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Preface

Robot design usually follows a reductionist approach where mechanics, elec-
tronics, control loops and software are designed in sequential order, without
much “feedback” from higher level components. This methodology is arguably
the best suited to human engineers and have already provided impressive re-
sults. However, it also neglects numerous situations in which, for instance, a
minor change in mechanics can substantially simplify software and/or elec-
tronics. Conversely, natural evolution allows living organisms to take full
advantage of interactions across levels, as it provides an automatic and inte-
grated design process considering effectiveness of organism as a whole.

Loosely inspired by nature, Evolutionary Algorithms (EAs) now provide
mature optimization tools that have successfully been applied to the design of
many artifacts, from antennas to complete robots. In robotics, it has culmi-
nated in the Evolutionary Robotics research field. Modular robotics, swarm
robotics or any robot with non-conventional mechanics (e.g. high redundancy,
dynamic motion, multi-modality) are challenging robotics applications for
which such an integrated approach could prove useful.

Exploring this idea, the workshop entitled “Exploring New Horizons in
Evolutionary Design of Robots” was held on October, 11th, 2009, in Saint
Louis (USA) during the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS-2009). The workshop was intended to discuss
recent trends in Evolutionary Robotics (ER) and provided fruitful interac-
tions between roboticists and computer scientists working in Evolutionary
Robotics.

This book is a follow-up to the workshop. Firstly, Stephane Doncieux,
Jean-Baptiste Mouret, Nicolas Bredeche, the workshop organizers, and Vin-
cent Padois, a roboticist, present a position paper dedicated to bridging the
gap between ER and Robotics. Then, Josh Bongard, Kenneth Stanley and
Philippe Bidaud, the invited speakers to the workshop, provide each a short
position papers about the current trends and challenges at the cross-road of
robotics and evolutionary computation. Then, a collection of papers is pre-
sented, covering various topics and providing a glimpse to some of the current



VI Preface

trends in evolutionary robotics. These papers are extended versions of con-
tributions originally submitted to the workshop, which program commitee
was composed of: Josh Bongard (University of Vermont, USA), A.E. Eiben
(Vrije Universiteit Amsterdam, Netherlands), Evert Haasdijk (Vrije Univer-
siteit Amsterdam, Netherlands), Jean-Arcady Meyer (Univ. Pierre et Marie
Curie, ISIR/CNRS, France), Andrew Philippides (University of Sussex, UK)
and Marc Schoenauer (TAO/INRIA, France).

Paris, Stephane Doncieux
June 2010 Jean-Baptiste Mouret

Nicolas Bredèche
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Chapter 1
Evolutionary Robotics:
Exploring New Horizons

Stéphane Doncieux, Jean-Baptiste Mouret, Nicolas Bredeche, and Vincent Padois

Abstract. This paper considers the field of Evolutionary Robotics (ER) from the
perspective of its potential users: roboticists. The core hypothesis motivating this
field of research is discussed, as well as the potential use of ER in a robot design
process. Four main aspects of ER are presented: (a) ER as an automatic parameter
tuning procedure, which is the most mature application and is used to solve real
robotics problem, (b) evolutionary-aided design, which may benefit the designer as
an efficient tool to build robotic systems (c) ER for online adaptation, i.e. continuous
adaptation to changing environment or robot features and (d) automatic synthesis,
which corresponds to the automatic design of a mechatronic device and its control
system. Critical issues are also presented as well as current trends and pespectives in
ER. A section is devoted to a roboticist’s point of view and the last section discusses
the current status of the field and makes some suggestions to increase its maturity.

1.1 Introduction

The advent of genetic algorithms in the sixties, as a computational abstraction of
Darwin’s theory of evolution, promised to transfer the richness and efficiency of liv-
ing organisms to artificial agents, such as robotic systems. This envisioned future in-
spired a whole field of research, now called Evolutionary Robotics (ER) [28, 70, 80],
in which researchers create evolutionary algorithms to design robots, or some part
of robots such as their “artificial brain”. The long-term goal of this field is to
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obtain an automatic process able to design, and even build, an optimal robot given
only the specification of a task; the main underlying hypothesis is that Darwin’s
theory of evolution is the best source of inspiration, in particular because Nature
demonstrated its efficiency; the main hope is to obtain machines that fully and ro-
bustly exploit the non-linear dynamics offered by their structure and their environ-
ment without having to model them explicitly.

After almost twenty years of ER research, simple crawling robots have been au-
tomatically designed then manufactured [64]; neural networks have been evolved to
allow wheeled robot to avoid obstacles then autonomously charge their battery [29];
neural networks have also been evolved to drive walking [50, 55] and flying [78, 90]
robots, as well as self-organizing swarm of robots [5, 38].

These results demonstrate that it is possible to automatically design robots or
parts of robots with evolutionary algorithms. However, most evolved robots or con-
trollers are not yet competitive with human-designed solutions. What was seen as
complex challenges for robotics twenty years ago (walking robots with many de-
grees of freedom, non-linear control, simple but emergent reactive behaviors, ...)
has now been widely investigated in robotics and many efficient solutions have been
proposed.

Concurrently with the advances in robotics, evolutionary robotics matured too,
both with regards to the basis of evolutionary computation and to its application, and
it may be time to reconsider its place with regards to the robotics field. Consequent
to this analysis, this paper tackles the simple question: how current evolutionary
algorithms can be used in current robotics? After a short reminder of Evolution-
ary Algorithms (EA) (section (1.2)), we describe the conditions of EA applicability
(section 1.3), i.e. when ER should be taken into consideration. We then review the
main techniques developed in the ER field by dividing them into mature techniques
(section 1.4.1), current trends (section 1.4.2 and 1.4.3) and long-term research (sec-
tion 1.4.4). We discuss the current challenges of ER and the corresponding perspec-
tives (section 1.5). The point of view of a roboticist is presented in section 1.6 and
a discussion on ER as a scientific field together with suggestions to make it more
mature end the paper.

1.2 A brief Introduction to Evolutionary Computation

Evolutionary Computation (EC) has been investigated for more than 40 years, with
pioneering works both in Computer Sciences (Genetic Algorithms [48]) and Ap-
plied Mathematics (Evolution Strategies [85, 89]). Today, the term includes several
sub-branches that share the common background of taking a more or less loose in-
spiration from Darwin’s principles of natural selection and blind variations [17].
Moreover, the field has made great progress both considering fundamental con-
cepts (e.g. with the advent of developmental representations [95]) as well as the-
oretical grounding, from Evolution Strategies [8] to symbolic regression in Genetic
Programming [2]. Tools from Evolutionary Computation are now widely accepted
within the engineer’s meta-heuristic toolbox, and have been successfully applied to
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several domains, such as automatic design of NASA satellite antennae [65][66][67],
chairs [41, 42], electronic circuits [37], photonic crystals [83], polymer optical
fibers [68], and real world crawling robots for locomotion [64, 82] to cite a few.
What these works have in common is the fact that the objective function is defined
such that it gives minimal information on the performance of the evaluated design
(e.g. travelled distance, radio signal strength, structure stability). However, the rela-
tive freedom in the design definition made it possible to achieve impressive results:
satellite antennae from [66] actually ended up being more efficient and more com-
pact than human designed alternatives, and were integrated in the design process of
a satellite and sent to space.

From a practical viewpoint, Evolutionary Algorithms are population-based meta-
heuristics that provide the human engineer with a set of tools to address particu-
lar optimization problems1. The core principles are built upon two complementary
mechanisms, inspired from Darwin’s original principles: blind variations (favoring
the introduction of new candidates) and survival of the fittest (favoring pressure
towards the best individuals). Figure 1.1 illustrates this process with the example
of offline behavior optimization of an autonomous agent. The left part of the im-
age illustrates the evolutionary loop: an initial population of random individuals is
generated randomly, each individual corresponding to a genome (e.g. a set of param-
eters or specifications) that defines a particular configuration of robot. Individuals
are ranked according to their performance in order to select a subset of these indi-
viduals. These ”parents” will then be used to generate new ”children” individuals,
whose genomes are created using stochastic variations, either by recombining sev-
eral parent genomes and/or mutating a specific parent. This optimization process is
termed iterative as it goes on until a pre-defined criterion is reached (e.g. maximum
number of evaluations, desired performance, etc.). The right part of the image gives
an example of a navigation task (i.e., a two-wheel robot should explore a maze). In
this example, deliberately simplified, the aim is to design an automatic control ar-
chitecture allowing an autonomous mobile robot to explore a maze. On the one side,
the genome encodes the parameters of an artificial neural network connecting sen-
sory inputs to motor outputs. On the other side, the performance of this genome is
assessed by the behavior of the autonomous robot in the environment. An important
remark is that the nature of the evaluation process is completely independent from
the viewpoint of evolution in the offline setting, and only results in fitness values to
be used for further ranking and selection.

However, the actual expertise of the human engineer is crucial to the success of
such algorithms, both with regards to representation issues and evolutionary mecha-
nisms. In fact, several practical questions must be answered before actually launch-
ing the evolutionary design process: how to describe a candidate solution? how to
explore new candidate solutions? what is the structure of the problem? Moreover,
fundamental issues should also be addressed related to the nature of the design pro-
cess and the viability of the solution, especially regarding robustness and scalability.

1 The interested reader is referred to [25] for a complete introduction to Evolutionary Com-
putation and to [80] for an in-depth introduction to Evolutionary Robotics.
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Fig. 1.1 A typical scheme of Evolutionary Algorithm for Autonomous Robot Control Ar-
chitecture Optimization. Left: Evolutionary Process: starting from a population of randomly
generated individuals, each individual is evaluated. Based on the outcome of this evaluation,
individuals are selected depending on their performance. Then, a new population is generated
using two kinds of variation operators: mutation (i.e. a new individual is created as a modified
clone of a previous one) and recombination (i.e. a new individual is created by merging sev-
eral individuals of the previous generation). The evolutionary process goes on until a stopping
criterion is reached. Right: from the evolutionary algorithm viewpoint, the evaluation opera-
tor is simply seen as a blackbox function that maps a set of parameters or structures (i.e. the
genome values) to a real value (the ”fitness” value of this particular genome). In the particular
case of evolutionary robotics, evaluation also encompasses a set of transformation, from the
genome values to the actual phenotypic representation of a candidate solution (e.g. a robot
with a specific morphology and controller), and then to the fitness value, which is the result of
the behavior produced by a particular robot. It should be noted that this terminology is some-
times used in a different fashion in other application domains within EC (merging phenotype
and behavior, as in most case there is no temporal aspect in the evaluation process).

1.3 When to Use ER Methods?

Despite the large amount of papers about ER, the question of the underlying hy-
pothesis of this approach is seldom discussed.

While there exists some active research providing sounded theoretical basis of
Evolutionary Algorithm [7], the practical use of such methods does not require
strong mathematical know-how so as to be efficient in any context. This section
attempts to provide an overview of some critical aspects of using Evolutionary Al-
gorithm in the context of Robotics.
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1.3.1 Absence of “Optimal” Method

The first and foremost remark concerns the relevance of applying Evolutionary
Algorithms rather than another existing methods to solve a given problem. Evo-
lutionary Algorithms do not guarantee convergence towards a global optima, but
merely provide an efficient way to address problems that are usually left aside be-
cause of their intrinsic difficulties (ill-defined, poorly-defined, implying complex
dynamics, etc.). In this scope, ER results from a compromise between applying
an iterative algorithm, that may be very slow compared to analytical method, and
obtaining approximated solutions rather than no solution at all. Moreover, a key ad-
vantage of Evolutionary Robotics is its anytime nature, i.e. the ability to provide one
or several solutions, more or less valid, whenever the algorithm is stopped.

1.3.2 Knowledge of Fitness Function Primitives

EA principles consist in producing some diversity and then applying a selective
pressure to, statistically, keep the best solutions and discard the others. The key
question is that of defining what makes a solution better than the others? The be-
havior of solutions needs to be quantitatively described. To this end, descriptors of
the behavior have to be defined and measured during an evaluation. Such descrip-
tors are the fitness function primitives that should lead the search process towards
interesting solutions.

There is no handbook to guide the design of such functions. It is often easy to
define objectives able to discriminate between individuals that solve the problem –
the preference going to those solving it faster or more efficiently – and likewise it
is trivial to discriminate between individuals solving the task and those who don’t
solve it at all. The most difficult part of a fitness function design comes when in-
dividuals not solving the task at all have to be discriminated. For the algorithm to
work, this discrimination should lead towards interesting solutions, but naive fitness
functions often lead to local extrema, far from interesting solutions. Examples of
such cases are numerous, the most famous probably being the obstacle avoidance
problem. If simply defined as a count of collisions to be minimized, then the best
way to minimize it is ... not to move at all ! Even if the robot is forced to move, it
is simpler to find a way to turn round in a safe area, rather than taking the risk of
coming close to obstacles and then of learning to use sensors.

1.3.3 Knowledge of Phenotype Primitives

The phenotype is the system to be designed by evolution. In Evolutionary Robotics,
it may be the morphology of a robot, its control system or both. The goal is to find a
design that best answers to the requirements on the exhibited behavior, requirements
quantitatively described in the fitness function.

Evolutionary algorithms can do more than mere numerical optimization, it can
also design complex structures like graphs (neural networks, for instance), set of
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rules, etc. Actually, EA may both assemble and parameterize sets of primitive ele-
ments and explore open search spaces, like the space of graphs, for instance. Solving
a problem other than parameter optimization with an ER approach implies to find
appropriate phenotype primitives and their corresponding genotype primitives that
will be assembled or modified by the genetic operators.

For the search to be efficient (and at least more efficient than a pure random
search), the encoding, i.e. the way a phenotype or solution is represented in the
genotype space, must be carefully chosen. [86] presents a survey of encoding related
issues. If strings of symbols are used, the building block hypothesis, direct conse-
quence of the schemata theorem of genetic algorithms, states that alphabet should
be minimal and building blocks as small and independent as possible [35]. Schemas
have been extended to the concept of forma [84], defined on the basis of an equiva-
lence relation between genomes; this concept can be used to define desired properties
of the crossover operator. Likewise, the genotype-phenotypemapping can be studied
in order to determine how it changes the difficulty of the problem [87]. When used
to generate structures, other rules have been formulated [39], see [53] for a review.

1.4 Where and How to Use EA in the Robot Design Process?

We will distinguish four different uses of EA in a robot design process:

• parameter tuning
• evolutionary aided design
• online evolutionary adaptation
• automatic synthesis

All of them do not have the same maturity. Parameter tuning consists (figure 1.2
(a) and (b)) in using EA as an optimization tool, this is their most frequent use,
for which very efficient algorithms now exist, like CMA-ES [44], for instance, or
NSGA-II for multi-objective problems [19]. Evolutionary aided design is a more re-
cent trend that differs from parameter tuning in the use of the results. Whereas in pa-
rameter tuning, finding optimized parameters is the goal and generally comes at the
end of the design process, in evolutionary-aided design, these optimized parameters
are to be analyzed by experts to get a better understanding of the problem. Experts
will then be able to propose new solutions2 in a further step. Embodied evolution
consists in using EA not only during the design step, but also during robot lifetime,
in order to allow it to adapt on-line to drastically changing situations. Lastly, one
promising use of EA is evolutionary synthesis. Evolutionary Synthesis is indeed the
original motivation behind ER, i.e. building from scratch an autonomous agent by
taking some inspiration from the actual evolution mechanisms with the goal to better
exploit robot features and environment than what an engineer would do. However,
due to its challenging goal, it is also the less mature use of ER as many issues remain
to be studied.

2 Whose parameters might be further tuned with an EA.
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Fig. 1.2 Overview of the different uses of evolutionary algorithms in robotics. On this figure,
“evolutionary core” denotes the basic evolutionary loop (see section 1.2) excluding fitness
evaluation. (a.1) Parameter tuning based on a simulation then a transfer to the real robots; (a.2)
Parameter tuning that uses the real robot to evaluate the fitness; (b) Evolutionary-aided design
(e.g innovization); (c) Online Evolutionary Adaptation (e.g. with Embodied Evolution); (d)
Evolutionary synthesis (building blocks can be neurons, physical blocks, ...).

1.4.1 Mature Techniques: Parameter Tuning

Evolutionary algorithms, and especially modern evolution strategies [43], are now
mature tools for black-box optimization. As they don’t impose any constraint on
the objective function(s), they can be employed to tune some parameters (constants
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used in control laws, width of some parts, lengths, ...) of a robot with regards to a set
of defined objectives. Typical applications work from a dozen to one hundred real
parameters; they involve one to four objectives [18].

One of the easiest setup is to use a robot simulator combined with an EA to find
the optimal parameters of a control law [27]. For instance, Kwok and Sheng [59]
optimized the parameters of PID controllers for a 6-DOF robot arm with a genetic
algorithm. The fitness function was the integral of sum of squared errors of joints,
evaluated with a dynamic simulation of the robot. In addition to the many papers
that propose to optimize classical control laws, a substantial litterature employed
EAs to find optimal parameters of neural networks or fuzzy controllers (see [27]
and [28] for some overviews), especially because such controllers are difficult to
tune by hand.

Since simulators are never 100% realistic, results obtained in simulation often
face what is called “the reality gap”: the optimal parameters obtained in simula-
tion may not be optimal on the real robot; in many cases, the optimized controller
may even rely on so badly simulated behaviors that it does not work at all on the
real robot. The potential solutions to bridge this reality gap will be described in
section 1.5.1.

1.4.2 Current Trend: Evolutionary Aided Design

A growing trend in evolutionary robotics is to use evolutionary algorithms for anal-
ysis and exploration tool instead of optimization. Hence, the main goal is not to find
an optimal set of parameters but to answer questions such as:

• is it possible to solve a given problem using the system parameterized for another
problem?

• what efficiency is to be expected if a given choice is made?
• given a set of different objectives, how antagonistic are they? Can we find a

solution that is optimal with regards to all these objectives?
• does some regularities exist between optimal solutions?
• what are the critical parameters?

The typical process is divided into three steps: (1) run an evolutionary algorithm
(typically with a simulated system to evaluate the fitness); (2) analyze the results
to have a better understanding of the studied system; (3) implement a solution on
the real robot with classic (non-evolutionary) techniques but by exploiting the new
knowledge to improve the design.

Such an approach was followed by Hauert et al. [47] to evolve decentralized
controllers for swarms of unmanned aerial vehicles (UAV). They first evolved neural
networks to automatically discover original and efficient strategies. In a second step,
they reverse-engineered the obtained controllers to hand-design controllers which
capture the simplicity and efficiency of evolved controllers. The hand-design step
allows to check the generality of the controllers and to use well etablished methods
– to guarantee the stability of controllers, for instance – while taking advantage of
the potential innovations brought by the evolutionary process.
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Deb and Srinivasan recently demonstrated how multiobjective evolutionary
algorithms (see [18]) can bring knowledge of a given system through the analy-
sis of Pareto-optimal solutions, a process called innovization [20, 21]. The first step
consists in selecting two antagonistic objectives (or more); an evolutionary algo-
rithm is then employed to find the best possible approximation of the Pareto Front;
last, Pareto-optimal solutions are analyzed, for instance to find relations between
parameters. Typical conclusions are:

• A given parameter is constant for all the Pareto-optimal solutions;
• A given parameter can be computed as a function of another, well identified,

parameter;
• A given parameter is stated to be critical;
• Performance seems limited by the range of authorized values for a specific pa-

rameter;

This analysis can then be employed to reduce the number of parameters and/or
to hand-design some efficient solutions. This approach has been successfully em-
ployed to design motors [21] and controllers of a flapping-wing robot [22].

1.4.3 Current Trend: Online Evolutionary Adaptation

Evolutionary Design tools for Robotics are considered as a specific flavor in the
Optimization toolbox. Broadly, Evolutionary Design is applied in an off-line man-
ner, prior to the actual use in production of the best solution(s). Whether it is a
relevant morphology and/or control architecture, a given solution may or may not
feature some kind of generalization capabilities. Indeed, the outcome of the opti-
mization process is still limited to address a specific problem or class of problems,
within a limited range of variability, constrained by the experimental setting it was
designed in. On the other hand, Online Learning in Machine Learning addresses
problem settings where the very definition of the problem is subject to change over
time, either slowly or abrutly [10]. In this scope, the goal is to provide a continu-
ously running algorithm providing adaptation in the long run, that is the conception
and production phases happen simultaneously. In the scope of ER, Online Evolu-
tionary Adaptation is currently being explored from different perspectives, ranging
from endowing robots with some kind of resilient capacity [13] with regards to en-
vironmental changes, to adapting known evolutionary algorithms to perform online
evolution for single robot or multiple robots [100] or addressing environment-driven
evolutionary adaptation [15] (refer to [24] for an overview).

Within Embodied Evolutionary Robotics [100], an online onboard evolutionary
algorithm is implemented into one robot or distributed over a population of robots,
so as to provide real time adaptation in the environment - An example is shown
in figure 1.2-(c). This example illustrates Embodied Evolution in a population of
robots: each robot is running an evolutionary algorithm. At time t, only one genome
is ”active” and used for robot control. Genomes migrate between robots. Execu-
tion of evolutionary operators (variation, selection and replacement) takes places
inside the individual robots, but communication and interaction between robots is
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possibly required for genome migration. In this setup, the evolutionary algorithm
is distributed and is running online, i.e. there is no distinction between the design
process and the actual use of solution in a real world situation.

Advantages of this approach include the ability to address a new class of prob-
lems (problems that require on-line learning), the parallelization of the adaptation
(direct consequence of population-based search) and a natural way to address the
reality gap (as design constraints enforce onboard algorithms). However this also
comes with a price to pay: the lack of control over the experimental setup, such as
the difficulty to reset the starting position of the robots inbetween evaluations, may
dramatically slow down the optimization process. However, this field of research
looks promising as it naturally addresses the unavailability of human intervention
and control over the environment as the algorithm is supposed to be completely au-
tonomous from the start. Indeed, a direct consequence is that most of the works in
this context have been conducted on real robots [14, 71, 97, 100, 101], which is
sufficiently unusual in ER to be mentionned.

The long term goal of online evolutionary adaptation in ER is to provide contin-
uous online adaptation by combining the ability to address the task specified by the
human supervisor (the goal) with a priori unknown environmental constraints – that
is constraints that cannot be expressed within the fitness function because of the a
priori unpredictable nature of the environment. Hence, this field is at the crossroad
of traditional optimization techniques (there is an explicitly defined goal to address),
open-ended evolution (the environment particularities are to be taken into account
during the course of the adaptation process), and online machine learning (the mo-
tivation is to provide an efficient algorithmic solution to solve the problem at hand).
Compared to other online learning techniques, evolutionary algorithms rely on the
same advantages as for black-box optimization: the ability to provide robust opti-
mization through stochastic operators in the scope of problems with limited expert’s
domain knowledge.

1.4.4 Long Term Research: Automatic Synthesis

As Nature demonstrates it daily, Darwinian evolution is not solely an optimization
tool, it is also a powerful automatic design process. The marvels accomplished by
evolution inspired many researches with the long term goal of automatically de-
signing and even manufacturing complete robotics “lifeforms” with as little human
intervention as possible. From the robotics point of view, such an automatic design
process could lead to “morpho-functional machines” [45], i.e. robots that can fully
adapt the dynamics that emerge from the interactions between their morphology
and their controller in order to optimally solve a task. The challenges raised by the
automatic synthesis problems range from the understanding of biological evolution
(what is the role of development to evolve complex shapes? how did living organ-
isms evolved to modular systems?) to complex engineering problems (how could a
robot be automatically manufactured, including its battery and its actuators?).
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In a seminal paper, Sims [93] demonstrated how the morphology and neural
systems of artificial creatures can be generated automatically with an evolutionary
algorithm. Individuals were described as labeled directed graphs, which were then
translated to morphology and artificial “brains”. Sims was able to obtain creatures
that managed to walk, swim and follow a target in a 3-dimensional dynamics sim-
ulator. The Golem project [64] put Sims’ work in the robotics field by employing
a 3D rapid prototyping machine to build walking robots whose morphology and
controller were automatically designed by an evolutionary algorithm.

Despite these stimulating results, obtained creatures are by far many order of
magnitudes simpler than any real organism. Many researchers hypothesized that
designs have to be encoded using a representation that incorporates the principles
of modularity (localization of functions), repetition (multiple use of the same sub-
structure) and hierarchy (recursive composition of sub-structures) [62], three fea-
tures of most biologically-designed systems but also of most engineered artifacts.
Such principles led to several generative evolutionary processes that evolve pro-
grams that, once executed, generate a blueprint for a robot [49] or a neural net-
work [40, 74]. Abstractions of the development process based on chemical gradients
are also investigated [16, 32] and mostly employed to evolve neural networks. How-
ever, it has been found that these principles could need to be linked to appropriate
selective pressures to be fully exploited [75], hence emphasizing that the synthesis
problem may not be solely an encoding problem.

1.5 Frontiers of ER and Perspectives

ER still has many open issues. Here are several of the most critical:

• how to avoid the reality gap? Or, how to limit the risks of using an imperfect sim-
ulation to evaluate the performance of a system within an opportunistic learning
scheme;

• how does it scale relative to behavior complexity? This question reveals to be
actually tightly linked to fitness landscapes and exploration abilities of the EA.
We will consider this question under this point of view;

• genericity of evolved solutions? For CPU time considerations, evaluations are as
short as possible, and correspond thus to the behavior of the robot within only a
limited set of conditions;

We will briefly discuss them in this section and sketch out current work and per-
spectives.

1.5.1 Reality Gap

The reality gap problem is clearly the most critical one with regards to practical
applications. In theory, the reality gap should not even exist as the optimization pro-
cess could be achieved directly on the target robotics setup. Several works have ac-
tually achieved evolution on real robots, such as for evolving homing behavior for a
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mobile robot [29], optimizing the walking gait of an AIBO robot [50], of a pneu-
matic hexapod robot with complex dynamics [63] or even a humanoid robot [102].
While the optimization on the real robot guarantees the relevance of the obtained
solutions, this has several major drawbacks as it can be quite consuming in term
of time. As a consequence, only small populations (most of the time less than 30)
and few generations (often less than 500) are performed in such a context, therefore
limiting the problem that can be addressed to rather simple tasks.

Given that simulation is difficult to avoid in most practical situations, a new ques-
tion arises regarding how to avoid, or at least limit, the reality gap effect, or, stated
differently, how to ensure that the fitness function gives similar results within the
simulation and on the robot. As a perfectly accurate simulation is highly unlikely to
be available, many works focus on coping with the simulation intrinsic approxima-
tions and mistakes. A representive contribution is that of Jakobi [51] with minimal
simulations: only the accurately simulated parts of the environment are taken into
account and random noise is added to keep the evolutionary process from being
mistakenly optimistic. Another approach consists in estimating how well a partic-
ular controller transfers to the reality on the basis of a few experiments on the real
robot and then use this objective to push towards solutions that transfer well [57].

Instead of learning behaviors, ER techniques may be used to directly learn a
model of a real mechanical device [11, 12, 56, 88]. Learning techniques can even
be used to correct model errors online [33] or even to learn a complete model of
the robot in action [13], thus opening the way towards robots able to adapt to motor
failures in an online evolution scheme.

1.5.2 Fitness Landscape and Exploration

While Evolutionary Robotics has long been intended to address challenging prob-
lems, most of the achievements so far concern quite simply defined robotics prob-
lems: wall avoidance, food gathering, walking distance maximization, and other
simple navigation tasks [80]. One of the major pitfalls is that the difficulty of a
problem often arises with the complexity of the fitness landscape: while a smooth,
convex fitness landscape with no noise will be quite easy to deal with, most of the
problems from the real world often comes with multimodal, noisy fitness landscapes
that feature neutrality regions. The direct consequence is that search may often get
stalled, would it be at the very beginning of the algorithm execution (i.e. a boost-
rap problem) or during the course of evolution (i.e. premature convergence), with
no hint on how to escape a local optimum or on how to direct the search within a
region where all neighboring candidate solutions are equally rewarded.

Exploiting expert knowledge is a good way to escape from local optima, but as it
is not always available, several solutions have been considered, the most prominent
ones are listed here:

• decomposing the problem into sub-problems, each of them being solved sepa-
rately, either implemented manually or learned. The resulting behaviors can then
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be combined through an action-selection mechanism, that may itself eventually
be tuned through evolution [34, 54, 99];

• reformulating the target objective into an incremental problem, where the prob-
lem is decomposed into possibly simpler fitness functions of gradually in-
creasing difficulties, ultimately leading to what is reffered to as incremental
evolution [36];

• reformulating the target objective into a set of fitnesses optimized independantly
in a multi-objective context [73]. As opposed to the previous point, a multi-
objective formulation of the problem makes it possible to avoid ranking sub-
fitnesses difficulties, which is often a tricky issue;

• using co-evolution to build a dynamically changing evaluation difficulty in com-
petitive tasks [79, 96];

• changing the evaluation during evolution to focus first on simpler problems and
make the robot face progressively more difficult versions of the same task[4];

• likewise exploring solutions of increasing complexity with mechanisms protect-
ing innovation to give new solutions a chance to prove their value [94];

• searching for novelty of behavior instead of efficiency [60, 61]. This avoids
getting trapped in local optima while enhancing the search ability over robot
behaviors;

• in a multi-objective scheme, adding an objective that explicitely rewards the
novelty or diversity of behaviors [23, 72, 76, 77];

• putting the human into the loop. For instance, this is the kind of approach that has
previously been called “innovization” [20], where the search algorithm is used
to provide a basis for the expert to refine the optimization process and to provide
original solutions.

1.5.3 Genericity of Evolved Solutions

One major requirement of optimization in the context of ill or poorly defined prob-
lems is to provide solutions capable of generalization, or robustness. It may indeed
be very difficult to grasp all the aspects of a problem during the conception phase as
the combinatorial explosion makes it impossible to generate all possible test cases.
A typical example is that of a walking robot where all inclinations or textures of
the ground cannot be generated during optimization, but where generalization is
possible over examples. In this setup, both the experimental setup and the repre-
sentation formalism are of the utmost importance. For example, relying on a test
case generator or adding noise during the course of evaluation is an efficient way to
enforce generalization [46]. Also, some specific representations are more fitted for
generalization: artificial neural network, for example, are naturally biased towards
generalization. Anyway, the actual robustness of evolved solutions remains an open
question that has been seldom studied.
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1.6 A Roboticist Point of View

From the Robotics point of view, control parameters tuning is a critical task since the
resulting controllers dictate the behaviours of the robots. Considering the parametric
identification of the dynamics model of a robot, it is important to recall that the con-
sidered model is an approximation of the real system dynamics. Thus, the identified
parameters are a compromise that captures some physical properties of the system
as well as some of the unknown or unmodelled dynamics. Equivalently, when tun-
ing a PID controller for the control of a joint at the position level, the goal is to find
a compromise that will best reject perturbations, most of them being hard to model
(friction, backlash). In these two examples, parameters tuning is, by essence, meant
to be achieved on the real system in order to best capture properties which cannot
be accounted for a priori. In fact, this approach is often retained in Robotics and
parametric identification and PID control tuning are then widely covered subjects in
Robotics textbooks [52], [91].

One may thus argue that the use of EA in such contexts is probably not appropri-
ate nor needed. This is only partially true. In fact, these ”roboticists” methods are
well suited for problems where robots do not physically interact much with their
environments. When this is not the case, either the interactions are restricted to a
specific context and can be modelled using simple representation of the environ-
ment or they are not restricted to specific objects or modes of contact and in that
case it is hard to tune a parametric controller that will fit a wide variety of situa-
tions. The latter case can actually not be tackled with ”low-level” controllers only
and higher level decision making is often required. That is where EA may con-
tribute: either by helping to understand what are the important physical parameters
to consider within the context of a complex interaction between a robot and its envi-
ronment or by tuning higher level decison making controllers that cannot be tuned
using physics-based approaches only. From a more general point of view, challenges
in Robotics are at the interface between high level planning methods and lower level
control. This is probably the space where learning based approaches [92] and EA
can best contribute in current Robotics problems.

However, EA may also still bring strong contributions in the domain of robots
design. As a matter of fact, the emergence of service Robotics raises the problems
of energetic efficiency and physical compliance (which is one of the prerequisite to
safety) at a level such that the design problem can no longer be considered from
the sole structural perspective [98], [103]. In fact, when trying to design energy
efficient and compliant robots, one should consider the design and control problems
as a whole. New control modes have to be explored together with new types of
actuators and transmissions and EA could be one of the tools used to tackle this vast
exploration problem.

1.7 Discussion

Evolutionary Robotics is a young field of research that needs time to mature and
to identify its place in the engineering and science ecosystems. From a general
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viewpoint, there is a need of positionning ER with related research fields. On
the one hand, Machine learning has successfully proved its strong potential im-
pact on robotics current challenges as demonstrated in [1] and the emergence of
a new research field at the frontier between both domains is illustrated by re-
cent publications (e.g. [92]). Although ER may be included in a weak definition
of Machine Learning, there is a definitly stronger emphasis on structural design
and weakly formalized open-ended problems. On the other hand, Developmental
robotics3 [3, 69, 81] also shares many common concerns with ER. Developmental
robotics takes its inspirations from Developmental Psychology rather than Evolu-
tionary Biology, and is concerned with learning of efficient behavior. The constraint
of realism with respect to the developmental psychology ideas and models is at
the core of this approach: the motivation is to provide efficient solutions as well
as to validate models actually observed in Nature, while ER takes loose inspiration
from it.

Up to now, the vast majority of ER published papers are proofs of concept that
demonstrate, usually with a small set of experiments, that a given technique has
enough potential to be further investigated. For instance, Floreano et al. [30] showed
in several papers that the weights of a fully-connected continuous time recurrent
neural network can be evolved to make a real robot avoid obstacles. This experiment
showed that evolution can automatically design a controller for such a simple but
useful behavior. It didn’t show (and didn’t aim at showing) that this method was the
best to implement obstacle avoidance on a real robot.

Proofs of concept are undoubtedly important to explore new ideas. When Bon-
gard et al. introduced resilient robotics with evolutionary algorithms [13], they did
the spadework for new robotic abilities. Their work opened a previously almost not
explored area of research, hence emphasizing the key role of proof of concepts. Nev-
ertheless, such proofs of concept are only the first — often the easiest — step of an
original scientific work. In an applicative context, using a given method requires to
be convinced that it is one of the best method available or, at least, that this method
will work with a large probability of success. This requires more than a proof of
concept: strength and limitations need to be well understood, the alternatives meth-
ods should be extensively compared, the success on a large set of problems should
be demonstrated. The difficulties are similar to include a given method in a larger
scientific work: each brick must be strong enough to support the higher-level bricks.
The abundance of proof of concepts in ER (instead of more solid knowledge build-
ing) may be the main reason for which the field is not improving faster: almost no
paper re-use the results from previous papers by other authors; most of the time,
researchers create a new system from scratch.

This line of thought lead us to the following conclusion: to mature, ER need
less proofs of concepts and more solid results. To our opinion, ER has one foot in
robotic engineering and one foot in experimental sciences. It therefore has much to
gain from importing the best practices from these two fields.

3 Sometimes also referred to as Epigenetic robotics.
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1.7.1 Good Robotic Engineering Practices

To be useful in engineering, ER needs to show that it can solve important problems
in robotics better than other methods. The only approach available to reach this goal
is to draw extensive comparisons in which ER methods are compared to state of the
art methods. The comparison should be fair and thus include at least a discussion on
the most important aspects of the considered methodologies:

• the main properties of the methodology and the initial goals of the designers;
• the relative efficiency of each methodology as it is classically measured by roboti-

cists;
• the knowledge required to apply each methodology: what should be known from

the problem? What has to be done to apply each methodology?
• the constraints for the methodologies to be applied;
• the running time or the required CPU power (this is critical in the case of online

ER with mobile robots).

A common pitfall is to ignore the constraints that may have driven the development
of a particular methodology. In this case, the comparison isn’t fair.

Another good engineering practice is to avoid to re-invent new solutions to al-
ready solved problems. The universality of the Darwinian principles suggests that
everything could be designed by evolutionary algorithms. As a consequence, many
ER papers deal with simple problems, for instance reactive obstacle avoidance, with
the ambition that the algorithm should scale up to interesting problems, once re-
fined. While this kind of simple tests is a way to validate the basic feature of an
algorithm, this is at best a waste of computational power from a practical point of
view. Smart humans spent years to develop efficient, if not optimal, approaches to
solve many problems. It is currently pretentious to hope that even the best evolu-
tionary algorithm could surpass them in a few hours (or days) of computation. On
the other side, some problems (see section 1.6) are open from a roboticist point of
view and ER could significantly contribute to their solution. Put differently, ER re-
searchers should start with the state of the art for the studied problem and improve
it, instead of trying to reach it from scratch, at least when then intend to show the
potential of ER approaches.

Our last point is a famous engineering slogan that may seem obvious: keep it
simple and stupid4. Many current projects are so intricate that it is impossible to
replicate them in a slightly different setup. Moreover, they often are a combination
of weak bricks that are not well understood. In other words, making ER a mature
science requires to simplify the methods to identify the essential parts and discard
everything else. If two non-critical algorithms are available to perform a sub-task,
the simpler one should be chosen, even if it is less efficient; it will be easier to
re-implement and to understand and will not restrict the conclusions.

4 KISS, see http://en.wikipedia.org/wiki/KISS_principle

http://en.wikipedia.org/wiki/KISS_principle
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1.7.2 Good Experimental Sciences Practices

Altough the theory of evolutionary computation is improving, the evolutionary
algorithms employed in ER rely on complex fitness functions and, most of the time,
complex genotypes and phenotypes (e.g. neural networks). ER consequently mostly
depends on empirical proofs and not on theorems. This is a significant departure
from computer science, in which complexity and proofs of convergence reign, and
makes ER closer to experimental sciences such as biology.

The first and foremost lesson from experimental sciences is the use of statistical
tests. A single run is not sufficient to conclude anything except that there exists a
solution. Comparing two sets of experiments without checking the statistical signif-
icance of the comparison is also meaningless. Additionally, comparing two methods
on a single benchmark prevents the authors to conclude anything about the gener-
ality of the introduced approach. Most of the time, a Student T-test is employed to
compare experiments. This statistical test assumes that the results follows a Gaus-
sian distribution. This is often false in ER and especially if several problems are
used [31]. As described in [31] for evolutionary computation, non-parametric tests,
such as the Wilcoxon signed-rank test, appear more adapted to ER than parametric
tests. Additionally, an experimental methodology is still lacking in ER. For instance,
how to guarantee that the optimal parameters were used during a comparison? Some
progress have been recently accomplished to transfer the “design of experiments”
[26] approach to evolutionary computation [6, 58]. Some ideas can also be bor-
rowed from the machine learning literature [9]. This work could be a starting point
for more a rigorous design of ER experiments.

The second practice in experimental sciences that must be imported into ER is
the habit of reproducing experiments. Most ER experiments are never reproduced
by independant researchers. Contrarily to theoretical work, it is difficult to rely on
experiments that have never been reproduced. However, it is often difficult to repro-
duce ER experiments because of the intricacy of many ER systems and the large
number of parameters.

ER experiments are most of the time done in simulation and therefore internet
provides a simple solution to this problem: distributing the source code, which con-
tains every details of the algorithms. Although the solution is simple, it is not that
often used. It must be emphasized that the primary goal of distributing the source
code of an experiment is to let people have access to every detail of the experi-
ment: without the code some important data may lack to reproduce the experiment.
It is not to distribute a well polished and documented code (sadly, no researcher has
time to do it). Furthermore, in front of the huge number of parameters, it would be
worth sharing the experience on one’s work reproduction to better understand what
is important, what is not and how robust a particular algorithm is5.

5 The EvoRob Db web site (http://www.isir.fr/evorob_db) aims at facilitating
such exchanges.

http://www.isir.fr/evorob_db
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2. Amil, M., Bredeche, N., Gagné, C., Gelly, S., Schoenauer, M., Teytaud, O.: A statistical
learning perspective of genetic programming. In: Proceedings of the 12th European
Conference on Genetic Programming at Evostar 2009 (2009)

3. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino,
M., Yoshida, C.: Cognitive developmental robotics: a survey. IEEE Transactions on
Autonomous Mental Development 1(1), 12–34 (2009)

4. Auerbach, J., Bongard, J.: How Robot Morphology and Training Order Affect the
Learning of Multiple Behaviors. In: Proceedings of the IEEE Congress on Evolutionary
Computation (2009)

5. Baele, G., Bredeche, N., Haasdijk, E., Maere, S., Michiels, N., van de Peer, Y.,
Schmickl, T., Schwarzer, C., Thenius, R.: Open-ended on-board evolutionary robotics
for robot swarms. In: IEEE Congress on Evolutionary Computation, CEC 2009 (2009)

6. Bartz-Beielstein, T., Preuss, M.: Experimental research in evolutionary computation. In:
Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary
Computation, pp. 3001–3020. ACM, New York (2007)

7. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)
8. Beyer, H.G., Schwefel, H.P.: Evolution strategies – A comprehensive introduction. Nat-

ural Computing 1, 3–52 (2002)
9. Birattari, M., Zlochin, M., Dorigo, M.: Towards a theory of practice in metaheuristics

design: A machine learning perspective. RAIRO–Theoretical Informatics and Applica-
tions 40, 353–369 (2006)

10. Blum, A.: On-line algorithms in machine learning. In: Proceedings of the Workshop on
On-Line Algorithms, Dagstuhl, pp. 306–325. Springer, Heidelberg (1996)

11. Bongard, J., Lipson, H.: Nonlinear system identification using coevolution of models
and tests. IEEE Transactions on Evolutionary Computation 9(4), 361–384 (2005)

12. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical sys-
tems. Proceedings of the National Academy of Sciences 104(24), 9943–9948 (2007)

13. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118–1121 (2006)

14. Bredeche, N., Haasdijk, E., Eiben, A.: On-line, On-board Evolution of Robot Con-
trollers. In: Evolution Artificielle / Artificial Evolution. Strasbourg France (2009)

15. Bredeche, N., Montanier, J.-M.: Environment-driven Embodied Evolution in a Popula-
tion of Autonomous Agents. In: Schaefer, R., et al. (eds.) PPSN XI. LNCS, vol. 6239,
pp. 290–299. Springer, Heidelberg (2010)

16. D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for exploiting neural
network sensor and output geometry. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2007 (2007)

17. Darwin, C.: On the Origin of Species by Means of Natural Selection or the Preservation
of Favoured Races in the Struggle for Life. John Murray, London (1859)

18. Deb, K.: Multi-objectives optimization using evolutionnary algorithms. Wiley, Chich-
ester (2001)

19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective ge-
netic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–
197 (2002)



1 Evolutionary Robotics: Exploring New Horizons 21

20. Deb, K., Srinivasan, A.: Innovization: Innovating design principles through optimiza-
tion. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 1629–1636. ACM, New York (2006)

21. Deb, K., Srinivasan, A.: INNOVIZATION: Discovery of Innovative Design Principles
Through Multiobjective Evolutionary Optimization. In: Multiobjective Problem Solv-
ing from Nature: From Concepts to Applications, pp. 243–262 (2007)

22. Doncieux, S., Hamdaoui, M.: Evolutionary Algorithms to Analyse and Design a Con-
troller for a Flapping Wings Aircraft. In: New Horizons in Evolutionary Robotics: Post-
Proceedings of the 2009 EvoDeRob Workshop. Springer, Heidelberg (2010)

23. Doncieux, S., Mouret, J.B.: Behavioral diversity measures for evolutionary robotics. In:
IEEE Congress on Evolutionary Computation, CEC 2010 (to appear, 2010)

24. Eiben, A., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for au-
tonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms:
Reliability, Adaptability, Evolution, Cognitive Systems Monographs, vol. 7, pp. 361–
382. Springer, Heidelberg (2010)

25. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing
Series. Springer, Heidelberg (2003)

26. Fisher, R.: Design of Experiments. British Medical Journal 1(3923), 554 (1936)
27. Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering:

a survey. Control Engineering Practice 10(11), 1223–1241 (2002)
28. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and

Technologies. In: Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge
(2008)

29. Floreano, D., Mondada, F.: Evolution of homing navigation in a real mobile robot. IEEE
Transactions on Systems, Man, and Cybernetics-Part B (1996)

30. Floreano, D., Mondada, F.: Evolutionary neurocontrollers for autonomous mobile
robots. Neural Networks 11, 1461–1478 (1998)

31. Garcı́a, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC
2005 special session on real parameter optimization. Journal of Heuristics 15(6), 617–
644 (2009)

32. Gauci, J.J., Stanley, K.O.: Generating large-scale neural networks through discovering
geometric regularities. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2007 (2007)

33. Gloye, A., Wiesel, F., Tenchio, O., Simon, M.: Reinforcing the driving quality of soccer
playing robots by anticipation (verbesserung der fahreigenschaften von fu ballspielen-
den robotern durch antizipation). IT - Information Technology 47, 250–257 (2005)

34. Godzik, N., Schoenauer, M., Sebag, M.: Evolving symbolic controllers. In: Evo Work-
shops, pp. 638–650 (2003)

35. Goldberg, D.: Genetic Algorithms in Search and Optimization. Addison-Wesley, Read-
ing (1989)

36. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior.
Adaptive Behavior 5(3-4), 317–342 (1997)

37. Greenwood, G.W., Tyrrell, A.M.: Introduction to Evolvable Hardware: A Practical
Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press (2006)

38. Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-
bots. IEEE Transactions on Robotics 22(6), 1115–1130 (2006)

39. Gruau, F.: Neural Network Synthesis Using Cellular Encoding and the Genetic Algo-
rithm. Ph.D. thesis, Claude Bernard-Lyon I University (1994)



22 S. Doncieux et al.

40. Gruau, F.: Automatic definition of modular neural networks. Adaptive Behaviour 3(2),
151–183 (1995)

41. Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., Sebag, M.: Compact unstructured
representations in evolutionary topological optimum design. Applied Intelligence 16,
139–155 (2002)

42. Hamda, H., Schoenauer, M.: Adaptive techniques for evolutionary topological opti-
mum design. In: Parmee, I. (ed.) Evolutionary Design and Manufacture, pp. 123–136.
Springer, Heidelberg (2000)

43. Hansen, N., Muller, S.D., Koumoutsakos, P.: Reducing the time complexity of the de-
randomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolu-
tionary Computation 11(1), 1–18 (2003)

44. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation 9(2), 159–195 (2001)

45. Hara, F., Pfeifer, R.: Morpho-Functional Machines: The New Species: Designing Em-
bodied Intelligence. Springer, Heidelberg (2003)

46. Hartland, C., Bredeche, N., Sebag, M.: Memory-enhanced evolutionary robotics. In:
IEEE Congress on Evolutionary Computation (2009)

47. Hauert, S., Zufferey, J.C., Floreano, D.: Reverse-engineering of Artificially Evolved
Controllers for Swarms of Robots. In: IEEE Congress on Evolutionary Computation
(2009)

48. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. University of Michigan
Press, Ann Arbor (1975)

49. Hornby, G.S.: Measuring, enabling and comparing modularity, regularity and hierarchy
in evolutionary design. In: Proceedings of the 2005 conference on Genetic and evolu-
tionary computation, pp. 1729–1736 (2005)

50. Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolv-
ing robust gaits with aibo. In: IEEE International Conference on Robotics and Automa-
tion, pp. 3040–3045 (2000)

51. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adap-
tive Behavior 6(2), 325–368 (1997)

52. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots, 3rd edn. Taylor
& Francis, Inc., Abington (2002)

53. Kicinger, R., Arciszewski, T., Jong, K.: Evolutionary computation and structural design:
A survey of the state-of-the-art. Computers & Structures 83(23-24), 1943–1978 (2005)

54. Kim, K.J., Cho, S.B.: Robot Action Selection for Higher Behaviors with CAM-Brain
Modules. In: Proceedings of the 32nd ISR (International Symposium on Robotics),
vol. 19, p. 21 (2001)

55. Kodjabachian, J., Meyer, J.A.: Evolution and development of neural networks control-
ling locomotion, gradient-following, and obstacle-avoidance in artificial insects. IEEE
Transactions on Neural Networks 9, 796–812 (1997)

56. Koos, S., Mouret, J.B., Doncieux, S.: Automatic system identification based on coevo-
lution of models and tests. In: IEEE Congress on Evolutionary Computation, CEC 2009
(2009)

57. Koos, S., Mouret, J.B., Doncieux, S.: Crossing the reality gap in evolutionary robotics
by promoting transferable controllers. In: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, GECCO 2010, ACM, New York (2010)



1 Evolutionary Robotics: Exploring New Horizons 23

58. Kramer, O., Gloger, B., Goebels, A.: An experimental analysis of evolution strategies
and particle swarm optimisers using design of experiments. In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, pp. 674–681. ACM,
New York (2007)

59. Kwok, D.P., Sheng, F.: Genetic algorithm and simulated annealing for optimal robot
arm PID control. In: Proceedings of the First IEEE Conference on IEEE World
Congress on Computational Intelligence, pp. 707–713 (1994)

60. Lehman, J., Stanley, K.O.: Exploiting Open-Endedness to Solve Problems Through the
Search for Novelty. Artificial Life 11, 329 (2008)

61. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search of
novelty alone. Evolutionary Computation (2010)

62. Lipson, H.: Principles of Modularity, Regularity, and Hierarchy for Scalable Systems.
In: Genetic and Evolutionary Computation Conference (GECCO 2004) Workshop on
Modularity, regularity and Hierarchy (2004)

63. Lipson, H., Bongard, J., Zykov, V., Malone, E.: Evolutionary robotics for legged ma-
chines: from simulation to physical reality. Intelligent Autonomous Systems 9, 9 (2006)

64. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic life forms. Na-
ture 406(406), 974–978 (2000)

65. Lohn, J., Crawford, J., Globus, A., Hornby, G.S., Kraus, W., Larchev, G., Pryor, A.,
Srivastava, D.: Evolvable systems for space applications. In: International Conference
on Space Mission Challenges for Information Technology (2003)

66. Lohn, J., Hornby, G., Linden, D.: An evolved antenna for deployment on NASAs space
technology 5 mission. In: Genetic Programming Theory and Practice II, pp. 301–315
(2004)

67. Lohn, J.D., Linden, D.S., Hornby, G.S., Kraus, W.F., Rodriguez-Arroyo, A.: Evolution-
ary design of an x-band antenna for nasa’s space technology 5 mission. In: Proceedings
of the 2003 NASA/DoD Conference on Evolvable Hardware, EH 2003, IEEE Computer
Society Press, Washington (2003)

68. Manos, S., Large, M.C.J., Poladian, L.: Evolutionary design of single-mode microstruc-
tured polymer optical fibres using an artificial embryogeny representation. In: GECCO
2007: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolu-
tionary Computation, pp. 2549–2556. ACM, New York (2007)

69. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an
open platform for research in embodied cognition. In: Permis: Performance Metrics for
Intelligent Systems Workshop. Washington DC, USA (2008)

70. Meyer, J.A., Guillot, A.: Biologically-inspired Robots. In: Handbook of Robotics.
Springer, Heidelberg (2008)

71. Montanier, J.M., Bredeche, N.: Embedded evolutionary robotics: The (1+1)-restart-
online adaptation algorithm. In: Proceedings of IROS Workshop Exploring New Hori-
zons in the Evolutionary Design of Robots (2009)

72. Mouret, J.B.: Novelty-based multiobjectivization. In: Proceedings of IROS Workshop
Exploring New Horizons in the Evolutionary Design of Robots (2009)

73. Mouret, J.B., Doncieux, S.: Incremental evolution of animats’ behaviors as a multi-
objective optimization. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB
2008. LNCS (LNAI), vol. 5040, pp. 210–219. Springer, Heidelberg (2008)

74. Mouret, J.B., Doncieux, S.: MENNAG: a modular, regular and hierarchical encoding
for neural-networks based on attribute grammars. Evolutionary Intelligence 1(3), 187–
207 (2008)



24 S. Doncieux et al.

75. Mouret, J.B., Doncieux, S.: Evolving modular neural-networks through exaptation. In:
IEEE Congress on Evolutionary Computation, CEC 2009 (2009)

76. Mouret, J.B., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics
using behavioral diversity. In: IEEE Congress on Evolutionary Computation, CEC 2009
(2009)

77. Mouret, J.B., Doncieux, S.: Using behavioral exploration objectives to solve deceptive
problems in neuro-evolution. In: GECCO 2009: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation. ACM, New York (2009)

78. Mouret, J.B., Doncieux, S., Meyer, J.A.: Incremental evolution of target-following
neuro-controllers for flapping-wing animats. In: Nolfi, S., Baldassarre, G., Calabretta,
R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006.
LNCS (LNAI), vol. 4095, pp. 606–618. Springer, Heidelberg (2006)

79. Nolfi, S., Floreano, D.: How co-evolution can enhance the adaptive power of artificial
evolution: Implications for evolutionary robotics. In: Proceedings of the First European
Workshop on Evolutionary Robotics (EvoRobot 1998), pp. 22–38 (1998)

80. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technol-
ogy of Self-Organizing Machines. MIT Press, Cambridge (2001)

81. Oudeyer, P.Y., Kaplan, F., Hafner, V.: Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on Evolutionary Computation 1(11), 265–286
(2007)

82. Pollack, J.B., Lipson, H.: The golem project: Evolving hardware bodies and brains. In:
EH 2000: Proceedings of the 2nd NASA/DoD workshop on Evolvable Hardware, p. 37.
IEEE Computer Society, Los Alamitos (2000)

83. Preble, S., Lipson, H., Lipson, M.: Two-dimensional photonic crystals designed by evo-
lutionary algorithms. Applied Physics Letters 86 (2005)

84. Radcliffe, N.: The algebra of genetic algorithms. Annals of Mathematics and Artificial
Intelligence 10(4), 339–384 (1994)

85. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

86. Ronald, S.: Robust encodings in genetic algorithms: a survey of encoding issues. In:
IEEE International Conference on Evolutionary Computation, pp. 43–48 (1997)

87. Rothlauf, F.: Representations for Genetic And Evolutionary Algorithms. Springer,
GmbH & Co. K, Heidelberg (2006)

88. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Sci-
ence 324(5923), 81–85 (2009)

89. Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley & Sons, Inc.,
New York (1981)

90. Shim, Y., Husbands, P.: Feathered Flyer: Integrating Morphological Computation and
Sensory Reflexes into a Physically Simulated Flapping-Wing Robot for Robust Flight
Manoeuvre. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A.
(eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 756–765. Springer, Heidelberg (2007)

91. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and
Control. Springer, Heidelberg (2008)

92. Sigaud, O., Peters, J. (eds.): From Motor Learning to Interaction Learning in Robots.
Studies in Computational Intelligence, vol. 264, pp. 1–12. Springer, Heidelberg (2010)

93. Sims, K.: Evolving virtual creatures. In: SIGGRAPH 1994: Proceedings of the 21st An-
nual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM,
New York (1994)



1 Evolutionary Robotics: Exploring New Horizons 25

94. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation 10(2), 99–127 (2002)

95. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial
Life 9(2), 93–130 (2003)

96. Stanley, K.O., Miikkulainen, R.: Competitive Coevolution through Evolutionary Com-
plexification. Journal of Artificial Intelligence Research 21, 63–100 (2004)

97. Usui, Y., Arita, T.: Situated and embodied evolution in collective evolutionary robotics.
In: Proc. of the 8th International Symposium on Artificial Life and Robotics, pp. 212–
215 (2003)

98. Vanderborght, B., Verrelest, B., Van Ham, R., Van Damme, M., Beyl, P., Lefeber, D.:
Development of a compliance controller to reduce energy consumption for bipedal
robots. Autonomous Robots 24(4), 419–434 (2008)

99. Wahde, M.: A method for behavioural organization for autonomous robots based on
evolutionary optimization of utility functions. Proceedings of the I MECH E Part I
Journal of Systems & Control Engineering 217(4), 249–258 (2003)

100. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Embodying an evolu-
tionary algorithm in a population of robots. In: 1999 Congress on Evolutionary Com-
putation, pp. 335–342 (1999)

101. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolu-
tionary algorithm in a population of robots. Robotics and Autonomous Systems 39(1),
1–18 (2002)

102. Wolff, K., Sandberg, D., Wahde, M.: Evolutionary optimization of a bipedal gait in a
physical robot. In: IEEE Congress on Evolutionary Computation, CEC 2008, pp. 440–
445 (2008)

103. Zinn, M., Khatib, O., Roth, B., Salisbury, J.: Playing it safe [human-
friendly robots]. IEEE Robotics Automation Magazine 11(2), 12–21 (2004),
doi:10.1109/MRA.2004.1310938



Part II
Invited Position Papers



Chapter 2
The ‘What’, ‘How’ and the ‘Why’ of
Evolutionary Robotics

Josh Bongard

Abstract. The field of embodied artificial intelligence is maturing, and as such has
progressed from what questions (“what is embodiment?”) to how questions: how
should the body plan of an autonomous robot be designed to maximize the chance
that it will exhibit a desired set of behaviors. In order to stand on its own how-
ever, rather than a reaction to classical AI, the field of embodied AI must address
why questions as well: why should body and brain both be considered when creat-
ing intelligent machines? This report provides three new lines of evidence for why
the body plays an important role in cognition: (1) an autonomous robot must be
able to adapt behavior in the face of drastic, unanticipated change to its body; (2)
under-explored body plans raise new research questions related to cognition; and
(3) optimizing body plans accelerates the automated design of intelligent machines,
compared to leaving them fixed.

2.1 The What of Embodiment

Classical artificial intelligence proceeded under the assumption that cognition could
be realized in computer programs that were not able to directly sense or affect the
physical surroundings of the computer in which they were housed. This approach
has led to many successful computer applications, but has shed relatively little light
on the nature of cognition. Since the 1980s however, there has been a growing
awareness that an agent must be able to act and be acted on by its surroundings,
and sense the repercussions of those actions. This requires that an agent be both
situated and embodied: it must have the ability to directly sense the world, and have
a body with which to act on the world.
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If a body plan, actuation and sensation are necessary to realize intelligent be-
havior, the question then arises as to how to choose an appropriate body plan for the
desired behavior. Although it is generally agreed that the design of a robot controller
for complex behavior is best left to automated optimization, many hold that human
intuition can be applied to the design of robot body plans:

“Humans are much better at designing physical systems than they are at designing
intelligent control systems: complex powered machines have been in existence for
over 150 years, whereas it is safe to say that no truly intelligent autonomous machine
has ever been built by a human.” ([6], p. 22).

However, there are many explicit and implicit design decisions that must be made
when choosing a robot body plan. As a simple example, a wheeled robot may be
appropriate for rapid, efficient travel over flat terrain, but a legged body plan may
be more suitable for rough terrain. If a legged body plan is chosen, how many
legs should the agent have? Should the spine be flexible or rigid? If flexible, how
flexible? This raises the issue then of how to systematically make these decisions.

2.2 The How of Embodiment

In order to overcome the infinitude of design decisions that must be made when
designing a robot body plan, some researchers in the field of biorobotics design
robot morphologies based on animal body plans. However, as has been discovered in
the history of engineering many times over, direct copying of nature’s designs does
not always succeed. This is due to the face that the ecological niche inhabited by the
animal and the robot are not usually equivalent: many aspects of the animal’s body
plan may have evolved for that niche and are therefore not applicable to the robot’s
niche. For instance, it took the realization that because aircraft are much larger than
the birds which originally inspired their design, fixed wings are required rather than
flapping wings. This then requires the roboticist to determine, for each aspect of
the animal’s body plan, which are design innovations that will still serve in the
robot’s ecological niche, and which are innovations evolved to meet biology-specific
constraints. As an example of a biology-specific constraint, it has been hypothesized
that the reason why wheels never evolved in animals larger than bacteria is because it
would be difficult to provide nutrients across a freely-rotating axle (see for example
[4], p. 542).

This difficulty argues against the claim made in [6] that human designers can
formulate appropriate robot body plans. Instead, rather than mimic a product of
natural selection, one can mimic natural selection itself, and harness it to design
a robot’s body plan along with its control policy. This is the field of evolutionary
robotics, in which an evolutionary algorithm is used to automate the process of
robot design.



2 The ‘What’, ‘How’ and the ‘Why’ of Evolutionary Robotics 31

2.3 The Why of Embodiment

However, such resulting algorithms are notoriously complex, and require more than
the above verbal defense to justify their use. To this end, three arguments for why
one should evolve body plans are given below:

• a physical robot that undergoes physical damage and thus sustains an unantici-
pated and unobservable change to its body plan can evolve a new description of
its topology, and use the evolved model to generate a compensatory controller;

• virtual robots may initially be evolved with few body parts, and then gradually
evolved with more body parts to accelerate evolution; and

• as the desired task become more difficult, the ability for evolution to alter robot
body plans even slightly increases the probability of evolving a successful robot.

2.4 Why Consider Topological Change to a Robot’s Body Plan?

One of the repercussions of considering that the body plans an important role in
intelligent behavior leads one to consider how agents should deal with changes to
that body. One class of such change is physical damage in which the robot loses one
or more body parts. This leads to a change in the topology of the robot’s body plan,
and typically necessitates a different control policy to recover functionality.

This scenario was investigated in [2], in which we employed a physical
quadrupedal robot (Fig. 2.1). This robot begins by evolving a body plan (i.e. its
mental model) that accurately reflects the topology of its (initially unknown) phys-
ical body plan. This is accomplished by actuating the physical robot with a random
control policy and recording the resulting sensor data; actuating a candidate mental
model with the same control policy and recording the resulting virtual sensor data;
and computing the error of the model as the difference between the physical and
virtual sensor data. The evolutionary algorithm then searches the space of virtual
body plans for one that minimizes this error within a given time period.

A second evolutionary algorithm then optimizes a controller on the mental model
such that the mental model performs the desired behavior, which in that work was
forward locomotion. Once such a controller is found, it is executed by the physical
robot, which often results in the desired behavior.

Physical damage was then simulated by removing part of one of the robot’s leg.
As it could not directly sense the damage, the first evolutionary algorithm was re-
started, which continues the search for an appropriate body plan. A new candidate
body plan, when actuated with a control policy the physical robot has already per-
formed, must reproduce the actions of the damaged robot; this rapidly leads to the
evolution of a virtual robot that reflects the damage of the physical robot.

The first evolutionary algorithm is again paused, and the second evolutionary
algorithm is restarted. This latter algorithm now searches for a compensating con-
troller that allows the virtual, damaged robot to recover forward locomotion. Once
found, this new control policy is executed by the physical, damaged robot; this often
results in the recovery of locomotion.
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Fig. 2.1 The Resilient Machine Project. The robot performs a random action (a). A set of
random models (one of which is shown in b) is synthesized into approximate models (one of
which is shown in c). A new action is then synthesized to create maximal model disagreement
and is performed by the physical robot (d), after which further modeling ensues. This cycle
continues for a fixed period or until no further model improvement is possible (e-f). The best
model is then used to synthesize a behavior (in this case, forward locomotion, the first few
movements of which are shown in g-i). This behavior is then executed by the physical robot
(j-l). The robot then suffers damage (the lower part of the right leg breaks off; m). Modeling
then recommences with the best model so far (n), and using the same process of modeling
and experimentation, eventually discovers the damage (o). The new model is then used to
synthesize a new behavior (p-r), which is executed by the physical robot (s-u), allowing it to
recover functionality despite this unanticipated change.

Thus, by considering the fact that a complex physical robot may sustain several
physical damage, a solution presents itself in the form of an algorithm that evolves
a virtual body plan to match the current state of the physical robot’s body plan. This
allows for not only the automatic generation of walking controllers, but also the
automated recovery of walking after unanticipated damage.

2.5 Why Evolve Robot Body Plans Initially at a Low
Resolution?

In attempting to automatically design robots capable of increasingly sophisticated
behavior, it is often necessary to smooth the fitness landscape so that. This allows for
incremental improvements from primitive behaviors to more complex ones. Several
techniques exist for doing this, such as robot shaping (eg. [5]).

Another approach to shaping aside from simplifying the task environment is to
simplify the robots’ initial body plans. This approach has recently been explored
in [1]. In that work purely passive three-dimensional structures were evolved to
maximize their displacement when they fell. Initially, structures were grown at ‘low
resolution’: relatively few, large spheres could be used to build the structure. Once
structures with high fitness were found, the existing structures in the population were
re-grown at ‘high resolution’: more, smaller spheres were allowed for construction.
An evolved low- and high-dimensional structure are shown in Fig. 2.2.
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a b

Fig. 2.2 Gradually Increasing Morphological Complexity. a: A structure evolved for max-
imum displacement when dropped. a: The same structure, but regrown at higher resolution.

Several runs in which low-resolution structures were initially evolved and then
further evolved at higher resolution were performed, and compared against a set of
control runs in which structures were evolved at high resolution throughout. It was
found that both runs found structures of about the same fitness, but the variable-
resolution runs found such structures in significantly less time.

This time savings was realized for two reasons. First, the low-resolution struc-
tures could be simulated and thus evolved more rapidly. Second, the evolutionary
method employed increased the probability that a structure regrown at high res-
olution would have similar behavior—and thus similar fitness—as the structure
originally grown from the same genotype at lower resolution.

This latter property was realized by adapting the neuroevolution technique Hy-
perNEAT. HyperNEAT encodes a genome that takes as input a vector p, which
indicates a position in a high-dimensional space, and outputs a value that can be
used to construct a phenotype. The way in which genomes are encoded ensures that
positions near one another output similar values.

In previous work in which the genotype was used to label the weights of a neu-
ral network, it was shown that HyperNEAT could evolve smaller neural networks
that still functioned when regrown at higher resolution, because the synapses in the
larger neural network lay near to their corresponding synapses in the smaller neural
network.

This principle was exploited in [1]: during growth, the HyperNEAT genome
takes as input a candidate position for placing a sphere, and the output indicates
whether the sphere should be placed or not. When a structure is regrown at
higher resolution, similar positions are queried as were queried during growth of
the low-dimensional structure. This thereby increases the chance that the high-
resolution structure will have the same shape—and thus behavior and fitness—as
the low-dimensional structure.
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2.6 Why Allow Body Plans to Change during Behavior
Optimization?

A third reason for evolving robot body plans is that allowing evolution to change
the body plan slightly increases the probability of finding a successful robot. This
was demonstrated in [3]. For many robot body plans, slight changes will lead to
slight changes in behavior, and thus slight changes in fitness. It is well-known that
mutations that have slight phenotypic effect has a higher probability of being ben-
eficial, compared to mutations that cause large phenotypic change. Thus, placing
some aspects of a robot’s body plan under evolutionary control can smooth the fit-
ness landscape, and increase the evolvability of the overall system.

This principle was demonstrated using an anthropomorphic arm robot that was
evolved to perform one or more object manipulation tasks: grasping an object, lift-
ing an object, and or distinguishing between different objects. When robots were
evolved for only one of these tasks, there was little evolutionary difference between
runs in which only the control policy was evolved, and runs in which control and
morphology were optimized. As the task became more challenging however by
selecting for robots that could grasp, lift and distinguish between objects, runs in
which control and morphology were evolved together performed much better than
runs in which only control was evolved.

It is hypothesized that when the robots were evolved to perform all three tasks at
once, the fitness landscape is more rugged because there are several trade-offs between
these different competencies. For example a mutation that improves the robot’s grasp
may adversely affect its ability to distinguish between different objects: if it grasps all
objects more tightly, it may fail to generate different sensor signatures when grasping
the different objects and cannot thus distinguish between them.

Fig. 2.3 The anthropomorphic arm evolved to lift, grasp and distinguish between different-
shaped objects.
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However, by allowing evolution to slightly change the radii of the fingers (as seen
in Fig. 2.3), when it grasps objects of different shapes, different parts of the fingers
may come into contact with the object. Each finger part contains a touch sensor, so
grasping different objects may cause different subsets of the touch sensors to fire,
and these different patterns can be used to distinguish between the objects. This
is visualized in Fig. 2.3, in which finger parts are blackened if the touch sensor in
it is firing, and different black-and-white patterns can be observed when the robot
grasps different objects. Thus, slight changes to the robot’s morphology can smooth
the fitness landscape by reducing the tradeoffs between the different behaviors being
evolved.
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Chapter 3
Why Evolutionary Robotics Will Matter

Kenneth O. Stanley

Abstract. While at present Evolutionary Robotics (ER) is generally not studied in
mainstream robotics, the main idea in this article is that ER has the opportunity to
gain relevance by taking seriously its natural inspiration. The chasm that separates
the behavior of robots today from the robustness and fluidity of organisms in nature
is most naturally addressed by an approach that indeed respects the process through
which such organisms originated. Yet the challenge is to identify the elusive missing
ingredient that would allow ER to realize its full potential.

3.1 Joining the Mainstream

Evolutionary Robotics (ER) is not a mainstream topic in robotics. It is easy to find
syllabi for “Introduction to Robotics” courses on the Internet without even a mention
of ER in the entire semester schedule. Yet ER should be important to robotics as
an active subcommunity that aims to address many of the same challenges. The
question is how this divide between mainstream robotics and ER will ultimately be
bridged. This article attempts to address this question by looking mainly forward
toward the promise of ER and how that promise will make it increasingly relevant
to robotics as a whole.

An important goal for robotics in general is to avoid the stereotypical stilted,
jittery motion of awkward machines and move instead towards fluid, natural behav-
iors. In this light, it is interesting to note the tools with which mainstream robotics
proposes to address this challenge. The 2007 Introduction to Robotics syllabus at
Stanford University [7] gives a sense of what these tools are in the mainstream
view: spatial descriptions, forward kinematics, Jacobians for velocities and static
forces, computer vision, inverse kinematics and trajectory generation, acceleration
and inertia, dynamics, PID control, joint space control, operational space control,
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and force control. Note that nowhere in the syllabus is ER mentioned. The classic
ER book Evolutionary Robotics [12] is rarely cited as a textbook or even an auxiliary
reference in robotics courses either. The day when ER genuinely impacts robotics
and not only evolutionary computation remains ahead.

Yet even a cursory look at nature hints at why ER does have the potential for
dramatic impact. After all, every organism on Earth is the product of evolution, and
no robot yet created through conventional means even comes close to the stealth
of a lion, the grace of a bird, or the balance of a human. Even in simulation such
capabilities are not convincingly reproduced, so it is not just a matter of mechanical
limitation. Both the robustness and fluidity of natural movement remain symbols of
how far we have to go.

For example, when a human sprains an ankle, he or she may walk with a limp,
but the entire motor system recalibrates almost instantaneously to compensate for
the disability without the risk of falling. Throughout childhood the body changes in
height and proportion, yet walking remains seamless. At the same time, although
it is a qualitative observation, the fluidity of natural movement is unmatched. One
need only watch horses at play or monkeys swinging from branches to appreciate
the gaping chasm between natural fluidity and robotics today.

If ER could produce robots with the same robustness and fluidity, it would earn
its place as a canonical topic in mainstream robotics. Yet the problem is that ER
does not presently produce such behavior any more than mainstream robotics does.
For example, a survey of evolved bipeds, while impressive for the progress that it
demonstrates so far, shows that the products of ER today are nevertheless still brittle
and highly stereotyped compared to nature’s flexible solutions [1, 6, 9, 14, 23].

3.2 Bridging the Gap

The future of ER lies in taking this achievement gap seriously. We need to acknowl-
edge that when applied to robotics, evolutionary algorithms should produce artifacts
that remind us of nature, which provides our primary inspiration for running evolu-
tion in the first place. That does not mean that human-level intelligence is necessary
to achieve, but fluid motion and robustness belong more realistically within scope.
If evolutionary computation can offer nothing else, at least it should offer that.

The almost-magical elegance and grace of the products of natural evolution is
rarely acknowledged within the technical-minded confines of the research commu-
nity yet nevertheless deserve our attention as a source of inspiration and indeed as
a proof of what is possible through ER. It is exactly that magical ingredient that
mainstream robotics seems to lack. That exquisite, seamless fluidity of motion that
unfolds without apparent effort is a clue to what may be possible. By ignoring this
elusive facet of life on Earth, mainstream robotics risks missing what ER is posi-
tioned to gain.

Then what does it mean that ER does not today exhibit that same magic? The
answer is that ER is poised at the brink of opportunity; the essential prerequisite to
our progress as a field is to acknowledge that something fundamental is missing. Yet
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whatever that missing ingredient is, it is closer to our purview than to the traditional
tools of mainstream robotics. Rather than a negative sentiment, acknowledging this
missing link suggests a profound opportunity for change just over the horizon.

3.3 Realizing the Promise

Of course, the natural next question is what shape that change may take. Someday,
we should hope to evolve e.g. a single biped (or quadruped) neurocontroller that
works in almost any biped morphology, just as our brains allow us to walk as our
body grows and changes. Rather than starting life walking right away, as almost
every evolved biped does today [1, 6, 9, 14, 23], it should learn on its own the
dimensions and dynamics of its new body and rise from the ground to walk after
some experimentation. In effect, the hypothesis is that the robustness and fluidity of
nature is earned at the expense of a period of adaptation and habituation that occurs
early in life, just as babies learn to walk.

If this hypothesis is right, it suggests that adaptation, which in artificial neural
networks follows from synaptic plasticity, may be an important part of any model
that approaches the elusive superiority of nature. Yet synaptic plasticity remains an
open area of investigation in neuroevolution [2, 4, 11, 13, 17, 18, 19, 20]. Recent
work in our research group aims to combine synaptic plasticity with the indirect
encoding in HyperNEAT [5, 21], which would allow regular patterns of plasticity
rules to be distributed across the network [15]. At present, although there is already
precedent for incorporating synaptic plasticity into simple ER models (e.g. in con-
trolling wheeled Khepera robots [4]), it has not yet been combined with controllers
that must attempt feats like learning to walk with variable morphology during their
lifetime.

In any case, simply combining neuroevolution [3, 22, 24] and synaptic plasticity
alone is not a complete answer. The model of plasticity will likely need to be es-
pecially sophisticated and refined to be able to support unprecedented robustness.
Furthermore, new computational abstractions of evolution may need to be devel-
oped that capture the open-ended process through which the products of nature were
discovered [8, 10, 16]. Thus significant research lies ahead. Yet these research di-
rections provide a hint of where opportunity may lie.

The important point for this article is that if we can evolve a controller that
wakes up inside any body and learns to make it work, all without the need for any
traditional analysis whatsoever, there is the potential to revolutionize mainstream
robotics. It happened in nature and it should therefore be possible in ER. So while
today some in the mainstream may see ER as unnecessary or suboptimal, its promise
is in its inspiration, which encompasses the most robust robotic systems on Earth:
nature.
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Chapter 4
Evolutionary Algorithms in the Design of
Complex Robotic Systems

Philippe Bidaud

4.1 Introduction

To expand the potential of the robotic systems by introducing innovative mechanical
structures and to endow the systems of sophisticated behaviors taking into account
in particular the variability of the environments in which they are intended to evolve
constitutes challenges for the research in design. The needs in terms of rationality
and efficiency in these new challenges for robotic engineering lead the development
of systems to assist engineers in the different phases of their design activities. Gen-
erally speaking, design is defined as a process in which for a given description of
desired functions and constraints to satisfy called specifications we try to produce
the description of an artifact or several of them fitting the specifications. The design
process may entail the creation of new solutions or evolutions from an existing so-
lution. To this aim, series of activities are performed by which designer perception
of a problem is transformed into an output satisfying the problem. The entire design
process is basically an iterative process which can be viewed at a conceptual level as
a chain of activities which consists in 1) Clarifying the requirements and needs (the
output is frequently a problem statement since it is rarely given at the beginning)
2) Defining the constraints by analyzing the operating environment (functional and
performance specification) 3) Generating concepts and solutions 4) Modeling and
analyzing the behavior 5) Testing and evaluating the proposed design(s) 6) Refining
and optimizing the design of selected solutions. Design methodologies in the field of
mechanical engineering has been first introduced on the base of prescriptive mod-
els then on descriptive models and more recently as computer-based models [1].
The aim of a prescriptive model is typically to provide guidelines or frameworks
to organize and structure the process of creating instructional design activities.
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Traditionally, these design recommendations are based on the experience coming
from identical or similar developments. It is quite evident that this kind of concept
generally inhibits innovation.

Descriptive design methods rely on an explicit description of designers practice
extracted from previous experiences. Collected data and information about reason-
ing, decisions, options, trade-offs, etc . . . are organized into patterns to capture de-
sign rationale and construct a formal or semi-formal structure so that the design
rationale can be used in the decision-making process.

The progresses in computer sciences have contributed in relaxing the design pro-
cess to approach the problem in a more global way mixing prescriptive and descrip-
tive approaches and by introducing more formal theory and methodology and more
rigorous practices for the comparison of design alternatives, this by introducing
mathematically-based optimization methods, simulation-based performance eval-
uation and assisted decision processes [4]. In addition, more iterative approaches
have also been adopted and it has been observed that interactions between the dif-
ferent stages were an important factor for controlling the development of the design
process as well as the designer preferences [2].

The need for global system design rather than for component has made particu-
larly desirable to take into account simultaneously a significant number of criteria
and this in a coherent way with regard to the function to be realized. Besides, the
investigation of alternative solutions, the introduction of the knowledge acquired
by the analysis of the results to refine the specifications constitutes now essential
elements in the process of innovation and the mastery of optimal solutions.

If rationality and logic are essential components in technical progress, we also
need powerful tools to stimulate creativity. Emergence of new solutions may result
from a dialogue between science and serendipity, effect by which one discovers
something fortunate by an intelligent exploration.

Robotics systems relate clearly this last frame. They constitute by nature complex
systems which require a global and creative approach for their design.

4.2 Particularities of the Robotic System Design

Robotics offers a technology with which the integration of various activities as well
as the flexibility to adapt to task/environment changes can be achieved. Basically a
robotic system is made up with a mechanical structure, which can be an articulated
multi-body system with a fixed or variable topology or a deformable structure (con-
tinuous or discrete). An external power is provided to the mechanical structure by
discrete or continuous actuators to produce motions and/or physical actions over the
working environment. The internal state of the system as well as its activity with
respect to the task can be observed through different sensors integrated in the pow-
ered structure. The state and the interaction with the environment is controlled by a
controller which act at different levels, from the low-level control which considers
joint performances to the higher levels which may consider advanced autonomous or
interactive behaviors. Examples of these systems can be for instance manipulation
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and/or locomotion systems which may have different topology : serial architectures,
parallel architectures, legged system, wheel-legged systems, compliant structures,
tensegrity and deployable structures, polymorphic structures.

Traditionally, a hierarchical design approach for developing and implementing
robotic systems is used. This model seeks to provide a structure under which robotic
systems (existing or new) can be rapidly developed and implemented. This solution
is badly adapted to robotic system design where it is a question of mastering the
global performances of systems which depend at the same time on its structure and
its control. A way to proceed consists in considering simultaneously these various
aspects through a phase of preliminary design based on a formal inspection of the
high-level architectural design and of the control system. This phase is conducted
to achieve confidence that the design satisfies the functional and nonfunctional re-
quirements and that the system decomposition is in conformance with methods for
multidisciplinary design and optimization. One of the most challenging problems in
preliminary design is the ability to handle complex behaviors with numerous design
variables and constraints. Classical optimization methodologies fall short in very
large and complex domains.

Robotic systems belongs to large scale engineering systems for which the design
problem can be defined as a nonlinear optimization problem under constraints with
mixed continuous and discrete design variables. Among the methods adapted to this
class of problem, branch and bound methods including heuristics rules, simulated
annealing end evolutionary algorithms which are also implicit enumeration proce-
dures have shown a real potential and are today considered as particularly relevant.
The main advantage of these methods over the others traditionally used in mechan-
ical design is that they do not require gradients and convexity of the problem and
they will find a global optimum.

The potential of genetic algorithms is precisely situated among all the other op-
timization techniques in [3]. Since their introduction in the 60s, an extensive work
have been performed about the adaptive mechanisms of evolution and their adapta-
tion to solve real world problems with genetic algorithms and derived techniques in
order to provide the most efficient and robust stochastic optimization processes.

4.3 Parameters and Evaluation of Robotic Systems

A robotic system as the one shown on the figure 4.1 is typically made of tens of
different bodies articulated to each other to provide a sufficient mobility to overcome
large obstacles. In the preliminary design stage of such a system, we look for an
optimal structural design : a topology for the arrangement of the bodies and joints,
joint and structural kinematic characteristics, mass and inertia distribution, power
transmissions, etc . . . and a way to coordinate the movement of the system and to
distribute the transmission forces for driving it over a given terrain.

For the design of such system, quantitative descriptions of the expected
robot performances are a key issue. Performance measures which may be used
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Fig. 4.1 Example of mobile robotic system with large range active suspensions for high
crossover capabilities.

depend upon the nature of the system and on the nature of the task to be performed.
They will make possible to assign a numerical value (the cost) to a system consid-
ering a particular manner (control and programming) of executing this task. Find-
ing the best system and the best way to execute the task can be translated into an
optimization problem in which the formulation of appropriate objective functions
requires to take into account task variability.

In the preliminary design phase of a robotic system, the functional requirements
which are frequently considered are related to motion capabilities of the system and
its force transmission performances.

Kinematic and mechanism theories provide powerful tools for mobility analy-
sis of the mechanisms supporting the robotic devices motions and constraints in
mechanisms. They can be investigated from joint screw system characteristics with
respect to their geometric particularities [5]. Stationary extreme and internal config-
urations which are directly related to the workspace of a system as well as uncertain
configurations (non-controlable) are accessible from screw system associated with
the set of joints. Different analysis based on the rank of the Jacobians in the in-
put/output infinitesimal displacements (or velocities) transmission can be carried out
for considering the motion transmission properties. Reciprocally, the force transmis-
sion properties may be explored based on the generalized concept of force ellipsoid
[6, 7]. Both of them have expressions similar to the manipulability index which is a
quantitative measure of the closeness of a robot configuration to singularity.
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The dynamic response of the robot manipulator may also be investigated from
the cartesian dynamic model of the system by incorporating link flexibilities as
well as on the control law implemented on the system [8]. For a general impedance
control law, several parameters can be adjusted to control the overall behavior of a
mechanical system in SE(3). These parameters may also be adjusted to deal with
transitions in between free and constraint motions as well as the physical contact
stability in between the system and its physical environment [9]. All the basic per-
formances mentioned above are configuration dependant. Moreover, if the system is
redundant with respect to the task constraints, it will also depend on the use made
of the self motion of the system.

Many of the criteria used in robotic system design are not aimed at capturing di-
rectional structure in the workspace, rather perhaps at smoothing the structure across
the workspace. The initial manipulability measure introduced by Yoshikawa is di-
rectionless making it impossible to discern directional preferences. Task-oriented
measures have been proposed to obtain quantitative indices of the system’s capabil-
ity, in each configuration, of its performances along given task space directions [12].

What is said here with regards to manipulation systems can also be said about
locomotion systems. Terrain traversability, postural stability and others similar per-
formances are dependant of the configuration of the system with respect to the tasks
and for the dynamic performances, there are dependant also of the history of the
system. Besides, these characteristics are generally influenced by the control of the
system by which, in a lot of situations we try to take benefit of the redundancy ei-
ther kinematic, or in actuation. Numerous illustrations can be given. For example,
we can modify significantly the capacities of obstacles crossing for wheeled robot
by integrating into the control the non-sliding constraints of for a better optimization
of the distribution of traction forces [11].

4.4 Evolutionary Algorithms in the Robotic System Design

Design techniques from evolutionary algorithms have been successfully applied to
a large number of mechanical design problems from the design of mechanical struc-
tures exhibiting complex behaviors to mechanisms realizing particular functions. In
what follows, we return to some particular developments we have made on robotic
system design.

4.4.1 Kinematic Design of Robot Manipulators

We have investigated task based design of modular robotic systems using Genetic
Algorithms (GA) in the mid-90s, this based on a 3D kinematic description for
modular serial manipulators and a two-level GA to optimize their topology from
task specifications. The topology is evolved for adaptation to a global task con-
stituted by several required end-effector configurations (subtasks). The implemented
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GA optimizes several performance criteria under constraints. An adaptative multi-
chromosome evolutionary algorithm (AMEA) is used to perform task based design
of modular robotic systems. The kinematic design is optimized by the AMEA which
uses both binary and real encoding (for kinematic and configuration parameters). In
problems considered for illustration, the manipulator has to reach a predefined set
of goal frames in a 3D cluttered environment. Its design is evaluated with geometric
and kinematic performance measures. Optimization results for a 3D task are given
and compared with a simple genetic algorithm. They clearly show the superiority of
the multi-chromosome representation and adaptive operators in term of computing
time and criteria optimization performance [13].

4.4.2 Modular Locomotion System Design

Simultaneous structure/control optimization of robotic system for locomotion over
rough terrains has been adressed through Genetic Algorithms. This method is based
on a modular approach to the system design. The objective in the design process
is to find an optimal mechanical architecture and an associated control to achieve
displacements over complex surfaces. For this, we use an evolutionary algorithm in-
tegrating a dynamic simulation of the robotic system in its environment as illustrated
on figure 4.2.

Fig. 4.2 Representation of the general framework developed for structure/command evolving
of modular locomotion systems.

We used a hybrid encoding which allows for a simultaneous evolution of the
mechanical structure and its control system. Specialized genetic operators have
been designed to manipulate this encoding and to adapt their action to the evolving
population. The robot performances are evaluated through a simulation in which all
performances related to obstacle clearance capacities, stability of the system, speed
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and power consumption can be computed and exploited in real time. Hierarchical
evaluation is then suggested for the improvement of computing time and the process
is illustrated through a set of design examples

Based on a similar framework, the design of these micro-robots is based on a serial
arrangement of articulated rings with associated antagonist SMA micro-actuators,
whose configuration has to be adapted to the surgical operation constraints. The
control strategies for an adaptation of the system geometry to the environment are
based on a multi-agent approach to minimize the inter-module communication re-
quirements. In this work, a technique based on Genetic Programming is proposed
to generate approximated evaluation functions. Its aim is to significantly speed the
design process up, while leading to robust evaluation. A specific adaptation of these
principles has been investigated for the design of hyper-redundant robotic systems
such as smart active endoscopes intended for minimally invasive surgery [14].

4.4.3 Inverse Model Synthesis

We have developed an original use of Evolutionary Algorithms in order to ap-
proximate by a closed form the inverse kinematic model (IKM) of analytical, non-
analytical and general (i.e. with an arbitrary geometry) manipulators. The objective
is to provide a fast and general solution to the inverse kinematic problem when it is
extensively evaluated as in design processes of manipulators. A mathematical func-
tion is evolved through Genetic Programming according to the known direct kine-
matic model to determine an analytical expression which approximates the joint
variable solution for a given end-effector configuration. Several implementations of
this evolutionary symbolic regression process have been made to obtain approxima-
tions of the inverse kinematic models of the PUMA and the GMF Arc Mate robots
as well as for general 6R manipulators with arbitrary geometry [15].

4.4.4 Multi-objective Task Based Design of Redundant Systems

The question of the optimization was approached by considering in particular prob-
lems posed by the search for kinematics and associated kinematic control adapted to
the evolution of manipulation systems into constrained environments. In this aim we
look, on the basis of a modular design, for mechanisms capable of realizing desired
trajectories while satisfying the geometrical constraints related to the environment
as well as the physical constraints relative to actuators. The control which has been
considered here was a kinematic Cartesian control with active obstacles/constraints
avoidance based on a gradient function projected into the null-space of the trajec-
tory following task. The particular research carried out refers to the optimal design
of high-mobility surgical instruments dedicated to minimally-invasive surgery. Its
design is obtained by a generic evolutionary optimization process using pareto-
based multi objective genetic algorithms (the evaluation was typically incorporating
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Fig. 4.3 Principles of the design process.

Fig. 4.4 Dexterity measure along the surgical trajectory.
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diverse path tracking performances and force transmission, distance to obstacles,
etc ) and including highly realist simulations and experimental models of the surgi-
cal gesture. This design methodology has been applied to a coronary artery bypass
grafting procedure. It results in a robotized surgical instruments made of 9 degrees
of freedom whose performances in terms of dexterity along the prescribed trajectory
was radically different from the one used on the well-known Da Vinci robot [17].

4.4.5 Flexible Building Block Design of Compliant Mechanisms

The design of compliant mechanisms has also been investigated. Compliant mech-
anisms are single-body, elastic continua flexible structures that deliver the desired
motion by undergoing elastic deformation as opposed to jointed rigid body motions
of conventional mechanisms. The methods for structural design of such systems can
be divided into the homogenization methods and its variants the flexible building
blocks method and the level set methods.

The flexible building blocks method which has been developed in [16] consid-
ers a compliant mechanism as an assembly of compliant building blocks. A multi-
objective genetic algorithm is used to optimize the blocks distribution in the design
space as well as the optimal set of structural parameters and material. Fixed node
positions can also be considered as an optimization parameter. This topological op-
timization uses a genetic algorithm approach which allows true multicriteria opti-
mization and the use of discrete variables. It has been applied notably to systems
such as grippers for which the mechanical advantage may change in between the
open and the close configurations. Figure 4.5 gives an example of results for a two
finger gripper design.

Fig. 4.5 Grippers designed with an evolutionary algorithm. (left) design domain and specifi-
cations (right) solutions obtained optimally satisfying the input/output transmission.

4.5 Conclusion

Evolutionary optimization methods are of general interest in the design of robotic
systems for global and dynamic optimization in huge search spaces and problems
with difficult constraints. Several implementations have been proposed in the last
decade but numbers of extensions may be considered. One of the key question to be
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addressed in future research developments is related to the common assumption in
design optimization which is that fitness functions are defined in advance. However,
this is rarely true in practical cases, especially for conceptual design, where the
fitness function may change or co-evolve with the generation.
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Chapter 5
Evolving Monolithic Robot Controllers through
Incremental Shaping

Joshua E. Auerbach and Josh C. Bongard

Abstract. Evolutionary robotics has been shown to be an effective technique for
generating robot behaviors that are difficult to derive analytically from the robot’s
mechanics and task environment. Moreover, augmenting evolutionary algorithms
with environmental scaffolding via an incremental shaping method makes it possible
to evolve controllers for complex tasks that would otherwise be infeasible. In this
paper we present a summary of two recent publications in the evolutionary robotics
literature demonstrating how these methods can be used to evolve robot controllers
for non-trivial tasks, what the obstacles are in evolving controllers in this way, and
present a novel research question that can be investigated under this framework.

5.1 Introduction

What gives rise to intelligent behavior in natural and artificial agents? If you ask
proponents of embodied artificial intelligence they will argue that such intelligent
behavior arises out of the coupled dynamics between an agent’s body, brain and en-
vironment [1, 6, 9, 17]. An extension of this idea is that the complexity of an agents’s
controller and morphology must match the complexity of the task or tasks that it is
required to perform. However, when extending this idea to more complex agents in
more complex environments it is not clear how to distribute responsibility for dif-
ferent behaviors across the agents’s controller and morphology. Some have argued
[8, 10] that controllers should be organized in a modular fashion such that different
control components are responsible for different behaviors, but is this modularity
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necessary? Recent work by our group and others has demonstrated that in fact, no,
structural modularity is not always necessary [2, 3, 7, 14]. An example of how a
monolithic (non-modular) controller can be evolved to enable a virtual autonomous
robot to perform a non-trivial sequence of behaviors will be presented in the next
section.

Besides modularity in the design of an agent’s controller, roboticists often im-
plicitly design their robots to have morphological modularity as well: different parts
of the robot’s body are responsible for different behaviors. For example, wheels or
legs may allow for movement while a separate gripper module allows for object
manipulation. But, what if this assumption is relaxed? In another recent publication
[2], we demonstrated how a robot could be trained to locomote to and manipulate
an object while the assumption of specialization of different body parts is relaxed:
the robot had a segmented body plan in which the front segment was able to partic-
ipate in locomotion and object manipulation, or it might have specialized such that
it only participated in object manipulation. In this way, selection pressure dictated
the presence and degree of specialization of the robot’s morphology rather than en-
forcing such specialization a priori. Section 5.3 summarizes this work and discusses
some of the insight gained from studying the variability observed in the degree of
specialization of evolved controllers across different experimental regimes.

5.2 Learning Multiple Behaviors with a Monolithic Controller

Evolutionary robotics [12, 16] has been shown to be an effective technique for gen-
erating robot behaviors that are difficult to derive analytically from the robot’s me-
chanics and task environment. In particular, such techniques are useful for realizing
dynamic behaviors (eg. [13, 18]) in which individual motor commands combine in
a nonlinear fashion to produce behavior, thereby making analytical derivations of
optimal controllers infeasible. However, evolutionary algorithms alone are usually
insufficient for evolving controllers capable of multiple dynamic behaviors. One
method of augmenting evolutionary algorithms to achieve such controllers is incre-
mental shaping ([11],[19] and [20]): the gradual complexification of an agent’s task
environment, also known in the developmental psychology literature as scaffolding
[21], in order to first train controllers capable of performing a simplified version of
a given task and then over time increase the task difficulty.

In a recent publication [3] we showed how using an incremental shaping tech-
nique makes it possible to train a virtual autonomous robot to overcome three learn-
ing milestones: object manipulation, dynamic forward legged locomotion toward an
object, and directed legged locomotion toward an object, all using a single mono-
lithic controller. Moreover, that work demonstrated the necessity of choosing an
appropriate shaping trajectory or scaffolding schedule opening up several questions
about how to choose such a schedule.

Specifically, two virtual quadruped robots (see Fig. 5.1) simulated in a physically
realistic simulation engine1 were experimented with. Both robots had a desired task

1 Open Dynamics Engine: www.ode.org
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Fig. 5.1 The two virtual robots used in [3]: Robot 1 (left), Robot 2 (right).

of locomoting toward a distantly located object, grasping the object and then lifting
the object onto their back. These robots each had 13 degrees of freedom and were
actuated by a form of artificial neural network known as a continuous time recurrent
neural network (CTRNN)[5]. For more details about the robots’ morphologies and
neural controllers please refer to [3].

In all cases training began in an environment where the target object was placed
directly in front of the robot. Through a form of genetic algorithm (a hill climber)
the CTRNN parameters were optimized until the robot was capable of grasping and
lifting the target object. At this point the optimization process was paused and the
environment was altered such that the target object was moved slightly further away
from the robot. The optimization process then resumed until the robot was capable
of reaching the target object at its new location, followed by grasping it and lifting
it. After each such success, the process was paused, the environment was altered
to make the task more challening, and then optimization was resumed. While this
general process was the same for all experiments performed, what varied was the
ways in which the target object was repositioned, known as the scaffolding schedule.

Specifically, four scaffolding schedules were investigated (see Fig. 5.2). The first
scaffolding schedule, referred to as ‘T’, placed the target object in front of the robot
at increasing distances until the target object was a distance of three meters from
the robot. It was observed that by this distance, the robot must have learned a stable
gait to reach the target object. As distance was increased past three meters the target
object was moved out in both directions along the line perpendicular to the robot’s
sagittal plane, requiring two sub-evaluations: one sub-evaluation with the target ob-
ject placed in front and to the left, and another in which the target object is placed
in front and to the right of the robot. This schedule forced the robot to learn forward
locomotion with object manipulation followed by directed locomotion with object
manipulation.

The second schedule used (‘C’) moved the target concurrently along the perime-
ter of circles with radius 5 meters and centers located at 5 and -5 meters with respect
to the robot’s initial position. In this case two sub-evaluations were always used.
The final two schedules both moved the target object away from the robot linearly
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Fig. 5.2 Sample generalization plots from evolution of a generalized controller on robot 2
(red indicates the robot was successful at picking up the target object at that location) with
the four scaffolding schedules superimposed. Specifically the plots shown are for controllers
that were successful at distances of 3 meters (a), 3.2 meters (b), 3.3 meters (c) and 3.92 (d)
the final training distance reached in this run.

on both sides. One did so with a slope m = 1/ tan(22.5◦) (‘L1’) and the other did
so with a slope m = 1/ tan(45◦) = 1 (‘L2’). All three of these schedules, to varying
degrees, forced the robot to learn to turn towards the target before or while learning
locomotion.

After completion of a given training experiment two metrics were used to eval-
uate success. The first was the adaptation rate: how far from the robot the shap-
ing algorithm moved the target object during training. Since the target object was
only moved further away when a controller was found to be successful at the pre-
vious distance this metric gave an indication of how rapidly the robot could adapt
to a changing environment. However, it did not measure how successful a given
CTRNN would be in unseen environments. For this purpose a second metric was
devised. Know as a generalization metric, this metric involved creating a grid ex-
tending from 5 meters left to 5 meters right of the robot’s initial position and forward
5 meters, and systematically testing how well a given controller performed the task
for a sampling of target object locations within this grid located at regular intervals.
The fraction of these locations that the robot instantiated with this controller could
succesfully complete the task would be the controller’s generalization score.

Figure 5.3 depicts the mean and standard error score achieved on both of these
metrics across 100 independent runs per robot per scaffolding schedule. Notice how
the T scaffolding schedule significantly outperformed the other three schedules both
in training distance achieved and generalization for both robots. Comparing perfor-
mances between robots, it is noted that the T schedule evolved significantly more
generalized controllers with the second robot (left hand grouping in Fig. 5.3b) while
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Fig. 5.3 Mean adaptation rate (a) and mean generalization % of final CTRNN (b) across the
100 runs for each of the two virtual robots (robot 1 in black, robot 2 in blue) and each of the
four scaffolding schedules. All plots include standard error bars. Notice that while the mean
generalization score for each set of runs was under 10% in all instances, there were runs in
each set that found controllers with much higher generalization values. The generalization
scores for the final controllers from the top five runs from each set are given in Table 5.1.

reaching similar final training distances as the first robot (left hand grouping in
Fig. 5.3a). While the relative performance of the four schedules remained consistent
across robots, the three other schedules led to slightly less generalized controllers
with the second robot (three right hand groupings in Fig. 5.3b).

This means that both the morphology and training order are important for training
a robot capable of completing the given task. Note that the schedules that pressured
the robot to learn turning toward the target object either before or while learning to
locomote were less successful than the one that pressured the robot to learn to loco-
mote first. It therefore can be said that forward locomotion should be learned before
turning, for both robot morphologies. As can be seen in Fig. 5.3 the probability of
training a controller to enable taxis and object manipulation is inversely proportional
to the pressure to learn turning before locomotion: the T, C, L1, and L2 schedules
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Table 5.1 Five best generalization values of final controllers from each set.

Schedule: T C L1 L2

Robot 1:

53.6% 32.5% 23.3% 13.2%
20.2% 28.3% 19.7% 12.7%
16.6% 24.7% 14.9% 9.7%
15.2% 24.3% 13.2% 9.2%
15.1% 22.7% 11.5% 9.0%

Robot 2:

57.7% 26.3% 24.7% 12.6%
40.4% 24.8% 24.1% 8.9%
28.4% 21.4% 21.9% 7.6%
27.4% 19.3% 19.6% 5.8%
26.4% 19.1% 13.5% 4.8%

decline in performance, but increase in the pressure they exert to learn turning before
locomotion.

This work demonstrated that with the proper scaffolding schedule (T) it is pos-
sible to evolve controllers capable of performing a non-trivial sequence of behav-
iors even in previously unseen environments. Moreover it demonstrated that altering
morphology can impact the performance achievable through incremental shaping:
robot 2 resulted in more generalized behaviors than robot 1. However, for the two
morphologies considered the sequence in which behaviors should be learned re-
mained the same. Robot 2’s splayed legs made turning easier (see [3] for a discus-
sion of this), however scaffolding schedules that selected for turning before loco-
motion was learned were not better able to integrate object manipulation, turning
and locomotion into a controller using this body plan. Therefore it is concluded that
the task environment, the learning algorithm, and/or the evolvability of CTRNNs
dictate learning sequence more than morphology does.

More work remains to be done to strengthen this conclusion. Does this result hold
across additional, uninvestigated, morphologies? How would evolving the robot’s
body plan along with its controller effect the sensitivity of the training procedure
to the order in which behaviors are learned. The intuition is that evolving morphol-
ogy would reduce this dependency and yield a more scalable method for realizing
multiple dynamic behaviors in intelligent agents.

5.3 Specialization in a Morphologically Homogeneous Robot

Another recent publication [2] used a similar experimental framework as the work
just discussed to investigate a different problem. In this case the research question
was not about the order in which the behaviors should be learned, but about
what variables influence the frequency of finding functionally specialized con-
trollers – that is, controllers that devoted part of the robot’s body (it’s front legs) to
a single behavior (object manipulation) rather than using that body part for multiple
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Fig. 5.4 Left Sample functionally generalized controller. This controller used the robot’s
front legs for propulsion during locomotion and for grasping and lifting of the target object.
Right Sample functionally specialized controller. The robot’s front body segment was raised
and the front feet are kept off the ground during locomotion, i.e. they were only used for
grasping the target object.

behaviors. Specifically the virtual robot investigated (Fig. 5.4) was a hexapod com-
posed of three homogenous segments. It was designed such that the front segment
could participate in locomotion and object manipulation (Fig. 5.4, left), or it may
have become specialized such that it only participated in object manipulation (Fig.
5.4, right). In this way, selection pressure dictated the presence and degree of func-
tional specialization rather than enforcing such specialization a priori.

This robot, like those described in the previous section, was trained with an incre-
mental shaping algorithm coupled to a hill climber. Additionally, like those robots,
this robot was controlled by a CTRNN. Several different experimental regimes were
investigated with different initial environmental conditions and robot sensor config-
urations aimed at biasing the search process towards different solutions. For exam-
ple, the first regime started with the robot’s front segment rotated upwards 90◦ such
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that it was perpendicular to the ground with the front feet pointing forward and the
target object initially placed directly in front of the robot. This configuration intu-
itively should have biased the evolutionary process towards finding controllers that
specialized the front legs for grasping, since there was initially no evolutionary pres-
sure for them to participate in locomotion, and indeed many of the runs from this
regime found specialized controllers.

A second regime, conversely, started with the robot having all 6 feet on the
ground. It was thought that this would bias the search toward controllers that did
incorporate their front legs into their locomotion strategy, but this turned out to not
be the case: a similar number of runs from this regime as compared to the first found
controllers that specialized the front legs for object manipulation. An additional ex-
periment began with the target object moved two meters in front of the robot, here
it was thought that this would provide further bias towards incorporating the front
legs into the locomotion strategy since, while learning to locomote initially there
was no pressure for the front legs to be used for anything else, but once again a
similar number of specialized controllers was found as compared with the previous
two regimes.

Finally, a fourth regime with the same initial environmental conditions as the
second regime, but with two additional sensors added to the robot and wired to its
controller: joint angle sensors for the two joints connecting the body segments. The
controllers that evolved in this regime not only performed better in the sense that
they adapted more rapidly to changes in the target object’s position during training
as compared to the second regime, but also were more likely to be functionally
specialized when compared to the other three regimes (blue bars in Fig. 5.5).

Fig. 5.5 Histogram of a specialization metric for each of the four regimes. All runs in which
the target object reached at least three meters are included. See [2] for a description of this
metric.
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After noting that all four regimes were able to successfully learn both locomo-
tion and object manipulation in the majority of trials the question arises as to why
evolution tended to converge on functionally specialized behaviors, and why the
inclusion of additional sensors caused an increase in the frequency of converging
on such behaviors. Three possible hypotheses are: (1) functionally specialized con-
trollers are more evolvable, and therefore supplanted less specialized controllers
during an evolutionary run, (2) evolution initially discovered a specialized or gener-
alized controller, and subsequently improved on that behavior but did not increase
or decrease specialization, and (3) functionally specialized behaviors more easily
allow for active perception [15].

While the first two hypothesis seem to be quite plausible, both were invalidated
in [2]. The remainder of the space here will be spent discussing the more likely
and potentially more interesting hypothesis number 3. According to that hypothe-
sis, it may be that the robot was better able to actively perceive the proximity of the
object—and therefore determine desirable conditions for lifting—if the front legs
did not participate in locomotion, because then the touch sensors would only fire
when in contact with the target object. Indeed, it has been demonstrated in the lit-
erature that active categorical perception may evolve in learning agents [4]. More-
over, providing the robot with additional proprioceptive feedback in regime 4 not
only increased the prevalence of functional specialization (as shown in Fig. 5.5), but
also the adaptation rate within those runs that produced specialized controllers. It is
plausible that these added sensors allowed for better active perception as the touch
sensors and sensed body posture may have together indicated appropriate conditions
for object manipulation.

Several additional experiments were designed to test this hypothesis. These ex-
periments followed the theme of the second and fourth regimes: fixing the initial
environmental conditions but varying the sensors that the robot was provided with.
It was demonstrated that adaptation rate declined as the included sensors provided
less information in regards to desirable conditions for lifting. Specifically it was
found that the main body joints were the most informative, while the front leg an-
gles provided some information about the relative position of the front feet, but as
the sensors are moved toward the rear of the body less of this relevant informa-
tion would be available, and so the adaptation rate declined. This point was further
demonstrated by an experiment that included joint angle sensors on every single
joint. In this case the adaptation rate was not substantially improved compared with
just including the most useful pair (those on the main body segments). Additionally
it was shown in a further experiment that additional touch sensors improve perfor-
mance even more so than any angle sensors do, because touch sensors provided the
most direct evidence as to which feet are on the ground and/or touching the target
object.

To verify that the additional sensors provided relevant information useful for the
task and did not merely aid in locomotion, virtual robots were instantiated with the
same sensor configurations and were evolved for locomotion alone. This consisted
of expanding the range of the robot’s distance sensors and placing the target object
a large (100 m) distance away. Fitness was calculated as the fraction of distance
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Fig. 5.6 Mean fitness with standard errors when selecting for just locomotion with four dif-
ferent pairs of joint angle sensors: (b) joint angle sensors on inter-segmental joints, (c) front
leg joint angle sensors, (d) middle leg joint angle sensors, and (e) rear leg joint angle sensors.

between the start location and the target object location that the robot was able to
cover in a set amount of time. Fig. 5.6 shows the mean fitnesses along with standard
error bars from these experiments grouped by sensor configuration. Note that while
including the joint angle sensors on the joints connecting the main body segments
(b) led to improved locomotion performance, there was no significant difference be-
tween the performance of the other three sensor sets. This provided further evidence
that the differences observed across these configurations above were due to active
perception.

In conclusion, it was shown here that evolution can tune the amount of functional
specialization of different parts of the body. It is predicted that if the morphology as
well as the controller of the robot were under evolutionary control evolution would
then specialize both the morphology and function for different body parts as the task
environment dictates. Future work will test this prediction by evolving morphology
as well as control. The hope is that this will prove to be a more fruitful method for
realizing robots capable of an increasing number of behaviors, rather than fixing the
body plan and manually assigning function to structure.
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Chapter 6
Evolutionary Algorithms to Analyse and Design
a Controller for a Flapping Wings Aircraft

Stéphane Doncieux and Mohamed Hamdaoui

Abstract. Evolutionary Algorithms are now mature optimization tools, especially
in a multi-objective context. This ability is used here to help explore, analyse and,
on this basis, propose a controller for a complex robotics system: a flapping wings
aircraft. A multi-objective optimization is performed to find the best parameters of
sinusoidal wings kinematics. Multi-objective algorithms generate a set of trade-off
solutions instead of a single solution. The feedback is then potentially more infor-
mative in a multi-objective context relative to the one of a single objective setup: the
set of trade-off solutions can be analyzed to characterize the studied system. Such an
approach is applied to study a simulated flapping wing aircraft. The speed-energy
relation is empirically evaluated and the analysis of the relations between the pa-
rameters of the kinematics and speed has led, in a further step, to the synthesis of an
open-loop controller allowing to change speed during flight.

6.1 Introduction

Evolutionary Algorithms (EA) nowadays belong to the classical toolbox of engi-
neers as powerful optimization algorithms [5]. They differ from other techniques in
the fact that they are black box, derivative free optimization algorithms. The func-
tion to be optimized, i.e. the cost function, also called the fitness function, may
even not be known but just evaluated through a dedicated experimental device. This
makes such tools valuable for non-linear and dynamical systems design and first
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applications have actually been performed directly on a real device [20, 21] as cited
by [1].

Furthermore, as they are population-based, they can easily be adapted to a multi-
objective context [6] and efficient multi-objective evolutionary algorithms (MOEA)
now exists, as for instance NSGA-II [8] or ε-MOEA [7]. Actually, most real world
problems involve multiple objectives to be optimized: cost and efficiency, for in-
stance. When these objectives are antagonistic, there is no single optimal solution,
but rather a set of optimal trade-off solutions. MOEA generate at once an approxi-
mation of this set of the best trade-off solutions whereas most other multi-objective
algorithms only discover one trade-off solution at a time or require to know in ad-
vance some features of this set [16]. Examples of applications of MOEA are then
numerous [3, 4, 22].

The cloud of optimal trade-off solutions generated by a multi-objective algorithm
can be used to extract useful data on the considered problem. Actually, all these
points share the specificity of being optimal relative to some user defined objectives
and are arbitrarily close. They materialize then the possible values of the objec-
tives and the relations between them and the evolved parameters. An expert of the
field can exploit these data to design new and innovative solutions that go beyond
the solutions handled by the MOEA. Deb and Srinivasan [9] suggested a system-
atic approach to these questions and called it innovization, for innovation through
optimization. Their approach consists in first finding the set of Pareto-optimal solu-
tions according to problem specific objectives. On the basis of these data, an analysis
is made to identify regularities and relations between parameters. In this article, such
an approach is applied to a simulated flapping-wings aircraft. The energy-speed re-
lation is empirically evaluated and a simple open-loop speed controller is deduced
from the analysis of the relations between the parameters and the speed.

Many studies have been performed by biologists that have observed natural
devices of this kind. Thanks to statistical studies on flying animals or insects, bi-
ologists have identified relations between significant parameters like wing area,
cruising speed, wing span, flapping wings frequency, wing load or mass [23]. Wing
kinematics have also been studied for several species. Tobalske and Dial have ob-
served, for instance, that pigeons and magpies use a relatively constant flapping
frequency across their complete range of speed, i.e. 4 to 14m.s−1 [25]. Meanwhile,
Park et al. have studied the swallow in a wind tunnel and observed an U-shaped
relation between frequency and speed [18], concluding that such relations may vary
upon bird species. Physicists also try to unravel the physical mechanisms underly-
ing the flapping flight. Some experiments have been conducted in which prototypes
with a given kinematics were put in a wind tunnel to study and characterize their
behavior [11]. In this case, the kinematics is given, but if we turn to a roboticist’s
point of view, the question becomes : for a prototype with known features, what are
the interesting kinematics ? To our knowledge, no theory nor methodology do exist
today to answer such practical questions. Likewise, no efficient flapping wing air-
craft do exist together with its controller to help infer relations between the involved
parameters. Birds or bats are sources of inspiration, but equivalent engineered fly-
ers have fewer degrees-of-freedom and different aerodynamical features. Biological
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observations can’t then be directly used. The proposed methodology aims at facili-
tating the design of such aircrafts by providing some simple yet efficient solutions
that can be analyzed to better understand such systems before building more sophis-
ticated solutions.

Stochastic optimization tools are very interesting in the context of flapping wings
aircrafts due to the complexity of the relation between the parameters of a particular
kinematics and the resulting speed (or aircraft crash...) [17, 19, 24] . The work pre-
sented here is different in that it does not aim at generating a single and particular
optimal controller, but rather at generating a set of them, that are not the goal per
se but rather a mean to study properties of the system. [15] had a similar goal, but
a small number of speeds were initially chosen in the study and runs were launched
for each value. In the present work, a continuum of speeds is explicitely sought. It
should be noticed that the following results have been obtained in simulation and
are thus highly dependent on simulation accuracy. Actually, such experiments may
be done on a real prototype.

6.2 Method

The proposed approach consists in first generating a set of Pareto-optimal points.
These points are particular in the sense that they share a common specificity: they
are all optimal relative to some (antagonistic) user-defined objectives. Finding the
common features of those points corresponds then to find what characterizes Pareto-
optimal points: what are the critical parameter values ? How are they related to
objectives? Furthermore, the MOEA we will use, i.e. NSGA-II, aims at finding a
dense approximation of the Pareto front. This means that the generated solutions
will be arbitrarily close one to the other. This proximity between points will make
the analysis of the solutions easier and results, generally, in a continuum between
the features of these solutions. A more detailled description of the approach follows.

The first step consists in choosing two antagonistic objectives (or more). The
objectives explicitely need to be antagonistic in order to guarantee the existence of
a set of trade-off solutions, rather than a single optimum. Although it may seem
at first sight to restrict the field of application, in practice, it is easy to find such
objectives: cost or energy related objectives are, for instance, generally antagonistic
to performance related objectives (efficiency relative to the task to be solved, for
instance).

Once these objectives are known, a search space has to be choosen. The search
space defines the set of candidate solutions the EA will explore. All further re-
sults and analysis will be relative to this search space, its choice must then be done
carefully.

The next step is straightforward: launch the optimization to find a good approxi-
mation of the Pareto front. Deb and Srinivasan [9] suggest to do it in several different
steps: perform a standard multiobjective search, perform a single objective optimiza-
tion to find the extremum points of the Pareto front and then use NCM [16] to find a
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set of points representing an uniformly distributed sampling of the Pareto front.
All these different steps only aim at providing a better confidence in the quality
of the Pareto front approximation. In most real-world applications, there is no way
to know it with precision, it is then important to do whatever possible to increase
the confidence in the quality of the results, as the quality of the further analysis
will critically depend on this part of the process. In the work reported here, several
independant runs have been launched and also single objective optimizations have
been tried for both extremum points and Pareto front points. As the points generated
by single objective algorithms were clearly dominated by the points generated by
NSGA-II1, the focus in the following is only on the points generated by this last
MOEA.

The cloud of Pareto-optimal points can then be used to extract useful information
just like in [9]. The Pareto front in the objectives space shows the performance of
the best solutions to be found relative to the given search space. Each parameter
can also be plotted against a target objective or parameter and analytical functions
approximating this relation can be found by regression, as it is done in [9]. But this
can become cumbersome as the dimensionality of the Pareto front increases in the
objectives or parameters spaces. For example, with n objectives and p parameters all
the couples with the n+ p quantities have to be studied, which result in (n+p−1)(n+p)

2
plots to scrutinize. Looking at these plots individually can dramatically increase the
time needed to extract the information from the Pareto front and may sometimes
lead to inconclusive results. That is why specific visualization methods that can
easily handle high dimensional data and can give at a glance a global view of the
Pareto front in the objectives and/or parameters spaces have to be used to detect
the groups of quantities that seem to be related and only for which, plots should be
drawn.

In our case, the Pareto front is of dimension 8 in the parameters space and 2 in
the objectives space. Therefore, visualizing the relationships between parameters
and/or objectives on the Pareto front can become a lengthy and laborious process
(∼ 45 plots to review). Kohonen networks [12] are used here to facilitate this step.
These networks are a nonlinear topology preserving projection method which allows
to handle comfortably high dimensional data. The objective of Kohonen networks
is to form a discrete, topological mapping of a Q-dimensional input space. The
algorithm outputs a Kohonen map composed of output units often arranged in a
2-D rectangular or hexagonal grid, each ouput unit being characterized by its 2-D
vector of coordinates and a Q-dimensional vector called codebook. To construct the
mapping, the network is trained on a finite dataset of Q-dimensional vectors (input
space) and produces a Kohonen map whose units are 2-D vectors (output space)
in such a way that the topology of the data is preserved and that each vector of the
input Q-dimensional dataset is associated to a unit on the map via its codebook. This
unit is called BMU or best matching unit. Thus, Kohonen networks build a tractable
low dimensional (the Kohonen map) representation of high dimensional datasets
allowing a comfortable visualization of the data. A MATLAB R© implementation

1 We tried a simple rank-based EA.



6 EA as Exploration and Analysis Helper Tools 71

of the method is freely provided by the SOM Toolbox2. This technique is used to
visualize the Pareto front taking into account, for each Pareto-optimal solution, both
parameters and objectives.

In the case of parameters describing a robot controller, this knowledge extraction
step results in the ability to build a new and more complex controller relative to
what EA has explored and generated : if the parameters are modified online using
the found relationships we have a controller able to move along the Pareto front and
thus to adapt to the context. Such an approach requires that such online modifica-
tion is possible and efficient, what is not guaranteed, as the MOEA only explored
constant parameters controllers. Anyway, the proposed new controller may be the
subject of further refinements through another innovization step or through a simple
optimization of its parameters concentrated on the transition phase between changes
of parameters.

6.3 Experimental Setup

To illustrate potential use of the method, a flapping wings controller able to adapt
the speed of the aircraft to a given desired speed is designed while exploiting the
data extracted from the Pareto-optimal set analysis. The principle of the controller
consists in modifying online the parameters of the wings kinematics. The applied
set of parameter values for the wing kinematics are the closest possible to those of
Pareto-optimal points associated with a similar speed. This requires to extract the
relationships between the speed and the different parameters of the kinematics and
this is what the MOEA analysis is used for.

A cloud of Pareto-optimal points that correspond to different speeds is generated
and analysed, using Kohonen maps, in both objectives and parameters spaces to es-
timate qualitatively the relationships between the different quantities at hands. This
qualitative study will ease the identification of the parameters that noticeably vary
with the velocity while allowing us to spot interesting regions of the Pareto front.
Then, by doing some regression on the withheld kinematical parameters versus the
velocity, a law of variation for each parameter relative to speed will be inferred and
used to drive the online wing kinematic parameter settings.

Tests will then be performed in simulation to see if it actually allows to change
the speed of the flapping wings aircraft. Starting from a simple family of functions,
i.e. sinusoidal functions, allowing to fly at a constant speed, a controller able to
adapt the speed of the aircraft will be designed3.

The first goal is to generate the set of pareto-optimal points to be studied. Such
points should represent a varying speed: speed will be the first objective. An antag-
onistic objective is required to generate a set of individuals and not a single point.
Energy will be used to this end. Two optimizations will be performed: one will try
to maximize speed, while the other one will try to minimize it. The largest range of

2 http://www.cis.hut.fi/somtoolbox/
3 This will still be an open-loop controller, as it won’t take into account real speed, we will

propose an extension to design a closed-loop controller in the discussion.

http://www.cis.hut.fi/somtoolbox/
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speeds is required to make the speed control interesting. In the case of an U-shaped
relation between speed and energy, two kinds of experiments need to be launched:

• speed minimization will materialize the lowest speed points
• speed maximization will materialize the highest speed points

The points generated by the two experiments are then merged to generate the cloud
of points to study. Wing kinematics are described by the following equations:

DI = aDI sin(2πt/pDI) (6.1)

TWi = rTWi + aTWi sin(2π(t/pDI + pTWi)) (6.2)

TWe = rTWe + aTWe sin(2π(t/pDI + pTWe)) (6.3)

where DI is the wing dihedral, TWi the internal twist and TWe the external twist.
Wing kinematics is then described by eight parameters subject to the evolutionary
optimization. The chosen ranges for each value is the following:

• amplitude of the dihedral: aDI in [0;45o]
• period of the dihedral (and of all other degrees of freedom): pDI in [0.2;1s]
• reference of the internal twist: rTWi in [−22.5;22.5o]
• amplitude of the internal twist: aTWi in [0;45o]
• phase of the internal twist: pTWi in [0;1]
• reference of the external twist: rTWe in [−22.5;22.5o]
• amplitude of the external twist: aTWe in [0;45o]
• phase of the external twist: pTWe in [0;1]

NSGA-II is used to perform the search, with a population size of 500 and during
1000 generations. Evolved parameters are represented as vectors of real values with
a polynomial mutation and a sbx crossover, as described in [6], p124.

Aerodynamical forces created by wing movements are computed with a semi-
empiric, quasi-steady-aerodynamics model. Each wing is decomposed in three
panels. For each panel, the local incident airspeed is evaluated and the leading edge
lift, the parachute drag and the friction drag are computed and summed. See [10, 15]
for a detailed description of the model. The parameters of the aircraft are given in
Appendix. The panels are considered as not deformable solids, connected to their
neighbors via joints, as shown on figure 6.1. The integration of the forces and the
movements of the parts are computed using ODE4.

The objectives to maximize are the following:

• experiment 1:

– + average aircraft speed
– - average mechanical power

• experiment 2:

– - average aircraft speed
– - average mechanical power

4 http://ode.org

http://ode.org
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Fig. 6.1 Degrees-of-freedom of the simulated flapping wing aircraft.

Following [15], the instantaneous mechanical power is computed as the scalar prod-
uct between the instantaneous torque (τ) and the instantaneous rotational speed (ω)
for a joint: P = ∑i |τi.ωi|. The mechanical power objective only takes into account
the shoulder joints which are the main contributors to energy consumption. It should
be noted that the power is always considered as positive. The mechanical power
is then over estimated, as the torques required to accelerate or to slow down are
considered as equivalent.

6.4 Results

Three different runs have been launched for experiment 1 and experiment 2. Each
run shows a similar Pareto front, except for points at highest energy. This result
is not surprising as these individuals are at the limits of the simulation we used:
small changes may have a huge consequence on the stability of the simulation, thus
making such part of the search space difficult to explore.

For each experiment, the set of non dominated solutions out of the three runs is
extracted and the two resulting sets are merged (figure 6.2). Dots follow an U-shape,
with a minimal energy consumption of 24W at 10.7m.s−1. It can be noticed that the
sets of non dominated solutions for experiment 1 and experiment 2 coincide for this
point of minimal energy consumption with no particular discontinuity.

A Kohonen map of the Pareto front in both objectives and parameters spaces is
built. Multiple representations of this map, colored according to the objectives and
kinematic parameters, are provided on Figures 6.3-6.5. For example, the Figure 6.3
top represents the map colored by the values of the U-matrix with the color code
specified on a colorbar next to the map. The U-matrix is a matrix of distances
between the units of the map computed in the Q-dimensional input space: as
each unit of the map has a Q-dimensional codebook, the distance between units
in the Q-dimensional space is the distance (euclidian for example) between the
Q-dimensional codebook vectors associated to these units. To quantify the relative
importance of the different components of the Q-dimensional codebook vector in
the U-matrix computation, some components may be set to zero while the others
are taken into account in computation of the distance to assess their importance for
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Fig. 6.2 Pareto-optimal points extracted from the results of the three speed optimization and
the three speed minimization experiments. Each dot represents the optimal solution found by
the EA for a given speed relative to the energy consumption. X-axis: speed in m.s−1, Y-axis:
instantaneous energy in W .

the U-matrix. The U-matrix allows to spot groups of similar solutions (areas on
the map where the U-matrix takes low values). The mapping error is quantified by
computing the average distance between each vector in the data and its BMU. The
error associated with the built mapping is of 8 %.

Four main similar areas or clusters can be seen on the map colored by the values
of the U-matrix (see Figure 6.3, top). Three of them (Cluster 1-3) are located in
the region of low velocities and the other one (Cluster 4) is in the region of high
velocities as can be seen by comparing Figure 6.3, top and Figure 6.3, middle. The
separation line between Cluster 1-3, in one hand, and Cluster 4, in the other hand,
seems to correspond to the separation between the two merged Pareto fronts (one
obtained for high velocities and the other for low velocities). To make sure of that
we computed an U-matrix based on the values of the velocity only, represented on
Figure 6.3, bottom, left, which shows that this separation line is strongly related to
the velocity.

The internal twist amplitude aTWi (see Figure 6.3, bottom, right) does not change
much on the map as it takes high values for very low velocities and low values the
rest of the time. This means that this kinematic parameter is not sensitive to the
velocity except for very low velocities.

On the opposite, the internal twist reference rTWi, internal twist phase pTWi,
external twist amplitude aTWe, external twist reference rTWe (see Figure 6.4) and
external twist phase pTWe (see Figure 6.5, top, left) are related to the velocity on the
map. Indeed, the separation line between Cluster 1-3, in one hand, and Cluster 4, on
the other hand appears on the Kohonen maps colored by the values of rTWi, pTWi,
aTWe, rTWe or pTWe. As this separation line is closely related to the evolution of the
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Fig. 6.3 Top, : the U-matrix and the four clusters. Middle: the Kohonen map colored by
the velocity values. Bottom, left: the U-matrix based on the velocity only. Bottom, right: the
Kohonen map colored by the Internal Twist Amplitude aTWi.
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velocity as it appears on the Kohonen map colored by velocity, this means that these
kinematic parameters are closely related to the velocity.

This separation line appears too on the Kohonen map colored by the values of
the energy (see Figure 6.5, top, right), which means that the energy is related to
the velocity too. On the opposite we do not see this separation line for the dihedral
period pDI (see Figure 6.5, bottom, left) or the dihedral amplitude aDI (see Figure
6.5, bottom, right), which means that these two kinematical parameters might not
be related to the velocity, what can be confirmed by a plot of these two kinematic
parameters against the velocity.

Finally, building a Kohonen map allowed us to know that the internal twist ampli-
tude aTWi does not strongly depend on the velocity (except for very low velocities)
and that the other kinematic parameters except the dihedral period pDI and the di-
hedral amplitude aDI clearly depend on the velocity.

All the parameters of the sinusoidal wing kinematics can be plotted, for each
Pareto optimal point, in order to check their relation to speed (figure 6.6).

The relation between each parameter and the speed has been approximated with
polynomial regression methods. The corresponding relations are reported in Ap-
pendix. Resulting approximations are also plotted on figure 6.6.

We used then these approximated functions to pilot the parameters of the same
simulated bird (figure 6.7). The control is oscillating, but as did the original con-
trollers: the fitness did only measure the mean speed, not the ability of the controller
to reduce its standard deviation. The control is not efficient at all for 8m.s−1, mean-
ing that the approximation is not good for this speed. For other speeds, the simulated
bird speed tends to oscillate but with a decreasing amplitude. For a speed of 10 or
11m.s−1 the bird altitude isn’t perfectly maintained, resulting in an increasing speed
error when the bird starts to dive. For each desired speed, the measured mean speeds
are the following:

Desired speed average speed abs. error
8 10.15 27%

10 10.64 6.4%
11 11.23 2%
13 13.45 3.5%
15 15.39 2.6%
20 17.61 12%
25 33.94 36%

For speed ranging from 10 to 15m.s−1, the error is several percents, but it gets
larger for small or high speeds. This is not surprising as the physical behavior is less
stable in these cases.

We have also tried to change it online, i.e. during a flight. To avoid physically un-
realistic behavior, we haven’t abruptly changed the parameters, but we have waited
for the wings’ dihedral to pass near zero. Once a small angle is reached, we let the
wings still and wait until the new kinematics also reaches a small angle and we
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Fig. 6.4 Top, left: the Kohonen map colored by the Internal Twist Reference rTWi. Top, right:
the Kohonen map colored by the Internal Twist Phase pTWi. Bottom, left: The Kohonen map
colored by the External Twist Amplitude aTWe. Bottom, right: the Kohonen map colored by
the External Twist Reference rTWe.
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Fig. 6.5 Top, left: the Kohonen map colored by the External Twist Phase pTWe. Top, right:
the Kohonen map colored by the energy. Bottom, left: The Kohonen map colored by the
Dihedral Period pDI . Bottom, right: The Kohonen map colored by the Dihedral Amplitude
aDI .
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Fig. 6.6 Empirical dependency of each parameter relative to speed. Plot of the repartition
of Pareto-optimal points for each parameter. Each dot represents a pareto optimal solution.
Solid lines represent the approximated fit with a polynomial relation whose parameters are
given in Appendix, figure 6.9.

switch the kinematics only then. Results are reported on figure 6.8. What we ob-
serve is that the bird actually changes its speed dynamically, simply as a result of
wing kinematics parameter change (open-loop modification). Actually, we observe
a kind of undesired memory in the system: the control at a given speed may show
different performances (different static errors) depending on the historical context,
i.e. depending on the initial conditions when the switch is performed. During evolu-
tion, every individual started from a single condition: horizontal flight at 11m.s−1;
here, the ’starting’ speed may be very different. Anyway the bird remains stable and
at a relatively constant altitude (there is no active control at all: none on speed but
none on altitude also).
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Fig. 6.7 Speed of the simulated bird controlled by a sinusoidal kinematics whose parameters
are obtained from the regression at a given desired speed. The controller is an open-loop
controller, real speed is not taken into account to finely tune it.
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Fig. 6.8 Speed of the simulated bird controlled by a sinusoidal kinematics whose parameters
are obtained from the regression at a given desired speed. The controller is an open-loop
controller, real speed is not taken into account to finely tune it. The parameter of the wing
kinematics are changed during flight.

6.5 Discussion and Future Work

All the search was performed on the basis of a simplified simulation. The conclu-
sions are then only relative to the model that was used and are to be confirmed by
experiments on a real device. Anyway, such an approach can be used directly on a
real prototype. Its main drawback is then the high number of experiments required
to find the Pareto front. Some solutions do exist to this problem. A simplified sim-
ulation may be used first to reject the most inefficient solutions while testing on the
prototype only the most pertinent ones. The discrepancy between an experiment in
simulation and reality may also be used to drive a model learning loop aimed at
reducing the gap between the two [2, 13, 14].

The simple open loop controller that we have synthesized is clearly not optimal.
An optimization trying to generate solutions more robust to the initial conditions
might be required to avoid the observed memory effect. Another innovization step
might also be launched to study the transition between different speeds, the com-
promise here being for instance between the speed of transition and its stability.
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Likewise, starting from the generated open-loop controller, we could close the loop
and optimize the parameter of a controller in which the speed error is added to the
desired speed.

All this study is based on the features of Pareto optimal points found by the
MOEA. The generated Pareto fronts correspond to performance to be expected with
a simulated bird flying with sinusoidal wing kinematics. Changing the family of
wing kinematics may change the shape of Pareto fronts. At least, using such an
approach, we might empirically compare different kinds of kinematics and look at
the advantage of using more generic periodic functions, for instance.

MOEA were used to generate the set of Pareto optimal solutions. Other methods
could have been used. In many simple cases, an exhaustive search might do the
job. Here, it would be difficult to use it as we have eight continuous parameters.
If we discretize and consider only ten different values, then we have a 108 search
space. A single MOEA run did around 200,000 different evaluations. As we did 6
different runs (3 for speed maximization and 3 for speed minimization), the total
number of evaluations we made is then 1.2 ∗ 106, thus two orders of magnitude
below an exhaustive search. Furthermore the search space explored by the MOEA
was continuous and not a discretized one.

The main point here is that EA might be used for other purposes than mere op-
timization. Here, each generated point is not an interesting solution in itself, it was
interesting as a mean to capture some regularities of the problem that have then been
exploited manually. This suggests thus another use of EA as an exploration tool dur-
ing the very first steps of a design process, whereas it is usually used at the very end,
when there just remains several parameters to tune. This particular use requires the
analysis of an expert and is not aimed at automatically designing a solution. It is
rather a tool aimed at helping the engineer or the scientist to gain better insights
about the problem to be solved.

6.6 Conclusions

In this work, we have exploited the ability of MOEA to generate a set of Pareto
optimal points not just to discover such points and choose one among them, but
rather to get some insights on the relationships between those points. We have used
it to empirically evaluate the trade-off between speed and energy with a constant
morphology.

The Pareto front has then ben visualized by Kohonen maps to spot the kinematic
parameters that noticeably vary with the velocity. Each selected parameter have then
been expressed as a function of speed thanks to a regression performed on Pareto-
optimal solutions. An open-loop controller able to change speed along flight has
been synthesized and tested in simulation.
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Appendix
Parameters of the MOEA:

• MOEA: NSGA-II
• population size: 500
• number of generation: 1000
• number of independant run performed for each experimental context: 3
• mutation rate 0.1
• mutation type: polynomial, ηm: 15 and ηc: 10
• crossover: sbx

param v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Str 1.3e2 57.0 11 -1.1 6.5e-02 -2.3e-3 4.5e-5 3.7e-7 - -
pDI -3.89e0 1.07e0 -9.68e-2 4.09e-3 -8.27e-5 6.45e-7 - - - -
rTWi -1.16e2 2.44e1 -2.07 8.78e-2 -1.82e-3 1.47e-5 - - - -
pTWi -2.89e-1 2.10e-1 -1.35e-2 3.58e-4 -3.39e-6 - - - - -
aTWi 1.30e4 -6.60e3 1.44e3 -1.76e2 1.34e1 -6.57e-1 2.09e-2 -4.14e-4 4.66e-6 -2.28e-8
rTWe 3.55e2 -1.38e2 2.24e1 -1.94e0 9.62e-2 -2.76e-3 4.22e-5 -2.68e-7 - -
pTWe 2.11e-2 1.49e-1 -1.04e-2 2.97e-4 -3.03e-6 - - - - -
aTWe 3.00e2 -6.69e1 5.94e0 -2.55e-1 5.35e-3 -4.38e-5 - - - -

Fig. 6.9 Parameters of the polynomials approximating the relations parameter = f (v) for
each parameter of wing kinematics submitted to optimization.

Parameters of the aircraft:

• wing span: 1.93m
• aspect ratio: 8.5
• wing area: 0.407m2

• total mass: 1.3kg

– fuselage mass: 0.915kg
– wing mass: 0.4kg
– elevator/rudder: 0.038kg
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Chapter 7
On Applying Neuroevolutionary Methods to
Complex Robotic Tasks

Yohannes Kassahun, Jose de Gea, Jakob Schwendner, and Frank Kirchner

Abstract. In this paper, we describe possible methods of solving two problems
encountered in evolutionary robotics, while applying neuroevolutionary methods to
evolve controllers for complex robotic tasks. The first problem is the large number
of evaluations required to obtain a solution. We propose that this problem can be
addressed by accelerating neuroevolutionary methods using a Kalman filter. The
second problem is the difficulty of obtaining a desirable solution that results from the
difficulty of defining an appropriate fitness function for a complex robotic task. The
solution towards this problem is to apply the principles of behavior based systems
to decompose the solution space into smaller subsolutions with lower number of
intrinsic dimensions, and incrementally modify the fitness function. We present two
case studies towards the solutions to the stated problems.

7.1 Introduction

Designing parts of a control software that allows an already designed (exist-
ing) robot to accomplish a certain task through neuroevolution is difficult due to
the complexity of the task environment. Two of the problems that one usually
encounters are:

1. Very long evolution time (a large number of evaluations) until a working solution
is found.

2. Difficulty of defining a fitness function that results in a desired solution.

The first problem is caused due to the fact that the task we want to solve is most
of the time noisy (noisy sensors and actuators) and partially-observable in addition
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to being complex (high dimensional state and action spaces). Partially-observable
problems have been a challenging domain for machine-learning algorithms. The
fundamental reason for this is that such problems place limits on an agent’s abil-
ity to fully perceive the states of the environment, and in doing so, limit the in-
formation upon which an agent can base its decisions. Neuroevolutionary methods
have delivered promising results in recent years as methods of solving such learning
tasks. Traditionally, neuroevolutionary methods solve partially-observable problems
by using recurrent connections within the neural network, which provides a system
with memory, enabling it to recover the missing state information. A major draw-
back of recurrent connections is the difficulty in training them, which means that
they require a significant amount of training time to find a solution. The reason is
that it takes a large portion of the evolution time for neuroevolutionary methods
that evolve both topology and parameters of the neural networks to determine the
topology of the recurrent neural network for a given problem that requires only a
small amount of evolution time. Similarly, for a fixed topology neuroevolutionary
methods, it is usually difficult for the domain expert to come up with a topology
for the recurrent neural network that needs only a small amount of evolution time
to find a solution. For neuroevolutionary methods to be effective for complex tasks,
we proposed an alternative to using recurrent neural networks in neuroevolution
for overcoming the effects of partially-observable domains. In the alternative solu-
tion we try to simplify the topology of the evolved neural network, and as a con-
sequence, reduce the time required to find a solution. The approach exploits the
use of a Kalman filter as an input layer for the neural network to be evolved. The
Kalman filter inherently provides the system with memory (as recurrent connections
would) to estimate and thus recover the unobserved missing state variables. From
the viewpoint of the neural network to be evolved (whose inputs are the outputs of
the Kalman filter layer), the state information has been augmented and is noise-free.
Clearly, this additional information provided to the system permits a simpler neural
network solution (see Section 7.2.3), thus significantly reducing the time required
to find a solution. The work presented in the first case study (see Section 7.2) dif-
fers from other works [8, 18, 27, 28, 31] which use extended Kalman filter to train
feed-forward or recurrent neural networks. In this work, the Kalman filter is an in-
tegral part of the solution, and its parameters are optimized simultaneously with the
parameters of the feed-forward neural network. Thus, simultaneous optimization of
parameters of the feed-forward neural network (topology, weights, etc) and parame-
ters of the state estimator (Kalman filter) can be considered as a contribution of this
work to the state-of-the-art in neuroevolution. Traditionally, the parameters of the
state estimator are first determined, and then the parameters of the neural network
representing the policy are learned.

The second problem is caused due to the fact that an evolutionary algorithm learn-
ing a complex robotic task on a robot having many degrees of freedom and many
sensory inputs finds many solutions that are not desirable when using a fixed single
fitness function. The problem with a single fitness function is that it may not reward
intermediate solutions that would ultimately lead to the desired operating proper-
ties. A possible way to solve such a problem is to decompose the solution space
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into smaller subsolutions with lower number of intrinsic dimensions. One way of
decomposing a complex robot control task into subsolutions is by using the design
principles of behavior based systems [2, 5], and to incrementally modify the fitness
function that results in desired operating properties as the subsolutions are learned.
In addition to resulting in a desired operating properties, the use of behavior based
systems solves the scaling problem of evolutionary algorithms in large state spaces.
In the Hierarchical Reinforcement Learning (HRL) research community, methods of
decomposing robot’s task into a hierarchy of organized behaviors either manually or
automatically have been investigated extensively [4]. The motivation behind the de-
velopment of HRL algorithms is the poor scaling problem of standard reinforcement
learning in large state spaces with sparse reinforcement. HRL approaches require the
definition of a global reward function that should result in desired operating proper-
ties, and the definition of local reinforcement signals for learning elementary actions
or behaviors composed of other behaviors and/or elementary actions. In contrast to
the HRL methods, we present in this paper a principled way of incrementally mod-
ifying a single fitness function (return1) as new behaviors are learned and added
to the system. An interesting example of the application of HRL on a real robot
is the work of Kirchner [23], where the elementary swing and stance movements
of individual legs and the overall coordination scheme to perform forward move-
ments are learned. In the evolutionary robotics research community, efforts have
been made to solve the scalability problems of evolutionary algorithms when ap-
plied to learning complex robot tasks. An earlier attempt is the work by Gruau and
Quatramaran [15] for learning the locomotion pattern of an 8-legged robot using
modular genetic neural networks. Later, Calabretta et al. [6] showed that modular
architectures produce better results than non-modular architectures in terms of both
speed of evolution and the final steady state behavioral performance. In both of the
above works, a global fitness function is defined to learn a global behavior, which
may not result in the desired performance properties of the final controller. Mouret
and Doncieux [26] applied a pareto-based multi-objective evolutionary algorithm
to evolve modular neural networks. They point out that modularity is a key for en-
abling a phenomenon called exaptation [11] in evolutionary algorithms. In a closely
related work to ours, Lee et al. [24] use the concept of behavior based systems to
design a controller capable of displaying multiple behaviors, and thereby ease the
process of defining fitness functions that result in desired behaviors. In contrast to
[24], we present a second case study (see Section 7.3) of incrementally modifying
the fitness function as subsolutions are learned. Moreover, in this paper we show
that while learning a given subsolution, the already learned subsolutions can remain
active in the control so that we do not need extra training for learning the coordi-
nation process separately. In addition to this, unlike the work in [24], where digital
circuits cabable of realizing the mapping between discrete state and actions are used
as behavior modules, the work in this paper exploits a parameterized behavior mod-
ule implemented in the form of an augmented neural network with Kalman filter
(see Section 7.2) suitable for continuous state partially observable domains, which

1 A return is defined as a function of the reward sequence and can be considered as the
equivalent of a fitness function in evolutionary computation.
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are common in robotics. A recently introduced method [3] of gradually incorporat-
ing new behaviors for a dynamically behaving robot uses dynamic scaffolding [32],
where the robot’s environment is restructured for incorporating a new behavior into
a monolithic controller which can exhibit multiple attractor states. In this method a
global fitness function is used, and a sequence of behaviors is mastered by a dynam-
ical neural network. It is, however, difficult to train and use monolithic controllers,
where multiple behaviors should be active at the same time to accomplish a given
task (e.g Quadrocopter control).

7.2 Case Study 1: Augmented Neural Network with Kalman
Filter (ANKF)

The augmented neural network with Kalman Filter (ANKF) to be evolved is made
up of a neural network and a predictor that can estimate the next state based on
the current partially-observable state (which is possibly corrupted by noise). The
predictor we use is composed of n Kalman filters (αβ filters, see Section 7.2.1)
{KF1,KF2, . . . ,KFn} one for each of the n sensory readings, as shown in Figure 7.1.
The outputs of these Kalman filters are connected to a feed-forward neural network
NN, whose outputs control the plant. A Kalman filter KFi is used to estimate the
sensor value x̂i and the missing value ˆ̇xi from the measured (observed) value zi,
where i ∈ [1,n] and n is the number of observable state variables. The quantity u j,
where j ∈ [1,m], represents a control signal that is used to control a plant. The use of
Kalman filters provides memory to the system and as a result enables the system to
recover missing variables. Because of this, it is not necessary for the neural network
to have a recurrent connection, and the use of a feed-forward neural network for the

(a) (b)

Fig. 7.1 Two ways of using the augmented neural network: (a) The Kalman filter KFi is used
to estimate the sensor value x̂i from the measured (observed) value zi in the case of complete
state variables. (b) The Kalman filter is used to estimate the sensor value x̂i and the missing
value ˆ̇xi from the measured (observed) value zi in the case of incomplete state variables. The
quantity u j represents the control signal that is sent to the plant to be controlled. NN is a
feed-forward neural network representing a policy π .
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policy π to be learned is sufficient. The whole controller is a non-linear function
given by

u j = f (w1, . . . ,wk,γ1, . . . ,γn;z1, . . . ,zn, x̂1(0), . . . , x̂n(0), ˆ̇x1(0), . . . , ˆ̇xn(0)), (7.1)

where u j ( j ∈ [1,m]) is one of the outputs of the feed-forward neural network,
w1, . . . ,wk are the weights of the neural network, γ1, . . . ,γn are the tracking indices
(see Section 7.2.1) of the αβ filters realizing KF1, . . .KFn, z1, . . . ,zn are the mea-
sured values of input sensors, and x̂1(0), . . . , x̂n(0) and ˆ̇x1(0), . . . , ˆ̇xn(0) are initial
estimates of the state variables. The index k is greater than or equal to n (k ≥ n) in
the case of complete state variables, and it is greater than or equal to 2n (k ≥ 2n)
in the case of incomplete state variables2. Table 7.1 summarizes the usage of the
augmented neural network for different task environments.

Table 7.1 Usage of the augmented neural network (ANKF) for different task environments.

Noise-free environment Noisy environment

Complete state variables Completely observable domain.
Use the setup shown in Figure
7.1 (a).

Partially observable do-
main due to noise. Use the
setup shown in Figure 7.1
(a).

Incomplete state variables Partially observable domain
due to missing state variables.
Use the setup shown in Figure
7.1 (b).

Partially observable do-
main due to noise and
missing state variables.
Use the setup shown in
Figure 7.1 (b).

7.2.1 The αβ Filter

A Kalman filter KFi in Figure 7.1 is realized using an αβ filter, which is a particular
case of the general Kalman filter where the velocity is assumed to be constant. The
filter is usually used in tracking applications. The neural network equivalent of the
filter is shown in Figure 7.2. As can be seen in the figure, all the weights of the
filter have a magnitude of 1 except for α , β and T , where T is th sampling period.
The optimal values for α and β are derived by Kalata [20] for assumed variance
of both measurement and process noises (σv and σw) and are given by α = 1− r2

and β = 2(1− r)2 respectively, where r = 4+γ−
√

8γ+γ2

4 and γ = T 2σw
σv

. The term γ is
referred to as a tracking index. Since the parameters α and β depend only on γ , an
optimization algorithm needs only to find a single parameter γ per filter that results
in the desired filter performance. An extension of the αβ filter is the αβ γ filter [12],
which is based on a constant acceleration model and is better suited for the tracking
of complex signals. Like the αβ filter, an optimization algorithm needs only to find

2 By incomplete state variables we mean a set of state variables whose first order derivative
with respect to time are missing.
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Fig. 7.2 An αβ filter for a single input zi. The activation function g is the identity function,
and the recurrent connections have a unit delay.

a single tracking index γ per filter to get the desired filter performance. This enables
one filter to be easily exchanged with the other.

7.2.2 Evolving ANKF

There are three cases to consider while evolving ANKF: completely observable
domains, noise-free partially observable domains and noisy partially observable
domains.

7.2.2.1 Completely Observable Domains

Normally for completely observable domains, the use of feed-forward neural net-
works is sufficient. But if we want to apply the augmented neural network to such
domains, we have two possible ways of optimizing the parameters of the augmented
neural network: (a) We can set the tracking index γi of each of the αβ filters to a
higher value and optimize only the parameters of the feed-forward neural network.
We found out that a tracking index that results in αi ≥ 0.95 performs well under
noise-free scenario. Figure 7.3 shows the performance of an αβ filter in noise-free
scenario for two different values of γ . (b) We can optimize the tracking indices of
the αβ filters and the parameters of the feed-forward neural network simultane-
ously. Note that for learning tasks in completely observable domains, an optimiza-
tion algorithm using the augmented neural network has to optimize n more variables
(parameters of the tracking indices of the αβ filters) than an algorithm optimizing
only the parameters of a feed-forward neural network, whose structure is the same
as the structure of the feed-forward neural network used in the augmented neural
network. The quantity n is the number of inputs to the augmented neural network.

7.2.2.2 Noise-Free Partially Observable Domains

In noise-free partially observable domains, there are some state variables that are
missing. The purpose of the Kalman filters in this case is simply to estimate the
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Fig. 7.3 An αβ filter tested on a noiseless sinusoidal signal y = sin2t sampled at frequency of
10Hz. (a) Performance of the filter for γ = 8.0. Note that the velocity ẏ = 2cos2t is estimated
very well, and the estimated signal lags the original signal by small amount of time. (b)
Performance of the filter for γ = 0.1. The estimated signal and the estimated velocity are not
as good as the estimates in (a).

missing variables. For noise-free partially observable domains, we have also two
possible ways of optimizing the parameters of the augmented neural network: (a) We
can set the tracking index γi of each of the αβ filters to a higher value and optimize
only the parameters of the feed-forward neural network. This is equivalent to using
direct numerical differentiation for estimating missing state variables (velocities).
(b) We can optimize the tracking indices of the αβ filters and the parameters of the
feed-forward neural network simultaneously.

7.2.2.3 Noisy Partially Observable Domains

Partially observable domains which contain noise are the most general case, since
virtually all real-world problems are noisy and partially observable. In this case
of partially observable domains due to noise, the αβ filters must filter the noise,
and in the case of partially observable domains due to noise and incomplete state
variables, the filters not only have to predict the missing state variables, but they
must filter the noise at the same time. We need, therefore, to optimize for both
cases the tracking indices of the αβ filters as well as the parameters of the feed-
forward neural network. After optimization, a solution will be found that is robust
against noise. Figure 7.4 shows performance of an αβ filter in noisy scenario. An
attractive feature of using an αβ or αβ γ filter is that we only need to optimize n
extra parameters in the case of noisy partially observable domains, where n is the
number of observable variables of the state of the system. An important contribution
of using the augmented neural network (ANKF) unlike the traditional technique is
that it allows the optimization of the parameters of the feed-forward neural network
and the αβ filters simultaneously.
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Fig. 7.4 An αβ filter tested on a sinusoidal signal y = sin2t corrupted by a Gaussian noise
of mean zero and standard deviation of 0.3. The signal is sampled at frequency of 10Hz. (a)
Performance of the filter for γ = 0.1. Note the delay between the true velocity ẏ = 2cos2t and
the estimated velocity. An optimization algorithm should find a tracking index γ that balances
the tradeoff between estimation accuracy and delay for a given learning task. (b) Performance
of the filter for γ = 1.0. The estimated velocity is very noisy and the estimated signal follows
the corrupted signal.

7.2.3 Comparison of Number of Parameters to be Optimized for
ANKF and Recurrent Neural Networks

For comparing the number of parameters to be optimized for ANKF and recurrent
neural networks, we consider a worst case scenario for both of them. Full connect-
edness results in the maximum number of parameters to be optimized, and therefore
can be considered as the worst case scenario for both ANKF and recurrent neu-
ral networks. Let mp be the number of neurons in a fully connected feed-forward
neural network of an ANKF and a fully connected recurrent neural network, and
let mn be the number of input variables excluding the bias input to the ANKF and
the recurrent neural network. The quantity mp is the sum of the output neurons mo

and hidden neurons mh. An example of such networks is shown in Figure 7.5. An
interesting question to ask is what is the number of parameters to be optimized for
different task environments for an ANKF and a fully connected recurrent neural net-
work having the same number of neurons as the feed-forward neural network of the
ANKF. Assuming that we do not optimize the parameters of the activation functions
of the neurons, and both the feed-forward neural network of the ANKF and the re-
current neural network have single hidden layer, Tables 7.2 and 7.3 give formulas
for calculating the number of parameter to optimize for the ANKF and the recurrent
neural network, respectively. A closer look at the formulas given in Tables 7.2 and
7.3 reveals that the number of parameters to be optimized for the ANKF is directly
proportional to the number of hidden neurons, while the number of parameters to be
optimized for the fully connected recurrent neural network increases quadratically
as the number of hidden neuron nodes increases. Let us calculate the number of
parameters to be optimized for ANKF and recurrent neural network similar to those
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(a) (b)

Fig. 7.5 (a) An augmented neural network (ANKF). Note that the network is made up of
a fully connected feed-forward neural network and two αβ filters. (b) A fully connected
recurrent neural network having the same number of neurons as the feed-forward network of
the ANKF.

shown in Figure 7.5. One can easily see that the networks observe incomplete state
variables and each have a bias input included, and they both have a single output
mo = 1. Figure 7.6 shows the number of parameters to optimize versus number of
hidden neuron nodes for both ANKF with a fully connected feed-forward neural
network and a fully connected recurrent neural network. As stated above, one can
see from the figure that the number of parameters to optimize increases linearly for
ANKF as the number of hidden neuron nodes increases, while the number of pa-
rameters to optimize increases quadratically for the fully connected recurrent neural
network, as the number of parameters increases. This demonstrates how the use of
αβ filters simplify the topology of the evolving network, in this case decrease the
number of parameters to optimize, and as a result reduce the evolution time to find
a solution.

Table 7.2 The number of parameters to be optimized for ANKF.

Complete state variables

No bias m = mo(mh +1)+mn(mo +mh)+mn

Bias m = mo(mh +2)+mn(mo +mh)+mh +mn

Incomplete state variables

No bias m = mo(mh +1)+2mn(mo +mh)+mn

Bias m = mo(mh +2)+2mn(mo +mh)+mh +mn
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Table 7.3 The number of parameters to be optimized for the fully connected recurrent neural
network. Note that mp = mo +mh.

Complete state variables

No bias m = mo(mh +1)+mn(mo +mh)+m2
p

Bias m = mo(mh +2)+mn(mo +mh)+mh +m2
p

Incomplete state variables

No bias m = mo(mh +1)+mn(mo +mh)+m2
p

Bias m = mo(mh +2)+mn(mo +mh)+mh +m2
p
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Fig. 7.6 Number of parameters to optimize versus number of hidden neuron nodes for both
ANKF and recurrent neural network.

7.2.4 Results Obtained for ANKF on the Double Pole Balancing
without Velocities Benchmark

ANKF has been tested on the double pole balancing without velocities benchmark,
and has achieved significantly better results on this benchmark than the published
results of other algorithms to date3. In the double pole balancing without velocities
benchmark, the controller observes only the positions x, θ1, and θ2, but not the ve-
locities ẋ, θ̇1, and θ̇2. With this benchmark, we used the Gruau’s fitness function
[14]. The Gruau’s fitness function is a weighted sum of two separate fitness mea-
surements f = 0.1 f1 + 0.9 f2 taken over 1000 timesteps.

3 All results for ANKF in this paper can be reproduced using the software that can be down-
loaded at http://sourceforge.net/projects/eant-project/.

http://sourceforge.net/projects/eant-project/
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f1 = t/1000

f2 =

⎧⎪⎨
⎪⎩

0 if t < 100

0.75
∑t

i=t−100(|xi |+|ẋi|+|θ̇1,i|+|θ̇2,i|) otherwise,

(7.2)

where t is the number of time steps the pole is balanced starting from a fixed initial
position. In the initial position, all states are set to zero except θ1 = 4.5◦. The angle
of the poles from the vertical must be in the range [−36◦,36◦]. The defined fitness
function favors controllers that can keep the poles near the equilibrium point and
minimize the amount of oscillation. The first fitness measure f1 rewards successful
balancing, while the second measure f2 penalizes oscillations. The evolution of the
neural controllers is stopped when a champion of a generation passes the following
test. It has to balance the poles for 105 timesteps starting from the 4.5◦ initializa-
tion. After the champion has passed the test, the number of successful balances of
the poles for 1000 steps starting from 625 different initial states is recorded for the
champion. The number of successful balances is a measure of the generalization
performance of the best solution. Each start state is chosen by giving each state
variable (x, ẋ,θ1, θ̇1,θ2, θ̇2) one of the values 0.05, 0.25, 0.5, 0.75, 0.95, 0, 0, scaled
to the range of each input variable. The ranges of the input variables are ±2.16 m
for x, ±1.35 m/s for ẋ, ±3.6◦ for θ1, and ±8.6◦ for θ̇1. Table 7.4 shows the best re-
sult obtained by the ANKF along with the best results as reported in literature. The
experiments have been done for an ANKF having a feed-forward network with sin-
gle hidden layer. Motivated by the experimental setup used in [19], each experiment
is run using 16 different configurations of the augmented neural network, which are
formed from the combinations of the following criteria.

Table 7.4 Results for the double pole-balancing benchmark using Gruau’s fitness measure.
Average over 50 independent evolutions.

Without velocities
Method Evaluations Generalization

CE[13] 840,000 300
SANE [25] 451,612 -
CNE [30] 87,623 -
ESP [10] 26,342 -
AGE [7] 25,065 317

EANT [22] 15,762 262
NEAT [29] 6,929 -
CoSyNE [9] 3,416 -

CMA-NeuroES [19] 1,141 -
ANKF [21] 482 455
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1. Usage of linear activation function given by g = x versus non-linear activation
function given by g = tanh(x) for the neuron nodes of the feed-forward neural
network.

2. Usage of bias versus no bias as an input to the feed-forward neural network.
3. Usage of different number of hidden neurons mh for the feed-forward neural

network, where mh ∈ {0,1,4,8}.

Table 7.5 shows the detailed results obtained for the behavior module in solving the
double pole balancing task without velocities. From the results listed in Table 7.4,
one can conclude that ANKF outperforms by a large margin all other neuroevo-
lutionary methods tested on this benchmark. ANKF is more than two times faster
than the latest evolutionary method CMA-NeuroES, though both methods use the
same optimization algorithm CMA-ES [17]. Moreover, the generalization perfor-
mance of ANKF is significantly better than the generalization performance of other
neuroevolutionary methods reported in the literature.

Table 7.5 Results obtained for ANKF for the double pole balancing without velocities bench-
mark using Gruau’s fitness function. In the table, A, B, H, EV., GEN., and STD. stand for
activation function used, bias, number of hidden neurons evaluations, generalization and stan-
dard deviation, respectively.

Evaluations/ Generalization
No. A B H Mean STD. Median Min. Max. Failures

Ev. GEN. Ev. GEN. Ev. GEN. Ev. GEN. Ev. GEN.
1 linear no 0 594 420 530 107 440 472 165 138 3575 539 0
2 linear no 1 482 455 235 93 429 487 143 157 1352 543 0
3 linear no 4 531 395 263 116 480 423 150 134 1125 542 0
4 linear no 8 553 429 279 112 510 462 221 63 1326 541 0
5 linear yes 0 702 400 459 129 600 420 204 90 2856 545 0
6 linear yes 1 693 393 310 130 624 436 234 81 1599 543 1
7 linear yes 4 593 384 330 124 520 387 208 88 2016 543 0
8 linear yes 8 640 336 525 144 595 331 102 102 2006 540 0
9 tanh no 0 624 442 534 107 462 490 143 89 4267 543 0
10 tanh no 1 620 312 250 161 539 326 169 36 1495 542 0
11 tanh no 4 594 264 213 131 562 251 285 32 1335 517 0
12 tanh no 8 654 185 291 142 552 159 238 25 1632 512 0
13 tanh yes 0 746 400 348 121 624 422 300 93 1347 538 1
14 tanh yes 1 789 294 466 156 663 297 234 13 2171 519 1
15 tanh yes 4 791 198 400 157 672 138 336 8 2208 537 0
16 tanh yes 8 768 198 301 145 739 159 289 17 1598 526 0

7.3 Case Study 2: Incremental Modification of Fitness Function

In this case study, we first present the testbed (quadrocopter) followed by the control
architecture used, and proceed to the description of incremental modification of
fitness function and the results obtained with it.
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7.3.1 Quadrocopter

Quadrocopters (see [16]) belong to the class of Vertical Take-Off and Landing
(VTOL) aerial vehicles. The main advantage of this type of aerial vehicle is the

Fig. 7.7 Rotor configuration of the quadrocopter layout.

ability to launch from the stowing position without the need for complex launching
facilities. Using Newton’s equations of motion, we can describe the system dynam-
ics for the rigid body of the flyer-frame (see [16] for more details).

ξ̇ = v mv̇ = F −mge2 (7.3)

Ṙ = R [ω ]× Iω̇ = −ω × Iω + τ, (7.4)

where v,ξ are the position and linear velocity in the inertial frame I , and ω is
the rotational velocity in the body fixed frame B. The orientation of the body is
given by the rotation matrix R : B → I , and [ω ]× denotes the skew-symmetric
matrix for which [ω ]×v = ω ×v. Further, m is the mass of the quadrocopter, g is the
gravitational constant and e2 is the second unit vector. The inertia tensor given in
body fixed coordinates is given by

I = diag(2dmm + dbmb,4dmm,2dmm + dbmb) (7.5)

where d is the distance from the center of gravity (COG) to the rotors’ centers, and
db is the distance from the COG to the battery’s center. The masses for the motors
mm and the battery mb are assumed to be point masses, and m is the entire body
mass. The dynamic force F ∈ I and torque τ ∈ B are defined by the rotor forward
thrust, reactive torque as well as the gyroscopic effects of the four individual motors
[16].

Ir ˙̄ωi = τi −Qi Qi = kω̄2
i fi = bω̄2

i e2, (7.6)

where Ir is the rotor inertia, ω̄i is the rotational velocity of the rotor i, Qi is the
rotor drag due to air resistance, and b,k are rotor thrust and drag constants. With
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T = ∑4
i=1 | fi| being the total thrust and τa = {τ1

a ,τ2
a ,τ3

a} the aerodynamic input to
the system torque in (7.4), the rotational velocity of the rotors can be directly related
by ⎛

⎜⎜⎝
T
τ1

a
τ2

a
τ3

a

⎞
⎟⎟⎠ =

⎛
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b b b b
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The thrust T ∈ B is always produced orthogonal to the rotor plane, from which
follows that F = RqT . For the total torques τ we are only missing the gyroscopic
effect of the rotors, which can be given as

Ga = −
4

∑
i=1

Ir(ω × e2)ω̄i, (7.8)

leading to τ = τa + Ga. Ignoring the gyroscopic effect for now, it can be seen in the
matrix A, which is of full rank, that we can directly relate the upward thrust and the
individual torques for yaw, pitch and roll to the squares of the rotor velocities. Using
the inverse matrix A−1, the control input can be decoupled into the primary rotation
axis and an upward thrust component. The thrust vector T is always pointing in the
direction of the positive e2 axis in the body frame B. Any deviation from the central
position on the pitch and roll axis will lead to a force component orthogonal to the
gravity vector and move the quadrocopter sideways. Height can be controlled by
increasing or decreasing the magnitude of the thrust vector. The position control is
invariant to the orientation around the yaw axis, which is usually fixed to a constant
value. Table 7.6 shows the parameters of the quadrocopter used in the experiments
in this paper. The dynamical system of equations of the quadrocopter is solved using
fourth-order Runge-Kutta method with step size τ = 0.02sec.

Table 7.6 Parameters of the quadrocopter.

mm mb db d g
0.120kg 0.250kg 0.05m 0.30m 9.8 m

sec2

Ir b k m
80 ·10−6 12.42 ·10−6 360.6 ·10−9 1.08kg

7.3.2 Control Architecture Developed for the Quadrocopter Using
the Principles of Behavior Based Systems

The control architecture for the quadrocopter is shown in Figure 7.8. The architec-
ture represents the manual decomposition of the control task into behaviors which
should cooperate to make the robot accomplish a given mission. Each behavior mod-
ule to be evolved is made up of a fixed structure neural network and a single αβ
filter (see Section 7.2) since each module has only one input. The architecture has
six modules: height control, heading control, roll control, attitude control, roll angle
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Fig. 7.8 Behavior based control architecture. The quantities xr, yr, zr, θrx, θry and θrz rep-
resent the reference values for the state variables, and the quantities x, y, z, θx, θy and θz

represent the feedback state variables to the controller.

generator, and attitude angle generator. The outputs of the height control, heading
control, roll control and attitude control modules are superimposed before they are
sent to the motors. The height control module sends equal magnitudes of control
signal to all of the rotors. The attitude control module sends opposite but of equal
magnitude signals to the counterclockwise rotating rotors, and similarly the roll con-
trol module sends opposite but of equal magnitude signals to the clockwise rotating
rotors. The heading control module sends a control signal to a pair of counterclock-
wise rotating rotors and the same but opposite signal to a pair of clockwise rotating
rotors. The outputs of the attitude angle and roll angle generator modules give the
reference angles to the attitude and roll control modules, respectively. These mod-
ules control the position of the quadrocopter in the x and z directions by generating
appropriate reference angles for the attitude and roll controllers. In this case study,
we assume that we have an algorithm which determines the pose (x,y,z,θx,θy,θz)
of the flying robot with respect to a frame I located on the ground. An exam-
ple of such an algorithm is presented in [1]. The flying robot has to successfully
complete the mission, track the ground reference point and successfully land on it.
The state of the robot that can be observed by the whole controller is thus given by
s(t) = [x(t),y(t),z(t),θx(t),θy(t),θz(t)], where x(t),y(t),z(t) is the 3D postion of
the quadrocopter and θx(t), θy(t), and θz(t) are the rotations of the quadropcopter
about the x, y and z axes, respectively. Note that the state is partially observable to
the controller (without velocity information ẋ(t), ẏ(t), ż(t), θ̇x(t), θ̇y(t), θ̇z(t)), and a
behavior module should be able to estimate the missing state variable by adjusting
the tracking index γ of its filter.
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7.3.3 Incremental Modification of Fitness Function

In this section we detail the steps needed to incrementally modify the fitness func-
tion. Following these steps results in a scalable solution for learning complex robotic
tasks.

1. First develop a control architecture using the principles of behavior based sys-
tems. In the case of the quadrocopter control, this was shown in Section 7.3.2.

2. Choose a fixed order for training the modules (subsolutions) of the control archi-
tecture that was developed.

3. Start with the first module and define a fitness function for it. Let its fitness func-
tion be f1, and the training fitness function be F . Train the module with the fitness
function F = f1.

4. Activate the next module to be trained, and define a fitness function for it. Let
the fitness function of the next module be f j. If the next module is parallel to
the previously trained module (i. e. its output goes to some common actuators
and/or modules where the output of the previously trained module module goes),
modify the training fitness function F by adding to it the fitness function of the
next module (i. e. F ← F + f j). If the next module to be trained is in series with
the already trained module, then modify the training fitness function F , where
the fitness function of the next module to be trained replaces the fitness function
of the module to which its output goes. While training the next module, keep all
previously trained modules active in the control loop, and fix their parameters.

5. Repeat step 4 until all the modules in the control architecture are trained.

The byproduct of incrementally modifying the fitness function in this way is that the
cooperative coordination of subsolutions is automatically learned without a separate
learning process.

7.3.4 Experiments and Results

In this section, we will use the control architecture shown in Figure 7.8 to validate
the contributions of this case study, which are: (1) A principled incremental method
for modifying the fitness function as the subsolutions (behaviors) are learned. (2)
The automatic learning of the cooperative (symbiotic) coordination of subsolutions
without the need for a separate learning process. The modules (subsolutions) shown
in Figure 7.8 are trained sequentially. The sequence of training is height control,
roll control, attitude control, heading control, roll angle generator and attitude angle
generator. Each of the modules is represented using ANKF as discussed in Section
7.2.1 by a fixed structure neural network and a single αβ filter (since each mod-
ule has only one input). The fixed structure neural network has two inputs, a single
output, and no hidden neurons. A total of 5 parameters are optimized for a module
using CMA-ES[17]. For the Kalman filter, the tracking index γi are optimized, and
for the neural network, the two input weights w1 and w2, and the output weight w0

are optimized, as well as the constant a of the output neuron’s activation function.
This activation function takes on the form tanh(ax), where x = w1x̂i + w2 ˆ̇xi, and x̂i
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and ˆ̇xi are the outputs of the αβ Kalman filter (and inputs to the neural network).
All the sensor values are perturbed by Gaussian noise to make the system robust
against disturbances. The modules are expected to attain a given refence state vari-
able value starting from the initial state variable value, which is zero for all state
variables. Training controllers by a constant reference value for such a system re-
sults in controllers that generalize very well over different reference values. The
fitness function f j of module j takes the form f j = ∑i r j − s j(Δ t), where r j is the
reference (desired) value for the state variable for which the behavior module is re-
sponsible and s j(Δ t) is a feedback signal corresponding to the state variable. Please
note that in all of these experiments, the fitness functions have been defined such
that smaller fitness values correspond to better solutions. The training procedure,
the incremental modification of the fitness functions and the results obtained with it
are outlined as follows:

We started with the height controller and defined its fitness function as f1 =
∑N

i=0 |yr − y(iΔ t)|. The training fitness function F = f1 = ∑N
i=0 |yr − y(iΔ t)| was

used, where y is the current height of the quadrocopter, and N is the total number of
time steps. In the experiments, yr = 10.0, N = 3000, and Δ t = 0.02sec. Figure 7.9a
shows the development of the training fitness function F = f1 for the height con-
troller over generations. Figure 7.9b shows the response of the best individual over
all evolutionary runs for a novel or unseen reference value yr = 4.0m. As can be
seen in the figure, the best individual is able to follow this reference value.

We then proceeded to the training of the attitude control module. We defined
the fitness function of the attitude controller as f2 = ∑N

i=1000 |θrz −θz(iΔ t)|, where
θrz = π/8, and θz is the rotation of the quadrocopter about z-axis. Since the atti-
tude controller is parallel to the height controller, we modified the training fitness
function as F = f1 + f2 = ∑N

i=1000 |yr − y(iΔ t)|+ ∑N
i=1000 |θrz −θz(iΔ t)| The index

i starts from i = 1000 so that the height controller can first reach its desired height
y = 10m before the evaluation begins. This is used to avoid an early collision of
the quadrocopter with the ground during the evaluation process. Note that while
the attitude control module is being trained, the previously learned parameters of
the height controller are held constant. Figure 7.10a shows the development of the

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5x 10
5

Generations

T
ra

in
in

g 
F

itn
es

s

0 5 10 15

0

1

2

3

4

Time (s)

H
ei

gh
t (

m
)

(a) (b)

Fig. 7.9 (a) Training fitness F = f1 versus number of generations for the height controller
and (b) the response of the learned height controller for a refrence value yr = 4m.
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training fitness function F = f1 + f2 of the attitude controller versus generations.
Figure 7.10b shows the height and attitude angle versus time, when both the attitude
and the height controllers are simultaneously active. As can be seen in the figure,
the two behaviors (subsolutions) cooperate with each other to attain both the target
height and attitude angle, proving our claim that if we incrementally modify the
fitness function systematically, the byproduct is the automatic learning of the co-
operative (symbiotic) coordination of subsolutions without the need for a separate
learning process.

Fig. 7.10 (a) Training fitness function F = f1 + f2 versus number of generations for the
attitude controller and (b) height and attitude controllers attaining their respective desired
values.

Next we trained the the roll control module. We defined the fitness function of
the roll controller as f3 = ∑N

i=1000 |θrx −θx(iΔ t)|, where θrx = π/8, and θx is the
rotation of the quadrocopter about x-axis. Since again the roll controller is parallel
to both the height controller and the attitude controller, we modified the training fit-
ness function to be F = f1 + f2 + f3. While the roll control module is being trained,
the parameters of the height and the attitude control modules are held fixed. While
the roll controller is being trained, the reference values of the height controller and
the attitude controller are set to xr = 10 and θz = 0.0. Figure 7.11a shows the result
of the training. Figure 7.11b shows the height y, attitude angle θz, and roll angle
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Fig. 7.11 (a) Training fitness function F = f1 + f2 + f3 versus number of generations for the
roll controller and (b) height, attitude and roll controllers attaining their respective desired
values.
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θz versus time for a novel reference height yr = 7m, novel reference attitude angle
θrz = 5◦, and novel reference roll angle θrx = 10◦. As can be seen in the figure, the
behaviors cooperate with each other to attain their respective reference values.

After this we trained the heading controller. We defined the fitness function of
the heading controller in the same way as we defined the fitness functions of the
attitude and roll controller and it is given by f4 = ∑N

i=1000 |θry −θy(iΔ t)|, where
θry = π/8, and θy is the rotation of the quadrocopter about y-axis. While training
the heading controller, we set the reference angles of both attitude and roll con-
trollers to zero. Again since the heading controller is parallel to all of the above
controllers, the training fitness function is modified as F = f1 + f2 + f3 + f4. Note
that we kept the parameters of the height, attitude and roll control modules constant,
while optimizing the parameters of the heading control module. Figure 7.12a shows
the development of the training fitness function F = f1 + f2 + f3 + f4 versus number
of generations. Figure 7.12 b shows the height y, attitude angle θz, roll angle θz, and
heading angle θy versus time for a novel reference height yr = 7m, novel reference
attitude angle θrz = 5◦, novel reference roll angle θrx = 10◦, and novel reference
heading angle θry = 5◦. As can be seen in the figure, the heading controller coop-
erates with the height, roll, and attitude controllers, which results in all behaviors
attaining their reference values.
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Fig. 7.12 (a) Training fitness function F = f1 + f2 + f3 + f4 versus number of generations
for the heading control module and (b) height, attitude, roll and heading controllers attaining
their respective desired values.

Next we trained the attitude angle generator and defined its fitness function as
f5 = ∑N

i=1000 |xr − x(iΔ t)|, where xr = 10.0, and x is the current position of the
quadrocopter along the x-axis. Since the attitude angle generator is in series with
the attitude control module (see Figure 7.8), we modified the training fitness func-
tion such that we replaced the fitness function of the attitude controller f2 by the
fitness function of the attitude control generator f5. The resulting training fitness
function is given by F = f1 + f5 + f3 + f4. While training the attitude angle genera-
tor, we set the reference state values of the roll controller and the heading controller
to zero, and held the parameters of height, attitude, roll, and heading modules con-
stant. Figure 7.13a shows the training fitness function versus number of generations
for the attitude angle generator.
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Finally, we trained the roll angle generator and defined its fitness function as
f6 = ∑N

i=1000 |zr − z(iΔ t)|, where zr = 10.0, and z is the current position of the
quadrocopter along the z-axis. As can be seen in the control architecture, the roll
angle generator is in series with the roll controller. Thus we modified the training
fitness function such that the roll controller fitness function f3 was replaced by the
roll angle generator fitness function f6. The resulting training fitness function is
given by F = f1 + f5 + f6 + f4. While training the roll angle generator, we set the
reference state values of the attitude angle generator and the heading controller to
zero, and kept the parameters of height, attitude, roll, heading, and attitude angle
generator modules constant. Figure 7.13b shows the training fitness function versus
number of generations for the roll angle generator.
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Fig. 7.13 (a) Training fitness function F = f1 + f5 + f3 + f4 versus number of generations
for the attitude angle generator module and (b) training fitness function F = f1 + f5 + f6 + f4
versus number of generations for the roll angle generator module.

7.3.4.1 Noise Free Trajectory Following Task

After we trained all of the modules in the control architecture, we tested the the
controller on noise free trajectory following task. First the quadrocopter was com-
manded to ascend to a height of 15m above the ground (from A to B as shown in
Figure 7.14). Then, it was commanded to follow a circle (BCDEB in Figure 7.14)
in a vertical plane, where the reference value zr was set to zero, and the reference
value θry was also set to zero. The equations describing the reference trajectory are
given by

yr(iΔ t) =

⎧⎨
⎩

15 if i < 500

25−10cos(2π i−500
N−500) if i >= 500

(7.9)

and

xr(iΔ t) =

⎧⎨
⎩

0 if i < 500

10sin(2π i−500
N−500 ) if i >= 500

, (7.10)
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where i ∈ [0,N] and N = 3000. As can be seen in the figure, the quadrocopter was
able to follow the given trajectory successfully, showing again the successful auto-
matic learning of the cooperation of behaviors through incremental modification of
the training fitness function. Note that the overshoot at the end of the vertical motion
is a result of having chosen a constant reference yr during the vertical ascent.
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Fig. 7.14 Performance of the controller in trajectory following task.

7.3.5 Task Decomposition with a Definition of a Single Global
Fitness Function Is Not Necessarily Sufficient for Solving
Complex Robot Tasks

The aim of this section is to demonstrate that if we use a single global fitness func-
tion like the final fitness function given by F = f1 + f5 + f6 + f4 rather than in-
crementally modifying the fitness function, we could have difficulty in obtaining a
solution with desired operating properties. For the experiment in this section, we
used the control architecture and the behavior modules described in Section 7.3.2.
Unlike the experiments in the previous sections, we simplified the learning task such
that the system is trained in a noise free scenario, meaning that it has to optimize
only four parameters per module: the output weight w0, the two input weights w1

and w2 of the neural network and the constant a of the output neuron’s activation
function tanh(ax). The reference values for the experiment were yr = 5m, xr = 2m,
zr = 0.0, and θy = 0.0.

Figure 7.15 shows the fitness development over 200 generations for the control
architecture. The minimum value of the average training fitness after 1000 gener-
ations when training the whole controller was 17444, while the average minimum
value of the final fitness value obtained after 6 times 100 generations by the con-
troller trained by incremental modification of the fitness value is 2516. This shows
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Fig. 7.15 Training fitness function F = f1 + f5 + f6 + f4 versus number of generations for
the control architecture.

that decomposing the solution alone and using a global fitness may not result in
a solution with desired operating properties. Therefore, one has to incrementally
modify the fitness function, as the solution is being complexified (as more modules
are learned and added to the system).

7.4 Conclusion

In order to apply neuroevolutionary methods effectively on robots, one has to over-
come several problems. The major ones are long evolution time due to noisy sensors
and actuators, and the difficulty of defining a global fitness function that results in
the desired solution. In this paper, we proposed solutions to both problems. A so-
lution towards the first problem is to accelerate neuroevolutionary methods through
Kalman filtering, and the solution towards the second problem is to exploit the de-
sign principles of Behavior Based Control (BBC), and to incrementally modify the
fitness function that results in a controller with desired operating properties.
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Chapter 8
Evolutionary Design of a Robotic Manipulator
for a Highly Constrained Environment

S. Rubrecht, E. Singla, V. Padois, P. Bidaud, and M. de Broissia

Abstract. This paper presents the design of a manipulator working in a highly con-
strained workspace. The difficulties implied by the geometry of the environment
lead to resort to evolutionary-aided design techniques. As the solution space is likely
to be shaped strangely due to the particular environment, a special attention is paid
to support the algorithm exploration and avoid negative impacts from the problem
formulation, the fitness function or the evaluation. In that respect, a specific genome
able to encompass all cases is set up and a constraint compliant control law is used
to avoid the arbitrary penalization of robots. The presented results illustrate the
methodology adopted to work with the developed evolutionary-aided design tool.

8.1 Introduction

In the field of robotic manipulator design, the classical methods [17] turn out to be
inefficient when the problem is highly constrained, as the expressions of the con-
straints (obstacles) cannot be formalized into a classical design formulation. Thus,
it is hard to check if a solution complies with the constraints. Moreover, the solu-
tion space may be very large, and as the validations are time consuming, it is rele-
vant to use performance indicators and to consider the problem as a multiobjective
optimization.

The presence of multiple objectives in a problem gives rise to a set of optimal
solutions, instead of a single optimal solution. This set of solutions is known as the
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set of Pareto-optimal solutions and rely on the notion of Pareto-dominance [7] to
treat simultaneously and independently each performance indicator.

In a typical minimization problem where the fitness f is composed of n functions
fi (1 ≤ i ≤ n), a solution x is dominating an other solution x′ if

∃ i such as fi(x) < fi(x′) (8.1)

and
∀ j �= i, f j(x) ≤ f j(x′) (8.2)

Based on this principle, the solution of a multiobjective optimization is a set of non-
dominated solutions (Pareto-optimal solutions) to the problem . In the absence of
any further information, one of these Pareto-optimal solutions cannot be said to be
better than the other.

Evolutionary Algorithms (EAs) have been widely used in robotics design opti-
mization ([6],[12]) as they are very well adapted for optimization over vast, non
continuous search space. This field of application of EA is a growing trend and is
mentioned as evolutionary-aided design in the introductory chapter of this book.
One of the first robot design problems using EA was carried out by Sims [21],
generating creatures competing in walking, jumping, swimming, etc.

Since 1990, a large number of MultiObjective Evolutionary Algorithms
(MOEAs) have been proposed ([7, 8, 9, 11, 24, 27]). The primary reason for this
is their ability to find multiple Pareto-optimal solutions in one single simulation
run. Since EAs work with a population of solutions, a simple EA can be extended to
maintain a diverse set of solutions. EAs are now widely used, from the whole sys-
tem structure design to robots reconfiguration [10], controller design, and in various
domains such as cooperative robotics [23] and mini-invasive surgery [19]. Amidst
several works presented for optimal designs of fundamental robots, Snyman et al.
utilized in [22] EAs for the design of a 3R industrial robot while aiming at min-
imizing joint torque over an entire given trajectory. Another eminent contribution
by Ceccaralli and Lanni ([3]) and Carbone et al. in [2] involved the formulation of
the robot design problem as a multiobjective optimization problem. However, the
complexity associated with cluttered environments and larger number of Degrees
Of Freedom (DOFs) is left unaddressed.

This paper details some of the key issues in the design of a robotic serial arm
in a highly constrained environment with a special attention to keep the best con-
ditions for the EA to explore the solution space. In that scope, the way to set up
the problem (genome choice), the algorithm itself (type and genetic operators), the
evaluation step (trajectories, control law) and the indicators retained are fundamen-
tal elements. The work in [4, 5, 25] come close to the presented approach. In general,
these approaches employ modular robots to cater the task specifications and recom-
mend specific encoding systems to employ EAs to handle varying number of DOFs.
However, the work presented in these papers is limited to some specific workspaces
and trajectories.
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In section 8.2, the environment and context of our work is presented. Section 8.3
details the resolution method, from the problem analysis to the implementation.
Section 8.4 exposes the first results. Finally, the last section presents concluding
remarks and the future work to be done on this subject.

8.2 Case Study

This research work is led within the framework of a project dedicated to Tunnel
Boring Machine (TBM, see Fig. 8.1). The usual tasks are maintenance operations
in hostile conditions: hyperbaric atmosphere, high temperature, and even operation
immersed in mud.

The geometry of the problem is a typical excavation room geometry (diame-
ter 10m, depth 1 m). The missions defined for fitness are trajectories tracking all
around the upper part of the cutter head, focusing on key points to clean or inspect.
Transmission arms are obstacles to take into account. The basis of the robot is fixed
near the top of the excavation room, at the exit of the airlock.

Fig. 8.1 Example of a manipulator in a TBM.

Fig. 8.2 Example of robot segments of the Maestro manipulator from which the elements of
the individuals are inspired.
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The robots (EA individuals) are composed of elements taken from a pool of robot
segments inspired (shapes and joint limits) from the real robot segments of the Mae-
stro manipulator (Cybernetix1, see Fig. 8.2). In particular, only 1-degree-of-freedom
rotational joints are allowed.

8.3 Genetic Algorithm and Implementation

In this section, our implementation of the genetic algorithm is introduced. This
implementation relies on SFERES [15] which provides a general framework for
evolution based optimization.

8.3.1 Genetic Algorithm

The efforts made to approach the Pareto-optimal front involves two (possibly con-
flicting) objectives. First is the convergence — minimizing the distance between the
final Pareto front and the optimal front and second is the diversity — maximizing
the difference in the generated solutions in terms of objectives or parameter values.
To consider both items, the popular technique of Nondominated Sorting Genetic
Algorithm II (NSGA-II) [8] is considered suitable for our design problem. This
technique possesses the features of elitism and parameter-less sharing. Elitism is
the process of selecting better solutions out of the combined population of parent
and child generations and, therefore, avoid the elimination of any good solution.

For a problem with the population size as N, NSGA-II works on 2N solutions at
each iteration. These solutions are sorted with respect to their non-domination and
are arranged into different Pareto optimal fronts. This is termed as non-dominated
sorting. To send N solutions to the next iteration, a new list is formed. Since each
Pareto front contains equally good candidates, therefore, unless there is less space
than the number of elements in a front, all the elements of each front are kept adding
to the new list. For further sorting at a particular level, say r − th front, crowded
distance sorting is utilized. Based on this, the upper ranked elements of the r− th
Pareto front are included in the new list. This sorting is based on the maximum
distance available around an element, in the objective function space, within which
there exists no other element. This helps maintaining some significant diversity in
the resulting solution, by selecting widely spread population.

The genetic operators are generally used at various rates. In our case, values are
taken as:

• Mutation rate: 10%
• Cross over rate: 13%
• Generations: 500
• Individuals: 150

1 http://www.cybernetix.fr/
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8.3.2 Genome

The design process focuses exclusively on the robot morphology using the elemen-
tary segments shown in Fig. 8.2. In that framework, each robot is described as a
concatenation of segments. A segment is composed of a link having a joint (rota-
tional or prismatic2) or not. Two frames are associated to each elementary segment.
The first one represents the three possible joint axes: every link is oriented along its z
axis. The second one represents the three possible orientations of the next segment.

According to this description, there are 11 elementary segments:

• 3 with a rotational joint about the x axis, the following segment being oriented
along x, y or z (called rxx,rxy, and rxz respectively)

• 3 with a rotational joint about the y axis (ryx, ryy and ryz)
• 2 with a rotational joint about the z axis (rzx and rzz)
• 3 segments without joint (ex, ey and ez)

rzy is not mentioned as it is the same as rzx rotated by π
2 rads around z axis.

In addition we define 10 possible lengths for the segments between 0.05 m and
1.05 m. The association table is presented in Table. 8.1.

As an example, a portion of a robot is represented on Fig. 8.3 (left). Each robot
is defined by a chromosome of 16 genes, each one representing a segment or not:
the genes from 100 to 109 does not match anything (segment ”None”) which is
consistent with the fact that we do not want every robot to have 16 DOFs.

When a fixed segment appears in the genotype of an individual (gene from 190 to
219), a segment combination is done, thus offering the possibility to have segments
which orientation differs from the x, y and z axes (Fig. 8.3 right).

Table 8.1 Genome. Each gene is a number composed of 3 digits: the 2 first are the joint type,
the last being the link length. A gene value is between 100 and 219.

Gene ABC AB: Joint type
C: length (m)

Joint number - AB 10 11 12 13 14 15
Joint type None rxx rxy rxz ryx ryy

Joint number - AB 16 17 18 19 20 21
Joint type ryz rzx rzz ex ey ez

Length number - C 0 1 2 3 4
segment length (m) 0.05 0.15 0.25 0.35 0.45

Length number - C 5 6 7 8 9
segment length (m) 0.55 0.65 0.75 0.85 0.95

2 Prismatic joints are not used within the framework of the considered application.
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Fig. 8.3 Genotypes examples: portion of robot and combination of 2 segments. q is the rota-
tional joint angle.

8.3.3 Trajectory Tracking

The aim of the fitness function is to qualify the ability of an individual (robot) to
carry out a maintenance mission in the TBM. An efficient way to check the motion
skills of a robot is to simulate a trajectory tracking in the 3D environment. So, a
relevant 3D trajectory has been defined (sequence of 361 3D points for a total length
of approximately 8.5 m, which comes out to a mean distance of 24 mm between 2
points) and the fitness function is a trajectory tracking. Dynamics is not computed
as it does not impact on the indicators retained (see 8.3.5). Each individual has to
track the same trajectory. The simulator uses the Kinematic and Dynamic Library
(KDL) which is part of the OROCOS project [1].

8.3.4 Control Law

The control law of the robots is in charge of computing at each simulation iter-
ation the joint velocities to reach the current point in the sequence of 3D points
composing the trajectory. In our case, two specifications led us to design our own
control law to handle the problem of tracking a given trajectory by any manipula-
tor in a cluttered environment. First, a guideline of this work is to compensate the
impact of cluttered environment by supporting the EA exploration. Consequently,
the control law should neither be penalizing in terms of configurations (e.g. to deal
properly with singular configurations or proximity to constraints) nor in terms of
robots (redundant or not). Second, the framework of evolutionary-aided design re-
quires meaningful fitnesses to be efficient: so, the constraints violations (such as
collisions between the robot and the environment), which would never occur in real
conditions, are not accepted.
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Fig. 8.4 Section view of the TBM trajectory and manipulator example.

8.3.4.1 Control Framework

The huge number of individuals evaluations (trajectory trackings of manipulators)
prevents from using prediction or planification techniques in the control strategy
(for obvious computation time reasons), so the control law is reactive. Regarding
the framework, a velocity kinematics framework has been retained rather than a
purely kinematic one. Actually, as the robot is not known a priori, a general inver-
sion method is needed to be applied at each simulation iteration. In the kinematic
framework, the model linking the joints and the operational positions is not linear
and this operation is complex and time consuming.

8.3.4.2 CCC

The control law briefly described here - Constraint Compliant Control (CCC) - is
detailed in [18]. The CCC is an iterative velocity kinematics control law. It is a strict
prioritized multiobjective law ([13], [20]) with 3 hierarchical levels:

1. The first level gathers the terms relative to passive avoidance: to satisfy the con-
sidered constraints (collisions) formulated as inequalities, the robot motion is
stopped along the directions of the critical constraints. The critical constraints
are determined through an iterative process;

2. The second level gathers the operational tasks, in our case the trajectory tracking;
3. The third level gathers the active avoidance terms: it tends to get the robot away

from the constraints. Most of the time, as the environment is cluttered, these
terms cannot be all satisfied, which justifies the existence of the first term.

The main property of the CCC is that it never violates its constraints, even if they
are not compatible with the trajectory tracking. As a result, indicators related to
these constraints are useless in the design process. Moreover, the CCC resorts to the
Damped Least Square (DLS) inverse [16], to avoid inconvenient behaviors around
kinematic singularities. As a consequence, the compliance with the constraints and
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the approximation around singularities directly impacts the trajectory tracking error
rather than imposing dedicated indicators. It appears more relevant as it limits the
number of indicators without creating meaningless weighted sums of scores based
on non realistic behaviors.

8.3.4.3 Practical Implementation

In practice, a computationally efficient implementation of the CCC does not per-
fectly ensure collisions avoidance (one constraint per segment may not always be
sufficient, see [18]). So, the number of collisions per segment per iteration is in-
cluded in the set of indicators. Anyway, the use of the CCC is justified as only a
small portion of the evaluated robots collides, which minimizes the impact of this
indicator on the complexity of the problem (see 8.3.5).

8.3.5 Indicators

The indicators are the scores obtained by the robot through the fitness function. They
are voluntarily simple and composed of a single magnitude (no weighted sums rep-
resenting a priori tradeoffs between different magnitudes). The trajectory tracking
quality but also intrinsic parameters are rated, such as the number of DOFs. All the
indicators, listed below, are to be minimized:

• Maximum linear error along the trajectory tracking. There are no strategic
points on which to compute the error with a higher weight w.r.t to others: the cur-
rent design being a preliminary design, the trajectory should be equally tracked;

• Number of DOFs. The number of DOFs is a technological difficulty (manufac-
turing, energy, control), even if a more redundant robot has, in general, better
reachability skills in a cluttered environment.

• Robot total length. The shorter robot able to perform the trajectory tracking has
usually better adaptability to other tasks.

• Number of collisions per segment per iterations. As mentioned previously, de-
spite the use of the CCC, the number of collisions is added as a fourth indicator
to minimize. However, the CCC considerably reduces the number of collisions
w.r.t. usual control laws. As a result, almost every robot obtain 0 (no collision),
and the size of the problem is not much increased by the presence of this indi-
cator. Actually, a robot failure on this indicator is most often due to a control
failure rather than because of antagonism between indicators. In order not to pe-
nalize the individuals for which this failure occurs, it has been decided not to take
this indicator as a constraint (in the EA sense : criteria which, if not respected,
disqualifies the individual).

8.4 Results

Even if the design process is still under progress, the results presented here are
conclusive regarding our particular problem.
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8.4.1 Design with Simple Trajectory

Preliminary designs have been realized with a simple trajectory to set up the process
properly. The robot in Fig. 8.5 is a solution obtained with only 3 indicators:

• Maximum linear error of the trajectory tracking;
• Number of DOFs;
• Number of collision per segment per iteration.

The retained manipulator possesses 5 DOFs and tracks the path with a maximum
error of 80 mm (shown on Fig. 8.5). However, the robot cannot be considered ac-
ceptable as the link lengths are too large, with a total robot length of 6.40 m. Such
results encouraged to include the links size in the set of indicators of the optimiza-
tion process.

In order to obtain more reasonable robots, the total length of the robot had been
added to the set of objective functions. The resulting robot for the presented case
is much shorter (1.60 m), as shown in Fig. 8.6. The number of DOFs is 5 and the
maximum trajectory tracking error is 90 mm, which remains acceptable and tends to
prove that the robot total length is not antagonistic with other indicators in this case.

Fig. 8.5 Robot 1, indicators: linear tracking error, number of DOFs and collisions per seg-
ment per iteration.

Fig. 8.6 Robot 2, indicators: linear tracking error, number of DOFs, collisions per segment
per iteration and robot total length.
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Fig. 8.7 Sequence of the complex trajectory tracking. Robot 3, indicators: linear tracking
error, number of DOFs, collisions per segment per iteration and robot total length.
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8.4.2 Design with Complex Trajectory

As the solutions fit the specifications for the simple trajectory, a similar work had
been carried out with the trajectory representing a maintenance mission (inspection
of the cutter head). This path includes the complications of navigating the robot
deep into the narrow space, available between the cutter head and the robot base
(see 8.3.3 and Fig. 8.4). Using the 4 indicators (linear tracking error, number of
DOFs, total length and number of collisions per segment per iteration) turns out to
be sufficient to obtain appropriate robots.

The tracking of one of the final robots is represented in a sequence of simulation
pictures, shown in Fig. 8.7. This robot has 5 DOFs with a maximal linear error of
120 mm and a length of 2.80 m.

The selection of a suitable robot out of all the possible solutions of the final front
is another task in the complete design process, which is not a part of this paper.
However, an example of pareto front obtained is represented on Fig. 8.8. It is worth
mentioning here that since collision avoidance is an inherent part of the chosen
motion controller, the working of the resulting robots would certainly be free from
any collision when using such a controller.

Fig. 8.8 Example of Pareto Front. The scores have been inversed and scaled between 0 and 1
(1 is the best value). F1: linear tracking error; F2: number of DOFs, F3: collisions per segment
per iteration, F4: robot total length. The black line is the robot presented in 8.4.2.

8.5 Conclusions and Future Works

8.5.1 Conclusions

The work presented here finds its justification in the maintenance of TBM in hos-
tile conditions. The environment being very constrained, evolutionary design offers
many advantages, but attention must be paid to preserve a good exploration as the
solution space is not well shaped. A simple and exhaustive genotype has been set
up to cover easily all robot possibilities, including segment directions not only along
the absolute frame axes. The constraints compliant control law resorts to passive
constraint avoidance to make the behavior more realistic. It avoids individuals pe-
nalization, makes indicators more meaningful and reduces the impact of the collision
based indicator on the problem size. The results obtained are suitable solutions to our
problem.
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8.5.2 Future Works

A sensitivity analysis is needed to estimate the impact of our work toward diversity
maintenance in the population. In addition, more sophisticated indicators are cur-
rently being tested, such as manipulability [26]. Finally, implementation of recent
works in evolutionary design will be carried out, such as:

• Variation of the genetic operators individual by individual according to their po-
sition and repartition along the Pareto front [5];

• Evolution of the indicator along the process to prevent from bootstrap [14].
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Chapter 9
A Multi-cellular Based Self-organizing
Approach for Distributed Multi-Robot Systems

Yan Meng, Hongliang Guo, and Yaochu Jin

Abstract. Inspired by the major principles of gene regulation and cellular interac-
tions in multi-cellular development, this paper proposes a distributed self-organizing
multi-robot system for pattern formation. In our approach, multiple robots are able
to self-organize themselves into various patterns driven by the dynamics of a gene
regulatory network model. The pattern information is embedded into the gene regu-
lation model, analog to the morphogen gradient in multi-cellular development. Var-
ious empirical analysis of the system robustness to the changes in tasks, noise in the
robot system and changes in environment has been conducted. Simulation results
demonstrate that the proposed method is both effective for pattern formation and
robust to environmental changes.

9.1 Introduction

Distributed multi-robot systems (MRS) can be used to fulfill tasks that are quite dif-
ficult or even unfeasible for a single robot, especially in the presence of uncertain-
ties, incomplete information, distributed control, and asynchronous computation.
Compared with centralized systems, distributed MRS can provide more flexibil-
ity, robustness, and adaptiveness in the tasks inherently distributed in space and/or
time. Some real-world applications of distributed MRS include urban search and
rescue, battlefield surveillance and scouting, space and interplanetary exploration,
hazardous material collection.
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Since we are using distributed approaches, it is difficult to predict the emerg-
ing behaviors only from local interactions of individual agents; neither is it easy
to design rules for local interactions to generate a desired global behavior. We find
that, biological systems, from macroscopic swarm systems of social insects to mi-
croscopic cellular systems, can generate robust and complex emerging behaviors
through relatively simple local interactions subject to various kinds of uncertain-
ties [14]. Therefore, many researchers got inspiration from biological systems and
proposed many bio-inspired methods for MRS [17, 18, 20, 22].

Embryonic development of multi-cellular organisms is governed by gene regu-
latory networks (GRNs). As we know, GRNs are models of genes and gene inter-
actions at the expression level. It is a collection of DNA segments in a cell which
interact with each other indirectly through their RNA, protein product, other chem-
icals in the cell, and governs the rates at which genes in the network are transcribed
into mRNA. GRNs play a central role in understanding natural evolution and devel-
opment [2]. To this end, various models of GRNs have been suggested [6, 8, 11, 16].

Some work has been conducted on multi-robot pattern formation. Albayrak [1]
proposed a decentralized control algorithm for line and circle formations. More
complex shapes were considered in [21]; however, this approach requires each indi-
vidual robot to have an estimate of all the other robots positions, and thus imposes
serious limitations. Leader-follower approaches [7] require the assignment of dif-
ferent controllers and different set-points to different robots. Shen et al. [20] pro-
posed a digital hormone model (DHM) as a distributed control method for robot
swarms. They applied Turings reaction-diffusion model [23] to describe the inter-
actions between the hormones. The DHM integrated a dynamic network, stochastic
action selection, and hormone reaction-diffusion. No global information is dynam-
ically embedded into the DHM model. All these bio-inspired methods mainly fo-
cus on developing some heuristic rules to fill the robots/agents in predefined simple
close-form shapes. Hsieh and Kumar [12] proposed a potential-field based approach
for pattern generation with multiple robots. Very few researchers have applied the
GRN-based model for multi-robot systems. Taylor [22] has proposed a gene regu-
latory network inspired real-time controller for a group of underwater robots for a
simple clustering task.

In this paper, we will propose a distributed, multi-cellular based self-organizing
approach for a multi-robot system for pattern formation tasks. The major contri-
butions of our proposed method include: (1) the systems global information, such
as the shape function, can be embedded into the GRN dynamics directly; (2) the
dynamics of the GRN-inspired model can automatically drive the robots to their tar-
get positions while avoiding collision between the robots and obstacles inside the
environment; (3) the system is self-organizing and robust to various environmental
changes. Part of this work has been published in our previous paper [10].

The paper is organized as follows. Section 9.2 introduces the biological back-
ground that inspired this work. The GRN-based distributed control approach for a
self-organized multi-robot system is described in Section 9.3. To evaluate the pro-
posed method, several case studies of pattern formation using a multi-robot system
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have been conducted, and the robustness analysis to environmental changes and sys-
tem noise are also provided in Section 9.4. Conclusion and future work are discussed
in Section 9.5.

9.2 Biological Background

When a gene is expressed, information stored in an organisms genome is transcribed
and translated into proteins. Some of these proteins are transcription factors that can
regulate the expression of their own or other genes. Thus, these proteins are under
regulatory control, resulting in complex networks of interacting genes. These gene
regulatory networks control a number of important cellular processes, such as re-
sponding to the environment, regulating the cell cycle and guiding the development
of an organism.

It is very challenging to gain a thorough understanding of the emergent behav-
iors of complex patterns from the interactions of genes in a regulatory network.
Therefore, mathematical modeling and simulation of gene regulation processes are
indispensible. A large number of GRN models have been suggested, of which ordi-
nary differential equations (ODEs) have been used to model the reaction kinetics of
regulatory systems with a long history. In this section, we will introduce the ODE
form of GRN models for multi-cell organisms.

In a multi-cell organism, it is necessary to model the intercellular communication.
In addition to the internal dynamics of the cell, we should also consider external fac-
tors such as protein gradients and physical interactions between cells. Turing [23]
proposed one of the earliest models for pattern formation, where a pair of coupled
reaction-diffusion equations was proposed to describe a system consisting of two
morphogens. As two morphogens diffuse across a spatial field and react with one an-
other, a variety of patterns emerge depending on parameter values. The gradients of
protein concentrations across cells are a critical feature in embryonic development.
The reaction-diffusion equations have been widely used in mathematical biology to
study pattern formation in development [9, 13, 15].

Salazar-Ciudad et al. [19] proposed a GRN model with reaction-diffusion mech-
anism as follows:

dxi j

dt
= f j(xi,u)− γixi j + D j∇2xi j,1 ≤ i ≤ n,1 ≤ j ≤ m (9.1)

where xi j is the concentration of gene product j i cell i. The first term specifies the
production of xi j, the second term is its degradation, and the last term specifies the
diffusion component at diffusion rate D j. f j is a nonlinear update function of gene
product j, which can be defined as a sigmoid function as f (x) = 1

1+ex . u is the vector
of external input signals. γi is the degradation rate of product i. n is the number of
gene products in one cell, and m is the number of cells.
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9.3 The Approach

In this paper, our objective is to deploy multiple robots to various patterns in a
distributed manner. During the deployment, it is assumed that each robot can only
perceive its local environment and makes its own movement decisions without
communicating with other agents. The global pattern to be formulated in the en-
vironment is predefined. Initially, all robots are randomly distributed within the
environment. It is assumed that robots know their own initial position in the en-
vironment and can self-localize themselves in the environment using their onboard
sensors.

9.3.1 The GRN-Based Dynamics

Inspired by the multi-cellular GRN model, it is assumed in this paper that each robot
corresponds to a single cell. Within each cells genome, there are two genes, one
for x-position and one for y-position in a 2D environment. Each gene can produce
a certain protein. Each protein can provide the following three functions: (1) To
regulate the expression of the gene that produced it (i.e. auto regulation); (2) To
adjust the robots behaviors; (3) To be able to diffuse proteins to its neighbors to
prevent collision from each other.

The system dynamics of the GRN-based approach for a multi-robot system for
pattern formation tasks are defined as:

dgi,x

dt
= −azi,x + mpi,x (9.2)

dgi,y

dt
= −azi,y + mpi,y

d pi,x

dt
= −cpi,x + k f (zi,x)+ bDi,x

d pi,y

dt
= −cpi,y + k f (zi,y)+ bDi,y (9.3)

where gi,x and gi,y are the expression levels of the ith robot’s gene for x-position and
y-position, respectively. pi,x and pi,y are the concentration of the ith robots proteins
for x-position gene and y-position gene, respectively. a, m, c, k, and b are coefficient
factors.

In order to embed the predefined 2D shape, which is the global information, into
the dynamic equations, we define f (zi) as the following sigmoid functions:

f (zi,x) =
1− e−zi,x

1 + e−zi,x

f (zi,y) =
1− e−zi,y

1 + e−zi,y
(9.4)
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where zi,x and zi,y are the gradients along x-axis and y-axis, respectively, of a pre-
designed function h at the robots current gene expression level, which are defined
as:

zi,x =
∂h

∂gi,x
,zi,y =

∂h
∂gi,y

, (9.5)

where the predesigned function h is the function of the desired shape where robots
are supposed to be deployed uniformly. We can also treat function h as the prede-
fined gradient for cell migration. To facilitate the generation of the desired dynam-
ics, we defined h as the square of the desired shape function. For example, if we
want to deploy the robots onto a unit circle. The shape function can be defined as:

s(gi,x,gi,y) = g2
i,x + g2

i,y −1 = 0 (9.6)

Then function h can be defined as:

h = (g2
i,x + g2

i,y −1)2 (9.7)

We use Di to define the protein diffusion which aims at keeping the robot away from
its neighbors. The size of neighborhood varies according to different shapes and
different number of robots. In the example of a circular shape, the neighborhood
size can be defined as 2πr

N , where r is the radius of the circle, and N is the total
number of robots which are expected to deploy on the circle.

When a robot detects its neighbor, it will receive the protein emitted from that
neighbor so that it would keep itself away from that neighbor to avoid collision.
After summing all the neighbors diffused protein together, we have

Di,x =
Ni

∑
j=1

D j
i,x,Di,y =

Ni

∑
j=1

D j
i,y, (9.8)

where Ni denotes the number of its neighbors, and D j
i,x and D j

i,y are the diffusions
along x-axis and y-axis, respectively, on robot i emitted from the neighbor robot j,
which is defined as:

D j
i,x =

|gi,x −g j,x|√
(gi,x −g j,x)2 +(gi,y −g j,y)2

(9.9)

D j
i,y =

|gi,y −g j,y|√
(gi,x −g j,x)2 +(gi,y −g j,y)2

(9.10)

where the directions of D j
i,x and D j

i,y are defined as from robot j to robot i along
x-axis and y-axis, respectively.

Initially, the robots are located randomly in a 2D space. By following the dy-
namic equations defined in Equations 9.2 and 9.3, eventually multiple robots can
be deployed uniformly on the predefined pattern automatically. In other words, the
system can be stabilized to an equilibrium state defined by the pattern. Essentially,
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the pattern information is the global information, which can be elegantly embedded
into the dynamics of each individual robot through function f (zi).

In general, each robot is regulated by two forces: one is the morphogen gradient
embedded in the regulation dynamics that drive the robot to the predefined pat-
tern, and the other is diffusion dynamics that is used to avoid collision between the
robots. A good balance of the two dynamics can be achieved by optimizing the pa-
rameters in the model using a genetic algorithm, which will be discussed in the next
sub-section.

9.3.2 Convergence Analysis of System Dynamics

In this section, a theoretical proof of the systems convergence to the predefined
shape using the proposed GRN based algorithm is provided. Considering Equations
9.2 and 9.3, since the system convergence property is the same for x-axis and y-axis,
only the convergence of one axis is needed to prove. Furthermore, since summing
up the diffusion forces of all the robots, the protein diffusion impact will counteract
with each other, which allows us to omit the diffusion force in the proof of the
systems convergence. For the sake of clarity, we rewrite Equation 9.2 and 9.3 and
remove the protein diffusion part as follows:

dg
dt

= −a · z+ m · p (9.11)

d p
dt

= −c · p + k · f (z) (9.12)

Where g, z, p, D can be either gix, zix, pix, Dix or giy, ziy, piy, Diy.
Before proving the system convergence, we would like to propose and prove the

following theorem first.

Theorem 9.1. | f (x)| ≤ |x| for all x.

f (x) is a two sided sigmoid function with the analytical form f (x) = 1−e−x

1+e−x , using
basic mathematic deduction, we can easily get the following conclusions. (Please
refer to the appendix for the proofs of the following two conclusions).

Conclusion 1: | f (x)| ≤ 1
Conclusion 2: 0 ≤ f (x) ≤ 1 Therefore, when x = 0, f (x) = x = 0 , and when x �=
0 , from Integration Median Theory, we can get f (x) = f ′(ε) · x. Therefore, from
conclusion 2, we can get | f ′(ε)|< 1, so | f (x)|= | f ′(ε) ·x| ≤ |x|. We can get | f (x)| ≤
|x| and | f (x)| = |x| only if x = 0.

According to the Lyapunov theory, the state vector in Equation 9.14 and 9.15, i.e.
g and p, will converge to a stable vector asymptotically if we can find a Lyapunov
function V (g, p,t) which satisfies the following constraints:

1. V (g, p, t) is positive definite;
2. V̇ (g, p, t) is negative definite.

where g and p is the state vector in Equations 9.11 and 9.12.



9 A Multi-cellular Based Self-organizing Approach for Distributed MRS 129

There are four parameters, a, m, c, and k, that need to be adjusted. First, all of the
parameters must be positive. Then we construct an energy function of the system
dynamics in the following form:

V (g, p,t,) = h(g)+
1
2

s · p2 (9.13)

Here, s is a positive variable whose definition will be provided later on. We follow
the steps of Lyapunov theory to prove the system’s convergence.

(1) V (s) ≥ 0

(2) dV
dt =

dh
dt

+ s · p · d p
dt

=
∂h
∂g

· dg
dt

+ s · p · d p
dt

=
∂h
∂g

· (−a · ∂h
∂g

+ m · p)+ s · p · (−c · p ·k · f (
∂h
∂g

)) since z =
∂h
∂g

= −az2 − c · s · p2 + m · p · z+ k · s · p · f (z)
≤−a · z2 − c · s · p2 + m · |p| · |z|+ k · s · |p| · | f (z)|
(from Theorem 1, we can get| f (z)| ≤ |z|)
≤−

(√
az−√

c · s · p
)2 −2

√
a · c · s · |z| · |p|+(m+ k · s) · |p| · |z|

= −
(√

az−√
c · s · p

)2
+(k · s−2

√
a · c · s+ m) · |p| · |z|

= −
(√

az−√
c · s · p

)2
+ k ·

[(√
s−

√
a · c
k

)2

− a · c
k2 +

m
k

]
· |p| · |z|

Let s = a·c
k2 , we can get

dV
dt

≤−
(√

a · z−√
c · s · p

)2
+ k ·

(
− a · c

k2 +
m
k

)
· |p| · |z|

So if − a·c
k2 + m

k ≤ 0,

which can be rewritten as m · k ≤ a · c to ensure dV
dt ≤ 0.

After checking the invariant set which satisfies dV
dt = 0, we can see that the invari-

ant set contain the points on the predefined shape. Thus we can conclude that the
system’s dynamics is convergent under the condition of m ·k ≤ a ·c and k,c,a,m > 0.

9.3.3 The Evolutionary Algorithm for Parameter Tuning

Besides achieving convergence, the system performance can be further evaluated
with the following two objectives: the total traveling distance of all the agents
and the system convergence time. This is a multi-objective optimization (MOO)
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problem, where the objective function is no longer a scalar value, but a vector. As
a consequence, a number of Pareto-optimal solutions should be achieved instead
of one single solution. In this paper, NSGA-II [5] has been adopted for evolution,
which is a popular and efficient evolutionary algorithm for solving multi-objective
optimization problems. In our work, simulated binary crossover (SBX) [3] and poly-
nomial mutation [4] have been employed to generate offspring. After the offspring
population is generated, the elitist crowded non-dominated sorting is used for se-
lecting parents for the next generation. Different from single objective optimization
algorithms, in which only one optimal solution is achieved, NSGA-II produces a set
of Pareto-optimal solutions, i.e. in our case, the solutions that balance the conver-
gence time and travel distance of the robots to the final formation. We will analyze
the solutions in discussing the simulation results using NSGA-II.

9.4 Simulation and Results

To evaluate the efficiency and robustness of the proposed method, we test a sequence
of case studies using MATLAB. Five parameters, a, m, c, k, and b in Equations (2)
and (3), need to be optimized using the NSGA-II. The goal of the optimization is
to minimize the robots travel distance and the convergence time, while assuring the
system stability.

For the simulation, we set up the number of robots as 20, and set the population
size for NSGA-II to be 100. The crossover probability is set to 0.9 and the distribu-
tion index for the SBX crossover is 20. Mutation probability is set to be inversely
proportional to the number of the decision variables, which is 5 in our case, there-
fore, the probability is set to be 0.2 and the distribution index for mutation is set to
be 20. The simulation runs for 50 generations. Initially, parameters k, c, a, and m
are assigned with random numbers ranging from 1 to 100 and b is assigned with
random numbers ranging from 200 to 1000. Here, we predefine a large value for
protein diffusion coefficient b to allow the robots to move far away from each other
so that they can select other target positions when robots are close to each other.

To optimize both the traveling distance and the convergent time, the follow-
ing parameters are selected for the simulation after running the NSGA-II method:
a = 62.6459, m = 63.9489, c = 70.2715, k = 45.5208, and b = 380.4215.

9.4.1 Case Study 1: Multi-robots Forming a Unit Circle

First, we conduct a set of experiments on a 2D environment to formulate a unit circle
by multiple robots, as shown in Fig. 9.1. Robots are initially distributed randomly
within the environment. The target pattern is defined as a unit circle centered at (0,
0) and of a radius of 1. A set of experiments using four different groups of robots
has been conducted to evaluate the proposed method, which contains 5, 10, 15, and
20 robots, respectively. For each group, 35 independent runs have been performed.
Fig. 9.1 shows a case of 20 robots being deployed on a unit circle. The experimental
results of the average convergence time and average position error (average over
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the robots) are shown in Table 9.1 including both the mean and standard deviation.
From Table 9.1, we can see that the average position error does not increase as the
number of robots increases. However, the average convergence time becomes much
slower as the number of robots increases. This is mainly because that robots need
to be evenly distributed on the unit circle and more time has been spent on the fine
tuning of the final positions.
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Fig. 9.1 20 robots are deployed uniformly on a unit circle.

Table 9.1 Mean and Standard Deviation of the Convergence Time and position Errors for 5,
10, 15, and 10 Robots in a Circle deployment.

Robots Convergence Time Position Errors
5 Mean: 229.3, STD: 30.7 Mean: 0.0913, STD: 0.0136
10 Mean: 530.3, STD: 75.6 Mean: 0.0784, STD: 0.0155
15 Mean: 969.3, STD: 94.8 Mean: 0.0372, STD: 0.0139
20 Mean: 1871.9, STD: 205.1 Mean: 0.0415, STD: 0.0147

9.4.2 Case Study 2: Multi-robots Forming a Unit Square

In this case, we plan to deploy a number of initially randomly distributed robots to
a unit square. The unit square is defined as follows: lower-left point at (-0.5,-0.5)
and the upper-right point at (0.5, 0.5). It is a little bit tricky to define the shape
function of the unit square compared to the unit circle. We first set up a circle with

the center at (0, 0) and radius of
√

1
2 . Therefore, the shape function of a circle can be

defined as: s1(gi,x,gi,y) = g2
i,x +g2

i,y − 1
2 = 0 and f1 = (s1(gi,x,gi,y))2. Then, through

the first function, we can deploy the robots to the specific circle first, and then define
s2(gi,x,gi,y) according to the following rules:

s2(gi,x,gi,y) =

⎧⎪⎪⎨
⎪⎪⎩

(gi,x + 1/2)
(gi,x −1/2)
(gi,y + 1/2)
(gi,y −1/2)

if

gi,x ≤ 0
gi,x ≥ 0
gi,y ≤ 0
gi,y ≥ 0

and

−1/2 ≤ gi,y ≤ 1/2
−1/2 ≤ gi,y ≤ 1/2
−1/2 ≤ gi,x ≤ 1/2
−1/2 ≤ gi,x ≤ 1/2

(9.14)
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f2 = (s2(gi,x,gi,y))2 (9.15)

Note that it is impossible that a robots position satisfies both of the two aforemen-
tioned conditions, since after the first phase deployment, the robots are on the circle
and will satisfy only one condition as depicted in Fig. 9.2.

Fig. 9.2 The relationship between the circle and the expected square.

We have tested two groups of robots to deploy them to the unit square with 8
robots and 12 robots, respectively. Fig. 9.3 shows the simulation results of deploy-
ing 12 robots to a unit square. The simulation results for 8 robots are similar. Table
9.2 lists the simulation results on the average convergence time and average po-
sition errors. From Table 9.2, we can see that the average position error does not
increase as the number of robots increases. However, the average convergence time
becomes much slower as the number of robots increases. The reason for this has
been discussed in case study 1.
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Fig. 9.3 12 robots are deployed uniformly on a unit square.



9 A Multi-cellular Based Self-organizing Approach for Distributed MRS 133

Table 9.2 Mean and Standard Deviation of the Convergence Time and position Errors for 8
and 12 Robots a Square deployment.

Robots Convergence Time Position Errors
8 Mean: 353.2, STD: 24.8 Mean: 0.0640, STD: 0.0116
12 Mean: 783.3, STD: 64.2 Mean: 0.0517, STD: 0.0097

9.4.3 Case Study 3: Self-reorganization

From previous two case studies, we can see that the proposed GRN-based con-
trol algorithm can automatically drive multiple robots to predefined shapes. In this
case study, we would like to evaluate the systems capability of self-reorganization.
More specifically, when new robots join the team, can the original team reorganize
themselves to incorporate the newcomers? 9.4 provides the trajectories of robots
initial shape formation as well as self-reorganization to incorporate the new comers.
Fig. 9.4 demonstrates the self-reorganization capability of our proposed approach
for various sizes of multi-robot systems.

Fig. 9.4 Trajectories of 4 agents during self-organization with 2 newcomers. The initial po-
sitions of the robots are plotted as *, the intermediate states where the first batch of robots are
located are plotted as o, and the final states of all the robots are plotted as +, the dash lines
are the initial deployment trajectories of the first batch of robots and the solid lines are the
trajectories of all the robots after incorporating newcomers.
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9.4.4 Case Study 4: Robustness Tests to Sensory Noise

Since sensory noise is one of the constraints in the real-world robotic systems, In
this case study, we will consider the sensory noise and evaluate the robustness of
the proposed method to the sensory noise. We first consider the influence of sensory
noise by deliberately adding noise into the sensory measurements and localization.
We perform 35 independent runs using 10 robots with random position initialization,
and calculate the mean and standard deviation of the final position errors to the unit
circle with 5% and 10% noise in distance measurement. The experimental results
are shown in Table 9.3. Then, we perform 35 independent runs using 10 robots with
random position initialization, and calculate the mean and standard deviation of the
final position errors to the unit circle with 5% and 10% noise in robot localization,
and list the experimental results in Table 9.4. From the tables, we can conclude
that the position errors of the system are insensitive to the noise in both distance
measurements and self-localization.

Table 9.3 Mean and Standard Deviation of the Convergence Time and position Errors When
the distance measurement are subject to sensory noise.

Without noise 5% noise 10% noise
Mean: 0.0421 Mean:0.0437 Mean: 0.0470
STD: 0.024 STD: 0.096 STD: 0.0100

Table 9.4 Mean and Standard Deviation of the Convergence Time and position Errors When
the Self-Localization is subject to sensory noise.

Without noise 5% noise 10% noise
Mean: 0.0421 Mean:0.0437 Mean: 0.0470
STD: 0.024 STD: 0.096 STD: 0.0100

9.4.5 Case Study 5: Self-adaptation to Environmental Changes

In this case study, we want to evaluate the self-adaptation of the proposed method
to the environmental changes.

It is assumed that the robots are evenly distributed on a circle initially. One mov-
ing obstacle in the environment moves toward the robots. Fig. 9.5 shows two snap-
shots of this procedure. From Fig. 9.5, we can see that the robots deployed on the
circle are able to move temporarily away to avoid a collision with the moving obsta-
cle. Although only one moving obstacle is implemented in our simulation, similar
behaviors can also be observed for multiple moving obstacles.
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Fig. 9.5 A set of snapshots of robots behavior of reacting to a moving obstacle. (a) The
obstacle is moving towards the robots; (b) the robots are adapting to avoid the obstacle.

9.5 Conclusion and Future Works

In this paper, we have presented a novel GRN inspired distributed control approach
for a multi-robot system to self-organize themselves to some predefined patterns.
A theoretical proof of the system convergence is also provided. Simulation results
show the effectiveness, robustness and adaptation of the proposed algorithm. One
major weakness of that model is that the global shape information is predefined
and fixed in a centralized manner, which imposes serious limitations for those tasks
with dynamic environment. In the future, we will investigate these issues and aim
at developing new mechanisms on top of the current model, where the system has
the ability to generate new global mission based on the dynamic environment au-
tonomously and finish the mission accordingly.
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Chapter 10
Novelty-Based Multiobjectivization

Jean-Baptiste Mouret

Abstract. Novelty search is a recent and promising approach to evolve neuro-
controllers, especially to drive robots. The main idea is to maximize the novelty of
behaviors instead of the efficiency. However, abandoning the efficiency objective(s)
may be too radical in many contexts. In this paper, a Pareto-based multi-objective
evolutionary algorithm is employed to reconcile novelty search with objective-based
optimization by following a multiobjectivization process. Several multiobjectiviza-
tions based on behavioral novelty and on behavioral diversity are compared on a
maze navigation task. Results show that the bi-objective variant “Novelty + Fit-
ness” is better at fine-tuning behaviors than basic novelty search, while keeping a
comparable number of iterations to converge.

10.1 Introduction

Two recent papers [14, 21] introduced a new but radical approach to evolve robot
controllers: they propose to maximize the novelty of behaviors instead of the ef-
ficiency (the fitness) of these behaviors. This method, called “novelty search”, re-
lies on a user-defined distance between behaviors and the NEAT [22] evolutionary
framework to synthesize neural networks. It could have a least two benefits over tra-
ditional fitness-based evolutionary methods: (1) it could override the deceptiveness
of some fitness functions and (2) the evolutionary process may be more open-ended.

Abandoning the efficiency objective(s) may be too radical in many contexts and
especially in engineering processes – in which solutions to a problem are sought.
If the search space is very large, novelty search can run for a very long time be-
fore finding any interesting solutions. In such situations, the objective is often the
best guide to explore an interesting subset of the search space. Moreover, novelty
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search can not fine-tune results because the process is not aware that it should stop
the exploration and begin a local search. Even if near-optimal solutions are found,
the evolutionary pressure is kept towards finding individuals with a significantly
different behavior; however, when the evolutionary process has almost found an op-
timal solution, we can reasonably expect it to cover the last small steps without any
difficulty.

In this paper, a Pareto-based Multi-objective Evolutionary Algorithm (MOEA,
see [4]) is employed to reconcile novelty search with objective-based optimization.
Once defined a novelty objective and a fitness objective, the Pareto dominance rela-
tion can ensure that novel but inefficient candidate solutions will be selected, as in
novelty search, but also that efficient but less novel ones will be considered equally
interesting. As it will be demonstrated in this paper, this multiobjectivization – the
transformation of a single-objective optimization problem to a multiobjective prob-
lem – has the potential to overcome the previously described limitations of novelty
search.

To cope with the same limitations, an alternative to multiobjectivization is to
switch from novelty search to fitness-based search once a criteria is met. We re-
jected this approach for three main reasons: (1) such a method would require to
define an additional and hard to define switch criteria, (2) Pareto-based MOEA are
well-studied algorithms that are preferable to custom ones and, (3) a MOEA “auto-
matically” switches back and forth between fitness-based search and novelty search,
according the context (in effect, it follows both approaches at the same time, but also
all the trade-offs between them). From another point of view, novelty search is an
exploration procedure and fitness-based algorithms are an exploitation procedure.
Using a MOEA, we thus explicitly model the classic trade-off between exploration
and exploitation (see e.g. [23]).

Hence this paper explores one main question: can novelty search be combined
with objective-based search using a MOEA? Additionally, we also want to improve
the knowledge of novelty search and especially how it compares to diversity main-
tenance techniques and whether the NEAT encoding is required.

To that aim, we prolong the maze experiments described in the original nov-
elty search paper [14] by comparing them to our multi-objective method. We also
compare these results to behavioral diversity [17, 18], another multiobjectiviza-
tion [11, 13] that uses Pareto dominance to improve the exploration abilities of
evolutionary algorithms.

10.2 Related Work

10.2.1 Novelty Search

Novelty search relies on three main concepts:

• a distance between behaviors of robots instead of a distance between genotypes
as used in classical diversity preservation mechanism [8];
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• a novelty measure, based on this distance and an archive of previously encoun-
tered behaviors;

• the search for novel behavior instead of the optimization of a fitness function.

Lehman and Stanley [14] measured the novelty ρ(i) of an individual i by computing
the mean behavioral distance between i and its k nearest neighbors:

ρ(x) =
1
k

k

∑
j=0

db(x,μ j)

where k is a user-defined parameter and μ j is the j-th nearest neighbor of x with
respect to the distance db. The neighbors are computed using the current popula-
tion and an archive of all the previous novel individuals. An individual is added to
the archive if its novelty is above a minimal threshold ρmin. This last parameter is
adjusted dynamically during an experiment:

• if more than 2500 evaluations occurred and no new individual were added in the
archive, ρmin is multiplied by 0.95;

• if more than 4 individuals were added during the same generation, ρmin is multi-
plied by 1.05.

It is important to note that by using both the archive and the population, this nearest
neighbors computation combine a diversity preservation mechanism (maximizing
the novelty with respect to the current population) and a history-based search. It
should also be noticed that, from a computational point of view, the time to find the
k nearest neighbors grows continuously (at best logarithmically if a suitable data
structure is employed).

10.2.2 Multi-Objective Evolutionary Algorithms

Recent research in evolutionary computation proposed numerous algorithms to
simultaneously optimize several conflictual objectives without aggregating them
(see [4]). Most of them rely on the concept of Pareto-dominance and generate the
so-called Pareto Front:

Definition 10.1. A solution x(1) is said to dominate another solution x(2), if both
conditions 1 and 2 are true:

1. the solution x(1) is not worse than x(2) with respect to all objectives;
2. the solution x(1) is strictly better than x(2) with respect to at least one objective.

The non-dominated set of the entire feasible search space is the globally Pareto-
optimal set (Pareto front).

MOEA are designed to find an approximation of the Pareto-front, i.e. the set of all
the Pareto-optimal trade-offs. Most of the time, they implement two mechanisms:

• a selection procedure that ensures that non-dominated individuals have a selec-
tive advantage;
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• a diversity-preservation method designed to spread non-dominated individuals
along the whole Pareto front, that is to ensure that as many different trade-offs as
possible are explored.

A typical MOEA sorts individuals with respect to dominance. Non-dominated indi-
viduals may, for instance, be ranked 1, making them the most suitable for reproduc-
tion. Individuals which are only dominated by non-dominated ones may be ranked
2, and so on. The diversity on the Pareto front can be maintained using several ways
such as fitness sharing [7], crowding [5] or clustering methods [25].

10.2.3 Multiobjectivization

While MOEAs have been primarily designed to optimize several conflicting ob-
jectives, a growing trends in the MOEA community is to apply them to im-
prove the optimization of single-objective problems. The term “multiobjectiviza-
tion” [10, 11, 13] has recently been coined to describe this cast of a single objective
problem to a multiobjective one. Two paths can be followed to achieve this refor-
mulation: adding new objectives or decompose the original objective function.

The decomposition of the main fitness function was studied in evolutionary
robotics in a few papers, with very encouraging results. In [15] and [16], objec-
tives were designed for each sub-task of a complex problem. This resulted in a fully
automatic evolutionary process that can exploit sub-tasks without having to specify
their order and when to switch between them. Moreover, several hypothesis about
the usefulness of each sub-task were explored in parallel.

The addition of objectives were mostly investigated by adding a genotype-based
diversity objective to the fitness [1, 3, 12, 24]. All the published papers about this
topic concluded that adding this objective substantially improved the efficiency of
evolutionary algorithms. Following this idea, [18], [6] and [17] proposed to employ
a behavior-based distance to compute a diversity objective. It had, in particular,
been employed to evolve neural networks to compute a Boolean function [18] and
to evolve neuro-controllers for a mobile robot [6, 17]. According to this approach,
called behavioral diversity, instead of maximizing the fitness F(i), two objectives
have to be maximized using a MOEA:{

F(i)
B(x) = 1

|Pn| ∑ j∈Pn db(x, j) (10.1)

where Pn denotes the population at generation n, db(i j) the distance between the
behaviors of individuals i and j, similar to the one used in novelty search.

10.3 Method

10.3.1 Experiment

To draw a fair comparaison with the original novelty search, we used the same maze
navigation task as in [14]. In this task, a simulated mobile robot has to find a goal
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(a) (b)

Fig. 10.1 (a) Overview of the simulated mobile robot. Each arrow outside of the robot’s body
is a range sensor (e.g. a laser range finder) that returns the normalized distance to the closest
obstacle in that direction. The robot is also equipped with four pie-slice sensors that act as a
compass towards the goal. This compass can “see” through walls. The robot is moved by two
motors, the neural network setting the speed of each of them. (b) Map employed in this set
of experiments (size: 512×512 units). The circle denotes the starting position and the cross
denotes the goal.

zone in a maze by relying only on its three laser range sensors and a goal sensor
(see Fig. 10.1(a)).

The robot is controlled by an evolved neural network (the topology and the synap-
tic weights are evolved) with 7 inputs (3 range sensors and 4 inputs for the goal sen-
sor) and two outputs (the speed of the wheels). To keep our experiments simple and
repeatable, we employed a typical graph-based direct encoding for neural-networks
in which two kinds of mutations are possible1:

• structural mutation: addition/removal of a random neuron or a random connec-
tion;

• parametric mutation: change of a randomly chosen synaptic weight or a neuronal
bias; we used here a change in a set of 9 possible values (see appendix).

Cross-over was not employed. This encoding has been used in several previous
works [6, 17, 18] in which a basic encoding for neural-networks was needed.

This maze navigation task is interesting because maps with dead ends near the
goal can be easily designed. This makes the typical fitness function (the opposite
of the distance to the goal) very deceptive. Moreover, we can visualize the part of
the maze explored by the robots and thus understand how the search space has been
explored.

The map used in this paper (Fig. 10.1(b)) is similar to the “hard map” used
by [14], with a very deceitful cul-de-sac in the direction of the goal.

1 The NEAT [22] encoding could have been used, as in the original novelty papers. One
argument to use NEAT is its incremental nature: the search begins with simple neural
networks that are complexified during the evolution. This way of exploring topologies well
suits the concept on novelty search in which simple behaviors are first explored. However,
in this paper we would like to deal with the selective pressure with the simplest encoding
as possible. Positive results with a basic graph-based direct encoding would ensure that
novelty search does not critically depends on NEAT (which adds noticeably speciation
and cross-over).
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10.3.2 Fitness Function and Distance between Behaviors

The fitness F(x) of an individual i (to be maximized) is the opposite of the minimum
Euclidean distance to the goal obtained during the whole trajectory:

F(x) = −
t=T
min
t=0

∣∣∣∣pr(t)−pg
∣∣∣∣

where pr(t) is the position of the robot at time t, pg the position of the goal and T
the total time of one evaluation.

To describe the behavior of an individual x, we use the position of the robot at
the end of the experiment:

b(x) = pr(T )
The distance between individual i and j is then the Euclidean distance between their
position at time T :

db(i, i) =
∣∣∣∣b(i)−b( j)

∣∣∣∣
Many other distances between behaviors can be designed, such as measuring the
difference between trajectories or exploiting the Kolmogorov complexity [9]. We
will not explore these ideas in this paper in order to match the original novelty
search algorithm.

10.3.3 Variants

To evaluate the contribution of a novelty-based multiobjectivization and improve the
knowledge about novelty search, we investigate 6 variants of the experiment. Each
of them aims at answering a particular question about novelty search.

1. Control experiment.
Question: is this fitness really too deceptive for a classic evolutionary approach?

Maximize F(x)

2. Novelty search (basic).
Question: can we confirm/infirm the published results about novelty search [14]
without using NEAT?

Maximize ρ(x) =
1
k

k

∑
j=0

db(x,μ j)

where μ j is computed using the archive and the population.
3. Novelty search (no diversity).

Question: is it necessary to compute novelty using both the archive and the cur-
rent population?

Maximize ρ(x) =
1
k

k

∑
j=0

db(x,μ j)

where μ j is computed using the archive.
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4. Fitness + Novelty (MOEA).
Question: can novelty and fitness be reconciled with a MOEA?

Maximize

{
F(x)
ρ(x) = 1

k ∑k
j=0 db(x,μ j)

where μ j is computed using the archive and the population.
5. Fitness + Diversity (MOEA).

Question: how does novelty search compare to multiobjective behavioral diver-
sity [17]?

Maximize

{
F(x)
B(x) = 1

|Pn| ∑ j∈Pn db(x, j)

6. Fitness + Diversity + Novelty (no diversity) (MOEA).
Question: can diversity and novelty be combined with a multi-objective approach
instead of aggregating them?

Maximize

⎧⎨
⎩

F(x)
B(x) = 1

|Pn| ∑ j∈Pn db(x, j)
ρ(x) = 1

k ∑k
j=0 db(x,μ j)

where μ j is computed using only the archive.

10.3.4 Expected Results

We expect the control experiments not to converge at all because of the deceitful
local extrema. Following Lehman and Stanley [14], we can expect novelty search
to work well to go close to the goal. However, it should encounter some difficulties
to exactly reach the goal. “Novelty search + fitness” should overcome this problem.
This last setup should not be substantially faster than novelty search because the fit-
ness function does not provide a good guide to reach the goal. Nevertheless, adding
the fitness objective to novelty search should not decrease the convergence speed.
The three-objectives approach should be mostly equivalent to the two objectives
“fitness + novelty” variant. However, MOEA give better results with two objectives
than three [19, 20], consequently this variant may encounter some difficulties.

Given the good results observed with the addition of a diversity objective in pre-
vious experiments [6, 17, 18], we can reasonably expect a good convergence rate.
The convergence speed may be slower because less data are employed to guide the
search.

10.3.5 Experimental Parameters

To get statistically significant data, 30 runs of each variant were launched.
NSGA-II [5], a popular and efficient MOEA, was used to optimize the objectives.
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In the single objective case, it is equivalent to a tournament-based evolutionary al-
gorithm. The detailed parameters of the direct encoding are available in appendix.

To compute the novelty, we used k = 15 (the same value as [14]) and ρmin = 10.
Population size was 200 and each run lasted 1000 generation; put differently, our
budget was of 200000 evaluations.

10.4 Results

10.4.1 Average Fitness

Figures 10.2 and 10.3 show the average (over the 30 runs) best fitness for each
variant.

The single objective control experiments converged to a fitness of 60 that cor-
responds to the distance between the main dead-end and the goal. This means that
most runs were trapped in the local maximum (20% of them found a controller that
managed to drive the robot near the goal, see section 10.4.2).

Novelty search and multiobjective novelty search (“fitness + novelty”) required
about 200 generations to get all the runs close to the goal. Novelty search was
slightly faster but only the multiobjective variant is able to reach the optimal value.
This difference can be easily spotted on Fig. 10.2(b), which displays a zoom on the
high fitness values.
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Fig. 10.2 Average maximum fitness in the population for each generation and for each variant
(30 runs).
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Fig. 10.3 Zoom of figure 10.2 on the best fitness values: the novelty-based multiobjectiviza-
tion (fit + nov.) get the optimum fitness while the basic novelty search get close to it but never
reach it.

If novelty is computed using only the archive, novelty search still converges a lot
faster than the control experiment but it requires significantly more generations to
converge. Surprisingly, it is also more noisy, suggesting that individuals close to the
goal are often lost from the current population in favor of more novel ones. Last,
the three objectives approach lead to results very similar to those obtained with the
multiobjectivization “Novelty + Diversity”.

10.4.2 Convergence Rate

Considering that a run “converged” when one robot get at less than 10 units to the
goal (the optimum is 3 units in these experiments; the choice of 10 is here related
to ρmin in novelty search), the convergence rate of each variant can be analyzed
(Fig. 10.4 and Fig. 10.5). 29% of the control experiments (fitness only) converged in
spite of the attractive local maximum. Nevertheless, 100% of the other experiments
converged in less than 1000 generations (200000 evaluations). Novelty search and
multiobjective novelty search are the fastest to converge while substantially more
generations are needed for the novelty search variant that uses only the archive.

If we count as converged only the experiments that reach the optimum fitness
(−3, Fig. 10.4(b)), only the novelty-based multiobjectivization runs get a 100% con-
vergence rate whereas 90% of the novelty search runs converged.

To understand if the observed difference are statistically significant, the average
generation to converge (F(i) > −10) has been computed (table 10.1). Unpaired
Student T-tests (table 10.1) show that these results are statistically significant except
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Table 10.1 Average generation to converge (i.e. F(i) > −10) and results of Student’s T-test.
Each generation is 200 evaluations.

Nov. fit.+nov. fit.+div. Nov.(a.o) f.+n.+d.

Aver. gen. 76 103 170 205 123
Std. dev. 26 53 156 125 129
T-test
nov. p = 1.0 p = 0.01 p < 0.01 p < 0.01 p = 0.05
fit.+nov. p = 0.01 p = 1.0 p = 0.03 p < 0.01 p = 0.34
fit.+div. p < 0.01 p = 0.03 p = 1.0 p = 0.34 p = 0.20
nov.(a.o.) p < 0.01 p < 0.01 p = 0.34 p = 1.0 p < 0.02
f.+n.+d. p = 0.05 p = 0.34 p = 0.20 p < 0.015 p = 1.0

between the “diversity + fitness” and the “novelty (archive only)” variants and be-
tween “fitness + diversity + novelty” and most of the other variants. Despite a small
difference in average generation of convergence (25 generations/500 evaluations),
novelty search appears statistically faster than the multiobjective variant. This small
difference is easily understood by taking into account that, in the multiobjective
variant, a part of the population is kept only because of its good fitness; the decep-
tiveness of the fitness makes these individuals almost useless to the algorithm. This
drawback may be compensated by the better fitness obtained with the multiobjective
variant (Fig. 10.2(b)). Results obtained with novelty search and multiobjective
novelty search are of the same order of magnitude when they are compared to the
“fitness only” runs: in both cases, only a few generations are required to converge.



150 J.-B. Mouret

A more complex problem, with a larger search space, could allow to draw a real
efficiency distinction between these two approaches.

The diversity multiobjectivization was significantly slower to converge than the
novelty variants. However, its computational cost is substantially lower than novelty
search. To compute the diversity, only N2 distances (N being the size of the popula-
tion) need to be computed. With novelty search, the archive is an order of magnitude
larger than the population (in our experiments, the typical archive size at the end of
the experiments was about 1500 whereas the population size was 200).

10.4.3 Exploration

Figure 10.7 depicts the position at the end of the experiment of each evaluated un-
til the first one reaches the goal. The first surprising observation is that, in all runs
(successful or not), only the bottom left part of the maze has been explored. This
can be explained by understanding where lies the difficulty of this task; two behav-
iors are the key to reach the goal: turning towards the right at the beginning of the
experiment and efficiently avoiding obstacles. The turn of the bottom right is diffi-
cult to negotiate so if an individual manages to overcome this part of the maze, it
is likely able to also come close to the goal. Since the fitness rewards the minimum
distance to the goal during the whole experiment, robots don’t have to adjust pre-
cisely their trajectory to get above the convergence threshold (10 units), they only
have to wander near the goal.

The second surprising observation is that the explored points are not as different
as suggested by the convergence rates. The points may be more evenly distributed
when a novelty objective is used but the difference is not obvious. The multiobjec-
tivization “fitness + novelty” (Fig. 10.7(b)) put a clear emphasis on the top left part
of the maze, near the goal but in the dead-end, especially if it is compared to the
original novelty search (Fig. 10.7(e)). However, it seems hard to predict which run
will succeed using only the explored points.

This similarity may be interpreted in term of selective pressure: the key to con-
verge is not to explore the good points but to recognize which point could lead to the
solution. In the control experiment (Fig. 10.7(a), the robots that end at the bottom
right part of the maze will be ranked last, because they are far away from the goal.
However, with a novelty objective, the same behavior will be ranked first because
there is almost no previous behaviors in this area. One may wonder why there is
not many points in this part of the maze in the novelty experiments compared to the
left part. A possible explanation is that such behaviors are hard to obtain, because a
small variation of an individual with this behavior may more likely drive the robot
in a wall near the starting point than in the same area. Consequently, it is only by
persistently trying to modify the bottom right individuals that a successful individ-
ual can emerge. To test this hypothesis, one should evaluate how many children of
such individuals reach the same area as their parents.
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Fig. 10.7 (top) Position of each individual present at each generation until the first one
reaches the goal (i.e. the robot is at less than 10 units from the goal), for a typical run of
each variant. The control experiment (fitness only) did not converge so the first 200 gen-
erations are displayed. The color of a point denotes the last generation the corresponding
individual has been part of the population. (bottom) Maximum fitness with regards to the
generation number. The gray zone corresponds to the number of generations displayed in the
top diagram.
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10.5 Conclusion and Discussion

This paper investigated several ways to combine novelty search and objective-based
search using a multiobjectivization. These methods were compared to behavioral
diversity, a multiobjectivization that is also based on a distance between behaviors
of candidate solutions.

The experimental results show at least that:

• novelty search is well adapted to the investigated deceptive task (this confirms
the previously published results [14]);

• adding a fitness objective to novelty search does not harm the efficiency of the
search;

• adding a fitness objective to the novelty objective allows to fine-tune the result
more efficiently than with the original novelty search algorithm;

• diversity-based multiobjectivization requires more generations to converge but
also lead to successful results in a few hundred of generations, whereas its com-
putational cost is lower than novelty search;

• a straight-forward graph-based encoding leads to similar results than NEAT in
this setup (at least qualitatively).

Overall, the successful experiments suggest that the difficulties encountered to
evolve neural networks to solve complex tasks, especially observed in robotics, may
currently be more a problem of good selective pressures than of bad encodings.

A more complex task, with a larger search space and/or with a less obvious dead-
end, is needed to further compare novelty search to the multiobjectivizations in-
troduced in this paper. The guide provided by the fitness in the maze experiment
described here is deceptive by design but the success of evolutionary algorithms
proves that fitness can be a good guide towards efficient solutions. We believe that
the proposed multiobjectivization can combine the best of both worlds by using
fitness when it is a good guide and novelty search when it is not.

The computational cost of novelty search compared to the one of behavioral di-
versity is a significant drawback of novelty search. One of the first idea to reduce
the algorithmic complexity of novelty search is to efficiently structure the archive
to compute the nearest neighbors as fast as possible. The typical structure used in
computer graphics to this task is the kd-tree [2]; future work should investigate this
idea. Another approach is to keep the size of the archive bounded by periodically
removing the least significant elements.
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Parameters and Source Code

• MOEA: NSGA-II
• Population size: 400
• Neural network (direct encoding):

– available weights / bias:{−2.0,−1.5,−1.0,−0.5,0.0,0.5,1.0,1.5,2.0
}

– proba. of weight/bias change (for each value): 0.1
– number of inputs/outputs: 7/2
– min./max. number of neurons (random generation): 10/20
– min./max. number connections (random generation): 20/45
– probability of adding/deleting a connection: 0.15/0.25
– probability of changing a connnection: 0.1
– probability of adding/deleting a neuron: 0.025/0.025
– activation function for neurons:

yi = ϕ
(
∑ j wi jx j

)
where ϕ(x) = 1

1+exp(b−7x)

• source code: http://www.isir.fr/evorob_db



Chapter 11
Embedded Evolutionary Robotics: The
(1+1)-Restart-Online Adaptation Algorithm

Jean-Marc Montanier and Nicolas Bredeche

Abstract. This paper deals with online onboard behavior optimization for a
autonomous mobile robot in the scope of the European FP7 Symbrion Project. The
work presented here extends the (1+1)-onlinealgorithm introduced in [4]. The (1+1)-
online algorithm has a limitation regarding the ability to perform global search when-
ever a local optimum is reached. Our new implementation of the algorithm, termed
(1+1)-restart-online algorithm, addresses this issue and has been successfully exper-
imented using a Cortex M3 microcontroller connected to a realistic robot simulator
as well as within an autonomous robot based on an Atmel ATmega128 microcon-
troller. Results from the experiments show that the new algorithm is able to escape
local optima and to perform behavior optimization in a complete autonomous fash-
ion. As a consequence, it is able to converge faster and provides a richer set of relevant
controllers compared to the previous implementation.

11.1 Introduction

Let’s imagine an autonomous mobile robot tailored for exploration. This robot could
be dropped in a wide variety of unknown environments, from a dense tropical forest
to an exhausted gold mine abandoned 100 years ago. Even before starting to explore
its environment, this kind of robot would need to be able to adapt to its immediate
surrounding (i.e. figuring out what shape and/or what behavior is most fitted to sus-
tain its energy level). In this set-up, the robot control architecture is first driven by
the specific, unpredictable, properties of the environment.

This paper focuses on the design of a control architecture for an autonomous
mobile robot in an unknown environment. For this type of set-up, design approaches
can range from hand-crafted reactive behavior [3] to optimal control approaches [9].
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The chosen approach depend on the problem to be solved. In the aforementionned
situation, it is difficult, if not impossible, to a priori specify the environment and
the task at hand. This implies that most of the existing approaches are not fitted.
This is a typical problem in Robotics that may be addressed with learning and
optimization[10, 21]. Moreover, we address the problem where little is known about
the objective function. This means that the task is poorly described as a single ef-
ficiency measure (e.g. minimize energy consumption, maximize exploration, etc.),
which is often delayed and noisy.

In this scope, Evolutionary Robotics provides optimization algorithms based on
Evolutionary Algorithms. Evolutionary Robotics [9, 16] (”ER”) takes inspiration
from nature by combining two partly antagonist mechanisms. On the one hand, se-
lection of the most fitted individuals tends to ensure convergence of the algorithm
toward the most fitted solution. On the other hand, variation over the properties
of selected individuals through mutation and recombination tends to provide new
original solutions. The general framework of these algorithms, termed Evolutionary
Algorithms (”EA”), has been applied to a wide variety of problems [6]. In Evolu-
tionary Robotics, EA is used as an optimizer for Artificial Neural Network archi-
tectures. Artificial Neural Network are used to control autonomous robots in a wide
variety of task, from navigation (non-linear task) to swarm coordination (coopera-
tion task)1.

In ER, in order to compute the quality (or fitness) of a given genotype, the cor-
responding phenotype is created (e.g. an artificial neural network for robot control
with optimized weights). This phenotype is evaluated in the environment to assess
the performance of the resulting robot behavior. This evaluation methodology, is
used on a population of genotypes. The (usually) better genotypes are selected and
go through a variation process so as to renew the population. This process is then it-
erated until a termination criterion is matched (e.g. maximum number of evaluation,
performance, etc.). This approach is usually referred as off-line ER.

While off-line ER can be used to address non-linear control problems (or poorly
defined objective function), it fails to provide a continuous autonomous optimization
process. This is because control over the initial conditions for genome evaluation is
required. Therefore, either costly human interventation or the use of simulation [13]
is needed. Moreover, evaluation of a genome requires reliability, ie. the fact that one
evaluation session must be relevant with regards to the problem at hand.

Embodied ER, introduced in [8], is a sub-field of ER that precisely addresses the
problem of changing environments without constant human manutention. In this set-
up, the Evolutionary Algorithm runs within the robot (or group of robots), acting as
an embedded optimization algorithm. Embedded is defined as both online (the adap-
tation/learning process never stops) and onboard (the optimization algorithm and
evaluation process are part of the control loop). To date, only few, but promising,
works have adressed this topic: [7, 11, 12, 14, 15, 17, 20, 23, 24, 25, 26]. Run-
ning an embedded EA within a single robot provides strong advantages regarding

1 See [10] for an introduction.
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continuous adaptation and autonomy with regards to a human supervisor. However,
this also emphasizes some specific issues:

• Unknown fitness landscape: the typical fitness landscape in ER is both multi-
modal (many local minima) and partly neutral (many close genotype perform in
a similar way). One reliable assumption (named Strong Causality) is that small
variations in the genotypic space implies small variations in the fitness value [18].
A direct consequence is that any reliable algorithm should be able to perform
both local search (to exploit this strong causality property) and global search (to
avoid the pitfall of multi-modality);

• Evaluation reliability: the environmental condition vary over time depending on
the robot location. Therefore, performance assessment (ie. fitness) of one genome
might be completely different from one starting location to another (e.g. starting
in a narrow bridge or starting in the middle of an empty arena). This is the prob-
lem of noisy fitness evaluation. A great number of independant evaluation are
required to assess for the ”true” performance of one genome;

The (1+1)-online adaptation algorithm described in [4] has been shown to address
these issues. Its ability to perform continuous adaptation efficiently has been demon-
strated in the same paper2 The (1+1)-online algorithm is described as a genetic
algorithm based on the (1+1)ES [19]. This algorithm uses only two genomes: a
champion and a challenger. Some specific properties are employed so as to address
online adaptation:

• Local and global search : A mutation operator is used to produce a child from
a parent. This mutation operator is able to do both local and global search. A
gaussian distribution N(0,σ) is used. The switching between local and global
search is done by modifying the value of σ . If this value is low, few modifications
will be done to the genome, and the search will remain local. If the value of σ is
high, the genome will be strongly modified, and the research will go global. On
one hand, the value of σ is set to a low value when a new champion is found.
This ensure a local search around a known good to solution in order to improve
it. On the other hand, the value of σ is increased when the challenger is assessed
worst than the current champion. This second mechanism ensure that the search
will go more global if the current champion is in a local optima.

• Re-evaluation : Individuals may get lucky or unlucky during evaluation depend-
ing on the envrionment at hand. This is a typical problem related to fitness noise.
An efficient solution is to reevaluate individuals, as proposed by Beyer [2].The
reevaluated fitness overwrites the fitness of the champion. This is done to pro-
mote individuals with a low variance in their performances. One of the drawback
of the overwriting method is that good individuals could be replaced by inferior
but lucky individuals. If an individual is lucky during its first evaluation but has
a low mean fitness it will not survive next-reevaluations. As a consequence, the
evolutionary algorithm won’t be stuck with bad individuals.

2 The demonstration was done on a single e-puck robot in Player/Stage, running a Cortex
M3 micro-controller.
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• Recovery : This work assumes the evolutionary algorithm should run without
human intervention. It implies no repositioning of the robot after each evalua-
tion of one individual. For example, a genome may be evaluated starting from
completely different initial conditions, such as in front of a wall or in a tight
corner. To avoid penalization of good genomes, a recovery period is introduced.
During this time, the robot behavior is not considered for evaluation (ie. ”free
of charge”), which favors genomes that display good performance whatever the
starting position.

In this paper, we present an analysis of the global search feature of this algorithm.
From this analysis, we identify a problem that negatively impacts the search. The
basic idea is that the previous implementation of the (1+1)-online algorithm re-
strains, possibly drastically, the search space considered. This imply a limitation in
the efficiency of the global search mechanism. This problem is described and a new
algorithm, termed (1+1)-restart-online is devised. Preliminary experiments in sim-
ulation are described and show that the new algorithm actually performs a larger
global search. Therefore the new algorithm, avoid the pitfall of getting stuck in a
local optima for a long time. Moreover, this paper describes the implementation and
successful evaluation of this new algorithm on a real robotic hardware set-up, a four
wheels Bioloid mobile robot.

11.2 Extending the (1+1)-Online EA

This section shed some light on an intrinsic limitation of the (1+1)-online algo-
rithm. Under very specific conditions (multi-modal objective function with few or
no amount of noise), the adaptation process is slowed down. Then, an extension
of the previous algorithm is described. This extension retains the properties of the
original algorithm, and addresses the problem identified.

11.2.1 Limits of (1+1)-Online

In [4], the efficiency of the (1+1)-online algorithm has been shown. One of its main
properties is to rely on a tunable gaussian mutation operator σ to switch between
local and global search (see section 11.1). The update scheme of σ seems to be rele-
vant in most cases, but it has a major drawback : only regions with better performing
genomes can be considered. Figure 11.1 illustrates the shrinking effect of the search
region considered. On this figure the fitness values of all genomes is shown (for the
sake of simplicity, we assume this is a minimization task for a one dimension only
problem). In this example, the current champion may be replaced only by a chal-
lenger which is under the dashed line. This holds for both local and global search.
In this typical set-up, this isn’t a relevant strategy as the probability to randomly
jump to the relevant region is very low. In comparison, it is more appealing to pick
a genome from which local search may slowly but surely, lead to the best genome.
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Fig. 11.1 Deceiving fitness landscape (minimization task).

The modification of σ is a good candidate to find new individuals. When it is
increasing the search goes more global. But at some point the search area is too
constrained. It becomes more interesting to simply restart the whole optimization
process in order to obtain an unconstrained global search. To some extent, this prob-
lem may not occur in all situations. Firstly, this problem would never occur when
optimizing a convex objective funtion, which is unfortunately quite scarce in this
set-up. Secondly, a very noisy objective function may cope with this problem. That
is because any good performing individual may eventually be re-evaluated with a
low fitness value. Therefore the whole search space will be considered all over again
– this was indeed the case in the experiments shown in [4].

11.2.2 The (1+1)-Restart-Online Algorithm

Escape from local minimum is a classical problem for the global search algorithms,
and has been studied in different fields. A popular method is the restart strategy as
used in some state of the art Evolution Strategies algorithm [1]. With this approach,
the algorithm is restarted, either with similar or different parameters, whenever the
search is identified as stalled. This approach provides interesting results on multi-
modal problems as it ensures global convergence (ie. the algorithm tends to explore
the whole search space through random search, as it is exactly what restarting is
about).

In order to implement restart in the (1 + 1)− restart − online algorithm, the
restart criterion has to be considered. Options are mostly limited to the two
following:

• Monitoring the value of σ : If σ reaches a maximal predefined value, a local
minimum has been attained and the search is going global. To be sure that the
algorithm will never be blocked in a local minimum, it can be restarted as soon
as σ reaches its maximal value.
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• Limiting the number of champion reevaluations: Whenever a champion
isn’t replaced, no better individuals have been found in its neighborhood. Thus,
surviving many re-evaluations assesses the robustness of the champion with
regards to both other challenger genomes and to the environment. Therefore, a
high number of re-evaluations can be used to detect a good performing genome,
but also that the search is stalled.

However, some issues remain to be addressed. On the one side, relying on the value
of σ alone to restart the algorithm is too constraining: the maximum value for σ
may be reached even if the champion was not reevaluated yet (ie. the champion
may be unreliable). Moreover, even if the current champion has been successfully
reevaluated while σ was increasing, it may still be improved by mutations. On the
other side, if the champion survives many reevaluations, it is a good and reliable
individual that will be hard to replace.

As a consequence, our implementation is to consider the number of reevaluations
as a restart criterion in the (1+1)-restart-online algorithm described by algorithm 1.
Hence, whenever restart is triggered, the algorithm is re-initialized, storing the cur-
rent champion in a hall-of-fame archive, and setting a random genome as the new
starting point. In the long term, this tends to converge towards a uniform sampling
of the genotypic space.

11.3 Experiments and Results

This section presents the experimental set-up used to evaluate the performance of
the (1+1)-restart-online algorithm. Results and preliminary experiments are also
described and discussed.

11.3.1 Hardware Set-Up

The experimental evaluation has been conducted using a popular robotic microcon-
troller: a Cortex M3 board with 256 kb memory. The Cortex board runs a robot
simulated by Symbricator3D, a physics-based 3D simulator developped within the
Symbrion project and based on delta3d3 (An Open Source game engine which can
be used for physics-based simulations). After N time-steps, the evaluation of the cur-
rent controller is complete. The controller parameters are replaced with values from
a new genome. As described in the previous section, the new genome is evaluated
from the location the previous controller left it in.

Figure 11.2 illustrates the experimental set-up with a Cortex board connected to
the computer running the simulator based on delta3d. The simulated robot is equiped
with two screws and 8 distance sensors (two per side). Details of the shape of the
robot can be seen in figure 11.3. The maze environment and the cortex board are
shown in figure 11.2.

3 http://www.delta3d.org/
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Algorithm 1. The (1+1)-RESTART-ONLINE evolutionary algorithm.
for evaluation = 0 to N do

if random() < Preevaluate then
if reevaluationcount < reevaluationmax then

Recover(Champion)
FitnessChampion = RunAndEvaluate(Champion)
reevaluationcount = reevaluationcount +1

else
σ = σmin
Champion = RandomGenome()
FitnessChampion = 0
Challenger = RandomGenome()
FitnessChallenger = 0
reevaluationcount = 0

end if
else

Challenger = Champion + N(0,σ) {Gaussian mutation}
Recover(Challenger)
FitnessChallenger = RunAndEvaluate(Challenger)
if FitnessChallenger > FitnessChampion then

Champion = Challenger
FitnessChampion = FitnessChallenger
σ = σmin

else
σ = σ ·2

end if
end if

end for

The robot is controlled by a simple perceptron with 9 input neurons (8 IR distance
sensor values and one bias neuron) and 2 output neurons (translational and rotational
velocities, which are combined to give actual actuator values).

Fig. 11.2 The experimental set-up: the Cortex M3 board connected to Symbricator3d. The
numbers show the reference starting positions for validating the Hall of Fame.
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Fig. 11.3 Details of the Symbricator robot. (a) robot design (b) position of distance sensors
(from above).

11.3.2 Experimental Set-Up

The objective function used is inspired from a well-known and classic fitness func-
tion first described in [16]:

f itness(x) =
n

∑
t=0

Vt ∗ (1−Vr)∗ (1−DM)

where Vt is the translational speed, Vr is the rotational speed, and DM the value of the
most active distance sensor. All values are normalized between 0 and 1. More details
about the parameters setting are given in appendix I. Distance sensors returns higher
value when they are close to a wall. Therefore, individuals achieve high fitness value
while moving fast and forward and avoiding walls.

The (1+1)-restart-online algorithm has been evaluated with a restart parameter
fixed at 7 reevaluations. In order to compare the true performances of individuals
obtained with (1+1)-online and (1+1)-restart-online, one Hall-of-Fame per experi-
ment is computed from the results of the simulations. A Hall-of-Fame contains the
best individuals (ie. the genome champions) from a given experiment. Champion
genomes are ranked thanks to the sum of the re-evaluated fitness obtained dur-
ing the experiments (ie. the larger the fitness value and the larger the number of
re-evaluations, the better genome).

As the adaptation process could go on forever, the maximal number of evalu-
ations is fixed to 600 for both experiments. Afterwards, the following experimen-
tal protocol is used to compare the best individuals from the Hall-of-Fames: every
champions from the two Hall-of-Fames are evaluated from 6 predefined starting
positions4 shown in figure 11.2 and each evaluation lasts 120 time steps (ie. long
enough to evaluate the quality of behaviors in a wide range of situations). The mo-
tivation of this validation protocol is to provide fair comparison between genomes.

4 The starting position number 4 is an extreme case where the robot is tested in a hard
environment never seen before.
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11.3.3 Experimental Results

Figure 11.4 shows the course of evolution during a critical run of the (1+1)-online
algorithm. Evaluations are denoted on the x-axis. The y-axis is divided in two parts.
The top half shows the fitness of the current champion in green dashed line. The
bottom half shows the number of re-evaluations of the current champion (down-
wards; the lower the line, the higher the number of re-evaluations). The red vertical
markers near the x-axis indicate whenever a new champion is employed, i.e., when
the challenger outperforms the current champion. During this run a good champion
has been found at evaluation 180, and hasn’t been replaced until evaluation 538 (af-
ter 64 reevaluation). Due to the use of another simulator this problem hasn’t been
detected in [4]. Differences between the two simulators are important with regards
to noise between evaluations. This is a typical illustration of the problem identified
in this paper with the original (1+1)-online algorithm: a less noisy set-up is prooved
to be deceitful for the original algorithm.

Figure 11.5 shows evolution dynamics of a run of the (1+1)-restart-online algo-
rithm. On this run the two main features of this algorithm – reevaluation and restart
– are displayed. The reevaluation procedure is used at evaluation 132 on a lucky
individual found at evaluation 126. After this reevaluation the champion obtain a
low fitness and is soon replaced. In this run the restart procedure is used at eval-
uation 368, to replace a robust champion. According to preliminary experiments,
the champion of evaluation 368 could still be improved. This imply that the restart
strategy could be triggered later.

Fig. 11.4 Evolutionary dynamics of a critical run of the (1+1)-online algorithm.
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Fig. 11.5 Evolutionary dynamics of a run of the (1+1)-restart-online algorithm.

11.3.4 Hall-of-Fame Analysis

As described in section 11.3.2, two Hall-of-Fames were extracted from the results of
the experiments. Each Hall-of-Fame is computed out of 14 independant runs of 600
evaluations. There are 1691 individuals in the Hall-of-Fame obtained by running the
(1+1)-online algorithm. In comparison, 2158 individuals are in the Hall-of-Fame
obtained by running the (1+1)-restart-online algorithm. This difference is a desired
effect of the (1+1)-restart-online algorithm. The restart feature favors exploration by
saving unnecessary reevaluations of champions whenever the algorithm is stalled.
As a consequence, the (1+1)− restart −online provides faster (in term of number
of evaluation) the same number of Hall-of-Fame indivudals.

Performances of the best individuals generated by the (1+1)-restart-online al-
gorithm and by the (1+1)-online algorithm are compared. As described in section
11.3.2, every individuals from the Hall-of-Fames are evaluated from six pre-defined
positions (i.e. to provide comparable test cases). For each individual the mean per-
formance obtained from those 6 positions has been computed. The figure 11.6 re-
ports the distribution of individuals with respect to their fitness. The x-axis shows
the different fitness obtained during the validation of the 628 best individuals of each
Hall-of-Fame. The y-axis shows the number of individuals with the same fitness. It
is clear that there is no loss of efficiency with the (1+1)-restart-online algorithm.

Therefore, the (1 + 1)− restart−online algorithm is as reliable as the (1 + 1)−
online and faster - which is a key feature whenever ressources are limited.
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Fig. 11.6 Fitness density of the best individuals produced by the (1+1)-online algorithm, and
the (1+1)-restart-online algorithm.

11.3.5 Real Robot Experiment

The (1+1)-restart-online has been tested on an autonomous four-wheels Bioloid
robot. The Bioloid kit provides robotic parts and an ATmega128 microcontroller
with 128Kb of memory5. Figure 11.7 shows the robot used in this work. It is equiped
with 4 motors, and 7 distance sensors. The 7 red arrows in figure 11.7 shows the ori-
entations of the distance sensors. The controller of the robot is a feedforward neural
network with 8 inputs (7 distance sensors and 1 bias) and 2 outputs (left and right
motor velocities). The two left wheel velocities are controled by the same output
neuron, and the two right wheel velocities by the other output neuron. The fitness
function used is the same as the one described in section 11.3.2. Each individual
is recovering during 60 time step (7 seconds) and is evaluated during the 60 fol-
lowing time step (7 seconds). As in section 11.3.2 the restart threshold is fixed to
7 re-evaluations. The whole experiment lasted 1 hour and 10 minutes, which was
more than sufficient to get examples of robust behaviors.

Figure 11.7 (b) shows the experimental set-up.
The algorithm provides similar results to what has been already shown in the

previous experiment. The behavioral traces of the first two best evolved controllers
from the Hall-of-Fame are illustrated in figures 11.8 and 11.9. These two control
architectures efficiently avoid walls with simple yet efficient behaviors. The best
controller (figure 11.8) is faster when moving in straight line, and displays sharper

5 http://www.atmel.com/dyn/products/
product card.asp?part id=2018

http://www.atmel.com/dyn/products/product_card.asp?part_id=2018
http://www.atmel.com/dyn/products/product_card.asp?part_id=2018


166 J.-M. Montanier and N. Bredeche

Fig. 11.7 (a) The robot and the directions of the 7 distance sensors, (b) the environment.

Fig. 11.8 Example of behavior for the best evolved controller.

Fig. 11.9 Example of behavior for the 2nd best evolved controller.

turn trajectories. Other genomes have been empirically evaluated (not shown here)
and display the same kind of behaviors as these two, with minor differences con-
cerning the sharpness of the turn and/or the speed of the robot.

An important feature of our algorithm is also demonstrated here : the online na-
ture of the algorithm makes it possible to easily avoid the reality gap [13]. Indeed,
the algorithm needed exactly the same amount of work from the experimenter in
simulation and reality. Moreover, neither human intervention nor external remote
control was ever needed during the whole experiment with the real robot. Of course,
this assumption must be taken with care as the fitness considered here is a rather
simple one, chosen to focus on the validation of the algorithm features rather than
on its ability to solve a complex problem.
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11.4 Conclusion and Perspectives

In this paper, the problem of online onboard behavior adaptation for a single au-
tonomous mobile robot has been adressed. Precisely, the (1+1)-online adaptation
algorithm presented in [4] is studied. A limitation of this algorithm is identified and
analysed regarding its ability to perform global search in the space of possible so-
lutions. A new algorithm is described, termed (1+1)-restart-online. It is shown to
efficiently address the trade-off between local and global search, by relying on a
restart procedure whenever the algorithm is stuck in a local optimum. This restart
procedure makes it possible to address a previous design flaw by relaxing some of
the required constraints over the search space considered.

This algorithm has been evaluated both with real robotic hardware connected to
a robot simulation as well as with a real robot. Results obtained have demonstrated
that this new algorithm is actually able to provide a wider exploration of the search
space, making it possible to visit many more local optima than previous implemen-
tation. Therefore, the probability to end up in a global optimum is increased, but also
the diversity of obtained candidate solutions is increased. Moreover, this algorithm
can be straight-forwardly used within a real robot in a complete autonomous fash-
ion, providing a key-feature to relieve the expert from unnecessary and fastidious
control over the experiment.

Perspectives from this work first concerns a careful study of the experimental
parameters and have already been started in [5]. Also, an in-depth analysis of the
distribution of the performance from all individuals in the Hall-of-Fame should be
conducted. Moreover, the new restart feature in the algorithm must be carefully
studied as there exists a possible trade-off in balancing the previous global search
strategy and the new restart strategy. This trade-off can be reformulated as favoring
global search over avoiding re-convergence towards already visited local optima.
As a consequence, choosing between the two strategies clearly depends on both the
shape of the fitness landscape and the actual local minimum.

Future works will also address the problem of noisy fitness evaluation by extend-
ing the (1 + 1) stragegy into a variation of more complex strategies, from build-
ing challenger genomes out of family of successful genomes or distribution-based
estimation of the relevant genotypic regions to explore (as in estimation of distri-
bution algorithms). This roughly means that a reservoir, or a distribution, of cham-
pion genomes will be considered rather than only a single champion genome in
order to build new candidate genome to be evaluated. Also, the extension towards
multi-robots is an interesting perspective: one may consider the current adaptation
algorithm to act within one island of a distributed evolutionary algorithm. In this
set-up, each robot/island runs an embodied evolutionary adaptation algorithm. Ad-
ditionally, the best genomes may be exchanged from one island to another, as in the
well-known GA island model [22].
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Implementation Details of the (1+1)-Online Algorithm

• Each individual runned during 120 time step (60 time step of recovering and 60
time step of evaluation).

• 600 evaluations per experiments.
• 14 runs with (1+1)-online algorithm and 14 runs with restart (1+1)-online algo-

rithm.
• random individual at a random position, at the beginning of a run.
• Preevaluate is set to 0.2.
• σ initial value is set to 1 and may range from 0.01 to 4.
• genes value in [-4,+4].



Chapter 12
Automated Planning Logic Synthesis for
Autonomous Unmanned Vehicles in Competitive
Environments with Deceptive Adversaries

Petr Svec and Satyandra K. Gupta

Abstract. We developed a new approach for automated synthesis of a planning logic
for autonomous unmanned vehicles. This new approach can be viewed as an auto-
mated iterative process during which an initial version of a logic is synthesized and
then gradually improved by detecting and fixing its shortcomings. This is achieved
by combining data mining for extraction of vehicle’s states of failure and Genetic
Programming (GP) technique for synthesis of corresponding navigation code. We
verified the feasibility of the approach using unmanned surface vehicles (USVs)
simulation. Our focus was specifically on the generation of a planning logic used
for blocking the advancement of an intruder boat towards a valuable target. Devel-
oping autonomy logic for this behavior is challenging as the intruder’s attacking
logic is human-competitive with deceptive behavior so the USV is required to learn
specific maneuvers for specific situations to do successful blocking. We compared
the performance of the generated blocking logic to the performance of logic that
was manually implemented. Our results show that the new approach was able to
synthesize a blocking logic with performance closely approaching the performance
of the logic coded by hand.

12.1 Introduction

Development of increased autonomy for unmanned vehicles to successfully fulfill
ordinary mission tasks, such as navigation between two locations while avoiding
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dynamic obstacles, is still considered to be a challenge. Handling all the variations in
the encountered environments requires writing and extensive tuning a large amount
of lines of code by human programmers. Yet the real difficulty comes when the
unmanned vehicle has to autonomously face human-competitive adversary utilizing
deception. This truly challenging scenario is typical for a combat mission where
even a single mistake in the decision of the vehicle can have serious consequences.

Computational synthesis (CS) [1] deals with the problem of how to automati-
cally compose and parametrize a set of functional building blocks into increasing
amount of modules that are further organized into a hierarchical solution structure
with the desired functionality. This is in contrast to classical optimization in which
the number and structure of modules and parameters being optimized is known in
advance. The rapid growth of CS in the recent years can be accounted to increas-
ingly affordable computational power and continuing advances in machine learning
and simulation techniques.

For many years since its original inception, Genetic Programming (GP) [2, 3]
has been emerged as an invention machine for automated synthesis of controllers
that are simpler and more efficient than those engineered with other standard de-
sign methods. The random exploration feature of this technique allows generating
creative human-readable solutions in contrast to human developers who are often
limited by constraints of standard engineering methods. GP as one of the robust
evolutionary techniques has been used for automatically generating computer pro-
grams in various domains. These programs usually have a tree structure and are
generated using an algorithm similar to the traditional genetic algorithm (GA) [4].
In literature, there are many successful GP applications to numerous problems from
different domains [5] including robotics, optimization, automatic programming, ma-
chine learning, etc. In robotics, GP is used as a methodology that uses evolutionary
algorithms to automatically synthesize controllers and body configuration for au-
tonomous robots. Most of the controllers were evolved for behaviors as obstacle
avoidance [6, 7], wall-following [8], line following [9], light seeking, robot seek-
ing [7], box pushing [10], vision-driven navigation [11], homing and circling [12],
predator versus prey strategies [13], co-evolution of control and bodies morpholo-
gies [14], game playing [15-17] or group control for survey missions [18]. GP
was also utilized for the automated synthesis of human-competitive strategies for
robotic tanks run in a closed simulation area to fight other human-designed tanks
in international leagues [19]. There was also some progress on development of lim-
ited machine intelligence for classical strategic games like backgammon or chess
endgames [20].

Most of the evolved controllers, however, are purely reactive and contain a prede-
fined number of modules. This substantially limits their usage for complex tasks that
involve competitive adversaries, either machines or human operators themselves.
We therefore propose a new approach for automated planning logic synthesis that
can be viewed as an iterative learning process during which an initial version of
the logic is automatically synthesized and then gradually improved by detecting
and fixing its shortcomings. This is achieved by the interplay of data mining for state
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extraction and classification and GP for navigation code generation. During the
automated development, no external information on how the logic should be gener-
ated is therefore needed. The planning logic is represented as a composition of one
main navigation controller and a set of navigation plans. The navigation controller
is used to control the vehicle’s behavior in all situations besides the situations for
which specific maneuvers are needed to boost the performance of the logic. The
symbolic representation of the planning logic greatly simplifies its functional anal-
ysis in contrast to the artificial neural network representation that is difficult to an-
alyze. Moreover, the symbolic representation allows integrating human knowledge
naturally so the analysis of the logic can provide the basis for hand-coding logic for
real-life applications.

We tested our new approach in the context of a larger project aimed at the devel-
opment of a mission planning system [21] for the automated generation of planning
logic for unmanned surface vehicles (USVs) [22, 23]. In this part of the work, our
focus is specifically on automated generation of logic used for blocking the ad-
vancement of an intruder boat towards a valuable target. This task requires the USV
to utilize reactive planning complemented by short-term forward planning to gener-
ate local navigation plans describing specific maneuvers for the USV. The intruder
is human-competitive in the sense that its attacking efficiency approaches the at-
tacking efficiency of deceptive strategies exhibited by human operators. Our aim
is to reach the level 3 of autonomy as defined in [24]. In this level, the unmanned
vehicle automatically executes mission-related commands when response times are
too short for operator intervention. The operator, however, may cancel or redirect
the vehicle’s intended actions. As far as the performance evaluation of the logic is
concerned, we 1) manually implemented USV’s logic for blocking the hand coded
intruder, and 2) compared its performance to the automatically generated USV’s
logic by pitting it against the same intruder in a large amount of test scenarios.

An overview of the overall approach is shown in Figure 12.1. First, we developed
a physics-based meta-model of a full blown USV dynamics model to be able to test
the planning logic in a simulation environment in real-time [25]. Second, we devel-
oped a mission planning system whose main part is GP based evolutionary module
for generating individual components of the planning logic (see section 12.3). In
order to combine the elements of the project into a cohesive system, we designed
a USV simulation environment [26]. The USV simulation environment integrates
various components of the project into a complete simulation system and acts as
a simulation platform for the evolutionary module. One of the components of the
USV simulation environment is the virtual environment (VE) based simulator (see
Figure 12.2) which serves as an emulator of the real USV environment and con-
tains gaming logic which allows human players to play against each other or against
the computer. Finally, we evaluated the performance of the automatically generated
USV’s logic against a hand coded human-competitive intruder exhibiting deceptive
behavior (see section 12.4).
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Fig. 12.1 Overview of the overall approach.

Fig. 12.2 Virtual environment.

12.2 USV System Architecture

The overall USV’s system architecture consists of several modules that are respon-
sible for different tasks, e.g. sensing, localization, navigation, planning, behavior
control, communication, human interaction, or monitoring [22, 23]. The 6 degrees
of freedom USV dynamics simulation model was implemented as described in [25].
This detailed model considers disturbances from the surroundings and is used for
game playing inside the virtual environment. Due to its computational requirements,
its simplified version that has 3 degrees of freedom is used for automated logic gen-
eration where evaluation speed is an issue.
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12.2.1 USV Virtual Sensor Models

The role of sensing is to provide information about the current state of the vehicle in
the environment. This information serves as a basis for decision making and control
by taking other objects in the environment into account. A real USV is usually
equipped by radar and multiple short-range visibility sensors to be able to capture
the state of its surroundings. However, for the navigation system of the USV to
be effective it only needs to process relevant key sensory information abstracted
from the raw sensor data. The sensory information is thus represented as a vector
containing only the features required for a successful fulfillment of the mission task.
The values of the relevant features are computed using the data from the virtual
sensors [27] that provide intermediate abstraction of the raw sensor data. Some of
the features can also have one or more parameters using which their final values are
computed.

The navigation system of the USV uses virtual visibility, relational, and velocity
sensors. The virtual visibility sensor is a detection sensor with cone-shaped detec-
tion regions (see Figure 12.3). The dimension of the overall sensor area is defined
by its reach and range parameters. Each region returns a boolean value expressing
the presence of other objects and a normalized distance to the closest object. The
relational virtual sensor provides relevant information on how other objects are sit-
uated to the USV or to each other. It provides boolean values for computation of
the values of the relational features. The velocity virtual sensor returns velocities of
other objects inside the environment.

Fig. 12.3 Virtual visibility sensor model.

12.2.2 Planning Architecture

The complexity of interactions of a mobile robotic system suggests structured (non-
monolithic) high-level planning architecture. The unmanned boats must behave
based on the effect of several independent threads of reasoning. This is due to the
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highly parallel nature of events and processes in an uncertain and often dynamic en-
vironment. The control architecture can meet this requirement if it is modular, and
when the modules can act simultaneously in a coordinated cooperation in real time.

12.2.2.1 Planning Logic Representation

The planning logic allows the USV to make a decision from a set of allowable
actions in a particular situation during its run. It consists of a main navigation
controller represented as a decision tree and zero or more navigation plans (see
Figure 12.4). For the operators to understand and trust the vehicle’s actions is of a
great importance. Hence, the representation of the planning logic is symbolic which
simplifies its functional verification by human auditing.

The main navigation controller operates the USV unless the vehicle approaches
a state for which a specific short-term navigation plan exists. The navigation plan
thus represents a certain maneuver the USV executes in a certain situation to in-
crease its performance. The main components of the navigation controller are high-
level parameterized navigation commands NC = {go-intruder-front (front-left, left,
front-right, right), turn-left (right), go-straight}, conditional variables CV =
{intruder-on-the-left (right, front, at-the-back), intruder-has-target-on-the-left
(right), usv-has-target-on-the-left (right), usv-intruder-distance-le-than, usv-closer-
to-target-than-intruder, usv-facing-intruder, usv-left (right, front-left, front-right)
visibility-sensor-area-activated, intruder-target-angle-between, intruder-velocity-
le-than}, standard boolean values and operators BVO = {if, true, false, and, or, not},
program blocks PB = {seq2, seq3}, and system commands SC = {usv-sensor, usv-
velocity, usv-match-intruder-velocity}. The main components of the navigation plan
are high-level commands NC and program blocks PB. The leaves of the decision tree
can be conditional variables or navigation commands. The inner nodes can be con-
ditionals, navigation commands, or system commands. Each navigation command
corresponds to a particular high-level controller, which is a parameterized composi-
tion of simple behaviors according to the behavior-based control architecture [28].
The next section describes this in detail.

The conditional variables, navigation, and system commands are parameterized.
The parameters of a navigation command define its underlying property. The posi-
tional commands (e.g. go-intruder-front) are defined using 5 parameters. The first
two parameters represent the USV’s relative goal position (in polar coordinates)
around the intruder. This effectively allows the vehicle to cover all feasible posi-
tions, as defined by its planning logic, in a certain area around the intruder. The next
two parameters represent a cone-shaped blocking area around the relative goal po-
sition. Once the vehicle gets inside the blocking area, it starts slowing down to limit
the intruder’s movement. The last parameter represents the length of the command
execution. The turning navigation commands have two parameters that represent
the turning rate and the length of the command execution. The translation velocity
is explicitly controlled by the velocity commands. The usv-sensor system command
effectively changes the parameters of the USV’s sensors allowing it to explicitly
control the obstacle avoidance behavior to be between very safe and very risky. Each
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parameter of the command is propagated to the underlying primitive behaviors of
each corresponding high-level controller.

The input into the planning logic is data from the virtual sensors. The values of
all conditional variables are computed using this data. So for example, the boolean
value of the intruder-on-the-left variable is directly provided by the virtual relation
sensor, while the data for computation of the intruder-velocity-le-than parameter-
ized variable is provided by the virtual velocity sensor.

Fig. 12.4 Planning logic representation.

12.2.2.2 Hierarchical Control Architecture

During the mission, the USV periodically senses its surroundings and classifies its
current state with respect to the intruder and the target. The classification mecha-
nism of the planning logic executor decides whether the current USV’s state is close
enough to one of the states for which a corresponding navigation plan exists. If such
a plan exists, the planning logic executor (see Figure 12.6) directly executes the
plan, otherwise it executes the main navigation controller to generate a new plan.
The decision whether to execute a specific navigation plan depends on the activa-
tion distance parameter δ . This parameter defines the minimal distance that has to
be achieved between the current USV’s state and any state in the predefined set to
activate a specific navigation plan. The state space is thus divided into two regions
where in the first region the USV generates and executes plans using the navigation
controller, whereas in the other region the USV directly executes previously learned
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plans. The distance between normalized states is computed using the standard
Euclidean distance metric.

The full state of the USV (see Figure 12.5) is a vector s = {α1,α2,β1,
β2,γ1,v1,v2,d}. The angle α1 represents an angle between the USV’s heading and
the direction to the target, α2 is an angle between the intruder’s heading and the
direction to the target, β1 is the USV’s steering angle, β2 is the intruder’s steering
angle, v1 is the USV’s translation velocity, v2 is the intruder’s translation velocity,
γ1 is an angle between the USV’s heading and the direction to the intruder, and d is
the distance between the USV and the intruder.

By acquiring and processing sensory information in short-term cycles, and plan-
ning, the planning system determines a navigation command to be executed through
the behavior-based control system to direct the vehicle inside the environment. The
planning logic executor of the navigation system takes as inputs sensor data, mis-
sion parameters, USV meta model, and the planning logic. It decides which compo-
nent of the logic to execute to generate a plan based on the current vehicle’s state.
The plan consists of a number of navigation commands, each being executed for a
certain amount of time. The ultimate outputs of an activated command are way
points that are directly translated by a low-level controller into motor commands for
device drivers of a particular actuator.

The control architecture is hierarchical and follows the behavior-based paradigm
[28]. It consists of planning, executive, and reactive layers (see Figure 12.6). The
planning layer is responsible for interpreting stored planning logic and generating
navigation plans that contain one or more navigation commands at a time. The com-
mands are stored in a queue to be further dispatched for execution by the dispatcher
in the executive layer. The commands are usually planned for short-term execution,

Fig. 12.5 USV’s state in respect to the intruder and target.
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such as planning of strategic maneuvers. The vehicle thus does not act purely reac-
tively to its surroundings unless an exception occurs.

Each command corresponds to a high-level controller, which is a parameterized
composition of simple behaviors organized into layers according to the behavior-
based control architecture [28]. The executive layer is responsible for processing
the commands in the queue and invoking the corresponding high-level controllers
in a series for planned periods of time. The length of the execution is defined as a
parameter of the command. The executive layer is also responsible for monitoring
execution of the controllers and handling exceptions. An exception occurs if the cur-
rent state of the vehicle substantially deviates from the predicted trajectory defined
by the plan. The planning logic executor remains inactive until all the commands
from the queue are processed in which case the dispatcher requests new commands
from the planning logic executor and the control process continues.

The reactive layer implements the behavior-based subsumption architecture [28].
This architecture decomposes a complicated high-level controller into a set of sim-
ple behaviors (steer left / right, go straight, arrive) organized into layers. These
primitive behaviors are finite state machines acting in response to sensor inputs and
producing actuator action outputs. Multiple behaviors can be activated simultane-
ously producing different conflicting motor commands. This means that a certain
amount of coordination is needed. Due to its robustness, we have chosen a priority-
based arbitration mechanism, picking the actuator action output of the behavior with
the highest priority as the overall action output of the currently activated high-level
controller. This closely follows the behavior-competitive paradigm that imposes that
only one behavior can have control over the robot’s actuators while each of them can
access all sensors. In this paradigm, the behavior in the highest layer has the high-
est priority (for example obstacle avoidance) while the behavior in the lowest layer
represents the most abstract functionality. In the architecture, each high-level con-
troller specifies a fixed priority ordering of behaviors as defined by [29].

The planning logic is executed in a perception-action high rate cycle. The input
into the logic is processed sensor data and the ultimate output is an actuator action.
The ability of the architecture to deal with highly dynamic and unpredictable sce-
narios is due to its underlying reactive behavior-based competitive component. This
component triggers local obstacle avoidance mechanism at a high rate to immedi-
ately detect possible collision threats.

The primitive behaviors are of a great importance as they are able to quickly
produce an action in a highly dynamic environment where fast response and
responsibility are crucial. A behavior is a simple unit that produces an output of a
pre-defined type, in our case a two-dimensional vector containing desired translation
velocity and steering angle. Conditions for activating behaviors are preprogrammed.
The architecture defines the following primitive behaviors: obstacle avoidance, go
to location, go straight, turn left, and turn right.

The obstacle avoidance behavior implements a simple but efficient obstacle
avoidance mechanism for dynamic environments and is a necessary part of all high-
level controllers. It uses the virtual visibility sensor (see Figure 12.3) in order to
identify the location of detectable obstacles. It directly produces desired translation
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velocity and steering angle to safely steer the boat away from the closest identified
obstacles. The desired steering angle increases with the proximity to the obstacles
while the translation velocity decreases.

The manual design of a flexible reactive obstacle avoidance mechanism is not
an easy task. The USV should be able to prevent a collision with its surroundings
while effectively executing its mission task. This brings plenty of challenges since
the behavior of many standard obstacle avoidance methods is driven by its carefully
tuned parameters. These parameters control the behavior of the vehicle, particularly
how much steering should be applied when a nearby obstacle is positioned at a cer-
tain distance and angle, and how fast the vehicle should be moving in that situation.
Hence for our mission, the resulting behavior can be quite different with different
parameters essentially controlling the vehicle’s safe distance from the adversary and
blocking efficiency at the same time. Insufficient avoidance steering can lead to col-
lisions. On the other hand, too much steering will veer the vehicle away from the
adversary leading to ineffective blocking. Moreover, as far as computational require-
ments are taken into account, the obstacle avoidance mechanism should be very fast
so that it does not consume much of the precious simulation time.

Fig. 12.6 Hierarchical behavior-based control architecture.

We have implemented a collision avoidance method that uses high-level sensory
information, e.g. positions, orientations, and dimensions of obstacles, to directly
decide which steering angle and translation velocity to request. The avoidance
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mechanism uses a fixed set of control parameters. However, the behavior can be
conveniently controlled by modification of the underlying parameters of the visibil-
ity sensor. This way, the USV can get closer to obstacles than it would be otherwise
possible and thus effectively define a balance between safe and aggressive maneu-
vering. The command usv-sensor of the planning logic modifies the reach and range
parameters of the virtual visibility sensor cones.

By default, the behaviors always choose such translation and steering velocities
that maximize the USV’s performance. So for example, go-straight behavior uses
maximum translation velocity to get to the requested position in the shortest amount
of time. The planning logic can override this by calling usv-velocity system com-
mand. This command switches the vehicle to its controlled velocity mode in which
the translation velocity of the USV is controlled by the higher-level planning logic.

12.3 Planning Logic Synthesis

12.3.1 Test Mission

Our task was to automatically generate a planning logic for the USV to slow down
an intruder boat moving toward the protected object. The USV’s blocking logic is
defined in the context of a test mission. During this mission, the USV must protect
an oil tanker by patrolling around it while avoiding collisions with friendly boats
and scanning the environment for a possible intruder. The environment around the
oil tanker is divided into danger and buffer zones (see Figure 12.7). Once the in-
truder enters the buffer zone, the USV approaches the intruder boat and circles it for
surveillance purposes. If the intruder enters the danger zone, the USV does its best
to block the intruder, slowing the intruder’s progress toward the tanker.

Fig. 12.7 Test mission.
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12.3.2 Synthesis Scheme

The natural way of automated logic generation is to let the unmanned vehicle to au-
tonomously learn its own logic for a given task. Learning the logic usually requires
many simulations of different actions in different situations so that the vehicle can
determine which actions are beneficial and which are not. Our approach for the au-
tomated logic synthesis can be viewed as a completely automated iterative process
during which an initial version of the logic is automatically synthesized and then
gradually improved by detecting and fixing its shortcomings.

The planning logic generation process consists of six main parts as shown in
Figure 12.8. First, an initial version of the logic containing only a naviga-
tion controller is generated and consequently evaluated inside the simulator in
m distinct evaluation runs. This evaluation returns a set of states of failure
SF = {SOF1, . . . ,SOFn}, n ≤ m in which the vehicle fails its mission task. Given
this set, a representative state of failure SOFREP ∈ SF is found for which the aver-
age of distances to its k nearest neighboring states is minimal. SOFREP is thus a state
located in the center of a cluster with the highest density of states of failure. The
distance between the normalized states is computed using the Euclidean distance
metric. Next, we compute a corresponding state of exception SOEREP for the repre-
sentative state of failure SOFREP. SOEREP defines a state in which proximity (given
by the activation distance parameter δ ) the vehicle can execute a specific navigation
plan to decrease the probability of occurrence of the corresponding SOFREP and all
the failure states in its close neighborhood. Once the state of exception SOEREP is
computed, a new specific navigation plan is synthesized for this state. To prevent

Fig. 12.8 Planning logic synthesis overview.
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Fig. 12.9 Extraction of states of exception.

overspecialization of the new plan, we evaluate its performance using all states
of exception found within SOEREP activation distance δ during the overall logic
evaluation. The new plan together with its corresponding SOEREP is then integrated
into the whole logic, the logic is optimized, and the process starts again.

In the context of our mission, SOF defines a situation in which the USV has high
probability of losing its future maneuver to block the intruder. Its corresponding
SOE is found by reverting back in time for a certain number of time steps τ to
record a state from which a new specific navigation plan can be executed to prevent
a possible future failure. The activation distance parameter δ defines a minimum
distance between the current USV’s state and any previously recorded SOEREP from
which a corresponding navigation plan can be executed.

12.3.3 Planning Logic Components Evolution

Both the navigation controller and navigation plans as components of the planning
logic are automatically generated using separate simulated evolutionary processes.
The specific evolutionary method we used is the strongly-typed Genetic Program-
ming imposing type constraints on the generated Lisp trees [15, 16]. This is a robust
stochastic optimization method that searches a large space of candidate program
trees while looking for the one with the best performance (fitness value).

The evolutionary process starts by randomly generating an initial population of
individuals represented as GP trees using the Ramped half-and-half method [42]. We
seed the initial population by human-coded Lisp fragments to speed up the process.
The initial values of parameters of all navigation commands and conditionals are
either seeded or randomly generated. The navigation controller of the planning logic
is generated using a human written template for which GP supplies basic blocking
logic. The first portion of the template encodes a maneuver using which the vehicle
effectively approaches the intruder at the beginning of the run as there is no need for
it to be explicitly evolved.
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The terminal T and function sets F consists of navigation commands, system
commands, conditional variables, boolean values and operators, and program blocks
as defined in section 12.2.2. The sets are defined as

Tcontroller = Tplan = NC∪SC

Fcontroller = CV ∪BVO∪PB;Fplan = PB

Within the population, each individual has a different structure responsible for dif-
ferent way of how it responds to its environment. The individuals are evaluated in
the context of the whole logic inside the simulator. The sensory-motor coupling of
the individual influences the vehicle’s behavior resulting in a specific fitness value
that represents how well the USV blocks the intruder.

We favor individuals which can rapidly establish basic blocking capabilities and
optimize them in such a way to push the intruder away from the target over the entire
trial duration. To do so, the fitness F is defined as the sum of squared distances of
the USV from the target over all time steps. This squared distance is normalized due
to the different initial distances of the intruder from the target in the test scenarios. If
a collision occurs, either caused by the USV or the intruder, the zero fitness value is
assigned to the individual, and the selection pressure eliminates the logic component
with low-safety guarantee. The fitness function is as follows:

F =
1
T

T

∑
i=1

(
di

d0
)2 (12.1)

where T is the total number of time steps, d is the distance of the intruder from the
target at time step i, and d0 is the initial distance of the intruder from the target in a
particular test case. The total fitness value of the individual is being maximized and
is computed as an average of fitness values resulting from all scenarios.

The navigation controller is evaluated using a human-competitive intruder in 8
different scenarios. In each scenario, the intruder has a different initial orientation,
and the USV always starts from an initial position closer to the target. The evaluation
lasts for a maximum amount of time steps which equals to 300 seconds in real
time. The maximum speed of the USV is set to be 10% higher than the speed of
the intruder, other properties of the vehicles are the same. The navigation plan is
evaluated using all states of exception found within the activation distance of its
corresponding SOEREP. The evaluation lasts for a maximum amount of time steps
which equals to 10 seconds in real time.

The individuals in the initial population mostly exhibit random behavior. By
selecting and further refining the individuals with high fitness, their quality grad-
ually improves in subsequent generations. During this process, the individuals
are randomly recombined, mutated, or directly propagated to the next generation.
These operations are applied with the predefined probabilities (see Table 12.1). The
following evolutionary operators are used:
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• Reproduction – copies one individual directly to the next generation without any
modification. We use a strong elitism to propagate the best individual directly into
the next generation. This makes sure that the best individual is not lost during the
evolutionary process as a consequence of recombination.

• Mutation – we use three types of mutation operators: structural mutation of a ran-
domly selected sub-tree, preventing bloat [30] by shrinking a randomly chosen
sub-tree to a single node, and Gaussian mutation of chosen parameters.

• Crossover – randomly selects sub-trees from two input trees and swaps them.

During the logic synthesis, the USV learns the balance between a safe and dangerous
maneuvering by mutating the reach and range parameters of its virtual visibility
sensor. The logic is thus co-evolved with the sensor parameters of the vehicle to
control the obstacle avoidance mechanism.

The optimization of the generated navigation controller removes all branches of
the code that have not been executed during evaluation scenarios. Moreover, each
generated navigation plan is truncated to contain only the navigation commands
that do not exceed the execution time of the plan. This effectively prevents bloat and
generates cleaner code.

A detailed description of the functionality of all the operators used can be found
in [2]. The control parameters of the evolutionary process used for evolution of the
navigation controller and plans are summarized in Table 1.

Table 12.1 GP Parameters

Population size / number of generations 500 / 100 (controller)
50 / 20 (plan)

Crossover probability 0.84
Tournament size 2

Structure mutation probability 0.05
Elite set size 1

Shrink structure mutation probability 0.01
Min. and max. initial GP tree depth 3 and 6 (controller)

2 and 4 (plan)
Mutation probability of parameters of navigation commands 0.5

Maximum GP tree depth 50 (controller)
10 (plan)

Crossover probability 0.84

12.4 Computational Experiments

12.4.1 General Setup

In the test mission domain, the intruder boat has to reach the target as quickly as
possible, while the USV has to block and delay the intruder for as long time as
possible. We set up an experiment to compare the performance of the automatically
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generated USV’s logic for blocking to the USV’s logic coded by hand. We compare
the performance in terms of pure time delay imposed by the USV on the intruder. To
get a fair assessment of the USV performance, the time values being compared must
be normalized by 40 seconds baseline. This baseline represents the amount of time
needed to reach the target if the intruder is completely unobstructed. Any additional
time above this baseline thus represents the effective delay time of the intruder when
being blocked by the USV.

The USV’s logic is evaluated in 800 evaluation runs to account for the intruder’s
deterministic behavior interspersed with random actions. Each evaluation run lasts
for a maximum amount of time steps which equals to 300 seconds in real time. The
dimension of the scene is 800 x 800 m with the target positioned in the center. At
the beginning of each run, the USV and the intruder are oriented toward each other
with random deviation of 10 degrees and the USV is positioned on a straight line
between the intruder and the target. The initial distance of the USV from the target is
approximately 240 m, while the intruder’s initial distance is 360 m. The maximum
time for the evaluation run is set to 5 minutes. The USV’s maximum velocity is 10
m/s, while the intruder’s maximum velocity is 9 m/s.

12.4.1.1 Experimental Protocol

First, we implemented an initial version of the intruder’s attacking logic and tested
it against human players to evaluate its performance. The logic was further im-
proved in multiple iterations in the span of 6 weeks. Its overall size reached 485
lines of Lisp code. The outline of the logic functionality is described in the next sec-
tion. We evaluated the performance of the logic by pitting human players against it
playing as USVs. The human players achieved 90 seconds of pure time delay im-
posed on the intruder in average. This shows that the intruder’s attacking logic is
quite sophisticated due to its deceptive behavior.

Second, we manually implemented the USV’s blocking logic against the hand
coded intruder. This involved implementation of its main navigation controller, man-
ually finding 49 states of failure and their corresponding states of exception, hand
coding the logic for each state of exception, and overall evaluation. The logic was
improved iteratively in the span of 3 weeks. Its overall size reached 500 lines of Lisp
code.

Third, we used the mission planning system to automatically generate the USV’s
blocking logic using the hand coded intruder as the competitor. The activation dis-
tance parameter δ was set to 0.2 for all navigation plans. The representative state of
failure SOFREP ∈ SF was found as a state with the minimal average distance to its 7
nearest neighboring states. The number of time steps τ for computation SOE from
SOF was set to 150. In the current version of the approach, SOF is determined to
be a state in which the intruder is closer to the target than the USV.

Finally, we compared the performance of the automatically synthesized USV’s
logic to the hand coded USV’s logic.
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12.4.1.2 Intruder’s Planning Logic

The hand-coded intruder’s logic is represented as a single decision tree that contains
standard navigation commands as well as their randomized versions. The partial
non-determinism of the logic allows the intruder to use different actions in the same
situations. The intruder repeatedly deceives the USV’s logic by randomly taking
actions in some specific situations so that the USV is not able to find a motion
pattern in intruder’s behavior that can be easily exploited for blocking.

The intruder’s logic can be divided into five main sections. Each of these sections
handles a different group of situations that can arise during the combat. The first
section handles situations in which the distance of the intruder from the target is
larger than 130 m and the angle between its translation direction and the target is
more than 80 degrees. In these situations, the intruder attempts to rapidly change
its direction of movement toward the target by aggressively turning left or right
depending on the position of the USV.

The second section handles situations in which the USV is very close to the
intruder, positioned relatively to its front left, and the target is on the intruder’s left
side (see Figure 12.10a). In this case, the intruder has two options. Either it executes
a random turn with probability 0.9 or it proceeds with a complete turn. In both
cases, the intruder can slow down rapidly with probability 0.3 to further confuse the
adversary. This section handles also similar type of situations when the USV is on
the front right of the intruder and the target is on the right.

The third section is very similar to the second section with the exception that
the USV is directly on the left or right side of the intruder (see Figure 12.10b). In
these cases, the intruder does its best to deceive the USV. The intruder would often
slow down rapidly trying to get an advantageous position, randomly proceed with a
complete turn, or execute a partial turn. The probability of the complete turn is 0.1
and the probability of slowing down is 0.2.

The fourth section deals with the situations during which the intruder is posi-
tioned behind the USV inside the rear grey area as shown in Figure 12.10c. The
larger distance of the intruder from the USV gives it opportunity to exploit the
USV’s tendency to over shoot a little in the process of blocking. In this case, if the
USV has high velocity, the intruder’s logic would suddenly slow it down and turn
it toward the stern of the blocking USV, passing the USV from behind. Otherwise,
the intruder randomly turns with probability 0.7 or it proceeds with a complete turn
(see Figure 12.10d). Again, the intruder can rapidly slow down with probability 0.3.

Finally, if the intruder is not in a close proximity to the USV, it computes the best
sequence of moves in order to get to the target as fast as possible.

The intruder’s logic can modify the reach and range parameters of its virtual visi-
bility sensor to control the balance between a safe and aggressive obstacle avoidance
mechanism. For example, if the intruder wants to make an aggressive turn in a close
proximity to the USV it has to take risk by decreasing the reach of the sensor to be
able to quickly proceed with the turn. In this case, the obstacle avoidance behav-
ior sensitivity is reduced for a short period of time so that the intruder can easily pass
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Fig. 12.10 Representative portions of intruder’s planning logic.

the USV from behind. If the intruder always aimed to safely avoid the adversary,
it would not get any chance to get to the target, especially if pit against a human
player.

12.4.2 Results

The experimental run that generated a blocking logic with the highest performance
is shown in Figure 12.11. The horizontal axe of the graph shows different versions of
the logic consisting of gradually increasing amount of navigation plans. The vertical
axe shows the blocking performance in terms of the intruder’s pure time delay for
each version of the USV’s logic. The best performance is reached by the version
30 of the logic and amounts to 42 seconds of pure delay in median. This can be
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Fig. 12.11 Evaluation of the USV’s blocking performance. The performance is expressed as
a pure time delay applied on the intruder. Each version of the USV’s logic was evaluated in
800 runs.

compared to the pure time delay of 46 seconds in median imposed by the hand coded
USV on the same intruder. This result thus shows that the best performance of the
automatically generated USV’s logic closely approaches the blocking performance
of the hand coded logic.

The automated generation of the logic took approximately 1 day to generate the
main navigation controller and approximately 3 days on the average to generate
navigation plans for 49 automatically defined states of exception. Its overall size
reached 900 lines of code. From the set of 10 experimental runs, only 2 were able
to find logic with the similar performance to the best one. The remaining 8 runs
prematurely stagnated due to over-specialization of some of the evolved navigation
plans. Even a single defective navigation plan synthesized for one of the key situ-
ations can significantly influence the performance of the whole logic. This shows
that the learning of the USV’s logic against the intruder utilizing attacking logic
interspersed with randomized actions is a challenging task.

The first few versions of the logic have low performance as they contain only a
few navigation plans describing specialized maneuvers for a small number of key
situations. However, as the learning process progresses, more and more navigation
plans handling new situations are added and the overall performance gradually im-
proves. This continues until the version 30 of the logic after which the performance
stagnates. This can be attributed to difficulty in solving new complex situations in
which problems with the generalization of navigation plans arise.
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Fig. 12.12 Example of a run in which the USV managed to block the intruder for 45 seconds.
The start position of the USV is marked as 1.1, while the start position of the intruder is
marked as 2.1.

An example of a run in which the USV reached 45 seconds of pure time delay
imposed on the intruder is shown in Figure 12.12. The USV starts at the location
1.1, while the intruder starts at the location 2.1. The first situation in which the USV
executes a specific maneuver is marked as 1.2. In this situation, the USV steers
sharply to the left in an attempt to intercept the intruder. The run continues until 1.3
where the USV attempts to deflect the intruder’s heading by first carefully turning
to the left and then aggressively blocking from the side. The intruder, however,
instantly responds by executing a sharp left turn, which makes the USV to take
another trial in intercepting him in the situation 1.4. Yet the USV overshoots in the
process of blocking. The run continues for the next 23 seconds all the way up to the
target. In the situation 1.5, the intruder executes a random sequence of two sharp
turns to deceive the USV and thus to increase its chances for the attack. The USV,
however, successfully follows and takes another attempt in intercepting the intruder
but overshoots in 1.6 and the intruder finally reaches its goal 1.7.

12.5 Conclusions

We have presented a new approach for automated synthesis of a symbolic planning
logic for an autonomous unmanned vehicle operating in an environment with a de-
ceptive adversary. The idea behind this approach is to evolve an initial version of
the logic first and then further improve its performance by evolving additional com-
ponents that can reliably handle specific situations that can arise during the mission.
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We used GP technique for automated generation of navigation plans for correspond-
ing automatically extracted states of failure.

In the context of our test mission, we developed a mission planning system to
automatically generate a planning logic for USV to block the advancement of an
intruder boat toward a valuable target. The USV’s logic consists of a navigation
controller and multiple navigation plans describing specific maneuvers for specific
situations. The intruder is human competitive and exhibits deceptive behavior so
that the USV cannot exploit any regularity in its attacking tactic for blocking.

In our experiments, we compared the performance of the hand coded USV’s
blocking logic to the performance of the logic that was automatically generated. The
results showed that the performance of the automatically generated USV’s logic (42
seconds of pure delay in median) closely approaches the performance of the hand
coded USV’s logic (46 seconds). Both types of the USV’s logic were evaluated
against a human competitive intruder. Hence, the approach described in this chap-
ter clearly demonstrates the viability of automatically synthesizing planning logic
for autonomous unmanned vehicles in competitive environments with deceptive
adversaries.
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Chapter 13
Major Feedback Loops Supporting Artificial
Evolution in Multi-modular Robotics

Thomas Schmickl, Jürgen Stradner, Heiko Hamann, Lutz Winkler,
and Karl Crailsheim

Abstract. In multi-modular reconfigurable robotics it is extremely challenging to
develop control software that is able to generate robust but still flexible behav-
ior of the ‘robotic organism’ that is formed by several independent robotic mod-
ules. We propose artificial evolution and self-organization as methodologies to
develop such control software. In this article, we present our concept to evolve a
self-organized multi-modular robot. We decompose the network of feedbacks, that
affect the evolutionary pathway and show why and how specific sub-components,
which are involved in these feedbacks, should be subject of evolutionary adapta-
tion. Self-organization is a major component of our framework and is implemented
by a hormone-inspired controller governing the behavior of singular autonomous
modules. We show first results, which were obtained by artificial evolution with our
framework, and give an outlook of how the framework will be applied in future
research.

13.1 Introduction

Evolutionary multi-modular robotics (EMMR) is a rather novel approach in the
fields of biology, computer science and engineering. It outnumbers ‘classical’ evo-
lutionary robotics concerning technical challenges: Evolving a functional controller
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for a predefined fixed robotic morphology is already a challenging goal to reach
[1, 2, 3]. Additionally in multi-modular robotics, a huge variety of robot morpholo-
gies are built from a set of joined robot modules. See Fig. 13.1 for an example of
such a robotic organism. Each of these robots is controlled by a control program,
which – in the joined organism – fuses into one meta-controller that moves the whole
body. It is not just the set of these controllers that determines the final behavior of
the organism, but also the set of physical constraints that are posed by the way of
how the modules are coupled (joints, forces, . . . ).

In our EMMR approach, the robotic controllers should evolve along with the
body shape. In addition, controllers of single modules should evolve in a way that
enables them to build the joined organism shape from a former unconnected (swarm)
mode of operation. We suggest a bio-inspired self-organized process [4, 5] that
governs the organism formation in a decentralized way. As it is possible for robotic
modules to fail or to end up in an unfavorable place in the organism, the organ-
ism’s control should be extremely robust but still flexible enough to allow dynamic
replacement or displacement of single robotic modules during runtime. Thus, the
desired controllers, that we plan to evolve, are described by the following character-
istics: decentralized control, self-organization, robust behavior, flexibility and scala-
bility. These characteristics are typical for ‘swarm-intelligent’ systems and therefore
we attribute our organism formation process and organism movement process to be
a variant of evolutionary swarm robotics [6, 7].

Fig. 13.1 Exemplary configuration of 9 robots arranged and coupled in a 3×3 layout in our
proposed EMMR approach. The process that is able to form this body shape from a swarm
of autonomously moving single robot modules has to be evolved. Artificial evolution should
then also generate controllers that are able to move this robotic organism in a self-organized
way. Multiple feedback loops, that allow self-organization to work at specific points of con-
trol, is proposed to enhance and support artificial evolution.



13 Major Feedback Loops Supporting Artificial Evolution 197

Fig. 13.2 The feedback loops that affect the evolution of organism shapes in our proposed
EMMR system.

Several approaches have been proposed to achieve this goal: The studies of Shen
et al. [8] suggest a framework in which artificial hormones that resemble hop-counts
and messages exchanged among modules are used, instead of hard-coded IDs and
‘gait table’ numbers to coordinate a multi-modular robotic system. In [9], a robotic
swarm mimics pheromone excretion of biological organisms and achieves swarm
control in doing so. Also in [10] a hop-count-based system is used to control a
robot swarm. Similar methods of hop-counts, which form linear gradients in the
organism, were also used in [11] to construct dense objects from autonomously
moving sub-units. A continuous gradient approach for navigation of modules based
on non-linear gradients was investigated in [12] and in [13] within the I-SWARM
project [14]. Based on these swarm techniques, we elaborated a hormone-inspired
control paradigm for body formation and body control, aimed for multi-modular
robots used in the EU-funded projects SYMBRION [15] and REPLICATOR [16].

In this article, we describe the artificial homeostatic hormone system (AHHS)
which we’ve applied successfully to control a single robot in simulation [17] and in
robotic hardware [18]. Using single robots, an AHHS was successfully evolved to
move using a ‘screw drive’, which is non-trivial to control, to avoid obstacles, and to
explore the arena [17]. Currently, we develop a system of artificial evolution (AE),
that allows an elaboration of this AHHS controller: Our novel controller will be able
to control the self-organized body formation process as well as the decentralized
control of locomotion of joined robotic organisms. In the following, we describe the
concept of our AHHS and discuss the major feedback loops (Fig. 13.2) that emerge
within the system of AE and organism formation. Some of these feedback loops
are not existent in ‘classical’ evolutionary robotics (ER) concerning single robots,
others are missing in non-evolutionary multi-modular robotics.

The expected main advantages of this approach compared to others (e.g., classic
approaches, artificial neural networks) are an intrinsic spatiality (hormone gradi-
ents in connected robots) and a supposed high evolvability (smooth fitness land-
scapes through mutations that gradually change the behavior). Explicitly defined
hormone gradients, that span the whole robot organism, are exploited in the robot
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organism morphogenesis. The controller of the robot organism is embodied due to
the hormone concentrations that are stored in the robot modules. Our hormone con-
troller defines the resulting behavior through hormone production rates, decay rates,
and hormone interaction rules that are gradually changed through mutations and
therefore only gradually change the behavior. Thus, this approach promises to be
successfully applied in EMMR scenarios.

In the following, we identify six feedback loops: classic control, learning, evo-
lution, controller morphogenesis, robot organism morphogenesis, and body motion.
In first case studies, we have tested the classic control loop in robotic hardware and
in simulation [17, 18] and evolution in simulation [17]. In addition, the controller
morphogenesis and the robot organism morphogenesis were tested in preliminary
studies.

13.2 Artificial Homeostatic Hormone System

The basic characteristics and the implementation of our bio-inspired controller are
described in [19]. The idea of an AHHS controller is inspired by second-messengers
which communicate and ‘compute’ stimuli received through membrane-bound re-
ceptors in evolutionary ‘simple’ unicellular organisms (protozoa), bacteria and slime
mold. In higher life-forms, such cell messengers act inside of cells and hormones
allow to broadcast communication between tissues.

Stimuli received by robot sensors basically trigger the release of virtual hormones
in an AHHS controller. The inner body of a single robot module is spatially repre-
sented by (virtual) compartments. Each sensor triggers the production of a specific
hormone in the compartment with which it is associated. Virtual hormones decay
over time, and diffuse to neighboring compartments. This allows information about
current and past sensor activation to spread throughout the whole virtual ‘internal
body’ of the robot. In an AHHS, hormones interact with each other: One hormone
potentially increases or decreases the level of another hormone and is able to al-
ter the sensitivity of sensors and/or actuators. Finally, at least one hormone has to
activate one of these available actuators to manifest the robot’s final behavior.

As a result of this actuation, future sensor stimulation is altered. Hence, a sensor–
controller–actuator feedback loop emerges. From a cybernetic point of view [20],
our AHHS controller actuates the robot such that specific hormone levels are kept
at a homeostatic state.

13.2.1 Artificial Genome

Evolution provides an essential feedback loop in our proposed EMMR. As evolution
always operates on a genome, which is the ‘substrate’ for adaptation, the specific
configuration of an AHHS has to be kept persistent in a data structure that we call
‘genome’. From this data structure, the AHHS controller has to be parametrized.
The genome of our AHHS consists of two logical entities: hormone chromosome
and rule chromosome. The hormone chromosome holds only one gene per hormone.
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In contrast, the rule chromosome contains an arbitrary number of genes for each
hormone. Each hormone excretion, each type of hormone-to-hormone interaction
and each actuator activation by a hormone is described in a separate rule gene.

In the following, we give a detailed description of the data structure we developed
for holding the needed genetic information of an AHHS (reprinted from [17]):

The hormone chromosome contains the following parameters:

• hormone ID
• fixed decay rate
• diffusion coefficient
• maximum value of hormone (value at which a saturation is reached)
• base production rate (amount that is produced per time step without sensory

stimulation)

The rule chromosome contains the following parameters:

• rule type: condition to be met or triggering action

1. always: Action triggered independent from threshold σ
2. greater than: Action triggered if greater than threshold σ
3. smaller than: Action triggered if smaller than threshold σ

• trigger type: type of triggered action (hormone concentration θ , actuator value α)

1. never triggered: No action performed.
2. sensor influences hormone: if (γ(t) > σ) then θ (t + 1) = θ (t)+ γ(t)δ + β

(sensor value γ)
3. hormone influences actuator: if (θ (t) > σ) then α(t + 1) = α(t)δ + β
4. hormone influences other hormone: if (θ1(t + 1) > σ) then θ2(t + 1) =

θ2(t)+ θ1(t)δ + β
5. hormone influences itself: θ (t + 1) = θ (t)+ θ (t)δ + β

All of these values are integer values allowing fast execution on limited (embedded)
hardware.

13.3 Feedback 1: Classic Control

The direct feedback loop between the controller and the behavior represents the clas-
sic approach of control theory. In control theory this loop is interpreted as a negative
feedback because an error value is determined by subtracting the measured system
state from the desired state. This error value is used to determine the new input. The
controller checks the difference between the desired state and the measured state of
the whole system (robot organism and environment) through its sensors. If there is
a difference the controller changes the ‘system input’ (e.g., actuator input signals)
that is fed into the system.
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13.4 Feedback 2: Learning

The feedback loop controller–behavior–evaluation represents the field of unsuper-
vised machine learning. The robot is interpreted as an agent that has to take actions
in an environment in order to maximize a reward. The robot evaluates its behavior
online, changes its controller and, hence, its behavior. There is a huge variety of
possible approaches. An artificial neural network could be trained online, standard
reinforcement learning techniques such as Q-learning could be applied, or even our
novel controller approach could be used. The rules of such an AHHS controller can
be optimized through learning. This could be done either as a complete learning task
from scratch or by optimizing an evolved controller.

13.5 Feedback 3: Evolution

The loop controller–behavior–evaluation–evolution–genome is of high importance
in our standard AE [21]. Hence, we produce a population of robot controllers that
are evaluated and selected based on their fitness. A new generation is generated
through mutation and recombination of the controllers.

Currently we have implemented a naive genetic algorithm to test first evolution-
ary approaches. In Fig. 13.3 the class diagram of our software design is shown. It
consists basically of three classes: EvolutionManager (maintains the whole
evolutionary process) which keeps a population of type Evolvable (contains
evolution specific values such as fitness values) which holds a collection of type
AbstractController (a container for the actual specific robot controller) for
each module in the robot organism. Usually we have homogeneous organisms, that
is, we have identical controllers for each robot module in the organism.

The currently evolved controller design is our AHHS controller. However, the
software framework is independent from the specific controller design as far as
possible – other approaches, such as artificial neural networks, could be used as

Fig. 13.3 Software design of our AE framework. It is embedded into the projects’ ‘Symbri-
cator Simulator’ which is based on the Delta3D open-source gaming/simulation engine [22].
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well with few adjustments. Typically the first evolution run is initiated with a small
population (20 to 30 individuals) of randomly generated AHHS controllers. These
random controllers generate rather erratic behavior that is evaluated in simulation.
The ‘Symbricator Simulator’, that was developed in both EU-projects REPLICA-
TOR and SYMBRION, is based on the Delta3D open-source gaming/simulation
engine [22]. The simulator provides a full simulation of physics, which is indispens-
able as the locomotion of our multi-robot organisms will usually depend on friction
and statics. In addition, it is possible to import the CAD data of the current robot
prototype design. For a limited time the behavior of the robot organism is evaluated.
For example, in case we evolve simple collision avoidance behavior the evaluation
can be based on the covered distance. Following [23] this type of fitness function is
called ‘aggregate fitness function’ because it selects for high-level success (instead
of rewarding any kind of motion).

The key challenges in the evolutionary approach to modular robotics are the high
computational costs of the controller evaluations and the selection of an appropriate
controller design. Due to computational costs only small numbers of generations
are feasible within which a valid controller has to be found. Thus, we need a con-
troller that is not only able to represent the desired behavior, but also a controller
that shows high evolvability. With ‘high evolvability’ we refer to a fitness landscape
that is as smooth as possible, because it is the preferred shape to avoid local optima.
The shape of the fitness landscape is partially influenced by the controller design in
connection with the mutation operator but also by the environment. Discrete (step-
wise) changes in the controller by the mutation operator should be avoided, because
the application of the mutation operator would most likely result in very differ-
ent behavior and, thus, in very different fitness values. However, typically there is
a trade-off between increasing the size of the search space and avoiding discrete
changes through mutation.

13.6 Feedback 4: Controller Morphogenesis

In our AHHS controller, the compartmentalization of the inner body of a single
robot module is an important feature. It allows ‘embodiment‘ of the controller, be-
cause sensors are allowed to trigger hormone excretion only in those compartments
spatially associated with the sensor location on (or in) the robot’s body. Only hor-
mones of the same compartment interact, this way the computation being performed
in the AHHS, is localized. Therefore, the structure formed by the compartments is
important for the behaviors generated by the AHHS. We made the compartmen-
talization a subject of AE as well and introduced another ‘rule chromosome’ (see
section 13.2.1).

This chromosome contains genes that parametrize a process that forms the com-
partment structure. One way to achieve internal compartmentalization, is to use a
different set of AHHS rules in a ‘constructor’ phase before the robot controller is
started. During this phase, hormone values trigger rules in the AHHS from this
third chromosome. The only difference compared to the second ‘rule chromosome’
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(described in section 13.2.1) is that hormone values in this phase do not trigger an
actuator of the robot. Instead, they trigger a division of one compartment into two
compartments, similar to cell divisions in biological organisms: At the beginning,
the AHHS starts with just one compartment. This compartment is then successively
divided depending on local hormone values. Hence, a self-organized process creates
the compartment structure, which is later affecting the robot’s behavior.

AE alters the gene information on this chromosome by altering, deleting, and du-
plicating rules, by changing the initial starting conditions or by changing the length
of the transient period. Fig. 13.4 shows exemplarily how the compartment structure
is altered by a combination of two loci for point-mutations.

Fig. 13.4 Internal compartmentalization of the robot. This important structural feature in an
AHHS controller is mutated by altering ‘layout rules’. This figure shows 9 configurations that
result from a combination of mutations of 2 genes (rules).

13.7 Feedback 5: Robot Organism Morphogenesis

When it comes to building and reconfiguring robot organisms that consist of au-
tonomous robot modules, we suggest that our AHHS is able to perform this task in a
self-organized manner. Thus, the feedback loop ‘controller – body shape’ (Fig. 13.2)
emerges automatically. The main problem concerning the morphology of the robot
organism is the trade-off between robustness and flexibility.

We think that there is no conceptional difference between to building a robot or-
ganism out of a swarm of single modules, on the one hand, and the reconfiguration
process, on the other hand. In most cases for both processes, it is a precondition
that an additional number of nearby single robot modules is available. If a join or
a change of the morphology of the organism body shape is triggered by the envi-
ronment, this trigger event has to be perceived by at least one of the modules and it
needs to be communicated to other modules.
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This kind of body formation process is depicted in Fig. 13.5. In step one, a mod-
ule (marked by an exclamation point) detects a situation which is infeasible for a
single module which serves as a trigger or a seed for the action of joining together.
This perception is communicated to nearby single robots. These modules dock on
the opposite of the detected seed. For example, starting from the module that started
the joining progress, for example, a simple line is formed.

In such a joined organism (Fig. 13.5: step two), further environmental stimu-
lation triggers the production of other hormones inside the organism, which con-
sists of connected modules. This process results in the emergence of a gradient
of hormone concentrations within the organism. The still existing sensor input,
initially triggered the body formation, can now serve as a trigger for a differenti-
ation into a head module and a tail module. Furthermore, a threshold of a ‘head-’
and a ‘tail-hormone’ determines, for example, the positions of legs in the middle of
the organism (Fig. 13.5: step three). Despite the fact that this threshold is predefined,
the body shape of the robot organism is not determined but influenced by environ-
mental inputs. In this way, different body shapes are established by a self-organized
reconfiguration process. The building of legs is based on the same principles as the
process of building the main body.

We prefer this approach of exploiting self-organization processes as the main
design paradigm in favor of non-adaptive approaches (e.g., predefined shapes) be-
cause the latter would lack any flexibility. The approach of self-organization de-
scribed here in connection with evolutionary methods automatically influences the
shape of the robot organism when a new or changed seed is detected by a (joined or
free) module. The possibility of self-reconfiguration gives the organism the needed
plasticity and adaptability.

Fig. 13.5 The development of the body formation in an EMMR. The process of the progress
from single module formation in a swarm to robot organism with legs is depicted in four
steps. One possible way of achieving this with our AHHS is denoted as a schematic graph of
hormone values of two hormones in step 2. For further explanation see text.
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13.8 Feedback 6: Body Motion

In our AHHS control paradigm, there is, in principal, no difference between motion
of individual robot modules and of joined robotic organisms. The parallel behavior
of single modules sums up to the organisms behavior. Of course, there is a demand
of coordination among the modules to achieve a regular motion of the organism.
To allow this, hormones diffuse to neighboring robot modules, as soon as modules
dock to each other. Hence, the internal body of the organism is structured (compart-
mentalized) as it is the case for a single robot. Therefore, a robot organism consists
of two levels of compartmentalization. There is the logical level inside each single
module and the physical level of connected modules.

To demonstrate the diffusion of hormones between robot modules, we performed
AE with already joined robot organisms that were allowed to actuate only their
‘hinges’, which are the main actuators that bend the robot modules with an angle of
±90◦ from the default configuration. No wheels or screw-drives were allowed to be
activated. In the following, we shortly describe an exemplary incremental course of
AE in our framework:

13.8.1 Step 1: The First Oscillator

In a first period, we coupled two modules. For this organism, the only chance to
move was to evolve a set of rules in the AHHS for both modules that actuate both
hinges in an ‘oscillatory way’. We used the distance the organism moved within
300 time steps as fitness function. The fittest controllers were selected and were
subject to point mutation and cross-over producing 20 offspring. The three best in-
dividuals were moved to the next generation without any change (elitism) and two
new AHHS controllers were generated randomly from scratch in each generation.
A behavior that significantly moved the organism evolved within the first 10 gener-
ations in a population of 25 AHHS controllers. It increased its performance within
the next 20 generations significantly. Fig. 13.6 shows snapshots of this organism’s
behavior.

Fig. 13.6 Evolved motion of two joined robot modules in the projects’ ‘Symbricator Simu-
lator’. The hinges of the two modules are contracted in an oscillations by the evolved AHHS.
This pushes the organism forward.

13.8.2 Step 2: Motion of Bigger Organisms

We implanted this oscillating AHHS into robot organisms of increasing size by
just adding robot modules at one end of the organism. All of these organisms were
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able to move slowly. The speed was significantly reduced compared to the former,
smaller organisms. After 10-15 generations, the motion speed recovered almost
to the prior level again, suggesting that AE successfully adapted the pre-evolved
AHHS controller to the new body size. Finally, we ended up with a long line of seven
connected robots, which nicely moved across the simulated arena in a caterpillar-
like movement pattern. Fig. 13.7 shows snapshots of this organisms behavior.

Fig. 13.7 Evolved motion of several joined robot modules in the projects’ ‘Symbricator Sim-
ulator’. The hinges of joined modules are contracted in delayed oscillations by the evolved
AHHS. A caterpillar-like motion pattern was finally evolved.

13.8.3 Step 3: Motion of More Complex Organisms

After these successful evolution experiments, we constructed more complex
(nested) organism shapes, into which we implanted the pre-evolved AHHS con-
troller described in subsection 13.8.1. All of these shapes evolved well-adapted
AHHS controllers that were able to move the organism in the arena. Here we just
want to discuss one example that underlines how the body shape influences the
body movement: Fig. 13.8a and Fig. 13.8b show two different motion strategies that
evolved for the same body shape successively: First, the outer two branches of the T-
shaped organism move the organism by oscillatory contraction and release of their
hinge while the ‘tail’ in the back pushes the organism further as well. The whole
body is laying almost flat on the floor (Fig. 13.8a). Then, a different movement pat-
tern emerges in evolution: The central module contracts its hinge which erects the
whole organism. This way the three branches of the T-shaped body act like legs and
the ‘tripod’ successfully moves through the arena (Fig. 13.8b).

13.9 Discussion

Here, we describe several feedback loops that affect body formation and body move-
ment in an EMMR system. Based on the involved feedbacks, we characterize six
levels of adaptation that are exploited by ourselves to generate a bio-inspired adap-
tive reconfigurable robotic system:

• Classic control: The controller–behavior feedback loop is always present in any
reactive agent, thus also in any autonomous robot that is able to perform behavior
of any kind in its environment. We did not elaborate on this ‘classic’ feedback
loop in the concept presented in this article.
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Fig. 13.8 Two different motion patterns evolved successively with the same body shape. a:
flat body, oscillators move peripheral hinges like fins. b: erected posture of the organisms,
peripheral robots moved like legs.
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• Learning: This feedback adapts the controller during runtime, based on the re-
cent dynamics of the so called ‘reward’, ‘fitness’ or ‘cost’ function. We did not
elaborate on this feedback loop in the concept presented in this article.

• Evolution: In this feedback loop, the main concern is feasibility due to high
computational costs. Self-organizing processes generated by the general con-
troller design, such as homeostatic tendencies in the hormone controller, need
to be leveraged as well to obtain smooth fitness landscapes and to decrease the
number of generations that are necessary before the desired behavior is evolved.

• Controller morphogenesis: In this article we showed in this article that the in-
ternal structure of the AHHS controller arises from a dynamic self-organized
process, driven by the AHHS itself. Hence, it is subject to AE, together with the
other rule set that acts in the AHHS. This compartmental layout is an essential
feature to allow ‘embodiment’ in our approach.

• Robot morphogenesis: For the feedback loop of the controller and the body
shape we propose a dynamical, self-organized body shaping process which influ-
ences the characteristics of the controller. When single modules are docking to or
releasing from the robot organism the hormone values are altered and therefore
the behavior of the controller itself changes. We think that this approach for a
self-organized body formation process in combination with evolutionary learn-
ing of the controller could be able to perform the demanding task of flexible body
shape.

• Decentralized body motion: Body-motion of joined organisms was successfully
achieved by AHHS control and by our implementation of AE. Again, it is a self-
organized process – consisting of positive and negative localized feedbacks and
time delays – that achieves the desired motion patterns.

In our current research projects, we plan to implement all six feedback loops de-
scribed above in real robotic hardware and in a sophisticated simulation software,
that closely depicts the physical abilities and constraints, as well as the computa-
tional abilities of our final targeted robots [22]. Using this software, we already
successfully implemented our AHHS controllers, evolved them to perform adaptive
behavior on single robots and in joined robotic organisms. Morphogenesis of the
controller and morphogenesis of the robot organism will be our next focus, as well
as enhancing the efficiency, the computational power and the evolvability of our
AHHS controllers. Also the necessity of all six feedback loops will be investigated.
At the moment, each feedback loop is investigated separately. For example, the body
motion was investigated with fixed predefined body shapes. In case of learning and
evolution, we note that it is not necessary to have both of them in the system at the
same time. In principle, they just differ in their time scales. Learning is achieved
during a life time while evolution lasts over generations. For example, there might
be scenarios in which learning does not improve the performance significantly be-
cause no optimization during runtime is needed.

However, all feedback loops interact in a complex way, which is the key point of
this approach. For example, a change of the body shape through robot morphogene-
sis influences the controller and the body motion. These intertwined feedback loops
encourage and challenge evolution to generate adaptive behavior.
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We conclude that our AHHS approach allows for self-organization on multiple
levels of the organism’s formation and movement process. Our evolutionary frame-
work alters the whole genome, which encodes for almost all parameters affecting
the feedback networks mentioned above. This genome-based evolution allows us to
evolve controller layouts, controller performance rules, virtual physics and virtual
chemistry of hormones, organism formation and organism movement all-together
in parallel. We think, this multi-level adaptation is essential to create a functioning
EMMR approach, as it is desired in the projects SYMBRION and REPLICATOR.
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E., Spears, W.M. (eds.) Swarm Robotics Workshop: State-of-the-art Survey, pp. 70–83.
Springer, Heidelberg (2005)

15. SYMBRION: Project website (2010), http://www.symbrion.eu
16. REPLICATOR: Project website (2010), http://www.replicators.eu
17. Stradner, J., Hamann, H., Schmickl, T., Thenius, R., Crailsheim, K.: Evolving a novel

bio-inspired controller in reconfigurable robots. In: 10th European Conference on Artifi-
cial Life (ECAL 2009). LNCS, Springer, Heidelberg (in press, 2010)

18. Stradner, J., Hamann, H., Schmickl, T., Crailsheim, K.: Analysis and implementation
of an artificial homeostatic hormone system: A first case study in robotic hardware. In:
The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2009, pp. 595–600. IEEE Press, Los Alamitos (2009)

19. Schmickl, T., Crailsheim, K.: Modelling a hormone-based robot controller. In: 6th Vi-
enna International Conference on Mathematical Modelling, MATHMOD (2009)

20. Wiener, N.: Cybernetics: or Control and Communication in the Animal and the Machine.
MIT Press, Cambridge (1948)

21. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. In: Natural Comput-
ing Series, Springer, Heidelberg (2003)

22. Delta 3D: Open-source gaming and simulation engine project website, http://www.
delta3d.org/

23. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A
survey and analysis. Robotics and Autonomous Systems 57, 345–370 (2009)

http://www.symbrion.eu
http://www.replicators.eu
http://www.delta3d.org/
http://www.delta3d.org/


Chapter 14
Evolutionary Design and Assembly Planning for
Stochastic Modular Robots

Michael T. Tolley, Jonathan D. Hiller, and Hod Lipson

Abstract. A persistent challenge in evolutionary robotics is the transfer of evolved
morphologies from simulation to reality, especially when these morphologies com-
prise complex geometry with embedded active elements. In this chapter we describe
an approach that automatically evolves target structures based on functional require-
ments and plans the error-free assembly of these structures from a large number of
active components. Evolution is conducted by minimizing the strain energy in a struc-
ture due to prescribed loading conditions. Thereafter, assembly is planned by sam-
pling the space of all possible paths to the target structure and following those that
leave the most options open. Each sample begins with the final completed structure
and removes one accessible component at a time until the existing substructure is re-
covered. Thus, at least one path to a complete target structure is guaranteed at every
stage of assembly. Automating the entire process represents a step towards an inter-
active evolutionary design and fabrication paradigm, similar to that seen in nature.

14.1 Introduction

While the use of evolutionary algorithms has gone a long way towards automating
the design process, the automated fabrication of evolved designs remains a major
challenge. This is especially true for designs with complex morphologies or active
components. Some approaches use rapid prototyping [1],[2], with a growing effort
to 3D-print active components such as actuators [3] and batteries [4], [5]. Alterna-
tively, other approaches explore the construction of robots from many small modular
active units [6]-[9]. As the number of modules increases and their size decreases,
manufacturing methods need to scale appropriately. Here we explore a combined
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evolutionary and assembly process geared towards the design and construction of
robots from such components.

A promising fabrication concept is to assemble active components that move
about stochastically in a fluidic environment (table 14.1) [10]-[13]. This reduces
the power, computation, and actuation demands on the individual modules, making
it easier to scale down their size. The components are attracted to a growth sub-
strate and to previously-assembled components to fabricate a target structure. This
approach allows for the assembly of the complex shapes that arise out of evolution.

The process we describe in this chapter designs a target structure to fulfill pre-
scribed functional requirements using an evolutionary algorithm, and then uses a
second algorithm to plan the error-free assembly of this structure in a stochas-
tic environment. Structures are evolved for prescribed loading conditions using a
frequency-based representation [14]. The goal of the evolutionary process is to min-
imize the strain energy in the structures while keeping their overall mass near a
prescribed value.

The assembly algorithm then plans the assembly of the best evolved structure
without knowing the times or locations of component availability. At each stage of
assembly this algorithm must determine the next set of locations to attract modules
from among those available. This is accomplished by sampling the graph of all
possible paths to the target structure and following those that leave the most options
open. For each sample, the assembly problem is solved by beginning with the final
structure and working backwards, removing one valid module at a time. Thus each
sample is a valid path to a perfect assembly. The potential locations for the next
assembly stage are then selected from among those most frequently encountered
while sampling. Using this approach, at least one path to a perfectly complete final
assembly is guaranteed at every stage of assembly.

14.2 Target Structure Evolution

We evolved structures to be assembled from our stochastic modular robots to fulfill
a particular task. In this case the task was to support a load on top with ground
reaction forces applied only at four locations in the corner of a 20x14x10 cube
workspace. The goal was to minimize the strain energy in the structure with 20% of
the workspace volume filled. Thus, the resulting structures could be used as a type
of customized bridge or a load-bearing legged robot (if the individual modules are
capable of some form of actuation).

Smooth, freeform 3D structures were evolved using a frequency-based encoding.
The objects were represented as a series of frequency amplitudes at harmonic
multiples, and the phenotype was generated by applying an inverse discrete Fourier
transform to these values. This approach is similar to that used in image compres-
sion, such as the jpeg format. In this case, the frequency representation was chosen
for its evolvability, scalability in terms of the number of parameters, and ease of
implementation. The fitness of the evolved structures was evaluated by calculating
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Table 14.1 Stochastic Fluidic Assembly System. Robotic components are assembled by tak-
ing advantage of their stochastic motions within a fluidic system for transportation. A target
shape (a) is assembled in simulation (b), where free and attached cubes are displayed in green
and red, respectively. The assembly substrate is displayed as a checkered floor. (c) Centime-
ter [15], and (d) micrometer [16] scaled versions of stochastic fluidic assembly experimental
modules.

(a) (b)

(c) (d)
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Table 14.2 Digital structure evolution. (a)-(f) Most fit individuals from indicated generations
evolved to support a load on top while contacting the ground only at four perimeter locations.
The colors indicate the global displacement of each component under the given loading con-
ditions. (g) Plot of the best and average fitness versus the number of evaluations for the first
500 generations. (h) Exaggerated deformation of the final best individual in 5700 generations
that was chosen as the target structure for the assembly algorithm.

(a) Generation 2 (b) Generation 8 (c) Generation 20

(d) Generation 56 (e) Generation 123 (f) Generation 4862

(g) (h)



14 Evolutionary Design and Assembly Planning for Stochastic Modular Robots 215

the total strain energy of the structure under the specified loading conditions. The
structures strain energy was calculated using a custom finite element analysis (FEA)
solver employing the direct stiffness method.

Using a frequency-based representation, we were able to evolve structures in our
2800-cube workspace using an encoding of only 120 parameters. We used a popula-
tion of 10 individuals which were selected for crossover using deterministic crowd-
ing. Children were produced by selecting each frequency component randomly from
one of the two parents. Children were also mutated at a rate of 0.2, with 20% of the
frequency components mutated by up to 10% with each mutation. If a generated
child was more fit than its most similar parent, the child replaced the parent in
the population, otherwise it is discarded. More details on the encoding, evolution
parameters, and fitness evaluation can be found in [14].

The results of the structure evolution can be seen in table 14.2. A representa-
tive sample of the best individuals from a number of different generations is shown
with colors indicating the displacement of each module under the prescribed load-
ing conditions (dark red and dark blue indicate maximum and minimum displace-
ment, respectively). A plot of the best and average fitnesses vs. the total number of

Table 14.3 Evolved applications for stochastic modular robots. (a) Custom wrench evolved
to withstand the applied forces necessary to manipulate an irregular mechanical compo-
nent. (b) Custom prosthetic leg replacement evolved to fit prescribed kinematic and force
constraints.

(a) (b)
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evaluations shows the convergence of the GA on a successful structure (ta-
ble 14.2 (g)). The deformation of the most fit individual is also shown in ta-
ble 14.2 (h).

Even if we restrict ourselves to FEA-solvable loading conditions, many other
goal tasks for a stochastic modular robotic system are possible. For example, a shape
could be defined that corresponds to a non-standard bolt or other mechanical com-
ponent that needs to be removed (table 14.3 (a)). A custom wrench shape could then
be evolved to withstand loads required to remove the component. Alternatively, the
kinematic and loading conditions could be defined for a damaged robot or human
limb that needs to be replaced and an optimal replacement shape could be then be
evolved to act as a prosthetic (table 14.3 (b)).

14.3 Stochastic Fluidic Assembly System Model

The structure evolved as described in Section 14.2 is to be assembled in a fluidic
modular robotic system (table 14.1). In this system, the target structure is grown
by adding components first to a planar substrate, then to the exposed surfaces of
previously-assembled components (table 14.4). The components are homogenous,
andtheir availability for assembly at any particular location at any point in time
is determined by the stochastic motion of the fluid in the assembly chamber. An
attraction can be activated by redirecting fluid flow through the internal structure
to open a sink at any surface of the structure, which pulls in nearby components
until one comes close enough to attach. However, there is a limit to the number of
sinks that can be opened simultaneously (due to the increased flow rates required to
maintain additional sinks). In addition, the attraction probability is affected by the
local and/or global assembled structure (which affects the fluid flow in the chamber),
and the number of sinks attracting to a given location. Kinematic constraints such
as the inability to insert a module directly between two opposing modules also limit
the viable assembly paths.

In our model of this system we assume limit of four attractions (sinks) that can
be active at one time, with only one attraction possible per grid location. We also
assume that the expected cube arrival time is a function of local geometry only. Tak-
ing the kinematic constraints into account, there are three possible configurations
to which a cube can be attracted (table 14.5 (a)). By running simulations of the
stochastic assembly system with a volume full of randomly initialized cubes being
attracted to one of these three configurations, we are able to obtain a distribution
of the assembly time in each case (table 14.5 (b)). Table 14.5 (c) shows the distri-
butions of the assembly times in the three separate cases overlaid on the Poisson
distributions for the same means, which are assumed to be the correct distributions
in sampling assembly times during assembly simulations, as described below.

When multiple sinks are opened simultaneously with different expected cube ar-
rival times (based on the current configuration), we require a method of determining
which cube arrives first. This is necessary both as a way of simulating natures turn
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Table 14.4 Stochastic Fluidic Assembly Concept [10]. (a) Fluid flow (indicated by arrows)
into a substrate attracts a nearby module moving stochastically in fluid environment. (b) Once
attached, the module draws power from the substrate to activate on-board valves and redirect
fluid flow through internal channels, (c) attracting new modules at desired locations. (d) This
process continues layer-by-layer until the structure is complete.

to decide which of the possible cubes arrives at a given step, and also as a method
of selecting cubes in the assembly algorithm.

Drawing inspiration from chemistry, we can sample from the set of potential
assembly events using a method developed to sample from the set of simultane-
ous reactions in a well-mixed stochastic fluidic environment with multiple chemical
species [17],[18]. Gillespies method relies on the following probability density that
the next reaction is μ and it occurs at time τ:

P(μ ,τ)dτ = aμexp(−τ ∑
j

a j)dτ (14.1)
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Table 14.5 Sink Configurations. (a) The three possible sink configurations to which a new
cube can be attached. Green cubes represent free components floating stochastically in a flu-
idic environment while assembled cubes are colored red. Dark blue squares represent sinks
that attract nearby cubes. (b) Plot of mean time to attraction over 100 simulation of the three
configurations. (c) Plots of the distribution of assembly times grouped into one second seg-
ments overlaid on a plot of the Poisson distributions for the three mean assembly times.

(a)

(b)

(c)
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where the aμs are the respective reaction rate coefficients (that can depend on chem-
ical concentrations, environmental conditions, etc.). Integrating P(μ ,τ) from τ = 0
to inf gives the probability that the next reaction to occur is a given reaction μ :

P(μ) =
aμ

∑ j a j
(14.2)

Further, summing P(μ ,τ) over all reactions μ gives the distribution of times for the
next reaction to occur:

P(τ)dτ = (∑
j

a j)exp(−τ ∑
j

a j)dτ (14.3)

Integrating this equation and solving for the time τ as a function of a selected ran-
dom number P gives an equation for randomly sampling the time taken for the next
equation to occur:

τ = − ln(1−P)
∑ j a j

(14.4)

If we view the various parallel potential interactions that could occur at any point
in time as chemical reactions in a well-mixed system, we can apply equations (1.2)
and (1.4) to determine the time and location of the next cube arrival in our stochastic
assembly system. In this case, the rate constants can be determined by inverting the
mean times to assembly from table 14.5 (b).

14.4 Assembly Algorithm

The main challenge of the assembly algorithm is to assemble error-free structures
in a parallel way. Straightforward approaches, such as attracting components in a
greedy manner wherever they are needed, result in porous structures with many un-
fillable holes ([10], table 14.6 (a)). Serial assembly approaches (e.g. filling one layer
at a time) result in perfect structures but take a long time and are susceptible to sin-
gle location failures. Otherwise, it is difficult to enumerate robust parallel assembly
rules that result in a perfect target structure.

The approach described here is to look at the problem from the opposite
direction: begin with the final structure and remove one accessible cube at a time,
keeping track of the sequence. This approach efficiently generates a serial assem-
bly sequence that results in a perfect assembly, starting with any partially-complete
structure (assuming such a path exists). In order to generate a parallel assembly se-
quence, we would ideally want a graph of all of the possible routes to an error-free
target structure (table 14.6 (b)). In practice, this graph is prohibitively expensive to
compute for all but the simplest structures. However, using the serial disassembly
approach, our strategy was to sample enough of the paths through this graph to de-
termine which of the potential attraction locations were both valid (did not result in
errors) and popular (many paths passed through this node). The idea was to avoid
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Table 14.6 Assembly by disassembly. (a) Greedy assembly algorithms result in porous struc-
tures with unfillable holes (indicated by blue squares). (b) By starting the complete structure
and removing one cube at a time, one could potentially create a graph of all possible assembly
sequences that result in an error-free structure.

(a)

(b)

getting stuck in a part of the graph with a small number of paths to completion since
this essentially degrades to serial assembly.

An example of applying this approach to the assembly of an evolved target struc-
ture can be seen in table 14.7. We evaluated multiple potential selection methods for
choosing the next cube to be removed at each step of each disassembly sample
(table 14.8 (a)). Most of these relied on obtaining a complete list of all of the
accessible cubes at each step, and choosing among them to decide which cube to
remove. This selection is made either randomly, favoring the attractions that take the
longest (i.e. with three adjacent cubes), or shortest (one adjacent cube) first, greedily
selecting the fastest or slowest attractions first, or using Gillespie sampling (Sec-
tion 14.2) to choose from among the possible cubes. A final selection method was
to randomly check cubes for availability and choose the first accessible cube found.

Surprisingly, all of these selection methods found serial assembly sequences with
very similar expected assembly times. The best and worst selection methods were
the greedy approaches, however neither of these are viable for sampling the over-
all assembly graph since they will always pick the same path through the graph.
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Table 14.7 Assembly Sequence. Sequence of images taken from simulated assembly of
robotic prosthetic from table 14.3 (b) using the parallel assembly algorithm.

Discarding these options, simply choosing the first randomly found accessible cube
turned out to be a much less computationally-intensive option since it avoided the
necessity of constructing a list of all of the accessible cubes at every step of the
disassembly. However, it is interesting to look at the different routes these
approaches take to assembly (table 14.8 (c)-(e)). Because single neighbor attraction
sites are the fastest, the Fastest First approach first assembles a skeletal structure
while Slowest First assembles a solid core of cubes and builds outward. The more
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Table 14.8 Effect of cube selection method. (a) Total expected serial assembly time (blue),
and computation time (red) averaged over 100 runs, for various selection methods. Error bars
indicate standard error. (b) Comparison of average expected assembly time for serial and
parallel assembly using the First Found selection method. (c)-(e) Partial structures assembled
for Greedy - Slowest First, Greedy - Fastest First, and Gillespie Sampling selection methods
(respectively). (f) Completely assembled target structure.

(a)

(b) (c)

(d) (e) (f)
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random approaches such as Gillespies method seem to be a hybrid of these two
extremes.

We ran the parallel assembly algorithm by taking 20 samples of the overall as-
sembly graph at each stage, and selecting the four most commonly encountered next
locations to attract cubes in parallel. Based on the results shown in table 14.8 (a),
we used the first randomly found accessible cube as the selection method for each
disassembly step of each sample. Using the Gillespie method, we simulated which
of the four locations attracted a cube at each assembly stage. The total assembly
time for the structure was reduced from 1792 to 380 minutes (table 14.8 (b)), while
still maintaining the guarantee of error-free assembly.

Finally, we studied the scaling of the simulated assembly times and the total
assembly algorithm computation times as a function of the number of modules
in the target structure (table 14.9). Interestingly, while the predicted structure as-
sembly time scales linearly with the number of modules, the total time required to
compute which locations to attract modules to at each stage of assembly increases
with the square of the number of modules. Thus, after a certain structure size the
assembly rate would be limited by algorithm computation as opposed to
physical assembly. However, since the assembly algorithm is re-sampling the same

Table 14.9 Assembly algorithm scaling. The time taken to assemble a structure in simulation
scales linearly with the number of modules while the total time taken to compute the locations
to next attract modules at each stage scales with the square of the number of modules.
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overall assembly graph over and over again, we believe it would be possible to em-
ploy a dynamic programming technique to reduce the algorithmic complexity by
re-using previous samples.

14.5 Conclusion

We have described an automated approach to stochastic modular robotics that, given
a target function, evolves a structure to achieve this function, and then directs the
structures assembly. Finite Element Analysis was used to determine the fitness of
the evolved structures and a frequency domain representation of the structures sim-
plifies the number of parameters and enhances evolvability. Once a suitable structure
was found, its assembly was planned using a sampling approach to map out a path
through the graph of all possible assembly sequences that minimizes assembly time.
Each sample of this graph was obtained by starting with the target structure and peel-
ing away one accessible module at a time until the initial structure is revealed. This
simple algorithm guarantees a valid path to assembly of the target structure that does
not leave behind unfillable holes.

While our approach follows the traditional paradigm of first designing, then de-
termining how to assemble a structure, the automated nature of the entire process
allows for the possibility of feedback between the two parts. Not only could assem-
bly simulations factor in to the evolutions fitness function, but the design itself could
in fact be tweaked through evolution in response to current assembly conditions.
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