

Atilla Elçi, Mamadou Tadiou Koné, and Mehmet A. Orgun (Eds.)

Semantic Agent Systems

Studies in Computational Intelligence,Volume 344

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 320. xxx

Vol. 321. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Intelligent Computer Graphics 2010
ISBN 978-3-642-15689-2

Vol. 322. Bruno Baruque and Emilio Corchado (Eds.)
Fusion Methods for Unsupervised Learning Ensembles, 2010
ISBN 978-3-642-16204-6

Vol. 323.Yingxu Wang, Du Zhang, and Witold Kinsner (Eds.)
Advances in Cognitive Informatics, 2010
ISBN 978-3-642-16082-0

Vol. 324.Alessandro Soro,Vargiu Eloisa, Giuliano Armano,
and Gavino Paddeu (Eds.)
Information Retrieval and Mining in Distributed
Environments, 2010
ISBN 978-3-642-16088-2

Vol. 325. Quan Bai and Naoki Fukuta (Eds.)
Advances in Practical Multi-Agent Systems, 2010
ISBN 978-3-642-16097-4

Vol. 326. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 5, 2010
ISBN 978-3-642-16094-3

Vol. 327. Slawomir Wiak and
Ewa Napieralska-Juszczak (Eds.)
Computational Methods for the Innovative Design of
Electrical Devices, 2010
ISBN 978-3-642-16224-4

Vol. 328. Raoul Huys and Viktor K. Jirsa (Eds.)
Nonlinear Dynamics in Human Behavior, 2010
ISBN 978-3-642-16261-9

Vol. 329. Santi Caballé, Fatos Xhafa, and Ajith Abraham (Eds.)
Intelligent Networking, Collaborative Systems and
Applications, 2010
ISBN 978-3-642-16792-8

Vol. 330. Steffen Rendle
Context-Aware Ranking with Factorization Models, 2010
ISBN 978-3-642-16897-0

Vol. 331.Athena Vakali and Lakhmi C. Jain (Eds.)
New Directions in Web Data Management 1, 2011
ISBN 978-3-642-17550-3

Vol. 332. Jianguo Zhang, Ling Shao, Lei Zhang, and
Graeme A. Jones (Eds.)
Intelligent Video Event Analysis and Understanding, 2011
ISBN 978-3-642-17553-4

Vol. 333. Fedja Hadzic, Henry Tan, and Tharam S. Dillon
Mining of Data with Complex Structures, 2011
ISBN 978-3-642-17556-5

Vol. 334. Álvaro Herrero and Emilio Corchado (Eds.)
Mobile Hybrid Intrusion Detection, 2011
ISBN 978-3-642-18298-3

Vol. 335. Radomir S. Stankovic and Radomir S. Stankovic
From Boolean Logic to Switching Circuits and Automata, 2011
ISBN 978-3-642-11681-0

Vol. 336. Paolo Remagnino, Dorothy N. Monekosso, and
Lakhmi C. Jain (Eds.)
Innovations in Defence Support Systems – 3, 2011
ISBN 978-3-642-18277-8

Vol. 337. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 6, 2011
ISBN 978-3-642-17823-8

Vol. 338. Lakhmi C. Jain, Eugene V.Aidman, and
Canicious Abeynayake (Eds.)
Innovations in Defence Support Systems – 2, 2011
ISBN 978-3-642-17763-7

Vol. 339. Halina Kwasnicka, Lakhmi C. Jain (Eds.)
Innovations in Intelligent Image Analysis, 2010
ISBN 978-3-642-17933-4

Vol. 340. Heinrich Hussmann, Gerrit Meixner, and
Detlef Zuehlke (Eds.)
Model-Driven Development of Advanced User Interfaces, 2011
ISBN 978-3-642-14561-2

Vol. 341. Stéphane Doncieux, Nicolas Bredeche, and
Jean-Baptiste Mouret(Eds.)
New Horizons in Evolutionary Robotics, 2011
ISBN 978-3-642-18271-6

Vol. 342. Federico Montesino Pouzols, Diego R. Lopez, and
Angel Barriga Barros
Mining and Control of Network Traffic by Computational
Intelligence, 2011
ISBN 978-3-642-18083-5

Vol. 343. XXX

Vol. 344.Atilla Elçi, Mamadou Tadiou Koné, and
Mehmet A. Orgun (Eds.)
Semantic Agent Systems, 2011
ISBN 978-3-642-18307-2

Atilla Elçi, Mamadou Tadiou Koné,
and Mehmet A. Orgun (Eds.)

Semantic Agent Systems

Foundations and Applications

123

Dr.Atilla Elçi
Software Engineering Program,

Toros University,

Mersin, Turkey

E-mail: atilla.elci@gmail.com

Dr. Mamadou Tadiou Koné
Independent Computing Research, Boston,

Roxbury, MA, USA

E-mail: Kone.Mamadou@gmail.com

Dr. Mehmet A. Orgun
Department of Computing

Macquarie University

Sydney, NSW 2109

Australia

E-mail: mehmet.orgun@mq.edu.au

ISBN 978-3-642-18307-2 e-ISBN 978-3-642-18308-9

DOI 10.1007/978-3-642-18308-9

Studies in Computational Intelligence ISSN 1860-949X

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

To bring our contribution to the advancement of the semantic Web and agent
technologies, around November 2005, we initiated the series of IEEE Inter-
national Workshops on Engineering Semantic Agent Systems in conjunction
with the 30th International Computer Software and Applications Conference
(COMPSAC 2006) in Chicago, Illinois, USA. Encouraged by five very suc-
cessful annual workshops and two journal special issues on this theme, we
felt confident that the research on semantic agents system has become ma-
ture enough to gather from experts and practitioners contributions for an
edited volume in the series Studies in Computational Intelligence by Springer-
Verlag.

The theme of this book, semantic agent systems, refers to the integration
of semantic Web, artificial intelligence, and software agent technologies. Here
semantic Web is described as a Web of semantically-linked data which aims
to enable man, machine, and software to carry out more useful tasks. Central
to this theme are software agents with the power to use linked data and its as-
sociated semantics through technologies such as RDF, SPARQL, OWL, and
SKOS. When these software agents are elements of cooperating multi-agent
systems, a whole host of new opportunities emerges. Research and develop-
ment in this direction need more effort and dedication like the contributions
in this book.

To appeal to a wide range of audiences, we organized this book along four
main parts: The first part titled Introduction to Agents and Semantics aims
to give the reader an idea of what a semantic agent system is in the first place.
Here, Rule Responder is presented as a framework for semantic multi-agent
systems which support collaborative teams. Then, handling complex obliga-
tions with semantic Web techniques in the context of multi-agent systems is
presented. Finally, a noteworthy contribution of semantic Web technology to
the field of distributed knowledge management is pointed out.

Part two titled Engineering Semantic Agent Systems deals with ontol-
ogy development and management for agent systems in addition to agent-
oriented software engineering. Here, we read about information governance,

VI Preface

argumentation and reconciliation issues, complexity for MAS design, and
composition of business processes, and human-robot interactions.

Part three titled Applications of Semantic Agent Systems deals with se-
mantic Web applied to specific areas and pertinent lessons learned from these
applications. Contributions in this section highlight domains as diverse as the
cyber-physical world, manufacturing systems, context-aware mobile learning
services, and user interests.

In the last part titled Future Outlook, we discover in great detail many of
the intricacies of machine understanding and their potential in future research
directions. The reader is led in this section to one of the foundations of the
theme of this book: semantic agents with understanding abilities.

We are grateful to many authors who brought their contributions to this
book with their valuable studies. We would like to express our appreciation
to the reviewers who accepted to read and give their insightful comments on
these contributions. Without their help and expert opinions, it would have
been impossible to make decisions on each submitted paper and produce such
a high-quality volume.

Our special thanks go to Thomas Ditzinger, Engineering Editor at Springer
Verlag and responsible for the series Studies in Computational Intelligence,
for his support, cooperation, patience and understanding. We kept in mind
all along that this book was made possible through the foresight, timely
initiative, and unfaltering support of Janusz Kacprzyk, the Editor-in-Chief
of the Studies in Computational Intelligence Series.

November 2010 Atilla Elçi, Mersin, Turkey
Mamadou Tadiou Koné, Boston, MA, USA

Mehmet A. Orgun, Sydney, Australia

Reviewers

Angus Huang
Antonio Picariello
Andreas Tolk
Atilla Elçi
Costin Badica
Behnam Rahnama
R. Cenk Erdur
Francisco Garcia-Sanchez
Guido Governatori
İbrahim Gökçen
Islam Elgedawy
Lars Mönch
Levent Yılmaz

Mamadou Tadiou Kone
Markus Schaal
Mehmet A. Orgun
Michel Klein
Murat Şensoy
Murat Tanık
Rainer Unland
Susmit Bagchi
Şule Yıldırım
Thomas Meyer
Vijayan Sugumaran
Yeliz Yeşilada
Zeki Bayram

Contents

Part I: Introduction to Agents and Semantics

1 Rule Responder Agents Framework and Instantiations............................... 3
 Harold Boley, Adrian Paschke

1 Introduction .. 3
2 The Rule Responder Framework .. 5

2.1 Mule Enterprise Service Bus... 5
2.2 Selected Platform-Specific Rule Engines for Rule Responder
 Agents ... 7

3 Rule Responder Agents .. 12
3.1 Organizational Agent .. 12
3.2 Personal Agents... 13
3.3 External Agents... 14
3.4 Responsibility Assignment Matrix.. 14

4 Translation between Rule Responder Agents ... 16
5 Rule Responder Instantiations .. 18

5.1 SymposiumPlanner ... 18
5.2 WellnessRules... 18
5.3 PatientSupporter.. 19
5.4 Reputation Management System... 21
5.5 Semantic Complex Event Processing Agent Network 21

6 Conclusion.. 22
References ... 22

2 Specifying and Monitoring Obligations in Open Multiagent Systems
 Using Semantic Web Technology.. 25
 Nicoletta Fornara

1 Introduction .. 25
2 Other Approaches ... 28
3 OWL and SWRL .. 29
4 An Application Independent Ontology for Modelling and Monitoring
 Agents' interactions .. 30

X Contents

4.1 Modelling Time, Events, and Fluents ... 30
4.2 An Example of a Domain Dependent Ontology 32
4.3 Representing Events, Actions, and the Elapsing of Time 32
4.4 Representing Specific Obligations .. 34
4.5 Monitoring the State of Obligations.. 37
4.6 Possible Type of Obligations .. 39

5 A Case Study: Obligations in Vehicle Repair Contracts 41
6 Conclusions and Future Works... 43
References ... 44

3 Programming Semantic Agent for Distributed Knowledge
 Management ... 47
 Julien Subercaze, Pierre Maret

1 Introduction and Motivation... 47
2 Building Agents with Semantic Rules.. 49

 2.1 Architecture Design ... 50
 2.2 SAM Architecture .. 50

 2.2.1 Knowledge Base ... 51
 2.2.2 Engine... 51
 2.2.3 Low Level Actions and MAS Framework.............................. 52

 2.3 Control Structure.. 52
 2.4 Execution Stack ... 53
 2.5 Language Syntax.. 55

3 Semantic Agent Model ... 56
3.1 Defining New Actions .. 58

4 Example.. 59
4.1 Execution Phase .. 61

5 Implementation... 62
6 Perspectives .. 62
7 Conclusion.. 63
References ... 63

Part II: Engineering Semantic Agent Systems

4 SBVR-Driven Information Governance: A Case Study in the
 Flemish Public Administration ... 69
 Pieter De Leenheer, Aldo de Moor, Stijn Christiaens

1 Closed World Syndrome .. 70
2 Just-in-Time Information.. 70
3 The Gap between Business and Technical Metadata.................................. 71
4 Business Drivers to Bridge the Gap.. 72

4.1 Documentation.. 72
4.2 Communication... 72

Contents XI

4.3 Reuse... 73
4.4 Impact Analysis... 73
4.5 Disambiguation ... 73
4.6 Uniformity... 74
4.7 Compliance ... 74

5 Metadata Landscape Dimensions ... 74
6 Metadata Landscape SWOT Analysis .. 75
7 Business Semantics Management... 76

 7.1 Fact-Orientation ... 77
 7.2 Collaborative Business Semantics Modelling with SBVR................. 77
 7.3 Business Semantics Structure .. 78
 7.4 Business Semantics in Practice .. 80

8 Business Semantics Glossary ... 81
 8.1 Enterprise Information Model.. 83

9 Full-Cycle BSM: Validation and Feedback.. 84
 9.1 IT/IS-Driven Validation ... 84
 9.2 Business-Driven Validation ... 85

10 Metadata Architecture and Governance .. 85
11 Conclusion... 86
References ... 87

5 Argumentation for Reconciling Agent Ontologies………………………...89
 Cássia Trojahn, Jérôme Euzenat, Valentina Tamma, Terry R. Payne

1 Introduction .. 89
 2 Foundations: Alignment and Argumentation Frameworks……………….91
 2.1 Ontology Mapping.. 91
 2.2 Argumentation Frameworks ... 94

 3 Argumentation Frameworks for Alignment Agreement............................. 96
 3.1 Arguments on Correspondences... 96
 3.2 Strength-Based Argumentation Framework (SVAF) 96
 3.3 Voting-Based Argumentation Framework (VVAF)........................... 97

 4 Argumentation over Alignments .. 98
 4.1 Argumentation over Alignments for Communication in
 Multi-agent Systems……………………………………………........98

 4.1.1 Meaning-Based Argumentation .. 98
 4.1.2 The Approach by Trojahn and Colleagues 101
 4.1.3 Reducing the Argumentation Space through
 Modularization.. 102

 4.2 Solving Conflicts between Matcher Agents 104
 5 Weakness and Challenges .. 105
 6 Other Related Work ... 107

7 Final Remarks... 108
 References ... 108

XII Contents

6 Measuring Complexity for MAS Design in the Presence of Ontology
 Heterogeneity.. 113
 Maricela Bravo

1 Introduction .. 113
1.1 MAS Communication Overview... 113
1.2 Ontologies for Inter-agent Communication 115
1.3 Problem Formulation .. 115

2 MAS Architectural Design ... 116
2.1 Architectural Considerations... 116
2.2 Associated Costs ... 117

3 Basic Measures... 118
4 Centralized Architecture... 119

4.1 Translation Costs .. 120
4.2 Ontology Costs.. 121

5 Distributed Architecture ... 122
5.1 Distributed Architecture with Translators... 123
5.2 Distributed Architecture with Learning Capabilities 124
5.3 Coordination or Intermediation Costs ... 125

6 Experimental Case.. 125
6.1 Cost of a Centralized Architecture .. 127
6.2 Cost of a Distributed Architecture .. 128

7 Results Discussion.. 129
8 Conclusions .. 130
References ... 131

7 Ontology-Based Matchmaking and Composition of Business
 Processes…………………………...………………………………………..133
 Duygu Çelik, Atilla Elçi
 1 Introduction... 133

2 Contributions .. 134
3 Theoretical Background ... 136
4 System Architecture ... 138
5 Semantic-Based Matching for a Composition Plan 140
6 Semantic Matching Step (SMS) ... 141
7 Revised Armstrong’s Axioms (RAAs) ... 146
8 Inferencing in SCA: A Case Study... 149
9 Conclusion.. 154
References ... 155

8 Semantic Architecture for Human Robot Interaction 159
 Sébastien Dourlens, Amar Ramdane-Chérif

1 Background .. 159
2 Related Work.. 161
3 Multimodal Interaction Architecture Design.. 164

Contents XIII

4 Semantic Agent Memory.. 167
5 Multimodal Interaction Agents... 171

5.1 Fusion Agent ... 171
5.2 Management Agent ... 173
5.3 Fission Agent .. 174

6 Networking ... 176
6.1 Protocols ... 176
6.2 Event Messages... 176
6.3 Semantic Agencies .. 177

7 Development Platform.. 178
8 Application to an Assistant Robot .. 180

8.1 Robot Composition ... 180
8.2 Robot at home ... 180
8.3 Robot in the City ... 183

9 Conclusion and Future work... 184
References ... 184

Part III: Applications of Semantic Agent Systems

9 A Semantic Agent Framework for Cyber-Physical Systems 189
 Jing Lin, Sahra Sedigh, Ann Miller

1 Introduction .. 189
2 Background Work... 192
3 Agent-Based Modeling Technology... 193

3.1 Definition of the Agents.. 194
3.2 Construction of an Agent-Based Model.. 195

4 Semantic Interpretation Services .. 202
4.1 Sensor Information Ontology.. 202
4.2 Model for Semantic Services .. 204
4.3 Semantic Agent Framework.. 205
4.4 Data Type Processing.. 207
4.5 Implementation in C++ ... 210

5 Conclusions .. 211
References ... 211

10 A Layered Manufacturing System Architecture Supported with
 Semantic Agent Capabilities... 215
 Munir Merdan, Mathieu Vallée, Thomas Moser, Stefan Biffl

1 Introduction .. 215
2 State of the Art.. 216

 2.1 Centralized Manufacturing System Control..................................... 216
 2.2 Multi-Agent Systems as Foundation for Decentralized Control 217
 2.3 Agent Systems Facilitated by Semantic Technologies..................... 218

XIV Contents

3 Research Issues... 218
4 A Layered Manufacturing System Architecture 219
5 The Management Layer.. 221

 5.1 Enterprise Resource Planning (ERP) and Virtual Enterprises.......... 221
 5.2 Layers and Agents.. 222
 5.3 Production Process Cycle... 223

6 The Planning and Scheduling Layers ... 225
6.1 Planning .. 225
6.2 Application of Agents in Process Planning....................................... 225
6.3 Production Scheduling .. 226
6.4 Integration of Process Planning and Scheduling............................... 226
6.5 Planning and Scheduling in the Assembly Domain 227

7 The Execution Layer .. 230
7.1 Requirements of the Execution Layer... 230
7.2 Semantic Agents for the Execution Layer... 231

 The Automation Agent Architecture ... 232
 Semantic Technologies for Automation Agents 233

7.3 Lessons Learned - Practical Use of Semantic Agent Technologies...237
8 Conclusion and Further Work .. 238
References ... 239

11 Semantic Multi-Agent mLearning System... 243
 Stanimir Stoyanov, Ivan Ganchev, Máirtín O’Droma, Hussein Zedan,
 Damien Meere, Veselina Valkanova

1 Introduction .. 243
2 Related Works .. 244
3 InfoStation-Based Network Architecture ... 245
4 Context-Aware Service Provision .. 247
5 Layered System Architecture ... 249
6 Agent-Oriented Middleware Architecture .. 251
7 Using the Ontology Web Language for Services (OWL-S) 254
8 Context-Aware Management of Service Sessions.................................... 257
9 User-Based Service Contextualisation and Adaptation 260
10 Sample/mTest Service Provision... 264
11 Implementation Issues ... 268
12 Conclusion... 269
References ... 270

12 Identifying Novel Topics Based on User Interests.................................... 273
 Makoto Nakatsuji

1 Introduction .. 273
2 Related Works .. 277
3 Collaborative Filtering.. 278

Contents XV

4 Modeling User Interests According to the Taxonomy.............................. 279
5 Measuring Similarity of Users.. 280

5.1 Approach... 280
5.2 Algorithm.. 281
5.3 Example .. 281

6 Novel Topic Identification.. 281
7 Offline Experiments ... 283

 7.1 Investigating accuracy.. 283
 7.1.1 Dataset .. 283
 7.1.2 Methodology... 283
 7.1.3 Compared Methods... 284
 7.1.4 Results .. 285

7.2 Analyzing Suitable Size of User Group to Identify Novel Topics 285
7.3 Investigating User Interest Distribution According to the Score of
 Novelty... 287

8 Online Experimental Results .. 287
8.1 Explaining our Online Experiment ... 287
8.2 Investigating Continuance of User Access to our Recommendation
 List .. 288
8.3 Evaluating Identification of Novel Topics .. 289
8.4 Evaluating Activation of Blog Community....................................... 289

9 Conclusion.. 290
References ... 291

Part IV: Future Outlook

13 Semantic Agents with Understanding Abilities and Factors
 Affecting Misunderstanding.. 295
 Tuncer Ören, Levent Yılmaz

 1 Introduction ... 295
 1.1 Machine Understanding ... 296
 1.2 Motivation: The Role of Understanding in Decision Support.......... 296
 1.3 Agents, Semantic Agents, and Pivotal Role of Machine
 Understanding .. 297
 1.4 Synergies of Agents and Semantic Agents with Simulation and
 Systems Engineering.. 298

2 Machine Understanding Systems and Agents with Understanding
 Abilities .. 299
3 Types of Single Understanding .. 300

3.1 Machine Understanding from the Point of View of Product of
 Understanding ... 300
3.2 Machine Understanding from the Point of View of Process to
 Understand .. 301

XVI Contents

3.3 Machine Understanding from the Point of View of Meta-Model
 of Understanding... 301
3.4 Machine Understanding from the Point of View of Characteristics
 of Understanding System .. 302

4 Multi-understanding ... 302
4.1 Role of Meta-Models in Multi-understanding 302
4.2 Role of Perception in Multi-understanding....................................... 303
4.3 Role of Interpretation in Understanding.. 303

5 Switchable Understanding.. 303
6 Misunderstanding ... 303

6.1 Ability/Inability to Understand ... 305
 6.1.1 Role of Meta-Model in Misunderstanding............................. 305
 6.1.2 Role of Perception in Misunderstanding 305
 6.1.3 Role of Interpretation in Misunderstanding 305

6.2 Role of Context in Misunderstanding ... 305
6.3 Role of Biases in Misunderstanding ... 306

 6.3.1 Group Bias in Misunderstanding... 306
 6.3.2 Cultural Bias in Misunderstanding.. 306
 6.3.3 Cognitive Bias in Misunderstanding...................................... 306
 6.3.4 Emotive Bias in Misunderstanding .. 307
 6.3.5 Personality Bias in Misunderstanding................................... 307
 6.3.6 Effects of Dysrationalia and Irrationality in
 Misunderstanding .. 307

6.4 Role of Fallacies in Misunderstanding.. 307
 6.4.1 Deliberate Misunderstanding .. 307
 6.4.2 Induced Misunderstanding .. 308
 6.4.3 Mutual Misunderstanding.. 308

7 Conclusions and Future Research.. 308
References ... 308
Appendix A Concepts and Terms Related with Machine Understanding 310
Appendix B Concepts and Terms Related with Machine
Misunderstanding .. 312

Author Index………………………………………………………………….. 315

Part I

Introduction to Agents and Semantics

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 3–23.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 1
Rule Responder Agents
Framework and Instantiations*

Harold Boley1 and Adrian Paschke2

1 Institute for Information Technology, National Research Council Canada,
Fredericton, NB, Canada

 harold.boley@nrc.gc.ca
2 Freie Universitaet Berlin, Germany
 paschke@mi.fu-berlin.de

Abstract. This chapter introduces Rule Responder and its applications. Rule
Responder is a framework for specifying virtual organizations as semantic multi-
agent systems that support collaborative teams. It provides the infrastructure for rule-
based collaboration between the distributed members of such a virtual organization.
Human members of an organization are assisted by (semi-) autonomous rule-based
agents, which use Semantic Web rules to describe aspects of their owners' derivation
and reaction logic. To implement different distributed system/agent toplogies with
their negotiation/coordination mechanisms Rule Responder instantiations employ
three core classes of agents - Organizational Agents (OA), Personal Agents (PAs),
and External Agents (EAs). The OA represents goals and strategies shared by its
virtual organization as a whole, using a rulebase that describes its policies,
regulations, opportunities, etc. Each PA assists a group or person of the organization,
semi-autonomously acting on their behalf by using a local knowledge base of rules
defined by the entity. EAs can communicate with the virtual organization by sending
messages to the public interfaces of the OA. EAs can be human users using, e.g.,
Web forms or can be automated services/tools sending messages via the multitude of
transport protocols of the underlying enterprise service bus (ESB) middleware. The
agents employ ontologies in their knowledge bases to represent semantic domain
vocabularies, normative pragmatics and pragmatic context of conversations and
actions, as well as the organizational semiotics.

1 Introduction

Rule Responder1 extends the Semantic Web towards a Pragmatic Web infrastructure
for collaborative rule-based agent networks realizing distributed inference services,

* Invited Chapter.
1 http://responder.ruleml.org

4 H. Boley and A. Paschke

where independent agents engage in conversations by exchanging messages and
cooperate to achieve (collaborative) goals. Rule Responder can be characterized on
three levels, from general to specific.

• It models a virtual organization of agents recursively as again being a single
agent, forming what has been called [15] a hierarchy of holons (or, a holarchy).

• It supports different interaction/coordination models, where information is
interchanged within a pragmatic context (e.g. language action speech acts,
deontic norms, etc.).

• It provides a technical Web-based multi-agent architecture which supports
different distribution models (distributed agent system topologies).

A virtual organization as a whole is represented by an Organizational Agent
(OA), which uses ontologies and rules to assign and delegate incoming tasks (e.g.,
queries) to responsible Personal Agents (PAs). Rule Responder agents communicate
in conversations that allow implementing different agent coordination and
negotiation protocols. The interaction and interpretation is driven by the
organizational semiotics which details how the information flow works within and
between organizations. For instance, an OA can use a responsibility assignment
matrix, represented as an ontology, to find an appropriate PA in its organization. The
OA can then send a message (e.g., a query) to that PA and receive results (e.g.,
answers), typically using reaction rules. By means of pragmatic primitives, such as
speech acts, deontic norms, etc., which are represented as ontologies, Rule
Responder attaches the semantic and pragmatic context, e.g. organizational norms,
purposes or goals and values, to the interchanged messages.

In its multi-agent architecture Rule Responder utilizes messaging reaction rules
from Reaction RuleML2 for communication between the distributed agent
inference services. The Rule Responder middleware is based on modern enterprise
service technologies and Semantic Web technologies for implementing intelligent
agent services that access data and ontologies, receive and detect events (e.g., for
complex event processing in event processing agent networks), and make rule-
based inferences and (semi-)autonomous pro-active decisions for reactions based
on these representations.

The core of a Rule Responder agent is a rule engine, such as Prova3, OO
jDREW, DR-Device (initially in Emerald), Euler, or Drools, which implements
the decision and behavioral reaction logic of the agents' roles. An agent can
employ vocabularies defined as Semantic Web ontologies (e.g., based on RDFS or
OWL) to give its rules a domain-specific meaning. The vocabularies can be used
within the conversation with other agents to enable a semantic and pragmatic
interpretation of the messages. For the deployment of agents on the Web and for
the communication in agent networks, Rule Responder uses the Mule-based
enterprise service bus middleware, which supports a multitude of synchronous and
asynchronous transport protocols (> 40) -- such as MS, SMTP, JDBC, TCP,
HTTP, XMPP, Jade -- to transport rulebases, queries and answers between the

2 http://reaction.ruleml.org
3 http://prova.ws

Rule Responder Agents – Framework and Instantiations 5

agents. Reaction RuleML, the de facto standard for XML-serialized reaction rules,
is used as a platform-independent rule interchange format for agent conversation.

In summary, Rule Responder can be seen to support a digital ecosystem,
evolving from the Semantic Web [4] to the Pragmatic Web, which consists of all
the semantic agents in one or more virtual organizations, as well as all the other
components of this environment with which the agents interact, such as other
services, tools, the ESB middleware, etc.

Several instantiations of Rule Responder have been developed, including the
eScience infrastructure for Health Care and Life Sciences [11], the Rule-based IT
Service Level Managment and Semantic BPM system [12, 13], multiple versions
of the deployed SymposiumPlanner system [9], two versions of the WellnessRules
prototype [5], and the PatientSupporter prototype.4

The rest of the chapter is organized as follows. Section 2 discusses the agent
architecture and used technologies of the Rule Responder framework. Section 3
explains a typical distributed agent topology for virtual organizations and the
types agents used to implement it. Section 4 focuses on interchange between the
semantic agents which communicate by using (Reaction) RuleML as common rule
interchange format. Section 5 demonstrates some application use cases of Rule
Responder by means of selected Rule Responder instantiations. Section 6
concludes the paper.

2 The Rule Responder Framework

Three interconnected architectural layers consitute the Rule Responder
framework, listed here from top to bottom:

• Computationally independent user interfaces such as template-based Web forms
or controlled English rule interfaces.

• Reaction RuleML as the common platform-independent rule interchange format
to interchange rules, events, queries, and data between Rule Responder agents
and other agents (e.g., Semantic Web services or humans via Web forms).

• A highly scalable and efficient enterprise service bus (ESB) as agent/service-
broker and communication middleware on which platform-specific rule engines
are deployed as distributed agent nodes (resp. semantic inference services).
These engines manage and execute the logic of Rule Responder's semantic
agents in terms of declarative rules which have access to semantic ontologies.

In the following, the Rule Responder framework will be refined, and explained
from bottom to top.

2.1 Mule Enterprise Service Bus

To seamlessly handle message-based interactions between the Rule Responder
agents/services and other agents/services using disparate complex event processing
(CEP) technologies, transports, and protocols, an enterprise service bus (ESB) --

4 http://ruleml.org/PatientSupporter

6 H. Boley and A. Paschke

the Mule open-source ESB 5 -- is used in Rule Responder as the communication
middleware. This ESB allows deploying the rule-based agents as highly distributed
rule inference services installed as Web-based endpoints on the Mule object broker
and supports the communication in this rule-based agent processing network via a
multitude of transport protocols (see Figure 1). That is, the ESB provides a highly
scalable and flexible application messaging framework to communicate
synchronously or asynchronously amongst the ESB-local agents and with
agents/services on the Web.

Fig. 1. Distributed Rule Responder Agent Services

Mule is a messaging platform-based on principles of ESB architectures, but
goes beyond the typical definition of an ESB as a transit system for carrying data
between applications by providing a distributable object broker to manage all sorts
of service components such as the Rule Responder agent services. The three
processing modes of Mule are:

• Asynchronous: many events (messages) can be processed by the same component
at a time in various threads. When the Mule server is running asynchronously
instances of a component run in various threads all accepting incoming events,
though an event will only be processed by one instance of the component.

• Synchronous: when a component receives an event message, in this mode the
whole request is executed in a single thread.

• Request-Response: this allows for a component to make a specific request for
an event and wait for a specified time to get a response back.

The object broker follows the Staged Event Driven Architecture (SEDA)
pattern [20]. The basic approach of SEDA is to decomposes a complex, event-
driven application into a set of stages connected by queues. This design decouples
event and thread scheduling from application logic and avoids the high overhead
associated with thread-based concurrency models. That is, SEDA supports
massive concurrency demands on Web-based services and provides a highly
scalable approach for asynchronous communication.

Figure 2 shows a simplified breakdown of the integration of Mule into the Rule
Responders framework.

5 www.mulesoft.org

Rule Responder Agents – Framework and Instantiations 7

Fig. 2. Layering of Rule Responder on Mule ESB

Distributed agent services (see Figure 1), which at their core run a rule engine,
are deployed as Mule components which listen at configured endpoints, e.g., JMS
message endpoints, HTTP ports, SOAP server/client addresses or JDBC database
interfaces, etc. Reaction RuleML is used as a common platform-independent rule
interchange format between the agents (and possible other rule execution/inference
services). Translator services are used to translate inbound and outbound messages
from platform-independent Reaction RuleML into the platform-specific execution
syntaxes of rule engines, and vice versa. XSLT and ANTLR based translator
services are provided as Web forms, HTTP services and SOAP Web services on
the Reaction RuleML Web page.

The large variety of transport protocols provided by Mule can be used to
transport the messages to the registered endpoints or external applications/tools.
Usually, JMS is used for the internal communication between distributed agent
instances, while HTTP and SOAP is used to access external Web services. The
usual processing style is asynchronous using SEDA event queues. However,
sometimes synchronous communication is needed. For instance, to handle
communication with external synchronous HTTP clients such as Web browsers
where requests, e.g. by a Web from, are sent through a synchronous channel. In
this case, a synchronous bridge component dispatches the requests into the
asynchronous messaging framework and collects all answers from the internal
service nodes, while keeping the synchronous channel with the external service
open. After all asynchronous answers have been collected, they are sent back to
the still connected external service via the HTTP-synchronous channel.

2.2 Selected Platform-Specific Rule Engines for Rule Responder
Agents

The core of a Rule Responder agent, which is deployed as a service component on
the Rule Responder ESB, is a platform-specific rule engine. These engines might
differ, e.g., in their supported rule types, state representation, rule evaluation
mechanism, conflict resolution and truth maintenance. Hence, depending on their
expressiveness and functionalities, these rule engines might be capable of

8 H. Boley and A. Paschke

implementing agents in the strong sense of cognitive architectures for intelligent
agents with goal/task-based, utility-based and learning-based functionalities, or in
the weak sense of inference agent services with simple reflexive functionalities
for, e.g., deductive query-answering capabilities. Following the general consensus
defined by the strong notion of agency in [21], a Rule Responder agent, in
addition to being (semi-)autonomous, should be capable of reactive, proactive, and
communicative behavior. Additionally, it is often important that certain
mentalistic notions6 can be used in the rule language for describing the agent
behavior in an abstract and intuitive way, e.g. in the interactions between agents to
communicate the pragmatics of the interchanged information.

In the following, the interplay between our most often used rule engines Prova,
OO jDREW, Euler will be discussed, although there are other engines such as DR-
Device and Drools supported by Rule Responder.

Fig. 3. Rule Responder Agent

Figure 3 shows the architecture of an intelligent cognitive Rule Responder
agent which is implemented in Prova. Prova is an enterprise-strength, highly
expressive distributed Semantic Web logic programming (LP) rule engine. The
Prova rule engine supports different rule types:

• Derivation rules to describe the agent's decision logic
• Integrity rules to describe constraints and potential conflicts
• Normative rules to represent the agent's permissions, prohibitions and obligation

policies
• Global ECA-style reaction rules to define global reaction logic which are

triggered on the basis of detected (complex) events
• Messaging reaction rules to define conversation-based workflow reaction and

behavioral logic based on complex event processing

6 The term mentalistic notions aka mental attitudes refers to human-like properties such as

beliefs, goals, etc. when transferred to describing machine agents.

Rule Responder Agents – Framework and Instantiations 9

Prova follows the spirit and design of the W3C Semantic Web initiative and
combines declarative rules, ontologies and inference with dynamic object-oriented
programming and access to external data sources via built-in query languages such
as SQL, SPARQL, and XQuery.

File Input / Output
 ..., fopen(File,Reader), ...

XML (DOM)
 document(DomTree,DocumentReader) :- XML(DocumenReader),...

SQL
 ... ,sql_select(DB,cla,[pdb_id,"1alx"],[px,Domain]).

RDF
 ...,rdf(http://...,"rdfs",Subject,"rdf_type","gene1_Gene"),...

XQuery
 ..., XQuery = 'for $name in StatisticsURL//Author[0]/@name/text()
 return $name', xquery_select(XQuery,name(ExpertName)),...

SPARQL
 ...,sparql_select(SparqlQuery,...

One of the key advantages of Prova is its elegant separation of logic, data

access, and computation as well as its tight integration of Java, Semantic Web
technologies, with service-oriented computing and complex event processing. In
particular, Prova supports external type systems such as, e.g., Java class
hierarchies or Semantic Web ontologies (RDFS, OWL) via its typed order-sorted
logic [18]. For instance, in the following example all agents from an external
OWL ontology responsibility assignment matrix (RAM) are assigned to the typed
variable Agent of type _Organizing Committee (with the namespace 2010ruleml),

where _Organizing Committee is a concept defined in the RAM ontology. The query

then selects all agent individuals of type ProgramChair which is a subtype of

_Organizing Committee , i.e. the query selects a subset with appropriate subtype from

the bound variable.

% import external ontology representing responsibility assignment
matrix (RAM)

import("http://2010.ruleml.org/RuleML-2010.owl").

% bind all agent instances of type "Organizing_Committee" from the
RAM to the variable Agent

agent(Agent:ruleml2010_Organizing_Committee).

% query for all agents of type "ProgramChair"

:- solve(agent(Agent:ruleml2010_ProgramChair)

Prova can be run in a plain Java environment as stand alone application or rule

inference service on the Rule Responder ESB, or as an OSGI component. Prova
has a modular knowledge base to implement several different roles an agent might
play in the same agent instance. Each role has its own set of reaction rules to
autonomously react (potentially proactive) on detected situations (complex events)

10 H. Boley and A. Paschke

and its own set of decision rules to interpret goals and derive decisions according
to conditional proofs. For instance, it is possible to consult (load) distributed
rulebases from local files, a Web address, or from incoming messages transporting
a rulebase.

%load from a local file

:- eval(consult("organization2009.prova")).

% import from a Web address

:- eval(consult("http://ruleml.org/organization2010.prova")).

The rulebases are managed as modules in the knowledge base. Their module
label can be used for asserting or retracting complete modules from the knowledge
base and for scoping queries/goals to a particular module, i.e. the query only
applies to the particular scoped module. In the following example the subgoal

)(Agentagent applies on the modules provaonorganizati 2009. and not on the

module provaonorganizatiorgrulemlhttp 2010././/: .

responsible(Agent, Task) :-

 @src("organization2009.prova") agent(Agent),

 ...

To sense the environment and trigger actions, query data from external sources
such as databases, call external procedural code such as Enterprise Java Beans,
and receive/send messages from/to other agents or external services, Prova
provides a set of built-in functions and additionally can dynamically instantiate
any Java object and call its API methods at runtime. For instance, the following
simple rule creates a response sentence with the name using Java string
computations and displays it via to the Java system out console.

hello(Name) :-

 S = java.lang.String("Hello, your name is "),

 S.append (Name),

 java.lang.System.out.println (S).

Additional libraries can be imported, e.g. to represent rights and obligations of
agents, implement conflict handling rules, or describe complex events and actions.
In its cognitive cycle a Prova agent follows the sense-reason-act pattern. However,
Prova does not define one particular cognitive cycle, but allows configuring an
agent with user-defined conversation-based negotiation and coordination protocols
or workflow patterns. Via constructs for asynchronously sending and receiving
event messages within rules, an agent interacts with the environment. The main
language constructs of messaging reaction rules are: sendMsg predicates to send
messages, reaction rcvMsg rules which react to inbound messages, and rcvMsg or
rcvMult inline reactions in the body of messaging reaction rules to receive one or
more context-dependent multiple inbound event messages:

Rule Responder Agents – Framework and Instantiations 11

sendMsg(XID,Protocol,Agent,Performative,Payload |Context)

rcvMsg(XID,Protocol,From,Performative,Paylod|Context)

rcvMult(XID,Protocol,From,Performative,Paylod|Context)

Here, XID is the conversation identifier (conversation-id) of the conversation to
which the message will belong. Protocol defines the communication protocol.
Agent denotes the target party of the message. Performative describes the
pragmatic envelope for the message content. A standard nomenclature of
performatives is, e.g., the FIPA Agents Communication Language (ACL).
Payload represents the message content sent in the message envelope. It can be a
specific query or answer or a complex interchanged rule base (set of rules and
facts). For instance, the following rule snippet shows how a query is sent to an
agent via the ESB and then an answer is received from this agent.

...

sendMsg(Sub_CID,esb,Agent,acl_query-ref, Query),

rcvMsg(Sub_CID,esb,Agent,acl_inform-ref, Answer),

...

Prova does not define a specific set of mentalistic notions as first-class

programming constructs. Instead, interchanged messages besides the conversation's
metadata and payload also carry the pragmatic context of the conversation such as
communicative situations/acts, mentalistic notions, organizational and individual
norms, purposes or individual goals and values. The payload of incoming event
messages is interpreted with respect to the local conversation state, which is
denoted by the conversation id, and the pragmatic context, which is given by a
pragmatic performative. For instance, a standard nomenclature of pragmatic
performatives, which can be integrated as external (semantic) vocabulary/ontology,
is e.g., defined by the Knowledge Query Manipulation Language (KQML) (Finin et
al. 1993), by the FIPA Agent Communication Language (ACL), which gives
several speech act theory-based communicative acts, or by the Standard Deontic
Logic (SDL) with its normative concepts for obligations, permissions, and
prohibitions. Depending on the pragmatic context, the message payload is used,
e.g. to update the internal knowledge of the agent (e.g., add new facts or rulebases),
add new tasks (goals), or detect a complex event pattern (from event-instance
sequences).

Several expressive logic formalisms are supported by Prova [17], e.g., for
updating the knowledge base (transactional update logic), defining and detecting
complex events (complex event algebra), handling situations/states (event
calculus), as well as for reasoning (e.g., deontic logic for normative reasoning on
permissions, prohibitions, obligations) and planning (abductive reasoning on plans
and goals).

In summary, Prova agents can interchange event information, rules (tasks), and
queries/answers in agent conversations, including information about the semantics
and pragmatics of the interchanged information.

12 H. Boley and A. Paschke

Besides Prova, Rule Responder supports rule engines such as OO jDREW,
Euler, DR-Device, and Drools for implementing such query answering agents as
inference services in Rule Responder.

3 Rule Responder Agents

With the support of Prova's agent conversations, various distributed coordination
topologies can be implemented, from centralized orchestration, executed in star-
like agent nodes, to decentralized ad-hoc choreography within the Rule Responder
agent network. In the following, we describe a common hierarchical agent topology
which represents a centralized star-like structure for virtual organizations (and
many orchestrated distributed systems). Organizational Agents (OAs) act as central
orchestration nodes which control and disseminate the information flow from and
to their internal Personal Agents (PAs) and the External Agents/Services (EAs).

3.1 Organizational Agent

An Organizational Agent (OA) represents its virtual organization as a whole. An
OA manages its local Personal Agents (PAs), providing control of their life cycle
and ensuring overall goals and policies of the organization and its semiotic
structures. OAs can act as a single point of entry to the managed sets of local PAs
to which requests by EAs are disseminated. This allows for efficient
implementation of various mechanisms of making sure the PAs functionalities are
not abused (security mechanisms) and making sure privacy of entities, personal
data, and computation resources is respected (privacy & information hiding
mechanisms). For instance, an OA can disclose information about the organization
to authorized external parties without revealing private information and local data
of the PAs, although this data might have been used in the PAs to compute the
resulting answers to the external requester.

OAs, which require high levels of expressiveness to represent the logic of
cognitive agents, are implemented using the Prova Semantic Web rule engine. In
the following we will discuss some of the expressive language constructs of Prova
that are required to implement the Rule Responder framework.

For implementing the Rule Responder communication flows in the OAs, Prova
messaging reaction rules are used. A typical coordination pattern implemented in a
Rule Responder OA is the following messaging reaction rule (Prova variables start
with an upper-case letter), which waits for an incoming query from an EA and
delegates this query to an internal responsible PA.

% receive query and delegate it to another party

rcvMsg(CID,esb, Requester, acl_query-ref, Query) :-

 responsibleRole(Agent, Query),

 sendMsg(Sub-CID,esb,Agent,acl_query-ref, Query),

 rcvMsg(Sub-CID,esb,Agent,acl_inform-ref, Answer),

 ... (other goals)...

 sendMsg(CID,esb,Requester,acl_inform-ref,Answer).

Rule Responder Agents – Framework and Instantiations 13

When activated by an incoming request from an EA, e.g. an HTTP request
coming from a Web form, this messaging reaction rule first selects the responsible
role for the query. Then the rule sends the query in a new sub-conversation to the
selected party and waits for the answer to the query. That is, the rule execution
waits until an answer event message is received in the inlined sub-conversation,
which activates the process flow again, e.g. to prove further `standard' goals, e.g.
with information from the received answer, which is assigned to variables in the
normal logic programming way, including also backtracking to other variable
assignments. Finally, in this example, the rule sends back the answer to the
original requesting EA.

The selection logic for the dissemination of queries to PAs is, e.g.,
implemented by a standard derivation rule which, e.g., accesses, via a Prova
SPARQL query built-in, an external responsibility assignment matrix (RAM) (see
section 3.4). The following rule selects responsible agents with a SPARQL query
on a triple store Web interface, where the responsibility assignment matrix is
stored.

% receive query and delegate it to another party

rcvMsg(CID,esb, Requester, acl_query-ref, Query) :-

 responsibleRole(Agent, Query),

 sendMsg(Sub-CID,esb,Agent,acl_query-ref, Query),

 rcvMsg(Sub-CID,esb,Agent,acl_inform-ref, Answer),

 ... (other goals)...

 sendMsg(CID,esb,Requester,acl_inform-ref,Answer).

RAMs (RACI matrices, Linear Responsibility Charts, etc.) are often in project
management, when responsibilities are clearly defined for each role. It should be
noted that Prova OAs can also implement other well-known agent coordination
and negotiation mechanisms: for instance, a Contract Net coordination protocol,
where PAs bid for the task offered by the OA and the OA selects the best PA
according to the received bids, or a publish-subscribe protocol, where PAs are
selected according to their subscriptions with the OA.

3.2 Personal Agents

Personal Agents (PAs) assist the local entities of a virtual organization. Often
these are human roles in the orgnization. But, it might be also services or
applications in, e.g. a service oriented architecture. A PA runs a rule engine which
accesses different sources of local data and computes answers according to the
local rule-based decision logic of the PA. Depending on the required
expressivness to represent the PAs rule logic arbitrary rule engines can be used as
long as they provide an interface to ask queries and receive answers which are
translated into the common Reaction RuleML interchange format in order to
communicate with other agents.

Importantly, the PAs might have local autonomy and might support privacy and
security implementations. In particular, local information used in the PA rules

14 H. Boley and A. Paschke

becomes only accessible by authorized access of the OA via the public interfaces
of the PA which act as an abstraction layer supporting security and information
hiding. A typical coordination protocol is that all communication to EAs is via the
OA, but the OA might also reveal the direct contact address of a PA to authorized
external agents which can then start an ad-hoc conversation directly with the PA
[6]. A PA itself might act as a nested suborganization, i.e. containing itself an OA
providing access to a suborganization within the main virtual organization. This
can be usefull to represent nested organizational structures such as departments,
project teams, and service networks.

3.3 External Agents

External Agents (EAs) constitute the points-of-contact that allow an external user
or service to query the Organizational Agent (OA) of a virtual organization. An
EA is based, e.g., on a Web (HTTP) interface that allows such an enquiry user to
pose queries, employing a menu-based Web form, which gets translated to an
equivalent RuleML/XML message. An external agent -- from the point of view of
a Rule Responder agent organization -- can be an external human agent, a
service/tool, or another external Rule Responder organization, thus leading to
cross-organizational Rule Responder communication.

3.4 Responsibility Assignment Matrix

As one possible way for coordination in a virtual organization the Rule Responder
framework uses a `pluggable' Responsibility Assignment Matrix (RAM) to
support the OA in its selection of a PA and its optional participating profiles
underneath. A RAM describes the responsibility of agent roles in completing
certain tasks or deliverables in a virtual organization. A standard RAM is a RAI
matrix, with

• Responsible -- agents who do the work to achieve the task. Typically, the PAs
are the responsible roles.

• Accountable (also Approver or final Approving authority) -- agent who is
ultimately accountable for the correct and thorough completion of the
deliverable or task, and the one to whom Responsible is accountable. Typically,
this is the OA which receives the answer from the PA and further processes it
before forwarding it to the EA.

• Informed -- the agent who is kept up-to-date on progress, often only on
completion of the task or deliverable; and with whom there is just one-way
communication. Typically, this is the EA who is informed about the result by
the OA.

In a simple star-like Rule Responder agent topology, a single RAI matrix can
be used in the OA to map an incoming query to the PA whose local knowledge
base is deemed to be best suited for answering it. The RAI matrix is represented as
an OWL ontology (OWL Lite) and can be used by a Rule Responder agent via
querying it with the Semantic Web built-ins of Prova, binding the respective roles

Rule Responder Agents – Framework and Instantiations 15

and their responsibilities to typed variables in the agent's rule logic. Many variants
of the RAM with different role distinctions are possible such as RACI (with
Consulted agents), RASCI (with Supporting agents) etc. - see, e.g., table 1.

Table 1. Responsibility Assignment Matrix

 General Chair Program Chair Publicity Chair

 Symposium responsible consulted supportive

Website accountable responsible

Sponsoring informed, signs verifies responsible

Submission informed responsible

...

For instance, the RAM has been split so that role responsibility assignment is

done on the `higher' level of a Group Responsibility Matrix (GRM) in the OA and
on the `lower' level of a Profile Responsibility Matrix (PRM) in the PAs.

Fig. 4. Rule Responder architecture instantiated to WellnessRules

Figure 4 shows these two central matrices in the larger context of the Rule
Responder architecture used in the WellnessRules instantiations (cf. Section 5.2),
which has been further evolved for the PatientSupporter instantiation (cf. Section 5.3).

The GRM maps, many-to-one, relevant kinds of queries to a PA, who may
represent a group. The GRM is usually specified as an OWL light ontology. The
PRM lists a PA's profiles, participating in its group, along with the format (Prova,
POSL, N3, etc.) each profile knowledge base is written in. The PRM is specified
as an XML document.

16 H. Boley and A. Paschke

4 Translation between Rule Responder Agents

Rule Responder permits agents to use local languages and engines, only requiring
that all rulebases, queries, and answers will be translated to RuleML for
transmitting them to other agents over the Mule ESB.

Reaction RuleML provides a translator service framework with Web form
interfaces accepting controlled natural language input or predefined selection-
based rule templates for the communication with external (human) agents on the
computational independent level, as well as Servlet HTTP interfaces, and Web
service SOAP interfaces, wich can be used for translation into and from platform-
specific rule languages such as Prova.

On the computation-independent level, online user interfaces allow external
human agents issuing queries to Rule Responder agents (typically the OA) in a
controlled natural language or with template-driven Web forms and receive
answers. The translation between the used controlled English rule language
(Attempto Controlled English [14]) and Reaction RuleML is based on domain-
specific language translation rules in combination with a controlled English
translator service.

Queries to Rule Responder are formulated in Attempto Controlled English. The
ACE2RML translator forwards the text to the Attempto Parsing Engine (APE),
which translates the text into a discourse representation structure (DRS) and/or
advices to correct malformed input. The DRS gives a logical/structural
representation of the text. It is fed into an XML parser which translates it into a
domain-specific Reaction RuleML representation of the query. Besides parsing
and processing the elements of the DRS, the parser additionally employs domain-
specific transformation rules to correctly translate the query into a public interface
call of a Rule Responder OA.

On the platform-independent and platform-specific level, the translator services
are using different translation technologies such as XSLT stylesheet, JAXB, etc. to
translate from and to Reaction RuleML as a general rule interchange format.
Reaction RuleML incorporates various kinds of production, action, reaction, and
KR temporal/event/action logic rules as well as (complex) event/action messages
into the native RuleML syntax. The general syntax of reaction rules is as follows:

<Rule style="active|messaging|reasoning" eval="strong|weak|defeasible|fuzzy">

 <oid> <!-- object id --> </oid>

 <label> <!-- meta data of the rule --> </label>

 <scope><!-- scope of the rule e.g. a rule module --> </scope>

 <qualification> <!-- e.g. priorities, validity, fuzzy levels -->

 </qualification>

 <quantification> <!- e.g. variable bindings--> </quantification>

 <on> <!-- event part --> </on>

 <if> <!-- condition part --> </if>

 <then> <!-- (logical) conclusion part --> </then>

 <do> <!-- action part --> </do>

 <after> <!-- postcondition part after action, e.g.

 to check effects --> </after>

</Rule>

Rule Responder Agents – Framework and Instantiations 17

Depending on which parts of this general rule syntax are used different types of
reaction rules can be expressed, e.g. if-then (derivation rules), if-do (production
rules), on-do (trigger rules), on-if-do (ECA rules). For communication between
distributed rule-based (agent) systems Reaction RuleML provides a general
message syntax:

<Message>

 <oid> <!-- conversation ID--> </oid>

 <protocol> <!-- used protocol --> </protocol>

 <agent> <!-- sender/receiver agent/service --> </agent>

 <directive><!-- pragmatic primitive, i.e. context --></directive>

 <content> <!-- message payload --> </content>

</Message>

Using these messages agents can interchange events (e.g., queries and answers)
as well as complete rule bases (rule set modules), e.g. for remote parallel task
processing. Agents can be engaged in long running possibly asynchronous
conversations and nested sub-conversations using the conversation id to manage
the conversation state. The protocol is used to defines the message passing and
coordination protocol. The directive attribute corresponds to the pragmatic
instruction, i.e. the pragmatic characterization of the message context broadly
characterizing the meaning of the message.

The Reaction RuleML translator services are configured in the transport
channels of the inbound and outbound links of the deployed rule engines on the
ESB. Incoming Reaction RuleML messages (receive) are translated into platform-
specific rulebases which can be executed by the rule engine, e.g. Prova, and
outgoing rulebases (send) are translated into Reaction RuleML in the outbound
channels before they are transferred via a selected transport protocol.

The semantic agent architecture in Rule Responder supports privacy and
security implementations. In particular, local information used in the PAs becomes
only accessible by authorized access via the public interfaces of the OAs which
act as an abstraction layer supporting security and information hiding. To achieve
this, Prova supports an interface definition language (Reaction RuleML IDL)
which allows descriptions of the signatures of publicly accessibly rule functions
together with their mode and type declarations. Modes are states of instantiation of
the predicate described by mode declarations, i.e. declarations of the intended
input-output constellations of the predicate terms with the following semantics:

• " + " The term is intended to be input
• " − " The term is intended to be output
• " ? " The term is undefined/arbitrary (input or output)

For instance, the interface definition for the function)2,1,(ResultArgArgadd

is)),,((++−addinterface , i.e. the function is a public interface which expect two

input arguments and returns one output argument. ,1,1)(Xadd would be a valid

query to this public function.

18 H. Boley and A. Paschke

External agents can access the virtual organization only via these public
interfaces, which often only reveal abstracted information to authorized users and
hence hide local information of the organization and its PAs.

5 Rule Responder Instantiations

Early instantiations of Rule Responder include the Health Care and Life Sciences
eScience infrastructure [11], the Rule-based IT Service Level Managment, and
Semantic BPM system [12, 13]. Recent instantiations include multiple versions of
the deployed SymposiumPlanner system [9], two versions of the WellnessRules
prototype [5], PatientSupporter, a reputation management system, and a SCEP
agent network. We will here highlight the principles of Rule Responder
instantiations with an emphasis on the recent ones.

5.1 SymposiumPlanner

SymposiumPlanner is a series of deployed applications created with Rule
Responder for the Q&A parts of the official websites of the RuleML Symposia.

Rule Responder started to support the organizing committee of the RuleML
Symposium [8] and was further developed to assist the yearly RuleML Symposia
since 2007. These applications embody responsibility assignment, automated first-
level contacts for information regarding the symposium, helping the publicity
chair with sponsoring correspondence, helping the panel chair with managing
panel participants, and the liason chair with coordinating organization partners.

SymposiumPlanner utilizes a single organizational agent to handle the filtering
and delegation of incoming queries. Each committee chair has a personal agent
that acts in a rule-governed manner on behalf of the committee member. Each
agent manages personal information, such as a FOAF-like profile containing a
layer of facts about the committee member as well as FOAF-extending rules.
These rules allow the PA to automatically respond to requests concerning the
RuleML Symposium. Task responsibility for the organization is currently
managed through a responsibility matrix, which defines the tasks committee
members are responsible for. The matrix and the roles assigned within the virtual
organization are defined by an OWL (Ontology Web Language) Lite Ontology.

Request users and personal agents can communicate by sending messages that
transport queries, answers, or complete rulebases through the public EA interface
of the OA (typically, an EA uses an HTTP port to which post and get requests are
sent from a Web form). The Rule Responder instantations to SymposiumPlanner
are published and deployed online.7

5.2 WellnessRules

This is a Web 3.0 case study, where ontology-structured rules (including facts)
about wellness opportunities are created by participants in rule languages such as

7 http://ruleml.org/SymposiumPlanner

Rule Responder Agents – Framework and Instantiations 19

Prolog and N3, and translated for interchange within a wellness community using
RuleML/XML. The wellness rules are centered around participants, as profiles,
encoding knowledge about their activities, nutrition, etc. conditional on the
season, the time-of-day, the weather, etc. This distributed knowledge base extends
fact-only FOAF profiles with a vocabulary and rules about wellness group
networking.

The communication between participants is organized through Rule Responder,
permitting translator-based reuse of wellness profiles and their distributed
querying across engines. WellnessRules interoperates between rules and queries in
the relational (Datalog) paradigm of the pure-Prolog subset of POSL and in the
frame (F-logic) paradigm of N3. These derivation rule languages are implemented
in the engines OO jDREW and Euler, and connected via Rule Responder to
support wellness communities.

WellnessRules is a system supporting the management of wellness practices
within a community based on rules plus ontologies. The idea is the following. As
in Friend of a Friend (FOAF)8, people can choose a (community-unique)
nickname and create semantic profiles about themselves, here about their wellness
practices, for their own planning and to network with other people supported by a
system that `understands' those profiles. As in FindXpRT [10], such FOAF-like
fact-only profiles are extended with rules to capture conditional person-centered
knowledge such as each person's wellness activity depending on the season, the
time-of-day, the weather, etc. People can use rules of various refinement levels
and rule languages ranging from pure Prolog to N3, which will be interoperated
through RuleML/XML [3].

Interoperating with translators, WellnessRules thus frees participants from
using any single rule language. In particular, it bridges between Prolog as the main
Logic Programming rule paradigm and N3 as the main Semantic Web rule
paradigm. The distributed nature of Rule Responder profiles, each queried by its
own (copy of an) engine, permits scalable knowledge representation and
processing.

WellnessRules has recently been developed to WellnessRules2, using a fourth
kind of agent, the Computing Agent (CA), for accessing Google weather data.
From the point of an OA, a CA can be queried similarly to a PA. However, while
a PA is a personal assistant to a human owner, a CA is a pure machine agent, in
WellnessRules2 acting as a wrapper for a Google service.

The Rule Responder instantations to WellnessRules are further described and
demoed online.9

5.3 PatientSupporter

Patients are increasingly seeking interaction in support groups, which provide
shared information and experience about diagnoses, treatment, etc.
PatientSupporter is an instantiation of Rule Responder that will permit a patient to
query other patients' profiles for finding or initiating a matching group.

8 http://www.foaf-project.org/
9 http://ruleml.org/WellnessRules and http://ruleml.org/WellnessRules2

20 H. Boley and A. Paschke

Rule Responder's External Agent (EA) is a Web-based patient-organization
interface that passes queries to the Organizational Agent (OA). The OA represents
the common knowledge of the virtual patient organization, delegates queries to
relevant Personal Agents (PAs), and hands validated PA answers back to the EA.
Each PA represents the medical subarea of primary interest to a corresponding
patient group. The PA assists its patients by advertising their interest profiles
employing rules about diagnoses and treatments as well as interaction constraints
such as time, location, age range, gender, and number of participants.

PAs can be distributed across different rule engines using different rule
languages (e.g., Prolog and N3), where rules, queries, and answers are
interchanged via translation to and from RuleML/XML. The current
implementation of PatientSupporter applies to a use case where the PA's medical
subareas are defined through sports injuries structured by a partonomy of affected
body parts.

PatientSupporter uses ontologies and rules for organizing geographically
distributed patients -- here, suffering from sports injuries -- into virtual support
groups around classes of an ontology of injuries -- here, a sports-injury
partonomy. The prototype is designed to help patients with a similar sports injury
to interact with a virtual support group having that common interest. Patients in an
online PatientSupporter virtual organization create their semantic profile referring
to classes in a disease ontology -- here a partonomy of body parts affected by
sports injuries. Profiles contain rules about diagnoses and treatments as well as
interaction constraints such as time, location, age range, gender, and number of
participants. A patient can pose queries against the semantic profiles of other
patients in his or her virtual organization to find or initiate a matching group.

PatientSupporter allows patients to have their profiles expressed in either Pure
Prolog (Logic Programming rules) or N3 [2] (Semantic Web rules). Providing
these quite different rule language paradigms permit patients to choose the
language that best suits them. Rule Responder handles the interoperation between
the rule languages of different patients using translators to and from
RuleML/XML as the interchange format [7, 3].

Patients using the PatientSupporter Social Semantic Web portal are able to
initiate the virtual support group about their sports injury on a global scale. They
also benefit from PatientSupporter's interoperation facility in the background -- to
transform patient profiles between Pure Prolog and N3 through RuleML/XML.
The system employs a partonomy of sports-injury-affected body parts (a `body
partonomy'), which makes it easy for patients to navigate hierarchically up or
down to increase recall or precision, respectively. A patient's queries invoke other
patients' interaction rules, allowing him or her to narrow down the search in a
step-wise fashion. All of this saves a patient from browsing through a large set of
irrelevant patient profiles and permits him or her to efficiently converge on a first
Skype call.

The Rule Responder instantation to PatientSupporter is being described and
demoed online.10

10 http://ruleml.org/PatientSupporter

Rule Responder Agents – Framework and Instantiations 21

5.4 Reputation Management System

The Rule Responder reputation management system [1] is based on distributed
Rule Responder rule agents, which use rules for implementing the reputation
management functionalities as rule agents, and which use Semantic Web
ontologies for representing simple or complex multi-dimensional reputation
objects. This Semantic Web reputation ontology model enables reputation
portability, eases the management of reputation data, mitigates risks in open
environments, and enhances the decision making process in the reputation
processing agents. The reputation management system computes, manages, and
provides reputation about entities which act on the Web. It is implemented as a
Reputation Processing Network (RPN) consisting of Reputation Processing
Agents (RPAs) that have two different roles:

1. Reputation Authority Agents (RAAs): Act as reputation scoring services for the
reputee entities whose Reputation Objects (ROs) are being considered or
calculated in the agents' rule-based Reputation Computation Services (RCSs).
An RCS runs a rule engine which accesses different sources of reputation
(input) data from the reputors about an entity and evaluates an RO based on its
declarative rule-based computational algorithms and contextual information
available at the time of computation.

2. Reputation Management Agents (RMAs): Act as a reputation trust center
offering reputation management functionalities. An RMA manages the local
RAAs providing control of their life-cycle in particular, and also ensuring goals
such as fairness. It might act as a Reputation Service Provider (RSP) which
aggregates reputations from the reputation scores of local RAAs. Based on the
final calculated reputation, it might also perform actions, e.g. compute trust-
worthiness, make automated decisions, or trigger reactions. It also manages the
communication with the reputors, collecting data about entities from them,
generates reputation data inputs for the reputation scoring, and distributes the
data to the RAAs. It might also act as central point of communication for the
real reputee entities (e.g., persons) giving them legitimate control over their
reputation and allowing entities the governance of their reputations.

The agent-based approach to online reputation management ensures efficient
automation, semantic interpretability and interaction, openness in ownership, fine-
grained privacy and security protection, and easy management of semantic
reputation data on the Web.

5.5 Semantic Complex Event Processing Agent Network

The Event Processing Network (EPN) [16] consists of Semantic Event Processing
Agents (EPA) implemented as distributed Prova inference services which detect
complex events using Prova's rule-based Semantic Complex Event Processing
(SCEP) logic. [19]. The multi-agent approach allows for a highly-available
distributed implementation with redundant Event-Calculus based state processing
where events are processed concurrently in the EPN.

22 H. Boley and A. Paschke

6 Conclusion

Rule Responder is a framework for specifying virtual organizations as semantic
multi-agent systems. Characteristics of Rule Responder include

• the coverage of the distributed processing spectrum from Web Services to agents
in one framework

• the recursive (holonic) modeling of a virtual organization of services and agents
as a single agent,

• the use of ESBs, especially Mule, as a foundation for the Semantic and Pragmatic
Web infrastructure,

• the use of Semantic-Pragmatic Web rules as the main knowledge representation,
complemented by ontologies,

• the introduction of PAs as human-assisting agents into a virtual organization,
besides the traditional computation-performing agents (CAs),

• the design of a `pluggable' agent-finding mechanism from role assignment to
Semantic Service discovery.

The Rule Responder framework, with its increasing number of users and engines
(Prova, OO jDREW, DR-Device, Euler, and Drools), is thus being proposed as a
reference architecture for distributed knowledge representation and processing.

Acknowledgments. The international Rule Responder initiative has greatly helped us
with work leading to this chapter. In particular, we want ot thank Alexander Kozlenkov,
Benjamin Craig, Taylor Osmun, Derek Smith, Omair Shafiq, Mahsa Kiani, Kia Teymourian,
Rehab Alnemr, Irfan ul Haq, Nick Bassiliades, Stratos Kontopoulos, and Kalliopi Kravari.

References

1. Alnemr, R., Paschke, A., Meinel, C.: Enabling Reputation Interoperability through
Semantic Technologies. In: ACM International Conference on Semantic Systems.
ACM, New York (2010)

2. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A Logical
Framework For the World Wide Web. Theory and Practice of Logic Programming
(TPLP) 8(3) (2008)

3. Boley, H.: Are Your Rules Online? Four Web Rule Essentials. In: Paschke, A., Bilet-
skiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 7–24. Springer, Heidelberg (2007)

4. Boley, H., Chang, E.: Digital Ecosystems: Principles and Semantics. In: Proc. IEEE
Intl. Conf. Digital Ecosystems and Technologies, Cairns, Australia (2007)

5. Boley, H., Osmun, T.M., Craig, B.L.: Social Semantic Rule Sharing and Querying in
Wellness Communities. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009.
LNCS, vol. 5926, pp. 347–361. Springer, Heidelberg (2009)

6. Boley, H., Paschke, A.: Expert Querying and Redirection with Rule Responder. In:
Zhdanova, A.V., Nixon, L.J.B., Mochol, M., Breslin, J.G. (eds.) Proceedings of the
2nd International ISWC+ASWC Workshop on Finding Experts on the Web with Se-
mantics, CEUR Workshop Proceedings, Busan, Korea, November 12, pp. 9–22 (2007);
CEUR-WS.org

Rule Responder Agents – Framework and Instantiations 23

7. Boley, H., Tabet, S., Wagner, G.: Design Rationale of RuleML: A Markup Language
for Semantic Web Rules. In: Proc. Semantic Web Working Symposium (SWWS
2001), pp. 381–401. Stanford University, Stanford (2001)

8. Craig, B.L.: The OO jDREW Engine of Rule Responder: Naf Hornlog RuleML Query
Answering. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824,
pp. 149–154. Springer, Heidelberg (2007)

9. Craig, B.L., Boley, H.: Personal Agents in the Rule Responder Architecture. In: Bassi-
liades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS, vol. 5321, pp.
150–165. Springer, Heidelberg (2008)

10. Li, J., Boley, H., Bhavsar, V.C., Mei, J.: Expert Finding for eCollaboration Using
FOAF with RuleML Rules. In: Montreal Conference of eTechnologies 2006,
pp. 53–65 (2006)

11. Paschke, A.: Rule responder HCLS eScience infrastructure. In: ICPW 2008: Proceed-
ings of the 3rd International Conference on the Pragmatic Web, pp. 59–67. ACM,
New York (2008)

12. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decis. Support Syst. 46(1), 187–205 (2008)

13. Paschke, A., Kozlenkov, A.: A Rule-based Middleware for Business Process Execu-
tion. Multikonferenz Wirtschaftsinformatik (2008)

14. Sutcliffe, G., Goebel, R. (eds.): Proceedings of the Nineteenth International Florida
Artificial Intelligence Research Society Conference, Melbourne Beach, Florida, USA,
May 11-13. AAAI Press, Menlo Park (2006)

15. Koestler, A.: The Ghost in the Machine. Hutchinson & Co, London (1967)
16. Kozlenkov, A., Jeffery, D., Paschke, A.: State management and concurrency in event

processing. In: DEBS (2009)
17. Paschke, A.: Rule-Based Service Level Agreements - Knowledge Representation for

Automated e-Contract, SLA and Policy Management. Idea Verlag GmbH, Munich
(2007)

18. Paschke, A.: A Typed Hybrid Description Logic Programming Language with Poly-
morphic Order-Sorted DL-Typed Unification for Semantic Web Type Systems. CoRR,
abs/cs/0610006 (2006)

19. Teymourian, K., Paschke, A.: Towards semantic event processing. In: DEBS (2009)
20. Welsh, M., Culler, D., Brewer, E.: SEDA: An Architecture for Well Conditioned,

Scalable Internet Services. In: Proceedings of Eighteeth Symposium on Operating Sys-
tems (SOSP-18), Chateau Lake Louise, Canada (2001)

21. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester (2001)

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 25–45.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 2
Specifying and Monitoring Obligations in Open
Multiagent Systems Using Semantic Web
Technology

Nicoletta Fornara

University of Lugano, via G. Buffi 13, 6900 Lugano, Switzerland
nicoletta.fornara@usi.ch

Abstract. In nowadays open interaction systems where autonomous, heterogeneous
and self-interested agents may interact, it is crucial to be able to declaratively spec-
ify the norms that regulate the actions of the interacting parties and to be able to
monitor their behaviour in order to check whether it is compliant or not with the
norms. In this chapter we propose and discuss the advantages of using semantic
web languages, tools, and techniques for proposing an application independent
model that should be used for the declarative specification and monitoring of obli-
gations. Those obligations are characterized by a class of activation and deactiva-
tion events, a class of content actions that may satisfy the obligation and a deadline
within which an action belonging to the content class has to be performed. The
main contribution of this chapter is to show how it is possible to use semantic web
technologies, and in particular OWL 2 DL as formal language for the specification
and monitoring of complex obligations and to study how much it is feasible to use
an OWL ontology to represent the state of a dynamic open interaction system.

1 Introduction

The specification of open systems for the interaction of autonomous agents is
widely recognized to be a crucial issue in the development of innovative applica-
tions on the Internet, like e-commerce applications, or applications for the man-
agement of virtual enterprises. One possible approach to tackle this problem is to
model open interaction systems as a set of artificial institutions [2, 1, 20, 11].
Those institutions are devised for the specification of the institutional context
where the interaction among autonomous heterogeneous agents may take place. In
particular the OCeAN meta-model [12, 9] is mainly composed by: a communica-
tive part with the definition of an Agent Communication Language (ACL) whose
semantics is defined in terms of social commitments and institutional power [8], a
normative part for the specification of obligations, prohibitions and permissions
[10], and an organizational part mainly devoted to the definition of roles.

26 N. Fornara

In this chapter we will mainly focus on the normative part and we propose and
discuss the advantages of using semantic web languages, tools, and techniques for
defining an application independent model for the declarative formal specification
and monitoring of obligations. In particular we want to be able to specify obliga-
tions with the following characteristics. They become active when an event be-
longing to a specified start event class or to its subclasses happens, this event can
be viewed as a condition for obligations activation. A set of possible actions de-
scribed by means of a more or less detailed class may fulfil those obligations if
one of them happens before a given deadline. This is a crucial progress in the
flexibility of the normative specification with respect to the solution proposed in
[10] where (as better discussed in next section) the content of obligations was a
specific action and the time interval for the performance of the action was delim-
ited by fix instant of time. Finally those obligations become cancelled when an
event belonging to an end event class happens.

The approach of specifying using a declarative formal language the normative
part of a system has many crucial and interesting advantages. In particular it
makes possible to represent the norms as data, instead of coding them in the soft-
ware. This has the advantage of making possible to add, remove, or change the
norms that regulate the interaction both when the system is off line, and at run-
time, without the need to reprogram the interaction system or the interacting
agents. Another interesting advantage is that it would be in principle possible to
realize agents able to automatically reason on the consequences of their actions
and able to interact within different systems without the need of being repro-
grammed. Moreover it is possible to realize an application independent monitoring
component able to keep trace of the state of obligations on the basis of the events
that happens in the system and on the basis of agents' actions and capable of react-
ing to their fulfilment or violation. This is a fundamental component in the archi-
tecture of open interaction systems, and may be crucial also in the service oriented
architecture [6] and for business process management systems [21]. Another im-
portant aspect is that designing a system by using the notion of norm may be very
intuitive for human designers and those declarative norms may be more easily un-
derstood by human participants of socio-technical systems.

The choice of the formal language used for the declarative specification of
normative systems is difficult, crucial, and many aspects have to be taken into ac-
count. The most important are: the expressivity of the language, its computational
complexity, the fact that the underline logic is decidable, the diffusion of the lan-
guage among software practitioners and research communities, its feasibility to be
used for fast prototyping, and its adoption as an international standard. After many
past experiments with other formal languages, in this chapter we decided to adopt
OWL (in its OWL 2 DL version1), the description logic language recommended
by W3C for Semantic Web applications, and more generally semantic web tech-
nologies. The main advantage of this choice is that Semantic Web technologies
are increasingly becoming a standard for Internet applications and therefore, given

1 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

Specifying and Monitoring Obligations in Open Multiagent Systems 27

that the OWL logic language is decidable, it is supported by many reasoners (like
Fact++, Pellet, Racer Pro, HermiT), tools for ontology editing (like Protégé2) and
library for automatic ontology management (like OWL-API). Given that it is a
standard, it would be easier to achieve a high degree of interoperability of data and
applications, which is indeed a crucial precondition for the development of open
systems. Finally given that semantic web technologies are becoming very used in
innovative applications it will become much easier to teach them to software engi-
neers than convince them to learn and use a logic language adopted by a limited
group of researchers.

There are some interesting and challenging problems that may arise from the
fact that Semantic Web technologies are not devised for modelling dynamic sys-
tems (i.e. systems that changes in time). One is encountered when trying to per-
form full temporal reasoning; in fact OWL has no temporal operators. Another
one is due to the fact that Semantic Web technologies have not been devised to
check constrain for example on norm specification, but there are some interesting
current studies on how to use the Pellet reasoner for “Simple Integrity Con-
straints”3. A third one is the open-world assumption of OWL logic, it may be a
problem for successfully monitoring obligations, that is, when trying to deduce
that when the deadline is elapsed an obligation has to be permanently fulfilled or
violated.

The added value of this chapter is twofold: the first is to show how it is possible
to use semantic web technologies, and in particular OWL 2 DL, as formal lan-
guage for the specification and monitoring f obligations with activation and deac-
tivation events and deadlines. This model may have many different kinds of appli-
cations like the specification of electronic commerce market places, or the
monitoring of semantic web services execution, or the flexible specification and
monitoring of business process where both software and human agents may inter-
act. The second is to propose to use an OWL ontology not only for the specifica-
tion of a normative systems but also for the dynamic monitoring of the state of the
interaction among autonomous agents in an open and dynamic environment with
respect to a specified set of norms. In particular with this work we are giving our
contribution to the open problem of understanding how far the monitoring prob-
lem can be solved by using an OWL 2 DL ontology and when it is necessary to in-
tegrate it with Java programs.

This chapter is organized as follows. In Section 2 the proposed approach is
compared with main alternative approaches. In Section 3 the formal language
used in the paper is briefly described. In Section 4 the application independent
ontology that can be used to represent and monitor obligations is introduced, dis-
cussed and exemplified. In Section 5 some obligations of a concrete case study
are formalized using the proposed approach and finally in Section 6 some conclu-
sions are drawn.

2 See http://www.w3.org/2007/OWL/wiki/Implementations for a complete list of reasoners

and tools
3 http://clarkparsia.com/weblog/category/semweb/owl/pellet/integrity-constraints/

28 N. Fornara

2 Other Approaches

The problem of modelling norms using formal languages is widely recognized as a
crucial problem by the multiagent community [3, 19]. Moreover the problem of
run-time monitoring those norms is becoming more and more an interesting open
question for the multiagent community and for the web service community as
demonstrated by various papers on this topic [7, 16, 23, 10]. In particular in [7]
Faci et al. propose a framework for non-intrusive monitoring of the state of con-
tract that, similarly to our proposal, is based on the observation of agents' message
exchange. Their norms, having a structure quite close to the one proposed in this
chapter, are specified using the XML language and their content is specified using
ontologies. The main difference between the two approaches is on the monitoring
component: in their work it is required to transform the XML representation of
norms in another formalism: the augmented transition networks. This transforma-
tion presents all the drawbacks that may come from using two different formal
languages to specify the same concept in term of consistency, performance, and
required knowledge for the engineers who want to adopt this approach. In [16]
Lomuscio et al. in order to monitor an agent “all its possible behaviours are repre-
sented as a timed automata with discrete data (TADD) and stored in the checker,
the monitoring engine checks the snapshots against their TADD specification”.
One of the main advantages of this approach, as claimed by the authors, is its scal-
ability, this is an important goal to be taken into account and that in our approach
can be pursuit by splitting up the state of the interaction in sub-states holding only
the information that in a certain moment is relevant for a given interaction. The
reference architecture for contract monitoring in e-market scenarios presented in
[23] is complementary to the model proposed in this chapter. Finally the main dif-
ference between the formalization proposed in this chapter and our previous work
on the specification of norms using semantic web technology [10], is that in this
chapter the content and the conditions of obligations are specified as classes of ac-
tions or events instead as specific action or event.

As discussed in the introduction the choice of using semantic web languages
has many advantages and it is a crucial aspect when we compare our work with
other ones on norms specifications and properties verification where other formal
languages are adopted. Other formal languages are for example the Event Calculus
[24, 9], the language for rule specification of the rule engine Jess [13, 4], a variant
of Propositional Dynamic Logic (PDL) used to specify and verify liveness and
safety properties of multi-agent system programs with norms [5], the Process
Compliance Language (PCL) [14].

In literature there are few approaches that use semantic web languages for the
specification of norms, even if their importance for the development of flexible
security for dynamic and distributed environment is clearly recognized [15]. One
interesting approach for policy specification and management is the KAoS frame-
work [18]. In MAS community the word norm and policy have a similar meaning;
a policy could be a positive or negative authorization to perform an action or an
obligation. In KAoS, like in the model proposed in this chapter, policies are speci-
fied using a set of concepts defined in an OWL DL core ontology that could be

Specifying and Monitoring Obligations in Open Multiagent Systems 29

extended with application dependent ontologies. A crucial difference between the
two approaches is the fact that OWL 2 DL is more expressive that OWL DL. An-
other important difference is in the methods used for monitoring policies: in KAoS
policies are usually regimented by means of ''guards`` and are monitored by means
of platform specific mechanisms.

3 OWL and SWRL

OWL is a practical realization of a Description Logic system known as
SROIQ(D). It allows one to define classes, properties, and individuals. An OWL
ontology consists of: a set of class axioms to describe classes, which constitute the
Terminological Box (TBox); a set of property axioms to describe properties, which
constitute a Role Box (RBox); and a collection of assertions to describe individu-
als, which constitute an Assertion Box (ABox). Properties can be either object
properties or data properties. Classes can be viewed as formal descriptions of sets
of objects (taken from a nonempty universe), and individuals can be viewed as
names of objects of the universe. A class is either a basic class (i.e., an atomic
class name) or a complex class build through a number of available constructors
that express Boolean operations and different types of restrictions on the members
of the class.

Through class axioms one may specify subclass or equivalence relationships
between classes, that certain classes are disjoint (Discla), and that a class is defined
by placing restrictions on properties (existential (∃), universal (∀), cardinality,
“has-value” (∋), and local reflexivity restrictions. Property axioms allow specify-
ing that a given property is the inverse of another property (−), or that a property is
functional (Fun), or a transitive property (Tr), or that a property can be obtained by
composing properties into property chains (◦). Finally, assertions allows to spec-
ify that an individual belongs to a class, that an individual is related to another in-
dividual through an object property, that an individual is related to a data value
through a data property, or that two individuals are equal or different.

OWL can be regarded as a decidable fragment of First Order Logic (FOL). The
price to pay for decidability, which is considered as an essential preconditions for
exploiting reasoning in practical applications, is limited expressiveness. Even in
OWL 2 DL (the more expressive version currently under specification) certain
useful first-order statements cannot be formalized. Given the limited expressivity
of OWL the Semantic Web Rule Language (SWRL)4 has been proposed to extend
the set of OWL axioms to include Horn-like rules of the form of an implication
between an antecedent (body) and consequent (head). Recently certain OWL rea-
soners, like Pellet, have been extended to deal with SWRL rules. To preserve
decidability, however, rules have to be used in the safe mode, which means that
before being exploited in a reasoning process all their variables must be instanti-
ated by pre-existing individuals. An important aspect of SWRL is the possibility

4 http://www.w3.org/Submission/SWRL/

30 N. Fornara

of including built-ins, that is, Boolean functions that perform operations on data
values and return a truth value. In what follows we use capital initials for classes
and lower case initials for properties and individuals, we assume that all the indi-
viduals introduced are different.

4 An Application Independent Ontology for Modelling and
Monitoring Agents' Interactions

In this section we introduce the classes, the properties, and the axioms of the ap-
plication independent part of the ontology (“upper ontology”) that one has to use
to specify and monitor agents' obligations in those applications where the realiza-
tion of an open normative interaction system is required. In order to completely
formalize a real interaction system, as exemplified in Section 4.2, this ontology
has to be extended with application dependent classes, properties, and axioms that
are used to model the application dependent actions and events that appear in the
content or in the condition of obligations.

In particular we first describe the OWL Time Ontology that we use in this
chapter, the classes for representing events and fluents and their relationships with
obligations. Subsequently we define one possible example of a domain dependent
ontology that will be used in the examples contained in the paper. Then we intro-
duce the part of the ontology that is necessary for representing events and the
elapsing of time. Later on we present the part of the ontology used to represent the
content, the condition, the deadline, and the expiration condition of obligations.
Finally we introduce the part of the ontology and the mechanisms that have to be
used to monitor the time evolution of obligations on the basis of the actions and
events that happen in the system. At the end of this section the graphical represen-
tation of the proposed ontology is reported.

4.1 Modelling Time, Events, and Fluents

The first class that has to be introduced is the Agent class that is used to represent
the agents involved in the interaction mediated by the open system. Secondly in
order to be able to represent obligations with activation and deactivation events
correlated to time and with temporal deadlines, we have to find a suitable and effi-
cient way to represent instants and interval of time in the ontology. Given that
OWL has not temporal operator, the simplest solution, which pursues also the goal
of being interoperable with other ontologies, is to adopt the OWL Time Ontol-
ogy5. Unfortunately the axiomatization of the OWL Time Ontology is very weak
and therefore it will be impossible to perform certain type of interesting reasoning
on the future evolution of the state of the system. Nevertheless, as we will see in
the following subsections, we will try to partially overcome to this problem, in or-
der to be able, at least, to represent and monitor the time evolution of the system.
Here we report the list of classes and properties of the OWL Time Ontology that

5 http://www.w3.org/TR/owl-time/

Specifying and Monitoring Obligations in Open Multiagent Systems 31

are relevant for the comprehension of this chapter (they are graphically repre-
sented in Figure 1 at the end of this section):

Instant ⊑ TemporalEntity, Interval ⊑ TemporalEntity,
ProperInterval ⊑Interval, TemporalEntity ≡ Instant ⊔ Interval,
hasBeginning: TemporalEntity → Instant,
hasEnd: TemporalEntity → Instant,
before: TemporalEntity → TemporalEntity, InvPro(after,before),
inDateTime: Instant → DateTimeDescription,
Discla(ProperInterval,Instant), Instant ⊑ = 1 inDateTime

In order to be able to represent events that happen at a certain instant of time, or
fluents, that is, state of affair that holds for a certain interval of time, we introduce
the class Eventuality and its two subclasses: Event, whose individuals are related
to an instant of time, and Fluent whose individuals are related to an interval:

Event ⊑ Eventuality, Fluent ⊑ Eventuality, Discla(Event,Fluent),
atTime: Eventuality → TemporalEntity,
Event ≡ ∃ atTime.Instant, Fluent ≡ ∃ atTime.Interval.

An event is before another event if the first one happens at an instant of time
that is before the instant of time of the second one:

evBefore: Eventuality → Eventuality,
atTime ◦ before ◦ atTime− ⊑ evBefore, Tr(evBefore).

Two events that happens at the same instant of time are related by the evSame-
Time property:

evSameTime: Eventuality → Eventuality,
atTime ◦ atTime− ⊑ evSameTime, Tr(evSameTime).

Actions are viewed as a particular type of events that have an actor, a recipient
and an object:

Action ⊑ Event, hasActor: Action → Agent,
hasRecipient: Action → Agent, hasObject: Action → Object,
Fun(hasActor), Fun(hasRecipient), Fun(hasObject).

Obligations are represented as particular type of event: Obligation ⊑ Event, and
they are characterized by the event that brings about their creation. Even if, in the
common sense perception, obligations are semantically different from events, this
choice gives us the flexibility to be able to specify class of actions as content of
the obligations and it makes the axiomatization of the notion of obligation fulfil-
ment and violation simpler. An obligation has a debtor and a creditor as repre-
sented by the following properties:

hasDebtor: Obligation → Agent, hasCreditor: Obligation → Agent
Discla(Obligation,Action).

An obligation has also a content, an activation event, a deactivation event, and
a deadline, which are specified using classes, as discussed in Subsection 4.4.

32 N. Fornara

4.2 An Example of a Domain Dependent Ontology

In order to be able to use in the content and in the condition of obligations con-
crete classes of actions and events, it is necessary to introduce in the ontology do-
main dependent classes and properties. Those classes have to be subclasses of the
class Action or of the class Event. For example we may need to introduce the class
of the actions of delivering a certain object to a certain recipient:

Deliver ⊑ Action ⊓ ∃ hasRecipient ⊓ ∃ hasObject,

the class of actions of paying a certain amount of money to a certain recipient:

Pay ⊑ Action ⊓ ∃ hasRecipient ⊓ ∃ hasObject,

and the class of actions of paying by means of a bank transfer, BankTransfer,
which is a subclass of the Pay class: BankTransfer ⊑ Pay. Those classes will be
used in Section 4.6 where different types of obligations for the electronic com-
merce domain will be presented.

For example the action of delivering a book book1 from agent Luca to agent
Marco performed at instant1 is described by the following assertions:

Agent(Luca), Agent(Marco), Object(book1), Instant(instant1),
Deliver(deliver1), hasActor(deliver1, Luca), hasRecipient(deliver1,Marco),
hasObject(deliver1,book1), atTime(deliver1,instant1).

4.3 Representing Events, Actions, and the Elapsing of Time

We want to use the specified OWL ontology to represent the evolution in time of
the state of the interaction between autonomous and heterogeneous agents in a
norm governed framework. This state has to be represented in every software that
is in charge of monitoring the behaviour of the interacting agents, a centralized,
mixed, or distributed one (the discussion of the advantages and problems due to
the choice of one or other architecture is crucial but due to its complexity it is be-
yond the scope of this specific paper), and may be represented inside the interact-
ing agents in order to let them to reason and plan their future actions on the basis
of the rules of the system. It is moreover reasonable that the interacting agents
have a partial knowledge of the state of the interaction, which represents only the
interaction in which they are involved or that is relevant for the specific agent.

If the system evolution is simulated, the list of events that happen in the system,
the list of actions performed by the agents, and the instant of time when they hap-
pen, are known at design time and may be initially introduced in the ontology.
Differently, if an actual interaction between agents takes place at run-time, it is
necessary to tackle two problems. First of all it is required to support agents’
communication with an appropriate middle-ware, like for instance the widely used
JADE framework6, or by using web services standard technologies7. Regarding
the agent communication language (ACL) we plan to adopt the commitment based

6 http://jade.tilab.com/
7 http//www.w3.org/standards/webofservices/description

Specifying and Monitoring Obligations in Open Multiagent Systems 33

one presented in [9] for the exchanged messages instead of the FIPA-ACL stan-
dard semantics8 that presents a set of well known drawbacks [22]. Secondly it is
necessary to write a program in charge of inserting in the ontology a representa-
tion of agents' actions and of the events observed, together with the corresponding
instant of time when they happened, for example a typical type of action that
needs to be recorded in the ontology is the exchange of messages between agents.

Either the interaction is simulated or it is actually happening at run-time, events
or actions happen at certain instant of time and it is necessary to state what the
temporal relation between those instants is. This can be simply done by asserting
which instant comes after another using the after property. Then thanks to the
transitivity of the after property, it is possible to deduce the temporal relation that
subsists between all instants of time present in the ontology. Alternatively in order
to be able to compare two instants of time and assert which one comes after the
other the designer may decide to use an external Java program, or an SWRL rule
with built-ins for comparisons, or simply inserting the instant of time in the ontol-
ogy following their temporal order and asserting that the last instant inserted is af-
ter the last but one.

Certain subclasses of the class Event are used in the definition of specific obli-
gations as explained in the following sections. In particular it will be certainly
necessary to represent at least the following different types of events:

• Time events are used to represent the events related to the elapsing of time and
belong to the TimeEvent ⊑ Event class. This class is disjoint from the Obliga-
tion and from the Action classes: Discla(Obligation,TimeEvent), Dis-
cla(Action,TimeEvent). A specific time event is related by means of its atTime
property to the instant of time when it happens. Notice that a time event actu-
ally happens when its instant of time is asserted to belong to the class Elapsed
that will be introduced later on.

• Action events are used to represent actions performed by the agents, they are
represented as individuals of the class Action, for example the action of deliver-
ing a product. The action of exchanging a message is a common and very im-
portant type of action represented with the class ExchMsg ⊑ Action. It has an
actor, the sender of the message, a recipient, the receiver of the message, an il-
locutionary force (see [9] for more details) connected to the message using the
hasForce property whose range is the IllocutionaryForce class, and an object
that is the content of the message.

• Change events are used to represent the events due to the change of the value of
a property, they are represented as individuals of the ChangeEvent ⊑ Event
class. For example the change in the state of an auction from close to open can
be used as condition of the obligation for the auctioneer to declare the current
price of the product to be sold. Usually a change event is characterized by the
entity whose property is changed, the previous value and the subsequent value
of the property, they are all represented as properties of change events. Obvi-
ously whenever the performance of an action, or the occurrence of an event,

8 http://www.fipa.org/specs/fipa00037/SC00037J.pdf

34 N. Fornara

has the effect to change the value of a property of an entity, and if the change
event is relevant for one of the obligations represented in the ontology, it is
necessary to introduce in the ontology an individual belonging to the Chan-
geEvent class with a suitable atTime value. This is a fundamental feature of the
middle-ware, and it has to be strongly optimized because may be critical in
terms of time consuming.

In general when a certain obligation has to be created it may happen that it is
necessary to create new subclasses of those classes. Moreover if the new obliga-
tion is related to a specific time event (for example the obligation to deliver a book
within a given deadline), a new individual, belonging to the TimeEvent class, has
to be inserted in the ontology in order to represent such a time event.

In order to model the elapsing of time we need to have in the ontology a set of
individuals used to represent all the relevant instants of time. An instant of time is
relevant if an action, or an event, happens at that instant of time, or if such an in-
stant of time is used to create a time event related to the specification of an obliga-
tion. The distance between an instant of time and the following one depends on
the time lag chosen for the system: every type of interaction may have its own rea-
sonable time lag that mainly depends on the frequency on which actions or events
happen. During the evolution of the interaction, in order to model the elapsing of
time, the individual corresponding to the actual instant of time (of the simulation
or of the actual agents interaction) have to be asserted to belong to the Elapsed ⊑
Instant class, a special class introduced specifically for this purpose. Every instant
of time that is before an elapsed instant of time is itself elapsed as expressed by
the following axiom: ∃before.Elapsed ⊑ Elapsed.

In case the evolution of the system is simulated it is enough to repeatedly assert
that the instant of time, subsequent to the current one, is elapsed, and then run the
reasoner to deduce all the consequences of the events or actions happened at the
current instant of time. Differently if the ontology is used to represent the state of
an actual agents interaction, it is necessary to keep aligned the current instant of
time represented in the ontology (the last that is asserted to be elapsed) with the
external clock, that is, the clock of the world where the agents actually interact.
Therefore an instant of time has to be asserted to be elapsed only when its in-
DateTime property is lower or equal to the time adopted by the interacting agents.

4.4 Representing Specific Obligations

In this chapter we specify how to formalize in the ontology used to represent the
state of the interaction among agents their obligations and we describe how to
monitor, using semantic web technologies, those obligations. An obligation exists
between two specific agents that are the debtor and the creditor of the obligation.
An obligation is characterized by the instant of time when the obligation is created,
a class of events that may activate or deactivate it, a content described by means of
another class, and a deadline. We assume (coherently with what is specified in the
OCeAN meta-model [9]) that new obligations are created as the effect of the per-
formance of certain communicative acts (like promises), or as consequence of the

Specifying and Monitoring Obligations in Open Multiagent Systems 35

activation of a norm. A norm is activated whenever an agent, who is interacting
with other agents within a certain institutional context, starts to play a role whose
behaviour is regulated by the norm. Whenever a new obligation, obl-n, is created at
a certain instant of time, instant-n, whose inDateTime property value is equal to the
time when the obligation is created (in the following referred as now), the ABox of
the ontology has to be automatically updated with the following assertions:

Obligation(obl-n), atTime(obl-n,instant-n), inDateTime(instant-n,now),
hasDebtor(obl-n,agent1), hasCreditor(obl-n,agent2).

In addition it is necessary to update the TBox in the following way: the first
change consists in defining the specific activation, deactivation, content, and
deadline classes of the new obligation; secondly it will be necessary to write the
axioms for deducing the state of a given obligation, with the goal of monitoring its
fulfilment or its violation as described in the following subsection.

The StartEvent-n ⊑ Event class describes the type of events that may activate
the obligation obl-n, that is, the conditional event that have to happen in order to
make the obligation activated. For example in certain electronic commerce sce-
nario an agent may start to be actively obliged to pay a certain amount of money
after the reception of the ordered product. Certain obligation may be immediately
activated without the need to specify any condition, in this case the StartEvent-n
class coincides with the event that create the obligation:

StartEvent-n≡{obl-n}.

If it is possible to deduce that the StartEvent-n class is equal to the empty set ⊥,
it means that the obligation obl-n will never be activated. This is a fundamental in-
formation for the agents when they are planning their future actions.

The EndEvent-n ⊑ Event class describes the type of events that may expire the
obligation, that is, when an expiration event happens the obligation becomes can-
celled and will not any more become active in the future. The specification of this
class is crucial for those obligations that may be activated many times, for exam-
ple an employer may have the obligation to pay the salary to his/her employees at
the end of each month as long as they are employed in the company. Very often
the EndEvent-n class is equivalent to the class of the actions that may be used to
dismiss an agent from a specific role, the role indicated in the debtor or in the
creditor field of the norm that generated the obligation. For example when an
agent ceases to be an employer or an employee the obligation to pay the salary be-
comes cancelled. In some other cases the EndEvent-n class coincides with a fixed
deadline, that is, with a certain time event, for example the instant of time when
the contract of the employee terminates.

The Content-n ⊑ Action class describe the set of actions whose performance
may fulfil or violate the obligation. An crucial aspect of the proposed model is the
possibility that an action, belonging to a subclass of the Content-n class, satisfies
the obligation. Moreover in the definition of the Content-n class it is also possible
to use Boolean class constructors. The union of classes can be used for those cases

36 N. Fornara

when either an action belonging to one class or an action belonging to another
class may fulfil an obligation.

When an agent has the obligation to perform an action it is necessary to define
the deadline (i.e. the instant of time) within which the action has to be performed.
For coherence with the other classes we introduce the class Deadline-n ⊑
Timevent even if it contains only one individual: the time event associated to the
instant of time that represents the deadline of the obligation. Taking into consid-
eration the existence for every obligation of a start and dead-line event it is natural
to introduce a property hasInterval: Obligation→TemporalEntity that binds an ob-
ligation to the interval of time within which one action belonging to the Content
class has to be performed. Such an interval has a beginning instant of time, an end
instant of time, and a duration that can be obtained by means of the hasBeginning,
hasEnd, hasDurationDescription properties. The instant of time when the interval
of obl-n starts can be deduced on the basis of the instant of time when an individ-
ual belonging to the StartEvent-n class happens by introducing the following
SWRL rule:

StartEvent-n(?e) ∧ atTime(?e,?inst) ∧ hasInterval(obl-n,?int) →
hasBeginning(?int, ?inst)

The Deadline-n class is equivalent to the class that contains only the time event
that happens at the instant of time when the interval of the obligation finishes, as
stated in the following axiom:

Deadline-n ≡ ∃ atTime.(∃ hasEnd−.(hasInterval− ∋ obl-n))

It is important to remark that when the deadline of the obligation depends on
the instant of time when the obligation is activated, the time event to be used as
deadline is unknown when the obligation is created. In this case the Deadline-n
class will become defined when the obligation becomes active. A example of this
kind of obligations are those obligation where the deadline is equal to the instant
of time when the obligation is activated plus a fixed amount of time, for instance
the obligation to pay the product within 2 days from its reception. For these type
of obligations it is necessary to insert in the ontology also the value of the duration
of the interval associated with the obligation. Once the beginning instant and the
duration of the interval are known, it is possible to use the following SWRL rule,
which uses the swrlb:add built-in, to deduce the value of the end instant of time of
the interval (we assume that the duration of the interval is expressed in days):

hasBeginning(?int,?inst1) ∧ inDateTime(?inst1,?dt1) ∧
dayOfYear(?dt1,?day1) ∧ Instant(?int2) ∧ inDateTime(?inst2,?dt2) ∧
dayOfYear(?dt2,?day2) ∧ hasDurationDescription(?int,?d) ∧ days(?d,?value)∧
swrlb:add(?day2,?day1,?value) → hasEnd(?int,?inst2)

For those obligations where the deadline event is a fixed time event that does
not depend on the activation event (see for example in Section 4.6 the first type of
obligations), it is important to check that the start event happens before the end
event. This can be done with the following axiom that has to be written only for

Specifying and Monitoring Obligations in Open Multiagent Systems 37

obligations whose StartEvent-n and Deadline-n classes are equivalent to a specific
time event. In case the deadline time event is before or equal to the start time
event the ontology becomes contradictory:

Deadline-n ⊓ (evBefore.StartEvent-n ⊔ evSameTime.StartEvent-n) ⊑ ⊥

In Section 4.6 specific examples will be used to illustrate the definition of the
StartEvent, EndEvent, Content, and Deadline classes for different type of obligations.

4.5 Monitoring the State of Obligations

When a new obligation obl-n is created the second change to the TBox consists in
introducing the four axioms that are necessary to deduce the state of a given obli-
gation, that is, to deduce if it belongs to the Activated, Cancelled, Fulfilled, or Vio-
lated classes. Those classes are subclass of the class Obligation and the Fulfilled
and Violated classes are disjoint:

Fulfilled ⊑ Obligation, Violated ⊑ Obligation, Activated ⊑ Obligation,
Cancelled ⊑ Obligation, DisCla(Fulfilled, Violated).

The first axiom is the one to deduce that an obligation with a certain StartEvent
class is activated. If an event es that belongs to the StartEvent-n class of an obliga-
tion obl-n happens after or at the same instant of time when the obligation is cre-
ated, the time at which es happens is elapsed, and the obligation has not yet been
cancelled, then the obligation becomes activated.

The main problem in writing this axiom is due to the negation that appears in
the third condition. OWL reasoners operate under the open world assumption and
therefore we cannot simply write in the axiom the condition “not cancelled”. In
fact the conclusion that an obligation is not cancelled can only be reached if the
obligation can be definitely proved not to be member of the Cancelled class. To
solve this problem we assume that our ABox contains complete information on the
events happened or actions performed before the current time of the system. More
specifically, we assume to use an external Java program that will always update
the ABox whenever an event happens. Moreover we assume that such a program
can only insert in the ABox the information that an event is happened at current
time t, and that it is not possible to insert the information that an event is happened
in the past. Starting from these assumptions we can adopt a closed-world perspec-
tive on the Cancelled class: an obligation “is not yet been cancelled” if it is not in
the Cancelled class. Consequently in order to be able to perform some form of
closed world reasoning on the Cancelled class (similarly to the solution proposed
in [10]) we introduce in our ontology the explicit closure of such a class. More
precisely, we introduce a new class, the KCancelled ⊑ Cancelled, which is meant
to contain all obligations that, at a given time, are known to be in the Cancelled
class. To maintain the KCancelled class as the closure of the Cancelled class, we
define it periodically as equivalent to the enumeration of all individuals that can
be proved to be members of the Cancelled class. This can be done by the external
Java program that is also used to update the ABox to keep track of the elapsing of

38 N. Fornara

time and of the events that happen in the system. The axiom to deduce if an obli-
gation obl-n is activated is therefore:

Axiom Activated Obl-n:
{obl-n} ⊓ ¬ KCancelled ⊓ (∃evBefore.(StartEvent-n ⊓ ∃atTime.Elapsed) ⊔ ∃evSameTime.(StartEvent-n ⊓ ∃atTime.Elapsed)) ⊑ Activated

An obligation, when is not yet cancelled, may be activated more than once by
different start events belonging the StartEvent class. It is important to be able to
monitor the time evolution of the obligation for each one of its possible activation
event. Therefore we assume that whenever an obligation is activated at instant i,
an external program has to create a copy of that obligation and associate it to a
creation time that is one instant of time later than the instant of time of the current
activation i. This fact is crucial to avoid that the new copy of the obligation be-
comes active due to the current activation event.

If an event ee that belongs to the EndEvent-n class of an obligation obl-n hap-
pens after the time when the obligation is created and the time at which ee happens
is elapsed, then the obligation becomes cancelled. It is important to underline that
an obligation that is activated may be also cancelled (the Activated and Cancelled
classes are not disjoint). This means that it can become fulfilled or violated but
also that cannot be any more activated in the future by another start event. For ex-
ample the obligation to pay the salary to an employee at the end of each month for
an entire year becomes cancelled at the end of the year and is activated for twelve
times, the last time that the obligation is activated it is also cancelled because the
entire year is elapsed. If an end event happens before a start event the obligation is
never activated. For example the obligation for a company to keep the streets of a
city clear from the snow for a given winter will never be activated if the winter is
particularly warm.

Axiom Cancelled Obl-n:
{obl-n} ⊓ ∃evBefore.(EndEvent-n ⊓ ∃atTime.Elapsed) ⊑ Cancelled

As mentioned before the Deadline-n class contains only one time event, the time
event within which an action belonging to the Content-n class has to be performed.

If an event ec that belongs to the Content-n class of an active obligation obl-n
(created at in) happens at instant ic, ic is after or equal to in, ic is before the deadline
of obl-n, and i is elapsed, then the obligation becomes fulfilled as expressed by the
following axiom.

Axiom Fulfilled Obl-n:
{obl-n} ⊓ Activated ⊓ (∃evBefore.(Content-n ⊓ ∃atTime.Elapsed) ⊔ ∃evSameTime.(Content-n ⊓ ∃atTime.Elapsed)) ⊓ ∃evBefore.(Content-n ⊓ ∃evBefore.Deadline-n) ⊑ Fulfilled

If the time event that represents the deadline of an active obligation obl-n
elapses and the obligation is not yet fulfilled, the obligation has to become vio-
lated. Similarly to what we did for writing the axiom for the activation of obliga-
tions, in order to write the axiom to deduce that an obligation is cancelled we need

Specifying and Monitoring Obligations in Open Multiagent Systems 39

to introduce the explicit closure of the Fulfilled class: the class KFulfilled ⊑ Ful-
filled. The KFulfilled class is meant to contain all obligations that, at a given time,
are known to be in the Fulfilled class. To maintain the KFulfilled class updated we
define it periodically, by means of the external program, as equivalent to the enu-
meration of all individuals that can be proved to be members of the Fulfilled class.
The axiom to deduce that an obligation obl-n is violated is:

Axiom Violated Obl-n:
{obl-n} ⊓ Activated ⊓ ¬ KFulfilled ⊓ ∃evBefore.(Deadline-n ⊓ ∃ atTime.Elapsed) ⊑ Violated

Initially KCancelled ≡ KActivated ≡ KFulfilled ≡ KViolated ≡ Nothing then a
Java external program has to update their extension on the basis of the deductions
of the reasoner. In Figure 1 the graphical representation of the classes and proper-
ties introduced in the previous sections is depicted.

Instant Interval

ProperInterval

TemporalEntity
hasEnd

hasBeginning

before
after

DateTimeDescription

inDateTime

Event Fluent

Eventuality
atTime

evBbefore

Action

Agent

hasActor
hasRecipient

Object

Obligation

Fulfilled Violated

Activated

Cancelled
Elapsed

TimeEvent

StartEvent-n

EndEvent-n

ContentEvent-n

ExchMsg

ChangeEvent

property

subclass

disjoint

Deadline-n

Duration
Description

hasDuration
Description

hasInterval

Fig. 1. Graphical representation of the ontology. Properties are represented with dotted
lines, solid lines are used for subclasses.

4.6 Possible Type of Obligations

A first type of obligations are those obligations whose StartEvent and Deadline
classes are equivalent to a specific time event. It means that the obliged action de-
scribed with the Content class has to be performed between two specific instants
of time. An example of an obligation of this type is the obligation obl-1 created at
instant1 from agent Marco to agent Luca to pay 5 euro between instant of time
instant2 and instant4 having certain specific dates as inDateTime properties.

40 N. Fornara

To model the obligation obl-1 it is necessary to add to the ABox the following
assertions:

Obligation(obl-1), Agent(Marco), Agent(Luca), Thing(5euro),Instant(instant1),
atTime(obl-1,instant1),hasDebtor(obl-1,Marco), hasCreditor(obl-1,Luca),
ProperInterval(interval1), hasInterval(obl-1,interval1),
hasEnd(interval1,instant4),TimeEvent(tevent4), Instant(instant4),
atTime(tevent4,instant4),

For this kind of obligations the StartEvent-1 classes consist of only one ele-
ment: the time event that happens at instant2:

TimeEvent(tevent2), Instant(instant2), atTime(tevent2,instant2),
after(instant2,instant1), after(instant4,instant2),
StartEvent-1 ≡ {tevent2},
Content-1≡Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro.

The four axioms for deducing the state of obligations contextualized to this
specific obligation have to be inserted in the ontology. Given that this obligation
can become active only one time, it is not interesting to define the EndEvent class.

A crucial aspect of the proposed approach is that it is more flexible than other
ones, in fact, given that the content of the obligations is expressed using a class of
possible actions, the interacting agents have the flexibility to choose which one to
perform. Moreover, if an event that belongs to one of the subclasses of the Con-
tent class happens, the obligation may equally become fulfilled. For example, if
the bank transfer event (represented with the individual bankTr1∈BankTransfer
where BankTransfer ⊑ Pay) from Marco to Luca of an amount of 5 euro happens
after the activation event and before the deadline event, the obligation obl-1 be-
comes fulfilled.

The content of an obligation could also be the performance of either one class
or another class of actions. This type of Content class can be represented using the
union of two or more classes of actions. For example the obligation from Marco to
Luca to either pay 5 euro to Luca or donate 6 euro to Unicef between instant2 and
instant4 is identical to the previous obligation except for the Content-1 class that
becomes:

Content-1 ≡
(Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro) ⊔
(Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Unicef ⊓ hasObject∋6euro)

A second type of obligations has the StartEvent class that can be interpreted as
a condition for the activation of the obligation (a conditional obligation) and
whose Deadline class depends on the time of its activation. An example of an ob-
ligation of this type is the obligation obl-2 created at instant1 from agent Marco to
agent Luca to pay 5 euro within 2 days from the reception of the book (book1) on
condition that the book was delivered from Luca to Marco. Besides the assertions
previously introduce we have to add in the ABox those ones:

Specifying and Monitoring Obligations in Open Multiagent Systems 41

Obligation(obl-2), atTime(obl-2,instant1),
hasDebtor(obl-2,Marco), hasCreditor(obl-2,Luca), Object(book1),
ProperInterval(interval2), hasInterval(obl-2, interval2),
hasDurationDescription(interval2,duration2), days(duration2, 2),
StartEvent-2 ≡ Deliver ⊓ hasActor∋Luca ⊓ hasRecipient∋Marco ⊓
hasObject∋book1,
Content-2 ≡Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro,
EndEvent-2 ≡ {teventk}.

Reasonably the EndEvent-2 class is equivalent to the time event teventk whose
instant property can be calculated as the time of creation of the obligation plus 3
months. This means that if the book is not delivered within 3 months Marco is not
any more conditional obligated to pay for the book after its reception. As usual the
four axioms presented in the previous section for deducing the state of an obliga-
tion, contextualized to this specific obligation, have to be inserted in the ontology.

A third type of obligations has not condition, that is, their StartEvent class is
equivalent to the time of the creation of the obligation. Due to this fact the dead-
line of this type of obligations can be set when the obligation is created on the ba-
sis of the duration of the interval. An example of an obligation of this type is the
obligation obl-3 created at instant1 from Marco to Luca to pay 5 euro before to-
morrow, where tomorrow is computed at the creation of the obligation to be repre-
sented by the instant of time instant4. This obligation can be represented with the
following assertions and axioms:

Obligation(obl-3), atTime(obl-3,instant1), hasDebtor(obl-3,Marco),
hasCreditor(obl-3,Luca) TimeEvent(tevent1), atTime(tevent1,instant1)
ProperInterval(interval3), hasInterval(obl-3,interval3),
hasEnd(interval3,instant4),
StartEvent-3 ≡ {tevent1}
Content-3 ≡ Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro

As already explained the four axioms for deducing the state of this obligation
have to be inserted in the ontology.

5 A Case Study: Obligations in Vehicle Repair Contracts

In this Section we formalize and monitor the vehicle repair contract described in
[16] using the model presented in this chapter. The scenario is as follows: a repair
contract regulates the interactions between a client agent called cl and a vehicle
repair company, called rc. A repair contract specifies details concerning a particu-
lar repair. The interaction between cl and rc is described as follows: when rc re-
ceives a request from cl to undertake a repair job, it has to send a repair contract
within x days. In response, cl sends an acceptance or rejection message within y
days. If accepted, cl has to send the vehicle within k1 day from the acceptance. rc
then waits for the vehicle to arrive, failing which it sends two reminders to cl. If
the vehicle fails to arrive, it takes an offline action. As per the contract, if the

42 N. Fornara

vehicle arrives rc is obliged to assess the damage, repair the vehicle, and send a
report to cl within k2 days from the reception of the vehicle. On receiving the re-
port, cl is obliged to send payment to rc within k3 days from the reception of the
report. If the payment is not sent, rc sends two reminders to cl and then takes an
offline action. If the payment is sent cl has to pick-up the vehicle within k4 days
from the reception of the report.

Every action has to be performed within a certain number of days, and the ac-
tual deadline is computed on the basis of the time when a certain event happens,
the maximum duration of each activity is defined in the contract and may vary
from one contract to another. Almost all these obligations are conditional obliga-
tions with deadline computed on the basis of the time of their activation; therefore
they are similar to the second type of obligations presented in Section 4.6. Initially
the interaction between rc and cl is devoted to the definition of the properties of a
specific repair contract that is characterized by the type of the repair, the price,
four duration of time used to compute the deadlines of the obligations for agent cl,
and two duration of time used to compute the deadlines of the obligations for
agent rc. We represent such a contract as an individual of the class VehicleRepair-
Contract having the properties hasRepairType, hasPrice, hasDuration1,..., hasDu-
ration6. This is another example of a domain dependent ontology. If the contract
is accepted by both parties six conditional obligations start to hold, four for agent
cl and two for agent rc. Subsequently the interaction is devoted to the execution of
the contract. Given that the interacting agents belong to different owners having
different interests, their behaviour has to be monitored to verify its compliance
with the obligations.

In order to define the contract and reach an agreement on the value of the prop-
erties used to characterize the contract the two agents need to interact at least two
times, but can interact also more times. A contract is complete if all its properties
are set and therefore it belongs to the CompleteContract ⊑ VehicleRepairContract
class as stated by the following axiom:

CompleteContract ≡ ∃ hasRepairType.TypeRepair ⊓ ∃ hasPrice ⊓ ∃ hasDuration1 ⊓ ... ⊓ ∃ hasDuration6

The contract definition phase is regulated by two obligations: once is the obliga-
tion for rc to send a complete contract to agent cl within x days from the reception
of the request from cl; the second is the obligation for agent cl to accept or reject a
complete contract offer within y days. In case cl rejects the proposed contract the
negotiation can continue with new requests and counter offers on the basis of the
pro-activity of the two involved agents. If agent cl accepts the proposed contract
then six new conditional obligations are created having as interval the duration
specified in the contract. The first obligation for rc can be represented as:

Obligation(obl-4), atTime(obl-4,instant1), Instant(instant1),
ProperInterval(interval4), hasInterval(obl-4, interval4),
hasDurationDescription(interval4,duration4), days(duration4, x),
StartEvent-4 ≡ ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓
hasForce∋request ⊓ ∃ hasObject.VehicleRepairContract.

Specifying and Monitoring Obligations in Open Multiagent Systems 43

The Content-4 class contains the actions of sending a request message from
agent rc to agent cl with as content an individual belonging to the CompleteCon-
tract class:

Content-4 ≡ ExchMsg ⊓ hasActor∋rc ⊓ hasRecipient∋cl ⊓
hasForce∋request ⊓ hasObject.CompleteContract.

The obligation for agent cl to accept or reject a complete contract offer within y
days can be represented as:

Obligation(obl-5), atTime(obl-5,instant1), Instant(instant1),
ProperInterval(interval5), hasInterval(obl-5, interval5),
hasDurationDescription(interval5,duration5), days(duration5, y),
StartEvent-5 ≡ Content-4.

The Content-5 class contains the actions of accepting or rejecting the contract
whose proposal activated the obligation obl-5:

Content-5 ≡ (ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓
hasForce∋accept ⊓ ∃ hasObject.(∃ hasObject− StartEvent-5)) ⊔
(ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓ hasForce∋reject ⊓ ∃ hasObject.(∃ hasObject− StartEvent-5))

Due to space limitation we will not describe in detail the formalization of all
the other conditional obligations that will be created once the contract is accepted,
they are similar to the second type obligations introduced in section 4.6. The ap-
plication independent ontology described in this chapter with an ABox that con-
tains the obligations described in the previous sections can be downloaded from
the author's web page9.

6 Conclusions and Future Works

In this chapter we presented a formal model for the specification and monitoring,
using semantic web technology, of obligations whose content is a class of possible
action, with activation and deactivation event and with deadline. The main goal of
having this type of formal specification of obligations is to be able to have more
flexible interactions among autonomous agents. This is possible because agents
can decide at run-time which is the best action, among the ones belonging to the
Content class, to perform in order to fulfil their obligations. This work is a first
step in the broader project of formalizing, using semantic web technology, also
prohibitions and permissions that present some crucial differences with respect to
obligations. Another very important aspect of the formalization of normative con-
cepts in open system is, besides their monitoring as explained in this chapter, their
enforcement by the definition of sanctions and recovery actions.

Another interesting problem would be the definition of constrains for the vali-
dation of a normative specification and the introduction of mechanism for early

9 http://www.people.lu.unisi.ch/fornaran/ontology/ObligationsOntology.html

44 N. Fornara

detection of problematic situations. For example being able to point out that an
agent is at the same time obliged to perform an action and obliged to perform an-
other action that is inconsistent with the first one, like being in two different
places at the same time. Another very interesting open problem is being able to
demonstrate that a given set of obligations has some soundness properties [17].

Finally regarding the decision to adopt semantic web technology as formal lan-
guage, there is still the open problem of better understanding what part of the
model it is better and possible to represent in the ontology in order to be able to
reason on it and what part of the model it is better to represent in the external ap-
plication because current semantic web standards do not support its representation.

Acknowledgments. We would like to thank Marco Colombetti for the interesting discus-
sions concerning this work.

References

1. Arcos, J.L., Esteva, M., Noriega, P., Rodríguez-Aguilar, J.A., Sierra, C.: Engineering
open environments with electronic institutions. Engineering applications of artificial
intelligence 18(2), 191–204 (2005)

2. Artikis, A., Sergot, M., Pitt, J.: Animated Specifications of Computational Societies.
In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002),
pp. 1053–1061. ACM Press, New York (2002)

3. Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.): Normative Multi-Agent Sys-
tems, Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 09121. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

4. da Silva, V.T.: From the specification to the implementation of norms: an automatic
approach to generate rules from norms to govern the behavior of agents. Autonomous
Agents and Multi-Agent Systems 17(1), 113–155 (2008)

5. Dastani, M., Grossi, D., Meyer, J.-J., Tinnemeier, N.: Normative multi-agent programs
and their logics. In: Boella, G., Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Norma-
tive Multi-Agent Systems, Dagstuhl, Germany. Dagstuhl Seminar Proceedings,
vol. 09121, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

7. Faci, N., Modgil, S., Oren, N., Meneguzzi, F., Miles, S., Luck, M.: Towards a monitor-
ing framework for agent-based contract systems. In: Klusch, M., Pěchouček, M.,
Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp. 292–305. Springer,
Heidelberg (2008)

8. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent
communication language. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of
the 1st International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2002), pp. 535–542. ACM Press, New York (2002)

9. Fornara, N., Colombetti, M.: Specifying Artificial Institutions in the Event Calculus.
In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Or-
ganizational Models, Information science reference, ch. XIV, pp. 335–366. IGI Global
(2009)

Specifying and Monitoring Obligations in Open Multiagent Systems 45

10. Fornara, N., Colombetti, M.: Ontology and time evolution of obligations and prohibi-
tions using semantic web technology. In: Baldoni, M., Bentahar, J., van Riemsdijk,
M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 101–118. Springer, Heidel-
berg (2010)

11. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial institu-
tions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

12. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: A
model of institutional reality for open multiagent systems. Artificial Intelligence and
Law 16(1), 89–105 (2008)

13. García-Camino, A., Rodríguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraint
rule-based programming of norms for electronic institutions. Autonomous Agents and
Multi-Agent Systems 18(1), 186–217 (2009)

14. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Boella, G.,
Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Normative Multi-Agent Systems,
Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 09121, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany (2009)

15. Kagal, L., Hendler, J., Berners-Lee, T.: Introduction. In: Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, vol. 7(1), pp. vii–ix (2009); The Semantic
Web and Policy

16. Lomuscio, A., Penczek, W., Solanki, M., Szreter, M.: Runtime monitoring of contract
regulated web services (extended abstract). In: Proceedings of the 9th International
Conference on Autonomous Agents and Multi-Agent systems (AAMAS 2010),
Toronto, Canada, pp. 1449–1450. ACM, New York (2010)

17. Singh, M.P., Chopra, A.K.: Correctness properties for multiagent systems. In: Baldoni,
M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948,
pp. 192–207. Springer, Heidelberg (2010)

18. Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M., Bunch, L., Feltovich, P., Johnson, M.,
Jung, H.: New developments in ontology-based policy management: Increasing the
practicality and comprehensiveness of KAoS. In: IEEE International Workshop on
Policies for Distributed Systems and Networks, vol. 0, pp. 145–152 (2008)

19. van der Torre, G.E.L., Boella, G., Verhagen, H. (eds.): Special Issue on Normative
Multiagent Systems. Autonomous Agents and Multi-Agent Systems, vol. 17. Springer,
Netherlands (August 2008)

20. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems.
Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

21. Weske, M.: Business. In: Process Management Concepts, Languages, Architectures.
Springer, Heidelberg (2008)

22. Wooldridge, M.: Verifiable semantics for agent communication languages. In: De-
mazeau, Y. (ed.) Proceedings of the Third International Conference on Multi-Agent
Systems (ICMAS 1998), Washington, DC, USA. IEEE Computer Society, Los Alami-
tos (1998)

23. Xu, L.: A Framework for E-markets: Monitoring Contract Fulfillment. In: Bussler,
C.J., Fensel, D., Orlowska, M.E., Yang, J. (eds.) WES 2003. LNCS, vol. 3095,
pp. 51–61. Springer, Heidelberg (2004)

24. Yolum, P., Singh, M.: Reasoning about commitment in the event calculus: An
approach for specifying and executing protocols. Annals of Mathematics and Artificial
Intelligence 42, 227–253 (2004)

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 47–65.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 3
Programming Semantic Agent for Distributed
Knowledge Management

Julien Subercaze and Pierre Maret

Laboratoire Hubert Curien, Saint-Etienne F-42000, France
julien.subercaze@univ-st-etienne.fr,
pierre.maret@univ-st-etienne.fr

Abstract. At the beginning of the decade, the Agent Mediated Knowledge Man-
agement workshops series as well as Bonifacio's theoretical approach layed the
foundations of a new eld of distributed knowledge management based upon the
agent paradigm. The agent based approach enables key features for knowledge
management. The local management of knowledge by agents allows to go beyond
the limitations of centralized knowledge management. Thus, knowledge can be
maintained in each agent at a coarse-grained level, with different representations.
In the mean time the rise of the semantic web technologies enables a new range of
possibilities for agents dedicated to knowledge management. In this chapter we
investigate the integration of semantic web technologies into an agent architecture
that allows agents to represent their knowledge and their behavior in a semantic
manner. We present the semantic agent model, its implementation and we discuss
the perpectives open by semantic agents.

1 Introduction and Motivation

At the beginning of the decade, the Agent Mediated Knowledge Management
workshops series [23, 1, 13] as well as Bonifacio's theoretical approach [3] layed
the foundations of a new field of distributed knowledge management based
upon the agent paradigm. The agent based approach enables key features for
knowledge management. The local management of knowledge by agents allows
going beyond the limitations of centralized knowledge management. Thus, knowl-
edge can be maintained in each agent at a coarse-grained level, with different
representations. Interactions between agents permit us to take into account the so-
cial aspect of knowledge and are well suited to represented organizational memo-
ries [9]. Van elst also outlined the importance of pro- activeness for knowledge
management [22].

48 J. Subercaze and P. Maret

In the mean time, the publishing of the agent roadmap in 2003 [17] pointed out
the lack of connection between multi-agent systems and semantic web technolo-
gies. Since then, many applications and frameworks have been developed to bridge
this gap. Semantic web languages and tools are now widely used to represent
agents' knowledge. TAGA [25] uses OWL and RDF as knowledge representation
in the field of a trading agent competition, using a FIPA compliant framework.
AgentOWL [15] extends JADE agents with OWL support for their knowledge
Base (KB). It also introduces an OWL based semantic agent model. Knowledge
agents, introduced by [2], are used for domain specific web search. In this applica-
tion, agents' KBs are represented in RDF. RDF is also used in CORESE [8] which
is a semantic web search engine for corporate knowledge developed within the
COMMA (Corporate Memory Management through Agents) European IST project.
The JADE framework, which is currently the most used in research and industry
supports natively RDF representing agents' knowledge. These examples show us
that semantic web technologies are widely used for representing agent knowledge,
and that we can clearly state that the connection between agent-based knowledge
management and semantic web has been made.

However, this example presents the use of semantic for the representation of
agent's knowledge and not for the dynamic part of the agent: its behavior.
Katasonov proposed a Semantic Agent Programming Language (S-APL) [14],
based on BDI reasoning, in which agent behavior are semantically described.
Behaviors remain programmed in JAVA but are described in RDF syntax. A
closed-world reasoned (CWM1) is used for BDI support. S-APL has three main
drawbacks. First the reasoning is restricted to the closed world assumption
whereas semantic web languages such as OWL make the open world assumption.
Secondly each new function in S-APL has to be programmed in JAVA, which
reduces the interoperability between agents. An agent having some new functions
will not be able to transfer its behavior to another agent since the latter does not
own the JAVA code implementing the functions. Using this approach, agent be-
havior programming is not taking advantage of the semantic web technologies
and limits interoperability.

Our motivation is to program agent behavior using semantic web standards us-
ing a finite number of actions that will be used to build complex behaviors. This
language should not refer explicitly to a lower level language and should support
open world reasoning. The latest advances in the field of semantic web have en-
abled rule languages supporting open world reasoning. We base our approach on
the use of semantic rule language to program semantic agents. We aim at design-
ing agents having a knowledge base and behavior base represented using the same
syntax. The use of OWL for knowledge base and semantic rules for behavior al-
lows this feature. In the next section we first discuss the choice of the semantic
rule language that will be used to program agents and then present the design of an
agent programming language and the resulting agent architecture. In section 3 we
describe the resulting ontological agent model. Section 4 shows a practical exam-
ple of a SAM behavior and details the different steps of its execution. Section 5

1 http://www.w3.org/2000/10/swap/doc/cwm.html

Programming Semantic Agent for Distributed Knowledge Management 49

concerns the implementation of the SAM prototype. We discuss in section 6 the
perspectives of application of semantic agents in distributed knowledge manage-
ment. Our conclusions are presented in section 7.

2 Building Agents with Semantic Rules

Semantic rules are an important part of the Semantic Web project. Figure 1 shows
the current status of specification in the Semantic Web layer cake. The logic part,
which is of primary interest for us, is still work in progress. This part describes the
semantic rule languages. Currently, for this layer, two proposals are pending. The
most well known one is the Semantic Web Rule Language (SWRL)2 [12]; it is
based on a combination of the OWL-DL with the RuleML language. The second
proposal is the Web Rule Language (WRL3) initiative that was influenced by the
Web Service Modeling Language WSML. Whereas WRL is at a draft stage, the
semantic web community is focusing its research towards SWRL. Indeed, soft-
ware such as Protégé4, Pellet5 and Jess6 already provide support for SWRL. Due to
these advances in implementation, it is now possible to develop agents based on
semantic rules. Thus our choice naturally went to SWRL for the design of the Se-
mantic Agent Model (SAM).

Fig. 1. The Semantic Web Layer Cake

SWRL presents two main advantages compared to other rule languages. First
because it is an OWL based language, it allows writing the rules in terms of OWL
concepts (i.e. classes, individuals, properties and data values). To these OWL con-
cepts, the SWRL specification adds several built-ins functions for comparisons,

2 http://www.w3.org/Submission/SWRL/
3 http://www.w3.org/Submission/WRL/
4 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
5 http://clarkparsia.com/pellet/
6 http://herzberg.ca.sandia.gov/jess/

50 J. Subercaze and P. Maret

math, strings and time [12]. From a more agent programming point of view, con-
cepts of the agent knowledge base can be directly treated in the rule language
without loss of expressivity.

The second benefit of SWRL resides in its logical foundations. SWRL combines
OWL-DL (decidable version of OWL) with Rule Markup Language (RuleML).
Thus, it can be roughly considered as the union of Horn-Logic and OWL based on
the description logic SHOIN. Consequently the expressivity of SWRL comes at the
price of decidability [19]. SWRL is not decidable (SWRL full). However, a subset
called DL Safe SWRL rules is decidable. For the agent development and for rea-
soning, DL Safe SWRL rules are more expressive compared to other rule lan-
guages. Indeed, most of the rule-based agents are based on Prolog supporting Horn
Clauses. Researches are currently going on for implementing DL reasoning in
Prolog but none is currently available for agents. Practical advantages for using De-
scription Logic in the field of Multi-Agent Systems (MAS) has been shown in [18],
especially in the field of information retrieval.

2.1 Architecture Design

Programming agent behavior using a rule language can be carried out in two ways.
The first way consists in extending a logic programming language in order to sup-
port traditional agent features (i.e. message passing, threading, etc.). The second
way consists in building a layered architecture using the rule language at an upper
layer. Some agent features are delegated to a lower layer. In this type of architec-
ture, the lower level language (i.e. Java, C++,etc.) is commonly used to handle
communication, file access, thread management, etc. The main idea behind this
approach is to reuse the required features for MAS that are already implemented
in another language and to define an agent interpreter to support a particular archi-
tecture, such as BDI for instance. The literature shows examples of both ap-
proaches. Clark et al. [7] follows the first approach by extending Qu-Prolog with
multi-threading support and inter-thread message communication. However, this
approach is not scalable and does not comply with the Agen Communication Lan-
guage (ACL) as specified by the FIPA7. FIPA-ACL is currently recognized as the
standard for agent communication and ensures interoperability between MAS
frameworks. S-APL that we discussed in the previous section follows the same
approach but some direct calls to JAVA functions are directly inserted into the
rules.

2.2 SAM Architecture

Standard MAS languages rely on the second approach. Agent0, the first agent ded-
icated language, which is an implementation of Shoham's Agent Oriented Pro-
gramming was developed on top of LISP. Similarly, 3APL, 3APL-m, JA- SON
and the BDI agent system Jadex are based on JAVA. Our architecture follows the

7 http://www.fipa.org/repository/aclspecs.html

Programming Semantic Agent for Distributed Knowledge Management 51

same approach. The specificity of our approach is to rely on a finite number of ac-
tions, in order to ensure interoperability of agents' behaviors.

In short, our approach results in the layered architecture (Fig.2):

1. Knowledge Base
2. Engine
3. MAS Framework and low level actions

Fig. 2. SAM Agent architecture

2.2.1 Knowledge Base

The knowledge base is the upper layer of the SAM architecture. The knowledge
base contains the knowledge of the agent which, in our approach, is composed of
static knowledge and behavior. Agent behaviors are expressed using SWRL rules.
As SWRL is based upon OWL, Terms (i.e. OWL concepts) of the knowledge base
are directly manipulated in the rules. Terms of the knowledge base can appear in
both antecedent and consequent of the rules. A formal specification of the rule
syntax is given in section 2.5.

2.2.2 Engine

As SWRL built-ins do not cover all the requirements for agent programming, we
have introduced additional low level actions (3rd layer) and a link between the

52 J. Subercaze and P. Maret

rules and these actions. This link is given by a middle layer, which is the control
structure that interfaces the rules contained in the knowledge base and the low
level actions. Rules from the knowledge base are red by the engine, one at a time.
If a rule requires a call to low level actions, the engine layer carries out this call.

2.2.3 Low Level Actions and MAS Framework

This layer contains the implementation of the low level actions that are comple-
mentary to SWRL built-ins. An extensive list of these actions is given in section 3.
Notice that these actions are introduced as instances of OWL class Actions in the
syntax of the rules (1st layer). Communication between agents relies on an existing
MAS framework. Messages are structured following the FIPA-ACL standard, and
consequently the MAS framework has to be FIPA compliant (our implementation
is based upon JADE which is FIPA compliant). Messages from other agents are re-
ceived through the MAS framework, then converted into an OWL representation
and finally added to the knowledge base.

2.3 Control Structure

Rule-based agents constitute an important part of the research on MAS. In [11],
Hindriks et al. define the requirements for a minimal agent programming language
that includes rules and goals. They also defined formalization tools that were ap-
plied to three standard agent programming languages AGENT-0[21], AgentS-
peak(L)[20] (that was later implemented and extended in JASON[4]) and
3APL[10]. Their definition of an agent program for goal directed agents includes a
set of rules called the rule base of the agent. They identify rule ordering as a cru-
cial issue in rule-based agents. However, this presents us with the following prob-
lem: when several rules from the rule set can be fired, there must be an order to
determine the sequence of execution of those rules. So the order in which the rules
will be sorted must be defined. Hindriks et al. [11] proposed that all rules fall into
one of the following categories: reactive(R), means-end(M), failure(F) and opti-
mization(O) with an order based on intuition:

R > F > M > O

As SWRL doesn't support rule ordering, we are also confronted with the same
issue. However, instead of deciding an arbitrary order, we have decided to use an-
other model of behavior, a slightly modified version of the Extended Finite State
Machine (EFSM) model [6]. EFSM guarantees the execution of only one rule at a
time. In EFSM, transitions between states are expressed using IF statements. A
transition is fired when trigger conditions are valid. Once the transition has been
fired, the machine is brought from the current state to the next state and the set of
specified operations are performed. Our choice is to use a finite number of actions
(called atomic actions) to fulfill basic MAS requirements. We differentiate two
kinds of atomic actions, external and internal. Internal actions have an effect on
the agent internal knowledge Base.

Programming Semantic Agent for Distributed Knowledge Management 53

Fig. 3. SAM Agent Interpreter

External actions are the interactions of the agent within its environment. These
actions include environment perception, action on the environment, message re-
ception and emission. External actions are not included in SWRL built-ins whe-
reas a subset of internal actions is. In section 3 we detail the list of atomic actions
that are not SWRL built- ins. A deterministic EFSM is a restriction of EFSM in
which there is at most one possible transition for each state and set of triggering
conditions. We used this restriction to ensure that on one rule can be triggered at
a time. A pseudo code algorithm for the interpreter is defined in Algorithm 1.

2.4 Execution Stack
The behavior of an agent can be seen as program executed by a computer. In the
same manner as for computer programs, agent behavior should be able call sub
behaviors. We designed an execution stack to maintain the history of behavior

54 J. Subercaze and P. Maret

calls, and the state of the behavior that issued the call. For example let us consider
an agent currently at the state A, and its current behavior is GetInfo, called with
the parameter Bob. If the next action is to load the behavior SearchPicture with
the same parameter Bob, this behavior will become the current behavior and will
be placed on top of the stack over GetInfo. The figure 4 depicts the stack before
and after the transition. In the OWL implementation, the current behavior is set
with the property hasBehavior on the individual currentBehavior.

Fig. 4. Stack Evolution after loading of a behavior

Fig. 5. Interpreter activity diagram

Programming Semantic Agent for Distributed Knowledge Management 55

2.5 Language Syntax

The syntax of the rule language that we designed (given in figure 6) is expressed
in Extended Backus-Naur Form (EBNF). This syntax is based on the existing
SWRL EBNF syntax as specified in [12]. SAM grammar is included in the SWRL
grammar. In the antecedent of a SAM rule (SAMantecedent) it is mandatory to
specify to which state the rule applies. This is set up by the hasStateValue prop-
erty. The previous property, currentState, ensures that the rule will be fired when
the current state of the EFSM is the one to which the rule applies. The second part
of the antecedent contains the triggering conditions. In this part, conditions under
which the transition will be triggered are defined. The range of these conditions is
the knowledge base of the agent. These conditions are represented by atom*
which is not modified from the original SWRL specification. Conditions can test
the validity of class belonging, property between classes or between individuals,
including received messages.

Fig. 6. EBNF interpreted by SAM

56 J. Subercaze and P. Maret

The rule consequent term (SAMconsequent) specifies the destination state of
the transition and the sequence of atomic actions to be executed. Each action has
different parameters. Parameters are passed using two properties, hasParameter-
Name and hasParameterValue. The first property applies to the action which is to
be executed and it specifies the name of the parameter. Then property hasParame-
terValue is applied to the name of the parameter in order to specify its value.

3 Semantic Agent Model

The architecture, the control structure and the language syntax we have just pre-
sented before enable us to elaborate the semantic agent model. Using the previous
given architecture, we built an OWL representation of the agent with different
components (Figure 7). In accordance with the previous section, the model holds a
finite number of states and of atomic actions, as well as the parameters for the ac-
tions. We defined two specials states, sBegin and sEnd that specify the beginning
and end states of the EFSM. Every agent's behavior must start with sBegin and
end with sEnd. Environment interactions are described within the received mes-
sages queue.

Fig. 7. The Semantic Agent Model

As mentioned, possible actions that are not SWRL built-ins are divided into

two categories: internal and external actions. Here we detail the different atomic
actions that are required in both categories (Figure 8 presents the different actions
by layer).

Programming Semantic Agent for Distributed Knowledge Management 57

Fig. 8. Actions by layer

Internal Actions: agent knowledge is expressed using OWL concepts: classes,
properties, individuals and data value. For each concept, three basic operations are
needed: creation, modification, deletion. Unfortunately only the first one is sup-
ported by SWRL built in. SWRL supports assertion but does not support negation.
In practical terms, it is possible to assert that properties apply to individuals or
classes in the rule consequent. The following example is taken from the SWRL
proposal document and shows the assertion of the uncle property by composing
parent and brother properties:

 parent(?x,?y)^brother(?y,?z)→uncle(?x,?z) (1)

However the following rules (2,3) are not possible since SWRL neither sup-
ports negation as a failure (2) nor non-monotonicity (3). Hence it is not possible to
withdraw information using the rule consequent.

 ¬Person(?x)→NonHuman(?x) (2) parent(?x,?y)^brother(?y,?z)→¬aunt(?x,?z) (3)

As only creation is possible using SWRL (at a higher level), we define addi-
tional actions at lower level:

• modify/remove property
• modify/remove class belonging from a resource
• modify/delete individual
• modify/delete datarange property

Internal actions, belonging to SWRL built-ins are executed by the rule engine.
Other internal actions, the low level actions are called by the agent interpreter.

External Actions refer to the agents' interactions with their environment. We
restrict our scope to software agents that evolve in an electronic environment. In-
teractions are then limited to message exchanges between agents. We rely on the
FIPA ACL specification for the message structures. Received messages are stored

58 J. Subercaze and P. Maret

in the message list. In the agent's KB, messages are put in a list ReceivedMessages
that is an instance of OWLList. Eventually there are two basic external actions,
sendMessage and receiveMessage. Following the ACL specification, forging a
message requires several parameters; among them we can cite sender, receiver,
ontology used, performative and so on. From those simple actions, it is possible to
build complex interactions between actions. For instance FIPA ACL specifies an
extensive communicative act library including query-answer, contracting, pro-
posal, subscribing. Different fields of the message are represented in the OWL
knowledge Base using properties, i.e. hasPerformative, hasContent, hasSender.

3.1 Defining New Actions
The agent model contains a finite list of basic actions for communication and
knowledge base management purpose. In SAM there are two approaches to define
new actions. The first is to extend the set of available of low level actions. The
second one is to define new actions by combining the existing ones.

Defining new atomic actions require implementing them in a low level lan-
guage. This approach is then of low interoperability and is discouraged by the au-
thors. It should be applied only in case of an extension of the model. The regular
approach consists in defining new actions as a sequence of atomic ones. We de-
noted these actions as composed actions (Fig. 9).

Fig. 9. Ontology of the actions in SAM

Actually, behavior of agents is a kind of composed action since it is composed
by a sequence of actions, triggered by transition. To define new composed actions,
we use the same representation as for agents’ behaviors. Composed actions are a
set of rules that represent an EFSM. These rules should only be active when the
composed actions are called.

Therefore these rules are not stored as SWRL rules in the knowledge base of the
agent but they are instances of the class Rule and their value is a string representation
of the rule (In Manchester Syntax8). The process of execution of a composed action is

8 http://www.co-ode.org/resources/reference/manchester_syntax/

Programming Semantic Agent for Distributed Knowledge Management 59

the following. Let us assume that the agent is firing a transition between state A and
B. During this transition a composed action called comp is to be executed. First the
engine removes the rules of the current behavior from the knowledge base and stores
them using a string representation. The engine also keeps tracks of the current state
and transition sequence that was executed.

The engine sets the current state of the agent to an intermediate state sBegin.
Then it extracts the string representation of the rules from comp and adds them to
the knowledge base. The composed action is then executed following the same
way as an agent behavior. Once the action finished, the engine removes the rules
and sets back the agent’s behavior context. Note that this process is recursive and
a composed action can call another composed action.

4 Example
To illustrate the mechanism behind semantic agents, we take a simple example
and process the several steps of the execution. The example has following content:
start the agent Alice, register it with the directory facilitator of the framework, and
send a query to the agent Bob. If a received message is from Bob and if this mes-
sage has the performative answer then Alice adds the content of the answer into its
knowledge base. The resulting EFSM is depicted in figure 10.

Fig. 10. Illustrative example (a), Scenario

60 J. Subercaze and P. Maret

The left column of the figure describes the low level atomic actions executed dur-
ing a transition. Triggering conditions, contained in the antecedent of the rule, are on
the right side of the picture. The first transition is conditions free. If Alice is in the
sBegin state then the transition to the state A will occur. Actions related to the transi-
tion are executed as a sequence. The next actions are executed only if the previous
succeeded. The action registerDF is executed first. If it is successful (returns true) a
message with the query performative and containing a query is sent to agent Bob. The
rule used to describe this transition is presented below in a human readable syntax: CurrentStates(?x) ^hasStateValue(x,sBegin) ^NextState(?y)

 →hasStateValue(y,A) ^hasContents(ActionSequence,registerDF) ^hasNext(ActionSequence,item) ^hasContents(item,SendMessage) ^hasParameterName(SendMessage,Sender) ^hasParameterValue(SendTo,Bob) …same with other parameters ^hasNext(item,endList)

Within the architecture, the engine checks whether a transition occurs in re-

questing the NextState value to the knowledge base. If this value is different from
the CurrentState then a transition is enabled. Then the engine retrieves the values
of ActionSequence, with the respectives parameters. ActionSequence is a linked-
list (Fig. 11) in which each item has the hasParameterName property. The value
of the parameter is specified in the hasParameterValue property. The structure of
the list of actions follows the OWL model depicted in figure 7. The Sendmessage
instruction is linked to its parameters using properties as described in figure 11.
The second transition contains triggering conditions regarding the received mes-
sage. As Alice sent a query to Bob, the next step of Alice's behavior may be to
handle the answer from Bob. Thus, we specify a condition on received messages
to ensure that Bob is the sender and that the message is of type Answer:

 CurrentStates(?x) ^hasStateValue(x,A) ^NextState(?y) ^hasReceived(?z) ^hasPerformative(z,Answer) ^hasSender(z,Bob) ^hasContent(z,?w)
 →hasStateValue(y,sEnd) ^hasContents(ActionSequence,AddInvidual) ^hasNext(ActionSequence,EndList) ^hasParameterName(AddInvidual,name) ^hasParameterValue(name,w)

Programming Semantic Agent for Distributed Knowledge Management 61

We will now detail the interactions between the different layers in the architec-
ture during the execution of the first transition.

Fig. 11. Illustrative example (b), ActionList data structure

4.1 Execution Phase

Representing the action execution on a timeline following the architecture as in
Section 2.1 is represented in Figure 12. It follows Algorithm 1.

Fig. 12. Illustrative example (c), Flow chart of the transition from Begin to A

62 J. Subercaze and P. Maret

The SAM engine firstly enquires of a rule triggering, in this case, the knowl-
edge Base query returns NextState = A. As A != sBegin, the engine retrieves the
current list of actions containing RegisterDF and SendMessage. Actions are per-
formed sequentially. First RegisterDF is executed and if it returns true then Send-
Message is be executed. When both actions succeeded, the current state of the
agent is updated to NextState value; in this case it is state A.

5 Implementation

We have developed a JAVA interpreter that communicates with the knowledge
Base using the Protege-OWL API 10 Pellet is used in combination with Jena 11 as
a SWRL reasoner. The JADE framework is used for the low level external actions.
The framework handles agent registration, service discovery and message passing.
It also provides an environment that is FIPA-ACL compliant. One implementation
issue we encountered was that OWL does not support RDF lists. An OWL equiva-
lent called OWLList has been developed and is used to represent action sequences
and the queue of received messages. A first version of the open-source prototype
is available online 12. Besides the validation of our model, the implementation
prototype presents some limitations. Nowadays the status of SWRL reasoners is
not satisfying because none of them fully support the SWRL specification. We
have used Pellet as a SWRL reasoner, since it is currently the most advanced
open- source implementation of SWRL. As developments stands at the moment,
several important features are not supported by Pellet, for instance some SWRL
built-ins are not yet available. The implementation results show the feasibility of
the proposal and we intend to further develop the prototype to make it fully suit-
able for the development of applications. Semantic Web technologies is a field
where advances take place. Current restrictions on SWRL support should no long-
er be an issue since advances in the field of the Semantic Web technologies occur
very rapidly and regularly. Finally, this implementation of the prototype allowed
us to validate our approach and to identify the limitations.

6 Perspectives

One of the primary advantages of agent based knowledge management over the
classical centralized approach is the proactiveness of the agents [22]. Proactive-
ness is the ability of agents to initiate changes and to take initiatives. It is opposite
to the reactive approach where agents react to stimulus or changes in their envi-
ronment. Concretely, in the agent design, the proactiveness is implemented in dif-
ferent agent behaviors. The benefit of semantic agent programming is to enable
the semantic description and exchange of the agents’ behaviors. Thus, agents
evolving in cooperative environments are able to learn behaviors from other
agents. In common knowledge management frameworks the nature of knowledge
exchanges between agents is limited to static knowledge. Semantic agent pro-
gramming our proposal allows agents to share not only static knowledge but also
dynamic knowledge insofar as agents are able to exchange their own behaviors.

Programming Semantic Agent for Distributed Knowledge Management 63

This ability opens a broad scope of applications and questions. In the same way
as for static knowledge exchanges, behaviors exchanges are subject to trust and
security issues. Moreover, behaviors are executed by the agents and the execution
of a malicious behavior could lead to serious security is- sues. We believe that ex-
isting cryptographic and trust mechanisms can easily be adapted to the exchanges
of semantic behaviors.

From a larger point of view, this approach takes the opposite of the current soft-
ware as a service trend. In the service approach, providers share (or sell) the use of
their services, but not the implementation of the service. With the semantic behav-
ior exchange approach, agents share the implementation of the service. Clearly this
approach is valuable in cooperative environment, for example when agents belong
to the same organizations. Several studies have shown that reactive and proactive
agents lead to the same performance among organizations [16, 24, 5].

The consequence of semantic behavior sharing on proactive agents is impor-
tant. Agents are now able to learn behaviors from other agents and to recombine,
evaluate, modify these behaviors to enhance their proactive capabilities. These
missing abilities were not taken into account in former studies and we believe it
can greatly improve the performance of proactive agents.

7 Conclusion

In this chapter, we presented how the next generation of Semantic Web technolo-
gies can be applied in MAS programming. We discussed the limitations of current
semantic approach and noticed the lack of semantic programming for agents' be-
haviors. State of the art frameworks are limited in terms of interoperability. To
bridge this gap, we designed agent architecture to support behavior programming
with semantic rules using a finite number of actions, identical for each agent. This
approach allows the sharing of behaviors between agents, without relying on a
specific lower level language. We detailed the three layer architecture, the lan-
guage syntax and the interpreter. Afterwards we discussed the advantages of se-
mantic agent programming in terms of knowledge management especially in the
field of proactive cooperative agents.

References

1. van Elst, L., Dignum, V., Abecker, A. (eds.): AMKM 2003. LNCS (LNAI), vol. 2926.
Springer, Heidelberg (2004)

2. Aridor, Y., Carmel, D., Lempel, R., Soffer, A., Maarek, Y.S.: Knowledge Agents on
the Web. In: Klusch, M., Kerschberg, L. (eds.) CIA 2000. LNCS (LNAI), vol. 1860,
pp. 15–26. Springer, Heidelberg (2000)

3. Bonifacio, M., Bouquet, P., Traverso, P.: Enabling distributed knowledge manage-
ment: Managerial and technological implications. RMA TIQUE, p. 23

4. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentSpeak using jason (Tuto-
rial paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900,
pp. 143–164. Springer, Heidelberg (2006)

64 J. Subercaze and P. Maret

5. Carley, K.M., Prietula, M.J., Lin, Z.: Design versus cognition: The interaction of agent
cognition and organizational design on organizational performance. Journal of Artifi-
cial Societies and Social Simulation 1(3), 1–19 (1998)

6. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the ex-
tended finite state machine model. In: Proceedings of the 30th International Confer-
ence on Design Automation, pp. 86–91. ACM, New York (1993)

7. Clark, K., Robinson, P.J., Hagen, R.: Multi-threading and message communication in
Qu-Prolog. Theory and Practice of Logic Programming 1(03), 283–301 (2001)

8. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the semantic web with corese
search engine. In: ECAI, vol. 16, p. 705 (2004)

9. Gandon, F., Dieng, R., Corby, O., Giboin, A.: A multi-agent system to support
exploiting an XML-based corporate memory. In: Proceedings PAKM 2000, Basel
(2000)

10. Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.J.C.: Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

11. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Control structures
of rule-based agent languages. In: Papadimitriou, C., Singh, M.P., Müller, J.P. (eds.)
ATAL 1998. LNCS (LNAI), vol. 1555, pp. 381–396. Springer, Heidelberg (1999)

12. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A semantic web rule language combining OWL and RuleML. W3C Member Submis-
sion 21 (2004)

13. van Elst, L., van Diggelen, J., Dignum, V., Abeckerm, A. (eds.): Proceedings of
AAMAS 2005 Workshop AMKM 2005 (July 2005)

14. Katasonov, A., Terziyan, V.: Semantic agent programming language (S-APL): A mid-
dleware platform for the Semantic web. In: Proc. 2nd IEEE International Conference
on Semantic Computing, pp. 504–511 (2008)

15. Laclavik, M., Balogh, Z., Babik, M., Hluchy, L.: Agentowl: Semantic knowledge
model and agent architecture. Computers and Artificial Intelligence 25(5) (2006)

16. Lin, Z., Carley, K.: Proactive or reactive: An analysis of the effect of agent style on or-
ganizational decision-making performance. Intelligent Systems in Accounting, Finance
and Management 2, 271–289 (1993)

17. Luck, M., McBurney, P., Preist, C.: Agent technology: Enabling next generation com-
puting. In: AgentLink II (2003)

18. Mller, R., Haarslev, V., Neumann, B.: Expressive description logics for agent-based
information retrieval. In: Treur (ed.) Knowledge Engineering and Agent Technology.
IOS Press, Amsterdam (2000)

19. Parsia, B., Sirin, E., Grau, B.C., Ruckhaus, E., Hewlett, D.: Cautiously Approaching
SWRL. Technical report, Technical report, University of Maryland (2005)

20. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

21. Shoham, Y.: AGENT0: A simple agent language and its interpreter. In: Proceedings of
the Ninth National Conference on Artificial Intelligence, vol. 2, pp. 704–709 (1991)

22. van Elst, L., Dignum, V., Abecker, A.: Towards Agent-Mediated Knowledge Man-
agement, pp. 1–30. Springer, Heidelberg (2003)

23. van Elst, L., Dignum, V., Abecker, A. (eds.): AMKM 2003. LNCS (LNAI), vol. 2926.
Springer, Heidelberg (2004)

Programming Semantic Agent for Distributed Knowledge Management 65

24. Xiao, J., Catrambone, R., Stasko, J.: Be quiet? Evaluating proactive and reactive user
interface assistants. In: Human-Computer Interaction: INTERACT 2003; IFIP TC13
International Conference on Human-Computer Interaction, Zurich, Switzerland,
September 1-5, p. 383. Ios Pr. Inc., Amsterdam (2003)

25. Zou, Y., Finin, T., Ding, L., Chen, H., Pan, R.: Using semantic web technology in
multi-agent systems: a case study in the taga trading agent environment. In: ICEC
2003: Proceedings of the 5th International Conference on Electronic Commerce,
pp. 95–101. ACM, New York (2003)

Part II

Engineering Semantic Agent Systems

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 69–88.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 4
SBVR-Driven Information Governance: A Case
Study in the Flemish Public Administration*,**

Pieter De Leenheer1,2, Aldo de Moor2,3,***, and Stijn Christiaens2

1 Vrije Universiteit Amsterdam - De Boelelaan 1081a, 1081 HV Amsterdam
 pieter@collibra.com
2 Collibra nv/sa - Ransbeekstraat 230, B-1120 Brussel
3 CommunitySense - Cavaleriestraat 2, 5017 ET Tilburg

Databases persistently store data and provide standardised access to it for commu-
nities consisting of human as well as software agents. However, adequate informa-
tion governance in such a bi-sortal setting requires more than that. Despite the
rigorous formal structure that may have been imposed on a data set, if it cannot be
disclosed to third parties, their value is practically zero. The ICT-outsourcing
partnership between the Flemish Ministry of Education and Training (FMET) and
EDS-Telindus, now HP, appreciated the subtle difference between data and infor-
mation, and the need for more maturity regarding the governance of their vast
(meta-)data landscape. This is shown by initiatives such as the development of a
Data Warehouse and an Information Governance Organization.

Some claim that semantic technology will soon compete with, and eventually
replace traditional business intelligence approaches as a means to achieve just-in-
time information. However, critics complain that the fact that the killer Semantic
Web application is still missing indicates a lack of convincing business drivers.
Based on our own experience in large organisations, we observe that business
drivers for semantically driven solutions are latent but are begging to be articu-
lated. However, for a sustainable breakthrough, mere technology to reconcile and
apply business semantics is not sufficient.

In this chapter, we describe the support of the ICT-outsourcing partnership in
their next leap towards information maturity and governance. To this end, we
adopt OMG's SBVR standard as a basis to agree on formal and detailed natural
language declarative semantic description of complex business entities, including
the governance structure of the organisation itself.

 * Invited chapter.
 ** We would like to thank Frans Decuyper (FMET) and Guido Dedene (Katholieke Uni-

versiteit Leuven) for their support and input.
*** Aldo de Moor was working part-time for Collibra during the period this work was

conducted.

70 P. De Leenheer, A. de Moor, and S. Christiaens

1 Closed World Syndrome

The ability to unlock data is related to the ability to understand the hidden infor-
mation in it. For this, human agents too often rely on their intuitive ability to un-
derstand the context, without guaranteed success and sometimes with disastrous
consequences. To reduce cost and risk, for human as well as software agents, the
semantic context of data has to be made explicit. The ICT-outsourcing partnership
between FMET and HP (in this article referred to as ICT-outsourcing partnership)
aims to give a meaningful answer to following questions about mission-critical
data:

1. semantics: what is the meaning of my data?
2. utilisation: how is my data used?
3. provenance: where do my data come from?
4. governance: who is responsible for what data?
5. quality: what is the quality of my data?

Many information systems suffer from a closed-world syndrome. They were
designed from a naive assumption they have already stored all possible facts about
the domain. Facts not in the database are presumed to be false; hence there never
will be a need for large-scale data exchange with other systems. Moreover, a data-
base is usually designed from a strong IT/IS (information system and technology)
perspective. Consequently, only the designer is familiar with its internal structure
and rules, and changes are driven by technical fits rather than real business needs.

The technological nature of the syndrome lies in vendor lock-in of data caused
by the fact that they are usually stored in proprietary (read: closed) formats. Obvi-
ously, this does not make any sense in today's networked value constellations (like
the World Wide Web) where online information exchange across business proc-
esses becomes central.

2 Just-in-Time Information

To answer the above questions, the ICT-outsourcing partnership aims at just-in-
time information (JITI) that we define as:

"JITI is the ability to interpret the latent information in exchanged data in the
right context and in a timely manner, without the help of the original designer."

The need for JIT information follows from the fact that information forms ar-
guments during strategic decision making. Consider, for example, the Minister of
Education ordering FMET to produce a business intelligence report on the possi-
ble influence of the mother’s educational profile on her children’s school perform-
ance. People are in constant need for relevant JITI in order to analyse this correla-
tion and finally to allow the minister to make well-founded political decisions.
Current business intelligence approaches deliver report updates in batches, hence
intermediate JITI needs have to be addressed ad-hoc via the informal social net-
works leading to unnecessary overhead. JITI calls for a more pragmatic approach
different from current approaches.

SBVR-Driven Information Governance 71

3 The Gap between Business and Technical Metadata

For JITI to be effected, the ICT-outsourcing partnership is convinced that they, as
earlier for data itself, must pay attention to the structured recording and publishing
of data about data, also called meta-data. The Flemish regulation1 describes meta-
data as:

"Documentation that describes the content and frequency of updating an au-
thentic data source, and technical manner in which that resource can be
unlocked.”

This definition remains vague when it comes to defining metadata, but clearly
hints that the underlying ontology allowing a meaningful interpretation of this
metadata should, in addition to being shared and agreed, have a dual utility [1]:

1. in an IT/IS context, it serves as computer specification to build diverse semantic
applications (such as data integration between software agents);

2. in a business context, it serves as a theoretical model referring to real-world ob-
jects aligning the strategic goals, values, and processes among (human) stake-
holders.

This new requirement for duality in the specification of an ontology that does
not merely describe facts from IT/IS owners, but also from business users, will
push the introduction of ontology management in daily work practices. Ultimately,
this will improve the co-evolution of business process changes and information
system changes.

In business the somehow misleading term metadata management is preferred
for ontology management. Enterprise applications, such as master data manage-
ment and business intelligence claim to provide an integral solution for metadata
management. In practice, however, they produce redundant or anomalous meta-
data because they do not take into account the interest of other applications (again
the closed world syndrome). Furthermore, the metadata is of a mere technical na-
ture, which at best provides only a partial answer to those questions mentioned
earlier. Indeed, there are inherent limits on just how much technology can really
help in this regard.

From an academic point of view, it turns out that in current ontology manage-
ment practices, the underlying methodological principles are usually ignored [2].
Moreover, regarding the rather narrow focus on technical metadata, they system-
atically ignore the subtle gap that looms between (i) knowledge sharing between
human agents on the business/social level (based on business metadata), and
(ii) data exchange between computerized agents (such as information systems) at
the operational/technical level (based on technical metadata).

1 Decree for Electronic Adminstrative Data Exchange (in Dutch: Decreet voor Elektronische

Bestuurlijke Gegevensverkeer) published by the Social Economic Council of Flanders
(in Dutch: Sociaal-Economische Raad van Vlaanderen (SERV)):

 http://www.serv.be/uitgaven/1253.pdf

72 P. De Leenheer, A. de Moor, and S. Christiaens

Large-scale ontologies, like Cyc2, usually suffer from severe usage restrictions
due to intellectual property rights. As only small parts of their content is publicly
available, these ontologies have no chance being scrutinized under peer review,
hence using them as standard would be problematic. The current proliferation of
so-called ontologies (in fact merely small-scale vocabularies) on the Semantic
Web may result in a Web rich in semantics but poor in ontological consistence [8].
This consistence must not merely be dependent on empirical validation but also on
its pragmatic value (see our discussion on validation later).

In order for an ontology to become a sustainable, reliable and shared resource,
De Leenheer et al. (2010), state that the basic principle of community-based ontol-
ogy evolution lies in capturing the co-evolution of (a) social knowledge sharing and
information needs that emerge from it, (b) the supporting computerized information
systems, and (c) the semantics that enables (meta-)data exchange between these
systems. Doing so, it imposes a conceptual bridge between business metadata and
technology metadata. Before introducing our approach to this co-evolution, we
elaborate on the business drivers that advocate the reconciliation of metadata, and
the metadata landscape as-is within the ICT-outsourcing partnership.

4 Business Drivers to Bridge the Gap

Based on our interviews, within the ICT-outsourcing partnership metadata man-
agement is fuelled from seven business drivers.

4.1 Documentation

"Sometimes people do not know what data is out there. Knowing the whereabouts
of data starts with many calls within and between business units over and over
again." (Anton Derks)

Business (intelligence) metadata is key to the provision of relevant documenta-
tion. Employees must document their data in a systematic manner in order to
minimize the loss of know-how in case they would leave the organization. This is
especially important in the context of the ICT-outsourcing partnership in which a
regime of high turnover dominates. Business analysts must be empowered to de-
fine relationships between files that document the reasoning steps of their strategic
advices. The collective practice of documentation will progressively decrease the
overhead brought by repetitive calls for often the same latent documentation. Ul-
timately, in combination with underlying social network data, it will provide a
valuable resource of actionable knowledge for social analytics.

4.2 Communication

"No communication without metadata!" (Jan Dejonghe)

Metadata facilitates communication both internally as externally. E.g., vendors
of administrative school software should be able to understand the semantics the

2 http://www.cyc.com/

SBVR-Driven Information Governance 73

software should obey when reporting enrolment data back to FMET. This agree-
ment can be formulated in the form of a technical data specification (e.g., in UML
or XSD) that was generated from business metadata. Business metadata on its turn
is compliant to certain administrative regulations. Doing so, metadata provides a
"language" that can cope more effectively with communication problems between
business and the in- and outflow of external ICT consultants.

4.3 Reuse

Metadata accelerates the retrieval of assets and promotes their reuse. Currently as-
sets, including reports, queries, data, architecture, technology, and licenses are de-
fined ad hoc. In the planned service-oriented architecture, metadata will facilitate
the retrieval and reuse of software services.

Codification strategy where data is codified in a common format that makes it
easy to exchange and reuse is not the silver bullet. Personalisation complements
this via right tooling and culture, which allows next to codification, the emergence
of personal networks, engendering reputation among its peers. Therefore, it is
equally important to address the provenance of data. If one knows the owner of a
data asset, one can use the personal network (with Web 2.0 tooling) to gain addi-
tional know-how through socialisation.

4.4 Impact Analysis

"You hear now and again, "they have changed something to the data table, and
now it does not work anymore." (Frans Decuyper)

Metadata is crucial to capture complex dependencies between different sys-
tems, people and applications, and to calculate the impact in the event of a change
transparently. A precise impact analysis allows a more precise cost-benefit analy-
sis. Moreover, it reduces the likelihood that they are subsequently surprised by un-
expected side effects. The ICT-outsourcing partnership as-is often cannot see the
forest for the trees.

4.5 Disambiguation

"There are 180 000 teachers, more than one million students and thousands of
educational institutions. FMET forms a large part of our society, hence it is cer-
tainly important that labels are attributed the same meaning." (Martin Maesen)

Metadata helps to get rid of inconsistencies or ambiguities. It is very valuable
to know that a term has an unambiguous meaning. For example, the term "family"
is fairly easy to understand for most people, but in the software application it has a
strict sense, inferred from the legislation. Another problem is caused by (naturally
occurring) homonyms. E.g., if one would check all decrees ranging from primary
to higher education, the word “study area” is often attributed contradictory mean-
ings, while one would expect this in FMET frequently used term should be intui-
tively obvious. There are also terms that are poorly defined, and require additional

74 P. De Leenheer, A. de Moor, and S. Christiaens

interpretation. An example is a term "part exemption” that is applied in regulation
but apart from that has few leads to its definition. This brings about the question
whether we should take the definition into account are not. These are issues that
continually recur in discussions with institutions about changing data models
("yes, but… what about the part exemptions"). Several discussions are repeated
over and over again, and would be unnecessary if the relevant terms would be dis-
ambiguated properly.

4.6 Uniformity

"In my early years I have worked on a glossary: the most difficult part was to ob-
tain consensus." (Marleen Deputter)

Unambiguous metadata is not sufficient. It is crucial that metadata uniformly
applies to the entire organization and its stakeholders. It is very valuable for eve-
ryone to be sure that what is said in one place, is also valid elsewhere. A major
source for the lack of uniformity is the wave pattern that ICT-outsourcing partner-
ship follows when it evolves: first, at the business level, there is a new decree (or
set of related decrees). Next, this decree is "implemented" in a computer applica-
tion. Inherent to its nature, legislation may change, giving rise to an organic
growth in the implemented applications. An example is their Salary System and
more specifically the lack of meaningful codes that are contained therein.

4.7 Compliance

Metadata plays an important role in regulatory compliance, a field that is not much
explored so far:

• Authentic sources: where data are spread over different systems, it is dif-
ficult to determine which of the systems is the original data source.

• Privacy: some data are covered by privacy legislation. When it is impos-
sible to learn whether a piece of data is covered by privacy rules, it is dif-
ficult for an organization to comply with such regulation.

• Security: FMET has currently a Security Officer to verify regulatory
compliance. Using metadata provenance of data can be logged.

5 Metadata Landscape Dimensions

Just like with information management [12], the strategy, structure, and operation-
alization of metadata management is not trivial because it must be able to align the
complex and rapidly evolving IT/IS needs to the ditto business needs. Technological
support for metadata management in terms of software is necessary, but certainly
not sufficient. To bridge the gap, we distinguish, alongside technology, three other
dimensions in the metadata landscape: methodology, organization, and culture.

Crucial is the development of a teachable and repeatable methodology consisting
of a number of coordinated methods and techniques that allows the organization to
perform different metadata management activities effectively and efficiently. This

SBVR-Driven Information Governance 75

methodology should be anchored in an organizational arrangement of social roles
and responsibilities, appropriate to the establishment of the Information Govern-
ance3. Finally, in order to apply the methodology properly, it is of great importance
that there is a right culture of joint understanding, managing and using metadata in
the cross-process information chain. Our observations are supported by empirical
investigations in knowledge management in general indicating that social incentives
brought about by cultivation are essential to increase the usage of knowledge man-
agement tools and methods [11].

Designing a solution requires a metadata landscape analysis that deepens each
of the four dimensions, and consequently focuses on the internal weaknesses and
external threats. To this end, we have interviewed more than twenty people on
both sides of the partnership.

6 Metadata Landscape SWOT Analysis

Based on our findings, we performed a strength-weakness (SWOT) analysis. The
summarising SWOT diagram is shown in Figure 1.

Fig. 1. Summary of the SWOT analysis of the metadata landscape within the ICT-outsourcing
partnership.

3 See internal report: Decuyper, F. (2009) Information governance. Technical report, O&V.

76 P. De Leenheer, A. de Moor, and S. Christiaens

An important strength is that metadata culture within the partnership is already

fairly mature. This is shown by the intention of its management and the curiosity of
its employees who take grass root initiatives providing success stories. Moreover,
there is already a targeted training on conceptual business modelling. Another im-
portant strength is the outsourcing partnership that already exists for many years.

On the contrary, the weakness lies in the fact that the current metadata man-
agement technology is not adequate. Moreover, a methodology and organisation is
completely lacking. Threats for improvement are the constantly evolving policy
changes that impede a smooth long-term rollout of information management. This
is aggravated by the high turnover we already discussed. Moreover, if FMET does
not act fast, there is a threat that other public administrations will enforce their
own metadata standards, making FMET a mere dependent entity.

The opportunities include the growing availability now of robust commercial
semantic technology that can be safely deployed to gain information maturity4.
Moreover, there is an increasing demand for exchange of best practices. This de-
mand is particularly visible in the context of e-government. Consider, for example,
the large-scale, even competitive, initiatives to make government data public in
the US5 and the UK6. As a result, the "crowd" can build useful services and appli-
cations that - through semantics - reuse, link, and reason about these data resulting
in interesting new business models. Finally, the fact that the ICT-outsourcing
partner is present throughout all ministries is not only a strength, but also creates
an opportunity to widely disseminate best practices horizontally but also vertically
from regional, to federal and even European level.

7 Business Semantics Management

Inspired by the notion of co-evolution, Business Semantics Management (BSM)
[7] provides methodology, technology, culture and organization that enable parties
to (i) obtain consensus on (the semantics of) key business terms, and (ii) evaluate
this consensus uniformly in various applications throughout the organization. Re-
spectively, BSM consists of two complementary cycles: semantic reconciliation
and semantic application (see Figure 2) that each groups a number of activities.

Fig. 2. Business Semantics Management consists of two complementary cycles: semantic
reconciliation and semantic application. Both cycles communicate via the unify-activity.

4 See, e.g., PwC Technology Forecast 2009:

http://www.pwc.com/US/en/technology-forecast/spring2009/index.jhtml
5 e.g., http://www.data.gov/
6 e.g., http://data.gov.uk/

SBVR-Driven Information Governance 77

7.1 Fact-Orientation

BSM draws from best practices in ontology management [10] and ontology evolu-
tion [5]. The representation of business semantics was originally based on the
DOGMA [13] ontology framework that follows a fact-oriented paradigm that was
introduced in the conceptual database modelling approach NIAM7 [15] (pre Ob-
ject-Role Modelling)).

NIAM simplifies the design process by using natural language, as well as intui-
tive diagrams, which can be populated with examples, and by examining the in-
formation in terms of simple or elementary facts. By expressing the model in
terms of natural concepts, like objects and roles, it provides a conceptual approach
to modelling. Moreover, breaking down the domain into several elementary fact
types reduces the problem complexity into smaller and thus more easily manage-
able sub-problems. This leverages the potential of domain experts to effectively
externalise conceptions that were not revealed otherwise [9].

NIAM/ORM’s attribute-free approach, as opposed to frame-based techniques
such as UML or (E)ER, promotes semantic stability. Semantic stability is a meas-
ure of how well models or queries expressed in the language retain their original
intent in the face of changes to the application [9]. Given the co-evolution princi-
ple, it is critical that the underlying ontology be crafted in a way that minimises
the impact of these changes. Therefore regarding our objectives, fact-oriented
models are more stable under business changes than e.g., OO or ER models.

7.2 Collaborative Business Semantics Modelling with SBVR

Recently, BSM adopted Semantics of Business Vocabulary and Business Rules
(SBVR8), a recent OMG standard pushed by the business rule community and the
fact-oriented modelling community. SBVR follows the meta-modelling principles
of OMG's Meta-Object Facility (MOF9), which is essentially a set of concepts that
can be used to define other modelling languages.

In the ICT-outsourcing partnership, UML is marginally adopted for business
modelling. Some strongly advocate the suitability of UML for knowledge repre-
sentation, especially in model-driven engineering [8]. However, UML has serious
shortcomings like its lack of formal definition [3]. Constraints are expressed in a
semi-formal language (i.e., OCL) and descriptions of the various elements are in
plain (instead of structured English). Finally, UML is object-oriented, leaving out
the possibility to refer to objects uniquely otherwise than with the auto-generated
internal object identifier.

Driven by its success in conceptual data modelling, the fact-oriented approach of
SBVR provides the basis for formal and detailed natural language declarative de-
scription of complex business entities. The derived formal vocabularies and rules
can be interpreted and used by computer systems to develop Web, software and
business intelligence applications. Additionally, the recent Ontology Definition

7 Natural Information Analysis Method.
8 OMG Semantics of Business Vocabulary and Business Rules, version 1.0:

http://www.omg.org/spec/SBVR/1.0/
9 OMG Meta Object Facility, version 2.0: http://www.omg.org/spec/MOF/2.0/

78 P. De Leenheer, A. de Moor, and S. Christiaens

Metamodel10 (ODM) provides (via MOF) a bridge to link SBVR to the Web On-
tology Language for Services (OWL-S), Resource Description Framework Schema
(RDFS), Unified Modeling Language (UML), Topic Map (TM), Entity Relation-
ship Modeling (ER), Description Logic (DL), and Common Logic. Most of these
extensions are outside the scope of this article. We refer to Gasevic et al., [8] for a
detailed discussion in the context of model-driven engineering.

For the outsourcing partnership following domains are predominant.

1. Software and Service engineering: UML is a language to specify, visualise, and
document software and service systems. Architects in the ICT-outsourcing
partnership widely use UML.

2. Business Intelligence: Common Warehouse Model is an OMG standard for in-
tegrating tools for data warehousing and business analysis. In the ICT-
outsourcing partnership, the Business Intelligence Competence Centre is con-
sidering the adoption of this standard.

3. Web Engineering: RDFS and OWL are W3C specifications for Web engineer-
ing. The ICT-outsourcing partnership has no short-term ambitions, but its up-
take in the next long-term ICT plan is crucial.

Via MOF, business semantics (in SBVR) forms the basis for forward engineer-
ing of software (i.e. UML diagrams), business intelligence (i.e. OMG common
warehouse model), and Web applications (W3C RDF(S) and OWL) and vice
versa: existing models can be reverse engineered to feed the BSM process.

7.3 Business Semantics Structure

The structure of SBVR (illustrated in Fig. 3) allows implementing a business se-
mantics system that follows the 6 principles of community-based ontology evolu-
tion earlier defined in De Leenheer et al. (2010).

1. ICT Democracy: An ontology should be defined by its community, and not by
a single developer11.

2. Emergence: Semantic interoperability requirements emerge from community
evolution processes.

3. Co-evolution: Ontology evolution processes are driven by community evolu-
tion processes12.

4. Perspective Rendering: Ontology evolution processes must reflect the various
stakeholders perspectives13.

5. Perspective Unification: In building the common ontology, relevant parts of
the various stakeholder perspectives serve as input for the unified perspective.

10 http://www.omg.org/spec/ODM/1.0/
11 Because we assume the involvement of both business analysts and other non-technical

ex- perts as well. This also presumes that the language use to represent the ontology is
teachable to this type of contributers.

12 In contrast to waterfall-like approaches that focus on a broad design upfront, agile meth-
ods perform short milestone-driven revision iterations in order to cope with dynamic en-
vironments.

13 There is no generally applicable ontology, as each application will generate a contextual-
ised model to match local needs and functionalities.

SBVR-Driven Information Governance 79

6. Validation: The explicit rendering of stakeholders perspectives allows us to
cap- ture the ontology evolution process completely, and validate the ontology
against these perspectives respectively.

In other words: it takes into account the existence of multiple perspectives on
how to represent concepts (by means of vocabularies), and includes the modelling
of a governance model to reconcile these perspectives pragmatically (read: insofar
practically necessary) in order to come to an ontology that is agreed and shared
(by means of communities and speech communities).

• A semantic community is a group of stakeholders having a body of shared
meanings. Stakeholders are people representing an organisation or a business
unit. They already informally share knowledge via social network functionality.

• A body of shared meanings is a unifying and shared understanding (percep-
tion) of the business concepts in a particular domain. Concepts are identi-
fied by a URI. The scope of this body emerges from breakdowns during in-
formal knowledge sharing.

• A speech community is a sub-community of a semantic community having a
shared set of vocabularies to refer to the body of shared meanings. A speech
community groups stakeholders and vocabularies from a particular natural
language in multi-lingual community, or from a certain technical jargon.

• A vocabulary is a set of terms and fact types (called vocabulary entries)
primarily drawn from a single language to express concepts within a body
of shared meanings.

Fig. 3. The structure of business semantics: communities, stakeholders, concepts, vocabu-
laries, facts, and rules.

80 P. De Leenheer, A. de Moor, and S. Christiaens

As mentioned, the notion of vocabularies allows multi-linguality or within one
language synonymous terms may refer to the same set of concepts, or a polyse-
mous term may refer to different concept URIs depending on the vocabulary it is
residing in. Following function maps a term in a vocabulary to a concept URI. For
the full formalisation, we refer to De Leenheer et al. [4].

concept(vocabulary,term) = <URI>

E.g., consider a term "student" in a Dutch vocabulary and a term "étudiant" in a
French vocabulary both meaning the same thing.

concept(Dutch, student)
= URI_STUDENT
= concept(French, étudiant)

A term is defined by at least a set of fact types and one or more rules. Terms form
the building blocks for binary fact types, which can be read on two directions:

Student is enrolled in / enrolls School
School is located at / is location of Address

A fact type can also denote an ontological relationship such as a specialisa-
tion/generalisation relationship:

School is a / subsumes Institute

or an aggregation relationship:

Faculty part of / has part University

Every rule formulation starts with a fact type of a term. E.g.:

It is obligatory that a Student is enrolled in (/ enrolls)
exactly one School
Address is location of (/ locates) at most one School

Hence, vocabularies allow speech communities to give different meanings to
terms and fact types, but also to impose different constraints on their usage.

7.4 Business Semantics in Practice

It is practically impossible to have a central "metadata repository" maintained by
one person. E.g., consider the well-known issues with updating a canonical data
model in a service-oriented architecture. There are several reasons for this:

• the historically grown inconsistent and difficult to unlock collection of meta-
data sources;

• the structural independence of the business units (called "entities") within
FMET;

• the intended independence of FMET towards its ICT-outsourcing partner HP;

SBVR-Driven Information Governance 81

• the general economic trend towards dynamic value networks;
• the increasing presence of "Web 3.0" where data and services are decentralized

and accessible to each other via URIs. A vision shared with Semantic Web and
Web Science communities (cf. e.g., IEEE IS Jan. 2010).

However, note that a fully decentralized approach is not feasible within ICT-
outsourcing partnership where business semantics are determined by regulations.
Alternatively, BSM stands and falls with two initiatives: a business semantics
glossary (BSG), and an enterprise information model (EIM).

8 Business Semantics Glossary

According to the English dictionary, a glossary defines a list of terms and their
meanings in natural language. A BSG14 is a glossary where the meaning of term is
formally defined by fact types and rules. It provides a single point of reference for
the ICT-outsourcing partnership different business vocabularies and rules, and a
practical grouping according to their semantic and speech communities. The BSG
supports the semantic reconciliation process.

Scope: Sets out the scoped terms that are actually needed to improve the infor-
mation chain. Specific business drivers that want to resolve a weakness or threat in
a certain application context fuel this activity. Regarding our considerations made
above, we distinguish between IT/IS and business contexts.

1. In an IT/IS context a communication breakdown may be caused by an inade-
quate transformation of incoming personnel data from the more than 1,500
educational institutions to the data semantics of the central salary system. The
breakdown here is caused by a lack of specification of terms as "personnel" and
"salary". The derived need for manual translation (e.g., using XSLT) introduces
a weakness, as defining the translation requires know-how about the resp. for-
mats. Moreover, such a translation introduces even more legacy that is difficult
to interpret.

2. In a business context, the lack of a uniform and unambiguous meaning of the
term "study area" following externally imposed rules may form a legal threat.
This observation initiates another semantic reconciliation cycle where metadata
related to "study area" are to be reconciled. It is important to involve the rele-
vant stakeholders in this process and assign them with appropriate roles and re-
sponsibilities.

Note that we have oversimplified the scoping process here. For supporting
scoping techniques we refer to De Leenheer [6].

Create: During this activity, every scoped term is syntactically defined. E.g.,
Figure 4 illustrates the concept page (identified by a URI) in BSG for term "Home
Address" (specialisation of the type "Address") in the BSG. The page consists of a

14 Business Semantics Glossary is a product from Collibra. More information on

http://www.collibra.com

82 P. De Leenheer, A. de Moor, and S. Christiaens

gloss providing a natural language definition; a number of fact types (e.g., "home
address has postal code") and a number of rules (e.g., home address has exactly
one zip code). To each scoped term (within its context) there are also certain roles
appointed such as a "concept steward" and a number of relevant stakeholders. The
definition is fed by implicit know-how from the involved domain experts, or by to
automatic extraction of facts from existing metadata (see [6] for a review of ontol-
ogy extraction techniques).

Fig. 4. Screenshot of the term "Home Address" taken from the Business Semantics Glos-
sary that currently deployed at FMET. Even though the concept definitions look like natural
language. Thanks to the underlying MOF-compliant meta-model, one can automatically
generate an enterprise information model from it that provides a formal specification.

According to our metadata landscape analysis, many FMET entities have iso-
lated "grassroots" metadata initiatives. They manifest themselves in various forms
such as taxonomies, keyword systems, glossaries, information about database
fields, metadata in Web pages and content management systems (CMS). These
use many proprietary formats as well as open formats such as XSD and UML. In
SBVR, the business concepts can be defined in a natural way, while at anytime a
formal enterprise information model can be automatically generated in any format.
Note that each change is carefully logged in order to be able go back any time.

Refine: During this activity, fact types that were created during the Create ac-
tivity are refined so they are understandable to both business and technology. E.g.,
The somewhat technical term Empl becomes Employee or EmplAddr is decom-
posed into a fact type Employee is located at / locates address. Coding conven-
tions can be applied here to guide the process.

SBVR-Driven Information Governance 83

Articulate: Since multiple users concurrently render their perspective on a
term, it may be that after the refine activity some fact types and rules impose con-
tradicting statements. During this activity, conflicts and inconsistencies are re-
moved. Specifically designed algorithms may help here. E.g., in the Netherlands,
an address is uniquely identified by a combination of postcode and house number,
while in Belgium a combination of postcode, street name and street number is re-
quired. Articulating these differences is crucial in order to be able to deal with dif-
ferent data integrity rules during information exchanges.

During unification is a new version of the enterprise information model is gen-
erated from the current version of the BSG.

8.1 Enterprise Information Model

An enterprise information model (EIM) is a "flattened" version of the BSG that is
generated in a timely manner. The EIM is the product of semantic reconciliation
and serves as a uniform technical specification to implement semantic applica-
tions. Through the underlying MOF framework, this EIM can be represented in
many formats, such as UML, OWL, or XSD, serving a wide variety of applica-
tions. We distinguish two activities.

Select: Given an application context (such as a workflow or business artefact
(Hull)), relevant concepts are selected from the EIM for a particular application. It
may be required to add additional application-specific constraints that could not be
agreed upon on the community level, or that are currently not supported by SBVR.

Commit: Information systems are improved using the selected concepts. De-
pending on the application context, this can be implemented in different ways.
Concretely, this boils down to data transformation, validation, and governance
services. For example, two or more XML structures can be virtually integrate by
defining XSLT transformations to a shared XMLS-formatted EIM. The EIM may
also be used to convert relational databases into RDF triple stores (cf. RDB2RDF
initiative). Here we illustrate the application of an EIM to generate data transfor-
mation services. The Business Semantics Studio15 (BSS) is a tool suite that sup-
ports these two activities. BSS provides mapping functionality to commit existing
data sources and applications onto the EIM with Ω-RIDL [14]. Below we show
two examples of such mappings: one committing a field in a database to a concept
in the EIM and another path in an XML-document.

map TBLSchool.Street on Street of (/with) Address of (/ with)
School.
map /schools/school/street on Street of (/ with) Address of
(/ with) School.

These mappings can be used to automatically generate data transformations
from one format into another by generating the appropriate queries (SQL, XPath,
etc.). The example are intentionally kept simple for didactic reasons. For a more
detailed description of Ω-RIDL we refer to Trog et al. (2007).

15 http://www.collibra.com/products/business-semantics-studio

84 P. De Leenheer, A. de Moor, and S. Christiaens

9 Full-Cycle BSM: Validation and Feedback

Once semantic applications are running, it must be possible to monitor and feed
unexpected side effects or failures back, calling for a new iteration of BSM. We
call this full-cycle BSM: the scope of the next version of the EIM is fed by the va-
lidation of the previous version in IT/IS contexts as well as business contexts. The
BSG is the vehicle that serves the reconciliation of the newly scoped concepts.
The overall picture of this full-cycle BSM is illustrated in Figure 5.

Fig. 5. Full-cycle business semantics management keeps the business semantics in line with
changes in IT/IS and Business contexts.

The BSM cycle is repeated until an acceptable balance of differences and
agreements is reached between the stakeholders that meets the requirements of the
semantic community. Gradually, closed divergent metadata sources are replaced
with metadata sources that follow an open standard, and are kept coherent via
BSG. Referring to the external threats (discussed in SWOT analysis), once the
ICT-outsourcing partnership (as semantic community) has internally standardized
stable parts of its EIM, it stands stronger to push these up to federal16 or even Eu-
ropean level (e.g., Semic.eu17).

Regarding its dual utility, we distinguish between two complementary ways to vali-
date business semantics: in the context of business applications or IT/IS applications.

9.1 IT/IS-Driven Validation

The formal specification of a semantic pattern can be empirically validated for its
logico-computational “proof” and its computational performance within a predefined

16 http://www.fedict.belgium.be
17 http://www.semic.eu

SBVR-Driven Information Governance 85

IT/IS context. If a semantic pattern is sufficiently constrained then certain desired
properties can only be derived strictly in a mathematical or logical fashion. E.g., the
data structured according to the metadata of system A is transformed in a certain way
into the format defined by metadata of system B. The performance of the computa-
tional implementation can be tested in simulations using very large data sets. De em-
pirical evaluation feeds inconsistencies, inadequacies, and incoherencies back to the
semantic reconciliation.

9.2 Business-Driven Validation

A more complex problem is the pragmatic evaluation of concept types within a
business context. From case studies we learned that this requires a rather qualita-
tive assessment of validity. We distinguish two categories of validity [1].

1. Descriptive validity: are the concept types indeed a substantial descrip-
tion of the business assets as they are perceived in the domain by a com-
munity?

2. External validity: can we declare the collected concept types sufficiently
generally applicable en unambiguous so that they can be deployed in
many situations or contexts?

Assessing the descriptive and external validity has to be done by a sufficiently
large social arrangement of adequately skilled people, i.e., a community of prac-
tice. A social arrangement defines roles and responsibilities that collectively su-
pervise the consistent implementation of semantic reconciliation and consequently
produce qualitative concept types is often a wicked problem. This may be caused
by the inability of domain experts to capture the domain properly and agreeing on
a common representation of it effectively. Furthermore, domain experts may have
difficulty using the tools that support these complex tasks. All together this advo-
cates for a well-defined metadata governance model.

10 Metadata Architecture and Governance

Of particular importance is that BSM becomes structurally and gradually embedded
in FMET’s Enterprise Architecture by means of a Metadata Architecture. The basis
for this is the EIM. Metadata Governance is concerned with establishment, modifi-
cation, and implementation and monitoring of the Metadata Architecture by using
BSM so that the ensuing business information systems will optimally contribute to
the desired business results. While fueled by business drivers, the implementation
of BSM is determined by a metadata charter, principles and policies.

• A metadata charter is a Memorandum of Understanding that provides
motivation, goals, and key stakeholders. It provides a framework of roles
and responsibilities and it identifies certain authorities.

• Metadata-principles establish start points for metadata management that
must be respected. E.g., metadata must always be made publicly avail-
able and in an open standard format.

86 P. De Leenheer, A. de Moor, and S. Christiaens

• Metadata policies contain clear guidelines for relevant actors within the
organization to implement BSM in all its facets with sufficient quality
and according to the principles.

Subject of these principles and policies are evolving concepts themselves, me-
tadata applications, methodologies and culture, but also the relationship with the
ICT outsourcing partner. E.g., a policy that implements the above principles is a
clear choice for the RDF or XSD format for publishing metadata.

11 Conclusion

The embedding of BSM in FMET requires a planning to implement a coherent set
of projects in line with the ICT Strategic Plan 2010-2014. Eventually this should
bring the partnerships information management in 2014 to an acceptable level.
BSM constitutes a powerful catalyst to align and fuel the information management
processes from the business and supporting technical data management processes.
Doing so, ICT can be used effectively and efficiently.

The yardstick that we use to measure information maturity is the Information
Maturity Model (IMM)18 (Figure 6). From implemented proof-of-concept we have
reviewed some aspects of BSM. If we project our findings from these PoCs on the
IMM, we conclude that FMET was at IMM level 2 at the beginning of our analy-
sis, and that the organization is not far off from achieving level 3. The five years
plan aims Level 4.

Fig. 6. Information Maturity Model: a practical yardstick to qualify information maturity
and governance in an organisation (by courtesy of Sean McClowry).

18 Defined by Meta Group (now Gartner):

http://mike2.openmethodology.org/wiki/Information_Maturity_Model

SBVR-Driven Information Governance 87

Achieving Level 4 IMM will provide a platform with many new capabilities
such as the development of Semantic (Business) Intelligence and Semantics-
driven SOA. This will be implemented in terms of data transformation, validation,
and governance services. Moreover, the outreach of best-practice applications and
associated metadata standards deliver a unique reputation to FMET. Pushing this
to federal to even European levels will promote sharing and standardization of me-
tadata for public administrations.

References

1. Akkermans, H., Gordijn, J.: Ontology Engineering, Scientific Method and the Re-
search Agenda. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248,
pp. 112–125. Springer, Heidelberg (2006)

2. Cardoso, J.: The semantic web vision: Where are we? IEEE Intelligent Systems, 22–26
(September/October 2007)

3. Cranefeld, S.: UML and the Semantic Web. In: Proc. of the Semantic Web Working
Symposium, pp. 113–130. Stanford University, CA (2001)

4. De Leenheer, P., de Moor, A., Meersman, R.: Context Dependency Management in
Ontology Engineering: A Formal Approach. In: Spaccapietra, S., Atzeni, P., Fages, F.,
Hacid, M.-S., Kifer, M., Mylopoulos, J., Pernici, B., Shvaiko, P., Trujillo, J.,
Zaihrayeu, I. (eds.) Journal on Data Semantics VIII. LNCS, vol. 4380, pp. 26–56.
Springer, Heidelberg (2007)

5. De Leenheer, P., Mens, T.: Ontology evolution: State of the art and future directions.
In: Hepp, M., De Leenheer, P., de Moor, A., Sure, Y. (eds.) Ontology Management for
the Semantic Web, Semantic Web Services, and Business Applications. Springer, Hei-
delberg (2008)

6. De Leenheer, P.: Ontology Elicitation. In: Liu, L., Ôzsu, T. (eds.) Encyclopedia of
Database Systems. Springer, Heidelberg (2009)

7. De Leenheer, P., Christiaens, S., Meersman, R.: Business semantics management: a
case study for competency-centric HRM. Journal of Computers For Industry (2010)
(forthcoming)

8. Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Architecture and Ontology
Development, 2nd edn. Springer, Heidelberg (2009)

9. Halpin, T.: Metaschemas for ER, ORM and UML data models: A comparison. J. Data-
base Manag. 13(2), 20–30 (2002)

10. Hepp, M., De Leenheer, P., de Moor, A., Sure, Y. (eds.): Ontology Management for
the Semantic Web, Semantic Web Services, and Business Applications. Springer,
Heidelberg (2008)

11. Kankanhalli, A., Tan, B.C.Y., Wei, K.-K.: Contributing Knowledge to Electronic
Knowledge Repositories: an Empirical Investigation. InMIS Quartely 29(1), 113–143
(2005)

12. Maes, R.: Reconsidering information management through a generic framework.
PrimaVera Working Paper 99-15 (1999)

13. Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering.
SIGMOD Record 31(4), 12–17 (2002)

88 P. De Leenheer, A. de Moor, and S. Christiaens

14. Trog, D., Tang, Y., Meersman, R.: Towards ontological commitments with Ω-RIDL
markup language. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS,
vol. 4824, pp. 92–106. Springer, Heidelberg (2007)

15. Verheijen, G., Van Bekkum, J.: NIAM, an information analysis method. In: Proc. of
the IFIP TC-8 Conference on Comparative Review of Information System Methodolo-
gies (CRIS 1982). North-Holland, Amsterdam (1982)

Chapter 5
Argumentation for Reconciling Agent
Ontologies

Cássia Trojahn1, Jérôme Euzenat1, Valentina Tamma2, and Terry R. Payne2

1 INRIA & LIG
{cassia.trojahn,jerome.euzenat}@inrialpes.fr

2 University of Liverpool
{v.tamma,t.r.payne}@liverpool.ac.uk

Abstract. Within open, distributed and dynamic environments, agents frequently
encounter and communicate with new agents and services that were previously un-
known. However, to overcome the ontological heterogeneity which may exist within
such environments, agents first need to reach agreement over the vocabulary and un-
derlying conceptualisation of the shared domain, that will be used to support their
subsequent communication. Whilst there are many existing mechanisms for match-
ing the agents’ individual ontologies, some are better suited to certain ontologies or
tasks than others, and many are unsuited for use in a real-time, autonomous envi-
ronment. Agents have to agree on which correspondences between their ontologies
are mutually acceptable by both agents. As the rationale behind the preferences of
each agent may well be private, one cannot always expect agents to disclose their
strategy or rationale for communicating. This prevents the use of a centralised me-
diator or facilitator which could reconcile the ontological differences. The use of
argumentation allows two agents to iteratively explore candidate correspondences
within a matching process, through a series of proposals and counter proposals, i.e.,
arguments. Thus, two agents can reason over the acceptability of these correspon-
dences without explicitly disclosing the rationale for preferring one type of corre-
spondences over another. In this chapter we present an overview of the approaches
for alignment agreement based on argumentation.

1 Introduction

The problem of dynamic reconciliation of vocabularies, or ontologies, used by
agents during interactions has recently received significant attention, motivated by
the growing adoption of service-oriented and distributed computing. In such scenar-
ios, agents are situated in open environments and may encounter unknown agents
offering new services due to changes in a user’s context or goal. These multi-agent
systems are, by nature, distributed and heterogeneous, and as such, ontologies play
a fundamental role in formalising the concepts that agents perceive, share, or en-
counter. However, as the heterogeneity that permeates these environments increases,

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 89–111.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

90 C. Trojahn et al.

fewer assumptions on the vocabulary and content of these ontologies can be made,
hindering seamless interactions between the agents. Thus, mechanisms that can dy-
namically and autonomously reconcile the differences between ontologies are es-
sential if agents are to communicate within such open and evolving environments.

Early systems avoided the problem of ontological heterogeneity by relying on the
existence of a shared ontology, or simply assuming that a canonical set of ontology
correspondences (possibly defined at design time) could be used to resolve onto-
logical mismatches. However, such assumptions work only when the environment
is (semi-) closed and carefully managed, and no longer hold in open environments
where a plethora of ontologies exist. Moreover, the assumption of a common on-
tology forces an agent to comply with a fixed, but highly constrained view of the
world, with respect to a set of predefined tasks and, as a consequence, abandon its
own world view, which may have evolved due to interactions with other agents [8].

To facilitate the communication between two agents, they first need to estab-
lish a set of correspondences (or an alignment) between their respective ontologies.
The reconciliation of heterogeneous ontologies has been investigated at length by
research efforts in ontology matching [15], which tries to determine suitable corre-
spondences between two ontologies. However the increased availability of mecha-
nisms for ontology matching has facilitated the potential construction of a plethora
of different correspondence sets between two ontologies, depending on the approach
used. In addition, the majority of traditional matching approaches cannot be easily
utilised as part of dynamic interaction protocols since they either require human in-
tervention or they align the ontologies at design time. Even when alignments are
pre-computed and stored within some alignment library, the selection of a possible
correspondence that would be mutually acceptable to two transacting agents can
be problematic, as the choice of correspondences can be highly dependent on the
current task or available knowledge. For example, an agent may prefer correspon-
dences which have been approved by its own institution and another one may prefer
a correspondence designed for the same task. These may not be easy to reconcile.
Hence, some correspondences may be preferable to some agents, but may be un-
suitable or untrustworthy to others. In addition, it may not always be desirable for
an agent to disclose a preference for a given type of correspondence as this may
reveal its goal, and thus compromise it’s ability to negotiate strategically with other
agents within a competitive environment. Thus it is not always possible to utilise a
collaborative approach, or exploit the use of a third party mediator to determine a
mutually acceptable set of correspondences.

The agreement on a mutually acceptable alignment is an important problem
that therefore arises when different parties need to reconcile private, yet poten-
tially conflicting preferences over candidate correspondences. Such an agreement
can be achieved through a negotiation process whereby agents iteratively exchange
proposals and counter-proposals [28, 20] until some consensus is reached. Argu-
mentation can be seen as a qualitative negotiation model based on the construc-
tion and comparison of arguments [12, 29, 3], either supporting or refuting a set

Argumentation for Reconciling Agent Ontologies 91

of possible propositions. Thus, by considering these propositions as correspon-
dences (with justifications that support their use), agents can strategically argue in
favour of (or against) possible correspondences given their individual strategies or
preferences.

This chapter presents an overview on the approaches for alignment agreement
based on argumentation. The different approaches are presented following two sce-
narios. In the first one, agents with different preferences need to agree on the align-
ment of their ontologies in order to communicate with each other. For the second
scenario, specialised matcher agents rely on different matching approaches and ar-
gue on their individual results in order to obtain a consensual alignment.

The remainder of this chapter is structured as follows. First, we provide the basic
definitions of ontology matching and argumentation frameworks (§2). Next, two ar-
gumentation frameworks for alignment agreement are introduced (§3). The different
proposals on argumentation for alignment agreement are then presented (§4). The
limitations and challenges in this domain are discussed (§5). Finally, related work
(§6) and final remarks (§7) are presented.

2 Foundations: Alignment and Argumentation Frameworks

2.1 Ontology Matching

An ontology typically provides a vocabulary describing a domain of interest and a
specification of the meaning of terms in that vocabulary. As different agents within
an open multi-agent system may be developed independently, they may commit
to different ontologies to model the same domain. Whilst these different ontologies
may be similar, they may differ in granularity or detail, use different representations,
or model the concepts, properties and axioms in different ways.

In order to illustrate the matching problem, let us consider an e-Commerce mar-
ketplace, where two agents, a buyer and a seller, need to negotiate the price of
a digital camera. Before starting the negotiation, they need to agree on the vo-
cabulary to be used for exchanging the messages. They use the ontologies o and
o′, respectively (Figure 1). These ontologies contain subsumption statements (e.g.,
DigitalCamera � Product), property specifications (e.g., price domain Product) and
instance descriptions (e.g., ThisCamera price 250$).

Ontology matching is the task of finding correspondences between ontologies.
Correspondences express relationships supposed to hold between entities in ontolo-
gies, for instance, that an Electronic in one ontology is the same as a Product in
another one or that DigitalCamera in an ontology is a subclass of CameraPhoto in
another one. In the example above, one of the correspondences expresses an equiv-
alence, while the other one is a subsumption correspondence. A set of correspon-
dences between two ontologies is called an alignment. An alignment may be used,
for instance, to generate query expressions that automatically translate instances of
these ontologies under an integrated ontology or to translate queries with respect to
one ontology in to query with respect to the other.

92 C. Trojahn et al.

Electronic

brand
price

CameraPhoto
resolution
zoom
Battery

MemoryCard

Product

brandName
price

DigitalCamera
pixels
zoom

Accessory

Battery

Memory

=

=
=
�

=
=

=

=

Fig. 1. Fragments of ontologies o and o′ with alignment A.

Matching determines an alignment A′ for a pair of ontologies o and o′. There are
other parameters that can extend the definition of the matching process, namely: (i)
the use of an input alignment A, which is to be completed by the process; (ii) the
matching parameters, for instance, weights, thresholds, etc.; and (iii) external re-
sources used by the matching process, for instance, common knowledge and domain
specific thesauri.

o

o′

A matching A′

parameters

resources

Fig. 2. The ontology matching process (from [15]).

Each of the elements featured in this definition can have specific characteristics
which influence the difficulty of the matching task. As depicted in Figure 2, the
matching process receives as input three main parameters: the two ontologies to
be matched (o and o′) and the input alignment (A). The input ontologies can be
characterized by the input languages they are described (e.g., OWL-Lite, OWL-DL,
OWL-Full), their size (number of concepts, properties and instances) and complex-
ity, which indicates how deep is the hierarchy structured and how dense is the inter-
connection between the ontological entities. Other properties such as consistency,
correctness and completeness are also used for characterizing the input ontologies.
The input alignment (A) is mainly characterized by its multiplicity (or cardinality,
e.g., how many entities of one ontology can correspond to one entity of the oth-
ers) and coverage in relation to the ontologies to be matched. In a simple scenario,

Argumentation for Reconciling Agent Ontologies 93

the input alignment is empty. Regarding the parameters, some systems take advan-
tage of external resources, such as WordNet, sets of morphological rules or previous
alignments of general purpose (Yahoo and Google catalogs, for instance).

Different approaches to the problem of ontology matching have emerged from
the literature [15]. The main distinction between each is due to the type of knowl-
edge encoded within each ontology, and the way it is utilized when identifying cor-
respondences between features or structures within the ontologies. Terminological
methods lexically compare strings (tokens or n-grams) used in naming entities (or
in the labels and comments concerning entities), whereas semantic methods utilise
model-theoretic semantics to determine whether or not a correspondence exists be-
tween two entities. Approaches may consider the internal ontological structure, such
as the range of their properties (attributes and relations), their cardinality, and the
transitivity and/or symmetry of their properties, or alternatively the external on-
tological structure, such as the position of the two entities within the ontological
hierarchy. The instances (or extensions) of classes could also be compared using
extension-based approaches. In addition, many ontology matching systems rely not
on a single approach.

The output alignment A′ is a set of correspondences between o and o′. Gener-
ally, correspondences express a relation r between ontology entities e and e′ with a
confidence measure n. These are abstractly defined in [15]. In this chapter, we will
restrict the discussion to simple correspondences.

Definition 1 (Simple correspondence). Given two ontologies, o and o′, a simple
correspondence is a quintuple:

〈id, e, e′, r, n〉,
such that:

• id is a URI identifying the given correspondence;
• e and e′ are named ontology entities, i.e., named classes, properties, or in-

stances;
• r is a relation among equivalence (≡), more general (�), more specific (�),

and disjointness (⊥);
• n is a number in the [0, 1] range.

The correspondence 〈id, e, e′, n, r〉 asserts that the relation r holds between the on-
tology entities e and e′ with confidence n. The higher the confidence value, the
higher the likelihood that the relation holds. Alignments may have different cardi-
nalities; 1:1 (one-to-one), 1:m (one-to-many), n:1 (many-to-one) or n:m (many-to-
many). An alignment is a 1:1 alignment, if and only if no two different entities in
one of the ontologies are matched to the same entity in the other ontology.

Mechanisms that facilitate the construction of alignments require access to both
ontologies. Whilst it may be desirable to embed such mechanisms within agents
that operate in transparent and collaborative environments, exposing one’s ontology
may not always be desirable in competitive or adversarial environments, as this may
allow other agents to infer, and exploit this knowledge in subsequent negotiations.

94 C. Trojahn et al.

In addition, creating alignments can be costly, and thus the ability to cache or save
previously generated alignments (possibly generated by trusted third parties) may
be desirable. Thus, agents may rely on an external alignment service.

For example, the Alignment server, built on the Alignment API [13], provides
functionality to facilitate ontology matching, as well as storing and retrieving align-
ments. In addition, it can provide assistance to agents when attempting to deter-
mine relationships between their ontologies, so that they can understand and inter-
pret each other’s messages. An agent plug-in has been developed to allow agents
based on the JADE/FIPA ACL (Agent Communication Language) to interact with
the server in order to retrieve alignments.

Such a service can provide alignments over which the agents will argue in order
to choose the more suitable correspondences. Alignments, and the correspondences
within such alignments, can be better qualified, through the inclusion of metadata,
which may refer to the provenance and origin of alignments, confidence ratings,
and the original purposes for which they were created. Other metadata may also
include any manual (human-based) checks or endorsements provided by some au-
thority. This type of metadata is used, for instance, by Bioportal [26], which is an
alternative alignment web-service, where users can select correspondences based on
providence-based alignment metadata.

2.2 Argumentation Frameworks
Argumentation is a decentralised, peer-based negotiation model for reasoning based
on the construction and comparison of arguments. The central notion in argumen-
tation systems is the notion of acceptability. Different argumentation frameworks
have been specified presenting different notions of acceptability. The classical argu-
mentation framework (AF) was proposed by Dung [12], whose notion of acceptabil-
ity defines that an argument should be accepted only if every attack on it is attacked
by an accepted argument. Dung defines an argumentation framework as follows:

Definition 2 (Argumentation Framework [12]). An Argumentation Framework
(AF) is a pair 〈A, �〉, such that A is a set of arguments and � (attacks) is a bi-
nary relation on A. a � b means that the argument a attacks the argument b. A set
of arguments S attacks an argument b iff b is attacked by an argument in S.

The key question about the framework is whether a given argument a ∈ A should
be accepted or not. Dung proposes that an argument should be accepted only if
every attack on it is attacked by an accepted argument. This notion then leads to the
definition of acceptability (for an argument), admissibility (for a set of arguments)
and preferred extension:

Definition 3 (Acceptable argument [12]). An argument a ∈ A is acceptable with
respect to set arguments S, noted acceptable(a, S), iff ∀x ∈ A, (x � a −→ ∃y ∈
S, y � x).

Definition 4 (Conflict-free set [12]). A set S of arguments is conflict-free iff
¬∃x, y ∈ S, x � y. A conflict-free set of arguments S is admissible iff ∀x ∈
S, acceptable(x, S).

Argumentation for Reconciling Agent Ontologies 95

Definition 5 (Preferred-extension [12]). A set of arguments S is a preferred exten-
sion iff it is a maximal (with respect to inclusion set) admissible set of A.

Thus, a preferred extension represents a consistent position within an argumentation
framework, which defends itself against all attacks and cannot be extended without
raising conflicts.

In Dung’s framework, all arguments have equal strength, and therefore attacks
always succeed. This is reasonable when dealing with deductive arguments, but
in many domains, arguments may lack some coercive force: they provide reasons
which may be more or less persuasive. For that purpose, preference-based argu-
mentation has been designed [2] which assigns preferences to arguments, so that
preferred arguments would successfully attack less preferred ones (but not vice
versa). Bench-Capon [6] went one step further with the Value Based Argumentation
framework (VAF1), which assigns to arguments the values they promote. Agents are
distributed among different audiences which ascribe different preferences to such
values. Hence, different audiences will have different preferences among the argu-
ments and similarly, successful attacks for an audience are those made by arguments
of highest values to the audience.

Definition 6 (Value-based AF [6]). A Value-based Argumentation Framework
(VAF) is a quintuple 〈A, �,V , v,�〉 such that 〈A, �〉 is an argumentation frame-
work, V is a nonempty set of values, v : A → V , and � is the preference relation
over V (v1 � v2 means that, in this framework, v1 is preferred over v2).

To each audience, α corresponds a value-based argumentation framework VAFα

such that v1 �α v2 states that audience α prefers v1 over v2. Attacks are then
deemed successful, based on the preference ordering on the arguments’ values. This
leads to re-defining the notions seen previously:

Definition 7 (Successful attack [6]). In a value-based argumentation framework,
〈A, �,V , v,�〉, an argument a ∈ A defeats (or successfully attacks) an argument
b ∈ A, noted a†b, iff both a � b and v(b) � v(a).

Definition 8 (Conflict-free set [6]). A set S of arguments is conflict-free for an
audience α iff ∀x, y ∈ S, ¬(x � y) ∨ v(y) �α v(x).

Acceptable arguments and preferred extensions are defined as before. In order to de-
termine preferred extensions with respect to a value ordering promoted by distinct
audiences, objective and subjective acceptance are defined. An argument is sub-
jectively acceptable if and only if it appears in some preferred extension for some
specific audience. An argument is objectively acceptable if and only if it appears in
all preferred extension for every specific audience.

1 We describe here as VAF what [6] calls an audience-specific value-based argumentation
framework, but the result is equivalent.

96 C. Trojahn et al.

3 Argumentation Frameworks for Alignment Agreement

In alignment agreement, arguments can be seen as positions that support or reject
correspondences. Such arguments interact following the notion of attack and are
selected according to the notion of acceptability. Argumentation frameworks for
alignment agreement redefine the notion of acceptability, taking into account the
confidence of the correspondences and the number of agents agreeing on a cor-
respondence. In this section we first introduce the general definition of argument,
which will be extended according to the scenario where argumentation is used (§4),
and then we present the argumentation frameworks.

3.1 Arguments on Correspondences

The different approaches presented below all share the same notion of correspon-
dence argument originally defined in [22]. The general definition of correspondence
argument is as follows:

Definition 9 (Argument [22]). An argument a ∈ AF is a tuple a = 〈c, v, h〉, such
that c is a correspondence 〈e, e′, r, n〉; v ∈ V is the value of the argument and h is
one of {+,−} depending on whether the argument is that c does or does not hold.

In this definition, the set of considered values may be based on: the types of match-
ing techniques that agents tend to prefer; the type of targeted applications; informa-
tion about various level of endorsement of these correspondences, and whether or
not they have been checked manually. Thus, any type of information which can be
associated with correspondences (see §2.1) may be used. For example, an alignment
may be generated for the purpose of information retrieval; however, this alignment
may not be suitable for an agent performing a different task requiring more preci-
sion. This agent may therefor prefer the correspondences generated by a different
agent for web service composition. Likewise, another agent may prefer human cu-
rated alignments rather than alignments generated on the fly.

Arguments interact based on the notion of attack relation:

Definition 10 (Attack [22]). An argument 〈c, v, h〉 ∈ A attacks another argument
〈c′, v′, h′〉 ∈ A iff c = c′ and h �= h′.

Therefore, if a = 〈c, v1, +〉 and b = 〈c, v2,−〉, a � b and vice-versa (b is the
counter-argument of a, and a is the counter-argument of b).

3.2 Strength-Based Argumentation Framework (SVAF)

Bench-Capon’s framework acknowledges the importance of preferences when con-
sidering arguments. However, within the specific context of ontology matching, an
objection can still be raised regarding the lack of complete mechanisms for handling
persuasiveness. Indeed, many ontology matchers generate correspondences with a

Argumentation for Reconciling Agent Ontologies 97

strength that reflects the confidence they have in the similarity between the two en-
tities. These confidence levels are usually derived from similarity assessments made
during the matching process, e.g., from the edit distance measure between labels,
or overlap measure between instance sets, and thus are often based on objective
grounds. In order to represent arguments with strength, reflecting this confidence
in a correspondence, [34] proposed the Strength-based Argumentation Framework
(SVAF), extending Bench-Capon’s VAF by redefining the notion of acceptability.

Definition 11 (SVAF [34]). A strength-based argumentation framework (SVAF) is a
sextuple 〈A, �,V , v,�, s〉 such that 〈A, �,V , v,�〉 is a value-based argumentation
framework and s : A → [0, 1] represents the strength of the argument.

As in value-based argumentation frameworks, each audience α is associated with
its own framework in which only the preference relation �α differs. In order to
accommodate the notion of strength, the notion of successful attack is extended:

Definition 12 (Successful attack [34]). In a strength-based argumentation frame-
work 〈A, �,V , v,�, s〉, an argument a ∈ A successfully attacks (or defeats, noted
a†b) an argument b ∈ A iff

a � b ∧ (s(a) > s(b) ∨ (s(a) = s(b) ∧ v(a) � v(b)))

3.3 Voting-Based Argumentation Framework (VVAF)

The frameworks described so far assume that candidate correspondences between
two entities may differ due to the approaches used to construct them, and thus
these argumentation frameworks provide different mechanisms to identify corre-
spondences generated using approaches acceptable to both agents. However, dif-
ferent alignment generators may often utilise the same approach for some corre-
spondences, and thus the approach used for that correspondence may be significant.
Some large-scale experiments involving several matching tools (e.g. the OAEI 2006
Food track campaign [14]) have demonstrated that the more often a given approach
for generating a correspondence is used, the more likely it is to be valid. Thus, the
SVAF was adapted and extended in [19], to take into account the level of consen-
sus between the sources of the alignments, by introducing the notions of support
and voting into the definition of successful attacks. Support enables arguments to be
counted as defenders or co-attackers during an attack:

Definition 13 (VVAF [19]). A voting-based argumentation framework (VVAF) is a
septuple 〈A, �,S,V , v,�, s〉 such that 〈A, �,V , v,�, s〉 is a SVAF, and S is a (re-
flexive) binary relation on A, representing the support relation between arguments.
S(x, a) means that the argument x supports the argument a (i.e., they have the same
value of h). S and � are disjoint relations.

A simple voting mechanism (e.g. plurality voting) can be used to determine the
success of a given attack, based upon the number of supporters for a given approach.

98 C. Trojahn et al.

Definition 14 (Successful attack [19]). In a VVAF 〈A, �,S,V , v,�, s〉, an argu-
ment a ∈ A successfully attacks (or defeats) an argument b ∈ A (noted a†b) iff

a�b∧(|{x|S(x, a)}| > |{y|S(y, b)}|∨|{x|S(x, a)}|= |{y|S(y, b)}|∧v(a) � v(b)).

This voting mechanism is based on simple counting. As some ontology matchers
include confidence values with correspondences, a voting mechanism can exploit
this confidence value, for example by simply calculating the total confidence value
of the supporting arguments. However, this relies on the questionable assumption
that all values are equally scaled (as is the case with the SVAF). In [19], a voting
framework that normalised these confidence values (i.e. strengths) was evaluated,
but was inconclusive. Another possibility would be to rely on a deeper justification
for correspondences and to have only one vote for each justification. Hence, if sev-
eral matchers considered two concepts to be equivalent because WordNet considers
their identifier as synonyms, this would be counted only once.

4 Argumentation over Alignments

The use of argumentation has been exploited in two different scenarios presented be-
low. In the first, agents attempt to construct mutually acceptable alignments based
on existing correspondences to facilitate communication, based on their alignment
preferences (which may be task specific). They therefore argue directly over can-
didate correspondences provided by an alignment service, with each agent spec-
ifying an ordered preference of correspondence types and confidence thresholds.
The second scenario focuses on the consensual construction of alignments involv-
ing several agents, each of which specialises in constructing correspondences using
different approaches. These matching agents generate candidate correspondences
and attempt to combine these to produce a new alignment through argumentation.
Thus, whilst the first scenario utilises argumentation as a negotiating mechanism to
find a mutually acceptable alignment between transacting agents, this latter scenario
could be viewed as offering a service for negotiating alignments.

4.1 Argumentation over Alignments for Communication in
Multi-agent Systems

4.1.1 Meaning-Based Argumentation

Laera et al. proposed the meaning-based argumentation approach [22, 23, 21], to
allow agents to propose, attack, and counter-propose candidate correspondences ac-
cording to the agents’ preferences, in order to identify mutually acceptable align-
ments. Their approach utilises Bench-Capon’s VAF [6] to support the specification
of preferences of correspondent types (as discussed in §2.1) within each argument.
Thus, when faced with different, candidate correspondences who’s type differ, each
agents’ preference ordering can be considered when determining if an argument for
one correspondence will successfully attack another. Different audiences therefore

Argumentation for Reconciling Agent Ontologies 99

represent different sets of arguments for preferences between the categories of ar-
guments (identified in the context of ontology matching).

Each agent is defined as follows:

Definition 15 (Agent). An agent Agi is characterised by a tuple 〈Oi, F, εi〉, such
that Oi is the ontology used by the agent, F is its (valued-based) argumentation
framework, and εi is the private threshold value.

Candidate correspondences are retrieved from an alignment service (see §2.1) which
also provides the justifications G (described below) for each correspondence, based
on the approach used to construct the correspondence. The agents use this informa-
tion to exchange arguments supplying the reasons for their choices. In addition, as
these grounds include a confidence value associated with each correspondence, each
agent utilises a private threshold value ε to filter out correspondences with low con-
fidence values2. This threshold, together with the pre-ordering of preferences, are
used to generate arguments for and against a correspondence. It extends the notion
of argument presented in §3.1:

Definition 16 (Argument [22]). An argument is a triple 〈G, c, h〉, where c is a cor-
respondence 〈e, e′, r, n〉, G is the grounds justifying a prima facie belief that the cor-
respondence does, or does not hold; and h is one of {+,−} depending on whether
the argument is that c does or does not hold.

The grounds G justifying a correspondence between two entities are based on
the five categories of correspondence types (as discussed in §2.1) - namely Se-
mantic (S), Internal Structural (IS), External Structural (ES), Terminological (T),
and Extensional (E). These classes are used as types for the values V , i.e., V =
{M, IS, ES, T, E}, that are then used to construct an agent’s partially-ordered pref-
erences, based on the agents ontology and task. Thus, an agent may specify a prefer-
ence for terminological correspondences over semantic correspondences if the on-
tology it uses is mainly taxonomic, or vice versa if the ontology is semantically
rich. Preferences may also be based on the type of task being performed; exten-
sional correspondences may be preferred when queries are about instances that are
frequently shared. The pre-ordering of preferences � for each agent Agi is over V ,
corresponding to the specification of an audience. Specifically, for each candidate
correspondence c, if there exists one or more justifications G for c that corresponds
to the highest preferences � of Agi (with the respect of the pre-ordering), assum-
ing n is greater than its private threshold ε, an agent Agi will generate arguments
x = (G, c, +). If not, the agent will generate arguments against: x = (G, c,−). The
arguments interact based on the notion of attack, as specified in §3.1.

The argumentation process takes four main steps: (i) each agent Agi constructs an
argumentation framework V AFi by specifying the set of arguments and the attacks
between them; (ii) each agent Agi considers its individual frameworks V AFi with

2 The use of confidence profiles has since been explored to specify correspondence-type
specific thresholds, resulting in the agreement over a greater diversity of agreed corre-
spondences, and consequently more inclusive alignments [9].

100 C. Trojahn et al.

all the argument sets of all the other agents and then extends the attack relations
by computing the attacks between the arguments present in its framework with the
other arguments; (iii) for each V AFi, the arguments which are undefeated by attacks
from other arguments are determined, given a value ordering – the global view is
considered by taking the union of these preferred extensions for each audience; and
(iv) the arguments in every preferred extension of every audience are considered –
the correspondences that have only arguments for are included in the a set called
agreed alignments, whereas the correspondences that have only arguments against
them are rejected, and the correspondences which are in some preferred extension
of every audience are part of the set called agreeable alignments.

The dialogue between agents consists of exchanging sets of arguments and the
protocol used to evaluate the acceptability of a single correspondence is based on a
set of speech acts (Support, Contest, Withdraw). For instance, when exchang-
ing arguments, an agent sends Support(c, x1) for supporting a correspondence c
through the argument x1 = (G, c, +) or Contest(c, x2) for rejecting c, by x2 =
(G, c,−). If the agents do not have any arguments or counter-arguments to propose,
then they send Withdraw(c) and the dialogue terminates.

To illustrate this approach, consider the two agents buyer b and seller s, using the
ontologies in Figure 1. First, the agents access the alignment service that returns the
correspondences with the respective justifications:

• m1: 〈zoomo, zoomo′ ,≡, 1.0〉, with G = {T, ES}
• m2: 〈Batteryo, Batteryo′ ,≡, 1.0〉, with G = {T }
• m3: 〈MemoryCardoMemoryo′ ,≡, 0.54〉, with G = {T }
• m4: 〈brando, brandNameo′ ,≡, 0.55〉, with G = {T, ES}
• m5: 〈priceo, priceo′ ,≡, 1.0〉, with G = {T, ES}
• m6: 〈CameraPhotoo, DigitalCamerao′,≡, 1.0〉, with G = {ES}
• m7: 〈resolutiono, pixelso′,≡, 1.00〉, with G = {ES}

Agent b selects the audience R1, which prefers terminology to external structure
(T �R1 ES), while s prefers external structure to terminology (ES �R2 T). All
correspondences have a degree of confidence n that is above the threshold of each
agent and then all of them are taken into account. Both agents accept m1, m4 and
m5. b accepts m2, m3, while s accepts m6 and m7. Table 1 shows the arguments
and corresponding attacks.

Table 1. Arguments and attacks.

id argument attack agent

A 〈T, m1, +〉 b, s
B 〈ES, m1, +〉 b, s
C 〈T, m2, +〉 D b
D 〈ES, m2,−〉 C s
E 〈T, m3, +〉 F b
F 〈ES, m3,−〉 E s
G 〈T, m4, +〉 b, s

id argument attack agent

H 〈ES, m4, +〉 b, s
I 〈T, m5, +〉 b, s
J 〈ES, m5, +〉 b, s
L 〈ES, m6, +〉 M s
M 〈T, m6,−〉 L b
N 〈ES, m7, +〉 O s
O 〈T, m7,−〉 N b

Argumentation for Reconciling Agent Ontologies 101

The arguments A, B, G, H , I , and J are not attacked and then are acceptable for
both agents (they form the agreed alignment). The arguments C and D are mutually
attacked and are acceptable only in the corresponding audience, i.e., C is acceptable
for the audience b and D is acceptable for the audience s. The same occurs for the
arguments E, F , L, M , M , and O. The correspondences in such arguments are seen
as the agreeable alignments.

4.1.2 The Approach by Trojahn and Colleagues

In order to provide translations between messages in agent communication, [33]
formally defines an alignment as a set of correspondences between queries over
ontologies. The alignment is obtained by specialised matcher agents that argue in
order to agree on a globally acceptable alignment. The set of acceptable arguments
is then represented as conjunctive queries in OWL-DL [18].

A conjunctive query has the form
∧

(Pi(si)), where each Pi(si) represents a cor-
respondence. For instance, 〈CameraPhotoo, DigitalCamerao′,≡, 1.0〉 is repre-
sented as Q(x) : CameraPhoto(x) ≡ DigitalCamera(x).

Consider the example where the agents “buyer b” and “seller s” interact to agree
on the price of a digital camera, using the ontologies o and o′ of Figure 1, respec-
tively. Before the agents can agree on the price, they need to agree on the terms used
to communicate to each other. This task can be delegated to a matcher agent m,
that receives the two ontologies and sends them to an argumentation module. This
module, made up of different specialised agents a1, ..., an (which can be distributed
on the web), receives the ontologies and returns a set of DL queries representing the
acceptable correspondences. These interactions are loosely based on the Contract
Net Interaction Protocol [16]. The argumentation process between the specialised
matchers is detailed in Section 4.2. Table 2 describes the steps of the interaction
between the agents.

Table 2. Interaction steps [33].

Step Description
1 Matcher agent m requests the ontologies to be matched to agents b and s
2 Ontologies are sent from m to the argumentation module
3 Matchers a1, ..., an apply their algorithms
4 Each matcher ai communicate with each others to exchange their arguments
5 Preferred extensions of each ai are generated
6 Objectively acceptable arguments o are computed
7 Correspondences in o are represented as conjunctive queries
8 Queries are sent to m
9 Queries are sent from m to b and s
10 Agents b and s use the queries to communicate with each other

102 C. Trojahn et al.

In fact, only one of the agents should receive the DL queries, which should be
responsible for the translations. We consider that the set of objectively acceptable
arguments has the correspondences shown in Figure 3, with the respective queries.

Query ID Correspondences
Qb1(x) b:CameraPhoto(x)
Qs1(x) s:DigitalCamera(x)
m1 Qb1 ≡ Qs1

Qb2(y) b:zoom(y)
Qs2(y) s:zoom(y)
m2 Qb2 ≡ Qs2

Qb3(y) b:resolution(y)
Qs3(y) s:pixels(y)
m3 Qb3 ≡ Qs3

Fig. 3. Conjunctive queries.

buyer seller

cfp(Message-b(CameraPhoto(Sony),resolution(10M)))

proposal(Message-s(price(500)))

accept-proposal

FIPA-CNProtocol

start negotiation

Query(DL Queries,Ontology b,Message-b)

Fig. 4. Interaction between buyer and seller agents.

Figure 4 shows an AUML3 interaction diagram with the messages exchanged
between the agents b and s during the negotiation of the price of the camera. The
agents use the queries to search for correspondences between the messages sent
from each other and the entities in the corresponding ontologies. In the example,
the agent b sends a message to the agent s, using its vocabulary. Then, the agent s
converts the message, using the DL queries.

4.1.3 Reducing the Argumentation Space through Modularization

Doran et al. [11] utilised modularization to identify the ontological descriptions rele-
vant to the communication, and consequently reduce the number of correspondences
necessary to form the alignment. The use of argumentation can be computationally
costly, as the complexity can reach Π

(p)
2 -complete in some cases. Thus, by reduc-

ing the number of arguments, the time required for generating the alignments can
be significantly reduced; even when taking into account the time necessary for the
modularization process itself. In an empirical study, the authors found that the use
of modularization significantly reduced the average number of correspondences pre-
sented to the argumentation framework, and hence the size of the search space – in
some cases by up to 97%, across a number of different ontology pairs. They also
noted that three patterns emerged: i) where no reduction in size occurred (in 4.84%
of cases within the study); ii) where the number of correspondences was reduced
(55.14%); and iii) where modules of size zero were found (40.02%), corresponding
to failure scenarios; i.e. where the subsequent transaction would fail due to insuffi-
cient alignment between the ontologies.

An ontology modularization technique extracts a consistent module M from an
ontology A that covers a specified signature Sig(M), such as Sig(M) ⊆ Sig(O).
3 AUML – Agent Unified Modelling Language [17].

Argumentation for Reconciling Agent Ontologies 103

M is the part of O that is said to cover the elements defined by Sig(M). The first
agent engaging in the communication specifies the Sig(M) of its ontology O where
M is an ontology concept relevant for a task. The resulting module contains the en-
tities considered to be relevant for its task, including the subclasses and properties
of the concepts in Sig(M). The step-by-step interaction between two agents, fol-
lowing an argumentation based on modularization is presented in Table 3.

Table 3. Ontology modularization and argumentation for alignment agreement [10].

Step Description
1 Ag1 asks a query, query(A ∈ Sig(O)) to Ag2.
2 Ag2 does not understand the query, A /∈ Sig(O′)) and informs Ag1 they need to

use a server.
3 Ag1 produces, om(O, Sig(A)), an ontology module, M , to cover the concepts

required for its task.
4 Ag1 and Ag2 invoke the server. Ag1 sends its ontology, O and the signature of

M , Sig(M).
5 The alignment service aligns the two ontologies and filters the correspondences

according to M . Only those features an entity from M are returned to both agents.
6 The agents begin the process of argumentation, with each agent generating

arguments and counter-arguments.
7 The iteration terminates when the agents agree on a set of correspondences.
8 Ag1 asks again Ag2, using the agreed correspondences,

query(A ∈ Sig(O) ∧ B ∈ Sig(O′)) where A and B are aligned.
9 Ag2 answers the query using the agreed correspondences.

For communicating, only the initiating agent (Ag1) is aware of its task and, con-
sequently, which concepts are relevant to this task (Steps 1 and 2). These concepts
will be included in Sig(M), the signature of the resulting ontology module (Step 3).
The set of candidate correspondences (Step 4) is filtered (Step 5) according to the
filtering function filter(). filter returns a subset Z of correspondences, where the
entities e in these correspondence are in Sig(M). The set Z is then used within
the argumentation process. Modularization is therefore used to filter the correspon-
dences that are passed to the argumentation process. The agents then argue (Steps
6-7) to reach an acceptable alignment.

The combination of argumentation and modularization reduces the cost of reach-
ing an agreement over an alignment, by reducing the size of the set of correspon-
dences argued over, and hence the number of arguments required. This greatly con-
tributes to reduce the consumed time, at a minimal expense in accuracy.

Following the example of the buyer and seller agents, the buyer agent knows
which concepts will be used for communicating and then a module of the ontology
o is extracted containing such concepts (i.e., CameraPhoto, resolution, zoom,
and price). The buyer agent then filters the correspondences in order to retrieve the
subset containing only these concepts.

104 C. Trojahn et al.

4.2 Solving Conflicts between Matcher Agents

In [34], alignments produced by different matchers are compared and agreed via
an argumentation process. The matchers interact in order to exchange arguments
and the SVAF model (§3.2) is used to support the choice of the most acceptable of
them. Each correspondence can be considered as an argument because the choice
of a correspondence may be a reason against the choice of another correspondence.
Correspondences are represented as arguments, extending the notion of argument
specified in §3.1:

Definition 17 (Argument). An argument x ∈ AF is a tuple x = 〈c, v, s, h〉, such
that c is a correspondence 〈e, e′, r, n〉; v ∈ V is the value of the argument; s is the
strength of the argument, from n; and h is one of {+,−} depending on whether the
argument is that c does or does not hold.

The matchers generate arguments representing their alignments following a nega-
tive arguments as failure strategy. It relies on the assumption that matchers return
complete results. Each possible pair of ontology entities which is not returned by the
matcher is considered to be at risk, and a negative argument is generated (h = −).

The values v in V correspond to the different matching approaches and each
matcher m has a preference ordering �m over V such that its preferred values
are those it associates to its arguments. For instance, consider V= {l, s, w}, i.e.,
lexical, structural and wordnet-based approaches, respectively, and three matchers
ml, ms and mw, using such approaches. The matcher ml has as preference order
l �ml

s �ml
w. The basic idea is to obtain a consensus between different matchers,

represented by different preferences between values. Arguments interact based on
the notion of attack presented in §3.1.

The argumentation process can be described as follows. First, each matcher gen-
erates its set of correspondences, using some specific approach and then the set of
corresponding arguments is generated. Next, the matchers exchange with each oth-
ers their set of arguments – the dialogue between them consists of the exchange of
individual arguments. When all matchers have received the set of arguments of each
others, they instantiate their SVAFs in order to generate their set of acceptable cor-
respondences. The consensual alignment contains the correspondences represented
as arguments that appear in every set of acceptable arguments, for every specific
audience (objectively acceptable).

In order to illustrate this process, consider two matchers, ml (lexical) and ms

(structural), trying to reach a consensus on the alignment between the ontologies in
Figure 1. ml uses an edit distance measure to compute the similarity between labels
of concepts and properties of the ontologies, while ms is based on the comparison
of the direct super-classes of the classes or classes of properties. Table 4 shows the
correspondences and arguments generated by each matcher. The matchers generate
complete alignments, i.e., if a correspondence is not found, an argument with value
of h = − is created. It includes correspondences that are not relevant to the task
at hand. For the sake of brevity, we show only the arguments with h = + and
the corresponding counter-arguments (Table 5). We consider 0.5 as the confidence

Argumentation for Reconciling Agent Ontologies 105

level c for negative arguments (h = −). Considering V = {l, v}, ml associates to
its arguments the value l, while ms generates arguments with value s. ml has as
preference ordering: l �ml

s, while ms has the preference: s �ms l.

Table 4. Correspondences and arguments generated by ml and ms.

id correspondence argument matcher

A cl,1 = 〈zoomo, zoomo′ ,≡, 1.0〉 〈cl,1, l, 1.0, +〉 ml

B cl,2 = 〈Batteryo, Batteryo′,≡, 1.0〉 〈cl,2, l, 1.0+〉 ml

C cl,3 = 〈MemoryCardoMemoryo′ ,≡, 0.33〉 〈cl,3, l, 0.33, +〉 ml

D cl,4 = 〈brando, brandNameo′ ,≡, 0.22〉 〈cl,4, l, 0.22, +〉 ml

E cl,5 = 〈priceo, priceo′ ,≡, 1.0〉 〈cl,5, l, 1.0, +〉 ml

F cs,1 = 〈CameraPhotoo, DigitalCamerao′ ,≡, 1.0〉 〈cs,1, s, 1.0, +〉 ms

G cs,2 = 〈zoomo, zoomo′ ,≡, 1.0〉 〈cs,2, s, 1.0, +〉 ms

H cs,3 = 〈brando, brandNameo′ ,≡, 1.0〉 〈cs,3, s, 1.0, +〉 ms

I cs,4 = 〈resolutiono, pixelso′ ,≡, 1.0〉 〈cs,4, s, 1.0, +〉 ms

J cs,5 = 〈priceo, priceo′ ,≡, 1.0〉 〈cs,5, s, 1.0, +〉 ms

Table 5. Counter-arguments (attacks) for the arguments in Table 4.

id correspondence counter-argument matcher

L cl,6 = 〈CameraPhotoo, DigitalCamerao′,≡, 0.5〉 〈cl,6, l, 0.5,−〉 ml

M cl,7 = 〈resolutiono, pixelso′ ,≡, 0.5〉 〈cl,7, l, 0.5,−〉 ml

N cs,6 = 〈Batteryo, Batteryo′ ,≡, 0.5〉 〈cs,6, s, 0.5,−〉 ms

O cs,7 = 〈MemoryCardo, Memoryo′ ,≡, 0.5〉 〈cs,7, s, 0.5,−〉 ms

Having their arguments A, the matchers exchange them. ml sends to ms its set
of arguments Al and vice-versa. Next, based on the attack notion, each matcher
mi generates its attack relation �i and then instantiates its SV AFsi. The argu-
ments A, D, E, G, H and J are acceptable in both SVAFs (they are not attacked
by counter-arguments with h = −). F , I , and B (h = +) successfully attack their
counter-arguments (h = −) L, M and N , respectively, because they have high-
est confidence in their correspondences. C (h = +) is successfully attacked by its
counter-argument O.

The arguments in the preferred extension of both matchers ml and ms are:
A, D, E, F , G, H , J , F , I , B and O. While 〈resolutiono, pixelso′,≡, 1.0〉,
〈Batteryo, Batteryo′ ,≡, 1.0〉 and 〈CameraPhotoo, DigitalCamerao′,≡, 1.0〉
have been accepted, 〈MemoryCardo, Memoryo′ ,≡, 0.33〉 has been discarded.

5 Weaknesses and Challenges

As discussed above, argumentation for alignment agreement has been exploited in
different ways, for different scenarios. However, there are still various challenges
ahead for achieving a fully satisfying approach. We briefly consider some of them.

106 C. Trojahn et al.

Confidence of arguments
In [34], the notion of attack between the arguments highly depends on the confi-
dence associated to the correspondences. Such confidence levels are usually de-
rived from similarity assessments made during the matching process, e.g., from
edit distance measure between labels, or overlap measure between instance sets.
However, there is no objective theory nor even informal guidelines for deter-
mining such confidence levels. Using them to compare results from different
matchers is therefore questionable especially because of potential scale mis-
matches. For example, a same strength of 0.8 may not correspond to the same
level of confidence for two different matchers.

Complete alignments
Generating complete alignments is at first sight quite unrealistic, but it can nev-
ertheless be supported by the observation that most matchers try to provide as
much correspondences as possible. However, dealing with a large number of
arguments can become prohibitively costly. Following the approach from [10],
the search space within the argumentation process can be reduced, by isolating
only the correspondences that are relevant to the communication. Other authors
isolate the subpart of the ontologies to be matcher relevant for the communi-
cation before matching only these pieces of ontologies instead of the whole
ontologies [27]. These approaches have to be developed with guarantees that
the isolated items are the relevant ones.

Inconsistent alignments
An important issue in such argumentation for alignment agreement is related
to the potential inconsistency in the agreed alignment. Indeed, even if the ini-
tial alignments are consistent, selected sets of correspondences may generate
concepts that are not satisfiable.

Solving the inconsistency problem in alignments has two possible alterna-
tives:

• express the inconsistency within the argumentation framework [1];
• deal alternatively with the logical and argumentative part of the problem.

Integrating the logics within the argumentation framework seems a more elegant
solution and it can be achieved straightforwardly when correspondences are ar-
guments and incompatible correspondences can mutually attack each others.
However, this works only when two correspondences are incompatible. When
the set of incompatible correspondences is larger, the encoding is not so straight-
forward and may lead to the generation of an exponential amount of argument
and attack relations. On the other side, alternating logical and argumentative
treatments may also lead to prohibitive computational costs.

In this case, the solution seems to be a trade-off between the computational
costs and the expected consistency.

Argumentation for Reconciling Agent Ontologies 107

Availability of justifications
The presented approaches argue for or against a correspondence based on justi-
fications for the arguments. They are thus highly dependent on justifications for
the arguments provided with the alignments. Although, alignment servers pro-
vide the necessary metadata for storing such justification with alignments (see
§2.1), it is not common for people or for matchers to provide this information.

Ideally, matchers should provide such justifications, as a way to understand
why a particular alignment is found or why a certain match is ranked higher
than another. However, this is not common practice.

The development of such methods may therefore be slowed by the unavail-
ability of justification metadata. It seems necessary to provide incentive to both
automatic and manual matchers to generate this information. One such incen-
tive could be, of course the ability to be involved in an argumentation process
and then to provide better alignments. Another incentive would be to better help
explain matcher results to users [30].

6 Other Related Work

This chapter has covered all the work carried out in the domain of alignment argu-
mentation per se. However, in order to find alignments between ontologies used by
agents, some work have proposed different techniques that we consider here.

[31] has proposed alignment negotiation to establish a consensus between differ-
ent agents using the MAFRA alignment framework [24]. The approach is based on
utility functions used to evaluate the confidence in a particular correspondence in
the context of each agent. These confidence values are combined in order to decide
if the correspondence is accepted, rejected or need to be negotiated. A meta-utility
function is also applied to evaluate if the effort necessary to negotiate is beneficial
or not; it may so automatically change the thresholds so that some correspondences
are directly rejected or accepted. The approach is highly dependent on the MAFRA
framework and cannot be directly applied to other environments.

Schemes for obtaining ontology alignments through the working cycles of agents
have been developed. They either observe failure or success of the communication
and statistically learn the alignments [7] or they use the interaction protocol of each
agent for reducing the possible meaning of concepts used as performative [4].

[8] presents an approach for agents to agree on a common ontology in a decen-
tralised way. The approach assumes that each agent adopts a private ontology and
shares an intermediate ontology. The private ontology is used for storing and rea-
soning with operational knowledge, i.e., knowledge relevant to a particular problem
or task at hand. The intermediate ontology is used for communication. Communica-
tion proceeds by translating from the speaker’s private ontology to the intermediate
ontology which the hearer translates back again into its own private ontology. The
authors show how to establish such an intermediate ontology, which is the common
goal for every agent in the system. In the approaches we have presented, on the other
hand, the result of the negotiation is a set of correspondences between the terms of
the different ontologies.

108 C. Trojahn et al.

[5] presents an ontology negotiation protocol to provide semantic interoperability
in multi-agent systems in an automated fashion at run-time. The ontology negotia-
tion protocol enables agents to discover ontology conflicts or unknown terms. Then,
it goes through (i) incremental interpretations of the unknown terms with the help
of external resources, (ii) clarification, by proposing putative correspondences, (iii)
evaluation, through the impact of such correspondences on some tasks, and (iv) up-
date of the ontology with the correspondence. The final result of this process is that
each agent will converge on a single, shared ontology. In contrast, in the approaches
presented in this chapter, agents keep their own ontologies that they have been de-
signed to reason with, whilst generating alignments with other agent’s ontologies.

In [25], the authors propose an argumentation framework for inter-agent dialogue
to reach an agreement on terminology, which formalizes a debate in which the di-
vergent representations (expressed in description logic) are discussed. The proposed
framework is stated as being able to manage conflicts between claims, with different
relevancies for different audiences, in order to compute their acceptance. However,
no detail is given about how agents will generate such claims.

[32] proposes a cooperative negotiation model, where agents apply individual
matching algorithms and negotiate on a final alignment. Basically, the negotiation
process involves the exchange of proposal and counter-proposals that represents
correspondences. Each correspondence is negotiated individually. Three kinds of
agents interact, lexical, structural, and semantic, and the communication is managed
by a mediator agent.

7 Final Remarks

This chapter has presented an overview of the approaches for alignment agreement
based on argumentation. Such approaches provide a way for agents, with differ-
ent ontologies, to agree upon mutually acceptable ontology alignments to facilitate
communication within a dynamic environment.

We have discussed how two agents commiting to different ontologies can align
their ontologies in order to interoperate and how agents relying on different match-
ing approaches can agree on a common alignment. The approaches for both scenar-
ios are not fully satisfying and there are still various challenges ahead for achieving
such maturity.

References

1. Amgoud, L., Besnard, P.: Bridging the gap between abstract argumentation systems and
logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 12–27. Springer,
Heidelberg (2009)

2. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumen-
tation. In: Cooper, G., Moral, S. (eds.) Proceedings of the 4th Conference on Uncertainty
in Artificial Intelligence (1998)

3. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-
ments. Annals of Mathematics and Artificial Intelligence 34(1-3), 197–215 (2002)

Argumentation for Reconciling Agent Ontologies 109

4. Atencia, M.: Semantic alignment in the context of agent interaction. Ph.D. thesis, Uni-
versita Autonoma de Catalunya, Barcelona (SP) (2010)

5. Bailin, S.C., Truszkowski, W.: Ontology negotiation between intelligent information
agents. Knowledge Engineering Review 17(1), 7–19 (2002), DOI
http://dx.doi.org/10.1017/S0269888902000292

6. Bench-Capon, T.: Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

7. Besana, P., Robertson, D.: How service choreography statistics reduce the ontology
mapping problem. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 44–57. Springer,
Heidelberg (2007)

8. van Diggelen, J., Beun, R.J., Dignum, F., van Eijk, R.M., Meyer, J.J.: ANEMONE: An
effective minimal ontology negotiation environment. In: Proceedings of the 5th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pp. 899–906.
ACM, New York (2006), DOI
http://doi.acm.org/10.1145/1160633.1160794

9. Doran, P., Payne, T.R., Tamma, V., Palmisano, I.: Deciding agent orientation on ontol-
ogy mappings. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 161–176.
Springer, Heidelberg (2010)

10. Doran, P., Tamma, V., Palmisano, I., Payne, T.R.: Efficient argumentation over on-
tology correspondences. In: Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 1241–1242. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC (2009)

11. Doran, P., Tamma, V., Payne, T., Palmisano, I.: Dynamic selection of ontological align-
ments: A space reduction mechanism. In: International Joint Conference on Artificial
Intelligence (2009),
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/
view/551

12. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n–person games. Artificial Intelligence 77(2),
321–357 (1995)

13. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van
Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg
(2004)

14. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V., van Hage,
W.R., Yatskevich, M.: Results of the ontology alignment evaluation initiative 2006. In:
First International Workshop on Ontology Matching, Athens, GA, US (2006)

15. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
16. FIPA: Contract net interaction protocol specification. Tech. Rep. SC00029H, Foundation

for Intelligent Physical Agents (2002)
17. FIPA: Modeling: Interaction diagrams. Tech. rep., Foundation for Intelligent Physical

Agents (2003)
18. Haase, P., Motik, B.: A mapping system for the integration of OWL-DL ontologies.

In: Proceedings of the 1st International Workshop on Interoperability of Heterogeneous
Information Systems, pp. 9–16. ACM, New York (2005), DOI
http://doi.acm.org/10.1145/1096967.1096970

http://dx.doi.org/10.1017/S0269888902000292
http://doi.acm.org/10.1145/1160633.1160794
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/view/551
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/view/551
http://doi.acm.org/10.1145/1096967.1096970

110 C. Trojahn et al.

19. Isaac, A., dos Santos, C.T., Wang, S., Quaresma, P.: Using quantitative aspects of
alignment generation for argumentation on mappings. In: Shvaiko, P., Euzenat, J.,
Giunchiglia, F., Stuckenschmidt, H. (eds.) OM, CEUR Workshop Proceedings, vol. 431.
CEUR-WS.org (2008)

20. Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., Sierra, C.: Au-
tomated negotiation: Prospects methods and challenges. Group Decision and Negotia-
tion 10(2), 199–215 (2001)

21. Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argumentation
over ontology correspondences in MAS. In: Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 1–8. ACM, New York
(2007), DOI
http://doi.acm.org/10.1145/1329125.1329400

22. Laera, L., Tamma, V., Euzenat, J., Bench-Capon, T., Payne, T.R.: Reaching agreement
over ontology alignments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 371–384.
Springer, Heidelberg (2006), doi:10.1007/11926078

23. Laera, L., Tamma, V.A.M., Euzenat, J., Bench-Capon, T.J.M., Payne, T.R.: Agents ar-
guing over ontology alignments. In: Dunin-Keplicz, B., Omicini, A., Padget, J.A. (eds.)
Proceedings of the 4th European Workshop on Multi-Agent Systems, CEUR Workshop
Proceedings, vol. 223, CEUR-WS.org (2006)

24. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA – A mApping fRAmework for
distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS
(LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002)

25. Morge, M., Routier, J.C., Secq, Y., Dujardin, T.: A formal framework for inter-agents
dialogue to reach an agreement about a representation. In: Ferrario, R., Guarino, N.,
Prevot, L. (eds.) Proceedings of the Workshop on Formal Ontologies for Communicating
Agents (2006)

26. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin,
D.L., Storey, M.A.D., Chute, C.G., Musen, M.A.: Bioportal: ontologies and integrated
data resources at the click of a mouse. Nucleic Acids Research 37(Web-Server-Issue),
170–173 (2009)

27. Packer, H., Payne, T., Gibbins, N., Jennings, N.: Evolving ontological knowledge bases
through agent collaboration. In: Proceedings 6th European Workshop on Multi-Agent
Systems, Bath, UK. Springer, Heidelberg (2008)

28. Parsons, S., Jennings, N.: Negotiation through argumentation-A preliminary report. In:
Proceedings of the 2nd International Conference Multi-Agent Systems, Kyoto, Japan,
pp. 267–274 (1996)

29. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible
priorities. Journal Applied Non-Classical Logics 7(1), 25–75 (1997)

30. Shvaiko, P., Giunchiglia, F., da Silva, P.P., McGuinness, D.L.: Web explanations for se-
mantic heterogeneity discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005.
LNCS, vol. 3532, pp. 303–317. Springer, Heidelberg (2005)

31. Silva, N., Maio, P., Rocha, J.: An approach to ontology mapping negotiation. In: Pro-
ceedings of the Third International Conference on Knowledge Capture Workshop on
Integrating Ontologies, Banff, Canada (2005)

32. Trojahn, C., Moraes, M., Quaresma, P., Vieira, R.: Using cooperative agent negotiation
for ontology mapping. In: Proceedings of the 4th European Workshop on Multi-Agent
Systems, CEUR Workshop Proceedings, vol. 223, pp. 1–10. CEUR-WS.org (2006)

http://doi.acm.org/10.1145/1329125.1329400

Argumentation for Reconciling Agent Ontologies 111

33. Trojahn, C., Quaresma, P., Vieira, R.: Conjunctive queries for ontology based agent com-
munication in MAS. In: Proceedings of the 7th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 829–836. International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC (2008)

34. Trojahn, C., Quaresma, P., Vieira, R., Moraes, M.: A cooperative approach for composite
ontology mapping. LNCS Journal on Data Semantic X (JoDS) 4900(1), 237–263 (2008),
doi:10.1007/978-3-540-77688-8

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 113–132.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 6
Measuring Complexity for MAS Design in the
Presence of Ontology Heterogeneity

Maricela Bravo

CINVESTAV-IPN, Computing Science Department, México
mbravo@computacion.cs.cinvestav.mx

Abstract. Currently multiple agent-based solutions are being integrated and deployed
to solve complex problems. This is possible because of the evolution of information
technologies, such as Internet-based open standards, XML-based languages,
protocols and middleware. However, one of the challenges that has to be tackled is to
overcome inter-agent ontology communication heterogeneity. This chapter gives an
overview of multi-agent systems (MAS) communication challenges, with special
stress on the ontology heterogeneity problem. A set of measures are presented to give
the MAS designer the key design guidelines and important considerations when
selecting an architectural solution approach to overcome heterogeneity of the set of
agents participating in the communication scenario. An overview of current solutions
is discussed, analyzing the important aspects to consider for each solution approach.
Finally, a comparison with various MAS examples is presented to observe the
differences between architectures and their associated costs.

1 Introduction

The evolution of information technologies, such as Internet-based open standards,
XML-based languages, protocols and middleware; have promoted the reutilization
and integration of different autonomous agents (legacy or newly developed), to form
intelligent systems which coordinate and/or cooperate to solve complex problems
beyond their individual capabilities. Regardless of the existence of software
platforms, tools, and integrated development environments for MAS; the
interoperation of heterogeneous agents in open and dynamic environments still
requires human intervention – from design and development to maintenance of
integrated systems - warranting full interoperability. One of the most challenging
tasks in MAS development and integration is to implement efficient communication
interoperability between participating agents, especially when agents have been
developed and deployed by different providers.

1.1 MAS Communication Overview

Communication in MAS is among the most researched topics in Distributed
Artificial Intelligence (DAI). Many aspects of communication between agents

114 M. Bravo

have been studied: social commitments [1, 2], dialogues [3, 4], conversations [5],
protocols, agent communication language (ACL) semantics and pragmatics,
among others. Communication in MAS comprises the following elements: agents,
protocols, agent communication language, and messages.

Agents. One of the most referred definitions of agent was presented by Wooldgridge
and Jennings [6], who state that “an agent is an encapsulated computer system that is
situated in some environment, and that is capable of flexible, autonomous action in
that environment in order to meet its design objectives”. Of particular interest is the
notion of an agent as an entity capable of showing flexible behavior for problem
solving. The abilities of individual agents to solve problems and communicate are
fundamental to integrate MAS.

Communication protocols. According to Endriss et.al [7] a protocol specifies the
rules of interaction between agents by restricting the range of allowed utterances
sequences for each agent at any stage during a communication interaction. Among
the important aspects to study in agent communication protocols is their semantics
and pragmatics. Correct semantic treatment of protocols allows a unified meaning
across heterogeneous agents, while pragmatics studies the effect and contextual
interpretation of an utterance, observing the intention of emitter, the effect on the
receiver and the surrounding context of the conversation.

Agent Communication Language (ACL). Communication in MAS occurs in
peer to peer connections, where agents exchange messages by means of an ACL.
KQML [8] was the first standardized ACL from the Defense Advanced Research
Projects Agency (DARPA) knowledge project. KQML consists of a set of
communication primitives aiming to support interaction between agents. Another
ACL [9] standard comes from the Foundation for Intelligent Physical Agents
(FIPA) initiative. FIPA ACL is based on speech act theory, and the messages
generated are considered as communicative acts. The objective of using a standard
ACL is to achieve effective communication without misunderstandings.

Messages. According to FIPA specifications [10] an ACL Message Structure
contains one or more of the parameters described in Table 1. The only mandatory
parameter is performative.

Table 1. Elements of a message according to FIPA specification

Element type Message parameters

Type of communicative act Performative

Participant in communication Sender, receiver, reply-to

Content of message Content

Description of content Language, encoding, ontology

Control of conversation Conversation-id, reply-with, in-reply-to

In particular, this work is centered on the description of content, which requires

the specification of the following parameters: language, to denote the language in
which the content parameter is expressed; and ontology, to specify the ontology or

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 115

ontologies used to give meaning to the symbols in the content expression. Both
parameters are used in conjunction to support the interpretation of the message
content by the receiving agent.

1.2 Ontologies for Inter-agent Communication

An important characteristic of intelligent agents is the use of ontologies to
represent abstractions of their domain of knowledge. These ontologies are
fundamental because they are part of the generated messages, and are helpful to
communicate about the domain of knowledge of the particular agent. An ontology
defines the basic terms and relations comprising the vocabulary of a topic area as
well as the rules for combining terms and relations to define extensions to the
vocabulary [11]. Each ontology represents the agent conceptualization of a
particular domain, including hierarchical relations (subsuming, siblings, is-a); any
specified semantic relations between concepts and individuals; axioms which
restrict the population of the ontology; and sometimes a set of rules to execute
inference over the concepts and individuals inside the ontology. Ontologies play
an important role during inter-agent communication, because each agent uses its
own ontology to generate messages and communicate its beliefs, desires and
intentions to the rest of participating agents. One of the key design issues to
achieve interoperation between agents is to create a good solution to overcome
heterogeneity among their individual ontologies.

There are various reported works in literature addressing this problem.
Weisman et.al [12] identified two types of heterogeneity: structural and semantic.
Uschold [13] described two sources of problems for agent communication:
language heterogeneity and terminological heterogeneity. Stuckenshmidt [14]
analyzes three possible solutions: merging approach, mapping approach and
translation with shared ontologies. The later is used as a preferred solution; the
main disadvantage is that no attention is made to the learning capability of agents.

1.3 Problem Formulation

The main focus of this paper is to support MAS integrators in the arduous task of
designing a solution to overcome the ontology heterogeneity problem, when a set
of different agents are selected to participate in the solution of a complex problem.
Given a MAS represented as the tuple <A, P, CP, T >, where

A – Represents the set of participating agents. A = { a1, a2, a3, …,an }, where ai
is an independent agent, with i ranging from 1 to the number of agents n.

P – Represents the set of protocols
CP – Represents the set of all communication primitives
T – Represents the union of all domain concepts used for communication

between all participating agents. The set of domain concepts is given by T = { Ta1,
Ta2, Ta3, …,Tan }, where each Tan = { t1, t2, t3,…, tj }, represents the set of terms of
agent n, and each term tj ∈ Tan is generated from the ontology of agent n.

116 M. Bravo

Formalization of this problem is as follows:
Given a MAS with a set A of n autonomous agents with their respective sets of

terms Ta1, Ta2, …,Tan; there is a problem of inter-agent ontology heterogeneity if
|Ta1 ∩ Ta2 ∩ ... ∩ Tan| < |Ta1 ∪ Ta2 ∪ ... ∪ Tan|.

The objective of this study is to provide design guidelines in the form of
numerical measures, to support the MAS integrator with the decision of selecting
a good solution.

The rest of this chapter is organized as follows: in Section 2, architectural
design considerations are described; in Section 3, a set of basic measures are
presented; Section 4 provides the set of measures for a centralized architecture;
whereas Section 5 offers a set of measures for distributed architecture; in Section
6, an experimental case is described; in Section 7, results are analyzed and
discussed; finally in Section 8, conclusions are presented.

2 MAS Architectural Design

MAS architectural design plays a crucial role towards efficient implementation of
inter-agent communication support. In this section, the most important design
considerations are presented: architectural considerations and associated costs (see
Table 2). The goal is to provide the MAS designer with a set of measures that will
guide the selection of an accurate solution approach to overcome heterogeneity.

Table 2. MAS Architectural design

Architecture Type
a) Fixed

b) Changing or
adaptable

Architectural

Considerations
Architecture Arrangement

a) Centralized

b) Distributed

c) Hybrid

Associated Costs Associated Costs

a) Translation

b) Learning

c) Ontology
maintenance

2.1 Architectural Considerations

Neches et.al [11] presented their vision of the challenges to enable knowledge
sharing, they identified a range of potentially heterogeneous system models:
centralized, distributed, hierarchical and mixed. Wermelinger and Fiadeiro [15]

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 117

identified some issues related to the evolution of architectures over time.
Specially, they presented a concept of dynamic reconfiguration, referring to
architectures that may change before execution or at run-time. Based on these
works and further analysis, the most important architectural considerations that
should be analyzed are architecture type and architecture arrangement.
Architecture type corresponds to the moment when the architecture is arranged,
while the architecture arrangement represents the functional configuration of
interrelationships between elements. Considering the architecture type, two
possibilities exist:

a) Fixed. This architecture is pre-established at design time. The main purpose of
the designer is to create a permanent architecture configuration that will support
MAS interaction for a period of time, a pre-requisite is to analyze the
heterogeneity between participating agents and all associated computational
costs.

b) Changing or adaptable. This architectural configuration has the ability to adapt
to changes in the MAS environment at run time. One of the most important
considerations of adaptation is the cost associated to continuous monitoring of
variables that affect the performance of interaction.

Considering the arrangement, the following configurations can be selected:

a) Centralized. A centralized configuration consists of a set of autonomous agents
with their ontologies, a centralized ontology and a translator service. This
configuration supports inter-agent communication through the invocation of a
translator service whenever a misunderstanding occurs. The name of
centralized is due to the central ontology, into which all terms from agents
ontologies (classes and individuals) are allocated, enhanced, and aligned.

b) Distributed. A distributed configuration consists of a set of autonomous agents
with their ontologies, in a distributed architecture agents are grouped into
clusters in accordance to a similarity measure.

c) Hybrid. An hybrid configuration combines centralized and distributed organization
of elements trying to maintain the MAS performance balanced. Different
possibilities exist to arrange this architecture, for instance, the centralized ontology
could allocate the most used and common terms across agents, while distributed
ontologies would allocate particular inter-ontology alignments for specific peer to
peer interactions.

2.2 Associated Costs

Associated computational costs are those important design derived costs which are
intrinsic to the selected architectural configuration. The most important aspects
are:

a) Translation. Translation is a key design issue, because the cost of translation
strongly depends on the number of agents participating, the heterogeneity
across ontologies and the arrangement of the architecture. For example in a
centralized ontology, the translator should be designed and implemented to

118 M. Bravo

support heavy work loads, because it will serve all the agents participating in
the MAS. Some of the functions that should provide are: ontology
publication, inter-ontology alignment, multiple and concurrent translations at
run time, among others. In the case of a distributed architecture, multiple
translators are required, in this scenario the main task is the identification of
groups of communication peers to construct translators, the objective is to
distribute and balance work loads between translators.

b) Learning. Is the capability of an intelligent agent to acquire and associate new
terms and concepts from another agent ontology into its own ontology. This
characteristic is ideal to facilitate automated interaction, but there are still
many obstacles to fully achieve this automation. For example, even when an
agent is capable of learning, the accuracy and precision of the learning
algorithm fails. Another shortcoming is the maintainability of the size of
ontologies, because as more interactions occur with new agents, more terms
will be acquired.

c) Ontology Maintenance. In the case of a centralized ontology, the cost of
maintaining the ontology depends on the number of terms (classes and
individuals) allocated and on the number of required semantic relationships
between them. For a distributed scenario, the size of ontologies must be
regulated, because agents may have limited resources. If agents are capable of
learning new terms from their conversation counterparts, then for every
different agent that they have interaction with, their ontologies will grow.
Therefore, ontologies must be maintained according to recent interaction
needs.

3 Basic Measures

The following represent a set of basic and important measures, which set the basis
for further analysis and decision making about the best architectural solution.

The first measure that has to be calculated is the number of possible peer to
peer links. Considering that every agent in the MAS environment may establish
conversations links with the rest of agents. Given a set of n agents, the possible
number of peer to peer communication links (nl) among them is n2. However, the
number of communication links where agents are equal needs to be extracted,
which is n. It is also considered that a communication link between agents (a, b)
has the same heterogeneity as a communication link of agents (b, a), thus the
number of different communication links is reduced dividing by 2. Finally, the
number of different communication links between n agents is given by

nl = (n2-n)/2 (1)

Another basic measure is the level of syntactical heterogeneity between agent
ontologies. This measure provides a general ratio of the degree of syntactical
differences between agent ontologies (considering all terms indistinctly). This
measure can be defined as the number of different terms divided by the total
number of terms.

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 119

Given the sets of domain concepts identified by Ta1, Ta2, Ta3, …,Tan from
agents participating in the MAS, the total number of terms (nt) is obtained from
the absolute value of the union operation of all sets of terms from each agent
ontology, where n is the number of agents participating.

nt = |Ta1 ∪ Ta2 ∪ ... ∪ Tan| (2)

The number of different ontological terms (ndt) is obtained from the union of
all sets of terms minus the intersection of all sets of terms (syntactically common
terms).

ndt = |Ta1 ∪ Ta2 ∪ ... ∪ Tan| - |Ta1 ∩ Ta2 ∩ ... ∩ Tan| (3)

Finally, the level of syntactical heterogeneity (lsh) results from dividing ndt by
nt, which is the ratio that will serve as an indicator for evaluating heterogeneity.

lsh = ndt / nt (4)

The lsh measure will return a value in the range from 0 to 1, where a 0 value
indicates that all agents share identical terms, and returned value of 1 represents a
fully syntactical heterogeneity.

4 Centralized Architecture

The architecture of this solution consists of a set of autonomous agents, a
centralized ontology and a translator agent. To implement this solution, first the
hierarchical class structure of the ontology must be designed and implemented.
Once the basic taxonomy (class hierarchy) exists, all the terms from agent
ontologies should be copied to the centralized ontology, together with all
necessary semantic relationships between concepts and rules for inference. This
process can be done manually, semi-automatically or fully automatically. This
process is referred in literature as ontology population, and many solutions have
been proposed.

The construction of a centralized ontology has to be accompanied by a
translator agent. A translator is an intermediary agent which is invoked every time
when a misunderstanding occurs due to differences in terms that are exchanged
during a conversation between agents. When using this solution, an important
associated cost is translation, which clearly depends on the heterogeneity between
all agent ontologies. If the level of syntactic heterogeneity is high, then the
number of required translations will be higher. Another important associated cost
is the size of the centralized ontology. All terms of agents are copied to this
centralized ontology, when more terms are copied, the ontology size is bigger. The
main effect of the size of the ontology is on the performance of the translator
agent, if more translations are required, with a bigger size of the ontology, the
translator will work slower. These measures are designed to analyze these
particular requirements.

120 M. Bravo

4.1 Translation Costs

Considering a MAS with a set of n autonomous agents A = { a1, a2, a3, …,an },
where every agent may establish conversations links with the rest of agents (see
Formula 1), the necessary translations among them is the sum of terms that are
unknown for each agent. For this formula, the number of required translations of
each agent is considered independently, because translation is required independ-
ently of the translations of other agents.

This is, for each peer (ai, aj) of communication links the number of translations
that agent ai needs to have translated is equal to the set of terms from agent aj,
minus the set of terms that are common for both. Therefore, the number of
required translations for all participating agents is the sum of required translations
for each communication peer.

By using Formula 1, it is possible to obtain the set of heterogeneous
communication links between agents, which will be identified as CL.

CL = { (ai, aj), (ai, aj+1), … , (an-1, an) },

where ⎜CL⎜ ≤ nl,

with 0 < i < n, 1 < j ≤ n, i ≠ j.

It is important to note that a MAS is a dynamic environment where many
communication interactions occur at a time, and the state of the MAS changes
over time. Therefore, to model a MAS communication in a dynamic and changing
scenario, and furthermore to calculate the number of required translations
considering dynamic, random and concurrent communication links is too complex
and is out of the scope of this study. Although, there is the need to measure
translations, then a reference measure is given, assuming a short period of time,
into which all communications links are enabled, and that all terms are to be
exchanged causing the need for translation. The objective of these assumptions is
to consider the worst scenario. Taking this into consideration, the number of
required translations (rt), is calculated as follows:

∀ (ai, aj) ∈ CL, rt = ∑ [⎜Tai ∪ Taj⎜ - ⎜Tai ∩ Taj ⎜]

with 0 < i < n, 1 < j ≤ n, i ≠ j.

(5)

The number of required translations has to be multiplied by a number of times
(t), because every term exchanged can be translated more than once. A complex
model based on conversation logs is required to know or predict the number of
times that each term will be exchanged and therefore translated. However, it is
important to include this number in the formula of translations to have a reference
of its weigh in the cost.

Finally, the number of required translations (nrt) for a centralized architecture
is calculated as follows:

nrt = rt * t (6)

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 121

For instance, consider an agent a1 with a set Ta1 = {meal}, an agent a2 with a
set Ta2 = {food}, and a translator agent identified by trans using a general
ontology. Assuming that the following conversation takes place: agent a1 requests
to a2 the price of a meal for 1 person, agent a2 requests to trans the translation of
the term meal, then trans agent returns the term food, finally agent a2 returns the
answer to agent a1. The sequence of messages occurs from top to bottom as shown
in Table 3.

Using Formula 5 to calculate the number of required translations (rt), the result
is 2. However, as the example shows, agents are not capable of learning and/or
retaining translated concepts, therefore, the number of required translations has to
consider the number of times that each term is translated during a conversation
(Formula 6) in this case t = 2 and nrt = 4.

Table 3. A simple conversation example

Sender Receiver Performative Content Ontology nrt

a1 a2 Request Price(meal, 1, ?dollars) Ta1

a2 trans Request Translate(meal, a1, ?translation) 1

trans a2 Inform Translate(meal, a1, food)

a2 a1 Inform Price(food, 1, $89.00) Ta2

a1 trans Request Translate(food, a2, ?translation) 2

trans a1 Inform Translate(food, a2, meal)

a1 a2 Request Price(meal, 3, ?dollars) Ta1

a2 trans Request Translate(meal, a1, ?translation) 3

trans a2 Inform Translate(meal, a1, food)

a2 a1 Inform Price(food, 3, $267.00) Ta2

a1 trans Request Translate(food, a2, ?translation) 4

trans a1 Inform Translate(food, a2, meal)

4.2 Ontology Costs

Costs associated to ontology are those related to the main ontological elements:
concepts (classes and individuals), and semantic relationships between them.

In this work, each ontology is treated as a set of terms or concepts that belong
to a common domain of interest. Hierarchical relations and in general any inter-
concept relations (different to the synonym) are not considered. The main reason
for this consideration is the fact that during an inter-agent communication session,
exchanged messages generally include terms extracted from their particular
ontologies, not a hierarchy of concepts. Additionally, the assumption that all
participating agents will share and make public their ontologies is not realistic;
some agents will share only part of their ontologies for security and privacy
reasons.

For a centralized architecture, the number of concepts (nc) in the ontology is
calculated as the union operation of all agents terms, where Tai represents the set

122 M. Bravo

of terms of agent i, with i ranging from 1 to n number of agents participating in
the MAS.

nc = |Ta1 ∪ Ta2 ∪ ... ∪ Tan| (7)

In order to facilitate semantic mappings between ontological terms, the number
of concepts has to be augmented with their synonyms. Therefore, the extended
number of concepts (enc) in the ontology is calculated with the number of
concepts (nc) multiplied by an average of s synonyms per concept.

enc = nc * s (8)

Finally, another important measure is the number of semantic relationships
(nsr) between concepts in the ontology. Considering that the purpose of the
ontology is to support translation for multiple conversations between agents, then
the most relevant semantic relationship is the synonymy. The easiest way to
calculate this measure is to multiply the number of all concepts twice, taking into
account that every term in the ontology may be related with the rest. However,
only the number of different terms (ndt) needs to establish synonymy
relationships, minus all possible relations with themselves (there is no need for
synonymy relation between term a and term a), and finally dividing by 2, because,
synonym relations are symmetric (if term a is synonym of term b, then the
synonym relation in the opposite direction holds). Therefore, the number of
possible semantic relationships (nsr) between terms is given by:

nsr = (ndt2 - ndt)/2 (9)

The size of the centralized ontology is the sum of the extended number of
concepts plus the number of semantic relations, as follows:

sco = enc + nsr (10)

5 Distributed Architecture

A distributed architecture consists of a set of n agents with their ontology each.
Agents in a distributed scenario are grouped in a given number of clusters (c)
according to a similarity measure. The objective of a distributed architecture is to
share and balance translation or learning workloads between clusters. According
to the capability of agents to learn new concepts, two options exist:

a) In the case that agents cannot learn new terms, a set of translators are
required, and for each translator it is necessary to implement an auxiliary
ontology to support the translator when misunderstandings occur. In this
case, the costs associated are similar to the centralized architecture, with
the difference that these costs should be calculated for each cluster.

b) If agents are capable of learning, then their ontologies will need to be
maintained, because for each new conversation new terms will be
allocated in the ontology. The main advantage of this approach is that
there is no need to implement translators. However, there is an associated
cost for learning.

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 123

5.1 Distributed Architecture with Translators

For a distributed architecture, where agents are not capable of learning, there is the
need to implement translators to support communication between groups of
agents. Considering that the number of translators is equal to the number of
clusters, translation is calculated similarly to the centralized architecture.

Given a set C of r clusters each containing n agents, where each cluster is
identified by cm, the set of CL(cm) of different communication links into each
cluster is obtained as follows: each agent inside the cluster may establish
communication links with the rest of agents in the same cluster, but considering
only heterogeneous pairs. The set of CL(cm) is defined as follows:

C = {c1, c2, …, cr}, where each cm = { a1 , a2 , …, an }

CL(cm) = { (ai, aj), (ai, aj+1), … , (an-1, an) },

with 0 < m ≤ r, 0 < i < n, 1 < j ≤ n, i ≠ j.

Then for each cluster the number of required translations (nrtpc) is calculated
as follows:

∀ (ai, aj) ∈ CL(cm), nrtpc(cm) = ∑ [⎜Tai ∪ Taj⎜ - ⎜Tai ∩ Taj ⎜]

with 0 < m ≤ r, 0 < i < n, 1 < j ≤ n, i ≠ j.

(11)

The reference number of terms that are required to be translated (nrt) in the MAS
is the average of the number of required translations per cluster (nrtpc). It is
important to take into account that when agents are not capable of learning, the
number of required translations has to be multiplied by a given number of times (t)
that the translation is executed per term. That is, the same term may be translated
more than once.

∀ (ci) ∈ C, nrt = (∑ nrtpc (cm) * t) / r (12)

Additional costs are related to auxiliary ontologies. First, the size for each
supporting ontology is calculated similarly to the centralized architecture. Given a
set C of r clusters, the number of ontological concepts per cluster (ncpc) is
calculated as the union operation of all sets of terms, multiplied by an average s of
synonyms.

ncpc(cm) = |Ta1 ∪ Ta2 ∪ ... ∪ Tan| * s

with 0 < m ≤ r.

(13)

The number of different terms per cluster ndtpc is obtained from the union of
all sets of terms minus the intersection of all sets of terms.

ndtpc(cm) = |Ta1 ∪ Ta2 ∪ ... ∪ Tan| - |Ta1 ∩ Ta2 ∩ ... ∩ Tan| (14)

The number of semantic relations per cluster (nsrpc) is given by:

nsrpc(cm) = (ndtpc(cm)2 - ndtpc(cm))/2 (15)

124 M. Bravo

The size of ontology per cluster is calculated as follows:

sdopc(cm) = ncpc(cm) + nsrpc(cm) (16)

Finally, the average size of distributed auxiliary ontologies (sdao) per cluster is
calculated.

∀ (ci) ∈ C, sdao = (∑ sdopc (cm)) / r (17)

5.2 Distributed Architecture with Learning Capabilities

If agents are capable of learning, their ontologies will grow every time they
communicate with a new agent. Therefore, the cost of learning a new term is
calculated as the time required to select and classify a new term into the ontology.
This measure depends also on the number of terms that are to be acquired. Given
the set C of r clusters each containing n agents, and the set of CL(cm) different
communication links into each cluster, the number of terms that need to be learnt
per each cluster (ntlpc) is calculated as follows:

∀ (ai, aj) ∈ CL(cm), ntlpc(cm) = ∑ [⎜Tai ∪ Taj⎜ - ⎜Tai ∩ Taj ⎜]

with 0 < m <= r, 0 < i < n, 1 < j ≤ n, i ≠ j.

(18)

The total number of terms that are required to be learnt (ntl) in the MAS is the
average of the number of terms per cluster (ntlpc).

∀ (ci) ∈ C, ntl = (∑ ntlpc (cm) * l) / r (19)

Finally, the associated cost of learning for the entire MAS is calculated multi-
plying the number of terms that are necessary to be learnt (ntl) by a given learning
cost (l), which clearly depends on the learning algorithm used.

An important aspect to measure in a distributed architecture with learning
capabilities is the size of ontologies. In the case that agents can learn new terms,
then a measure to know ontology extension per agent (oe) is crucial.

∀ (ai) ∈ cm, oe (ai) = ⎜Ta1 ∪ Ta2 ∪ ... ∪ Tan⎜ - ⎜Tai ⎜

with 0 < m ≤ r, 0 < i < n.

(20)

The number of semantic relations per ontology extension (nrpoe) is given by:

nrpoe(ai) = (oe(ai)
2 - oe(ai))/2 (21)

The average size of ontology extensions per cluster is calculated as follows:

∀ (ci) ∈ C, ∀ (ai) ∈ cm, oea(ci) = (∑ oe (ai) + ∑ nrpoe (ai)) / n (22)

The average size of ontology extensions for the entire MAS is calculated as
follows:

∀ (ci) ∈ C, oeaMAS = (∑ oea(ci)) / r (23)

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 125

5.3 Coordination or Intermediation Costs

An additional cost for a centralized architecture is the cost associated with
coordination and/or intermediation. As the general objective of a MAS is to solve
a complex problem, then an inter-cluster communication has to be established in
order to compose a general solution. The general idea is to divide the problem into
sub-problems and assign them to specialized clusters, where agents grouped
according to their specialty communicate inside the cluster to generate a partial
solution. However, when individual cluster solutions have been generated, there is
the need to integrate a general solution. In this case, there are two possibilities:
one is the implementation of an intermediary agent which communicates directly
with each cluster representing agent to assign sub-problems and collect partial
solutions; and the other is that each cluster representing agent communicates with
other representing agents, and collectively coordinate to assign sub-problems and
construct an integral solution for the MAS.

In case that an intermediary agent is used, the number of communication links
that needs to establish is equal to the number of clusters. However, as in the rest of
this study, if a central intermediary agent needs to communicate with the rest of
representing agents, then his local ontology has to be augmented with the terms of
his communication counterparts. Given a set R of n representing agents, one per
cluster, the number of communication links that an intermediary agent needs to
establish is equal to n, and the size of its local ontology (sio) is calculated with the
union operation of all agent sets of terms as follows:

R = { ra1 , ra2 , …, ran }

∀ (ai) ∈ R, sio = ⎜Tra1 ∪ Tra2 ∪ ... ∪ Tran⎜

(24)

In case that all representing agents communicate each other to coordinate for
sub-problems assignment and final solution integration, the number of
communication links is calculated as in Formula 1:

nl = (n2-n)/2 (1)

Sizes of their ontologies need to be augmented with the rest of representing agent
individual ontologies. Given the set R of n representing agents, the set CL
different communication links between representing agents, the average number of
terms that need to be acquired per representing agent (siopr) is calculated as
follows:

∀ (ai, aj) ∈ CL, siopr = ∑ [⎜Tai ∪ Taj⎜ - ⎜Tai ∩ Taj ⎜] / n

with 0 < i < n, 1 < j ≤ n, i ≠ j.

(25)

6 Experimental Case

Distributed Problem Solving (DPS) is a sub-field of Distributed Artificial
Intelligence [16] which deals with complex problems. DPS researchers implement

126 M. Bravo

MAS systems which coordinate, cooperate and distribute knowledge to achieve a
common goal. In this context, various MAS examples are presented to analyze
architectural considerations and associated costs.

In order to apply formulas and calculate design costs, a set of public ontologies
related to the travel booking domain were searched and retrieved. The set of
selected ontologies, their domain and sets of terms are shown in Table 4.

Table 4. Solver agents, domain and terms

Agent Description Domain Terms

a0
Travel message
ontology [17]

Flight reservation
Airplane, Airport, Airtravel, Booking, Cabin,
City, Company, Airline, Contact, Flight, Meal,
Person, Seat.

a1
Itinerary
ontology [18]

Travel itinerary
Aircraft, Class, Flight, HotelReservation,
Itinerary, Meal, RentalCar,
RecordLocatorNumber.

a2
Travel
ontology [19]

Travel

Accommodation, BedAndBreakfast,
BudgetAccommodation, Campground, Hotel,
LuxuryHotel, AccommodationRating, Activity,
Adventure, Relaxation, Sightseeing, Sports,
Contact, Destination, BackpackersDestination,
Beach, BudgetHotelDestination,
FamilyDestination, QuietDestination,
RetireeDestination, RuralArea, UrbanArea.

a3
QALL-ME
ontology [20]

Tourism

Contact, Country, CreditCard, Currency,
Destination, Event, EventContent, Facility,
Genre, Language, Location, Period,
PersonOrganization, Price, Room, Site,
Transportation.

a4
e-Tourism
ontology [21]

Tourism

Accommodation, Activity, ContactData,
DateTime, OpeningHours, Period, DatePeriod,
TimePeriod, Season, Event, Infraestructure,
Location, GPSCoordinates, PostalAddress,
Room, ConferenceRoom, Guestroom, Ticket.

a5
TAGA
ontology [22]

Travel

Itinerary, Customer, Reservation,
HotelReservation, AirlineReservation,
EntertainmentReservation, ServiceProvider,
TravelService, Cinema, Restaurant, Opera,
Accommodation, Transportation.

Given a MAS integrated with agents from Table 4, using Formula 1, the

number of different communication links between them is given by

n = 6, nl = (62-6)/2 = 15

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 127

The total number of terms nt is calculated using Formula 2.

nt = 76

The number of different ontological terms ndt is obtained from the union of all
sets of terms minus the intersection of all sets of terms.

ndt = 76 - 0 = 76

The level of syntactical heterogeneity is calculated using Formula 4.

lsh = ndt / nt, lsh = 76 / 76 = 1

The resulting level of heterogeneity is high for this set of agents.

6.1 Cost of a Centralized Architecture

To calculate the cost of a centralized architecture, the following measures are
considered: number of participating agents, the level of syntactic heterogeneity
among them, translation related cost, and ontology related costs. The resulting set
of communication links CL, with 6 agents is:

CL = { (a0, a1), (a0, a2), (a0, a3), (a0, a4), (a0, a5),

(a1, a2), (a1, a3), (a1, a4), (a1, a5), (a2, a3),

(a2, a4), (a2, a5), (a3, a4), (a3, a5), (a4, a5) }

The number of required translations (nrt) is the sum of all communication links
required translations. Recalling this is a reference measure of the worst case in a
given period of time.

nrt = 19 + 34 + 29 + 31 + 26 + 30 + 25 + 26 +

19 + 37 + 38 + 34 + 31 + 29 + 30 = 438

The measures related to ontology costs are calculated with formulas 6, 7 and 8.
First the number of concepts in the centralized ontology considering all
participating agents is:

nc = 76

The extended number of concepts (enc) in the ontology is calculated with the
number of concepts (nc) multiplied by an average of 5 synonyms per individual.

enc = 76 * 5 = 380

The number of possible semantic relationships (nsr) between terms is given by:

nsr = (ndt2 - ndt)/2

nsr = (762 - 76)/2 = 2850

Further experiments were carried out with different combinations of agent
terminologies. See table 5 for results.

128 M. Bravo

Table 5. Results of centralized architecture cost with a set of different MAS

Num.
agents

Agents Required
translations

Ontology

size

Total

4 {a0, a2, a1, a3} 1740 1650 3390

5 {a0, a1, a2, a3, a4} 3000 2412 5412

6 {a2, a5, a0, a4, a1, a3} 4380 3078 7458

7 {a0, a1, a3, a2, a4, a3, a5} 6060 3078 9138

8 {a0, a2, a4, a1, a3, a5, a3, a2} 8380 3078 11458

6.2 Cost of a Distributed Architecture

For a distributed architecture, a set of clusters must be defined. There are some
clustering algorithms reported in literature to automate this process. However, as
the purpose of the experiment is to analyze different configurations and calculate
their costs, then the MAS variations shown in Tables 6 and 7 are defined.

For each MAS, the set of formulas for a distributed architecture using translators
and learning capabilities were calculated. Results are shown in Table 6 and 7.

Table 6. Results obtained with MAS examples for distributed architecture with translators

Num.
agents

Clusters Required
translations
per cluster

Ontology size Intermediation Total

4 {a0, a2}, {a1, a3} 290.00 561.50 13 864.50

5 {a0, a1}, {a2, a3, a4} 895.00 1185.00 34 2114.00

6 {a2, a5}, {a0, a4},
{a1, a3}

296.67 581.00 40 917.67

7 {a0, a1, a3}, {a2, a4},
{a3, a5}

466.67 671.33 49 1187.00

8 {a0, a2, a4}, {a1, a3,
a5}, {a3, a2}

710.00 950.67 35 1695.67

Table 7. Results obtained with MAS examples for distributed architecture with learning

Num.
agents

Clusters Terms to learn
per cluster

Ontology size Intermediation Total

4 {a0, a2}, {a1, a3} 58.00 124.50 13 195.50

5 {a0, a1}, {a2, a3, a4} 179.00 237.40 34 450.40

6 {a2, a5}, {a0, a4},
{a1, a3}

59.33 190.00 40 289.33

7 {a0, a1, a3}, {a2,
a4}, {a3, a5}

93.33 229.10 49 371.43

8 {a0, a2, a4}, {a1, a3,
a5}, {a3, a2}

142.00 333.70 35 510.70

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 129

7 Results Discussion

In order to evaluate the three architectural options, the same MAS variations were
tested with the measures for a centralized architecture and distributed in both
options: with distributed translators and with learning capabilities. Results are
shown in Figure 1.

Fig. 1. General costs results for centralized and distributed architectures

Figure 1, shows an expected behavior for the architectural MAS variations. The
centralized architecture resulted with the highest cost and a normal correlation
tendency: the more agents participate, the higher is the cost. On the contrary,
distributed architecture with translators reduced the cost of centralized in an
average of 80%. The distributed architecture with learning capabilities reduced the
cost in an average of 68% in relation with the distributed architecture with
translators. This is the main reason to select distributed architectures over
centralized for complex problems that are divisible into sub-problems.

Fig. 2. Number of required translations for a centralized and distributed architecture

130 M. Bravo

An expected result is observed from the number of required translations
between centralized and distributed architectures shown in Figure 2. For the same
number of agents with the same sets of terms, distributed translations reduce in an
average of 83%. However, the number of translations of a distributed architecture
does not represent the division of the centralized number of translations into the
number of clusters nor into the number of agents, as it could be guessed.

Fig. 3. Size of ontologies for centralized and distributed architectures

The size of ontologies is another important aspect, because depending on this
size there are derived costs for retrieving, searching, browsing, reviewing logical
consistency and in general maintainability of ontologies. In Figure 3, it is
observable that for all cases the implementation of a central ontology has the
highest cost due to the number of terms and inter-relationships that need to be
allocated. In this graph, there are two important results to observe. First, for MAS
variations with 6, 7 and 8 agents each, the size of the central ontology remains
equal, even when the number of agents increases. The reason for this result is that
some agents and their ontologies are repeated into the same MAS. Term
representation into ontologies is required only once, there is no need for term
redundancy when multiple homogeneous agents are participating. The second
result to note is for the distributed architecture with translators, where the MAS
integrated with 5 agents resulted in the highest size of ontology. The reason for
this result is because one of the two clusters of this MAS is integrated with the
three largest ontologies, therefore the size of the ontology resulted higher than the
MAS with 6, 7 and 8 agents respectively.

8 Conclusions

In this chapter a set of measures are presented to give the MAS designer the key
design guidelines and important considerations when selecting and implementing
an architectural solution approach to overcome the ontology heterogeneity
problem. MAS architectural design is based on a series of measures and formulas

Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity 131

which support the analysis of current solutions and the important aspects which
affect the cost.

A set of calculations were executed with various MAS examples, three
different architectural solutions were analyzed: a centralized architecture, a
distributed architecture based on distributed translators and a distributed
architecture with agents that are capable of learning. As logically guessed, the
highest cost results with the centralized architecture, followed by the distributed
architecture with translators, and the less costly was the distributed architecture
with agents that learn. It is clear that the distribution of workloads between
clusters of agents offers the best option to implement a solution. However, the
complexity associated with the implementation of a distributed architecture is high
and multi-factorial, for instance: the definition of an optimal number of clusters is
not as easy as it seems, it does not depend on a simple division. It depends on the
domain of knowledge and agent individual capabilities, agents should form
clusters in accordance to their functionality and convenience.

The set of MAS examples were integrated with ontologies with the highest
level of heterogeneity among them. This is, that for any MAS there were no
common terms between all ontologies, causing a high cost for a centralized
architecture. However, with a low level of heterogeneity (few different terms
between ontologies), even with a larger number of agents, the implementation of a
centralized architecture is feasible because of its simplicity and the low cost
derived.

More examples and exhaustive experimentation is desirable to measure
scalability and performance with more agents. It is also of current interest to
model and develop simulation environments to study dynamic changes during
periods of time to establish prediction models.

Acknowledgements. Author acknowledges CONACyT, Mexico for the postdoctoral re-
search support.

References

1. Castelfranchi, C.: Modeling Social Action for AI Agents. Artificial Intelligence
103(1-2), 157–182 (1998), doi:10.1016/S0004-3702(98)00056-3

2. Singh, M.P.: A Social Semantics for Agent Communication Languages. In: Dignum,
F.P.M., Greaves, M. (eds.) Issues in Agent Communication. LNCS, vol. 1916.
Springer, Heidelberg (2000)

3. Walton, C.D.: Model Checking Agent Dialogues. In: Leite, J., Zhang, S.-W., Torroni,
P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 132–147. Springer,
Heidelberg (2005)

4. Orgun, B., Dras, M., Cassidy, S., Nayak, A.: DASMAS – Dialogue based Automation
of Semantic Interoperability in Multi Agent Systems. In: Proceedings of Australian
Ontology Workshop, AOW 2005, Sydney, Australia (2005)

5. Flores, R.A., Pasquier, P., Chai-draa, B.: Conversational Semantics Sustained by
Commitments. Autonomous Agents and Multi-Agent Systems 14(2), 165–186 (2007),
doi:10.1007/s10458-006-0011-1

132 M. Bravo

6. Jennings, N.R., Wooldridge, M.J.: Agent-Oriented Software Engineering. Journal of
Artificial Intelligence 117, 277–296 (2000)

7. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Logic-based agent communication proto-
cols. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 91–107.
Springer, Heidelberg (2004)

8. Finning, T., Fritzon, R., McEntire, R.: KQML as an agent communication language.
In: Proceedings of the 3rd International Conference on Information and Knowledge
Management (1994)

9. FIPA – Foundation for Intelligent Physical Agents. FIPA Specifications (2003),
http://www.fipa.org/specifications/index.html (accessed Septem-
ber 12, 2010)

10. FIPA ACL Message Structure Specification, (2002)
 http://www.fipa.org/specs/fipa00061/SC00061G.pdf (accessed Sep
 tember 12, 2010)

11. Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Patil, R., Senator, T., Swartout, W.R.:
Enabling technology for knowledge sharing. AI Magazine 12(3), 16–36 (1991)

12. Wiesman, F., Roos, N., Vogt, P.: Automatic Ontology Mapping for Agent Communi-
cation. In: Proceedings of the First International Joint Conference on Autonomous
Agents, pp. 563–564 (2002)

13. Uschold, M.: Barriers to effective agent communication. In: Proceedings of the CEUR
Workshop on OAS 2001 Ontologies and Agent Systems (2001)

14. Stuckenschmidt, H.: Exploiting Partially Shared Ontologies for Multi-agent Commu-
nication. In: Klusch, M., Ossowski, S., Shehory, O. (eds.) CIA 2002. LNCS (LNAI),
vol. 2446, pp. 249–263. Springer, Heidelberg (2002)

15. Wermelinger, M., Fiadeiro, J.L.: A Graph Transformation Approach to Software Ar-
chitecture Reconfiguration. In: Proceedings of the Workshop on Graph Transformation
Systems (2000)

16. Durfee, E.H.: Distributed Problem Solving and Planning. In: Multi-Agents Systems
and Applications, pp. 118–149 (2001)

17. http://www.srdc.metu.edu.tr/webpage/projects/satine/
ontologies/TravelMessageOntology.owl (accessed September 12, 2010)

18. http://www.daml.org/2001/06/itinerary/itinerary-ont.daml
(accessed September 12, 2010)

19. Knublauch, H.,
 http://protege.cim3.net/file/pub/ontologies/travel/
 travel.owl (accessed September 12, 2010)

20. Ou, S., Pekar, V., Orasan, C., Spurk, C., Negri, M.: Development and Alignment of a
Domain-Specific Ontology for Question Answering. In: Proceedings of the 6th Edition
of the Language Resources and Evaluation Conference (2008)

21. DERI, E-Tourism Ontology,
 http://www.sti-innsbruck.at/results/ontologies (accessed Septem
 ber 12, 2010)

22. Zou, Y., Finin, T., Ding, L., Chen, H., Pan, R.: TAGA: Trading Agent Competition in
Agencities (2003), doi:10.1.1.12.7153

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 133–157.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 7
Ontology-Based Matchmaking and Composition
of Business Processes

Duygu Çelik1 and Atilla Elçi2

1 Computer Engineering Department, Istanbul Aydin University, Istanbul, Turkey
 duygucelik@msn.com
2 Software Engineering Program, Toros University, Mersin, Turkey
 atilla.elci@toros.edu.tr

Abstract. This chapter shows how it is possible to use agents and Semantic Web
technologies to deal with dynamic composition of business processes via an agent-
based workflow system. The aim of the system is to discover composable processes
at first among heterogeneous business processes that are running possibly under
different Web servers and then execute them in the order specified by a planner to
reach a complex requested goal. We proposed a framework of an Inference-based
Semantic Composition Agent (SCA) of atomic business processes that employs
process similarity matching and inference techniques. SCA synthesizes new servic-
es from existing ones in an automatic fashion. A powerful matching mechanism is
needed to find fitting tasks in order to attain the required composition. An innova-
tive Semantic Matching Step (SMS) of SCA helps to find the fitting tasks while
constituting workflow to achieve required composition. Additionally, SCA com-
poses available OWL-S atomic processes utilizing Revised Armstrong’s Axioms
(RAAs) in inferring functional dependencies. Experiments show that SCA System
produces atomic process sequences as a workflow in achieving the required com-
position plan that satisfies user’s requirements as a complex task. The novelty of
the SCA System is that for the first time Armstrong’s Axioms are revised and used
for semantic-based planning and inferencing of services.

Keywords: Web Services matchmaking, Web Services composition, Semantic
Agents, Armstrong’s Axioms, and Semantic Web Services.

1 Introduction

Web Services have gained importance due to their interoperability and ease of use.
Finding suitable Web services or composing appropriate new services from avail-
able set of services that fits the request of a user the best is still a major problem.
At present, there is no such mechanism by which numerous interrelated Web ser-
vices can be composed and recommended with semi-automated or fully automated

134 D. Çelik and A. Elçi

fashion in order to fulfill an overall objective. Moreover, next generation of Web
is expected to combine pre-existing web services with semantics to provide an ad-
vanced non-existing service to meet user demands. Such will be required in all
domains, e-commerce for one, and service providers, search engines, web agents
or spiders will have to deal with it. Therefore, the problem of discovery and com-
position of Web services has received much attention to support e-commerce
or enterprise applications [1]. In this chapter, emphasis is on Web services compo-
sition utilizing atomic business processes of Web services. Web services composi-
tion addresses a situation where a client’s request cannot be met by a single
available service; it may however be satisfied by suitably combining multiple in-
terconnected or composable services. Various AI planning techniques proposed
solutions to the composition problem by using a planner. A planner uses a list of
participating candidate Web services (specified as atomic or composite processes)
and a complex goal (stated by the user in the form of a task description) in gene-
rating a composition plan. However, non-semantic AI-based planning methods
can only compose services upon user’s necessity description and this lacks the
flexibility in meeting later change. In addition, semantic based methods for
planning mechanisms may be helpful to a purposeful agent; it makes the agent
more intelligent in lining up the individual services in more ways than otherwise
possible.

Some of the most popular non-semantic and semantic planners in the literature
are those based on the Hierarchical Task Network (HTN) planner using Situation
Calculus (SC) as discussed by Sirin et. al. [2 to 4]; Event Calculus (EC) based
composition approach as discussed by Aydin et. al. [5 and 6]; Planning Domain
Definition Language (PDDL) [7] based composition approach as introduced by
Yang et. al. [8]; Compositional/Process Algebra (PA) based composition approach
as given by Hashemian et. al. [9]; and, SWRL Planner of Domenico et. al. [10].
Next section gives a brief explanation about the contributions of the proposed
composition system and major differences between the above mentioned ap-
proaches and the proposed system.

Rest of this chapter is organized as follows: Section 2 mentions the fundamen-
tals of SCA approach. Section 3 gives brief information for theoretical background
to provide better understanding of system details. Section 4 presents architecture
of the proposed SCA system. Section 5 describes the need of input and output
matching during the composition of web services though workflows. Section 6
deals with the detail of Semantic Matching Step. Additionally, the section 7 takes
up the Revised Armstrong’s Axioms in more detail. Section 8 investigates the in-
ferencing mechanism through RAAs in the SCA which concludes the composition
task of SCA. Finally, section 9 concludes the chapter.

2 Contributions

In this chapter, we present a composition model involving an inference-based se-
mantic business process composition agent (SCA) for verifying compatibility and
composition of atomic business processes. The SCA System performs composi-
tion tasks by utilizing Semantic Web technologies in order to sequence execution

Ontology-Based Matchmaking and Composition of Business Processes 135

of business processes in such an order that accomplishes a client’s complex
process requirement.

SCA System composes suitable atomic business processes of Semantic Web
Services (SWSs) utilizing Revised Armstrong’s Axioms (RAAs) in inferring func-
tional dependencies.

Unlike other approaches mentioned above, SCA has extremely different
planning and inferencing mechanism employing the RAAs. SCA uses the RAAs
and OWL tags to describe task dependencies among semantically predetermined
task instances in its own knowledge base. Those descriptions are then used while
producing control/data flow of the task instances for achieving the client’s compo-
site plan. Briefly, we can say that during inferencing task dependencies in order to
constitute a composition plan, the other approaches mentioned above employ SC,
EC, PDDL, SWRL rules, and PA methods whereas we used RAAs. Although
these approaches are alternatives, their solutions do not keep the produced compo-
sitions for re-use later. Additionally, the performed semantic matching among
candidate processes can’t be reasoned properly since the number of semantic de-
scriptors used in their knowledge bases is limited. Thus the knowledge base of
SCA is more powerful than others.

The Armstrong’s Axioms (AAs) are a set of axioms (or more precisely,
Armstrong’s inference rules) that are used to infer functional dependencies on a
relational database. They were developed by William W. Armstrong in his paper
titled Dependency Structures of Data Base Relationships (Armstrong, 1974) [11].
The novelty of the SCA System is that for the first time Armstrong’s Axioms are
revised and used for semantic-based inferencing and planning of Web services.
We revised AAs in order to shorten inference chains while preserving the integrity
to derive functional dependencies of the processes, and used in this work during
the inferencing and planning phase.

Furthermore, SCA System has five main parts which are translator, planner,
inference engine, execution engine, and monitoring agent that deal with composi-
tion stage. Additionally, a well-organized matchmaking algorithm is considered to
discover functional dependencies and similarities between a pair of processes in
the candidate set of SWSs: Semantic Matching Step (SMS) scores similarity de-
gree based on the assessment of similarity distance among concepts / parameters
of these processes on focus.

The system has three ontology knowledge bases (Tasks-TKBO, Concepts (or
Domains-CKBO) and Processes-PKBO). TKBO contains domain-specific task in-
stances and semantic annotations of the RAAs. CKBO contains domain-specific
concepts and their relations through an OWL property. PKBO is like a repository
that keeps the entire atomic business processes of domain-related candidate SWSs.
It is very possible that a semantic-based discovery agent can find suitable SWSs
related to the client’s request. Discovery of SWSs is required also for composing a
sequence of processes in order to meet a client’s request. This aspect was covered
in our previous work [12 to 17]. Here it is assumed that the discovery of potential
SWSs for required composition would have been performed before initiating the
composition task of SCA.

136 D. Çelik and A. Elçi

SMS and other functional parts that are given above use these knowledge bases
to produce a required composition plan. Framework of the SCA System was de-
signed; a prototype was implemented and tested on a corpus of Web services in
demonstrating it. Experiments show that the proposed SCA System produces
process sequences as a composition plan that satisfies user’s requirement for a
complex task.

3 Theoretical Background

Web services interact by passing XML data, with data types specified using XML
Schema. Simple Object Access Protocol (SOAP) can be used as the communica-
tion protocol [18], and the Input / Output (I/O) signatures for web services are
given by Web Services Description Language (WSDL) [19]. UDDI stands for
Universal Description, Discovery and Integration [20] and provides the means to
publish and discover web services through a UDDI registry. However, these tech-
nologies do not support semantics and contain descriptions of the functionality of
a web service. Accordingly, this situation creates difficulties in discovering and
composing required web services by a client or software agent due to syntactical
characterization and continuously rising number of web services.

Semantic Web Services (SWSs) [1] are developed through applying the seman-
tic web technologies to web services. More particularly, through the use of seman-
tic description frameworks, SWSs will prop up the provision of intelligent methods
for the discovery, composition, monitoring, and execution of web services.

A fundamental problem of the Web services composition is to Discover exist-
ing functional dependencies of the different structured business processes and then
coordinate them. By coordination, we mean all the work needed to sequence all
these processes in order to fulfill the main goal in an efficient manner.

Therefore, we think that Web Ontology Language (OWL) [21] will be very use-
ful to describe data dependencies between ontology-driven knowledge bases of
service suppliers in B2B/B2C areas. This utility derives from the fact that the use
of e-commerce requires transaction-mediated parameter information flows be-
tween the two end points. The transaction of parameter information may belong to
a product, service, customer, price, availability, quality, tax, etc. These parameters
can be used as Input / Output / Precondition / Effect (I/O/P/E) parameters that this
type of structural information could be integrated into a Web Ontology Language
of Services (OWL-S) [22]. Additionally, parameter matching is required in order
to use knowledge bases that store and tie parameter information between
agent/supplier ontologies. Each piece of tie information provides the relationship
between the metadata of the agent and the supplier’s parameters. Assume that a
product’s unit information is stored as (unit-u) in a supplier’s ontology, but the
agent needs the product amount as (dozen-d) due to the client request. Conversion
is required to allow recognition of the product by the service search agent.

The following example displayed in Figure 1 below describes design aspects of
process matching of e-business services through a case study that contains Online
Car Parts Product Selling, Price Quota and Currency Converter web services.
For the most part of this example, focus is on Online Car Parts Product Selling in

Ontology-Based Matchmaking and Composition of Business Processes 137

order to facilitate a better understanding of semantic matching necessity during
discovery and composition.

Many companies may sell car parts and offer car part sales packages that need
to associate with an agent for this. A typical scenario would be a customer looking
for a service to search/buy car parts that have a specific model, year, id, length
and price (Figure 1).

Fig. 1. A car parts broker (CPB) web service scenario

The customer starts by invoking the SCA system (Step 1 in Figure 1) to obtain
a Plani. The service interprets the customer’s query using upper specific domain
ontology (for instance Concept.owl or Vehicle.owl) and then collects all the meta-
data of the required product information. Additionally, each company has its own
OWL-S ontology that contains all the metadata of the processes for selling prod-
ucts in the form of I/O/P/E.

The concepts of service parameters that are under its OWL-S ontology might
refer to a concepts ontology knowledgebase (CKBO) through OWL parameter-
Type. For instance, a company might represent the Product No field as PNo or
Catalog No in its own ontology. SMS of the SCA is responsible for making the
appropriate conversions of transactional data or collecting all relational data (Syn-
onym, Is_a etc…) between the metadata kept by the SCA (such as an upper con-
cepts ontology) and the existing metadata in the OWL-S of the product service
company (Step 2 to Step 5 in Figure 1).

138 D. Çelik and A. Elçi

The SCA collects all data from SMS then applies same steps for the next process
and so on (Step 6 to Step 8). At the end of the execution of all processes in the plan
(see PLANi= Online Car Parts Product Selling Price Quota Currency Conver-
ter in the Figure 1), SCA displays retrieved results to customer (Step 9). Next sec-
tion presents the details of the proposed system architecture.

4 System Architecture

The SCA System has two main stages that are Matching and Composition.
Matching stage, executing a Semantic Matching Step (SMS), works independent
of Composition stage. Composition stage contains five functional parts which are
translator, planner, inference engine, execution engine, and monitoring agent.
The system also has three ontology knowledge bases (Tasks-TKBO1, Concepts-
CKBO2 (or Domains-DKBO) and Processes-PKBO3), and one Rule knowledge
base (RKB) that contains the Revised Armstrong’s Axioms (RAAs). Parts of SCA
are introduced below and depicted in Figure 2. The numbers in circles in Figure 2
signify the number of execution order and associations between parts of the SCA.

Fig. 2. The architecture of the SCA system

Initially, the translator performs a parsing task of knowledge bases namely,
translating all atomic task instances in TOKB, all OWL-S atomic business
processes of SWSs (candidates) in POKB and the goal process of client into

1 An Online Book Selling domain example is in the form of TKBO,

http://cmpe.emu.edu.tr/ProcessKB/ontology/Tasks.owl
2 An Online Book Selling domain example is in the form of TKBO,

http://cmpe.emu.edu.tr/ProcessKB/ontology/Concepts.owl
3 The test collection (OWLS-TC3.zip) of the OWL-S atomic processes employed here can

be found on SemWebCentral Website, http://www.semwebcentral.org.

Ontology-Based Matchmaking and Composition of Business Processes 139

I/O/P/E form. According to I/O/P/E modeling, a given set of atomic processes in
the TOKB or POKB (e.g. Ai) are converted into the form Ai ≡ Ii Oi, where its in-
puts are Ii≡I i1∧ Ii2∧· · · ∧I ik and its outputs are Oi≡ Oi1∧ O i2∧· · · ∧ O im. The logi-
cal expression of Ai ≡ Ii Oi determines that Oi is obtainable only if Ii is available.
If the linear implication (‘ ’) is applied, Ii is consumed and Oi is produced. Can-
didate SWSs and the goal process in I/O/P/E form are passed on to the planner.
Next, the SCA initiates execution of the planner, inference engine, SMS and
Pellet OWL based reasoner [23] jointly. Figure 3 presents the main steps of the
SCA system.

In fact, the planner is located at the center of the SCA System. It tries to find
execution sequence(s) of processes using the predefined task instances (in the
TOKB) and candidate SWSs (in the POKB) while satisfying the requested com-
plex goal process. In matching parameters, when the planner needs to find similar
concepts, it calls on the SMS.

The inference engine performs inferencing on the task instances of TKBO us-
ing the RAAs. It picks one suitable rule from the RKB and then applies it to a pair
of task instances. If it is able to produce (derive) a new complex process from
those task instances, it sends it to the planner for checking its suitability. The infe-
rence engine and the planner are thus coordinated to work in alternating sequence
in each iteration. In summary, there is a complex goal process G≡ IG OG, with
IG≡ IG1∧ IG2∧· · · ∧IGj inputs and OG≡ OG1∧ OG2∧· · · ∧ OGh outputs. Given a path,
P, planned by planner of SCA, the question is whether P╞ G or not. To resolve
this question, we used a process derivation task that employs the RAAs. Inferenc-
ing using the RAAs is taken up in Section 6.

Fig. 3. The general steps of the SCA system

The execution engine executes the planned sequence of atomic business
processes of candidate SWSs (in PKBO repository).

Finally, a monitoring agent monitors proper execution of the Web services
processes. In the last two steps, the system initiates execution of all the compo-
nents/processes in the defined plan path. After the execution, SCA serves the re-
sult to the client. The details of the semantic matching on workflows are given in
the next section.

140 D. Çelik and A. Elçi

5 Semantic-Based Matching for a Composition Plan

Composition of Web services are created dynamically by using semantic de-
scriptions of Web services to systematize them in a workflow. In most of the
recent composition approaches [2 to 10 and 24], composable Web services are
appended to the composition one by one. As each service is added to con-
structed composition workflow, a parameter matching mechanism is necessary
to make sure that the service supports the I/O/P/E constraints of the workflow. A
workflow can usually be described using formal or informal flow diagramming
techniques, showing directed flows between processing steps (e.g. a process
workflow in Figure 4).

Fig. 4. A workflow scheme that is constructed from six atomic processes to attain a goal.

Individual processing steps of a workflow can basically be defined by three
parameters:

• Input: the information required to complete the step.
• Transformation or inferencing rules, algorithms etc...
• Output: the information produced by the step and provided as input to next

step.

A pair of processes can only be plugged together if the output of one is equal to
the (full or partial) input requirements of the next (transitive), or, if the input of
one is equal to the input requirements of the other (additive). Thus, the essential
description of a process actually comprises only input and output that are
described fully in terms of data types and their semantics. Planner and Inference
Engine parts of the SCA System constructs a workflow for required composition.
The produced workflow may contain many solution paths that satisfy the goal
process. Correspondingly, the SMS step provides information about the
composability by appling appropriate conversions or collecting all relational data
(Synonym, Is_a etc…) between those processes. For instance, I/O concepts of a
focused process (e.g. P2 in Figure 4) associate the concepts of all other possible
processes (e.g. P3, P4 and P5 in Figure 4).

In addition to matching of input and output terms, preconditions and effects
should also be criteria for process similarity matching for the described precondi-
tions are essential at service provider’s end and effects are needed at client’s end.
A precondition may be invoked and executed as a typical internal atomic process.

Ontology-Based Matchmaking and Composition of Business Processes 141

Depending on the outcome of a precondition process during run time, execution
sequence of the composed processes in a workflow may be changed. Therefore,
matching based on I/O terms alone is not adequate to find fitting processes at the
current node of constructed workflow in order to attain required composition.
SMS matching algorithm is based on matching of I/O terms; a similar technique
can be used for preconditions and effects matching in the SMS [25 and 26]. With-
out the loss of generality, we will not talk about precondition and effect matching
in the rest of this chapter.

Finally, process similarity assessment of SCA can be considered in three catego-
ries, such as, (1) similarity assessment of I/O concepts (namely, rdf:ID descriptions
in the service OWL-S file), (2) of process:parameterType (process:parameterType
descriptions in the service OWL-S file and (3) of semantically described properties.
Property-level similarity assessment is considered in SCA with two properties:
hasSynonym and hasIs_A. The details of the SMS are given in the next section.

6 Semantic Matching Step (SMS)

Semantic matching is a well known algorithm proposed recently [27 and 28], and
has been extended and cited extensively in recent proposals [29 to 33]. SMS
performs the matching step on concepts of two focused processes according to
their meaning, similarity, and distance of the concept relations. Consider that
Concept1 is one of the concepts of a queried (or currently focused) process and
Concept2 is one of the concepts of another process in a process set. Four degrees
of matching are possible:

As we mentioned above, all OWL-S advertisements of the candidate SWSs

(referred to as A in the following) are stored in the POKB. Then, SCA accesses
POKB and also parses process:parameterType and rdf:ID (I/O) concepts of all
available OWL-S advertisements. In addition, the classes, super/subclasses, and
all the is_a and synonym properties corresponding to the parsed rdf:ID (I/O)
concepts are extracted from its domain ontology during execution of the SMS.
The input to the SMS is a process currently on focus, say C, in the constructed
plan and the output is a set of matching OWL-S Advertisements (of candidate
SWSs) sorted according to their similarity score. SMS focuses on these processes,
which were symbolized as C & A in the following.

The SMS defines four different matching scores; Dissimilar=0, Subsume=0.5,
Plugin=0.75, and Exact=1 among two given concepts. Additionally, we describe
the SMS through three sub algorithms in the following (Algorithm 1, Algorithm 2

* Exact: If Concept1≡ Concept2, then they are marked as Exact match.
* Plug in: If Concept1⊂ Concept2, then service of the Concept2 may fulfill the re-
quirements of the service of the Concept1 since service of the Concept2 serves
some of the subclasses of the concept defined by service of the Concept1. Thus, it
is a Plugin match.
* Subsumes: If Concept1 ⊃ Concept2, then it is a Subsume match.
* Dissimilar: If Concept1≠ Concept2, then it is declared as Dissimilar.

142 D. Çelik and A. Elçi

and Algorithm 3), but first definitions of ‘has synonym’ (hasSyn) and hasIs_a are
given. HasSyn (Y) =Z: There exists a synonym concept of Y which is Z; such as
Car’s synonym is Automobile or Motorcar. HasIs_a (Y): There exists an is_a con-
cept of Y; such as 3WheeledCar is a Car. The two input concepts, one from CI
and one from AI, are presented in Algorithm 1 that are being tried for matching.

Algorithm 1. degreeOfProcessMatching(Concept Ci, Concept Ai) for calculating
SMSScore(Ci,Aj)

1 if ((Ci≡Ai) or (hasSyn(Ci)≡Ai) or (Ci≡hasSyn(Ai))) then return rel=EXACT;

2 if ((Ci⊂Ai) or (hasSyn(Ci)⊂Ai) or (Ci⊂hasSyn(Ai)) or (hasIs_a(Ci)≡Ai)) then return
rel=PLUGIN;

3 if ((Ci⊃Ai) or (hasSyn(Ci)⊃Ai) or (Ci⊃hasSyn(Ai)) or (Ci≡hasIs_a(Ai))) then return
rel=SUBSUME;

4 if ((Ci≠Ai) or (hasSyn(Ci)≠Ai) or (Ci≠hasSyn(Ai))) then return rel=DISSIMILAR;

During the matching step, process:parameterType property or rdf:ID (input-

output) concepts of the processes are analyzed recovering their semantics, namely,
meaning, similarities, differences, and relations (see Algorithm 1). Semantic
distance of concepts which offer similarity information among concepts can be
given by ontology developer during its development phase. If semantic distance is
not scored by its developer, all direct subconcepts of a parent concept will have
the same distance weight [30] according to Eq (1), 1# (1)

SCA finds the semantic distance weight between any two concepts

A and Z in particular domain ontology as in Eq (2),
 (,) (,) (,) … . (,) (,) (2)

The applied scoring method is a simple multiplicative weighting function.
Given a queried process, C, with input concepts CI = {CI1, CI2 ... CIm} and a service
A with the input concepts AI= {AI1, AI2 ... AIm} are matched and the total similarity
score ((,)) is calculated according to Eq (3),

 (,)
 ∑ , ∏ (,) (,),, , & (,)
 (); ();

(3)

(,)weight A Zd

Ontology-Based Matchmaking and Composition of Business Processes 143

The above equation shows only input lists {CI, AI} or {Cin, Ain} of the C and A
processes. If sizes of the CI and AI are not equal then we put that much

number of null values to the list for missing ones.

The distance (Ci, Aj) shows the number of concepts (levels) between the
focused concepts; Ci and Aj in the ontology. Assuming that the Vehicle concept
has only three sub-concepts, Car, Ship and Bicycle, additionally, if the concept of

Ci=Car and the concept of Aj= Vehicle then the
(,) (,), of the

(Car, Vehicle) match will be (0.75 * 0.33)/1 = 0.2425. Because (Car, Vehicle) has
PLUGIN relation so their subsumption score is 0.75 according to Algorithm 1.
Their weight is 0.33 since Eq. (1). Also, there exists a subclass relation between
(Car, Vehicle) thus gives their distance (Car, Vehicle) is 1, which is the number of
levels between these concepts in the domain ontology.

As Algorithm 2 shows, search(C) takes the queried process (C) and iterates over
every (A) in POKB repository in order to determine a match. SMS calculates two
types of similarity scores, namely, AdditiveMatchScore and TransitiveMatchScore.

AdditiveMatchScore (Cin, Ain) is a similarity score on C & A processes that is
obtained by matching only input concepts of both processes.

TransitiveMatchScore (Cout, Ain) is a similarity score on C & A processes
obtained by matching on output concepts of queried process and input concepts of
available candidate processes.

Algorithm 2. search(C)
1 ResultList=null;
2 for each A in POKB do
3 AdditiveMatchScore=getRelation(Cin,Ain);
4 TransitiveMatchScore=getRelation(Cout,Ain);
5 if (AdditiveMatchScore =0 and TransitiveMatchScore =0) then goto
step2 and take next A
6 else ResultList ←(A, TransitiveMatchScore, AdditiveMatchScore);
7 end if
8 end for
9 return (ResultList)

As Algorithm 3 shows, getRelation takes two lists of either Input or Output
concepts of C and A for matching by SCA. The first parameter of getRelation is a
list of input(or output) concepts of queried process CI/O={CI/O1,CI/O2,..,CI/Om} and
the second parameter of getRelation is another list of only input concepts of a
candidate service AI/O={AI/O1,AI/O2,..,AI/On}. For instance, the input sets of Cin=
{C1,C2,C3} and Ain= {A1,A2,A3} are executed by the getRelation (CList, AList) of
SMS.

I Isize(C)-size(A)

144 D. Çelik and A. Elçi

Fig. 5. A simple example for Algorithm 3.

Figure 5 shows working mechanism of the getRelation function through an
example. In this example, the AdditiveMatchScore (Cin, Ain) is calculated but
TransitiveMatchScore (Cout, Ain) is calculated similarly. The solid lines indicate
the relationships inferred by the reasoner. The algorithm will first attempt to
compute a max match for Ain1. Assume that the following matches are inferred
and values of the are calculated then divided by distance

(Ci, Aj) value for each parameters of Cin:

[Ain1 Subsumes of Cin1→Plugin],
[Ain1 hasSynonym of Cin2→Exact], and
[Ain1 not matched with Cin3→Dissimilar].

Ain1 has a max match with Cin2. So, Cin2 and Ain1 are removed from their

lists.
The algorithm now attempts to match the next concept: Ain2. Assume that the

following matches are inferred:

[Cin1 Subsumes of Ain2→Subsume] and
[Ain2 hasSynonym of Cin3→Exact].

Thus, Ain2 is matched with Cin3 and Cin3 and Ain2 are removed from their lists.

The algorithm now attempts a match for Ain3. Assume that the following match is
inferred for the last parameter in Cin:

 [Ain3 Subsumes of Cin1 →Plugin].

(,) (,)
*

Ci Aj Ci AjScore weightSMS d

Ontology-Based Matchmaking and Composition of Business Processes 145

This algorithm calculates the max values in each iteration and then finds an
average for the given (Cin, Ain) query. The same equations

and operations are also applied to find the of the

TransitiveMatchScore (Cout, Ain) of C and A processes. Pseudo representation of
the getRelation function is given above.

The algorithm finds a set of matching advertisements with their degree of match,
and then returns a resulted list of processes to planner and inference engine to derive
new composed processes by picking a suitable rule from the RAAs and applying it to
the C and A processes. If TransitiveMatchScore is higher than AdditiveMatchScore
then one of the transitive based inference rules of RAAs is selected to compose those
processes such as pseudo factorization, transitivity, pseudo transitivity and
accumulation. On the other hand, if AdditiveMatchScore is higher than
TransitiveMatchScore then the additivity rule of RAAs is applied on those processes.

Algorithm 3. getRelation (CList, AList)
1 List3=null; res_score=0; nC=size(CList); nA=size(AList);
2 for j=1 to nA do -- for each concept Aj in AList
3 for i=1 to nC do -- for each concept Ci in CList
4 score=0;
5 degree=degreeOfProcessMatching (Ci, Aj)
6 if (degree DISSIMILAR) then
7 if(degree=EXACT) then
 score=1.00*dweight (Ci, Aj)/distance(Ci, Aj) ; end if
8 if (degree=PLUGIN) then
 score=0.75*dweight (Ci, Aj)/distance(Ci, Aj) ; end if
9 if(degree=SUBSUME) then
 score=0.5*dweight (Ci, Aj)/distance(Ci, Aj); end if
10 else score=0;
11 end if
12 List3 score
13 end for
14 score Max(List3);
15 if (score 0) then
16 Find int k index(Max(List3)) ;
17 DeleteRow(Ck); DeleteRow(Aj); -- delete concepts from CList&AList
18 nC nC-1; nA nA-1; -- decrease sizes of the AList and CList since deleted concepts
19 i 1; j 1; -- start the for loops again for the next concept
20 Calculate res_score= res_score+score;
21 List3 goto step2, take next Aj
22 else
23 Calculate res_score= res_score+0; --goto step2, for next Aj
24 end if
25 end for
26 if (res_score= 0) then no matching exists; return 0;
27 else return{res_score= res_score*(size(CList)/ size(AList))};
28 end if

(,)I IScore C ASimilarity

(,)IScore Co ASimilarity

146 D. Çelik and A. Elçi

If both scores are zero then there is no suitable process that can able to append to
queried process. In this state, dissection rule is applied to available processes that have
one more than output concepts to configure suitable processes for the task.

7 Revised Armstrong’s Axioms (RAAs)

Armstrong’s Inference Rules (also referred to as Armstrong’s Axioms-AA) are a
set of axioms used to infer functional dependencies (FDs) on a relational database
[10]. There are seven axioms, namely, Reflexivity, Augmentation, Transitivity,
Pseudo Transitivity, Additivity, Accumulation, and Projectivity as shown in
Table 1 (col. 1).

Table 1. Armstrong’s Axioms and Revised Armstrong’s Axioms.

 Armstrong’s Axioms Revised Armstrong’s Axioms

1. Reflexivity: A set of attributes X determines a
subset Y of itself: X→Y if Y⊆X.

2. Augmentation: It allows enlarging the left-
side of a FD or both side conventionally with
one or more attributes. Formally, if X→Y then
X||Z→Y||Z for any Z.

1. Pseudo factorization:

If {(X||Y→Z) ,(T||Z→W)} and if
(Z⊂T||Z and T≡X or T≡Y) then
X||Y→W.

3. Transitivity: If we have functions f : X→Y
and g : Y→Z then we have a function g O f :
X→Z, where (g O f)(x) = g(f (x)). Formally, If
{(X → Y) and (Y→Z)},then X→Z.

2. Transitivity:

If {(X →Y) and (Y→ Z)} then
(X→Z).

4. Pseudo transitivity: is a generalization of
Transitivity. It is requires the entire right hand
side of a FD appears as attribute(s) of the
determinant of another FD. Formally, if
{(X→Y) and (Y||Z→W)} then (X||Z→W).

3. Pseudo transitivity:

If {(X→Y) and (Y||Z→W)} then
(X||Z→W).

5. Additivity: If there are two FDs with the
same determinant on the left, it is possible to
form a new FD that preserves the determinant
and has as its right-hand side the union of the
right-hand sides of the two FDs. Formally, if
{(X→Y) and (X→Z)} then (X→Y||Z).

4. Additivity:

If {(X→Y) and (X→Z)} then
(X→Y||Z).

6. Accumulation: If there are two FDs with the
complementary determinant, it is possible to
form a new FD that preserves the determinant X
and forms its right-hand side as the union of the
right-hand sides of the two FDs except the
complementary determinant Z. Formally, if
{(X→Y||Z) and (Z→C||W)} then (X→Y||C||W).

5. Accumulation:

If {(X→Y||Z) and (Z→T||W)} then
(X→Y||T||W).

7. Projectivity: If X determines Y and Z, then X
determines Y, therefore it is possible to break
each functional dependency X→Y down to
X→Ai for i = 1..n where Y = {A1, . .An}.
Formally, if (X→Y||Z) then X→Y and X→Z.

6. Dissection:

If (X→Y||Z) then X→Y and X→Z.

Ontology-Based Matchmaking and Composition of Business Processes 147

Reflexivity and Augmentation axioms applied in sequence performs like
factorization; as such, we combined the two in order to form a shorthand Pseudo
Factorization axiom. This in turn eliminates unsuitable derivations and reduces the
complexity of composition. We renamed the Projectivity axiom as Dissection for the
latter better expresses the intended operation. RAAs were obtained by these equivalent
transformations which do not alter correctness and completeness of AA. Table 1
displays AAs in the first column, corresponding RAAs in the second column.

Let us assume that all of X, Y, Z, W, and T are classes/concepts of I/O
parameters of an available process set and that the right arrow is the linear
implication operator. Using example X||Y Z in the table below, we can
understand that the concept X and the concept Y are taken as concurrent inputs
(that is, X||Y) while execution of the process, thus their order is not important. The
outcome is the concept Z after execution.

Table 2. Nine atomic processes from the OWLS-TC 3.0 with I/O/P/E parameters [34].

No SERVICE NAME INPUTS OUTPUTS DESCRIPTION
S1 Cheap_Car_Price CheapCar<#CheapCar> Price <#Price> This service gives

good opinion to
search a cheap
car.

S2 Currency_Convertor InputAmount<#Price>,
SourceCurrency
<#Currency>,
DestinationCurrency
<#Currency>

OutputA-
mount<#Price>

Converts any two
currencies.

S3 CarRecommended-
PriceInEuro

Car<#Car> RecommendedPriceI-
nEu-
ro<#RecommendedPri
ceInEuro>

Car Recommend-
ed price service in
Euro.

S4 CarInStock CarModel<#Car> ExistsInStock
<#true-false>

Check the car
model in stock or
not.

S5 Car_Price Car<#Car> PriceOfCar<#Price> Car price service.
S6 Amount-Of-

Mon-
ey3WheeledCar_Price

3WheeledCar
<#ThreeWheeledCar>,
Amount-Of-Money
<#Amount-Of-Money >

Price <#Price> This service tries
to find price of a
three wheeled car
within given
amount of money.

S7 EuroToDollarCurren-
cyConverter

PriceInEuro
<#RecommendedPriceI-
nEuro>

PriceInDollar
<#RecommendedPri-
ceInDollar>

Converts Euro to
Dollar.

S8 Car2PersonBicyclePri
ce

2PersonBicycle
<#TwoPersonBicycle>,
Car<#Car>

Price <#Price> This service re-
turns price of the
pair of a car and a
two person bi-
cycle.

S9 Car_Technology Car<#Car> Technology
<#Technology>

Car Technology
service.

148 D. Çelik and A. Elçi

A test collection (OWLS-TC3.zip) [34] of the OWL-S atomic processes em-
ployed for the given scenario that can be found on SemWebCentral Website4. The
test collection is selected since latest version of OWLS-TC and the average quality
of the descriptions is somewhat better than other test collections.

The most commonly used OWL-S Service Retrieval Test Collection version 3.0
consists of 1007 services from the following seven domains: education, medical
care, food, travel, communication, economy and weapon. Table 2 presents OWL-S
atomic processes for only six SWSs in this TC. Their parsed I/O and parameter
types (as an ontological reference in <#ParameterType>) are specified in the Ta-
ble 2. Additionally, Table 2 contains three supplementary atomic processes (not in
the OWLS-TC 3.0) that are needed for the scope of next sections. Additionally,
Table 2 contains two similar atomic processes, Currency_Convertor and EuroTo-
DollarCurrencyConverter, which have same purpose but different number of con-
cepts. Therefore, it is possible to show that the system’s matching mechanism is
able to differentiate and understand correlations among on focus candidate
processes during the constitution of a composition plan.

A possible scenario is that a user wants to find the price of a cheap car with its
technology information, however the user expects the returned price in a specific
currency, say, US Dollars. Assume that the goal task called G is required by the
client, G≡Car [Car] Technology [Technology] || PriceOfCar [Price].

Fig. 6. A simple example of RAA.

Given above is the trace of Table 2 where Planner defines many solutions; one
of them for the given G process above by synchronizing the SWSs of
Cheap_Car_Price.owl, Car_Technology.owl, and EuroToDollarCurrencyConverter.owl
in that order. The symbol ‘ ’ is used to show synchronization operation when the
output of a service is consumed by another service as an input, when the input of a
service is the same as another service. Consequently, we need to line up suitable
processes in an appropriate order to achieve the client's complex goal. If we apply
an Additivity then an Accumulation rule (Figure 6), the possible chain is:

Accumulation [Additivity [Cheap_Car_Price Car_Technology] EuroToDollarCurrency-

Convertor]].

4 http://www.semwebcentral.org

Ontology-Based Matchmaking and Composition of Business Processes 149

Before applying the Additivity rule on Service 1 and Service 9, SMS found a
PLUGIN relation on the input concepts of those processes. Besides, before
applying the Accumulation rule on the newly derived process from (Service 1 &
Service 9) and with Service 7, SMS found a SUBSUME relation on the output
concepts of the newly derived process and the inputs of the Service 7. The final
expected new process (named as P) after tracing Planner and Inference Engine
actions is as follows:

P≡{[CheapCar<#CheapCar>] Technology<#Technology>]||[PriceInDollar<#RecommendedPri

ceInDollar>]}, which gives P╞ G.

Service1≡Cheap_Car_Price≡[CheapCar<#CheapCar>] [Price <#Price>]
Service9≡Car_Technology≡[Car<#Car>] [Technology<#Technology>]
Service7≡EuroToDollarCurrencyConvertor≡[PriceInEuro<#RecommendedPriceInEuro>] [PriceInDol-
lar<#RecommendedPriceInDollar>]

ProducedProcess(P)≡[[Cheap_Car_Price.owl Car_Technology.owl] EuroToDollarCurrencyConvertor.owl]]

≡{[CheapCar<#CheapCar>] [Price <#Price>]} {[Car<#Car>] [Technology<#Technology>]}
≡{[CheapCar<#CheapCar>] [Technology<#Technology>] || [Price <#Price>]}
≡{[CheapCar<#CheapCar>] [Technology<#Technology>] || [Price<#Price>]}

EuroToDollarCurrencyConvertor.owl
≡{[CheapCar<#CheapCar>] [Technology<#Technology>] || [Price
<#Price>]} {[PriceInEuro<#RecommendedPriceInEuro>] [PriceInDollar<#RecommendedPriceInDollar>]}
≡{[CheapCar<#CheapCar>] [Technology<#Technology>] || [PriceInDollar<#RecommendedPriceInDollar>]}

8 Inferencing in SCA: A Case Study

Details of inferencing in the SCA System is presented in this section. Semantic
task contexts are supported by the OWL formal semantics; therefore, reasoning
can be performed based on the task description context. In order to do this, we
employ the task ontology (Tasks.owl-TOKB) for inferencing purpose.

OWL formal semantics is used to define the RAA as object property
characteristics that will be employed during inference and planning stages:
hasTransitivity, hasPseudoFactorization, hasPseudoTransitivity, hasAdditivity, has
Accumulation and hasDissection are defined. These RAA rules are defined in the
Tasks ontology (TOKB) as seen on the lines (1, 6, 11, 16, 21, and 26) in Table 3.

OWL formal semantics provide many property characteristics such as
transitive, symmetric, functional, inverseOf, inversefunctional etc. For instance,
if a property is specified as transitive then for any X, Y, and Z: (,) (,) (,). Kang et al. [35] proposed that the
properties are able to directly apply definitions to new properties in order to
provide order among some semantic business processes for monitoring purpose.
However in this study, SCA uses the RAAs as a kind of OWL properties. The
transitive-based properties defined above (as shown at lines 2, 7, 12, and 22) are

150 D. Çelik and A. Elçi

suitable to reason the order of several tasks while planning. The object property
hasTransitivity is specified as transitive (line 1 and 2 in Table 3). Additionally,
union-based properties (as shown at line 17) could be also suitable for additive-
based operations among a set of tasks.

Table 3. Revised Armstrong’s Axioms in the Tasks.owl (TOKB)

To better understand the depth of inferencing in the SCA System, let’s consider
another similar example of Online Car Store domain. A user wants to find price
information in a desired currency of a specific car model belonging to a specific
car company. Firstly, SCA searches such a task that satisfies the client’s complex
task. If it could not find one task that satisfies the goal task then searches a related
set of tasks that contain client I/O concepts. Assume that there are four tasks found
similar in TOKB: FindCarMoldelsOfACompany, Car_Price, Currency_Converter
and Car_Technology tasks are given in Table 4.

In addition, if the FindCarMoldelsOfACompany is transitive with Car_Price
then FindCarMoldelsOfACompany has to be performed before the Car_Price
since the execution order is critical for all Transitive based rules to satisfying
required goal process. This state is described by using semantic task contexts in
the Table 4 (at line 5) which gives us an opportunity to derive a new process
named Company_Car_Price from these two processes.

Ontology-Based Matchmaking and Composition of Business Processes 151

Table 4. Description of four tasks of the Online Car Store Domain in the Tasks.owl (TOKB)

Based on this transitive characteristic of the hasTransitivity, the produced new
process (Company_Car_Price) is possible to be performed before any suitable
process to continue the possible chain. Some possible reasoning operations are
formalized as follows:

TRANSITIVITY1[FindCarMoldelsOfACompany(Company→Car)] [Car_Price
(Car→Store||Price||Currency)]implies[Company_Car_Price(Company→Store||Price||Currency)] (8.1)

PSEUDOTRANSITIVITY1[Company_Car_Price(Company→Store||Price||Currency)] [Currency_
Converter (Currency||Price||Currency→Price)] implies [Compa-
ny_Car_Price_Currency_Converter(Company || Currency → Store || Price)]

(8.2)

PRODUCED NEW PROCESS (RESULTNODE): Company_Car_Price_Currency_Converter (Com-
pany||Currency→Store || Price)

(8.3)

SCA uses these task instances to find equivalent processes in the candidate

SWS then creates a complex process incorporating them. The resulted composite
process is implemented by using OWL-S models that are profile, process and
grounding. The profile model of the resulted composition process (see above the
formulation 8.3) is given below in Table 5. At the end of the composition, the

152 D. Çelik and A. Elçi

resultant OWL-S based composite process is appended to TOKB as a new task
instance in the form of the task ontology. This practice decreases complexity and
increases speed while searching suitable processes for a constituted workflow by
planner later. In Table 5, two inputs (lines at 2- 7 and 8-13) and two outputs (lines
at 14-19 and 20-25) are defined with their parameter types which are some URLs
pointing to the related concepts in the Concept.owl (COKB).

Table 5. Profile model of the Company_Car_Price_Currency_Converter goal process.

In Table 6, a part of process model of the resultant composite process by SCA is

given. The model contains semantic contexts of the knot points in the returned
chain which are TRANSITIVITY1 (see Formula 8.1), PSEUDOTRANSITIVITY1
(see Formula 8.2), and RESULTNODE (see Formula 8.3). The order is described
as TRANSITIVITY1, PSEUDOTRANSITIVITY1 and RESULTNODE which is
given in the lines at 1-21 through <process:ControlConstructList>, <list:first>,
<list:rest> and so on. Three different tasks are used for the composition task:
FindCarMoldelsOfACompany, Car_Price, and Currency_Converter.

Table 6. Process model of the returned composite process (Company_Car_Price_Currency_
Converter)

1 <process:CompositeProcess
rdf:about="#Company_Car_Price_Currency_Con
verter-Process">
2 <process:ControlConstructList>
3 <list:first>
4 <process:Perform
rdf:nodeID="TRANSITIVITY1"/>
5 </list:first>
6 <list:rest>
7 <process:ControlConstructList>
8 <list:first>
9 <process:Perform rdf:nodeID="

31 <process:Process rdf:ruleID="
PSEUDOTRANSITIVITY1">
32 <process:process rdf:resource="
../services/Car_Price.owl#Car_Price-Process "/>
33 <process:hasDataFrom>
34 <process:InputBinding>
35 <process:toParam rdf:resource="
../services/Car_Price.owl#Car"/>
36 <process:valueSource>
37 <process:ValueOf>
38 <process:theVar rdf:resource="
../services/FindCarMoldelsOfACompany.owl#Car"/>

Ontology-Based Matchmaking and Composition of Business Processes 153

Table 6. (continued)

PSEUDOTRANSITIVITY1"/>
10 </list:first>
11 <list:rest>
12 <process:ControlConstructList>
13 <list:rest
rdf:resource="&list;#nil"/>
14 <list:first>
15 <process:Perform rdf:nodeID="
RESULTNODE "/>
16 </list:first>
17 </process:ControlConstructList>
18 </list:rest>
19 </process:ControlConstructList>
20 </list:rest>
21 </process:ControlConstructList>…

39 <process:fromProcess>
40 <process:Process rdf:ruleID="
TRANSITIVITY1"/>
41 </process:fromProcess>
42 </process:ValueOf>
43 </process:valueSource>
44 </process:InputBinding>
45 </process:hasDataFrom>
46 </process:Process>

22 <process:Process
rdf:ruleID="TRANSITIVITY1">
23 <process:process rdf:resource="
../services/ FindCarMoldelsOfACompany.owl#
FindCarMoldelsOfACompany -Process"/>
24 <process:hasDataFrom>
25 <process:InputBinding>
26 <process:toParam
rdf:resource=".../services/FindCarMoldelsOfAC
ompany.owl#Company"/>
27 ..….
28 </process:InputBinding>
29 </process:hasDataFrom>
30 </process:Process>

47 <process:Process rdf:ruleID="RESULTNODE ">
48 <process:process
rdf:resource="..services/Currency_Converter.owl#
Currency_ConverterProcess"/>
49 <process:hasDataFrom>
50 <process:InputBinding>
51 <process:valueSource>
52 <process:ValueOf>
53 <process:fromProcess
rdf:ruleID="PSEUDOTRANSITIVITY1"/>
54 <process:theVar
rdf:resource="../services/Car_Price.owl#Price"/>
55 </process:ValueOf>
56 </process:valueSource>
57 <process:toParam
rdf:resource=”../Currency_Converter.owl#Input_Price
"/>
58 </process:InputBinding>

59 <process:InputBinding>
60 <process:valueSource>
61 <process:ValueOf>
62 <process:fromProcess
rdf:ruleID="PSEUDOTRANSITIVITY1"/>
63 <process:theVar rdf:resource="
../services/Car_Price.owl#Result_Currency "/>
64 </process:ValueOf>
65 </process:valueSource>
66 <process:toParam
rdf:resource="./Currency_Converter.owl#Source_
Currency"/>
67 </process:InputBinding> …

68 <grounding:WsdlGrounding rdf:about="#AnotherCar-ProcessGrounding">
69 <grounding:hasAtomicProcessGrounding rdf:resource="http://cmpe.emu.edu.tr/ProcessKB/services/
Currency_Converter.owl#Currency_ConverterGrounding"/>
70 <grounding:hasAtomicProcessGrounding rdf:resource="http://cmpe.emu.edu.tr/ProcessKB/services/
Car_Price.owl# Car_PriceGrounding"/>
71 <grounding:hasAtomicProcessGrounding
rdf:resource="…/services/FindCarMoldelsOfACompany.owl#FindCarMoldelsOfACompany"/>

154 D. Çelik and A. Elçi

The common parameter of the FindCarMoldelsOfACompany and Car_Price is
‘Car’. ‘Car’ is produced by FindCarMoldelsOfACompany and consumed by
Car_Price that is shown between the lines (31-46) in Table 6. The common
parameters of the newly derived process Company_Car_Price and
Currency_Converter are Price & Input_Price (50-58) and Result_Currency &
SourceCurreny (59-67). These produced by Car_Price task and consumed by
Currency_Converter task which is shown between the lines (47-67) in Table 6.
Finally, during the Execution and Monitoring stage, SCA uses grounding
information (keeps the URLs of services) of each of these atomic processes to
execute. The semantic context of the grounding information is given in the lines
(68-71) in Table 6.

9 Conclusion

Lack of semantic annotation parts, increasing number of Web Services on the
Web, and syntactic-based search operations for current Web Services makes dis-
covery and composition of appropriate Web Services challenging. This chapter
presented an Inference-based Semantic Composition Agent (SCA) framework with
its parts and functions that perform automatic process composition of Semantic
Web Services. Starting with a scheme to parse the processes of SWSs specifica-
tions to I/O/P/E form, the set of Armstrong’s Axioms were modified and applied to
build a semantically-enriched planner–inference engine cycle. Besides this, the
SCA framework uses its Semantic Matching Step (SMS) that helps to find the suit-
able processes for a required composition through semantic matchmaking. Utiliz-
ing Revised Armstrong’s Axioms (RAAs) in inferring functional dependencies,
SCA composes available OWL-S atomic processes. SCA System produces atomic
process sequences as a workflow to achieve the required composition plan in order
to satisfy user requirement as a complex task. The novelty of the SCA System is
that for the first time Armstrong’s Axioms are revised and used for semantic-
based planning and inferencing of services.

In further study of the current SCA, optimizing the use of RAAs towards pure
algebraic manipulation of the client’s goal process and SWS description is con-
templated. Incorporating more data type properties (such as synonym, is_a, an-
tonym, acts_on, etc.) into the scheme to extend its capability to match even more
qualified and suitable processes of services is also envisaged. Additionally, the
current SCA can compose only atomic type of processes that are described in the
OWL-S files of SWSs. In fact, composite type of processes is a collection of sev-
eral atomic type of processes and we assumed that all available composite
processes were already separated into numerous atomic processes before initiating
composition. Therefore, it is possible to extend current SCA that will consider in-
cluding suitable composite processes to a generated plan as a future work.

Finally, current SCA uses W3C OWL Web Ontology Language [21]. However,
OWL has just been extended to OWL 2 [36]. OWL 2 contains a small but useful
set of features that have been requested by users, for which effective reasoning al-
gorithms are now available, and those OWL tool developers are willing to support.
OWL 2 adds several new constructs to extend the expressivity of OWL including

Ontology-Based Matchmaking and Composition of Business Processes 155

those for qualified cardinality restrictions, role chains, and expressive data predi-
cates. Another future step of SCA will be modification and re-creation of the used
ontology KBs (such as TKBO, DKBO and CKBO) through OWL 2 instead of the
OWL. This is expected to help inferencing mechanism on SCA during the consti-
tution of a required plan.

References

1. McIlraith, A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems,
46–53 (2001)

2. Sirin, E., Parsia, B., Hendler, J.: Composition-driven Filtering and Selection of Seman-
tic Web Services. In: AAAI Spring Symposium on Semantic Web Services (2004)

3. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for Web service
composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2004)

4. Sirin, E., Parsia, B.: Planning for Semantic Web Services. In: Semantic Web Services
Workshop at 3rd International Semantic Web Conference (2004)

5. Aydın, O., Cicekli, N.K., Cicekli, I.: Towards Automated Web Service Composition
with the Abductive Event Calculus. In: Proceedings of Applications of Logic Pro-
gramming in the Semantic Web and Semantic Web Services (ALPSWS 2006), Seattle,
USA, pp. 103–104 (2006)

6. Aydın, O., Kesim Cicekli, N., Cicekli, I.: Automated Web Services Composition with
the Event Calculus. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.)
ESAW 2007. LNCS (LNAI), vol. 4995, pp. 142–157. Springer, Heidelberg (2008)

7. McDermott, D.: The Planning Domain Definition Language Manual: Yale Computer
Science Report 1165 (CVC Report 980003) (1998)

8. Yang, B., Qin, Z.: Composing semantic Web services with PDDL. Journal of Informa-
tion Technology 9(1), 48–54 (2010)

9. Hashemian, S.V., Mavaddat, F.: Composition Algebra: Process Composition Using
Algebraic Rules. In: Third International Workshop on Formal Aspects of Component
Software (FACS 2006), Prague, Czech Republic (2006)

10. Redavid, D., Iannone, L., Payne, T.R., Semeraro, G.: OWL-S Atomic Services Com-
position with SWRL Rules. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foun-
dations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 605–611. Springer,
Heidelberg (2008)

11. Armstrong, W.W.: Dependency Structures of Data Base Relationships. In: Information
Processing, vol. 74. North Holland, Amsterdam (1974)

12. Çelik, D., Elçi, A.: Provision of Semantic Web Services through an Intelligent Seman-
tic Web Service Finder. Multiagent and Grid Systems - An International Journal 4(3),
315–334 (2008)

13. Çelik, D., Elçi, A.: Intelligent Semantic Web Services Searcher. Turkish Informatics
Foundation’s Journal of Computer Science and Engineering (TBV BBMD) (2),
31–42(2006) (in Turkish); TBV Istanbul, ISSN:1305-8991

14. Çelik, D., Elçi, A.: A Semantic search agent approach: Finding appropriate Semantic
Web Services based on user request term(s). In: ITI 3rd International Conference on
Information and Communication Technology (ICICT 2005), Enabling Technologies
for the New Knowledge Society, Cairo, Egypt, pp. 675–689. IEEE Publ., Los Alamitos
(2005) ISBN: 0-7803-9270-1

156 D. Çelik and A. Elçi

15. Çelik, D., Elçi, A.: Searching Semantic Web Services: An intelligent agent approach
using semantic enhancement of client terms and Matchmaker Algorithm. In: Web
Technologies and Internet Commerce (IAWTIC 2005), Vienna, Austria (2005)

16. Çelik, D., Elçi, A.: A Semantic Search Agent Discovers Suitable Web Services
According to an E-Learning Client Demand. In: 6th International educational Technol-
ogy Conference (IETC 2006) Gazimagusa-TRNC, vol. 1, pp. 416–424 (2006)

17. Çelik, D., Elçi, A.: Discovery and Scoring of Semantic Web Services based on Client
Requirement(s) through a Semantic Search Agent. In: Engineering Semantic Agent
Systems (ESAS 2006), Chicago, USA, September 18-21, vol. 2, pp. 273–278 (2006)

18. SOAP versions page,
http://www.w3.org/TR/soap/ (accessed November 2010)

19. Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl.html (accessed November 2010)

20. OASIS UDDI-Advancing Web Services Discovery Standard,
http://www.uddi.org/ (accessed November 2010)

21. OWL Web Ontology Language Overview. OWL Web Ontology Language Overview.
W3C Recommendation, February 10 (2004),
http://www.w3.org/TR/owl-features/ (accessed November 2010)

22. OWL-S. Semantic markup for Web services (2004),
http://www.w3.org/submission/owl-s/ (accessed November 2010)

23. Sirin, E. and Parsia, B.: PELLET: An owl dl reasoner. In: International Workshop on
Description Logics (DL 2004), Whistler, Canada (2004)

24. Akkiraju, R., Srivastava, B., Ivan, A., Goodwin, R., Mahmood, T.S.: Semantic Match-
ing to Achieve Web Service Discovery and Composition. In: Proceedings of the 8th
IEEE International Conference on E-Commerce Technology and the 3rd IEEE Interna-
tional Conference on Enterprise Computing, E-Commerce, and E-Services (2006)

25. Bener, A., Ozadalı, V., Ilhan, E.S.: Semantic matchmaker with precondition and effect
matching using SWRL. Iin Expert Systems with Applications 36(5), 9371–9377
(2009)

26. Bellur, U., Vadodaria, H.: On Extending Semantic Matchmaking to Include Precondi-
tions and Effects. In: 2008 IEEE International Conference on Web Services (2008)

27. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web ser-
vices capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
p. 333. Springer, Heidelberg (2002)

28. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web
in UDDI. In: Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.)
CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 225–236. Springer, Heidelberg
(2002) ISBN:3-540-00198-0

29. Bellur, U., Vadodaria, H., Gupta, A.: Semantic Matchmaking Algorithms. In: Greedy
Algorithms (2008) ISBN 978-953-7619-27-5

30. Ilhan, E.S., Akkuş, G.B., Bener, A.: SAM: Semantic advanced matchmaker. In: Inter-
national Conference on Software Engineering and Knowledge Engineering,
pp. 698–703 (2007)

31. Wu, J., Wu, Z.: Similarity-based Web Service Matchmaking. In: Proceedings of the
2005 IEEE International Conference on Services Computing (2005)

32. Şenvar, M., Bener, A.: Matchmaking of Semantic Web Services Using Semantic-
Distance Information. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS 2006. LNCS,
vol. 4243, pp. 177–186. Springer, Heidelberg (2006)

Ontology-Based Matchmaking and Composition of Business Processes 157

33. Kawamura, T., De Blasio, J.A., Hasegawa, T., Paolucci, M., Sycara, K.: Preliminary
Report of Public Experiment of Semantic Service Matchmaker with UDDI Business
Registry. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.)
ICSOC 2003. LNCS, vol. 2910, pp. 208–224. Springer, Heidelberg (2003)

34. OWL-S 3, OWL-S Service Retrieval Test Collection, Version
http://projects.semwebcentral.org/projects/owls-tc/
(accessed November 2010)

35. Kang, D., Lee, S., Kim, K., Lee, J.Y.: An OWL-based semantic business process
monitoring framework. Journal of Expert Systems with Applications 36(4), 7576–7580
(2009) ISSN: 0957-4174

36. Grau, B.C. et. al.: OWL 2-W3C Web Ontology Language. W3C Recommendation by
Oxford University (April 2008-October 2009),
http://www.w3.org/TR/owl2-primer/ (accessed November 2010)

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 159–185.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 8
Semantic Architecture for Human Robot
Interaction

Sébastien Dourlens and Amar Ramdane-Chérif

Laboratoire d'Ingénierie des Systèmes de Versailles (LISV)
10/12 Avenue de l'Europe 78140 Vélizy, France
sdourlens@lisv.uvsq.fr, rca@lisv.uvsq.fr

Abstract. Robot software tend to be complex due to management of sensors and
actuators in real time facing uncertainty and noise and the more complex tasks to
realize in different situations like the human robot multimodal interaction task.
This implies a large amount of events to exchange and to process. Robotics intel-
ligent Architecture must be well-conceived to reduce this complexity. Information
must be well organized and meaning of situation must be quickly extracted to take
decision. Meaning of the situation and situation refinement require the develop-
ment of a description of the current relationships among entities and events in the
environment context. Extraction of meaning and ontological storage of events are
very important for interpretation. Human Robot Interaction involves three main
parts: awareness and acquisition context, interpretation context and execution con-
text. They define scenarios of multimodal interaction to realize the precondition
part called fusion, and the post condition part called fission. In the aim to solve the
above problem, we have designed a new architecture using semantic agents and
services. We propose in this chapter, simple and efficient components to any mul-
timodal interaction architecture requirements and universal, compliant and generic
architecture using a common knowledge representation language. Our framework
is designed for high level data fusion, fission and components management. We
don’t focus on hardware parts, sensors and actuators. Semantic knowledge is ex-
pressed in domain ontologies that permit to extract the situational meaning about
any entities in the environment, monitor and adapt the architecture if necessary. In
this objective, we apply a narrative knowledge representation language to the
memory of agents in a distributed network. We also present the structure and ex-
tension of the network for agents to act in ubiquitous environments.

1 Background

In this work, we aim to develop an intelligent robot to assist human in daily tasks.
For example, by detecting possible human distress, generating alarm or phone

160 S. Dourlens and A. Ramdane-Chérif

calling to support, helping to take a better posture, connecting to internet and read-
ing vocal news and electronic mails from Internet and go and bring something to
human, helping him to navigate in the city and so on. Human makes part of the
environment and can interact with the robot by input modalities like gestures,
body movements, voice or touch of a screen. Robot will be able to imitate, to dia-
log or to assist the human in his tasks, choosing the good modalities to answer and
acting in the human environment with security.

It appears obvious that our intelligent robot has to manage multimodal inputs
and outputs related to different contexts. Robot software need to interact with a
number of sensors and actuators in real time facing uncertain, noise and complex
tasks to realize in different situations. This implies to process and to exchange a
large amount of events. Architecture must be well-conceived to reduce this com-
plexity, events combination and knowledge must be well organized. Meaning of
the situation must be quickly extracted to take a reactive decision. This meaning is
very important to obtain a correct interpretation. Meaning of the situation and situa-
tion refinement require developing a description of the current relationships among
entities and events in the environment context. The extraction of the meaning to
understand what is happening as well as ontological storage of the events is very
important for the interpretation. Human Robot Interaction involves acquisition and
awareness context, interpretation context and execution context. These are the three
main parts of the multimodal interaction. They will define scenarios of interaction
to realize the precondition part called multimodal fusion, and the post condition
part called multimodal fission of the cognitive process of our assistant robot. Mul-
timodal fusion is a central question to solve and provide effective and advanced
human-computer interaction by using complementary or redundant modalities.
Multimodal fusion helps to provide more informative, exact, complete, reliable in-
terpretation. The cross-modal dependency between modalities allows reciprocal
disambiguation and improves recognition in the interpretation of the scene or the
state of the world at a high semantic level. Multimodal fission will define the best
modalities and actions to do in the environment depending of the current context
and evaluation of events resulting of the fusion step. Essential requirements for
multimodal fusion and fission engines are the synchronization of modalities by
sending events, cognitive algorithms including a formal logic, a context representa-
tion considering all concepts and actions, evaluating the data transfer bandwidth
necessary for efficient application and real-time constraints to respect in true life
and robotics systems and the simulation environment to validate the architecture.

In this document, we bring intelligent and exchangeable components to fulfill
these above requirements. We don’t focus on hardware of robots, house and streets’
sensors, or actuators’ controllers. We work on a higher abstraction level managing
agents’ memory, meaning of the environment and communicative exchanges
between intelligent software parts. Hardware parts are connected to our semantic
services in the network. We have designed a new architecture using semantic
agents and services components, and in a way a semantic distributed network archi-
tecture. In this chapter, we propose a universal, compliant and generic architecture
using a common description language and intelligent agents. In this symbolic ap-
proach, our semantic agents required some cognitive abilities. Because of the use of

Semantic Architecture for Human Robot Interaction 161

a knowledge base storing all necessary contexts part of the environment, their nar-
rative intelligence appears. The knowledge representation language will also permit
to semantic agents and semantic services to directly communicate between each
others. Semantic agents manage and reason on the events coming from services.
Semantic services manage sensors and actuators; they are able to produce or re-
ceive events but not to reason. Cognitive abilities of agents generally need a mem-
ory that we have developed on knowledge base. It is expressed in two different
ontologies that permit to extract the situational meaning about any entities acting in
the environment, and to monitor and adapt the architecture if necessary.

Multimodal interaction is produced by a suitable composition of agents and ser-
vices regarding to schemes templates stored in ontologies. Fusion is a part of infor-
mation integration that requires particular techniques for combining these different
data into one single event. We work at a higher level of the architecture where signal
events have already been translated in natural language by the semantic services and
according to this, events fusion is one of the processes embedded in the architecture
under the form of fusion agents. Decision will result of the interpretation. In the Post
condition, the scenario models permit to assume the fission of the taken decision.
Then agents send several simple events to network web services.

This chapter is organized as follows. The next section provides an overview of
related work. In section 3, we propose our multimodal interaction architecture de-
sign composed of semantic agents and semantic services. Components of the ar-
chitecture will be described in sections 4, 5, 6, 8 with examples of our application:
a human assistance robot connected to ubiquitous home network and the city net-
work. In section 7, we present the development platform employed to realize such
agents in a simulated environment. And finally, in the last section, we present the
conclusion and the future directions.

2 Related Work

To decrease the late in the autonomous and assistance robotics compared to Japan
advance, some military project appears in USA and lots of investment by the Euro-
pean Community are now in progress in several recent Robotic Human Interaction
Projects: COSY1 (cognitive Systems for cognitive assistants), JAST2 (Joint-Action
Science and Technology), ROMEO3 and so on. As we work at a high level, the
work presented in this chapter is related to different scientific domains: Architec-
ture Modeling, Artificial Intelligence (AI), Formal Logic (FL), Knowledge Repre-
sentation Languages (KRL), Knowledge Management (KM), Information Retrieval
(IR), Multi Agent Systems (MAS), Multimodal Interaction (MI) and Human Robot
Interaction (HRI).

Multimodal interaction refers to two important processes of interaction. They
are well presented in [11] but to resume his view: Multimodal fusion starts from
low level integration (signal information) to high level storage of the meaning

1 http://www.cognitivesystems.org/index.asp
2 http://www6.in.tum.de/Main/ResearchJast
3 http://www.projetromeo.com/index_en.html

162 S. Dourlens and A. Ramdane-Chérif

(semantic event information) by composing and correlating previous data coming
from multiple sources (sensors, interaction context, software services or web ser-
vices) in the case of a human-robot or human machine interactions. Therefore, in-
formation fusion refers to particular mathematical functions, algorithms, methods
and procedures for data combination. Multimodal fission, in the opposite way, is
the process to physically act or show any reactions to the inputs or the current sit-
uation. According to decision rules taking following the fusion process, the fission
will split semantic results of the decision into single actions to be sent to the actua-
tors. In addition, [4] proposes a review of Perceptual Anchoring, a transversal do-
main where it is necessary to associate a symbol to signal sensor level representa-
tion of a physical object by using context and higher level semantic information in
robotics. This is important for us to have symbolic information sent by intelligent
sensors. Our architecture could be complementary to this work for sensors query-
ing symbolic concepts of the physical context.

Lots of architectures have been designed in the aim to be embodied in a robot,
in a house, in the city or to simply bring an intelligent software component into a
system. We focus on intelligent architecture integrating semantic agents, semantic
services as structural components, ontology as knowledge base [5], inference sys-
tems and KRL as communication protocol. Ontologies offer rich representations
of machine-interpretable semantics ensuring interoperability and integration [15]
because of the non explicit information processed by existing complex architec-
tures and the use of standards. The genericity of the architecture components is a
key of success of designing non dedicated applications opened to several domains
and mixing different technologies. MAS is a useful paradigm for distributed and
ambient intelligence. It is an architectural choice permitting to model widely open,
distributed and ubiquitous architecture [13, 1]. Agents are autonomous program-
ming objects or classes with the capacity to interact with the environment because
of their communication methods. Intelligent robots often need awareness model
and user fusion model, using KRL in a software agents’ organization permit to
these robots to reason [3]. This design view is very close to our ideal robotics plat-
form. We will adapt this work to Human Robot Interaction. We may add that
agents may act socially around a common goal in groups of agents called agen-
cies. Web services were designed by the W3C consortium in the goal to standard-
ize software services in a distributed and interoperable way on the World Wide
Web. Agents can also be seen as web services and make part of a distributed ar-
chitecture. Web services are connected to the Provider agents or consumer agents
who need knowledge using the Simple Object Access Protocol (SOAP4) for Ser-
vice Oriented Architecture (SOA) in the XML format.

Semantic agents are cognitive agents implemented in a framework for pro-
gramming MAS using semantic web technologies. Researches have been made on
semantic agents to search, collect or index web information for users. Semantic
agents have a reasoner and most of them are built on top of JADE using OWL,
SWRL, PELLET and JENA libraries presented later. Ontology Web Language v2
(OWL5) permits to describe relationships using classes, individuals, properties in a

4 http://www.w3.org/TR/soap12-part0
5 http://www.w3.org/TR/owl-features/

Semantic Architecture for Human Robot Interaction 163

hierarchical structure called a web-oriented domain ontology respecting the formal
XML. It appears to be a useful storage base and may be coupled with a reasoner.
Reasoners are inference systems based on description logic like KAON26,
PELLET, JESS7, FACT++8, and so on, to realize the matching operation. SRWL9
is a language that combines OWL-DL with RuleML10 to add rules into the ontol-
ogy. [18] Proposes semantic agents with the behavior making part of the knowl-
edge base. Our memory development considers all information of the environment
and of agents like states and actions. The idea behind this is to realize a distributed
composition of agents respecting resources schemes available into the network. In
our work, more robotics oriented, semantic agents have a semantic memory for
past events sent on the network by sensors in multimodal fusion part of the archi-
tecture. They can query this knowledge base and to communicate with software
and hardware services. Multimodal fission part of the architecture also called deci-
sion processes reduces complexity to achieve robotic, domotic or assistant goals.
Semantic memory gives them the ability to understand what happen in the envi-
ronment and then to compose or adapt the architecture managing several input and
output modalities. To obtain semantic agents and services, cognitive agents re-
quire inserting a component into them to contain environment knowledge and de-
scription logic. It brings the ability to query, store or produce representative and
narrative knowledge. Agent memory design permit to store the events and extract
the meaning of a situation in a desired context. Recent languages appears to try to
solve this issue, new Extensible Multimodal Annotation (EMMA11) [8], a standard
language proposal from the W3C consortium is able to represent multimodal fu-
sion and multimodal fission in a very procedural way. (Johnston 2009) presents an
example of multimodal applications on iphone mobile as a proof of concepts.
MurML [9], MMIL [12], MutliML [6] are pure XML and are based on a natural
language processing (NLP) parser made by a combinatory categorical grammar
(CCG) [17] at an intermediate level of recognition of gestures and speech utter-
ances. It is an interesting approach to mix a grammar and semantic knowledge but
it’s well suited for speech recognition. But we wanted a human language grammar
independent solution. [10] also propose a robot mark-up language approach based
on standard XML technology.

We choose languages more suitable and powerful as KRL like Knowledge Inter-
change Format (KIF12) or Narrative Knowledge Representation Language (NKRL)
[19]. NKRL is a language very close to the frames and slots idea proposed by [14]
and refined by [16]. Frame is the choice we made to resolve our interpretation
problem. The language we use in this chapter is very close to frames and NKRL
but our ontologies and the inference system are different in terms of development,
the result will be more adapted to robot architecture. It appears that the software of

6 http://kaon2.semanticweb.org
7 http://www.jessrules.com
8 http://owl.man.ac.uk/factplusplus/
9 http://www.w3.org/Submission/SWRL
10 http://ruleml.org
11 http://www.w3.org/TR/emma
12 http://www-ksl.stanford.edu/knowledge-sharing/kif

164 S. Dourlens and A. Ramdane-Chérif

Zarri is not free and open source so we propose another system. But more than that
use of narrative languages and to respect the formal and mathematical background
behind OWL (calculus completeness and consistency checking), we introduced in
the memory of our “semantic agent” component (containing its ontology and the
facts base) some similar meta-concepts like properties, relationships and individu-
als types. One important difference is the n-ary relationships implied by the use of
frames and slots. This gives us the ability to import or export any OWL knowledge
bases into the agent memory. In addition, the transition from frame to XML is very
easy. To conclude this paragraph about languages, we will add here that the lan-
guage is not so important to extract the meaning but more the structuring of the
knowledge base and the relationships between models of action, models of situa-
tion linked to concepts in the representation of facts. Our ontologies contain con-
cepts and models fully compliant with concepts package of the chapter 8 defined in
the ISO/IEC 2009 CD 11179-3.213 standard document and value meaning of the
chapter 10 of the same document. For physical agents managing our material ser-
vices (sensors and controllers), we also refer to the Foundation for Intelligent
Physically Agent (FIPA14) standards from IEEE Computer Society, in particular,
the SI00091E document on frames description of FIPA-devices, the SC00001L
document about the protocol schemas for our management agent in charge of the
discovery, composition and adaption of the multimodal architecture.

Our KRL will be also used for the network communication between agents and
services even if they may use public methods of web services to exchange infor-
mation via SOAP protocol. To dialog, several techniques are available, state
based, frame based and plan based. A frame is a task or a subtask at a high level of
representation. NKRL is very suitable with frames because of the predicate form
of models (we will detail this point later) and brings the same information on envi-
ronment state coming from sensors and action done or to do. Frames of “informa-
tion events” will be directly stored in the knowledge base with no specific treat-
ment while frames of “queries events” imply to matching stored events models for
example to recognize the current scenario. In this section, we have presented re-
cent works and clarified our work area and choices. In the following section, we
will explain our multimodal interaction architecture dedicated to Robotics.

3 Multimodal Interaction Architecture Design

In this section, we introduce our robotics multimodal interaction architecture as
represented on figure 1. In the application of interaction, our architecture is com-
posed of intelligent agents able to manage several multimodal services. Services
are directly connected to the environment controlling sensors and actuators. They
are in charge of internal of the robot or external inputs and outputs in a ubiquitous
network. Semantic agents integrated into the architecture may use semantic ser-
vices embedded in the robot, in the house, in the city or anywhere on Internet.
Semantic agents described here are not only dedicated to robots. They may be

13 http://www.jtc1sc32.org
14 http://www.fipa.org

Semantic Architecture for Human Robot Interaction 165

embedded to manage a street, a shop, a building or any Robotics or Home Auto-
mation systems. Mikes and automatic speech recognition (ASR), video camera
and gestures recognition are examples of services that will be input modalities.
Robot arms, legs or wheels, speakers and text-to-speech synthesis (TTS), TV
screens, Wireless Fidelity Coffee device will be output modalities. As you may
apprehend, this architecture will provide a kind of ambient intelligence used in
function of the objective and situation to face. We tend to bring a more generic ar-
chitecture to avoid tying it to a specific problem and a specific markup language
as presented in the related work section. That’s why all agents and services are
“web services” components in the network and offer discovery, composition and
orchestration in the respect of UDDI15 and WSDL standard. Other agents will be
dedicated to composition and adaption tasks.

Fig. 1. Interaction Oriented Architecture

In the case of Human Robot Interaction, figure 1 shows that semantic agents
are architectural components working in the processes of fusion and fission.

Fig. 2. Semantic Architecture

15 http://www.uddi.org/pubs

166 S. Dourlens and A. Ramdane-Chérif

Figure 2 presents the semantic architecture where semantic agents and semantic
services are components sharing the knowledge in a communication network.
Knowledge can be considered like a blackboard between them but it is imported,
exported or distributed into the agents (in their memory) using the network. Our
software architecture is based on the three following main components:

- Semantic Services: Their role is to send any information from the environ-
ment using hardware sensors or execute a software function, or to execute or-
ders to control actuators. Services can be seen as reactive agents with no cog-
nitive part but enough exchangeable knowledge and code to realize the
process they are designed to.

- Semantic Agents: They are cognitive or functional; they possess their own
abilities and program to achieve their tasks and goals. They contain an em-
bedded inference system able to process the matching operation. They are in-
telligent agent with cognitive abilities to answer queries. Scenarios or execu-
tion schemes are stored in their Memory (a knowledge base) that we will
describe in the next section.

- Knowledge between agents and services: It is communicated under the form
of events on the network and stored in semantic agents. Agents are specialized
for certain domains of knowledge or by location or use, and filter information
from the network. But, by default, events are sent to all semantic agents in a
broadcast way.

Fig. 3. Semantic agents & Semantic services components

As shown on the figure 3, in our architecture, we have modeled semantic agents
and semantic services differently. Semantic services interact with the environment
in two manners: the network (wireless or not) between them and, the sensors and
actuators. They have code and memory (properties and methods in generic pro-
gramming object model), the communication module and the hardware controller

Semantic Architecture for Human Robot Interaction 167

module. The hardware controller enables the service to receive information from a
sensor or to drive an actuator. Semantic Agent contains its knowledge base, its in-
ference engine and its communication module. The communication module con-
tains the network card and its semantic functionalities to write and send the events
in KRL or receive it. As we have also presented in the previous section, the figure 3
shows the agent user or developer interfaces that permit to build and import con-
cepts, models, terms definitions and media unified related links. Media can refer to
multiple pictures or video files.

OWL editor can be Protégé, SWOOP or any others OWL2 compliant editors. Thus
OWL can be imported and concepts ontology in the knowledge base (agent memory)
can be exported too. The models ontology editor has been developed by us to insert
and modify models. It is in fact the agent memory editor. In summary, this figure
shows the basic components of any complexes architectures that can be built with.

4 Semantic Agent Memory

Our semantic agents are more oriented to solve multimodal fusion, multimodal
fission management and to be part of robotics architectures or human decision
systems. In this section, we will present our knowledge base structure. Our archi-
tecture is fully semantic and the knowledge base is the fundamental stone of this
architecture. In this work dedicated to multimodal interaction, we call our agent
memory the Multimodal Interaction Context Ontology (MICO). MICO is a data-
base regrouping two ontologies (see fig. 4). Semantic agents and semantic services
communicate with events. These events are written in natural language concepts
(formal T-BOX of concepts) and instances of concepts (formal A-BOX of con-
cepts) included in our first domain ontology called Concepts Ontology. Our sec-
ond ontology is called Models Ontology and contains templates of events (formal
T-BOX of models) under the form of predicates and instances of events called
facts (formal A-BOX). Concepts, Events models, Query models and instances are
stored in ontologies. Instances are facts, happened scenario and context knowl-
edge. Concept ontology is fully compatible OWL2.

Fig. 4. Knowledge base information

168 S. Dourlens and A. Ramdane-Chérif

In the multimodal interaction context, classes of concepts will describe, in natu-
ral language (English and French languages are the only languages included for
now) and in an ordered and hierarchical way, the objects of the world including
sensors and actuators, entities, meta concepts to create and modify concept and all
possible instances. Our concept ontology may be large and grows. We are already
able to insert knowledge bases like OpenCYC16 project and common sense projects
exist, we could integrate them and work with them. But we have not the ambition
to create a human brain, just an effective powerful memory for semantic agents be-
cause we work by iteration, controlling the design and the safety of our approach.

Agents will contain the code and scheme of execution to realize their tasks with
the help of the models of behaviors, actions or composed scenario in their mem-
ory. Events instances or facts link models to concepts.

The model ontology contains predicates, roles and arguments where roles are
concept classes stored in the concept ontology and arguments are concept classes for
a query model or instances of concepts. Arguments must be an operation of several
classes of concepts or instances by using NRKL operators as defined by Zarri [20].

Fig. 5. (a) Agent Memory

16 http://www.opencyc.org

Semantic Architecture for Human Robot Interaction 169

Figure 5 shows two screenshots of the Agent Memory Editor. Meta ontology,
Concepts ontology and Model ontology are in a same Memory tree. These ontolo-
gies are stored in a SQL database tables (see fig. 15). One frame query is equiva-
lent to one SQL query sent to the database and the matching is directly done in a
very fast way because of the complexity due to the storage of the ontology in da-
tabase tables at the time of creation of concepts and models.

Fig. 5. (b) Agent Memory

Knowledge representation language (KRL) is a semantic formal language L
that can describe events in a narrative way. The formal system is composed of the
formal language based on variable arity relations in logic of predicates (event
frames). It permits to realize semantic inference in order to extract the meaning of
the situation. Ontologies are useful and powerful structures to store the events and
extract this meaning. Inference system may use models to match the instances of
the ontologies. In NKRL, frames are predicates with slots which represent pieces

170 S. Dourlens and A. Ramdane-Chérif

of information. A slot is list of roles associated to arguments. A predicate P is a
semantic relationship between Roles and Arguments and represents a simple event
SE or a composed event CE depending of the position of the predicate in the mod-
els ontology; it is denoted by the following formula:

P((R1 A1) … (Rn An)) (1)

where Ri is a role and Ai is an argument. A role is a meta concept and can be one
of the possible roles of concepts in the event. Argument Ai contains one or several
possible values, classes of concepts or instances of concepts in the event. And if
several items are in the argument, a relationship can be used as COORD/AND
(OWL intersectionOf), ALTERN/OR (OWL unionOf), ENUM (OWL oneOf),
SPECIF (OWL subClassOf).

Name: <RootPredicate>:<PredicateName>
Father: <RootPredicate>:<PredicateName>
Position: <NodeTreePosition>
Natural language description: '<Predicate Description>'
<RootPredicate> <Role1>:<Argument1>
 <Role2>:<Argument2>
 <Role3>:<Argument3>

Where Role can be OBJECTIVE, SOURCE, BENEFICIARY,

MODALITY, TOPIC, CONTEXT, MODULATOR, DATE/INTERVAL or
another role specified in the Meta ontology.

Fig. 6. Model of Event Structure

Figure 6 shows a sample model written with the NKRL syntax. The list of all
roles is part of the Meta ontology of the agent memory. Models of events are
models of predicates and instances of predicates specific to a situation, for exam-
ple, “Move” is the informative term called root predicate (an event model of the
events ontologies).

Name: Move:TransferOfServiceToSomeone
Father: Move:TransferToSomeone
Position: 71
Natural language description: 'Transfer or Supply a Service to Human'
MOVE OBJECTIVE Services
 SOURCE Agents
 BENEFICIARY Human being
 MODALITY COORD(Composition,Execution)
 TOPIC UDDI
 CONTEXT Home Network Services

 Modulators Emergency
 date start:
 date end:

Fig. 7. “Move: TransferOfServiceToSomeone” Predicate model

Semantic Architecture for Human Robot Interaction 171

The sample model of predicate “Move:TransferOfServiceToSomeone” in
figure 7 represents a model of possible events that can happen when a service is
realized in emergency to help someone in distress. In this case, it shows a web
services composition of semantic agents and semantic services where actuators
can be activated by any dedicated agents to execute a task.

For example, if actuators are parts of robots arms, they may help a human to get
up or to avoid falling down. If the developer needs more accuracy of this event
model, he will be able to create subclasses of this event model to refine it, e.g., by
replacing the “Actuators” concept by a subclass of actuators in the concept ontol-
ogy and by replacing “Agents” concept by the real agent assigned to this task. And
then, he has created a new sub model or subclass of the previous model. Any
event facts related to this predicate will be stored under this model as instances
with all roles filled by exact arguments. In this sample, in this agent memory, stor-
age of facts is very fast because events are directly stored under its own predicate
and querying past facts related to a situation will simply consist on matching pre-
dicate, roles and arguments. All situations and actions of semantic agents and ser-
vices done on a time period will be quickly highlighted.

In this section, we have explicated how works the semantic agent memory. In
the next sections, we will present how agents and services act with multimodal in-
teraction in a robotics environment.

5 Multimodal Interaction Agents

In this section, we will present Fusion Agents, Management Agents and Fission
Agents that are employed to resolve the multimodal interaction.

5.1 Fusion Agent

A fusion agent (FA) is a semantic agent which has the role to extract a specific
meaning. Figure 8 presents the fusion agent model as a filter. The matching opera-
tion of the inference engine will extract the required meaning in the current con-
text. Once information are extracted from the knowledge base, the fusion agent
will be able to create a composed event that will be also stored in the knowledge
base and eventually shared with others agents by sending it to others agents in the
network. Each agent is specialized to a task or a domain to compose new events or
to act in the environment using linked semantic services.

We denote fusion agent as is:

m=fax(e1, …, ek) (2)

where m is a meaning, fax the fusion agent function of the agent x and e1 to ek are
the events or facts coming from other semantic agents. Meaning is sent under the
form of composed event to other agents only if matching is true.

172 S. Dourlens and A. Ramdane-Chérif

Fig. 8. Fusion Agent Model

All agents process consists to execute a loop of these five following steps:

1. Take a model of events
2. Fill roles with known or wanted arguments
3. Query the knowledge base
4. Get list of matching events
5. Use events to compose a new event (simple or composed event) by using

its specialized code

Behave: SayHello
 SUBJECT: COORD(Gesture Arm Up,Speech Hello Robot)
SENDER: COORD(GestureDetectionVideo1,VocalRecognition1)
Date: 09/09/2009 11:34

Fig. 9. “Behave: SayHello” composed event instance

The following example (see fig. 9) represents a model of composed event that
represents “a human saying and doing Hello”. In this example, one instance of our
fusion agents is in charge to merge events that happen in a same period of time. It
uses a model that let it read that two events “Gesture Arm Up” and “Speech Hello
Robot” sent at the index time 11:34 by the two services “GestureDectection-
Video1” and “VocalRecognition1”. The first service is in charge of the detection
of gestures produced by human when the human is near by the camera1 sensor.
The second service uses one or several mikes to recognize a speech sentence.
These services have sent their basic event in parallel to any agents able to store
them into their memory. As you make out, these two services are embedded in the
robot or are parts of the house, no problem until they are connected to the robot
agents. At a scheduled interval of time and after new events took place in its
memory, our agent can compose an instance of the “Behave:SayHello” model.

Then others agents will be able to use this composed event to take decision,
compose or evaluate a scenario or simply store it in their memory.

Semantic Architecture for Human Robot Interaction 173

Fig. 10. Multimodal fusion agents

Figure 10 presents several examples of fusion agents (the disks) acting at dif-
ferent levels of the multimodal fission part of the architecture (figure 1) from the
basic to the behavioral level. Basic level links fusion agents to services (the boxes)
in charge of sensors. These basic agents together store their events as values or in-
stance of concepts in their memories but not instances of models. Higher levels
agents compose and store events as instances of models with the useful informa-
tion coming from the previous level. In this example, the context fusion agent
stores time, sound, level and location and shares these instances with agents of the
next levels. Entities level agents will create simple events. At the behavioral level,
agents directly store composed events under the corresponding root predicates of
the memory ontology: here we have Behave, Exist and Move. We observe that fu-
sion agent names can correspond to predicates of the agent memory. In fact, the
figure shows we can use several levels of granularities of events. Fusion agents are
able to query the knowledge base and produce simple or composed events.

5.2 Management Agent

A management agent is a semantic agent which has the role to manage others
agents and make them work in relation with available services. All semantic
agents execute the same process presented in the fusion agent section. Manage-
ment agents are programmed to store events happening in the architecture, adapt
and compose the architecture at a scheduled period of time. To realize their tasks,
they may use the event model presented in the figure 7.

174 S. Dourlens and A. Ramdane-Chérif

Fig. 11. Multimodal Management Agents

Figure 11 shows an example of composition of semantic agents and services
realized by two management agents. The discovery management agent (DMA) is
in charge of the discovery of services and agents. It uses the SOAP protocol to ac-
cess UDDI server or WSDL files, to find all web services in the network and to in-
terrogate them to know all properties and methods they have (the two arrows from
the agents and services boxes). From these data, it will create semantic events
about available services and agents, their location, the possible roles and their per-
formances. Some information about us may be also directly available in its mem-
ory (represented by the Past facts disks previously read from the network as
broadcast events). Then, the composition management agent (CMA) is able to
compose a desired architecture with links between agents and services (arrows
from services’ box to agents’ box). It will be capable of replacing an agent or a
service by a better one more efficient or in case of failure depending on the devel-
oper or user criteria.

Three agents have a role in this multimodal fusion architecture: Context fusion
agent is in charge of reading all single events from the environment context like
time, sound level, location, temperature of the building. State fusion agent re-
ceives focused objects context from the environment by reading temperature of
the object, activity status, name of the recognized object by the object recognition
sensor. Shift fusion agent perceives basic events of the behavior of the focused ob-
ject: speed and direction. The object can be any entities like the hand or the arm of
the human, or any obstacles on a walking path.

5.3 Fission Agent

A fission agent is a semantic agent which has the role to manage actuators services.
Fission agent acts exactly like the fusion agent except that in addition they will
produce events sent to planning agent in charge to store all future jobs to execute or

Semantic Architecture for Human Robot Interaction 175

directly to services at a specific time by monitoring the planning agent events. So
the fusion agent model presented in the figure 8 is the same for the fission agent
model, only the meaning will be of different types because events will be orders or
planes that we call “execution events”. We denote fission agent as is:

a=fiy(m1, …, mk) (3)

where a is an action to perform by actuator, fiy the fission agent function of the
agent y and m1 to mk are the meaning or composed events coming from other se-
mantic agents. Action is sent under the form of composed event to actuators ser-
vices if matching is true.

Fig. 12. Multimodal Fission Agents

Figure 12 presents an example of composition of fission agents and actuators
services realized by three fission agents (settings agent, communication agent and
move agent) and a planning agent. Agents are represented as disks, services as
boxes and arrows represent the composition (events communications that are taken
into account by the agents). Past facts are the previous events sent on the network
and so available in the memories of agents. On this figure, we notice two types of
services: the software services containing useful methods and the hardware services
driving actuators making part of effectors network. The choice of software services
and hardware services depends on the conceived robotics application.

This section clarifies the functioning of agents and services, and the interest of
use of KRL in the multimodal interaction problem. In the next section, we will fo-
cus on the networking in the architecture even if we already have presented here
the standard web services implied in the process of semantic agents and service
composition.

176 S. Dourlens and A. Ramdane-Chérif

6 Networking

6.1 Protocols

Our architecture is Operating System independent and built on standards to be
compliant and all components are designed as web services for interoperability
with external applications and agents. Simple Object Access Protocol (SOAP) is
an Internet Protocol (IP) communication layer. It works with UDDI server or
WSDL files to discover and integrate the web services. Some new researches
bring non functional information on services like performance (execution, re-
sponse time), user preferences, quality of work and availability. In a future work,
it will be interesting to insert semantic markup for web services (OWL-S) to be
used by management agents. Memory of these agents will keep service profile,
service grounding and service model. The figure 13 presents the messages ex-
changed at networking level.

Fig. 13. Messages

Agent and Services are web services, they have an IP addresses and one or sev-
eral TCP ports. Mobile agents have to change of IP addresses by moving from a
network connection to another, in a wireless (WIFI) network for example. Addi-
tional security schemes may be added to manage privacy of information, services
or network when the mobile agent acquires a new address or a Kerberos ticket is
granted to access a service.

Our agents and services communicate by using two private methods:

- krl_send() to send events under the form of frame messages in a broadcast
way to all agents and services, to an agency or to only one agent or service;

- krl_listen() to wait for any events to store or process.

These functions will use a model of events and fill the different role using val-
ues or concepts related to the service job.

6.2 Event Messages

As we have presented in the previous sections, KRL is also a communication
mean used between agents and services describing happening events. It brings to a
robot or any parts of the application the necessary awareness.

Semantic Architecture for Human Robot Interaction 177

The knowledge is distributed on agents specialized or not (i.e using events filter-
ing of not). Environment context comes under the form of events from the network
sensors (semantic services). These events are the facts happened in the environment
and in the architecture or, actions, orders or data sent by agents to other agents or to
services. Events are single or composed and express the situational meaning for
agents. We may call this event messaging network a semantic network. Figure 4
showed how to compose facts using two ontologies and giving two types of in-
stances even if they are in the same knowledge base. Figure 14 is oriented to pre-
sent knowledge management in the network connected to the environment and the
possible actions and request so classes and instances parts of the figure 4 are pre-
sented on only two cylinders here.

Fig. 14. Storage and Querying the agent memory

6.3 Semantic Agencies

In this section, for performance of using and accuracy of information, we propose
to design local semantic agencies containing a set of multimodal agents specific to
a location (embedded in a robot or a house) or a purpose domain (cooking, work-
ing, monitoring or health caring) using different IP networks. Depending on their
goal, others agents that don’t make part of the agency will be able to get a new IP
address, be discovered, and eventually be used. The most important will be the
possibility for it to share knowledge of the agent memories of the agency respect-
ing a filtered or secured access by agents themselves.

Knowledge can be either an external part of the robot embedded into the auto-
nomous agents or be elements of a nearest distributed network. Each network
nodes or agencies could also be connected to other external nodes: nodes on the
streets, nodes in different houses, nodes in companies, nodes on Internet servers or
even virtual nodes. Virtual nodes could be incorporated into a simulation, a game

178 S. Dourlens and A. Ramdane-Chérif

or a computer. We recommend evaluating the size of the agency and the generated
traffic of data in the network to be efficient, smart enough and fast to interact.
With this notion of agencies and network nodes, mobile agents (embedded in a
mobile robot or a mobile phone) will be able to adapt themselves to any cross en-
vironment and use local information and services to achieve its task.

7 Development Platform

Our architecture is general enough to be OS independent and developed with any
programming language and any free of cost web services or multiple agent plat-
forms. The two main development environments are Java Agent DEvelopment
Framework (JADE) using JAVA and Microsoft .NET, CCR, DSS using C, C#,
C++, Visual Basic. We have taken C for most of the code and VB.NET for the
Memory Editor interfaces to be easily integrated in the Microsoft Robotics Studio
simulation platform that respects the physics of earth gravity and physical parts of
the robot (dimensions, weights, boundaries, degrees of freedom).

Our two ontologies have been developed using our own agent memory inter-
face (see fig. 5). For the concepts ontology, our interface is compatible with any
OWL editors like Protégé (Java), OWLVE (Eclipse) or Swoop (Java) as our inter-
face may import and export the concepts tree. For the models ontology, we use our
editor to respect the NKRL description language as no NKRL source code is
available and free. As a future work, we think to develop this type of ontology
with the Protégé-frames17 free framework. It is an integrated Protégé version giv-
ing the ability to add frames (our predicates) and slots (our roles and arguments).
To store and access quickly ontologies, some people will prefer to write XML text
files, we preferred to build our ontologies on a database engine. XML text files are
very quick to write and read but the difficulty comes to parse and recursively
match events with models. Our database (see fig. 15) is fully compatible with
MySQL, PostgreSQL and Microsoft SQL Server. The SQL query engine is much
more efficient on a huge amount of data because of the indexing system. Re-
searches are done in the field of domain ontologies to make hybrid systems link-
ing ontologies and database but we think a choice must be made to avoid manag-
ing two environments. Oracle developers have also recently added semantic SQL
procedures to manage OWL ontologies and match instances. Our ontologies are
stored in a database with different tables containing links between concepts, roles
and arguments of events models and queries models to accelerate the match-
ing/unification process by using a simples SQL request. Links represents meaning
by associating concepts and events nodes. Table named “RA” stores facts under
the form of predicates (see fig. 6) and links all roles and arguments of facts (prop-
ositions in terms of KRL). Unification is done very quickly because it is a O(n)
comparison between a query model and n facts. As instance of a previous work,
[2] describe a smart house platform using TAOM4E, JADE and the SOCAM
ontology.

17 http://protege.stanford.edu/overview/protege-frames.html

Semantic Architecture for Human Robot Interaction 179

Fig. 15. Ontologies stored in database with Role and Arguments (ra) fully linked ontologies

Our framework and previously presented components have been developed to
be integrated in “online” real-time software embedded in robots, intelligent houses
or mobile phones. Our framework is also designed to continuously insert new in-
stances to the agent memory. Then we have integrated to a simulation robotics
platform fully compatible with the robot hardware.

Knowledge representation languages used are NKRL and OWL v2 but other
description languages like KIF may be also included. The only constraint is that
the knowledge base must have a conversion procedure to store events as predi-
cates instances. We can export our database to XML format with one direct SQL
query. Concerning natural language integration, as our concepts ontology contains
words of natural language, it is also possible to consider verb as predicate, subject
and others as instances of arguments. Searching for the closest predicates model
containing arguments related to these instances. The procedure will take little
more time but should work. In addition, to insure interoperability, the network
layer is made of standard TCP/IP and SOAP protocols. Web services may also be
developed with AXIS, ANT or Tomcat. We have developed this architecture with
Microsoft DSS and CCR (see fig. 16) to guarantee the scalability. Graphics simu-
lations will be realized with Microsoft Robotics Studio and DirectX.

Layer Description

Agents Software components of the application
Services Software and hardware services
Knowledge Representation Language Events encoded into Predicates
Microsoft CCR and DSS Concurrent Agents & Web Service

Management
SOAP / XML Standard Web Services Protocol
TCP-IP Network Standard TCP/IP protocol

Fig. 16. Application Layers

180 S. Dourlens and A. Ramdane-Chérif

8 Application to an Assistant Robot

As presented in the introduction, we want to develop an intelligent robot to assist
human in daily tasks at home or in the city.

8.1 Robot Composition

First our robot may know its possibilities of actions and initiate its own architec-
ture. In the software, we have implemented our semantic agents presented in the
figures 10, 11 and 12. The management agents will discover all services using the
SOAP webservices discovery and using the two models of Exist root predicate in
the models ontology: “Exist:Existing Services” and “Exist:Existing Agents”. To
link the services to the agents, CMA will use the sub classes of “Behave:Adapt”
model. Our two agents repeatedly adapt the architecture depending of the current
context: multimodal interaction context (too much noise to use vocal recognition,
too much noise to produce speech or sounds, , don’t use keyboard input as light is
too dark, because and so on), user context (user is sleeping in front of television,
user doesn’t want robot to make noise, user is talking to someone else, dumb user
can’t speak so robot will read on lips or read signs, and so on), location context
(don’t make sound because it’s forbidden in this location, outside noise is too
high, robot must avoid people and obstacles, global positioning system is activated
outside but not inside house, and so on), awareness context (speech, move or
sound detection) and all other desired situational contexts. Once composition is
done, all agents are able to read events messages on the network and get all infor-
mation from the services like real possibilities of actuators (for instance, minimum
and maximum angles of a arm rotation) and list of functions they can execute (ro-
tate arm to right, grasp something with left hand). As agents are specialized to a
given task, they will keep all or part of knowledge available on the network in
their memory and use it to make composed events or act. Before starting the robot,
we have given to agents and to services the maximum of information about envi-
ronment and jobs to realize in their memories by filling concepts and models
ontologies.

8.2 Robot at Home

At home, lots of services are available, detectors in the doors, coffee maker in the
kitchen, drink distributor in the saloon, human detectors in the rooms and corri-
dors. Once connected to the home area network (HAN), our robot is able to use all
services according to their availability. Management agents of the robot discover
services and compose a new architecture depending on the application or robot
objective. All actuators, devices and sensors are fully described in the concept on-
tology of the agents under the “entities:parts” class. It is the same for the walls po-
sition and furniture in the house. To know where the human, animal or any entities

Semantic Architecture for Human Robot Interaction 181

are, agents may use the following models to query their memory: “Exist:Existing
Entities” and “Exist:Locate Entity”. To achieve scheduled tasks, robot agents will
read planning in their memory and compose or adapt the architecture with avail-
able resources of the robot then acts. Triggered tasks are also taken into account
by receiving an emergency event from the fusion agents following some priorities.

Name: Move: Someone Falls Down
Father: Move:Move Someone
Natural language description: ‘James is falling down’
MOVE

 SUBJECT: “fall” (possible moves detected by the cam-
era)

 SENDER: MoveDetectionVideo5 (instance of sensors)
 SOURCE: James (instance of human_being)
 MODALITY: COORD(Behave:Adapt, Move, Behave:Catch

Someone)
 TOPIC: Monitoring
 CONTEXT: House Activities
 LOCATION: Living room (instance of Building)

 Modulators: Emergency
 date start: 10/10/2010 10:21:59

Fig. 17. People falls down detection implies robot assistance

Figures 17 and 18 represent the situation where someone is falling down in the
living room. Management agents delay all current tasks and adapt the architecture
for the robot to hold, retain or catch the one if possible. Else it will alert the rescue
from a phone call.

Name: Behave: Catch Someone
Father: Behave:Assist
Natural language description: ‘Robot is catching James’
MOVE
 SOURCE: Robot (instance of robots)
 BENEFICIARY: James (instance of human_being)
 MODALITY: COORD(Left Arm,Left Hand,Right Arm,Right

Hand)
 TOPIC: Assistance

 Modulators: Emergency
 date start: 10/10/2010 10:22:01

Fig. 18. Robot has helped James

Robot was doing something else, agents receive the “Move:Someone Falls
Down” event coming from the MoveDetectionVideo5 service located in the corri-
dor1 (see fig. 19).

182 S. Dourlens and A. Ramdane-Chérif

Fig. 19. Body motion detector

As it’s a case of emergency and the modality “Behave:Adapt” is defined in this
event, management agents organize the change by ending events to planning agent
and compose architecture to move the robot near the human being called James
and to catch him before James hurts the ground. All input modalities stay activated
but output modalities are chosen. Fission agents in charge of the coordination of
moves control the robot wheels and the rotation actuators to put arms and hands in
the right position. During the fall, agents will modify the trajectory of robot arms.
To obtain the right position of the body of the human and the speed of fall to cal-
culate the appropriate position of the robot, fission agents can send queries to Mo-
veDetectionVideo5 service. After the reply; fission agents control the actuators to
achieve the goal. The scenario will end when MoveDetectionVideo5 service de-
tects a secure position of the human being. Lots of scenario can be integrated by
the addition of our predicate models: More simple scenarios like to recognize a
vocal order from the human and executing it, to send an event to actuators to close
the shutters at night or call the police on intrusion detection. Or more complex
scenarios like to dialog with the human, to learn gestures or actions by imitating
human, and realize complex behaviors.

Fig. 20. Performances

We have built and simulated the house and robot sensors and MAS architecture
composed with 10 different sensors services sending a lot of events and 20 agents
working in parallel. We trigger the falling of James at 10 seconds. We study the

Semantic Architecture for Human Robot Interaction 183

performance of the agents by analyzing the number of facts stored in their mem-
ory and the well composed events resulting of multimodal fusion and fission
agents. The figure 20 shows these results. We observe that errors in output events
are less than 10% with no trigger and less than 20% with trigger depending of the
number of events and the events processing. These results are due to simulation; in
real, much more uncertainty occurs. In a future work, we think to improve this by
a quality management of events and a model checking.

8.3 Robot in the City

We showed our robot acting in the house but why not use agencies of a simulated
city and extend the robot into the city. Semantic agencies presented in section 6.3
are integrated in several locations. Each agency has a network of agents with spe-
cialized roles customized to exchange information about their accomplished jobs.

Figure 21 presents a simple simulation for city streets map scenarios (streets are
in white color and buildings in grey color) where a robot helping a human at
home, to navigate in car or by walking to shop, work and post office. Some agen-
cies (dark disks) are accessible from home location like police and Hospital for the
robot to call them in case of emergency. Some agencies like Street1 and Street2
will be accessible to navigate from home to work, to inform robot about the traffic
road and even to give the current color of the traffic lights at the crossroads. Baker
and Shop gives information about the opening hours, the available quantity of
bread or the new fashion clothe. Same for the post office which could inform
about a packages delivery bought on Internet. At home, the network may inform
the robot about the current health state of the human, daily living tasks in progress
or unusual situations. Importation of knowledge from other agencies is interesting
for an agent to learn experience and to change job in a composition where agents
are not too busy. Many applications are possible.

Fig. 21. Semantic Agencies City streets map

184 S. Dourlens and A. Ramdane-Chérif

9 Conclusion and Future Work

To conclude this chapter, after a background review, we have presented a new ar-
chitecture based on semantic components which offer a good framework to design
complex and intelligent applications like our implementation in a human robot in-
teraction platform. Semantic agents and services work in parallel and are distrib-
uted in a network. Knowledge representation languages and ontologies conceived
to build the agents memories give the ability to reason about the environment very
quickly. The use of frames and matching operations is a promising way of devel-
oping artificial intelligence. Agents are able to continuously adapt the robot and
the modalities depending on changes. In addition, all current standards are re-
spected and may be integrated.

In future work, we will work on semantic pervasive architecture and ambient
intelligence applied to learning and training of robots. One important work to real-
ize is the measure of performance of the architecture. We have not yet measured
all performances and compared to OWL QL parsers for now but we are confident
about the space of complexity and we think to integrate later models of quality
evaluation of the system in term of networking and distributing (quality of service)
and decision taken (scenario analysis).

One main problem is the limitation of the network bandwidth. In this case, it
should be possible to reduce the number of events on the network by using private
channels between agents like human communication. In the work done here, all
agents store all events and use it wisely by filtering unnecessary events.

Concepts ontology of the agent memory contains enough knowledge for our
robotics application but we think to accumulate more concepts and definitions by
automatically importing CYC common sense ontology, English and French the-
saurus by linking them directly to our existing concepts.

References

1. Allan R.J.: Survey of Agent Based Modeling and Simulation Tools. Technical Report.
STFC (2008-2009),

 http://epubs.cclrc.ac.uk/work-details?w=50398,
 http://epubs.cclrc.ac.uk/bitstream/3637/ABMS.pdf

2. Benta, K.-L., Hoszu, A., Vacariu, L., Cret, O.: Agent Based Smart House Platform
with Affective Control. In: EATIS 2009, Prague, CZ, June 3-5, Art. 18. ACM, New
York (2009) ISBN:987-1-60558-398-3

3. Erik, B., Ivan, K., John, S., Kokar, M.M., Subrata, D., Powell, G.M., Orkill, D.D.,
Ruspini, E.H.: Issues and Challenges in Situation Assessment (Level 2 Fusion). Jour-
nal Of Advances In Information Fusion 1(2), 122–139 (2006)

4. Silvia, C., Amy, L.: A review of Past and Future Trends in Perceptual Anchoring. In:
Fritze, P. (ed.) Tools in Artificial Intelligence. I-Tech Education and Publishing, Vi-
enna (2008)

5. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation.
Human-Computer Studies 43(5/6), 625–640 (1995)

Semantic Architecture for Human Robot Interaction 185

6. Manuel, G., Alois, K.: MultiML - A General Purpose Representation Language for
Multimodal Human Utterances. In: ICMI 2008, Chania, Crete, Greece (2008)

7. Michael, J.: Building Multimodal Applications with EMMA. In: ICMI-MLMI 2009,
Cambridge, MA, USA, November 2-4, pp. 47–54. ACM, New York (2009) ISBN:
978-1-60558-772-1/09/11

8. Michael, J., Paolo, B., Burnett Daniel, C., Jerry, C., Dahl Deborah, A., Gerry, M.,
Dave, R.: EMMA: Extensible MultiModal Annotation markup language. W3C Rec-
ommendation (February 2009)

9. Kranstedt, A., Kopp, S., Wachsmuth, I.: Murml: A multimodal utterance representa-
tion markup language for conversational agents. In: Proceedings of the AAMAS,
Workshop on Embodied Conversational Agents - Let’s Specify and Evaluate them!,
Bologna, Italy, July 16 (2002)

10. Jun-young, K., Young, Y.J., Shinn Richard, H.: An Intelligent Robot Architecture
based on Robot Mark-up Languages. In: Proceedings of IEEE International Confer-
ence in Engineering of Intelligent Systems, pp. 1–6 (2006)

11. Frédéric, L.: Physical, semantic and pragmatics levels for multimodal fusion and fis-
sion. In: Seventh International Workshop on Computational Semantic (IWCS 2007),
Tilburg, The Netherlands, pp. 346–350 (2007)

12. Frédéric, L., Denis A., Ricci A., Romary L.: Multimodal meaning representation for
generic dialogue systems architectures. In: Proceedings on Language Resources and
Evaluation (LREC 2004), pp. 521–524 (2004)

13. Macal Charles, M., North Michael, J.: Tutorial on agent-based modeling and simula-
tion part 2: How to model with agents. In: Perrone, L.F., Wieland, F.P., Liu, J., Law-
son, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the 2006 Winter Simula-
tion Conference, Monterey, CA, USA, December 3, pp. 73–83 (2006)

14. Marvin, M.: Matter, Mind and Models. In: Proceedings of IFIP Congress, May 1965,
pp. 45–49. Spartan Books, Washington D.C (1965); Reprinted in Semantic Informa-
tion Processing

15. Leo, O.: Ontologies for semantically Interoperable Systems. In: Proceedings of the
twelfth International Conference on Information and Knowledge Management, New
Orleans. LA, USA, pp. 366–369. ACM Press, New York (2003) ISBN: 1-58113-723-0

16. Ross, Q.: Semantic memory. Ph.D. thesis, Carnegie Intstitute of Technology (1966);
In: Minsky, M. (ed.) Semantic Information Processing, pp. 227–270. MIT Press, Cam-
bridge (1968)

17. Mark, S., Jason, B.: Combinatory Categorial Grammar. In: Borsley, R., Borjars, K.
(eds.) Non-Transformational Syntax. Blackwell, Malden (2005)

18. Subercaze, J., Maret, P.: SAM: Semantic Agent Model for SWRL rule-based agents.
In: Proceedings of the International Conference on Agents and Artificial Intelligence,
Valencia, Spain. Agents, vol. 2, pp. 244–248. INSTICC Press (2010) ISBN 978-989-
674-022-1

19. Piero, Z.G.: Representation and Processing of Complex Events. In: Association for the
Advancement of Artificial Intelligence AAAI Spring Symposium (2009a)

20. Piero, Z.G.: Representation and Management of Narrative Information: Theorical Prin-
ciples and Implementation. In: Jain, L., Wu, X. (eds.) vol. 1, pp. 978–971. Springer,
Heidelberg (2009b) ISBN:978-1.84800-078-0_1

Part III

Applications of Semantic Agent
Systems

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 189–213.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 9
A Semantic Agent Framework for
Cyber-Physical Systems

Jing Lin, Sahra Sedigh, and Ann Miller

Department of Electrical and Computer Engineering
Missouri University of Science and Technology
Rolla, MO, USA, 65409
{jlpg2,sedighs,milleran}@mst.edu

Abstract. The development of accurate models for cyber-physical systems (CPSs)
is hampered by the complexity of these systems, fundamental differences in the
operation of cyber and physical components, and significant interdependencies
among these components. Agent-based modeling shows promise in overcoming
these challenges, due to the flexibility of software agents as autonomous and intel-
ligent decision-making components. Semantic agent systems are even more capa-
ble, as the structure they provide facilitates the extraction of meaningful content
from the data provided to the software agents. In this book chapter, we present a
multi-agent model for a CPS, where the semantic capabilities are underpinned by
sensor networks that provide information about the physical operation to the cyber
infrastructure. As a specific example of the semantic interpretation of raw sensor
data streams, we present a failure detection ontology for an intelligent water dis-
tribution network as a model CPS. The ontology represents physical entities in the
CPS, as well as the information extraction, analysis and processing that takes
place in relation to these entities. The chapter concludes with introduction of a
semantic agent framework for CPS, and presentation of a sample implementation
of the framework using C++.

Keywords: cyber-physical systems, agent-based modeling, semantic capabilities,
fault detection, multi-agent system, sensor networks, intelligent water distribution.

1 Introduction

The synergy between agent-based modeling and semantic technologies holds
promise for the resolution of challenges posed by a broad range of complex sys-
tems, in particular cyber-physical systems (CPSs), where embedded computing
and communication capabilities are used to streamline and fortify the operation of
a physical system [1]. In CPSs, sensors collect information about the physical
operation of the system, and communicate this information in real-time to the

190 J. Lin, S. Sedigh, and A. Miller

computers and embedded systems used for intelligent control. These cyber com-
ponents use computational intelligence to process the information and determine
appropriate control settings for physical components of the system, such as de-
vices used to control the flow of a physical commodity, e.g., water or electric
power, on a line.

A fundamental challenge in research related to CPSs is accurate modeling and
representation of these systems, especially as related to reliability. Simplistic
models that assume components fail independently are rendered unusable for the
majority of CPSs, due to significant interdependencies within the cyber and physi-
cal infrastructures, respectively, and across the cyber-physical boundary. In other
words, modeling of any CPS is hampered by the need to model both the cyber
(software, communication network, computing hardware) and the physical infra-
structure (physical components and their interactions). Furthermore, the applica-
tion of graph-theoretic models is complicated by heterogeneity in the notion of
“flow” in CPSs. “Information” is the flow on the cyber infrastructure that provides
communication and computing capabilities. The flow on the physical infrastruc-
ture is domain-specific, e.g., power for an electric power grid or vehicles for a
ground transportation system. Both types of flow need to be represented accu-
rately, such that effects of any event are reflected in either or both networks.
Thirdly, existing explicit communication protocols used to impart information be-
tween the cyber and physical infrastructures do not fully capture the semantics of
the interaction between the two. The vision of using distributed computing re-
sources in the cyber networks to manage the distributed resources in the physical
infrastructure further complicates modeling of CPSs.

Among existing techniques, agent-based modeling holds promise in surmount-
ing the aforementioned challenge, due to its capability of encapsulating diverse
attributes within one agent, as well as its emphasis on the interaction among auto-
nomous, heterogeneous agents, which share a common goal achieved in a distrib-
uted fashion. Sensors are the key to this approach, as they provide situational
awareness to the agents and enable them to function based on the semantics of
their mission and the specifics of their environment. The research presented in this
book chapter aims to accurately model a CPS as a multi-agent system, where each
agent is an independent entity that manages resources within its local scope. In the
proposed model, information from the sensor networks is dynamically integrated
with semantic services to support real-time decision support in the information-
rich environment of a CPS.

The CPS domain used as a case study for an application of this model is intelli-
gent water distribution networks (WDNs). In a WDN, physical components, e.g.,
valves, pipes, and reservoirs, are coupled with the hardware and software that
supports intelligent water allocation. Fig. 1 depicts a sample WDN.

The primary goal of WDNs is to provide a dependable source of potable water
to the public. Information such as demand patterns, water quantity (flow and pres-
sure head), and water quality (contaminants and minerals) is critical in achieving
this goal, and beneficial in guiding maintenance efforts and identifying vulnerable
areas requiring fortification and/or monitoring. Sensors dispersed in the physical

A Semantic Agent Framework for Cyber-Physical Systems 191

Fig. 1. Cyber and physical components of an intelligent WDN

infrastructure collect this information, which is summed by multiplexers and serv-
ers for hierarchical semantics interpretation. The processed and reasoned sensor
data is then fed to distributed algorithms running on the cyber networks. These al-
gorithms provide decision support to hardware controllers that are used to manage
the allocation (quantity) and chemical composition (quality) of the water. The al-
gorithms are implemented through software executing on multiple distributed
computing devices. This software is represented by the agents in our model, each
of which is capable of perceiving its environment, acting on that perception,
communicating with other agents and exhibiting behavior that fits its goal.

This book chapter is an extension of our previous work, where we first articu-
lated the use of semantic agents in modeling CPSs [2]. The extended content in-
cludes: a more detailed discussion on the agent-based modeling technique and its
use in addressing design challenges in complex CPS, a more comprehensive pres-
entation of our work on construction of semantic agent framework, and an intro-
duction to data type processing.

The remainder of this book chapter is organized as follows. Section 2 presents
an overview of related literature. In Section 3, we present tools and procedures to
construct an agent-based model, the method for defining an agent, and a UML
multi-agent model that captures the static structure and dynamic behavior of a
WDN. The semantic interpretation service is elaborated upon in Section 4, where
the sensor information ontology and associated semantic service model are de-
fined. In Section 4, we also propose a semantic agent framework for interpretation
of the semantics of raw data streams, describe data type processing of the raw data

192 J. Lin, S. Sedigh, and A. Miller

stream, and provide an overview of implementing semantic interpretation capabili-
ties through C++ on Matlab. Section 5 concludes the book chapter and describes
future research directions.

2 Background Work

CPSs are an emerging research area, and the body of related literature is limited. A
considerable fraction of related work examines critical infrastructure systems,
which are prime examples of CPSs. Salient studies, e.g., [3, 4, 5, 6] are on inter-
dependencies among different components of critical infrastructure systems, and
[3], which provides a relatively comprehensive summary of modeling and simula-
tion techniques for critical infrastructure systems. System complexity has been
identified as the main challenge in characterizing interdependencies in CPSs [4].
Other challenges include the low probability of occurrence of critical events, dif-
ferences in time scales and geographical locations, and the difficulty of gathering
the accurate data needed for modeling. These challenges are clearly articulated in
the literature, but solutions are very scarce.

The need to use agent-based modeling for distributed complex system has been
investigated in [7]. The work in [8] adopts a distributed multi-agent architecture to
analyze the observed information in real-time to adapt the multi-agent system to
the evolution of its environment. To address the dependability issue in multi-agent
system, [9] improves the capability of calculating how critical an agent is to the
system through its interactions with other agents and provides a framework that
uses this information to ensure availability and reliability. A multi-agent system
(MAS) in [10] represents a powerful model to solve distributed computation prob-
lems. A particularly relevant study is presented in [11], where agent-based model-
ing is used to estimate residential water demand. An agent community is assigned
to behave as water consumers, and econometric and social models are incorpo-
rated for estimating their water consumption. However, this study considers the
WDN as a purely physical system with no cyber control.

As a formal specification language with precise semantics, UML 2.0 has been
adopted to model multi-agent systems with precise semantics. A detailed demon-
stration of how UML 2.0 can be used for the specification of an agent-based sys-
tem has been presented in [12]. UML 2.0 has been adopted during the analysis and
design phase in [13], to model the physical and social contexts for embedded mul-
ti-agent systems. The specification of Action Semantics (AS) in [14] shows how
the applicability of AS to the UML meta-model paves the way for powerful meta-
programming for model transformation.

Semantic agent technologies are typically closely associated with sensor net-
works, and several prototype systems or software architectures have been pro-
posed based on the combination of the two. A prototype for battlefield information
systems has been described in [15], where the stated goal is to dynamically
integrate sensor networks with information fusion processes to support real-time
sensing, interpretation, and decision-making in an information-rich tactical envi-
ronment. In [16], an architecture and programming model for a semantic service-
oriented sensor information platform has been presented. In contrast to [16] our

A Semantic Agent Framework for Cyber-Physical Systems 193

work expands the semantic service model to a semantic agent framework, whereas
[16] focuses on how to use the semantic model to query the system for high-level
events without processing raw sensed signals. The use of autonomous semantic
agents in developing new software architecture for distributed processing envi-
ronments has been proposed in [17]. The discussion in [17] involves software ar-
chitecture in general, and utilizes semantic web technologies; whereas our work is
tailored to the specific requirements of CPSs. Due to the stringent security re-
quirements of critical infrastructure and the vulnerabilities of web technologies,
we do utilize them at this stage of our research.

The complexity of CPSs, as well as the necessity of capturing embedded com-
puting and communication capabilities motivates the use of distributed agents and
semantic services for representing the relationship between the cyber and physical
infrastructures. In our work, the distributed semantic agent model augments the
data acquisition of sensors in the CPS with ontological decision-making intelli-
gence. The proposed model not only captures the complexity of the CPS in a clear
and understandable way, but also takes accurate semantic interpretation into con-
sideration. To our knowledge, our work is the first study to apply semantic agents
to modeling of CPSs.

3 Agent-Based Modeling Technology

As a visual modeling language for representing object-oriented systems, UML is
an intuitive choice for supporting agent-based modeling, in both the design and
the communication phases. UML consists of several types of structured diagrams
and graphical elements that are assembled to represent a model. The high level of
abstraction is independent of the implementation of the model, especially when an
object-oriented programming language is used.

Generally, by our definition, the agent is a piece of software code with intelli-
gent decision-making functionality. An agent can be considered a self-directed ob-
ject with the capability to autonomously choose actions based on its situation, and
therefore the object-oriented paradigm is a useful basis for agent modeling. Ob-
ject classes can be used as agent templates, and object methods can represent
agent behaviors. The data-driven, rather than process-driven perspective of object-
oriented modeling also makes it well-suited to agent-based modeling.

The construction of an agent-based model can be broken down into the follow-
ing steps, each of which is described in one of the subsections that follow.

1) Defining the agents in the context of the system; and identifying attributes of
the agent; and other classes, along with their attributes.

2) Defining the environment where the agents reside, and the objects with
which the agents interact.

3) Designing the methods by which agent attributes will be updated in response
to agent-to-agent interactions or agent interactions with the environment.

4) Implementing the designed agent model in modeling software.

Our work specifically defines agent as software code and differentiates agents
from the other devices, such as sensors and actuators. In contrast, architectures

194 J. Lin, S. Sedigh, and A. Miller

proposed in a number of other studies place the agents in the context of embedded
devices. For example, in [18], the agent construction model is composed of com-
ponents that are the basic building blocks for an agent; and the generic functional-
ities of these components are further divided into information collection (sensors),
information storage (infostores), decision-making (controllers), and affecting
change in the environment (actuators). In this book chapter, our focus is on the
software aspects of agents, particularly on the implementation of semantic inter-
pretation. Related work takes a more application-specific approach, e.g., the study
in [19] discussed software aspects of information agents in a pervasive computing
environment.

3.1 Definition of the Agents

In our defined context of WDNs, the agent is the software code embedded in one
or more computing devices on the cyberinfrastructure, with the goal of exerting
control over components of the physical infrastructure. Other than this software,
all other system components or subsystems are mechanical or hardware parts, in-
cluding all mechanical water facilities, e.g., pumps, valves, reservoirs, water con-
sumption junctions; communication links and sensors; or even more intelligent
field-programmable gate array (FPGA) or programmable logic controllers (PLC)
devices.

Regardless of their specific task, agents share the following characteristics.

1) An agent is an identifiable and discrete individual, as each segment of soft-
ware code is located on distributed PCs to control a local water area. The
subprogram code inherits the attributes and methods of the main program
and develops its unique attributes or operations to manage water resources
within its scope. Therefore, it is constrained by rules governing its behavior,
and in possession of decision-making capability.

2) An agent is situated in an environment where it interacts with other agents. In
our model, each agent is in charge of its local scope, but they collectively in-
teract for information sharing, data transmission and parallel computing.

3) An agent is goal-directed. Its major tasks include managing the raw data, us-
ing real-time data to quantify the overall reliability of the CPS, making a de-
cision to take appropriate action if risk is anticipated in the near future, and
sending control commands to actuators to meet the broader system objective
or prevent potential damage. Approaches adopted for decision-making in-
clude game theory, which can be used to allocate water resources; the Leon-
tief model [20], which can be applied to quantify the effect of a failure in one
scope on operation of another scope; and Markovian models, which can es-
timate the likelihood of a transition from the current state to a given future
state.

4) An agent is flexible, due to its nature as a segment of code. It can learn and
adapt its behavior to the environment, based on new information, which in-
cludes data from sensors or from peer agents; and experience, such as data
retrieved from a history database.

A Semantic Agent Framework for Cyber-Physical Systems 195

5) An agent is responsible for its intelligent semantic inference. After receiving
raw data from the sensors, each agent should firstly check the integrity of the
data, specifically, whether the data is deemed legitimate per scientific hy-
draulic relationships among its various physical parameters; and whether the
data is reasonable, compared with history data and that of surrounding nodes.
A large number of failures can be screened out through this procedure, and
the redundancy of data can be greatly reduced through semantic aggregation.

6) An agent requires some form of memory, either on the computing device or
in a separate database, to store the data of various water attributes for a pe-
riod of time.

3.2 Construction of an Agent-Based Model

In this section, we present an agent-based model for an intelligent WDN, as a case
study of CPSs. We use the various types of UML diagram to gain insights to the
system functionality, property and behavior of system components, software ar-
chitecture, and the dynamics aspects of the complex system.

 Use Case Diagram
Creating a use case diagram is the first step for system analysis. A use case cap-
tures the interaction of a number of external actors with the system towards
accomplishment of a goal. Fig. 2 shows the actor and the use cases involved in the
intelligent WDN. The use case diagram presented here can be generalized to other
CPSs whose main goal is management of a physical commodity. Examples

Fig. 2. Use case diagram of an intelligent WDN.

196 J. Lin, S. Sedigh, and A. Miller

include power grids and intelligent transportation systems. As described in Section 1,
the primary goal of WDNs is to provide a dependable source of potable water to the
public. The specific role of the agents in the system is to intelligently guide water al-
location, per the algorithm programmed in the agents.

The CPS agent is the actor in the use case diagram, and associated with the de-
cision support algorithm. For simplicity, only use cases associated with one agent
are shown in Fig. 2; all other agents have similar use cases associated with them.
As shown in the use case diagram, sensors collect information about the physical
operation of the system on a time- or event-triggered basis. The collected informa-
tion is aggregated by a multiplexer and sent to the Data Integrity Check for intelli-
gent semantic inference. The Data Integrity Check use case uses three main data
streams, specifically, raw data from the corresponding sensor, real-time data from
nearby sensors for the same or related physical attributes, and the data from a his-
tory database. The second and third data streams mentioned are used for corrobo-
ration of the first, by checking for discrepancies in the values, whether in variation
or in conformance to physical (hydraulic) laws that govern the physical operation
of the WDN. If no data is available from nearby sensors, as would be the case if
all nearby sensors are in sleep mode, the history database will serve as a source of
data for corroboration. As indicated in Fig. 3, the values of physical attributes,
such as water quantity, of nearby nodes, should not be significantly different from
each other for the same time period. For instance, adjacent water nodes should
have similar water temperature and similar water pressure value. If significant dis-
crepancy exists, the use case can conclude that the collected data may not be a le-
gitimate group of data and should not be used for further information processing.

Fig. 3. Flow among nearby nodes

The decision support algorithm uses three data streams, one data stream from
the Data Integrity Check, another from the history database, and a third data
stream from other agents. The decision support algorithm is an advanced algo-
rithm implemented through software code for intelligent management of physical
commodities. The algorithm can make use of legitimate (corroborated) data whose
integrity has been checked, and can also resort to history data for adjustment (rec-
tification) of the calculated values in determining an appropriate strategy for re-
source allocation. Meanwhile, the local agent interacts and negotiates with other
agents by sharing real-time information that provides global perspective of re-
sources in the system, and adjusts its own strategy accordingly. For instance, one
adjacent agent reports that pipe bursting have been detected and more water is
needed from neighboring areas to guarantee regular water consumption before res-
toration. In this case, the well-being agents will adjust the strategy to maintain the

A Semantic Agent Framework for Cyber-Physical Systems 197

local water consumption and support extra quantity of water to its neighbor. Vari-
ous algorithms can be the candidate for the decision support algorithm, and the
game theory holds the greatest promise.

 Class Diagram
Based on the use cases and interconnections defined in Fig. 2, Fig. 4 provides an
overview of different classes in the intelligent WDN, along with the specified at-
tributes and the corresponding methods for each class. Fig. 4 also depicts and how
the classes interrelate. Other information provided in Fig. 4 includes the data types
of the attributes and the main constraints used in the decision making algorithm.
The attributes of the water facility classes have been chosen to be most representa-
tive of both static (elevation) and dynamic aspects (head loss) of water.

Fig. 4. Class diagram of an intelligent WDN.

The Data Integrity Checking class takes three data streams, from Sensor, Phys-
ical System Configuration and History Database, respectively. Data collected by
the sensors is aggregated by the multiplexor (representing by the small diamond)
and sent for data integrity checking. The Physical System Configuration block
specifies the basic configuration and topology physical water infrastructure. This
configuration data is sent to Data Integrity Checking to assist in evaluating physi-
cal constraints, e.g., judging whether a newly requested water value (such as quan-
tity) will exceed the capacity of a pipe. History data can be queried by the Data
Integrity Checking for comparing abnormal real-time data with historical values.
Various types of semantic analysis are carried out through Intelligent Semantic In-
ference, including the aforementioned evaluation of physical constraints and cor-
roboration with historical data or data from nearby nodes.

198 J. Lin, S. Sedigh, and A. Miller

The purpose of this semantic inference is to screen out illegitimate or corrupted
data (based on the preliminary judging criteria), to ensure that only legitimate data
is sent to the decision making algorithm. A domain ontology for more advanced
semantic interpretation and system failure detection based on semantic interpreta-
tion will be introduced in Section 4.

The agent has varied types of association with other classes: it receives the data
after semantic processing, stores the data in the history database or queries data
from the database to assist in decision making (bidirectional), negotiates resource
allocation with other agents, and exerts control over actuators (valves and pumps).

 Component Diagram
In Fig. 5, the main program that implements water allocation executes on the cy-
berinfrastructure. The physical location of the main program is immaterial. The
main program is directly dependent on the code specification, which is the head
file of the agent class. It includes prototype information for the class function. The
remainder of the script is the package body, which exhibits functionality similar to
that of the main program and executes in distributed fashion within its autono-
mous management scope. If the script is written in C++, the package body is a
.cpp file. An independent database is attached to each script, meaning that the
script can only retrieve data from or store data to the database for management
purposes within its own scope. All the data sent to the script for advanced seman-
tic analysis or decision making has been checked its integrity, as described earlier
in this chapter.

Fig. 5. Component diagram of an intelligent WDN.

 State Transition Diagram
Fig. 6 depicts the state transitions of data in one period, which is the time span
from the point that data is collected at preset time (start state) until control has

A Semantic Agent Framework for Cyber-Physical Systems 199

been exerted on the water consumption entity (end state). As agent-based model-
ing is a data-driven modeling method, it is vitally important to track each state
transition of the data. The condition that can trigger entry to or exit from a particu-
lar state has been specified. The history state (encircled ‘H’) records the state of
the system immediately before query of the history database. Once the agent has
finished data retrieval, the state reverts back to the original state before data stor-
age, and the agent begins processing based on the combination of retrieved his-
torical data and the originally collected data. The flow of the decision making pro-
cedure, whose goal is to allocate water (quantity), has been specified in the figure
with two decision blocks (encircled diamonds).

Fig. 6. State transition diagram of an intelligent WDN.

The Agent Process (in a solid rectangle) is the critical state within the context,
as it provides a precise numeric value to guide the control over actuators. Markov
and game-theoretic analysis are included in the state as instances. Since the state
of the data within the system has already been identified through the agent-based
model, we can use a vector to numerically represent these states. Failure is a state
transition from functional to non-functional, such as the Sensor Sleeping or Fail-
ing, Transmission Failure, and Pipe Bursts states (all in dotted ellipses) shown in
the figure. We can define the normal functioning state to be 1 and failure state to
be 0. Therefore, vectors formed by 0 and 1 can precisely represent the state of the
system. At this point, to identify the functional states, a Markov reliability model
can be built to estimate the probability that the next state of the system is an opera-
tional state.

200 J. Lin, S. Sedigh, and A. Miller

Game-theoretic analysis can be applied to calculate the equilibrium state of the
water allocation among the agents. In the context of a city, the water quantity allo-
cated to each sub-area can be determined, subject to the constraints of the physical
facility. Base on the threshold values of the constraints, the optimal water alloca-
tion scheme can be obtained as well.

 Activity Diagram
In Fig. 7, which depicts the activity diagram for an intelligent WDN, three entities
are involved, including the physical networks; agent 1, acting as the main agent;
and agent 2 as the agent interacting with agent 1.

Fig. 7. Activity diagram of an intelligent WDN.

A Semantic Agent Framework for Cyber-Physical Systems 201

The activity diagram reflects how an agent interacts with the environment, and
how the values in the associated object change after date integrity checking and
data processing. For instance, the raw data is changed into semantically-processed
data for control, and the requested water quantity of one agent may affect another
agent's water consumption quantity.

 Sequence Diagram
Fig. 8 depicts the sequence of messages exchanged among different entities in the
intelligent WDN. The message on the line shows the method adopted by the re-
ceiver (class defined in the class diagram) upon receiving the message. The figure
shows the sequence of data received by the data integrity checking object and the
decision support algorithm object of agent. For the former object, it directly re-
ceives and checks the raw data from the sensors (collected by multiplexor) and
then if it needs to compare the real-time data with previous history data, it will re-
ceive data from its local database to make sure the result of checking is based on a
reliable history record. The water consumer object and the adjacent agent object
are eliminated after they send the return message, which means that no message
from these two objects will be accepted outside of particular periods. The deci-
sion support algorithm of the agent first receives checked sensor data first, queries
data from the history database, and finally communicates with the adjacent agent.
Such a sequence is from the physical infrastructure to the cyber infrastructure
(bottom-up). After the decision has been made, the calculated result will be sent to
the community agent first, then a command will be sent to actuator to exert real-
time control over the physical commodity, and finally the calculated data is re-
corded as history data in the database. Such a sequence is from the cyber network
to the physical infrastructure (top-down), culminating in data recording.

Fig. 8. Sequence diagram of an intelligent WDN.

202 J. Lin, S. Sedigh, and A. Miller

A clear and correct sequence diagram of the agent-based WDN is the prerequi-
site for resolving challenges related to timing in CPS modeling. As the CPS is a
two-layered system, the intelligent agents make decisions based on the collected
data, but when the control command is sent back the actuator, the previous data for
computation has already changed. Therefore, how to select an appropriate cycle pe-
riod and how to process the changing data are open problems for further research.

4 Semantic Interpretation Services

4.1 Sensor Information Ontology

Semantic interpretation is carried out on semantic streams, each of which is de-
fined in a domain-specific ontology associated with the agent. The specific do-
main in this book chapter is intelligent water distribution. Generally, an ontology
is a description, e.g., a formal specification of a program, of the concepts and rela-
tionships that can exist for an agent or a community of agents. The notion of on-
tology utilized in this book chapter is a model that describes semantic relations
among components of the physical and cyber infrastructures, respectively, as well
as the interdependencies across the cyber-physical boundary. Each component in
the ontology model is a unique class in terms of programming implementation,
with properties and parameters described in the class definition. The relations de-
fine how classes can be related to one another. Semantic interpretation is imple-
mented through distributed software with capabilities of extraction, analysis, and
processing of the semantic stream. The definition of ontology for the WDN do-
main helps unify information presentation and permits software and information
reuse, so as to reduce information redundancy during the process of semantic in-
terpretation in the agents.

The use case diagram in Fig. 2 depicts intelligent control of the physical infra-
structure by the cyberinfrastructure of an intelligent WDN. To achieve the goal of
intelligent management and control, a number of tasks are involved to implement
various functionalities (use cases), such as the pre-processing of the raw data from
the sensors, coordinating the time sequence to query data from the history data-
base and communicate with peer agents, converting the logical command to
physical control over actuators, and so on. As ontology has advantage over other
information representations in terms of capturing the structure and meaning of in-
formation, we use ontology to represent the failure detection procedure, which is
an important component of the intelligent information reasoning functionality in
CPSs. Similar ontologies can be identified for other functionalities or use cases of
a CPS.

Fig. 9 shows the information hierarchy for failure detection through the seman-
tic interpretation process. In the UML class diagram, each block represents one
type of semantic stream in the intelligent WDN. The attributes of each class have
been omitted in the interest of figure clarity. Details of the attributes are presented
in Fig. 14, which shows pseudo code for the semantic service.

A Semantic Agent Framework for Cyber-Physical Systems 203

Fig. 9. UML representation of failure detection ontology in CPS for an intelligent WDN

Fig. 9 shows that a failure in the WDN can be detected by the agent in the event
of device or information failure, the latter of which occurs when data falls outside
a pre-defined safety range. Failures in the physical infrastructure of a WDN are of
two main two types, physical failure due to excessive values of pressure and ele-
vation, or biochemical failure due to excessive quantities of a biochemical sub-
stance or discovery of unknown biochemical materials. Cyber failures can be
caused by human error or device malfunction. Each class identifies one type of
semantic stream that can lead to failure in the CPS, and the ultimate determination
of failure (or the overall interpretation) is carried out by the corresponding agent,
which is in charge of all sensors deployed within its administrative scope.

The main reason that the attributes of the class have not been defined here is for
simplifying reasoning procedure on information. For instance, the danger thresh-
old can be triggered by both excessive water quantity or cyber malfunction, but
the excessive quantity of one single attribute of the water class is sufficient to
diagnose the source of failure is from physical networks. Besides, the undefined
attributes can help to reduce the semantic redundancy in terms of automatic se-
mantic conversion, which not every property field of a class needs to be filled or
met before performing detection. For example, to identify biochemical attack from
the excessive biochemical quantity (such as excessive bacteria), the agent can just
check if the detected biochemical element falls into the database of known ele-
ments. As long as one type of elements is unknown, even other co-existing ele-
ments fall into the knowledgeable scope, the agent can immediately determine that
a failure can be caused by the unknown biochemical element.

204 J. Lin, S. Sedigh, and A. Miller

The sensor information ontology captures the semantic entities (classes in the
UML diagram) and the relations of events and objects, deriving a reasoning pro-
cedure beyond what sensors can directly provide through detection. The ontology
proposed in Fig. 9 is specific to the WDN domain, but can be readily adapted to
other CPSs, such as smart power grids.

4.2 Model for Semantic Services

Based on the sensor information ontology proposed, we can develop components
that convert semantics between classes in the information processing hierarchy, by
extracting new semantic information from existing data streams. In other words,
the components encapsulate the semantic service into a ``black-box'' containing
the execution method, which takes as input information (defined as precondition
[21]) corresponding to events detected by sensors and generates as output a num-
ber of meaningful new events (defined as postcondition [21]). The process is de-
picted in Fig. 10.

Fig. 10. Semantic service on the semantic stream

We propose a semantic service model that overlays the ontology defined in
Fig. 9. The semantic service model allows the agents (users) to annotate seman-
tics of data transmitted between the services of each entity on the ontology, and
can check and automatically convert between data semantic whenever possible.
As the services are event-driven, the events passing between services not only
carry their value information, but also serve as triggers for service execution. The
semantic services can be categorized into two types, i.e., a) the service that sup-
plements input events with additional semantic annotation, and b) the service that
produces new semantic streams.

The first type of service can only identify additional properties carried by the in-
put event. For example, a sensor has detected that the water pressure in a certain
area has exceeded the safety threshold and reports this event to its semantic service
component, which can be a superior sensor or multiplexer. The semantic service
model associated with this component will add the geographical location as an ad-
ditional identifier to distinguish this event from events reported from other areas.
Such functionality is particularly useful for distributed control and management in
the context of CPS, where a service may not correspond to a centralized component
that physically exists on one device; it can be physically implemented on several
distributed devices, but logically exists as a single service.

The second type of service automatically terminates the input semantic stream,
and uses the generated output semantic stream as the new stream propagating on the
ontology. The essence of this type of service is semantic transformation, where the

A Semantic Agent Framework for Cyber-Physical Systems 205

input and output events are different classes in the ontology. One typical semantic
transformation is generalization. For example, in Fig. 9, an excessive pressure quan-
tity will be interpreted as physical failure due to an abnormal pressure value. Later
on, the semantic stream of physical failure will be propagated to a higher level for
ultimate decision making, instead of the semantic stream of abnormal pressure quan-
tity, which no longer exists. This case will be illustrated by the code in Fig. 14. An-
other example can be the derivation of danger event by passing the threshold com-
ponent, which abstracts the possible sources of dangers in terms of water failure and
cyber failure. Such case falls into the category of generalization.

The benefits of proposing such a semantic service model on information ontol-
ogy include the reduction of information redundancy, pre-processing and abstrac-
tion of data for the agent, and the facilitation of semantic query by a user. A user
can issue a query that requests that a certain data stream with desired semantics be
provided to a certain component device to diagnose whether failure exists on the
queried level.

4.3 Semantic Agent Framework

Fig. 11 illustrates how the agents use the information detected by sensor networks
and the interpreted semantics through components based on the defined ontology.
Raw data is obtained from sensor networks, and since each agent is an independ-
ent entity in charge of a particular geographical area, the sensors located in dis-
tributed areas are managed by different agents (with possible overlap). For a se-
mantic service component, the input semantic events are preconditions of the
service. The postconditions, i.e., the processed output semantics, are provided to
the agents for further computing.

Fig. 11. Framework of semantic agents

206 J. Lin, S. Sedigh, and A. Miller

The agents must host uncoordinated tasks, which are events triggered by differ-
ent physical events and sensor data categorized in the ontology at unpredictable
times. The data collected and process carried out strongly depends on the agents’
surroundings. It is very likely that redundant information will exist among the
concurrent tasks of different agents. For example, a pipe burst can impact several
agents corresponding to nearby areas. Therefore, parts of the information for these
tasks can be shared. To reduce the redundancy and use the computing resources
more economically, we adopt a distributed decision algorithm, such as Maxflow,
executing in parallel on multiple agents [22]. In the distributed decision algorithm,
each agent uses only a portion of the computing resources to process the data
within its own administrative scope, and the agents circulate the calculated results
among each other to share information that may be helpful to the local decision
making strategy.

A common application case is water allocation, and the algorithm we have
adopted in the model is game theory. The details of our work have been presented
in [23]. The sensors located in different areas collect water quantity information
and send the data to the game theory algorithm. The water allocation strategy aims
to achieve Nash equilibrium among the participating players - agents in the model.
The equilibrium strategy seeks to achieve more efficient and fair water allocation,
as compared with the low-level self-regulation that would occur if physical and
hydraulic rules alone are left to govern the water flow. The proposed work can be
further refined by introducing additional constraints, such as different pipeline
thresholds and the maximum/minimum water quantity requirements of different
water consumers.

However, some limitations exist in the model. The distributed algorithm is
adopted by the agents due to limited computing resources, and the agent is respon-
sible for the final decision used to exert control over the physical network. Several
factors will impact this final decision. As shown in the use case diagram (Fig. 2),
the execution of the decision support algorithm takes into consideration the data
after integrity checking and comparison with historical values, and will also be af-
fected by data from nearby agents. If the decision algorithm waits for data from all
three sources to become available, the timeliness of the decision cannot be guaran-
teed, particularly if the speed of water flow is high and water attributes change ra-
pidly. If the decision algorithm does not wait for data from all sources to be ready,
its implementation may suffer the risk that the final decision does not meet the re-
quirements or violates constraints, as it will already be outdated by the time it is
made. Designating the agents as the decision making authority should take such
factors into consideration.

Another shortcoming of the hierarchical organization is information asymme-
try. This problem is best illustrated through an example scenario, where the pro-
gram segment used to manage a certain area crashes. As the computing resources
and the algorithm are distributed, the code running on other computers should re-
main operational and unaffected by the failure. However, water flow is a dynamic
commodity, and the areas managed by different agents are interconnected. The
failure of even a single agent could lead to missing data, which in turn can lead to
flawed decision-making by other agents, and potentially a cascading failure of a

A Semantic Agent Framework for Cyber-Physical Systems 207

significant portion of the system. Such a scenario serves as a cautionary tale of the
vulnerabilities introduced by the use of cyber control.

The fault tolerance of the model is limited by several factors. A number of them
has are apparent from the state transition diagram of Fig. 6. Data collection by the
sensors may suffer the risk of sensor failure or sleep, and information loss can be
caused by transmission failure. Lost, delayed or incomplete data can directly af-
fect the functionality of higher-level components. Besides, the cyber components
suffer risks from computer crash, disconnect of communication links, and internal
design issues of the decision algorithm, such as interference among the agents. In-
creasing the robustness of the system by addressing these issues is an open re-
search topic.

Before the input events are processed in the semantic service model, the event
stream will undergo data type processing, including data type definition, data type
checking, and data type conversion. A number of issues related to timing synchro-
nization and sampling remain to be resolved for the data type processing as well.

4.4 Data Type Processing

The main purpose of data type processing is to reduce runtime redundancies,
based on event semantics. The events in the event-driven model serve two roles:
carrying values and triggering further services defined in the failure detection on-
tology. It is crucial for agents to identify the maximum sensing overlap and to re-
duce runtime redundancy, which is an intermediate information reuse and summa-
rization problem. In light of the ontology defined in Fig. 9 and the semantic agent
framework of Fig. 11, the intermediate data processing should carry out three
functions: a) identification of overlapping information from multiple sensor nodes,
including those that collect physical water data, others that monitor communica-
tion links, and yet others that supervise the cyber infrastructure; b) suppress parts
of the data that are useless for failure detection, keeping only the critical informa-
tion active and sending it to the higher-level entity; and c) sharing intermediate da-
ta with its peer entities. The second and third attributes can be realized in the ser-
vice-oriented architecture proposed in Fig. 11, and will be elaborated upon in
Section 4.4 and Section 4.5. To maximally identify redundant sensing is the task
of data type processing.

 Value

 Event

Ti

 Filed and data
t

Name

Fig. 12. Visual representation of an event

208 J. Lin, S. Sedigh, and A. Miller

Based on inspiration from [21] and [24], we define an event as a tuple with two
elements: a value and a tag. In contrast to [24], we define a triggering event as a
signal consisting of its respective value and tag types. The composition of an event
can be represented as Fig. 12.

The value of an event is represented in the following form:

 V= (name, {n1,p1},{n2,p2,…,(nk,pk)}) , (1)

where name represents the name of the signal, and (ni,pi) represents the field and
the data type. Such a representation of value can help parameterize the event and
facilitate implementation of the service in the subsequent stage. For example, the
value of an event that corresponds to measurement of physical attributes of water
can be represented as:

water sensing = (water_sensor, {geoID, int}, {width, float}, {length, float},
{height, float}) (2)

Representation of events with a value also facilitates information aggregation.
Based on record types in OCL programming languages [25], a pure specification
language for expression, if two events have identical names, but the field type of one
value is a subclass of the other, then the event value with a more generic field type
can subsume the other event value to reduce data redundancy, while keeping the
unique field type of the subclass. The following instance can be aggregated by (2).

water sensing = (water_sensor, {geoID, int}, {width, float}, {length, float},
{height, float}, {biochemical, float}) (3)

Aggregation of subclass data type is depicted in Fig. 13 (a), where the larger
area denotes the common field type, and the smaller area denotes the unique field
type of the subclass. After aggregation, the event record with the subclass field
type does not exist. Information reuse, as an extension of information aggregation,
keeps the common field type and the unique field type of the subclass separate, as
shown as Fig. 13 (b).

Fig. 13. Data type processing

A Semantic Agent Framework for Cyber-Physical Systems 209

Sensor{
water_sensor, geoID,[width,length,height], /* properties of sensors:

water detection, geographical ID, location*/
Outputs(pressure, elevation, biochemical, location, T1); /*the pa-

rameters can be detected by sensor at time T1* /
}

Pressure component:
Pressure_Service{
service(pressure), /*service indicates execution method and the

parameter is pressure*/
Inputs (sensor(water_sensor, geoID, [width,length,height], T1);
If (pressure > normal range)
Outputs (pressure_normal (false), detected (pressure,geoID, T2));
/*add the judgment result and time T2 when make judgment*/

}

Physical component:
Physical_Service{
service(physical_failure),
Inputs(pressure_service(pressure_normal(false), detected (pres-
sure,geoID,T2)));
If ((elevation < normal range) && (pressure_normal = false))

/*guarantees pressure is the unique reason*/
Outputs(physical_normal(false), de-
tected(physical_failure,pressure,geoID,T2)); /*inherit inferior
attribute*/

}

Water component:
Water_Service{
service(water_failure),
Inputs(physical_service(normal(false),
(physical_failure,pressure,geoID,T2)));
If ((biochemical_normal = true) && (physical_normal = false)) /*same
as above*/
Outputs(water_normal(false), detected(water_failure,physical
_failure,pressure,geoID,T2));

}

Threshold component:
Threshold_Service{
service(failure),
Inputs(physical_service(normal(false),
detected(physical_failure,pressure,geoID,T2)));
Switch(detected(pressure))

{
Case (within range for safe): service terminates;
Case (within range for critical): send (pressure,geoID,T2) to
database;
Case (within range for safe): output system failure alert;
Default: service terminates;

}
Outputs(system_failure_alert, detected(water_failure,physical
_failure,pressure,geoID,T2));

}

Fig. 14. Pseudocode for semantic service

210 J. Lin, S. Sedigh, and A. Miller

Tags are utilized to represent timing and ordering relations among events. So-
phisticated timing issues include the sampling frequency of sensors, difference
and conversion between discrete time signals and continuous time signals, interpo-
lation to merge different timing signals, and so on. More detailed information can
be found in [24]. In this chapter, we simply use time, T, to represent the tag for
each event.

Upon defining the value and tag, we can easily check and if necessary, convert
the data type. In checking the data type, the focus is on checking the field type of
the data, with the premise that the data has passed the integrity check. Data type
checking can facilitate reuse of services from existing tasks, by comparing newly
injected information about an event with existing information, including matching
the names of the event, checking for the existence of subset relations in the field
type, and checking the data types in the field. The focus of data type conversion is
mainly on reconciling the tag value of the triggering event with the tag value of
the subsequently triggered event. As the tags dictate the timing and ordering rela-
tions among events, synchronization issues needs to be resolved, and the solution
method depends on whether the triggered event is periodic or aperiodic. Interpola-
tion is one solution method for periodic signals [24].

4.5 Implementation in C++

The choice of C++ for implementation of the semantic service was motivated by
several factors. Firstly, a service component is an information-rich component that
needs to define the semantic service for execution, extract information from the
input, and produce new semantics at the output. Such logical analysis is best im-
plemented through a high-level programming language such as C++ or JAVA, ra-
ther than a computing tool. As the modeling approach adopts UML, it is also natu-
ral to use the Object-Constrain Language [26] to specify the pre- and post-
conditions and the actions in C++ or JAVA. Secondly, a class in C++ is a good fit
for our definition of the service component; the declaration of service properties
and the execution method of the service can be encapsulated into one class.
Thirdly, Matlab2008b can integrate C++ and support parallel computing, and the
integration of the semantic service and computation of the algorithm in Matlab
will make simulation of the CPS more compact and faster.

To implement the service in C++, the properties of the service are parameter-
ized, and the execution method of the service becomes the corresponding method
in the service class. To illustrate the method, we choose the branch of Pressure to
Failure in Fig. 9 as an example. Sensors are treated as services with only output
semantics, which are parameterized into data that can be used by superior service
components. Each component has been specified with a service name and a pa-
rameter associated with the service. Each service takes the outputs of an inferior
component as the input to its execution method, and inherits the parameters to

A Semantic Agent Framework for Cyber-Physical Systems 211

ensure that attributes of a potential failure source (such as pressure, failure time, or
location) are not lost during information propagation on the ontology. The pseudo-
script for C++ implementation is shown in Fig. 14.

5 Conclusions

CPSs are the topic of emerging research, but existing tools and techniques for
modeling them are still limited. A number of related challenges were discussed in
this book chapter, with focus on the importance of capturing interdependencies
and flow heterogeneity, and streamlining semantic interpretation between the cy-
ber and physical infrastructures. The use of agent-based modeling was proposed,
and related methods and tools were introduced. An intelligent WDN was pre-
sented as a case study for demonstrating the ability of the technique to capture var-
ious facets of the operation of a CPS. A semantic service model based on the defi-
nition of ontology was presented, with the goal of reducing information
redundancy and simplifying the data interpretation procedure of the agents. The
data processing carried out for parameterizing and aggregating the raw data
streams was described, as was the implementation of the semantic service model
in C++. The proposed model reflects the semantics of intelligent water distribu-
tion, but can be modified for use in other CPS domains.

The modeling work presented in this book chapter is a preliminary step that
will facilitate the broader goal of modeling CPSs. Future extensions to this work
will incorporate sophisticated decision support algorithms, e.g., game theory, for
the agents. The semantic service model implemented through C++ will be inte-
grated with Matlab to facilitate the complex computation required. Provision of
the semantic service in C++ to the decision support algorithm in Matlab will cre-
ate an advanced simulation environment for CPSs, which can be invaluable to
gaining a more profound understanding of the operation of CPSs.

References

1. Lee, E.: Cyber physical systems: Design challenges. In: Proc. of the 11th IEEE Inter-
national Symposium on Object Oriented Real-Time Distributed Computing, pp. 363–
369 (May 2008)

2. Lin, J., Sedigh, S., Miller, A.: Modeling cyber-physical systems with semantic agents.
In: The 5th IEEE Workshop on Engineering Semantic Agent Systems in Conjunction
with Proc. of the 34th IEEE International Computer Software and Applications Con-
ference, Seoul, South Korea (July 2010)

3. Rinaldi, S.M.: Modeling and simulating critical infrastructures and their interdepend-
encies. In: Proc. of the 37th Hawaii International Conference on System Sciences
(2004)

4. Pederson, P.: Critical infrastructure interdependency modeling: The survey of U.S. and
international research (August 2006)

212 J. Lin, S. Sedigh, and A. Miller

5. Svendsen, N.K., Wolthusen, S.D.: Analysis and statistical properties of critical infra-
structure interdependency multiflow models. In: Proc. of the IEEE Information Assur-
ance and Security Workshop, pp. 247–254 (June 2007)

6. Lin, J., Sedigh, S., Miller, A.: Towards integrated simulation of cyber physical sys-
tems: A case study on intelligent water distribution. In: The 8th International Confer-
ence on Pervasive Intelligence and Computing (2009)

7. Macal, M.C., North, J.M.: Tutorial on agent-based modeling and simulation Part 2:
How to model with agents. In: Proc. of the 38th Winter Simulation Conference, pp.
73–83 (2006)

8. Guessoum, Z., Faci, N., Briot, P.J.: Adaptive replication of large scale multi-agent sys-
tems - towards a fault-tolerant multi-agent platform. In: Proc. of the 4th International
Workshop on Software Engineering for Large-Scale Multi-Agent Systems. ACM, New
York (2005)

9. de C Gatti, M.A., de Lucena, C.J., Briot, J.: On fault tolerance in law governed multi-
agent systems. In: Proc. of the 5th International Workshop on Software Engineering
for Large-Scale Multi-Agent Systems. ACM, New York (2006)

10. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Transac-
tions on Autonomous and Adaptive Systems 2(4) (November 2007)

11. Athanasiadis, I.N., Mentes, A.K., et al.: A hybrid agent based model for estimating
residential water demand. Simulation 81(3) (March 2005)

12. Bauer, B., Odell, J.: UML 2.0 and agents: How to build agent based systems with the
new UML standard. Engineering Applications of Artificial Intelligence 18(2) (2005)

13. Klein, F., Giese, H.: Analysis and design of physical and social contexts in multi agent
systems using UML. In: Proc. of the 4th International Workshop on Software Engi-
neering for Large-Scale Multi-Agent Systems. ACM, New York (2005)

14. Sunye, G., Le Guennec, A., Jezequel, J.: Using UML action semantics for model exe-
cution and transformation. Information Systems 27, 445–457 (2002)

15. Jiang, G., Chung, W., Cybenko, G.: Semantic agent technologies for tactical sensor
networks. In: Proceedings of the SPIE, pp. 311–320 (2003)

16. Liu, J., Zhao, F.: Towards semantic services for sensor-rich information systems. In:
2nd International Conference on Broadband Networks, pp. 44–51 (2005)

17. Elci, A., Rahnama, B.: Consideration on a new software architecture for distributed
environments using autonomous semantic agents. In: Proc. of the 29th Annual Interna-
tional Computer Software and Applications Conference (2005)

18. Finin, T., Joshi, A., Kagal, L., Ratsimore, O., Korolev, V., Chen, H.: Information
agents for mobile and embedded devices. In: Klusch, M., Zambonelli, F. (eds.) CIA
2001. LNCS (LNAI), vol. 2182, pp. 264–286. Springer, Heidelberg (2001)

19. Ashri, R., Luck, M.: An agent construction model for ubiquitous computing devices.
In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 158–
173. Springer, Heidelberg (2005)

20. Haimes, Y.Y., Jiang, P.: Leontief-based model of risk in complex interconnected infra-
structures. Journal of Infrastructure Systems 7(1), 1–12 (2001)

21. Lee, E.A., Vincentelli, A.S.: A framework for comparing models of computation.
IEEE Transactions on CAD 17(12), 1217–1229 (1998)

22. Armbruster, A., Gosnell, M., et al.: Power Transmission Control Using Distributed
Max-Flow. Proc. of the 29th International Computers, Software, and Applications
Conference (2005)

A Semantic Agent Framework for Cyber-Physical Systems 213

23. Lin, J., Sedigh, S., Miller, A.: A Game-Theoretic Approach to Decision Support for In-
telligent Water Distribution. In: Hawaii International Conference on System Sciences
(January 2011)

24. Liu, J., Cheong, E., Zhao, F.: Semantics-based optimization across uncoordinated tasks
in networked embedded systems. In: The International Conference on Embedded
Software (September 2005)

25. Mitchell, C.J.: Foundations for Programming Languages. MIT Press, Cambridge
(1996)

26. Object Constraint Language Specification Version 2.0, OCL,
http://www.omg.org/technology/documents/formal/ocl.htm
(accessed February 20, 2010)

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 215–242.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 10
A Layered Manufacturing System Architecture
Supported with Semantic Agent Capabilities

Munir Merdan1, Mathieu Vallée2, Thomas Moser3, and Stefan Biffl3

1 Automation and Control Institute (ACIN), Vienna University of Technology,
Vienna, Austria

 merdan@acin.tuwien.ac.at
2 Institute of Computer Technology, Vienna University of Technology, Vienna, Austria
 vallee@ict.tuwien.ac.at
3 Christian Doppler Lab Software Engineering Integration for Flexible Automation Systems

Vienna University of Technology, Vienna, Austria
 {thomas.moser,stefan.biffl}@tuwien.ac.at

Abstract. Manufacturing control systems are a mission-critical application do-
main for semantic agents systems. While multi-agent systems have been explored
in the manufacturing systems domain, there is very little work on semantically
enabled agent systems. This chapter introduces a layered architecture for manufac-
turing systems based on agent systems and discusses relevant capabilities of the
semantic agents based on real-world use cases.

1 Introduction

The manufacturing sector, faced with growth in the variety of products and at the
same time with a decreasing product life cycle duration, is forced by global compe-
tition to produce customized products in a short time at low price. Manufacturers
have to be capable to effectively react to sudden changes in customer demands, as
well as to cope with unpredictable events such as failures and disruptions. The as-
pects of complexity and flexibility of mission-critical manufacturing systems make
this domain interesting as test bed for semantic agents systems.

A manufacturing system is defined as “a collection or arrangement of operations
and processes […] to make (a) desired product(s) or component(s)” [9]. Such a sys-
tem consists of interrelated elements (people, equipment, sub-systems, etc.) intro-
duced to cooperatively achieve the overall objective of transforming raw material into
commercial products effectively, efficiently, and robust against failures.

The control systems, which are currently applied in practice, usually consist of
heterogonous units, which use different types of data and data structures, and are
not capable to ensure the uninterrupted flow of information between and sometimes
through the controlled levels [32]. The applied methodologies in these systems are
based on disconnected ordering, scheduling and execution processes, and lack the

216 M. Merdan et al.

agility needed for enterprise-wide integration. Process planning is usually separated
from scheduling as well as control activities and unnecessary information gaps be-
tween implicated systems are created, even though the outputs and data from one
application could be fluently used as inputs for another application [50] .

Multi-agent system (MAS) technologies offer a convenient way to cope with
dynamics in large complex systems, using distributed control of the system,
thereby reducing the complexity, increasing flexibility and enhancing fault toler-
ance [22]. This approach replaces a centralized database and control computer by
a network of agents, each endowed with a local view of its environment and the
ability and authority to respond locally to that environment.

Agents communicate and negotiate with each other in order to perform the op-
erations based on the available local information or to solve possible conflicts. In
order to ensure correct understanding of the exchanged messages, agents must
have the same presentation of the environment, or at least that part of the shared
environment about which they are exchanging information with each other. On-
tologies are of vital importance for enabling knowledge interoperations between
agents and at the same time a fluent flow the different data from different entities
[29]. The ontology can be a description of the concepts and relationships that can
exist within a multi-agent system [53].

In this chapter we report on the engineering of the semantic agent architecture
in four layers (management, planning, scheduling, and execution) and the related
ontology for each particular layer in the application domain, the manufacturing
system, and provide lessons learned based on real-world use cases.

2 State of the Art

This section summarizes related work on manufacturing system control, multi-
agent systems and on semantic systems.

2.1 Centralized Manufacturing System Control

The factory control is defined “… as the actuation of a manufacturing plant to
make products, using the present and past observed state of the manufacturing
plant, and demand from the market”. It is the fundamental system of a factory, be-
cause “it coordinates the use of the factory’s resources, giving the system its pur-
pose and meaning” [7]. Manufacturing control can be divided into low-level and
high-level control [14]. The high-level control (HLC) of the factory is responsible
for the coordination of the manufacturing resources and government of the pro-
duction including the ERP (Enterprise Resource Planning) as well as the MES
(Manufacturing Execution System) levels. The low-level control (LLC) is focused
on the control of the individual manufacturing resources and their reliable function
during the execution of operations organized by the HLC.

In current manufacturing systems, the centralized and hierarchical structures
are the most commonly used control architectures. However, due to their rigid
character and limited adaptation capabilities such systems respond weakly to fre-
quently changing customer demands in terms of performing necessary changes in

A Layered Manufacturing System Architecture 217

the manufacturing environment itself [23, 40, 49]. Additionally, the construction
of a centralized system, due to large complexity and the necessity to centralize all
logic for sensing, actuating and control into a single entity, usually requires a huge
investment, long lead times, and in turn, results in generating a rigid control sys-
tem [16]. The central controller, as it needs to have the accurate information about
each unit in the system in order to make right decisions, can be seen as a single
point of failure and its breakdown could stop the whole system [25]. Scheduling,
in centralized and hierarchical control structures, is established such that each lev-
el creates the scheduling for its subordinate levels having a weak feedback from
lower levels and almost without any consultation and coordination with higher
layers of neighboring units. Such an approach works well only if everything goes
as expected; otherwise it could completely fail when unpredictable disturbances
occur [11]. Recently, the holonic manufacturing paradigm was introduced, with
the idea to combine hierarchical and decentralised control. A holon, the core com-
ponent of this architecture, can be part of another holon, e.g., a holon can be bro-
ken into several others holons, which in turn can be broken into further holons,
which allows the reduction of the problem complexity [18]. Leitao and Restivo
presented the multi-enterprise model in a structure similar to the general holonic
architecture [31]. The most important and relevant approaches in this area are pre-
sented by Babiceanu and Chen [5].

2.2 Multi-Agent Systems as Foundation for Decentralized
Control

The application of decentralized control architectures based on autonomous and
co-operative units is considered as a promising approach for overcoming the
weaknesses of centralized manufacturing control. The multi-agent systems (MAS)
approach has been widely recognized as enabling technology for designing and
implementing the next-generation of distributed and intelligent manufacturing sys-
tems [11, 42]. Making the control of the system decentralized, intelligent agents
offer a convenient way of modeling processes and systems that are distributed
over space and time, thereby reducing the complexity, increasing flexibility and
enhancing fault tolerance [22]. MAS can be defined as a network of autonomous,
intelligent entities – agents – where each agent has individual goals and capabili-
ties as well as individual problem-solving behaviors. Due to their lack of a global
system objective and overview, agents have to cooperate and communicate with
each other in order to achieve common aims, which are beyond the individual ca-
pabilities and knowledge possessed by each agent. There are two architecture ap-
proaches for agent encapsulation in agent-based manufacturing systems: the func-
tional decomposition approach and the physical decomposition approach [49]. In
the functional decomposition approach, agents are used to encapsulate modules
assigned to functions such as an order, task, etc. In the physical decomposition ap-
proach, agents are used to represent entities in the physical world, such as a robot,
conveyor, or pallet.

218 M. Merdan et al.

2.3 Agent Systems Facilitated by Semantic Technologies

As agents are applied in a distributed and heterogeneous environment and have by
themselves only partial representations of the environment, these agents have to
communicate with each other to coordinate their activities. Semantic technologies,
such as ontologies, have been developed and investigated in the areas of artificial
intelligence and natural language processing to facilitate knowledge sharing and
reuse [26]. In a general sense, semantic technologies aim at bridging the gap be-
tween human-accessible meaning and machine-processed data [30]. As such, they
cover several aspects such as knowledge representation, extraction of meaning
from syntax and context-based interpretation of meaning. For agent systems, se-
mantic technologies are vital for enabling knowledge interoperations between
agents and, at the same time, a fluent flow of heterogeneous data from a range of
entities. Ontologies allow the explicit specification of a domain of discourse, in-
crease the level of specification of knowledge by adding semantics to the data, and
promote knowledge exchange in an explicitly understandable form.

An ontology is defined as an explicit specification of conceptualization [20],
where conceptualization means the shared view of environment representation.
From the viewpoint of inter-agent interactions, the explicitly defined and com-
monly accepted ontology is an indispensable tool for ensuring interoperability be-
tween agents in the sense of providing a formally defined specification of the
meaning of those terms which are used during the inter-agent communication. On-
tologies can also capture actions and events in a uniform and processable way so
that they can be recorded in time and further analyzed. The usage of ontologies for
knowledge representation, sharing and high-level reasoning could be seen as a ma-
jor step ahead in the area of agent-based control solutions [37].

Nevertheless, ontologies have been rarely used with software agents and most
of the existing MAS are not aware of ontologies at all: the information processing
and reasoning are hard coded in the agents’ behaviors. Although important stan-
dardization work has been done by introducing the message transport service for
sending FIPA-ACL Messages [19] by defining message types, protocols, etc., the
agents are not able to semantically interpret the domain-specific content of the ex-
changed messages or the knowledge held by other agents [44].

3 Research Issues

Multi-agent system (MAS) technologies offer a convenient way to cope with dy-
namics in large complex systems, in our case manufacturing control systems. This
approach replaces a centralized database and control computer by a network of
agents, each endowed with a local view of its environment and the ability and au-
thority to respond locally to that environment. Each agent is a representation of a
manufacturing component and serves as an artificial “brain” of the real-world
physical component. The agents are supposed to supervise the physical compo-
nents of the system and to cooperate with other components. The MAS approach
has proven to successfully handle complexity and dynamics in a number of com-
parable systems.

A Layered Manufacturing System Architecture 219

Agents communicate and negotiate with each other in order to perform the
operations based on the available local information or to solve possible conflicts.
Inter-agent communication capability provides the essential means for agent col-
laboration. In order to ensure correct understanding of the exchanged messages,
agents must have the same presentation of the environment, or at least that part of
the shared environment about which they are exchanging information with each
other. Ontologies are of vital importance for enabling knowledge interoperations
between agents and at the same time a fluent flow of the different data between dif-
ferent entities. Ontology is defined as an explicit specification of conceptualization.
Explicit specification of conceptualization means that ontology is a description of
the concepts and relationships that can exist within a multi-agent system.

A key research question is how to reduce the complexity of a manufacturing sys-
tem. Therefore, we propose to divide the control of a manufacturing system into
“hierarchically” ordered layers. The layered system structure enables the functional
decomposition into subsystems, which can then be easily further decomposed but
also integrated and managed in bigger systems as well. In the layered structure
specification, besides the fact that particular subsystems logically symbolize some
layers (e.g., planning and planning control layer), we consider that particular deci-
sions have to be made in a real time requiring observation of a limited environment
in contrast to decisions that require a global view without a special time limitation.
The introduction of layers limits their responsibility and planning perspective, im-
proving system performances and simplifying the concept.

In the context of a research project platform based on a real-world industrial
use case we describe the layers, their contributions, and report lessons learned
from the research work.

4 A Layered Manufacturing System Architecture

The layers of control in a manufacturing system correspond to planning and deci-
sion tasks in the domain and can, in general be divided between high-level control
and low-level control. In more detail we specified four layers: management, plan-
ning, scheduling and executive layer (see Fig. 1) [34]. These layers structure agent-
based systems control and provide the context for deriving the necessary semantics.
The functions and responsibilities of the four layers are defined as follows:

• The Management Layer is responsible for entire system stability and functionali-
ty. It supports production and resource initialization as well as their determina-
tion. It is also concerned with the communication with the external environment
and provides solutions for complex problems related to the global environment.
It accepts production orders on a routine basis.

• The Planning Layer links process planning with product design. It is basically
concerned with the sequencing of process steps, identification of product types
and quantities to be produced. It defines equipment and resources that could be
used and ensures that the parts or components required for the production are
available and the final product delivery dates not exceeded. The shop floor
layout is also defined on this layer.

220 M. Merdan et al.

• The Scheduling Layer is concerned with the synchronization of production
needs with available resource capacities. The goal is to reach the internal dead-
lines that are set on the planning level. This layer is responsible for negotiating
with the resources, the tasks as well as parts, tools, and product allocation be-
tween resources.

• The Execution Layer is related to the physical job shop equipment. On this
layer, the production tasks are executed considering the resources’ constraints
and abilities, their performances measured and if a failure or disruption is diag-
nosed, the scheduling as well as management layer is informed. Also specific
activities related to the execution of particular actions (i.e., pallet routing, re-
moving, fixing, etc.) are coordinated on this layer.

Management
Layer

Planning
Layer

Scheduling
Layer

Execution
Layer

F
unctional

D
ecom

position
P

hysical
D

ecom
position

Information
Flow

Product 1

Product 2

Product 3

Resource 1 Resource 2 Resource 3

Order 1 Order 2 Order 3
Task A - Res 1
Task B - Res 3

Task N - Res 3

Task A - Res 2
Task B - Res 1

Task C -
Task D -

Task A - Res n

SYSTEM

Fig. 1. The layers of manufacturing system control.

In this chapter we will present an approach where the manufacturing layers
have been “agentified” to implement behaviors that represent the specific layer or
the component of this layer as well as their objectives and functionalities, with
each agent being responsible for carrying out different specific functionalities. We
used the functional decomposition approach to create agents responsible for sys-
tem support, process modeling and task scheduling (see Fig. 1), applying this ap-
proach to each of the three upper layers and generating particular agent types for
each layer. We also applied the physical decomposition to create the related agents
that have physical representation. In the rest of the chapter we will present the

A Layered Manufacturing System Architecture 221

multi-agent system that governs specified manufacturing layers. Considering the
role of the ontologies to enable data and information interoperability in extensive
heterogeneous and content rich environment, we present the approach that inte-
grates the related agent types at each manufacturing layer with ontologies. In the
remainder of the chapter we will present the resulting multi-agent architecture.

5 The Management Layer

This section describes the management layer. First, a short introduction to Enter-
prise Resource Planning (ERP) and Virtual Enterprises is given. Then, the used
layers and agents are introduced, followed by a description of the production
process cycle used throughout this chapter.

5.1 Enterprise Resource Planning (ERP) and Virtual Enterprises

One of the most important trends in current IT development for companies is the
trend to support and optimize the daily business in all areas of the business. Prima-
ry goal when deploying and using an ERP-System in a company is to increase the
efficiency of established processes by supporting them through information tech-
nology. If the adaption of this system is a success and it supports the daily to-dos
of the employees, it is over all a big opportunity to save time and money for the
company. Of course, the first problem of establishing the new system and major
investments has to be carefully planned [21].

ERP-software involves the business task to plan the resources of a company
like money, personal or equipment persistently, carefully and in an efficient form
during the whole production process. Therefore companies need more and more
IT infrastructure which gets even more complex and so harder to maintain. The
simulation of the production flow by multi agent system tools also belongs to this
package of planning software. Furthermore it can be an essential part of it and
complete the functionality of standard ERP-software by providing further infor-
mation about the production process and add important data into the central avail-
able data source. In this case, the ERP-software acts as media, which transports
this information towards all roles that need the data.

A virtual enterprise (VE) [26] is seen as an integrated network of regular com-
panies that join their core services and resources in order to respond to unexpected
business opportunities collaborating on an ad hoc basis. Such a network includes
also suppliers, distributors, retailers and consumers requiring from involved com-
panies to gather and share data and information about markets, customers and in-
ternal competences [1]. The capability of companies to form virtual enterprises
and cooperate with partners is an important factor for keeping a competitive posi-
tion on the market.

A new approach for virtual enterprise modeling as well as the fulfillment and
consideration of several research challenges, such as improved knowledge ex-
changing and sharing, fast reaction to customer demand, re-organization capability,
and integration of heterogeneous entities, are required [47]. The introduction of
tools, techniques and methodologies that will support interoperability, information

222 M. Merdan et al.

search and selection, contract bidding and negotiation, process management and
monitoring, etc., is also highly required [12]. In this context, the information and
knowledge exchange between partners plays a critical role for the success of such
networks. This is particularly due to the extreme heterogeneity of the VE environ-
ment, in which it is usually not transparent to the partners, which knowledge is
available at whose partner's site or even if so, then in most cases the knowledge is
not understandable due to the usage of different formats and tools.

Ontologies have been developed and investigated for quite a while in artificial
intelligence and natural language processing to facilitate knowledge sharing and
reuse [26]. They are of vital importance for enabling knowledge interoperations
between partners and, at the same time, a fluent flow of different data from diverse
domains. Ontologies allow the explicit specification of a domain of discourse, in-
creasing the level of specification of knowledge by incorporating semantics into
the data, and promote its exchange in an explicitly understandable form [51]. Se-
mantic means in this context that all relevant concepts important for partners will
be modeled in an ontology by capturing the associations between the domains
ensuring at the same time the understanding of exchanged knowledge during the
inter- as well as inside-company communication. This allows business partners
to build open communities that define and share the semantics of the information
exchanged in their domain.

5.2 Layers and Agents

As shown in Fig. 2, each of the layers introduced in the previous section involves
a certain type of agent, which will be described in the following section. For the
management layer, this agent type is the so-called Contact Agent (CA).

Fig. 2. Overview Agents and Layers.

A Layered Manufacturing System Architecture 223

The Contact Agent (CA) is related to the Management Layer and accordingly it
has responsibilities that encompass organizational and supervisor functions. The
CA is created at the start-up of the system and it is always active. It is concerned
with the system stability and in the case that one part of the system collapses; this
agent considers its influence on the system performance and, if significant, under-
takes particular steps in order to bring the system back into the optimal state. Its
further responsibilities are to receive a customer order and create one Order and
Supply agent for each related product order. This agent also creates an agent for
each new resource introduced in the system. After the order was accomplished or
particular resource removed from the system, the CA determinates the related
agent. However, having only one instance of this agent for the whole system and
considering it as a possible single point of failure, the replication technique [33]
and replication service provided with used agent platform [8] can be applied to
enhance agent's failure tolerance level.

Fig. 3. Production Process Cycle [36].

5.3 Production Process Cycle

The following description shows a possible execution of incoming orders of cus-
tomers for a company. This designed process is the economic background and
core of the project focused in this chapter to reproduce a manufacturing assemble
line to simulate actions on a flexible production unit. The optimization focus of
the job-shop-scheduling is realized over simulation runs with different parameter
settings to maximize the production system output. The explanation describes the
involved roles on the one side and necessary information flows on the other side.

224 M. Merdan et al.

As outlined in Fig. 3, the normal treatment of incoming orders from customers
involves more than one enterprise-internal role in a coordinated and balanced task
sequence. The described draft of the process shows the close dependencies be-
tween all involved acting units/agents. In addition the draft expresses the possibil-
ity, how appearing production complications like resource bottlenecks, machine or
conveyor failures or capacity overruns are handled within a production planning
and control system. To use the available capacity optimally, the reactions to solve
such unexpected problems on the first level are focused directly at the executive
layer by the involved role. Only if this is not possible an agent on a higher level
receives an exception ticket to avert the danger. The role/agent/execution unit on
the higher level eventually can use other possibilities to solve the problem because
of more available information or more granted authority (e.g., it is not possible to
fulfil the order with the actual time and resource restrictions – they have to be ex-
tended or manufacturing of the product has to be outsourced).

Starting point for all production planning actions is the incoming detailed order
of the customer. The assumption of the order can take place on several ways: per-
sonally at negotiations (completion of contracts at large orders) written by letters
or forms, by telephone or on new media like the internet (online orders via E-
commerce-trading, web-shops, etc.). In the optimal case, the orders arrive already
in digital form on prepared web forms at the responsible person which acts in the
role of a customer adviser. In this manner media breaks are eliminated as a source
of error and the passing-on/takeover of the order into the system used in the com-
pany for the order management as well as the PPC is accelerated immensely.

Then the business manager takes over the order winding by making a first op-
timisation as a next step. Therefore he lines up the received orders to produce the
requested quantity of goods in time according to certain criteria (such as sequence
of the incoming orders, dates of delivery, urgency of the ordered goods for the
customer, etc.) which are actually decisive for the enterprise success.

In this manner the first order sequence arises considering certain priority crite-
ria and thus serves as an input for the production planning of the plant manager.

The job of the plant managers is to distribute the order list transmitted to him
efficiently to the available capacities and resources. However, besides he should
be anxious to keep the predefined sequence to avoid unnecessary difficulties. His
concrete job is to compile an efficiently allocation plan for the available produc-
tion lines under the current time, capacity and resources restrictions. Available
simulation tools can be used by the plant manager to complete this job. By defin-
ing the available orders by configuration of input parameters (e.g., number and
kind of products) as well as different settings of factors which influence the pro-
duction process (e.g., speed of conveyor belts, available free pallets, shift duration,
assemble line arrangement) the expected production process can be predicted to
find out the best production sequence. This simulated and tested production order
can be transmitted to the physically existent production units as an optimized pro-
duction plan.

The assemble lines should preferably act automated to carry out the transmitted
production instructions to fulfil their manufacturing task. During the whole

A Layered Manufacturing System Architecture 225

production process data of the current state (order, product sequence, number of
pieces, order status, utilisation, …) is collected and made available on the infor-
mation system to the different roles of the working on unities and employees.

If failures occur during the production, the units/agents of the assemble line
automatically react to the resulted failure to compensate (compensation at opera-
tion layer) without further intervention. Only if this is not possible any more, i.e.,
the entire processing by resource lack, machine failure, overload, etc. cannot be
executed in the planned time, a suitable announcement about the production report
is done.

6 The Planning and Scheduling Layers

The production planning and scheduling issues are of essential importance for the
manufacturing domain today, especially due to the dynamic and competitive na-
ture of the nowadays global market that needs enterprises to be adaptive, flexible,
robust and collaborative. The process planning is usually separated from schedul-
ing and unnecessary breaks between these systems are created, even though the
outputs and data from one application could be fluently used as inputs for another
one. In this section we present an approach to integrate these layers using agent
technology and ontologies.

6.1 Planning

Process planning (PP) plays a very important role in the product life cycle by link-
ing the product design with the manufacturing phase. Process planning resolves
between what and how products will be produced. The process planning phase has
to consider the product requirements (price, quantity, geometry, tolerance, materi-
al, etc.) as well as the production constraints (machine capacity, tool characteris-
tics, etc.).

Due to the lack of intelligent capabilities, current process planning systems
have difficulties to automatically adapt plans according to the availability of re-
sources, or share knowledge among the various planning related functional mod-
ules [10]. Additionally, a low frequency of planning runs and difficulties in coping
with new organizational forms of manufacturing such as product oriented or cus-
tomer driven production, require new skills and new approaches capable to handle
the shortcomings mentioned above [3].

6.2 Application of Agents in Process Planning

As a possible way to overcome these shortcomings, a decentralized architecture
that spreads the planning process between several entities/agents, each capable to
create, control, and observe the execution of its own plans, is suggested. The agents
cooperate and coordinate their actions in order to effectively accomplish their plans
as well as to reach the commons system goals. Such organization brings time im-
provements, since the complex problems are partitioned between the entities by
giving each entity a part of the problem to solve instead of dispatching the whole

226 M. Merdan et al.

problem to the central unit, what could cause difficulties especially when the data is
voluminous and changes frequently. The distributed agent-based approach allows
proactive data processing at the place of its origin and data exchanges are only
those necessary for effective system functioning [43]. Moreover, large and complex
problem structures become more simple and the possible failures easier to track
[48]. An extensive literature reviews related to agent-based collaborative process
planning is provided by Zhang et al. [55].

6.3 Production Scheduling

The task of scheduling is the allocation of jobs and activities to available resources
over time considering relevant constraints and requirements [46]. Its main objec-
tives are the minimization of the production time of jobs, production costs, in-
creased resource utilization, etc. Most of the developed scheduling systems are
based on centralized structures, which make manufacturing systems scheduling
even more complicated [50]. The application of agent technology can significantly
improve the efficiency and performance of the entire system [36]. Extensive sur-
veys of dynamic scheduling in the manufacturing environment considering also
agent-based systems were done by Babiceanu and Chen [6] as well as by Ouelhadj
and Petrovic [39].

6.4 Integration of Process Planning and Scheduling

Process planning and scheduling are highly related, because when the planning
ends the scheduling phase starts. The process plan restrictions and shop floor con-
straints have to be considered in the scheduling phase, which could become a very
complicated and time consuming process, if applied in a dynamic environment. In
order to make more realistic and applicable plans, the integration of the planning
and scheduling phase is necessary. Nevertheless, the traditional approaches ex-
ecute these processes separately, mostly ignoring the condition of resources on the
shop floor (e.g., machine workloads, etc). That leads to the under- or over-
utilization of certain resources or even that some of the process plans perhaps can-
not be executed requiring alterations or replanning [27]. A lot of work has been
done in the past to optimize and integrate process planning and scheduling in the
area of manufacturing [50].

However, one of the main shortcomings of the presented architectures is the
lack of interoperability, since the applied methodologies separate planning activi-
ties (e.g., process planning) from executing activities (e.g., production control
and scheduling), creating a gap between the involved systems. The problem in
current distributed systems is that they are still tightly coupled from the point of
view of automated gathering and integration of data, information and knowledge,
being programmed with the focus on performing particular tasks rather than on
interoperability and openness [38]. Shen et al. defined the integration of process
planning, manufacturing scheduling, and control as one challenging research top-
ic where much more attention has to be set on the complexity analysis and formal
modeling of such integration [50]. The assimilation of different knowledge

A Layered Manufacturing System Architecture 227

sources is considered as an important problem that has to be solved being marked
as not easy task due to different representations, foundations, and levels of ab-
straction of various knowledge sources [10]. Being mostly applied in heterogene-
ous environment, an agent has to understand it as well as the knowledge of re-
lated agents in order to reason about it, prior to making decisions. Moreover,
considering that future distributed manufacturing systems will need to handle a
great diversity of autonomous agents and mechatronic devices interacting inten-
sively, there is as strong need that all components understand the exchanged in-
formation and know how to communicate [15]. According to Finin et al. [17] for
software agents to interact and interoperate effectively three fundamental and dis-
tinct components: (i) a common language; (ii) a common understanding of the
exchanged knowledge; and (iii) the ability to exchange whatever is included in
the previous two; are required. The usage of machine-interpretable semantics
(ontologies) to describe the components of manufacturing systems enables other
intelligent components (agents) to perform reasoning and infer sufficient know-
ledge to interact as well as to overcome current interoperability barriers [28].

6.5 Planning and Scheduling in the Assembly Domain

In order to automate the process planning generation, the product model represen-
tation has to be made in a way that enables understanding the designer’s intention,
offering information about specific features (connections, definitions, constraints,
etc.) that could be used for the selection of appropriate equipment as well as tool
set-up definitions. At the same time, knowledge about the capabilities of the
equipment could facilitate the product design and ensure its manufacturability.
The ability to present the product model in a same way as production process and
production equipment can support easier mapping between these three key manu-
facturing elements and enable easier optimization of both planning and scheduling
process.

Assembly is much more than a process where two or more parts are connected,
since the whole process is accompanied with preceding as well as following ac-
tions (supply, transportation, inspection, handling, delivery, etc.). “Assembly
model” or models must be capable of capturing a diverse set of information
needed to describe the entities and activities associated with assemblies and as-
sembling so that designers of products, assembly systems, logistic systems, sup-
plier relations, field support, and finally disassembly and recycling, can have
access to the information they need [54]. However, the lack of ways to standardize
and describe the assembly domain knowledge is an obstacle to achieve an easy
flow of information. This is the reason why we select the assembly domain and its
automation as test case for our knowledge-based multi-agent concept.

Traditionally, the product model is based on geometry and provides incomplete
product definitions. Besides the assembly geometry, the understanding of its phys-
ical effects as well as the design intentions (e.g., joint type) is required. The mea-
ningful representation of product data is necessary to enable semantic interopera-
bility across different application domains [41]. An ontology-based assembly
model was presented in [24] and serves as a formal, explicit specification of the

228 M. Merdan et al.

-handshakeAgent : ContactAgent

OrderAgent

Contact Agent

-registeredInDF : Boolean

Machine Agent

-quantity : Integer
-priority : Integer
-name : String
-status : Integer

Product Order

-name : String
-number : Integer
-level : Integer
-status : Integer

Work Order

-name : String
-destination: Resource
-number : Integer
-status : Integer

Task

-name : String
-ID : Integer
-busy : Boolean

Resource

-name : String

Product -name : String

SubAssembly

-dueDate : Date
-customer : Customer

Order

-name : String
-earliestLevel : Integer
-leatestLevel : Integer

Step

-name : String
-duration : Integer
-requresSetup...

Operation

-name : String
-material : String
-available : Boolean

Part

isUsedIn

-name : String
-address : String
-jadeAgent : Boolean

Agent

-handshakeAgent : OrderAgent

ProductAgent

isFollowedBy

-address : String
-priority : Integer

Customer

-orders1

1

-re
ceive

1

1..*

-creates1

1..*

-creates 1

1..*

-consistsOf1
1..*

-creates

1

1..*

-for1
1

-controls

1

1

-creates

1

1..*

-has1

1

-creates

1

1..*

-consistsOf

1 1..*

-controls1
1..*

-controls

1

1..*

-worksAs1

1..*

-executes

11..*

-perform
s

1

1..*

-requires

1 1..*

-needs1

1

1

0..*

1

0..*
needsPredecessor

1

1..*

-consistsOf

1 1..*

-defines 1

1

-consistsO
f

1

1..*

-isA
ssem

blyW
ith

1

1

Fig. 4. System Ontology.

assembly design so that it makes assembly knowledge both machine-interpretable
and shareable at the same time. We use the same concept to link product designs,
assembly planning processes and required assembly equipment together. The on-
tology based product model is used to extract the production/assembly operations
from the product design and link particular tasks, which have to be performed for
the production/assembly of a product, to particular resources. Each task consists
of a series of actions that can be executed by one or more resources. The connec-
tion to the product order is made through the type of ordered product, quantity,
which defines the number of parts that have to be available to start the assembly
process, and due date that defines the priority of the order.

In this context, a product is presented as a hierarchy of subassemblies and parts
together with all their properties and relationship between them. Parts are defined
as components, described by a set of attributes, properties, constraints and rela-
tions to other parts. A subassembly is a non-empty subset of parts that either has
only one component or is such that every part has at least one surface contact with
another part in the subset [45]. The relationship between parts within a subassem-
bly defines operations that have to be done to connect these parts and represents
how these subassemblies should be put together to complete the product. An op-
eration is defined as a discrete set of actions which leads to a certain change of
state in or on the part.

A Layered Manufacturing System Architecture 229

Each product type is described through its own process plan. A process plan
(assembly tree) specifies the sequence of manufacturing or assembly operations
which have to be performed in order to make a product. Each operation could be
performed by different resources and consequently can be accompanied by related
transport operations, making all together work orders. The ontology-based con-
cept of the product production/assembly described with Steps ensures the exact
decomposition of the product orders to related work orders and further associated
tasks and their correct indexing. This is particularly supported with the integrated
planning relationships needsPredecessor (Step) and isFollowedBy (Step) that
enables an agent to reason when and why to start particular task allocations, which
are known as scheduling activities. A resource is a physical component able to
perform a certain action. However, since this component embodies agent as its
control part, we consider also the agent concept as integral resource element.

In order to reach the goal of modern assembly planning systems to create ac-
tivity sequences that are not only feasible but also optimized according to one or
more parameters, such as makespan, machine or tool utilization, the agents that
are supervising a particular resource or process planning system can use the accu-
rate information stored in the ontology to reason about available resources and
utilize appropriate optimization heuristics [28]. We are using this ontology to pro-
vide semantic understanding among software agents. The agent interaction with
the ontology in the background ensures that when an agent extracts relevant in-
formation from a message it understands the meaning of the terms in the message
and the way this terms are combined in the statement. The presented concept dis-
tribution and ontological representation of a production process improves the way
components communicate and exchange information in the manufacturing envi-
ronment. Our ontology covers the environment structure, characteristics, states
and components interrelationships enabling the related agents to interpret their en-
vironment, reason about it and make right decisions.

We used the functional decomposition approach to create agents responsible for
process modeling and task scheduling (see Fig. 1), applying this approach to each
planning and scheduling layer and generating particular agent types for each layer.

The Order Agent (OA) captures the goals and tasks of the Planning Layer. The
OA is responsible for accomplishment of one product order, respecting due dates
and the like; and handling customer requests for modifying or cancelling their or-
ders. The essential information for an order agent is: type of product, the produc-
tion deadline, quantity, and the priority of the client. Having the knowledge about
all products corresponding to a single order, this agent combines the ontology-
based model for a particular product together with other information, sequences
this into work orders and sends it to the supply agent. Based on this knowledge
and contacting the storage, the OA checks if all parts and materials required for
execution of a single order are available. During the production, this agent collects
also information concerning the status of current product orders or the system’s
performance. The OA is responsible for loading products into the system when a
product order reached the system and for unloading products from the system
when all of their processes are finished.

230 M. Merdan et al.

The Product agent (PA) maps the functions of the scheduling layer. The PA is
in charge for coordinating the production execution in order to achieve the best
possible production results, including on-time delivery, cost minimization, and so
forth. It also manages the movement of related product order’s subassemblies and
materials across the job shop. After the OA decomposes the product order into
work orders, they are forwarded to the PA. Using the ontology and taxonomic re-
lations specified in the product definition (see Fig. 4), the PA extracts tasks from
work orders and schedules the ones that have to be completed at first. After that,
the PA initially sends requests for bids to all machine agents that have the capabil-
ity to process the first task. The interested machine agents respond with their bids.
Each bid contains an estimated queuing time and finishing time for the requested
operation. After collecting the bids, the PA evaluates the bids and selects the best
one. When the related machine is identified, the agent negotiates with transport
agents to route the task there. Whenever a current task is completed, this agent
sends bid requests for the next operation. This bidding procedure continues until
all the requested features of a job are finished. When the last task in the production
process is finished, the agent sends the notification to the OA.

The important advantage of the introduced ontology-based approach is the
achievement of the preconditions for easy assembly and disassembly of the prod-
uct. Our knowledge-based system does not need to be told, how a problem has to
be resolved (i.e., which and when particular tasks have to be done), but the con-
cept and the goal is described instead. The system decides on its own how to
achieve the goal.

7 The Execution Layer

Within the Layered Manufacturing System, the execution layer is responsible for
the execution of production tasks. More specifically, the main role of the execution
layer is to integrate the basic functionalities provided by physical resources (e.g.,
drilling, transporting pallets) into the Layered Manufacturing System.

In this section, we first recall the general requirements on the execution layer.
We then detail the design of the execution layer as a system of semantic agents.
Finally, we discuss some lessons learned in using semantic agent technologies in
the execution layer.

7.1 Requirements of the Execution Layer

In order to correctly play its roles in the Layered Manufacturing System, the execu-
tion layer needs to satisfy a number of requirements. We could categorize these re-
quirements into three groups: requirements regarding the execution of production
tasks, requirements regarding the robustness of machine control, and requirements
regarding the diagnosis of disturbances and failures.

Providing the Layered Manufacturing System with means of executing produc-
tion tasks is the main requirement of the execution layer. More specifically, this
can be decomposed into two aspects: identifying the appropriate resources for ex-
ecuting a production task and controlling the execution of a particular task. To do

A Layered Manufacturing System Architecture 231

so, the execution layer relies on a set of machines (mechatronic components), each
capable of performing specific tasks. Because of the heterogeneity of these ma-
chines, the identification of appropriate resources is not straightforward. There-
fore, the execution layer must be able to match the requested tasks with available
resources. In addition, the execution layer should consider the runtime constraints
of the machines (load, temporary unavailability, etc…), in order to obtain the most
suitable solutions.

Providing a robust control of production machines is a major requirement for
the execution layer. To do so, the execution layer should keep the various control
algorithms and components as independent and loosely-coupled as possible, in or-
der to avoid local failures to hinder the whole system. Decomposing control into
smaller, well-defined control units also makes it easier to design and to test, thus
enabling a better quality.

Being able to diagnose disturbances and failures is an important requirement. In
such as physical system, it is not possible to assume that all machines will function
seamlessly and always respond as expected. On the contrary, disturbances and fail-
ures can happen at any time, and their occurrence is likely to impact the production
process negatively if they are not tackled properly. Therefore, the execution layer
must cope with unexpected disturbances and failures. In particular, it should be
able to detect disturbances and failures, to determine their impact of the production
tasks it is in charge of, to report problems to the scheduling layer, and possibly to
elaborate recovery solutions when possible.

7.2 Semantic Agents for the Execution Layer

This section presents an overview on semantic agents used in the execution layer.
We call them automation agents [52], as these semantic agents are more specifi-
cally dedicated to the control of mechatronic components.

ConveyorBelt

Agent

Crossing
Agent

Robot
Agent

Fig. 5. Overview of some automation agents in the execution layer.

232 M. Merdan et al.

The execution layer consists in various types of automation agents, correspond-
ing to the various mechatronic components and machines (resources) available in
the factory. Fig. 5 presents an overview of some automation agents of the execution
layer. Each agent is responsible for the control of its dedicated resource, and can
only influence the behavior of another resource by sending a request to the corres-
ponding automation agent.

The Automation Agent Architecture

In order to facilitate the design of agents for specific mechatronic components, we
define a generic architecture for automation agents [52]. This architecture distin-
guishes between a high-level control (HLC), a low-level control part (LLC) and
the mechatronic component itself (see Fig. 6).

Fig. 6. Internal architecture of an automation agent.

The LLC is built on top of the physical mechatronic component and is directly
responsible for managing the underlying physical system. It consists in “pure”
control software and comprises a limited set of reactive behaviors to directly con-
trol the physical component, collect and process the information from sensors and
based on the result perform particular actions. The LLC is particularly designed to
perform in real-time. It can also diagnose certain types of failures (e.g. a conveyor
stock) and informs the upper layer about it.

The HLC is composed of four main modules:

• The world model repository contains a world model, i.e., a symbolic represen-
tation of the world of the agent. The world model repository provides facilities
for updating and querying the world model.

• The low-level interface enables the agent to use functionalities provided by the
LLC. It especially provides facilities for receiving event notifications about the
current operations of the LLC and for requesting particular operations from the
LLC. Because various kinds of LLC may exist in a system, we use a unified
low-level interface as described in [32].

A Layered Manufacturing System Architecture 233

• The communication manager provides facilities for managing communication
with other agents. The communication between agents depends on the know-
ledge they have to exchange and on the tasks they have to achieve collectively.

• The decision-making component is in charge of reasoning about the states of
the world and deciding what to do (e.g., communicate with other machines, re-
quest an operation from the LLC, issue notifications to an operator). Event noti-
fications generated by the low-level, by communication with other agents or by
the world model trigger the decision-making procedures. These procedures then
update the world model, request operations from the LLC and communicate
with other agents.

Semantic Technologies for Automation Agents

Within an automation agent, semantic technologies are mainly used for dealing
with the representation of activities. In our context, an activity can be defined as
“a process occurring in the world in which the agent is participating”. This defini-
tion not only covers actions directly performed by the agent, but also the occur-
rence of events that the agent only observes. In the first case, the agent is an actor
in the activity, while in the second case it is only an observer. In the automation
domain, both aspects are useful, as a change in the environment often happen
without an agent being directly responsible for the change. Using this general no-
tion of activity enables representing several important concepts related to an au-
tomation agent, such its capabilities (what activities it can perform), its goals
(which activities it intends to perform), its actions (what activities it is actually
performing) or its interdictions (what activities it does not have the right to per-
form).

Fig. 7. World Model of an Automation Agent controlling an intersection.

234 M. Merdan et al.

This representation is contained in the world model of the automation agent.
Fig. 7 depicts the world model of an automation agent for an intersection. It con-
sists of two parts: the situation model and the activity model. The situation model
holds knowledge about the agent's situation. The situation of an agent consists
both of its own characteristics and its relations to other entities in the world. The
activity model holds knowledge about activities of the agent. The situation model
is composed of a domain ontology and a set of facts:

• The domain ontology (top) is a model of the type of entities in the domain of
the agent [13]. It defines relevant classes of entities as well as relations between
entities. It also serves as a vocabulary for referencing these classes and rela-
tions, thus ensuring the consistency of the world model as well as the interope-
rability between different agents. For our example, the ontology defines that an
intersection can have input conveyors, output conveyors, and one current pallet
inside it. Such concepts and relations can be extracted from existing ontologies,
such as [35].

• The facts (bottom) express the current knowledge about the world. Facts are
expressed using the vocabulary defined by the ontology. For our example, facts
express that i1 is an intersection, which has one input conveyor (c12) and two
output conveyors (c25 and c33). It is important to note that facts expressed
in the situation model do not intend to represent completely the world of
the agent. They rather represent an abstraction of some meaningful aspects of
the world, which can be used for realizing high-level control tasks. Although
more complete and dynamic information about the world may be available at
the low-level control, it is only processed in this layer, usually under real-time
constraints.

The activity model is composed of a classification of activity types and a model
of expectations and observations:

• The classification of activity types (top) models the types of activities in which
the agent can be involved. Types are defined formally using description logics
formulas and they are organized hierarchically based on the subsumption rela-
tionship (noted subClassOf) [4]. Primitive types are defined as direct subclasses
of Activity. Derived types are defined by restriction of the primitive types to
take into account the actual world of the agent. For instance, the generic type
“Routing Pallet” is refined to the more specific type “Routing pallet on c25 or
c33” corresponding to the present situation.

• The expectations and observations (bottom) is a model of the activities that are
expected and observed by the agent. Expectations and observations are defined
by the specification of a type (based on the classification of activity types) and
timing. Timing is expressed using time intervals [2]. While observations can
express a precise timing, expectations rather express constraints on their timing.
Expectations are linked by dependencies, indicating how observations on one
expectation can have consequences on other expectations. For instance, Fig. 8
depicts that the expectation that ``Routing palletToDS2 on c25'' should occur

A Layered Manufacturing System Architecture 235

starting at time t0 and ending at time t1=t0+d (where d is the time for going
through the intersection). This in turns implies that the activity ``Observing
palletToDS2 entering from c12'' should occur at t0, the activity ``Switching
between c12 and c25'' should also occur at t0, and the activity ``Observing
palletToDS2 leaving to c25'' should occur at t1.

Fig. 8. Mechanism for initial configuration.

The world model using semantic technologies plays a key role in three mechan-
isms of automation agents: the initial configuration (and eventual reconfigura-
tion), the response to production task requests and the interaction with the LLC
for executing and monitoring production tasks.

Fig. 8 illustrates the mechanism for initial configuration of an automation
agent. On the right is a declarative description of the configuration, indicating the
input and output conveyors of the intersection. Based on this description, the ge-
neric activity type “Routing Pallet” is refined for this particular intersection.

A more specific class describing the capability of this intersection is defined as
“Routing Pallet on c25 or c33”. Even more specific classes can be defined based
on the routing table contained in the configuration. They indicate that pallets with
destination DS2 are routed on c25 and pallets with destination DS3 are routed
on c35.

Fig. 9 illustrates the mechanism for responding to production requests. When a
message containing a request for routing a pallet arrives, it is translated in terms of
an activity type to be performed. This request is matched with known types from
the activity classification, in order to evaluate if the request can be honored. A re-
quest can be honored only if it some activity type can be both more specific than
the request and than one capability of the agent. This is the case here for “Routing
Pallet124 on c25”.

236 M. Merdan et al.

Fig. 9. Mechanism for responding to production requests.

Fig. 10 illustrates the mechanism for interaction with the LLC. This mechanism
is described more precisely in [32] and enables the integration of heterogeneous
types of LLC. The HLC expresses a request using a description of a type of activi-
ty, which is independent of a particular LLC. Depending on the technology em-
ployed for the LLC, this request is translated into a specific message. To do so, we
use a semantic description of the LLC functionality, which relates the LLC-
independent concepts used by the LLC and the LLC specific types of message.

Fig. 10. Mechanism for interaction with the LLC.

A Layered Manufacturing System Architecture 237

7.3 Lessons Learned – Practical Use of Semantic Agent
Technologies

Designing and using the automation agent architecture described above enables us
to discuss more precisely the practical use of semantic agent technologies in a
Layered Manufacturing System.

Automatic reasoning and interoperability in an open environment are often
claimed a major advantage of semantic technologies. This approach provides the
most flexibility, as the agent can operate in an open environment and cope with
unexpected cases. However, this requires a completely consistent, formal defini-
tion of the ontologies in use. In particular, various ontologies used within the sys-
tem have to be properly aligned in order to provide the expected results. This is of-
ten unpractical, mainly due to the complexity of the domains involved and the lack
of experts in ontological modeling. Moreover, solutions based on runtime reason-
ing from basic principles (e.g., the axioms of Description Logics underlying
OWL) can be computationally expensive for a large ontology.

Using a rule-based engine with domain-specific rules operating on a knowledge
base can be a more tractable solution to enable interoperability among agents
through translation between the ontologies in use. This facilitates the partitioning
of the domain ontologies into several parts, reconciled with appropriate rules. In
our example, reasoning about activity type for the intersection can be performed in
a restricted domain, without considering a general ontology of all types of activi-
ties likely to appear at the level of the whole factory.

Model-based generation of procedural code for managing interactions is anoth-
er practical approach. In particular, an efficient handling of ontologies can be ob-
tained by taking into account that many entities in the domain of a production sys-
tem are fixed, at least for some reasonable time scale. Although changes of the
production process, of the types of products or even of the types of machines may
occur, this only happens at a reduced rate. Therefore, it is practical to transform
the knowledge expressed in ontologies into a fixed set of useful data structures
and constants, easier to manipulate at runtime. This can be done at deployment
time, when the system starts to operate under a fixed configuration (with a fixed
set of machines and products). Parts of the code can be re-generated when new
conditions appear, thus providing sufficient flexibility. In that sense, ontologies
are used as a tool for humans to design and understand the system, rather than as a
runtime artifact.

In the execution layer of the Layered Manufacturing System, we employ these
three ways of dealing with ontologies. In particular, we found model-based gener-
ation of procedural code to be particularly suitable for dealing with ontologies
when interacting with the LLC. As only few changes in the LLC can be expected
after deployment, it is possible to obtain a specific set of adapters for transforming
all possible requests of the HLC into relevant LLC messages. A rule-based engine
is useful for interpreting declarative configuration and messages and translating
them into the corresponding activity types. Especially, implicit references to vari-
ous entities are resolved by the use of a knowledge base which keeps track of the
successively available pieces of information. Automated reasoning tools are best

238 M. Merdan et al.

used for matching requests with capabilities, as they provide the most flexibility.
Complexity can be tackled by considering only a small ontology of activity types,
formally defined only in the context of a particular agent.

8 Conclusion and Further Work

Manufacturing control systems are a mission-critical application domain for se-
mantic agents systems. While multi-agent systems have been explored in the man-
ufacturing systems domain, there is very little work on semantically enabled agent
systems.

In this chapter we reported on the engineering of the semantic agent architec-
ture in four layers (management, planning, scheduling, and execution) and the re-
lated ontology for each particular layer in the application domain, the manufactur-
ing system. Lessons learned based on real-world use cases in the context of the
Layered Manufacturing System are:

• The semantic agent architecture enables related layers to communicate directly
avoiding unnecessary “stage by stage” procedures, since the agents from each
layer are able to communicate and understand agents from any other layer. For
sure, this direction communication is based on the ontology used in the back-
ground for understanding and/or translating specific messages exchanged be-
tween agents. However, the perceived system complexity of the single agents is
lower, and the complexity regarding translation between layers is centrally
stored in a single point, namely in the ontology.

• The presented system assures clear definitions of each layer role in the system
as well as associated tasks that have to be done in order to achieve common
goals. This further enables the smooth creation of related agent classes, e.g., bv
using Model-Driven Development (MDD) paradigms, and mapping of ultimate
system goals to these agents.

• Within each layer, agents have the ability to maintain an accurate internal rep-
resentation of pertinent information about the environment in which they oper-
ate. The world model of an automation agent contains a symbolic representa-
tion of the manufacturing domain, more precisely in terms of situations and
activities. For this representation, we make use of ontologies.

• The application of ontology based representation enables solving the interop-
erability problem in all the layers (including control, planning and scheduling)
which are managed by agents.

We can summarize that in order to make agent-based system more reliable and
more attractive the importance of symbiosis of this technology with other emer-
gent technologies such as semantic web is essential, since it brings advances in a
way of treating and dealing with information which is the most important factor in
present information age.

Future Work. As one can see major steps for introduction of semantic technolo-
gies in manufacturing domain have been already done and the pioneer work for its
fusion with multi-agent technology exists. Nevertheless, the related works that

A Layered Manufacturing System Architecture 239

will be concerned with ontology life cycle in terms of maintaining and engineering
of ontology models in distributed manufacturing environment is still missing and
could be seen as next logical step.

Acknowledgments. This work has been supported by the Christian Doppler Forschungsge-
sellschaft and the BMWFJ, Austria, as well as by the FIT–IT: Semantic Systems program,
an initiative of the Austrian federal ministry of transport, innovation, and technology
(bm:vit) under contract FFG 815132. In addition, this work has been partially funded by the
Vienna University of Technology, in the Complex Systems Design & Engineering Lab.

References

1. Aerts, A.T.M., Szirbik, N.B., Goossenaerts, J.B.M.: A flexible, agent-based ICT archi-
tecture for virtual enterprises. Computers in Industry 49, 311–327 (2002)

2. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the
ACM 26, 832–843 (1983)

3. Azevedo, A.L., Sousa, J.P.: A component-based approach to support order planning in
a distributed manufacturing enterprise. Journal of Materials Processing Technolo-
gy 107, 431–438 (2000)

4. Baader, F., Horrock, I., Sattler, U.: Description Logics. In: Handbook on Ontologies,
pp. 3–28. Springer, Heidelberg (2004)

5. Babiceanu, R., Chen, F.: Development and Applications of Holonic Manufacturing
Systems: A Survey. Journal of Intelligent Manufacturing 17, 111–131 (2006)

6. Babiceanu, R., Chen, F.: Development and Applications of Holonic Manufacturing
Systems: A Survey. Journal of Intelligent Manufacturing 17, 131, 111 (2006)

7. Baker, A.D.: A survey of factory control algorithms that can be implemented in a mul-
ti-agent heterarchy: Dispatching, scheduling, and pull. Journal of Manufacturing Sys-
tems 17, 297–320 (1998)

8. Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. Springer, Heidelberg (2008)

9. Black, J.T.: The Design of the Factory With a Future. McGraw-Hill Companies, New
York (1991)

10. Bose, U.: A Cooperative Problem Solving Framework for Computer-Aided Process
Planning. In: Proceedings of the Thirty-second Annual Hawaii International Confe-
rence on System Sciences, vol. 8, pp. 8015–8024. IEEE Computer Society, Los Alami-
tos (1999)

11. Bussmann, S., Jennings, N.R., Wooldridge, M.: Multiagent systems for manufacturing
control: a design methodology. Springer, Berlin (2004)

12. Camarinha-Matos, L.M.: Virtual organizations in manufacturing: trends and chal-
lenges. In: 2th International Conference on Flexible Automation and Intelligent Manu-
facturing (2002)

13. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why
do we need them? IEEE Intelligent Systems and Their Applications 14, 020–026
(1999)

14. Christensen, J.H.: HMS/FB architecture and its implementation. In: Deen, V.S.M. (ed.)
Agent-based Manufacturing, pp. 53–87 (2003)

240 M. Merdan et al.

15. Christo, C., Cardeira, C.: Trends in Intelligent Manufacturing Systems. In: Conference
Trends in Intelligent Manufacturing Systems, pp. 3209–3214 (2010)

16. Colombo, A.W., Schoop, R., Neubert, R.: An agent-based intelligent control platform
for industrial holonic manufacturing systems. IEEE Transactions on Industrial Elec-
tronics 53, 322–337 (2005)

17. Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language. In:
Software Agents, pp. 291–316. MIT Press, Cambridge (1997)

18. Fisher, K.: Agent-based design of holonic manufacturing systems. Robotics and Auto-
nomous Systems 27, 3–13 (1999)

19. Foundation: Foundation for Intelligent Physical Agents. FIPA Communicative Act Li-
brary Specification (2003), http://www.fipa.org/specs/fipa00037/ and
FIPA ACL Message Structure Specification,

 http://www.fipa.org/specs/fipa00061
20. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Ac-

quis. 5, 199–220 (1993)
21. Hansen, H.R., Neumann, G.: Wirtschaftsinformatik. Fischer (1982)
22. Jennings, N.R., Bussmann, S.: Agent-based control systems: Why are they suited to

engineering complex systems? IEEE Control Systems Magazine 23, 61–73 (2003)
23. Jones, A.T., McLean, C.R.: A proposed hierarchical control model for automated

manufacturing systems. Journal of Manufacturing Systems 5, 15–25 (1986)
24. Kim, K.-Y., Manley, D.G., Yang, H.: Ontology-based assembly design and information

sharing for collaborative product development. Computer-Aided Design 38, 1233–1250
(2006)

25. Krothapalli, N.K.C., Deshmukh, A.V.: Design of Negotiation Protocols for Multi-
Agent Manufacturing Systems. Int. Journal of Production Research 37, 1601–1624
(1999)

26. Kulvatunyou, B., Cho, H., Son, Y.J.: A semantic web service framework to support in-
telligent distributed manufacturing. Int. J. Know.-Based Intell. Eng. Syst. 9, 107–127
(2005)

27. Kumar, M., Rajotia, S.: Integration of process planning and scheduling in a job shop
environment. The International Journal of Advanced Manufacturing Technology 28,
109–116 (2006)

28. Lastra, J.L.M., Delamer, M.: Semantic web services in factory automation: fundamental
insights and research roadmap. IEEE Transactions on Industrial Informatics 2, 1–11
(2006)

29. Lastra, J.M., Delamer, I.: Ontologies for Production Automation. In: Advances in Web
Semantics I, pp. 276–289 (2009)

30. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
31. Leitão, P., Restivo, F.: A layered approach to distributed manufacturing. In: ASI 1999

International Conference, pp. 21–23 (1999)
32. Lepuschitz, W., Vallée, M., Merdan, M., Vrba, P., Resch, J.: Integration of a Hetero-

geneous Low Level Control in a Multi-Agent System for the Manufacturing Domain.
In: 14th IEEE International Conference on Emerging Technologies and Factory Auto-
mation (ETFA 2009) (2009)

33. Mellouli, S.: FATMAS: A Methodology to Design Fault-tolerant Multi-agent Systems,
PhD. Université Laval (2005)

34. Merdan, M.: Knowledge-based Multi-Agent Architecture Applied in the Assembly
Domain. Vienna University of Technology (2009)

A Layered Manufacturing System Architecture 241

35. Merdan, M., Koppensteiner, G., Hegny, I., Favre-Bulle, B.: Application of an Ontolo-
gy in a Transport Domain. In: IEEE International Conference on Industrial Technology
(IEEE ICIT 2008). Sichuan University, Chengdu (2008)

36. Merdan, M., Moser, T., Wahyudin, D., Biffl, S.: Performance evaluation of workflow
scheduling strategies considering transportation times and conveyor failures. In: IEEE
International Conference on Industrial Engineering and Engineering Management, pp.
389–394 (2008)

37. Obitko, M., Mařík, V.: Ontologies for Multi-Agent Systems in Manufacturing Domain.
In: Proceedings of the 13th International Workshop on Database and Expert Systems
Applications, pp. 597–602. IEEE Computer Society, Los Alamitos (2002)

38. Obitko, M., Vrba, P., Mařík, V., Radakovic, M.: Semantics in Industrial Distributed
Systems. In: The 17th IFAC World Congress, Seoul, Korea (2008)

39. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems.
Journal of Scheduling 12, 417–431 (2009)

40. Parunak, H.V.D.: Applications of distributed artificial intelligence in industry. In:
Foundations of Distributed Artificial Intelligence, pp. 139–164. John Wiley & Sons,
Inc., Chichester (1996)

41. Patil, L., Dutta, D., Sriram, R.: Ontology-based exchange of product data semantics.
IEEE Transactions on Automation Science and Engineering 2, 213–225 (2005)

42. Pěchouček, M., Mařík, V.: Industrial deployment of multi-agent technologies: review
and selected case studies. Autonomous Agents and Multi-Agent Systems 17, 397–431
(2008)

43. Pěchouček, M., Vokrinek, J., Becvar, P.: ExPlanTech: multiagent support for manufac-
turing decision making. IEEE Intelligent Systems 20, 67–74 (2005)

44. Qiu, X.: Agent interaction in a Semantic Web environment: A state-of-the-art survey
and prospects in knowledge mobilization. In: Information Systems Research in Scan-
dinavia IRISCA28, Kristiansand, Norway (2005)

45. Rabemanantsoa, M.: Knowledge-based system for assembly process-planning. In: Pro-
ceedings of Software Engineering Standards Symposium, 1993, pp. 267–272 (1993)

46. Rajpathak, D.G., Motta, E., Zdrahal, Z., Roy, R.: A generic library of problem solving
methods for scheduling applications. IEEE Transactions on Knowledge and Data En-
gineering 18, 815–828 (2006)

47. Roche, C., Fitouri, S., Glardon, R., Pouly, M.: The Potential of Multi-Agent Systems
in Virtual Manufacturing Enterprises. In: Proceedings of the 9th International Work-
shop on Database and Expert Systems Applications. IEEE Computer Society, Los
Alamitos (1998)

48. Seilonen, I., Pirttioja, T., Appelqvist, P., Halme, A., Koskinen, K.: Distributed plan-
ning agents for intelligent process automation. In: IEEE International Symposium on
Computational Intelligence in Robotics and Automation, vol. 2, pp. 614–619 (2003)

49. Shen, W., Norrie, D.H.: Agent-based Systems for Intelligent Manufacturing: A State
of-the-Art Survey. An International Journal of Knowledge and Information Sys-
tems 1(2), 129–156 (1999)

50. Shen, W., Wang, L., Hao, Q.: Agent-based distributed manufacturing process planning
and scheduling: a state-of-the-art survey. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 36, 563–577 (2006)

51. Silva, N., Rocha, J.: Ontology mapping for interoperability in semantic web. In: IADIS
International Conference WWW/Internet (2003)

242 M. Merdan et al.

52. Vallée, M., Kaindl, H., Merdan, M., Lepuschitz, W., Arnautovic, E., Vrba, P.: An Au-
tomation Agent Architecture with A Reflective World Model in Manufacturing Sys-
tems. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC
2009), San Antonio, Texas, USA (2009)

53. Vrba, P., Radakovič, M., Obitko, M., Mařík, V.: Semantic extension of agent-based
control: The packing cell case study. In: Mařík, V., Strasser, T., Zoitl, A. (eds.) Holo-
MAS 2009. LNCS, vol. 5696, pp. 47–60. Springer, Heidelberg (2009)

54. Whitney, D.E.: The potential for assembly modeling in product development and man-
ufacturing. MIT Press, Cambridge (1996)

55. Zhang, W., Xie, S.: Agent technology for collaborative process planning: a review.
The International Journal of Advanced Manufacturing Technology 32, 315–325 (2007)

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 243–272.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 11
Semantic Multi-Agent mLearning System

Stanimir Stoyanov1, Ivan Ganchev2, Máirtín O’Droma2, Hussein Zedan3,
Damien Meere2, and Veselina Valkanova1

1 Dept. of Computer Systems, Plovdiv University “Paisij Hilendarski”, Bulgaria
stani@uni-plovdiv.bg, veselinaviva9@gmail.com

2 Telecommunications Research Centre, University of Limerick, Ireland
{Ivan.Ganchev,Mairtin.ODroma,Damien.Meere}@ul.ie

3 Software Technology Research Laboratory, De Montfort University, UK
 hussein.zedan@googlemail.com

Abstract. Within this chapter, an agent-oriented middleware created to support
the delivery of context-aware mLearning services provision is presented. This
middleware architecture, based on the concept of InfoStations and developed
within a University campus domain, is described in detail. Concepts for the con-
trol and management of service sessions and communications scenarios are also
presented. The multi-agent approach adopted for the implementation of this sys-
tem and indeed the system entity interactions involved in service delivery are dis-
cussed. The harvesting and utilisation of semantic information in order to facilitate
the contextualisation and personalisation of mLearning services is also detailed.

1 Introduction

A distinguishable feature of contemporary mobile eLearning (mLearning) systems
is the anywhere-anytime-anyhow aspect of delivery of electronic content, which is
personalised and customised to suit a particular mobile user [1, 2]. In addition,
mobile service content is expected to be delivered to users always in the best poss-
ible way through the most appropriate connection type according to the always
best connected and best served (ABC&S) communication paradigm [3, 4]. In the
light of these trends, the goal is to develop a context-aware and agent-oriented
middleware system. The middleware described within this chapter uses an InfoS-
tation-based communication environment with distributed control [5, 6]. The In-
foStation paradigm is an extension of the wireless Internet, where mobile clients
interact directly with Web service providers (i.e. InfoStations). The users request
services (from their mobile devices) from the nearest InfoStation utilizing Blu-
etooth or WiFi wireless communication. Of course in future, the incorporation of
technology such as WiMAX will greatly aid the deployment of this architecture
and the delivery of services to a much wider community. In our approach, each
application utilizing the InfoStation infrastructure consists of two components:

244 S. Stoyanov et al.

(i) a standardized middleware, which identifies and locates the changes in the en-
vironment in order to prepare the adequate delivery of requested services; and (ii)
a set of electronic services (in this case mLearning services), which are adapted
and controlled by this middleware.

In the architecture presented in this chapter, the context is processed by the
middleware components deployed on different InfoStations. The determination of
a particular context is accomplished within the framework of predefined scenarios.
In certain cases, it is necessary to identify different local circumstances at different
moments and in different network nodes (InfoStations). What is required in these
cases is a strict synchronisation between the middleware components deployed on
different InfoStations.

The rest of the chapter is organized as follows. Section 2 presents a state of the
art of various related works. Section 3 presents the InfoStation communication in-
frastructure. Section 4 describes our concept for context-aware service provision.
Section 5 presents briefly the layered system architecture developed to support the
context-aware service provision. Section 6 describes the agent-oriented middle-
ware architecture of an InfoStation. Section 7 details the use of the Ontology Web
Language for services (OWL-S) in describing the properties and capabilities of the
various mLearning services, essentially providing the mechanism to advertise the
services to agents operating within the architecture. Section 8 is concerned with
issues related to the context-aware management of service sessions. Section 9 de-
tails the contextualisation and adaptation of presented services based on informa-
tion conveyed through the Resource Description Framework (RDF)-based
user-centric profiles. Section 10 provides an outline of the various entity interac-
tions and semantic information transactions involved in the provision of a contex-
tualised mLearning services, in this case the mTest service. Section 11 considers
relevant implementation issues. Finally section 12 concludes the chapter.

2 Related Works

The efforts to support electronic services for different application domains/areas,
on one hand, and for the provision of heterogeneous access to them through dif-
ferent types of networks (Bluetooth, WiFi, WiMAX, sensor networks, etc.), on the
other, have in recent years led to the development of hybrid software architectures.
Within such architectures, intelligent agents operate jointly with electronic servic-
es. Advantages of this combined use of agents and services are presented in detail
in [7]. In the last few years, there has been a growing trend in realisation of this
support for context-aware and adaptable middleware. A variety of such systems
are described in the specialised literature, which are focused on various aspects of
this support, i.e. from systems ensuring efficient heterogeneous access to middle-
ware systems oriented to the specifics of the application domain.

A large portion of middleware deals with the extraction and support of context
information. A context-aware architecture composed of clients (moving nodes), a
context-server and middleware (fixed nodes connected through TCP/IP with the
context-server) is described in [8]. Within that architecture, the middleware plays
important role both in identifying the clients using the Bluetooth technology and

Semantic Multi-Agent mLearning System 245

in finding a suitable executable module in accordance with the requisite context
acquired from the context-server. Another architecture described in [9] uses a
Context Engine for context-aware delivery of Web services, whereby a rule-based
approach based on first-order logic is adopted for the centralised processing of
context. In [10] a context broker architecture based on ontologies for context re-
presentation is presented. A context-aware analog to a telephone service provider
is described in [11]. More common context-aware architectures are presented in
[12, 13]. The context within these architectures is stored and processed in a
centralised manner whereby the middleware is used mainly as a mediator.

Various specialized literature sources also describe interesting applications of
agent-oriented middleware architectures targeting different application domains.
For instance, [14] presents a system for controlling the transport of valuable
cultural-historical objects, which also provides opportunities for users to receive
information about these objects on their mobile phones, according to their
personal preferences. The system described in [15] details a multi-agent approach
for air traffic control. Agent-oriented middleware to detect abnormalities in the
traffic of computer networks is presented in [16]. An agent-oriented hybrid system
in the field of bioinformatics is presented in [17].

 Many of the aforementioned sources treat the context-aware middleware
components and the adaptation to heterogeneous networks separately. However, in
recent years, more complex middleware systems, containing the necessary
resources for context-dependent and personalised delivery of electronic services,
have become increasingly prevalent. An architecture is presented in [18], where
these two topics are considered jointly. There, a middleware for multimedia
services in heterogeneous networks is described, which includes two frameworks:
(i) an adaptive service-provisioning middleware framework ensures the delivery
of services to mobile users, at any time, any place and for any context, by interact-
ing with existing heterogeneous networks, (ii) a context-aware multimedia
middleware framework supports content filtering, adaptation, aggregation of
context, drawing of conclusions and training. The architecture described in [19] il-
lustrates an agent-based and service-oriented, adaptive and context-dependent
architecture. The architecture supports semantic match-making, composition,
implementation and control of services. The offered functionality is divided in the
following three abstract layers: an agent-based peer service composition agent
layer, an agent-based wrapper service layer, and a resource and asset layer.

The main requirements, which an agent-oriented middleware for adaptable
systems must satisfy, are defined in [20]. Meeting some of these requirements is
demonstrated by the presented there middleware architecture. The middleware is
implemented as a web of agents, operating as mediators between the operating
system and the user applications.

3 InfoStation-Based Network Architecture

The continuing evolution in the capabilities and resources available within modern
mobile devices has precipitated an evolution in the realm of eLearning. The

246 S. Stoyanov et al.

architecture presented here attempts to harness the communicative potential of
these devices in order to present learners with a more pervasive learning expe-
rience, which can be dynamically altered and tailored to suit them. The following
network architecture enables mobile users to access various mLearning services,
via a set of intelligent wireless access points, or InfoStations, deployed in key
points across the University Campus. However, these services are not only opti-
mized to suit the operating environment onboard the mobile device, but also cus-
tomised according to the learners’ own personal details. In order to accomplish
this, and indeed, due to the inherent mobility supported by the system, it is neces-
sary for intelligent agents to operate throughout every level of the system. Indeed,
both the InfoStation and the InfoStation Centre, each take on the appearance of a
multi-agent system in itself, as is outlined within Section 6. These intelligent
agents gather information and accomplish tasks without the requirement of human
interaction and coordinate themselves in order to complete various network man-
agement tasks. Throughout this chapter we will outline how these agents interact
with each other, and detail the semantic information transactions necessary for the
delivery of highly contextualised learning content to learners. The system
architecture consists of the following three tiers as shown in Fig. 1:

• 1st tier – encompassing the user mobile devices (cell phones, laptops,
PDAs), equipped with intelligent agents acting as Personal Assistants to
users. The Personal Assistant gathers information about the operating en-
vironment onboard the mobile device, as well as soliciting information
about the user. Supplied with this information, the InfoStation can make
better decisions on applicable services and content to deliver to the
Personal Assistant;

• 2nd tier – consisting of InfoStations, satisfying the users’ requests for ser-
vices through Bluetooth and/or WiFi wireless mobile connections. The
InfoStations maintain connections with mobile devices, create and man-
age user sessions, provide interface to global services offered by the
InfoStation Centre, and host local services. The implementation of these
local services is an important aspect of this system. By implementing
particular services within specific localised regions throughout the Uni-
versity campus, we can enrich the service users experience within these
localities. A prime example of how this type of local service can enrich a
learners experience, is the deployment of library-based services [21].
Within the library domain, library users experience can be greatly en-
hanced through the facilitation of services offering resource location ca-
pabilities or indeed account notifications. The division of global and local
services allows for a reduction of the workload placed on the InfoStation
Centre. In the original InfoStation architecture [5], the InfoStations oper-
ated only as mediators between the user mobile devices and a centre, on
which a variety of electronic services are deployed and executed. The
InfoStations within this architecture do not only occupy the role of me-
diators, they also act as the primary service providing nodes;

Semantic Multi-Agent mLearning System 247

3rd Tier: InfoStations Centre
(with Profile Managers and Global Services’ Content
Repository)

2nd Tier: InfoStations
(with cached copies of recently used user/service
profiles, and Local Services’ Content Repository)

1st Tier: Mobile Devices
(with Intelligent Agents acting as Personal
Assistants for mobile users)

Fig. 1. The 3-tier InfoStation-based network architecture

• 3rd tier – this is the InfoStation Centre – the core of the overall architec-
ture – concerned with controlling the InfoStations, and overall updating
and synchronisation of information across the system. The InfoStation
Centre also acts as the host for global services.

We have developed a set of mLearning service prototypes that use the re-
sources distributed throughout this architecture in an efficient manner. For in-
stance, the user requests for local services are satisfied directly by the InfoStations
without a need to access the InfoStation Centre’s resources. These local services
are provided only to mobile devices currently operating within range of a particu-
lar InfoStation. On the other hand, user requests for global services require redi-
rection to the InfoStation Centre in order to be satisfied. In some cases/scenarios a
local service could be the initial and/or final phase of some global service provi-
sion. For instance, a typical action concluding a global service provision is to for-
ward the final result to the mobile device that has requested it. Also, the initial ex-
ecution of some service requests could be handled by one InfoStation and later
completed by another one, due to mobility supported by the system, e.g. when
during the service provision the user moves into the range (service area) of an-
other InfoStation, as detailed in [22]. Middleware software, with specific functions
utilized to support this architecture, ensures sufficient flexibility, adaptability and
autonomy of the system architecture’s nodes. In addition, the autonomic software
components must be able to communicate at a higher semantic level with regard to
the context, business-logic of the provided service, and the individual characteris-
tics of users. For this reason, an agent-oriented approach has been adopted for the
implementation of the required middleware.

4 Context-Aware Service Provision

Any system that ensures a context-aware service provision could be built as an
integration of two components [23]:

248 S. Stoyanov et al.

• A standardized middleware, which is able to detect the dynamic changes
in the environment (c.f. communication scenarios below) during the
processing of user requests for services (contex-awareness) and corre-
spondingly to ensure their efficient and non-problematic execution
(adaptability);

• A set of electronic services realizing the functionality of the application
area (business functionality), which could be activated and controlled by
the middleware. In our case, the application area is the eLearning.

As the middleware described further in here is concerned with the context-
awareness and adaptability aspects, it is important to first clarify these concepts.
Within this development approach, Dey’s definition [24] was adopted, according
to which “context is any information that can be used to characterize the situation
at an entity”. An entity could be a person, place, or object that is considered rele-
vant to the interaction between a user and an application, including the user and
applications themselves. Context could be of different type, e.g. location, identity,
activity, time.

Dey’s definition is utilized here as a basis for further discussions. In order to
elaborate on this definition a working one for the creation of the desired
middleware architecture, we first solidify the definition as presented further in the
chapter. We want clearly to differentiate context-awareness from the adaptability.
Context-awareness is the middleware’s ability to identify the changes in the
environment/context as regards:

• Mobile device’s location (device mobility) – in some cases this change
leads to changing the serving InfoStation. This is especially important
due to the inherent mobility within the system, as users move throughout
the University campus. This information has a bearing on the local ser-
vices deployed within a particular area i.e. within the University Library;

• User device (user mobility) – this change offers different options for the
delivery of the service request’s results back to the user. What is impor-
tant here is to know the capabilities of the new device activated by the
user, so as to adapt the service content accordingly;

• Communication type – depending on the current prevailing wireless net-
work conditions/constraints, the user may avail of different communica-
tions possibilities (e.g. Bluetooth or WiFi);

• User preferences – service personalisation may be needed as to reflect the
changes made by users in their preferences, e.g., the way the service
content is visualised to them, etc.;

• Goal-driven sequencing of tasks engaged in by the user;
• Environmental context issues such as classmates and/or learner/educator

interactions.

The goal of adaptability is to ensure trouble-free, transparent and adequate ful-
filment of user requests for services by taking into account the various aspects of
the context mentioned above. In other words, after identifying a particular change
in the service environment, the middleware must be able to take compensating

Semantic Multi-Agent mLearning System 249

actions (counter-measures) such as handover of user service sessions from one
InfoStation to another, re-formatting/transcoding of service content due to a
change of mobile device (varying device capabilities), service personalisation, etc.

To ensure adequate support for user mobility and device mobility (the first two
aspects of the context change), the following four main communications scenarios
are identified for support in our middleware architecture [22]:

• ‘No change’ – a mLearning service is provided within the range of the
same InfoStation and without changing the user mobile device;

• ‘Change of user mobile device’ – due to the inherent mobility, it is entirely
possible that during an mLearning service session, the user may shift to
another mobile device, e.g. with greater capabilities, in order to experience
a much richer service environment and utilize a wider range of resources;

• ‘Change of InfoStation’ – within the InfoStation paradigm, the connection
between the InfoStations themselves and the user mobile devices is by
definition geographically intermittent. With a number of InfoStations posi-
tioned around a University campus, the users may pass through a number
of InfoStation serving areas during the service session. This transition be-
tween InfoStation areas must be completely transparent to the user,
ensuring the user has continuous access to the service;

• ‘Change of InfoStation and user mobile device’ – most complicated scena-
rio whereby the user may change the device simultaneously with the
change of the InfoStation.

To support the third aspect of the context change (different communication
type), the development of an intelligent component (agent) working within the
communication layer (c.f. Fig. 2) is envisaged. This component operates with the
capability to define and choose the optimal mode of communication, depending on
the current prevailing access network conditions (e.g. congestion level, number of
active users, average data rate available to each active user, etc.). The user identi-
fication and corresponding service personalisation is subject to a middleware ad-
aptation for use in the particular application area. In the case of eLearning, the ar-
chitecture is extended to support the three fundamental eLearning models – the
educational domain model, the user/learner model, and the pedagogical model
[25, 26]. The rest of the chapter focuses on the support of the first two aspects of
the context-awareness and relevant adaptability.

5 Layered System Architecture

The developed layered software system architecture as depicted in Fig. 2 is a dis-
tributed architecture, meaning that its functional entities are deployed across the
different tiers / nodes, i.e. on mobile devices, InfoStations, and InfoStation Centre.
In this architecture the role of the InfoStations is expanded, enabling them to act
(besides the mediation role) as hosts for the local mLearning services (LmS) and
for preparation, adaptation, and conclusive delivery of global mLearning services
(GmS). This way the service provision is efficiently distributed across the whole

250 S. Stoyanov et al.

architecture. Each of the system network nodes have a different structure depend-
ing on their functioning within the system. However, each node is built upon a
Communication Layer whose main task is to initialize, control and maintain com-
munications between different nodes. This layer is also concerned with choosing
the most appropriate mode of communication between a mobile device and an In-
foStation – whether that be Bluetooth or WiFi, or indeed as the platform evolves
perhaps WiMAX in the future. The software architecture of the InfoStations and
InfoStation Centre includes a Service Layer on the top. The main task of this layer
is to prepare the execution of the users’ service requests, to activate and receive
the results of the execution of different services (local and global).

The InfoStations’ middle layer is responsible for the execution of scenarios and
control of user sessions. It is at this layer where the user service requests are
mainly processed by taking into account all contex-aware aspects and applying
corresponding adaptive actions. The middle layer of the InfoStation Centre en-
sures the needed synchronisation during particular scenarios (c.f. Section 8). In
addition, different business supporting components, e.g. for user accounting,
charging and billing, may operate here.

The software architecture of the user mobile devices contains two other layers:

• Personal Assistant – its task is to help the user in specifying the service
requests sent to the system, accomplish the communication with the
InfoStations’ software, receive and visualise the service requests’ results
to the user, etc. Moreover the assistant can provide information needed
for the personalisation of services (based on information stored in the
user profile) and/or for the synchronisation of scenario execution;

• Graphical User Interface (GUI) – its task is to prepare and present the
forms for setting up the service requests, and visualise the corresponding
results received back from the system.

Fig. 2. The layered system architecture

Semantic Multi-Agent mLearning System 251

6 Agent-Oriented Middleware Architecture

The main implementation challenges within this system are related to the support
of distributed control, as the system should be capable of detecting all relevant
changes in the environment (context-awareness) and according to these changes,
facilitate the service offerings in the most flexible and efficient manner (adaptabil-
ity). The system architecture presented in the previous section is implemented as a
set of cooperating intelligent agents. An agent oriented approach has been adopted
in the development of this architecture in order to:

• Model adequately the real distributed infrastructure;

• Allow for realisation of distributed models of control;

• Ensure pro-active middleware behaviour which is quite beneficial in
many situations;

• Use more efficiently the information resources spread over different
InfoStations.

Moreover, the agent-oriented architecture can easily be extended with new
agents (where required) that cooperate with the existing ones and communicate by
means of a standardized protocol (in this case the FIPA -Agent Communication
Language (ACL) [27, 28]). Indeed the InfoStations and InfoStation Centre exist as
networks of interoperating agents and services, with the agents fulfilling various
essential roles necessary for system management. Within each of these platforms,
agents take responsibility for selecting (optimal mode) and establishing a client-
server cross-platform connection, conveyance of context information and the
delivery of adapted and personalised service content. This multi-agent approach
differs from the classic multi-tier architectures in which the relationships between
the components at a particular tier are much stronger. Conceptually we define dif-
ferent layers in the system architecture in order to present the functionality of the
middleware that is being developed in a more systematic fashion. Implementation-
wise, the middleware architecture is considered as a set of interacting intelligent
agents. Communication between the user mobile devices and the serving
InfoStations could be realized in two ways: (i) an agent operating within the In-
foStation discovers all new devices entering the range and subsequently initiates
communication with them; or (ii) Personal Assistant agents on the user mobile de-
vices are the active part in communication, and initiate the connection with the
InfoStation. In the current implementation of the prototype architecture, the for-
mer approach is used for Bluetooth communication, whereas the latter applies for
WiFi communication.

Fig. 3 highlights the main components necessary to ensure continuity to the
service provision, i.e. support for the continuous provision of services and user
sessions in the case of scenario change [22] or resource deficiency. The agents
which handle the connection and session establishment perform different actions,
such as searching for and finding mobile devices within the range of an InfoSta-
tion, creating a list of services required by mobile devices, initiation of a wireless
connection with mobile devices, data transfer to- and from mobile devices. This is

252 S. Stoyanov et al.

described in more detail in the following section. Also illustrated within Fig. 3 are
the components which serve to facilitate a level of context sensitivity and persona-
lisation to the presented services. The mechanisms by which the services achieve
this context sensitivity are dealt with in more detail later in the chapter. A short
description of the various agents (for Bluetooth communication) within the archi-
tecture is presented below.

The first step in the delivery of the services involves the Scanner agent, which
continuously searches for mobile devices / Personal Assistant agents within the
service area of the InfoStation. In addition, this agent retrieves a list of services
required by users (registered on their mobile devices upon installation of the client
part of the application), as well as the profile information, detailing the context
(i.e. device capability and user preference information. The Scanner agent receives
this information in the form of an XML file (c.f. Section 8), which itself is ex-
tracted from the content of an ACL message. The contents of this XML file are
then passed on via the Connection Advisor agent, to the Profile Processor agent,
which parses the received profile and extracts meaningful information. This in-
formation can in turn be utilized to perform the requisite alterations to services
and service content. This information is also very important in relation to the tasks
undertaken by the Scenario Manager agent. The role of this agent is to monitor
and respond to changes in the operating environment, within which the services
are operating (i.e. change of mobile device). In the event of a significant change of
service environment, this agent gathers the new capability and preference informa-
tion (CPI) via the Scanner agent. Then, in conjunction with the Query Manager
agent and the Content Adaptation agent, facilitates the dynamic adaptation of the
service content to meet the new service context. The main duty of the Connection
Adviser agent is to filter the list (received from the Scanner agent) of mobile de-
vices as well as requested services. The filtration is carried out with respect to a
given (usually heuristic) criterion. Information needed for the filtration is stored
in a local database. The Connection Adviser agent sends the filtered list to the
Connection Initiator agent, who takes on the task of initiating a connection with
the Personal Assistant onboard the mobile device. This agent generates the so-
called Connection Object, through which a communication with the mobile device
is established via Bluetooth connection. Once this connection has been estab-
lished, the Connection Initiator generates an agent to which it hands over the
control of the connection, called a Connection agent. From this point on, all com-
munications between the InfoStation and the Personal Assistant are directed by the
Connection agent. The internal architecture of the Connection agent contains three
threads: an agent thread used for communication with the Query Manager agent,
and a Send thread and Receive thread, which look after each direction of the
wireless communication with the mobile device.

The Query Manager performs one of the most crucial tasks within the InfoSta-
tion architecture. It determines where information received from the mobile device
is to be directed, e.g. directly to simple services, or via Interface agents to sophis-
ticated services. It also transforms messages coming from the Connection agent

Semantic Multi-Agent mLearning System 253

into messages of the correct protocols to be understood by the relevant services,
i.e. for simple services - UDDI or SOAP, or for increasingly sophisticated services
by using more complicated, semantic-oriented protocols (e.g. OWL-S [16], c.f.
next section). The Query Manager agent also interacts with the Content Adapta-
tion agent in order to facilitate the Personal Assistant with increasingly contextua-
lised service content. This Content Adaptation agent, operating under the remit of
the Query Manager agent, essentially performs the role of an adaptation engine,
which takes in the profile information provided by the Profile Processor agent, and
executes the requisite adaptation operations on the service content (e.g. file
compression, image resizing etc.)

The Query Manager agent receives user service requests via the Connection
agent, and may communicate with various services. Once it has passed the re-
quest on to the services, all service content is passed back to the Query Manager
via the Content Adaptation agent. The Profile Processor agent parses and validates
received profiles (XML files) and creates a Document Object Model (DOM) tree
[29]. Using this DOM tree the XML information may be operated on, to discern
the information most pertinent to the adaptation of service content. The Content
Adaptation agent receives requests-responses from the services, queries the Profile
Processor agent regarding the required context, and then either selects a pre-
packaged service content package which closely meets the requirements of the
mobile device, or applies a full transformation to the service content to meet the
constraints of the operating environment of the device.

The tasks undertaken by the Content Adaptation agent, the Scenario Manager
agent and the Profile Processor agent, enable the system to dynamically adapt to
changing service environments, even during a particular service session. Once the
connection to a particular service has been initialized and the service content
adapted to the requisite format, the Connection agent facilitates the transfer of the
information to the user mobile device.

Fig. 3. The agent-oriented middleware architecture

254 S. Stoyanov et al.

7 Using the Ontology Web Language for Services (OWL-S)

In our architecture, communication with more sophisticated services is performed
by using the standard Ontology Web Language for Services (OWL-S) protocol
[30]. The Resource Description Framework (RDF) was the first step in the web-
based ontology language. It facilitated the description of resources on the Web.
However, RDF is only suited to the expression of lightweight ontologies. OWL-S
enhances the expressivity of RDF, providing a more in-depth means of describing
the various classes, property restrictions and characteristics, etc. OWL-S provides
a set of constructs with which to create ontologies (i.e. specifications of concepts
and relationships with agents), which are machine understandable descriptions of
the service. These ontologies enable agents to discover, invoke and interoperate
with the services.

Using OWL-S, the ontology structure is divided into four separate sections,
each dealing with a different aspect of the service:

• Service Profile - this advertises the abilities of the service (i.e. what it can
do), in such a way as to enable a service-seeking agent to determine if the
service meets its requirements. This provides a concise high-level de-
scription of the service to a registry, which is maintained by the InfoSta-
tion Centre, and periodically disseminated copies of all service profiles to
the various local InfoStations throughout the campus. The service profile
outlines the limitations of the service, the quality of the service and of
course the requirements placed upon the requesting agent in order to util-
ize the service successfully. The profile serves only to provide a descrip-
tion of the service to a registry. In this system, the InfoStation provides a
user’s Personal Assistant with access to a registry of services. Here the
user can examine the available service profile information to locate a par-
ticular service. Once the user has selected a particular service, the profile
has fulfilled its purpose and performs no other function. The process
model specifies all interactions between the requesting agent and the ser-
vice. Service profiles are comprised to three different types of informa-
tion: a description of the service and the service provider, functional
attributes that provide supporting information about the service and
the functional behaviour of the service which provides a capability
description of the service, specification of what the service provides.

• Process Model - this gives a detailed description of the operation of the
service and tells a requesting agent how and when to interact with a
service (read/write messages). Essentially it outlines how to initiate the
service, and what happens when a service carries out its purpose. The
process model is not a programme to be executed, but rather a specifica-
tion of the methods in which a client must interact with a service in order
for some outcome to be achieved. The process model is utilized for the
invocation of the service, for planning a composition of complex actions,
and for interoperation and monitoring of service functionality. The pri-
mary entity with the process model is the “Process” itself. The purpose of
this process is to generate some new information, based on information

Semantic Multi-Agent mLearning System 255

provided to it and the conditions it’s under. Essentially this can be
thought of as generating a certain ‘output’, given a particular ‘input’
under certain conditions. For example given a user service request for a
certain piece of service content, this describes the process by which that
particular piece of service content is provided to the user. A process can
also effect a change within its immediate environment. This can be
thought of in terms of preconditions and effects of the process. For ex-
ample a precondition for the process of a user utilizing a service could be
that the users have successfully completed an authentication procedure.
An effect of this service access process would be the requisite updating
of the user profile. A process can have any number of these inputs
(necessary for a process to be performed) and outputs (resultant of the
execution of the process on a particular input). There can also be any
number of preconditions which must be satisfied before a process can be
successfully initialised. Finally, depending on the conditions in the envi-
ronment of the process, any number of effects can be generated by the
execution of that process.

• Grounding - this provides details of how an agent can access and intero-
perate with a service (i.e. interact with the service). Specified within the
grounding, are details pertaining to message formatting, transport me-
chanisms, protocols, addressing, etc. When combined with the details
outlined within the process model, all the information necessary for a
client to utilize a particular service is presented. While both the Service
Profile and the Process Model provide abstract representations of the ser-
vice and its processes, the Grounding provides a concrete specification of
the various elements required for interaction with the service. In essence
the central function of an OWL-S grounding is to show how the various
inputs and outputs of an atomic process are realized as messages which
can carry those inputs and outputs in some specific transmittable format.
The Web Services Description Language (WSDL) [31] is utilized within
OWL-S to facilitate the initial grounding mechanism. A WSDL docu-
ment provides an XML grammar for portraying services as collections of
communication endpoints with the capability of exchanging messages.
Essentially it specifies the location of the service and the operations the
service exposes. The abstract definitions of the communication endpoints
and messages are separated from the concrete specifications, and as such,
the abstract definitions may be reused. The specification of the OWL-S
grounding involved the cooperative utilisation of both OWL-S and
WSDL. As both of these languages operate within a different conceptual
space, they are each required for the specification of services. Essentially
OWL-S and WSDL overlap within the grounding. Fig. 4 illustrates the
convergence of these two specification languages.

• Service - this simply binds the other elements together into a single entity
which can be published and invoked.

256 S. Stoyanov et al.

Fig. 4. The mapping between OWL-S and WSDL

Agents utilize the information contained within the Service Profile to ascertain
whether or not a service meets its requirements, and adheres to certain constraints
such as security, quality of service etc. While the Service Profile provides all the
information needed for an agent to discover a service, the Process Model provides
the information necessary for the agent to use the service. The Process Model al-
lows the agent to perform a more in-depth analysis of the service and its capabili-
ties, and determine if it can be utilized. As well as this, it enables the agent to
compose new service descriptions through the composition and interoperation of
previous existing services, to perform specific tasks. The Process Model also al-
lows agents to monitor the execution of tasks performed by a service (or a set of
services), and to coordinate the entities involved in the service execution. The
Service Grounding details how agents can communicate with, interoperate with,
and invoke a service. The relationships between the various service components
are modelled using properties such as presents (Service to Profile), describedBy
(Service to Process Model) and supports (Service to Grounding), Fig. 5.

Fig. 5. The OWL-S service ontology

When all these separate parts are combined, they form an ontology/description
that allows agents to discover, invoke, compose and monitor services. Utilizing
the OWL-S protocol offers a good opportunity for the realisation this flexible
software architecture, offering a suitable environment for the support of the
mLearning services in this system. The following Fig. 6 is a sample OWL-S ser-
vice description of the mLecture service. From this mLecture service instance, one
can see the specification of the various relationships which exist between the ele-
ments which comprise the OWL-S. This essentially serves to bind the various
elements together into a single invokable entity.

Semantic Multi-Agent mLearning System 257

8 Context-Aware Management of Service Sessions

The hybrid InfoStation’s middleware architecture, presented in previous sections,
consists of two types of software components – agents and services. Services are
used for the realisation of business functionality; however, they are often static
and thus unsuitable for presentation within a dynamic system. On the contrary,
agents are suitable for examining and responding to dynamic changes in the sys-
tem environment, but unsuitable for the delivery of business functionality. As the
InfoStation network provides a dynamic environment for mLearning services

Fig. 6. An OWL-S mLecture service instance example

258 S. Stoyanov et al.

provision, the task of the agent-oriented middleware is to react to the environ-
mental changes and to ensure correct execution of user requests for services. A
substantial problem in this task is the management of service sessions in case of
scenario change. With efficient management of service sessions, users are pro-
vided with seamless access to services from any device, using the same user pro-
file information while moving. In order to ensure the transparency of this process
to the user, a specialized Scenario Manager agent is dedicated to tackle this
problem within this architecture (Fig. 3).

Due to the inherent unpredictability in the user behaviour (e.g. change of InfoS-
tation and/or device) and the distributed nature of the system, it is impossible to
support apriori a global model for scenario management. For instance, the condi-
tion for initiating the ‘Change of InfoStation’ scenario could be presented by the
rule depicted in Fig. 7. The difficulty here is related to the fact that particular pre-
conditions must be checked in different InfoStations, but the validity of the rule
can be determined by means of synchronisation that includes communication be-
tween relevant Scenario Manager agents on different InfoStations. The fact that a
mobile device mdi is leaving the area of InfoStation IS1 and entering the area of In-
foStation IS2 can be identified by the Scanner Agents working on these InfoSta-
tions. However, what both Scenario Manager agents have to establish by means of
mutual communication, is whether this is the same device in question. Additional
synchronisation is also required between these two Scenario Manager agents as to
check whether an unaccomplished (open) service request in the entering mobile
device awaits some results from the system. This latter synchronisation could be
done in different ways:

• InfoStation Centre Synchronisation – in this centralised approach, the
InfoStation Centre stores a central registry of all unaccomplished (open)
service requests. When an execution of a new service request is started,
the serving InfoStation sends relevant information on to the InfoStation
Centre for storage. When a new device enters within range of an
InfoStation, the latter asks the InfoStation Centre for relevant information
regarding any unaccomplished service requests initiated by this device in
order to continue their execution from the point reached by the previous
InfoStation;

• Mobile Device Synchronisation – in this distributed approach, the Per-
sonal Assistant agent operating on the mobile device keeps track on all
unaccomplished (open) service requests initiated by the user/device.
When the user/device enters the area of another InfoStation, the Personal
Assistant agent notifies the new InfoStation about any unaccomplished
requests (along with relevant information such as last point reached,
state, parameters values, etc) that the InfoStation should take care of.
This approach could be further facilitated by installing an IEEE 802.211
agent on the user mobile device which may speed up the handover
process from one InfoStation to another;

1 IEEE 802.21 – an emerging Media Independent Handover Services standard that provides

lower layer support for device mobility across heterogeneous wireless access networks.

Semantic Multi-Agent mLearning System 259

• Broadcasting – in this approach, when a mobile device with unaccom-
plished (open) request is leaving the area of a particular InfoStation, the
latter notifies all other InfoStations by broadcasting a message including
details of this request in order to prepare the fast handover of the service
session to the next InfoStation;

• Multicasting – this is a special case of the previous approach, whereby
the current InfoStation multicasts a notification message only to the
group of neighbouring InfoStations, as it is more likely the mobile device
that left it will re-appear within the area of some of them. Comparing to
the previous one, this approach allows saving the communications re-
sources and reducing the overhead. Disadvantage is that it could be only
applied if device mobility patterns statistic is already available and used,
or in cases of indoor application when users are moving inside a building
along the corridors so the system may exactly predict which the next
serving InfoStation will be.

 Time

 mdi mdi

Fig. 7. The interaction between Scenario Manager Agents (SMAs) for the ‘Change of In-
foStation’ scenario

Whatever the chosen approach, the efficient management of the service session
requires the conveyance of session information between the various architectural
entities. In order to ensure the seamless session transition from one InfoStation to
another, the InfoStations require information pertaining to the user, the session
and the communication involved. When a user enters within wireless range of an
InfoStation, the Connection Initiator agent onboard the InfoStation, initiates com-
munication with the Personal Assistant onboard the user device. Within these
initial interactions, the Personal Assistant passes on the information about that par-
ticular user. Whether the InfoStation receives the session information from the
Personal Assistant or from another InfoStation, this information, in conjunction
with the user details, enables the Scenario Manager agent to associate the user to a
particular service session. In doing so, the new InfoStation takes on the role of

260 S. Stoyanov et al.

facilitating the session begun elsewhere, and facilitates the user with seamless
service access. Essentially we can consider any given service session consisting of
the following information tuple:

Sn = (Uk, Dm, Cn)

where Sn represents the nth session comprised of Uk, Dm, and Cn, which respec-
tively represent the kth user, the mth device (operating environment), and the ser-
vice content. The session itself is managed through the utilisation of information
based around this tuple. Each of these three elements serves to uniquely identify
the essential components of service delivery. In order for a session to be main-
tained between InfoStation, the InfoStation must be aware of the user’s creden-
tials, as well as the constraints of the user’s current operating environment (Scena-
rios Changes). However, by providing information relating to the session currently
in operation by the user, the InfoStation seeking to continue the session can reini-
tialise, and seamlessly maintain the service session continuation accordingly. The
following illustration (Fig. 8), based on the informational model put forward in
[32], seeks to illustrate the informational architecture involved in the continuation
of service sessions across a number of InfoStations. This illustration highlights the
utilisation of user- and device information in facilitating a more comprehensive
scheme for the session management.

Fig. 8. The information model for service session management

9 User-Based Service Contextualisation and Adaptation

One of the fundamental elements of this system is the facility for service context-
sensitivity and personalisation. In order to support this functionality we turn to the
creation of device-, user- and service profiles. For the implementation of the for-
mer two profiles, which are integral components in the service adaptation
procedure, we have opted to use the uniform platform-independent Composite
Capability/Preference Profile (CC/PP) format [33]. This format is based on the
Resource Description Framework (RDF), one of the key specifications of the Se-
mantic Web, and is recommended by the World Wide Web Consortium (W3C)
[34]. When adapting service content for a specific user, the information required

Semantic Multi-Agent mLearning System 261

for the adaptation can come from different sources - the network, the accessing
device or indeed the user's own preferences/context. The InfoStation can receive
these different pieces of information separately, but needs to merge the informa-
tion into one model before doing content adaptation. Based on the Semantic Web
and RDF, CC/PP simplifies this data integration through the use of extensible and
non-centralised vocabularies.

The CC/PP specification defines a structured framework through which devices
can define critical criteria relating to their capabilities. A CC/PP profile contains a
description of device’s capabilities as well as a specific user’s personal prefe-
rences/context, which can be utilized to guide the adaptation of service content de-
livered to that device. This adapted and personalised mLearning allows us to offer
multimedia content and activities adapted to learners’ specific needs and influ-
enced by their specific preferences and context. So when a specific user (mobile
device-based Personal Assistant) submits a request to use a certain service, the
source of that service (i.e. the InfoStation) customises and tailors the service con-
tent to meet the user preferences and the capabilities of his/her current mobile
device. In essence, content is adapted to ‘best’ suit the individual user and the spe-
cific device at that particular time. Through the customisation and tailoring of the
services (and their content), they can be offered to users, independently of the type
of mobile devices. This is an essential factor in this type of mobile network envi-
ronment, as user devices and preferences will be as varied as the users themselves.

A CC/PP profile contains a number of attributes and associated values, which
are used by the InfoStations to determine the most appropriate format of the re-
source to be delivered to the user’s Personal Assistant. The User Agent Profile
(UAProf) [35] specification is a concrete implementation of the CC/PP developed
by the Open Mobile Alliance [36]. This specification builds upon WAP 2.0 and
facilitates the flow of capability and preference information (CPI) between the
Personal Assistant, the InfoStation and the InfoStation Centre. The specification
defines CPI through a structured set of components and attributes. The following
are the most useful components defined within the UAProf specification:

• Hardware Platform: contains attributes that describe the hardware characteris-
tics of the current user device, e.g. device type, input/output methods, screen
size, colour capabilities, image capabilities, device CPU etc.

• Software Platform: contains attributes relating to the operating environment of
the device, e.g. operating system name-vendor-version, JVM version, audio/video
codecs, Java enabled etc.

• Network Characteristics: attributes relating to the network capabilities of the
device, e.g. specification of Bluetooth or WiFi support etc.

The following Fig. 9 illustrates a sample of a device’s hardware component
with attributes which each have a bearing on the appearance of the final delivered
contextualised service content. Utilizing the CPI contained within these CC/PP-
UAProf-based profiles, the service providers (i.e. InfoStations) can tailor local
services to meet the demands of a requested delivery context. The UAProf
represents this CPI in a two-level hierarchy consisting of various components
(dealing with a different characteristic of the device) and associated attributes.

262 S. Stoyanov et al.

The details specified within an instance of the UAProf, and its components,
enables an InfoStation to dynamically adapt and customise the mobile services ac-
cording to the specifications of that device. The hardware component provides in-
formation about the screen size, imaging capabilities, processing power, in-
put/output methods, manufacturer etc. An InfoStation uses this information to
efficiently and adequately adapt a particular service and content to the hardware
environment on that device. An example of how a service may be adapted accord-
ing to hardware criteria would be to examine the ScreenSize attribute. This
attribute places constraints on the amount of information which can be shown on
the screen of the device, and it would be prudent to reduce font sizes to suit the
smaller screen.

Fig. 9. An example of a CC/PP hardware component

In addition to these predefined components, we add our own components and
attributes to better convey environmentally-based CPI. These additional compo-
nents can provide new aspects of the personalised mLearning service offerings
such as the targeted pedagogical goal and the learner’s background in the current
learning domain. The different entities within the system use this CPI to ensure
that the user receives service/content that is tailored to the context of the environ-
ment in which it will be accessed. However, it is possible to even further custo-
mise the service to suit the preferences of the user. This is achieved through the
extension of the CC/PP vocabulary. A CC/PP vocabulary defines the format or
structure of the profile information, which is exchanged between a Personal
Assistant and an InfoStation.

While CC/PP and UAProf define a number of components to describe the many
different capabilities of the user device, we define a component containing CPI
based on the users themselves, which is used to further customize and enhance the
service for that individual user. The user preference component can specify any-
thing from the user’s name, the languages s/he speaks, user’s age, and the format

Semantic Multi-Agent mLearning System 263

in which the user would prefer to receive information. The selection of the most
appropriate format is an important option to take into account, as this defines the
type of content which is to be delivered to the user, whether it is a simple text, or
inclusive of various multimedia elements (audio/video). Constraints such as the
capabilities of the device and the connection mechanism have a major bearing on
the content delivery, but it is also important to take into consideration the user’s
own personal preferences. Another important attribute within the user profile is to
specify the role or job title of the user, i.e. whether the individual is an educator or
a learner etc. Specific groups may be allocated varying degrees of access to differ-
ent resources related to the service, depending on the role they perform. This is
especially the case within a University environment, where learners from different
faculties may require access to the same services, but with vastly differing service
content. Of course the differences between the roles of educator and the learner al-
so imply an inherent difference in the user’s utilisation of a service. For example,
the mTest service would provide a learner with a means to assess their assimila-
tion of presented content. However, the individual in the educator role would util-
ize this service to measure the capabilities of an entire cohort.

Fig. 10. An example of a CC/PP user-specific component

Figure 10 illustrates how a component and a group of attributes relating to a
particular user may specify vital information about that individual, which will
have a bearing on how a service may be presented to a user.

This CPI is passed from the Personal Assistant to the InfoStation’s Scanner
agent, which in turn conveys this information to the agent within the InfoStation
environment, tasked with handling such information, the Profile Processor agent.

264 S. Stoyanov et al.

On receipt of the ACL message containing the profile information, the Profile
Processor removes the content from the message and passes the information back
into its original XML form. The profile processor is charged with maintaining a
repository of such profiles, and so when caching this XML file, it names the file
according to the agent identifier (AID) of the original Personal Assistant. Before
this XML file can be utilised for the adaptation of services it must be interpreted,
as without an interpreter, this XML document is meaningless. This document must
also be operated on to ensure that it adheres to various validation rules. Therefore
the role of the Profile Processor agent must also include the parsing and validation
of the XML document. There are a number of APIs available for working with
XML in the Java language, the two most popular being the Document Object
Model (DOM) and the Simple API for XML (SAX) [37]. In order to exploit the
benefits of these APIs, we utilise the Java API for XML Processing (JAXP)
[38],which enables the parsing, transformation and validation of XML documents
independent of any particular XML processor implementation. The utilization of
DOM enables the examination of the entire document and the caching of a tree
structure of components and attributes in memory. The profile/DOM tree contains
a root element which contains one or more component elements (HardwarePlat-
form, SoftwarePlatform etc.), which can themselves have one or more attributes
(ScreenSize, ImageCapable etc.). With this DOM object cached in the profile re-
pository of the InfoStation, the service request response time can be reduced in the
instance of any subsequent requests. Facilitating this harnessing of context infor-
mation enables the Content Adaptation agent to successfully and efficiently adapt
a service and the associated content to meet the environmental constraints within
the user device. The Content Adaptation agent can generate a XSLT (Extensible
Style Sheet Language, Transformation part) document, which performs just like
Cascading Style Sheets (CSS), in that it provides a specification for converting an
XML document from one form to another. The Content Adaptation agent can uti-
lise this XSLT document to alter the markup of the content of delivered services.
This ensures that no matter the capabilities of the target device, the system can
adapt and facilitate the user with dynamic adapted service content or indeed
generate a package containing all the requisite content.

10 Sample/mTest Service Provision

Within the modern educational institutions, the majority of learners are accus-
tomed to utilising a multitude of technologies to access information during the
course of their studies. However, as regards forms of assessment, the utilisation of
these same technologies has been limited. One of the corner-stone services within
this mLearning environment is the mTest service, which provides a means for
educators to rapidly evaluate learners assimilated knowledge and provide valuable
feedback to learners concerning their progress.

The mTest facility enables the educator to more effectively shape the learning
experience of the learners, ensuring the learner remains engaged in the correct

Semantic Multi-Agent mLearning System 265

material. Indeed the main benefit of using quizzes is to provide a motivation for
the learners to more actively engage in the material, without the stress associated
with traditional exams. Also by providing progression feedback, learners can be
made aware of their progress in the assimilation of the presented course content.
Of course educators too may benefit from such information. By monitoring the
progression of a group of learners, the educator can dynamically modify their in-
struction style, should a group of learners encounter difficulties and require re-
medial action. This enables the educator to dramatically optimize the performance
of the group, and enhance the overall learning experience. The mTest service must
be capable of utilizing the full capabilities of the device on which it’s being ac-
cessed. Of course, more advanced capabilities afford content developers the op-
portunity to be more creative in the design of multimedia mTests. On low-
capability devices with limited resources, a simple text format can be adopted for
the creation of the assessments. However with devices capable of supporting mul-
ti-media, assessments may incorporate elements of text, images, sounds and even
videos, all of which serves to actively engage learners in the material being as-
sessed, especially when utilised in conjunction with an mLecture service [39].

The sequence diagram Fig. 11, depicts sample interactions between entities in-
volved within the provision of the mTest service through this enhanced architec-
ture. As has been mentioned previously, the Scanner agent continuously searches
for mobile devices/Personal Assistant agents within the service area of the InfoS-
tation. The Personal Assistant, having already gathered the requisite information
from the user to complete the user profile, passes the capability and preference in-
formation (CPI) on to the Scanner agent within the contents of an ACL message.
The Scanner agent takes the information relating to the Personal Assistant, directs
the profile information to the Profile Processor agent, and directs a list of mobile
devices and applicable services to the Connection Advisor agent. The latter in turn
filters this information providing the information necessary for the Connection In-
itiator agent to establish a communication session with the Personal Assistant on-
board the mobile device. The Connection Initiator agent, having already estab-
lished communication with the Personal Assistant, generates a Connection agent,
which is tasked with maintaining and managing all communications between the
InfoStation and the particular Personal Assistant. The Profile Processor agent,
having received the profile information from the Scanner agent, gathers the rele-
vant capability and preference information from the received XML content. This
information is cached locally within the InfoStations profile repository. This agent
works in conjunction with the Scenario Manager agent in order to monitor for any
changes to the operating environment of the services (i.e. change in capabilities
caused by changing one mobile device with another). At this stage, a communica-
tion session has been established between the InfoStation and the user mobile de-
vice, and the InfoStation is aware of the context/constraints any presented services
must be adapted to.

266 S. Stoyanov et al.

Fig. 11. The enhanced mTest service provision

Semantic Multi-Agent mLearning System 267

Having successfully established communication between the InfoStation and
the Personal Assistant, the user is presented with a list of all available services
matching his/her profile. From this list the user selects a particular service, in this
case the mTest service, and may then choose a particular assessment. The Personal
Assistant on the user mobile device forwards the users service request on to the In-
foStation, specifying the user choices. The Connection agent passes this message
on to the Query Manager agent. It determines to which service a particular service
request must be directed. The mTest service receives the user service request and
compiles a list of applicable assessments, taking into account the personal context
of the user (based on profile information). This service content is passed on to the
Content Adaptation agent, which performs the role of an adaptation engine. It per-
forms the requisite personalisation and adaptation of the service content, based on
the capabilities of the access device and the preferences/context of the user. This
contextualisation ensures the service is presented in its most efficient format by
identifying the most relevant context information such as the screen size, audio
and video capabilities etc. Once the service content has been adapted to suit the
operating environment on board the mobile device, the content is packaged (MID-
let packed within a JAR file) for transfer to the user’s mobile device. Depending
on network constraints such as the traffic volume at a particular time and of course
the communication capabilities of the target device, the Connection agent may in-
itiate the file transfer via Bluetooth (or WiFi). The Personal Assistant presents a
basic GUI to the user, enquiring as to whether or not to save the incoming file.
The incoming MIDlet (JAR file) is saved to onboard memory within the mobile
device, which in turn permits the user to access the service content any number of
times, even whilst outside the range of the InfoStation.

Within this sequence diagram, the facility to update service content is also hig-
hlighted. Periodically, a Connection agent (one specifically generated to maintain
communications between the InfoStation and the InfoStation Centre) requests the
most up-to-date versions of particular service content. This facility is essential to
the success of the mLearning architecture. Any updates can be propagated from
the InfoStation Centre, ensuring that each InfoStation throughout the network has
access to the latest versions of service content. As the learner progresses through
the test, his/her user profile is maintained to reflect this progress. Furthermore we
consider the possibility for the learner to do the test whilst on the move and out of
range of an InfoStation. As the content is stored locally on the mobile device, the
Personal Assistant can facilitate the user with continued utilisation of the service
while at the same time maintaining the user profile. Thus the learner may com-
plete the test whilst outside the radio range of any InfoStation, with the user pro-
file reflecting the learner’s progression through the material. Once the Personal
Assistant eventually does enter back within range of an InfoStation, the Personal
Assistant will forward on a user profile update which reflects the progress of the
learner through the test content, whilst out of range of the InfoStation network.
These updates are disseminated through to the InfoStation Centre so as to ensure

268 S. Stoyanov et al.

all information across the system is up-to-date. Once the user has completed the
mTest, the Personal Assistant displays the results of the assessment to the user,
providing valuable feedback on their own progress and performance.

11 Implementation Issues

The proposed agent-oriented middleware architecture is implemented based on the
Java Agent DEvelopment (JADE) framework [40, 41], with inter-agent interac-
tions facilitated through Bluetooth communication (in conformance with JSR-82
[42]). The JADE framework simplifies multi-agent systems implementation
through the provision of a predefined set of services and management tools in ad-
dition to the runtime library and agent programming library. Using this enabling
technology, we have developed agents based within a mobile device as well as
within a desktop connected to the wired network.

In order to examine the prototype, a proof-of-concept testbed environment was
created, in which to investigate the provision of service applications in various dif-
ferent scenarios. The InfoStation Centre Synchronisation approach was simulated
in this testbed environment. As an example here we consider the developed Mail-
Checker service used to notify users for the presence of new messages in their
mailboxes. The notification is sent to the user mobile phones over Bluetooth.

The MailChecker application consists of two parts: a MailChecker server and a
MailChecker MIDlet. The server works on a Bluetooth-type InfoStation and is
configured to scan periodically users’ mailboxes (on the InfoStation Centre) to
check for new messages. If new messages are detected, a notification is sent to the
corresponding user mobile device(s). Users may register more than one device to
receive these notifications. The MIDlet works on the user mobile device. It is reg-
istered with the MailChecker server and with the AMS (Application Management
System) on the device as a handler of a specific Bluetooth service request (AMS
Service Registry). The MIDlet itself is not active, allowing the user to operate
normally with his/her mobile device.

When the MailChecker server attempts to connect to the device, the AMS on
the device recognizes the request and automatically launches the registered MID-
let. When the MIDlet is activated, it automatically completes the connection with
the server. Then it receives information about the new messages and presents it to
the user as a list consisting of ‘sender-subject’ pairs. The MIDlet also
generates an audio signal and vibration to alert the user.

Some of the issues were encountered during the MailChecker development and
testing are listed below:

• Slow discovery of Bluetooth devices and services – thus this seems suitable for
only one-time initialisation and registering of a single device or a few devices;

• Unreliable Bluetooth discovery – no discovery of nearby devices or discov-
ery of devices cached by the operating system that are actually not present;

• Long time needed to connect to Bluetooth devices even when the device
name, address, and service are known in advance;

Semantic Multi-Agent mLearning System 269

• Not all Bluetooth-enabled mobile phones support automatic start of the MID-
let, when Bluetooth connection is attempted (Bluetooth Service Registry).
This means that in order to be usable, the MIDlet has to be manually activated
by the user, which (in most cases) prevents the normal user operation with
his/her device. Another drawback is the increased power consumption;

• Even when the mobile device supports the Bluetooth Service Registry, when
connection is attempted, the AMS on the device first asks the user for per-
mission to actually start the MIDlet. The alert for starting the application is
usually silent and unless the user is using the device at the moment, s/he may
not notice it. In case when the user notices the alert and allows AMS to start
the MIDlet, the connection attempt may have been expired due to time-out.
In these cases, the availability of Bluetooth Service Registry gives no
practical benefits, because a user interaction is required to actually receive
notifications about new messages, which diminishes the original idea of au-
tomated notifications. Just a limited number of high-end smart mobile
phones have options to bypass user confirmation and to start MIDlets really
automatically;

• The Bluetooth connection is slow and limited in range and easily affected by
obstacles such as walls. This implies that it is preferable that the user is not
moving while data transfer is in progress, and that the transferred data should
be relatively small;

• Bluetooth supports up to 7 active connections. For the MailChecker service
this is not an issue, but other services with multiple Bluetooth peers must
implement sophisticated connection pooling;

• Various technical problems with Java-enabled mobile phones. For instance,
Nokia N73 dims the screen (turns off the backlight) while working with the
MIDlet and turns it on again only when the main menu is activated;

• Different Java ME compatibility of mobile phones – some phones may not
support the Java Media API, which is required for alerting the user with
sound which essential for this service.

The listed implementation findings provide valuable insight for the successful
development of other Bluetooth-based service applications, e.g. the mTest service.

12 Conclusion

This chapter has presented a mLearning InfoStation-based system and the agent-
oriented prototype implementation of a context-aware and adaptable middleware
integrated into it. The process control in this middleware is based on four basic
scenarios. The scenarios realisation is controlled and managed by specialised
agents - Scenario Management Agents – operating on the InfoStations.

Important in supporting the scenarios management are the issues of time-
criticality. Next step in our research and development is focused on extending the
Scenario Manager Agent’s implementation with more real-time possibilities for
scenario management. For this, we have adopted the compositional approach,
presented in [43] and used by the AnaTempura tool - an interpreter for executable

270 S. Stoyanov et al.

Interval Temporal Logic (ITL) [44]. The specifications, written in Tempura, are a
subset of ITL. AnaTempura can generate a state-by-state analysis of the system
behaviour during the runtime.

In addition, we are currently developing a new version of a WiFi-based system
prototype where communication is initiated differently comparing to the
Bluetooth-based prototype. The approach adopted for the WiFi implementation is
interesting from the viewpoint of the agent-oriented applications because the initi-
ative for establishing the communication between a mobile device and an InfoSta-
tion is pro-actively taken by the Personal Assistant agent operating on the device
(by comparison, in the Bluetooth prototype the Scanner agent on the InfoStations
is the pro-active part in communication.) We plan a series of experiments in order
to compare the two approaches in order to establish their feasibility and appro-
priateness for usage in each particular case/scenario etc.

Acknowledgments. This work was supported by the Irish Research Council for Science,
Engineering and Technology (IRCSET), the Bulgarian National Fund under Grant No.
Д002-149/16.12.2008, and the Telecommunications Research Centre, University of
Limerick (http://www.ece.ul.ie/trc/).

References

1. Barker, P.: Designing Teaching Webs: Advantages, Problems and Pitfalls. In: Proc. of
ED-MEDIA 2001 World Conference on Educational Multimedia, Hypermedia & Tel-
ecommunication, Association for the Advancement of Computing in Education, Char-
lottesville, VA, pp. 54–59 (2000)

2. Maurer, H., Sapper, M.: E-Learning Has to be Seen as Part of General Knowledge
Management. In: Proc. of ED-MEDIA 2001 World Conference on Educational Multi-
media, Hypermedia & Telecommunications, Tampere, pp. 1249–1253. AACE, Chalot-
tesville (2001)

3. O’Droma, M., Ganchev, I.: Toward a Ubiquitous Consumer Wireless World. IEEE
Wireless Communications 14, 52–63 (2007)

4. Passas, N., et al.: Enabling technologies for the ’always best connected’ concept: Re-
search Articles. Wirel. Commun. Mob. Comput. 6, 523–540 (2006)

5. Frenkiel, R., Imielinski, T.: Infostations: The joy of ‘many-time, many-where’ com-
munications. WINLAB Technical Report (1996)

6. Ganchev, I., et al.: An InfoStation-Based Multi-Agent System Supporting Intelligent
Mobile Services Across a University Campus. Journal of Computers 2, 21–33 (2007)

7. Huhns, M.: Software development with objects, agents, and services. In: Third Interna-
tional Workshop on Agent-Oriented Methodologies, Vancouver, Canada (2004)

8. Chang, J.-W., Lee, H.-J.: Context-Aware Architecture for Intelligent Application Ser-
vices in Ubiquitous Computing. Presented at the Proceedings of the International Con-
ference on Semantic Computing (2007)

9. Goh, E., et al.: A Context-Aware Architecture for Smart Space Environment. Pre-
sented at the Proceedings of the 2007 International Conference on Multimedia and
Ubiquitous Engineering (2007)

Semantic Multi-Agent mLearning System 271

10. Chen, H.L.: An Intelligent Broker Architecture for Pervasive Context-Aware Systems.
Phd, Department of Computer Science and Electrical Engineering, University of Mary-
land, Baltimore (2004)

11. Qingsheng, Z., et al.: Research on context-aware architecture for personal information
privacy protection. In: Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, Montréal, Canada, pp. 3912–3916 (2007)

12. Capilla, R.: Context-aware Architectures for Building Service-Oriented Systems. In:
Proceedings of the Conference on Software Maintenance and Reengineering, pp. 300–
303 (2006)

13. Schmohl, R., Baumgarten, U.: A Generalized Context-aware Architecture in Hetero-
geneous Mobile Computing Environments. In: Proceedings of the 2008 The Fourth In-
ternational Conference on Wireless and Mobile Communications, pp. 118–124 (2008)

14. Costantini, S., et al.: DALICA: Agent-Based Ambient Intelligence for Cultural-
Heritage Scenarios. IEEE Intelligent Systems, 34–41 (2008)

15. Tumer, J., Agogino, A.: Improving Air Traffic Management with a Learning Multia-
gent System. IEEE Intelligent Systems, 18–21 (2009)

16. Rehak, M., et al.: Adaptive Multiagent System for Network Traffic Monitoring. IEEE
Intelligent Systems, 16–25 (2009)

17. Zhang, Z., et al.: An Agent-Based Hybrid System for Microarray Data Analysis. IEEE
Intelligent Systems, 53–63 (2009)

18. Zhou, L., et al.: Context-Aware Middleware for Multimedia Services in Heterogeneous
Networks. IEEE Intelligent Systems, 40–47 (2010)

19. Sheu, R.-Y., et al.: Multiagent-based adaptive pervasive service architecture (MAPS).
In: 3rd Workshop on Agent-Oriented Software Engineering Challenges for Ubiquitous
and Pervasive Computing, London, United Kingdom, pp. 3–8 (2009)

20. Qureshi, N., Perini, A.: An Agent-Based Middleware for Adaptive Systems. In: Inter-
national Conference on Quality Software, Oxford, UK, pp. 423–428 (2008)

21. Ganchev, I., et al.: On InfoStation-Based Mobile Services Support for Library Infor-
mation Systems. In: 8th IEEE International Conference on Advanced Learning Tech-
nologies (IEEE ICALT 2008), Santander, Cantabria, Spain, pp. 679–681 (2008)

22. Ganchev, I., et al.: InfoStation-Based Adaptable Provision of m-Learning Services:
Main Scenarios. International Journal ”Information Technologies and Knowledge” (IJ
ITK) 2, 475–482 (2008)

23. Stoyanov, S., et al.: An Approach for the Development of InfoStation-Based eLearning
Architectures. Compt. Rend. Acad. Bulg. Sci. 61, 1189–1198 (2008)

24. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: Workshop on the What, Who, Where, When and How of Context-
Awareness, New York (2000)

25. Stoyanov, S., et al.: From CBT to e-Learning. Journal ”Information Technologies and
Control” 4, 2–10 (2005)

26. Ganchev, I., et al.: InfoStation-based mLearning System Architectures: Some Devel-
opment Aspects. In: 8th IEEE International Conference on Advanced Learning Tech-
nologies (ICALT 2008), Santander, Spain, pp. 504–505 (2008)

27. Foundation for Intelligent Physical Agents (FIPA) - [Online],
http://www.fipa.org (accessed: January 10, 2010)

28. FIPA, ACL Message Structure Specification. Foundation for Intelligent Physical
Agents, Geneva, Switzerland SC00061G (December 3, 2002)

29. W3C, Document Object Model (DOM) [online], http://www.w3.org/DOM/
(accessed: March 03, 2010)

272 S. Stoyanov et al.

30. OWL-S: Semantic Markup for Web Services [Online],
http://www.w3.org/Submission/OWL-S/ (accessed: March 3, 2010)

31. Christensen, E., et al.: Web Services Description Language (WSDL) 1.1 [Online],
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
(accessed: March 10, 2010) W3C2001

32. Kim, G.-H., Lee, B.-H.: Seamless streaming service session migration support architec-
ture for heterogeneous devices. In: Balandin, S., et al. (eds.) ruSMART 2010. LNCS,
vol. 6294, pp. 473–484. Springer, Heidelberg (2010)

33. W3C, Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
2.0. World WIde Web Consortium (W3C) (December 8, 2006)

34. World Wide Web Consortium (W3C) [Online], http://www.w3.org/ (accessed:
January 15, 2010)

35. Wireless Application Group User Agent Profile Specification (WAG UAPROF). Wire-
less Application Protocol Forum, Ltd. (November 10, 1999)

36. Open Mobile Alliance (OMA) [Online],
http://www.openmobilealliance.org/ (accessed: December 15, 2009)

37. SAX, Simple API for XML (SAX) [online], http://www.saxproject.org/
(accessed: March 03, 2010)

38. Sun Microsystems, Java API for XML Processing (JAXP) [online],
https://jaxp.dev.java.net/ (accessed: March 03, 2010)

39. Meere, D., et al.: Adaptation for Assimilation: The Role of Adaptable M-Learning
Services in the Modern Educational Paradigm. International Journal ”Information
Technologies and Knowledge” (IJ ITK) 3, 101–110 (2009)

40. Bellifemine, F.L., et al.: Developing Multi-Agent Systems with JADE. Wiley Series in
Agent Technology. John Wiley & Sons, Chichester (2007)

41. JADE. Java Agent Development Framework Project [Online],
http://jade.cselt.it (accessed: January 10, 2010)

42. JSR-82: Java Bluetooth [Online], http://www.jsr82.com (accessed: March 10,
2010)

43. Solanki, M., et al.: Augmenting semantic web service descriptions with compositional
specification. Presented at the Proceedings of the 13th International Conference on
World Wide Web, New York, NY, USA (2004)

44. Moszkowski, B.: Executing temporal logic programs. Cambridge University Press,
Cambridge (1986)

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 273–292.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 12
Identifying Novel Topics Based on User
Interests

Makoto Nakatsuji

NTT Cyber Solutions Laboratories, NTT Corporation, Hikarinooka, Yokosuka-Shi,
Kanagawa 239-0847, Japan
nakatsuji.makoto@lab.ntt.co.jp

Abstract. In this chapter, we introduce an agent that builds user interests as a hi-
erarchy of classes where a rating value of the user is assigned to each class and
item. The agent measures the similarity of users using user ratings against items as
well as those against classes and then generates a user group that has high similar-
ity to the user. Finally, the agent identifies novel topics, those that include new
classes that are likely be interesting to the user even though those classes are not
present in the user profile. The novel topics for the user are identified by determin-
ing a suitable size of the user group and analyzing the items possessed by the users
in the user group. Thus, highly accurate recommendation results are guaranteed.
Furthermore, our agent presents recommendations with a new measure, score of
novelty, so that the user may better understand how novel the recommended items
are. By letting the user browse topics against novel items with scores of novelty,
we try to expand user interests significantly.

1 Introduction

Social media such as blogs and microblogging are becoming more popular for
publishing and discussing shared interests among users. Information sharing sys-
tems for social media could enable users to expand their interests by browsing the
collections of blog entries published by other users. However, to retrieve informa-
tion from blog entries, current services simply employ keyword searches of blogs
using Google or simple metadata attached to blog-entries, i.e. RSS metadata such
as titles, creators, dates and so on. Unfortunately, neither approach offers detailed
semantics about the description content in blog entries. Moreover, there is no
function to generate personalized searches easily, users are restricted by their own
knowledge or imagination when entering search keywords. Such keyword
searches are time consuming and troublesome. For example, users cannot perform
a keyword search if they do not understand what they want to search for to some
degree beforehand. Thus, when keywords cannot be specified, information re-
trieval from blog entries often cannot be performed even if the database contains
topics that the user might become interested in.

274 M. Nakatsuji

To counteract the above problems, the study on Adaptive Information Filtering
(AIF) [4] cooperates with the user in constructing a user profile; recommendations
are offered based on the profile. Making a user profile interactively beforehand is
good for offering recommendations to users, as indicated by the high-accuracy of
AIF. Unfortunately, a common complaint about AIF is the user’s need to make
his/her own profiles, and often known information is encountered many times.
This is because recommendation systems with conventional AIF only check the
possibility of the user being interested the document and fail to identify if the
information has already been presented to the user or not.

For filtering these redundant documents, novelty-detection researchers [21]
define a novel document as a document that includes new information that is rele-
vant according to the user profile. They extract relevant documents from a docu-
ment stream and then classify the documents as novel or not; novel documents are
provided to the user. Novelty detection can, however, provide documents that
offer new information about classes that have already present in the user profile.

In our study [13, 14], we define novel topics as topics that include new classes
that are likely be interesting to the user even though those classes are not present
in the user profile. The goal is to expand the user’s interests significantly by iden-
tifying novel topics and recommending those to the user. In particular, we first fo-
cus on building user agents that automatically understand users’ interests from
blogs according to the taxonomy of items and the identification of novel topics
from blog entries. This is because blogs have become a popular method of
publishing and searching for information that can appeal to the user.

Fig. 1. An explanation of score of novelty.

For achieving the above-mentioned goal, we use the following approaches.

• We start with a proposal to introduce user agents that understand the interests
of a user according to a taxonomy of items. We consider that users who like

Identifying Novel Topics Based on User Interests 275

items, may like the classes that include those items. Our agent thus reflects the
rating values of the user on items to those of classes that include such items
(see Section 4). In the taxonomy, items are objects that the user is interested in,
such as music artists, music songs, movie titles and so on. On the other hand,
the classes are defined using a taxonomy of items in a service domain. For ex-
ample, we can set classes as genres which are defined by item sets.
By classifying blog entries into each class and item in the taxonomy, the agent
can automatically generate user interests according to the taxonomy. In classi-
fying user entries according to the taxonomy of items, the agent removes classi-
fication mistakes automatically by using the taxonomy of items and continuity
of descriptions about user interests as explained in our previous paper [14, 13].
Of course, the agent can also build user interests according to the taxonomy by
using buying histories and listening histories of users.

• Next, the agent measures the similarity of users by considering the degree of in-
terest agreement between each class and item. Most previous techniques for
measuring similarity of users use Pearson correlation coefficient or cosine-based
similarity against items rated by both users as we will explain in Section 3. In
this chapter, the agent measures similarity of users by using not only co-rating
behaviors against items but also those against classes in the taxonomy (see
Section 5). By considering the degree of interest agreement between each class
and item, it can measure the similarity of users through the width and depth of a
user’s interests as discerned by using the taxonomy of items. As a result, the
agent can identify many items accurately for the user by analyzing the items of
users who share the same items and/or same classes with the user (please refer to
the evaluation result in Section 7.1.4). We also establish a new evaluation
method that determines a suitable size of user group GU, whose users are similar
with the active user, a, who receives recommendations, by observing the differ-
ence between the interests of user a and the interests of users among GU while
changing the size of GU (see section 7.2). Finally, novel topics for active user a
are identified by analyzing the classes, C, that are of interest to users in user
group GU even though a did not explicitly show any interest in C.

• We introduce a measure, the score of novelty, to understand how novel the rec-
ommended items are for the user and try to identify items of high novelty for
the user, while also guaranteeing highly accurate recommendations [13, 14].
Accuracy is also important because users trust accurate recommendation results
and tend to use such services [12]. We define the score of novelty as the small-
est number of hops from the class user accessed before to the class that includes
a possible item over the taxonomy. In Fig. 1, if active user a accessed items I1

and I2 in class C2, items I5 and I6 have, for a a novelty score two because there
are two classes, C1 and C3, on the hop from C2 to those items. By accurately
identifying items that are highly novel to the user, and recommending those to
him, he may accept those items and widen his interests. We show two evalua-
tion steps based on users’ implicit ratings against music items extracted from a

276 M. Nakatsuji

large number of blog entries as collected by the blog portal Doblog1. The
taxonomy of music artists is provided by ListenJapan2.

• The first step is an offline experiment that evaluates the accuracy in predicting
users’ hidden interests using our implicit rating dataset and investigates the dis-
tribution of user interests extracted from blogs according to the score of nov-
elty. The results show that our method can identify items with higher accuracy
than the previous methods including a previous taxonomy-based method [22].
They also show that our method can identify items with higher novelty than the
recommendations manually created by the designers working for the service
provider.

• The second step is an online experiment that analyzes user reactions to topics
recommended based on our assessments of an online experimental service3.
Most prior works used only offline synthetic data to evaluate their recommenda-
tion techniques. However, analyzing the reactions of actual users to recommen-
dations is very important for confirming whether the recommended novel topics
are actually effective. By analyzing the frequency of user access to items output
by our recommendation scheme over time, we confirmed the effectiveness of
our novel topic recommendation. We found that the novel topics recommended
by our technique were used for creating new communication links between us-
ers; this was confirmed by evaluating the frequency of comments between users
who came to know each other through our online recommendations.

We now describe the impact of our method on applications.
Most recommendation schemes fail to consider the semantic relationships

between a user and items that are recommended to the user. Thus, the user can’t
easily understand why particular items were recommended. The semantic relation-
ships described above are necessary if the user is to accept the recommended
items, especially when the user has not thought of those items before.

Our agent assesses the score of novelty for each recommended item, which in-
dicates how novel the item is to the user. It indicates the relationships between the
present interests of a user and the items that are recommended to the user, by us-
ing a taxonomy of items defined by service designers. That is, our method can
recommend to user a content items that belong to the class that user a does not
know of, together with their score of novelty. Here, we consider class as defined
in the taxonomy created in each service domain. By presenting items with sup-
porting information such as the novelty of those items, the user can more readily
become interested in items not stored in his/her profile and so acquire new
interests.

Some examples might help the reader’s understanding. Consider user a who
has items I1 and I2 under the class “Rock” in her interests, and the agent of user a
extracts users X whose interests are similar to those of a according to the results of

1 http://www.doblog.com was one of the biggest blog portals in Japan. Unfortunately,

Doblog terminated services on May 2009.
2 http://listen.jp/
3 We provided an experimental service DoblogMusic at http://music.doblog.com/exp/ for

Doblog users from August to December 2006.

Identifying Novel Topics Based on User Interests 277

similarity measurements between user a and other users. If there are many users in
X who are interested in item I5 under the class “Classic”, we can recommend item
I5 of class “Classic” to user a together with information indicating its score of no-
velty, even though Classic and Rock are semantically dissimilar given the defini-
tion in taxonomy of items in music domain. Thus, the agent can recommend items
to user a with the phrase “you may not have heard about item I5 in Classic genre,
but users whose interests are similar to yours, are interested in item I5”. By pre-
senting some unknown items to the user together with the score of novelty, or us-
ing phrases like the one described above, user a may develop an interest in I5 even
though its class may not be known to user a, i.e. not stored in a profile of a. How-
ever, user a has a chance to expand his/her interests significantly, if he/she
accesses novel item I5.

The chapter is organized as follows. Section 2 introduces related works and
Section 3 explains the technical background of the study. Section 4 describes our
model of user interests according to the taxonomy of items. Section 5 describes our
similarity measurement of users using the taxonomy of items and Section 6 ex-
plains identifying novel topics based on similarity measurement results. Sections 7
and 8 describe our offline and online experimental studies, respectively. Section 9
concludes this chapter.

2 Related Works

Many online content providers such as Amazon4, offer recommendations based on
Collaborative Filtering (CF) [17, 1, 16], which is a broad term for the process of
recommending items to users based on the intuition that users within a particular
group tend to behave similarly under similar circumstances. One advantage of CF
techniques is that they can recommend relevant items that are different from those
in a user’s profile. However, the existing CF techniques don’t consider the seman-
tic relationships between user a and content items that are recommended to a by
using the taxonomies attached to content items. As a result, the user cannot under-
stand semantic reasons why those items are recommended and how novel the
recommended items are, and so is less likely to access the recommendation.

Some CF researchers use a taxonomy of items to raise the accuracy of predic-
tion results [22]. Their method was shown to be useful when the transaction data
of users was sparse. However, in measuring user similarity, their method focuses
only on classes that include items rated by both users and their super classes. As a
result, this method naively assumes that users who share many items are highly
similar with the user; those users may have many good as well as many not so
good items for the user. Ziegler and McNee also tried to improve the recommen-
dation list for a use by increasing the diversity of the items in the list [23]. The list
includes items in several classes defined by a taxonomy. Their online evaluation
indicates that users were satisfied with the diverse items, though the accuracy of
item prediction was degraded. Their method, however, does not aim to identify,
for the user, novel topics.

4 http://www.amazon.com

278 M. Nakatsuji

Herlocker and his co-workers [6] described that novel items and serendipitous
items are different though both are defined as items that are not known to the user
but interesting for the user. The difference is that the former is more easily found
by the user than the latter. Our method does not classify novel items and seren-
dipitous items. It just makes users aware of how far the recommended items are
from their present interests through our proposed measure, the score of novelty.
However, as the reader can naturally imagine, items with high novelty for the user
can not be easily discovered by the user. For example, the user who, up to now,
has demonstrated an interest only in music items in “Classic”, is unable to easily
discover interesting items in “Jazz” by himself. Our evaluation, described later, al-
so shows that existing CF methods have difficulty in accurately identifying items
with high novelty for the user. Indeed, our offline evaluation did not explicitly
treat serendipitous items because the evaluation data set were taken from user ac-
cess histories. However, the online evaluation presented novel (or serendipitous)
items to users that were not included in the users’ access histories, and confirmed
that the actual users were excited in those items.

In a research study of novel item identification, Hijikata et al. [7] prepared a
dataset that had items with two types of labels, known or unknown, attached by
users. They used that dataset as a training dataset by employing the CF approach
to classify the predicted items are known or not known to the active user. Their
evaluation showed that their method can identify novel items (here, item novelty
follows the definition of Herlocker [6]), unfortunately the prediction results are ra-
ther inaccurate. Furthermore, assigning such labels is time-consuming for the us-
ers. Their approach also cannot analyze the novelty of predicted items in detail an
omission rectified by our study.

In research studies of ontology mapping [15, 2, 10], similarity measurements
considering approximation of classes and class topologies are proposed in [10]. In
addition to class topology, we consider each user’s ratings assigned to each class
and item. Furthermore, in analyzing conjunctions in class topologies in the taxon-
omy with high similarity scores, we identify novel items, those that other users
have in their interests but the user does not.

3 Collaborative Filtering

Our method extends CF to identify novel topics. Thus, we explain CF in this
section.

CF methods can be classified into two approaches: memory-based CF and
model-based CF. Memory-based CF is based on the assumption that each user be-
longs to a larger group of similarly behaving users. Indeed this method is referred
to as user-oriented memory-based CF [5]; an analogous method which builds item
similarity groups using co-purchase history is known as item-oriented [17]. On the
other hand, model-based CF generates predictions by using a model that is opti-
mized by training data. Clustering [9, 19], Bayesian network models [8, 20] are
examples of the model-based approach.

In computing similarity of users, basic user-oriented memory-based CF meth-
ods often use the Pearson correlation approach [18, 16] or the cosine-based

Identifying Novel Topics Based on User Interests 279

approach [1]. If we define M as number of items rated by user a and u,
iIar , is the

rating value of user a for item Ii, and ar is the average value of item ratings given

by a, the Pearson correlation coefficient measures the similarity S(a, u) between a
and u according to equation (1).

∑∑
∑

−−

−−
=

M

i uIu

M

i aIa

M

i uIuaIa

rrrr

rrrr
uaS

ii

ii

)()(

))((
),(

,,

,,

(1)

When we use the cosine-based approach, we set ar and ur as zero in equation (1).

The advantage of the Pearson correlation approach is that it takes into account that
different users might have different rating schemes.

If we assume that N is the set of users that are most similar to the active user a,

the predicted rating of a on item Ii,
iIaP , is obtained by the following equation (2).

∑
∑ −

+= N

u

N

u uIu
aIa

uaS

uasrr
rP i

i),(

),()(,
,

(2)

4 Modeling User Interests According to the Taxonomy

Our method starts by modeling user interests according to a taxonomy of items.
The agent builds user interests according to this model. Taxonomies are becom-

ing more readily available; examples include the taxonomies of music, movies,
and game content generated by All Media Guide5

 and ListenJapan6. We consider
that modeling user interests according to these taxonomies is reasonable because
content providers make significant efforts to optimize the granularity and branch-
ing factors of classes so that their customers can readily access their items
according to the customers’ interests.

Our approach is based on the observation that users who are interested in some
items, are also interested in classes that include those items, and the rating values
of the items are then automatically reflected to that of the class that includes those
items. The rating value for an item is implicitly and automatically assigned ac-
cording to the frequency of a user’s access to the item, or explicitly assigned by
the user.

The agent of a user assesses the user rating for the class from the user ratings of
items in the class. Formally, let I be an item in class Ci, the rating value of the

class, ru,Ci , is computed as ∑ ∈Ii iI Iur , . In the example in Fig.2, if user u assigns

rating value 4.0 against I5, and 4.5 against I6, the rating value of class C3 for

5 http://www.allmediaguide.com/
6 http://listen.jp/

280 M. Nakatsuji

u is 8.5. By computing the rating values of a class in this way, we can assign high
rating values for the class if the user is interested in many items with high rating
values under the class. The rating values of the super classes are computed in the
same way; a key point is that our agent uses the rating to each class instead of the
rating to each item.

Fig. 2. Measuring similarity of user a and u.

5 Measuring Similarity of Users

Next, we explain how to determine the similarity of users a and u according to the
taxonomy of items. We first explain the approach of our method, and then show
our algorithm.

5.1 Approach

We explain our approaches in several steps.

• Our agent first computes S(a, u,Ci), the score of interest agreement between user
a and u against class Ci. This rating value takes a smaller value in ra,Ci and
ru,Ci . Thus we can filter users of low-interest when measuring the score of
interest agreement.

• Next, it computes the similarity of rating behaviors against all classes between
a and u, denoted as SC(a, u), with S(a, u,Ci). We utilize the idea of the Jaccard
coefficient [11] since it can effectively separate user u who assigns ratings
against many classes from a who assigns ratings to fewer classes. The Jaccard
coefficient considers not co-rating classes as well as co-rating classes by utiliz-
ing the union of class sets. In other words, it considers the similarity of the
widths of users’ interests. The Pearson correlation approach and cosine-based
approach do not have this property since they only consider the classes that are
assigned ratings by both a and u (see equation (1)).

Identifying Novel Topics Based on User Interests 281

• The agent then measures SI(a, u), the similarity of rating behaviors against
items between a and u. We use the Pearson correlation approach because it can
handle the difference in the rating schemes of each user against items as ex-
plained in equation (1). But our approach can also employ the Jaccard
coefficient approach.

• Finally, the agent combines the two above similarities, SC(a, u) and SI(a, u), to
evaluate the similarity of rating behaviors against classes and items between
users.

The proposed method can effectively measure the similarity of the widths of
users’ interests while offsetting the difference in the rating schemes of users. Thus,
it achieves high accuracy as demonstrated in our evaluation section 7.1.4.

5.2 Algorithm

We introduce the algorithm of our method below. In this algorithm, we use C_i(a)
as the subclasses of class Ci rated by user a.

1. First, it computes S(a, u,Ci) as min(ra,Ci , ru,Ci).
2. Then, it measures similarity scores SC(a, u) by the following equation.

∑
∑ ∈=

C ii

uaC j

C ua

CuaS
uaS iij

|)()(|

),,(
),(

)}()({

CC

CC

∩
∩

(3)

3. Next, it uses the Pearson correlation approach to compute similarity scores
SI(a, u) using equation (1).

4. Finally, it normalizes SC(a, u) and SI(a, u) among users similar to a, and
determines the similarity of user pair S(a, u) as SC(a, u)+SI(a, u).

5.3 Example

We explain our algorithm by using the example in Fig.2. (1) S(a, u,C2) is com-
puted as min(6.0, 2.0) = 2.0. S(a, u,C3) is computed as min(0.0, 8.5) = 0.0 (2)
Then, SC(a, u) is computed as (2.0/2) +0.0 = 1.0. (3) Next, SI(a, u) is computed as
(4−3)(2−3.5) /√ (4−3)2√ (2−3.5)2 = −0.667.(4) Finally, S(a, u) is measured
following procedure four of our algorithm.

6 Novel Topic Identification

The agent uses similarity measurement results for novel topic identification and its
application can activate user-user communications.

1. The agent calculates the similarity between active user a and the other users.
By using the heuristic threshold X, it derives X users who have high similarity
to user a as the interest-sharing group GU.

282 M. Nakatsuji

2. It then analyzes the difference in the interests of user a and the interests of GU.
It also analyzes the score of novelty of items interested by users in GU for user
a. In Fig. 3, the score of novelty of item “Elf Power” for user a is three, be-
cause we need three hops to go from the different item “Elf Power” accessed
by user u to class “Rock” accessed by user a. By recommending items such a
high score of novelty, the interests of users may be significantly expanded.
Lowering the score of novelty may produce more comfortable new classes but
these will prove to be less satisfying.

3. Finally, the agent extracts novel items GI , which are unknown to user a, but
that are well-known to users in GU ; the novel blog entries about GI are recom-
mended to user a together with their novelty scores. Here, determining the most
suitable size of GU is very important for identifying attractive and novel items.
If the size of GU is reduced, the difference in user interests decreases, and items
in GI may be close to the classes in interests of each user. However, there may
be few novel items in GI . On the other hand, if the size of GU is increased, the
difference in user interests increases, and items in GI may be too novel for the
user. Thus, we observe the difference between interests of active user a and
those of GU while changing the size of GU . The most suitable size of GU is the
point at which there is a rapid increase in the number of GI . Details of this
process are given in Section 7.2.

An example of community creation is depicted in Fig. 3. User b is included in
user group GU whose interests are determined to be similar to the interest of user
a. If users in GU often have an interest in “Elf Power”, user a has the potential to
be interested in “Elf Power” even though the class “Elephant 6” that includes “Elf
Power” is many hops from the class “Rock” that user a has a known interest in.
Furthermore, by browsing blog entries concerning these novel items, users may
expand their interests and share interests with each other.

Fig. 3. Community creation service of presenting blog entries concerning the novel items to
users.

Identifying Novel Topics Based on User Interests 283

7 Offline Experiments

We now present the results of offline experiments that demonstrate the accuracy
of our taxonomy-based method in predicting users’ hidden interests. We also eva-
luate the suitable size of similar users to the active user a by observing the differ-
ence of interests of users, and also investigate the distribution of user interests
extracted from blogs according to the score of novelty.

7.1 Investigating Accuracy

We first explain the dataset used in evaluating the accuracy of our method.

7.1.1 Dataset

User implicit ratings using non-Japanese taxonomy:
This dataset includes 48,695 implicit ratings of 3,545 users according to a tax-

onomy extracted in the experiment of Nakatsuji et al. [14] from the blog portal
Doblog and the taxonomy of non-Japanese music artists provided by ListenJapan.

The taxonomy contains 279 genres as classes and 21,214 artists as items7.
Nakatsuji et al. created rating values for each item of a user by analyzing the de-
scription frequency of each item among the user’s blog entries. The average
number of ratings assigned to an item is 6.3. We linearly scaled up each rating
value such that the maximum user rating corresponded to 5 and the minimum cor-
responded to 1 following the range of ratings in MovieLens dataset. The class hier-
archy in this taxonomy is deep; it has, on average, four hierarchies, and sometimes
has a fifth hierarchy under the root class “Music” with detailed end classes such as
“Space rock” and “Acid jazz”. This represents detailed expert knowledge that can
be used to accurately measure the similarity of users.

User Implicit Ratings Using Japanese Taxonomy:

We also used 58,104 implicit ratings of 2,800 users extracted from blog entries in
Doblog using a Japanese taxonomy provided by ListenJapan in the same way as
Nakatsuji et al. did for the non-Japanese taxonomy. Japanese taxonomy contains
153 genres as classes and 7,421 artists as items. The class hierarchy in this taxon-
omy is also as deep as that of the non-Japanese taxonomy. The average number of
ratings assigned to an item is 10.8.

7.1.2 Methodology

We randomly divided dataset D that includes items with user ratings into two da-
tasets: training dataset T and predicted dataset P. Thus, we could acquire users
who had items whose classes are in P though those were not included in T. Our
agent then measured the similarity of users using T. We examined four ratios of T

7 The music taxonomies in our evaluation can be accessed from ListenJapan home page:

http://listen.jp/

284 M. Nakatsuji

to D, TD: 0.1, 0.3, 0.5, and 0.7. When TD is small, the dataset of user ratings is
sparse.

Following the standard evaluation methodology for CF, we predicted the user
ratings only on the withheld ratings in T and computed Mean Absolute Error
(MAE), which penalizes each miss by the distance to the actual rating. This meas-
ure is written below, where n is the number of entries in P, and Pi and Ri are the
predicted and actual ratings of the ith entry, respectively.

n

RP
MAE

n

i ii∑ =
−

= 1
||

(4)

The accuracy was assessed only for some of the ratings that have already been
rated by the active user, because we usually do not have relevance judgments for
all ratings by each user. Several ratings not included in dataset D might actually be
relevant to the interests of the user, i.e. belong to the neighborhood of items
accessed by the user and thus should be rated highly in her prediction values.
However, since those items have not been accessed yet, they are considered as
non-relevant. To evaluate the effect of presenting such items, we evaluated actual
user reaction against novel items in our online evaluation.

7.1.3 Compared Methods

We compared our similarity measurement method to the following similarity
measures.

• Pearson correlation coefficient (Pearson): similarity of users is measured by
Pearson correlation coefficient.

• Cosine-based approach (Cosine): similarity of users is measured by cosine-based
approach.

• Method by Ziegler (Ziegler): similarity of users is measured by the method
proposed by Ziegler et al. [22]. This method measures the similarity of users
without regard to the width of user interests, or the similarity score of ratings
between users against items. We set parameter χ used in this method properly
against each dataset to achieve the highest result accuracy. As a result, we set χ
as 0.2 against those datasets.

• Taxonomy (Jaccard & Pearson) (T(J&P)): this method is explained in detail in
the method section.

• Taxonomy (Jaccard) (T(J)): the similarity score of ratings between users
against classes and those against items are measured using our Jaccard-based
method.

We select Pearson and Cosine as baseline methods because they are the most
frequently used methods in collaborative filtering studies [17, 18, 16, 1], and we
also select Ziegler because it is the most famous taxonomy-based similarity
measure though it does not consider the width of user interests as we do.

Identifying Novel Topics Based on User Interests 285

7.1.4 Results

We first estimated the number of users, N, similar to the user, and determined the
MAE. As a result, we set N to 30 against the music dataset because MAE gradually
worsens if N is large.

Next, we evaluated the accuracy of our method by changing the ratio of train-
ing data, TD Results against non-Japanese dataset and those against Japanese
dataset are shown in Table 1-(a) and Table 1-(b), respectively.

Table 1. MAE against music dataset.

Most of the results of our method, T(J&P) and T(J), are better than those of
other methods including the previous taxonomy method. Those music datasets are
rather sparse datasets, there are not so many ratings assigned to an item averagely,
thus we consider that our method is suitable in measuring similarity of users when
the rating dataset is not dense.

Interestingly, T(J&P) achieved the highest accuracy against the non-Japanese
music dataset. However, for the Japanese music datasets, T(J) tended to achieve
higher accuracy. This is because the non-Japanese taxonomy is more detailed than
the Japanese taxonomy, and this situation well suits our assumption that users who
like an item also like the classes that include that item. Furthermore, when the da-
taset is not sparse, users tend to have many items in each class. In such situations,
the end class of the taxonomy can be classified into more detailed classes, and
T(J) works better because it considers the width of user interests against items. For
example, in Fig. 1, T(J) considers that the width of a and that of a user who likes
items, I1, I2 and I3, are not the same. As a result, it can divide similar users who
like items I1 and I2, from users who like items I1, I2, and I3.

Finally, we recently confirmed that our approach is well applied to items other
than music [3].

7.2 Analyzing Suitable Size of User Group to Identify Novel
Topics

We next determined the suitable size of GU, as described in Section 6, by observ-
ing the difference between the user interests of the active user a and those of GU

while changing the size of GU. We optimize the number of users, N, similar to the
active user, in Section 7.1, from the view point of the accuracy. In this section, we

286 M. Nakatsuji

optimize the suitable size of GU from the view point of identifying novel topics.
The evaluation dataset is almost the same as that used in Section 7.1.1 though it
uses a smaller taxonomy than the previous subsection8. The taxonomy we used
here contains 114 classes as genres, covering a wide range of genres in the music
domain, Rock, Classic, Jazz, and Soul and the items are 4,300 artists.

First, we selected user a from among all users extracted and analyzed a suitable
size of GU by changing parameter X, which represents the number of users who
have high similarity to user a in interest-sharing group GU , see Section 6. In this
evaluation, we divided novel items GI into 3 item groups in order of the appear-
ance rate of items when we set X to 70: a very popular item group, a moderately
popular item group, and item group with a small number of fans. We then calcu-
lated the number of users who were interested in the artists of each item group
while changing X from 10 to 70.

Graphs of the number of users who were interested in each item group obtained
while changing X are shown in Fig. 4-(a). Next, we focused on users who had in-
terested in many items. Graphs of the number of such users obtained while chang-
ing X are shown in Fig. 4-(b). The very popular item group was recommended to
users regardless of the value of X, see Fig. 4-(a). The item group with a small
number of fans, on the other hand, was recommended most often when X was ten
(Fig. 4-(b),); the moderately popular item group was recommended more often as
X was increased. This is because users who had a lot of item interests tend to dis-
cuss items in the item group with a small number of fans, rather than discussing
items in the famous item group. Furthermore, the number of users in each item
group increased suddenly when X is greater than 60. This is because the difference
between a user interests and those of GU is larger when X is greater than 60, and
items with low probability of being interesting come to be recommended more of-
ten. From this result, novel topics are effectively detected with respect to detailed
user interests when X is smaller than 60 given the datasets used in our experiment.
This result also suggests that the suitable size of GU is given by X = 60 because the
number of items of each group radically increased when X exceeded that point.

Fig. 4. (a) number of users obtained by changing X. (b) number of users that have high
interest weight after changing X.

8 The dataset is described in [14] in detail.

Identifying Novel Topics Based on User Interests 287

7.3 Investigating User Interest Distribution According to the
Score of Novelty

We next evaluated novel item detection. In the evaluation, we compared the pro-
portion of novel items in the manually defined recommendation lists created by
“you might like these artists” in a music portal ListenJapan to the proportion of
novel items in the recommendation lists created by our methods. Designers of mu-
sic portal ListenJapan have manually defined artists (An) that are considered to
relevant to artist (Ai).

We checked the 75 users, out of the total of 1503 users, who were judged to be
interested in the music artists in our taxonomy. First, we identified X users who
had high similarity to user a as described in Section 7.29. We took from the rec-
ommendation lists created by our method the top 150 items that appeared fre-
quently in the interests of those X users. The manually defined recommendation
lists were generated by passing the user interests, extracted by our algorithm, to
the portal’s recommendation system. The manual recommendation lists included,
on average, 23 items.

Table 2. Experimental results of distribution of topics according to item novelty.

Table 2-(a) and (b) show the percentages of recommended items and their score
of novelty for the manually generated recommendation lists and our lists, respec-
tively. These results indicate that our technique recommends more items with a
higher score of novelty than the manually created recommendation lists. Another
conclusion that can be drawn is that users actually have a much wider range of
interests than predicted by the music portal experts.

8 Online Experimental Results

To evaluate the effectiveness of novel topic identification, we offered an experi-
mental service DoblogMusic to Doblog users. We used a larger taxonomy (325
classes and about 25,000 items) of the music domain than considered in the offline
evaluation, since the service covered both Japanese music and non-Japanese music.

8.1 Explaining Our Online Experiment

As shown in Fig. 5, when doblog users, who were predicted to have an interest in
artists in our taxonomy, logged into Doblog, DoblogMusic set “Recommendations”

9 According to Section 7.2, we set X to 60.

288 M. Nakatsuji

tabs in the blog site of each user. Clicking the “Recommendations” tab yielded a
page listing recommended novel artists. Neighboring users who were measured as
similar to the user were also presented. If the user clicked the “Entries of
Neighbors” tab, he was presented with summarized blog entries of the neighboring
users on the novel artists (See procedure (2) in Fig. 5). A user could select one of
these summaries to browse the complete blog entry at the Doblog portal. Further-
more, users that logged in and were analyzed to be interested in the artists in our
taxonomy could also browse DoblogMusic through the “Recommendations” tab.
As shown in Fig. 5, in our experiment, the score of novelty ranged from zero to
three. The agent re-builts the user interests once a week for the service if users
created blog entries and described music artists in our taxonomy.

The following subsections evaluate the performance of recommendation of
novel topics, and generation of a virtual community through recommendations.

Fig. 5. Snapshot of online experimental service DoblogMusic.

8.2 Investigating Continuance of User Access to Our
Recommendation List

Graphs of the number of users accessing DoblogMusic are shown in Fig. 5. There
are about 55,000 Doblog users, of which about 1000 log in each day. We analyzed
3,632 Doblog users who were interested in the music of our music taxonomy in
December 2006. Considering the ratio of the number of users who logged in to
DoblogMusic to the number of all users in Doblog, we can expect that about 66
users among those logged in to Doblog each day had an opportunity to access
DoblogMusic. From the results depicted in Fig. 6-(a), the average number of users
that accessed DoblogMusic each day was about 63. Furthermore, we found that
about 65% of those users were interested in the artists in our music taxonomy.
From the results depicted in Fig. 6-(b), more users were presented with their own
DoblogMusic recommendation list in November 2006. This is because we

Identifying Novel Topics Based on User Interests 289

increased the number of artists in our music taxonomy at that time. These results
indicate that recommending not only accurate but also novel items is effective for
encouraging users to continue to access DoblogMusic, i.e. they do not become
bored.

Fig. 6. User accesses to DoblogMusic.

8.3 Evaluating Identification of Novel Topics

We also evaluated the identification of novel topics. In the recommendation page
of DoblogMusic, users could select novel artists according to their score of nov-
elty (see procedure (2) in Fig. 5). We found that 75% of the selections made were
for artists with a score of novelty of two or three. The offline evaluation, see
Section 7.3 Table 2-(b), showed that content items that have the score of novelty
of two or three, are presented to users most frequently, about 53.5%. It is obvious
that users prefer novel recommendations.

To summarize, users were interested in recommendations even though they
were comparatively far from the users’ known interests from the viewpoint of the
class hierarchy in our taxonomy. The results of Section 8.2 and Section 8.3 con-
firm that novelty identification is effective for inducing users to expand their
interests by browsing the blog entries of novel artists.

8.4 Evaluating Activation of Blog Community

We found that presenting blog entries about the novel artists recommended to a
user stimulated communication between users. If user a selected a summarized
blog entry of user b presented as part of the recommendation service, user a could
browse the complete blog entry on the blog site of user b. In this experiment, we
checked the number of message exchanges made between users in two cases: (1)
the number of exchanges (between users A and B) in the two month period before
user a accessed the blog site of user b through the recommendation page of Dob-
logMusic and (2) the number of exchanges in the two month period immediately
after the access. Fig. 7-(a) compares (1) and (2). It shows that there was a 30% in-
crease in the number of exchanges due to DoblogMusic. Next, we focused on the
users who exchanged comments no more than twice in case (1), see Fig. 7-(b). This
comparison showed a roughly 250% increase in exchange number after Doblog-
Music access. These results suggest that our novel blog-entry recommendation sys-
tem is effective for activating the communications between users who love music.

290 M. Nakatsuji

Furthermore, we consider that users were interested in discovering novel items or
users who described novel items presented by our method, because the users subse-
quently exchanged many comments. (Sending a comment to an unknown user is
not an intuitive action.)

Fig. 7. Increasing user-user communication through DoblogMusic.

9 Conclusion

This chapter introduced the agent that automatically understands user interests ac-
cording to the taxonomy of items and measures the similarity of users based on the
taxonomy of items. The agent uses the similarity measurement results to identify
novel topics. This agent can identify attractive and novel topics for a user by ob-
serving the difference between the user-interests of the user and those of the users
similar to the user. We also performed offline and online experiments based on a
large number of blog entries from an actual blog portal.

• In the offline experiments, we showed that our method can identify items more
accurately than existing methods including the previous taxonomy-based me-
thod. We also examined the appropriate size of user group GU to identify novel
items for each user by changing the number of users in GU . In an experiment
on confirming the identification of novel topics, our technique identified more
items with a higher score of novelty than were found in the manually created
“you might like these artists” recommendation lists provided by the music
portal site.

• In the online evaluation, our recommendations, novel items, were accessed re-
peatedly by users who were analyzed to be interested in items in our music tax-
onomy during the period of the online experiment. Furthermore, about 75% of
accesses among those users were to items with high novelty. We also evaluated
the number of messages exchanged between users who came to know each

Identifying Novel Topics Based on User Interests 291

other through our recommendations. As a result, users who seldom or never
exchanged messages before seeing the recommendation page of novel items,
exchanged significantly more messages. Thus, we conclude that our proposed
algorithms can well identify novel items in the blog entries of other users and
effectively create new virtually communities.

Future work is required to study how agents control the profile of user-interests
by providing feedback about their collective knowledge with the goal of updating
the taxonomy of items. The long-term goal is to integrate the user interests over
several key domains and offer cross-domain recommendations for the user.

Acknowledgments. I appreciate the constructive discussions and the kindly advice of
Professor Toru Ishida at Kyoto University. I wish to thank my colleagues at NTT Cyber
Solutions Laboratories and NTT Network Service Systems Laboratories for their support in
numerous ways.

References

1. Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms
for Collaborative Filtering. In: Proc. UAI 1998, pp. 43–52 (1998)

2. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontolo-
gies on the semantic web. In: Proc. WWW 2002, pp. 662–673 (2002)

3. Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Fujimura, K., Ishida, T.: Clas-
sical Music for Rock Fans?: Novel Recommendations for Expanding User Interests.
In: Proc. CIKM 2010 (to appear, 2010)

4. Godoy, D., Amandi, A.: User Profiling in Personal Information Agents: A Survey,
Knowledge Engineering Review. Cambridge University Press, Cambridge (2005)

5. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for
performing collaborative filtering. In: Proc. SIGIR 1999, pp. 230–237 (1999)

6. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative fil-
tering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

7. Hijikata, Y., Shimizu, T., Nishida, S.: Discovery-oriented collaborative filtering for
improving user satisfaction. In: Proc. UAI 2009, pp. 67–76 (2009)

8. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative recom-
mendation. In: Proc. SIGIR 2009, pp. 195–202 (2009)

9. Kohrs, A., Merialdo, B.: Clustering for Collaborative Filtering Applications. In: Com-
putational Intelligence for Modelling, Control & Automation. IOS Press, Amsterdam
(1999)

10. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez,
A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263.
Springer, Heidelberg (2002)

11. Manning, C.D., Schuetze, H.: Foundations of Statistical Natural Language Processing,
1st edn. The MIT Press, Cambridge (1999)

12. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy
metrics have hurt recommender systems. In: Proc. CHI 2006, pp. 1097–1101 (2006)

292 M. Nakatsuji

13. Nakatsuji, M., Miyoshi, Y., Otsuka, Y.: Innovation Detection Based on User-Interest
Ontology of Blog Community. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 515–528. Springer, Heidelberg (2006)

14. Nakatsuji, M., Yoshida, M., Ishida, T.: Detecting innovative topics based on user-
interest ontology. J. Web Sem. 7(2), 107–120 (2009)

15. Noy, N.F., Musen, M.A.: Anchor-PROMPT: Using Non-Local Context for Semantic
Matching. In: The 17th International Joint Conference on Artificial Intelligence Work-
shop on Ontologies and Information Sharing, pp. 450–455 (2001)

16. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. In: Proceedings of ACM 1994
Conference on Computer Supported Cooperative Work, Chapel Hill, North Carolina,
pp. 175–186. ACM, New York (1994)

17. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based Collaborative Filtering Rec-
ommendation Algorithms. In: Proc. WWW 2001, pp. 285–295 (2001)

18. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating
“Word of Mouth”. In: Proc. CHI 1995, pp. 210–217 (1995)

19. Ungar, L., Foster, D.: Clustering Methods For Collaborative Filtering. In: Proceedings
of the Workshop on Recommendation Systems. AAAI Press, Menlo Park (1998)

20. Yildirim, H., Krishnamoorthy, M.S.: A random walk method for alleviating the spar-
sity problem in collaborative filtering. In: Proc. RecSys 2008, pp. 131–138 (2008)

21. Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filter-
ing. In: Proc. SIGIR, pp. 81–88 (2002)

22. Ziegler, C.N., Lausen, G., Thieme, L.S.: Taxonomy-driven computation of product
recommendations. In: Proc. CIKM 2004, pp. 406–415 (2004)

23. Ziegler, C.N., McNee, S.M.: Improving recommendation lists through topic diversifi-
cation. In: Proc. WWW 2005, pp. 22–32 (2005)

Part IV

Future Outlook

A. Elçi, M.T. Koné, and M.A. Orgun (Eds.): Semantic Agent Systems, SCI 344, pp. 295–313.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 13
Semantic Agents with Understanding Abilities
and Factors Affecting Misunderstanding

Tuncer Ören1 and Levent Yılmaz2

1 The McLeod Modeling and Simulation Network (M&SNet) of SCS,
School of Information Technology and Engineering, University of Ottawa, Ottawa,
Ontario, Canada
oren@site.uottawa.ca

2 M&SNet, Auburn Modeling and Simulation Lab,
Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
yilmaz@auburn.edu

Abstract. Ability to understand is a pivotal feature of intelligent systems in gen-
eral and in software agents and especially in semantic agents in particular. Levels
of understanding are understanding truth, understanding metaphors, and under-
standing pataphors. Currently, we focus on understanding truth. In this chapter,
about 90 concepts and terms related with machine understanding are presented.
An important aspect of machine understanding, namely misunderstanding and al-
most 60 concepts and terms related with it are elaborated systematically for the
first time in the literature; along with rationale why discriminating and identifying
types and factors influencing misunderstanding has pragmatic importance for
agents with understanding abilities.

Keywords: Semantic agents, machine understanding, single understanding,
multi-understanding, switchable understanding, misunderstanding.

1 Introduction

Machine understanding is also named computer understanding, computerized un-
derstanding, and computational understanding. We refer to it as understanding in
this chapter. Understanding is a pivotal ability for agents in general and for seman-
tic agents in particular. In this chapter, we provide a general framework for under-
standing applicable to agents in general and to semantic agents in particular.
Several modes of machine understanding such as single understanding, multi-
understanding, and switchable understanding are covered and for each mode,
several types of understanding are explained. For example, 90 types of machine
understanding are covered. The discussion of almost 60 types of misunderstanding
can be useful to detect and avoid them, as a basis for failure avoidance in machine
understanding; and as a basis for emulation and simulation of human behavior.
Other benefits of studying misunderstanding are clarified in section 6.

296 T. Ören and L. Yılmaz

The term "to understand" denotes associated processing of knowledge to have
an "understanding" which is the result or product of this knowledge processing.
However, in English, the –ing form can be used as a noun, an adjective or like a
verb. Hence, when necessary, we will use the term "understanding" both as the
product and the process of the verb to understand; e.g., understanding ability
(instead of ability to understand), understanding system (instead of system to un-
derstand), machine understanding (instead of to understand by a machine), and
understanding process (instead of process to understand).

Technology is bounded by science; however, science does not need to be
bounded by technology. Hence, it is quite normal that some of the modes and
types of understanding covered in this chapter are not yet available in practice;
and hopefully will in the future.

1.1 Machine Understanding

As it is the case with many terms used in everyday language as well as technical
terms, to understand and understanding need to be clarified. In earlier publica-
tions, we revised definitions of everyday and technical usages, as well as philoso-
phical backgrounds [18, 22]. In our work, we take knowing and computerized
understanding as synonyms. Hence, to understand an entity is to get appropriate
knowledge about it. The following quote from a previous publication clarifies the
qualifier appropriate: "The following is a good starting point for the specification
of the scope of machine understanding: ' . . . if a system knows about X, a class of
objects or relations on objects, it is able to use an (internal) representation of the
class in at least the following ways: receive information about the class, generate
elements in the class, recognize members of the class and discriminate them from
other class members, answer questions about the class, and take into account in-
formation about changes in the class members' [33]" [22]. However, one should
remark here that knowing (something, somebody, some event, etc.) refers to the
result of the process of acquiring knowledge and not the knowledge processing ac-
tivity required to know" [18]. From a philosophical background, understanding
and having a meaning are closely related. For example, "Dewey [9] relates under-
standing with meaning by stating that if A cannot understand B, B does not have a
meaning for A" [18].

1.2 Motivation: The Role of Understanding in Decision Support

Understanding involves perception of elements in a particular environment within
time and space, the comprehension of their meaning and the projection of their
status in the near future. Machine understanding requires a set of mechanisms that
enable attention to cues in the environment, as well as expectancies regarding fu-
ture states. In realistic settings, establishing an ongoing awareness and understand-
ing of important situation components pose the major task of the decision maker.
Therefore, situation awareness is the primary is basis of the decision making proc-
ess in experience-based decision making process (i.e., Naturalistic Decision
Making).

Semantic Agents with Understanding Abilities and Factors 297

The recognition, revision, and exploration phases of situation awareness,
shown in Figure 1, suggest three main functional areas that revolve around a men-
tal model of the problem domain. More specifically, a well-defined mental model
provides:

1. knowledge about the concepts, attributes, associations, and constraints
that pertain to the application domain,

2. a mechanism that facilitates integration of domain elements to form an
understanding of the situation, and

3. a mechanism to project to a future state of the environment given the cur-
rent state, selected action, and the knowledge about the dynamics of the
environment.

Fig. 1. Elements of situation awareness

Situation awareness is an important cognitive skill that is essential for expert
performance in any field involving complexity, dynamism, uncertainty, and risk.
The failure to perceive a situation correctly may lead to faulty understanding.
Ultimately, this misunderstanding may degrade an individual’s ability to predict
future states and engage in effective decision making.

1.3 Agents, Semantic Agents, and Pivotal Role of Machine
Understanding

Understanding is an essential characteristic of intelligent systems, including
intelligent agents. Agents are becoming more and more important in advanced
knowledge processing. For this reason, another aspect of understanding, namely
misunderstanding is also systematically elaborated in this chapter to be able to
take necessary precautions for failure avoidance in machine understanding [23].

"The Semantic Web relies on structured sets of metadata and inference rules
that allow it to understand the relationship between different data resources. The
technologies that form the basis of the Semantic Web by adding these metadata
and inference rules are RDF (Resource Description Framework), RDFS (RDF
Schema) and OWL (Web Ontology Language)" [27]. A general and flexible
framework is needed to satisfy the understanding requirements of semantic agents.
As stated by Allemang and Hendler "A consequence of the AAA slogan is that
there could always be something new that someone will say; this means that we

298 T. Ören and L. Yılmaz

must assume that there is always more information that could be known" [1]. They
define "The AAA slogan" as "Anyone can say Anything about Any topic" and
qualify it as "One of the basic tenets of the Web in general and the Semantic Web
in particular." "The right way to understand what a statement or a set of statements
means in RDFS is to understand what inferences can be drawn from them." as
stated by [1, p. 117] is yet another practical implication of understanding in
Semantic Web agents.

Fig. 2. First and second order synergies of agents, systems engineering, and simulation
[from 19]

1.4 Synergies of Agents and Semantic Agents with Simulation
and Systems Engineering

In some application areas of knowledge processing, synergies of agents, simula-
tion, and systems engineering appear to be very desirable [24, 32]. Figure 2
 – from Ören [19] – highlights such synergies.

Semantic Agents with Understanding Abilities and Factors 299

Some of the synergies with direct relevance to semantic agents can be systems
engineering agents, agent-based systems engineering, as well as synergies of
agents and simulation to provide experimentation abilities to agents. Agents with
understanding abilities would have important implications in these cases. With in-
creasing complexity of the applications of Semantic Web agents, one may expect
to consider the benefits of the synergy of systems engineering and agents.

2 Machine Understanding Systems and Agents with
Understanding Abilities

Machine understanding of an entity is getting appropriate knowledge about this
entity by a system. For a system A to understand an entity B, three conditions
should be met:

1. System A should have access to a meta-model C of Bs.
(i.e., system A should have knowledge about a class of entities like B.)

2. System A should be able to form D, a perception of B by analyzing B.
3. System A should be able to interpret its perception D with respect to the

meta-model C.
(i.e., should be able to compare and evaluate its perception D with re-

spect to the meta-model C. The evaluation of features in C can be done
with respect to existing and non-existing attributes in D.)

The elements of a machine understanding system are given in Figure 3.

Fig. 3. Elements of an understanding system [adopted from 18 and 25]

Several modes of machine understanding are possible; they are single understand-
ing, multi-understanding, and switchable understanding.

300 T. Ören and L. Yılmaz

3 Types of Single Understanding

There are three levels of understanding: (1) understanding reality, (2) understand-
ing metaphors, and (3) understanding pataphors. Currently, most understanding
systems are at the level of understanding reality. Metaphors are used to indicate
that an entity A has some well known characteristics of (or is similar to) an entity
B. "The pataphor is an extreme form of metaphor, taking the principle to its limit,
where the basic metaphor is typically not mentioned but extensions to it are used
without reference. . . . Metaphor is used to bring novelty, interest and elucidation
to writing and speech. In the extreme form, pataphors may bring greater novelty
and perhaps interest, though potentially at the price of clarity and broad
understanding" [5]. Especially, in natural language understanding, understanding
metaphors and pataphors would be very important and challenging for
machine understanding. For powerful Semantic Web applications involving text
processing, these two levels of understanding may come into play.

In this and many other publications we concentrate on the fundamental issue of
understanding reality. A previous reference covers essence of machine under-
standing as well as different types of single understanding [18] and especially
ontology-based (relational) dictionary of machine understanding [22]. For this rea-
son, to avoid repetition, only the highlights will be given in this chapter. A list of
90 concepts and terms related with machine understanding is given as Appendix
A. Machine understanding can be considered from different points of view such
as: (1) product of understanding, (2) process of understanding, (3) meta-model
used in understanding, and (4) characteristics of understanding system.

3.1 Machine Understanding from the Point of View of Product of
Understanding

Product of understanding is the result of the process to understand. The following
criteria can be used to over 20 types of machine understanding: domain, nature,
scope, depth, granularity, reliability, and processing of product of understanding.

- Based on the domain of understanding, internal and external understand-
ings are possible.

- Based on the nature of understanding, the following types are possible:
lexical, syntactic, morphological, semantic, and pragmatic understandings.

- Based on the scope, focused, broad, and multi-aspect understandings are
possible.

- Based on depth of understanding, shallow and deep understandings can
be identified.

- Based on granularity, two types of understanding are possible: coarse
and in-depth understanding (i.e., detailed understanding).

- Based on reliability, there are two types of understanding: reliable under-
standing, such as valid, verified, and incorrupt understandings; and unreli-
able understanding such as invalid, unverified, and corrupt understanding.

- Additional processing identifies associative, generalized, and instantiated
understanding.

Semantic Agents with Understanding Abilities and Factors 301

3.2 Machine Understanding from the Point of View of Process to
Understand

Process of understanding (process to understand) is the necessary knowledge
processing activities to obtain a valid understanding of an entity. Different types
of understanding processes can be identified based on the following criteria: di-
rectness, direction, precedence, modality, and dependability of the understanding
process, and the accumulation of knowledge.

- Based on directness of understanding process, we can identify apprehen-
sion (or direct understanding) and comprehension (or indirect or mediated
understanding) such as logical understanding.

- Direction of understanding process defines top-down and bottom up un-
derstandings.

- Based on precedence of understanding process, we have sequential and
parallel understandings.

- Based on modality of understanding process, there are unimodal (i.e., un-
derstanding one modality at a time) and multimodal understandings.

- Based on dependability of understanding process, there are robust and
brittle understandings.

- Based on accumulation of knowledge during the understanding process,
there are two possibilities: tabula rasa understanding (i.e., re-initialized
understanding) and cumulative understanding.

3.3 Machine Understanding from the Point of View of
Meta-Model of Understanding

To be able to understand an entity, a system needs some background knowledge
about it and similar ones. This fundamental knowledge is called a meta-model of
the entities. Two characteristics of meta-model can be used to discern several
types of understanding; these characteristics are its variability and nature. Ac-
cording to its variability, a meta-model can be: (1) fixed, (2) replaceable, and
(3) evolvable. According its nature, a meta-model can be (1) analogical and
(2) tailored.

- Fixed meta-models limit understandings to single-vision understanding;

which can be dogmatic understanding.
- Replaceable meta-models allow multi-vision understanding which can be the

basis of switchable understanding.
- Evolvable meta-models allow evolving (or learning) understanding.
- Use of analogical (equivalent) meta-model(s) would allow analogical

(associative) understanding.
- Meta-models tailored to specific function(s) result in tailored understanding.

302 T. Ören and L. Yılmaz

3.4 Machine Understanding from the Point of View of
Characteristics of Understanding System

The characteristics of an understanding system are its initiative in understanding,
its locality, its number, role of prejudice (emotions) in understanding, its
knowledge sharing features, dissemination of the results of understanding.

- Based on the initiative of the understanding system, we identify
autonomous and delegated understandings.

- Based on the locality of the understanding system, there are local and
remote understands.

- Based on the number of the understanding system, we identify individual,
group, and distributed understandings.

- Based on the prejudice (emotions) of the understanding system [13],
there are objective and subjective understandings.

- Based on the knowledge sharing feature of the understanding system,
there are repetitive, partially repetitive, and cooperative understandings.

- Dissemination of the results by an understanding system, delimits under-
standing per command, understanding for subscribers, broadcast
understanding, blackboard understanding, and legacy understanding.

4 Multi-understanding

Multiple understanding (or multi-understanding) ability denotes a special type of
knowledge processing ability to have more than on understanding of an entity. As
a process, multi-understanding is a sequential or parallel activity to generate more
than one understanding of an entity. Minsky posited the following statement about
multi-understanding "If you 'understand' something in only one way, then you
scarcely understand it at all –because when you get stuck, you'll have nowhere to
go. But if you represent something in several ways, then when you get frustrated
enough, you can switch among different points of view, until you find one that
works for you!" [17].

Multi-understanding ability necessitates one or more of the following:

• Existence of and access to multiple meta-models
• Multi-perception ability
• Multiple interpretation ability

4.1 Role of Meta-Models in Multi-understanding

As clarified in section 3.3 (Machine understanding from the point of view of
meta-model of understanding), two types of meta-models can allow multi-
understanding. They are: (1) replaceable (or multi-)meta-models, and (2) evolv-
able meta-models (or learning) meta-models. Accordingly, multi-vision
understanding, and evolving understanding (learning understanding) are possible.

Semantic Agents with Understanding Abilities and Factors 303

4.2 Role of Perception in Multi-understanding

Perception is very important in understanding; it is influenced by background
knowledge (a system cannot understanding entities for which it has no knowl-
edge). Perception depends on the context and is also influenced by several biases
(not always in the negative way). A good overview and list of references can be
found at Stanford Encyclopedia of Philosophy [6].

4.3 Role of Interpretation in Understanding

Interpretation is one of the three pillars of understanding and is open to many fac-
tors that are clarified in section on misunderstanding.

5 Switchable Understanding

Switchable understanding is a special case of multi-understanding. An advanced
understanding system can explore to have several understandings and select the
most appropriate one fit for the context. A basis for switchable understanding for
agents was covered elsewhere [25] and is not repeated in this chapter.

6 Misunderstanding

While ability to understand has a pivotal role in any intelligent systems in general
and in advanced software agents and semantic agents in particular, another topic is
equally important: How to assure reliability of understanding systems. This ques-
tion is treated from a general failure avoidance point of view [23]. Misunderstand-
ing, in machine understanding means (1) a failure to understand an entity correctly
or (2) failure to understand. Identifying the factors and mechanisms of misunder-
standing, especially by software agents, is important from several points of view:

(1) in computerized understanding, one can avoid errors and
(2) in simulating or emulating human behavior, one can have realistic human

understanding, including its flaws.
(3) Another important implication of misunderstanding is the crucial role in

conflict management. To be able to reconcile differences of opinions, un-
derstanding them and their root causes are essential even before offering
alternatives to find a common ground to agree on. Hence, factors affecting
misunderstandings are also essential in finding alternatives as bases for
persuasion. Advanced applications of Semantic Web agents for analysis of
texts written in natural language may be significant for this purpose.

Categories of sources/causes of misunderstanding are outlined in the sequel;
and a list of concepts (and terms) related with machine misunderstanding is given
as Appendix B. Biases of the understanding system may exist in all three types of
abilities and corresponding processes. Errors in all three major elements of

304 T. Ören and L. Yılmaz

Fig. 4. Filters that can induce misunderstanding and corresponding types of misunder-
standing

understanding may lead to additional types of understanding which may lead to er-
roneous understandings and misunderstanding [25]. Misunderstanding can be
caused by several factors such as features of the available meta-model(s) and
processes for perception and interpretation. These three elements, in turn, can be

Semantic Agents with Understanding Abilities and Factors 305

affected by cultural, personal, cognitive, and emotive biases as well as by irration-
ality and dysrationalia. Furthermore, both intentional and unintentional types of
logical errors (or fallacies) in knowledge processing needed in perception and in-
terpretation processes may also result in misunderstanding. Figure 4 depicts filters
that can induce misunderstanding and corresponding types of misunderstandings.

6.1 Ability/Inability to Understand

6.1.1 Role of Meta-Model in Misunderstanding

Meta-model can have knowledge unfit for the goal of understanding (e.g., erroneous,
incomplete, inconsistent, irrelevant, or corrupt meta-model). Furthermore, it can have
cultural and cognitive biases (sometimes implicitly; due to the corresponding biases
of its developer). Hence, the following types of misunderstandings are possible: erro-
neous understanding, incomplete understanding, inconsistent understanding, irrele-
vant understanding, as well as effects of deliberate use of unfit meta-model in under-
standing, and effect of corrupt meta-model in understanding.

6.1.2 Role of Perception in Misunderstanding

"An understanding system needs the ability to perceive the entity that it intends to
understand; for this it needs to analyze characteristics relevant to the goal of un-
derstanding. Hence, the system needs to be able to analyze and perceive. Sources
of multiple perceptions include:

1. focus on several (some irrelevant) aspect (domain, nature, scope, granu-
larity, modality)

2. use of several (some irrelevant) meta-model
3. lack of appropriate ability to analyze
4. lack of appropriate ability to discriminate" [25]

Misperception (as well as misinterpretation) of motivation and perceptual
confusion are also causes of misunderstanding.

6.1.3 Role of Interpretation in Misunderstanding

Misinterpretation is a source of misunderstanding. It may be caused by using a
meta-model which is not appropriate for the context, by lack of pertinent knowl-
edge processing abilities in perception and/or in interpretation, or by logical errors
(fallacies) in the interpretation.

6.2 Role of Context in Misunderstanding

Context-dependent misunderstanding would be a result of an understanding
process within a wrong context. It may also be caused by fallacies (sophism and
paralogisms) induced by self or by others.

306 T. Ören and L. Yılmaz

6.3 Role of Biases in Misunderstanding

6.3.1 Group Bias in Misunderstanding

Acceptance of reality is often context-sensitive and depends on the group within
which it is uttered. The group can be limited by a family, company, institution, re-
gion, nation, interest or affinity, and/or religion. Hence, not only what is said is
important but also who (i.e., a member or an outsider of the group) said it are of-
ten important. For example, consider the following statement from Scientific
American: "America is an absurdly backward country when it comes to passenger
trains." [3]. In this sentence –taken as an example– "America" can be replaced by
any other country; and after "when" another statement can be put.

The important point is whether the interlocutor is within the group or an out-
sider. Hence, the statement can be accepted, can be denied, or even considered of-
fensive (all alternatives would be based on different "understandings." Let α de-
note an individual of a group A and let β denote an individual of a group B. A
same statement expressed by α about A, can be accepted as a true fact or even a
treason to (some of) the members of group A; while it can be ignored or hailed by
some members β of B. In a fragmented group A, an individual α can also be con-
sidered an insider or an outsider. An insider's statement can be accepted; while an
outsider's statement can be accepted, tolerated, or can be interpreted as offensive.

6.3.2 Cultural Bias in Misunderstanding

Values and symbols differ for various cultures; hence a same entity may be inter-
preted differently based on the cultural background [11, 16]. Geert HofstedeTM Cul-
tural Dimensions provide comparative cultural characteristics of large number of
countries [12]. A book series, called "culture smart" provides profiles of several
countries [7]. Cultural bias in understanding leads to culture-induced
misunderstanding.

6.3.3 Cognitive Bias in Misunderstanding

Cognitive bias is a "common tendency to acquire and process information
by filtering it through one's own likes, dislikes, and experiences" [4]. Some of the
cognitive biases that may cause misunderstanding are explained in the sequel:

A well known case is Dunning-Kruger effect [15]. As concluded by Kruger and
Dunning in 2009 "those with limited knowledge in a domain suffer a dual burden:
Not only do they reach mistaken conclusions and make regrettable errors, but their
incompetence robs them of the ability to realize it."

As another example, high cognitive complexity individuals differ from low
cognitive complexity individuals not only in knowledge processing abilities in
general but in understanding, in particular, due to their limited background knowl-
edge as well as to their limited ability to process knowledge needed for analysis
and perception and evaluation. Sirisonthi [2004] refers to cognitive complexity as

Semantic Agents with Understanding Abilities and Factors 307

a factor to understand/misunderstand in e-mail communications. Future applica-
tions of Semantic Web agents may take this aspect of bias in analyses of increas-
ing volume of e-mail communications.

As a thought disorder, Rorschach effect in understanding may result in different
interpretations and hence different misunderstandings by different individuals.

Illusion is a misinterpretation of a true sensation. Schizophrenic understanding
–as an aberration– leads to misinterpretations of reality and hallucinations in the
absence of stimulus.

6.3.4 Emotive Bias in Misunderstanding

It is well known that certain types of emotions affect reasoning abilities to cause
misunderstanding. For example, anger affects reasoning negatively; hence under-
standing ability. Effect of anger in misunderstanding leads to anger-induced
misunderstanding [14].

6.3.5 Personality Bias in Misunderstanding

Some personality types are prone to anger; hence their understanding ability can
easily be affected to lead misunderstanding [26].

6.3.6 Effects of Dysrationalia and Irrationality in Misunderstanding

Dysrationalia is the inability to think and behave rationally despite adequate intel-
ligence [30, 31]. It affects ability to properly understand. Irrationality is common
in cognition [2]. Irrationality may have two types of effects in misunderstanding;
lack of ability to understand properly and ability to distort understanding of others
to cause distorted understanding.

6.4 Role of Fallacies in Misunderstanding

Fallacy is misconception resulting from incorrect reasoning. A logical fallacy is an
element of an argument that is flawed, essentially rendering the line of reasoning,
if not the entire argument, invalid. Fallacies in information distortion [10] as well
as deliberate misperception and misinterpretation are sources of misunderstand-
ing. Fallacies can be grouped in two categories: Paralogism is unintentional inva-
lid argument in reasoning. Sophism is a deliberately invalid argument displaying
ingenuity in reasoning in the hope of deceiving someone. Some recent techniques
in lie detection in text analysis can also be used to detect sources of attempt to
misguide in understanding [8].

6.4.1 Deliberate Misunderstanding

Another type of misunderstanding is deliberate misunderstanding which giving the
illusion of not understanding. This may be functionally equivalent to misunder-
standing. However, the deliberate aspect is important and–if detected–may need to
be proven.

308 T. Ören and L. Yılmaz

6.4.2 Induced Misunderstanding

To induce misunderstanding, data and evidences may be tempered or doctored.
The individuals (or their representatives, such as software agents) need to notice
that their understanding is being tempered. Hence, recognizing why a reality is
presented in a certain way is helpful not to be trapped in misunderstanding. Some
types of induced misunderstanding are: Socratically induced misunderstanding,
and speaker-induced misunderstanding.

6.4.3 Mutual Misunderstanding

Avoiding mutual misunderstanding is very important to find reconciliatory solu-
tions at different levels of relationships. For example Shi [28] explores ways to
avoid mutual misunderstanding between China and the USA.

7 Conclusions and Future Research

Ability to understand is a pivotal feature of intelligent systems in general and in
software agents and especially in semantic agents in particular. Levels of under-
standing are understanding truth, understanding metaphors, and understanding pa-
taphors. Currently, we focus on understanding truth. In this chapter, spectrum of
machine understanding is presented and an important aspect of machine under-
standing, namely misunderstanding is elaborated systematically for the first time
in the literature. Hence, 90 concepts and terms related with machine understanding
and almost 60 concepts and terms related with machine misunderstanding are pre-
sented; along with rationale why discriminating and identifying types and factors
influencing misunderstanding has pragmatic importance.

Our machine understanding studies started in understanding software and es-
pecially understanding simulation languages and simulation programs [20, 21].
Last decade, we have concentrated on understanding in general and understanding
emotions especially by agents [13, 25]. Our studies on agents able to understand
and process emotions will continue [14]. Our research on development of training
technology (based on agent simulation) for international conflict management
continues. Advances in Semantic Web agents in analyzing text written in natural
language may be very valuable to find reconciliations by analyzing several types
of misunderstandings.

References

1. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Mod-
eling in RDFS and OWL. Morgan Kaufmann, Burlington (2008)

2. Ariely, D.: Predictably Irrational – The Hidden Forces That Shape Our Decisions.
Harper/HarperCollins Publishers, New York (2008)

3. Brown, S.F.: Revolutionary Rail: High-Speed Rail Plan Will Bring Fast Trains to the
U.S. Scientific American 302(5), 54–59 (2010)

4. Business dictionary,
http://www.businessdictionary.com/definition/
cognitive-bias.html

Semantic Agents with Understanding Abilities and Factors 309

5. Changing Minds–on pataphor,
http://changingminds.org/techniques/language/metaphor/
pataphor.htm

6. Crane, T.: The Problem of Perception. Stanford Encyclopedia of Philosophy (2005),
http://plato.stanford.edu/entries/perception-problem/

7. Culture Smart Guides, http://www.kuperard.co.uk/culturesmart/
8. Delen, D.: Business Intelligence and Advanced Analytics for Real World Problems. In:

Güneş, M. (ed.) Proceedings of the 1st International Symposium on Computing in Sci-
ence and Engineering, June 3-5. Gediz University, Turkey (2010) (2010-Invited Paper)

9. Dewey, J.: (Originally published by: D.C. Heath, Lexington, MA)How we Think.
Prometheus Books, Buffalo, NY; Brown, S.F.: (original publication 1910) Revolution-
ary Rail – High-speed trains are coming to the U.S. Scientific American 302(5), 54–57
(2010)

10. Güvenen, O.: Information Systems Security and Information Distortion Impacts on the
Socio-Economic Structures. In: Güneş, M. (ed.) Proceedings of the 1st International
Symposium on Computing in Science and Engineering, June 3-5. Gediz University,
Turkey (2010) (2010-Invited Paper)

11. Hofstede, G., Hofstede, G.J.: Cultures and Organizations – Cultures of the Mind.
McGraw-Hill, New York (2005)

12. Itim International. Geert HofstedeTM Cultural Dimensions,
http://www.geert-hofstede.com/

13. Kazemifard, M., Ghasem-Aghaee, N., Ören, T.I.: Agents with Ability to Understand
Emotions. In: Proceedings of the Summer Computer Simulation Conference, Istanbul,
Turkey, July 13-16. Simulation Series, vol. 41(3), pp. 254–260. SCS, Dan Diego (2009)

14. Kazemifard, M., Ghasem-Aghaee, N., Ören, T.I.: Design and Implementation of GEmA:
A Generic Emotional Agent. In: Expert Systems with Applications (In Press, 2011)

15. Kruger, J., Dunning, D.: Unskilled and Unaware of It: How Difficulties in Recognizing
One’s Own Incompetence Lead to Inflated Self-Assessments. Psychology 1, 30–46 (2009)

16. Lewis, R.D.: When Cultures Collide – Managing Successfully Across Cultures. Nicho-
las Brealey, London (2000)

17. Minsky, M.: The Emotion Machine: Commonsense Thinking, Artificial Intelligence,
and the Future of the Human Mind. Simon & Schuster, New York (2006)

18. Ören, T.I.: Understanding: A Taxonomy and Performance Factors. In: Thiel, D. (ed.)
Proc. of FOODSIM 2000, Nantes, France, June 26-27, pp. 3–10. SCS, San Diego
(2000) (2000 – Invited Opening Paper)

19. Ören, T.I.: Synergies of Simulation, Agents, and Systems Engineering. In: Güneş, M.
(ed.) Proceedings of the 1st International Symposium on Computing in Science and
Engineering, June 3-5. Gediz University, Turkey (2010) (2010–Invited Paper)

20. Ören, T.I., Abou-Rabia, O., King, D.G., Birta, L.G., Wendt, R.N.: Reverse Engineer-
ing in Simulation Program Understanding. In: Jávor, A. (ed.) Problem Solving by
Simulation, Proceedings of IMACS European Simulation Meeting, Esztergom, Hun-
gary, August 28-30, pp. 35–41 (1990/1990a) (Plenary Paper)

21. Ören, T.I., Birta, L.G., Abou-Rabia, O., King, D.G., Wendt, R.N.: E/Slam: A Software
Understanding Environment for SLAM II Programs. In: Proceedings of European
Simulation Multiconference, Erlangen-Nuremberg, Germany, June 10-13, pp. 235–
240. SCS International, San Diego (1990/1990b)

310 T. Ören and L. Yılmaz

22. Ören, T.I., Ghasem-Aghaee, N., Yilmaz, L.: An Ontology-Based Dictionary of Under-
standing as a Basis for Software Agents with Understanding Abilities. In: Proceed-
ings of the Spring Simulation Multiconference (SpringSim 2007), Norfolk, VA, March
25-29, pp. 19–27 (2007) ISBN: 1-56555-313-6

23. Ören, T.I., Yilmaz, L.: Failure Avoidance in Agent-Directed Simulation: Beyond Con-
ventional V&V and QA. In: Yilmaz, L., Ören, T.I. (eds.) Agent-Directed Simulation and
Systems Engineering. Systems Engineering Series, pp. 189–217. Wiley, Berlin (2009a)

24. Ören, T.I., Yilmaz, L.: On the Synergy of Simulation and Agents: An Innovation Para-
digm Perspective. Special Issue on Agent-Directed Simulation. The International Jour-
nal of Intelligent Control and Systems (IJICS) 14(1), 4–19 (2009/2009b)

25. Ören, T.I., Yilmaz, L., Kazemifard, M., Ghasem-Aghaee, N.: Multi-understanding: A
Basis for Switchable Understanding for Agents. In: Proceedings of the Summer Com-
puter Simulation Conference, Istanbul, Turkey, July 13-16. Simulation Series,
vol. 41(3), pp. 395–402. SCS, Dan Diego (2009)

26. PoorMohamadBagher, L., Kaedi, M., Ghasem-Aghaee, N., Ören, T.I.: Anger Evaluation
for Fuzzy Agents with Dynamic Personality. In: Mathematical and Computer Modelling
of Dynamical Systems (MCMDS), December 6, vol. 15(6), pp. 535–553 (2009)

27. XBRL Glossary, http://www.altova.com/xbrl-glossary.html
28. Shi, T.: Avoiding Mutual Misunderstanding: Sino-U.S. Relations and the New Admini-

stration. In: Carnegie Endowment for International Peace, Washington, D.C (2009)
29. Srisonthi, T.: A Cognitive Complexity as a Factor to Understanding/ Misunderstanding

in e-Mail Communication. Academic Review 3(1) (2004)
30. Stanovich, K.E.: Dysrationalia: A New Specific Learning Disability. Journal of Learn-

ing Disabilities 26(8), 501–515 (1993)
31. Stanovich, K.E.: Rational and Irrational Thought: The Thinking That IQ Tests Miss.

Scientific American Mind (November 2009)
32. Yilmaz, L., Ören, T.I. (eds.): (All Chapters by Invited Contributors). Agent-Directed

Simulation and Systems Engineering. Wiley Series in Systems Engineering and Man-
agement, p. 520. Wiley, Berlin (2009)

33. Zeigler, B.P.: Systems Knowledge: A Definition and its Implications. In: Elzas, M.S.,
Ören, T.I., Zeigler, B.P. (eds.) Modelling and Simulation Methodology in the Artificial
Intelligence Era, pp. 15–17. North-Holland, Amsterdam (1986)

Appendix A

Concepts and Terms Related with Machine Understanding

adaptive understanding generalized understanding

analogical understanding group understanding

apprehension incorrupt understanding

associative understanding in-depth understanding

autonomous understanding indirect understanding

blackboard understanding individual understanding

bottom up understanding instantiated understanding

brittle understanding internal understanding

Semantic Agents with Understanding Abilities and Factors 311

broad understanding invalid understanding

broadcasted understanding learning understanding

clear understanding legacy understanding

coarse understanding lexical understanding

comprehension local understanding

computational understanding logical understanding

computer understanding machine understanding

computerized understanding mediated understanding

context-sensitive understanding mode of understanding

context understanding morphological understanding

cooperative understanding multiaspect understanding

cumulative understanding multimodal understanding

deep understanding multivision understanding

delegated understanding mutual understanding

detailed understanding objective understanding

direct understanding parallel understanding

distributed understanding partially repetitive understanding

entire understanding pragmatic understanding

evolving understanding pre-understanding

external understanding product of multi-understanding

focused understanding product of single understanding

product of understanding tailored understanding

re-initialized understanding top-down understanding

reliable understanding type of understanding

remote understanding understander

product of understanding understanding

re-initialized understanding understanding context

repetitive understanding understanding for subscribers

robust understanding understanding initiator system

self understanding understanding metaphor

semantic understanding understanding pataphor

sequential understanding understanding per command

shallow understanding understanding process

single understanding understanding reality

single vision understanding understanding system

312 T. Ören and L. Yılmaz

specialized understanding understood knowledge

subjective understanding unimodal understanding

switchable understanding valid understanding

syntactic understanding verified understanding

tabula rasa understanding

Appendix B

Concepts and Terms Related with Machine Misunderstanding

anger-induced misunderstanding fallacy in understanding

cognitive bias in understanding incomplete meta-model in understanding

context-dependent misunderstanding inconsistent meta-model in understanding

context-insensitive understanding irrationality in understanding

corrupt understanding irrelevant meta-model in understanding

culture-induced misunderstanding paralogism in understanding

deliberate misinterpretation personality in misunderstanding

deliberate misperception sophism in understanding

deliberate misunderstanding emotive bias in understanding

deliberate use of unfit meta-model erroneous understanding

distorted understanding hallucination

doctored (or tempered) data illusion

doctored (or tempered) evidence inability to understand

dogmatic understanding incomplete understanding

double standards in understanding inconsistent understanding

Dunning-Kruger effect in understanding induced misunderstanding

effect of: fallacy in understanding

-cognitive complexity in understanding incomplete meta-model in understanding

-confusion in misunderstanding inconsistent meta-model in understanding

-corrupt meta-model in understanding irrationality in understanding

dysrationalia in understanding irrelevant meta-model in understanding

erroneous interpretation in understanding paralogism in understanding

erroneous meta-model in understanding personality in misunderstanding

erroneous perception in understanding sophism in understanding

Semantic Agents with Understanding Abilities and Factors 313

emotive bias in understanding mutual misunderstanding

erroneous understanding perceptual confusion

hallucination personal bias in understanding

illusion Rorschach effect in understanding

inability to understand schizophrenic understanding

incomplete understanding Socratically induced misunderstanding

inconsistent understanding speaker-induced misunderstanding

induced misunderstanding stress-induced misunderstanding

information distortion tempered (or doctored) data

irrelevant understanding tempered (or doctored) evidence

miscognition tunnel-vision understanding

misinterpretation unfit meta-model in understanding

misperception unreliable understanding

misunderstanding unverified understanding

Author Index

Biffl, Stefan 215
Boley, Harold 3
Bravo, Maricela 113

Çelik, Duygu 133
Christiaens, Stijn 69

De Leenheer, Pieter 69
de Moor, Aldo 69
Dourlens, Sébastien 159

Elçi, Atilla 133
Euzenat, Jérôme 89

Fornara, Nicoletta 25

Ganchev, Ivan 243

Lin, Jing 189

Maret, Pierre 47
Meere, Damien 243
Merdan, Munir 215
Miller, Ann 189
Moser, Thomas 215

Nakatsuji, Makoto 273

O’Droma, Máirt́ın 243
Ören, Tuncer 295

Paschke, Adrian 3
Payne, Terry R. 89

Ramdane-Chérif, Amar 159

Sedigh, Sahra 189
Stoyanov, Stanimir 243
Subercaze, Julien 47

Tamma, Valentina 89
Trojahn, Cássia 89

Valkanova, Veselina 243
Vallée, Mathieu 215

Yılmaz, Levent 295

Zedan, Hussein 243

	Title
	Preface
	Contents
	Part I Introduction to Agents and Semantics
	Rule Responder Agents Framework and Instantiations
	Introduction
	The Rule Responder Framework
	Mule Enterprise Service Bus
	Selected Platform-Specific Rule Engines for Rule Responder Agents

	Rule Responder Agents
	Organizational Agent
	Personal Agents
	External Agents
	Responsibility Assignment Matrix

	Translation between Rule Responder Agents
	Rule Responder Instantiations
	SymposiumPlanner
	WellnessRules
	PatientSupporter
	Reputation Management System
	Semantic Complex Event Processing Agent Network

	Conclusion
	References

	Specifying and Monitoring Obligations in Open Multiagent Systems Using Semantic WebTechnology
	Introduction
	Other Approaches
	OWL and SWRL
	An Application Independent Ontology for Modelling and Monitoring Agents' Interactions
	Modelling Time, Events, and Fluents
	An Example of a Domain Dependent Ontology
	Representing Events, Actions, and the Elapsing of Time
	Representing Specific Obligations
	Monitoring the State of Obligations
	Possible Type of Obligations

	A Case Study: Obligations in Vehicle Repair Contracts
	Conclusions and Future Works
	References

	Programming Semantic Agent for Distributed Knowledge Management
	Introduction and Motivation
	Building Agents with Semantic Rules
	Architecture Design
	SAM Architecture
	Control Structure
	Execution Stack
	Language Syntax

	Semantic Agent Model
	Defining New Actions

	Example
	Execution Phase

	Implementation
	Perspectives
	Conclusion
	References

	Part II Engineering Semantic Agent Systems
	SBVR-Driven Information Governance: A Case Study in the Flemish Public Administration
	Closed World Syndrome
	Just-in-Time Information
	The Gap between Business and Technical Metadata
	Business Drivers to Bridge the Gap
	Documentation
	Communication
	Reuse
	Impact Analysis
	Disambiguation
	Uniformity
	Compliance

	Metadata Landscape Dimensions
	Metadata Landscape SWOT Analysis
	Business Semantics Management
	Fact-Orientation
	Collaborative Business Semantics Modelling with SBVR
	Business Semantics Structure
	Business Semantics in Practice

	Business Semantics Glossary
	Enterprise Information Model

	Full-Cycle BSM: Validation and Feedback
	IT/IS-Driven Validation
	Business-Driven Validation

	Metadata Architecture and Governance
	Conclusion
	References

	Argumentation for Reconciling Agent Ontologies
	Introduction
	Foundations: Alignment and Argumentation Frameworks
	Ontology Matching
	Argumentation Frameworks

	Argumentation Frameworks for Alignment Agreement
	Arguments on Correspondences
	Strength-Based Argumentation Framework (SVAF)
	Voting-Based Argumentation Framework (VVAF)

	Argumentation over Alignments
	Argumentation over Alignments for Communication in Multi-agent Systems
	Solving Conflicts between Matcher Agents

	Weaknesses and Challenges
	Other Related Work
	FinalRemarks
	References

	Measuring Complexity for MAS Design in the Presence of Ontology Heterogeneity
	Introduction
	MAS Communication Overview
	Ontologies for Inter-agent Communication
	Problem Formulation

	MAS Architectural Design
	Architectural Considerations
	Associated Costs

	Basic Measures
	Centralized Architecture
	Translation Costs
	Ontology Costs

	Distributed Architecture
	Distributed Architecture with Translators
	Distributed Architecture with Learning Capabilities
	Coordination or Intermediation Costs

	Experimental Case
	Cost of a Centralized Architecture
	Cost of a Distributed Architecture

	Results Discussion
	Conclusions
	References

	Ontology-Based Matchmaking and Composition of Business Processes
	Introduction
	Contributions
	Theoretical Background
	System Architecture
	Semantic-Based Matching for a Composition Plan
	Semantic Matching Step (SMS)
	Revised Armstrong’s Axioms (RAAs)
	Inferencing in SCA: A Case Study
	Conclusion
	References

	Semantic Architecture for Human Robot Interaction
	Background
	Related Work
	Multimodal Interaction Architecture Design
	Semantic Agent Memory
	Multimodal Interaction Agents
	Fusion Agent
	Management Agent
	Fission Agent

	Networking
	Protocols
	Event Messages
	Semantic Agencies

	Development Platform
	Application to an Assistant Robot
	Robot Composition
	Robot at Home
	Robot in the City

	Conclusion and Future Work
	References

	Part III Applications of Semantic Agent Systems
	A Semantic Agent Framework for Cyber-Physical Systems
	Introduction
	Background Work
	Agent-Based Modeling Technology
	Definition of the Agents
	Construction of an Agent-Based Model

	Semantic Interpretation Services
	Sensor Information Ontology
	Model for Semantic Services
	Semantic Agent Framework
	Data Type Processing
	Implementation in C++

	Conclusions
	References

	A Layered Manufacturing System Architecture Supported with Semantic Agent Capabilities
	Introduction
	State of the Art
	Centralized Manufacturing System Control
	Multi-Agent Systems as Foundation for Decentralized Control
	Agent Systems Facilitated by Semantic Technologies

	Research Issues
	A Layered Manufacturing System Architecture
	The Management Layer
	Enterprise Resource Planning (ERP) and Virtual Enterprises
	Layers and Agents
	Production Process Cycle

	The Planning and Scheduling Layers
	Planning
	Application of Agents in Process Planning
	Production Scheduling
	Integration of Process Planning and Scheduling
	Planning and Scheduling in the Assembly Domain

	The Execution Layer
	Requirements of the Execution Layer
	Semantic Agents for the Execution Layer
	Lessons Learned – Practical Use of Semantic Agent Technologies

	Conclusion and Further Work
	References

	Semantic Multi-Agent mLearning System
	Introduction
	Related Works
	InfoStation-Based Network Architecture
	Context-Aware Service Provision
	Layered System Architecture
	Agent-Oriented Middleware Architecture
	Using the Ontology Web Language for Services (OWL-S)
	Context-Aware Management of Service Sessions
	User-Based Service Contextualisation and Adaptation
	Sample/mTest Service Provision
	Implementation Issues
	Conclusion
	References

	Identifying Novel Topics Based on User Interests
	Introduction
	Related Works
	Collaborative Filtering
	Modeling User Interests According to the Taxonomy
	Measuring Similarity of Users
	Approach
	Algorithm
	Example

	Novel Topic Identification
	Offline Experiments
	Investigating Accuracy
	Analyzing Suitable Size of User Group to Identify Novel Topics
	Investigating User Interest Distribution According to the Score of Novelty

	Online Experimental Results
	Explaining Our Online Experiment
	Investigating Continuance of User Access to Our Recommendation List
	Evaluating Identification of Novel Topics
	Evaluating Activation of Blog Community

	Conclusion
	References

	Part IV Future Outlook
	Semantic Agents with Understanding Abilities and Factors Affecting Misunderstanding
	Introduction
	Machine Understanding
	Motivation: The Role of Understanding in Decision Support
	Agents, Semantic Agents, and Pivotal Role of Machine Understanding
	Synergies of Agents and Semantic Agents with Simulation and Systems Engineering

	Machine Understanding Systems and Agents with Understanding Abilities
	Types of Single Understanding
	Machine Understanding from the Point of View of Product of Understanding
	Machine Understanding from the Point of View of Process to Understand
	Machine Understanding from the Point of View of Meta-Model of Understanding
	Machine Understanding from the Point of View of Characteristics of Understanding System

	Multi-understanding
	Role of Meta-Models in Multi-understanding
	Role of Perception in Multi-understanding
	Role of Interpretation in Understanding

	Switchable Understanding
	Misunderstanding
	Ability/Inability to Understand
	Role of Context in Misunderstanding
	Role of Biases in Misunderstanding
	Role of Fallacies in Misunderstanding

	Conclusions and Future Research
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

