
Chapter 3
Chaos in Discrete Dynamical Systems

This chapter is devoted to functional analytical methods for showing chaos in dis-

crete dynamical systems involving difference equations, diffeomorphisms, regular

and singular ODEs with impulses, and inflated mappings as well.

3.1 Transversal Bounded Solutions

3.1.1 Difference Equations

In this section, we consider difference equations of the form

xk+1 = f (xk)+h(xk,μ,k) (3.1.1)

with xk ∈ R
n, μ ∈ R

m. We make the following assumptions of (3.1.1):

(i) f , h are C3-smooth in all non-discrete arguments.

(ii) f (0) = 0 and h(·,0, ·) = 0.

(iii) The eigenvalues of D f (0) are non-zero and all lie off the unit circle.

(iv) The unperturbed equation xk+1 = f (xk) has a homoclinic solution. That is, there

exists a nonzero sequence γ = {γk}k∈Z so that limk→±∞ γk = 0 and γk+1 = f (γk).
Moreover, D f (γk), k ∈ Z are nonsingular.

Our aim is to find a set of parameters μ for which (3.1.1) has a transver-

sal bounded solution {x̄k}k∈Z near {γk}k∈Z, i.e. the linearization of (3.1.1) along

{x̄k}k∈Z given by

vk+1 =
(
D f (x̄k)+Dxh(x̄k,μ,k)

)
vk, k ∈ Z

has the only bounded solution vk = 0, ∀k ∈Z (cf Lemma 2.5.2). When h is indepen-

dent of k, i.e. (3.1.1) is a mapping, we know from Section 2.5.2 that the existence of

such a bounded solution means the existence of a transversal homoclinic orbit and
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thus chaos. In general, (3.1.1) can be associated with quasiperiodically perturbed

systems [1–3]. To derive these sets, higher dimensional Melnikov mappings are in-

troduced. Simple zero points of those mappings give wedge-shaped regions in R
m

for μ representing the desired sets.

We establish a complete analogy between the Melnikov theories for difference

equations and ordinary differential equations (cf Section 4.1). Two-dimensional

mappings are considered in [2, 4, 5]. Mappings in arbitrary finite dimensions are

considered in [6–8] but the dimension is 1 in [8], which is released in this section,

for the intersection of tangent spaces and stable and unstable manifolds along a

homoclinic solution to a hyperbolic fixed point of the unperturbed mapping, and

while the transversality is not proved in [6]. In this section, no restriction is given on

the dimension of the phase space or on the dimension of intersection of stable and

unstable manifolds. Other types of homoclinic bifurcations are given in [9].

3.1.2 Variational Equation

The norm and scalar product of R
n are denoted by | · |, 〈·, ·〉, respectively. Let us

consider the unperturbed equation

xk+1 = f (xk) . (3.1.2)

For (3.1.2) we adopt the standard notation W s, W u for the local stable and local

unstable manifolds, respectively, of the origin and ds = dimW s, du = dimW u. Since

x = 0 is a hyperbolic equilibrium, {γk}k∈Z must approach the origin along W s as

k → +∞ and along W u as k → −∞. By the variational equation of (3.1.2) along

{γk}k∈Z we mean the linear difference equation

uk+1 = D f (γk)uk . (3.1.3)

We note that as k →±∞, D f (γk)→ D f (0), a hyperbolic matrix. Thus, the following

result yields two solutions for (3.1.3), one for k ∈ Z+ and one for k ∈ Z−.

Lemma 3.1.1. Let k → A(k) be a matrix valued function on Z+ and suppose there
exists a constant nonsingular matrix, A0, and a scalar a > 0 so that supk∈Z+ |A(k)−
A0|e4ak < ∞. Then there exists a fundamental solution, X(k) for k large, to the dif-
ference equation xk+1 = A(k)xk so that lim

k→∞
X(k)A−k

0 = I.

Proof. The proof is very similar to [10, Lemma 3.1.1] and [11, 1. Lemma], but we

present it here for the readers’ convenience. Let P be a matrix so that P−1A0P = J,

where J is the Jordan form with the block-diagonal form J = diag(J1,J2, . . . ,Jr).
Let ki be the order of Ji and λi is the eigenvalue corresponding to Ji. We arrange the

Jordan blocks so that |λi| ≤ |λi+1|. By putting y = P−1x and B(k) = P−1A(k)P, the

equation xk+1 = A(k)xk has the form

yk+1 = B(k)yk = Jyk +(B(k)− J)yk . (3.1.4)
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We fix one block Ji and define pi = k1 + k2 + · · ·+ ki−1. Similarly we define qi
satisfying |λqi−1

| < |λi| and |λqi | = |λi|. We split the matrix Jk into U1(k),U2(k),
where

U1(k) = (Jk
1 ,Jk

2 , . . . ,Jk
qi−1

,0, . . . ,0),

U2(k) = (0,0, . . . ,0,Jk
qi
, . . . ,Jk

r ) .

Since the spectrum σ(U1(1)) is contained inside the circle with the radius |λqi−1
|,

we can assume by [12, 3.126 Lemma]

|U1(1)| ≤ |λqi−1
|+b ≤ |λi|−b

for b > 0 sufficiently small. Consequently, we obtain for k ≥ 0 that |U1(k)| ≤
|U1(1)|k ≤ (|λi|−b)k. Since σ(U2(−1)) =

(
σ(U2(1))

)−1
, we similarly have

|U2(k)| ≤ (|λi|−b)k, ∀k ∈ Z−

again for b > 0 sufficiently small. Let ek be the k-th column of the n× n identity

matrix. By fixing k0 ∈N sufficiently large, let us define a mapping Tj for k = k0,k0 +
1, . . . and for j ∈ {1,2, . . . ,ki} as follows:

Tj(y)k = Jkepi+ j +
k−1

∑
j=k0

U1(k−1− j)(B( j)− J)y j −
∞

∑
j=k

U2(k−1− j)(B( j)− J)y j .

(3.1.5)

We consider this mapping on the Banach space:

Y =
{{y j}∞j=k0

: y j ∈ R
n, sup

j≥k0

∣∣y j
∣∣(|λi|+b)− j < ∞

}
with the norm |||y||| = supk≥k0

|yk|(|λi|+ b)−k for y = {y j}∞j=k0
. To show that Tj is

well defined, we compute

sup
k

|Jkepi+ j|(|λi|+b)−k < ∞ ,

since |Jk
i | < c1(|λi|+d)k for a 0 < d < b and c1 > 0. By taking b > 0 satisfying

|λi|+b
|λi|−b

< e4a ,

we have for a constant c > 0

sup
k

k−1

∑
j=k0

∣∣U1(k−1− j)(B( j)− J)y j
∣∣(|λi|+b)−k

≤ c(|λi|−b)−1|||y|||sup
k

( |λi|−b
|λi|+b

)k k−1

∑
j=k0

( |λi|+b
|λi|−b

e−4a
) j

< ∞
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and

sup
k

∞

∑
j=k

∣∣U2(k−1− j)(B( j)− J)y j
∣∣(|λi|+b)−k ≤

≤ csup
k

∞

∑
j=k

(|λi|−b)k−1− j|||y|||(|λi|+b) j e−4a j(|λi|+b)−k

≤ c(|λi|−b)−1|||y|||sup
k

( |λi|−b
|λi|+b

)k ∞

∑
j=k

( |λi|+b
|λi|−b

e−4a
) j

< ∞ .

Consequently, we arrive at |||Tj(y)||| < ∞, so Tj : Y → Y . Furthermore, we have

∀ε > 0 ∃n0 > k0 :
( |λi|−b
|λi|+b

)k
< ε ∀k > n0 .

By using this property, the contraction of Tj follows the same arguments as the well

defined Tj. Consequently by Banach fixed point theorem 2.2.1, Tj has a fixed point

y( j) satisfying by (3.1.5)

|y( j)k − Jkepi+ j| ≤ K0(|λi|−b)k

for a constant K0 > 0. By defining the matrix Yi(k) of the order n× ki with y( j)k in

column j, we obtain

|Yi(k)−Fi(k)|(|λi|−b)−k ≤ K0 ,

where Fi(k) is the n× ki-matrix with Jk
i in rows pi +1 through pi + ki and all other

rows zero. Let Gi be the identity matrix of order ki ×ki. Then limk→∞Yi(k)J−k
i = Gi

and Gi is the matrix of order n×ki with Gi in rows pi +1 through pi +ki and all other

rows zero. This construction is done for the block Ji. To get the result, we take the

n×n matrix Y (k) with Yi(k) in columns pi +1 through pi + ki for i = 1,2, . . . ,r. So

limk→∞Y (k)J−k = I. Finally, by putting X(k) = PY (k)P−1 we arrive at X(k +1) =
A(k)X(k) satisfying

X(k)A−k
0 → I as k → ∞ .

The proof is finished. ��
Our next result matches at k = 0 the two solutions of (3.1.3) provided by the

preceding lemma. The proof of the following theorem is a slight extension of [10,

Theorem 3.1.2] and [11, Theorem. 2], so we omit the proof.

Theorem 3.1.2. Let ds = dimW s, du = dimW u for (3.1.3) and let Is, Iu denote the
identity matrices of order ds, du respectively. There exists a fundamental solution
U(k), k ∈Z for (3.1.3) along with constants M > 1, K0 > 0 and four projections Pss,
Psu, Pus, Puu so that Pss +Psu +Pus +Puu = I and the following hold:

(i) |U(t)(Pss +Pus)U(s)−1| ≤ K0M(s−t) for 0 ≤ s ≤ t,
(ii) |U(t)(Psu +Puu)U(s)−1| ≤ K0M(t−s) for 0 ≤ t ≤ s,
(iii) |U(t)(Pss +Psu)U(s)−1| ≤ K0M(t−s) for t ≤ s ≤ 0,
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(iv) |U(t)(Pus +Puu)U(s)−1| ≤ K0M(s−t) for s ≤ t ≤ 0.

Also, rankPss = rankPuu = d for some positive integer d.

In the language of dichotomies (cf Section 2.5.1) we see that Theorem 3.1.2

provides a two-sided exponential dichotomy. For k →−∞ an exponential dichotomy

is given by the fundamental solution U(k) and the projection Pus + Puu while for

k → +∞ such is given by U(k) and Pss +Pus.

Let u j(k) denote column j of U(k) and assume that these are numbered so that

Puu =

⎛⎝ Id 0d 0

0d 0d 0

0 0 0

⎞⎠ , Pss =

⎛⎝0d 0d 0

0d Id 0

0 0 0

⎞⎠ .

Here, Id denotes the d ×d identity matrix and 0d denotes the d ×d zero matrix.

For each i = 1, . . . ,n we define u⊥i (k) by 〈u⊥i (k),u j(k + 1)〉 = δi j. The vectors

u⊥i (k) can be computed from the formula U(k)⊥∗ = U(k + 1)−1 where U⊥(k) de-

notes the matrix with u⊥j (k) as column j. By using the identity U(k +1)U(k)⊥∗ = I

we obtain that U(k + 1)⊥ =
(
D f (γk+1)∗

)−1U(k)⊥. Thus, U⊥(k) is the adjoint of

U(k). Note {u⊥i (k)}k∈Z, i = 1,2, · · · ,d is a basis of bounded solutions on Z to the

adjoint variational equation wk+1 =
(
D f (γk+1)∗

)−1wk.

We take the Banach space

Z =
{{y j} j∈Z : y j ∈ R

n, sup
j∈Z

|y j| < ∞
}

with the norm ||y|| = supk∈Z |yk| for y = {y j} j∈Z. Summation of the inequalities in

Theorem 3.1.2 yields the following result.

Theorem 3.1.3. Let U be the fundamental solution to (3.1.3) along with the projec-
tions Pss, Psu, Pus, Puu as in Theorem 3.1.2. Then there exists a constant K > 0 so
that for any z ∈ Z the following hold:

(i) ∑ j
k=0 |U( j)(Pss +Pus)U(k)−1zk| ≤ K‖z‖ for j ≥ 0 ,

(ii) ∑∞k= j |U( j)(Psu +Puu)U(k)−1zk| ≤ K‖z‖ for j ≥ 0 ,

(iii) ∑0
k= j |U( j)(Pss +Psu)U(k)−1zk| ≤ K‖z‖ for j ≤ 0 ,

(iv) ∑ j
k=−∞ |U( j)(Pus +Puu)U(k)−1zk| ≤ K‖z‖ for j ≤ 0 .

Let us define a closed linear subspace of Z given by

Z0 =
{

z ∈ Z :
∞

∑
k=−∞

PuuU(k +1)−1zk = 0
}

.

Note

0 =
∞

∑
k=−∞

PuuU(k +1)−1zk =
∞

∑
k=−∞

PuuU(k)⊥∗zk ⇔
∞

∑
k=−∞

〈u⊥j (k),zk〉 = 0
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for all j = 1,2, . . . ,d. We consider the difference equation:

zk+1 = D f (γk)zk +wk, {wk}k∈Z ∈ Z . (3.1.6)

The following result is a Fredholm-like condition for (3.1.6).

Theorem 3.1.4. Necessary and sufficient condition for the existence of a solution
{xk}k∈Z ∈ Z of (3.1.6) is that {wk}k∈Z ∈ Z0.

Proof. “=⇒”

Let z = {zk}k∈Z be a solution of (3.1.6). Denote A(k) = D f (γk) and compute

PuuU(k +1)−1zk+1 = PuuU(k +1)−1A(k)zk +PuuU(k +1)−1wk .

Since U(k +1) = A(k)U(k), U(k +1)−1 = U(k)−1A(k)−1, and hence

∞

∑
k=−∞

PuuU(k +1)−1zk+1 =
∞

∑
k=−∞

PuuU(k)−1zk +
∞

∑
k=−∞

PuuU(k +1)−1wk

which implies
∞

∑
k=−∞

PuuU(k +1)−1wk = 0 .

We note that Theorem 3.1.3 gives the convergence of these series.

“⇐=”

Let w = {wk}∞k=−∞ ∈ Z0. We define the mapping K as follows:

K (w)k = U(k)
[ −1

∑
j=−∞

PusU( j +1)−1w j +
k−1

∑
j=0

(Pss +Pus)U( j +1)−1w j

−
∞

∑
j=k

(Psu +Puu)U( j +1)−1w j

]
,

for k ≥ 0,

K (w)k = U(k)
[
−

∞

∑
j=0

PsuU( j +1)−1w j +
k−1

∑
j=−∞

(Pus +Puu)U( j +1)−1w j

−
−1

∑
j=k

(Pss +Psu)U( j +1)−1w j

]
,

for k ≤ 0. Here we define ∑−1
j=0 = 0. Theorem 3.1.3 implies the well defined defini-

tion and continuity of K : Z0 → Z and by putting zk = K (w)k, ∀k ∈ Z in (3.1.6),

we easily verify that it is a solution. We note that the general solution of (3.1.6) has

the form:

z =
d

∑
j=1

β ju j+d +K (w), β j ∈ R .
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The proof is finished. ��
The next result provides an appropriate projection.

Theorem 3.1.5. Let U be as in Theorem 3.1.2 and let Z0 be as in Theorem 3.1.4.
There exists a bounded projection Π : Z → Z so that RΠ = Z0.

Proof. We take Π in the form I−P, where P is defined by

P(w)k =
U(k +1)

ak+1
Puu

∞

∑
j=−∞

U( j +1)−1w j ,

and the sequence {ak}k∈Z satisfies

ak > 0, ∀k ∈ Z,
∞

∑
k=−∞

1

ak+1
= 1, sup

k∈Z

U(k +1)
ak+1

< ∞ .

We verify that this P is a projection, i.e. P2 = P :

P(P(w))k = P

({
U(s+1)

as+1
Puu

∞

∑
j=−∞

U( j +1)−1w j

}
s∈Z

)

=
U(k +1)

ak+1
Puu

∞

∑
l=−∞

U(l +1)−1

(
U(l +1)

al+1
Puu

∞

∑
j=−∞

U( j +1)−1w j

)
= P(w)k .

Hence P is a projection. Now we verify that Π = I−P is such that Πw ∈ Z0 :

∞

∑
k=−∞

PuuU(k +1)−1Π(w)k =
∞

∑
k=−∞

PuuU(k +1)−1(I−P)(w)k

=
∞

∑
k=−∞

PuuU(k +1)−1

(
wk − U(k +1)

ak+1
Puu

∞

∑
j=−∞

U( j +1)−1w j

)

=
∞

∑
k=−∞

PuuU(k +1)−1wk

−
∞

∑
k=−∞

PuuU(k +1)−1

(
U(k +1)

ak+1
Puu

∞

∑
j=−∞

U( j +1)−1w j

)
= 0 .

Consequently, Π has the desired properties. ��

3.1.3 Perturbation Theory

We study the equation (cf Theorem 2.2.4):
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Fμ,ε,y(x)k = xk+1 − f (xk)−h(xk,μ,k)− ε|μ|L (x− y− γ) = 0

Fμ,ε,y : Z → Z ,
(3.1.7)

where L : Z → Z is a linear continuous mapping so that ||L || ≤ 1, y ∈ Z, and

ε ∈ R is small. It is clear that solutions of (3.1.7) with ε = 0 are bounded solutions

of (3.1.1). We define mappings L : Z → Z and G : Z ×R
m ×R×Z → Z as follows:

L(z)k = zk+1 −D f (γk)zk,

G(z,μ,ε,y)k = f (zk + γk)− f (γk)−D f (γk)zk +h(zk + γk,μ,k)+ ε|μ|L (z− y) .

By putting x = z+ γ in (3.1.7), this equation has the form:

L(z) = G(z,μ,ε,y) . (3.1.8)

We decompose (3.1.8) in the following way

L(z) =ΠG(z,μ,ε,y) , 0 = (I−Π)G(z,μ,ε,y) .

By using Theorem 3.1.4, the above pair of equations is equivalent to

z =
d

∑
j=1

β ju j+d +K
(
ΠG(z,μ,ε,y)

)
, β j ∈ R (3.1.9)

and

0 = (I−Π)G(z,μ,ε,y) . (3.1.10)

Moreover by using the Lyapunov-Schmidt procedure from Section 2.2.3 like in [11,

Theorem 8], the study of Eqs. (3.1.9) and (3.1.10) can be expressed in the following

theorem for z, μ, ε, β = (β1,β2, . . . ,βd), y sufficiently small.

Theorem 3.1.6. Let U and d be as in Theorem 3.1.2. Then there exist small neigh-
borhoods 0 ∈ Q ⊂ Z, 0 ∈ O ⊂ R

d , 0 ∈ W ⊂ R
m, 0 ∈ V ⊂ R and a C3-function

H : Q×O×W ×V → R
d denoted by (y,β ,μ,ε) → H(y,β ,μ,ε) with the follow-

ing properties:

(i) The equation H(y,β ,μ,ε) = 0 holds if and only if (3.1.7) has a solution near γ
and moreover, each such (y,β ,μ,ε) determines only one solution of (3.1.7),

(ii) H(0,0,0,0) = 0,

(iii)
∂Hi

∂μ j
(0,0, ,0,0) = −∑k∈Z

〈
u⊥i (k),

∂h
∂μ j

(γk,0,k)
〉

,

(iv)
∂Hi

∂β j
(0,0,0,0) = 0,

(v)
∂ 2Hi

∂βk∂β j
(0,0,0,0) = −∑l∈Z

〈
u⊥i (l),D2 f (γl)(ud+ j(l),ud+k(l))

〉
.

We introduce the following notations:



3.1 Transversal Bounded Solutions 37

ai j = −∑
l∈Z

〈
u⊥i (l),

∂h
∂μ j

(γl ,0, l)
〉

,

bi jk = −∑
l∈Z

〈
u⊥i (l),D2 f (γl)(ud+ j(l),ud+k(l))

〉
.

Finally, we take the mapping Mμ : R
d → R

d defined by

(
Mμ(β )

)
i =

m

∑
j=1

ai jμ j +
1

2

d

∑
j,k=1

bi jkβ jβk .

Now we can state the main result of this section.

Theorem 3.1.7. If Mμ0
has a simple zero point β0, i.e. β0 satisfies Mμ0

(β0) = 0 and
DβMμ0

(β0) is a regular matrix, then there is a wedge-shaped region in R
m for μ of

the form

R =
{

s2μ̃ : s, respectively μ̃ , is from a small open

neighborhood of 0 ∈ R, respectively of μ0 ∈ R
m
}

so that for any μ ∈ R \ {0}, Equation (3.1.1) possesses a transversal bounded so-
lution.

Proof. Let us consider the mapping defined by

Φ(y, β̃ , μ̃, ε̃,s) =

⎧⎪⎨⎪⎩
1

s2
H(y,sβ̃ ,s2μ̃,s3ε̃), for s �= 0,

Mμ̃(β̃ ), for s = 0 .

According to (ii)–(v) of Theorem 3.1.6, the mapping Φ is C1-smooth near

(y, β̃ , μ̃, ε̃,s) = (0,β0,μ0,0,0)

with respect to the variable β̃ . Since

Mμ0
(β0) = 0 and DβMμ0

(β0) is a regular matrix ,

we can apply the implicit function theorem to solving locally and uniquely the equa-

tion Φ = 0 in the variable β̃ . This gives for ε = 0, by (i) of Theorem 3.1.6, the

existence of R on which (3.1.1) has a bounded solution.

To prove the transversality of these bounded solutions, we fix μ ∈ R \ {0} and

take

y = γ̃− γ ,

where γ̃ is the solution of (3.1.7) for which the transversality should be proved. Then

we vary ε = s3ε̃ small. Note that s �= 0 is also fixed due to μ = s2μ̃ . Since the lo-

cal uniqueness of solutions of (3.1.7) near γ̃ is satisfied for any ε̃ sufficiently small
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according to the above application of the implicit function theorem, such equation

(3.1.7) (with the fixed μ ∈R \{0}, ε = s3ε̃ where s �= 0 is also fixed and the special

y = γ̃− γ) has the only solution x = γ̃ near γ̃ for any ε̃ sufficiently small. Now The-

orem 2.2.4 gives the invertibility of DFμ,0,γ̃−γ(γ̃) and so the only bounded solution

on Z of the equation

vk+1 = D f (γ̃k)vk +Dxh(γ̃k,μ,k)vk

is vk = 0, ∀k ∈ Z. The proof is finished. ��
Remark 3.1.8. Note that we can take any bases of bounded solutions of the varia-

tional and adjoint variational equations for constructing the Melnikov function Mμ .

Similar observations can be applied to detecting of other Melnikov functions in this

book.

Remark 3.1.9. Assume that (3.1.1) is autonomous, i.e. h is independent of k, suppose

conditions (i)–(iv) and f is a diffeomorphism. Then we have a local diffeomorphism

Fμ(x) := f (x)+h(x,μ) for μ small. If there is an open bounded subset Ω ⊂ R
d so

that 0 /∈ Mμ0
(∂Ω) and deg

(
Mμ0

,Ω ,0
) �= 0 then for any 0 �= μ ∈R there is a kμ ∈N

such that for any k ≥ kμ there is a setΛk ⊂R
n and a continuous mapping ϕk :Λk → E

so that F2k
μ (Λk) =Λk, ϕk is surjective and injective, and ϕk ◦F2k

μ = σ ◦ϕk. Note that

we do not know whether ϕk is a homeomorphism. But we do know that Fμ has in-

finitelly many periodic orbits and quasiperiodic ones and it has positive topological
entropy. This is a generalization of the Smale-Birkhoff homoclinic theorem 2.5.4

to this case. Particularly, if β0 is an isolated zero of Mμ0
with a nonzero Brouwer

index, then we have a chaotic behaviour of Fμ (cf [13]). This remark can be applied

to other Melnikov type conditions in this book.

3.1.4 Bifurcation from a Manifold of Homoclinic Solutions

In many cases, (3.1.2) has a manifold of homoclinic solutions. Hence we suppose

that

(v) There is an open non-empty subset O ⊂R
d and C3-smooth mappings γk : O →

R
n, ω : O → R

n, ∀k ∈ Z satisfying

γk+1(θ) = f (γk(θ)), ∀k ∈ Z, ∀θ ∈ O ,
ω(θ) = f (ω(θ)), ∀θ ∈ O ,
lim

k→±∞
γk(θ) = ω(θ), ∀θ ∈ O .

(vi) The eigenvalues of D f (ω(θ))∀θ ∈ O are non-zero and all lie off the unit

circle. Moreover, D f (γk(θ)) ∀k ∈ Z, ∀θ ∈ O are nonsingular.

(vii)
∂γk
∂θi

are uniformly bounded on O with respect to k ∈ Z when θ = (θ1,θ2,

. . . ,θd).
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(viii) From γk+1(θ) = f (γk(θ)), we obtain
∂γk+1

∂θi
(θ) = D f (γk(θ)) ∂γk∂θi

(θ). We sup-

pose that
{
∂γk
∂θi

(θ)
}d

i=1,k∈Z

is a basis of the space of bounded solutions of the

difference equation

vk+1 = D f (γk(θ))vk . (3.1.11)

We use the approach of Section 3.1.3 by considering θ as a parameter. The dif-

ference is only that now
{
∂γk
∂θi

(θ)
}d

i=1,k∈Z

provides a natural family of solutions of

(3.1.11) corresponding to the projections Pss. Hence we suppose that Theorem 3.1.2

holds parametricaly by θ ∈ O , i.e. U = U(θ , t) is smooth in (θ , t) and columns of

U(θ , t) are numbered so that

Puu =

⎛⎝ Id 0d 0

0d 0d 0

0 0 0

⎞⎠ , Pss =

⎛⎝0d 0d 0

0d Id 0

0 0 0

⎞⎠ .

Now we take x = z+ γ(θ),γ(θ) = {γk(θ)}k∈Z in (3.1.7). The corresponding opera-

tors of (3.1.8) then depend on θ as well:

L(z,θ)k = zk+1 −D f (γk(θ))zk,

G(z,θ ,μ,ε,y)k = f (zk + γk(θ))− f (γk(θ))−D f (γk(θ))zk

+h(zk + γk(θ),μ,k)+ ε|μ|L (z− y) .

Consequently, (3.1.7) has the form

L(z,θ) = G(z,θ ,μ,ε,y) ,

and (3.1.9)–(3.1.10) are replaced by

z = K (θ)
(
Π(θ)G(z,θ ,μ,ε,y)

)
, 0 = (I−Π(θ))G(z,θ ,μ,ε,y) , (3.1.12)

where K (θ) and Π(θ) are corresponding mappings to K ,Π , respectively. We

consider in (3.1.12) the variable θ as a bifurcation parameter. We take the mapping

Nμ : R
d → R

d defined by

(
Nμ(θ)

)
i =

m

∑
j=1

ai j(θ)μ j ,

where

ai j(θ) = −∑
l∈Z

〈
u⊥i (θ , l),

∂h
∂μ j

(γl(θ),0, l)
〉
.

The vectors u⊥i (θ , l) are defined by 〈u⊥i (θ , l),u j(θ , l + 1)〉 = δi j. By repeating the

proof of Theorem 3.1.7, we can state the main result of this section.

Theorem 3.1.10. If Nμ0
has a simple zero point θ0, i.e. θ0 satisfies Nμ0

(θ0) = 0 and
DθNμ0

(θ0) is a regular matrix, then there is a wedge-shaped region in R
m for μ of
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the form

R =
{

sμ̃ : s, respectivelyμ̃ , is from a small open

neighborhood of 0 ∈ R, respectively of μ0 ∈ R
m
}

so that for any μ ∈ R \ {0}, Equation (3.1.1) possesses a transversal bounded so-
lution.

3.1.5 Applications to Impulsive Differential Equations

It is well known that the theory of impulsive differential equations is an important

branch of differential equations with many applications [14–20]. For this reason, we

consider a 4-dimensional impulsive differential equation given by

ż = g1(z), ẏ = g2(y) ,
z(i+) = z(i−)+μh1(z(i−),y(i−),μ) ,

y(i+) = y(i−)+μh2(z(i−),y(i−),μ), i ∈ Z ,

(3.1.13)

where

g1,2 ∈C3(R2,R2), h1,2 ∈C3(R2 ×R
2 ×R,R2), μ ∈ R

and ż = g1(z), ẏ = g2(y) are Hamiltonian systems. LetΨ1,Ψ2 be the 1-time Poincarè

mappings of ż = g1(z), ẏ = g2(y), respectively. Here z(i±) = lim
s→i±

z(s). We consider

the mapping

F(z,y,μ) =(
Ψ1(z)+μh1

(
Ψ1(z),Ψ2(y),μ

)
,Ψ2(y)+μh2

(
Ψ1(z),Ψ2(y),μ

))
.

(3.1.14)

Clearly the dynamics of (3.1.14) determines the behaviour of (3.1.13). In the nota-

tion of (3.1.1), we have

x = (z,y) ∈ R
2 ×R

2, f (x) =
(
Ψ1(z),Ψ2(y)

)
h(x,μ,k) =

(
μh1

(
Ψ1(z),Ψ2(y),μ

)
,μh2

(
Ψ1(z),Ψ2(y),μ

))
.

(3.1.15)

We suppose

(a) g1,2(0) = 0 and the eigenvalues of Dg1,2(0) lie off the imaginary axis.

(b) There are homoclinic solutions γ1, γ2 of ż = g1(z), ẏ = g2(y), respectively, to 0.

The conditions (a) and (b) imply that
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γk(θ) =
(
γ1(θ1 + k),γ2(θ2 + k)

)
, k ∈ Z

ω(θ) = (0,0), θ = (θ1,θ2) ∈ O = R
2

satisfy (v)–(viii) of Section 3.1.4 for (3.1.15). Now (3.1.11) has the form

vk+1 = DΨ1

(
γ1(θ1 + k)

)
vk , wk+1 = DΨ2

(
γ2(θ2 + k)

)
wk .

Hence (3.1.11) is now decomposed into two difference equations. We note thatΨ1,2

are area-preserving, i.e. detDΨ1,2(z) = 1 (cf Sections 2.5.1 and 2.5.3). We can take

u3(θ ,k) =
(
γ̇1(θ1 + k),0

)
, u4(θ ,k) =

(
0, γ̇2(θ2 + k)

)
.

Now we need the following result [8, pp. 104–105].

Lemma 3.1.11. Let {Ak}k∈Z be a sequence of invertible 2 × 2-matrices so that

detAk = 1. If {xk}k∈Z satisfies xn+1 = Akxk, then zk := Jxk+1 for J :=
(

0 1

−1 0

)
satisfies zk+1 = (A∗

k+1)
−1zk.

Proof. The result directly follows from the identity A∗
k ◦ J ◦Ak = detAkJ = J. ��

Using Lemma 3.1.11, we can take

u⊥1 (θ ,k) =
(

˙̄γ1(θ1 + k +1),0
)
, u⊥2 (θ ,k) =

(
0, ˙̄γ2(θ2 + k +1)

)
,

where z̄ = (z2,−z1),∀z = (z1,z2) ∈ R
2, and u1(θ ,k), u2(θ ,k) are not required to be

known. Consequently, the mapping Nμ of Section 3.1.4 has now the form(
Nμ(θ)

)
1

= −μ ∑
k∈Z

h1

(
Ψ1(γ1(θ1 + k)),Ψ2(γ2(θ2 + k)),0

)∧ γ̇1(θ1 + k +1)

= μ ∑
k∈Z

γ̇1(θ1 + k)∧h1

(
γ1(θ1 + k),γ2(θ2 + k),0

)
,(

Nμ(θ)
)

2
= −μ ∑

k∈Z

h2

(
Ψ1(γ1(θ1 + k)),Ψ2(γ2(θ2 + k)),0

)∧ γ̇2(θ2 + k +1)

= μ ∑
k∈Z

γ̇2(θ2 + k)∧h2

(
γ1(θ1 + k),γ2(θ2 + k),0

)
,

(3.1.16)

where ∧ is the wedge product defined by z∧ y = z1y2 − z2y1, z,y ∈ R
2. Theorem

3.1.10 gives the following result.

Theorem 3.1.12. If there is a simple zero point of N1(θ) given by (3.1.16), then
(3.1.13) has a transversal homoclinic solution and so it exhibits chaos for any μ �= 0

sufficiently small.

Of course, there are h1, h2 satisfying the assumptions of Theorem 3.1.12. For

simplicity, we assume

g = g1 = g2, h1(z,y,μ) = (1+μ)y+α

h2(z,y,μ) = (1+μ2)z+α ,
(3.1.17)
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where α ∈ R
2 is a constant vector. Then we have γ1 = γ2 = γ and (3.1.16) possesses

the form(
Nμ(θ)

)
1
= μ ∑

k∈Z

γ̇(θ1 + k)∧ γ(θ2 + k)+μ
(
∑
k∈Z

γ̇(θ1 + k)
)
∧α

(
Nμ(θ)

)
2
= μ ∑

k∈Z

γ̇(θ2 + k)∧ γ(θ1 + k)+μ
(
∑
k∈Z

γ̇(θ2 + k)
)
∧α .

(3.1.18)

We put

Ω(τ) = ∑
k∈Z

γ̇(τ+ k)∧ γ(τ+ k)+
(
∑
k∈Z

γ̇(τ+ k)
)
∧α .

We note that Ω is 1-periodic. We clearly for θ = (τ,τ) have(
Nμ(θ)

)
1
=

(
Nμ(θ)

)
2
= μΩ(τ),(

DNμ(θ)
)

1
= μ

(
Ω ′(τ),0

)
,

(
DNμ(θ)

)
2
= μ

(
0,Ω ′(τ)

)
.

Simple computations give the following result.

Theorem 3.1.13. Consider (3.1.13) with (3.1.17). If τ0 is a simple root ofΩ(τ) then
θ0 = (τ0,τ0) is a simple zero point of N1(θ) given by (3.1.18).

To be more concrete, we take in (3.1.17)

g(x1,x2) =
(
x2,x1 −2x3

1

)
, α = (β ,β ) .

Hence (3.1.13) has the form

z̈ = x−2x3, ÿ = y−2y3,

x(i+) = x(i−)+μ
(
(1+μ)y(i−)+β

)
,

ẋ(i+) = ẋ(i−)+μ
(
(1+μ)ẏ(i−)+β

)
,

y(i+) = y(i−)+μ
(
(1+μ2)x(i−)+β

)
,

ẏ(i+) = ẏ(i−)+μ
(
(1+μ2)ẋ(i−)+β

)
, i ∈ Z .

(3.1.19)

(3.1.19) are two Duffing equations coupled by impulsive effects. We now take γ(t) =(
sech t, ˙sech t

)
and Ω has the form

Ω(τ) = ∑
k∈Z

sech4 (τ+ k)+β ∑
k∈Z

3− e2(τ+k)

2
sech3 (τ+ k) .

Consequently, we have

Ω(τ) =Ω1(τ)−βΩ2(τ) ,

where

Ω1(τ) = ∑
k∈Z

sech4 (τ+ k), Ω2(τ) = ∑
k∈Z

e2(τ+k)−3

2
sech3 (τ+ k) .
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The functions Ω1,2 are again 1-periodic. Moreover, they are analytic and Ω1 is

positive (cf Section 2.6.5). Clearly, Ω2/Ω1 is non-constant. So the image of R by

Ω2/Ω1 is an interval [a1,a2], −∞< a1 < a2 <∞ and there is only a finite number of

β1, . . . ,β j0 ∈ [a1,a2] so that Ω = Ω1 −βΩ2 does have a simple root for any β �= 0

satisfying 1/β ∈ [a1,a2]\{β1, . . . ,β j0}.

Numerical evaluation of the graph of Ω2(τ)/Ω1(τ) shows that (Figure 3.1)

Fig. 3.1 The graph of function y =Ω2(τ)/Ω1(τ).

a1 = β1 �−0.0190729, a2 = β2 � 0.0199198, j0 = 2 .

In summary, we arrive at the following result.

Theorem 3.1.14. If either β < −52.431 or β > 50.202 then impulsive system
(3.1.19) has a chaotic behaviour for any μ �= 0 sufficiently small.

We note that a coupled two McMillan mappings (cf Section 3.2.4 and [4, 5]) can

be similarly studied. In general, after applying our results, the main difficulty is to

find an appropriate form of the Melnikov mapping derived in the above way so that

one could be able to detect its simple zero point. The Poisson summation formula

like in [4] could help to overcome this difficulty.

Remark 3.1.15. Similar to the above, we can study more general impulsive ODEs of

the form
ẋ = f (x,ε),

x(i+0) = x(i−0)+ εa
(
x(i−0),ε

)
, i ∈ Z ,

(3.1.20)

where f , a ∈C2(Rn+1,Rn), f (·,0) has a hyperbolic fixed point x0 with a homoclinic

orbit γ(·). Furthermore, assume that the adjoint variational equation
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v̇ = −
(

Dx f
(
γ(t),0

))∗
v

has only a unique (up to constant multiples) bounded nonzero solution u. Then the

Melnikov function of (3.1.20) has the form

M (t) =
∞

∑
i=−∞

〈
a
(
γ(t + i),0

)
,u(t + i)

〉
+

∫ ∞

−∞
〈
Dε f

(
γ(s),0

)
,u(s)

〉
ds . (3.1.21)

Note that formula (3.1.21) follows also from considerations of Sections 3.3 and 3.4.

We see that (3.1.21) consists of the continuous and impulsive parts of (3.1.20) as

well.

Finally we note that a different type of chaos is studied in [21] for a special initial

value problem of a non-autonomous impulsive differential equation. ODEs with step

function coefficients are studied in [22–28], and our theory can be applied to such

ODEs.

3.2 Transversal Homoclinic Orbits

3.2.1 Higher Dimensional Difference Equations

This section is a continuation of Section 3.1. So we consider difference equation

xn+1 = g(xn)+ εh(n,xn,ε) (3.2.1)

where xn ∈ R
N , ε ∈ R is a small parameter. The main purpose of this section is to

study the homoclinic bifurcations of difference equations in a degenerate case. We

assume the following conditions about the difference equation (3.2.1):

(H1) g,h are C3-smooth in all continuous variables.

(H2) The unperturbed difference equation

xn+1 = g(xn) (3.2.2)

has a hyperbolic fixed poitnt 0, that is, the eigenvalues of gx(0) are non-zero

and they lie off the unit circle.

(H3) The unperturbed difference equation (3.2.2) has a one-parameter family of ho-

moclinic solutions γ(α)= {γn(α)}∞−∞, α ∈R connecting 0. That is, {γn(α)}∞−∞
is a non-zero sequence of C3-smooth vector functions satisfying γn+1(α) =
g(γn(α)) and lim

n→±∞γn(α) = 0 uniformly with respect to bounded α . The set

∪n∈Z ∪α∈R {γn(α)} is bounded.

(H4) gx(γn(α)) is invertible, and ‖g−1
x (γn(α))‖ is uniformly bounded on Z.

We denote by W s(0) and W u(0) the stable and unstable manifolds of the hyperbolic

fixed point 0, respectively, and by Tγ0(α)W s(0) and Tγ0(α)W u(0) the tangent spaces
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to W s(0) and W u(0) at γ0(α). We say the homoclinic orbit {γn(α)}∞−∞ is degenerate
if the dimension of the linear subspace

Tγ0(α)W
s(0)∩Tγ0(α)W

u(0)

is greater than one. Otherwise, we say the homoclinic orbit {γn(α)}∞−∞ is nondegen-
erate. We can easily prove that the homoclinic orbit {γn(α)}∞−∞ is degenerate if and

only if the following variational equation along the homoclinic orbit {γn(α)}∞−∞
ξn+1 = gx(γn(α))ξn (3.2.3)

has d > 1 linearly independent bounded solutions on Z.

When h is independent of n, i.e. (3.2.1) is a mapping, the existence of a transver-

sal homoclinic solution for (3.2.1) is discussed in [8,29]. When h depends on n, the

existence of a transversal homoclinic solution for (3.2.1) in the degenerate case is

discussed in Section 3.1. Now we study (3.2.1) also with d > 1 for (3.2.3). Our aim is

to find analytic conditions under which the difference equation (3.2.1) has for ε �= 0

sufficiently small a transversal bounded solution {xn(ε)}∞−∞ near the homoclinic so-

lution {γn(α)}∞−∞. The transversality of {xn(ε)}∞−∞ means that the linearization of

the difference equation (3.3.1) along {xn(ε)}∞−∞ given by

ξn+1 = [gx(xn(ε))+ εhx(n,xn(ε),ε)]ξn

admits an exponential dichotomy on Z (cf Lemma 2.5.2).

The degenerate problem, when d > 1 for (3.2.3), can be naturally divided into

two cases:

(1) There exists a d-dimensional homoclinic manifold. This is the most natural way

to get d > 1 for (3.2.3).

(2) The invariant manifolds W s(0) and W u(0) meet in only a higher dimensional

tangency.

Case (1) is studied in Section 3.1.4 (see also more comments at the end of Section

3.2.2), and Case 2 is treated in this section.

Two-dimensional mappings for nondegenerate cases are considered in [2, 4, 5].

Higher dimensional mappings are studied in [7].

3.2.2 Bifurcation Result

Let

X =
{
{xn}∞−∞} | |xn ∈ R

N and sup
n∈Z

|xn| < ∞
}

be the Banach space with the norm |x| = sup
n∈Z

|xn| for x = {xn}∞−∞. We define a linear

operator L as follows:
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L : X → X , (Lξ )n = ξn+1 −gx(γn(α))ξn

where ξ = {ξn}∞−∞ and Lξ = {(Lξ )n}∞−∞. Theorem 3.1.4 has the following equiva-

lent form [29].

Lemma 3.2.1. Suppose conditions (H1)-(H4) are satisfied. Then

(i) The operator L is Fredholm with index zero.
(ii) f = { fn}∞−∞ ∈ RL if and only if

+∞

∑
n=−∞

ψ∗
n (α) · fn = 0 (3.2.4)

holds for all bounded solutions ψ(α) = {ψn(α)}∞−∞ of the adjoint variational
equation

ξn+1 = (g∗x(γn+1(α)))−1ξn . (3.2.5)

(iii) If (3.2.4) holds, then the difference equation

xn+1 = gx(γn(α))xn + fn

has a unique bounded solution x = {xn}∞−∞ on Z satisfying

ϕ∗
0 (α) · x0 = 0

for all bounded solutions ϕ(α) = {ϕn(α)}∞−∞ of the linear difference equation
(3.2.3) on Z.

From condition (H3), we have γn+1(α) = g(γn(α)). Differentiating both sides

of this difference equation with respect to α , we obtain γ̇n+1(α) = gx(γn(α))γ̇n(α),
where “ · ” = d

dα . Hence γ̇(α) = {γ̇n(α)}∞−∞ is a nontrivial bounded solution on Z

of the variational equation (3.2.3). That is, γ̇0(α) ∈ Tγ0(α)W s(0)∩Tγ0(α)W u(0). We

assume that

(H5) dim(Tγ0(α)W s(0)∩ Tγ0(α)W u(0)) = d (d ≥ 1) for a constant d uniformly

with respect to α .

Condition (H5) is equivalent to the condition that the variational equation (3.2.3)

has d (≥ 1) linearly independent bounded solutions on Z, denoted by

ϕ1(α) = γ̇(α) = {γ̇n(α)}∞−∞,

ϕ2(α) = {ϕ2,n(α)}∞−∞, . . . , ϕd(α) = {ϕd,n(α)}∞−∞ .

We let

Φn(α) =
(
ϕ1,n(α),ϕ2,n(α), . . . ,ϕd,n(α)

)
be an N ×d matrix and

Φ0
n (α) =

(
ϕ2,n(α), . . . ,ϕd,n(α)

)
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be an N × (d − 1) matrix. From Section 3.1.2 it follows that under conditions

(H1)–(H5), the adjoint equation (3.2.5) also has d and only d linearly independent

bounded solutions on Z, denoted by

{ψ1,n(α)}∞−∞, {ψ2,n(α)}∞−∞, . . . , {ψd,n(α)}∞−∞ .

We let

Ψn(α) =
(
ψ1,n(α),ψ2,n(α), . . . ,ψd,n(α)

)
be an N ×d matrix. We suppose that Φn(α) andΨn(α) are C3-smooth in α for any

n ∈ Z. The main result of this section is the following theorem.

Theorem 3.2.2. Suppose conditions (H1)–(H5) are satisfied. We define a Melnikov
vector mapping by

M(α,β ) =
∞

∑
n=−∞

Ψ ∗
n (α) ·

{
2h(n,γn(α),0)+gxx(γn(α))(Φ0

n (α)β ,Φ0
n (α)β )

}
.

If there exists (α0,β0) ∈ R×R
d−1 so that

M(α0,β0) = 0 and detD(α,β )M(α0,β0) �= 0 ,

then for ε sufficiently small, there exist two continuously differentiable functions
α = α(ε), β = β (ε), satisfying α(0) = α0, β (0) = β0 so that for ε �= 0 sufficiently
small, the difference equation

xn+1 = g(xn)+ ε2h(n,xn,ε2)

has a bounded solution x(ε) = {xn(ε)}∞−∞ so that

|xn(ε)− γn(α(ε))− εΦ0
n (α(ε))β (ε)| = O(ε2) (3.2.6)

and the variational equation

ξn+1 = {gx(xn(ε))+ ε2hx(n,xn(ε),ε2)}ξn

admits an exponential dichotomy on Z.

Proof. First of all, we prove the existence of a bounded solution {xn(ε)}∞−∞. We

make a change of variables

yn = xn − γn(α)−Φ0
n (α)β

for the difference equation (3.2.1), where β ∈ R
d−1 is a vector parameter. Then the

difference equation (3.2.1) reads

yn+1 = g(yn + γn(α)+Φ0
n (α)β )+ εh(n,yn + γn(α)+Φ0

n (α)β ,ε)

−g(γn(α))−gx(γn(α))Φ0
n (α)β .

(3.2.7)



48 3 Chaos in Discrete Dynamical Systems

For simplicity, we define

G(n,yn,α,β ,ε) = εh(n,yn + γn(α)+Φ0
n (α)β ,ε)−g(γn(α))

+g(yn + γn(α)+Φ0
n (α)β )−gx(γn(α))(yn +Φ0

n (α)β ),

then the difference equation (3.2.7) can be written as

yn+1 = gx(γn(α))yn +G(n,yn,α,β ,ε) . (3.2.8)

We put

D(α) =
∞

∑
n=−∞

Ψ ∗
n (α) ·Ψn(α),

so then the d × d matrix D(α) is invertible [30, p. 129]. Using the Lyapunov-

Schmidt method and Lemma 3.2.1, we see that the difference equation (3.2.8) is

equivalent to the following two equations

yn+1 = gx(γn(α))yn +G(n,yn,α,β ,ε)

−Ψn(α)D−1(α)
∞

∑
j=−∞

Ψ ∗
j (α)G( j,y j,α,β ,ε) ,

(3.2.9)

and
∞

∑
n=−∞

Ψ ∗
n (α)G(n,yn,α,β ,ε) = 0 . (3.2.10)

Since

∞

∑
n=−∞

Ψ ∗
n (α)

{
G(n,yn,α,β ,ε)−Ψn(α)D−1(α)

∞

∑
j=−∞

Ψ ∗
j (α)G( j,y j,α,β ,ε)

}
= 0 ,

G(n,0,α,0,0) = 0 and Gy(n,0,α,0,0) = 0 ,

it follows from Lemma 3.2.1 and the implicit function theorem that for ε,β suffi-

ciently small, the difference equation (3.2.9) has a unique small bounded solution

y = y(α,β ,ε) = {yn(α,β ,ε)}∞−∞ ∈ X satisfying

Φ∗
0 (α)y0(α,β ,ε) = 0 . (3.2.11)

Clearly y(α,0,0) = 0. We substitute

y = y(α,β ,ε) = {yn(α,β ,ε)}∞−∞
into Eq. (3.2.10) and obtain the following bifurcation equation

B(α,β ,ε) =
∞

∑
n=−∞

Ψ ∗
n (α)G(n,yn(α,β ,ε),α,β ,ε) = 0 . (3.2.12)

To solve Eq. (3.2.12), we consider the equation
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B(α,β ,ε) = B(α,εβ ,ε2) =
∞

∑
n=−∞

Ψ ∗
n (α)G(n,yn(α,εβ ,ε2),α,εβ ,ε2) = 0 .

If Yn(ε) = yn(α,εβ ,ε2), then we have

Yn+1(ε) = gx(γn(α))Yn(ε)+G(n,Yn(ε),α,εβ ,ε2)

−Ψn(α)D−1(α)
∞

∑
j=−∞

Ψ ∗
j (α)G( j,Yj(ε),α,εβ ,ε2) .

(3.2.13)

Differentiating both sides of the difference equation (3.2.13) with respect to ε and

setting ε = 0 and noting that Yn(0) = 0, we obtain

Y εn+1(0) = gx(γn(α))Y εn (0)

where Y εn (0) = d
dεYn(ε)|ε=0. Moreover, (3.2.11) implies Φ∗

0 (α)Y ε0 (0) = 0. By the

uniqueness of the bounded solution of the linear difference equation (3.2.3) satisfy-

ing (3.2.11) we have Y εn (0) = 0. We conclude

B(α,β ,0) =
∞

∑
n=−∞

Ψ ∗
n (α)G(n,yn(α,0,0),α,0,0) =

∞

∑
n=−∞

Ψ ∗
n (α)G(n,0,α,0,0) = 0

and

Bε(α,β ,ε) =
∞

∑
n=−∞

Ψ ∗
n (α)

{
2εh

(
n,yn(α,εβ ,ε2)+ γn(α)+ εΦ0

n (α)β ,ε2
)

+ε2 d
dε

h
(
n,yn(α,εβ ,ε2)+ γn(α)+ εΦ0

n (α)β ,ε2
)

+gx
(
yn(α,εβ ,ε2)+ γn(α)+ εΦ0

n (α)β
) ·

d
dε

[
yn(α,εβ ,ε2)+ γn(α)+ εΦ0

n (α)β
]

−gx(γn(α))
d

dε
[
yn(α,εβ ,ε2)+ γn(α)+ εΦ0

n (α)β
]}

. (3.2.14)

Noting yn(α,0,0) = 0 and Y εn (0) = 0, we have

Bε(α,β ,0) = 0 . (3.2.15)

From (3.2.14) and yn(α,0,0) = 0 and Y εn (0) = 0, we compute

Bεε(α,β ,0) =
∞

∑
n=−∞

Ψ ∗
n (α)

{
2h(n,γn(α),0)+gxx(γn(α))(Y εn (0)+Φ0

n (α)β ,

Y εn (0)+Φ0
n (α)β )+gx(γn(α))Y εεn (0)−gx(γn(α))Y εεn (0)

}
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=
∞

∑
n=−∞

Ψ ∗
n (α)

{
2h(n,γn(α),0)+gxx(γn(α))(Φ0

n (α)β ,Φ0
n (α)β )

}
= M(α,β )

where Y εεn (0) = d2

dε2 Yn(ε)|ε=0. We define the function H(α,β ,ε) by

H(α,β ,ε) =

⎧⎪⎪⎨⎪⎪⎩
B(α,β ,ε)

ε2
, if ε �= 0 ,

1

2
Bεε(α,β ,0) , if ε = 0 .

Since B(α,β ,0) = 0 and (3.2.15) holds, the function H(α,β ,ε) is continuously

differentiable in α,β ,ε . From the conditions of Theorem 3.2.2, we have

H(α0,β0,0) =
1

2
Bεε(α0,β0,0) =

1

2
M(α0,β0) = 0

and

detD(α,β )H(α0,β0,0) =
1

2d detD(α,β )M(α0,β0) �= 0 .

It follows from the implicit function theorem that for ε sufficiently small, there

exist two continuously differentiable functions α = α(ε) and β = β (ε) satisfying

α(0) = α0 and β (0) = β0, respectively, so that H(α(ε),β (ε),ε) = 0. Hence for ε �=
0 sufficiently small, we have that B(α(ε),β (ε),ε) = 0. Thus for ε �= 0 sufficiently

small, the difference equation

xn+1 = g(xn)+ ε2h(n,xn,ε2)

has a unique bounded solution {xn(ε)}∞−∞ with

xn(ε) = yn(α(ε),εβ (ε),ε2)+ γn(α(ε))+ εΦ0
n (α(ε))β (ε)

satisfying (3.2.6). This completes the proof of the existence part of the theorem.

Finally, the transversality of the bounded solution {xn(ε)}∞−∞ can be proved in

the same way as in Theorem 3.1.7, so we omit the proof. ��
In the degenerate Case 1 from Section 3.2.1 one would start with a family of

homoclinic solutions γ(α) = {γn(α)}∞−∞ with α ∈ R
d like in condition (H3). For

bounded solutions to the variational equation (3.2.3) in accordance with the above

notations one now has

ϕi(α) =
{
∂γn
∂αi

(α)
}∞

−∞
, i = 1,2, . . . ,d .

Using the formula
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∂ 2γn+1

∂α j∂αi
(α) = gx(γn(α))

∂ 2γn
∂α j∂αi

(α)+gxx(γn(α))
(
∂γn
∂α j

(α),
∂γn
∂αi

(α)
)

it is easy to show by Lemma 3.2.1 that for this case in the Melnikov vector mapping

of Theorem 3.2.2 the β terms are identically zero. The Melnikov vector mapping

here is

M(α) =
∞

∑
−∞
Ψ ∗

n (α) ·h(n,γn(α),0) , α ∈ R
d .

We remark that Case 1 is already studied in Section 3.1. We also mention that the

vanishing of the β terms in the Melnikov vector mapping of Theorem 3.2.2 is a

necessary but not sufficient condition for Case 1. This means that in the general

theory, if one computes d > 1 for condition (H5) and then finds that all the β terms

vanish one cannot apply Theorem 3.2.2 and does not know if Case 1 can be applied

or if there is some other higher degeneracy. Then higher-order Melnikov vector

mappings could help to study the homoclinic bifurcations of the difference equation

(3.2.1).

Finally, we get the above Melnikov vector mapping M(α) also for the case d = 1

in condition (H5), but now α ∈ R. So M is a function.

3.2.3 Applications to McMillan Type Mappings

We consider the following mapping of a McMillan type (cf Section 3.2.4 and [4, 5,

7])

zn+1 = yn, yn+1 = −zn +2K
yn

1+ y2
n

+ v2
n − εyn ,

un+1 = vn, vn+1 = −un +2Kvn
1− y2

n

(1+ y2
n)2

+u2
n − εzn

(3.2.16)

where K > 1 is a constant. By Section 3.2.4 we know that

γn(α) =
(
rn(α),rn+1(α),0,0

)
,

rn(α) = sinhwsech(α−nw), w = cosh−1 K, w > 0

is a bounded solution of (3.2.16) with ε = 0. Then (3.2.3) has now the form

an+1 = bn, bn+1 = −an +2K
1− r2

n+1(α)
(1+ r2

n+1(α))2
bn ,

cn+1 = dn, dn+1 = −cn +2K
1− r2

n+1(α)
(1+ r2

n+1(α))2
dn .

(3.2.17)

The equilibrium (0,0,0,0) of the unperturbed mapping is hyperbolic with 2-dimensional

stable and unstable parts. We can easily verify from (3.2.17) that now d = 2 and
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Φ0
n (α) =

(
0,0,r′n(α),r′n+1(α)

)
.

We note that

{γ̇n(α)}∞−∞ =
{
(r′n(α),r′n+1(α),0,0)

}∞
−∞

is another solution of (3.2.17) bounded on Z. We also remark that by (3.2.17),

the unperturbed mapping of (3.2.16) with ε = 0 is volume preserving on the set

{γn(α)}∞−∞. Then according to Lemma 3.1.11, we find

Ψn(α) =

⎛⎜⎜⎜⎜⎜⎝
r′n+1(α) 0

−r′n(α) 0

0 r′n+1(α)

0 −r′n(α)

⎞⎟⎟⎟⎟⎟⎠ .

Furthermore, in the notations of the previous section we have

gxx(γn(α))
(
Φ0

n (α)β ,Φ0
n (α)β

)
=

(
0,2r′n+1(α)2β 2,0,2r′n(α)2β 2

)
,

h(n,γn(α),0) = (0,−rn+1(α),0,−rn(α)) .

Consequently, the Melnikov vector mapping has the form

M(α,β ) = (M1(α,β ),M2(α,β ))

where

M1(α,β ) = 2
∞

∑
n=−∞

r′n(α)rn+1(α)−2β 2
∞

∑
n=−∞

r′n+1(α)2r′n(α) ,

M2(α,β ) = 2
∞

∑
n=−∞

r′n(α)rn(α)−2β 2
∞

∑
n=−∞

r′n(α)3 .

We conclude

A1(w) =
∞

∑
n=−∞

r′n(0)rn+1(0) = sinh2 w
∞

∑
n=1

(
sech(n+1)w− sech(n−1)w

)
×sech2 nwsinhnw < 0,

A2(w) =
∞

∑
n=−∞

r′n+1(0)2r′n(0) = sinh3 w
∞

∑
n=1

(
sech4(n+1)wsinh2(n+1)w

−sech4(n−1)wsinh2(n−1)w
)× sech2 nwsinhnw,

∞

∑
n=−∞

(r′′n(0)rn(0)+ r′n(0)2) = sinh2 w

(
−1+2

∞

∑
n=1

sech4 nw(cosh2nw−2)

)
,
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∞

∑
n=1

r′n(0)2r′′n(0) = sinh3 w
∞

∑
n=1

sech7 nwsinh2 nw(cosh2 nw−2),

∞

∑
n=−∞

r′n(0)rn(0) = sinh2 w
∞

∑
n=−∞

sech3 nwsinhnw = 0,

∞

∑
n=−∞

r′n(0)3 = sinh3 w
∞

∑
n=−∞

sech6 nwsinh3 nw = 0,

∂
∂α

M2(0,β ) = 2
∞

∑
n=−∞

(r′′n(0)rn(0)+ r′n(0)2)−12β 2
∞

∑
n=1

r′n(0)2r′′n(0) = A3(w,β ) .

The above series are very difficult to evaluate and they could be expressed in terms

of Jacobi elliptic functions [4]. Instead, we use the following lemmas.

Lemma 3.2.3. Let F : [0,∞) → R be such that |F(x)| ≤ c1 e−c2x for positive con-
stants c1,c2. Then ∣∣∣∣∣ ∞∑n=1

F(nw̃)

∣∣∣∣∣≤ 2c1 e−c2w̃

for any w̃ ≥ ln2/c2.

Lemma 3.2.4. Let F,G : [0,∞) → R be such that G(0) = 0, and

c1 e−θ1x ≤ F(x) ≤ c2 e−θ1x, d1 e−θ2x ≤ G(x) ≤ d2 e−θ2x

for any x ≥ 1 and positive constants ci,di,θi, i = 1,2. Then for any w̃ ≥ 1, we have

c1d1 e−(2θ2+θ1)w̃−c2d2 e−(2θ1+θ2)w̃

1− e−(θ1+θ2)w̃

≤
∞

∑
n=1

(G((n+1)w̃)−G((n−1)w̃))F(nw̃)

≤ c2d2 e−(2θ2+θ1)w̃−c1d1 e−(2θ1+θ2)w̃

1− e−(θ1+θ2)w̃ .

Proofs of the above lemmas are elementary, so we omit them. We apply Lemma

3.2.4 with G(x) = sech4 xsinh2 x, F(x) = sech2 xsinhx. Then using

e−x ≤ sechx ≤ 2e−x , x ≥ 0 ,

e2−1

2e2
ex ≤ sinhx ≤ ex /2 , x ≥ 1 ,

we get c1 = e2 −1
2e2 , c2 = 2, d1 =

(
e2 −1
2e2

)2
, d2 = 4, θ1 = 1 and θ2 = 2, and then we

obtain

A2(w) ≤ sinh3 w
8e−5w−

(
e2−1

2e2

)3

e−4w

1− e−3w < 0
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for any w > ln
[

64e6

(e2 −1)3

]
.= 4.59512. Similarly, using Lemma 3.2.3, cosh2 1 > 2 and∣∣sech4 x(cosh2x−2)

∣∣≤ 32e−4x +16e−2x , x ≥ 0 ,

we derive

A3(w,β ) ≤ 2sinh2 w
(−1+64e−4w +32e−2w) < 0

for any w > 1
2 ln

[
8
(√

5+2
)]

.= 1.76154. We already know that A1(w) < 0. Hence

α = 0, β =
√

A1(w)/A2(w) �= 0 is a simple zero of M(α,β ) = 0 for any w >

ln
[

64e6

(e2 −1)3

]
, i.e. K > K0 :=

4096e12 +(e2 −1)6

128e6(e2 −1)3

.= 49.5052. Now we can apply Theorem

3.2.2 to (3.2.16), and we produce the following result.

Theorem 3.2.5. For any K > K0, there is an ε0 > 0 so that (3.2.16) exhibits chaos
for any 0 < ε < ε0.

Of course, either more precise analytical or numerical evaluations of A2(w) and

A3(w,β ) could give also partial results for 1 < K ≤K0. But we do not carry out these

computations in this book. We only note that our numerical computations suggest

that K ≥ cosh0.1
.= 1.005 for obtaining chaos in (3.2.16) for ε > 0 small.

3.2.4 Planar Integrable Maps with Separatrices

A planar map is called a standard-like one if it has a form F(x,y) = (y,−x+g(y)) for

some smooth g. Note that F is area-preserving, i.e. |detDF(x,y)|= 1. A planar map

F is integrable if there is a function (a first integral) H : R
2 → R so that H ◦F = H.

An interesting family of standard-like and integrable maps is given by [5]

F(x,y) :=
(

y,−x+2y
K +βy

1−2βy+ y2

)
, −1 < β < 1 < K (3.2.18)

with the corresponding first integrals

HK,β (x,y) = x2 −2Kxy+ y2 −2βxy(x+ y)+ x2y2 .

Map (3.2.18) with β = 0 is called McMillan map. Next, (3.2.18) has two sepa-

ratrices Γ±
K,β = {γ±n (α)}n∈Z

contained in the level HK,β = 0 given by γ±n (α) =
(r±n (α),r±n+1(α)) with

r±n (α) := ±
sinhwsinh

w
2√

β 2 + sinh2 w
2

cosh(α−nw)∓β cosh
w
2

,
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for w = cosh−1 K. Clearly example (3.2.16) can be extended with (3.2.18), but we

do not go into details.

3.3 Singular Impulsive ODEs

3.3.1 Singular ODEs with Impulses

The theory of impulsive differential equations is an important branch of differential

equations with many applications [16–20]. So in this section, we continue to study

such systems by considering the problem

εx′ = f (x)+ εh(x) ,

x(i+) = x(i−)+ εg
(
x(i−)

)
, i ∈ Z ,

(3.3.1)

when the following assumptions are valid

(H1) f , g, h ∈C3(Rm,Rm).
(H2) 0 ∈ R

m is a hyperbolic equilibrium of x′ = f (x).
(H3) The equation x′ = f (x) has a homoclinic orbit φ to 0.

(H4) The variational equation v′ = D f (φ)v has the unique (up to scalar multiples)

bounded solution φ ′ on R.

By Section 4.1.2, we know that (H3) and (H4) imply the uniqueness (up to scalar

multiples) of a bounded solution ψ on R of the adjoint variational equation ψ ′ =
−(

D f (φ)
)∗ψ . By a solution of (3.3.1) we mean a function x(t), which is C1–smooth

on R \Z, satisfies the differential equation in (3.3.1) on this set and the impulsive

conditions in (3.3.1) hold as well.

For simplicity, we assume f , h, g to be globally Lipschitz continuous. Let us

denote by Φε(t,x0) the unique solution of the differential equation of (3.3.1) with

the initial condition Φε(0,x0) = x0 for ε > 0. Then we can define the Poincarè map

of (3.3.1) by the formula

πε(x) =Φε
(
1,x+ εg(x)

)
.

Of course, the dynamics of (3.3.1) is wholly determined by πε .
The purpose of this section is to show the existence of a transversal homoclinic

point of πε for any ε > 0 sufficiently small (cf Theorem 3.3.10). Then, according

to Smale-Birkhoff homoclinic theorem 2.5.4, Equations (3.3.1) will have a chaotic

behaviour for ε > 0 sufficiently small. To detect transversal homoclinic orbits of πε
for ε > 0 small, we derive the Melnikov function of (3.3.1) given by the formula

M (β ) ≡ 〈
g
(
φ(β )

)
,ψ(β )

〉
m +

∫ ∞

−∞
〈
h
(
φ(s)

)
,ψ(s)

〉
m ds , (3.3.2)
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where 〈·, ·〉m is the usual inner product on R
m. We see from the form of M that

chaos in (3.3.1) can be made only by the impulsive effects, as the integral part of

M containing h is independent of β . Of course, this fact is natural since the ODE

(3.3.1) is autonomous. For the readers’ convenience, we note that the approach of

this section can be simply generalized to study periodic perturbations of (3.3.1), i.e.

if h = h(x, t) and h(·, t +1) = h(·, t)∀ t ∈ R. Since the period of h in t is the same as

the period of the impulsive conditions, the Poincarè map πε can be straightforwardly

extended for this case. Then the Melnikov function is

M̄ (β ) =
〈
g
(
φ(β )

)
,ψ(β )

〉
m +

∫ ∞

−∞
〈
h
(
φ(s),0

)
,ψ(s)

〉
m ds , β ∈ R .

We are motivated to study such impulsive Duffing–type equations by [31] of the

form
z′′ +a2 p(z) = aq(z) ,

a
(
z(i+)− z(i−)

)
= r

(
z(i−)

)
,

z′(i+) = z′(i−), i ∈ Z ,

(3.3.3)

where a > 0 is a large parameter, p, q, r ∈C3(R,R).

3.3.2 Linear Singular ODEs with Impulses

In this section, we derive Fredholm–like alternative results of certain linear impul-

sive ODEs which are linearizations of (3.3.1). Let | · |m be the corresponding norm

to 〈·, ·〉m, and set N− = −N. Now we introduce several Banach spaces:

Xm =

{
x : R\Z → R

m ∣∣x is continuous and bounded on R\Z

and it has x(i±) = lim
s→0±

x(i+ s)∀ i ∈ Z

}
,

Xm
1 =

{
x ∈ Xm | x′ ∈ Xm

}
,

Xm
+ =

{
x : R+ \N → R

m ∣∣x is continuous and bounded on R+ \N

and it has x(i+), x(i−)∀ i ∈ N

}
,
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Xm
− =

{
x : R− \N− → R

m ∣∣x is continuous and bounded on R− \N−

and it has x(i+), x(i−)∀ i ∈ N−

}
,

Y m
+ =

{
{an}n∈N

∣∣an ∈ R
m, sup

n
|an|m < ∞

}
,

Y m
− =

{
{an}n∈N−

∣∣an ∈ R
m, sup

n
|an|m < ∞

}
,

Y m =

{
{an}n∈Z

∣∣an ∈ R
m, sup

n
|an|m < ∞

}
.

The norms on these spaces are the usual supremum norms. For instance, the norm

on Xm is defined by

||x||m = sup
s∈R\Z

|x(s)|m .

The norm on Xm
1 is denoted by || · ||m1 and on Y m by ||| · |||m. We note that ||x||m1 =

||x||m + ||x′||m.

In the first part of this section, we consider the following linear equation sug-

gested by (3.3.1)
y′ = Dβ (t)y+q(t) ,

y(i/ε+) = y(i/ε−)+bi, i ∈ Z ,
(3.3.4)

where β ∈R, ε > 0 are fixed, Dβ (t)= D f
(
φ(β+t)

)
, bi ∈R

m, q∈Xm and y(i/ε±)=
y( i
ε±).
Let Zβ (t) be the fundamental solution of y′ = Dβ (t)y. Then by Section 2.5.1, this

equation has dichotomies on both R+ and R−, i.e. there are projections P± : R
m →

R
m and constants K > 0, α > 0 so that

|Zβ (t)P±Z−1
β (s)| ≤ Ke−α(t−s), t ≥ s ,

|Zβ (t)(I−P±)Z−1
β (s)| ≤ Ke−α(s−t), s ≥ t ,

where s, t are nonnegative, and nonpositive, for P+, P−, respectively . Note that K, α
are independent of β , while P± = Pβ± = Z0(β )P0±Z−1

0 (β ).

Theorem 3.3.1. The problem

y′ = Dβ (t)y+q(t) ,

y(i/ε+) = y(i/ε−)+bi, i ∈ N ,

P+y(0) = ξ ∈ RP+ ,

(3.3.5)
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has a unique solution y ∈ Xm
+ for any q ∈ Xm

+ , {bi}i∈N ∈ Y m
+ . Moreover, for any

0 < ε < c̃ and a fixed constant c̃ > 0, it holds

||y||m ≤ c
(|||{bi}i∈N|||m + |ξ |m + ||q||m

)
.

Throughout this section c is a generic constant.

Proof. Uniqueness. If q = 0, bi = 0, ξ = 0 in (3.3.5), then the solution has the form

Zβ (t)y0, P+y0 = 0. So Zβ (t)y0 = Zβ (t)(I−P+)y0. As

|y0|m = |(I−P+)y0|m = |(I−P+)Z−1
β (t)Zβ (t)y0|m ≤ Ke−αt |Zβ (t)y0|m ,

we have, by the boundedness of Zβ (t)y0, y0 = 0. The uniqueness is proved.

Existence. Let us put for 0 ≤ n/ε < t < (n+1)/ε and any n ∈ N∪{0}

y(t) = Zβ (t)ξ +
n

∑
k=1

Zβ (t)P+Z−1
β (k/ε)bk

−
∞

∑
k=n+1

Zβ (t)(I−P+)Z−1
β (k/ε)bk +

∫ t

0
Zβ (t)P+Z−1

β (s)q(s)ds

−
∫ ∞

t
Zβ (t)(I−P+)Z−1

β (s)q(s)ds

where we set, for the case n = 0, ∑n
k=1 Zβ (t)P+Z−1

β (k/ε)bk ≡ 0. Now, we compute

for 0 < ε < c̃

|y(t)|m ≤ Ke−αt |ξ |m +
n

∑
k=1

Ke−α(t− k
ε )|bk|m

+
∞

∑
k=n+1

Ke−α( k
ε−t)|bk|m +

∫ t

0
Ke−α(t−s)||q||m ds+

∫ ∞

t
Ke−α(s−t)||q||m ds

≤ K|ξ |m +K sup
k
|bk|m

(
n

∑
k=1

e−α(t− k
ε ) +

∞

∑
k=n+1

e−α( k
ε−t)

)

+K||q||m
(∫ t

0
e−α(t−s) ds+

∫ ∞

t
e−α(s−t) ds

)

≤ K|ξ |m +K sup
k
|bk|m

(
e−α(t− n

ε )

1− e−α/ε +
e−α( n+1

ε −t)

1− e−α/ε

)
+K||q||m 2

α

≤ K|ξ |m +
2K

1− e−α/ε sup
k
|bk|m +K||q||m 2

α

≤ K|ξ |m +
2K

1− e−α/c̃ sup
k
|bk|m +K||q||m 2

α
.
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So y(t) satisfies the inequality of this theorem. It is not difficult to see that we can

take derivatives with respect to t term by term in the series and with the integral sign

so that y(t) satisfies the differential equation in (3.3.4).

To check the impulsive conditions, we compute for i ∈ N

y(i/ε+)− y(i/ε−) =
i

∑
k=1

Zβ(i/ε)P+Z−1
β (k/ε)bk −

∞

∑
k=i+1

Zβ(i/ε)(I−P+)Z−1
β (k/ε)bk

−
i−1

∑
k=1

Zβ (i/ε)P+Z−1
β (k/ε)bk +

∞

∑
k=i

Zβ(i/ε)(I−P+)Z−1
β (k/ε)bk

= Zβ (i/ε)P+Z−1
β (i/ε)bi +Zβ (i/ε)(I−P+)Z−1

β (i/ε)bi

= Zβ (i/ε)Z−1
β (i/ε)bi = bi .

Finally

P+y(0) = P+ξ −P+

(
∞

∑
k=1

(I−P+)Z−1
β (k/ε)bk +

∫ ∞

0
(I−P+)Z−1

β (s)q(s)ds

)
= ξ .

The proof is finished. ��
Theorem 3.3.2. The problem

y′ = Dβ (t)y+q(t) ,

y(i/ε+) = y(i/ε−)+bi, i ∈ N− ,

(I−P−)y(0) = η ∈ R(I−P−) ,

(3.3.6)

has a unique solution y ∈ Xm− for any q ∈ Xm− , {bi}i∈N− ∈ Y m− . Moreover, for any
0 < ε < c̃ and a fixed constant c̃ > 0, it holds

||y||m ≤ c
(|||{bi}i∈N−|||m + |η |m + ||q||m

)
.

Proof. The uniqueness is the same as in the proof of Theorem 3.3.1. For the exis-

tence, let us take for n/ε < t < (n+1)/ε ≤ 0 and any n ∈ N−

y(t) = Zβ (t)η+
n

∑
k=−∞

Zβ (t)P−Z−1
β (k/ε)bk

−
−1

∑
k=n+1

Zβ (t)(I−P−)Z−1
β (k/ε)bk +

∫ t

−∞
Zβ (t)P−Z−1

β (s)q(s)ds

−
∫ 0

t
Zβ (t)(I−P−)Z−1

β (s)q(s)ds ,

where we set again, for the case n =−1, ∑−1
k=n+1 Zβ (t)(I−P−)Z−1

β (k/ε)bk ≡ 0. The

rest of the proof is the same as in Theorem 3.3.1, and so we omit it. The proof is

finished. ��
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Now we can state the main result concerning (3.3.4).

Theorem 3.3.3. For any {bi}i∈Z ∈ Y m and q ∈ Xm, Equation (3.3.4) has a solution
y ∈ Xm

1 if and only if

∞

∑
i=−∞

〈
bi,ψ

(
β +

i
ε

)〉
m

+
∫ ∞

−∞
〈q(s),ψ(β + s)〉m ds = 0 . (3.3.7)

This solution is unique provided∫ ∞

−∞
〈
y(s),φ ′(β + s)

〉
m ds = 0

and, for any 0 < ε < c̃ and a fixed constant c̃ > 0, it satisfies

||y||m1 ≤ c
(

sup
i
|bi|m + ||q||m

)
.

Proof. Uniqueness. Assume that y1(t),y2(t) are two solutions of (3.3.4) both satis-

fying the condition ∫ ∞

−∞
〈
y(s),φ ′(β + s)

〉
m ds = 0.

Then y(t)= y1(t)−y2(t) satisfies y′(t)= Dβ (t)y(t) together with y(i/ε+)= y(i/ε−),
so that y(t) is a C1-bounded function on R satisfying the linear homogeneous differ-

ential equation y′(t) = Dβ (t)y(t). Hence y(0)∈RP+∩R(I−P−) or y(0) = λφ ′(β ).
As a consequence y(t) = λφ ′(t +β ) and then

λ
∫ ∞

−∞
|φ ′(β + s)|2 ds =

∫ ∞

−∞
〈
y(s),φ ′(β + s)

〉
m ds = 0 .

This fact implies λ = 0 or y1(t) = y2(t).
Existence. For any ξ ∈ RP+ and η ∈ R(I−P−) let y+, y− be the solutions of

(3.3.5) and (3.3.6), respectively. We compute

y+(0)− y−(0) = ξ −
∞

∑
k=1

(I−P+)Z−1
β (k/ε)bk −

∫ ∞

0
(I−P+)Z−1

β (s)q(s)ds

−η−
−1

∑
k=−∞

P−Z−1
β (k/ε)bk −

∫ 0

−∞
P−Z−1

β (s)q(s)ds .

As we also require y+(0)− y−(0) = b0, we obtain

ξ −η = b0 +
∞

∑
k=1

(I−P+)Z−1
β (k/ε)bk +

−1

∑
k=−∞

P−Z−1
β (k/ε)bk

+
∫ ∞

0
(I−P+)Z−1

β (s)q(s)ds+
∫ 0

−∞
P−Z−1

β (s)q(s)ds .

(3.3.8)

Equation (3.3.8) is solvable if and only if the right-hand side is in the space
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RP+ +R(I−P−) ,

i.e. if and only if the right-hand side of (3.3.8) is orthogonal to any element of the

space (
RP+ +R(I−P−)

)⊥ = RP⊥
+ ∩R(I−P−)⊥ = N P∗

+ ∩N (I−P∗
−) .

But it is clear that N P∗
+ ∩N (I−P∗−) is the space of all initial values y0 for which

the solution of the adjoint equation y′ = −D∗
β (t)y is bounded on R. This assertion

follows from the fact that (Z∗
β )

−1(t) is the fundamental solution of the equation

y′ = −D∗
β (t)y possessing dichotomies on both R+ and R− with the projections I−

P∗
+, I−P∗−, respectively. In our case,

N P∗
+ ∩N (I−P∗

−) = span{ψ(β )} .

Hence (3.3.8) is solvable if and only if the following holds

0 =

〈
ψ(β ),b0 +

∞

∑
k=1

(I−P+)Z−1
β (k/ε)bk +

−1

∑
k=−∞

P−Z−1
β (k/ε)bk

+
∫ ∞

0
(I−P+)Z−1

β (s)q(s)ds+
∫ 0

−∞
P−Z−1

β (s)q(s)ds

〉
m

=
〈
ψ(β ),b0

〉
m

+
∞

∑
k=1

〈
(Z∗
β )

−1(k/ε)(I−P∗
+)ψ(β ),bk

〉
m +

−1

∑
k=−∞

〈
(Z∗
β )

−1(k/ε)P∗
−ψ(β ),bk

〉
m

+
∫ ∞

0

〈
q(s),(Z∗

β )
−1(s)(I−P∗

+)ψ(β )
〉

m ds+
∫ 0

−∞
〈
q(s),(Z∗

β )
−1(s)P∗

−ψ(β
〉

m ds

=
〈
ψ(β ),b0

〉
m +

∞

∑
k=1

〈
ψ
(
β +

k
ε

)
,bk

〉
m

+
−1

∑
k=−∞

〈
ψ
(
β +

k
ε

)
,bk

〉
m

+
∫ ∞

0

〈
q(s),ψ(β + s)

〉
m ds+

∫ 0

−∞
〈
q(s),ψ(β + s)

〉
m ds

=
∞

∑
i=−∞

〈
ψ
(
β +

i
ε

)
,bi

〉
m

+
∫ ∞

−∞
〈
q(s),ψ(β + s)

〉
m ds .

We have used the identities

(Z∗
β )

−1(s)(I−P∗
+)ψ(β ) = ψ(β + s) , ∀s ≥ 0 ,

(Z∗
β )

−1(s)P∗
−ψ(β ) = ψ(β + s) , ∀s ≤ 0 ,

which follow from the facts that (Z∗
β )

−1(t) is the fundamental solution of the equa-

tion y′ = −D∗
β (t)y possessing dichotomies on both R+ and R− with the projections
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I−P∗
+, I−P∗−, respectively, and ψ(β + ·) is a bounded solution of this equation on

R.

So (3.3.8) is solvable if and only if (3.3.7) holds. Moreover, for any 0 < ε < c̃,

with c̃ > 0 being a fixed constant, we have

|ξ −η |m ≤ c
(

sup
n
|bn|m + ||q||m

)
.

Such ξ , η are not unique, since RP+∩R(I−P−) = span{φ ′(β )}. However we can

obtain uniqueness asking, for example, that η is orthogonal to φ ′(β ). That is, in

Eq. (3.3.8) we take ξ ∈ RP+ and η ∈ S = {η ∈ R(I−P−) |〈η ,φ ′(β )
〉

m = 0}. Of

course, RP+ ⊕S = RP+ +R(I−P−), but the direct sum implies the uniqueness.

Then we obtain a solution (ξ1,η1) ∈ RP+ ⊕S so that

|ξ1|m + |η1|m ≤ c
(

sup
n
|bn|m + ||q||m

)
,

for any 0 < ε < c̃ (c̃ > 0 being a fixed constant). So (3.3.4) has a solution y =
y1

({bn}∞n=−∞,q
)

satisfying

||y1||m ≤ c
(

sup
n
|bn|m + ||q||m

)
,

for any 0 < ε < c̃, if and only if (3.3.7) holds. As φ ′(β + t) is a bounded solution of

(3.3.4) with q = 0, bi = 0∀ i ∈ Z, by putting

y(t) = y1(t)−φ ′(β + t)
∫ ∞

−∞
〈
y1(s),φ ′(β + s)

〉
m ds

/∫ ∞

−∞
|φ ′(s)|2m ds ,

we obtain another solution of (3.3.4) satisfying∫ ∞

−∞
〈
y(s),φ ′(β + s)

〉
m ds = 0 .

Of course, we also have

||y||m ≤ c
(

sup
n
|bn|m + ||q||m

)
,

for any 0 < ε < c̃. As y′(t) = Dβ (t)y(t)+ q(t) we easily obtain the conclusion of

this theorem. ��
Remark 3.3.4. Let β0 be a fixed real number. Then the proof of Theorem 3.3.3 can

be repeated to obtain a unique solution of (3.3.4) satisfying the condition∫ ∞

−∞
〈
y(s),φ ′(β0 + s)

〉
m ds = 0 ,

provided |β−β0| is sufficiently small. This fact will be used in the proof of Theorem

3.3.8.
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In the last part of this section, we consider the following linear equation sug-

gested by (3.3.1)
y′ = D f (0)y+q(t) ,

y(i/ε+) = y(i/ε−)+bi, i ∈ Z ,
(3.3.9)

where ε > 0 is fixed and bi ∈ R
m, q ∈ Xm. Let Z(t) be the fundamental solution of

y′ = D f (0)y. Since 0 is hyperbolic for the equation x′ = f (x), there is a projection

Q : R
m → R

m and constants M > 0, ω > 0 so that

|Z(t)QZ−1(s)| ≤ Me−ω(t−s), t ≥ s ,

|Z(t)(I−Q)Z−1(s)| ≤ Me−ω(s−t), s ≥ t .

By repeating the proof of Theorems 3.3.1 and 3.3.2, we obtain the following

results.

Theorem 3.3.5. The problem

y′ = D f (0)y+q(t) ,
y(i/ε+) = y(i/ε−)+bi, i ∈ N ,

Qy(0) = ξ ∈ RQ ,

has a unique solution y ∈ Xm
+ for any q ∈ Xm

+ , {bi}i∈N ∈ Y m
+ . Moreover, for any

0 < ε < c̃ and a fixed constant c̃ > 0, it holds

||y||m ≤ c
(|||{bi}i∈N|||m + |ξ |m + ||q||m

)
.

Theorem 3.3.6. The problem

y′ = D f (0)y+q(t) ,
y(i/ε+) = y(i/ε−)+bi, i ∈ N− ,

(I −Q)y(0) = η ∈ R(I−Q) ,

has a unique solution y ∈ Xm− for any q ∈ Xm− , {bi}i∈N− ∈ Y m− . Moreover, for any
0 < ε < c̃ and a fixed constant c̃ > 0, it holds

||y||m ≤ c
(|||{bi}i∈N−|||m + |η |m + ||q||m) .

Now we can state our main result concerning (3.3.9).

Theorem 3.3.7. For any {bi}i∈Z ∈ Y m and q ∈ Xm, Equation (3.3.9) has a unique
solution y ∈ Xm satisfying

||y||m1 ≤ c
(

sup
i
|bi|m + ||q||m

)
,

for any 0 < ε < c̃ and a fixed constant c̃ > 0.
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Proof. The proof of Theorem 3.3.3 can be repeated up to Eq. (3.3.8). Now Eq.

(3.3.8) is always solvable, since(
RQ+R(I−Q)

)⊥ = N Q∗ ∩N (I−Q∗) = {0} .

Moreover, such a solution is unique, because

RQ∩R(I−Q) = {0} .

So (3.3.9) has the desired solution. The proof is finished. ��

3.3.3 Derivation of the Melnikov Function

In this section, we show chaotic behaviour of the Poincarè map πε of (3.3.1) for

ε > 0 small. For this purpose, we derive a Melnikov function for (3.3.1) to show the

existence of a transversal homoclinic orbit of πε for ε > 0 small. By taking the scale

of the time t ↔ εt, we have

x′ = f (x)+ εh(x) ,
x(i/ε+) = x(i/ε−)+ εg(x(i/ε−)), i ∈ Z .

(3.3.10)

Equation (3.3.10) can be rewritten in the form Fε = 0, where

Fε : Xm
1 → Xm ×Y m = X m ,

Fε(x) =

(
x′ − f (x)− εh(x),

{
x(i/ε+)− x(i/ε−)− εg

(
x(i/ε−)

)}
i∈Z

)
.

We solve Fε = 0 by the Lyapunov–Schmidt method. But this method cannot be

applied directly, since Fε is not defined for ε = 0. We overcome this difficulty by

Theorems 3.3.3 and 3.3.7. Let β0 be a fixed real number. Setting

x = z+φβ , φβ (t) = φ(β + t) ,

we can write (3.3.10) as

z′ = Dβ (t)z+
{

f (z+φβ )− f (φβ )−Dβ (t)z
}

+ εh(z+φβ ) ,

z(i/ε+) = z(i/ε−)+ εg
(
z(i/ε−)+φβ (i/ε)

)
, i ∈ Z ,∫ ∞

−∞
〈
z(s),φ ′(β0 + s)

〉
m ds = 0 ,

(3.3.11)

where |β −β0| is sufficiently small. Finally, Equation (3.3.11) is rewritten, by ap-

plying the Lyapunov-Schmidt procedure, in the form
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z′ −Dβ (t)z = P(ε,β ,z)
({

f (z+φβ )− f (φβ )−Dβ (t)z
}

+ εh(z+φβ )
)

,

z(i/ε+)− z(i/ε−) = εg
(
z(i/ε−)+φβ (i/ε)

)
, i ∈ Z ,∫ ∞

−∞
〈
z(s),φ ′(β0 + s)

〉
m ds = 0 ,

(3.3.12)

and

P(ε,β ,z)
({

f (z+φβ )− f (φβ )−Dβ (t)z
}

+ εh(z+φβ )
)

=
{

f (z+φβ )− f (φβ )−Dβ (t)z
}

+ εh(z+φβ )
(3.3.13)

where

Pd p = −
[(

d +
∫ ∞

−∞
〈

p(s),ψ(β + s)
〉

m ds
)/ ∫ ∞

−∞
|ψ(β + s)|2m ds

]
·ψ(β + ·)+ p

d = ε
∞

∑
i=−∞

〈
g
(
z(i/ε−)+φβ (i/ε)

)
,ψ

(
β +

i
ε

)〉
m

,

P(ε,β ,z) = Pd , Pd : Xm → Xm .

Note that ∫ ∞

−∞
〈
Pd p(s),ψ(β + s)

〉
m ds = −d .

The term f (z + φβ )− f (φβ )−Dβ (·)z is of order O(|z|2m) in (3.3.12) as |z|m → 0.

Moreover, the left-hand side of (3.3.12) defines a linear operator from Xm
1 to X m,

which is uniformly invertible for ε > 0 small according to Theorem 3.3.3 and Re-

mark 3.3.4. So by applying the uniform contraction principle of Theorem 2.2.1,

we can solve (3.3.12) for z, for any ε > 0 small and β so that |β − β0| is suf-

ficiently small (say |β − β0| < σ ). Moreover, for any fixed ε ∈ (0, c̃) this solu-

tion z = z(β ,ε) is C1–smooth in β and moreover a simple computation shows that

||z(β ,ε)||m, ||zβ (β ,ε)||m = O(ε) uniformly in β (here and in the sequel zβ (β ,ε) will

denote
∂ z(β ,ε)
∂β ). By putting z(β ,ε) into (3.3.13), we obtain the bifurcation equation

(see the definition of Pd p)

0 = ε
∞

∑
i=−∞

〈
g
(
z(β ,ε)(i/ε−)+φβ (i/ε)

)
,ψ

(
β +

i
ε

)〉
m

+
∫ ∞

−∞

〈
f
(
z(β ,ε)(s)+φβ (s)

)− f
(
φβ (s)

)−Dβ (s)z(β ,ε)(s)

+εh
(
z(ε,β )(s)+φβ (s)

)
,ψ(β + s)

〉
m

ds .

As ||z(β ,ε)||m, ||zβ (β ,ε)||m = O(ε), we can divide the above equation by ε to obtain
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0 =
∞

∑
i=−∞

〈
g
(
z(β ,ε)(i/ε−)+φβ (i/ε)

)
,ψ

(
β +

i
ε

)〉
m

+
∫ ∞

−∞
〈
h
(
z(β ,ε)(s)+φβ (s)

)
,ψ(β + s)

〉
m ds

+ε−1
∫ ∞

−∞

〈
f
(
z(β ,ε)(s)+φβ (s)

)− f
(
φβ (s)

)−Dβ (s)z(β ,ε)(s),ψ(β + s)
〉

m
ds .

Now, the last term in the r.h.s. of the above equation is clearly O(ε) uniformly in

β and it is not difficult to see that it can be differentiated, with respect to β , with

the integral sign and that this derivative is also O(ε), uniformly in β , because of

||z(β ,ε)||m, ||zβ (β ,ε)||m = O(ε), uniformly in β . On the other hand, for i �= 0, ε > 0

sufficiently small and |β −β0| < σ , we have∣∣∣∣ψ(
β +

i
ε

)∣∣∣∣
m
≤ K̃e−α|β+ i

ε | ≤ K̃eα|β |e−α/ε = O(ε)

where K̃ > 0 is a constant, and a similar inequality holds for φβ (i/ε). Using these

facts the above equation takes the form

〈
g
(
φ(β )

)
,ψ(β )

〉
m +

∞∫
−∞

〈
h
(
φβ (s)

)
,ψ(β + s)

〉
m ds+O(ε) = 0 (3.3.14)

where O(ε) in Equation (3.3.14) has to be considered in the C1–topology in β ∈
(β0 −σ ,β0 +σ), i.e. O(ε) expresses a term which is O(ε) small, together with the

first partial derivative in β , uniformly with respect to β ∈ (β0−σ ,β0 +σ). Summing

up we see that if β0 is a simple root of the function (3.3.2) then (3.3.14) has a unique

solution near β0 for ε > 0 sufficiently small. This means that (3.3.1) has a bounded

solution near φ for any ε > 0 sufficiently small. So we obtain the following theorem.

Theorem 3.3.8. Assume that the function M : R → R given by (3.3.2) has a simple
root at β = β0. Then (1.1) has a unique bounded solution near φβ0

for any ε > 0

sufficiently small.

Let x(ε) be the solution from Theorem 3.3.8. Then the sequence{
x(ε)(i/ε−)

}∞
i=−∞

is a bounded orbit of the Poincarè map πε of (3.3.1). In the rest of this section, we

show that this orbit is a transversal homoclinic orbit to a hyperbolic fixed point of

πε . For this purpose (see Lemma 2.5.2), we show that the linearization of (3.3.10)

at x(ε)
v′ = D f

(
x(ε)

)
v+ εDh

(
x(ε)

)
v ,

v(i/ε+) = v(i/ε−)+ εDg
(
x(ε)(i/ε−)

)
v(i/ε−), i ∈ Z

has only the zero bounded solution on R. To show this result, we apply Theorem

2.2.4. So, let B : Xm
1 → X m be a bounded linear mapping so that ||B||L(Xm

1 ,X m) ≤ L.
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Consider the equation

Fε(x)+ γεB
(
x− x(ε0)

)
= 0 (3.3.15)

for a fixed small ε0 > 0. The perturbation of (3.3.15) is small for γ, ε > 0 small and

it is vanishing for ε = 0. Hence we can repeat the proof of Theorem 3.3.8 to obtain

a unique solution x̃(ε) of (3.3.15) in a neighbourhood of φβ0
for ε > 0 and γ > 0

small. On the other hand,

Fε0

(
x(ε0)

)
+ γε0B

(
x(ε0)− x(ε0)

)
= 0 .

Hence x(ε0) = x̃(ε0). By using Theorem 2.2.4, we obtain that the linear map

DFε0

(
x(ε0)

)
is invertible, i.e. the above linearized equation of (3.3.10) at x(ε0) has

only the zero bounded solution on R.

Now we show that πε has a hyperbolic fixed point near 0. For this purpose, we

solve

Fε = 0

near x ≡ 0, i.e. we solve the equation

z′ = D f (0)z+
{

f (z)−D f (0)z
}

+ εh(z) ,

z(i/ε+) = z(i/ε−)+ εg
(
z(i/ε−)

)
,

(3.3.16)

near z = 0. By repeating the above procedure applied to Eqs. (3.3.12)–(3.3.13), when

Theorem 3.3.3 is replaced by Theorem 3.3.7, we obtain a unique small solution

x̄(ε) ∈ Xm
1 of (3.3.16). On the other hand, if x̃ is a solution of Fε then x̃(1+ ·) is also

a solution. Hence

x̄(ε)(1+ ·) = x̄(ε)(·)
because of uniqueness. So the point x̄(1−) is a fixed point of πε . To show the hy-

perbolicity of this point, we again apply Lemma 2.5.2 and Theorem 2.2.4 by taking

an equation similar to (3.3.15) of the form

Fε(x)+ γεB
(
x− x̄(ε0)

)
= 0 ,

for a fixed small ε0 > 0. By employing Theorem 3.3.7 as above for (3.3.16), the only

small solution of this equation is x̄(ε0). So DFε0

(
x̄(ε0)

)
is invertible, i.e. x̄(ε0)(1−)

is a hyperbolic fixed point of πε0
. Summing up, we obtain

Theorem 3.3.9. The Poincarè map πε of (1.1) has a unique hyperbolic fixed point
near 0 for any ε > 0 sufficiently small.

Summarizing our results we see that the set
{

x(ε)(i/ε−)
}∞

i=−∞ is a transversal

homoclinic orbit of πε to the hyperbolic fixed point x̄(ε)(1−) for any ε > 0 suffi-

ciently small. This gives the main result of this section.

Theorem 3.3.10. If there is a simple root of M (β ) = 0, then πε - the Poincarè map
of (3.3.1) - possesses a transversal homoclinic point for any ε > 0 sufficiently small.
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3.3.4 Examples of Singular Impulsive ODEs

Consider
εx′ = f (x)+ εh(x) ,

x(i+) = x(i−)+ ετa, i ∈ Z ,
(3.3.17)

where a ∈ R
m is fixed, τ ∈ R is a parameter and f , h satisfy the assumptions (H1)–

(H4).

Theorem 3.3.11. If
∫ ∞
−∞

〈
h(φ(s)),ψ(s)

〉
m ds �= 0 and there is β0 ∈ R satisfying〈

a,ψ(β0)
〉

m �= 0,
〈
a,ψ ′(β0)

〉
m �= 0 .

Then, for any ε > 0 sufficiently small, the Poincarè map of (3.3.17) has a transversal
homoclinic orbit for τ0 = −∫ ∞

−∞
〈
h(φ(s)),ψ(s)

〉
m ds

/〈
a,ψ(β0)

〉
m .

Proof. In this case, the Melnikov function (3.3.2) for (3.3.17) with τ = τ0 has the

form

M (β ) = τ0

〈
a,ψ(β )

〉
m +

∫ ∞

−∞
〈
h(φ(s)),ψ(s)

〉
m ds .

It is clear that M (β0) = 0, M ′(β0) �= 0. So Theorem 3.3.10 implies the assertion.

The proof is finished. ��
We note that under the assumptions of Theorem 3.3.11, the Poincarè map of

(3.3.17) has a transversal homoclinic orbit for any τ near τ0 and any ε > 0 suffi-

ciently small.

Theorem 3.3.12. If
∫ ∞
−∞

〈
h(φ(s)),ψ(s)

〉
m ds = 0 and there is β0 ∈ R satisfying〈

a,ψ(β0)
〉

m = 0,
〈
a,ψ ′(β0)

〉
m �= 0 .

Then, for any ε > 0 sufficiently small, the Poincarè map of (3.3.17) has a transversal
homoclinic orbit for any τ �= 0 fixed.

Proof. In this case,

M (β ) = τ
〈
a,ψ(β )

〉
m .

So M (β0) = 0, M ′(β0) �= 0. The proof is finished by Theorem 3.3.10. ��
Finally, let us consider an impulsive Duffing–type equation of the form (3.3.3).

Theorem 3.3.13. Assume that p(0) = 0, p′(0) < 0 and the second–order ODE

z′′ + p(z) = 0

has a nonconstant solution γ(t) so that γ(t) → 0 as t →±∞. If there is β0 ∈ R so
that γ ′′(β0) = 0, γ ′′′(β0) �= 0 and r

(
γ(β0)

) �= 0, then (3.3.3) has chaotic behaviour
for any a > 0 sufficiently large.
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Proof. The equation can be rewritten in the form

εx′ = f (x)+ εh(x) ,

x(i+) = x(i−)+ εg
(
x(i−)

)
,

(3.3.18)

where
ε = 1/a, x = (x1,x2) ∈ R

2, f (x1,x2) =
(
x2,−p(x1)

)
,

h(x1,x2) =
(
0,q(x1)

)
, g(x1,x2) =

(
r(x1),0

)
.

We note [31] that in this case

φ(β ) =
(
γ(β ),γ ′(β )

)
, ψ(β ) =

(− γ ′′(β ),γ ′(β )
)
.

So the Melnikov function of Theorem 3.3.10 has the form:

M (β ) = −r
(
γ(β )

)
γ ′′(β )+

∫ ∞

−∞
q
(
γ(s)

)
γ ′(s)ds = r

(
γ(β )

)
p(γ(β )) .

By M (β0) = 0 and M ′(β0) �= 0, the conclusion follows from Theorem 3.3.10. ��
Remark 3.3.14. Consider

z′′ +a2 p(z) = q(z) ,

a
(
z(i+)− z(i−)

)
= r

(
z(i−)

)
,

z′(i+) = z′(i−), i ∈ Z

(3.3.19)

instead of (3.3.3). Then the statement of Theorem 3.3.13 holds, since (3.3.18) is

replaced by

εx′ = f (x)+ ε2h(x) ,

x(i+) = x(i−)+ εg
(
x(i−)

)
.

It easily follows, from the proof of Theorem 3.3.13, that M (β ) = r
(
γ(β )

)
p
(
γ(β )

)
in this case too, hence Theorem 3.3.13 still holds.

Remark 3.3.15. Consider

z′′ +a2 p(z) = q(z) ,

a2
(
z(i+)− z(i−)

)
= r

(
z(i−)

)
,

z′(i+) = z′(i−), i ∈ Z

(3.3.20)

instead of (3.3.3). Then the statement of Theorem 3.3.13 holds, since (3.3.18) is

replaced by

εx′ = f (x)+ ε2h(x) ,

x(i+) = x(i−)+ ε2g
(
x(i−)

)
.

(3.3.21)

Of course, the Melnikov function for (3.3.21) is vanishing, since we derived in The-

orem 3.3.10 the first–order Melnikov function. However the factor ε2 in both the

perturbation and the jumping term allow us to repeat the arguments of Section 3.3.3
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showing, then that the solution of system (3.3.12) is O(ε2)-bounded, uniformly in

β and the same holds for its derivative with respect to β . Thus, we can divide the

bifurcation function by ε2 and take the limit as ε → 0 (uniformly in β ), getting the

same bifurcation function as in (3.3.2). Hence [31, p. 284] we see that a simple root

of the above Melnikov function of (3.3.18) ensures the validity of Theorem 3.3.13

also for (3.3.20).

3.4 Singularly Perturbed Impulsive ODEs

3.4.1 Singularly Perturbed ODEs with Impulses

In this section we proceed with the study of chaotic behaviour of dynamical systems

with impulses. More precisely, we study the chaotic behavior of the equation

εy′ = f (x,y,ε) ,
x′ = g(x,y,ε) ,

(3.4.1)

with the impulsive effects

x(i+0) = x(i−0)+ εa
(
x(i−0),y(i−0),ε

)
,

y(i+0) = y(i−0)+ εb
(
x(i−0),y(i−0),ε

)
, i ∈ Z ,

(3.4.2)

where as usual lim
t→i±

x(t) = x(i± 0). Here y ∈ R
p, x ∈ R

m and ε > 0 is a small pa-

rameter. We assume that

(H1) f , g, a, b are C3–smooth;

(H2) f (·,0,0) = 0, Dy f (·,0,0) =
(
A(·),B(·)), where A(·) ∈ L(Rk1), B(·) ∈ L(Rk2),

k1 + k2 = p;

(H3)
{
ℜτ | τ ∈ σ(A(·))} ⊂ (−∞,−γ) and

{
ℜτ | τ ∈ σ(B(·))} ⊂ (γ,∞) for some

constant γ > 0;

(H4) The reduced equation x′ = g(x,0,0) has a hyperbolic equilibrium x̄0 with a

homoclinic orbit x(t);
(H5) The variational equation v′ = Dxg

(
x(t),0,0

)
v has the only unique (up to con-

stant multiples) bounded solution x′(·).
By a solution of (3.4.1)–(3.4.2) we mean some (x,y) which is C1–smooth in R\Z

satisfying (3.4.1) on this set and moreover, (3.4.2) holds for any i∈Z. For simplicity,

we assume that f , g, a, b are globally Lipschitz continuous. Then (3.4.1)–(3.4.2)

with any initial condition x(t0) = x0, y(t0) = y0, t0 /∈ Z has a unique global solution.

Furthermore, we can define a Poincarè map Hε of (3.4.1)–(3.4.2) in the following

way. Let φε
(
t,(x0,y0)

)
be the unique solution of (3.4.1) with the initial point (x0,y0).

Then we put
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Hε(x0,y0) = φε
(

1,
(
x0 + εa(x0,y0,ε),y0 + εb(x0,y0,ε)

))
.

Of course, the dynamics of (3.4.1)–(3.4.2) is wholly determined by Hε . The aim of

this section is to find assumptions for f , g, a, b which give the existence of transver-

sal homoclinic point of Hε for any ε > 0 small. For this purpose, we derive a Mel-

nikov function for (3.4.1)–(3.4.2). Then such Eqs. (3.4.1)–(3.4.2) will have a chaotic

behaviour for ε > 0 small. The chaotic behaviour of small periodic perturbations of

(3.4.1) is studied in Section 4.4.

3.4.2 Melnikov Function

We know by Section 4.1.2 that (H4) and (H5) imply the uniqueness (up to constant

multiples) of a bounded nonzero solution u of the adjoint variational equation

u′ = −
(

Dxg
(
x(t),0,0

))∗
u .

Since the derivation of a Melnikov function for (3.4.1)–(3.4.2) is very similar to

results of Section 3.3, we omit further details and refer to [32]. Hence the Melnikov

function is now:

M (t) =
∞

∑
i=−∞

〈
a
(
x(t + i),0,0

)
,u(t + i)〉m

+
∫ ∞

−∞

〈
−Dyg

(
x(s),0,0

)
Dy f

(
x(s),0,0

)−1Dε f
(
x(s),0,0

)
+

+Dεg
(
x(s),0,0

)
,u(s)

〉
m

ds

(3.4.3)

where 〈·, ·〉m is the usual inner product on R
m. Now we are ready to state the main

result of this section.

Theorem 3.4.1. Assume that there is t0 so that

M (t0) = 0, M ′(t0) �= 0 .

Then (3.4.1)–(3.4.2) have transversal homoclinic orbit for any ε > 0 small.

Remark 3.4.2. We have considered only the case of the uniform distribution of im-

pulsive effects. We may study (3.4.1) similarly as above with impulsive effects of

the form (3.4.2) at ti, i ∈ Z for a fixed sequence {ti}∞i=−∞, ti < ti+1 so that

ti →±∞ as i →±∞
sup

i
(ti+1 − ti) < ∞, inf

i
(ti+1 − ti) > 0 .



72 3 Chaos in Discrete Dynamical Systems

Then, of course, (3.4.1)–(3.4.2) do not define any Poincarè map for general {ti}∞i=−∞.

A line of the paper [33] may be followed for the above general impulsive effects.

Remark 3.4.3. The second term of the Melnikov function M (see (3.4.3)), which

does not depend on t, is only a contribution of (3.4.1) (see Section 4.4). While the

first term of M is determined by both (3.4.1) and (3.4.2).

3.4.3 Second Order Singularly Perturbed ODEs with Impulses

In this section, we consider

εx′′ = x′ − f (x) ,

x(i+0) = x(i−0)+ εa
(
x(i−0),x′(i−0)

)
,

x′(i+0) = x′(i−0)+ εb
(
x(i−0),x′(i−0)

) (3.4.4)

where f : R
m → R

m and f , a, b are C2–smooth. Moreover, assume that the equation

x′ = f (x) has a hyperbolic equilibrium x̄0 with a homoclinic orbit x(·). Furthermore,

suppose the adjoint variational equation v′ = −(D f (x(t)))∗ v has a unique (up to

constant multiples) bounded nonzero solution u. Taking x′ = y + f (x) we obtain

from (3.4.4)

εy′ = y− εD f (x)
(
y+ f (x)

)
,

x′ = y+ f (x) ,

x(i+0) = x(i−0)+ εa
(
x(i−0),y(i−0)+ f (x(i−0))

)
,

y(i+0) = y(i−0)+ εb
(
x(i−0),y(i−0)+ f (x(i−0))

)
+ f

(
x(i−0)

)− f
(

x(i−0)+ εa
(
x(i−0),y(i−0)+ f (x(i−0))

))
.

(3.4.5)

We see (3.4.5) is of the form (3.4.1)–(3.4.2), and the Melnikov function M , for this

case, has the form (see (3.4.3))

M̄ (t) =
∞

∑
i=−∞

〈a(x(t + i), f (x(t + i))
)
,u(t + i)〉m +

∫ ∞

−∞
〈D f

(
x(s)

)
f
(
x(s)

)
,u(s)〉m ds

=
∞

∑
i=−∞

〈a(x(t + i), f (x(t + i))
)
,u(t + i)〉m +

∫ ∞

−∞
〈D f

(
x(s)

)
x′(s),u(s)〉m ds

=
∞

∑
i=−∞

〈a(x(t + i), f (x(t + i))
)
,u(t + i)〉m +

∫ ∞

−∞
〈x′′(s),u(s)〉m ds

=
∞

∑
i=−∞

〈a(x(t + i), f (x(t + i))
)
,u(t + i)〉m −

∫ ∞

−∞
〈x′(s),u′(s)〉m ds .

Hence
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M̄ (t) =
∞

∑
i=−∞

〈a(x(t + i), f (x(t + i))
)
,u(t + i)〉m −

∫ ∞

−∞
〈x′(s),u′(s)〉m ds . (3.4.6)

By applying Theorem 3.4.1 we obtain.

Theorem 3.4.4. Assume that there is t0 so that

M̄ (t0) = 0, M̄ ′(t0) �= 0 .

Then (3.4.4) has a chaotic behaviour for any ε > 0 small.

3.5 Inflated Deterministic Chaos

3.5.1 Inflated Dynamical Systems

The following problem arises in computer-assisted proofs and other numerical

methods in dynamical systems [34–37]. Let BRn be a unit closed ball of R
n. For

a homeomorphism f : R
n  → R

n, we consider an orbit {x j} j∈Z of an ε-inflated map-
ping x → f (x)+ εBRn for ε > 0. Then we deal with a difference inclusion

x j+1 ∈ f (x j)+ εBRn , j ∈ Z . (3.5.1)

The concept of ε–inflated dynamics was introduced in [36] and was used in a fairly

large number of papers since then. For details, see the monograph [38] and the ref-

erences therein. Consequently, the theory of generalized nonautonomous attractors

in the ε–inflated dynamics can be considered to be complete by now.

We are not interested in the existence of one solution of (3.5.1), but in the set of

all trajectories of (3.5.1). So, for instance, to fix the initial point x0, we consider a

single-valued difference equation

x j+1 = f (x j)+ ε p j, p j ∈ BRn , j ∈ Z , (3.5.2)

where p = {p j} j∈Z ∈ B�∞
Z
(Rn) is considered as a parameter. This orbit of (3.5.2) is

denoted by x(p) = {x j(p)} j∈Z. Then we define an ε-inflated orbit of (3.5.1) given

by

xε(x0) = {xεj} j∈Z, xεj =
{

x j(p) | p ∈ B�∞
Z
(Rn)

}
.

Here

�∞Z(Rn) =

{
p = {p j} j∈Z | p j ∈ R

n, ∀ j ∈ Z and ‖p‖ := sup
j∈Z

|p j| < ∞
}

is the usual Banach space and B�∞
Z
(Rn) is its closed unit ball. Certainly it holds
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xεj+1 = f (xεj )+ εBRn , j ∈ Z .

Hence xεj are contractible into themselves to x0
j = f j(x0). The iteration f j(x0), j �= 0

is in the interior of xεj . Note that xε0 = x0. Moreover, xεj are compact.

This approach of considering parameterized difference equation (3.5.2) instead

of difference inclusion (3.5.1) is used in [39] for investigation of ε-inflated dynam-

ics near either to a hyperbolic fixed point of a diffeomorphism or to a hyperbolic

equilibrium of a differential equation. More precisely, we construct analogues of

the stable and unstable manifolds, which are typical of a single-valued hyperbolic

dynamics; moreover, we construct the maximal weakly invariant bounded set and

prove that all such sets are graphs of Lipschitz maps. Then a parameterized general-

ization of Hartman-Grobman lemma is shown. Inflated ODEs are studied in Section

4.6.

3.5.2 Inflated Chaos

We consider a C1-diffeomorphism f : R
n  → R

n possessing a hyperbolic fixed point

x0. Then we take its g-inflated perturbation

x → f (x)+g(x,BRn) (3.5.3)

where g : R
n×BRn →R

n is Lipschitz in the both variables, i.e. the following holds:

There are positive constants λ ,Λ and L so that

|g(x, p)−g(x̃, p̃)| ≤ λ |x− x̃|+Λ |p− p̃| and |g(x,0)| ≤ L (3.5.4)

whenever x, x̃ ∈R
n and p, p̃ ∈BRn . We suppose, in addition, that diffeomorphism f

possesses a transversal homoclinic orbit {x0
k}k∈Z to hyperbolic fixed point x0. Then

f is chaotic by the Smale-Birkhoff homoclinic theorem 2.5.4. Our aim is to extend

this theorem to (3.5.3).

Our multivalued perturbation takes the special form G(x) = g(x,BRn). So (3.5.3)

has the form x → f (x)+ G(x). In view of the Lojasiewicz-Ornelas parametrization

theorem 2.3.1, this is not a loss of generality if the values of G are convex and

compact. However, in the general case a parameterization of G does not exist. We

mention that some nonconvex versions exist as well [40], but in general, a parame-

terization cannot be available, since continuous selections may not exists (see [41],

Section 1.6). Hence, we consider

xk+1 ∈ f (xk)+g(xk,BRn), k ∈ Z . (3.5.5)

Like in [39], we take p = {pk}k∈Z
∈ �∞

Z
(Rn), ‖p‖ ≤ 1 and consider the system

xk+1 = f (xk)+g(xk, pk), k ∈ Z . (3.5.6)
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First, we know by Lemma 2.5.2 that the transversality of a homoclinic orbit {x0
k}k∈Z

is equivalent to the existence of an exponential dichotomy of wk+1 = D f (x0
k)wk on

Z, i.e. setting the fundamental solution

W (k) :=

⎧⎪⎪⎨⎪⎪⎩
D f (x0

k−1) · · ·D f (x0
0) , if k > 0 ,

I , if k = 0 ,

D f (x0
k)

−1 · · ·D f (x0
−1)

−1 , if k < 0 ,

there are a projection P : R
n  → R

n and positive constants K > 0, δ ∈ (0,1) so that∣∣W (k)PW (r)−1
∣∣≤ Kδ k−r , for k ≥ r ,∣∣W (k)(I−P)W (r)−1

∣∣≤ Kδ k−r , for k ≤ r .

Now we fix ω ∈ N large and for any ξ ∈ E , ξ = {e j} j∈Z we define a pseudo-orbit

xξ = {xξk }k∈Z as follows for k ∈ {2 jω, . . . ,2( j +1)ω−1}, j ∈ Z:

xξk :=

{
x0

k−(2 j+1)ω , for e j = 1 ,

x0 , for e j = 0 .

Let |x0
k0
− x0| = max

k∈Z

|x0
k − x0|. Following [10, pp. 148–151] and [13], we have the

following result.

Lemma 3.5.1. There exist ω0 ∈ N, ω0 > |k0| and a constant c > 0 so that for any
ξ ∈ E , h = {hk}k∈Z ∈ �∞

Z
(Rn), there is a unique solution w = {wk}k∈Z ∈ �∞

Z
(Rn) of

the linear system
wk+1 = D f (xξk )wk +hk, k ∈ Z .

Moreover, w is linear in h and it holds ‖w‖ ≤ c‖h‖.

We denote that K(ξ )h = w is the unique solution from Lemma 3.5.1. Certainly

K(ξ ) ∈ L
(
�∞
Z
(Rn)

)
with ‖K(ξ )‖ ≤ c, and K(ξ )−1w =

{
wk+1 −D f (xξk )wk

}
k∈Z

, so

K(ξ )−1 ∈ L
(
�∞
Z
(Rn)

)
.

Now we look for a solution of (3.5.6) near xξ . For this reason, we make a change

of variables xk = wk + xξk , k ∈ Z to get the equation

wk+1 = D f
(

xξk
)

wk + f
(

wk + xξk
)
−xξk+1−D f

(
xξk

)
wk +g

(
wk + xξk , pk

)
(3.5.7)

for k ∈ Z. To solve (3.5.7), we introduce a mapping

G : E ×B�∞
Z
(Rn) × �∞Z(Rn)  → �∞Z(Rn)

as follows:

G(ξ ,p,w) :=
{

f
(

wk + xξk
)
− xξk+1 −D f

(
xξk

)
wk +g

(
wk + xξk , pk

)}
k∈Z

.
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Now for any ξ ∈ E , w1,w2 ∈ �∞
Z
(Rn), ‖w1,2‖ ≤ ρ and p1,p2 ∈ B�∞

Z
(Rn), we derive

‖G(ξ ,p1,w1)−G(ξ ,p2,w2)‖ ≤ (!(ρ)+λ )‖w1 −w2‖+Λ‖p1 −p2‖ (3.5.8)

for

!(ρ) := sup
{
|D f (w+ x)−D f (x)| : |x− x0| ≤ 2|x0

k0
− x0|, |w| ≤ ρ

}
.

Note that !(0) = 0. Since {x0
k}k∈Z is a homoclinic orbit of f to x0, by [42, p. 148],

we also get

‖G(ξ ,0,0)‖ ≤ L+ sup
k∈Z,ξ∈E

|xξk+1 − f (xξk )| ≤ L+ c̃
(
δ +1

2

)ω
(3.5.9)

for a constant c̃ > 0 and any ξ ∈ E . Now we are ready to rewrite (3.5.7) as the

following fixed point problem

w = F(ξ ,p,w) := K(ξ )G(ξ ,p,w) .

By Lemma 3.5.1, (3.5.8) and (3.5.9), we obtain

‖F(ξ ,p1,w1)−F(ξ ,p2,w2)‖ ≤ c(!(ρ)+λ )‖w1 −w2‖+Λc‖p1 −p2‖ ,

‖F(ξ ,p1,w1)‖ ≤ c(!(ρ)+λ )‖w1‖+Λc‖p1‖+Lc+ cc̃
(
δ +1

2

)ω
(3.5.10)

for any ξ ∈ E , w1,w2 ∈ �∞
Z
(Rn), ‖w1,2‖ ≤ ρ and p1,p2 ∈ B�∞

Z
(Rn). Assuming that

cλ < 1 , (3.5.11)

we set

κ̃0 := min

{
1,cλ + c!

( |x0
k0
− x0|
4

)}
,

M0(c,λ ) := max
cλ≤κ≤κ̃0

{
1−κ

c
min

{
!−1

(
κ− cλ

c

)}}
and the above maximum is achieved at κ0 ∈ (cλ ,1). Here !−1 : R+ → 2R+ \{ /0} is

considered as an upper semicontinuous mapping which is increasing with increasing

compact interval set values. Put

ρ0 := min

{
!−1

(
κ0 − cλ

c

)}
.

Note that
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0 < ρ0 = min

{
!−1

(
κ0 − cλ

c

)}
≤ min

{
!−1

(
κ̃0 − cλ

c

)}
≤ |x0

k0
− x0|
4

,

κ0 = c(!(ρ0)+λ ) .

If

Λ +L < M0(c,λ ) , (3.5.12)

then Λ +L < M0(c,λ ) = 1−κ0
c ρ0 and so

cΛ + cL+ c(!(ρ0)+λ )ρ0 = cΛ + cL+κ0ρ0 < ρ0 .

Consequently, we find N " ω1 > ω0 so that

cc̃
(
δ +1

2

)ω1

+ cΛ + cL+κ0ρ0 ≤ ρ0 . (3.5.13)

Then for any fixed N " ω ≥ ω1, mapping:

F : E ×B�∞
Z
(Rn) ×B

ρ0

�∞
Z
(Rn)  → B

ρ0

�∞
Z
(Rn)

is a contraction with a constant κ0, where B
ρ0

�∞
Z
(Rn) is the ball of �∞

Z
(Rn) centered at

0 with the radius ρ0. By the Banach fixed point theorem 2.2.1 we get the following

result.

Theorem 3.5.2. Assume (3.5.11) and (3.5.12). Then there are ω1 > ω0,
|x0

k0
−x0|
4 ≥

ρ0 > 0 so that for any N " ω ≥ ω1 but fixed and for any ξ ∈ E , p ∈ B�∞
Z
(Rn), there

is a unique solution x(p,ξ ) = {xk(p,ξ )}k∈Z
∈ �∞

Z
(Rn) of (3.5.6) so that

‖x(p,ξ )−xξ‖ ≤ ρ0 . (3.5.14)

By (3.5.10), mapping:

x : B�∞
Z
(Rn) ×E  → �∞Z(Rn)

is Lipschitzian in p:

‖x(p1,ξ )−x(p2,ξ )‖ ≤ cΛ
1−κ0

‖p1 −p2‖ (3.5.15)

for any ξ ∈ E and p1,p2 ∈ B�∞
Z
(Rn). Let

�Z(Rn) := {{xk}k∈Z | xk ∈ R
n}

be a metric space with a norm

d({ek∈Z},{e′k∈Z}) := ∑
k∈Z

|ek − e′k|
2|k|+1(1+ |ek − e′k|)

.
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Clearly �∞
Z
(Rn) ⊂ �Z(Rn). Now we prove several useful results.

Theorem 3.5.3. Mapping x : B�∞
Z
(Rn) ×E  → �Z(Rn) is continuous.

Proof. Let B�∞
Z
(Rn) "pi = {pi

j} j∈Z → p0 = {p0
j} j∈Z ∈B�∞

Z
(Rn), E " ξi = {ei

j} j∈Z →
ξ0 = {e0

j} j∈Z ∈ E as i →∞. Then using (3.5.14) and the Cantor diagonal procedure,

we can suppose, by passing to subsequences, that

x j(pi,ξi) → x̃0
j , ∀ j ∈ Z ,

as i → ∞. We note that ei
j → e0

j as i → ∞ ∀ j ∈ Z and x(pi,ξi), i ∈ Z solving (3.5.6)

along with (3.5.14) holds as well. By passing to the limit i → ∞, we obtain

x̃0
k+1 = f (x̃0

k)+g(x̃0
k , p0

k), k ∈ Z

and x̃ = {x̃0
j} j∈Z satisfies (3.5.14) with ξ = ξ0. The uniqueness property of Theorem

3.5.2 implies x̃ = x(p0,ξ0). The continuity of x is proved. ��
Theorem 3.5.4. It holds

xk(p̃,σ(ξ )) = xk+2ω(p,ξ ) , ∀k ∈ Z , (3.5.16)

for p̃ := {pk+2ω}k∈Z.

Proof. Taking zk := xk+2ω(p,ξ ) for any k ∈Z, by xσ(ξ )
k = xξk+2ω ∀k ∈Z, (3.5.6) and

(3.5.14) we derive

zk+1 = f (zk)+g(zk, pk+2ω) ,∣∣∣zk − xσ(ξ )
k

∣∣∣ =
∣∣∣xk+2ω(p,ξ )− xξk+2ω

∣∣∣≤ ρ0 ,

for any k ∈ Z. The uniqueness property of Theorem 3.5.2 implies zk = xk(p̃,σ(ξ ))
for any k ∈ Z, so (3.5.16) is shown. ��

Then (3.5.16) implies

x2kω(p,ξ ) = x0

(
σ̃ k(p),σ k(ξ )

)
, ∀k ∈ Z , (3.5.17)

for a shift homeomorphism

σ̃ : B�∞
Z
(Rn)  → B�∞

Z
(Rn)

given by σ̃(p) := p̃. Note that

x2(k+1)ω(p,ξ ) = F2(k+1)ω
2kω,p (x2kω(p,ξ )) , ∀k ∈ Z , (3.5.18)

for continuous mappings
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F2(k+1)ω
2kω,p (x) :=

(
f +g(·, p2(k+1)ω−1)

) · · ·( f +g(·, p2kω+1))( f +g(·, p2kω))(x) .

Then (3.5.17) and (3.5.18) imply

x0

(
σ̃ k+1(p),σ k+1(ξ )

)
= F2(k+1)ω

2kω,p

(
x0

(
σ̃ k(p),σ k(ξ )

))
, ∀k ∈ Z , (3.5.19)

and since σ k : E  → E is a homeomorphism, (3.5.19) gives

x0

(
σ̃ k+1(p),σ(ξ )

)
= F2(k+1)ω

2kω,p

(
x0

(
σ̃ k(p),ξ

))
, ∀k ∈ Z . (3.5.20)

Next, introducing the following mappings

Σ : B�∞
Z
(Rn) ×E ×Z  → B�∞

Z
(Rn) ×E ×Z ,

Σ (p,ξ ,k) := (p,σ(ξ ),k +1) ,

Φ : B�∞
Z
(Rn) ×E ×Z  → B�∞

Z
(Rn) ×R

n ×Z ,

Φ(p,ξ ,k) :=
(

p,x0

(
σ̃ k(p),ξ

)
,k
)

,

F2ω : B�∞
Z
(Rn) ×R

n ×Z  → B�∞
Z
(Rn) ×R

n ×Z ,

F2ω(p,x,k) :=
(

p,F2(k+1)ω
2kω,p (x),k +1

)
,

and the set

Λ :=Φ
(
B�∞

Z
(Rn) ×E ×Z

)
,

we obtain the main result of this section.

Theorem 3.5.5. The diagram of Figure 3.2 is commutative. Moreover, mappings Σ
and Φ are homeomorphisms.

Fig. 3.2 Commutative diagram of inflated deterministic chaos.

Proof. The commutativity of diagram in Figure 3.2 follows directly from (3.5.20).

Since σ : E  → E is a homeomorphism, Σ is also a homeomorphism. Now we show

the injectivity of the mapping x0(p, ·) : E  → R
n. If there exist E " ξ 1 = {e1

j} j∈Z �=
ξ 2 = {e2

j} j∈Z ∈E and x0(p,ξ 1) = x0(p,ξ 2), then xk(p,ξ 1) = xk(p,ξ 2) for any k∈Z

and j0 ∈ Z exists so that e1
j0 �= e2

j0 . Then (3.5.14) gives
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|x0
k0
− x0| =

∣∣∣xξ 1

(2 j0+1)ω+k0
− xξ

2

(2 j0+1)ω+k0

∣∣∣≤ ∣∣∣x(2 j0+1)ω+k0
(p,ξ 1)− xξ

1

(2 j0+1)ω+k0

∣∣∣
+
∣∣∣x(2 j0+1)ω+k0

(p,ξ 2)− xξ
2

(2 j0+1)ω+k0

∣∣∣≤ 2ρ0 < |x0
k0
− x0| ,

which is a contradiction. Consequently x0(p, ·) is injective. Now supposeΦ(p1,ξ 1,k1)=
Φ(p2,ξ 2,k2). Then p1 = p2 = p, k1 = k2 = k and

x0

(
σ̃ k(p),ξ 1

)
= x0

(
σ̃ k(p),ξ 2

)
and thus ξ 1 = ξ 2. Hence Φ is also injective. Finally assume that Φ(pi,ξ i,ki) →
Φ(p0,ξ 0,k0) as i → ∞. Then ki = k0 for large i, pi → p0 and

x0

(
σ̃ k0(pi),ξ i

)
→ x0

(
σ̃ k0(p0),ξ 0

)
.

Since E is compact, we can suppose ξ i → ξ̃ 0 and then

x0

(
σ̃ k0(p0),ξ 0

)
= x0

(
σ̃ k0(p0), ξ̃ 0

)
and so ξ̃ 0 = ξ 0, i.e. Φ−1 is continuous. In summary, Φ is a homeomorphism. The

proof is finished. ��
Figure 3.2 has the following more transparent form in Figure 3.3 where

Σ̃ : B�∞
Z
(Rn) ×E  → B�∞

Z
(Rn) ×E , Σ̃ (p,ξ ) := (p,σ(ξ )) ,

Φk : B�∞
Z
(Rn) ×E  → B�∞

Z
(Rn) ×R

n , Φk(p,ξ ) :=
(

p,x0

(
σ̃ k(p),ξ

))
,

Λk :=Φk

(
B�∞

Z
(Rn) ×E

)
,

F2ω
k : B�∞

Z
(Rn) ×R

n  → B�∞
Z
(Rn) ×R

n , F2ω
k (p,x) :=

(
p,F2(k+1)ω

2kω,p (x)
)

.

By putting

Φp
k : E  → R

n , Φp
k (ξ ) := x0

(
σ̃ k(p),ξ

)
, Λp

k :=Φp
k (E ) ,

Figure 3.3 has also more transparent forms described in Figure 3.4. All mappings in

Figures 3.3 and 3.4 are again homeomorphisms, and setsΛp
k are compact. So Figure

3.4 is a two-parameterized analogy of Figure 2.1 of Section 2.5.2 by parameters

p ∈ B�∞
Z
(Rn) and k ∈ Z.

Set

ϕ0(ξ ) =Φ0
0 (ξ ) = x0(0,ξ ), Λ0 =Λ 0

0 = x0(0,E ), m = 2ω . (3.5.21)

By (3.5.15), all sets Λp
k are in a cΛ

1−κ0
-neighborhood of Λ0. If
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�� �

�
� �

� �

Φk

B�∞
Z
(Rn) ×E

Λk

Σ̃

F2ω
k

B�∞
Z
(Rn) ×E

Λk+1

Φk+1

Fig. 3.3 A sequence of commutative diagrams from Figure 3.2.

�� �

�
� �

� �

Φp
k

E

Λp
k

σ

F2(k+1)ω
2kω,p

E

Λp
k+1

Φp
k+1

Fig. 3.4 A parameterized sequence of commutative diagrams from Figure 3.3.

g(x,0) = 0 ∀x ∈ R
n (3.5.22)

then L = 0 in (3.5.4), ϕ = ϕ0, Λ = Λ0 in (3.5.21) and Figure 2.1 of Section 2.5.2

is derived from Figure 3.4 by setting p = 0. Moreover, inequality (3.5.13) gives

ρ̃0 := cc̃
(
δ+1

2

)ω0

+κ0ρ < ρ0. Clearly !(ρ̃0) ≤!(ρ0) and so κ̃0 := c!(ρ̃0) ≤ κ0.

Repeating the proof of Theorem 3.5.2 we get ‖x(0,ξ )−xξ‖ ≤ ρ̃0 for any ξ ∈ E .

Note, the above diagrams are generalizations of similar results of [33, 43, 44] for

non-autonomous sequences of diffeomorphisms, ordinary differential equations and

inclusions. Now we put

Λ̃ :=
⋃

p∈B�∞
Z

(Rn),k∈Z

Λp
k .

Note that Λ̃ = x0

(
B�∞

Z
(Rn),E

)
. We can consider Λ̃ as an inflated Smale horseshoe

of f .

Theorem 3.5.6. Assume (3.5.11), (3.5.12) and (3.5.22). If ω ∈ N is sufficiently
large, then the following properties hold:

(i) Λ ⊂ Λ̃ and if in addition

gx := g(x, ·) : BRn → R
n is injective ∀x ∈ R

n , (3.5.23)

then Λ is in the interior of Λ̃ .
(ii) Λ̃ is contractible into Λ in itself.
(iii) Λ̃ is in a cΛ

1−κ0
-neighborhood of Λ .

(iv) Λ̃ is back and forward weakly invariant with respect to an m-iteration of (3.5.3),
i.e. ∃m ∈ N so that ∀x̄0 ∈ Λ̃ , ∃{x̄k}k∈Z satisfying x̄k+1 ∈ f (x̄k)+g(x̄k,BRn) and
x̄km ∈ Λ̃ , ∀k ∈ Z.
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(v) Dynamics of (3.5.3) back and forward sensitively depends on Λ̃ , i.e. there is a
constant η > 0 so that for any x̄0 ∈ Λ̃ and any open neighborhood x̄0 ∈U ⊂R

n,
there is x̃0 ∈U ∩ Λ̃ and {x̄k}k∈Z, {x̃k}k∈Z satisfying x̄k+1 ∈ f (x̄k)+g(x̄k,BRn)
and x̃k+1 ∈ f (x̃k)+ g(x̃k,BRn), ∀k ∈ Z, and there exist j0, j1 ∈ Z, j0 < 0 < j1
so that

∣∣x̄ j0 − x̃ j0

∣∣≥ η and
∣∣x̄ j1 − x̃ j1

∣∣≥ η .
(vi) (3.5.3) has a chaotic/oscillatory behavior on Λ̃ .

where we consider Theorem 2.5.4 in the sense of (3.5.21).

Proof. Since Λ0 = Λ , we get Λ ⊂ Λ̃ . Next we fix ξ ∈ E and consider a mapping

Θξ : B�∞
Z
(Rn)  → �∞

Z
(Rn) given byΘξ (p) = x(p,ξ ). We studyΘξ for p near 0. From

(3.5.23), there are open neighborhoods 0 ∈V ⊂ R
n and Λ̃ ⊂W so that

V ⊂ gx(BRn) , ∀x ∈W .

So we haveψx := g−1
x :V →BRn , ∀x∈W . Clearlyψ(x,z) :=ψx(z),ψ :W ×V →R

n

is continuous. We continuously extend ψ on R
n×R

n. Then we define R : �∞
Z
(Rn)→

�∞
Z
(Rn) as follows

R(x) := {ψ(xk,xk+1 − f (xk)}k∈Z
.

R is continuous. If ‖p‖ is small then xk+1 − f (xk) = g(xk, pk) ∈ V for x(p,ξ ) =
{xk}k∈Z, so pk = g−1

xk
(xk+1 − f (xk)) = ψ(xk,xk+1 − f (xk)), i.e. R(Θξ (p)) = p for

any p small. Note that Θξ (0) = x(0,ξ ) =
{

f k(ϕ(ξ ))
}

k∈Z
and ‖x(0,ξ )− xξ‖ ≤

ρ̃0 < ρ0 for any ξ ∈ E . On the other hand, if x = {xk}k∈Z is close to Θξ (0) then

xk+1− f (xk)∈V ∀k ∈Z along with ‖x−xξ‖≤ ρ0, so we can put pk :=ψ(xk,xk+1−
f (xk)) ∈ BRn . Then xk+1 = f (xk)+ g(xk, pk). From the uniqueness we derive x =
Θξ (p) =Θξ (R(x)). In summary, Θξ is a local homeomorphism at p = 0. Now, a

projection P0 : �∞
Z
(Rn)  → R

n given by P0 ({x̄k}k∈Z) := x̄0 is an open linear mapping.

Consequently, a mapping P0 ◦Θξ (p) = x0(p,ξ ) maps a small open neighborhood

of p = 0 onto a small open neighborhood of ϕ(ξ ) = P0 ◦Θξ (0) ∈ Λ . This implies

property (i). By taking

Λ̃λ :=
{

x0(λp,ξ ) : p ∈ B�∞
Z
(Rn), ξ ∈ E

}
for λ ∈ [0,1], we get property (ii), since clearly Λ̃λ ⊂ Λ̃ and Λ̃0 = Λ . Property

(iii) follows from (3.5.15). The definition of Λ̃ implies property (iv). Now we show

property (v). Take η :=
∣∣xk0

− x0

∣∣− 2ρ0 > 0. Then for any x̄0 ∈ Λ̃ we have x̄0 =
x0(p, ξ̄ ) for some p∈B�∞

Z
(Rn) and ξ̄ ∈E . Let x̄0 ∈U ⊂R

n be an open neighborhood.

From the continuity of mapping ξ → x0(p,ξ ) (see Theorem 3.5.3), there is ξ̃ ∈ E

close to ξ̄ so that x̃0 = x0(p, ξ̃ ) ∈U ∩ Λ̃ and there exist i0, i1 ∈ Z, i0 < − k0+ω
2ω < i1

so that ēi0 �= ẽi0 , ēi1 �= ẽi1 for ξ̄ = {ēi}i∈Z and ξ̃ = {ẽi}i∈Z. Then for j0 = (2i0 +
1)ω+ k0 < 0, (3.5.14) gives



References 83∣∣∣x j0(p, ξ̄ )− x j0(p, ξ̃ )
∣∣∣≥ ∣∣∣∣xξ̄j0 − xξ̃j0

∣∣∣∣− ∣∣∣x j0(p, ξ̄ )− xξ̄j0

∣∣∣− ∣∣∣∣x j0(p, ξ̃ )− xξ̃j0

∣∣∣∣
≥ |x0

k0
− x0|−2ρ0 = η > 0 .

The same estimates hold for j1 = (2i1 + 1)ω+ k0 > 0. Property (v) is shown. Dia-

gram in Figure 3.4 gives property (vi). The proof is completed. ��
With property (v), we can construct many continuum orbits of (3.5.3) starting

from U and oscillating back and forward on Z between x0 and x0
k0

in any order. Of

course, results of this section can be directly extended to more ε-inflated systems of

the form xk+1 = f (xk + εqk)+g(xk, pk), k ∈ Z for any {pk}k∈Z, {qk}k∈Z ∈ B�∞
Z
(Rn)

and ε > 0 small fixed.
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