
Chapter 5
Chaos in Partial Differential Equations

Functional analytical methods are presented in this chapter to predict chaos for pe-

riodically forced PDEs modeling vibrations of beams and depend on parameters.

5.1 Beams on Elastic Bearings

5.1.1 Weakly Nonlinear Beam Equation

This section deals with the beam equation (Figure 5.1)

utt +uxxxx + εδut + εμh(x,
√
εt) = 0 ,

uxx(0, ·) = uxx(π/4, ·) = 0 ,

uxxx(0, ·) = −ε f (u(0, ·)), uxxx(π/4, ·) = ε f (u(π/4, ·))
(5.1.1)

where ε > 0 and μ are sufficiently small parameters, δ > 0 is a constant, f ∈C2(R),
h ∈ C2([0,π/4]×R) and h(x, t) is 1-periodic in t, provided an associated reduced

equation has a homoclinic orbit (cf (5.1.9)). Equation (5.1.1) describes vibrations

of a beam resting on two identical bearings with purely elastic responses which are

determined by f . The length of the beam is π/4. Since ε > 0 is small, (5.1.1) is a

semilinear, weakly damped, weakly forced and slowly varying problem.

Let us briefly recall some results related to Eq. (5.1.1). The undamped case (δ =
0, μ = 0 and ε = 1) was studied in [1, 2] by using variational methods. In both

papers, the problems studied are non-parametric.

The perturbation approach to the beam equation was earlier used in [3]. Recent

results in this direction are given in [4, 5]. We note that the problem (5.1.1) is more

complicated than the one studied in [3–5], since in those papers the elastic response

is distributed continuously along the beam, while in our case it is concentrated just

at two end points of the beam. Moreover, the ε-smallness of the restoring force ε f
at the end points leads to a singularly perturbed problem in studying chaotic orbits
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Fig. 5.1 The forced beam resting on two elastic bearings (5.1.1).

of (5.1.1). The existence of homoclinic and chaotic solutions has also been proved

in [6–9] for different partial differential equations, with different methods compared

with ours.

5.1.2 Setting of the Problem

First of all, we make the linear scale t ↔√
εt in (5.1.1), that is, we take u(x, t) ↔

u(x,
√
εt) to get the equivalent problem

utt +
1

ε
uxxxx +

√
εδut +μh(x, t) = 0 ,

uxx(0, ·) = uxx(π/4, ·) = 0 ,

uxxx(0, ·) = −ε f (u(0, ·)), uxxx(π/4, ·) = ε f (u(π/4, ·)) .
(5.1.2)

By a (weak) solution of (5.1.2), we mean any u(x, t) ∈ C([0,π/4]×R) satisfying

the identity∫ ∞

−∞

∫ π/4

0

{
u(x, t)

[
vtt(x, t)+

1

ε
vxxxx(x, t)−

√
εδvt(x, t)

]
+μh(x, t)v(x, t)

}
dxdt

+
∫ ∞

−∞

{
f (u(0, t))v(0, t)+ f (u(π/4, t))v(π/4, t)

}
dt = 0 (5.1.3)

for any v(x, t) ∈C∞([0,π/4]×R) so that v(x, t) has a compact support and the fol-

lowing boundary value conditions hold
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vxx(0, ·) = vxx(π/4, ·) = vxxx(0, ·) = vxxx(π/4, ·) = 0 . (5.1.4)

Now, it is well known [2] that there is an orthonormal system of eigenfunctions

{wi}∞i=−1 ∈ L2([0, π4 ]) of the eigenvalue problem

U (iv)(x) = κU(x),

U
′′
(0) = U

′′
(π/4) = 0, U

′′′
(0) = U

′′′
(π/4) = 0 .

As a matter of fact (cf Section 5.1.5), the eigenfunctions {wi}∞i=−1 are uniformly

bounded in C0([0, π4 ]), and setting κ = μ4, the eigenvalues of the above problem

satisfy μ = μk, k = −1,0,1, . . . with μ−1 = μ0 = 0 and μk = 2(2k + 1)+ r(k), for

any k ∈ N, where |r(k)| ≤ c̄1 e−c̄2k for any k ≥ 1, for some positive constants c̄1, c̄2.

Furthermore, the eigenfunctions w−1(x) and w0(x) of the zero eigenvalue are:

w−1(x) =
2√
π

, w0(x) =
16

π

(
x− π

8

)√ 3

π
.

Thus we seek a solution u(x, t) of (5.1.2) in the form

u(x, t) = y1(t)w−1(x)+ y2(t)w0(x)+ z(x, t)

where z(x, t) ∈C
(
[0, π4 ]×R

)
is orthogonal to the eigenfunctions w−1(x) and w0(x),

satisfying ∫ π/4

0
z(x, t)dx =

∫ π/4

0
xz(x, t)dx = 0. (5.1.5)

To obtain the equations for y1(t), y2(t), and z(x, t) we take v(x, t) = φ1(t)w−1(x)+
φ2(t)w0(x)+v0(x, t) in (5.1.3) with φi ∈C∞, v0(x, t)∈C∞

(
[0, π4 ]×R

)
with compact

supports so that v0(x, t) satisfies (5.1.4) and is orthogonal to w−1(x) and w0(x), i.e.

it satisfies (5.1.5). Plugging the above expression for v(x, t) into (5.1.3) and using

the orthonormality, we arrive at the system of equations

ÿ1(t)+
√
εδ ẏ1(t)+

2√
π
μ
∫ π/4

0
h(x, t)dx

+
2√
π

f

(
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

)

+
2√
π

f

(
2√
π

y1(t)+2

√
3

π
y2(t)+ z(π/4, t)

)
= 0 , (5.1.6)

ÿ2(t)+
√
εδ ẏ2(t)+

16

π

√
3

π
μ
∫ π/4

0
h(x, t)

(
x− π

8

)
dx

−2

√
3

π
f

(
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

)
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+ 2

√
3

π
f

(
2√
π

y1(t)+2

√
3

π
y2(t)+ z(π/4, t)

)
= 0, (5.1.7)

∫ ∞

−∞

∫ π/4

0

{
z(x, t)

[
vtt(x, t)+

1

ε
vxxxx(x, t)−

√
εδvt(x, t)

]
+μh(x, t)v(x, t)

}
dxdt

+
∫ ∞

−∞

{
f (u(0, t))v(0, t)+ f (u(π/4, t))v(π/4, t)

}
dt = 0 (5.1.8)

where we write v(x, t) instead v0(x, t). Thus, in Eq. (5.1.8), v(x, t) is any function in

C∞([0, π4 ]×R) having compact support so that the conditions (5.1.4), (5.1.5) (with

v(x, t) instead of z(x, t)) hold. We remark that in this way we have split up the orig-

inal equation into two parts. Equation (5.1.8) corresponds, in some sense, to Eq.

(5.1.1) on a infinite dimensional center manifold, while Eqs. (5.1.6)–(5.1.8) are the

equations on a hyperbolic manifold for the unperturbed equation. Since the center

manifold is infinitely dimensional, the standard center manifold reduction method

(cf Sections 2.5.4, 2.5.5 and [10]) fails for (5.1.1). We use instead a regular singular

perturbation method. In fact, the above splitting of Eq. (5.1.1) has also the advantage

that the singular part (in ε) is only in the z equation while Eqs. (5.1.6) and (5.1.8)

look regular in
√
ε .

Now we assume that the following conditions hold:

(H1) f (0) = 0, f ′(0) < 0 and the equation ẍ + f (x) = 0 has a homoclinic solution

γ(t) �= 0 that is a nontrivial bounded solution so that lim
t→±∞γ(t) = 0;

(H2) let γ1(t) :=
√
π

2 γ
(

2
√

2
π t
)

. Then the linear equation v̈ + 24
π f ′

(
2√
π γ1(t)

)
v = 0

has no nontrivial bounded solutions.

Without loss of generality we can also assume that γ̈(0) �= γ̇(0) = 0. This implies

that γ(t) = γ(−t) (and then γ1(t) = γ1(−t)) since both satisfy the Cauchy problem

ẍ+ f (x) = 0, x(0) = γ(0) and ẋ(0) = 0. Note also that (H1) implies that the system

ÿ1 +
2√
π

f
( 2√

π
y1 −2

√
3

π
y2

)
+

2√
π

f
( 2√

π
y1 +2

√
3

π
y2

)
= 0,

ÿ2 −2

√
3

π
f
( 2√

π
y1 −2

√
3

π
y2

)
+2

√
3

π
f
( 2√

π
y1 +2

√
3

π
y2

)
= 0

(5.1.9)

has a hyperbolic equilibrium y1 = y2 = 0 with the homoclinic orbit (γ1(t),0) and

that (H2) is equivalent to requiring that the space of bounded solutions of the linear,

fourth order system

ÿ1 +
8

π
f ′
( 2√

π
γ1(t)

)
y1 = 0, ÿ2 +

24

π
f ′
( 2√

π
γ1(t)

)
y2 = 0 (5.1.10)

is one-dimensional and spanned by (y1(t), ẏ1(t),y2(t), ẏ2(t)) = (γ̇1(t), γ̈1(t),0,0).
We look for chaotic solutions of Equations (5.1.6)–(5.1.8) so that the sup-norm of

|y2(t)|+ |z(x, t)| on [0, π4 ]×R is small and y1(t) is orbitally near to γ1(t).



5.1 Beams on Elastic Bearings 171

5.1.3 Preliminary Results

We begin our analysis by studying some linear problems associated with Eqs.

(5.1.6)–(5.1.8). To start with, let us consider, for i ∈ N, the following linear non-

homogeneous equation

z̈i(t)+
√
εδ żi(t)+

1

ε
μ4

i zi(t) = hi(t) , (5.1.11)

where hi(t) belongs to the Banach space L∞(R) of bounded measurable functions

on R, with norm ‖hi‖∞ := esssup
t∈R

|hi(t)| < ∞. This equation comes from searching

a solution of Eq. (5.1.17) of the form

z(x, t) =
∞

∑
i=1

zi(t)wi(x)

with zi(t) ∈W 2,∞(R). The only bounded solution of (5.1.11) for 0 < ε < 2min
i≥1

{ μ2
i
δ }

is given by

zi(t) = Li,εhi :=
2
√
ε

ωi,ε

∫ t

−∞
e−

√
εδ (t−s)/2 sin

(
ωi,ε

2
√
ε
(t − s)

)
×hi(s)ds , (5.1.12)

where ωi,ε =
√

4μ4
i − ε2δ 2. Moreover it is easy to see that

‖zi‖∞ ≤ 4

δμ2
i
‖hi‖∞ , (5.1.13)

(‖z‖∞ being the sup-norm of z(t)) and

‖żi‖∞ ≤
(

2
√
ε

μ2
i

+
2

δ
√
ε

)
‖hi‖∞ , (5.1.14)

provided 0 < ε <
√

3min
i≥1

{ μ2
i
δ }. Let h = {hi(t)}∞i=1, hi ∈ L∞(R) be a sequence of uni-

formly bounded measurable functions on R, that is, satisfying ‖h‖∞ := supi ‖hi‖∞ <
∞. Consider the function

z(x, t) =
∞

∑
i=1

zi(t)wi(x) (5.1.15)

where zi(t) are given by (5.1.12). We put

M1 := sup
{
|wi(x)| : x ∈

[
0,
π
4

]
, i ∈ N

}
; M2 := 4M1

∞

∑
i=1

1

μ2
i
, (5.1.16)

with the last series being convergent because of the properties of μk, k ∈ N.
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Now, let H1(x, t) ∈ L∞([0,π/4]×R), H2(t),H3(t) ∈ L∞(R) be bounded measur-

able functions and consider the equation∫ ∞

−∞

∫ π/4

0

{
z(x, t)

[
vtt(x, t)+

1

ε
vxxxx(x, t)−

√
εδvt(x, t)

]
+H1(x, t)v(x, t)

]
dxdt

+
∫ ∞

−∞

{
H2(t)v(0, t)+H3(t)v(π/4, t)

}
dt = 0 (5.1.17)

for any v(x, t)∈C∞([0,π/4]×R) so that v(x, t) has compact support and the bound-

ary conditions (5.1.4), (5.1.5) hold. For i ∈ N let

hi(t) = −
(∫ π/4

0
H1(x, t)wi(x)dx+H2(t)wi(0)+H3(t)wi(π/4)

)
(5.1.18)

and take zi(t), z(x, t) as in (5.1.12), (5.1.15). Note that

|hi(t)| ≤ M1

[π
4
‖H1(·, t)‖∞+ |H2(t)|+ |H3(t)|

]
(5.1.19)

where ‖H1(·, t)‖∞ = sup
0≤x≤ π

4

|H1(x, t)| and, similarly,

|ḣi(t)| ≤ M1

[π
4
‖H1t(·, t)‖∞+ |Ḣ2(t)|+ |Ḣ3(t)|

]
(5.1.20)

provided Ḣ2(t), Ḣ2(t), and the partial derivative of H1(x, t) with respect to t,
H1t(x, t), are bounded measurable functions. Then, we can prove as in [11] that

z(x, t) is a solution of Eq. (5.1.17).

Let m ≥ [ε−3/4]+ 1, with [ε−3/4] being the integer part of ε−3/4. From now on

we assume that 0 < ε ≤ (1/2)4/3 so that m ≥ 3. Then, for any E = {en}n∈Z ∈ E , we

put

�∞E =
{
α := {α j} j∈Z ∈ �∞ | α j ∈ R and α j = 0 if e j = 0

}
,

with �∞ being the Banach space of bounded, doubly infinity sequences of real num-

bers, endowed with the sup-norm. We will also consider a bounded subset of E ×�∞:

X =
{

(E,α) ∈ E × �∞ | α ∈ �∞E and ‖α‖ ≤ 2
}

.

Note that X is closed. In fact if (En,αn)→ (E,α) as n→∞, then, for any fixed j ∈Z,

we have (with obvious meaning of symbols) e(n)
j = e j for any n ∈ N sufficiently

large. Hence α(n)
j = 0 if e j = 0 and n is large enough. Thus α j = 0 if e j = 0, that is,

(E,α) ∈ X .

For any ξ = (E,α) ∈ X we take the function γξ = γ(E,α) ∈ L∞(R) defined by

γξ (t) =

{
γ1(t −2 jm−α j), if (2 j−1)m < t ≤ (2 j +1)m and e j = 1

0, if (2 j−1)m < t ≤ (2 j +1)m and e j = 0 .
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For the sake of simplicity we will silently include, in the above definitions, also the

end points of the intervals [(2 j− 1)m,(2 j + 1)m], j ∈ Z. We remark that γξ (t) has

the following properties:

(i) γξ (t) is a bounded, piecewise C2-function, with possible jumps at the points

(2 j− 1)m, j ∈ Z, and satisfies, in any of the intervals ((2 j− 1)m,(2 j + 1)m),
the equation

ẍ+
4√
π

f
(

2√
π

x
)

= 0. (5.1.21)

(ii) γξ (t), γ̇ξ (t), γ̈ξ (t) belong to L∞(R) and are bounded uniformly with respect to

(ξ ,m).
(iii) γξ (t), γ̇ξ (t), γ̈ξ (t) are Lipschitz continuous function in α ∈ �∞E uniformly with

respect to (E,m). In fact, let (E,α ′),(E,α ′′) ∈ X and assume that e j = 1 (if

e j = 0 there is nothing to prove). Then, for any t ∈ ((2 j− 1)m,(2 j + 1)m] we

have, for some θ ∈ R:

|γξ ′(t)− γξ ′′(t)| ≤ |γ̇1(θ)||α ′
j −α ′′

j | ≤
√

2‖γ̇‖∞ ‖α ′ −α ′′‖. (5.1.22)

A similar argument applies to γ̇ξ (t), whereas we will use point (i) to reduce the

study of the Lipschitz continuity of γ̈ξ (t) to that of γξ (t).

The following result deals with the solvability of Eq. (5.1.17).

Theorem 5.1.1. For any given functions H1(x, t) ∈ L∞([0,π/4]×R), H2(t),H3(t) ∈
L∞(R) and for 0 < ε < mini{

√
3μ2

i /δ}, Equation (5.1.17) has a unique solution
z(x, t) ∈C([0,π/4]×R) of the form

z(x, t) =
∞

∑
i=1

zi(t)wi(x)

with zi(t) ∈W 2,∞(R). Such a solution satisfies condition (5.1.5), moreover if hi(t) is
defined as in (5.1.18) the following hold:

(a) Assume that there exist positive constants k1, k2, α j and β so that

|hi(t)| ≤ k1 + k2 e−β |t−2 jm−α j |

for any t ∈ ((2 j−1)m,(2 j +1)m] and j ∈ Z. Then

‖z‖∞ ≤ M2

[
k1

δ
+
(

1

δ 3
+

2

β

)
k2

√
ε
]
.

(b) Assume that for any i, j ∈ Z, hi(t) ∈ W 1,∞((2 j− 1)m,(2 j + 1)m) and that both
hi(t) and ḣi(t) satisfy the condition of point (a), then we have

‖z‖∞ ≤ M2

[
5ε

(
1

δ 5
+1+

1

β

)
(k1 + k2)+

2
√
ε
δ

k1

]
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provided ε satisfies the further estimate
√
ε < 2δ 2.

Proof. We only need to prove (a) and (b). Let (2 j− 1)m < t ≤ (2 j + 1)m and 0 <
ε < mini{

√
3μ2

i δ−1}. We have∣∣∣∣∫ t

−∞
e−

√
εδ (t−s)/2 sin

ωi,ε

2
√
ε
(t − s)hi(s)ds

∣∣∣∣≤ ∫ t

−∞
e−

√
εδ (t−s)/2[k1 + k2ϕ(s)]ds,

where ϕ(t) = e−β |t−2 jm−α j | for t ∈ ((2 j−1)m,(2 j +1)m]. Then we have∫ t

−∞
e−

√
εδ (t−s)/2 ds ≤ 2√

εδ
,

and similarly, using also t > (2 j−1)m,∫ (2 j−3)m

−∞
e−

√
εδ (t−s)/2ϕ(s) ds ≤

∫ (2 j−3)m

−∞
e−

√
εδ (t−s)/2 ds ≤ 2√

εδ
e−

√
εδm <

2

δ 3
,

since m > ε−3/4 and θ 2 e−θ < 1, when θ > 0. Next,∫ (2 j−1)m

(2 j−3)m
e−

√
εδ (t−s)/2ϕ(s)ds ≤

∫ m−α j−1

−m−α j−1

e−β |s| ds ≤ 2

∫ ∞

0
e−β s ds ≤ 2β−1,

and similarly ∫ t

(2 j−1)m
e−

√
εδ (t−s)/2ϕ(s)ds ≤

∫ ∞

−∞
e−β |s| ds ≤ 2β−1 .

Plugging everything together and using (5.1.12) and ωi,ε ≥ μ2
i since εδ <

√
3μ2

i ,

we obtain

‖zi‖∞ ≤ 4

μ2
i

[
k1

δ
+ k2

√
ε
(

1

δ 3
+

2

β

)]
.

Thus (a) follows from (5.1.15) and (5.1.16). Now we prove (b). For (2 j−1)m < t ≤
(2 j +1)m, write

ωi,ε

2
√
ε

zi(t) = ζi, j + z̃i, j(t) (5.1.23)

with

ζi, j =
∫ (2 j−3)m

−∞
e−

√
εδ (t−s)/2 sin

(
ωi,ε

2
√
ε
(t − s)

)
hi(s)ds ,

z̃i, j(t) =
∫ t

(2 j−3)m
e−

√
εδ (t−s)/2 sin

(
ωi,ε

2
√
ε
(t − s)

)
hi(s)ds .

From the proof of point (a) we obtain:

|ζi, j| ≤ 2√
εδ

e−
√
εδm(k1 + k2) ≤ 10

√
ε

δ 5
(k1 + k2) (5.1.24)
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since θ 4 e−θ ≤ (4/e)4 < 5. On the other hand, by the same method in the above, we

obtain∣∣∣∣∫ t

(2 j−3)m
e−

√
εδ (t−s)/2 cos

(
ωi,ε

2
√
ε
(t − s)

)
ḣi(s)ds

∣∣∣∣≤ 2√
εδ

k1 +
4

β
k2,

∣∣∣∣∫ t

(2 j−3)m
e−

√
εδ (t−s)/2 sin

(
ωi,ε

2
√
ε
(t − s)

)
ḣi(s)ds

∣∣∣∣≤ 2√
εδ

k1 +
4

β
k2.

(5.1.25)

Then, taking

λ =
√
εδ
2

, ω =
ωi,ε

2
√
ε

and integrating by parts the function of the s variable

e−λ (t−s) sin(ω(t − s))hi(s)

in the two intervals [(2 j−3)m,(2 j−1)m], [(2 j−1)m, t] and adding the results we

get, using also (5.1.25):∣∣∣∣∫ t

(2 j−3)m
e−λ (t−s) sin(ω(t − s))hi(s)ds

∣∣∣∣≤ ω
λ 2 +ω2

|hi(t)|

+
λ +ω
λ 2 +ω2

[|hi((2 j−1)m+)|+ |hi((2 j−1)m−)|+ e−2λm |hi((2 j−3)m+)|]

+
λ +ω
λ 2 +ω2

[
2√
εδ

k1 +
4

β
k2

]
≤ λ +ω
λ 2 +ω2

[
(3+ e−2λm)(k1 + k2)+

2√
εδ

k1 +
4

β
k2

]
.

Finally, since

εδ +ωi,ε

ωi,ε(ε2δ 2 +ω2
i,ε)

≤
√

2

ωi,ε

√
ε2δ 2 +ω2

i,ε

=
√

2

2μ2
i ωi,ε

≤
√

2

2μ4
i
≤ 1

μ2
i

,

we obtain after some algebra:∣∣∣∣2
√
ε

ωi,ε
z̃i, j(t)

∣∣∣∣≤ 4ε
μ2

i

[
(3+ e−

√
εδm)(k1 + k2)+

4

β
k2 +

2√
εδ

k1

]
.

Hence, using (5.1.23), (5.1.24), the assumption
√
ε < 2δ 2 and the fact that e−

√
εδm ≤

1
(
√
εδm)2 <

√
ε
δ 2 :

‖zi‖∞ ≤ 4

μ2
i

{[
5

δ 5
+3+

√
ε
δ 2

]
ε(k1 + k2)+

4ε
β

k2 +
2
√
ε
δ

k1

}
≤ 4

μ2
i

{
5ε

[
1

δ 5
+1+

1

β

]
(k1 + k2)+

2
√
ε
δ

k1

} .
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Again, the conclusion follows from (5.1.15) and (5.1.16). The proof is finished. ��
In the following we denote by Lε(H1,H2,H3) the unique bounded solution of the

form (5.1.15) of Eq. (5.1.17) and note that Lε is a bounded linear map from the space

of bounded measurable functions to the space of bounded continuous functions, that

is,

Lε(H1 + Ĥ1,H2 + Ĥ2,H3 + Ĥ2) = Lε(H1,H2,H3)+Lε(Ĥ1, Ĥ2, Ĥ3).

We now study the linear non-homogeneous equation

ẍ1 +
8

π
f ′
( 2√

π
γξ (t)

)
x1 = h(t) ,

ẋ1(2 jm+α j) = 0, for any j ∈ Z such that e j = 1 .

(5.1.26)

Here h∈ L∞(R), and x1(t), ẋ1(t) are absolutely continuous functions so that (5.1.26)

holds almost everywhere. Let us put

a =
√

8| f ′(0)|/π .

Lemma 5.1.2. There exist positive constants A,B,C ∈ R and m0 ∈ N so that for any
ξ = (E,α) ∈ X, m ≥ m0, and j ∈ Z, there exist linear functionals Lm,ξ , j : L∞(R)→
R, so that ‖Lm,ξ , j‖ ≤ Ae j e−am, with the property that if h ∈ L∞(R) then (5.1.26)

has a unique C1 solution x1(t,ξ ) bounded on R if and only if

Lm,ξ , jh+
∫ (2 j+1)m

(2 j−1)m
γ̇ξ (t)h(t)dt = 0 (5.1.27)

for any j ∈ Z. Moreover, the following properties hold:

(i)

‖x1(·,ξ )‖∞ ≤ B‖h‖∞, ‖ẋ1(·,ξ )‖∞ ≤ B‖h‖∞. (5.1.28)

(ii) Let xp(t) be the unique bounded solution of equation ẍp + 8
π f ′(0)xp = h(t), then

|x1(t,ξ )− xp(t)| ≤C
(

e−am/2 +e−a|t−2 jm−α j |/2
)‖h‖∞ (5.1.29)

for (2 j−1)m ≤ t ≤ (2 j +1)m and any j ∈ Z.
(iii) Let ξ ′ = (E,α ′), ξ ′′ = (E,α ′′) with α ′,α ′′ ∈ �∞E and ξ be either ξ ′ or ξ ′′. As-

sume that h(t,ξ ) ∈ L∞(R) satisfies (5.1.27). Then there exists a constant, c1,
independent of ξ , so that the following holds:

max{‖x1(·,ξ ′)− x1(·,ξ ′′)‖∞,‖ẋ1(·,ξ ′)− ẋ1(·,ξ ′′)‖∞}
≤ B‖h(t,ξ ′)−h(t,ξ ′′)‖∞+ c1‖h(t,ξ ′′)‖∞‖α ′ −α ′′‖∞.

(5.1.30)

Finally, for any m ≥ m0, the map Lm : X ×L∞(R) → �∞(R) defined as Lm(ξ ,h) =
{Lm,ξ , jh} j∈Z is Lipschitz in α ∈ �∞E uniformly with respect to (E,m).

Proof. The equation
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ẍ+
8

π
f ′
(

2√
π
γ1(t)

)
x = 0 (5.1.31)

has a fundamental solution u(t),v(t) with

u(0) = 1, u̇(0) = 0, v(0) = 0, v̇(0) = 1 .

Then v is bounded, odd and u is unbounded, even with asymptotic properties:

v(t), v̇(t) ∼ e−a|t|, u(t), u̇(t) ∼ ea|t| as t →±∞ .

Note that γ̇1(t) is a solution of (5.1.31) so that γ̇1(t)∼ e−a|t| and γ̇1(0) = 0, γ̈1(0) �= 0,

we get v(t) = γ̇1(t)
γ̈1(0) . Let us pause for a moment to recall some of the properties of

the functions u(t), v(t) that will be used later. Equation (5.1.31), or, as a system

u̇1 = u2, u̇2 = − 8

π
f ′
(

2√
π
γ1(t)

)
u1, (5.1.32)

has an exponential dichotomy on R+ and R− with exponent a (cf Section 2.5.1).

Thus projections P+, P− exist so that rankP+ = rankP− = 1 and

‖X(t)P+X−1(s)‖ ≤ k e−a(t−s), if 0 ≤ s ≤ t,

‖X(t)(I−P+)X−1(s)‖ ≤ k ea(t−s), if 0 ≤ t ≤ s,

‖X(t)P−X−1(s)‖ ≤ k e−a(t−s), if s ≤ t ≤ 0,

‖X(t)(I−P−)X−1(s)‖ ≤ k ea(t−s), if t ≤ s ≤ 0

(5.1.33)

where

X(t) =

(
u(t) v(t)

u̇(t) v̇(t)

)
is the fundamental matrix of (5.1.32) so that X(0) = I. Although P+ and P− are not

uniquely defined, RP+ and N P− are precisely the one–dimensional vector spaces

consisting of all initial conditions one has to assign to the linear system (5.1.32) to

obtain solutions bounded on R+, R− respectively. Moreover, any projection pos-

sessing RP+ as range (resp. N P− as kernel) satisfies conditions (5.1.33). Now,

since v(t), v̇(t) → 0, as |t| → ∞, we see that we can take:

P+

(
x1

x2

)
= (I−P−)

(
x1

x2

)
= x2

(
0

1

)
.

Hence the matrix of P+ and I− P− with respect to the canonical basis of R
2 is(

0 0

0 1

)
. Then Eqs. (5.1.33) read:

|v(t)u̇(s)|, |v(t)u(s)|, |v̇(t)u̇(s)|, |v̇(t)u(s)| ≤ k e−a|t−s| (5.1.34)
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if 0 ≤ s ≤ t or t ≤ s ≤ 0, whereas

|u(t)v̇(s)|, |u(t)v(s)|, |u̇(t)v̇(s)|, |u̇(t)v(s)| ≤ k e−a|t−s| (5.1.35)

if 0 ≤ t ≤ s or s ≤ t ≤ 0. Now, let us go back to the proof of the Lemma. We consider

Eq. (5.1.26) on [(2 j−1)m,(2 j + 1)m] according to e j = 0 or e j = 1. When e j = 0

(5.1.26) has the general solution

x1(t) = − 1

2a

∫ t

(2 j−1)m
e−a(t−s) h(s)ds− 1

2a

∫ (2 j+1)m

t
ea(t−s) h(s)ds

+a j ea(t−(2 j+1)m) +b j e−a(t−(2 j−1)m) (5.1.36)

with a j,b j ∈ R. When e j = 1 we distinguish between t ∈ [2 jm+α j,(2 j +1)m] and

t ∈ [(2 j−1)m,2 jm+α j]. If t ∈ [2 jm+α j,(2 j +1)m] we write the general solution

of Equation (5.1.26) with the condition ẋ1(2 jm+α j) = 0 as

x1(t) =
∫ t

2 jm+α j

v(t −2 jm−α j)u(s−2 jm−α j)h(s)ds

+
∫ (2 j+1)m

t
u(t −2 jm−α j)v(s−2 jm−α j)h(s)ds

+a+
j u(t −2 jm−α j)/u(m−α j) (5.1.37)

where a+
j ∈ R. If t ∈ [(2 j−1)m,2 jm+α j] we take

x1(t) = −
∫ 2 jm+α j

t
v(t −2 jm−α j)u(s−2 jm−α j)h(s)ds

−
∫ t

(2 j−1)m
u(t −2 jm−α j)v(s−2 jm−α j)h(s)ds

+a−j u(t −2 jm−α j)/u(−m−α j) (5.1.38)

where a−j ∈ R. We note that ẋ1(2 jm +α j) = 0 in both (5.1.37) and (5.1.38). Thus

to obtain a C1 solution we only need that

x1((2 jm+α j)−) = x1((2 jm+α j)+), for any j ∈ Z such that e j = 1,

that is,∫ (2 j+1)m

(2 j−1)m
v(s−2 jm−α j)h(s)ds =

a−j
u(−m−α j)

− a+
j

u(m−α j)
. (5.1.39)

We note that from Eq. (5.1.36) we get, for any j ∈ Z:

sup
(2 j−1)m≤t≤(2 j+1)m

|x1(t)| ≤ |a j|+ |b j|+ 1

a2
esssup(2 j−1)m≤t≤(2 j+1)m|h(t)| (5.1.40)
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and

sup
(2 j−1)m≤t≤(2 j+1)m

|ẋ1(t)| ≤ a(|a j|+ |b j|)+
1

a
esssup(2 j−1)m≤t≤(2 j+1)m|h(t)|.

(5.1.41)

A similar conclusion also follows (when e j = 1) from (5.1.37) and (5.1.38) using

(5.1.34), (5.1.35). Equation (5.1.39) is the compatibility condition where the linear

maps Lm,ξ , j come from. For the moment, we forget about these conditions and

choose the constants a j, b j, a+
j , a−j so that the equalities

x1(((2 j +1)m)−) = x1((2 j +1)m)+), j ∈ Z

ẋ1(((2 j +1)m)−) = ẋ1((2 j +1)m)+), j ∈ Z
(5.1.42)

are satisfied. According to the values of e j, e j+1 they read

a j −b j+1 +b j e−2am−a j+1 e−2am

=
1

2a

∫ (2 j+1)m

(2 j−1)m
e−a((2 j+1)m−s) h(s)ds− 1

2a

∫ (2 j+3)m

(2 j+1)m
ea((2 j+1)m−s) h(s)ds,

a j +b j+1 −b j e−2am−a j+1 e−2am (5.1.43)

= − 1

2a

∫ (2 j+1)m

(2 j−1)m
e−a((2 j+1)m−s) h(s)ds− 1

2a

∫ (2 j+3)m

(2 j+1)m
ea((2 j+1)m−s) h(s)ds ,

if e j = e j+1 = 0, or

a j −a−j+1 +b j e−2am

=
1

2a

∫ (2 j+1)m

(2 j−1)m
e−a((2 j+1)m−s) h(s)ds

−
∫ 2( j+1)m+α j+1

(2 j+1)m
v(−m−α j+1)u(s−2( j +1)m−α j+1)h(s)ds,

a j −a−j+1

u̇(−m−α j+1)
au(−m−α j+1)

−b j e−2am

= − 1

2a

∫ (2 j+1)m

(2 j−1)m
e−a((2 j+1)m−s) h(s)ds

−1

a

∫ 2( j+1)m+α j+1

(2 j+1)m
v̇(−m−α j+1)u(s−2( j +1)m−α j+1)h(s)ds ,

(5.1.44)

if e j = 0, e j+1 = 1, or
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a+
j −b j+1 −a j+1 e−2am

= − 1

2a

∫ (2 j+3)m

(2 j+1)m
ea((2 j+1)m−s) h(s)ds

−
∫ (2 j+1)m

2 jm+α j

v(m−α j)u(s−2 jm−α j)h(s)ds,

a+
j

u̇(m−α j)
au(m−α j)

+b j+1 −a j+1 e−2am

= − 1

2a

∫ (2 j+3)m

(2 j+1)m
ea((2 j+1)m−s) h(s)ds

−1

a

∫ (2 j+1)m

2 jm+α j

v̇(m−α j)u(s−2 jm−α j)h(s)ds ,

(5.1.45)

if e j = 1, e j+1 = 0, or

a+
j −a−j+1

= −
∫ 2( j+1)m+α j+1

(2 j+1)m
v(−m−α j+1)u(s−2( j +1)m−α j+1)h(s)ds

−
∫ (2 j+1)m

2 jm+α j

v(m−α j)u(s−2 jm−α j)h(s)ds,

a+
j

u̇(m−α j)
au(m−α j)

−a−j+1

u̇(−m−α j+1)
au(−m−α j+1)

= −1

a

∫ 2( j+1)m+α j+1

(2 j+1)m
v̇(−m−α j+1)u(s−2( j +1)m−α j+1)h(s)ds

−1

a

∫ (2 j+1)m

2 jm+α j

v̇(m−α j)u(s−2 jm−α j)h(s)ds ,

(5.1.46)

if e j = e j+1 = 1. We note that when ξ = (E,α) is fixed, for any j ∈ Z only one

among Equations (5.1.44)–(5.1.46) occurs. We consider these equations as a unique

equation for the variable

{(ã j, b̃ j)} j∈Z ∈ �∞× �∞

where (ã j, b̃ j) = (a j,b j) if e j = 0 whereas (ã j, b̃ j) = (a−j ,a+
j ) if e j = 1. The left-

hand sides of (5.1.44)–(5.1.46) define a linear bounded operator

Lm,ξ : �∞× �∞ → �∞× �∞, Lm,ξ

({ã j}
{b̃ j}

)
=

({â j}
{b̂ j}

)
(5.1.47)
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where

â j =(1− e j)ã j − [e j+1 +(1− e j+1)e−2am]ã j+1

+[e j +(1− e j)e−2am]b̃ j − (1− e j+1)b̃ j+1 ,

b̂ j =(1− e j)ã j −
[

u̇(−m−α j+1)
au(−m−α j+1)

e j+1 +(1− e j+1)e−2am
]

ã j+1

+
[

u̇(m−α j)
au(m−α j)

e j − (1− e j)e−2am
]

b̃ j +(1− e j+1)b̃ j+1 .

(5.1.48)

Now, since 0 ≤ 1− e j ≤ 1, |α j| ≤ 2, and

lim
t→±∞

u̇(t)
au(t)

= ±1 (5.1.49)

we see that m0 ∈ N exists so that for any m ≥ m0, ξ ∈ X and j ∈ Z, we have

|â j| < 3(‖ã‖∞+‖b̃‖∞), |b̂ j| < 3(‖ã‖∞+‖b̃‖∞)

or ‖Lm,ξ‖< 6. Now, we want to show that for m sufficiently large and any ξ ∈ X , the

map Lm,ξ : �∞×�∞→ �∞×�∞ is invertible. To this end, we claim that when m →∞,

the linear map Lm,ξ tends to the map LE defined as follows:

LE

({ã j}
{b̃ j}

)
=

({(1− e j)ã j − e j+1ã j+1 + e jb̃ j − (1− e j+1)b̃ j+1}
{(1− e j)ã j + e j+1ã j+1 + e jb̃ j +(1− e j+1)b̃ j+1}

)

in the sense that

‖Lm,ξ −LE‖→ 0 (5.1.50)

as m → ∞ uniformly with respect to ξ = (E,α) ∈ X . In fact,

(Lm,ξ −LE)

({ã j}
{b̃ j}

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

{(e j+1 −1)e−2am ã j+1 +(1− e j)e−2am b̃ j}⎧⎪⎪⎪⎨⎪⎪⎪⎩
[(

u̇(m−α j)
au(m−α j)

−1

)
e j − (1− e j)e−2am

]
b̃ j

−
[(

u̇(−m−α j+1)
au(−m−α j+1)

+1

)
e j+1 +(1− e j+1)e−2am

]
ã j+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus (5.1.50) follows from (5.1.49) and ‖α‖ ≤ 2. Next, the equation:

LE

({ã j}
{b̃ j}

)
=

({Ā j}
{B̄ j}

)
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is equivalent to the infinite dimensional system ( j ∈ Z):⎧⎪⎨⎪⎩
(1− e j)ã j + e jb̃ j =

Ā j + B̄ j

2
,

e j+1ã j+1 +(1− e j+1)b̃ j+1 =
B̄ j − Ā j

2
.

Changing j with j−1 we obtain⎧⎪⎨⎪⎩
(1− e j−1)ã j−1 + e j−1b̃ j−1 =

Ā j−1 + B̄ j−1

2
,

e jã j +(1− e j)b̃ j =
B̄ j−1 − Ā j−1

2
.

Thus, for any j ∈ Z, (ã j, b̃ j) satisfies⎧⎪⎨⎪⎩
e jã j +(1− e j)b̃ j =

B̄ j−1 − Ā j−1

2
,

(1− e j)ã j + e jb̃ j =
Ā j + B̄ j

2
,

which is a linear system in the unknown (ã j, b̃ j) having the solution

ã j =
1

2

(1− e j)(Ā j + B̄ j)+ e j(Ā j−1 − B̄ j−1)
1−2e j

,

b̃ j =
1

2

(1− e j)(B̄ j−1 − Ā j−1)− e j(Ā j + B̄ j)
1−2e j

.

Since e j is either 0 or 1 we see that |1−2e j| = 1 and then

|ã j|, |b̃ j| ≤ 1

2
(|Ā j−1|+ |Ā j|)+

1

2
(|B̄ j−1|+ |B̄ j|)

or

‖ã‖∞+‖b̃‖∞ ≤ 2(‖Ā‖∞+‖B̄‖∞).

That is, L−1
E exists and ‖L−1

E ‖ ≤ 2. As a consequence, for any m sufficiently large

and ξ ∈ X , Lm,ξ has a bounded inverse L−1
m,ξ so that, say,

‖L−1
m,ξ‖ ≤ 3 . (5.1.51)

Thus we can uniquely solve Eqs. (5.1.44)–(5.1.46) for ã j = ã j(h,ξ ), b̃ j = b̃ j(h,ξ )
and a constant c̃ independent of ξ ∈ X and m ∈ N (provided m ≥ m0, with m0 suffi-

ciently large) exists so that

|ã j(h,ξ )| ≤ c̃‖h‖∞, |b̃ j(h,ξ )| ≤ c̃‖h‖∞ (5.1.52)



5.1 Beams on Elastic Bearings 183

for any j ∈ Z. Consequently, the compatibility condition (5.1.39) reads

∫ (2 j+1)m

(2 j−1)m
γ̇ξ (s)h(s)ds = −Lm,ξ , j(h) := γ̈1(0)

[
a−j (h,ξ )

u(−m−α j)
− a+

j (h,ξ )

u(m−α j)

]

for any j ∈Z so that e j = 1. Since we do not need any compatibility condition when

e j = 0, we set

Lm,ξ , j(h) = 0 for any j ∈ Z such that e j = 0.

Clearly, the existence of a constant B > 0 so that Equation (5.1.28) holds, following

from Eqs. (5.1.40), (5.1.41) and (5.1.52). Similarly the existence of the constant A
as in the statement of the Lemma follows from (5.1.52) together with the fact that

|α j| ≤ 2 for any j ∈ Z and u(t) ∼ ea|t| as |t| → ∞.

Now we estimate v̄(t) = x1(t)− xp(t), xp(t) being the unique bounded solution

of the equation ẍ + 8
π f ′(0)x = h(t). Observe that v̄(t) is a C1 solution, bounded on

R, of the differential equation:

ẍ+
8

π
f ′(0)x+w(t) = 0

where w(t) = 8
π

(
f ′
(

2√
π γξ (t)

)
− f ′(0)

)
x1(t). Thus

v̄(t) =
1

2a

∫ t

−∞
e−a(t−s) w(s)ds+

1

2a

∫ ∞

t
ea(t−s) w(s)ds .

Let A1 = 1+max
t∈R

|γ(t)| and N = max
x∈[−A1,A1]

{| f ′(x)|, | f ′′(x)|}.Then

|w(s)| ≤ 16

π
√
π

BN‖h‖∞|γξ (s)|

and hence

|v̄(t)| ≤ 16BN‖h‖∞
2aπ

√
π

{∫ t

−∞
e−a(t−s) |γξ (s)|ds+

∫ ∞

t
ea(t−s) |γξ (s)|ds

}
.

So, we consider the integrals

I(t,ξ ) :=
∫ t

−∞
e−a(t−s) |γξ (s)|ds, J(t,ξ ) :=

∫ ∞

t
ea(t−s) |γξ (s)|ds .

For any ξ = (E,α) ∈ X , E = {e j} j∈Z ∈ E , α := {α j} j∈Z ∈ �∞E , let ξ̃ = (Ẽ, α̃) ∈ X
be defined as

Ẽ := {e− j} j∈Z ∈ E , α̃ := {−α− j} j∈Z ∈ �∞
Ẽ
.
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From the definitions of γξ (t) and γ1(t) = γ1(−t) we see that γξ (t) = γξ̃ (−t) for any

t ∈ R, t �= (2 j−1)m, j ∈ Z, and then

J(t,ξ ) =
∫ −t

−∞
ea(t+s) |γξ (−s)|ds =

∫ −t

−∞
e−a(−t−s) |γξ̃ (s)|ds = I(−t, ξ̃ ).

Thus we see that it is enough to estimate I(t,ξ ). Let (2 j−1)m < t ≤ (2 j +1)m. We

have ∫ (2 j−3)m

−∞
e−a(t−s) |γξ (s)|ds ≤ A1

a
e−2am <

A1

a
e−am/2 .

Next, we estimate∫ (2 j−1)m

(2 j−3)m
e−a(t−s) |γξ (s)|ds,

∫ t

(2 j−1)m
e−a(t−s) |γξ (s)|ds .

Since γξ (t) = 0 if (2i−1)m < t ≤ (2i+1)m and ei = 0 we see that we can assume

that e j−1 = e j = 1 and

γξ (t) =

{
γ1(t −2( j−1)m−α j−1), if (2 j−3)m < t ≤ (2 j−1)m,

γ1(t −2 jm−α j), if (2 j−1)m < t ≤ (2 j +1)m.

Now, let A2 > 0 be such that

max
{
|γ1(t)|, |γ̇1(t)|, |γ̈1(t)|

}
≤ A2 e−a|t| . (5.1.53)

Then∫ (2 j−1)m

(2 j−3)m
e−a(t−s) |γξ (s)|ds ≤

∫ (2 j−1)m

(2 j−3)m
e−a(t−s) |γ1(s−2( j−1)m−α j−1)|ds

≤ A2

∫ (2 j−1)m

(2 j−3)m
e−a(t−s) e−a|s−2( j−1)m−α j−1| ds

≤ A2

∫ (2 j−1)m

2( j−1)m+α j−1

e−a(t−s) e−a(s−2( j−1)m−α j−1) ds+A2

∫ 2( j−1)m+α j−1

(2 j−3)m
e−a(t−s) ds

≤ A2 e−a(m−2)(m+2)+
A2

a
e−a(m−2) ≤ A2(e4a +1)

a
e−a(m−2)/2 .

Finally, if (2 j−1)m < t ≤ 2 jm+α j we have:∫ t

(2 j−1)m
e−a(t−s) |γξ (s)|ds ≤ A2

∫ t

(2 j−1)m
e−a(t−s) ea(s−2 jm−α j) ds

≤ A2

2a
e−a|t−2 jm−α j | ≤ A2

2a
e−a|t−2 jm−α j |/2



5.1 Beams on Elastic Bearings 185

whereas if 2 jm+α j < t ≤ (2 j +1)m∫ t

(2 j−1)m
e−a(t−s) |γξ (s)|ds

≤ A2

∫ t

(2 j−1)m
e−a(t−s) e−a|s−2 jm−α j | ds

≤ A2

∫ 2 jm+α j

(2 j−1)m
e−a(t−s) e−a(2 jm+α j−s) ds+A2

∫ t

2 jm+α j

e−a(t−s) e−a(s−2 jm−α j) ds

≤ A2

2a
e−a(t−2 jm−α j) +A2 e−a(t−2 jm−α j)(t −2 jm−α j) ≤ 3A2

2a
e−a(t−2 jm−α j)/2,

since aθ e−aθ ≤ e−aθ/2 for any θ ≥ 0. The fact that inequality (5.1.29) holds in the

closed interval [(2 j−1)m,(2 j + 1)m] follows from continuity. We now prove (iii).

Let w(t) ∈C∞(R) be a smooth function so that suppw ∈ (−1,1) and w′(0) = 1 and

set

x̂1(t) = x1(t,ξ ′)− x1(t,ξ ′′)+ e jẋ1(2 jm+α ′
j,ξ ′′)w(t −2 jm−α ′

j)

if (2 j−1)m < t ≤ (2 j+1)m and j ∈Z. Note that x̂1(t) is a bounded C1-function on

R that satisfies, in any interval ((2 j−1)m,(2 j +1)m], the equation:

ẍ1 +
8

π
f ′(

2√
π
γξ ′(t))x1

= h(t,ξ ′)−h(t,ξ ′′)

+
8

π

[
f ′
(

2√
π
γξ ′′(t)

)
− f ′

(
2√
π
γξ ′(t)

)]
x1(t,ξ ′′)

−e jẋ1(2 jm+α ′
j,ξ ′′)

[
ẅ(t −2 jm−α ′

j)+
8

π
f ′
(

2√
π
γξ ′(t)

)
w(t −2 jm−α ′

j)
]

together with ẋ1(2 jm+α ′
j) = 0 when e j = 1. Thus, because of (i) and (5.1.22),

max{‖x1(·,ξ ′)− x1(t,ξ ′′)‖∞,‖ẋ1(·,ξ ′)− ẋ1(t,ξ ′′)‖∞}
≤ B‖h(·,ξ ′)−h(·,ξ ′′)‖∞

+ B̃sup
j∈Z

|e jẋ1(2 jm+α ′
j,ξ ′′)|+

16B2N
π
√
π

‖h(·,ξ ′′)‖∞‖γξ ′ − γξ ′′ ‖∞

≤ B‖h(·,ξ ′)−h(·,ξ ′′)‖∞+ B̃sup
j∈Z

|e jẋ1(2 jm+α ′
j,ξ ′′)|

+B1‖h(·,ξ ′′)‖∞ ‖α ′ −α ′′‖ (5.1.54)
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for some choice of the positive constants B1 and B̃. On the other hand, when e j = 1,

we have, since ẋ1(2 jm+α ′′
j ,ξ ′′) = 0,

ẋ1(2 jm+α ′
j,ξ ′′)=

∫ 2 jm+α ′
j

2 jm+α ′′
j

ẍ1(t,ξ ′′)dt

=
∫ 2 jm+α ′

j

2 jm+α ′′
j

(
h(t,ξ ′′)− 8

π
f ′
(

2√
π
γξ ′′(t)

)
x1(t,ξ ′′)

)
dt

and hence

|ẋ1(2 jm+α ′
j,ξ ′′)| ≤

[
1+

8B
π
| f ′(0)|

]
‖h(·,ξ ′′)‖∞|α ′

j −α ′′
j |

+
8B
π
‖h(·,ξ ′′)‖∞

∫ α ′
j−α ′′

j

0

∣∣∣∣ f ′
(

2√
π
γ1(t)

)
− f ′(0)

∣∣∣∣dt

≤
{

1+
8B
π

[| f ′(0)|+A1N]
}
‖h(·,ξ ′′)‖∞|α ′

j −α ′′
j |. (5.1.55)

Then (iii) follows from (5.1.54), (5.1.55). Finally, the proof of Lipschitz continuity

of the map Lm with respect to α is given in Section 5.1.6. ��
Now we consider the equation

ẍ2 +
24

π
f ′
(

2√
π
γξ (t)

)
x2 = h ∈ L∞(R) (5.1.56)

and prove the following.

Lemma 5.1.3. There exist positive constants B1,C1 ∈R and m1 ∈N, so that for any
ξ = (E,α) ∈ X and m ≥ m1, Equation (5.1.56) has a unique C1 solution x2(t,ξ )
which is bounded on R and satisfies

‖x2(·,ξ )‖∞ ≤ B1‖h‖∞, ‖ẋ2(·,ξ )‖∞ ≤ B1‖h‖∞. (5.1.57)

Moreover the following properties hold:

(i) Let zp(t) be the unique bounded solution of equation z̈p + 24
π f ′(0)zp = h(t), then

|x2(t,ξ )− zp(t)| ≤C1

(
e−am/2 +e−a|t−2 jm−α j |/2

)‖h‖∞ (5.1.58)

for (2 j−1)m ≤ t ≤ (2 j +1)m and any j ∈ Z.
(ii) Let ξ ′ = (E,α ′), ξ ′′ = (E,α ′′) with α ′,α ′′ ∈ �∞E and ξ be either ξ ′ or ξ ′′. Assume

that h(t,ξ ) ∈ L∞(R). Then there exists a constant, ĉ1, independent of ξ , so that
the following holds:
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max
{
‖x2(·,ξ ′)− x2(·,ξ ′′)‖∞,‖ẋ2(·,ξ ′)− ẋ2(·,ξ ′′)‖∞

}
≤ B1‖h(t,ξ ′)−h(t,ξ ′′)‖∞+ ĉ1‖h(t,ξ ′′)‖∞‖α ′ −α ′′‖∞. (5.1.59)

Proof. Since the proof is very similar to that of Lemma 5.1.2 (actually simpler)

we only sketch it emphasizing the differences. Because of assumption (H2), the

homogeneous equation associated with (5.1.56) has an exponential dichotomy on

R, that is, there exists a projection P of rank one so that the fundamental system

X(t) of (5.1.56) satisfies:

‖X(t)PX−1(s)‖ ≤ k e−b(t−s), for any s ≤ t,

‖X(t)(I−P)X−1(s)‖ ≤ k e−b(t−s), for any t ≤ s

where b =
√

24
π | f ′(0)|. Let v0 ∈ RP, u0 ∈ N P be unitary vectors, and set(

u(t)

u̇(t)

)
:= X(t)u0,

(
v(t)

v̇(t)

)
:= X(t)v0.

Then it can be proved that (5.1.34) holds for any t ≤ s whereas (5.1.35) holds for any

s ≤ t. Now, when e j = 0 Equation (5.1.36), with b instead of a, gives the solution to

(5.1.56) but now, since when e j = 1 we do not impose the condition ẋ2(2 jm+α j) =
0, we do not need to split the interval [(2 j−1)m,2( j + 1)m] into two parts and the

general solution of (5.1.56) can be written as:

x1(t) =
∫ t

(2 j−1)m
v(t −2 jm)u(s−2 jm)h(s)ds

+
∫ (2 j+1)m

t
u(t −2 jm)v(s−2 jm)h(s)ds

+a ju(t −2 jm)/u(−m)+b jv(t −2 jm)/v(m).

It is easy to see that x1(t) belongs to L∞(R) and is C1 in any open interval

((2 j−1)m,(2 j+1)m). Thus we obtain a unique bounded C1 solution of Eq. (5.1.56)

provided we show that Eq. (5.1.42) can be uniquely solved. This fact and the prop-

erties (i), (ii) are proved in the proof of Lemma 5.1.2 and so we omit it. ��
In order to apply Lemma 5.1.2, we consider the set

Sm,ξ :=
{

h ∈ L∞(R) | Lm,ξ , jh+
∫ (2 j+1)m

(2 j−1)m
γ̇ξ (t)h(t)dt = 0 for any j ∈ Z

}
.

Note that if ξ = 0 (i.e. (E,α) = (0,0)) then Sm,ξ = L∞(R). Then we construct a

projection Qm,ξ : L∞(R) → Sm,ξ as follows. If ξ = 0 we set Qm,ξ = I, whereas if

ξ �= 0 (and hence E �= 0) we proceed in the following way. For any c = {ci}i∈Z ∈ �∞E ,

we put
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γc(t) = c j γ̇ξ (t) for (2 j−1)m < t ≤ (2 j +1)m .

We recall that �∞E :=
{

c = {ci}i∈Z ∈ �∞ | ci = 0 for ei = 0
}

. Hence γc ∈ L∞(R)
and

|γc(t)| ≤ ‖c‖∞|γ̇ξ (t)| ≤ ‖c‖∞‖γ̇1‖∞.

For any h ∈ L∞(R) we take hc = h− γc and consider the system of equations

Lm,ξ , jhc +
∫ (2 j+1)m

(2 j−1)m
γ̇ξ (t)hc(t)dt = 0, j ∈ Z . (5.1.60)

Our purpose is to determine a solution c ∈ �∞E of the above system. Note that when

e j = 0, one has Lm,ξ , j = 0, γξ (t) = 0 and then the above equation is trivially satisfied

regardless of the value of c j. This is the reason why we take c j = 0 when e j = 0. On

the other hand, since γξ (t) = 0 in ((2 j−1)m,(2 j +1)m] when e j = 0, the value of

c j does not matter to defining γc(t) in this interval. We can write (5.1.60) as

[Mm,ξ +Lm,ξGm,ξ ]c = [Lm,ξ +Nm,ξ ]h (5.1.61)

where

Lm,ξh = {Lm,ξ , jh} j∈Z ∈ �∞E , Mm,ξ c =
{

c j

∫ (2 j+1)m

(2 j−1)m
γ̇2
ξ (t)dt

}
j∈Z

∈ �∞E ,

Gm,ξ c = γc(t) = ∑
j∈Z

c j γ̇ξ (t)χ((2 j−1)m,(2 j+1)m](t) ∈ L∞(R),

Nm,ξh =
{∫ (2 j+1)m

(2 j−1)m
γ̇ξ (t)h(t)dt

}
j∈Z

∈ �∞E .

Note that for any fixed E ∈ E , both sides of Eq. (5.1.61) are elements of �∞E .

Now, we have already observed that ‖Gm,ξ c‖∞ ≤ ‖γ̇1‖∞ · ‖c‖∞, moreover, from

Lemma 5.1.2 it follows that ‖Lm,ξh‖∞ ≤ Ae−am ‖h‖∞. Hence

‖Lm,ξGm,ξ c‖∞ ≤ Ae−am ‖γ̇‖∞ · ‖c‖∞ . (5.1.62)

Next, setting

Ã1 =
∫ ∞

−∞
|γ̇1(t)|dt > 0, Ã2 =

∫ ∞

−∞
γ̇1(t)2 dt > 0

we have, for m sufficiently large, and any j ∈ Z, with e j = 1

Ã2

2
≤

∣∣∣∣∫ (2 j+1)m

(2 j−1)m
γ̇ξ (t)2dt

∣∣∣∣ =
∣∣∣∣∫ m−α j

−m−α j

γ̇1(t)2dt
∣∣∣∣≤ Ã2

since |α j| ≤ 2 for any j ∈ Z. Thus Mm,ξ : �∞E → �∞E is a bounded linear map

(‖Mm,ξ‖ ≤ Ã2) which is invertible and it is easy to see that its inverse M−1
m,ξ satis-
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fies:
1

Ã2

≤ ‖M−1
m,ξ‖ ≤

2

Ã2

provided m ∈ N is sufficiently large. Thus, using also (5.1.62) we see that [Mm,ξ +
Lm,ξGm,ξ ]−1 exists and is bounded uniformly with respect to (ξ ,m) provided m is

large enough. Finally:

‖Nm,ξh‖ = sup
j∈Z

∣∣∣∣e j

∫ m

−m
γ̇1(t −α j)h(t +2 jm)dt

∣∣∣∣≤ Ã1‖h‖ (5.1.63)

and hence Equation (5.1.61) has the unique solution, linear with h

c(m,ξ )h =
[
Mm,ξ +Lm,ξGm,ξ

]−1 [
Lm,ξ +Nm,ξ

]
h ∈ �∞E

and the linear map h  → c(m,ξ )h is a bounded linear map from L∞(R) into �∞E with

bound independent of (m,ξ ) (of course with m ≥ m̄ sufficiently large). We set

Pm,ξh = γc(m,ξ )h , Qm,ξ = I−Pm,ξ .

Obviously we mean that c(m,0) = 0 for any m ∈ N so that Pm,0 = 0 and Qm,0 = I.

We have the following:

Theorem 5.1.4. Pm,ξ : L∞(R)→ L∞(R) is a projection on L∞(R) which is uniformly
bounded with respect to (m,ξ ) and Lipschitz in α ∈ �∞E uniformly with respect to
(m,E). That is, a constant L, independent of (m,E), exists such that ‖Pm,(E,α) −
Pm,(E,α ′)‖ ≤ L‖α−α ′‖ for any m ≥ m̄ and (E,α),(E,α ′) ∈ X. Furthermore

|[Pm,ξh](t)| ≤ |c(m,ξ )|‖h‖∞|γ̇ξ (t)| (5.1.64)

and Pm,ξh = 0 if and only if

[Lm,ξ +Nm,ξ ]h = 0. (5.1.65)

Proof. Since there is nothing to prove when ξ = 0 we assume ξ �= 0. The fact that

Pm,ξ is bounded uniformly with respect to (m,ξ ) and actually satisfies (5.1.64) has

already been proved. We now prove the last statement: the equation Pm,ξh = 0 holds

if and only if γc(m,ξ )h = 0, that is, if and only if h = hc(m,ξ )h. Thus (5.1.65) follows

because c(m,ξ )h satisfies Eq. (5.1.60). On the contrary, if h satisfies (5.1.65), we

have c(m,ξ )h = 0 because of uniqueness and then Pm,ξh = 0. We can now prove

that Pm,ξ is a projection. In fact, we have Pm,ξ [Qm,ξh] = Pm,ξ [h−Pm,ξh] = 0 because

h−Pm,ξh = h− γc(m,ξ )h satisfies (5.1.65). Thus Pm,ξ = P2
m,ξ . Finally we prove the

Lipschitz continuity of Pm,ξ . First we prove that

(ξ ,h)  → Nm,ξh =
{

e j

∫ m

−m
γ̇1(t −α j)h(t +2 jm)dt

}
j∈Z
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from X × L∞ into �∞E , is Lipschitz continuous function in α uniformly with re-

spect to (m,E). In fact, for τ ′′,τ ′ ∈ R with |τ ′′|, |τ ′| ≤ 2, we have, using γ̈1(t) =
4√
π f ( 2√

π γ1(t)), | f ′(x)| ≤ N and (5.1.53):∣∣∣∣∫ m

−m
[γ̇1(t − τ ′′)− γ̇1(t − τ ′)]h(t +2 jm)dt

∣∣∣∣
≤

∫ m

−m

∫ 1

0
|γ̈1(t −θτ ′′ − (1−θ)τ ′)|dθ dt ‖h‖∞|τ ′′ − τ ′|

≤ 8N
π

∫ m

−m

∫ 1

0
|γ1(t −θτ ′′ − (1−θ)τ ′)|dθ dt ‖h‖∞|τ ′′ − τ ′|

≤ 8N
π

∫ m

−m

∫ 1

0
A2 e−a|t−θτ ′′−(1−θ)τ ′| dθ dt ‖h‖∞|τ ′′ − τ ′|

≤ 8N
π

∫ m

−m

∫ 1

0
A2 e−a(|t|−2) dθ dt ‖h‖∞|τ ′′ − τ ′| ≤ 16NA2 e2a

aπ
‖h‖∞|τ ′′ − τ ′| .

Similarly we can prove that the bounded linear maps Mm,ξ : �∞E → �∞E and Gm,ξ :

�∞E → L∞ are Lipschitz continuous function in α uniformly with respect to (E,m).
Then the inverse [Mm,ξ +Lm,ξGm,ξ ]−1 has the same property and the same holds

for the solution c(m,ξ )h of Eq. (5.1.61). Finally, let ξ ′ = (E,α ′),ξ ′′ = (E,α ′′)∈ X .

Then for any t ∈ ((2 j−1)m,(2 j +1)m] we have

[Pm,ξ ′h−Pm,ξ ′′h](t) = γ̇ξ ′′(t)[c j(m,ξ ′)h− c j(m,ξ ′′)h]+ [γ̇ξ ′(t)− γ̇ξ ′′(t)]c j(m,ξ ′)h

and hence Pm,ξ is Lipschitz continuous function in α uniformly with respect to

(E,m), so are c(m,ξ ) and γ̇ξ (t) and both are bounded uniformly with respect to

(ξ ,m). The proof is complete. ��
Remark 5.1.5. (a) Obviously Qm,ξ is also Lipschitz continuous function in α , uni-

formly with respect to (m,E) and, using Pm,ξQm,ξ = 0, we see that the equation

Lm,ξ , jQm,ξh+
∫ (2 j+1)m

(2 j−1)m
γ̇ξ (t)[Qm,ξh](t)dt = 0

holds for any j ∈ Z. That is, Qm,ξ is a projection from L∞(R) onto Sm,ξ which is

bounded uniformly with respect to (ξ ,m), so is Pm,ξ .

(b) It follows from the arguments in Section 5.1.6 that Lm,ξ is not differentiable

in α . Hence Pm,ξ and Qm,ξ are also not differentiable in α . So the Lipschitz conti-

nuity of these maps is their best smoothness in α .

(c) If h(t) = γ̇ξ (t) and c j = e j for any j ∈ Z, we have hc(t) = γ̇ξ (t)− γ̇ξ (t) = 0

and then (5.1.60) is satisfied. Thus, because of uniqueness, Pm,ξ γ̇ξ = γ̇ξ or

Qm,ξ γ̇ξ = 0. (5.1.66)
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5.1.4 Chaotic Solutions

We look for solutions of Eqs. (5.1.6)–(5.1.8), for which, the sup-norms of y1(t)−
γξ (t), y2(t) and z(x, t) are small. Since the function γξ (t) has small jumps at the

points t = (2 j−1)m, j ∈Z, we introduce a function vξ (t)∈ L∞(R) which has small

norm, so that

Γξ (t) = γξ (t)+ vξ (t)

is C1. As an example, we can take the function:

vξ (t) =
p j

4m2

(
t − (2 j−1)m

)2 +
q j

8m3

(
t − (2 j−1)m

)3

if (2 j−1)m < t ≤ (2 j +1)m, j ∈ Z, where

p j = 3
(
γξ (((2 j +1)m)+)− γξ (((2 j +1)m)−)

)
+2m

(
γ̇ξ (((2 j +1)m)−)− γ̇ξ (((2 j +1)m)+)

)
,

q j = 2m
(
γ̇ξ (((2 j +1)m)+)− γ̇ξ (((2 j +1)m)−)

)
+2

(
γξ (((2 j +1)m)−)− γξ (((2 j +1)m)+)

)
.

Again, we will silently include, in the definition of vξ (t) and Γξ (t), also the end

points of the intervals [(2 j−1)m,(2 j +1)m] as we did for the function γξ (t). Next,

from (5.1.53) we obtain, for any j ∈ Z:

max
{
|γξ (((2 j +1)m)±)|, |γ̇ξ (((2 j +1)m)±)|

}
≤ A2 e2a e−am = Ā2 e−am

where Ā2 = A2 e2a. As a consequence, we get

‖vξ‖∞ ≤ (10+8m)Ā2 e−am,

‖v̇ξ‖∞ ≤ (12+10m)Ā2 e−am /m,

‖v̈ξ‖∞ ≤ (9+8m)Ā2 e−am /m2 ,

(5.1.67)

or, since 0 < ε ≤ 2−4/3 (and hence m > ε−3/4 ≥ 2):

‖vξ‖∞ <
12Ā2

a7/3
ε, ‖v̇ξ‖∞ <

6Ā2

a4/3
ε, ‖v̈ξ‖∞ <

6Ā2

a
ε3/2 . (5.1.68)

Note that to obtain the inequalities (5.1.68) from (5.1.67) we have used the fact

that for λ > 0, and θ > 0 we have θλ e−θ ≤ (λ/e)λ and
(

4
3e

)4/3
< 2

5 , 1
e < 1

2 ,(
7

3e

)7/3
< 1. Let Λ = max

{
12e2a

a7/3 , 6e2a

a4/3 , 6e2a

a ,e2a
}

, then:

‖vξ‖∞ ≤ΛA2ε, ‖v̇ξ‖∞ ≤ΛA2ε, ‖v̈ξ‖∞ ≤ΛA2ε3/2 . (5.1.69)
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For reasons that will be clearer later, we now prove that the functions vξ (t), v̇ξ (t)
and v̈ξ (t) are Lipschitz continuous funcfions in α , uniformly with respect to (E,m)
and that the Lipschitz constant is of the order O(ε) as ε→ 0, uniformly with respect

to (E,m). So, let ξ ′ = (E,α ′),ξ ′′ = (E,α ′′) ∈ X . For any t ∈ ((2 j−1),(2 j + 1)m]
we have (with obvious meaning of symbols):

|vξ ′(t)− vξ ′′(t)| ≤ |p′j − p′′j |+ |q′j −q′′j |

|v̇ξ ′(t)− v̇ξ ′′(t)| ≤
2|p′j − p′′j |+3|q′j −q′′j |

2m

|v̈ξ ′(t)− v̈ξ ′′(t)| ≤
|p′j − p′′j |+3|q′j −q′′j |

2m2
.

Thus it is enough to estimate |p′j − p′′j | and |q′j −q′′j |. Assume e j = 1, then

γξ (((2 j +1)m)−) = γ1(m−α j)

and hence, using (5.1.53) and |α ′
j|, |α ′′

j | ≤ 2 (recall that Ā2 = A2 e2a),

|γξ ′(((2 j +1)m)−)− γξ ′′(((2 j +1)m)−)| ≤ Ā2 e−am |α ′
j −α ′′

j |.

Similarly, if e j+1 = 1,

|γξ ′(((2 j +1)m)+)− γξ ′′(((2 j +1)m)+)| ≤ Ā2 e−am |α ′
j+1 −α ′′

j+1| .

On the other hand, if, say, e j = 0 then γξ (((2 j +1)m)−) = 0, α ′
j = α ′′

j = 0 and the

same conclusion holds. Thus we get, for any j ∈ Z (recall that m > 3):

|p′j − p′′j | ≤ (6+4m)Ā2 e−am ‖α ′ −α ′′‖ < 6mĀ2 e−am ‖α ′ −α ′′‖

and similarly,

|q′j −q′′j | ≤ (4+4m)Ā2 e−am ‖α ′ −α ′′‖ < 6mĀ2 e−am ‖α ′ −α ′′‖.

Hence, like for (5.1.69), we see that the following holds:

‖vξ ′ − vξ ′′ ‖∞ < A2Λε‖α ′ −α ′′‖,
‖v̇ξ ′ − v̇ξ ′′ ‖∞ < A2Λε‖α ′ −α ′′‖,
‖v̈ξ ′ − v̈ξ ′′ ‖∞ < A2Λε3/2‖α ′ −α ′′‖

(5.1.70)

which is what we want to prove. Now we replace y1(t) with y1(t)+Γξ (t) in (5.1.6)–

(5.1.8) and project the right-hand side of the differential equation for the new y1(t)
to Sm,ξ . Since γξ (t) satisfies (5.1.21) and Qm,ξ γ̇ξ (t) = 0 (see (5.1.66)), we obtain:
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ÿ1 (t) +
8

π
f ′
(

2√
π
γξ (t)

)
y1(t)

= −Qm,ξ

{√
εδ ẏ1(t)+

2√
π
μ
∫ π/4

0
h(x, t)dx

+
2√
π

f

(
2√
π

[y1(t)+Γξ (t)]−2

√
3

π
y2(t)+ z(0, t)

)
− 4√

π
f
(

2√
π
γξ (t)

)

+
2√
π

f

(
2√
π

[y1(t)+Γξ (t)]+2

√
3

π
y2(t)+ z(

π
4

, t)

)

− 8

π
f ′
(

2√
π
γξ (t)

)
y1(t)+

√
εδ v̇ξ (t)+ v̈ξ (t)

}
, (5.1.71)

ÿ2 (t) +
24

π
f ′
(

2√
π
γξ (t)

)
y2(t)

= −
{√

εδ ẏ2(t)+
16

π

√
3

π
μ
∫ π/4

0
h(x, t)

(
x− π

8

)
dx

−2

√
3

π
f
( 2√

π
[y1(t)+Γξ (t)]−2

√
3

π
y2(t)+ z(0, t)

)

+2

√
3

π
f
( 2√

π
[y1(t)+Γξ (t)]+2

√
3

π
y2(t)+ z(π/4, t)

)
−24

π
f ′(

2√
π
γξ (t))y2(t)

}
, (5.1.72)

∫ ∞

−∞

∫ π/4

0

{
z(x, t)

[
vtt(x, t)+

1

ε
vxxxx(x, t)−

√
εδvt(x, t)

]
+μh(x, t)v(x, t)

}
dxdt

+
∫ ∞

−∞

{
f (u(0, t))v(0, t)+ f (u(π/4, t))v(π/4, t)

}
dt = 0, (5.1.73)

in (5.1.73) we write u(x, t) for 2√
π [y1(t)+Γξ (t)]+ y2(t)w0(x)+ z(x, t).

Let C1
b(R) be the space of C1 functions bounded together with their first deriva-

tive on R. To make notations simpler we define the Banach spaces Y1 and Y2 as the

space C1
b(R) endowed with the norms

‖y1‖ =
2√
π

sup
t∈R

{|y1(t)|, |ẏ1(t)|} , ‖y2‖ = 2

√
3

π
sup
t∈R

{|y2(t)|, |ẏ2(t)|} ,
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respectively. Unless otherwise specified, y1(t), ŷ1(t), resp. y2(t), ŷ2(t) will denote

functions in Y1, resp. Y2 and the norm in Y1 ×Y2 will be ‖y1‖+‖y2‖. Next, let ρ > 0

be a fixed positive number, y1(t)∈Y1, y2(t)∈Y2 and z(x, t)∈C0
b([0, π4 ]×R) be such

that ‖y1‖+‖y2‖+‖z‖∞ ≤ ρ . For any fixed choice of such functions we set:

H1(x, t) = μh(x, t),

H2(t,ξ ) = f

(
2√
π

[y1(t)+Γξ (t)]−2

√
3

π
y2(t)+ z(0, t)

)
− f

(
2√
π
Γξ (t)

)

− f ′
(

2√
π
Γξ (t)

)[
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

]
,

H3(t,ξ ) = f

(
2√
π
[
y1(t)+Γξ (t)

]
+2

√
3

π
y2(t)+ z

(π
4

, t
))

− f
(

2√
π
Γξ (t)

)

− f ′
(

2√
π
Γξ (t)

)[
2√
π

y1(t)+2

√
3

π
y2(t)+ z

(π
4

, t
)]

,

Ĥ2(t,ξ ) = f
(

2√
π
Γξ (t)

)
+
[

f ′
(

2√
π
Γξ (t)

)
− f ′(0)

][
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

]
,

Ĥ3(t,ξ ) = f
(

2√
π
Γξ (t)

)
(5.1.74)

+
[

f ′
(

2√
π
Γξ (t)

)
− f ′(0)

][
2√
π

y1(t)+2

√
3

π
y2(t)+ z

(π
4

, t
)]

,

H̃21(t) = f ′(0)

[
2√
π

y1(t)−2

√
3

π
y2(t)

]
, H̃22(t) = f ′(0)z(0, t),

H̃31(t) = f ′(0)

[
2√
π

y1(t)+2

√
3

π
y2(t)

]
, H̃32(t) = f ′(0)z

(π
4

, t
)

,

Ĥ20(t,ξ ) = Ĥ30(t,ξ ) = f
(

2√
π
Γξ (t)

)
− f (0),

Ĥ21(t,ξ ) =
[

f ′
(

2√
π
Γξ (t)

)
− f ′(0)

][
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

]
,

Ĥ31(t,ξ ) =
[

f ′
(

2√
π
Γξ (t)

)
− f ′(0)

][
2√
π

y1(t)+2

√
3

π
y2(t)+ z(π/4, t)

]
.

Let us continue to denote with N an upper bound for f ′(x) and f ′′(x) in a neigh-

borhood of γ(t). We have the following result.
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Lemma 5.1.6. There exist positive constant k3 and a function Δ̃(ρ)> 0 with lim
ρ→0

Δ̃(ρ)=

0, so that if ‖y1‖+‖y2‖+‖z‖∞ ≤ ρ ≤ 1, E ∈ E and α ′,α ′′ ∈ �∞E the following hold

|Hk(t,ξ ′)−Hk(t,ξ ′′)| ≤ ρΔ̃(ρ)
[
ε+ e−a|t−2 jm|]‖α ′ −α ′′‖, k = 2,3,

|Ĥk1(t,ξ ′)− Ĥk1(t,ξ ′′)| ≤ k3ρ
[
ε+ e−a|t−2 jm|]‖α ′ −α ′′‖, k = 2,3

where ξ ′ = (E,α ′) and ξ ′′ = (E,α ′′) and t ∈ ((2 j−1)m,(2 j +1)m]. Furthermore,
Ĥ20(t,ξ ′)− Ĥ20(t,ξ ′′) = Ĥ30(t,ξ ′)− Ĥ30(t,ξ ′′) can be written as the sum of two
piecewise C1-functions H01(t)+H02(t), so that

|H01(t)| ≤ k3ε‖α ′ −α ′′‖,
|H02(t)| ≤ k3 e−a|t−2 jm| ‖α ′ −α ′′‖,
|Ḣ02(t)| ≤ k3 e−a|t−2 jm| ‖α ′ −α ′′‖

where ξ ′ = (E,α ′), ξ ′′ = (E,α ′′) and t ∈ ((2 j−1)m,(2 j +1)m].

Proof. Let e j = 1. Then, for any t ∈ ((2 j−1)m,(2 j +1)m], we have

|Γξ ′(t)−Γξ ′′(t)|≤
[
|γ̇1(t −2 jm−θα ′

j − (1−θ)α ′′
j )|+A2Λε

]
‖α ′ −α ′′‖

≤ [
A2Λε+ Ā2 e−a|t−2 jm|]‖α ′ −α ′′‖.

Obviously a similar conclusion holds when e j = 0 since in this case we have Γξ (t) =
vξ (t) for any t ∈ ((2 j−1)m,(2 j+1)m]. Next, for any x∈R we have |x+ 2√

π Γξ (t)| ≤
|x|+ 2√

π ‖vξ‖∞+ ‖γ‖∞ ≤ |x|+ 2√
πΛA2ε + A1. Thus, for any (y1,y2,z) |y1|+ |y2|+

|z| ≤ ρ and ξ ∈ X , the functions f (k)(y1 +Γξ (t)+ y2 + z), k = 0,1,2 are bounded.

Since

H2(t,ξ ′)−H2(t,ξ ′′) =
∫ 2√

π Γξ ′ (t)

2√
π Γξ ′′ (t)

f ′
(

2√
π

y1(t)+θ −2

√
3

π
y2(t)+ z(0, t)

)

− f ′(θ)− f ′′(θ)

[
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

]
dθ

=
∫ 2√

π Γξ ′ (t)

2√
π Γξ ′′ (t)

∫ 1

0
f ′′
(
θ +σ

[
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

])

− f ′′(θ)dσdθ

[
2√
π

y1(t)−2

√
3

π
y2(t)+ z(0, t)

]
,

we obtain:
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|H2(t,ξ ′)−H2(t,ξ ′′)|≤ 2√
π
ρΔ0(ρ)|Γξ ′(t)−Γξ ′′(t)|

≤ ρΔ̃(ρ)
[
ε+ e−a|t−2 jm|]‖α ′ −α ′′‖

where Δ0(ρ) := sup{|y|≤ρ ;|x|≤A1} | f ′′(x + y)− f ′′(x)| → 0 as ρ → 0 and Δ̃(ρ) =
2√
πA2ΛΔ0(ρ). Similarly,

|H3(t,ξ ′)−H3(t,ξ ′′)| ≤ ρΔ̃(ρ)
[
ε+ e−a|t−2 jm|

]
‖α ′ −α ′′‖

whereas for k = 2,3 we get:

|Ĥk1(t,ξ ′)− Ĥk1(t,ξ ′′)| ≤ 2N√
π
ρ|Γξ ′(t)−Γξ ′′(t)|

≤ 2A2ΛN√
π

ρ
[
ε+ e−a|t−2 jm|]‖α ′ −α ′′‖.

The first part of the Lemma then follows. For the second we write:

Ĥ20(t,ξ ′)− Ĥ20(t,ξ ′′) = H01(t)+H02(t)

where

H01(t) = f
(

2√
π
Γξ ′(t)

)
− f

(
2√
π
γξ ′(t)

)
− f

(
2√
π
Γξ ′′(t)

)
+ f

(
2√
π
γξ ′′(t)

)
,

H02(t) = f
(

2√
π
γξ ′(t)

)
− f

(
2√
π
γξ ′′(t)

)
.

Then, using (5.1.22) and (5.1.70), we have

|H01(t)|

≤
∣∣∣∣ f

(
2√
π
Γξ ′(t)

)
− f

(
2√
π

[γξ ′(t)+ vξ ′′(t)]
)∣∣∣∣

+
∣∣∣ f

(
2√
π
[
γξ ′(t)+ vξ ′′(t)

])− f
(

2√
π
γξ ′(t)

)
− f

(
2√
π
[
γξ ′′(t)+ vξ ′′(t)

])
+ f

(
2√
π
γξ ′′(t)

)∣∣∣≤ 2√
π

NA2Λε‖α ′ −α ′′‖

+
∫ 2√

π vξ ′′ (t)

0

∣∣∣∣ f ′
(

2√
π
γξ ′(t)+θ

)
− f ′

(
2√
π
γξ ′′(t)+θ

)∣∣∣∣dθ

≤ 2√
π

NA2Λε
(

1+
2
√

2√
π
‖γ̇‖∞

)
‖α ′ −α ′′‖ ≤ k3ε‖α ′ −α ′′‖ .

Finally, for any t ∈ ((2 j−1)m,(2 j +1)m], j ∈ Z, with e j = 1, we have
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H02(t)= f
(

2√
π
γ1(t −2 jm−α ′

j)
)
− f

(
2√
π
γ1(t −2 jm−α ′′

j )
)

=
2√
π

∫ α ′′
j

α ′
j

f ′
(

2√
π
γ1(t −2 jm−θ)

)
γ̇1(t −2 jm−θ)dθ .

Thus

|H02(t)| ≤ 2Ā2N√
π

e−a|t−2 jm| |α ′
j −α ′′

j | ≤ k3 e−a|t−2 jm| ‖α ′ −α ′′‖

and similarly, differentiating with respect to t, we have

|Ḣ02(t)| ≤ 2Ā2N√
π

(
1+

2√
π

Ā2

)
e−a|t−2 jm| |α ′

j −α ′′
j | ≤ k3 e−a|t−2 jm| ‖α ′ −α ′′‖.

The proof is complete. ��
Now, consider the unique solution, whose existence is stated in Theorem 5.1.1, of

Eq. (5.1.73) with ẑ(x, t) instead of z(x, t) and 2√
π [y1(t)+Γξ (t)]+y2(t)w0(x)+z(x, t)

instead of u(x, t):

ẑ(x, t) = F1(z,y1,y2,ξ ,μ,ε)+L1ε(y1,y2)+L2ε(z)

where
F1(z,y1,y2,ξ ,μ,ε) := Lε(H1,H2,H3)+Lε(0, Ĥ2, Ĥ3) ,

L1ε(y1,y2) := Lε(0, H̃21, H̃31) ,

L2ε(z) := Lε(0, H̃22, H̃32).

We are thinking of F1(z,y1,y2,ξ ,μ,ε) as a map from

C0
b([0,π/4]×R)×Y1 ×Y2 ×X ×R×R+ →C0

b([0,π/4]×R) .

We will need the following result.

Lemma 5.1.7. For any fixed, small, ε > 0, L1ε : Y1 ×Y2 → C0
b([0,π/4]×R) and

L2ε : C0
b([0,π/4]×R) → C0

b([0,π/4]×R) are bounded linear maps whose norms
satisfy:

‖L1ε‖ ≤ 2M1M2| f ′(0)|δ−1 , ‖L2ε‖ ≤ 2M1M2| f ′(0)|δ−1 . (5.1.75)

Moreover a function Δ(ρ) > 0 exists so that lim
ρ→0

Δ(ρ) = 0 and for ‖y1‖+ ‖y2‖+

‖z‖ ≤ ρ , ‖ỹ1‖+‖ỹ2‖+‖z̃‖ ≤ ρ the following hold:

(i)

‖ F1 (z,y1,y2,μ,ξ ,ε)‖∞

≤ π
2

M1M2

√
ε|μ|(√ε‖h‖∞+δ−1‖ht‖∞)
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+
4√
π

A2M1M2NΛ
[

5

(
1

δ 5
+1+

1

a

)(
1

Λ
+ ε

)
+2δ−1

√
ε
]
ε

+ 2M1M2

[
δ−1Δ(ρ)+

2√
π

A2N
√
ε
( 1

δ 3
+

2

a
+
Λ
δ
√
ε
)]

·
(‖y1‖+‖y2‖+‖z‖∞) . (5.1.76)

(ii) for any ξ ′ = (E,α ′),ξ ′′ = (E,α ′′) ∈ X, μ ′, μ ′′, we have

‖ F1 (z,y1,y2,μ ′,ξ ′,ε)−F1(z̃, ỹ1, ỹ2,μ ′′,ξ ′′,ε)‖∞

≤ π
4

M1M2

√
ε
[

5
√
ε
(

1

δ 5
+1+

1

a

)
+2δ−1

]
(‖h‖∞+‖ht‖∞)|μ ′ −μ ′′|

+ 2M1M2

[
δ−1Δ(ρ)+

2√
π

A2N
√
ε
( 1

δ 3
+

2

a
+
Λ
δ
√
ε
)]

·

(‖y1 − ỹ1‖+‖y2 − ỹ2‖+‖z− z̃‖∞)

+ 4k3M1M2

(√
ε
δ

+
1

δ 3
+

2

a

)
ρ
√
ε‖α ′ −α ′′‖

+ 10k3M1M2ε
(

1

5δ
+

1

δ 5
+1+

1

a

)
‖α ′ −α ′′‖ , (5.1.77)

with k3 being the positive constant of Lemma 5.1.6.

Proof. By following the above estimates, it is easy to derive (5.1.75) along with the

estimate

‖Lε(H1,H2,H3)‖∞ ≤ M1M2π
2

√
ε|μ|(√ε‖h‖∞+δ−1‖ht‖∞)

+2M1M2δ−1Δ(ρ)(‖y1‖+‖y2‖+‖z‖∞) (5.1.78)

where

Δ(ρ) = sup

|y1|+ |y2|+ |z| ≤ ρ
−∞< t < ∞

∣∣∣∣ f ′
(

y1 +
2√
π
Γξ (t)+ y2 + z

)
− f ′

(
2√
π
Γξ (t)

)∣∣∣∣→ 0

as ρ→ 0 (cf [11, Lemma 2, Eq. (3.17), (3.20)] for more details). Since f (0) = 0 we

have Ĥ2(t,ξ ) = Ĥ20(t,ξ ) + Ĥ21(t,ξ ) and Ĥ3(t,ξ ) = Ĥ30(t,ξ ) + Ĥ31(t,ξ ), Ĥi j(t)
defined in (5.1.75). Now, Ĥ20(t,ξ ) ∈C1

b(R) and the following inequalities hold (see

also (5.1.53)):

|Ĥ20(t,ξ )| ≤ 2N√
π
|Γξ (t)| ≤

2√
π

A2N
[
Λε+ e−a|t−2 jm−α j |

]
,

| ˙̂H20(t,ξ )| ≤ 2N√
π
|Γ̇ξ (t)| ≤

2√
π

A2N
[
Λε+ e−a|t−2 jm−α j |

]
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for (2 j − 1)m < t ≤ (2 j + 1)m, j ∈ Z. Hence, from Theorem 5.1.1–(b), (5.1.19),

(5.1.20) we get

‖Lε(0, Ĥ20, Ĥ30)‖∞ ≤ 4√
π

A2M1M2NΛ
[

5

(
1

δ 5
+1+

1

a

)(
1

Λ
+ ε

)
+

2

δ
√
ε
]
ε

(5.1.79)

Next,

|Ĥ21(t,ξ )| ≤ 2N√
π
|Γξ (t)|[‖y1‖+‖y2‖+‖z‖∞]

≤ 2√
π

A2N[Λε+ e−a|t−2 jm−α j |][‖y1‖+‖y2‖+‖z‖∞],

|Ĥ31(t,ξ )| ≤ 2N√
π
|Γξ (t)|[‖y1‖+‖y2‖+‖z‖∞]

≤ 2√
π

A2N[Λε+ e−a|t−2 jm−α j |][‖y1‖+‖y2‖+‖z‖∞].

Thus, from Theorem 5.1.1(a) and (5.1.19) we obtain:

‖Lε(0, Ĥ21, Ĥ31)‖∞ ≤ 4√
π

M1M2A2N
√
ε
(

1

δ 3
+

2

a
+Λ

√
ε
δ

)
[‖y1‖+‖y2‖+‖z‖∞]

(5.1.80)

and (5.1.76) follows from (5.1.78), (5.1.79), and (5.1.80). Finally, we prove (5.1.77).

Using arguments similar to the above we see that

‖ F1(z,y1,y2,μ ′′,ξ ′′,ε)−F1(z̃, ỹ1, ỹ2,μ ′′,ξ ′′,ε)‖∞

≤ 2M1M2

[
δ−1Δ(ρ)+

2√
π

A2N
√
ε
(

1

δ 3
+

2

a
+
Λ
δ
√
ε
)]

· [‖y1 − ỹ1‖+‖y2 − ỹ2‖+‖z− z̃‖∞].

Next,

F1 (z,y1,y2,μ ′,ξ ′,ε)− F1(z,y1,y2,μ ′′,ξ ′′,ε)

= Lε((μ ′ −μ ′′)h,0,0)+ Lε(0,H2(·,ξ ′)−H2(·,ξ ′′),H3(·,ξ ′)−H3(·,ξ ′′))
+ Lε(0, Ĥ20(·,ξ ′)− Ĥ20(·,ξ ′′), Ĥ30(·,ξ ′)− Ĥ30(·,ξ ′′))
+ Lε(0, Ĥ21(·,ξ ′)− Ĥ21(·,ξ ′′), Ĥ31(·,ξ ′)− Ĥ31(·,ξ ′′))

and hence, from Lemma 5.1.6, Theorem 5.1.1, (5.1.19) and (5.1.20) we obtain:

‖ F1 (z,y1,y2,μ ′,ξ ′,ε)−F1(z,y1,y2,μ ′′,ξ ′′,ε)‖∞

≤ 4k3M1M2

(√
ε
δ

+
1

δ 3
+

2

a

)
ρ
√
ε‖α ′ −α ′′‖
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+
π
4

M1M2

√
ε
[

5
√
ε
(

1

δ 5
+1

)
+

2

δ

]
(‖h‖∞+‖ht‖∞)|μ ′ −μ ′′|

+10k3M1M2ε
(

1

5δ
+

1

δ 5
+1+

1

a

)
‖α ′ −α ′′‖ .

(5.1.77) then follows from the above two estimates. The proof is complete. ��
Now, for given (y1(t),y2(t),z(x, t)) ∈ Y1 ×Y2 ×C0

b([0, π4 ]×R), we denote with

(ŷ1(t), ŷ2(t)) the unique solution of

¨̂y1(t)+
8

π
f ′
(

2√
π
γξ (t)

)
ŷ1(t) = g1(t),

¨̂y2(t)+
24

π
f ′
(

2√
π
γξ (t)

)
ŷ2(t) = g2(t)

(5.1.81)

where g1(t), g2(t) are the right-hand sides of Eqs. (5.1.71), (5.1.72), that satisfy
˙̂y1(2 jm +α j) = 0 for any j ∈ Z so that e j = 1. These solutions exist because of

Lemmas 5.1.2 and 5.1.3, moreover

‖ŷ1‖ ≤ B‖g1‖ , ‖ŷ2‖ ≤ B1‖g2‖ (5.1.82)

where B and B1 have been defined in Lemma 5.1.2 and Lemma 5.1.3. Note that in

the above formulas the norm on the left is the norm in Y1 (resp. Y2), while ‖g1‖ =
2√
π supt∈R |g1(t)| and ‖g2‖ = 2

√
3
π supt∈R |g2(t)|. Let

g11(t) = g1(t)+Qm,ξ

{
2√
π

f ′
(

2√
π
Γξ (t)

)
[z(0, t)+ z(π/4, t)]

}
,

g21(t) = g2(t)+2

√
3

π
f ′
(

2√
π
Γξ (t)

)
[z(π/4, t)− z(0, t)].

Then (ŷ1(t), ŷ2(t)) can be written as

ŷ1(t) = ŷ11(t)+ ŷ10(t), ŷ2(t) = ŷ21(t)+ ŷ20(t)

where (ŷ11(t), ŷ21(t)) ∈ Y1 ×Y2 is the unique bounded solution of

¨̂y11(t)+
8

π
f ′
(

2√
π
γξ (t)

)
ŷ11(t) = g11(t),

¨̂y21(t)+
24

π
f ′
(

2√
π
γξ (t)

)
ŷ21(t) = g21(t)

(5.1.83)

that satisfies ˙̂y11(2 jm +α j) = 0 for any j ∈ Z so that e j = 1, and (ŷ10(t), ŷ20(t)) ∈
Y1 ×Y2 is the unique bounded solution of
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¨̂y10(t)+
8

π
f ′
(

2√
π
γξ (t)

)
ŷ10(t) = −Qm,ξ

[
2√
π

f ′
(

2√
π
Γξ (t)

)
[z(0, t)+ z(π/4, t)]

]
,

¨̂y20(t)+
24

π
f ′
(

2√
π
γξ (t)

)
ŷ20(t) = −2

√
3

π
f ′
(

2√
π
Γξ (t)

)
[z(π/4, t)− z(0, t)]

(5.1.84)

that satisfies ˙̂y10(2 jm+α j) = 0 for any j ∈ Z so that e j = 1. We set

F2(z,y1,y2,ξ ,μ,ε) = (ŷ11, ŷ21) ∈ Y1 ×Y2, Lz = (ŷ10, ŷ20).

Then we have the following result:

Lemma 5.1.8. L : C0
b([0,π/4]×R) → Y1 ×Y2 is a bounded linear map. Moreover,

positive constants k6 and k7 and a function Δ(ρ,ε)> 0 exist so that lim
(ρ,ε)→(0,0)

Δ(ρ,ε)=

0 and for ‖y1‖+‖y2‖+‖z‖ ≤ ρ , ‖ỹ1‖+‖ỹ2‖+‖z̃‖ ≤ ρ the following hold:

(i)

‖F2(z,y1,y2,ξ ,μ,ε)‖ ≤ Δ̄(ρ,ε)[‖y1‖+‖y2‖+‖z‖∞]+ k6|μ|+ k7ε. (5.1.85)

(ii) For any ξ = (E,α), ξ̃ = (E, α̃) ∈ X, μ , μ̃ , we have

‖ F2 (z,y1,y2,ξ ,μ,ε)−F2(z̃, ỹ1, ỹ2, ξ̃ , μ̃,ε)‖
≤ Δ̄(ρ,ε)[‖y1 − ỹ1‖+‖y2 − ỹ2‖+‖z− z̃‖∞]

+[ρΔ̄(ρ,ε)+ k6|μ|+ k7ε]‖α− α̃‖∞+ k6|μ− μ̃|. (5.1.86)

Proof. First we note that from Remark 5.1.5 (a) the existence follows of a constant

A4 > 0 so that ‖Qm,ξ‖ ≤ A4 and ‖Qm,ξ ′ −Qm,ξ ′′ ‖ ≤ A4‖α ′ −α ′′‖ for any m suf-

ficiently large and any ξ ,ξ ′,ξ ′′ ∈ X with ξ ′ = (E,α ′), ξ ′′ = (E,α ′′). Then, L is

obviously linear and from (5.1.82) it easily follows that

‖ŷ10‖+‖ŷ20‖ ≤ 8N(A4B+3B1)
π

‖z‖∞,

that is, L is bounded and

‖L‖ ≤ 8N(A4B+3B1)
π

.

Next, it is easy to see that

‖g11‖ ≤ A4

{√
εδ‖y1‖+ |μ|‖h‖∞+

2ΛA2√
π

(1+δ )ε3/2 +
16ΛA2N
π
√
π
ε

+
16ΛA2N
π
√
π
ε‖y1‖+

8

π
Δ(ρ)[‖y1‖+‖y2‖+‖z‖∞]

}
≤ 1

2B
{Δ̄(ρ,ε)[‖y1‖+‖y2‖+‖z‖∞]+ k6|μ|+2k7ε}
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where Δ̄(ρ,ε) → 0 as ρ+ |ε| → 0 and k6, k7 are suitably chosen. Similarly

‖g21‖ ≤ 1

2B1
{Δ̄(ρ,ε)[‖y1‖+‖y2‖+‖z‖∞]+ k6|μ|}.

Thus (5.1.85) follows from (5.1.81).

To prove (5.1.86), let (z(x, t),y1(t),y2(t),ξ ,μ), (z̃(x, t), ỹ1(t), ỹ2(t), ξ̃ , μ̃) be in

the statement of the theorem and write g11(t,z(0, t),z(π4 , t),y1(t),y2(t),ξ ,μ,ε) for

g11(t) and g̃11(t) for g11(t, z̃(0, t), z̃(π/4, t), ỹ1(t), ỹ2(t), ξ̃ , μ̃,ε). From Lemma 5.1.2-

(iii) and Lemma 5.1.3-(ii) we know that

‖ F2(z,y1,y2,ξ ,μ,ε)−F2(z̃, ỹ1, ỹ2, ξ̃ , μ̃,ε)‖

≤ B‖g11 − g̃11‖+B1‖g21 − g̃21‖+ [c1‖g11‖+ ĉ1‖g21‖]‖α− α̃‖
where

g̃21(t) = g21(t, z̃(0, t), z̃(π/4, t), ỹ1(t), ỹ2(t), ξ̃ , μ̃,ε).

Now we have

g11(t)− g̃11(t) = G11(t)+ G̃11(t)

where
G11(t) = g11(t,z(0, t),z(π/4, t),y1(t),y2(t),ξ ,μ,ε)

−g11(t,z(0, t),z(π/4, t),y1(t),y2(t), ξ̃ , μ̃,ε) ,

G̃11(t) = g11(t,z(0, t),z(π/4, t),y1(t),y2(t), ξ̃ , μ̃,ε)

−g11(t, z̃(0, t), z̃(π/4, t), ỹ1(t), ỹ2(t), ξ̃ , μ̃,ε) .

An argument similar to the above shows that

‖G̃11‖ ≤ 1

2B
Δ̄(ρ,ε)[‖y1 − ỹ1‖+‖y2 − ỹ2‖+‖z− z̃‖∞].

On the other hand, since

g11(t) = −Qm,ξ

{√
εδ ẏ1(t)+

2√
π
μ
∫ π/4

0 h(x, t)dx+
2√
π

[H2(t,ξ )+H3(t,ξ )]

− 8

π

[
f ′
( 2√

π
Γξ (t)

)
− f ′

( 2√
π
γξ (t)

)]
y1(t)+

√
εδ v̇ξ (t)+ v̈ξ (t)

+
4√
π

[
f
( 2√

π
Γξ (t)

)
− f

( 2√
π
γξ (t)

)]}
we have, using also the estimate for H01(t) given in the proof of Lemma 5.1.6,

‖G11‖ ≤ 1

2A4B
‖Qm,ξ −Qm,ξ̃‖

{
Δ̄(ρ,ε)[‖y1‖+‖y2‖+‖z‖∞]+ k6|μ|+2k7ε

}
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+
1

2B

{
k6|μ− μ̃|+ k8[ρΔ̃(ρ)(1+ ε)+ ε(1+ρ)]‖α− α̃‖

}
≤ 1

2B

[
ρΔ̄(ρ,ε)+ k6|μ|+2k7ε+ k8

(
ρΔ̃(ρ)(1+ ε)+ ε(1+ρ)

)]
‖α− α̃‖

+
1

2B
k6|μ− μ̃|

and then

‖g11 −g̃11‖ ≤ 1

2B

{
Δ̄(ρ,ε)[‖y1 − ỹ1‖+‖y2 − ỹ2‖+‖z− z̃‖∞]+ k6|μ− μ̃|

+
[
ρΔ̄(ρ,ε)+ k6|μ|+2k7ε+ k8

(
ρΔ̃(ρ)(1+ ε)+ ε(1+ρ)

)]
‖α− α̃‖

}
.

Similarly

‖g21 − g̃21‖ ≤ 1

2B1

{
Δ̄(ρ,ε)[‖y1 − ỹ1‖+‖y2 − ỹ2‖+‖z− z̃‖∞]

+ k8

(
ρΔ̃(ρ)(1+ ε)+ ε(1+ρ)

)
‖α− α̃‖+ k6|μ− μ̃|

}
,

hence, (5.1.86) follows from (5.1.30), (5.1.59) and (5.1.81) provided ε > 0 and ρ >
0 are sufficiently small. The proof is complete. ��

Our goal is to prove that the map (z(x, t),y1(t),y2(t))  → (ẑ(x, t), ŷ1(t), ŷ2(t)) has

a unique fixed point which is then a solution of Eqs. (5.1.71)–(5.1.73). To this end,

we will make use of the following result, whose proof is omitted since it is a slight

modification of Lemma 3 in [11].

Lemma 5.1.9. Let Z, Y be Banach spaces, BZ×Y (ρ) be the closed ball centered at
zero and of radius ρ , S be a set of parameters, M ⊂ S× (0, σ̄ ], and F : BZ×Y (ρ)×
M× [−μ̄, μ̄]× (0, σ̄ ] → Z ×Y be a map defined as:

F(z,y,κ,μ,σ) =

(
F1(z,y,κ,μ,σ)+L1σy+L2σ z

F2(z,y,κ,μ,σ)+Lz

)
,

with L1σ : Y → Z, L2σ : Z → Z and L : Z →Y being uniformly bounded linear maps
for σ > 0 small. Assume that a constant C and a function Δ(ρ,μ,σ) exist so that

lim
(ρ,μ,σ)→(0,0,0)

Δ(ρ,μ,σ) = 0, and

‖F1(z,y,κ,μ,σ)‖ ≤C(|μ|+σ)σ +Δ(ρ,μ,σ)(‖z‖+‖y‖) ,
‖F2(z,y,κ,μ,σ)‖ ≤C|μ|+Δ(ρ,μ,σ)(‖z‖+‖y‖) ,
‖L1σF2(z,y,κ,μ,σ)‖ ≤C(|μ|+σ)σ +Δ(ρ,μ,σ)(‖z‖+‖y‖)
‖Fi(z2,y2,κ,μ,σ)−Fi(z1,y1,κ,μ,σ)‖ ≤ Δ(ρ,μ,σ)(‖z2 − z1‖+‖y2 − y1‖)

(5.1.87)
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when ‖z‖+‖y‖ < ρ , ‖z1‖+‖y1‖ < ρ , and ‖z2‖+‖y2‖ < ρ . If there are 0 < λ < 1

and σ̄0 > 0 so that
‖L1σL+L2σ‖ < λ

for any 0 < σ ≤ σ̄0, then there exist μ0 > 0, σ0 > 0, ρ1 > 0 and ρ2 > 0 so that for
|μ| ≤ μ0, κ ∈M, and 0 <σ ≤σ0, F has a unique fixed point (z(μ,σ ,κ),y(μ,σ ,κ))∈
BZ(ρ1)×BY (ρ2). Moreover,

‖z(μ,σ ,κ)‖+‖y(μ,σ ,κ)‖ ≤C1(|μ|+σ) (5.1.88)

for some positive constant C1 independent of (μ,σ ,κ), and

‖z(μ,σ ,κ)‖/(|μ|+σ) → 0

uniformly with respect to κ , as (μ,σ)→ (0,0), σ > 0. Finally, (z(μ,σ ,κ),y(μ,σ ,κ))
is Cr, r ≥ 0, in (μ,σ) if F(z,y,κ,μ,σ) is Cr in (z,y,μ,σ).

We apply Lemma 5.1.9 with σ =
√
ε ≤ σ̄ = (1/2)2/3, S = X×N, κ = (ξ ,m,σ)∈

M := X ×{(m,σ) ∈ N× (0, σ̄) : m ≥ [σ−3/2]+1} and

F1(z,y1,y2,ξ ,μ,σ) = Lε(H1,H2,H3)+Lε(0, Ĥ2, Ĥ3),

F2(z,y1,y2,ξ ,μ,ε) = (ŷ11, ŷ21),

L1σ (y1,y2) := L1ε(y1,y2) = Lε(0, H̃21, H̃31),

L2σ z := L2εz = Lε(0, H̃22, H̃32) ,

Lz = (ŷ10, ŷ20)

where Hi(t), Ĥi(t) and H̃i j(t) have been defined in (5.1.75). We get the following

result.

Theorem 5.1.10. Assume that the conditions (H1)–(H2) hold and that δ > 0 is a
fixed positive number so that

(H3) 2M1M2| f ′(0)| < δ .

Let Γ > 0 be fixed. Then there exist positive numbers ρ1 > 0, ρ2 > 0, ε0 > 0, and
μ0 > 0 so that for any ξ ∈ X, 0 < ε < ε0, |μ| < μ0, m > ε−3/4 and ε ≤ Γ |μ|, the
integro-differential system (5.1.71)–(5.1.73) has a unique bounded solution

(z(x, t,μ,ε,δ ,ξ ,m), y1(t,μ,ε,δ ,ξ ,m), y2(t,μ,ε,δ ,ξ ,m))

so that

‖z(x, t,μ,ε,δ ,ξ ,m)‖∞ < ρ1, ‖y1(t,μ,ε,δ ,ξ ,m)‖+‖y2(t,μ,ε,δ ,ξ ,m)‖ < ρ2.

Moreover

‖z(·, ·,μ,ε,δ ,ξ ,m)‖∞+‖y1(·,μ,ε,δ ,ξ ,m)‖+‖y2(·,μ,ε,δ ,ξ ,m)‖≤ C̃1(|μ|+
√
ε)
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for some positive constant C̃1 independent of (μ,ε,ξ ), and

‖z(·, ·,μ,ε,δ ,ξ ,m)‖∞/(|μ|+√
ε) → 0

uniformly with respect to (ξ ,m), as (μ,ε) → (0,0), ε > 0. Finally,

z(·, ·,μ,ε,δ ,ξ ,m), y1(·,μ,ε,δ ,ξ ,m), y2(·,μ,ε,δ ,ξ ,m)

are Lipschitz in α uniformly with respect to (E,m) and the Lipschitz constants are
O(

√
ε+ |μ|) for y1, y2 and o(

√
ε+ |μ|) for z.

Proof. We shall prove that the assumptions of Lemma 5.1.9 are satisfied. Of course,

we take Z = C0
b([0,π/4]×R), Y = Y1 ×Y2 as Banach spaces, S = X ×N and M =

{(ξ ,m,σ) | ξ ∈ X ,m ∈ N,m > σ−3/2}. The fact that L1σ = L1ε and L2σ = L2ε are

bounded linear maps, as well as the fact that ẑ = F1(z,y1,y2,ξ ,μ,ε) satisfies the

first and fourth conditions in (5.1.87) follow from Lemma 5.1.7. Similarly the facts

that L : Z → Y is a bounded linear map and F2(z,y1,y2,ξ ,μ,ε) satisfies the second

and fourth inequalities in (5.1.87) follow from Lemma 5.1.8 (see (5.1.85), (5.1.86))

and the assumption ε ≤ Γ |μ|. Thus, in order to apply Lemma 5.1.9, we only need

to prove that

‖L1ε(ŷ11, ŷ21)‖∞ ≤C(|μ|+√
ε)
√
ε+Δ(ρ,μ,

√
ε)(‖z‖∞+‖y1‖+‖y2‖) (5.1.89)

and that

‖(L1εL+L2ε)z‖∞ ≤ λ‖z‖∞ (5.1.90)

for any ε > 0 small enough and some λ ∈ (0,1). First we prove (5.1.89). We have

L1ε(ŷ11, ŷ21) =

Lε

(
0, f ′(0)

[
2√
π

ŷ11(t)−2

√
3

π
ŷ21(t)

]
, f ′(0)

[
2√
π

ŷ11(t)+2

√
3

π
ŷ21(t)

])
.

Now, from (5.1.85), (5.1.86) and the definition of the norms in Y1, Y2, we see that

ŷ11(t) and ŷ21(t) are bounded together with their first derivatives. Thus, using The-

orem 5.1.1(b), (5.1.85), (5.1.86), and assumption (H3) we get:

‖L1ε(ŷ11, ŷ21)‖∞ ≤ 2M1M2| f ′(0)|
[

5ε
(

1

δ 5
+1

)
+

2

δ
√
ε
]
· [‖ŷ11‖+‖ŷ21‖]

≤√
ε
[

5
√
ε
(

1

δ 4
+δ

)
+2

]
· [‖ŷ11‖+‖ŷ21‖]

≤ c̃1

√
ε[Δ(ρ)+

√
ε(δ +

√
ε)](‖y1‖+‖y2‖+‖z‖∞)

+ c̃2

√
ε(|μ|‖h‖∞+ ε(δ

√
ε+2))

for some suitable choice of the positive constants c̃1 and c̃2 (possibly dependent on

δ ). Thus (5.1.89) follows. Now, we look at L1εLz. We have
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L1εLz = Lε

(
0, f ′(0)

[
2√
π

ŷ10(t)−2

√
3

π
ŷ20(t)

]
, f ′(0)

[
2√
π

ŷ10(t)+2

√
3

π
ŷ20(t)

])

where (ŷ10(t), ŷ20(t)) ∈ Y1 ×Y2 is the unique bounded solution of Equation (5.1.84)

that satisfies ˙̂y10(2 jm +α j) = 0 for any j ∈ Z so that e j = 1. Let (ŷ12(t), ŷ22(t)) ∈
Y1 ×Y2 be the unique bounded solution of

¨̂y12(t)+
8

π
f ′(0)ŷ12(t) = −Qm,ξ

{ 2√
π

f ′
(

2√
π
Γξ (t)

)
[z(0, t)+ z(π/4, t)]

}
,

¨̂y22(t)+
24

π
f ′(0)ŷ22(t) = −2

√
3

π
f ′
(

2√
π
Γξ (t)

)
[z(π/4, t)− z(0, t)]

and (ŷ13(t), ŷ23(t)) ∈ Y1 ×Y2 be the unique bounded solution of

¨̂y13(t)+
8

π
f ′(0)ŷ13(t) = − 2√

π
f ′(0)[z(0, t)+ z(π/4, t)]

¨̂y23(t)+
24

π
f ′(0)ŷ23(t) = −2

√
3

π
f ′(0)[z(π/4, t)− z(0, t)] .

We set

H̄23(t) = f ′(0)

[
2√
π

(ŷ10(t)− ŷ12(t))−2

√
3

π
(ŷ20(t)− ŷ22(t))

]
,

H̃23(t) = f ′(0)

[
2√
π

(ŷ12(t)− ŷ13(t))−2

√
3

π
(ŷ22(t)− ŷ23(t))

]
,

Ĥ23(t) = f ′(0)

[
2√
π

ŷ13(t)−2

√
3

π
ŷ23(t)

]
,

H̄33(t) = f ′(0)

[
2√
π

(ŷ10(t)− ŷ12(t))+2

√
3

π
(ŷ20(t)− ŷ22(t))

]
,

H̃33(t) = f ′(0)

[
2√
π

(ŷ12(t)− ŷ13(t))+2

√
3

π
(ŷ22(t)− ŷ23(t))

]
,

Ĥ33(t) = f ′(0)

[
2√
π

ŷ13(t)+2

√
3

π
ŷ23(t)

]

and note that

L1εLz = Lε
(
0, H̄23(t), H̄33(t))+Lε(0, H̃23(t), H̃33(t))+Lε(0, Ĥ23(t), Ĥ33(t)

)
.

We know from [11, above equation (3.39)] that

‖Lε(0, Ĥ23(t), Ĥ33(t))‖∞≤ 8M1M2| f ′(0)|√ε (2aδ−1 +
√
ε
)‖z‖∞

≤ 4
√
ε(2a+δ

√
ε)‖z‖∞ .
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Then from Lemma 5.1.2–(ii) and Lemma 5.1.3–(i) we obtain:

|ŷ10(t)− ŷ12(t)| ≤ 4A4NC√
π

(
e−am/2 +e−a|t−2 jm−α j |/2

)
‖z‖∞,

|ŷ20(t)− ŷ22(t)| ≤ 4NC1

√
3

π

(
e−am/2 +e−a|t−2 jm−α j |/2

)
‖z‖∞

for t ∈ ((2 j − 1)m,(2 j + 1)m], whereas Lemma 5.1.2–(iii) and Lemma 5.1.3–(ii)

with E = {0} and α ′ = α ′′ = 0, give:

‖ŷ12 − ŷ13‖ ≤ 8B
π

(A4 +1)N‖z‖∞ , ‖ŷ22 − ŷ23‖ ≤ 48B1

π
N‖z‖∞ ,

with the norms of the left-hand sides being in Y1 and Y2 respectively. Thus, Theorem

5.1.1–(a) implies, after some algebra:

‖Lε(0, H̄23, H̄33)‖∞ ≤ 8N
π

(A4C +3C1)
(

1

(2a2)1/3
+

1

δ 2
+

4δ
a

)√
ε‖z‖∞

using the inequality e−am/2 <
√
ε
(

1
2a2

)1/3
that follows from

( am
2

)2/3
e−

am
2 < 1

2 and

m ≥ ε−3/4. Next, applying again Theorem 5.1.1(b) with k2 = 0 (and hence letting β
tend to +∞) gives:

‖Lε(0, H̃23, H̃33)‖∞ ≤ 8N
π

(B(A4 +1)+6B1)
√
ε
[

5
√
ε
(

1

δ 4
+δ

)
+2

]
‖z‖∞.

Plugging everything together we obtain

‖L1εL‖ ≤ K
√
ε

where K is a positive constant depending only on δ . Thus, using (5.1.75) we get

‖L1εL+L2ε‖ ≤ 2M1M2δ−1| f ′(0)|+K
√
ε

and then, from assumption (H3), we see that ε0 > 0 exists so that for any ε ∈ (0,ε0),
(5.1.90) holds. Since the assumptions of Lemma 5.1.9 are satisfied we obtain a so-

lution of Equations (5.1.71)–(5.1.73) provided 0 < ε < ε0, |μ| < μ0 and ε ≤ Γ |μ|.
Finally, we prove that this solution satisfies the Lipschitz condition in α ∈ �∞E as

stated in the Theorem. Let ξ ′ = (E,α ′) ∈ X , ξ ′′ = (E,α ′′) ∈ X and set

y′1(t) = y1(t,μ,ε,δ ,ξ ′,m), y′′1(t) = y1(t,μ,ε,δ ,ξ ′′,m),
y′2(t) = y2(t,μ,ε,δ ,ξ ′,m), y′′2(t) = y2(t,μ,ε,δ ,ξ ′′,m),

z′(x, t) = z(x, t,μ,ε,δ ,ξ ′,m), z′′(x, t) = z(x, t,μ,ε,δ ,ξ ′′,m).

Then (z(x, t),y1(t),y2(t)) = (z′(x, t)− z′′(x, t),y′1(t)− y′′1(t),y
′
2(t)− y′′2(t)) is a fixed

point of the map
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z(x, t) = F1 (z(x, t)+ z′′(x, t),y1(t)+ y′′1(t),y2(t)+ y′′1(t),ξ ′,μ,ε)

−F1 (z′′(x, t),y′′1(t),y
′′
2(t),ξ ′′,μ,ε)+L1ε(y1(t),y2(t))+L2εz(x, t,),

(y1(t),y2(t)) = F2(z(x, t)+ z′′(x, t),y1(t)+ y′′1(t),y2(t)+ y′′1(t),ξ ′,μ,ε)

−F2(z′′(x, t),y′′1(t),y
′′
2(t),ξ ′′,μ,ε)+Lz(x, t) .

(5.1.91)

From (5.1.86) we obtain

‖ F2(z(x, t)+ z′′(x, t),y1(t)+ y′′1(t),y2(t)+ y′′1(t),ξ ′,μ,ε)

−F2(z′′(x, t),y′′1(t),y
′′
2(t),ξ ′′,μ,ε)‖

≤ Δ̄(ρ,ε)(‖y1‖+‖y2‖+‖z‖∞)+ k4(|μ|+ ε+ρΔ̄(ρ,ε))‖α ′ −α ′′‖ (5.1.92)

where Δ̄(ρ,ε) → 0 as ρ + ε → 0+ and k4 > 0 is a suitable constant. Thus, using

Theorem 5.1.1(b) (with k2 = 0 and β = +∞) we see that a positive constant k5

exists so that

‖ L1ε(F2(z(x, t)+ z′′(x, t),y1(t)+ y′′1(t),y2(t)+ y′′1(t),ξ ′,μ,ε)

−F2(z′′(x, t),y′′1(t),y
′′
2(t),ξ ′′,μ,ε))‖∞

≤ k5

√
ε(|μ|+ ε+ρΔ̄(ρ,ε))‖α ′ −α ′′‖+ k5

√
εΔ̄(ρ,ε)(‖y‖+‖z‖∞) (5.1.93)

for ‖y‖ = ‖y1‖+‖y2‖. Now we replace (y1(t),y2(t)) in L1ε(y1(t),y2(t)) in the first

equation in (5.1.91) with the fixed point of the second equation in (5.1.91). Using

Lemma 5.1.7, Lemma 5.1.8, (5.1.92) and (5.1.93), we get

‖z‖∞ ≤ Δ2(ρ,ε)(‖y‖+‖z‖∞)+ k9

√
ε(
√
ε+ρ+ |μ|)‖α ′ −α ′′‖+λ‖z‖∞ ,

‖y‖ ≤ Δ1(ρ,ε)(‖y‖+‖z‖∞)+ k4(ρΔ̄(ρ,ε)+ |μ|+ ε)‖α ′ −α ′′‖+‖L‖‖z‖∞
(5.1.94)

where Δ1(ρ,ε),Δ2(ρ,ε) → 0 as ρ + ε → 0+ and k9 is a positive constant. From

(5.1.88) we know that ρ = O(
√
ε + |μ|). Thus, if ε is sufficiently small, we can

solve the first inequality in (5.1.94) for ‖z‖∞ and get:

‖z‖∞ ≤ Δ̄2(ρ,ε)‖y‖+
√
εO(|μ|+√

ε)‖α ′ −α ′′‖ (5.1.95)

for Δ̄2(ρ,ε)→ 0 as ρ+ε→ 0+. Then we plug this estimate of ‖z‖∞ into the second

inequality in (5.1.94) and get:

‖y‖ ≤ O(|μ|+√
ε)‖α ′ −α ′′‖ .

Finally, we plug again this estimate into (5.1.95) and obtain

‖z‖∞ ≤ o(
√
ε+ |μ|)‖α ′ −α ′′‖.

The proof is complete. ��



5.1 Beams on Elastic Bearings 209

In order to find a bounded solution, near γξ (t), of Eqs. (5.1.6)–(5.1.8) we need to

show that the equation

G(ξ ,ε,μ,δ ,m)

:= Pm,ξ

{√
εδ ẏ1(t,μ,ε,δ ,ξ ,m)+

2√
π
μ
∫ π/4

0 h(x, t)dx

+
√
εδ γ̇ξ (t)+

2√
π

f
( 2√

π
[y1(t,μ,ε,δ ,ξ ,m)+Γξ (t)]

−2

√
3

π
y2(t,μ,ε,δ ,ξ ,m)+ z(0, t,μ,ε,δ ,ξ ,m)

)
+

2√
π

f
( 2√

π
[y1(t,μ,ε,δ ,ξ ,m)+Γξ (t)]

+2

√
3

π
y2(t,μ,ε,δ ,ξ ,m)+ z(

π
4

, t,μ,ε,δ ,ξ ,m)
)

− 4√
π

f
(

2√
π
γξ (t))−

8

π
f ′(

2√
π
γξ (t)

)
y1(t,μ,ε,δ ,ξ ,m)

+
√
εδ v̇ξ (t)+ v̈ξ (t)

}
= 0

can be solved for some values of the parameters. From Theorem 5.1.10, we know

that

‖y1(t,μ,ε,δ ,ξ ,m)‖ = O(|μ|+√
ε),

‖y2(t,μ,ε,δ ,ξ ,m)‖ = O(|μ|+√
ε),

‖z(x, t,μ,ε,δ ,ξ ,m)‖∞ = o(|μ|+√
ε),

(5.1.96)
‖y1(t,μ,ε,δ ,ξ ′,m)− y1(t,μ,ε,δ ,ξ ′′,m)‖ ≤ O(|μ|+√

ε)‖α ′ −α ′′‖,
‖y2(t,μ,ε,δ ,ξ ′,m)− y2(t,μ,ε,δ ,ξ ′′,m)‖ ≤ O(|μ|+√

ε)‖α ′ −α ′′‖,
‖z(x, t,μ,ε,δ ,ξ ′,m)− z(x, t,μ,ε,δ ,ξ ′′,m)‖∞ ≤ o(|μ|+√

ε)‖α ′ −α ′′‖

where ξ = (E,α), ξ ′ = (E,α ′), ξ ′′ = (E,α ′′), and O(|μ|+√
ε), o(|μ|+√

ε) are

uniform with respect to (ξ ,m). Thus, we set μ =
√
εη , where η belongs to a com-

pact subset of R \ {0} where the condition Γ |η | ≥ ε is satisfied (possibly taking ε
smaller). By multiplying the equation G(ξ ,ε,

√
εη ,δ ,m) = 0 by ε−1/2, we obtain

the equation:

B̃(ξ ,ε,η ,δ ,m) := Pm,ξ

{
δ γ̇ξ (t)+

2√
π
η
∫ π/4

0
h(x, t)dx+ r(t,ξ ,ε,η ,δ ,m)

}
= 0

(5.1.97)

where B̃(ξ ,ε,η ,δ ,m) = ε−1/2G(ξ ,ε,
√
εη ,δ ,m). Using (5.1.70) and (5.1.97) we

see that
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‖r(t,ξ ,ε,η ,δ ,m)‖∞ = o(1),

‖r(t,ξ ′,ε,η ,δ ,m)− r(t,ξ ′′,ε,η ,δ ,m)‖∞ ≤ o(1)‖α ′ −α ′′‖
(5.1.98)

as ε → 0+ uniformly with respect to (ξ ,η ,m). Let

Mη(α) = δ
∫ ∞

−∞
γ̇1(s)2 ds+

2√
π
η
∫ ∞

−∞

∫ π/4

0
γ̇1(s)h(x,s+α)dxds (5.1.99)

and consider the space C = C0
(
[0,π/4]×R,R

)
endowed with the metric dC given

by

dC (u1,u2) = ∑
n∈N

2−|n| max
[0,π/4]×[−n,n]

|u1(x, t)−u2(x, t)| .

Finally we define a (weak) solution of (5.1.1) to be any u(x, t) ∈ C([0,π/4]×R)
satisfying the identity∫ ∞

−∞

∫ π/4

0

{
u(x, t)

[
vtt(x, t)+ vxxxx(x, t)− εδvt(x, t)

]
+ εμh(x,

√
εt)v(x, t)

}
dxdt

(5.1.100)

+ε
∫ ∞

−∞

{
f (u(0, t))v(0, t)+ f (u(π/4, t))v(π/4, t)

}
dt = 0

for any v(x, t) ∈C∞([0,π/4]×R) so that v(x, t) has a compact support and satisfies

boundary value conditions (5.1.4). Now we have the following result.

Theorem 5.1.11. Let f (x)∈C2(R) and h(x, t) = h(x, t +1)∈C2([0,π/4]×R) be so
that (H1), (H2) hold. Let δ > 0 be a fixed positive number that satisfies (H3). Then,
if η0 �= 0 can be chosen in such a way that the equation Mη(α) = 0 for η = η0,
has a simple root α0 ∈ [0,1], there exist ε̄ > 0, η̄ > 0 so that for any ε ∈ (0, ε̄],
μ =

√
εη with |η − η0| ≤ η̄ and m > ε−3/4, m ∈ N, there is a continuous map

Π : E →C0([0,π/4]×R,R) so thatΠ(E) = uE(x, t) is a weak solution of Equation
(5.1.1). Moreover, Π : E →Π(E ) is a homeomorphism satisfying

Π(σ(E))(x, t) =Π(E)(x, t +(2m/
√
ε))

with σ : E → E being the Bernoulli shift. Consequently, the Smale horseshoe can
be embedded into the dynamics of (5.1.1).

Proof. We will prove that Eq. (5.1.97) can be solved for any ξ ∈ X and ε , μ and η
as in the statement of the theorem. Of course, there is nothing to prove if ξ = 0 since

Pm,0 = 0. Thus we assume E �= 0 and recall (see Theorem 5.1.4) that Pm,ξh = 0 is

equivalent to [Nm,ξ +Lm,ξ ]h = 0. So, we solve the equation

[Nm,ξ +Lm,ξ ]
{
δ γ̇ξ (t)+

2√
π
η
∫ π/4

0
h(x, t)dx+ r(t,ξ ,ε,η ,δ ,m)

}
= 0.

(5.1.101)

From (5.1.22) and (5.1.98) we know that the term in braces in the above equation

is Lipschitz continuous function in α ∈ �∞E uniformly with respect to (E,ε,η ,m).
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But ‖Lm,ξ‖ ≤ Ae−am < 2A
5a4/3 ε (having used again θ 4/3 e−θ < 2

5 ) and in Section

5.1.6 that follows, we will see that a positive constant Ã exists so that ‖Lm,ξ ′ −
Lm,ξ ′′ ‖ ≤ Ãe−am ‖α ′ −α ′′‖ < 2Ã

5a4/3 ε‖α ′ −α ′′‖ for any ξ ′ = (E,α ′), ξ ′′ = (E,α ′′).
As a consequence the function of ξ

Lm,ξ

{
δ γ̇ξ (t)+

2√
π
η
∫ π/4

0
h(x, t)dx+ r(t,ξ ,ε,η ,δ ,m)

}
is Lipschitz in α ∈ �∞E , with a O(ε) Lipschitz constant which can be taken indepen-

dently of (E,η ,m). Next we consider

Nm,ξ

{
δ γ̇ξ (t)+

2√
π
η
∫ π/4

0
h(x, t)dx+ r(t,ξ ,ε,η ,δ ,m)

}
.

From the proof of Theorem 5.1.4 we know that ξ  → ‖Nm,ξ‖ is bounded uniformly

with respect to (ξ ,m) (see (5.1.63)) and Lipschitz continuous function in α ∈ �∞E
uniformly in (E,m) (actually we proved that ‖Nm,ξ ′ −Nm,ξ ′′ ‖ ≤ 16Ā2N

aπ ‖α ′ −α ′′‖).

So, using (5.1.98) we see that Nm,ξ r(t,ξ ,ε,η ,δ ,m) is Lipschitz continuous function

in α ∈ �∞E uniformly in (E,m,η) and the Lipschitz constant tends to 0 as ε → 0.

Finally, we consider the map from �∞E into itself:

α  → Nm,(E,α)

{
δ γ̇(E,α)(t)+

2√
π
η
∫ π/4

0
h(x, t)dx

}
−M̃η(α) ∈ �∞E (5.1.102)

where

M̃η(α) =
{

e jMη(α j)
}

j∈Z
.

It is easy to see that the j–th component of the map (5.1.102) is given by the sum of

the following two terms:

−e j

∫ −m−α j

−∞
γ̇1(t)

[
δ γ̇1(t)+

2√
π
η
∫ π/4

0
h(x, t +α j)dx

]
dt,

−e j

∫ ∞

m+α j

γ̇1(t)
[
δ γ̇1(t)+

2√
π
η
∫ π/4

0
h(x, t +α j)dx

]
dt

and that the above functions are Lipschitz continuous function in α uniformly in

(η ,m, j) and with a O(ε) Lipschitz constant, provided η belongs to a compact do-

main and ε is small. In fact, we have, for example, using also (5.1.53):∣∣∣∣∫ −m−α ′
j

−∞
γ̇1(t)

∫ π/4

0
h(x, t +α ′

j)dxdt −
∫ −m−α ′′

j

−∞
γ̇1(t)

∫ π/4

0
h(x, t +α ′′

j )dxdt
∣∣∣∣

≤
∣∣∣∣∣
∫ −m−α ′

j

−m−α ′′
j

γ̇1(t)
∫ π/4

0
h(x, t +α ′

j)dxdt

∣∣∣∣∣
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+
∣∣∣∣∫ −m−α ′′

j

−∞
γ̇1(t)

∫ π/4

0
[h(x, t +α ′

j)−h(x, t +α ′′
j )]dxdt

∣∣∣∣
≤ Ā2π

4a
e−am[‖h‖∞|eaα ′

j −e
aα ′′

j |+‖ht‖∞|α ′
j −α ′′

j |]

= O(ε)[‖h‖∞+‖ht‖∞]‖α ′ −α ′′‖ .

A similar argument applies to the other quantities. Next, it is easy to see that the

map M̃η : �∞E → �∞E is C1 in (α,η), and its derivative, with respect to α at the point

({e jα0} j∈Z,η0) ∈ �∞E ×R, is given by:

α  → {M′
η0

(α0)α j} j∈Z = M ′
η0

(α0)α.

As a matter of fact, we have:

M̃η(α)− M̃η(α0)− M̃′
η(α0)(α−α0) = o(‖α−α0‖)

uniformly with respect to (η ,E). So, we write (5.1.101) as a fixed point equation in

�∞E :

α = α−M̃ ′
η0

(α0)−1M̃η(α)−M̃ ′
η0

(α0)−1R(ξ ,ε,η ,δ )

where R(ξ ,ε,η ,δ ) is Lipschitz continuous function in α ∈ �∞E with a o(1) constant

independent of (E,m,η). Moreover, the map (α,η)  → α −M̃ ′
η0

(α0)−1M̃η(α) is

C1 and its α−derivative vanishes at α = α0 and η = η0. Thus, from the uniform

contraction principle 2.2.1 it follows the existence of ε̄ > 0 and η̄ > 0 so that for

any ε ∈ (0, ε̄], |η−η0| ≤ η̄ and m > ε−3/4, m ∈ N, the map

α  → α−M̃ ′
η0

(α0)−1M̃η(α)−M̃ ′
η0

(α0)−1R(ξ ,ε,η ,δ )

has a unique fixed point α = α(E,m,η ,δ ,ε) that tends to α0 as ε→ 0 and η→ η0,

uniformly with respect to (E,m). This implies that for any ε ∈ (0,ε0], |η−η0| ≤ η̄
and m > ε−3/4 the function

uE(x, t) :=
[
y1(

√
εt,

√
εη ,ε,δ ,E,α(E,m,η ,δ ,ε))+Γξ (t)

]
w−1(x)

+y2(
√
εt,

√
εη ,ε,δ ,E,α(E,m,η ,δ ,ε))w0(x)

+z(x,
√
εt,

√
εη ,ε,δ ,E,α(E,m,η ,δ ,ε))

is a solution of (5.1.101) near γE(t) defined as

γE(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ
(

2

√
2

π
(√
εt −2 jm−α0

))
, for (2 j−1)m <

√
εt ≤ (2 j +1)m

and e j = 1 ,

0, for (2 j−1)m <
√
εt ≤ (2 j +1)m

and e j = 0 .
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Since uE(x,2 jmε−1/2) is near to u = 0 if e j = 0 or to u = γ
(
− 2

√
2
π α0

)
�= 0 if

e j = 1, we see that for ε̄ sufficiently small, the map Π : E → uE is one-to-one and

the choice of E determines the oscillatory properties of uE(x, t) near γ(t). More-

over, uE(x, t) is the unique solution of (5.1.101) that satisfies the above oscillatory

property and can be written as a totally convergent series:

uE(x, t) =
∞

∑
i=−1

ui,E(t)wi(x).

Let σ : E →E be the shift map defined by σ({e j} j∈Z)= {e j+1} j∈Z. Then uσ(E)(x, t)

has the same oscillatory properties between u = 0 and u = γ
(
− 2

√
2
π α0

)
�= 0 as

uE(x, t +2mε−1/2). But we have

uE(x, t +2mε−1/2) =
∞

∑
i=−1

ui,E(t +2mε−1/2)wi(x)

and the series is again totally convergent. Thus, because of the uniqueness, we ob-

tain:

uσ(E)(x, t) = uE(x, t +2m/
√
ε) .

We now prove the continuity of Π , with respect to the topologies on E and

C = C
(
[0,π/4]×R,R

)
induced by the metrics dE and dC . First, we observe that

Theorem 5.1.1 implies the existence of a positive constant c0 so that for any E ∈ E ,

the components ui,E(t) of uE(x, t) satisfy:

‖ui,E‖∞ ≤ c0/(μ2
i +1), ‖u̇i,E‖∞ ≤ c0 (5.1.103)

with c0 being a suitable constant (see (5.1.13), (5.1.14)). Hence, for any R > 0 there

exists n0 ∈ N so that, for any E ∈ E , we have

‖uE(x, t)−
n0

∑
i=−1

ui,E(t)wi(x)‖∞ ≤ 1/R.

Now, let {E j} j∈N be a sequence in E . From (5.1.103) and the Arzelà-Ascoli the-

orem 2.1.3 the existence follows of a subsequence { j(−1)
k } of { j(−2)

k := k} so that

u−1,E
j(−1)
k

(t) converges uniformly in any interval [−n,n]. Then another application

of the Arzelà-Ascoli theorem 2.1.3 implies the existence of a subsequence { j(0)
k }

of { j(−1)
k } so that u0,E

j(0)
k

(t) converges uniformly in any interval [−n,n]. Proceeding

in this way, for any i = −1,0,1 . . ., we construct a subsequence { j(i)k } of { j(i−1)
k }

so that ui,E
j(i)k

(t) converges uniformly in any interval [−n,n]. Then, we use Cantor

diagonal procedure to see that for any i = −1,0,1 . . . the sequence ui,E
j(k)k

(t) con-

verges uniformly in any interval [−n,n]. Now, let E jn be a subsequence of E j so that
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for any i = −1,0, . . ., ui,E jn
(t) converges to a continuous function ui(t) uniformly

on any compact subset of R. We have just proved that the set of such subsequences

is not empty. From (5.1.103) we obtain ‖ui‖∞ ≤ c0/(μ2
i + 1) and hence the se-

ries ∑∞i=−1 ui(t)wi(x) is totally convergent and defines a continuous function u(x, t).
Moreover, for (x, t) ∈ [0, π4 ]× [−n,n] and any R > 0, we have

∣∣∣uE jk
(x, t)−u(x, t)

∣∣∣≤ ∣∣∣∣∣uE jk
(x, t)−

n0

∑
i=−1

ui,E jk
(t)wi(x)

∣∣∣∣∣
+M1

n0

∑
i=−1

∣∣∣ui,E jk
(t)−ui(t)

∣∣∣+ ∣∣∣∣∣u(x, t)−
n0

∑
i=−1

ui(t)wi(x)

∣∣∣∣∣ .
So,

limk→∞|uE jk
(x, t)−u(x, t)| ≤ 2/R.

As a consequence, uE jn
(x, t) → u(x, t) uniformly on compact sets. Thus the follow-

ing statement holds:

for any given sequence {E j} j∈N in E there exists a subsequence {E jk}k∈N so that
{uE jk

(x, t)}k∈N converges uniformly on compact sets to a continuous function

u(x, t) =
∞

∑
i=−1

ui,E(t)wi(x)

with the series being totally convergent and u(x, t) being a weak solution of (5.1.1).

Now, assume that Π is not continuous. Then E,E j ∈ E , j ∈ N exist so that

dE (E j,E) → 0, as j → ∞ but dC (uE j ,uE) is greater than a positive number for any

j ∈ N. Passing to a subsequence, if necessary, we can assume that uE j(x, t) con-

verges uniformly on compact sets to a weak solution û(x, t) of (5.1.1). Then, for any

(x, t) ∈ [0, π4 ]×R, we have

|û(x, t)− γE(t)| ≤ |uE jn
(x, t)− û(x, t)|+ |uE jn

(x, t)− γE jn
(t)|+ |γE jn

(t)− γE(t)|

and hence, passing to the limit for n → ∞:

|û(x, t)− γE(t)| ≤ sup
n
‖uE jn

− γE jn
‖∞+ limn→∞|γE jn

(t)− γE(t)|.

But, since dE (E j,E) → 0 we see that for n > n(ε, t) we have γE jn
(t) = γE(t). So

û(x, t) is orbitally close to γE(t) and then, because of uniqueness,

û(x, t) = uE(x, t) =Π(E)

contradicting the assumption thatΠ was not continuous. The proof is complete. ��
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Remark 5.1.12. (a) If (H2) fails so that linear equation (5.1.10) has a two-dimensional

space of bounded solutions on R, then we can perform again the above procedure but

we get a two-dimensional mapping like (5.1.99) of the form Mη(α,β ), (α,β ) ∈ R
2

(cf Section 4.1.3) and the existence of a simple root of function Mη(α,β ) implies a

result similar to Theorem 5.1.11.

(b) Assuming also that f is odd, i.e. f (−y) = − f (y), then we get the additional

homoclinic orbit (0,γ2(t)) :=
(

0, 1
2

√
π
3 γ

(
2
√

6
π t
))

for (5.1.9) and we can repeat

the above approach by assuming the non-degeneracy of γ2(t) as in (H2). We get in

this way another chaotic solutions of (5.1.1) when the corresponding mapping like

(5.1.99) has a simple root. We do not perform here such computations.

(c) If we consider in (5.1.1) the time scale 1, i.e. we have h(x, t) in (5.1.1), then

(5.1.2) becomes a rapidly oscillating perturbed problem. So we should arrive at an

exponentially small bifurcation problem [12, 13].

5.1.5 Useful Numerical Estimates

To get more information on condition (H3), we give in this section a numerical

estimate of the constants M1 and M2 (see (5.1.16)). For this purpose, we recall [2]

wk(x) =
4√
πWk

[
cosh(μkx)+ cos(μkx)− coshξk − cosξk

sinhξk − sinξk

(
sinh(μkx)+ sin(μkx)

)]
,

(5.1.104)

where ξk = μkπ/4 are determined by the equation cosξk coshξk = 1 and the con-

stants Wk are given by the formula

Wk = coshξk + cosξk − coshξk − cosξk

sinhξk − sinξk

(
sinhξk + sinξk

)
. (5.1.105)

We first evaluate Wk. Numerically we find ξ1
.= 4.73004075. Moreover, 0 < ξ1 <

ξ2 < · · · and so coshξ1 < coshξ2 < · · · . Since ξk ∼ π(2k + 1)/2 and cos(π(2k +
1)/2) = 0, we get

|sinθk| · |ξk −π(2k +1)/2| = |cosξk − cos(π(2k +1)/2)| = 1

coshξk
≤ 2e−ξk

for a θk ∈ (ξk,π(2k +1)/2). But we have

1 ≥ |sinξk| =
√

1− cos2 ξk ≥
√

1− cos2 ξ1
.= 0.999844212 ,

since 0 < cosξk = sechξk ≤ sechξ1 = cosξ1. Next, we can easily see that in fact

(4k− 1)π/2 < ξ2k−1, ξ2k < (4k + 1)π/2 and function cosx is positive in intervals

(ξk,π(2k + 1)/2) for any k ∈ N. So function sinx is increasing in these intervals,

and it is positive on [ξ2k,(4k +1)π/2] and negative on [(4k−1)π/2,ξ2k−1]. Hence
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sinξ2k =
√

1− cos2 ξ2k. Using also coshξk = 1
cosξk

and sinhξk =
√

cosh2 ξk −1

form (5.1.105) we derive W2k = −2. Similarly, from sinξ2k−1 < 0, k ∈ N we derive

sinξ2k−1 = −
√

1− cos2 ξ2k−1 and then W2k−1 = 2. Consequently, |Wk| = 2 for any

n ∈ N. Next, (5.1.104) implies

|wk(x)|

≤ 2√
π

(∣∣∣cosh(μkx)− coshξk sinh(μkx)
sinhξk − sinξk

∣∣∣+1+ cosξk
sinhξk

sinhξk −1
+

coshξk

sinhξk −1

)
≤ 2√

π

( sinh
(
μk

(π
4 − x

))
+2coshξk + cosξk sinhξk

sinhξk −1
+1

)
≤ 2√

π

( sinhξ1 +2coshξ1 + cosξ1 sinhξ1

sinhξ1 −1
+1

)
.= 4.5949831827 .

Hence M1 ≤ 4.594983183. Now we estimate M2. From the above arguments we

deduce |sinθk| ≥ |sinξk| ≥ |sinξ1| .= 0.999844212. This gives

|ξk −π(2k +1)/2| ≤ 2

|sinξ1| e−ξ1
.= 0.017654973 .

So we obtain ξk ≥ π(2k+1)
2 −0.017654973 ≥ πk. Consequently, we arrive at

|ξk −π(2k +1)/2| ≤ 2

|sinξ1| e−ξk ≤ 2

|sinξ1| e−πk ≤ c
π
4

e−πk (5.1.106)

for c .= 2.546875863. Furthermore, since ξk ≥ ξ1 > 4, we have∣∣∣ 1

ξ 2
k
− 4

π2(2k +1)2

∣∣∣ = 2
∣∣∣ 1

ξk
+

2

π(2k +1)

∣∣∣ · ∣∣∣ξk −π(2k +1)/2

ξkπ(2k +1)

∣∣∣≤ 3

16|sinξ1| e−πk .

Hence, we arrive at

∞

∑
k=7

∣∣∣ 1

ξ 2
k
− 4

π2(2k +1)2

∣∣∣ ≤ ∞

∑
k=7

3

16|sinξ1| e−πk =
3

16|sinξ1|
e−7π

1− e−π
.= 5.51594097 ·10−11 .

Thus

∞

∑
k=1

1/ξ 2
k

≤
6

∑
k=1

1/ξ 2
k +

∞

∑
k=7

∣∣∣ 1

ξ 2
k
− 4

π2(2k +1)2

∣∣∣+ 4

π2

∞

∑
k=0

1

(2k +1)2
− 4

π2

6

∑
k=0

1

(2k +1)2

≤
6

∑
k=1

1/ξ 2
k +

3

16|sinξ1|
e−7π

1− e−π
+

1

2
− 4

π2

6

∑
k=0

1

(2k +1)2

.= 0.09438295 .
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This implies M2 = π2

4 M1

∞
∑

k=1
1/ξ 2

k ≤ 1.07008241. In summariy, we see that condi-

tion (H3) holds if

9.8340213469 · | f ′(0)| < δ .

Finally, we note that wk(x) and wk
(π

4 − x
)

solve the same eigenvalue problem

uxxxx(x) = μku(x), uxx(0) = uxx(π/4) = uxxx(0) = uxxx(π/4) = 0 .

Since {wk | k ∈ N} is an orthonormal system in L2([0,π/4]), we see that wk(x) =
±wk

(π
4 − x

)
. But wk(π/4) = 4/

√
π and wk(0) = 4/

√
π when k is odd, and wk(0) =

−4/
√
π when k is even. So w2k

(π
4 − x

)
= −w2k(x) and w2k−1

(π
4 − x

)
= w2k−1(x),

∀k ∈ N.

5.1.6 Lipschitz Continuity

Here we prove the Lipschitz continuity property of the linear map Lm,ξ : L∞(R) →
�∞ defined as

Lm,ξ (h) = {Lm,ξ , j(h)} j∈Z

with respect to α uniformly in E ∈ E and m ≥ m0. We start with the family of linear

maps Lm,ξ : �∞× �∞ → �∞× �∞ defined as

Lm,ξ (ã, b̃) = {Lm,ξ , j(ã, b̃)} j∈Z

where ã = {ã j} j∈Z, b̃ = {b̃ j} j∈Z and prove that it is Lipschitz continuous function

in α uniformly withy respect to (E,m), E ∈ E and m ≥ m0.

As in the proof of Lemma 5.1.2, u(t) denotes the (unbounded) solution of ẍ +
8
π f ′

(
2√
π γ1(t)

)
x = 0 so that u(0) = 1 and u̇(0) = 0. For simplicity we also set:

û(t) = u̇(t)
au(t) and note that û(t) is uniformly continuous in R since lim

t→±∞ û(t) = ±1

(see (5.1.49)). Moreover we have

d
dt

(
u̇(t)
au(t)

)
=

ü(t)
au(t)

− 1

a

(
u̇(t)
u(t)

)2

= − 8

aπ
f ′
(

2√
π
γ1(t)

)
−a

(
u̇(t)
au(t)

)2

→ 0

as t →±∞. Hence dû
dt (t) is also uniformly continuous in R. As a matter of fact, û(t)

is Lipschitz continuous function with constant, say, Λ̃ , since dû
dt (t) is bounded on R.

Now, let ξ = (E,α), ξ ′ = (E,α ′) be elements of X and consider the difference

Lm,ξ −Lm,ξ ′ . From (5.1.47), (5.1.48) we see that for any ã = {ã j} j∈Z, b̃ = {b̃ j} j∈Z,

we have

[Lm,ξ −Lm,ξ ′ ]
(

ã
b̃

)
=

(
0

B̃

)
(5.1.107)

with B̃ = {B̃ j} j∈Z and
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B̃ j = [û(−m−α ′
j+1)− û(−m−α j+1)]e j+1ã j+1 +[û(m−α j)− û(m−α ′

j)]e jb̃ j.
(5.1.108)

Then we have, using the Lipschitz continuity of û(t):

|B̃ j| ≤|û(m−α j)− û(m−α ′
j)||b̃ j|+ |û(−m−α ′

j+1)− û(−m−α j+1)||ã j+1|
≤Λ̃ |α j −α ′

j| |b̃ j|+ Λ̃ |α j+1 −α ′
j+1| |ã j+1| ≤ Λ̃‖α−α ′‖∞[‖ã‖∞+‖b̃‖∞] .

As a consequence,

‖Lm,ξ −Lm,ξ ′ ‖∞ ≤ Λ̃‖α−α ′‖∞ (5.1.109)

uniformly with respect to (E,m), E ∈ E and m ≥ m0. Then the same conclusion

holds for the inverse map L−1
m,ξ . In fact, from L−1

m,ξ −L−1
m,ξ ′ = L−1

m,ξ [Lm,ξ ′ −Lm,ξ ]L
−1
m,ξ ′

we obtain ‖L−1
m,ξ −L−1

m,ξ ′ ‖ ≤ 9Λ̃‖α−α ′‖, since ‖L−1
m,ξ‖ ≤ 3 (see (5.1.51)). Now,

Lm,ξ , j(h) = −e j γ̈1(0)

[
ã j

u(−m−α j)
− b̃ j

u(m−α j)

]

where (ã, b̃) is obtained by solving the equation Lm,ξ (ã, b̃) = (Aξh,Bξh) and Aξh,

Bξh are the linear (in h ∈ L∞(R)) maps defined by the right-hand sides of Equations

(5.1.44)–(5.1.46):

Aξh =
{
(1− e j)Cj − (1− e j+1)Ĉ j+1 − e jD j(α j)− e j+1D̂ j+1(α j+1)

}
j∈Z

,

Bξh =
{−(1− e j)Cj − (1− e j+1)Ĉ j+1 − e jFj(α j)− e j+1F̂j+1(α j+1)

}
j∈Z

,

where

Cj =
1

2a

∫ (2 j+1)m

(2 j−1)m
e−a((2 j+1)m−s) h(s)ds,

Ĉ j =
1

2a

∫ (2 j+1)m

(2 j−1)m
ea((2 j−1)m−s) h(s)ds,

D j(α) =
∫ (2 j+1)m

2 jm+α
v(m−α)u(s−2 jm−α)h(s)ds,

D̂ j(α) =
∫ 2 jm+α

(2 j−1)m
v(−m−α)u(s−2 jm−α)h(s)ds,

Fj(α) =
1

a

∫ (2 j+1)m

2 jm+α
v̇(m−α)u(s−2 jm−α)h(s)ds

F̂j(α) =
1

a

∫ 2 jm+α

(2 j−1)m
v̇(−m−α)u(s−2 jm−α)h(s)ds .

So, if we prove that the linear map h  → (Aξh,Bξh) is bounded uniformly with re-

spect to ξ ∈ X and Lipschitz continuous function in α uniformly with respect to
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(E,m), we get that Lm,ξ (h) is Lipschitz continuous function in α uniformly with

respect to (E,m) and that the Lipschitz constant is O(e−am) = O(ε) as ε → 0 uni-

formly with respect to (E,m). Now, the fact that Aξh, Bξh are bounded uniformly

with respect to ξ ∈ X easily follows from

max
{|Cj|, |Ĉ j|

}≤ 1
2a2 ‖h‖∞,

max
{|D j(α)|, |D̂ j(α)|, |Fj(α)|, |F̂j(α)|}≤ k

a‖h‖∞.
(5.1.110)

Then it is enough to study the Lipschitz continuity of the maps

(ξ ,h)  → {
D j(α j)e j

}
j∈Z

, (ξ ,h)  → {
D̂ j(α j)e j)

}
j∈Z

,

(ξ ,h)  → {
Fj(α j)e j

}
j∈Z

, (ξ ,h)  → {
F̂j(α j)e j)

}
j∈Z

,
(5.1.111)

with respect to α . Writing D j(α,m), D̂ j(α,m), etc. to emphasize dependence on m
we see that

D̂ j(α,m) = −D− j(α,−m), F̂j(α,m) = −F− j(α,−m).

Thus we only need to look at D j(α) and Fj(α). We focus our attention on the map

(ξ ,h)  → {D j(α j)e j}, ξ = (E,α), Fj(α) being handled similarly. First, we look at

the difference D j(τ ′′)−D j(τ ′), where τ ′,τ ′′ ∈ R, τ ′′ ≥ τ ′ and |τ ′|, |τ ′′| ≤ 2. We see

that D j(τ ′′)−D j(τ ′) equals:

∫ (2 j+1)m

2 jm+τ ′′

[
v(m− τ ′′)u(s−2 jm− τ ′′)− v(m− τ ′)u(s−2 jm− τ ′)]h(s)ds

−
∫ 2 jm+τ ′′

2 jm+τ ′
v(m− τ ′)u(s−2 jm− τ ′)h(s)ds .

Then (5.1.34) implies∣∣∣∣∫ 2 jm+τ ′′

2 jm+τ ′
v(m− τ ′)u(s−2 jm− τ ′)h(s)ds

∣∣∣∣≤ k‖h‖∞|τ ′′ − τ ′| .

Similarly, we get∣∣∣∣∫ (2 j+1)m

2 jm+τ ′′

[
v(m− τ ′′)u(s−2 jm− τ ′′)− v(m− τ ′)u(s−2 jm− τ ′)]h(s)ds

∣∣∣∣
=

∣∣∣∣∣
∫ (2 j+1)m

2 jm+τ ′′

(∫ τ ′′

τ ′
[v̇(m− τ)u(s−2 jm− τ)− v(m− τ)u̇(s−2 jm− τ)]dτ

)

·h(s)ds

∣∣∣∣∣
≤ 2k

a
‖h‖∞|τ ′′ − τ ′| .
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Consequently, we obtain

|D j(τ ′′)−D j(τ ′)| ≤
(2k

a
+ k

)
‖h‖∞|τ ′′ − τ ′| .

Thus (ξ ,h)  → {D j(α j)e j} j∈Z is Lipschitz continuous function in α with the con-

stant 2k
a +k independent of (E,m). Similarly we can prove the global Lipschitz con-

tinuity in α of Fj(α). This completes the proof of the uniform Lipschitz continuity

in α of Lm,ξ (h). Note that when h ∈ L∞, the maps in (5.1.111) are not differentiable

in α .

5.2 Infinite Dimensional Non-Resonant Systems

5.2.1 Buckled Elastic Beam

To motivate the ideas of this section consider the partial differential equation

ü = −u′′′′ −P0u′′ +
[∫ π

0
u′(s)2 ds

]
u′′ −2μ2u̇+μ1 cosω0t (5.2.1)

where P0, μ1, μ2, ω0 are constants and u is a real valued function of two variables

t ∈ R, x ∈ [0,π], subject to the boundary conditions

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = 0 .

In (5.2.1), a superior dot denotes differentiation with respect to t and prime differ-

entiation with respect to x. This is a model for oscillations of an elastic beam with

a compressive axial load P0 (Figure 5.2). When P0 is sufficiently large, (5.2.1) can

exhibit chaotic behavior. The first work on this was done in [3]. Some more recent

work on the full equation is in [4, 14]. An undamped buckled beam is investigated

in [15] to show Arnold diffusion type motions. We will discuss some of them in

more detail when we return to this problem in Section 5.2.6.

In (5.2.1) substitute u(x, t) =
∞
∑

k=1
uk(t)sinkx, multiply by sinnx and integrate from

0 to π . This yields the infinite set of ordinary differential equations

ün = n2(P0 −n2)un − π
2

n2

[
∞

∑
k=1

k2u2
k

]
un −2μ2u̇n +2μ1

[
1− (−1)n

πn

]
cosω0t,

n = 1,2, . . . .

We see that the linear parts of these equations are uncoupled and the equations

are divided into two types. The system of equations defined by 1 ≤ n2 < P0 has

a hyperbolic equilibrium in origin whereas for the system of equations satisfying

n2 ≥ P0, this equilibrium is a center. For simplicity let us assume 1 < P0 < 4. Then
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Fig. 5.2 The forced buckled beam (5.2.1).

only the equation with n = 1 is hyperbolic while the system of remaining equations

has a center. To emphasize this let us define p = u1 and qn = un+1, n = 1,2, . . .. The

preceding equations now take the form

p̈ = a2 p− π
2

[
p2 +

∞

∑
k=1

(k +1)2q2
k

]
p−2μ2 ṗ+

4

π
μ1 cosω0t, (5.2.2a)

q̈n = −ω2
n qn − π

2
(n+1)2

[
p2 +

∞

∑
k=1

(k +1)2q2
k

]
qn

−2μ2q̇n +2μ1

[
1− (−1)n+1

π(n+1)

]
cosω0t , (5.2.2b)

n = 1,2, . . .

where we have defined a2 = P0 −1 and ω2
n = (n+1)2

[
(n+1)2 −P0

]
. In (5.2.2) we

project onto the hyperbolic subspace by setting q = 0 in (5.2.2a) to obtain what we

shall call the reduced equation. In our example this is

p̈ = a2 p− π
2

p3 −2μ2 ṗ+
4

π
μ1 cosω0t. (5.2.3)

We see that this is the forced, damped Duffing equation with negative stiffness for

which standard theory yields chaotic dynamics (cf Section 4.1). The purpose of this

section is to show that the chaotic dynamics of (5.2.3) are, in some sense, shadowed
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in the dynamics of the full equation (5.2.2). To put our example in the first order

form we define x = (p, ṗ) and

y = (q1, q̇1/ω1,q2, q̇2/ω2, . . .).

Equations (5.2.2 a and b) now become

ẋ1 = x2 ,

ẋ2 = a2x1 − π
2

[
x2

1 +
∞

∑
k=1

(k +1)2y2
2k−1

]
x1 (5.2.4a)

−2μ2x2 +
4

π
μ1 cosω0t ,

ẏ2n−1 = ωny2n ,

ẏ2n = −ωny2n−1 − π
2

(n+1)2

ωn

[
x2

1 +
∞

∑
k=1

(k +1)2y2
2k−1

]
y2n−1 (5.2.4b)

−2μ2y2n +2μ1

[
1− (−1)n+1

π(n+1)ωn

]
cosω0t.

For these equations we define the Hilbert space

Y =

{
y = {yn}∞n=1

∣∣ yn ∈ R,
∞

∑
n=1

ω2
n (y2

2n−1 + y2
2n) < ∞

}

with inner product 〈u,v〉 =
∞
∑

n=1
ω2

n (u2n−1v2n−1 + u2nv2n). By a weak solution to

(5.2.4) we mean a pair of functions x0 : R → R
2, y0 : R → Y so that x0 is differ-

entiable and y0 has a derivative ẏ0 → �2, which satisfy (5.2.4a) pointwise in R
2,

(5.2.4b) pointwise in �2. Note that in this case we have

(u1,u2, . . .) = (x, p1, p2, . . .), x2 +
∞

∑
n=1

ω2
n p2

n < ∞,

(u̇1, u̇2, . . .) = (ẋ, ṗ1, ṗ2 . . .) ∈ �2

so that for the original differential equation (5.2.1), u ∈ H2(0,π)∩H1
0 (0,π) and u̇ ∈

L2(0,π). This is discussed in [5]. In the next section we will formulate an abstract

problem for which the hypotheses will consist of the essential features of (5.2.4).

We have already mentioned one of them: when y is set equal to zero in (5.2.4a)

the resulting equation is the transverse perturbation of an autonomous equation with

a homoclinic solution. To see another important property we linearize (5.2.4b) in

origin which yields the system of equations

v̇2n−1 = ωnv2n,

v̇2n = −ωnv2n−1 −2μ2v2n, n ∈ N .
(5.2.5)



5.2 Infinite Dimensional Non-Resonant Systems 223

Note that for each n we get a pair of equations uncoupled from the others and for

|μ2| < ωn we have a fundamental solution for (v2n−1,v2n) given by

Vn(t) =

⎡⎢⎢⎣ cos ω̃nt +
μ2

ω̃n
sin ω̃nt

ωn

ω̃n
sin ω̃nt

−ωn

ω̃n
sin ω̃nt cos ω̃nt − μ2

ω̃n
sin ω̃nt

⎤⎥⎥⎦e−μ2t

where ω̃n =
√
ω2

n −μ2
2 . This solution has the properties Vn(0) = I and

|Vn(t)Vn(s)−1| = |Vn(t)Vn(−s)| = |Vn(t − s)| ≤ K eμ2(s−t),

where K > 0 is independent of n. Using the sequence {Vn}∞n=1 we can define a group

{Vμ2
(t)} of bounded operators from Y to Y by[(

Vμ2
(t)y

)
2n−1(

Vμ2
(t)y

)
2n

]
= Vn(t)

[
y2n−1

y2n

]
.

Then |Vμ2
(t)Vμ2

(s)−1| ≤ K eμ2(s−t). For y0 ∈ Y, y(t) = Vμ2
(t)y0 is the weak solution

to (5.2.5) satisfying y(0) = y0. If we retain the forcing term from (5.2.4b) we obtain

the system of nonhomogeneous variational equations

v̇2n−1 = ωnv2n ,

v̇2n = −ωnv2n−1 −2μ2v2n +μ1νn cosω0t

where νn =
2[1− (−1)n+1]
π(n+1)ωn

. Here we encounter the question of resonance. In the

nonresonant case, i.e. ωn �= ω0, the precedent has a particular solution in Y with

components given by[
v2n−1(t)

v2n(t)

]
=

μ1νn

(ω2
n −ω2

0 )2 +4μ2
2ω2

0

[
ωn(ω2

n −ω2
0 )cosω0t +2μ2ω0ωn sinω0t

−ω0(ω2
n −ω2

0 )sinω0t +2μ2ω2
0 cosω0t

]
.

We make the existence of such a solution a separate hypothesis.

Finally, we mention other work on chaos in partial differential equations. For the

complex Ginzburg-Landau equation in the near nonlinear Schrödinger regime, i.e.

perturbed nonlinear Schrödinger equation, existence of homoclinic orbits is proved

in [7, 16, 17], and existence of chaos is shown in [8, 18] under generic conditions.

For perturbed sine-Gordon equation, existence of chaos and chaos cascade around a

homoclinic tube was proved in [19–21]. For the reaction-diffusion equation, entropy

study on the complexity of attractor is conducted in [22–24]. Chaotic oscillations of

a linear wave equation with nonlinear boundary conditions are shown in [25]. The

development of chaos and its controlling for PDEs is summarized in [26, 27].
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5.2.2 Abstract Problem

Using the example in the preceding section as a model we now develop an abstract

theory. Let Y and H be separable real Hilbert spaces with Y ⊂ H. We now consider

differential equations of the form

ẋ = f (x,y,μ, t) = f0(x,y)+μ1 f1(x,y,μ, t)+μ2 f2(x,y,μ, t) ,

ẏ = g(x,y,μ, t) = Ay+g0(x,y)+μ1ν cosω0t +μ2g2(x,y,μ)
(5.2.6)

with x ∈ R
n, y ∈ Y, μ = (μ1,μ2) ∈ R

2, ν ∈ Y. We make the following assumptions

of (5.2.6):

(H1) A ∈ L(Y,H).
(H2) f0 ∈C4(Rn ×Y,Rn), f1, f2 ∈C4(Rn ×Y×R

2 ×R,Rn), g0 ∈C4(Rn ×Y,Y) and

g2 ∈C4(Rn ×Y×R
2,Y).

(H3) f1 and f2 are periodic in t with period T = 2π/ω0.

(H4) f0(0,0) = 0 and D2 f0(x,0) = 0.

(H5) The eigenvalues of D1 f0(0,0) lie off the imaginary axis.

(H6) The equation ẋ = f0(x,0) has a nontrivial solution homoclinic to x = 0.

(H7) g0(x,0) = g2(x,0,μ) = 0, D12g0(0,0) = 0 and D22g0(x,0) = 0.

(H8) There are constants K > 0, δ > 0 and b > 0 so that when 0 ≤ |μ2| ≤ δ the

variational equation v̇ =
(
A+μ2D2g2(0,0,0)

)
v has a group {Vμ2

(t)} of bounded

evolution operators from Y to Y satisfying |Vμ2
(t)Vμ2

(s)−1| ≤ K ebμ2(s−t).

(H9) There is a constant K > 0 so that the nonhomogeneous variational equation

v̇ = [A+μ2D2g2(0,0,0)]v+μ1ν cosω0t has a particular solution ψ : R → Y sat-

isfying |ψ(t)| ≤ K|μ1||ν |.
By a weak solution to (5.2.6) we mean a pair of continuous functions x0 : R →

R
n, y0 : R → Y so that x0 is differentiable and y0 has a derivative ẏ0 : R → H,

which satisfy (5.2.6) pointwise in H. By (H8) we mean that Vμ2
(s)−1 = Vμ2

(−s),
Vμ2

(s) ◦Vμ2
(t) = Vμ2

(s + t), Vμ2
(0) = I and that for y0 ∈ Y, y(t) = Vμ2

(t)y0 is the

weak solution to v̇ = [A+μ2D2g2(0,0,0)]v satisfying y(0) = y0.

5.2.3 Chaos on the Hyperbolic Subspace

The reduced system of equations for (5.2.6) is

ẋ = f (x,0,μ, t) = f0(x,0)+μ1 f1(x,0,μ, t)+μ2 f2(x,0,μ, t) (5.2.7)

with x∈R
n. By (H6), (5.2.7) has a nontrivial homoclinic solution γ when μ = 0. The

variational equation along γ is the linear equation u̇ = D1 f0(γ,0)u and its adjoint

variational equation

v̇ = −D1 f0(γ,0)∗v . (5.2.8)
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By repeating arguments of Section 4.2.2, we have the following result (cf Theorem

4.2.1).

Theorem 5.2.1. Let M be as in (4.2.6) or (4.2.7) and suppose μ0, α0, β0 are such
that M(μ0,α0,β0) = 0 and D(α,β )M(μ0,α0,β0) is nonsingular. Then there exists
an interval J = (0,ξ0] so that for each ξ ∈ J the equation ẋ = f (x,0,ξμ0, t) has
a homoclinic solution γξ to a small hyperbolic periodic solution. Furthermore, γξ
depends continuously on ξ , limξ→0 γξ (t) = γ(t−α0) (or = γβ0

(t−α0), respectively)
uniformly in t and the variational equation along γξ has an exponential dichotomy
on R.

Then we can show chaos for the differential equation ẋ = f (x,0,ξμ0, t). For this,

first, for any m∈N, ξ ∈ J and E = {e j} j∈Z ∈ E (cf Section 2.5.2) define the function

γξ ,E,m ∈ L∞(R,Rn) by

γξ ,E,m(t) =

{
γξ (t −2 jmT ), if (2 j−1)mT < t ≤ (2 j +1)mT and e j = 1,

0, if (2 j−1)mT < t ≤ (2 j +1)mT and e j = 0 .

Now following arguments of Sections 3.5.2 and 5.1.4, we obtain the following ver-

sion of Smale-Birkhoff homoclinic theorem 2.5.4.

Theorem 5.2.2. (a) Let μ0, α0, β0, ξ0 be as in Theorem 5.2.1. Fix ξ ∈ (0,ξ0] and
let γξ be obtained from Theorem 5.2.1. Then there exist an ε0 > 0 and a function
ε → M(ε) ∈ N so that given ε with 0 < ε ≤ ε0 and a positive integer m ≥ M(ε)
the equation ẋ = f (x,0,ξμ0, t) has for each E ∈ E a unique solution t → xE(t)
satisfying

|xE(t)− γξ ,E,m(t)| ≤ ε, ∀t ∈ R .

(b) xE depends continuously on E and xE(t + 2mT ) = xσ(E)(t) where σ is the
Bernoulli shift on E .

(c) The correspondence φ(E) = xE(0) is a homeomorphism of E onto the com-
pact subset Λ of R

n given by

Λ := {xE(0) | E ∈ E }

for which the 2mth iterate F2m of the period map F of (5.2.7) is invariant and satis-
fies F2m ◦φ = φ ◦σ .

Theorem 5.2.2 asserts that the following diagram is commutative.

E
σ ��

φ
��

E

φ
��

Λ
F2m

�� Λ

This means that F2m :Λ  →Λ has the same dynamics on Λ as the Bernoulli shift σ
on E . Consequently, F2m is chaotic on Λ , so (5.2.7) is also chaotic. This construc-
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tion is sometimes referred to as embedding a Smale horseshoe in the flow of the

differential equation.

5.2.4 Chaos in the Full Equation

Since the homoclinic orbit γξ obtained in Section 5.2.3 is hyperbolic the variational

equation u̇ = D1 f (γξ ,0,ξμ0, t)u has an exponential dichotomy on R with constant

Kξ . Now, by Section 4.2.3, Kξ tends to infinity as ξ → 0. For this reason we consider

the following modification of (5.2.6)

ẋ = f (x,y,μ,λ , t) := f (x,λy,μ, t) ,

ẏ = g(x,y,μ,λ , t) := Ay+g0(x,y)+λμ1ν cosω0t +μ2g2(x,y,μ)
(5.2.9)

for a parameter λ ∈ [0,1]. Now let (μ0,α0,β0) with μ0,2 �= 0 and γξ be as in Theorem

5.2.1. Following the arguments of Section 4.2.3, we obtain a constant ξ̄0 and for each

ξ ∈ (0, ξ̄0] a homoclinic orbit

Γ (λ ,ξ )(t) =
(
Γ1(λ ,ξ )(t),Γ2(λ ,ξ )(t)

)
for (5.2.9) with μ = ξμ0 so that

Γ1(λ ,ξ )(t) → γ(t −α0) (or → γβ0
(t −α0), respectively) ,

and Γ2(λ ,ξ )(t) → 0

as ξ → 0 uniformly for λ ∈ [0,1]. Moreover, we have Γ (0,ξ ) = (γξ ,0) and Γ (1,ξ )
is a homoclinic solution for (5.2.6). The linearization of (5.2.9) with μ = ξμ0 along

Γ (λ ,ξ )(t) has an exponential dichotomy on R with dichotomy constants uniformly

with respect to 0 ≤ λ ≤ 1 and fixed ξ . Analogous to the construction in Section

5.2.3, for each E ∈ E , ξ ∈ (0, ξ̄0] and m ∈ N we construct from Γ (λ ,ξ ) a corre-

sponding

ΓE(λ ,ξ ,m) = (Γ1,E(λ ,ξ ,m),Γ2,E(λ ,ξ ,m)) .

Similarly, from γξ we obtain γξ ,E,m. Then we have Γ1,E(0,ξ ,m) = γξ ,E,m and also

Γ2,E(0,ξ ,m) = 0. Using the uniform exponential dichotomy, following Sections

3.5.2 and 5.1.4, we now obtain the following extension of Theorem 5.2.2.

Theorem 5.2.3. (a) Let μ0, α0, β0 be as in Theorem 5.2.1 with μ0,2 �= 0. Fix ξ ∈
(0, ξ̄0] and let Γ (λ ,ξ ,m)(t) be obtained above. Then there exist an ε̄0 > 0 and a
function ε → M̄(ε) ∈ N so that given ε with 0 < ε ≤ ε̄0 and a positive integer
m ≥ M̄(ε) Eq. (5.2.9) with μ = ξμ0 has for each E ∈ E a unique weak solution
t → (

xE,λ (t),yE,λ (t)
)

satisfying

|xE,λ (t)−Γ1,E(λ ,ξ ,m)(t)|+ |yE,λ (t)−Γ2,E(λ ,ξ ,m)(t)| ≤ ε ∀t ∈ R .
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(b) The functions
(
xE,λ (t),yE,λ (t)

)
depend continuously on E, λ and we also

have xE,λ (t +2mT ) = xσ(E),λ (t), yE,λ (t +2mT ) = yσ(E),λ (t).
(c) The correspondence φλ (E) =

(
xE,λ (0),yE,λ (0)

)
is a homeomorphism of E

onto the compact subset Λλ of R
n ×Y given by

Λλ :=
{(

xE,λ (0),yE,λ (0)
) | E ∈ E

}
for which the 2mth iterate F2m

λ of the period map Fλ of (5.2.9) is invariant and
satisfies F2m

λ ◦φλ = φλ ◦σ .
(d) (xE,0(t),yE,0(t)) = (xE(t),0) and φ0 = φ where φ is as in Theorem 5.2.2.

In summary, we obtain the following main result.

Theorem 5.2.4. Suppose (H1)–(H9) hold. Let M be as in (4.2.6) or (4.2.7) and sup-
pose (μ0,α0,β0) are such that M(μ0,α0,β0) = 0 and D(α,β )M(μ0,α0,β0) is non-
singular. Then there exists ξ̄0 > 0 so that if 0 < ξ ≤ ξ̄0, if the parameters in (5.2.6)

are given by μ = ξμ0, and μ0,2 �= 0 then there exists a homeomorphism, φ1, of E
onto a compact subset of R

n ×Y for which the 2mth iterate, F2m
1 , of the period map

F1 of (5.2.6) is invariant and satisfies F2m
1 ◦φ1 = φ1 ◦σ . Here m ∈ N is sufficiently

large.

We might paraphrase Theorem 5.2.4, loosely, say, the Smale horseshoe embed-

ded in the flow of the reduced equation (5.2.7) is shadowed by a horseshoe in the

full equation (5.2.6).

5.2.5 Applications to Vibrating Elastic Beams

We now return to the example in Section 5.2.1 and apply our theory to the prob-

lem of vibrating elastic beams. We shall consider a number of different cases and

generalizations. In each case our procedure will be:

(i) Use a Galerkin expansion to convert the partial differential equation to an infi-

nite set of ordinary differential equations as (5.2.6).

(ii) Truncate the equation to get the finite problem(5.2.7).

(iii) Apply Theorem 5.2.2 to getting a Smale horseshoe for the finite problem. For

this we must verify (H1) through (H6).

(iv) Use Theorem 5.2.4 to lift the horseshoe to the flow of the original partial differ-

ential differential equation. This requires (H7)–(H9).

5.2.6 Planer Motion with One Buckled Mode

The boundary value problem for planer deflections of an elastic beam with a com-

pressive axial load P0 and pinned ends is
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ü = −u′′′′ −P0u′′ +
[∫ π

0
u′(s)2 ds

]
u′′ −2μ2u̇+μ1 cosω0t,

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = 0

where u(x, t) is the transverse deflection at a distance x from one end at time t. We

consider the μi terms as perturbations. Our first step is to consider the linearized,

unperturbed problem. We compute the eigenvalues in origin to be λn = n2(n2 −P0)
with corresponding eigenfunctions ϕn(x) = sinnx for n = 1,2, . . .. For small P0 the

origin is a center. As P0 is increased the first bifurcation occurs at P0 = 1, the first

Euler buckling load. The corresponding eigenfunction, ϕ1(x) = sinx, is referred to

as the first buckled mode. The second bifurcation occurs at P0 = 4. Thus, the simplest

case, which we now consider, consists of 1 < P0 < 4. In the first equation we define

a2 = λ1 = P0 −1 .

The eigenvalues for the center modes, or unbuckled modes, provide the frequencies

used in (5.2.6) as we define

ω2
n−1 = λn = n2[n2 −P0], n = 2,3, . . . .

We now use the eigenfunctions for the Galerkin expansion u(x, t) =
∞
∑

k=1
uk(t)sinkx

and obtain the system of equations

ün = n2(P0 −n2)un − π
2

n2

[
∞
∑

k=1
k2u2

k

]
un

−2μ2u̇n +2μ1

[
1− (−1)n

πn

]
cosω0t, n = 1,2, . . . .

(5.2.10)

To obtain a first order system as in (5.2.6) we define

x = (u1, u̇1), y = (u2, u̇2/ω1,u3, u̇3/ω2, . . .).

The reduced equations are

ẋ1 = x2 ,

ẋ2 = a2x1 − π
2

x3
1 −2μ2x2 +

4

π
μ1 cosω0t

(5.2.11)

obtained by setting y = 0 in the hyperbolic part. When μ = 0, (5.2.11) has a homo-

clinic solution given by γ = (r, ṙ) where r(t) = (2a/
√
π )sechat. Equation (5.2.8)

becomes

v̇1 = −(a2 − 3π
2

r2)v2, v̇2 = −v1

with solution (v1,v2) = (−r̈, ṙ). We have d = 1 so the variable β does not appear,

M is a scalar function, and the function M = M1 becomes
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M(α) =
[

8ω0√
π

sinω0α sech
πω0

2a

]
μ1 −

(
16a3

3π

)
μ2.

Thus, the conditions M(μ0,α0) = 0, (∂M/∂α)(μ0,α0) �= 0 are satisfied for all μ0 so

that
∣∣∣ μ0,2

μ0,1

∣∣∣ < 3
√
πω0

2a3 sech πω0
2a . Now we check condition (H9) which, for the present

problem, requires us to consider the equation

v̇2n−1 = ωnv2n ,

v̇2n = −ωnv2n−1 −2μ2v2n +μ1νn cosω0t

where νn = 2[1−(−1)n−1]
π(n+1)ωn

. This system has a particular solution in Y with components

given by[
v2n−1(t)

v2n(t)

]
=

μ1νn

(ω2
n −ω2

0 )2 +4μ2
2ω2

0

[
ωn(ω2

n −ω2
0 )cosω0t +2μ2ω0ωn sinω0t

−ω0(ω2
n −ω2

0 )sinω0t +2μ2ω2
0 cosω0t

]
.

From this we see that (H9) is satisfied whenever ω0 �= ωn for all n.

We note that while the conditions M(α) = 0, M′(α) �= 0 can be satisfied with

μ2 = 0, α = 0 we require μ2 �= 0 in Section 5.2.4 where we use a weak exponen-

tial dichotomy to lift the full equation. Thus, we obtain the following result using

Theorem 5.2.4.

Theorem 5.2.5. If ω0 �= ωn for all n then whenever μ0 satisfies μ0,1 �= 0 and

0 <

∣∣∣∣μ0,2

μ0,1

∣∣∣∣ <
3
√
πω0

2a3
sech

πω0

2a
, (5.2.12)

there exists a corresponding ξ̄0 > 0 so that if 0 < ξ ≤ ξ̄0, if the parameters in (5.2.10)

are given by μ = ξμ0 then there exists a compact subset of R
2 ×Y on which the

2mth iterate, F2m, of the period map F of (5.2.10) is invariant and conjugate to the
Bernoulli shift on E . Here m ∈ N is sufficiently large.

These results are stated in terms of the Galerkin equations (5.2.10) but they

can be transferred back to the original partial differential equation. In this case

we get a Bernoulli shift embedded in
[
H1

0 (0,π)∩H2(0,π)
]×L2(0,π). This is dis-

cussed in [5]. In the μ1-μ2 plane we get from the condition (5.2.12) four small

open wedge-shaped regions of parameter values for which the partial differen-

tial equation exhibits chaos (Figure 5.3). These regions are bounded by the lines

μ1/μ2 = ± 3
√
πω0

2a3 sech πω0
2a and μ2 = 0.

It is interesting to look at some history of this problem. The first work was done in

[28] in which the author started with the PDE and carried out the Galerkin expansion

but restricted his analysis to the reduced equation (5.2.11). The significance of that

work is that it introduced the idea of Melnikov analysis. In subsequent work [3], the

results are extended to infinite dimension but the Galerkin approach is abandoned

in favor of nonlinear semigroup techniques directly in infinite dimensions. In our
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Fig. 5.3 The chaotic open wedge-shaped region of (5.2.10) in R
2.

section we go back to the original, simpler analysis of the reduced equation and

then show that the results apply to the original PDE. Some advantages of this are

that the Galerkin projection is a technique familiar to many engineers and physicists

and, also, we are able to utilize our general Melnikov results in Section 5.2.3. This

is illustrated further in the generalizations to follow. We note that Equation (5.2.10)

was treated also in [4].

5.2.7 Nonplaner Symmetric Beams

Let us consider a beam with symmetric cross section, pinned ends and compressive

axial load P0 and assume now that the beam is not constrained to defect in a plane. If

u(x, t) and w(x, t) denote the transverse defections at position x and time t we obtain

the following boundary value problem.

ü = −u′′′′ −P0u′′ +
[∫ π

0

(
u′(s)2 +w′(s)2

)
ds
]

u′′

−2μ2u̇cosη+μ1 cosζ cosω0t ,

ẅ = −w′′′′ −P0w′′ +
[∫ π

0

(
u′(s)2 +w′(s)2

)
ds
]

w′′

−2μ2ẇsinη+μ1 sinζ cosω0t ,

u(0, t) = u(π, t) = u′′(0, t) = u′′(π, t) = w(0, t)
= w(π, t) = w′′(0, t) = w′′(π, t) = 0

where η , ζ are constants. The parameters μ1, μ2 represent the coefficients of, re-

spectively, total transverse forcing and total viscous damping. These effects are dis-

tributed between the two directions of motion. The quantity tanζ represents the
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ratio of forcing in the u-direction to forcing in the w-direction while tanη plays

the same role in the damping. We suppose η ,ζ ∈ (0,π/2) in order to avoid certain

degeneracies. In these equations we use the Galerkin expansions

u(x, t) =
∞

∑
k=1

uk(t)sinkx , w(x, t) =
∞

∑
k=1

wk(t)sinkx

and proceed as before. This yields the system of equations

ün = n2(P0 −n2)un − π
2

n2

[
∞
∑

k=1
k2(u2

k +w2
k)
]

un

−2μ2u̇n cosη+2μ1 cosζ
[

1− (−1)n

πn

]
cosω0t ,

ẅn = n2(P0 −n2)wn − π
2

n2

[
∞
∑

k=1
k2(u2

k +w2
k)
]

wn

−2μ2ẇn sinη+2μ1 sinζ
[

1− (−1)n

πn

]
cosω0t .

(5.2.13)

As before, we assume 1 < P0 < 4 and define a2 = P0 − 1, ω2
n−1 = n(n2 − P0),

n = 2,3, . . .. Equations (5.2.13) take the form of (5.2.6) when we define x =
(u1, u̇1,w1, ẇ1) and y = (u2, u̇2/ω1,w2, ẇ2/ω1,u3, u̇3/ω2,w3, ẇ3/ω2, . . .). The re-

duced equations are

ẋ1 = x2 ,

ẋ2 = a2x1 − π
2

(x2
1 + x2

3)x1 −2μ2x2 cosη+
4

π
μ1 cosζ cosω0t ,

ẋ3 = x4 ,

ẋ4 = a2x3 − π
2

(x2
1 + x2

3)x3 −2μ2x4 sinη+
4

π
μ1 sinζ cosω0t .

When μ = 0 we have a two-dimensional homoclinic manifold given by γβ =
(r cosβ , ṙ cosβ ,r sinβ , ṙ sinβ ) where, as before, r(t) = (2a/

√
π )sechat and β is

a parameter. The adjoint equations (5.2.8) take the form

v̇1 =
[
−a2 +

π
2

(3r2 cos2β + r2 sin2β )
]

v2 +
(
πr2 sinβ cosβ

)
v4 ,

v̇2 = −v1,

v̇3 =
(
πr2 sinβ cosβ

)
v2 +

[
−a2 +

π
2

(r2 cos2β +3r2 sin2β )
]

v4 ,

v̇4 = −v3.

A one-parameter family of bounded solutions to these equations is given by
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vβ1 = (−ṙ sinβ ,r sinβ , ṙ cosβ ,−r cosβ ) ,
vβ2 = (−r̈ cosβ , ṙ cosβ ,−r̈ sinβ , ṙ sinβ ) (5.2.14)

and the function, M, as in (4.2.7) becomes

M1(μ,α,β ) =
[

8√
π

sin(β −ζ )cosω0α sech
πω0

2a

]
μ1 ,

M2(μ,α,β ) =
[

8ω0√
π

cos(β −ζ )sinω0α sech
πω0

2a

]
μ1

−
[

16a3(cosη cos2β + sinη sin2β )
3π

]
μ2 .

Next, the conditions M(μ0,α0,β0) = 0, D(α,β )M(μ0,α0,β0) nonsingular are satis-

fied in two different cases. Of course, we suppose μ0,1 �= 0, μ0,2 �= 0 and then put

λ0 = μ0,2

μ0,1
. We have the following two cases:

Case 1. We can choose either β0 = ζ and then look for a simple root of the

equation

λ0 = m1 sinω0α , (5.2.15)

or β0 = ζ +π and look for a simple root of the equation

λ0 = −m1 sinω0α (5.2.16)

for

m1 =
3
√
πω0

2a2(cosη cos2 ζ + sinη sin2 ζ )
sech

πω0

2a
.

Supposing under the condition

0 < |λ0| < m1 , (5.2.17)

there is a simple root α0 of (5.2.15). Similarly, (5.2.16) has also a simple root −α0.

According to the formulas (5.2.14) for vβ1
and vβ2

, these simple roots (ζ ,α0) and

(ζ +π,−α0) give two different solutions of (5.2.13).

Case 2. We begin from choosing ω0α0 = (2k0 +1)π2 for k0 ∈ {0,1} and then we

look for a simple root β0 �= ζ + kπ , ∀k ∈ Z of

λ0 = (−1)k0Φ(β ) (5.2.18)

where

Φ(β ) =
3ω0

√
π

2a3

cos(β −ζ )
cosη cos2β + sinη sin2β

sech
πω0

2a
.
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Let m2 = maxβ∈RΦ(β ). A computation of the constant m2 is discussed in [29].

Since Φ(β +π) =−Φ(β ), the range of Φ is the closed interval [−m2,m2]. We now

split this case into two parts:

Part 2A). For η = π/4 we get Φ(β ) = m1 cos(β − ζ ), along with m2 = m1 =
3ω0

√
π√

2a3
sech

πω0

2a
. Equation (5.2.18) has now the form

(−1)k0
3ω0

√
π√

2a3
sech

πω0

2a
cos(β −ζ ) = λ0 ,

so under condition (5.2.17), there is a simple root β0 different from ζ +kπ , ∀k ∈ Z.

This holds for both cases k0 ∈ {0,1} so we have two different solutions of (5.2.13).

In addition, the results of Case 1 still apply here. Thus, in this situation, we have

in the μ1-μ2 plane four wedged-shaped regions of parameter values bounded by

μ2/μ1 = ±m1, μ2 = 0 for which the partial differential equation exhibits chaos.

Particularly, (5.2.13) has four distinct homoclinic solutions, two from Case 1, two

from Case 2A. These regions are labeled II in Figure 5.4. In this case there are no

regions labeled I.

Part 2B). For η �= π/4 we get Φ ′(ζ ) �= 0, so m1 < m2. Certainly for the solv-

ability of (5.2.18) we need |λ0| ≤ m2. Now we claim:

Lemma 5.2.6. If
λ0 ∈ (−m2,m2)\{±m1,0} , (5.2.19)

then Eq. (5.2.18) has a simple root β0 ∈ [0,2π]\{ζ ,ζ +π}.

Proof. Assume to the contrary that (5.2.18) has no simple roots for a λ0 ∈ (−m2,
m2)\{±m1,0}. Then there are 0 ≤ β1 < β2 ≤ 2π so that

Φ(β1,2) = (−1)k0λ0, Φ ′(β1,2) = 0, Φ ′′(β1,2) = 0 . (5.2.20)

Note that β1,2 �= ζ + kπ and β1,2 �= ζ + 2k+1
2 π , ∀k ∈ {0,1}. After some calculation

we derive from (5.2.20) that cos2β1,2 �= 0, sin2β1,2 �= 0 and that (5.2.20) is equiva-

lent to

cos(β1,2 −ζ )
cosη cos2β1,2 + sinη sin2β1,2

=
sin(β1,2 −ζ )

(cosη− sinη)sin2β1,2

=
cos(β1,2 −ζ )

2(cosη− sinη)cos2β1,2
= (−1)k0

2a3

3ω0

√
π

cosh
πω0

2a
λ0 .

(5.2.21)

From (5.2.21) we derive

cos2β1,2 =
cosη+ sinη

3(cosη− sinη)
, 2tan(β1,2 −ζ ) = tan2β1,2 . (5.2.22)
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Hence

β2 ∈ {π−β1,π+β1,2π−β1} .

If β2 = π − β1 then from 2tan(β2 − ζ ) = tan2β2 we get 2 tan(β1 + ζ ) = tan2β1,

but 2 tan(β1 −ζ ) = tan2β1, so tan(β1 +ζ ) = tan(β1 −ζ ), i.e. ζ = kπ/2, k ∈ {0,1}.

This contradicts ζ ∈ (0,π/2). If β2 = π+β1 then

(−1)k0λ0 =Φ(β2) =Φ(β1 +π) = −Φ(β1) = (−1)k0+1λ0

which implies λ0 = 0, a contradiction. If β2 = 2π−β1 then again we derive tan(β1 +
ζ ) = tan(β1 −ζ ), so that ζ = kπ/2, k ∈ {0,1}, a contradiction to ζ ∈ (0,π/2). The

proof is finished. ��
Note that β0 ∈ {ζ ,ζ +π} for the Case 1, while β0 ∈ [0,2π)\{ζ ,ζ +π} for the

Case 2. Lemma 5.2.6 can be applied to both cases α0 = π
2ω0

(2k0 +1), k0 ∈ {0,1},

so Part 2B yields, in the μ1-μ2 plane, four wedge-shaped regions of parameter val-

ues bounded by μ2/μ1 = ±m2, μ2/μ1 = ±m1, μ2 = 0 for which (5.2.13) has two

different homoclinic solutions. These regions are labeled I in Figure 5.4. Note that

we have four different solutions of (5.2.13) in regions labeled II, since there Case

1 can be also applied (see (5.2.15) and (5.2.16)). This completes the analysis of the

Melnikov function. We now check about resonance. Because in the present problem

all coupling terms are nonlinear, the linear equation in (H9) consists in two copies

of the system of equations in the preceding example. This yields the following result

obtained from Theorem 5.2.4.
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Fig. 5.4 The chaotic wedge-shaped regions of (5.2.13) in R
2.

Theorem 5.2.7. Suppose ω0 �= ωn for all n and let m1, m2 be as above.
(a) If m0 �= 0 satisfies one but not both of |m0| < mi then if μ0,2/μ0,1 = m0 there

exists a corresponding ξ̄0 > 0 so that if 0 < ξ ≤ ξ̄0, if the parameters in (5.2.13)

are given by μ = ξμ0 then there exist two homoclinic orbits which can be used to
construct a compact subset of R

4 ×Y on which the 2mth iterate, F2m, of the period
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map F of (5.2.13) is invariant and conjugate to the Bernoulli shift on E . Here m ∈N

is sufficiently large.
(b) If m0 �= 0 satisfies each of |m0| < mi then there are four homoclinic orbits as

in (i).

In summary, we obtain eight open small wedge-shaped regions of parameter val-

ues in the μ1-μ2 plane bounded by the lines μ2/μ1 =±m1, μ2/μ1 =±m2 and μ2 = 0

with m1 ≤ m2 for which the partial differential equation exhibits chaos (Figure 5.4).

In the regions labeled I there are two homoclinics while in regions II there exist

four. It is interesting to note that in this case, by adjusting the parameters η and ζ , it

is possible to make the size of the wedge arbitrarily close to filling the μ1-μ2 plane.

5.2.8 Nonplaner Nonsymmetric Beams

For the case of a nonsymmetric beam with nonplaner motion we have the boundary

value problem

ü = −u′′′′ −P0u′′ +
[∫ π

0

(
u′(s)2 +w′(s)2

)
ds
]

u′′

−2μ2u̇cosη+μ1 cosζ cosω0t ,

ẅ = −R2w′′′′ −P0w′′ +
[∫ π

0

(
u′(s)2 +w′(s)2

)
ds
]

w′′

−2μ2ẇsinη+μ1 sinζ cosω0t ,

u (0, t) = u(π, t) = u′′(0, t) = u′′(π, t)

= w(0, t) = w(π, t) = w′′(0, t) = w′′(π, t) = 0

where R2 is constant representing the stiffness ratio for the two directions. We as-

sume that R > 1 which amounts to choosing w as the direction with stiffer cross-

section. Note that R = 1 reduces to Section 5.2.7. As before we assume that η ,

ζ ∈ (0,π/2). The Galerkin expansion becomes

ün = n2(P0 −n2)un − π
2

n2

[
∞

∑
k=1

k2(u2
k +w2

k)

]
un

−2μ2u̇n cosη+2μ1 cosζ
[

1− (−1)n

πn

]
cosω0t ,

ẅn = n2(P0 −n2R2)wn − π
2

n2

[
∞

∑
k=1

k2(u2
k +w2

k)

]
wn

−2μ2ẇn sinη+2μ1 sinζ
[

1− (−1)n

πn

]
cosω0t .

(5.2.23)
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If P0 is increased only enough to give one buckled mode, necessarily in the u direc-

tion, the problem reduces to Section 5.2.6. We shall assume here the next simplest

case consisting of one buckled mode in each direction which occurs when 1 < P0 < 4

and R2 < P0 < 4R2. Note that this requires R < 2 and we assume that R2 < P0 < 4. If

the stiffness ratio is too high there will be multiple buckled in the u (soft) direction

before occurrence of the first buckled mode in the w (stiff) direction. We define

a2
1 = P0 −1, ω2

n−1,1 = n2[(n2 −P0], n = 2,3, . . . ;

a2
2 = P0 −R2, ω2

n−1,2 = n2[n2R2 −P0], n = 2,3, . . . .

We put (5.2.23) in the form of (5.2.6) by defining

x = (u1, u̇1,w1, ẇ1) ,

y = (u2, u̇2/ω1,1,w2, ẇ2/ω1,2,u3, u̇3/ω2,1,w3, ẇ3/ω2,2, . . .) .

The reduced equations are

ẋ1 = x2 ,

ẋ2 = a2
1x1 − π

2
(x2

1 + x2
3)x1 −2μ2x2 cosη+

4

π
μ1 cosζ cosω0t ,

ẋ3 = x4 ,

ẋ4 = a2
2x3 − π

2
(x2

1 + x2
3)x3 −2μ2x4 sinη+

4

π
μ1 sinζ cosω0t .

For the unperturbed equations we have two homoclinic solutions given by

γ1 = (r1, ṙ1,0,0), γ2 = (0,0,r2, ṙ2)

where r1(t) = (2a1/
√
π )secha1t and r2(t) = (2a2/

√
π )secha2t. Using γ1 the ad-

joint equations (5.2.8) become

v̇1 =
(
−a2

1 +
3π
2

r2
1

)
v2 , v̇2 = −v1 ,

v̇3 =
(
−a2

2 +
π
2

r2
1

)
v4 , v̇4 = −v3 .

The essential issue here is to determine the space of bounded solutions to these

equations. We can write these in the form

v̈2 =
(

a2
1 −

3π
2

r2
1

)
v2, v̈4 =

(
a2

2 −
π
2

r2
1

)
v4.

The v2 equation has a one-dimensional space of bounded solutions spanned by the

solution v2 = ṙ1, obtained from γ̇1. For the v4 equation we have the following result.



5.2 Infinite Dimensional Non-Resonant Systems 237

Lemma 5.2.8. Let κ > 0. The equation

v̈+(−λ +κ sech2 t)v = 0

has a bounded solution if and only if there exists an integer M so that

λ =
1

4

(√
4κ+1−4M−1

)2 for 0 ≤ M <
1

4

(√
4κ+1−1

)
or λ =

1

4

(√
4κ+1−4M−3

)2 for 0 ≤ M <
1

4

(√
4κ+1−3

)
.

The idea for the proof of this lemma is to express the solution as the product

of a power of sech t and a hypergeometric function with argument −sinh2 t. The

condition for the existence of a bounded solution is that the hypergeometric series

terminate and the resulting polynomial is of sufficiently small degree. The details

for this have been worked out in Appendix of [30]. See also Sections 23, 25 of [31].

Applying Lemma 5.2.8 to the equation for v4 we find that the condition for a

bounded solution is a1 = a2 which is ruled out by the assumption of R > 1. Hence,

the system of equations for v has a one-dimensional space of bounded solutions

spanned by v = (−r̈1, ṙ,0,0) and the Melnikov function (4.2.6) is

M(α) =
[

8ω0 cosζ√
π

sinω0α sech
πω0

2a1

]
μ1 −

(
16a3

1 cosη
3π

)
μ2.

The non-resonance hypothesis follows as in the previous examples which leads, in

the present case, to the following result obtained from Theorem 5.2.4.

Theorem 5.2.9. If ω0 �= ωn,i for all n and for i = 1,2, then whenever μ0 satisfies
μ0,1 �= 0 and

0 <

∣∣∣∣μ0,2

μ0,1

∣∣∣∣ <
3
√
π ω0 cosζ

2a3
1 cosη

sech
πω0

2a1

there exists a corresponding ξ̄0 > 0 so that if 0 < ξ ≤ ξ̄0, if the parameters in (5.2.23)

are given by μ = ξμ0 then there exists a compact subset of R
4 ×Y on which the

2mth iterate, F2m, of the period map F of (5.2.23) is invariant and conjugate to the
Bernoulli shift on E . Here m ∈ N is sufficiently large.

Replacing γ1 with γ2 yields the following analogous result.

Theorem 5.2.10. If ω0 �= ωn,i for all n and for i = 1,2, then whenever μ0 satisfies
μ0,1 �= 0 and

0 <

∣∣∣∣μ0,2

μ0,1

∣∣∣∣ <
3
√
π ω0 sinζ

2a3
2 sinη

sech
πω0

2a2

there exists a corresponding ξ̄0 > 0 so that if 0 < ξ ≤ ξ̄0, if the parameters in (5.2.23)

are given by μ = ξμ0 then there exists a compact subset of R
4 ×Y on which the

2mth iterate, F2m, of the period map F of (5.2.23) is invariant and conjugate to the
Bernoulli shift on E . Here m ∈ N is sufficiently large.
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In the μ1-μ2 plane in this case we get a diagram as in Figure 5.4. For parameter

values in the regions labeled I there is one homoclinic orbit while for those in II
there are two.

5.2.9 Multiple Buckled Modes

One has to consider the situation where the axial load, P0, is increased sufficiently

to produce multiple buckled modes. We will look at the case of a beam constrained

to planer motion. The calculations for the non-planer case are similar. We return to

the boundary value problem of Section 5.2.6 and use the same Galerkin equations

ün = n2(P0 −n2)un − π
2 n2

[
∞
∑

k=1
k2u2

k

]
un

−2μ2u̇n +2μ1

[
1− (−1)n

πn

]
cosω0t, n = 1,2, . . . .

(5.2.24)

In the present case we assume that there exists an integer N so that N2 < P0 <
(N +1)2. We then define

a2
n = n2(P0 −n2), for n = 1,2, . . . ,N;

ω2
n−N = n2(n2 −P0), for n = N +1,N +2, . . .

and put (5.2.24) in the form of (5.2.6) by defining

x = (u1, u̇1,u2, u̇2, . . . ,uN , u̇N) ,

y = (uN+1, u̇N+1/ω1,uN+2, u̇N+2/ω2, . . .) .

A truncated version of the resulting equations with N = 2 was studied in [30]. The

reduced equations are

ẋ2n−1 = x2n

ẋ2n = a2
nx2n−1 − πn2

2

(
N
∑

k=1
k2x2

2k−1

)
x2n−1

−2μ2x2n +2μ1

[
1−(−1)n

πn

]
cosω0t

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
n = 1,2, . . . ,N .

When μ = 0 we have N homoclinic solutions given by

γm = (0, . . . ,0, rm, ṙm︸ ︷︷ ︸
2m−1,2m

,0, . . . ,0), m = 1,2, . . . ,N

where rm(t) = (2am/m2
√
π )sechamt and the adjoint equation (5.2.8) along γm is
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v̇2n−1 =
(
−a2

n +
πm2n2

2
r2

m

)
v2n ,

v̇2n = −v2n−1 ,

⎫⎪⎬⎪⎭n �= m

v̇2m−1 =
(
−a2

m +
3πm4

2
r2

m

)
v2m ,

v̇2m = −v2m−1 .

For the distinguished equation we have the bounded solution v2m−1 =−r̈m, v2m = ṙm
while for the equations with n �= m we must solve

d2v2n

dx2
=

(
a2

n

a2
m
− 2n2

m2
sech2 x

)
v2n.

Using Lemma 5.2.8 we find that this last equation has a bounded solution if and

only if there is an integer M so that one of the following conditions holds:

n2(P0 −n2)
m2(P0 −m2)

=
1

4

⎡⎣√8n2

m2
+1−4M−1

⎤⎦2

(5.2.25a)

for 0 ≤ M <
1

4

⎛⎝√
8n2

m2
+1−1

⎞⎠ ,

n2(P0 −n2)
m2(P0 −m2)

=
1

4

⎡⎣√8n2

m2
+1−4M−3

⎤⎦2

(5.2.25b)

for 0 ≤ M <
1

4

⎛⎝√
8n2

m2
+1−3

⎞⎠ .

If, for some fixed m, none of the equations in (5.2.25 a and b) is satisfied for n �= m
we can proceed much as in Section 5.2.6 since then the adjoint equation obtained

from γm has a one-dimensional space of bounded solutions spanned by

v = (0, . . . ,0,−r̈m, ṙm︸ ︷︷ ︸
2m−1,2m

,0, . . . ,0).

One complication has been introduced by our assumption in the original partial dif-

ferential equation that the transverse-applied load is uniform in x. This assumption

causes the μ1 terms to drop out in (5.2.24) for n even which prohibits nonsingular

solutions of M(α) = 0 as can be seen by examining Section 5.2.6. For this reason,

we must choose m odd. Theorem 5.2.4 now yields the following result.

Theorem 5.2.11. Let m be an odd integer, 1 ≤ m ≤ N, and suppose P0 is chosen so
that none of the equations in (5.2.25 a and b) is satisfied. If ω0 �= ωn for all n, then
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whenever μ0 satisfies μ0,1 �= 0 and

0 <

∣∣∣∣μ0,2

μ0,1

∣∣∣∣ <
3m

√
π ω0

2a3
m

sech
πω0

2am

there exists a corresponding ξ̄0 > 0 so that if 0 < ξ ≤ ξ̄0, if the parameters in (5.2.24)

are given by μ = ξμ0 then there exists a compact subset of R
2N ×Y on which the

2kth iterate, F2k, of the period map F of (5.2.24) is invariant and conjugate to the
Bernoulli shift on E . Here k ∈ N is sufficiently large.

We can simplify the preceding results by finding cases where the equations in

(5.2.25) can never have a solution. The following is a helpful result along these

lines.

Lemma 5.2.12. The equations in (5.2.25) can never be satisfied for n < m ≤ N.

Proof. For (5.2.25a) we have 1
4

(√
8n2/m2 +1−1

)
< 1

2 so we have only one equa-

tion to consider with M = 0. But then we have, first,
n2(P0−n2)
m2(P0−m2) > n2

m2 , and also

1

4

⎡⎣√8n2

m2
+1−1

⎤⎦2

− n2

m2
=

2
n2

m2

(
n2

m2
−1

)
2

n2

m2
+1+

√
8n2

m2
+1

< 0

so that Equation (5.2.25a) has no solution for any P0. Next we note that when n < m,

we have 1
4

(√
8n2/m2 +1−3

)
< 0 so that there are no equations for (5.2.25b). ��

When m = N the preceding result will eliminate any restriction, obtained from

(5.2.25), on P0. This fact was shown with a different technique in [4] where they

used a more general transverse forcing term which allowed for the possibility of a

μ2 term for each n in (5.2.24) and, hence, also for each n in the reduced equation.

They then take m = N. Since, for our specific form of loading, we must have m odd

we have the following result.

Theorem 5.2.13. Let N and P0 be as for (5.2.24) and suppose one of the following
holds:

(i) N is odd and m = N.
(ii) N is even, N ≥ 4, m = N −1 and

P0 �=
4N2 − (N −1)2

[√
9N2 −2N +1−3(N −1)

]2

4N2 −
[√

9N2 −2N +1−3(N −1)
]2

.

(iii) N = 2, m = 1 and
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P0 �= 37+5
√

33

16
, P0 �= 55+9

√
33

16
.

Suppose in addition that ωn �= ω0 for all n. Then whenever μ0 satisfies μ0,1 �= 0 and

0 <

∣∣∣∣μ0,2

μ0,1

∣∣∣∣ <
3m

√
π ω0

2a3
m

sech
πω0

2am

there exists a corresponding ξ̄0 > 0 so that if 0 < ξ ≤ ξ̄0, if the parameters in (5.2.24)

are given by μ = ξμ0 then there exists a compact subset of R
2N ×Y on which the

2kth iterate, F2k, of the period map F of (5.2.24) is invariant and conjugate to the
Bernoulli shift on E . Here k ∈ N is sufficiently large.

Proof. The result is obtained by using γm and proceeding as in Section 5.2.6. This

is valid as long as Equations (5.2.25) have no solutions for n �= m so it remains to

show that this is true in each case. If (i) holds we can use Lemma 5.2.12.

If m = N −1 then, using Lemma 5.2.12, we need check only n = N. Define

fa(N) =
1

4

⎛⎝√
8N2

(N −1)2
+1−1

⎞⎠ ,

fb(N) =
1

4

⎛⎝√
8N2

(N −1)2
+1−3

⎞⎠ .

Then (5.2.25a) must be checked for integers M ∈ [0, fa(N)) and (5.2.25b) for inte-

gers M ∈ [0, fb(N)).
In case (ii) we have N ≥ 4 which implies 1/2 < fa(N) ≤ (

√
137−3)/12 < 1 so

we need consider only M = 0. In this case we solve

N2(P0 −N2)
(N −1)2[P0 − (N −1)2]

= 4 fa(N)2

for P0 to get

P0 =
N4 −4 fa(N)2(N −1)4

N2 −4 fa(N)2(N −1)2
=

(N −1)2

2

[
1−2

N2

(N −1)2
−
√

8N2

(N −1)2
+1

]
.

But this value is negative and can be discarded. Similarly, we have, for N ≥ 4,

0 < fb(N)≤ (
√

137−9)/12 < 1, so in (5.2.25b) we need also consider only M = 0.

Here we get

P0 =
N4 −4 fb(N)2(N −1)4

N2 −4 fb(N)2(N −1)2
=

4N4 − (N −1)2
[√

9N2 −2N +1−3(N −1)
]2

4N2 −
[√

9N2 −2N +1−3(N −1)
]2

.
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Next, we consider (iii) where N = 2, m = 1. Since 2 > fa(2) = (
√

33− 1)/4 > 1

we must consider M = 0 and M = 1 in (5.2.25a). When M = 0 we get the value

P0 = −(7 +
√

33)/2 < 0 which can be discarded while for M = 1 we have P0 =
(37 + 5

√
33)/16. Finally, 0 < fb(2) = (

√
33− 3)/4 < 1, so only M = 0 must be

considered in (5.2.25b) and this yields P0 = (55+9
√

33)/16. ��

5.3 Periodically Forced Compressed Beam

5.3.1 Resonant Compressed Equation

This section is a continuation of Section 5.2, and it is devoted to the study of a

system modelling a compressed beam with friction subjected to a small periodic

forcing. Particularly we are interested in the existence of chaotic patterns. The model

is described by the following PDE

utt +uxxxx + γuxx −κuxx f
(∫ π

0
u2

x(ξ , t)dξ
)

= ε(νh(x,
√
εt)−δut), (5.3.1)

u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t) (5.3.2)

where u(x, t) ∈ R is the transverse deflection of the axis of the beam; γ > 0 is an ex-

ternal load, κ > 0 is a ratio indicating the external rigidity and δ > 0 is the damping,

ε and ν are small parameters, the function h(x, t) represents the periodic (in time)

forcing distributed along the whole beam. We assume that h ∈ L∞
(
R,L2([0,π])

)
is

a 1-periodic function of t with
∥∥∫ π

0 h(x, ·)2 dx
∥∥
∞ = 1. Therefore εν represents the

strength of the forcing.

Section 5.2 discusses Equation (5.3.1) when the external load γ is not resonant

and κ ∈ R is fixed. Here we discuss the complementary case. Precisely we assume

that γ is slightly larger than the i-th eigenvalue of the unperturbed problem: γ =
i2 + εσ2, where i ∈ N is fixed, ε > 0 and σ ∈ (0,1]. Therefore we will also assume

that κ = εk, so that the contribution given from the stress due to the external rigidity,

does not drive the system too far away from the resonance.

5.3.2 Formulation of Weak Solutions

It is easily observed that the unperturbed problem

uxxxx + γuxx = 0,

u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t)
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admits { j2 | j ∈ N} as set of eigenvalues and that the corresponding eigenfunctions√
2
π sin( jx), where j ∈N, form an orthonormal system in L2([0,π]) which generates

the space H2
0 ([0,π]). First of all we make the linear scale t ↔√

εt. Then Eqs. (5.3.1),

(5.3.2) read:

utt +
1

ε
[uxxxx +(i2 + εσ2)uxx]− k f

(∫ π

0
u2

x(ξ , t)dξ
)

uxx = νh(x, t)−√
εδut ,

u(0, t) = u(π, t) = 0 = uxx(0, t) = uxx(π, t).
(5.3.3)

We want to solve (5.3.3) in a weak form, that is, we look for a function u ∈
L∞

(
R,H2

0 ([0,π])
)⊂ L∞([0,π]×R) so that

∫ +∞

−∞

∫ π

0

{
u(x, t)

(
Ψtt +

1

ε
[
Ψxxxx +(i2 + εσ2)Ψxx

]
−k f

(∫ π

0
u2

x(ξ , t)dξ
)
Ψxx −

√
εδΨt

)
−νΨ(x, t)h(x, t)

}
dxdt = 0

(5.3.4)

for anyΨ(x, t) ∈C∞([0,π]×R) with compact support so that

Ψ(0, t) =Ψ(π, t) =Ψxx(0, t) =Ψxx(π, t) = 0.

5.3.3 Chaotic Solutions

In this section, the existence of chaotic solutions is studied for (5.3.1). To start with,

note that we can expand the function u(x, t) ∈ L∞
(
R,H2

0 ([0,π])
)

as follows:

u(x, t) =

√
2

π

[
∑

0<l<i
φl(t)sin(lx)+ y(t)sin(ix)+∑

j>i
z j(t)sin( jx)

]
,

where φl(t),y(t),z j(t) ∈ L∞(R), the expansion holding in H2
0 ([0,π]). Similarly we

write:

Ψ(x, t) =

√
2

π

[
i−1

∑
l=1

ψl(t)sin(lx)+ψi(t)sin(ix)+
∞

∑
j=i+1

ψ j(t)sin( jx)

]
,

where, for any k ≥ 1, ψk(t) ∈C∞0 (R), the space of C∞-functions on R having com-

pact supports. Plugging the above expression for u(x, t) andΨ(x, t) into (5.3.4) and

using the orthonormality, we arrive at the system of equations for the components

(φl(t),y(t),z j(t)) of u(x, t)
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φ̈l(t)− i2 − l2 + εσ2

ε
l2φl(t)+ kl2 f

(
∑

0<l<i
l2φl(t)2 + i2y2(t)+∑

j>i
j2z j(t)2

)
φl(t)

+
√
εδ φ̇l(t)−ν

√
2

π

∫ π

0
h(x, t)sin(lx)dx = 0,

(5.3.5)

ÿ(t)−σ2i2y(t)+ ki2 f
(
∑

0<l<i
l2φ 2

l (t)+ i2y2(t)+∑
j>i

j2z2
j(t)

)
y(t)+

√
εδ ẏ(t)

−ν
√

2

π

∫ π

0
h(x, t)sin(ix)dx = 0

(5.3.6)

z̈ j(t)+
j2 − i2 − εσ2

ε
j2z j(t)+ k j2 f

(
∑

0<l<i
l2φl(t)2 + i2y2(t)+∑

j>i
j2z j(t)2

)
z j(t)

+
√
εδ ż j(t)−ν

√
2

π

∫ π

0
h(x, t)sin( jx)dx = 0

(5.3.7)

where 0 < l < i < j. In this way we have decomposed the problem along three

submanifolds: a strongly hyperbolic second order problem in R
i−1, a hyperbolic

second order problem in R, and a second order problem in an infinite dimensional

center manifold. We assume that f (x) satisfies the following hypotheses:

(F1) The function f ∈ C([0,∞), [0,∞))∩C2((0,∞), [0,∞)). Moreover we assume

that the following conditions hold:

f (0) = 0, limsup
x→0+

|x f ′(x2)| < ∞, limsup
x→0+

|x3 f ′′(x2)| < ∞ .

(F2) The equation

ÿ−σ2y+ k f (y2)y = 0 (5.3.8)

has a positive homoclinic solution that is a C2-solution γ(t) > 0 so that

lim
|t|→∞

γ(t) = lim
|t|→∞

γ̇(t) = 0.

Remark 5.3.1. (a) Observe that γi(t) = γ(it)/i solves the equation

ÿ− i2σ2y+ ki2 f (i2y2)y = 0 (5.3.9)

for any i ∈ N\{0}. That is, γi(t) is a solution of the equation obtained from (5.3.6)

taking φl(t) = 0, z j(t) = 0 and ε = ν = 0. We will refer to Eq. (5.3.9) as the unper-
turbed problem.

(b) Equation (5.3.8) has the energy function
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E(y, ẏ) = ẏ2 +
∫ y2

0

(
k f (s)−σ2

)
ds

which is even in both y and ẏ. Since lim
t→∞γ(t) = 0, we see that γ̇(t) = 0 has a solution

t0. It is easy to prove [32] that this solution is unique. Hence we can assume that

t0 = 0 and then γ(t) = γ(−t) because of uniqueness. Thus γ(t) has either a positive

maximum or a negative minimum at the point t = 0. Since −γ(t) satisfies Eq. (5.3.8)

as γ(t) does, we see that the assumption γ(t) > 0 is not restrictive. Then, γ(t) is

increasing on (−∞,0] and decreasing on [0,∞). As a consequence, 0 ≤ γ(t) ≤ M :=
γ(0). Since the energy function E(y, ẏ) is constant along (γ(t), γ̇(t)) and γ̇(0) = 0

we get ∫ M2

0

(
k f (s)−σ2

)
ds = 0

(note that lim
t→∞E(γ(t), γ̇(t)) = E(0,0) = 0) and

∫ x2

0

(
k f (s)−σ2

)
ds < 0

for 0 < x < M. Finally k f (M2) �= σ2, since, otherwise x = M would be a fixed

point of Equation (5.3.8). As a matter of fact, we have k f (M2) > σ2, since the

function
∫ x2

0

(
k f (s)−σ2

)
ds passes from negative values to 0 when x → M− and

then its derivative at x = M must be nonnegative. As a consequence, assumption

(F2) implies that the following condition holds:

(F2’) There exists M > 0 so that

∫ x2

0

[
k f (s)−σ2

]
ds < 0 for any 0 < x < M and∫ M2

0

[
k f (s)−σ2

]
ds = 0. Moreover k f (M2) > σ2.

On the other hand, if condition (F2’) holds then the solution γ(t) of (5.3.8), γ(0) =
M and γ̇(0) = 0, satisfies 0 < γ(t) < M for any t �= 0, and is homoclinic to the

(hyperbolic) fixed point x = 0, ẋ = 0 of (5.3.8). Thus the two conditions (F2) and

(F2’) are equivalent. Finally we observe that the curve (γ(t), γ̇(t)) is contained in

the sector {(y, ẏ) | y ≥ 0 and |ẏ| ≤ σy}, that is, |γ̇(t)| ≤ σγ(t) for any t ∈ R.

(c) Since we look for solutions close to the homoclinic orbit, in fact, it is enough

that f is defined just for 0 ≤ x ≤ M2 +1.

(b) Assumption (F1) is satisfied in particular if we take any function f (x) of the

form f (x) = g(xα), where α ≥ 1
2 and g(x) ∈C2

(
[0,∞), [0,∞)

)
is a positive function

so that g(0) = 0.

We see that (5.3.5), (5.3.6) and (5.3.7) are similar to (5.1.6), (5.1.8) and (5.1.8).

So we can repeat arguments of Section 5.1, i.e. we can apply a Lyapunov-Schmidt

reduction method like for the system of (5.1.6), (5.1.8) and (5.1.8) to deriving a

Melnikov function for (5.3.1), (5.3.2). We do not go into details, and we refer the

readers to [33], we only here recall the following notations (cf Section 5.1.3). For

any E = {e j} j∈Z ∈ E , we put
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�∞E =
{
α := {α j} j∈Z ∈ �∞(R) | α j ∈ R and α j = 0 if e j = 0

}
,

with �∞(R) being the Banach space of bounded, doubly infinity sequences of real

numbers, endowed with the sup-norm. For any (E,α)∈ E ×�∞E we take the function

γ(E,α) ∈ L∞(R) defined as

γ(E,α)(t) =
{
γ(t −2 jm−α j) if (2 j−1)m < t ≤ (2 j +1)m and e j = 1

0 if (2 j−1)m < t ≤ (2 j +1)m and e j = 0 .

Now we can state the following main result proved in [33].

Theorem 5.3.2. Assume that the conditions (F1) and (F2) are satisfied, and that h∈
L∞(R,L2([0,π])) is 1-periodic with respect to t and

∥∥∫ π
0 h(x, ·)2 dx

∥∥
∞ = 1. Assume,

further, that μ0 ∈ R exists so that the function

M̄(τ) := δ
∫ ∞

−∞
γ̇(t)2dt −μ0

√
2

π

∫ ∞

−∞

∫ π

0
γ̇(t)h(x,(t + τ)/i)sin(ix)dxdt

has a simple zero at τ = τ0 ∈ [0,1], that is, M̄(τ0) = 0 and M̄′(τ0) �= 0. Then there
exist ρ̄ > 0, ε̄ > 0 and μ̄ > 0 so that for any 0 < ε < ε̄ , |μ−μ0| ≤ μ̄ and m > ε−3/4,
with m = ki and k ∈ N, there is a continuous function αε,μ,m : E → �∞(R) so that
αε,μ,m(E) ∈ �∞E and a continuous map Πε,μ,m : E → L∞

(
R,H2

0 ([0,π])
)

so that

uE(x, t,ε) := i−1Πε,μ,m(E)(x, i
√
εt)

is a weak solution of (5.3.1) with ν =
√
εμ that satisfies

ess supt∈R

∥∥∥∥∥iuE(x, t,ε)−
√

2

π
γ(E,αε,μ,m(E))(i

√
εt)sin(ix)

∥∥∥∥∥
H2

0 ([0,π])

≤ ρ̄

where ‖ ·‖H2
0 ([0,π]) is the norm in H2

0 ([0,π]). Moreover, the map Πε,μ,m : E →Π(E )
is a homeomorphism satisfying

Πε,μ,m(σ(E))(x, t) =Πε,μ,m(E)(x, t +2m) .

Hence uσ(E)(x, t,ε) = uE(x, t +2k/
√
ε,ε).

Finally we note that from (F1) it follows that:

lim
x→0+

x f ′(x) = lim
x→0

x2 f ′(x2) = 0 , lim
x→0+

x2 f ′′(x) = lim
x→0

x4 f ′′(x2) = 0 .

Hence the function x f (x2) is C1 on R and its second derivative is bounded on K \
{0}, with K being any fixed compact subset of R. In fact, for x �= 0, we have

d
dx

[x f (x2)] = 2x2 f ′(x2)+ f (x2) → 0 =
d
dx

[x f (x2)]|x=0
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as x → 0. Thus d
dx [x f (x2)] is continuous in R. Next

d2

dx2
[x f (x2)] = 6x f ′(x2)+4x3 f ′′(x2)

is bounded on K \{0} for any given compact subset K of R because of assumption

(F1).
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