈A

Inf {Px} = Inf p(A).

Theorem 1.54 implies that

Inf p(A) = inf
x∈A

p(x).

Hence, (4.9) is equivalent to (v)′. ��

Remark 4.31. Note that in Definition 4.29, (v) can be replaced by

(v′) inf
x∈S

p(x) = inf
x∈S̄

p(x) ⊕ inf
x∈S̄h

p(x)

if the infimum is taken with respect to the complete lattice Ico as introduced
in Section 1.6.

We next reformulate the dual problem (D) from Section 4.3 by using the
supremum in I. We start with two lemmas.

Lemma 4.32. The set D(T ) − R
q
+ is closed.

Proof. Let
(
yi
)
i∈N

be a sequence in D(T ) − R
q
+ converging to ȳ ∈ Rq. For

each i there exists some (ui, wi) ∈ T such that yi ∈ D(ui, wi) − R
q
+. Hence

yiTwi ≤ bTui. We have to show that there exists some (ū, w̄) ∈ T with
ȳT w̄ ≤ bT ū.

Assuming the contrary, we get ȳTw − bTu > 0 for all (u,w) ∈ T . Since T
is polyhedral, there is some γ > 0 such that ȳTw−bTu ≥ γ for all (u,w) ∈ T .
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Let us denote by ‖·‖∞ and ‖·‖1 the maximum norm and the sum norm in
Rq, respectively. Take j ∈ N such that ‖yj − ȳ‖∞ < γ, then

(ȳ − yj)Twj ≤ ‖yj − ȳ‖∞‖wj‖1 < γ

hence
ȳTwj − bTuj < yjT

wj + γ − bTuj ≤ γ,

a contradiction. ��

We now define an I-valued dual objective function as

d : Rm × Rq \ {0} → I, d(u,w) := Inf
{
y ∈ Rq| wT y ≥ bTu

}
.

This function is closely related to the hyperplane-valued objective map D :
Rm × Rq \ {0} ⇒ Rq in Problem (D).

Lemma 4.33. The dual objective function d : Rm × Rq \ {0} → I can be
expressed as

d(u,w) =
{
D(u,w) if w � 0
{−∞} if w �≥ 0.

Proof. Since w �= 0, we have

d(u,w) =
bTu

wTw
w + Inf

{
y ∈ Rq| wT y ≥ 0

}
.

The result now follows from Proposition 3.8. ��

The following dual problem of (P′) is considered:

maximize d : Rm × Rq \ {0} → I with respect to � over T. (D′)

For arbitrary (u1, w1), (u2, w2) ∈ T we have

D(u1, w1) � D(u2, w2) ⇐⇒ d(u1, w1) � d(u2, w2),

where � on the left stands for the ordering introduced in Section 4.3 and �
on the right is the ordering of the complete lattice I. Both ordering relations
coincide on the set {D(u,w)| (u,w) ∈ T }. Taking into account Lemma 4.33,
we get

Eff (D) = Eff (D′). (4.10)

The next lemma points out a further relationship between (D) and (D′).

Lemma 4.34. The optimal value of (D′) can be expressed as

sup
(u,w)∈T

d(u,w) =




{−∞} if T = ∅
{+∞} if D(T ) − R

q
+ = Rq

wMaxD(T ) otherwise.
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Proof. (i) If T = ∅, we have sup(u,w)∈T d(u,w) = {−∞}, by definition.
(ii) If D(T ) − R

q
+ = Rq, then Cl−D(T ) ⊇ D(T ) − R

q
+ = Rq. From the

definition of the supremal set, which is analogous to Definition 1.45 (see also
(1.11)), and from Theorem 1.54, we get sup(u,w)∈T d(u,w) = {+∞}.

(iii) Let T �= ∅ and D(T ) − R
q
+ �= Rq. By Lemma 4.32 we have ∅ �=

Cl−D(T ) = D(T ) − R
q
+ �= Rq. Lemma 4.21 yields that

SupD(T ) = wMaxCl−D(T ) = wMax(D(T ) − R
q
+) = wMaxD(T ).

By Theorem 1.54 and Lemma 4.33, we have

sup
(u,w)∈T

d(u,w) = SupD(T ).

Together, we obtain sup(u,w)∈T d(u,w) = wMaxD(T ). ��

We continue with a reformulation of the duality results for the linear prob-
lem (P) and its dual problem (D). We obtain duality results for (P′) and (D′).
Let us begin with weak duality.

Theorem 4.35 (weak duality). Let x ∈ S and (u,w) ∈ T , then

d(u,w) � p(x).

Proof. For all y ∈ p(x) = {Px}+bd R
q
+ ⊆ P , Lemma 4.17 yields yTw ≥ bTu,

hence p(x) ⊆ d(u,w) + R
q
+. This implies d(u,w) � p(x). ��

The next result shows strong duality between (P′) and (D′). The distinc-
tion of the three cases is well-known from scalar linear programming.

Theorem 4.36 (strong duality). Let at least one of the sets S and T be
nonempty. Then strong duality holds between (P′) and (D′), that is,

d̄ := sup
(u,w)∈T

d(u,w) = inf
x∈S

p(x) =: p̄.

Moreover, the following statements are true:

(i) If S �= ∅ and T �= ∅, then {−∞} �= d̄ = p̄ �= {+∞} and

d̄ = wMaxD(T ) = wMinP = p̄ �= ∅.

(ii) If S = ∅ and T �= ∅, then d̄ = p̄ = {+∞}.
(iii) If S �= ∅ and T = ∅, then d̄ = p̄ = {−∞}.

Proof. By the weak duality we have

sup
(u,w)∈T

d(u,w) � inf
x∈S

p(x).
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(i) If S �= ∅ and T �= ∅, neither sup(u,w)∈T d(u,w) nor infx∈S p(x) can be
{−∞} or {+∞} (by weak duality). Hence, Theorem 4.20 and Lemma 4.34
imply

sup
(u,w)∈T

d(u,w) = wMaxD(T ) = wMinP = inf
x∈S

p(x).

(ii) If S = ∅ and T �= ∅, we have infx∈S p(x) = {+∞}. Theorem 4.20
implies that

wMaxD(T ) = wMinP = ∅.

Moreover, we have D(T ) − R
q
+ = Rq. Assuming the contrary, there exists

y �∈ D(T ) − R
q
+, i.e.,

∀(u,w) ∈ T : bTu− yTw < 0. (4.11)

Problem (D2(y)) is feasible but (P2(y)) is not. From the scalar duality theory
we conclude that (D2(y)) is unbounded, which contradicts (4.11). Lemma 4.34
yields sup(u,w)∈T d(u,w) = {+∞}.

(iii) If S �= ∅ and T = ∅, we have sup(u,w)∈T d(u,w) = {−∞}. Theorem
4.20 implies

wMinP = wMaxD(T ) = ∅.
Since S �= ∅, Corollary 4.26 implies P = Rq. Hence infx∈S p(x) = {−∞}. ��

Let us define finitely generated solutions to (D′). Note that condition (iii)
corresponds to the attainment of the supremum as discussed in Chapter 2.

Definition 4.37. A nonempty set T̄ is called a finitely generated solution to
(D′) if

(i) T̄ is a finite subset of T ,
(ii) d[T̄ ] ⊆ Max d[T ],
(iii) sup

(u,w)∈T

d(u,w) = sup
(u,w)∈T̄

d(u,w).

Proposition 4.38. Consider the problems (D) and (D′) based on the same
data. The following statements are equivalent:

(i) T̄ is a finitely generated solution to (D),
(ii) T̄ is a finitely generated solution to (D′).

Proof. Let us denote the three conditions of Definition 4.16 by (i)◦, (ii)◦ and
(iii)◦, whereas the three condition of Definition 4.37 are denoted by (i)′, (ii)′

and (iii)′.
From Lemma 4.33 and (4.10) we deduce that (i)◦ and (ii)◦ are equivalent

to (i)′ and (ii)′.
In the following steps we assume that (i)◦ and (i)′ hold. Then, condition

(iii)◦ is equivalent to
d(T ) − R

q
+ = d(T̄ ) − R

q
+. (4.12)
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By Lemma 4.32, we know that d(T )− R
q
+ is closed. Since T̄ is finite, the set

d(T̄ ) − R
q
+ is closed, too. Hence (4.12) is equivalent to

cl
(
d(T ) − R

q
+

)
= cl

(
d(T̄ ) − R

q
+

)
. (4.13)

By an analogous statements to Proposition 1.40 and by Lemma 4.33, (4.13)
is equivalent to

Cl−D(T ) = Cl−D(T̄ ).

A counterpart of Corollary 1.48 (vi) (see also (1.11)) yields that the last
statements holds if and only if

SupD(T ) = SupD(T̄ ).

By Theorem 1.54, this is equivalent to (iii)′. ��

The existence of a finitely generated solution to (D′) (in the case where
S �= ∅ and T �= ∅) follows from Theorem 4.28 and the latter result.

In Chapter 2 we introduced several solution concepts for the I-valued
problem (D′). Let us point out a characterization of a solution to (D′), as
defined in Definition 2.53, because this notion has a simple structure in the
present setting.

Proposition 4.39. A nonempty set T̄ ⊆ Rm × Rq is a solution to (D′) (in
the sense of Definition 2.53) if and only if

(i) T̄ ⊆ T ,
(ii) d[T̄ ] = Max d[T ].

Proof. It remains to show that (i) and (ii) imply that the supremum of the
canonical extension of d : Rm × Rq → I over T is attained in T̄ . In terms of
d this means

sup
(u,w)∈T

d(u,w) = sup
(u,w)∈T̄

d(u,w).

From (i) and (ii) we get d[T̄ ] = d[Eff (D′)] and hence

sup
(u,w)∈T̄

d(u,w) = sup
(u,w)∈Eff (D′)

d(u,w).

Since Eff (D) = Eff (D′) �= ∅, Theorem 4.19 implies S �= 0. Furthermore, we
have

sup
(u,w)∈Eff (D′)∩vert T

d(u,w) � sup
(u,w)∈Eff (D′)

d(u,w)

= sup
(u,w)∈T̄

d(u,w) � sup
(u,w)∈T

d(u,w).

By Theorem 4.28, T̃ := Eff (D)∩vertT is a finitely generated solution to (D).
From Proposition 4.38, we deduce that T̃ is a finitely generated solution to
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(D′). Using condition (iii) in Definition 4.37, we obtain that the last statement
holds with equality. ��

Propositions 4.7 and 4.39 show that, in the linear case, Eff (P′) and Eff (D′)
always provide solutions to (P′) and (D′), respectively, whenever these sets
are nonempty. This means that the attainment of infimum is automatically
satisfied in the linear case. This fact is well-known from scalar linear pro-
gramming.

4.5 Geometric duality

The dual problem (D) of the linear vector optimization problem (P) is based
on a hyperplane-valued objective function. We already mentioned that a hy-
perplane in Rq is a kind of dual object to a vector in Rq carrying the same
amount of information in the sense that both objects are determined by q
real numbers. It is natural to ask in which sense the dual objective is linear.
A more general concern is whether the hyperplane-valued dual problem is
equivalent to a vector optimization problem. This question is the subject of
this section.

The idea of such a connection between vector-valued and hyperplane-
valued problems is taken from the classical theory of polytopes. It is well-
known from the theory of convex polytopes (see e.g. Grünbaum, 2003) that
two polytopes P and P∗ in Rq are said to be dual to each other provided
there exists a one-to-one mapping Ψ between the set of all faces of P and
the set of all faces of P∗ such that Ψ is inclusion reversing, i.e., faces F 1 and
F 2 of P satisfy F 1 ⊆ F 2 if and only if the faces Ψ(F 1) and Ψ(F 2) satisfy
Ψ(F 1) ⊇ Ψ(F 2) (see Figure 4.1).

P

P∗

Fig. 4.1 Example of a pair of dual polytopes in R
3.

Instead of speaking about strong duality if the optimal values of a pair of
dual optimization problems are equal, we deal with a duality relation between
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the polyhedral image set of the primal problem and the polyhedral image of
the dual problem. This relation is similar to duality of polytopes. Denoting
by P and D∗ the (slightly modified) images of the objective functions of our
given problem (P) and a suitable dual problem (D∗), respectively, we show
that there is an inclusion reversing one-to-one map Ψ between the set of all
K-maximal proper faces of D∗ (i.e. proper faces of D∗ that only contain K-
maximal elements of D∗) and the set of all weakly minimal proper faces of
P (i.e. proper faces of P that only contain weakly minimal elements of P),
where K is an appropriate ordering cone for the dual problem. With the aid
of such a map Ψ we can compute the weakly minimal faces of P whenever we
know the K-maximal faces of D∗ and vice versa. In particular, we are given
by Ψ a one-to-one correspondence between weakly minimal vertices (facets)
of P and K-maximal facets (vertices) of D∗.

In the following we consider two special ordering cones, in fact, the cone
R

q
+ for the primal problem and the cone

K := R+ · (0, 0, . . . , 0, 1)T = {y ∈ Rq| y1 = · · · = yq−1 = 0, yq ≥ 0}

for the dual problem. We write

MaxK A := {y ∈ A| ({y} +K \ {0}) ∩A = ∅}

for the set of maximal vectors of a set A ⊆ Rq with respect to the cone K.
The counterpart in the primal problem is the set

wMinA =
{
y ∈ A| ({y} − int R

q
+) ∩A = ∅

}
of weakly minimal vectors of A. Note that an index is only used for cones
apart from R

q
+.

Using the relative interior of the ordering cones R
q
+ andK, we can subsume

the notions wMinA and MaxK A under the common notation

MinCA := {y ∈ A| ({y} − riC) ∩A = ∅} and MaxCA := Min(−C)A.

In case of C = K we have riK = K \ {0} and for the choice C = R
q
+ we have

riC = int R
q
+, which yields the concepts introduced above.

We next assign to the linear vector optimization problem (P) a geometric
dual problem. In contrast to the dual problem (D) from Section 4.3 with a
hyperplane-valued objective function, we now consider a linear vector-valued
dual objective function

D∗ : Rm × Rq → Rq, D∗(u,w) :=
(
w1, ..., wq−1, b

Tu
)T
.

The geometric dual problem to (P) is

maximize D∗ : Rm × Rq → Rq with respect to ≤K over T. (D∗)
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where we use the same feasible set T as in Problem (D), that is,

T :=
{
(u,w) ∈ Rm × Rq| (u,w) ≥ 0, BTu = PTw, eTw = 1

}
,

where e := (1, . . . , 1)T . Even though both problems (P) and (D∗) are vectorial
linear programs, they are not symmetric. This feature, however, is shared by
all attempts to duality for vector optimization problems. The special choice
of the cone K for the dual problem reflects a parametric character of the dual
problem. In fact, a point D∗(ū, w̄) is a K-maximal point of D∗[T ] if and only
if for fixed w̄, the point ū maximizes bTu over the set {u ∈ Rm| (u, w̄) ∈ T }.

We aim to show a duality relation between the sets

P := P [S] + R
q
+ = {y ∈ Rq|∃x ∈ S : y ∈ {Px} + R

q
+} and

D∗ := D∗ [T ] −K = {y∗ ∈ Rq|∃(u,w) ∈ T : y∗ ∈ {D∗(u,w)} −K}.

To this end we construct an inclusion reversing one-to-one map Ψ between
the K-maximal proper faces of D∗ and the weakly minimal proper faces of
P .

We consider the coupling function ϕ : Rq × Rq → R, defined by

ϕ(y, y∗) :=
q−1∑
i=1

yiy
∗
i + yq

(
1 −

q−1∑
i=1

y∗i

)
− y∗q .

Note that ϕ( · , y∗) and ϕ(y, · ) are affine functions. Choosing the values of
the primal and dual objective function as arguments, we obtain

ϕ(Px,D∗(u,w)) = wTPx− bTu. (4.14)

Throughout, we use the notation

w(y∗) :=

(
y∗1 , . . . , y

∗
q−1, 1 −

q−1∑
i=1

y∗i

)T

(4.15)

and
w∗(y) :=

(
y1 − yq, . . . , yq−1 − yq,−1

)T
. (4.16)

We can write

ϕ(y, y∗) = w(y∗)T y − y∗q = w∗(y)T y∗ + yq.

The following assertion can be understood as a weak duality result.

Theorem 4.40. The following implication is true:

[y ∈ P ∧ y∗ ∈ D∗] =⇒ ϕ(y, y∗) ≥ 0.
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Proof. Let y ∈ P . There exists some x ∈ S such that y ≥ Px. Let y∗ ∈
D∗. We obtain some (u,w) ∈ T such that y∗1 = w1, . . . , y

∗
q−1 = wq−1 and

y∗q ≤ bTu. Using the weak duality between (P1(w)) and (D1(w)), and the
fact w ≥ 0, we get

wT y ≥ wTPx ≥ bTu ≥ y∗q .

Taking into account that eTw = 1, we obtain

ϕ(y, y∗) = wT y − y∗q ≥ 0,

which completes the proof. ��

The next statement is a first strong duality result.

Theorem 4.41. Let the feasible sets S of (P) and T of (D∗) be nonempty.
Then

[∀y∗ ∈ D∗ : ϕ(y, y∗) ≥ 0] =⇒ y ∈ P ,
[∀y ∈ P : ϕ(y, y∗) ≥ 0] =⇒ y∗ ∈ D∗.

If we set
Φ∗(A) := {y∗ ∈ Rq| ∀y ∈ A : ϕ(y, y∗) ≥ 0} ,

where A ⊆ Rq is an arbitrary set, and

Φ(A∗) := {y ∈ Rq| ∀y∗ ∈ A∗ : ϕ(y, y∗) ≥ 0} ,

where A∗ ⊆ Rq, the following statements hold:

A ⊆ P ⇐⇒ Φ∗(A) ⊇ D∗,

A∗ ⊆ D∗ ⇐⇒ Φ(A∗) ⊇ P .

Proof. Let y ∈ Rq such that ϕ(y, y∗) ≥ 0 for all y∗ ∈ D∗. It follows that
(D2(y)) is feasible and bounded. Hence there exist solutions (u,w) to (D2(y))
and (x, z) to (P2(y)). We have y∗ := D∗(u,w) ∈ D∗. From ϕ(y, y∗) ≥ 0
we conclude wT y ≥ bTu. Strong duality between (P2(y)) and (D2(y)) yields
z ≤ 0 and hence Px ≤ y+ze ≤ y, i.e., y ∈ P . This proves the first implication.

To prove the second one, let y∗ ∈ Rq be given such that ϕ(y, y∗) ≥ 0 for
all y ∈ P . Consequently, (P1(w(y∗))) is feasible and bounded. There exist
solutions x to (P1(w(y∗))) and u to (D1(w(y∗))). We have y := Px ∈ P .
From ϕ(y, y∗) ≥ 0 we conclude w(y∗)TPx ≥ y∗q . Strong duality between
(P1(w(y∗))) and (D1(w(y∗))) implies that bTu ≥ y∗q , whence y∗ ∈ D∗.

The other results are consequences of the first two implications and The-
orem 4.40 (weak duality). ��

Next we shall show a strong duality result which involves the facial struc-
ture of P and D∗. The coupling function ϕ is used to define the following two
set-valued maps
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H : Rq ⇒ Rq, H(y∗) := {y ∈ Rq| ϕ(y, y∗) = 0} ,

H∗ : Rq ⇒ Rq, H∗(y) := {y∗ ∈ Rq| ϕ(y, y∗) = 0} .
Of course, H(y∗) and H∗(y) are hyperplanes in Rq for all y∗, y ∈ Rq. Using
(4.15) and (4.16) we obtain the expressions

H(y∗) =
{
y ∈ Rq| w(y∗)T y = y∗q

}
and

H∗(y) =
{
y∗ ∈ Rq| w∗(y)T y∗ = −yq

}
.

Obviously, the set-valued maps H and H∗ are injective. Moreover, we have

y∗ ∈ H∗(y) ⇐⇒ y ∈ H(y∗). (4.17)

The dual problem (D∗) is related to the hyperplane-valued dual problem (D)
as defined in Section 4.3. Indeed, both problems have the same constraints
and, if eTw = 1, we have

D(u,w) = H(D∗(u,w)).

The map H is used to define the function

Ψ : 2R
q → 2R

q

, Ψ(F ∗) :=
⋂

y∗∈F∗
H(y∗) ∩ P .

The following geometric duality theorem states that Ψ is a duality map be-
tween P and D∗.

Theorem 4.42 (geometric duality). Ψ is an inclusion reversing one-to-
one map between the set of all K-maximal proper faces of D∗ and the set of
all weakly minimal proper faces of P. The inverse map is given by

Ψ−1(F ) =
⋂

y∈F

H∗(y) ∩ D∗.

Moreover, if F ∗ is a K-maximal proper face of D∗, then

dimF ∗ + dimΨ(F ∗) = q − 1.

The proof of this theorem is given below after preparing it by several
lemmas. Prior to this, an important special case is considered. Vertices as
well as facets are actually the most important faces from the viewpoint of
applications. Therefore, we extract some corresponding conclusions from the
above theorem.

Corollary 4.43. The following statements are equivalent:

(i) y∗ is a K-maximal vertex of D∗,
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(ii) H(y∗) ∩ P is a weakly minimal (q − 1)-dimensional facet of P.

Moreover, if F is a weakly minimal (q−1)-dimensional facet of P, then there
is some uniquely defined point y∗ ∈ Rq such that F = H(y∗) ∩ P.

Proof. (i) ⇒ (ii). Since H(y∗) ∩ P = Ψ({y∗}), Theorem 4.42 implies that
H(y∗) ∩ P is a weakly minimal proper face of P . Theorem 4.42 also implies
that dim(H(y∗) ∩ P) = q − 1 − dim {y∗} = q − 1.

(ii) ⇒ (i). Let H(y∗)∩P be a weakly minimal (q−1)-dimensional facet of
P . By Theorem 4.42, Ψ−1(H(y∗)∩P) is a K-maximal vertex of D∗, denoted
by ȳ∗. It follows that Ψ ◦Ψ−1(H(y∗)∩P) = Ψ({ȳ∗}) and hence H(y∗)∩P =
H(ȳ∗)∩P implying H(y∗) = H(ȳ∗) as dim(H(y∗)∩P) = q−1. The mapping
H being injective implies y∗ = ȳ∗.

To show the last statement, let F be a weakly minimal (q−1)-dimensional
facet of P . Hence Ψ−1(F ) consists of a K-maximal vertex of D∗, denoted by
y∗. It follows F = Ψ ◦Ψ−1(F ) = Ψ({y∗}) = H(y∗)∩P . By dim(H(y∗)∩P) =
q − 1 and H being injective, y∗ is uniquely defined. ��

The next result is the dual counterpart of the last one.

Corollary 4.44. The following statements are equivalent:

(i) y is a weakly minimal vertex of P,
(ii) H∗(y) ∩ D∗ is a K-maximal (q − 1)-dimensional facet of D∗.

Moreover, if F ∗ is a K-maximal (q − 1)-dimensional facet of D∗, then there
is some uniquely defined point y ∈ Rq such that F ∗ = H∗(y) ∩ D∗.

Proof. (i) ⇒ (ii). Let y be a weakly minimal vertex of P . By Theorem 4.42,
the set F ∗ := Ψ−1({y}) = H∗(y) ∩ D∗ is a K-maximal face of D∗. From
Theorem 4.42 we also conclude that dimF ∗ = q− 1− dim {y} = q− 1. Thus
F ∗ is a facet of D∗.

(ii) ⇒ (i). Let H∗(y) ∩ D∗ be a K-maximal (q − 1)-dimensional facet of
D∗. By Theorem 4.42, Ψ(H∗(y)∩D∗) consists of a weakly minimal vertex of
P , denoted by ȳ. It follows that

Ψ−1 ◦ Ψ(H∗(y) ∩ D∗) = Ψ−1({ȳ})

and hence H∗(y)∩D∗ = H∗(ȳ)∩D∗. Since dim(H∗(y)∩D∗) = q− 1 and H∗

is injective, we get y = ȳ.
To show the last statement, let F ∗ be a K-maximal (q − 1)-dimensional

facet of D∗. Hence Ψ(F ∗) is a minimal vertex of P , denoted by y. It follows
that

F ∗ = Ψ−1 ◦ Ψ(F ∗) = Ψ−1({y}) = H∗(y) ∩ D∗.

By dim(H∗(y)∩D∗) = q−1 and H∗ being injective, y is uniquely defined. ��

Geometric duality is illustrated by the following two examples.
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Example 4.45. Consider Problem (P) with the data

P =
(

1 0
0 1

)
, B =




0 -1
2 1
1 1
1 2


 , b =




-4
4
3
4


 .

The set D∗ (see Figure 4.2) can easily be evaluated as

D∗ = co
{(

1
3 ,

4
3

)T
,
(

1
2 ,

3
2

)T
,
(

2
3 ,

4
3

)T
,
(
1, 0
)T}−K.

1

D∗

2

1

3 P

4

y2

1

2

y1 y∗
1

y∗
2

1 2 3 4

Fig. 4.2 The three weakly minimal vertices of P correspond to the three K-maximal
facets of D∗ and the four weakly minimal facets of P correspond to the four K-
maximal vertices of D∗.

Example 4.46. Consider Problem (P) with the data

P =


1 0 0

0 1 0
0 0 1


 , B =




1 1 1
-1 -1 1
-1 1 -1
1 -1 -1


 , b =




1
-1
-1
-1


 .

An easy computation shows that

D∗ = co
{

(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T ,
(

1
3 ,

1
3 ,

1
3

)T}−K,

see Figure 4.3.

We now turn to the proof of the geometric duality theorem. It is based
on the two pairs of scalar linear programs (P1(w)), (D1(w)) and (P2(y)),
(D2(y)), as introduced in Section 4.1. Note that the lower image of (D∗) can
be expressed as
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1
3

P

y1

y3

y2

y∗
1

y∗
3

1
1

1

1

1 y∗
2

D∗

Fig. 4.3 The three weakly minimal vertices of P correspond to the three K-maximal
facets of D∗, the six weakly minimal edges of P correspond to the six K-maximal edges
of D∗ and the four weakly minimal facets of P correspond to the four K-maximal
vertices of D∗.

D∗ =
{
y∗ ∈ ∆| ∃u ∈ Rm : u ≥ 0, BTu = PTw(y∗), bTu ≥ y∗q

}
, (4.18)

where
∆ := {y∗ ∈ Rq| w(y∗) ≥ 0} .

We start with several lemmas.

Lemma 4.47. Every K-maximal proper face of D∗ contains a vertex.

Proof. Let F ∗ be a K-maximal proper face of D∗. It suffices to show that
F ∗ contains no lines (Rockafellar, 1972, Corollary 18.5.3). Assume on the
contrary that F ∗ contains a line, i.e., there are ȳ∗ ∈ F ∗ and ψ ∈ Rq \ {0}
such that ȳ∗ +λψ ∈ F ∗ for all λ ∈ R. For every y∗ ∈ F ∗ ⊆ D∗, we have y∗1 ≥
0, . . . , y∗q−1 ≥ 0 and hence ψ1 = · · · = ψq−1 = 0. Thus, ψ �= 0 implies K ⊆
{λψ| λ ∈ R}. We get {ȳ∗}+K ⊆ F ∗, which contradicts the K-maximality of
F ∗. ��

Lemma 4.48. Consider a hyperplane

H∗ :=
{
y∗ ∈ Rq| w∗T y∗ = γ

}
.

Then the following statements are equivalent:

(i) H∗ is a supporting hyperplane to D∗ such that H∗ ∩D∗ is K-maximal;
(ii) H∗ is a supporting hyperplane to D∗[T ] and w∗

q < 0.

Proof. (i) ⇒ (ii). If H∗ is a supporting hyperplane to D∗, then there is
some ȳ∗ ∈ D∗ such that w∗T ȳ∗ = γ and for y∗ ∈ D∗ we have w∗T y∗ ≥ γ.
From the definition of D∗ we get ŷ∗ := ȳ∗ − eq ∈ D∗, where eq is the q-
th unit vector. Hence w∗

q ≤ 0. Since w∗
q = 0 would imply ŷ∗ ∈ H∗ ∩ D∗
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and ȳ∗ ∈ (ŷ∗ +K \ {0}) ∩ D∗, contradicting the maximality of H∗ ∩ D∗, we
conclude w∗

q < 0. As ȳ∗ ∈ D∗, there are ỹ∗ ∈ D∗[T ] ⊆ D∗ and z ≥ 0 such that
ȳ∗ = ỹ∗ − eqz. Hence w∗T ỹ∗ = w∗T ȳ∗ + w∗

qz ≤ γ. This implies w∗T ỹ∗ = γ.
Therefore, H∗ is a supporting hyperplane to D∗[T ].

(ii) ⇒ (i). If H∗ is a supporting hyperplane to D∗[T ], then there is some
ȳ∗ ∈ D∗[T ] such that w∗T ȳ∗ = γ and, for all y∗ ∈ D∗[T ], one has w∗T y∗ ≥ γ.
Since w∗

q < 0, it follows w∗T y∗ ≥ γ for all y∗ ∈ D∗[T ] − K = D∗. From
ȳ∗ ∈ D∗ and w∗T ȳ∗ = γ, we conclude that H∗ is a supporting hyperplane to
D∗.

In order to show that H∗ ∩D∗ is K-maximal, let ȳ∗ ∈ H∗ ∩ D∗ be given.
We have w∗T ȳ∗ = γ. For every y∗ ∈ {ȳ∗} + K \ {0} one has w∗T y∗ < γ,
which is a consequence of w∗

q < 0. Since w∗T y∗ ≥ γ for all y∗ ∈ D∗, we
obtain (ȳ∗ +K \ {0}) ∩ D∗ = ∅. ��

Weakly minimal points of the upper image P of (P) refer to K-maximal
faces of the lower image D∗ of the geometric dual problem (D∗). A weakly
minimal point of P defines a hyperplane H∗(y) that supports D∗ in a K-
maximal face. This is shown by the following lemma.

Lemma 4.49. Let y ∈ Rq. The following statements are equivalent:

(i) y is a weakly minimal point of P,
(ii) H∗(y) ∩ D∗ is a K-maximal proper face of D∗.

Moreover, for every K-maximal proper face F ∗ of D∗ there exists some y ∈ Rq

such that F ∗ = H∗(y) ∩ D∗.

Proof. Take into account that ϕ(y, y∗) ≥ 0 holds for all y∗ ∈ D∗[T ] (Theorem
4.40). By Theorem 4.20, (i) is equivalent to

(iii) There exists some (ū, w̄) ∈ T with yT w̄ = bT ū solving (D2(y)).

Because of (4.14), (iii) is equivalent to

(iv) There exists some ȳ∗ ∈ D∗[T ] such that ϕ(y, ȳ∗) = 0.

Statement (iv) is equivalent to

(v) H∗(y) is a supporting hyperplane to D∗[T ].

Regarding the fact that H∗(y) =
{
y∗ ∈ Rq| w∗(y)T y∗ = −yq

}
with w∗(y)q =

−1 < 0, (v) is equivalent to (ii), by Lemma 4.48.
Let F ∗ be a K-maximal proper face of D∗. Then there exists a supporting

hyperplane H∗ :=
{
y∗ ∈ Rq| w∗T y∗ = γ

}
(w∗ �= 0) to D∗ such that F ∗ =

H∗ ∩ D∗. By Lemma 4.48, we have w∗
q < 0. Setting

y :=
(
γ − w∗

1

w∗
q

, . . . ,
γ − w∗

q−1

w∗
q

,
γ

w∗
q

)T

we obtain H∗ = H∗(y). Hence F ∗ = H∗(y) ∩ D∗. ��
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Lemma 4.50. Consider a hyperplane H :=
{
y ∈ Rq| wT y = γ

}
. The follow-

ing statements are equivalent:

(i) H is a supporting hyperplane to P,
(ii) w ≥ 0 and H is a supporting hyperplane to P [S].

Proof. (i) ⇒ (ii). If H is a supporting hyperplane to P , then there is some
ȳ ∈ P with wT ȳ = γ and for all y ∈ P one has wT y ≥ γ. By the definition
of P , we have ȳ + ŷ ∈ P for all ŷ ∈ R

q
+, hence wT ŷ ≥ 0 for all ŷ ∈ R

q
+. This

implies w ≥ 0. Since ȳ ∈ P , there is ỹ ∈ P [S] ⊆ P and ŷ ∈ R
q
+ such that

ȳ = ỹ + ŷ. Hence wT ỹ = wT ȳ − wT ŷ ≤ γ. This implies wT ỹ = γ. Therefore,
H is a supporting hyperplane to P [S].

(ii) ⇒ (i). If H is a supporting hyperplane to P [S], there exists some
ȳ ∈ P [S] with wT ȳ = γ and for all y ∈ P [S], one has wT y ≥ γ. Since w ≥ 0,
it follows that wT y ≥ γ for all y ∈ P [S] + R

q
+. By ȳ ∈ P and wT ȳ = γ, we

conclude that H is a supporting hyperplane to P . ��

We continue with the dual counterpart of Lemma 4.49.

Lemma 4.51. Let y∗ ∈ Rq. The following statements are equivalent:

(i) y∗ is a K-maximal point of D∗,
(ii) H(y∗) ∩ P is a weakly minimal proper face of P.

Moreover, for every proper face F of P there exists some y∗ ∈ Rq such that
F = H(y∗) ∩ P.

Proof. Taking into account (4.18), we conclude that (i) is equivalent to

(iii) w(y∗) ≥ 0 and there exists a solution ū to (D1(w(y∗))) such that
y∗q = bT ū.

By duality between (P1(w(y∗))) and (D1(w(y∗))), (iii) is equivalent to

(iv) w(y∗) ≥ 0 and there exists a solution x̄ to (P1(w(y∗))) such that
y∗q = w(y∗)TP x̄.

Statement (iv) is equivalent to

(v) w(y∗) ≥ 0 and H(y∗) is a supporting hyperplane to P [S].

By Lemma 4.50 and Corollary 4.25, (v) is equivalent to (ii).
To show the last conclusion, let F be a proper face of P . Hence there exists

a supporting hyperplane H :=
{
y ∈ Rq| wT y = γ

}
(w �= 0) of P such that

F = H ∩ P . By Lemma 4.50, we have w ≥ 0. Without loss of generality we
can assume that eTw = 1. Setting y∗i := wi for i = 1, . . . , q − 1 and y∗q := γ,
we obtain H = H(y∗). Hence F = H(y∗) ∩ P . ��

Now we are able to give the proof of the geometric duality theorem.

Proof of Theorem 4.42. (a) We show that, if F ∗ is a K-maximal proper face
of D∗, then Ψ(F ∗) is a weakly minimal proper face of P . By Lemma 4.51,
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H(y∗)∩P is a weakly minimal proper face of P for each y∗ ∈ F ∗, hence Ψ(F ∗)
is a weakly minimal face of P . It remains to show that Ψ(F ∗) is nonempty.
By Lemma 4.49 there is some ȳ ∈ wMinP such that F ∗ = H∗(ȳ)∩D∗. Using
(4.17), we get ȳ ∈ Ψ(F ∗).

(b) We shall show that Ψ∗(F ) :=
⋂

y∈F H
∗(y)∩D∗ is a K-maximal proper

face of D∗ whenever F is a weakly minimal proper face of P . By Lemma 4.49,
H∗(y) ∩ D∗ is a K-maximal proper face of D∗ for each y ∈ F . Hence Ψ∗(F )
is a K-maximal proper face of D∗ whenever this set is nonempty. Indeed, by
Lemma 4.51, there exists some ȳ∗ ∈ MaxK D∗ such that F = H(ȳ∗) ∩ P .
Using (4.17), we obtain ȳ∗ ∈ Ψ∗(F ).

(c) In order to show that Ψ is a bijection and Ψ−1(F ) =
⋂

y∈F H
∗(y)∩D∗ =

Ψ∗(F ), we have to show the following two statements: (c1) Ψ∗(Ψ(F ∗)) = F ∗

for all K-maximal proper faces F ∗ of D∗ and (c2) Ψ(Ψ∗(F )) = F for all
weakly minimal proper faces F of P .

(c1) First we show that F ∗ ⊆ Ψ∗(Ψ(F ∗)). Assuming the contrary, we get
some ȳ∗ ∈ F ∗ such that ȳ∗ �∈ Ψ∗(Ψ(F ∗)). Hence there exists ȳ ∈ Ψ(F ∗)
such that ȳ∗ �∈ H∗(ȳ) ∩ D∗. This implies ȳ∗ �∈ H∗(ȳ) since ȳ∗ ∈ D∗. It
follows ȳ �∈ H(ȳ∗), whence ȳ �∈ Ψ(F ∗), a contradiction. To show the opposite
inclusion, let ȳ ∈ wMinP such that F ∗ = H∗(ȳ)∩D∗. The existence of such a
point ȳ is ensured by Lemma 4.49. It follows ȳ ∈ Ψ(F ∗). Hence Ψ∗(Ψ(F ∗)) ⊆
H∗(ȳ) ∩D∗ = F ∗.

(c2) The proof works analogously using Lemma 4.51 instead of Lemma
4.49.

(d) Obviously, Ψ is inclusion reversing.
(e) It remains to prove that dimF ∗+dimΨ(F ∗) = q−1 for all K-maximal

proper faces F ∗ of D∗. Consider some fixed F ∗ and set r := dimF ∗ and s :=
dimΨ(F ∗). By the first part of the proof, F := Ψ(F ∗) is a weakly minimal
face of P . Hence there exist proper faces F � F 1 � F 2 � · · · � F q−1−s (all of
them being weakly minimal by Corollary 4.25) such that dimF q−1−s = q−1.
From the properties of Ψ , we conclude that 0 ≤ dimΨ−1(F q−1−s) ≤ r− (q−
1 − s). Hence r + s ≥ q − 1. Since every K-maximal face of D∗ has a vertex
(Lemma 4.47), there are K-maximal faces F ∗ � F ∗1 � F ∗2 � · · · � F ∗r such
that dimF ∗r = 0. It follows that s + r ≤ dimΨ(F ∗r) ≤ q − 1. Together we
have s+ r = q − 1, which completes the proof. ��

We proceed with a conclusion of Theorem 4.42 and Lemma 4.49.

Corollary 4.52. The following statements are equivalent:

(i) ȳ ∈ Rq belongs to the relative interior of a proper weakly minimal face
F of P with dimF = r;

(ii) H∗(ȳ)∩D∗ is a (q− r− 1)-dimensional K-maximal proper face of D∗.

Proof. (i) ⇒ (ii). The geometric duality theorem yields

F ∗ := Ψ−1(F ) =
⋂

y∈F

H∗(y) ∩ D∗ ⊆ H∗(ȳ) ∩D∗ =: F̄ ∗,
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where dimF ∗ = q− r−1. By Lemma 4.49, it remains to show that dimF ∗ =
dim F̄ ∗. Of course, dimF ∗ ≤ dim F̄ ∗. Assume that dimF ∗ < dim F̄ ∗. By
Theorem 4.42, we have

F̄ := Ψ(F̄ ∗) =
⋂

y∗∈F̄∗

H(y∗) ∩ P

and dim F̄ < dimF = r. From F̄ ∗ ⊆ H∗(ȳ) and (4.17), we get ȳ ∈⋂
y∗∈F̄∗ H(y∗). As ȳ ∈ P , it follows ȳ ∈ F̄ . Both F̄ and F are proper

weakly minimal faces of P such that F ⊇ F̄ (as Ψ is inclusion reversing)
and dimF > dim F̄ . Thus F̄ is a proper face of F . By Theorem 4.22, we get
F̄ ⊆ rbdF . Whence the contradiction ȳ ∈ riF ∩ rbdF = ∅.

(ii) ⇒ (i). Set F := Ψ(F̄ ∗). According to Lemma 4.49 and Theorem 4.42,
it remains to show that ȳ ∈ riF . Assuming the contrary, we obtain that ȳ
belongs to the relative interior of a face F̄ ⊆ F of P with r̄ := dim F̄ < r
(compare Webster, 1994, Theorem 2.6.5). From the first part of the proof we
get dim F̄ ∗ = q − r̄ − 1 > q − r − 1. This contradicts condition (ii). ��

The dual counterpart of the latter result is the following.

Corollary 4.53. The following statements are equivalent:

(i) ȳ∗ ∈ Rq belongs to the relative interior of a proper K-maximal face F ∗

of D∗ with dimF ∗ = r;
(ii) H(ȳ∗) ∩ P is a (q − r − 1)-dimensional weakly minimal proper face of

P.

Proof. The proof is completely analogous to the proof of Corollary 4.52.
Lemma 4.51 has to be used instead of Lemma 4.49. ��

Theorem 4.1 also provides a characterization of weakly minimal vectors of
the set P . Let us consider, for fixed ȳ ∈ wMinP , the set of all w ∈ R

q
+ \ {0}

with the property wT ȳ ≤ wT y for all y ∈ P . This leads to the idea of weight
space decomposition. We set

W (ȳ) :=
{
w ∈ R

q
+| eTw = 1 and ∀y ∈ P : wT ȳ ≤ wT y

}
.

The set
W (wMinP) =

⋃
ȳ∈wMinP

W (ȳ).

is called the weight space of (P). It consists of those weights w ≥ 0
with eTw = 1 that make the weighted sum scalarization (P1(w)) solv-
able. If P∞ = R

q
+, we have the maximal (w.r.t. inclusion) weight space

W (wMinP) =
{
w ≥ 0| eTw = 1

}
.

Definition 4.54. A finite family of sets
{
A1, . . . , Ar

}
is said to be a weight

space decomposition of Problem (P) if there exist ȳ1, . . . , ȳr ∈ P such that
W (ȳi) = Ai for i = 1, . . . , r and



4.5 Geometric duality 149

W (wMinP) =
r⋃

i=1

Ai ∧ riAi ∩ riAj = ∅ whenever i �= j.

Geometric duality yields the following result about the weight space de-
composition. Recall that w : Rq → Rq is defined in (4.15).

Corollary 4.55. Let
{
ȳ1, . . . , ȳr

}
be the set of weakly minimal vertices of P,

and assume this set to be nonempty. Denote by
{
F ∗1, . . . , F ∗r

}
the corre-

sponding K-maximal facets of D∗ according to the geometric duality theorem
(in particular Corollary 4.44). Then we have

W (ȳi) = w[F ∗i] :=
{
w(y∗)| y∗ ∈ F ∗i

}
,

and {w[F ∗i]| i = 1, . . . , r} is a weight space decomposition of (P).

Proof. It can be shown that w(·) is a one-to-one map from MaxK D∗ onto
W (wMinP). The inverse map is w−1(λ) = (λ1, . . . , λq−1, y

∗
q )T , where y∗q

is the optimal value of the linear program (P1(λ)), which is finite for
λ ∈ W (wMinP). Moreover, w(·) is affine on convex subsets of MaxK D∗,
in particular, on each K-maximal facet of D∗.

Let ȳi be a weakly minimal vertex of P . By Corollary 4.44, H∗(ȳi)∩D∗ =
F ∗i is a K-maximal facet of D∗. Note that

y∗ ∈ H∗(y) ⇐⇒ w(y∗)T y = y∗q .

Let λ ∈ W (ȳi). Setting y∗ := w−1(λ) ∈ MaxK D∗, we obtain w(y∗)T ȳi =
λT ȳi = y∗q , which implies that y∗ ∈ H∗(ȳi)∩D∗ = F ∗i and thus λ = w(y∗) ∈
w[F ∗i].

On the other hand, if y∗ ∈ F ∗i, we have ȳi ∈ H(y∗) ∩ P by geometric
duality and thus w(y∗)T ȳi = y∗q . For every y ∈ P , we get y∗q ≤ w(y∗)T y

(Theorem 4.40). Together we obtain w(y∗) ∈W (ȳi).
The second statement follows from the fact

MaxK D∗ =
⋃r

i=1 F
∗i and riF ∗i ∩ riF ∗j = ∅ whenever i �= j,

compare (Webster, 1994, Corollary 2.6.7). Indeed, using Lemma 4.51, we can
show that

w (MaxK D∗) = W (wMinP) .

We conclude that

W (wMinP) = w [MaxK D∗] = w

[
r⋃

i=1

F ∗i

]
=

r⋃
i=1

w
[
F ∗i
]
.

The second condition in the definition of a weight space decomposition follows
directly from the properties of w(·). ��

A solution concept for the geometric dual problem (D∗) is now introduced.
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Definition 4.56. A nonempty set T̄ ⊆ Rm+q is called a finitely generated
solution to the geometric dual problem (D∗) if

(i) T̄ is a finite subset of T ,
(ii) D∗[T̄ ] ⊆ MaxK D∗[T ],
(iii) D∗[T ] ⊆ coD∗[T̄ ] −K.

The latter definition is analogous to the definition of a finitely generated
solution to (P), but the conditions (ii) and (iv) of Definition 4.4 do not occur
here. The reason is that the recession cone of D∗ is always the same, namely
D∗

∞ = −K. The recession cone of P , however, depends on the data of the
primal problem (P).

We next show that the hyperplane-valued problem (D) and the vector-
valued problem (D∗) are equivalent in the sense that they have the same
finitely generated solution.

Theorem 4.57. Consider both dual problems (D) and (D∗) of problem (P).
The following is equivalent:

(i) T̄ is a finitely generated solution to (D);
(ii) T̄ is a finitely generated solution to (D∗).

Proof. Let us denote the three conditions in Definition 4.16 by (i)′, (ii)′ and
(iii)′ and the conditions in Definition 4.56 by (i)∗, (ii)∗ and (iii)∗. Obviously,
(i)′ is equivalent to (i)∗.

(ii)′ is equivalent (compare Definition 4.15 and use T̄ ⊆ T ) to

∀(ū, w̄) ∈ T̄ : (ū, w̄) ∈ Eff (D).

By Theorem 4.19 this is equivalent to

∀(ū, w̄) ∈ T̄ : ū solves (D1(w̄)).

Because of (iii) and (i) in Lemma 4.51, the latter assertion is equivalent to

∀(ū, w̄) ∈ T̄ : D∗(ū, w̄) is a K-maximal point of D∗.

As MaxK D∗ = MaxK D∗[T ], the last statement is equivalent to (ii)∗.
Let us denote the elements of T̄ by (ui, wi), where i = 1, . . . , k. (iii)′ is

equivalent to

∀(u,w) ∈ T : D(u,w) − R
q
+ ⊆

k⋃
i=1

(D(ui, wi) − R
q
+).

By De Morgan’s law, this is equivalent to

∀(u,w) ∈ T :
k⋂

i=1

(
D(ui, wi) + int R

q
+

)
⊆ D(u,w) + int R

q
+,
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or equivalently,

∀(u,w) ∈ T :
(
[∀i ∈ {1, . . . , k} : yTwi > bTui] =⇒ yTw > bTu

)
.

This is equivalent to

∀(u,w) ∈ T :
(
[∀i ∈ {1, . . . , k} : yTwi ≥ bTui] =⇒ yTw ≥ bTu

)
.

The last equivalence can easily be shown by using y + εe with small ε > 0.
By (Rockafellar, 1972, Theorem 22.3), the latter statement holds if and only
if

∀(u,w) ∈ T, ∃λ1, . . . , λk ≥ 0 : w =
k∑

i=1

λiw
i ∧ bTu ≤

k∑
i=1

λib
Tui. (4.19)

Note that we have

k∑
i=1

λi =
k∑

i=1

λie
Twi = eT

k∑
i=1

λiw
i = eTw = 1.

Setting ũ :=
∑k

i=1 λiu
i, we have (ũ, w) ∈ co T̄ in (4.19), which can be written

as
∀(u,w) ∈ T, ∃ũ ∈ Rm : (ũ, w) ∈ co T̄ ∧ bTu ≤ bT ũ.

Since coD∗[T̄ ] = D∗[co T̄ ], the latter assertion is equivalent to (iii)∗. ��

4.6 Homogeneous problems

In Section 4.2 we already introduced the homogeneous problem (Ph). The
geometric dual of (Ph) is now investigated. Geometric duality between (P)
and (D∗) can be extended in such a way that (extreme) directions of P and
faces of D∗ being not K-maximal are taken into account.

The geometric dual problem of (Ph) is

maximize D∗h : Rm × Rq → Rq with respect to ≤K over T, (D∗h)

where the feasible set T is the same as in the inhomogeneous problem (D∗)
(see Section 4.5) and the objective function is

D∗h : Rm × Rq → Rq, D∗h(u,w) := (w1, ..., wq−1, 0)T .

We denote the lower image of Problem (D∗h) by

D∗h := D∗h[T ] −K.
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Observe that the objective function D∗h only differs in the last component
from the objective function D∗ of the inhomogeneous problem (D∗) and con-
sequently

D∗h +K = D∗ +K. (4.20)

An example is given in Figure 4.4. Since Sh �= ∅ (because 0 ∈ Sh), K-
maximal points of D∗h exist, whenever T �= ∅. In this case (but obviously
also if T = ∅), D∗h can be expressed as

D∗h =
(
D∗h ∩

{
y∗ ∈ Rq| y∗q = 0

})
−K. (4.21)

D∗h

D∗

2

1

3 P

4

y2

1

2

y∗
1

y∗
2

1 2 3 4 1

y2 y∗
2

y∗
1

1

Ph

y1

y1

12

−2 −1

2 4

Fig. 4.4 The upper pictures show P and D∗ from Example 4.45 and the lower
pictures show the counterparts of the homogeneous problems.

The following example shows the case where S is empty.

Example 4.58. Consider Problem (P) with the data
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P =
(

1 0
0 1

)
, B =


 1 1

-1 -1
0 1


 , b =


1

1
0


 .

The feasible set S of (P) is empty, but Sh is nonempty. The upper images of
(P) and (Ph) and the lower images of (D∗) and (D∗h) are shown in Figure
4.5.

D∗h

2

1

3

4

y2

1

2

y∗
1

y∗
2

1 2 3 4 1

y∗
2

y∗
1

1

y1

y1

1

−1

21

y2

Ph
2

1

P = ∅ D∗

Fig. 4.5 Illustration of Example 4.58. P is empty and D∗ has no K-maximal el-
ements. But the homogeneous problems have weakly minimal and K-maximal ele-
ments, respectively.

The next statement extends the geometric duality theorem. In Theorem
4.42, only K-maximal faces are considered, but the lower image D∗ also
contains faces that are not K-maximal. As we will point out below, the facets
of D∗ being not K-maximal correspond to the extreme directions of P . We
introduce vertical faces of D∗ and show that we obtain exactly those faces of
D∗ that are not K-maximal.
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Definition 4.59. A hyperplane H =
{
y ∈ Rq| ηT y = γ

}
(η �= 0) is called

vertical if ηq = 0. A proper face F of a nonempty polyhedral set A ⊆ Rq is
called vertical if every hyperplane that supports A in F is vertical.

Lemma 4.60. For every nonempty polyhedral set A ⊆ Rq with A∞ = −K
the following statements are equivalent:

(i) F is a vertical face of A;
(ii) F is a proper face of A and F �⊆ MaxK A.

Proof. (i) ⇒ (ii). Let y ∈ F . The face F is the intersection of vertical hyper-
planes and the set A. Since A∞ = −K, we get y − eq ∈ F , where eq is the
q-th unit vector. As y − eq �∈ MaxK A, (ii) holds.

(ii) ⇒ (i). Let H =
{
y ∈ Rq| ηT y = γ

}
be a supporting hyperplane of A

containing the face F . Let y ∈ F \MaxK A. There exists some ε > 0 such that
y+ εeq ∈ A. Since A∞ = −K, we get y− εeq ∈ A. It follows ηT (y+ εeq) ≥ γ
and ηT (y − εeq) ≥ γ. Hence ηq = (γ − ηT y)/ε = 0 and so H is vertical. As
every supporting hyperplane of A containing the face F is vertical, F is a
vertical face. ��

The homogeneous primal problem (Ph) reflects the asymptotic behavior
of the inhomogeneous problem (P). For the upper images of both problems
this can be seen as follows.

Lemma 4.61. Let S �= ∅. A vector y ∈ Rq \ {0} is a direction of the upper
image P of Problem (P) if and only if y belongs to Ph \ {0}. Moreover,
Ph = P∞.

Proof. For every i ∈ {1, . . . ,m}, we have

{x ∈ Rn| Bix ≥ b}∞ = {x ∈ Rn| Bix ≥ 0} .

Since S �= ∅, we obtain Sh = S∞ (compare Rockafellar, 1972, Corollary
8.3.3). It follows

Ph = P [Sh] + R
q
+ = P [S∞] + R

q
+

(4.1)= P [S]∞ + R
q
+

(4.2)= (P [S] + R
q
+)∞ = P∞,

which yields the desired results. ��

A homogeneous counterpart ϕh of the coupling function ϕ : Rq ×Rq → R

(see Section 4.5) is now introduced in order to establish a geometric duality
relation between extreme directions of P and vertical facets of D∗. We set

ϕh : Rq × Rq → R, ϕh(y, y∗) :=
q−1∑
i=1

yiy
∗
i + yq

(
1 −

q−1∑
i=1

y∗i

)
.
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Furthermore, we consider the corresponding vertical hyperplanes

H∗h(y) :=
{
y∗ ∈ Rq| ϕh(y, y∗) = 0

}
= {y∗ ∈ Rq| (y1 − yq, . . . , yq−1 − yq, 0) · y∗ = −yq} .

We obtain the following extension of the geometric duality theorem.

Theorem 4.62. Let S �= ∅. The following statements are equivalent:

(i) y ∈ Rq \ {0} is an extreme direction of P;
(ii) H∗h(y) supports D∗ in a vertical (q − 1)-dimensional facet.

Proof. From Lemma 4.61, we conclude that y ∈ Rq \ {0} is an extreme
direction of P if and only if it is an extreme direction of Ph (because P and
Ph have the same directions). Note further that H∗h(y) supports D∗ in a
vertical facet if and only if it supports D∗h in a vertical facet. This follows as
the dual objective functions D∗h and D∗ only differ in the last component.
Thus it is sufficient to prove the statement for the homogeneous problems
(Ph) and (D∗h).

Statement (i) holds for (Ph) if and only if the point y belongs to the relative
interior of the 1-dimensional face F = {λy| λ ≥ 0} of Ph (in particular, 0 is a
vertex of Ph implying that intD∗h �= ∅). By Corollary 4.52, this is true exactly
when H∗(y) supports D∗h in a (q − 2)-dimensional K-maximal proper face.
Because of the special form (4.21) of D∗h (in particular, intD∗h �= ∅) this is
equivalent to (ii) being satisfied for (D∗h). ��

We close this section with some easy consequences of the results from
Section 4.5. From the weak duality in Theorem 4.40 we get the next result.

Corollary 4.63. The following implication is true:(
ŷ ∈ Ph ∧ y∗ ∈ D∗) =⇒ ϕh(ŷ, y∗) ≥ 0.

Proof. If we assign to y∗ ∈ Rq the vector y∗h := (y∗1 , . . . , y
∗
q−1, 0)T , we get

ϕh(ŷ, y∗) = ϕ(ŷ, y∗h)

from the definitions of ϕ and ϕh. Since y∗h ∈ D∗h (for y∗ ∈ D∗), we obtain
ϕ(ŷ, y∗h) ≥ 0 from Theorem 4.40 applied to (Ph) and (D∗h). ��

Corollary 4.64. Let the feasible sets S and T of, respectively, (P) and (D∗)
be nonempty. Then(

∀y∗ ∈ D∗ : ϕh(ŷ, y∗) ≥ 0
)

=⇒ ŷ ∈ Ph.

Proof. For ŷ∗ ∈ D∗h, we have ŷ∗q ≤ 0 and thus
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ϕ(ŷ, ŷ∗) =
q−1∑
i=1

ŷiŷ
∗
i + ŷq

(
1 −

q−1∑
i=1

ŷ∗i

)
− ŷ∗q

≥
q−1∑
i=1

ŷiŷ
∗
i + ŷq

(
1 −

q−1∑
i=1

ŷ∗i

)

= ϕh(ŷ, ŷ∗).

If ϕh(ŷ, y∗) ≥ 0 is satisfied for all y∗ ∈ D∗, we also have ϕh(ŷ, ŷ∗) ≥ 0 for all
ŷ∗ ∈ D∗h. Hence ϕ(ŷ, ŷ∗) ≥ 0 for all ŷ∗ ∈ D∗h. Theorem 4.41 applied to (Ph)
and (D∗h) yields ŷ ∈ Ph. ��

4.7 Identifying faces of minimal vectors

Geometric duality can help us to decide whether or not a face of P consists
completely of minimal elements. The lower image D∗ of the geometric dual is
sometimes easier to analyze, for instance, in the very important 3-dimensional
case. The reason is that the recession cone of D∗ has a simple structure,
namely D∗

∞ = −K. Therefore, a suitable projection on Rq−1 may already
contain enough information.

Recalling that every proper face of P consists of weakly minimal vectors,
we get a decision whether or not a face contains weakly minimal elements
being not minimal.

We start with a lemma, where we set

Λ :=
{
w ∈ Rq| w > 0 ∧ eTw = 1

}
.

Lemma 4.65. For a nonempty set F the following statements are equivalent:

(i) F is a proper face of P containing only minimal elements,
(ii) ∃w ∈ Λ, ∃γ ∈ R :

[
∀y ∈ P : wT y ≥ γ

]
∧
[
∀z ∈ F : wT z = γ

]
.

Proof. By Theorem 4.2, ȳ ∈ MinP is equivalent to

∃w ∈ Λ, ∃γ ∈ R :
[
∀y ∈ P : wT y ≥ γ

]
∧ wT ȳ = γ. (4.22)

(i) ⇒ (ii). Choose some ȳ ∈ riF . By Corollary 4.25, we have ȳ ∈ MinP
and thus (4.22) holds. Assume that there is some ỹ ∈ F such that wT ỹ > γ.
As ȳ ∈ riF , by (Rockafellar, 1972, Theorem 6.4), there exists some µ > 1
such that ŷ := (1 − µ)ỹ + µȳ ∈ F . It follows that wT ŷ < γ, which is a
contradiction.

(ii) ⇒ (i). Clearly, F is a proper face of P . From Corollary 4.25 we get
F ⊆ MinP . ��

The set
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∆ :=
{
y∗ ∈ Rq| w(y∗) ∈ R

q
+

}
is a polyhedron with nonempty interior and recession cone K ∪ (−K) =
R · (0, 0, . . . , 0, 1)T . We have

int∆ =
{
y∗ ∈ Rq| w(y∗) ∈ int R

q
+

}
and

bd∆ =
{
y∗ ∈ Rq| w(y∗) ∈ bd R

q
+

}
.

The lower image D∗ of the dual problem (D∗) is contained in ∆. The next
theorem states that K-maximal faces belonging to bd∆ refer to faces of
P that contain elements being not minimal (but only weakly minimal). An
example is given in Figure 4.6.

Theorem 4.66. For every proper face F of P, the following is equivalent:

(i) F ⊆ MinP,
(ii) Ψ−1(F ) ∩ int∆ �= ∅.

Proof. If F is a proper face of P , then (i) is equivalent to statement (ii) of
Lemma 4.65, that is,

∃w ∈ Λ, ∃γ ∈ R :
[
∀y ∈ P : wT y ≥ γ

]
∧
[
∀z ∈ F : wT z = γ

]
. (4.23)

(i) ⇒ (ii). Setting y∗ := (w1, w2, . . . , wq−1, γ)T , we get F ⊆ H(y∗) ∩P =: F̄ ,
where F̄ is a proper face of P . Corollary 4.25 and Lemma 4.51 yield y∗ ∈ D∗.
Using (4.17), we get y∗ ∈ H∗(y) for all y ∈ F . Hence y∗ ∈

⋂
y∈F H

∗(y)∩D∗ =
Ψ−1(F ). As w(y∗) > 0, we have y∗ ∈ int∆ and thus (ii) holds.

(ii) ⇒ (i). Let y∗ ∈ Ψ−1(F )∩ int∆ �= ∅, then (4.23) holds for w := w(y∗) ∈
Λ and γ := y∗q . ��

We proceed with a direct consequence of Theorem 4.66.

Corollary 4.67. Every vertex of P is minimal.

Proof. This follows immediately from Theorem 4.66, but a short direct proof
can be given as follows: Let y be a vertex of P = P [S]+ R

q
+ and assume that

y is not minimal. Hence, there exists some z ∈
(
{y} − R

q
+ \ {0}

)
∩ P , i.e.,

y ∈ {z} + R
q
+ \ {0} ⊆ P [S] + R

q
+ +

(
R

q
+ \ {0}

)
= P [S] + R

q
+ \ {0} .

Therefore, there is some x̄ ∈ S and some ȳ ∈ R
q
+ \{0} such that y = P x̄+ ȳ ∈

P . Hence the points y− ȳ and y+ ȳ belong to P and y = 1
2 (y− ȳ)+ 1

2 (y+ ȳ).
This contradicts y being a vertex of P . ��

The following result is a dual counterpart of Corollary 4.67.

Proposition 4.68. Every vertex of D∗ is K-maximal.
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y∗
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y2
Py1

D∗
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1

1

1

y∗
2
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Fig. 4.6 The lower image D∗ of the geometric dual problem on the right has the five
vertices (0, 0, 0)T , (0, 1

3 , 1)T , (0, 2
3 , 1)T , (0, 1, 0)T and (1

2 , 0, 0)T . All of them belong
to bd ∆. Therefore, the five facets of the upper image P of the primal problem are
not minimal, i.e., they contain elements being not minimal. The three K-maximal
facets of D∗ all have common points with int ∆ (this is always true for K-maximal
facets). This implies that the three vertices of P, namely (0, 3, 0)T , (−1, 1, 1)T and
(−3, 0, 3)T , are minimal (note that vertices of P are always minimal by Corollary
4.67). Furthermore, we observe that the four dashed K-maximal edges of D∗ belong
to bd ∆. The corresponding edges of P (also dashed) are therefore not minimal. The
other three K-maximal edges of D∗ have common points with int ∆. The correspond-
ing three edges of P are therefore minimal. The union of these three edges is the set
MinP.

Proof. This follows from the geometric duality theorem and the fact that
every facet of P consists of weakly minimal elements.

A simple direct proof can be given as follows: Assume there is some vertex
ȳ∗ ∈ D∗ which is notK-maximal. Then there exists some y∗ ∈

(
{ȳ∗}+K

)
∩D∗

with y∗ �= ȳ∗. We get ȳ∗ = 1
2y

∗ + 1
2 (ȳ∗ − (y∗ − ȳ∗)), where y∗ ∈ D∗ and

(ȳ∗ − (y∗ − ȳ∗)) ∈ D∗ are not equal. This contradicts the fact that ȳ∗ is a
vertex. ��

4.8 Notes on the literature

Duality for multiple objective linear programs seems to have its origin in
(Gale et al., 1951) followed by (Kornbluth, 1974; Rödder, 1977; Isermann,
1974a, 1978b,a; Brumelle, 1981; Jahn, 1983). More recent expositions are
contained in the books by Jahn (1986, 2004), Luc (1988) Göpfert and Nehse
(1990), Ehrgott (2000, 2005) and Boţ et al. (2009).

While many results from scalar optimization can be generalized to the vec-
torial case without any restrictions, some difficulties occurred in duality for
linear vector optimization, such as a duality gap in the case b = 0 (where b is
the right-hand side of the inequality constraints). In (Hamel et al., 2004), this
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duality gap could be closed by a set-valued approach. In (Löhne and Tam-
mer, 2007; Heyde et al., 2009b,a), this set-valued approach has been revisited
from a lattice theoretical point of view. The aim of the mentioned papers was
to work in an appropriate complete lattice in order to have a duality theory
which can be formulated along the lines of the scalar duality theory. Another
goal (Heyde et al., 2009a) is to have a “simple” dual problem, which is at
least not more complicated than the primal problem. A further aspect is that
the dual variables in the mentioned papers are vectors rather than matrices,
which is beneficial for an economic interpretation (see Heyde et al., 2009a)
and for computational aspects. Note that there are connections between ma-
trices and vectors as dual variables as pointed out, for instance, by (Jahn,
2004, Theorems 2.3 and 7.5 ). Further insights could be obtained from the
vectorial interpretation of the hyperplane-valued dual problem, the geometric
duality, which is due to Heyde and Löhne (2008). There are connections to
the weight space decomposition, which is a common method in the literature
(see e.g. Benson and Sun, 2000).

The results and concepts in Section 4.1 are classic (see e.g. Ehrgott, 2000,
2005). The pair (P2(y), (D2(y)) of dual problems occurred, for instance, in
(Isermann, 1974b). Note that these problems are related to a very common
scalarization method in vector optimization (e.g. Gerstewitz (Tammer), 1983;
Pascoletti and Serafini, 1984; Weidner, 1990), which is related to nonconvex
separation theorems (Gerth (Tammer) and Weidner, 1990).

The solution concepts introduced in this chapter are related to those by
Heyde and Löhne (2010). Section 4.3 as well as Section 4.4 are based on
(Heyde et al., 2009a). Moreover, an application to mathematical finance and
a corresponding interpretation of the dual problem can be found there.

The results of Section 4.5 are due to Heyde and Löhne (2008), except
some extensions and Corollary 4.55, which is taken from (Ehrgott, Löhne,
and Shao, 2007).



Chapter 5

Algorithms

This chapter is devoted to algorithms to compute finitely generated solutions
to (P) and (D). There are several methods in the literature that evaluate the
set of all efficient vertices (and efficient extreme directions) of the feasible
set. For large problems, this can be rather expensive. It is sufficient and often
less expensive to compute finitely generated solutions. This means that a
subset of the efficient vertices (and efficient extreme directions) is sufficient
but the requirement is to get a full description of the upper and lower images,
respectively. With the terminology of Chapter 2 this is just the attainment
of the infimum or supremum.

If we enter in this discussion from a practical point of view, we observe
that the decision maker does not need to know all the efficient solutions.
The reason is that the variable space is usually of higher dimension than the
objective space. Therefore, it is easier to search for the “best” efficient solution
in the objective space. To this end it is sufficient to know the upper or lower
images, which are fully determined by finitely generated solutions. Moreover,
it is adequate to assume that a decision maker will select a preferred efficient
solution based on the objective values rather than variable values.

Benson’s outer approximation algorithm, which is studied in this chapter,
is a method which is based on these ideas. The algorithm can be understood
as a kind of primal-dual method. Geometric duality also provides inner ap-
proximations of the the upper image P . Together this can be interpreted as
the embedding of the optimal value between the values of the primal and dual
objectives at feasible solutions, which is a well-known principle from scalar
optimization.

The investigations of this chapter are based on the geometric duality from
Section 4.5. We start with a generalization of Benson’s original algorithm
and continue with a dual variant. Both algorithms require solutions to the
homogeneous problems as an input. Under certain boundedness assumptions,
the solutions of the homogeneous problems are known. It is shown that each
homogeneous problem can be transferred into a problem which satisfies these
boundedness assumptions.
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5.1 Benson’s algorithm

Benson (1998b) proposed an outer approximation algorithm in order to “gen-
erate the set of all efficient extreme points in the outcome set”. We consider
a simplified and generalized variant of the algorithm. The main idea is to
evaluate the upper image P = P [S] + R

q
+ of Problem (P) by constructing

suitable cutting planes. The algorithm performs an iterative refinement of an
outer approximation of P . A sequence (T k) of inclusion decreasing polyhedral
supersets of P is constructed. The approximating supersets are evaluated in
the sense that one obtains both:

• a description by vertices and directions,
• a description by inequalities.

The algorithm terminates after a finite number of steps. Then, we have T k =
P for some k. This means that P have been evaluated in the same sense, i.e.,
one has a description by vectors/directions and by inequalities. A description
of P by feasible elements (or directions) of the variable spaces (pre-image
spaces) Rn and Rm+q is nothing but computing finitely generated solutions
to (P) and (D∗). This means that a suitable subset of S yields the vectors
and directions to describe P and a suitable subset of T yields the inequalities
describing P .

Throughout, the feasible set S is assumed to be nonempty. Moreover, we
assume that the homogeneous problems (Ph) and (D∗h) already have been
solved. We also suppose that D∗h has a nonempty interior. This is equivalent
to 0 being a vertex of Ph, which is an easy consequence of the geometric
duality theorem, see Section 4.5. This is illustrated in Figure 5.1.

An important special case is the one where P is R
q
+-bounded below, i.e.,

there exists some l ∈ Rq such that l ≤ y for all y ∈ P . In this case, solutions
to (Ph) and (D∗h) are known and D∗h has always a nonempty interior. The
details of this case are discussed in Section 5.3.

The outer approximation of P is subsequently denoted by T or by T k if
we intend to indicate that it was constructed in iteration k. The polyhedral
set T is described in two different ways.

Definition 5.1. Let T ⊆ Rq be a polyhedral set with T∞ ⊇ R
q
+. A pair of

finite sets

(T p, T̂ p) =
(
{y1, . . . , yr},

{
ŷ1, . . . , ŷs

})
∈ 2R

q × 2R
q\{0},

where T p is nonempty (r ≥ 1) but T̂ p is allowed to be empty (s ≥ 0), is
called a primal representation of T if T is re-obtained from (T p, T̂ p) by

T = co T p + cone T̂ p + R
q
+.

A nonempty finite set
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D∗h

D∗h

y∗
1

y∗
3

y∗
2

y∗
1

y∗
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y∗
2

Fig. 5.1 Illustration of the assumption intD∗h �= ∅ for the case q = 3. In the example
on the left, the assumption is fulfilled. A K-maximal face of dimension q−1 exists. By
geometric duality, this corresponds to a 0-dimensional face of Ph, that is, a vertex of
Ph exists (of course, this is the origin). On the right, the assumption is not fulfilled.
The largest (with respect to inclusion) K-maximal face is of dimension q − 2. By
geometric duality, the smallest (with respect to inclusion) weakly minimal face of Ph

has dimension 1. As every proper face of Ph is weakly minimal, this means that Ph

has no vertex.

T d =
{
y∗1, . . . , y∗t

}
(t ≥ 1)

is called a dual representation of T if T is re-obtained from T d by

T =
{
y ∈ Rq| ϕ(y, y∗1) ≥ 0 , . . . , ϕ(y, y∗t) ≥ 0

}
,

where ϕ : Rq × Rq → R is the coupling function of the geometric duality
theorem, see Section 4.5.

Recall that the inequality ϕ(y, y∗) ≥ 0 can be expressed as w(y∗)T y ≥ y∗q ,
where

w(y∗) =

(
y∗1 , . . . , y

∗
q−1, 1 −

q−1∑
i=1

y∗i

)T

.

The connections to finitely generated solutions can be easily seen.

Proposition 5.2. The pair of sets (S̄, S̄h) is a finitely generated solution to
(P) if and only if (

P [S̄], P [S̄h]
)

is a primal representation of P, S̄ ⊆ Eff (P) and S̄h ⊆ Eff (Ph).
The set T̄ is a finitely generated solution to (D∗) if and only if D∗[T̄ ] is a

dual representation of P and T̄ ⊆ Eff (D∗).

Proof. The conditions (i) - (iv) in Definition 4.4 are equivalent to S̄ ⊆ Eff (P),
S̄h ⊆ Eff (Ph), and to T p := P [S̄] and T̂ p := P [S̄h] being finite sets. Because
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of
coP [S̄] + coneP [S̄h] + R

q
+ = coT p + cone T̂ p + R

q
+,

(v) is equivalent to P ⊆ coT p + cone T̂ p + R
q
+. Since S̄ ⊆ S and S̄h ⊆ Sh,

the last inclusion holds with equality.
Definition 4.56 (i), (ii) is equivalent to T̄ ⊆ Eff (D∗) and T d := D∗[T̄ ]

being a finite set. By T̄ ⊆ T , condition (iii) in Definition 4.56 is equivalent to
D∗ = coD∗[T̄ ]−K. This is true if and only if the vertices of D∗ are contained
in D∗[T̄ ] (one direction is obvious, for the other one use the definition of a
vertex). The statement now follows from the geometric duality theorem. ��

The following result shows that the recession cone of T can be easily ob-
tained from a dual representation by turning to the homogeneous inequalities.

Proposition 5.3. Let T ⊆ Rq be a polyhedron such that T∞ ⊇ R
q
+ and let

T d be a dual representation of T . Then the recession cone of T is given by

T∞ =
{
y ∈ Rq| ∀y∗ ∈ T d : w(y∗)T y ≥ 0

}
.

Proof. We have

T =
⋂

y∗∈T d

{
y ∈ Rq| w(y∗)T y ≥ y∗q

}
�= ∅.

The recession cone of the closed halfspace

H(y∗) =
{
y ∈ Rq| w(y∗)T y ≥ y∗q

}
is the closed halfspace

(H(y∗))∞ =
{
y ∈ Rq| w(y∗)T y ≥ 0

}
.

It follows (see e.g. Rockafellar, 1972, Corollary 8.3.3)

T∞ =


 ⋂

y∗∈T d

H(y∗)




∞

=
⋂

y∗∈T d

(H(y∗))∞ ,

which implies the desired statement. ��

The algorithm is now explained geometrically. The steps can be illustrated
as a construction of the upper image P of Problem (P). The line numbers
given in the following description refer to Algorithm 1 below:

Input and variables. Besides the data of (P), the input contains a (possibly
empty) set S̄h such that ({0} , S̄h) is a finitely generated solution to (Ph).
This means that the extreme directions of P have to be known. In fact, they
are contained in the set P [S̄h]∪

{
e1, . . . , eq

}
. The set S̄h is not changed by the

algorithm and is part of the finitely generated solution to (P) computed by the
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algorithm. This is due to the feature that P and Ph have the same extreme
directions, which follows from the fact that Ph is the recession cone of P .
Moreover, the input data contain a finitely generated solution T̄ h to (D∗h).
Geometrically, this means that an inequality description of Ph is known at
the beginning. The most important variables are the following:

T̄ ... an array of vectors in Rm+q to construct a finitely generated solution
to (D∗),
S̄ ... an array of vectors in Rn to construct the vector part of a finitely
generated solution to (P),
T p ... an array of vectors in Rq to store the first part of a primal repre-
sentation of the current outer approximation,
T d ... an array of vectors in Rq to store a dual representation of the current
outer approximation.

1. Initialization. First, an interior point p̂ of P is determined (line 08). To
this end a feasible point x ∈ S is determined and the vector e = (1, . . . , 1)T

is added to Px.
The algorithm constructs a set T̄ such that T d := D∗[T̄ ] is a dual rep-

resentation of an initial outer approximation T ⊇ P . The set T̄ is obtained
from the finitely generated solution T̄ h to (D∗h) in the following way:
D∗[T̄ h] provides a dual representation of Ph. The halfspaces generated

by the corresponding inequalities are shifted appropriately such that they
contain P . As a consequence, the desired set T̄ is obtained. Note that by
Proposition 5.3, Ph and the first outer approximation T have an identical
recession cone. The same is true for every other outer approximation which
is contained in T . As a consequence, the direction part of the primal repre-
sentation is known for every outer approximation T . It is therefore sufficient
to compute the vertices of T in order to get a primal representation.

2. Iteration. The dual representation of T is used to get a primal represen-
tation. Because of the above remarks on the recession cones, it remains to
compute the vertices of the outer approximation T in each step (line 06).

It is then tested whether the vertices of T belong to P . To this end,
the linear program (P2(t)) is solved for the vertices t of T (line 11). The
optimal value z of (P2(t)) is zero if and only if t ∈ P . If all vertices of an
outer approximation T belong to P , we have T = P . Finitely generated
solutions to (P) and (D∗) can easily be obtained from the primal and dual
representations of P by solving (P2(t)) and (D2(s)), respectively (lines 11
and 17). If a vertex t ∈ T is detected that does not belong to P , then this
vertex is used to construct a better (smaller) outer approximation. Let us
explain this for the k-th iteration:

We have a vertex t of T k not belonging to P . A point s ∈ bdP on the line
between p̂ and t is determined. To this end, we solve (see line 15) the linear
program

maxα subject to
{

Bx ≥ b
αt+ (1 − α)p̂ ≥ Px.

(R(t))
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We next compute a supporting hyperplane of P that contains the point s.
This hyperplane is obtained as H(D∗(u,w)) =

{
y ∈ Rq| wT y = bTu

}
, where

(u,w) is a solution to the linear program (D2(s)) (see line 17) andH is defined
in Section 4.5.

Proposition 5.4. Let s ∈ wMinP. Then there exists a solution to (D2(s))
and for each solution (u,w) to (D2(s)), H(D∗(u,w)) is a supporting hyper-
plane to P containing s.

Proof. By Theorem 4.20 there exists a solution (u,w) to (D2(s)) such that
bTu = sTw. Of course, the latter equality is also valid for any other optimal
solution to (D2(s)). For arbitrary s ∈ P , there exists some x ∈ S such that
s ≥ Px. Hence (x, 0) is feasible for (P2(s)) and duality between (P2(s))
and (D2(s)) implies that yTw ≥ bTu for all y ∈ P . Hence H(D∗(u,w)) ={
y ∈ Rq| yTw = bTu

}
is a supporting hyperplane to P containing s. ��

We now append the solution (u,w) of (D2(s)) to T̄ (line 18). As D∗[T̄ ]
yields a dual representation of the new outer approximation T k+1, appending
(u,w) to T̄ can be interpreted geometrically as a cut of T k by the hyperplane
H(D∗(u,w)), that is, T k+1 := T k ∩

{
y ∈ Rq| wT y ≥ bTu

}
.

Output. The output consists of a finitely generated solution (S̄, S̄h) to (P)
and a finitely generated solution T̄ to (D∗).

s2

s1

t2

T 2

T 1

p̂ p̂PP

t1

Fig. 5.2 Illustration of Benson’s algorithm. In the first step on the left, the vertex
t1 of the outer approximation T 1 does not belong to P. The point s1 ∈ wMinP on
the line between t1 and p̂ is computed. The supporting hyperplane of P containing
the point s1 yields a smaller approximation T 2, which is shown in the figure on the
right. Again a vertex t2 of T 2 not belonging to P is computed. One proceeds in the
same way. If all vertices of the outer approximation T k belong to P, the algorithm
stops.

The algorithm uses two subroutines. The command solve( ) solves a linear
program. A solution is returned. For this purpose, a large variety of software
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is available. The routine vert( ) returns the vertices of a polyhedron T , which
is given by a dual representation. This means that a finite set of inequalities is
known, whose solution set is just T . For this purpose, a method called “Vertex
Enumeration by Adjacency Lists” can be used, see Chen et al. (1991). Two
variants are available. The offline variant has to be used in the first iteration.
In the subsequent steps the online variant should be more efficient. The online
variant uses the results from the previous steps.

The algorithm is now given in a pseudo code.

Algorithm 1.

Input:
A, b, P (data of Problem (P));
a finitely generated solution

(
{0} , S̄h

)
to (Ph);

a finitely generated solution T̄ h to (D∗h);
Output:

a finitely generated solution (S̄, S̄h) to (P);
a finitely generated solution T̄ to (D∗);

01: begin
02: p̂← P (solve(P1(0))) + e;
03: T̄ ←

{(
solve(D1(w)), w

)∣∣ (u,w) ∈ T̄ h
}
;

04: repeat
05: T d ←

{
D∗(u,w)| (u,w) ∈ T̄

}
;

06: T p ← vert (T d);
07: S̄ ← ∅;
08: for i = 1 to |T p| do
09: begin
10: t ← T p[i];
11: (x, z) ← solve(P2(t));
12: S̄ ← S̄ ∪ {x};
13: if z �= 0 then
14: begin
15: (x, α) ← solve(R(t));
16: s← αt+ (1 − α)p̂;
17: (u,w) ← solve(D2(s));
18: T̄ ← T̄ ∪ {(u,w)};
19: break;
20: end;
21: end;
22: until z = 0;
23: end.

Further details of the algorithm are discussed in the proofs of the next two
theorems.
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Theorem 5.5. Algorithm 1 works correctly.

Proof. In line 02, we compute a solution x to (P1(0)) in order to obtain some
x ∈ S (note that S was assumed to be nonempty). As e ∈ int R

q
+ we obtain

p̂ = Px+ e ∈ P [S] + int R
q
+ = int (P [S] + R

q
+) = intP .

Since T̄ h is a finitely generated solution to (D∗h), T̄ h is a nonempty subset
of the feasible set T . Thus, if (u,w) ∈ T̄ h ⊆ T , u is feasible for (D1(w)). As
the feasible set S of (P1(w)) is nonempty, in line 03 a solution to (D1(w))
exists (classical duality theory).

Let us show that T in line 05, which is given by its dual representation
T d, is an outer approximation of P , i.e., P ⊆ T . Indeed, if y ∈ P and
y∗ ∈ T d = D∗[T̄ ] ⊆ D∗[T ], weak duality implies ϕ(y, y∗) ≥ 0 (compare
Theorem 4.40). Hence y ∈ T . Note that for every y∗ ∈ T d, there is some
y ∈ P such that ϕ(y, y∗) = 0. This is a consequence of u being a solution to
(D1(w)) for every (u,w) ∈ T d, compare Theorem 4.19.

The set T p in line 06 is nonempty, i.e., there exists a vertex of T . Indeed,
we assumed intD∗h �= ∅. As a consequence we obtain that 0 is a vertex
of Ph. Geometrically, T is obtained from Ph by a shift of the supporting
hyperplanes. Thus, T contains at least one vertex (this follows more precisely
by (Rockafellar, 1972, Corollary 18.5.3) and Theorem 5.3).

In line 11 we solve (P2(t)). Taking x ∈ S and z sufficiently large, we obtain
that (x, z) is feasible for (P2(t)). In particular, an optimal solution (x, z) to
(P2(t)) always exists. We have either t ∈ bdP = wMinP or t �∈ P . In the
first case we have z = 0 by Theorem 4.20 and in the second case we have
z > 0. This means that the lines 14-20 are performed in the case where t �∈ P .
Thus, (R(t)) has a solution and we obtain some s ∈ bdP = wMinP . The
linear program (D2(s)) in line 17 has a solution by Proposition 5.4. In line
19 we break the innermost loop (lines 08-21).

The outer loop (lines 04-22) terminates in the case where for every t ∈ T p,
z = 0 is obtained in line 11. This means T p ⊆ P , which implies T = P . We
have P [S̄] = T p and D∗[T̄ ] = T d.

From Proposition 5.2 we obtain that (S̄, S̄h) and T̄ are finitely generated
solutions to (P) and (D∗), respectively. The assumption S̄ ⊆ Eff (P) in Propo-
sition 5.2 follows from the fact that every vertex of P is minimal (Corollary
4.67). Indeed, if x ∈ S̄, then (x, 0) was obtained as an optimal solution to
(P2(t)) for a vertex t of P (line 11). We have Px ≤ t+0 ·e and the minimality
of t implies Px = t. The assumption S̄h ⊆ Eff (Ph) follows from the input
because ({0} , S̄h) is a finitely generated solution to (Ph). The assumption
T̄ ⊆ Eff (D∗) in Proposition 5.2 follows from Proposition 5.4 and the geomet-
ric duality theorem. ��

It remains to show that the algorithm terminates after a finite number of
steps.

Theorem 5.6. Algorithm 1 is finite.
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Proof. Since p̂ ∈ intP , the point sk ∈ P computed in iteration k belongs
to int T k. We have T k+1 := T k ∩ {y ∈ Rq| ϕ

(
y,D∗(uk, wk)

)
≥ 0}, where

(uk, wk) is the solution to (D2(sk)) computed in iteration k. By Proposition
5.4 we know that F := {y ∈ P | ϕ

(
y,D(uk, wk)

)
= 0} is a face of P with

sk ∈ F , where F ⊆ bd T k+1. For the next iteration, this means that sk+1 �∈ F
(because sk+1 ∈ int T k+1). Therefore, sk+1 belongs to another face of P .
Since P is polyhedral, it has a finite number of faces. This proves that the
algorithm is finite. ��

5.2 A dual variant of Benson’s algorithm

The geometric explanation of Benson’s algorithm is based on a construction
of the upper image P of the primal vector optimization problem. By similar
ideas, the lower image D∗ of the geometric dual problem can be constructed.
The link between P and D∗ is given by geometric duality. Therefore, a con-
struction of D∗ leads to the same results as a construction of P . A dual
algorithm based on this idea is developed in this section.

Note that geometric duality is already involved in the original (primal)
algorithm. In the same way the dual algorithm is based on this theory. Again
we obtain finitely generated solutions to both problems (P) and (D∗).

As in Section 5.1, we assume that the primal feasible set S is nonempty
and the homogeneous problems (Ph) and (D∗h) have already been solved.
Again we suppose that D∗h has a nonempty interior.

The special case where P is R
q
+-bounded below is also important for the

dual algorithm. In this case solutions to (Ph) and (D∗h) are known and D∗h

has a nonempty interior. The details of the bounded case are discussed in
Section 5.3.

We now work with two different descriptions of the lower image D∗ and
its outer approximation, which is denoted by T or by T k if the iteration step
shall be indicated. Recall that ∆ := {y∗ ∈ Rq| w(y∗) ≥ 0}.

Definition 5.7. Let T be a polyhedral set with T ⊆ ∆ and T∞ = −K. A
nonempty finite set

T p = {y∗1, . . . , y∗t} ∈ 2R
q

is called a primal representation of T if T is re-obtained from T p by

T = coT p −K.

A pair of finite sets

T d =
({
y1, . . . , yr

}
,
{
ŷ1, . . . , ŷs

})
∈ 2R

q

× 2R
q\{0},

where r ≥ 1 and s ≥ 0 (i.e. the first set is nonempty but the second set can
be empty), is called a dual representation of T if T is re-obtained from T d
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by

T =
{
y∗ ∈ ∆| ϕ (y1, y∗) ≥ 0, . . . , ϕ (yr, y∗) ≥ 0,

ϕh(ŷ1, y∗) ≥ 0, . . . , ϕh(ŷs, y∗) ≥ 0
}
,

where ϕ : Rq × Rq → R is the coupling function of the geometric duality
theorem, see Section 4.5, and ϕh : Rq × Rq → R is the homogeneous variant
of the coupling function, see Section 4.6.

The next result shows that a primal (dual) representation of P is just a
dual (primal) representation of D∗. This is a consequence of geometric duality
and the fact that we use the term “primal” for a representation by vectors
(and directions) and the term “dual” for a representation by inequalities.

Proposition 5.8. The following statements are equivalent:

(i) (A, Â) is a primal representation of P;
(ii) (A, Â) is a dual representation of D∗.

Proof. A pair (A, Â) is a primal representation of P if A ⊆ Rq is nonempty
and finite, and Â ∈ Rq \ {0} is finite (possibly empty) such that P = coA +
cone Â + R

q
+. Equivalently, all vertices of P belong to A and all extreme

directions of P except the unit vectors (the extreme directions of R
q
+) belong

to Â. The vertices of P correspond to supporting hyperplanes of D∗ in K-
maximal facets (Theorem 4.42) and the extreme directions of P correspond to
supporting hyperplanes of D∗ in vertical facets (Theorem 4.62). Taking into
account also the duality assertions in Theorems 4.40 and 4.41 and Corollaries
4.63 and 4.64, we obtain the equivalent statement

D∗ =
{
y∗ ∈ ∆| ∀y ∈ A : ϕ(y, y∗) ≥ 0 ∧ ∀ŷ ∈ Â : ϕh(ŷ, y∗) ≥ 0

}
.

Note that the inequalities describing ∆ correspond to the extreme directions
of R

q
+ (the unit vectors). The latter statement means that (A, Â) is a dual

representation of D∗. ��

Proposition 5.9. The following statements are equivalent:

(i) B is a primal representation of D∗;
(ii) B is a dual representation of P.

Proof. A nonempty finite set B is a primal representation of D∗ if and only
if it contains all vertices of D∗. These vertices correspond exactly to the
supporting hyperplanes of D∗ in weakly minimal facets by Theorem 4.42.
Taking into account also the duality assertions in Theorems 4.40 and 4.41,
we get the equivalent statement

P = {y ∈ Rq| ∀y∗ ∈ B : ϕ(y, y∗) ≥ 0} ,

which means that B is a dual representation of P . ��
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The connections to finitely generated solutions can easily be seen.

Corollary 5.10. The pair of sets (S̄, S̄h) is a finitely generated solution to
(P) if and only if (

P [S̄], P [S̄h]
)

is a dual representation of D∗, S̄ ⊆ Eff (P) and S̄h ⊆ Eff (Ph).
The set T̄ is a finitely generated solution to (D∗) if and only if D∗[T̄ ] is a

primal representation of D∗ and T̄ ⊆ Eff (D∗).

Proof. Follows from Propositions 5.2, 5.8 and 5.9.

Let us show some properties of the first outer approximation T computed
by the dual algorithm.

Proposition 5.11. Let ({0} , S̄h) be a finitely generated solution to (Ph) and
let y ∈ P. For the set

T :=
{
y∗ ∈ ∆| ϕ(y, y∗) ≥ 0 ∧ ∀ŷ ∈ P [S̄h] : ϕh(ŷ, y∗) ≥ 0

}
,

the following is true:

(i) D∗ ⊆ T ⊆ ∆,
(ii) T∞ = −K,
(iii) T and D∗ have the same vertical supporting hyperplanes.

Proof. (i) Let y∗ ∈ D∗ ⊆ ∆. By Corollary 4.63, for every ŷ ∈ P [S̄h] ⊆ Ph we
have ϕh(ŷ, y∗) ≥ 0. From Theorem 4.40 we get ϕ(y, y∗) ≥ 0. Hence y∗ ∈ T .
The second inclusion is obvious.

(ii) By (i) we have T ⊆ ∆ and hence T∞ ⊆ ∆∞ = K ∪ (−K). Let y∗ ∈ T .
Then, ϕh(ŷ, y∗ + λeq) ≥ 0 holds for all ŷ ∈ P [S̄h] and all λ ∈ R. Therefore,
y∗ + λeq belongs to T if and only if

ϕ(y, y∗ + λeq) = w(y∗)T y − y∗q − λ ≥ 0.

This shows that y∗ + λeq ∈ T for all λ ≤ 0 but there exists some λ > 0 such
that y∗ + λeq �∈ T . Hence T∞ = −K.

(iii) This follows from Corollary 5.10. ��
In order to construct the set D∗ by outer approximations, we need an

interior point of D∗. As shown in the next two propositions, an interior point
of D∗ can be obtained from a finitely generated solution to (D∗h). Note that
the assumption intD∗h �= ∅ is used in both results.

Proposition 5.12. Let T̄ h =
{
(u1, w1), . . . , (uk, wk)

}
be a finitely generated

solution to (D∗h), then

η :=
k∑

i=1

1
k
wi ∈ int

(
D∗h +K

)
,

and eT η = 1.



172 5 Algorithms

Proof. The vector η is a convex combination with nonzero coefficients of
the w-components of the elements of T̄ h. Since D∗h[T̄ h] contains all ver-
tices of the bounded set D∗h[T ] (which belongs to {y∗ ∈ Rq| y∗q = 0}),
(η1, . . . , ηq−1, 0) belongs to the relative interior of D∗h[T ]. As intD∗h is
assumed to be nonempty, we have dimD∗h[T ] = q − 1. It follows that
η ∈ riD∗h[T ] × R = int (D∗h +K).

We have eTwi = 1 for all i = {1, . . . , k} and hence eT η = 1. ��

An interior point of D∗ is obtained from an interior point of int
(
D∗h +K

)
by solving a scalar linear program.

Proposition 5.13. Let η ∈ int
(
D∗h +K

)
such that eT η = 1 and let γ be

the optimal value of (P1(η)). Then, γ ∈ R and for every µ ∈ (−∞, γ) we
have (η1, . . . , ηq−1, µ)T ∈ intD∗.

Proof. We have η ∈ int
(
D∗h +K

)
= int (D∗h[T ] + R {eq}). Thus there

exists u ∈ Rm such that (u, η) ∈ T . It follows that u is feasible for
(D1(η)). We assumed throughout that S �= ∅, where S is also the feasible
set of (P1(η)). From the duality theory we get γ ∈ R. Moreover, we obtain
s∗ := (η1, . . . , ηq−1, γ)T ∈ D∗.

For t∗ ∈ R
q
+ we denote by γ(t∗) the optimal value of (P1(w(t∗))), which

is finite on D∗h + K by the same arguments as used above. The function
γ : R

q
+ → R is concave.

Let ε > 0 be sufficiently small such that the ball Bε(s∗) with center s∗

and radius ε belongs to int (D∗h + K). Consequently, γ(·) is continuous on
Bε(s∗), see e.g. (Borwein and Lewis, 2000, Theorem 4.1.3) or (Rockafellar,
1972, Theorem 10.1). It follows that γ(·) is bounded on Bε(s∗). Let ρ ∈ R

such that γ(t∗) ≥ ρ for all t∗ ∈ Bε(s∗).
Setting r∗ := (η1, . . . , ηq−1, ρ−ε)T , we getBε(r∗) ⊆ D∗. Hence r∗ ∈ intD∗.

Every proper convex combination of s∗ ∈ D∗ and r∗ ∈ intD∗ belongs to
intD∗, which yields the desired result. ��

We proceed with a geometric explanation of the algorithm (compare also
Figure 5.3):

Input and variables. The input data are exactly the same as in Algorithm 1:
the data of (P), a (possibly empty) set S̄h such that ({0} , S̄h) is a finitely
generated solution to (Ph) and a finitely generated solution T̄ h to (D∗h).
Also, the following variables (partly with a slightly different meaning) already
occurred in the primal algorithm:

S̄ ... an array of vectors Rn to construct the vector part of a finitely
generated solution to (P),
T̄ ... an array of vectors Rm+q to construct a finitely generated solution
to (D∗),
T p ... an array of vectors in Rq to store a primal representation of the
current outer approximation,
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T 2

t∗1

s∗1 t∗2

s∗2

d̂d̂

D∗ D∗
T 1

Fig. 5.3 Illustration of the dual variant of Benson’s algorithm. In the first step,
shown on the left, the vertex t∗1 of the outer approximation T 1 does not belong
to D∗. The point s∗1 ∈ MaxK D∗ on the line between t∗1 and d̂ is computed. A
cut with the supporting hyperplane of D∗ containing the point s∗1 yields a smaller
approximation T 2, which is shown in the figure on the right. Again a vertex t∗2 of
T 2 not belonging to D∗ is computed. One proceeds in the same way. If all vertices of
the outer approximation T k belong to D∗, the algorithm stops.

T d ... an array of vectors in Rq to store the first part of a dual represen-
tation of the current outer approximation.

1. Initialization. First, an interior point d̂ of D∗ is determined (lines 02 to
04). Simultaneously (lines 03 and 05) the algorithm constructs a singleton
set S̄ = {x} such that the first part of a dual representation T d of an initial
outer approximation T ⊇ D∗ is obtained. The second part T̂ d is obtained
from the finitely generated solution ({0} , S̄h) to (Ph). Geometrically speak-
ing, we obtain vertical supporting hyperplanes of D∗ from the extreme di-
rections of Ph. Then we compute some x ∈ S such that y = Px is a weakly
minimal point of P (line 03), which corresponds by geometric duality to a
K-maximal (non-vertical) supporting hyperplane of D∗. Together this yields
a dual representation (inequality representation) of an outer approximation
T . By Proposition 5.11, we have D∗ ⊆ T ⊆ ∆, T∞ = −K and we know that
T and D∗ have the same vertical supporting hyperplanes. These properties
also hold for all subsequent outer approximations. In particular, we see that
the set T̂ d has not to be changed by the algorithm.

2. Iteration. The subroutine vert ( ) computes a primal representation of T ,
i.e., a description by vertices. It is tested whether or not the vertices of T
belong to D∗. To this end, the linear program (D1(w(t∗))) is solved for the
vertices t∗ of T (line 14). The optimal value bTu of (D1(w(t∗))) equals t∗q
if and only if t∗ ∈ D∗. If all vertices of an outer approximation T belong
to D∗, we have T = D∗. Finitely generated solutions to (P) and (D∗) can
easily be obtained from the primal and dual representations of D∗ by solving
(D1(w(t∗))) and (P1(w(s∗))) (lines 14 and 20), respectively. If a vertex t∗ of
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T with t∗ �∈ D∗ is detected, it is used to construct a better (smaller) outer
approximation. This is now explained for the k-th iteration:

We have a vertex t∗ of T k−1 not belonging to D∗. A point s∗ ∈ MaxK D∗

is determined, which is on the line between d̂ and t∗. To this end we solve
(see line 18) the linear program

maxα subject to
{

(u,w) ∈ T

αt∗ + (1 − α)d̂ = D∗(u,w).
(R∗(t∗))

A supporting hyperplane of D∗ containing s∗ is computed as shown in the
following proposition.

Proposition 5.14. Let s∗ ∈ MaxK D. There exists a solution to (P1(w(s∗))),
and for every solution x to (P1(w(s∗))), H∗(Px) is a supporting hyperplane
of D∗ containing s∗.

Proof. By s∗ ∈ D∗, the dual problem (D1(w(s∗))) is feasible, hence a solution
to (P1(w(s∗))) exists (note that we assumed S �= ∅). By Theorem 4.1 we have
Px ∈ wMinP for every solution x to (P1(w(s∗))). Lemma 4.49 implies that
H∗(Px) is a supporting hyperplane of D∗. Since s∗ ∈ MaxK D∗, we have
s∗q = bTu, where u is a solution to (D1(w(s∗))). Strong duality between
(P1(w(s∗))) and (D1(w(s∗))) implies s∗q = w(s∗)TPx, which is equivalent to
ϕ(Px, s∗) = 0. This means s∗ ∈ H∗(Px). ��

We now append the solution x of the linear program (P1(w(s∗))) to S̄
(line 21). Note that P [S̄] yields the first part of a dual representation of
the new outer approximation T k+1. Appending x to S̄ can be interpreted
geometrically as a cut by the hyperplane H∗(Px), that is, T k+1 = T k ∩
{y∗ ∈ Rq| ϕ(Px, y∗) ≥ 0}.
Output. The output consists of a finitely generated solution (S̄, S̄h) to (P)
and a finitely generated solution T̄ to (D∗).

Let us now formulate the dual outer approximation algorithm in pseudo
code. We use the same subroutines as for the primal algorithm in Section 5.1.
A slight difference with respect to the routine vert( ) in comparison to the
primal algorithm is discussed in the following remark.

Remark 5.15. The routine vert( ) returns the vertices of an outer approxima-
tion T of D∗, which is given by a dual representation T d. This can be realized
by “Vertex Enumeration by Adjacency Lists” (Chen et al., 1991). Instead of
using the offline variant of this method in the first iteration (compare Sec-
tion 5.1), the given finitely generated solution T̄ h to (D∗h) can be used. The
vertices of T 1 are contained in the set{

y∗ ∈ Rq| (u,w) ∈ T̄ h ∧ y∗ = (w1, . . . , wq−1, w
TPx)

}
,

where x is the solution to (P1(η)) computed in line 03 of Algorithm 2. This
follows from Proposition 5.11.
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Algorithm 2.

Input:
A, b, P (data of Problem (P));
a finitely generated solution ({0} , S̄h) to (Ph);
a finitely generated solution T̄ h to (D∗h);

Output:
a finitely generated solution (S̄, S̄h) to (P);
a finitely generated solution T̄ to (D∗);

01: begin

02: (·, η) =
|T̄ h|∑
j=1

1
|T̄ h| T̄

h[j];

03: x← solve(P1(η));
04: d̂←

{
η1, . . . , ηq−1, η

TPx− 1
}T ;

05: S̄ ←
{
x
}
;

06: T̂ d =
{
Px| x ∈ S̄h

}
;

07: repeat
08: T d ←

{
Px| x ∈ S̄

}
;

09: T p ← vert ((T d, T̂ d));
10: T̄ ← ∅;
11: for i = 1 to |T p| do
12: begin
13: t∗ ← T p[i];
14: u← solve(D1(w(t∗)));
15: T̄ ← T̄ ∪ {(u,w(t∗))};
16: if t∗q �= bTu then
17: begin
18: (·, ·, α) ← solve(R∗(t∗));
19: s∗ ← αt∗ + (1 − α)d̂;
20: x← solve(P1(w(s∗)));
21: S̄ ← S̄ ∪ {x};
22: break;
23: end;
24: end;
25: until t∗q = bTu;
26: end.

Further details of the dual algorithm are discussed in the proofs of the
next two theorems.

Theorem 5.16. Algorithm 2 works correctly.
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Proof. In line 02, we compute a convex combination (with nonzero coeffi-
cients) of the w-components of the elements of T̄ h. By Proposition 5.12, we
obtain η ∈ int (D∗h + K) with eT η = 1. By Proposition 5.13, a solution to
(P1(η)) exists (line 03) and we have d̂ ∈ intD∗ (line 04).

By Proposition 5.11, the set T , which is defined by its dual representation
(T d, T̂ d) (line 08), is an outer representation of D∗, i.e., T ⊇ D∗.

The set T p in line 09 is nonempty, i.e. there exists a vertex of T . Indeed,
by Proposition 5.11 we know that T∞ = −K. Hence T contains no lines. By
(Rockafellar, 1972, Corollary 18.5.3) a vertex exists.

In line 14 we solve (D1(w(t∗))). In the k-th iteration, we have t∗ ∈ T k ⊆
T k−1 ⊆ · · · ⊆ T 1. The first outer approximation T 1 can be expressed like
T in Proposition 5.11, where y := Px and x is the element first stored
in S̄ (line 05). Hence we have ϕ(y, t∗) ≥ 0, or equivalently, w(t∗)T y ≥ t∗q .
This means that (P1(w(t∗))) is bounded and feasible. Therefore, an optimal
solution exists. By duality the same is true for the dual problem (D1(w(t∗))).

Since t∗ is a K-maximal point of an outer approximation of D∗, either
t∗ ∈ MaxK D∗ or t∗ �∈ D∗ holds. In the first case, we have t∗q = bTu by
Lemma 4.51 (i), (iii). In the second case, by Theorem 4.41, there exists some
y ∈ P such that ϕ(y, y∗) < 0, or equivalently, t∗q > w(t∗)T y. Weak duality
between (P1(w(t∗))) and (D1(w(t∗))) implies t∗q > bTu. This means that the
lines 17-23 are performed in the case where t∗ �∈ D∗. Thus, (R∗(t∗)) has a
solution and we obtain some s∗ ∈ MaxK D∗. The linear program (P1(w(s∗)))
in line 20 has a solution by Proposition 5.14. In line 22 we break the innermost
loop (lines 11-24).

The outer loop (lines 07-25) terminates in the case where for every t∗ ∈ T p,
t∗q = bTu is obtained in line 14. This means T p ⊆ D∗, which implies T = D∗.
We have D∗[T̄ ] = T p (lines 13-15) and P [S̄] = T d (line 08).

From Corollary 5.10 we obtain that (S̄, S̄h) and T̄ are finitely generated
solutions to (P) and (D∗), respectively. The assumption T̄ ⊆ Eff (D∗) in
Corollary 5.10 follows from the fact that every vertex of D∗ is K-maximal.
Indeed, if (u,w) ∈ T̄ , then u arose from an optimal solution to (D1(w(t∗)))
for a vertex t∗ of D∗ (line 14) and we have w = w(t∗). We conclude wi = t∗i
for i ∈ {1, . . . , q − 1}. Since t∗ is K-maximal, we get t∗q = bTu, by Lemma
4.51 (i), (iii). Hence t∗ = D∗(u,w) and (u,w) ∈ Eff (D∗h).

The assumption S̄ ⊆ Eff (P) in Corollary 5.10 follows from Proposition
5.14 and the geometric duality theorem. The assumption S̄h ⊆ Eff (Ph) fol-
lows from the input, where ({0} , S̄h) is a finitely generated solution to (Ph).

��

Finally we show that the algorithm terminates after a finite number of
steps.

Theorem 5.17. Algorithm 2 is finite.

Proof. Since d̂ ∈ intD∗, the point s∗k ∈ D∗ computed in iteration k be-
longs to int T k. We have T k+1 := T k ∩

{
y∗ ∈ Rq| ϕ(Pxk, y∗) ≥ 0

}
and, by
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Proposition 5.14, we know that F ∗ :=
{
y∗ ∈ D∗| ϕ(Pxk, y∗) = 0

}
is a face of

D∗ with s∗k ∈ F ∗, where F ∗ ⊆ bd T k+1. For the next iteration, this means
s∗k+1 �∈ F ∗ (because s∗k+1 ∈ int T k+1). Therefore, s∗k+1 belongs to another
face of D∗. Since D∗ is polyhedral, it has a finite number of faces. Hence the
algorithm is finite. ��

5.3 Solving bounded problems

Boundedness of the primal problem (P) plays an important role because
finitely generated solutions to the homogeneous problems (Ph) and (D∗h)
can easily be obtained in this case. This means that Algorithms 1 and 2 can
be used directly to solve (P) and (D∗).

As we shall show in the next section, the homogeneous problem (Ph) can be
transformed into a bounded problem (Pη). Thus, both algorithms (the primal
and the dual) can be used to solve an arbitrary homogeneous problem (Ph).
In either case, the geometric dual problem (D∗h) is solved simultaneously. In
a second step, the finitely generated solutions to the homogeneous problems
(Ph) and (D∗h) can be used to solve the original problem (P), again by one
of the Algorithms 1 or 2. In either case, the dual problem (D∗) is solved
simultaneously.

Definition 5.18. Problem (P) is said to be bounded if there exists some
y ∈ Rq such that

∀x ∈ S : y ≤ Px.

Of course, the condition P ⊆ {y}+R
q
+ is equivalent to (P) being bounded.

This property is commonly called P being R
q
+-bounded below. If the feasible

set S is bounded, then (P) is bounded, but the inverse implication is obviously
not true.

Let us relate boundedness of (P) to a corresponding condition for the
geometric dual problem (D∗). Recall that ∆ := {y∗ ∈ Rq| w(y∗) ≥ 0}.

Proposition 5.19. The following statements are equivalent:

(i) Problem (P) is bounded,
(ii) ∃γ ∈ R :

{
y∗ ∈ Rq| y∗q ≤ γ

}
∩∆ ⊆ D∗.

Proof. Let y ∈ Rq such that P ⊆ {y}+R
q
+. Setting γ := min {yi| i = 1, . . . , q},

we obtain P ⊆ {γe} + R
q
+, where e = (1, . . . , 1)T . Thus (i) is equivalent to

the existence of some γ ∈ R such that P ⊆ {γe} + R
q
+ =: T

The set T can be expressed as

T =
{
y ∈ Rq| (e1)T y ≥ γ, . . . , (eq)T y ≥ γ

}
,

where ei denotes the i-th unit vector. By the last statement in Theorem 4.41,
P ⊆ T is equivalent to
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T ∗ :=







1
0
...
0
0
γ



,




0
1
...
0
0
γ



, . . . ,




0
0
...
1
0
γ



,




0
0
...
0
1
γ



,




0
0
...
0
0
γ







⊆ D∗.

Equivalently, we have coT ∗ ⊆ D∗. But, coT ∗ =
{
y∗ ∈ Rq| y∗q ≤ γ

}
∩ ∆,

which completes the proof. ��

The homogeneous problem (Ph) of a bounded problem (P) can easily be
solved.

Theorem 5.20. Let (P) be bounded and denote by (Ph) and (D∗h) the cor-
responding homogeneous problems. Then,

(i) ({0} , ∅) is a finitely generated solution to (Ph),
(ii)

{
(u1, e1), . . . , (uq, eq)

}
is a finitely generated solution to (D∗h), where

ui is a feasible point of (D1(ei)) for i ∈ {1, . . . , q}.

Proof. (i) Note first that the conditions (i), (ii) and (iv) of Definition 4.4 are
obviously satisfied for S̄ = {0} and S̄h = ∅, respectively. To show (iii), we
observe that 0 is feasible for (Ph). Furthermore, we have P [Sh] ⊆ Ph = R

q
+

and hence ({0} − R
q
+ \ {0}) ∩ P [Sh] = ∅. Condition (v) of Definition 4.4

reduces to P [Sh] ⊆ coP [{0}] + R
q
+ = R

q
+, which is obviously satisfied (recall

the convention cone ∅ = {0}).
(ii) Let T̄ :=

{
(u1, e1), . . . , (uq, eq)

}
. Then T̄ is a finite subset of T . We

have
D∗h[T̄ ] =

{
e1, e2, . . . , eq−1, 0

}
.

We conclude that D∗h[T̄ ] ⊆ MaxK D∗h[T ] and D∗h[T ] ⊆ coD∗h[T̄ ]−K. This
means that all conditions of Definition 4.56 are satisfied. ��

Remark 5.21. Note that the u-components of a finitely generated solution to
(D∗h) are sometimes not needed. For instance, in Algorithms 1 and 2 only
the w-components are used. It is therefore not necessary to determine feasible
solutions to (D1(ei)) (i ∈ {1, . . . , q}) as proposed in the latter theorem. This
means that no computational effort is necessary to obtain the input data in
Algorithms 1 and 2 for bounded problems (P).

5.4 Solving the homogeneous problem

The aim of this section is to transform an arbitrary homogeneous problem
(Ph) into a bounded problem such that a finitely generated solution to the
bounded problem yields a finitely generated solution to (Ph).
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Note that the homogeneous problem (Ph) is always feasible because 0 ∈
Sh = {x ∈ Rn| Bx ≥ 0}. Throughout this section, the lower image D∗h of
(D∗h) is assumed to have a nonempty interior. Note that

intD∗h �= ∅ ⇐⇒ int (D∗h +K) �= ∅.

In Section 5.5 we provide an algorithm that either evaluates an interior point
of D∗h or states that intD∗h is empty. The latter case is equivalent to Ph

having no vertex. This follows from (4.21) and the geometric duality theorem.
Let us start with an auxiliary assertion.

Lemma 5.22. Let y∗ ∈ int (D∗h +K) such that y∗q = 1. The set

B := H(y∗) ∩ Ph

is a bounded base of the polyhedral cone Ph. In particular, B is a (q − 1)-
dimensional polytope.

Proof. The point y∗h := (y∗1 , . . . , y
∗
q−1, 0)T is obtained from y∗ by setting the

last component to zero. We get

H(y∗h) =
{
y ∈ Rq| w(y∗)T y = 0

}
.

By assumption we have y∗ ∈ int (D∗h + K). Hence, y∗h belongs to
the relative interior of the only K-maximal facet F ∗ := D∗h[T ] = D∗h ∩{
y∗ ∈ Rq| y∗q = 0

}
of D∗h (compare (4.21)). By Corollary 4.53, H(y∗h) ∩ Ph

consists of exactly one vertex of Ph. But, the only vertex of the cone Ph can
be 0. This implies

H(y∗h) ∩ Ph = {0} . (5.1)

In order to show that B is a base, let y ∈ Ph \ {0}. By Theorem 4.40 we
have ϕ(y, y∗h) ≥ 0. This can be written as w(y∗)T y ≥ 0. It follows the strict
inequality w(y∗)T y > 0, since otherwise, we get y ∈ H(y∗h) ∩ Ph, which
contradicts (5.1). Hence there exists some µ > 0 such that w(y∗)T (µy) = 1
and thus µy ∈ B.

Let us show that B is bounded. Assuming the contrary, we obtain some
y �= 0 such that y ∈ B∞. From (Rockafellar, 1972, Theorem 8.3 and Corollary
8.3.3) it follows that y ∈ (H(y∗h) ∩ P)∞, which contradicts (5.1).

Since H(y∗) is a hyperplane in Rq, we obtain dimB ≤ q − 1. Moreover,
we have R

q
+ ⊆ Ph and hence B ∩ R

q
+ is a base of R

q
+. Thus we obtain

dimB ≥ q − 1. ��

Let η ∈ int (D∗h + K) such that eT η = 1. Note that this implies η > 0.
We consider the problem

minimize P : Rn → Rq with respect to ≤ over Sη, (Pη)

where
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Sη :=
{
x ∈ Rn| Bx ≥ 0, ηTPx ≤ 1

}
.

We write
Pη := P [Sη] + R

q
+

for the upper image of (Pη). We have

y ∈ Pη ⇐⇒ ∃x ∈ Rn : y ≥ Px, Bx ≥ 0, ηTPx ≤ 1.

Setting y∗ := (η1, . . . , ηq−1, 1)T , we obtain

H(y∗) =
{
y ∈ Rq| ηT y = 1

}
.

Hence, the upper image Pη can be expressed by the set B, defined in Lemma
5.22, as

Pη = [0, 1]B + R
q
+, (5.2)

where [0, 1]B := {µy| 0 ≤ µ ≤ 1, y ∈ B}. Note that y is vertex of B if and
only if it is an extreme direction of Ph with ηT y = 1. Let us show some
properties of (Pη).

Theorem 5.23. Let η ∈ int (D∗h +K) such that eT η = 1. Then

(i) Problem (Pη) is bounded;
(ii) If a vector y ∈ Rq\{0} is a vertex of Pη, then it is an extreme direction

of Ph such that ηT y = 1;
(iii) If a vector y ∈ Rq \ {0} is an extreme direction of Ph with ηT y = 1,

then y is either a vertex of Pη or y = 1
ηi
ei for some i ∈ {1, . . . , q}.

Proof. (i) This follows from (5.2) and Lemma 5.22.
(ii) Let y �= 0 be a vertex of Pη = [0, 1]B + R

q
+. It remains to show that y

is a vertex of B.
We first show that y ∈ B. Assume that y �∈ [0, 1]B. There exist v ∈ [0, 1]B

and c ∈ R
q
+ \ {0} such that y = v + c. We obtain

y =
1
2
v +

1
2
(v + 2c).

Since v, v + 2c ∈ Pη and v �= y �= v + 2c, this contradicts y being a vertex of
Pη. Hence y ∈ [0, 1]B.

By assumption we have y �= 0. Thus, y belongs to (0, 1]B. Assume that
y �∈ B. There exist µ ∈ (0, 1) and v ∈ B such that y = µv. Choosing some
ε > 0 such that 0 < µ− ε < µ+ ε < 1, we obtain

y =
1
2
(µ− ε)v +

1
2
(µ+ ε)v, (µ± ε)v ∈ [0, 1]B ⊆ Pη,

This contradicts y being a vertex of Pη.
We have shown that a given vertex y �= 0 of Pη belongs to B ⊆ Pη. Using

the definition of a vertex, we conclude that y is a vertex of B.
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(iii) Let y be an extreme direction of Ph such that ηT y = 1, i.e., y is a
vertex of B.

We first show that y is a vertex of [0, 1]B. Let v1, v2 ∈ [0, 1]B and λ ∈ (0, 1)
such that y = λv1 +(1−λ)v2. There exist b1, b2 ∈ B, µ1, µ2 ∈ [0, 1] such that
y = λµ1b

1 + (1 − λ)µ2b
2. We obtain 1 = ηT y = λµ1 + (1 − λ)µ2. It follows

that µ1 = µ2 = 1. Since y is a vertex of B, we get b1 = b2 = y, whence
y = v1 = v2. This means y ∈ vert ([0, 1]B).

Let y1, y2 ∈ Pη and λ ∈ (0, 1) such that y = λy1 +(1−λ)y2 with y1 �= y2.
As a consequence of Lemma 5.22 and taking into account that R

q
+ ⊆ Ph and

Pη = [0, 1]B + R
q
+, we obtain

Pη ∩
{
y ∈ Rq| ηT y ≤ 1

}
= [0, 1]B,

Pη ∩
{
y ∈ Rq| ηT y > 1

}
= B + R

q
+ \ {0}.

This implies

([0, 1]B) ∩ (B + R
q
+ \ {0}) = ∅ and ([0, 1]B) ∪ (B + R

q
+ \ {0}) = Pη.

We consider three cases:
First let y1, y2 ∈ [0, 1]B. We get y = y1 = y2, since y is a vertex of [0, 1]B.

Hence y is a vertex of Pη.
Secondly let y1, y2 ∈ B + Rq \ {0}. We get the contradiction 1 = ηT y =

ληT y1 + (1 − λ)ηT y2 > 1, i.e., this case cannot occur.
In the last case, we can assume that y1 ∈ [0, 1]B and y2 ∈ B + R

q
+ \ {0}.

There exist b1 ∈ B and µ ∈ [0, 1] such that y1 = µb1. Since ηT y2 > 1, we get
λµ+ (1 − λ) < λµηT b1 + (1 − λ)ηT y2 = ηT y = 1 and hence µ < 1. Setting

λ̄ := λµ and b̄ :=
1 − λ

1 − λ̄
y2,

we get y = λ̄b1 + (1 − λ̄)b̄. Moreover, we have

1 = ηT y = λ̄ηT b1 + (1 − λ̄)ηT b̄ = λ̄+ (1 − λ̄)ηT b̄.

This implies ηT b̄ = 1. Furthermore, we have y2 ∈ Pη ⊆ Ph and hence b̄ ∈ Ph.
Consequently, b̄ ∈ B. Since y is a vertex of B, we get b1 = y = b̄.

We have shown that
y = b̄ =

1 − λ

1 − λ̄
y2.

There exist b2 ∈ B ⊆ Ph and c ∈ R
q
+ \ {0} ⊆ Ph such that y2 = b2 + c. Since

y is an extreme direction of Ph we get b2 = c. It follows that y ∈ R
q
+. Since

R
q
+ ⊆ Ph, y is also an extreme direction of R

q
+, i.e., y is a multiple of a unit

vector ei in Rq. Since η > 0, the condition ηT y = 1 is satisfied for y = 1
ηi
ei

and the desired statement follows. ��
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The geometric dual problem of (Pη), as introduced in Section 4.5 for ar-
bitrary linear problems (P), can easily verified to be

maximize D∗η : Rm × Rq × R → Rq with respect to ≤K over T η, (D∗η)

where the feasible set T η is defined by

T η :=
{

(u,w, z) ∈ Rm × Rq × R

∣∣∣∣ (u,w, z) ≥ 0, wT e = 1,
BTu = PT (w + zη)

}
,

and the objective function is

D∗η : Rm × Rq × R → Rq, D∗η(u,w, z) := (w1, ..., wq−1,−z)T .

An example of the bounded problem (Pη) and its dual problem (D∗η) is given
next.

Example 5.24. Consider the homogeneous problem (Ph) with the data

P =
(

1 2
0 2

)
, B =

(
1 3

-1 2

)
.

The feasible set of (Ph) is determined by

Sh =
{
x ∈ R2| Bx ≥ 0

}
=
{
x ∈ R2| x1 + 3x2 ≥ 0, −x1 + 2x2 ≥ 0

}
.

Its image can be expressed as

P [Sh] =
{
Px ∈ R2| Bx ≥ 0

}
=
{
y ∈ R2| 2y1 + y2 ≥ 0, −y1 + 2y2 ≥ 0

}
.

Both sets are displayed in Figure 5.4.

Px̂

y2

y1

y2

−3

x̂

1 2−2 −1

2

3

4

1

1 2−2 −1

2

3

4

1

P [Sh]Sh

y1

Fig. 5.4 The feasible set Sh and the image P [Sh] of the homogeneous problem (Ph)
in Example 5.24. Since x̂ = (−3, 1)T is the only efficient direction (up to multiples),
({0} , {x̂}) is a finitely generated solution to (Ph).
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The upper image of (Ph) is the set

Ph = P [Sh] + R
q
+ =

{
y ∈ R2| 2y1 + y2 ≥ 0, y2 ≥ 0

}
.

The lower image of the geometric dual problem (D∗h) of (Ph) is easily ob-
tained as

D∗h = co
{
(0, 0)T ,

(
2
3 , 0
)T}−K.

In order to formulate the corresponding bounded problem (Pη), we need
a suitable vector η. The point y∗ =

(
1
2 ,−1

)T belongs to intD∗h and η =(
1
2 ,

1
2

)T ∈ int (D∗h +K) satisfies the condition eT η = 1. The upper image Pη

of the bounded problem (Pη) is obtained as

Pη =
(
Ph ∩

{
y ∈ Rq| ηT y ≤ 1

})
+ R

q
+

= {y ∈ Rq| y1 ≥ −2, y2 ≥ 0, 2y1 + y2 ≥ 0} .

The lower image of the geometric dual problem (D∗η) of (Pη) is the set

D∗η = co
{

(0, 0)T ,
(

2
3 , 0
)T
, (1,−2)T

}
−K.

The sets Ph, D∗h, Pη and D∗η are shown in Figure 5.5.

Let us point out some properties of the lower image D∗η of (D∗η).

Theorem 5.25. Let η ∈ int (D∗h + K) such that eT η = 1. The following
statements are equivalent:

(i) y∗ is a vertex of D∗η such that y∗q = 0,
(ii) y∗ is a vertex of D∗h.

Proof. (i) ⇒ (ii). Let y∗ be a vertex of D∗η with y∗q = 0. There exists
(u,w, z) ∈ T η such that D∗η(u,w, z) = (w1, . . . , wq−1,−z)T ≥K y∗. We get
0 = y∗q ≤ −z. But, we also have z ≥ 0, whence z = 0. It follows (u,w) ∈ T

(feasibility for (D∗h)) and y∗ ∈ D∗h.
Furthermore, it can easily be verified that T ×{0} ⊆ T η and hence D∗h ⊆

D∗η.
Let y∗1, y∗2 ∈ D∗h ⊆ D∗η and λ ∈ (0, 1) such that y∗ = λy∗1 + (1− λ)y∗2.

As y∗ is vertex of D∗η, we get y∗1 = y∗2 = y∗. Hence y∗ is a vertex of D∗h.
(ii) ⇒ (i). Let y∗ be a vertex of D∗h. Taking into account (4.21), we get

y∗q = 0. Let y∗1, y∗2 ∈ D∗η and λ ∈ (0, 1) such that y∗ = λy∗1 + (1 − λ)y∗2.
There exist (u1, w1, z1), (u2, w2, z2) ∈ T η such that y∗1 ≤K D∗η(u1, w1, z1)
and y∗2 ≤K D∗η(u2, w2, z2). We have 0 = λy∗1q + (1 − λ)y∗2q , where y∗1q ≤
−z1 ≤ 0 and y∗2q ≤ −z2 ≤ 0. We conclude y∗1q = y∗2q = z1 = z2 = 0.
Consequently, (u1, w1), (u2, w2) ∈ T and thus y∗1, y∗2 ∈ D∗h. Since y∗ is a
vertex of D∗h, we get y∗ = y∗1 = y∗2. Therefore, y∗ is a vertex of D∗η and,
as already shown, y∗q = 0. ��
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y2

y1

y2

y1

y∗
2

y∗
1

1

y∗
2

y∗
1

1

−2

1

2

−2
D∗h

1 2

1 2−2 −1

−2 −1

2

3

4

3

4

1

1

2

D∗η

Pη

B

Ph

B

Fig. 5.5 The upper images of the homogeneous problem (Ph) and the corresponding
bounded problem (Pη) from Example 5.24 are shown on the left. The lower images
of the geometric dual problems are shown on the right.

We continue with a second example, which is illustrated in Figure 5.6.

Example 5.26. Consider the homogeneous problem (Ph) with the following
data:

B =




1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1


 , b =




0
0
0
0
0


 , P =


−4 0 0 −4 4

4 −4 −4 4 0
0 0 4 0 0


 .

The vector η =
(

1
4 ,

1
4 ,

1
2

)T belongs to int (D∗h + K) and satisfies eT η = 1.
The corresponding bounded problem (Pη) is given by the data
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1

1
y∗
1

y∗
3 y∗

2
y3

y1

y2

D∗h

Ph

1
1

1
y∗
1

y3

y1 y2

y∗
3 y∗

2

D∗η

Pη

Fig. 5.6 Illustration of Example 5.26. The upper images of (Ph) and (Pη) are dis-
played on the left. The dotted line indicates the set B. On the right, the lower images
of (D∗h) and (D∗η) are shown.

B =




1 0 0 0 0
−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
0 1 −1 0 −1



, b =




0
0
0
0
0

−1



, P =


−4 0 0 −4 4

4 −4 −4 4 0
0 0 4 0 0


 .

Problem (Pη) can be solved by Benson’s algorithm (or by its dual variant),
which yields (together with the geometric duality theorem) both a repre-
sentation by vertices/directions and a representation by inequalities of both
problems Pη and D∗η:
(A) Vertices and extreme directions of Pη:
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y0 =


 0

0
0


 , y1 =


 0
−4

4


 , y2 =


−4

0
4


 ;

ȳ1 =


1

0
0


 , ȳ2 =


 0

1
0


 , ȳ3 =


0

0
1


 .

(B) Inequality representation of Pη:

y3 ≥ 0
y1 + y3 ≥ 0

y2 + y3 ≥ 0
y1 + y2 + y3 ≥ 0
y1 + y2 ≥ −4

y2 ≥ −4
y1 ≥ −4 .

(C) Vertices and extreme directions of D∗η:

y∗1 =


0

0
0


 , y∗2 =

1
2


1

0
0


 , y∗3 =

1
2


0

1
0


 , y∗4 =

1
3


1

1
0


 ,

y∗5 =
1
2


 1

1
−4


 , y∗6 =


 0

1
−4


 , y∗7 =


 1

0
−4


 ; ȳ∗1 =


 0

0
−1


 .

(D) Inequality representation of D∗η:

− y∗3 ≥ 0
−4y∗1 − 8y∗2 − y∗3 ≥ −4
−8y∗1 − 4y∗2 − y∗3 ≥ −4
y∗1 ≥ 0

y∗2 ≥ 0
−y∗1 − y∗2 ≥ −1 .

From (A) and Theorem 5.23 (iii) we get a superset of the extreme directions
of Ph as:

ŷ1 =


 0
−4

4


 , ŷ2 =


−4

0
4


 , ŷ3 =


4

0
0


 , ŷ4 =


 0

4
0


 , ŷ5 =


0

0
2


 ;
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By geometric duality (Theorem 4.42 and Theorem 4.62), an inequality rep-
resentation of D∗h is obtained as:

y∗1 + 2y∗2 ≤ 1
2y∗1 + y∗2 ≤ 1
y∗1 ≥ 0

y∗2 ≥ 0
y∗1 + y∗2 ≤ 1

y∗3 ≤ 0 .

Note that the first four inequalities correspond to the four extreme directions
of Ph (Theorem 4.62). The fifth inequality is redundant and results from the
direction ŷ5, which is not extreme. The last inequality corresponds to the
origin, which is the only vertex of Ph (Theorem 4.42).

From (C) and Theorem 5.25, we obtain the vertices of D∗h:

ŷ∗1 =


0

0
0


 , ŷ∗2 =

1
2


1

0
0


 , ŷ∗3 =

1
2


0

1
0


 , ŷ∗4 =

1
3


1

1
0


 .

By the geometric duality theorem, we obtain an inequality representation of
Ph:

y3 ≥ 0
y1 + y3 ≥ 0

y2 + y3 ≥ 0
y1 + y2 + y3 ≥ 0 .

An overview of the connections between the problems (Ph), (D∗h), (Pη)
and (D∗η) in terms of the upper and lower images is given in Figure 5.7.

We close this section by relating finitely generated solutions of (Pη) and
(D∗η) to finitely generated solutions of the homogeneous problems (Ph) and
(D∗h).

Theorem 5.27. Let η ∈ int (D∗h + K) such that eT η = 1. If (S̄η, ∅) is a
finitely generated solution to (Pη) and

S̄h :=
{
x ∈ S̄η| Px �= 0

}
,

then ({0} , S̄h) is a finitely generated solution to (Ph).

Proof. We show that the conditions (i) to (v) of Definition 4.4 are satisfied
for (Ph). Note that we have S = Sh = {x ∈ Rn| Bx ≥ 0}.

Of course, S̄ := {0} and S̄h are finite subsets of Sh. Hence (i) and (ii) are
satisfied.

Since intD∗h �= ∅, D∗h has a K-maximal facet. By geometric duality, Ph

has a vertex. As Ph is a cone, this vertex must be zero. Since every vertex of
Ph is minimal (Corollary 4.67), we get {0} = P [{0}] ⊆ MinPh = MinP [Sh],
i.e., condition (iii) holds.
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geometric duality

geometric duality

Theorem 5.23

Theorem 4.42

extension of

Theorem 4.42

Theorem 4.62

Theorem 4.42

geometric duality

Theorem 5.25

geometric duality

inequalities of D∗h

vertices of D∗h

extreme directions of Ph

inequalities of Ph

PRIMAL BENSON-ALG. DUAL BENSON-ALG.

vertices of D∗ηinequalities of Pη

vertices of Pη inequalities of D∗η

Fig. 5.7 Overview of the results in terms of upper and lower images. A finitely
generated solution to (Pη) yields a representation of Pη by vectors and directions
and, by geometric duality, a representation of D∗η by inequalities. A finitely generated
solution to (D∗η) yields a representation of D∗η by vectors and, by geometric duality,
a representation of Pη inequalities. Finitely generated solution to both problems (Pη)
and (D∗η) can be obtained by Algorithm 1, but also by Algorithm 2. Information on
the homogeneous problems (Ph) and (D∗h) can be derived.

For x ∈ S̄η ⊆ Sη ⊆ Sh, we have Px ∈ MinP [Sη]. Assume that there is
some x̃ ∈ Sh such that P x̃ ≤ Px. Since η ≥ 0, we get ηTP x̃ ≤ ηTPx ≤ 1,
i.e., x̃ ∈ Sη. From Px ∈ MinP [Sη], we get P x̃ = Px. Hence Px ∈ MinP [Sh],
i.e., condition (iv) holds.

It remains to show that (v) of Definition 4.4 holds for (Ph), S̄ = {0} and
S̄h as defined above, that is,

P [Sh] ⊆ coneP [S̄h] + R
q
+. (5.3)

Condition (v) of Definition 4.4 holds for (Pη). This can be expressed as (recall
that cone ∅ = {0})

Pη = coP [S̄η] + R
q
+, (5.4)
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where the equality is obtained using (i) of Definition 4.4. Moreover, we know
that

vertPη ⊆ P [S̄η]. (5.5)

This follows from (5.4) and the fact that the vertices of Pη cannot be ob-
tained as a nontrivial convex combination (by the definition of a vertex).
Note further that Ph can be expressed by its extreme directions, where we
can use the vertices of the bounded base B of Ph, that is,

Ph = cone vertB.

Using the definition of S̄h, we obtain the following chain of inclusions

P [S̄h] ∪
{

1
η1
e1, . . . , 1

ηq
eq
}

= P [S̄η] \ {0} ∪
{

1
η1
e1, . . . , 1

ηq
eq
}

(5.5)

⊇ (vertPη) \ {0} ∪
{

1
η1
e1, . . . , 1

ηq
eq
}

Th. 5.23 (iii)

⊇ vertB.

Together we get

P [Sh] ⊆ Ph = cone vertB ⊆ coneP [S̄h] + R
q
+,

i.e., (5.3) holds. ��

The next result is the dual counterpart of the last one.

Theorem 5.28. Let η ∈ int (D∗h +K) such that eT η = 1. If T̄ η is a finitely
generated solution to (D∗η), then

T̄ :=
{
(u,w) ∈ Rm × Rq

∣∣ (u,w, 0) ∈ T̄ η
}

is a finitely generated solution to (D∗h).

Proof. Of course, since T̄ η is a finite set, T̄ is also a finite set. It is immediate
that (u,w, 0) ∈ T η implies (u,w) ∈ T . Hence, (i) of Definition 4.56 is satisfied.

Since D∗h(u,w) = (w1, . . . , wq−1, 0)T , we have D∗h(u,w) ∈ MaxK D∗h[T ]
for every (u,w) ∈ T , hence (ii) of 4.56 holds for (D∗h).

It remains to show condition (iii), that is,

D∗h[T ] ⊆ coD∗h[T̄ ] −K. (5.6)

Condition (iii) of Definition 4.56 holds for (D∗η). This can be expressed (using
(i)) as

D∗η = coD∗η[T̄ η] −K. (5.7)

Moreover, we know that

vertD∗η ⊆ D∗η[T̄ η]. (5.8)
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This follows from (5.7) and the fact that the vertices of D∗η cannot be ob-
tained as a nontrivial convex combination (definition of a vertex). Note fur-
ther that D∗h can be expressed by its vertices as

D∗h = co vertD∗h −K.

Using the definition of T̄ , we obtain the following chain of inclusions

D∗h[T̄ ] =
{
y∗ ∈ D∗η[T̄ η]| y∗q = 0

}
(5.8)

⊇
{
y∗ ∈ vertD∗η| y∗q = 0

} Th. 5.25= vertD∗h.

Together, we get

D∗h[T ] ⊆ D∗h = co vertD∗h −K ⊆ D∗h[T̄ ] −K,

i.e., (5.6) holds. ��

5.5 Computing an interior point of the lower image

Algorithms 1 and 2 as well as several statements about the connections be-
tween (Ph) and (Pη), and between their duals are based on the assumption
that there exists an interior point of D∗. Recall that

intD∗h �= ∅ ⇐⇒ intD∗ �= ∅ ⇐⇒ int (D∗ +K) �= ∅

and
D∗ +K = D∗h +K.

The following algorithm computes some η ∈ int (D∗+K) or states that intD∗

is empty. In the first case, an interior point of D∗ can be obtained as shown
in Proposition 5.13. In the second case, we deduce from the geometric duality
theorem that P has no vertex. From (Rockafellar, 1972, Corollary 18.5.3) we
conclude that P contains a line. It is possible to consider the projection into
the orthogonal space of the lineality space of P in order to obtain the desired
properties, see e.g. (Rockafellar, 1972) for the technical details.

The following algorithm computes an interior point of a compact convex
set A ⊆ Rk. It is based on the well-known Gram-Schmidt orthogonalization
method. The set A has to be given in such a way that the scalar optimization
problem

min cTx subject to x ∈ A (Q(c))

can be solved for every vector c ∈ Rk.
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Algorithm 3.

Input:
A ... a convex, compact subset of Rk;

Output:
IntEmpty=false: w ∈ intA;
IntEmpty=true: intA = ∅;

Variables:
v0, . . . , vk ∈ Rk, c0, . . . , ck ∈ Rk, z ∈ Rk, w ∈ Rk;
IntEmpty ∈ {true, false};

01: begin
02: IntEmpty ← false;
03: z ← solve(Q(0));
04: v0 ← 0;
05: for i = 1 to k do
06: begin

07: ci−1 ← vi−1 −
i−2∑
j=1

〈
vi−1, cj

〉
〈cj , cj〉 cj ;

08: ci ← solve
{〈
c1, x

〉
= 0, . . . ,

〈
ci−1, x

〉
= 0, x �= 0

}
;

09: vi ← solve(Q(ci)) − z;
10: if

〈
ci, vi

〉
= 0 then

11: vi ← solve(Q(−ci)) − z;
12: if

〈
ci, vi

〉
= 0 then

13: begin
14: IntEmpty ← true;
15: stop;
16: end;
17: end;
18: w ← z + 1

k+1

∑k
j=1 v

j ;
19: end.

Theorem 5.29. Let A be convex and compact. Then Algorithm 3 either
yields an element w ∈ intA or states that intA = ∅.

Proof. In line 03 we compute some z ∈ A. Note first that we perform in
line 07 the Gram-Schmidt method which constructs an orthogonal system{
c1, . . . ck−1

}
from a system of linearly independent vectors

{
v1, . . . vk−1

}
so

that in each iteration i ∈ {1, . . . , k} we have

span
{
c1, . . . ci−1

}
= span

{
v1, . . . vi−1

}
.

The condition
〈
ci, vi

〉
�= 0, which holds at the end of iteration i, en-

sures that the vectors
{
v1, . . . , vi

}
⊆ Rk are linearly independent for each

i ∈ {1, . . . , k}. This can be shown by induction. For i = 1,
〈
c1, v1

〉
�= 0
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implies v1 �= 0. Let
{
v1, . . . , vi−1

}
⊆ Rk be a system of linearly in-

dependent vectors and assume that vi ∈ span
{
v1, . . . , vi−1

}
. We have

span
{
v1, . . . , vi−1

}
= span

{
c1, . . . , ci−1

}
and thus vi ∈ span

{
c1, . . . , ci−1

}
.

Since ci⊥ span
{
c1, . . . , ci−1

}
, which follows from line 08, we get

〈
ci, vi

〉
= 0,

a contradiction. Hence,
{
v1, . . . , vi

}
⊆ Rk is a system of linearly independent

vectors.
The vectors z, z + v1, . . . , z + vk, being solutions of (Q(c)) for some c ∈

Rk, belong to A. The same is true for their convex hull. The vector w as
constructed in line 18 satisfies

w ∈ int co
{
z, z + v1, . . . , z + vk

}
.

It follows that w ∈ intA.
If the algorithm stops in line 15 with IntEmpty = true, we have the situ-

ation
min

{〈
ci, x

〉 ∣∣ x ∈ A
}

=
〈
ci, z
〉

= max
{〈
ci, x

〉 ∣∣ x ∈ A
}
.

Since ci �= 0 (see line 08),

H =
{
x
∣∣ 〈ci, x〉 =

〈
ci, z
〉}

is a hyperplane. Since A ⊆ H , we have intA = ∅. ��

In order to obtain an interior point of the set D∗ +K ⊆ Rq, we consider
the convex and compact set

A =
{
(w1, . . . , wq−1)T | (u,w) ∈ T

}
⊆ Rq−1,

where T is the feasible set of (D∗). We can solve Problem (Q(c)) by computing
a solution (ū, w̄) to the linear program

minimize cT (w1, . . . , wq−1)T subject to (u,w) ∈ T,

where (w̄1, . . . , w̄q−1)T provides a solution to (Q(c)).
If (w1, . . . , wq−1) ∈ intA, then (w1, . . . , wq−1, γ) ∈ int (D∗ + K) for arbi-

trary γ ∈ R. Moreover, intA = ∅ implies int (D∗ +K) = ∅.

5.6 Degeneracy

Outer approximations of P and D∗ are determined by primal and dual rep-
resentations as introduced in Sections 5.1 and 5.2. We cannot always ensure
that all the vectors and directions representing an outer approximation T
are vertices (extreme points) and extreme directions, respectively; that is,
redundant points and directions may occur. Likewise, redundant inequalities
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can occur in a dual representation of T . To be more precise, we give the
following definition.

Definition 5.30. Let (T p, T̂ p) be a primal representation of a polyhedron
T ⊆ Rq with T∞ ⊇ R

q
+. If every vector y ∈ T p is a vertex of T and every di-

rection ŷ ∈ T̂ p is an extreme direction of T , (T p, T̂ p) is called nondegenerate.
Otherwise, (T p, T̂ p) is called degenerate.

Likewise, let T p be a primal representation of a polyhedron T ⊆ ∆ with
T∞ = −K. If every vector y∗ ∈ T p is a vertex of T , T p is called nondegen-
erate. Otherwise, T p is called degenerate.

Definition 5.31. Let T d be a dual representation of a polyhedron T ⊆ Rq

with T∞ ⊇ R
q
+. If every vector y∗ ∈ T d belongs to an inequality which is not

redundant, T d is called nondegenerate. Otherwise, if less inequalities would be
sufficient to represent T , T d is called degenerate. The same definition applies
for a dual representation (T d, T̂ d) of a polyhedron T ⊆ ∆ with T∞ = −K.

The occurrence of degeneracy in Algorithm 1 is demonstrated in the fol-
lowing example.

Example 5.32. Consider Problem (P) with the data

P =
(

1 0
0 1

)
, B =




2 1
1 2
3 3
1 0
0 1


 , b =




2
2
4
0
0


 .

p̂

s1

t1

y∗1

2

2

1
2

0

0

D∗

P

1

1

1

1 1
2

Fig. 5.8 Occurrence of degeneracy in Algorithm 1 (Example 5.32)

We apply Algorithm 1 for the choice p̂ = (1, 1)T . In the first iteration we
obtain t1 = (0, 0)T and T 1 = R

q
+. We get s1 = (2

3 ,
2
3 )T and have to solve

(D2(s1)). This problem has three optimal extreme point solutions (u1, w1)T ,
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namely (0, 1
3 , 0, 0, 0,

1
3 ,

2
3 )T , (0, 0, 1

6 , 0, 0,
1
2 ,

1
2 )T and (1

3 , 0, 0, 0, 0,
2
3 ,

1
3 )T . In case

the algorithm selects the second one, we get the redundant inequality 3y1 +
3y2 ≥ 4. The corresponding hyperplane supports P not in a facet, but in the
vertex s1, see Figure 5.8. Also, for the choice (u1, w1)T = (0, 0, 1

6 , 0, 0,
1
2 ,

1
2 )T ,

the point y∗1 := D∗(u1, w1) is not a vertex of D∗. This means, Algorithm 1
yields a degenerate dual representation of P and a degenerate primal repre-
sentation of D∗.

The following example illustrates the occurrence of degenerate represen-
tations of P and D∗ in Algorithm 2.

Example 5.33. Consider the bounded problem (P) with the data

P =
(

1 0 0
0 1 0

)
, B =




7 21 9
0 0 −1

−7 −42 3
1 7 0


 , b =




30
−1

−39
6


 .

We apply Algorithm 2 for the choice d̂ = (1
2 , 0)T . In the initialization phase

we solve P1(w(d̂)) and obtain the unique optimal solution x0 = (0, 1, 1)T . The
initial outer approximation is therefore

T 0 = {y∗ ∈ Rq| 0 ≤ y∗1 ≤ 1, y∗2 ≤ 1 − y∗1} .

There is exactly one vertex of T 1 that does not belong to D∗, namely t∗1 =
(0, 1)T . In the first iteration we obtain s∗1 = (1

8 ,
3
4 )T . Note that s∗1 is not in

the relative interior of a facet of D∗ because it is a vertex of D∗. We solve
(P1(w(s∗1))) and obtain three optimal solutions x1 that are extreme points of
the feasible set S of (P1(w(s∗1))), namely, (3

4 ,
3
4 , 1)T , (3, 3

7 , 0)T and (6, 0, 1)T .
In case the algorithm selects the second one, we get the redundant inequality
− 18

7 y
∗
1 + y∗2 ≤ 3

7 . The corresponding hyperplane supports D∗ not in a facet
but in the vertex s∗1 (see Figure 5.9). For the choice x1 = (3, 3

7 , 0)T , the
point y1 := Px1 is not a vertex of P (see Figure 5.9). This means, Algorithm
2 yields a degenerate dual representation of D∗ and a degenerate primal
representation of P .

5.7 Notes on the literature

Many algorithms for linear vector optimization problems are based on ex-
tensions of the simplex method, see for example the contributions by Evans
and Steuer (1973); Yu and Zeleny (1976); Steuer (1985, 1989); Armand and
Malivert (1991); Armand (1993) and also the brief survey in (Ehrgott and
Wiecek, 2005a). A classification of various methods to determine the whole
set of efficient solutions can be found in (Pourkarimi et al., 2009).
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1

y1

t∗1

d̂
D∗

s∗1

0

1
2

1

0

1
2

30

P

1
6

0 1
2

Fig. 5.9 Occurrence of degeneracy in Algorithm 2 (Example 5.33)

Benson (1998a,b) proposed a method which evaluates (weakly) minimal
points in the objective space. Algorithm 1 is based on this method. In particu-
lar, Proposition 5.4, Theorem 5.6 and many ideas are due to Benson (1998b).
In Benson’s original variant of Algorithm 1, the feasible set S is supposed to
be bounded. This assumption could be weakened by Ehrgott et al. (2007),
where P is supposed to be R

q
+-bounded below. Moreover, the mentioned pa-

per contains a simplification of the algorithm. Using the upper image P ,
the minimal vertices of P [S] have been computed directly and the final step
(Benson, 1998b, Theorem 3.2) to check whether a vertex is minimal or not
could be omitted. The dual variant of Benson’s algorithm first appeared in
(Ehrgott et al., 2007). Algorithm 2 is an extension of these results in the
sense that the boundedness assumption has been omitted.

The considerations and examples on degeneracy in Section 5.6 are due to
Ehrgott et al. (2007).

A treatment of approximate solutions can be found in (Shao and Ehrgott,
2008a,b). Moreover, an extended algorithm for nonlinear problems has been
developed by Ehrgott et al. (2010). For applications and numerical investi-
gations of the algorithms the reader is referred to (Ehrgott et al., 2007; Shao
and Ehrgott, 2008a,b) and (Werfel, 2009).
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Ehrgott, M., Löhne, A., and Shao, L. (2007). A dual variant of Benson’s
outer approximation algorithm. Report 12, Departement of Mathematics,
Martin-Luther-Universität Halle-Wittenberg.
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mathematik. Wiesbaden: Vieweg+Teubner.
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bounded linear problems, 177

canonical extension, 48
complete lattice, 9
conical hull, 117
conlinear space, 11
convex cone, 11
convex element, 12
convex function, 13
convex hull, 11
convex lattice extension, 54
convex set, 11
convexity solution, 54

direction, 117
domain of a function, 36
domination property, 51
dual pair, 19
dual representation, 163, 169

efficient direction, 118
efficient solution, 45, 115, 123
epi-closed, 56
epigraph, 56
exposed face, 126
extended space, 16
extreme direction, 117

face, 126
facet, 126
feasible direction, 117
finitely generated solution, 118, 124,

131, 135, 150
full set, 40

geometric dual problem, 138

geometric duality theorem, 141
graph, 59
greatest element, 9

inf-addition, 16
infimal set, 22
infimum, 9

lattice extension, 53
lattice l.s.c., 56
least element, 9
level closed, 56
level set, 56
locally convex space, 18
lower bound, 8
lower canonical extension, 69
lower image, 124

maximal element, 68, 116
mild convexity solution, 66
mild saddle point, 72
mild solution, 63
minimal element, 45, 116
Minkowski-addition, 16

neutral element, 11
normal, 40

partial ordering, 8
partially ordered conlinear space, 12
partially ordered set, 8
partially ordered topological vector

space, 15
pointed cone, 15
polar cone, 17
polyhedral set, 116
primal representation, 162, 169
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proper face, 126
proper function, 36

recession cone, 117
reference variable (scalarization), 113
relative boundary, 126
relative interior, 126

saddle point, 70
self-infimal set, 25
solution, 49, 53, 68
sup-addition, 16
supporting hyperplane, 127
supremal set, 25
supremum, 9

topological vector space, 13
topologically l.s.c., 56

uniform space, 37
uniform topology, 39

unique solution, 49
upper canonical extension, 69
upper closed set, 25
upper closure, 20
upper image, 116

vertex, 126
vertical face, 153
vertical hyperplane, 154

weak topology, 19
weak∗ topology, 19
weakly efficient solution, 114
weakly level closed, 56
weakly maximal element, 25, 114
weakly minimal element, 21, 114
weakly minimal face, 128
weight space, 148
weight space decomposition, 148
weighted sum (scalarization), 112
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