
Formal Analysis of Message Passing

(Invited Talk)

Stephen F. Siegel1,� and Ganesh Gopalakrishnan2,��

1 Verified Software Laboratory, Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716, USA

siegel@cis.udel.edu

http://vsl.cis.udel.edu
2 School of Computing, University of Utah, Salt Lake City, UT 84112, USA

ganesh@cs.utah.edu

http://www.cs.utah.edu/fv

Abstract. The message passing paradigm underlies many important
families of programs—for instance programs in the area of high perfor-
mance computing that support science and engineering research. Unfor-
tunately, very few formal methods researchers are involved in developing
formal analysis tools and techniques for message passing programs. This
paper summarizes research being done in our groups in support of this
area, specifically with respect to the Message Passing Interface. We em-
phasize the need for specialized varieties of many familiar notions such
as deadlock detection, race analysis, symmetry analysis, partial order
reduction, static analysis and symbolic reasoning support. Since these
issues are harbingers of those being faced in multicore programming, the
time is ripe to build a critical mass of researchers working in this area.

1 Introduction

Ever since Dijkstra introduced the notion of semaphores [10], shared memory
concurrent programming has been a familiar research topic for computer scien-
tists. Shared memory programming allows the deployment of parallel activities
(threads or tasks) that access pieces of shared data. A variety of mechanisms,
ranging from static scheduling to runtime schedule management using locks, en-
sure the integrity of shared data. The underlying hardware maintains the shared
memory view by employing cache coherency protocols.

Shared memory concurrency now dominates the attention of computer science
researchers—especially those interested in formal analysis methods for correct-
ness [2, 46]. The purpose of this article, however, is to bring focus sharply onto
the predicament of application scientists who had long ago realized the need for
parallelism. A fairly significant milestone was reached about seventeen years ago
when these scientists and computer manufacturers interested in large scale scien-
tific computing standardized parallel programming around the Message Passing
� Supported by the U.S. National Science Foundation grants CCF-0733035 and CCF-

0953210, and the University of Delaware Research Foundation.
�� Supported by Microsoft, and NSF CCF-0903408, 0935858.

R. Jhala and D. Schmidt (Eds.): VMCAI 2011, LNCS 6538, pp. 2–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://vsl.cis.udel.edu
http://www.cs.utah.edu/fv

Formal Analysis of Message Passing 3

Interface, which soon became the de facto standard in this area. Development
of MPI has continued, with the latest edition of the MPI Standard, version 2.2,
published in 2009 [26].

Message passing has long been realized as “the other dominant paradigm for
parallel programming.” As opposed to shared memory, message passing makes
it the responsibility of programmers to explicitly move data between partici-
pant processes/threads. The semantics of message passing programs has been
a popular research topic, with two notable publications being Hoare’s theory
of Communicating Sequential Processes [15] and Milner’s Calculus of Commu-
nicating Systems [27]. However, the brand of message passing that has truly
succeeded—namely MPI—is a far cry from notations such as CCS and CSP,
and even their embellished programming language versions, Occam [18] and Er-
lang [1]. MPI 2.2 specifies over 300 primitives, including dozens of functions
for point-to-point sending and receiving of messages, collective operations such
as broadcast and reduce, and many other functions for structuring large-scale
simulation codes using abstractions such as communicators and topologies.

It is without doubt that MPI has succeeded in a practical sense. It is the sin-
gle notation that all application scientists around the world use for performing
large-scale “experiments” on expensive supercomputers. It has enabled cutting-
edge research on numerous fronts: how chemical reactions occur; how black holes
evolve; how weather systems work; how new theories in physics are put to test;
and how we may one day build efficient and safe nuclear reactors. This paper asks
the following fair question: what are formal methods researchers doing to help MPI
programmers? The answer unfortunately is next to nothing! We describe some of
the research directions being pursued in our groups. We close by reiterating the
importance of developing tools for message passing concurrency, both because
MPI continues to be relevant for the coming decade and because other APIs and
languages inspired by the message passing ideas incubated in MPI are becoming
important in the upcoming era of concurrent and parallel computing.

2 An Overview of MPI and Its Correctness Issues

Structure of an MPI program. An MPI program comprises some number n ≥ 1 of
MPI processes. MPI does provide for dynamic process creation, but this feature
is not widely used, and we will assume n is fixed for the runtime of the program.
Each MPI process is specified as a C/C++ or Fortran program which uses the
types, constants, and procedures defined in the MPI library. While there is no
requirement that the processes are generated from the same source code, or even
written in the same language, in practice one almost always writes and compiles
a single generic program and specifies n when the program is executed. The MPI
runtime system instantiates n processes from this code. Though generated from
the same code, the processes can behave differently because each can obtain its
unique PID and the code can contain branches on this value.

MPI provides an abstraction—the communicator—which represents an isolated
communication universe. Almost every MPI function takes a communicator as an

4 S.F. Siegel and G. Gopalakrishnan

argument. Messages sent using one communicator can never be received or have
any impact upon another communicator. A set of processes is associated to each
communicator. If the size of this set is m, the processes are numbered from 0 to
m − 1; this number is the rank of the process with respect to the communicator.
One process may take part in many communicators and have a different rank in
each. MPI defines a type MPI_Comm for communicators, and a number of functions
to create and manipulate them. The predefined communicator MPI_COMM_WORLD
consists of all n processes; the rank of a process with respect to MPI_COMM_WORLD
may be thought of as the process’s unique PID. The function MPI_Comm_size is
used to obtain the number of processes in a communicator and MPI_Comm_rank is
used to obtain the rank of the calling process. For examples of these, see Fig. 2(b).
Point-to-point operations. MPI’s point-to-point functions are used to send
a message from one process to another. There are many variants, but the most
basic are MPI_Send and MPI_Recv, and many useful MPI programs can be writ-
ten with just these two communication operations. The sending process specifies
the rank of the destination process as well as an integer tag which the receiver
can use in selecting messages for reception. The receiving process may specify
the rank of the source and the tag, but may instead use the wildcard values
MPI_ANY_SOURCE and MPI_ANY_TAG for either or both of these arguments, indi-
cating that a message from any source and/or with any tag can be received.

A message matches a receive if the communicators agree, the sources agree
(or the receive uses MPI_ANY_SOURCE), and the tags agree (or the receive uses
MPI_ANY_TAG). A receive cannot accept a message x from process i if there is an
earlier matching message from process i that has not yet been received [26, §3.5].
This “non-overtaking” requirement means that point-to-point messaging may be
modeled by a system of FIFO queues—one for each ordered pair of processes—
with the exception that message tags may be used to pull a message from the
middle of a queue. Early approaches to the verification of MPI programs used
the model checker Spin [16] and took exactly this approach; see [23, 39].

Neither the type nor the number of data elements is used to match messages
with receives. It is up to the programmer to “get these right.” If the types are
incompatible or the receive buffer is not large enough to contain the incoming
message, anything could happen: the Standard does not require the MPI im-
plementation to report an error. Implementations might interpret floating-point
numbers as integers, or overwrite the receive buffer (perhaps resulting in a seg-
mentation fault). If error messages are issued, they are often cryptic.

What about buffering? Unlike standard channel models, which assign a fixed
capacity to each channel, the MPI model makes no assumptions about the avail-
ability of buffer space. At any time, a message sent by MPI_Sendmay be buffered,
so the sender can proceed even if the receiving process has not reached a cor-
responding receive, or the sender may be blocked until the receiver arrives at a
matching receive and the message can be copied directly from the send buffer
to the receive buffer. The Standard places no restrictions on how the MPI im-
plementation makes this decision, though in practice most implementations will
base the decision on factors such as the amount of buffering space available and

Formal Analysis of Message Passing 5

the size of the message. A correct MPI program must behave as expected no
matter how these decisions are made. In particular, a correct program should
never reach a state in which progress is only possible if a message is buffered.
Even though such an action may succeed, it is also possible that the program
deadlocks, depending on the choices made by the MPI implementation. This
undesirable state is known as potential deadlock, and much developer effort is
expended on avoiding, detecting, and eliminating potential deadlocks.

A formal model of programs that use a subset of MPI (including the func-
tions described above) is described in [39,40]. Using this model, several theorems
facilitating formal verification can be proved. In particular, programs that do
not use MPI_ANY_SOURCE exhibit a number of desirable deterministic properties.
For example, absence of potential deadlocks can be established by examining
only synchronous executions (those in which every send is forced to take place
synchronously)—this is true even in the presence of local nondeterminism within
a process. If in addition each process is deterministic, absence of potential dead-
locks and in fact any property of the terminal state of the program can be verified
by examining any single interleaving.

All of these theorems fail for programs that use MPI_ANY_SOURCE. Even for
these programs, however, it is not necessary to explore every possible interleav-
ing and behavior allowed by the MPI Standard in order to verify many desirable
properties, such as absence of potential deadlock. MPI-specific partial order re-
duction approaches have been developed to determine precisely when it is safe
to restrict attention to a smaller classes of behaviors. The urgent POR scheme,
for example, defines a reduced state space in such a way that when control is
away from an any-source receive only a single interleaving needs to be examined,
but when at such a receive multiple interleavings might have to be explored [35].
This reduction is safe for any property of potentially halted states. MPI-specific
dynamic POR schemes are another approach [47, 48].
Collectives. MPI provides a number of higher-level communication operations
that involve all processes in a communicator, rather than just two. These collec-
tive functions include barrier, broadcast, and reduction operations. The syntax
follows an SPMD style. For example, to engage in a broadcast, all processes
invoke the same function, MPI_Bcast, with the same value for argument root,
the rank of the process that is sending. On the root process, argument buf is a
pointer to the send buffer, while on a non-root process, it points to the buffer
that will be used to receive the broadcast message. The MPI Standard requires
that all processes in the communicator invoke the same collective operations
on the communicator, in the same order, and that certain arguments (such as
root) have the same value on every process. If these conditions are violated, the
behavior of the MPI implementation is undefined.

The synchronization semantics of the collective operations are also loosely
defined. Certain operations, such as MPI_Barrier or an MPI_Allreduce using
addition, must necessarily create a synchronization barrier: no process can leave
the operation until every process has entered it. Others do not necessarily im-
pose a barrier: it is possible for the root to enter and leave a broadcast operation

6 S.F. Siegel and G. Gopalakrishnan

before any other process arrives at the broadcast, because the messages it sends
out could be buffered. The MPI Standard allows the implementation to choose
the degree of synchronization. As in the case with MPI_Send, the degree of syn-
chronization can change dynamically and unpredictably during execution. A
correct program cannot assume anything.

Every MPI collective operation is functionally equivalent to a routine that can
be written using point-to-point operations. Indeed, in many places the Standard
describes a collective operation by giving an equivalent sequence of point-to-
point operations. One might wonder why MPI specifies the collectives, since the
programmer could just implement them using the point-to-points. The answer is
that the collective may be functionally equivalent, but is expected to give better
performance in most cases than anything that could be expressed on top of point-
to-points. In the IBM BlueGene series, for example, many collective operations
are mapped directly to a tree-based network optimized for communication in-
volving all nodes in a partition. Point-to-point operations use a separate 3d-torus
network. However, if one is only interested in functional correctness, this does
mean that many verification techniques can be extended to the collectives “for
free.” The theorems mentioned above, for example, all apply to programs using
collectives. (Technically, this only holds for reduction operations for which the
reduction operator is commutative and associative. Since floating-point addition
and multiplication are not associative, it is possible for a reduction using either
operator to return different values when invoked twice from the same state. This
is because the Standard does not insist that the operation be applied to the
processes in any particular order, such as by increasing rank. However, this is
the only source of nondeterminism arising from the use of collectives.)
Nonblocking Operations. MPI provides ways for the programmer to specify
how computational and communication actions associated to a process may take
place concurrently. Modern high-performance architectures can take advantage
of this information by mapping these actions to separate, concurrently executing
hardware components. This capability is often credited with a significant share
of the high level of performance obtained by state-of-the-art simulations.

The MPI mechanism for specifying such overlap is nonblocking communica-
tion. The idea is to decompose the blocking send and receive operations discussed
above into two distinct phases: the first posts a communication request; the sec-
ond waits until that request has completed. Between the posting and waiting,
the programmer may include any code (including other communication opera-
tions) that does not modify (or, in the case of a nonblocking receive, read) the
buffer associated to the communication.

The nonblocking function MPI_Isend posts a send request, creates a request
object, and returns a handle to that object (a value of type MPI_Request). This
call always returns immediately, before the data has necessarily been copied
out of the send buffer. (The I in MPI_Isend stands for “immediate.”) A sub-
sequent call to MPI_Wait on that handle blocks until the send operation has
completed, i.e., until the data has been completely copied from the send buffer—
either into some temporary buffer (if the send is buffered) or directly into the

Formal Analysis of Message Passing 7

matching receive buffer (if the send is executed synchronously). In particular, the
return of MPI_Wait does not mean the message has been received, or even that a
matching receive operation has been posted. The call to MPI_Wait also results
in the request object being deallocated. After that call returns, it is again safe
to modify, re-use, or deallocate the send buffer. MPI_Irecv posts a nonblocking
receive request and behaves similarly. These functions generalize the blocking
send and receive: MPI_Send is equivalent to an MPI_Isend followed immediately
by an MPI_Wait; MPI_Recv to an MPI_Irecv followed immediately by MPI_Wait.

A formal model of the nonblocking semantics, as well as a description of their
realization in a model checking tool, can be found in [36]. Extensions of the
theorems discussed above to the nonblocking case are given in [41].

Nonblocking operations provide a powerful mechanism to the programmer,
but also a number of dangers. For example, the programmer must take care to
not write to a send buffer involved in a nonblocking operation until after the call
to MPI_Wait returns. As with all the other pitfalls discussed above, the behavior
of the MPI implementation in the case of a violation is undefined.
Properties. In Fig. 1, we summarize a number of correctness properties that
any MPI program should satisfy. The programmer cannot count on the compiler
or MPI runtime to check any of these, or even to report errors if they are violated.
Violations can lead to erroneous results, or to a crash several days in to a long-
running simulation on an expensive supercomputer. Given the stakes, the need
for tools that can verify such properties before execution is clear.

In addition to these generic correctness properties, developers have expressed
interest in a number of properties that may be applicable only in certain cases,
or that bear more on performance than correctness. A sampling follows:

1. The program contains no unnecessary barriers. (Barriers can take a huge toll
on performance, but it is often difficult to decide when a particular one is
required for correctness.)

2. The number of outstanding communication requests never exceeds some spec-
ified bound. (With most MPI implementations, performance can degrade
sharply when the number of such requests becomes excessive.)

3. Every nonblocking communication request is issued as early as possible; the
completion operation is issued as late as possible. (The goal is to maximize
the overlap to get the best performance from the runtime.)

4. A specific receive operation is always issued before the corresponding send is
issued. (Dealing with “unexpected” messages can lead to expensive memory
copies and other slow-downs.)

5. The program is input-output deterministic. (I.e., the final output is a function
only of the input, and does not depend on the interleaving or any other
choices made by a compliant MPI implementation.)

6. The program is input-output equivalent to some other given (sequential or
MPI) program. (Often, a simple sequential program is used as the starting
point and serves as the specification for the optimized MPI version.)

8 S.F. Siegel and G. Gopalakrishnan

1. For each process, no MPI function is invoked before MPI_Init; if MPI_Init is
invoked then MPI_Finalize will be invoked before termination; no MPI function
will be invoked after MPI_Finalize.

2. Absence of potential deadlock.
3. In MPI functions involving “count” arguments, such arguments are always non-

negative; if a “count” argument is positive, the corresponding buffer argument is
a valid non-null pointer.

4. Any rank argument used in an MPI function call (e.g., source, dest, root) lies
between 0 and m − 1 (inclusive), where m is the number of processes in the com-
municator used in that call. (Exceptions: source may be MPI_ANY_SOURCE, source
or dest may be MPI_PROC_NULL.)

5. The element type of any message received is compatible with the type specified by
the receive statement.

6. Assuming weak fairness, every message sent is eventually received.
7. Any message received does not overflow the specified receive buffer.
8. For any communicator, all processes belonging to the communicator issue the same

sequence of collective calls on that communicator, in the same order, and with
compatible arguments (root, op, etc.).

9. Every nonblocking communication request is eventually completed, by a call to
MPI_Wait or similar function.

10. The receive buffer associated to a nonblocking receive request is never read or
modified before the request completes; the send buffer associated to a nonblocking
send request is never modified before the request completes.

Fig. 1. Generic correctness properties applicable to all MPI programs

3 Symbolic Execution and Reachability Analysis for MPI

Symbolic execution involves executing a program using symbolic expressions in
place of ordinary concrete values [19]. It has been used for test generation, anal-
ysis and verification in many contexts. Its great advantage is that it may be
used to reason about many possible input and parameter values at once. When
combined with model checking techniques which reason about all possible in-
terleavings and other nondeterministic behaviors, it can be a powerful tool in
verifying properties of MPI programs such as those discussed above.

MPI-Spin [36, 37, 38, 41, 42, 43] was one of the first tools to combine model
checking and symbolic execution to verify MPI programs. An extension to Spin,
it adds to Spin’s input language many of the most commonly used MPI functions,
types, and constants. It also adds a library of functions supporting symbolic
arithmetic, including a simple but fast theorem-proving capability.

One of MPI-Spin’s most innovative features is the ability to establish that
two programs are functionally equivalent. The idea is to form a model which is
the sequential composition of the two programs and add an assertion at the final
state that the outputs from the two programs agree. If the assertion can be shown
to hold for all inputs and all possible behaviors of the MPI implementation,
the property holds. Typically, bounds must be placed on certain inputs and
parameters so that the model will have a finite number of states.

Formal Analysis of Message Passing 9

MPI-Spin requires a Promela model. To extract such a model by hand is
labor-intensive and error-prone. In contrast, its successor, the Toolkit for Accu-
rate Scientific Software [34,44,45], works directly from C/MPI source code. The
front end automatically extracts a TASS model. Many of the most challenging
programming language constructs can be represented directly in the model and
are supported by the TASS verification engine. These include functions and re-
cursion, pointers and pointer arithmetic, multi-dimensional arrays, dynamically
allocated data, and of course, a subset of MPI. TASS also supports many MPI-
specific optimizations (such as the urgent POR scheme discussed in §2) that are
not possible to implement on top of Spin.

TASS performs two basic functions: (1) verification of a single program, in
which properties such as those of Fig. 1 are checked, and (2) comparison of two
programs for functional equivalence. In both cases, the user adds annotations
to the program in the form of pragmas. These may be used to indicate which
variables are to be considered the input or output, to place assumptions (such
as bounds) on parameters or variables, or to specify special assertions [44]. To
verify a program, TASS takes as input this annotated C code and a concrete
value n for the number of processes. It constructs an internal model of an n-
process instantiation of the program and performs an explicit, depth-first search
of the model’s state space, using symbolic expressions for all values. The sym-
bolic module performs sophisticated simplifications of expressions and can also
dispatch many of the queries. For those it cannot dispatch on its own, it invokes
CVC3 [4]. In comparison mode, either, both, or none of the programs may use
MPI, and the number of processes for each is specified separately.
Example: Matrix Multiplication. Consider the problem of multiplying two
matrices. The straightforward sequential version is given in part (a) of Fig. 2
while part (b) presents a parallel MPI version adapted from [13].

The MPI version uses the manager-worker pattern. The problem is decom-
posed into a set of tasks. One process, the manager, is responsible for assigning
tasks to workers and collecting and processing the results. As soon as a worker
returns a result, the manager sends that worker a new task, and proceeds in this
way until all tasks have been distributed. When there are many more tasks than
processes, and the amount of time required to complete a task is unpredictable,
this approach offers a practical solution to the load-balancing problem.

In our example, a task is the computation of one row of the product matrix.
The manager is the process of rank 0, and begins by broadcasting the second
matrix b to all workers. The manager then sends one task to each worker; the
task is encoded as a message in which the data is the row of a and the tag is
the index of that row. (A tag of 0 indicates that there are no more tasks, so the
worker should terminate.) The manager waits for a response from any worker
using a wildcard receive. In the message sent by the worker, the data contains
the computed values for the row of the product matrix and the tag contains
the index of the row. The identity of the worker whose result was received is
obtained from the MPI_SOURCE field of the status object; this worker is sent the
next task, if work remains. Finally, all workers are sent the termination signal.

10 S.F. Siegel and G. Gopalakrishnan

void vecmat(double vector[L], double matrix[L][M], double result[M]) {
int j, k;
for (j = 0; j < M; j++)
for (k = 0, result[j] = 0.0; k < L; k++) result[j] += vector[k]*matrix[k][j];

}
int main(int argc, char *argv[]) {

int i, j, k; double a[N][L], b[L][M], c[N][M]; /* read a, b somehow */
for (i = 0; i < N; i++) vecmat(a[i], b, c[i]);
return 0;

}

(a) Sequential version

#define comm MPI_COMM_WORLD
int main(int argc, char *argv[]) {

int rank, nprocs, i, j; MPI_Status status;
MPI_Init(&argc, &argv); MPI_Comm_size(comm, &nprocs); MPI_Comm_rank(comm, &rank);
if (rank == 0) {
int count; double a[N][L], b[L][M], c[N][M], tmp[M]; /* read a, b somehow */
MPI_Bcast(b, L*M, MPI_DOUBLE, 0, comm);
for (count = 0; count < nprocs-1 && count < N; count++)

MPI_Send(&a[count][0], L, MPI_DOUBLE, count+1, count+1, comm);
for (i = 0; i < N; i++) {

MPI_Recv(tmp, M, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);
for (j = 0; j < M; j++) c[status.MPI_TAG-1][j] = tmp[j];
if (count < N) {

MPI_Send(&a[count][0], L, MPI_DOUBLE, status.MPI_SOURCE, count+1, comm);
count++;

}
}
for (i = 1; i < nprocs; i++) MPI_Send(NULL, 0, MPI_INT, i, 0, comm);

} else {
double b[L][M], in[L], out[M];
MPI_Bcast(b, L*M, MPI_DOUBLE, 0, comm);
while (1) {

MPI_Recv(in, L, MPI_DOUBLE, 0, MPI_ANY_TAG, comm, &status);
if (status.MPI_TAG == 0) break;
vecmat(in, b, out);
MPI_Send(out, M, MPI_DOUBLE, 0, status.MPI_TAG, comm);

}
}
MPI_Finalize();
return 0;

}

(b) Parallel MPI version using manager-worker pattern

Fig. 2. Matrix multiplication

For many programs (especially those that avoid wildcards and other sources
of nondeterminism), TASS can scale to very large configurations and process
counts. But manager-worker programs are notorious for the combinatorial blow-
up in the state space, and by their very nature, they must contain some non-
deterministic construct, such as MPI_ANY_SOURCE. This example is therefore one
of the most challenging for a tool such as TASS. Nevertheless, TASS is able to
verify functional equivalence of the two versions over a region of the parameter
space in which the number of tasks is bounded by 10, for up to 12 processes.

Fig. 3 shows various statistics arising from this use of TASS. Note that after a
point, increasing n only reduces the state space: this is because a greater portion
of the work is distributed in the initial deterministic phase of the program. After
the number of workers exceeds the number of tasks (moving from n = 11 to
n = 12), there is very little change in the number of states, since one is only

Formal Analysis of Message Passing 11

n transitions statesSeen statesSaved stateMatches memory (MB) time (s)

2 58537 58538 1110 0 85 3.3
3 547958 545943 20831 3249 85 14.8
4 4214154 4187479 125521 36279 196 109.9
5 24234538 23996300 561447 275823 522 1127.5
6 86671454 85436358 1545815 1304667 1353 6593.4
7 154537494 151752013 2167303 2841957 1982 8347.8
8 140695720 137779991 1605759 2938383 1242 3732.5
9 75252734 73553814 724211 1704339 699 1400.4

10 27706410 27048664 235531 658791 255 473.2
11 10801810 10543295 90147 258921 144 192.1
12 10819370 10560855 90815 258921 146 197.0

Fig. 3. TASS performance verifying equivalence of sequential and parallel matrix mul-
tiplication programs. For each number of processes n, equivalence is verified for all L,
M , and N satisfying 0 ≤ L, M ≤ 2 and 0 ≤ N ≤ 10. The number of tasks is N . Run
on a 2.8GHz quad-core Intel i7 iMac with 16GB RAM.

adding processes that never do any work. The number of states saved is only
a small fraction of the number of states explored. This is because TASS never
saves a state that has no chance of being seen again (“matched”), one of the
keys to scalability. At the worst point, n = 7, more than 150 million states are
explored, and over 2 million saved, taking 2.5 hours. Surely symmetry or some
other reduction approach could be applied to examples such as this to reduce
this computational effort, though so far no one has figured out how to do this.

4 Dynamic Analysis of MPI

It is widely acknowledged that static analysis methods for concurrent programs
cannot be accurate, highly scalable, and highly automated—all at the same time.
Therefore it is crucially important to have efficient dynamic verification meth-
ods for MPI programs—a trend already apparent in other areas of concurrent
programming [11,14,29]. We first discuss some of the highly desirable attributes
of a dynamic analyzer for MPI programs, illustrating them on a simple example
(Figure 4 from [47]). We then describe our dynamic formal verifier ISP which
has most of these attributes. In the past we have demonstrated [51] that non-
trivial MPI programs (e.g., the 15KLOC hypergraph partitioner ParMETIS)
can be analyzed using ISP even on modest computational platforms such as
laptop computers. While the use of a small number of MPI processes helped
in these demonstrations, it was the fact that these examples were deterministic
that helped the most. Exploiting determinism, the MPI-specific dynamic partial
order reduction algorithm used in ISP can analyze these examples in seconds,
generating only one interleaving.

Unfortunately, MPI applications currently of interest to practitioners tend to
be much larger, and generate many nondeterministic MPI calls. Such applica-
tions can quickly exhaust the computational as well as memory resources of ISP.

12 S.F. Siegel and G. Gopalakrishnan

P0 P1 P2

Isend (to : 1, 22); Irecv (from : ∗, x) Barrier;
Barrier; Barrier; Isend (to : 1, 33);

if (x == 33) bug;

Fig. 4. MPI Example Illustrating Need for MPI-specific DPOR

Even if a scaled down model of these applications can be analyzed on modestly
sized platforms, bugs can be missed because both the MPI algorithms as well
as the MPI library algorithms involved while executing on larger data sets will
be different from those used for executing on smaller data sets. More often than
not, these examples cannot be scaled down meaningfully, or are poorly parame-
terized, thus preventing designers from downscaling them. To address the need
for highly scalable dynamic analysis methods, we have built a preliminary tool
called DAMPI (distributed analyzer for MPI programs) [50]. Already, DAMPI
has analyzed many large Fortran and C applications1on a 1000 CPU supercom-
puter cluster with nearly the same level of coverage guarantees as obtainable
through ISP. We now proceed to describe the basics of dynamic verification
algorithms for MPI, followed by ISP and DAMPI.

Requirements of an MPI Dynamic Analyzer. An idealized MPI dynamic
analyzer must possess (at least) the following features:

De-bias from the absolute speeds of the platform: Conventional execution based
testing methods for MPI omit many important schedules, causing them to miss
bugs even in short MPI programs [9]. This is mainly because of the fact that
their executions get trapped into a narrow range of all feasible schedules [52]. To
illustrate this issue, consider Figure 4. Here, a non-blocking send call is issued
by P0. The matching wait for this call is not shown, but assumed to come
well after the Barrier call in P0 (and similarly for Irecv, the non-blocking
receive from P1 and for Isend from P2). Also note that Irecv can match any
sender (its argument is MPI_ANY_SOURCE, denoted by ∗). Therefore, after starting
P0’s Isend and P1’s Irecv, an MPI platform is actually allowed to execute the
“Barrier” calls. This enables Isend of P2 also to be executed, thus setting up a
race between the two Isends within “the MPI runtime” (a distributed system)
to match Irecv. Ordinary testing methods for MPI programs cannot influence
whether Barrier calls happens first or which Isend matches P1’s Irecv. They
also cannot exert control over who wins races within MPI runtimes. ISP verifies
an MPI program by dynamically reordering as well as dynamically rewriting
MPI calls, as described under forcing nondeterminism coverage (below). These
are done with the objective of discovering the maximal extent of nondeterminism
at runtime. Approaches based on ‘delay padding’ are unreliable for MPI and very
wasteful of testing resources.

1 Thanks to excellent profiling support developed for MPI [31], it is possible to make
dynamic analysis language agnostic—an important requirement in the MPI domain.

Formal Analysis of Message Passing 13

Force nondeterminism coverage: Schedule independent bugs (e.g., an allocated
MPI object that is not freed) can often be caught through conventional
testing. To detect schedule dependent bugs, ISP must explore the maximal ex-
tent of nondeterminism possible. Our approach will be to employ stateless model
checking [11], set up a backtracking point around Irecv(from : ∗), and rewrite
the call to Irecv(from : 0) and Irecv(from : 2) in turn, pursuing these two
courses. ISP can determine this set of relevant executions and it replays over
them automatically, thus ensuring nondeterminism coverage.

Eliminate redundant tests: Ordinary schedule perturbation methods such as [52]
may end up permuting the order of Barrier invocations over all the n! equivalent
cases. Such wastage is completely eliminated in ISP which does not permute the
schedules of fully deterministic MPI operations.

However, ISP can still generate redundant tests when it comes to nondetermin-
istic operations. Patterns such as in Figure 4 where the received data is
decoded tend to be somewhat rare in MPI. However, building accurate static anal-
ysis methods to detect where data decoding occurs, and to maintain such static
analyzers across multiple languages requires non-trivial effort (future work). For
now, we use heuristics to limit schedule explosion due to nondeterministic calls
used in succession.

Base tool operation on a theory of happens-before: The decision to execute
Barriers before Irecv(from : ∗) is not a one-off special case in the ISP scheduler.
Special case based dynamic verification tools tend to be very brittle and formally
impossible to characterize. Instead, this decision is a natural consequence of
exploiting the happens-before order we have defined for MPI [47]. While MPI
itself can be formalized in several ways (e.g., [22, 35]), we have found that it
is this more “macroscopic” formal semantics of happens-before ordering that
directly guides the construction of the ISP scheduler.

We conducted an ad hoc test of the generality of this approach by applying
ISP on many simple (but fairly tricky) questions pertaining to MPI program be-
havior [3]. We observed that ISP’s scheduler could determine program outcomes
based on the happens-before relation alone.2 The following additional analysis
algorithms are based on ISP’s happens-before:

– The consequences of MPI_Send not having adequate buffering (with respect
to the message being sent) can be modeled through a happens-before edge
connecting the underlying MPI_Isend and MPI_Wait.

– MPI programs can sometimes deadlock more if buffering is increased. We
can precisely model and study whether a given MPI program has this vul-
nerability by analyzing the underlying happens-before structure [49].

– We include an algorithm to detect functionally irrelevant barriers in MPI
programs [33] by analyzing the happens-before structure and seeing whether
the presence of an MPI_Barrier alters this relation.

Cover the input-space: The bug “bug” in process P1 will be hit only if P0 and
P2 supply the right values in their Isend operations. This may ultimately be a

2 A few flaws in ISP were also found and fixed in the process.

14 S.F. Siegel and G. Gopalakrishnan

Run

Fig. 5. ISP (left) and DAMPI (right)

function of the inputs to the whole program. Currently ISP does not have the
ability to perform input selection; this is an important item of future work.

Provide a well engineered development environment: We have released a tool
called Graphical Explorer of MPI programs (GEM, [17]). GEM is now an official
part of the Eclipse Parallel Tools Platform (PTP, [28]) release 4.0. One can di-
rectly download GEM from the official Eclipse PTP site, and couple it with ISP
which is released from our site. The availability of GEM makes it much easier
to understand (and teach) MPI. One can use a rigorous approach in this teach-
ing, as GEM is equipped with facilities for viewing the MPI program behavior
through the happens-before relation. GEM can also display the MPI schedule
from the programmers’ perspective, but can also display the internally reordered
schedule that ISP actually uses. The release of GEM through PTP is expected to
encourage integration with other MPI tool efforts (e.g., conventional debuggers).

ISP and DAMPI. We have built two tools to carry out dynamic verification.
The first is ISP (mentioned already) which exerts centralized scheduling control
through a profiling layer. The ISP approach guarantees nondeterminism coverage
[47] because of its dynamic MPI call reordering and rewriting already explained.
ISP’s dynamic verification algorithm is as follows:
– It picks a process and runs it under the control of the verification scheduler.
– ISP sends the intercepted MPI calls to the MPI runtime whenever the calls

are deterministic. Nondeterministic MPI calls are delayed until after all pro-
cesses are at a fence.

– A process reaches a fence when all its further operations are happens-before
ordered after its current operation. At this time, ISP switches processes.

– When all processes are at a fence, ISP reaches a decision point. It can now
exactly determine all the matches for an MPI nondeterministic operation.
It replaces the nondeterministic calls by their determinized counterparts as
explained before.

ISP’s dynamic partial order reduction algorithm can be expressed as a prioritized
transition system consisting of process transitions and MPI runtime transitions.
The theory of ample sets [7] formalizes this algorithm.

Formal Analysis of Message Passing 15

Distributed Analyzer of MPI Programs (DAMPI). ISP uses a central-
ized scheduler. It ends up duplicating much of what an MPI runtime would do,
but precisely with a view to obtain scheduling control that is important in or-
der to guarantee coverage. ISP’s usage of the MPI library—however advanced
it might be—is to merely “finish up” message matches. All these result in many
limitations: (i) it is very difficult to parallelize ISP’s scheduler; (ii) we slow down
the processing of an MPI application by intercepting at every juncture; (iii) a
highly efficient MPI library may be underutilized; (iv) ISP’s scheduler is very
complex and difficult to maintain. DAMPI incorporates a few key innovations.
First, it tracks happens-before in a distributed setting using logical clocks. While
vector clocks will ensure full coverage, Lamport clocks [20] are a much cheaper
alternative adequate for realistic MPI programs. Second, it only tracks the non-
deterministic component of the happens-before relation. All other calls can be
“fired and forgotten.” Last but not least, DAMPI allows processes to run at
full speed, with piggyback messages helping convey logical clocks. At the end of
each execution run, DAMPI calculates which alternative matches were possible
on that run for nondeterministic receives. It then generates these alternate run
schedules, and enforces them through MPI call rewriting as before. This process
is repeated until the space of nondeterminism is exhausted or bugs are located.

5 Concluding Remarks

MPI continues to be of central importance to programmers in high performance
computing, and will continue to hold this position for the forseeable future.
In addition, MPI’s influence can be seen in recently proposed message passing
notations such as the Multicore Communications API [25] and the RCCE library
[24]. In [32], we show that many of the lessons learned from the design of ISP
can be applied to some of these APIs.

But more research and new ideas are needed in order for formal methods to
become a truly practical tool for HPC developers [12]. We have already seen
the challenges certain nondeterministic MPI constructs pose to standard state
enumeration techniques. Similar issues arise using dynamic model checking: in
the example of Fig. 2, ISP generates 18 interleavings for 4 × 4 matrices using
four processes. This shoots up to 54 interleavings for a 5 × 4 times 4 × 5 mul-
tiplication. Certainly many, if not all, of these executions could be considered
“equivalent” under some suitable notion of equivalence. The goal is to find a no-
tion of equivalence which obtains significant reductions in commonly-occuring
coding patterns, while still preserving properties of interest. There is a large
body of work on symmetry reduction in model checking, but it is not yet clear
how this can be applied to programs such as those of Fig. 2.

Other interesting avenues of research include applications of static analysis
and Abstract Interpretation to MPI or other message-passing systems. These
approaches could potentially reason without bounds on parameters or process
counts. Yet very little research has been done in this area. (Some exceptions
are [5,8,53].) Parametrized model checking approaches might also be applicable.

16 S.F. Siegel and G. Gopalakrishnan

There are many avenues for further research on symbolic execution support
for MPI. For example, typical scientific programs perform many complex array
operations. A significant portion of the verification time involves many element-
by-element symbolic array operations. If instead these could be recognized as
part of a single high level operation (such as copying one segment of an array
to another), the analysis could scale much further, and perhaps even deal with
arrays of arbitrary size.

References

1. Armstrong, J.: Programming in Erlang: Software for a Concurrent World. Prag-
matic Bookshelf (July 2007)

2. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Comm. ACM 52(10), 56–67 (2009)

3. Atzeni, S.: ISP takes Steve’s midterm exam,
http://www.cs.utah.edu/~simone/Steve_Midterm_Exam/

4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

5. Bronevetsky, G.: Communication-sensitive static dataflow for parallel message
passing applications. In: Proceedings of The Seventh International Symposium
on Code Generation and Optimization, pp. 1–12. IEEE Computer Society, Los
Alamitos (2009)

6. Cappello, F., Hérault, T., Dongarra, J. (eds.): PVM/MPI 2007. LNCS, vol. 4757.
Springer, Heidelberg (2007)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

8. Cousot, P., Cousot, R.: Semantic analysis of communicating sequential processes.
In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 119–
133. Springer, Heidelberg (1980)

9. DeLisi, M.: Test results comparing ISP, Marmot, and mpirun,
http://www.cs.utah.edu/fv/ISP_Tests

10. Dijkstra, E.W.: Cooperating sequential processes. In: Genuys, F. (ed.) Program-
ming Languages: NATO Advanced Study Inst., pp. 43–112. Academic Press, Lon-
don (1968)

11. Godefroid, P.: Model checking for programming languages using VeriSoft. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1997, pp. 174–186. ACM, New York (1997)

12. Gopalakrishnan, G.L., Kirby, R.M.: Top ten ways to make formal methods for HPC
practical. In: 2010 FSE/SDP Workshop on the Future of Software Engineering
Research. ACM, New York (to appear, 2010)

13. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with
the Message-Passing Interface. MIT Press, Cambridge (1999)

14. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Intl. J. on Software Tools for Technology Transfer 2(4) (April 2000)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall Intl., Engle-
wood Cliffs (1985)

16. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)

http://www.cs.utah.edu/~simone/Steve_Midterm_Exam/
http://www.cs.utah.edu/fv/ISP_Tests

Formal Analysis of Message Passing 17

17. Humphrey, A., Derrick, C., Gopalakrishnan, G., Tibbitts, B.R.: GEM: Graphical
explorer for MPI programs. In: Parallel Software Tools and Tool Infrastructures,
ICPP Workshop (2010), http://www.cs.utah.edu/fv/GEM

18. Jones, G., Goldsmith, M.: Programming in occam2. Prentice Hall Intl. Series in
Computer Science (1988),
http://www.comlab.ox.ac.uk/geraint.jones/publications/book/Pio2/

19. King, J.C.: Symbolic execution and program testing. Comm. ACM 19(7), 385–394
(1976)

20. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

21. Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.): EuroPVM/MPI 2008. LNCS,
vol. 5205. Springer, Heidelberg (2008)

22. Li, G., Palmer, R., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: Formal specifi-
cation of MPI 2.0: Case study in specifying a practical concurrent programming
API. Science of Computer Programming (2010),
http://dx.doi.org/10.1016/j.scico.2010.03.007

23. Matlin, O.S., Lusk, E., McCune, W.: SPINning parallel systems software. In:
Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 213–220. Springer,
Heidelberg (2002)

24. Mattson, T., Wijngaart, R.V.: The 48-core SCC processor: the programmers view.
In: SC10 [30] (to appear)

25. Multicore association, http://www.multicore-association.org
26. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,

version 2.2, September 4, (2009), http://www.mpi-forum.org/docs/
27. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle

River (1989)
28. The Eclipse Parallel Tools Platform, http://www.eclipse.org/ptp
29. Research, M.: CHESS: Find and reproduce Heisenbugs in concurrent programs,

http://research.microsoft.com/en-us/projects/chess (accessed 11/7/10)
30. SC 2010: The International Conference for High Performance Computing, Net-

working, Storage and Analysis, New Orleans, LA. ACM, New York (to appear,
2010)

31. Schulz, M., de Supinski, B.R.: PNMPI tools: a whole lot greater than the sum of
their parts. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomput-
ing, SC 2007, pp. 30:1–30:10. ACM, New York (2007)

32. Sharma, S., Gopalakrishnan, G., Mercer, E., Holt, J.: MCC - A runtime verifica-
tion tool for MCAPI user applications. In: 9th International Conference Formal
Methods in Computer Aided Design (FMCAD), pp. 41–44. IEEE, Los Alamitos
(2009)

33. Sharma, S., Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M., Thakur, R., Gropp,
W.: A formal approach to detect functionally irrelevant barriers in MPI programs.
In: Lastovetsky et al. [21], pp. 265–273

34. Siegel, S.F.: The Toolkit for Accurate Scientific Software web page (2010),
http://vsl.cis.udel.edu/tass

35. Siegel, S.F.: Efficient verification of halting properties for MPI programs with wild-
card receives. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 413–429.
Springer, Heidelberg (2005)

36. Siegel, S.F.: Model checking nonblocking MPI programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

37. Siegel, S.F.: Verifying parallel programs with MPI-Spin In: Cappello et al. [6], pp.
13–14

http://www.cs.utah.edu/fv/GEM
http://www.comlab.ox.ac.uk/geraint.jones/publications/book/Pio2/
http://dx.doi.org/10.1016/j.scico.2010.03.007
http://www.multicore-association.org
http://www.mpi-forum.org/docs/
http://www.eclipse.org/ptp
http://research.microsoft.com/en-us/projects/chess
http://vsl.cis.udel.edu/tass

18 S.F. Siegel and G. Gopalakrishnan

38. Siegel, S.F.: MPI-Spin web page (2008), http://vsl.cis.udel.edu/mpi-spin
39. Siegel, S.F., Avrunin, G.S.: Verification of MPI-based software for scientific com-

putation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 286–303.
Springer, Heidelberg (2004)

40. Siegel, S.F., Avrunin, G.S.: Modeling wildcard-free MPI programs for verification.
In: Proceedings of the 2005 ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP 2005), pp. 95–106. ACM Press, New York (2005)

41. Siegel, S.F., Avrunin, G.S.: Verification of halting properties for MPI programs
using nonblocking operations. In: Cappello et al. [6], pp. 326–334

42. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Combining symbolic execu-
tion with model checking to verify parallel numerical programs. ACM Transactions
on Software Engineering and Methodology 17, Article 10, 1–34 (2008)

43. Siegel, S.F., Rossi, L.F.: Analyzing BlobFlow: A case study using model checking
to verify parallel scientific software. In: Lastovetsky et al. [21]

44. Siegel, S.F., Zirkel, T.K.: Collective assertions. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, Springer, Heidelberg (2011)

45. Siegel, S.F., Zirkel, T.K.: Automatic formal verification of MPI-based parallel pro-
grams. In: Proceedings of the 2011 ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2011). ACM Press, New York (to
appear, 2011)

46. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (March 2005),
http://www.drdobbs.com/architecture-and-design/184405990

47. Vakkalanka, S.: Efficient Dynamic Verification Algorithms for MPI Applications.
Ph.D. thesis, University of Utah (2010),
http://www.cs.utah.edu/formal_verification/pdf/sarvani_dissertation.pdf

48. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic verification of MPI
programs with reductions in presence of split operations and relaxed orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66–79. Springer,
Heidelberg (2008)

49. Vakkalanka, S., Vo, A., Gopalakrishnan, G., Kirby, R.: Precise dynamic analysis
for slack elasticity: Adding buffering without adding bugs. In: Keller, R., Gabriel,
E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp. 152–159.
Springer, Heidelberg (2010)

50. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R., Schulz, M.,
Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI pro-
grams. In: SC10 [30] (to appear), http://www.cs.utah.edu/fv/DAMPI/sc10.pdf

51. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R.:
Formal verification of practical MPI programs. In: PPoPP, pp. 261–269 (2009)

52. Vuduc, R., Schulz, M., Quinlan, D., de Supinski, B., Sæbjørnsen, A.: Improving
distributed memory applications testing by message perturbation. In: PADTAD
2006: Proceeding of the 2006 Workshop on Parallel and Distributed Systems: Test-
ing and Debugging, pp. 27–36. ACM, New York (2006)

53. Zhang, Y., Duesterwald, E.: Barrier matching for programs with textually un-
aligned barriers. In: Proceedings of the 12th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP 2007, pp. 194–204. ACM,
New York (2007)

http://vsl.cis.udel.edu/mpi-spin
http://www.drdobbs.com/architecture-and-design/184405990
http://www.cs.utah.edu/formal_verification/pdf/sarvani_dissertation.pdf
http://www.cs.utah.edu/fv/DAMPI/sc10.pdf

	Formal Analysis of Message Passing (Invited Talk)
	Introduction
	An Overview of MPI and Its Correctness Issues
	Symbolic Execution and Reachability Analysis for MPI
	Dynamic Analysis of MPI
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

