
Chapter 2
Preliminary Results

In this chapter, we recall some known mathematical notations, notions and results

which will be used later to help readers to understand this book better. For more

details, we refer readers to quoted textbooks of nonlinear functional analysis, dif-

ferential topology, singularities of smooth maps, complex analysis and dynamical

systems.

2.1 Linear Functional Analysis

Let X be a Banach space with a norm | · |. By N we denote the set of natural numbers.

A sequence {xn}n∈N ⊂ X converges to x0 ∈ X if |xn − x0| → 0 as n → ∞, for short

xn → x0. We denote by Bx(r) the closed ball in X centered at x ∈ X and with the

radius r > 0, i.e. Bx(r) := {z ∈ X | |z− x| ≤ r}. Let S be a subset of X , i.e. S ⊂ X .

Then S is convex if λ s1 +(1−λ )s2 ∈ S for all s1,s2 ∈ S and λ ∈ [0,1]. By convS we

denote the convex hull of S, i.e. the intersection of all convex subsets of X containing

S. Diameter of S, diamS, is defined as diamS := {sup |x− y| | x,y ∈ S}. S is open if

any point of S has a closed ball belonging to S. S is closed if X \ S is open. The

closure and interior of S are denoted by S̄ and intS, respectively. Recall that S̄ is the

smallest closed subset of X containing S, and intS is the largest open subset of S.

Clearly intBx(r) = {z ∈ X | |z− x| < r} — an open ball in X .

Let X and Y be Banach spaces. The set of all linear bounded/continuous map-
pings A : X → Y is denoted by L(X ,Y ), while we put L(X) := L(X ,X). The norm

of A is defined by ‖A‖ := sup|x|=1 |Ax|. More generally, if Y, X1, . . . , Xn are Banach

spaces, L(X1 ×·· ·×Xn,Y ) is the Banach space of bounded/continuous multilinear
maps from X1 ×·· ·×Xn into Y.

In using the Lyapunov-Schmidt method, we first need the following Banach in-
verse mapping theorem.

Theorem 2.1.1. If A ∈ L(X ,Y ) is surjective and injective then its inverse A−1 ∈
L(Y,X).
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We also recall the following well-known result.

Lemma 2.1.2. Let Z ⊂ X be a linear subspace with either dimZ < ∞ or Z to be
closed with codimZ < ∞. Then there is a bounded projection P : X → Z. Note that
codimZ = dimX/Z and X/Z is the factor space of X with respect to Z.

Basic Banach spaces are functional ones like Cm
(
[0,1],Mk

)
and Lp

(
I ,Mk

)
,

where I ⊂ R is an interval and M ∈ {R,C}, with the usual norms:

‖ f‖ = maxx∈[0,1],i=0,··· ,m |Dm f (x)| (cf Section 2.2.2) on Cm
(
[0,1],Mk

)
,

‖ f‖p = p
√∫

I | f (x)|p dx on Lp
(
I ,Mk

)
for 1 ≤ p < ∞,

‖ f‖∞ = ess supx∈I | f (x)| = min{λ ≥ 0 | | f (x)| ≤ λ for almost all x ∈ I }
on L∞

(
I ,Mk

)
.

Here C denotes the set of complex numbers. Recall the Hölder inequality
‖ f g‖1 ≤ ‖ f‖p‖g‖q for any f ∈ Lp

(
I ,Mk

)
, g ∈ Lq

(
I ,Mk

)
and 1

p + 1
q = 1. For

p = q = 2, we get the Cauchy-Schwarz-Bunyakovsky inequality. Discrete analo-

gies of these spaces are as follows: Let I ∈ {N,Z}. Then we set �p
(
Mk

)
:={

x = {xm}m∈I ⊂ Mk | ∑m∈I |xm|p < ∞
}

with the norm ‖x‖p = p
√
∑m∈I |xm|p for ∞>

p≥ 1, and �∞
(
Mk

)
:=

{
x = {xm}m∈I ⊂ Mk | supm∈I |xm| < ∞

}
with the norm ‖x‖∞=

supm∈I |xm|. Note that L2
(
I ,Mk

)
and �2

(
Mk

)
are Hilbert spaces with scalar prod-

ucts ( f ,g) =
∫
I f (x)g(x)dx and (x,y) = ∑m∈Z xmym, respectively.

Now we state the well-known Arzelà-Ascoli theorem:

Theorem 2.1.3. Let {xn(t)}n∈N ⊂ C
(
[0,1],Rk

)
be a sequence of continuous map-

pings xn : [0,1] → R
k so that

(i) Sequence {xn(t)}n∈N is uniformly bounded, i.e. there is a constant M > 0 so that
|xn(t)| ≤ M for any t ∈ [0,1] and n ∈ N.

(ii) Sequence {xn(t)}n∈N is equicontinuous, i.e. for any ε > 0 there is a δ > 0 so
that for any n ∈ N and t,s ∈ [0,1], |t − s| < δ it holds |xn(t)− xn(s)| ≤ ε .

Then there is a subsequence {xni(t)}i∈N of {xn(t)}n∈N therefore xni(t) ⇒ x0(t) uni-
formly to some x0 ∈C([0,1],Rk) as i → ∞.

For any f ∈ L2([−π,π],C), we define Fourier coefficients of f by the formula:

f̂ (n) :=
1

2π

∫ π

−π
f (x)e−ınx dx

and n ∈ Z. The Parseval theorem asserts that

2π ∑
m∈Z

f̂ (n)ĝ(n) =
∫ π

−π
f (x)g(x)dx

and this implies a Hilbert space isomorphism between L2([−π,π],C) and �2(C).
Note f = 0 if and only if f̂ (n) = 0 for all n ∈ Z. More sophisticated Hilbert spaces

are Sobolev spaces H p(C), (H p(R)) p ∈N which are all 2π-periodic complex (real)

functions q(t) so that q(p) ∈ L2 ([−π,π],C). Next for any f ∈ L1(R,C) we define its

Fourier transform by the formula:
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f̂ (t) =
1√
2π

∫ ∞

−∞
f (x)e−ıxt dx .

The Plancherel theorem states that the Fourier transform can be extended to L2(R,C)
with ‖ f̂‖2 = ‖ f‖2 and so f → f̂ is a Hilbert space isomorphism from L2(R,C) to

L2(R,C).
More details and proofs of the above results can be found in [1–3].

2.2 Nonlinear Functional Analysis

2.2.1 Banach Fixed Point Theorem

Let X and Y be Banach spaces. Norms are denoted by | · |. Let U ⊂Y be open. Con-

sider a mapping F : Bx0
(r)×U → X for some x0 ∈ X and r > 0 under the following

assumptions

(a) There is an α ∈ (0,1) so |F(x1,y)−F(x2,y)| ≤ α|x1 −x2| for all x1,x2 ∈ Bx0
(r)

and y ∈U .

(b) There is a 0 < δ < r(1−α) so that |F(x0,y)− x0| ≤ δ for all y ∈U .

Set Z+ := N∪{0}. Now we can state the Banach fixed point theorem or uniform
contraction mapping principle [1, 4, 5].

Theorem 2.2.1. Suppose there exist conditions (a) and (b). Then F has a unique
fixed point φ(y) ∈ intBx0

(r) for any y ∈ U, i.e. φ(y) = F(φ(y),y) for all y ∈ U.
Moreover it holds

(i) If there is a constant λ > 0 so that |F(x,y1)− F(x,y2)| ≤ λ |y1 − y2| for all
x ∈ Bx0

(r) and y1,y2 ∈U. Then |φ(y1)−φ(y2)| ≤ L
1−α |y1−y2| for all y1,y2 ∈U.

(ii) If F ∈Ck
(
Bx0

(r)×U,X
)

for a k ∈ Z+ then φ ∈Ck(U,X).

2.2.2 Implicit Function Theorem

Let X and Y be Banach spaces. Norms are denoted by | · |. Let Ω ⊂ X be open. A

map F :Ω →Y is said to be (Fréchet) differentiable at x0 ∈Ω if there is a DF(x0)∈
L(X ,Y ) so

lim
h→0

|F(x0 +h)−F(x0)−DF(x0)h|
|h| = 0 .

If F is differentiable at each x ∈ Ω and DF : Ω → L(X ,Y ) is continuous then F
is said to be continuously differentiable on Ω and we write F ∈ C1(Ω ,Y ). Higher

derivatives DiF are defined in the usual way by induction. Similarly, the partial

derivatives are defined standardly [1, p. 46]. Now we state the implicit function
theorem [5, p. 26].
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Theorem 2.2.2. Let X, Y , Z be Banach spaces, U ⊂ X, V ⊂Y are open subsets and
(x0,y0) ∈U ×V . Consider F ∈C1(U ×V,Z) so that F(x0,y0) = 0 and DxF(x0,y0) :

X → Z has a bounded inverse. Then there is a neighborhood U1 ×V1 ⊂ U ×V of
(x0,y0) and a function f ∈C1(V1,X) so that f (y0) = x0 and F(x,y) = 0 for U1 ×V1

if and only if x = f (y). Moreover, if F ∈Ck(U ×V,Z), k ≥ 1 then f ∈Ck(V1,X).

We refer the readers to [4, 6] for more applications and generalizations of the

implicit function theorem.

2.2.3 Lyapunov-Schmidt Method

Now we recall the well-known Lyapunov-Schmidt method for solving locally non-

linear equations when the implicit function theorem fails. So let X , Y , Z be Ba-

nach spaces, U ⊂ X , V ⊂ Y are open subsets and (x0,y0) ∈ U ×V . Consider

F ∈C1(U ×V,Z) so that F(x0,y0) = 0. If DxF(x0,y0) : X → Z has a bounded inverse

then the implicit function theorem can be applied to solving

F(x,y) = 0 (2.2.1)

near (x0,y0). So we suppose that DxF(x0,y0) : X → Z has no a bounded inverse.

In general, this situation is difficult. The simplest case is that when DxF(x0,y0) :

X → Z is Fredholm, i.e. dimN DxF(x0,y0) < ∞, RDxF(x0,y0) is closed in Z
and codimRDxF(x0,y0) < ∞. Here N A and RA are the kernel and range of

a linear mapping A. The index of DxF(x0,y0) is defined by indexDxF(x0,y0) :=
dimN DxF(x0,y0)−codimRDxF(x0,y0). Then by Lemma 2.1.2, there are bounded

projections P : X → N DxF(x0,y0) and Q : Z → RDxF(x0,y0). Hence we split any

x∈X as x = x0 +u+v with u∈R(I−P), v∈RP, and decompose (2.2.1) as follows:

H(u,v,y) := QF(x0 +u+ v,y) = 0 , (2.2.2)

(I−Q)F(x0 +u+ v,y) = 0 . (2.2.3)

Observe that DuH(0,0,y0)= DxF(x0,y0)|R(I−P)→RDxF(x0,y0). So DuH(0,0,y0)
is injective and surjective. So by Banach inverse mapping theorem 2.1.1, DuH(0,0,y0)
has a bounded inverse. Since H(0,0,y0) = 0, the implicit function theorem can be

applied to solving (2.2.2) in u = u(v,y) with u(0,y0) = 0. Inserting this solution into

(2.2.3) we get the bifurcation equation:

B(v,y) := (I−Q)F(x0 +u(v,y)+ v,y) = 0 .

Since B(0,y0) = (I−Q)F(x0,y0) = 0 and

DvB(0,y0) = (I−Q)DxF(x0,y0)(Dvu(0,y0)+ I) = 0 ,
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the function B(v,y) has a higher singularity at (0,y0), so the implicit function theo-

rem is not applicable, and the bifurcation theory must be used [5].

2.2.4 Brouwer Degree

LetΩ ⊂R
n be open bounded subset. A triple (F,Ω ,y) is admissible if F ∈C(Ω̄ ,Rn)

and y ∈R
n with y /∈ F(∂Ω), where ∂Ω is the border ofΩ . Now on these admissible

triples (F,Ω ,y), there is a Z-defined function deg [1, p. 56].

Theorem 2.2.3. There is a unique mapping deg defined on the set of all admissible
triples (F,Ω ,y) determined by the following properties:

(i) If deg(F,Ω ,y) �= 0 then there is an x ∈Ω consequently F(x) = y.
(ii) deg(I,Ω ,y) = 1 for any y ∈Ω .
(iii) deg(F,Ω ,y) = deg(F,Ω1,y) + deg(F,Ω2,y) whenever Ω1,2 are disjoint open

subsets of Ω so that y /∈ F
(
Ω̄ \ (Ω1 ∪Ω2)

)
.

(iv) deg(F(λ , ·),Ω ,y) is constant for F ∈C
(
[0,1]× Ω̄ ,X

)
and y /∈ F ([0,1]×∂Ω).

The number deg(F,Ω ,y) is called the Brouwer degree of the map F . If x0 is an

isolated zero of F inΩ ⊂R
n then I(x0) := deg(F,Ω0,0) is called the Brouwer index

of F at x0, where x0 ∈Ω0 ⊂Ω is an open subset so x0 is the only zero point of F on

Ω0 [5, p. 69]. I(x0) is independent of such Ω0. Note that if y ∈ R
n is a regular value

of F , i.e. detDF(x) �= 0 for any x ∈Ω with F(x) = y, and y /∈ F(∂Ω), then F−1(y)
is finite and deg(F,Ω ,y) = ∑x∈F−1(y) sgndetDF(x). Particularly if x0 is as simple
zero of F(x), i.e. F(x0) = 0 and detDF(x0) �= 0, then I(x0) = sgndetDF(x0) = ±1.

2.2.5 Local Invertibility

It is well known that the linear invertibility implies local nonlinear invertibility.

More precisely, let us consider a map F : X → Y , F(0) = 0, where F is C1–smooth

and X , Y are Banach spaces. If DF(0) is invertible, then any C1–small perturbation

of F has a unique zero point near 0. This follows from the implicit function theorem

2.2.2. Now we shall study a reverse problem [7].

Theorem 2.2.4. Consider a C2–smooth map F : X → Y satisfying F(0) = 0 and
assume that DF(0) is Fredholm with index 0.

If there exist a neighbourhood U ⊂ X of 0 and numbers K > 0, δ > 0 so that for
any linear bounded mapping B : X →Y , ||B|| ≤K the perturbation εB+F, 0≤ ε ≤ δ
has the only zero point 0 in U, then DF(0) is invertible.

Note that if there is a number K satisfying the assumption of the above theorem,

then this assumption holds with any K > 0 and the same neighbourhood U . Of

course, we must take another δ > 0. If we are interested in the invertibility of DF(x0)
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for a general fixed x0 satisfying F(x0) = 0, then Theorem 2.2.4 is applied with

perturbations of the form ε
(
B−Bx0

)
+ F , where B has the properties of Theorem

2.2.4. Indeed, we apply Theorem 2.2.4 to the map x → F
(
x+ x0

)
. The perturbation

term ε
(
B−Bx0

)
is affinely small.

2.2.6 Global Invertibility

Let X , Y be Banach spaces and f ∈C(X ,Y ). Then f is proper if the inverse image

f−1(C) of any compact subset C ⊂ Y is compact [4, p. 102].

Theorem 2.2.5. If X and Y are finitely dimensional, then f is proper if f is coercive,
i.e. | f (x)| → ∞ whenever |x| → ∞.

Now we state the following Banach-Mazur theorem of global invertibility of

mappings.

Theorem 2.2.6. (i) f is a homeomorphism of X onto Y if and only if f is a local
homeomorphism and proper.

(ii) If f ∈ C1(X ,Y ) then f is a diffeomorphism if and only if f is proper and
D f (x) is a linear homeomorphism for each x ∈ X.

2.3 Multivalued Mappings

Let X , Y be Banach spaces and letΩ ⊂ X . By 2Y we denote the family of all subsets

of Y . Any mapping F :Ω → 2Y \{ /0} is called multivalued or set-valued mappings.

A multivalued mapping F : Ω → 2Y \ { /0} is convex (compact)-valued if F(x) is

convex (compact) for any x ∈Ω .

By B(X) we denote the family of all nonempty closed bounded subsets of X . Let

A,B ∈ B(X), then their Hausdorff distance dH(A,B) is defined as follows

dH(A,B) := max

{
sup
a∈A

[
inf
x∈B

|x−a|
]
,sup

b∈B

[
inf
x∈A

|x−b|
]}

.

It is well known that dH is a metric on B(X) and B(X) is a complete metric space

with respect to dH [8, 9]. A multivalued mapping F : X → B(Y ) is Lipschitz contin-

uous with a constant Λ > 0, if

dH(F(x1),F(x2)) ≤Λ |x1 − x2|

for any x1,x2 ∈ X . Now we state the Lojasiewicz-Ornelas parametrization theorem
[10]:
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Theorem 2.3.1. If G : R
n → R

n is a compact convex-valued map which is Lipschitz,
then there exists a Lipschitz map g : R

n ×BRn → R
n so that G(x) = g(x,BRn) for

all x∈R
n, where BRn is a closed unit ball in R

n. Moreover, the Lipschitz constant of
g(= g(x, p)) with respect to the variable x is proportional to the Lipschitz constant
of G, while the Lipschitz constant of g with respect to the second variable p is
proportional to the maximal norm of the elements of G.

2.4 Differential Topology

2.4.1 Differentiable Manifolds

Let M be a subset of R
k. We use the induced topology on M, that is, A ⊂ M is open if

there is an open set Ã ⊂ R
k so that A = Ã∩M. We say that M ⊂ R

k is a Cr-manifold
(r ∈ N) of dimension m if for each p ∈ M there is a neighborhood U ⊂ M of p and a

homeomorphism x : U →U0, where U0 is an open subset in R
m, so that the inverse

x−1 ∈Cr(U0,R
k) and Dx−1(u) : R

m → R
k is injective for any u ∈U0. Then we say

that (x,U) is a local Cr-chart around p and U is a coordinate neighborhood of p.

It is clear that if x : U → R
m and y : V → R

m are two local Cr-charts in M with

U ∩V �= /0 then y ◦ x−1 : x(U ∩V ) → y(U ∩V ) is a Crdiffeomorphism. This family

of local charts is called a Cr-atlas for M [11–13].

If there is a Cr-atlas for M so that detD(y◦ x−1)(z) > 0 for any z ∈ x(U ∩V ) and

any two local Cr-charts x : U → R
m and y : V → R

m of this atlas with U ∩V �= /0

then M is oriented.

Let α ∈C1((−ε,ε),Rk) be a differentiable curve on M, i.e. α : (−ε,ε)→M with

α(0) = p. Then α ′(0) is a tangent vector to M at p. The set of all tangent vectors to

M at p is the tangent space to M at p and it is denoted by TpM. The tangent bundle
is

T M :=
{

(p,v) ∈ R
k ×R

k | p ∈ M, v ∈ TpM
}

with the natural projection π : T M → M given as π(p,v) = p. If M is a Cr-manifold

with r > 1 then T M is a Cr−1-manifold.

Let M and N be two Cr-manifolds. We say that f : M → N is a Cr-mapping if for

each p∈M the mapping y◦ f ◦x−1 : x(U)→ y(V ) is Cr-smooth, where x :U →R
m is

a local Cr-chart in M around p and y :V →R
s is a local Cr-chart in N with f (U)⊂V .

This definition is independent of the choice of charts. The set of Cr-mappings is

denoted by Cr(M,N). Take f ∈ Cr(M,N). Let α : (−ε,ε) → M be a differentiable

curve on M with α(0) = p and α ′(0) = v. Then f ◦α : (−ε,ε)→N is a differentiable

curve on N with ( f ◦α)(0) = f (p), so we can define D f (p)v := D( f ◦α)(0) ∈
Tf (p)N. This is independent of curve α . The map D f (p) : TpM → Tf (p)N is linear,

and if r > 1, D f : T M → T N defined as D f (p,v) := ( f (p),D f (p)v) is Cr−1-smooth.

A set S ⊂ M ⊂R
k is a Cr-submanifold of M of dimension s if for each p ∈ S there

are open sets U ⊂ M containing p, V ⊂ R
s containing 0 and W ⊂ R

m−s containing
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0 and a Cr-diffeomorphism φ : U → V ×W so that φ(S∩U) = V ×{0}. We put

codimS = dimM−dimS.

A Cr-mapping f : M → N is an immersion (submersion) if D f (p) is injective

(surjective) for all p∈M. If f : M →N is an injective immersion we say that f (M) is

an immersed submanifold. If, in addition, f : M → f (M) ⊂ N is a homeomorphism,

where f (M) has the induced topology, then f is an embedding. In this case, f (M) is

a submanifold of N.

2.4.2 Vector Bundles

A Cr-vector bundle of dimension n is a triple (E, p,B) where E, B are Cr-manifolds

and p ∈ Cr(E,B) with the following properties: for each q ∈ B there is its open

neighborhood U ⊂ B and a Cr-diffeomorphism φ : p−1(U) → U ×R
n so that p =

π1 ◦ φ on p−1(U) where π1 : U ×R
n → U is defined as π1(x,y) := x. Moreover,

each p−1(x) is n-dimensional vector spaces and each φx : p−1(x) → R
n given by

φ(y) = (x,φx(y)) for any y ∈ p−1(x) is linear isomorphisms. E is called the total
space, B is the base space, p the projection of the bundle, the vector space p−1(x)
the fibre and φ a local trivialization. So the vector bundle is locally trivial. If U = B
then the bundle is trivial. The family A := {(φ ,U)} of these local trivializations is

a Cr-vector atlas. The bundle is oriented if there is a Cr-vector atlas A := {(φ ,U)}
so that for any two local trivializations (φ ,U) and (ψ,V ) with U ∩V �= /0 the linear

mapping ψx ◦ φ−1
x : R

n → R
n is orientation preserving for each x ∈ U ∩V . A Cr-

smooth mapping s : B → E satisfying p ◦ s = IB is called a section of the bundle.

Typical examples of vector bundles are the tangent bundle (T M,π,M) and the

normal bundle (T M⊥, π̃,M) defined as

T M⊥ :=
{

(q,v) ∈ R
k ×R

k | q ∈ M, v ∈ TqM⊥
}

with the projection π̃ : T M⊥ → M given as π̃(q,v) = q, where TxM⊥ is the orthogo-

nal complement of TxM in R
k. A section of T M is called a vector field on M. When

M is oriented, both T M and T M⊥ are oriented. Here M is a Cr-manifold with r > 1.

2.4.3 Tubular Neighbourhoods

Let M be a submanifold of a smooth manifold N. A tubular neigbourhood of M in

N is an open subset O of N together with a submersion p : O → M so that [14, pp.

69-71]:

(a) the triple (O, p,M) is a vector bundle, and

(b) M ⊂ O is the zero section of this vector bundle.
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Theorem 2.4.1. Let M be a submanifold of N, then there exists a tubular neighbour-
hood of M in N.

If N = R
n then we can realize a tubular neighbourhood of a submanifold M by

using its normal vector bundle T M⊥.

2.5 Dynamical Systems

2.5.1 Homogenous Linear Equations

Set Z− := −Z+. Let J ∈ {Z+,Z−,Z}. Let An ∈ L(Rk), n ∈ J be a sequence of

invertible matrices. Consider a homogeneous linear difference equation

xn+1 = Anxn . (2.5.1)

Its fundamental solution is defined as U(n) := An−1 · · ·A0 for n ∈ N, U(0) = I and

U(n) := A−1
n · · ·A−1

−1 for −n ∈ N. (2.5.1) has an exponential dichotomy on J if there

is a projection P : R
k → R

k and constants L > 0, δ ∈ (0,1) so that

‖U(n)PU(m)−1‖ ≤ Lδ n−m for any m ≤ n, n,m ∈ J ,

‖U(n)(I−P)U(m)−1‖ ≤ Lδm−n for any n ≤ m, n,m ∈ J .

If An = A and its spectrum σ(A) has no intersection with the unit circle, i.e. A is

hyperbolic, then P is the projection onto the generalized eigenspace of eigenvectors

inside the unit circle and N P is the generalized eigenspace of eigenvectors outside

the unit circle. Next we have the following roughness of exponential dichotomies.

Lemma 2.5.1. Let J ∈ {Z+,Z−}. Let A be hyperbolic with the dichotomy projection
P. Assume that {An(ξ )}n∈J ∈ L(Rk) are invertible matrices and An(ξ )→A in L(Rk)
uniformly with respect to a parameter ξ . Then xn+1 = An(ξ )xn, with the fundamental
solution Uξ (n), has an exponential dichotomy on J with projection Pξ and uniform
constants L > 0, δ ∈ (0,1). Moreover, Uξ (n)PξUξ (n)−1 → P as n →±∞ uniformly
with respect to ξ .

Analogical results hold for a homogeneous linear differential equation ẋ = A(t)x
when t ∈ J ∈ {(−∞,0),(0,∞),R} and A(t) ∈ C(J,L(Rk)) is a continuous matrix

function. Its fundamental solution is a matrix function U(t) satisfying U̇(t) =
A(t)U(t) on J. Sometimes we require that U(0) = I [15]. Now, we recall the Li-
ouville theorem that

detU(t) = detU(t0)e
∫ t
t0

trA(s)ds
,

where trA(t) denotes the trace which is the sum of diagonal entries of A(t). Finally

we mention the Gronwall inequality that if

φ(t) ≤ α(t)+
∫ t

a
ψ(s)φ(s)ds
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for all t ∈ [a,b] then

φ(t) ≤ α(t)e
∫ t

a ψ(s)ds

for all t ∈ [a,b], where a < b, α , φ and ψ are nonnegative continuous functions on

[a,b], and moreover, α is C1-smooth satisfying α ′(t) ≥ 0 for any t ∈ [a,b].

2.5.2 Chaos in Diffeomorphisms

Consider a Cr-diffeomorphism f on R
m with r ∈ N, i.e. a mapping f ∈Cr(Rm,Rm)

which is invertible and f−1 ∈Cr(Rm,Rm). For any z ∈ R
m we define its k-iteration

as f k(z) := f ( f k−1(z)). The set { f n(z)}∞n=∞ is an orbit of f . If x0 = f (x0) then

x0 is a fixed point of f . It is hyperbolic if the linearization D f (x0) of f at x0 has

no eigenvalues on the unit circle. The global stable (unstable) manifold W s(u)
x0

of a

hyperbolic fixed point x0 is defined by [16]

W s(u)
x0

:= {z ∈ R
m | f n(z) → x0 as n → ∞(−∞)} ,

respectively. Recall that W s
x0

and W u
x0

are immersed Cr-submanifolds in R
m. Further-

more, let y0 be another hyperbolic fixed point of f . If x ∈W s
x0
∩W u

y0
\{x0,y0} then it

is a heteroclinic point of f and then the orbit { f n(x)}∞n=∞ is called heteroclinic orbit.

Clearly f n(z)→ x0 as n→∞ and f n(z)→ y0 as n→−∞. If TxW s
x0
∩TxW u

y0
= {0} then

x is a transversal heteroclinic point of f . Note the following useful results [15, 17].

Lemma 2.5.2. x ∈W s
x0
∩W u

y0
\{x0,y0} is a transversal heteroclinic point if and only

if the linear difference equation xn+1 = D f ( f n(x))xn has an exponential dichotomy
on Z, i.e. if and only if the only bounded solution of xn+1 = D f ( f n(x))xn on Z is the
zero one.

When x0 = y0, the word “heteroclinic” is replaced with homoclinic. We refer the

readers to [15] for more details and proofs of the above subject.

Let E = {0,1}Z be a compact metric space of the set of doubly infinite sequences

of 0 and 1 endowed with the metric [18]

dE ({en},{e′n}) := ∑
n∈Z

|en − e′n|
2|n|

.

On E it is defined as the so-called Bernoulli shift map σ : E → E by σ({e j} j∈Z) =
{e j+1} j∈Z with extremely rich dynamics [19].

Theorem 2.5.3. σ is a homeomorphism having

(i) a countable infinity of periodic orbits of all possible periods,
(ii) an uncountable infinity of nonperiodic orbits, and
(iii) a dense orbit.
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Now we can state the following result of the existence of the deterministic chaos
for diffeomorphisms, the Smale-Birkhoff homoclinic theorem.

Theorem 2.5.4. Suppose f : R
m → R

m, r ∈ N are a Cr-diffeomorphism having a
transversal homoclinic point to a hyperbolic fixed point. Then there is a k ∈N so that
f k has an invariant set Λ , i.e. f k(Λ) =Λ , so f k ◦ϕ = ϕ ◦σ for a homeomorphism
ϕ : E →Λ (Figure 2.1).

�

�
� �

ϕ

E

Λ

σ

f k

E

Λ

ϕ

Fig. 2.1 Commutative diagram of deterministic chaos.

The set Λ is the Smale horseshoe and we say that f has horseshoe dynamics
on Λ . By Theorem 2.5.4, f k on Λ has the same dynamical properties as σ on E ,

i.e. Theorem 2.5.3 gives chaos for f . Moreover, it is possible to show a sensitive
dependence on initial conditions of f on Λ in the sense that there is an ε0 > 0 so

that for any x ∈ Λ and any neighborhood U of x, there exists z ∈ U ∩Λ and an

integer q ≥ 1, consequently | f q(x)− f q(z)| > ε0.

2.5.3 Periodic ODEs

It is well known [20] that the Cauchy problem

ẋ = g(x, t), x(0) = z ∈ R
m (2.5.2)

for g ∈ Cr(Rm ×R,Rm), r ∈ N has a unique solution x(t) = φ(z, t) defined in a

maximal interval 0 ∈ Iz ⊂ R. We suppose for simplicity that Iz = R. This is true, for

instance, when g is globally Lipschitz continuous in x, i.e. there is a constant L > 0

so that |g(x, t)− g(y, t)| ≤ L|x− y| for any x,y ∈ R
m, t ∈ R. Moreover, we assume

that g is T -periodic in t, i.e. g(x, t + T ) = g(x, t) for any x ∈ R
m, t ∈ R. Then the

dynamics of (2.5.2) is determined by the dynamics of the diffeomorphism f (z) =
φ(z,T ) which is called the time or Poincarè map of (2.5.2). Now we can transform

the results of Section 2.5.2 to (2.5.2). So T -periodic solutions (periodics for short)

of (2.5.2) are fixed points of f . A T -periodic solution of (2.5.2) is hyperbolic if

the corresponding fixed point of f is hyperbolic. Periodics of f are subharmonic
solutions (subharmonics for short) of (2.5.2). Similarly we mean a chaos of (2.5.2)

as a chaos for f . Finally, let γ0(t) = φ(x0, t) be a T -periodic solution of

ẋ = g(x, t) . (2.5.3)
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Consider its variational equation along γ0 given by v̇ = gx (γ0(t), t)v with the funda-

mental matrix solution V (t). Then D f (x0) = V (T ) [21]. Now we have the following

result from the proof of Theorem 2.1 on p. 288 of [22].

Lemma 2.5.5. Let X be a Banach space. Let Cb(R,X) be the space of all continuous
and bounded functions from R to X endowed with the supremum norm. Consider

u̇ = A(t)u (2.5.4)

with the fundamental solution U(t), where A(t) ∈ C (R,L(X)) is T -periodic. Then
the following statements are equivalent

(i) The nonhomogeneous equation

u̇ = A(t)u+h

has a unique solution u ∈Cb(R,X) for any h ∈Cb(R,X).
(ii) The zero solution of (2.5.4) is hyperbolic, i.e. σ(U(T )) has no eigenvalues on

the unit circle.
(iii) Equation (2.5.4) has an exponential dichotomy on R.

Lemma 2.5.5 is useful for verifying the hyperbolicity of γ0 of (2.5.3).

2.5.4 Vector Fields

When (2.5.2) is autonomous, i.e. g is independent of t, (2.5.2) has the form

ẋ = g(x), x(0) = z ∈ R
m . (2.5.5)

g is called a Cr-vector field on R
m for g ∈ Cr(Rm,Rm), r ∈ N. We suppose for

simplicity that the unique solution x(t) = φ(z, t) of (2.5.5) is defined on R. φ(z, t) is

called the orbit based at z. Then instead of the time map of (2.5.5), we consider the

flow φt : R
m → R

m defined as φt(z) := φ(z, t) with the property φt (φs(z)) = φt+s(z).
A point p is an ω-limit point of x is there are points {φti(x)}i∈N

on the orbit of x
so that φti(x)→ p and ti →∞. A point q is an α-limit point if such a sequence exists

with φti(x) → q and ti →−∞. The α- (resp. ω-) limit sets α(x), ω(x) are the sets of

α- and ω-limit points of x.

A point x0 with g(x0) = 0 is an equilibrium of (2.5.5). It is hyperbolic if the

linearization Dg(x0) of (2.5.5) at x0 has no eigenvalues on imaginary axis.

The global stable (unstable) manifold W s(u)
x0

of a hyperbolic equilibrium x0 is

defined by

W s(u)
x0

:= {z ∈ R
m | φ(z, t) → x0 as t → ∞(−∞)} ,

respectively. These sets are immersed submanifolds of R
m. For any x ∈ W s(u)

x0
, we

know that
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TxW
s(u)
x0

=
{

v(0) ∈ R
m | v(t) is a bounded solution

of v̇ = Dg(φ(x, t))v on (0,∞),((−∞,0)), respectively
}

.

Moreover, the set (
TxW s

x0
+TxW u

x0

)⊥
is the linear space of initial values w(0) of all bounded solutions w(t) of the adjoint
equation ẇ = −Dg(φ(x, t))∗w on R [23].

A local dynamics near a hyperbolic equilibrium x0 of (2.5.5) is explained by the

Hartman-Grobman theorem for flows [24].

Theorem 2.5.6. If x0 = 0 is a hyperbolic equilibrium of (2.5.5) then there is a home-
omorphism h defined on a neighborhood U of 0 in R

m so that

h(φ(z, t)) = etDg(0) h(z)

for all z ∈U and t ∈ Jz with φ(z, t) ∈U, where 0 ∈ Jz is an interval.

For nonhyperbolic equilibria we have the following center manifold theorem for
flows [24].

Theorem 2.5.7. Let x0 = 0 be an equilibrium of a Cr-vector field (2.5.5) on R
m.

Divide the spectrum of Dg(0) into three parts σs, σu, σc so that ℜλ < 0;> 0;= 0 if
λ ∈ σs,σu,σc, respectively. Let the generalized eigenspaces of σs, σu, σc be Es, Eu,
Ec, respectively. Then there are Cr-smooth manifolds: the stable W s

0 , the unstable
W u

0 , the center W c
0 tangent at 0 to Es, Eu, Ec, respectively. These manifolds are

invariants for the flow of (2.5.5), i.e. φt
(
W s;u;c

0

) ⊂ W s;u;c
0 for any t ∈ R. The stable

and unstable ones are unique, but the center one need not be. In addition, when g
is embedded into a Cr-smooth family of vector fields gε with g0 = g, these invariant
manifolds are Cr-smooth also with respect to ε .

Under the assumptions of Theorem 2.5.7 near x0 = 0 we can write (2.5.5) in the

form
ẋs = Asxs +gs(xs,xu,xc,ε) ,
ẋu = Auxu +gu(xs,xu,xc,ε) ,
ẋc = Acxs +gc(xs,xu,xc,ε) ,

(2.5.6)

where As;u;c := Dg(0)/Es;u;c and xs;u;c ∈ Us;u;c for open neighborhoods Us;u;c of 0

in Es;u;c, respectively. Here we suppose that (2.5.5) is embedded into a Cr-smooth

family. So g j are Cr-smooth satisfying g j(0,0,0,0) = 0 and Dx j gk(0,0,0,0) = 0

for j,k = s,u,c. According to Theorem 2.5.7, the local center manifold W c
loc,ε near

(0,0,0) of (2.5.6) is a graph

W c
loc,ε = {(hs(xc,ε),hu(xc,ε),xc) | xc ∈Uc}

for hs;u ∈ Cr (Uc ×V,Es;u) and V is an open neighborhood of ε = 0. Moreover, it

holds hs;u(0,0) = 0 and Dxchs;u(0,0) = 0. The reduced equation is



22 2 Preliminary Results

ẋc = Acxs +gc(hs(xc,ε),hu(xc,ε),xc,ε) , (2.5.7)

which locally determines the dynamics of (2.5.6), i.e. W c
loc,ε contains all solutions

of (2.5.6) staying in Us ×Uu ×Uc for all t ∈ R. In particular periodics, homoclinics

and heteroclinics of (2.5.6) near (0,0,0) solve (2.5.7).

Finally we say that (2.5.5) has a first integral H : R
n → R if H ◦φt = H for any

t ∈ R.

2.5.5 Global Center Manifolds

Let Ck
b(R

m,Rn) be the Banach space of Ck functions from R
m to R

n which are

bounded together with their derivatives, endowed with the usual sup-norm. We con-

sider the following system of ODEs:

ẋ = A(y)x+F(x,y),
ẏ = G(x,y) , (2.5.8)

where x ∈ R
n,y ∈ R

m and assume that the following conditions hold:

(i) F ∈Cr
b(R

n ×R
m,Rn), G ∈Cr

b(R
n ×R

m,Rm), A ∈Cr
b(R

m,L(Rn)) with r ≥ 1.

(ii) There exists δ > 0 so that for any y ∈ R
m and for any λ (y) ∈ σ(A(y)), one has

|ℜλ (y)| > δ . Moreover, the derivatives of order r of A(y), F(x,y), G(x,y) are

continuous in x, uniformly with respect to y ∈ R
m.

(iii) sup
(x,y)∈Rn×Rm

{|F(0,y)|, |Fx(0,y)|, |G(x,y)|, |Gx(x,y)|, |Gy(x,y)|
}≤ σ .

Now we can state the following result.

Theorem 2.5.8. There exists a σ0 > 0 so that, if the above conditions hold with
σ ≤ σ0, there exists a Cr-function H(y), defined for y ∈ R

m so that the manifold

C = {(x,y) ∈ R
n ×R

m | x = H(y),y ∈ R
m}

is invariant for the system (2.5.8) and has the following property:

(P) There exists ρ > 0 so that if (x(t),y(t)) is a solution of (2.5.8) satisfying
||x||∞ ≤ ρ , then x(t) = H(y(t)).

C is called the global center manifold of (2.5.8). We refer the readers to [25] for

more details.

2.5.6 Two-Dimensional Flows

In this section we consider a planar ODE
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ẋ = f (x) , (2.5.9)

where x = (x1,x2) ∈ R
2 and f = ( f1, f2) is smooth. First we have the following

useful result of Poincarè and Bendixson [20, 21].

Theorem 2.5.9. A nonempty compact ω- or α-limit set of a planar flow, which con-
tains no equilibria, is a closed orbit.

The next Bendixson criterion rules out the occurrence of closed orbits in some

cases [20, 21].

Theorem 2.5.10. If in a simply connected region D ⊂ R
2 the divergence div f =

∂ f1
∂x1

+ ∂ f2
∂x2

of (2.5.9) is not identically zero and does not change sign, then (2.5.9)

has no closed orbits lying entirely in D.

2.5.7 Averaging Method

In this section, we consider systems of the form [21, 24, 26]

ẋ = ε f (x, t,ε) , (2.5.10)

where f ∈Cr
(
R

n+2,Rn
)
, r ≥ 2.

Definition 2.5.11. f ∈ Cr
(
R

n+2,Rn
)
, r ≥ 2 is said to be KBM-vector field, (KBM

stands for Krylov, Bogolyubov and Mitropolsky) if the average

f0(x) := lim
t→∞

1

t

∫ t

0
f (x,s,0)ds

exists for any x ∈ R
n. The associated autonomous averaged system is defined as

ẏ = ε f0(y) . (2.5.11)

We have the following results.

Theorem 2.5.12. Suppose for (2.5.10) that f is T -periodic in t. Then f is a KBM-
vector field. Moreover, for any ε > 0 sufficiently small, we get

(i) If x(t) and y(t) are solutions of (2.5.10) and (2.5.11) with |x(0)−y(0)|= O(ε),
then |x(t)− y(t)| = O(ε) on a time scale t ∼ 1/ε .

(ii) If p0 is a hyperbolic equilibrium of (2.5.11) then (2.5.10) possesses a unique
hyperbolic periodic orbit γε(t) = p0 +O(ε) of the same stability type as p0.

(iii) If xs(t) ∈ W s(γε) is a solution of (2.5.10) lying on the stable manifold of γε ,
ys(t) ∈W s(p0) is a solution of (2.5.11) lying on the stable manifold of p0 and
|x(0)− y(0)| = O(ε), then |x(t)− y(t)| = O(ε) for any t ≥ 0. Similar results
apply to solutions lying in the unstable manifolds in the time interval t ≤ 0.
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The above theorem can be generalized to more complicated hyperbolic sets [21,

26]. For instance, the following holds:

Theorem 2.5.13. Suppose f , f0 are C1-smooth and f0(y0) = 0 withℜσ(D f0(y0)) <
0. If x0 is in a domain of attraction of y0, then for any ε > 0 sufficiently small,
|xε(t)− y(t)| = o(1) for any t ≥ 0, where xε(t) and y(t) are solutions of (2.5.10)

and (2.5.11) with x(0) = y(0) = x0, respectively.

2.5.8 Carathéodory Type ODEs

In this section we recall some results on ODEs only measurable depending on t.

Definition 2.5.14. Let I be an interval in R. A mapping f : I ×R
n → R

n is said

to have the Carathéodory property if the following assumptions hold [27, 28]:

(i) For every t ∈ I the mapping f (t, ·) : R
n → R

n is continuous.

(ii) For every x ∈ R
n the mapping f (·,x) : I → R

n is measurable with respect to

the Borel σ -algebras on I and R
n.

We note that if f has a Carathéodory property and x : I →R
n is measurable then

f (t,x(t)) is measurable as well.

Definition 2.5.15. A function x : I → R
n is absolutely continuous [2] if for any

ε > 0 there is a δ > 0 so that for any α1 < β1 < α2 < β2 < · · ·< αk < βk, αi,βi ∈I
so that ∑k

i=1(βi −αi) < δ , it holds ∑k
i=1 |x(βi)− x(αi)| < ε .

It is well known that an absolutely continuous function on I has almost ev-

erywhere a derivative. By a solution of an ODE ẋ = f (t,x) with a Carathéodory

mapping f , we mean an absolutely continuous function x(t) satisfying this ODE

almost everywhere.

2.6 Singularities of Smooth Maps

Here we recall some results from the theory of smooth maps [14].

2.6.1 Jet Bundles

Definition 2.6.1. Let M,N be smooth manifolds with dimensions m and n, respec-

tively. Let f ,g ∈C∞(M,N) with f (p) = g(p) = q. f has kth order contact with g at

p if in local coordinates

∂ |α| fi

∂xα
(p) =

∂ |α|gi

∂xα
(p)
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for every multi-index α = (α1, . . . ,αm) with |α| = α1 + · · ·+αm ≤ k and 1 ≤ i ≤ n,

where fi, gi are the coordinate functions of f , g, respectively, and x = (x1, . . . ,xm).
This is written as f ∼k g at p.

Let Jk (M,N)p,q denote the set of equivalence classes under “∼k at p” in C∞(M,N).
Let Jk (M,N) :=

⋃
(p,q)∈M×N Jk (M,N)p,q - disjoint union. An element of Jk (M,N)

is called a k-jet and Jk (M,N) is the jet bundle. Note that given f ∈C∞(M,N) there is

a mapping jk f : M → Jk (M,N) called the k-jet of f defined by jk f (p) := the equiv-

alence class of f in Jk (M,N)p, f (p) for every p ∈ M. Note that J0(M,N) = M ×N.

For any k-jet ξ ∈ Jk (M,N), there is its source p ∈ M and the target q ∈ M.

Let f be the representative of ξ ∈ J1 (M,N). Then we define the rank of ξ as

rankξ := rankD f (p) and corank as corankξ := min{m,n}− rankξ .

Theorem 2.6.2. Let Lr(Rm,Rn) := {A ∈ L(Rm,Rn) | corankA = r}. Then Lr(Rm,Rn)
is a submanifold of L(Rm,Rn) with codimLr(Rm,Rn) = (m−min{n,m}+ r)(n−
min{n,m}+ r).

Theorem 2.6.3. Let Sr :=
{
ξ ∈ J1 (M,N) | corankξ = r

}
. Then Sr is a submanifold

of J1(M,N) with codimSr = (m−min{n,m}+ r)(n−min{n,m}+ r).

2.6.2 Whitney C∞ Topology

Let M,N be smooth manifolds. Let k ∈ Z0. Let U be an open subset of Jk(M,N).
Then the family of sets {

f ∈C∞(M,N) | jk f (M) ⊂U
}

forms a basis for a Whitney Ck topology on C∞(M,N). The union of all open subsets

of C∞(M,N) in some Whitney Ck topology forms a basis of a Whitney C∞ topology
on C∞(M,N). We note that a subset of topological space is residual if it is the count-

able intersection of open dense subsets. A topological space is a Baire space if its

every residual set is dense.

Theorem 2.6.4. C∞(M,N) is a Baire space in the Whitney C∞ topology.

2.6.3 Transversality

Definition 2.6.5. Let M,N be smooth manifolds and f : M → N be a smooth map.

Let S be a submanifold of N and x ∈ M. Then f transversally intersects S at x ∈ M
denoted by f �S at x, if either

(i) f (x) /∈ S, or
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(ii) f (x) ∈ S and Tf (x)N = Tf (x)S +D f (x)TxM.

If f �S for any x ∈ M, then f transversally intersects S denoted by f �S.

Theorem 2.6.6. If f �S then f−1(S) is a smooth submanifold with codimension
codimS.

Now we state the Thom transversality theorem.

Theorem 2.6.7. Let W be a submanifold of Jk(M,N). Then

TW :=
{

f ∈C∞(M,N) | jk f �W
}

is a residual subset of C∞(M,N) in the Whitney C∞ topology. If, in addition, W is
closed, then TW is open.

2.6.4 Malgrange Preparation Theorem

Theorem 2.6.8. Let F be a smooth real-valued function defined on a neighbourhood
of 0 in R×R

n so that F(t,0) = g(t)tk, where g(0) �= 0 and g is smooth on some
neighbourhood of 0 in R. Then there is a smooth G with G(0) �= 0 and smooth
λ0, . . . ,λk−1 so that

(GF)(t,x) = tk +
k−1

∑
i=0

λi(x)ti .

As a consequence of the generalized Malgrange theorem, we have the Whitney the-

orem [14, p. 108].

Theorem 2.6.9. Let f : R → R be a smooth even function, then there is a smooth
function g : R → R satisfying f (x) = g(x2).

2.6.5 Complex Analysis

Here we recall some basic results from the theory of complex functions [2]. Let

Ω ⊂ C be a region, i.e. Ω is open and connected. A complex function f :Ω → C is

holomorphic if for any z0 ∈Ω there is a derivative f ′(z0) ∈ C of f at z0 defined by

lim
z→z0

f (z− f (z0)
z− z0

= f ′(z0) .

The class of all holomorphic functions on Ω is denoted by H(Ω). Any f ∈ H(Ω)
is analytic, i.e. f (z) = ∑∞i=0 ci(z− z0)i for any z0 ∈ Ω and z near z0. Next, for any

nonzero f ∈ H(Ω) the set Z( f ) := {z ∈ Ω | f (z) = 0} consists at most of isolated
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points. Moreover, if z0 ∈ Z( f ) then f (z) = (z− z0)mg(z) for g ∈ H(Ω), g(z0) �= 0,

and m is the order of the zero which has f at z0.

A function f :Ω → C has a pole of order m in z0 ∈Ω if

f (z) =
∞

∑
i=−m

ci(z− z0)i

with c−m �= 0, for any z �= z0 near z0. We denote by Res( f ,z0) := c−1 the complex
residue of f (z) at the pole z0.

A function f :Ω → C is meromorphic if there is a subset A ⊂Ω so that:

1. A consists of isolated points;

2. f ∈ H(Ω \A),
3. f has poles in A.

Note that each rational function, i.e. a quotient of two polynomials, is meromorphic

on C.

Next z0 is an essential singularity of f if f (z) = ∑∞i=−∞ ci(z− z0)i for any z �= z0

near z0 and with infinitely many nonzero cm, m < 0.

A path γ is a piecewise continuously differentiable curve in the plane, i.e. γ ∈
C ([a,b],C) and there are finite a = s0 < s1 < · · ·< sn = b so that γ ∈C1([si,si+1],C)
for each i = 0, . . . ,n−1. A path is closed if γ(a) = γ(b). The integral of a holomor-

phic function f over the path γ is defined as

∫
γ

f (z)dz :=
n−1

∑
i=0

∫ si+1

si

f (γ(t))γ ′(t)dt .

If a path γ counterclockwise encloses all poles of a meromorphic function f (z), then

the Cauchy residue theorem states that∫
γ

f (z)dz = 2πı ∑
z0∈A

Res( f ,z0) .

Particularly, if a path γ counterclockwise encloses only a pole z0 of a meromorphic

function f (z), then

Res( f ,z0) =
1

2πı

∫
γ

f (z)dz . (2.6.1)

Finally we states the Schwarz reflection principle.

Theorem 2.6.10. Suppose L is a segment on the real axis, Ω+ is a region in Π+ :=
{z ∈ C | ℑz > 0}, and every z ∈ L is the center of an open disc Dz so that Π+ ∩Dz
lies in Ω+. Let Ω− := {z | z̄ ∈ Ω+}. Suppose f ∈ H (Ω+) and limn→∞ℑ f (zn) = 0

for every sequence {zn} in Ω+ which converges to a point in L. Then there is a
function F ∈ H (Ω+ ∪L∪Ω−), so that F(z) = f (z) in Ω+ and F(z̄) = F(z) for any
z ∈Ω+ ∪L∪Ω−.
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25. F. BATTELLI & M. FEČKAN: Global center manifolds in singular systems, NoDEA: Nonl.

Diff. Eq. Appl. 3 (1996), 19–34.
26. J.A. SANDERS, F. VERHULST & J. MURDOCK: Averaging Methods in Nonlinear

Dynamical Systems, 2nd ed., Springer, 2007.
27. B. AULBACH & T. WANNER: The Hartman-Grobman theorem for Carathéodory-type
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