Chapter 5
Chaos in Partial Differential Equations

Functional analytical methods are presented in this chapter to predict chaos for pe-
riodically forced PDEs modeling vibrations of beams and depend on parameters.

5.1 Beams on Elastic Bearings

5.1.1 Weakly Nonlinear Beam Equation

This section deals with the beam equation (Figure 5.1)

Usr + Uyoxy + EOU; + EUN(x,\/€1) =0,
U (0,-) = ux(mw/4,-) =0, (5.1.1)
U (0,) = —f(u(0,)),  tpee(m/4,-) = ef (u(m/4,-))

where € > 0 and  are sufficiently small parameters, § > 0 is a constant, f € C2(R),
h € C?([0,7/4] x R) and h(x,t) is 1-periodic in ¢, provided an associated reduced
equation has a homoclinic orbit (cf (5.1.9)). Equation (5.1.1) describes vibrations
of a beam resting on two identical bearings with purely elastic responses which are
determined by f. The length of the beam is 7 /4. Since € > 0 is small, (5.1.1) is a
semilinear, weakly damped, weakly forced and slowly varying problem.

Let us briefly recall some results related to Eq. (5.1.1). The undamped case (6 =
0, 4 =0 and &€ = 1) was studied in [1, 2] by using variational methods. In both
papers, the problems studied are non-parametric.

The perturbation approach to the beam equation was earlier used in [3]. Recent
results in this direction are given in [4, 5]. We note that the problem (5.1.1) is more
complicated than the one studied in [3-5], since in those papers the elastic response
is distributed continuously along the beam, while in our case it is concentrated just
at two end points of the beam. Moreover, the €-smallness of the restoring force € f
at the end points leads to a singularly perturbed problem in studying chaotic orbits
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Fig. 5.1 The forced beam resting on two elastic bearings (5.1.1).

of (5.1.1). The existence of homoclinic and chaotic solutions has also been proved
in [6-9] for different partial differential equations, with different methods compared
with ours.

5.1.2 Setting of the Problem

First of all, we make the linear scale t <> /€t in (5.1.1), that is, we take u(x,t) <
u(x,/€t) to get the equivalent problem

Uy + %umﬂ +/€8u; + ph(x,t) =0,
(0, ) = (7 /4,) = 0, (5.1.2)
MXXX(O") = —sf(u(O,-)), ”Xﬂ(n/47') = 8f(u(7t/4,)) .

By a (weak) solution of (5.1.2), we mean any u(x,t) € C([0,7/4] x R) satisfying
the identity

/:; /()7:/4 {u(x,l) [Vtt (x,1)+ %Vxxxx(.X,l) —edv, (x,t)] + uh(x,t)v(x,t)}dxdt
+ /: {f(u(o»t))v(o,t) +f(u(7r/4,t))v(7r/4,t)}dt =0 (5.1.3)

for any v(x,t) € C*([0, /4] x R) so that v(x,¢) has a compact support and the fol-
lowing boundary value conditions hold
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Vix(0,7) = v (T/4,°) = v (0, 1) = virx(7/4,-) = 0. (5.1.4)

Now, it is well known [2] that there is an orthonormal system of eigenfunctions
{wi}z_, € L*([0, Z]) of the eigenvalue problem

U™ (x) = xU (x),

" "

U'0)=U"(x/4)=0, U"0)=U"(n/4)=0

As a matter of fact (cf Section 5.1.5), the eigenfunctions {w;}?* ;| are uniformly
bounded in C°([0, Z]), and setting k = u*, the eigenvalues of the above problem
satisfy 4 = ., k= —1,0,1,... with u_; = o = 0 and w, = 2(2k+ 1) + r(k), for
any k € N, where |r(k)| < ¢ e~%* for any k > 1, for some positive constants i, €.
Furthermore, the eigenfunctions w_j (x) and wo(x) of the zero eigenvalue are:

w_i(x) = %, wo(x) = % (x— g) %

Thus we seek a solution u(x,7) of (5.1.2) in the form
u(x,r) = y1(t)w_(x) +y2(r)wox) +z(x,1)

where z(x,7) € C ([0, %] x R) is orthogonal to the eigenfunctions w_; (x) and wy(x),
satisfying

"T/4 /4
/ z(x,t)dx = / xz(x,t)dx =0. (5.1.5)
0 0

To obtain the equations for y; (¢), y2(¢), and z(x,) we take v(x,7) = ¢ (F)w_;(x) +
$2(1)wo(x) +vo(x,1) in (5.1.3) with ¢; € C™, vy (x,1) € C ([0, ] x R) with compact
supports so that vy (x,) satisfies (5.1.4) and is orthogonal to w_(x) and wo(x), i.e.
it satisfies (5.1.5). Plugging the above expression for v(x,7) into (5.1.3) and using
the orthonormality, we arrive at the system of equations

V1 (1) + €8y (r) + %u ./0”/4h(x,t)dx
+%f (jﬁy (1 —z\/§y2<r>+z<o,r>>
+%f (\/ZE}’I (f)+2\/§y2(t)+z(7r/4,t)> =0, (5.1.6)

2 (1) +VEd(t) \/> / h(x,t) x—§>d
—2\/7]‘( \/7 ()+Z(0t))
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+ 2\/§f (\j%yl(f)‘Fz\/jyz(l)+Z(7T/4»f)> =0, .1.7)

/ ) / ”/4 2(x,1) [v,, (x,1) + évm(x,;) _ \/Ebv, (x,t)] + uh(x,t)v(x,t)}dxdt
+/ v(0,1) + f(u (Jr/4,t))v(7'c/4,t)}dt —0 (5.1.8)

where we write v(x,7) instead vo(x,¢). Thus, in Eq. (5.1.8), v(x,7) is any function in
C>([0,%] x R) having compact support so that the conditions (5.1.4), (5.1.5) (with
v(x,7) instead of z(x,#)) hold. We remark that in this way we have split up the orig-
inal equation into two parts. Equation (5.1.8) corresponds, in some sense, to Eq.
(5.1.1) on a infinite dimensional center manifold, while Egs. (5.1.6)—(5.1.8) are the
equations on a hyperbolic manifold for the unperturbed equation. Since the center
manifold is infinitely dimensional, the standard center manifold reduction method
(cf Sections 2.5.4, 2.5.5 and [10]) fails for (5.1.1). We use instead a regular singular
perturbation method. In fact, the above splitting of Eq. (5.1.1) has also the advantage
that the singular part (in €) is only in the z equation while Egs. (5.1.6) and (5.1.8)
look regular in /€.
Now we assume that the following conditions hold:

(H1) £(0) =0, f/(0) < 0 and the equation %+ f(x) = 0 has a homoclinic solution
¥(t) # 0 that is a nontrivial bounded solution so that tlinI:l y(t) =0;

(H2) let 7 () := 47(2\/%‘). Then the linear equation v + %f’ (%% (t)) v=0
has no nontrivial bounded solutions.

Without loss of generality we can also assume that 7(0) # ¥(0) = 0. This implies
that y(t) = y(—t) (and then ¥, (¢) = y1(—t)) since both satisfy the Cauchy problem
X+ f(x) =0, x(0) = ¥(0) and %(0) = 0. Note also that (H1) implies that the system

1+ %f(\zfyl 2\/§y2) + %f(%)ﬁ +2\/§y2> =0,
¥2—2 \/7f TN \/zyz) +2\/§f(\/25y1 +2\/zy2) =0

has a hyperbolic equilibrium y; = y, = 0 with the homoclinic orbit (¥ (¢),0) and
that (H2) is equivalent to requiring that the space of bounded solutions of the linear,
fourth order system

(5.1.9)

fit 2 (SnO)n =00 5t 2 (on)n=0 6110

is one-dimensional and spanned by (v1(£),¥1(1),2(t),¥2(1)) = (31 (1), 71 (1),0.0).
We look for chaotic solutions of Equations (5.1.6)—(5.1.8) so that the sup-norm of
[y2(1)| + |z(x,2)| on [0, F] x R is small and y; (¢) is orbitally near to ¥ (r).
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5.1.3 Preliminary Results

We begin our analysis by studying some linear problems associated with Egs.
(5.1.6)—(5.1.8). To start with, let us consider, for i € N, the following linear non-
homogeneous equation

40)+ VESa (1) + Lpiale) = ht), (5.1.11)

where £;(¢) belongs to the Banach space L*(R) of bounded measurable functions
on R, with norm ||/;]|e := esssup|k;(¢)| < e. This equation comes from searching

teR
a solution of Eq. (5.1.17) of the form
2(x,0) =) zi(t)wilx)
i=1

2
with z;(t) € W*(R). The only bounded solution of (5.1.11) for 0 < & < 2121{1{%’}
i>

is given by

N , ;
2i(t) = Lich; == a:/g/ e~ VES(=9)/2gip (w’e(t—s)) x hi(s)ds, (5.1.12)
e J—oo

2\/e
where @; ¢ = /4t — €282. Moreover it is easy to see that
el < <o ] (5.1.13)
I 5[.112 illeo 1.

(||z||- being the sup-norm of z(¢)) and

. 2\/€ 2
HZi”oo < (IJ2 + M) ||hi||00; (5.1.14)

2
provided 0 < € < \BH;I{I{%} Let h={h;(t)} |, h; € L”(R) be a sequence of uni-
i>
formly bounded measurable functions on R, that is, satisfying |||« := sup; ||| <

oo, Consider the function

oo

2(x,1) =Y zi(t)wi(x) (5.1.15)

i=1
where z;(¢) are given by (5.1.12). We put

M, ::sup{|wi(x)| xe [0,%} : ieN}; M :=4M1ii27 (5.1.16)

i=1 M

with the last series being convergent because of the properties of ., k € N.



172 5 Chaos in Partial Differential Equations

Now, let H; (x,) € L*([0, /4] x R), Hy(t),H3(t) € L”(R) be bounded measur-
able functions and consider the equation

/2/07;/4 {z(x,t) [Vtt(X,l)JréVxxxx(x,t)*\/Eavt(x,t)} + Hy (x,1)v(x,1)| dxdt

+/j° {Hg(t)v(O,t)+H3(t)v(7r/4,t)}dt =0 (5.1.17)

for any v(x,t) € C*(]0, /4] x R) so that v(x,#) has compact support and the bound-
ary conditions (5.1.4), (5.1.5) hold. For i € N let

/4
hi(t) =— (/0 H, (x,t)w;(x)dx+ H(t)w;(0) —|—H3(t)wi(7'f/4)> (5.1.18)

and take z;(¢), z(x,#) as in (5.1.12), (5.1.15). Note that

3
()| < My | 0o [ 0) |+ 3 ()] (5.1.19)
where ||H;(,t)|| = sup |Hj(x,t)| and, similarly,
0<x<%
. T . .
a(e)| < My | H (1) o+ Fa (0)]+ [ 1) (5.120)

provided H,(t), Hy(t), and the partial derivative of H,(x,z) with respect to ¢,
Hj,(x,t), are bounded measurable functions. Then, we can prove as in [11] that
z(x,t) is a solution of Eq. (5.1.17).

Let m > [e73/4] 4 1, with [¢~3/*] being the integer part of £3/4. From now on
we assume that 0 < & < (1/2)*3 so that m > 3. Then, for any E = {e, } ez € &, we
put

G={a={o}zer |ajeR and o=0 if =0},

with ¢ being the Banach space of bounded, doubly infinity sequences of real num-
bers, endowed with the sup-norm. We will also consider a bounded subset of & x £*:

x:{(E,a)e(fxew\aeeg and o gz}.

Note that X is closed. In fact if (E,, ) — (E, @) as n — oo, then, for any fixed j € Z,
we have (with obvious meaning of symbols) ei-") = ¢; for any n € N sufficiently

(n)

large. Hence Ocj" =0if e; = 0 and n is large enough. Thus o; = 0 if ¢; = 0, that is,
(E,a) € X.
For any § = (E,a) € X we take the function ¥z = ¥ ) € L™(R) defined by

( nt—2jm—oy),if 2j—Dm<t<(2j+1)m and e;j=1
) =
% 0, if (2j—I)m<t<(2j+1)m and e;=0.
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For the sake of simplicity we will silently include, in the above definitions, also the
end points of the intervals [(2j — 1)m,(2j+ 1)m], j € Z. We remark that ¥ (¢) has
the following properties:

(i) 7e(t) is a bounded, piecewise C?-function, with possible jumps at the points
(2j—1)m, j € Z, and satisfies, in any of the intervals ((2j — 1)m, (2j+ 1)m),
the equation

4 2
i+ —f|—=x)=0. 5.1.21
w7 () o2
(i) Ye(t), Ye(¢), ¥ (¢) belong to L*(IR) and are bounded uniformly with respect to

,m).

(iii) ¥g (1), Ye(t), Ye(¢) are Lipschitz continuous function in ¢ € £z uniformly with
respect to (E,m). In fact, let (E,a’),(E,&”) € X and assume that ¢; = 1 (if
ej = 0 there is nothing to prove). Then, for any r € ((2j — 1)m, (2j+ 1)m] we
have, for some 6 € R:

e (6) = Yer (0] < |7 (0)]] &) — o | < V2|7 0 — &"]]. (5.1.22)

A similar argument applies to ¥ (¢), whereas we will use point (i) to reduce the
study of the Lipschitz continuity of J (¢) to that of ¥ (r).

The following result deals with the solvability of Eq. (5.1.17).

Theorem 5.1.1. For any given functions H(x,t) € L*([0, /4] xR), Hy(t),H3(t) €
L*(R) and for 0 < € < min;{+/3u?/8}, Equation (5.1.17) has a unique solution
z(x,1) € C([0, /4] x R) of the form

) = Y wlwil)
i=1

with 7;(t) € W>*(R). Such a solution satisfies condition (5.1.5), moreover if h;(t) is
defined as in (5.1.18) the following hold:

(a) Assume that there exist positive constants ky, k, otj and B so that
|hi(1)] < ky + kp e PlE=2im=y
foranyt € ((2j—1)m,(2j+ 1)m] and j € Z. Then

Izl < Mo ﬁ; T ((313 + ;) zwg} |

(b) Assume that for any i, j € Z, h;(t) € Wl=((2j —1)m,(2j + 1)m) and that both
hi(t) and hi(t) satisfy the condition of point (a), then we have

1 2,/€

1
2]l < M2 |:58 (55 +14 ﬁ) (ki + k) + 6k1:|
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provided € satisfies the further estimate \/€ < 28°.

Proof. We only need to prove (a) and (b). Let (2j —1)m <1 < (2j+ 1)m and 0 <
€ < min;{v/3u?57'}. We have

t
‘/ VR 2 gin f(t—s)h()dsﬁ [ VIt kap(s)]ds

where ¢(r) = e PlI=2/m=%l for r € ((2j — 1)m, (2j+ 1)m]. Then we have

—/€b(t—s)/2 <
/ d—fa

and similarly, using also r > (2j — 1)m

(2j-3)m (2j=3)m 2 2
o VES(1=5)/2 </ e VESI=9)/2 o o = o—VEdm
/ ols)dss< | N e

—oo

since m > &3/ and 6%2¢ 0 < 1, when 0 > 0. Next,

(2j—1)m m—a_ o
P evEsiggas< [C 7 e Bilas<a [ e Pras<op!
( 0 7

2j—3)m —m—0j_|

and similarly

t oo
/< e~ Ved(i—s)/2 o(s)ds < / e Pl gg < 2[3*] .

2j—1)m —o0

Plugging everything together and using (5.1.12) and w; ¢ > uiz since €8 < \@uiz,

we obtain 4Tk | 5
1
ille < — | = +k —+=11.
& —u?LS* Ve (5t 5)

Thus (a) follows from (5.1.15) and (5.1.16). Now we prove (b). For (2j — )m <t <
(2j+ 1)m, write

;. 5
2 =G+ (5.1.23)
with -
J—3)m .
Gy= [ eV in < 2 s)) hils)ds,

1 o;
7)) = /(zj_3)m o VES(1-5)/2 i (2\/’% (t— S)) hi(s)ds.

From the proof of point (a) we obtain:

10\/e

_\[ﬁm(k +k2) 65

|Gijl < (ky + k) (5.1.24)

fs
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since 8%e~? < 4/ e)4 < 5. On the other hand, by the same method in the above, we
obtain

t
—VEd(1—s)/2 Die (o oY iuls)ds| < 2 k ik
[N CTR UM BT
(5.1.25)
t
~vEs (=92 g [ P o\ ) i < 2 k ik
‘/(zj_3)me sm(z\/g(t s)> i(s)ds < Jes 1—|—[3 5.

Then, taking

w =
2 2\/€

and integrating by parts the function of the s variable

A= \/E(s wi,e

e A gin(w(r — 5))hi(s)

in the two intervals [(2j — 3)m, (2j — 1)m], [(2j — 1)m,¢] and adding the results we
get, using also (5.1.25):

‘ /( L e sin(w(t — 5))hi(s)ds

()
< .
< gres ()

2j-3)m

A

2’2+w Hh (( )m+)|+|h,’((2j71)m_)|+e_2lm |hi((2j*3)m+)|]

A 2 4 A i ) 4
lz—tgz[\/ﬁlirﬁ }Sﬂﬂiwz {(SJF 22m) (ky + k) + \/§5k1+3k2 .

Finally, since

€6+ wie V2 V2 L 1

S =
;e (€287 + 007,) Wi e/ €262+ 02, zﬂizwz)s 2t o

we obtain after some algebra:

2\ _JEs 4 2

1 34+ VEIM) (k) 4k k ki
‘w,sz”() i{(+ ) (ki + 2)+ﬁ2+\/55 1}
Hence, using (5.1.23), (5.1.24), the assumption /€ < 282 and the fact that e Vedm <

1 VE.
Wesm)? < &7+

4 5 4e 2\
||z,-|oo<2{{ +3+\[] (k1+k2)+k2+fk1}

“u? | 18° 52 B 5
4 1 1 2\€
SAT,-Z {58 {55 +1+ﬁ} (k1+k2)+5k1}
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Again, the conclusion follows from (5.1.15) and (5.1.16). The proof is finished. O

In the following we denote by L. (H;,H>,H3) the unique bounded solution of the
form (5.1.15) of Eq. (5.1.17) and note that L, is a bounded linear map from the space
of bounded measurable functions to the space of bounded continuous functions, that
is,

Le(Hy + Hy,Hy + Hy,H3 + Hy) = Le(Hy, Hy, H3) + Le (Hy , Ha , H3).

We now study the linear non-homogeneous equation

=01 = h().

x1(2jm+aj) =0, forany je Zsuchthate; =1.

8
i 4 — /
XI ”f ( (5.1.26)

Here h € L”(R), and x; (¢), % () are absolutely continuous functions so that (5.1.26)
holds almost everywhere. Let us put

a=/8|f"(0)]/x.

Lemma 5.1.2. There exist positive constants A, B,C € R and mo € N so that for any
§=(E,a) € X, m>my, and j € Z, there exist linear functionals £,, ¢ ; : L (R) —
R, so that ||Z,, ¢ ;|| < Aeje™", with the property that if h € L*(R) then (5.1.26)
has a unique C' solution x,(t,&) bounded on R if and only if
2j+1)m
L jh+ Ye(t)h(t)dt =0 (5.1.27)
e (2j=1)m

for any j € Z.. Moreover, the following properties hold:
(1)

[x1(E)llee < BllAlleos (121, &) lleo < BllAr]|eo- (5.1.28)

(ii) Letx,(t) be the unique bounded solution of equation %, + % f'(0)x, = h(t), then
1 (1,&) —xp(1)] < C (e /2 emal=20m=4l/2) 1| (5.1.29)

Jor 2j—1ym<t<(2j+1)mandany j€Z.

(iii) Let &' = (E,a'), &" = (E, ") with o’ ,&” € {5 and & be either &' or &". As-
sume that h(t,&) € L*(R) satisfies (5.1.27). Then there exists a constant, ci,
independent of &, so that the following holds:

max {[x1(+, &) =x1 (- §")lles, 121 (- §") =1, &) [l }

, , ., (5.1.30)
<B||h(t,&") = h(t,8")||eo +c1[|2(t,E")||oo] [0 — &"[|co.

Finally, for any m > my, the map %, : X x L”(R) — ¢*(R) defined as £ (&, h) =
{Z.£.jh} jez is Lipschitz in « € 7 uniformly with respect to (E,m).

Proof. The equation
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8 2
i+ f <ﬁyl(t)>x:0 (5.1.31)

has a fundamental solution u(t),v(¢) with

Then v is bounded, odd and u is unbounded, even with asymptotic properties:
v(£),v(t) ~ e~ u(e),i(r) ~ e as 1 — oo,

Note that 7 () is a solution of (5.1.31) so that 7 (1) ~ el and 7, (0) = 0, #; (0) #0,
we get v(r) = %IT%)) Let us pause for a moment to recall some of the properties of

the functions u(z), v(¢) that will be used later. Equation (5.1.31), or, as a system

8 2
Uy =up, Up= —Ef/ (\/EYI(I)> ui, (5.1.32)

has an exponential dichotomy on R and R_ with exponent a (cf Section 2.5.1).
Thus projections Py, P_ exist so that rankP; = rankP_ = 1 and

X ()P X" (s)|| <ke =9, if 0<s<t,
XTI =PHX (s)|| < ket if 0<t<s,
X () (T—Pp)X " (s)]l (5.133)
IX()P-X1(s)|| <ke (=), if s<1<0,
1X(1)(T—P)X ! (s)|| < ke®C=9)if +<s5<0

where o) v(o)
u(t) vit
X =
" (u(r) v(r))

is the fundamental matrix of (5.1.32) so that X(0) = I. Although P and P_ are not
uniquely defined, ZP, and .4 P_ are precisely the one—dimensional vector spaces
consisting of all initial conditions one has to assign to the linear system (5.1.32) to
obtain solutions bounded on R, R_ respectively. Moreover, any projection pos-
sessing ZP, as range (resp. .4 P_ as kernel) satisfies conditions (5.1.33). Now,
since v(z),v(¢) — 0, as |t| — oo, we see that we can take:

e (a) = () =)

Hence the matrix of P, and I — P_ with respect to the canonical basis of R? is

(8 ?) Then Egs. (5.1.33) read:

[v(@)a(s)], V()us)], [9()ils) ] [p(0)u(s)] < ke (5.1.34)
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if0<s<tort<s <0, whereas

(1) 9(5)], L)), [t ()], Lo )v(s) | < e (5.1.35)
if 0 <t <sors<t<0.Now, let us go back to the proof of the Lemma. We consider

Eq. (5.1.26) on [(2j — 1)m, (24 1)m] according to e; =0 ore; = 1. When ¢; = 0
(5.1.26) has the general solution

1 1 1 (2j+1)m
xi(t) = —— e~ =) p(s)ds — —/ =) h(s)ds
1) 2a /(ijl)m () 2a J; (5)

+ajett= @M 4 p emalt=(2j=1m) (5.1.36)
with aj,b; € R. When ¢; = 1 we distinguish between ¢ € [2jm + aj, (2j + 1)m] and
te[2j—1)m,2jm+oy]. If t € 2jm+ o, (2j+ 1)m] we write the general solution
of Equation (5.1.26) with the condition X (2jm+ a;) = 0 as

xi(t) = /zt v(t—2jm—aj)u(s—2jm— a;)h(s)ds

jm+06j
(2j+1)m
—|—/ u(t —2jm—o)v(s —2jm— a;)h(s)ds
t
—l—afu(t—ij—aj)/u(m—aj) (5.1.37)

where a; eR.Ifr € [(2j— 1)m,2jm+ o] we take
2jm+06j
() = f/ vt — 2jm— otj)uls — 2jm — oj)h(s)ds
t

1

—/ u(t —2jm—o)v(s —2jm— a;)h(s)ds
(2j—1)m

+a;u(t—2jm—a;)/u(—m— ;) (5.1.38)

where a; € R. We note that x;(2jm+ o;;) = 0 in both (5.1.37) and (5.1.38). Thus
to obtain a C' solution we only need that

xi((2jm+aj)-) =x1((2jm+aj);), forany j€ Zsuchthate; =1,

that is,

e 2j h(s)d i a} 5.1.39
/(2j—1)m V(s =2jm = ay)his)ds = u(—m—o;) _u(m—(xj)' (5.1.39)

We note that from Eq. (5.1.36) we get, for any j € Z:

1
sup b1 ()] < lajl +[bj] + —esssupo;_1ym<i<2js1ymlhr)] (5.1.40)
(2j—D)m<t<(2j+1)m a
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and
. 1
sup 1 ()] < a(laj] + |b;]) + ZessSup(ijl)mgtg(Zj+1)m|h(t)|'

Q) 1)m<t<(2j+1)m
(5.1.41)

A similar conclusion also follows (when e; = 1) from (5.1.37) and (5.1.38) using
(5.1.34), (5.1.35). Equation (5.1.39) is the compatibility condition where the linear
maps i”m_’é’ j come from. For the moment, we forget about these conditions and
choose the constants a;, b, a/ﬁ a; so that the equalities

a((2j+Dm)) = xi(2j+1)m)y), jez
(24 Dm)) =512+ )m)y), jez

are satisfied. According to the values of ¢}, e; they read

(5.1.42)

—2am —2am
ajfbj+1+bje —aji1¢€

! B el ) sy g — / B @i m=s) () as,
2a J@2j-1)m 2a J@j+1)m

aj+bj—bje M —q;, e M (5.1.43)

3

_ _i/(21+1)mefa((2j+1)mfs)h(s)ds_i/(2'i+3)mea((2j+1)m*5)h(s)ds
2a J@2j-1)ym 2a J@jtiym

ifej=ej; 1 =0,o0r

g ~—2am
aj—a;,  +bje

2j+1)m .
= i/ ! e~ (IHNm=9) p(5) ds
2a J@j-1)m

2(j+1)m+aj+1 )
—/( v(—m—aj1)u(s —2(j+ 1)m— ajy1)h(s)ds,

2j+1)m
. 5.1.44

aj—a; 4lm = 1) —bje2am ( :
J J+1 au(—m— O‘j+1) J
__1 / I a0 0m=9) () i

2a J(2j—1)m

1 20+)m+aji )

—*/, " (m— e Ju(s = 2(j+ Dm — 0tj41)h(s)ds,
aJQ2j+l)m

if€j:0, €j+1 = 1,01‘
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+ —2
Clj —bj+1—aj+1e am
1 (2j43)m

- a((2j+1)m—s) his)d
2a /(2j+1)m ¢ (s)ds

(2j+1)m
—/ v(m—oj)u(s —2jm— oj)h(s)ds,
2

Jjm+a;

Lam-oy) (5.1.45)
ai; W+b1+l —ajt1€ an
2j+3
_ _i/( i )mea((2j+1)m—s)h(s) ds
2a J@j+1ym
1 r@j+m
—7/ v(m—o)u(s —2jm— og)h(s)ds,
a 2jm+0£j
ifej = 1, €j+1 = 0, or
ajr—a;H
2(j+Dm+ay g )
= —/ v(—m— o )u(s —2(j+1)m—aj1)h(s)ds
(2j+1)m
2j+1)m
—/ v(m—o)u(s —2jm— o)h(s)ds,
2jm+a;
. . (5.1.46)
o u(m—oy) - u(—m—otjyy)
Taulm—oy) I au(—m—ojy)
1 2(j+1)m+(1j+1 ) .
:_7/ | P(—m — oty Ju(s — 2(j + V)m — oyt Ya(s) ds
aJ2j+l)m

1 (2j+1)m
—f/ v(im—o)u(s —2jm— o)h(s)ds,
a 2jm+ot;

if e; = ej;1 = 1. We note that when § = (E, ) is fixed, for any j € Z only one
among Equations (5.1.44)—(5.1.46) occurs. We consider these equations as a unique
equation for the variable

{(@;,b))}jez € € x L7
where (@;,b;) = (aj,b;) if e; = 0 whereas (a;,b;) = (a7 ,a}) if ¢; = 1. The left-

J
hand sides of (5.1.44)—(5.1.46) define a linear bounded operator

Lyg : 0% 0 = 02X 02, Ly <{ij}> = <{ilj}> (5.1.47)
{bj} {b;}
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where
aj=(1—e))a;—[ej1+(1—ejp1)e > ™aj
+ej+ (1—ej)e b — (1 —ej1)bji1

bj=(1~ej)a;~ V(_m — )

) l—e: —2am | & 5.1.48
au(fmfajﬂ)eﬁ_l +( e]-‘rl)e aj+1 ( )

u(m—aj) ]~ N
*[M%—U—e;)e " b+ (1= ejun)bjan
Now, since 0 < 1—¢; < 1, |oj| <2, and

fim )
1= qu(r)

=41 (5.1.49)

we see that mg € N exists so that for any m > myg, & € X and j € Z, we have
|a;| <3(llalle+1Blle),  [b)] < 3(||@]|e0 + [|5]]c)

or ||L,,¢|| < 6. Now, we want to show that for m sufficiently large and any & € X, the
map L, ¢ 07 x 0= — £~ x ¢~ is invertible. To this end, we claim that when m — oo,
the linear map L,,, ¢ tends to the map Lg defined as follows:

. <{aj}> ({(1—ej)aj—e,f+15f+1+€jzj—(1—e,i+1)zj+1}>
E ~ == ~ ~
{bj} {(I—ej)aj+ejrajrr+ejbj+(1—ejr1)bji1}

in the sense that
Ly g —Le| — 0 (5.1.50)

as m — oo uniformly with respect to & = (E, a) € X. In fact,

{a;}
(Ene =te) ({%})

{(ejs1—1)e ™ a1+ (1—ej)e b}

_ K”(m_aj)) —1>e,—(1—e,)e2“m} b;

au(m — o

I/'t(fm*OCjJr]) D) -
B Y e N S VAT B 1—e: am |~
KW(—’"—O‘/H) " )e.,+1+( eji)e ]a"H

Thus (5.1.50) follows from (5.1.49) and ||| < 2. Next, the equation:

L <{§j}> _ (*{f?j})
{b;} {B;}
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is equivalent to the infinite dimensional system (j € Z):

- ~ Ai+B;
(l—ej)aj—i—ejbj: J 3 ],
- ~ B —A;
ejr1djr1+(1—ejy1)bjyr = 12 L.
Changing j with j — 1 we obtain
~ ~ Aj_1+B;
(I1—ej)aj1+ejoabj1 = =————,
~ ~ B —Ai,
ejaj+(1—ej)b;= %
Thus, for any j € Z, (aj,};,») satisfies
- ~ B —Ai,
ejaj—|—(1—ej)bj:71 3 J ,
- ~ Ai+B;
(1=e))dj+ejbj = =5,

which is a linear system in the unknown (a;, b;) having the solution

__1(1—ej)(A;+B))+ej(Aj-1—Bj1)

A 1—2e; ’
5 _1(=e)Bia—A;1)—ei(d;+B))
J 2 1—2ej '

Since e; is either 0 or 1 we see that |1 —2¢;| = 1 and then

JUR 1 - _ 1 _ _
lajl,[b;| < 5(‘Aj71‘+ |A;]) + §(|ij1|+ IBjl)
or "
llallco + 11B]]o0 < 2(||Al|e0 =+ [|B][oo)-

That is, L exists and ||L;'|| < 2. As a consequence, for any m sufficiently large
and § € X, L,, ¢ has a bounded inverse L;lé so that, say,

1L, 11 < 3. (5.1.51)

Thus we can uniquely solve Eqs. (5.1.44)—(5.1.46) for a; = a;(h,¢&), Ej = IZj(h,&)
and a constant ¢ independent of £ € X and m € N (provided m > my, with mq suffi-
ciently large) exists so that

(d;(h,E)| < éllhlle,  1B;(h,E)] < &l (5.1.52)
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for any j € Z. Consequently, the compatibility condition (5.1.39) reads

e o[ g amg)
Ly sy e OIBS)ds =~ )= (0) | P =

for any j € Z so that e; = 1. Since we do not need any compatibility condition when
ej =0, we set

Ze j(h) =0 forany j € Z such that e; = 0.

Clearly, the existence of a constant B > 0 so that Equation (5.1.28) holds, following
from Egs. (5.1.40), (5.1.41) and (5.1.52). Similarly the existence of the constant A
as in the statement of the Lemma follows from (5.1.52) together with the fact that
|ot;| <2 forany j € Z and u(t) ~ el as |¢| — oo.

Now we estimate 7(¢) = x1(¢) — x,(t), x,(¢) being the unique bounded solution
of the equation ¥+ 2 f'(0)x = h(¢). Observe that 7(¢) is a C! solution, bounded on
R, of the differential equation:

¥+ %f’(O)erw(t) =0
mem>_gQ(f%(»—memuymm

1/ e w(s)ds.

1 t
vwzf/:%”>mw+m

2a J—

LetA1:1+m%§<|y(z)\andN— max {\f’( ),17”(x)|}.Then
te

w(s)| < nl—jﬁBNnhnmwg )

and hence

i 16BN ||| s ® s
o) < = [ e pslascs [t e(olas).

So, we consider the integrals

10.8)i= [ eI glds. J0.8)i= [ e (o)l ds.

Forany §{ = (E,a) € X, E ={ej}jcz € &, o := {0} jez € {5, letg: (E,a)eX
be defined as

E:= {e,j}jezeéﬂ o= {—(ij}jgzeég.
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From the definitions of ¥ (¢) and ¥ (¢) = y1(—t) we see that ¥ (1) = yg(—t) for any
t€R,t# (2j—1)m, j € Z, and then

10.8) = [ et (=gl = [ e (o)l as = 1,8

Thus we see that it is enough to estimate I(¢,&). Let (2j — 1)m <t < (2j+1)m. We
have

(2j=3)m
e—a(t—s) |}, (S)|dS < ﬂe—Zam < ﬂe—am/Z )
s a a

Next, we estimate
(2j—1)m t
[ et elds, [ e () ds.
(2j=3)m (2j—1)m

Since ¥ (t) = 0if (2i — 1)m <t < (2i+ 1)m and ¢; = 0 we see that we can assume
that ej_1=¢ej= 1 and

( nt—2(j—1)m—aj_y),if (2j—=3)m<t < (2j—1)m,
t) =
% Nt —2jm—oj), if2j—1)m<t<(2j+1)m.

Now, let A» > 0 be such that

max {17 (0], 131 (1)), 9 ()] } < Ape"]. (5.1.53)

Then

[ e s [ e s -2 ym- g )l
e Ye (s s_/ € Nils—=2(j—1)m—o_1)|ds
(2j-3m - 2j-3)m !

i, /(2j71)m o—alt=s) g—als=2(j—Dm—aj_1| z¢
@j-3m

2(]‘7 1 )m+a_,v,|

2j—1)m
<A, /( =) efa(tfs) efa(sf2(j71)m7aj_1) dS+A2/ e*”(l*ﬁ') ds
2

(J=Dm+aj_ (2j=3)m

4a
< Az(e +1) e—a(m—Z)/Z .

<A e—4(m=2) (m+2)+ & e—a(m=2) <
a a

Finally, if (2j — 1)m <t <2jm+ a; we have:

t t .
/ efa(tfs) W?j (s)\ds SAZ/ efa(tfs) ea(s72]m7aj) ds
(2j—1)m (2j—1)m

< A2 —di—2jm-oy < A2 —ah—2jm-ay|/2
~ 2a ~ 2a
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whereas if 2jm+o; <t < (2j+1)m

1
/( =) |y (5)| ds

2j—1)m

3
SAZ/ e—a(t—s) e—a\s—ij—ocj| ds
(2j—1)m

ot

2 jm+aj
s / T malt=s) gma@imtoy=s) g 1 A, /
Joyim 2jm+0£j

efu(tfs) efu(s72jm7aj) ds

)

< A2 —a—2jm-a)) A e alt=20m-0)) (f 2 jim — ) < 342 —a(t—2jm—ay)/2
~ 2a 1= 2a

since a@e 9% < e~9%/2 for any @ > 0. The fact that inequality (5.1.29) holds in the
closed interval [(2j — 1)m, (2j + 1)m] follows from continuity. We now prove (iii).
Let w(r) € C*(R) be a smooth function so that suppw € (—1,1) and w'(0) = 1 and

set
xAl(t) :xl(t7él) *X](t,éﬂ) +e]x1(2]m+(le,§")w(t *ij* a;)

if (2j—1)m <t < (2j+1)mand j € Z. Note that £, (¢) is a bounded C!-function on
R that satisfies, in any interval ((2j — 1)m, (2j + 1)m], the equation:

i 2 (=)
— h(1,E") — h(1,&")
w217 (Ze0) -7 (w0 e
—ejx1(2jm+ o, ") [w(z —2jm— o)+ %f’ (\/zﬁyg/(t)) w(t —2jm— o)
together with ; (2jm + a}) = 0 when ¢; = 1. Thus, because of (i) and (5.1.22),

max{|lx; (&) = x1 (8,8 les, 151 (-, &) = 21.(£,6") |}
< B|(-,&") = h(-,E")]

8 16B°N
+Bsup e (2jm+ o}, §")| + h(- E")loo | Yer = Ye]loo
suplests (2jm -+, ") + L (-8l e
< B||h(-,&") 7h(',§”)Ho<,+§SUP|ejxl(2jm+O‘}7§”)|
JEL

+B1[lA(-,E"|es [l — o (5.1.54)
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for some choice of the positive constants B and B. On the other hand, when e =1,
we have, since %1 (2jm+ o, §") =0,

2jm+ocj’-

B (2jm+oc},§”):/ 1(1,6")dr

2jm+af

= [ (h(t,é”) -2 (275"(’)) - M”)) “
J2jm+-of & VT
and hence

!/ " 8B / " ! 1
i+ 0,8 < |1+ 52| 186 £ o - o

20 [* 7 (Zono) - o) ar

SB / " !/ "
< {1+ Z 1P O+ AN InC, &)l — o). (5.1.55)

Then (iii) follows from (5.1.54), (5.1.55). Finally, the proof of Lipschitz continuity
of the map %, with respect to o is given in Section 5.1.6. a

Now we consider the equation

24 2
Bt 2 (Z2h0)n=he (®) (5.1.56

and prove the following.

Lemma 5.1.3. There exist positive constants By,C; € R and m| € N, so that for any
& = (E,a) € X and m > my, Equation (5.1.56) has a unique C' solution x,(t,&)
which is bounded on R and satisfies

[x2(-,8)lleo < Billlleo,  [132(+6)lleo < Bul[]]oo- (5.1.57)
Moreover the following properties hold:
(i) Let z,(t) be the unique bounded solution of equation %, + 2—:]"(0)1,, = h(t), then
ba(1,€) — 2, (1)] < Cp (e /% el =2m=0l/2) |||, (5.1.58)
Jor 2j—1)ym<t<(2j+1)mandany j € Z.
(i) Let &' = (E, o), &" = (E, ") with &', " € {5 and & be either &' or E". Assume

that h(t,€) € L*(R). Then there exists a constant, &1, independent of &, so that
the following holds:



5.1 Beams on Elastic Bearings 187
! " . ! . "
max { 52 &') = x2(,&") s iz (-, &) = 2, E") 1 |

<Bi|h(t,8") = h(t,&") |+ E1[[A(t,E") o[l — @l (5.1.59)

Proof. Since the proof is very similar to that of Lemma 5.1.2 (actually simpler)
we only sketch it emphasizing the differences. Because of assumption (H2), the
homogeneous equation associated with (5.1.56) has an exponential dichotomy on
R, that is, there exists a projection P of rank one so that the fundamental system
X (1) of (5.1.56) satisfies:

[X()PX 1 (s)|| < ke b9, for any s < 1,
[X(#)(T—P)X ! (5)|| < ke 2(=9), forany t <s

where b = /2| f/(0)|. Let vo € %P, ug € 4P be unitary vectors, and set

u(r) _ v(t) _
(u(t)> .—X(l)um <V([)> .—X(I)V()

Then it can be proved that (5.1.34) holds for any ¢ < s whereas (5.1.35) holds for any
s <t. Now, when e¢; = 0 Equation (5.1.36), with b instead of a, gives the solution to
(5.1.56) but now, since when e; = 1 we do not impose the condition x(2jm+ «;) =
0, we do not need to split the interval [(2j — 1)m,2(j + 1)m] into two parts and the
general solution of (5.1.56) can be written as:

x1(1) /(t v(t —2jm)u(s —2jm)h(s)ds

2j—1)m
+/t2]+1 u(t —2jm)v(s —2jm)h(s)ds
+aju(t —2jm)/u(—m)+bjv(t —2jm) /v(m).

It is easy to see that xi(t) belongs to L*(R) and is C! in any open interval
((2j—1)m, (2j+1)m). Thus we obtain a unique bounded C' solution of Eq. (5.1.56)
provided we show that Eq. (5.1.42) can be uniquely solved. This fact and the prop-
erties (i), (ii) are proved in the proof of Lemma 5.1.2 and so we omit it. O

In order to apply Lemma 5.1.2, we consider the set

2j+1)m
I = {h e L”(R)| ,,Zny,g_jh—i-/( : Ye(t)h(t)dt =0 forany je€ Z} .
’ 2j—1)m

Note that if § =0 (i.e. (E,a) = (0,0)) then .7}, ¢ = L”(R). Then we construct a
projection Q,,, ¢ : L”(R) — .7, ¢ as follows. If § = 0 we set O, ¢ = I, whereas if
& # 0 (and hence E # 0) we proceed in the following way. For any ¢ = {¢; };cz € (%,
we put
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Ye(t) =cjTe(t) for (2j—1)m<t<(2j+1)m

We recall that {7 := {c ={citiez €L c;i=0 for ¢ = O}. Hence 7. € L*(R)
and

Ve ()] < llelleo| 7 ()] < Nlellool [ 71]]eo-
For any i € L”(R) we take i, = h— 7, and consider the system of equations

(2j4+1)m
L jhe + yg(t)hc(t)dt:O, JEZ. (5.1.60)
(2j—1)n

Our purpose is to determine a solution ¢ € £ of the above system. Note that when
ej=0,onehas &, ¢ =0, ¥ () = 0 and then the above equation is trivially satisfied
regardless of the value of c;. This is the reason why we take c; = 0 when e; = 0. On
the other hand, since ¥ (t) = 0 in ((2j — 1)m, (2 + 1)m] when e; = 0, the value of
¢; does not matter to defining ¥e(¢) in this interval. We can write (5.1.60) as

[///m’g +$,,7§ Gm.dc = [.,%,1’5 -l-Nm’g]h (5.1.61)

where
. 2j+1)m
gm,éh:{gm,c‘;,jh}jEZ EfE, Q//m,g;c‘: {Cj‘/(

2j—1)m

j'fg(t)dt} €z,

jez

Gz ="(1) =Y, cjTe () x(2j-1ym@j+1m () € L7(R),
JEZ

Q2j+1)m
Nméh{ /( | }'/é(t)h(t)dt} €.

2j—1)m jez

Note that for any fixed E € &, both sides of Eq. (5.1.61) are elements of /.
Now, we have already observed that ||G,, g¢||c < [|71]| - [|¢||, moreover, from
Lemma 5.1.2 it follows that [|.Z), ¢h|.. < Ae™“"||h|-. Hence

1L g Gmgclleo < Ae™" || ]]eo - [le]loo - (5.1.62)

Next, setting

Alz/ 171(2)|dt > 0, AZ:/ y1(t)*dt >0

we have, for m sufficiently large, and any j € Z, withe; = 1

A 2]+1 m—oj
22 < ‘/ (t)%dt| = / 1(¢)*dt
2j—

—m— (Xj
since |o;| < 2 for any j € Z. Thus 4, ¢ : lf — (¢ is a bounded linear map

<A2

(| Ay el < Ay) which is invertible and it is easy to see that its inverse ,//ln;é satis-
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fies: )
M| < =—
<, 4 <

provided m € N is sufficiently large. Thus, using also (5.1.62) we see that [e///mlg +
Lg G,n.g]’1 exists and is bounded uniformly with respect to (&, m) provided m is
large enough. Finally:

m ~
ej | it —o)h(t+2jm)dt| <Ay |hl| (5.1.63)

—m

[N, gh|| = sup
jez

and hence Equation (5.1.61) has the unique solution, linear with &
—1 o
c(m, g)h = [%m,é +$n,§ Gm,éjl ["E’ﬂmﬁé +vad he eE

and the linear map & +— ¢(m, & )h is a bounded linear map from L (R) into {5 with
bound independent of (m, &) (of course with m > m sufficiently large). We set

méh Yem,&n s Qm,éZH_Pm,é'

Obviously we mean that ¢(m,0) = 0 for any m € N so that P,,0 =0 and Q,,0 =1L
We have the following:

Theorem 5.1.4. B, : L (R) — L*(R) is a projection on L (R) which is uniformly
bounded with respect to (m,&) and Lipschitz in o € {3 uniformly with respect to
(m,E). That is, a constant L, independent of (m,E), exists such that ||, g o) —
Py ga)ll < Llloe—a'| for any m > in and (E, ), (E, &) € X. Furthermore

[P gh)(1)] < |c(m, &)|[|Al|-o| 72 (1)] (5.1.64)
and B, ¢h = 0 if and only if
[Lne + Ny glh=0. (5.1.65)

Proof. Since there is nothing to prove when & = 0 we assume & # 0. The fact that
P, ¢ is bounded uniformly with respect to (m, &) and actually satisfies (5.1.64) has
already been proved. We now prove the last statement: the equation £, ¢h = 0 holds
if and only if ¥(y,¢), = 0, that is, if and only if & = h(, £);- Thus (5.1.65) follows
because c(m, & )h satisfies Eq. (5.1.60). On the contrary, if & satisfies (5.1.65), we
have c(m,&)h = 0 because of uniqueness and then P, éh = 0. We can now prove
that P, ¢ is a projection. In fact, we have P, ¢[Q,, ¢h] = B, ¢ [h — P,, ¢h] = 0 because
h— P, gh=h—"Y(nep satisfies (5.1.65). Thus P, ¢ = Pn21,§ Finally we prove the
Lipschitz continuity of B, ¢. First we prove that

(§,h) = Ny eh= {ej/r:71(t—aj)h(t+2jm)dt}

jez



190 5 Chaos in Partial Differential Equations

from X x L* into ¢z, is Lipschitz continuous function in ¢ uniformly with re-
spect to (m, E). In fact, for 7,7 € R with |7”|,|7'| < 2, we have, using }(t) =
(0 (@). |f ()] <N and (5.1.53):

‘/ [t —7") =1t —7)]h(+2jm)dt
m 1 . /1 / 7 /
< [1(t — 07" — (1 —0)7")|dOdt ||h|||T" — |
—mJO
8N [m -1
<= " [inte—oc (1~ e)c)laear hl.Ic" - 7|
T J-mJoO
N m 1 /1 /
7/ / Aze—a\t—ef —(1-0)7 ‘det Hh||oo|T”7TI|
—-mJO

16NA
<</ /Aze 12 g ol ] < A e

Similarly we can prove that the bounded linear maps .#,, ¢ : (g — {7 and G, ¢ :
¢3 — L are Lipschitz continuous function in o uniformly with respect to (E,m).
Then the inverse [.#), &+ LGy 5} has the same property and the same holds
for the solution ¢(m, &)k of Eq. (5.1.61). Finally, let &' = (E,a),&" = (E,a") € X.
Then for any 7 € ((2j — 1)m, (2j + 1)m] we have

[Poerh — Py enh] (t) = Ve (0)[cj(m, &' )b — ¢ (m,E" )R] + [¥e/ (1) — Yen (1)]cj(m, & )R

and hence P, ¢ is Lipschitz continuous function in o uniformly with respect to
(E,m), so are c¢(m,&) and ¥/(t) and both are bounded uniformly with respect to
(&,m). The proof is complete. O

Remark 5.1.5. (a) Obviously (: is also Lipschitz continuous function in ¢, uni-
formly with respect to (m, E) and, using By £ Qe =0, we see that the equation

@j+1m
L Onght [, 00 ghl)dr =0

holds for any j € Z. That is, Q,,, ¢ is a projection from L*(R) onto .%, - which is
bounded uniformly with respect to (§,m), so is B, .

(b) It follows from the arguments in Section 5.1.6 that %, ¢ is not differentiable
in a. Hence P, ¢ and Q,, ¢ are also not differentiable in ¢. So the Lipschitz conti-
nuity of these maps is their best smoothness in .

(©) If h(t) = 7¢(t) and c; = e; for any j € Z, we have h.(t) = Jg(t) — T(t) = 0
and then (5.1.60) is satisfied. Thus, because of uniqueness, P, ¢ 7z = ¥ or

One¥e =0. (5.1.66)
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5.1.4 Chaotic Solutions

We look for solutions of Egs. (5.1.6)—(5.1.8), for which, the sup-norms of y; (t) —
Ye(t), y2(¢) and z(x,7) are small. Since the function Y () has small jumps at the
points t = (2j — 1)m, j € Z, we introduce a function v¢ (1) € L”(R) which has small
norm, so that

I () = ve (1) +ve (1)

isCl. As an example, we can take the function:

ve(t) = 225 (1= 2= 1)m)’ + 25 (1= (2 = 1)m)®

if (2j— )m <1t < (2j+1)m, j € Z, where

pi =3 ((2j+m)) = % (27 +1)m)-))
+2m (T (((2j+ 1)m)-) = T (2 + Dm)+))
q; = 2m (7 (((2j+ Dm)+) — % (((2j+ 1)m)))
+2(7 (27 + Dm)-) = % (21 + Dm))) -
Again, we will silently include, in the definition of v¢(¢) and I (#), also the end

points of the intervals [(2j — 1)m, (2j + 1)m] as we did for the function ¥ (¢). Next,
from (5.1.53) we obtain, for any j € Z:

max {7 (2 + Dm)c) |, [ (2 + Dim))| } < Aze2eo = Fye=on

where A, = A, e?*. As a consequence, we get

Ve [leo < (10+8m)Az e,
[Velleo < (124 10m)Aze™" /m, (5.1.67)
[[Vg [loo < (94 8m)Aze™™ /m?,

or, since 0 < € < 243 (and hence m > g=3/4 >2):

124,

. 6A; N
Ivglle < 22, glhe < e, gl < (5.1.69

6A

272.3/2
a

Note that to obtain the inequalities (5.1.68) from (5.1.67) we have used the fact

that for A > 0, and 6 > 0 we have 6*e=® < (1/e)* and (%)4/3 <% 1

7\7/3 _ 12e24 6e20 e .
(g) <1.LetA7max{ ERER ,e* b then:

[velle < AA2g, Vel < Ade, || [l < AApe™/?. (5.1.69)
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For reasons that will be clearer later, we now prove that the functions ve (¢), ve ()
and Ve (¢) are Lipschitz continuous funcfions in o, uniformly with respect to (E,m)
and that the Lipschitz constant is of the order O(¢€) as € — 0, uniformly with respect
to (E,m). So, let§' = (E,o),§" = (E,0") € X. Forany t € ((2j—1),(2j+1)m]
we have (with obvious meaning of symbols):

[ve: (1) =ver (1) < 1P — Pl + |4 — 4]

2|p; = pjl+3ld; — 4]
5o (1) — v (1) < 0 F i 4
Ver (1) = ven(1)| < .

P = P +3lq; — 4]
Ver(t) —Ven(t)] < ] J 1 j.
(1) = vn(e)] < T

Thus it is enough to estimate |p; — p//| and |¢; — ¢'}|. Assume e; = 1, then
Ye(((2j+1)m)-) = 1i(m— ;)
and hence, using (5.1.53) and ||, o] <2 (recall that Ay = A, e2),
Ve (27 +1)m) =) = ¥er (2 + 1)m) )| < Az " | — |-
Similarly, if ej11 =1,
e (27 Dm) ) — e (2 + Dm) )| < A o), — |

On the other hand, if, say, e; = 0 then ¥ (((2j+ 1)m)-) =0, & = o] = 0 and the
same conclusion holds. Thus we get, for any j € Z (recall that m > 3):

P =P < (6+4m)Aze™ ™ ||o — || < 6mAre™ " |lo' — ||
and similarly,

g — 4] < (4+4m)Aze " || — || < 6mAze™ " |[o' — .
Hence, like for (5.1.69), we see that the following holds:

Iver —ver |l < AsAe]a — o]
||\35/—\'/5HH00 <AQ/\8||OC/—OC”||7 (5.1.70)
||V§/ - 1./'5// H°° < A2A£3/2”(ZI — (X””

which is what we want to prove. Now we replace y; (¢) with y; (¢) + I (7) in (5.1.6)—

(5.1.8) and project the right-hand side of the differential equation for the new y; (r)
to .7, ¢. Since ¥ (¢) satisfies (5.1.21) and Q,,, ¢ ¥¢ (1) = 0 (see (5.1.66)), we obtain:
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510438 (=000

) 2 /4
= _Qm,é{\/g6y1(t)+ﬁﬂ/o h(x,t)dx

+%f (\/Zﬁ[m (1) + I (1) —2\/§y2(l‘) +z(0,t)> _ %f (\/Zﬁyé (t))

e (ji[ymm;(m +2\/§Y2(f)+z(zal)>

—%f’ (2”750)) yl(t)+\/56v'5(t)+'v'5(r)}, (5.1.71)

193

221 ( o)+ 012y 2o +2(m/40)
2 =00}, 5172

/jo /7:/4 {z(x,t) {v,t (x,1) + éVxxxx(x,t) —€dw, (x,t)} +Nh(x,f)v(x7t)}dxdt

+/ v(0,1) + f(u (7r/4,t))v(7r/4,t)}dt:0, (5.1.73)

in (5.1.73) we write u(x,t) for %[yl (t) + Tz (t)] + y2(t)wo(x) +z(x,1).
LetC ; (R) be the space of C! functions bounded together with their first deriva-

tive on R. To make notations simpler we define the Banach spaces Y| and Y, as the
space C} (R) endowed with the norms

[yl = %tsgﬂg{lyl(t)I, @0}, 2l = Zﬁfgﬂg{lyz(% y2(t)l},
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respectively. Unless otherwise specified, y;(¢), 91 (¢), resp. y2(t), $2(¢) will denote
functions in Y}, resp. ¥> and the norm in ¥; x ¥ will be ||y1 ||+ ||y2]|. Next, let p > 0
be a fixed positive number, y| (1) € Y1, y>() € Y2 and z(x, 1) € C)([0, F] x R) be such
that ||y ||+ ||y2]| + ||z]] < p. For any fixed choice of such functions we set:

(1) = Hh(x),
H1.8) = 1 (j%[ylm (0 2\Fyz(t) +z<o,t>> - (\/2%175 ")
f

(G720 |77

Aunt.8) = |1 (i) - r10) [jﬁyl 0 —Zﬁyz(t)ﬂ((),t)] ,

B3 (1,8) = { (} 5()) f’(O)} [\/zﬁyl(t)+2\/§y2(t)+z(7t/4,t)].

Let us continue to denote with N an upper bound for f/(x) and f”(x) in a neigh-
borhood of y(¢). We have the following result.
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Lemma 5.1.6. There exist positive constant ks and a function A(p) > 0 with lin}) Alp)=
p—
0, so that if [|y1]| + [[y2]| + |z]|l« < p < 1, E € & and o', & € {3 the following hold
|Hi(1,&') — Hy(1,8")| < pA(p) [e+e 2] lo/ —a||, k=2,3,
A (1,6") — Hia (1.8")| < kap [e+e~ 2] o —a”||, k=2,3
where &' = (E, o) and §" = (E,a") and t € ((2j — 1)m, (2j + 1)m]. Furthermore,
Hoo(t,E") — Hoo(t,E") = Hao(t,E") — Hzo(t,E") can be written as the sum of two
piecewise C'-functions Hoy (t) + Hoa(t), so that
[Hou(1)] < ksel|o” — o],
|Hoa(1)] < kse~ V=2l o — o,
Fioa(1)] < ksl =21 ! —
where &' = (E, o), &" = (E,&") and t € ((2j—1)m, (2j+ 1)m].
Proof. Lete; = 1. Then, for any r € ((2j — 1)m,(2j+ 1)m], we have
Lo (1) — Tz ()| < “5’1 (t—2jm—00;—(1-6)a)| +A2A£} o — ||
< [AsAe+ Ayl =2m] 1o/ — o

Obviously a similar conclusion holds when e; = 0 since in this case we have I': (1) =
ve () forany ¢ € ((2j—1)m, (2j+1)m]. Next, for any x € R we have |x+ %Fg () <
x|+ lve o+ |7l < 3 + FzAA2€ + Ay Thus, for any (y1,32,2) 1|+ [y2| +

|lz| < p and & € X, the functions ) (y, +I:(t) +y2+2), k= 0,1,2 are bounded.
Since

' " \/71%,0 2 3
Hy(1,§") — Ha(t,8") = 50 f <ﬁy1(t)+9—2\/;yz(t)+2(0,t)>

—F(8)— 1"(8) [j%ym 2\/§y2(f) +2(0.0)

_/ Fj/ / u<9+c \/ZEYIQ)—Z\/in(t)—i—Z(OJ)])

,f//(G)deG [j%yl (t) — 2\/3}’2([) JrZ(O,t)

do

we obtain:
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\Ha(1,6") — Ha(1,6")|< %PAO(P)IQU) —Ien (1))

< pA(p) [e+e=2m] o’ — |

where Ag(p) = supyjy<p <,y [f(x+¥) — f(x)| = 0 as p — 0 and A(p) =
%AQAAO(p). Similarly,

[H3(1,8") — H(1,6")] < pA(p) [e -+~ 2] Jlo! — o

whereas for k = 2,3 we get:

Bt (1, ") — i (1,7 < %pug,g)

24AN .
< € —alt—2jm| o —a'll.

The first part of the Lemma then follows. For the second we write

Tz (0)

Hoo(t,&") — Hoo(1,E") = Hox (1) + Hoo (1)

where

Ho0) =1 (=10)) =1 (Z60) -1 ( om0+ ( 2100).

Hu(0) = £ ( Z21e0)) ~ £ (2100,

Then, using (5.1.22) and (5.1.70), we have

|Hox ()]

<|r(Zr0) -1 (o0 +e0)

(=l +ve0) ) -1 (Z10) -1 (2 0 +veo))
+f<fy§,, )‘<fNA2A8||a—a”|

[ 1 (Gww+o) - (Zmw+o)|ao

2 2V2 )
< = Vol ) [l —
7\/ENA2A8(1+\/EH}/|| )Ha

Finally, forany t € ((2j—1)

|| < kzel|a’ —a”||.

m,(2j+1)m], j € Z, with e; = 1, we have
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Ho(t)= f (;E%(t—ij—a}O —f (;Eyl(r—zjm—a;)>
f/ < Nt —2jm— 9)> N(t—2jm—6)do.

2A;N
T

Thus

‘HOZ(I)| < e7a|t72jm\ |aj/ _ aj//| < ks efa|t72jm| ”a/ _ a//H

and similarly, differentiating with respect to #, we have

. 24>N 2 - —alt—2i / " —alt—=2jm| || o/ "
(oo (1)] < L=y ) e 2 o — g < kse 2 ol — o).
\/ﬁ \/E J J
The proof is complete. O

Now, consider the unique solution, whose existence is stated in Theorem 5.1.1, of

Eq. (5.1.73) with £(x,?) instead of z(x,7) and ﬁ V1 (1) + Tz ()] +ya(t)wo(x) +2(x,1)

instead of u(x,7):

ﬁ(xvt) =Hh (Z7y17y27<§71u38) +Ll£(y17y2) +L28(Z)

where A oA
Fl(zvylvy%éhuag) = LS(H]aH27H3)+L€(0aH27H3)7

Lie(y1,y2) := Le(0, Hy1, H31 ),
Loe(2) := Le(0,Hy, H3).
We are thinking of Fj(z,y1,y2,&, L, €) as a map from
Co([0, /4] xR) x ¥y x Y3 x X x R x Ry — CY([0, /4] x R).
We will need the following result.

Lemma 5.1.7. For any fixed, small, € > 0, Lig : Y1 x Y» — C)([0,7/4] x R) and
Ly : C)([0,7/4] x R) — C)([0,7/4] x R) are bounded linear maps whose norms
satisfy:

[Liell <2MMa|f/(0)[67",  [|Lae|l < 2M Mo|f7(0)[6". (5.1.75)

Moreover a function A(p) > 0 exists so that lin})A(p) =0 and for ||y1|| + ||y2|| +
p—

|
®

| Fi (zy1,y2,1,8,€) e

T —
< MM Vel (VEl|h]w+ 87 [h].)
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4 1 1 1 _
T e MIMNA [5 (55 +1+- ) (A+£> +25 1\/5] €
+ 2M 1 M, [8‘1A(p)+iA2Nf( +- 2, f)}
VT
(el [y2ll+llzlle=) - (5.1.76)
(i) forany &' = (E,a'),&" = (E, ") € X, @/, u”, we have

I Fi (zy1,y2, 1,8 €) = F (251,52, 1".8",€) |

1
Mlef[sf( gl )+za'} o+ o)l — "]

+2MiM2 [ 87 Ap) + 2A2Nf( + s ‘f)]

NG
(yr =51l + ly2 = 920+ llz = Zll)

e 1 2
+ 4ksM 1 M> Ve +55+- | pVelo —a|
6 0 a

1 1
10ks M M 1 "—a 1.77
+ 10ksM M€ (55 55 +1+ > ||(X o ||, 5 )

with ks being the positive constant of Lemma 5.1.6.

Proof. By following the above estimates, it is easy to derive (5.1.75) along with the
estimate

M1M27T

|Le(Hi, Ha H3) ||oo <

Vel (Velhl|e+ 87" 1Al
+2M1M26 Ayl + b2l + Jllle) - (5.1.78)

where

Alp) = sup

1]+ [y2| +1z] < p
—o0 L < o0

f (y1+\/zﬁf;;(t)+y2+z> —f <\/zﬁl—%(t)>‘ —0

as p — 0 (cf[11, Lemma 2, Eq. (3.17), (3.20)] for more details). Since f(0) =0 we
have H,(t,&) = Hzo(t,é):l—Hy(Lé) and H3(1,€) = H3o(¢,&) + H31 (1, 8), Hij(t)
defined in (5.1.75). Now, H»(,&) € C}(R) and the following inequalities hold (see
also (5.1.53)):

[ (1,6)] <

flfzz()l 7
|ﬁ120(r,§)\<7|1“5()|

|:A£ + efa|t72jmfoch ,

i Ae+e alt—2jm— ajq
|
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for (2j— 1)m <t < (2j+ 1)m, j € Z. Hence, from Theorem 5.1.1-(b), (5.1.19),
(5.1.20) we get

A A 1 1 1 2
2600, Ao )l < bt |5 (g 1) (5 ove) + 5 e e

i f
(5.1.79)
Next,

|1 (,8)] < %IQO)IHIMII + [1y2ll =+ [1z]]<o]

2 m—os
< —=MaN[Ag e M2l [[lya| 4 [ly2 ]| + [l2]| ),

Nz

R 2N
|H31(2,8)| < ﬁlfg(t)l[\lylll + [1y2ll =+ [1z]]eo]
2 .
< ﬁAzN{AS +em 2=l [y + [[yall + llzll]-

Thus, from Theorem 5.1.1(a) and (5.1.19) we obtain:

4 2 e
[[Le (0, Hzl,Hm)IIwSMleAsz( oA )[|y1||+||yz|+||1||]

NG

(5.1.80)
and (5.1.76) follows from (5.1.78), (5.1.79), and (5.1.80). Finally, we prove (5.1.77).
Using arguments similar to the above we see that

H F (ZvylvyZ’,u”vé”vg) —-hk (Zailai25””7§”76)H°°

(o3 4)

Uyt =il + lly2 = P2l + |1z = 2| ] -

< 2M M, [61A(p) +

Next,

Fi (z,y1,2,1",¢",€) = Fi(z,y1,32,1",&" )
= Le((4' —1")1,0,0) + Le(0,Hy(+, ') — Ha(+, "), Ha (-, &") — H(-, "))
+ Le(0, o (-, &) — Fao(-,"), Hzo (-, &) — Hzo (-, £"))
+ Le(0, M1 (&) — Ho (-,8"), H31 (&) — H31 (-, E"))
and hence, from Lemma 5.1.6, Theorem 5.1.1, (5.1.19) and (5.1.20) we obtain:

|| F (Z’y17y27l“",76178) -k (Z7y17y2au”7€”78)H°°

1
§4k3M1M2<\6[+63+ >pr||a o



200 5 Chaos in Partial Differential Equations

T 1 2
+opiae sV (55 1) + 3 (bl Il —u

1 1 1
10ksM Mg | — + = +1+— | |lo/ —a"||.
+10ks M M, <55+55+ +a> |
(5.1.77) then follows from the above two estimates. The proof is complete. O

Now, for given (yi(t),y2(t),z(x,1)) € Y1 x Y2 x C)([0, %] x R), we denote with
($1(1),$2(¢)) the unique solution of

50+ 37 (=00) 50 =00

o 5 (5.1.81)
0+ 21 (210 920 =00

where g;(¢), g2(¢) are the right-hand sides of Egs. (5.1.71), (5.1.72), that satisfy
y1(2jm+ aj) = 0 for any j € Z so that e; = 1. These solutions exist because of
Lemmas 5.1.2 and 5.1.3, moreover

19111 < Bllgill, (1921l < Billgzll (5.1.82)

where B and B; have been defined in Lemma 5.1.2 and Lemma 5.1.3. Note that in
the above formulas the norm on the left is the norm in ¥} (resp. ¥2), while ||g1]| =

2 sup,cr g1 (1) and [[ga]] = 2,/ sup,cp[g2(r)|. Let
61(1) = 21(0) + O {jﬁf <jﬁrg<r>> 2(0.1) +z<n/4,r>]} ,

g21(t) = g(1) +2\/zf’ (%Q(i)) [2(m/4,1) —2(0,1)].
Then (§(¢),$2(¢)) can be written as

(1) =91 (@) +910(),  92(t) = 21 (t) + $20(1)
where ($11(7),921(¢)) € Y1 x Y is the unique bounded solution of
1)+ (=20 ) 910 =110
yu p ﬁi’é yult) = guy),
2
V%3

that satisfies $11(2jm+ ;) = 0 for any j € Z so that e; = 1, and ($10(¢),$20(¢)) €
Y x Y is the unique bounded solution of

(5.1.83)

a0+ 221 (210 ) 3 0) = 1)
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() + 5.7 ( J270)) 5100 = Qg | = (Z=0) ) e00.0) ]

o)+ 25 (20 ) ) = -2y 217 (Jre0)) /4. -<00.)

(5.1.84)
that satisfies $10(2jm + aj) =0 for any j € Z so that e; = 1. We set

B (z,y1,y2.8,1,8) = (F11,921) €Y1 x Y2, Lz = ($10,520)-
Then we have the following result:

Lemma 5.1.8. L: C)([0,7/4] x R) — Y| X Y, is a bounded linear map. Moreover,
positive constants ke and ky and a function A(p, €) > 0 exist so that 0 lim A(p,e)=

€)—(0,0)
0 and for ||y yill+ 132/l + 1Z]] < p the following hold:
@

1B2(z,y1,52,8, 1, €) | < A(p, &)[llyi ]|+ [[y2ll + l|zllee] + ko |t + K7€, (5.1.85)
(i) Forany € = (E,a), & = (E, &) € X, , [i, we have

|| F2 (Z7y17y27§7“a8)7F2(’Zv737173727§7ﬁ78)”
< A(p,&)[llyt =3l +[ly2 = 2l + [l —Zl|es]
pA(p, &) +kelut| +kre] [ — &+ Kelu — . (5.186)

Proof. First we note that from Remark 5.1.5 (a) the existence follows of a constant
Ay > 0o that [|Q,, ¢l < Aq and [|Q,, ¢ — Oy er]| < Aglla’ — &”|| for any m suf-
ficiently large and any &,&' &" € X with &' = (E,a'), §&” = (E,a"). Then, L is
obviously linear and from (5.1.82) it easily follows that

8N(As4B +3B))

2

910/l + (920 <

that is, L is bounded and

Il < 8N(A4l7?r+ 3B1)

Next, it is easy to see that

2AA;

246 g2 4 104N,

Ve

gl < As{ /e8Iyl + w1l +

16AAN
/T

(& (P &) 1l + yall + Nzl + ke ]+ 2kre}

+——=—¢lnl+ A( )H|y1||+||y2|\+||Z||oo]}

_ZB
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where A(p,€) — 0as p +|&| — 0 and kg, k7 are suitably chosen. Similarly

1 -
821l < ﬂ{A(Pﬁ)[HMII + 12l + llzlleo] + ke 21}

Thus (5.1.85) follows from (5.1.81).

To prove (5.1.86), let (z(x,1),y1(),y2(t), &, 1), (Z(x,2),51(2),52(¢),E,Ji) be in
the statement of the theorem and write g“(t,z( %,t),yl( ),y2(1),&, 1, €) for
)

Z
gll( )andgll( )forgll(t Z<0 t) (7[/4 t) yl(t ) Z(I)aévua ) From Lemma 5.1.2-
(iii) and Lemma 5.1.3-(ii) we know that

~
~—
,_‘

|| FZ(Z7y17y27§7”38) 7F2(Zyl7y27§7ﬁa8)”

< Bllg11 —gu1l| +Billga1 — g1l + [crllgi ]| + érllgar]l] | — ]

where

g21(t) = g21(2,2(0,1),z(7/4,1), 31 (1), 32(¢), & , 11, €).
Now we have _
gu(t)—gn ) =Gn)+Gul(t)

G = #1200, 28/, (), 320), £ )
—gn(1,2(0,1),2(7/4,1),y1 (), y2(r), . [ &),

Gui(1) = g (1,2(0,),2(7/4,1),y1 (1), y2(t), &, Ji, €)
g (1,2(0,0),2(m/4,),51 (1), 52(), & i €)

An argument similar to the above shows that

~ 1. _ _
IGul < 55AP. &)yt =yill + 2 = Y2l + 2 = Z]les]-

On the other hand, since

11() = 0 {VES () + Tyt [ hler) it —[Ha(0.8)+ Ho(r.£)

2 [1(FR0) 1 (F270) 0+ vesi o)+

b Ger0) s ()]

we have, using also the estimate for Hy; (¢) given in the proof of Lemma 5.1.6,

Gl < 555 10me = @yl {A ()l + Iyl + 1)) + kel + 2ere
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o kel — |+ kslpA(p)(1 +-£) + (1 +p)] o~ @] }

< - [PA(p.&) + kelul + 2kt + ks (pA(p)(1 + &)+ £(1 1 p)) 1o~ ]

1 -
kel —
+5gkeln —Hl
and then
~ I ~ ~ ~
g —gnll < @{A(Pys)[llyl =il lly2 = y2ll + [lz = Zlleo] + Ko |1 — k]

+[PA(p.€) +kelu| +2kre + ks (A (p) (1-+€) +e(1+p) ) [l — ] }.

Similarly
~ | ~ ~
lez1 =821l < 55 {ACp.)lIy1 =51l + 2 =5all + 1e =2l

+ ks (pA(p)(1+)+e(1+p)) o — &l + kel — il },

hence, (5.1.86) follows from (5.1.30), (5.1.59) and (5.1.81) provided € > 0 and p >
0 are sufficiently small. The proof is complete. a

Our goal is to prove that the map (z(x,),y1(¢),y2(2)) — (2(x,2),91(¢),$2(¢)) has
a unique fixed point which is then a solution of Egs. (5.1.71)—(5.1.73). To this end,
we will make use of the following result, whose proof is omitted since it is a slight
modification of Lemma 3 in [11].

Lemma 5.1.9. Ler Z, Y be Banach spaces, Bzxy(p) be the closed ball centered at
zero and of radius p, S be a set of parameters, M C S x (0,6, and F : Bzxy(p) %
x [—[, 1] X (0,6] — Z XY be a map defined as:

Fl (Z7y7 Kmuac) +LIGY+L20Z
F(z,y,x,1,0) =

F2(Zay7 K,‘U,,G) +LZ

with Lig:Y — Z, Lys : Z — Z and L : Z — Y being uniformly bounded linear maps
for 6 > 0 small. Assume that a constant C and a function A(p,lL,0) exist so that

lim A(p,u,0) =0, and
(p,1,0)—(0,0,0) (p.4.0)

1F1 (2,3, 16 1, 0)|| < C(|u|+0)o +A(p, 1, o) Izl + [y,
1F2(z, ;16 1, 0) || < Cluf+A(p, o) Izl + [y,
1L16Fa(z,y, %, 1, 0) | < C(|u[+o)o +A(p, u, o) (2] + lIyl])

HFi(ZZJ’L K',‘LL,G) _E(Z17y17K7“7G)|| S A(P7H7G)(HZZ _ZIH + ||y2 —)’1”)
(5.1.87)
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when ||z|| + Iyl < p, lz1]| + 11l < p, and ||z2|| + ||y2|| < p. If there are 0 < A < 1

and 6y > 0 so that
ILicL+ Lag|| < A

for any 0 < o < Oy, then there exist Uy > 0, 69 > 0, p1 > 0 and p> > 0 so that for
|1] < o, kK €M, and 0 < ¢ < 0y, F has a unique fixed point (z(1,0,%),y(U,0,K)) €
Bz(p1) X By(p2). Moreover,

lz(, 0, %) |+ lly(1, 0, 6)[| < Ci(|u|+ o) (5.1.88)
for some positive constant Cy independent of (UL, 0, k), and

lz(u, 0,0/ (|| +0) =0

uniformly with respect to x, as (1,06) — (0,0), 6 > 0. Finally, (z(1,0,x),y(1,0,K))
isC', r>0,in(u,0) if F(z,y,K,1,0) is C" in (z,y,U, O).

We apply Lemma 5.1.9 with 6 = /€ <6 = (1/2)*3,S=X xN, k= (£,m,0) €
M:=X x {(m,0) eNx(0,6):m>[c3?+1} and
Fi(2,y1,2,§,14,0) = Le(H1, Hy, H3) + Le (0, Hy, H3),
B (z,y1,52,8,1,€) = (J11,521),
Lic(y1,y2) == Lie(y1,y2) = Le (0, A1, H31),
Loz :=Loez = Le(0,Hx, Hsp)
Lz = ($10,920)

where H;(t), H;(t) and H;;(t) have been defined in (5.1.75). We get the following
result.

Theorem 5.1.10. Assume that the conditions (H1)—(H2) hold and that § > 0 is a
fixed positive number so that
(H3) 2M,Ms | £'(0)] < 6.

Let I' > 0 be fixed. Then there exist positive numbers p1 > 0, po > 0, & > 0, and
Lo > 0 so that for any & € X, 0 < & < &, || < to, m > €3/* and € < T'|u|, the
integro-differential system (5.1.71)—(5.1.73) has a unique bounded solution

(Z(xatvﬂygaévgvm)7 yl(tvﬂagagvgvm)7 )’2(f7H’8’575,m))
so that
Hz(x7t7u’£757§’m)H°° < p1, Hyl(tnua&Saévm)” + HyZ(t7“7£75>§am)H <p2-
Moreover

||z(-,-7u,8,57§7m)||w+||y1(-,,u,8,5,€,m)|\+||y2(-,,u78,5,§7m)|| SCI(WH\/E)
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for some positive constant Cy independent of (L, €,&), and

HZ('a'>”a8787§7m)”°°/(|:u| +\/E) —0

uniformly with respect to (&,m), as (1,€) — (0,0), € > 0. Finally,

Z('>'7.u78767‘57m)7 yl('nu7£>6ﬂé7m)= y2(-,ﬂ,875,§,m)

are Lipschitz in o uniformly with respect to (E,m) and the Lipschitz constants are
O(Ve+|ul) for y1, y2 and o(V/€ +|1|) for z.

Proof. We shall prove that the assumptions of Lemma 5.1.9 are satisfied. Of course,
we take Z = C([0, /4] x R), Y = ¥; x Y, as Banach spaces, S = X x N and M =
{(&,m,0) | & € X,me N,m> o 3/2}. The fact that L;; = Ly and Ly = Ly are
bounded linear maps, as well as the fact that 2 = Fy(z,y1,y2,&, U, €) satisfies the
first and fourth conditions in (5.1.87) follow from Lemma 5.1.7. Similarly the facts
that L : Z — Y is a bounded linear map and F>(z,y,y2,&, U, €) satisfies the second
and fourth inequalities in (5.1.87) follow from Lemma 5.1.8 (see (5.1.85), (5.1.86))
and the assumption € < I'|u|. Thus, in order to apply Lemma 5.1.9, we only need
to prove that

1L1e(F11,321) 0 < 1|+ VE)6VE+A(P, 1, VE) (l2]leo + [y1 ]+ [[y2]]) (5.1.89)

and that
[(L1eL + Lag)z|leo < A][2[|0 (5.1.90)

for any € > 0 small enough and some A € (0,1). First we prove (5.1.89). We have

Lig(J11,921) =

Le (o,f’w) [jﬁyno) —2\/;21@)] S0) [jﬁynomﬁmmb |

Now, from (5.1.85), (5.1.86) and the definition of the norms in Y, ¥>, we see that
$11(¢) and $; (r) are bounded together with their first derivatives. Thus, using The-
orem 5.1.1(b), (5.1.85), (5.1.86), and assumption (H3) we get:

A 1 2 . .
ILie(sn San)lle < 200017 O)] 56 (5 +1) + 3vE| gl + ]

<Ve {5\/5 ((314 +5> +2] (91l + 1921 1]

< avelA(p) + Ve[S +ve) (vl + Iyl + llzll)
+eVe(|ulllh]l-+e(8ve+2))

for some suitable choice of the positive constants ¢; and & (possibly dependent on
8). Thus (5.1.89) follows. Now, we look at LcLz. We have
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LieLz = Ls<0,f/(0)[\/zﬁﬁlo(t) _ 2\/;20@)] £(0) [\/2%)710(0 +2\/§)720(l)1 )

where ($10(2),520(t)) € Y1 x Y3 is the unique bounded solution of Equation (5.1.84)
that satisfies y10(2jm+ ;) = 0 for any j € Z so that e; = 1. Let (§12(¢),922(¢)) €
Y x Y, be the unique bounded solution of

$1a0) 2 00(0) =~ e { T ( 20 ) e0) et .

alt) + 22110 =—2f f’(r:g )t/ ~<0.0)

and ($13(¢),923(2)) € Y1 x Y, be the unique bounded solution of

i3 (t) + f( )ylz():*ff( )[2(0,7) +2(7/4,1)]

);1(23( ) — = 2\/7](‘ 717/4 l‘ 0 l‘)]

We set

and note that
LigeLz = L¢ (0,Hp3(t), H33(t)) + Le (0, H3 (1), H33(1)) + Le (0, Hos (1), H33(t)) -
We know from [11, above equation (3.39)] that

|ILe (0, s (¢), A3 (1)) |o< 8M1 Mo | £/(0) | /& (205" + /&) ||2]|-»
<4/e(2a+8/e)2]len
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Then from Lemma 5.1.2—(ii) and Lemma 5.1.3—(i) we obtain:

R . 4A4NC 1 _ ali—2 im—o:
[10(0) = 91a(0)] < =72 (e et 2] .

. . 3 /(.- Cal—2jm—o:
[F20(r) = $22(1)| < 4NCy | = (o702 emeli=2im=esl2) |

fort € ((2j — 1)m,(2j+ 1)m], whereas Lemma 5.1.2—(iii) and Lemma 5.1.3—(ii)
with E = {0} and &' = o = 0, give:

4831

. . 8B . .
912 = F13]l < ;(A4+1)NHZH007 1922 = 923]| < ——N||z|»,

with the norms of the left-hand sides being in Y| and Y, respectively. Thus, Theorem
5.1.1—(a) implies, after some algebra:

7 f 8N 1
ILe (0, Ha3, H33) ||l < — (A4C+3C))
T

STt ) Vel

1/ am
using the inequality e 2 <\ /e (ﬁ) that follows from ( ) 23 e < % and

m > €3/* Next, applying again Theorem 5.1.1(b) with k> = 0 (and hence letting 8
tend to 4-c0) gives:

0 B < S 0 1)+ 08 VE [SVE () 2] -
Plugging everything together we obtain
ILieL] < KVeE
where K is a positive constant depending only on &. Thus, using (5.1.75) we get
ILieL+ Loe|| < 2M M8 |£'(0)| + K /e

and then, from assumption (H3), we see that & > 0 exists so that for any € € (0, &),
(5.1.90) holds. Since the assumptions of Lemma 5.1.9 are satisfied we obtain a so-
lution of Equations (5.1.71)—(5.1.73) provided 0 < € < &, |u| < Ho and € < I"|u].
Finally, we prove that this solution satisfies the Lipschitz condition in o € /% as
stated in the Theorem. Let ' = (E, ') € X, " = (E, ") € X and set
!

yi(t) =yi(t,1u,€,8,8" \m), y{(t)=yi(t,1,€,8,5" m),
W (t) =ya(t, 1, €,8,&"\m), y3(t) =y2(t,11,€,8,E",m),
('x’t) ( ’ 7#’87676/’ )’ Z”( 7t>7z('x7t7“ 8 6 é” )

Then (z(x.1),y1(1),2(1)) = (2 (x,1) — 2/ (x.),¥, (£) = Y} (1), 4 () — ¥4 1)) is a fixed
point of the map
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Z(x7 ) (Z(xﬂt) (x t)vyl( )+y/1/(t),y2(t)+y’1/(l),é/,,u,,8)

—F (2" (x,0), 51 (), 55(2), 8", 1, €) + Lie (y1 (1), y2(7)) + Loez(x,1,),
01(2),32(t)) = Fa(z(x,1) +2"(x,1), 31 (8) + 1 (), y2(t) + ] (), &', i, €)
FZ(Z”( ) ( ) z(t),gl/,[.l,S)-i-LZ(x,t).

(5.1.91)
From (5.1.86) we obtain

| Fa(z(x,1) +2" (x,1), 31 (£) + 37 (), y2 (1) + 371 (¢), &', . €)
_F2(Z//(x’t)vyll/(t)vyg(t)ﬂé//huve)H
< A(p,&) (1| + Iy + 1ll=) + k(|| +-2 +pA(p.e))[of — || (5.1.92)

where A(p,€) — 0 as p+¢& — 0" and k4 > 0 is a suitable constant. Thus, using
Theorem 5.1.1(b) (with k; = 0 and B = 4o0) we see that a positive constant ks
exists so that

| Lig (Fa(2(x,1) 42" (x, ), 31 (6) + 1 (1), y2(0) + 37 (¢), &', 1, €)
— (2" (x,1),57(0),55 (1), 8", 11, €)=
<ksvVe(lu|+e+pA(p,e))lla’ — || +ksv/eA(p.e)(|[y]| +|zll) (5.1.93)

for ||y|| = |Iv1]] + ||y2]]- Now we replace (y;(¢),y2(¢)) in Li¢(y1(¢),y2(¢)) in the first
equation in (5.1.91) with the fixed point of the second equation in (5.1.91). Using
Lemma 5.1.7, Lemma 5.1.8, (5.1.92) and (5.1.93), we get

2lle < A2(p, &) (YN + llzlle) + kov/E(VE + p + 1]l — [ + Allz]|ee ,

Iyl < Ai(p, &) (Il + llzll) +ka(pA(p, €) + || + &)l — & || +-[IL]l]|2]|o-
(5.1.94)
where A;(p,€),A2(p,€) — 0 as p+€ — 0" and kg is a positive constant. From
(5.1.88) we know that p = O(\/€ + |u|). Thus, if € is sufficiently small, we can
solve the first inequality in (5.1.94) for ||z||. and get:

Izll < A2(p. &) Iyl + VEO(u| + Ve) o' — o (5.1.95)

for Ay(p,€) — 0as p+& — 0F. Then we plug this estimate of ||z|. into the second
inequality in (5.1.94) and get:

Iyl < O(ul +Ve)o — "]

Finally, we plug again this estimate into (5.1.95) and obtain
Izl < o(vE+ )l — o]

The proof is complete. a
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In order to find a bounded solution, near g (1), of Egs. (5.1.6)—(5.1.8) we need to
show that the equation

G(éagal-L,(sam)
2
= m.g{\/géy'l(t,u,e,&é,m)Jr—ﬂufo”/“h(x,t)dx

\f
+V/ES Ve (1) + %f(%m (t,1,€,8,8,m)+Ik(t)]

3
—2\/;)’2(%!178757‘577”)+Z(0J7Na£757éam))

N %f(%[yl(t,u,e,a,;m) +IE(1)]

3
+2\/;y2(t7u78767€’m)+Z(Z’t7l’l”g’67§7m))

4 2 8 2
-t (e - 2

+\/§5vé(t)+\'i§(t)} -0

mr))yl(r,u?e,s,é,m)

can be solved for some values of the parameters. From Theorem 5.1.10, we know
that

Iyi(r,p.€,8,8,m)|| = O(|u| + Ve),
[y2(r, 1, €,8,8,m)|| = O(|u| + V),
||Z(x7t7u78767‘57m)”°° = 0(|/.L| + \ﬁ):

(5.1.
Hy1(t7[,L,8,57§/,m) _y1<ta.u787555//7m)|‘ < 0(|.u| + \/E)Ha/ - (X”H,
||y2(t7ﬂ78a675l’m) _y2<ta.u7£76a§//7m)” < O('“' + \/E)HO(/ - a//ll?

llz(x,t, p,€,8,8" m) —z(x,1, 1t,€,8,8" m)|| < o(|u| +VE)[[a' — |

whete & = (E,a), & = (E, o), & = (E,a"), and O(|ut| + /&), o(ju| + V&) are
uniform with respect to (&,m). Thus, we set L = /€1, where 7 belongs to a com-
pact subset of R\ {0} where the condition I'|n| > € is satisfied (possibly taking &
smaller). By multiplying the equation G(&,&,/€n,8,m) = 0 by £~'/2, we obtain
the equation:

96)

_ /4
BE.en.8m) = P {03600+ = [ bty det (e Euem,dm) | =0

~ (5.1.97)
where B(E,e,m,8,m) = £ '/2G(& &,/en,8,m). Using (5.1.70) and (5.1.97) we
see that
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”r(taéagvn753m)”°° :0(1)7

. S Y 5 ol — o (5.1.98)
Hr(t7é7ear’7 am) r(t7é 78717’ 7m)||°°—0( )Ha o H

as € — 0™ uniformly with respect to (§,1,m). Let

0 2 bl /4
:6/70071(S)2ds+ ﬁnlm/() T ($)h(x,s+ a)dxds (5.1.99)

and consider the space ¢ = C°([0,7/4] x R,R) endowed with the metric dy given
by
de(ui,) =Y 27" max  |u(x,) —ua(x,1)|.
ng\l [0,m/4]x[—n,n]
Finally we define a (weak) solution of (5.1.1) to be any u(x,t) € C([0,7/4] x R)
satisfying the identity

/:: /()7:/4 {u(x,t) [vt, (%,8) + Vyrrx (x, 1) — €Oy (x,t)} +euh(x, \@t)v(x,t)}dxdt

(5.1.100)
+£.[m {f(“(o”))v(o’t) +f(“(”/4af))V(7f/4J>}dt —0

for any v(x,z) € C*(|0,7/4] x R) so that v(x,) has a compact support and satisfies
boundary value conditions (5.1.4). Now we have the following result.

Theorem 5.1.11. Let f(x) € C?(R) and h(x,t) = h(x,t +1) € C*([0, /4] x R) be so
that (HI1), (H2) hold. Let § > 0 be a fixed positive number that satisfies (H3). Then,
if No # 0 can be chosen in such a way that the equation My (o) = 0 for n = 1o,
has a simple root o € [0,1], there exist & > 0, ] > 0 so that for any € € (0,&],
W= /en with |n —no| <7 and m > €3/*, m € N, there is a continuous map
IT: & — C°([0,/4] x R,R) so that [1(E) = ug(x,t) is a weak solution of Equation
(5.1.1). Moreover, I1 : & — II(&) is a homeomorphism satisfying

(o (E))(x,t) = I(E)(x,t + (2m/V¢))

with 6 : & — & being the Bernoulli shift. Consequently, the Smale horseshoe can
be embedded into the dynamics of (5.1.1).

Proof. We will prove that Eq. (5.1.97) can be solved for any £ € X and €, 4 and n
as in the statement of the theorem. Of course, there is nothing to prove if £ = 0 since
P = 0. Thus we assume E # 0 and recall (see Theorem 5.1.4) that P, ¢h =0 is
equivalent to [N,, ¢ +.Z, ¢]h = 0. So, we solve the equation

Nne +-L, ]{5}/5 n/ h(x,t)dx+r(t, &,e,n,é,m)}zo.

(5.1.101)
From (5.1.22) and (5.1.98) we know that the term in braces in the above equation
is Lipschitz continuous function in & € ¢3 uniformly with respect to (E,€,1n,m).
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But |-, || < Ae™™ < = 2~ (having used again 6*3e~? < 2) and in Section
5.1.6 that follows, we will see that a positive constant A exists so that | -Zer —
Lnerll <Aemm o — || < Hirello — o forany &' = (E, &), §" = (E, "),
As a consequence the function of &

gmé{(s%;( +777/ XI dx+r( év‘gvna67m)}

is Lipschitz in a € ¢§, with a O(€) Lipschitz constant which can be taken indepen-
dently of (E,n,m). Next we consider

Mg {310+ o [ b g e 8o .

From the proof of Theorem 5.1.4 we know that § ~ ||N,,, ¢|| is bounded uniformly
with respect to (§,m) (see (5.1.63)) and Lipschitz continuous func_tion in o €07
uniformly in (E,m) (actually we proved that ||N,, g/ — N, gn|| < 16;—;1\[ o’ — o).
So, using (5.1.98) we see that N, ¢ r(t,§,€,1, §,m) is Lipschitz continuous function
in o € (% uniformly in (E,m,n) and the Lipschitz constant tends to 0 as € — 0.

Finally, we consider the map from /%, into itself:

] 2 /4 __ .
& Ny, (£,a) {63/(570‘)0) + ﬁn/o h(x,t)dx} — My (a) ely  (5.1.102)

where
//?7 = {e;Mn( a])}jeZ'

It is easy to see that the j—th component of the map (5.1.102) is given by the sum of
the following two terms:

e /_ﬁmia" 10 [571 (1) + \/Zﬁn/()”/4h(x,t+aj)dx] dr,

=

= . 2 /4
7e'i/m+06j T(t) {6}/1 (t)+ﬁn/0 h(x,r+aj)dx} dt

and that the above functions are Lipschitz continuous function in ¢ uniformly in
(n,m, j) and with a O(€) Lipschitz constant, provided 1 belongs to a compact do-
main and ¢ is small. In fact, we have, for example, using also (5.1.53):

7m70£_; ) w/4 , ,m,a}/ ) /4 "
[ yl(t)/o h(x,t—i—aj)dxdt—/ yl(t)/o B, + o) dxd

J —oo

—m—ot]’- ] /4 ,
/ yl(t)/o h(x,t + o) dxdt

—m—o
m—a}

<
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—m—o /4 , "
+‘/ yl(r)/ [h(x,t + o) —h(x,t + &} )] dxdt

A
< A e e |+ ol

= 0(&) Ao+ 1) — "]

A similar argument applies to the other quantities. Next, it is easy to see that the
map .y Ly — lgis C Vin (ar,m), and its derivative, with respect to ¢ at the point
({eja0} jez,Mo) € L5 x R, is given by:

o — {My, (00) 0} jez, = Ay ().

As a matter of fact, we have:

My (a) — My (a0) — My (a0) (o — ao) = o(]| &t — )
uniformly with respect to (1, E). So, we write (5.1.101) as a fixed point equation in
g
a=a— %1{]0(%)71%77 ((X) - ‘%T/]O(aO)ilR(gagv n, 6)
where R(&, €,7,8) is Lipschitz continuous function in ¢ € ¢3 with a o(1) constant
independent of (E,m,n). Moreover, the map (¢, 1) — o — ///1/70((%0)_1///,7(06) is
C! and its a—derivative vanishes at o = o and N = No. Thus, from the uniform

contraction principle 2.2.1 it follows the existence of € > 0 and 7 > 0 so that for
any € € (0,&], |n —1no| <7 and m > £3/* m € N, the map

o— o —%0(050)71%((1) _%0(%)71R(5,8an’6>

has a unique fixed point @ = a(E,m,n, 0, €) that tends to o as € — 0 and 11 — 7o,
uniformly with respect to (E,m). This implies that for any € € (0, &), |7 — 10| <7
and m > £3/* the function

ug(x,1) = [y1(Ver,\/en,e,8,E,a(E,m,n,8,€)) + I (t) w-i(x)
+y2(Vet,Ven,e,8,E,a(E,m,n,8,€))wo(x)
+Z(x’ \/Et7 ﬁn78757E7a(E7m’n7578))

is a solution of (5.1.101) near Yz (z) defined as

y(zﬁ(ﬁ;_zjm_ao)), for (2j—1)m < /et <(2j+1)m

yo(t) = and e;=1,

0, for (2j—1)m< et <(2j+1)m
and ¢;=0.
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Since ug (x,2jme~"/?) is near to u = 0 if ¢; = 0 or to u = }/( - 2@0@) # 0 if
ej = 1, we see that for € sufficiently small, the map IT : E — ug is one-to-one and
the choice of E determines the oscillatory properties of ug(x,7) near y(r). More-
over, ug(x,t) is the unique solution of (5.1.101) that satisfies the above oscillatory
property and can be written as a totally convergent series:

Z MIE Wl

i=—1

Let 0 : & — & be the shift map defined by 6({e;} jez) = {€j+1} jez- Then ug(g) (x,1)
has the same oscillatory properties between u = 0 and u = }/( — 2\/% (Xo) # 0 as

ug (x,t +2me~"/2). But we have

uE(x,t + 2m871/2) = Z u,-_’E(t +2m871/2)wi(x)
i=—1

and the series is again totally convergent. Thus, because of the uniqueness, we ob-
tain:

Ug(g)(x,1) = up (x,t +2m/ /).

We now prove the continuity of Il, with respect to the topologies on & and
€ =C ([07 /4] x RR) induced by the metrics de and dy. First, we observe that
Theorem 5.1.1 implies the existence of a positive constant ¢y so that for any E € &,
the components u; g(t) of ug (x,t) satisfy:

Ui elleo < co/ (U7 +1), ]l < co (5.1.103)

with ¢( being a suitable constant (see (5.1.13), (5.1.14)). Hence, for any R > 0 there
exists ng € N so that, for any E € &, we have

lug (x,1) — Zu,E wi(x)]| < 1/R.
i=—1
Now, let {E;} jcn be a sequence in &. From (5.1.103) and the Arzela-Ascoli the-

orem 2.1.3 the existence follows of a subsequence { j,(c_l)} of { j,({_z) :=k} so that

U-1E ) (t) converges uniformly in any interval [—n,n]. Then another application
Tk

of the Arzela-Ascoli theorem 2.1.3 implies the existence of a subsequence { j,(co)}

of { j,(c_l)} so that ug g , (t) converges uniformly in any interval [—n,n]. Proceeding
T

in this way, for any i = —1,0,1..., we construct a subsequence {j,({i)} of {j,(ci_l)}
so that u; g @ (t) converges uniformly in any interval [—n,n]. Then, we use Cantor
T

diagonal procedure to see that for any i = —1,0,1... the sequence u; g It )( ) con-

verges uniformly in any interval [—n,n]. Now, let E;, be a subsequence of E; so that
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forany i = —1,0,..., uig,, (t) converges to a continuous function u;(¢) uniformly
on any compact subset of R. We have just proved that the set of such subsequences
is not empty. From (5.1.103) we obtain ||u;]j« < co/(u? + 1) and hence the se-
ries Yo | u;(¢)wi(x) is totally convergent and defines a continuous function u(x,?).
Moreover, for (x,t) € [0, ] x [-n,n] and any R > 0, we have

ug; (x,1) — u(x,t)‘ <

no
ug;, (x,1) — 'Zl ui k5, (1)wi(x)
=

0

+M; Z

i=—

u(x,t) — i(i u;(t)w;i(x)].

i=—1

i (1) = (1) +
So, o
limy oo |ug; (x,1) —u(x,1)] <2/R.

As a consequence, ug;, (x,t) — u(x,t) uniformly on compact sets. Thus the follow-
ing statement holds:

for any given sequence {E;} jen in & there exists a subsequence {Ej, }ren so that
{quk (x,1) }ren converges uniformly on compact sets to a continuous function

u(x,t) = ‘i1 u; g (t)wi(x)

with the series being totally convergent and u(x,t) being a weak solution of (5.1.1).

Now, assume that II is not continuous. Then E,E; € &, j € N exist so that
dg(Ej,E) — 0, as j — oo but dy (ug;,ug) is greater than a positive number for any
Jj € N. Passing to a subsequence, if necessary, we can assume that ug;(x,t) con-
verges uniformly on compact sets to a weak solution 7(x,?) of (5.1.1). Then, for any
(x,1) €[0,%] xR, we have

(e 1) = ve ()| < ug;, (1) = 4(x,0)| + lug, (x1) = Vg, ()] + |vg,, (1) — v @)
and hence, passing to the limit for n — oo:

Ji(x,1) = ye ()] < suplug;, — Ve, [loo +Timp oY, (1) = Ve (1)]-

But, since d¢(Ej, E) — 0 we see that for n > 7(e,t) we have ¥g, (t) = ye(t). So
ii(x,t) is orbitally close to Yz () and then, because of uniqueness,

i(x,t) =ug(x,t) =II(E)

contradicting the assumption that IT was not continuous. The proof is complete. O
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Remark 5.1.12. (a) If (H2) fails so that linear equation (5.1.10) has a two-dimensional
space of bounded solutions on R, then we can perform again the above procedure but
we get a two-dimensional mapping like (5.1.99) of the form My (a, ), (, B) € R?
(cf Section 4.1.3) and the existence of a simple root of function My (¢, B) implies a
result similar to Theorem 5.1.11.

(b) Assuming also that f is odd, i.e. f(—y) = —f(y), then we get the additional
homoclinic orbit (0,7%(t)) := (O, %\/gy(Z %t)) for (5.1.9) and we can repeat
the above approach by assuming the non-degeneracy of 7 (¢) as in (H2). We get in
this way another chaotic solutions of (5.1.1) when the corresponding mapping like
(5.1.99) has a simple root. We do not perform here such computations.

(c) If we consider in (5.1.1) the time scale 1, i.e. we have A(x,t) in (5.1.1), then
(5.1.2) becomes a rapidly oscillating perturbed problem. So we should arrive at an
exponentially small bifurcation problem [12, 13].

5.1.5 Useful Numerical Estimates

To get more information on condition (H3), we give in this section a numerical
estimate of the constants M and M, (see (5.1.16)). For this purpose, we recall [2]

4

i) = | cosh(puen) + cos(per) - cosh&; — cos

sinh & —sin&;

(sinh(pex) + sin(ukX))} ;

(5.1.104)
where & = /4 are determined by the equation cos &, cosh&, = 1 and the con-
stants Wy are given by the formula

cosh &, —cos &

Wi = cosh 0S G —
= cosh&+cos o sinh & —sin&;

(sinh& +siné&). (5.1.105)

We first evaluate Wj.. Numerically we find & = 4.73004075. Moreover, 0 < & <
& < --- and so cosh&; < cosh&, < ---. Since & ~ m(2k+ 1)/2 and cos(m(2k +
1)/2) =0, we get

<2e %

[sin 6| - [& — w(2k+1)/2| = |cos G —cos(m(2k+1)/2)| = cosh& —

fora 6 € (&, m(2k+1)/2). But we have

1> [sin&] = /1 —cos2& > /1 —cos? & =0.999844212,

since 0 < cos&, = sech&; < sech&; = cos&;. Next, we can easily see that in fact
(4k —1)1w/2 < Exy—1, &y < (4k+ 1)1/2 and function cosx is positive in intervals
(&, m(2k+1)/2) for any k € N. So function sinx is increasing in these intervals,
and it is positive on [Ey, (4k+ 1)7/2] and negative on [(4k— 1)7/2, & 1]. Hence
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sin&y = /1 —cos?&,;. Using also cosh&; = ﬁ and sinh& = \/cosh? & — 1

form (5.1.105) we derive Wy, = —2. Similarly, from sin&y;,_; < 0, k € N we derive

sinéy_1 = —+/1 —cos2 &1 and then Wy, = 2. Consequently, |W;| = 2 for any
n € N. Next, (5.1.104) implies

Wi ()]
2 cosh & sinh(pyx sinh &, cosh &,
<~ (|cosh —‘ I
- ﬁ(‘cos (be) = sinh &, —sin&; 1+ cos Gy sinh& — 1 sinhék—l>
< 2 (Sinh (e (5 —x)) +2cosh &+ cos & smhék )
=T sinh&, — 1
2 inh 2cosh h
< —(Sm &1 +2c0sh§; +cos &y sinh &y +1) = 45949831827 .
VT sinh&; — 1

Hence M| < 4.594983183. Now we estimate M,. From the above arguments we
deduce |sin 6| > |sin&| > |sin&;| = 0.999844212. This gives

e % =0.017654973.

B 2(2k+1)/2) < —>
[sin&;|

So we obtain & >~ ZkH) —0.017654973 > mk. Consequently, we arrive at
|& — m(2k+1)/2] < e 5 < 2 ok o T ook (5.1.106)
|si <§ © |sin&;| 4
for ¢ = 2.546875863. Furthermore, since & > &; > 4, we have
‘ 4 ’ ‘ 2 ‘ & —m(2k+1)/2 < 3 ok
ék 2(2k+1) ék w(2k+1) Em(2k+1) ~ 16|siné | ’
Hence, we arrive at
& iyl < K s e
=& (2k+1 - 16|s1n§1| ~16|sinéy| 1 —e 7
= 5.51594097~ 1011,
Thus
Y 1/
k=1
)1 4 4 & 1 1
B SIS | LRSS S N S
k; k ,; 2 m2(2k+1)2 7r2k§6(2k+1)2 7r2k=26(2k+1)2

<i1/§2+;i+1—4i L 0.09438295.
- kT 16|sing [ 1—e ™ ' 2 « (2k + )’
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This implies M, = %ZM 1 kgl 1/ ékz < 1.07008241. In summariy, we see that condi-

tion (H3) holds if
9.8340213469 - |f'(0)] < &

Finally, we note that wy(x) and wy (% — x) solve the same eigenvalue problem
Uprrr(X) = et (x), ey (0) = ey (T/4) = 13 (0) = e (w/4) = 0.

Since {wy | k € N} is an orthonormal system in L?([0,7/4]), we see that wy(x) =
+wi (§ —x). But wy(mw/4) =4//7 and wy.(0) =4/+/7 when k is odd, and wy (0) =
—4/+/7 when k is even. So wy; (% —x) = —wy(x) and wor_ (% —x) =wor_1(x),
Vk € N.

5.1.6 Lipschitz Continuity

Here we prove the Lipschitz continuity property of the linear map %), ¢ : L”(R) —
£ defined as

Lneh) ={L e i(h)}jez

with respect to o uniformly in E € & and m > mg. We start with the family of linear
maps L, ¢ : 7 X €7 — {7 x £~ defined as

Lm,?,‘ (575) = {Lm,é,j(avz)}jEZ

where a = {d;} jez, b={b j} jez and prove that it is Lipschitz continuous function
in o uniformly withy respect to (E,m), E € & and m > my.
As in the proof of Lemma 5.1.2, u(¢) denotes the (unbounded) solution of X +

%f’ (%% (t))x = 0 so that u(0) = 1 and #(0) = 0. For simplicity we also set:

a(r) = ;u((tt)) and note that 7(¢) is uniformly continuous in R since ,li»rfmﬁ(t) =+l

(see (5.1.49)). Moreover we have

£ ()25 182 ) () -
dii

as t — Foo. Hence %/ (¢) is also uniformly continuous in R. As a matter of fact, 4(r)

is Lipschitz continuous function with constant, say, A, since % (¢) is bounded on R.
Now, let £ = (E, o), &' = (E, ') be elements of X and consider the difference
Ly ¢ — Ly, ¢r. From (5.1.47), (5.1.48) we see that for any a@ = {d; } jez, b = {b;} jez.

we have
a 0
[Lm,§ _Lm,é’] (5) = (E) (5.1.107)

with B = {Ej}jEZ and



218 5 Chaos in Partial Differential Equations

Bj = [d(—m— ot} 1) —i(—m—aji1)]ej1dj1 + [@(m— o) — d(m— a})]e;b,.
(5.1.108)
Then we have, using the Lipschitz continuity of 4(z):

|Bj| <la(m— oj) —as(m— o) |bj| + [a(=m — &, ) —d(=m — a1 lajp]
<Alaj — ol bl +Alajer — oy |dj| < Allo— o || [||a]]ee + [|5]]-o]

As a consequence, B
||Lm_§ 7Lm’§/||oo <Alla—ad'| (5.1.109)

uniformly with respect to (E,m), E € & and m > mg. Then the same conclusion
holds for the inverse map L 1‘:. In fact, from L);l\g -L 1‘:/ = L;_lg (Lo —LinelL, 15/

we obtain HL;% fL’;lg,H < 9A| o — ||, since ||L*~1‘5 | <3 (see (5.1.51)). Now,

m

aj b
u(-m—oy) ulm—oy)

e j(h) = —€jh(0)

where (a@,b) is obtained by solving the equation Ly¢(a, b) = (Agh,Bgh) and Agh,
Bgh are the linear (in h € L=(R)) maps defined by the right-hand sides of Equations
(5.1.44)—(5.1.46):

Agh={(1-€;)Ci— (1 —ej11)Cjr1—e;Dj(e)) —ejn1Djr1(@je1) } oy
Beh={—(1—¢;)C;— (1—ej11)Cjr1 —¢;Fj(0) —ejr1Fjs1(0js1) } sy

where

L 1 /<2j+1)me*“(<2]“>”’*5)h(s)ds
2a J@j-1)m 7

¢ - 1 /’(2]+l)m 1) (s,
2a. (2j-1)m

Q2j+1)m
Dj(a) = /2 e V@l 2jm— ch(s)ds

R 2jm+o
Do) = /(zjil)mv(—m— @)u(s —2,jm — a)h(s)ds,

1 r@j+D)m ) )
Fi(a) = o /ijHx v(im— o)u(s —2jm— a)h(s)ds

R 1 r2imt+o
Fi(a) = 7/ v(—m—o)u(s—2jm— a)h(s)ds.
alJej-tm

So, if we prove that the linear map h — (Agh,Béh) is bounded uniformly with re-
spect to £ € X and Lipschitz continuous function in & uniformly with respect to



5.1 Beams on Elastic Bearings 219

(E,m), we get that %), ¢ (h) is Lipschitz continuous function in & uniformly with
respect to (E,m) and that the Lipschitz constant is O(e~*") = O(¢g) as € — 0 uni-
formly with respect to (E,m). Now, the fact that Agh, Bg¢h are bounded uniformly
with respect to & € X easily follows from

max {|C;|,ICil } < 5z [|All

. (5.1.110)

max {|D;(a)l, |D;(e)l, |Fj(e)], |Fj(a)| } < gllAlleo-

Then it is enough to study the Lipschitz continuity of the maps
(&.h) = {Dj())ej} ;qr (&.h) = {Dj(a)e))} ey S

(&.h) = {Fi(a)ej}icqr (&:h) = {Fi(aj)e)} ey

with respect to or. Writing D;(ct,m), D i(a,m), etc. to emphasize dependence on m
we see that

Dj(a,m):—D_j(Ot,—m), Fj(oc,m):—F_j(Oc,—m).

Thus we only need to look at D;(o) and Fj(a). We focus our attention on the map
(&,h) — {Dj(aj)e;}, & = (E,a), Fj(ct) being handled similarly. First, we look at
the difference D;(t”) — D;(7’), where 7/, 7" € R, 7 > 7/ and |7'|,|7"| < 2. We see
that D;(7”) — D;(7’) equals:

(2‘]+1)m 7 7 / /
/ [vim—1")u(s—2jm—1") —v(m—t")u(s—2jm—1")| h(s)ds
2jm+1"

2]m+r”
—/ v(m—1")u(s —2jm—1')h(s)ds.
2jm+1’

Then (5.1.34) implies

ZJM+T / / 1! /
/ v(im—1)u(s —2jm— 1t )h(s)ds| < k||h||t" — 7
2jm+1

Similarly, we get

2j+1)
/2 [v(im—1")u(s—2jm—1") —v(m—")u(s —2jm—7')| h(s)ds

Jjm+1"

1

/2::::’” (/; im—1)u(s—2jm—1)—v(m—1)u(s—2jm— ‘L')]dr)

-h(s)ds

2k
< —[hll=l7" =7l
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Consequently, we obtain

2k
() = Dy(e)] < (T +k) ol = 7.

Thus (§,h) — {Dj(ej)e;} jez is Lipschitz continuous function in o with the con-
stant za—k + k independent of (E,m). Similarly we can prove the global Lipschitz con-
tinuity in o of Fj(a). This completes the proof of the uniform Lipschitz continuity

in ot of £, ¢ (h). Note that when i € L, the maps in (5.1.111) are not differentiable
in o.

5.2 Infinite Dimensional Non-Resonant Systems

5.2.1 Buckled Elastic Beam
To motivate the ideas of this section consider the partial differential equation
T
ji=—u"" — P + [/ u/(s)zds} U’ —2poii+ Ly cos @t (5.2.1)
0

where Py, U1, W, @y are constants and u is a real valued function of two variables
t € R, x € [0, 7], subject to the boundary conditions

u(0,t) =u(m,t) =u"(0,t) =u"(7,t) = 0.

In (5.2.1), a superior dot denotes differentiation with respect to ¢ and prime differ-
entiation with respect to x. This is a model for oscillations of an elastic beam with
a compressive axial load Py (Figure 5.2). When P, is sufficiently large, (5.2.1) can
exhibit chaotic behavior. The first work on this was done in [3]. Some more recent
work on the full equation is in [4, 14]. An undamped buckled beam is investigated
in [15] to show Arnold diffusion type motions. We will discuss some of them in
more detail when we return to this problem in Section 5.2.6.

In (5.2.1) substitute u(x,7) = Y. ux () sinkx, multiply by sinnx and integrate from
k=1

0 to z. This yields the infinite set of ordinary differential equations

, Ty . 1=(=1)"
ii, = nz(Po — nz)u,, — Enz Lg{l kzud Uy — 2k, + 24 {fm)} cos myt,
n=1,2,....
We see that the linear parts of these equations are uncoupled and the equations
are divided into two types. The system of equations defined by 1 < n?> < Py has

a hyperbolic equilibrium in origin whereas for the system of equations satisfying
n* > Py, this equilibrium is a center. For simplicity let us assume 1 < Py < 4. Then
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L cos apt

Fig. 5.2 The forced buckled beam (5.2.1).

only the equation with n = 1 is hyperbolic while the system of remaining equations
has a center. To emphasize this let us define p = u; and ¢, = u,, 1, n=1,2,.... The
preceding equations now take the form

N T

— 2,2
p=ap )

> 4
PP+ Y (k+ 1)%14 P=24p+_pucosant, (52.2a)
k=1

=)

. T
Gn = —aqn— 5 (n+1)? | P+ Y (k+1)°G¢ | g
k=1
1— _1)n+l
—2U>g 2 —_—_— t 5.2.2b
Uy + Hl[ 2+ D) ]coswo ) ( )

n=1,2,...

where we have defined @ = Py— 1 and @7 = (n+1)* [(n+1)* — By|. In (5.2.2) we
project onto the hyperbolic subspace by setting g = 0 in (5.2.2a) to obtain what we
shall call the reduced equation. In our example this is

T
2

4
p=da*p— p3—2,u.2p'+;,u.1 oS Wyt (5.2.3)
We see that this is the forced, damped Duffing equation with negative stiffness for
which standard theory yields chaotic dynamics (cf Section 4.1). The purpose of this
section is to show that the chaotic dynamics of (5.2.3) are, in some sense, shadowed
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in the dynamics of the full equation (5.2.2). To put our example in the first order
form we define x = (p, p) and

y=1(91,91/01,92,¢2/m,...).

Equations (5.2.2 a and b) now become

X1 = X2,

xz—axlf—

X2+ Z (k+1) y%k_I] X1 (5.2.4a)

—2px; + ;m oS @yt ,

Von-1 = @WpYon,

. n+1 >
Yon = —@pyon—1— 7 (nt1)? X+ Y (k+ 1% | yan1 (5.2.4b)
2 o k=1
2 +2 - (=) cos Wyt
Moyon + 241 2+ 1o, Wot.

For these equations we define the Hilbert space
Y= {y={yn}fl | wmeR, Y 003, +3) <°°}
n=1

with inner product (u,v) = ¥ @2(t2,—1V2n—1 + U2,v2,). By a weak solution to
n=1

(5.2.4) we mean a pair of functions xo : R — R?, yo : R — Y so that xy is differ-

entiable and y( has a derivative yj — £2, which satisfy (5.2.4a) pointwise in R2,

(5.2.4b) pointwise in ¢2. Note that in this case we have
(ur,u2,...) = (x,p1,p2,---), X+ Z a),%pﬁ < oo,

(1, i,...) = (%, p1,p2...) € £

so that for the original differential equation (5.2.1), u € H*(0,7) NH} (0,7) and i €
L?(0,7). This is discussed in [5]. In the next section we will formulate an abstract
problem for which the hypotheses will consist of the essential features of (5.2.4).
We have already mentioned one of them: when y is set equal to zero in (5.2.4a)
the resulting equation is the transverse perturbation of an autonomous equation with
a homoclinic solution. To see another important property we linearize (5.2.4b) in
origin which yields the system of equations

Vop—1 = Wy Vo,
. (5.2.5)
Von = —Wpvay—1 — 2H2V2,, nEN.
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Note that for each n we get a pair of equations uncoupled from the others and for
|12| < @, we have a fundamental solution for (vo,_,v2,) given by

~ .~ @, . .
cOS @yt + & sin @yt — sin @yt
n a)l‘l — t
Va(t) = e 2
W, . . ~ H .
—— S1n Wyt COS W, — — SIN Wyt
n wn

where @, = /®? — p13. This solution has the properties V;,(0) = I and

Vat)Vals) ™ | = Va()Va(=5)| = [Vl = 5)| < KeH2C7),

where K > 0 is independent of n. Using the sequence {V, },”_, we can define a group
{Vi, (1)} of bounded operators from Y to Y by

Yan—1 ]

Yan

(Vuz (t)y)2 ~1
[ ! = Va(t)
(Vllz (t)y) 2n
Then |V, (1)Vy,, (5) 7| < Ket2071) For y0 € Y, y(t) = V), ()y° is the weak solution
to (5.2.5) satisfying y(0) = y°. If we retain the forcing term from (5.2.4b) we obtain
the system of nonhomogeneous variational equations

Vop—1 = WpVop,
Von = —WnVan—1 — 22V2n + Hi Vi COS Wt

21— (1]

n(n+1)w,
nonresonant case, i.e. @, # @y, the precedent has a particular solution in Y with
components given by

where v, = . Here we encounter the question of resonance. In the

vau1(n)] Vs 0, (®? — 0F) cos ot + 21y @y @, sin Wt
Von (t)

(07 = @F)> 413075 | — (02 — @2) sin wot + 2202 cos ot |

We make the existence of such a solution a separate hypothesis.

Finally, we mention other work on chaos in partial differential equations. For the
complex Ginzburg-Landau equation in the near nonlinear Schrédinger regime, i.e.
perturbed nonlinear Schrodinger equation, existence of homoclinic orbits is proved
in [7,16, 17], and existence of chaos is shown in [8, 18] under generic conditions.
For perturbed sine-Gordon equation, existence of chaos and chaos cascade around a
homoclinic tube was proved in [19-21]. For the reaction-diffusion equation, entropy
study on the complexity of attractor is conducted in [22-24]. Chaotic oscillations of
a linear wave equation with nonlinear boundary conditions are shown in [25]. The
development of chaos and its controlling for PDEs is summarized in [26,27].
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5.2.2 Abstract Problem

Using the example in the preceding section as a model we now develop an abstract
theory. Let Y and H be separable real Hilbert spaces with Y C H. We now consider
differential equations of the form

X :f(xayauvt) = fO(xvy) +:ulfl ()C,y,[.t,l) +”2f2(xaynu“7t)a

(5.2.6)
y=g(x,y,l,t) = Ay +go(x,y) + H1V cos ot + Urga (X, y, i)

withx € R, y € Y, u = (i, 1p) € R%, v € Y. We make the following assumptions
of (5.2.6):

(H1) A € L(Y,H).

(H2) fo € CHR"xY,R"), f1, o € C*H(R" x Y x R? x R,R"), g9 € C*(R" x Y, Y) and
g2 €CHR" x Y x R2,Y).

(H3) fi and f; are periodic in ¢ with period T = 27/ ay.

(H4) f5(0,0) =0 and D5 fy(x,0) = 0.

(H5) The eigenvalues of Dy fy(0,0) lie off the imaginary axis.

(H6) The equation x = fj(x,0) has a nontrivial solution homoclinic to x = 0.

H7) go(x,O) = gz(x,o,‘l.l) =0, D]zgo(0,0) =0and Dzzg()(x, 0) =0.

(H8) There are constants K > 0, d > 0 and b > 0 so that when 0 < || < 6 the
variational equation v = (A + 2D,g(0,0,0))v has a group {V,, ()} of bounded
evolution operators from Y to Y satisfying |Vy, (t)Vy, (s) 7| < KePH2(—1),

(H9) There is a constant K > 0 so that the nonhomogeneous variational equation
v =1[A+ 12D1£>(0,0,0)] v+ pt; v cos myt has a particular solution y: R — Y sat-
isfying |w(z)| < K| ||v].

By a weak solution to (5.2.6) we mean a pair of continuous functions xp : R —
R", yo : R — Y so that xq is differentiable and yy has a derivative yy : R — Hi,
which satisfy (5.2.6) pointwise in H. By (H8) we mean that Vj, (s) ™! =V, (—s),
Vi, () 0 Vi, (t) = Vi, (s +1), Vi, (0) =T and that for yo € Y, y(r) = Vy, (t)yo is the
weak solution to v = [A + 12 D»£>(0,0,0)] v satisfying y(0) = yo.

5.2.3 Chaos on the Hyperbolic Subspace

The reduced system of equations for (5.2.6) is

= f(x,0,u,1) = fo(x,0) + 1 f1(x,0,,7) + p2 f2(x,0, 1) (5.2.7)

with x € R". By (H6), (5.2.7) has a nontrivial homoclinic solution y when ¢t = 0. The
variational equation along ¥ is the linear equation & = D fy(y,0)u and its adjoint
variational equation

v=—D1fo(7,0)"v. (5.2.8)
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By repeating arguments of Section 4.2.2, we have the following result (cf Theorem
4.2.1).

Theorem 5.2.1. Let M be as in (4.2.6) or (4.2.7) and suppose Lo, Oy, Bo are such
that M(po, 0o, Po) = 0 and D4 g\M (Lo, 0o, o) is nonsingular. Then there exists
an interval J = (0,&] so that for each & € J the equation x = f(x,0,Eo,t) has
a homoclinic solution Y to a small hyperbolic periodic solution. Furthermore, Yg
depends continuously on &, limg_o Yz (t) = y(t — o) (or =Yg, (t — &), respectively)
uniformly in t and the variational equation along Vs has an exponential dichotomy

on R.

Then we can show chaos for the differential equation x = f(x,0, & to, ). For this,
first, foranym € N, § € Jand E = {e;} jez € & (cf Section 2.5.2) define the function
Ye Em € LOO(RJRn) by

( Ye(t —2jmT),if (2j—1)mT <t < (2j+1)mT and e;=1,
Yepm(t) =
SEm 0, if (2j—1)mT <t<(2j+1)mT and e;=0.

Now following arguments of Sections 3.5.2 and 5.1.4, we obtain the following ver-
sion of Smale-Birkhoff homoclinic theorem 2.5.4.

Theorem 5.2.2. (a) Ler Ly, o, Po, & be as in Theorem 5.2.1. Fix & € (0,&] and
let Ye be obtained from Theorem 5.2.1. Then there exist an & > 0 and a function
€ — M(€) € N so that given € with 0 < € < & and a positive integer m > M(€)
the equation % = f(x,0,&y,t) has for each E € & a unique solution t — xg(t)
satisfying
|xE(t)_7§,E,m(t>| <eg, VieR.

(b) xg depends continuously on E and xg(t +2mT) = xqg)(t) where o is the
Bernoulli shift on &.

(c) The correspondence ¢ (E) = xg(0) is a homeomorphism of & onto the com-
pact subset A of R" given by

A= {xp(0) | E € £}

for which the 2mth iterate F>" of the period map F of (5.2.7) is invariant and satis-
fies F*o¢ = ¢ oo.

Theorem 5.2.2 asserts that the following diagram is commutative.
& &
!l ls
A

A
This means that F2 : A — A has the same dynamics on A as the Bernoulli shift &
on &. Consequently, F>™ is chaotic on A, so (5.2.7) is also chaotic. This construc-

lo2

F2m
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tion is sometimes referred to as embedding a Smale horseshoe in the flow of the
differential equation.

5.2.4 Chaos in the Full Equation

Since the homoclinic orbit ¥ obtained in Section 5.2.3 is hyperbolic the variational
equation i = Dy f( Ye,0, & Uo,t)u has an exponential dichotomy on R with constant
K. Now, by Section 4.2.3, K tends to infinity as & — 0. For this reason we consider
the following modification of (5.2.6)

.X.: :f(x7y7“7l7t) ::f(x7ly7“’t)a

(5.2.9)
y :g(x7yau7)~7t) Z:Ay+g()(x7y)+A,U1VCOS(DOZ+,U2g2(X,y,,LL)

for a parameter A € [0, 1]. Now let (Lo, &, Bo) with Lo > 7 0 and ¥¢ be as in Theorem
5.2.1. Following the arguments of Section 4.2.3, we obtain a constant é_o and for each
& € (0,&p] a homoclinic orbit

L(A,8)(1) = (I(A,8)(1),13(1,8)(r))
for (5.2.9) with u = & iy so that

Ii(A,8)(t) — y(t—ao) (or — ¥, (t — o), respectively),
and G, E)(1) -0

as & — 0 uniformly for A € [0, 1]. Moreover, we have I'(0,§) = (¥%,0) and I'(1,£)
is a homoclinic solution for (5.2.6). The linearization of (5.2.9) with u = & iy along
I'(4,&)(¢) has an exponential dichotomy on R with dichotomy constants uniformly
with respect to 0 < A < 1 and fixed . Analogous to the construction in Section
5.2.3, for each E € &, & € (0,&)] and m € N we construct from I'(1,&) a corre-
sponding

l—k(k,é,m) = (H,E(Avgvm)vl—é,E(lvg,m))'

Similarly, from y: we obtain ¥ g ,,. Then we have I3 £(0,&,m) = ¥ g ,, and also
I3 £(0,&,m) = 0. Using the uniform exponential dichotomy, following Sections
3.5.2 and 5.1.4, we now obtain the following extension of Theorem 5.2.2.

Theorem 5.2.3. (a) Let [y, 0o, Po be as in Theorem 5.2.1 with [y, # 0. Fix & €
(0,&)] and let T'(A,&,m)(t) be obtained above. Then there exist an & > 0 and a
function € — M(€) € N so that given € with 0 < € < & and a positive integer
m > M(g) Eq. (5.2.9) with u = E g has for each E € & a unique weak solution
t— (xE,,l (t),yE2 (t)) satisfying

() —Ee(, 6m) (1) +yea(t) e, 6m) (1) <& VieR.
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(b) The functions (xEJL (t),yeA (t)) depend continuously on E, A and we also
have xg ;. (t +2mT) = xg(g) 2 (t), Ye A (t +2mT) = Yo (£) 2. (1)

(¢) The correspondence ¢; (E) = (x5 2(0),y£.4(0)) is a homeomorphism of &
onto the compact subset Ay, of R" XY given by

Ay = {(xE,)L(O)vYE,l (0>) |E € é"}

for which the 2mth iterate Ff’" of the period map F) of (5.2.9) is invariant and
satisfies Ff’” oy =@ o00.
(d) (xe,0(t),ye0(t)) = (x£(t),0) and ¢o = ¢ where ¢ is as in Theorem 5.2.2.

In summary, we obtain the following main result.

Theorem 5.2.4. Suppose (H1)—(H9) hold. Let M be as in (4.2.6) or (4.2.7) and sup-
pose (Lo, 0o, Po) are such that M(Uo, 0%, Bo) = 0 and D g\M (Lo, %, o) is non-
singular. Then there exists 5_0 > 0so that if 0 < & < é_o, if the parameters in (5.2.6)
are given by 1 = &y, and Uy # 0 then there exists a homeomorphism, ¢, of &
onto a compact subset of R" X Y for which the 2mth iterate, Flzm, of the period map
Fi of (5.2.6) is invariant and satisfies F]Z’” 0@ = ¢100. Here m € N is sufficiently
large.

We might paraphrase Theorem 5.2.4, loosely, say, the Smale horseshoe embed-
ded in the flow of the reduced equation (5.2.7) is shadowed by a horseshoe in the
full equation (5.2.6).

5.2.5 Applications to Vibrating Elastic Beams

We now return to the example in Section 5.2.1 and apply our theory to the prob-
lem of vibrating elastic beams. We shall consider a number of different cases and
generalizations. In each case our procedure will be:

(i) Use a Galerkin expansion to convert the partial differential equation to an infi-
nite set of ordinary differential equations as (5.2.6).

(i) Truncate the equation to get the finite problem(5.2.7).

(iii) Apply Theorem 5.2.2 to getting a Smale horseshoe for the finite problem. For
this we must verify (H1) through (H6).

(iv) Use Theorem 5.2.4 to lift the horseshoe to the flow of the original partial differ-
ential differential equation. This requires (H7)-(H9).

5.2.6 Planer Motion with One Buckled Mode

The boundary value problem for planer deflections of an elastic beam with a com-
pressive axial load Py and pinned ends is
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T
ji=—u"" — P + {/ u’(s)zds} u’ —2up1+ Uy cos wt,
0
u(0,t) =u(m,t) =u"(0,t) =u"(7,t) =0

where u(x,t) is the transverse deflection at a distance x from one end at time 7. We
consider the y; terms as perturbations. Our first step is to consider the linearized,
unperturbed problem. We compute the eigenvalues in origin to be 4, = n?(n* — R)
with corresponding eigenfunctions @,(x) = sinnx for n = 1,2,.... For small P the
origin is a center. As P is increased the first bifurcation occurs at Py = 1, the first
Euler buckling load. The corresponding eigenfunction, ¢; (x) = sinux, is referred to
as the first buckled mode. The second bifurcation occurs at Py = 4. Thus, the simplest
case, which we now consider, consists of 1 < Fy < 4. In the first equation we define

aziﬂ,lip()fl.

The eigenvalues for the center modes, or unbuckled modes, provide the frequencies
used in (5.2.6) as we define

W} =d=n*[n* =R, n=23,....

=

We now use the eigenfunctions for the Galerkin expansion u(x,t) = Y, u(#) sinkx
k=1
and obtain the system of equations

i = n*(Py — n®)u, — gnz [ E kzuﬂ uy,
k=1
(5.2.10)
. 1—(=1)"
—2Uptty, + 2 | —————|cosmpt, n=1,2,....
nn
To obtain a first order system as in (5.2.6) we define
x:(ulvul)a y:(MZ,”Z/(D],M?,,Il?,/(DZ,...).
The reduced equations are
).Cl =X2,
(5.2.11)

. 2 T 3 4
Xo=a"x; — le —2Upx> + ;Hl cos Wyt

obtained by setting y = 0 in the hyperbolic part. When u = 0, (5.2.11) has a homo-
clinic solution given by y = (r,7) where r(t) = (2a/+/7 ) sechat. Equation (5.2.8)
becomes

3n
V] = —(a2 — 7}’2)\/2, V) = —V]
with solution (vi,v) = (—F,7). We have d = 1 so the variable  does not appear,

M is a scalar function, and the function M = M; becomes
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3
M(a) = {8(00 sina)oasechnzwo] W — <16a )H2~
a

VT 3z
Thus, the conditions M (L, 0p) =0, (IM/d ) (o, o) # 0 are satisfied for all ty so
that % < 3‘2[% sech 2. Now we check condition (H9) which, for the present

problem, requires us to consider the equation

‘)anl = WpV2n s

Vop = —@yV2p—1 — 22V, + L Vy, COS Wt

where v,, = AL

-1 . . . .
I o This system has a particular solution in Y with components

given by
2 2 .
Van—1(t) B L1V 0, (0; — @y ) cos ot + 2 @ @, sin @yt
Van(t) (07 — 072 +4u507 | —an (@ — of) sin ayt + 21 0f cos ot |-

From this we see that (H9) is satisfied whenever @y # @, for all n.

We note that while the conditions M(ct) =0, M'(¢t) # O can be satisfied with
W =0, ¢ = 0 we require up # 0 in Section 5.2.4 where we use a weak exponen-
tial dichotomy to lift the full equation. Thus, we obtain the following result using
Theorem 5.2.4.

Theorem 5.2.5. If wy # w, for all n then whenever Uy satisfies Lo, # 0 and

RIVZ4 T
VD) o (5.2.12)
2a3 2a

Hop
Ho,1

0<‘ <

there exists a corresponding 50 > 050 thatif0 < & < Eo, if the parameters in (5.2.10)
are given by = & iy then there exists a compact subset of R*> x Y on which the
2mth iterate, F*", of the period map F of (5.2.10) is invariant and conjugate to the
Bernoulli shift on &. Here m € N is sufficiently large.

These results are stated in terms of the Galerkin equations (5.2.10) but they
can be transferred back to the original partial differential equation. In this case
we get a Bernoulli shift embedded in [H](0,7) NH?(0,7)] x L*(0, ). This is dis-
cussed in [5]. In the u;-u, plane we get from the condition (5.2.12) four small
open wedge-shaped regions of parameter values for which the partial differen-
tial equation exhibits chaos (Figure 5.3). These regions are bounded by the lines

ti/po = 13\53@0 sech 52 and pp = 0.

It is interesting to look at some history of this problem. The first work was done in
[28] in which the author started with the PDE and carried out the Galerkin expansion
but restricted his analysis to the reduced equation (5.2.11). The significance of that
work is that it introduced the idea of Melnikov analysis. In subsequent work [3], the
results are extended to infinite dimension but the Galerkin approach is abandoned

in favor of nonlinear semigroup techniques directly in infinite dimensions. In our
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%53

A AN
/ AN

Fig. 5.3 The chaotic open wedge-shaped region of (5.2.10) in R

section we go back to the original, simpler analysis of the reduced equation and
then show that the results apply to the original PDE. Some advantages of this are
that the Galerkin projection is a technique familiar to many engineers and physicists
and, also, we are able to utilize our general Melnikov results in Section 5.2.3. This
is illustrated further in the generalizations to follow. We note that Equation (5.2.10)
was treated also in [4].

5.2.7 Nonplaner Symmetric Beams

Let us consider a beam with symmetric cross section, pinned ends and compressive
axial load Py and assume now that the beam is not constrained to defect in a plane. If
u(x,t) and w(x,7) denote the transverse defections at position x and time ¢ we obtain
the following boundary value problem.

i = —u"" — Py + {/On (u'(5)* +w(s)?) ds] u’
—2upiicos N + g cos § cos mt

w=—w"—Pw' + {/On (u'(5)* +w(s)?) ds} w”
—2Upwsinm + p sin § cos apt

u(0,¢) = u(m,t) = u"(0,¢) =" (7,t) = w(0,1)
= w(m,t) =w"(0,t) =w'(m,t) =0
where 1, { are constants. The parameters {;, L represent the coefficients of, re-

spectively, total transverse forcing and total viscous damping. These effects are dis-
tributed between the two directions of motion. The quantity tan{ represents the
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ratio of forcing in the u-direction to forcing in the w-direction while tann plays
the same role in the damping. We suppose 1, € (0,7/2) in order to avoid certain
degeneracies. In these equations we use the Galerkin expansions

u(x,t) =Y w(t)sinkx, w(x,t)=

1 k

wy (1) sinkx

s
s

k 1

and proceed as before. This yields the system of equations
P o

iy = n2<P0 —n2>un — Enz |: y kz(u]% —|—W]%)] Up
k=1

) 1 _ (_l)n
—2Upit, cos ) + 24y cos § |08 ot ,
n

(5.2.13)

T o

Wy = nz(PU —nz)wn — Enz { ) kz(u,% +W%):| Wy
k=1
. . 1—(=1)"
—2Up W, sinn + 24y sin § e coSs Wyt .
n

As before, we assume 1 < Py < 4 and define a = Py —1, (0371 = n(n2 —R),

n = 2,3,.... Equations (5.2.13) take the form of (5.2.6) when we define x =
(ul,lftl,wl,wl) and y = (uz,I/'tz/(x)l,W2,W2/a)1,u37l/'t3/a)z,W3,W3/(l)2,...). The re-
duced equations are

X1 =x3,

. 2 T 2, 2 4

Xy =a’x] — E(xl +x5)x1 —2bxpcos M + E“l cos § cos wyf ,
X3 = X4,

. 2 jr 2 2 . 4 .

X4 =ax3— E(xl +x3)x3 — 2Uox4 sin M —|—;,u1 sin § cos @yt .

When p = 0 we have a two-dimensional homoclinic manifold given by y3 =
(rcosB,rcosB,rsinf,7sinB) where, as before, r(t) = (2a/+/7)sechat and B is
a parameter. The adjoint equations (5.2.8) take the form

v = {—az + g(3r200s2B +r? sinzﬁ)} va+ (r?sinfcos B) va
V) = —Vi,
v3 = (mr?sincosB) va + {—az + g(r2 cos’ B+ 312 sin2ﬁ)} va,
V4 = —V3.

A one-parameter family of bounded solutions to these equations is given by
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vgy = (—7#sinf,rsinB,icos B, —rcosf),

vgy = (—icosfB,icos B,—isinB,7sinf3) (>-2.19

and the function, M, as in (4.2.7) becomes

M (u,a,pB) = Lj% sin (B — C)cos(uoasechjzzo} Wi,

My(u,a,B) = ﬁ/a; cos (B — &) sinapasech 7172(;)0] U

{ 164> (cosn cos? B +sin7 sin” B) ]
- 2%
3r
Next, the conditions M (o, 0%, Bo) = 0, D¢ gyM (Lo, %, Bo) nonsingular are satis-
fied in two different cases. Of course, we suppose o1 7 0, o2 7# 0 and then put
Ao = % We have the following two cases:
Case 1. We can choose either By = ¢ and then look for a simple root of the
equation
Ao = mysinapor, (5.2.15)

or By = £ + m and look for a simple root of the equation

Ay = —my sinmy o (5.2.16)
for
3v/max Ty
mp = - — sech——.
2a2(cosn cos? § +sinn sin® §) 2a
Supposing under the condition
0 < [Ao| <my, (5.2.17)

there is a simple root o of (5.2.15). Similarly, (5.2.16) has also a simple root — .
According to the formulas (5.2.14) for vg, and vg,, these simple roots (¢, ap) and
(& +m,—0ap) give two different solutions of (5.2.13).

Case 2. We begin from choosing my0p = (2ko + 1) % for kg € {0,1} and then we
look for a simple root fy # § + k=, Vk € Z of

Ao = (—D)kod(B) (5.2.18)

where

do@ cos(B-Q)

D(B) = ech@.

2a*  cosmcos? B +sinn sin® B 2a
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Let my = maxgep @(B). A computation of the constant m;, is discussed in [29].
Since (B + ) = —P(P), the range of P is the closed interval [—my, m,]. We now
split this case into two parts:

Part 2A). For 17 =n/4 we get D(B) =mjcos(f — {), along with m, =m; =
3wp\/7
V2a?

se h —_— Equatlon (5.2.18) has now the form

k03w0\/>
V2a?

so under condition (5.2.17), there is a simple root fy different from § + k7, Vk € Z.
This holds for both cases ko € {0, 1} so we have two different solutions of (5.2.13).
In addition, the results of Case 1 still apply here. Thus, in this situation, we have
in the u-uo plane four wedged-shaped regions of parameter values bounded by
Up/Uy = £my, g = 0 for which the partial differential equation exhibits chaos.
Particularly, (5.2.13) has four distinct homoclinic solutions, two from Case 1, two
from Case 2A. These regions are labeled /7 in Figure 5.4. In this case there are no
regions labeled /.

(=1 Chfcos(ﬁ )=

Part 2B). For ) # /4 we get ®'({) # 0, so m; < my. Certainly for the solv-
ability of (5.2.18) we need |Ay| < my. Now we claim:

Lemma 5.2.6. If
Ao € (—my,mp) \ {£m,0}, (5.2.19)

then Eq. (5.2.18) has a simple root By € [0,27)\ {{,{ + 7}

Proof. Assume to the contrary that (5.2.18) has no simple roots for a A9 € (—my,
my) \ {zmy,0}. Then there are 0 < f8; < , < 27 so that

D(Pr2) = (1%, @'(Bi2)=0, @"(Bi2)=0. (5.2.20)

Note that 81 2 # { +km and B12 # § + 2k+1 7, Vk € {0,1}. After some calculation
we derive from (5.2.20) that cos2; » # O sin2f; » # 0 and that (5.2.20) is equiva-
lent to

cos(Bi2—¢) _ sin(B12 —€)
cosncos? B +sinnsin® B, (cosn —sinm)sin2p; o
(5.2.21)
cos(Bi2—¢) & 243 Ty
- : — (~1)ko h 2%
2(cosm —sinn)cos2Pi 2 (=1) SwOﬁCOS 2a Ao
From (5.2.21) we derive

COSZﬁLz = M 2tan(B172 — C) = tan2ﬁ172. (5.2.22)

3(cosn —sinn)’
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Hence
Bre{m—Bi,n+pi,2r—Pi}.

If B, = w— B then from 2tan(B; — {) = tan2f3, we get 2tan(fB; + §) = tan2p;,

but 2tan(f; — §) = tan2pf;, so tan(f; + §) =tan(B; — §),ie. { =km/2,k € {0,1}.
This contradicts § € (0,7/2). If B, = w + B then

(—1)2% = @(B2) = D(Bi +7m) = —P(B1) = (1)

which implies Ag = 0, a contradiction. If 8, = 27 — f3; then again we derive tan(f; +
§)=tan(B; — ), sothat { = km/2, k € {0,1}, a contradiction to § € (0,7/2). The
proof is finished. a

Note that By € {{,{ + 7} for the Case 1, while By € [0,27) \ {{,{ + 7} for the
Case 2. Lemma 5.2.6 can be applied to both cases oy = 22)0 (2ko+1), ko € {0,1},
so Part 2B yields, in the -y, plane, four wedge-shaped regions of parameter val-
ues bounded by /) = tmy, tp /W = £my, g = 0 for which (5.2.13) has two
different homoclinic solutions. These regions are labeled 7 in Figure 5.4. Note that
we have four different solutions of (5.2.13) in regions labeled /1, since there Case
1 can be also applied (see (5.2.15) and (5.2.16)). This completes the analysis of the
Melnikov function. We now check about resonance. Because in the present problem
all coupling terms are nonlinear, the linear equation in (H9) consists in two copies
of the system of equations in the preceding example. This yields the following result
obtained from Theorem 5.2.4.

1253

Hi

Fig. 5.4 The chaotic wedge-shaped regions of (5.2.13) in R2.

Theorem 5.2.7. Suppose wy # @, for all n and let m|, my be as above.

(a) If mg # 0 satisfies one but not both of |mo| < m; then if o2/ Uo,1 = mg there
exists a corresponding EO > 0 so that if 0 < & < EO: if the parameters in (5.2.13)
are given by U = £ L1y then there exist two homoclinic orbits which can be used to
construct a compact subset of R* x Y on which the 2mth iterate, F*", of the period
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map F of (5.2.13) is invariant and conjugate to the Bernoulli shift on &. Here m € N
is sufficiently large.

(b) If mo # 0 satisfies each of |mg| < m; then there are four homoclinic orbits as
in (i).

In summary, we obtain eight open small wedge-shaped regions of parameter val-
ues in the U -1, plane bounded by the lines u, /() = +my, U/l = £m; and p, =0
with m; < my for which the partial differential equation exhibits chaos (Figure 5.4).
In the regions labeled I there are two homoclinics while in regions I/ there exist
four. It is interesting to note that in this case, by adjusting the parameters 1 and &, it
is possible to make the size of the wedge arbitrarily close to filling the p;-u, plane.

5.2.8 Nonplaner Nonsymmetric Beams

For the case of a nonsymmetric beam with nonplaner motion we have the boundary
value problem

T
ii= —u" — Py + [/ (u/(s)z—i—w'(s)z) ds] u”
0
—2Mpticos M + iy cos & cos mpt
T
W= 7R2W””7P0W”+ |:/ (MI(S)Z—I—W/(S)z) dsi| w
0
—2Upwsinn + uy sin § cos wyt
u (0,¢) =u(z,t) =u"(0,t) = u"(m,1)
=w(0,t) =w(m,t) =w"(0,¢) =w"(m,t) =0

where R? is constant representing the stiffness ratio for the two directions. We as-
sume that R > 1 which amounts to choosing w as the direction with stiffer cross-
section. Note that R = 1 reduces to Section 5.2.7. As before we assume that 17,
¢ € (0,7/2). The Galerkin expansion becomes

T o
iin = n?(Py—n)u, — Enz L;l P (ug +wi) | uy

1—(—-1)"
— 2y, cosn + 21y cos § {fm)} cos myt
(5.2.23)

Wp

n (=<}
Vip = n?(Py—n*R*)w, — Enz [Z K (uF +w?)
k=1

—2UpWy sinm + 24y sin & {1_7(1__1)} COS Wt .
n
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If Py is increased only enough to give one buckled mode, necessarily in the u direc-
tion, the problem reduces to Section 5.2.6. We shall assume here the next simplest
case consisting of one buckled mode in each direction which occurs when 1 < Py <4
and R? < Py < 4R?. Note that this requires R < 2 and we assume that RP<Py<4.1f
the stiffness ratio is too high there will be multiple buckled in the u (soft) direction
before occurrence of the first buckled mode in the w (stiff) direction. We define

a%:P()fl, > l71:r12[(nz—P0], n=23...;

e
& =PR—-R, 0 ,=n’["RP—PR), n=273,....

n

We put (5.2.23) in the form of (5.2.6) by defining

X = (ulaulvwlawl)a

y = (u,ti2/ @11, W2,W2/ @12,u3,13/ W21, W3, W3/ W 2,...).
The reduced equations are
X'] = X2,

T 4
Xy = a%xl - E(x% +x§)x1 —2lxycosn + %Ml cos § cos wpt

X3 = x4,

T 4
X4 = a%)g - E(x% —l—x%))@ —2Upxysinm + E'ul sin { cos @t .

For the unperturbed equations we have two homoclinic solutions given by
')/1:(7'1,};‘17070)7 ,)/2:(0’07’.27’;2)

where r(t) = (2a1/+/7 ) sechayt and r,(t) = (2a,/+/7 ) sechayt. Using ¥ the ad-
joint equations (5.2.8) become

. ) 3T, .
V] = —a1+7r1 V2, V2= —Vi,

T

V3 = <fa%+ Er%) V4, V4= —V3.

The essential issue here is to determine the space of bounded solutions to these
equations. We can write these in the form

" » 3w, . 2 o
V2=<a1—2rl>vz, V4:((12—§rl V4.

The v, equation has a one-dimensional space of bounded solutions spanned by the
solution v, = 71, obtained from 7;. For the v4 equation we have the following result.
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Lemma 5.2.8. Let k > 0. The equation
v+ (—A + Ksech?r)v =0

has a bounded solution if and only if there exists an integer M so that

/l:%(\/41<+ —4M—1)> for 0§M<%(\/4;<+1—1)
or A:%(\/W—4M—3)z for O§M<%(\/W_3).

The idea for the proof of this lemma is to express the solution as the product
of a power of sechs and a hypergeometric function with argument — sinh’7. The
condition for the existence of a bounded solution is that the hypergeometric series
terminate and the resulting polynomial is of sufficiently small degree. The details
for this have been worked out in Appendix of [30]. See also Sections 23, 25 of [31].

Applying Lemma 5.2.8 to the equation for v4 we find that the condition for a
bounded solution is a; = a; which is ruled out by the assumption of R > 1. Hence,
the system of equations for v has a one-dimensional space of bounded solutions
spanned by v = (—#,7,0,0) and the Melnikov function (4.2.6) is
8wy cos § 1643 cosn
7\/% ) 120)

The non-resonance hypothesis follows as in the previous examples which leads, in
the present case, to the following result obtained from Theorem 5.2.4.

. Ty
M = h— -
(oc) [ s1n Wy & sec 1 } Ji5 <

Theorem 5.2.9. If wy # W, for all n and for i = 1,2, then whenever Ly satisfies
Ho.1 # 0 and
3v/Twycosl sech T

<
Za? cosn 2a;

0<‘”°"2
Ho,1

there exists a corresponding é_o > 050 thatif0 < & < Eo, if the parameters in (5.2.23)
are given by . = & gy then there exists a compact subset of R* x Y on which the
2mth iterate, F*", of the period map F of (5.2.23) is invariant and conjugate to the
Bernoulli shift on &. Here m € N is sufficiently large.

Replacing 7, with 7 yields the following analogous result.

Theorem 5.2.10. If wy # m,; for all n and for i = 1,2, then whenever Ly satisfies
Mo,1 # 0 and

Ho2
Ho,1

3 .
< 7\/%600 sing sech %

0<
‘ 2a3 sinn 2ay

there exists a corresponding 5_0 > 050 thatif0 <& < 50» if the parameters in (5.2.23)
are given by . = E g then there exists a compact subset of R* x Y on which the
2mth iterate, F*™", of the period map F of (5.2.23) is invariant and conjugate to the
Bernoulli shift on &. Here m € N is sufficiently large.
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In the u;-u, plane in this case we get a diagram as in Figure 5.4. For parameter
values in the regions labeled I there is one homoclinic orbit while for those in 17
there are two.

5.2.9 Multiple Buckled Modes

One has to consider the situation where the axial load, Py, is increased sufficiently
to produce multiple buckled modes. We will look at the case of a beam constrained
to planer motion. The calculations for the non-planer case are similar. We return to
the boundary value problem of Section 5.2.6 and use the same Galerkin equations

iy = n?(Py —n*)u, — %nz [kil kzu,%} uy,
= (5.2.24)

. 1—(=1)"
—2Uptt, +2U) | ————|cosmpt, n=1,2,....
n
In the present case we assume that there exists an integer N so that N? < Py <
(N +1)2. We then define
a =n*(Py—n?), forn=1,2,...,N;
w} y =n*(n*—PR), forn=N+1,N+2,...
and put (5.2.24) in the form of (5.2.6) by defining
X = (ul,lll,uz,blz,...,uN,blN),
Y = (UN41, N1/ O, UN 2, N2/ @)

A truncated version of the resulting equations with N = 2 was studied in [30]. The
reduced equations are

Xon—1 = Xon

2 /N
Tn
. 2 2.2
Xon = AyXon-1 =~ (k):]k x2k—1> P18 —1,2,...,N.

—2UpX0n + 2y [%} cos ot

When p = 0 we have N homoclinic solutions given by

Yu=(0,...,0, FypsFm ,0,...,0), m=1,2,....N
——

2m—1,2m

where 7, (t) = (2a,,/m*\/T ) secha,t and the adjoint equation (5.2.8) along ¥, is
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) ,  wm’n®
Vop—1 = | —a;, + Vi | Von

2 " n#m
Vo = —Van—1,
) 5 3wm* 2
Vom—1 = <_am+ ) rm> Vom ,
Vom = —Vom—1-
For the distinguished equation we have the bounded solution vy,,,—1 = —#y, Vo =

while for the equations with n # m we must solve

d*vy, a: 2n? 2
= | =4 — —5sech“x ) vy,.

2 2 2
dx ag m

Using Lemma 5.2.8 we find that this last equation has a bounded solution if and
only if there is an integer M so that one of the following conditions holds:

2
2 2 2
n*(Py —n*) 1 8n
1 8n?
for0< M < 5 \/%4—1—1 ,
2
2 2 2
n*(Py—n*) 1 8n
mz(Po—mZ) :Z W+174M73 (5.2.25b)
8n2

1
forO<M < - —+1-3
4 m

If, for some fixed m, none of the equations in (5.2.25 a and b) is satisfied for n # m
we can proceed much as in Section 5.2.6 since then the adjoint equation obtained
from 7, has a one-dimensional space of bounded solutions spanned by

v=1(0,...,0,—Fn,#m,0,...,0).
——

2m—1,2m

One complication has been introduced by our assumption in the original partial dif-
ferential equation that the transverse-applied load is uniform in x. This assumption
causes the | terms to drop out in (5.2.24) for n even which prohibits nonsingular
solutions of M () = 0 as can be seen by examining Section 5.2.6. For this reason,
we must choose m odd. Theorem 5.2.4 now yields the following result.

Theorem 5.2.11. Let m be an odd integer, 1 < m < N, and suppose Py is chosen so
that none of the equations in (5.2.25 a and b) is satisfied. If wy # @, for all n, then
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whenever Uy satisfies [, # 0 and

0< [H02
Ho,1

3
< 3MVTD gy T
2a;, 2ap,

there exists a corresponding EO > 050 thatif0 < & < EO, if the parameters in (5.2.24)
are given by . = E Ly then there exists a compact subset of R?N x Y on which the
2kth iterate, F?X, of the period map F of (5.2.24) is invariant and conjugate to the
Bernoulli shift on &. Here k € N is sufficiently large.

We can simplify the preceding results by finding cases where the equations in
(5.2.25) can never have a solution. The following is a helpful result along these
lines.

Lemma 5.2.12. The equations in (5.2.25) can never be satisfied for n < m < N.

Proof. For (5.2.25a) we have % (\ /8n%/m2 +1— 1) < % so we have only one equa-

n2(Py—n?)
m2(By—m?)

2 /2
2 n n
2 (T
1 8n? n? m? <m2 )
— +1—-1| —— = <0
4 m? m? 2 812

n
e RV

. . . 2
tion to consider with M = 0. But then we have, first, > :;172’ and also

so that Equation (5.2.25a) has no solution for any Py. Next we note that when n < m,
1 272 :
we have 7 (\/811 Jm?+1— 3) < 0 so that there are no equations for (5.2.25b). 0O

When m = N the preceding result will eliminate any restriction, obtained from
(5.2.25), on Fy. This fact was shown with a different technique in [4] where they
used a more general transverse forcing term which allowed for the possibility of a
U, term for each n in (5.2.24) and, hence, also for each 7 in the reduced equation.
They then take m = N. Since, for our specific form of loading, we must have m odd
we have the following result.

Theorem 5.2.13. Let N and Py be as for (5.2.24) and suppose one of the following
holds:

(i) Nisoddandm=N.
(ii)) Niseven, N >4, m=N—1 and

AN? — (N —1)? [\/9N2—2N+ —3(N-— 1)}2

PO# 2
AN? — [\/9N2 “ANF1-3(N— 1)}

(i) N=2, m=1and
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37+5ﬁ 55+9f
PO# ) P 7é

Suppose in addition that o, # @y for all n. Then whenever L satisfies Lo, # 0 and

3
myTey o T

Ho2
< | Ko,
C 243, 2a,,

Ho,1

there exists a corresponding EO >0sothatif 0 < & < <§0, if the parameters in (5.2.24)
are given by u = E Ly then there exists a compact subset of R?N x Y on which the
2kth iterate, F?X, of the period map F of (5.2.24) is invariant and conjugate to the
Bernoulli shift on &. Here k € N is sufficiently large.

Proof. The result is obtained by using %, and proceeding as in Section 5.2.6. This
is valid as long as Equations (5.2.25) have no solutions for n # m so it remains to
show that this is true in each case. If (i) holds we can use Lemma 5.2.12.

If m = N — 1 then, using Lemma 5.2.12, we need check only n = N. Define

1 8N?

fa(N):4 (Ni_l)z-i-l—l ,
1 8N?

fb(N):Z m+1—3

Then (5.2.25a) must be checked for integers M € [0, f,(N)) and (5.2.25b) for inte-
gers M € [0, f»(N)).

In case (ii) we have N > 4 which implies 1/2 < f,(N) < (v/137—3)/12 < 1 s0
we need consider only M = 0. In this case we solve

N*(Py—N?) B
Ry e R
for Py to get
NY—Af, (NN (N—1)? N? 8N2
b=y~ 2 [I_Q(N_nz_ EE

But this value is negative and can be discarded. Similarly, we have, for N > 4,
0< fp(N) < (v137-9)/12 < 1, 50 in (5.2.25b) we need also consider only M = 0.
Here we get

o N (N 1) 4N4—(N—1)2[\/9N2—2N+ —3(1\7—1)}2
0= 7 =

SN e [ onr N 13- )]
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Next, we consider (iii) where N = 2, m = 1. Since 2 > f,(2) = (v/33 —1)/4 > 1
we must consider M = 0 and M = 1 in (5.2.25a). When M = 0 we get the value
Py = —(7+/33)/2 < 0 which can be discarded while for M = 1 we have Py =
(37 4 5+/33)/16. Finally, 0 < f,(2) = (v/33 —3)/4 < 1, so only M = 0 must be
considered in (5.2.25b) and this yields Py = (55+9+/33)/16. O

5.3 Periodically Forced Compressed Beam

5.3.1 Resonant Compressed Equation

This section is a continuation of Section 5.2, and it is devoted to the study of a
system modelling a compressed beam with friction subjected to a small periodic
forcing. Particularly we are interested in the existence of chaotic patterns. The model
is described by the following PDE

Wy + Upyrx + Ylhy — Kty f (/On ui(é,t)dﬁ) = e(vh(x,V¢et) — uy), (5.3.1)

u(0,1) = u(m,t) =0 = uy(0,1) = uy(m,1) (5.3.2)

where u(x,1) € R is the transverse deflection of the axis of the beam; v > 0 is an ex-
ternal load, k¥ > 0 is a ratio indicating the external rigidity and d > 0 is the damping,
€ and Vv are small parameters, the function A(x,¢) represents the periodic (in time)
forcing distributed along the whole beam. We assume that & € L™ (R,L*([0, 7])) is
a 1-periodic function of ¢ with || i h(x,-)?dx|| , = 1. Therefore €V represents the
strength of the forcing.

Section 5.2 discusses Equation (5.3.1) when the external load 7 is not resonant
and x € R is fixed. Here we discuss the complementary case. Precisely we assume
that v is slightly larger than the i-th eigenvalue of the unperturbed problem: y =
2+ €02, where i € N is fixed, € >0 and 0 € (0, 1]. Therefore we will also assume
that x = €k, so that the contribution given from the stress due to the external rigidity,
does not drive the system too far away from the resonance.

5.3.2 Formulation of Weak Solutions

It is easily observed that the unperturbed problem

Upxxx + Yitax = 0,

u(0,8) = u(m,t) =0 = 1y, (0,1) = uy(7,1)
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admits {j?| j € N} as set of eigenvalues and that the corresponding eigenfunctions
% sin(jx), where j € N, form an orthonormal system in L% ([0, 7z]) which generates

the space HZ ([0, 7]). First of all we make the linear scale t <+ v/€t. Then Egs. (5.3.1),
(5.3.2) read:

u,,—|—1[uxxxx—|—( + €02y ] — kf(/()nui(é,t)d§>uxxzvh(x,t)—\/g&tt,

u(0,8) = u(m,t) =0 = uy(0,2) = upe(m,1).
(5.3.3)
We want to solve (5.3.3) in a weak form, that is, we look for a function u €
L~ (R,H§([0,x])) € L=([0,7] x R) so that

/+w/ { (zz+1[%m+( +e0%)%,]

(5.3.4)
—kf (/O” ui(é,t)cﬁ) Yoo — ﬁﬁ'ﬂ) — V¥ (x,1)h(x,1) }dxdt =0

for any ¥(x,t) € C~([0, 7] x R) with compact support so that

Y(0,t) =¥(m,t) = Wr(0,1) = W (m,1) = 0.

5.3.3 Chaotic Solutions

In this section, the existence of chaotic solutions is studied for (5.3.1). To start with,
note that we can expand the function u(x,r) € L (R, H3 ([0, 7])) as follows:

u(x,t) =1/ = [ Z @ (2) sin(Ix) + y(¢) sin(ix —|—sz sm(jx)],
0<I<i J>i
where ;(7),y(),z;(t) € L(R), the expansion holding in H3([0,7]). Similarly we
write:

o 2]

where, for any k > 1, y(t) € Ci’(R), the space of C*-functions on R having com-
pact supports. Plugging the above expression for u(x,t) and ¥(x,¢) into (5.3.4) and
using the orthonormality, we arrive at the system of equations for the components

(90(2), (1), 2j(1)) of u(x,1)

Zl//l sin(lx) + y;(¢) sin(ix) + ill//j(t)sin(jx)] ,
j=it
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oi(r) — ﬂlz ) +kI*f (Z Po(t) +i2y2(f)+zjzzj(f)2)¢z(f)

o<i<i j>i

+E8¢(1) \f/hxzsmlx =0,

(5.3.5)

5(0) Py + k21 (X PO+ B0+ X ALy +VEsi()

o<li<i J>i

—v\/z/:h(x,t) sin(ix)dx = 0

_02
PO+ (L Po? + BP0+ X o500 ()

o<i<i J>i

+1/€82(1) \/7/hxtsm]xd =0
(5.3.7)

where 0 </ < i < j. In this way we have decomposed the problem along three
submanifolds: a strongly hyperbolic second order problem in Ri~!, a hyperbolic
second order problem in R, and a second order problem in an infinite dimensional
center manifold. We assume that f(x) satisfies the following hypotheses:

(5.3.6)

(F1) The function f € C([0,0),[0,50)) N C?((0,0),[0,)). Moreover we assume
that the following conditions hold:

£(0)=0, Tlimsup|xf'(x*)| < oo, limsup|x’f"(x?)] < oo.
x—07t x—0F
(F2) The equation
j— oy +kf(y*)y=0 (5.3.8)
has a positive homoclinic solution that is a C2-solution ¥(f) > 0 so that

Jlim y(r) = lim 7(1) =
t|—o0 t|—o0

Remark 5.3.1. (a) Observe that ¥;(¢) = y(it) /i solves the equation
j— ity + kit f(i2y*)y =0 (5.3.9)

for any i € N\ {0}. That is, ¥;(¢) is a solution of the equation obtained from (5.3.6)
taking ¢;(r) =0, z;j(r) = 0 and € = v = 0. We will refer to Eq. (5.3.9) as the unper-
turbed problem.

(b) Equation (5.3.8) has the energy function
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E(u3) =3+ | " (kf(s)— 0?)ds

which is even in both y and y. Since tlim v(t) = 0, we see that J(z) = 0 has a solution

to. It is easy to prove [32] that this solution is unique. Hence we can assume that
fo = 0 and then y(r) = y(—t) because of uniqueness. Thus ¥(z) has either a positive
maximum or a negative minimum at the point = 0. Since —y(¢) satisfies Eq. (5.3.8)
as Y(¢) does, we see that the assumption y(¢) > 0 is not restrictive. Then, y(¢) is
increasing on (—eo, 0] and decreasing on [0,0). As a consequence, 0 < y(t) <M :=
¥(0). Since the energy function E(y,y) is constant along (y(¢),¥(¢)) and 7(0) =0
we get

M2
/O (kf(s)— 62)ds =0
(note that ,h_,rgE(Y(t)’ 1(t)) = E(0,0) =0) and

2

/Ox (kf(s)— 62)ds <0

for 0 < x < M. Finally kf(M?) # o2, since, otherwise x = M would be a fixed
point of Equation (5.3.8). As a matter of fact, we have kf(M?) > c2, since the

2
function [ (kf(s) — 0?)ds passes from negative values to O when x — M~ and
then its derivative at x = M must be nonnegative. As a consequence, assumption
(F2) implies that the following condition holds:
2

X
(F2’) There exists M > 0 so that / [kf(s)— 62] ds < 0 for any 0 <x < M and
0

/ " [kf(s) — 6] ds = 0. Moreover kf(M?) > 6.
0

On the other hand, if condition (F2’) holds then the solution ¥(¢) of (5.3.8), ¥(0) =
M and 7(0) = 0, satisfies 0 < y(¢#) < M for any 7 # 0, and is homoclinic to the
(hyperbolic) fixed point x = 0, X = 0 of (5.3.8). Thus the two conditions (F2) and
(F2’) are equivalent. Finally we observe that the curve (y(¢),7(¢)) is contained in
the sector {(,y) | y > 0 and |y| < oy}, thatis, |y(z)] < oy(¢) for any r € R.

(c) Since we look for solutions close to the homoclinic orbit, in fact, it is enough
that f is defined just for 0 < x < M? + 1.

(b) Assumption (F1) is satisfied in particular if we take any function f(x) of the
form f(x) = g(x*), where a >  and g(x) € C?([0,0),[0,0)) is a positive function
so that g(0) = 0.

We see that (5.3.5), (5.3.6) and (5.3.7) are similar to (5.1.6), (5.1.8) and (5.1.8).
So we can repeat arguments of Section 5.1, i.e. we can apply a Lyapunov-Schmidt
reduction method like for the system of (5.1.6), (5.1.8) and (5.1.8) to deriving a
Melnikov function for (5.3.1), (5.3.2). We do not go into details, and we refer the
readers to [33], we only here recall the following notations (cf Section 5.1.3). For
any E = {e;}jcz € &, we put
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lF = {oc ={a;}jez €”(R) |ajeRand oj = 0ife; = 0}’

with £°(R) being the Banach space of bounded, doubly infinity sequences of real
numbers, endowed with the sup-norm. For any (E, &) € & x {5 we take the function
YE,a) € L7(R) defined as

(1) = { W= 2jm—0)) if (2j—1im <1 < (2j+ )m and e; =1
YEo)(t) = 0 if (2j—1)m <1< (2j+1)m ande; =0.

Now we can state the following main result proved in [33].

Theorem 5.3.2. Assume that the conditions (F1) and (F2) are satisfied, and that h €
L>(R,L*([0,7])) is 1-periodic with respect to t and || [ h(x,-)*dx||, = 1. Assume,
further, that 1y € R exists so that the function

M(7) =8 [ Z (2di — “0\[2: | /:, . /0 " A, 4+ 1) /i) sin(ix) dxdr

has a simple zero at T = 1y € [0, 1], that is, M(t)) = 0 and M'(ty) # 0. Then there
exist p >0, € > 0and fi >0 so that forany 0 < € <&, | — Uo| < il and m > g3/,
with m = ki and k € N, there is a continuous function Og y » : & — £*(R) so that
e.um(E) € 03 and a continuous map Ig = & — L~ (R,H([0,7])) so that

up (x,t,€) i=i g y m(E) (x,iv/er)

is a weak solution of (5.3.1) with v = \/€LL that satisfies

ess Sup,cp <p

Hg ([0.7])

. 2 . .
iug(x,t,€) — \/;7/(57%”“(5))(1\/5) sin(ix)

where || - ||H§<[O.n]> is the norm in H3 ([0, 7t]). Moreover, the map Ig y n : & — I1(&)
is a homeomorphism satisfying

ITe y (0 (E))(x,t) = ITg yy i (E) (x,1 4 2m) .
Hence ug g (x,t,€) = ug (x,t +2k/\/€,€).
Finally we note that from (F1) it follows that:

1- ! :1 2010 2 :O 1 2 ol :1 4 o1y 2 :0
Jim xf(x) = hmocf (x) =0, lim x"f"(x) = lima"f" (")

Hence the function xf(x?) is C! on R and its second derivative is bounded on K \
{0}, with K being any fixed compact subset of R. In fact, for x # 0, we have

d , d
T =281 () + () = 0= - [xf ()] o
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as x — 0. Thus 4 [xf(x?)] is continuous in R. Next

2
&) = 65 () + 42 ()

is bounded on K \ {0} for any given compact subset K of R because of assumption
(F1).
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