
Chapter 4
Chaos in Ordinary Differential Equations

Functional analytical methods are presented in this chapter to predict chaos for

ODEs depending on parameters. Several types of ODEs are considered. We also

study multivalued perturbations of ODEs, and coupled infinite-dimensional ODEs

on the lattice Z as well. Moreover, the structure of bifurcation parameters for homo-

clinic orbits is investigated.

4.1 Higher Dimensional ODEs

4.1.1 Parameterized Higher Dimensional ODEs

In this section, we consider ODEs of the form

ẋ = f (x)+h(x,μ, t) (4.1.1)

with x ∈ R
n, μ ∈ R

m. We make the following assumptions of (4.1.1):

(i) f and h are C3 in all arguments.

(ii) f (0) = 0 and h(·,0, ·) = 0.

(iii) The eigenvalues of D f (0) lie off the imaginary axis.

(iv) The unperturbed equation has a homoclinic solution, i.e. there is a nonzero dif-

ferentiable function γ(t) so that limt→±∞ γ(t) = 0 and γ̇(t) = f (γ(t)).
(v) h(x,μ, t +1) = h(x,μ, t) for t ∈ R .

LetΨμ be the period map of (4.1.1), i.e.Ψμ(x) = φμ(x,1) where φμ(x, t) is the solu-

tion of (4.1.1) with the initial condition φμ(x,0) = x. The purpose of this section is

to find a set of parameters μ for which the period mapΨμ of (4.1.1) has a transver-

sal homoclinic orbit. For this reason, higher dimensional Melnikov mappings are

introduced. Simple zero points of those mappings give wedge-shaped regions in R
m

for μ whereΨμ possesses transversal homoclinic orbits. This result is a continuous

version of Section 3.1, where difference equations are studied. Melnikov theory for
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88 4 Chaos in Ordinary Differential Equations

ODEs is also given in a lot of work [1–7]. This method is usually applied when the

unperturbed equation

ẋ = f (x) (4.1.2)

is integrable [8].

4.1.2 Variational Equations

For (4.1.2) we adopt the standard notations W s, W u for the stable and unstable man-

ifolds, respectively, of the origin and ds = dimW s, du = dimW u. Since x = 0 is a

hyperbolic equilibrium, γ lies on W s ∩W u. By the variational equation along γ we

mean the linear differential equation

u̇ = D f (γ(t))u . (4.1.3)

Now, we can repeat the arguments of Section 3.1.2 to (4.1.3), but since it is straight-

forward, we do not go into details, and we refer the readers to [3, Theorem 2] and [9,

Theorem 3.1.2]. Consequently, the following results hold.

Theorem 4.1.1. There exists a fundamental solution U for (4.1.3) along with con-
stants M > 0, K0 > 0 and four projections Pss, Psu, Pus, Puu so that Pss +Psu +Pus +
Puu = I and the following hold:

(i) |U(t)(Pss +Pus)U(s)−1| ≤ K0e2M(s−t), for 0 ≤ s ≤ t,
(ii) |U(t)(Psu +Puu)U(s)−1| ≤ K0e2M(t−s), for 0 ≤ t ≤ s,
(iii) |U(t)(Pss +Psu)U(s)−1| ≤ K0e2M(t−s), for t ≤ s ≤ 0,
(iv) |U(t)(Pus +Puu)U(s)−1| ≤ K0e2M(s−t), for s ≤ t ≤ 0 .

Also rankPss = rankPuu = d.

In the language of exponential dichotomies we see that Theorem 4.1.1 provides

a two-sided exponential dichotomy. For t →−∞ an exponential dichotomy is given

by the fundamental solution U and the projection Pus + Puu while for t → +∞ such

an exponential dichotomy is given by U and Pss +Pus.

Let u j denote column j of U and assume that these are numbered so that

Puu =

⎛⎜⎜⎝
Id 0d 0

0d 0d 0

0 0 0

⎞⎟⎟⎠ , Pss =

⎛⎜⎜⎝
0d 0d 0

0d Id 0

0 0 0

⎞⎟⎟⎠ .

Here, Id denotes the d ×d identity matrix and 0d denotes the d ×d zero matrix.

For each i = 1, . . . ,n we define u⊥i (t) by 〈u⊥i (t),u j(t)〉 = δi j, where 〈·, ·〉 is the

scalar product on R
n. The vectors u⊥i can be computed from the formula U⊥∗ =U−1

where U⊥ denotes the matrix with u⊥j as column j. Differentiating UU⊥∗ = I we

obtain U̇U⊥∗ +UU̇⊥∗ = 0 so that U̇⊥ = −(U−1U̇U⊥∗)∗ = −D f (γ)∗U⊥. Thus, U⊥
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is the adjoint of U . Note that {u⊥i (t) | i = 1,2, . . . ,d} is a basis of bounded solutions

on R of the adjoint variational equation ẇ = −D f (γ)∗w. The function γ̇ is always a

solution to the variational equation (4.1.3) and we may assume that u2d = γ̇ , since γ̇
is a linear combination of columns ud+1 through u2d of U and a linear transformation

of these columns preserves the projections.

Now we define the following Banach spaces

Z =
{

z ∈C
(
(−∞,∞),Rn) | sup

t∈R

|z(t)| < ∞} ,

Y =
{

z ∈C1
(
(−∞,∞),Rn) | z, ż ∈ Z

}
,

with the usual supremum norms.

Theorem 4.1.2. The linear equation

u̇ = D f (γ(t))u+ z, z ∈ Z .

has a solution u = K(z)(t) ∈ Y if and only if

z ∈ Z̃ :=
{

z ∈ Z |
∫ ∞

−∞
PuuU(s)−1z(s)ds = 0

}
.

Moreover, if z ∈ Z̃ then we can take

K(z)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t)
[∫ 0

−∞
PsuU(s)−1z(s)ds+

∫ t

0
(Pss +Psu)U(s)−1z(s)ds

−
∫ ∞

t
(Pus +Puu)U(s)−1z(s)ds

]
, fort ≥ 0 ,

U(t)
[
−

∫ ∞

0
PusU(s)−1z(s)ds+

∫ t

0
(Pss +Pus)U(s)−1z(s)ds

+
∫ t

−∞
(Psu +Puu)U(s)−1z(s)ds

]
, fort ≤ 0 .

Note that z ∈ Z̃ ⇔
∞∫

−∞
〈u⊥i (t),z(s)〉ds = 0 for all i = 1,2, . . . ,d.

Theorem 4.1.3. Define a projection Π : Z → Z by

Π(z)(t) := ϕ(t)
∫ ∞

−∞
U(t)PuuU(s)−1z(s)ds ,

for a smooth function ϕ : R → R satisfying supt
∣∣ϕ(t)u j(t)

∣∣ < ∞ for all j and∫ ∞
−∞ϕ(s)ds = 1. Then R(I−Π) = Z̃.
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4.1.3 Melnikov Mappings

Without loss of generality, we can suppose that f and h as well as all their partial

derivatives up to the order 3 are uniformly bounded on the whole spaces of defini-

tion. We study the equation (cf Theorem 2.2.4)

Fμ,ε,y(x) = ẋ− f (x)−h(x,μ, t)− ε|μ|L(x− y) = 0,

Fμ,ε,y : Y → Z ,
(4.1.4)

where L : Y → Z is a linear continuous mapping so that ||L|| ≤ 1, y ∈ Y and ε ∈ R

is small. It is clear that solutions of (4.1.4) near γ with ε = 0 are homoclinic ones of

(4.1.1). We make in (4.1.4) the change of variable

x(t) = γ(t −α)+w(t),
〈
w(0), γ̇⊥(−α)

〉
= 0 , (4.1.5)

where α ∈ I ⊂ R and I is a given bounded open interval. We note that (4.1.5)

defines a tubular neighbourhood of the manifold
{
γ(t −α)

}
α∈I

in Y when w is

sufficiently small (cf Section 2.4.3). Hence (4.1.4) has the form

Gα,μ,ε,y(w) = ẇ− f (γ(t −α)+w))+ f (γ(t −α))

−h(γ(t −α)+w,μ, t)− ε|μ|L(w+ γ(t −α)− y
)

= 0,

Gα,μ,ε,y : Y → Z .

We have

DwGα,0,0,y(0)u = u̇−D f (γ(t −α))u .

By putting

Uα(t) = U(t −α), U⊥
α (t) = U⊥(t −α) ,

Theorem 4.1.1 is valid when U is replaced by Uα and (4.1.3) by

u̇ = D f (γ(t −α))u ,

respectively, but K0 > 0 should be enlarged. Moreover, we put

γα(t) = γ(t −α), u j,α = u j(t −α), u⊥j,α = u⊥j (t −α) .

Consequently, by taking

Q =
{

y ∈ Y | sup
t∈R

(|y(t)|+ |ẏ(t)|) < sup
t∈R

(|γ(t)|+ |γ̇(t)|)+1
}

and by using the same approach as in [3], [5, p. 709] and Section 3.1.3 along with

Theorems 4.1.2 and 4.1.3, there are open small neighborhoods 0 ∈ O ⊂ R
d−1, 0 ∈

V ⊂ R,0 ∈W ⊂ R
m and a mapping
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G ∈C3 (Y ×O×I ×W ×V ×Q,Z) ,

so that any solution of (4.1.4) near γα for μ ∈W, ε ∈V, y ∈ Q is determined by the

equation G(z,β ,α,μ,ε,y) = 0 and this solution has the form

x = γα + z, PssU−1
α (0)

(
z(0)−

d−1

∑
j=1

β ju j+d,α(0)
)

= 0 , (4.1.6)

where β = (β1, . . . ,βd−1). We remark that {u j,α(0)}n
j=1 are linearly independent,

u2d,α(0) = γ̇α(0) = γ̇(−α), as well as{
v ∈ R

n | 〈v, γ̇⊥(−α)〉 = 0
}

= span
{
{u j,α(0)}n

j=1 \{u2d,α(0)}
}

,

and

0 = PssU−1
α (0)w = PssU⊥∗

α (0)w ⇐⇒ 〈u⊥j+d,α(0),w〉 = 0, ∀ j,1 ≤ j ≤ d .

Hence (4.1.5) and (4.1.6) provide a suitable decomposition of any x in (4.1.4) near

the manifold {γ(t −α)}α∈I . Now by using the Lyapunov-Schmidt procedure (see

again [3, Theorem 8], [5, p. 709] and Section 3.1.3), the study of the equation

G(z,β ,α,μ,ε,y) = 0 can be expressed in the following theorem for z, μ, ε, β small,

y ∈ Q and α ∈ I .

Theorem 4.1.4. U and d are the same as in Theorem 4.1.1. Then there exist small
neighborhoods 0 ∈ O1 ⊂R

d−1, 0 ∈W1 ⊂R
m, 0 ∈V1 ⊂R and a C3 function H : Q×

O1×I ×W1×V1 →R
d denoted (y,β ,α,μ,ε)→H(y,β ,α,μ,ε) with the following

properties:

(i) The equation H(y,β ,α,μ,ε) = 0 holds if and only if (4.1.4) has a solution near
γα and each such (y,β ,α,μ,ε) determines only one solution of (4.1.4),

(ii) H(y,0,α,0,0) = 0,

(iii) ∂Hi
∂μ j

(y,0,α,0,0) = −∫ ∞
−∞

〈
u⊥i (t), ∂h

∂μ j
(γ(t),0, t +α)

〉
dt,

(iv) ∂Hi
∂β j

(y,0,α,0,0) = 0,

(v) ∂ 2Hi
∂βk∂β j

(y,0,α,0,0) = −∫ ∞
−∞

〈
u⊥i (t),D2 f (γ(t))ud+ j(t)ud+k(t)

〉
dt.

We introduce the following notations:

ai j(α) = −
∫ ∞

−∞

〈
u⊥i (t),

∂h
∂μ j

(γ(t),0, t +α)
〉

dt,

bi jk = −
∫ ∞

−∞

〈
u⊥i ,D2 f (γ)ud+ jud+k

〉
dt .

Finally, we take the mapping Mμ : R
d → R

d defined by
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(
Mμ(α,β )

)
i =

m

∑
j=1

ai j(α)μ j +
1

2

d−1

∑
j,k=1

bi jkβ jβk .

Note that we can take any bases of bounded solutions of the adjoint and adjoint

variational equations (with u2d = γ̇) for constructing the Melnikov function Mμ .

Now we can state the main result of this section.

Theorem 4.1.5. Let d > 1. If Mμ0
has a simple root (α0,β0), i.e. (α0,β0) satisfies

Mμ0
(α0,β0) = 0 and D(α,β )Mμ0

(α0,β0) is a regular matrix, then there is a wedge-
shaped region in R

m for μ of the form

R =
{

s2μ̃
∣∣∣ s is from a small open neighborhood of 0 ∈ R and μ̃ is from

a small open neighborhood of μ0 ∈ R
m satisfying |μ̃| = |μ0|

}
,

so that for any μ ∈ R \ {0}, period mapΨμ of (4.1.1) possesses a transversal ho-
moclinic orbit.

Proof. Let us take I = (α0 −1,α0 +1) and let us consider the mapping defined by

Φ(y, β̃ ,α, μ̃, ε̃,s) =

⎧⎪⎨⎪⎩
1

s2
H(y,sβ̃ ,α,s2μ̃,s3ε̃), for s �= 0,

Mμ̃(α, β̃ ), for s = 0 .

According to (ii)–(v) of Theorem 4.1.4, the mapping Φ is C1-smooth near

(y, β̃ ,α, μ̃, ε̃,s) = (y,β0,α0,μ0,0,0), y ∈ Q

with respect to the variables β̃ ,α . Since

Mμ0
(α0,β0) = 0 and D(α,β )Mμ0

(α0,β0) is a regular matrix ,

we can apply the implicit function theorem to solving locally and uniquely the equa-

tionΦ = 0 in the variables β̃ ,α , where μ̃ is near μ̃0 satisfying |μ̃|= |μ0|. This gives

for ε = 0, by (i) of Theorem 4.1.4, the existence of R on whichΨμ has a homoclinic

orbit. Moreover, we can suppose that the corresponding solutions of (4.1.4) lie in Q.

To prove the transversality of these homoclinic orbits, we fix μ ∈ R \ {0} and

take y = γ̃ , where γ̃ is the solution of (4.1.4) for which the transversality of the

corresponding homoclinic orbit of Ψμ should be proved. Then we vary ε = s3ε̃
small. Note that s �= 0 is also fixed due to μ = s2μ̃ and |μ̃| = |μ0| as well. Since the

local uniqueness of solutions of (4.1.4) near γ̃ is satisfied for any ε̃ sufficiently small

according to the above application of the implicit function theorem, such equation

(4.1.4) (with the fixed μ ∈R \{0}, ε = s3ε̃ where s �= 0 is also fixed and the special

y = γ̃) has the only solution x = γ̃ near γ̃ for any ε̃ sufficiently small. Hence Theorem

2.2.4 gives the invertibility of DFμ,0,γ̃(γ̃), so the only bounded solution on R of

the equation v̇ = D f (γ̃)v + Dxh(γ̃,μ, t)v is v = 0. Then Lemma 2.5.2 implies the

transversality of these homoclinic orbits ofΨμ for μ ∈ R \{0}. ��
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Remark 4.1.6. (a) If Mμ0
has a simple zero point (α0,β0), then Mr2μ0

has also a

simple zero point at (α0,rβ0) for any r ∈ R\{0}.

(b) If d = 1 then we take the function Mμ(α) = ∑m
j=1 a1 j(α)μ j, which is the

usual Melnikov function. So for any simple zero α0 of Mμ0
(α) = 0, when μ0 is

fixed, there is a two-sided wedge-shaped region in R
m for μ of the form

R =
{

sμ̃
∣∣∣ s is from a small open neighborhood of 0 ∈ R and μ̃ is from

a small open neighborhood of μ0 ∈ R
m satisfying |μ̃| = |μ0|

}
so that for any μ ∈R \{0}, the period mapΨμ of Eq. (4.1.1) possesses a transversal

homoclinic orbit.

Remark 4.1.7. A standard perturbation theory [10–13], which can be verified by

repeating the above arguments, implies the existence of a unique 1-periodic solution

of (4.1.1) for any μ small, which is, in addition, hyperbolic. Then the transversal

homoclinic solution of Theorem 4.1.5 is exponentially asymptotic to this periodic

orbit.

Remark 4.1.8. Note that we can take any bases of bounded solutions of the adjoint

variational and variational equations (with u2d = γ̇) for constructing the Melnikov

function Mμ . Similar observations can be applied to detecting the other continuous

Melnikov functions in this book.

Remark 4.1.9. The above results can be generalized to ODEs possessing hetero-

clinic orbits to semi-hyperbolic equilibria [14].

4.1.4 The Second Order Melnikov Function

When Melnikov function Mμ is identically zero then we need to compute the second
order Melnikov function. Since in general computations are awkward, we consider

the simplest case given by a C3-equation

ẍ = f (x)+ εq(t) (4.1.7)

with 2π-periodic q(t), and ẍ = f (x) has a homoclinic solution p(t) to 0 with f ′(0) >
0. We can suppose ṗ(0) = 0. We are looking for bounded solutions of (4.1.7) near

p(t). We briefly repeat the above arguments, so we shift t ↔ t +α and take x = p+v
in (4.1.7) with v ∈ Y0 := {v ∈ Y | v̇(0) = 0} to obtain

v̈− f ′(p)v = f (p+ v)− f ′(p)v− f (p)+ εq(t +α) .

By introducing the projection Π : X → X as Πz :=
∫ ∞
−∞ z(t)ṗ(t)dt/

∫ ∞
−∞ ṗ2(t)dt · p,

the Lyapunov-Schmidt method splits (4.1.7) into two equations
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v̈− f ′(p)v = (I−Π)
{

f (p+ v)− f ′(p)v− f (p)+ εq(t +α)
}

(4.1.8)

and∫ ∞

−∞
{

f (p(t)+ v(t))− f ′(p(t))v(t)− f (p(t))+ εq(t +α)
}

ṗ(t)dt = 0 . (4.1.9)

By the implicit function theorem, we can uniquely solve (4.1.8) to get v = v(ε,α) ∈
Y0 with v(0,α) = 0, so we put v(ε,α) = εw(ε,α), and inserting this into (4.1.9), we

get the scalar bifurcation equation

B(ε,α) :=
∫ ∞

−∞

{
f (p(t)+ εw(ε,α)(t))− f ′(p(t))εw(ε,α)(t)

− f (p(t))+ εq(t +α)
}

ṗ(t)dt = 0 .

Clearly B(0,α) = 0 and Bε(0,α) =
∫ ∞
−∞ q(t +α)ṗ(t)dt = M(α), where M(α) is

the Melnikov function for (4.1.7). We have until now repeated arguments of Section

4.1.3 to (4.1.7). When M(α) = 0, then we proceed further to derive

Bεε(0,α) =
∫ +∞

−∞
ṗ(t) f ′′(p(t))w(0,α)2(t)dt .

Note that by (4.1.8), w(0,α) solves ẅ(0,α)(t) = f ′(p(t))w(0,α)(t) + q(t + α).
Summarizing the second order Melnikov function is given by

M2(α) :=
∫ +∞

−∞
ṗ(t) f ′′(p(t))v2

α(t)dt , (4.1.10)

where vα(t) is any fixed bounded solution of the equation

ẍ = f ′(p(t))x+q(t +α).

This solution exists thanks to the fact that M(α) = 0 (cf Theorem 4.1.2). Note

that any two of these bounded solutions differ for a multiple of ṗ(t), and hence

vα+2π(t) = vα(t)+λ ṗ(t), for some λ ∈ R. On the other hand, M2(α) does not de-

pend on the particular solution vα(t) we choose. This easily follows from that p̈(t)
is a bounded solution of the non homogeneous system

ẍ = f ′(p(t))x+ f ′′(p(t))ṗ(t)2

and v̇α(t) is a bounded solution of

ẍ = f ′(p(t))x+ f ′′(p(t))ṗ(t)vα + q̇(t +α).

Hence: ∫ +∞

−∞
ṗ(t) f ′′(p(t))ṗ(t)2dt = 0
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and ∫ +∞

−∞
ṗ(t) f ′′(p(t))ṗ(t)vα(t)dt = −

∫ +∞

−∞
ṗ(t)q̇(t +α) = M′(α) = 0.

Note that M2(α) is 2π-periodic since the bifurcation function itself is 2π-periodic.

4.1.5 Application to Periodically Perturbed ODEs

We illustrate our theory on the following example. Consider the equation

ẍ = x−2xz2 + ẋ2 +μ1 cosωt −μ2z,

ÿ = y−2yz2 + ẋẏ,

z̈ = z−2z3 + yẏ+μ1 cosωt +(μ2 −μ1)ż .

(4.1.11)

This equation is studied in Example 1 of [3]. In the space (x, ẋ,y, ẏ,z, ż), the eigen-

values of D f (0) are λ1 = λ2 = λ3 = −1, λ4 = λ5 = λ6 = 1. A homoclinic solution

when μ = 0 is given by x = 0,y = 0,z = r, i.e. γ = (0,0,0,0,r, ṙ) where r(t) = sech t.
Note that r̈ = r− r3 and z̈ = z− z3 is the familiar Duffing equation (cf Chapter 1).

The linearization of (4.1.11) at γ has the form

ẍ =
(
1−2γ2

)
x, ÿ =

(
1−2γ2

)
y, z̈ =

(
1−6γ2

)
z .

Clearly d = 3 and by Remark 4.1.8, it is readily to find

u4 = (r, ṙ,0,0,0,0), u5 = (0,0,r, ṙ,0,0), u6 = (0,0,0,0, ṙ, r̈)

u⊥1 = (−ṙ,r,0,0,0,0), u⊥2 = (0,0,−ṙ,r,0,0), u⊥3 = (0,0,0,0,−r̈, ṙ) .

Using these results, we easily get

Mμ(α,β1,β2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a11(α)μ1 +2μ2 − π
8
β 2

1 ,

−π
8
β1β2,

a31(α)μ1 − 2

3
μ2 − π

8
β 2

2 ,

where

a11(α) = −π cosωα sech
πω
2

, a31(α) =
2

3
−πω sinωα sech

πω
2

.

There are the following solutions of Mμ(α,β ) = 0 (see Remark 4.1.6 (a))
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β (α) =

(√
8

π
(a11 +3a31),0

)
, μ(α) =

(
1,

3

2
a31

)
(4.1.12)

β (α) =

(
0,

√
8

3π
(a11 +3a31)

)
, μ(α) =

(
1,−1

2
a11

)
. (4.1.13)

The linearization D(α,β )Mμ(α,β ) at the points (4.1.12) reads⎛⎜⎜⎜⎜⎜⎜⎜⎝
a′11 −π

4

√
8

π
(a11 +3a31) 0

0 0 −π
8

√
8

π
(a11 +3a31)

a′31 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and at the points (4.1.13) it has the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′11 0 0

0 −π
8

√
8

3π
(a11 +3a31) 0

a′31 0 −π
4

√
8

3π
(a11 +3a31)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Next, we have a11(α)+ 3a31(α) ≥ 2−π (3ω+1)sech πω2 > 0 for ω > ω0, where

ω0
.= 1.95332 is the only positive root of π (3ω0 +1)sech πω0

2 = 2. So for ω > ω0

the points (4.1.12), involving (4.1.13), are simple zero points of Mμ(α,β ) when

α �= π(2k+1)
2ω , α �= πk

ω , k ∈ Z. Hence for ω > ω0, there are two small open wedge-

shaped regions in the μ1–μ2 plane with the limit slopes given by

1± 3

2
πω sech

πω
2

and ± π
2

sech
πω
2

containing parameters for which the period map of (4.1.11) possesses a transversal

homoclinic orbit near γ . Since 1± 3
2πω sech πω2 ∼ 1±3πω e−πω/2 and ±π

2 sech πω2 ∼
±π e−πω/2 for large values of ω , i.e. for rapid forcing, these wedge-shaped re-

gions become very narrow as ω → ∞. For instance, if ω = 10 then 3
2πω sech πω2

.=
0.0000142033 while π

2 sech πω2
.= 4.73443×10−7. Finally note that 1+ 3

2π ω0 sech
πω0

2

.= 1.85423, 1− 3
2πω0 sech πω0

2 = π
2 sech πω0

2

.= 0.145773 and functions 3
2πω sech

πω
2 , π2 sech πω2 are rapidly decreasing on [ω0,∞).
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4.2 ODEs with Nonresonant Center Manifolds

4.2.1 Parameterized Coupled Oscillators

To illustrate the ideas of this section consider the equations

ẍ = x−2x(x2 + y2)−2μ2ẋ+μ1 cosωt, (4.2.1a)

ÿ = (1− k)y−2y(x2 + y2)−2μ2ẏ+μ1 cos pωt, (4.2.1b)

where p ∈ N and ω > 0 . This system consists of a radially symmetric Duffing

oscillator with an additional spring of stiffness k in the y equation along with damp-

ing and external forces added as perturbation terms. Let us assume k > 1 in (4.2.1b).

Then, for the unperturbed equation, i.e. when μ1 = μ2 = 0, the linear part of (4.2.1a)

has a hyperbolic equilibrium and the linear part of (4.2.1b) has a center. Further-

more, for small μ2, the eigenvalues of ÿ = (1− k)y− 2μ2ẏ are complex functions,

λ (μ2), with ℜ(λ (μ2)) = −μ2 so that we have ℜ(λ (0)) = 0 and ℜ(λ ′(0)) = −1.

Thus, for small μ2 �= 0, the equilibrium of (4.2.1b) is weakly hyperbolic.

If we set y = 0 in (4.2.1a) we get the standard forced, and damped Duffing equa-

tion

ẍ = x−2x3 −2μ2ẋ+μ1 cosωt . (4.2.2)

Using Melnikov theory of Section 4.1 one can show (see Example 4.2.6 below) that

for small μ1 �= 0 and for μ2 �= 0, within a range

|μ2| < 3πω
4

|μ1|sech
πω
2

, (4.2.3)

Equation (4.2.2) has a transverse homoclinic orbit and hence exhibits chaos. The

purpose of this section is to show that if μ1 �= 0, μ2 �= 0 are chosen to produce chaos

in (4.2.1a) when y = 0 and if pω �= √
k−1 then, as a consequence of the weak

hyperbolicity in the y equation, there exists chaos in the full Eq. (4.2.1) which, in

some sense, shadows the chaos obtained in (4.2.1a) with y = 0. Condition pω �=√
k−1 means non-resonance in (4.2.1b). Resonant systems of ODEs are studied in

Section 4.3.

As an abstract version of (4.2.1) we consider differential equations of the form

ẋ = f (x,y,μ, t) = f0(x,y)+μ1 f1(x,y,μ, t)+μ2 f2(x,y,μ, t), (4.2.4a)

ẏ = g(x,y,μ, t) = g0(x,y)+μ1g1(x,y,μ, t)+μ2g2(x,y,μ), (4.2.4b)

with x ∈ R
n, y ∈ R

m, μ = (μ1,μ2) ∈ R
2. We make the following assumptions of

(4.2.4):

(i) Each fi, gi is C4-smooth in all arguments.

(ii) f1, f2 and g1 are periodic in t with period T .

(iii) D2 f0(x,0) = 0.
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(iv) The eigenvalues of D1 f0(0,0) lie off the imaginary axis.

(v) The equation ẋ = f0(x,0) has a homoclinic solution γ .
(vi) g0(x,0) = g2(x,0,μ) = 0, D21g0(0,0) = 0 and D22g0(0,0) = 0.

(vii) The eigenvalues of D2g0(0,0) lie on the imaginary axis.

(viii) If a function λ (μ2) is an eigenvalue of the matrix D2g0(0,0)+μ2D2g2(0,0,0)
then ℜ(λ ′(0)) < 0.

(ix) D2g1(0,0,0, t) = 0.

Hypothesis (viii) is based on the examples for which the μ2 perturbation repre-

sents damping which cases all the eigenvalues of (4.2.4b) to move to the left of the

imaginary axis. In fact, it is sufficient to assume that ℜ(λ ′(0)) �= 0. In other words,

(4.2.4b) is weakly hyperbolic. This more general assumption requires a little more

work since it is necessary to include a nontrivial projection in Lemma 4.2.4 below.

4.2.2 Chaotic Dynamics on the Hyperbolic Subspace

In this section we consider the equation

ẋ = f (x,0,μ, t) = f0(x,0)+μ1 f1(x,0,μ, t)+μ2 f2(x,0,μ, t) (4.2.5)

obtained by setting y = 0 in (4.2.4a). Equation (4.2.5) will be called the reduced
equation obtained from (4.2.4). We apply to this equation Melnikov theory from

Section 4.1 which we summarize here for the readers’ convenience. By hypothesis,

the equation ẋ = f0(x,0) has a hyperbolic equilibrium and a homoclinic solution

γ . Then (4.2.5) has a unique small hyperbolic T -periodic solution pμ(t) for |μ|
small (cf [11], Remark 4.1.7). Let {u1, . . . ,ud} denote a basis for the vector space

of bounded solutions to the variational equation u̇ = D1 f0(γ,0)u with ud = γ̇ and

let {v1, . . . ,vd} denote a basis for the vector space of bounded solutions to the ad-

joint variational equation v̇ = −D1 f0(γ,0)t v. Now define the functions ai j : R → R,

constants bi jk and function M : R
2 ×R×R

d−1 → R
d by

ai j(α) =
∫ ∞

−∞
〈vi(t), f j(γ(t),0,0, t +α)〉dt,

{
1 ≤ i ≤ d,

1 ≤ j ≤ 2;

bi jk =
∫ ∞

−∞
〈vi,D11 f0(γ,0)u juk〉dt,

{
1 ≤ i ≤ d,

1 ≤ j,k ≤ d −1;

Mi(μ,α,β ) =
2

∑
j=1

ai j(α)μ j +
1

2

d−1

∑
j,k=1

bi jkβ jβk, 1 ≤ i ≤ d.

(4.2.6)

The function M is our bifurcation function and is used in Theorem 4.2.1 below.

The integer d has a geometric interpretation. Let P = γ(0) and let W s, W u denote the

stable, unstable manifolds respectively of the origin for the unperturbed equation
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from (4.2.5). Then the entire orbit of γ lies in W s ∩W u so that P ∈ W s ∩W u and

γ̇(0) ∈ TPW s ∩TPW u. The vectors {u1(0), . . . ,ud(0)} are a basis for TPW s ∩TPW u

and d = dim(TPW s ∩TPW u).
Suppose that W s ∩W u has a connected component which is a manifold of di-

mension d and contains the orbit of γ . Then in (4.2.6), all bi jk = 0, the hypothe-

ses of Theorem 4.2.1 below cannot be satisfied and an alternate bifurcation func-

tion is required. Let W h denote a homoclinic d-manifold containing γ , let U0 be

an open neighborhood of the origin in R
d−1, let η : U0 → W h be a differentiable

function-denoted β → η(β ) with η(0) = P, let t → γβ (t) be the solution to the

unperturbed equation (4.2.5) satisfying γβ (0) = η(β ), and assume that η is con-

structed so that (β , t) → γβ (t) establishes local coordinates on W h. In other words,

the original orbit γ is embedded in a (d − 1)-parameter family of homoclinic or-

bits. We suppose that
{
γ̇β (t),

∂γβ
∂βi

(t), i = 1, . . . ,d −1
}

, β = (β1, . . . ,βd−1), is a ba-

sis of bounded solutions of the variational equation v̇ = D1 f0(γβ ,0)v. For each fixed

β we let {vβ1, . . . ,vβd} denote a basis for the vector space of bounded solutions

to the adjoint variational equation v̇ = −D1 f0(γβ ,0)t v. Without loss of generality

we can assume that each vβ i depends differentially on β . Now define functions

ai j : R×U0 → R and M : R
2 ×R×U0 → R

d by

ai j(α,β ) =
∫ ∞

−∞
〈vβ i(t), f j(γβ (t),0,0, t +α)〉dt,

{
1 ≤ i ≤ d,

1 ≤ j ≤ 2,

Mi(μ,α,β ) =
2

∑
j=1

ai j(α,β )μ j, 1 ≤ i ≤ d.

(4.2.7)

This is our bifurcation function for the homoclinic manifold case. By combining

results from Section 4.1 we now get the following result.

Theorem 4.2.1. M is the same as in (4.2.6) or (4.2.7) and suppose (μ0,α0,β0) are
such that M(μ0,α0,β0) = 0 and D(α,β )M(μ0,α0,β0) is nonsingular. Then there ex-
ists ξ0 > 0 so that if 0 < ξ < ξ0 the equation ẋ = f (x,0,ξμ0, t) has a homoclinic
solution γξ to pξμ0

. Furthermore, γξ (t) → pξμ0
at an exponential rate as t →±∞,

γξ depends continuously on ξ , limξ→0 γξ (t) = γ(t −α0) (or = γβ0
(t −α0)), uni-

formly in t and the variational equation along γξ has an exponential dichotomy for
the whole line when ξ �= 0.

Following Sections 2.5.2 and 2.5.3, Theorem 4.2.1 establishes chaos for the dif-

ferential equation ẋ = f (x,0,ξμ0, t).
We remark that the constant Kξ of the exponential dichotomy for the variational

equation u̇ = D1 f (γξ ,0,ξμ0, t)u along γξ (t) tends to infinity as ξ → 0. Indeed, let

aξ , Pξ , Uξ be the corresponding constant, projection and fundamental solution from

the definition of exponential dichotomy from Section 2.5.1, respectively. The rough-

ness result for exponential dichotomies (cf Lemma 2.5.1) implies that we can take

aξ = a0 > 0 for some constant a0. If supξ>0 Kξ <∞, then there is a sequence {ξi}∞i=1

so that ξi → 0, Kξi → K0, Pξi → P0 and Uξi(t) → U0(t) pointwise. Clearly, P0 is a
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projection and U0(t) is the fundamental solution of u̇ = D1 f0(γ,0)u creating an ex-

ponential dichotomy for this equation on the whole line R with constants (K0,a0).
This contradicts the existence of a bounded solution γ̇ for this equation. Conse-

quently, Kξ → ∞ as ξ → 0.

4.2.3 Chaos in the Full Equation

We construct the bifurcation function M from (4.2.6) or (4.2.7), as in the preceding

section, from the reduced equation (4.2.5). If M satisfies the hypotheses for Theorem

4.2.1 we have a transverse homoclinic solution and hence chaos for (4.2.5) when

μ = ξμ0, 0 < ξ < ξ0. We now establish a condition for chaos to exist in the full

equation (4.2.4). Since the exponential constant Kξ of u̇ = D1 f (γξ ,0,ξμ0, t)u tends

to infinity as ξ → 0, as we showed in previous section, we have to deal with the full

system (4.2.4). For this we consider the modification of (4.2.4) in the form

ẋ = f (x,λy,μ, t) ,
ẏ = g0(x,y)+λμ1g1(x,y,μ, t)+μ2g2(x,y,μ),

0 ≤ λ ≤ 1 .

(4.2.8)

The changes x = γ+∑d−1
i=1 ξβiui +ξ 2u, y = ξ 2v, μ = ξ 2μ0 with μ0 �= 0 into (4.2.8)

yield

u̇ = D1 f0(γ,0)u+
1

2

d−1

∑
i, j=1

D11 f0(γ,0)βiβ juiu j

+ μ0,1 f1(γ,0,0, t +α)+μ0,2 f2(γ,0,0, t +α)+O(ξ ), (4.2.9a)

v̇ =
[
D2g0(γ,0)+ξ 2μ0,2D2g2(γ,0,0)

]
v

+
[
D2g0

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,0

)
−D2g0(γ,0)

+ D22g0

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,0

)
ξ 2v+O(ξ 4v2)

]
v+λμ0,1g1(0,0,0, t +α)

+ λμ0,1

{
g1

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,ξ 2v,ξ 2μ0, t +α

)
−g1(0,0,0, t +α)

}

+ ξ 2μ0,2

{
D2g2

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,0,ξ 2μ0

)
−D2g2(γ,0,0)+O(ξ 2v)

}
v .

(4.2.9b)

We consider the Banach spaces
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Xn =
{

x ∈C(R,Rn)
∣∣sup

t∈R

|x| < ∞
}

,

Yn =

{
y ∈ Xn

∣∣∫ ∞

−∞
〈y(t),v(t)〉dt for every solution v ∈ Xn of v̇ = −D f0(γ,0)t v

}

with the supremum norm ||x|| = sup
t∈R

|x(t)|. To solve (4.2.9a), we recall Theorems

4.1.2 and 4.1.3.

Lemma 4.2.2. Given h ∈ Yn, the equation u̇ = D1 f0(γ(t),0)u + h has a unique so-
lution u ∈ Xn satisfying 〈u(0),ui(0)〉 = 0 for every i = 1,2, . . . ,d.

Lemma 4.2.3. There exists a projection Π : Xn → Xn so that R(I−Π) = Yn .

We also need the following lemma.

Lemma 4.2.4. There exist constants b > 0, B > 0 and ξ̃0 > 0 so that given μ0,2 > 0,
for any 0 < ξ ≤ ξ̃0 the variational equation

v̇ =
[
D2g0(γ(t),0)+ξ 2μ0,2D2g2(γ(t),0,0)

]
v

has an exponential dichotomy on R with constants (B,bξ 2μ0,2).

Proof. Write the given equation in the form v̇ = Rv+S(t)v where

R = D2g0(0,0)+ξ 2μ0,2D2g2(0,0,0),

S(t) = D2g0(γ(t),0)−D2g0(0,0)+ξ 2μ0,2 [D2g2(γ(t),0,0)−D2g2(0,0,0)] .

Let Vξ be the fundamental solution for v̇ = Rv+S(t)v with Vξ (0) = I. Then for s ≤ t
we have

Vξ (t) = e(t−s)R Vξ (s)+
∫ t

s
e(t−τ)R S(τ)Vξ (τ)dτ.

Using (vii) and (viii) for (4.2.4) we can, for ξ̃0 sufficiently small, find K1,b > 0 so

that |e(t−s)R | ≤ K1 ebξ 2μ0,2(s−t) when 0 < ξ ≤ ξ̃0 and s ≤ t. Now define

x(t) = |Vξ (t)Vξ (s)−1|ebξ 2μ0,2(t−s) .

Then from the preceding equation for Vξ we get

x(t) ≤ K1 +
∫ t

s
K1|S(τ)|x(τ)dτ.

Hence, from the Gronwall inequality (cf Section 2.5.1),

x(t) ≤ K1 eK1
∫ t

s |S(τ)|dτ ≤ B

for a constant B > 0. ��
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We define the linear map K : Yn → Xn by K h = u where h, u are as in Lemma

4.2.2. Using the projectionΠ and the exponential dichotomy Vξ from Lemma 4.2.4,

where we suppose μ0,2 > 0 (the case μ0,2 < 0 can be handled analogously), we can

rewrite (4.2.9) as the fixed point problem

u = K (I−Π)

(
1

2

d−1

∑
i, j=1

D11 f0(γ,0)βiβ juiu j

+ μ0,1 f1(γ,0,0, , t +α)+μ0,2 f2(γ,0,0, t +α)+O(ξ )

)
, (4.2.10a)

v(t) =
∫ t

−∞
Vξ (t)Vξ (s)

−1

{[
D2g0

(
γ(s)+ξ

d−1

∑
i=1

βiui(s)+ξ 2u(s),0

)

+ D22g0

(
γ(s)+ξ

d−1

∑
i=1

βiui(s)+ξ 2u(s),0

)
ξ 2v(s)

− D2g0(γ(s),0)+O(ξ 4v(s)2)
]
v(s)+λμ0,1g1(0,0,0,s+α)

+ λμ0,1

{
g1

(
γ(s)+ξ

d−1

∑
i=1

βiui(s)+ξ 2u(s),ξ 2v(s),ξ 2μ0,s+α

)

− g1(0,0,0,s+α)

}

+ ξ 2μ0,2

{
D2g2

(
γ(s)+ξ

d−1

∑
i=1

βiui(s)+ξ 2u(s),0,ξ 2μ0

)

− D2g2(γ(s),0,0)+O(ξ 2v)

}
v(s)

}
ds (4.2.10b)

along with the system of bifurcation equations

∫ ∞

−∞

〈
vi(t),

1

2

d−1

∑
i, j=1

D11 f0(γ(t),0)βiβ jui(t)u j(t)+μ0,1 f1(γ(t),0,0, t +α)

+ μ0,2 f2(γ(t),0,0, t +α)+O(ξ )
〉

dt = 0, i = 1,2, . . . ,d (4.2.11)

where {v1, . . . ,vd} is a basis for the space of bounded solutions to the adjoint equa-

tion. Using (ix) we have

D2g0

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,0

)
−D2g0(γ,0)+D22g0

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,0

)
ξ 2v

= O
(
ξ 2|γ||v|)+O

(
ξ 4|u||v|)+O

(
ξ 2|γ||u|)+O

(
ξ

d−1

∑
i=1

βi|ui|
)

,
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g1

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,ξ 2v,ξ 2μ0, t +α

)
−g1(0,0,0, t +α)

= O
(
ξ 2|γ||v|)+O

(
ξ 4|u||v|)+O

(
ξ 2

)
+O

(
ξ 4|v|2)

+ O
(
ξ 2|u|)+O(|γ|)+O

(
ξ

d−1

∑
i=1

βi|ui|
)

,

D2g2

(
γ+ξ

d−1

∑
i=1

βiui +ξ 2u,0,ξ 2μ0

)
−D2g2(γ,0,0)

= O
(
ξ 2

)
+O

(
ξ 2|u|)+O

(
ξ

d−1

∑
i=1

βi|ui|
)

.

We note that |γ(t)| ≤ ce−a|t| and |ui(t)| ≤ ce−a|t|, i = 1,2, . . . ,d for constants

c > 0, a > 0. Moreover, it holds that∫ t

−∞
e−bξ 2μ0,2(t−s) ds =

1

bξ 2μ0,2
,∫ t

−∞
e−bξ 2μ0,2(t−s)−a|s| ds ≤

∫ ∞

−∞
e−a|s| ds = 2/a .

Consequently, if we assume that

sup
0≤α≤T

sup
ξ>0

∫ t

−∞

∣∣∣Vξ (t)Vξ (s)−1g1(0,0,0,s+α)ds
∣∣∣ < ∞ ,

sup
0≤α≤T

sup
ξ>0

∫ t

−∞

∣∣∣Vξ (t)Vξ (s)−1D4g1(0,0,0,s+α)ds
∣∣∣ < ∞

(4.2.12)

then we can apply the Banach fixed point theorem 2.2.1 on a ball centered at 0 in

the space Xn ×Xm to solving (4.2.10) for ξ > 0 sufficiently small. Substituting this

solution into (4.2.11) yields a system of bifurcation equations of the form

M(μ,α,β )+O(ξ ) = 0, (4.2.13)

where M is as in (4.2.6) or (4.2.7). The case for (4.2.7) can be handled like above.

The assumptions of Theorem 4.2.1 imply the solvability of (4.2.13). This gives

a transverse homoclinic orbit Γ (λ ,ξ 2μ0)(t) =
(
Γ1(λ ,ξ 2μ0)(t),Γ2(λ ,ξ 2μ0)(t)

)
of

(4.2.8) near γ so that Γ1(λ ,ξ 2μ0)(t) = γ(t)+ O(ξ ). The transversality follows ex-

actly as in Section 4.1.3, so we omit its proof. Moreover, we have Γ (0,ξ 2μ0) =
(γξ ,0) for γξ from Theorem 4.2.1, and Γ (1,ξ 2μ0) is a homoclinic solution for

(4.2.4). The dichotomy constants of the linearized system of (4.2.8) alongΓ (λ,ξ 2μ0)
(t) are uniform for 0 ≤ λ ≤ 1 and fixed ξ . This follows from the roughness result of

exponential dichotomies from Lemma 2.5.1. Now we can follow directly a construc-

tion of a Smale horseshoe of Section 3.5.2 [7] along Γ (λ ,ξ 2μ0)(t) for fixed small



104 4 Chaos in Ordinary Differential Equations

ξ . Thus we have a continuous family Σλ of Smale horseshoes for (4.2.8). This gives

us the lifting of the Smale horseshoe of the reduced system to the full one.

The conditions (4.2.12) are, in fact, ones of nonresonance. To see this consider

the equations

v̇ = [D2g0(γ,0)+ξ 2μ0,2D2g2(γ,0,0)]v+h,

ẇ = [D2g0(0,0)+ξ 2μ0,2D2g2(0,0,0)]w+h,

where v,w,h ∈ Xm. Then we get

d
dt

(v−w) =
[
D2g0(0,0)+ξ 2μ0,2D2g2(0,0,0)

]
(v−w)

+
[
D2g0(γ,0)−D2g0(0,0)+ξ 2μ0,2(D2g2(γ,0,0)−D2g2(γ,0,0))

]
v .

This gives

|v(t)−w(t)| ≤ ||v||K1

∫ t

−∞
e−bξ 2μ0,2(t−s)−a|s| ds ≤ 2||v||K1/a

for constants K1 > 0, a > 0. Hence there is a constant K2 > 0 so that

||w− v|| ≤ K2||v||, ||w− v|| ≤ K2||w|| .

These inequalities imply that assumption (4.2.12) is equivalent to the condition that

when ξ > 0 the only bounded solution, vα,ξ , of

v̇ =
[
D2g0(0,0)+ξ 2μ0,2D2g2(0,0,0)

]
v+g1(0,0,0, t +α) (4.2.14)

satisfies sup0≤α≤T supξ>0 ||vα,ξ || < ∞. Then also sup0≤α≤T supξ>0 ||v̇α,ξ || < ∞.

Hence by the Arzelà-Ascoli theorem 2.1.3, there is a sequence {ξi}∞i=1, ξi > 0,

ξi → 0 so that vα,ξi → v0 and v̇α,ξi → v̇0 uniformly in compact intervals. Conse-

quently, we get

v̇0 = D2g0(0,0)v0 +g1(0,0,0, t +α) . (4.2.15)

We note that vα,ξ , v0 are T -periodic. We know [11] that (4.2.15) has a T -periodic

solution if and only if∫ T

0
〈wi(t),g1(0,0,0, t)〉dt = 0, i = 1,2, . . . ,d1, (4.2.16)

where {w1, . . . ,wd1
} is a basis of T -periodic solutions of the adjoint variational

equation ẇ = −D2g0(0,0)tw. Hence assumption (4.2.12) implies the validity of

(4.2.16).

Conversely, let (4.2.16) hold. Then (4.2.15) has a T -periodic solution and we put

v = v0 +w into (4.2.14) to get

ẇ = [D2g0(0,0)+ξ 2μ0,2D2g2(0,0,0)]w+ξ 2μ0,2D2g2(0,0,0)v0 . (4.2.17)



4.2 ODEs with Nonresonant Center Manifolds 105

The above arguments and Lemma 4.2.4 give that the unique solution wα,ξ ∈ Xm of

(4.2.17) satisfies sup0≤α≤T supξ>0 ||wα,ξ ||<∞. In summary, we see that assumption

(4.2.12) is equivalent to condition (4.2.16).

Now we can state our results in the form of the next theorem.

Theorem 4.2.5. Let (i)-(ix) hold. Let M be the same as in (4.2.6) or (4.2.7) and
suppose (μ0,α0,β0) are such that

M(μ0,α0,β0) = 0 and D(α,β )M(μ0,α0,β0) is nonsingular.

If condition (4.2.16) holds then there exist ξ̄0 > 0, K > 0 so that if 0 < ξ ≤ ξ̄0 and if
the parameters in (4.2.4) are given by μ = ξμ0, then there exists a continuous map
φ : E × [0,1] → R

n+m (cf Section 2.5.2) and m0 ∈ N so that:

(i) φλ = φ(·,λ ) : E → R
n+m is a homeomorphism of E onto a compact subset of

R
n+m on which the m0th iterate Fm0

λ of the period map Fλ of (4.2.8) is invariant
and satisfies F2m0

λ ◦φλ = φλ ◦σ where σ is the Bernoulli shift on E .
(ii) φ0 = φ(·,0) : E → R

n ×{0} and F0 = (G0,0) for the period map G0 of the
reduced equation (4.2.5).

(iii) F1 is the period map of the full system (4.2.4).
(iv) |φ(x,λ )−φ(x,0)| ≤ K

√
ξ for any (x,λ ) ∈ E × [0,1].

Theorem 4.2.5 roughly states that the Smale horseshoe of the reduced equation

(4.2.5) can be shadowed and continued to the full system (4.2.4).

4.2.4 Applications to Nonlinear ODEs

We now illustrate the above theory with two examples. For convenience in our cal-

culations let us denote r(t) = sech t. Note that r̈ = r−2r3 and
...r = (1−6r2)ṙ.

Example 4.2.6. As our first example consider the equations (4.2.1) from the intro-

duction. The reduced equation is

ẍ = x−2x3 −2μ2ẋ+μ1 cosωt

which we consider as a first order system in the phase space (x, ẋ). Since this system

is in R
2 we necessarily have d = 1. A bounded solution to the adjoint equation is

v = (−r̈, ṙ) and from this we compute

a11(α) =
∫ ∞

−∞
ṙ cosω(t +α)dt = πω sech

πω
2

sinωα ,

a12 =
∫ ∞

−∞
−2ṙ2 dt = −4

3
.

The bifurcation equation obtained from (4.2.6) is
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M(α,μ) =
(
πω sech

πω
2

sinωα
)
μ1 − 4

3
μ2 = 0.

We can satisfy this equation by choosing α0 ∈
[− π

2ω , π2ω
]

and then taking μ0,1 �= 0

and
μ0,2

μ0,1
=

3πω
4

sech
πω
2

sinωα0.

Since in (4.2.6), d = 1, the transversality condition is

DαM(α0,μ0) = πω2μ0,1 sech
πω
2

cosωα0 �= 0

which is satisfied for α0 ∈
(− π

2ω , π2ω
)
. Let m0 := (3πω/4)sechπω/2. By varying

α0 we see that the reduced equation exhibits chaos for all sufficiently small |μ0|
satisfying −m0 < μ0,2/μ0,1 < m0. Theorem 4.2.5 gives another result.

Theorem 4.2.7. If pω �= √
k−1 then the full equation (4.2.1) exhibits chaos for all

sufficiently small μ1 �= 0,μ2 satisfying (4.2.3).

Example 4.2.8. As a generalization of the preceding example consider the equations

ẍ = x−2x(x2 + y2 + z2)−μ2(ẋ+ ẏ)+μ1 cosωt,

ÿ = y−2y(x2 + y2 + z2)−μ2(ẋ+ ẏ),

z̈ = (1− k)z−2z(x2 + y2 + z2)−μ2ż+μ1 cos pωt

(4.2.18)

where, as before, we assume that k > 1 and p ∈ N. We consider these equations

as a first order system in the phase space (x, ẋ,y, ẏ,z, ż). The reduced equations of

(4.2.18) are

ẍ = x−2x(x2 + y2)−μ2(ẋ+ ẏ)+μ1 cosωt,

ÿ = y−2y(x2 + y2)−μ2(ẋ+ ẏ).
(4.2.19)

The unperturbed motion of (4.2.19) has a homoclinic 2-manifold with a family of

homoclinic orbits given by x = r(t)cosβ , y = r(t)sinβ (cf [9, p. 133]). Writing out

the adjoint equation in R
4 we obtain as a basis for the space of bounded solutions

vβ1 = (−r̈ cosβ , ṙ cosβ ,−r̈ sinβ , ṙ sinβ ),

vβ2 = (−ṙ sinβ ,r sinβ , ṙ cosβ ,−r cosβ ).

Next we compute

a11(α,β ) =
∫ ∞

−∞
ṙ cosβ cosω(t +α)dt = πω sech

πω
2

sinωα cosβ ,

a12(α,β ) =
∫ ∞

−∞
−ṙ cosβ (ṙ cosβ + ṙ sinβ )− ṙ sinβ (ṙ cosβ + ṙ sinβ )dt

= −2

3
(cosβ + sinβ )2,
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a21(α,β ) =
∫ ∞

−∞
r sinβ cosω(t +α)dt = π sech

πω
2

cosωα sinβ ,

a22(α,β ) =
∫ ∞

−∞
−r sinβ (ṙ cosβ + ṙ sinβ )+ r cosβ (ṙ cosβ + ṙ sinβ )dt = 0.

In (4.2.7), d = 2, β is a scalar and the bifurcation equation M(α,β ,μ) = 0 takes

the form

a11(α,β )μ1 +a12(α,β )μ2 = 0 , a21(α,β )μ1 = 0.

A sufficient condition for a nontrivial solution is a21 = 0 which is satisfied by

ωα±
0 = ±π/2. We then have

μ2

μ1
= −a11(α±

0 ,β0)
a12(α±

0 ,β0)
= ±

3πω sech
πω
2

cosβ0

2(cosβ0 + sinβ0)2
.

We see from Figure 4.1 that the range is R of the function H(β ) := cosβ
(cosβ+sinβ )2 as

β ∈ [0,2π]\{ 3π
4 , 7π

4

}
.

Fig. 4.1 The graph of the function H(β ) over [0,2π].

It remains checking the transversality condition which takes the forms

detD(α,β )M(α+
0 ,β0,μ) = −

μ2
1π2ω2(sinβ0 +2cos3β0)sinβ0 sech2 πω

2
(cosβ0 + sinβ0)2

�= 0 ,

(4.2.20)

and
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detD(α,β )M(α−
0 ,β0,μ) =

μ2
1π2ω2 sech2 πω

2
(2cos2β0 −2−2sin2β0 +3sin4β0)

4(cosβ0 + sinβ0)2
�= 0 ,

(4.2.21)

and (4.2.20) is satisfied for β0 ∈ [0,2π]\{0, 3π
4 ,π, 7π

4 ,2π
}

, while (4.2.21) holds for

β0 ∈ [0,2π]\
{

0,
1

2
arccos

(√
17−1

6

)
,−1

2
arccos

(
−√

17−1

6

)
+π,

1

2
arccos

(√
17−1

6

)
+π,−1

2
arccos

(
−√

17−1

6

)
+2π,

3π
4

,π,
7π
4

,2π

}
.

Thus, the reduced equation exhibits chaos for all sufficiently small μ in the μ1-μ2

plane except along three lines of slopes m = ±m0, ∞, where m0 = 3πω
2 sech πω2 .

From Theorem 4.2.5, if pω �= √
k−1 then the full equation exhibits chaos for all

sufficiently small μ lying except along three lines of slopes m =±m0, ∞. We obtain

these transversal homoclinic orbits from (α+
0 ,β0). Moreover, we see from Figure

4.1 that the equation H(β0) = y has two solutions in [0,2π) for any y ∈ R. So we

get two different transversal homoclinic orbits. Furthermore excluding also the next

four lines of the slopes ±m± with m± = 3πω
√

69±3
√

17
32 sech πω2 we can involve also

the point (α−
0 ,β0), and consequently we get four different transversal homoclinic

orbits. Note that H(β +π) = −H(β ), H(0) = 1 and H
(
∓ 1

2 arccos
(
∓√

17−1
6

))
=√

69±3
√

17
16 .

4.3 ODEs with Resonant Center Manifolds

4.3.1 ODEs with Saddle-Center Parts

We consider differential equations of the form

ẋ = f (x,y,μ, t) = f0(x,y)+μ1 f1(x,y,μ, t)+μ2 f2(x,y,μ, t), (4.3.1a)

ẏ = g(x,y,μ, t) = g0(x,y)+μ1g1(x,y,μ, t)+μ2g2(x,y,μ) (4.3.1b)

with x ∈ R
n, y ∈ R

m, μ = (μ1,μ2) ∈ R
2. We make the following assumptions of

(4.3.1):

(i) Each fi, gi are C4-smooth in all arguments.

(ii) f1, f2 and g1 are periodic in t with period T .

(iii) D2 f0(x,0) = 0.



4.3 ODEs with Resonant Center Manifolds 109

(iv) The eigenvalues of D1 f0(0,0) lie off the imaginary axis.

(v) The equation ẋ = f0(x,0) has a homoclinic solution γ .
(vi) g0(x,0) = g2(x,0,μ) = 0, D21g0(0,0) = 0 and D22g0(0,0) = 0.

(vii) The eigenvalues of D2g0(0,0) lie on the imaginary axis.

(viii) If λ (μ2) is an eigenvalue function of D2g0(0,0) + μ2D2g2(0,0,0) then

ℜ(λ ′(0)) < 0.

In the hypothesis (viii), it is sufficient to assume that ℜ(λ ′(0)) �= 0. In other

words, (4.3.1b) is weakly hyperbolic with respect to μ2. This more general assump-

tion requires a little more work since it is necessary to include a nontrivial projection

in Lemma 4.3.4 below. Consider the reduced equation

ẋ = f0(x,0)+μ1 f1(x,0,μ, t)+μ2 f2(x,0,μ, t) (4.3.2)

obtained by setting y = 0 in (4.3.1a). By hypothesis, the equation ẋ = f0(x,0) has

a hyperbolic equilibrium and a homoclinic solution γ . Melnikov theory is used in

Section 4.1 to obtain a transverse homoclinic solution in the reduced equation. The

problem which naturally arises is showing that a transverse homoclinic solution for

the reduced equation is shadowed by a transverse homoclinic solution for the full

equation (4.3.1). This is done in Section 4.2 when the center equation

ẏ = g0(0,y)+μ1g1(0,y,μ, t)+μ2g2(0,y,μ) (4.3.3)

is not resonant at y = 0. The purpose of this section is to treat the resonant case

and to detect a transverse homoclinic solution for the full system from a Melnikov

function derived from the reduced and center equations. But the situation in this

section is much more delicate than in Section 4.2.

Finally we note that a related problem is studied also in [15], where a three-

dimensional ODE is considered with slowly varying one-dimensional variable. The

approach in [15] is more geometrical than ours in this section.

4.3.2 Example of Coupled Oscillators at Resonance

We start with the equations

ẍ = x−2x(x2 +ξy2)−2μ2δ ẋ+μ4 cos(t +α)+μ5 sin(t +α),

ÿ = −y−2y(x2 + y2)−2μ2ẏ+μ1 cos(t +α)+μ3 sin(t +α) .
(4.3.4)

Here δ , ξ are positive constants and μi, i = 1, . . . ,5 are small parameters. We put

γ(t) = sech t, x = γ + ε2u, y = εv, μ1 = ε3a1, μ2 = ε2, μ3 = ε3a2, μ4 = ε2a3 and

μ5 = ε2a4, with a1,a2,a3,a4 ∈ R into (4.3.4) to get
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ü = (1−6γ2)u−2δ γ̇−2ξγv2 +a3 cos(t +α)+a4 sin(t +α)+O(ε2),

v̈ = −(1+2γ2)v−2ε2v̇−4ε2γuv

−2ε4u2v−2ε2v3 + ε2a1 cos(t +α)+ ε2a2 sin(t +α) .

(4.3.5)

First, we look for a 2π-periodic solution of the equation

v̈ε,α,a = −vε,α,a −2ε2v̇ε,α,a −2ε2v3
ε,α,a + ε2a1 cos(t +α)+ ε2a2 sin(t +α) .

(4.3.6)

Clearly vε,α,a(t) = wε,a(t +α) where wε,a is a 2π-periodic solution of

ẅε,a = −wε,a −2ε2ẇε,a −2ε2w3
ε,a + ε2a1 cos t + ε2a2 sin t . (4.3.7)

Consider the operator L :C2
2π(R)→C2π(R) defined as Lw = ẅ+w. Here Cr

2π(R),
r ∈ Z+, is the Banach space of Cr-smooth and 2π-periodic functions endowed with

the maximum norm. We have

N L = span{cos t, sin t},

RL =
{

h ∈C2π(R) |
∫ 2π

0
h(t)cos t dt = 0,

∫ 2π

0
h(t)sin t dt = 0

}
.

Let Q : C2π(R) → RL be the continuous projection

(Qw)(t) = w− 1

π
cos t

∫ 2π

0
w(t)cos t dt − 1

π
sin t

∫ 2π

0
w(t)sin t dt.

Equation (4.3.7) can now be split into a new differential equation

ẅ+w = Q(−2ε2ẇ−2ε2w3 + ε2a1 cos t + ε2a2 sin t) = Q(−2ε2ẇ−2ε2w3)

and a bifurcation equation

(I−Q)(−2ε2ẇ−2ε2w3 + ε2a1 cos t + ε2a2 sin t)

= ε2

[
a1 − 1

π

∫ 2π

0
(2ẇ+2w3)cos t dt

]
cos t

+ε2

[
a2 − 1

π

∫ 2π

0
(2ẇ+2w3)sin t dt

]
sin t = 0.

The differential equation has a solution w ∈C2
2π(R) of the form

w(t) = ϕ(ε,c1,c2)(t)+ c1 cos t + c2 sin t

where c1, c2 are arbitrary and ϕ = O(ε2). Substituting this into the bifurcation equa-

tion gives
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a2 − 1

π

∫ 2π

0

[
2(−c1 sin t + c2 cos t)+2(c1 cos t + c2 sin t)3

]
sin t dt +O(ε2) = 0,

a1 − 1

π

∫ 2π

0

[
2(−c1 sin t + c2 cos t)+2(c1 cos t + c2 sin t)3

]
cos t dt +O(ε2) = 0

or
4c1 −3c3

2 −3c2
1c2 = −2a2 +O(ε2),

4c2 +3c3
1 +3c2

2c1 = 2a1 +O(ε2).
(4.3.8)

The determinant of the Jacobian of the left hand side of (4.3.8) is

16+27(c2
1 + c2

2)
2 �= 0.

Now we have

|4c1 −3c2
1c2 −3c3

2|+ |4c2 +3c3
1 +3c1c2

2| ≥ (3(c2
1 + c2

2)−4)(|c1|+ |c2|) .

Hence the map

(c1,c2) → (4c1 −3c3
2 −3c2

1c2,4c2 +3c3
1 +3c2

2c1)

from R
2 to R

2 is proper and locally invertible and thus a diffeomorphism by the

Banach-Mazur Theorem 2.2.6. Hence we can use the implicit function theorem to

get solutions c1(a,ε) and c2(a,ε) to (4.3.8) for ε small and a = (a1,a2) ∈ R
2 from

bounded subsets. In summary, we have the following result:

Lemma 4.3.1. For any n∈N, there exist ε0 = ε0(n) > 0 and a differentiable function
c : (−n,n)2 × (−ε0,ε0) → R

2 denoted (a,ε) → c(a,ε) so that (4.3.6) has a 2π-
periodic solution of the form:

vε,α,a(t) = c1(a,ε)cos(t +α)+ c2(a,ε)sin(t +α)+O(ε2) . (4.3.9)

We note that the function c(a,ε) may also depend on n, but when m > n these

two functions c(a,ε) from Lemma 4.3.1 coincide on the set (−n,n)2 × (−ε̄0, ε̄0)
with ε̄0 = min{ε0(n),ε0(m)}.

We now substitute v = w+ vε,α,a into (4.3.5) to get

ü = (1−6γ2)u−2δ γ̇−2ξγ
(
w+ vε,α,a(t)

)2
(4.3.10a)

+ a3 cos(t +α)+a4 sin(t +α)+O(ε),
ẅ = −(1+6ε2v2

ε,α,a)w−2ε2ẇ−2γ2w (4.3.10b)

− 2γ2vε,α,a −4ε2γu(w+ vε,α,a)−2ε4u2(w+ vε,α,a)

− 6ε2w2vε,α,a −2ε2w3.

To study (4.3.10) we must establish the existence of properties for an exponential

dichotomy for the linear part of (4.3.10b) in three steps.

We first study the equation
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ẅ = −[1+ ε2φε(t)2]w−2ε2ẇ, (4.3.11)

where φε(t) =
√

6vε,α,a.

Step 1. We put w = e−ε2t z1 to get

ż1 = z2,

ż2 = −[1+ ε2φε(t)2 − ε4]z1.
(4.3.12)

By Floquet theory [12,13] (4.3.12) has a solution, Zε , of the form Zε =Uε(t)etBε

where Uε(0) = I, Uε(t +2π) = Uε(t) and

U0(t) =
(

cos t sin t
−sin t cos t

)
so that ‖U0(t)‖= 1. Stability is determined by the matrix Bε and Zε(2π) = e2πBε , so

we are interested in Zε(2π). We have Zε(t +2π) = Zε(t)Zε(2π) and from Liouville’s

formula (cf Section 2.5.1 and [12]) detZε(2π) = 1. Hence the eigenvalues of Zε(2π)
are a complex conjugate pair with norm 1 if and only if | trZε(2π)|< 2. To compute

an estimate for Zε we expand

z1 = u0 + ε2u1 +O(ε4),
z2 = v0 + ε2v1 +O(ε4),
φε = φ0 +O(ε2).

Substituting these expansions into (4.3.12) we get

u̇0 = v0, v̇0 = −u0, u̇1 = v1, v̇1 = −u1 −φ 2
0 u0

and Zε(0) = I requires u1(0) = v1(0) = 0. By choosing either u0 = cos t, v0 =−sin t
or u0 = sin t, v0 = cos t, we find u1, v1 and then a computation shows that

Zε(2π) =
(

1 0

0 1

)
+ ε2

⎛⎜⎜⎝
1

2

∫ 2π

0
φ 2

0 (s)sin2sds
∫ 2π

0
φ 2

0 (s)sin2 sds

−
∫ 2π

0
φ 2

0 (s)cos2 sds −1

2

∫ 2π

0
φ 2

0 (s)sin2sds

⎞⎟⎟⎠+O(ε4) .

We have φ0(t) =
√

6v0,α,a(t) =
√

6(c1(a,0)cos(t + α) + c2(a,0)sin(t + α)).
Thus, as long as a �= 0 it follows from (4.3.8) that c1(a,0)2 + c2(a,0)2 �= 0 and

we can write

v0,a,α = c5(a)sin(t +α+ c4(a))

where c5(a) =
√

c1(a,0)2 + c2(a,0)2 and c4(a) is defined by the equality. Then

φ0(t) = c3(a)sin(t +α+ c4(a)) where c3(a) =
√

6c5(a) and
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0
φ 2

0 (s)sin2sds = c3(a)2
∫ 2π

0
sin2ssin2(s+α+ c4(a))ds

=
π
2

c3(a)2 sin2(α+ c4(a)) ,∫ 2π

0
φ 2

0 (s)sin2 sds = c3(a)2
∫ 2π

0
sin2 ssin2(s+α+ c4(a))ds

= c3(a)2
(π

2
+
π
4

cos2(α+ c4(a))
)

,

∫ 2π

0
φ 2

0 (s)cos2 sds = c3(a)2
∫ 2π

0
cos2 ssin2(s+α+ c4(a))ds

= c3(a)2
(π

2
− π

4
cos2(α+ c4(a))

)
.

Hence

Zε(2π) = I+ ε2c3(a)2 π
4

(
sin2(α+ c4(a)) 2+ cos2(α+ c4(a))

−2+ cos2(α+ c4(a)) −sin2(α+ c4(a))

)
+O(ε4)

= I+ ε2Aε

where the second equality defines the 2×2 matrix Aε whose entries we denote are

ai j. If λA denotes an eigenvalue of Aε then we can take

2λA = trAε +
√

(trAε)2 −4detAε .

A direct computation shows detAε = 3π2

16 c3(a)4 +O(ε2). Also, detZε(2π) = 1 previ-

ously so that another calculation yields detZε(2π) = 1+ε2 trAε +ε4 detAε = 1 and

we get trAε = −ε2 detAε = −ε2 3π2

16 c3(a)4 + O(ε4). If we denote λA = ε2λR
A + iλ I

A
then

λR
A =

1

2ε2
trAε = −3π2

32
c3(a)4 +O(ε2),

λ I
A =

√
detAε −

(
1

2
trAε

)2

=
√

3π
4

c3(a)2 +O(ε).

Also, an eigenvalue, λZ , of Zε(2π) is given by λZ = 1 + ε2λA. The corresponding

transformation matrix Pε is

Pε =

(
a12 0

−a11 + ε2λR
A λ I

A

)
with P−1

ε =

⎛⎜⎝ 1/a12 0

a11 − ε2λR
A

a12λ I
A

1

λ I
A

⎞⎟⎠ .

We have λ I
A > 0 for small ε , π4 c3(a)2 ≤ a12 ≤ 3π

4 c3(a)2 and
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P−1
ε Zε(2π)Pε =

(
ℜλZ ℑλZ

−ℑλZ ℜλZ

)
.

Since |λZ | = 1 we can write(
ℜλZ ℑλZ

−ℑλZ ℜλZ

)
= eΦε where Φε =

(
0 θ
−θ 0

)
with θ = ArgλZ .

Now, we observe that the operator norm of a 2×2 square matrix

A =
(

a b
c d

)
(that is the square root of the greatest eigenvalue of the symmetric matrix A∗A) is

given by

‖A‖2 =
1

2

[
(a2 +b2 + c2 +d2)+

√
[(a−d)2 +(b+ c)2][(a+d)2 +(b− c)2]

]
and hence ‖A−1‖ = 1

|detA| ‖A‖ since

A−1 =
1

detA

(
d −b
−c a

)
.

Using these formulas we get

‖P0‖2 =
3π2

16
c3(a)4 [2+ cos2(α+ c4(a))] ,

detP0 =
√

3π2

16
c3(a)4 [2+ cos2(α+ c4(a))] ,

‖P0‖‖P−1
0 ‖ =

√
3.

We see that ‖Pε‖ and ‖P−1
ε ‖ are both uniformly bounded for ε small and a bounded.

Finally, we have

Zε(t)Zε(s)−1 = Uε(t)e(t−s)Bε Uε(s)−1 = Uε(t)exp

(
t − s
2π

PεΦεP−1
ε

)
Uε(s)−1

= Uε(t)Pε e
t−s
2π Φε P−1

ε Uε(s)−1

= Uε(t)Pε

⎛⎜⎜⎜⎝
cos

(
(t − s)θ

2π

)
sin

(
(t − s)θ

2π

)
−sin

(
(t − s)θ

2π

)
cos

(
(t − s)θ

2π

)
⎞⎟⎟⎟⎠P−1

ε Uε(s)−1.
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Taking norms we get ‖Zε(t)Zε(s)−1‖ ≤ √
3 +δ where δ → 0 as ε → 0. This com-

pletes our study of (4.3.12).

Step 2. Next we write (4.3.11) as the system

ẇ1 = w2,

ẇ2 = −w1

(
1+ ε2φε(t)2

)−2ε2w2.
(4.3.13)

Then the fundamental solution W̄ε of (4.3.13) is given by

W̄ε(t) = e−ε
2t
(

1 0

−ε2 1

)
Zε(t).

This implies

W̄ε(t)W̄ε(s)−1 = e−ε
2(t−s)

(
1 0

−ε2 1

)
Zε(t)Zε(s)−1

(
1 0

ε2 1

)
and hence ‖W̄ε(t)W̄ε(s)−1‖ ≤ (

√
3+δ )e−ε2(t−s).

Step 3. Finally, we consider

ẅ = −w(1+6ε2v2
ε,α,a(t)+2γ2)−2ε2ẇ

which we write as

ẇ1 = w2,

ẇ2 = −w1(1+6ε2v2
ε,α,a(t)+2γ2)−2ε2w2 .

(4.3.14)

Let Wε be the fundamental solution of (4.3.14). We put

Ψ(t) = −2γ(t)2

(
0 0

1 0

)
.

Then for t ≥ s we get

Wε(t)Wε(s)−1 = W̄ε(t)W̄ε(s)−1 +
∫ t

s
W̄ε(t)W̄ε(z)−1Ψ(z)Wε(z)Wε(s)−1 dz .

By putting U(t) = Wε(t)Wε(s)−1 eε
2(t−s) we obtain

‖U(t)‖ ≤
(√

3+δ
)

+
(√

3+δ
)∫ t

s
‖Ψ(z)‖‖U(z)‖dz

=
(√

3+δ
)

+2
(√

3+δ
)∫ t

s
γ2(z)‖U(z)‖dz

which gives

‖U(t)‖ ≤
(√

3+δ
)

e2(
√

3+δ)
∫ t

s γ2(z)dz .
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Now if either t ≥ s # 1 or s ≤ t $ −1, then e2
√

3
∫ t

s γ2(z)dz is about 1. So then we

obtain

‖Wε(t)Wε(s)−1‖ ≤ K1 e−ε
2(t−s)

with K1 ∼
√

3 for s ≤ t ∈ (−∞,−T0]∪ [T0,∞) for T0 # 1. Since W0 satisfies

ẇ1 = w2,

ẇ2 = −w1(1+2γ2).

we see that

W0(t) = C(t)
(

1 0

0 1/2

)
,

where

C(t) =

(
cos t − sin t tanh t sin t + cos t tanh t

−sin t − cos t tanh t − sin t sech2 t cos t − sin t tanh t + cos t sech2 t

)
.

Then we have

‖C(t)‖2 =
1

2

(
4+ sech4 t + sech2 t

√
8+ sech4 t

)
≤ 4, detC(t) = 2

which also imply ‖C(t)−1‖ ≤ 1. In summary, we arrive at

‖Wε(t)Wε(s)−1‖ ≤ K1 e−ε
2(t−s)

with K1 ∼
√

3×2×√
3 = 6 for s ≤ t ∈ R and ε > 0 small. This is our exponential

dichotomy for the linear part of (4.3.10b).

Remark 4.3.2. Note that in general the function f̃ε(t) = Wε(t)
∫ t
−∞Wε(s)−1 f (s)ds is

O(1/ε2) for f bounded. But if f ∈ L1(R) such an expression is O(1) and we can let

ε → 0. More precisely, set f̃0 := W0(t)
∫ t
−∞W0(s)−1 f (s)ds and let T̃ > 0 be large.

Then f̃ε(t) = o(1) and f̃0(t) = o(1) uniformly for all t ≤ −T̃ and ε small. If t ∈
[−T̃ , T̃ ] then f̃ε(t) =Wε(t)

∫ t
−T̃ Wε(s)−1 f (s)ds+Wε(t)

∫ −T̃
−∞ Wε(s)−1 f (s)ds. Clearly

Wε(t)
∫ −T̃
−∞ Wε(s)−1 f (s)ds = o(1) and W0(t)

∫ −T̃
−∞ W0(s)−1 f (s)ds = o(1) uniformly

for all t ∈ [−T̃ , T̃ ] and ε small. Moreover

Wε(t)
∫ t

−T̃
Wε(s)−1 f (s)ds →W0(t)

∫ t

−T̃
W0(s)−1 f (s)ds

uniformly for all t ∈ [−T̃ , T̃ ] as ε→ 0. Consequently, we obtain limε→0 f̃ε(t) = f̃0(t)
uniformly in any interval (−∞,a] for f ∈ L1(R). If t ≥ T̃ then

f̃ε(t) = Wε(t)
∫ t

T̃
Wε(s)−1 f (s)ds+Wε(t)

∫ T̃

−∞
Wε(s)−1 f (s)ds .
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We again deduce that Wε(t)
∫ t

T̃ Wε(s)−1 f (s)ds = o(1) and W0(t)
∫ t

T̃ W0(s)−1 f (s)ds =
o(1) uniformly for all t ≥ T̃ and ε small. Next

Wε(t)
∫ T̃

−∞
Wε(s)−1 f (s)ds = Wε(t)Wε(T̃ )−1 f̃ε(T̃ ) .

In summary we obtain ‖ f̃ε‖ ≤
(√

3+o(1)
)‖ f̃0‖. Moreover, when

‖ f‖ã := sup
t≤0

| f (t)|e−ãt < ∞

for ã > 0, ‖ f̃ε‖ã ≤ K1
ã ‖ f‖ã. So if

Xã :=
{

f ∈C(−∞,0] | ‖ f‖ã < ∞
}

and Lε f := f̃ε , then Lε ∈ L(Xã). Finally, we can check that Lε → L0 as ε → 0 in

L(Xã) for L0 f = W0(t)
∫ t
−∞W−1

0 (s) f (s)ds.

Equation (4.3.10a) has the form

ü = u(1−6γ2(t))+h(t), u̇(0) = 0 (4.3.15)

for h(t) ∈ CB(R) — the Banach space of bounded and continuous functions on R

endowed with the supremum norm. For this we use the projection

Πh =

∫ ∞

−∞
h(s)γ̇(s)ds∫ ∞

−∞
γ̇2(s)ds

γ̇(t) .

From Section 4.1, (4.3.15) has a (unique) bounded solution u = Kh if and only if

Πh = 0. We write (4.3.10) in the form

u(t) = K(I−Π)
(
−2δ γ̇−2ξγ

[
w+ vε,α,a(t)]2 (4.3.16a)

+a3 cos(t +α)+a4 sin(t +α)
)

+O(ε) ,

w(t) =
∫ t

−∞
Wε(t)Wε(s)−1

{
(0,−2γ2vε,α,a −4ε2γu(w+ vε,α,a) (4.3.16b)

−2ε4u2(w+ vε,α,a)−6ε2w2vε,α,a −2ε2w3)
}

ds ,∫ ∞

−∞

(
−2δ γ̇−2ξγ

[
w+ vε,α,a]2 (4.3.16c)

+a3 cos(t +α)+a4 sin(t +α)
)
γ̇(t)dt +O(ε) = 0
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for w = (w1,w2). Since vε,α,a(t) = v0,α,a(t)+O(ε) by Lemma 4.3.1 and γ ∈ L1(R),
we can consider, according to Remark 4.3.2, (4.3.16b) to be

w(t) =
∫ t

−∞
Wε(t)Wε(s)−1(0,−2γ2v0,α,a)ds

−
∫ t

−∞
Wε(t)Wε(s)−1(0,−6ε2w2vε,α,a −2ε2w3)ds+o(1) .

(4.3.17)

We note that

z0(t) = (z01(t),z02(t)) =
∫ t

−∞
W0(t)W0(s)−1(0,−2γ2v0,α,a(s))ds

solves
ż01 = z02,

ż02 = −z01 −2γ2(t)z01 −2γ2(t)v0,α,a,
z0(−∞) = 0

which is the limiting equation for ε→ 0 in (4.3.10b). Since v0,α,a(t) = c5(a)sin(t +
α+ c4(a)), we see that

z01(t) = c5(a)e2t cos(t +α+ c4(a))− sin(t +α+ c4(a))
1+ e2t . (4.3.18)

Then, with s = α+ c4(a)+π/4, we have

‖z0‖2 = max
t∈R

(
z01(t)2 + z02(t)2

)
= max

t∈R

2c5(a)2 e4t

(1+ e2t)4
[1−2sin2(t + s)+4cos2 (t + s)

+2e2t(1− sin2(t + s)
)
+ e4t ]

≤ max
t∈R

2c5(a)2 e4t

(1+ e2t)4
(7+4e2t +e4t) =

1029

512
c5(a)2.

Further, limt→∞
(
z01(t)2 + z02(t)2

)
= 2c5(a)2 so that, finally,

√
2c5(a) ≤ ‖z0‖ ≤ k1c5(a)

with k1 =
√

1029/512
.= 1.417662. By using Remark 4.3.2 and (4.3.17), we have

‖w‖ ≤
√

3‖z0‖+6(6‖vε,α,a‖‖w‖2 +2‖w‖3)+o(1)

≤
√

3k1c5(a)+36c5(a)‖w‖2 +12‖w‖3 +o(1) .

So if we choose r0 > 0 so that
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√

3k1c5(a)+36c5(a)r2
0 +12r3

0 < r0,

72c5(a)r0 +36r2
0 < 1,

(4.3.19)

then for ε > 0 small and ‖w‖ ≤ r0 we can uniquely solve (4.3.16) using the Banach

fixed point theorem 2.2.1 on the ball{
(u,w) ∈CB(R)2 | ‖u‖ ≤ K̃, ‖w‖ ≤ r0

}
for a constant

K̃ = ‖K(I−Π)‖
(

2δ‖γ̇‖+2ξ‖γ‖[r0 + c5(a)]2 + |a3|+ |a4|
)

+1 .

To find the largest c5(a) in (4.3.19), we solve

√
3k1k3 +36k2

2k3 +12k3
2 = k2 , 72k2k3 +36k2

2 = 1 ,

which has a solution

k2 =

√
−3−3

√
3k1 +

√
3

√
3+10

√
3k1 +9k2

1

6
√

2

.= 0.136179 ,

k3 =
5+3

√
3k1 −

√
9+30

√
3k1 +27k2

1

12

√
−6−6

√
3k1 +2

√
9+30

√
3k1 +27k2

1

.= 0.0339006 .

So we take r0 = k2, 0 < c5(a) < k3. Then (4.3.19) holds. Consequently, we have a

bounded solution wα,a,ε = (w1,α,a,ε , ẇ1,α,a,ε) of (4.3.10b). Now we study the limit

as ε → 0. Let w̃α,a,ε , ‖w̃α,a,ε‖ ≤ r0 solve

w(t) =
∫ t

−∞
Wε(t)Wε(s)−1(0,−2γ2v0,α,a)ds

−
∫ t

−∞
Wε(t)Wε(s)−1(0,−6ε2w2vε,α,a −2ε2w3)ds .

(4.3.20)

We note that the right-hand side of (4.3.20), denoted Nα,a,ε(w), is a contraction on

the ball {w ∈CB(R) | ‖w‖ ≤ r0}. So by the Banach fixed point theorem 2.2.1, w̃α,a,ε
exits and satisfies, according to (4.3.17), ‖w̃α,a,ε −wα,a,ε‖ = o(1) as ε → 0. Since

γ2 ∈ Xã for some ã > 0, and Nα,a,ε : Xã → Xã is a contraction on any bounded subset,

by Remark 4.3.2 we see that w̃α,a,ε → z0 as ε→ 0 in Xã. So w̃α,a,ε → z0 uniformly on

(−∞,0]. Now let us fix an interval [−n,n], n ∈ N and take a sequence {wα,a,εi}∞i=0,

εi → 0. By the Arzelà-Ascoli theorem 2.1.3, we can suppose that wα,a,εi → z̃ uni-

formly on [−n,n]. But we already know that z̃(t) = z0(t) on [−n,0]. Since z̃(t) sat-

isfies the same ODE on [−n,n] as z0(t), we get z̃(t) = z0(t) also on [0,n]. These
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arguments imply that

wα,a,ε(t) → z0(t)

for ε → 0 and uniformly in any compact interval on R. Consequently, the limit

bifurcation equation of (4.3.16c) is given by

M(α) =
∫ ∞

−∞

(
−2δ γ̇(t)−2ξγ(t)[z01(t)+ c5(a)sin(t +α+ c4(a))]2

+a3 cos(t +α)+a4 sin(t +α)
)
γ̇(t)dt = −4

3
δ +π(a3 sinα−a4 cosα)sech

π
2

= 0 .

The equation M(α) = 0 has a simple root if and only if

4δ < 3π
√

a2
3 +a2

4 sech
π
2

. (4.3.21)

From (4.3.8) we derive

4(a2
1 +a2

2) = 9c5(a)6 +16c5(a)2 . (4.3.22)

Since c5(a) < k3, we get

√
a2

1 +a2
2 < k4 :=

√
9k4

3 +16

2
k3

.= 0.0678013 . (4.3.23)

So if (4.3.21) holds, then we have a bounded solution for (4.3.4). Using the above

method along with an approach from Section 4.1, we can show that it is a trans-

verse homoclinic solution to a small periodic solution with appropriate shift-type

dynamics. Finally, we obtain another result.

Theorem 4.3.3. For any (a1,a2) �= (0,0) satisfying (4.3.23) there is a unique pos-
itive c5(a) solving (4.3.22). Then Eq. (4.3.4) has a transverse homoclinic solution
for any ε > 0 sufficiently small with μ1 = ε3a1, μ2 = ε2, μ3 = ε3a2, μ4 = ε2a3,
μ5 = ε2a4, and δ satisfying condition (4.3.21).

Note that if we suppose μ4 = O(ε3) and μ5 = O(ε3) in (4.3.4) then we get

M(α) = 4
3δ , so M(α) �= 0 and we do not get solutions of the desired form.

It is interesting to formulate the conditions in Theorem 4.3.3 in terms of the

original parameters as they appear in (4.3.4). The equation M(α) = 0, in place of

(4.3.21), requires

0 < 2δμ2 <
3

2
π
√
μ2

4 +μ2
5 sech

π
2

(4.3.24)

while (4.3.23) becomes

0 <
√
μ2

1 +μ2
3 < k4μ

3/2
2 . (4.3.25)

The condition (4.3.24) is a restriction on the allowed damping relative to forcing

in the first equation of (4.3.4). This result could be obtained by ignoring the center

part of the problem, i.e. by setting y = 0 in the first equation of (4.3.4) and then
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applying classical Melnikov theory. The effect of the center manifold appears in

condition (4.3.25) which imposes a limit on the magnitude of forcing relative to

damping in the second equation of (4.3.4).

In this example, the hyperbolic and center parts of the analysis turn out to be

separated but this is not always so. For example, if we replace −2ξxy2 in the first

equation with −2ξ ẋy2, the Melnikov function M(α) acquires a contribution from

the second equation. Indeed, it has now the form

M(α) = −4

3
δ −ξc5(a)2

[
8

15
− 2π

3sinhπ
sin2(α+ c4(a))

]
+π (a3 sinα−a4 cosα)sech

π
2

.

By using (4.3.19) we study (4.3.16b) locally as a semilinear equation. In Section

4.3.4, we apply a global approach based on the averaging method [16] (cf Section

2.5.7) in order to study (4.3.5). This improves Theorem 4.3.3.

4.3.3 General Equations

To solve (4.3.1), we shift the time t ←→ t +α and substitute

x = γ+ ε
d−1

∑
i=1

βiui + ε2u, y = εv ,

μ1 = ε3μ0,1, μ2 = ε2μ0,2, μ0 �= 0

where {u1, . . . ,ud} is a basis for the vector space of bounded solutions for the linear

system u̇ = D1 f0(γ(t),0)u with ud = γ̇ and μ0 = (μ0,1,μ0,2) is to be determined. We

suppose μ0,2 > 0. Introducing this change of variables into (4.3.1) yields

u̇ = D1 f0(γ,0)u+
1

2

d−1

∑
i, j=1

D11 f0(γ,0)βiβ juiu j (4.3.26a)

+μ0,2 f2(γ,0,0, t +α)+
1

2
D22 f0(γ,0)vv+O(ε),

v̇ = D2g0(γ,0)v+
ε2

6
D222g0(γ,0)v3 (4.3.26b)

+ε2μ0,1g1(0,0,0, t +α)+ ε2μ0,2D2g2(γ,0,0)v

+φ0(u,v,ε, t)+ ε2μ0,1φ1(u,v,ε, t)+ ε2μ0,2φ2(u,v,ε, t)

where



122 4 Chaos in Ordinary Differential Equations

φ0(u,v,ε, t) =
1

ε
g0

(
γ+ ε

d−1

∑
i=1

βiui + ε2u,εv

)
−D2g0(γ,0)v− ε

2

6
D222g0(γ,0)v3,

φ1(u,v,ε, t) = g1

(
γ+ ε

d−1

∑
i=1

βiui + ε2u,εv,(ε3μ0,1,ε2μ0,2), t +α

)

−g1(0,0,0, t +α),

φ2(u,v,ε, t) =
1

ε
g2

(
γ+ ε

d−1

∑
i=1

βiui + ε2u,εv,(ε3μ0,1,ε2μ0,2)

)
−D2g2(γ,0,0)v.

We note that the functions γ and ui, i = 1, . . . ,d −1 have a norm which is domi-

nated by e−ã|t| for some ã > 0. Using this fact and assumptions (i)–(viii) we have

φ0(u,v,ε, t) = O(ε)e−ã|t|+O(ε3),

φ1(u,v,ε, t) = O(1)e−ã|t|+O(ε),
φ2(u,v,ε, t) = O(ε).

We consider the Banach spaces

Xn =
{

x ∈C(R,Rn)
∣∣∣∣ sup

t∈R

|x(t)| < ∞
}

,

Yn =
{

y ∈ Xn

∣∣∣∣ ∫ ∞

−∞
〈y(t),v(t)〉dt = 0,

for every bounded solution v to v̇ = −D1 f0(γ,0)t v
}

with the supremum norm ||x|| = sup
t∈R

|x(t)|. Now we recall the following results of

Section 4.2.

Lemma 4.3.4. There exist constants b > 0, B > 0 independent of ε so that given
μ0,2 > 0 the variational equation

v̇ =
[
D2g0(γ(t),0)+ ε2μ0,2D2g2(γ(t),0,0)

]
v

has an exponential dichotomy (Vε ,I) on R with constants (B,bε2μ0,2).

Lemma 4.3.5. Given h ∈ Yn, the equation u̇ = D1 f0(γ(t),0)u + h has a unique so-
lution u ∈ Xn satisfying 〈u(0),ui(0)〉 = 0 for every i = 1,2, . . . ,d.

Lemma 4.3.6. There exists a continuous projection denoted Π : Xn → Xn so that
R(I−Π) = Yn.

We define the linear map K : Yn → Xn by K h = u where h, u are the same as in

Lemma 4.3.5. Now, we assume the following conditions:
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(ix) For any ε > 0 small and α ∈ R, there is a vε,α ∈ Xm with v̇ε,α ∈ Xm satisfying

v̇ε,α(t) =
(
D2g0(γ(t),0)+ ε2μ0,2D2g2(γ(t),0,0)

)
vε,α(t)

+
ε2

6
D222g0(0,0)vε,α(t)3 + ε2μ0,1g1(0,0,0, t +α)

along with B̃ = sup
ε>0,α

‖vε,α‖ < ∞. Moreover, vε,α is C1-smooth in ε > 0, α

and sup
ε>0,α

‖ ∂
∂α vε,α‖ < ∞. Furthermore, there is a C1-smooth vα ∈ Xm so that

vε,α → vα and ∂
∂α vε,α → ∂

∂α vα as ε→ 0+ uniformly in any compact interval of

R and uniformly for α as well.

(x) There are constants B̄ > 0, b̄ > 0 so that for any ε > 0 small and α ∈ R, the

equation

ẇ(t) =
(

D2g0(γ(t),0)+ ε2μ0,2D2g2(γ(t),0,0)+
ε2

2
D222g0 (0,0)vε,α(t)2

)
w(t)

has an exponential dichotomy (Wε ,I) on R with constants (B̄, b̄ε2).

Let {v1,v2, . . . ,vd} be a basis of bounded solutions of v̇ = −D1 f0(γ,0)t v. Using

the projection Π and the exponential dichotomy Wε from condition (x), we can

rewrite (4.3.26), by changing v = vε,α +w in (4.3.26b), as the fixed point problem

u = K (I−Π)
(1

2

d−1

∑
i, j=1

D11 f0(γ,0)βiβ juiu j +μ0,2 f2(γ,0,0, t +α)

+
1

2
D22 f0(γ,0)(vε,α +w)(vε,α +w)+O(ε)

)
, (4.3.27a)

w(t) =
∫ t

−∞
Wε(t)Wε(s)−1

{ε2

6
[D222g0(γ(s),0)−D222g0(0,0)]vε,α(s)3

+
ε2

6
D222g0(γ(s),0)

[
3vε,α(s)w(s)2 +w(s)3

]
+
ε2

2
[D222g0(γ(s),0)−D222g0(0,0)]vε,α(s)2w(s)

+ φ0(u(s),vε,α(s)+w(s),ε,s)+ ε2μ0,1φ1(u(s),vε,α(s)+w(s),ε,s)

+ ε2μ0,2φ2(u(s),vε,α(s)+w(s),ε,s)
}

ds , (4.3.27b)

∫ ∞

−∞

〈
vi(t),

1

2

d−1

∑
i, j=1

D11 f0(γ(t),0)βiβ jui(t)u j(t)+μ0,2 f2(γ(t),0,0, t +α)

+
1

2
D22 f0(γ(t),0)(vε,α(t)+w(t))(vε,α(t)+w(t))+O(ε)

〉
dt = 0 ,

i = 1,2, . . . ,d .
(4.3.28)
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We note that |γ(t)| ≤ ce−ã|t|, |ui(t)| ≤ ce−ã|t|, |vi(t)| ≤ ce−ã|t|, i = 1,2, · · · ,d for

constants c > 0, ã > 0. Moreover, it holds that∫ t

−∞
e−b̄ε2(t−s) ds =

1

b̄ε2
,

∫ t

−∞
e−b̄ε2(t−s)−ã|s| ds ≤

∫ ∞

−∞
e−ã|s| ds = 2/ã .

Using this we see that (4.3.27b) can be written as

w(t) =
ε2

6

∫ t

−∞
Wε(t)Wε(s)−1D222g0(0,0)

(
w(s)3 +3w(s)2vε,α(s)

)
ds+O(ε) .

Using the above assumptions and the Banach fixed point theorem 2.2.1 on a ball

in Xn×Xm centered at 0, (4.3.27) has a solution (u,w)∈ Xn×Xm for any sufficiently

small ε so that w = O(ε). Substituting w = O(ε) and using vε,α → vα , ∂
∂α vε,α →

∂
∂α vα as ε → 0+ uniformly in any compact interval of R and uniformly for α as

well we can write (4.3.28) as

Mi(μ0,α,β )+o(1) = 0, i = 1,2, . . . ,d, (4.3.29)

where

Mi(μ0,α,β ) =
1

2

d−1

∑
j,k=1

bi jkβ jβk +ai(α)μ0,2 +
1

2

∫ ∞

−∞
〈vi(t),D22 f0(γ(t),0)vα(t)2〉dt

and

ai(α) =
∫ ∞

−∞
〈vi(t), f2(γ(t),0,0, t +α)〉dt, 1 ≤ i ≤ d;

bi jk =
∫ ∞

−∞
〈vi,D11 f0(γ,0)u juk〉dt,

{
1 ≤ i ≤ d,

1 ≤ j,k ≤ d −1.

We note that vα(t) depends on μ0. We put

M(μ0,α,β ) = (M1(μ0,α,β ),M2(μ0,α,β ), . . . ,Md(μ0,α,β )) .

If we suppose (α0,β0) are such that M(μ0,α0,β0) = 0 and D(α,β )M(μ0,α0,β0) is

nonsingular then we can solve (4.3.29) by using the implicit function theorem. This

gives a bounded solution of (4.3.1). As detected in Section 4.1, we can show that

this solution is transversal, i.e. the linearization of (4.3.1) along that solution has

an exponential dichotomy on the whole line R. In summary, we get the following

result:

Theorem 4.3.7. Assume that conditions (i)–(viii) are satisfied and (ix)–(x) hold. If
there are (μ0,α0,β0) so that μ0,2 > 0, M(μ0,α0,β0) = 0 and D(α,β )M(μ0,α0,β0) is
nonsingular, then for μ1 = ε3μ0,1, μ2 = ε2μ0,2 with ε > 0 small, Equation (4.3.1)

has a transverse bounded solution with the appropriate shift-type irregular dynam-
ics.
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For t ≥ s, and using Vε from Lemma 4.3.4, the equation in condition (x) can be

rewritten as

w(t) = Vε(t)Vε(s)−1w(s)+
ε2

2

∫ t

s
Vε(t)Vε(z)−1D222g0 (0,0)vε,α(z)2w(z)dz .

This implies

|w(t)| ≤ Be−bε2μ0,2(t−s) |w(s)|+ ε2

2
BB̃2‖D222g0(0,0)‖

∫ t

s
e−bε2μ0,2(t−z) |w(z)|dz

which implies

|w(t)|ebε2μ0,2(t−s) ≤ B|w(s)|+ ε2

2
BB̃2‖D222g0(0,0)‖

∫ t

s
ebε2μ0,2(z−s) |w(z)|dz .

The Gronwall inequality (cf Section 2.5.1 and [11]) gives

|w(t)|ebε2μ0,2(t−s) ≤ Beε
2BB̃2‖D222g0(0,0)‖(t−s)/2 |w(s)| .

Consequently, we obtain

|w(t)| ≤ Beε
2(BB̃‖D222g0(0,0)‖/2−bμ0,2)(t−s) |w(s)| .

Now we see that condition (x) holds provided that

BB̃2

2b
‖D222g0(0,0)‖ < μ0,2 .

As an application we return to (4.3.4) which we write in the form

ẍ = x−2x(x2 +ξy2)−2μ2δ ẋ+a3μ2 cos t +a4μ2 sin t,

ÿ = −y−2y(x2 + y2)−2μ2ẏ+a1μ1 cos t +a2μ1 sin t
(4.3.30)

for which we use the usual first order form x1 = x, x2 = ẋ, y1 = y, y2 = ẏ. That is,

we make, as at the beginning of Section 4.3.2, the substitutions μ1 → a1μ1, μ2 →
μ2, μ3 → a2μ1, μ4 → a3μ2, μ5 → a4μ2 for some parameters ai, i = 1,2,3,4. Then

(4.3.30) becomes

ẋ1 = x2,

ẋ2 = x1 −2x1(x2
1 +ξy2

1)+μ2

(
−2δx2 +a3 cos t +a4 sin t

)
,

ẏ1 = y2,

ẏ2 = −y1 −2y1(x2
1 + y2

1)−2μ2y2 +μ1

(
a1 cos t +a4 sin t

)
which is clearly in the form of (4.3.1). We now check the hypotheses of Theorem

4.3.7 for (4.3.30). Conditions (i)–(viii) are easily verified.



126 4 Chaos in Ordinary Differential Equations

In (ix) we write vε,α = (v, v̇) and then obtain

v̈+(1+2γ2)v+2ε2μ0,2v̇+2ε2v3 = ε2μ0,1[a1 cos(t +α)+a2 sin(t +α)]. (4.3.31)

Note that this is the second equation in (4.3.5) when u = 0 and μ0,1 = μ0,2 = 1.

Setting μ0,1 = μ0,2 = 1 (since we already have parameters ai), using the solution

vε,α,a(t) of (4.3.6) and substituting v(t) = w(t)+ vε,α,a(t) into (4.3.31), we get

ẅ+(1+6ε2v2
ε,α,a +2γ2)w+2ε2ẇ+2γ2vε,α,a +6ε2w2vε,α,a +2ε2w3 = 0 (4.3.32)

which is (4.3.10b) when u = 0. Equation (4.3.32) can be rewritten as (4.3.16b) with

u = 0 and then as (4.3.17). Taking 0 < c5(a) < k3 the conditions of (4.3.19) are

satisfied and we obtain the unique solvability of (4.3.32) with solution wε,α,a(t)
satisfying ‖wε,α,a‖ ≤ r0. Consequently, condition (ix) is verified for (4.3.30) with

vε,α = (v, v̇) and vα = (ṽ, ˙̃v) where

v(t) = vε,α,a(t)+wε,α,a(t),

ṽ(t) = a1 cos(t +α)+a2 sin(t +α)+ z01(t) .

Concerning condition (x), we see that the equation from this condition has the

form

ẅ1 +(1+2γ2 +6ε2v2)w1 +2ε2μ0,2ẇ1 = 0

with w2 = ẇ1. Again using μ0,1 = μ0,2 = 1 and substituting for v we get

ẅ1 +(1+2γ2 +6ε2v2
ε,α,a)w1 +2ε2ẇ1 +6ε2(2vε,α,awε,α,a +w2

ε,α,a)w1 = 0 ,

which for t ≥ s has the form

w(t) = Wε,α,a(t)Wε,α,a(s)−1w(s)−6ε2

∫ t

−∞
Wε,α,a(t)Wε,α,a(s)−1.{(

0,(2vε,α,a(z)wε,α,a(z)+wε,α,a(z)2)w1(z)
)}

dz .
(4.3.33)

Since ‖vε,α,a‖ ≤ c5(a)+O(ε) and ‖wε,α,a‖ ≤ r0, we get∣∣∣(0,−6ε2(2vε,α,a(s)wε,α,a(s)+wε,α,a(s)2)
)∣∣∣≤ ε2θε ,

for a constant

θε = 6(2c5(a)r0 + r2
0)+O(ε) .

From (4.3.33) we obtain

|w(t)| ≤ K1 e−ε
2(t−s) |w(s)|+K1ε2θε

∫ t

s
e−ε

2(t−z) |w(z)|dz

which gives
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|w(t)|eε2(t−s) ≤ K1|w(s)|+K1ε2θε
∫ t

s
eε

2(z−s) |w(z)|dz .

The Gronwall inequality again implies

|w(t)|eε2(t−s) ≤ K1|w(s)|eK1ε2θε (t−s) .

Since c5(a) < k3, we see that K1θ0 < 1 and then

|w(t)| ≤ K1 eε
2(K1θ0−1)(t−s)/2 |w(s)| .

Hence we see that condition (x) is satisfied with B̄ = K1 and b̄ = (1−K1θ0)/2.

In summary, conditions (ix) and (x) are satisfied for (4.3.4).

Remark 4.3.8. The role of resonance is not clear in this section. But it is essential

and it is hidden in assumptions (ix) and (x). For simplicity, we explain it again

for example (4.3.4) by replacing the forcing terms cos t, sin t with cosπt, sinπt,
respectively. So we consider the equations

ẍ = x−2x(x2 +ξy2)−2μ2δ ẋ+μ4 cosπ(t +α)+μ5 sinπ(t +α),

ÿ = −y−2y(x2 + y2)−2μ2ẏ+μ1 cosπ(t +α)+μ3 sinπ(t +α) .
(4.3.34)

Certainly, the linear part of the second equation in (4.3.34) is nonresonant. Then in

place of (4.3.6), we get

¨̃vε,α,a = −ṽε,α,a −2ε2 ˙̃vε,α,a −2ε2ṽ3
ε,α,a + ε2a1 cosπ(t +α)+ ε2a2 sinπ(t +α) .

Applying the method of Section 4.3.2, we obtain ṽε,α,a(t) = O(ε2) and ṽε,α,a(t)
is 2-period. Then (4.3.16b) gives w̃ε,α,a(t) = O(ε2) without any further restriction,

i.e. a1, a2 are arbitrary nonzero. Consequently, the corresponding Melnikov function

is independent of a1,a2. So the hyperbolic and center parts of (4.3.34) are always

separated. This is consistent with the method in Section 4.2 for the nonresonant

case. In summary, in the nonresonant case, the forcing terms in the center part do

not affect the Melnikov function, while in the resonant case the forcing terms in

center part do affect it in general.

4.3.4 Averaging Method

When Eq. (4.3.1) satisfies conditions (i)–(viii) the remaining task is to verify con-

ditions (ix) and (x). We note that the equation in (x) is just the linearization of

equation (ix) along vε,α(t). Consequently, we must study the equation of (ix) and

its linearization. For this purpose, we can use also the method of averaging [16]

(cf Section 2.5.7). As a concrete illustration of how this can be done we focus on

(4.3.31). Using the matrix C(t) from Section 4.3.2, we put
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v(t) = c1(t)v1(t)+ c2(t)v2(t) ,

v1(t) = cos t − sin t tanh t, v2(t) = sin t + cos t tanh t

into (4.3.31) and set μ0,1 = μ0,2 = 1. We get the system

ċ1 = ε2
[
c1v̇1(t)+ c2v̇2(t)+(c1v1(t)+ c2v2(t))3

−a1

2
cos(t +α)− a2

2
sin(t +α)

]
v2(t),

ċ2 = ε2
[
−c1v̇1(t)− c2v̇2(t)− (c1v1(t)+ c2v2(t))3

+
a1

2
cos(t +α)+

a2

2
sin t +α)

]
v1(t),

(4.3.35)

where as usual we put v̇(t) = c1(t)v̇1(t)+ c2(t)v̇2(t). Now we see that

vi(t) → vi,±(t), i = 1,2,

being exponentially fast as t →±∞ where

v1,± = cos t ∓ sin t, v2,±(t) = sin t ± cos t .

Consequently, Equation (4.3.35) for t ≥ 0 has the form

ċ1 = ε2
{(

c1v̇1,+(t)+ c2v̇2,+(t)+(c1v1,+(t)+ c2v2,+(t))3

−a1

2
cos(t +α)− a2

2
sin(t +α)

)
v2,+(t)+h1

+(c1,c2,α, t)
}

,

ċ2 = ε2
{(

− c1v̇1,+(t)− c2v̇2,+(t)− (c1v1,+(t)+ c2v2,+(t))3

+
a1

2
cos(t +α)+

a2

2
sin(t +α)

)
v1,+(t)+h2

+(c1,c2,α, t)
}

(4.3.36)

while Eq. (4.3.35) for t ≤ 0 has the form

ċ1 =ε2
{(

c1v̇1,−(t)+ c2v̇2,−(t)+(c1v1,−(t)+ c2v2,−(t))3

− a1

2
cos(t +α)− a2

2
sin(t +α)

)
v2,−(t)+h1

−(c1,c2,α, t)
}

,

ċ2 =ε2
{(

− c1v̇1,−(t)− c2v̇2,−(t)− (c1v1,−(t)+ c2v2,−(t))3

+
a1

2
cos(t +α)+

a2

2
sin(t +α)

)
v1,−(t)+h2

−(c1,c2,α, t)
}

(4.3.37)

where h1,2
± (c1,c2,α, t) → 0, being exponentially fast for t → ±∞ and uniformly

for c1,2 on a bounded set. Now we average Eqs. (4.3.36) and (4.3.37) over R±,

respectively, to get for t ≥ 0 the system
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ċ1 =
ε2

4

(
−4c1 +6c2

1c2 +6c3
2 − (a1 +a2)cosα+(a1 −a2)sinα

)
,

ċ2 =
ε2

4

(
−4c2 −6c1c2

2 −6c3
1 +(a1 −a2)cosα+(a1 +a2)sinα

)
,

(4.3.38)

while for t ≤ 0 we obtain the system

ċ1 =
ε2

4

(
−4c1 +6c2

1c2 +6c3
2 +(a1 −a2)cosα+(a1 +a2)sinα

)
,

ċ2 =
ε2

4

(
−4c2 −6c1c2

2 −6c3
1 +(a1 +a2)cosα+(a2 −a1)sinα

)
.

(4.3.39)

We put

A1,+ = −(a1 +a2)cosα+(a1 −a2)sinα ,

A2,+ = (a1 −a2)cosα+(a1 +a2)sinα ,

A1,− = (a1 −a2)cosα+(a1 +a2)sinα ,

A2,− = (a1 +a2)cosα+(a2 −a1)sinα .

The systems (4.3.38) and (4.3.39) form one system over R with a discontinuity at

t = 0. By using arguments of Section 4.3.2 (see (4.3.8)), we observe that the systems

−4c1 +6c2
1c2 +6c3

2 +A1,± = 0 ,

−4c2 −6c1c2
2 −6c3

1 +A2,± = 0
(4.3.40)

have unique solutions

ca,± = (c1,a,±,c2,a,±) .

Moreover, the eigenvalues of the linearization of (4.3.38), (4.3.39) at ca,± are

[−4± ı6
√

3(c2
1,a,± + c2

2,a,±)]ε2/4 .

Consequently, we see that systems (4.3.38), (4.3.39) have unique weakly exponen-

tially attracting equilibria ca,±, respectively.

Note that for a = 0 we get c0,± = 0 and then from (4.3.31) vε,α = 0 so the case

a = 0 is trivial. On the other hand, we need vε,α �= 0 for the influence of the center

part to affect the Melnikov function. For this reason, we assume that a �= 0.

Now if the point ca,− is in the basin of attraction of ca,+, then we can construct a

solution ca(t) of (4.3.38), (4.3.39) over R as follows:

ca(t) =

{
ca,−, for t ≤ 0 ,

the solution of (4.3.38) starting fromca,− for t ≥ 0 .

This solution will generate, according to averaging theory [16] (cf Theorems 2.5.12,

2.5.13), a solution of (4.3.31) satisfying conditions (ix) and (x). We note that aver-

aging theory can be applied to (4.3.36) and (4.3.37) since they are sums of periodic
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and exponentially fast decaying terms containing t variable. So (4.3.36) and (4.3.37)

are KBM-vector fields.

To show that ca,− is in the basin of attraction of ca,+ consider the function H :

R
2 → R given by

H(c1,c2) = 3(c2
1 + c2

2)
2 −2A2,+c1 +2A1,+c2.

For further reference we note that

H(c1,c2) ≤ 3(c2
1 + c2

2)
2 +2

√
A2

1,+ +A2
2,+

√
c2

1 + c2
2, (4.3.41)

and if t → (c1(t),c2(t)) is a solution of (4.3.38),

d
dt

H(c1(t),c2(t)) = −2ε2
[
6(c2

1 + c2
2)

2 −A2,+c1 +A1,+c2

]
≤ −2ε2

√
c2

1 + c2
2

[
6(c2

1 + c2
2)

3/2 −
√

A2
1,+ +A2

2,+

]
. (4.3.42)

We define two sets

D =
{

(c1,c2)
∣∣c2

1 + c2
2 < (A2

1,+ +A2
2,+)1/3

}
,

U =
{

(c1,c2)
∣∣H(c1,c2) < 5(A2

1,+ +A2
2,+)2/3

}
.

Using (4.3.41) it is easy to verify that D ⊂U . With (4.3.40) we obtain√
A2

1,+ +A2
2,+

√
c2

1,a,+ + c2
2,a,+ ≥ A2,+c1,a,+ −A1,+c2,a,+ = 6(c2

1,a,+ + c2
2,a,+)2

from which it follows that |ca,+|2 ≤ ( 1
6 )2/3(A2

1,+ +A2
2,+)1/3 so that ca,+ ∈U .

If t → (c1(t),c2(t)) is an orbit of (4.3.38) in the complement of Ū then

c1(t)2 + c2(t)2 ≥ (A2
1,+ +A2

2,+)1/3

and it follows from (4.3.42) that

d
dt

H(c1(t),c2(t)) ≤−10ε2(A2
1,+ +A2

2,+)2/3.

Thus, Ū is an invariant global attractor. Since the divergence of (4.3.38) is −2ε2,

using Bendixson’s criterion 2.5.10, we see that U contains no periodic orbits. Thus

by the Poincarè-Bendixson theorem 2.5.9, U is in the basin of attraction for ca,+,

ca,+ is a global attractor and, trivially, ca,− is in the basin of attraction of ca,+.

In summary, we get the Melnikov function M(α) of Section 4.3.2 so that Theo-

rem 4.3.3 holds for any (a1,a2) �= (0,0) and we have the following improvement of

Theorem 4.3.3.
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Theorem 4.3.9. Equation (4.3.4) has a transverse homoclinic solution for any ξ ,
and any small μi, i = 1, . . . ,5 and δ satisfying condition (4.3.24) and (μ1,μ3) �=
(0,0).

Finally, we note that in spite of the fact that the results of Section 4.3.2 are im-

proved in this section, that part is included here since it contains some useful deriva-

tions/computations such as the existence of periodic solutions and exponential di-

chotomies. We note that for general forms of coupled oscillators only local analysis

as in Section 4.3.2 can be used to verify assumptions (ix) and (x). As our averaging

technique uses the Poincarè-Bendixson theorem and Bendixson’s criterion it cannot

be used for higher-dimensional systems. In general, the situation depends on the

form of the averaged equations.

4.4 Singularly Perturbed and Forced ODEs

4.4.1 Forced Singular ODEs

Consider a singular system of ODEs like

εu′ = f (u,v)+ εh1(t,u,v,ε), u ∈ R
n, v ∈ R

m,

v′ = g(u,v)+ εh2(t,u,v,ε), t ∈ R, ε ∈ R,
(4.4.1)

under the following conditions:

(a) f ,g,h1,h2 are Cr+1
b -functions in their arguments, r ≥ 2, defined for (t,u,v,ε)

∈ R×R
n ×R

m × (−ε̄, ε̄) and their (r + 1)-derivatives are continuous in u uni-

formly with respect to (t,v,ε).
(b) f (0,v) = 0 for any v ∈ R

m and there exists δ > 0 so that for any v ∈ R
m and

λ (v) ∈ σ ( fx(0,v)) one has |ℜλ (v)| > δ > 0.

Then setting ε = 0 in Eq. (4.4.1) we obtain the so-called degenerate system

v′ = g(0,v), v ∈ R
m. (4.4.2)

It was shown in [17] that given T > 0 the solutions of (4.4.1) are at a O(ε)-distance

from the corresponding solutions of (4.4.2), for t in any compact subset of (0,T ].
This result was improved in [18] leading to a condition similar to the above one

about the eigenvalues of fu(0,v) [19]. Later, a geometric theory of singular sys-

tems was developed in [20]. This theory applies to the autonomous case and states,

under certain hypotheses, the existence of a center manifold for (4.4.1) defined on

compact subsets of R
m on which system (4.4.1) is a regular perturbation of the de-

generate system (4.4.2). By means of this theory, a previous result given in [21] was

improved in [20], concerning the existence of periodic solutions of (4.4.1). After-

wards geometric theory is used in [22, 23] to study the problem of bifurcation from
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a heteroclinic orbit of the degenerate system towards a heteroclinic orbit of the over-

all system (4.4.1). However, since the result of [20] holds in the autonomous case

and with some roughness assumptions on system (4.4.2), conclusions in [22,23] are

given just in the case of a transverse heteroclinic orbit. Later, using different meth-

ods, the non-autonomous case together with the homoclinic case have been handled

in [24,25]. A result in [25], however, does not contain any conclusion of the smooth-

ness of the bifurcating heteroclinic orbit with respect to the parameter ε , while four

classes of differentiability (from Cr+2 to Cr−2) are lost in [24]. Let us mention some

related results in this direction. Attractive invariant manifolds of (4.4.1) are studied

in [26] when h1,h2 are independent of t and fu(0,v) has all the eigenvalues with

negative real parts. The same problem as in [26] is investigated in [27] when h1,h2

do depend on t.

4.4.2 Center Manifold Reduction

In this section we apply Theorem 2.5.8 to (4.4.1). Let τ = t/ε be the fast time and ·
denote the derivative with respect to τ . Then (4.4.1) reads:

u̇ = f (u,v)+ εh1(t,u,v,ε),

v̇ = ε{g(u,v)+ εh2(t,u,v,ε)},
ṫ = ε.

(4.4.3)

Take a C∞-function φ : R → [0, ε̄] so that φ(ε) = ε̄ for ε ∈ (− ε̄
3 , ε̄3 ), | dφ

dε | < 2 and

suppφ ⊂ [−ε̄, ε̄]. It is clear that φ ∈ Cr+1
b (R,R) since it has a compact support.

Then, define x = u,y = (v, t,εφ(ε)) and consider, instead of (4.4.3), the following

system
ẋ = fu(0,v)x+F(x,y) := A(y)x+F(x,y),

ẏ = G(x,y),
(4.4.4)

where

F(x,y) = F(x,(v, t,ε)) = f (x,v)− fu(0,v)x+ εφ(ε)h1(t,x,v,εφ(ε)) ,

G(x,y) = G(x,(v, t,ε)) = εφ(ε)(g(x,v)+ εφ(ε)h2(t,x,v,εφ(ε)),1,0) .

From the fact that the support of φ(ε) is a subset of [−ε̄, ε̄], it follows that A(y),
F(x,y), G(x,y) can be considered as Cr

b-functions in (x,y) ∈ R
n ×R

m+2 and that

they satisfy the hypothesis (i) of Section 2.5.5. Moreover one has

|F(0,y)|+ |Fx(0,y)| ≤C|εφ(ε)| ≤Cε̄2 < σ

provided ε̄ $ 1. In the same way we see that |G(x,y)|, |Gx(x,y)| < σ . As regards

the inequality |Gy(x,y)| < σ , this follows also from the fact that supε∈R | d
dε [εφ(ε)]|
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≤ sup|ε|≤ε̄ |εφ ′(ε)|+ |φ(ε)| ≤ 3ε̄ . All the hypotheses of Theorem 2.5.8 are then

satisfied and hence the existence of a global center manifold for (4.4.4), satisfying

the conclusions of Theorem 2.5.8, follows. This center manifold can be represented

as:

C =
{

(ξ ,η ,α,ε) ∈ R
n ×R

m ×R× (−ε̄, ε̄) | ξ = H(η ,α,ε)
}

and is invariant under the flow given by (4.4.4). From dε
dτ = 0 we obtain that ε is

constant, moreover, since any ε ∈ (− ε̄2

3 , ε̄
2

3 ) can be written as ε
ε̄ φ

( ε
ε̄
)
, we see that

for |ε| < ε0 = ε̄2

3 , such a manifold is invariant for (4.4.3). Any solution of (4.4.3)

whose u-component is small must then satisfy (see property (P) of Theorem 2.5.8):

u(τ) = H(y(τ,η ,α,ε)),

where y(τ,η ,α,ε) = (v(τ,η ,α,ε),ετ+α,ε) and v(τ) = v(τ,η ,α,ε) satisfies

v̇(τ) = ε{g(H(v(τ),ετ+α,ε),v(τ))+ εh2(ετ+α,H(v(τ),ετ+α,ε),v(τ),ε)}

so that ṽ(t) = v(t/ε) satisfying

ṽ′(t) = g(H(ṽ(t), t +α,ε), ṽ(t))+ εh2(t +α,H(ṽ(t), t +α,ε), ṽ(t),ε). (4.4.5)

Finally, note that H(η ,α,0) = 0 because of uniqueness. We have then shown the

following.

Theorem 4.4.1. Consider system (4.4.1) and assume (a) and (b) hold. Then there
exist ε0, ρ > 0 and a Cr-function H : R

m ×R× (−ε0,ε0) → R so that the following
properties hold:

(i) sup
(η ,α,ε)∈Rm×R×(−ε0,ε0)

|H(η ,α,ε)| ≤ ρ .

(ii) For any ε ∈ (−ε0,ε0) and α ∈ R the manifold

Cα,ε =
{

(ξ ,η) ∈ R
n ×R

m | ξ = H(η ,α,ε)
}

is invariant for the flow of system (4.4.1), with t +α instead of t, in the sense
that if (u(α),v(α)) ∈ Cα,ε then (u(t),v(t)) ∈ Cα,ε for any t ∈ R.

(iii) Any solution (u(t),v(t)) of (4.4.1), with t +α instead of t, showing that ||u||∞ <
ρ , belongs to Cα,ε .

As an example of application of this result assume that

(c) The degenerate system (4.4.2) has an orbit γ(t) homoclinic to a hyperbolic equi-

librium, and the variational system v̇ = gv(0,γ(t))v has the unique bounded so-

lution γ̇(t) (up to a multiplicative constant).

Then the following theorem holds:

Theorem 4.4.2. Assume (a), (b), (c) and define
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Δ(α)

=
∫ +∞

−∞
ψ∗(t)

{
h2(t +α,0,γ(t),0)−gu(0,γ(t)) fu(0,γ(t))−1h1(t +α,0,γ(t),0)

}
dt

with ψ∗(t) being the unique (up to a multiplicative constant) bounded solution to
the adjoint variational system v̇ = −gv(0,γ(t))∗v. Then, if Δ(α) has a simple zero
at α = α0, there exist ρ > 0, ε0 > 0 so that for |ε| < ε0, system (4.4.1) has a unique
solution (u(t,ε),v(t,ε)) which is Cr−1 with respect to ε , bounded together with its
derivatives (in ε), and satisfying also:

|u(t,ε)| < ρ and sup
t∈R

|u(t,ε)|+ |v(t,ε)− γ(t −α0)| → 0 as ε → 0. (4.4.6)

Proof. A solution satisfying (4.4.6) must lie in a manifold Cα,ε owing to property

(iii) of Theorem 4.4.1, hence its v-component must satisfy (4.4.5). The unperturbed

system of (4.4.5) is the degenerate system (4.4.2). From regular perturbation theory

(see Section 4.1) we obtain the Melnikov function

M(α) =
∫ +∞

−∞
ψ∗(t){h2(t +α,0,γ(t),0)+gu(0,γ(t))Hε(γ(t), t +α,0)} dt.

Taking the derivative with respect to ε at ε = 0 of

ε
∂
∂ t

H (v(t,η0,α,ε), t +α,ε)

= f (H(v(t,η0,α,ε), t +α,ε),v(t,η0,α,ε))

+εh1(t +α,H(v(t,η0,α,ε), t +α,ε),v(t,η0,α,ε),ε),

we get (recall H(η ,α,0) = 0)

fu(0,v(t,η0,α,0))Hε(v(t,η0,α,0), t +α,0)+h1(t +α,0,v(t,η0,α,0),0) = 0.
(4.4.7)

Now v(t,γ(α),α,0) solves (4.4.2) with the condition v(0) = γ(α), as a consequence

v(t,γ(α),α,0) = γ(t) and using (4.4.7) we obtain:

Hε(γ(t), t +α,0) = − fu(0,γ(t))−1h1(t +α,0,γ(t),0)}dt

and hence M(α) = Δ(α). ��
Remark 4.4.3. From regular perturbation theory, it follows that the solution, whose

existence is stated in Theorem 4.4.2, is Cr−1 in ε . This improves previous results

[24, 25].

As another application of Theorem 4.4.1, the degenerate system (4.4.2) has an

orbit heteroclinic to semi-hyperbolic equilibria, but we do not go into details and

we refer the readers to [28].
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4.4.3 ODEs with Normal and Slow Variables

Only for the reader information, we note in this part an opposite case to (4.4.1) by

considering a system

ẋ = f (x,y)+ εh(x,y, t,ε) ,

ẏ = ε (Ay+g(y)+ p(x,y, t,ε)+ εq(y, t,ε)) ,
(4.4.8)

where x ∈ R
n, y ∈ R

m, ε > 0 is sufficiently small, A is an m×m matrix, and all

mappings are smooth, 1-periodic in the time variable t ∈ R so that

(i) f (0,0) = 0, g(0) = 0, gx(0) = 0, p(0, ·, ·, ·) = 0.

(ii) The eigenvalues of A and fx(0,0) lie off the imaginary axis.

(iii) There is a homoclinic solution γ �= 0 so that lim
t→±∞γ(t) = 0 and γ̇(t) = f (γ(t),0).

Here gx, fx mean derivatives of g and f with respect to x, respectively. The second

equation of (4.4.8) has the usual canonical form of the averaging theory (cf Section

2.5.7) in the variable y with x = 0, and it is assumed [29] that its averaged equation

with x = 0 possesses a hyperbolic equilibrium. Hence the homoclinic dynamics of

the first equation of (4.4.8) is combined with the dynamics near the slow hyperbolic

equilibrium of the averaged second equation of (4.4.8) when x = 0. Moreover, the

transversality of bounded solutions on R of (4.4.8) is studied for the sufficiently

small parameter ε > 0. Consequently, as a by-product chaotic behavior of (4.4.8)

is shown for such ε in [29]. Systems of ODEs with normal and slow variables are

investigated also in [30, 31].

Systems like (4.4.8) occur in certain weakly coupled systems. More general

ODEs are studied in [32–37], and we refers the readers for further details to these

papers.

4.4.4 Homoclinic Hopf Bifurcation

Finally we note that the method of Section 4.4.3 can be applied to systems of ODEs

representing an interaction of the homoclinic and Hopf bifurcation, which are given

by
ẋ = f1(x)+h1(x,y,λ ) ,

ẏ = f2(y,λ )+λh2(x,y,λ )+h3(x,y) ,
(4.4.9)

where f1 : R
n →R

n, f2 : R
3 →R

2, h1 : R
n+3 →R

n, h2 : R
n+3 →R

2, h3 : R
n+2 →R

2

are smooth so that

(i) f2(0, ·) = 0, D f2(0,0) =
(

0 −1

1 0

)
.

(ii) f1(0) = 0 and the eigenvalues of D f1(0) lie off the imaginary axis.

(iii) There is a homoclinic solution γ �= 0 so that lim
t→±∞γ(t) = 0 and γ̇(t) = f1(γ(t)).
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(iv) h1(·,0,0) = 0, h2(0, ·, ·) = 0, h3(0, ·) = 0, h3(·,0) = 0.

The system (4.4.9) is an autoparametric system [38–40] consisting of two subsys-

tems: Oscillator and Excited System.The Oscillator which is vibrating according to

its nature is given by the second equation of (4.4.9) in the variable y possessing the

Hopf singularity at y = 0 for λ = 0, x = 0 [41]. The Excited System is determined

by the first equation of (4.4.9) in the variable x exhibiting a homoclinic structure to

the equilibrium x = 0 for λ = 0, y = 0. (4.4.9) has for λ = 0 a semi–trivial solution

x = γ , y = 0. Either chaotic or at least periodic dynamics of (4.4.9) near γ×{0} for

λ �= 0 sufficiently small is studied in [42], and we refer the readers to this paper for

more details. We note that x = 0, y = 0 is a nonhyperbolic equilibrium of (4.4.9) for

λ = 0 possessing a homoclinic loop x = γ , y = 0. Related research work is presented

in [32, 34, 37, 43].

4.5 Bifurcation from Degenerate Homoclinics

4.5.1 Periodically Forced ODEs with Degenerate Homoclinics

In this section, we consider ODEs of the form

ẋ = f (x)+h(x,μ, t), x ∈ R
n, μ ∈ R

m (4.5.1)

satisfying the following assumptions:

(i) f and h are C∞ in all arguments.

(ii) f (0) = 0 and h(·,0, ·) = 0.

(iii) The eigenvalues of D f (0) lie off the imaginary axis.

(iv) The unperturbed equation has a homoclinic solution γ �= 0 so that limt→±∞ γ(t)=
0 and γ̇(t) = f (γ(t)).

(v) h(x,μ, t +1) = h(x,μ, t) for any t ∈ R.

(vi) The variational linear differential equation

u̇(t) = D f (γ(t))u(t) (4.5.2)

has precisely d, d ≥ 2 linearly independent solutions bounded on R.

For the unperturbed equation

ẋ = f (x) , (4.5.3)

we adopt the standard notation W s, W u for the stable and unstable manifolds, re-

spectively, of the origin and ds = dimW s, du = dimW u. Since x = 0 is a hyperbolic

equilibrium, γ must approach the origin along W s as t → +∞ and along W u as

t →−∞. Thus, γ lies on W s ∩W u. The condition (vi) means that the tangent spaces

of W s and W u along γ have a d–dimensional intersection.
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The case when h is independent of t, m = 3, d = 2 is studied in [44] and it is

shown that the set of small parameters, for which homoclinics of (4.5.1) exist near

γ , forms a Whitney umbrella (cf [45] and Figure 4.2).

Fig. 4.2 The Whitney umbrella.

Equation (4.5.1) is considered in [46] with d = 2 and

h(x,μ, t) = h1(x,λ )+ εh2(x,μ, t), μ = (λ ,ε) ∈ R
3 ×R ,

and it is shown that the set of small parameters, for which homoclinic points of

(4.5.1) exist in a small section transverse to γ , is foliated by Whitney umbrellas. Bi-

furcation results for (4.5.1) are derived from [47] with m = 1 and d = 2. Bifurcation

results in this direction are also established in [1, 3–5].

Instead of (4.5.1), we consider

ẋ = f (x)+h(x,μ, t +α), x ∈ R
n, μ ∈ R

m , (4.5.4)

where α ∈ S1 = R/Z is considered as another global parameter. Here S1 is the circle.

In this section, we always mean “generically” in the sense that certain transver-

sality (nondegenerate) conditions are satisfied for the studied problems. Those con-

ditions usually are rather involved formulas and their verification is tedious for a

concrete example. On the other hand, if one of those transversality conditions fails

then we are led to a higher–order degenerate singularity of the studied bifurcation

equation with a vague normal form.

We also remark that we focus our attention in this section on describing the set of

all small parameters of the above types of (4.5.1) for which homoclinics exist near

γ . We do not investigate neither the numbers of those homoclinics nor which kind

of bifurcations takes place. But more careful analysis of the bifurcation equations

could lead to some results in that direction as [48]. However, their description is

outside the scope of this section.

4.5.2 Bifurcation Equation

The bifurcation equation for finding homoclinics of (4.5.4) near γ is derived from

Section 4.1.3, so we only recall its form:
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H(β ,α,μ) = (H1(β ,α,μ), . . . ,Hd(β ,α,μ)) = 0 , (4.5.5)

where H : O1 × I ×W1 → R
d is smooth for small neighborhoods 0 ∈ O1 ⊂

R
d−1, 0 ∈W1 ⊂ R

m, a bounded open interval I ⊂ R, and

Hi(β ,α,μ) =
m

∑
j=1

ai j(α)μ j +
1

2

d−1

∑
j,k=1

bi jkβ jβk + h.o.t ,

ai j(α) = −
∫ ∞

−∞
〈u⊥i (t),

∂h
∂μ j

(γ(t),0, t +α)〉dt ,

bi jk = −
∫ ∞

−∞
〈u⊥i ,D2 f (γ)ud+ jud+k〉dt .

4.5.3 Bifurcation for 2-Parametric Systems

We investigate (4.5.1) in this section for m = 2 and the condition (vi) holds with

d = 2. Then the bifurcation equation (4.5.5) has the form

a11(α)μ1 +a12(α)μ2 +b1β 2 + h.o.t. = 0

a21(α)μ1 +a22(α)μ2 +b2β 2 + h.o.t. = 0 .
(4.5.6)

Since the codimension is 1 of the set of all noninvertible 2×2–matrices in the space

of 2× 2–matrices (cf Theorem 2.6.2), generically we assume that there is a finite

number of α1, . . . ,αl1 ∈ S1 so that

A(α) =

(
a11(α) a12(α)

a21(α) a22(α)

)

is noninvertible only for α = α1, . . . ,αl1 .

A1. First of all, we study (4.5.6) for α near α0 /∈ {
α1, . . . ,αl1

}
. Then by applying

the implicit function theorem, we obtain from (4.5.6)

μ1 = μ1(α,β ), μ2 = μ2(α,β )

for α near α0 and β small. Moreover, (4.5.6) implies

μi(α,β ) = β 2
(
μi1(α)+βdi(α,β )

)
, i = 1, 2 ,

where μi1, di, i = 1, 2 are C∞–smooth. Generically, we have the following possibil-

ities:

A1.1. μ11(α0) �= 0, μ21(α0) �= 0.
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Theorem 4.5.1. Generically in the case A1.1, the set of parameters (α,μ1,μ2) near
(α0,0,0), for which (4.5.4) has a homoclinic near γ , is diffeomorphically foliated
along the α–axis by two curves(

α,τ2 + τ3e1(α,τ),τ2
)
,

where e1 ∈C∞ satisfies e1(α0,0) �= 0 and τ ∈ R is small (Figure 4.3).

Proof. We take

τ = β
√

|μ21(α)+βd2(α,β )| .
Then our set has the form(

α,τ2μ13(α)+ τ3d3(α,τ),τ2 sgnμ21(α0)
)
,

where μ13, d3 ∈ C∞, μ13(α0) �= 0 and generically d3(α0,0) �= 0. This set is diffeo-

morphic to (
α,τ2 + τ3d3(α,τ)/μ13(α),τ2

)
.

The proof is finished. ��

�

�

�

�
μ2

μ1

Fig. 4.3 μ11(α0) > 0, μ21(α0) > 0.

We note that generically we cannot avoid in the case A1.1 the following situation:

A1.1.1. μ11(α0) �= 0, μ21(α0) �= 0, e1(α0,0) = 0.

We note that this case generically occurs only in a finite number of α0 /∈
{α1, . . . ,αl1}.

Theorem 4.5.2. Generically in the case A1.1.1, the set of parameters (α,μ1,μ2)
near (α0,0,0), for which (4.5.4) has a homoclinic near γ , is diffeomorphically foli-
ated along the α–axis by two curves(

α,τ2 + τ3(α−α0)d4(α,τ)+d5(α)τ4 + τ5d6(α,τ),τ2
)
, (4.5.7)
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where d4, d5, d6 ∈C∞ satisfy d4(α0,0) �= 0, d6(α0,0) �= 0 and τ ∈R is small (Figure
4.4).

Proof. The statement of theorem is trivial, since by e1(α0,0) = 0, we have

e1(α,τ) = (α−α0)d4(α,τ)+d5(α)τ+ τ2d6(α,τ) .

To show the situation in Figure 4.4, we study the intersection of two curves (4.5.7)

by solving for small τ > 0 the equation

τ2 + τ3(α−α0)d4(α,τ)+d5(α)τ4 + τ5d6(α,τ)

= τ2 − τ3(α−α0)d4(α,−τ)+d5(α)τ4 − τ5d6(α,−τ).
(α−α0)

(
d4(α,τ)+d4(α,−τ)) = −τ2

(
d6(α,τ)+d6(α,−τ)) .

(4.5.8)

By the Whitney theorem 2.6.9, we have

d4(α,τ)+d4(α,−τ) = d̃4(α,τ2), d̃4 ∈C∞,

d6(α,τ)+d6(α,−τ) = d̃6(α,τ2), d̃4 ∈C∞ .

Hence (4.5.8) is equivalent to

(α−α0)d̃4(α,τ2) = −τ2d̃6(α,τ2) . (4.5.9)

We can solve τ2 from (4.5.9) to obtain

τ2 = τ1(α), τ1(α0) = 0, τ ′1(α0) �= 0 .

Now the situation in Figure 4.4 is clear. ��

�

�

�

�

�

�

�

�

�

�

�

�
μ2

μ1

μ2

μ1

μ2

μ1

α < α0 α = α0
α > α0

Fig. 4.4 μ11(α0) > 0, μ21(α0) > 0, τ ′1(α0) > 0.
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A1.2. μ11(α0) = 0, μ ′
11(α0) �= 0, μ21(α0) �= 0.

We note that this case generically occurs only in a finite number of α0 /∈
{α1, . . . ,αl1}.

Theorem 4.5.3. Generically in the case A1.2, the set of parameters (α,μ1,μ2) near
(α0,0,0), for which (4.5.4) has a homoclinic near γ , is diffeomorphically foliated
along the α–axis by two curves(

α,τ2(α−α0)+ τ3e2(α,τ),τ2
)
,

where e2 ∈C∞ satisfies e2(α0,0) �= 0 and τ ∈ R is small (Figure 4.5).

Proof. Like in the above proof, our set is equivalent to(
α,τ2μ13(α)+ τ3d3(α,τ),τ2

)
,

where μ13, d3 ∈C∞, μ13(α0) = 0, μ ′
13(α0) �= 0, d3(α0,0) �= 0. Hence we have(

α,τ2(α−α0)μ14(α)+ τ3d3(α,τ),τ2
)
,

where μ14 ∈C∞, μ14(α0) �= 0. Consequently, the set is diffeomorphic to(
α,τ2(α−α0)+ τ3d3(α,τ)/μ14(α),τ2

)
.

The proof is finished. ��
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μ1

α < α0 α = α0 α > α0

Fig. 4.5 μ ′
11(α0) > 0, μ21(α0) > 0.

A1.3. μ11(α0) �= 0, μ21(α0) = 0, μ ′
21(α0) �= 0.

It is clear that this case is the same as A1.2.
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A2. The second case is when α is near α0 ∈ {α1, . . . ,αl1}. So A(α0) is nonin-

vertible. We can assume

a11(α0) �= 0, a21(α0) = 0, a′21(α0) �= 0, a22(α0) = 0, a′22(α0) �= 0 .

Then we solve

μ1 = μ1(α,β ,μ2)

from the first equation of (4.5.6) for α near α0 and β ,μ2 small. Consequently, by

inserting this solution into the second equation of (4.5.6), the bifurcation equation

now is reduced to

Q(α,β ,μ2) = (α−α0)ã21(α)μ1(α,β ,μ2)

+(α−α0)ã22(α)μ2 +b2β 2 + h.o.t. = 0 .
(4.5.10)

We note

μ1(α,β ,0) = O(β 2), Q(α,β ,0) = O(β 2), Q(α0,0,μ2) = O(μ2
2 ) .

By using the Malgrange Preparation Theorem 2.6.8, generically (4.5.10) is equiva-

lent to

Q1(α,β ,μ2) = β 2A(α,β )+B(α,β )μ2 +μ2
2 = 0, (4.5.11)

where A, B ∈C∞ satisfy

A(α0,0) �= 0, B(α,β ) = (α−α0)B1(α,β )+βB2(β ),

B1, B2 ∈C∞, B1(α0,0) �= 0 .

We take

τ = β
√
|A(α,β )|, η = B(α,β ) . (4.5.12)

Then (4.5.11) is equivalent to

τ2 sgnA(α0,0)+ημ2 +μ2
2 = 0 . (4.5.13)

The discriminant of (4.5.13) is as follows:

D(η ,τ) = η2 −4τ2 sgnA(α0,0) .

We note that

μ1 = μ̃1(η ,τ,μ2) = μ2E(η ,τ,μ2)+ τ2F(η ,τ) ,

where E,F ∈ C∞ generically satisfy E(0,0,0) �= 0 and ∂E
∂τ (0,0,0) �= 0. Conse-

quently, our set of parameters in the space (η ,μ1,μ2) near (0,0,0) has the form(
η ,μ2E(η ,τ,μ2)+ τ2F(η ,τ),μ2

)
,

τ2 sgnA(α0,0)+ημ2 +μ2
2 = 0 ,
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where τ ∈ R is small. We consider the following two possibilities.

A2.1. sgnA(α0,0) = −1.

In this case, (4.5.13) has the form

τ2 = μ2(μ2 +η) .

Hence

τ = ±
√
μ2(μ2 +η),

where either η ≥ 0, μ2 ≥ 0, μ2 ≤−η or η ≤ 0, μ2 ≤ 0, μ2 ≥−η . Then

μ2E(η ,τ,μ2)+ τ2F(η ,τ) = μ2

(
E
(
η ,±√

μ2(μ2 +η),μ2

)
+ (μ2 +η)F

(
η ,±√

μ2(μ2 +η)
))

= H±(η ,μ2) .

We compute(
H+(η ,μ2)−H−(η ,μ2)

)
/μ2 = E

(
η ,

√
μ2(μ2 +η),μ2

)
+ (μ2 +η)F

(
η ,

√
μ2(μ2 +η)

)
− E

(
η ,−√

μ2(μ2 +η),μ2

)
− (μ2 +η)F

(
η ,−√

μ2(μ2 +η)
)

=
(∂E
∂τ

(η ,θ ,μ2)+(μ2 +η)
∂F
∂τ

(η ,θ)
)
.

2
√
μ2(μ2 +η) �= 0

for any sufficiently small η and μ2 �= 0, μ2 �= −η . We also note that H±(η ,μ2) = 0

for sufficiently small μ2, η only if μ2 = 0.

In summary, we obtain the following result.

Theorem 4.5.4. Generically in the case A2.1, the set of parameters (α,μ1,μ2) near
(α0,0,0), for which (4.5.4) has a homoclinic near γ (see (4.5.12)), is diffeomorphi-
cally foliated along the η–axis by four curves(

η ,H±(η ,μ2),μ2

)
where either η ≥ 0, μ2 ≥ 0, μ2 ≤−η or η ≤ 0, μ2 ≤ 0, μ2 ≥−η (Figure 4.6).

A2.2. sgnA(α0,0) = 1.

In this case, (4.5.13) has the form

τ2 +ημ2 +μ2
2 = 0 .
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Fig. 4.6 E(0,0) > 0.

Hence

τ = ±
√

−μ2(μ2 +η)

where either η ≥ 0, −η ≤ μ2 ≤ 0 or η ≤ 0, 0 ≤ μ2 ≤−η . Then

μ2E(η ,τ,μ2)+ τ2F(η ,τ) = μ2

(
E
(
η ,±√−μ2(μ2 +η),μ2

)
−(μ2 +η)F

(
η ,±√−μ2(μ2 +η)

))
= G±(η ,μ2) .

Similarly like the above, we see that G+(η ,μ2) �= G−(η ,μ2) for any sufficiently

small η and μ2 �= 0, μ2 �= −η . We also have that G±(η ,μ2) = 0 for sufficiently

small μ2, η only if μ2 = 0. We achieve the following result.

Theorem 4.5.5. Generically in the case A2.2, the set of parameters (α,μ1,μ2) near
(α0,0,0), for which (4.5.4) has a homoclinic near γ (see (4.5.12)), is diffeomorphi-
cally foliated along the η–axis by a closed loop

(η ,H±(η ,μ2),μ2)

where either η ≥ 0, −η ≤ μ2 ≤ 0 or η ≤ 0, 0 ≤ μ2 ≤ −η . We note that for η = 0

this is just the point (0,0) (Figure 4.7).

4.5.4 Bifurcation for 4-Parametric Systems

In this section, we consider the case m = 4 and the condition (vi) holds with d = 2.

Then the bifurcation equation (4.5.5) has the form

a11(α)μ1 +a12(α)μ2 +a13(α)μ3 +a14(α)μ4 +b1β 2 + h.o.t. = 0,

a21(α)μ1 +a22(α)μ2 +a13(α)μ3 +a24(α)μ4 +b2β 2 + h.o.t. = 0 .
(4.5.14)
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Fig. 4.7 E(0,0) > 0.

Since the codimension is 3 of the set of all 2×4–matrices with corank1 in the space

of 2× 4–matrices (cf Theorem 2.6.2), generically we may assume the invertibility

of the matrix A(α) for any α ∈ S1. Then by applying the implicit function theorem,

we obtain from (4.5.14)

μ1 = μ1(α,β ,μ3,μ4), μ2 = μ2(α,β ,μ3,μ4)

for α ∈ S1 and β , μ3, μ4 small. Moreover, (4.5.14) implies

μi(α,β ,0,0) = O(β 2), i = 1, 2 .

Generically we may assume(∂ 2μ1

∂ 2β
(α,0,0,0)

)2
+
(∂ 2μ2

∂ 2β
(α,0,0,0)

)2 �= 0 ∀ ,α ∈ S1 .

We take the change of parameters

μ1 ↔ A1(α)μ1 +A2(α)μ2, μ2 ↔−A2(α)μ1 +A1(α)μ2 ,

where

A1(α) =
∂ 2μ1

∂ 2β
(α,0,0,0)

/((∂ 2μ1

∂ 2β
(α,0,0,0)

)2
+
(∂ 2μ2

∂ 2β
(α,0,0,0)

)2)
,

A2(α) =
∂ 2μ2

∂ 2β
(α,0,0,0)

/((∂ 2μ1

∂ 2β
(α,0,0,0)

)2
+
(∂ 2μ2

∂ 2β
(α,0,0,0)

)2)
.

For these new parameters, we have

∂ 2μ1

∂ 2β
(α,0,0,0) �= 0 .

Then we solve for β small the equation
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∂μ1

∂β
(α,β ,μ3,μ4) = 0

to obtain β = β̃ (α,μ3,μ4), and by replacing β with β + β̃ (α,μ3,μ4), we may as-

sume that

μ1(α,β ,μ3,μ4) = μ̄1(α,μ3,μ4)+β 2μ̃1(α,β ,μ3,μ4)

where μ̃1(α,0,0,0) �= 0. Replacing β with β
√|μ̃1(α,β ,μ3,μ4)|, we obtain

μ1(α,β ,μ3,μ4) = μ̄1(α,μ3,μ4)±β 2 .

Now we take the change of parameters

μ1 ↔±(
μ1 − μ̄1(α,μ3,μ4)

)
, μ2 ↔ μ2 −μ2(α,0,μ3,μ4) .

In this way, we arrive at

μ1(α,β ,μ3,μ4) = β 2, μ2(α,β ,μ3,μ4) = βρ(α,β ,μ3,μ4)

where ρ ∈C∞ satisfies ρ(·,0,0,0) = 0. All the above changes of parameters give a

local diffeomorphism

Γ1 : S1 ×O1 → S1 ×R
4

foliated along S1, where O1 is an open neighbourhood of 0 ∈ R
4. Generically we

may assume that( ∂ρ
∂μ3

(α,0,0,0)
)2

+
( ∂ρ
∂μ4

(α,0,0,0)
)2 �= 0, ∀α ∈ S1 .

We take the change of parameters

μ3 ↔ D1(α)μ3 −D2(α)μ4, μ4 ↔ D2(α)μ3 +D1(α)μ4 ,

where

D1(α) =
∂ρ
∂μ3

(α,0,0,0)
/(( ∂ρ

∂μ3
(α,0,0,0)

)2
+
( ∂ρ
∂μ4

(α,0,0,0)
)2)

,

D2(α) =
∂ρ
∂μ4

(α,0,0,0)
/(( ∂ρ

∂μ3
(α,0,0,0)

)2
+
( ∂ρ
∂μ4

(α,0,0,0)
)2)

.

For these new parameters, we have

∂ρ
∂μ3

(α,0,0,0) �= 0 .

Now we split
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ρ(α,β ,μ3,μ4)−ρ(α,0,μ3,μ4)

)
/β = ρ1(α,β 2,μ3,μ4)+βρ2(α,β 2,μ3,μ4) ,

where ρi ∈ C∞, i = 1,2. For an open neighbourhood O2 of 0 ∈ R
4, we take a local

diffeomorphism

Γ2 : S1 ×O2 → S1 ×R
4

given by

Γ2(λ5,λ1,λ2,λ3,λ4)
=

(
λ5,λ1,λ2 −λ1ρ1(λ5,λ1,λ3,λ4),ρ(λ5,0,λ3,λ4)+λ1ρ2(λ5,λ1,λ3,λ4),λ4

)
,

which is foliated along S1. In summary, we arrive at the following theorem.

Theorem 4.5.6. Let d = 2, m = 4 in (4.5.1). Then generically the set of parameters
(α,μ1,μ2,μ3,μ4) near (α,0,0,0,0), α ∈ S1, for which (4.5.4) has a homoclinic
near γ , is diffeomorphically foliated along the α–axis by a surface of the Morin
singularity [49] given as follows:

(x1,x2,x3) → (x2
1,x1x2,x2,x3) . (4.5.15)

Proof. It is enough to take the composition of all the above changes of parameters

[44, p. 221]. ��
Remark 4.5.7. We note that singularity (4.5.15) is just the foliated Whitney umbrella

of [46]. Moreover, the foliation along the α–axis is nontrivial. In each α–section,

the diffeomorphism between the Morin singularity and the set of small parameters

μ ∈ R
4 for which (4.5.4) has a homoclinic solution near γ , does depend smoothly

on α . This is the main difference between our result and [46]. We do not restrict the

existence of homoclinic solutions of (4.5.1) near γ by supposing that they cross a

transverse section of γ at t = 0. We really investigate all possible homoclinic solu-

tions of (4.5.1) geometrically near γ . A similar nontrivial foliation along the α–axis

holds for the result of Section 4.5.3. Furthermore, the result of Section 4.5.3 does

not follow directly from Section 4.5.4. It is more delicate even for m = 1, d = 2 [47].

It seems that the case m = 3, d = 2 is more sophisticated than the case of Section

4.5.3. Finally, the result of Section 4.5.4 persists under further perturbations, that is,

generically we get the same result for m ≥ 4 with d = 2.

4.5.5 Autonomous Perturbations

In this section, we study the case d ≥ 3 of (4.5.1) with h independent of t. Then

the bifurcation equation (4.5.5) is independent of α , so we put α = 0 in (4.5.5).

Moreover, we assume that (4.5.3) is decoupled

ż j = f1, j(z j), ẏ = f2(y),

j = 1,2, . . . ,d −2, x = (z1,z2, . . . ,zd−2,y) .
(4.5.16)
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Hence

γ = (γ1,1,γ1,2, . . . ,γ1,d−2,γ2) ,

and (4.5.2) has the form

u̇ j = D f1, j(γ1, j)u j, j = 1,2, . . . ,d −2, (4.5.17)

v̇ = D f2(γ2)v . (4.5.18)

We suppose the following assumptions:

(H) The variational equations (4.5.17) with j = 1,2, . . . ,d−2, respectively (4.5.18),

have precisely 1, respectively 2, linearly independent solutions bounded on R.

Let

Wss = ×d−2
j=1

{
γ1, j(t) | t ∈ R

}×{
γ2(t) | t ∈ R

}
be a homoclinic manifold. Theorem 4.1.1 is applicable separately to (4.5.17) and

(4.5.18). Then a small transverse section Ψ at γ(0) to Wss in R
n is given, and we

study the existence of homoclinic solutions of (4.5.1) crossingΨ . This leads us to

the bifurcation equation (4.5.5) possessing now the form

Ωμ+β 2ω∗ + h.o.t. = 0 , (4.5.19)

where β ∈ R is small, ω ∈ R
d is given and Ω : R

m → R
d is a matrix. We suppose

that m ≥ 2d−1. Since the codimension is m−d +1 of the set of all d×m–matrices

with corank1 in the space of d ×m–matrices (cf Theorem 2.6.2), generically we

may assume that rankΩ = d and so by applying the implicit function theorem to

(4.5.19), we obtain

μ1 = μ1(β ,μ2), μ2 ∈ R
m−d is small ,

where μ1 ∈C∞ satisfies μ1(β ,0) = O(β 2). Consequently our set has the form{(
μ1(β ,μ2),μ2

) | β ∈ R, μ2 ∈ R
m−d are small

}
.

We introduce a mapping M : O → R
m given by

M(β ,μ2) =
(
μ1(β ,μ2),μ2

)
,

where O is an open neighbourhood of 0 ∈ R
m−d+1. The linearization DM(0) has

corank1. Let J1
(
R

m−d+1,Rm
)

be the 1–jet bundle (cf Section 2.6), and let S1 be a

submanifold of J1
(
R

m−d+1,Rm
)

defined by

S1 =
{
σ ∈ J1

(
R

m−d+1,Rm) | corankσ = 1
}

.

Since m− d + 1 ≥ d and according to Theorem 2.6.3, the codimension is d of the

set S1 in J1
(
R

m−d+1,Rm
)
, by recalling Theorems 2.6.6 and 2.6.7, we can assume
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that

j1M intersects transversally S1 at 0 , (4.5.20)

where

j1M : O → J1
(
R

m−d+1,Rm)
is the 1–jet mapping. By applying a result of [49] (see also a proof of [45, Theorem

4.6 on p. 179]), we immediately obtain the following theorem.

Theorem 4.5.8. Let d ≥ 3, m ≥ 2d − 1 in (4.5.1) when h is independent of t. Sup-
pose (4.5.16) and that the assumption (H) holds for (4.5.17), (4.5.18). Then generi-
cally, when rankΩ = d and (4.5.20) holds, the set of small parameters μ ∈ R

m for
which (4.5.1) has a homoclinic solution crossingΨ is diffeomorphic to a surface of
the Morin singularity given by(

x1,x2, . . . ,xm−d+1

)→ (
x2

1,x1x2,x1x3, . . . ,x1xd ,x2,x3, . . . ,xm−d+1

)
.

Remark 4.5.9. 1. Theorem 4.5.8 is valid also for d = 2, but then we recover the result

of [44] for m = 3. We note that the condition m ≥ 2d − 1 is a principal and not a

technical restriction. Decoupling of (4.5.3) into (4.5.16) is motivated by examples

of [1,10,50]: When several oscillators are weakly coupled then (4.5.16) is naturally

satisfied. On the other hand, we are not able to find a reasonable result for the case

d ≥ 3 in general (4.5.1) without assuming the decoupling condition (4.5.16).

2. We have a cross-cap singularity [45, p. 179] in Theorem 4.5.8 with m = 2d−1.

3. The transversality condition (4.5.20) is the condition on the 2–jet of M at

0 [45, p. 179].

4. Under the assumptions of Theorem 4.5.8, there is a familyΨγ(t) of small trans-

verse sections to Wss at γ(t) for any t sufficiently small so thatΨγ(0) =Ψ , the family

Ψγ(·) represents a tubular neighbourhood of Wss in R
n near γ(0) and the statement of

Theorem 4.5.8 holds also for anyΨγ(t).

Finally, we can study more degenerate Morin singularities of M. Let

Jk(
R

m−d+1,Rm), 2 ≤ k ∈ N

be the k–jet bundle, and let

jkM : O → Jk(
R

m−d+1,Rm)
be the k–jet mapping. Let S1k be the contact class in Jk

(
R

m−d+1,Rm
)

[45, p. 174].

We know by [49] that S1k is a submanifold of Jk
(
R

m−d+1,Rm
)

with codimension

kd. Let us suppose that jkM(0) ∈ S1k . Again by recalling Theorems 2.6.6 and 2.6.7,

we can assume that

jkM intersects transversally S1k at 0 , (4.5.21)

provided that m−d+1≥ kd, i.e. m≥ d(k+1)−1. Results of [49] give the following

theorem.
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Theorem 4.5.10. Let d ≥ 3, m ≥ d(k + 1)− 1, 2 ≤ k ∈ N in (4.5.1) when h is in-
dependent of t. Suppose (4.5.16) and that the assumption (H) holds for (4.5.17),
(4.5.18). If rankΩ = d and jkM(0) ∈ S1k holds with (4.5.21) as well, then the set of
small parameters μ ∈ R

m for which (4.5.1) has a homoclinic solution crossingΨ is
diffeomorphic to a surface of the Morin singularity given by

y j = x j, 1 ≤ j ≤ m−d

ym−d+ j =
k

∑
r=1

x( j−1)k+rx
r
m−d+1, 1 ≤ j ≤ d −1

ym =
k−1

∑
r=1

x(d−1)k+rx
r
m−d+1 + xk+1

m−d+1 .

The proof of Theorem 4.5.10 is outside the scope of this book.

4.6 Inflated ODEs

4.6.1 Inflated Carathéodory Type ODEs

Similar to Section 3.5, when we consider an orbit x(t), t ∈ R of an ε-inflation of a

differential equation ẋ = f (t,x), then we deal with a differential inclusion

ẋ(t) ∈ f (t,x(t))+ εBRn for almost each (f.a.e.) t ∈ R,

x(0) = x0 .
(4.6.1)

Here we suppose that f : R×R
n  → R

n satisfies Carathéodory type conditions and

it is globally Lipschitz continuous function in x (cf [51–53] and Section 2.5.8). We

are again not interested in the existence of one solution of (4.6.1), but in the set of

all trajectories of (4.6.1). So we consider a single-valued differential equation

ẋ(t) = f (t,x(t))+ εh(t), h(t) ∈ BRn f.a.e. t ∈ R ,

x(0) = x0 ,
(4.6.2)

where h ∈ L∞ (R,Rn) is considered as a parameter. This orbit of (4.6.2) is denoted

by x(h). Since f is globally Lipschitz continuous function, this orbit is unique and

continuously depends on h. Next, we define an ε-inflated orbit of (4.6.1) given by

xε(x0)(t) =
{

x(h)(t) | h ∈ L∞ (R,Rn) , h(t) ∈ BRn f.a.e. t ∈ R

}
.

Sets of xε(x0)(t) are contractible into themselves to x0(t) = x0(x0)(t) – the solution

of ẋ(t) = f (t,x(t)) f.a.e. t ∈ R, x(0) = x0. For t �= 0, the point x0(t) is in the interior

of xε(x0)(t). Moreover, xε(x0)(t) are compact.
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This approach of considering parameterized differential equations (4.6.2) instead

of differential inclusions (4.6.1) is used in [53] for investigation of an ε-inflated

dynamics near to a hyperbolic equilibrium of a differential equation. More precisely,

we construct analogues of the stable and unstable manifolds, which are typical of

a single-valued hyperbolic dynamics; moreover, we construct the maximal weakly

invariant bounded set and prove that all such sets are graphs of Lipschitz maps.

4.6.2 Inflated Periodic ODEs

In this section we extend the results of Section 3.5.2 to continuous time case, i.e. we

start from ODE

ẋ = h(t,x), (4.6.3)

where h ∈C1 (R×R
n,Rn) satisfies the following hypotheses:

(H1) h is 1-periodic in t ∈ R. Moreover, (4.6.3) possesses a nonconstant hyperbolic 1-

periodic solution γ0(t) along with a homoclinic one γ(t) so that limt→±∞ |γ(t)−
γ0(t)| = 0. Furthermore, the variational equation v̇ = Dh(t,γ(t))v has an expo-

nential dichotomy on R.

Let φ(t,x), φ(0,x) = x be the evolution operator of (4.6.3). By introducing the

Poincarè map f (x) = φ(1,x) of (4.6.3), diffeomorphism f has a hyperbolic fixed

point x0 = γ0(0) along with a transversal homoclinic orbit
{

x0
k

}
k∈Z

, x0
k = γ(k). So

Theorem 2.5.4 can be applied to (4.6.3).

Next, we consider a differential inclusion in R
n of the form

ẋ ∈ h(t,x)+q(t,x,BRn), (4.6.4)

where q ∈C (R×R
n ×R

n,Rn) is a 1-periodic mapping in t ∈ R, satisfying the fol-

lowing hypotheses:

(H2) There are positive constants λ ,Λ so that

|q(t,x, p)−q(t, x̃, p̃)| ≤ λ |x− x̃|+Λ |p− p̃| and q(t,x,0) = 0

for all t ∈ R,x, x̃ ∈ R
n, p, p̃ ∈ BRn .

We put L = L∞(R,Rn) with usual supremum norm ‖u‖∞ = ess supt∈R |u(t)| and

take u ∈ B := {u ∈ L |‖u‖∞ ≤ 1}. We remark (see Section 3.5.2) that (4.6.4) is

equivalent, i.e. it has the same solution set, to the family of ODE

ẋ = h(t,x)+q(t,x,u(t)), u ∈ B. (4.6.5)

Now we can repeat the arguments of Section 3.5.2. We sketch main steps for

the readers’ convenience. First we note that (4.6.5) is a continuous time analogy of
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(3.5.6). Then we fix ω ∈ N large and for any ξ ∈ E , ξ = {e j} j∈Z define a pseudo-

orbit xξ ∈ L as follows for t ∈ [2 jω, . . . ,2( j +1)ω), j ∈ Z:

xξ (t) :=

{
γ (t − (2 j +1)ω) , for e j = 1 ,

γ0 (t − (2 j +1)ω) , for e j = 0 .

Following the proof of Lemma 3.5.1 (cf Theorem 4.1.2), we have another result.

Lemma 4.6.1. There existω0 ∈N and a constant c > 0 so that for any ξ ∈ E , u∈L ,
there is a unique solution w ∈W 1,∞(R,Rn) of the linear system

ẇ = Dxh(t,xξ (t))w+u .

Moreover, w is linear in u and it holds ‖w‖∞ ≤ c‖u‖∞.

Following Theorems 3.5.2 and 3.5.3, we get

Theorem 4.6.2. Assume λ and Λ are sufficiently small. Then there are ω1 > ω0,
ρ0 > 0 and L̃ > 0 so that for any N " ω ≥ ω1 but fixed and for any ξ ∈ E , u ∈
B, there is a unique solution x(u,ξ ) ∈ L of (4.6.5) so that ‖x(u,ξ )− xξ‖∞ ≤ ρ0.
Moreover, ‖x(u1,ξ )− x(u2,ξ )‖∞ ≤ L̃‖u1 − u2‖∞ for any ξ ∈ E and u1,u2 ∈ B.
Furthermore, mapping x : B×E → L∞loc(R,Rn) is continuous, where L∞loc(R,Rn) is
the usual topological vector space endowed with a metric

d(u1,u2) := ∑
k∈N

‖u1 −u2‖k,∞

2|k|+1(1+‖u1 −u2‖k,∞)
,

where ‖ · ‖k,∞ are the supremum norms on [−k,k], k ∈ N.

Next, it is easy to verify

xσ(ξ )(t) = xξ (t +2ω) .

Then by the 1-periodicity of (4.6.4) in t and the uniqueness of x(u,ξ ), from Theorem

4.6.2, we get

x(ũ,σ(ξ ))(t) = x(u,ξ )(t +2ω), ∀t ∈ R

for ũ(t) := u(t +2ω), i.e. it holds

x(u,ξ )(2kω) = x
(
σ̃ k(u),σ k(ξ )

)
(0), ∀k ∈ Z (4.6.6)

for a shift homeomorphism σ̃ : B → B defined as σ̃(u) := ũ.

Let ϕu(t,s,y) be the evolution operator of (4.6.5) for t,s ∈ R, y ∈ R
n. Here for

simplicity we suppose a technical condition that h is also globally Lipschitz contin-

uous function in x. Then clearly

x(u,ξ )(2(k +1)ω) = ϕu (2(k +1)ω,2kω,x(u,ξ )(2kω)) , ∀k ∈ Z . (4.6.7)
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So (4.6.6) and (4.6.7) yield

x
(
σ̃ k+1(u),σ k+1(ξ )

)
(0) =ϕu

(
2(k +1)ω,2kω,x

(
σ̃ k(u),σ k(ξ )

)
(0)

)
, ∀k ∈Z ,

that is,

x
(
σ̃ k+1(u),σ(ξ )

)
(0) = ϕu

(
2(k +1)ω,2kω,x

(
σ̃ k(u),ξ

)
(0)

)
, ∀k ∈ Z .

(4.6.8)

Now, introducing the following mappings

Σ : B×E ×Z  → B×E ×Z

Σ (u,ξ ,k) := (u,σ(ξ ),k +1) ,

Φ : B×E ×Z  → B×R
n ×Z

Φ(u,ξ ,k) :=
(

u,x
(
σ̃ k(u),ξ

)
(0),k

)
,

F2ω : B×R
n ×Z  → B×R

n ×Z

F2ω(u,x,k) := (u,ϕu (2(k +1)ω,2kω,x) ,k +1) ,

and using (4.6.8), we obtain the following analogy of Theorem 3.5.5.

�

�
� �

Φ

B×E ×Z

Λ

Σ

F2ω

B×E ×Z

Λ

Φ

Fig. 4.8 Commutative diagram of inflated deterministic chaos.

Theorem 4.6.3. The diagram of Figure 4.8 is commutative for the set

Λ :=Φ (B×E ×Z) .

Moreover, mappings Σ and Φ are homeomorphisms.

For u = 0, diagram of Figure 4.8 is again reduced to diagram of Figure 2.1 in Section

2.5.2 with f (x) = ϕ0(1,0,x) for the 1-time, Poincarè map of (4.6.3). Finally, we can

extend very similarly Theorem 3.5.6 to (4.6.4), but we do not write it since that

extension is almost identical to Theorem 3.5.6.
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4.6.3 Inflated Autonomous ODEs

In general, the situation is different when (4.6.3) is autonomous. Let us consider an

ODE

ẋ = h(x), (4.6.9)

where h ∈C2 (Rn,Rn) satisfies the following assumption:

(A1) (4.6.9) possesses a solution γ(t) homoclinic to a hyperbolic equilibrium 0. More-

over, the variational equation v̇ = Dh(γ(t))v has the only bounded solution γ̇(t)
on R up to constant multiplies.

Assumption (A1) means that γ is nondegenerate in the sense that the stable and

unstable manifolds of 0 transversally intersect along γ (cf Section 2.5.4 and [7,54]).

Moreover, we know from Section 4.1.2 that (A1) implies that the adjoint variational

equation v̇ = −Dh(γ(t))∗v has the only bounded solution ψ(t) on R up to constant

multiplies.

Next, we consider a differential inclusion in R
n of the form

ẋ ∈ h(x)+ εq(x,BRn) (4.6.10)

where 0 �= ε ∈R is small and q∈C (Rn ×R
n,Rn) satisfies the following assumption:

(A2) There are positive constants λ ,μ so that

|q(x, p)−q(x̃, p̃)| ≤ λ |x− x̃|+μ|p− p̃|

for all x, x̃ ∈ R
n, p, p̃ ∈ BRn .

Again (4.6.10) is equivalent to the family of ODEs

ẋ = h(x)+ εq(x,u(t)), u ∈ B. (4.6.11)

For any fixed u ∈ B, (4.6.11) is the standard bifurcation problem studied in Section

4.1.3. Consequently, we can state the following result.

Theorem 4.6.4. There is an ε0 > 0 so that for any |ε| < ε0 and u ∈ B there is a
unique bounded solution xu of (4.6.11) with a small amplitude. Next, let us set

Mu(α) :=
∫ ∞

−∞
ψ∗(t +α)q(γ(t +α),u(t))dt . (4.6.12)

Then there is an ε0 ≥ ε0 = ε0(u) > 0 so that for any 0 < |ε| < ε0 it holds

(i) If there is an α0 ∈R so that Mu(α0) = 0 and Mu is strictly monotone at α0, then
there is a unique bounded solution x of (4.6.11) so that

‖x− γ(·+α0)‖∞ → 0
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as ε → 0, and x is asymptotic to xu as |t| → ∞. Moreover there is a Smale
horseshoe type chaos when u is almost periodic.

(ii) If Mu is changing the sign over R, then there is a bounded solution x of (4.6.11)

orbitally near to γ and x is asymptotic to xu as |t| → ∞. Moreover there is a
Smale semi-horseshoe type chaos when u is almost periodic.

(iii) If infR |Mu|> 0 then there is no bounded solution of (4.6.11) near γ and asymp-
totic to xu as |t| → ∞.

Remark 4.6.5. B contains two disjoint (possible empty) open subsets B1 and B2

which are satisfied either of (ii) or (iii) of Theorem 4.6.4.

Example 4.6.6. Let us consider an ε-inflated weakly damped Duffing equation

ẍ ∈ x−2x3 + ε(−δ ẋ+[−1,1])

for a δ > 0. Then γ(t) = (γ(t), γ̇(t)), γ = sech t, ψ(t) = (−γ̈(t), γ̇(t)), and thus

(4.6.12) has the form

Mu(α) =
∫ ∞

−∞
γ̇(t +α)(−δ γ̇(t +α)+u(t))dt = −2

3
δ +

∫ ∞

−∞
γ̇(t +α)u(t)dt.

Using

|Mu(α)| ≥ 2

3
δ −‖u‖∞

∫ ∞

−∞
|γ̇(t +α)|dt =

2

3
δ −2‖u‖∞ ,

we see that if ‖u‖∞ < min
{
δ
3 ,1

}
then u ∈ B2. Particularly, for δ > 3 we get B =

B2. If 0 < δ ≤ 3, then we take u(t) = −sgn t. Hence

M−sgn(α) = −2

3
δ −

∫ ∞

−∞
γ̇(t +α)sgn t dt = −2

3
δ +2sechα .

We see that if δ = 3 then −sgn t ∈B\(B1∪B2) and if 0 < δ < 3 then −sgn t ∈B1.

Finally we take u(t) = θ cos t for 0 ≤ θ ≤ 1. Hence

Mθ cos(α) = −2

3
δ +θ

∫ ∞

−∞
γ̇(t +α)cos t dt = −2

3
δ −πθ sech

π
2

sinα .

If 0 < δ < 3
2π sech π2

.= 1.87806 then θ cos t ∈ B2 for 0 ≤ θ < 2δ
3π cosh π2 , θ cos t ∈

B1 for 1 ≥ θ > 2δ
3π cosh π2 and 2δ

3π cosh π2 cos t ∈ B \ (B1 ∪B2). If δ = 3
2π sech π2

then θ cos t ∈ B2 for 0 ≤ θ < 1 and cos t ∈ B \ (B1 ∪B2). If δ > 3
2π sech π2 then

θ cos t ∈B2 for 0 ≤ θ ≤ 1. These inequalities are balance between the damping and

forcing to either get chaos, or exclude it near the homoclinic solution.

Finally we remark that the inflated chaos could be extended also to the autonomous

case (4.6.10) under the assumption

(A3) (4.6.9) possesses a hyperbolic nonconstant periodic solution x0(t) with a transver-

sal homoclinic point z∈W s(x0)∩W u(x0), i.e. TzW s(x0)∩TzW u(x0)= span{h(z)}.
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The method of [55] could be used together with our parameterized approach but

this is outside scope of this book.

4.7 Nonlinear Diatomic Lattices

4.7.1 Forced and Coupled Nonlinear Lattices

We end this chapter with infinite dimensional ODEs [56, 57]. Let us consider a

model of two one-dimensional interacting sublattices of harmonically coupled pro-

tons and heavy ions [58–61]. It represents the Bernal-Flower filaments in ice or

more complex biological macromolecules in membranes, in which only the degrees

of freedom that contribute predominantly to proton mobility have been conserved.

In these systems, each proton lies between a pair of “oxygens”. The proton part of

the Hamiltonian is

Hp =∑
n

1

2
mu̇2

n +U(un)+
1

2
k1(un+1 −un)2 ,

where un denotes the displacement of the nth proton with respect to the center of

the oxygen pair and k1 is the coupling between neighboring protons. Furthermore,

U(u) = ξ0(1−u2/d2
0)2 is the double-well potential with the potential barrier ξ0, and

2d0 is the distance between its two minima. Finally, m is the mass of protons.

Similarly, the oxygen part of the Hamiltonian is

HO =∑
n

1

2
Mρ̇2

n +
1

2
MΩ 2

0ρ2
n +

1

2
K1(ρn+1 −ρn)2 ,

where ρn is the displacement between two oxygens, M is the mass of oxygens,

Ω0 is the frequency of the optical mode and K1 is the harmonic coupling between

neighboring oxygens.

The last part in the Hamiltonian of the model arises from the dynamical interac-

tion between two sublattices and it is given by

Hint =∑
n
χρn(u2

n −d2
0) ,

where χ measures the strength of the coupling. The Hamiltonian of the model is the

sum of these three contributions H = Hp +HO +Hint .

We are also interested in the influence of external field and damping. For the

model studied here, since a spatially homogeneous field is not coupled to the optical

motion ρn of the oxygens, a force term has to be considered only in the equation of

motion of the protons.
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In summary, we consider in this section the following coupled infinite chain of

oscillators

ün +Γ1u̇n =
k1

m

(
un+1 −2un +un−1

)
+

4ξ0

md2
0

un

(
1− u2

n

d2
0

)
−2

χ
m
ρnun +

F
m

,

ρ̈n +Γ2ρ̇n =
K1

M

(
ρn+1 −2ρn +ρn−1

)−Ω 2
0ρn − χ

M
(u2

n −d2
0) ,

(4.7.1)

where F is the external force on the protons and Γ1, Γ2 are the damping coefficients

for the proton and oxygen motions.

We are interested in the existence of homoclinic and chaotic spatially localized
solutions of (4.7.1). The existence of time periodic spatially localized solutions, the

so-called breathers are studied in [62–68].

4.7.2 Spatially Localized Chaos

We assume in this section that Γ1 = εδ1, Γ2 = εδ2, F/m = ε f (t), k1/m = εμ1,

K1/M = εμ2, −2χ/m = εμ3, −χ/M = εμ4 for a small parameter ε > 0, constants

δ1 ≥ 0, δ2 > 0, μi, i = 1,2,3,4 and a C1-smooth T -periodic function f (t). Putting

a2 :=
4ξ0

md4
0

,

(4.7.1) has the form

ün + εδ1u̇n +a2un
(
u2

n −d2
0

)
= εμ1

(
un+1 −2un +un−1

)
+ εμ3ρnun + ε f (t) ,

ρ̈n + εδ2ρ̇n +Ω 2
0ρn = εμ2

(
ρn+1 −2ρn +ρn−1

)
+ εμ4(u2

n −d2
0) .

(4.7.2)

We first consider the system

ü+ εδ1u̇+a2u
(
u2 −d2

0

)
= εμ3ρu+ ε f (t) ,

ρ̈+ εδ2ρ̇+Ω 2
0ρ = εμ4(u2 −d2

0) .
(4.7.3)

The equation

u̇ = v, v̇ = a2(d2
0 −u2)u

has a hyperbolic equilibrium u = v = 0 and centers u = ±d0, v = 0 [35]. Further-

more, there are two symmetric homoclinic solutions (γ(t), γ̇(t)) and (−γ(t),−γ̇(t))
for γ(t) =

√
2d0 sechad0t. Now we make the change of variable ρ ↔ ρ − εμ4d2

0

Ω2
0

in

(4.7.3) to get

ü+ εδ1u̇+a2u
(
u2 −d2

0

)
= εμ3

(
ρ− εμ4d2

0

Ω 2
0

)
u+ ε f (t) ,

ρ̈+ εδ2ρ̇+Ω 2
0ρ = εμ4u2 .
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To study a small T -periodic solution of the above system, we take its equivalent

form

ü+ εδ1u̇+a2u
(
u2 −d2

0

)
=

εμ3

(
εμ4

Ωε

∫ t

−∞
e−εδ2(t−s)/2 sinΩε(t − s)u2(s)ds− εμ4d2

0

Ω 2
0

)
u+ ε f (t)

(4.7.4)

where Ωε =
√
Ω 2

0 −
ε2δ 2

2
4 and 0 < ε < 2Ω0/δ2. Now it is not difficult to prove for

(4.7.4) by using the implicit function theorem the existence of a unique small T -

periodic solution uε(t) = O(ε), ρε(t) = O(ε) of (4.7.3) . Then we make in (4.7.2)

the change of variables un ↔ un +uε , ρn ↔ ρn +ρε to get the chain

u̇n = vn,

v̇n + εδ1vn −a2und2
0 +a2u3

n +3a2u2
nuε +3a2unu2

ε

= εμ1

(
un+1 −2un +un−1

)
+ εμ3

(
ρnun +ρnuε +ρεun

)
;

ρ̇n = ψn,

ψ̇n + εδ2ψn +Ω 2
0ρn = εμ2

(
ρn+1 −2ρn +ρn−1

)
+ εμ4(u2

n +2uεun) .

(4.7.5)

We consider (4.7.5) as an ODE on the Hilbert space

H :=

{
z = {(un,vn,ρn,ψn)}n∈Z

| ∑
n∈Z

(
u2

n + v2
n +ρ2

n +ψ2
n
)

< ∞

}

with the norm ‖z‖=
√
∑

n∈Z

(u2
n + v2

n +ρ2
n +ψ2

n ). The non-homogeneous linearization

of (4.7.5) at z = 0 has the form

u̇n = vn +hn1(t),

v̇n + εδ1vn +un(3a2u2
ε −a2d2

0 − εμ3ρε),

−εμ1

(
un+1 −2un +un−1

)
,−εμ3ρnuε = hn2(t) ;

ρ̇n = ψn +gn1(t),

ψ̇n + εδ2ψn +Ω 2
0ρn − εμ2

(
ρn+1 −2ρn +ρn−1

)−2εμ4uεun = gn2(t),

(4.7.6)

with w(t) =
{
(hn1(t),hn2(t),gn1(t),gn2(t))

}
n∈Z

∈ Cb(R,H) – the Banach space of

all bounded continuous functions from R to H with the norm |w| = sup
R

‖w(t)‖. We

look for a solution z ∈ Cb(R,H) of (4.7.5) for ε > 0 small. For this reason, we



4.7 Nonlinear Diatomic Lattices 159

consider the Hilbert spaces H2 := H1 ×H1 and

H1 :=

{
{un}n∈Z | ∑

n∈Z

u2
n < ∞

}

with the corresponding standard norms and scalar products. We first study the equa-

tion

ρ̇ = ψ+g1, ψ̇+ εδ2ψ+Aερ = g2 (4.7.7)

on H2 for (g1,g2) ∈Cb(R,H2) and

Aερ =
{
Ω 2

0ρn − εμ2(ρn+1 −2ρn +ρn−1)
}

n∈Z
.

Clearly Aε : H1 → H1 is symmetrically and positively definite for ε small. Then for

any small ε , there is a symmetrically and positively definite Bε : H1 → H1 so that

B2
ε = Aε − ε

2δ 2
2

4
I .

We take the operators cosBε t and sinBε t from H1 to H1. For any ρ ∈H1, we consider

the function

φ(t) := |cosBε tρ|2 + |sinBε tρ|2 .

Then we have

φ̇(t) = −2〈cosBε tρ,Bε sinBε tρ〉+2〈sinBε tρ,Bε cosBε tρ〉 = 0 .

Hence

|cosBε tρ|2 + |sinBε tρ|2 = ρ ,

and then ‖cosBε t‖ ≤ 1 and ‖sinBε t‖ ≤ 1. Now, the equation

ρ̇ = ψ, ψ̇+ εδ2ψ+Aερ = 0 (4.7.8)

has the form ρ̈+ εδ2ρ̇+Aερ = 0 which has the general solution

e−εδ2t/2
[

cosBε tρ1 + sinBε tρ2

]
for ρ1,2 ∈ H1. Consequently, the fundamental solution of (4.7.8) has the form

Vε(t) = e−εδ2t/2Wε(t)

with uniformly bounded Wε(t) for ε > 0 small. Thus, the only bounded solution of

(4.7.7) has the form

(ρ(t),ψ(t)) =
∫ t

−∞
e−εδ2(t−s)/2Wε(t − s)(g1(s),g2(s)) ds . (4.7.9)

Hence



160 4 Chaos in Ordinary Differential Equations

|(ρ,ψ)| ≤ K1|(g1,g2)|/ε
for a constant K1 > 0 independent of ε > 0 small. Furthermore, it is not difficult to

see that the linear system

u̇n = vn +hn1(t), v̇n + εδvn −a2d2
0un = hn2(t)

has a unique solution {(un(t),vn(t))}n∈Z ∈Cb(R,H2) so that∣∣{(un(t),vn(t))}n∈Z

∣∣≤ K2

∣∣{(hn1(t),hn2(t))}n∈Z

∣∣
for a constant K2 > 0 independent of ε > 0 small. Now we turn back to (4.7.6). Sum-

marizing the above arguments, we see, by using the Banach contraction mapping

principle 2.2.1 for ε > 0 small, that (4.7.6) has for any w(t) ∈ Cb(R,H) a unique

solution z ∈ Cb(R,H) so that |z| ≤ K3|w|/ε for a constant K3 > 0 independent of

ε > 0 small. Since the system (4.7.6) is T -periodic, we get from Lemma 2.5.5 that

(4.7.6) has an exponential dichotomy on R in the space H for any ε > 0 sufficiently

small. Consequently, we get another result.

Theorem 4.7.1. The T -periodic solution un(t) = uε(t), ρn(t) = ρε(t) ∀n ∈ Z of
(4.7.2) is hyperbolic in H for any ε > 0 sufficiently small, i.e. the zero equilibrium
of (4.7.5) in H is hyperbolic.

Now we look for more complicated solutions of (4.7.2). For this reason, we shift

in (4.7.5) the time t ↔ t +α to get the system

u̇n = vn

v̇n + εδ1vn −a2und2
0 +a2u3

n +3a2u2
nuε(t +α)+3a2unu2

ε(t +α)

= εμ1

(
un+1 −2un +un−1

)
+ εμ3

(
ρnun +ρnuε(t +α)+ρε(t +α)un

)
,

ρ̇n = ψn

ψ̇n + εδ2ψn +Ω 2
0ρn = εμ2

(
ρn+1 −2ρn +ρn−1

)
+ εμ4(u2

n +2uε(t +α)un) .

(4.7.10)

We look for a solution of (4.7.10) for ε > 0 small so that un ∼ 0, vn ∼ 0 for n �= 0

and u0 ∼ γ , v0 ∼ γ̇ . Let (ρ0,ψ0) = {(ρ0
n ,ψ0

n )}n∈Z be the unique bounded solution

of (4.7.7) for g1 = 0 and g2 = {gn2}n∈Z with gn2 = 0 for n �= 0 and g02 = εμ4(γ2 +
2uε(t +α)γ). Let us put u0

n = v0
n = 0 for n �= 0 and u0

0 = γ , v0
0 = γ̇ . Now we make

in (4.7.10) the change of variables un ↔ un +u0
n, vn ↔ vn +v0

n, ρn ↔ ρn +ρ0
n , ψn ↔

ψn +ψ0
n to get for n �= 0 the system

u̇n = vn,

v̇n + εδ1vn −a2und2
0 +a2u3

n +3a2u2
nuε(t +α)+3a2unu2

ε(t +α)
= εμ1

(
un+1 +u0

n+1 −2un +un−1 +u0
n−1

)
+ εμ3

(
(ρn +ρ0

n )un +(ρn +ρ0
n )uε(t +α)+ρε(t +α)un

)
; (4.7.11)
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ρ̇n = ψn,

ψ̇n + εδ2ψn +Ω 2
0ρn = εμ2

(
ρn+1 −2ρn +ρn−1

)
+εμ4(u2

n +2uε(t +α)un) .

For the mode n = 0, we first note that the system

u̇0 = v0, v̇0 +a2(3γ2 −d2
0)u0 = h(t)

for h(t) ∈Cb(R,R) has a solution (u0,v0) ∈Cb(R,R2) (see Section 4.1) if and only

if
∫ ∞
−∞ h(t)γ̇(t)dt = 0 and such a solution is unique if

∫ ∞
−∞ u0(t)γ̇(t)dt = 0. Conse-

quently, for the mode n = 0 we get from (4.7.10) the equations

u̇0 = v0,

v̇0 +a2(3γ2 −d2
0)u0 = h(t)− γ̇(t)

∫ ∞

−∞
h(t)γ̇(t)dt

/∫ ∞

−∞
γ̇(t)2 dt ,

∫ ∞

−∞
u0(t)γ̇(t)dt = 0;

ρ̇0 = ψ0

ψ̇0 + εδ2ψ0 +Ω 2
0ρ0 = εμ2

(
ρ1 −2ρ0 +ρ−1

)
+εμ4(u2

0 +2u0γ+2uε(t +α)u0) ,

(4.7.12)

and ∫ ∞

−∞
h(t)γ̇(t)dt = 0 (4.7.13)

for

h(t) = −a2(u3
0 +3u2

0γ)− εδ1γ̇−3a2(u0 + γ)2uε(t +α)− εδ1v0

− 3a2(u0 + γ)u2
ε(t +α)+ εμ1

(
u1 −2(u0 + γ)+u−1

)
(4.7.14)

+ εμ3

(
(ρ0 +ρ0

0 )(u0 + γ)+(ρ0 +ρ0
0 )uε(t +α)+ρε(t +α)(u0 + γ)

)
.

Now for ε > 0 small, we can solve (4.7.12) and (4.7.12) to get the solution

z =
{(

un(t),vn(t),ρn(t),ψn(t)
)}

n∈Z

∈Cb(R,H),

so that z = O(ε). Then we put this z into (4.7.15) to get the function hε,α ∈Cb(R,R).
We note hε,α(t) = O(ε) uniformly for ε > 0 small and α, t ∈ R. Clearly hε,α(t) is

T -periodic in α . Then from (4.7.13) we get the bifurcation equation

Q(ε,α) :=
1

ε

∫ ∞

−∞
hε,α(t)γ̇(t)dt = 0 .
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If we put

lim
ε→0

uε(t)/ε = w(t), lim
ε→0

ρε(t)/ε = ζ (t),

then from (4.7.3) we get

ẅ−a2d2
0w = f (t), ζ̈ +Ω 2

0ζ = −μ4d2
0 .

Hence ζ = −μ4d2
0/Ω 2

0 and

w(t) = − 1

2ad0

∫ t

−∞
e−ad0(t−s) f (s)ds− 1

2ad0

∫ ∞

t
ead0(t−s) f (s)ds . (4.7.15)

Clearly w(t) is T -periodic. Furthermore, since γ(t) → 0 as t →±∞ exponentially,

from formula (4.7.9) we see that lim
ε→0

(ρ0,ψ0)/ε = {(ρ0n,ψ0n)}n∈Z with ρ0n =ψ0n =

0 for n �= 0 and

ρ̈00 +Ω 2
0ρ00 = μ4γ(t)2 ,

i.e. ρ00(t) =
μ4

Ω0

∫ t
−∞ sinΩ0(t − s)γ(s)2 ds. In summary, from (4.7.15) we get

M(α) := Q(0,α) =
∫ ∞

−∞

[
−δ1γ̇(t)−3a2γ(t)2w(t +α)−2μ1γ(t)

]
γ̇(t)dt

= −4

3
δ1ad3

0 +a2

∫ ∞

−∞
γ(t)3ẇ(t +α)dt .

(4.7.16)

Clearly M(α) is T -periodic. We note that similarly we can prove that

lim
ε→0

∂
∂α

Q(ε,α)/ε = M′(α)

uniformly for α ∈ R. In summary, we get another result.

Theorem 4.7.2. Let M be given by (4.7.16). If there is a simple zero α0 of M, i.e.
M(α0) = 0 and M′(α0) �= 0, then (4.7.2) has for any ε > 0 small a bounded solution
z(t) with small un,ρn for n �= 0 and (u0,ρ0) near (γ(t −α0),0).

Now, it is not difficult to prove like in the finite-dimensional case (cf Section 4.1)

that (
z(t)−

{
(uε(t), u̇ε(t),ρε(t), ρ̇ε(t))

}
n∈Z

)
→ 0

is exponentially fast as t →±∞ in H. Moreover, near z(t) we can construct the Smale

horseshoe. Consequently, we get in this case the chaos in (4.7.2) with corresponding

infinitely many periodic orbits with arbitrarily large periods. This Smale horseshoe

of (4.7.2) is spatially localized but not exponentially like in breathers.

To be more concrete, we take

f (t) =ϒ cosωt

forϒ > 0. Then (4.7.15) gives
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w(t) = − ϒ
ω2 +a2d2

0

cosωt ,

and the formula (4.7.16) has now the form

M(α) = −4

3
δ1ad3

0 +
ωϒπ

√
2

a
sech

ωπ
2ad0

sinωα .

Consequently, if

8
√

2δ1ξ0 < 3mωϒπd0 sech
ωd0π

√
m

4
√
ξ0

, (4.7.17)

then M(α) has a simple zero, so (4.7.2) is chaotic for any ε > 0 small. We note

that the inequality (4.7.17) gives sufficient conditions between the magnitude of the

forcing ϒ and the damping δ1 in order to get chaos in (4.7.2) for ε > 0 small. So

chaos is generated by the proton part of (4.7.2). If δ1 = 0 then (4.7.2) is always

chaotic for f (t) =ϒ cosωt. Furthermore, if Γ1 > 0, Γ2 > 0 and F = 0, i.e. there is no

forcing but damping then it is not difficult to prove that (4.7.1) has no nonconstant

periodic solutions in the space H.

Finally, we note that similarly we can study the case when more than one modes

are excited. We do not carry out here such computations [64].
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29. M. FEČKAN & J. GRUENDLER: Transversal bounded solutions in systems with normal
and slow variables, J. Differential Equation 165 (2000), 123–142.
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