
Collective Assertions

Stephen F. Siegel and Timothy K. Zirkel�

Verified Software Laboratory, Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716, USA

{siegel,zirkeltk}@udel.edu
http://vsl.cis.udel.edu

Abstract. We introduce the notion of collective assertions for message-
passing-based parallel programs with distributed memory, such as those
written using the Message Passing Interface. A single collective assertion
comprises a set of locations in each process and an expression on the
global state. The semantics are defined as follows: whenever control in a
process reaches one of the locations, a “snapshot”of the local state of that
process is sent to a coordinator; once a snapshot has been received from
each process, the expression is evaluated on the global state formed by
uniting the snapshots. We have extended the Toolkit for Accurate Scien-
tific Software (TASS), a verifier based on symbolic execution and explicit
state enumeration, to check that collective assertions hold on all possi-
ble executions of a C/MPI program. We give several examples of such
programs, show that many properties of them are naturally expressed as
collective assertions, and use TASS to verify or refute these.

1 Introduction

Assertions are an important tool for developing reliable sequential programs.
They are used to specify correct behavior, reveal faults, and isolate defects. They
can be checked at runtime, or verified statically using a number of different
techniques. Most importantly, they are easy to use, since they do not require
a developer to learn much beyond the expression syntax of the programming
language.

In this paper, we focus on distributed memory, message-passing, multipro-
cess programs, such as those expressed using the Message Passing Interface
(MPI, [10]). This includes most programs used in high-performance scientific
computing. In this domain, the success of assertions is less clear. This is not
surprising: the most difficult and subtle defects in such programs involve the
interaction of multiple processes, yet the programming languages and libraries
used by developers support only assertions local to a single process.

There has been research to develop global assertions in distributed programs,
i.e., assertions that may refer to the global state. While these might prove useful
in certain cases, it is our view that they are not appropriate for expressing many
of the properties that arise naturally in the domain of interest. We now give an
example illustrating the problem.
� Supported by the U.S. National Science Foundation grants CCF-0733035 and CCF-

0953210, and the University of Delaware Research Foundation.

R. Jhala and D. Schmidt (Eds.): VMCAI 2011, LNCS 6538, pp. 387–402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://vsl.cis.udel.edu

388 S.F. Siegel and T.K. Zirkel

int first = PID*NX/NPROCS;

int nxl = (PID+1)*NX/NPROCS - first;

int left = (PID+NPROCS-1)%NPROCS;

int right = (PID+1)%NPROCS;

int time = 0;

float u[nxl+2];

/* ... initialize u ... */

for (time=1; time<=nsteps; time++) {

send(u[1], left);

recv(u[nxl+1], right);

send(u[nxl], right);

recv(u[0], left);

assert PROC[right].u[0] == u[nxl] &&

PROC[left].u[PROC[left].nxl+1] == u[1];

/* ... local update of u ... */

}

Proc 0 Proc 1 Proc 2

1. send left

2. send left

3. recv right

4. send left

5. recv right

6. send right

7. send right

8. recv left

9. assert

Fig. 1. Left: block-distributed 1d diffusion solver with global assertion. Right: an exe-
cution fragment in which the assertion, if interpreted literally, fails.

The numerical solution of the “diffusion equation” is a standard example used
in many parallel programming texts. In one dimension, the standard solution
manipulates a one-dimensional array u of length NX of real values. The algorithm
iterates through discrete time steps. At each time step, the value of each cell in u
is updated using a formula that is a function of the current value of that cell and
those of its left and right neighbors. Assume a cyclic domain, so there is no need
for special handling at the boundary. A typical (distributed-memory) parallel
version of the algorithm is outlined in C-like pseudocode in Fig. 1 (left). Each
of the NPROCS processes executes a copy of this code. The processes may still
exhibit different behaviors because each has a unique ID number (PID) between
0 and NPROCS− 1, inclusive.

The original array is block-distributed so that each process “owns” a con-
tiguous slice of length nxl of the original array. Assume NX ≥ NPROCS, so that
nxl ≥ 1 on each process. To update the cell on the left boundary of its slice, a
process needs the value of the right-most cell of its left neighbor; a similar issue
holds at the right boundary. This problem is managed by having each process
maintain a left and right ghost cell : the left ghost cell to mirror the value of the
left neighbor’s right-most (ordinary) cell, and a similar cell for the right neighbor.
To incorporate the ghost cells, u is given length nxl+ 2, with the ghost cells in
positions 0 and nxl+1. At each time step, the processes update their ghost cells
using the communication operations shown. To simplify the discussion, assume
asynchronous communication with unbounded channels, i.e., a message sent by
a send operation can always be buffered, so the routine shown will not deadlock.
After the exchange completes, a process updates its cells in the usual way, and
proceeds to the next time step.

Collective Assertions 389

Suppose we wish to assert the correctness of the ghost cell exchange. From
the point of view of one process, this might be stated informally as “after the
ghost cell exchange, the value of my right neighbor’s left ghost cell agrees with
the value of my right-most non-ghost cell,” with a similar statement for the left
neighbor. To express this requires some notation to refer to variables in other
processes. We write PROC[i].x to denote a variable x in the process with PID i,
where i is an integer-valued expression. Using this notation, the desired assertion
appears in the pseudocode. As with other statements, one assertion appears in
each process, though the asserted expressions differ because each process has its
own PID.

Let us assume these assertions are given the obvious semantics: that when
control reaches an assertion, the expression is evaluated in the current global
state, and the assertion is violated if it evaluates to false. (Leave aside for now
the question of how this could be implemented.) It is not hard to see the assertion
can fail on many executions, such as the one in Fig. 1 (right). In that execution
fragment, process 2 reaches the assertion before its right neighbor, process 0,
has received any message. When the assertion is evaluated, the value of u[0] on
process 0 will not necessarily agree with that of u[nxl] on process 2. But there
is nothing wrong with this execution—it is the assertion that is broken.

How can we fix the problem? We might alter the semantics by restricting the
set of executions on which the assertion should be evaluated. For example, we
could declare that the assertion imposes a barrier, and is not evaluated until
all processes reach it. There are two problems with this approach. First, it does
not capture the intuitive property that the developer has in mind, which ap-
plies to all executions, not just the subset which synchronize at the assertion.
Hence it leaves a large number of legal executions untested, and as we shall
see in Sec. 4 (in the wildcard gather example) there are natural assertions that
hold for all executions in which the assertion is treated as a barrier, but fail on
other executions. Second, if the assertions are to be used for runtime checks, as
they usually are, the additional forced synchronization would be unacceptable
from a performance view. Surely one desirable quality of any assertion system
should be that the assertions not change the set of possible behaviors of the pro-
gram. Similar comments apply to other possible restrictions, such as forcing the
communication to be synchronous, or forcing all processes to move in lockstep.

A more precise informal statement of the desired property might be “for all
i ≥ 1, the value of my right-most non-ghost cell at time step i after the exchange
agrees with the value of my right neighbor’s left ghost cell whenever it is in time
step i just after the exchange.” But it is not clear how this could be made precise
using standard assertions, at least without performing complex modifications to
the program (e.g., by adding and maintaining history variables).

The solution proposed in this paper is the collective assertion. Like a global
assertion, a collective assertion may refer to the state of several processes, but
unlike a global assertion, the process states may have existed at (very) different
times in the execution. A collective assertion is specified by placing an assertion
statement in each process. When control in that process reaches the assertion,

390 S.F. Siegel and T.K. Zirkel

a snapshot of the process state is taken. Once every process has reached its
assertion, these snapshots are composed into a single global state (ignoring the
buffered messages), in which all the asserted expressions are evaluated. Only
at this point—just after the last process reaches the assertion—is the assertion
determined to have passed or failed. With this semantics, the ghost cell assertion
in our example will hold on every execution—and never for vacuous reasons.

A collective assertion is analogous to the collective operations of MPI [10,
Chap. 5]. These are communication primitives which involve a set of processes,
and include barrier, broadcast, gather, reduction, and other operations. Like our
collective assertion, an MPI collective operation requires a statement in each
process; each process contributes something to the operation upon executing that
statement; and the operation as a whole does not complete until every process
has made its contribution. Unlike MPI’s collectives, however, our assertions never
impose any additional synchronization, since we want the program to exhibit the
same set of behaviors whether the assertions are turned on or off.

In this paper, we present formal definitions of collective assertions and their
semantics. We have realized these notions in our Toolkit for Accurate Scien-
tific Software [11]. TASS uses symbolic execution and explicit state enumeration
techniques [7,6] to verify that safety properties of C/MPI programs hold for all
possible executions within user-specified bounds. We discuss how we have imple-
mented collective assertion verification in TASS, report on experiments designed
to gauge the cost of verifying the assertions, give several additional examples of
properties that are naturally expressed using them, and report on our success
using TASS on those examples. These include examples where TASS is used to
verify the equivalence of two programs. We conclude with a discussion of related
work, and various ways the techniques may be extended in the future.

2 Model

For a formal description, we need a model. The model we use is based on [1, Def.
2.31]. For sets X and Y , let Func(X, Y) denote the set of all functions from X
to Y . For f ∈ Func(X, Y), x ∈ X , y ∈ Y , f [x := y] denotes the function which
is the same as f , except possibly at x, where it returns y. Let X∗ denote the set
of finite sequences of elements of X and len(σ) the length of a sequence σ.

Let n ≥ 1 and Var1, . . . , Varn be n mutually disjoint sets of variables. Let
Val be a set of values. Let Chan be a set of channels, each with a capacity
cap(c) ∈ {1, 2, . . .}. Let V ⊆ Var

def=
⋃

i Vari, and Eval(V) def= Func(V, Val). The

set of communication actions is Comm
def= {c!e, c?x | c ∈ Chan, x ∈ Var, e ∈

Expr}, where Expr denotes the set of expressions over Var. The exact syntax of
expressions is not important, but we assume all expressions are side-effect free.

Definition 1. A program graph over (V, Chan) is a tuple

PG = (Loc, Act, Effect, ↪→, Loc0, g0), (1)

where Cond(V) denotes the set of boolean-valued expressions over V and

Collective Assertions 391

1. Loc is a set of locations and Act is a set of actions,
2. Effect : Act × Eval(V) → Eval(V) is the effect function,
3. ↪→⊆ Loc×Cond(V)×(Act∪Comm)×Loc is the conditional transition relation,
4. Loc0 ⊆ Loc is a set of initial locations, g0 ∈ Cond(V) is the initial condition.

We write l
g:α
↪→ l′ to denote that 〈l, g, α, l′〉 ∈↪→.

Definition 2. A channel system CS over (Var, Chan) is a tuple [PG1| · · · |PGn],
where for each i, PGi = (Loci, Acti, Effecti, ↪→i, Loci,0, gi,0) is a program graph
over (Vari, Chan).

Semantics. We assume an expression semantics is given; this specifies how to
extend any η ∈ Eval(Var) to some η̃ ∈ Eval(Expr). The elements of Eval(Chan) def=
Func(Chan, Val∗) are channel evaluations. Let ξ0 denote the channel evaluation
that maps every channel to the empty sequence. The sets of (global) states and
initial states are defined by

State = Loc1 × · · · × Locn × Eval(Var) × Eval(Chan)
I = {〈l1, . . . , ln, η, ξ0〉 ∈ State | ∀0 < i ≤ n.(li ∈ Loc0,i ∧ η |= g0,i)} .

A transition is a triple 〈s, α, s′〉, where s = 〈l1, . . . , li, . . . , ln, η, ξ〉, s′ ∈ State,
α ∈ Act

def=
⋃

i Acti ∪ {τ}, and one of the following holds:

1. for some i, α ∈ Acti, li
g:α
↪→ l′i, η |= g, and s′ = 〈l1, . . . , l′i, . . . , ln, Effect(α, η),ξ〉,

2. α = τ and for some i, li
g:c?x
↪→ l′i, len(ξ(c)) = k > 0, ξ(c) = v1 · · · vk, η |= g,

and s′ = 〈l1, . . . , l′i, . . . , ln, η[x := v1], ξ[c := v2 · · · vk]〉, or

3. α = τ and for some i, li
g:c!e
↪→ l′i, len(ξ(c)) = k < cap(c), ξ(c) = v1 · · · vk,

η |= g, and s′ = 〈l1, . . . , l′i, . . . , ln, η, ξ[c := v1v2 · · · vkη̃(e)]〉.
We write s

α→ s′ to denote that 〈s, α, s′〉 is a transition. We say s is terminal if
there is no transition departing from s, i.e., none of the form s

α→ s′.
An execution fragment is a (finite or infinite) sequence ρ = s0

α0→ s1
α1→ · · · .

We say ρ is initial if s0 ∈ I. The length of ρ is the number of transitions.

3 Collective Assertions

Definition 3. Let CS be a channel system and Loc
def
=

⋃
1≤i≤n Loci. A collective

assertion σ is a function from a subset dom(σ) of Loc to Cond(Var).

Hence σ involves some set of locations, and to each such location it associates
a global expression. Note the locations may be in several processes, and there
may be several locations in the same process. Although it is not required by the
definition, we will see that if σ is to have any chance of holding, dom(σ) must
have at least one location in each process.

Let Σ be a set of collective assertions such that, for any location l, l ∈ dom(σ)
for at most one σ ∈ Σ. Let ALoc = {l ∈ Loc | ∃σ ∈ Σ.l ∈ dom(σ)}. The

392 S.F. Siegel and T.K. Zirkel

elements of ALoc are the assertion locations. Given l ∈ ALoc, let assert(l) denote
the unique σ ∈ Σ such that l ∈ dom(σ).

Let ρ = s0
α0→ s1

α1→ · · · αm−1→ sm be a finite execution fragment. We now define
what it means for Σ to hold on ρ. The definition requires that every process
encounter the same assertions in the same order. (This is also the case with
MPI’s collective operations.) Write sj = 〈lj,1, . . . , lj,n, ηj , ξj〉 (0 ≤ j ≤ m).

We define a sequence Λj
i ∈ (Eval(Vari) × Loci)∗ for each 1 ≤ i ≤ n and

1 ≤ j ≤ m. This sequence contains the accumulated snapshots from process i
after reaching state sj in ρ. The definition is by induction on j. For j = 0,

Λ0
i (s) =

{
〈η0|Vari

, l0,i〉 if l0,i ∈ ALoc

the empty sequence otherwise
(1 ≤ i ≤ n). (2)

Hence Λ0
i (s) is a sequence of length 1 or 0, depending on whether l0,i is an

assertion location. Note η0|Vari denotes the restriction of η0 to Vari, and captures
the values of the local variables for PGi.

Now assume 1 ≤ j ≤ m and we have defined Λj−1
i for all i. The transition αj−1

lies in some process PGi. If lj,i ∈ ALoc then Λj
i = Λj−1

i .〈ηj |Vari , lj,i〉. Otherwise,
Λj

i = Λj−1
i .

Let Λi = Λm
i ; this is the final sequence of snapshots at the end of ρ.

Note that given χi ∈ Eval(Vari) for each 1 ≤ i ≤ n, we can form their union
χ =

⋃
i χi ∈ Eval(Var): for any v ∈ Var, χ(v) = χi(v), where v ∈ Vari. This is

the “composite” global state formed from the local snapshots.
Let k ≥ 1. If len(Λi) ≥ k, write Λi[k] = 〈ηk

i , lki 〉 for the kth element of Λi. We
say that Σ holds at the kth occurrence in ρ if

1. ∀1 ≤ i, j ≤ n.((len(Λi) ≥ k ∧ len(Λj) ≥ k) ⇒ assert(lki) = assert(lkj)), and
2. (∀1 ≤ i ≤ n.len(Λi) ≥ k) ⇒ ⋃

1≤i≤n ηk
i |= ∧n

i=1 σ(lki).

The first constraint says all processes which have reached their kth assertion
location agree on the kth assertion to be checked. The second says that if all
processes have reached the kth assertion, the asserted expressions hold at the
composite state.

Definition 4. Let Σ, ρ, and the Λi be defined as above. The collective assertion
set Σ holds on ρ if (i) for all k ≥ 1, Σ holds at the kth occurrence in ρ, and (ii)
if sm is a terminal state then all Λi have the same length. We say CS satisfies
Σ if Σ holds on every finite initial execution fragment of CS.

Note there are three ways in which Σ can fail to hold for ρ: (1) the collective
assertions are encountered in different orders by two processes, (2) the final state
is terminal, yet there remain assertions entered by some processes but not by
others, or (3) all processes have entered an assertion but the asserted expression
fails to hold in the composite state.

Collective Assertions 393

procedure check(〈s, Λ1, . . . , Λn〉 ∈ AState \ {sV }) : AState is1

if ∀j.len(Λj) = 0 then return 〈s, Λ1, . . . , Λn〉;2

choose j such that len(Λj) > 0 and let σ = assert(peek(Λj));3

if ∃i.(len(Λi) > 0 ∧ assert(peek(Λi)) �= σ) then return sV ; /*out of order*/4

if ∃j.len(Λj) = 0 then return 〈s, Λ1, . . . , Λn〉;5

foreach j ∈ {1. . . . , n} do Λ′
j , 〈ηj , lj〉 ← dequeue(Λj);6

if
⋃

1≤j≤n ηj �|= ∧n
j=1 σ(lj) then return sV ; /* assertion failure */7

return 〈s, Λ′
1, . . . , Λ

′
n〉;8

procedure next(〈s,Λ1, . . . , Λn〉 ∈ AState \ {sV }, s α→ s′) : AState is9

let i be the index of the process to which α belongs;10

let 〈l1, . . . , ln, η, ξ〉 = s;11

if li ∈ ALoc then return check〈s′, Λ1, . . . , enqueue(Λi, 〈η|Vari , li〉), . . . , Λn〉;12

return 〈s′, Λ1, . . . , Λn〉;13

Fig. 2. Next state function for ATS. Function dequeue returns both the left-most
element and the sequence obtained by removing that element; peek just returns the
leftmost element; enqueue returns the sequence obtained by appending the given
element on the right. Also, assert(〈η, l〉) = assert(l).

3.1 The Extended Transition System

We now define an extended transition system ATS which can be used to de-
termine whether a channel system satisfies a collective assertion set Σ. The
approach mirrors the definition above, with one adjustment. Instead of wait-
ing until termination to check the assertions, an assertion is checked as soon as
there is at least one snapshot queued from each process. From a practical point
of view, this allows a violation to be reported earlier—as soon as the last process
reaches the assertion. Also, as soon as an assertion is checked, the snapshots can
be dequeued, reducing the memory required to store the snapshots.

The states in ATS model the snapshot queues and include a terminal violation
state sV :

AState
def=

(
State × (Eval(Var1) × Loc1)∗ × · · · × (Eval(Varn) × Locn)∗

) ∪ {sV }.

The initial states are all states of the form check〈s, Λ0
1(s), . . . , Λ

0
n(s)〉, where s ∈ I

and Λ0
i (s) is as in (2). The function check, defined in Fig. 2, first checks that

no out-of-order violation has occurred. Then, if there is at least one entry in
each queue, it dequeues one snapshot from each and checks the assertion at the
resulting composite state. It returns the violation state if any check fails.

Given any s̃ = 〈s, . . .〉 ∈ AState and any transition s
α→ s′, there is a transition

s̃
α→ next(s̃, s α→ s′) in ATS, where the function next is defined in Fig. 2.
Define a predicate Φ on AState as follows: for s̃ ∈ AState,

Φ(s̃) ⇔ (s̃ is terminal ⇒ (s̃ �= sV ∧ ∀i.len(Λi) = 0)), (3)

where s̃ = 〈s, Λ1, . . . , Λn〉 if s̃ ∈ AState \ {sV }. We claim

394 S.F. Siegel and T.K. Zirkel

Theorem 1. CS satisfies Σ if and only if Φ holds at every state reachable from
an initial state in ATS.

Proof. Let A be the set of all finite execution fragments ρ of CS such that Σ
does not hold on ρ but Σ does hold on any proper prefix of ρ. Let B be the set of
all finite execution fragments in ATS that terminate in a state at which Φ does
not hold. We claim there is a surjective map from A to B. This will complete
the proof, since it implies A = ∅ ⇔ B = ∅.

Given ρ = s0
α0→ · · · αm−1→ sm ∈ A, let ρ̃ be the execution fragment in ATS

s̃0
α0→ · · · αm−1→ s̃m, where s̃0 is the initial state corresponding to s0 and s̃j+1 =

next(s̃j , sj
αj→ sj+1) for 0 ≤ j ≤ m − 1. There are two possibilities: either (i)

there exists k such that Σ does not hold at the kth occurrence in ρ, or (ii)
Σ holds at the kth occurrence in ρ for all k, but sm is a terminal state and
∃1 ≤ i, j ≤ n.len(Λi) > len(Λj). In the first case, s̃m = sV , so ρ̃ ∈ B. In the
second case, s̃m = 〈sm, Λ′

1, . . . , Λ
′
n〉 is terminal and Λ′

i > 0, since, whenever
elements are removed from the queues (line 6 of Fig. 2), one element is removed
from each queue. Hence ρ̃ ∈ B in this case as well. Conversely, given any ρ̃ ∈ B,
ρ̃ ends at either sV or a terminal state with a non-empty snapshot queue. In
the first case it must arise in the above way from a ρ ∈ A satisfying (i); in the
second from a ρ satisfying (ii). ��
Hence the validity of a set of collective assertions is an invariant property for
the extended transition system. It can therefore be verified using standard tech-
niques, such as depth-first search of the reachable states.

4 Implementation and Experiments

In this section we discuss how we have implemented collective assertion verifica-
tion in TASS, describe the results of some preliminary experiments carried out
with that implementation, and give several more examples of properties that are
naturally expressed using collective assertions.

4.1 Overview of TASS

TASS takes as input a C/MPI program and an integer n ≥ 1, and verifies a
number of safety properties of an n-process instance of the program. Absence
of deadlock, buffer overflows, memory leaks, and (ordinary) assertion violations
are some of the properties checked. Currently only standard-mode blocking MPI
functions are supported, but this is being expanded to a much larger subset of
MPI. Not every C language feature is supported at this time, but many of the
most commonly-used features are, including multi-dimensional arrays, structs,
pointers and pointer arithmetic, and dynamically allocated data.

TASS uses symbolic execution to reason about all possible inputs to the pro-
gram. The program inputs are represented as symbolic constants; operations
result in symbolic expressions in those symbolic constants. An additional boolean-
valued path condition variable is used to keep track of the guards that had to

Collective Assertions 395

evaluate to true in order for the current path to have been executed. Automated
theorem proving techniques are used to determine if the path condition becomes
unsatisfiable, whether an array index is out of bounds, and so on. TASS has
its own internal support for simplifying symbolic expressions, placing them into
a canonical formal, and dispatching some of the proof obligations; for those it
cannot dispatch itself, it uses CVC3 [2].

TASS allows the user to specify an arbitrary initial condition. In practice this
is used to place bounds on certain inputs (array sizes, loop iterations) in order
to make the number of states tractable. Without such bounds it is possible that
TASS will never return because the state space is infinite. In general, TASS is
applied to configurations that are smaller than those the program would typically
encounter in use, but within the specified bounds it performs an exhaustive
exploration of all possible program behaviors and inputs.

Partial order reduction [5] is a family of techniques for reducing the number
of states that need to be explored in order to verify a class of properties. TASS
uses the MPI-specific POR technique, the urgent algorithm [12]. Given a state s,
the urgent algorithm can conclude that it is safe to explore only those transitions
enabled in a single process, rather than all enabled transitions. We say such a
process is “urgent” at s. If more than one process is urgent, a heuristic is used to
select one of them. (By default, TASS chooses the first urgent process it finds.)
Any such heuristic is sound, i.e., if a violation exists within the specified bounds,
one will be found. But the number of states explored can differ greatly with the
heuristic, in ways that are usually difficult to predict.

TASS can also use comparative symbolic execution [13] to verify that two
programs are functionally equivalent (i.e., “input-output” equivalent). The basic
idea is to construct a model in which the two programs run sequentially—one
after the other—and at the end the outputs are compared. The state space of
this model is then exhaustively explored. This technique is particularly useful in
computational science, for comparing a complex parallel version of a program
(the “implementation”) to a simple, trusted sequential version (“specification”).

4.2 Collective Assertion Specification and Verification in TASS

The assertions are specified as pragmas inserted into the code at the desired
locations. Fig. 3 gives examples of the pragmas used in the 1d-diffusion code. We
have already discussed the ‘PROC’ notation for referring to a variable in another
process. We have also added support for existential and universal quantifiers.

An identifier (GHOSTS or COMPARE) gives a name to the collective assertion
of which the pragma is a part. One collective assertion σ = σ(id) is created
for each identifier id, and σ consists of all location-expression pairs specified
by a pragma with identifier id. The location is the point in the source code
immediately following the pragma.

Collective assertions can also be used when comparing two programs, particu-
larly to specify the expected correspondence between variables at various control
points. The semantics are easily defined: if one program has n processes, and

396 S.F. Siegel and T.K. Zirkel

for (time = 1; time <= nsteps; time++) {

exchange_ghost_cells();

#pragma TASS collective assert GHOSTS u[nxl] == PROC[right].u[0] \

&& u[1] == PROC[left].u[PROC[left].nxl+1];

update();

#pragma TASS joint assert COMPARE forall {int i | 1<=i && i<=nxl} \

u[i]==spec.u[first+i-1];

}
(a) main loop in parallel version (implementation)

for (time = 1; time <= nsteps; time++) {

update();

#pragma TASS joint assert COMPARE true;

}
(b) main loop in sequential version (specification)

Fig. 3. TASS collective assertion pragmas in 1d-diffusion code

the other m, we can consider the two programs together to be a single program
with n + m processes running concurrently. All of the definitions of Sections
2 and 3 apply; the urgent POR scheme will automatically avoid exploring the
unnecessary interleavings resulting from this combination. An advantage of this
approach over the standard comparative method is that if a discrepancy is de-
tected, it can be reported immediately, rather than waiting until both programs
have terminated. It is also helpful in isolating the source of a fault.

The keyword joint can be used in place of collective to indicate a collective
assertion that is to be used when comparing two programs. These pragmas will
be ignored when verifying either program individually. Typically, the asserted
expression in the specification will be vacuous (“true”) so the pragma in the
specification is used only to label a location. A reasonable policy is to forbid
references to implementations within the specification, while implementations
can and should refer to the specification.

A joint assertion is used in Fig. 3. It asserts the values of the non-ghost cells
held by this process agree with the corresponding values in the specification.
This is checked at the end of each time step, rather than only at termination.

TASS verifies collective assertions by performing a depth-first search of the
transition system ATS defined in Section 3. To implement this, we added local
state queues to the state, and a special handler is executed whenever a process
reaches a collective location. One implementation detail concerns the way the
local state snapshots are stored in each state. In TASS, these process states
are immutable objects which are created using the Flyweight design pattern.
Hence the queues contain only references to the process states, each of which
was created at an earlier point in the execution. If the entire process state data
were instead duplicated in each state, the memory required to store the states
would be prohibitively large.

Collective Assertions 397

Number of States
nprocs Normal CQMin

2 4886 3496
3 10537 7492
4 18624 13188
5 29363 20728
6 42970 30256
7 59661 41916
8 79652 55852
9 103159 72208
10 130398 91128
11 161585 112756
12 196936 137236
13 236667 164712
14 280994 195328
15 330133 229228

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14

T
im

e
(s

)

Number of processes

Collective assertions
Collective assertions with CQMin

Deadlock-freedom only

Fig. 4. Verification of diffusion1d, comparing parallel and sequential versions. NX is
bounded by 3*nprocs, NSTEPS by 2. For each value of nprocs, three experiments were
run: (a) verifying only absence of potential deadlock, (b) verifying that and the collec-
tive assertions, and (c) same as (b) but using the queue-minimizing heuristic (CQMin).

4.3 Scaling Experiment

After successfully verifying the two collective assertions in small configurations
of the 1d-diffusion code, we decided to scale this example to gauge the cost of
verifying the assertions. We scaled the number of processes n from 2 to 15 and for
each n conducted three experiments. All three involve using TASS to compare
the sequential and parallel versions, as well as verify absence of deadlocks.

In the first experiment, used as a baseline, we turned the assertion check-
ing off (so only the deadlock property was checked). In the second experiment,
we checked the collective assertion and the deadlock property using the default
heuristic for the urgent POR scheme. In the third experiment, we checked the
assertion and the deadlock property, but used a novel collective queue minimiza-
tion heuristic. This heuristic selects, among all “urgent” processes, a process
with the shortest local state queue. The idea is to try to keep the processes as
“close together” as possible. In some cases, such as this diffusion example, this
heuristic essentially imposes a barrier at the collective assertion point. In other
cases, it will not impose such a barrier, and it would not be safe to do so (see
example wildcard gather below). As described in Section 4.1, in all cases the
heuristic is safe, i.e., a violation will be found if one exists.

In each case, we recorded the verification time and the number of states ex-
plored. All were run on a 2.8GHz quad-core Intel i7 iMac with 16GB RAM.

The results are shown in Fig. 4. Note that there is a substantial cost to collec-
tive assertion checking in terms of time: up to 4× at the worst case. Nevertheless,
even the maximum time of 80 seconds is not unreasonable. There is no difference
in the number of states between the baseline and the first collective assertion

398 S.F. Siegel and T.K. Zirkel

experiment because (1) both use the same POR algorithm and (2) in this ex-
ample, the state space is a tree, so there is never a case where the introduction
of the snapshots can cause a pair of states that matched in the first case to fail
to match in the second. The queue minimization heuristic led to a reduction in
the number of states and cut the runtime almost in half.

4.4 Further Examples

We examined the examples distributed with TASS for other opportunities where
collective assertions could express useful properties. We have found such oppor-
tunities in virtually every case and report on a representative sample here. We
then used TASS to verify these assertions.

for (i=0; i<N; i++) {

x = x + a[i];

#pragma TASS joint assert C true;

}

m = x/N;

#pragma TASS joint assert M true;

for (i=1; i<=N; i++) {

x = ((i-1)*x + a[i-1])/i;

#pragma TASS joint assert C x*i==spec.x;

}

m = x;

#pragma TASS joint assert M m == spec.m;

Fig. 5. Two ways to compute the mean of an array of floating-point numbers

Mean. This is an example where the assertion is more complicated that just “x =
y”. Fig. 5 shows two different ways to compute the mean of an array of N floating-
point numbers. The first corresponds exactly to the standard definition: it sums
the elements and divides the result by N . The second computes a “running
mean”: after the ith iteration the value of x should be the mean of the first i
numbers. The assertion relating these is x*i==spec.x, which is checked at the
end of each loop iteration. A joint assertion at the end claims the final results
should agree, which indeed holds. (This relies on the fact that TASS interprets
arithmetic to take place over the mathematical reals instead of floating-point
numbers.) When verified with N bounded above by 10, TASS explored 132
states and took 0.3 seconds.

Wildcard_gather. This example demonstrates that it is not always safe to verify
a collective assertion by imposing a barrier at the assertion. The program of Fig.
6 is composed of a root process (rank 0) and n−1 worker processes. Each worker
sends one number to the root, which in this case happens to be the worker’s PID.
The root receives these in whatever order they arrive (using a wildcard receive)
and inserts the number into an array at the position which is the rank of the
sending process. The routine is called twice in a row.

The collective assertion is invoked once by each process in each call. It asserts
that the value stored in the root’s array agrees with the value sent. The code is
incorrect: a race condition may occur if one worker sends, then proceeds to the
second call and sends again; meanwhile, the root is still in the first invocation but
receives this second message at the wildcard receive. This results in the entry

Collective Assertions 399

int myrank, nprocs; double *a, x;

void root() {

MPI_Status status; int i;

a = (double*)malloc(nprocs*sizeof(double));

a[0] = 0.0;

for (i=1; i<nprocs; i++) {

MPI_Recv(&x, 1, MPI_DOUBLE, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);

a[status.MPI_SOURCE] = x;

}

#pragma TASS collective assert C true;

free(a);

}

void worker() {

x = PID;

MPI_Send(&x, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

#pragma TASS collective assert C x==PROC[0].a[myrank];

}

void main() {

int argc; char **argv; int i;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

for (i=0; i<2; i++) if (PID == 0) root(); else worker();

MPI_Finalize();

}

Fig. 6. Wildcard gather : a gather routine that uses a wildcard at root. One number
from each non-root process is sent to root, which inserts it into an array. The routine
has a race condition revealed by a violation to collective assertion C.

for that process getting set again (in this case, to the same value), while the
message from some other process remains unreceived in the first invocation. The
array entry for that process will still contain the initial undefined value when
the root reaches the collective assertion point and the snapshot is taken, leading
to a violation when the assertion expression is evaluated.

If a barrier is placed at the collective assertion point, the race condition disap-
pears: no worker can proceed into the second iteration until the root has received
all n−1 messages. Hence a system that only checked executions that synchronize
at assertion points would fail to detect the race condition.

For 10 processes, the error is detected by TASS after exploring 1011 states.
The execution time, which includes the time to write the violating trace to disc,
was 0.5 seconds.

Laplace2d. This is the most complex example we studied. It is a numerical so-
lution to the 2d-Laplace equation. The algorithm works on a row-distributed
2d-grid with fixed boundary values. The update formula depends on a cell’s

400 S.F. Siegel and T.K. Zirkel

upper, lower, right, and left neighbors. Rather than iterate for a fixed number of
time steps, as in the diffusion case, the program iterates until a certain conver-
gence criterion is reached (or a bound on the maximum number of iterations is
reached, whichever occurs first). The convergence criterion is that the L2 norm
between two consecutive approximate solution falls below a given threshold ε.
Again, we used TASS to compare a sequential and parallel version. In the par-
allel version, each process computes the contribution to the error resulting from
the rows it owns. These local errors are summed at the end of each iteration to
obtain the global error, which is then returned to every process. (This is imple-
mented using a single MPI_Allgather collective operation). The joint assertion
we formulated claims that at each iteration, the global error in each process
in the parallel program agrees with the global error in the sequential program
on the corresponding iteration. We successfully verified this assertion for vari-
ous small configurations. For 6 processes, the dimensions of the grid bounded
above by 4 × 12, and the number of iterations bounded by 3 (inclusive), TASS
completed in 18.0 seconds, exploring 49,419 states.

5 Related Work

Composing local snapshots to form a global state of a distributed system is
not a new idea. Chandy and Lamport used this notion in their algorithm for
computing a globally consistent state [4]. This algorithm has been extended in
many directions; see for example [9] and the references cited there. The goal of
this line of work is to construct a state that is “close to” an actual global state
occurring in the execution, where “close to” preserves some specified class of
predicates, such as deadlock or termination. Simmons shows how these notions
can be extended to efficiently check a global assertion in a single process by
using earlier snapshots, as long as no actions could have taken place in the other
processes to impact the evaluation of the global expression [14,15]. Much of the
hard work is in figuring out when a process should take its snapshot in order to
be consistent with other processes and not affect the property of interest.

Our focus is different: we are not interested in finding a globally consistent
set of snapshots or any notion of “close to.” Instead, the user decides exactly
where the snapshots are to be taken in each process by explicitly placing col-
lective assertion statements at appropriate points. In fact, the selection of these
locations is an important part of the specification of the desired behavior. We
thus do not have to worry about the many difficult issues that arise in the global
assertion approach. (Nor are we concerned with capturing a consistent view of
the channel states, a major source of complexity in the earlier work.) Also, for an
analysis tool such as TASS, the mechanics of gathering the snapshots is trivial,
since TASS itself is not a distributed program.

The basic approach underlying TASS, which combines symbolic execution
with a search of the reachable states of a parallel program, was introduced in [6].
There are many other approaches to debugging and verifying parallel programs
that may also apply to the kinds of problems discussed here. Kovacs et al. have

Collective Assertions 401

developed a debugger that can check linear temporal logic formulas on a par-
ticular trace as the user guides the execution [8]. The ISP verifier is a dynamic
model checker that uses a modified runtime system to explore all relevant be-
haviors of an MPI program to verify certain safety properties [17]. Both of these
approaches, however, only operate on a given concrete input, in contrast to the
symbolic execution approach taken by TASS.

There are many other methods for verifying functional equivalence of sequen-
tial programs; see for example [16] for an approach that can handle complex
loop transformations. KLEE is another symbolic execution tool that has been
used to check equivalence of sequential programs [3].

6 Conclusion

Collective assertions appear to be a natural way to express many correctness
properties of distributed multiprocess programs. We have explored how to ver-
ify these assertions in small instances of the programs using TASS, but many
questions remain. Can runtime checking of collective assertions be implemented
effectively at full scale? To do so would require careful reasoning to determine
what part of a process’s state is required to evaluate an expression, as sending
an entire process snapshot is not feasible for realistic programs.

When multiple collective assertions occur in a program, our semantics requires
that each process encounter these assertions in the same order. This may not be
the most appropriate choice for all problems. For example, the user might want
to specify that two collective assertions are completely independent of each other,
and can be encountered in different orders by two processes. A flexible approach
would allow the users to specify distinct “communication universes” for this end.
Like an MPI communicator, each such universe would have associated to it some
subset of processes. Each collective assertion would then specify the universe to
which it belongs. The assertions within one universe would be required to occur
in the same order for every process in that universe’s process set. For assertions
in two different universes, there would be no such constraint.

We have extended C’s expression language to include references to other pro-
cesses and first-order quantifiers. What other operations would be useful? A sum
operator is an obvious candidate, and undoubtedly many array operations could
help specify important properties.

The semantics for collective assertions for infinite executions is weak. Would a
more useful definition require every entry in a local state queue to eventually be
consumed? It would be interesting to see if collective assertions can be applied
usefully to reactive programs.

Finally, the general idea of making collective analogs of sequential constructs
could have other applications. We have recently begun using TASS to explore
“collective loop invariants.” In many cases, these enable TASS to verify proper-
ties of a parallel program with unbounded loops.

402 S.F. Siegel and T.K. Zirkel

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

3. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. 8th USENIX Sym-
posium on Operating Systems Design and Implementation (2008)

4. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

5. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996)

6. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

7. King, J.C.: Symbolic execution and program testing. Comm. ACM 19(7), 385–394
(1976)

8. Kovács, J., Kusper, G., Lovas, R., Schreiner, W.: Integrating temporal assertions
into a parallel debugger. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002.
LNCS, vol. 2400, pp. 113–120. Springer, Heidelberg (2002)

9. Kshemkalyani, A.D.: Fast and message-efficient global snapshot algorithms for
large-scale distributed systems. IEEE Transactions on Parallel and Distributed
Systems 21, 1281–1289 (2010)

10. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
version 2.2, September 4 (2009), http://www.mpi-forum.org/docs/

11. Siegel, S.F., et al.: The Toolkit for Accurate Scientific Software web page (2010),
http://vsl.cis.udel.edu/tass

12. Siegel, S.F.: Efficient verification of halting properties for MPI programs with wild-
card receives. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 413–429.
Springer, Heidelberg (2005)

13. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Combining symbolic
execution with model checking to verify parallel numerical programs. ACM
TOSEM 17(2), Article 10, 1–34 (2008)

14. Simmons, S., Kearns, P.: A causal assert statement for distributed systems. In:
Hamza, M.H. (ed.) Parallel and Distributed Computing and Systems, pp. 495–
498. IASTED/ACTA Press (1995)

15. Simmons, S.J.: Causal distributed assert statements. Ph.D. thesis. The College of
William and Mary, director-Kearns, Phil (1999)

16. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 599–613. Springer, Heidelberg (2009)

17. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur,
R.: Formal verification of practical MPI programs. In: PPoPP 2009: Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 261–270. ACM, New York (2009)

http://www.mpi-forum.org/docs/
http://vsl.cis.udel.edu/tass

	Collective Assertions
	Introduction
	Model
	Collective Assertions
	The Extended Transition System

	Implementation and Experiments
	Overview of TASS
	Collective Assertion Specification and Verification in TASS
	Scaling Experiment
	Further Examples

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

