
A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 25–45.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 2
Specifying and Monitoring Obligations in Open
Multiagent Systems Using Semantic Web
Technology

Nicoletta Fornara

University of Lugano, via G. Buffi 13, 6900 Lugano, Switzerland
nicoletta.fornara@usi.ch

Abstract. In nowadays open interaction systems where autonomous, heterogeneous
and self-interested agents may interact, it is crucial to be able to declaratively spec-
ify the norms that regulate the actions of the interacting parties and to be able to
monitor their behaviour in order to check whether it is compliant or not with the
norms. In this chapter we propose and discuss the advantages of using semantic
web languages, tools, and techniques for proposing an application independent
model that should be used for the declarative specification and monitoring of obli-
gations. Those obligations are characterized by a class of activation and deactiva-
tion events, a class of content actions that may satisfy the obligation and a deadline
within which an action belonging to the content class has to be performed. The
main contribution of this chapter is to show how it is possible to use semantic web
technologies, and in particular OWL 2 DL as formal language for the specification
and monitoring of complex obligations and to study how much it is feasible to use
an OWL ontology to represent the state of a dynamic open interaction system.

1 Introduction

The specification of open systems for the interaction of autonomous agents is
widely recognized to be a crucial issue in the development of innovative applica-
tions on the Internet, like e-commerce applications, or applications for the man-
agement of virtual enterprises. One possible approach to tackle this problem is to
model open interaction systems as a set of artificial institutions [2, 1, 20, 11].
Those institutions are devised for the specification of the institutional context
where the interaction among autonomous heterogeneous agents may take place. In
particular the OCeAN meta-model [12, 9] is mainly composed by: a communica-
tive part with the definition of an Agent Communication Language (ACL) whose
semantics is defined in terms of social commitments and institutional power [8], a
normative part for the specification of obligations, prohibitions and permissions
[10], and an organizational part mainly devoted to the definition of roles.

26 N. Fornara

In this chapter we will mainly focus on the normative part and we propose and
discuss the advantages of using semantic web languages, tools, and techniques for
defining an application independent model for the declarative formal specification
and monitoring of obligations. In particular we want to be able to specify obliga-
tions with the following characteristics. They become active when an event be-
longing to a specified start event class or to its subclasses happens, this event can
be viewed as a condition for obligations activation. A set of possible actions de-
scribed by means of a more or less detailed class may fulfil those obligations if
one of them happens before a given deadline. This is a crucial progress in the
flexibility of the normative specification with respect to the solution proposed in
[10] where (as better discussed in next section) the content of obligations was a
specific action and the time interval for the performance of the action was delim-
ited by fix instant of time. Finally those obligations become cancelled when an
event belonging to an end event class happens.

The approach of specifying using a declarative formal language the normative
part of a system has many crucial and interesting advantages. In particular it
makes possible to represent the norms as data, instead of coding them in the soft-
ware. This has the advantage of making possible to add, remove, or change the
norms that regulate the interaction both when the system is off line, and at run-
time, without the need to reprogram the interaction system or the interacting
agents. Another interesting advantage is that it would be in principle possible to
realize agents able to automatically reason on the consequences of their actions
and able to interact within different systems without the need of being repro-
grammed. Moreover it is possible to realize an application independent monitoring
component able to keep trace of the state of obligations on the basis of the events
that happens in the system and on the basis of agents' actions and capable of react-
ing to their fulfilment or violation. This is a fundamental component in the archi-
tecture of open interaction systems, and may be crucial also in the service oriented
architecture [6] and for business process management systems [21]. Another im-
portant aspect is that designing a system by using the notion of norm may be very
intuitive for human designers and those declarative norms may be more easily un-
derstood by human participants of socio-technical systems.

The choice of the formal language used for the declarative specification of
normative systems is difficult, crucial, and many aspects have to be taken into ac-
count. The most important are: the expressivity of the language, its computational
complexity, the fact that the underline logic is decidable, the diffusion of the lan-
guage among software practitioners and research communities, its feasibility to be
used for fast prototyping, and its adoption as an international standard. After many
past experiments with other formal languages, in this chapter we decided to adopt
OWL (in its OWL 2 DL version1), the description logic language recommended
by W3C for Semantic Web applications, and more generally semantic web tech-
nologies. The main advantage of this choice is that Semantic Web technologies
are increasingly becoming a standard for Internet applications and therefore, given

1 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

Specifying and Monitoring Obligations in Open Multiagent Systems 27

that the OWL logic language is decidable, it is supported by many reasoners (like
Fact++, Pellet, Racer Pro, HermiT), tools for ontology editing (like Protégé2) and
library for automatic ontology management (like OWL-API). Given that it is a
standard, it would be easier to achieve a high degree of interoperability of data and
applications, which is indeed a crucial precondition for the development of open
systems. Finally given that semantic web technologies are becoming very used in
innovative applications it will become much easier to teach them to software engi-
neers than convince them to learn and use a logic language adopted by a limited
group of researchers.

There are some interesting and challenging problems that may arise from the
fact that Semantic Web technologies are not devised for modelling dynamic sys-
tems (i.e. systems that changes in time). One is encountered when trying to per-
form full temporal reasoning; in fact OWL has no temporal operators. Another
one is due to the fact that Semantic Web technologies have not been devised to
check constrain for example on norm specification, but there are some interesting
current studies on how to use the Pellet reasoner for “Simple Integrity Con-
straints”3. A third one is the open-world assumption of OWL logic, it may be a
problem for successfully monitoring obligations, that is, when trying to deduce
that when the deadline is elapsed an obligation has to be permanently fulfilled or
violated.

The added value of this chapter is twofold: the first is to show how it is possible
to use semantic web technologies, and in particular OWL 2 DL, as formal lan-
guage for the specification and monitoring f obligations with activation and deac-
tivation events and deadlines. This model may have many different kinds of appli-
cations like the specification of electronic commerce market places, or the
monitoring of semantic web services execution, or the flexible specification and
monitoring of business process where both software and human agents may inter-
act. The second is to propose to use an OWL ontology not only for the specifica-
tion of a normative systems but also for the dynamic monitoring of the state of the
interaction among autonomous agents in an open and dynamic environment with
respect to a specified set of norms. In particular with this work we are giving our
contribution to the open problem of understanding how far the monitoring prob-
lem can be solved by using an OWL 2 DL ontology and when it is necessary to in-
tegrate it with Java programs.

This chapter is organized as follows. In Section 2 the proposed approach is
compared with main alternative approaches. In Section 3 the formal language
used in the paper is briefly described. In Section 4 the application independent
ontology that can be used to represent and monitor obligations is introduced, dis-
cussed and exemplified. In Section 5 some obligations of a concrete case study
are formalized using the proposed approach and finally in Section 6 some conclu-
sions are drawn.

2 See http://www.w3.org/2007/OWL/wiki/Implementations for a complete list of reasoners

and tools
3 http://clarkparsia.com/weblog/category/semweb/owl/pellet/integrity-constraints/

28 N. Fornara

2 Other Approaches

The problem of modelling norms using formal languages is widely recognized as a
crucial problem by the multiagent community [3, 19]. Moreover the problem of
run-time monitoring those norms is becoming more and more an interesting open
question for the multiagent community and for the web service community as
demonstrated by various papers on this topic [7, 16, 23, 10]. In particular in [7]
Faci et al. propose a framework for non-intrusive monitoring of the state of con-
tract that, similarly to our proposal, is based on the observation of agents' message
exchange. Their norms, having a structure quite close to the one proposed in this
chapter, are specified using the XML language and their content is specified using
ontologies. The main difference between the two approaches is on the monitoring
component: in their work it is required to transform the XML representation of
norms in another formalism: the augmented transition networks. This transforma-
tion presents all the drawbacks that may come from using two different formal
languages to specify the same concept in term of consistency, performance, and
required knowledge for the engineers who want to adopt this approach. In [16]
Lomuscio et al. in order to monitor an agent “all its possible behaviours are repre-
sented as a timed automata with discrete data (TADD) and stored in the checker,
the monitoring engine checks the snapshots against their TADD specification”.
One of the main advantages of this approach, as claimed by the authors, is its scal-
ability, this is an important goal to be taken into account and that in our approach
can be pursuit by splitting up the state of the interaction in sub-states holding only
the information that in a certain moment is relevant for a given interaction. The
reference architecture for contract monitoring in e-market scenarios presented in
[23] is complementary to the model proposed in this chapter. Finally the main dif-
ference between the formalization proposed in this chapter and our previous work
on the specification of norms using semantic web technology [10], is that in this
chapter the content and the conditions of obligations are specified as classes of ac-
tions or events instead as specific action or event.

As discussed in the introduction the choice of using semantic web languages
has many advantages and it is a crucial aspect when we compare our work with
other ones on norms specifications and properties verification where other formal
languages are adopted. Other formal languages are for example the Event Calculus
[24, 9], the language for rule specification of the rule engine Jess [13, 4], a variant
of Propositional Dynamic Logic (PDL) used to specify and verify liveness and
safety properties of multi-agent system programs with norms [5], the Process
Compliance Language (PCL) [14].

In literature there are few approaches that use semantic web languages for the
specification of norms, even if their importance for the development of flexible
security for dynamic and distributed environment is clearly recognized [15]. One
interesting approach for policy specification and management is the KAoS frame-
work [18]. In MAS community the word norm and policy have a similar meaning;
a policy could be a positive or negative authorization to perform an action or an
obligation. In KAoS, like in the model proposed in this chapter, policies are speci-
fied using a set of concepts defined in an OWL DL core ontology that could be

Specifying and Monitoring Obligations in Open Multiagent Systems 29

extended with application dependent ontologies. A crucial difference between the
two approaches is the fact that OWL 2 DL is more expressive that OWL DL. An-
other important difference is in the methods used for monitoring policies: in KAoS
policies are usually regimented by means of ''guards`` and are monitored by means
of platform specific mechanisms.

3 OWL and SWRL

OWL is a practical realization of a Description Logic system known as
SROIQ(D). It allows one to define classes, properties, and individuals. An OWL
ontology consists of: a set of class axioms to describe classes, which constitute the
Terminological Box (TBox); a set of property axioms to describe properties, which
constitute a Role Box (RBox); and a collection of assertions to describe individu-
als, which constitute an Assertion Box (ABox). Properties can be either object
properties or data properties. Classes can be viewed as formal descriptions of sets
of objects (taken from a nonempty universe), and individuals can be viewed as
names of objects of the universe. A class is either a basic class (i.e., an atomic
class name) or a complex class build through a number of available constructors
that express Boolean operations and different types of restrictions on the members
of the class.

Through class axioms one may specify subclass or equivalence relationships
between classes, that certain classes are disjoint (Discla), and that a class is defined
by placing restrictions on properties (existential (∃), universal (∀), cardinality,
“has-value” (∋), and local reflexivity restrictions. Property axioms allow specify-
ing that a given property is the inverse of another property (−), or that a property is
functional (Fun), or a transitive property (Tr), or that a property can be obtained by
composing properties into property chains (◦). Finally, assertions allows to spec-
ify that an individual belongs to a class, that an individual is related to another in-
dividual through an object property, that an individual is related to a data value
through a data property, or that two individuals are equal or different.

OWL can be regarded as a decidable fragment of First Order Logic (FOL). The
price to pay for decidability, which is considered as an essential preconditions for
exploiting reasoning in practical applications, is limited expressiveness. Even in
OWL 2 DL (the more expressive version currently under specification) certain
useful first-order statements cannot be formalized. Given the limited expressivity
of OWL the Semantic Web Rule Language (SWRL)4 has been proposed to extend
the set of OWL axioms to include Horn-like rules of the form of an implication
between an antecedent (body) and consequent (head). Recently certain OWL rea-
soners, like Pellet, have been extended to deal with SWRL rules. To preserve
decidability, however, rules have to be used in the safe mode, which means that
before being exploited in a reasoning process all their variables must be instanti-
ated by pre-existing individuals. An important aspect of SWRL is the possibility

4 http://www.w3.org/Submission/SWRL/

30 N. Fornara

of including built-ins, that is, Boolean functions that perform operations on data
values and return a truth value. In what follows we use capital initials for classes
and lower case initials for properties and individuals, we assume that all the indi-
viduals introduced are different.

4 An Application Independent Ontology for Modelling and
Monitoring Agents' Interactions

In this section we introduce the classes, the properties, and the axioms of the ap-
plication independent part of the ontology (“upper ontology”) that one has to use
to specify and monitor agents' obligations in those applications where the realiza-
tion of an open normative interaction system is required. In order to completely
formalize a real interaction system, as exemplified in Section 4.2, this ontology
has to be extended with application dependent classes, properties, and axioms that
are used to model the application dependent actions and events that appear in the
content or in the condition of obligations.

In particular we first describe the OWL Time Ontology that we use in this
chapter, the classes for representing events and fluents and their relationships with
obligations. Subsequently we define one possible example of a domain dependent
ontology that will be used in the examples contained in the paper. Then we intro-
duce the part of the ontology that is necessary for representing events and the
elapsing of time. Later on we present the part of the ontology used to represent the
content, the condition, the deadline, and the expiration condition of obligations.
Finally we introduce the part of the ontology and the mechanisms that have to be
used to monitor the time evolution of obligations on the basis of the actions and
events that happen in the system. At the end of this section the graphical represen-
tation of the proposed ontology is reported.

4.1 Modelling Time, Events, and Fluents

The first class that has to be introduced is the Agent class that is used to represent
the agents involved in the interaction mediated by the open system. Secondly in
order to be able to represent obligations with activation and deactivation events
correlated to time and with temporal deadlines, we have to find a suitable and effi-
cient way to represent instants and interval of time in the ontology. Given that
OWL has not temporal operator, the simplest solution, which pursues also the goal
of being interoperable with other ontologies, is to adopt the OWL Time Ontol-
ogy5. Unfortunately the axiomatization of the OWL Time Ontology is very weak
and therefore it will be impossible to perform certain type of interesting reasoning
on the future evolution of the state of the system. Nevertheless, as we will see in
the following subsections, we will try to partially overcome to this problem, in or-
der to be able, at least, to represent and monitor the time evolution of the system.
Here we report the list of classes and properties of the OWL Time Ontology that

5 http://www.w3.org/TR/owl-time/

Specifying and Monitoring Obligations in Open Multiagent Systems 31

are relevant for the comprehension of this chapter (they are graphically repre-
sented in Figure 1 at the end of this section):

Instant ⊑ TemporalEntity, Interval ⊑ TemporalEntity,
ProperInterval ⊑Interval, TemporalEntity ≡ Instant ⊔ Interval,
hasBeginning: TemporalEntity → Instant,
hasEnd: TemporalEntity → Instant,
before: TemporalEntity → TemporalEntity, InvPro(after,before),
inDateTime: Instant → DateTimeDescription,
Discla(ProperInterval,Instant), Instant ⊑ = 1 inDateTime

In order to be able to represent events that happen at a certain instant of time, or
fluents, that is, state of affair that holds for a certain interval of time, we introduce
the class Eventuality and its two subclasses: Event, whose individuals are related
to an instant of time, and Fluent whose individuals are related to an interval:

Event ⊑ Eventuality, Fluent ⊑ Eventuality, Discla(Event,Fluent),
atTime: Eventuality → TemporalEntity,
Event ≡ ∃ atTime.Instant, Fluent ≡ ∃ atTime.Interval.

An event is before another event if the first one happens at an instant of time
that is before the instant of time of the second one:

evBefore: Eventuality → Eventuality,
atTime ◦ before ◦ atTime− ⊑ evBefore, Tr(evBefore).

Two events that happens at the same instant of time are related by the evSame-
Time property:

evSameTime: Eventuality → Eventuality,
atTime ◦ atTime− ⊑ evSameTime, Tr(evSameTime).

Actions are viewed as a particular type of events that have an actor, a recipient
and an object:

Action ⊑ Event, hasActor: Action → Agent,
hasRecipient: Action → Agent, hasObject: Action → Object,
Fun(hasActor), Fun(hasRecipient), Fun(hasObject).

Obligations are represented as particular type of event: Obligation ⊑ Event, and
they are characterized by the event that brings about their creation. Even if, in the
common sense perception, obligations are semantically different from events, this
choice gives us the flexibility to be able to specify class of actions as content of
the obligations and it makes the axiomatization of the notion of obligation fulfil-
ment and violation simpler. An obligation has a debtor and a creditor as repre-
sented by the following properties:

hasDebtor: Obligation → Agent, hasCreditor: Obligation → Agent
Discla(Obligation,Action).

An obligation has also a content, an activation event, a deactivation event, and
a deadline, which are specified using classes, as discussed in Subsection 4.4.

32 N. Fornara

4.2 An Example of a Domain Dependent Ontology

In order to be able to use in the content and in the condition of obligations con-
crete classes of actions and events, it is necessary to introduce in the ontology do-
main dependent classes and properties. Those classes have to be subclasses of the
class Action or of the class Event. For example we may need to introduce the class
of the actions of delivering a certain object to a certain recipient:

Deliver ⊑ Action ⊓ ∃ hasRecipient ⊓ ∃ hasObject,

the class of actions of paying a certain amount of money to a certain recipient:

Pay ⊑ Action ⊓ ∃ hasRecipient ⊓ ∃ hasObject,

and the class of actions of paying by means of a bank transfer, BankTransfer,
which is a subclass of the Pay class: BankTransfer ⊑ Pay. Those classes will be
used in Section 4.6 where different types of obligations for the electronic com-
merce domain will be presented.

For example the action of delivering a book book1 from agent Luca to agent
Marco performed at instant1 is described by the following assertions:

Agent(Luca), Agent(Marco), Object(book1), Instant(instant1),
Deliver(deliver1), hasActor(deliver1, Luca), hasRecipient(deliver1,Marco),
hasObject(deliver1,book1), atTime(deliver1,instant1).

4.3 Representing Events, Actions, and the Elapsing of Time

We want to use the specified OWL ontology to represent the evolution in time of
the state of the interaction between autonomous and heterogeneous agents in a
norm governed framework. This state has to be represented in every software that
is in charge of monitoring the behaviour of the interacting agents, a centralized,
mixed, or distributed one (the discussion of the advantages and problems due to
the choice of one or other architecture is crucial but due to its complexity it is be-
yond the scope of this specific paper), and may be represented inside the interact-
ing agents in order to let them to reason and plan their future actions on the basis
of the rules of the system. It is moreover reasonable that the interacting agents
have a partial knowledge of the state of the interaction, which represents only the
interaction in which they are involved or that is relevant for the specific agent.

If the system evolution is simulated, the list of events that happen in the system,
the list of actions performed by the agents, and the instant of time when they hap-
pen, are known at design time and may be initially introduced in the ontology.
Differently, if an actual interaction between agents takes place at run-time, it is
necessary to tackle two problems. First of all it is required to support agents’
communication with an appropriate middle-ware, like for instance the widely used
JADE framework6, or by using web services standard technologies7. Regarding
the agent communication language (ACL) we plan to adopt the commitment based

6 http://jade.tilab.com/
7 http//www.w3.org/standards/webofservices/description

Specifying and Monitoring Obligations in Open Multiagent Systems 33

one presented in [9] for the exchanged messages instead of the FIPA-ACL stan-
dard semantics8 that presents a set of well known drawbacks [22]. Secondly it is
necessary to write a program in charge of inserting in the ontology a representa-
tion of agents' actions and of the events observed, together with the corresponding
instant of time when they happened, for example a typical type of action that
needs to be recorded in the ontology is the exchange of messages between agents.

Either the interaction is simulated or it is actually happening at run-time, events
or actions happen at certain instant of time and it is necessary to state what the
temporal relation between those instants is. This can be simply done by asserting
which instant comes after another using the after property. Then thanks to the
transitivity of the after property, it is possible to deduce the temporal relation that
subsists between all instants of time present in the ontology. Alternatively in order
to be able to compare two instants of time and assert which one comes after the
other the designer may decide to use an external Java program, or an SWRL rule
with built-ins for comparisons, or simply inserting the instant of time in the ontol-
ogy following their temporal order and asserting that the last instant inserted is af-
ter the last but one.

Certain subclasses of the class Event are used in the definition of specific obli-
gations as explained in the following sections. In particular it will be certainly
necessary to represent at least the following different types of events:

• Time events are used to represent the events related to the elapsing of time and
belong to the TimeEvent ⊑ Event class. This class is disjoint from the Obliga-
tion and from the Action classes: Discla(Obligation,TimeEvent), Dis-
cla(Action,TimeEvent). A specific time event is related by means of its atTime
property to the instant of time when it happens. Notice that a time event actu-
ally happens when its instant of time is asserted to belong to the class Elapsed
that will be introduced later on.

• Action events are used to represent actions performed by the agents, they are
represented as individuals of the class Action, for example the action of deliver-
ing a product. The action of exchanging a message is a common and very im-
portant type of action represented with the class ExchMsg ⊑ Action. It has an
actor, the sender of the message, a recipient, the receiver of the message, an il-
locutionary force (see [9] for more details) connected to the message using the
hasForce property whose range is the IllocutionaryForce class, and an object
that is the content of the message.

• Change events are used to represent the events due to the change of the value of
a property, they are represented as individuals of the ChangeEvent ⊑ Event
class. For example the change in the state of an auction from close to open can
be used as condition of the obligation for the auctioneer to declare the current
price of the product to be sold. Usually a change event is characterized by the
entity whose property is changed, the previous value and the subsequent value
of the property, they are all represented as properties of change events. Obvi-
ously whenever the performance of an action, or the occurrence of an event,

8 http://www.fipa.org/specs/fipa00037/SC00037J.pdf

34 N. Fornara

has the effect to change the value of a property of an entity, and if the change
event is relevant for one of the obligations represented in the ontology, it is
necessary to introduce in the ontology an individual belonging to the Chan-
geEvent class with a suitable atTime value. This is a fundamental feature of the
middle-ware, and it has to be strongly optimized because may be critical in
terms of time consuming.

In general when a certain obligation has to be created it may happen that it is
necessary to create new subclasses of those classes. Moreover if the new obliga-
tion is related to a specific time event (for example the obligation to deliver a book
within a given deadline), a new individual, belonging to the TimeEvent class, has
to be inserted in the ontology in order to represent such a time event.

In order to model the elapsing of time we need to have in the ontology a set of
individuals used to represent all the relevant instants of time. An instant of time is
relevant if an action, or an event, happens at that instant of time, or if such an in-
stant of time is used to create a time event related to the specification of an obliga-
tion. The distance between an instant of time and the following one depends on
the time lag chosen for the system: every type of interaction may have its own rea-
sonable time lag that mainly depends on the frequency on which actions or events
happen. During the evolution of the interaction, in order to model the elapsing of
time, the individual corresponding to the actual instant of time (of the simulation
or of the actual agents interaction) have to be asserted to belong to the Elapsed ⊑
Instant class, a special class introduced specifically for this purpose. Every instant
of time that is before an elapsed instant of time is itself elapsed as expressed by
the following axiom: ∃before.Elapsed ⊑ Elapsed.

In case the evolution of the system is simulated it is enough to repeatedly assert
that the instant of time, subsequent to the current one, is elapsed, and then run the
reasoner to deduce all the consequences of the events or actions happened at the
current instant of time. Differently if the ontology is used to represent the state of
an actual agents interaction, it is necessary to keep aligned the current instant of
time represented in the ontology (the last that is asserted to be elapsed) with the
external clock, that is, the clock of the world where the agents actually interact.
Therefore an instant of time has to be asserted to be elapsed only when its in-
DateTime property is lower or equal to the time adopted by the interacting agents.

4.4 Representing Specific Obligations

In this chapter we specify how to formalize in the ontology used to represent the
state of the interaction among agents their obligations and we describe how to
monitor, using semantic web technologies, those obligations. An obligation exists
between two specific agents that are the debtor and the creditor of the obligation.
An obligation is characterized by the instant of time when the obligation is created,
a class of events that may activate or deactivate it, a content described by means of
another class, and a deadline. We assume (coherently with what is specified in the
OCeAN meta-model [9]) that new obligations are created as the effect of the per-
formance of certain communicative acts (like promises), or as consequence of the

Specifying and Monitoring Obligations in Open Multiagent Systems 35

activation of a norm. A norm is activated whenever an agent, who is interacting
with other agents within a certain institutional context, starts to play a role whose
behaviour is regulated by the norm. Whenever a new obligation, obl-n, is created at
a certain instant of time, instant-n, whose inDateTime property value is equal to the
time when the obligation is created (in the following referred as now), the ABox of
the ontology has to be automatically updated with the following assertions:

Obligation(obl-n), atTime(obl-n,instant-n), inDateTime(instant-n,now),
hasDebtor(obl-n,agent1), hasCreditor(obl-n,agent2).

In addition it is necessary to update the TBox in the following way: the first
change consists in defining the specific activation, deactivation, content, and
deadline classes of the new obligation; secondly it will be necessary to write the
axioms for deducing the state of a given obligation, with the goal of monitoring its
fulfilment or its violation as described in the following subsection.

The StartEvent-n ⊑ Event class describes the type of events that may activate
the obligation obl-n, that is, the conditional event that have to happen in order to
make the obligation activated. For example in certain electronic commerce sce-
nario an agent may start to be actively obliged to pay a certain amount of money
after the reception of the ordered product. Certain obligation may be immediately
activated without the need to specify any condition, in this case the StartEvent-n
class coincides with the event that create the obligation:

StartEvent-n≡{obl-n}.

If it is possible to deduce that the StartEvent-n class is equal to the empty set ⊥,
it means that the obligation obl-n will never be activated. This is a fundamental in-
formation for the agents when they are planning their future actions.

The EndEvent-n ⊑ Event class describes the type of events that may expire the
obligation, that is, when an expiration event happens the obligation becomes can-
celled and will not any more become active in the future. The specification of this
class is crucial for those obligations that may be activated many times, for exam-
ple an employer may have the obligation to pay the salary to his/her employees at
the end of each month as long as they are employed in the company. Very often
the EndEvent-n class is equivalent to the class of the actions that may be used to
dismiss an agent from a specific role, the role indicated in the debtor or in the
creditor field of the norm that generated the obligation. For example when an
agent ceases to be an employer or an employee the obligation to pay the salary be-
comes cancelled. In some other cases the EndEvent-n class coincides with a fixed
deadline, that is, with a certain time event, for example the instant of time when
the contract of the employee terminates.

The Content-n ⊑ Action class describe the set of actions whose performance
may fulfil or violate the obligation. An crucial aspect of the proposed model is the
possibility that an action, belonging to a subclass of the Content-n class, satisfies
the obligation. Moreover in the definition of the Content-n class it is also possible
to use Boolean class constructors. The union of classes can be used for those cases

36 N. Fornara

when either an action belonging to one class or an action belonging to another
class may fulfil an obligation.

When an agent has the obligation to perform an action it is necessary to define
the deadline (i.e. the instant of time) within which the action has to be performed.
For coherence with the other classes we introduce the class Deadline-n ⊑
Timevent even if it contains only one individual: the time event associated to the
instant of time that represents the deadline of the obligation. Taking into consid-
eration the existence for every obligation of a start and dead-line event it is natural
to introduce a property hasInterval: Obligation→TemporalEntity that binds an ob-
ligation to the interval of time within which one action belonging to the Content
class has to be performed. Such an interval has a beginning instant of time, an end
instant of time, and a duration that can be obtained by means of the hasBeginning,
hasEnd, hasDurationDescription properties. The instant of time when the interval
of obl-n starts can be deduced on the basis of the instant of time when an individ-
ual belonging to the StartEvent-n class happens by introducing the following
SWRL rule:

StartEvent-n(?e) ∧ atTime(?e,?inst) ∧ hasInterval(obl-n,?int) →
hasBeginning(?int, ?inst)

The Deadline-n class is equivalent to the class that contains only the time event
that happens at the instant of time when the interval of the obligation finishes, as
stated in the following axiom:

Deadline-n ≡ ∃ atTime.(∃ hasEnd−.(hasInterval− ∋ obl-n))

It is important to remark that when the deadline of the obligation depends on
the instant of time when the obligation is activated, the time event to be used as
deadline is unknown when the obligation is created. In this case the Deadline-n
class will become defined when the obligation becomes active. A example of this
kind of obligations are those obligation where the deadline is equal to the instant
of time when the obligation is activated plus a fixed amount of time, for instance
the obligation to pay the product within 2 days from its reception. For these type
of obligations it is necessary to insert in the ontology also the value of the duration
of the interval associated with the obligation. Once the beginning instant and the
duration of the interval are known, it is possible to use the following SWRL rule,
which uses the swrlb:add built-in, to deduce the value of the end instant of time of
the interval (we assume that the duration of the interval is expressed in days):

hasBeginning(?int,?inst1) ∧ inDateTime(?inst1,?dt1) ∧
dayOfYear(?dt1,?day1) ∧ Instant(?int2) ∧ inDateTime(?inst2,?dt2) ∧
dayOfYear(?dt2,?day2) ∧ hasDurationDescription(?int,?d) ∧ days(?d,?value)∧
swrlb:add(?day2,?day1,?value) → hasEnd(?int,?inst2)

For those obligations where the deadline event is a fixed time event that does
not depend on the activation event (see for example in Section 4.6 the first type of
obligations), it is important to check that the start event happens before the end
event. This can be done with the following axiom that has to be written only for

Specifying and Monitoring Obligations in Open Multiagent Systems 37

obligations whose StartEvent-n and Deadline-n classes are equivalent to a specific
time event. In case the deadline time event is before or equal to the start time
event the ontology becomes contradictory:

Deadline-n ⊓ (evBefore.StartEvent-n ⊔ evSameTime.StartEvent-n) ⊑ ⊥

In Section 4.6 specific examples will be used to illustrate the definition of the
StartEvent, EndEvent, Content, and Deadline classes for different type of obligations.

4.5 Monitoring the State of Obligations

When a new obligation obl-n is created the second change to the TBox consists in
introducing the four axioms that are necessary to deduce the state of a given obli-
gation, that is, to deduce if it belongs to the Activated, Cancelled, Fulfilled, or Vio-
lated classes. Those classes are subclass of the class Obligation and the Fulfilled
and Violated classes are disjoint:

Fulfilled ⊑ Obligation, Violated ⊑ Obligation, Activated ⊑ Obligation,
Cancelled ⊑ Obligation, DisCla(Fulfilled, Violated).

The first axiom is the one to deduce that an obligation with a certain StartEvent
class is activated. If an event es that belongs to the StartEvent-n class of an obliga-
tion obl-n happens after or at the same instant of time when the obligation is cre-
ated, the time at which es happens is elapsed, and the obligation has not yet been
cancelled, then the obligation becomes activated.

The main problem in writing this axiom is due to the negation that appears in
the third condition. OWL reasoners operate under the open world assumption and
therefore we cannot simply write in the axiom the condition “not cancelled”. In
fact the conclusion that an obligation is not cancelled can only be reached if the
obligation can be definitely proved not to be member of the Cancelled class. To
solve this problem we assume that our ABox contains complete information on the
events happened or actions performed before the current time of the system. More
specifically, we assume to use an external Java program that will always update
the ABox whenever an event happens. Moreover we assume that such a program
can only insert in the ABox the information that an event is happened at current
time t, and that it is not possible to insert the information that an event is happened
in the past. Starting from these assumptions we can adopt a closed-world perspec-
tive on the Cancelled class: an obligation “is not yet been cancelled” if it is not in
the Cancelled class. Consequently in order to be able to perform some form of
closed world reasoning on the Cancelled class (similarly to the solution proposed
in [10]) we introduce in our ontology the explicit closure of such a class. More
precisely, we introduce a new class, the KCancelled ⊑ Cancelled, which is meant
to contain all obligations that, at a given time, are known to be in the Cancelled
class. To maintain the KCancelled class as the closure of the Cancelled class, we
define it periodically as equivalent to the enumeration of all individuals that can
be proved to be members of the Cancelled class. This can be done by the external
Java program that is also used to update the ABox to keep track of the elapsing of

38 N. Fornara

time and of the events that happen in the system. The axiom to deduce if an obli-
gation obl-n is activated is therefore:

Axiom Activated Obl-n:
{obl-n} ⊓ ¬ KCancelled ⊓ (∃evBefore.(StartEvent-n ⊓ ∃atTime.Elapsed) ⊔ ∃evSameTime.(StartEvent-n ⊓ ∃atTime.Elapsed)) ⊑ Activated

An obligation, when is not yet cancelled, may be activated more than once by
different start events belonging the StartEvent class. It is important to be able to
monitor the time evolution of the obligation for each one of its possible activation
event. Therefore we assume that whenever an obligation is activated at instant i,
an external program has to create a copy of that obligation and associate it to a
creation time that is one instant of time later than the instant of time of the current
activation i. This fact is crucial to avoid that the new copy of the obligation be-
comes active due to the current activation event.

If an event ee that belongs to the EndEvent-n class of an obligation obl-n hap-
pens after the time when the obligation is created and the time at which ee happens
is elapsed, then the obligation becomes cancelled. It is important to underline that
an obligation that is activated may be also cancelled (the Activated and Cancelled
classes are not disjoint). This means that it can become fulfilled or violated but
also that cannot be any more activated in the future by another start event. For ex-
ample the obligation to pay the salary to an employee at the end of each month for
an entire year becomes cancelled at the end of the year and is activated for twelve
times, the last time that the obligation is activated it is also cancelled because the
entire year is elapsed. If an end event happens before a start event the obligation is
never activated. For example the obligation for a company to keep the streets of a
city clear from the snow for a given winter will never be activated if the winter is
particularly warm.

Axiom Cancelled Obl-n:
{obl-n} ⊓ ∃evBefore.(EndEvent-n ⊓ ∃atTime.Elapsed) ⊑ Cancelled

As mentioned before the Deadline-n class contains only one time event, the time
event within which an action belonging to the Content-n class has to be performed.

If an event ec that belongs to the Content-n class of an active obligation obl-n
(created at in) happens at instant ic, ic is after or equal to in, ic is before the deadline
of obl-n, and i is elapsed, then the obligation becomes fulfilled as expressed by the
following axiom.

Axiom Fulfilled Obl-n:
{obl-n} ⊓ Activated ⊓ (∃evBefore.(Content-n ⊓ ∃atTime.Elapsed) ⊔ ∃evSameTime.(Content-n ⊓ ∃atTime.Elapsed)) ⊓ ∃evBefore.(Content-n ⊓ ∃evBefore.Deadline-n) ⊑ Fulfilled

If the time event that represents the deadline of an active obligation obl-n
elapses and the obligation is not yet fulfilled, the obligation has to become vio-
lated. Similarly to what we did for writing the axiom for the activation of obliga-
tions, in order to write the axiom to deduce that an obligation is cancelled we need

Specifying and Monitoring Obligations in Open Multiagent Systems 39

to introduce the explicit closure of the Fulfilled class: the class KFulfilled ⊑ Ful-
filled. The KFulfilled class is meant to contain all obligations that, at a given time,
are known to be in the Fulfilled class. To maintain the KFulfilled class updated we
define it periodically, by means of the external program, as equivalent to the enu-
meration of all individuals that can be proved to be members of the Fulfilled class.
The axiom to deduce that an obligation obl-n is violated is:

Axiom Violated Obl-n:
{obl-n} ⊓ Activated ⊓ ¬ KFulfilled ⊓ ∃evBefore.(Deadline-n ⊓ ∃ atTime.Elapsed) ⊑ Violated

Initially KCancelled ≡ KActivated ≡ KFulfilled ≡ KViolated ≡ Nothing then a
Java external program has to update their extension on the basis of the deductions
of the reasoner. In Figure 1 the graphical representation of the classes and proper-
ties introduced in the previous sections is depicted.

Instant Interval

ProperInterval

TemporalEntity
hasEnd

hasBeginning

before
after

DateTimeDescription

inDateTime

Event Fluent

Eventuality
atTime

evBbefore

Action

Agent

hasActor
hasRecipient

Object

Obligation

Fulfilled Violated

Activated

Cancelled
Elapsed

TimeEvent

StartEvent-n

EndEvent-n

ContentEvent-n

ExchMsg

ChangeEvent

property

subclass

disjoint

Deadline-n

Duration
Description

hasDuration
Description

hasInterval

Fig. 1. Graphical representation of the ontology. Properties are represented with dotted
lines, solid lines are used for subclasses.

4.6 Possible Type of Obligations

A first type of obligations are those obligations whose StartEvent and Deadline
classes are equivalent to a specific time event. It means that the obliged action de-
scribed with the Content class has to be performed between two specific instants
of time. An example of an obligation of this type is the obligation obl-1 created at
instant1 from agent Marco to agent Luca to pay 5 euro between instant of time
instant2 and instant4 having certain specific dates as inDateTime properties.

40 N. Fornara

To model the obligation obl-1 it is necessary to add to the ABox the following
assertions:

Obligation(obl-1), Agent(Marco), Agent(Luca), Thing(5euro),Instant(instant1),
atTime(obl-1,instant1),hasDebtor(obl-1,Marco), hasCreditor(obl-1,Luca),
ProperInterval(interval1), hasInterval(obl-1,interval1),
hasEnd(interval1,instant4),TimeEvent(tevent4), Instant(instant4),
atTime(tevent4,instant4),

For this kind of obligations the StartEvent-1 classes consist of only one ele-
ment: the time event that happens at instant2:

TimeEvent(tevent2), Instant(instant2), atTime(tevent2,instant2),
after(instant2,instant1), after(instant4,instant2),
StartEvent-1 ≡ {tevent2},
Content-1≡Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro.

The four axioms for deducing the state of obligations contextualized to this
specific obligation have to be inserted in the ontology. Given that this obligation
can become active only one time, it is not interesting to define the EndEvent class.

A crucial aspect of the proposed approach is that it is more flexible than other
ones, in fact, given that the content of the obligations is expressed using a class of
possible actions, the interacting agents have the flexibility to choose which one to
perform. Moreover, if an event that belongs to one of the subclasses of the Con-
tent class happens, the obligation may equally become fulfilled. For example, if
the bank transfer event (represented with the individual bankTr1∈BankTransfer
where BankTransfer ⊑ Pay) from Marco to Luca of an amount of 5 euro happens
after the activation event and before the deadline event, the obligation obl-1 be-
comes fulfilled.

The content of an obligation could also be the performance of either one class
or another class of actions. This type of Content class can be represented using the
union of two or more classes of actions. For example the obligation from Marco to
Luca to either pay 5 euro to Luca or donate 6 euro to Unicef between instant2 and
instant4 is identical to the previous obligation except for the Content-1 class that
becomes:

Content-1 ≡
(Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro) ⊔
(Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Unicef ⊓ hasObject∋6euro)

A second type of obligations has the StartEvent class that can be interpreted as
a condition for the activation of the obligation (a conditional obligation) and
whose Deadline class depends on the time of its activation. An example of an ob-
ligation of this type is the obligation obl-2 created at instant1 from agent Marco to
agent Luca to pay 5 euro within 2 days from the reception of the book (book1) on
condition that the book was delivered from Luca to Marco. Besides the assertions
previously introduce we have to add in the ABox those ones:

Specifying and Monitoring Obligations in Open Multiagent Systems 41

Obligation(obl-2), atTime(obl-2,instant1),
hasDebtor(obl-2,Marco), hasCreditor(obl-2,Luca), Object(book1),
ProperInterval(interval2), hasInterval(obl-2, interval2),
hasDurationDescription(interval2,duration2), days(duration2, 2),
StartEvent-2 ≡ Deliver ⊓ hasActor∋Luca ⊓ hasRecipient∋Marco ⊓
hasObject∋book1,
Content-2 ≡Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro,
EndEvent-2 ≡ {teventk}.

Reasonably the EndEvent-2 class is equivalent to the time event teventk whose
instant property can be calculated as the time of creation of the obligation plus 3
months. This means that if the book is not delivered within 3 months Marco is not
any more conditional obligated to pay for the book after its reception. As usual the
four axioms presented in the previous section for deducing the state of an obliga-
tion, contextualized to this specific obligation, have to be inserted in the ontology.

A third type of obligations has not condition, that is, their StartEvent class is
equivalent to the time of the creation of the obligation. Due to this fact the dead-
line of this type of obligations can be set when the obligation is created on the ba-
sis of the duration of the interval. An example of an obligation of this type is the
obligation obl-3 created at instant1 from Marco to Luca to pay 5 euro before to-
morrow, where tomorrow is computed at the creation of the obligation to be repre-
sented by the instant of time instant4. This obligation can be represented with the
following assertions and axioms:

Obligation(obl-3), atTime(obl-3,instant1), hasDebtor(obl-3,Marco),
hasCreditor(obl-3,Luca) TimeEvent(tevent1), atTime(tevent1,instant1)
ProperInterval(interval3), hasInterval(obl-3,interval3),
hasEnd(interval3,instant4),
StartEvent-3 ≡ {tevent1}
Content-3 ≡ Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro

As already explained the four axioms for deducing the state of this obligation
have to be inserted in the ontology.

5 A Case Study: Obligations in Vehicle Repair Contracts

In this Section we formalize and monitor the vehicle repair contract described in
[16] using the model presented in this chapter. The scenario is as follows: a repair
contract regulates the interactions between a client agent called cl and a vehicle
repair company, called rc. A repair contract specifies details concerning a particu-
lar repair. The interaction between cl and rc is described as follows: when rc re-
ceives a request from cl to undertake a repair job, it has to send a repair contract
within x days. In response, cl sends an acceptance or rejection message within y
days. If accepted, cl has to send the vehicle within k1 day from the acceptance. rc
then waits for the vehicle to arrive, failing which it sends two reminders to cl. If
the vehicle fails to arrive, it takes an offline action. As per the contract, if the

42 N. Fornara

vehicle arrives rc is obliged to assess the damage, repair the vehicle, and send a
report to cl within k2 days from the reception of the vehicle. On receiving the re-
port, cl is obliged to send payment to rc within k3 days from the reception of the
report. If the payment is not sent, rc sends two reminders to cl and then takes an
offline action. If the payment is sent cl has to pick-up the vehicle within k4 days
from the reception of the report.

Every action has to be performed within a certain number of days, and the ac-
tual deadline is computed on the basis of the time when a certain event happens,
the maximum duration of each activity is defined in the contract and may vary
from one contract to another. Almost all these obligations are conditional obliga-
tions with deadline computed on the basis of the time of their activation; therefore
they are similar to the second type of obligations presented in Section 4.6. Initially
the interaction between rc and cl is devoted to the definition of the properties of a
specific repair contract that is characterized by the type of the repair, the price,
four duration of time used to compute the deadlines of the obligations for agent cl,
and two duration of time used to compute the deadlines of the obligations for
agent rc. We represent such a contract as an individual of the class VehicleRepair-
Contract having the properties hasRepairType, hasPrice, hasDuration1,..., hasDu-
ration6. This is another example of a domain dependent ontology. If the contract
is accepted by both parties six conditional obligations start to hold, four for agent
cl and two for agent rc. Subsequently the interaction is devoted to the execution of
the contract. Given that the interacting agents belong to different owners having
different interests, their behaviour has to be monitored to verify its compliance
with the obligations.

In order to define the contract and reach an agreement on the value of the prop-
erties used to characterize the contract the two agents need to interact at least two
times, but can interact also more times. A contract is complete if all its properties
are set and therefore it belongs to the CompleteContract ⊑ VehicleRepairContract
class as stated by the following axiom:

CompleteContract ≡ ∃ hasRepairType.TypeRepair ⊓ ∃ hasPrice ⊓ ∃ hasDuration1 ⊓ ... ⊓ ∃ hasDuration6

The contract definition phase is regulated by two obligations: once is the obliga-
tion for rc to send a complete contract to agent cl within x days from the reception
of the request from cl; the second is the obligation for agent cl to accept or reject a
complete contract offer within y days. In case cl rejects the proposed contract the
negotiation can continue with new requests and counter offers on the basis of the
pro-activity of the two involved agents. If agent cl accepts the proposed contract
then six new conditional obligations are created having as interval the duration
specified in the contract. The first obligation for rc can be represented as:

Obligation(obl-4), atTime(obl-4,instant1), Instant(instant1),
ProperInterval(interval4), hasInterval(obl-4, interval4),
hasDurationDescription(interval4,duration4), days(duration4, x),
StartEvent-4 ≡ ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓
hasForce∋request ⊓ ∃ hasObject.VehicleRepairContract.

Specifying and Monitoring Obligations in Open Multiagent Systems 43

The Content-4 class contains the actions of sending a request message from
agent rc to agent cl with as content an individual belonging to the CompleteCon-
tract class:

Content-4 ≡ ExchMsg ⊓ hasActor∋rc ⊓ hasRecipient∋cl ⊓
hasForce∋request ⊓ hasObject.CompleteContract.

The obligation for agent cl to accept or reject a complete contract offer within y
days can be represented as:

Obligation(obl-5), atTime(obl-5,instant1), Instant(instant1),
ProperInterval(interval5), hasInterval(obl-5, interval5),
hasDurationDescription(interval5,duration5), days(duration5, y),
StartEvent-5 ≡ Content-4.

The Content-5 class contains the actions of accepting or rejecting the contract
whose proposal activated the obligation obl-5:

Content-5 ≡ (ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓
hasForce∋accept ⊓ ∃ hasObject.(∃ hasObject− StartEvent-5)) ⊔
(ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓ hasForce∋reject ⊓ ∃ hasObject.(∃ hasObject− StartEvent-5))

Due to space limitation we will not describe in detail the formalization of all
the other conditional obligations that will be created once the contract is accepted,
they are similar to the second type obligations introduced in section 4.6. The ap-
plication independent ontology described in this chapter with an ABox that con-
tains the obligations described in the previous sections can be downloaded from
the author's web page9.

6 Conclusions and Future Works

In this chapter we presented a formal model for the specification and monitoring,
using semantic web technology, of obligations whose content is a class of possible
action, with activation and deactivation event and with deadline. The main goal of
having this type of formal specification of obligations is to be able to have more
flexible interactions among autonomous agents. This is possible because agents
can decide at run-time which is the best action, among the ones belonging to the
Content class, to perform in order to fulfil their obligations. This work is a first
step in the broader project of formalizing, using semantic web technology, also
prohibitions and permissions that present some crucial differences with respect to
obligations. Another very important aspect of the formalization of normative con-
cepts in open system is, besides their monitoring as explained in this chapter, their
enforcement by the definition of sanctions and recovery actions.

Another interesting problem would be the definition of constrains for the vali-
dation of a normative specification and the introduction of mechanism for early

9 http://www.people.lu.unisi.ch/fornaran/ontology/ObligationsOntology.html

44 N. Fornara

detection of problematic situations. For example being able to point out that an
agent is at the same time obliged to perform an action and obliged to perform an-
other action that is inconsistent with the first one, like being in two different
places at the same time. Another very interesting open problem is being able to
demonstrate that a given set of obligations has some soundness properties [17].

Finally regarding the decision to adopt semantic web technology as formal lan-
guage, there is still the open problem of better understanding what part of the
model it is better and possible to represent in the ontology in order to be able to
reason on it and what part of the model it is better to represent in the external ap-
plication because current semantic web standards do not support its representation.

Acknowledgments. We would like to thank Marco Colombetti for the interesting discus-
sions concerning this work.

References

1. Arcos, J.L., Esteva, M., Noriega, P., Rodríguez-Aguilar, J.A., Sierra, C.: Engineering
open environments with electronic institutions. Engineering applications of artificial
intelligence 18(2), 191–204 (2005)

2. Artikis, A., Sergot, M., Pitt, J.: Animated Specifications of Computational Societies.
In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002),
pp. 1053–1061. ACM Press, New York (2002)

3. Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.): Normative Multi-Agent Sys-
tems, Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 09121. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

4. da Silva, V.T.: From the specification to the implementation of norms: an automatic
approach to generate rules from norms to govern the behavior of agents. Autonomous
Agents and Multi-Agent Systems 17(1), 113–155 (2008)

5. Dastani, M., Grossi, D., Meyer, J.-J., Tinnemeier, N.: Normative multi-agent programs
and their logics. In: Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Norma-
tive Multi-Agent Systems, Dagstuhl, Germany. Dagstuhl Seminar Proceedings,
vol. 09121, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

7. Faci, N., Modgil, S., Oren, N., Meneguzzi, F., Miles, S., Luck, M.: Towards a monitor-
ing framework for agent-based contract systems. In: Klusch, M., Pěchouček, M.,
Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 292–305. Springer,
Heidelberg (2008)

8. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent
communication language. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of
the 1st International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2002), pp. 535–542. ACM Press, New York (2002)

9. Fornara, N., Colombetti, M.: Specifying Artificial Institutions in the Event Calculus.
In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Or-
ganizational Models, Information science reference, ch. XIV, pp. 335–366. IGI Global
(2009)

Specifying and Monitoring Obligations in Open Multiagent Systems 45

10. Fornara, N., Colombetti, M.: Ontology and time evolution of obligations and prohibi-
tions using semantic web technology. In: Baldoni, M., Bentahar, J., van Riemsdijk,
M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 101–118. Springer, Heidel-
berg (2010)

11. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial institu-
tions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

12. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: A
model of institutional reality for open multiagent systems. Artificial Intelligence and
Law 16(1), 89–105 (2008)

13. García-Camino, A., Rodríguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraint
rule-based programming of norms for electronic institutions. Autonomous Agents and
Multi-Agent Systems 18(1), 186–217 (2009)

14. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Boella, G.,
Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Normative Multi-Agent Systems,
Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 09121, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2009)

15. Kagal, L., Hendler, J., Berners-Lee, T.: Introduction. In: Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, vol. 7(1), pp. vii–ix (2009); The Semantic
Web and Policy

16. Lomuscio, A., Penczek, W., Solanki, M., Szreter, M.: Runtime monitoring of contract
regulated web services (extended abstract). In: Proceedings of the 9th International
Conference on Autonomous Agents and Multi-Agent systems (AAMAS 2010),
Toronto, Canada, pp. 1449–1450. ACM, New York (2010)

17. Singh, M.P., Chopra, A.K.: Correctness properties for multiagent systems. In: Baldoni,
M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948,
pp. 192–207. Springer, Heidelberg (2010)

18. Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M., Bunch, L., Feltovich, P., Johnson, M.,
Jung, H.: New developments in ontology-based policy management: Increasing the
practicality and comprehensiveness of KAoS. In: IEEE International Workshop on
Policies for Distributed Systems and Networks, vol. 0, pp. 145–152 (2008)

19. van der Torre, G.E.L., Boella, G., Verhagen, H. (eds.): Special Issue on Normative
Multiagent Systems. Autonomous Agents and Multi-Agent Systems, vol. 17. Springer,
Netherlands (August 2008)

20. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems.
Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

21. Weske, M.: Business. In: Process Management Concepts, Languages, Architectures.
Springer, Heidelberg (2008)

22. Wooldridge, M.: Verifiable semantics for agent communication languages. In: De-
mazeau, Y. (ed.) Proceedings of the Third International Conference on Multi-Agent
Systems (ICMAS 1998), Washington, DC, USA. IEEE Computer Society, Los Alami-
tos (1998)

23. Xu, L.: A Framework for E-markets: Monitoring Contract Fulfillment. In: Bussler,
C.J., Fensel, D., Orlowska, M.E., Yang, J. (eds.) WES 2003. LNCS, vol. 3095,
pp. 51–61. Springer, Heidelberg (2004)

24. Yolum, P., Singh, M.: Reasoning about commitment in the event calculus: An
approach for specifying and executing protocols. Annals of Mathematics and Artificial
Intelligence 42, 227–253 (2004)

	Specifying and Monitoring Obligations in Open Multiagent Systems Using Semantic Web Technology
	Introduction
	Other Approaches
	OWL and SWRL
	An Application Independent Ontology for Modelling and Monitoring Agents' Interactions
	Modelling Time, Events, and Fluents
	An Example of a Domain Dependent Ontology
	Representing Events, Actions, and the Elapsing of Time
	Representing Specific Obligations
	Monitoring the State of Obligations
	Possible Type of Obligations

	A Case Study: Obligations in Vehicle Repair Contracts
	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

