
Chapter 6
Chaos in Discontinuous Differential Equations

This chapter is devoted to proving chaos for periodically perturbed piecewise

smooth ODEs. We study two cases: firstly, when the homoclinic orbit of the unper-

turbed piecewise smooth ODE transversally crosses the discontinuity surface, and

secondly, when a part of homoclinic orbit is sliding on the discontinuity surface.

6.1 Transversal Homoclinic Bifurcation

6.1.1 Discontinuous Differential Equations

DDEs occur in several situations such as in mechanical systems with dry frictions

or with impacts or in control theory, electronics, economics, medicine and biol-

ogy [1–8]. Recently attempts have been made to extend the theory of chaos to dif-

ferential equations with discontinuous right-hand sides. For examples, planar dis-

continuous differential equations are investigated in [9, 10], piecewise linear three-

dimensional discontinuous differential equations are investigated in [11, 12] and

weakly discontinuous systems are studied in [13–15]. Melnikov type analysis is also

presented for DDEs in [16–21]. An overview of some aspects of chaotic dynamics

in hybrid systems is given in [22]. A survey of controlling chaotic differential equa-

tions is presented in [23]. The switchability of flows of general DDEs is discussed

in [24–26]. Planar discontinuous differential equations are investigated in [27, 28]

using analytic and numeric approaches. Periodic and almost periodic solutions of

DDEs are considered in [29–33].

In [34] bifurcations of bounded solutions from homoclinic orbits are investigated

for time perturbed discontinuous differential equations in any finite dimensional

space. We anticipated that under the conditions of [34] not only the existence of

bounded solutions on R, but also chaotic solutions could occur. The purpose of

this section is to justify this conjecture about the existence of chaotic solutions. To

handle this kind of problem one has to face the new problem that stable and unstable
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250 6 Chaos in Discontinuous Differential Equations

manifolds may only be Lipschitz in the state variable, even if they are possibly

smooth with respect to parameters. So it is not clear what the notion of transverse

intersection of invariant manifolds would be.

6.1.2 Setting of the Problem

Let Ω ⊂ R
n be a bounded open set in R

n and G(z) be a Cr-function on Ω̄ , with

r ≥ 2. We set

Ω± = {z ∈Ω | ±G(z) > 0}, Ω0 := {z ∈Ω | G(z) = 0} .

Let f±(z) ∈Cr
b(Ω̄±) and g ∈Cr

b(R× Ω̄ ×R), i.e. f± and g have uniformly bounded

derivatives up to the r-th order on Ω̄± and R× Ω̄ ×R, respectively. We also assume

that the r-th order derivatives of f± and g are uniformly continuous. Let ε0 ∈ (0,1).
Throughout this section ε will denote a real parameter so that |ε| ≤ ε0. Particularly

ε is bounded.

Remark 6.1.1. For technical purposes, we Cr
b-smoothly extend f± on R

n, g on R
n+2

and γ±, γ0 on R in such a way that

sup{| f±(z)| | z ∈ R
n} ≤ 2sup{| f±(z)| | z ∈ Ω̄±} ,

sup{|g(t,z,ε)| | (t,z,ε) ∈ R
n+2} ≤ 2sup{|g(t,z,ε)| | t ∈ R,z ∈ Ω̄ , |ε| ≤ ε0} .

We also assume that up to the r-th order all the derivatives of the extended f± and

g are uniformly continuous and continue to keep the same notations for extended

mappings and functions.

We say that a function z(t) is a solution of the equation

ż = f±(z)+ εg(t,z,ε), z ∈ Ω̄±, (6.1.1)

if it is continuous, piecewise C1 satisfies Eq. (6.1.1) on Ω± and, moreover, the fol-

lowing holds: if for some t0 we have z(t0) ∈ Ω0, then there exists r > 0 so that

for any t ∈ (t0 − r, t0 + r) with t �= t0, we have z(t) ∈ Ω− ∪Ω+. Moreover, if,

for example, z(t) ∈ Ω− for any t ∈ (t0 − r, t0), then the left derivative of z(t) at

t = t0 satisfies: ż(t−0 ) = f−(z(t0)) + εg(t0,z(t0),ε); similarly, if z(t) ∈ Ω− for any

t ∈ (t0, t0 + r), then ż(t+0 ) = f−(z(t0)) + εg(t0,z(t0),ε). A similar meaning is as-

sumed when z(t) ∈ Ω+ for either t ∈ (t0 − r, t0) or t ∈ (t0, t0 + r). Note that since

z(t) /∈ Ω0 for t ∈ (t0 − r, t0 + r)\ {t0} we have either z(t) ∈ Ω− or z(t) ∈ Ω+ when

t ∈ (t0 − r, t0) or t ∈ (t0, t0 + r).
We assume (Figure 6.1) that

(H1) For ε = 0 Eq. (6.1.1) has the hyperbolic equilibrium x = 0 ∈ Ω− and a con-

tinuous (not necessarily C1) solution γ(t) which is homoclinic to x = 0 and

consists of three branches
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γ(t) =

⎧⎪⎪⎨⎪⎪⎩
γ−(t), if t ≤−T̄ ,

γ0(t), if −T̄ ≤ t ≤ T̄ ,

γ+(t), if t ≥ T̄ ,

where γ±(t) ∈Ω− for |t| > T̄ , γ0(t) ∈Ω+ for |t| < T̄ and

γ−(−T̄ ) = γ0(−T̄ ) ∈Ω0, γ+(T̄ ) = γ0(T̄ ) ∈Ω0.

(H2) It results: G′(γ(−T̄ )) f±(γ(−T̄ )) > 0 and G′(γ(T̄ )) f±(γ(T̄ )) < 0.

0
<
γ+(t)

>

γ0(t)
γ−(t)

Ω+

Ω0

Ω−

γ(T̄ )

γ(−T̄ )

ẋ = f−(x)

ẋ = f+(x)

Fig. 6.1 Transversal homoclinic cycle γ(t) of ẋ = f±(x).

According to (H1) and because of roughness of exponential dichotomies the lin-

ear systems ẋ = f ′−(γ−(t))x and ẋ = f ′−(γ+(t))x have exponential dichotomies on

(−∞,−T̄ ] and [T̄ ,∞) respectively, that is, projections P± : R
n → R

n and positive

numbers k ≥ 1 and δ > 0 exist so that the following hold:

‖X−(t)P−X−1
− (s)‖ ≤ k e−δ (t−s), if s ≤ t ≤−T̄ ,

‖X−(t)(I−P−)X−1
− (s)‖ ≤ k eδ (t−s), if t ≤ s ≤−T̄ ,

‖X+(t)P+X−1
+ (s)‖ ≤ k e−δ (t−s), if T̄ ≤ s ≤ t,

‖X+(t)(I−P+)X−1
+ (s)‖ ≤ k eδ (t−s), if T̄ ≤ t ≤ s,

(6.1.2)

where X−(t) and X+(t) are the fundamental matrices of the linear systems ẋ =
f ′−(γ−(t))x and ẋ = f ′−(γ+(t))x, respectively, so that X−(−T̄ ) = X+(T̄ ) = I. Later in

this section we will need to extend the validity of (6.1.2) to a larger set of values of

s, t. So, let us take, for example, u(t) = X+(t)(I−P+)X−1
+ (s), with T̄ ≤ s≤ t ≤ s+2.

Then,
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u(t) = u(s)+
∫ t

s
f ′−(γ+(τ))u(τ) dτ

and hence (using also |u(s)| ≤ k (see (6.1.2))

|u(t)| ≤ k +K−
∫ t

s
|u(τ)| dτ

where K− = sup{ f ′−(γ+(t)) | t ≥ T̄}. From Gronwall inequality (cf Section 2.5.1)

we obtain:

|X+(t)(I−P+)X−1
+ (s)| ≤ k eK−(t−s) ≤ k̂ eδ (t−s), if T̄ ≤ s ≤ t ≤ s+2,

where, for example, k̂ = k max{1,e2(K−−δ )}. By similar arguments we prove that

possibly replacing k with a larger value:

‖X−(t)P−X−1
− (s)‖ ≤ k e−δ (t−s), if s−2 ≤ s, t ≤−T̄ ,

‖X−(t)(I−P−)X−1
− (s)‖ ≤ k eδ (t−s), if t −2 ≤ s, t ≤−T̄ ,

‖X+(t)P+X−1
+ (s)‖ ≤ k e−δ (t−s), if T̄ ≤ s, t ≤ t +2,

‖X+(t)(I−P+)X−1
+ (s)‖ ≤ k eδ (t−s), if T̄ ≤ s, t ≤ s+2.

(6.1.3)

We now state our third assumption. It is a kind of nondegeneracy condition of the

homoclinic orbit γ(t) with respect to ẋ = f±(x), that reduces to the known notion

of nondegeneracy in the smooth case [35, 36]. This is discussed in more detail in

Section 6.1.3.

Let R0 : R
n →R

n be the projection onto N G′(γ(T̄ )) along the direction of γ̇0(T̄ ),
i. e.

R0w = w− G′(γ(T̄ ))w
G′(γ(T̄ ))γ̇0(T̄ )

γ̇0(T̄ )

and X0(t) be the fundamental solution of the linear system ż = f ′+(γ0(t))z, −T̄ ≤
t ≤ T̄ , satisfying X0(−T̄ ) = I. Then let

S ′ = N P− ∩N G′(γ(−T̄ )) and S ′′ = RP+ ∩N G′(γ(T̄ )) .

Since γ̇−(−T̄ ) /∈ N G′(γ(−T̄ )), dimN G′(γ(−T̄ )) = n− 1 and γ̇−(−T̄ ) ∈ N P−,

we have dim[N P− +N G′(γ(−T̄ ))] = n and hence:

dimS ′ = dim[N P− ∩N G′(γ(−T̄ ))]

= dimN P− +dimN G′(γ(−T̄ ))−n = dimN P−−1 .

Similarly, from γ̇+(T̄ ) /∈ N G′(γ(T̄ )), γ̇+(T̄ ) ∈ RP+ and dimN G′(γ(T̄ )) = n−1,

we see that

dimS ′′ = dim[RP+ ∩N G′(γ(T̄ ))]

= dimRP+ +dimN G′(γ(T̄ ))−n = dimRP+ −1 .



6.1 Transversal Homoclinic Bifurcation 253

We assume that the following condition holds:

(H3) S ′′ +R0[X0(T̄ )S ′] has codimension 1 in RR0.

Lemma 6.1.2. From (H3), the linear subspaces S ′′ and S ′′′ = R0[X0(T̄ )S ′] inter-
sect transversally in RR0. Moreover, we have dimS ′′′ = dimS ′.

Proof. We have dimS ′′′ ≤ dimS ′ = dimN P− − 1. Moreover from (H3) we get

dim [S ′′ +S ′′′] = n−2, and then:

dim
[
S ′′ ∩S ′′′] = dimS ′′ +dimS ′′′ −dim

[
S ′′ +S ′′′]

≤ dimRP+ −1+dimN P−−1− (n−2) = dimRP+ +dimN P−−n = 0 .

So the inequality is an equality and dimS ′′′ = dimS ′. The proof is finished. ��
According to Lemma 6.1.2, we have a unitary vector ψ ∈ RR0 so that

R
n = span{ψ}⊕N R0 ⊕S ′′ ⊕S ′′′ (6.1.4)

and

〈ψ,v〉 = 0, for any v ∈ S ′′ ⊕S ′′′. (6.1.5)

The main result of this section is the following:

Theorem 6.1.3. Assume that f±(z) and g(t,z,ε) are C2−functions with bounded
derivatives and that their second order derivatives are uniformly continuous. Let
conditions (H1), (H2) and (H3) hold. Then there exists a C2-function M (α) of the
real variable α so that if M (α0) = 0 and M ′(α0) �= 0 for some α0 ∈ R, then
the following hold: there exist ρ > 0, c̃1 > 0 and ε̃ > 0 so that for any 0 �= ε ∈
(−ε̃, ε̃), there exists νε ∈ (0, |ε|) (cf (6.1.91)) so that for any increasing sequence
T = {Tm}m∈Z that satisfies

Tm+1 −Tm > T̄ +1−2δ−1 ln |ε| for any m ∈ Z

along with the following recurrence condition

|g(t +T2m,z,0)−g(t,z,0)| < νε for any (t,z,m) ∈ R
n+1 ×Z , (6.1.6)

there exist unique sequences α̂ = {α̂m}m∈Z, β̂ = {β̂m}m∈Z ∈ �∞(R) (depending
on T and ε , i.e. α̂ = α̂T (ε), β̂ = β̂T (ε)) so that supm∈Z |α̂m − α0| < c̃1|ε|,
supm∈Z |β̂m −α0| < c̃1|ε| and a unique solution z(t,T ,ε) of Eq. (6.1.1) satisfying

supt∈[T2m−1+β̂m−1,T2m−T̄+α̂m] |z(t)− γ−(t −T2m − α̂m)| < ρ,

supt∈[T2m−T̄+α̂m,T2m+T̄+β̂m] |z(t)− γ0(t −T2m − α̂m)| < ρ,

supt∈[T2m+T̄+β̂m,T2m+1+β̂m] |z(t)− γ+(t −T2m − β̂m)| < ρ.

(6.1.7)
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We conclude this section with a remark on the projections of the dichotomies of

the systems ẋ = f ′(γ±(t))x on [T̄ ,∞) and (−∞,−T̄ ]:

P±(t) = X±(±t)P±X−1
± (±t). (6.1.8)

Let P0 be the projection of the dichotomy of the linear system ẋ = f ′(0)x on R. We

have (see Lemma 2.5.1) limt→∞ ‖P±(t)−P0‖ = 0. Thus T > T̄ exists so that

N P+(t ′)⊕RP−(t ′′) = R
n for any t ′, t ′′ ≥ T . (6.1.9)

We prove that a positive constant c̃ exists so that

max{|x+|, |x−|} ≤ c̃|x+ + x−| ∀(x+,x−) ∈ N P+(t ′)×RP−(t ′′). (6.1.10)

Since it is clear that |x+ + x−| ≤ 2max{|x+|, |x−|} we get, then, that the two norms

|x+ + x−| and max{|x+|, |x−|} are equivalent. To prove the statement (6.1.10) take

0 < υ < 1/2 and fix T > T̄ so that for any t ′, t ′′ ≥ T > T̄ we have

‖P0 −P+(t ′)‖ ≤ υ , ‖P0 −P−(t ′′)‖ ≤ υ .

Next consider a linear mapping Aυ : R
n  → R

n given by

Aυz := (I−P+(t ′))z+P−(t ′′)z .

Note that

Aυz = z− [
(P+(t ′)−P0)+(P0 −P−(t ′′)

]
z .

Since ‖(P+(t ′)−P0)+(P0 −P−(t ′′)‖ ≤ 2υ < 1, Aυ is invertible and

‖Aυ‖ ≤ 1+2υ , ‖A−1
υ ‖ ≤ 1/(1−2υ) .

So for any x ∈ R
n there is a unique z ∈ R

n so that

x = Aυz = x+ + x−

where x+ = (I−P+(t ′))z ∈ N P+(t ′) and x− = P−(t ′′)z ∈ RP−(t ′′). Then

|x+| ≤ ‖I−P+(t ′)‖|z| ≤ ‖I−P+(t ′)‖‖A−1
υ ‖|x| ≤ ‖I−P0‖+υ

1−2υ
|x| ,

|x−| ≤ ‖P−(t ′′)‖|z| ≤ ‖P−(t ′′)‖‖A−1
υ ‖|x| ≤ ‖P0‖+υ

1−2υ
|x| .

This proves (6.1.10) with, for example,

c̃ =
max{‖I−P0‖+υ ,‖P0‖+υ‖}

1−2υ
≤ 1+‖P0‖+υ

1−2υ
≤ 2(1+‖P0‖)

for υ ≤ 1+‖P0‖
1+4(1+‖P0‖) < 1

2 .
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6.1.3 Geometric Interpretation of Nondegeneracy Condition

Now we present a geometric meaning of condition (H3). For any x ∈Ω0 near γ(−T̄ )
we consider the solution φ−(t,x) of ẋ = f−(x) and the solution φ0(t,x) of ẋ = f+(x)
so that φ−(−T̄ ,x) = φ0(−T̄ ,x) = x, respectively. Similarly, for any x̃∈Ω0 near γ(T̄ )
we take a solution φ+(t, x̃) of ẋ = f−(x) so that φ+(T̄ , x̃) = x̃.

By the implicit function theorem, for any x ∈ Ω0 near x0 := γ(−T̄ ) there is a

unique time τ(x) so that

G(φ0(τ(x),x)) = 0, τ(x0) = T̄ . (6.1.11)

In summary, for any x ∈ Ω0 near x0, we have constructed a solution φ(t,x) of ẋ =
f±(x) defined as

φ(t,x) =

⎧⎪⎪⎨⎪⎪⎩
φ−(t,x), for t ≤−T̄ ,

φ0(t,x), for − T̄ ≤ t ≤ τ(x) ,
φ+(t − τ(x)+ T̄ ,φ0(τ(x),x)), for τ(x) ≤ t .

We recall the following properties of the function φ(t,x):

φ−(t,γ(−T̄ )) = γ−(t), for t ≤−T̄ ,

φ0(t,γ(−T̄ )) = γ0(t), for −T̄ ≤ t ≤ T̄ ,

φ+(t,γ(T̄ )) = γ+(t), for t ≥ T̄ ,

φ0(τ(x),x) ∈Ω0, for any x ∈Ω0 (near γ(−T̄ ))

(6.1.12)

and note that from (6.1.12) we get, for any η ∈ N G′(γ(T̄ )):[
∂φ0

∂x
(T̄ ,x0)+ φ̇0(T̄ ,x0)τ ′(x0)

]
η ∈ N G′(γ(T̄ )) = RR0 . (6.1.13)

We are interested in the linearization φ̃(t) := ∂φ
∂x (t,x0)η of φ(t,x) at x = x0

along η ∈ N G′(γ(−T̄ )) = Tγ(−T̄ )Ω0 that is using φ±(±T̄ ,x) = x, φ0(−T̄ ,x) = x
and (6.1.12):

φ̃(t) =

⎧⎪⎪⎨⎪⎪⎩
X−(t)η , t ≤−T̄ ,

X0(t)η , −T̄ ≤ t ≤ T̄ ,

X̃+(t)η , T̄ < t ,

where

X̃+(t) =
∂φ+

∂x
(t,γ(T̄ ))

[
φ̇0(T̄ ,x0)τ ′(x0)+

∂φ0

∂x
(T̄ ,x0)

]
− φ̇+(t,x0)τ ′(x0)

=X+(t)
[
(γ̇0(T̄ )− γ̇+(T̄ ))τ ′(x0)+X0(T̄ )

]
.

(6.1.14)
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Next, differentiating (6.1.11) we get G′(γ(T̄ ))
[
∂φ0
∂x (T̄ ,x0) + φ̇0(T̄ ,x0)τ ′(x0)

]
= 0,

that is,

G′(γ(T̄ ))
[
X0(T̄ )+ γ̇0(T̄ )τ ′(x0)

]
= 0.

As a consequence, we have, for any η ∈ N G′(γ(−T̄ )):

τ ′(x0)η = −G′(γ(T̄ ))X0(T̄ )η
G′(γ(T̄ ))γ̇0(T̄ )

.

Plugging everything together and using the definition of R0, we finally arrive at:[
∂φ0

∂x
(T̄ ,x0)+ φ̇0(T̄ ,x0)τ ′(x0)

]
η = [X0(T̄ )+ γ̇0(T̄ )τ ′(x0)]η = R0X0(T̄ )η

and

X̃+(t)η = X+(t)[R0X0(T̄ )η− γ̇+(T̄ )τ ′(x0)η ].

Now, if φ̃(t) is bounded on R we need η ∈N P− and hence, being η ∈N G′(γ(−T̄ )),
we need η ∈ S ′. Moreover, since γ̇+(T̄ ) ∈ RP+ we see that X̃+(t)η is bounded on

R+ if and only if so is X+(t)R0X0(T̄ )η , i.e. R0X0(T̄ )η ∈ RP+. But R0X0(T̄ )η ∈
R0X0(T̄ )S ′ ⊂ RR0. Hence assumption (H3) implies that R0X0(T̄ )η ∈ (RR0 ∩
RP+)∩R0X0(T̄ )S ′ = S ′′ ∩S ′′′ = {0} as we proved in Lemma 6.1.2. In summary

we derive the following result.

Theorem 6.1.4. Condition (H3) is equivalent to, say, that φ̃(t) is bounded if and
only if it is equal to zero. This corresponds to some nondegenerate condition on γ(t)
with respect to ẋ = f±(x).

For the smooth case, i.e. when f−(x) = f+(x) = f (x) ∈Cr(Ω), we have γ̇0(T̄ ) =
γ̇+(T̄ ) and hence φ̃(t) = X(t)η where X(t) is the fundamental matrix of the varia-

tional equation ẋ = f ′(γ(t))x along γ(t) with X(−T̄ ) = I. Note that η ∈ Tγ(−T̄ )Ω0

and Tγ(−T̄ )Ω0 is a transversal section to the homoclinic solution γ(t) at γ(−T̄ ). So in

the smooth case, Theorem 6.1.4 states that condition (H3) is equivalent to the prop-

erty that the only bounded solutions of the variational equation ẋ = f ′(γ(t))x are

multiples of γ̇(t). Hence in the smooth case, condition (H3) is just the well-known

nondegeneracy condition of γ(t) (cf [35]).

Finally, we observe that (6.1.14) can be written as

X̃+(t) = X+(t)[I+S]X0(T̄ )

where S is the so called transition matrix S [8, 13, 14, 19] and is given by

Sw :=
(
γ̇+(T̄ )− γ̇0(T̄ )

) G′(γ(T̄ ))w
G′(γ(T̄ ))γ̇0(T̄ )

=
(
γ̇+(T̄ )− γ̇0(T̄ )

) ((R0 − I)w, γ̇0(T̄ ))
‖γ̇0(T̄ )‖2

with the last equality following easily from the definition of R0, where (·, ·) is a

scalar product on R
n with the corresponding norm ‖ · ‖.
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6.1.4 Orbits Close to the Lower Homoclinic Branches

Let ρ > 0 be sufficiently small, α,β ∈R so that |β−α|< min{1,2T̄}, and �∞T (R) be

the space of doubly infinite sequences {Tm}m∈Z so that Tm+1 −Tm ≥ T +1 where T
is chosen so that (6.1.9) holds. Note that Tm−T0 ≥mT if m is positive and Tm−T0 ≤
mT if m is negative.

In this section we show how to construct solutions z−m(t) and z+
m(t) of (6.1.1) in

the intervals [T2m−1 +α−1,T2m − T̄ +α] and [T2m + T̄ +β ,T2m+1 +β +1] respec-

tively, in such a way that

supt∈[T2m−1−1,T2m−T̄ ] |z−m(t +α)− γ−(t −T2m)| < ρ,

supt∈[T2m+T̄ ,T2m+1+1] |z+
m(t +β )− γ+(t −T2m)| < ρ .

(6.1.15)

Note that T2m−1 +α−1 < T2m − T̄ +α < T2m + T̄ +β < T2m+1 +β + 1. We show

how to construct z−m(t) for t ∈ [T2m−1 +α−1,T2m− T̄ +α], the construction of z+
m(t)

for t ∈ [T2m + T̄ +β ,T2m+1 +β +1] is similar. Let

I−m := [T2m−1 −1,T2m − T̄ ], I+
m := [T2m + T̄ ,T2m+1 +1],

I−m,α := [T2m−1 +α−1,T2m − T̄ +α],

I+
m,β := [T2m + T̄ +β ,T2m+1 +β +1]

(6.1.16)

and set, for t ∈ I−m
x(t) = z−m(t +α)− γ−(t −T2m)

and

h−m(t,x,α,ε) = f−(x+ γ−(t −T2m))− f−(γ−(t −T2m))

− f ′−(γ−(t −T2m))x+ εg(t +α,x+ γ−(t −T2m),ε).
(6.1.17)

Then z−m(t) satisfies Eq. (6.1.1) for t ∈ I−m,α together with (6.1.15) if and only if x(t)
is a solution, in I−m , of the equation

ẋ− f ′−(γ−(t −T2m))x = h−m(t,x,α,ε), (6.1.18)

so that supt∈I−m |x(t)| < ρ .

Remark 6.1.5. According to Remark 6.1.1, we see that up to the r-th order all

derivatives of h−m(t,x,α,ε) with respect to (x,α,ε) are bounded and uniformly

continuous in (x,α,ε) uniformly with respect to t ∈ I−m and m ∈ Z. This state-

ment easily follows from the fact that for t ≤ −T̄ , one has h−m(t + T2m,x,α,ε) =
f−(x+γ−(t))− f−(γ−(t))− f ′−(γ−(t))x+εg(t +T2m +α,x+γ−(t),ε) and the con-

clusion holds as far as f (x) and g(t +T2m +α,x+ γ−(t),ε) are concerned.

We will need the following Lemma [37, 38]:
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Lemma 6.1.6. Let the linear system ẋ = A(t)x have an exponential dichotomy on
(−∞,−T̄ ] with projection P, and let X(t) be its fundamental matrix so that X(−T̄ ) =
I. Set P(t) := X(t)PX−1(t). Then for any continuous function h(t) ∈C0([−T,−T̄ ]),
ξ− ∈ N P and ϕ− ∈ RP(−T ), the linear non homogeneous system

ẋ = A(t)x+h(t) (6.1.19)

has a unique solution x(t) so that

(I−P)x(−T̄ ) = ξ−, P(−T )x(−T ) = ϕ− (6.1.20)

and this solution satisfies

x(t) = X(t)ξ− +X(t)PX−1(−T )ϕ− +
∫ t

−T
X(t)PX−1(s)h(s)ds

−
∫ T̄

t
X(t)(I−P)X−1(s)h(s)ds.

(6.1.21)

Proof. We can directly verify that (6.1.21) solves (6.1.19) and it satisfies (6.1.20)

as well. Next, if h = 0, ξ− = 0 and ϕ− = 0, then (6.1.19) implies x(t) = X(t)x0 for

some x0, while (6.1.20) gives (I−P)x0 = 0 and X(−T )Px0 = 0. Since X(−T ) is

invertible, we obtain x0 = 0, which yields to the uniqueness of x(t). The proof is

finished. ��
Remark 6.1.7. From (6.1.2) and (6.1.21) we immediately obtain the following esti-

mate for |x(t)|:

sup
−T≤t≤−T̄

|x(t)| ≤ k

[
|ξ−|+ |ϕ−|+2δ−1 sup

−T≤t≤−T̄
|h(t)|

]
. (6.1.22)

We apply Lemma 6.1.6 and Remark 6.1.7 with A(t) = f ′−(γ−(t − T2m)) in the

interval I−m (instead of [−T,−T̄ ]). Note that the fundamental matrix X(t) and the

projection P of the dichotomy on (−∞,T2m − T̄ ] of the linear system ẋ = f ′−(γ−(t −
T2m))x are X−(t − T2m) and P−, respectively. Thus, in the notation of (6.1.8) and

Lemma 6.1.6 we have

P−,m : = P(T2m−1 −1) = X−(T2m−1 −T2m −1)P−X−1
− (T2m−1 −T2m −1)

= P−(T2m −T2m−1 +1) .

Set:

‖x‖I−m = sup
t∈I−m

|x(t)|.

Then a trivial application of Lemma 6.1.6 and (6.1.22) gives the following

Corollary 6.1.8. Let h(t) ∈ C0(I−m ), ξ− ∈ N P− and ϕ− ∈ RP−,m. Then the linear
nonhomogeneous system
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ẋ = f ′−(γ−(t −T2m))x+h(t)

has a unique solution x(t) ∈C1(I−m ) so that

(I−P−)x(T2m − T̄ ) = ξ−, P−,mx(T2m−1 −1) = ϕ− . (6.1.23)

Moreover this solution satisfies (see (6.1.22))

‖x(t)‖I−m ≤ k
[
|ξ−|+ |ϕ−|+2δ−1‖h(t)‖I−m

]
(6.1.24)

and

x(t) = X−(t −T2m)ξ− +X−(t −T2m)P−X−1
− (T2m−1 −1−T2m)ϕ−

+
∫ t

T2m−1−1
X−(t −T2m)P−X−1

− (s−T2m)h(s)ds

−
∫ T2m−T̄

t
X−(t −T2m)(I−P−)X−1

− (s−T2m)h(s)ds.

(6.1.25)

Using Corollary 6.1.8 we define a map from C0(I−m )×N P− ×RP−,m ×R
2 into

C0(I−m ) as

(x(t),ξ−,ϕ−,α,ε)  → x̂(t) (6.1.26)

where y(t) = x̂(t) is the unique solution given by Corollary 6.1.8 of the equation

ẏ(t)− f ′−(γ−(t −T2m))y(t) = h−m(t,x(t),α,ε)

that satisfies conditions (6.1.23). We observe that the map

(x(t),α,ε)  → h−m(t,x(t),α,ε)

is a Cr map from C0(I−m )×R
2 into C0(I−m ) [39] and hence, from (6.1.25) we see that

so is the map (6.1.26) from C0(I−m )×N P−×RP−,m ×R
2 into C0(I−m ). Next, from

(6.1.17) we obtain immediately:

‖h−m(·,x,α,ε)‖ ≤ Δ−(|x|)|x|+N|ε| (6.1.27)

where

Δ−(r) = sup
{∣∣ f ′−(x+ γ−(t))− f ′−(γ−(t))

∣∣ | t ≤−T̄ , |x| ≤ r
}

is an increasing function so that Δ−(0) = 0 and

N = sup
{|g(t,z,ε)| | (t,z,ε) ∈ R

n+2
}

and hence, using (6.1.24) we get:

‖x̂‖I−m ≤ k
[
|ξ−|+ |ϕ−|+2δ−1Δ−(‖x‖I−m )‖x‖I−m +2δ−1N|ε|

]
. (6.1.28)
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Similarly, for fixed (ξ−,ϕ−,α,ε) ∈ N P−×RP−,m ×R
2 and x1(t),x2(t) ∈ C0(I−m )

we see that

‖x̂2 − x̂1‖I−m ≤ 2kδ−1
[
Δ−(r̄)+N′|ε|]‖x2 − x1‖I−m (6.1.29)

where r̄ = max{‖x1‖I−m ,‖x2‖I−m } and

N′ = sup

{∣∣∣∣∂g
∂x

(t,z,ε)
∣∣∣∣ | (t,z,ε) ∈ R

n+2

}
.

Thus if ρ > 0, |ξ−|, |ϕ−| and |ε| are sufficiently small, the map (6.1.26) is a

Cr−contraction in the ball of center x(t) = 0 and radius ρ in C0(I−m ), which is uni-

form with respect to the other parameters (ξ−,ϕ−,α,ε) and m∈Z. Hence we obtain

the following:

Theorem 6.1.9. Take on (H1), (H2) and let (ξ−,ϕ−,α,ε) ∈ N P− ×RP−,m ×R
2,

ρ > 0 be such that 2k
[|ξ−|+ |ϕ−|+2δ−1N|ε|]≤ ρ and 4kδ−1 [Δ−(ρ)+N′|ε|] < 1.

Then, for t ∈ I−m , Eq. (6.1.18) has a unique bounded solution x−m(t)= x−m(t,ξ−,ϕ−,α,ε)
which is Cr in the parameters (ξ−,ϕ−,α,ε) and m ∈ Z, and satisfies

‖x−m(·,ξ−,ϕ−,α,ε)‖I−m ≤ 2k
[|ξ−|+ |ϕ−|+2δ−1N|ε|]≤ ρ (6.1.30)

together with

(I−P−)x−m(T2m − T̄ ) = ξ−, P−,mx−m(T2m−1 −1) = ϕ−.

Moreover the derivatives of x−m(t,ξ−,ϕ−,α,ε) with respect to (ξ−,ϕ−,α,ε) are
also bounded in I−m uniformly with respect to (ξ−,ϕ−,α,ε) and m ∈ Z and they are
uniformly continuous in (ξ−,ϕ−,α,ε) uniformly with respect to m and t ∈ I−m .

Proof. Only the last part of the statement needs to be proved. We know that

x−m(t,ξ−,ϕ−,α,ε) is the unique fixed point of the map given by the right-hand side

of Eq. (6.1.25) with h−m(t,x(t),α,ε) instead of h(t). Since ξ− ∈ N P− we have

|X−(t − T2m)ξ−| = |X−(t − T2m)(I− P−)X−(−T̄ )ξ−| ≤ k eδ (t−T2m−T̄ ) |ξ−| ≤ k|ξ−|
for any t ∈ I−m . A similar argument shows that |X−(t − T2m)P−X−1

− (T2m−1 − 1 −
T2m)ϕ−| ≤ k|ϕ−| for any t ∈ I−m . As a consequence, the right-hand side of (6.1.25)

consists of a bounded linear map in (ξ−,ϕ−), with bound independent of m ∈ Z,

and the nonlinear map from C0
b(I−m )×R×R:

(x(·),α,ε)  →
∫ t

T2m−1−1
X−(t −T2m)P−X−1

− (s−T2m)h−m(s,x(s),α,ε)ds

−
∫ T2m−T̄

t
X−(t −T2m)(I−P−)X−1

− (s−T2m)h−m(s,x(s),α,ε)ds

whose derivatives up to the r-th order are bounded and uniformly continuous in

(x,α,ε) uniformly with respect to m because of the properties of h−m(t,x,α,ε) (see

Remark 6.1.5 and 6.1.2). The proof is complete. ��
We are now ready to prove the main result of this section:
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Theorem 6.1.10. Take on (H1), (H2) and let (ξ−,ϕ−,α,ε) ∈ N P−×RP−,m ×R
2,

ρ > 0 be such that 2k
[|ξ−|+ |ϕ−|+2δ−1N|ε|]≤ ρ and 4kδ−1 [Δ−(ρ)+N′|ε|] < 1.

Then, for t ∈ I−m,α , equation ż = f−(z)+ εg(t,z,ε) has a unique bounded solution
z−m(t) = z−m(t,ξ−,ϕ−,α,ε) which is Cr in the parameters (ξ−,ϕ−,α,ε) and satisfies

‖z−m(·+α,ξ−,ϕ−,α,ε)− γ−(·−T2m)‖I−m ≤ 2k
[|ξ−|+ |ϕ−|+2δ−1N|ε|]≤ ρ

(6.1.31)

together with

(I−P−)[z−m(T2m − T̄ +α)− γ−(−T̄ )] = ξ−,

P−,m[z−m(T2m−1 +α−1)− γ−(T2m−1 −T2m −1)] = ϕ−.

Moreover x−m(t) := z−m(t +α,ξ−,ϕ−,α,ε)− γ−(t − T2m) is the unique fixed point
of the map (6.1.25) and z−m(t,ξ−,ϕ−,α,ε) and its derivatives with respect to
(ξ−,ϕ−,α,ε) are also bounded in I−m uniformly with respect to (ξ−,ϕ−,α,ε) and
m ∈ Z, uniformly continuous in (ξ−,ϕ−,α,ε) uniformly with respect to (t,m) with
t ∈ I−m , m ∈ Z and satisfy:

∂ z−m
∂ξ−

(t +α,0,0,α,0) = X−(t −T2m)(I−P−),

∂ z−m
∂ϕ−

(t +α,0,0,α,0)ϕ− = X−(t −T2m)P−X−1
− (T2m−1 −T2m −1)ϕ−

∂ z−m
∂ε

(t +α,0,0,α,0) (6.1.32)

=
∫ t

T2m−1−1
X−(t −T2m)P−X−1

− (s−T2m)g(s+α,γ−(s−T2m),0)ds

−
∫ T2m−T̄

t
X−(t −T2m)(I−P−)X−1

− (s−T2m)g(s+α,γ−(s−T2m),0)ds

Proof. Setting x(t) := z−m(t +α)− γ−(t −T2m) the existence of z−m(t,ξ−,ϕ−,α,ε)
satisfying (6.1.31) follows from Theorem 6.1.9. Thus we only need to prove (6.1.32).

From (6.1.28) we see that x−m(t,0,0,α,0) = 0 and then differentiating equation

(6.1.25) with x−m(t,ξ−,ϕ−,α,ε) instead of x(t) and h−m(t,x−m(t,ξ−,ϕ−,α,ε),α,ε)
instead of h(t) we see that

∂ z−m
∂ξ−

(t +α,0,0,α,0)ξ− =
∂x−m
∂ξ−

(t,0,0,α,0)ξ− = X−(t −T2m)ξ−.

Similarly we obtain the rest of (6.1.32). ��
Remark 6.1.11. The function z−m(t) = z−m(t,ξ−,ϕ−,α,ε) is a bounded solution of

Eq. (6.1.1) in the interval I−m,α as long as it remains in Ω− for t ∈ I−m,α , and sat-
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isfies (6.1.31). However in order that z−m(t) ∈ Ω− for t ∈ I−m,α it is sufficient that

G(z−m(T2m − T̄ +α)) = 0. This follows directly from (H2) and (6.1.31).

Next, let

Δ+(r) := sup
{∣∣ f ′−(x+ γ+(t))− f ′−(γ+(t))

∣∣ | T̄ ≤ t, |x| ≤ r
}

,

P+,m := P+(T2m+1 −T2m +1)

= X+(T2m+1 −T2m +1)P+X+(T2m+1 −T2m +1)−1 ,

h+
m(t,x,β ,ε) = f−(x+ γ+(t −T2m))− f−(γ+(t −T2m))

− f ′−(γ+(t −T2m))x+ εg(t +β ,x+ γ+(t −T2m),ε) .

(6.1.33)

By an almost identical argument we show the following:

Theorem 6.1.12. Take on (H1), (H2) and let (ξ+,ϕ+,β ,ε) ∈ RP+ ×N P+,m ×R
2

and ρ > 0 be such that 2k
[|ξ+|+ |ϕ+|+2δ−1N|ε|]≤ ρ and 4kδ−1 [Δ+(ρ)+N′|ε|]<

1. Then, for t ∈ I+
m,β , equation ż = f+(z)+εg(t,z,ε) has a unique bounded solution

z+
m(t) = z+

m(t,ξ+,ϕ+,β ,ε) which is Cr in the parameters (ξ+,ϕ+,β ,ε) and satisfies

‖z+
m(·+β ,ξ+,ϕ+,β ,ε)− γ+(·−T2m)‖I+m ≤ 2k

[|ξ+|+ |ϕ+|+2δ−1N|ε|]≤ ρ
(6.1.34)

together with

P+[z+
m(T2m + T̄ +β )− γ+(T̄ )] = ξ+,

(I−P+,m)[z+
m(T2m+1 +β +1)− γ+(T2m+1 −T2m +1)] = ϕ+.

Moreover x+
m(t) := z+

m(t +β ,ξ+,ϕ+,β ,ε)− γ+(t −T2m) is the unique fixed point of
the map

(x(t),ξ+,ϕ+, β ,ε)  →
X+(t −T2m)ξ+ +X+(t −T2m)(I−P+)X−1

+ (T2m+1 −T2m +1)ϕ+

+
∫ t

T2m+T̄
X+(t −T2m)P+X−1

+ (s−T2m)h+
m(s,x(s),β ,ε)ds

−
∫ T2m+1+1

t
X+(t −T2m)(I−P+)X−1

+ (s−T2m)h+
m(s,x(s),β ,ε)ds ,

(6.1.35)

and z+
m(t,ξ+,ϕ+,β ,ε) and its derivatives with respect to (ξ+,ϕ+,β ,ε) are also

bounded in I+
m uniformly with respect to (ξ+,ϕ+,β ,ε) and m ∈ Z, uniformly con-

tinuous in (ξ+,ϕ+,β ,ε) uniformly with respect to (t,m) with t ∈ I+
m , m ∈ Z and

satisfy:
∂ z+

m

∂ξ+
(t +β ,0,0,β ,0) = X+(t −T2m)P+
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∂ z+
m

∂ϕ+
(t +β ,0,0,β ,0)ϕ+ = X+(t −T2m)(I−P+)X−1

+ (T2m+1 −T2m +1)ϕ+

∂ z+
m

∂ε
(t +β ,0,0,β ,0)

=
∫ t

T2m+T̄
X+(t −T2m)P+X−1

+ (s−T2m)g(s+β ,γ+(s−T2m),0)ds

−
∫ T2m+1+1

t
X+(t −T2m)(I−P+)X−1

+ (s−T2m)g(s+β ,γ+(s−T2m),0)ds.

(6.1.36)

Remark 6.1.13. Note that z−m(t,ξ−,ϕ−,α,ε) (resp. z+
m(t,ξ+,ϕ+,α,ε)) depends on

m by means of T2m−1 and T2m (resp. T2m and T2m+1). Consequently, we may

also write x−(t,ξ−,ϕ−,α,ε,T2m,T2m−1), x+(t,ξ+,ϕ+,α,ε,T2m,T2m+1) instead of

x−m(t,ξ−,ϕ−,α,ε), x+
m(t,ξ+,ϕ+,α,ε) and say that x−(t,ξ−,ϕ−,α,ε,T2m,T2m−1),

x+(t,ξ+,ϕ+,α,ε,T2m,T2m+1), respectively, is uniformly continuous with respect

to (ξ−,ϕ−,α,ε), resp. (ξ+,ϕ+,β ,ε), uniformly with respect to T2m,T2m−1, resp.

T2m,T2m+1, and t ∈ I−m , (resp. t ∈ I+
m ).

6.1.5 Orbits Close to the Upper Homoclinic Branch

Theorem 6.1.14. Take on (H1), (H2). Then there exist positive constants c, ε0 and
ρ̃0 so that for any α,β ,ε ∈ R and ξ̄ ∈ R

n so that |β −α| < min{1,2T̄}, |ε| ≤ ε0

and |ξ̄ − γ0(−T̄ )| < ρ̃0, there exists a unique solution z0
m(t) = z0

m(t, ξ̄ ,α,β ,ε) of
equation ż = f+(z)+ εg(t,z,ε), for t ∈ [T2m − T̄ +α,T2m + T̄ +β ] so that

z0
m(T2m − T̄ +α) = ξ̄

and

‖z0
m(t)− γ0(t −T2m −α)‖[T2m−T̄+α,T2m+T̄+β ] ≤ c[|ξ̄ − γ0(−T̄ )|+2Nδ−1|ε|] .

(6.1.37)

Moreover z0
m(t, ξ̄ ,α,β ,ε) and its derivatives with respect to (ξ̄ ,α,β ,ε) are bounded

in [T2m− T̄ +α,T2m + T̄ +β ] uniformly with respect to m ∈Z, uniformly continuous
in (ξ̄ ,α,β ,ε), uniformly with respect to t ∈ [T2m − T̄ +α,T2m + T̄ +β ], m ∈ Z, and
have the following properties:

(i) x0
m(t) = z0

m(t +α, ξ̄ ,α,β ,ε)− γ0(t −T2m) is a fixed point of the map

x(t)  → X0(t −T2m)
[
ξ̄ − γ0(−T̄ )

]
+

∫ t

T2m−T̄
X0(t −T2m)X−1

0 (s−T2m)h0
m(s,x(s),α,ε)ds

(6.1.38)
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where

h0
m(t,x,α,ε) = f+(x+ γ0(t −T2m))− f+(γ0(t −T2m))− f ′+(γ0(t −T2m))x

+εg(t +α,x+ γ0(t −T2m),ε).

(ii) The following equalities hold:

∂ z0
m

∂α
(t,γ0(T̄ ),α,β ,0) = −γ̇0(t −T2m −α),

∂ z0
m

∂β
(t,γ0(−T̄ ),α,β ,0) = 0,

∂ z0
m

∂ ξ̄
(t,γ0(−T̄ ),α,β ,0) = X0(t −T2m −α),

∂ z0
m

∂ε
(t +α,γ0(−T̄ ),α,β ,0)

=
∫ t

T2m−T̄
X0(t −T2m)X−1

0 (s−T2m)g(s+α,γ0(s−T2m),0)ds.

(6.1.39)

Proof. The statement concerning the existence of the solution z0
m(t)= z0

m(t,ξ ,α,β ,ε)
from which (6.1.37) holds, follows from the continuous dependence on the data.

Moreover the fact that x0
m(t) is a fixed point of the map (6.1.38) follows from

the variation of constants formula. The boundedness and continuity properties of

z0
m(t,ξ ,α,β ,ε) follow from the similar properties of h0

m(t,x,α,ε) as in Theorems

6.1.10, 6.1.12. Then, because of uniqueness of fixed points we also get:

z0
m(t,γ0(−T̄ ),α,β ,0) = γ0(t −T2m −α)

from which the first two equalities of point (ii) easily follow. Differentiating (6.1.38)

with respect to ξ , ε respectively and using the fact that h0
m(t,x,α,0) is of the second

order in x, we derive the other two equalities in (ii). ��
Note that if

c[ρ̃0 +2Nδ−1ε0] < ρ

from (6.1.37) we obtain:

sup{|z0
m(t +α)− γ0(t −T2m)| | t ∈ [T2m − T̄ ,T2m + T̄ +β −α]} < ρ. (6.1.40)

Remark 6.1.15. Note that z0
m(t, ξ̄ ,α,β ,ε)) depends on m by means of T2m. Thus

we may also write z0(t, ξ̄ ,α,β ,ε,T2m) instead of z0
m(t, ξ̄ ,α,β ,ε) and say that

z0(t, ξ̄ ,α,β ,ε,T2m) is uniformly continuous in (ξ̄ ,α,β ,ε) uniformly with respect

to T2m and t ∈ [T2m − T̄ +α,T2m + T̄ +β ].
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6.1.6 Bifurcation Equation

Let ε0 > 0, ρ̃0 > 0 and c > 0 be constants as in Theorem 6.1.14, C := max{c,2k},

χ < 1 a positive constant that will be specified and fixed below and ρ0 ≤ cρ̃0 be the

largest positive number satisfying

4kδ−1

[
Δ±(ρ0)+

N′δ
2NC

ρ0

]
≤ 1.

Next, let 0 < ρ < ρ0 and ερ := min
{
ρδ

2CN ,ε0

}
. For any α = {αm}m∈Z ∈ �∞(R) and

ε ∈ (−ερ ,ερ) we set

�∞ρ,α,ε :=
{
θ :=

{
(ϕ−

m ,ϕ+
m ,ξ−m ,ξ+

m , ξ̄m,βm)
}

m∈Z
∈ �∞(R5n+1) :

(ϕ−
m ,ϕ+

m ,ξ−m ,ξ+
m , ξ̄m,βm) ∈ RP−,m ×N P+,m ×N P−×RP+ ×R

n+1 ,

2k
[|ξ±m |+ |ϕ±

m |+2δ−1N|ε|] < ρ, c[|ξ̄m − γ0(−T̄ )|+2Nδ−1|ε|] < ρ,

sup
m∈Z

|αm+1 −βm| < χ
}

and

�∞ρ =
{

(θ ,α,ε) ∈ �∞ρ,α,ε × �∞(R)× (−ερ ,ερ) : α ∈ �∞χ

}
where

�∞χ =
{
α ∈ �∞(R) : sup

m∈Z

|αm −αm−1| < χ
}

.

Note that because of the choice of ρ , ερ , �∞ρ,α,ε , �∞ρ and �∞χ are open nonempty

subsets of

�∞(RP−,m ×N P+,m ×N P−×RP+ ×R
n ×R) ,

�∞(RP−,m ×N P+,m ×N P−×RP+ ×R
n ×R)× �∞(R)× (−ερ ,ερ)

and �∞(R), respectively. In �∞ρ,α,ε we take the norm

‖θ‖ =
∥∥{(ϕ−

m ,ϕ+
m ,ξ−m ,ξ+

m , ξ̄m,βm)
}

m∈Z

∥∥
= sup

m∈Z

max
{|ϕ−

m +ϕ+
m |, |ξ−m |, |ξ+

m |, |ξ̄m|, |βm|
}

.

Let T = {Tm}m∈Z be given as in Section 6.1.4 and take (θ ,α,ε) ∈ �∞ρ . In this

section we want to find such conditions that system (6.1.1) has a solution z(t) de-

fined on R so that any m ∈ Z satisfies:

‖z(t)− γ−(t −T2m −αm)‖Ĩ−m < ρ,

‖z(t)− γ0(t −T2m −αm)‖Ĩ0
m

< ρ,

‖z(t)− γ+(t −T2m −βm)‖Ĩ+m
< ρ



266 6 Chaos in Discontinuous Differential Equations

where Ĩ−m = [T2m−1 +αm −1,T2m − T̄ +αm], I0
m = [T2m − T̄ +αm,T2m + T̄ +βm] and

Ĩ+
m = [T2m + T̄ +βm,T2m+1 +βm].

We note that for any (θ ,α,ε) ∈ �∞ρ assumptions of Theorems 6.1.10, 6.1.12 and

6.1.14 are satisfied. Indeed we have

4kδ−1
[
Δ±(ρ)+N′|ε|]< 4kδ−1

[
Δ±(ρ)+N′ερ

]
< 4kδ−1

[
Δ±(ρ0)+

N′δ
2NC

ρ0

]
≤ 1

along with |ε| < ε0 and

|ξ̄ − γ0(−T̄ )| < ρ
c

<
ρ0

c
≤ ρ̃0 .

So according to the previous sections and because of uniqueness of the solutions

z+
m(t,ξ+

m ,ϕ+
m ,βm,ε), z−m(t,ξ−m ,ϕ−

m ,αm,ε) and z0
m(t, ξ̄m,αm,βm,ε) we see that such a

solution can be found if and only if we are able to solve the infinite set of equations

(m ∈ Z):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z+
m(T2m+1 +βm,ξ+

m ,ϕ+
m ,βm,ε)− z−m+1(T2m+1 +βm,ξ−m+1,ϕ

−
m+1,αm+1,ε) = 0,

z0
m(T2m − T̄ +αm, ξ̄m,αm,βm,ε)− z−m(T2m − T̄ +αm,ξ−m ,ϕ−

m ,αm,ε) = 0,

z0
m(T2m + T̄ +βm, ξ̄m,αm,βm,ε)− z+

m(T2m + T̄ +βm,ξ+
m ,ϕ+

m ,βm,ε) = 0,

G(z−m(T2m − T̄ +αm,ξ−m ,ϕ−
m ,αm,ε)) = 0,

G(z0
m(T2m + T̄ +βm, ξ̄m,αm,βm,ε)) = 0,

G(z+
m(T2m + T̄ +βm,ξ+

m ,ϕ+
m ,βm,ε)) = 0 .

(6.1.41)

Since T2m+1 +αm+1−1 < T2m+1 +βm, system (6.1.41) is well posed. Note that from

Theorem 6.1.14, the second of the above equations reads:

ξ̄m = z−m(T2m − T̄ +αm,ξ−m ,ϕ−
m ,αm,ε)

and gives the sequence {ξ̄m}m∈Z in terms of the sequences {ξ−m }m∈Z, {ϕ−
m }m∈Z,

{αm}m∈Z, and ε . Moreover, if ρ is sufficiently small, z0
m(T2m +T̄ +βm, ξ̄m,αm,βm,ε)

is close to γ0(T̄ + βm − αm), while z+
m(T2m + T̄ + βm,ξ+

m ,ϕ+
m ,βm,ε) is close to

γ+(T̄ ) = γ0(T̄ ). So there is a positive constant χ < min{1,2T̄} so that the 5th and

the 6th equations in (6.1.41) imply that the 3rd equation is equivalent to

R0

[
z0

m(T2m + T̄ +βm, ξ̄m,αm,βm,ε)− z+
m(T2m + T̄ +βm,ξ+

m ,ϕ+
m ,βm,ε)

]
= 0

where R0 : R
n → R

n is the projection defined in Section 6.1.2. From now on, we fix

such a χ . Here we use the fact |βm −αm| < 2χ for any m ∈ Z, so γ0(T̄ +βm −αm)
and γ0(T̄ ) are sufficiently close for χ is small enough uniformly for any m ∈ Z.

Let

�∞1 = �∞(Rn ×R
n ×RR0 ×R×R×R)

with the norm
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sup
m∈Z

max{|am|, |bm|, |cm|, |dm|, |em|, | fm|}

for {(am,bm,cm,dm,em, fm)}m∈Z
∈ �∞1 . We define a map GT ∈Cr

(
�∞ρ , �∞1

)
as

GT (θ ,α,ε) = GT ({(ϕ−
m ,ϕ+

m ,ξ−m ,ξ+
m , ξ̄m,βm)}m∈Z,{αm}m∈Z,ε) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z+
m(T2m+1 +βm,ξ+

m ,ϕ+
m ,βm,ε)− z−m+1(T2m+1 +βm,ξ−m+1,ϕ

−
m+1,αm+1,ε)

ξ̄m − z−m(T2m − T̄ +αm,ξ−m ,ϕ−
m ,αm,ε)

R0[z0
m(T2m + T̄ +βm, ξ̄m,αm,βm,ε)− z+

m(T2m + T̄ +βm,ξ+
m ,ϕ+

m ,βm,ε)]

G(z−m(T2m − T̄ +αm,ξ−m ,ϕ−
m ,αm,ε))

G(z0
m(T2m + T̄ +βm, ξ̄m,αm,βm,ε))

G(z+
m(T2m + T̄ +βm,ξ+

m ,ϕ+
m ,βm,ε))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

so that Eq. (6.1.41) reads

GT (θ ,α,ε) = 0 . (6.1.42)

Before giving our main result we state few properties of the map GT . First, from

[39] it follows that GT is Cr and has bounded derivatives. More precisely, from

the continuity properties of the solutions z+
m(t,ξ+

m ,ϕ+
m ,βm,ε), z−m(t,ξ−m ,ϕ−

m ,αm,ε),
and z0

m(t, ξ̄m,αm,βm,ε) we see that GT (θ ,α,ε) and its derivatives are bounded and

uniformly continuous in (θ ,α,ε) uniformly with respect to T ∈ �∞T (R). Next, for

any α ∈ �∞χ , we set:

θα = {(0,0,0,0,γ0(−T̄ ),αm)}m∈Z
.

From (6.1.31), (6.1.34), (6.1.37), and G(γ±(±T̄ )) = 0, γ±(±T̄ ) = γ0(±T̄ ), we get

GT (θα ,α,0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ+(T2m+1 −T2m)− γ−(T2m+1 −T2m+2 +αm −αm+1)

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

.

Now, for t ≥ T we have

|γ+(t)| ≤
∫ ∞

t
|γ̇+(s)|ds ≤

∫ ∞

t
k e−δ (s−T̄ ) |γ̇+(T̄ )|ds = kδ−1 e−δ (t−T̄ ) |γ̇+(T̄ )|

and similarly

|γ−(t)| ≤ kδ−1 eδ (t+T̄ ) |γ̇−(−T̄ )|
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for any t ≤−T̄ . Thus

|γ+(T2m+1 −T2m)− γ−(T2m+1 −T2m+2 +αm −αm+1)|
≤ kδ−1 e−δ (T2m+1−T2m−T̄ ) |γ̇+(T̄ )|+ kδ−1 eδ (T2m+1−T2m+2+T̄+1) |γ̇−(−T̄ )|
≤ 2kδ−1 e−δ (T−T̄ ) max{|γ̇−(−T̄ )|, |γ̇+(T̄ )|},

that is,

‖GT (θα ,α,0)‖ ≤ 2kδ−1 e−δ (T−T̄ ) max{|γ̇−(−T̄ )|, |γ̇+(T̄ )|} . (6.1.43)

Similarly we get:

d
dα

[GT (θα ,α,0)]α̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ̇−(T2m+1 −T2m+2 +αm −αm+1)(α̃m+1 − α̃m)

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

and hence ∥∥∥∥ d
dα

[GT (θα ,α,0)]
∥∥∥∥≤ 2kδ−1 e−δ (T−T̄ ) |γ̇−(−T̄ )|. (6.1.44)

Next, from Theorems 6.1.10, 6.1.12, 6.1.14, the equality R0γ̇0(T̄ ) = 0 and the

identities

P−X−1
− (T2m−1 −T2m −1)ϕ−

m = X−1
− (T2m−1 −T2m −1)ϕ−

m ,

(I−P+)X−1
+ (T2m+1 −T2m +1)ϕ+

m = X−1
+ (T2m+1 −T2m +1)ϕ+

m

(6.1.45)

(that follow from ϕ−
m ∈ RP−,m, ϕ+

m ∈ N P+,m), we see that the derivative D1GT of

GT with respect to θ ∈ �∞ρ,α,ε at the point (θα ,α,0) is given by

D1GT (θα ,α,0)θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lα(ϕ−
m+1,ϕ

+
m ,ξ−m+1,ξ

+
m , ξ̄m,βm)

ξ̄m −ξ−m −X−1
− (T2m−1 −T2m −1)ϕ−

m

R0[X0(T̄ )ξ̄m −ξ+
m −X−1

+ (T2m+1 −T2m +1)ϕ+
m ]

G′(γ0(−T̄ )) · [ξ−m +X−1
− (T2m−1 −T2m −1)ϕ−

m ]

G′(γ0(T̄ )) · [X0(T̄ )ξ̄m + γ̇0(T̄ )βm]

G′(γ+(T̄ )) · [ξ+
m +X−1

+ (T2m+1 −T2m +1)ϕ+
m ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

where, we recall θ = {(ϕ−
m ,ϕ+

m ,ξ−m ,ξ+
m , ξ̄m,βm)}m∈Z, and
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Lα(ϕ−
m+1,ϕ

+
m ,ξ−m+1,ξ

+
m , ξ̄m,βm)

= X+(T2m+1 −T2m)ξ+
m

−X−(T2m+1 −T2m+2 +αm −αm+1)ξ−m+1 − γ̇−(T2m+1 −T2m+2 +αm −αm+1)βm

+X+(T2m+1 −T2m)(I−P+)X−1
+ (T2m+1 −T2m +1)ϕ+

m

−X−(T2m+1 −T2m+2 +αm −αm+1)P−X−1
− (T2m+1 −T2m+2 −1)ϕ−

m+1 .

Then, using again (6.1.45) we obtain:∣∣X−1
+ (T2m+1 −T2m +1)ϕ+

m
∣∣≤ k e−δ (T2m+1−T2m−T̄+1) |ϕ+

m | ≤ k e−δ (T−T̄+2) |ϕ+
m |∣∣X−1

− (T2m−1 −T2m −1)ϕ−
m
∣∣≤ k e−δ (T2m−T2m−1+1−T̄ ) |ϕ−

m | ≤ k e−δ (T−T̄+2) |ϕ−
m | .

(6.1.46)

Moreover,

|X+(T2m+1 −T2m)ξ+
m | = |X+(T2m+1 −T2m)P+X−1

+ (T̄ )ξ+
m | ≤ k e−δ (T−T̄+1) |ξ+

m |
(6.1.47)

and, since |αm −αm+1| < 1 implies that T2m+2 −T2m+1 −αm +αm+1 ≥ T > T̄ :

|X−(T2m+1 −T2m+2 +αm −αm+1)ξ−m+1|
= |X−(T2m+1 −T2m+2 +αm −αm+1)(I−P−)X−1

− (−T̄ )ξ−m+1|
≤ k e−δ (T−T̄ ) |ξ−m+1|,
|γ̇−(T2m+1 −T2m+2 +αm −αm+1)| ≤ k e−δ (T−T̄ ) |γ̇−(−T̄ )|

(6.1.48)

for any m ∈ Z. Next,

X−(T2m+1 −T2m+2 +αm −αm+1)P−X−1
− (T2m+1 −T2m+2 −1)ϕ−

m+1

∈ RP−(T2m+2 −T2m+1 −αm +αm+1),

X+(T2m+1 −T2m)(I−P+)X−1
+ (T2m+1 −T2m +1)ϕ+

m

∈ N P+(T2m+1 −T2m),

and (see (6.1.9))

N P+(T2m+1 −T2m)⊕RP−(T2m+2 −T2m+1 −αm +αm+1) = R
n.

Hence the linear map

Lα,m : (ϕ−
m+1,ϕ

+
m )  → X+(T2m+1 −T2m)(I−P+)X−1

+ (T2m+1 −T2m +1)ϕ+
m

−X−(T2m+1 −T2m+2 +αm −αm+1)P−X−1
− (T2m+1 −T2m+2 −1)ϕ−

m+1

is a linear isomorphism from RP−,m+1 ⊕N P+,m = R
n into N P+(T2m+1 −T2m)⊕

RP−(T2m+2 −T2m+1 −αm +αm+1) = R
n whose inverse is given by:
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L −1
α,m : (ϕ̃−

m+1, ϕ̃
+
m )  → X+(T2m+1 −T2m +1)(I−P+)X−1

+ (T2m+1 −T2m)ϕ̃+
m

−X−(T2m+1 −T2m+2 −1)P−X−1
− (T2m+1 −T2m+2 +αm −αm+1)ϕ̃−

m+1 .

Note that (see (6.1.3)):

|X−(T2m+1 −T2m+2 −1)P−X−1
− (T2m+1 −T2m+2 +αm −αm+1)ϕ̃−

m+1|
≤ k eδ (1+αm−αm+1) |ϕ̃−

m+1| ≤ k eδ (1+χ) |ϕ̃−
m+1| ;

|X+(T2m+1 −T2m +1)(I−P+)X−1
+ (T2m+1 −T2m)ϕ̃−

m+1| ≤ k eδ |ϕ̃−
m+1|

and

∂
∂α

Lα,m(ϕ−
m+1,ϕ

+
m )α = − f ′− (γ−(T2m+1 −T2m+2 +αm −αm+1)) ·

X−(T2m+1 −T2m+2 +αm −αm+1)P−X−1
− (T2m+1 −T2m+2 −1)ϕ−

m+1(αm −αm+1) .

Thus we obtain (see also (6.1.10)):

|Lα,m(ϕ−
m+1,ϕ

+
m )| ≤ k e−δ |ϕ+

m |+ k e−δ (1−χ) |ϕ−
m+1| ≤ kc̃|ϕ+

m +ϕ−
m+1|,

|L −1
α,m(ϕ̃−

m+1,ϕ
+
m )| ≤ k eδ |ϕ+

m |+ k eδ (1+χ) |ϕ̃−
m+1| ≤ kc̃e2δ |ϕ+

m +ϕ−
m+1|,∣∣∣∣ ∂∂αLα,m(ϕ−

m+1,ϕ
+
m )| ≤ 2N−k|ϕ−

m+1

∣∣∣∣
for N− := supx∈Rn | f−(x)|. So, using also ∂

∂αL −1
α,m = L −1

α,m ◦ ∂
∂αLα,m ◦L −1

α,m:

‖Lα,m‖ ≤ kc̃ and ‖L −1
α,m‖ ≤ kc̃e2δ ,∥∥∥ ∂

∂αLα,m

∥∥∥≤ 2N−k and
∥∥∥ ∂
∂αL −1

α,m

∥∥∥≤ 2N−k3c̃2 e4δ .

Next, using (6.1.47), (6.1.48):∣∣Lα(ϕ−
m+1,ϕ

+
m ,ξ−m+1,ξ

+
m , ξ̄m,βm)−Lα,m(ϕ−

m+1,ϕ
+
m )

∣∣
≤ k e−δ (T−T̄ )(2+ |γ̇−(−T̄ )|)‖θ‖

(6.1.49)

(recall θ = {(ϕ−
m ,ϕ+

m ,ξ−m ,ξ+
m , ξ̄m,βm)}m∈Z). We define Hα : �∞ρ,α,ε → �∞1 as

Hαθ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lα,m(ϕ−
m+1,ϕ

+
m )

ξ̄m −ξ−m
R0[X0(T̄ )ξ̄m −ξ+

m ]

G′(γ0(−T̄ ))ξ−m
G′(γ0(T̄ )) · [X0(T̄ )ξ̄m + γ̇0(T̄ )βm]

G′(γ+(T̄ )) ·ξ+
m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

.
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Clearly

∂
∂α

Hαθ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂αLα,m(ϕ−

m+1,ϕ
+
m )

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

and so ∥∥∥∥ ∂∂αHα

∥∥∥∥≤ 2N−k . (6.1.50)

Next, note that

[D1GT (θα ,α,0)−Hα ]θ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lα(ϕ−
m+1,ϕ

+
m ,ξ−m+1,ξ

+
m , ξ̄m,βm)−Lα,m(ϕ−

m+1,ϕ
+
m )

−X−1
− (T2m−1 −T2m −1)ϕ−

m

−R0X−1
+ (T2m+1 −T2m +1)ϕ+

m

G′(γ0(−T̄ ))X−1
− (T2m−1 −T2m −1)ϕ−

m

0

G′(γ+(T̄ ))X−1
+ (T2m+1 −T2m +1)ϕ+

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

.
(6.1.51)

Hence, from (6.1.46) and (6.1.49), we get

‖D1GT (θα ,α,0)−Hα‖ ≤ c̃3k e−δ (T−T̄ ) (6.1.52)

where

c̃3 := max
{

2+ |γ̇−(−T̄ )|,‖R0‖e−2δ , |G′(γ0(−T̄ ))|e−2δ , |G′(γ+(T̄ ))|e−2δ
}

.

Next, given {(am,bm,cm,dm,em, fm)}m∈Z
∈ �∞1 we want to solve the linear equa-

tion

Hαθ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

am

bm

cm

dm

em

fm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

(6.1.53)

that is the set of equations:
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Lα,m(ϕ−
m+1,ϕ

+
m ) = am,

ξ̄m −ξ−m = bm,

R0[X0(T̄ )ξ̄m −ξ+
m ] = cm,

G′(γ0(−T̄ ))ξ−m = dm,

G′(γ0(T̄ )) · [X0(T̄ )ξ̄m + γ̇0(T̄ )βm] = em,

G′(γ+(T̄ )) ·ξ+
m = fm .

(6.1.54)

To solve (6.1.54) we write:

ξ−m = η⊥
m +μ−

m γ̇−(−T̄ ) ,

ξ+
m = ζ⊥m +μ+

m γ̇+(T̄ ), m ∈ Z ,

{η⊥
m }m∈Z ∈ �∞(S ′), {ζ⊥m }m∈Z ∈ �∞(S ′′), {μ±

m }m∈Z ∈ �∞(R) ,

(6.1.55)

and plug (6.1.55) into (6.1.54). We obtain

(ϕ−
m+1,ϕ

+
m ) = L −1

α,mam ,

μ−
m = dm

G′(γ−(−T̄ ))γ̇−(−T̄ ) ,

μ+
m = fm

G′(γ+(T̄ ))γ̇+(T̄ ) , (6.1.56)

ξ̄m = η⊥
m +μ−

m γ̇−(−T̄ )+bm ,

βm = em−G′(γ0(T̄ ))X0(T̄ )ξ̄m
G′(γ0(T̄ ))γ̇0(T̄ ) ,

R0X0(T̄ )η⊥
m −ζ⊥m = cm −μ−

m R0X0(T̄ )γ̇−(−T̄ )−R0X0(T̄ )bm +μ+
m R0γ̇+(T̄ ) .

Now we denote byΠ : RR0 →S ′′ ⊕S ′′′ ⊂RR0 the orthogonal projection onto

S ′′ ⊕S ′′′ along span{ψ} (recall that ψ ∈ RR0 = N G′(γ(T )) is a unitary vector

so that (6.1.4) and (6.1.5) hold). In other words:

(I−Π)w = 〈ψ,w〉ψ (6.1.57)

for any w ∈ RR0. Assumption (H3) implies that the linear mapping S ′′ ⊕S ′  →
S ′′ ⊕S ′′′ = RΠ defined as (ζ⊥,η⊥) → −ζ⊥ + R0X0(T̄ )η⊥ is invertible. So in

order to solve (6.1.56), we need to suppose

{(am,bm,cm,dm,em, fm)}m∈Z
∈ �∞(S iv) ,

where

S iv =
{

(a,b,c,d,e, f ) ∈ R
2n ×RR0 ×R

3 : (I−Π)L(a,b,c,d,e, f ) = 0
}
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and L : R
n ×R

n ×RR0 ×R×R×R → RR0 is the linear map given by:

L(a,b,c,d,e, f ) = c− d
G′(γ−(−T̄ ))γ̇−(−T̄ )

R0X0(T̄ )γ̇−(−T̄ )

−R0X0(T̄ )b+
f

G′(γ+(T̄ ))γ̇+(T̄ )
R0γ̇+(T̄ ) .

(6.1.58)

Note that S iv is a codimension 1 linear subspace of R
2n ×RR0 ×R

3. Hence ψ̃ ∈
R

2n ×RR0 ×R
3 exists so that

span{ψ̃}⊕S iv = R
2n ×RR0 ×R

3 .

Of course, to be more precisely, we can take ψ̃ so that 〈ψ̃,v〉 = 0 for any v ∈ S iv,

where 〈·, ·〉 is the usual scalar product on R
3n+3. To construct such a ψ̃ we note that

from (6.1.57), it follows that (I−Π)Lv = 〈ψ,Lv〉ψ = 〈L∗ψ,v〉ψ , where we take

the natural restriction of 〈·, ·〉 onto RR0 ⊂ R
n. Thus v = (a,b,c,d,e, f ) ∈S iv if and

only if 〈L∗ψ,v〉 = 0 or v ∈ {L∗ψ}⊥ and we can take

ψ̃ = L∗ψ/|L∗ψ| .

Let Π̃ : R
2n × RR0 × R

3 → S iv be the orthogonal projection onto S iv along

span{ψ̃}. Then

(I− Π̃)v = 〈ψ̃,v〉ψ̃ =
〈L∗ψ,v〉
|L∗ψ| ψ̃ =

〈ψ,Lv〉
|L∗ψ| ψ̃ .

We set

�∞ψ = �∞(span{ψ̃}) ⊂ �∞1 .

Let Πψ : �∞1 → �∞(S iv) be the projection onto �∞(S iv) along �∞ψ given by

Πψ
({(am,bm,cm,dm,em, fm)}m∈Z

)
=

{
Π̃(am,bm,cm,dm,em, fm)

}
m∈Z

.

In summary, we see from (6.1.56) that there is a continuous inverse H −1
α : �∞(S iv)  →

�∞2 , where

�∞2 =
{{

(ϕ−
m ,ϕ+

m ,ξ−m ,ξ+
m , ξ̄m,βm)

}
m∈Z

∈ �∞
(
R

5n+1
)

:

(ϕ−
m ,ϕ+

m ,ξ−m ,ξ+
m , ξ̄m,βm) ∈ RP−,m ×N P+,m ×N P−×RP+ ×R

n+1, ∀m ∈ Z

}
.

Note that from (6.1.56) it easily follows that
∥∥H −1

α
∥∥ and

∥∥∥ ∂
∂αH −1

α

∥∥∥≤
∥∥∥ ∂
∂αHα

∥∥∥
‖H −1

α ‖2 are uniformly bounded with respect to α .

Finally, we define projections onto RG′(γ(T̄ )) and RG′(γ(−T̄ )), respectively,

as
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(I−R+)w =
G′(γ(T̄ ))w

G′(γ(T̄ ))γ̇+(T̄ )
γ̇+(T̄ )

(I−R−)w =
G′(γ(−T̄ ))w

G′(γ(−T̄ ))γ̇−(−T̄ )
γ̇−(−T̄ ).

(6.1.59)

Note that R+ is the projection onto N G′(γ(T̄ )) along γ̇+(T̄ ) whereas R− is the

projection onto N G′(γ(−T̄ )) along γ̇−(−T̄ ). First, we observe that for any w ∈ R
n

we have [I−P+]R+P+ = 0, since γ̇+(T̄ ) ∈ RP+. So R+P+ = P+R+P+ and then for

any w ∈ R
n we have R+P+w ∈ RP+ ∩RR+ = S ′′. As a consequence, we see that

ψ∗R+P+w = 0 for any w ∈R
n (see (6.1.4)). Similarly we see that P−R−[I−P−] = 0,

hence R−[I− P−]w ∈ N P− ∩RR− = N P− ∩N G′(γ(−T )) = S ′ for any w ∈
R

n. As a consequence, we get ψ∗R0X0(T )R−[I−P−]w = 0 for any w ∈ R
n since

R0X0(T )R−(I−P+)w ∈ R0X0(T )S ′. Consequently we arrive at

P∗
+R∗

+ψ = 0,
(
I−P∗

−
)

R∗
−X0(T̄ )∗R∗

0ψ = 0 . (6.1.60)

Next we set:

ψ(t) =

⎧⎪⎪⎨⎪⎪⎩
X−1∗
− (t)R∗−X0(T̄ )∗R∗

0ψ, if t ≤−T̄ ,

X−1∗
0 (t)X0(T̄ )∗R∗

0ψ, if −T̄ < t ≤ T̄ ,

X−1∗
+ (t)R∗

+ψ, if t > T̄ ,

(6.1.61)

and

M (α) =
∫ ∞

−∞
ψ∗(t)g(t +α,γ(t),0)dt. (6.1.62)

Using (6.1.60), we easily obtain:

|ψ(t)| ≤ ‖X−1∗
+ (t)(I−P∗

+)X∗
+(T̄ )‖|R∗

+ψ| ≤ k‖R+‖e−δ (t−T̄ ) if t ≥ T̄ ,

|ψ(t)| ≤ k‖R0X0(T̄ )R−‖eδ (t+T̄ ) if t ≤−T̄ .
(6.1.63)

Thus M (α) is a well defined C2 function because of Lebesgue theorem. We are

now ready to state the following result.

Theorem 6.1.16. Assume that f±(z) and g(t,z,ε) are Cr−functions with bounded
derivatives and that their r-order derivatives are uniformly continuous. Assume,
moreover, that conditions (H1), (H2) and (H3) hold.

Then given c0 > 0 there exist constants ρ0 > 0, χ > 0 and c1 > 0 so that for
any 0 < ρ < ρ0, there is ε̄ρ > 0 so that for any ε , 0 < |ε| < ε̄ρ , for any increasing
sequence T = {Tm}m∈Z ⊂ R with Tm −Tm−1 > T̄ +1−2δ−1 ln |ε| so that

M
(
T2m +α0

m
)

= 0 ∀m ∈ Z and inf
m∈Z

|M ′ (T2m +α0
m
) | > c0 (6.1.64)

for some α0 = {α0
m}m∈Z ∈ �∞χ , there exist unique sequences {α̂m}m∈Z =

{
α̂m(T ,

ε)
}

m∈Z
∈ �∞χ (R) and {β̂m}m∈Z = {β̂m(T ,ε)}m∈Z ∈ �∞(R) with |α̂m(T ,ε)−α0

m|<
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c1|ε| and |β̂m(T ,ε)−α0
m| < c1|ε| ∀m ∈ Z, and a unique bounded solution z(t) =

z(T ,ε)(t) of system (6.1.1) so that

supt∈[T2m−1+β̂m−1,T2m−T̄+α̂m] |z(t)− γ−(t −T2m − α̂m)| < ρ,

supt∈[T2m−T̄+α̂m,T2m+T̄+β̂m] |z(t)− γ0(t −T2m − α̂m)| < ρ,

supt∈[T2m+T̄+β̂m,T2m+1+β̂m] |z(t)− γ+(t −T2m − β̂m)| < ρ

for any m ∈ Z (cf (6.1.7)). Hence z(t) is orbitally close to γ(t) in the sense that
dist(z(t),Γ ) < ρ where Γ = {γ(t) | t ∈ R} is the orbit of γ(t).

Proof. If ρ and ε̄ρ < ερ are sufficiently small then, for t ∈ I−m,α , the solution z(t)
we look for must satisfy z(t) = z−m(t,ξ−,ϕ−,α,ε) for some value of the parameters

(ξ−,ϕ−,α,ε) and similarly in the other intervals [T2m − T̄ +α,T2m + T̄ + β ] and

I+
m,β . So, we solve Eq. (6.1.42) for (θ ,α) ∈ �∞ρ,α,ε × �∞χ in terms of T and ε ∈
(−ε̄ρ , ε̄ρ). Set

FT (θ ,α,ε)

= GT (θ ,α,ε)−Hα(θ −θα)

= GT (θα ,α,0)

+[GT (θ ,α,0)−GT (θα ,α,0)−D1GT (θα ,α,0)(θ −θα)]

+(D1GT (θα ,α,0)−Hα)(θ −θα)+ ε
∫ 1

0
D3GT (θ ,α,τε)dτ

where D3GT (θ ,α,ε) denotes the derivative of GT with respect to ε . It is easy to

see that

FT (θα ,α,ε) = GT (θα ,α,ε), D1FT (θ ,α,ε) = D1GT (θ ,α,ε)−Hα ,

D1FT (θ1,α,ε)−D1FT (θ2,α,ε) = D1GT (θ1,α,ε)−D1GT (θ2,α,ε),

D2FT (θ ,α,ε) = D2GT (θ ,α,ε)− ∂Hα
∂α

(θ −θα)−Hα
∂θα
∂α

.

(6.1.65)

For simplicity we also set:

μ = e−δ (T−T̄ ) .

From the definition of FT (θ ,α,ε) we see that Eq. (6.1.42) has the form

θ −θα +H −1
α ΠψFT (θ ,α,ε) = 0, (6.1.66)

and (
I−Πψ

)
FT (θ ,α,ε) = 0 . (6.1.67)

We denote with c(1)
G , resp. c(2)

G , upper bounds for the norms of the first order, resp.

second order, derivatives of GT (θ ,α,ε), in �∞ρ . Thus for example,
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c(1)
G = sup

(θ ,α,ε)∈�∞ρ

{‖D1GT (θ ,α,ε)‖,‖D2GT (θ ,α,ε)‖,‖D3GT (θ ,α,ε)‖}

and c(2)
G is similar. Then

GT (θ ,α,0)−GT (θα ,α,0)−D1GT (θα ,α,0)(θ −θα)

=
∫ 1

0
(D1GT (τθ +(1− τ)θα ,α,0)−D1GT (θα ,α,0)) dτ(θ −θα)

= η(θ ,θα ,α)(θ −θα) ,

where

‖η(θ ,θα ,α)‖ ≤ c(2)
G ‖θ −θα‖.

Hence, since

FT (θ ,α,ε)−FT (θα ,α,ε)

=
∫ 1

0
[D1FT (τθ +(1− τ)θα ,α,ε)]dτ(θ −θα)

=
∫ 1

0
[D1FT (τθ +(1− τ)θα ,α,ε)−D1FT (θα ,α,ε)]dτ(θ −θα)

+D1FT (θα ,α,ε)(θ −θα)

=
∫ 1

0
[D1GT (τθ +(1− τ)θα ,α,ε)−D1GT (θα ,α,ε)]dτ(θ −θα)

+[D1GT (θα ,α,ε)−Hα ](θ −θα)

(6.1.68)

(see also (6.1.65)) we derive, using also (6.1.52) (recall μ = e−δ (T−T̄ ))

‖FT (θ ,α,ε)−FT (θα ,α,ε)‖ ≤ 1

2
c(2)
G ‖θ −θα‖2 +(kc̃3μ+ c(2)

G |ε|)‖θ −θα‖
(6.1.69)

and (see also (6.1.43), (6.1.65))

‖FT (θ ,α,ε)‖ ≤ c(2)
G

2
‖θ −θα‖2 +(kc̃3μ+ c(2)

G |ε|)‖θ −θα‖+ c(1)
G |ε|+ cγ μ

(6.1.70)

where cγ = 2kδ−1 max{|γ̇−(−T̄ )|, |γ̇+(T̄ )|}. Note that cγ , c(1)
G , c(2)

G and c̃3 do not

depend on (α,T ,ε) ∈ �∞χ × �∞T (R)×R. Next, from (6.1.50), (6.1.52) and (6.1.65)

we get

‖D1FT (θα ,α,0)‖ ≤ kc̃3μ,

‖D1FT (θ ,α,ε)−D1FT (θα ,α,ε)‖ ≤ c(2)
G ‖θ −θα‖,

‖D2FT (θ ,α,ε)−D2FT (θα ,α,ε)‖ ≤
(

c(2)
G +2kN−

)
‖θ −θα‖ .

(6.1.71)
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From (6.1.70) and (6.1.71) we conclude that

lim
(θ ,ε,μ)→(θα ,0,0)

FT (θ ,α,ε) = 0, lim
(θ ,ε,μ)→(θα ,0,0)

D1FT (θ ,α,ε) = 0

uniformly with respect to α . Thus, if ρ̄0 > 0, μ0 > 0 and 0 < ε̄0 ≤ ερ are sufficiently

small and 0 < μ < μ0, |ε| < ε̄0, from the implicit function theorem the existence

follows of a unique solution θ = θT (α,ε) of (6.1.66) which is defined for any

α ∈ �∞χ , |ε| < ε̄0, 0 < μ ≤ μ0 and T = {Tm}m∈Z so that Tm+1 −Tm > T + 1 where

T − T̄ = −δ−1 lnμ . Moreover θT (α,ε) satisfies

sup
α,T ,ε

‖θT (α,ε)−θα‖ < ρ̄0 (6.1.72)

with the sup being taken over all α , T and ε satisfying the above conditions. Next,

using (6.1.66) with θT (α,ε) instead of θ and (6.1.70), we see that:

‖θT (α,ε)−θα‖ ≤ ‖H −1
α Πψ‖‖FT (θT (α,ε),α,ε)‖ ≤

‖H −1
α Πψ‖

(
c(2)
G

2
‖θT (α,ε)−θα‖2 +(kc̃3μ+ c(2)

G |ε|)‖θT (α,ε)−θα‖

+c(1)
G |ε|+ cγ μ

)
.

Hence if ρ̄0, μ0 and ε0 are so small that

‖H −1
α Πψ‖[c(2)

G (ρ̄0 +2ε0)+2kc̃3μ0] < 1 (6.1.73)

we obtain:

‖θT (α,ε)−θα‖ ≤ 2‖H −1
α Πψ‖(cγ μ+ c(1)

G |ε|). (6.1.74)

Note that since Π̃ is an orthogonal projection, it is enough to choose μ0, ε0 and ρ̄0 in

such a way that c(2)
G (ρ̄0 +2ε0)+2kc̃3μ0 < ‖H −1

α ‖−1. Moreover, plugging (6.1.74)

into (6.1.69) we obtain

‖FT (θT (α,ε),α,ε)−FT (θα ,α,ε)‖
≤ 2c(2)

G ‖H −1
α Πψ‖2(cγ μ+ c(1)

G |ε|)2

+2(kc̃3μ+ c(2)
G |ε|)‖H −1

α Πψ‖(cγ μ+ c(1)
G |ε|) ≤Λ1(μ+ |ε|)2

(6.1.75)

where Λ1 > 0 is independent of (T ,α,μ,ε). For example:

Λ1 = 2‖H −1
α Πψ‖max{cγ ,c

(1)
G ,c(2)

G ,kc̃3}2
[
‖H −1

α Πψ‖c(2)
G +1

]
.

Next, differentiating the equality



278 6 Chaos in Discontinuous Differential Equations

θT (α,ε)−θα +H −1
α ΠψFT (θT (α,ε),α,ε) = 0

with respect to α we obtain:

∂
∂α

[θT (α,ε)−θα ] = −H −1
α Πψ ∂

∂αFT (θT (α,ε),α,ε)

−
[
∂
∂α

H −1
α Πψ

]
FT (θT (α,ε),α,ε)

= −H −1
α Πψ

{
∂
∂α [FT (θT (α,ε),α,ε)−FT (θα ,α,ε)]

+
∂
∂α

[FT (θα ,α,ε)−FT (θα ,α,0)]+
∂
∂α

GT (θα ,α,0)
}

−
[
∂
∂α

H −1
α Πψ

]
FT (θT (α,ε),α,ε).

(6.1.76)

Then note that

∂
∂α

[ FT (θT (α,ε),α,ε)−FT (θα ,α,ε)]

=
∂
∂α

∫ 1

0
D1FT (τθT (α,ε)+(1− τ)θα ,α,ε)dτ(θT (α,ε)−θα)

=
{∫ 1

0
D2

1FT (τθT (α,ε)+(1− τ)θα ,α,ε)
∂
∂α

[θT (α,ε)−θα ]τ dτ

+
∫ 1

0
D2

1FT (τθT (α,ε)+(1− τ)θα ,α,ε)
d

dα
θα dτ

+
∫ 1

0
D1D2FT (τθT (α,ε)+(1− τ)θα ,α,ε)dτ

}
(θT (α,ε)−θα)

+
∫ 1

0
D1FT (τθT (α,ε)+(1− τ)θα ,α,ε)dτ

∂
∂α

[θT (α,ε)−θα ] .

(6.1.77)

First we derive∥∥∥∥∫ 1

0
D2

1FT (τθT (α,ε)+(1− τ)θα ,α,ε)
∂
∂α

[θT (α,ε)−θα ]τ dτ
∥∥∥∥

≤
∫ 1

0
c(2)
G τdτ

∥∥∥∥ ∂∂α [θT (α,ε)−θα ]
∥∥∥∥ =

1

2
c(2)
G

∥∥∥∥ ∂∂α [θT (α,ε)−θα ]
∥∥∥∥ .

Next, from (6.1.71) we obtain
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0
D1FT (τθT (α,ε)+(1− τ)θα ,α,ε)dτ

∂
∂α

[θT (α,ε)−θα ]
∥∥∥∥

≤
(∫ 1

0
‖D1FT (τθT (α,ε)+(1− τ)θα ,α,ε)−D1FT (θα ,α,ε)]‖dτ

+‖D1FT (θα ,α,ε)−D1FT (θα ,α,0)‖+‖D1FT (θα ,α,0)‖
)

∥∥∥∥ ∂∂α [θT (α,ε)−θα ]
∥∥∥∥

≤
(∫ 1

0
c(2)
G ‖θT (α,ε)−θα‖τ dτ+ c(2)

G |ε|+ kc̃3μ
)∥∥∥∥ ∂∂α [θT (α,ε)−θα ]

∥∥∥∥
≤

(
c(2)
G

(
1

2
‖θT (α,ε)−θα‖+ |ε|

)
+ kc̃3μ

)∥∥∥∥ ∂∂α [θT (α,ε)−θα ]
∥∥∥∥ .

Finally, using (6.1.50), (6.1.72) and (6.1.74), the identity

dθα
dα

= (0,0,0,0,0,I) (6.1.78)

and D1D2FT (θ ,α,ε) = D1D2GT (θ ,α,ε)− ∂Hα
∂α , we conclude∥∥∥∥ ∂∂α [FT (θT (α,ε),α,ε)−FT (θα ,α,ε)]

∥∥∥∥
≤ [c(2)

G (ρ̄0 + ε0)+ kc̃3μ0]
∥∥∥∥ ∂∂α [θT (α,ε)−θα ]

∥∥∥∥
+4

(
c(2)
G + kN−

)
‖H −1

α Πψ‖
(

cγ μ+ c(1)
G |ε|

)
.

(6.1.79)

Similarly, we obtain∥∥∥∥ ∂∂α [FT (θα ,α,ε)−FT (θα ,α,0)]
∥∥∥∥ = |ε|

∥∥∥∥ ∂∂α
∫ 1

0
D3FT (θα ,α,τε)dτ

∥∥∥∥≤ 2c(2)
G |ε|.

(6.1.80)

Now, since∥∥∥∥ ∂∂αH −1
α Πψ

∥∥∥∥≤ ‖H −1
α Πψ‖2

∥∥∥∥ ∂∂αHα

∥∥∥∥≤ 2kN−‖H −1
α Πψ‖2,

we derive, using also (6.1.75), (6.1.43):
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α Πψ

]
FT (θT (α,ε),α,ε)

∥∥∥∥
≤ 2kN−‖H −1

α Πψ‖2

·
{
‖FT (θT (α,ε),α,ε)−FT (θα ,α,ε)‖+‖GT (θα ,α,ε)‖

}
≤ 2kN−‖H −1

α Πψ‖2
[
Λ1(μ+ |ε|)2 + cγ μ+ c(1)

G |ε|
]
.

(6.1.81)

Plugging (6.1.79), (6.1.80), (6.1.81) into (6.1.76) and assuming, instead of (6.1.73),

that

2‖H −1
α Πψ‖[c(2)

G (ρ̄0 + ε̄0)+ kc̃3μ0] ≤ 1

we obtain∥∥∥∥ ∂∂α [θT (α,ε)−θα ]
∥∥∥∥

≤ 2‖H −1
α Πψ‖

{
4
(

c(2)
G + kN−

)
‖H −1

α Πψ‖
(

cγ μ+ c(1)
G |ε|

)
+2c(2)

G |ε|+ cγ μ+2kN−‖H −1
α Πψ‖

[
Λ1(μ+ |ε|)2 + cγ μ+ c(1)

G |ε|
]}

≤Λ2(μ+ |ε|) ,
(6.1.82)

where Λ2 is a positive constant that does not depend on (T ,α,μ,ε). We now take

μ = ε2

that is T = T̄ −2δ−1 ln |ε|. Note that from (6.1.74), we get:

‖θT (α,ε)−θα‖ ≤ 2‖H −1
α Πψ‖(cγ |ε|+ c(1)

G )|ε|. (6.1.83)

Then, if we can solve the equation
(
I−Πψ

)
FT (θT (α,ε),α,ε) = 0 for α =

αT (ε) = {αm,T (ε)}m∈Z and define z±m,T (t,ε), z0
m,T (t,ε) as z+

m(t,ξ+
m ,ϕ+

m ,βm,ε),
z−m(t,ξ−m ,ϕ−

m ,αm,ε) and z0
m(t, ξ̄m,αm,βm,ε), with

θT (ε) = θT (αT (ε),ε)

instead of θ =
{
(ϕ−

m ,ϕ+
m ,ξ−m ,ξ+

m , ξ̄m,βm)
}

mZ
and with μ = ε2, we see that condi-

tion (6.1.7) follows from (6.1.31), (6.1.34) and (6.1.40) provided |ε|< ερ , taking ερ
smaller if necessary. Thus to complete the proof of Theorem 6.1.16 we only need to

show that the equation

(I−Πψ)FT (θT (α,ε),α,ε) = 0

can be solved for α in terms of ε ∈ (−ερ ,ερ) and T satisfying the conditions of

Theorem 6.1.16. Now, from (6.1.83) we see that
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lim
ε→0

(I−Πψ)FT (θT (α,ε),α,ε) = lim
ε→0

(I−Πψ)GT (θα ,α,0) = 0

uniformly with respect to (α,T ) (recall that, see (6.1.43), ‖GT (θα ,α,0)‖ ≤ cγ μ =
cγε2). Hence we are led to prove that the bifurcation function

1

ε
(I−Πψ)FT (θT (α,ε),α,ε) = 0 (6.1.84)

can be solved for α in terms of ε ∈ (−ερ ,ερ), ε �= 0, and T satisfying the conditions

of Theorem 6.1.16. We observe that, with μ = ε2, (6.1.75) reads:

‖FT (θT (α,ε),α,ε)−FT (θα ,α,ε)‖ ≤Λ1(1+ |ε|)2ε2.

Hence, using also (6.1.65) and (6.1.43) with μ = e−δ (T−T̄ ) = ε2:

BT (α,ε) =
1

ε
(
I−Πψ

){
FT (θα ,α,ε)+O(ε2)

}
=

1

ε
(
I−Πψ

)
[GT (θα ,α,ε)−GT (θα ,α,0)]+O(ε)

=
(
I−Πψ

)
D3GT (θα ,α,0)+O(ε)

where O(ε) is uniform with respect to (T ,α). Now we look at:

D1BT (α,ε) =
1

ε
(I−Πψ)

∂
∂α

FT (θT (α,ε),α,ε) . (6.1.85)

Subtracting(
D2

1FT (θα ,α,0)
dθα
dα

+D1D2FT (θα ,α,0)
)

(θT (α,ε)−θα)

=
d

dα
[D1FT (θα ,α,0)](θT (α,ε)−θα)

from both sides of (6.1.77) and using the uniform continuity of D2
1FT (θ ,α,ε),

D1D2FT (θ ,α,ε) in (θ ,α,ε), uniformly with respect to T we see that:∥∥∥ ∂∂αFT (θT (α,ε),α,ε)− ∂
∂α

FT (θα ,α,ε)

−
(

D2
1FT (θα ,α,0)

dθα
dα

+D1D2FT (θα ,α,0)
)

(θT (α,ε)−θα)
∥∥∥

≤
((

c(2)
G ‖θT (α,ε)−θα‖+ |ε|

)
+ kc̃3ε2

)∥∥∥∥ ∂∂α (θT (α,ε)−θα)
∥∥∥∥

+η(‖θT (α,ε)−θα‖+ |ε|)‖θT (α,ε)−θα‖
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where η(r) → 0 as r → 0, uniformly with respect to (T ,α,ε), So, using (6.1.83)

and (6.1.82) with μ = ε2 we obtain:

∂
∂α

FT (θT (α,ε),α,ε)− ∂
∂α

FT (θα ,α,ε)

− d
dα

[D1FT (θα ,α,0)](θT (α,ε)−θα) = o(ε)
(6.1.86)

uniformly with respect to (α,T ). So, plugging (6.1.86) into (6.1.85), using (6.1.65)

and (6.1.44) with μ = e−δ (T−T̄ ) = ε2, we obtain:

D1BT (α,ε) = (I−Πψ)
∂
∂α

FT (θα ,α,ε)−FT (θα ,α,0)
ε

+(I−Πψ)
{
ε−1 d

dα
[D1FT (θα ,α,0)][θT (α,ε)−θα ]

}
+o(1)

=
d

dα
(I−Πψ)D3GT (θα ,α,0)

+(I−Πψ)
{
ε−1 d

dα
[D1GT (θα ,α,0)−Hα ][θT (α,ε)−θα ]

}
+o(1)

with o(1) being uniform with respect to α . But, differentiating (6.1.51) we see that

d
dα

(D1GT (θα ,α,0)−Hα) = {(L α
m ,0,0,0,0,0)}m∈Z

where

L α
m (α̃)(θ) = L α

m (α̃)(ϕ−
m+1,ϕ

+
m ,ξ−m+1,ξ

+
m , ξ̄m,βm)

=
[
Ẋ−(T2m+1 −T2m+2 +αm −αm+1)(α̃m+1 − α̃m)

]
ξ−m+1

+[γ̈−(T2m+1 −T2m+2 +αm −αm+1)(α̃m+1 − α̃m)]βm

≤ 2N−kδ−1(δ + |γ̇−(−T̄ )|)μ‖θ‖‖α̃‖ = O(ε2)‖θ‖‖α̃‖
and hence ∥∥∥∥ d

dα
[D1GT (θα ,α,0)−Hα ]

∥∥∥∥ = O(ε2).

In summary, we obtain:

D1BT (α,ε) =
d

dα
[(I−Πψ)D3GT (θα ,α,0)]+o(1) (6.1.87)

uniformly with respect to α and T . We have then
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lim
ε→0

BT (α,ε) = (I−Πψ)D3GT (θα ,α,0) =
1

|L∗ψ| 〈ψ,LD3GT (θα ,α,0)〉ψ̃,

lim
ε→0

D1BT (α,ε) =
d

dα
1

|L∗ψ| 〈ψ,LD3GT (θα ,α,0)〉ψ̃,

uniformly with respect to α and T (recall that L has been defined in (6.1.58)). To

conclude the proof of Theorem 6.1.16 we evaluate 〈ψ,LD3GT (θα ,α,0)〉. We have:

D3GT (θα ,α,0) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ z+
m

∂ε
(T2m+1 +αm,0,0,αm,0)− ∂ z−m+1

∂ε
(T2m+1 +αm,0,0,αm+1,0)

−∂ z−m
∂ε

(T2m − T̄ +αm,0,0,αm,0)

R0

[
∂ z0

m

∂ε
(T2m + T̄ +αm,γ0(−T̄ ),αm,αm,0)−∂ z+

m

∂ε
(T2m + T̄ +αm,0,0,αm,0)

]

G′(γ(−T̄ ))
∂ z−m
∂ε

(T2m − T̄ +αm,0,0,αm,0)

G′(γ(T̄ ))
∂ z0

m

∂ε
(T2m + T̄ +αm,γ0(−T̄ ),αm,αm,0)

G′(γ(T̄ ))
∂ z+

m

∂ε
(T2m + T̄ +αm,0,0,αm,0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
m∈Z

.

Thus:

LD εGT (θα ,α,0)

= R0

{∂ z0
m

∂ε
(T2m + T̄ +αm,γ0(−T̄ ),αm,αm,0)

−∂ z+
m

∂ε
(T2m + T̄ +αm,0,0,αm,0)

−
G′(γ(−T̄ ))

∂ z−m
∂ε

(T2m − T̄ +αm,0,0,αm,0)

G′(γ(−T̄ ))γ̇−(−T̄ )
X0(T̄ )γ̇−(−T̄ )

+X0(T̄ )
∂ z−m
∂ε

(T2m − T̄ +αm,0,0,αm,0)

+
G′(γ(T̄ ))

∂ z+
m

∂ε
(T2m + T̄ +αm,0,0,αm,0)

G′(γ(T̄ ))γ̇+(T̄ )
γ̇+(T̄ )

}
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= R0

{∂ z0
m

∂ε
(T2m + T̄ +αm,γ0(−T̄ ),αm,αm,0)

+X0(T̄ )R−
∂ z−m
∂ε

(T2m − T̄ +αm,0,0,αm,0)

−R+
∂ z+

m

∂ε
(T2m + T̄ +αm,0,0,αm,0)γ̇+(T̄ )

}
= R0

{∂ z0
m

∂ε
(T2m + T̄ +αm,γ0(−T̄ ),αm,αm,0)

+X0(T̄ )R−
∂ z−m
∂ε

(T2m − T̄ +αm,0,0,αm,0)
}

−R+
∂ z+

m

∂ε
(T2m + T̄ +αm,0,0,αm,0)γ̇+(T̄ )

since RR+ ⊂ RR0. Next from Eqs. (6.1.32), (6.1.36), (6.1.39) we get:

∂ z0
m

∂ε
(T2m + T̄ +αm,γ0(−T̄ ),αm,αm,0)

=
∫ T̄

−T̄
X0(T̄ )X−1

0 (t)g(t +T2m +αm,γ0(t),0)dt ,

∂ z−m
∂ε

(T2m − T̄ +αm,0,0,αm,0)

=
∫ −T̄

T2m−1−T2m−1
P−X−1

− (t)g(t +T2m +αm,γ−(t),0)dt ,

∂ z+
m

∂ε
(T2m + T̄ +αm,0,0,αm,0)

= −
∫ T2m+1−T2m+1

T̄
(I−P+)X−1

+ (t)g(t +T2m +αm,γ+(t),0)dt .

(6.1.88)

As a consequence, using also (6.1.60), we get:

〈ψ,LD3GT (θα ,α,0)〉

= ψ∗
[∫ −T̄

T2m−1−T2m−1
R0X0(T̄ )R−P−X−1

− (t)g(t +T2m +αm,γ−(t),0)dt

+
∫ T̄

−T̄
R0X0(T̄ )X−1

0 (t)g(t +T2m +αm,γ0(t),0)dt

+
∫ T2m+1−T2m+1

T̄
R+(I−P+)X−1

+ (t)g(t +T2m +αm,γ+(t),0)dt
]

=
∫ T2m+1−T2m+1

T2m−1−T2m−1
ψ∗(t)g(t +T2m +αm,γ(t),0)dt

=
∫ ∞

−∞
ψ∗(t)g(t +T2m +αm,γ(t),0)dt +O(e−δ (T+1))

=
∫ ∞

−∞
ψ∗(t)g(t +T2m +αm,γ(t),0)dt +O(ε2)

(6.1.89)
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where ψ(t) has been defined in (6.1.61). Thus we prove that

BT (α,ε) =
1

|L∗ψ| {M (αm +T2m)ψ̃}m∈Z +O(ε),

D1BT (α,ε) =
1

|L∗ψ| {M
′(αm +T2m)ψ̃}m∈Z +o(1),

where O(ε) and o(1) are uniform with respect to α and T . Now assume that T =
{Tm}m∈Z and α0 = {α0

m}m∈Z satisfy the assumptions of Theorem 6.1.16. We have:

lim
ε→0

BT (α0,ε) = 0,

lim
ε→0

D1BT (α0,ε) =
1

|L∗ψ| {M
′(α0

m +T2m)ψ̃}m∈Z

uniformly with respect to T . That is ‖D1BT (α0,ε)‖ > c0
2|L∗ψ| provided |ε| is suf-

ficiently small. From the implicit function theorem we deduce the existence of

0 < ε̄ρ < ε0 so that for any 0 �= ε ∈ (−ε̄ρ , ε̄ρ) and any sequence T = {Tm}m∈Z

that satisfy the assumption of Theorem 6.1.16 there exists a unique sequence

α(T ,ε) = {αm(T ,ε)}m∈Z ∈ �∞χ so that α(T ,0) = α0 and

BT (α(T ,ε),ε) = 0.

Taking θT (ε) = θT (α(T ,ε),ε) and

z(t) =

⎧⎪⎪⎨⎪⎪⎩
z−m,T (t,ε), if t ∈ [T2m−1 +βm−1,T (ε),T2m − T̄ +αm,T (ε)],

z0
m,T (t,ε), if t ∈ [T2m − T̄ +αm,T (ε),T2m + T̄ +βm,T (ε)],

z+
m,T (t,ε), if t ∈ [T2m + T̄ +βm,T (ε),T2m+1 +βm,T (ε)],

we see that z(t) satisfies the conclusion of Theorem 6.1.16 with α̂m = αm(T ,ε) and

β̂m = βm(α(T ,ε),ε). The proof is complete. ��
Remark 6.1.17. Functions M ,M ′ : R → R are bounded.

Remark 6.1.18. Following the above arguments, we can consider also cases when

m̄ ∈ Z exists so that either Tj = −∞ ∀ j ≤ 2m̄− 1 or Tj = ∞ ∀ j ≥ 2m̄ + 1. Then

Theorem 6.1.16 is obviously modified (see (6.1.97), (6.1.98) and (6.1.99) below).

Remark 6.1.19. Here we emphasize that during the proof of Theorem 6.1.16, we

only use the fact that f and g are C2 with bounded and uniformly continuous deriva-

tives. We should need higher derivatives if α0 is a degenerate root of MT (α) =
{M (T2m +αm)}m∈Z

, when condition (6.1.64) fails.

We are now able to give the proof of Theorem 6.1.3. First we show the following

preparatory results.

Lemma 6.1.20. For any ε �= 0 there exists |ε| > νε > 0 so that if a sequence T =
{Tm}m∈Z satisfies (6.1.6) then also it holds
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|D1g(t +T2m,z,0)−D1g(t,z,0)| < |ε| (6.1.90)

for any (t,z,m) ∈ R
n+1 ×Z.

Proof. Let ε �= 0. Take nε ∈ N and νε > 0 as

nε = 2

[‖D11g‖
|ε|

]
+1, νε :=

|ε|
4nε

(6.1.91)

and let T = {Tm}m∈Z be a sequence satisfying (6.1.6). Then we derive [40]:

|D1g(t +T2m,z,0)−D1g(t,z,0)|
≤

∣∣∣∣D1g(t +T2m,z,0)−nε

[
g
(

t +T2m +
1

nε
,z,0

)
−g(t +T2m,z,0)

]∣∣∣∣
+
∣∣∣∣D1g(t,z,0)−nε

[
g
(

t +
1

nε
,z,0

)
−g(t,z,0)

]∣∣∣∣
+nε

∣∣∣∣g(t +T2m +
1

nε
,z,0

)
−g

(
t +

1

nε
,z,0

)∣∣∣∣
+nε |g(t +T2m,z,0)−g(t,z,0)|

≤ nε
∫ 1/nε

0
|D1g(t +T2m +η ,z,0)−D1g(t +T2m,z,0)| dη

+nε
∫ 1/nε

0
|D1g(t +η ,z,0)−D1g(t,z,0)| dη+2nενε

≤ ‖D11g‖
nε

+2nενε < |ε|.

The proof of Lemma 6.1.20 is complete. ��
Lemma 6.1.21. If ε �= 0 is sufficiently small then for any given sequence {Tm}m∈Z

with the properties of Lemma 6.1.20, a sequence {α0
m}m∈Z ∈ �∞χ exists satisfying

(6.1.64) for some c0 > 0.

Proof. Let |M ′(α0)| = 4c0. We have:

M (T2m +α) = M (α)+
∫ ∞

−∞
ψ∗(t)[g(t +T2m +α,γ(t),0)−g(t +α,γ(t),0)]dt

and hence:

|M (T2m +α)−M (α)| ≤ |ε|
∫ ∞

−∞
|ψ∗(t)|dt ≤ 2Kδ−1|ε|

since |ψ∗(t)| ≤ K e−δ |t| for some K ≥ 1 (see (6.1.63)). Similarly, from (6.1.90) we

get

|M ′(T2m +α)−M ′(α)| ≤ 2Kδ−1|ε| .
Let χ/2 > δ1 > 0 be so small that M (α0−δ1)M (α0 +δ1) < 0 and |M ′(α)| ≥ 2c0

for α ∈ [α0 −δ1,α0 +δ1]. Then, there is an ε̃0 > 0 so that for 0 < |ε| < ε̃0 and for
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any m ∈ Z the equation M (T2m +α) = 0 has a unique solution α0
m = α(T2m) ∈

(α0 − δ1,α0 + δ1) along with |M ′(T2m +α)| ≥ c0 for α ∈ [α0 − δ1,α0 + δ1]. The

proof of Lemma 6.1.20 is complete. ��
Now we proceed with the proof of Theorem 6.1.3. Using Lemma 6.1.21, as-

sumptions of Theorem 6.1.16 are verified and consequently, we obtain sequences

{α̂m,T (ε)}, {β̂m,T (ε)}, and a unique solution z(t) of Eq. (6.1.1) that satisfies

(6.1.7). To prove that supm∈Z |α̂m,T (ε)−α0| < c1|ε| and supm∈Z |β̂m,T (ε)−α0| <
c1|ε| assume for simplicity that M ′(α0) = 4c0 (a similar argument applies when

M ′(α0) =−4c0). Then we have, since M ′(T2m +α) > c0 for any α ∈ [α0−δ1,α0 +
δ1]:

2Kδ−1|ε| ≥
∣∣∣∣∣
∫ α0

m

α0
M ′(T2m + τ)dτ

∣∣∣∣∣≥ c0|α0
m −α0| ,

hence

|α̂m,T (ε)−α0| ≤ |α̂m(T ,ε)−α0
m|+ |α0

m −α0| ≤ c1|ε|+ 2K|ε|
δc0

= c̃1|ε| .

Similarly we get (possibly changing c̃1): |β̂m,T (ε)− α0| ≤ c̃1|ε|. The proof of

Theorem 6.1.3 is complete.

Remark 6.1.22. By (6.1.91), we get νε ∼ ε2 in Theorem 6.1.3.

6.1.7 Chaotic Behaviour

Set (cf Section 2.5.2)

Ê := {e ∈ E | inf{m ∈ Z | em = 1} = −∞, sup{m ∈ Z | em = 1} = ∞} ,

E+ := {e ∈ E | inf{m ∈ Z | em = 1} > −∞, sup{m ∈ Z | em = 1} = ∞} ,

E− := {e ∈ E | inf{m ∈ Z | em = 1} = −∞, sup{m ∈ Z | em = 1} < ∞} ,

E0 := {e ∈ E | inf{m ∈ Z | em = 1} > −∞, sup{m ∈ Z | em = 1} < ∞} .

Note that Ê , E−, E+, E0 are invariant under the Bernoulli shift. In this section we

suppose for simplicity that assumptions of Theorem 6.1.16 are satisfied with a tech-

nical condition ‖α0‖ < χ/2, i.e the following holds:

(C) For any ε �= 0 sufficiently small there is a sequence T = {Tm}m∈Z so that

Tm+1−Tm > T̄ +1−2δ−1 ln |ε| along with the existence of an α0 = {α0
m}m∈Z ∈

�∞χ with ‖α0‖ < χ/2, satisfying (6.1.64).

Let T = {Tm}m∈Z
be as in assumption (C). Assume, first, that e ∈ Ê . Let

{ne
m}m∈Z be a fixed increasing doubly-infinite sequence of integers so that ek = 1 if
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and only if k = ne
m. We define sequences T e = {T e

m}m∈Z and αe
0 = {α0e

m }m∈Z as

T e
m :=

⎧⎨⎩T2ne
k
, if m = 2k,

T2ne
k−1, if m = 2k−1,

(6.1.92)

and similarly

α0e
m := α0

ne
m
. (6.1.93)

Note that T e
m+1 −T e

m > T̄ +1−2δ−1 ln |ε| for any m ∈ Z and MT e(α) has a simple

zero αe
0, i.e. (6.1.64) holds with exchanges T e ↔ T and αe

0 ↔ α0. Since |α0e
m+1 −

α0e
m | < χ for any m ∈ Z, assumptions of Theorem 6.1.16 are satisfied by MT e(α),

T e and αe
0. Let z(t) = z(t,T e) be the corresponding solution of Eq. (6.1.1) whose

existence is stated in Theorem 6.1.16. Then z(t) satisfies

supt∈[T e
2m−1+β e

m−1,T e
2m−T̄+αe

m] |z(t)− γ−(t −T e
2m −αe

m)| < ρ,

supt∈[T e
2m−T̄+αe

m,T e
2m+T̄+β e

m] |z(t)− γ0(t −T e
2m −αe

m)| < ρ,

supt∈[T e
2m+T̄+β e

m,T e
2m+1+β e

m] |z(t)− γ+(t −T e
2m −β e

m)| < ρ ,

(6.1.94)

where the sequences αe = {αe
m}m∈Z and β e = {β e

m}m∈Z are determined as in Theo-

rem 6.1.16 (note here we remove hats for notational simplicity).

Now, consider the sequence ñe
m := ne

m+1 instead of ne
m and denote with T̃ e, α̃e,

β̃ e and α̃e
0 the corresponding sequences:

T̃ e
m = T e

m+2, α̃e
m = αe

m+1, β̃ e
m = β e

m+1, α̃0e
m = α0e

m+1. (6.1.95)

Then M
T̃ e(α) has a simple zero α̃e

0 and Theorem 6.1.16 is applicable. But clearly

z̃(t) := z(t,T̃ e) satisfies the same set of estimates (6.1.94) and hence, because of

uniqueness, z(t,T̃ e) = z(t,T e) depends only on e and T (and not on the choice of

ne
m). So we will write z(t,T ,e) instead of z(t,T e).

Now, assume that e j = 1. Then j = ne
m for some m ∈ Z and (6.1.94) gives, pro-

vided |ε| is sufficiently small,

|z(T2 j)− γ0(−α0
j )| ≤ |z(T2 j)− γ0(−αe

m)|+ |γ0(−αe
m)− γ0(−α0

j )|
< ρ+ sup

t∈R

|γ̇0(t)| |αe
m −α0

j |

< ρ+ c1|ε|sup
t∈R

|γ̇0(t)| < 3

2
ρ

since T e
2m = T2 j. On the other hand, if e j = 0, let m ∈ Z be such that ne

m < j < ne
m+1.

Then ne
m+1 −1 ≥ j ≥ ne

m +1 and so
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T2 j −T2ne
m − T̄ −β e

m ≥ T2ne
m+2 −T2ne

m − T̄ −‖α0‖− c1|ε|
≥ T̄ +2−4δ−1 ln |ε|−‖α0‖− c1|ε|
> 0

and
T e

2m+1 +β e
m −T2 j ≥ T2ne

m+1−1 −T2ne
m+1−2 −‖α0‖− c1|ε|

≥ T̄ +1−2δ−1 ln |ε|−‖α0‖− c1|ε|
> 0

for 0 < |ε|$ 1. Consequently, we have T2 j ∈
[
T e

2m + T̄ +β e
m,T e

2m+1 +β e
m
]
, and using

(6.1.94), we get

|z(T2 j)| ≤ |z(T2 j)− γ+(T2 j −T2ne
m −β e

m)|+ |γ+(T2 j −T2ne
m −β e

m)| < 3

2
ρ

since T2 j − T2ne
m − β e

m ≥ T2ne
m+2 − T2ne

m − ‖α0‖ − c1|ε| > 2T̄ + 2 − 4δ−1 ln |ε| −
‖α0‖ − c1|ε| # 1 for 0 < |ε| $ 1, and thus

∣∣γ+(T2 j −T2ne
m −β e

m)
∣∣ < ρ/2. So

z(t,T ,e) has the following property

|z(T2 j)− γ0(−α0
j )| <

3

2
ρ, if e j = 1 ,

|z(T2 j)| < 3

2
ρ, if e j = 0 .

(6.1.96)

Next, assume that e∈ E+ and let again {ne
m}m∈Z be a fixed increasing sequence of

integers so that ek = 1 if and only if k = ne
m and lim

m→∞ne
m = ∞. Corresponding to this

sequence, we define T e as in (6.1.92) and then we obtain αe and β e as in (6.1.94)

with the difference that T e
m =−∞ and αe

m = β e
m = 0 for any m < 2m̄ where m̄ is such

that ene
m̄

= 1 and e j = 0 for any j < ne
m̄. According to this choice, by Remark 6.1.18,

we obtain a solution z(t) = z(t,T e) of Eq. (6.1.1) that satisfies (6.1.94) when m > m̄
whereas for m = m̄ it satisfies:

supt∈(−∞,T e
2m̄−T̄+αe

m̄] |z(t)− γ−(t −T e
2m̄ −αe

m̄)| < ρ,

supt∈[T e
2m̄−T̄+αe

m̄,T e
2m̄+T̄+β e

m̄] |z(t)− γ0(t −T e
2m̄ −αe

m̄)| < ρ,

supt∈[T e
2m̄+T̄+β e

m̄,T e
2m̄+1+β e

m̄] |z(t)− γ+(t −T e
2m̄ −β e

m̄)| < ρ.

(6.1.97)

Note, then, that if we take, as in the previous case, ñe
m = ne

m+1 and T̃ e, α̃e, β̃ e as

in (6.1.95), then (6.1.94) holds with T̃ e instead T e, provided m > m̄− 1 whereas

(6.1.97) holds with T̃ e
2(m̄−1) and T̃ e

2m̄−1 instead of T e
2m̄ and T e

2m̄+1 respectively. So

in this case we can also see that z(t,T e) = z(t,T ,e) depends only on (T ,e) and

not on the choice of the sequence ne
m. Moreover, (6.1.96) holds also in this case.

In fact if either e j = 1 or e j = 0 and there exists m ∈ Z so that ne
m < j < ne

m+1 the

same proof as before goes through. If, instead, e j = 0 and j < ne
m̄, then the estimate
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|z(T2 j)|< 3
2ρ follows from the first estimate in (6.1.97) since 2 j ≤ 2ne

m̄−2 and then

T e
2 j −T e

2m̄ −αe
m̄ ≤ T e

2ne
m̄−2 −T2ne

m̄
+ ‖α0‖+ c1|ε| ≤ −2T̄ − 2− 4δ−1 ln |ε|+ ‖α0‖+

c1|ε| $ 0 for 0 < |ε| $ 1.

Similarly, if e ∈ E− then by Remark 6.1.18, we obtain a solution z(t) = z(t,T e)
of Eq. (6.1.1) that satisfies (6.1.94) when m < m̄ whereas for m = m̄ it satisfies

supt∈(T e
2m̄−1,T e

2m̄−T̄+αe
m̄] |z(t)− γ−(t −T e

2m̄ −αe
m̄)| < ρ,

supt∈[T e
2m̄−T̄+αe

m̄,T e
2m̄+T̄+β e

m̄] |z(t)− γ0(t −T e
2m̄ −αe

m̄)| < ρ,

supt∈[T e
2m̄+T̄+β e

m̄,∞) |z(t)− γ+(t −T e
2m̄ −β e

m̄)| < ρ.

(6.1.98)

From an argument similar to the previous one (in this case, we can take, for example,

ñe
m = ne

m−1) we see that z(t,T e) = z(t,T ,e) depends only on (T ,e) and not on the

choice of the sequence ne
m and (6.1.96) holds.

Next, assume that e ∈ E0 with e �= 0. Then there are m̄− < m̄+ so that ek = 0

if either k < ne
m− or k > ne

m+ and Eq. (6.1.1) has a unique solution z(t,T e) so that

(6.1.94) holds when m̄− < m < m̄+ whereas when either m = m− or m = m+ it

satisfies

supt∈(−∞,T e
2m̄−−T̄+αe

m̄− ] |z(t)− γ−(t −T e
2m̄− −αe

m̄−)| < ρ,

supt∈[T e
2m̄−−T̄+αe

m̄− ,T e
2m̄−+T̄+β e

m̄− ] |z(t)− γ0(t −T e
2m̄− −αe

m̄)| < ρ,

supt∈[T e
2m̄−+T̄+β e

m̄− ,T e
2m̄−+1+β e

m̄− ] |z(t)− γ+(t −T e
2m̄− −β e

m̄−)| < ρ,

supt∈(T e
2m̄+−1,T e

2m̄+
−T̄+αe

m̄+
] |z(t)− γ−(t −T e

2m̄+
−αe

m̄+)| < ρ,

supt∈[T e
2m̄+

−T̄+αe
m̄+

,T e
2m̄+

+T̄+β e
m̄+

] |z(t)− γ0(t −T e
2m̄+

−αe
m̄+)| < ρ,

supt∈[T e
2m̄+

+T̄+β e
m̄+

,∞) |z(t)− γ+(t −T e
2m̄+

−β e
m̄+)| < ρ.

(6.1.99)

Moreover z(t,T e) = z(t,T ,e) depends only on (T ,e) and not on the choice of ne
m

and (6.1.96) holds.

Finally, if e = 0, that is ek = 0 for any k ∈ Z, by we define z(t,T ,0) = u(t) as

the unique bounded solution of (6.1.1) so that

sup
t∈R

|u(t)| < ρ. (6.1.100)

The existence and uniqueness of u(t) follow from the standard regular perturba-

tion theory (see [41–44], Remark 4.1.7). Now we are able to prove the following

theorem:

Theorem 6.1.23. Let assumptions (H1), (H2), (H3) and (C) be satisfied. Then there
exists ρ̄ > 0 so that for any 0 < ρ < ρ̄ there exists ε0 > 0 so that for any ε �= 0, |ε|<
ε0 and for any e ∈ E , Eq. (6.1.1) has a unique solution z(t,T ,e,ε) that satisfies one
among (6.1.94), (6.1.97), (6.1.98) or (6.1.99) and consequently (6.1.96). Moreover,
setting T (k) := {Tn+2k}n∈Z, we have
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z(t,T (k+1),σ(e),ε) = z(t,T (k),e,ε) (6.1.101)

for any t ∈ R and e ∈ E .

Proof. We only need to prove that (6.1.101) holds. Since z(t,T ,e,ε) does not de-

pend on the choice of {ne
m}m∈Z we see that we can take nσ(e)

m = ne
m − 1 and then,

setting T ′ = {Tm+2}m∈Z, we have, if m = 2k:

T ′σ(e)
2k = T

2nσ(e)
k +2

= T2ne
k
= T e

2k

and, if m = 2k−1:

T ′σ(e)
2k−1 = T

2nσ(e)
k +1

= T2ne
k−1 = T e

2k−1

that is

T ′σ(e) = T e. (6.1.102)

Hence we see that, for any t ∈ R and any e ∈ E , the following holds

z(t,T ′,σ(e),ε) = z(t,T ,e,ε). (6.1.103)

Now, from the definition of T (k) we see that T (k+1) = T (k)′, thus (6.1.101) follows

from (6.1.103). The proof is complete. ��
Now, we define Fk : R

n → R
n so that Fk(ξ ) is the value at time T2(k+1) of the

solution z(t) of Eq. (6.1.1) so that z(T2k) = ξ :

ż = f±(z)+ εg(t,z,ε), z(T2k) = ξ (6.1.104)

and let Φk(e) := z(T2k,T
(k),e,ε). Then we have:

Φk+1 ◦σ(e)= z(T2(k+1),T
(k+1),σ(e),ε) = z(T2(k+1),T

(k),e,ε)

= Fk(z(T2k,T
(k),e,ε)) = Fk ◦Φk(e).

(6.1.105)

Note that (6.1.105) can be stated in the following way. Let

Sk =
{

(z(T2k,T
(k),e,ε) | e ∈ E

}
, k ∈ Z.

Although Fk may not be defined in the whole R
n, for sure it is defined in the set

Sk. It is standard to prove (see [36], Section 3.5) that Sk are compact in R
n and

Φk : E  →Sk are continuous and clearly onto. Moreover, by (6.1.105), all Fk : Sk →
Sk+1 are homeomorphisms.

Remark 6.1.24. Here we silently suppose that Fk are defined. We can do that since

we can modify (6.1.1) outside of a neighbourhood of the homoclinic orbit.

Next, let e,e′ ∈ E be two different sequences in E . Then there exists j ∈ Z so

that, for example, e′j = 0 and e j = 1. From [−χ/2,χ/2] ⊂ [−T̄ , T̄ ] and (6.1.96) we

see that
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∣∣

≥
∣∣∣γ0(−α0

j )
∣∣∣− ∣∣∣z(T2 j,T ,e,ε)− γ0(−α0

j )
∣∣∣− ∣∣z(T2 j,T ,e′,ε)

∣∣
≥ ∣∣γ0(−α0

m)
∣∣−3ρ ≥ min

t∈[−T̄ ,T̄ ]
|γ0(t)|−3ρ > 0

provided ρ is sufficiently small. As a consequence, z(T2 j,T ,e,ε) �= z(T2 j,T ,e′,ε)
and, since both are solutions of the same Eq. (6.1.1):

z(t,T ,e,ε) �= z(t,T ,e′,ε) (6.1.106)

for any t ∈ R. Thus we have proved that the map e  → z(t,T ,e,ε) is one-to-one.

Hence if Φk(e) =Φk(e′) then e = e′ since otherwise:

Φk(e) = z(T2k,T
(k),e,ε) �= z(T2k,T

(k),e′,ε) =Φk(e′).

So Φk : E → Sk is one-to-one and a homeomorphism for any k ∈ Z. In summary,

we get another result.

Theorem 6.1.25. Assume that (H1), (H2), (H3) and (C) hold. Then for any ε �= 0

sufficiently small, the following diagrams commute:

E
σ ��

Φk
��

E

Φk+1

��
Sk Fk

�� Sk+1

for all k ∈ Z. Moreover, all Φk are homeomorphisms.

Sequences of 2-dimensional maps are also studied in [45].

Remark 6.1.26. We improve (6.1.94) as follows. First, assume that e j = 1, and

e j+1 = 0. The cases e j = 0, e j+1 = 1 and e j = e j+1 = 1 can be similarly handled.

Then, if j = ne
k, we have ne

k+1 > ne
k +1 and then if

t ∈ [T2ne
k+1 +β e

k ,T2ne
k+1−1 +β e

k ] =
2(ne

k+1−1)⋃
j=2ne

k+1

[Tj +β e
k ,Tj+1 +β e

k ] ,

we have t ∈ [T e
2k + T̄ +β e

k ,T e
2k+1 +β e

k ] and

t −T e
2k −β e

k ∈ [T2ne
k+1 −T2ne

k
,T2ne

k+1−1 −T2ne
k
] ⊂ (T̄ +1−2δ−1 ln |ε|,∞)

and hence if ε is small enough that |γ−(t)| < ρ for any t ≥ T̄ + 1− 2δ−1 ln |ε|, by

(6.1.94) we get:

sup
t∈[Tj+β e

k ,Tj+1+β e
k ]
|z(t)−u(t)| < 3ρ
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for any j ∈ {2ne
k +1, ...,2(ne

k+1 −1)}. On the other hand,

supt∈[T2ne
k−1+β e

k−1,T2ne
k
+T̄+β e

k ] |z(t)− γ(t −T2ne
k
−αe

k )| < ρ,

supt∈[T2ne
k
+T̄+β e

k ,T2ne
k+1+β e

k ] |z(t)− γ(t −T2ne
k
−β e

k )| < ρ .

In summary, we can roughly state that for t ∈ [T2 j−1,T2 j+1] the solution z(t) is close

either to the homoclinic orbit γ(t) or to the bounded solution according to e j = 1 or

e j = 0.

6.1.8 Almost and Quasiperiodic Cases

In this section we assume that g(t,x,ε) is almost periodic in t uniformly in (x,ε),
that is, the following holds:

(H4) For any ν > 0 there exists Lν > 0 so that in any interval of a length greater

than Lν there exists Tν which is an almost period for ν satisfying:

|g(t +Tν ,x,ε)−g(t,x,ε)| < ν

for any (t,x,ε) ∈ R
n+2.

Note that under (H4), function M (α) is almost periodic in α . In this section we

suppose the existence of a simple zero α0 of M (α). Then following the arguments

of the proof of Theorem 6.1.3 we see that for any ε �= 0 sufficiently small there is a

sequence T ε = {T εm}m∈Z so that T εm+1−T εm > T̄ +1+4|α0|−2δ−1 ln |ε| along with

the existence of αε = {αεm}m∈Z ∈ �∞ with ‖αε‖≤ 2|α0|, satisfying M (T ε2m +αεm) =
0 for any m ∈ Z and infm∈Z |M ′(T ε2m +αεm)| > c0 for some c0 > 0. Then taking

T2m = T ε2m +αεm, T2m−1 = T ε2m−1 and α0 = 0, assumption (C) is satisfied. So applying

Theorem 6.1.25, system (6.1.1) is chaotic for any ε �= 0 small. In summary we obtain

the following theorem.

Theorem 6.1.27. Assume that (H1)–(H4) hold and that the almost periodic Mel-
nikov function M (α) has a simple zero. Then system (6.1.1) is chaotic for any ε �= 0

sufficiently small.

Next, it is well known (see [41–44], Remark 4.1.7) that near the hyperbolic equi-

librium x = 0 of the equation ẋ = f−(x) there exists a unique almost periodic solu-

tion of ẋ = f−(x)+εg(t,x,ε). More precisely, given ρ > 0 there exists ε̄ > 0 so that

for any |ε| < ε̄ equation ẋ = f−(x)+ εg(t,x,ε) has a solution u(t) = u(t,ε) so that

|u(t)| < ρ for any t ∈ R and it is almost periodic with common almost periods as

g(t,x,ε), i.e. assumption (H4) holds in addition with

|u(t +Tν)−u(t)| < ĉ0ν ∀t ∈ R
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for a positive constant ĉ0. Note that u(t) is a bounded solution of ẋ = f−(x) +
εg(t,x,ε) mentioned in (6.1.100). Thus the conclusion of Remark 6.1.26 holds with

the further property that u(t) is almost periodic.

Results of this section generalize the deterministic chaos of [42–44, 46] to the

discontinuous almost periodic system (6.1.1).

Finally, if g(t,x,ε) is quasiperiodic in t the following holds:

(H5) g(t,x,ε) = q(ω1t, . . . ,ωmt,x,ε) for ω1, . . . ,ωm ∈ R with q ∈Cr
b(R

m+n+1,Rn)
and q(θ1, . . . ,θm,x,ε) is 1-periodic in each θi, i = 1,2, . . . ,m. Moreover, ωi,

i = 1,2, . . . ,m are linearly independent of Z, i.e. if ∑m
i=1 liωi = 0, li ∈ Z, i =

1,2, . . . ,m, then li = 0, i = 1,2, · · · ,m.

Then g(t,x,ε) satisfies assumption (H4) [40,42] and hence the conclusion of Theo-

rem 6.1.27 holds.

6.1.9 Periodic Case

Here we assume that g(t + p,z,ε) = g(t,z,ε) that is g(t,z,ε) is p-periodic. Then

M (α) is also p-periodic. We suppose the existence of a simple zero α0 of M (α).
Then Theorem 6.1.3 is applicable with Tm = mT and 2T = rp for r # 1, r ∈ N. So

T e
m =

{
2ne

kT, if m = 2k,

(2ne
k −1)T, if m = 2k−1.

Since we can take nσ(e)
m = ne

m −1 we see that

Tσ(e)
m =

{
2ne

kT −2T, if m = 2k

(2ne
k −1)T −2T, if m = 2k−1

}
= T e

m −2T

for any m∈Z. Again we denote with z(t)= z(t,T ,e) the solution of equation (6.1.1)

corresponding to the sequence T e. Then Z(t) := z(t +2T ) satisfies the equation

ż = f±(z)+ εg(t,z,ε)

together with the estimates:

sup
t∈[Tσ(e)

2m−1+β e
m−1,Tσ(e)

2m −T̄+αe
m]
|Z(t)− γ−(t −Tσ(e)

2m −αe
m)| < ρ,

sup
t∈[Tσ(e)

2m −T̄+αe
m,Tσ(e)

2m +T̄+β e
m]
|Z(t)− γ0(t −Tσ(e)

2m −αe
m)| < ρ,

sup
t∈[Tσ(e)

2m +T̄+β e
m,Tσ(e)

2m−1+β e
m]
|Z(t)− γ+(t −Tσ(e)

2m −β e
m)| < ρ.

(6.1.107)

Thus, because of uniqueness:

α(T e,ε) = α(T σ(e),ε) ∈ �∞(R), β (T e,ε) = β (T σ(e),ε) ∈ �∞(R)
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and z(t + 2T,T ,e,ε) = z(t,T ,σ(e),ε). Thus, using (6.1.101) and recalling that

Tk = kT :

z(T2(k+1),T
(k+1),e,ε) = z(T2k,T

(k+1),σ(e),ε) = z(T2k,T
(k),e,ε),

that is, we see that

Φk(e) =Φ(e), Sk = S

are independent of k. Similarly, because of uniqueness and periodicity, the value at

the time T2(k+1) = 2(k +1)T of the solution of (6.1.104) is the same as the value at

time 2T of the solution of

ż = f±(z)+ εg(t,z,ε), z(0) = ξ ,

that is, also Fk(ξ ) = F(ξ ) are independent of k and we have:

Φ ◦σ = F ◦Φ .

In summary we arrive at the following result.

Theorem 6.1.28. Assume that g(t + p,z,ε)= g(t,z,ε), that is, g(t,z,ε) is p-periodic.
If ε �= 0 is sufficiently small and there is a simple zero α0 of M (α) then the follow-
ing diagram commutes:

E
σ ��

Φ
��

E

Φ
��

S F
�� S

for any N " r # 1. Here F = ϕr
ε = ϕε ◦ . . . ◦ϕε (r times) is the rth iterate of the

p-period map ϕε of (6.1.1).

Theorem 6.1.28 generalizes the deterministic chaos of Section 2.5.2 [36, 47] to

the discontinuous periodic system (6.1.1).

6.1.10 Piecewise Smooth Planar Systems

In this section we apply the theory developed in the previous parts to a two–

dimensional system (x,y ∈ R)

ẋ = P±(x,y),

ẏ = Q±(x,y),
(6.1.108)

where + holds if (x,y) ∈ Ω+ = {(x,y) | G(x,y) > 0} and − when (x,y) ∈ Ω− =
{(x,y) | G(x,y) < 0}. We will construct an explicit expression for M (α) showing
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that it extends to the discontinuous case, the usual Melnikov function, thus vali-

dating the name of Melnikov function we have given to M (α). Let us write the

homoclinic orbit

γ(t) =

⎧⎪⎪⎨⎪⎪⎩
γ−(t), if t ≤−T̄ ,

γ0(t), if −T̄ ≤ t ≤ T̄ ,

γ+(t), if T̄ ≤ t,

as

γ±(t) =

(
u±(t)

v±(t)

)
∈ Ω̄− , γ0(t) =

(
u0(t)

v0(t)

)
∈ Ω̄+.

Then let
a±(t) = P−

x (u±(t),v±(t))+Q−
y (u±(t),v±(t)),

a0(t) = P+
x (u0(t),v0(t))+Q+

y (u0(t),v0(t))

be the trace of the Jacobian matrix of the linearization of (6.1.108) along (u±(t),v±(t))
and (u0(t),v0(t)) respectively, and

a(t) :=

⎧⎪⎪⎨⎪⎪⎩
a−(t), if t < −T̄ ,

a0(t), if −T̄ ≤ t ≤ T̄ ,

a+(t), if t > T̄ .

Then

(
v̇±(t)
−u̇±(t)

)
e−

∫ t
±T̄ a±(τ)dτ satisfy the adjoint variational system:

ẋ = −P−
x (γ±(t))x−Q−

x (γ±(t))y,

ẏ = −P−
y (γ±(t))x−Q−

y (γ±(t))y

and similarly

(
v̇0(t)
−u̇0(t)

)
e−

∫ t
−T̄ a0(τ)dτ satisfies the adjoint system:

ẋ = −P+
x (γ0(t))x−Q+

x (γ0(t))y,

ẏ = −P+
y (γ0(t))x−Q+

y (γ0(t))y .

As a consequence,(
v̇±(t)

−u̇±(t)

)
e−

∫ t
±T̄ a±(τ)dτ = X∗

±(t)−1

(
v̇±(±T̄ )

−u̇±(±T̄ )

)

and (
v̇0(t)

−u̇0(t)

)
e−

∫ t
−T̄ a0(τ)dτ = X∗

0 (t)−1

(
v̇0(−T̄ )

−u̇0(−T̄ )

)
.

Next, since the system is two-dimensional, we have
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span{ψ} = RR0 = span

{(
Gy(γ(T̄ ))

−Gx(γ(T̄ ))

)}
.

So we take:

ψ =
1

|G′(γ(T̄ ))|

(
Gy(γ(T̄ ))

−Gx(γ(T̄ ))

)
.

Let {e1,e2} be the canonical basis of R
2. According to the definition of R±, R0 we

have

R+e1 = e1 − Gx(γ(T̄ ))
G′(γ(T̄ ))γ̇+(T̄ )

γ̇+(T̄ ),

R+e2 = e2 − Gy(γ(T̄ ))
G′(γ(T̄ ))γ̇+(T̄ )

γ̇+(T̄ ),

R−e1 = e1 − Gx(γ(−T̄ ))
G′(γ(−T̄ ))γ̇−(−T̄ )

γ̇−(−T̄ ),

R−e2 = e2 − Gy(γ(−T̄ ))
G′(γ(−T̄ ))γ̇−(−T̄ )

γ̇−(−T̄ ),

R0e1 = e1 − Gx(γ(T̄ ))
G′(γ(T̄ ))γ̇0(T̄ )

γ̇0(T̄ ),

R0e2 = e2 − Gy(γ(T̄ ))
G′(γ(T̄ ))γ̇0(T̄ )

γ̇0(T̄ )

and then (here ML denotes the matrix of the linear map L with respect to the basis

{e1,e2} of R
2)

MR∗
+

=
1

G′(γ(T̄ ))γ̇+(T̄ )

(
v̇+(T̄ )

−u̇+(T̄ )

)(
Gy(γ(T̄ )) −Gx(γ(T̄ ))

)
,

MR∗− =
1

G′(γ(−T̄ ))γ̇−(−T̄ )

(
v̇−(−T̄ )

−u̇−(−T̄ )

)(
Gy(γ(−T̄ )) −Gx(γ(−T̄ ))

)
,

MR∗
0

=
1

G′(γ(T̄ ))γ̇0(T̄ )

(
v̇0(T̄ )

−u̇0(T̄ )

)(
Gy(γ(T̄ )) −Gx(γ(T̄ ))

)
.

As a consequence,

X∗−(t)−1R∗−X∗
0 (T̄ )R∗

0ψ

=
|G′(γ(T̄ ))|

G′(γ(T̄ ))γ̇0(T̄ )
X∗−(t)−1R∗−X∗

0 (T̄ )

(
v̇0(T̄ )

−u̇0(T̄ )

)

=
|G′(γ(T̄ ))|

G′(γ(T̄ ))γ̇0(T̄ )
X∗−(t)−1R∗−

(
v̇0(−T̄ )

−u̇0(−T̄ )

)
e
∫ T̄
−T̄ a0(τ)dτ
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=
|G′(γ(T̄ ))|

G′(γ(T̄ ))γ̇0(T̄ )
G′(γ(−T̄ ))γ̇0(−T̄ )
G′(γ(−T̄ ))γ̇−(−T̄ )

(
v̇−(t)

−u̇−(t)

)
e
∫ T̄
t a(τ)dτ

for any t ≤−T̄ . Similarly, for −T̄ ≤ t ≤ T̄ we have:

X∗
0 (t)−1X∗

0 (T̄ )R∗
0ψ =

|G′(γ(T̄ ))|
G′(γ(T̄ ))γ̇0(T̄ )

(
v̇0(t)
−u̇0(t)

)
e
∫ T̄
t a0(τ)dτ

and

X∗
+(t)−1R∗

+ψ =
|G′(γ(T̄ ))|

G′(γ(T̄ ))γ̇+(T̄ )

(
v̇+(t)
−u̇+(t)

)
e
∫ T̄
t a+(τ)dτ

for t ≥ T̄ . Putting everything together we obtain

M (α) =
|G′(γ(T̄ ))|

G′(γ(T̄ ))γ̇0(T̄ )

·
{

G′(γ(−T̄ ))γ̇0(−T̄ )
G′(γ(−T̄ ))γ̇−(−T̄ )

∫ −T̄

−∞

(
v̇−(t)

−u̇−(t)

)
g(t +α,γ(t),0)e−

∫ t
T̄ a(τ)dτ dt

+
∫ T̄

−T̄

(
v̇0(t)

−u̇0(t)

)
g(t +α,γ(t),0)e−

∫ t
T̄ a0(τ)dτ dt

+
G′(γ(T̄ ))γ̇0(T̄ )
G′(γ(T̄ ))γ̇+(T̄ )

∫ ∞

T̄

(
v̇+(t)

−u̇+(t)

)
g(t +α,γ(t),0)e−

∫ t
T̄ a+(τ)dτ dt

}

that can be written as:

M (α) = − |G′(γ(T̄ ))|
G′(γ(T̄ ))γ̇0(T̄ )

·
{

G′(γ(−T̄ ))γ̇0(−T̄ )
G′(γ(−T̄ ))γ̇−(−T̄ )

∫ −T̄

−∞
f−(γ(t))∧g(t +α,γ(t),0)e−

∫ t
T̄ a(τ)dτ dt

+
∫ T̄

−T̄
f+(γ(t))∧g(t +α,γ(t),0)e−

∫ t
T̄ a(τ)dτ dt (6.1.109)

+
G′(γ(T̄ ))γ̇0(T̄ )
G′(γ(T̄ ))γ̇+(T̄ )

∫ ∞

T̄
f−(γ(t))∧g(t +α,γ(t),0)e−

∫ t
T̄ a(τ)dτ dt

}
,

where

f±(x,y) =

(
P±(x,y)

Q±(x,y)

)
.

Note that we can write:
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M (α) = −|G′(γ(T̄ ))|e
∫ T̄

0 a0(τ)dτ

G′(γ(T̄ ))γ̇0(T̄ )

{∫ ∞

−∞
f (γ(t))∧g(t +α,γ(t),0)e−

∫ t
0 a(τ)dτ dt +δ− +δ+

}
where

δ− =
(

G′(γ(−T̄ ))γ̇0(−T̄ )
G′(γ(−T̄ ))γ̇−(−T̄ )

−1

)∫ −T̄

−∞
f−(γ(t))∧g(t +α,γ(t),0)e−

∫ t
0 a(τ)dτ dt,

δ+ =
(

G′(γ(T̄ ))γ̇0(T̄ )
G′(γ(T̄ ))γ̇+(T̄ )

−1

)∫ ∞

T̄
f−(γ(t))∧g(t +α,γ(t),0)e−

∫ t
0 a(τ)dτ dt.

Remark that the extra terms δ± vanish in cases γ̇0(−T̄ ) = γ̇−(−T̄ ) and γ̇0(T̄ ) =
γ̇+(T̄ ). Thus M (α) extends the usual Melnikov function (cf Section 4.1) to the

discontinuous case.

6.1.11 3D Quasiperiodic Piecewise Linear Systems

In in section, we consider the example

ẋ =

{
Ax+ ε (g1 sinω1t +g2 sinω2t) , for ã · x < d,

Ax+b+ ε (g1 sinω1t +g2 sinω2t) , for ã · x > d
(6.1.110)

of a quasiperiodically perturbed piecewise linear 3-dimensional differential equa-

tion. Here d > 0, ω1,2 > 0, ã,x,g1,2 ∈ R
3, ã ·x is the scalar product in R

3. Moreover,

we consider system (6.1.110) under the following assumptions

(i) A is a 3×3-matrix with semi-simple eigenvalues, λ1,λ2 > 0 > λ3 and with the

corresponding eigenvectors, e1,e2,e3.

(ii) Let b = ∑3
i=1 biei and ai := ã · ei, i = 1,2,3. Then a1,b3 ≥ 0, a2,a3 > 0 and

b1,b2 < 0.

Remark 6.1.29. Certainly we can study more general systems

ẋ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ax+ ε

m

∑
k=1

gk sinωkt, for ã · x < d,

Ax+b+ ε
m

∑
k=1

gk sinωkt, for ã · x > d

but for simplicity we concentrate on (6.1.110) in this section.

If either g1 = 0, g2 = 0 or the ratio ω1
ω2

is rational, then we get the periodic case

studied in [34]. Theorem 6.1.28, however, improves the result in [34] in the sense

that here we obtain chaotic behaviour of the solutions. Thus, we focus here on the

case

(iii) g1 �= 0, g2 �= 0 and ω1/ω2 is irrational.
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Given the vectors in R
3: x = ∑3

i=1 xiei and y = ∑3
i=1 yiei we define

〈x,y〉 =
3

∑
i=1

xiyi.

Then 〈x,y〉 is a scalar product in R
3 that makes {e1,e2,e3} an orthonormal basis

of R
3. From now on we will write also (x1,x2,x3) for the vector x = ∑3

i=1 xiei and

hence we identify e1,e2,e3 with (1,0,0),(0,1,0),(0,0,1) respectively.

Writing x = ∑3
i=1 xiei and g j = ∑3

i=1 g jiei, j = 1,2, (6.1.110) has the form

ẋi =

{
λixi + ε (g1i sinω1t +g2i sinω2t) , for 〈a,x〉 < d ,

λixi +bi + ε (g1i sinω1t +g2i sinω2t) , for 〈a,x〉 > d ,
(6.1.111)

i = 1,2,3, where a = ∑3
i=1 aiei. Hence G(x) = 〈a,x〉−d = ∑3

j=1 a jx j −d and thus

Ω− =
{

(x1,x2,x3) ∈ R
3 |

3

∑
i=1

aixi < d
}

,

Ω+ =
{

(x1,x2,x3) ∈ R
3 |

3

∑
i=1

aixi > d
}

.

Theorem 6.1.30. If conditions (i)–(ii) and the next ones

a3b3(e2λ3T̄ −1) = dλ3,
2

∑
j=1

a jb j

λ j
(e−2λ j T̄ −1) = d (6.1.112)

hold, then system

ẋi =

{
λixi, for 〈a,x〉 < d ,

λixi +bi, for 〈a,x〉 > d ,
(6.1.113)

i = 1,2,3, has a homoclinic orbit to x = 0:

γ(t) =

⎧⎪⎪⎨⎪⎪⎩
γ−(t), if t ≤−T̄ ,

γ0(t), if −T ≤ t ≤ T̄ ,

γ+(t), if t ≥ T̄ ,

where

γ−(t) =
(

eλ1(t+T̄ )
(

e−2λ1T̄ −1
)b1

λ1
,eλ2(t+T̄ )

(
e−2λ2T̄ −1

)b2

λ2
,0
)

,

γ0(t) =
((

eλ1(t−T̄ )−1
)b1

λ1
,
(

eλ2(t−T̄ )−1
)b2

λ2
,
(

eλ3(t+T̄ )−1
)b3

λ3

)
,

γ+(t) =
(

0,0,
d
a3

eλ3(t−T̄ )
)

,
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and conditions (H1), (H2) and (H3) are satisfied.

Proof. With a view to constructing the homoclinic solution γ(t) of system (6.1.113),

we describe the local stable and unstable manifolds of the fixed point (x1,x2,x3) =
(0,0,0) ∈Ω−: the local unstable manifold of the origin is

W s
loc(0) = {(x1,x2,0) | x1,x2 ∈ R, a1x1 +a2x2 < d}

and the local stable manifold is

W u
loc(0) = {(0,0,x3) | x3 ∈ R, a3x3 < d} .

Thus it must be:

γ−(t) =

⎛⎜⎜⎝
c1 eλ1t

c2 eλ2t

0

⎞⎟⎟⎠ , γ+(t) =

⎛⎜⎜⎝
0

0

c3 eλ3t

⎞⎟⎟⎠
as long as γ−(t),γ+(t) ∈ Ω−. Note that, if c1,c2,c3 ≥ 0 then, because of (ii), the

scalar product 〈a,γ−(t)〉 (resp. 〈a,γ+(t)〉) is increasing (resp. decreasing) and hence

γ−(t) ∈ Ω− for t < −T̄ and γ+(t) ∈ Ω− for t > T̄ together with γ−(−T̄ ),γ+(T̄ ) ∈
∂Ω− if and only if 〈a,γ−(−T̄ )〉= 〈a,γ+(T̄ )〉= d, that is, if the following conditions

on the non-negative numbers T̄ , d, c1, c2, c3 hold

a1c1 e−λ1T̄ +a2c2 e−λ2T̄ = d, a3c3 eλ3T̄ = d. (6.1.114)

Next we have to choose c1 ≥ 0, c2 ≥ 0 and c3 ≥ 0 in such a way that the solution

γ0(t) of system (6.1.113) with γ0(−T̄ ) = γ−(−T̄ ) belongs to Ω+ for −T̄ < t < T̄
and satisfies γ0(T̄ ) = γ+(T̄ ). Now, it is easy to see that if the solution of (6.1.113)

belongs to Ω+ and satisfies γ0(−T̄ ) = γ−(−T̄ ), then it must be

γ0(t) =

⎛⎜⎜⎝
λ−1

1 [eλ1t(b1 eλ1T̄ +c1λ1)−b1]

λ−1
2 [eλ2t(b2 eλ2T̄ +c2λ2)−b2]

b3λ−1
3 (eλ3(t+T̄ )−1)

⎞⎟⎟⎠ .

Hence the condition γ0(T̄ ) = γ+(T̄ ) is equivalent to:

c1λ1 = −2b1 sinh(λ1T̄ ),

c2λ2 = −2b2 sinh(λ2T̄ ),

c3λ3 = 2b3 sinh(λ3T̄ ) .

(6.1.115)

Plugging these values of c1,c2,c3 into (6.1.114) (note that c1,c2,c3 > 0) we obtain

(6.1.112) on T̄ , d. We assume that conditions (6.1.112) are satisfied and show that

in this case, γ0(t) ∈Ω+ for any t ∈ (−T̄ , T̄ ). To this end we consider the function:
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φ(t) := G(γ0(t)) =
2

∑
j=1

a jb j

λ j
(eλ j(t−T̄ )−1)+

a3b3

λ3
(eλ3(t+T̄ )−1)−d.

We derive

φ ′′(t) =
2

∑
j=1

a jb jλi eλ j(t−T̄ ) +a3b3λ3 eλ3(t+T̄ ) .

From assumptions (ii) and (6.1.112) we see that

φ(−T̄ ) = φ(T̄ ) = 0, φ ′′(t) < 0 for any t ∈ R.

Hence we obtain

φ(t) > 0 on (−T̄ , T̄ )

that gives γ0(t) ∈ Ω+ for −T̄ < t < T̄ . Moreover, from φ(−T̄ ) = 0 and φ ′′(t) < 0,

we also get φ ′(−T̄ ) > 0 and similarly φ ′(T̄ ) < 0, that is,

2

∑
j=1

a jb j e−2λ j T̄ +a3b3 > 0,
2

∑
j=1

a jb j +a3b3 e2λ3T̄ < 0 . (6.1.116)

Condition (H1) is verified. Now we verify (H2) by checking the inequalities:

G′(γ(−T̄ )) f±(γ(−T̄ )) > 0 and G′(γ(T̄ )) f±(γ(T̄ )) < 0

that in this case read:

2

∑
j=1

a jb j(e−2λ j T̄ −1) > 0 ,
2

∑
j=1

a jb j e−2λ j T̄ +a3b3 > 0 ,

2

∑
j=1

a jb j +a3b3 e2λ3T̄ < 0 , dλ3 < 0 .

(6.1.117)

The first and the fourth inequalities come immediately from assumptions (i)–(ii);

the second and the third ones from (6.1.116). So (H2) also holds. Next we verify

condition (H3). First we note that ∇G(x) = a, for any x ∈ R
3, and

P+ = P− =

⎛⎝ 0 0 0

0 0 0

0 0 1

⎞⎠ . (6.1.118)

Then, since N [G′(γ(T̄ ))] = {a}⊥ and a3 > 0, we get

S ′′ = N [G′(γ(T̄ ))]
⋂

RP+ = {0} .

Similarly, since N P− = span{e1,e2} and N G′(γ(−T̄ )) = {a}⊥, we obtain

S ′ = span{(a2,−a1,0)} .
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Next, from (6.1.113), we see that

X0(t) = X−(t) =

⎛⎜⎜⎝
eλ1(t+T̄ ) 0 0

0 eλ2(t+T̄ ) 0

0 0 eλ3(t+T̄ )

⎞⎟⎟⎠ (6.1.119)

and

X+(t) =

⎛⎜⎜⎝
eλ1(t−T̄ ) 0 0

0 eλ2(t−T̄ ) 0

0 0 eλ3(t−T̄ )

⎞⎟⎟⎠ . (6.1.120)

Hence

X0(T̄ )S ′ = span{w0} with w0 :=

⎛⎜⎜⎝
a2 e2λ1T̄

−a1 e2λ2T̄

0

⎞⎟⎟⎠ . (6.1.121)

Since ∇G(x) = a, we have:

R0w = w− 〈a,w〉
〈a, γ̇0(T̄ )〉 γ̇0(T̄ ) ,

R+w = w− 〈a,w〉
〈a, γ̇+(T̄ )〉 γ̇+(T̄ ) ,

R−w = w− 〈a,w〉
〈a, γ̇−(−T̄ )〉 γ̇−(−T̄ ) .

(6.1.122)

As a consequence,

R0w0 = w0 − 〈a,w0〉
〈a, γ̇0(T̄ )〉 γ̇0(T̄ ) �= 0 (6.1.123)

since from (ii) it follows that w0 is not parallel to γ̇0(T̄ ) =
(

b1 b2 b3 e2λ3T̄
)∗

.

Thus we get S ′′′ = R0X0(T̄ )S ′ �= {0} that is dimS ′′′ = 1 and condition (H3) is

satisfied. The proof is completed. ��
We start with construction of ψ(t): Since S ′′ = {0}, we see that ψ is such that

{ψ}⊥ = span{a,R0w0}. From (6.1.123) it is easy to see that 〈a,R0w0〉 = 0, hence

we can take:

ψ = a∧R0w0 ,

where ∧ denotes the cross product.

First we construct ψ(t) for t ≤ −T̄ : Since: (I−P∗−)R∗−X∗
0 (T̄ )R∗

0ψ = 0, we can

compute P∗−R∗−X∗
0 (T̄ )R∗

0ψ instead of R∗−X∗
0 (T̄ )R∗

0ψ , with the first one being simpler.

We recall that R0w = w for any w ∈ {a}⊥ and R0γ̇0(T̄ ) = 0. Thus the eigenvalues
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of R0 are 0 (simple) and 1 (double). The same conclusion holds for R±. As a conse-

quence, we obtain:

traceR0 = traceR+ = traceR− = 2. (6.1.124)

We also remark that

γ̇0(T̄ ) =

⎛⎜⎜⎝
b1

b2

b3 e2λ3T̄

⎞⎟⎟⎠ , γ̇+(T̄ ) =

⎛⎜⎜⎜⎝
0

0

dλ3

a3

⎞⎟⎟⎟⎠ , γ̇−(−T̄ ) =

⎛⎜⎜⎝
b1(e−2λ1T̄ −1)

b2(e−2λ2T̄ −1)

0

⎞⎟⎟⎠
and, using (6.1.119)

X0(T̄ ) =

⎛⎝ e2λ1T̄ 0 0

0 e2λ2T̄ 0

0 0 e2λ3T̄

⎞⎠ .

Hence we get:

P∗
−R∗

−X∗
0 (T̄ )R∗

0 =

⎛⎝ 0 0 0

0 0 0

A13 A23 A33

⎞⎠ ,

where

A3 = (A13,A23,A33)∗ = R0X0(T̄ )R−e3 (6.1.125)

is the third column of the matrix R0X0(T̄ )R−. Thus

P∗
−R∗

−X∗
0 (T̄ )R∗

0ψ =

⎛⎝ 0

0

〈A3,ψ〉

⎞⎠ .

Since ψ = a∧R0w0 we get, using (6.1.61) and (6.1.119):

ψ(t) = e−λ3(t+T̄ )〈A3,a∧R0w0〉e3

for t ≤−T̄ . Note that

〈A3,ψ〉 = det

⎛⎜⎜⎝
A13 a1 (R0w0)1

A23 a2 (R0w0)2

A33 a3 (R0w0)3

⎞⎟⎟⎠ = det( A3 a R0w0 )

where (R0w0) j is the j-th component of R0w0 and that A3 = R0[X0(T̄ )R−e3] ∈
RR0 = {a}⊥ so both A3 and R0w0 belong to span{a}⊥, but of course this does

not mean they are parallel. The computation of the vector A3 is really messy even in

an example as simple as this, so we don’t proceed further with its computation now,

but will do it later when we fix some particular values of the parameters.
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Next, we look at the expression of ψ(t) for −T̄ < t ≤ T̄ : Since the linear system

ẋ = Ax is autonomous, and X0(−T̄ ) = I, we have X−1∗
0 (t)X∗

0 (T̄ ) = X∗
0 (−t). Next, to

compute R∗
0ψ we make use of the following identity.

Lemma 6.1.31. For a given 3×3−matrix M, it holds

(Mu)∧ v+u∧ (Mv)− (traceM)u∧ v = −M∗(u∧ v) (6.1.126)

for any u,v ∈ R
3.

Proof. Indeed, taking the scalar product with a vector w ∈ R
3, (6.1.126) is equiva-

lent to

det(Mw,u,v)+det(w,Mu,v)+det(w,u,Mv) = (traceM)det(w,u,v) . (6.1.127)

To prove (6.1.127), we note that the map from R
3 × R

3 × R
3 to R given by

(w,u,v)  → det(Mw,u,v) + det(w,Mu,v) + det(w,u,Mv) ∈ R is multilinear and al-

ternating. Thus there exists κ ∈ R so that

det(Mw,u,v)+det(w,Mu,v)+det(w,u,Mv) = κ det(w,u,v).

Taking w = e1, u = e2 and v = e3 we see that κ = traceM and (6.1.127) is proved.

The proof of Lemma 6.1.31 is completed. ��
We apply (6.1.126) with M = R0, u = a and v = R0w0. We get, since traceR0 = 2:

−R∗
0ψ = −R∗

0[a∧R0w0] = R0a∧R0w0 +a∧ [R0R0w0]−2a∧R0w0

= R0a∧R0w0 −a∧R0w0 = −(I−R0)a∧R0w0 = − |a|2
〈a, γ̇0(T̄ )〉 γ̇0(T̄ )∧R0w0

and then

ψ(t) =
|a|2

〈a, γ̇0(T̄ )〉X0(−t)[γ̇0(T̄ )∧R0w0]

for −T̄ < t ≤ T̄ , since X∗
0 (t) = X0(t).

Finally we compute ψ(t) when t > T̄ : Applying again (6.1.126) with M = R+,

u = a and v = R0w0. We get:

−R∗
+ψ = −R∗

+(a∧R0w0) = (R+a)∧ (R0w0)+a∧ (R+R0w0)−2a∧R0w0

since traceR+ = 2. Now, we have:

(R+a)∧ (R0w0) = a∧R0w0 − |a|2
〈a, γ̇+(T̄ )〉 γ̇+(T̄ )∧R0w0, R+R0w0 = R0w0

since R0w0 ∈ RQ = RR+ and R+ is a projection. Thus:

R∗
+ψ = R∗

+(a∧R0w0) =
|a|2

〈a, γ̇+(T̄ )〉 γ̇+(T̄ )∧R0w0 =
|a|2
a3

e3 ∧R0w0



306 6 Chaos in Discontinuous Differential Equations

and

ψ(t) =
|a|2
a3

X−1
+ (t)[e3 ∧R0w0]

for t > T̄ , since X∗
+(t) = X+(t). In summary, we conclude with the following result.

Theorem 6.1.32. Let assumptions (i)–(ii) hold and suppose (6.1.112) is satisfied.
Then the function ψ(t) of (6.1.61) for the system (6.1.113) reads

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−λ3(t+T̄ )〈A3,a∧R0w0〉e3, if t ≤−T̄ ,

|a|2
〈a, γ̇0(T̄ )〉X0(−t)[γ̇0(T̄ )∧R0w0], if −T̄ < t ≤ T̄ ,

|a|2
a3

X−1
+ (t)[e3 ∧R0w0], if t > T̄

(6.1.128)

where X0(t), X+(t), w0, R0, A3 are given by (6.1.119), (6.1.120), (6.1.121), (6.1.122),
(6.1.125), respectively.

So we are in position to apply Theorem 6.1.16. Writing g j = (g j1,g j2,g j3)∗,

j = 1,2, we get the Melnikov function (6.1.62)

M (α) =
∫ ∞

−∞
[sinω1(t +α)ψ∗(t)g1 + sinω2(t +α)ψ∗(t)g2] dt

= sin(αω1)
∫ ∞

−∞
cos(ω1t)ψ∗(t)g1 dt + cos(αω1)

∫ ∞

−∞
sin(ω1t)ψ∗(t)g1 dt

+sin(αω2)
∫ ∞

−∞
cos(ω2t)ψ∗(t)g2 dt + cos(αω2)

∫ ∞

−∞
sin(ω2t)ψ∗(t)g2 dt

= A1(ω1)sin(ω1α+ϖ1(ω1))+A2(ω2)sin(ω2α+ϖ2(ω2))

where

Ai(ωi) :=

√(∫ ∞

−∞
cosωitψ∗(t)gi dt

)2

+
(∫ ∞

−∞
sinωitψ∗(t)gi dt

)2

for i = 1,2. Now we consider the following two possibilities:

1. Either A1(ω1) �= 0, A2(ω2) = 0 or A1(ω1) = 0, A2(ω2) �= 0. Then M (α) has the

simple zero α0 = −ϖi(ωi)/ωi, i = 1,2, respectively.

2. A1(ω1) �= 0 and A2(ω2) �= 0. Let si := sgnAi(ωi) ∈ {−1,1}, i = 1,2. Then

s1ω1A1(ω1)+s2ω2A2(ω2) =ω1|A1(ω1)|+ω2|A2(ω2)|> 0. Since cos 1−si
2 π = si

and sin 1−si
2 π = 0 for i = 1,2, andω1/ω2 is irrational, from [40] the existence fol-

lows from α0 (as a matter of fact infinitely many α0 exists) so that ωiα0 +ϖi(ωi)
are near to 1−si

2 π modulo 2π , i = 1,2, and M (α0) = 0 while

M ′(α0) ≥ s1ω1A1(ω1)+ s2ω2A2(ω2)
2

> 0 .
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Hence also in this case we have a simple zero of M (α).

Consequently if A1(ω1) and A1(ω1) do not vanish simultaneously, Theorem

6.1.27 applies and we conclude that (6.1.110) behaves chaotically for any ε �= 0

sufficiently small. Next, we note that Ai(ωi) �= 0 if and only if

Φi(ωi) :=
∫ ∞

−∞
e−ωitıψ∗(t)gi dt �= 0 . (6.1.129)

Since ψ(t) �= 0, Plancherel Theorem (cf Section 2.1) ensures that

V (ω) :=
∫ ∞

−∞
e−ωtıψ(t)dt �= 0. (6.1.130)

Note that Φi(ω) = V (ω)∗gi. So condition (6.1.129) is equivalent to the non-

orthogonality of V (ω) to gi. Furthermore, it is not difficult to observe thatΦi(ω) are

analytic for ω > 0. Indeed, we have |ψ(t)| ≤ k e−δ |t|, for some positive constants k
and δ , and for ω,η ∈ R we have: sin((ω + ıη)x) = sin(ωx)e−ηx +ıe−ıωx sinhηx.

Thus the function ∫ ∞

−∞
sin(zt)ψ∗(t)gi dt

is holomorphic in the strip {ω+ ıη ∈ C | |η | < δ}. A similar argument works with

cos(zt) instead of sin(zt). Consequently, when functions Φi(ω) are not identically

zero, they have at most countable many positive zeroes with possible accumulations

at +∞ (cf Section 2.6.5). In summary, we get the following result.

Theorem 6.1.33. Let assumptions (i)–(iii) hold and suppose (6.1.112) holds. When
both Φ1(ω) and Φ2(ω) are not identically zero, there is at most a countable set
{ω̃ j} ⊂ (0,∞) with possible accumulating point at +∞ so that if ω1,ω2 ∈ (0,∞) \
{ω̃ j} then system (6.1.110) is chaotic for any ε �= 0 sufficiently small.

Since in general, the above formulas are rather difficult to find the solution, now

we consider the following concrete examples.

Example 6.1.34. We take

a1 = 0, a2 = a3 = 1, λ1 = 2, λ2 = 1, λ3 = −1,

b1 = b2 = −1, b3 = 1, d = 3/4 .
(6.1.131)

Then (6.1.112) is satisfied with T̄ = ln2. With these parameters values we have:

R0w0 = w0 = 16e1, γ̇0(T̄ ) = −e1 − e2 +
1

4
e3 .

Thus,

γ̇0(T̄ )∧R0w0 = 4e2 +16e3

and we get
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ψ(t) =

⎧⎨⎩−64

3
[e−t e2 + et e3], for − ln2 < t ≤ ln2,

64e−t e2, for t > ln2,

since

X0(t) = X−(t) =

⎛⎜⎜⎜⎝
4e2t 0 0

0 2et 0

0 0
1

2
e−t

⎞⎟⎟⎟⎠ , X+(t) =

⎛⎜⎜⎜⎝
1

4
e2t 0 0

0
1

2
et 0

0 0 2e−t

⎞⎟⎟⎟⎠ .

Finally we compute ψ(t) for t ≤− ln2. First we need to know A3 which is the third

column of R0X0(T̄ )R− that is

A3 = R0X0(T̄ )R−e3.

We have R−e3 = − 5
4 e1 − e2 + e3, then X0(T̄ )R−e3 = −20e1 − 4e2 + 1

4 e3 and thus

A3 = −15e1 + e2 − e3. As a consequence,

〈A3,a∧R0w0〉 = det

⎛⎝−15 0 16

1 1 0

−1 1 0

⎞⎠ = 32

and ψ(t) = 64et e3 for t ≤− ln2. We conclude that (see (6.1.128))

ψ(t) =

⎧⎪⎪⎨⎪⎪⎩
64et e3, for t ≤− ln2,

−64

3
[e−t e2 + et e3], for − ln2 < t ≤ ln2,

64e−t e2, for t > ln2 .

Putting this formula of ψ(t) into (6.1.130), we finally obtain

V (ω) = −256sin(ω ln2)
3(ω2 +1)

[ω(e2 + e3)+ ı(e2 − e3)] .

Then from Φi(ω) = V (ω)∗gi, we have:

Φi(ω) = −256sin(ω ln2)
3(ω2 +1)

(
ω(gi2 +gi3)+ ı(gi2 −gi3)

)
. (6.1.132)

So for the parameters (6.1.131),Φi(ω) is identically zero if and only if gi2 = gi3 = 0.

Otherwise, it has only the simple positive zeroes ω̃ j = π j/ ln2, j ∈ N. In conse-

quence of Theorem 6.1.33 we get the following.

Corollary 6.1.35. Consider (6.1.110) with parameters (6.1.131) and (iii) holds. If
either gi2 �= 0 or gi3 �= 0 for some i ∈ {1,2} and ω1,ω2 �= π j/ ln2, ∀ j ∈ N then
system (6.1.110) is chaotic for any ε �= 0 small.
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Example 6.1.36. On the other hand, for the following set of parameters

a1 = a2 = a3 = 1, b1 = b2 = −1, b3 = 13/8 ,

λ1 = 2, λ2 = 1, λ3 = −1, d = 39/32 ,
(6.1.133)

we get T̄ = ln2 and (see (6.1.128))

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1344

17
et e3, for t ≤− ln2,

−16

17
(13e−2t e1 +26e−t e2 +20et e3), for − ln2 < t ≤ ln2,

48

17
(49e−2t e1 +18e−t e2), for t > ln2.

Then

Φi(ω) =

26−ıω(13 ·4ıω −10)(gi1 +2gi2 +gi1ω2 +gi2ω2 −2gi3 +ω2gi3 − ı(gi2 +3gi3)ω)
17(ω− ı)(ω−2ı)(1− ıω)

for i = 1,2. Clearly, for the parameters (6.1.133), Φi(ω) is not identically zero. If

gi2 �=−3gi3 thenΦi(ω) has no positive roots. If gi2 =−3gi3 thenΦi(ω) has the only

positive root ωi1 =
√

gi1−8gi3
2gi3−gi1

provided gi1−8gi3
2gi3−gi1

> 0. In consequence of Theorem

6.1.33 we obtain the following.

Corollary 6.1.37. Consider (6.1.110) with parameters (6.1.133) and (iii) holds. If
one of the following conditions is satisfied

. gi2 �= −3gi3,

. gi2 = −3gi3, gi1 = 2gi3 �= 0,

. gi2 = −3gi3, gi1 �= 2gi3,
gi1 −8gi3

2gi3 −gi1
< 0,

. gi2 = −3gi3, gi1 �= 2gi3,
gi1 −8gi3

2gi3 −gi1
> 0 and ωi �=

√
gi1 −8gi3

2gi3 −gi1
,

for some i ∈ {1,2} then system (6.1.110) is chaotic for any ε �= 0 small.

Remark 6.1.38. Parameters (6.1.131) and (6.1.133) give Examples 6.1.34 and 6.1.36

for which Φi(ω) is either identically zero, or has infinitely many positive roots, or

has no positive roots, or has finitely many positive roots.

Remark 6.1.39. If Φ1(ω1) = 0 and Φ2(ω2) = 0 then M (α) is identically zero and

a second-order Melnikov function must be derived as in Section 4.1.4. But those

computations should be very awkward for (6.1.110), so we omit them.

Finally when g1 �= 0, g2 �= 0 and ω1/ω2 is rational, we get a different situation.

For instance, consider Example 6.1.34 with ω1 = 1, ω2 = 3 and gi2 = gi3, i = 1,2.

Thus (6.1.110) is 2π-periodic and



310 6 Chaos in Discontinuous Differential Equations

M (α) =Φ1(1)sinα+Φ2(3)sin3α = sinα− 1

3
sin3α =

4

3
sin3α

provided Φ1(1) = 1 and Φ2(3) = − 1
3 . From (6.1.132) we derive

g12 +g13 = − 3

128sin(ln2)
, g22 +g23 =

5

384sin(3ln2)
.

Then the Melnikov function is M (α) = 4
3 sin3α and it has only the zero α0 = 0 in

[−π,π] which is not simple but has Brouwer index 1 (cf Section 2.2.4). So Theorem

6.1.27 is not applicable, but we still get a chaos for (6.1.110) with ε �= 0 small as in

Remark 3.1.9 [15].

6.1.12 Multiple Transversal Crossings

The above results can be extended to cases when homoclinics are transversally

passing through several discontinuity manifolds. More precisely, let Ω ⊂ R
n be a

bounded open set in R
n and G j(z), j = 1, ..., p be Cr−functions on Ω̄ , with r ≥ 2.

We set S j = {z ∈Ω | G j(z) = 0}, and

Ω \
p⋃

j=1

S j :=
q⋃

i=0

Ωi

with Ωi being the connected components of Ω \ ∪p
j=1S j. Let fi(z) ∈ Cr

b(R
n) and

gi(t,z,ε) ∈ Cr
b(R

n+2), i.e. fi(z) and gi(t,z,ε) have uniformly bounded derivatives

up to the r-th order on R
n and R

n+2, respectively. We also assume that the r-th order

derivatives of fi(z) and gi(t,z,ε) are uniformly continuous. We set

f (z) := fi(z), g(t,z,ε) := gi(t,z,ε) if z ∈Ωi

and

G(z) :=Πp
j=1G j(z).

Definition 6.1.40. We say that a piecewise C1−function z(t) is a solution of the

equation

ż = f (z)+ εg(t,z,ε), z ∈ Ω̄ , (6.1.134)

if it satisfies Eq. (6.1.134) when z(t) ∈ Ωi, and moreover, the following holds: if

for some t∗ we have z(t∗) ∈ S j, then z(t∗) /∈ Sl for any l �= j and there exists r > 0

so that for any t ∈ (t∗ − r, t∗ + r) with t �= t∗, we have z(t) ∈ ∪q
i=0Ωi. Moreover,

if, for example, z(t) ∈ Ωi for any t ∈ (t∗ − r, t∗), then the left derivative of z(t) at

t = t∗ satisfies: ż(t−∗ ) = fi(z(t∗)) + εgi(t∗,z(t∗),ε); similarly, if z(t) ∈ Ωi for any

t ∈ (t∗, t∗ + r), then ż(t+∗ ) = fi(z(t∗))+ εgi(t∗,z(t∗),ε).



6.1 Transversal Homoclinic Bifurcation 311

Remark 6.1.41. Since z(t) ∈ ∪q
i=0Ωi for any t ∈ (t∗ − r, t∗ + r) \ {t∗} there exist

two indices i = i′j, i′′j so that z(t) ∈ Ωi′j when t ∈ (t∗ − r, t∗) and z(t) ∈ Ωi′′j for t ∈
(t∗, t∗ + r). Moreover, since z(t) /∈ ∪p

j=1S j, for any t ∈ (t∗ − r, t∗) ∪ (t∗, t∗ + r),
z(t) ∈ ∪p

j=1S j only for t in a discrete increasing subset {t j} of R with possible

accumulation points at ±∞. Moreover z(t) ∈Cr+1(R\{t j}).
We assume (Figure 6.2) that:

(H1) For ε = 0 Eq. (6.1.134) has the hyperbolic equilibrium x = 0 ∈ Ω0 and a

continuous, piecewise C1-solution γ(t) ∈Ω which is homoclinic to x = 0 and

consists of three branches

γ(t) =

⎧⎪⎪⎨⎪⎪⎩
γ−(t), if t ≤−T̄ ,

γ0(t), if −T̄ ≤ t ≤ T̄ ,

γ+(t), if t ≥ T̄ ,

where γ±(t) ∈Ω0 for |t| > T̄ , γ0(t) ∈Ω for |t| < T̄ and

γ−(−T̄ ) = γ0(−T̄ ) ∈ ∂Ω0, γ+(T̄ ) = γ0(T̄ ) ∈ ∂Ω0 .

(H2) At any point t∗ ∈ R so that γ(t∗) ∈ S j, we have

G′(γ(t∗)) fi′j(γ(t∗)) ·G
′(γ(t∗)) fi′′j (γ(t∗)) > 0 ,

where i′j, i′′j are the two indices defined in Remark 6.1.41.

Let t∗ be such that γ(t∗) ∈ S j for some j. Then (H2) means that both γ̇(t+∗ ) and

γ̇(t−∗ ) are transverse to S j at the point γ(t∗). Next, since γ(t) ∈ Ω0 for |t| ≥ T̄ , it

follows that γ0(t) intersect ∪p
i=1Si only a finite number of times denoted by −T̄ =

t0 < t1 < · · · < tN−1 < tN = T̄ . In summary γ(t) ∈ ∪p
i=1Si if and only if t ∈ {−T̄ =

t0 < t1 < · · · < tN−1 < tN = T̄} and γ(t) is continuous, piecewise C1 in R and has

left and right derivatives at the points t = ti, i = 0, . . . ,N. Next for l = 0, . . . ,N −1,

we define il , jl so that γ0(t) ∈Ωil for any t ∈ (tl , tl+1) and γ0(tl) ∈ S jl , γ0(tN) ∈ S jN .

Thus, with reference to the notation of Remark 6.1.41, we have i′jl = il−1 and i′′jl = il .
For l = 1, . . . ,N let Xl(t), t ∈ [tl−1, tl ] be the fundamental matrix solution of ẋ =

f ′il−1
(γ0(t))x with Xl(tl−1) = I. The transition matrix Sl : R

n → R
n is defined as

Slw := w+
[
γ̇0(t+l )− γ̇0(t−l )

] G′(γ0(tl))w
G′(γ0(tl))γ̇0(t−l )

(6.1.135)

for l = 1, . . . ,N − 1. It is easy to see that all Sl are invertible. Finally we define

the fundamental matrix solution of the variational equation of (6.1.1) along γ0(t) at

ε = 0 as follows:

X0(t) := Xl(t)Sl−1Xl−1(tl−1)Sl−2 · · ·S1X1(t1) for t ∈ [tl−1, tl)



312 6 Chaos in Discontinuous Differential Equations

































0

γ+(t)γ−(t)

γ0(t) γ0(t)

γ0(t) S2

S1
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Fig. 6.2 Homoclinic orbit γ(t) transversally crosses discontinuity manifolds S1 and S2. It may
cross S1,2 several but finite times before eventually getting in Ω0.

and l = 2, . . . ,N, where we have X0(t) = X1(t) on [t0, t1). Note that X0(t) solves the

following impulsive linear matrix differential Cauchy problem

Ẋ0(t) = D f (γ0(t))X0(t),

X0(t+l ) = SlX0(t−l ), l = 1, . . . ,N −1, X0(−T̄ ) = I

for t ∈ [−T̄ , T̄ ]. Now we can repeat the above arguments over (6.1.134) by intro-

ducing (6.1.61), (6.1.62) and then restate Theorem 6.1.16 and the other above re-

sults [48].

6.2 Sliding Homoclinic Bifurcation

6.2.1 Higher Dimensional Sliding Homoclinics

In [34] the problem of bifurcations from homoclinic orbits is studied whereas in Sec-

tion 6.1 chaotic behaviour of solutions is proved for time perturbed discontinuous
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differential equations in a finite dimensional space, when the homoclinic orbits of

the unperturbed problem crosses transversally the discontinuity manifold. Thus, it is

natural to argue if a similar behaviour arises also when sliding homoclinic orbits are

concerned. The purpose of this section is to give an affirmative answer to this ques-

tion. It has been observed in Section 6.1 that one of the problems we have to face

studying discontinuous differential equations, is the loss of smoothness of invari-

ant manifolds, a problem persisting also in the sliding case. Moreover in the sliding

case the additional problem arises, that is, during the sliding time the system should

be considered only on the discontinuity manifold, thus reducing the dimension of

the system. However, we show in this section that the method used in Section 6.1

to prove chaotic behavior can be arranged to handle the case of sliding homoclinic

orbits, leading to a similar conclusion.

Typical examples of sliding motions are in relay controllers, impact oscillators

and stick-slip friction systems where the stick motion corresponds to sliding. Many

non-smooth models can be found in [6, 7, 11, 14, 27, 28, 49–54]. Sliding homoclinic

solutions to pseudo-saddles (saddles lying on discontinuity curves/lines) of planar

DDEs are studied in [6, 51] both numerically and analytically. A theoretical discus-

sion on sliding homoclinic solutions to saddles of planar DDEs is presented in [6].

However, we have not found any concrete example in literature with a sliding ho-

moclinic orbit to a saddle, except in [28] where an example is given with two dis-

continuity lines. In our opinion the reason why it is so difficult to find examples is

because when the discontinuity manifold is linear, the DDE must be nonlinear in the

open subset the equilibrium point belongs to and this makes computations harder.

Of course, one can imagine a linear system of ODE with a sliding homoclinic orbit

to a nonlinear discontinuity manifold. But one can reduce to the linear discontinuity

manifold (and then to a nonlinear equation) by a simple change of variables, and for

computational reasons, it is better to work with linear discontinuity manifolds. For

this reason we investigate examples of DDEs exhibiting sliding chaotic behaviour

in consequence of Theorem 6.2.5 in Sections 6.2.2 and 6.2.3.

Now we go into details. Let R
n = R×R

n−1 with corresponding projections Pz :

R
n → R and Py : R

n → R
n−1. For x ∈ R

n we write x = (z,y) ∈ R×R
n−1. Consider

a discontinuous system in R
n with a small parameter such as:

ẋ = f (x)+ εg(t,x,ε) , (6.2.1)

where

f (x) =

⎧⎨⎩ f+(z,y) for, z > 0 ,

f−(z,y) for, z < 0 ,

with f± : Ω → R
n, f± ∈ Cr

b(Ω) and g : R×Ω ×R → R
n, g ∈ Cr

b(R×Ω ×R),
with Ω being a bounded open subset of R

n that has nonempty intersection with

the hyperplane z = 0. Note that we allow the possibility that f+(0,y) �= f−(0,y).
We also assume that the r-th order derivatives of f±(x) and g(t,x,ε) are uniformly

continuous. We set
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Ω± = {x = (z,y) ∈Ω | ±z > 0}, Ω0 = {x = (z,y) ∈Ω | z = 0}.

By putting

f± = (h±(z,y),k±(z,y)) ,

where h± :Ω → R and k± :Ω → R
n−1, we assume that

(H1) For any (0,y) ∈Ω0 it results:

h−(0,y)−h+(0,y) > 0. (6.2.2)

Then we set (see [8, Eq. (2.12)]))

H(y) := V (y)
k+(0,y)− k−(0,y)

2
+

k+(0,y)+ k−(0,y)
2

,

where

V (y) :=
h+(0,y)+h−(0,y)
h−(0,y)−h+(0,y)

,

and for (0,y) ∈Ω0, we consider the equation

ẏ = H(y). (6.2.3)

Note that H(y) has the following symmetric form with respect to indices ±:

H(y) =
h−(0,y)k+(0,y)−h+(0,y)k−(0,y)

h−(0,y)−h+(0,y)
.

We suppose that

(H2) The unperturbed equation ẋ = f−(x) has a hyperbolic fixed point x0 ∈ Ω−
and two solutions γ±(t), defined respectively for t ≥ T̄ and t ≤ −T̄ , so that

lim
t→±∞γ±(t) = x0 and γ±(±T̄ ) ∈Ω0.

(H3) Equation (6.2.3) has a solution y0(t), (0,y0(t)) ∈Ω0 for −T̄ ≤ t ≤ T̄ so that

γ−(−T̄ ) = γ0(−T̄ ), γ+(T̄ ) = γ0(T̄ )

where γ0(t) = (0,y0(t)), and the following hold:

h+(γ0(t)) < 0 for any t ∈ [−T̄ , T̄ ];
h−(γ0(t)) > 0 for any t ∈ [−T̄ , T̄ );
h−(γ0(T̄ )) = 0 and k−(γ0(T̄ )) is not orthogonal to ∇yh−(γ0(T̄ )) �= 0. Here

∇yh−(γ0(T̄ )) is the gradient of h−(0,y) at the point γ0(T̄ ) ∈Ω0.

Remark 6.2.1. 1. Note that the assumption that system (6.2.1) has a discontinuity on

the hyperplane z = 0 is made only for sake of simplicity. We could have assumed,

instead, that the singularity was at a hypersurface x1 = ϕ(x2, ...,xn) since we can

reduce to our hypothesis by the simple change of variables:

y = (x2, ...,xn), z = x1 −ϕ(x2, ...,xn).
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2. It will result from the argument given in the next sections that we may as well

consider the case

g(x) =

⎧⎨⎩g+(t,z,y), for z > 0 ,

g−(t,z,y), for z < 0 ,

with g± : R×Ω ×R → R
n, g± ∈Cr

b(R×Ω ×R). However, for simplicity, we will

continue to assume that g ∈Cr
b(R×Ω ×R).

Remark 6.2.2. From (H3) it follows that h−1
− (0) is a submanifold K of Ω0 of codi-

mension 1 near the point γ0(T̄ ) (here we consider the restriction h− : Ω0 → R).

Moreover, since V (y0(T̄ )) = −1, we get

H(y0(T̄ )) = k−(γ0(T̄ )),

so γ̇0(T̄ )= (0,H(y0(T̄ )))= (0,k−(γ0(T̄ )))= f−(γ0(T̄ )). Thus condition (H3) means

that γ̇0(T̄ ) is transverse to K in Ω0. Next, from (H3) it follows immediately that

∇yh−(0,y0(T̄ ))ẏ0(T̄ ) < 0.

Note that ∇yh−(0,y0(t))ẏ0(t) = h′−(γ0(t))γ̇0(t) for t ∈ [−T̄ , T̄ ]. Finally, for the va-

lidity of the results of this section, it is enough that condition (H1) holds for y in a

neigbourhood of y0(t), −T̄ ≤ t ≤ T̄ .

We set:

γ(t) =

⎧⎪⎪⎨⎪⎪⎩
γ−(t), if t ≤−T̄ ,

γ0(t), if −T̄ ≤ t ≤ T̄ ,

γ+(t), if t ≥ T̄

and will refer to γ(t) as the sliding homoclinic solution of (6.2.1) when ε = 0 (Figure

6.3).

We note that γ(t) is C1-smooth also at t = T̄ . In fact from h−(0,y0(T̄ )) =
h−(γ(T̄ )) = 0 we obtain V (y0(T̄ )) = −1 and then:

γ̇+(T̄ ) = f−(γ(T̄ )) =

(
h−(γ(T̄ ))

k−(γ(T̄ ))

)
=

(
0

k−(γ(T̄ ))

)
=

(
0

H(y0(T̄ ))

)
= γ̇0(T̄ ).

Recalling x = (z,y) ∈ R×R
n−1, we set

f±(x)+ εg(t,x,ε) = (h±(t,z,y,ε),k±(t,z,y,ε)).

and

H(t,y,ε) :=
h−(t,0,y,ε)k+(t,0,y,ε)−h+(t,0,y,ε)k−(t,0,y,ε)

h−(t,0,y,ε)−h+(t,0,y,ε)
.
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Fig. 6.3 A homoclinic sliding orbit γ(t) of (6.2.1) with ε = 0 to the hyperbolic equilibrium x = x0.

Note that h−(t,0,y,ε)− h+(t,0,y,ε) = h−(0,y)− h+(0,y) > 0 for any y ∈ Ω0 by

(6.2.2). So H(t,y,ε) is well defined. We are interested in the chaotic dynamics of

(6.2.1) near γ(t) for ε �= 0 small.

Definition 6.2.3. By a sliding solution x(t) of (6.2.1) we mean a function x : R→R
n

for which the following hold:

There exists an increasing sequence {T̃m} (possibly finite or with m ≤ m0 ∈ Z, or

m ≥ m0 ∈ Z, with m0 ∈ Z, or m ∈ Z) so that x(t) is C1-smooth for any t ∈ R\{T̃2m}
and possesses right and left derivatives at t = T̃2m. If t ∈ (T̃2m−1, T̃2m) then x(t)∈Ω−
and satisfies the equation ẋ = f−(x) + εg(t,x,ε). If t ∈ (T̃2m, T̃2m+1) then x(t) =
(0,y(t))∈Ω0 and y(t) satisfies the equation ẏ = H(t,y,ε). At t = T̃2m+1 the equation

h−(T̃2m+1,0,y(T̃2m+1),ε) = 0 is satisfied.

Since x0 is a hyperbolic fixed point of ẋ = f−(x), the linear system ẋ = f ′−(γ+(t))x
has an exponential dichotomy on [T̄ ,∞) with projection P+, and denotes by X+(t)
its fundamental matrix with X+(T̄ ) = I. Similarly the equation ẋ = f ′−(γ−(t))x has

an exponential dichotomy on (−∞,−T̄ ] with projection P−, and denotes by X−(t)
its fundamental matrix with X−(−T̄ ) = I. Let

S ′ := N P−
⋂

Py(Rn) = {y ∈ R
n−1 | (0,y) ∈ N P−} R

n−1 .

Note that dimS ′ = dimN P−−1. Next we define projections Q and R as follows:

Q : R
n → R

n is the projection on R
n with RQ = {0} × R

n−1 and N Q =
span{γ̇−(−T̄ )},
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R : RPy → RPy is the projection on RPy so that RR = N ∇yh−(0,y0(T̄ )) and

N R = span{ẏ0(T̄ )}.

Let Y0(t) be the fundamental solution of ẏ = H ′(y0(t))y, with Y0(−T̄ ) = I. Since

dimS ′ = dimN P− − 1, it is obvious that dim

(
0

RY0(T̄ )S ′

)
≤ dimN P− − 1.

Then

0 ≤ dim

[(
0

RY0(T̄ )S ′

)
∩RP+

]

= dim

(
0

RY0(T̄ )S ′

)
+dimRP+ −dim

[(
0

RY0(T̄ )S ′

)
+RP+

]

≤ dimN P−−1+dimRP+ −dim

[(
0

RY0(T̄ )S ′

)
+RP+

]

= n−1−dim

[(
0

RY0(T̄ )S ′

)
+RP+

]
(6.2.4)

since dimRP+ +dimN P− = n. As a consequence,

dim

[(
0

RY0(T̄ )S ′

)
+RP+

]
≤ n−1.

Our next assumption is as follows:

(H4)

(
0

RY0(T̄ )S ′

)
+RP+ has codimension 1 in R

n.

It follows from (H4) that a unitary vector ψ ∈ R
n exists so that

{ψ}⊥ =
(

0

RY0(T̄ )(S ′)

)
+RP+.

Using this vector we define the function

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X−1
− (t)∗P∗−Q∗P∗

y Y0(T̄ )∗R∗Pyψ, for t ≤−T̄ ,

P∗
y Y−1

0 (t)∗Y0(T̄ )∗Pyψ,

− k+(0,y0(t))+ k−(0,y0(t))
h+(0,y0(t))−h−(0,y0(t))

P∗
z Y−1

0 (t)∗Y0(T̄ )∗Pyψ, for −T̄ < t ≤ T̄ ,

X−1
+ (t)∗(I−P∗

+)ψ, for t > T̄ .

Set

M (α) :=
∫ ∞

−∞
ψ∗(t)g(t +α,γ(t),0)dt.
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Remark 6.2.4. (i) Since ẏ0(T̄ ) =Y0(T̄ )ẏ0(−T̄ ), we get RY0(T̄ )ẏ0(−T̄ ) = 0. But (H4)

and (6.2.4) imply that dimRY0(T̄ )S ′ = dimN P− − 1 = dimY0(T̄ )S ′ = dimS ′.
Then RY0(T̄ ) : S ′ → RY0(T̄ )S ′ is an isomorphism and hence ẏ0(−T̄ ) /∈ S ′. This

means that γ̇0(−T̄ ) transversally crosses the unstable manifold W u
0 of ẋ = f−(x) at

γ0(−T̄ ). Consequently recalling also (6.2.4), assumption (H4) is a kind of nonde-

generacy and transversality condition as well.

(ii) If dimN P− = n−1 and ẏ0(−T̄ ) /∈S ′, then RP+ = span{γ̇+(T̄ )}= span{γ̇0(T̄ )}
and RY0(T̄ ) : S ′ → RY0(T̄ )S ′ is 1 : 1. As a consequence,

(
0

RY0(T̄ )S ′

)
∩RP+ =

{0} and all the inequalities in (6.2.4) are equalities. Consequently, if dimN P− =
n− 1 then ẏ0(−T̄ ) /∈ S ′ if and only if (H4) holds. Moreover, we get ψ = e1 =
(1,0, ...,0) and Pyψ = 0. Hence

ψ(t) =

{
0, for t ≤ T̄ ,

X−1
+ (t)∗(I−P∗

+)ψ, for t > T̄
(6.2.5)

and

M (α) =
∫ ∞

T̄
ψ∗(t)g(t +α,γ(t),0)dt. (6.2.6)

Formula (6.2.6) corresponds to formula [27, (2.45)] for the planar case, that is, the

Melnikov function contains only the γ+(t) part of γ(t).

We recall that g(t,x,ε) is quasiperiodic in t, if hypothesis (H5) of Section 6.1.8

holds. Now we can directly follow the method of Section 6.1 so we omit details and

we refer the readers to [55]. Here we state the following result:

Theorem 6.2.5. Assume that (H1)–(H4) and (H5) of Section 6.1.8 hold. If M has
a simple zero α0, i.e. M (α0) = 0 and M ′(α0) �= 0, then for any ε �= 0 sufficiently
small, there are sequences {T εk }k∈Z ⊂ R, {S ε

k }k∈Z, {Φεk }k∈Z so that

(a) infk∈Z(T εk+1 −T εk ) → ∞ as ε → 0,
(b) S ε

k ⊂ R
n are compact,

(c) Φεk : E  → S ε
k are homeomorphisms,

(d) Let Fεk : R
n → R

n be defined so that Fεk (ξ ) is the value at time T ε
2(k+1) of the

solution of Eq. (6.2.1) so that z(T ε2k) = ξ . Then the following diagrams commute:

E
σ ��

Φεk
��

E

Φεk+1
��

S ε
k Fεk

�� S ε
k+1

for all k∈Z. If, in addition, g(t,z,ε) is p-periodic in t then Fε =ϕrε
ε =ϕε ◦ . . .◦ϕε =

Fεk (rε times) is the rε th iterate of the p-period map ϕε of (6.2.1) for some large
rε ∈ N, S ε = S ε

k and Φε =Φεk , that is, in the periodic case the above diagram is
independent of k.
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Here we recall Remark 6.1.24. Finally, Theorem 6.2.5 generalizes results of [43,

44, 46, 47] to the DDE (6.2.1) (cf Section 4.1).

6.2.2 Planar Sliding Homoclinics

First, we apply our theory to the planar discontinuous system

ż = f+(z)+ εg(z, t,ε) for y > 1 ,

ż = f−(z)+ εg(z, t,ε) for y < 1
(6.2.7)

where z = (x,y) ∈ R
2, f±, g are C3-smooth and g is 1-periodic in t. Here we set

q±(z, t,ε) = f±(z)+ εg(z, t,ε) .

On y = 1 (cf (6.2.3)), we consider the system

ẋ =
q+2(x,1, t,ε)

q+2(x,1, t,ε)−q−2(x,1, t,ε)
q+1(x,1, t,ε)

+
q−2(x,1, t,ε)

q−2(x,1, t,ε)−q+2(x,1, t,ε)
q−1(x,1, t,ε) ,

where q± = (q±1,q±2). We suppose the following conditions hold:
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Fig. 6.4 A planar homoclinic sliding on the line of discontinuity.

(i) f−(0) = 0 and D f−(0) has no eigenvalues on the imaginary axis.

(ii) There are two solutions γ−(s), γ+(s) of ż = f−(z), y ≤ 1 defined on R− =
(−∞,0], R+ = [0,+∞), respectively, so that lim

s→±∞γ±(s) = 0 and γ±(s) = (x±(s),

y±(s)) with y±(0) = 1, x−(0) < x+(0). Moreover, f±(z) = ( f±1(z), f±2(z)) with

f±1(x,1) > 0, f+2(x,1) < 0 for x−(0) ≤ x ≤ x+(0). Furthermore, f−2(x,1) > 0

for x−(0) ≤ x < x+(0), f−2(x+(0),1) = 0 and ∂x f−2(x+(0),1) < 0.
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Assumptions (i) and (ii) mean that (6.2.7) for ε = 0 has a sliding homoclinic solution

γ , created by γ±, to a hyperbolic equilibrium 0 (Figure 6.4). Now we have a case of

Remark 6.2.4-(ii), so we can use the formulas (6.2.5)–(6.2.6) to derive:

M (α) =
∫ +∞

0
ψ(s)∗g(γ+(s),α+ s,0)ds (6.2.8)

whereψ(t) is a basis of a space of bounded solutions on R+ of the adjoint variational

system ẇ = −D f ∗−(γ+(s))w. By Theorem 6.2.5, we arrive at the following result.

Theorem 6.2.6. If there is a simple root of M given by (6.2.8), then (6.2.7) is
chaotic with ε �= 0 small.

As a concrete example we consider

ẏ = z, ż = y− 1

2
y3 + yz, for z < e−

4
√

3π
9 ,

ẏ = z, ż = y− 1

2
y3 +(y−q)z for z > e−

4
√

3π
9

(6.2.9)

that have a sliding homoclinic orbit to a saddle (0,0) for any q ≥ 6.947. Indeed,

we start from (6.2.12) with β = 1/2. Note the phase portrait of (6.2.9) looks like

Figure 6.4. Then we get τ =
√

3/2 (cf (6.2.16)), Ωτ = e−
4
√

3π
9 (cf (6.2.18)) and

y+(T̄ ) =
√

2+2e−
4
√

3π
9 (cf (6.2.19)). The segment{(

y,e−
4
√

3π
9

)
∈ R

2 | 0 ≤ y ≤ y+(T̄ )
}

is attractive from above for (6.2.9), if
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Fig. 6.5 A planar homoclinic sliding on the line of discontinuity with transversal crossing of an-
other discontinuity line.
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q > max
y∈[0,y+(T̄ )]

1

Ωτ

(
y− 1

2
y3 +Ωτy

)
=

2
√

6

9Ωτ
(1+Ωτ)3/2 .= 6.94609 .

Hence we could take q ≥ 6.947. Next we may also add its periodic perturbation

ẏ = z, ż = y− 1

2
y3 + yz+ ε cosωt, for z < e−

4
√

3π
9 ,

ẏ = z, ż = y− 1

2
y3 +(y−q)z+ ε cosωt for z > e−

4
√

3π
9 .

(6.2.10)

Then the Melnikov function is the same as in Section 6.2.3, and we could apply

Theorem 6.2.8 with F(1/2) .= 0.00228 and D(1/2) .= 25.3974. Consequently, if

either 0 < ω < 0.0022 or ω > 25.3975 then (6.2.10) is chaotic.

The above approach to (6.2.7) can be generalized [28, 48] to cases when homo-

clinic orbit γ(s) transversally crosses another curves of discontinuity. For simplicity,

we suppose that such a discontinuity in (6.2.7) occurs at the level y = 1/2, i.e. we

deal with the system

ż = f+(z)+ εg(z, t,ε), for y > 1 ,

ż = f−(z)+ εg(z, t,ε), for 1/2 < y < 1 ,

ż = F(z)+ εg(z, t,ε), for y < 1/2

(6.2.11)

where z = (x,y) ∈ R
2, f±, F , g are C3-smooth and g is 1-periodic in t. We suppose

the following conditions hold:

(a) F(0) = 0 and DF(0) has no eigenvalues on the imaginary axis.

(b) There are two solutions η−, η+ of ż = f−(z), 1/2 ≤ y ≤ 1 defined on [a−,0],
[0,a+], a− < 0 < a+, respectively, so that η±(s) = (x̃±(s), ỹ±(s)) with ỹ±(0) = 1,

ỹ±(a±) = 1/2, x̃−(0) < x̃+(0), x̃−(a−) < x̃+(a+). Moreover, f±(z) = ( f±1(z),
f±2(z)) with f±1(x,1) > 0, f+2(x,1) < 0 for x̃−(0) ≤ x ≤ x̃+(0). Furthermore,

f−2(x,1) > 0 for x̃−(0) ≤ x < x̃+(0), f−2(x̃+(0),1) = 0 and ∂x f−2(x̃+(0),1)
< 0. Finally, we suppose that f−2(η−(a−)) > 0 and f−2(η+(a+)) < 0.

(c) There are two solutions γ̃−(s), γ̃+(s) of ż = F(z), y ≤ 1/2 defined on R− =
(−∞,0], R+ = [0,+∞), respectively, so that lim

s→±∞ γ̃±(s)= 0 and γ̃±(0)=η±(a±).

Moreover, F(z) = (F1(z),F2(z)) with F2(γ̃−(0)) > 0 and F2(γ̃+(0)) < 0.

Again, assumptions (a), (b) and (c) imply that (6.2.11) for ε = 0 has a sliding homo-

clinic solution γ̃ , created by η± and γ̃±, to a hyperbolic equilibrium 0 (Figure 6.5).

We do not make further computations for (6.2.11), instead, we refer to [28, 48] for

more details.

6.2.3 Three-Dimensional Sliding Homoclinics

This section is devoted to a construction of a concrete example (cf (6.2.20), (6.2.21),

(6.2.23)) of (6.2.1) to which the above theory is applied. Then we proceed with a
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more particular perturbation (cf Theorems 6.2.8, 6.2.9). In order to construct our

example, we start from [56]

ż = y−βy3 + yz,

ẏ = z
(6.2.12)

for β > 1/8. Then (0,0) is hyperbolic and (1/
√
β ,0) is an unstable focus. Since

(0,0) is hyperbolic it has one-dimensional stable and unstable manifolds. In the fol-

lowing we first show that these two manifolds have the structure depicted in Figure

6.6 where the stable manifold is tangent (and the unstable manifold is transverse) to

the horizontal straight line. Performing the transformation u = 1−βy2, y > 0, v = z
we get

u̇ = −2βv
√

1−u√
β

, z < 1,

v̇ = (u+ v)
√

1−u√
β

.

(6.2.13)

Note that (0,0) corresponds to (1,0) and (1/
√
β ,0) to (0,0). Let ′ = d

dθ and con-

sider the linear system
u′ = −2βv,

v′ = u+ v,

u(0) = 1, v(0) = 0

(6.2.14)

whose solution has the form

uτ(θ) = eθ/2 cos(τθ)− 1

2τ
eθ/2 sin(τθ) ,

vτ(θ) =
1

τ
eθ/2 sin(τθ)

(6.2.15)

with

τ =

√
8β −1

2
, (6.2.16)

and so β = 4τ2+1
8 . Note that

u′τ(θ) = −2βvτ(θ) = −2β
1

τ
eθ/2 sin(τθ)

has the opposite sign to sin(τθ) thus uτ(θ) ≤ uτ(0) = 1 for any θ ∈ (−π
τ ,
π
τ
)
. On

the other hand, if τθ ≤−π we have

uτ(θ) ≤ e−
π
2τ

√
4τ2 +1

2τ
= e−

π
2τ

√
1+

(
1

2τ

)2

< 1
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since eπs >
√

1+ s2 for any s > 0. As a consequence, (uτ(θ),vτ(θ)) is tangent to

the line u = 1 from the left at θ = 0 for θ ∈ (−∞,θ+
τ ). Here θ+

τ > 0 is the least

positive value so that uτ(θ) = 1. Next, let θ−τ be the greatest negative value for

which v′τ(θ) = 0 and vτ(θ) > 0. Then θ−τ solves the following system:

cos(τθ−τ )+
1

2τ
sin(τθ−τ ) = 0 , sin(τθ−τ ) > 0

so

τθ−τ = −arctan2τ−π .

Given T̄ > 0 (we will fix it later) we consider the solution θ−(t) of the equation:

θ̇ =

√
1−uτ(θ)

β
, θ(T̄ ) = θ−τ . (6.2.17)

Separating variables we see that∫ θ−(t)

θ−τ

dθ√
1−uτ(θ)

=
t − T̄√
β

or

θ−(t) =Θ−1
−

(
t − T̄√
β

)
, Θ−(θ) =

∫ θ

θ−τ

dθ√
1−uτ(θ)

.

From (6.2.14) we easily see that

1−uτ(θ) = βθ 2 +o(θ 2)

as θ → 0. As a consequence, Θ−(θ) is an increasing function that tends to +∞ as

θ → 0. Thus θ−(t) is increasing and tends to 0 as t → ∞. Moreover, since uτ(θ) <
1 for θ < 0 we also see that θ(t) → −∞ as t → −∞. Summarizing θ−(t) is an

increasing function defined on (−∞,∞), taking values on (−∞,0), θ−(T̄ ) = θ−τ .

Setting

y+(t) =

√
1−uτ(θ−(t))

β
, z+(t) = vτ(θ−(t))

we see that (z+(t),y+(t)) is a solution of Eq. (6.2.12) so that

lim
t→∞(z+(t),y+(t)) = lim

θ→0

(
vτ(θ),

√
1−uτ(θ)

β

)
= (0,0),

lim
t→−∞(z+(t),y+(t)) = lim

θ→−∞

(
vτ(θ),

√
1−uτ(θ)

β

)
=

(
0,

√
1

β

)
,
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that is, (z+(t),y+(t)) is a heteroclinic connection from
(

0,
√

1
β

)
to (0,0). Next, we

know that θ−τ is the greatest negative value so that v′(θ) = 0 and v(θ) > 0. This

means that at t = T̄ we have

z+(T̄ ) = vτ(θ−τ ) :=Ωτ > 0, ż+(T̄ ) = 0

and these two conditions are not satisfied when t > T̄ . Note that:

Ωτ =
1

τ
eθ

−
τ /2 sin(τθ−τ ) = 2eθ

−
τ /2

√
1

1+4τ2
= eθ

−
τ /2

√
1

2β
, (6.2.18)

moreover:

y+(T̄ ) =

√
1−uτ(θ−τ )

β
=

√
1+ vτ(θ−τ )

β
=

√
1+Ωτ
β

. (6.2.19)

Now we consider the solution (z−(t),y−(t)) of Eq. (6.2.12) that belongs to the unsta-

ble manifold of the saddle (0,0). Since (z−(t),y−(t))→ (0,0) as t →−∞ it follows

that we have to look for a solution (u(t),v(t)) of (6.2.13) so that (u(t),v(t))→ (1,0)
as t →−∞. Thus we consider again Eq. (6.2.14) with θ ∈ (0,θ+

τ ). Thus θ = θ+(t)
is again a solution of

θ̇ =

√
1−uτ(θ)

β

with the initial condition θ(0) = θ+
τ . So we obtain:

∫ θ+(t)

θ+
τ

dθ√
1−uτ(θ)

=
t√
β

that is

θ+(t) =Θ−1
+

(
t√
β

)
, Θ+(θ) =

∫ θ

θ+
τ

dθ√
1−uτ(θ)

.

Obviously Θ+(θ) is an increasing function and since θ ∈ (0,θ+
τ ), Θ+(θ) < 0

for 0 ≤ θ < θ+
τ . Arguing as before we see that limθ→0Θ+(θ) = −∞ and hence

limt→−∞ θ+(t) = 0. For t ∈ (−∞,0] (and hence θ+(t) ∈ (0,θ+
τ ]) we set:

y−(t) =

√
1−uτ(θ+(t))

β
, z−(t) = vτ(θ+(t))

and note that the following hold:

y−(0) = 0, z−(0) = vτ(θ+
τ ),
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lim
t→−∞(z−(t),y−(t)) = lim

θ→0

(
vτ(θ),

√
1−uτ(θ)

β

)
= (0,0) .

Now, since uτ(θ) < 1 for θ ∈ (0,θ+
τ ), we see that u′τ(θ+

τ ) ≥ 0 and then z−(0) =
vτ(θ+

τ ) ≤ 0. But it must be z−(0) = vτ(θ+
τ ) < 0 otherwise (z−(0),y−(0)) = (0,0)

because of uniqueness. Next (z−(t),y−(t)) belongs to the unstable manifold of the

equilibrium (0,0) and y−(t) > 0 for any t ∈ (−∞,0), thus

(ż−(t), ẏ−(t))√
ż−(t)2 + ẏ−(t)2

→ v−

as t →−∞, with v− being the eigenvector of the positive eigenvalue of the lineariza-

tion of Equation (6.2.12) at (0,0), i.e.

ż = y ,

ẏ = z

having a positive second component. Hence z−(t) = ẏ−(t) is eventually positive

for t →−∞. Thus the curve (z−(t),y−(t)) has to pass from the first quadrant to the

fourth one and this can be realized only by passing above the line z = z+(T̄ ) because

otherwise it would intersect the curve (z+(t),y+(t)). As a consequence, t0 < 0 must

exist so that z−(t0) = z+(T̄ ) =Ωτ and z−(t) <Ωτ for any t < t0. We set

ȳτ :=

√
1−uτ(θ+

τ (t0))
β

.

Shifting time we can suppose without loss of generality that t0 =−T̄ . Thus we have

found solutions γ̃±(t) = (z±(t),y±(t)) of (6.2.12) so that

γ̃−(t) → (0,0), as t →−∞,

γ̃+(t) → (0,0), as t → +∞,

z−(−T̄ ) = z+(T̄ ) =Ωτ .

The graphs of the above-mentioned invariant manifolds of (6.2.12) and the line z =
Ωτ in the right half-plane for β = 37/8, i.e. τ = 3, are given in Figure 6.6.

We are now able to construct our example. We take

ż = y1 −βy3
1 + zy1 + y2

2,

ẏ1 = z,

ẏ2 = y2(1+ z)

(6.2.20)

for z <Ωτ and
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Fig. 6.6 The stable and unstable manifolds of system (6.2.12).

ż = −z,

ẏ1 = 0,

ẏ2 = 0

(6.2.21)

when z >Ωτ , that is, we take:

f+(z,y1,y2) =

⎛⎝−z
0

0

⎞⎠ for z >Ωτ ,

f−(z,y1,y2) =

⎛⎝ y1 −βy3
1 + zy1 + y2

2

z
y2(1+ z)

⎞⎠ for z <Ωτ .

(6.2.22)

Then

h−(Ωτ ,y1,y2) = y1 −βy3
1 +Ωτy1 + y2

2, h+(Ωτ ,y1,y2) = −Ωτ
and

H(y1,y2) =
Ωτ

y1 −βy3
1 +Ωτ(y1 +1)+ y2

2

(
Ωτ

y2(1+Ωτ)

)
.

We note that

h−(Ωτ ,y1,y2)−h+(Ωτ ,y1,y2) = y1(1−βy2
1 +Ωτ)+ y2

2 +Ωτ > 0
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if 0 ≤ y1 ≤
√

1+Ωτ
β . Then we take the solution ỹ1(t) of

ẏ1 =
Ω 2
τ

y1 −βy3
1 +Ωτ(y1 +1)

so that y1(0) = ȳτ and let T̃ be such that y1(T̃ ) =
√

1+Ωτ
β . Note that according to

the previous remark, h−(Ωτ ,y1,y2)−h+(Ωτ ,y1,y2) > 0 in a neighborhood of ỹ1(t),
0 ≤ t ≤ T̃ . Thus we are in position to apply Remark 6.2.2. Now we define T̄ = T̃

2
and set

γ0(t) = (Ωτ , ỹ1(t + T̄ ),0) , γ−(t) = (γ̃−(t),0) , γ+(t) = (γ̃+(t),0)

and

γ(t) =

⎧⎪⎪⎨⎪⎪⎩
γ−(t), if t ≤−T̄ ,

γ0(t), if −T̄ ≤ t ≤ T̄ ,

γ+(t), if t ≥ T̄

is a sliding homoclinic orbit for the system (6.2.20), (6.2.21).

For concrete values of τ > 0, we take β = 1
8 + τ2

2 , compute Ωτ and we solve

(6.2.12) with initial values zs(T̄ ) =
√

1+Ωτ
β , ys(T̄ ) =Ωτ to get γ̃+(t) and γ+(t).

We now verify that system (6.2.20), (6.2.21) and γ(t) satisfy conditions (H1)–

(H4) of this section. We have already seen that (H1) is satisfied (see also Remark

6.2.2). Condition (H2) is also satisfied with x0 = (z0,y0
1,y

0
2) = (0,0,0). Note that

in this example the discontinuity level is at z = Ωτ and not at z = 0 but we have

observed that this fact does not make any difference. Now we verify (H3). It is

trivial to verify that h+(γ(t)) < 0 for −T̄ ≤ t ≤ T̄ , h−(γ(t)) > 0 for −T̄ ≤ t < T̄ and

h−(γ(T̄ )) = y+(T̄ )(1−βy+(T̄ )2 +Ωτ) = 0. So we check the last condition in (H3).

We have:

∇yh−(γ0(T̄ )) = −2

(
1+Ωτ

0

)
and k−(γ0(T̄ )) =

(
Ωτ
0

)
from which we obtain

∇yh−(γ0(T̄ )k−(γ0(T̄ ))∗ = −2Ωτ(1+Ωτ) �= 0 .

Finally, we check (H4). By Remark 6.2.4 it is enough to prove that (ẏ1(−T̄ ),0)∗ /∈
S ′ or, equivalently, that (1,0)∗ /∈S ′. Now, the variational system of (6.2.20) along

γ−(t) is given by:

ż = y−(t)z+(1−3βy−(t)2 + z−(t))y1,

ẏ1 = z,

ẏ2 = (1+ z−(t))y2 .
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Since this system has the bounded solution at −∞:
(

0,0,et+y−(t)
)

, and dimS ′ = 1

it follows that S ′ = span{(0,1)} and hence (1,0) /∈ S ′. Thus (H4) holds.

Finally we add a perturbation

εg(t) = ε

⎛⎜⎜⎝
q(ωt)

0

q1(ω1t)

⎞⎟⎟⎠ (6.2.23)

to (6.2.20), (6.2.21) and compute the Melnikov function. Here ω , ω1 are positive

constants and q1,q2 are almost periodic C2−functions with bounded derivatives and

their second order derivatives are uniformly continuous. To this end, we need to

compute the solution ψ(t) of the adjoint variational system:

ż = −y+(t)z− y1

ẏ1 = −(1−3βy+(t)2 + z+(t))z

ẏ2 = −(1+ z+(t))y2

(6.2.24)

with ψ(0) = (1,0,0) (see (6.2.5)). Since y2 = 0 is invariant for system (6.2.24)

we get ψ(t) = (ψ1(t),ψ2(t),0) where (z,y) = (ψ1(t),ψ2(t)) is a bounded (at +∞)

solution of
ż = −y+(t)z− y1,

ẏ1 = −(1−3βy+(t)2 + z+(t))z
(6.2.25)

that is

ψ(t) =

⎛⎜⎜⎝
ẏ+(t)

−ż+(t)

0

⎞⎟⎟⎠e−
∫ t

T̄ y+(s)ds

and the Melnikov function is

M (α) =
∫ ∞

T̄
ẏ+(t)e−

∫ t
T̄ y+(s)ds q(ωt +α)dt .

Since

lim
ω→0

M (α) = q(α)
∫ ∞

T̄
ẏ+(t)e−

∫ t
T̄ y+(s)ds dt,

lim
ω→0

M ′(α) = q′(α)
∫ ∞

T̄
ẏ+(t)e−

∫ t
T̄ y+(s)ds dt,

we see that if q(α) has a simple zero at some α = α0 and∫ ∞

T̄
ẏ+(t)e−

∫ t
T̄ y+(s)ds dt �= 0, (6.2.26)

then M (α) will have a simple zero at some α near to α0 for ω > 0 small. To check

condition (6.2.26) we recall that
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y+(t) =

√
1−uτ(θ−(t))

β
= θ̇−(t)

so, ∫ t

T̄
y+(s)ds = θ−(t)−θ−(T̄ ) = θ−(t)−θ−τ . (6.2.27)

Now, let Y (θ) =
√

1−uτ (θ)
β . Then:

y+(t) = Y (θ−(t))

and

ẏ+(t) = Y ′(θ−(t))θ̇−(t) . (6.2.28)

Plugging (6.2.27), (6.2.28) into (6.2.26) we obtain:∫ ∞

T̄
ẏ+(t)e−

∫ t
T̄ y+(s)ds dt = eθ

−
τ

∫ ∞

T̄
e−θ

−(t)Y ′(θ−(t))θ̇−(t)dt

= eθ
−
τ

∫ 0

θ−τ
e−θ Y ′(θ)dθ = eθ

−
τ

[
Y (θ)e−θ

0

θ−τ
+

∫ 0

θ−τ
e−θ Y (θ)dθ

]
= eθ

−
τ

∫ 0

θ−τ
e−θ Y (θ)dθ −Y (θ−τ )

=
∫ 0

θ−τ
eθ

−
τ −θ Y (θ)dθ −

√
1+Ωτ
β

=
1√
β

(∫ 0

θ−τ
eθ

−
τ −θ√1−uτ(θ)dθ −

√
1+Ωτ

)
.

(6.2.29)

We prove now that the expression (6.2.29) is negative for any τ > 0. Using Cauchy-

Schwarz-Bunyakovsky inequality we get

∫ 0

θ−τ
eθ

−
τ −θ√1−uτ(θ)dθ ≤

√∫ 0

θ−τ
eθ

−
τ −θ dθ

√∫ 0

θ−τ
eθ

−
τ −θ (1−uτ(θ))dθ .

Next, we integrate ∫ 0

θ−τ
eθ

−
τ −θ dθ = 1− eθ

−
τ

and∫ 0

θ−τ
eθ

−
τ −θ (1−uτ(θ))dθ =

∫ 0

θ−τ
eθ

−
τ −θ

(
1− eθ/2 cos(τθ)+

1

2τ
eθ/2 sin(τθ)

)
dθ

= 1− eθ
−
τ +2eθ

−
τ /2

√
1

1+4τ2
= 1− eθ

−
τ +Ωτ .
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Consequently:∫ 0

θ−τ
eθ

−
τ −θ√1−uτ(θ)dθ ≤

√
1− eθ

−
τ

√
1− eθ

−
τ +Ωτ <

√
1+Ωτ ,

hence the expression (6.2.29) is negative for any value of τ > 0. In summary, we

obtain the following result.

Theorem 6.2.7. Let q(t) have a simple zero. Then there exist ω0 > 0 and ε0 > 0 so
that for 0 < |ω| < ω0 and 0 < |ε| < ε0, system

ẋ = f±(x)+ εg(t), x ∈Ω± (6.2.30)

where x = (z,y1,y2) ∈ R
3, f±(x) is as in (6.2.22) and g(t) as in (6.2.23), is chaotic.

For example, if q(t) = cos t we get

M (α) =
∫ ∞

T̄
ẏ+(t)e−

∫ t
T̄ y+(s)ds cos(ωt +α)dt

and then

M (α)− ıM ′(α) = eıαΨτ(ω), Ψτ(ω) :=
∫ ∞

T̄
ẏ+(t)e−

∫ t
T̄ y+(s)ds eıωt dt .

As a consequence if Ψτ(ω) �= 0 then M (α) has a simple zero. Since Ψτ(0) �= 0,

Ψτ(ω) is a nonzero analytical function. From Theorem 6.2.7 we know that (6.2.30)

behaves chaotically for |ω| < ω0 (and |ε| < ε0) sufficiently small. However, for this

particular example (q(t) = cos t), (6.2.30) behaves chaotically also when ω is large.

As a matter of fact, we have the following:

Theorem 6.2.8. There exist continuous functions F(β ),D(β ) :
(

1
8 ,∞

) → (0,∞) so
that for any given constants β > 1/8, ω1 > 0, ω ∈ (0,∞) \ [F(β ),D(β )] and an
almost periodic C2−function q1(t) with bounded derivatives so that its second order
derivative is uniformly continuous, there exists ε0 = ε0(β ,ω,ω1,q1(·)) so that for
0 < |ε| < ε0 and

g(t) =

⎛⎜⎜⎝
cos(ωt)

0

q1(ω1t)

⎞⎟⎟⎠
system (6.2.20), (6.2.21) is chaotic. Moreover, it holds

lim
τ→1/8+

F(β ) = 0, lim
β→∞

F(β ) =
2
√

2

π(2
√

2+1)
.= 0.235166 ,

lim
β→1/8+

D(β ) = ∞, lim
β→∞

D(β ) =
3
√

2π
2

+4−
√

2
.= 9.25011 .
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Proof. We omit the proof of this theorem, since it is rather technical and refer the

readers to [55] for more details. ��
Here we only mention that

D(β ) := B
(√

8β −1/2
)

,

where

B(τ) :=

√
8(1+ τ−1 e−

π
2τ )

4τ2 +1

+

√
4+ τ−2

2

(
3
√

2π
8

(τ−2 +4τ−1 +4)+(2+ τ−1)
(

2−
√

1/2
))

and the graph of D(β ) in interval (1/8,20] looks like

Furthermore, we have

F(β ) := C
(√

8β −1/2
)

where

C(τ) :=
2
√

2τ√
4τ2 +1

√
1+Ωτ −

√
1− eθ

−
τ
√

1− eθ
−
τ +Ωτ

2arctan2τ

√√√√1+ e
−
π
2τ

1+Ωτ
+π− arctan2τ

and the graph of F(β ) in interval (1/8,20] looks like
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For instance, a numerical evaluation shows that for β = 25: D(25) .= 0.1337

and F(25) .= 10.6489, so for ω ∈ (0,∞)\ [0.13,10.65], system (6.2.20), (6.2.21) is

chaotic for ε �= 0.

Furthermore, sinceΨτ(ω) is analytical (cf Section 2.6.5), there is at most a finite

number of ω1, . . . ,ωnβ ∈ [F(β ),D(β )] so that for any ω > 0 and ω /∈ {ω1, . . . ,ωnβ },

there is a chaos like in Theorem 6.2.8. An open problem remains to estimate nβ . On

the other hand, the statement of Theorem 6.2.8 can be extended as follows.

Theorem 6.2.9. There exists a continuous function G(ω) : (0,∞) → [
1
8 ,∞

)
so that

for any given constants ω ∈ (0,∞), β > G(ω), ω1 > 0 and an almost periodic
C2−function q1(t) with bounded derivatives so that its second order derivative is
uniformly continuous, there exists ε0 = ε0(β ,ω,ω1,q1(·)) so that for 0 < |ε| < ε0

and

g(t) =

⎛⎜⎜⎝
cos(ωt)

0

q1(ω1t)

⎞⎟⎟⎠ ,

system (6.2.20), (6.2.21) is chaotic.

We again refer the readers to [55] for more details. A lower bound G(ω) for β could

be numerically estimated, but we do not carry out these awkward computations in

this section. By Theorem 6.2.8, it would be enough to estimate G(ω) in the interval

[0.2,9.3].

6.3 Outlook

The above results could be extended to other types of discontinuous homoclinics.

First we could study impact systems like in [17, 18, 20, 21, 49]. Second we could

develop Melnikov theory for grazing homoclinics which has not yet been done.

Discontinuous systems with grazing orbits are investigated in [6, 22, 24, 57, 58].
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