

Lecture Notes in Computer Science 6518
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Yasubumi Sakakibara Yongli Mi (Eds.)

DNA Computing and
Molecular Programming
16th International Conference, DNA 16
Hong Kong, China, June 14-17, 2010
Revised Selected Papers

13

Volume Editors

Yasubumi Sakakibara
Keio University, Department of Biosciences and Informatics
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
E-mail: yasu@bio.keio.ac.jp

Yongli Mi
Hong Kong University of Science and Technology
Department of Chemical and Biomolecular Engineering
Clear Water Bay, Kowloon, Hong Kong, China
E-mail: keymix@ust.hk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-18304-1 e-ISBN 978-3-642-18305-8
DOI 10.1007/978-3-642-18305-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010942453

CR Subject Classification (1998): F.1, F.2.2, J.3, E.1, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 16th International Meeting on DNA Computing and Molecular Program-
ming was held during June 14–17, 2010 in Hong Kong University of Science and
Technology, Hong Kong. This conference series serves as one of the many task
forces aimed at achieving a mission to establish biomolecular computing in life
science. Through the efforts of many scientists in the past 16 years, accomplish-
ments from DNA computing to programmed construction of 1D, 2D, 3D DNA
scaffolds, and DNA origami have been achieved and reported. Participants of this
conference carry out well-funded research projects in DNA-controlled drug de-
livery systems, DNA nanomachines, DNA-induced information storage devices,
DNA scaffolds and patterning, etc. Scientists, engineers, and students meet at
this time every year to present new results and project foreseeable goals for the
future.

The scientific program included three tutorials, six invited lectures, 23 oral
presentations, and 31 posters. The topics were well balanced between theoret-
ical and experimental work. The meeting began with tutorial talks by John
Reif, Chengde Mao, and Brian Wolfe. During the meeting, a number of excellent
keynote speakers gave an up-to-date overview of different aspects of DNA com-
puting and biochemical information processing. We express our appreciation to
Ned Seeman, Akira Suyama, Christina Smolke, Satoshi Kobayashi, David Solove-
ichik, and Erik Demaine for their excellent keynote talks. Thanks are also given
to all the authors of the oral presentations and posters. Their efforts made this
meeting possible.

In total, the meeting was attended by 92 researchers from 13 countries: Canada,
China, Finland, Germany, Ireland, Israel, Italy, Japan, South Korea, Singapore,
Spain, UK, USA. The DNA16 Program Committee received a total number of 59
submissions, of which 23 were presented orally. This proceedings volume contains
improved versions of 16 papers selected from these oral contributions.

The editors would like to thank the members of the Program Committee
and the reviewers for all their hard work reviewing papers and providing con-
structive comments to authors. We give thanks to Natasha Jonaska, the Chair
of the Steering Committee, Llyod Smith, the Co-chair of the Program Commit-
tee, and Shihua Zhang for maintaining the conference website and facilitating
communications.

October 2010 Yasubumi Sakakibara
Yongli Mi

Organization

DNA16 was organized by Hong Kong University of Science and Technology.

Program Committee

Yasubumi Sakakibara Keio University, Japan
(Co-chair)

Lloyd Smith (Co-chair) University of Wisconsin, USA
Luca Cardelli Microsoft Research, Cambridge, UK
Anne Condon University of British Columbia, Canada
Russel Deaton University of Arkansas, USA
Giuditta Franco University of Verona, Italy
Max Garzon University of Memphis, USA
Masami Hagiya University of Tokyo, Japan
Lila Kari University of Western Ontario, Canada
Ehud Keinan Technion University, Israel
Eric Klavins University of Washington, USA
Dongsheng Liu Tsinghua University, China
Chengde Mao Purdue University, USA
Giancarlo Mauri University of Milan-Bicocca, Italy
Yongli Mi Hong Kong University of Science and

Technology, Hong Kong
Satoshi Murata Tokyo Institute of Technology, Japan
Andrei Paun Louisiana Technology University, USA
John Reif Duke University, USA
Nadrian Seeman New York University, USA
David Soloveichik California Institute of Technology, USA
Darko Stefanovic University of New Mexico, USA
Andrew Turberfield University of Oxford, UK
Hao Yan Arizona State University, USA

Organizing Committee

Yongli Mi (Chair) Hong Kong University of Science and
Technology, Hong Kong

Dongsheng Liu (Co-chair) Tsinghua University, China

VIII Organization

Steering Committee

Natasha Jonoska (Chair) University of South Florida, USA
Leonard Adleman University of Southern California, USA

(honorary member)
Luca Cardelli Microsoft Research, Cambridge UK
Anne Condon University of British Columbia, Canada
Masami Hagiya University of Tokyo, Japan
Lila Kari University of Western Ontario, Canada
Chengde Mao Purdue University, USA
Giancarlo Mauri University of Milan-Bicocca, Italy
Satoshi Murata Tokyo Institute of Technology, Japan
John Reif Duke University, USA
Grzegorz Rozenberg University of Leiden, The Netherlands
Nadrian Seeman New York University, USA
Andrew Tuberfield Oxford University, UK
Erik Winfree Caltech, USA

External Reviewers

Alberto Leporati
Andrew Neel
Antonio E. Porreca
Bogdan Tanase
Claudio Ferretti
Dario Pescini
David Doty
Fumiaki Tanaka

Georg Seelig
Harish Chandran
Ibuki Kawamata
Ionut Tutu
Leigh Fanning
Mark Olah
Matthew Lockett
Natasha Jonoska

Nathanael Aubert
Nikhil Gopalkrishnan
Oleg Semenov
Peiyou Song
Satoshi Kobayashi
Shinnosuke Seki
Sudheer Sahu

Sponsoring Institutions

Institute for Advanced Study of the Hong Kong University of Science and
Technology

School of Engineering and the Department of Chemical and Biomolecular
Engineering of the Hong Kong University of Science and Technology

Lee Hysan Foundation

Table of Contents

Improving Efficiency of 3-SAT-Solving Tile Systems 1
Yuriy Brun

Optimizing Tile Concentrations to Minimize Errors and Time for DNA
Tile Self-assembly Systems . 13

Ho-Lin Chen and Ming-Yang Kao

Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits
Using DNA Strand Displacement . 25

Ehsan Chiniforooshan, David Doty, Lila Kari, and Shinnosuke Seki

Negative Interactions in Irreversible Self-assembly . 37
David Doty, Lila Kari, and Benôıt Masson

Search and Validation of Short Genome-Wide Biomarkers for Bacterial
Biological Phylogenies . 49

Max H. Garzon and Tit-Yee Wong

High-Fidelity DNA Hybridization Using Programmable Molecular
DNA Devices . 59

Nikhil Gopalkrishnan, Harish Chandran, and John Reif

Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly 71
Mika Göös and Pekka Orponen

Operation of a DNA-Based Autocatalytic Network in Serum 83
Elton Graugnard, Amber Cox, Jeunghoon Lee, Cheryl Jorcyk,
Bernard Yurke, and William L. Hughes

Triangular Tile Self-assembly Systems . 89
Lila Kari, Shinnosuke Seki, and Zhi Xu

Randomized Self Assembly of Rectangular Nano Structures 100
Vamsi Kundeti and Sanguthevar Rajasekaran

Design of a Functional Nanomaterial with Recognition Ability for
Constructing Light-Driven Nanodevices . 112

Xingguo Liang, Toshio Mochizuki, Taiga Fujii,
Hiromu Kashida, and Hiroyuki Asanuma

Efficient Turing-Universal Computation with DNA Polymers 123
Lulu Qian, David Soloveichik, and Erik Winfree

X Table of Contents

Reversible Transition of Photonic DNA Automaton Using Hairpin-DNA
Responding to a Single Kind of Photonic Signal . 141

Hiroto Sakai, Yusuke Ogura, and Jun Tanida

Simple Evolution of Complex Crystal Species . 147
Rebecca Schulman and Erik Winfree

Towards Domain-Based Sequence Design for DNA Strand Displacement
Reactions . 162

David Yu Zhang

DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits 176
David Yu Zhang and Georg Seelig

Author Index . 187

Improving Efficiency of
3-SAT-Solving Tile Systems

Yuriy Brun

University of Washington, Seattle, WA 98195-2350, USA
brun@cs.washington.edu

Abstract. The tile assembly model has allowed the study of the nature’s
process of self-assembly and the development of self-assembling systems
for solving complex computational problems. Research into this model
has led to progress in two distinct classes of computational systems:
Internet-sized distributed computation, such as software architectures
for computational grids, and molecular computation, such as DNA com-
puting. The design of large complex tile systems that emulate Turing ma-
chines has shown that the tile assembly model is Turing universal, while
the design of small tile systems that implement simple algorithms has
shown that tile assembly can be used to build private, fault-tolerant, and
scalable distributed software systems and robust molecular machines.
However, in order for these types of systems to compete with traditional
computing devices, we must demonstrate that fairly simple tile systems
can implement complex and intricate algorithms for important problems.
The state of the art, however, requires vastly complex tile systems with
large tile sets to implement such algorithms.

In this paper, I present SFS , a tile system that decides 3-SAT by
creating O�(1.8393n) nondeterministic assemblies in parallel, while the
previous best known solution requires Θ(2n) such assemblies. In some
sense, this tile system follows the most complex algorithm implemented
using tiles to date. I analyze that the number of required parallel assem-
blies is O�(1.8393n), that the size of the system’s tileset is 147 = Θ(1),
and that the assembly time is nondeterministic linear in the size of the
input. This work directly improves the time and space complexities of
tile-inspired computational-grid architectures and bridges theory and to-
day’s experimental limitations of DNA computing.

1 Introduction

Self-assembly is a process by which simple objects in nature combine and co-
ordinate to form complex objects. For computer scientists, it is interesting to
study self-assembly from a computational point of view as self-assembling sys-
tems have been shown capable of computing functions [2,19], assembling complex
shapes [15,17], and guiding distributed robotics systems [1,12].

The tile assembly model [20,15] is a formal mathematical model that allows
studying the time and space complexities of self-assembling systems. Winfree
showed that the tile assembly model is Turing universal [19] by demonstrating

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 Y. Brun

that tile systems can emulate Turning machines. Adleman has identified two
important measures of tile systems: assembly time and tileset size; in some ways,
these measures are analogous to the time and space complexities of traditional
computer programs [2].

Study of tile systems has led to two types of computational systems: Internet-
sized distributed grids [8] and molecular computers [2]. Both types benefit from
efficient tile systems with small tilesets: the speed of computational grids is
proportional to the number of tile types [8] and the state of the art in DNA
computation is systems with no more than tens of distinct tile types [3,14]. Win-
free’s universal tile systems are in some sense inefficient and require thousands
of distinct tile types [19]. Lagoudakis et al. [11] presented a tile system that
solves 3-SAT , though their best solution required Θ(n2) distinct tile types and
Θ(2n) distinct nondeterministic assemblies to solve an n-variable problem, re-
sulting in over 105 distinct tile types and 1015 distinct assemblies necessary to
solve a 50-variable problem. I have begun the work of reducing the complex-
ity by designing tile systems that solve complex computational problems using
relatively small tilesets (e.g., adding using 8 distinct tile types [4], multiplying
using 28 [4], factoring integers nondeterministically using 50 [5], and solving two
NP-complete problems nondeterministically, 3-SAT using 64 [7] and SubsetSum
using 49 [6]). However, thus far, existing tile systems implement only the most
näıve, simple, and inefficient algorithms. For example, today’s best known NP-
complete problem-solving tile systems require Θ (2n) distinct assemblies for an
input of size n. While we do not know of polynomial-time algorithms to solve
such problems, we do know of exponential-time algorithms with a base smaller
than 2 [21]. Here, I present a tile system that implements a somewhat complex
known algorithm for solving 3-SAT using only O�(1.8393n) distinct assemblies
(where the O� notation hides constant and polynomial factors). This system uses
147 distinct tile types and demonstrates that complex algorithms can be imple-
mented using tiles in a systematic manner, (1) directly improving the time and
space complexities of tile-inspired computational-grid architectures [8] and (2)
bridging theory and today’s experimental limitations of DNA computing [2,3].

3-SAT is a well known NP-complete problem of deciding whether a 3CNF
Boolean formula is satisfiable. The näıve algorithms for solving 3-SAT explore
the Θ (2n) distinct assignments, for formulae with n distinct variables, checking
if any one of them satisfies the formula. While we are unaware of subexponential-
time algorithms to solve NP-complete problems, there are algorithms that per-
form in exponential time but with a base smaller than 2. Woeginger [21] provides
a fairly complete survey of more-efficient exponential-time algorithms for 3-SAT ,
one of which I employ here. For my discussion, I define the O� notation, which
is similar to the O notation but ignores both constant and polynomial factors.
Thus I will say O�(m(x)) for a complexity of the form O(m(x) · poly(x)). The
justification for this notation is that the exponential growth of m(x) will dom-
inate all polynomial factors for large x. For example, if f is a function such
that f(x) = O

(
1.4142xx4

)
, then I write f(x) = O�(1.4142x). Note that the

exponential term dominates and one could say f(x) = O(1.4143x) and forgo the

Improving Efficiency of 3-SAT-Solving Tile Systems 3

O� notation altogether; however, that would not most accurately describe the
functions.

While the näıve algorithms explore each of the possible 2n truth assignments
to the n variables, a more intricate algorithm can explore a subset of those as-
signments by noting the following fact: if the Boolean formula contains the clause
(x1 ∨ ¬x2 ∨ x3), then the algorithm need not explore any of the 2(n−3) assign-
ments with x1 = x3 = FALSE and x2 = TRUE because this clause would not
be satisfied by any of those assignments. Instead, the algorithm explores only
assignment with (1) x1 = TRUE , or (2) x1 = x2 = FALSE , or (3) x1 = FALSE ,
x2 = TRUE , and x3 = TRUE . Thus, deciding an n-variable m-clause Boolean
formula can be done by recursively deciding three Boolean formulae: each with
one fewer clause and with one, two, and three fewer variables, respectively. Thus
if T (n, m) denotes the time necessary to decide an n-variable m-clause Boolean
formula, then T (n, m) = O(1)+T (n−1, m−1)+T (n−2, m−1)+T (n−3, m−1).
This recurrence has the closed form solution T (n, m) = O�(1.8393n) [21]. By
examining the branching step, it is possible to improve the algorithm further
to an O�(1.6181n) algorithm [13]. Using quantitative analysis of the number
of resulting 2-clauses from such branching improves the time complexity to
O�(1.5783n) [16]. The champion algorithm using this technique achieves a time
complexity of O�(1.4963n) [9,10], and other techniques result in even faster algo-
rithms [21]. It is not my goal to explore the fastest such algorithm here, but rather
to demonstrate that it is possible to implement one such complex algorithm us-
ing a tile system with a small tileset. I will thus concentrate on developing a tile
system that follows the O�(1.8393n) algorithm, and argue that since the other
algorithms are similar, it is possible to design tile systems for those algorithms
as well.

2 Tile Assembly Model

The tile assembly model [20,15] is a formal model of crystal growth. It was
designed to model self-assembly of molecules such as DNA. It is an extension of
a model proposed by Wang [18]. The model was fully defined in [15], and the
definitions I use are similar to those. Full formal definitions can be found in [7].

Intuitively, the model has tiles, or squares, that stick or do not stick together
based on various binding domains on their four sides. Each tile is a four tuple
of binding domains, one on each (north, east, south, and west) of its sides.
The special empty = 〈null, null, null, null〉 tile denotes an empty position. The
four binding domains, elements of a finite alphabet Σ, define the type of the
tile. The strength of the binding domains are defined by the strength function
g : Σ × Σ → N. A mapping from positions on a 2-D grid to tiles is called a
configuration, and a tile may attach in empty positions on the grid if the total
strength of all the binding domains on that tile that match its neighbors exceeds
the current temperature. Finally, a tile system S is a triple 〈T, g, τ〉, where T is a
finite set of tiles, g is a strength function, and τ ∈ N = Z≥0 is the temperature.

4 Y. Brun

Starting from a seed configuration S, tiles may attach to form new configura-
tions. If that process terminates, the resulting configuration is said to be final.
At some times, it may be possible for more than one tile to attach at a given
position, or there may be more than one position where a tile can attach. If for
all sequences of tile attachments, all possible final configurations are identical,
then S is said to produce a unique final configuration on S. The assembly time of
the system is the minimal number of steps it takes to build a final configuration,
assuming maximum parallelism.

In solving NP-complete problems, it is important to compute a particular
subset of functions: the characteristic functions of subsets of the natural numbers.
A characteristic function of a set has value 1 on arguments that are elements of
that set and value 0 on arguments that are not elements of that set. Typically, in
computer science, programs and systems that compute such functions are said
to decide the set. Since for all constants n ∈ N, the cardinalities of Nn and N are
the same, one can encode an element of Nn as an element of N. Thus it makes
sense to talk about deciding subsets of Nn. Let Ω ⊆ Nm be a set. A tile system
S = 〈T, g, τ〉 nondeterministically decides Ω with identifier tile r ∈ T iff for all
a ∈ Nm, there exists a seed configuration S that encodes a and for all final
configurations F that S produces on S, r ∈ F (Z2) iff a ∈ Ω, and there exists at
least one final configuration F with r attached. In other words, the identifier tile
r attaches to one or more of the nondeterministic executions iff the seed encodes
an element of Ω. I call the set of tiles used to encode the input Γ .

I have given informal definitions to assist the reader in understanding the
system I discuss in this paper and I refer the reader to [7] for more formal
definitions.

3 Solving 3-SAT Efficiently with Tiles

Implementing algorithms in the tile assembly model is not unlike implementing
algorithms using Turing machines, or programming using a low-level language,
such as assembly. The complexity of that process has led to only simple al-
gorithms implemented into tile systems. Here, I propose the tile system SFS

(FS stands for “fast satisfiability”) that implements the O�(1.8393n) algorithm
for solving 3-SAT . The algorithm’s running time implies that SFS will create
O�(1.8393n) distinct assemblies to decide an n-variable formula.

SFS is a combination of several subsystems, each with a distinct job. Fig-
ure 1 shows the general placement of the distinct subsystems on a 2-D grid. The
overall system will construct a right triangle, starting from region I, which en-
codes a Boolean formula φ. Region II will examine the eastmost clause of φ and
determine which literals have not been assigned a value (at the start of the com-
putation, there will always be 3 unassigned literals in each clause of a 3-SAT
formula, but as the algorithm makes assignment decisions, clauses may have
fewer such literals). Region III will make the nondeterministic decision on what

Improving Efficiency of 3-SAT-Solving Tile Systems 5

I

1 clause

III

VI

VII

II

IV
V

Fig. 1. A schematic of the seven regions SFS will use to decide 3-SAT .

assignments to make regarding the unassigned literals in the eastmost clause.
Region IV will prepare the literals of the eastmost clause to be assigned by the
decision made in region III, and region V will make those assignments. Region
VI will simplify the rest of φ based on those assignments. At the top of region
VI, the simplified φ, with one fewer clause, will emerge to serve as the input (like
region I) for the remainder of the computation in region VII. That is, SFS will
operate recursively in Region VII on the simplified φ.

The rest of this section demonstrates that SFS decides 3-SAT requiring only
O�(1.8393n) distinct assemblies. Due to space limitations, I am unable to include
the appropriate details and proofs here.

3.1 Notations and Definitions

Let φ be a Boolean formula. Let n be the number of distinct variables and m be
the number of clauses in φ. A literal over a variable x is an element of {x, ¬x}.
As is common, I assume that no clause of φ contains more than one literal over
the same variable.

For all m, for all n, for all n-variable, m-clause 3CNF Boolean formulae φ, φ
is a general 3CNF Boolean formula iff each of the three literals of each clause
either is identically a variable, is the negation of a variable, or is represented by
TRUE or FALSE and no pair of literals within each clause are over the same
variable.

The tile system SFS will operate at temperature 2, and will use a fairly
straightforward strength function gFS over the set of binding domains ΣFS =
{null, t, bt, bbt, ft, fft, fbt, bft, T, F, @, @�, 0, 1, 0t, 1t, 0f, 1f, x, ¬x, x�, ¬x�,
c, #, 0#, 1#, #f, #t, : :, 0 :, 1 :, 2 :, 3 :, 0 :�, 1 :�, 2 :�, 1 :1, 1 :1�, 2 :1, 2 :1�, 3 :1,
2 :2, 2 :2�, 3 :2, 2 :12, 2 :12�, 3 :12, ��, �, |}. For the most part, gFS will match two
identical binding domains to 1, and two different binding domains to 0, with a
few special wildcard binding domains that will map to 1 even with some un-
matching domains. In other words, all attachments are either strength 0 or 1, as
described in Figure 2.

6 Y. Brun

Intuitively, gFS is such that: Formally, gFS : ΣFS×ΣFS → {0, 1} such that:
0. null does not attach to anything, for all σ ∈ ΣFS , gFS (null, σ) = gFS (σ, null)

= 0,
1. every binding domain attaches to it-

self,
for all σ ∈ ΣFS \ {null}, gFS (σ, σ) = 1,

2. # attaches to 0, 1, x, ¬x, 1f, 1t, 0f ,
0t, T, and F,

for all σ ∈ {0, 1, x,¬x, 1f , 1t, 0f, 0t, T, F},
gFS (#, σ) = gFS (σ, #) = 1,

3. : : attaches to 0 :, 1 :, 2 :, 1 :1, 2 :1, 2 :2,
and 2 :12,

for all σ ∈ {0 :, 1 :, 2 :, 1 :1, 2 :1, 2 :2, 2 :12},
gFS (: :, σ) = gFS (σ, : :) = 1,

4. #f attaches to 0f, 1f , and F, for all σ ∈ {0f , 1f, F}, gFS (#f, σ) =
gFS (σ, #f) = 1,

5. #t attaches to 0t, 1t, and T, for all σ ∈ {0t, 1t, T}, gFS (#t, σ) =
gFS (σ, #t) = 1,

6. 0# attaches to 0, 0f , and 0t, for all σ ∈ {0, 0f, 0t}, gFS (0#, σ) =
gFS (σ, 0#) = 1,

7. 1# attaches to 1, 1f , and 1t, for all σ ∈ {1, 1f, 1t}, gFS (1#, σ) =
gFS (σ, 1#) = 1,

8. @� attaches to @ and �, for all σ ∈ {@, �}, gFS (@�, σ) = gFS (σ, @�)
= 1,

9. and no other pairs of binding domains
attach.

and for all other pairs σ, σ′ ∈ ΣFS ,
gFS (σ, σ′) = gFS (σ′, σ) = 0.

Fig. 2. The strength function gFS .

3.2 Clause Examination (Region II)

In this Section, I define the tile system SEXAM , which will become the part
of SFS that will operate in region II, as denoted in Figure 1. Since SFS will
operate on the first clause to fill in regions II through VI, and then recurse on
the remaining simplified formula in region VII, for each clause there is a distinct
copy of each region.

The goal of SEXAM is to examine the first (eastmost) clause in the formula for
the number of unassigned literals. Figure 3(a) shows the 37 tiles of TEXAM that
perform this examination. I define the function p that maps clauses of general
3CNF Boolean formulae to binding domains. Let c be a clause of a general 3CNF
Boolean formula. Then, if c contains the literal TRUE , then p(c) = T; otherwise,
the value of p(c) is defined by Figure 4. SEXAM will attach just to the north of
an encoding of clause c and will propagate that encoding one row north and
make the west binding domain of the westmost tile be the value of p(c).

3.3 Assignment Selection (Region III)

In this Section, I define the tile system SSELECT , which will become the part of
SFS that will operate in region III, as denoted in Figure 1.

The goal of SSELECT is to nondeterministically select an assignment over the
variables of the eastmost clause just as the O�(1.8393n) algorithm would. Thus,
if SEXAM finds that the clause has three unassigned literals, SSELECT will pick
either (1) the first literal to be true, or (2) the first literal to be false and the

Improving Efficiency of 3-SAT-Solving Tile Systems 7

(b) SELECT

(a) EXAM

(c) ROTATE

(d) SIMPLIFY

(d) PREP

t

c

@ 3:1

bt

c

@ 3:2

bbt

c

@ 2:

t

c

@ 3:12

ft

c

@ 3:12

t

c

@ 2:1

fbt

c

@ 2:1

bt

c

@ 2:2

bft

c

@ 2:2

t

c

@ 2:12

ft

c

@ 2:12

fft

c

@ 2:12

@

c
@ T

@

#t

T ::

@

#

T T

x*

x
0: **

¬x*

¬x

0: **
0

0

0: 0:

1

1

0: 0:

0

#f

0:* 0:

x*

x

1:1 0:

¬x*

¬x

1:1 0:

x*

x

1:

0:*

¬x*

¬x

1:

0:*

0

0

1: 1:

1

1

1: 1:

0

0
1:1

1:1
1

1

1:1

1:1

0

#f

1:* 1:

0

#f

1:1*

1:1

x*

x

2:2 1:

¬x*

¬x

2:2 1:

x*

x

2:12

1:1

¬x*

¬x

2:12

1:1

x*

x

2:

1:*

¬x*

¬x

2:

1:*

¬x*

¬x

2:1

1:1*

x*

x

2:1

1:1*

0

0

2: 2:

1

1

2: 2:

0

0

2:1

2:1

1

1

2:1

2:1

0

0

2:2

2:2

1

1

2:2

2:2

0

0

2:12

2:12

1

1

2:12

2:12

0

#f

3: 2:

0

#f

3:1

2:1

0

#f

3:2

2:2

0

#f

3:12

2:12
0

0 *

0

0

0 0

0

0

1 1

0

0

x x

0

0

¬x ¬x

1

1

0 0

1

1

1 1

1

1

x x

1

1
¬x ¬x

x*

x*

0 0

x*

x*

1 1

x*

x*

x x

x*

x*

¬x ¬x

¬x*

¬x*

0 0

¬x*

¬x*

1 1

¬x*

¬x*

x x

¬x*

¬x*

¬x ¬x

1

1 *

x*

x *

¬x*

¬x *

@

@

@ #

*

t

x x

*

t

¬x ¬x

@

@

@ #

t

bt

@ x

t

bt

@ ¬x

t

ft

¬x x

t

ft

x ¬x

bt

bbt

@ x

0

0

@ @

1

1

@ @

x

x

@ @

¬x

¬x

@ @c

c

@ @

*

*

0 0

*

*

1 1

@

*

@ x

@

*

@ ¬x

t

t

0 0

t

t

1 1

bt

bbt

@ ¬x

bt

bt

0 0

bt

bt

1 1

bt

fbt

¬x x
bt

fbt
x ¬x

ft

fft
¬x x

ft

fft

x ¬x
ft

bft

@ x

ft

bft

@ ¬x

ft

ft

0 0

ft

ft

1 1

T

T

@ @

F

F

@ @

@

#t

T ::

@

#

T T

@

c

@ T

@*

|

xt

x

x x

¬xf

¬x

x x

¬xt

¬x

¬x ¬x

xf

x

¬x ¬x

x

xt

0t 0

x

xt

1t 1

¬x

¬xt

0t 0

¬x

¬xt

1t 1
0t

0

0 0t

1t

1

1 1t

1

1

0 0t
0

0
1 1t

c

c

0 0

c

c

1 1

c

c

x x

c

c

¬x ¬x

x

xf

0f 0
x

xf
1f 1

¬x

¬xf
0f 0

¬x

¬xf

1f 1

0f

0

0 0f

1f

1

1 1f

1

1

0 0f

0

0

1 1f

F

F

0 0#

F

F

1 1#

F

#f

x x

F

#f

¬x ¬x

T

T

0 0#

T

T

1 1#

T

#t

x x

T

#t

¬x ¬x

0

0t
0t 0

0

0t

1t 1
1

1t

0t 0

1

1t

1t 1

0

0f

0f 0

0

0f

1f 1

1

1f

0f 0

1

1f

1f 1

0

0

0 0

0

0

1 1

0

0

x x

0

0

¬x ¬x

1

1

0 0

1

1

1 1

1

1

x x

1

1

¬x ¬x

x

x

0 0

x

x

1 1

¬x

¬x

0 0

¬x

¬x

1 1

@

@

@ #

0

0

@ @

1

1

@ @

x

x

@ @

¬x

¬x

@ @

c

c

@ @

T

#t

@ @

@

#t

T ::

@

#

T T

@

c

@ T

F

#f

@ @

Fig. 3. Tiles of TEXAM (a), TSELECT (b), TROTATE (c), TPREP (d), and TSIMPLIFY (e).
Together, these sets form TFS with 147 distinct tiles.

second to be true, or (3) the first two literals to be false and the third to be true.
Alternatively, if SEXAM finds that the clause has its first literal already assigned
and the other two unassigned, SSELECT will pick to ignore the first literal and
either (1) the second literal to be true, or (2) the second literal to be false and
the third to be true. And so on.

Figure 3(b) shows the 13 tiles of TSELECT that perform the assignment se-
lection. SSELECT will attach just to the west of the westmost tile attached by
SEXAM and nondeterministically select one of the possible assignments in ac(c)
as that tile’s north binding domain.

3.4 Clause Rotation (Region IV)

In this Section, I define the tile system SROTATE , which will become the part of
SFS that will operate in region IV, as denoted in Figure 1.

The goal of SROTATE is to rotate a horizontally positioned clause encoding
to be vertically positioned. This rotation later allows SSIMPLIFY to simplify the
formula. SROTATE will present the clause encoded in the north binding domains
of part of its seed as the west binding domains of the completed right triangle.
Figure 3(c) shows the 21 tiles of TROTATE that perform the rotation.

8 Y. Brun

c’s literals p(c) ac(c)
first second third

FALSE FALSE FALSE 3: {F}
FALSE FALSE unassigned 3:1 {bbt}
FALSE unassigned FALSE 3:2 {bt}
FALSE unassigned unassigned 3:12 {bt, bft}

unassigned FALSE FALSE 2: {t}
unassigned FALSE unassigned 2:1 {t, fbt}
unassigned unassigned FALSE 2:2 {t, ft}
unassigned unassigned unassigned 2:12 {t, ft, fft}

Fig. 4. For every clause c of a general 3CNF Boolean formula, p(c) = T and ac(c) =
{@} if c contains the literal TRUE , and otherwise, the values of p(c) and ac(c) are
defined by this table. The goal of the SEXAM system will be to produce, on the west
side of the westmost tile in region II, the value p(c) of the examined clause, and the
goal of the SSELECT system will be to produce one of the elements of ac(c) on the north
side of region III.

3.5 Assignment Preparation (Region V)

In this section, I define the tile system SPREP , which will become the part of
SFS that will operate in region V, as denoted in Figure 1.

The goal of SPREP is to turn the assignment selected by SSELECT into up to
three literals that evaluate to TRUE . In other words, to apply the assignment
to the clause. This application of the assignment is the final preparation before
SSIMPLIFY can simplify the formula. SPREP will present the up to three literals
as the west binding domains of the column in which it operates. Figure 3(d)
shows the 36 tiles of TPREP .

3.6 Formula Simplification (Region VI)

In this Section, I define the tile system SSIMPLIFY , which will become the part
of SFS that will operate in region VI, as denoted in Figure 1.

The goal of SSIMPLIFY is to simplify the formula by replacing instances of the
up to three literals prepared by SPREP with TRUE and negations of those literals
with FALSE . SSIMPLIFY will present an encoding of the simplified formula as
the north binding domains of the rectangle in which it operates. Figure 3(e)
shows the 63 tiles of TSIMPLIFY that perform the simplification.

3.7 Solving 3-SAT

Thus far, I have described five tile systems: SEXAM , SSELECT , SROTATE , SPREP ,
and SSIMPLIFY that I intend to use to solve 3-SAT . These systems will operate
in regions II, III, IV, V, and VI in Figure 1, respectively. The tile system SFS

combines these five systems to select a truth assignment for the first (eastmost)
clause of a Boolean formula φ, simplify the rest of φ based on that assign-
ment, and recurse (in region VII) on the simplified φ with one fewer clause.

Improving Efficiency of 3-SAT-Solving Tile Systems 9

*

*

*

*

*

*

*

*

*

¬x*

¬x *

t

t

0 0

*

t

x x

*

*

1 1

*

*

0 0

@

@

@ #

@

@ #

**

c 0100 0 0 01 1 1 1 1cc 0001 1 1x x x x x¬x ¬x ¬x¬x

x*

x *

x*

x *

0

0

x x

0

0

x x

0

0

x x

¬x*

¬x*

x x

x*

x*

x x

1

1

x x

0

0 *

0

0 *

0

0 *

0

0 *

0

0

0: 0:

x*

x

1:1 0:

1

1

1:1

1:1

0

0

1:1

1:1

0

0

2:12

2:12

ft

c

@ 2:12

x*

x

0: **

¬x*

¬x

2:12

1:1

1

1

2:12

2:12

0

0

0: 0:

0

0

x x

1

1

x x

0

0

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

x x

0

0

x x

¬x*

¬x*

x x

1

1

x x

1

1

x x

1

1 *

1

1 *

0

0

1 1

0

0

1 1

1

1

1 1

¬x*

¬x*

1 1

0

0

0 0

¬x*

¬x*

0 0

1

1

0 0

0

0

¬x ¬x

1

1

¬x ¬x

1

1

0 0

t

ft

¬x x

t

t

0 0

@

*

@ ¬x

x

x

@ @ x

x

@ @x

x

@ @ ¬x

¬x

@ @¬x

¬x

@ @ ¬x

¬x

@ @ 0

0

@ @ 0

0

@ @0

0

@ @ 0

0

@ @0

0

@ @1

1

@ @1

1

@ @ 1

1

@ @ 1

1

@ @1

1

@ @1

1

@ @ 1

1

@ @c

c

@ @ c

c

@ @

¬xt

¬x

¬x ¬x

1

1

¬x ¬x

0

0

¬x ¬x

xf

x

¬x ¬x

0

0

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

0

0

¬x ¬x

0

0

¬x ¬x

0

0

¬x ¬x

c

c

¬x ¬x

c

c

¬x ¬x

xf

x

¬x ¬x

xf

x

¬x ¬x

¬xt

¬x

¬x ¬x

¬xt

¬x

¬x ¬x

¬x

¬xt

0t 0

¬x

¬xt

0t 0

¬x

¬xt

0t 0

1

1

0 0t

0

0

0 0

1

1

0 0t

0t

0

0 0t

x

xf

0f 0

x

xf

0f 0

x

xf

0f 0

1

1

0 0

1

1

0 0f

1

1

0 0

c

c

0 0

c

c

0 0

0f

0

0 0f

0f

0

0 0f

0

0

0 0

1

1

0 0

1

1

0 0

¬x

¬x

0 0

1

1

0 0

0

0

0 0

x

x

0 0

0

0f

0f 0

1

1

0 0f

x

x

0 0

1

1

0 0

1

1

0 0

c

c

0 0

x

x

0 0

0

0f

0f 0

0f

0

0 0f

¬x

¬x

0 0

0

0t

0t 0

1

1

0 0t

¬x

¬x

0 0

1

1

0 0

1

1

0 0

c

c

0 0

¬xf

¬x

x x

1

1

x x

0

0

x x

xt

x

x x

xt

x

x x

xt

x

x x

¬xf

¬x

x x

¬xf

¬x

x x

c

c

x x

0

0

x x

0

0

x x

0

0

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

c

c

x x

F

#f

x x

¬x

¬xf

1f 1

¬x

¬xf

1f 1

¬x

¬xf

1f 1

1f

1

1 1f

1f

1

1 1f

x

xt

1t 1

x

xt

1t 1

x

xt

1t 1

1t

1

1 1t

0

0

1 1

0

0

1 1t

1

1

1 1

1

1

1 1

c

c

1 1

c

c

1 1

0

0

1 1t

0

0

1 1f

1

1

1 1

1

1

1 1

¬x

¬x

0 0

1

1f

0f 0

1

1f

0f 0

1

1t

0t 0

0f

0

0 0f

x

x

0 0

0

0

0 0

1

1

0 0

x

x

0 0

1

1

0 0t

c

c

0 0

c

c

0 0

x

x

0 0

0

0

0 0

¬x

¬x

0 0

0

0

0 0

1

1

0 0

¬x

¬x

0 0

1

1

0 0f

¬x

¬x

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ F

#f

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ ¬x

¬x

@ @1

1

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ ¬x

¬x

@ @1

1

@ @

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

¬x*

¬x

0: **

1

1

0: 0:

x*

x

1:

0:*

0

0

1: 1:

1

1

1: 1:

x*

x

2:2 1:

1

1

2:2

2:2

bft

c

@ 2:2

0

#f

0:* 0:

1

1

2:2

2:2

*

t

x x

t

ft

¬x x

*

*

1 1

t

t

0 0

t

t

1 1

ft

bft

@ ¬x

ft

ft

0 0

ft

ft

1 1

0

0 *

1

1 *

x*

x *

¬x*

¬x *

x*

x *

0

0 *

1

1 *

1

1 *

1

1 *

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

x*

x*

¬x ¬x

x*

x*

¬x ¬x

0

0

¬x ¬x

0

0

¬x ¬x

0

0

1 1

0

0

1 1

1

1

1 1

1

1

1 1

1

1

1 1

x*

x*

1 1

x*

x*

1 1

x*

x*

0 0

0

0

0 0

x*

x*

0 0

1

1

0 0

1

1

0 0

1

1

0 0

0

0

x x

1

1

x x

1

1

x x

1

1

x x

x*

x*

x x

x*

x*

0 0

1

1

0 0

1

1

0 0

1

1

0 0

1

1

1 1

1

1

1 1

x*

x*

1 1

1

1

x x

1

1

x x

1

1

1 1

*

1 1

0

0

@ @1

1

@ @ x

x

@ @¬x

¬x

@ @c

c

@ @ F

F

@ @0

0

@ @1

1

@ @1

1

@ @ ¬x

¬x

@ @

0

0

@ @1

1

@ @ x

x

@ @¬x

¬x

@ @c

c
@ @ F

F

@ @0

0

@ @1

1

@ @1

1

@ @ ¬x

¬x

@ @

x

x

1 1

¬x

¬x

1 1

¬x

¬x

1 1

1

1
1 1

1

1

1 1

1

1

1 1

0

0

1 1

0

0

1 1

c

c

1 1

x

x

0 0

¬x

¬x

0 0

¬x

¬x

0 0

0

0

0 0

0

0

0 0

1

1

0 0

1

1
0 0

1

1

0 0

c

c

0 0

xf

x

¬x ¬x

0

0

¬x ¬x

0

0

¬x ¬x

F

F

¬x ¬x

¬xt

¬x

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

c

c

¬x ¬x

¬xt

¬x
¬x ¬x

x

xf

0f 0

0f

0

0 0f

¬x

¬xt

0t 0

0t

0

0 0t

1

1
0 0

¬x

¬xt

0t 0

1

1

0 0t

1

1

0 0

c

c

0 0

x

x

1 1

0

0f

1f 1

¬x

¬x

1 1

0

0t
1t 1

1t

1

1 1t

¬x

¬x

1 1

1

1

1 1

1

1

1 1

c

c

1 1

xt

x

x x

0

0

x x

F

F

x x

¬xf

¬x
x x

¬xf

¬x

x x

0

0

x x

1

1

x x

1

1

x x

c

c

x x

T

#t

x x

x

xt

1t 1

0

0

1 1t

¬x

¬xf

1f 1

0

0

1 1f

¬x

¬xf

1f 1

1f

1

1 1f

1

1

1 1

c

c

1 1

x

x

1 1

0

0
1 1

¬x

¬x

1 1

¬x

¬x

1 1

0

0

1 1

1

1f

1f 1

1f

1

1 1f

c

c

1 1

0

0 *

x*

x *

¬x*

¬x *

0

0

x x

0

0

x x

0

0

x x

¬x*

¬x*

x x

0

0 *

0

0

0 0

0

0

0 0

¬x*

¬x*

0 0

¬x*

¬x*

0 0

0

0

0 0

0

0 *

0

0

¬x ¬x

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #

@

@

@ #
|

@*

|

F

F

0 0#

F

F

1 1#
T

T

1 1#

F

F

1 1#

F

F

1 1#
F

F
1 1#

F

F

1 1#

F

F

0 0#

F

F

0 0#

T

T

1 1#

x*

x
0: **

0

0

0: 0:

0

#f

0:* 0:

¬x*

¬x

1:

0:*

0

0

1: 1:

@

#

T T

@

c

@ T

@

#

T T

@

#

T T

@

#t

T ::

(f) FS
¬xt

¬x

¬x ¬x

1

1

¬x ¬x

0

0

¬x ¬x

xf

x

¬x ¬x

0

0
¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

1

1

¬x ¬x

0

0

¬x ¬x

0

0

¬x ¬x

0

0

¬x ¬x

c

c

¬x ¬x

c

c

¬x ¬x

xf

x

¬x ¬x

xf

x

¬x ¬x

¬xt

¬x

¬x ¬x

¬xt

¬x

¬x ¬x

¬x

¬xt

0t 0

¬x

¬xt

0t 0

¬x

¬xt

0t 0

1

1

0 0t

0

0

0 0

1

1

0 0t

0t

0

0 0t

x

xf
0f 0

x

xf

0f 0

x

xf

0f 0

1

1

0 0

1

1

0 0f

1

1

0 0

c

c

0 0

c

c

0 0

0f

0

0 0f

0f

0

0 0f

0

0

0 0

1

1

0 0

1

1

0 0

¬x

¬x

0 0

1

1

0 0

0

0
0 0

x

x

0 0

0

0f

0f 0

1

1

0 0f

x

x

0 0

1

1

0 0

1

1

0 0

c

c

0 0

x

x

0 0

0

0f

0f 0

0f

0

0 0f

¬x

¬x

0 0

0

0t

0t 0

1

1

0 0t

¬x

¬x

0 0

1

1

0 0

1

1

0 0

c

c

0 0

¬xf

¬x

x x

1

1
x x

0

0

x x

xt

x

x x

xt

x

x x

xt

x

x x

¬xf

¬x

x x

¬xf

¬x

x x

c

c

x x

0

0

x x

0

0

x x

0

0

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

1

1

x x

c

c

x x

F

#f

x x

¬x

¬xf
1f 1

¬x

¬xf

1f 1

¬x

¬xf

1f 1

1f

1

1 1f

1f

1

1 1f

x

xt

1t 1

x

xt

1t 1

x

xt

1t 1

1t

1

1 1t

0

0

1 1

0

0

1 1t

1

1

1 1

1

1

1 1

c

c

1 1

c

c

1 1

0

0

1 1t

0

0

1 1f

1

1

1 1

1

1

1 1

¬x

¬x

0 0

1

1f

0f 0

1

1f

0f 0

1

1t

0t 0

0f

0

0 0f

x

x

0 0

0

0

0 0

1

1

0 0

x

x

0 0

1

1

0 0t

c

c

0 0

c

c

0 0

x

x

0 0

0

0

0 0

¬x

¬x

0 0

0

0

0 0

1

1

0 0

¬x

¬x

0 0

1

1

0 0f

¬x

¬x

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ F

#f

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ ¬x

¬x

@ @1

1

@ @

F

F

@ @¬x

¬x

@ @¬x

¬x

@ @ x

x

@ @x

x

@ @x

x

@ @ c

c

@ @c

c

@ @ 1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @1

1

@ @ 0

0

@ @0

0

@ @0

0

@ @ F

F

@ @ ¬x

¬x

@ @1

1

@ @

F

F

1 1#

F

F

0 0#

(e) SIMPLIFY

*

*

*

*

*

*

*

*

*

¬x*

¬x *

x*

x *

x*

x *

0

0

x x

0

0

x x

0

0

x x

¬x*

¬x*

x x

x*

x*

x x

1

1

x x

0

0 *

0

0 *

0

0 *

0

0 *

0

0

x x

1

1

x x

0

0

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

0 0

0

0

0 0

x*

x*

0 0

¬x*

¬x*

0 0

1

1

0 0

1

1

0 0

0

0

x x

0

0

x x

¬x*

¬x*

x x

1

1

x x

1

1

x x

1

1 *

1

1 *

0

0

1 1

0

0

1 1

1

1

1 1

¬x*

¬x*

1 1

0

0

0 0

¬x*

¬x*

0 0

1

1

0 0

0

0

¬x ¬x

1

1

¬x ¬x

1

1

0 0
(c) ROTATE

ft

c

@ 2:12

c

2:12

(b) SELECT

**

0

0

0: 0:

x*

x

1:1 0:

1

1

1:1

1:1

0

0

1:1

1:1

0

0

2:12

2:12

0101 00 x x¬x

x*

x

0: **

¬x*

¬x

2:12

1:1

1

1

2:12

2:12

0

0

0: 0:

(a) EXAM

(d) PREP

t

t

0 0

*

t

x x

*

*

1 1

*

*

0 0

@

@

@ #

@

@

@ #

t

ft

¬x x

t

t

0 0

@

*

@ ¬x

Fig. 5. Example executions of SEXAM (a), SSELECT (b), SROTATE (c), SPREP

(d), SSIMPLIFY (e), and SFS (f). SFS operates on the Boolean formula φ =
(¬x3 ∨ ¬x2 ∨ x0) ∧ (x3 ∨ x2 ∨ ¬x1) ∧ (¬x2 ∨ x1 ∨ x0). The clear tiles are parts of the
seed and the shaded tiles are computational. This SFS execution nondeterministically
selects the assignment x0 = FALSE , x1 = TRUE , x2 = FALSE , and x3 = TRUE ;
because that assignment satisfies φ, the black � tile attaches in the northwest corner.

10 Y. Brun

c x01 ¬x *** |

Fig. 6. The 8 tiles of ΓFS used to encode inputs to SFS .

SFS will nondeterministically create only O�(1.8393n) distinct assemblies to de-
cide whether φ is satisfiable. Note that there are 147 distinct tiles that SFS

uses (the distinct tiles of Figure 3), and that each nondeterministic assembly
assembles in time linear in the size of the input.

I will use the 8 tiles in ΓFS , shown in Figure 6, to encode the input φ. Infor-
mally, I will encode the formula’s literals in row 0, such that the literals of each
clause are together and place the special clause tile to the west of each clause.
I will place the tiles with �� and � west binding domains on the diagonal to the
north and west of the φ, and I will place the tile with | west binding domain
as the northmost and westmost tile in the diagonal. The clear (unshaded) tiles
in Figure 5(f) show the seed SFSφ that encodes the 3-variable 3-clause Boolean
formula (¬x3 ∨ ¬x2 ∨ x0) ∧ (x3 ∨ x2 ∨ ¬x1) ∧ (¬x2 ∨ x1 ∨ x0). The rest of Fig-
ure 5(f) shows a sample execution of SFS on that seed. This execution assigns
x0 = FALSE and x1 = TRUE in the first recursive step of the algorithm and
then assigns x2 = FALSE and x3 = TRUE in the second step. In the third
step, the algorithm finds that the third clause is already satisfied. Because this
particular execution selected an assignment that satisfied the entire formula, the
black � tile is attached in the northwest corner.

Theorem 1. Let TFS = TEXAM ∪ TSELECT ∪ TROTATE ∪ TPREP ∪ TSIMPLIFY .
Then SFS = 〈TFS , gFS , 2〉 nondeterministically decides 3-SAT with the black �
tile from TPREP as the identifier tile. Further, for all n-variable Boolean formula
φ, SFS can nondeterministically form only O�(1.8393n) distinct assemblies.

4 Contributions

I have presented a novel tile system SFS that solves 3-SAT by nondetermin-
istically creating O�(1.8393n) assemblies in parallel, for an n-variable Boolean
formula. Each assembly assembles in time linear in the input size, explores some
truth assignment, and attaches a special � tile iff that assignment satisfies the
formula. SFS uses 147 = Θ(1) distinct tile types. In some sense, SFS implements
the most complex algorithm using tiles to date. As a result, it helps bridge the
gap between theoretical explorations of self-assembly, which require large tilesets
to implement complex algorithms, and experimental endeavors, which have been
able to combine up to 20 distinct tiles in a single experiment. Further, existing
tile-inspired distributed software systems [8] can leverage SFS directly to reduce
their computational time requirements.

Acknowledgments

This work was sponsored in part by the National Science Foundation, under
Grant # 0937060 to the Computing Research Association for the CIFellows
Project.

Improving Efficiency of 3-SAT-Solving Tile Systems 11

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal,
R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications
of the ACM 43(5), 74–82 (2000)

2. Adleman, L.: Towards a mathematical theory of self-assembly. Tech. Rep. 00-722,
Department of Computer Science, University of Southern California, Los Angeles,
CA (2000)

3. Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592
(2005)

4. Brun, Y.: Arithmetic computation in the tile assembly model: Addition and mul-
tiplication. Theoretical Computer Science 378(1), 17–31 (2007)

5. Brun, Y.: Nondeterministic polynomial time factoring in the tile assembly model.
Theoretical Computer Science 395(1), 3–23 (2008)

6. Brun, Y.: Solving NP-complete problems in the tile assembly model. Theoretical
Computer Science 395(1), 31–46 (2008)

7. Brun, Y.: Solving satisfiability in the tile assembly model with a constant-size
tileset. Journal of Algorithms 63(4), 151–166 (2008)

8. Brun, Y., Medvidovic, N.: Preserving privacy in distributed computation via self-
assembly. Tech. Rep. USC-CSSE-2008-819, Center for Software Engineering, Uni-
versity of Southern California (2008)

9. Kullmann, O.: Worst-case analysis, 3-SAT decision and lower bounds: Approaches
for improved SAT algorithms. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science 35, 261–313 (1997)

10. Kullmann, O.: New methods for 3-SAT decisions and worst-case analysis. Theo-
retical Computer Science 223, 1–72 (1999)

11. Lagoudakis, M.G., LaBean, T.H.: 2D DNA self-assembly for satisfiability. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 54, 141–154
(1999)

12. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speak-
ing swarmish: Human-robot interface design for large swarms of autonomous mo-
bile robots. In: Proceedings of the AAAI Spring Symposium, Stanford, CA, USA
(March 2006)

13. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10(3), 287–296 (1985)

14. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2(12), e424 (2004)

15. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting (STOC 2000), Portland, OR, USA, May 2000, pp. 459–468 (2000)

16. Schiermeyer, I.: Solving 3-satisfiability in less than 1.579n steps. Computer Science
Logic 702, 379–394 (1993)

17. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36(6), 1544–1569 (2007)

18. Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical
Journal 40, 1–42 (1961)

12 Y. Brun

19. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute
of Technology, Pasadena, CA, USA (June 1998)

20. Winfree, E.: Simulations of computing by self-assembly of DNA. Tech. Rep. CS-
TR:1998:22, California Institute of Technology, Pasadena, CA, USA (1998)

21. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. Combinatorial
Optimization - Eureka, You Shrink! pp. 185–207 (2003)

Optimizing Tile Concentrations to Minimize
Errors and Time for DNA Tile Self-assembly

Systems

Ho-Lin Chen and Ming-Yang Kao

1 Center for Mathematics of Information,
California Institute of Technology, Pasadena, CA 91101, USA

holinc@gmail.com
2 Department of Electrical Engineering and Computer Science,

Northwestern University, Evanston, IL 60208, USA
kao@northwestern.edu

Abstract. DNA tile self-assembly has emerged as a rich and promising
primitive for nano-technology. This paper studies the problems of mini-
mizing assembly time and error rate by changing the tile concentrations
because changing the tile concentrations is easy to implement in actual
lab experiments. We prove that setting the concentration of tile Ti pro-
portional to the square root of Ni where Ni is the number of times Ti

appears outside the seed structure in the final assembled shape mini-
mizes the rate of growth errors for rectilinear tile systems. We also show
that the same concentrations minimize the expected assembly time for
a feasible class of tile systems. Moreover, for general tile systems, given
tile concentrations, we can approximate the expected assembly time with
high accuracy and probability by running only a polynomial number of
simulations in the size of the target shape.

1 Introduction

Considerable modern research in science and engineering has aimed to control
smaller and smaller systems in many fields, including computer science and ma-
terial science. As the size of a system approaches the molecular scale, precise
direct external control becomes prohibitively costly, if not impossible. As a re-
sult, bottom-up self-assembly has emerged as a rich and promising primitive
for nano-technology. In particular, DNA has received much attention as a sub-
strate for molecular self-assembly because its combinatorial nature enables the
programming of molecular behaviors by choosing appropriate DNA sequences
to encode information. In addition, lab techniques for the manipulation of DNA
are already well developed. For these considerations, DNA self-assembly has
been proposed for a variety of applications, e.g., as a means to perform com-
putation [3, 22, 29], construct molecular patterns [9, 12, 18, 19, 24, 33], and build
nano-scale machines [5, 10, 13,23,25,32].

DNA tiles which self-assemble according to simple rules have been developed
in lab [31] and mathematically analyzed based on the abstract tile assembly
model (aTAM) proposed by Rothemund and Winfree [17]. Under this model,
there is a set of square tiles with a glue on each of the four edges. Each glue
has a certain affinity for itself called strength. The self-assembly process starts
from a distinguished seed structure. Assembly proceeds as tiles attach to the

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 13–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

14 H.-L. Chen and M.-Y. Kao

partially assembled structure (initially, just the seed structure) one by one when
the combined strength of matched glues between a tile and the partial struc-
ture is at least the temperature of the tile system. Many interesting tile systems
have been designed under aTAM, including systems that build counters [1, 8]
and squares [11,15,17], perform Turing-universal computation [29], and produce
arbitrary computable shapes [16,27]. Unfortunately, in laboratory settings, sev-
eral events that aTAM does not model have been frequently observed. These
events are referred to as errors in the tile self-assembly process. A more realistic
stochastic model called the kinetic tile assembly model (kTAM) was proposed by
Winfree [29] to describe the rates of these errors. The kTAM model calculates
the rates for various types of attachments and detachments of tiles based on
thermodynamics.

In order to make DNA tile self-assembly practical, there are two important
factors that need to be minimized, namely, the error rate and the time of the
assembly process. One approach to reducing the error rate of a tile assembly
system [6,7,14,26,30] is to convert an existing error-prone tile system to a more
robust tile system that assembles into the same shape or pattern up to scaling.
These error correcting techniques increase the number of tile types by a mul-
tiplicative factor and thus are hard to implement in practice. In contrast, it is
easy to change the concentrations of tiles. Therefore, it is natural to consider
reducing the error rate by changing the concentrations of tiles. This approach
has been studied using computer simulations and lab experiments. However, no
closed-form formulas or efficient algorithms for finding the optimal tile concen-
trations have been previously found. It is also natural to consider changing the
tile concentrations in order to minimize the assembly time. Adleman et al. [2]
designed an algorithm to find tile concentrations that approximate the minimum
expected assembly time within an O(log n) factor. Cheng et al. [8] showed that
for partial order systems, if all tiles have equal concentrations, then the expected
assembly time is proportional to the longest length of a path in the assembly
order of the target shape. Also, some studies employed computer simulations to
characterize the trade-offs between the time and the error rate of an assembly
process [6, 30].

Our Results. On the problem of minimizing the error rate, we formulate the
rate of growth errors in terms of tile concentrations based on the kinetic tile
assembly model. Using our formulation, we show that setting the concentration
of each tile Ti proportional to the square root of the number of times Ti appears
outside the seed structure in the target shape minimizes the rate of growth
errors. This result holds for all rectilinear tile systems (i.e., tile systems that have
the same growth directions for all tiles fixed throughout the assembly process)
as well as many other systems that have been implemented in lab [4, 21]. We
also have simulation results showing that facet errors can significantly affect
the accuracy of the optimal tile concentrations predicted by our mathematical
analysis. On the problem of minimizing the assembly time, we prove that the
above concentrations for minimizing the rate of growth errors also minimizes the
expected assembly time for tile systems for which there is only one location for
correct growth at any given time throughout the assembly process. Moreover, for
general tile systems, given tile concentrations, we show that the average assembly
time over a polynomial number of simulations in the size of the target shape can
approximate the expected assembly time with high accuracy and probability.

Optimizing Tile Concentrations to Minimize Errors and Time 15

The remainder of this paper is organized as follows. Section 2 describes the two
tile assembly models that we use. Section 3 contains the theoretical results on
minimizing the rate of growth errors. Section 4 contains the simulation results
on growth errors and some discussion on facet errors. Section 5 contains the
theoretical results on estimating and minimizing the expected assembly time.
Section 6 concludes the paper with some open problems.

2 Two Tile Assembly Models

The Abstract Tile Assembly Model. The abstract tile assembly model was pro-
posed by Rothemund and Winfree [17]. It extends the theoretical model of tiling
by Wang [28] to include a mechanism for growth based on the physics of molecu-
lar self-assembly. Informally, a tile self-assembly system has a set of tiles, each of
which is a square with glues of various types on each of the four edges. Two tiles
will stick to each other if they have compatible glues. Below we present a succinct
definition of this model with minor modifications for ease of explanation.

A tile is an oriented unit square with the north, east, south and west edges
labeled from some alphabet Σ of glues. For each tile t, the glues of its four
edges are denoted as σN (t), σE(t), σS(t), and σW (t). We describe a tile t as
the quadruple (σN (t), σE(t), σS(t), σW (t)). Consider the triple <T, g, τ> where
T is a finite set of tiles, τ ∈ Z>0 is the temperature, and g is the glue strength
function from Σ × Σ to Z≥0. It is assumed that for all x, y ∈ Σ, the inequality
x
= y implies g(x, y) = 0 and there is a glue null ∈ Σ, such that g(x, null) =
g(null, x) = 0 for all x ∈ Σ. A configuration is a map from Z2 to T

⋃{empty},
where empty is a special symbol indicating the absence of any tile.

A tile system is a quadruple T = <T, s, g, τ>, where T, g, τ are as above and
s is a special configuration called the seed structure. Let C and D be two con-
figurations. Suppose that there exist some t ∈ T and some (x, y) ∈ Z2 such that
D = C except that at (x, y), C(x, y) = null and D(x, y) = t. Let fN,C,t(x, y) =
g(σN (t), σS(C(x, y + 1)). Informally, fN,C,t(x, y) is the strength of the bond
on the north edge of t in configuration C. We define fS,C,t(x, y), fE,C,t(x, y)
and fW,C,t(x, y) similarly. Then tile t is attachable to C at position (x, y) iff
fC,t(x, y) ≡ fN,C,t(x, y) + fS,C,t(x, y) + fE,C,t(x, y) + fW,C,t(x, y) ≥ τ . We write
C →T D to denote the transition from C to D by attaching a tile to C at
position (x, y). Informally, C →T D iff D can be obtained from C by adding a
tile t such that the total strength of interaction between t and C is at least τ . A
terminal assembly is a configuration A such that there is no configuration B for
which A →T B.

When a tile t attaches to configuration C at position (x, y), the edges U of
t with fU,C,t(x, y) > 0 are called the input edges; all other edges are called the
output edges. A tile system is rectilinear if there is a unique terminal assembly
that can be reached starting from the seed structure, each tile t has the same
input and output edges every time it attaches, and all tiles have the same input
and output edges.

The Kinetic Tile Assembly Model. According to the abstract tile assembly
model, a tile t attaches at a position (x, y) in a configuration C iff the total
strength fC,t(x, y) of the matched glues between C and t is at least τ , and any
tiles that attached never fall off. In practice, tiles may attach with a weaker
binding strength, and tiles that already attached may fall off. These events can

16 H.-L. Chen and M.-Y. Kao

cause the tile system to behave differently from the abstract tile assembly model.
We treat these deviations as errors and try to minimize the probability of these
events. In this paper, we use the kinetic tile assembly model proposed by Win-
free [29] to model the forward and reverse rates, which are the rates at which
a tile attaches to and falls off from a specific position, respectively. This model
computes these rates as functions of thermodynamic parameters as follows:

1. The concentrations of the tiles are held constant throughout the self-
assembly process.

2. The only two reactions allowed are single tiles attaching to and dissociating
from a configuration.

3. The forward rate for tile Ti is kfci, where kf is a constant and ci is the
concentration of tile Ti. This notation is used throughout this paper.

4. The reverse rate for a tile t attached to configuration C at position (x, y) to
fall off is kfe−bGse , where kf and Gse are constants and b = fC,t(x, y) is the
total strength of the matched glues between t and C.

Here, the parameters kf and kf give the time scale of the self-assembly. The
value of Gse is determined by the binding strength of the sticky ends of DNA
tiles. We use cmax and cmin to denote the maximum and minimum concentrations
allowed in the tile system. If one wants the tile system to assemble according
to the abstract tile assembly model most of the time, then the following two
conditions need to hold. First, if the total binding strength between a tile and
the original configuration it just attached to is less than τ , then the tile must
fall off quickly, i.e.,

kfe
−(τ−1)Gse kfcmax.

Second, if a tile t is attachable to a position in C, then the forward rate at which
it attaches should be greater than the reverse rate at which it falls off, i.e.,

kfcmin > kf e−τGse.

In practice, since each tile may have a slightly different value for the parameter
kf and the strength of each glue may vary, one often needs to set kf and Gse

(by changing an experiment’s temperature) such that

kfcmin kfe−τGse.

For the remainder of the paper, we assume

kfe−(τ−1)Gse kfcmax > kfcmin kfe−τGse.

We also assume that our seed structure is made by some other processes (e.g.,
DNA origami [18]) and its tiles never fall off.

3 Minimizing the Error Rate

In this section, we consider the problem of changing the concentrations of tiles
to minimize the failure probability (i.e., error rate) for a rectilinear tile system.
There are three types of errors in tile self-assembly. A growth error refers to an
incorrect tile attaching at a position instead of the correct tile [30]. A facet error

Optimizing Tile Concentrations to Minimize Errors and Time 17

refers to an incorrect tile attaching at a position where no tile is supposed to
attach [6]. A nucleation error refers to single tiles attaching to each other to
form a lattice without the seed structure [20]. In this section, we only consider
minimizing growth errors.

We want to compute the probability that a tile Tj causes a growth error
by attaching at a position (x, y) where only Ti can attach with total binding
strength at least τ . First, Ti can attach at that position at rate kfci. Once Ti

has attached, the probably of it falling off is negligible since kfcmin kfe−τGse.
Second, Tj can attach at that position at rate kfcj . Once Tj has attached, it can
fall off at rate kf e−(τ−m)Gse, where m is the total strength of the mismatched
glues between Ti and Tj on their input edges. Tj can also get locked in place
and cause an error due to the attachment of one or more adjacent tiles. The rate
r at which Tj gets locked in place may vary with the features in the partially
assembled shape near position (x, y) such as long facets. In this paper, we assume
that r is the same for all positions (x, y) and tiles t. The allowable reactions
related to Ti and Tj are summarized in Figure 1. From the above description of
reaction rates, we know that at a given position (x, y) where tile Ti is supposed
to attach, the probability of having a growth error caused by Tj is cj

ci
εij . Here,

εij = r
r+kf e−(τ−m)Gse

, where m is the total number of mismatches between the

input sides of tiles Ti and Tj. The value of εij is roughly at the order of e−mGse

since r ≤ 2kfcmax. Therefore, at position (x, y), the total probability of a growth
error is ∑

j �=i εijcj

ci
.

f

C
C
C C CC

C
C
C C CC

C
C
C C CC

T

T

......

......

k c

k cf j

f i

k e

r

j

i

se

Tj

C
C
C C CC

−(−m)G

correct attachment by T

growth error by T
growth error by T locked in

i

τ

j
j

Fig. 1. A Markov chain describing attachments of Ti and Tj , where C indicates a
correct tile

For a self-assembly process, the error rates at different positions depend on
each other. However, if one wants to have a high probability of success, one
almost always needs to set the experimental condition such that the error rate
at each position is much smaller than 1/n, where n is the total number of tiles

18 H.-L. Chen and M.-Y. Kao

in the desired terminal assembly. In this case, minimizing the sum of error rates
over all positions is a good approximation of minimizing the actual overall error
rate of the tile assembly system. Thus, in the remainder of this section, we will
minimize ∑

i

Ni

(∑
j �=i εijcj

ci

)
, (1)

where Ni is the number of positions outside the seed structure to which Ti is
supposed to attach.

Theorem 1. For a rectilinear tile system with a unique terminal assembly, the
error rate (i.e., probability of failure) is minimized when the concentration of
each tile Ti is proportional to

√
Ni, where Ni is the number of times tile Ti

appears outside the seed structure in the correct terminal assembly of the tile
system.

Proof. From Equation 1, we can scale the tile concentrations ci without loss of
generality such that

∑
i ci = 1, and we need to solve the following minimization

problem:

Minimize
∑

i

Ni

(∑
j �=i εijcj

ci

)
,

subject to
∑

i

ci = 1.

The Lagrange multiplier for this minimization problem is

Λ =
∑

i

Ni

(∑
j �=i εijcj

ci

)
+ λ(

∑
i

ci − 1).

We need to solve

∂Λ

∂ci
= −Ni

(∑
j �=i εijcj

c2
i

)
+

∑
j �=i

Nj
εij

cj
+ λ = 0 for all i (2)

and ∑
i

ci = 1.

Simplifying Equation 2, we obtain∑
j �=i

(− Ni
εijcj

c2
i

+ Nj
εij

cj

)
+ λ = 0 for all i,

and consequently the error rate is minimized when

ci =
√

Ni∑
j

√
Nj

.

Two points about the proof of Theorem 1 are worth noticing. First, the error
rate only depends on the ratio between the tile concentrations. Specifically, the
error rate is minimized when the concentration of Ti is proportional to

√
Ni even

when we vary each ci between cmax and cmin. Second, the same proof can apply

Optimizing Tile Concentrations to Minimize Errors and Time 19

to all tile systems that satisfy εij = εji for all i, j. Hence Theorem 1 is valid
for other systems already implemented in lab such as zig-zag ribbons [21] and
counters seeded by origami [4].

4 Simulation Results for Theorem 1

We used a software called xgrow developed in Erik Winfree’s lab to simulate four
tile systems to determine their error rates under different tile concentrations.
To obtain a good estimate of the error rate of a tile system, we would choose
our parameters such that errors can be frequently observed. However, in most
tile systems, if we use such parameters, we will reach some configuration very
different from the terminal assembly predicted by the abstract tile assembly
model. Since our prediction of the optimal tile concentrations depends on the
terminal assembly, we made a design decision to perform simulations on tile
systems for which each error only affects one position of the terminal assembly.

We simulated four tile systems named as A1, A2, B1, and B2. Each of the four
systems operates at τ = 2 and only has two tiles X and Y shown in Figure 2(a)
beside the seed structure. The only difference between the four systems is their
seed structures. The seed structures of tile systems A1 and A2 are shown in
Figure 2(b). The lengths of their seed structures are adjusted such that NX :
NY = 25 : 1 and 64 : 1 for A1 and A2, respectively, where NX and NY are
the numbers of positions X and Y appear in the terminal assembly. The seed
structures of tile systems B1 and B2 are shown in Figure 2(c). The lengths of
their seed structures are also adjusted such that NX : NY = 25 : 1 and 64 : 1
for B1 and B2, respectively. These systems are rectilinear with all tiles having
their input edges on the south and east edges. Since tiles X and Y have the
same output edges, when an error happens, the error only affects the position
where the erroneous tile is attached. The unique terminal assemblies and example
configurations generated by simulations of tile systems A1 and B1 are shown in
Figures 3 and 4, respectively. Theorem 1 predicts that the rate of growth errors
is minimized at cX : cY = 5 : 1 for systems A1 and B1, and at cX : cY = 8 : 1
for systems A2 and B2.

The simulation results are shown in Figure 5. In systems A1 and A2, the
optimal tile concentration ratios are 2.5 : 1 and 3 : 1, respectively. In systems
B1 and B2, the optimal tile concentration ratios are roughly 7.5 : 1 and 15 : 1,
respectively. The major reason causing these simulation results to deviate from
the predictions made by Theorem 1 appears to be the facet errors. Since tiles
X and Y both have glue 0 on the south edge, having a long horizontal facet
may introduce a large number of facet errors. For systems A1 and A2, notice
that long horizontal facets are generated because tile Y (colored yellow) has
lower concentrations and grows slower than X . An example configuration for
system A1 that demonstrates these horizontal facets is shown in Figure 3. Such
undesirable facets become longer and more when we increase the ratio between
cX and cY . Therefore, the actual optimal tile concentrations are biased towards
having more Y than predicted by Theorem 1. For systems B1 and B2, each
terminal assembly is separated into a left portion and a right portion by the
seed structure, as shown in Figure 4. Horizontal facets can only be generated
in the left portion, where all tiles should be X . Hence, we can reduce facet
errors by decreasing the concentration of tile Y , and thus the actual optimal tile
concentrations are biased towards having fewer Y than predicted by Theorem 1.

20 H.-L. Chen and M.-Y. Kao

0

1

1

1

1

1

1

10 0 0 0 0 0 0 0 0 0 0 0

1

1

1

1

1

1

10

0

0

Y 10

(a)

0

(b)

X

0

0

0

(c)

0

0

0

0

0

0

Fig. 2. (a) Tiles X and Y , where all glues have strength 1. (b) An L-shaped seed
structure for systems A1 and A2. (c) A seed structure with two vertical facets and one
horizontal facet for systems B1 and B2.

Fig. 3. The left figure is the unique target terminal assembly for system A1. The right
figure is an example configuration for system A1 generated by an xgrow simulation.

Fig. 4. The left figure is the unique target terminal assembly for system B1. The right
figure is an example configuration for system B1 generated by an xgrow simulation.

Optimizing Tile Concentrations to Minimize Errors and Time 21

0 2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ratio between Cx and Cy

er
ro

r
ra

te
 a

ve
ra

ge
d

ov
er

 a
ll

po
si

tio
ns

 (
%

)

Error Rates vs. Tile Concentrations for Systems A1 and A2

25:1, A1
64:1, A2

0 2 4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

1.6

ratio between Cx and Cy

er
ro

r
ra

te
 a

ve
ra

ge
d

ov
er

 a
ll

po
si

tio
ns

 (
%

)

Error Rates vs. Tile Concentrations for Systems B1 and B2

25:1, B1
64:1, B2

Fig. 5. Plots of error rates vs. the ratios between tile concentrations. Each data point
represents m = 20, 000 simulations. The simulations use Gse = 9 for systems A1 and
A2, Gse = 11 for systems B1 and B2, cX + cY = e−16. Error bars show two standard
deviations of the errors, computed using σ = σsimulation/

√
m.

22 H.-L. Chen and M.-Y. Kao

5 Minimizing the Expected Assembly Time

This section assumes that only the correct tiles can attach and any tile that has
already attached never falls off. We minimize the expected assembly time by
varying the tile concentrations.

Theorem 2. Consider any tile system with the four properties that

1. at any given time, only one location can have a tile attach correctly,
2. only the correct tiles can attach,
3. any tile that has already attached never falls off, and
4. there is a unique terminal assembly.

Assume that the total tile concentration is
∑

i ci = 1. Setting ci =
√

Ni∑
j

√
Nj

minimizes the expected assembly time of the tile system.

Proof. Omitted due to space constraints.

In settings that are more general than Theorem 2 assumes, the optimal tile
concentrations to minimize the expected assembly time may significantly deviate
from the ci’s determined in Theorem 1.

For general tile assembly systems, we do not know how to analytically find the
optimal tile concentrations to minimize the expected assembly time. However,
we show in Theorem 3 below that given a set of tile concentrations, only a poly-
nomial number of simulations is required in order to approximate the expected
assembly time with high accuracy and probability.

Lemma 1. Consider any tile system for which Properties 2 through 4 in The-
orem 2 hold but there is no assumption on whether tiles can attach only one by
one or in parallel. If the assembly process of the tile system takes expected time
S, then for any ε > 0, the average of the assembly times over 48S2 1

ε simulations
of the assembly process will be between S − ε and S + ε with probability at least
3/4.

Proof. Omitted due to space constraints.

Theorem 3. Consider any tile system for which Properties 2 through 4 in The-
orem 2 hold but there is no assumption on whether tiles can attach only one by
one or in parallel. Let n be the number of positions outside the seed structure in
the terminal assembly. If the assembly process of the tile system takes expected
time S, then for any ε > 0, the average of the assembly times over O(n4 1

ε c2
min

)
simulations of the assembly process will be between S−ε and S+ε with probability
at least 3/4.

Proof. Omitted due to space constraints.

6 Further Research

In Section 3, we gave closed-form formulas to minimize the growth errors by
varying the concentration of each tile. In Section 4, we found in simulations that
facet errors are also an important factor that needs to be considered in order

Optimizing Tile Concentrations to Minimize Errors and Time 23

to minimize the error rate in lab implementations. At the theoretical level, it is
open to find closed-form formulas or efficient algorithms to minimize the facet
errors by varying the tile concentrations.

In Section 5, we gave closed-form formulas to minimize the expected assem-
bly time for a feasible class of tile systems by varying the tile concentrations.
For general tile systems, the best known algorithm can compute an O(log n)-
approximation of the minimum expected assembly time [2]. It is of interest to
determine whether one can compute the precise minimum expected assembly
time or an estimate with a better approximation factor than O(log n). Given tile
concentrations, we showed that simulations can accurately predict the expected
assembly time with high probability. The computing time it takes to run the
required simulations is polynomial in the size of the terminal assembly, not the
tile system itself. Since the size of a tile system is normally smaller than that
of its terminal assembly, it would be useful if one can approximate the expected
assembly time just by analyzing the tile system and some succinct features of
the terminal assembly (e.g., the number of times each tile appears outside the
seed structure in the terminal assembly) in time polynomial in the size of the
tile system.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size
for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, pp. 740–748 (2001)

2. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., Moisset de Espans,
P., Rothemund, P.: Combinatorial optimization problems in self-assembly. In: Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 23–32
(2002)

3. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592
(2005)

4. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences 106, 6054–6059 (2009)

5. Bishop, J., Klavins, E.: An improved autonomous DNA nanomotor. Nano Let-
ters 7(9), 2574–2577 (2007)

6. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Pro-
ceedings of the 10th International Meeting on DNA Based Computers, pp. 62–75
(2004)

7. Chen, H.-L., Luhrs, C., Goel, A.: Dimension augmentation and combinatorial cri-
teria for efficient error-resistant DNA self-assembly. In: Proceedings of the 19th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 409–418 (2008)

8. Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature
two. In: Proceedings of the 1st Conference on Foundations of Nanoscience: Self-
Assembled Architectures and Devices, pp. 62–75 (2004)

9. Dietz, H., Douglas, S., Shih, W.: Folding DNA into twisted and curved nanoscale
shapes. Science 325, 725–730 (2009)

10. Ding, B., Seeman, N.: Operation of a DNA robot arm inserted into a 2D DNA
crystalline substrate. Science 384, 1583–1585 (2006)

11. Doty, D.: Randomized self-assembly for exact shapes. In: Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science, pp. 85–94 (2009)

12. Douglas, S., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.: Self-assembly of
DNA into nanoscale three-dimensional shapes. Nature (459), 414–418 (2009)

24 H.-L. Chen and M.-Y. Kao

13. Green, S., Bath, J., Turberfield, A.: Coordinated chemomechanical cycles: a mech-
anism for autonomous molecular motion. Physical Review Letters (101), 238101
(2008)

14. Sahu, S., Reif, J., Yin, P.: Compact error-resilient computational DNA tiling assem-
blies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384,
pp. 293–307. Springer, Heidelberg (2005)

15. Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: Proceedings of the 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 571–580 (2006)

16. Lagoudakis, M., LaBean, T.: 2D DNA self-assembly for satisfiability. In: Proceed-
ings of the 5th DIMACS Workshop on DNA Based Computers. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 141–154
(1999)

17. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares
(extended abstract). In: Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing, pp. 459–468 (2000)

18. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture (440), 297–302 (March 2006)

19. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLOS Biology 2, 424–436 (2004)

20. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic
self-assembly. In: Proceedings of the 10th International Meeting on DNA Based
Computers, pp. 319–328 (2004)

21. Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In:
Proceedings of the 5th European Conference on Artificial Life, pp. 734–743 (2005)

22. Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314, 1585–1588 (2006)

23. Sherman, W.B., Seeman, N.C.: A precisely controlled DNA bipedal walking device.
Nano Letters 4, 1203–1207 (2004)

24. Shih, W.M., Quispe, J.D., Joyce, G.F.A.: A 1.7-kilobase single-stranded DNA that
folds into a nanoscale octahedron. Nature (427), 618–621 (2004)

25. Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. Journal
of American Chemistry Society 126, 10834–10835 (2004)

26. Soloveichik, D., Cook, M., Winfree, E.: Combining self-healing and proofreading
in self-assembly. Natural Computing (7), 203–218 (2008)

27. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36, 1544–1569 (2007)

28. Wang, H.: Proving theorems by pattern recognition ii. Bell Systems Technical
Journal 40, 1–42 (1961)

29. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena (1998)

30. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: Proceedings of the 9th International Meeting on DNA Based
Computers, pp. 126–144 (2003)

31. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-
dimensional DNA crystals, 6 pages. Nature (394), 539–544 (August 1998)

32. Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled
molecular machine made of DNA. Nature (406), 605–608 (August 2000)

33. Zhang, Y., Seeman, N.: Construction of a DNA-truncated octahedron. Journal of
American Chemical Society 116(5), 1661 (1994)

Scalable, Time-Responsive, Digital,
Energy-Efficient Molecular Circuits Using DNA

Strand Displacement�

Ehsan Chiniforooshan, David Doty, Lila Kari, and Shinnosuke Seki

Univ. of Western Ontario, Dept. of Computer Science, London, Canada
{ehsan,ddoty,lila,sseki}@csd.uwo.ca

Abstract. We propose a novel theoretical biomolecular design to imple-
ment any Boolean circuit using the mechanism of DNA strand displace-
ment. The design is scalable: all species of DNA strands can in principle be
mixed and prepared in a single test tube, rather than requiring separate
purification of each species, which is a barrier to large-scale synthesis. The
design is time-responsive: the concentration of output species changes in
response to the concentration of input species, so that time-varying in-
puts may be continuously processed. The design is digital : Boolean val-
ues of wires in the circuit are represented as high or low concentrations
of certain species, and we show how to construct a single-input, single-
output signal restoration gate that amplifies the difference between high
and low, which can be distributed to each wire in the circuit to overcome
signal degradation. This means we can achieve a digital abstraction of the
analog values of concentrations. Finally, the design is energy-efficient : if
input species are specified ideally (meaning absolutely 0 concentration of
unwanted species), then output species converge to their ideal concen-
trations at steady-state, and the system at steady-state is in (dynamic)
equilibrium, meaning that no energy is consumed by irreversible reactions
until the input again changes.

1 Introduction

Biomolecular circuits, due to natural compatibility with the materials of life,
could change the way diseases are diagnosed or medicine is delivered, through
bottom-up, site-specific biochemical information processing. While there is no
shortage of theoretical proposals and experimental implementations [1–7, 9, 11],
the state of the art in biomolecular circuits remains far behind its electronic
equivalent.

In this paper, we propose a new theoretical design, focusing on one particular
molecular primitive as our sole “basic operation” from which to compose com-
plex circuits: toehold-mediated DNA branch migration and strand displacement,
� This research was supported in part by Natural Sciences and Engineering Research

Council of Canada (NSERC) Discovery Grant R2824A01 and the Canada Research
Chair Award in Biocomputing to Lila Kari, and by the NSF Computing Innovation
Fellowship grant to David Doty.

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 25–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

26 E. Chiniforooshan et al.

or simply strand displacement. The idea of the basic strand displacement reaction
is shown in Figure 1. DNA strand displacement as a tool for nanoengineering was
introduced by Yurke, Turberfield, Mills, Simmel, and Neumann [10], and its use
as a primitive for building circuits was pioneered by Seelig, Soloveichik, Zhang,
and Winfree [7], and subsequently improved and simplified by Zhang, Turber-
field, Yurke, and Winfree [11] and Qian and Winfree [6]. Compared to some
designs using other “molecular primitives” such as restriction enzymes, strand
displacement has the advantage that it requires the design of no new molecules
other than single-stranded DNA complexes, which are easily and cheaply avail-
able through mail-order.

Our construction achieves four properties desirable of robust circuit designs.
We do not claim these properties to represent the sole criteria by which to judge
molecular circuit designs, but we believe they are evidently advantageous. We
emphasize that achieving any of these properties in isolation would not be a
novel contribution, but to our knowledge this is the first DNA circuit design to
incorporate all four simultaneously. The properties are as follows.

scalable: This is a nebulous word with many connotations. Our particular us-
age refers to the definition given by Qian and Winfree in [6], whose construction
overcomes a specific inhibiting factor that prevents large-scale fabrication of
molecular circuits: the need to prepare and purify different molecular species
in separate test tubes. Since a Boolean circuit with hundreds of gates may re-
quire thousands of distinct molecular species, it is no small advantage to be
able to mix all of them together in a single tube and conduct the necessary

t∗S∗ t∗
gate:strand2

S t

t S

strand1

t∗S∗ t∗

t S
S

t

t∗S∗ t∗
strand1:gate

t S

S t

strand2

(a) Reversible

t∗S∗
gate:strand2

S

t S

strand1

t∗S∗

t S
S

t∗S∗
strand1:gate

t S

S

strand2

(b) Irreversible

Fig. 1. Example of basic DNA strand displacement reactions. Figure 1a is the re-
versible reaction strand1+gate:strand2 � strand1:gate+strand2, and Figure 1b is the
irreversible reaction strand1 + gate:strand2 → strand1:gate + strand2. Each strand is
represented as an arrow indicating 5’-to-3’ orientation. t and S1 are finite strings over
{A, C, G, T}, and t∗ and S∗ are their 3’-to-5’-oriented Watson-Crick complements. The
“toehold” region t is short enough (about 5 nucleotides) that it cannot provide suffi-
cient binding strength to allow two strands to hybridize stably. Only if the longer (say,
at least 15 nucleotides) “recognition” region S matches between strand1 and the base
strand gate can strand1 displace strand2. Displacement occurs via an unbiased random
walk but proceeds quickly compared to the time taken for strands to find each other
in solution, so a successful displacement is modeled as occurring instantaneously upon
binding of the toehold.

Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits 27

preparation steps solely on that one tube; this is what we mean by “scalable”.1

The particular mechanism we utilize to achieve scalability is the same used by
Qian and Winfree. Briefly, it involves creating double-stranded complexes from
single-stranded hairpin precursors that are cleaved with (naturally occurring)
restriction enzymes, possibly leaving short sticky ends to serve as toeholds for
future strand displacement.

time-responsive: This property is achieved by Goel and Ibrahimi [1] utilizing
restriction enzyme technology (apparently requiring new restriction enzymes to
be designed). Qian and Winfree [6] describe time-responsiveness as an open prob-
lem for their particular motif, known as seesaw gates, which are built from strand
displacement cascades. Informally, a circuit is time-responsive if, supposing that
the inputs to the circuit change after the initial computation, then the output is
re-computed to reflect the new inputs. Time-responsiveness of individual gates
is key to constructing recurrent circuits that use feedback loops to implement
memory storage devices, such as latches and flip-flops. Even for feed-forward
circuits, time-responsiveness is an intuitively appealing property. For instance, a
circuit could constantly monitor the state of a cell and release drugs in response
to a temporary malady, then inhibit the release as the malady disappears.

energy-efficient: This property is a definition of our own device, but it or
something approximating it seems essential in robust circuit implementations.
Our definition is that inputs given ideally result in eventual migration to a
steady state in which 1) outputs are also ideal, and 2) this steady state is in
equilibrium, maintained without any expenditure of energy to power irreversible
reactions. This is a dynamic equilibrium, as some reversible reactions are always
taking place. In our system (as in many others), Boolean values of all wires in
the circuit, including input, output, and intermediate gate-connecting wires, are
represented as high or low concentrations of certain chemical species. As each
wire w in the abstract circuit being simulated can take on the values 0 and 1, this
wire is associated to two chemical species 0w and 1w. Ideally, to represent the bit
b ∈ {0, 1}, bw is present and bw is absent (where b = 1 − b), the so-called dual-
rail convention. Our design ensures energy efficiency because energy is expended
only to change non-ideal wires (those with positive concentration of bw when b is
the correct bit for that wire given the inputs) to ideal, but no energy is expended
to maintain a wire’s correctness once it reaches an ideal state. We note that this
definition assumes perfectly irreversible reactions are possible. In reality, more
energy is required to drive a reaction the greater its ratio of forward to reverse
rates; hence a completely irreversible reaction requires infinite energy. A better
quantitative definition of energy efficiency would take into account this partial
reversibility of all chemical reactions, including our “irreversible” reactions, when
measuring energy use.
1 Although we have not formally defined the notion, it seems reasonable, for instance,

to define a “scalable” molecular circuit to be one whose preparation involves at
most a constant number of preparation steps (other than the original design of the
molecules themselves), regardless of the size of the circuit.

28 E. Chiniforooshan et al.

digital: By this we mean that the circuit employs signal restoration to obtain a
digital abstraction of what are fundamentally analog concentration values. Since
Boolean values are represented by high or low concentrations of certain chemical
species, to correct for non-ideal inputs, as well as the natural signal degradation
suffered by the logic gates, it is desirable to move high concentrations higher
and low concentrations lower before feeding the values as input to the next
gate in the circuit. We achieve this by designing a single-input, single-output
restoration gate (to be “spliced” into every wire in the logical circuit) such that,
if i is the input wire and o is the output wire, then [1o]/[0o] = ([1i]/[0i])2, where
[A] denotes the concentration of species A. For instance, if a wire’s species have
combined concentration 100, and if [1i] = 60 and [0i] = 40, then at steady-state,
[1o] ≈ 69.23 and [0o] ≈ 30.77 (since 69.23/30.77 ≈ 2.25 = 1.52 = (60/40)2). By
serially cascading a small number of such gates together we can amplify even
very weak signals, since n cascaded gates amplify a ratio of r to r2n

. For instance,
to transform a ratio of 0.6/0.4 to > 0.99999/0.00001 requires only 5 restoration
gates.

Our design has been simulated using the idealized model of DNA strand
displacement kinetics described in [6, 8], and the simulation agrees with the
properties claimed above. An important future project is to experimentally
validate that such a construction is possible.

2 Construction

This section describes the details of our proposed design. Recall the dual-rail
convention that our design employs: each wire w in the circuit will be represented
by two chemical species (DNA strands) 0w and 1w, and the Boolean gates we
use work as long as the ratio of the concentration of the correct input bit species
to the incorrect input bit species is “sufficiently high”. Our design involves the
construction of three types of gates, the first two Boolean and the third analog:
2-input/1-output Boolean NAND gates (output bit is 0 if and only if both input
bits are 1), 1-input/2-output Boolean fan-out gates (both output bits are equal to
input bit), and 1-input/1-output analog signal restoration gates (the difference
in concentration between species 0w and 1w representing the input wire w is
amplified for the output wire species). Every Boolean function can be computed
by the composition of NAND gates, and through the appropriate composition of
fan-out gates we may assume that each intermediate wire in the circuit connects
exactly two gates, and that each input and output wire is connected to exactly
one gate. We then place a signal restoration gate (or more in series) on each wire
of the circuit as needed. This is necessary since the Boolean gates suffer some
signal degradation, and since inputs may not be specified ideally. The conversion
of an example circuit is shown in Figure 2. We choose NAND gates for the sake
of concreteness, but it is easy to modify our design to implement any of the
sixteen possible 2-input/1-output logic gates.

Our design of the three gates is described in terms of sets of abstract chem-
ical reactions implemented by DNA strand displacement in a similar fashion

Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits 29

i1
i2

i2
i3

i2
i2

i1

i2
i3

NAND

FANOUT

SIGNAL
RESTORATION

i1

i2
i3

Fig. 2. A circuit with 6 Boolean NAND gates and 3 inputs, converted to add Boolean
fan-out gates to allow fan-out from inputs and NAND gates, as well as analog signal
restoration gates between all Boolean gates

to [8]. Each species in the reactions below is represented by single-stranded
DNA molecules of the same form as strand1 in Figure 1;2 since they all have
the same format, arbitrarily large circuits may be “wired” together. Our method
of implementing abstract chemical reactions with DNA strand displacement re-
actions is inspired by, but subtly different from, that of [8]. As in [8], a single
“high-level” abstract reaction is simulated by more than one “underlying” DNA
strand displacement reaction. The primary difference is the need for a direct
implementation of a termolecular reaction (a reaction with three reactants) in
which no irreversible “underlying implementation reaction” is allowed to occur
unless all three reactants of the “high-level reaction” are present. This allows
us to conclude that if no abstract high-level reactions are possible, then no irre-
versible, energy-consuming implementation reactions are possible. This ensures
energy efficiency so long as we design the high-level reactions so that they cannot
occur at steady-state.

We do not specify the rate constant of any reaction. For the low-level strand
displacement reactions all rate constants are assumed to be equal, following the
kinetic model of [8] in which toehold length determines the rate constant of a
strand displacement reaction (all our toeholds are equal length). In implementa-
tion using DNA strands, the abstract high-level reactions will not have identical
rate constants, but the implementation is robust to small differences in rate con-
stants among the high-level reactions. For instance, it suffices if all of these rate
constants are within an order of magnitude of each other, which they are given
our implementation.

The time-responsiveness of the design is evident by inspection of the reactions
below. Informally, it follows from the fact that each input to a gate is catalytic in

2 Other intermediate species not shown in the section but used in the DNA strand
implementation in Section 2.2 are not necessarily of this form.

30 E. Chiniforooshan et al.

the reactions associated with that gate and the fact that the total number of “bit
molecules” 0w and 1w associated with a wire w is constant; reactions only change
0w to 1w and vice-versa. Fuel molecules are indeed consumed for each reaction.
Some consumed fuel species are explicit in the reactions discussed below (such
as diffo or 0fo), but some fuel is explicit only in the “underlying implementation
reactions” of DNA strand displacement and does not even appear as an abstract
chemical species below. For each set of reactions below the fuel efficiency of
the reactions is justified in the sense that none of the reactions can occur at
the steady-state concentrations assuming ideal input species. We must take care
when implementing these reactions with DNA strand displacement to ensure that
all underlying implementation reactions that occur at steady-state are reversible,
but this is not discussed in this section. The digital abstraction is achieved by
one particular signal restoration gate discussed in Section 2.1, intended to be
distributed throughout the circuit in between the other gates. The scalability
of our design is achieved in a similar fashion to that used by Qian and Winfree
[6], although slightly more complex in making use of multiple hairpin precursor
DNA strands. We omit a full explanation here, which can be found in the full
version of this extended abstract.

2.1 Design of Abstract Chemical Reactions for Gates

Given the circuit structure proposed above (NAND gates, fan-out gates, and
signal restoration gates), we may assume that each wire in the circuit is the
input of exactly one gate and the output of exactly one gate. If each gate g in
the circuit is given a unique identifier idg, then a wire connecting gate g to g′

is uniquely identified by the pair w = (idg, idg′). We therefore assume each wire
has a unique identifier that indicates which two gates it connects. Ultimately,
this wiring information will be encoded by DNA recognition regions, but for now
we describe the gate operation in terms of wires labeled with abstract values.
The concentrations of the species associated with the input wires are assumed
to be under external control. We take care to ensure that all wire species are
catalytic (not consumed) in the reactions of gates for which they are an input ;
this ensures time-responsiveness of each of the gates in the presence of sufficient
fuel.

NAND Gate Reactions: Given a wire identifier w, associate with it the two
chemical species 0w and 1w, representing the value of the wire through the dual-
rail convention described earlier. To implement a NAND gate, whose output is
0 if and only if both inputs are 1, with input wires i1 and i2 and output wire o,
we use the reactions

0i1 + 0i2 + 0o → 0i1 + 0i2 + 1o,

0i1 + 1i2 + 0o → 0i1 + 1i2 + 1o,

1i1 + 0i2 + 0o → 1i1 + 0i2 + 1o,

1i1 + 1i2 + 1o → 1i1 + 1i2 + 0o.

Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits 31

In other words, if two inputs “encounter” an output that is erroneous (accord-
ing to the two inputs), then two inputs cooperate to “fix” the output molecule
by converting it to represent the other bit. It is clear that with ideal inputs (i.e.,
[0i] > 0 ⇐⇒ [1i] = 0 for i ∈ {i1, i2}), then at steady state, the output is ideal,
correct, and none of the reactions above are possible since all would have at least
one reactant with concentration 0. Therefore these reactions are energy-efficient.

By modifying the bits of the rightmost reactant and product in each reaction
above to represent a different truth table, the reactions can be made to emulate
any 2-input/1-output logic gate.

Fan-out Gate Reactions: A fan-out gate takes a single input wire i and copies
its value to two output wires o1 and o2. The reactions to implement this are

0i + 1o1 → 0i + 0o1 , 0i + 1o2 → 0i + 0o2 ,
1i + 0o1 → 1i + 1o1 , 1i + 0o2 → 1i + 1o2 .

As with the NAND gate reactions, it is clear that the reactions are energy-
efficient since at steady-state at least one reactant of each reaction has concen-
tration 0.

Signal Restoration Gate Reactions: The NAND and fan-out gates contain
no digital abstraction: each input species “pushes” on the output in linear pro-
portion to the concentration of the input. This implies that at best the signal
would not be lost; i.e., if input were 90% ideal (e.g. [0i] = 0.9 and [1i] = 0.1),
then the best the output could be is 90% ideal. In reality, even this is not
achieved since our DNA strand displacement implementation of the reactions
introduces some non-idealities that imply there will be signal loss at each logical
gate. The signal restoration gate described below functions to restore the signal.
The gate takes one input i and produces one output o, such that at steady-state,
[1o]/[0o] = ([1i]/[0i])2. Therefore the difference between the input species that
is “high” and the one that is “low” will be amplified.3

The following reactions implement this gate. Below we describe the intuition
behind them.

0i + 1o → 0i + 1o + diffo, (1)
0i + diffo → 0i + p0o, (2)
p0o + p0o → p0o + p0o + P0o, (3)

3 The statement “[1o]/[0o] = ([1i]/[0i])2 at steady-state” applies to the abstract high-
level reactions described in this section but is not entirely accurate for the imple-
mentation reactions of Section 2.2 due to the “buffering” effect described in that
section. DNA strands spend part of their time “buffered” in double-stranded com-
plexes through reversible exchange reactions even in the absence of the other re-
actants. The effect is that their “net concentration” may be lower at steady-state
by some constant multiplicative factor than their initial concentration (the purpose
of the fan-out gates is to keep this factor constant). Nonetheless, we still obtain a
quadratic amplification of the ratio [1i]/[0i] although perhaps off by a constant to
account for the buffering effect.

32 E. Chiniforooshan et al.

P0o + 1o → P0o + 0o, (4)
1i + 0o → 1i + 0o + diffo, (5)

1i + diffo → 1i + p1o, (6)
p1o + p1o → p1o + p1o + P1o, (7)
P1o + 0o → P1o + 1o. (8)

Additionally, there is a species decayo set to some constant concentration
(comparable to that of 0o and 1o), such that, for each species S ∈ {diffo, p0o,
p1o, P0o, P1o}, we also have the reaction

decayo + S → decayo. (9)

The intuition behind the reactions above is as follows. Reactions (1) through
(4) are functionally the same as (5) through (8); the difference is only in which
input bit is being translated to the output. For concreteness we describe only re-
actions (1) through (4); therefore we regard the input bit as 0, 0i as the “correct”
input species, and 1i as the “incorrect” input species. Reaction (1) is designed
to detect the presence of incorrect output; if an input molecule encounters an
output molecule that it “thinks” is incorrect, those molecules catalytically pro-
duce a copy of diffo. The purpose of diffo is to “announce” to both input species
that the output is not ideal; when an input molecule 0i reacts with diffo in reac-
tion (2), the input catalytically transforms diffo into a “push” molecule p0o.

4 If
this molecule p0o were to react directly with the output 1o to convert it to 0o,
the rate of conversion would be linear in the input concentration; hence signal
restoration would not occur since the reverse conversion of 0o to 1o catalyzed by
p1o would proceed at a rate proportional to the concentration of 1i. To amplify
the ratio between the correct input species and the incorrect input species, we
must create push molecules whose ratio of correct-to-incorrect is superlinear in
the correct-to-incorrect ratio of the input species. This is the function of reaction
(3), which produces “strong push” molecules P0o at a rate quadratic in the con-
centration p0o (since the rate of a bimolecular reaction of the form A+A → . . . is
proportional to [A]2). Reaction (4) is then the “correction” of the output species
by the strong push molecules.

The reactions are energy-efficient. Although our simulation uses the mass-
action kinetics model, it is easiest to describe the intuition with finite counts
of molecules, so that molecular concentrations can really go from positive to 0
in a finite amount of time. With ideal input species, say, [0i] > 0 and [1i] = 0,
reactions (5) and (6) cannot occur. Since (6) cannot occur, production of p1o

4 Note that reactions (1) and (5) produce the same molecule diffo; this is so that, if
the output is “close to ideal”, the production of output-changing molecules will not
become unbalanced in favor of the incorrect output. If reactions (1) and (5) produced
molecules specific to one input bit, say diff0o and diff1o, then the production rate of
diff0o would decrease, and the production rate of diff1o would increase, as the output
species moved closer to an ideal representation of 0. This would lead to a negative
feedback loop hampering signal amplification.

Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits 33

halts and [p1o] decays to concentration 0 through reaction (9). With [p1o] = 0,
reaction (7) cannot occur and production of P1o halts and [P1o] decays to 0
through reaction (9). No reaction at this point can change a 0o to a 1o. Reactions
(1) through (4) continue until all 1o are converted to 0o. At this point reaction
(1) cannot occur, production of diffo halts, and [diffo] decays to concentration
0 through reaction (9). This results in the eventual decay of p0o and P0o, for
the same reason as described above for p1o and P1o, at which point none of the
reactions (1) through (9) can occur, and the system has reached steady-state.

2.2 Implementation of Abstract Reactions with DNA Strand
Displacement

Our design of a NAND gate, a fan-out gate, and a signal restoration gate
described in Section 2.1 consists of bimolecular and termolecular reactions
(meaning two and three reactants, respectively) with abstract chemicals. We now
introduce a method to implement these abstract reactions with DNA strand dis-
placement. For concreteness we show how to implement a bimolecular reaction
A + B → C + D with two products and a termolecular reaction A + B + C →
D + E + F with three products. However, it should be clear how to modify each
design to allow an arbitrary number of products in either case. For instance, our
design from Section 2.1 also requires bimolecular reactions with three products
(e.g. 0i +1o → 0i +1o +diffo). As mentioned earlier, this design borrows heavily
from [8] but alters the design to allow direct implementation of termolecular
reactions. This problem is nontrivial due to the effect of the “buffer” strands for
the second reactant, as we will explain below.

The implementation of a bimolecular reaction A + B → C + D using DNA
strand displacement is shown in Figure 3. The series of reactions is activated
in the presence of reactants ta (A), tb (B) and the gate complex g1. First, ta
attaches to the gate g1 via the uncovered toehold t and the strand displacement
follows to detach the buffer1 at from g1 (reaction (a) in Figure 3). At this stage
two reactions are possible: the strand displacement caused by tb to release the
linker (reaction (b)) or the buffer1 strand reverses the previous reaction.Reaction
(b) is also reversible due to the exposed toehold on the right side of the complex
after reaction (b). At this point the linker can bind to the gate g2 and release
products tc (C) and td (D) (reaction (c)). Strand 1 and the two complexes with
the bottom strands of gates g1 and g2 are produced as waste. This reaction is
irreversible, but since it is the only irreversible reaction in the cascade, either
the entire cascade is “committed” or it is possible to return to the original state
shown in the upper left box of Figure 3. In the absence of B, some propor-
tion of copies of strand A spend time “buffered” in gate complex g1, reversibly
exchanging with buffer1, which lowers the “effective concentration” of A, alter-
ing the strength of its effect on other reactions of which it is a part. However,
given the design of Section 2.1, particularly due to the use of fan-out gates, we
may assume each species is a first or second reactant in at most two reactions.
Therefore the effective concentration of A is at least a constant fraction of its
initial concentration, given a sufficiently large and approximately equal supply

34 E. Chiniforooshan et al.

of buffer1 and g1 (in each of the two reactions in which A participates). This is
essentially the same argument used in [8] (although handled differently to more
precisely simulate desired rate constants, which do not need to be precise for
our purposes). As explained below the existence of a second buffer strand in the
termolecular reaction requires more sophisticated handling.

The implementation of a termolecular reaction A + B + C → D + E + F is
illustrated in Figure 4. The essential difference is the buffer2 collector. Whenever
the termolecular reaction completes successfully, the numbers of buffer1 and
buffer2 increase by 1. Unless processed properly these buffers accumulate and
become more and more competitive against A and B. For the buffer1 strand,
this problem may be solved by having the gate g1 and buffer1 be in excess such
that their concentrations remain effectively constant; this is the trick used in
[8]. However, this argument does not apply to buffer2, since buffer2 reacts with
g1 : A complexes. The number of these is necessarily no larger than the number
of A strands, no matter how many gate complexes g1 are supplied. Therefore the
produced copies of buffer2 will eventually grow so large as to effectively prevent
C from binding unless the copies of buffer2 are collected. Hence a “collector”
is prepared for buffer2, which binds to buffer2 to render it inert. It is critical,
however, that the collector not be released but upon the successful completion of
the entire cascade of reactions, since we require positive concentration of buffer2
in the case that A and B are present but C is absent, to prevent the undesirable
situation that all copies of B become trapped in gate g1 complexes. Because
of the need to deal with buffer1 strands and buffer2 strands differently, it is
essential to prevent crosstalk between them; this is explained in Section 2.2.

t a
A

t b
B

b ti 1 c d

t∗it∗t∗ b∗a∗ gate g1

a t

t b
B

b ti 1 c d

t∗it∗t∗ b∗a∗

t a

a t

buffer1

t∗it∗t∗ b∗a∗

t a t b
b ti 1 c d

linker

(a)

(b)

d∗c∗1∗t∗igate g2

1 t c t d

d∗c∗1∗t∗i

b ti 1 c d

t c

C
t d

D

1

(c)

Fig. 3. The DNA motif and reaction mechanism for the bimolecular reaction A+B →
C + D. By a, b, c, d, 1, we denote the recognition domains. t and ti (for i ∈ {1, 2, 3})
are the toehold domains. The need for the different toeholds is explained in Section
2.2. The bolded arrow between two dotted squares surrounding respective sets of DNA
motifs represents the reaction with the set of DNA motifs at its tail as its reactants and
the set at its head as products. Recognition region 1 uniquely identifies this reaction
and ensures that the linker strand cannot release any output strands from the gate
complex g2 of other reactions even if they share a first output recognition region (c in
this case).

Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits 35

t a

A

t b

B

t c

C

c ti 1 d e f 2t∗

t∗it∗t∗t∗ c∗b∗a∗ gate g1

a t b t

t∗it∗t∗t∗ c∗b∗a∗

t a t b t c

c ti 1 d e f 2t∗

linker
a t

buffer1
b t

buffer2

(a)

t2∗f∗e∗d∗1∗t∗i gate g2

1tdte tf 2b∗ b

t2∗f∗e∗d∗1∗t∗i

c ti 1 d e f 2 t∗

t d

D

t e

E

t f

F

1

2t∗b∗

b

buffer2
collector

(b)

2t∗b∗

b

buffer2
collector

b t

buffer2

b t

2t∗b∗

b

(c)

Fig. 4. The DNA motif and reaction mechanism for the termolecular reaction A+B +
C → D + E + F

Our design requires a bit of care with the toeholds. Briefly, each toehold can be
equal for any “high-level species strands” (such as A, B, C in Figure 4), and for
any buffer strands. However, to avoid unnecessary “crosstalk” between buffers
and linkers, and between linkers from two different reactions, it is necessary to
use different toehold regions for linkers.

Consider the reactions of Section 2.1. The first three reactions share a third
reactant 0o. This implies that the linker strand of Figure 4 corresponding to
these reactions shares the first recognition region c representing 0o. If the toe-
hold ti following the recognition region were equal for these linker strands, then
one linker strand could attach to the gate complex g1 of another reaction, erro-
neously displacing the strand representing 0o. To prevent this we use different
toeholds for each of these reactions that share their third reactant 0o. Similarly,
to prevent linkers from displacing non-final reactants (first reactants in a bi-
molecular reaction, and first or second reactants in a termolecular reaction), we
must ensure that ti
= t for any i ∈ {1, 2, 3}.

This applies to bimolecular high-level reactions as well, but it is routine to
verify that no more than three different reactions (the worst case being the case
described above) share the same final reactant. It is safe to reuse linker toeholds
between reactions that differ in their final reactant because the different initial
recognition regions on the linkers will prevent the crosstalk problem described
above.

Although we have ensured that buffers and linkers will not have crosstalk be-
cause they use different toehold sequences, we must ensure that buffers do not
suffer undesired crosstalk with each other. A buffer, unlike a linker, when released
uncovers a toehold that is intended to serve as an initial binding site for a strand.
Therefore it is not as simple as changing the toehold to prevent buffer crosstalk.
Also, a buffer1 strand (a buffer released upon the binding of a first reactant
in a reaction, either bimolecular or termolecular) is not garbage-collected as a

36 E. Chiniforooshan et al.

buffer2 strand is (a buffer released upon the binding of a second reactant in a
termolecular reaction). Therefore we must ensure that buffer1 strands are always
different from buffer2 strands so that exactly the buffer2 strands are garbage-
collected.

To see that this undesired crosstalk does not happen, it suffices to inspect the
order of reactants in each reaction. No “high-level species” (corresponding to A,
B, etc. in Figures 3 and 4) is a first reactant in one bimolecular or termolecular
reaction but a second reactant in another termolecular reactant. Therefore it is
critical to maintain the specific order of the reactants we chose for the high-level
reactions of Section 2.1.

Acknowledgement. The authors are grateful to Erik Winfree for discussing
many issues with us.

References

[1] Goel, A., Ibrahimi, M.: Renewable, time-responsive DNA logic gates for scalable
digital circuits. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp.
67–77. Springer, Heidelberg (2009)

[2] Hagiya, M., Yaegashi, S., Takahashi, K.: Computing with hairpins and secondary
structures of DNA. In: Nanotechnology: Science and Computation, pp. 293–308
(2006)

[3] Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews,
B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic
gates in an automaton. Nano Letters 6, 2598–2603 (2006)

[4] Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Let-
ters 78(6), 1190–1193 (1997)

[5] Penchovsky, R., Breaker, R.R.: Computational design and experimental validation
of oligonucleotide-sensing allosteric ribozymes. Nature 23, 1424–1433 (2005)

[6] Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale cir-
cuits. In: Goel, A., Simmel, F.C., Sośık, P. (eds.) DNA 14. LNCS, vol. 5347, pp.
70–89. Springer, Heidelberg (2009)

[7] Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid
logic circuits. Science 314(5805), 1585–1588 (2006)

[8] Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences (March 2010)

[9] Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates.
Journal of the American Chemical Society 124, 3555–3561 (2002)

[10] Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-
fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

[11] Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

Negative Interactions in Irreversible
Self-assembly�

David Doty1, Lila Kari1, and Benoît Masson2

1 U. of West. Ontario, Dept. of Computer Science, London, Canada
{ddoty,lila}@csd.uwo.ca

2 IRISA (INRIA), Campus de Beaulieu, Rennes, France
benoit.masson@irisa.fr

Abstract. This paper explores the use of negative (i.e., repulsive) inter-
actions in the abstract Tile Assembly Model defined by Winfree. Winfree
in his Ph.D. thesis postulated negative interactions to be physically plau-
sible, and Reif, Sahu, and Yin studied them in the context of reversible
attachment operations. We investigate the power of negative interactions
with irreversible attachments, and we achieve two main results. Our first
result is an impossibility theorem: after t steps of assembly, Ω(t) tiles
will be forever bound to an assembly, unable to detach. Thus negative
glue strengths do not afford unlimited power to reuse tiles. Our second
result is a positive one: we construct a set of tiles that can simulate an
s-space-bounded, t-time-bounded Turing machine, while ensuring that
no intermediate assembly grows larger than O(s), rather than O(s · t) as
required by the standard Turing machine simulation with tiles.

1 Introduction

Tile-based self-assembly is a model of “algorithmic crystal growth” in which
square “tiles” represent molecules that bind to each other via highly-specific
bonds on their four sides, driven by random mixing in solution but constrained
by the local binding rules of the tile bonds. Erik Winfree [10], based on exper-
imental work of Seeman [7], modified Wang’s mathematical model of tiling [9]
to add a physically plausible mechanism for growth through time. Winfree de-
fined a model of tile-based self-assembly known as the abstract Tile Assembly
Model (aTAM). The fundamental components of this model are un-rotatable,
but translatable square “tile types” whose sides are labeled with “glues” repre-
senting binding sites. Two tiles that are placed next to each other are attracted
with strength determined by the glues where they abut, and in the aTAM, a tile
binds to an assembly if it is attracted on all sides with total strength at least

� This research was supported in part by Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant R2824A01 and the Canada Research
Chair Award in Biocomputing to Lila Kari, and by the NSF Computing Innovation
Fellowship grant to David Doty.

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 37–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

38 D. Doty, L. Kari, and B. Masson

a certain threshold value τ .1 Assembly begins from a “seed” tile and progresses
until no more tiles may attach.

We study a variant of this model in which glue strengths are allowed to be
negative as well as positive. This leads to the situation in which a stable assembly
may become unstable through the addition of a tile that, while binding strongly
enough to the assembly to remain attached itself, exerts a repulsive force on
a neighboring tile, which is sufficiently strong to detach some portion of the
assembly. This is formally modeled by allowing an assembly to break into two
parts any time that the two parts have total connection strength less than τ
(i.e., if there is a cut of the interaction graph of strength less than τ). Negative
glue strengths were discussed as a plausible mechanism in Winfree’s thesis [10],
and explored theoretically in a more general model of graph-based self-assembly
by Reif, Sahu and Yin [4]. We compare the results of [4] to the present paper in
more detail later in this section.

This paper has two main contributions, an impossibility result and a positive
result. The impossibility result is that under the irreversible model, negative glue
strengths are not sufficient to achieve perfect reuse of tiles as in [4]. It is tempting
to believe that with negative glue strengths, the monotonic growth of the aTAM
could be overcome to such a degree that a bounded set of tiles could be reused for
arbitrarily long computations,2 hence implementing the observation that “you
can reuse space but you can’t reuse time”. Alas, you cannot reuse space (tiles)
too much with irreversible reactions. We show that under the irreversible model
of tile assembly, even with negative glue strengths, many tiles will be forever
bound to an assembly, unable to detach. In fact, this number is linear in the
number of assembly operations, so that after t operations, Ω(t) tiles will be
permanently bound to some assembly.

The positive result is a construction attempting to make do with this limi-
tation. For concreteness, our construction shows how to simulate a single-tape
Turing machine. But the idea applies to the iterated computation of any func-
tion f that can be “computed with constant height” by a tile assembly system
(a formal definition is given in Section 4). The function fM mapping the config-
uration of a Turing machine M to its next configuration is an example of one
such function. Other examples include the incrementing or decrementing of a
counter, or the selection of a uniformly distributed random number from a finite
set {1, 2, . . . , n} using flips of a fair coin via von Neumann’s rejection method, as
shown in [2].

Our construction achieves the following property: if the Turing machine M
being simulated on input x (with n = |x|) has space bound s(n) and time bound
t(n), then O(t(n) · s(n)) tiles (meaning total count of tiles, which is greater than

1 The threshold τ models the temperature at which insufficiently strong chemical
bonds will break, such as those formed by Watson-Crick complementarity in DNA-
based implementations of tiles.

2 Subject, of course, to computational complexity constraints such as DTIME(t(n)) ⊆
DSPACE(2t(n)), based on the observation that configurations cannot repeat during
the course of a halting computation.

Negative Interactions in Irreversible Self-assembly 39

the number of unique tile types), mixed in solution, will simulate the compu-
tation of M on input x, and no intermediate assembly will grow to size larger
than O(s(n)). The impossibility result can be interpreted to imply that external
energy must be supplied to break bonds between tiles if we wish to reuse them
for computation. If we wish to limit the volume of a solution, and therefore the
number of molecules it can contain (by the finite density constraint, see [8]) to
O(s(n)), then we cannot allow intermediate assemblies to grow larger than this
value. Of course, by the impossibility result, many more than s(n) different such
assemblies will form if t(n)� s(n) (for instance, when simulating a linear-space,
cubic-time computation). With a mechanism to “vacuum” away junk assemblies
and supply the external energy needed to break them up (a mechanism not
modeled in the aTAM), these tiles could be reused, bringing down the required
number of tiles from O(t(n) · s(n)) to O(s(n)).

The main difference between [4] and the present paper is that [4] employs re-
versible reactions, and the present paper employs irreversible reactions.3 Within
the aTAM, the main difference between our model and [4] amounts to a differ-
ence in the definition of a legal attachment operation. In [4], the authors define
a tile attachment to be legal if the tile attaches with strength τ −1 (in fact, they
define it a bit differently but restricting attention to our construction and that
of [4], this definition is equivalent). This is a phenomenon not modeled by the
aTAM, but it is physically plausible to suppose that it occurs, though with less
frequency than strength τ attachments (see the kinetic TAM of [10]). Therefore
the tile may detach after attaching since it is held with insufficient strength. But,
if it first causes another tile or group of tiles to be bound with total strength
less than τ , then those tiles may also fall off, possibly resulting in stabilization of
the original attachment. In the present paper, we define attachments to be legal
only if they have strength at least τ , whereas detachments may only happen
between assemblies attached with strength at most τ −1. This difference implies
that our impossibility result does not apply to [4], which can be considered an
advantage of reversible interactions. But this advantage does not come with-
out disadvantages: due to the second law of thermodynamics, their construction
must necessarily be implemented as an unbiased random walk with equal rates
of forward and reverse reaction, lest the entropy of the system increase with time
if one direction is more favorable. Therefore their construction takes expected
time n2 to go forward n steps.

We should also note that although [4] uses a more general model of graph-
based self-assembly, this does not imply that their construction of an assembly
system simulating a space-bounded Turing machine simulation is a stronger
result than our construction. The more general model affords more power to aid
in a construction, such as allowing non-planar interactions, in addition to the
extra power of reversible interactions. Therefore, we emphasize that our positive
construction is not merely a specialization of the construction of [4] to grid
graphs. The construction of [4] is inherently non-planar and reversible. A major

3 [4] also uses a more general graph-based model of self-assembly, but this difference
is less crucial than the reversibility issue.

40 D. Doty, L. Kari, and B. Masson

source of the effort in designing our construction was getting it to work in the
plane and use irreversible attachments. Many similar (and simpler) constructions
that superficially appear to do the same thing as our construction do not actually
work in our model, as they introduce not only a desired cut of strength less than
τ , but also some undesired cuts of strength less than τ , which, if detached, will
ruin the construction.

For color figures, see http://www.csd.uwo.ca/~ddoty/papers/niisa.pdf.

2 Abstract Tile Assembly Model

This section gives a brief definition of the abstract Tile Assembly Model
(aTAM, [10]) with negative glue strengths. This not a tutorial on the aTAM; for
readers unfamiliar with the model, please see [5] for an excellent introduction.

Z and Z+ denote the set of integers and positive integers, respectively. Let
G be a finite alphabet of glues. A tile type is a tuple t ∈ G4, i.e., a unit square
with a glue on each side. Associated with the tile types is a glue strength function
str : G×G→ Z that indicates, given two glues g1 and g2, the strength str(g1, g2)
with which they interact. We assume a finite set T of tile types, but an infinite
number of copies of each tile type, each copy referred to as a tile. Let G(T)
denote the set of all glues of tile types in T . An assembly (a.k.a., supertile) is a
positioning of tiles on the integer lattice Z2 (i.e., a partial function α : Z2 ��� T ,
where ��� denotes that the function is partial). Each assembly induces a binding
graph, a grid graph whose vertices are tiles, with an edge between two tiles if they
are adjacent (i.e., are Euclidean distance 1 apart).4 The assembly is τ-stable, or
simply stable if τ is understood from context, if every cut of its binding graph
has weight (strength) at least τ , where the weight of an edge is the strength
of the glue it represents. That is, the assembly is stable if at least energy τ is
required to separate the assembly into two parts. In this paper, where not stated
otherwise, we assume that τ = 2.

A tile assembly system (TAS) is a 4-tuple T = (T, str, σ, τ), where T is a finite
set of tile types, str : G(T)×G(T)→ Z is the glue strength function, σ : Z2 ��� T
is the finite and τ -stable seed assembly, and τ ∈ Z+ is the temperature. Given a
TAS T = (T, str, σ, τ), an assembly α is producible if either (base case) α = σ,
or (recursive case 1) α results from the τ -stable attachment of a single tile to
a producible assembly (“τ -stable attachment” meaning that the cut separating
the tile from the rest of the assembly has strength ≥ τ), or (recursive case 2) α
consists of one side of a cut of strength < τ of a producible assembly. Note in
particular that a producible assembly need not be stable, but may be stabilized
by attachments before it can break apart. An assembly α is terminal if α is
τ -stable and no tile can be τ -stably attached to α. Let B ⊆ T be a set of “black”

4 Previous papers model the binding graph as having edges only between tiles that
interact with positive strength. In the present paper, the presence of negative glue
strengths means that we must consider every possible interaction between adjacent
tiles, whether positive, negative, or 0.

http://www.csd.uwo.ca/~ddoty/papers/niisa.pdf

Negative Interactions in Irreversible Self-assembly 41

tile types. T is B-directed (a.k.a., B-deterministic, B-confluent) if it has exactly
one terminal, producible assembly containing one or more tiles from B.5

To define reversible assembly at temperature τ = 2 (as in [4]), it suffices to
define attachment events with strength threshold τ−1 = 1, rather than strength
threshold τ = 2. This behavior is illustrated on Fig. 1(a), and can be compared
with our new notion, whose evolution is shown on Fig. 1(b).

t0 t1

t2

t3

t0 t1

t2t3

t0

t1

t2t3

(a) Reversible model, as defined in [4].

t0 t1

t2

t3

t0 t1

t2t′3

t0

t1

t2t′3

(b) Irreversible model.

Fig. 1. Two different implementations of negative interactions at temperature 2. The
slanted bonds represent a strength of −1. In the reversible model, the tile t3 can attach
with a total strength of 1 (one bond of strength 2 and one of strength −1) and hence is
unstable, while with our definition, t′3 is attached with a total strength of 2 and forces
t0 to detach.

3 Limitation of Tile Reuse with Irreversible Reactions

If α is an assembly, define Φ(α), the (negative) free energy of α, to be the sum
of all glue strengths between adjacent tiles in the assembly.6 In particular, an
assembly consisting of a single tile has free energy 0. If S is a multiset of assem-
blies (such as that produced by a TAS with negative glue strengths, considering
even the “junk” assemblies that are discarded after a cut), define the (negative)
free energy of S to be the sum of the free energies of each assembly in S, denoted
Φ(S). Note that even postulating an infinite count of tiles, after a finite number
of operations, only finitely many assemblies in S consist of more than one tile,
and each of these is a finite assembly. Therefore Φ(S) < ∞ for any multiset
S of assemblies producible by a TAS, even in the case that |S| = ∞ (such as
the initial multiset consisting of a countably infinite number of copies of each
individual tile type).

5 We define this notion of B-directedness but do not henceforth discuss it explicitly,
since our construction simulates a general “computation”, and B would depend on
the goals of the computation being simulated. In our example construction in Section
4 of simulating steps of a Turing machine, B could, for instance, consist of the tile
types that represent a halting state, so that only a terminal assembly representing
the configuration of a halted Turing machine would be considered the result.

6 The standard definition of free energy is the negative of this quantity, but as in [5] we
use its negation so that the quantity will be positive for stable assemblies. Intuitively,
it is the energy required to separate α into individual tiles, whereas the standard
definition is the energy released by such a separation.

42 D. Doty, L. Kari, and B. Masson

When we discuss the “number of steps” for the assembly process of a TAS,
we mean the total number of attachment and detachment operations that have
been applied so far. We do not claim that this is a proper model of “running
time”, but it is convenient to think of attachment and detachment events as
discrete and equally-spaced steps, even though they may happen in parallel or
with interval times governed by a continuous distribution.

Theorem 1. Let T be a TAS, and let S be a multiset of assemblies producible
by T after t ∈ N steps. Then Φ(S) ≥ t/2.
A proof of Theorem 1 will appear in a full version of this extended abstract.

Since the glue strengths are bounded above by some constant s, an immediate
consequence of Theorem 1 is that after t steps, at least t/(2s) sides of tiles are
bound. With the finite tile count assumption, once t is sufficiently large that
t/(2s) exceeds the total number of sides available (i.e., 4 times the total number
of tiles in solution), no more sides are available for binding, and self-assembly
grinds to a halt. This is the sense in which a finite number of tiles cannot be
reused indefinitely.

There is a natural thermodynamic interpretation of Theorem 1: work done by
tiles on tiles, in an irreversible manner, increases the entropy of the system by the
second law of thermodynamics, thus decreasing the potential energy available to
do more work. Therefore, any potential energy stored in the unattached glues is
eventually permanently used up if external energy is not supplied to break these
bonds. In our main construction, many junk assemblies are created that are no
longer useful once the tiles in them have been used once. Theorem 1 tells us that
no amount of cleverness will allow us to break up those assemblies and reuse the
tiles solely through design of tile types with negative glues; some external force
must be supplied to break them apart using a mechanism not modeled in the
aTAM.

Of course, Theorem 1, interpreted in light of the molecular interactions that
are being modeled by the aTAM, should not be surprising to any physicist. But
we believe it is important to formally establish the truth of such a statement
within the model. One develops more confidence in a model of reality when it tells
us something already known about reality (e.g., the Positive Mass Theorem [6]).

Theorem 1 does not apply to the negative glue strength construction of Reif,
Sahu, and Yin [4], because their model allows reversible reactions. Attempting
to apply our proof to their model would result in the first inequality Φ(Si+1)−
Φ(Si) ≥ τ being replaced by Φ(Si+1) − Φ(Si) ≥ τ − 1, which would result in
a final lower bound of 0, instead of t/2, for Φ(S). Intuitively, the reversibility
of reactions implies that attachment and detachment have symmetric effects
on the free energy. But this also implies that their system requires driving the
system forward through an unbiased random walk, taking n2 steps on average
to proceed by n net forward steps. Any attempt to speed up the reaction to
make the forward rate of reaction faster than the reverse rate of reaction would
introduce the imbalance in their respective effects on free energy that allows
our proof to work. Therefore this tradeoff in speed versus reusability of tiles is
fundamental.

Negative Interactions in Irreversible Self-assembly 43

4 Turing Machine Simulation

Throughout this section, fix some finite alphabet Σ. We first describe the class
of functions that we will compute, which are intuitively those computable by
a constant number of rows of assembly (although the number of columns is
unbounded) in the standard aTAM. See [2], for example, for a formal definition
of the standard aTAM model. Briefly, it is the same as the model defined in
Section 2, but glue strengths are non-negative and are only positive between
equal glues.

Definition 1. Let T be a set of tile types, and let e : T → Σ. We say that a
row of tiles (a connected subassembly of some assembly of height 1) t1, t2, . . . , tk
e-encodes a string x ∈ Σk if e(t1) = x[1], e(t2) = x[2], . . . , e(tk) = x[k], where
x[i] ∈ Σ is the ith symbol in x. A function f : Σ∗ → Σ∗ is constant-row
computable if there exists a tile set T , a function e : T → Σ, and a con-
stant c such that, for each x ∈ Σ∗, there is a height-1 stable assembly σx :
Z2 ��� T e-encoding x such that the tile assembly system T = (T, str, σx, 2)
(with str(g1, g2) > 0 ⇐⇒ g1 = g2) has the unique terminal assembly α, the
height of α is c, the bottom row of α is σx, the top row of α e-encodes f(x), and
the leftmost column of any row of α is no further left than the bottom row.

The widths of the rows representing the input and output may be different
(i.e., possibly |x|
= |f(x)|). In this case, we require only that the leftmost and
rightmost tiles of each row have their glues specially marked to distinguish them
from the tiles interior to the row.

Our construction shows how to design a tile set that will compute iterations
of any constant-row computable function f , ensuring that no intermediate as-
sembly grows larger than the size of the input or output processed by any
individual invocation of f . Examples of such functions include the function f
that, given a configuration of a single-tape Turing machine outputs the next
configuration of this Turing machine, or that increments a counter represented
in binary.

Figure 2 shows a high-level overview of the entire construction, in terms of
a general constant-row computable function f . For concreteness, think of f as
the function that, given a configuration of a t-time-bounded, s-space-bounded,
single-tape Turing machine, outputs the next configuration of this Turing ma-
chine (extending the tape on the right side only). The construction proceeds as
follows, each label corresponds to a picture in Figure 2.

(a) First, the scaffold tiles (green) connect to the x data assembly (white). The
scaffold tiles initiate the computation of f (blue).

(b) The scaffold “detects” when the computation is finished, in the sense that the
green row above f(x) tiles cannot complete until all of f(x) is present. Then
the scaffold tiles grow back to the first scaffold tile to initiate the removal of
f(x) from the tiles surrounding f(x).

44 D. Doty, L. Kari, and B. Masson

(a) (b) (c)

Fig. 2. High-level overview of assembly for computation of a constant-row computable
function f

(c) The removal tiles (red) each use a negative glue strength against the tile “in
front of” (on the path show by the arrows) it, and once this tile is removed,
a new removal tile grows in its place to continue the removal. The path and
bond placements and strengths are carefully chosen to ensure that no portion
of f(x) is removed, until the last step when f(x) detaches whole from the
rest of the tiles.

Note that since f is constant-row computable, the height of the scaffold and
removal parts are bounded by a constant and therefore may be hard-coded into
the tile set, whereas special glues mark the horizontal endpoints so that the
length of x and f(x) are not constrained.

The simulation of the Turing machine for t steps will then consist of execut-
ing this assembly process for t iterations, using the output assembly f(x) as
the input assembly x for the next execution. After each iteration, the width of
the remaining “junk” assembly is a constant plus O(1) + max{|x|, |f(x)|}, and
the height is constant since f is constant-row computable, so the size of the
intermediate assemblies is O(max{|x|, |f(x)|}).

Figures 3, 4, and 5 give some more details for the three main steps of Figure
2, respectively (a), (b), and (c), using the specific example of f mapping a
configuration of a single-tape Turing machine to its next configuration.

Figure 3 shows an example of tiles implementing step (a) of Figure 2, i.e.,
the computation of f . The example shows one transition of a single-tape Turing
machine, with tape contents 01_0 (_ standing for blank), in state q, with tape
head on the rightmost cell, transitioning to state p, moving the tape head right,
changing the cell’s symbol from 0 to 1, and encountering a blank on the new
rightmost cell. In this case, a new rightmost cell is needed, illustrating how our
construction handles dynamically changing space requirements, but if the tape
head were further left in the row, it would simply fill in copy tiles to the right,
just as to the left as shown above, and the row would stay the same width. At the
start and end of a computation, the configuration is copied so that any strength
> 1 bonds used in the computation are on the interior of the computation tiles,
ensuring that only strength-1 bonds must later be broken to separate the data

Negative Interactions in Irreversible Self-assembly 45

Fig. 3. Example of tiles implementing the computation step. Arrows within tiles show
order of growth. In this case f is constant-row computable with constant c = 1. The
first and last copy rows, shown in lighter shade than the center computation tiles,
are always present no matter the function f , and their placement is initiated by the
scaffold tiles. However, there is no interaction between the center computation and
scaffold tiles. Note that the data tiles are two rows with strength 1 glues; this is to
make them stable at temperature 2 but not producible (without additional scaffolding)
as they would be if they were a single row connected with strength 2 glues.

tiles. Each data assembly on either end of the computation tiles is represented by
a two-row assembly with only single-strength bonds on its interior, which ensures
that when detached, the data assembly will be stable, but that it cannot form
on its own without help from the scaffold tiles (which would happen if it were
only a single row connected with strength-2 bonds). Each vertical position is
hard-coded into the tile set; i.e., the scaffold tile set “knows” the required height
to compute f . However, the absolute horizontal positions are not encoded into
the tiles, only the leftmost and rightmost tiles of the configuration are specially
marked, and all interior tiles representing the same data are identical.

Figure 4 shows the tiles implementing step (b) of Figure 2, positioning the tiles
for cleanup. The top two rows must use cooperation to tell where the end of the

Fig. 4. Tiles that position the cleanup tiles. Here the “copy” tiles from Figure 3 are
depicted in the same shade as the computation tiles; now that f(x) has been computed
our goal is to remove all of them from the subassembly representing f(x). The order
of growth of the scaffold tiles ensures that cleanup does not begin until all of f(x) is
present.

46 D. Doty, L. Kari, and B. Masson

Fig. 5. Tiles that “clean up” the connections between the output data and the scaffold
and computation tiles to separate them and allow the data tiles to be computed on
again

row underneath is, since the width of the output row is unknown. The strengths
of bonds on the leftmost downward-growing column must be sufficiently large to
ensure that only the proper cut is made when the first negative-strength glue is
applied.

Figure 5 shows the tiles implementing step (c) of Figure 2, “cleaning up” by
removing the output f(x) from the scaffold, computation, and x tiles. Though
not shown, negative strength interactions are necessary between the second-to-
top row of computation tiles and some of the right-growing cleanup tiles, to
ensure that the right end of the row is properly detected. That is, there are two
types of cleanup tiles growing right, one to detach the interior tiles, and one to
detach the final rightmost computation tile. Since the east-west bonds between
cleanup tiles are greater than 1, the negative north-south glue strengths between
interior cleanup tiles and the second-to-rightmost blue tile – and between the
rightmost cleanup tile and the interior computation tiles – must be strength -2 to
ensure that the second-to-rightmost blue tile cannot stably attach except where
intended.

5 Conclusion

We have shown two main results in the aTAM with negative glue strengths,
under the standard assumption of irreversible attachment, meaning attachments
that only occur with strength at least the temperature τ . The first result is that
the amount of tile reuse afforded by the ability to detach tiles with negative
glue strengths is fundamentally limited. After t steps of assembly, Ω(t) tiles are

Negative Interactions in Irreversible Self-assembly 47

permanently bound, unable to detach via negative glue strengths, and can only
be detached by supplying external energy. The second result is a positive result
that attempts to make do with this limitation: an s(n)-space-bounded Turing
machine may be simulated for arbitrarily many steps, while ensuring that no
intermediate assembly grows larger than O(s(n)).

Space-bounded “computation” as an end goal is not the only application of
negative glue strengths, of course. Doty, Lutz, Patitz, Summers, and Woods [2]
study the problem of generating uniform random distributions on the finite sets
using the independent flips of a fair coin afforded by the random selection of
competing tile types in the aTAM (a non-trivial problem when the cardinality
of the set is not a power of the number of competing tile types), and find a
tradeoff between the closeness to uniformity of the distribution obtained and the
space required for sampling. They exhibit a construction imposing a perfectly
uniformly distribution on the set {0, 1, . . . , n− 1} that assembles a structure of
width �logn� + 1 and expected height at most 2, essentially implementing von
Neumann’s rejection method of flipping �logn� + 1 fair coins repeatedly and
stopping the first time that they encode a number smaller than n. It is very
unlikely (probability at most 2−20) to take more than 20 attempts. But using
this method in a construction such as that of [3],7 in which many (perhaps
more than 220) copies of this experiment repeat throughout assembly, could
increase the likelihood of growing too high. Even a single occurrence of a too-high
subassembly will destroy the entire construction. Though we omit the details
in the extended abstract, it is straightforward to augment the construction of
[3] (which uses a variant of the random number selector of [2]) with negative
glue strengths to implement perfectly uniform selection of random numbers,
thus improving the fidelity of the simulation of [3], while providing an absolute
guarantee on the space bound.

There are other uses of negative glues in the aTAM. For instance, we are
able to improve the best known tile complexity (number of tile types) required
to uniquely assemble a “thin” rectangle, i.e., an n × k rectangle with k <
logn/(log logn − log log logn). In the standard aTAM the tile complexity of
this shape is known to be Ω(n

1/k

k) [1]. With the model of negative glue strengths
we are able to improve this to O

(√
logn
)
, by first building a thick rectangle and

using negative glues to “cut out” a thinner rectangle of the same length.
Other questions related to this work include the experimental aspects of such

a model, for example, how repulsive forces can be realized on DNA tiles, and
how to “clean” and “recycle” the junk introduced during the assembly.

7 The main construction of [3] shows how a “universal” tile set can be constructed that
can be “programmed” through appropriate selection of a seed assembly to simulate
the growth of any tile assembly system in a wide class of systems termed “locally
consistent” (see [3] for details). In this discussion, we are concerned only with the
fact that the construction of [3] 1) requires random numbers to be generated in a
bounded space at many points throughout assembly, and 2) would be improved if the
distribution of these numbers were perfectly uniform instead of “close to uniform”
as in [3].

48 D. Doty, L. Kari, and B. Masson

Acknowledgments. The authors are grateful to Shinnosuke Seki for insightful
discussions and anonymous referees for their suggestions.

References

[1] Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., Moisset de Espanés,
P., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM
Journal on Computing 34, 1493–1515 (2005); Preliminary version appeared in
SODA 2004

[2] Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Random number
selection in self-assembly. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E.,
Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 143–157. Springer, Heidelberg
(2009)

[3] Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic univer-
sality in self-assembly. In: STACS 2010: Proceedings of the 27th International
Symposium on Theoretical Aspects of Computer Science. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 5, pp. 275–286 (2010)

[4] Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive sys-
tems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 11.
LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

[5] Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, pp. 459–468 (2000)

[6] Schoen, R., Yau, S.-T.: On the positive mass conjecture in general relativity.
Communications in Mathematical Physics 65(45), 45–76 (1979)

[7] Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biol-
ogy 99, 237–247 (1982)

[8] Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)

[9] Wang, H.: Proving theorems by pattern recognition – II. The Bell System Tech-
nical Journal XL(1), 1–41 (1961)

[10] Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology (June 1998)

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 49–58, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Search and Validation of Short Genome-Wide
Biomarkers for Bacterial Biological Phylogenies

Max H. Garzon1 and Tit-Yee Wong2

1 Computer Science, The University of Memphis, Tennessee 38152
2 Biology, The University of Memphis, Tennessee 38152

{mgarzon,tywong}@memphis.edu

Abstract. We continue the exploration of DNA-based indexing as a universal
coordinate system in DNA spaces to characterize very large groups (families,
genera, and even phylla) of organisms on a uniform biomarker reference
system, a comprehensive “Atlas of Life”, as it is or as it could be on earth. We
provide a second confirmation that DNA noncrosshybridizing (nxh) sets can be
successfully applied to infer ab-initio phylogenetic trees by providing a method
to measure distances among entire genomes indexed by sets of short
oligonucleotides selected so as to minimize crosshybridization. These
phylogenies are solidly established and well accepted in bacterial biology, albeit
done by analyses of relatively small segments of highly conserved rybozomic
DNA. Second, it is further demonstrated that DNA indexing does provide novel
and principled genome-wide predictions into the phylogenesis of organisms
hitherto inaccessible by current methods, such as a prediction of the origin of
the Salmonella plasmid 50 as being acquired horizontally, likely from some
bacteria somewhat related to Yesinia. We conclude with some discussion about
the scalability and potential of this method to develop a comprehensive tree of
life based on genome-wide methods.

Keywords: DNA codeword design, noncrosshybridizing oligonucleotide bases,
phylogenetic analysis, genomic signatures, DNA chips, 16S rRNA tree of life.

1 Introduction

DNA computing (Garzon and Yan, 2008; Adleman, 1994) has originated novel ideas
for a variety of techniques aimed at finding large sets of short oligonucleotides with
noncrosshybridizing (nxh) properties by several groups, particularly the PCR
Selection (PCRS) protocol used below (Garzon et al., 2009; Deaton et al., 2006;
Tulpan et al., 2005; Chen et al., 2006). In previous work, these sets have found new
applications, such as novel DNA approaches to natural language processing (Bobba et
al., 2006) and DNA-based memories (Neel and Garzon, 2006), and more recently,
biological phylogenies based purely on genomic DNA (Garzon et al., 2009), where a
review of pylogenetic methods can be found. The foundations of the method
developed in prior work are summarized in Section 2.1. Section 2.2 reviews the new
method for phylogenies from genome-wide data alone, including its preliminary
validation in reproducing ab initio a well established and accepted phylogeny in

50 M.H. Garzon and T.-Y. Wong

biology, the 16S rRNA tree of life, from genomic data alone. In Section 3, we show
how these methods reveal new insights into the phylogenesis of organisms hitherto
inaccessible by current methods, such as a prediction of the origin of the Salmonella
plasmid 50 as being acquired horizontally, likely from some bacteria somewhat
related to Yesinia. We conclude with some discussion in Section 4 about the
scalability and potential of this method to develop a comprehensive tree of life based
on genome-wide methods.

2 Genome-Wide Methods in Phylogenesis

In this section we briefly review previous work on genome-wide methods for
phylogenetics to situate the main results in Section 3. We focus on the aspects
relevant to the validation described later in Section 3. A more extended review of
biological phylogenies can be found in (Garzon et al., 2009).

2.1 Biomarkers for Phylogeny

DNA barcoding has been used as a technique for characterizing species of organisms
using a short DNA sequence from a standard and agreed-upon position in the genome.
 DNA barcode sequences are very short relative to the entire genome and they can be
obtained reasonably quickly and cheaply. For example, “the cytochrome c oxidase
subunit 1 mitochondrial region (COI)” is a highly conserved gene in the animal
kingdom. The Barcode Initiative aims to construct a public reference library of
species identifiers which could be used to assign unknown specimens to known
species. Nearly optimal theoretical and practical algorithms have been developed to
barcode given genome families (Zhou et al., 2008).

As useful as it might appear for phylogenetic purposes, identifying organisms
based on a single marker is far from ideal for the purposes of phylogenetics. What is
desirable is a more comprehensive set of features describing the biological functions
that characterize individuals in a given set of organisms. Although there are several
biomarkers commonly used in phylogenetic studies, not all of these biomarkers are
present in all living cells (for example, most bacteria do not have cytochrome c),
making using cytochrome c sequence as a reference for the tree of life difficult. Also,
it is difficult to know the natural history of the genes selected for biomarkers. As a
result, biomarkers based on larger genomic segments are desirable, particularly in
view of the rapid accumulation of complete sequences of a number of prokaryotic
genomes that has made it possible to analyze the relationships between organisms at
the whole-genome level. However, most of the approaches are still relatively
subjective and far from being a universal barcode representing all genes of a species
for all species.

Ideally, an organism should be defined by all the genes in the genome of that
species, not by a single gene (monophasic), nor by a few selected genes (polyphasic.)
To this end, a new technique was introduced in (Garzon et al, 2009). In this section
we briefly summarize these results in order to set up the validation of the scalability
of these results described in Section 3.

 Search and Validation of Short Genome-Wide Biomarkers 51

2.2 Phylogeny by Noncrosshybridizing Sets

The general foundations of the genome-wide phylogenetic methods have been
described in (Garzon et al., 2009; Bobba et al., 2006). The basic idea is to use so–
called noncrosshybridizing (nxh) sets of probes affixed on a DNA chip. In practice,
such a set is a judicious selection of (the complements) of some fragments of some
target gene(s) from a target organism, or even a full selection of the target organism
(as in the case of a DNA microarray.) A given (possibly unknown) target is digested,
usually tagged, and poured over the chip. A signal is produced by a pattern of
hybridization to the probes on the chip. If the oligo probes on the chip are not pre-
processed, the result will be a signal that can be highly variable and essentially
unreproducible upon repetition of the readout. On a noncrosshybridizing chip, a
random target digested to fragments of comparable probe size is much more likely to
hybridize to fewer probes, and under appropriate stringency ρ, to at most one probe.
This so-called nxh property immediately translates into the desirable properties to the
problems mentioned above. The noise is notably reduced (in fact, it is completely
eliminated under ideal conditions), results will be more predictable, and the
corresponding analyses will be much more reliable, as argued in (Garzon et al., 2009).
The original proof of concept of the nxh method was developed based on the set of
bacteria described in Table 1.

The new genomic signatures described below (Figs. 1, 4) have been obtained using
a simulation tool, a virtual test tube, Edna, developed by the first author in the last
few years for simulating the DNA reactions such as hybridization, ligation, self-
assembly, and enzymatic reactions (Garzon et al., 2005; Blain et al., 2004). Edna has
produced results highly correlated, if not identical, to the results of experiments in
vitro, including a successful run of Adleman’s solution to the difficult Hamiltonian
Path Problem (Adleman, 1994) in silico for graphs up to 12 vertices producing error-
free solutions (Garzon et al., 2004). Therefore, there is good evidence that Edna will
produce high reliable estimates of the DNA reactions and other events in a wet tube.

Table 1. A selection of six (6) pervasive and important bacterial organisms selected for
evaluation of the new phylogenetic analysis described in Section 3. Their nucleic acid files
were downloaded in FASTA form and a phylogenetic analysis made to produce a tree, using
JavaTreeView, based on a refinement of the 16S rRNA tree of life, originally constructed on
the analysis of highly conserved sequences by traditional methods in phylogenetic analysis.
(Garzon et al., 2009).

Organism Genome Size (Mbytes) /
ORFs selected (Kbytes)

Escherichia coli CFT073 5.05Mb / 510K
Escherichia coli K12 4.37Mb / 438K
Photobacterium Profundum 3.59Mb / 186K
Pseudomonas Aeruginosa PA01 5.89Mb / 192K
Salmonella Enterica Choleraes. 4.51Mb / 151K
Vibrio. Fisheri ES114 2.64Mb / 179K

52 M.H. Garzon and T.-Y. Wong

Fig. 1. Genomic signatures of six bacteria (permuted from Table 1) on a nxh DNA chip
obtained by PCR Selection from a seed pool of shredded ORFs of their chromosomes. The
signatures show clearly significant relative differences and can be contrasted by objective
measures to build a phylogenetic tree. Furthermore, probes with most significant similarities
and differences can be extracted by pixelwise comparison of pairs of genomic signatures.
(Garzon et al., 2009).

For the evaluation of this method, we used an expansion of this generally accepted
scheme, the 16S rRNA tree (a fragment is shown in Fig. 3, left), in order to compare
organisms outside the region of highly conserved genes (Wong et al., 2009). Using as
a seed pool the same selection of ORFs from these organisms used to obtain the
extended 16S rRNA tree (Table 1), the PCR Selection protocol was run in simulation
to obtain a chip of about 1600 16-mers for these targets by the methodology described
in (Garzon et al., 2009; Deaton et al., 2006; Chen et al., 2006). Fig. 1 shows the
resulting signatures of the bacteria given in Table 1 reported in (Garzon et al., 2009).
The signatures show a clear difference between the target genomes, not only visually
to the human eye, but through more objective measures. The obvious measure, the
plain Euclidean distance between signatures vectors in Euclidean space (upper
triangles), already shows a high degree of correlation comparable to the 16S rRNA
tree. Nonetheless, we used a more refined measure in our analysis and produced a
phylogenetic tree using identical methods to the ones for the 16 rRNA tree described
above. The new metric is the contrast between two signatures x and y given by

Co(x,y) := averagek {ck} / stdk {ck}, where ck := average i {| xk – yi |},

where stdk is the standard deviation of signature over all probes k.

Fig. 2. Correlations (lower triangles) and Euclidean distances (upper triangles) between six
bacterial signatures (column 1) on the DNA chip described in Fig. 1. They give rise to a
contrast-based phylogenetic tree T16 cDNA that essentially reproduces the corresponding
fragment of an expanded generally accepted tree 16S rRNA. (Garzon et al., 2009).

This new phylogenetic distance Co(x,y) between genomes x,y measures the degree
of similarity between two organisms by the contrast {ck} (normalized) signatures,

 Search and Validation of Short Genome-Wide Biomarkers 53

given by the average value of the Signal-to-Noise Ratio (SNR) in the entries in the
contrast matrix of their genomic signatures x and y. The results are shown in Fig. 2.
Based on this new contrast metric, a corresponding phylogenetic tree 16 cDNA was
obtained as shown in Fig. 3 (right). As can be observed in the differences (right
column), the 16 cDNA tree is identical to the original 16S sRNA tree described
above, except for a permutation of two contiguous genomes. It is remarkable that this
result has been obtained purely on genomic analysis, independently of the many other
considerations that led to the original tree of life 16 sRNA.

An additional consequence is worth pointing out. These results also provide
evidence to counter the superficial observation that genomic signatures cannot
provide an adequate tool for genetic comparison since they ignore the transcription
process altogether (and so do not involve protein or protein expression directly.) 16S
rRNA is essentially protein-based and yet, the phylogenetic tree obtained by the
contrast metric from Fig. 2 shows that it is well approximated by analyses of
genomic signatures alone on a 16-mer nxh DNA chip built a priori and designed for
the collection of 6 subfamilies of plasmids and bacteria used in this original and
preliminary validation.

Fig. 3. 16S rRNA (left): Phylogenetic tree of six (6) bacterial chromosomes shown in Fig. 1.
The tree T16 cDNA (right) is identical to it, except for one difference (transposition of Sal.
Enterica and E-Coli K12), which is thus essentially reproduced ab initio by comparative
genomic analyses of their (digital) genomic signatures (shown in Fig. 2) on a DNA chip of
noncrosshybridizing (nxh) 16-mer probes (Garzon et al., 2009).

3 Scalability of Genomic Signatures

These foregoing preliminary results posed the question of their scalability to larger
phylogenies. In a much larger study, the ORFs of the organisms in Table 2 were
processed in a similar manner. This set included the Escherichia-Shigella-Salmonella
group associated with another entric bacteria Yesinia pestis, the causing agent of the
Black Death that ravaged Europe in the middle ages. It has been proposed that
members of this group were spited as recently as 150 million years ago (Ochman,
Elwyn et al. 1999). The exact origin of Yesinia is still unclear. Also included is
another interesting group of bacteria with unclear origin, the Neisseria. This family is
commensal bacteria that colonize the mucosal surfaces of many higher animals. Of

54 M.H. Garzon and T.-Y. Wong

the eleven species that colonize humans, only two are pathogens. N. meningitidis and
N. gonorrhoeae often cause asymptomatic infections. On the other hand, the
Rickettsia is obligate parasite carried by ticks, fleas and lice, and cause diseases
including typhus and rocky mountain spotted fever in humans. The Pseudomonas is a
loosely grouped familiy. All of them are gram negative, free-living, aerobic bacteria
that exhibit diverse metabolic activities. They were included in an attempt to test
whether of the T16 cDNA method could produce a reasonable guess at their
(unknown) natural phylogeny. In addition to their major circular chromosome,
bacteria often contain various types of extrachromosomal DNA in the forms of minor
chromosomes, magaplasmids, and plasmids, the origins of which are hard to predict.
It has been hypothesized that some of these extrachromosomal DNA were the results
of uneven DNA replication, and some of them were the result of horizontal gene

Table 2. An expanded selection of pervasive and medically important bacterial genomes for
evaluation of the new pylogenetic analysis described in this Section. Their nucleic acid files
were selected and processed as described above for the preliminary set in Table 1.

Organism Genome Size

Escherichia coli CFT073 5.05Mb

Escherichia coli K12 4.37Mb

Escherichia coli O15-7-H7 VT2Sakai 5.6 Mb

Neisseria gonorrhoeae FA1090 (Oklahoma) 2.15 Mb

Neisseria meningitidis FAM18 2.2 Mb

Pseudomonas fluorescens Pf-5 7.1 Mb

Pseudomonas entomophila L48 5.9 Mb

Pseudomonas aeruginosa PA01 5.89Mb

Rickettsia felis URRWXCal2 1.59 Mb

Rickettsia conorii Malish 7 1.27 Mb

Salmonella enterica Paratyphi ATCC9150 4.59 Mb

Salmonella typhimurium LT2 SGSC1412 4.99 Mb

Salmonella Enterica Choleraes Plasmid 50 0.42 Kb

Shigella dysenteriae Sd197 4.56 Mb

Shigella boydii Sb227 4.63 Mb

Yersinia pestis KIM 4.7 Mb

Yersinia pestis Antiqua 4.88 Mb

 Search and Validation of Short Genome-Wide Biomarkers 55

transfers (Volff and Altenbuchner 2000). These extrachromosomal DNAs often
contain genes that, although inessential to the their host, could enhance the host’s
survival by helping produce resistance to antibiotics, for example. Salmonella
enterica was also added to test whether this whole genome approach could identify
the origin of one interesting plasmid (Pl 50) in the Salmonella Enterica Choleraes
commonly found in pigs.

Using the nxh method, a highly refined set of 27 nxh probes was obtained by PCR
Selection for the bacteria in Table 2. The results are shown in the corresponding Figs.
4, 5, and 6.

Fig. 4. Genomic signatures of seventeen (17) bacteria in Table 2 (permuted) on a nxh DNA
chip (27 highly selective probes of length between 9- and 20-mers) obtained by PCR Selection
from a seed pool of shredded ORFs of their chromosomes, analogous to the protocol used in the
preliminary data set. The signatures again reveal significant relative differences and can be
contrasted by objective measures to build a phylogenetic tree.

Fig. 5. Correlations (lower triangles) and Euclidean distances (upper triangles) between 17
bacterial signatures (column 1) described in Fig. 2. They give rise to a contrast-based
phylogenetic tree T16 cDNA that exactly reproduces, at the genus level, the corresponding
expanded and generally accepted tree 16S rRNA reported in Fig. 6.

56 M.H. Garzon and T.-Y. Wong

Fig. 6. 16S rRNA (left): Phylogenetic tree of seventeen (17) bacterial chromosomes shown in
Table 2 generated by the CSRS method as before. The tree T16 cDNA (right) is identical to it
at the genus level, except for minor difference at the species level that are still a matter of
debate among biologists. (cDNA is used merely to indicate that the probes are complementary
to fragments of the original genes.).

The trees generated by both CSRS and T16DNA were very much alike. Bacteria
sharing the same genus name are grouped into a distinct clad separated from other
genera at very high degree of resolution. It should be noted that, because of the
problems of the above mentioned difficulties, the current rRNA-based method of
phylogeny is not able to cluster bacterial phylogeny at this level of resolution.
Additionally, polyphasic approaches that use multiple biomarkers are difficult to find
for bacteria of diverse origins. A set of conserved genes in one group of bacteria, for
example in the Escherichia-Shigella-Salmonella group, may be missing in other
group, such as the highly degenerative Rickettsia group. When more and more
bacteria genomes are being compared, the number of commonly shared conserved
genes diminished accordingly. The lack of commonly shared conserved genes makes
sequence comparison as a tool for phylogeny difficult. The CSRS phylogeny and the
T16 DNA phylogeny are whole genome based. This feature bypasses the limitation
of using commonly shared conserved genes, and thus makes direct comparisons of
distant organisms possible. More interestingly, both methods predict the origin of the
Salmonella plasmid 50 as being acquired horizontally, likely from some bacteria
somewhat related to Yesinia. To the best of our knowledge, this is the first report ever
showing the origin of this plasmid.

It must be emphasized that, although the two trees presented converge on support
for a common conclusion, they are based on two totally different philosophical
approaches. The CSRS-based tree is based on the biological assumption that the stop
signal profiles would impose a restriction on genome expansion, whereas the 16T
cDNA method is purely based on the physical chemistry (Gibbs energy) of DNA,
with no biological assumptions being made. The 16T cDNA tree puts the
Pseudomonas into the Escherichia-Shigella-Salmonella clad, which is the only
inconsistent placement with the CSRS-tree and contradicts with the accepted concept
of bacterial taxonomy. A plausible explanation of this fact is that a phylogenic tree is,
like a real tree, in fact a 3D structure, while the current method of tree representation
is only 2D. It is likely that the branch of Pseudomonas was forced to merge into the

 Search and Validation of Short Genome-Wide Biomarkers 57

Escherichia-Shigella-Salmonella clad when the data were collapsed into a 2D space
(Wong et al. 2009). A better method to construct 3D phylogentic trees is being
developed to explain this inconsistency.

4 Conclusions and Future Work

This paper continues the exploration of noncrosshybrizing sets developed for DNA
Computing (Garzon et al., 2009; Garzon et al., 2009; Deaton et al., 2006) as a DNA-
based indexing system for biological applications. We have shown that the recently
developed technique of DNA indexing (Bobba et al, 2006; Garzon et al., 2005;
Garzon et al., 2004b) can be successfully applied to infer ab initio phylogenetic trees
that are solidly established and well accepted in biological phylogenesis for much
larger families of bacteria. The major goal of this research is to develop a
methodology for enabling arbitrary species classification based on so-called universal
DNA chips that cover the entire spectrum of organisms, known or unknown. These
DNA chips can be regarded as generalized barcodes. Although barcodes are, at best,
expected to discriminate among species, they do not provide an insight into the more
general and complex relationships among genomes captured by phylogentic
relationships, or their complex intra- or inter-genomic relationships, let alone a basis
for comparative genome-wide analysis. Our method allows in addition to species
discrimination (which was the original purpose of the new contrast metric used here
from (Garzon et al., 2009).)

The main result of this paper is strong evidence that digital genomic analyses are a
scalable technique that can provide significant insights into pylogenetic questions.
The new DNA-based technique for genomic identification offers several other
advantages. First, it is much more effective in terms of cost and time than by
traditional methods using traditional sophisticated bioinformatic analysis. For
example, the 16S RNA trees are based on conserved genes, which make possible
phylogenetic analysis only in the presence of highly conserved genes and therefore is
unreliable or inapplicable to more distant organisms. By contrast, the DNA-chip
method used herein is whole-genomic and thus applicable to arbitrary organisms. It
has been further demonstrated that it may provide novel and principled insights into
the phylogenesis of organisms hitherto inaccessible by current methods, such as a
prediction of the origin of the Salmonella plasmid 50 as being acquired horizontally,
likely from some bacteria somewhat related to Yesinia. Second, it can be applied with
newly available universal DNA chips readily available both in vitro by the PCR
Selection protocol (Deaton et al., 2006; Chen et al., 2006) and in silico (Garzon et al.,
2009; Garzon et al., 2009b; Garzon et al., 2004) through computer simulations in
virtual test tubes (Garzon et al., 2004). This means, in particular, that they may well
be able to provide a universal coordinate system to characterize very large groups
(families, genera, and even phyla) of organisms on a common reference system, a
veritable comprehensive “Atlas of Life”, as it is or as it could be on earth.

Acknowledgements

Many thanks to Abishek Logishetty and Jason Knisley for their help in producing the
visualization of the signatures and trees above.

58 M.H. Garzon and T.-Y. Wong

References

1. Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266,
1021–1024 (1994)

2. Blain, D., Garzon, M.H., Shin, S.Y., Zhang, B.T., Kashiwamura, S., Yamamoto, M.,
Kameda, A., Ohuchi, A.: Development, Evaluation and Benchmarking of Simulation
Software for Biomolecule-based Computing. J. of Natural Computing 3(4), 427–442
(2004)

3. Bobba, K.C., Neel, A.J., Phan, V., Garzon, M.H.: “Reasoning” and “Talking” DNA: Can
DNA understand english? In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp.
337–349. Springer, Heidelberg (2006)

4. Chen, J., Deaton, R., Garzon, M., Wood, D.H., Bi, H., Carpenter, D., Wang, Y.Z.:
Characterization of Non-Crosshybridizing DNA Oligonucleotides Manufactured in vitro. J.
of Natural Computing 5(2), 165–181 (2006)

5. Deaton, J., Chen, J., Garzon, M., Wood, D.H.: Test Tube Selection of Large Independent
Sets of DNA Oligonucleotides R, pp. 152–166. World Publishing Co, Singapore (2006)
(Volume dedicated to Ned Seeman on occasion of his 60th birthday)

6. Garzon, M.H., Wong, T.-Y., Phan, V.: DNA Chips for Species Identification and
Biological Phylogenies. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp.
55–66. Springer, Heidelberg (2009)

7. Garzon, M.H., Phan, V., Neel, A.: Optimal Codes for Computing and Self-Assembly. Int..
J. of Nanotechnology and Molecular Computing 1, 1–17 (2009b)

8. Garzon, M.H., Yan, H. (eds.): DNA 2007. LNCS, vol. 4848. Springer, Heidelberg (2008)
9. Garzon, M.H., Phan, V., Bobba, K.C., Kontham, R.: Sensitivity and capacity of microarray

encodings. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 81–95.
Springer, Heidelberg (2006)

10. Garzon, M.H., Blain, D., Neel, A.J.: Virtual Test Tubes for Biomolecular Computing. J. of
Natural Computing 3(4), 461–477 (2004)

11. Neel, A., Garzon, M.: Semantic Retrieval in DNA-Based Memories with Gibbs Energy
Models. Biotechnology Progress 22(1), 86–90 (2006)

12. Ochman, H., Elwyn, S., et al.: Calibrating bacterial evolution. Proc. Natl. Acad. Sci.
USA 96(22), 12638–12643 (1999)

13. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H.,
Smith, L.M.: Thermodynamically based DNA strand design, Nucleic Acids Res.
Thermodynamically Based DNA Strand Design, Nucleic Acids Res. 33(15), 4951–4964
(2005)

14. Volff, J.N., Altenbuchner, J.: A new beginning with new ends: linearisation of circular
chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186(2), 143–150 (2000)

15. Woese, C., Fox, G.: Phylogenetic structure of the prokaryotic domain: the primary
kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090 (1977)

16. Wong, T.Y., Fernandes, S., Sankhon, N., Leong, P.P., Kuo, J., Liu, J.K.: On the role of
premature stop codons in bacterial evolution. J. Bacteriology (2009) (in press); Preliminary
result presented at the 3rd Congress of FEMS (2008)

17. Zhou, F., Olman, V., Xu, Y.: Barcodes for Genomes and Applications. Bioinformatics 9,
546 (2008)

High-Fidelity DNA Hybridization Using
Programmable Molecular DNA Devices

Nikhil Gopalkrishnan, Harish Chandran, and John Reif

Department of Computer Science, Duke University,
Durham, North Carolina 27708

{nikhil,harish,reif}@cs.duke.edu
http://www.cs.duke.edu

Abstract. The hybridization of complementary nucleic acid strands is
the most basic of all reactions involving nucleic acids, but has a major
limitation: the specificity of hybridization reactions depends critically on
the lengths of the complementary pairs of strands and can drop to very
low values for sufficiently long strands. This reduction in specificity oc-
curs especially in the presence of noise in the form of other competing
strands that have sequence segments identical to the target. This limits
the scale and accuracy of biotechnology and nanotechnology applications
which depend on hybridization reactions. Our paper develops techniques
for ensuring specific high-fidelity DNA hybridization reactions for tar-
get strands of arbitrary length. Our protocol is executed autonomously,
without external mediation and driven by a series of conversions of sin-
gle stranded DNA into duplex DNA that help overcome kinetic energy
traps, similar to DNA walkers.

Keywords: DNA hybridization, strand displacement.

1 Introduction

1.1 Motivation

The hybridization of complementary nucleic acid strands is the most basic of
all reactions involving nucleic acids and a major component of most protocols
involving nucleic acids. Indeed, hybridization reactions are the basis for much of
biotechnology involving nucleic acids. For example, they are essential to many
DNA enzymatic reactions such as restriction cuts, to PCR reactions used for
amplification and for the operation of DNA hybridization arrays. Hybridization
reactions are also the basis of DNA nanotechnology, which use hybridization of
strands to form DNA tile nanostructures, as well as to bind DNA tile nanostruc-
tures together to form DNA lattices and to form DNA origami via hybridization
between long scaffold strands and short staple strands.

However, the hybridization reaction has certain key limitations. The primary
limitation is that the specificity of hybridization reactions (the likelihood that
a given strand only hybridizes with its exact complementary strand) depends

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 59–70, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.duke.edu

60 N. Gopalkrishnan, H. Chandran, and J. Reif

Fig. 1. Specificity limited by length: (a) Specific binding (b) Unspecific binding

critically on the lengths of the complementary pairs of strands. For long strands
the difference in hybridization energies between a perfectly hybridized dsDNA
and one with few mismatched bases is not significant. For example, in figure 1
the difference in stability for structures (a) and (b) is insignificant and at room
temperature the relative concentrations of these structures are sensitive to rel-
ative concentrations of the single strands and hence binding fidelity of perfect
complementary strands is low. While hybridization reactions in the appropriate
solution conditions and temperature can have high-fidelity for moderate strand
lengths (from 5 to 15 bases), the specificity of hybridization reactions can drop
to very low values if the strands have sufficiently long length (say 25 or more
bases). This reduction in specificity of hybridization reactions occurs especially
in the presence of noise in the form of other competing strands that have se-
quence segments identical to the target. This limitation in the specificity of
hybridization reactions depending on strand length significantly limits the scale
and accuracy of biotechnology and nanotechnology applications which depend
on hybridization reactions. For example, it limits the length of PCR primers,
the length and thus the number of distinct strands in DNA hybridization arrays
and the complexity of certain DNA nanostructures such as DNA origami.

1.2 Problem Statement: High-Fidelity DNA Hybridization

Let ssDNA denote a single stranded DNA and dsDNA denote a duplex DNA.
Consider a solution containing distinct DNA sequences, with one of these se-
quences designated as a target s. We assume the particular known target DNA
strand s is of relatively long length (say at least 60 to hundreds of bases). A
target ssDNA in solution is said to be completely hybridized if all bases of the
strand are (Watson-Crick) hybridized to corresponding complementary bases on
other ssDNA, thus leaving no single stranded region on it. Note that multiple
ssDNA may contribute complementary bases and thus cooperatively completely
hybridize the target. The problem of Exact High-Fidelity DNA Hybridization is
to completely hybridize each instance of s in solution while no instances of any
other strand is completely hybridized. The problem of Exact High-Fidelity DNA
Hybridization appears too stringent to be achievable in practice, since it does
not allow for a small probability of failure or incomplete hybridizations nor does
it allow for minor base mismatches. Hence we instead will take as our goal an
approximate version of the High-Fidelity DNA Hybridization defined as follows.

The Levenshtein distance is a metric for measuring the edit difference between
two sequences. In this paper the allowable edit operations on DNA sequences
are insertion, deletion or substitution of a single base. A ssDNA in solution
is b-hybridized if all but b bases of the strand are (Watson-Crick) hybridized

High-Fidelity DNA Hybridization 61

to corresponding complementary bases on other ssDNA. Note that multiple ss-
DNA may contribute complementary bases and thus cooperatively b-hybridize
the target. Given a fixed success probability p, and base mismatch error b (where
0 < p < 1 and b is a fixed positive integer), the problem of (p, b)-High-Fidelity
DNA Hybridization is to b-hybridize with probability at least p each instance of
the target s in solution while no other strand is b-hybridized with probability
greater than 1−p (Note: Typically, in our protocols, 1−p might be in the order of
a few percentages and b might be a very small constant). Even this approximate
version of High-Fidelity DNA Hybridization is quite challenging, as discussed in
the first subsection.

Fig. 2. High-fidelity hybridization problem

1.3 Our Results: Protocols for High-Fidelity DNA Hybridization
Using DNA Devices

In this paper, we describe two protocols to achieve high-fidelity hybridization to
an arbitrary given target DNA sequence. Our high-fidelity DNA hybridization
protocols have the following favorable properties:

– Our protocols use only hybridization reactions of relatively short length (of
approximately at most 15 bases), which are inherently highly specific.

– Our protocols are executed autonomously, without external mediation.

Our basic approach is to design DNA devices that essentially scan over strands in
solution, subsegment by subsegment, and determine if one is indeed an instance
of the given target strand s. This scanning is achieved by carefully designed rel-
atively short sequences (called checker sequences) that hybridize to distinct con-
tiguous subsequences on the target sequence (see fig. 2). These checker strands

62 N. Gopalkrishnan, H. Chandran, and J. Reif

perform successive subsequence verification. They are designed such that if the
appropriate subsequence on one of them doesn’t hybridize sufficiently to a spe-
cific subsegment of potential target strand, the subsequent checker strands do
not hybridize to this potential target. Completion of the series of hybridizations
indicates that the complete strand has been verified and hybridized.

To ensure protocols are executed autonomously, without external mediation,
our high-fidelity DNA hybridization protocols are driven by a series of conver-
sions of single stranded DNA into duplex DNA that help overcome kinetic energy
traps, similar to DNA walkers (see [1],[2] and [3]). In addition to the design of our
high-fidelity DNA hybridization protocol, we also discuss the kinetics of our hy-
bridization reactions, reducing the overall kinetics to a series of well-understood
strand-displacement reactions. Further, we describe a detailed design of an on-
going small-scale experimental demonstration of our protocols for high-fidelity
hybridization. We also discuss potential applications for our protocols in molec-
ular detection and DNA computing.

1.4 Notation

We facilitate a general symbolic design and description of our protocols and
component DNA nanostructures by using the following notational conventions
in text and figures:

– All DNA sequences will be represented by Latin letters and these letters may
have subscripts, for example ci.

– Subsequences are also denoted by letters and can also have subscripts, for
eg. aibi = ci where ci is the concatenation of the subsequences ai and bi.

– The sequences are always written from 5′ to 3′. Arrows on DNA strands in
the figures indicate 3′ ends.

– Sequences denoted with the same letter that differ only in the subscript will
be concatenations of subsequences that only differ in the subscript. For eg.
ci = aidi−1 implies that the sequence ci+1 is a concatenation of ai+1 and di.

– A bar over a sequence indicates reverse complement of a sequence. For eg. c̄i

is the reverse complement of ci and b̄iāi is the reverse complement of aibi.
– To decrease cluttering of figures, we only indicate the subsequences of one

of the component strands of dsDNA.

2 First Protocol for High-Fidelity Hybridization

Let s = rntnrn−1tn−1 . . . riti . . . r1t1 be a long DNA target strand, where ri

and ti for i = 1, . . . , n are DNA subsequences. We wish to bind short checker
sequences ci : i = 1, . . . , n to s. Figure 3(a) indicates two consecutive checker
sequences ci above and ci+1 below. The expected secondary structure of these
strands is also indicated in the figure. As an inductive hypothesis, assume that
ci is bound to the template strand s as shown in Figure 3(b). We claim that the
appropriate complementary portion of strand ci+1, t̄i+1r̄i+1 binds to ri+1ti+1 on
s and the induction is advanced by one step.

High-Fidelity DNA Hybridization 63

Fig. 3. First protocol: inductive step

Fig. 4. First protocol: initiation step

First, ui+1 on the checker strand ci+1 binds to its complementary region ūi+1
which is a part of the ci checker strand (Figure 3(c)). Through this toehold, a
strand displacement reaction occurs, breaking the bond between vi+1 and v̄i+1.
vi+1 is now attached to its complementary region v̄i+1 on the ci checker strand.
This opens the hairpin ȳit̄i+1 allowing ȳi to attach to yi on the ci checker strand
(Figure 3(d)) and also t̄i+1 to attach to ti+1 on the template strand (Figure
3(e)). Now, another strand displacement reaction occurs via the toehold ti+1
on the template strand which breaks the bonds between ri+1 and r̄i+1 allowing
r̄i+1 on the ci+1 checker strand to bind to ri+1 on the template strand (Figure
3(f)). This opens the hairpin yi+1v̄i+2ūi+2. Thus, the ci+1 checker strand is
in the same conformation as the ci checker strand was at the beginning of the
induction step. The sequence v̄i+2ūi+2 on the ci+1 checker strand can now open
up the first hairpin on strand ci+2, thus activating it and the process continues
till all ci are bound to the target s. If the potential target s does not have the
appropriate sequence, some checker strand will not bind and hence the sequence
of attachments will be halted.

The protocol is initiated when the initiator checker sequence t̄1r̄1y1v̄2ū2 is
added to the solution and binds to r1t1 on the target strand (Figure 4). A
potential source of error for the protocol is if the binding between vi and v̄i on
checker sequence ci dehybridizes due to thermal breathing causing ci to bind
to the potential target via the now exposed toehold t̄i. This might result in
false positives, i.e. strands other than the target s might be falsely identified as

64 N. Gopalkrishnan, H. Chandran, and J. Reif

the target. We overcome this potential pitfall in the next protocol where none
of the subsequences on checker strands that are complementary to the target
exist as single strands. They each exist as part of dsDNA. The tradeoff is the
expected time to completion of the protocol, the second protocol is expected to be
slower due to presence of three-way branch migrations as opposed to conventional
toehold-mediated stand displacement.

3 Second Protocol for High-Fidelity Hybridization

As before, let s = rntnrn−1tn−1 . . . ri+1ti+1riti . . . r1t1 be a long DNA target
strand and ci : i = 1, . . . , n be short checker sequences that bind to s. Figure
5(a) indicates two consecutive checker sequences ci and ci+1 and their expected
dominant secondary structure. As an inductive hypothesis, assume that ci is
bound to the template strand s as shown in Figure 5(b). We claim that the
appropriate complementary portion of strand ci+1, r̄i t̄i+1r̄i+1 binds to ri+1ti+1ri

on s and the induction is advanced by one step. The chief difference between
this protocol and the earlier one is that the incoming checker strand first strand
invades from 5′ to 3′ on the template strand and then uses this toehold to strand
invade the rest of the subsequence from 3′ to 5′. Note that this is not a simple
toehold-mediated strand displacement, rather it is a three-way branch migration.

First, ui+1 on the ci+1 checker strand binds to its complementary region ūi+1
on the ci checker strand (Fig. 5(c)). Through this toehold, a strand displacement
reaction occurs, breaking the bond between vi+1 and v̄i+1. vi+1 is now attached
to its complementary region v̄i+1 on the ci checker strand (Figure 5(d)). Now the
hairpin structure ri and r̄i on the ci+1 checker strand can invade from 5′ to 3′ on
the template strand s while at the same time attaching to r̄i on the ci checker
strand (Fig. 5(e)). This breaks the bond between ri on the template strand and
r̄i on the ci checker strand. Now, a strand displacement reaction occurs via the
toehold ri on the template strand which opens a hairpin structure by breaking

Fig. 5. Second protocol: inductive step

High-Fidelity DNA Hybridization 65

Fig. 6. Second protocol: initiation step

the bonds between ri+1ti+1 and r̄i+1 t̄i+1 on the ci+1 checker strand, allowing
r̄i+1 t̄i+1 on the ci+1 checker strand to bind to ri+1ti+1 on the template strand
(Fig. 5(f)). This opens the hairpin v̄i+2ūi+2. Thus, the ci+1 checker strand is
in the same conformation as the ci checker strand was at the beginning of the
induction step. The sequence v̄i+2ūi+2 on the ci+1 checker strand can now open
up the hairpin on checker strand ci+2, thus activating it and the process continues
till all ci are bound to the template s. If the potential target s does not have the
appropriate sequence, some checker strand will not bind and hence the sequence
of attachments will be halted. The protocol is initiated when the initiator checker
sequence t̄1r̄1v̄2ū2 is added to the solution and binds to r1t1 on the template
strand (Figure 6).

4 Potential Applications of High-Fidelity DNA
Hybridization

Our set of checker sequences can be thought of as a high-fidelity rationally pro-
grammed aptamer for a specific DNA target sequence. Our checker sequences
can be extended into functional nanostructures that interact with the target se-
quence, for example as a molecular cage that encapsulates the target molecule.
The completion of subsequence verification can trigger other reactions and prove
useful in molecular detection.

There are many significant applications of our protocols for High-Fidelity
DNA Hybridization. These include significantly increasing the specificity of:

– DNA enzymatic reactions such as restriction cuts
– Priming of PCR reactions used for amplification
– DNA hybridization arrays
– Binding of the pads of DNA tile nanostructures together to form DNA lat-

tices
– Hybridization between long scaffold strands and short sticker strands
– DNA computation reactions involving DNA hybridizations (see section 4.1)

4.1 Simulation of Deterministic Finite Automata

M = {Σ, S, s, F, δ} is a deterministic finite automaton (DFA) where Σ is the
finite input alphabet, S is a finite set of states, s ∈ S is the start state, F ⊆ S
is the set of accepting states and δ : S × Σ → S is the transition function.
The accepting function of M , ΔM : S × Σ∗ → S, is defined recursively for any

66 N. Gopalkrishnan, H. Chandran, and J. Reif

a ∈ S, β ∈ Σ, x ∈ Σ∗ as ΔM (a, βx) = ΔM (δ(a, β), x) and ΔM (a, ε) = a. M
accepts the language LM = {w ∈ Σ∗|ΔM (s, w) ∈ F}.

Our protocols for high-fidelity hybridization can be adapted to implement any
DFA. For simplicity assume that the input alphabet is Σ = {0, 1}. Also, assume
that the DFA does not have any self-loops, i.e. transitions on input symbols
that returns the DFA to the same state. It is a simple matter to convert any
DFA with self-loops into an equivalent one with no self-loops by splitting states
with self-loops into two states. We will adapt the protocol outlined in section 2
for our simulation. Let w = β1β2 . . .βn be the input to the automaton, where
βi ∈ {0, 1}. We encode this input into the target strand along with an initi-
ation sequence � and a completion sequence � as �, βn, βn−1, . . . , β1, �. In the
notation used in section 2 the subsequence riti encodes for the symbol βi for
i = 1, 2, . . . , n. The protocol must check whether this input is in the language
accepted by the automaton. The checker sequences will encode the transition
function δ by associating a (state, symbol) combination with the appropriate
next state. For example suppose the input sequence β1β2 . . . βi has been con-
sumed by the automaton and the current state is a. This current state will
be encoded inside the ith checker sequence as the subsequence yiv̄i+1ūi+1. The
next transition δ(a, βi+1) = b is executed by the (i+1)th checker sequence which
contains the subsequences ui+1vi+1ȳi (which codes for a), t̄i+1r̄i+1 (which codes
for βi+1) and yi+1v̄i+2ūi+2 (which codes for b) by hybridizing to complemen-
tary regions on the ith checker sequence and the target. If the checker sequences
successfully attach all the way to rntn this indicates that the target sequence en-
codes an input that should be accepted by the automaton. The special sequence
� is initially in the form of a hairpin and the attachment of the last checker
sequence opens the hairpin, which can be detected by fluoroscent emission due
to the spatial decoupling of a fluorophore-quencher modified pair of DNA bases
on the subsequence �.

Note that instead of the correct (i + 1)th checker sequence encoding the pair
(a, βi+1) an incorrect checker sequence that encodes (a, β̄i+1) may also attach
to the previous checker sequence. However, it will not attach to the target and
hence its second hairpin will remain intact, blocking further attachments. Thus,
there is at least one of two choices of attachment at each step that further the
process towards completion. If we assume equal probabilities of attachment for
such competing checker sequences, an n length input has probability at least 2−n

of successful completion. This is a very low probability for long input sequences
and alternate strategies to undo incorrect checker sequence attachment must be
considered in this case. A key advantage of this simulation is that no matter
what the input the same fixed set of checker sequences can check for acceptance
of the input by the automaton. The number of such checker sequences is twice
the number of states of the automaton. In fact, due to the fidelity of the hy-
bridizations, multiple inputs may be processed in a parallel manner. By using
fluorophores with distinct emission wavelengths on different targets we can de-
tect multiple outputs in parallel. The simulation process is autonomous and does

High-Fidelity DNA Hybridization 67

not use enzymes. It is easy to adapt this protocol to simulate non-deterministic
finite automata and we leave the details to the reader.

5 Theoretical Analysis of Protocol Kinetics

The overall kinetics of our protocols can be reduced to the kinetics of a few
typical hybridization and strand displacement reactions. This reduction is illus-
trated in figure 7, with corresponding forward and backward reaction rates. A
key assumption is that sequences sequestered inside hairpin loops cannot par-
ticipate in hybridization reactions. This idea was first used successfully in [4].
The simplest of the typical reactions is hybridization between two complemen-
tary single stranded regions in solution (Figure 7:(i),(v)) characterized by fast
forward rates and slow backward rates for hybridizations of length ≥ 10. We
also have localized hybridization between single stranded regions constrained

Fig. 7. Protocol kinetics partitioned into typical hybridization and strand displacement
reactions

68 N. Gopalkrishnan, H. Chandran, and J. Reif

to lie close to each other (Figure 7(iii)), which has a significantly faster for-
ward rate than unconstrained hybridization in solution. Then we have the well-
understood toehold-mediated strand displacement (Figure 7:(ii),(iv),(vi),(viii))
with the slight caveat that the displaced sequence is constrained to be localized
rather than floating away into the solution. This reaction is characterized by
fast forward rates and slow backward rates, conditioned on appropriate length
and sequence of the toehold. Finally we have a branch migration (Figure 7(vii))
whose forward and backward rates are not well-understood. However, we hy-
pothesize that they are of comparable order. Note that the structure in figure
7(viii) is energetically favorable and will shift the balance of the structure from
figure 7(vii) to 7(viii), driving our protocol forward. A more fine-grained anal-
ysis of the kinetics of our protocols requires kinetic modelling of these typical
reactions.

Hybridization fueled DNA strand displacement reactions have been used in
a variety of nanoscale protocols to achieve molecular transportation ([1], [5]),
motors ([6]), detection ([4]) and computing ([7,8]). A thorough understanding of
this fundamental process is key to the design of more complicated and involved
dynamic DNA devices. Simple toehold-mediated strand displacement processes
have been studied theoretically as one-dimensional random walks paving the
way for simple stochastic models. A useful approach to understanding strand
displacement is via kinetic computer simulations. Computer simulations can be
a high-level tool for a cheap, quick and controlled investigation of the processes
underlying strand displacement. Some of the information processing circuits
demonstrated in [7] that use simple strand displacement processes have been
simulated ([9]), but more general reactions involving multiple strands and strand
exchange have not yet been studied. Involved DNA devices using branch migra-
tion reactions like the ones proposed in this paper for high-fidelity hybridization
are a challenging and appropriate test case for such kinetic computer simulation
studies. Experimental data about the kinetics of strand displacement is avail-
able ([10,5]) and can be used to create simulations that test the feasibility of the
protocols proposed in this paper and improve their efficiency. These simulations
can be thought of as a high-level testing and debugging environment that allow
for improved designs of these involved protocols.

6 Conclusion

6.1 Experimental Verification

We propose a simple experiment using just two checker sequences (plus one ini-
tiator) to test if it can hybridize a target sequence with high-fidelity from an en-
semble of moderately long sequences. We propose to use gel electrophoresis data
and Förster resonance energy transfer (FRET) to test for the fully-complemented
target sequence. Let the sequence of the target strand be s = r2t2r1t1� with each
of the subsequences relatively short. � is a special subsequence to initiate the
process. We can introduce noise in the form of other strands with sequences
differing from that of the target. The two checker sequences are c1 and c2, like

High-Fidelity DNA Hybridization 69

in figure 3(a) for the first protocol or like in figure 5(a) for the second protocol.
There is an initiation sequence c0 that binds to � on the target and initiates
binding of c1. The terminal base at the 5′ end of s can be modified with an
emmitive fluorophore while the corresponding complementary base on the sub-
sequence r̄2, part of c2, can be modified with a corresponding quencher. If c2
binds to the target s, the fluorophore-quencher pair will be brought in close prox-
imity (< 4nm) and the fluoroscent emission of the fluorophore will be quenched
signalling successful complete hybridization of the target. Appropriate controls
can be devised for testing the specificity of binding of the checker sequences by
modifying with an emmitive fluorophore the 5′ ends of the noisy strands. In the
absence of the target strand in the ensemble, no quenching of the fluoroscent
signal should be observed.

6.2 Discussion

The problem of high-fidelity hybridization in long nucleic acid strands is a funda-
mental challenge with applications to a wide range of issues that arise frequently
in biological nanotechnology. In this work, we have proposed two protocols for
achieving highly specific hybridization to a specific target strand at the exclusion
of all other strands in solution. We chiefly rely on hybridization between short
segments of complementary DNA (which are inherently highly specific), strand
displacement reactions and energy released by conversion of ssDNA to dsDNA
to overcome kinetic traps in the form of meta-stable hairpins. We proposed sim-
ple experiments to test out our protocols in the base case where there are only
two checker sequences that each verify half of the target strand. We wish to test
whether our protocols will scale for much longer target sequences requiring many
more checker sequences and hence we propose a computer based prediction of
these protocols via thorough simulations of strand displacement reactions and
dynamic behaviour of kinetic energy traps in the form of meta-stable hairpins.

Acknowledgments. This work was supported by NSF EMT grants CCF-
0829797 and CCF-0829798.

References

1. Sherman, W., Seeman, N.: A Precisely Controlled DNA Biped Walking Device.
Nano Letters 4, 1203–1207 (2004)

2. Yin, P., Yan, H., Daniell, X., Turberfield, A., Reif, J.: A Unidirectional DNA Walker
Moving Autonomously Along a Linear Track. Angewandte Chemie International
Edition 116(37), 5014–5019 (2004)

3. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme That Walks Proces-
sively and Autonomously along a One-Dimensional Track. Angewandte Chemie
International Edition 44(28), 4355–4358 (2005)

4. Dirks, R., Pierce, N.: Triggered Amplification by Hybridization Chain Reaction.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 101(43), 15275–15278 (2004)

70 N. Gopalkrishnan, H. Chandran, and J. Reif

5. Turberfield, A., Mitchell, J., Yurke, B., Mills, A., Blakey, M., Simmel, F.: DNA
Fuel for Free-Running Nanomachines. Physical Review Letters 90(11) (2003)

6. Yurke, B., Turberfield, A., Mills, A., Simmel, F., Neumann, J.: A DNA-fuelled
Molecular Machine Made of DNA. Nature 406(6796), 605–608 (2000)

7. Zhang, D., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven
Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

8. Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H.: Design of autonomous DNA cellular
automata. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp.
399–416. Springer, Heidelberg (2006)

9. Phillips, A., Cardelli, L.: A Programming Language for Composable DNA Circuits.
Journal of The Royal Society Interface 6(11), 419–436 (2009)

10. Green, C., Tibbetts, C.: Reassociation Rate Limited Displacement of DNA Strands
by Branch Migration. Nucleic Acids Research 9(8), 1905–1918 (1981)

Synthesizing Minimal Tile Sets for Patterned
DNA Self-assembly

Mika Göös and Pekka Orponen

Department of Information and Computer Science
Aalto University School of Science and Technology (TKK)

P.O. Box 15400, FI-00076 Aalto, Finland
{mika.goos,pekka.orponen}@tkk.fi

Abstract. The Pattern self-Assembly Tile set Synthesis (PATS) prob-
lem is to determine a set of coloured tiles that self-assemble to implement
a given rectangular colour pattern. We give an exhaustive branch-and-
bound algorithm to find tile sets of minimum cardinality for the PATS
problem. Our algorithm makes use of a search tree in the lattice of parti-
tions of the ambient rectangular grid, and an efficient bounding function
to prune this search tree. Empirical data on the performance of the algo-
rithm shows that it compares favourably to previously presented heuristic
solutions to the problem.

1 Introduction

An appealing methodology for bottom-up manufacturing of nanoscale structures
and devices is to use a self-assembling system of DNA tiles [10] to build a scaf-
fold structure on which functional units are deposited [4; 8; 13]. A systematic
approach to the design of self-assembling DNA scaffold structures was proposed
and experimentally validated by Park et al. in [7]. However, as pointed out by
Ma & Lombardi in [5], that design is wasteful of tile types, i.e. generally speaking
the same scaffold structures can be assembled also from fewer types of specially-
manufactured DNA complexes, thus reducing the requisite laboratory work.

Ma & Lombardi [5] formulated the task of minimizing the number of DNA
tile types required to implement a given 2-D pattern abstractly as a combinato-
rial optimization problem, the Patterned self-Assembly Tile set Synthesis
(PATS) problem, and proposed two greedy heuristics for solving it. In this pa-
per, we present a systematic branch-and-bound approach to exploring the space
of feasible PATS tilings, and assess its computational performance also exper-
imentally. The method compares favourably to the heuristics proposed by Ma
& Lombardi, finding noticeably smaller or even provably minimal tile sets in a
reasonable amount of computation time. However, as the experimental results
in Section 4 show, the computational problem still remains quite challenging for
large patterns.

Our considerations take place in the abstract Tile Assembly Model
(aTAM) of Winfree and Rothemund [9; 11; 12] (Sect. 2.1). In the PATS prob-
lem [5] (Sect. 2.2), one associates a colour with each tile type and targets a

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 71–82, 2011.
© Springer-Verlag Berlin Heidelberg 2011

72 M. Göös and P. Orponen

specific coloured pattern within a rectangular assembly. The question is: given
the desired colour pattern, what is the smallest set of (coloured) tile types that
will self-assemble to implement it?

Our definition of the PATS problem restricts the self-assembly process to pro-
ceed in a uniform way. This simplification allows us to design efficient strategies
for an exhaustive search (Sect. 3). For a pattern of size m × n, we reduce the
problem of finding a minimal tile set to the problem of finding a minimum-size
constructible partition of [m]×[n]. Here, constructibility of a partition can be
verified in time polynomial in m and n. This leads us to construct a search tree
in the lattice of partitions of the set [m] × [n] and to find pruning strategies for
this search tree.

2 Preliminaries

2.1 The Abstract Tile Assembly Model

Our notation is derived from those of [1; 3; 11]. First, to simplify our notations,
let D = {N,E,S,W} be the set of four functions Z2

→ Z2 corresponding to
the cardinal directions (north, east, south, west) so that N(x, y) = (x, y + 1),
E(x, y) = (x + 1, y), S = N−1 and W = E−1.

Let Σ be a set of glue types and s ∶ Σ ×Σ → N a glue strength function
such that s(σ1, σ2) = s(σ2, σ1) for all σ1, σ2 ∈ Σ. In this paper, we only consider
glue strength functions for which s(σ1, σ2) = 0 if σ1 ≠ σ2. A tile type t ∈ Σ4

is a quadruple (σN (t), σE(t), σS(t), σW (t)) of glue types for each side of a unit
square. Given a set Σ of glues, an assembly A is a partial mapping from Z2 to
Σ4. A tile assembly system (TAS) T = (T,S, s, τ) consists of a finite set T
of tile types, an assembly S called the seed assembly, a glue strength function
s and a temperature τ ∈ Z+ (we use τ = 2).

To formalize the self-assembly process, we first fix a TAS T = (T,S, s, τ). For
two assemblies A and A′ we write A →T A

′ if there exists a pair (x, y) ∈ Z2 and
a tile t ∈ T such that A′ = A ∪ {((x, y), t)}, where the union is disjoint, and

∑

D

s(σD(t), σD−1(A(D(x, y))) ≥ τ , (1)

where D ranges over those directions in D for which A(D(x, y)) is defined. This
is to say that a new tile can be adjoined to an assembly A if the new tile shares
a common boundary with tiles that bind it into place with total strength at
least τ .

Let →∗T be the reflexive transitive closure of →T . A TAS T produces an
assembly A if A is an extension of the seed assembly S, that is if S →∗T A.
Let us denote by ProdT the set of all assemblies produced by T . This way,
the pair (ProdT ,→∗T) forms a partially ordered set. We say that a TAS T is
deterministic if for any assembly A ∈ ProdT and for every (x, y) ∈ Z2 there
exists at most one t ∈ T such that A can be extended with t at position (x, y). A
TAS T is deterministic precisely when ProdT is a lattice. Also, the maximal

Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly 73

elements in ProdT are such assemblies A that can not be further extended,
that is, there do not exist assemblies A′ such that A →T A

′. These maximal
elements are called terminal assemblies. We denote by TermT the set of
terminal assemblies of T . If all assembly sequences

S →T A1 →T A2 →T ⋯ (2)

terminate and TermT = {P} for some assembly P , we say that T uniquely
produces P .

2.2 The PATS Problem

In this paper we restrict our attention to designing minimal tile assembly systems
that construct a given pattern in a finite rectangular m by n grid [m]×[n] ⊆ Z2.
This problem was first discussed by Ma & Lombardi [5].

Definition 1 (Pattern self-Assembly Tile set Synthesis (PATS) [5]).

Given: A k-colouring c ∶ [m] × [n] → [k].
Find: A tile assembly system T = (T,S, s,2) such that

P1. The tiles in T have bonding strength 1.
P2. The domain of S is [0,m] × {0} ∪ {0} × [0, n] and all the

terminal assemblies have the domain [0,m] × [0, n].
P3. There exists a colouring d ∶ T → [k] such that for each ter-

minal assembly A ∈ TermT we have d(A(x, y)) = c(x, y)
for all (x, y) ∈ [m] × [n].

In particular, we are interested in the minimal solutions (in terms of ∣T ∣) to
the PATS problem. By the same token, we can make the following assumption:

Assumption 1. In our TASs, every tile participates in assembling some terminal
assembly.

Ma & Lombardi show a certain derivative of the above optimization problem
NP-hard in [6]. However, to our knowledge, a proof of the NP-hardness of the
PATS problem as stated above is lacking.

As an illustration, we construct a part of the Sierpinski triangle with a 4-tile
TAS in Figure 1. We use natural numbers as glue labels in our figures.

Due to constraint P1 the self-assembly process proceeds in a uniform man-
ner directed from south-west to north-east. This paves the way for a simple
characterization of deterministic TASs in the context of the PATS problem.

Proposition 1. Solutions T = (T,S, s,2) of the PATS problem are determin-
istic precisely when for each pair of glue types (σ1, σ2) ∈ Σ2 there is at most one
tile type t ∈ T so that σS(t) = σ1 and σW (t) = σ2.

The following simple observation reduces the work needed in finding minimal
solutions of the PATS problem.

74 M. Göös and P. Orponen

2 1
0

0

2 1
0

0
1 1

3

0
1 1

3

0

2 1
0

0
1 2

0

3
2 2

3

3
2 2

3

3

2 1
0

0
1 1

3

0
1 2

0

3
2 2

3

3

2 1
0

0
1 2

0

3
2 1

0

0
1 2

0

3
1 2

0

3

1 2
0

3

2 1
0

0

2 1
0

0

1

2

2

2

2

2

2

1 1
3

0
1 1

3

0
1 1

3

0
1 1

3

0
1 1

3

0
1 1

3

0
1 1

3
3 3 3 3 3 3 3

0

1 1
3

0

1 2
0

3

2 2
3

3

2 1
0

0

(a) (b) (c)

Fig. 1. (a) A finite subset of the discrete Sierpinski triangle. This 2-colouring of the
set [7] × [7] defines an instance of the PATS problem. (b) Assembling the Sierpinski
pattern with a TAS that has an appropriate seed assembly and a (coloured) tile set
shown in (c).

Lemma 1. The minimal solutions of the PATS problem are deterministic TASs.

Proof. Suppose, for the sake of contradiction, that N = (T,S, s,2) is a minimal
solution to a PATS problem and is not deterministic. By the above proposition
let tiles t1, t2 ∈ T be such that σS(t1) = σS(t2) and σW (t1) = σW (t2). One can
now check that the simplified TAS N ′

= (T ∖ {t2},S, s,2) is a solution to the
original PATS problem [2]. This violates the minimality of ∣T ∣.

Assumption 2. We consider only deterministic TASs in the sequel.

3 A Branch-and-Bound Algorithm

We describe an exact algorithm to find minimal solutions to the PATS problem.
We extend the methods of [5] to obtain an exhaustive branch-and-bound (B&B)
algorithm. The idea of Ma & Lombardi [5] (following experimental work of [7]) is
to start with an initial tile set that consists of m ⋅n different tiles, one for each
of the grid positions in [m] × [n]. Their algorithm then proceeds to merge tile
types in order to minimize ∣T ∣. We formalize this search process as an exhaustive
search in the set of all partitions of the set [m] × [n]. In the following, we let a
PATS instance be given by a fixed k-coloured pattern c ∶ [m] × [n] → [k].

3.1 The Search Space

Let X be the set of partitions of the set [m] × [n]. For partitions P,P ′ ∈ X we
define a relation ⊑ so that

P ⊑ P ′ ⇐⇒ ∀p′ ∈ P ′ ∶ ∃p ∈ P ∶ p′ ⊆ p . (3)

Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly 75

1 6 7 2 2

2 1 5 3 1

1 6 2 7 2

2 7 1 5 3

1 5 4 6 1

6 2 2 1 6

7 7 1 6 7

(a) (b)

Fig. 2. (a) Partition A. (b) A partition M that is a refinement of A with ∣M ∣ = 7 parts.

Now, (X,⊑) is a partially ordered set, and in fact, a lattice. If P ⊑ P ′ we say
that P ′ is a refinement of P , or that P is coarser than P ′. Note that P ⊑ P ′

implies ∣P ∣ ≤ ∣P ′∣.
The colouring c induces a partition P (c) = {c−1({i}) ∣ i ∈ [k]} of the set

[m] × [n]. In addition, since every (deterministic) solution T = (T,S, s,2) of
the PATS problem uniquely produces some assembly A, we associate with T a
partition P (T) = {A−1({t}) ∣ t ∈ A([m] × [n])}. Here, ∣P (T)∣ = ∣T ∣ due to our
Assumptions 1 and 2. With this terminology, the condition P3 in the definition
of the PATS problem is equivalent to requiring that a TAS T satisfies

P (c) ⊑ P (T) . (4)

We say that a partition P ∈ X is constructible if P = P (T) for some
deterministic TAS T with properties P1 and P2. With this, we can rephrase
our goal from the point of view of using partitions as the fundamental search
space.

Proposition 2. A minimal solution to the PATS problem corresponds to a par-
tition P ∈X such that P is constructible, P (c) ⊑ P and ∣P ∣ is minimal.

For example, the 2-coloured pattern in Figure 2a defines a 2-part partition, A,
say. The 7-part partition M in Figure 2b is a refinement of A (A ⊑ M) and in
fact, M is constructible (see Figure 3b) and corresponds to a minimal solution
of the PATS problem defined by the pattern A.

3.2 Determining Constructibility

In this section we give an algorithm for deciding the constructibility of a given
partition in polynomial time. To do this, we use the concept of most general (or
least constraining) tile assignments. In the following, we write f(p)D instead of
σD(f(p)).

76 M. Göös and P. Orponen

3 1
2

0
1 5

6

4
5 8

9

7
8 11

12

10
11 14

15

13

18 16
17

2
16 19

20

6
19 21

22

9
21 23

24

12
23 25

26

15

29 27
28

17
27 30

31

20
30 32

33

22
32 34

35

24
34 36

37

26

40 38
39

28
38 41

42

31
41 43

44

33
43 45

46

35
45 47

48

37

51 49
50

39
49 52

53

42
52 54

55

44
54 56

57

46
56 58

59

48

62 60
61

50
60 63

64

53
63 65

66

55
65 67

68

57
67 69

70

59

73

3

18

29

40

51

62

73 71
72

61
71 74

75

64
74 76

77

66
76 78

79

68
78 80

81
72 75 77 79 81

70

3 1
2

0
1 3

0

2
3 3

4

0
3 3

0

2
3 3

0

2

3 3
0

2
3 1

2

0
1 5

2

4
5 3

0

0
3 1

2

0

3 1
2

0
1 3

0

2
3 3

0

2
3 3

4

0
3 3

0

2

3 3
0

2
3 3

4

0
3 1

2

0
1 5

2

4
5 3

0

0

3 1
2

0
1 5

2

4
5 1

2

2
1 3

0

2
3 1

2

0

1 3
0

2
3 3

0

2
3 3

0

2
3 1

2

0
1 3

0

2

3 3
4

0
3 3

4

0
3 1

2

0
1 3

0

2
3 3

4
4 4 2 0 4

0

3

3

3

3

3

1

3

1 3
0

2
3 3

4

0

3 3
0

2

1 5
2

4

5 3
0

0
3 1

2

0

5 1
2

2

(a) (b) (c)

Fig. 3. (a) A MGTA for the constructible initial partition I (with a seed assembly in
place). (b) Finished assembly for the pattern from Figure 2a. The tile set to construct
this assembly is given in (c).

Definition 2. Given a partition P of the set [m] × [n], a most general tile
assignment (MGTA) is a function f ∶ P → Σ4 such that

A1. When every position in [m]×[n] is assigned a tile type according to f , any
two adjacent positions agree on the glue type of the side between them.

A2. For all assignments g ∶ P → Σ4 satisfying A1 we have

f(p1)D1 = f(p2)D2 �⇒ g(p1)D1 = g(p2)D2 (5)

for all (p1,D1), (p2,D2) ∈ P ×D.

To demonstrate this concept we present a most general tile assignment f ∶ I → Σ4

for the initial partition I = {{a} ∣ a ∈ [m] × [n]} in Figure 3a and a MGTA
for the partition of Figure 2b in Figure 3b.

Given a partition P ∈X and a function f ∶ P → Σ4, we say that g ∶ P → Σ4 is
obtained from f by merging glues a and b if g coincides with f except that
g(p)D = a if f(p)D = b.

A most general tile assignment for a partition P ∈ X can be found as follows.
We start with a function f0 ∶ P → Σ4 that assigns to each tile edge a unique
glue type, or in other words, a function f0 so that the mapping (p,D) ↦ f0(p)D
is injective. Next, we go through all pairs of adjacent positions in [m] × [n] (in
some order) and require their matching sides to have the same glue type by
merging the corresponding glues. This process generates a sequence of functions
f0, f1, f2, . . . , fN = f and terminates after N ≤ 2mn steps.

Lemma 2. The above algorithm generates a most general tile assignment.

Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly 77

Corollary 1. For a given partition, MGTAs are unique up to relabeling of the
glue types.

The detailed proofs of the above claims are given in [2].
For each partition P , we take the MGTA for P to be some canonical rep-

resentative from the class of MGTAs for P .
We now give the (polynomial time decidable) conditions for a partition to be

constructible in terms of MGTAs.

Lemma 3. A partition P ∈ X is constructible iff the MGTA f ∶ P → Σ4 for P
is injective and the tile set f(P) is deterministic in the sense of Proposition 1.

Proof. See [2] for the details.

3.3 An Initial Search DAG

Our algorithm performs an exhaustive search in the lattice (X,⊑) searching for
constructible partitions. In the search, we maintain and incrementally update
MGTAs for every partition we visit. First, we describe simple branching rules
to obtain a rooted directed acyclic graph search structure and later give rules to
prune this DAG to a node-disjoint search tree.

The root of the DAG is taken to be the initial partition I that is always
constructible. For each partition P ∈ X we next define the set C(P) ⊆ X of
children of P . Our algorithm always proceeds by combining parts of the partition
currently being visited, so for each P ′ ∈ C(P) we will have P ′ ⊑ P . Say we visit
a partition P ∈X . We have two possibilities:

C1. P is constructible:
1. If P is not a refinement of the target pattern P (c), that is if P (c) /⊑ P ,

we can drop this branch of the search, since no possible descendant
P ′ ⊑ P can be a refinement of P (c) either. (i.e. C(P) = ∅)

2. In case P (c) ⊑ P , we can use the MGTA for P to give a concrete solution
to the PATS problem instance defined by the colouring c. To continue
the search and to find more optimal solutions we consider each pair of
parts {p1, p2} ⊆ P in turn and recursively visit the partition P [p1, p2]

where the two parts are combined. In fact, by the above analysis, it is
sufficient to consider only pairs of the same colour:

C(P) = {P [p1, p2] ∣ p1, p2 ∈ P, p1 ≠ p2, ∃k ∈ P (c) ∶ p1, p2 ⊆ k} . (6)

C2. P is not constructible: In this case the MGTA f for P gives f(p1)S =

f(p2)S and f(p1)W = f(p2)W for some parts p1 ≠ p2. We continue the
search from partition P [p1, p2]:

C(P) = {P [p1, p2]} . (7)

To guarantee that our algorithm finds the optimal solution in the case C2
above, we need the following [2].

Lemma 4. Let P ∈X be a non-constructible partition, f the MGTA for P and
p1, p2 ∈ P , p1 ≠ p2, parts such that f(p1)S = f(p2)S and f(p1)W = f(p2)W . For
all constructible C ⊑ P we have C ⊑ P [p1, p2].

78 M. Göös and P. Orponen

3.4 Pruning the DAG to a Search Tree

Computational resources should be saved by not visiting any partition twice. To
keep the branches in our search structure node-disjoint, we maintain a list of
graphs that store restrictions on the choices the search can make.

For each partition P ⊒ P (c) we associate a family of undirected graphs
{GP

k }k∈P (c), one for each colour region of the pattern P (c). Every part in P
is represented by a vertex in the graph corresponding to the colour of the part.
More formally, the vertex set V (GP

k) is taken to be those parts p ∈ P for which
p ⊆ k. (So now, ⋃k∈P (c) V (G

P
k) = P .) An edge {p1, p2} ∈ E(GP

k) indicates that
the parts p1 and p2 are not allowed ever to be combined in the search branch in
question. When we start our search with the initial partition I, the edge sets are
initially empty, E(GI

k) = ∅. At each partition P , the graphs {GP
k }k∈P (c) have

been determined inductively and the graphs for those children P ′ ∈ C(P) that
we visit are defined as follows.

D1. If P is constructible: We choose some ordering {pi, qi}, i = 1, . . . ,N , for
similarly coloured pairs of parts. Define li ∈ P (c), 1 ≤ i ≤N to be the colour
of the pair {pi, qi}, so that pi, qi ⊆ li. Now, we visit a partition P [pi, qi]

if and only if {pi, qi} ∉ E(GP
li
). When we decide to visit a child partition

P ′ = P [pj , qj], we define the edge sets {E(GP ′

k)}k∈P (c) as follows:
1. We start with the graphs {GP

k }k∈P (c) and add the edges {pi, qi} for
all 1 ≤ i < j to their corresponding graphs. Call the resulting graphs
{G⋆k}k∈P (c).

2. Finally, as we combine the parts pj and qj to obtain the partition
P [pj , qj], we merge the vertices pj and qj in the graph G⋆lj . The graphs

{GP ′

k }k∈P (c) follow as a result.
D2. If P is not constructible: Here, the MGTA for P suggests a single child

partition P ′ = P [p1, p2] for some p1, p2 ⊆ l ∈ P (c). If {p1, p2} ∈ E(GP
l),

we terminate this branch of the search. Otherwise, we define the graphs
{GP ′

k }k∈P (c) to be the graphs {GP
k }k∈P (c), except that in GP ′

l the vertices
p1 and p2 have to be merged.

One can see that the outcome of this pruning process is a search tree that has
node-disjoint branches and one in which every possible constructible partition is
still guaranteed to be found. Figure 4 presents a sketch of the search tree.

Note that we are not usually interested in finding every constructible partition
P ∈ X , but only in finding a minimal one (in terms of ∣P ∣). Next, we give an
efficient method to lower-bound the partition sizes of a given search branch.

3.5 The Bounding Function

Given a root P ∈ X of some subtree of the search tree, we ask: What is the
smallest partition that can be found from this subtree? The nodes in the subtree
rooted at P consists of those partitions P ′ ⊑ P that can be obtained from P
by merging pairs of parts that are not forbidden by the graphs {GP

k }k∈P (c).

Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly 79

I

P(c)

mn

mn-1

mn-2

3

2

1

Fig. 4. The search tree in the lattice (X,⊑). We start with the initial partition I of
size ∣I ∣ = mn. The partition P (c) defines the PATS problem instance: We search for
constructible partitions (drawn as crosses) in the sublattice (shaded with darker grey)
consisting of those partitions that are refinements of P (c). The search tree branches
only at the constructible partitions and the tree branches are node-disjoint.

This merging process halts precisely when all the graphs {GP ′

k }k∈P (c) have beed
reduced into cliques. As is well known, the size of the smallest clique that a graph
G can be turned into by merging non-adjacent vertices is given by the chromatic
number χ(G) of the graph G. This immediately gives the following.

Proposition 3. For every P ′ ⊑ P in the subtree rooted at P and constrained by
{GP

k }k∈P (c), we have
∑

k∈P (c)

χ(GP
k) ≤ ∣P

′

∣ . (8)

Determining the chromatic number of an arbitrary graph is an NP-hard problem.
Fortunately, we can restrict our graphs to be of a special form: graphs that consist
only of a clique and some isolated vertices. For these graphs, the chromatic
numbers are given by the sizes of the cliques.

To see how to maintain graphs in this form, consider as a base case the initial
partition I. Here, E(GI

k) = ∅ for all k ∈ P (c), so GI
k is of our special form—it

has a clique of size 1. For a general partition P , we go through the branching
rules D1-D2.

D1: P is constructible: Since we are allowed to choose an arbitrary ordering
{pi, qi}, i = 1, . . . ,N , for the children P [pi, qi], we design an ordering that
preserves the special form of the graphs. For a graph G of our special form,

80 M. Göös and P. Orponen

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+06

C
ur

re
nt

 b
es

t

Merge steps

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 0 5 10 15 20 25 30 35 40

M
er

ge
 st

ep
s

PATS instance size

(a) (b)

Fig. 5. (a) Running time of the algorithm (as measured by the number of merge oper-
ations) to solve random 2-coloured near-square-shaped instances of the PATS problem.
(b) Evolution of the tile set size of the “current best solution” for several large random
2-coloured instances of the PATS problem.

let K(G) ⊆ V (G) consist of those vertices that are part of the clique in
G. In the algorithm, we first set Hk = GP

k for all k ∈ P (c) and repeat the
following process until every graph Hk is a complete clique.
1. Pick some colour k ∈ P (c) and an isolated vertex v ∈ V (Hk) ∖K(Hk).
2. Process the pairs {v, u} for all u ∈ K(Hk) in some order. By the end,

update Hk to include all the edges {v, u} that were just processed (the
size of the clique in Hk increases by one).

D2: P is not constructible: It is easy to see that if P is of our special form,
so is P ′ = P [p1, p2].

4 Results

The running time of our B&B algorithm is proportional—up to a polynomial
factor—to the number of partitions the algorithm visits. Hence, we measure
the running time in terms of the number of merge operations performed in the
search. Figure 5a presents the running time of the algorithm to find a minimal
solution for random 2-coloured instances of the PATS problem. The algorithm
was executed for instance sizes 2 × 2,2 × 3,3 × 3,⋯,5 × 6 and 6 × 6; the 20th and
80th percentiles are shown alongside the median of 21 separate runs for each
instance size. For the limiting case 6×6, the algorithm spent on the order of two
hours of (median) computing time on a 2,61 GHz AMD processor.

Even though B&B search is an exact method, it can be used to find approxi-
mate solutions by running it for a suitable length of time. Figure 5b illustrates
how the best solution found up to a point develops as increasingly many steps of
the algorithm are run. The figure provides data on random 2-coloured instances
of sizes from 12 × 12 up to 32× 32. Because we begin our search from the initial

Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly 81

(a) (b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+06

C
ur

re
nt

 b
es

t

Merge steps

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+06

C
ur

re
nt

 b
es

t

Merge steps

Fig. 6. Evolution of the “current best solution” for (a) the Sierpinski pattern and for
(b) the binary counter pattern. Randomization in the DFS has a clear effect on the
performance of the algorithm in the case of the binary counter pattern.

partition, the best solution at the first step is precisely equal to the instance
size. For each size, several different patterns were used. The algorithm was cut
off after 106 steps. By this time, an approximate reduction of 58% in the size of
the tile set was achieved (cf. a reduction of 43.5% in [5]).

Next, we consider two well known examples of structured patterns: the dis-
crete Sierpinski triangle (part of which was shown in Figure 1) and the binary
counter (see Figure 1 in [11]). A tile set of size 4 is optimal for both of these
patterns. First, for the Sierpinski pattern, we get a tile reduction of well over
90% (cf. 45% in [5]) in Figure 6a. We used the same cutoff threshold and in-
stance sizes as in Figure 5b. Our description of the B&B algorithm leaves some
room for randomization in deciding which search branch a DFS is to explore
next. This randomization does not seem to affect the search dramatically when
considering the Sierpinski pattern—the separate single runs in Figure 6a are rep-
resentative of an average randomized run. By contrast, for the binary counter
pattern, randomized runs for single instance size do make a difference. Figure 6b
depicts several seperate runs for instance size 32 × 32. This suggests that, as is
characteristic of DFS traversal, restarting the algorithm with a different random
seed may help with large instances that have small optimal solutions.

5 Conclusion

We have presented an exact branch-and-bound algorithm for finding minimum-
size tile sets that self-assemble a given k-coloured pattern in a uniform self-
assembly setting. Simulation results indicate that our algorithm is able to find
provably minimal tile sets for random instances of sizes up to 6× 6 and can give
approximate solutions for larger instances as well.

82 M. Göös and P. Orponen

References

[1] Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanés, P.M.,
Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC 2002), pp. 23–32. ACM, New York (2002)

[2] Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned DNA self-
assembly. A detailed version, arXiv:0911.2924

[3] Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski
triangles. Theoretical Computer Science 410(4-5), 384–405 (2009)

[4] Lin, C., Liu, Y., Rinker, S., Yan, H.: DNA tile based self-assembly: building com-
plex nanoarchitectures. Chem. Phys. Chem. 7(8), 1641–1647 (2006)

[5] Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 27(5), 963–
967 (2008)

[6] Ma, X., Lombardi, F.: On the computational complexity of tile set synthesis
for DNA self-assembly. IEEE Transactions on Circuits and Systems II: Express
Briefs 56(1), 31–35 (2009)

[7] Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean,
T.H.: Finite-size, fully addressable DNA tile lattices formed by hierarchical assem-
bly procedures. Angewandte Chemie International Edition 45(5), 735–739 (2006)

[8] Park, S.H., Yan, H., Reif, J.H., LaBean, T.H., Finkelstein, G.: Electronic nanos-
tructures templated on self-assembled DNA scaffolds. Nanotechnology 15, S525–
S527 (2004)

[9] Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-assembly. PhD
thesis, University of Southern California (2001)

[10] Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440, 297–302 (2006)

[11] Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (STOC 2000), pp. 459–468. ACM, New York (2000)

[12] Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology (1998)

[13] Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated
self-assembly of protein arrays and highly conducive nanowires. Science 301, 1882–
1884 (2003)

Operation of a DNA-Based Autocatalytic
Network in Serum

Elton Graugnard1, Amber Cox1, Jeunghoon Lee2, Cheryl Jorcyk3,
Bernard Yurke1,4, and William L. Hughes1

1 Materials Science & Engineering,
Boise State University, Boise, ID 83725 USA

willhughes@boisestate.edu
2 Chemistry & Biochemistry,

Boise State University, Boise, ID 83725 USA
3 Biological Sciences,

Boise State University, Boise, ID 83725 USA
4 Electrical & Computer Engineering,

Boise State University, Boise, ID 83725 USA

Abstract. The potential for inferring the presence of cancer by the de-
tection of miRNA in human blood has motivated research into the design
and operation of DNA-based chemical amplifiers that can operate in bod-
ily fluids. As a first step toward this goal, we have tested the operation of
a DNA-based autocatalytic network in human serum and mouse serum.
With the addition of sodium dodecyl sulfate to prevent degradation by
nuclease activity, the network was found to operate successfully with
both DNA and RNA catalysts.

1 Introduction

Worldwide, approximately 1.3 million deaths per year are caused by lung cancer
[1]. Early detection and diagnosis of cancer can lead to decreased mortality rates,
yet current screening methods require significant resources [2]. Recently, micro-
ribonucleic acids (miRNAs) have been detected in human blood serum [3]. Micro-
RNAs are small, single-stranded, non-coding RNAs that are 21-23 nucleotides
in length and regulate genes by suppression of messenger RNAs [4,5]. Several
miRNAs are amplified in various cancers [6], and expression profiling reveals
that miRNA signatures can be used for cancer classification and prognosis.

Current diagnosis technology requires reverse-transcription polymerase chain
reaction (RT-PCR) to detect miRNAs in serum [7]. Developments in DNA com-
puting have shown that it is possible to construct metastable DNA-based chem-
ical networks that accept DNA as catalytic inputs and generate output DNA
strands whose concentration increases exponentially to produce an easily de-
tectable signal [8]. As miRNAs occur in blood in low abundance, such ampli-
fication networks would allow for detection without using PCR. In this study,
we report the operation of the DNA-based autocatalytic network reported by

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 83–88, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

84 E. Graugnard et al.

Zhang et al. in human blood serum with sodium dodecyl sulfate (SDS). The au-
tocatalytic DNA system accepts the input of either DNA or RNA catalysts and
produces output signal strands that generate an easily detectable fluorescence
signal.

2 Autocatalytic Network

To assess the feasibility of detecting miRNA in human serum using a DNA-based
catalytic network, the entropy-driven autocatalytic system developed by Zhang
et al. was selected as a test network. Figure 1(a) reproduces the autocatalytic
network with the same domain naming convention [8]. In this network, strand
4 2bc is the autocatalyst that initiates signal strand production by toehold-
mediated strand invasion of the substrate complex via the 2b domain. With
an exposed 3̄ domain, the fuel strand displaces two autocatalyst strands by
two strand invasion processes and forms the waste complex. In each cycle, the
amount of autocatalyst strand is doubled, leading to exponential growth of the
signal strand. In Fig. 1(b), the released signal strand reacts with a reporter
complex to displace a tetrachlorofluorescein (TET) labeled strand. An increase
in signal strand concentration is detected by an increase in the TET fluorescence
intensity. Zhang et al. were able to demonstrate exponential behavior of this
autocatalytic network in buffer and in a solution with total mouse liver RNA and
rabbit reticulocyte lysate [8], demonstrating successful operation in a complex
biological environment.

Autocatalyst

Waste

Substrate

2bc4a4b 432bc

Fuel
2bc4b

4 2bc

Autocatalyst

4b 432bc

2b3 4

2bc4b 2b3 4

4 2bc

Intermediate

4 2b
2c

4b

2bc4a 6
3 44b

2bc4b 2b3 4

Signal
6 3 4

(a)

Signal
6 3 4 6 3 4

4a36

36

Reporter

TET
FQ

(b)

4a36FQ

36TET

Fluorescence

Fig. 1. The DNA-based autocatalytic network reported by Zhang et al. [8]. In (a)
the autocatalyst initiates the release of the signal strand. The fuel strand displaces
both autocatalysts, producing the waste complex. Both released autocatalysts can then
initiate new cycles. In (b) the reporter complex consists of a dye-quencher pair in the
quenched state. The signal strand from (a) reacts with the reporter complex, displacing
the TET dye labeled strand and producing an increase in fluorescence intensity.

3 Network Operation in Serum

To test the autocatalytic system in human serum, the reported DNA sequences
of the network were purchased without modification from Integrated DNA Tech-
nologies with the same purification processes. Substrate and Reporter complexes

Autocatalytic Networks in Serum 85

were prepared in 1× phosphate buffered saline (PBS) and filtered by polyacry-
lamide gel electrophoresis to remove excess single-stranded components. Both
DNA and RNA versions of the Autocatalyst strand were used to initiate the
network.

Whole blood was collected from volunteers and allowed to clot for 30 minutes
at room temperature. The clotted solutions were centrifuged at room tempera-
ture for 10 minutes leaving the serum as the supernatant, which was extracted to
separate vials for storage at -80 ◦C. In order to ensure successful operation of the
autocatalytic network in serum, the use of the ionic detergent sodium dodecyl
sulfate (SDS) added to serum was used as a means to suppress nuclease activ-
ity without disrupting DNA hybridization. SDS is commonly used to denature
proteins, and with 10% SDS, DNA lifetime and hybridization rates in serum are
increased [9]. Figure 2 shows the results for operating the autocatalytic network
in a solution of 50% human serum, 10% SDS and 0.5×PBS with both DNA,
Fig. 2(a), and RNA, Fig. 2(b), catalysts. The data represent the normalized flu-
orescence intensity of TET dye integrated over one minute intervals with every
75th data point marked with a symbol. For the data shown in Fig. 2(a), the
Substrate and Fuel components of the network were present in solution at con-
centrations of 100 nM, while the Reporter was present at 200 nM. The network
was operated with zero added catalyst and with the DNA catalyst added at 10
and 100 nM. The times to half completion for the DNA catalyst were 5.5 min.
at 100 nM, 15.6 min. at 10 nM, and 21.7 min. with no catalyst added. For the
data shown in Fig. 2(b), the Substrate and Fuel components of the network were
present in solution at concentrations of 25 nM, while the Reporter was present at
50 nM. The network was operated with zero added catalyst and with the RNA
catalyst added at 2.5 and 25 nM. For the RNA catalyst, the times to half com-
pletion were 54.7, 82.1, and 101.3 min. for 25, 2.5, and 0 nM, respectively. The
resulting fluorescence versus time data are in qualitative agreement with the
results reported previously [8], exhibiting a similar concentration dependence
and initial exponential intensity increase. Although the times to half completion
for the DNA catalyst are similar to previous results, it should be noted that
here the concentrations of all components is 10 times greater. The longer times
to half completion for the RNA catalyst are expected for the factor of four re-
duction in the component concentrations. It should be noted that operation of
the autocatalytic network without added catalyst indicates a non-zero leak rate
of the system, as observed previously [8]. Methods to reduce this leak rate are
currently being studied.

Initial experiments in detecting cancer-related miRNA will be performed in
mouse models of lung cancer. To verify that the autocatalytic network can serve
as a test system for the detection of miRNA in mouse models, the network was
operated in mouse serum. Figure 3 shows the results for autocatalytic network
operation in a solution of 50% mouse serum, 10% SDS, and 0.5×PBS with RNA
catalyst added at concentrations of 10 and 100 nM, as well as operation with
no added catalyst. The measured times to half completion were 13.6, 37.8, and
47.4 min. for 100, 10, and 0 nM, respectively. These half completion times are

86 E. Graugnard et al.

Fig. 2. Autocatalytic network operation in 50% human serum, 10% SDS and 0.5×PBS
with (a) DNA and (b) RNA catalysts. Both the DNA and RNA catalysts successfully
initiated the autocatalytic network. The observed fluorescence increase and catalyst
concentration dependence are in qualitative agreement with the results for network
operation in buffer as reported previously [8].

Autocatalytic Networks in Serum 87

Fig. 3. Autocatalytic network operation in 50% mouse serum, 10% SDS and 0.5×PBS
with 100, 10, and 0 nM of RNA catalysts. Network operation in mouse serum was
successful with times to half completion comparable to operation in human serum
with DNA catalysts.

only slightly longer than those for DNA catalysts in human serum at the same
component concentrations, Fig. 2(a), which suggests that test results from mouse
models should be readily applicable to human systems.

4 Conclusion

A DNA-based autocatalytic network was successfully operated in 50% human
serum, 10% SDS, 0.5×PBS using both DNA and RNA catalysts. Network oper-
ation was also confirmed in mouse serum using an RNA catalyst. Operation in
serum with 10% SDS was shown to be sufficient to prevent rapid degradation
of the network. Times to half completion were similar to those for operation in
buffer solution, although the strand concentrations were an order of magnitude
higher in the experiments reported here. In all cases, the network exhibited an
apparent exponential increase in fluorescence intensity and clear dependence on
the catalyst concentration. These results clearly support the feasibility of de-
tecting miRNA in human serum and mouse serum using a DNA-based catalytic
network.

Acknowledgments. The authors thank David Y. Zhang, Erik Winfree, Lulu
Qian, and William B. Knowlton for valuable assistance with this work and Vivian
Lockary, MPH for drawing blood samples. This work was supported by NIH
Grant No. P20 RR016454 from the INBRE Program of the National Center for
Research Resources, DARPA Contract No. N66001-01-C-80345, and NSF CCF
0855212.

88 E. Graugnard et al.

References

1. World Health Organization, Cancer,
http://www.who.int/mediacentre/factsheets/fs297/en/print.html

2. American Cancer Society, Cancer Facts and Figures (2009),
http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/

cancer-facts-figures-2009

3. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J.,
Guo, X., Li, Q., Li, X., Wang, W., Zhang, Y., Wang, J., Jiang, X., Xiang, Y., Xu,
C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Wang,
J., Zen, K., Zhang, J., Zhang, C.-Y.: Characterization of microRNAs in serum: a
novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18,
997–1006 (2008)

4. He, L., Hannon, G.J.: MicroRNAs: Small RNAs with a big role in gene regulation.
Nat. Rev. Genet. 5, 522–531 (2004)

5. Carthew, R.W.: Gene regulation by microRNAs. Curr. Opin. Genet. Dev. 16, 203–
208 (2006)

6. Zhang, L., Volinia, S., Bonome, T., Calin, G.A., Greshock, J., Yang, N., Liu, C.-
G., Giannakakis, A., Alexiou, P., Hasegawa, K., Johnstone, C.N., Megraw, M.S.,
Adams, S., Lassus, H., Huang, J., Kaur, S., Liang, S., Sethupathy, P., Leminen,
A., Simossis, V.A., Sandaltzopoulos, R., Naomoto, Y., Katsaros, D., Gimotty, P.A.,
DeMichele, A., Huang, Q., Bützow, R., Rustgi, A.K., Weber, B.L., Birrer, M.J.,
Hatzigeorgiou, A.G., Croce, C.M., Coukos, G.: Genomic and epigenetic alterations
deregulate microRNA expression in human epithelial ovarian cancer. Proc. Natl.
Acad. Sci. USA 105, 7004–7009 (2008)

7. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-
Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., Lin,
D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R.,
Vessella, R.L., Nelson, P.S., Martin, D.B., Tewari, M.: Circulating microRNAs as
stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 105,
10513–10518 (2008)

8. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

9. Graugnard, E., Cox, A., Lee, J., Jorcyk, C., Yurke, B., Hughes, W.L.: Kinetics of
DNA and RNA Hybridization in Serum and Serum-SDS. IEEE Trans. Nanotech-
nol. 9, 603–609 (2010)

http://www.who.int/mediacentre/factsheets/fs297/en/print.html
http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2009
http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2009

Triangular Tile Self-assembly Systems

Lila Kari, Shinnosuke Seki, and Zhi Xu

The University of Western Ontario, Department of Computer Science,
London, Ontario, Canada N6A 5B7
{lila,sseki,zhi_xu}@csd.uwo.ca

Abstract. We discuss theoretical aspects of the self-assembly of trian-
gular tiles; in particular, right triangular tiles and equilateral triangular
tiles. Contrary to intuition, we show that triangular tile assembly sys-
tems and square tile assembly systems are not comparable in general.
More precisely, there exists a square tile assembly system S such that
no triangular tile assembly system that is a division of S produces the
same final supertile. There also exists a deterministic triangular tile as-
sembly system T such that no square tile assembly system produces the
same final supertiles while preserving border glues. We discuss the as-
sembly of triangles by triangular tiles and show triangular systems with
Θ(log N/ log log N) tiles that can self-assemble into a triangular super-
tile of size Θ(N2). Lastly, we show that triangular tile assembly systems,
either right-triangular or equilateral, are Turing universal.

1 Introduction

The basic model of DNA computation by self-assembly has been the one pro-
posed by Adleman [1] and Winfree [9], based on the theory of Wang tiles [7].
In this model, the basic components are square tiles with sides painted with
“glues”, that can stick together to form supertiles if the glues at abutting edges
match.

A regular tiling of the plane is a highly symmetric tiling made up of congruent
regular polygons. Only three such regular tilings exist: those made up of equilat-
eral triangles, squares, or hexagons. This paper departs from the existing model
of self-assembly by investigating, instead of square tiles, the case of triangular
tiles. We namely discuss the self-assembly by equilateral and right-triangular tile
systems.

Our line of investigation follows that started by Winfree [8], who showed
how the formation of large structures from certain DNA molecules can simu-
late Blocked Cellular Automata (BCA), which have the computational power
of Turing machines. In 1998, Winfree, Liu, Wenzler, and Seeman [9] designed
and experimentally produced two-dimensional DNA crystals by self-assembly.
The self-assembly of square tiles was initiated by Adleman [1] who studied the
time complexity of a particular case of linear self-assembly. In 2000, Rothemund
and Winfree [6] studied the self-assembly of squares at fixed temperature (the
threshold that the sum of the strengths of glues of a tile have to surpass, in

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 89–99, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

90 L. Kari, S. Seki, and Z. Xu

order for it to “stick” to an existing assembled shape), and showed that in order
to deterministically self-assemble an N × N full square, N2 different tile types
are required at temperature τ = 1 and O(log N) different tiles suffice at fixed
temperature τ ≥ 2. In 2001, Adleman, Cheng, Goel, and Huang [2] improved
the latter result to Θ(log N/ log log N) different tiles.

In this paper we follow a similar line of inquiry for triangular tiles. In Sect. 2
we introduce the definition of triangular tile assembly systems. In Sect. 3 we
compare the square tile assembly systems and triangular tile assembly systems
from the point of view of shape complexity and show that the two types of
systems are not comparable. In Sect. 4 we discuss the computational power of
triangular tile assembly systems and show they are Turing universal. In Sect. 5
we discuss the efficient assembly of triangles by triangular tiles. At the end, we
summarize the main results.

2 Definitions

A triangular tile is a triangle with each side colored with glues from a finite
set Σ of glues with associated strengths. In the figures, the strength associated
with the glue on a side will be represented by the number of parallel edges
along the side. We assume that the shortest side of a triangular tile is of unit
length, and assume that a triangular tile cannot be rotated nor flipped over.
Right triangular tiles are triangular tiles of the shape of right triangles with
the right angle pointing to the four possible directions: east, north, west, south
as illustrated in Fig. 1(a). More formally, a right triangular tile is a quadruple
(γ1, γ2, γ3, k), where γi ∈ Σ are the glues on the sides of the tile in the counter-
clockwise order starting from the longest side, and k ∈ { e, n, w, s} presents the
direction pointed to by the right angle. Equilateral triangular tiles are triangular
tiles of the shape of equilateral triangles that are either in an upward position or
in a downward position as illustrated in Fig. 1(b). More formally, an equilateral
triangular tile is a quadruple (γ1, γ2, γ3, k), where γi ∈ Σ are the glues on the
sides of the tile in the counter-clockwise order starting from the horizontal side
and k ∈ { u, d} presents the upward, respectively downward orientation of the
“arrow” represented by the triangle.

A particular glue φ ∈ Σ denotes the non-interactive glue. The temperature
τ ∈ R specifies the threshold needed for a tile to stick, as explained below,
where R = {0, 1, . . .} is the set of non-negative real numbers. The strength
function g : Σ × Σ → R is defined such that g(γ, γ′) = g(γ′, γ) and g(φ, γ) = 0
for all γ, γ′ ∈ Σ. In particular, we are interested in the discrete case where τ
is an integer, Σ = Γ ×N and g((a, n), (a′, n′)) = n if a = a′, n = n′ otherwise
g((a, n), (a′, n′)) = 0, where Γ is a set of glue labels.

Tiling the plane amounts to mapping tiles onto the lattice of a coordinate
system on the plane. The oblique coordinate system Cπ/3 whose two axes in-
tersect with the π/3 angle is the best choice for equilateral triangular tiles. The
right triangular tile accords with both rectangular and oblique coordinate sys-
tems. The conversion among these coordinate systems can be achieved by affine
transformations, which include rotation, scaling, shift, and their compositions.

Triangular Tile Self-assembly Systems 91

γ3

γ1

γ3

γ2

γ3 γ2

γ1

γ2

γ3

γ1
γ1

γ2

(a)

γ1

γ2γ3

γ1

γ2 γ3

(b)

EW

N

S

A E

S

W

N

A
B

S

W

B

N

E

(c)

W
C E

N

S

C

(d)

Fig. 1. (a) Four right triangular tiles (γ1, γ2, γ3, e), (γ1, γ2, γ3, n), (γ1, γ2, γ3, w), and
(γ1, γ2, γ3, s); (b) Two equilateral triangular tiles (γ1, γ2, γ3, u) and (γ1, γ2, γ3, d); (c)
Two ways to divide a square tile into right triangular tiles; (d) Even with the help of
affine transformations, squares are divided into two equilateral triangles in single way.

Without going into formal details, and similar to the way these notions were
defined for square tiling systems in [9], we can define the notion of supertile
that can self-assemble, starting from the seed, by individual tiles incrementally
sticking to the current supertile if the sum of the glue strengths at the abutting
edges is greater than or equal to the temperature. In latter sections we will study
the assembly of full triangular supertiles, where “full” means that the pair of
common edges of every two adjacent tiles in the supertile has a positive strength.

A tile assembly system (TAS) is a tuple S = (T, s, g, τ), where T is a finite set
of tiles of the same kind (either all square, or of the four types of right square
triangles in Fig. 1(a), or of the two types of equilateral triangles in Fig. 1(b)),
s ∈ T is a particular supertile called seed, g is a strength function, and τ is the
temperature. A final supertile of a TAS is a supertile st such that there is a
supertile sequence s = st0, st1, . . . , st = stn, where sti+1 is obtained by sticking
one tile to sti at temperature τ , and no tile can further stick to st. A TAS is
deterministic if its final supertile is unique regardless of how the self-assembly
proceeds starting from the seed.

For an equilateral triangular TAS S = (T, s, g, τ), we define a corresponding
“flattened” right triangular TAS F(S) = (U, f(s), g, τ), where U = {f(t), t ∈ T },
f(γ1, γ2, γ3, u) = (γ1, γ2, γ3, n), and f(γ1, γ2, γ3, d) = (γ1, γ2, γ3, s). Informally, a
flattened right-triangular system is obtained from an equilateral triangular one
by morphing each of the equilateral trianglular tiles into upward pointing, resp.
downward pointing right triangular ones.

3 Shape Complexity

We call a shape X-compatible, where X ∈ {square, right triangle, equilateral
triangle}, if the region occupied by that shape on the two dimensional plane
can be tiled geometrically by X tiles. For example, a triangle is not square-
compatible. For a given X TAS, only the assembly of X-compatible shapes is
meaningful, and thus, we only consider the assembly of X-compatible shapes in
the following discussion.

To compare the final supertiles of two TAS, we not only compare the shape
of the final supertiles, but also compare the glues on the border edges, with
possible affine transformation on the shape. We call the power of producing

92 L. Kari, S. Seki, and Z. Xu

certain supertiles the shape complexity, and say that TAS of type A have greater
or equal power than TAS of type B if every A-compatible final supertile of system
assembled by a tile system of type B can be also assembled by some system of
type A.

Proposition 1. Any supertile of triangle-compatible shape can be produced by
a non-deterministic triangular TAS of a constant number of tiles or by a deter-
ministic triangular TAS with n tiles, where n is the total number of tiles needed
to geometrically assemble it.

Proposition 1 can be generalized to tiles of other shapes, such as square tiles.
In what follows, we only consider deterministic TAS. Since every X-compatible
shape can be a supertile produced by a deterministic TAS of type X , where
X ∈ {square, right triangle, equilateral triangle}, the shape complexity of tile
self-assembly system with different tile shapes is trivially equivalent in regard
with compatible shapes. It is sensible to apply certain constraint on the involved
systems when comparing shape complexity. In the following we discuss shape
complexity under restrictions not only on the shape but also on glues.

A right triangular TAS T is called a division of a square TAS S if for any
tile s in S, there is a pair of tiles t, t′ such that at temperature τ ≥ 1 tiles t, t′

with π/4 rotation can produce s; for any tile t in T , there are a tile t′ in T
and a tile s in S such that at temperature τ ≥ 1 tiles t, t′ with π/4 rotation
can produce s. By definition, the division of a square TAS may not be unique,
and a right triangular TAS can be the division of two different square TAS
(see Fig. 1(c)). The number of tiles in the two systems satisfies the inequality√

n(S) ≤ n(T) ≤ 4n(S), where n(X) presents the number of tiles in a TAS X .
One may ask the question whether any square TAS can be trivially converted
into a triangular TAS by properly dividing each square tile into triangular tiles.
The answer is “NO” as shown in the following lemmas.

Lemma 2. There exists a deterministic square TAS S such that no division of
S produces a final supertile of the same shape (with π/4 rotation).

Two examples proving this lemma are illustrated in Fig. 2(a), one for τ = 2 and
one for τ = 3. In the figure, each tile is numbered in the order of a possible
assembly process. For the left-hand-side example system, each of the square
tiles s, 1, . . . , 6 can be simulated by a pair of right triangular tiles. There are two
sticky edges for tile 7, which are on parallel sides of the square tile, each of which
is of strength 1. So under τ = 2 the attachment of tile 7 cannot be simulated
by successive attachments of two right triangular tiles to assemble the same
final supertile. For the right-hand-side example system, by similar reasoning,
the attachment of tile 11 cannot be simulated by successive attachments of two
right triangular tiles, and thus the assembly stops and fails to grow into a square.

The left-most supertile in Fig. 2(a) has a missing tile in the middle, and we
say that it has “hole”. More formally, a supertile has no hole if it is full and has
no hole geometrically (every region enclosed by tiles is occupied by tiles).

Triangular Tile Self-assembly Systems 93

4

1 3 5

7S

2 4 6

1 3 5 7

91315S

2 14 12 11

1086

(a)

S
1

2
3

a
b

9
7

5
4

6
8a

b
(b)

Fig. 2. Examples show that square TAS and triangular TAS are not comparable: (a)
two square systems, none of which can be simulated by triangular systems; (b) a
triangular system (with π/4 rotation) that cannot be simulated by any square systems.
Each glue, unless mentioned, is unique, and thus, the label is omitted.

Lemma 3. For any square TAS S at τ = 1, and any square TAS at τ = 2
whose final supertile has no hole, there is a division of S that produces a final
supertile of the same shape (with π/4 rotation).

By Lemmas 2 and 3, we see that square TAS can be simulated by their division
only under certain conditions. Now we discuss the other direction: whether every
right triangular TAS can be simulated by a square triangular TAS, assuming that
the final supertile is square-compatible.

Since a supertile produced by a TAS may be a building block of a later self-
assembly, in this sense, the border glue is as important as the shape of the
supertile. In the following lemmas, when comparing two TAS, we ask the final
supertile has the same border glues.

Lemma 4. There exists a deterministic right triangular TAS T such that the
final supertile of T is square-compatible but no square TAS produces a final
supertile of the same shape (with π/4 rotation), and that has the same border
glues.

An example of a right triangular TAS such as the one postulated in Lemma 4
is illustrated in Fig. 2(b), where each tile is numbered in the order of a possible
assembly process. Note that any square TAS that produces a supertile of the
same shape as in Fig. 2(b) must include a square tile with west side glue a, and
south glue b. However, if a tile system contains such a tile, its assembly will
grow at its north-east corner, and thus, cannot produce a final supertile of the
required shape.

Lemma 5. For any right triangular TAS at τ = 1 whose final supertile is
square-compatible, there is a square TAS that produces a final supertile of the
same shape (with π/4 rotation) and keeps the same border glues.

For every equilateral triangular TAS T , there is a right triangular TAS F(T)
such that the two final supertiles are equivalent up to an affine transformation.
We will see that the right triangular TAS in Fig. 7(b) cannot be simulated by
an equilateral triangular TAS. So the equilateral triangular TAS are strictly less
powerful than right triangular TAS in shape complexity.

94 L. Kari, S. Seki, and Z. Xu

The example given in Lemma 4 is a flattened equilateral triangular TAS. In
other words, there exists an equilateral triangular TAS which cannot be produced
by any square TAS even under affine transformations. By Lemmas 2 and 4, we
have the following theorem.

Theorem 6. The square TAS and the triangular TAS are not comparable in
the sense of shape complexity.

4 Computational Complexity

Several problems on the computational complexity of Wang tile systems were
studied by Berger [3] and Robinson [5]. Among them, the tiling problem asked
whether, given a Wang tile system, one can decide whether or not it can tile
the full plane. This was proved undecidable by simulating a Turing machine
by a Wang tile system, and then reducing the Halting problem to the Tiling
problem. Since the Robinson’s Wang tile system which simulates a given TM
M = (Q, Σ, Γ, δ, q0, B, F) on the input a1a2 · · · an can be regarded as a determin-
istic square TAS S (see Fig. 3), it is undecidable whether a given deterministic
square TAS tiles the full plane or not.

Theorem 7. It is undecidable whether a given deterministic right triangular
TAS can tile the full plane.

The proof is based on the observation that the cooperation between tiles in this
Turing machine simulation by S occurs by coordination of either the south edge
and the east edge of a square tile, or between the south edge and west edge
of a square tile. We can thus construct a triangular division of the square tile
system S by dividing every square tile into two right triangular tiles in one of
the two ways described in Fig. 1(c) that leaves the cooperating two edges in
the same triangular tile. By making the glue of each diagonal edge unique to
the square tile that is being divided by it, the resulting right triangular TAS is
deterministic, and has at most twice as many tile types as S, that is, 2(n + 2 +
2|Σ| + |δ| + 2|Q||Σ|). This upper bound can be further improved by |δ| if we
reuse some of the triangular tiles that appear in different square tiles.

This proof technique does not work anymore for equilateral triangle systems,
even with the help of affine transformations. This is because when dividing a
square into two equilateral triangles as in Fig. 1(d), only one choice exists, e.g.,
the one that preserves the co-operation between the south and west edges of
the original square tile. Nevertheless based on the Robinson’s design principle,
we can construct a deterministic equilateral triangular TAS which simulates the
computation of M on the input a1a2 · · · an with at most 2n + 5 + 4|Σ| + 2|δ| +
3|Q||Σ| (see Fig. 4).

Theorem 8. For any Turing machine M , there is a deterministic equilateral
triangular TAS S at temperature τ ≥ 2 such that M does not halt on the blank
tape if and only if S tiles the full plane.

Triangular Tile Self-assembly Systems 95

in

an

B

C

i2

a2

C

i3 . . .

LL

ak

ak

L ql

ak

Rqi

qi aj

aj qi aj

L

ak

ql qi R RR

akqi aj

qi aj aj ak

B

C

B B i2

C

B

q0 a1

Seed

Fig. 3. Tiles of a square TAS S that simulate a given Turing machine with input
· · · Bq0a1a2 · · · anB · · · at temperature τ = 2. Starting from the seed (second left tile),
the first n+1 tiles self-assemble the initial configuration. Successive configurations are
simulated by addition of rows of tiles, one on top of each other. The i-th row represents
the configuration at time i. A transition of the type δ(qi, aj , L) = (q�, ak) is simulated
by the second and third tiles on the bottom row, while δ(qi, aj , R) = (q�, ak) is by the
forth and fifth ones. The other two tiles propagates upwards the input letters as well
as blank symbols which are not involved in the current transition. The lower half is
filled with a filler-tile whose edges are all labeled by (C, 2) (not shown here).

Proof. The proof idea is a modification of Robinson’s construction that crucially
uses both the glue-strength and temperature 2 features, as well as the dynamic
aspect of self-assembly. Indeed, while the cooperation between the south and
west edges of a square tile can be accomplished by a division of a square tile in
S into two triangles as in Fig. 1(d) and the previous theorem, the co-operation
between the south and east edges cannot. To simulate the behaviour of the square
tile system S in this regard, we use two main techniques. The first is to label
differently the tiles at the left of the Turing Machine head, versus the ones at the
right of it. The second one is to use a different order on which the assembly is
build, by using a particular strength 2 glue pattern (rather than within-the-tile
edge co-operation) to drive it.

Given a deterministic Turing machine M = (Q, Σ, Γ, δ, q0, B, F), we simulate
its computation on the input a1a2 · · · an by a deterministic equilateral triangular
TAS whose tile set is shown in Fig. 4. Without loss of generality, we can assume
that M always moves its head when it transits.

The initial configuration · · · Bq0a1a2 · · ·anB · · · self-assembles from the seed
(q0a1, BL, a2, d) with the tiles on the bottom row of Fig. 4 in a straightforward
manner as shown in Fig. 5. Each letter is coupled either with the indicator L if
the letter is to the left of the head or with R otherwise. Note that the top edges
with the TM head or to the left of the head are double-lined, and hence are
bound to their matching bottom edges with strength 2. Thus, for instance, the
upward alphabet tile with L at its bottom can stick to these top edges without
any cooperation so long as their letters match. This is not the case for the edges
to the right of the head because their glue strength is 1.

Let us consider the transition δ(q0, a1) = (q1, b1, R) first (see Fig. 6(a)). Via the
edges with strength 2, the upward alphabet tiles simultaneously stick to the edges

96 L. Kari, S. Seki, and Z. Xu

A p1 d1

q1 c1

(d1, L)

p1 d1 p1
p1

(b, R)

p1 b

p1 b

p1 b A

(b, L)

(b, L) A

(b, L)

A (b, L)

p2 b

p2(b, L)
(d2, R)p2

q2 c2

(b, R)

(b, R)
A

(b, R)

A(b, R)

BL

C

BL
BL

q0 a1

i2
Seed i2

C

i2
i2 i3

(a2, R)

in

(an, R)

BR

BR

C

BR
BR

(B, R)

BRBL

(B, L)

BL
. . .

C

C

C

C

C C

Fig. 4. Tiles of an equilateral triangular TAS which simulates a Turing machine
on input a1a2 · · · an. Starting from the seed (q0a1, BL, a2, d), the initial configuration
· · · Bq0a1a2 · · · anB · · · self-assembles using the tiles on the bottom row. Note that tiles
to the left of the TM head are marked by L, while the tiles to the right of the TM
head are marked by R. This is the case also for the successive configurations. The
transition δ(q1, c1) = (p1, d1, R) is achieved by the first four tiles on the top row, while
δ(q2, c2) = (p2, d2, L) is by the other two. The first four tiles in the middle row are used
to propagate upwards the letters or the blank symbol which are not involved in the
current transition.

q0 a1(B, L) (a2, R) (a3, R) (an, R) (B, R)

.Seed

Fig. 5. Simulate the initial configuration.

. . .
(B, L) (a2, R) (a3, R)

(a3, R)(B, L) q1 a2(b1, L)

q1
q1

q1b1
q1b1 q1a2
q1a2A

A A
A

. . .
q0 a1

(a)

(b2,R
)

(B, L) (a2, R) (a3, R)

(a3, R)

(a3, R)

(B, L) (b2, R)q2 b1

q2
q2

(b2,R
)

(B, L) q1 a2(b1, L)

(b1,L)
(b1,L)

AA
A

A

.
q0 a1

(b)

Fig. 6. Simulate the transitions (a) δ(q0, a1) = (q1, b1, R) and (b) δ(q1, a2) = (q2, b2, L)

located to the left of the TM head. The downward alphabet tiles then extend
any of these upward alphabet tiles but the one next to the TM head. It is not
until an action tile ((q0a1, q1b1, A, u) is stuck to the supertile that the one next
to the head is thus extended. The action tile changes the state q0 and the letter
a1 according to the transition to q1 and b1 deterministically, and the downward
tile ((b1, L), q0a1, q1, d) branches the letter b1 coupled with the indicator L up

Triangular Tile Self-assembly Systems 97

and the state q1 to the right. Now the merging tile ((a2, R), q1a2, q1, u) can
attach by the cooperation of left and bottom edges, and the attachment of its
corresponding upward tile immediately follows. The letters to the right of TM
head are extended one by one in this manner.

The transition δ(q1, a2) = (q2, b2, L) is simulated essentially in the same man-
ner as the previous simulation so that it may suffice to illustrate it as in Fig. 6(b).

This Turing machine simulator consists of at most 2n+5+4|Σ|+2|δ|+3|Q||Σ|)
tiles, where n is the length of the input a1 · · · an. ��
Corollary 9. It is undecidable whether a given deterministic equilateral trian-
gular TAS can tile the full plane.

5 Self-assembly of Triangles

In this section, we consider deterministic TAS whose final supertile is a up-
ward full triangle with the shortest edge of length N . We call such triangles
N -triangles.

Proposition 10. At temperature τ = 1, the minimal number of tile types of a
triangular TAS that can assemble an N -triangle is N2.

Now we consider the case of temperature τ ≥ 2. First we show how to use 2N−1
triangular tiles to assemble an N -triangle.

Proposition 11. At temperature τ = 2, there is a triangular TAS of 2N − 1
tile types that assembles an N -triangle.

The system is illustrated in Fig. 7(a). Starting from the seed, the bottom line
is deterministically assembled. Afterwards, a layer of upward triangular tiles is
attached by strength 2 glues on their bottom side, and then a layer of downward
triangular tiles is attached by two strength 1 oblique glues. The construction
here works for both equilateral triangular tiles and right triangular tiles.

Using a similar technique as that of square tile assembly for N×N squares [6],
the following result follows.

Proposition 12. There is a right triangular TAS of O(log N) tile types that
assembles an N -triangle.

The construction of an N -triangle with 2n + 37 tile types is illustrated in
Fig. 7(b), where n = �log N� and the temperature is τ = 2. Starting from
the seed, a supertile with glues that code the integer (2n − N + n + 2)/2 is as-
sembled. Then the tiles simulate the counting up to 2n−1 with duplicate copies.
For the addition step of the counting, the assembly proceeds from the south-east
to the north-west by north and south tiles; for the duplication step, the assem-
bly proceeds from the north-west to the south-east by east and west tiles. This
produces the shaded rectangle in Fig. 7(b). This rectangular supertile is then
expanded into an N -triangle.

98 L. Kari, S. Seki, and Z. Xu

ii ii iii iii

v v v

vv

v

vi vi vi

vi vi

vi

S
i i iv

vi vi vi

vi vi

vi

iv

(a)

s3

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

g g
g

S
[1

0

0]i
ll l l

g g
l

r r

g

r r r r rr r rrr r r
r r r r r r

g gg g g g g g g g g
1]

n

n
0

0
[1

[1
[1

[1 x

x

x

x

x

x

0

1]
1]

1]
1]

1]

0]
1]

0]

1]

0]
0]

[1
[1

[1
[1

[1
[1

[1
[1

0
0

0
1

1
1

0]
0]

1
1

1
1

1

f[1

c

n

n

n

c

c

s1
s1

s2

(b)

Fig. 7. Triangular TAS that produces a full triangle: (a) An equilateral triangular
system of 2N − 1 tiles for N = 4. (b) A right triangular system of 2n + 37 tiles for
N = 10, n = �log N� = 4, where the label on the supertile is omitted for simplicity.
Temperature is τ = 2 and S is the seed.

Using the same technique of base conversion as in the square tile assembly [2]
the bound on the minimal number of tiles required to assemble an N -triangle can
be improved to O(log N/ log log N). This is optimal, which is seen by noticing
that a square supertile can be assembled by sticking together two right triangular
supertiles.

Corollary 13. There is a right triangular TAS of O(log N/ log log N) tile types
that assembles an N -triangle.

6 Conclusion
The model we used in this paper is at fixed temperature, unit growing (at each
step only a single tile sticks to the supertile), and irreversible (supertiles cannot
break). There are other possible choices of models. For example, if we allow
variable temperature and reversible process as discussed on square tiles [4], then
in exactly the same manner to the assembly of squares, one can prove that O(1)
tiles are enough to assemble arbitrary large triangle-compatible triangles; in that
case the time sequence is of length O(log N).

Acknowledgements. We thank Dr. David Doty for comments on earlier ver-
sions of the paper. This research was supported by The Natural Sciences and
Engineering Council of Canada Discovery Grant R2824A01 and Canada Re-
search Chair Award to Lila Kari.

References

1. Adleman, L.: Toward a mathematical theory of self-assembly (1999) (manuscript),
https://eprints.kfupm.edu.sa/72519/1/72519.pdf

2. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for
self-assembled. In: Proc. 33rd Ann. ACM Symp. Theor. of Comp (STOC 2001), pp.
740–748 (2001)

https://eprints.kfupm.edu.sa/72519/1/72519.pdf

Triangular Tile Self-assembly Systems 99

3. Berger, R.: The undecidability of the domino problem. Mem. Amer. Math. Soc. 66,
1–72 (1966)

4. Kao, M., Schweller, R.: Reducing tile complexity for self-assembly through temper-
ature programming. In: Proc. 7th Ann. ACM-SIAM Symp. Discrete Algorithm, pp.
571–580 (2006)

5. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Math. 12, 177–209 (1971)

6. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proc. 32nd Ann. ACM Symp. Theor. of Comp (STOC 2000), pp. 459–
468 (2000)

7. Wang, H.: Proving theorems by pattern recognition II. Bell System Technical Jour-
nal 40, 1–42 (1961)

8. Winfree, E.: On the computational power of DNA annealing and ligation. In: DNA
Based Computers: DIMACS Workshop, pp. 199–221 (1996)

9. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998)

Randomized Self Assembly of Rectangular Nano
Structures

Vamsi Kundeti and Sanguthevar Rajasekaran

Department of Computer Science and Engineering
University of Connecticut Storrs, CT 06269, USA

{vamsik,rajasek}@engr.uconn.edu

Abstract. Self assembly systems have numerous critical applications
in medicine, circuit design, etc. For example, they can serve as nano
drug delivery systems. The problem of assembling squares has been well
studied. A lower bound on the tile complexity of any deterministic self
assembly system for an N ×N square is Ω(log(N)

log(log(N))
) (inferred from the

Kolmogrov complexity). Deterministic self assembly systems with an op-
timal tile complexity have been designed for squares and related shapes
in the past. However designing Θ(log(N)

log(log(N))
) unique tiles specific to a

shape which needs to be self assembled is still an intensive task. Creat-
ing a copy of a tile is much simpler than creating a unique tile. With this
constraint in mind probabilistic self assembly systems were introduced.
These systems have O(1) tile complexity and the concentration of each
of the tiles can be varied to produce the desired shape. Becker, et al. [1]
introduced a line sampling technique which can self assemble m×n rect-
angles, where m is the expected width and n is the expected height of
the rectangle. Kao, et al. [2] combined the line sampling technique with
binary counters in a novel way to self assemble a supertile which can
encode a binary string. This supertile can then be used to produce an
n′ × n′ square such that (1 − ε)n ≤ n′ ≤ (1 + ε)n (for some relevant
ε) with probability ≥ 1 − δ for sufficiently large n (i.e., n ≥ f(ε, δ), for
some appropriate function f). Doty [3] made the idea of Kao more pre-
cise, however the underlying construction is still based on sub-tiles to
perform binary counting and division.

In this paper we present randomized algorithms that can self assem-
ble squares, rectangles and rectangles with constant aspect ratio with
high probability (i.e. Ω(1 − 1/nα), for any fixed α > 0) where n is the
dimension of the shape which needs to be self assembled. Our self assem-
bly constructions do not need any approximation frames introduced in
Kao et al. [2] and hence are much cleaner and has significantly smaller
constant in the tile complexity compared to both Kao [2] and Doty [3].
Finally In contrast to the existing randomized self assembly techniques
our techniques can also self assemble a much stronger class of rectangles
which have a fixed aspect ratio (α/β).

1 Introduction
Self assembly is an autonomous process by which simple nanoscale components
assemble into much complex nano structures. Self assembly is ubiquitous in

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 100–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Randomized Self Assembly 101

nature in the form of lipid polymers and crystals. Theoretical foundations for
understanding how to assemble these nano components into desired shapes is of
central importance to nanotechnology. Applications of self assembly span from
human health to nanoelectronics. Fundamental limits of optical lithography in
circuit fabrication is being addressed by directed self assembly. Gold nanostruc-
tures are being used for drug delivery in controlled fashion to treat cancer. It
has been proven [4] that DNA crossover molecules can help in building stable
structures.

The tile assembly model introduced by Winfree [5] has gained importance
because of its close proximity to the physical self assembly process. This model
is based on the theory of Wang’s [6] tiling of planar shapes. Informally this model
has unit square tiles with a colored glue attached to each side. Two tiles can stick
to each other along an edge only if they have a glue of the same color along the
sticking edge. These tiles cannot be rotated during the self assembly process and
they can only be translated. Given a target shape the goal is to design these
tiles with colored glues so that they can be assembled into the target shape
uniquely. The efficiency of the tileset is determined by the number of unique
tiles used in the tileset. Initial work in this area focussed on the design of tilesets
which can assemble the target shape exactly [7] [8] [9] [10]. Efficient tilesets were
designed for self assembling squares by Rothemund, et al. [7] and Adleman,
et al. [8]. Also a lower bound of Ω(log(n)

log(log(n))) on the number of unique tiles
to self assemble a square has been established by Rothemund, et al. [7]. This
lower bound is dictated by the Kolmogrov complexity. In all of these tilesets
the information about the dimension is encoded in the tiles. As the dimension
of the target shape increases the number of unique tiles also increases. The
design of a large number of unique tiles is an intensive task. However creating
a copy of an existing tile is a straightforward process in the laboratory. This
observation has led to a new paradigm of probabilistic self assembly systems.
In probabilistic self assembly systems the information about the dimension is
encoded in the concentration of the tiles. Thus the number of unique tiles in these
systems is reduced considerably. However the price we pay in the probabilistic self
assembly systems is that the final structure may not have the exact dimensions
we are targeting. The difference between the target dimension and the assembled
dimension is bounded by a certain probability which is of our interest.

The idea of a probabilistic self assembly was introduced by Becker, et al. [1].
They showed how to self assemble squares and rectangles which are expected
to have dimensions close to the target dimensions. The techniques introduced
by Becker, et al. suffered from high variance on the dimensions achieved. This
shortcoming was addressed by Kao, et al. [2].

Later Doty [3] independently considered the problem of making the idea of
Kao [2] more precise. Doty [3] showed that the line sampling estimate of n (the
dimension of the square) can be made precise by estimating smaller parts of
the binary representation of n. However his construction still needs to encode a
binary number on the tiles to self assemble a n × n square. The constructions
of both Kao [2] and Doty [3] are not simple and involve sub-tilesets to perform

102 V. Kundeti and S. Rajasekaran

binary addition and division – thus have large hidden constants. In contrast one
of the major results of our paper is to show how to construct simple tilesets with-
out the need to have sub-tilesets to perform binary addition and division. Our
algorithms can self assemble squares and rectangles with dimensions close to the
target with high probability. Also, all the existing randomized techniques only
address self assembly of squares. In this paper we also give constructions that
can self assemble rectangles with constant aspect ratio (α/β) and squares are a
special case of these rectangles. These rectangles have dimensions close to target
dimensions with high probability. Our rectangle constructions are applicable in
the deterministic context as well.

In this paper we use n to denote the target dimension that needs to be as-
sembled and n′ to denote the dimension of the final assembled structure.

2 Basics of the Tile Assembly Model

The tile model t = (N(t), S(t), W (t), E(t)) ∈ Σ4 used in the assembly is a square
shaped Wang tile with glues/symbols (from alphabet Σ) attached to each of the
four sides. N(t), S(t), W (t), E(t) denote symbols attached to the north, south,
west and east directions, respectively. Note that these tiles cannot be rotated and
hence (σn, σs, σw, σe)
= (σe, σw, σn, σs). A self assembly system is characterized
by a five tuple 〈T, s, τ, G, P 〉. Symbol T denotes the tileset T ⊂ Σ4 and is a
collection of unique tiles used in the assembly process. The tile s is called the
seed tile which is fixed at a particular location to initiate the assembly process.
The symbol τ is a positive integer that indicates the temperature of the model.
The function G : Σ × Σ → {0, 1, . . . τ} is called the bond strength function. For
any two symbols x, y ∈ Σ the function G(x, y) is defined as follows. The symbol
ε denotes a empty symbol.

G(x, y) =
{

0 If (x
= y) ∨ (x = ε ∨ y = ε)
k ∈ {1, 2, . . . τ} If x = y
= ε

Informally the function G associates a glue strength with each symbol in Σ. And
a bond can only be formed between the glues which are of the same type/symbol.
The function P is the probability distribution associated with a subset of tiles
in T . Since we study the self assembly of only planar shapes we consider only
self assembly models which have a temperature τ = 2.

Theoretically we can think of the self assembly as a process that occurs on an
infinite 2-dimensional integer grid. We define a null tile φ as follows φ := (ε, ε, ε, ε).
The state of the self assembly process at any stage is represented by a mapping
C′ : Z × Z → {T ∪ φ}. If C′(x, y) = φ it means that there is no tile placed at
position (x, y) on the integer grid. We define a set C := {(x, y)|C′(x, y)
= φ}
as the configuration of the self assembly system. It is assumed that the seed tile
s is placed initially at position (0, 0) and null tile φ is placed on all the grid
points except (0, 0). Thus initial configuration of the self assembly system is
C = {(0, 0)} and C′(0, 0) = s. Given a configuration C we say that a tile t ∈ T

Randomized Self Assembly 103

is attachable to C at (x, y) only if both the following constraints (C1 and C2)
hold.

Let g1 = G(N(t), S(C′(x, y + 1))) + G(S(t), N(C′(x, y − 1)))
Let g2 = G(W (t), E(x − 1, y)) + G(E(t), W (x + 1, y))

C′(x, y) = φ (C1: position (x, y) is empty)
g1 + g2 ≥ τ (C2: neighbour tiles should provide enough strength)

Informally both these constraints mean that a tile t ∈ T can be assembled to
a configuration C at position (x, y) only if that position is empty and it could
receive a glue strength of at least τ from the neighbouring tiles at position (x, y).
If a tile t ∈ T is attachable to C at (x, y), then the configuration C moves
to a new configuration C1 such that C1 = C ∪ {(x, y)} and C′(x, y) = t. In
the self assembly literature a configuration C is also referred to as a supertile
C. We can describe the self assembly process with a directed acyclic graph
Dg = (V, E), where V is set of all supertiles and E is set of directed edges.
There is a directed edge (C1, C2) between two supertiles only if ∃t ∈ T which
is attachable to supertile C1 to get the supertile C2. The in-degree of the initial
supertile C (i.e., the seed tile s at position (0, 0)) is zero. The self assembly
process continues to move from one supertile to the other with the help of some
attachable tile t ∈ T . The assembly process stops at a supertile Ct if �t ∈ T
which is attachable to Ct. Such a supertile is called a terminal supertile. A
tile system Γ = 〈T, s, τ, G, P 〉 is said to produce a shape Υ uniquely if all the
terminal supertiles have exactly the same shape (including dimensions) as Υ .
Deterministic assembly systems focus on the construction of tilesets which can
uniquely assemble a give shape with minimum tile complexity.

2.1 Probabilistic Self Assembly

Probabilistic self assembly 〈T, s, τ, G, P 〉, in contrast to deterministic assembly,
can produce terminal supertiles which correspond to multiple shapes. However
one of these shapes (close to the target shape) is produced with high probability.
Note that the probability distribution function P for deterministic self assembly
is uniform P [t] = 1/|T |, ∀t ∈ T . However in probabilistic self assembly not all
the tiles will have the same probability. The probability of a tile in practice can
be changed by changing the concentration of the tiles. The information about
the dimension of the shape to be assembled is encoded in the concentration of
some of the tiles in T .

2.2 Our Results

We summarize our results as follows. First we introduce a new sampling tech-
nique based on the sum of random variables which follow geometric distribu-
tion. We then use this to show how to construct a supertile which can encode
a binary number n′ on the tiles such that |n′ − n| < εn with high probability

104 V. Kundeti and S. Rajasekaran

A1 A1 A1 A1A’0 A’1 A2 Ak A’k

A’i i+1i=

Ai i= i

Randomized Self Assembly Tile Set
(2k+1 tiles)

X

X1

G(i,i)=2

Fig. 1. Randomized self assembly multiple geometric distributions

(i.e., Ω(1 − 1/nα), for any fixed α > 0). Next we introduce a new self assembly
sampling technique called the staircase sampling. We then show how this sam-
pling scheme can be used to self assemble squares and rectangles with constant
aspect ratio such that |n′ − n| < εn with high probability.

3 Randomized Self Assembly with a Sum of Geometric
Distributions

The idea of assigning probabilities to various tile types was considered by Becker,
et al. [1]. They introduced a probabilistic tile system consisting of two tiles
A = (ε, ε, σ, σ), A′ = (ε, ε, σ, ε) and a seed tile s = (ε, ε, ε, σ). The glue strength
function and the probability distribution of the tiles are defined as follows.
G(σ, σ) = 2, P [A′] = p and P [A] = 1 − p. The seed tile s is placed at (0, 0).
The self assembly grows a line from left to right. The tile A helps to increase the
length of the line since G(W (A)) = G(E(A)) = 2. However tile A′ terminates
the assembly process since G(E(A′)) = 0. We can associate a random variable
L corresponding to the length of the assembled line. It is clear that E[L] = 1/p
since L follows a geometric distribution. So if we choose the concentration of tile
A′ such that P [A′] = p = 1/n, then the expected length of the self assembled
line is n. By adding a constant number of tiles to this tileset it is also possible
to self assemble an n × n square with expected dimensions. However this line
sampling technique suffers from high variances on the dimensions.

Randomized Self Assembly 105

Kao, et al. [2] have focused on reducing the variance by introducing an extra
tile A1 = (ε, ε, σ, σ) into the previous tile set. Note that the tile A1 has exactly
the same definition as A, however it has a different color (say red). Kao, et al. as-
sociated a random variable R that corresponds to the number of red tiles (i.e., of
type A1) in a self assembled line of length L. It is easy to see that the random vari-
able R follows a binomial distribution. Since R follows a binomial distribution,
Kao, et al. bounded the quantity L/R by applying Chernoff bounds. However
Kao, et al.’s tileset needs tiles for computing the values of L, R and L/R. This
means that we need sub-tilesets to perform binary addition and division. One of
the contributions of our paper is to show that the same high probability bounds
can be derived in a much simpler manner by considering a random variable that
is expressed as the sum of multiple geometrically distributed random variables.
We now give more details of our constructions. Theorem 1 is already known
and gives the Chernoff bounds for the sum of random variables that follow a
geometric distribution.

Theorem 1. If X =
∑k

i=1 Xi is the sum of k independent geometrically
distributed variables then for any 0 < ε ≤ 1, P [X ≥ (1 + ε)μ] ≤ e−με2/3 and
P [X ≤ (1 − ε)μ] ≤ e−με2/2 where μ = E[X].

Our randomized self assembly technique uses multiple geometric distributions.
Consider the line sampling technique introduced earlier which has only two
unique tiles A and A′. The sampling line continues to grow with tile A until ter-
minated by tile A′. We now introduce tiles A1, A2 . . . Ak and A′

0, A
′
1, A

′
2 . . . A′

k.
The growth of tile Ai is terminated by tile A′

i+1, 1 ≤ i ≤ k. The tile A′
0 denotes

the seed tile. In contrast to line sampling we now have k independent self as-
sembling stages terminated by tile A′

k+1. Figure 1 further clarifies our idea. We
now associate a random variable X corresponding to the length of the terminal
self assembled line. We also associate the random variables Xi, 1 ≤ i ≤ k corre-
sponding to the length of the self assembly between tiles A′

i−1 and A′
i. Clearly

X =
∑k

i=1 Xi +(k +1) and each of the random variables Xi follows a geometric
distribution with a mean of 1/p where p is the probability of success. We now
prove Theorem 2 based on our randomized self assembly technique. Later we
will show how to add a constant number of tiles to this sampling technique to
actually encode the binary value on to the tiles. Note that n′ and n are used to
denote the length of the self assembled line with sampling and the length of the
target/required line, respectively.

Theorem 2. For any given ε ∈ (0, 1) and a positive integer n, the multi geomet-
ric sampling technique can self assemble a line of length n′ such that |n′−n| < εn

with a probability Ω(1 − 1/nα) for any α ≤ nε2 log(e/2)
3log(n) .

Proof. The length of the terminal self assembled line is n′ and the target length
is n. We have associated a random variable X corresponding to n′. Since X =∑k

i=1 Xi + (k + 1) and each Xi follows a geometric distribution we can apply
Chernoff bounds in Theorem 1 as follows.

106 V. Kundeti and S. Rajasekaran

μ = E[X] =
∑k

i=1 E[Xi] + (k + 1) = k/p+ (k + 1)
Let S1 be the event that X ≥ (1 + ε)μ;
Let S2 be the event that X ≤ (1− ε)μ;

→ P [S1] ≤ e
−με2

3 (By Chernoff bounds in Theorem 1)

→ P [S2] ≤ e
−με2

2 (By Chernoff bounds in Theorem 1)
→ P [S1∪S2] ≤ P [S1] + P [S2] (Union rule)

P [S1] + P [S2] ≤ 2e
−με2

3

→ P [S1 ∩ S2] ≥ 1− 2
e(με2)/3

Now select p = k
n−(k+1) → μ = n

→ P [S1 ∩ S2] ≥ 1− 2/e(nε
2)/3 > 1− 1/nα (α ≤ nε2log(e/2)

3log(n))

Note S1 ∩ S2 = {X : |X − μ| < εμ}
→ P [|n′ − n| < εn] = Ω(1− 1/nα). �

3.1 Supertile to Encode a Binary String

We now show how our random sampling technique can be used to self assemble
a supertile which can encode binary string of log(n) bits that has a value of
n′. Building a supertile that can encode a given binary string is fundamental to
the construction of several shapes. As shown by Rothemund, et al. [7], given a
supertile encoded with a specific binary string, we can build an n× n square by
adding only a constant number of tiles to the tileset. Deterministically optimal
tilesets of size Θ(log(n)

log(log(n))) exist for building n×n squares (see [8]). In [2] Kao,
et al. gave a tile assembly that can encode any binary value n′ on the tiles. In
Kao, et al.’s construction the length of the sampling line does not have a direct
correspondence to n′ and requires a sub-tile assembly which performs division. In
contrast, our multi-geometric sampling technique can achieve equivalent (proved
in Theorem 2) stochastic properties for encoding n′ in binary with a much simpler
supertile construction. Figure 2 gives the overview of how this encoding is done
with just a constant (7) number of tiles. The basic idea behind this binary
encoding is to integrate a binary counter to the self assembling sampling line
by modifying the binary counter tileset presented in [7]. Figure 2 shows the
self assembly of a supertile with two geometrically distributed variables when
the random variable X = n′ takes a value of 13. In this example, X1 = 6
and X2 = 4. The green colored tile in Figure 2 represents the seed tile. The
tiles on the left part of the tileset vary with the number of variables used in
the sampling process. If we use k geometrically distributed variables, then this
would have 2k + 1 (in this example k = 2) unique tiles. The right part of the
tileset is independent of the number of variables and will always have 7 tiles in
it. The binary value of n′ is encoded on the tiles along the right corner of the
supertile from top to bottom. We now summarize the discussion in this section
with Theorem 3.

Theorem 3. For any given ε ∈ (0, 1) and a positive integer n there exists a
tile system with constant tiles to encode a binary string of value n′ such that
|n′ − n| < εn with a probability of Ω(1 − 1/nα) for any α ≤ nε2 log(1/2)

3log(n) .

Randomized Self Assembly 107

2 2
1

2 2
1

2 2
1

2 2
1

2 2
1

2 3
1

3 3
1

3 3
1

3 3
1

3 3
1

3 4
1

0
e

c
0

2 2
1

2
c

c
0

1
e

0
1

1
0

0
e

c
0

0
e

0
e

1
0

1
1

c
0

1
e

0
e

c
0

0
1

1
0

0
0

0
0

0
e

0
e

1
0

1
1

0
1

1
0

0
e

0
e

0
1

1
0

0
1

0
1

0
e

0
e

1
0

1
1

1
0

1
1

c
0

1
e

0
e

c
0

0
1

1
0

0
0

0
0

0
0

0
0

0
e

0
e

1
0

1
1

0
1

1
0

0
0

0
0

0
e

0
e

0
1

1
0

0
1

0
1

0
0

0
0

0
e

0
e

1
0

1
1

1
0

1
1

0
1

1
0

0
e

0
e

0
1

1
0

0
0

0
0

0
1

0
1

0
e

0
e

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2 3
1

3 3
1

0
1

0
1

0
0

0
0

0
1

1
0

c
0

1
e

3 4
1

2 2
1

1
0

1
1

0
e

c
0

n’ = 13

in binary
n’ encoded

Tile set

2
c

0
e

0
e

Fig. 2. Self assembly of the supertile encoding a binary string on the tiles. The strength
function G of a symbol is illustrated by the bars attached to the tiles. For example
strength of the symbol c, G(c, c) is indicated by two bars.

4 New Idea of Staircase Sampling

We now introduce our idea of staircase sampling. This technique helps in the
randomized self assembly of rectangular shapes with a constant aspect ratio
(α/β). The idea of randomized self assembly of rectangles was introduced by
Becker, et al. [1]. Their idea generalizes the line sampling described in Section 3
for two dimensions (north, east). They associate two random variables M and
N to these sampling lines to self assemble a m × n rectangle where m and n
are the expected height and width, respectively. Since these are only expected
dimensions their technique suffers from high variances on these dimensions. Also
their technique will not work in self assembling much stronger classes of shapes
such as a class of rectangles with constant aspect ratio. Note that the random
variables M and N have a geometric distribution. If pn and pe are the probabili-
ties of success along north and east, then the probability of producing a m1×n1
rectangle by the self assembly is P [M = m1, N = n1] = (pn)m1(pe)n1 . This will
remain the same even if the aspect ratio is a constant (i.e. m/n = α/β), since
both the random variables are assumed to be independent in their technique.

Let R(α, β) := {r(x, y) : x/y = α/β} denote a class of rectangles with a
constant aspect ratio. Given the dimensions of any rectangle r(nα, nβ) ∈ R(α, β)
our aim in this section is to show that we can self assemble r(n′α, n′β) ∈ R(α, β)
such that n′ and n are very close with high probability. The key idea behind our
sampling technique is to sample along the staircase in contrast to the existing

108 V. Kundeti and S. Rajasekaran

t′β−1 t′βt′3 t′4
0

a1

0

bβ−1 0

s0

t1 t2 t3 t4 t5

a1Π a1 a2 a2 a3 a3 a4

tα

0 0 0 0

a4 a5

0

0 0 0 0 0

b1

0

aα−1 0

t′1 t′2

b2 b3

b4b3

b1

b2

b4

b5

0

0 Π

Ψ

0 0 0 0 0 0 0 00 0 0 0

bβ−1

bβ−2 bβ−1

Ψ

0 0 0

f0s1 e0

Fig. 3. General tileset for staircase sampling to self assemble a rectangle of aspect ratio
α/β

techniques that sample along a straight line. We now show how to construct the
tileset for staircase sampling.

4.1 Discussion on the Tileset for Staircase Sampling

We introduce α + β − 1 unique tiles corresponding to the aspect ratio α/β of the
rectangle we would wish to self assemble. Please see Figure 3 to follow this discus-
sion. All the symbols in Figure 3 Π, Ψ , a1, a2 . . . aα−1 and b1, b2 . . . bβ−1 have a glue
strength of 2. The tiles which do not carry any symbol along sides are assumed to
have a dummy symbol ω which has a glue strength of 1 (i.e. G(ω, ω) = 2). With
this definition of glue strength function G, the tiles t1, t2 . . . tα can deterministi-
cally self assemble into a horizontal line of length α ending with tile tα. Notice that
tile tα has a symbol b1 on the top. Since the symbol b1 has a glue strength of 2 tiles
t′1, t

′
2 . . . t′β−2 deterministically self assemble into a vertical line of height β−2. Till

this point the self assembly process is deterministic. However after the tile t′β−2
gets attached into the vertical line, we now have two tiles (t′β−1 and e0)which can
get attached on top of tile t′β−2. In the first case if the tile t′β−1 gets attached on
top of tile t′β−2 then the self assembly can progress further. This is because the tile
t′β−1 has a symbol Ψ on top which has a bond energy of 2. However in the second
case if the tile e0 gets attached on top of tile t′β−2 the self assembly process will not
grow further vertically since the tile e0 has no symbol on the top. The filler tile f0
gets assembled into places which can provide a glue strength of 2 and completes
the rectangle.

To further illustrate the idea consider the tileset shown in Figure 4 to self
assemble a rectangle with aspect ratio 4/3 (α = 4, β = 3). Figure 5 shows the

Randomized Self Assembly 109

0

a1

0

0

0

0 Π 0 0 0

f0s1 e0s0

Ψ b2

0

0

a1 a2

0

0

a3a2

0

0

0

b1

b2

0
b2

0 0

Ψ

b1

0

a3 0Π a1

Fig. 4. Tile set for self assembling a rectangle with aspect ratio 4/3

actual assembly process. Notice that the tiles t′2 and e0 play a key role in either
increasing the width (and height correspondingly) or stopping further growth in
the dimension of the rectangle. In general we attach a probability of success (p)
and failure (1 − p) to the tiles t′β−1 and e0, respectively. We state the following
Theorem 4 relevant to the discussion in this section.

Theorem 4. Given any three integers α, β, n > 1 the staircase sampling tech-
nique can self assemble a rectangle with an expected width and height of nα and
nβ respectively.

4.2 Generalization of Staircase Sampling with Multiple Variables

We now apply the multi geometric distribution technique introduced in Sec-
tion 3 to staircase sampling to derive high probability bounds on the dimen-
sions of the terminal self assembled rectangle. We generalize the tileset for
staircase sampling in Figure 3 by introducing an extra subscript for all the
symbols and tiles. If we choose to have k geometric distributions, then for
1 ≤ i ≤ k we would have symbols Φi, Ψi,ai1, ai2 . . . aiα, bi1, bi2 . . . biβ−1 on the
tiles ti1, ti2 . . . tiα, t′i1, t

′
i2 . . . t′iβ−1 similar to the construction in Figure 3. Also

notice that previously we used the tile e0 (in Figure 3) to stop growth in the
dimensions of the rectangle. However in this case we need to introduce k such
tiles (e0, e1 . . . ek−1) with an objective of moving from distribution i to distri-
bution i + 1. This is similar to the role played by the tiles A′

i in Section 3.
To accomplish this task we need to modify tiles ej−1, 1 ≤ j ≤ k − 1 to carry
a symbol of Πj along their right side. Finally we introduce random variables
Xi, 1 ≤ i ≤ k to indicate the number of tiles of type t′iβ−1 during the ith stage
of the multi geometric sampling. Let X :=

∑k
i=1 Xi. Clearly if X = t then the

final self assembled rectangle will have dimensions tα × tβ. With this we state
the following Theorem 5.

110 V. Kundeti and S. Rajasekaran

tiles
fill this
region

bule

tiles
fill this
region

bule

a1 a1 a2 a2 a3

b1
a3

b1

b2

Ψ

b2

Ψ
Π a1Π a1 a2 a2 a3

b1
a3

b1

b2

b2

Fig. 5. Self assembly of the rectangle with the tileset in Figure 4

Theorem 5. For any given ε ∈ (0, 1), and integers n, α, β > 1, the multi geo-
metric sampling combined with stair case sampling can self assemble a n′α×n′β
rectangle such that |n′ − n| < εn with a probability Ω(1 − 1/nq) for any q ≤
nε2 log(e/2)

3 log(n) . �

A direct corollary when α = β self assembles a square of dimension n′ such that
|n′−n| < εn with high probability. This is equivalent to what Kao, et al. derived
in [2] without the need of any supertile that encodes a binary string. Thus we can
conclude that combining multiple geometric variables with stair case sampling
lets us derive high probability bounds for self assembling rectangles with constant
aspect ratio.

5 Conclusion

In this paper we have presented new constructions for probabilistic self assembly
and derived high probability bounds on the dimensions of the terminal super-
tile. We conclude that probabilistic self assembly with a sum of random variables
following geometric distribution is helpful in simpler and cleaner self assembly
constructions in contrast to the existing techniques presented in Kao et al. [2]. We
also have introduced a new idea of staircase sampling which is useful in assem-
bling rectangles with constant aspect ratio. These shapes cannot be assembled
with the existing probabilistic self assembly techniques.

6 Future Work

Probabilistic self assembly is an exciting area of further research, especially be-
cause of the fact that we need only Θ(1) tiles to self assemble shapes which

Randomized Self Assembly 111

are close to the target shapes. One future research will include the investigation
of how the current techniques to self assemble squares and rectangles can be
combined to self assemble Manhattan shapes within the Θ(1) tile complexity.
Another direction of research would be to explore probabilistic constructions of
non-rectangular regular polygons.

Acknowledgements. This work has been supported in part by the following
grants: NSF 0829916 and NIH 1R01GM079689-01A1.

References

1. Becker, F., Rapaport, I., Rémila, É.: Self-assemblying classes of shapes with a
minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N.
(eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)

2. Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer,
Heidelberg (2008)

3. Doty, D.: Randomized self-assembly for exact shapes. In: Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 85–94.
IEEE, Los Alamitos (2009)

4. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna
sierpinski triangles. PLoS Biology 2(12) (2004)

5. Winfree, E.: Algorithmic self-assembly of dna. dissertation (ph.d.), california insti-
tute of technology (1998),
http://resolver.caltech.edu/CaltechETD:etd-05192003-110022

6. Wang, H.: An unsolvable problem on dominoes. Technical Report BL-30 (1962)
7. Rothemund, P.W.K., Winfree, E.: Program-size complexity of self-assembled

squares. In: ACM Symposium on Theory of Computation (STOC), pp. 459–468
(2000)

8. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for
self-assembled squares. In: Annual ACM Symposium on Theory of Computing, pp.
740–748 (2001)

9. Aggarwal, G., Cheng, Q.I., Goldwasser, M.H., Kao, M., De Espanes, P.M.,
Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Jour-
nal on Computing 34(6), 1493–1515 (2005)

10. Kao, M., Schweller, R.: Reducing tile complexity for self-assembly through temper-
ature programming. In: Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 571–580 (2006)

http://resolver.caltech.edu/CaltechETD:etd-05192003-110022

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 112–122, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Design of a Functional Nanomaterial with Recognition
Ability for Constructing Light-Driven Nanodevices

Xingguo Liang1,*, Toshio Mochizuki1, Taiga Fujii1, Hiromu Kashida1,
and Hiroyuki Asanuma1,2,*

1 Department of Molecular Design and Engineering, Graduate School of Engineering,
Nagoya University, Chikusa, Nagoya 464-8603, Japan

2 Core Research for Evolution Science and Technology (CREST), Japan Science and
Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

{liang,asanuma}@mol.nagoya-u.ac.jp

Abstract. An artificial macromolecule (foldamer) was designed as a novel
nanomaterial with the backbone of phosphodiester and the side chain of func-
tional molecules and nucleobases. The functional molecules tethered on D-
threoninol and the nucleosides on D-ribose can be lined up with any sequence
and ratio by using standard phosphoramidite chemistry. The nucleobases that
form Watson-Crick base pairs provide the sequence recognition which is re-
quired for constructing complicate nanostructures. The multiple functional
molecules give applicable and advanced functions such as photoresponsiveness
when azobenzenes were used. Unexpectedly, a stable double helix was formed
even in the case that the ratio of azobenzene molecules and base pairs was as
high as 2:1. More interestingly, this artificial duplex showed high sequence
specificity: the stability decreased greatly when a mismatched base pair was
present. Furthermore, the formation and dissociation of the constructed
artificial duplex were reversibly and completely modulated with light irradia-
tion. By using this new nanomaterial, a variety of functional nanostructures and
nanodevices are promising to be designed.

Keywords: nanodevice, nucleobase, photoregulation, hybridization.

1 Introduction

In recent years, numerous defined nanoconstructs and nanodevices have been con-
structed by self-assembly using nucleic acids, protein, or artificial macromolecules
including foldamers [1-5]. The constructed nanostructures have great potential to be
used in a large variety of nanotechnology fields. However, there are few designs to
give applicable functions because the structure is hardly regulated once it is formed.
Another reason is that functional molecules cannot be easily introduced to the desired
position of nanodevices as will. On the other hand, due to the development of organic
chemistry, numerous excellent molecular-level structures have been constructed that

* Corresponding authors.

 Design of a Functional Nanomaterial with Recognition Ability 113

can be switched, rotated, and directionally driven in response to stimuli [6]. However,
these functions are also difficult to be designed to work for us because the nanode-
vices are individually designed and lack the diversity required for specific molecular
recognition. In addition, most of these nanomachines are operated in organic solvents
but not in water for biological applications [6]. A combination of high functionality
and delicate structure is highly required for future applications such as building
intelligent nano robotics [7].

DNA has been considered to be the most promising molecules for building 2D and
3D nanostructures such as DNA tile and DNA box [8-12]. In addition, a variety of
DNA nanomachines were built that can perform mechanical functions such as scis-
sion, directional motion and rolling powered by molecular fuels [13-17]. All these
interesting nanodevices can be designed directly using a computer program because
DNA has the simple recognition rule as forming only stable A-T and G-C Watson-
Crick base pair. The presence of one or more mismatched base pairs decreases greatly
the stability of corresponding duplex. However, their practical applications remain a
challenge, especially for biological purposes. On the other hand, functional molecules
such as fluorophores, dyes, ligands, and photoresponsive molecules have been intro-
duced into DNA for attaining more functionality for biological applications [18-21].
If these functional molecules can be introduced into DNA nanostructures or used
mainly as the nanomaterials themselves, their applications should be widely extended.

Recently multiple azobenzene residues have been introduced to DNA for either
photoregulation of biological functions or construction of light-driven nanodevices
[22-25]. Several basic motifs such as homo-cluster, hetero-cluster, and interstrand-
wedged duplex have been constructed [26-30]. However, the number of azobenzenes
introduced was never more than that of base pairs. In this study, we designed a nano-
material involving much more azobenzenes than base pairs. Rather than as a modified
DNA, the novel molecule prefers to be looked as an artificial macromolecule with
side chain containing azobenzenes as photoresponsive molecules and nucleobases
providing recognition ability. It can also be classified as one of the foldamers defined
loosely as “polymers with a strong tendency to adopt a specific compact conforma-
tion” [5]. The synthesized foldamer can form a stable duplex with high recognition
ability and excellent photoresponsiveness so that the construction of highly efficient
light-driven nanodevice becomes possible.

2 Results and Discussion

Formation of the artificial duplex involving azobenzene pairs and base pairs
from two complementary foldamer chains. As illustrated in Fig. 1a, azobenzene
(Azo), one of the photoresponsive molecules that can carry out reversible trans-cis
photoisomerization, was used as a model functional molecule to synthesize a new
foldamer. Each of the azobenzene was attached to a D-threoninol linker for being
inserted into the foldamer chain with standard phosphoramidite chemistry. Accord-
ingly, as shown in Fig. 1a, the azobenzene residue (X) and the nucleotide (A, T, G, or
C) could be polymerized in a sequence-controlled way. Some of the sequences used
in this study were shown in Fig. 1b. In foldamer A7X and B7X, for example, seven
azobenzene residues (Xs) and 10 nucleotides were involved. When a duplex formed
between A7X and B7X, an artificial duplex involving 14 azobenzenes and 10 base

114 X.G. Liang et al.

pairs should be formed as shown in Fig. 1a. As an azobenzene molecule has the
similar size as a base pair, each two azobenzene moieties from complementary strands
will stack and overlap with each other to form an azobenzene-azobenzene (Azo-Azo)
pair. In the middle part of A7X/B7X duplex, each base pair is sandwiched between
four azobenzenes or two Azo-Azo pairs. Obviously, the pairing of Azo to Azo is
different from the base-pairing through hydrogen bond. More interestingly, when the
azobenzene moieties are isomerized to the non-planar cis form, the duplex is expected
to be completely dissociated due to the serious steric hindrance of so many
cis-azobenzenes so that the complete photoregulation becomes possible.

Fig. 1. Schematic illustration of the artificial duplex with Azo-Azo pairing motif formed
between two foldamer chains (a) and some sequences of the foldamers used in this study (b).
The complete photoswiching of the duplex formation becomes possible due to the presence of
so many azobenzene moieties that are even more than base pairs.

The stability of these newly constructed duplexes was evaluated by melting tem-
perature (Tm) measurement. The Tm curves of duplexes A7X/B7X, A7X/B7X-C (con-
taining an A-C mismatched base pair), and A7X/B4X as well as single-stranded B7X
are shown in Fig. 2a. A typical sigmoid Tm curve was obtained for A7X/B7X, and the
Tm value was as high as 55.9oC, which is 25.4oC higher than that of the natural duplex
A-n/B-n with the same nucleotide sequence (Fig. 2b). Here, the Tm for A7X/B7X was
measured at 375 nm, at which the spectra of introduced azobenzenes changed greatly
with duplex formation. Similar results were also obtained when Tm was measured at

 Design of a Functional Nanomaterial with Recognition Ability 115

295 nm and 335 nm (data not shown). When B4X involving only 4 azobenzenes was
used instead of B7X, the Tm of A7X/B4X decreased greatly to 37.4 oC, which was
even lower than that of A7X/B7X-C. However, the Tm of A3X/B4X (designated as
the interstrand-wedged motif) was as high as 55.0oC, indicating that the symmetry is
important for forming stable duplex. For the similar reason, A7X could hardly form
duplex with native DNA B-n and Tm of A7X/B-n was estimated to be below 10oC
(Fig. 2b). As a result, A7X recognized B7X but not B4X and B-n, while B4X recog-
nized A3X but not A7X, although they have the same nucleotide sequences. For the
duplex A7X/B7X-C, in which an A-C mismatch was introduced, the Tm decreased by
13.4 oC to 42.5oC, demonstrating that the newly constructed duplex has high recogni-
tion ability, which is comparable to the native DNA duplex. In addition, no slowness
of the hybridization dynamics was observed during Tm measurement. Thus, a novel
artificial duplex involving Azo-Azo pairs and base pairs with both high stability and
specificity was constructed.

Fig. 2. (a) Melting curves of duplex A7X/B7X (solid line), A7X/B7X-C (dotted line), and
A7X/B4X (dashed line). The result of single-stranded B7X is also shown. The absorbance
change with temperatures was recorded at 375 nm. The Tm values are shown in (b). Conditions:
2.0 μM oligo, pH7.0 (10 mM Na2HPO4), 100 mM NaCl.

Usually, the Tm of a native DNA duplex is measured by recording the hypochromic
effect due to duplex formation at 260 nm that is the maximum absorption of nucleo-
bases. Here, the Tm was measured by monitoring the absorbance change at 375 nm
(where azobenzenes but not nucleobases have absorption) with temperatures [27-30].
As show in Fig. 3a, the absorbance at 260 nm changed little with temperatures for
A7X/B7X, probably because the hypochromic effect of duplex formation was coun-
teracted by the increase of absorbance caused by the spectra shift of azobenzene at
230-280 nm. However, both of the absorbance and the spectrum shape of π-π* transi-
tion of azobenzene changed greatly with temperatures. These changes are similar with
those reported previously, which were caused by forming one Azo-Azo pair (H-type
dimer) within a DNA duplex [28]. Thus, the spectra changed here should come from
the hybridization of A7X with B7X. As shown in Fig. 3b, when only one strand such
as B7X was present, the intramolecular interaction only caused little red shift of the
spectrum.

116 X.G. Liang et al.

Structure analysis of the duplex involving Azo-Azo pairing motif. As reported
previously, when an Azo-Azo pair forms within a DNA duplex (5′-
GGTATCXGCAATC-3′/3′-CCATAGXCGTTAG-5′), the two azobenzene moieties
stack with each other to form an H-aggregation [28]. Here, the similar spectrum
change was observed, indicating that Azo-Azo pairs formed to give H-like aggrega-
tions (Fig. 3a). For structural analysis, the circular dichroism (CD) of duplex
A7X/B7X was also measured (Fig. 3c). At temperatures below its Tm, a strong and
symmetric positive-negative Cotton effect was induced at around 335 nm, which is
the λmax of azobenzene (π-π* transition). On the other hand, when the duplex dissoci-
ated at 80oC, only a weak negative CD due to the single-stranded A7X and B7X was
observed. The similar negative CD spectra were also obtained when only single-
stranded B7X was present (Fig 3d). Even at 0oC and 10 μM of B7X was used in the
absence of A7X, only the strength became stronger and the shape did not change,
indicating that no intermolecular interaction occurred (data not shown). At 260 nm,
very weak or only negative Cotton effect was observed, probably because the CD
signals belonging to azobenzene at 220-280 nm are negative. Most of the base pairs
are separated by two azobenzene moieties might be another reason for the weak Cot-
ton effect at 260 nm. All the results showed that a right-handed double helix formed
between A7X and B7X.

Fig. 3. UV/Vis (a and b) and CD (c and d) spectra of A7X/B7X (a and c) and B7X (b and d) at
80oC (dotted lines) and 20oC (solid lines). The CD spectrum at 0oC after UV light irradiation
(dashed line) is also shown in (c). Conditions: 2.0 μM oligo, pH7.0 (10 mM Na2HPO4), 100
mM NaCl.

 Design of a Functional Nanomaterial with Recognition Ability 117

The molecular modeling structure of A7X/B7X is shown in Fig. 4c. It can be
clearly seen that a regular right-handed duplex with seven Azo-Azo pairs and 10 base
pairs forms. All the azobenzene moieties protrude slightly in the major groove, which
is much wider than that of natural B-form DNA duplex. Each Azo-Azo pair consists
of two azobenzene moieties stacking well with each other. Each base pair also stacks
well with two adjacent azobenzene moieties. For the obtained structure, it can be
estimated that one pitch of the duplex consists of about 7 base pairs and 7 Azo-Azo
pairs (or 14 azobenzene moieties). It can also be seen that the two azobenzene moie-
ties are almost antiparallel to each other, which is consistent with the NMR structure
obtained when an Azo-Methyl Red pair is introduced into a 6-bp-long DNA duplex
[28]. However, two adjacent Azo-Azo pairs which are separated by a base pair wind
forward in a right-handed way. The strong positive-negative Cotton effect in the CD
spectrum may be a total effect of the winding. Interestingly when only one Azo-Azo
pair was present, the CD showed a weak negative-positive Cotton effect, indicating
that the two azobenzene moieties stack together with a slight left-hand winding (data
not shown). As compared with the native DNA duplex, the phosphodiester backbone
in A7X/B7X is lengthened to some extent, and the distance between each two phos-
phates becomes longer. For comparison, the modeling structure of interstrand-wedged
motif is also shown [29,30], which results in a similar CD spectrum as duplex
A7X/B7X (described later in detail).

Fig. 4. Molecular modeling structures of duplex A-n/B-n (a), A3X/B4X (b), and A7X/B7X (c).
The azobenzene moieities are highlighted in a space-filling (CPK) model.

118 X.G. Liang et al.

Photoreponsiveness of duplex A7X/B7X. Here, the azobenzenzene that has good
photoresponsiveness was used as a model functional molecule to build the foldamer.
As reported previously, the DNA hybridization has been reversibly photoregulated by
introducing multiple azobenzenes into DNA [22, 29, 30]. However, the efficiency of
cis-to-trans photoisomerization became much lower at a temperature below 37oC,
when a stable duplex was formed. Accordingly, more introduced azobenzenes make
the complete ON-OFF photoregulation easier. In the case of A7X/B7X, for example,
5 azobenzenes should be in cis-form and enough to cause complete dissociation of the
duplex even when 30% cis-to-trans photoisomerization occurs. Interestingly, as
shown in Fig. 5, the photoisomerization did not decrease greatly as compared with the
single-stranded state. Even when the photoirradiation was carried out at 25oC, about
40% of all the azobenzenes were isomerized to cis form. At 37oC, the similar results
of photoisomerization were obtained for duplex A7X/7BX and single-stranded B7X,
demonstrating that the duplex was almost completely dissociated at 37oC (Fig. 5). As
shown in Fig. 3c, very weak CD was obtained for cis-A7X/B7X even at 0oC. From
the Tm curve shown in Fig. 2a, almost all the duplexes formed at 37oC for trans form.
The Tm of cis form was very low and could not be measured by monitoring the ab-
sorbance change with temperature (data not shown). As a result, the complete ON-
OFF photoregulation of artificial duplex was attained.

Fig. 5. cis-to-trans photoisomerization of azobenzenes in duplex A7X/B7X (a) and single-
stranded B7X (b) at various temperatures. The photoregulation was carried out at 25, 37, 50,
and 60oC, respectively. Spectra are measured at 25oC.

Comparison of Azo-Azo pairing duplex with interstrand-wedged duplex.
Recently we have reported that an interstrand-wedged duplex such as A3X/B4X was
constructed [29,30]. As shown in Fig. 4b, azobenzene moieties and base pairs are
lined up alternatively, and the ratio of azobenzene and base pairs is 1:1. In this inter-
strand-wedged duplex, azobenzenes only stack with base pair but not another azoben-
zene. As shown in Fig. 6a, an obvious red shift with the duplex formation was
observed due to the stacking of azobenzene with base pairs. Certainly, the spectra did
not change in the way of forming H-aggregation (See Fig. 2a for comparison).

Although the two motifs have quite different structures, their CD spectra are very
similar (Fig. 6b). The molar CD of duplex A7X/B7X is almost doubled as compared
with that of A3X/A4X, because A7X/B7X has 14 azobenzene moieties but A3X/A4X
only has 7 ones. The two motifs also have similar sequence specificity for hybridization.

 Design of a Functional Nanomaterial with Recognition Ability 119

Fig. 7 shows the Tms of all the 16 combinations including four duplexes full match and
12 mismatched ones. Most of mismatched duplexes have a Tm more than 10oC lower
than that of full match ones. In addition, both motifs showed high photoresponsiveness
which makes possible the complete ON-OFF photoregulation of the duplex formation.
These results demonstrated again that azobenzene moiety has an excellent compatibility
with the base pair, and so does the D-threoninol with D-ribose in the phosphodiester
backbone. Both motifs showed the good properties as nanomaterials for constructing
nanostructures and nanodevices.

Fig. 6. UV/Vis (a) and CD (b) spectra of A3X/B4X (solid line) with interstrand-wedged motif.
CD spectra are measured at 20oC. For comparison, the CD spectrum for duplex A7X/B7X is
shown (dashed line). Conditions: 2.0 μM oligo, pH7.0 (10 mM Na2HPO4), 100 mM NaCl.

Fig. 7. Tm of duplexes 5′-CGTXTAXMTXTCA-3′/3′-GCXAAXTNXAAXGT-3′ (M, N = A, C,
G or T). For example, duplex A-T indicates that M = A and N = T. Conditions: 4.0 μM oligo,
pH7.0 (10 mM Na2HPO4), 100 mM NaCl.

3 Conclusions

In conclusion, a novel nanomaterial composed of functional molecules and base pairs
was constructed. For the Azo-Azo pairing motif, a stable duplex with high specificity
formed even when the ratio of azobenzene moieties and base pairs were 2:1. The

120 X.G. Liang et al.

strong stacking effect between hydrophobic azobenzenes and that between azoben-
zene and base pair account for the high stability. On the other hand, the base pairing
provides the sequence specificity. Both the strong positive-negative Cotton effect of
CD and the modeling structure revealed that the Azo-Azo pairing motif is a regular
right-handed duplex. Furthermore, for both Azo-Azo pairing and interstrand-wedged
motif, the duplex formation can be completely switched by light irradiation.

As azobenzenes tethered on D-threoninol and nucleosides on D-ribose can be ar-
ranged with any sequence by using standard phosphoramidite chemistry, any se-
quence can be synthesized [22]. Other functional molecules with the similar size can
also be introduced with this approach so that it can be used as a general strategy for
designing artificial nanomaterials. With the combination of clustering motif and the
motifs presented here, stable duplex involving functional molecules and base pairs
with any ratio can be constructed. Consequently, a variety of functional nanostruc-
tures and nanodevices are promising to be built. The high hybridization specificity of
these new motifs can be used to form sticky ends as new glues for constructing nanos-
tructures. When the functional molecules are fluorophores and quenchers, for exam-
ple, a supra-molecular beacon with high sensitivity for nucleic detection may be con-
structed. Construction of these motifs with other functional molecules and the design
of functional nanostructures such as light-driven nanodevices are underway [25].

4 Experimental Section

Materials. The oligonucleotides consisting of only natural bases were supplied by
Integrated DNA Technologies, Inc. (Coralville, USA). The oligonucleotides involving
azobenzene residues were supplied by Nihon Techno Service Co., Ltd. (Tsukuba,
Japan), and purified by HPLC. Concentrations of oligonucleotides were determined
by UV-Vis spectroscopy analysis within an error margin of 10%. The molecular ex-
tinction coefficient (ε) of an azobenzene residue at 260 nm is 7.0 × 103 mol L-1 cm-1.

Measurement of Melting Temperatures. Melting curves were measured by moni-
toring the absorbance change at a certain wavelength (260, 295, 360, or 375 nm) with
temperature (1.0 °C min-1) using a JASCO model V-530 spectrometer equipped with
a programmable temperature-controller (JASCO, Tokyo, Japan) or a Shimadzu UV
spectrophotometer UV-1800 (Shimadzu, Kyoto, Japan). The melting temperature (Tm)
was determined from the maximum of the first derivative of each melting curve.

UV/Vis Spectroscopy. UV-Vis spectra of samples in a buffer containing 100 mM
NaCl and 10 mM NaH2PO4 (pH 7.0) were measured using a JASCO model V-530
spectrometer (JASCO, Tokyo, Japan). A cuvette with an optical path length of either
1 or 10 mm was used. The solved air was purged by heating the DNA solution to
90°C and maintaining it at 90°C for longer than 3 min.

CD Spectra Measurement. CD spectra (0.3 or 2.0 mL) in a phosphate buffer (100
mM NaCl, pH 7.0) were measured using a JASCO J-820 CD spectropolarimeter
equipped with a programmed temperature-controller (JASCO, Tokyo, Japan). A cu-
vette with an optical path length of either 1 or 10 mm was used.

 Design of a Functional Nanomaterial with Recognition Ability 121

Molecular Modeling. The Insight II/Discover 98.0 program package (Accelrys Soft-
ware Inc., San Diego, USA) was used for molecular modeling to obtain energy-
minimized structures by minimization of the conformation energy [29,30]. The effects
of water and counterions were simulated by a sigmoidal, distance-dependent, dielec-
tric function. The B-type duplex was used as the initial structure, and the AMBER
force field was used for calculation. Structures of azobenzene residues were built
using the attached graphical program.

Acknowledgments

This work was supported by Core Research for Evolution Science and Technology
(CREST), Japan Science and Technology Agency (JST). Partial support was provided
by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References

1. Seeman, N.C., Lukeman, P.S.: Nucleic Acid Nanostructures: Bottom-Up Control of Ge-
ometry on the Nanoscale. Rep. Prog. Phys. 68, 237–270 (2005)

2. Fujita, M., Tominaga, M., Hori, A., Therrien, B.: Coordination Assemblies from a Pd(II)-
Cornered Square Complex. Acc. Chem. Res. 38, 369–378 (2005)

3. Zheng, J.P., Birktoft, J.J., Chen, Y., Wang, T., Sha, R.J., Constantinou, P.E., Ginell, S.L.,
Mao, C.D., Seeman, N.C.: From Molecular to Macroscopic via the Rational Design of a
Self-Assembled 3D DNA Crystal. Nature 461, 74–77 (2001)

4. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable
and Autonomous Computing Machine Made of Biomolecules. Nature 414, 430–434 (2001)

5. Hecht, S., Huc, I.: Foldamers: Structure, Properties, and Applications. Wiley-VCH Verlag
GmBH & Co. KGaA, Weinheim (2007)

6. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic Molecular Motors and Mechanical Ma-
chines. Angew. Chem., Int. Ed. 46, 72–191 (2007)

7. Hamdi, M., Ferreira, A.: DNA nanorobotics. Microelectronics J. 39, 1051–1059 (2008)
8. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-Kilobase Single-Stranded DNA that Folds

into a Nanoscale Octahedron. Nature 427, 618–621 (2004)
9. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-Based Method for Ra-

tionally Assembling Nanoparticles into Macroscopic Materials. Nature 382, 607–609 (1996)
10. Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., Yan, H.: Control of Self-

Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science 323, 112–
116 (2009)

11. He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.D.: Hierarchical self-
assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008)

12. Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas,
M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal, V., Besenbacher,
F., Gothelf, K.V., Kjems, J.: Self-assembly of a nanoscale DNA box with a controllable
lid. Nature 459, 73–77 (2009)

13. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-Fuelled
Molecular Machine Made of DNA. Nature 406, 605–608 (2000)

122 X.G. Liang et al.

14. Shin, J.S., Pierce, N.A.: A Synthetic DNA Walker for Molecular Transport. J. Am. Chem.
Soc. 126, 10834–10835 (2004)

15. Seeman, N.C.: From Genes to Machines: DNA Nanomechanical Devices. Trends. Bio-
chem. Sci. 30, 119–125 (2005)

16. Beissenhirtz, M.K., Willner, I.: DNA-Based Machines. Org. Biomol. Chem. 4, 3392–3401
(2006)

17. Beyer, S., Simmel, F.C.: A Modular DNA Signal Translator for the Controlled Release of
a Protein by an Aptamer. Nucleic Acid Res. 34, 1581–1587 (2006)

18. Kutyavin, I.V., Afonina, I.A., Mills, A., Gorn, V.V., Lukhtanov, E.A., Belousov, E.S.,
Singer, M.J., Walburger, D.K., Lokhov, S.G., Gall, A.A., Dempcy, R., Reed, M.W.,
Meyer, R.B., Hedgpeth, J.: 3’-minor groove binder-DNA probes increase sequence speci-
ficity at PCR extension temperatures. Nucleic Acids Res. 28, 655–661 (2000)

19. Wang, K., Tang, Z., Yang, C.J., Kim, Y., Fang, X., Li, W., Wu, Y., Medley, C.D., Cao, Z.,
Li, J., Colon, P., Lin, H., Tan, W.: Molecular engineering of DNA: molecular beacons.
Angew. Chem. Int. Ed. 47, 2–17 (2008)

20. Kelley, S.O., Boon, E.M., Barton, J.K., Jackson, N.M., Hill, M.G.: Single-base mismatch
detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837
(2000)

21. Mayer, G., Heckel, A.: Biologically active molecules with a “light switch”. Angew. Chem.
Int. Ed. Eng. 45, 4900–4921 (2006)

22. Asanuma, H., Liang, X.G., Nishioka, H., Matsunaga, D., Liu, M.Z., Komiyama, M.: Syn-
thesis of Azobenzene-Tethered DNA for Reversible Photo-Regulation of DNA Functions:
Hybridization and Transcription. Nat. Protocols 2, 203–212 (2007)

23. Liang, X.G., Nishioka, H., Takenaka, N., Asanuma, H.: A DNA Nanomachine Powered by
Light Irradiation. ChemBioChem. 9, 702–705 (2008)

24. Liang, X.G., Nishioka, H., Takenaka, N., Asanuma, H.: Construction of Photon-Fueled
DNA Nanomachines by Tethering Azobenzenes as Engines. In: Goel, A., Simmel, F.C.,
Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 21–32. Springer, Heidelberg (2009)

25. Zhou, M.G., Liang, X.G., Mochizuki, T., Asanuma, H.: A light-driven DNA nanomachine
for efficiently photoswitching RNA digestion. Angew. Chem. Int. Ed. 49, 2167–2170 (2010)

26. Asanuma, H., Shirasuka, K., Takarada, T., Kashida, H., Komiyama, M.: DNA-Dye Conju-
gates for Controllable H* Aggregation. J. Am. Chem. Soc. 125, 2217–2223 (2003)

27. Kashida, H., Fujii, T., Asanuma, H.: Threoninol as a Scaffold of Dyes (Threoninol-
nucleotide) and Their Stable Interstrand Clustering in Duplexes. Org. Biomol. Chem. 6,
2892–2899 (2008)

28. Fujii, T., Kashida, H., Asanuma, H.: Analysis of Coherent Heteroclustering of Different
Dyes by Use of Threoninol-Nucleotides for Comparison with the Molecular Exciton The-
ory. Chem. Eur. J. 15, 10092–10102 (2009)

29. Liang, X.G., Mochizuki, T., Asanuma, H.: A Supra-Photoswitch Involving Sandwiched
DNA Base Pairs and Azobenzenes for Light-Driven Nanostructures and Nanodevices.
Small 5, 1761–1768 (2009)

30. Liang, X.G., Nishioka, H., Mochizuki, T., Asanuma, H.: An interstrand-wedged duplex
composed of alternating DNA base pairs and covalently attached intercalators. J. Mater.
Chem. 20, 575–581 (2010)

Efficient Turing-Universal Computation
with DNA Polymers

Lulu Qian1, David Soloveichik4, and Erik Winfree1,2,3

1 Bioengineering, California Institute of Technology,
Pasadena, CA 91125, USA
luluqian@caltech.edu

2 Computer Science
3 Computation & Neural Systems, California Institute of Technology,

Pasadena, CA 91125, USA
winfree@caltech.edu

4 Computer Science & Engineering, University of Washington,
Seattle, WA 98195, USA
dsolov@u.washington.edu

Abstract. Bennett’s proposed chemical Turing machine is one of the
most important thought experiments in the study of the thermodynam-
ics of computation. Yet the sophistication of molecular engineering re-
quired to physically construct Bennett’s hypothetical polymer substrate
and enzymes has deterred experimental implementations. Here we pro-
pose a chemical implementation of stack machines — a Turing-universal
model of computation similar to Turing machines — using DNA strand
displacement cascades as the underlying chemical primitive. More specif-
ically, the mechanism described herein is the addition and removal of
monomers from the end of a DNA polymer, controlled by strand displace-
ment logic. We capture the motivating feature of Bennett’s scheme: that
physical reversibility corresponds to logically reversible computation, and
arbitrarily little energy per computation step is required. Further, as a
method of embedding logic control into chemical and biological systems,
polymer-based chemical computation is significantly more efficient than
geometry-free chemical reaction networks.

1 Introduction

With the birth of molecular biology 70 years ago came the realization that the
processes within biological cells are carried out by molecular machines, and that
the most central processes involved the manipulation of information-bearing
polymers. Roughly 30 years ago, Charles Bennett took that vision one step
further by recognizing that arbitrarily complex information processing could
be carried out, in principle, by molecular machines of no greater complexity
than those already observed in nature [5,6]. Based on the intrinsic reversibil-
ity of chemical reactions, Bennett used this insight to give a thermodynamic
argument that there is no fundamental energetic cost to computation — only

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 123–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

124 L. Qian, D. Soloveichik, and E. Winfree

a cost to erase data. This conclusion derives from four principles: (1) as Lan-
dauer observed [15], making a logically irreversible decision entails an energetic
expenditure of kT ln 2, and thus there is an unavoidable cost to irreversible log-
ical operations; (2) being logically reversible is not enough to ensure low-energy
computation, since it is possible to implement reversible logic using irreversible
mechanisms; (3) a physically reversible system with an essentially linear state
space can be biased ever-so-slightly forward, in which case progress is made
despite involving a Brownian random walk, with the mean speed being linear
in the (arbitrarily near zero) energy expended per step; and (4) any logically
irreversible computation can be recast with a minimal number of extra compu-
tational steps [5,7] as a logically reversible computation that requires irreversible
operations only when preparing input and output during repeated use. It’s in-
triguing to ask whether Landauer’s and Bennett’s principles have any bearing
on the remarkable efficiency of living things, but cellular processes typically use
several times more energy than needed for logical irreversibility. On the other
hand, modern electrical computers expend many orders of magnitude more en-
ergy than required by logical irreversibility, presenting the challenge of building
computers that have the efficiency Bennett argued is possible.

Direct implementation of Bennett’s hypothetical chemical Turing machine
has been hampered by our inability, as yet, to engineer molecular machinery to
spec. Len Adleman’s laboratory demonstration of a DNA computing paradigm
for solving NP-complete problems [1] ignited renewed interest in the molecu-
lar implementation of Turing machines. Early theoretical proposals made use
of existing enzymes but required a series of laboratory manipulations to step
the molecular Turing machines through their operational cycle [20,2,23], while
later theoretical proposals suggested how autonomous molecular Turing ma-
chines could be built but made use of hypothetical enzymes or DNA nanostruc-
tures [14,4,11,28,12]. Experimental demonstrations of autonomous biomolecular
computers implemented weaker models of computation such as digital circuits or
finite state machines [22,3]. Two-dimensional molecular self-assembly is Turing
universal [26], implementable with DNA tiles [21], and can be physically and
logically reversible [27], but it has the distinct disadvantage of storing the entire
history of its computation within a supramolecular complex — it’s bulky.

Recent work has pointed to an alternative to geometrical organization (in
polymers or crystals) as the basis for Turing-universal molecular computation:
abstract chemical reaction networks (CRNs) with a finite number of species in
a well-mixed solution are structurally simple enough (essentially geometry-free)
that in principle arbitrary networks can be implemented with DNA [25], yet they
are (probabilistically) Turing universal [24]. This Turing universal computation
using geometry-free chemical reaction networks is theoretically accurate and
reasonably fast (only a polynomial slowdown), but requires molecular counts
(and therefore volumes) that grow exponentially with the amount of memory
used [16,24]. In contrast, reaction networks using heterogeneous polymers — the
simplest kind of geometrical organization, as in Bennett’s vision — can store all
information as strings within a single polymer, therefore requiring volume that

Efficient Turing-Universal Computation with DNA Polymers 125

grows only linearly with the memory usage [6,14]. Further, geometry-free mod-
els are not energy efficient, requiring much more than Landauer’s energy limit
because the computation must be driven irreversibly forward to avoid error.
Here, we combine the advances in geometry-free CRN implementation [25] with
a simple DNA polymer reaction primitive to obtain a plausible DNA implemen-
tation of time- and space- and energy-efficient Turing-universal computation.
Our construction requires a small fixed number of polymers, thereby having the
same efficient linear memory/volume tradeoff as Bennett’s hypothetical scheme;
it also has a time complexity nearly as good (only a quadratic slowdown). As in
Bennett’s scheme, the time complexity scales linearly with energy use (for small
energies). Both constructions can perform irreversible computation using the
minimum achievable amount of energy per step, kT ln m, where m is the mean
number of immediate predecessors to the logical states of the Turing machine
simulation. (This energy bound is 0 for reversible Turing machines).

Our constructions will consist of two parts. First, a geometry-free chemical re-
action network, and secondly, reactions involved in polymer modification. While
the polymer modification reactions will perform the essential job of information
storage and retrieval, the geometry-free reaction network will perform the logic op-
erations. We describe the necessary elements for the implementation of relevant
geometry-free chemical reaction networks in section 2. In the following section 3 we
describe the polymer reactions.Based on these two DNA implementation schemes,
section 4 shows how they can be used to efficiently simulate stack machines. Fi-
nally, in section 5 we show how Bennett’s logically reversible Turing machines can
be implemented with physically reversible DNA reactions. We conclude by evalu-
ating our contributions and pointing out room for further improvement.

2 Irreversible and Reversible Chemical Reaction
Networks

In this section we discuss the components necessary for the implementation of
the geometry-free chemical reaction network part of our constructions.

Recent work has proposed a DNA implementation of arbitrary (geometry-free)
chemical reaction networks [25], with which we assume the reader is familiar. (Even
so, the construction given here is self-contained.) However, thermodynamic re-
versibility was not considered. Indeed, reversible reactions would simply corre-
spond to two separate forward and reverse reactions, with both reactions having
to be independently driven irreversibly by chemical potential energy provided by
DNA fuels. This is wasteful for the consumption of both energy and fuel reagents.
The construction we develop in this section is entirely physically reversible in the
sense that firing a sequence of forward reactions and then the reverse sequence
of the corresponding reverse reactions brings the chemical system into the same
exact physical state as it was in the beginning, including recovery of fuel reagents
and any energy used.

The major challenge in adapting the scheme of ref. [25] to implement reversible
chemical reactions in a physically reversible manner, is that the exact DNA strand
representing a particular signal species is a function of not just the signal, but also

126 L. Qian, D. Soloveichik, and E. Winfree

-A T
+A

-B T

+B

waste

X

Y

A

B

F1

F2

F3

waste

F4

F5

F6

T +Y
-Y

I

-B T

+X T

+Y T

-A T

I T

I +X T +Y T
+Y* +X* T* T* T* I* -B* T* -A* T*

-A T
+A

-B T
+B

I1

I +Y T
+Y* +X* T* T* T* I* -B* T* -A* T*

-A T
+A

-B T
+B

T +X
-X

I2

I
+Y* +X* T* T* T* I* -B* T* -A* T*

-A T
+A

-B T
+B

T +Y
-Y

T +X
-X

I3

I
+Y* +X* T* T* T* I* -B* T* -A* T*

-B T
+B

T +X
-X

-A T T +Y
-Y

+Y* +X* T* T* T* I* -B* T* -A* T*

T +X
-X

T +Y
-Y

-A T -B T I T

I4

I
+Y* +X* T* T* T* I* -B* T* -A* T*

T +X
-X

T +Y
-Y

-B T -A T

T

-X
+X

Fig. 1. The implementation of the formal bimolecular reaction X + Y →A + B using
history-free signal species X, Y, A,B. Each strand displacement reaction is shown, with
arrowed thin black lines connected by diagonal rectangles indicating reactants, products
and reversibility. F1 through F6 are fuel species mediating the formal reaction, and are
present in high concentration. F1 is unique to this reaction, while F2 through F6 may
be shared with other reactions. I1 through I4 are intermediates of the formal reaction
and they are all unique to this reaction. Domains +X, −X, +Y , −Y , +A, −A, +B, −B
are specific to formal species X, Y, A, B respectively, while domain I is used for the
irreversible step in all reactions, and the short toehold domain T is used universally
wherever a toehold is needed. The asterisk indicates Watson-Crick complementary
domains, e.g. +Y ∗ is complementary to +Y .

of the formal reaction that produced it. Specifically, all signal strands contain a
“history” domain that holds the strand in an inactive form before release from a
DNA fuel complex. So even if we were to make every strand displacement step re-
versible, the reverse reaction of X →Y would only be able to uptake signal species
Y that have the correct history domains for this reaction, rather than the entire
population of Y which may have been generated by other reactions.

In order to solve this problem, we develop a “history-free” implementation
of arbitrary chemical reaction networks. (Cardelli has proposed an elegant and
even further reduced scheme [10] that is also history-free, but it appears unsuit-
able for our polymer reaction construction.) We describe an irreversible scheme,

Efficient Turing-Universal Computation with DNA Polymers 127

that with slight modifications can become reversible. In addition to making the
reversible scheme straightforward, the history-free signal strand motif simplifies
the correspondence between the abstract CRN and the DNA implementation:
each CRN species now corresponds to exactly one DNA species.

Like ref. [9], but unlike ref. [25], we use stochastic semantics in this paper
where reactions manipulate integer molecular counts of the reacting species,
rather than real-valued concentrations. The applicable kinetic and thermody-
namic laws are widely known from the consideration of small-scale chemical
systems. Unlike the quantitative kinetics requirements of ref. [25], in the con-
text of this paper a successful implementation of an irreversible reaction such as
X + Y →A + B must simply be qualitatively correct by satisfying two condi-
tions: First, there must be some overall irreversible reaction pathway that first
consumes a molecule of X , a molecule of Y , and then produces a molecule of
A and a molecule of B. Second, the reaction pathway must become irreversible
at some point only after X and Y have been consumed. If the pathway were to
become irreversible before Y is consumed, then in the absence of Y , X would
still be used up. An implementation of a reversible reaction X + Y �A + B
must be a reversible reaction pathway that first consumes a molecule of X , a
molecule of Y , and then produces a molecule of A and a molecule of B. While we
do not explicitly address the question of quantitatively correct reaction kinet-
ics, our constructions respect the usual scaling laws for kinetics of unimolecular,
bimolecular, and higher-order reactions; similar techniques as in ref. [25] could
applied to these constructions.

Fig. 1 shows the history-free implementation of the irreversible reaction
X + Y →A + B, and Fig. 2 shows the corresponding implementation of the re-
versible reaction X + Y � A + B.

In Fig. 1, fuel DNA species F1, F2, F3, F4, F5 and F6 are initially present in
high concentration, and we assume they remain present in high concentration
throughout. Signal DNA species X , Y , A and B are present in low amounts
relative to the fuel species and indicate meaningful signals. To make the reaction
module composable, all signal DNA species are of the same form, and allow the
coupling of such formal reactions together. (They are also of the same form as
signal species in another DNA strand displacement network architecture [19],
which allows even broader couplings.) All signal species have one short toehold
domain in the middle, one long recognition domain “−” on the 5′ end and another
long recognition domain “+” on the 3′ end. The bottom strand of fuel F1 has
five long recognition domains connected by five short toehold domains. Initially,
the left-most toehold domain is single-stranded and is thus available for binding,
and the other four toeholds are double-stranded and thus sequestered.

Signal X first binds to fuel F1 by the exposed toehold and branch migration
occurs through domain +X . The top strand F2 will fall off when it’s only held to
the bottom strand by the toehold and leave F1 as intermediate product I1. (This
is the principle of toehold exchange [29,30].) Compared to F1, the bottom strand
of I1 has its first toehold covered and the second toehold revealed. Signal Y then
binds to I1 at the second toehold, branch migrates to the 3′ end of +Y and kicks

128 L. Qian, D. Soloveichik, and E. Winfree

I3

X

Y

A

B

F2

F3

F4

F5

I1

I2

F1

F6

T +X
-X

T +Y
-Y

-A T

-B T

+Y* +X* T* T* T* -B* T* -A* T*

+X T +Y T -A T
+A

-B T
+B

+Y* +X* T* T* T* -B* T* -A* T*

+Y T -A T
+A

-B T
+B

T +X
-X

+Y* +X* T* T* T* -B* T* -A* T*

-A T
+A

-B T
+B

T +Y
-Y

T +X
-X

+Y* +X* T* T* T* -B* T* -A* T*

-B T
+B

T +X
-X

-A T T +Y
-Y

+Y* +X* T* T* T* -B* T* -A* T*

T +X
-X

T +Y
-Y

-B T -A T

-A T
+A

-B T
+B

+X T

+Y T

Fig. 2. The implementation of the formal bimolecular reaction X + Y � A + B using
history-free signal species X, Y, A,B. F1 through F6 are fuel species mediating the
formal reaction, and are present in high concentration. F1 and F6 are unique to this
reaction, while F2 through F5 may be shared with other reactions. I1 through I3 are
intermediates of the formal reaction and they are all unique to this reaction. Reaction
and domain notation is as in Fig. 1.

off the top strand F3, producing intermediate I2. The bottom strand of I2 has
its third toehold revealed and all the other toeholds covered. Now F4 binds to I2
at the third toehold, releases signal A and leaves intermediate I3. F5 binds to I3
at the fourth toehold, releases signal B and leaves intermediate I4. All the above
reactions can be reversed by F2, F3, A and B reacting with I1, I2, I3 and I4
respectively. Finally, F6 binds to I4 at the last toehold and displaces the last top
strand — which has no toehold domain by which to initiate the reverse reaction.
Because of this last irreversible step, the overall reaction is irreversible.

If there is only signal Y but not X , nothing will happen because Y cannot
directly react with any of the fuels. If there is only signal X but not Y , only
the first step can happen and the backward reaction F2 + I1 →X + F1 ensures
X is not permanently consumed. So, A and B will be produced, and X and Y
consumed, only if both X and Y were initially present.

In Fig. 2, we simply remove domain I from F1 in Fig. 1 to make the formal
reaction reversible. Therefore, the F6 of Fig. 1 becomes unnecessary and the
final product of the forward reaction becomes the new F6, which also serves as

Efficient Turing-Universal Computation with DNA Polymers 129

the first fuel of the backward reaction. Now there are only three intermediates
instead of four. Note also that increasing the concentration of F1 speeds up
the forward reaction, while increasing the concentration of F6 speeds up the
backwards reaction — so this reaction can be individually tuned to be unbiased
or biased forward or backward to any desired extent.

In considering the energy use of the reversible stack machine implementation
it is important to verify that we are not cheating when we ignore the entropic
contribution of the concentration changes of the fuels in the process of compu-
tation. Luckily, in the limit of large molecular counts of the fuel species, the
contribution of the changing partial pressures of the fuels to the energy con-
sumed in a reaction occurrence is independent of the history of the previous
reaction events, and can be considered fixed for each reaction. Therefore we can
use the fuels to provide a fixed forward bias for each reaction, or no bias if we
start with equilibrium concentrations of the fuels.

Proper functioning of both the irreversible and reversible reaction modules
involves a Brownian exploration of the system’s state space to test if the precon-
ditions for the reaction are met. Necessarily, this exploration must be reversible,
in case the preconditions aren’t met. This basic structure — reversible explo-
ration to determine whether a subsequent step is possible — is used again and
again in our constructions below. Despite the lack of determinism for individ-
ual steps, no species is incorrectly consumed or incorrectly produced — and so
long as the system is biased forward (or unbiased), any species that should be
produced will be produced eventually. In this sense, there can be no errors.

Creating new reactions between a set of signal species only requires the con-
struction of appropriate fuel species and is thus programmable by the choice of
fuel species without any alteration of the signal species themselves. Therefore, to
implement a system of reactions, the fuels for each reaction may be individually
constructed, and the union of these fuels correctly implements the full system.

We will consider stochastic dynamics for a small integral number of each signal
species (typically a single copy each) reacting in a volume V in which the concen-
trations of fuel species are maintained constant. In a perfect implementation of
a bimolecular reaction, the reaction rate should slow down exactly in proportion
to V . It is easy to see that our multistep DNA implementation should have the
same asymptotic scaling for kinetics. Consider the irreversible case. Among all
the forward strand displacement reactions, only the second step (Y displacing
F3) is a bimolecular reaction between two low concentration species (the signal
species and their reaction intermediates). The forward rate of this reaction (the
second step) will scale as 1/V . All the other steps are bimolecular reactions be-
tween one high concentration (fuel) species and one low concentration species
and thus will be fast. Further, the backward reactions are either slow or (in the
case of F3 + I2 →Y + I1) exactly balanced by a fast reaction (F4 + I2 →A + I3)
in the forward direction. Thus, the second step is the rate limiting step for the
reaction pathway. (A similar argument holds for both forward and backward
reactions in the reversible scheme.)

130 L. Qian, D. Soloveichik, and E. Winfree

[⋯x] = [⋯]

F1,x

+x* P* T* T* T +Q

P T +x

T

F2 P T

x T +x
-x

F3,x
+x

T

[⋯]
P T*

[⋯]?x

+x* P* T* T* T +Q

+x

T P T*

[⋯]!x

+x* P* T* T* T +Q

P T* T +x
-x

F4

[⋯x]

+x* P* T* T* T +Q

P T* T +Q*

P T* T +x
-x

Q
T +Q

 -Q

[] []?

[]!

+* T* T* +Q

+

T

 T +
-

F3,
+

T

+* T* T* +Q

T +

-

F4
T +Q*

P T*

T +Q
 -Q

+* T* T* +Q

T +Q*

P T* T +

-

(a)

(b)

T +Q*

P T*

T +Q
 -Q

Q
T +Q

 -Q

Fig. 3. The implementation of the formal polymer reaction [· · ·] + x � [· · ·x] + Q.
Intuitively, in the forward direction this reaction adds a new monomer to the end of
the polymer, releasing Q to signal completion. In the backward direction, Q detaches
the last monomer from the polymer. (a) The beginning of the polymer and the strand
displacement reactions when the stack is empty, i.e., implementation of reaction (1b).
Note that the first monomer is ⊥ to indicate the end of the stack for the stack machine
simulation. (b) The strand displacement reactions for the monomer addition / removal
cycle, i.e., implementation of reaction (1a). Clockwise: adding a new monomer; counter-
clockwise: removing the last monomer. The dark box indicates the ‘left’ side of the
polymer, with an arbitrary number of subunits. The dotted line indicates conceptually
encapsulating the x subunit repeat block within the dark box. Reaction and domain
notation is as in Fig. 1.

Unimolecular reactions such as X →A can be implemented analogously with
the appropriate shortening or extension of fuel F1, as can higher order reactions
such as X + Y + Z →A + B + C and asymmetric reactions such as X →A+B.
(Similar modifications can be used for reactions X � A, X +Y +Z � A+B+C,
X � A+B, etc.) Extending our construction to reactions of order n yields n−1
forward steps that involve bimolecular reactions between two low concentration

Efficient Turing-Universal Computation with DNA Polymers 131

species. Therefore we would encounter a slowdown scaling as 1/V n−1, with the
unimolecular implementation being independent of volume, as is required to
agree with standard chemical kinetics.

3 A Reversible Polymer Addition Primitive
Finite CRNs by definition involve a finite number of possible molecular species,
and this limits their behavioral complexity. Extending CRNs to include polymers
allows one to give a finite specification of a molecular system involving potentially
an infinite number of distinguishable species — polymers of different lengths and
with different sequences — that interact according to a finite number of local
rules. A variety of extensions of CRNs to polymers (and other combinatorial
structures) have been considered, differing in the types of local rules (e.g. end-
localized reactions, interior-localized reactions, polymer joining and scission) and
the types of polymer structures (e.g. strictly linear, branched, networks with
cycles) that are allowed [13,8,11]. All these natural CRN extensions can efficiently
simulate Turing machines (c.f. [11]). However, whereas these extensions were
designed to be general for modeling biochemical systems, our interest here is in
a language for specifying polymer systems that can be implemented with DNA
strand displacement reactions — and fully general modeling languages presently
may be too difficult to compile into DNA.

Therefore, we focus on a very limited subset of polymer reactions that simulta-
neously allows implementation with DNA and is capable of efficient simulation of
Turing machines. Specifically we make use of a single reversible reaction mecha-
nism that (in the forward direction) appends a desired subunit onto the polymer
while releasing a confirmation signal, and that (in the reverse direction) upon
receipt of a query detaches a subunit from the polymer. In our construction, each
polymer has a fixed end and a growing end. Appending and detaching can only
occur on the growing end. All polymers begin at their fixed ends with a special
subunit, ⊥, followed by an arbitrary sequence of subunits from the finite set Σ.
Formally, a polymer with sequence ⊥w, where w ∈ Σ∗, is written as [⊥w]. The
subunits themselves may also exist as free species, x ∈ Σ, as may the special
subunit ⊥. The query/confirmation species is called Q. Then the implemented
reversible polymer addition reaction may be written as

[· · ·] + x� [· · ·x] + Q (1)

where informally [· · ·] represents a polymer with some sequence ⊥w and [· · ·x]
represents that same polymer extended to sequence ⊥wx. Formally, this single
polymer reaction schema represents an infinite family of specific reactions

[⊥w] + x� [⊥wx] + Q (1a)

for all w ∈ Σ∗ and x ∈ Σ, as well as the base case

[]?⊥ + ⊥� [⊥] + Q (1b)

that enables detecting that the polymer is a monomer.

132 L. Qian, D. Soloveichik, and E. Winfree

Fig. 3 shows the DNA implementation of this polymerization primitive. The
formal species Q and ⊥ and each x ∈ Σ are implemented as finite CRN species
using the same history-free motif described in section 2. The polymer itself is a
chain of information-bearing subunits (green) spliced together by strands using
the P and +Q domains. To mediate the desired reactions, a number of high-
concentration fuels are used: F2 and F4 are independent of the monomer type,
while a separate F1,x and F3,x is needed for each x ∈ Σ, as well as F3,⊥.

The reversible and exploratory nature of the DNA implementation’s reactions
are essential to its function. For example, for [· · ·] to react with a specific x that
may be present, it may first react with several different F1,y to produce the
intermediate [· · ·]?y that attempts to add y to the polymer — but so long as y
is not present in solution, this attempt fails, and the reaction reverses to recreate
[· · ·] with the help of F2. Eventually, [· · ·] will react with F1,x to produce [· · ·]?x,
which can react with x to proceed to the next step, the [· · ·]!x intermediate.
Finally a reaction with F4 brings the polymer back to its canonical state, [· · ·x],
but with the new subunit appended and the confirmation Q produced. Of course,
since all the reactions are reversible, Q can also serve as a query and reverse [· · ·x]
to [· · ·]!x, after which the appropriate F3,x may succeed in detaching x, so that
F2 can bring [· · ·]?x back to [· · ·]. A set of different F3,y make sure the detaching
will happen no matter what subunit is on the growing end of the polymer. For
the base case, the reverse can only go as far as [· · ·]?⊥, which has a special form
and thus won’t be able to react with F2. This ensures that ⊥ is always the first
subunit of the polymer.

While the polymer reactions by themselves do nothing more than push and
pop subunits back and forth onto and off of the end of the polymer, these reac-
tions can be controlled and driven by a simultaneously active finite CRN that
interacts with the formal species Q, ⊥, and x ∈ Σ. To append a subunit to the
polymer, the CRN must simply produce the desired species x and then wait for
the confirmation Q. To read a subunit off the polymer, the CRN must simply
produce the query Q and then wait for the arrival of some subunit x ∈ Σ or
else ⊥.

Our polymer reaction primitive is also essentially bimolecular, and hence the
kinetics also scales as 1/V .

4 Irreversible Stack Machine Implementation

4.1 Definition of Stack Machines

In this paper we provide a direct molecular implementation of stack machines
rather than the more familiar Turing machines because they are particularly
matched to the kind of polymer operation we have available, which accesses the
polymer at one end only. The stack machine model of computation intuitively
consists of a finite state control together with memory in the form of a finite
number of stacks. Each stack can hold an arbitrary sequence of symbols but can
only be accessed at one end: stack operations include pushing a new symbol onto
a stack, or popping a symbol off a stack, as well as detecting an empty stack.

Efficient Turing-Universal Computation with DNA Polymers 133

1. S#1, Q, [00111]1, []2, []3

2. S#4, Q, [0011]1, []2, []3

3. S#5, Q2, [0011]1, [1]2, []3

4. S#1, Q3, [0011]1, [1]2, [1]3

write 1
on stack 2

#4

write 0
on stack 2

#2
write 0

on stack 3

#3

write 1
on stack 3

#5

read
stack 1

#1

#6

0

1

#1 0 1 #2
#1 1 1 #4
#1 1 #6 1
#2 #3 0 2
#3 #1 0 3
#4 #5 1 2
#5 #1 1 3

S#1 + 01 S#2 + Q
S#1 + 11 S#4 + Q
S#1 + 1 S#6 + 1
S#2 + Q S#3 + 02
S#3 + Q S#1 + 03
S#4 + Q S#5 + 12
S#5 + Q S#1 + 13

Q1 Q
Q2 Q
Q3 Q

[…]1 + 01 […0]1 + Q1
[…]1 + 11 […1]1 + Q1
[…]2 + 02 […0]2 + Q2
[…]2 + 12 […1]2 + Q2
[…]3 + 03 […0]3 + Q3
[…]3 + 13 […1]3 + Q3

1. (#1, 00111, ,)
2. (#4, 0011, ,)
3. (#5, 0011, 1,)
4. (#1, 0011, 1, 1)
5. (#4, 001, 1, 1)
6. (#5, 001, 11, 1)
7. (#1, 001, 11, 11)
8. (#4, 00, 11, 11)
9. (#5, 00, 111, 11)
10. (#1, 00, 111, 111)
11. (#2, 0, 111, 111)
12. (#3, 0, 1110, 111)
13. (#1, 0, 1110, 1110)
14. (#2, , 1110, 1110)
15. (#3, , 11100, 1110)
16. (#1, , 11100, 11100)
17. (#6, , 11100,11100)

(a) (b)

(c) (d)

(e)

[00111]1

[0011]1 11

Q1 []2

2

Q2 []3

3

Q3

Q

S#1

Q

S#4

[]?2 []?3

[0011]1

[001]1 11

Q1 []2 Q2 []3 Q3

Q

12 S#5

S#4

[1]2 Q2

2 3 []?2 []?3

[0011]1

[001]1 11

Q1 [1]2

[]2

Q2 []3 Q3

Q

13 S#1

S#5

[1]3 Q3

12 3 []?3

Fig. 4. Example execution of a stack machine program. (a) Diagrammatic represen-
tation of a stack machine that reads a string on stack 1 and writes a reversed copy
onto both stack 2 and stack 3. (b) Transition rules for the same stack machine. (c)
Execution history of stack machine configurations for computation with input string
00111. (d) Polymer CRN reactions for the same stack machine. Recall that polymer
reaction schema of form (1) expand to reactions of forms (1a) and (1b). (e) Reaction
pathways within the polymer CRN implementation, illustrated for the first three steps
going from configuration 1 to configuration 4. Solid arrowheads indicate the direc-
tion of computation that is ratcheted forward by this step’s irreversible reaction, and
blue species represent the canonical endpoint species for each step of the computation.
Each reaction is shown with longer polymer species on top, which is why in some steps
reactions go “up” and in other steps reactions go “down”.

Input is provided as the initial sequence of symbols in the first stack. While
stack machines with only 1 stack are known to be less than Turing universal,
2 stacks are enough for universality. Similarly, while stack machines with just 1
symbol (also known as counter machines or register machines) are universal [17],
they are exponentially slower than Turing machines, and efficient simulation of

134 L. Qian, D. Soloveichik, and E. Winfree

Turing machines becomes possible only with 2 symbols or more. In fact, multi-
stack multi-symbol stack machines can simulate multi-tape multi-symbol Turing
machines with no slow-down (and vice versa). Consequently, many stacks and
many symbols are preferred for elegance and efficiency. This is what we achieve
with our DNA polymer implementation.

We allow any finite alphabet of symbols Σ, with an additional symbol λ �∈ Σ
to indicate that the stack is empty. We specify stack machine transition rules
in a somewhat non-standard manner — one that is better suited to discussing
reversibility (see next section). There are 4 types of transition rules:

1. α x i −→ β y j
2. α x i −→ β
3. α −→ β y j
4. α λ i −→ β λ i

where α, β are states, x, y ∈ Σ are symbols, and i, j ∈ {1, . . . , n} are stacks.
A transition rule of type (1) means: when in state α and the top symbol on
stack i is x, pop it off and push symbol y onto stack j, transitioning to state
β. A transition rule of type (2) means: when in state α and the top symbol on
stack i is x, pop it off and transition to state β. A transition rule of type (3)
means: when in state α, push symbol y onto stack j, transitioning to state β. A
transition rule of type (4) means: when in state α and stack i is empty, move
to state β. Note that the stack on the left and right must be the same for rule
type (4).

A configuration of a stack machine consists of a state α and the contents
of stacks 1, . . . , n. Computation begins in the designated start state (typically
#1) with the input to the computation on the stacks (typically stack 1 has an
input string, and the remaining stacks are empty) and proceeds by execution of
applicable rules until no rule is applicable (typically, the machine will be in a
‘halting state’ that does not appear in the LHS of any rule). The contents of the
stacks after halting may be considered the output of the machine.

We say that the stack machine is (syntactically) deterministic if for every
configuration, there is at most one applicable transition rule. This can easily be
verified by checking that for each state α, either all rules with α on the LHS
read from the same stack with at most one transition per read symbol, or else
there is at most one rule of type (3).

An example stack machine and computation is shown in Fig. 4abc.

4.2 Reactions Corresponding to the Transition Rules

The polymer CRN implementation of an n-stack machine with symbol alphabet
Σ will comprise a finite collection of CRN reactions, one for each transition
rule and one for each stack, combined with a polymer reaction for each stack.
We require n distinct types of polymer reactions to implement the n stacks.
We obtain them by generating n independent copies of the polymer reaction
primitive of Fig. 3 wherein every species and domain is subscripted by i to

Efficient Turing-Universal Computation with DNA Polymers 135

indicate that the domains are unique to that polymer type (with the exception
of the universal toehold T). Thus the fuels are also unique to the polymer type.
Because of the unique domains and fuels, the reactions steps of Fig. 3 will never
result in crosstalk between polymers of different type. Therefore, generating xi

or Qi will result in pushing x onto or popping a symbol off of stack i specifically.
Later it will be convenient to have a single ‘query’ species Q that interconverts
with the Qi to (reversibly) read any stack; the symbol xi that is read indicates
which stack it came from, so no information is lost.

In summary, for every stack i ∈ {1, . . . , n} and symbol x ∈ Σ, we have a
distinct molecular species xi. Further, for every stack i we have species ⊥i, the
CRN reaction

Q �Qi

and the polymer reaction

[· · ·]i + xi � [· · ·x]i + Qi.

If a polymer contains only the symbol ⊥i then the polymer represents stack i
being empty, i.e. having content λ.

To run the system, we start with (1) exactly one molecule of each stack poly-
mer type, each containing the input strings for its corresponding stack; (2) ex-
actly one molecule of the state species S#1; and (3) exactly one molecule of
the ‘query’ species Q, which rapidly interconverts into the Qi required for each
stack. Our system will respect the conserved property that there is always either
exactly one Q or one Qi molecule for some stack, or else there is exactly one
molecule xi representing some symbol on some stack.

Now, each stack machine transition rule 1-4 corresponds to a single polymer
CRN reaction as follows:

1. α x i −→ β y j ⇒ Sα + xi → Sβ + yj

2. α x i −→ β ⇒ Sα + xi → Sβ + Q
3. α −→ β y j ⇒ Sα + Q → Sβ + yj

4. α λ i −→ β λ i ⇒ Sα + ⊥i → Sβ + ⊥i

Illustrative steps for the implementation of the example stack machine are
shown in Fig. 4de. Note that despite all the reversible reactions, each time an
irreversible CRN reaction (corresponding to a transition rule) occurs, the overall
computation ratchets forward.

Run in a reaction volume V , each irreversible step will take average time
O(V) since its rate scales as O(1/V). So to simulate a stack machine (or TM)
whose computation runs in time t using space s, our DNA implementation will
take time O(tV). However, the reaction volume must be large enough to contain
the polymers, which will be O(s) subunits long, and hence V = O(s). Taking
the worst-case bound s = O(t), the overall time required by the DNA stack
machine implementation is O(t2). In contrast, because Bennett’s hypothetical
polymer-chemistry Turing machine has no bimolecular reactions between low-
concentrations species (all reactions are between a single polymer tape and high-
concentration enzymes), its time requirement is just O(t) — better than ours.

136 L. Qian, D. Soloveichik, and E. Winfree

5 Reversible Stack Machine Implementation

Given a stack machine defined as in the preceding section, the set of reverse rules
is formed by switching the left-hand side and the right-hand side of all rules. We
say the stack machine is reversible if the set of reverse rules is deterministic.

To implement a stack machine that can proceed either forward or backward
in chemistry we can use reversible reactions:

1. α x i −→ β y j ⇒ Sα + xi � Sβ + yj

2. α x i −→ β ⇒ Sα + xi � Sβ + Q
3. α −→ β y j ⇒ Sα + Q � Sβ + yj

4. α λ i −→ β λ i ⇒ Sα + ⊥i � Sβ + ⊥i

5.1 Simulating a Reversible Turing Machine

Most theoretical work on reversible computing uses Turing machines rather than
stack machines. Are there non-trivial reversible stack machines according to the
above definition? Are there universal reversible stack machines according to the
above definition?

We can take the path of showing that reversible stack machines can simulate
known reversible Turing machines. For simplicity let us consider a binary, re-
versible Turing machine with one tape that is bounded on the left and is infinite
on the right; futher, we require that the Turing machine never tries to read past
the left end of the tape. (For example ref. [18] describes such a Turing machine
that is universal, although it is slow; multi-tape reversible Turing machines are
faster, and can be similarly implemented with polymer CRNs.) We can consider
three types of Turing machine transition rules, using Bennett’s notation [5]:

1. α x −→ β y
2. α / −→ β−
3. α / −→ β+

where α, β are states, and x, y ∈ {0, 1} are symbols. The first rule means that
when in state α with the head reading symbol x, transition to state β overwriting
x with y. The second and third rules indicate that when in state α move left or
right respectively, without reading from or writing to the tape. The reverse of
rule α x−→β y is β y −→α x. The reverse of rule α /−→β− is β /−→α+ and
vice versa.

We represent the tape using two stacks. Everything to the left of the head is
on stack 1 with the current symbol on top. Everything to the right of the head
is on stack 2 with the symbol to the right of the head on top. The infinity of 0’s
past the rightmost 1 on the Turing machine tape is implicitly represented such
that the topmost symbol on stack 2 can only be 1, if the stack is not empty.
We convert Turing machine transition rules to stack machine transition rules as
follows, where x, y ∈ {0, 1}:

Efficient Turing-Universal Computation with DNA Polymers 137

1. α x−→β y ⇒
α x 1 −→ β y 1

2. α /−→β− ⇒
α 0 1 −→ σ1 0 1
α 1 1 −→ β 1 2
σ1 λ 2 −→ σ2 λ 2
σ1 0 2 −→ σ4 0 2
σ1 1 2 −→ σ4 1 2
σ2 0 1 −→ σ3
σ3 λ 2 −→ β λ 2
σ4 0 1 −→ β 0 2

3. α /−→β+ ⇒
α 0 2 −→ σ4 0 1
α 1 2 −→ β 1 1
α λ 2 −→ σ3 λ 2
σ4 0 2 −→ σ1 0 2
σ4 1 2 −→ σ1 1 2
σ3 −→ σ2 0 1
σ2 λ 2 −→ σ1 λ 2
σ1 0 1 −→ β 0 1

where σ1 — σ4 are states unique to the given Turing machine transition rule.
Note that (3) is the reverse of (2). The hard work involved in moving left and
right comes from the requirement to maintain a consistent and unique implicit
representation of the infinite background of zeros on the right.

It is enough to prove two things: that the forward direction is deterministic,
and that the forward direction correctly simulates the Turing machine tran-
sitions. Then no point can have multiple predecessors because simulating the
reverse Turing machine transition crosses that point in the opposite direction.
(The fact that the forward and backward stack machine paths within a single
Turing machine transition must be the same follows from the fact that for the
reverse path we could have just applied the forward rules in reverse order.)

Forward determinism follows because in any stack machine state we are read-
ing at most one stack. It is also easy to verify that (2) and (3) correctly simu-
late the Turing machine transition in the forward direction by following all the
branches. For that, note that (2) guarantees that the bottom symbol in stack 2,
if any, is a 1. (I.e.: no unnecessary “blanks”. We also assume this is true of the
initial state.) Thus in (3), stack 2 cannot be empty when we get to state σ4.

More efficient reversible Turing machines with multiple tapes and large alpha-
bets can be simulated in a similar manner, as a straightforward generalization
of the given construction. This is important because whereas 1-tape, 2-symbol
reversible Turing machines are indeed universal, multi-tape Turing machines are
essential for Bennett’s theorems showing that the time and space requirements
for logically reversible Turing machine computation are no more than slightly
worse than linear with respect to irreversible Turing machine computation [5,7].

138 L. Qian, D. Soloveichik, and E. Winfree

6 Conclusions

Our paper contributes to the art of designing molecular interactions using strand
displacement cascades by proposing a direct implementation of arbitrary cou-
pled reversible reactions, as well as a way to add and remove end monomers to
and from a DNA polymer. The new construction for reversible reactions is more
efficient than implementing them as two separate irreversible reactions [25], both
in terms of the complexity of the scheme as well as the amounts of fuel reagents
required. By adjusting and maintaining fuel concentrations, reactions can be bi-
ased forward or backward or balanced arbitrarily close to equilibrium. Based on
these reaction mechanisms, we developed a novel method of embedding compu-
tation in biochemical and biological systems by showing an efficient autonomous
stack machine simulation. This simulation can be made reversible to attain low
energy consumption.

Different architectures for molecular computing such as algorithmic self-
assembly, circuits implemented with CRNs, Turing machines implemented with
CRNs, and polymer CRNs embody different tradeoffs between time, volume, en-
ergy and uniformity. Our construction is exponentially more efficient in terms of
the required molecular counts and volume than geometry-free Turing-universal
computation using strand displacement reactions (combination of refs. [25] and
[24]), and also polynomially faster. Moreover, unlike the geometry-free compu-
tation of ref. [24], our polymer CRN construction in theory yields the correct
computation output with probability 1.

Lastly, using our implementation of reversible CRNs, we proposed a logically-
reversible stack machine construction that maintains error-free computation us-
ing physically reversible reactions. We showed that these reversible stack machines
can reversibly simulate a reversible Turing machine, establishing their Turing uni-
versality and the applicability of results in the existing literature. Our construc-
tions can be viewed as steps toward a DNA implementation of Bennett’s thought
experiment [6] in which computation was shown to require arbitrarily little ther-
modynamic energy per step.

There is still room for improvement in our constructions. First, the fact that
the machine state is stored within multiple free-floating molecules results in
the requirement for slow bimolecular reactions, unlike Bennett’s hypothetical
scheme. A second drawback of our scheme is that preparing reactions with a
single copy of each state-bearing molecule would be difficult experimentally, but
our system will not correctly simulate stack machines if run with multiple copies
of state or stack molecules, or if run with mass action. Further, unlike Bennett’s
scheme, ours cannot run an arbitrary number of parallel machines in the same
reaction chamber. This limitation prevents the use of our construction for fast
solutions to parallel search problems [1].

Finally, our construction lacks the attractive feature of material recycling: tak-
ing any irreversible Turing machine, applying the transform described in ref. [5]
to make it reversible, and implementing it with Bennett’s hypothesized molecular
construction, yields a molecular computation that recycles all material require-
ments except for the molecules used in writing out the output. However, in our

Efficient Turing-Universal Computation with DNA Polymers 139

scheme, different fuel molecules would be used in the “compute” and “retrace”
phases of the transformed Turing machine computation, and would not be regen-
erated. Indeed, every computation converts fuels of forward reactions to the fuels
of reverse reactions in an amount proportional to the length of the computation.

The polymer reactions we introduce are likely instances of a wider class of
polymer modification reactions that can be implemented with strand displace-
ment. It would be exciting to implement a polymer reaction class capable of
exhibiting the richness of cytoskeletal networks that are responsible for cellular
reorganization and coordinated movement.

Acknowledgments

We thank Ho-Lin Chen for insightful discussions and suggestions. Our devel-
opment of the history-free CRN scheme grew out of extensive discussions with
Luca Cardelli. We thank Anne Condon for clarifying discussions. This work was
supported by the Molecular Programming Project under NSF grant 0832824 and
an NSF CIFellows Award to DS.

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems.
Science 266(5187), 1021–1024 (1994)

2. Beaver, D.: A Universal Molecular Computer. In: Lipton, R., Baum, E. (eds.) DNA
Based Computers, pp. 29–36. AMS, Providence (1996)

3. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.:
Programmable and autonomous computing machine made of biomolecules. Na-
ture 414(6862), 430–434 (2001)

4. Benenson, Y., Shapiro, E.: Molecular computing machines. In: Encyclopedia of
Nanoscience and Nanotechnology, pp. 2043–2056 (2004)

5. Bennett, C.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)

6. Bennett, C.: The thermodynamics of computation – a review. International Journal
of Theoretical Physics 21(12), 905–940 (1982)

7. Bennett, C.: Time/space trade-offs for reversible computation. SIAM Journal on
Computing 18, 766–776 (1989)

8. Blinov, M., Faeder, J., Goldstein, B., Hlavacek, W.: BioNetGen: software for rule-
based modeling of signal transduction based on the interactions of molecular do-
mains. Bioinformatics 20(17), 3289–3291 (2004)

9. Cardelli, L.: Strand algebras for DNA computing. In: Deaton, R., Suyama, A. (eds.)
DNA 15. LNCS, vol. 5877, pp. 12–24. Springer, Heidelberg (2009)

10. Cardelli, L.: Two-Domain DNA Strand Displacement. In: Developments in Com-
putational Models (DCM), pp. 33–47 (2010)

11. Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Hori-
moto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS,
vol. 5147, pp. 65–80. Springer, Heidelberg (2008)

12. Chen, H., De, A., Goel, A.: Towards Programmable Molecular Machines. In: Foun-
dations of Nanoscience (FNANO) (2008)

140 L. Qian, D. Soloveichik, and E. Winfree

13. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling
of cellular signalling. In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 17–41. Springer, Heidelberg (2007)

14. Kurtz, S., Mahaney, S., Royer, J., Simon, J.: Biological computing. In: Complexity
Theory Retrospective II, pp. 179–195 (1997)

15. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5(3), 183–191 (1961)

16. Liekens, A.M.L., Fernando, C.T.: Turing complete catalytic particle computers.
In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.)
ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1202–1211. Springer, Heidelberg (2007)

17. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

18. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
The Transactions of the IEICE E 72(3), 223–228 (1989)

19. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits.
In: Goel, A., Simmel, F.C., Sośık, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 70–89.
Springer, Heidelberg (2009)

20. Rothemund, P.: A DNA and restriction enzyme implementation of Turing ma-
chines. In: Lipton, R., Baum, E. (eds.) DNA Based Computers. DIMACS, vol. 27,
pp. 75–119. AMS, Providence (1996)

21. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA
sierpinski triangles. PLoS Biology 2(12), e424 (2004)

22. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

23. Smith, W.: DNA computers in vitro and vivo. In: Lipton, R., Baum, E. (eds.) DNA
Based Computers. DIMACS, vol. 27, pp. 121–185. AMS, Providence (1996)

24. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)

25. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemi-
cal kinetics. Proceedings of the National Academy of Science 107(12), 5393–5398
(2010)

26. Winfree, E.: On the computational power of DNA annealing and ligation. In: Lip-
ton, R., Baum, E. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–221.
AMS, Providence (1996)

27. Winfree, E.: Simulations of computing by self-assembly. Technical Report
CS-TR:1998.22, Caltech (1998)

28. Yin, P., Turberfield, A., Sahu, S., Reif, J.: Design of an autonomous DNA nanome-
chanical device capable of universal computation and universal translational mo-
tion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 10. LNCS, vol. 3384, pp.
426–444. Springer, Heidelberg (2005)

29. Zhang, D., Turberfield, A., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

30. Zhang, D., Winfree, E.: Control of DNA strand displacement kinetics using toehold
exchange. Journal of the American Chemical Society 131(47), 17303–17314 (2009)

Reversible Transition of Photonic DNA
Automaton Using Hairpin-DNA Responding

to a Single Kind of Photonic Signal

Hiroto Sakai, Yusuke Ogura, and Jun Tanida

Department of Information and Physical Sciences,
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{h-sakai,ogura,tanida}@ist.osaka-u.ac.jp

Abstract. In this paper, we report a scheme for reversible state-
transition of the automaton responding to a single kind of a photonic
signal. The state is encoded into the conformation of hairpin-DNAs teth-
ered with azobenzene, which is responsive to visible and UV light irra-
diation. The reversible behavior is realized by carrying out a sequence
of conformation-change of the hairpin-DNA in a stepwise manner. Ex-
perimental results demonstrate that the state can be changed reversibly
according to photonic signals.

1 Introduction

DNA automaton is a computing basis for autonomous and sequential process-
ing at a molecular scale[1]. DNA automaton is useful for in-situ measurement
of states of particular molecules in a molecular system and for control of the
molecules according to the environmental conditions. For example, E. Shapiro
et al. demonstrated programmed release of a single-stranded DNA that works
as a drug using DNA automaton[2].

Treatment of molecules without changing the environment where they exist is
important for in-situ measurement or control because it enables to deal with the
original information on the molecules. To control the automaton from out of the
solution, external signaling is required. Adding molecules and changing temper-
ature are good examples of the external signaling; however, these strategies can
induce significant change of the environmental conditions. Light is a promising
carrier for external signaling because it enables to carry the information in par-
allel and locally. Flexible manipulation of the light is achievable using photonic
devices such as a spatial light modulator. Utilizing optical signals as an exter-
nal one, we can control molecules remotely without changing the environmental
conditions.

We are studying about photonic DNA automaton, which is a computational
paradigm by using light and DNA as information carriers[3]. Photonic method-
ology enables a sequential control of molecules in small volumes in parallel and

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 141–146, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

142 H. Sakai, Y. Ogura, and J. Tanida

remotely, and offers control of biomolecular systems with external signals. In
a previous paper, we demonstrated photonic switch of a bistable structure us-
ing a hairpin-DNA tethered with azobenzene[4]. The hairpin-DNA changes to
the open-state with ultra-violet (UV) light irradiation and to the closed-state
with visible light irradiation owing to photo-isomerization of the azobenzene.
Moreover, we designed another hairpin-DNA operating the opposite manner:
the hairpin-DNA forms the open-state (the closed-state) with visible (UV) light
irradiation. The destination-state of these types of the hairpin-DNAs depends
only on the input but independent on the current state.

This paper reports on a scheme for a reversible and stepwise state-transition
responding to a single kind of an input signal. The single input signal consists of a
sequence of light irradiations. We show the reversible state-transition experimen-
tally. Section 2 explains a proposed scheme. In Section 3, we show experimental
results. In Section 4, we give conclusions.

2 Reaction Schemes

The state-transition diagram considered in this study is shown in Fig. 1(a). The
internal state changes to the other state for input “1” and stays for input “0”.
We designed a DNA reaction scheme using a hairpin-DNA. The structure of the
hairpin-DNA represents the internal-state of the automaton, and the conforma-
tional change corresponds to its transition. The hairpin-DNA changes between
the closed-state (S0) and the open-state (S1) owing to photo-isomerization of
azobenzene[5] by UV and visible light irradiation. Input 1 is encoded into a se-
quential irradiation of UV and visible light, and input 0 is non-irradiation(Fig.
1(a)). The number of input symbols is limited by two because possible number
of the form of the azobenzene is two.

Four kinds of DNA strands were used in the scheme. Strands O called opener,
C called closer and U were tethered with azobenzene, and they form different
structures under light irradiation as shown in Fig. 1(b). The structure of O
consists of two loop-structures: left one is for control of reaction with hairpin-
DNA and the right one is used for control of reaction with C. A strand U is used
to open the right loop-structure. Hairpin-DNA opens by binding with O, and
the open-state returns to a loop-structure by using C. The function of strands
O and C are controlled according to a single kind of irradiation.

Figure 1(c) shows the designed scheme. Let us assume that the initial state is
the closed-state of a hairpin-DNA, representing S0. Under UV light irradiation,
the azobenzene becomes cis-form and the left loop-structure of strand O opens.
Hairpin-DNA can bind with the toe-hold, which is exposed as a result of the
reaction. Then, azobenzenes are changed to the trans-form by visible light irra-
diation, and the loop of the hairpin-DNA opens. As a result, the internal-state
changes from S0 to S1.

Switching form S1 to S0 (the lower part of Fig. 1(c)) is executed by a sequential
binding of strands U and C in response to the same light irradiation (UV then
visible) used for switching from S0 to S1(Fig. 1(c)). When the hairpin-DNA forms
the structure shown at the upper right of Fig. 1(c), the function of the toe-hold

Reversible Transition of Photonic DNA Automaton Using Hairpin-DNA 143

1 : UV() then visible()

U

U

O

O

Hairpin

Hairpin

UVVisible

C

U

O

Hairpin

C

C

UV Visible

S₀

S₀
S₁

S₀ S₁
1

0

1

0

S₀:
S₁:

0 : non-irradiation

closed-state
open-state toe-hold for U

toe-hold for C

(a)

(c)

(b)

Fig. 1. (a)The state-transition diagram of considered automaton, (b)the structures
under light irradiation and (c)the designed scheme

for binding with U is expressed owing to the displacement between the hairpin-
DNA and a part of the right loop-structure of strand O. By irradiating UV light,
the right loop-structure opens through the binding with U, then the toe-hold for
binding with C is exposed. Under visible light irradiation, the hairpin-DNA is
displaced by C as a result of binding between O and C, and the hairpin-DNA
returns back to S0.

3 Experiments

The reversible behavior was confirmed experimentally. The state after each oper-
ation was detected by measuring fluorescent intensity from a FRET pair labeled
at the ends of hairpin-DNA. The DNA sequences used in experiments are shown
in Fig. 2(a). A character “x” represents a single azobenzene. The sequences were
designed using a software called NUPACK[6].

First, responses of strands C and U to light irradiation were investigated
by measuring absorbance of the strands at 260 nm and 350 nm. Absorbance
at 260 nm changes depending on the state of DNA, and the absorbance of a
single-stranded DNA is higher than that of a double-stranded DNA. In contrast,
absorbance at 350 nm depends on the form of the azobenzene. The absorbance
of the trans-form azobenzene is larger than that of the cis-form azobenzene. The
absorbance of both C and U increased at 260 nm and decreased at 350 nm after
UV light irradiation. The result confirmed conformation-change of the strands
with UV and visible light irradiations.

144 H. Sakai, Y. Ogura, and J. Tanida

Fl
uo
re
sc
en
t i
nt
en
sit
y

Time (min)

FAM
BHQ-1

U

1st cycle 2nd cycle

C

S₀

O

9min 9min3min 3min

Hairpin

S₁

5’(FAM)-ACTCAACTTCACCGTGAAG-(BHQ)3’

5’-CCGCATCGCAGAGCGAAACGGTGAAGTTG
AGTGXATXACTTGCCGTAXTCXATATAXACXTT-3’

5’-GCGATGCGG-3’

5’-CGXCACXATTTTTXGGXCACCTAGCXCAXAACGT
AGCGTTCGGACCTCAACTTCACCGTTTCGC-3’

Hairpin

O

U

C

(a) (b)

Fig. 2. (a) Sequences used in a experiment and (b) the experimental result

85

95

105

115

125

135

initial

Fl
uo

re
sc

en
t i

nt
en

si
ty

UV1 VIS1 UV2 VIS2

Fig. 3. Fluorescence intensities measured during a cycle of UV and visible light irra-
diation

Next, we executed reversible switch by adding DNA and irradiating light.
Though the scheme is expected to work only by light irradiation, this operation
strategy is used for easy operation. Figure 2(b) shows the fluorescence intensity
measured during two cycles of UV and visible light irradiation. Irradiation time
for UV light was 9 min, and the time for visible light was 3 min. These times are
ones that photo-isomerization of azobenzene is saturated. The result suggests
that a hairpin-DNA changes form S0 to S1 after the first cycle of irradiation,
then returned back to S0 after the second cycle of irradiation.

In the next experiment, we performed state-transition without additional
DNA; namely we operated automaton only by optical signaling. In mixing solu-
tions of four strands, strand O reacted with strand C unexpectedly. To inhibit
the reaction, we redesigned strands O and C. The loop-structures in new strands

Reversible Transition of Photonic DNA Automaton Using Hairpin-DNA 145

O and C become more stable, so that unexpected annealing between O and C
can be suppressed. The sequence of redesigned O is CCGCATCGGAGACC-
GATGCGGTGTxAAxTGxTTGAGGACxATxTAxCA, and that of redesigned
C is ATxTTxGCTGATGCGGCTCAACATTACACCGCATCAG (The left and
right edges are 5’ and 3’ -end, respectively). On the basis of the conformational
stability of these strands, we changed irradiation time (10 min for visible light
and 15 min for UV light) and the reaction temperature (45 degrees C).

Figure 3 shows the fluorescence intensity measured during two cycles of UV
and visible light irradiation without adding DNA. Increase of the signal after
first visible light irradiation and decrease after the second visible light irradia-
tion suggests that a partial amount of the automaton ran intended transition.
However, decrease of the signal after UV light irradiation shows that a number of
hairpin-DNAs returned back to the closed-state with UV light irradiation. The
hairpin-DNA changed to the open-state incompletely due to the azobenzene on
strand O, which caused inhibition of the following reactions. To suppress the re-
turn back to the closed-state, we need to consider the number and the positions
of azobenzenes tethered to the nucleotides.

4 Conclusions

A reversible state-transition of DNA automaton responding to a single kind
of photonic signal was studied. We succeeded in executing state-transition re-
versibly by light irradiation with adding DNA. An experimental result also sug-
gested that a partial amount of the automata were able to be driven by only
photonic signaling (without adding DNA). Repeated operations of the automa-
ton using photonic signals are expected to achieve by refinement of the scheme.

Acknowledgments

This work was supported by the Ministry of Education, Culture, Sports, Science
and Technology, Japan, a Grant-in-Aid for Young Scientists (B) 20700276, 2008-
2009, and by the Global COE Program “in silico medicine” at Osaka University.

References

1. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Pro-
grammable and autonomous computing machine made of biomolecules. Nature 414,
430–434 (2001)

2. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular
computer for logical control of gene expression. Nature 429, 1–6 (2004)

3. Sakai, H., Ogura, Y., Tanida, J.: Positional state representation and its transition
control for photonic DNA automaton. In: Deaton, R., Suyama, A. (eds.) DNA 15.
LNCS, vol. 5877, pp. 126–136. Springer, Heidelberg (2009)

146 H. Sakai, Y. Ogura, and J. Tanida

4. Sakai, H., Ogura, Y., Tanida, J.: Implementation of a Nanoscale Automaton Using
DNA Conformation Controlled by Optical Signals. Japanese Journal of Applied
Physics 48, 09LA01 (2009)

5. Asanuma, H., Liang, X., Nishioka, H., Matsunaga, D., Liu, M., Komiyama, M.:
Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA func-
tions: hybridization and transcription. Nature Protocols 2, 203–213 (2007)

6. http://www.nupack.org/

http://www.nupack.org/

Simple Evolution of Complex Crystal Species

Rebecca Schulman1 and Erik Winfree2

1 University of California Berkeley, Berkeley, CA 94720, USA
rschulman@berkeley.edu

2 California Institute of Technology, Pasadena, CA 91125, USA
winfree@caltech.edu

Abstract. Cairns-Smith has proposed that life began as structural pat-
terns in clays that self-replicated during cycles of crystal growth and frag-
mentation. Complex, evolved crystal forms could then have catalyzed the
formation of a more advanced genetic material. A crucial weakness of this
theory is that it is unclear how complex crystals might arise through Dar-
winian selection. Here we investigate whether complex crystal patterns
could evolve using a model system for crystal growth, DNA tile crystals,
that is amenable to both theoretical and experimental inquiry. It was
previously shown that in principle, the evolution of crystals assembled
from a set of thousands of DNA tiles under very specific environmen-
tal conditions could produce arbitrarily complex patterns. Here we show
that evolution driven only by the dearth of one monomer type could
produce complex crystals from just 12 monomer types. The proposed
mechanism of evolution is simple enough to test experimentally and is
sufficiently general that it may apply to other DNA tile crystals or even
to natural crystals, suggesting that complex crystals could evolve from
simple starting materials because of relative differences in concentrations
of the materials needed for growth.

1 Introduction

A plausible hypothesis for the origin of life on Earth must explain both sponta-
neous self-replication, i.e. how a self-replicating system first emerged, and open-
ended evolution, i.e. how Darwinian evolution of this system led to complex
organisms. Spontaneous self-replication requires that the components of the ge-
netic material and the environment for replication existed on the early Earth,
ideally in abundance, and that the assembly of these components into a replica-
tor could reasonably have occurred. Open-ended evolution requires at minimum
that complex genomes exist which would be fitter than all simpler genomes under
plausible environmental conditions. A major difficulty in origin of life research is
that while many hypotheses can explain the process by which either spontaneous
self-replication or open-ended evolution might have occurred, no one hypothesis
yet gives a detailed picture of the sequence of events leading to both.

There are many simple systems capable of replication that may have existed
on the early Earth, including fire, autocatalytic reaction cycles [31] or lipid vesi-
cles [32,30] for which it is not clear how Darwinian evolution might produce

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 147–161, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

148 R. Schulman and E. Winfree

complexity. Similarly, there are complex systems, such as DNA combined with
enzymes [21], ribozymes with specific oligonucleotide substrates [18], prions [17],
DNA crystals [26], robots [16,14] or computer programs [1] for which complex
evolution seems feasible, but how they might have arisen spontaneously is not
clear.

Graham Cairns-Smith has proposed that polytypic clay crystals, which may
have been common on the early Earth, could have been the first replica-
tors [5,7]. If each layer within a clay crystal could contain monomers in any

Fig. 1. Cairns-Smith’s theory of crystal repli-
cation. Heterogeneous crystals propagate informa-
tion consisting of the arrangement of monomers
(shown as stripes) during growth. Crystal fragmen-
tation creates new growth fronts to propagate the
information. Monomers are replenished, and nucle-
ation occasionally produces new crystals.

of several distinct arrange-
ments (called layer types),
then the sequence of layer
types in a stack of layers
would contain information.
Crystal growth would prop-
agate this information and
crystals’ occasional breaking
would produce new growth
fronts for its propagation,
thereby amplifying it (Fig-
ure 1). Particular clay crystal
sequences might promote cat-
alytic functions that would
be selected for, and eventu-
ally these crystal sequences
would evolve into more com-
plex sequences to promote
more complex chemical func-
tions, until the chemistry in-
duced by the crystal’s se-
quence became capable of
self-replication on its own.
Cairns-Smith called this sce-
nario a “genetic takeover” [6].

To date no one has demon-
strated clay crystal informa-
tion replication [4] and there

is no direct experimental evidence that particular clay sequences have proper-
ties that might make them particularly efficient replicators [8]. However, one
reason for its continued discussion [22] is that both prebiotic replication of clay
patterns and the idea that some complex clay structures could have selective
advantages seem reasonable. Since there has been only limited investigation into
either of these questions, it is worth investigating whether clay might be capable
of spontaneous self-replication and open-ended evolution.

Simple Evolution of Complex Crystal Species 149

However, it is unclear more generally how any complex crystal could arise
through Darwinian selection. Here we consider whether there are features of
crystal growth dynamics, rather than of chemistry particular to clay crystals,
that might result in the evolution of complex crystals. We use DNA tile crys-
tals, a model system for investigating generic features of 2 dimensional crystal
growth [26]. DNA tile crystals can be readily studied experimentally (e.g. [38])
and theoretically using quantitative models (e.g. [37]).

One might be skeptical that generic features of crystal growth alone could be
responsible for complex crystal evolution: It is generally assumed that a complex
sequence would evolve because the sequence imbues some chemical functionality
or otherwise alters the environment in a way that improves its reproductive
fitness. However, a complex crystal may be selected for simply because it uses
more abundant raw materials in its growth than simpler crystals. The preference
for the addition of monomers that form multiple contacts with an existing crystal
can put complex constraints on the order and frequency with which a crystal
uses available monomers. It has been argued that these constraints could cause
the selection of complex crystals [28], but so far only for crystals containing
thousands of monomer types and under special physical conditions that are of
limited relevance to natural crystal growth.

We will show that similar constraints could produce complex evolution in
DNA tile crystals containing just 12 monomer types and over a wide set of phys-
ical conditions. We use a cellular automaton model [35] to enumerate the set
of crystal morphologies that could be produced by a given set of monomers (a
tile set). We show that if the monomer compositions of the crystal morphologies
produced by a given tile set satisfy a simple property, then in a simplified model
of growth we would predict selection of complex crystals. Using a combinatorial
search, we find tile sets that satisfy this property. We then use a kinetic simu-
lation to show that for at least one tile set, this evolution also occurs in a more
realistic crystal growth model. While our search focuses on crystals containing
12 monomer types, it is reasonable to suppose that even smaller tile sets can
exhibit similar phenomena.

2 DNA Tile Crystal Replication and Evolution

DNA tile crystals consist of tile monomers [13], rigid assemblies of oligonu-
cleotides with short, single-stranded DNA segments, sticky ends, by which they
bind to other tile monomers. Tiles can assemble into rectangular lattices to pro-
duce two-dimensional crystals [38] and ribbons [19,27,40]. The ease of working
with DNA tiles make them a model system for crystal growth: DNA crystal
monomers (tiles) are easily created by designing the tiles’ oligonucleotide se-
quences, and the growth pathways of DNA crystals are relatively well-understood
at the monomer level [24,9,27].

An example set of DNA tile monomers, i.e. a tile set, is shown in Figure 2(a).
The diagram describes the possible interactions between the tile types, which de-
termine the crystal growth dynamics. Edges with the same color that fit together

150 R. Schulman and E. Winfree

like jigsaw puzzle pieces represent sticky ends with complementary sequences.
The set consists of square rule tiles, and rectangular top and bottom edge tiles.
These tiles can assemble to form a variety of patterned ribbon structures
(Figure 2(d)). Close to the crystal melting temperature, the addition of a DNA
tile to a crystal is energetically favorable only if it forms two or more bonds [36]
(Figure 2(b)).

(a)

(b)

(c)

Repeating pattern

Repeating pattern
Repeating pattern

(d)

Fig. 2. An example zig-zag CA tile set. (a) The 12 tiles. Notches and colors
represent the single-stranded sticky ends of each tile; interlocking edges of matching
color have complementary sequences. Tiles cannot be rotated. (b) Close to the melting
temperature tiles tend to attach to a crystal only where they match at least two edges.
(c) Zig-zag crystal growth. At each step, a new tile may be added at the location
designated by the small arrow. A simultaneous growth process also occurs on the
crystal’s left end. (d) Example assemblies of widths 2, 3 and 5 formed by the tiles in
(a). The pattern repeated in each crystal is bracketed.

Simple Evolution of Complex Crystal Species 151

Under these conditions, for the tiles in Figure 2(a), a single column of tiles
terminated by top and bottom edge tiles uniquely defines the preferred growth
process and ribbon pattern (Figure 2(c)). Growth produces ribbons bearing re-
peating wallpaper patterns (Figure 2(d)). The wallpaper pattern particular to a
crystal is its information, which would be replicated by the process Cairns-Smith
proposed.

We are interested in whether evolution in this system might produce complex
crystal forms. Crystal evolution occurs when (a) mistakes during crystal growth
occur occasionally, producing mutations, and (b) some crystals replicate faster
than others, i.e. are fitter. The fitness of a crystal is the geometric mean of
crystal growth rate (in columns / time) and the per column rate of crystal
fragmentation [28]. For a given tile set and crystal growth environment, we use
mathematical models and simulations to estimate the growth and fragmentation
rates of the crystals and thus their fitness.

A simplified version of the kTAM [25], a generalized crystal growth model
applicable to DNA tile crystal growth [38,24,2] can be used to estimate crystal
growth rates. We consider a version of this model in which (a) crystal growth
proceeds exclusively by single tile addition (we ignore tile dissociation), (b) a tile
may be added to a site if labels on at least two edges match those presented by
the crystal at that site, and (c) monomer tiles arrive at potential binding sites
with a frequency proportional to their concentration in solution. We assume that
occasional violations of rule (b) produce mutations that introduce new crystal
patterns into the population. Because we will show that growth rates can vary
arbitrarily widely, we will for simplicity ignore the dependence of crystal width
on fragmentation frequency and assume that fitness is proportional to crystal
growth rate. However, under fluid shear, for example, breakage rates of crystals
do decrease with crystal width [15].

Both the tile set, which is the alphabet that determines the types of ribbons
that form, and physical conditions such as tile concentration determine the re-
sults of an evolutionary process. To ask whether crystal evolution could produce
non-trivial genomes, we will examine the complexity of DNA tile crystals that
are produced by an evolutionary process. For simplicity we measure complexity
as a crystal’s width. In Section 3 we develop a formalism that describes a family
of tile sets we will consider. In Section 4 we then describe an environment, in
terms of tile concentrations, where evolution of complex (wide) crystals could
occur.

3 Binary Zig-Zag CA Tile Sets

To clearly enumerate the members of the family of tile sets we wish to consider
as possible substrates for open-ended evolution, we define a cellular automa-
ton variant, the zig-zag cellular automaton (or zig-zag CA). Computation on a
zig-zag CA takes place on a lattice of defined width w and infinite length. The
computation tape is a vertical column of width w, and the horizontal (length-
wise) axis of the lattice contains the computation history. Cell updates proceed
alternately from the top edge to the bottom edge (downward), then from the

152 R. Schulman and E. Winfree

f4(x, y)

f3(x, y)

y

x

.

.
y

f1(x, y)

f2(x, y)

x

*

*
y f6(y)

*.
y f5(y)

.*

(a)

f
1 (0

,0)

f
1 (0

,1)

f
1 (1

,0)

f
1 (1

,1)

f
2 (0

,0)

f
2 (0

,1)

f
2 (1

,0)

f
2 (1

,1)

f
3 (0

,0)

f
3 (0

,1)

f
3 (1

,0)

f
3 (1

,1)

f
4 (0

,0)

f
4 (0

,1)

f
4 (1

,0)

f
4 (1

,1)

f
5 (0)

f
5 (1)

f
6 (0)

f
6 (1)

0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

(b)

Fig. 3. Abstract representation of zig-zag CA tiles. (a) Tiles with each set of
inputs x and y compute as growth proceeds down the ribbon (left) and an analogous
group of tiles compute as growth proceeds up (second to left). As denoted by the dots
and stars, the input and output alphabets are not interchangeable between upward
and downward computing tiles. The two top and two bottom tiles each have one input
and one output. In this paper we consider the case where f1...f6 have Boolean inputs
and outputs. In other figures, green and red represent 0 and 1. (b) The table used
to generate a unique numerical identifier for a binary zig-zag CA tile set. The values
of each output of the functions is written in the order shown give the identifier as a
binary number, from most significant bit (left) to least (right).

bottom edge to the top edge (upward). The input to each cell consists of two
values from a fixed alphabet A : a right value and either a top or bottom value.
During updates proceeding downward, the output right value is a function f1
({A,A} → A) of the cell’s input “right” value and of the cell above’s input “bot-
tom” value. The output bottom value is given by f2 ({A,A} → A), which takes
the same inputs. Correspondingly, during upward updates, two functions f3 and
f4 that operate on the cell’s input “right” value and the cell below’s input “top”
value to determine the new right and top values respectively.

When a downward updating process reaches the bottom edge, the last bottom
value is used to determine the edge top value that the bottom-most cell will use
on the first upward update. A fifth function, f5 (A → A) determines the new top
value given the edge bottom value of the previous row. Likewise, f6 (A → A),
determines the new bottom value from the edge top value at the end of an
upward series of updates. Figure 3(a) shows how to construct a zig-zag CA tile
set from the functions f1...f6. For |A| = 2, the set of tiles encodes a binary
zig-zag CA.

Because computation takes place on a finite-width lattice, there are only a
finite number of tape states that are possible: 2w−1 on a tape of width w (w− 2
cells have a right value and there is one top or bottom value). The tape’s states,
therefore, must repeat. If computation is logically irreversible, some states may
be transient, i.e. on the path to a repeating cycle, but never themselves repeated.

Simple Evolution of Complex Crystal Species 153

(Details about the dynamics of finite cellular automata and illustrations of their
state spaces, including cycles and transient states, are given in [39].) These re-
peating cycles are the wallpaper patterns in the zig-zag ribbon examples in
Figure 2(d).

We will study the family of tile sets that implement binary zig-zag CA com-
putation. Each tile set in the family contains 8 rule tiles (to encode the four
possible binary inputs and their respective outputs in each of the up and down
directions) and 4 edge tiles (two top tiles with the inputs 0 and 1 and their
respective outputs and two bottom tiles with 0 and 1 inputs and their respective
outputs), for a total of 12 tiles. Since a binary zig-zag CA tile set is defined by
4 two-input Boolean functions and 2 one-input Boolean functions (Figure 3(b))
and there are 16 two-input Boolean functions and 4 one-input Boolean functions,
there are 164 × 42 = 1048576 binary zig-zag CA tile sets.

4 Predicting the Fitness of Zig-Zag CA Crystals

Growth of crystals is driven by diffusion of tiles into growth sites; the rate of tile
attachment is thus proportional to tile concentration [20]. We consider a simple
model of attachment rates where the time it takes a tile with concentration [z]
to attach is 1

kf [z] , where kf is the forward rate constant of attachment [33],
independent of tile type.

To examine how concentrations affect crystal growth rates and therefore crys-
tal fitness, we consider the case where the rule tile concentrations are [r], the
concentrations of three of the four edge tiles (referred to as common edge tiles)
are [e], and the concentration of the fourth edge tile (referred to as the rare edge
tile) is [q]. Let n be the number of rule tiles per column in the repeating pattern
(cycle) of a crystal, c the number of common edge tiles used per cycle and u
the number of rare edge tiles used per cycle. Since one edge tile is added per
column, the average number of common edge tiles used per column is c

c+u and
the average number of rare edge tiles used per column is u

c+u . The average time
to add a column of tiles, 〈T 〉, is therefore:

〈T 〉 =
1
kf

(
c

(c + u)[e]
+

u

(c + u)[q]
+

n

[r]

)
. (1)

When the concentration of all edge tiles is the same, i.e. [q] = [e], 〈T 〉 grows
monotonically with the number of rule tiles in each column of the crystal. How-
ever, when [q] is very small, the middle term dominates. A wider crystal with n1
rows of rule tiles, c1 common edge tiles, and u1 rare edge tiles could grow faster
than a thinner crystal with n2, c2, and u2 rule, common edge and rare edge tiles,
respectively, if 〈T1〉 < 〈T2〉, i.e. the following equation is satisfied for n1 > n2 :

(n1 − n2)
1
[r]

<

(
c2

c2 + u2
− c1

c1 + u1

)
1
[e]

+
(

u2

c2 + u2
− u1

c1 + u1

)
1
[q]

. (2)

154 R. Schulman and E. Winfree

Thus when 1
[q] 	 1

[e] , a wider crystal can grow more quickly than thinner ones
if it uses particularly few rare edge tiles even though it must add more rule tiles
per column. Further, for any case where u1

c1+u1
< u2

c2+u2
it is possible to find an

environment (in terms of [r], [e], and [q]) where the wider crystal grows more
quickly.

5 Evolution of Binary Zig-Zag CA Crystals

We sought to determine whether any binary zig-zag CA tile sets had the property
that 〈T 〉, the average time to add a crystal row, could decrease with width when
one edge tile type was rare. For each tile set, we enumerated the patterns formed
of particular widths. We then tabulated the frequency with which each pattern
used top edge tiles with a “0” input vs top edge tiles with a “1” input, i.e. top
edge zeros and top edge ones. Likewise, we tabulated the frequency that each
pattern used bottom edge zeros and bottom edge ones.

As shown in Section 4, if the rare edge tile is present at a sufficiently low
concentration, a pattern using few rare edge tiles per column is selected for. If a
pattern of width w uses no rare edge tiles, no matter what the concentration of
the rare edge tile, no pattern of width larger than w would be selected for simply
because [q] is low. In order to search for tile sets in which open-ended evolution
might be feasible, therefore, we specifically searched for tile sets where no pattern
could ever eliminate the rare edge tile, but where progressively wider patterns
used the rare edge tile progressively less frequently than thinner patterns. We
call these evolvable tile sets.

We first surveyed the edge tile usage of patterns of widths 2 to 12 of 4 randomly
chosen tile sets (Figure 4(a)). In the first example (tile set 962191), all patterns
either use only top edge zeros or top edge ones. Thus, if either tile type were rare,
the thinnest type of crystal that used only the other top edge tile type would be
the fittest. The same is true for bottom edge ones and zeros. No concentrations
of edge tiles would be expected to induce the evolution of crystals wider than
these crystals. The concentration of edge tiles used by the crystals in the other
3 examples follow the same sort of pattern. Since we did not observe that any
of the 4 randomly chosen tile sets have the capacity for open-ended evolution as
a result of a edge tile concentration differences, it is unlikely that most binary
zig-zag CA tile sets are evolvable.

To find evolvable binary zig-zag CA tile sets, we surveyed all tile sets and iden-
tified those for which there was at least one edge tile that when rare, produced
a fitter crystal with each increase in width from 2 through 7 tiles. This search
produced 6144 putative evolvable tile sets. The edge tile usage of all patterns up
to width 12 produced by a selection of these tile sets is shown in Figures 4(b-c).

The rate at which rare tile type usage decreases with width determines the
shape of the fitness landscape. In most putatively evolvable tile sets that we
examined, the fittest pattern of a given width has a per-row usage of the rare
edge tile of roughly either 1

w or 1
2w . In each case, it appears that one rare tile

is used in each repeat unit of the fit pattern, and the repeat units have lengths
either linear or exponential in the width.

Simple Evolution of Complex Crystal Species 155

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 896049, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 796707, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 962191, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 423574, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

(a) Randomly selected tile sets

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 968599, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 406636, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 949532, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 79439, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

(b) Roughly 1
w

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 132680, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 842220, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

(c) Roughly 1
2w

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 157511, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 694599, widths 2 to 12

Percent top edge zeros

P
er

ce
nt

 b
ot

to
m

 e
dg

e
ze

ro
s

(d) Irregular

Fig. 4. Edge tile usage by zig-zag CA tile sets. The proportional usage of top
and bottom zero and one tiles for each possible assembly of widths 2 to 12 for 12
representative tile sets. Each dot is one assembly type, and color indicates width, in
rainbow order – red is width 2 and violet is width 12. The tile set number is computed
as described in Figure 3(b) (a) 4 randomly selected tile sets. (b-d) Tile sets for which
per-row usage of either or both top and bottom edge zero tiles decreases roughly as 1

w

(b), 1
2w (c), or irregularly (d) with width.

A second search of 100 random tile sets produced 7 tile sets for which fitter
patterns appeared with some increases in width but not others. Figure 4(d)
shows the usage patterns produced by two such tile sets. When the appropriate
edge tile is rare, the first tile set produces a potentially fitter assembly type with
assemblies of 1, 3, 5, 7, and 9 rows of rule tiles, and the second produces such
new patterns with assemblies of 1, 2, 4, 5, and 10 tiles. Figure 5(c) shows some
patterns produced by a rule of this type.

6 Evolution of Logically Reversible Zig-Zag CA Crystals

In the analysis in Sections 4 and 5, we assumed that the crystal’s growth rate
was the growth rate from its right end. However, in practice growth can occur
from both the left and right ends of the crystals and the growth rate is the sum
of the growth rates at each end.

156 R. Schulman and E. Winfree

(a)

(b) (c)

Fig. 5. Patterns of widths 2 to 5 of some representative evolvable tile sets.
(a) Patterns from tile set 968599. (b) Patterns from tile set 132680. Note that the
patterns produced by the tiles count in binary [11]. (c) Patterns from tile set 694599.

Growth from the right end is equivalent to running the tile set’s zig-zag CA
forward. By definition there is exactly one tile that can attach at the growth site
by two edges simultaneously (i.e. energetically favorably) and the attachment of
this tile creates a new growth site where exactly one tile can attach favorably
(Figure 2(c)). The rightward growth rate is therefore easy to approximate by
computing the rates of attachment of each tile in this series.

0 20 40 60 80 100
0

20

40

60

80

100
Tile set 670873 for widths 3 to 12

Percent left edge zeros

P
er

ce
nt

 r
ig

ht
 e

dg
e

ze
ro

s

Fig. 6. Edge tile usage by a log-
ically reversible zig-zag CA tile
set. Format as in Figure 4.

Growth from the left end is equivalent
to running the tile set’s zig-zag CA back-
wards. Because a zig-zag CA is not guar-
anteed to be reversible, there may be no,
one or multiple tiles that can fit at a given
growth site. The dynamics of growth there-
fore can be more complex than in the right-
ward direction and we ignored these dynam-
ics in Section 5. However, a subset of zig-
zag CAs are logically reversible, i.e. there is
always exactly one tile that can fit at the
leftward growth site. A logically reversible
zig-zag CA’s left and right edges grow at the
same speed. Our simple analysis of fitness

landscapes based on growth rates is particularly accurate for these tile sets. Here
we consider whether there are logically reversible zig-zag CA tile sets where a
low concentration of an edge tile could drive evolution toward complex crystals,
i.e. they are evolvable.

Simple Evolution of Complex Crystal Species 157

There are just 2304 types of logically reversible binary zig-zag cellular au-
tomata (an example being the tile set in Figure 2(a)). An exhaustive survey of
these tile sets produced 16 for which each increase in width up to at least 12
could produce a new, fitter crystal (Figure 6).

For each of the 16 tile sets, the longest pattern of width w is 2w columns long,
and with each increasing width the fittest pattern is the longest and uses just
one rare edge tile.

Because the cellular automaton is logically reversible, there can be no transient
states; every column is included in a repeating pattern. All patterns are have
a short repeat length, so the number of patterns increases exponentially with
width. As a result, crystal growth is susceptible to growth errors: most mistakes
will change the pattern being copied. This is in contrast to the evolvable logically
irreversible tile sets that we found in Section 5, which had only one pattern type
for each width.

7 Kinetic Simulation of an Evolution Process

To determine whether the proposed selection pressure results in wider ribbons in
a more realistic crystal growth model, we simulated crystal growth and fragmen-
tation using a full model of kinetic tile assembly (kTAM [36]) with the software
package xgrow [34]. We compared simulated evolutionary dynamics for two tile
sets. According to the simple analysis in Section 4, evolution of crystals assem-
bled from the tile set we simulated (shown in Figure 2(a)) is predicted to produce
wider crystals when either top or bottom edge ones were rare. The second tile set
differed from the first only in that the outputs of the top 2 tiles were swapped.
This small change also changed the fitness landscape such that the fittest crystal
is predicted to have no rule tile rows.

In the simulation, tiles reversibly attached to each other or to existing as-
semblies with a diffusion dependent forward rate (kf = 106/M/s [33]) and a
backward rate kr = kfe−ΔG◦/RT set by the ΔG of tile attachment, which was
assumed to be strictly cooperative: ΔG◦ = −17 kcal/mol for an attachment by
two bonds and ΔG◦ = −8.5 kcal/mol for attachment by one bond. The energy
for two sticky end bond attachments was chosen in order to be close to exper-
imental measurements [27]. The concentration of free tiles was held constant,
and crystal shearing was initiated at a given tile with rate 1

2500 seconds with
probability approximately e−l/4 where l is the length of a vertically or hori-
zontally oriented shearing path. Rule tiles, top edge tiles and the bottom edge
zero tile were present at 2.25 μM, and the bottom edge one tile was present at
0.025 μM. The simulation tracked the crystals in a volume of 10−14 liters, and
serial dilution was modelled by removing each crystal from the simulation with
probability 0.5 when the mixture reached 1000 crystals consisting of at least 2
monomers.

Figure 7 shows the rate at which assemblies of different widths arise in the
two simulations. An energetic barrier to nucleation [29] meant that more than
99% of crystals originated as fragments sheared from another crystal rather than

158 R. Schulman and E. Winfree

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1
Rule 670873

Simulated time (hours)

F
ra

ct
io

n
of

 c
ry

st
al

 p
op

ul
at

io
n

1

2
3

4

5

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
Rule 670874

Simulated time (hours)

F
ra

ct
io

n
of

 c
ry

st
al

 p
op

ul
at

io
n

1

2
3

4

5

1

2

3

Fig. 7. Simulated evolution of zig-zag CA crystals. Numbers inside the graph
indicate the width, including edge tiles. (a) Logically reversible tile set 670873, where
the minimum possible usage of a rare edge tile increases with crystal width. (b) Log-
ically reversible tile set 670874, where a crystal of width 2, which uses no rare edge
tiles, is predicted to be fittest.

having spontaneously nucleated. The resulting dynamics show that wide crystals
appear only for the tile set where this behavior was predicted by the analysis
in Section 6. Equations 1 and 2 predict that for a fixed rare tile concentration,
there should be an optimal width. Optimal widths for both tile sets in Figure 7
were observed.

8 Conclusions and Open Questions

This work suggests that the evolution of complex crystals from a simple set of
monomers can be induced by differences in the monomer concentrations during
crystal growth and replication. The components are simple in the sense that it
would be feasible to synthesize their components and to watch their assembly and
replication in the laboratory [3]. It will be important to determine how much the
predictions made here hold up under a more realistic model of self-assembly. We
must understand how growth errors and spontaneous nucleation of new crystals
affect the evolutionary process. In any evolutionary process there is a bit-wise
error rate (an error threshold) above which evolution becomes impossible [12].
There is reason to believe the tile sets that we study may be robust to many errors
and therefore, that they can evolve even under imperfect assembly conditions.
For example, in most of the logically irreversible cellular automata tile sets that
we investigate, there is only 1 pattern that can be copied at a given crystal
width. A mismatch error in such a tile set would simply change the segment of
the pattern being copied at the growth front, rather than changing the pattern
altogether.

Unfortunately, though, the highest acceptable bit-wise mutation rate and
therefore the robustness of a sequence to mutation decreases with crystal width.
Might we as a consequence expect a limit to the sizes of patterns that can be

Simple Evolution of Complex Crystal Species 159

copied under attainable physical conditions? Naively, the answer to this ques-
tion seems to be yes. But it may be that for some tile sets where the number of
patterns a tile set can copy grows sub-exponentially with width, the error rate
for the whole pattern may not increase with width.

However these questions are answered, this work already suggests two im-
portant points. First, simple crystals are capable of complex evolution. More
investigation is needed to determine whether natural crystals are capable of
complex evolution; specific crystals such as clays will often have fewer monomer
types, more complex dynamics, and a greater variety of specific and nonspecific
interactions between monomer types. Since many of the details of these dynam-
ics and affinities are still unknown in clay and other natural crystal systems,
simpler DNA tile systems such as DNA nanotubes [23,40] may also be useful in
further investigations.

Second, our analysis suggests a more important point about complex evolu-
tion in simple systems. While much attention has been given to the chemical
functionality of sequences, it is generally assumed that the dynamics of assem-
bling a sequence are of ancillary interest in a Darwinian evolution process. In
biology, where sequence information is often stored in linear polymers such as
genomic DNA and all monomers bind to their sequence neighbors using the same
chemistry, this may be mostly true. But the constraints in crystal patterns make
logic a fertile ground for complex evolution, and similar constraints are likely for
other kinds of chemical replicators. In considering the replication in a more gen-
eral class of chemical systems, therefore, it is worth considering the contribution
of logical evolution to the dynamics of an evolutionary process.

References

1. Adami, C.: Introduction to Artifical Life. Springer, Berlin (1998)
2. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for

algorithmic self-assembly: Copying and counting. Nano Letters 5, 2586–2592 (2005)
3. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-

bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences USA 106(15), 6054–6059 (2009)

4. Bullard, T., Freudenthal, J., Avagyan, S., Kahr, B.: Test of Cairns-Smith’s crystals-
as-genes hypothesis. Faraday Discussions 136, 231–245 (2007)

5. Cairns-Smith, A.G.: The origin of life and the nature of the primitive gene. Journal
of Theoretical Biology 10, 53–88 (1966)

6. Cairns-Smith, A.G.: Genetic Takeover and the Mineral Origins of Life. Cambridge
University Press, Cambridge (1982)

7. Cairns-Smith, A.G.: The chemistry of materials for artificial Darwinian systems.
International Reviews in Physical Chemistry 7, 209–250 (1988)

8. Cairns-Smith, A.G., Hartman, H.: Clay Minerals and the Origin of Life. Cambridge
University Press, Cambridge (1986)

9. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during
algorithmic self-assembly. Nano Letters 7(9), 2912–2919 (2007)

10. Chen, J., Reif, J.H. (eds.): DNA 9. LNCS, vol. 2943. Springer, Heidelberg (2004)

160 R. Schulman and E. Winfree

11. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In:
Chen and Reif [10], pp. 91–107

12. Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. Journal of Physical
Chemistry 92, 6881–6891 (1988)

13. Fu, T.-J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–
3220 (1993)

14. Griffith, S., Goldwater, D., Jacobson, J.M.: Self-replication from random parts.
Nature 437, 636 (2005)

15. Hariadi, R.F., Yurke, B.: Elongational-flow-induced scission of DNA nanotubes in
laminar flow. Physical Review E 82(4), 046307 (2010),
http://pre.aps.org/abstract/PRE/v82/i4/e046307

16. Klavins, E.: Universal self-replication using graph grammars. In: 2004 International
Conference on MEMS, NANO and Smart Systems (ICMENS 2004), pp. 198–204
(2004)

17. Li, J., Browning, S., Mahal, S.P., Oelschlegel, A.M., Weissmann, C.: Darwinian
evolution of prions in cell culture. Science 327(5967), 869–872 (2010)

18. Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Sci-
ence 323(5918), 1229–1232 (2009)

19. Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA Holliday junction
arrays visualized by atomic force microscopy. Journal of the American Chemical
Society 121, 5437–5443 (1999)

20. Markov, I.V.: Crystal Growth for Beginners. World Scientific, Singapore (2003)
21. Mills, D., Peterson, N., Spiegelman, S.: An extracellular Darwinian experiment with

a self-duplicating nucleic acid molecule. Proceedings of the National Academy of
Sciences USA 58, 217–224 (1967)

22. Orgel, L.E., Crick, F.H.C.: Anticipating an RNA world. Some past speculations on
the origin of life: Where are they today? FASEB Journal 7, 238–239 (1993)

23. Rothemund, P.W.K., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K.,
Winfree, E.: Design and characterization of programmable DNA nanotubes. Jour-
nal of the American Chemical Society 126(50), 16344–16352 (2004)

24. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLOS Biology 2, 424–436 (2004)

25. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Symposium on Theory of Computing (STOC), pp. 459–468. ACM,
New York (2000)

26. Schulman, R., Winfree, E.: Self-replication and evolution of DNA crystals. In:
Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.)
ECAL 2005. LNCS (LNAI), vol. 3630, pp. 734–743. Springer, Heidelberg (2005)

27. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic bar-
rier to nucleation. Proceedings of the National Academy of Sciences USA 104(39),
15236–15241 (2007)

28. Schulman, R., Winfree, E.: How crystals that sense and respond to their environ-
ments could evolve. Natural Computing 7, 219–237 (2008)

29. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic
self-assembly. SIAM Journal on Computation 39, 1581–1616 (2009)

30. Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D.: The lipid world. Origins of Life
and Evolution of Biospheres 31(1-2), 119–145 (2001)

31. Wächtersäuser, G.: Before enzymes and templates: theory of surface metabolism.
Microbiology and Molecular Biology Reviews 52(4), 452–484 (1988)

http://pre.aps.org/abstract/PRE/v82/i4/e046307

Simple Evolution of Complex Crystal Species 161

32. Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.L.: Autopoetic self-
reproduction of fatty acid vesicles. Journal of the American Chemical Society 116,
11649–11654 (1994)

33. Wetmur, J.G., Fresco, J.: DNA probes: Applications of the principles of nucleic
acid hybridization. Critical Reviews in Biochemistry and Molecular Biology 26(3-
4), 227–259 (1991)

34. Winfree, E.: The xgrow simulator, http://www.dna.caltech.edu/Xgrow/
35. Winfree, E.: On the computational power of DNA annealing and ligation. In: Lip-

ton, R.J., Baum, E.B. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–
221. American Mathematical Society, Providence (1996)

36. Winfree, E.: Simulations of computing by self-assembly. Technical Report
CS-TR:1998.22, Caltech (1998)

37. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error-correction for algorithmic
self-assembly. In: Chen and Reif [10], pp. 126–144

38. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

39. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata: An Atlas of
Basin of Attraction Fields of One-Dimensional Cellular Automata. Perseus Books,
Cambridge (1992)

40. Yin, P., Hariadi, R.F., Sahu, S., Choi, H.M.T., Park, S.H., LaBean, T.H., Reif,
J.H.: Programming DNA tube circumferences. Science 321, 824–826 (2008)

http://www.dna.caltech.edu/Xgrow/

Towards Domain-Based Sequence Design for
DNA Strand Displacement Reactions

David Yu Zhang

California Institute of Technology, Pasadena, CA, USA
dzhang@dna.caltech.edu

Abstract. DNA strand displacement has been used to construct a va-
riety of components, devices, and circuits. The sequences of involved
nucleic acid molecules can greatly influence the kinetics and function of
strand displacement reactions. To facilitate consideration of spurious re-
actions during the design process, one common strategy is to subdivide
DNA strands into domains, continuous nucleic acid bases that can be
abstracted to act as a unit in hybridization and dissociation. Here, con-
siderations for domain-based sequence design are discussed, and heuris-
tics are presented for the sequence design of domains. Based on these
heuristics, a randomized algorithm is implemented for sequence design.

1 Introduction

DNA strand displacement is a process through which a single-stranded DNA
molecule (strand) reacts with a multi-stranded DNA complex to release another
DNA strand (Fig. 1AB). Typically, strand displacement is facilitated by toeholds,
short complementary single-stranded domains that act to colocalize the invading
strand with the complex. The thermodynamics of the toehold region can be
calculated based on sequence [1] [2] [3], and largely determine the kinetics of the
strand displacement reaction if the invading strand does not possess significant
secondary structure [4].

DNA strand displacement has been used to construct a number of dynamic
DNA devices, including logic gates and circuits [5] [7] [6] [8] [9], catalytic reac-
tions and networks [11] [10] [12] [13] [14] [15] [16], and nanoscale motors and
walkers [17] [18] [19] [20]. These devices’ mechanisms are based on Watson-Crick
complementarity, and are expected to function for a wide variety of DNA se-
quences. Nevertheless, the kinetics of these devices’ function are slowed if the
sequences possess significant secondary structure (Fig. 1C) [21] [22]. As strand
displacement-based DNA devices become more reliable, many different such
devices will be integrated to construct complex reaction networks with more
advanced functions. Many different DNA molecules must thus perform their
function simultaneously without interfering with each other. Thus, an automated
method for DNA sequence design is needed for strand displacement-based DNA
devices.

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 162–175, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards Domain-Based Sequence Design for DNA 163

A B

Strand Y

Complex S

Strand X

Complex L

fast
5’

3’
5’3’

CCACATACATCATATT

CCCTCATTCAATACCCTACG
GGGAGTAAGTTATGGGATGC AGAGGTACAGTGAAG

1

2

2 3

2 3

2 3

2
1

2
1

2 3

2 3

1

2

2 3

C

Free X

fast

2 3

2 3

2
1

2
1

2 3

2 3

Folded X2 3

slow

Fig. 1. DNA strand displacement (A) DNA abstraction. DNA strands and complexes
are represented by directional lines, with the hook denoting the 3’ end. DNA strands
can be functionally abstracted into domains, consecutive bases of DNA that act as a
unit in binding and dissociation. Domains are represented by numbers; a barred domain
denotes a domain complementary in sequence to the unbarred domain (e.g. domain 2̄
is complementary to domain 2). Domain 2 is referred to in this paper as a “branch
migration domain” and domain 2̄ is referred to as a “complement domain.” Domains
3 and 3̄ are referred to as “toehold domains.” (B) DNA strand displacement. (C)
Secondary structure could hinder the kinetics of strand displacement. Strand X needs
to unfold into a free state before it can branch migrate.

Although excellent algorithmic methods for DNA sequence design have been
presented [23] [24] [25] [26] [27] [28], these methods generally maximize the prob-
ability of DNA strands forming desired structures and complexes at equilib-
rium, such as in the case for many DNA self assembly applications. For strand
displacement-based devices and networks, thermodynamics-based methods of se-
quence design are not guaranteed to provide satisfactory sequences, because they
neglect the consideration of kinetic pathways between DNA strand and complex
states. In Fig. 2, for example, the strand shown in Fig. 2A may proceed through
strand displacement slower than the strand in Fig. 2B, despite being the former
possessing a minimum free energy (mfe) structure with standard free energy
(ΔG◦) closer to 0.

This paper presents a domain-based approach to sequence design of strand
displacement-based reaction, networks, and devices. Domains are consecutive
bases that serve as functional units in binding and dissociation (Fig. 1A), pro-
viding a useful abstraction for the design DNA devices. The sequences of in-
volved DNA strands are obtained by concatenating the sequences of the strand’s
constituent domains. This domain-based approach to sequence design is simple

164 D.Y. Zhang

and generalizes to many different possible DNA complexes and reactions, but is
limited in its ability to eliminate undesirable spurious hybridization between
DNA strands, particularly at the interface between different domains.

The other extreme, sequence design based on thermodynamic and kinetic
analysis of all possible intermediates in strand displacement reactions, would
potentially allow a rigorous method for generating optimal sequences for any
reaction network. However, such a sequence designer would require significantly
more computational resources, and is not available at present time. Additionally,
although the thermodynamics of most DNA structural motifs have been carefully
characterized over the past 20 years [1] [2] [3], two particular ones relevant to the
analysis of multi-stranded intermediate complexes remain elusive: the energetics
of pseudo-knotted complexes [29] [30] [31] and coaxial stacks [32] [33] [34] [35].
This incompleteness of DNA thermodynamic data suggest that even these more
complex methods may not generate truly “optimal” sequences.

2 Considerations

In this section, considerations for domain-based sequence design are presented.
These considerations are considered generally relevant to sequence design for
DNA constructions involving strand displacement.

Avoidance of Long Continuous Regions of Spurious Hybridization.
Long continuous regions of spurious binding in the branch migration domain
should be avoided with priority over several shorter regions of spurious binding,
even if the latter result in a more negative minimum free energy structure for the
domain or strand. The reason for this is because branch migration is a sequential
process: the binding energy of the strongest continuous region of hybridization
likely determines the activation energy of the branch migration process.

When multiple different helices are present as in Fig. 2B, only the first of
them needs to spontaneously open in order for branch migration to initiate. In
contrast, when long continuous regions of spurious hybridization exist, branch
migration over each of these structured bases is energetically unfavorable, and
the kinetics of the overall branch migration process will be slowed exponentially
in the energy of the binding region. To take a numerical example, if the hairpin
shown in Fig. 2A has energy of −10 kcal/mol, while each of the hairpins in Fig. 2B
has energy −7 kcal/mol, the kinetics of the strand displacement reaction may
be a factor of 100 faster for reaction in Fig. 2B at room temperature, despite
having an strand mfe of −14 kcal/mol.

Furthermore, because the displaced domain is the same sequence as the branch
migration domain, the displaced portion of the domain will start forming the
structures that spontaneously opened in branch migration domain. For example,
in the bottom-left panel of Fig. 2B, the red strand forms the hairpin on its 3’
end, analogous to the 3’ hairpin of the blue strand. The formation of secondary
structure by the displaced strand thus can facilitate branch migration.

There are other possible mechanisms for branch migration through highly
structured domains of DNA, such as through 4-way branch migration. However,

Towards Domain-Based Sequence Design for DNA 165

2

2 3

+

1

32

2 3

+

2

3

3

2

1

32

2

2

2 3

1
3

2

2

1

2

2 3

+

1

32

2 3

+

2
3

2

2 3

1
3

3
1

32

2

2 3

1
3 3

1

32

1
2

A B

Fig. 2. Failure of thermodynamics-based sequence design. The ΔG◦ (standard free
energy) of the folded domain 2 is more negative in (B) than in (A), but the sequential
nature of branch migration means that the strand displacement reaction involving (B)
could be faster than that of (A).

the author expects that most sequences generated with intent to avoid spurious
hybridization will exhibit low enough amounts of spurious hybridization that the
dominant pathway for branch migration will be through spontaneous dissociation
of spurious hybridization.

Interaction and Crosstalk: Domain Concentration Effects. We define
a “branch migration domain” to be a domain which competes to binding to a
“complement domain” via branch migration. In Fig. 1, the 2 domain is a branch
migration domain, while the 2̄ domain is a complement domain. For consistency,
branch migration domains are all represented by unbarred numbers.

In strand displacement reactions, there is a necessary excess of branch migra-
tion domains over complement domains. For example, there are two copies of
domain 2 in Fig. 2, but only one copy of domain 2̄. This excess manifests as a
very large difference in the concentrations of single-stranded branch migration
domains and complement domains. Almost all of the complement domains will
be double-stranded at all times, while the branch migration domains will be
single-stranded in significant concentrations.

166 D.Y. Zhang

Spurious hybridization occurs only between two single-stranded domains; this
causes potential spurious hybridization involving a complement domain to be
significantly less likely, and that between two complement domains to be nearly
non-existent. Consequently, sequence design should primarily seek to minimize
spurious binding between different branch migration domains (here refered to
as interactions, Fig. 3B). Spurious hybridization between branch migration do-
mains and complement domains (here refered to as crosstalk, Fig. 3B) is also
undesirable insofar as two different domains may non-specifically displace each
other in binding to their respective complements. However, mismatches desta-
bilize the thermodynamics and also significantly impede the kinetics of branch
migration [13] [36]. Because most domain sequences designed will differ from
each other by at least a few bases, crosstalk is usually not a problem in practice.

Of interactions, self-interactions (wherein a domain significantly hybridizes
to an identical copy of itself) can be considered the most problematic for two
reasons: First, intra-domain and intra-molecular hybridization are entropically
favored because of high local concentration. Second, assuming the thermodynam-
ics of all interactions to be equal, dimerization is likely to be more prevalent than
other interactions, because the concentration of a single-stranded domain corre-
lates perfectly with itself (while different domains may not be single-stranded in
high concentration at the same time in dynamic circuits).

Thus, sequence design for branch migration domains should avoid domain
sequences with self-interactions with highest priority, other interactions with
secondary priority, and minimize crosstalk only insofar as it does not hurt the
previous two criteria. For sequence design of toehold domains, crosstalk is a
larger consideration on the par of interactions.

Minimizing Guanine Frequency in Branch Migration Domains. Of the
four canonical DNA nucleotides, guanine (G) stands out in being the most prob-
lematic with regards to sequence design for synthetic biology purposes, both
because it is promiscuous (binding to thymine (T) nearly as strongly as adenine
(A) [1]) and because it can form guanine quartets [37], a quadruplex structure
based on non-Watson Crick binding, usually requiring at least 4 consecutive G’s.

For these reasons, it is desirable to minimize the total concentration of guanine
nucleotides used in the system. As pointed out previously, branch migration
domains are necessarily in higher concentrations than complement domains–this
leads to a natural strategy of minimizing the frequency of G’s in branch migration
domains. This strategy is further desirable because both the branch migration
domains and the complement domains are now constructed with only 3 of the
4 nucleotides (C/A/T for the former, G/A/T for the latter), which drastically
reduces the chance of self-interactions.

The idea of using only some of the four nucleotide bases in designing DNA
sequences was first proposed by Mir [39], who suggested that restricted alpha-
bets may practically avoid nonspecific hybridization, based on experimentally
observed hybridization behavior of various sequences [38]. Experimental use of
DNA strands with restricted alphabets for DNA nanotechnology purposes is
relatively recent [10] [4] [40].

Towards Domain-Based Sequence Design for DNA 167

Avoidance of Long A/T and Long G/C Regions. For certain applications,
it may be desirable to avoid long uninterrupted stretches of weak (A/T) bases or
strong (G/C) bases. Long continuous regions of weak A/T bindings will melt at
significantly lower temperatures and breathe significantly more than those with
more mixed base distributions. Additionally, the hybridization rate constant of
domains with only A/T bases have been reported to be an order of magnitude
lower than that of one with a uniform distribution of G/C/A/T bases [4].

On the other hand, long continuous regions of strong G/C bindings are more
likely to be spuriously hybridized to other strands and domains, because the
strong G/C binding will counteract the destabilizing influences of DNA bulges
and mismatches [1]. Additionally, long continuous regions of C/G sequence are
more likely to adopt Z-DNA configurations [41]. Finally, branch migrate are likely
to proceed more slowly in G/C rich regions due to their stronger base stacking
thermodynamics, which may in turn necessitate stronger toehold domains for
fast strand displacement [4].

Breathing Near the End of Helices. One frequent concern in the design
and construction of strand displacement reactions and networks is blunt end
strand exchange, strand displacement in the absence of single-stranded toehold
domains. The rate constant of blunt end strand exchange has been reported to be
on the order of 1 M−1 s−1 for multiple sequences [42] [43] [4]. This rate constant
could be significantly higher if the branch migration domain is terminated with
A or T.

The mechanism for blunt end strand exchange is postulated as the follow-
ing: The base pairs at the end of a double-stranded branch migration domain
“breathes,” temporarily unbinding despite the bound state being more favor-
able. Any strands possessing the branch migration domain that happens to be
in the local vicinity effectively has a few bases of toehold until the ends of the
complex re-hybridizes. Terminating branch migration domains with A/T base
pairs thus is likely to increase the rate constant of blunt end strand exchange
because A/T bases are weaker than G/C ones. Furthermore, measured thermo-
dynamic parameters show that DNA helices are destabilized when closed by an
A-T base pair (by 0.15 kcal/mol at room temperature) [1], in addition to the
weaker binding thermodynamics.

Consequently, it is desirable for all branch migration and complement domains
to start and end with G or C nucleotides. For reasons given previously, it is
recommended that branch migration domains start and end with C’s.

Interface Between Domains. One problem specific to domain-based sequence
design is the interface between domains. Typically, a stretch of binding typically
requires 3-4 consecutive complementary bases in order to be stable, and such
binding will be not be visible to the sequence design software if the bases span
multiple domains. Rather than abandoning domain-based sequence design alto-
gether, it should be possible to weight spurious hybridization near the ends of
the domains appropriately so that concatenated domains are unlikely to form
long spurious hybridization regions at their interface.

168 D.Y. Zhang

Consideration of the potential interface problems through calcuating the in-
teractions and crosstalks for all pairwise concatenations of domains is not rec-
ommended for two reasons: First, this causes a runtime slowdown quartic in the
number of domains (N4 pair-wise folds needed for N2 pair-wise concatenations,
where N is the original number of domains), negating the speed advantage of
low-level domain-based design software. Second, many of the possible pairwise
concatenations will not actually be present in solution, and optimizing the in-
teraction and crosstalk potential of these non-existent domain combinations will
actually worsen the crosstalk and interaction problems of the strands that do
exist.

A

OP (Output Product) F (Fuel)

SP (Side Product)

W (Waste)

Intermediate I2
Intermediate I1

6
3

3
S (Substrate)

4

4 5

2

2

1

C (Catalyst)
5

43

43

2

2

53
4

2 4

532 4

21

54
1

2

4 52 3

36 4

432

4 5

Start Here 1

2 3

1

Crosstalk Interaction

1 2

3

B

C

Fig. 3. Spurious partial hybridization between unrelated domains. (A) Asymmetry
of single-stranded prevalence. In the catalytic reaction cycle (adapted from Zhang et
al. [10]), the only barred domains that appear in single-stranded forms are 3̄ and 5̄,
the toeholds. (B) Accordingly, we draw a distinction between “crosstalk” and “inter-
action,” with the former denoting spurious partial hybridization between an unbarred
domain and a barred domain, while the latter refers to the hybridization between
two unbarred domains. Interactions are likely to have greater effects on kinetics than
crosstalk. (C) One shortcoming of domain-based sequence design are the possibility of
crosstalk and/or interactions at the interface between two domains.

3 Implementation

The Domain Design (DD) software presented here employs heuristics to quantify
the considerations discussed in the previous section; these heuristics are used to
generate an overall “score” for each domain, the worst (maximum) of which is the
global score for a set of domains. Simply put, the score is a metric that roughly
correlates with the likelihood that the kinetics of strand displacement reactions
deviate from predictable models [4]. The overall score for a set of domains is
simply the maximum (worst) of the domain scores. DD’s algorithm performs
sequence design by starting with a random set of sequences, and continually
attempting to mutate these sequences to achieve improved (lower) scores.

DD assumes that the domains designed are branch migration domains or the
unbarred toehold domains, and evaluates crosstalk potential by automatically

Towards Domain-Based Sequence Design for DNA 169

generating the complements to all designed domains. One good design strategy
may be to design all the toehold domains first, and subsequently design the
branch migration domains (with the toehold domain sequences locked–see User
Interactivity: Base locking).

The algorithm uses a number of scoring parameters, some of which are hard-
coded and can be turned on or off at the user’s discretion. The values of the
hard-coded parameters are by no means guaranteed to be optimal or even close
to optimal–these represent only the author’s best guess at good parameter values
for designing 10 or fewer different domains, each of length between 5 and 30
nucleotides. The pseudocode for the Domain Design software is given in Fig. 4.

Score Calculation. The score of a domain is computed as the sum of the
domain intrinsic score and the worst of its crosstalks and interactions.

The domain intrinsic score accounts for score penalties based only on the
sequence of the domain, rather than potential spurious hybridization. Domains
with four consecutive G’s or C’s receive a +50 to score, so as to strongly discour-
age the formation of G quartets. Domains with six consecutive G/C nucleotides
or six consecutive A/T nucleotides receive a +20 to score, if the user elects to
turn on the option for avoiding long regions of G/C binding and long regions of
A/T binding. Finally, the user-defined “importance” of the domain is also added
to the score (see User Interactivity: Domain importance).

The crosstalk and interaction scores are evaluated similarly, by evaluating
every potential way that the two domains can spurious hybridize and identi-
fying the way that yields the highest score. The score of each way of binding
is calculated as thus: each G-C base pair contribute +2 score and each A-T
pair contribute +1 score. Base pairing of x consecutive nucleotides without in-
tervening bulges or mismatches gain a further score of +2x−4 for x ≥ 5, thus
strongly discouraging the formation of long unbroken stretches for spurious hy-
bridization. Mismatch and bulge structures between stretches of hybridization
each contribute -3 score, with an additional -0.5 score for every base in the bulge
or mismatch in excess of 1. The scores of hybridization segments starting at the
first base of a domain or ending with the last base of a domain are increased by
+3, to reduce the potential for interface problems when concatenating domains.

The difference in DD’s treatment of crosstalk, interactions, and self-
interactions is that each’s score is modified linearly. Self-interactions receive a
+5 to score, interactions default to no adjustment, and crosstalk scores are di-
vided by 2 and then a -10 to score is applied. Thus, DD places higher priority
on self-interactions and lower priority on crosstalk.

In practice, DD will optimize the sequences of a set of 10 domains, each 20
nt long, in about a minute to the point where the overall score of the system is
between +10 and +15.

Algorithm. DD calculates interaction and crosstalk score of a pair of domains
by using a dynamic programming algorithm similar to those used mFold, DI-
NAMelt, and PairFold [44] [3] [45]. See source code for details.

170 D.Y. Zhang

In every run of the main loop, DD attempts to improve the overall score
by mutating one of the domains. If the overall score was improved through the
mutation, DD keeps the mutation. If the overall score was unchanged through the
mutation, DD keeps the mutation with 0.2 probability. If the overall score was
worsened through the mutation, DD discards the mutations. At the user’s option,
DD will either randomly select one of the domains for attempted mutation with
uniform probability, or will target the domain currently with the worst score
with probability 1

3 + 2
3N , where N is the number of domains designed. Targeting

the domain with worst score for mutations is expected to improve the speed of
the software.

The number of bases attempted to be mutated is roughly exponentially dis-
tributed, with 1

2 probability of mutating 1 base, 1
4 of mutating 2 bases, etc., up

to 10 bases or M (the number of bases in the domain), which ever is smaller.
The simultaneous mutation of multiple bases is thought to prevent the domain
sequences from entering local score optima.

Each base attempted to be mutated is replaced by a random base drawn
from the bases allowed to occur within the domain (see User Interactivity: Base
Composition). This means that there is some probability that an attempted
mutation does not actually change the base, because the new base happens to
be the same as the old. At the user’s option, the mutation process can be biased
against the incorporation of G, so that only 4% of attempted mutations result
in a G (assuming G is an allowed base in the first place).

Time and Space Complexity. The time complexity of the algorithm can be
estimated easily. Define the problem to be the design of N different domains,
each of length M . After every mutation attempt, the software must update the
interaction and crosstalk scores of all domains with the mutated domain, which
involves checking O(N) interactions and crosstalks. Calculating an interaction
or crosstalk score using dynamic programming requires O(M2) time. Thus, the
algorithm has time complexity O(NM2) per mutation attempt.

The number of total mutation attempts needed to in order to grant each
domain a fixed expected number of mutations attempts will scale linearly with
N . Thus, DD requires O(N2M2) time to reduce the overall score to decent levels.

In addition to the O(NM) space needed to store the sequences of the domains,
there are two major contributions to the space complexity of the algorithm.
First, during the evaluation of a crosstalk or interaction score, O(M2) space
is needed for the dynamic programming algorithm. Second, there are O(N2)
pairwise crosstalk and interaction scores between the N domains; these scores
need to be stored in order to allow fast score updating (not storing the scores
worsens the time complexity by a factor of N). Thus, the overall space complexity
of the algorithm is O(N2 + NM + M2) = O(N2 + M2).

4 User Interactivity

The Domain Design software (DD) presented here was written with the intention
of being a tool for helping the informed DNA engineer design sequences, rather

Towards Domain-Based Sequence Design for DNA 171

FOR i = 1:N
FOR j = 1:N
Score(i,j) = Domain_intrinsic_score(i) + Max(Crosstalk(i,j), Interaction(i,j))

END FOR
Domain_Score(i) = Max_over_j(Score(i,j))

END FOR
Global_score = Max_over_i(Domain_Score(i))

WHILE (TRUE)
k = Random(1,N)
New_domain(k) = Mutate(Domain(k))

FOR i = 1:M
New_Score(i, k) = Domain_intrinsic_score(i) + Max(Crosstalk(i,k), Interaction(i,k))
New_Score(k, i) = New_Score(i,k)
IF (i != k)

Domain_Score(i) = Max_over_j(Score(i,j))
END IF

END FOR
Domain_Score(k) = Max_over_j(Score(k, j)
New_global_score = Max_over_i(Domain_Score(i))

IF (New_global_score < Global_Score)
Domain(k) = New_domain(k)
FOR i = 1:M

Score(i,k) = New_score(i,k)
Score(k,i) = New_score(k,i)

END FOR
Global_Score = New_global_score

END IF

IF (Keyboard_input())
Prompt_user_menu()

END IF
END WHILE

Fig. 4. Pseudo-code for the Domain Design software

than being an arbitrator of sequences. Accordingly, Domain Design strives to
maximize the ease with which the user can modify and adjust the sequence
design process: The user may pause the sequence optimization process at any
time to tweak sequences as well as a number of design parameters, including the
ones listed below. User interactive sequence design is considered advantageous
because the user may be able to identify sequence problems that the software is
not able to detect.

Base Locking. DD acknowledges that the user may possess certain constraints
or preferences in the design of sequences. For example, the user may require the
promoter sequence for the T7 RNA polymerase [46] [47] or a deoxyribozyme
sequence [48] [49] [50] to be present at a given location. To this end, the user can
manually change the sequences of any domain, and can furthermore lock part or
all of a domain sequence from being mutated by the software. Locked bases are
visually displayed in red (Fig. 5A).

Domain Importance. Different domains serve different purposes in a reaction
network, and the frequency of a domain being single-stranded also varies among
domains. For example, toehold domains are required to colocalize the reactants of

172 D.Y. Zhang

the strand displacement reaction, and interactions/crosstalk involving toeholds
may slow the kinetics of strand displacement much more than similar inter-
actions/crosstalk between branch migration domains. Consequently, sequence-
based interactions and crosstalk in the different domains need to be weighed
differently. A rigorous and justified method for weighing the domains must take
into account the the context of the overall reaction network, and is beyond the
scope of a low-level domain-based approach to sequence design.

Instead, DD implements a user-defined “importance” parameter, which acts
as an additive term to the score of the domain (Fig. 5B). In DD, the overall
score of the set of domain sequences is determined by the domain with the
worst (highest) score, and in a typical run the scores of all of the domains will
be similar. The additive importance term to score means that high importance
domains must have lower values for the other score terms in order to have similar
score to domains with low importance.

Base Composition. DD allows the user to specify the base compositions of
each of the domains. For reasons outlined previously, it may be desirable to
design certain domains using 3-letter C/A/T alphabets. Furthermore, the user
also may wish to restrict certain domains to only A/T bases or G/C bases,
so that the domain is weak- or strong-binding. This feature also facilitates the
sequence design of non-standard DNA structures, such as Z-DNA [41] (C/G), or
Hoogsteen triplex bindings (C/T) [51].

Designing Sequences to Function with an Existing System. Finite re-
search funding usually implies that DNA nanotechnologists will tend to use and
reuse the same DNA oligonucleotide strands for many different purposes. It is
not only economical but also practical, because using previously tested strands
eliminates the chance for unexpected sequence-specific problems. Given this ten-
dency, it is therefore important for sequence design software to be able to design
optimal sequences given the constraints of the sequences of the existing strands.

DD allows the user to load sequences from files before attempting to design
new sequences. At the user’s option, the domains loaded in this manner can be
all be locked for the new design process. The user may also save the sequences
generated by DD at any time, and the save file will include information such as
the importance, composition, and lock status of all bases and domains.

5 Discussion

This paper discusses the author’s considerations for sequence design of DNA
strand displacement-based reactions and cascades, and makes a tentative rela-
tive weighing of the considerations in the form of various score penalties. A ran-
domized algorithm was presented that attempts to minimize the overall score of
the domains to be designed by mutating a few bases at a time, and accepting
mutations that lead to improved (lower) scores. The Domain Design (DD) soft-
ware runs the randomized algorithm for sequence design while allowing the user
to dynamically intervene.

Towards Domain-Based Sequence Design for DNA 173

A CB

D
Fig. 5. Sample run of Domain Design (DD) software. The sequences of the domains
are shown in (A), with the bases in red denoting bases that are “locked” and prevented
from mutation. The user can lock or unlock bases and domains through the course of the
design process, as well as manually changing the sequences of the domains. The numbers
in the (B) column list the “importance” of each domain, which is implemented as an
additive adjustment to the score of the domain. (C) shows the nucleotide compositions
of each of the domains, with “N” denoting no constraints (all four nucleotides may be
used). The overall score of the set of domains is shown in (D). The tiny decimal
portion in the overall score shows the number of the domain currently possessing the
worst score, to facilitate user intervention. In the figure, Domain 4 current has the
worst score.

At its heart, DD is a low-level domain-based approach to sequence design,
and does not consider the ways in which the domains are concatenated to form
DNA strands, nor the overall architecture of the reaction network using those
strands. As a result, the sequences generated by DD will in general not be as good
as those generated by software intended specifically for particular applications.
The comparative advantage of DD is its speed, simplicity, and generalizability–
by ignoring the details of particular strands and systems, it seeks to generate
sequences that are “good enough” for a wide variety of DNA nanotechnology
applications based on strand displacement. Empirical evidence of the success of
DD lie in experimental works published by the author, who used DD to design
the sequences for a variety of strand displacement-based reactions and networks
exhibiting catalysis [12] [4] [13] [8].

Currently, most experimental work on dynamic DNA nanotechnology have
been very limited in scale, with numbers of different DNA strands concurrently
in solution being less than 100. At these scales, it is relatively easy to design

174 D.Y. Zhang

sequences that do not significantly interact or crosstalk with one another. As
a result, many different sequence design software (both published and unpub-
lished) will likely generate sequences that work decently well for their intended
applications, and it is not easy to critically evaluate their relative performances.
As researchers develop and experimentally test larger reaction networks [40] [52]
[53], the demand for large numbers of DNA sequences that must exist stably
simultaneously in solution will drive the development of ever better and easy-
to-use DNA sequence design software.

Source code for Domain Design can be downloaded at:
http://www.dna.caltech.edu/∼dzhang/softsource/DD.c

Acknowledgements. This research is supported in part by NSF grants 0832824
and 0728703. DYZ is supported by the Fannie and John Hertz Foundation.

The author thanks Erik Winfree and David Soloveichik for testing the DD
code. The author thanks Erik Winfree for suggestions regarding the manuscript.

References

1. SantaLucia, J., Hicks, D.: Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004)
2. Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: SIAM Rev. 49,

65 (2007)
3. Zuker, M.: Nucleic Acids Res. 31, 3406 (2003)
4. Zhang, D.Y., Winfree, E.: J. Am. Chem. Soc. 131, 17303 (2009)
5. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Science 314, 1585 (2006)
6. Hagiya, M., Yaegashi, S., Takahashi, K.: Nanotechnology: Science and Computa-

tion, pp. 293–308 (2006)
7. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: J. Am. Chem. Soc. 129, 14875 (2007)
8. Zhang, D.Y.: Cooperative DNA strand displacement for DNA quantitation, detec-

tion, and logic (submitted, 2010)
9. Xie, Z., Liu, S.J., Bleris, L., Benenson, Y.: Nuc. Acids Res. (2010,

doi:10.1093/nar/gkq117)
10. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Science 318, 1121 (2007)
11. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills, A.P., Blakey, M.I., Simmel, F.C.:

Phys. Rev. Lett. 90, 118102 (2003)
12. Zhang, D.Y., Winfree, E.: J. Am. Chem. Soc. 130, 13921 (2008)
13. Zhang, D.Y., Winfree, E.: Nuc. Acid Res. (2010, pre-published online

doi:10.1093/nar/gkq088)
14. Seelig, G., Yurke, B., Winfree, E.: J. Am. Chem. Soc. 128, 12211 (2006)
15. Bois, J.S., Venkataraman, S., Choi, H.M.T., Spakowitz, A.J., Wang, Z.G., Pierce,

N.A.: Nuc. Acid Res. 33, 4090 (2005)
16. Green, S.J., Lubrich, D., Turberfield, A.J.: Biophysical Journal 91, 2966 (2006)
17. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: Nature 406,

605 (2000)
18. Dirks, R.M., Pierce, N.A.: Proc. Nat. Acad. Sci. 101, 15275 (2004)
19. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Nature 451, 318 (2008)
20. Omabegho, T., Sha, R., Seeman, N.C.: Science 324, 67 (2009)
21. Gao, Y., Wolf, L.K., Georgiadis, R.M.: Nuc. Acids Res. 34, 3370 (2006)

Towards Domain-Based Sequence Design for DNA 175

22. Sun, W., Mao, C., Liu, F., Seeman, N.C.: J. Mol. Biol. 282, 59 (1998)
23. Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Nucleic Acids Res. 32, 1392 (2004)
24. Seifferf, J., Huhle, A.: J. Biomol. Struct. Dyn. 25, 453 (2008)
25. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Nuc. Acids Res. 33, 903

(2005)
26. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos,

H.H., Smith, L.M.: Nuc. Acids Res. 33, 4951 (2005)
27. Sager, J., Stefanovic, D.: Designing Nucleotide Sequences for Computation: A Sur-

vey of Constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892,
pp. 275–289. Springer, Heidelberg (2006)

28. Seeman, N.C.: J. Biomol. Struct. Dyn. 8, 573–581 (1990)
29. Cao, S., Chen, S.: Nuc. Acids Res. 34, 2634 (2006)
30. Xayaphoummine, A., Bucher, T., Isambert, H.: Nuc. Acids Res. 33, W605 (2005)
31. Dirks, R.M., Pierce, N.A.: J. Comput. Chem. 25, 1295 (2004)
32. Protozanova, E., Yakovchuk, P., Frank-Kamenetskii, M.D.: J. Mol. Biol. 342, 775

(2004)
33. Pyshnyi, D.V., Ivanova, E.M.: Russian Chemical Bulletin 51, 1145 (2002)
34. Vasiliskov, V.A., Prokopenko, D.V., Mirzabekov, A.D.: Nuc. Acid Res. 29, 2303

(2001)
35. Pyshnyi, D.V., Ivanova, E.M.: Nucleosides, Nucleotides, and Nucleic Acids 23, 1057

(2004)
36. Panyutin, I.G., Hsieh, P.: J. Mol. Biol. 230, 413 (1993)
37. Sen, D., Gilbert, W.: Methods in enzymology 211, 191 (1992)
38. Southern, E.M., Casegreen, S.C., Elder, J.K., Johnson, M., Mir, K.U., Wang, L.,

Williams, J.C.: Nuc. Acids Res. 22, 1368 (1994)
39. Mir, K.U.: A restricted genetic alphabet for DNA computing. In: DNA Based

Computers II. DIMACS, vol. 44, pp. 243–246 (1998)
40. Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-Scale

Circuits. In: Goel, A., Simmel, F.C., Sośık, P. (eds.) DNA 14. LNCS, vol. 5347, pp.
70–89. Springer, Heidelberg (2009)

41. Mao, C., Sun, W., Shen, Z., Seeman, N.C.: Nature 397, 144 (1999)
42. Reynaldo, L.P., Vologodskii, A.V., Neri, B.P., Lyamichev, V.I.: J. Mol. Bio. 297,

511 (2000)
43. Yurke, B., Mills, A.P.: Genet. Prog. Evol. Mach. 4, 111 (2003)
44. Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and Thermodynamics for

RNA Secondary Structure Prediction: A Practical Guide. In: Barciszewski, J.,
Clark, B.F.C. (eds.) RNA Biochemistry and Biotechnology. NATO ASI Series.
Kluwer Academic Publishers, Dordrecht (1999)

45. Dimitrov, R.A., Zuker, M.: Biophys. J. 87, 215 (2004)
46. Kim, J., White, K.S., Winfree, E.: Mol. Syst. Biol. 2, 68 (2006)
47. Dittmer, W.U., Simmel, F.C.: Nano Lett. 4, 689 (2004)
48. Stojanovic, M.N., Semova, S., Kolpashchikov, D., Macdonald, J., Morgan, C., Ste-

fanovic, D.: J. Am. Chem. Soc. 127, 6914–6915 (2005)
49. Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic,

M.N.: J. Am. Chem. Soc. 128, 12693 (2006)
50. Lund, K., Manzo, A., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J.,

Taylor, S., Pei, R., Stojanovic, M.N., Walter, N., Winfree, E., Yan, H.: Nature (in
press, 2010)

51. Frank-Kamenetskii, M.D., Mirkin, S.M.: Annu. Rev. Biochem. 64, 65 (1995)
52. Soloveichik, D., Seelig, G., Winfree, E.: Proc. Nat. Acad. Sci. (2010, pre-published

online doi:10.1073/pnas.0909380107)
53. Phillips, A., Cardelli, L.: Journal of the Royal Society Interface 6, S419 (2009)

DNA-Based Fixed Gain Amplifiers and Linear
Classifier Circuits

David Yu Zhang1 and Georg Seelig2

1 California Institute of Technology, Pasadena, CA, USA
2 University of Washington, Seattle, WA, USA

dzhang@dna.caltech.edu, gseelig@u.washington.edu

Abstract. DNA catalysts have been developed as methods of amplify-
ing single-stranded nucleic acid signals. The maximum turnover (gain)
of these systems, however, often varies based on strand and complex pu-
rities, and has so far not been well-controlled. Here we introduce meth-
ods for controlling the asymptotic turnover of strand displacement-based
DNA catalysts and show how these could be used to construct linear
classifier systems.

1 Introduction

DNA nanotechnology has utilized the specific binding properties [1] and the
well-understood thermodynamics [2] and kinetics [3] [4] of nucleic acids to con-
struct dynamic cascaded reactions, such as logic gates and circuits [5] [6] [7] [8],
motors [9] [10], and amplification mechanisms [11] [12] [13] [14] [15] [16] [17].

DNA devices can operate in complex biochemical environments and can be
programmed to specifically interact with biological nucleic acids such as messen-
ger RNA (mRNA) or microRNA (miRNA). DNA circuits could be used to de-
velop novel point-of-care diagnostic devices that integrate detection with analysis
and do not require complex laboratory equipment. It has even been suggested
to use DNA devices as “smart therapeutics” that operate inside living cells and
integrate detection of specific disease markers with the activation of a thera-
peutic response based on the RNA interference pathway [18] [19], on antisense
oligonucleotides [20] or ribozymes.

Such applications require nucleic acid circuitry that can reliably identify a
specific disease state. Characteristic RNA markers that could serve as inputs to
a DNA analytic circuit have been identified for many diseases. However, it is
often not sufficient to simply detect the presence or absence of a set of RNA
markers. Instead the classifiers that distinguish a disease tissue from healthy tis-
sue (or other disease tissues) are often complex functions of the concentrations of
multiple RNA markers (see Refs. [21] [22] for examples of microRNA-expression
based classifiers of varying complexity).

Here we propose a molecular implementation for a specific class of classifiers,
namely linear classifiers. The classifier circuit computes a linear combination

Y. Sakakibara and Y. Mi (Eds.): DNA 16, LNCS 6518, pp. 176–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits 177

Fig. 1. Sketch of a hypothetical two-gene classifier. Samples from two different tissue
can be clearly distinguished based on the expression profiles of two RNA molecules.

with arbitrary (positive or negative) weights on a set of inputs (e.g. RNA
molecules) and compares the result to a threshold value. Fig. 1 shows a highly
simplified sketch of a linear two-gene classifier: the line separating the two differ-
ent tissue types is given by an equation of the form α1[RNA1]+α2[RNA2] = K.
Given a sample of unknown origin, we can now classify it as tissue type 1 or 2
based on a measurement of two RNAs. Unlike in the more conventional case
where the expression of each RNA is individually measured and the linear clas-
sification analysis is performed in silico, here both detection and analysis are
done on the molecular level, allowing in situ and in vivo applications.

Previous DNA logic gates and circuits were mostly designed for a situation
where inputs can be represented as Boolean variables and are either present
at a high concentration or completely absent [8] [5]. This does not necessarily
require the original inputs to be at a specific level; DNA-based signal restoration
units consisting of a threshold gate and an amplifier can be used to restore an
input with an arbitrary concentration to the expected logical TRUE or FALSE
values. Still, the digital nature of such circuits is inherently incompatible with
classification problems, in which the relative amounts of inputs determines the
value of the final output. The fixed gain amplification methods presented here
allow reliable tuning of analog signals encoded in the concentrations of nucleic
acids.

178 D.Y. Zhang and G. Seelig

2 Fixed Gain Amplifiers: Lowering Catalytic Turnover

One key component of the proposed linear classifier is a DNA-based catalytic
amplifier, that allows one signal-stranded nucleic acid to specifically produce or
release many single-stranded nucleic acid molecules of independent sequence. Im-
portantly, this amplifier needs to have a finite and controllable gain α such that
each input on average releases α copies of the output. Such a finite gain amplifier
would be useful not only in a linear classifier, where each detected RNA species
is assigned a different weight, but could also be used for pre-amplification of a
set of low-concentration inputs while maintaining their relative concentrations.

Existing DNA amplifiers have an intrinsically finite turnover; strand
displacement-based nucleic acid catalysts typically convert on the order of
10-100 substrates before being inactivated [14] [15]. Inactivation is most likely due
to defective substrate complexes or fuels [14] [15] [17]. The details of the inactiva-
tion process depend on the specifics of the amplifier design, but it seems likely that
imperfectly synthesized DNA strands are a major culprit. In practice, the maximal
turnover obtained seems to depend strongly on sequence, purification procedures,
strand orientation and similar experimental and design details. Therefore, while
the gain is finite, it can be characterized for any particular system.

The question then becomes if, starting from an arbitrary but high turnover, we
can lower the turnover controllably to a fixed value. Given the intrinsic turnover
of a catalytic system, intuitively it seems clear that we can lower the turnover
further either by increasing the fraction of imperfect substrate or through addi-
tion of an alternative competitive inhibitor that irreversibly binds to the catalyst.
However, it may be less intuitive how to best adjust the turnover to any specific
desired value.

To address the question of how to control turnover we first consider a sim-
ple model for a catalytic reaction with competitive inhibition. Afterwards, we
simulate a specific DNA implementation using measured reaction parameters. A
catalytic reaction in the presence of an impurity can be modeled as:

C + S
ka→ C + P (1)

C + D
kb→ ∅ (2)

In the first reaction a catalyst C transforms a substrate S into a product P .
The rate constant for this reaction is ka. The catalyst can also participate in a
second, unproductive reaction with an inhibitor (or damper) D. This reaction
proceeds at a rate constant kb.

The differential equations resulting from this model can be integrated with
initial conditions C(0) = C0, S(0) = S0, D(0) = D0 and P (0) = 0. Solving for
the product P (t) we get

P (t) = S0 − S0

(
1 − ρ

1 − ρekbΔt

)ka/kb

(3)

where we introduced the ratio ρ = C0/D0 and the difference Δ = C0 − D0 of
the initial amounts of catalyst and inhibitor.

DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits 179

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

P / S 08

C / D00

k / k = 0.2ba

k / k = 1ba

k / k = 5ba

Fig. 2. Output produced in a catalytic reaction with competitive inhibition as a func-
tion of the catalyst concentration. Final product P∞ is scaled by initial concentration
of substrate S0. Initial catalyst concentration C0 is measured in units of inhibitor con-
centration I0. We obtain different I/O characteristics depending on the ratio between
the rate constants ka and kb for the catalytic and the competitive reaction.

In an ideal system without competitive inhibition the final product concentra-
tion is always equal to the initial concentration of substrate. Given enough time
the catalyst will convert all substrate into product. In a system with competitive
inhibition this is not necessarily true. The final amount of product produced in
that case can be computed by taking the limit t → ∞ in Eq. 3:

lim
t→∞P (t) = P∞ =

{
S0, C0 ≥ D0

S0 − S0 (1 − ρ)ka/kb , C0 < D0
(4)

Not surprisingly, if we start out with more catalyst than inhibitor, the reaction
will eventually go to completion. The opposite limit is more interesting.

First, consider the case where the rate for the catalytic reaction is much
faster than the inhibition reaction, ka > kb (blue trace in Fig. 2). In this case
the inhibitor has a relatively minor effect that is most pronounced at low con-
centrations of catalyst compared to the inhibitor.

In the limit where the catalytic reaction occurs at exactly the same rate as
the inhibitory reaction, i.e. ka = kb (red trace in Fig. 2) Eq. 4 predicts that the
final amount of product is linear in the initial amount of catalyst, i.e. P∞ = αC0
where α = S0/D0. That is, by adjusting the relative concentration of substrate
to inhibitor we can get any finite gain we need.

180 D.Y. Zhang and G. Seelig

S + C
k1�
k2

I1 + SP k0 = 5 M−1 s−1

I1 + F
k2→ I2 + OP k1 = 2.7 · 105 M−1 s−1

I2
k3�
k1

W + C k2 = 1.1 · 106 M−1 s−1

S + F
k0→OP + SP + W k3 = 1.1 · 10−2 s−1

I1 + Fb
k2→X + OP krep = 4 · 105 M−1 s−1

S + Fb
k0→OP + SP + W2

C + W2
k1→X

C + D
k1→X

A + C
k1�
k2

IA1 + SP

IA1 + F
k2→ I2 + C

I2
k3�
k1

W + C

A + F
k0→C + SP + W

IA1 + Fb
k2→X + C

A + Fb
k0→C + SP + W2

Table 9-1: Reactions simulated in Fig. 9-4.

The situation where the rate for the inhibitor reaction is faster than the rate
for the catalytic reaction is also interesting. In that case, the amount or product
is sub-linear in the initial amount of catalyst for C0 < D0 but reaches a fixed
value S0 in the opposite regime. The concentration of the competitive inhibitor I
therefore acts as a threshold for the catalytic reaction. Such a threshold element
is useful for reliable signal propagation for example in the context of chemical
digital circuits.

We now turn to a specific DNA implementation of such a system. Our imple-
mentation is based on the entropy-driven catalytic amplifier of Ref. [15] which
was further characterized in Ref. [17]. Turnover for this amplifier was measured
to be about 100. The reaction mechanism for this system including the side re-
actions leading to intrinsically finite turnover is shown in Fig. 3A. A reaction
between catalyst strand and substrate relies on toehold mediated strand dis-
placement. As a competitive inhibitor we here propose to use a damper DNA
gate that irreversibly binds the catalytic input (Fig. 3B). In order to match the
reaction rate constants of the catalyst with this inhibitor to that of the catalyst
with the active substrate we simply choose the toeholds for both reactions to be
identical.

In order to verify the predictions from our simple model Eq. 1 we simu-
lated the full catalytic system of Ref. [15] with a parallel inhibitory reaction
using the measured rate constants and reaction intermediates. The model is
given in Table 9-1 and resulting data is shown in Fig 4A. As expected from our
model, the final fluorescence depends linearly on the concentration of the damper
gate.

DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits 181

2 3 4d 1 2

OP

42 3 5

42
4d
3 5

X (Unreactive product)

OP (Output Product) F (Fuel)

SP (Side Product)

W (Waste)

Intermediate I2
Intermediate I1

6
3

3
S (Substrate)

4

4 5

2

2

1

C (Catalyst)
5

43

43

2

2

53
4

2 4

532 4

21

54
1

2

4 52 3

36 4

432

4 5

Start Here

Fb (Bad Fuel)

A B

4

4 5

4 5
C (Catalyst)

D (Damper)

4

+

+
4

4 5

5

Unreactive products

Fig. 3. Methods for tuning catalytic turnover. (A) DNA amplification via catalysis,
adapted from Zhang et al. [17]. Catalyst strand C reacts with S to form side product
SP and intermediate I1, the latter of which subsequently reacts with F to release out-
put product OP , waste W , and catalyst C. However, a small fraction of bad fuel with
deletions and/or degradation near the 3’ end, denoted as Fb, will bind to intermediate
I1 to form an unreactive product X, thus permanently trapping catalyst C and reduc-
ing the observed catalytic turnover of the reaction. The ratio [F b]

[F]+[F b]
was estimated to

be 0.01 for HPLC-purified fuel strands [17]. (B) The catalytic turnover of the reaction
can be tuned to be lower via the addition of the damping complexes D. Because C
binds by the toehold to D as to S, it is assumed that this rate constant is identical in
value to that of k1. (C) Schematic of a generalized catalytic reaction with arbitrary
control over turnover. In the original work on entropy-driven DNA catalysts [15], it was
shown that the catalytic reaction can be made autocatalytic by using an alternative
substrate A, which releases as product an molecule identical to the catalyst. Turnover
can be increased above the limit set by fuel purity with autocatalytic substrate.

0 3 6
0

5

10

Time (hr)

Fl
uo

re
sc

en
ce

 (n
M

)

0 36 72
0

10

20

30

Time (hr)

Fl
uo

re
sc

en
ce

 (n
M

)

A B

 = 1
 = 2
 = 3
 = 4
 = 5
 = 6
 = 7
 = 8
 = 9
 = 10Undamped

[S] = 30 nM, [F] = 59.4 nM, [Fb] = 0.6 nM,
[C] = 1 nM, [R] = 90 nM, [A] = 0 nM

[S] = 30 nM, [F] = 59.4 nM, [Fb] = 0.6 nM,
[C] = 0.1 nM, [R] = 90 nM, [D] = 0 nM

[A] = 0.6 nM
[A] = 0.3 nM

[A] = 0.15 nM

[A] = 0 nM

Matched

Fig. 4. Modulating turnover. (A) Simulations of the entropy-driven catalyst system
with damper. [17]. Various amounts of D were present to achieve the fixed turnover η
shown, with [D] = 30

α
−0.3 nM. See Table 9-1 for the full set of simulated reactions. (B)

Simulations of the entropy-driven catalyst system with autocatalytic substrate. At [A]
= 0.3 nM, the increase of catalyst due the autocatalytic substrate nearly matches the
decrease of the catalyst due to bad fuel. With lower concentrations of A, asymptotic
turnover is limited. With higher concentrations of A, the reaction adopts autocatalytic
characteristics, and becomes less sensitive to the initial concentration of the catalyst.

182 D.Y. Zhang and G. Seelig

3 Fixed Gain Amplifiers: Increasing Catalytic Turnover

The turnover of a catalytic reaction can be increased above the intrinsic limit
set by defective oligonucleotides. It seems clear that it should be possible to
compensate for the loss of catalyst in an unproductive reaction through the
production of an extra catalyst in a parallel autocatalytic reaction that proceeds
at the same rate. A simple model motivated by this intuition is

C + S
ka→ C + P, (5)

C + D
kb→ ∅, (6)

C + A
kb→ 2C. (7)

Here A is the substrate for the autocatalytic reaction which is present initially
at a concentration A(0) = A0. With the same initial conditions as above we can
solve the resulting differential equation. The final product as a function of time
then is

P (t) = S0 − S0

(
1 − σ

1 − σekaΓt

)ka/kb

, (8)

where Γ = C0 + A0 − D0 and σ = C0/(D0 − A0). The result is therefore of
exactly the same form as Eq. 3 if we make the substitution D0 → D0 − A0.
In the special case where the initial concentrations of the inhibitor D and the
substrate A for the autocatalytic reactions are the same, i.e. A0 = D0, these
reactions cancel each other out and P (t) = S0 exp(−kaC0t) as expected for an
ideal catalytic reaction. If A0 > D0 the overall kinetics of the reaction is that
of an autocatalytic reaction. In fact, for ka = kb Eq. 8 looks very similar to the
logistic equation we obtain when solving a simple autocatalytic reaction. The
different limiting cases for the amount of product P∞ for t → ∞ follow from the
discussion above if we make the substitution D0 → D0 − A0.

4 A Linear Classifier

Based on the fixed gain amplifier systems explained above we can now build a
linear classifier that implements a function

∑
i

αi[mi] = T. (9)

Here αi are the weights, [mi] the concentrations of the molecular species mi and
K is the threshold. A molecular implementation of this function thus requires
that an initial concentration of mi results in a concentration αi[mi] of some
signal molecules that can be compared to each other and to the concentration
K of a threshold molecule.

An element of the sum with a positive weight αi is implemented as a catalytic
reaction with a fixed gain αi. An input mi at initial concentration [mi]0 results

DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits 183

Input A

Output BP

Annihilator Gate G

Output AP

6 7

765 8

85 6 7

765

5 6

86 7

765 8

7 8

85 6 7

765 8
87 65

76
Output BP Output AP

1 2 3 4

Input B

+ 1 - 2

Fig. 5. Implementing negative gain. We implement negative gain by having all inputs
with positive gains catalytically produce one product AP , and all inputs with negative
gains catalytically produce another product of independent sequence, BP . The prod-
ucts AP and BP stoichiometrically neutralize one another via the annihilator gate
AG [24]. Excess AP at the end of the reaction denotes that the density classification
expression evaluated to positive, while excess BP denotes the expression evaluated to
negative.

in a final concentration αi[mi]0 of an output strand AP of unrelated sequence.
Importantly, the output strand is the same for all reactions with a positive αi.
Similarly, every reaction with a negative αi is implemented as a catalytic reaction
with a (positive) gain |αi| but a different output strand BP .

In principle, we could use reporters with two different colors to independently
read out the the positive and negative output strands AP and BP . Using fluo-
rescence calibration curves, we could then compute the respective concentrations

184 D.Y. Zhang and G. Seelig

0 1 2 3 4
0

1

2

3

4

[B] (nM)

[A
] (

nM
)

0 2 4 6
0

2

4

6

Time (hr)

P
ro

du
ct

 (
nM

)

0 2 4 6
0

2

4

6

Time (hr)

0 2 4 6
0

2

4

6

Time (hr)

A
B

C

D

Classifier: [A] + [B] = T [A] = 2 nM, [B] = 1 nM

[A] = 2 nM, [B] = 2 nM

[A] = 2 nM, [B] = 3 nM

O O O

 = 5, = -3, T = 4 nM
1 2

1 2

[AP]

[BP]

P
ro

du
ct

 (
nM

)

[AP]
[BP]

P
ro

du
ct

 (
nM

)

[AP]

[BP]

Fig. 6. DNA classifier. (A) Summary plot of the concentrations of AP and BP at the
end of 6 hours of simulated reaction for various initial concentrations of A and B. Size
of crosses denote the final concentration of AP ; size of pluses denote final concentration
of BP . (B), (C), (D) Sample concentration traces for AP and BP .

as well as the difference between them and compare the result to the threshold
value T . However, such an approach would still require considerable intervention
form an experimentalist meaning that only part of the computation is actually
implemented as molecular computation.

To embed the comparison of the concentrations of AP and BP in the DNA
molecules themselves, we use the annihilator gate design presented in Ref [24]
(see also Fig. 5). In this design, each of AP and BP bind to annihilator gate
G reversibly, but the combination of the two irreversibly binds to G, removing
both from solution (Fig. 9-5). In an excess of annihilator gate G, only one of
AP and BP will be present in solution at significant concentration. G is present
in solution from the beginning of the beginning of the reaction, and serves to
dynamically reduce the concentrations of both AP and BP. Note that a similar
mutual annihilation reaction could also be implemented using the mechanism
for implementing arbitrary bimolecular reactions explained in Ref. [23].

So far we have shown how to implement arbitrary positive and negative gains
and how to perform molecular-level comparison of the concentrations of the
resulting reporter strands AP or BP . This would be sufficient to implement a
classifier with T = 0. To implement a non-zero value for the threshold T we
simply add T units of AP or BP depending on the sign of T . In this way we

DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits 185

can implement a molecular classifier with arbitrary values for αi and T on the
molecular level.

Fig. 6 shows an example of a simulation of a simple two-input linear classifier.
The simulations use a realistic model for the underlying DNA reactions. Fig. 6A
shows the expected final signal (i.e. the excess amount of AP or BP) for a variety
of “samples.” Each sample is characterized by a pair (A, B) of the two molecules
of interest. Note that without further amplification of the final output (either
AP or BP) the signal linearly increases with the distance from the threshold
line.

5 Conclusions

Here we have proposed a DNA implementation of a fixed gain amplifier and
of linear classifier circuits. The fixed gain amplifier combines a DNA catalytic
amplifier with a threshold element or an autocatalytic reaction in order to obtain
arbitrary gain that can be lower or higher than the intrinsic gain of the DNA
catalyst. Classifier circuits similar to the one proposed here can potentially be
used for the embedded analysis of RNA expression levels in complex mixtures.
Such classification circuits could find applications in point-of-care diagnostics or
could even be used to analyze gene expression in living cells.

To apply the presented linear classifier circuit to actual cell state classification,
however, the classifier must be able to deal with RNA input concentrations that
are often low and can vary by orders of magnitude. While in theory the methods
presented should be able to allow indefinitely high values of α, the precise control
of large values of α will be difficult in practice, because the intrinsic turnover set
by strand purities will not be known to great accuracy. Additionally, achieving
high turnover will be slow, because each turnover requires a fixed amount of
time for reaction.

Multi-stage fixed turnover amplifiers can be used to combat the aforemen-
tioned difficulties. That is, the products AP and BP can be themselves amplified
by another fixed gain amplifier, and the gains of the two systems will be multi-
plied. Achieving high turnovers with a 2-stage system will also be quadratically
faster. For extremely high turnovers, even more stages of fixed amplification can
be cascaded.

There are a variety of alternatives to the specific implementation proposed
here. In particular, the chemical reaction systems networks of Ref. [23] can be
used to implement the reactions described here. However, the catalytic system
of Ref. [15] is currently the best characterized and also fastest catalytic amplifier
available which is why we chose to use this system for our design.

The reactions and mechanisms used to construct the linear classifier have ei-
ther been demonstrated or are similar enough to well-understood reactions that
they are expected to experimentally function as designed. All simulation results
shown include modeling of relevant intermediate species and side reactions; sim-
ilar modeling has been able to quantitatively predict the kinetics of similar DNA
constructions [4] [17]. Thus, we are optimistic that we can experimentally demon-
strate the density classifier circuit in vitro in the near future.

186 D.Y. Zhang and G. Seelig

Acknowledgments. DYZ is supported by the Fannie and John Hertz Foun-
dation. GS is supported by a Career Award at the Scientific Interface from the
Burroughs Wellcome Fund and an NSF CAREER award.

References

1. Bloomfield, V.A., Crothers, D.M., Tinoco Jr., I.: Nucleic Acids: Structures, Prop-
erties, and Functions. University Science Books, Sausalito (2000)

2. SantaLucia, J., Hicks, D.: Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004)
3. Yurke, B., Mills, A.P.: Genet. Prog. Evol. Mach. 4, 111 (2003)
4. Zhang, D.Y., Winfree, E.: J. Am. Chem. Soc. 131, 17303 (2009)
5. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Science 314, 1585 (2006)
6. Hagiya, M., Yaegashi, S., Takahashi, K.: Nanotechnology: Science and Computa-

tion, pp. 293–308 (2006)
7. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: J. Am. Chem. Soc. 129, 14875 (2007)
8. Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-Scale

Circuits. In: Goel, A., Simmel, F.C., Sośık, P. (eds.) DNA 14. LNCS, vol. 5347, pp.
70–89. Springer, Heidelberg (2009)

9. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: Nature 406,
605 (2000)

10. Bath, J., Turberfield, A.J.: Nat. Nanotech. 2, 275 (2007)
11. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills, A.P., Blakey, M.I., Simmel, F.C.:

Phys. Rev. Lett. 90, 118102 (2003)
12. Bois, J.S., Venkataraman, S., Choi, H.M.T., Spakowitz, A.J., Wang, Z.G., Pierce,

N.A.: Nuc. Acid Res. 33, 4090 (2005)
13. Green, S.J., Lubrich, D., Turberfield, A.J.: Biophysical Journal 91, 2966 (2006)
14. Seelig, G., Yurke, B., Winfree, E.: J. Am. Chem. Soc. 128, 12211 (2006)
15. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Science 318, 1121 (2007)
16. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Nature 451, 318 (2008)
17. Zhang, D.Y., Winfree, E.: Nuc. Acid Res. (2010, pre-published online

doi:10.1093/nar/gkq088)
18. Masu, H., Narita, A., Tokunaga, T., Ohashi, M., Aoyana, Y., Sando, S.: Angew.

Chemie Int. Ed. 48, 9481 (2009)
19. Xie, Z., Liu, S.J., Bleris, L., Benenson, Y.: Nuc. Acids Res. (2010,

doi:10.1093/nar/gkq117)
20. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: Nature 429, 423 (2004)
21. Lu, J., et al.: Nature 435, 834 (2005)
22. Rosenfeld, N., et al.: Nat. Biotech. 26, 462 (2008)
23. Soloveichik, D., Seelig, G., Winfree, E.: Proc. Nat. Acad. Sci. (2010, pre-published

online doi:10.1073/pnas.0909380107)
24. Zhang, D.Y.: Cooperative DNA strand displacement for DNA quantitation, detec-

tion, and logic (submitted, 2010)

Author Index

Asanuma, Hiroyuki 112

Brun, Yuriy 1

Chandran, Harish 59
Chen, Ho-Lin 13
Chiniforooshan, Ehsan 25
Cox, Amber 83

Doty, David 25, 37

Fujii, Taiga 112

Garzon, Max H. 49
Göös, Mika 71
Gopalkrishnan, Nikhil 59
Graugnard, Elton 83

Hughes, William L. 83

Jorcyk, Cheryl 83

Kao, Ming-Yang 13
Kari, Lila 25, 37, 89
Kashida, Hiromu 112
Kundeti, Vamsi 100

Lee, Jeunghoon 83
Liang, Xingguo 112

Masson, Benôıt 37
Mochizuki, Toshio 112

Ogura, Yusuke 141
Orponen, Pekka 71

Qian, Lulu 123

Rajasekaran, Sanguthevar 100
Reif, John 59

Sakai, Hiroto 141
Schulman, Rebecca 147
Seelig, Georg 176
Seki, Shinnosuke 25, 89
Soloveichik, David 123

Tanida, Jun 141

Winfree, Erik 123, 147
Wong, Tit-Yee 49

Xu, Zhi 89

Yurke, Bernard 83

Zhang, David Yu 162, 176

	Title
	Preface
	Organization
	Table of Contents
	Improving Efficiency of 3-SAT-Solving Tile Systems
	Introduction
	Tile Assembly Model
	Solving 3-SAT Efficiently with Tiles
	Notations and Definitions
	Clause Examination (Region II)
	Assignment Selection (Region III)
	Clause Rotation (Region IV)
	Assignment Preparation (Region V)
	Formula Simplification (Region VI)
	Solving 3-SAT

	Contributions
	References

	Optimizing Tile Concentrations to Minimize Errors and Time for DNA Tile Self-assembly Systems
	Introduction
	Two Tile Assembly Models
	Minimizing the Error Rate
	Simulation Results for Theorem 1
	Minimizing the Expected Assembly Time
	Further Research
	References

	Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits Using DNA Strand Displacement
	Introduction
	Construction
	Design of Abstract Chemical Reactions for Gates
	Implementation of Abstract Reactions with DNA Strand Displacement

	References

	Negative Interactions in Irreversible Self-assembly
	Introduction
	Abstract Tile Assembly Model
	Limitation of Tile Reuse with Irreversible Reactions
	Turing Machine Simulation
	Conclusion
	References

	Search and Validation of Short Genome-Wide Biomarkers for Bacterial Biological Phylogenies
	Introduction
	Genome-Wide Methods in Phylogenesis
	Biomarkers for Phylogeny
	Phylogeny by Noncrosshybridizing Sets

	Scalability of Genomic Signatures
	Conclusions and Future Work
	References

	High-Fidelity DNA Hybridization Using Programmable Molecular DNA Devices
	Introduction
	Motivation
	Problem Statement: High-Fidelity DNA Hybridization
	Our Results: Protocols for High-Fidelity DNA Hybridization Using DNA Devices
	Notation

	First Protocol for High-Fidelity Hybridization
	Second Protocol for High-Fidelity Hybridization
	Potential Applications of High-Fidelity DNA Hybridization
	Simulation of Deterministic Finite Automata

	Theoretical Analysis of Protocol Kinetics
	Conclusion
	Experimental Verification
	Discussion

	References

	Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly
	Introduction
	Preliminaries
	The Abstract Tile Assembly Model
	The PATS Problem

	A Branch-and-Bound Algorithm
	The Search Space
	Determining Constructibility
	An Initial Search DAG
	Pruning the DAG to a Search Tree
	The Bounding Function

	Results
	Conclusion
	References

	Operation of a DNA-Based Autocatalytic Network in Serum
	Introduction
	Autocatalytic Network
	Network Operation in Serum
	Conclusion
	References

	Triangular Tile Self-assembly Systems
	Introduction
	Definitions
	Shape Complexity
	Computational Complexity
	Self-assembly of Triangles
	Conclusion
	References

	Randomized Self Assembly of Rectangular Nano Structures
	Introduction
	Basics of the Tile Assembly Model
	Probabilistic Self Assembly
	Our Results

	Randomized Self Assembly with a Sum of Geometric Distributions
	Supertile to Encode a Binary String

	New Idea of Staircase Sampling
	Discussion on the Tileset for Staircase Sampling
	Generalization of Staircase Sampling with Multiple Variables

	Conclusion
	Future Work
	References

	Design of a Functional Nanomaterial with Recognition Ability for Constructing Light-Driven Nanodevices
	Introduction
	Results and Discussion
	Conclusions
	Experimental Section
	References

	Efficient Turing-Universal Computation with DNA Polymers
	Introduction
	Irreversible and Reversible Chemical Reaction Networks
	A Reversible Polymer Addition Primitive
	Irreversible Stack Machine Implementation
	Definition of Stack Machines
	Reactions Corresponding to the Transition Rules

	Reversible Stack Machine Implementation
	Simulating a Reversible Turing Machine

	Conclusions
	References

	Reversible Transition of Photonic DNA Automaton Using Hairpin-DNA Responding to a Single Kind of Photonic Signal
	Introduction
	Reaction Schemes
	Experiments
	Conclusions
	References

	Simple Evolution of Complex Crystal Species
	Introduction
	DNA Tile Crystal Replication and Evolution
	Binary Zig-Zag CA Tile Sets
	Predicting the Fitness of Zig-Zag CA Crystals
	Evolution of Binary Zig-Zag CA Crystals
	Evolution of Logically Reversible Zig-Zag CA Crystals
	Kinetic Simulation of an Evolution Process
	Conclusions and Open Questions
	References

	Towards Domain-Based Sequence Design for DNA Strand Displacement Reactions
	Introduction
	Considerations
	Implementation
	User Interactivity
	Discussion
	References

	DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits
	Introduction
	Fixed Gain Amplifiers: Lowering Catalytic Turnover
	Fixed Gain Amplifiers: Increasing Catalytic Turnover
	A Linear Classifier
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

