Chapter 3
Chaos in Discrete Dynamical Systems

This chapter is devoted to functional analytical methods for showing chaos in dis-
crete dynamical systems involving difference equations, diffeomorphisms, regular
and singular ODEs with impulses, and inflated mappings as well.

3.1 Transversal Bounded Solutions

3.1.1 Difference Equations

In this section, we consider difference equations of the form

Xk+1 :f(xk)—l—h(xk,/,t,k) (3.1.1)
with x; € R", u € R™. We make the following assumptions of (3.1.1):

(i) f, h are C*>-smooth in all non-discrete arguments.

(ii) f(0) =0 and A(-,0,-) =0.

(iii) The eigenvalues of D f(0) are non-zero and all lie off the unit circle.

(iv) The unperturbed equation x;; = f(x;) has a homoclinic solution. That is, there
exists a nonzero sequence ¥ = {¥ }xez so that limy_.4 % =0 and Y1 = f(%)-
Moreover, Df (Yk), k € Z are nonsingular.

Our aim is to find a set of parameters y for which (3.1.1) has a transver-
sal bounded solution {¥;};cz near {};}rez, i.e. the linearization of (3.1.1) along
{X ez given by

Vip1 = (Df(X) 4+ Dxh(%, 1,k) ) ve, k€ Z

has the only bounded solution vy =0, Vk € Z (cf Lemma 2.5.2). When 4 is indepen-
dent of k, i.e. (3.1.1) is a mapping, we know from Section 2.5.2 that the existence of
such a bounded solution means the existence of a transversal homoclinic orbit and
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30 3 Chaos in Discrete Dynamical Systems

thus chaos. In general, (3.1.1) can be associated with quasiperiodically perturbed
systems [1-3]. To derive these sets, higher dimensional Melnikov mappings are in-
troduced. Simple zero points of those mappings give wedge-shaped regions in R
for u representing the desired sets.

We establish a complete analogy between the Melnikov theories for difference
equations and ordinary differential equations (cf Section 4.1). Two-dimensional
mappings are considered in [2, 4, 5]. Mappings in arbitrary finite dimensions are
considered in [6—8] but the dimension is 1 in [8], which is released in this section,
for the intersection of tangent spaces and stable and unstable manifolds along a
homoclinic solution to a hyperbolic fixed point of the unperturbed mapping, and
while the transversality is not proved in [6]. In this section, no restriction is given on
the dimension of the phase space or on the dimension of intersection of stable and
unstable manifolds. Other types of homoclinic bifurcations are given in [9].

3.1.2 Variational Equation

The norm and scalar product of R” are denoted by |- |, (-,-), respectively. Let us
consider the unperturbed equation

Xerr = f ). (3.1.2)

For (3.1.2) we adopt the standard notation W*, W* for the local stable and local
unstable manifolds, respectively, of the origin and dy = dimW*¥, d, = dimW". Since
x = 0 is a hyperbolic equilibrium, {7 }xcz must approach the origin along W* as
k — +o0 and along W" as k — —oo. By the variational equation of (3.1.2) along
{% } ez we mean the linear difference equation

1 = D (% )ug (3.1.3)

We note that as k — oo, Df (1) — Df(0), a hyperbolic matrix. Thus, the following
result yields two solutions for (3.1.3), one for k € Z . and one fork € Z_.

Lemma 3.1.1. Let k — A(k) be a matrix valued function on Z and suppose there
exists a constant nonsingular matrix, Ao, and a scalar a > 0 so that supycz, |A(k) —
Ag|e*®™ < oo, Then there exists a fundamental solution, X (k) for k large, to the dif-
ference equation x;.1 = A(k)x; so that klim X(k)Ay* =1

Proof. The proof is very similar to [10, Lemma 3.1.1] and [11, 1. Lemma], but we
present it here for the readers’ convenience. Let P be a matrix so that P~'AgP = J,
where J is the Jordan form with the block-diagonal form J = diag (J1,J>,...,J;).
Let k; be the order of J; and A; is the eigenvalue corresponding to J;. We arrange the
Jordan blocks so that [A;| < |A;11|. By putting y = P~'x and B(k) = P~'A(k)P, the
equation xg1 = A(k)x, has the form

Vi1 = B(k)yr = Jyx + (B(k) — J)yx . (3.1.4)
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We fix one block J; and define p; = k; +ky + --- + k;—1. Similarly we define ¢;
satisfying |A,,_,| < |4 and |A,,| = |A:|. We split the matrix J* into U, (k),Us(k),
where - .
Ui (k) = (Jf,J5,... JE_,0,...,0),
Us(k) = (0,0,...,0,J5 ,....JF).

Since the spectrum ¢(U; (1)) is contained inside the circle with the radius |[A,, ||,
we can assume by [12, 3.126 Lemma]

Ui(1)] < [Ag [ +D < M| =b

for b > 0 sufficiently small. Consequently, we obtain for k > 0 that |U; (k)| <
|UL(1)]F < (JAi| = b)K. Since o(Us(—1)) = (o(Uz(l)))*l, we similarly have

U>(K)| < (|Ai| = D), VkeZ_

again for b > 0O sufficiently small. Let ¢; be the k-th column of the n x n identity
matrix. By fixing ko € N sufficiently large, let us define a mapping T for k = ko, ko +
1,... and for j € {1,2,... k;} as follows:

k—1 oo
Tk =JTepsj+ Y Uilk—1—j)(B(j) —T)y;— Y Us(k—1— j)(B(j)—J)y;-
j=k

J=ko
(3.1.5)
We consider this mapping on the Banach space:

V= {h 1y €R - sup [y (] +6)7 < o=}
J=Ko

with the norm [[|y[| = supyy, |vel (4] +b) K fory= {y;}74,- To show that 7; is
well defined, we compute

sup [ el (1] +5) ™ < oo,

since |[J¥| < ¢1(|Ai| +d)* fora 0 < d < b and ¢; > 0. By taking b > 0 satisfying

|Ai|+b 42
<e*,
|Ai| —b
we have for a constant ¢ > 0
k—1 .
sup Y Uik = 1= )(BG) = T)y;| (|l +b)~
J=ko

B l‘—b kk—l |A|_|_b B J
< 1 1 ‘l i da 00
< el =b)blls ((F5) X (s e ™) <

J=ko
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and
sup Y |Uak—1— J)(BG) — Iy (4] +5)* <
=k

< esup Y (12l = b)Y V(A +B) e (| 43] +5)
j=k

_ Al =Nk Al D 4\
< 1 1 ‘ 4a
< c(|A] —b) |||y|||Sl,:P(;Li|+b>§(|xi|—be ) <

Consequently, we arrive at |||7;(y)||| < oo, so T : Y — Y. Furthermore, we have

|Ail —b
|li|+b

k
V8>03n0>k0:< ) < eVk>np.

By using this property, the contraction of T} follows the same arguments as the well
defined T;. Consequently by Banach fixed point theorem 2.2.1, T; has a fixed point
y(j) satisfying by (3.1.5)

() —I*ep il < Ko(|Ai| - b)Yk

for a constant K > 0. By defining the matrix ¥;(k) of the order n X k; with ()i in
column j, we obtain
[Yilk) = ()] (4] = 6) ™" < Ko,

where F;(k) is the n X k;-matrix with Jl!‘ in rows p; + 1 through p; + k; and all other
rows zero. Let G; be the identity matrix of order k; x k;. Then limy_... Y;(k)J~ k=g,
and G; is the matrix of order n x k; with G; in rows p; + 1 through p; +k; and all other
rows zero. This construction is done for the block J;. To get the result, we take the
n x n matrix Y (k) with ¥;(k) in columns p; + 1 through p; + k; fori =1,2,...,r. So
lim ... Y (k)J~* = I Finally, by putting X (k) = PY (k)P~' we arrive at X (k+1) =
A(k)X (k) satisfying
X(k)Ay* =1 as k— oo.

The proof is finished. a

Our next result matches at k = 0 the two solutions of (3.1.3) provided by the
preceding lemma. The proof of the following theorem is a slight extension of [10,
Theorem 3.1.2] and [11, Theorem. 2], so we omit the proof.

Theorem 3.1.2. Let d; = dimW?, d, = dimW* for (3.1.3) and let I;, 1, denote the
identity matrices of order ds, d, respectively. There exists a fundamental solution
U(k), k € Z for (3.1.3) along with constants M > 1, Ky > 0 and four projections P,
Py, Py, Py, so that P+ Py, + Py + P, = 1 and the following hold:

() |U@)(Pys+Pus)U(s) | < KpMU™) for 0<s<t,
(i) |U®#)(Pu~+Pu)U ()" | < KoM= for 0<1<s,
(iii) |U(t)(Pys + Pu)U (s) "' < KoM= for 1 <s<0,
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(Qv) |U(t)(Pys +Pu)U(s) 7Y < KoM= for s<t<O.
Also, rank P; = rank P, = d for some positive integer d.

In the language of dichotomies (cf Section 2.5.1) we see that Theorem 3.1.2
provides a two-sided exponential dichotomy. For k — —eo an exponential dichotomy
is given by the fundamental solution U (k) and the projection P,s + P, while for
k — +oo such is given by U (k) and Py, + P.

Let u;(k) denote column j of U (k) and assume that these are numbered so that

I; 0,0 0;0;0
Pu=1040401, Ps=|071;0
000 000

Here, I; denotes the d x d identity matrix and Od denotes the d x d zero matrix.
For each i = 1,...,n we define u; (k) by (u; (k),uj(kJr 1)) = 6;j. The vectors
ui-(k) can be computed from the formula U/ (k) =U(k+1)"! where U* (k) de-
notes the matrix with u; (k) as column j. By using the identity U (k+ 1)U (k)** =1
we obtain that U(k+ 1)+ = (Df(yk+|)*)71U(k)i. Thus, U (k) is the adjoint of
U (k). Note {ui (k) }rez, i = 1,2,--+ ,d is a basis of bounded solutions on Z to the

adjoint variational equation wy1 = (Df (Y%4+1)*) "k
We take the Banach space

Z={{yj}bjen 1 yj €R", suplyj| < oo
je

with the norm ||y|| = supcy, [yk| for y = {y;} jez. Summation of the inequalities in
Theorem 3.1.2 yields the following result.

Theorem 3.1.3. Let U be the fundamental solution to (3.1.3) along with the projec-
tions Py, Py, Py, Py, as in Theorem 3.1.2. Then there exists a constant K > 0 so
that for any z € Z the following hold:

D) Yo lUG) (P +Pu)UK) "2 <Kzl for j>0,
(i) T U ) (Pou+Pu)U (k) 'z < K|zl for j =0,
(iif) X [U (1) (Pus + Pu)U (k)2 < K[l2l| for j<0,
(iv) Z/izfm'U(])( P+ Py )U (k)™ Zk|<KHZ|| for j<0.

Let us define a closed linear subspace of Z given by

zoz{zez: y PWU(k+1)*lzk=o}.
f—
Note

0= i PuuU(k“rl) k= Z PuuU Zk<:>> Z =0
k=—o0 k=—oc0 k=—o0
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forall j=1,2,...,d. We consider the difference equation:

%1 =Df (M) +wk, {Witiez €Z. (3.1.6)
The following result is a Fredholm-like condition for (3.1.6).

Theorem 3.1.4. Necessary and sufficient condition for the existence of a solution
{xk}k€Z (SV4 Of (3.1.6) is that {Wk}kGZ € 7.

Proof. “="
Let z = {z }xez be a solution of (3.1.6). Denote A(k) = Df(7;) and compute

PuU(k+1) g = PuU(k+ 1) 'A(K) 25+ PuU (k+1) " 'w

Since U(k+1) = A(k)U (k), U(k+1)"' =U(k)"'A(k)~!, and hence

Z PuU(k+1)"" 2341 = Z PuU(K) e+ Y PuU(k+1)"'w
k=—o0 k=—oo0 k=—o0

which implies

We note that Theorem 3.1.3 gives the convergence of these series.
K‘¢”
Let w = {wi}7__.. € Zo. We define the mapping %" as follows:

—1 k—1
H Wi =Um)] Y PUG+1) i+ Y (Pt Pu)U(+1) 7w
J=— J=

=)

Z su""Puu .]+1)71Wj:|a

fork >0,

H (W) { Z U (G+1)7 Wj+ Z Pus +Pu)U ]+1)_1W1
: j—foo

- E(Pss +PSu)U(j+ 1)_1W'1} ’
j=k

for k£ < 0. Here we define ):j;lo = 0. Theorem 3.1.3 implies the well defined defini-
tion and continuity of % : Zy — Z and by putting 7z = & (W), Vk € Z in (3.1.6),
we easily verify that it is a solution. We note that the general solution of (3.1.6) has
the form:

d
Z:Zﬁjuj+d—|—jf/(w), ﬁjER.

Jj=1
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The proof is finished. O
The next result provides an appropriate projection.

Theorem 3.1.5. Let U be as in Theorem 3.1.2 and let Zy be as in Theorem 3.1.4.
There exists a bounded projection I1 : Z — Z so that ZI1 = Zj.

Proof. We take II in the form I — P, where P is defined by

U(k+1 ad . _
P(W)k:MPMM-Z U(j+1) le,
Jj=—o0

and the sequence {ay }rez satisfies

= ] U(k+1
a>0,YkeZ, Y —=1, sup(7+)<oo.
k= —oo k+1 ke7  Gk+1

We verify that this P is a projection, i.e. P> =P :

P(P(W))k:P<{U(s+1)Puu i U(j+1)le} )
SEZ

as+1 j=—oo

k+1 > [+1 >
VD oy vy (Y e Y wG )y ) = PO
Ak+1 oo aj+ Am—

Hence P is a projection. Now we verify that IT = I — P is such that [Iw € Zj :

i P U(k+1)" I (w); = i Py U(k+ 1)1 (T —P)(w)i

k=—oc0 k=—o0
iad Ulk+1 >
= Y Pk 1) (= YE e Y pG
oo k41 j=—oc0

= Y PLUMK+1)""wy

k=—oo
> [ Uk+1 o ) _
- Y P.UK+1)™ QPW Y uGi+1)"'w;| =0.
k=—o0 A1 j=—co
Consequently, IT has the desired properties. a

3.1.3 Perturbation Theory

We study the equation (cf Theorem 2.2.4):
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F[J,e,y(x)k = Xk+1 7f(xk) 7h(xk7“,k) 76“1“’%()6*)77 ’}/) =

(3.1.7)
Fuey:Z—2,

where .¢ : Z — Z is a linear continuous mapping so that ||.Z|| < 1,y € Z, and
€ € R is small. It is clear that solutions of (3.1.7) with € = 0 are bounded solutions
of (3.1.1). We define mappings L: Z — Z and G : Z X R" x R X Z — Z as follows:
L(2)k = zk+1 —Df (W) 2k
G(z, 1,89k = [+ %) — (%) = Df (V) zk + hlze+ Ve, M, k) + €[u| L (2 —y) .

By putting x = z+ Y in (3.1.7), this equation has the form:
L(z) = G(z,1,€,y). (3.1.8)

We decompose (3.1.8) in the following way

L(Z):HG(Z,[J,,S,)/), OZ(H*H)G(LM’&)’)'

By using Theorem 3.1.4, the above pair of equations is equivalent to

d
=Y Bjujra+-2# (IIG(z,u,e,y)), BjeR (3.1.9)
=

and
0=1-II)G(z,u,¢,y). (3.1.10)

Moreover by using the Lyapunov-Schmidt procedure from Section 2.2.3 like in [11,
Theorem 8], the study of Egs. (3.1.9) and (3.1.10) can be expressed in the following
theorem for z, U, €, B = (B1, B2, - - -, Ba), y sufficiently small.

Theorem 3.1.6. Let U and d be as in Theorem 3.1.2. Then there exist small neigh-
borhoods 0 € Q C Z,0c O CRY 0c W C R™",0 €V C R and a C*-function
H:QxO0xWxV — R denoted by (y,B,1,€) — H(y, B, 1, &) with the follow-
ing properties:

(1) The equation H(y, 3,1, €) = 0 holds if and only if (3.1.7) has a solution near y
and moreover, each such (y,B, L, €) determines only one solution of (3.1.7),
(ii) H(O 0,0,0) =0,

<o 0.0 0>zkgz<u 0 (0.0.0)).

V) azkaﬁ, (0,0,0,0) = = ¥ez (w5 (1), D* £ (1) (ua j (1), uasx(1)))-

We introduce the following notations:
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a,~,~=—2< y,,01)>

€7

bije = = ¥ (u (1), D2 () (a0 (1)) -

I€Z

Finally, we take the mapping M,; : R? — R4 defined by

))l = iaiju/ Z bl]kﬁjﬁk

jkl

Now we can state the main result of this section.

Theorem 3.1.7. If M,,, has a simple zero point By, i.e. By satisfies My, (Bo) = 0 and
DgMy, (Bo) is a regular matrix, then there is a wedge-shaped region in R™ for u of
the form

x = {szﬁ . s, respectively i, is from a small open

neighborhood of 0 € R, respectively of Ly € Rm}

so that for any u € %\ {0}, Equation (3.1.1) possesses a transversal bounded so-
lution.

Proof. Let us consider the mapping defined by

1 ~
5 —H(y,sp,s*f1,s38), for s#0,
(D(y7ﬁ7.a7§as): S2 .
Mﬂ(ﬁ)7 for s=0.

According to (ii)~(v) of Theorem 3.1.6, the mapping @ is C'-smooth near
(v, B.1,&,5) = (0, Bo, o, 0,0)
with respect to the variable B . Since
My, (Bo) =0 and DgMy,(Bo) is aregular matrix,

we can apply the implicit function theorem to solving locally and uniquely the equa-
tion @ = 0 in the variable B This gives for € = 0, by (i) of Theorem 3.1.6, the
existence of % on which (3.1.1) has a bounded solution.

To prove the transversality of these bounded solutions, we fix g € %\ {0} and
take

y= ’)7_ Y,
where 7 is the solution of (3.1.7) for which the transversality should be proved. Then

we vary € = s°& small. Note that s # 0 is also fixed due to u = s>fi. Since the lo-
cal uniqueness of solutions of (3.1.7) near 7 is satisfied for any € sufficiently small
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according to the above application of the implicit function theorem, such equation
(3.1.7) (with the fixed u € Z\ {0}, € = s°& where s # 0 is also fixed and the special
y = ¥—7) has the only solution x = ¥ near ¥ for any € sufficiently small. Now The-
orem 2.2.4 gives the invertibility of DF;, o 7—y(¥) and so the only bounded solution
on Z of the equation

Vir1 = Df (%) + Dih (i, 1, k)vi
is vy = 0, Vk € Z. The proof is finished. a

Remark 3.1.8. Note that we can take any bases of bounded solutions of the varia-
tional and adjoint variational equations for constructing the Melnikov function M,.
Similar observations can be applied to detecting of other Melnikov functions in this
book.

Remark 3.1.9. Assume that (3.1.1) is autonomous, i.e. & is independent of k, suppose
conditions (i)—(iv) and f is a diffeomorphism. Then we have a local diffeomorphism
Fyu(x) := f(x) +h(x,pt) for u small. If there is an open bounded subset 2 C R? so
that 0 ¢ M,,,(9Q) and deg (M, 2,0) # 0 then for any 0 # o € Z there isak, € N
such that for any k > k;, there is a set Ay C R” and a continuous mapping ¢ : Ay — &
so that Fi*(A¢) = Ay, ¢ is surjective and injective, and ¢ o F;;* = 6 o ¢. Note that
we do not know whether @ is a homeomorphism. But we do know that F,, has in-
finitelly many periodic orbits and quasiperiodic ones and it has positive topological
entropy. This is a generalization of the Smale-Birkhoff homoclinic theorem 2.5.4
to this case. Particularly, if By is an isolated zero of My, with a nonzero Brouwer
index, then we have a chaotic behaviour of F}, (cf [13]). This remark can be applied
to other Melnikov type conditions in this book.

3.1.4 Bifurcation from a Manifold of Homoclinic Solutions

In many cases, (3.1.2) has a manifold of homoclinic solutions. Hence we suppose
that

(v) There is an open non-empty subset & C R and C3-smooth mappings % : 0 —
R" w: 0 — R" Vk € Z satisfying

%r1(0) = f((8)), VkeZ,V0cO,
0(0)=f(w(0)), VOeO,
lim %(6) = 0(6), VOcO.

(vi) The eigenvalues of Df(@(6))V0 € & are non-zero and all lie off the unit
circle. Moreover, Df (%(0)) Yk € Z, V0 € € are nonsingular.

(vii) % are uniformly bounded on & with respect to k € Z when 6 = (6, 6,,
.oy 0y).
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(vili) From %.1(8) = f(1(6)). we obtain Z1(8) = D (%(6)) 3% (6). We sup-

d
pose that {%(9)} ez is a basis of the space of bounded solutions of the
i i=1,ke

difference equation
Vie1 = Df (1%(0)) v - (3.1.11)

We use the approach of Section 3.1.3 by considering 0 as a parameter. The dif-
d
ference is only that now {3 0, (6)} ez provides a natural family of solutions of
i=1,ke

(3.1.11) corresponding to the projections Py;. Hence we suppose that Theorem 3.1.2
holds parametricaly by 6 € €, i.e. U = U(0,¢) is smooth in (6,¢) and columns of
U(0,t) are numbered so that

I, 040 0, 04 0
Pu=1040401, Py=1071;0
000 000

Now we take x = z+¥(0),7(0) = {%(0) }rez in (3.1.7). The corresponding opera-
tors of (3.1.8) then depend on 6 as well:
L(z,0)k = zx+1 — Df (%(0)) 2,
G(z,0,1,€,y)k = f(z+ %(6)) — f(%(0)) — Df (%(0))zk
+h(zk + '}/k(o)auvk) +£|[J|$(ny) .
Consequently, (3.1.7) has the form

L(z,8) = G(z,0,u,¢.y),
and (3.1.9)—(3.1.10) are replaced by
2= (0)(I1(6)G(z,0,1,e,)), 0=(-I1(0))G(z,0,p,e,y), (3.1.12)

where J#(0) and I1(6) are corresponding mappings to %, I, respectively. We
consider in (3.1.12) the variable 6 as a bifurcation parameter. We take the mapping
Ny : R? — R? defined by

Za,] ;s

where

(6) = = I (u (0.0 5 (0(6).0.0).

I€Z

The vectors u;-(6,1) are defined by (ui(6,1),u;(6,1+ 1)) = §;;. By repeating the
proof of Theorem 3.1.7, we can state the main result of this section.

Theorem 3.1.10. If Ny, has a simple zero point 6y, i.e. 8y satisfies Ny, (6) = 0 and
DgNy,(60) is a regular matrix, then there is a wedge-shaped region in R™ for i1 of
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the form

X = {s/ft 1 s, respectively[l, is from a small open

neighborhood of 0 € R, respectively of Ly € R™ }

so that for any u € %\ {0}, Equation (3.1.1) possesses a transversal bounded so-
lution.

3.1.5 Applications to Impulsive Differential Equations

It is well known that the theory of impulsive differential equations is an important
branch of differential equations with many applications [14—20]. For this reason, we
consider a 4-dimensional impulsive differential equation given by
:=281(2), y=80),
Z(l+> :Z(l—)+‘uh1(Z(l—)7y(l—)7[J,), (3.1.13)
y(l+):y(l—)-|-‘uh2(Z(l—)7y(l—),[J), iEZv

where
g2 €CP(RER?), e CP(RPxR*xR,R?), ueR

and z = g1(z), y = g2(y) are Hamiltonian systems. Let ¥}, ¥ be the 1-time Poincare
mappings of z = g;(z), y = g2(y), respectively. Here z(i+) = lim z(s). We consider
S—iq

the mapping

F(z,y,u) =

(3.1.14)
(‘1’1 (2) +uh (Wi(2), B (y), 1), Fo (y) + b2 (P4 (Z),‘Pz(y),u)> :

Clearly the dynamics of (3.1.14) determines the behaviour of (3.1.13). In the nota-
tion of (3.1.1), we have

x=(z,y) ER* xR f(x)= (i(2), ¥a(y))

3.1.15
h(xa.uvk): (#hl('f’l(Z)»'f’z(y)»#)Mhz('f’l(z),‘f’z()’)aﬂ)) ( )

We suppose

(a) g12(0) = 0 and the eigenvalues of Dg »(0) lie off the imaginary axis.
(b) There are homoclinic solutions ¥;, 1> of Z = g1(z), ¥ = g2(), respectively, to 0.

The conditions (a) and (b) imply that
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%(0) = (1 (61 +k), n(62+k)), keZ
®(0) =(0,0), 6=(6,6,)c =R

satisfy (v)—(viii) of Section 3.1.4 for (3.1.15). Now (3.1.11) has the form
Vip1 = DL (71(61+K)) v, wir1 = DF(12(62 + k) ) w .

Hence (3.1.11) is now decomposed into two difference equations. We note that ¥ »
are area-preserving, i.e. detD¥; »(z) = 1 (cf Sections 2.5.1 and 2.5.3). We can take

u3(97k): (71(91+k)70)a Lt4(9,k): (OaYZ(GZ"V‘k))

Now we need the following result [8, pp. 104—105].

Lemma 3.1.11. Ler {A;}rez be a sequence of invertible 2 x 2-matrices so that

detA; = 1. If {xx}rez satisfies x,11 = Agxy, then zi := Jxpyq for J = <_01 (l))

satisfies zx41 = (A} +1)’lzk.
Proof. The result directly follows from the identity A} oJ oAy = detAyJ = J. a

Using Lemma 3.1.11, we can take
wi (6,k) = (1(61+k+1),0), u3(6,k) = (0,7a(62+k+1)),

where 7 = (22,—21),Vz = (z1,22) € R?, and u1(8,k), u2(8,k) are not required to be
known. Consequently, the mapping N,, of Section 3.1.4 has now the form

(Nu(8)), = =1 Y hi (i (n (61 +k)), H(12(62+k)),0) AT (61 +k+1)
keZ

=pY 16 +k)Ahi(1(61+k),1(6:+k),0),
kEZ

(Nu(0)), = =1 Y ha (Wi (71 (61 +k)), F5(12(62 +k)),0) Ao (62 +k+ 1)
keZ

=u Y B(6+k) A (71 (61+k),1(6:+k),0),
keZ
) (3.1.16)

where A is the wedge product defined by z Ay = z1y2 — z2y1, 2,y € R2. Theorem
3.1.10 gives the following result.

Theorem 3.1.12. If there is a simple zero point of Ni(0) given by (3.1.16), then
(3.1.13) has a transversal homoclinic solution and so it exhibits chaos for any 1L # 0
sufficiently small.

Of course, there are hj, hy satisfying the assumptions of Theorem 3.1.12. For
simplicity, we assume
g=81=8, hmyuw)=>0+wy+a

R (3.1.17)
ha(z,y, ) = (1+u%)z+ o,
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where o € R? is a constant vector. Then we have y; = 75 = vy and (3.1.16) possesses
the form

(Nu(0)), = ¥ 76 +K) A Y82 + )+ L 761 +8)) nex

kEZ kEZ
(3.1.18)
(Nu(0)), =1 ¥, 162 +K) A (8 +K)+p( ¥ 7(6:+8)) nax
keZ keZ

We put

=Y vt+k)Ay(t+k)+ (Zy (t+k) )
keZ kEZ

We note that Q is 1-periodic. We clearly for 8 = (7, 7) have
(N#(B))l = (NIJ(G))Q = ,LL.Q(T),
(DNH(O))l :LL(Q/(T)’O)’ (DN#(G))QZH(OVQ/(T))‘

Simple computations give the following result.

Theorem 3.1.13. Consider (3.1.13) with (3.1.17). If 1y is a simple root of Q(7T) then
0 = (70, T0) is a simple zero point of N1 (0) given by (3.1.18).

To be more concrete, we take in (3.1.17)
g(x,x2) = (x,x1—2x7), a=(B,B).

Hence (3.1.13) has the form

sz—2x3 "=y—2y37
(i) = x(i—) +u((1+p)y(i—) +B),
X(i) = a(i—) +p((1+p)yi—) +B), (3.1.19)

(i) =y(i—) + p((1+p1*)x(i—) + B),
¥(i+) =y(i—) +u((1+p*)i(i-)+B), i€Z.

(3.1.19) are two Duffing equations coupled by impulsive effects. We now take y(¢) =
(secht, secht) and Q has the form

2(r+k)
Zsech4 (T+k) +ﬁz sech? (T4k).
ke keZ 2

Consequently, we have
Q(7) = Qi(1) = f2a(7),
where

62(T+k) _3
Qi)=Y sech* (T4+k), (1) = y —-—

sech? (1+k).
keZ keZ 2
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The functions £, are again 1-periodic. Moreover, they are analytic and € is
positive (cf Section 2.6.5). Clearly, £2,/€; is non-constant. So the image of R by
2,/8; is aninterval [a;,a;], —eo < a; < ap < oo and there is only a finite number of
Bi,-..,Bj, € [a1,az] so that Q = Q| — B, does have a simple root for any 8 # 0
satisfying 1/B € [a1,a2] \ {B1,-..,Bj, }-

Numerical evaluation of the graph of Q,(7)/(7) shows that (Figure 3.1)

0.02f

0.01f

-0.01f

-0.02"*
Fig. 3.1 The graph of function y = Q2,(7)/€, (7).

a; = By = —0.0190729, a; =B, ~0.0199198, j,=2.

In summary, we arrive at the following result.

Theorem 3.1.14. If cither B < —52.431 or B > 50.202 then impulsive system
(3.1.19) has a chaotic behaviour for any p # 0 sufficiently small.

We note that a coupled two McMillan mappings (cf Section 3.2.4 and [4, 5]) can
be similarly studied. In general, after applying our results, the main difficulty is to
find an appropriate form of the Melnikov mapping derived in the above way so that
one could be able to detect its simple zero point. The Poisson summation formula
like in [4] could help to overcome this difficulty.

Remark 3.1.15. Similar to the above, we can study more general impulsive ODEs of
the form
x=f (xa 8)7

(3.1.20)
x(i+0)=x(i—0)+ea(x(i—0),€), i€Z,

where f, a € C2(R™!,R"), f(-,0) has a hyperbolic fixed point xo with a homoclinic
orbit y(+). Furthermore, assume that the adjoint variational equation
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- —(Dxf(y(t),o))*v

has only a unique (up to constant multiples) bounded nonzero solution u. Then the
Melnikov function of (3.1.20) has the form

=

M) =Y, <a(}’(l+i),0),u(l+i)>+/_°;<D€f(}/(s),0),u(s)>ds. (3.1.21)

[=—o0

Note that formula (3.1.21) follows also from considerations of Sections 3.3 and 3.4.
We see that (3.1.21) consists of the continuous and impulsive parts of (3.1.20) as
well.

Finally we note that a different type of chaos is studied in [21] for a special initial
value problem of a non-autonomous impulsive differential equation. ODEs with step
function coefficients are studied in [22-28], and our theory can be applied to such
ODE:s.

3.2 Transversal Homoclinic Orbits

3.2.1 Higher Dimensional Difference Equations

This section is a continuation of Section 3.1. So we consider difference equation
Xnt1 = g(xn) + €h(n,xp, €) 3.2.1)

where x,, € RV, € € R is a small parameter. The main purpose of this section is to
study the homoclinic bifurcations of difference equations in a degenerate case. We
assume the following conditions about the difference equation (3.2.1):

(H1) g,h are C3-smooth in all continuous variables.
(H2) The unperturbed difference equation

Xnt1 = g(xn) (3.2.2)

has a hyperbolic fixed poitnt 0, that is, the eigenvalues of g,(0) are non-zero
and they lie off the unit circle.

(H3) The unperturbed difference equation (3.2.2) has a one-parameter family of ho-
moclinic solutions y(¢t) = { % (@)} .., & € R connecting 0. That is, { %, (@)},
is a non-zero sequence of C3-smooth vector functions satisfying ¥,.1(o) =
g(wm(a)) and nETm () = 0 uniformly with respect to bounded . The set

Unez Uaer {1 ()} is bounded.
(H4) g.(1m()) is invertible, and || g; ' (:())|| is uniformly bounded on Z.

We denote by W*(0) and W*(0) the stable and unstable manifolds of the hyperbolic
fixed point 0, respectively, and by Ty o) W*(0) and Ty o W*(0) the tangent spaces
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to W#(0) and W*(0) at 3 (o). We say the homoclinic orbit {7y, (o) }*,, is degenerate
if the dimension of the linear subspace

T (o)W (0) Ty e WH(0)

is greater than one. Otherwise, we say the homoclinic orbit {y, (o) }%,, is nondegen-
erate. We can easily prove that the homoclinic orbit {7y, (&) }*,, is degenerate if and
only if the following variational equation along the homoclinic orbit {¥,(a)}*.,

§n+l = gx(yn(a))én (3.2.3)

has d > 1 linearly independent bounded solutions on Z.

When 4 is independent of n, i.e. (3.2.1) is a mapping, the existence of a transver-
sal homoclinic solution for (3.2.1) is discussed in [8,29]. When 4 depends on n, the
existence of a transversal homoclinic solution for (3.2.1) in the degenerate case is
discussed in Section 3.1. Now we study (3.2.1) also with d > 1 for (3.2.3). Our aim is
to find analytic conditions under which the difference equation (3.2.1) has for € # 0
sufficiently small a transversal bounded solution {x,(€)}*,, near the homoclinic so-
lution {7,(0t)}*,,. The transversality of {x,(€)}>,, means that the linearization of
the difference equation (3.3.1) along {x, (&) }*,, given by

Sni1 = [8x(xn(€)) + €hi(n,xn(€), €)] &

admits an exponential dichotomy on Z (cf Lemma 2.5.2).
The degenerate problem, when d > 1 for (3.2.3), can be naturally divided into
two cases:

(1) There exists a d-dimensional homoclinic manifold. This is the most natural way
to get d > 1 for (3.2.3).

(2) The invariant manifolds W*(0) and W*(0) meet in only a higher dimensional
tangency.

Case (1) is studied in Section 3.1.4 (see also more comments at the end of Section
3.2.2), and Case 2 is treated in this section.

Two-dimensional mappings for nondegenerate cases are considered in [2, 4, 5].
Higher dimensional mappings are studied in [7].

3.2.2 Bifurcation Result

Let

X= {{xn}f’w} | |x, € RY and suplx,| < 00}
nez

be the Banach space with the norm |x| = sup |x,| for x = {x,,}*°.,. We define a linear
nez

operator L as follows:
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L:X—X, (L&),=¢&1—a(m(a)é,

where & = {&,}*,, and L = {(LE),}*... Theorem 3.1.4 has the following equiva-
lent form [29].

Lemma 3.2.1. Suppose conditions (H1)-(H4) are satisfied. Then

(i) The operator L is Fredholm with index zero.
(i) f={fu}"w € ZL if and only if

+oo
Y vi(e)-f,=0 (3.2.4)

n=—o0

holds for all bounded solutions y(a) = {y, (o) }™,, of the adjoint variational
equation

€n+1 = (g;*c('}’nﬂ(a)))iléw (3.2.5)
(iii) If (3.2.4) holds, then the difference equation

X1 = &x(W(Q))Xn + fu
has a unique bounded solution x = {x,}*., on Z satisfying
(OC) -x0=0

for all bounded solutions @(at) = {@,(0t)}*,, of the linear difference equation
(3.2.3) on Z.

From condition (H3), we have ¥,. () = g(¥%(a)). Differentiating both sides

of this difference equation with respect to o, we obtain J,+1 (o) = gx(v(a)) T (et),

where “-” = %. Hence y(a) = {#(a)}”.. is a nontrivial bounded solution on Z

of the variational equation (3.2.3). That is, jo(ct) € Ty, () W*(0) N Ty (o) W*(0). We
assume that

(H5)  dim(Ty,()W*(0) N Ty o)W*(0)) =d  (d > 1) for a constant d uniformly
with respect to «.

Condition (HS) is equivalent to the condition that the variational equation (3.2.3)
has d (> 1) linearly independent bounded solutions on Z, denoted by

¢i() = 7(@) = {T()} =,
@2(0) ={@2(0)} e - 5 @a(@) = {Pun(0)} -

We let
(Dn(OC) = ((Pl,n(a)a (PZ.,n(a)v cee (Pd,n(a))

be an N X d matrix and

(o) = ((pz,n(a),---ﬂpd,n(a))
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be an N x (d — 1) matrix. From Section 3.1.2 it follows that under conditions
(H1)—(HS), the adjoint equation (3.2.5) also has d and only d linearly independent
bounded solutions on Z, denoted by

{Wl’n(a)}o—qooa {WZH( )}—oo’ - {de( )m :

We let
(@) = (1.0(0), Y200, ., Van(@))

be an N x d matrix. We suppose that &, (&) and ¥, () are C3-smooth in o for any
n € Z. The main result of this section is the following theorem.

Theorem 3.2.2. Suppose conditions (H1)—(HS) are satisfied. We define a Melnikov
vector mapping by

= Y (@) {2000 7(0).0) + g1 (00) (@) B B )B) ).

Nn—=—oo
If there exists (0, Bo) € R x R~ 50 that

M(op,Bo) =0 and detD 4 p) M(ag, Bo) #0,

then for € sufficiently small, there exist two continuously differentiable functions

= a(e), B = B(¢), satisfying o.(0) = ag, B(0) = o so that for € # 0 sufficiently

small, the difference equation
_ 2 2
Xni1 = 8(xn) + €°h(n,x,,€7)

has a bounded solution x(€) = {x,(€)}*,, so that

xn(€) — wm(a(e)) — Dy (au(e)) B ()| = O(€?) (3.2.6)

and the variational equation

Enr1 = {8e(xn(€)) + hx(n,xa(€), %) } &

admits an exponential dichotomy on Z.

=)

Proof. First of all, we prove the existence of a bounded solution {x,(&)}~,,. We
make a change of variables

Yn = Xn — Ya(Q) — (Dr(z)(a)ﬁ
for the difference equation (3.2.1), where 8 € R~ is a vector parameter. Then the
difference equation (3.2.1) reads
Ynr1 = g +W(a) + q)r?(a)ﬁ) +eh(n,y, + () + (P,?(Ot)ﬁ78)

(3.2.7)
—&(h()) = gx(1(@) Y () -
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For simplicity, we define

G(n,yn, . B, €) = eh(n,yn+ V(@) + Dy (@) B,€) — g(())
+g()’n+'}/n(a)+¢r?(a)ﬁ) _gx(')/n(a))(yn‘F(p;?(a)B)a

then the difference equation (3.2.7) can be written as

Yn+1 :gx('}’n(a))yn+G(n»))n7aaﬁa8)' (3.2.8)

We put

= Y w(a) (o),

n=—oo

so then the d x d matrix D(a) is invertible [30, p. 129]. Using the Lyapunov-
Schmidt method and Lemma 3.2.1, we see that the difference equation (3.2.8) is
equivalent to the following two equations

yn+1 = gx(Yn(a)>yn + G(”y)’m aaﬁag)

— @, (a)D(a) i W (@)G Uy, . Be) (3.2.9)
=
and i
Y, ¥ ()G(n,yn, . B.€) =0. (3.2.10)
Since o
T w@fGtape) - wi@n @ T @l ep o) =0

G(n,0,0,0,0)=0 and Gy(n,0,,0,0) =0,

it follows from Lemma 3.2.1 and the implicit function theorem that for €, suffi-
ciently small, the difference equation (3.2.9) has a unique small bounded solution

y=y(a,B,€) = {yu(a,B,€)}>,, € X satisfying
@;(a)yo(a, B,€) =0. (3.2.11)
Clearly y(a,0,0) = 0. We substitute
y=y(a,B,&) = {y(B,€)}"

into Eq. (3.2.10) and obtain the following bifurcation equation

B(a,B,€) Z ¥ (a)G(n,y. (o, B,€),a,B,€) =0. (3.2.12)

Nn=—oo

To solve Eq. (3.2.12), we consider the equation
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B(o,B,€) = B(o, B, € Z Y (o)G(n,y,(a,eB,€2),0,e,6%) =0.

n=-—oo

If Y, (&) = yo(a, B, €%), then we have

Yor1(€) = g(W(@))Ya(€) + G(n, Ya(e), 0, B, £2)

~¥,(a)D" () i W (@)GU.Y,(€), @B, €. (3.2.13)

17700

Differentiating both sides of the difference equation (3.2.13) with respect to € and
setting € = 0 and noting that ¥,,(0) = 0, we obtain

Y711(0) = gx( ()Y, (0)

where Y£(0) = LY, (€)|¢—o. Moreover, (3.2.11) implies & (a)Y$(0) = 0. By the
uniqueness of the bounded solution of the linear difference equation (3.2.3) satisfy-
ing (3.2.11) we have Y,£(0) = 0. We conclude

B(a,B,0) = Z'P* G(n,y,(2,0,0),,0,0) = Zly* G(n,0,,0,0) =0

n=—oo n=-—oo

and

(a,B,€) Z ¥ (o {Zeh n,yn (0, €B,€%) + V(@) + e () B, €%)

n=-—oo

2 (0, B,8%) + () + £0(@), %)
+8x (yn(avgﬁagz) + (@) + gdb}?(a)ﬁ) )

;e [n(a,eB,€%) + () + e () B]

(@)L

7z bn(aep.e?) +m(a) +ef)(c)B] } (3.2.14)

Noting y,(¢,0,0) = 0 and Y (0) = 0, we have
Be(at,$,0)=0. (3.2.15)

From (3.2.14) and y,(,0,0) = 0 and Y (0) = 0, we compute

Bee@.0) = Y. ¥ (@){20(n,1,(0),0) + g0 (00)) (£ (0) + 92(0),

n=-—oo

Y, (0) + @, (@)B) + gx(1 ()Y, (0) —gx(Yn(a))Yn“(O)}
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= Y o) {2h00 (0.0 + gu (@) (@)(c)B, 2)(c)B) }

= M(a.p)
where Y£2(0) = ddng (&)|e=0. We define the function H(a,3,€) b
B
Blabe) it e z0,
Hope)=1  °

1
EBSS(a7ﬁ70)a if €=0.

Since B(ct,3,0) = 0 and (3.2.15) holds, the function H(a, ,€) is continuously
differentiable in a, 8, €. From the conditions of Theorem 3.2.2, we have

JBee(ct, o, 0) = 3 M (0, o) =

H(&O,ﬁo,()) - )

and

21 detD 4 )M (0%, fo) # 0.

It follows from the implicit function theorem that for € sufficiently small, there
exist two continuously differentiable functions o = a(€) and B = fB(¢€) satisfying
o(0) = o and B(0) = Py, respectively, so that H(a(g), B(€),€) = 0. Hence for € #
0 sufficiently small, we have that B(a.(g),B(€),€) = 0. Thus for € # 0 sufficiently
small, the difference equation

detD(q g H (0, fo,0) =

Xn+l = g<xn) + gzh(”,xnagz)

has a unique bounded solution {x, (&)}, with

x(€) = ya(a(€), eB(€),€%) + m(a(e)) + &P (ale) Be)

satisfying (3.2.6). This completes the proof of the existence part of the theorem.
Finally, the transversality of the bounded solution {x,(€)}>., can be proved in
the same way as in Theorem 3.1.7, so we omit the proof. O

In the degenerate Case 1 from Section 3.2.1 one would start with a family of
homoclinic solutions y(a) = {(a)}>,, with & € R? like in condition (H3). For
bounded solutions to the variational equation (3.2.3) in accordance with the above
notations one now has

oY °° )
pi(0o) = {aé(a)} . i=1,2,....d.

Using the formula
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&2

azyn+1 o
G50, (@) = 8:(n(@)

(@) (@) (52 @), @)

do;da; da;

it is easy to show by Lemma 3.2.1 that for this case in the Melnikov vector mapping
of Theorem 3.2.2 the B terms are identically zero. The Melnikov vector mapping
here is

M(a) =Y ¥ (@) h(n,7(@),0), acR?.

We remark that Case 1 is already studied in Section 3.1. We also mention that the
vanishing of the f terms in the Melnikov vector mapping of Theorem 3.2.2 is a
necessary but not sufficient condition for Case 1. This means that in the general
theory, if one computes d > 1 for condition (H5) and then finds that all the 8 terms
vanish one cannot apply Theorem 3.2.2 and does not know if Case 1 can be applied
or if there is some other higher degeneracy. Then higher-order Melnikov vector
mappings could help to study the homoclinic bifurcations of the difference equation
(3.2.1).

Finally, we get the above Melnikov vector mapping M () also for the case d = 1
in condition (HS), but now o € R. So M is a function.

3.2.3 Applications to McMillan Type Mappings

We consider the following mapping of a McMillan type (cf Section 3.2.4 and [4, 5,
)

n = Vn, n = —<n 2K —&Yn,
Zn41 = Yn,  Yn+l Zn+ H_y%JrV Y
2 (3.2.16)
Un+1 =Vn, Vn+l = —Mn+2KVnm +M

where K > 1 is a constant. By Section 3.2.4 we know that

}/n(Ot) = (rn(a),rn+1(a),0,0),
ra(0) = sinhwsech(a —nw), w=cosh 'K, w>0

is a bounded solution of (3.2.16) with € = 0. Then (3.2.3) has now the form

1-r (@)
=by, byp1=— 2K¢b
An+1 n n+1 an + (l+rn+l(a))2 n
(3.2.17)
1(05)

Cnt1 =dp, dpy1 =—cn+2K

n-

(1+rn+1(06))2

The equilibrium (0,0, 0, 0) of the unperturbed mapping is hyperbolic with 2-dimensional
stable and unstable parts. We can easily verify from (3.2.17) that now d = 2 and
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@, (a) = (0,0, 7, (), 14 ().
We note that

{I(00)} 7 = {(r (@), 741 (),0,0)} 7

is another solution of (3.2.17) bounded on Z. We also remark that by (3.2.17),
the unperturbed mapping of (3.2.16) with € = 0 is volume preserving on the set
{1 ()}, Then according to Lemma 3.1.11, we find

rai(a) 0
—r(a) 0
¥ (o) =
@ 0 ’:1+1(0‘)
0 —r(a)

Furthermore, in the notations of the previous section we have

gu(h(@)) (7 (0)B, P () B) = (0,271 ()*B?,0,2r5 () B)
h(n,’}/n(a),()) = (OvirnJrl(a)va*rn(a)) .

Consequently, the Melnikov vector mapping has the form

M(a,B) = (Mi(e, B),Ma(cx, B))

where

Mi(@B) =2 ¥ r@mi(e) 26> ¥ rha(@r(@),

n—=—oo n—=—co

We conclude

o

Aiw) =Y r(0)rs1(0) = sinh? w i (sech(n+ 1)w —sech(n—1)w)

n——oo n=1
x sech? nwsinhnw < 0,

Ar(w) =Y 7,1(0)%7,(0) =sinh*w ¥ (sech*(n+1)wsinh?®(n+ 1)w
n=—oo n=1

—sech*(n — 1)wsinh?(n — Dw) x sech? nwsinhnw,

=

Y. (7(0)r(0) +7,,(0)*) = sinh®w (—1 +2 i sech* nw (cosh2nw — 2)) ,

n=—oo n=1
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Y. #,(0)*7(0) = sinh®w Y sech” nwsinh?® nw(cosh? nw —2),
n=1 n=1
Z r.(0)r,,(0) = sinh?w Z sech® nwsinhnw = 0,
n=—o0 n=-—oo

Y. 7,00 =sinh*w ¥ sech®nwsinh®nw =0,

n—=—oo n—=—oo

Z 0) +r,(0)) — 121322 7(0)%17/(0) = A3 (w, B).

(9a Nn=—oo n=1

The above series are very difficult to evaluate and they could be expressed in terms
of Jacobi elliptic functions [4]. Instead, we use the following lemmas.

Lemma 3.2.3. Let F : [0,0) — R be such that |F(x)| < c1e~?* for positive con-
stants cy,cp. Then

o

Z F(nw)

n=1

<2c¢; g c2W

Sorany w >1n2/c,.
Lemma 3.2.4. Let F,G : [0,00) — R be such that G(0) =0, and
cre I < F(x)<c e 0 ge ¥ < G(x)<d, e 0x
for any x > 1 and positive constants c;,d;, 0;,i = 1,2. Then for any w > 1, we have

Cldl 67(292+91 W _C2d2 67(2614*92)\;\7
1— 67(61+92>W

i (n+1D)w)—G((n—1)w)) F(nw)

CZdZ 67(2924»91) _cldl 67(2914*92)\5/
- 1 —e—(61+62)w

Proofs of the above lemmas are elementary, so we omit them. We apply Lemma
3.2.4 with G(x) = sech* xsinh? x, F (x) = sech? xsinhx. Then using

e ¥ <sechx<2e™, x>0,

62—

1
52 e" <sinhx<e*/2, x>1,
e

2
we get ¢| = 22,62—2 dy = ( ),d2:4,91:1and92:2,andthenwe

obtain
2
8 e W _ (62 ;1 ) e 4w
. e
Ay(w) <sinh®w T <0
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for any w > In [(;2’47'3]6)3] = 4.59512. Similarly, using Lemma 3.2.3, cosh? 1 > 2 and

|sech4x(cosh2x— 2)| < 32e ¥ 4166, x>0,
we derive

Az(w,B) < 2sinh’w (—1+64e " +32¢ ") <0
for any w > %ln {8 (\/§+ 2)} = 1.76154. We already know that A; (w) < 0. Hence
o=0,8=+/A1(w)/A2(w) # 0 is a simple zero of M(c,3) = 0 for any w >

6 1. 4096¢'2 + (2 —1)°
In [Mie],l.e.K>K = 7
(1) 0 128¢6(e2 ~1)°

3.2.2 to (3.2.16), and we produce the following result.

=49.5052. Now we can apply Theorem

Theorem 3.2.5. For any K > Ky, there is an & > 0 so that (3.2.16) exhibits chaos
forany 0 < € < &.

Of course, either more precise analytical or numerical evaluations of A, (w) and
Asz(w, B) could give also partial results for 1 < K < K. But we do not carry out these
computations in this book. We only note that our numerical computations suggest
that K > cosh0.1 = 1.005 for obtaining chaos in (3.2.16) for € > 0 small.

3.2.4 Planar Integrable Maps with Separatrices

A planar map is called a standard-like one if it has a form F (x,y) = (y, —x+g(y)) for
some smooth g. Note that F is area-preserving, i.e. |detDF (x,y)| = 1. A planar map
F is integrable if there is a function (a first integral) H : RZ S Rsothat HoF = H.
An interesting family of standard-like and integrable maps is given by [5]

K+ By
1-2By+y?

with the corresponding first integrals

F(x,y):= (y,—x+2y ) , —1<B<1<K (3.2.18)

Hy g(x,y) = x> —2Kxy+y* = 2Bxy(x+y) +x°y".

Map (3.2.18) with § = 0 is called McMillan map. Next, (3.2.18) has two sepa-
ratrices T Kj,tﬁ = {5 (®)},cz, contained in the level Hyx g = 0 given by ¥ (at) =

(rf(a),rE (@) with

w
inhwsinh —
sinhwsin 7

\/B%+sinh? % cosh(a —nw) F B coshg

rE(a) =+
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for w = cosh ' K. Clearly example (3.2.16) can be extended with (3.2.18), but we
do not go into details.

3.3 Singular Impulsive ODEs

3.3.1 Singular ODEs with Impulses

The theory of impulsive differential equations is an important branch of differential
equations with many applications [16-20]. So in this section, we continue to study
such systems by considering the problem

ex' = f(x) +¢eh(x),

x(i+) =x(i—) +eg(x(i-)), i€Z, 3.3.1)

when the following assumptions are valid

(H1) f,g heCR™R™).

(H2) 0 € R™ is a hyperbolic equilibrium of X' = f(x).

(H3) The equation X’ = f(x) has a homoclinic orbit ¢ to 0.

(H4) The variational equation v/ = Df(¢)v has the unique (up to scalar multiples)
bounded solution ¢’ on R.

By Section 4.1.2, we know that (H3) and (H4) imply the uniqueness (up to scalar
multiples) of a bounded solution ¥ on R of the adjoint variational equation ' =
—(Df(9)) " . By asolution of (3.3.1) we mean a function x(r), which is C'-smooth
on R\ Z, satisfies the differential equation in (3.3.1) on this set and the impulsive
conditions in (3.3.1) hold as well.

For simplicity, we assume f, h, g to be globally Lipschitz continuous. Let us
denote by @, (z,xp) the unique solution of the differential equation of (3.3.1) with
the initial condition @ (0,xo) = xo for € > 0. Then we can define the Poincaré map
of (3.3.1) by the formula

e (x) = e (1,x+£8(x)) .

Of course, the dynamics of (3.3.1) is wholly determined by 7.

The purpose of this section is to show the existence of a transversal homoclinic
point of 7, for any € > O sufficiently small (cf Theorem 3.3.10). Then, according
to Smale-Birkhoff homoclinic theorem 2.5.4, Equations (3.3.1) will have a chaotic
behaviour for € > 0 sufficiently small. To detect transversal homoclinic orbits of 7
for € > 0 small, we derive the Melnikov function of (3.3.1) given by the formula

AB)=(s(0B)- VB, + [ (h(66) W), ds. (32
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where (-,-),, is the usual inner product on R”. We see from the form of .# that
chaos in (3.3.1) can be made only by the impulsive effects, as the integral part of
A containing & is independent of . Of course, this fact is natural since the ODE
(3.3.1) is autonomous. For the readers’ convenience, we note that the approach of
this section can be simply generalized to study periodic perturbations of (3.3.1), i.e.
if h="h(x,r) and h(-,t+ 1) = h(-,1)Vt € R. Since the period of & in ¢ is the same as
the period of the impulsive conditions, the Poincaré map 7, can be straightforwardly
extended for this case. Then the Melnikov function is

M (B) = <g(¢(13)),w(ﬁ)>m+/_i<h(¢(S),0),w(s)>mdsv BER.

We are motivated to study such impulsive Duffing—type equations by [31] of the
form
' +a’p(z) = aq(z),
a(z(i+) —z(i—)) = r(z(i-)), (3.3.3)
Z(i+)=7(i—), i€z,

where a > 0 is a large parameter, p, g, r € C3(R,R).

3.3.2 Linear Singular ODEs with Impulses

In this section, we derive Fredholm-like alternative results of certain linear impul-
sive ODEs which are linearizations of (3.3.1). Let | - |,, be the corresponding norm
to (-,-)m, and set N_ = —N. Now we introduce several Banach spaces:

X" = {x : R\ Z — R™|x is continuous and bounded on R \ Z

and it has x(i+) = lim x(i+s)Vi € Z} ,

s—04

X" = {xeX"’|x’€X’"},

X! = {x : R4 \N — R™|x is continuous and bounded on R \ N

and it has x(i+), x(i—) Vi € N} ,
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X" = {x :R_\N_ — R"|x s continuous and bounded on R_ \ N_

and it has x(i+), x(i—) Vi € N} ,

v - {{an}newn € R", supla <°°}7
n

Y" = { {an}neNf ‘an eR", Sup|an|m < oo} ’
n

Y™ = { {antnez ]a,, € R™, sup |an|m < oo} .
n

The norms on these spaces are the usual supremum norms. For instance, the norm
on X" is defined by
[Pxllm = sup|x(s)|m
SER\Z

The norm on X{" is denoted by || - ||,»1 and on Y™ by ||| - |||,.. We note that ||x||,,1 =
[l 41 |-

In the first part of this section, we consider the following linear equation sug-
gested by (3.3.1)

¥y =Dg(t)y+q(t),
y(i/e+) =y(i/e=)+bi, i€Z,

where B € R, £ > O are fixed, Dg(1) =Df (¢(B+1)), bi e R™, g € X" and y(i/e+) =
y(g$)-

Let Zg(¢) be the fundamental solution of y' = Dg(t)y. Then by Section 2.5.1, this
equation has dichotomies on both R and R_, i.e. there are projections Py : R” —
R™ and constants K > 0, ¢&¢ > 0 so that

(3.3.4)

125 ()P 25" ()| < Ke @0, 1>,
125 () (1= P2)Zg " (s)| < Ke *070), s >1,

where s, t are nonnegative, and nonpositive, for P, , P_, respectively . Note that K, o
are independent of 8, while Py = PP = Zo(B)PYZy 1 (B).
Theorem 3.3.1. The problem
Y =Dg(t)y+4(t),
y(i/e+)=y(i/e=)+b;, i€N, (3.3.5)
Py(0) =& € Py,
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has a unique solution y € X' for any q € X', {b;}icn € Y. Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[l < e([11{bi}ienlllm + & + l1gllm) -
Throughout this section c is a generic constant.

Proof. Uniqueness. If g =0, b; =0, £ = 0 in (3.3.5), then the solution has the form
Zg(t)yo, Pryo = 0. S0 Zg(t)yo = Zg (t)(I— Py )yo. As

Yol = |(T= P )yolm = |(T—P+)Zg ' (1) Zp (1)y0lm < Ke™*|Zg ()yolm

we have, by the boundedness of Zg(#)yo, yo = 0. The uniqueness is proved.
Existence. Let us put for 0 <n/e <t < (n+1)/¢ and any n € NU{0}

y(t) = Zg(1)E + Z Zg(1)Pr 25" (k/€)by
~Y 20 @mm+/% )P.Z5 ' (s)q(s) ds
k=n+1

N /,w Zg(1) (1= P)Z5 " (s)q(s)ds

where we set, for the case n =0, Y{_; Zg(t )P+Z Y(k/€)by = 0. Now, we compute
for0<e<eé

n
_ —alt—k
[y(t)|m < Ke at|§|m+ZKe ol €>|bk|m
k=1

oo 1 oo
+ Y Ke gt [ Kem I gllds+ [ Ke ) gl ds
k=n+1 0 t

SK‘§|m+KSup|bk|m (Zea(t]é)+ Z ea(lgct)>
k

k=1 k=n+1

Rl ([ s [Teaas)

—a(-1)

e e—o(E 1) 2
< Klglo+ Ksuplinlo | S o+ 5o | + Kl

<K 2K b K 2
= ‘§|m+msip| klm + ||CI||ma

< 2K b 2
= K‘§|m+msgp| k‘m‘i‘KHCIHma
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So y(¢) satisfies the inequality of this theorem. It is not difficult to see that we can
take derivatives with respect to ¢ term by term in the series and with the integral sign
so that y(z) satisfies the differential equation in (3.3.4).

To check the impulsive conditions, we compute for i € N

Wife+) —ife—) = Y. 241/ 25 (kfelb— Y. Zg(ifeXI- P )Z5 (k/eWh
k=1 k=i+1
i—1

=Y Zp(i/e)PrZ5 (k/e)bi + izﬁ(i/e)(]l —Py)Z5 ' (k/€)b
k=1 k=i

Zg(i/e)P-Zy (i) €)bi+Zp(if€) (1 — P1)Zg ' (i/€)bi
= Zg(i 8) Yi/e)b; = b;.

= Zg(i/
/
Finally

oo

P+}’(0)=P+§—P+<ZH P.)Z k/ebk+/ (I-P)Zg (S)Q(S)ds>:§-

k=1
The proof is finished. a

Theorem 3.3.2. The problem

Y =Dg(t)y+4(t),
y(i/e+) = y(i/e—)+b;, i€N_, (3.3.6)
(I-P)y(0)=nec2(I-P),

has a unique solution y € X" for any q € X™, {b;}ien_ € Y™. Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[l < e (1{BiYien_lm+ 1|+ llgllm) -

Proof. The uniqueness is the same as in the proof of Theorem 3.3.1. For the exis-
tence, let us take forn/e <t < (n+1)/e <0Oand any n € N_

y(t) = Zg(t n+ZZ,; P-Zy L(k/€)by
k=—o0
-1

— Z Zﬂ(t)(H—P,)ZEI(k/S)bk—l-/Y Zﬁ(l)P,ZEl(s)q(s)dS
k=n+1 -

where we set again, for the case n = —1, Zlc_:ln+l Zg(t)(I —P_)Z[;1 (k/€)b =0. The
rest of the proof is the same as in Theorem 3.3.1, and so we omit it. The proof is
finished. a
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Now we can state the main result concerning (3.3.4).

Theorem 3.3.3. For any {b;}icy € Y™ and q € X™, Equation (3.3.4) has a solution
y € X{" if and only if

i <bi,1/f<l3+é)> +/ V(B +5s)),,ds=0. (3.3.7)

i=—oo

This solution is unique provided

| 66,08 +5)),,ds=0
and, for any 0 < € < € and a fixed constant ¢ > 0, it satisfies

[[¥llm1 < e(sup [bilm +lg]1m) -
1

Proof. Uniqueness. Assume that y; (¢),y2(t) are two solutions of (3.3.4) both satis-
fying the condition

[ (36,0 (B+5)),,ds = 0.
Then y(t) = y1 (t) —y2(t) satisfies y/ (1) = Dg (t)y(t) together with y(i/e+) = y(i/e—),
so that y(¢) is a C'-bounded function on R satisfying the linear homogeneous differ-

ential equation y'(r) = Dg(t)y(t). Hence y(0) € ZP, NZ(1—P-) ory(0) = A¢'(B).
As a consequence y(f) = A¢'(t + ) and then

/I/ B+s\2dsf/ (¥(s),9"(B+s)), ds=0.

This fact implies A = 0 or y; (t) = y(¢).
Existence. For any & € P, and 1 € Z(1— P_) let y,,y_ be the solutions of
(3.3.5) and (3.3.6), respectively. We compute

y0) =y (0) = £ ¥ (1= P07 (/e [ (117" (9a(5)ds
k=1

—n—ZPZ k/ebk—/PZ Y(s)ds.
k= —oo
As we also require y (0) —y_(0) = by, we obtain

é—n:bo+i(H—P L(k/e)by + Z P-Zg L(k/€)by
k=1 (3.3.8)

+ /0 1Pz (s)g(s)ds + [ P75 (s)a(s)ds,

Equation (3.3.8) is solvable if and only if the right-hand side is in the space
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%P, +R(—P.),

i.e. if and only if the right-hand side of (3.3.8) is orthogonal to any element of the
space

(%P, +Z(1—P.))" = ZPLNR(1—P ) = VPN (1—P).

But it is clear that .4"P; N4 (I — P*) is the space of all initial values yo for which

*

the solution of the adjoint equation y = —Dﬁ (t)y is bounded on R. This assertion
follows from the fact that (ZE)’] (t) is the fundamental solution of the equation
y = fDE (t)y possessing dichotomies on both R, and R_ with the projections I —
P}, I—P*, respectively. In our case,

NPINAN(I—P) = span{y(B)}.

Hence (3.3.8) is solvable if and only if the following holds

oz< bo+2 k/e)by + Z P-Zg' (k/€)by
+ /O m(ﬂ—m)z[;l(s)q(s) ds+ [ wPZgl(s)q(s)ds>
= (v(B).bv),,
+Z (Z5) ' (k/e)(T B),be),, +k_z_,m “(k/e)P y(B),bi),,
+ [ a0, @) )T P w(B)), s+ [i<q(s>,<z;;>—1<s>Piw<ﬁ>mds
k - k
=<w»bo>m+z<w<ﬁ+>7bk>m+kzw<w<ﬁ+g>abk>m
+/ v(B+s)) ds+/ V(B +s)), ds

E o) Loaens

We have used the identities
(Z5) () I=P)W(B) =y(B+s), Vs>0,
(Z5) ' ()P y(B) = yw(B+s), Vs<O,

which follow from the facts that (ZE)’l (¢) is the fundamental solution of the equa-
tiony’ = fDE (¢)y possessing dichotomies on both R, and R_ with the projections
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I— P}, I—P*, respectively, and y(f + ) is a bounded solution of this equation on
R.

So (3.3.8) is solvable if and only if (3.3.7) holds. Moreover, for any 0 < € < ¢,
with ¢ > 0 being a fixed constant, we have

1€ —Nlm < C<SUP‘bn|m+ ||51Hm)

Such &, 7 are not unique, since ZP; NZ(1— P-) = span{¢’'(B)}. However we can
obtain uniqueness asking, for example, that 1] is orthogonal to ¢’(f3). That is, in
Eq.3.3.8) wetake & € ZP; andn € ./ ={n e Z(1—-P-)|(n,¢'(B)), =0}. Of
course, ZPy ® ./ = #P, + % (1— P_), but the direct sum implies the uniqueness.
Then we obtain a solution (&;,1;) € ZP+ & . so that

1Etlm + M1 |m < C(Sup|bn|m+ anm) )
n

for any 0 < € < & (¢ > 0 being a fixed constant). So (3.3.4) has a solution y =
y1 ({bu}r e, q) satisfying

|[y1]]m SC(SUP|bn|m+||4Hm)a

for any 0 < € < ¢, if and only if (3.3.7) holds. As ¢’( +1) is a bounded solution of
(3.3.4) with ¢ =0, b; = 0Vi € Z, by putting
3O =31(0)=0'(B+0) [ (169" (B+9)), s/ [ 106 ds.

we obtain another solution of (3.3.4) satisfying

[ (3060 (B+5)),,ds =o0.
Of course, we also have

|l lm < c(sup|bn|m+ anm) )
n

for any 0 < & < ¢ As y'(r) = Dg(t)y(t) +q(t) we easily obtain the conclusion of
this theorem. O

Remark 3.3.4. Let By be a fixed real number. Then the proof of Theorem 3.3.3 can
be repeated to obtain a unique solution of (3.3.4) satisfying the condition

[ 666/ Bo-+),,ds =0,

provided |B — o is sufficiently small. This fact will be used in the proof of Theorem
3.3.8.
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In the last part of this section, we consider the following linear equation sug-
gested by (3.3.1)
Y =Df(0)y+4q(1),
y(i/e+) =y(i/e=)+bi, i€Z,
where € > 0 is fixed and b; € R™, g € X™. Let Z(t) be the fundamental solution of
y' = Df(0)y. Since 0 is hyperbolic for the equation x' = f(x), there is a projection
0 :R™ — R™ and constants M > 0, @ > 0 so that

3.3.9

1Z()0Z ' (s)| < Me @9 t>35,
1Z(O)([I—0)Z7'(s)| < Me @6 s>

By repeating the proof of Theorems 3.3.1 and 3.3.2, we obtain the following
results.

Theorem 3.3.5. The problem

Yy =Df(0)y+q(1),
y(i/e+)=y(i/e—=)+b;, i€N,
oy(0) =& € %0,

has a unique solution y € X' for any q € X', {b;}icn € Y!". Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[1lm < e ([P }ienlllm + & ]m + llgllm) -

Theorem 3.3.6. The problem

Y =Df(0)y+q(t),
y(l/8+):y(l/87)+blv igN*a
(I-0Q)y(0)=neZ(-0),

has a unique solution y € X" for any q € X™, {b;}ien_ € Y™. Moreover, for any
0 < € < ¢ and a fixed constant ¢ > 0, it holds

[l < e ([[1{Bi}ien_llm + 17 m +llgllm) -
Now we can state our main result concerning (3.3.9).

Theorem 3.3.7. For any {b;}icz, € Y" and q € X™, Equation (3.3.9) has a unique
solution y € X" satisfying

[¥llm1 < (sup Bilm + [lgllm) ,
1

forany 0 < € < ¢ and a fixed constant ¢ > .
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Proof. The proof of Theorem 3.3.3 can be repeated up to Eq. (3.3.8). Now Eq.
(3.3.8) is always solvable, since

(#0+A(1-0))" = H Q" NN (I-Q") = {0}.
Moreover, such a solution is unique, because
#0N%(1-Q) ={0}.

So (3.3.9) has the desired solution. The proof is finished. a

3.3.3 Derivation of the Melnikov Function

In this section, we show chaotic behaviour of the Poincaré map 7, of (3.3.1) for
€ > 0 small. For this purpose, we derive a Melnikov function for (3.3.1) to show the
existence of a transversal homoclinic orbit of 7, for € > 0 small. By taking the scale
of the time t <~ &t, we have

¥ = f(x)+€h(x),
x(i/e+) =x(i/e—)+eg(x(i/e—)), i€Z.

Equation (3.3.10) can be rewritten in the form F¢ = 0, where

(3.3.10)

Fe: X" = X" xY"=2",
Felx) = (x’—f( ) —eh(x), {x(i/e+) - (i/g_)_gg@(i/g_))}d).

We solve F; = 0 by the Lyapunov—Schmidt method. But this method cannot be
applied directly, since F; is not defined for € = 0. We overcome this difficulty by
Theorems 3.3.3 and 3.3.7. Let By be a fixed real number. Setting
x=z+0g, ¢p(t)=0(B+1),
we can write (3.3.10) as
¢ = Dy(t)z+{ f(z+95) ~ £(9p) ~ Dp(r)2} +eh(z+9p),
a(ife+) =z(ife—) +eg(z(i/e—) + 9p(i/e)), i€, (3.3.11)

/ <Z ﬁo+ > ds=0,

where | — By is sufficiently small. Finally, Equation (3.3.11) is rewritten, by ap-
plying the Lyapunov-Schmidt procedure, in the form
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¢ = Dy(r)z = P(e.B,2) ({(z+9p) — 1(05) ~ Dp(t)z} +eh(z+9p) )
2(i/e+) —z(i/e—) = eg(z(i/e—) + 9p(i/e)), i€, (3.3.12)

| (206).0'(Bo5)), s =0,

and
Ple.pd)({7c+09) —1(9) ~Dp()c} +ehc o)) o
= {f(z+8p) — f(8p) — Dp(t)z} +h(z+ ¢p)
where
Pp==|(a+ [ (p6)w(B+s),ds)/ [ | ﬁ+slmds]-w([3+-)+p
a=e ¥ (setifem) - apife)w (1))
P(e,B,2) =Py, Pj:X"—X".
Note that

/—o:o <Pdp(s)7 v(pB +S)>mds =_d.

The term f(z+ ¢g) — f(9p) — Dp(:)z is of order O(|z[,) in (3.3.12) as [z|m — O.
Moreover, the left-hand side of (3.3.12) defines a linear operator from X{" to 2",
which is uniformly invertible for € > 0 small according to Theorem 3.3.3 and Re-
mark 3.3.4. So by applying the uniform contraction principle of Theorem 2.2.1,
we can solve (3.3.12) for z, for any € > 0 small and f so that | — Bo| is suf-
ficiently small (say |B — Bo| < 0). Moreover, for any fixed € € (0,¢) this solu-
tion z = z(B, €) is C'-smooth in B and moreover a simple computation shows that
|12(B.€)llm; 1z (B, €)l|m = O(€) uniformly in B (here and in the sequel zg (B, €) will

denote & ﬁ £) ). By putting z(f,€) into (3.3.13), we obtain the bifurcation equation

(see the deﬁn1t1on of Pyp)

0=cy < o) opti/e)w (i)

+ [ (FB.)6) +95(5)) ~ F(85()) ~ Dp(s)2(B.e)()
+eh(z<e,ﬁ><s> +95(5)) W(B+5)) ds.

As [|z(B,€)lm, 128 (B, €)|lm = O(€), we can divide the above equation by € to obtain



66 3 Chaos in Discrete Dynamical Systems

=

o=y <g(1(ﬁ78>(i/8)+¢ﬁ(i/8))"”<ﬁ+é>>

j=—o0 m

+ [ (h(B.2))+95(5)) W(B +)),,ds
et [ (F(B.£)6)+65(5)) ~ £(9p(5)) ~ Dp(s)2(B.e)(). (B +5)) ds.

Now, the last term in the r.h.s. of the above equation is clearly O(¢g) uniformly in
B and it is not difficult to see that it can be differentiated, with respect to 8, with
the integral sign and that this derivative is also O(¢€), uniformly in 3, because of
12(B€)l|m, ||z (B €)||m = O(€), uniformly in B. On the other hand, for i # 0, £ >0
sufficiently small and | — By| < o, we have

(et

where K > 0 is a constant, and a similar inequality holds for ¢g(i/€). Using these
facts the above equation takes the form

< Re B+l < Re%Blg—a/e — 0(e)

m

=)

(s(0(B)). w(h)), + / (h(95(5)), ¥(B+5),ds+0(e) =0 (33.14)

—o0

where O(¢) in Equation (3.3.14) has to be considered in the C'—topology in 8 €
(Bo—0,Bo+ o), i.e. O(g) expresses a term which is O(€) small, together with the
first partial derivative in 3, uniformly with respect to 8 € (y — o, Bo+ ©). Summing
up we see that if By is a simple root of the function (3.3.2) then (3.3.14) has a unique
solution near By for € > 0 sufficiently small. This means that (3.3.1) has a bounded
solution near ¢ for any € > O sufficiently small. So we obtain the following theorem.

Theorem 3.3.8. Assume that the function # : R — R given by (3.3.2) has a simple
root at B = By. Then (1.1) has a unique bounded solution near g, for any € >0
sufficiently small.

Let x(€) be the solution from Theorem 3.3.8. Then the sequence

{x(e)(i/e—)} .

is a bounded orbit of the Poincar¢ map 7, of (3.3.1). In the rest of this section, we
show that this orbit is a transversal homoclinic orbit to a hyperbolic fixed point of
7e. For this purpose (see Lemma 2.5.2), we show that the linearization of (3.3.10)
at x(¢€)

V' =Df(x(€))v+eDh(x(g))v,

v(i/e+) = v(ije—) +eDg(x(e) (i/e—))v(i/e—), i€

has only the zero bounded solution on R. To show this result, we apply Theorem
2.2.4.So0,let B: X{" — 2™ be a bounded linear mapping so that ||B||xm o) < L.
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Consider the equation
Fe(x) —H/SB(x—x(eo)) =0 (3.3.15)

for a fixed small & > 0. The perturbation of (3.3.15) is small for 7, € > 0 small and
it is vanishing for € = 0. Hence we can repeat the proof of Theorem 3.3.8 to obtain
a unique solution %(¢&) of (3.3.15) in a neighbourhood of ¢g, for € >0 and y >0
small. On the other hand,

Fgy (x(&0)) + veoB(x(€0) —x(€0)) = 0.

Hence x(g&y) = X(&). By using Theorem 2.2.4, we obtain that the linear map
DF, (x(eo)) is invertible, i.e. the above linearized equation of (3.3.10) at x(&) has
only the zero bounded solution on R.
Now we show that 7, has a hyperbolic fixed point near 0. For this purpose, we
solve
F.=0

near x = 0, i.e. we solve the equation

¢ =Df(0)z+ {f(z) —Df(0)z} +eh(z),
2(ife+) =z(i/e—)+eg(z(i/e—)),
near z = 0. By repeating the above procedure applied to Eqgs. (3.3.12)—(3.3.13), when

Theorem 3.3.3 is replaced by Theorem 3.3.7, we obtain a unique small solution
%(e) € X{" of (3.3.16). On the other hand, if X is a solution of F; then X(1+-) is also

a solution. Hence
x(e)(14-) =x(e)()

because of uniqueness. So the point ¥(1—) is a fixed point of 7.. To show the hy-
perbolicity of this point, we again apply Lemma 2.5.2 and Theorem 2.2.4 by taking
an equation similar to (3.3.15) of the form

(3.3.16)

Fe(x)+ yeB(x—x(g)) =0,

for a fixed small & > 0. By employing Theorem 3.3.7 as above for (3.3.16), the only
small solution of this equation is %(&). So DFg, (¥(g)) is invertible, i.e. ¥(g)(1-)
is a hyperbolic fixed point of 7g,. Summing up, we obtain

Theorem 3.3.9. The Poincaré map e of (1.1) has a unique hyperbolic fixed point
near 0 for any € > 0 sufficiently small.

Summarizing our results we see that the set {x(¢)(i/ 6—)}7’:_00 is a transversal
homoclinic orbit of 7 to the hyperbolic fixed point %(g)(1—) for any € > 0 suffi-
ciently small. This gives the main result of this section.

Theorem 3.3.10. If there is a simple root of # () = 0, then w, - the Poincaré map
of (3.3.1) - possesses a transversal homoclinic point for any € > 0 sufficiently small.
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3.3.4 Examples of Singular Impulsive ODEs

Consider
ex' = f(x) +eh(x),

3.3.17
x(i+)=x(i-)+¢eta, i€Z, ( )

where a € R™ is fixed, T € R is a parameter and f, & satisfy the assumptions (H1)—
(H4).

Theorem 3.3.11. If [~ (h(¢(s)), l/l(s)>m ds # 0 and there is By € R satisfying

(a,¥(Bo)),, #0. (a,¥(Bo)), #0.

Then, for any € > 0 sufficiently small, the Poincaré map of (3.3.17) has a transversal
homoclinic orbit for T = — [, (h(9(s)), ¥ (s)),, ds/{a, l//(ﬁo)>m .

Proof. In this case, the Melnikov function (3.3.2) for (3.3.17) with T = 1y has the
form

AB) = (0 v(B)), + [ (o). v, ds

It is clear that . (By) = 0, .#'(Bo) # 0. So Theorem 3.3.10 implies the assertion.
The proof is finished. O

We note that under the assumptions of Theorem 3.3.11, the Poincar¢ map of
(3.3.17) has a transversal homoclinic orbit for any 7 near Tp and any € > 0 suffi-
ciently small.

Theorem 3.3.12. If [ (h(¢(s)),w(s)), ds =0 and there is By € R satisfying

(a.9(Bo)),, =0, (a ¥ (o)), #0-

Then, for any € > 0 sufficiently small, the Poincaré map of (3.3.17) has a transversal
homoclinic orbit for any T # 0 fixed.

Proof. In this case,
M (B) =1(a, ¥(B)),,-
So . (By) =0, 4" (By) # 0. The proof is finished by Theorem 3.3.10. O

Finally, let us consider an impulsive Duffing—type equation of the form (3.3.3).
Theorem 3.3.13. Assume that p(0) = 0, p'(0) < 0 and the second—order ODE
'+pz)=0

has a nonconstant solution y(t) so that y(t) — 0 as t — oo, If there is By € R so
that ¥ (Bo) = 0, Y" (Bo) # 0 and r(¥(Bo)) # 0. then (3.3.3) has chaotic behaviour
for any a > 0 sufficiently large.
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Proof. The equation can be rewritten in the form

ex’ = f(x) +eh(x),

x(i+) = x(i—) +eg(x(i-)), (3.3.18)

where 5
€= 1/617 x:(xlvxZ) eR ) f(xlvxZ): (Xz,-p(?ﬂ)),

h(x1,x2) = (0,q(x1)), g(x1,x2) = (r(x1),0).
We note [31] that in this case

o(B)=(v(B).Y(B)), w(B)=(=7"(B).Y(B))-

So the Melnikov function of Theorem 3.3.10 has the form:
AB) = =r(B)Y'(B)+ [ a(r9)7 (s)ds =r(y(B))p(r(B)).

By . (Bo) = 0 and .#'(By) # 0, the conclusion follows from Theorem 3.3.10. O
Remark 3.3.14. Consider

' +a p( )=4(z),
( i+)—z(i ) ( ) (3.3.19)
Z(i+)=7(i—), i€’
instead of (3.3.3). Then the statement of Theorem 3.3.13 holds, since (3.3.18) is
replaced by
ex' = f(x) + €2h(x),
x(i+) =x(i—) +eg(x(i—)).
It easily follows, from the proof of Theorem 3.3.13, that . (B) = r(v(B)) p(¥(B))

in this case too, hence Theorem 3.3.13 still holds.

Remark 3.3.15. Consider

Z'+d’p(z) = q(z),
@ (2(i+) —2(i-)) = r(z(i-)), (3.3.20)
Z(i+)=7(i—), i€Z
instead of (3.3.3). Then the statement of Theorem 3.3.13 holds, since (3.3.18) is
replaced by
ex = f(x)+€%h(x),
x(i+) = x(i—) + e2g (x(i—)).
Of course, the Melnikov function for (3.3.21) is vanishing, since we derived in The-

orem 3.3.10 the first-order Melnikov function. However the factor €2 in both the
perturbation and the jumping term allow us to repeat the arguments of Section 3.3.3

(3.3.21)
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showing, then that the solution of system (3.3.12) is O(&?)-bounded, uniformly in
B and the same holds for its derivative with respect to . Thus, we can divide the
bifurcation function by £ and take the limit as € — O (uniformly in f3), getting the
same bifurcation function as in (3.3.2). Hence [31, p. 284] we see that a simple root
of the above Melnikov function of (3.3.18) ensures the validity of Theorem 3.3.13
also for (3.3.20).

3.4 Singularly Perturbed Impulsive ODEs

3.4.1 Singularly Perturbed ODEs with Impulses

In this section we proceed with the study of chaotic behaviour of dynamical systems
with impulses. More precisely, we study the chaotic behavior of the equation

ey = flx,y€),
Y =Txne) (3.4.1)
x =g(x,y,€),
with the impulsive effects
x(i+0)=x(i—0)+¢€a(x(i—0),y(i—0),¢),
(i+0) = (i ~0) + a(x(i ~0).3(i~ 0).¢) a2

y(i+0)=y(i—0)+eb(x(i—0),y(i—0),€), i€Z,

where as usual lim x(¢) = x(i£0). Here y € R”, x € R™ and € > 0 is a small pa-

t—i4
rameter. We assume that

(H1) f, g, a, b are C*~smooth;

(H2) f(7070) =0, D)’f('7050) = (A()vB())’ WhereA(') € L(Rkl )7 B() € L(sz)’
ki +ky = p;

(H3) {Rt|1€0(A())} C(—o0,—7) and {R7 | T € 6(B())} C (7,°0) for some
constant y > 0;

(H4) The reduced equation x' = g(x,0,0) has a hyperbolic equilibrium %, with a
homoclinic orbit x(z);

(H5) The variational equation v/ = D, g (x(t),O, O)v has the only unique (up to con-
stant multiples) bounded solution x'(-).

By a solution of (3.4.1)—(3.4.2) we mean some (x,y) which is C'—smooth in R\ Z
satisfying (3.4.1) on this set and moreover, (3.4.2) holds for any i € Z. For simplicity,
we assume that f, g, a, b are globally Lipschitz continuous. Then (3.4.1)-(3.4.2)
with any initial condition x(#y) = xo, ¥(f9) = yo, to ¢ Z has a unique global solution.
Furthermore, we can define a Poincare map H of (3.4.1)—(3.4.2) in the following
way. Let ¢ (t, (%0, yo)) be the unique solution of (3.4.1) with the initial point (xo, yo).
Then we put
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Hs(x(]ayﬂ) = 0¢ (17 ()C()—|—861()60,)1(),8)7))0—|—8b()€0,y0,8))) :

Of course, the dynamics of (3.4.1)—(3.4.2) is wholly determined by H,. The aim of
this section is to find assumptions for f, g, a, b which give the existence of transver-
sal homoclinic point of H, for any € > 0 small. For this purpose, we derive a Mel-
nikov function for (3.4.1)—(3.4.2). Then such Egs. (3.4.1)—(3.4.2) will have a chaotic
behaviour for € > 0 small. The chaotic behaviour of small periodic perturbations of
(3.4.1) is studied in Section 4.4.

3.4.2 Melnikov Function

We know by Section 4.1.2 that (H4) and (HS) imply the uniqueness (up to constant
multiples) of a bounded nonzero solution « of the adjoint variational equation

u=— (ng(x(t),0,0))*u.

Since the derivation of a Melnikov function for (3.4.1)—(3.4.2) is very similar to
results of Section 3.3, we omit further details and refer to [32]. Hence the Melnikov
function is now:

o

M (1) = Z <a(x(t+i),0,0),u(t+i)>m

[=—o0

+/:° (= Dyg(x(5).0,0)D,f (x(5),0,0) ' Def (x(5),0,0)+  (343)
+Deg(x(5).0,0),u(s)) ds

where (-,-),, is the usual inner product on R”. Now we are ready to state the main
result of this section.

Theorem 3.4.1. Assume that there is ty so that
M (10) =0, A'(19) #0.
Then (3.4.1)—(3.4.2) have transversal homoclinic orbit for any € > 0 small.

Remark 3.4.2. We have considered only the case of the uniform distribution of im-
pulsive effects. We may study (3.4.1) similarly as above with impulsive effects of
the form (3.4.2) at #;, i € Z for a fixed sequence {z;}3 t; < ti11 so that

[=—00°

ti— *oo as [ — oo

sup (ti+1 —t,') < oo, iIilf(tH] —t,') >0.
1
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Then, of course, (3.4.1)—(3.4.2) do not define any Poincaré map for general {;}3> ..
A line of the paper [33] may be followed for the above general impulsive effects.

Remark 3.4.3. The second term of the Melnikov function .# (see (3.4.3)), which
does not depend on ¢, is only a contribution of (3.4.1) (see Section 4.4). While the
first term of ./ is determined by both (3.4.1) and (3.4.2).

3.4.3 Second Order Singularly Perturbed ODEs with Impulses

In this section, we consider

ex’ =x — f(x),
x(i+0) =x(i —0) + ea(x(i— 0),x'(i—0)), (3.4.4)
X (i+0)=x'(i—0)+eb(x(i—0),x'(i—0))

where f:R” — R™ and f, a, b are C>~smooth. Moreover, assume that the equation
x' = f(x) has a hyperbolic equilibrium % with a homoclinic orbit x(-). Furthermore,
suppose the adjoint variational equation v/ = — (Df (x(¢)))*v has a unique (up to
constant multiples) bounded nonzero solution u. Taking x' = y+ f(x) we obtain
from (3.4.4)

ey =y—eDf(x)(y+f(x)),
X =y+fx),
x(i+0) = x(i—0) +ea(x(i—0),y(i — 0) + f(x(i—0))),
y(i+0) = y(i—0) + &b (x(i—0),y(i — 0) + f(x(i—0)))

+f(x(i—0)) —f(x(i —0) +a(x(i—0),y(i—0)+ f(x(i— 0))))
(3.4.5)
We see (3.4.5) is of the form (3.4.1)—(3.4.2), and the Melnikov function .#, for this
case, has the form (see (3.4.3))

M (1) = _i‘, <a(x(r+i),f(x(t+i))),u(z+i)>m+_/:o@f(x(s))f(x(s))M(s))mds
= X ale+ D)o+ ale + D)+ [ (DI 5)ls) s
= i <a(x(t+i),f(x(t+i))),u(t+i)>m+12<x”(s),u(s)>mds

= X alale+ ) fCxle+)ale 4 D) [ (5) 5) s

i=—oo

Hence
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= o

M)="Y] <a(x(t+i),f(x(tJri))),u(tJri))mf/ (x'(s),u(5))mds. (3.4.6)

[=—o0 —

By applying Theorem 3.4.1 we obtain.

Theorem 3.4.4. Assume that there is ty so that

M(10) =0, A" (19) #0.

Then (3.4.4) has a chaotic behaviour for any € > 0 small.

3.5 Inflated Deterministic Chaos

3.5.1 Inflated Dynamical Systems

The following problem arises in computer-assisted proofs and other numerical
methods in dynamical systems [34-37]. Let Zgrn be a unit closed ball of R”". For
a homeomorphism f : R" — RR", we consider an orbit {x;} jcz of an &-inflated map-
ping x — f(x) + €PBgn for € > 0. Then we deal with a difference inclusion

Xj+1 ef(Xj)‘i‘g%Rn, ]GZ (351)

The concept of e—inflated dynamics was introduced in [36] and was used in a fairly
large number of papers since then. For details, see the monograph [38] and the ref-
erences therein. Consequently, the theory of generalized nonautonomous attractors
in the e—inflated dynamics can be considered to be complete by now.

We are not interested in the existence of one solution of (3.5.1), but in the set of
all trajectories of (3.5.1). So, for instance, to fix the initial point xy, we consider a
single-valued difference equation

Xjt1 :f(xj)+8pj, pj € PBrn, JjEL, 3.5.2)

where p = {p;}jez € Pz (wn) 1s considered as a parameter. This orbit of (3.5.2) is
denoted by x(p) = {x;(p)}jcz. Then we define an &-inflated orbit of (3.5.1) given
by

XS(XO) = {X?}jez, xf = {xj(p) ‘ pc ,@ZDZG(R»L)} .

Here

lz(R") = {p ={pj}tjez |p; ER",Vj € Zand ||p|| := suglpjl < °°}
je

is the usual Banach space and L@gozo(Rn) is its closed unit ball. Certainly it holds
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X =f(5)+eBrn, jEL.

Hence x* are contractible into themselves to x? = fJ(xo). The iteration f/(xp), j # 0
is in the interior of xi. Note that x§ = x. Moreover, xf are compact.

This approach of considering parameterized difference equation (3.5.2) instead
of difference inclusion (3.5.1) is used in [39] for investigation of €-inflated dynam-
ics near either to a hyperbolic fixed point of a diffeomorphism or to a hyperbolic
equilibrium of a differential equation. More precisely, we construct analogues of
the stable and unstable manifolds, which are typical of a single-valued hyperbolic
dynamics; moreover, we construct the maximal weakly invariant bounded set and
prove that all such sets are graphs of Lipschitz maps. Then a parameterized general-
ization of Hartman-Grobman lemma is shown. Inflated ODEs are studied in Section
4.6.

3.5.2 Inflated Chaos

We consider a C'-diffeomorphism f : R” — R” possessing a hyperbolic fixed point
xo. Then we take its g-inflated perturbation

x — f(x) 4 g(x, Brn) (3.5.3)

where g : R"” x Zrn — R" is Lipschitz in the both variables, i.e. the following holds:
There are positive constants A, A and L so that

lg(x,p) —g(%p)| < Alx—%+Alp—p| and [g(x,0)| <L (3.5.4)

whenever x,%¥ € R" and p, p € PBrn. We suppose, in addition, that diffeomorphism f
possesses a transversal homoclinic orbit {xg} xez to hyperbolic fixed point xo. Then
f is chaotic by the Smale-Birkhoff homoclinic theorem 2.5.4. Our aim is to extend
this theorem to (3.5.3).

Our multivalued perturbation takes the special form G(x) = g(x, Zgn). So (3.5.3)
has the form x — f(x) + G(x). In view of the Lojasiewicz-Ornelas parametrization
theorem 2.3.1, this is not a loss of generality if the values of G are convex and
compact. However, in the general case a parameterization of G does not exist. We
mention that some nonconvex versions exist as well [40], but in general, a parame-
terization cannot be available, since continuous selections may not exists (see [41],
Section 1.6). Hence, we consider

X1 € f () +8(xk, Brn), kEZL. (3.5.5)
Like in [39], we take p = {pk };cz € €7 (R"), ||p|| < 1 and consider the system

Xey1 = fo) + g0, pr), kE€Z. (3.5.6)
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First, we know by Lemma 2.5.2 that the transversality of a homoclinic orbit {x,?}kez
is equivalent to the existence of an exponential dichotomy of wy,| = Df (x,?)wk on
Z, i.e. setting the fundamental solution

Df(xk D Df(xo) if k>0,
W (k) = I, if k=0,
Df(x2)7'~~~Df(x91)7', if k<0,

there are a projection P : R" — R" and positive constants K > 0, 6 € (0, 1) so that
|W(k)PW (r)~'| < K8*, for k> r,
|W (k)(I—P)W _1|§K6"", for k<r.

Now we fix @ € N large and for any & € &, & = {e,}jcz we define a pseudo-orbit
{xk}kez as follows for k € {2jw,....2(j+ o —1}, j € Z:

)Ck =

0 _
: {xk(2j+1)w, for e; =1,

X0, for e; =0.

Let ‘xl?o —xo| = Il?azx |x,(3 — xp|. Following [10, pp. 148-151] and [13], we have the
€
following result.

Lemma 3.5.1. There exist wy € N, oy > |ko| and a constant ¢ > 0 so that for any
¢ €& h={l}rez € ;(R"), there is a unique solution W = {wy }rcz € 07 (R") of
the linear system

Wil = Df(xf)wk+hk, kelZ.
Moreover, w is linear in h and it holds |w|| < c||h|.

We denote that K(£)h = w is the unique solution from Lemma 3.5.1. Certainly
K(E) € L(G(R") with [K(E)] < e, and K(E)~'w= {wis1 =DF G i}, 50
K&)' e L(6(RY).

Now we look for a solution of (3.5.6) near x&. For this reason, we make a change
of variables x; = wy, —|—x}§, k € Z to get the equation

weir =Df (6wt £ (it ) =k = DF (o ) wetg (we+f, ) 357
for k € Z. To solve (3.5.7), we introduce a mapping
G:& x 93@;(1@") x 07 (R") — £7 (R")
as follows:

G(&,p,w) = {f (wk +x§) fxgﬂ —Df (xf) wi+g (wk +x,§,pk)}

kez
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Now forany & € &, w!,w? € £3(R"), ||w!?|

<pandp',p’ec Bz () We derive
IG(&,p", W) = G(&,p*, W) < (A(p)+4) [w' —w? | +A[p' —p*| (3.5.8)
for
A(p) = sup {IDf(w+2) = DF()| < v = 0] < 24af, — xol, W] < p -

Note that A(0) = 0. Since {Xg}kez is a homoclinic orbit of f to xg, by [42, p. 148],
we also get

3 £ _(8+1\?
IG(E,0,0)| <L+ sup gy —fOp)l <Ltc{ —— (3.5.9)
keZ,Ee&

for a constant ¢ > 0 and any & € &. Now we are ready to rewrite (3.5.7) as the
following fixed point problem

w=F(&,p,w):=K(©&)G& p.w).
By Lemma 3.5.1, (3.5.8) and (3.5.9), we obtain

IF (& ! wh) = F(&,p2, W)l < c(A(p)+A) [w! —w?|[+Ac]p! —p],

_(8+1\?
(&t whll < e(8(p)+ )+ Acl'] + e (25

(3.5.10)
forany & € &, w',w? € £3(R"), |[w!2|| < p and p!,p? € Pz (). Assuming that

A<, (3.5.11)

~ . g, — %ol
Ko :=min< 1,cA +cA —a ,
Mp(c,A) := max {I_Kmin{A1<K_CA>}}
CASKS%O c c

and the above maximum is achieved at Ky € (cA,1). Here A~ : R, — 28+ \ {0} is
considered as an upper semicontinuous mapping which is increasing with increasing
compact interval set values. Put

po = min{A1 (KOZCA) }

we set

Note that
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- Ko — X0 —x
O<P0=min{A' (w)}ﬁmin{Al<K0 CA>}§|kO4 ol
¢ c

Ko = c(A(po) +A).

If
A+L<My(c,A), (3.5.12)

then A +L < My(c,A) = FTKOpo and so
cA+cL+c(A(po)+A)po=cA+cL+ Kopo < Po-
Consequently, we find N > w; > wy so that

1\
cz(‘S;’) +cA +cL+ Kkopo < po.- (3.5.13)

Then for any fixed N > @ > w;, mapping:

— B

F:&x %ZOZC(Rn) X B 0 ZM(R,,)

= (R")
is a contraction with a constant k), where %’KQ (") is the ball of E"Z"(R’l) centered at
Z

0 with the radius pg. By the Banach fixed point theorem 2.2.1 we get the following
result.

Theorem 3.5.2. Assume (3.5.11) and (3.5.12). Then there are ®; > @, ‘xko il >
po > 0 so that for any N > @ > @y but fixed and for any & € &, p € %gm(Rn) there
is a unique solution X(p,§) = {xx(p,&) ez € €5 (R") of (3.5.6) so that

Ix(p, &) —x*|| < po. (3.5.14)
By (3.5.10), mapping:
X: %@Z(Rn) X & +— EOZO(Rn)

is Lipschitzian in p:

(3.5.15)

1 2 cA
— <
[x(p", &) —x(p~,8) < 1—xo
forany & € & and p',p® € ,@[;(Rn). Let

lz(R") := {{x }rez | xx €R"}

be a metric space with a norm

lex — ¢
d({exez} {eier}) = .
szh{eie) = 1 ST 1 e, — el
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Clearly £ (R") C £7(R"). Now we prove several useful results.

Theorem 3.5.3. Mapping x : %g;(Rn) X & — Lz (R") is continuous.

Proof. Let Bp=n) > P' = {p}}jez — 0" = {P}} jez. € Bizwr), 6 2 &i={€}} jer. —
&= {e(}} jez € & as i — oo, Then using (3.5.14) and the Cantor diagonal procedure,
we can suppose, by passing to subsequences, that

x(p.&) =3, Viez,

as i — co. We note that ez- — e(])- asi— oo Vj € Zand x(p', &), i € Z solving (3.5.6)
along with (3.5.14) holds as well. By passing to the limit i — oo, we obtain

D=0 +eGhpY), kezZ

and X = {i?} jez satisfies (3.5.14) with & = &y. The uniqueness property of Theorem
3.5.2 implies X = x(p°, &). The continuity of x is proved. O

Theorem 3.5.4. It holds
Xk(ﬁ,c(é)) :xk+2w(pvé)? VkEZ, (3516)
for p = {pr+20 }kez-

Proof. Taking 2 := x4 2(p, &) forany k € Z, by x7) =2 vk € Z, (3.5.6) and
(3.5.14) we derive

Zer1 = f(z) + 82k Prt2o) »

6(5)’ _ ‘
@) —

‘Zk —X Xk+20 (pa é) 7x]§+2w < Po,

for any k € Z. The uniqueness property of Theorem 3.5.2 implies z; = x;(p, 0 (&))
for any k € Z, so (3.5.16) is shown. O

Then (3.5.16) implies
X2k (P, ) = Xo (c?k(p)ﬁk(é)), VkeZ, (3.5.17)
for a shift homeomorphism
G: B ®e) — Biz(rr)
given by 6 (p) := p. Note that

x2(k+l)co(p»§) :Fzzk(c](()ji)l)w (x2kw(p75)) ) Vk € Za (3518)

for continuous mappings
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Foat () i= (f + 80 parnyot) -+ (f + 80 pavo1)) (f +8( P2ro)) (3).

Then (3.5.17) and (3.5.18) imply
%0 (61(),0*1(8)) = it (30 (64(9).0°()) ), VkeZ, (3519
and since 6* : & +— & is a homeomorphism, (3.5.19) gives

X0 (6k+1(p),6(§)) = Fpet® <x0 (6"@),5)) . VkeZ. (3.5.20)
Next, introducing the following mappings
X ‘%EE(R”) X & XL %Z%Q(Rn) XE XL,
Z(p,8.k):=(p.0(8).k+1),
D : By (my X & X L= Bz (mm) % R*"X 7,
P(p,&.k) = (px0 (3(9).€ ) k)
F??: B n) X R" X L= By X R X Z,
F2(p,x, k) = (B, Fyigy  (x), k1) |

and the set
A=D (%[Z(Rn) X & X Z) s

we obtain the main result of this section.

Theorem 3.5.5. The diagram of Figure 3.2 is commutative. Moreover, mappings X
and ® are homeomorphisms.

%@;(Rn) X & XL 22 > %[:;(Rn) X & XL
D (o]
\4 F2a) \
A - A

Fig. 3.2 Commutative diagram of inflated deterministic chaos.

Proof. The commutativity of diagram in Figure 3.2 follows directly from (3.5.20).
Since ¢ : & — & is a homeomorphism, X is also a homeomorphism. Now we show
the injectivity of the mapping xo(p, -) : & — R". If there exist & 3 §' = {e}}jez #
2 ={ej}jez € € and xo(p, ") = x0(p, &), then xi (p, &) = xi(p, &?) forany k € Z
and jy € Z exists so that e}o # e?o. Then (3.5.14) gives
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1 2
X(2jo+1) 0+ko

2 &?
+ ’x(2j0+l)w+ko (p,&7) T X 2o+ Dotk

| 1
< ‘X(2j0+1)co+k0 (pag )_x(2j0+l)w+k0

0 _ .8 _
Ik — o0l = ‘x(2j0+1)60+/<0

<2pg < ‘xgo —)C()|,

which is a contradiction. Consequently xo(p, -) is injective. Now suppose @ (p', &1, k;) =
®(p?,E%,ky). Then p' =p? =p, k; = ko = k and

%0 (84(1).¢") =x0 (6"().&?)

and thus £! = £2. Hence @ is also injective. Finally assume that & (p’, &/ k;) —
®(p°, &Y ko) as i — oo. Then k' = k° for large i, p' — p” and

x0 (640, &) = x0 (6% (p").°) .
Since & is compact, we can suppose &! — EO and then
30 (64(6°),6°) =0 (5 (6°),€°)

and so £0 = E0 i.e. @ is continuous. In summary, @ is a homeomorphism. The
proof is finished. O

Figure 3.2 has the following more transparent form in Figure 3.3 where

I Bimn) X 6 Brany x 6, Z(p,€):=(p,0(§)),

Dy : Bz (rny X 6 = Brzwny xR", - B(p,§) :

I
VN
®
&
/N
A
o~
—
z
o
N—
SN—

A= By (f%’f;(ﬂ%") X éa) ,

2(k+1
szw : '%52(R”) x R" — %ZE(RH) X Rn7 szw(p,x) = (p,sz(w:; )w(x)) .

By putting
PP R, BP(E)i=x0 (G4(0).E), AP =P (&),

Figure 3.3 has also more transparent forms described in Figure 3.4. All mappings in
Figures 3.3 and 3.4 are again homeomorphisms, and sets A,f are compact. So Figure
3.4 is a two-parameterized analogy of Figure 2.1 of Section 2.5.2 by parameters
pc %{;(RH) and k € Z.

Set

P0(E) = BYE) =x0(0,&), Ag=AJ=x(0,&), m=20. (3.5.21)

By (3.5.195), all sets A,f arein a iAKO -neighborhood of Ay. If

1
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%{;(Rn) X & t%g;(Rn) X &
Dy Dy i
Fka
- A Ay ———

Fig. 3.3 A sequence of commutative diagrams from Figure 3.2.

o
> & > & >
P
op af,
2(k+1)@
szw.p
.- AP . AP

k+1

Fig. 3.4 A parameterized sequence of commutative diagrams from Figure 3.3.

g(x,0)=0 VxeR" (3.5.22)

then L =0in (3.5.4), ¢ = @, A = Ag in (3.5.21) and Figure 2.1 of Section 2.5.2
is derived from Figure 3.4 by setting p = 0. Moreover, inequality (3.5.13) gives

_ ay - ~ ~
po:=c (%) + Kop < po. Clearly A(pg) < A(po) and so Ky := cA(po) < K.

Repeating the proof of Theorem 3.5.2 we get ||x(0,&) —x°|| < po for any & € &.
Note, the above diagrams are generalizations of similar results of [33,43,44] for
non-autonomous sequences of diffeomorphisms, ordinary differential equations and
inclusions. Now we put _
A= |J Al
pG,%gozo(Rn),kEZ

Note that A = xg (%goi(w) ,E ) We can consider A as an inflated Smale horseshoe
of f.

Theorem 3.5.6. Assume (3.5.11), (3.5.12) and (3.5.22). If o € N is sufficiently
large, then the following properties hold:

i AC A and if in addition
gri=g(x,"): Brn — R" isinjective VxecR", (3.5.23)

then A is in the interior of/‘.

(ii) A is contractible into A in itself.

(iii) /~\ isina 1C—A1<0 -neighborhood of A.

(iv) A is back and forward weakly invariant with respect to an m-iteration of (3.5.3),
i.e. Im € N 50 that Vxy € A, IH{ Xy }rez satisfying X1 € f (%) + g(Xy, Brn) and

Fm EA, VK € Z.
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(v) Dynamics of (3.5.3) back and forward sensitively depends on A, i.e. there is a
constant 1) > 0 so that for any Xo € A and any open neighborhood 3o € U C R”,
there is xo € UNA and {Xk}kGZ: {fk}kgz satisfying Xy 1 € f(%) + g(Xk, Brn)
and Xyv1 € f(X) + g(Xp, Brn), Vk € Z, and there exist jo, j1 € Z, jo <0< ji
so that ‘fjo —fj0| > 1 and ‘)Ejl —Xj, ‘ >n.

(vi) (3.5.3) has a chaotic/oscillatory behavior on A.

where we consider Theorem 2.5.4 in the sense of (3.5.21).

Proof. Since Ag = A, we get A C A. Next we fix & € & and consider a mapping
O; : By (rn) > (7 (R") given by O (p) = x(p, &). We study g for p near 0. From

(3.5.23), there are open neighborhoods 0 € V C R" and X C W so that
VCgX(%Rn), VxeWw.

So we have v, :=g; ! 1V — PBga, Vx € W. Clearly y(x,z) := Wy (2), W : W xV — R"
is continuous. We continuously extend y on R” x R". Then we define R : /7 (R") —
27 (R") as follows
R(x) := {y (e, X1 — f () beez -

R is continuous. If ||p|| is small then x; 1 — f(x¢) = g(xx, px) € V for x(p,&) =
{atrezs 50 pr = g (a1 — F(w)) = W, 01 — £ (), ie. R(Og(p)) = p for
any p small. Note that @ (0) = x(0,&) = {f“(¢(&))},., and [x(0,&) — x5 <
po < po for any & € &. On the other hand, if x = {x; }1ez is close to @ (0) then
Xi+1 — f(x¢) €V Vk € Z along with Hx—x5 Il < po, so we can put py := W (X, Xgt1 —
F(xx)) € PBre. Then xi1 = f(xx) + g(xx, pi). From the uniqueness we derive x =
O¢ (p) = O (R(x)). In summary, @ is a local homeomorphism at p = 0. Now, a
projection Py : £7 (R") — R" given by Py ({%x }xez) := Xo is an open linear mapping.
Consequently, a mapping Py o O¢ (p) = xo(p, &) maps a small open neighborhood
of p = 0 onto a small open neighborhood of @(§) = Pyo @¢(0) € A. This implies
property (i). By taking

Ay = {xo(/lpé) P EHBppm) S € g}

for A € [0,1], we get property (ii), since clearly A, C A and Ay = A. Property
(iii) follows from (3.5.15). The definition of A implies property (iv). Now we show
property (v). Take 1 := ’Xko fx0| —2po > 0. Then for any Xy € A we have ¥y =
xo(p, &) for some p € ,%’gw rryand & € &. Let % € U C R" be an open neighborhood.
From the continuity of mapping & — xo(p &) (see Theorem 3.5. 3) there is 5 ¥3
close to & so that Xy = xg (p, 5) € UNA and there exist 0o, 1
so that ¢;, # e;,, €, # e;, for E = {éi}icz and .’;' = {€i}icz- Then for jo = (210 +
Dw+ky <0, (3.5.14) gives
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xjy(p,&) =25,

E_ &
Xjo ~ %o

~ [xio(p. &) =5,

xjo(p’g) _xjo(pag)’ >

> |xg, —x0| —2p0 =1 > 0.

The same estimates hold for j; = (2i; + 1)@ + ko > 0. Property (v) is shown. Dia-
gram in Figure 3.4 gives property (vi). The proof is completed. a

With property (v), we can construct many continuum orbits of (3.5.3) starting
from U and oscillating back and forward on Z between xy and x,?o in any order. Of
course, results of this section can be directly extended to more £-inflated systems of

the form xi1 = f(xx + €qx) + 8(xk, pi), k € Z for any { pi}rez, {qitkez € Bz (rn)
and € > 0 small fixed.
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