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Preface

Over the past two decades, the Transaction Processing Performance Council
(TPC) has had a significant impact on the computing industry’s use of industry-
standard benchmarks. Vendors use TPC benchmarks to illustrate performance
competitiveness for their existing products, and to improve and monitor the per-
formance of their products under development. Many buyers use TPC bench-
mark results as points of comparison when purchasing new computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement and characterization of complex systems. The TPC remains com-
mitted to developing new benchmark standards to keep pace, and one vehicle
for achieving this objective is the sponsorship of the Technology Conference on
Performance Evaluation and Benchmarking (TPCTC). With this conference, the
TPC encourages researchers and industry experts to present and debate novel
ideas and methodologies in performance evaluation and benchmarking.

The first TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2009) was held in conjunction with the 35th International
Conference on Very Large Data Bases (VLDB 2009) in Lyon, France during
August 24–28, 2009.

This book contains the proceedings of the second TPC Technology Con-
ference on Performance Evaluation and Benchmarking (TPCTC 2010), held in
conjunction with the 36th International Conference on Very Large Data Bases
(VLDB 2010) in Singapore during September 13–17, 2010 including 14 selected
papers and two keynote papers.

The hard work and close cooperation of a number of people have contributed
to the success of this conference. We would like to thank the members of TPC and
the organizers of VLDB 2010 for their sponsorship; the members of the Program
Committee and Publicity Committee for their support; and the authors and the
participants who are the primary reason for the success of this conference.

November 2010 Raghunath Nambiar
Meikel Poess
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About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a non-profit orga-
nization that defines transaction processing and database benchmarks and dis-
tributes vendor-neutral performance data to the industry. Additional informa-
tion is available at http://www.tpc.org/.

TPC Memberships

Full Members

Full members of the TPC participate in all aspects of the TPC’s work, including
development of benchmark standards and setting strategic direction. The full
member application can be found at
http://www.tpc.org/information/about/app-member.asp.

Associate Members

Certain organizations may join the TPC as associate members. Associate mem-
bers may attend TPC meetings, but are not eligible to vote or hold office. As-
sociate membership is available to non-profit organizations, educational institu-
tions, market researchers, publishers, consultants, governments and businesses
that do not create, market or sell computer products or services. The associate
member application can be found at
http://www.tpc.org/information/about/app-assoc.asp.

Academic and Government Institutions

Academic and government institutions are invited join the TPC and a special
invitation can be found at
http://www.tpc.org/information/specialinvitation.asp.
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TPC
Presidio of San Francisco
Building 572B (surface)
P.O. Box 29920 (mail)
San Francisco, CA 94129-0920
Voice: 415-561-6272
Fax: 415-561-6120
Email: info@tpc.org

How to Order TPC Materials

All of our materials are now posted free of charge on our website. If you have
any questions, please feel free to contact our office directly or by email at
info@tpc.org.

Benchmark Status Report

The TPC Benchmark Status Report is a digest of the activities of the TPC and
its technical subcommittees. Sign-up information can be found at the following
URL: http://www.tpc.org/information/about/email.asp.
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Abstract. The Transaction Processing Performance Council (TPC) is a non-
profit corporation founded to define transaction processing and database 
benchmarks and to disseminate objective, verifiable performance data to the in-
dustry. Established in August 1988, the TPC has been integral in shaping the 
landscape of modern transaction processing and database benchmarks over the 
past twenty-two years. This paper provides an overview of the TPC’s existing 
benchmark standards and specifications, introduces two new TPC benchmarks 
under development, and examines the TPC’s active involvement in the early 
creation of additional future benchmarks.  

Keywords: Transaction Processing Performance Council, Industry Standard 
Benchmarks, Transaction Performance, Decision Support System Performance, 
Pricing Specification, Energy Specification. 

1   Introduction 

Originally formed in 1988, the Transaction Processing Performance Council (TPC) 
[1] is a non-profit corporation tasked with defining transaction processing and data-
base benchmarks, and disseminating objective, verifiable performance data to the 
computing industry. The TPC was originally founded in response to a growing trend 
in “benchmarketing,” or an attempt by vendors to publish questionable benchmark 
results in order to increase hardware sales. Without independent and objective over-
sight, a number of vendors created highly tailored workload environments, while 
deleting crucial benchmark requirements in order to improve specific performance 
results. This, in turn, enabled these vendors to exaggerate performance marketing 
claims in order to boost hardware sales. The need for a vendor-neutral organization 
tasked with disseminating objective, verifiable performance data quickly became 
apparent, ultimately culminating in the formation of the TPC. Both vendors and end-
users have come to rely on TPC benchmarks to provide real-world data that is backed 
by a stringent and independent review process. Vendors use TPC benchmarks to  
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illustrate performance competitiveness for their existing products, and to improve and 
monitor the performance of their products under development [2]. End-users often-
times use TPC benchmark results as points-of-comparison when purchasing new 
computing systems. Further end-user and vendor benefits are outlined below: 

 

1) Objective price, price/performance and energy/performance comparisons.  
TPC testing requires vendors to specify their hardware and software compo-
nents, and to disclose associated costs and maintenance fees for three years. 
Additionally, the new TPC-Energy specification will encourage the compari-
son of watts/performance between disparate hardware architectures. 

2) Direct comparison of different vendor architectures on an apples-to-apples 
basis. In the past, purchasers spent substantial time and resources defining  
customized benchmarks. This was the only means of directly comparing per-
formance between different products. The fairness and objectivity of such 
benchmarks were, however, frequently questioned by the vendor community. 
Today, end-users and vendors have accepted standardized TPC benchmarks, 
allowing a streamlined, objective means of comparing disparate computing  
architectures. 

3) An independent auditing process. TPC-certified auditors verify all results be-
fore vendors can publish benchmark results. The TPC also encourages a peer 
review process after each result is published, during which any TPC member 
can challenge results for up to sixty days. 

4) TPC benchmarks encourage both hardware and software improvements.  TPC 
benchmarks are well-understood, and enable engineers to eliminate hardware 
and software bottlenecks. This results in real-world performance improve-
ments for end-users. 

5) A credible means of evaluating complete systems, subsystems and/or proces-
sors. TPC benchmarks model realistic workloads across the end-to-end busi-
ness computing spectrum. Many non-TPC benchmarks only measure the 
hardware performance of a given processor and memory subsystem.  

 

TPC benchmarks have raised the bar for what the computing industry has come to 
expect in terms of benchmarks themselves. They enable the direct comparison of 
performance, price, price/performance, and energy/performance between servers 
manufactured by different vendors.  

 

Fig. 1. TPC Benchmark Life spans 
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To date, the TPC has approved a total of nine independent benchmarks [2] [3], as 
shown in Figure 1. Of these benchmarks, TPC-E, TPC-C and TPC-H are the current 
active ones and are widely being used by the industry.  

Benchmark specifications currently under development are TPC-Virtualization and 
TPC-ETL (extract/transform/load). TPC also developed a benchmark specification 
TPC-DS [4], the next generation Decision Support benchmark, but is unable to reach 
consensus. Additionally, the TPC has introduced two specifications, including a 
common pricing specification (TPC-Pricing) across all its benchmarks in 2006, and a 
common energy specification (TPC-Energy), across all its benchmarks in 2009. Each 
of these specifications is outlined below: 

The following section provides an overview of the TPC’s current industry standard 
benchmarks. Section 3 examines the TPC-Pricing specification and TPC-Energy 
specification in detail. Section 4 provides insight into benchmark standards under 
developments. Finally, Section 5 reviews the TPC’s Technology conference initiative 
and examines the future of TPC benchmarks. 

2   Current Industry Standards 

Current industry standard benchmarks are TPC-E, TPC-C and TPC-H each addressing 
distinct industry requirements. TPC-E is the new transaction processing benchmark 
gaining momentum, while TPC and TPC-H benchmarks continue to be a popular 
yardstick for comparing transaction processing performance and decision support 
performance respectively. The longevity of these benchmarks means that hundreds of 
results are publicly available over a wide variety of hardware and software platforms.  

2.1   TPC-E Benchmark 

First released in March 2007, the TPC-E benchmark [5] simulates the OLTP work-
load of a brokerage firm with customers who generate transactions related to trades, 
account inquiries and market research. The brokerage firm, in turn, interacts with 
financial markets to execute orders on behalf of the customers and updates relevant 
account information. TPC-E is scalable, meaning that the number of customers de-
fined for the brokerage firm can be varied to represent the workloads of different-size 
businesses. The benchmark also defines the required mix of transactions the bench-
mark must maintain, and is given in transactions per second (tpsE). It specifically 
refers to the number of Trade-Result transactions the server can sustain over a period 
of time. Although the underlying business model of TPC-E is a brokerage firm, the 
database schema, data population, transactions, and implementation rules have been 
designed to be broadly representative of modern OLTP systems. One of the primary 
goals of the TPC-E benchmark is to enhance the complexity of a schema in a way that 
captures the best practices of a modern day OLTP system. The mixture and variety of 
transactions being executed on the benchmark system are designed to capture the 
characteristic components of a complex system.  Different transaction types are de-
fined to simulate the interactions of a brokerage firm, with its customers as well as its 
business partners. 



4 R. Nambiar et al. 

 

The adoption rates of TPC-E are beginning to increase, since the benchmark suc-
cessfully models a given workload , and its features are easy to use. One of the main 
concerns about TPC-E has been the CPU/IO balance. It was expected that the TPC-E 
workload would use significantly fewer disks than the widely used TPC-C bench-
mark, thereby cutting down benchmarking costs. A look at the most recent results, 
however, shows that sponsors are configuring more storage than is required to run the 
benchmark. This is an indication that the system has to generate a lot more IO, at 
increasing speeds, in order to saturate the CPUs. Since CPU processing power follows 
Moore’s law, the number of disks required is likely to get even higher unless sponsors 
consider using emerging but costly technologies like Solid State Disks (SSD). 

2.2   TPC-C Benchmark 

Like TPC-E, the TPC-C benchmark [6] is an on-line transaction processing (OLTP) 
benchmark, although these two benchmarks have very different workloads. When it 
was introduced, TPC-C was more complex than previous OLTP benchmarks because 
of its multiple transaction types, more complex database and overall execution struc-
ture. TPC-C involves a mix of five concurrent transactions of different types and 
complexity either executed on-line or queued for deferred execution. The database is 
comprised of nine types of tables with a wide range of record and population sizes. 
TPC-C is measured in transactions per minute (tpmC). TPC-C simulates a complete 
computing environment where a population of users executes transactions against a 
database. The benchmark is centered around the principal activities (transactions) of 
an order-entry environment such as a warehouse. These transactions include entering 
and delivering orders, recording payments, checking the status of orders, and monitor-
ing the level of stock at the warehouses. While the benchmark portrays the activity of 
a wholesale supplier, TPC-C is not limited to the activity of any particular business 
segment, but rather represents any industry that must manage, sell, or distribute a 
product or service. 

TPC-C is arguably the most popular TPC benchmark and is considered as the yard-
stick for OLTP performance. There have been approximately 750 results submitted 
since the first one in 1994. A look at the first result, and the current top performance 
and price/performance results, shows a drop in price/performance by a factor of 1300 
and an improvement in performance by a factor of 15,900. Based on the trends in the 
computer industry with server systems becoming more powerful and less costly, these 
figures show that TPC-C has managed to successfully capture these trends within the 
industry. In order to maintain TPC-C’s applicability to systems of different capacity, 
TPC-C implementations must scale both the number of users and the size of the data-
base proportionally to the computing power of the system to be measured.  The scal-
ability of its workload and the simplicity of its performance metric (transactions per 
minute) have lead to more TPC-C published results than any other TPC benchmark. 
The cost of TPC-C benchmark configurations have grown alarmingly high, mainly as 
a result of the large disk farms that have to be deployed to saturate a modern day 
server systems. With hard disk drive performance lagging behind that of CPUs 
(whose processing power follows Moore’s Law), the cost and complexity of TPC-C 
configurations is likely to grow even more. The use of SSDs in data centers and 
benchmarking efforts is likely to benefit TPC-C, as it will cut down on the size and 
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complexity of storage systems. However, it will be some time before SSDs are eco-
nomical enough to be commoditized.  

2.3   TPC-H Benchmark 

Originally released in May 1999, the TPC-H benchmark [7]  is a decision support 
benchmark. It consists of a suite of business oriented ad-hoc queries and concurrent 
data modifications. The queries and the data populating the database have been cho-
sen to have broad industry-wide relevance. This benchmark illustrates decision sup-
port systems that examine large volumes of data, execute queries with a high degree 
of complexity, and give answers to critical business questions. 

The TPC-H benchmark represents decision support environments where users don't 
know which queries will be executed against a database system; hence, the "ad-hoc" 
label. Pre-knowledge of the queries may not be used to optimize the DBMS system. 
Consequently, query execution times can be very long.  

The performance metric reported by TPC-H is called the TPC-H Composite 
Query-per-Hour performance metric (QphH@Size), and reflects multiple aspects of 
the capability of the system to process queries. These aspects include the selected 
database size against which the queries are executed, the query processing power 
when queries are submitted by a single stream, and the query throughput when que-
ries are submitted by multiple concurrent users. The TPC-H Price/Performance metric 
is expressed as $/QphH@Size. 

TPC-H uses scale factors to distinguish the workload that best captures the capa-
bilities of the benchmark System Under Test (SUT). This is a realization that larger 
systems run a more demanding workload than smaller systems. Scale Factors indicate 
the raw data size to be loaded in Gigabytes. They are chosen from the following set of 
10 fixed scale factors { 1, 10, 30, 100, 300, 1,000, 3,000, 10,000, 30,000, 100,000 }. 
For instance, a scale factor of 300 means that the raw data size of the database to be 
loaded is 300GB. 

TPC-H has been widely accepted in the industry as the benchmark-of-choice for 
decision support systems. Its use grew steadily from 1999, when the first result was 
published, to 2005 when the most number of results were published.  In recent years, 
TPC-H has attracted many new members to the TPC, and vendors have published 
TPC-H results across a variety of platforms.  

3   Specifications Consistent across All Standards 

TPC benchmarks are intended to provide a fair comparison of performance, price-
performance and energy efficiency of various vendor implementations. The TPC-
Pricing specification and TPC-Energy specifications are consistent across all current 
standards and are expected to be consistent across future specifications as well. The 
TPC-Pricing specification is intended to provide consistent methodologies for report-
ing the purchase price of the benchmarked system, the licensing of software used in 
the benchmark, contracts for maintenance and general availability. The TPC-Energy 
specification augments the existing TPC benchmarks by adding the methodology and 
requirements for including and reporting energy consumption.  
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The primary metrics defined by these standards are three year cost of ownership, 
price/performance, availability date and Watts/performance.  

3.1   TPC-Pricing Specification 

With the establishment of the TPC’s first benchmark, TPC-A, in 1989, the TPC set 
the standard for the inclusion of price and price/performance in benchmarks. Each 
benchmark had its own pricing requirements. In 2004, the TPC-Pricing subcommittee 
was formed to recommend revisions to the existing pricing methodology. The TPC-
Pricing subcommittee elected to develop a single pricing specification, consistent 
across all TPC benchmarks, which was approved in 2008. 

The TPC-Pricing specification [8] is designed to guide customers, vendors imple-
menting TPC benchmarks, and TPC auditors on what is acceptable pricing for the 
purposes of publication. The pricing methodology reflects the price for the purchase 
of the benchmark SUT, the licensing of software used in the benchmark and the con-
tracts for maintenance. The TPC-Pricing specification also establishes an availability 
metric, which provides information on whether a specific benchmark configuration 
can be purchased immediately, or whether some of the components of the configura-
tion might not be available for some time. The availability requirements also limit the 
length of time before a promised result must be fully available. There may be some 
restrictions on pricing for publication (such as excluding sales and closeouts) that are 
different from some business transactions that actually take place in the marketplace, 
but these restrictions are intended to make publication both tractable and comparable 
during the lifetime of the publication for the majority of customers and vendors. 

The TPC-Pricing Subcommittee continues to review and to recommend future re-
visions to the existing pricing methodology, so that prices used in published TPC 
results remain relevant and consistent for all current and future TPC benchmarks.  

3.2   TPC-Energy Specification 

In the past, performance and price/performance were the key criteria in data center 
purchasing decisions. In recent years, energy efficiency has become another important 
factor in evaluating systems and, as a result, the TPC-Energy committee was formed 
in 2007. The TPC-Energy specification [9], which was approved in 2009, augments 
the existing TPC benchmarks with energy metrics and methodology, and require-
ments for including and reporting them.  

The primary metric as defined by TPC-Energy is in the form of "Watts per per-
formance” where the performance units are particular to each TPC benchmark (for 
example, Watts per ktpmC for a TPC-C result). The measuring and publication of 
TPC-Energy metrics are optional and are not required to publish a TPC benchmark 
result. With the TPC-Energy metric, customers can identify systems that meet their 
price, performance and energy requirements via the TPC Web site.  

To facilitate the implementation of the TPC-Energy specification, and to help TPC 
benchmark sponsors reduce costs, the TPC provides a software suite, the Energy 
Measurement System (EMS). The EMS provides services such as power instrumenta-
tion interfacing, power and temperature logging and report generation. Even though 
reporting energy metrics is optional, competitive demands are expected to encourage 
vendors to include them. 
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4   Industry Standards under Development  

The TPC has two new benchmark development committees chartered to develop new 
benchmark standards: TPC-ETL and TPC-Virtualization. 

4.1   TPC-ETL Committee 

The TPC-ETL benchmark committee was formed in 2008 to develop a standard [10] 
[11] for comparing the performance of ETL systems. The objectives of this bench-
mark are to provide a workload that is scalable over a wide range of dataset sizes, 
methodologies and metrics, and to compare the performance, price/performance and 
energy efficiency of ETL systems  based on industry-relevant scenarios. The TPC-
ETL benchmark is expected to address the strong industry demand for a well designed 
ETL benchmark, and to benefit customers evaluating ETL systems, ETL tools, ven-
dors and system vendors.  Once there is a common basis for comparing ETL systems 
and ETL tools, vendors will improve their products to compete on the basis of the 
benchmark.   

The ETL benchmark committee completed draft transformation specifications, and 
has started work on data generation. Additionally, some member companies are now 
working on benchmark transformation test implementations. 

4.2   TPC-Virtualization Committee 

Virtualization was identified as a pressing area for benchmark development during the 
TPC's first Technology Conference on Performance Evaluation and Benchmarking in 
2009. As a result, the TPC-Virtualization Work Group [12] [13] was formed to re-
spond to the growth in virtualization technology and capture some of the common-
case usage of virtualization with database workloads, in a well-designed benchmark 
for virtual environments.     

The TPC-Virtualization Work Group is currently defining a benchmark with the 
following design goals in mind: 

 

• Incorporates a database-centric workload 
• Features a resource-intensive workload that stresses the virtualization layer 
• Emphasizes storage and networking I/O in a virtualized environment 
• Has a timely development cycle 

 

The TPC-Virtualization Work Group has made substantial progress in defining the 
framework of a new benchmark, and both major systems and software vendors are 
represented in this group. 

5   TPC Technology Conference and the Future of Benchmark 
Development 

The technology landscape is continually evolving and challenging industry experts 
and researchers to develop innovative techniques to evaluate and benchmark comput-
ing systems. The TPC remains committed to developing highly relevant benchmark 
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standards and will continue to develop new benchmarks to keep pace. One vehicle for 
achieving these objectives is the sponsorship and ongoing commitment towards host-
ing the Technology Conference on Performance Evaluation and Benchmarking 
(TPCTC) [14].  The TPCTC provides industry experts and researchers with a forum 
to present and debate novel ideas and methodologies in performance evaluation, 
measurement and characterization. 

The first conference in this series [14] was conducted in conjunction with the 35th 
International Conference on Very Large Databases (VLDB) on August 24-28, 2009 in 
Lyon, France. The proceedings of this conference are available from Springer-Verlag 
at http://www.springer.com/computer/hardware/book/978-3-642-10423-7 [14]. 

Topics of future interest include, but are not limited to: appliance, business intelli-
gence, cloud computing, complex event processing, data compression, database  
optimizations, disaster tolerance and recovery, energy and space efficiency, green 
computing, hardware innovations, high speed data generation, hybrid workloads, 
software management and maintenance, unstructured data management, virtualization 
and very large memory systems. Topics also include enhancements to existing TPC 
benchmark standards. 

Identifying, defining and ultimately publishing new benchmark standards, demon-
strates the TPC’s commitment towards meeting the needs of an ever-changing indus-
try. To this end, the TPC’s Technology Conference on Performance Evaluation and 
Benchmarking is a concrete step towards identifying and defining the benchmarks of 
the future. The TPC actively encourages the submission of benchmark ideas, and 
wider participation from companies, government organizations and the research 
community. Institutions interested in developing new benchmark standards and en-
hancing existing benchmark standards are invited to join the TPC [15].  
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Abstract. Experimental evaluation and comparison of techniques, algo-
rithms, approaches or complete systems is a crucial requirement to assess
the practical impact of research results. The quality of published exper-
imental results is usually limited due to several reasons such as: limited
time, unavailability of standard benchmarks or shortage of computing
resources. Moreover, achieving an independent, consistent, complete and
insightful assessment for different alternatives in the same domain is a
time and resource consuming task in addition to its requirement to be
periodically repeated to maintain its freshness and being up-to-date. In
this paper, we coin the notion of Liquid Benchmarks as online and public
services that provide collaborative platforms to unify efforts of peer re-
searchers from all over the world to simplify their task in performing high
quality experimental evaluations and guarantee a transparent scientific
crediting process.

1 Introduction

The last two decades have seen significant growth in the number of scientific re-
search publications. An important characteristic of Computer Science research is
that it produces artifacts other than publications, in particular software imple-
mentations. The continuous existence of performance improvement claims from
researchers have called for the necessity of applying experimental evaluation and
comparison techniques between competing alternative implementations of algo-
rithms, approaches or complete systems in order to assess the practical impact
and benefit of the research results. While most research publications present ex-
perimental results to evaluate/compare their proposed scientific contributions,
the quality of such experimental results are usually limited. That can happen due
to several reasons such as: insufficient effort or time, unavailability of suitable
test cases or any other resource constraints. Moreover, researchers are usually
focusing on reporting the experimental results of the good sides of their work
which may not reflect the whole picture of the real-world scenarios. Moreover, it
becomes quite difficult to understand and assess the performance implications
of the design decisions for a given approach.

R. Nambiar and M. Poess (Eds.): TPCTC 2010, LNCS 6417, pp. 10–24, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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In practice, performing an independent and large scale benchmarking study
in a certain domain is usually not an easy task as it requires a lot of effort and
time due to several reasons such as: unavailability of standard benchmarks, un-
availability of public access to the implementations for some techniques which
are described in the research literature in addition to the constraints of hav-
ing the different configuration of computing resources/environments that reflect
the wide spectrum of different real-world scenarios. The recent advances in Web
technologies have created new work environments that provide great opportu-
nities to tackle the above mentioned problems. In particular, we envision our
solution by combining the facilities provided by three main technologies:

1. Cloud Computing [7] as an efficient way for broad sharing of computer soft-
ware and hardware resources via the Internet in an elastic way. Therefore,
we can virtually have unbounded storage space and computing power.

2. Software As A Service (SAAS) [14] as an effective software distribution
model in which applications are hosted by a service provider and made
available to end-users over the Internet. Therefore, it does not require each
end-user to manually download, install, configure, run or use the software
applications on their own computing environments.

3. Collaborative and Social Web Applications [11] as a new generation of ap-
plications that support human interaction and enabled with Web 2.0 capa-
bilities (e.g. tagging, wikis, blogs, forums) that offer a great flexibility in the
ability of building online communities between groups of people who share
the same interests (peers) where they can interact and work together in an
effective and productive way.

Surprisingly, the world of Computer Science research has not been able so far to
exploit these available opportunities to form and organize driving forces to tackle
the above mentioned problems and produce functional and widely-accepted col-
laborative experimental evaluation and assessment environments. Although the
scientific community has become increasingly using wikis and personal/shared
blogs (e.g. Database Column1, DBMS22, SemWebTec3) to share and discuss
their findings, there is a still long way to go for achieving effective and collabo-
rative innovation processes.

The LiquidPub project4 proposes a paradigm shift in the way scientific knowl-
edge is created, disseminated, evaluated and maintained. This shift is enabled
by the notion of Liquid Publications, which are evolutionary, collaborative, and
composable scientific contributions. Many Liquid Publication concepts are based
on a parallel between scientific knowledge artifacts and software artifacts. In this
position paper, we coin one of the main notions of this project, Liquid Bench-
marks, which represents a first step towards building online and public services

1 http://databasecolumn.vertica.com/
2 http://www.dbms2.com/
3 http://semwebtec.wordpress.com/
4 http://project.liquidpub.org/

http://databasecolumn.vertica.com/
http://www.dbms2.com/
http://semwebtec.wordpress.com/
http://project.liquidpub.org/
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that provide robust platforms for collaborative construction of independent, com-
prehensive, large scale and continuously evolving benchmarks for any research
aspect in the Computer Science field. The main principles of our solution are:

1. Leveraging the recent advances of the Web technologies and the Social Web
aspects in facilitating the process of building focused communities of scien-
tists that are able to collaboratively develop effective benchmarks in an easy
way.

2. Providing the infrastructure for scientific researchers to evaluate the impact
of their new contributions - in addition to the contributions of others - and
draw their conclusions in an effective way with minimum effort (no installa-
tion or configuration work for software solutions).

3. Establishing an open and transparent platform for scientific crediting process
that is based on collaborative community work in various forms such as:
comments, feedbacks, scientific analysis,..., etc.

The remainder of this paper is organized in the following manner. In Section 2,
we motivate the importance of our proposal by sample scenarios. Section 3 gives
an overview of some of the main challenges for building conclusive and trustable
experimental evaluations in the Computer Science filed. Section 4 describes the
conceptual model and the main entities of the Liquid Benchmarks. The archi-
tecture for implementing the Liquid Benchmarks is presented in Section 5 before
we conclude the paper with a prospect on future work in Section 6.

2 Motivating Scenarios

To motivate the importance of our proposed Liquid Benchmark platform, we
present the following two sample scenarios.

Scenario 1. John is a bioinformatics doctoral student. He and his supervisor
are planning to develop new efficient mechanisms for querying biological graph
databases. John has been advised by his supervisor to start his work by surveying
the literature and performing an experimental assessment to compare the perfor-
mance of the state-of-the-art approaches. In his way to achieve this task, John
has been overwhelmed with a large number of scientific proposals in the litera-
ture to solve the problem. After an extensive search process, John was able to
have access to the implementation of some proposals while he used his skills to
re-implement some of the unavailable but interesting proposals in the literature.
After one year of work, John was able to perform a study that compares between
some approaches which helped him to get some insights for achieving his primary
goal. It is apparent that this task is quite time and effort consuming (in addition
to other general challenges that will be discussed in Section 3). The quality of the
results of this task is subject to (and limited by) the amount of time, effort and
attention given by John (and his supervisor) during the investigation process. In
practice, most of Computer Science doctoral students (in different domains) go
through a similar process at the initial stages of their doctoral program. Future
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doctoral students (all over the world) will not be able to make use of, build on or
improve John’s work unless there is an effective way to share/collaborate on such
type of experimental assessment tasks.

Scenario 2. Alice is an active researcher in the Web data management area. At
some stage, he was interested in comparing the state-of-the-art of the compres-
sion techniques for XML datasets. He spent 5 months in 1) building a large corpus
of XML datasets with different characteristics. 2) getting access to some of the
implemented XML compressor in addition to implement some of the techniques
which we described in the literature 3) performing an extensive experiment to
compare the performance of the different proposed solution over the XML corpus
and analyze the results 4) publishing the whole material of his experiments in
addition to the results into a public web in addition to writing a journal paper
to disseminate the experiences of his study.

After its release, Alice’s study has attracted a lot of interest from researchers
in the same domain where some of them has exchanged some message with Alice
to discuss some items in the experimental results or to get some help in repeat-
ing some parts of the experiment. However, these exchanged messages remained
offline in Alice’s inbox. After sometime, Alice has changed his affiliation and
his research interest moved to some domain. Thus, he become less responsive
to messages from researchers in the XML compression domain about his bench-
mark. Moreover, the outcome of his experimental study has become out-of-date
after the appearance of new research contributions and the improvement of pre-
viously investigated approach. Utilizing Alice’s effort in a cumulative fashion
call for collaborative efforts from different researchers in the XML compression
domain in addition to a suitable platform to support their activities.

3 Benchmarking Challenges in Computer Science

In this section, we give an overview of some of the main challenges for building
conclusive and trustable experimental evaluation studies in the field of Computer
Science as follows.

– Not enough standard benchmarks are available or widely-used: A benchmark
is a standard test or set of tests that is used to evaluate/compare alter-
native approaches that have a common aim to solve a specific problem.
Unavailability of a standard benchmark in a certain domain makes the job
of researchers hard to evaluate/comprare their work and leads to having
several adhoc experimental results in the literature. A benchmark usually
consists of a motivating scenario, task samples and a set of performance
measures. In practice, very few benchmarks were able to achieve big suc-
cess in their communities. For example, in the database domain the fol-
lowing benchmarks have attracted a lot of interest: 1) The TPC group of
benchmarks for database performance for transaction processing [3]. 2) The
oo7 benchmark [9] as a standard benchmark for object-oriented databases.
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3) The XML Benchmark Project (XMark) [4] as a mean to assess the perfor-
mance characteristics of XML Data Management Systems. On the other side,
there are still many other areas which have a crucial need for constructing
benchmarks that address the needs of researchers in evaluating their contri-
butions (e.g. RDF databases, graph databases, scientific databases, NOSQL
databases) [23]. In principle, for any benchmark to be successful, it must gain
wide acceptance by its target community. Therefore, the motivating scenario
should be simple, the set of testing tasks and performance metrics should
be generic and complete [10]. Moreover, these standard benchmarks need
to satisfy other general and important qualities such as relevance, portabil-
ity, extensibility and scalability [13]. In practice, it is difficult that a single
benchmark can represent all usage models and achieve all these quality goals.
Therefore, some domains require designing microbenchmakrs [8] that have
deep focus in a certain direction. In general, a well designed benchmark in
a certain domain is very beneficial to the active researchers in that domain
as it forms the common basis for evaluation and comparing their research
contributions. Hence, they become able to identify the pros and cons of their
approach which help in guiding their improvement plans. However, designing
a successful benchmark is a quite challenging task which is usually not easily
achievable by a single author or research group. In an ideal world, simplify-
ing and improving the task of building standard successful benchmarks can
be achieved through collaborative efforts between peer researchers with the
same fields.

– Limited repeatability of published results: In an ideal world of Computer Sci-
ence research, researchers describe the core of their contributions in the paper
and then make the source codes/binaries of their implementation in addition
to the experimental datasets available for other researchers to be reused for
repeating the published results in their paper. Such ideal process can provide
many benefits. For instance, other researchers can independently evaluate the
performance of provided implementation with other data sets, validate the
paper claims and ensure that there is no hidden conditions that may affect
the performance. Moreover, they can use these available implementations as
a great starting point to compare with and evaluate their own developed so-
lutions. An interesting example for such independent evaluation studies is the
work of Sidirourgos et al. [22] where they have reported about an indepen-
dent assessment of the published result by Abadi et al. in [5] which described
an approach for implementing a vertically partitioned DBMS for Semantic
Web data management. The results of this independent assessment revealed
many interesting issues. For example, in [5] Abadi et al. reported that the per-
formance of binary tables is superior to that of the clustered property table
for processing RDF queries while Sidirourgos et al. [22] reported that even in
column-store database, the performance of binary tables is not always bet-
ter than clustered property table and depends on the characteristics of the
data set. Moreover, the experiments of [5] reported that storing RDF data
in column-store database is better than that of row-store database while [22]
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experiments have shown that the gain of performance in column-store database
depends on the number of predicates in a data set.

Unfortunately, the research world does not always follow the ideal view.
For example, in [19] we conducted an experimental evaluation study for the
state-of-the-art of XML compression tools [1]. The results of our study have
shown that many tools presented in the literature have no available imple-
mentations. Clearly, that prevented us from ensuring the repeatability of the
reported numbers in the literature and hindered the possibility of perform-
ing complete comparison between all of the proposed approaches. Recently,
some groups started to organize open challenges in different domains (e.g.
Semantic Web Challenge5, Semantic Web Service Challenge6). Moreover, re-
cent editions of SIGMOD conference have offered the possibility for authors
of published papers to test their programs against the experimental data to
verify the published experimental results. However, the repeatability report
of SIGMOD 2008 has shown limited success to achieve the goal due to several
reasons [16].

– Constraints of computing resources: In some domains, conducting experi-
mental evaluations may require huge computing resources. Moreover, con-
ducting experimental evaluations may require using different settings for
the computing environments in a manner that is similar to different types
of real-world environments. Such computing resources requirements may be
not available for researchers in their home environments/labs which can pre-
vent or limit their ability to do insightful experimental studies. For exam-
ple, Pavlo et al. [18] have presented an experimental comparison between
MapReduce and parallel databases in terms of their performance on ex-
ecuting large-scale data analysis tasks and their development complexity.
Repeating the experiments of this paper by other researchers is not an easy
task (due to the configuration of the testing environment) as the original ex-
periments have been run over a cluster of 100 nodes. In principle, achieving
a fair and apples-to-apples comparison between any two alternative scien-
tific contributions requires performing their experiments using exactly the
same computing environments. Moreover, it is important that a benchmark
exercise hardware components and subsystems in a meaningful and realistic
way. In an ideal word, researchers should have access to shared computing
environments where they can evaluate/compare their contributions consis-
tently. The suitable configuration of these testing computing environments
can be also decided collaboratively.

– Continuous evolution of the state-of-the-art: Conducting an independent ex-
perimental evaluation study for the-state-of-the-art in any domain is a very
useful but usually not an easy task that requires considerable work, time,
and resources. It can require designing different scenarios, selecting different
datasets and evaluating different performance metrics. Some journals such

5 http://challenge.semanticweb.org/
6 http://sws-challenge.org/wiki/index.php/Main_Page

http://challenge.semanticweb.org/
http://sws-challenge.org/wiki/index.php/Main_Page
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as the Elsevier Performance Evaluation Journal7 focus their article around
such type of experimental evaluation work. Recently, VLDB conference has
introduced a new track for experimental analysis papers that focus on under-
standing the drawbacks and advantages of different alternative approaches
in the same domain. Although such types of publications are important, they
suffer from a main problem in that they represent snapshots for the state-
of-the-art at the time of their preparation. However, by default the research
contributions in any field are always dynamic and evolving. For example, new
approaches that tackle the same research problem of a previously published
snapshot paper can be introduced or the performance of previously assessed
approaches can improve. Therefore, such papers can go out-of-date after a
relatively short time of their publication. Assuming that the results of such
experimental studies can be maintained on web pages, continuous mainte-
nance of the published results may require too much effort from their authors
who may loose interest in redoing the same job after sometime. Finally, it is
not preferable in such very dynamic environment to spend several years in
producing a set of benchmarking results for a certain research domain.

4 Conceptual Model

The main goal of our liquid benchmark proposal is to tackle the above mentioned
challenges by building an online collaborative platform that can simplify the
task of peer researchers in performing high quality experimental evaluations.
The services of this platform will provide peer researchers with many mutual
facilities such as:

– Building repositories of competing implementations where these implemen-
tations are running as software services with no installation or configuration
requirements at the users side.

– Sharing testing computing environments.
– Collaboratively discussing, defining and evolving the specifications of stan-

dard benchmarks to evaluate the competing implementations.
– Allowing end-users to easily create and run testing experiments and share

their results.

Figure 1 gives an overview of the conceptual model for the main entities of the
Liquid Benchmarks. In this model, we differentiate between two types of users:
developer user (benchmark developing committee) and normal user. Developer
users represent the set of researchers who have the privilege to participate in the
collaborative environment for defining the configurations of the different com-
ponents of the benchmark (e.g. tasks, datasets, testing environments, evaluated
implementation) while normal users are only allowed to use the defined config-
uration of the benchmark to run their test experiments. However, normal users
can be optionally allowed to do some configuration tasks such as: uploading their

7 http://www.elsevier.com/locate/peva

http://www.elsevier.com/locate/peva
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Fig. 1. Conceptual Model of Liquid Benchmarks

own datasets or defining their own tasks for running specially defined experiment
in a private area which is separated from the public setup of the benchmarks.

Each liquid benchmark is configuredbydefining the followingmain components:

– Scenarios: In principle, each liquid benchmark consists of at least one sce-
nario which describes a use case that focus on evaluating some aspects of the
competing implementations in the target domain (e.g. MacroBenchmark or
MicroBenchmark). Each scenario is described by the following main items:

• Datasets: Each scenario should contain at least one dataset. These datasets
can be of different types and different formats (e.g. image files, database
records, XML files) depending on the context of the benchmark.
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• Tasks: Describes a set of operations that need to be executed by the
competing implementations over the defined datasets (e.g. queries, up-
date operations, compressing operations). Each operation represents one
or more target evaluation aspect which is in the scope of the benchmark.

• Metrics: Represents the measures of evaluating the performance of the
competing implementation in executing the different tasks (e.g. execu-
tion time, response time, throughput, precision, recall). It provides the
basis of comparing the competing implementations.

– Evaluated Solutions: The set of competing implementations (e.g. algorithms,
techniques, systems) that solve the domain specific problem of the liquid
benchmarks. It should be noted that each solution can have different ver-
sions. Each of these versions will be treated as a separate (but linked) com-
peting solution. Each solution need to register the set of its supported tasks
in order to avoid the running of many failing tasks.

– Testing Environments: Represents a set of different configuration of comput-
ing resources (e.g. operating system, main memory, processor, disk space)
that reflect different real-world scenarios.

Based on the configuration of the components of the liquid benchmarks, users
can run their experiments where each experiment is specified by: 1) The task to
be executed with the selected metrics for evaluation. 2) The solution(s) (imple-
mentation(s)) to be evaluated. 3) The testing environment which will be used
for running the experiment. Executing each experiment produces a set of exper-
imental results which usually can be rendered by different rendering styles (e.g.
csv, XML, HTML, Plot). The experimental results will also be subject to social
contributions from the end-users in the form of social text (e.g. tagging, com-
ments, discussion, blogging). The results of all experiments associated with their
provenance information (e.g. time, user, execution parameters) can be stored in
a centralized repository which is then used for performing different search and
analysis operations. It is usual that some of the evaluated solutions is not able to
execute all of the defined tasks of the benchmark scenario due to several reason
(e.g. out of the main focus, under development). Therefore, each solution needs
to register the set of its supported tasks in order to avoid running many failing
experiments.

5 Liquid Benchmarks: Architecture and Implementation

In this section, we present the architecture for the Liquid Benchmarks platform,
illustrated in Figure 2, that consists of two main parts:

1. Benchmark Collaborative Development part where benchmark developers
produce an inventory of assets that can be shared with the community. For
example, they can collaboratively define the benchmark scenarios, setup the
competing solutions and configure the testing environments.

2. Benchmark Usage part where end-users can define, run and view the re-
sults of their experiments in addition to searching the results of previously
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running experiments. Moreover, they can collaborate and act on the assets
and knowledge of the benchmark to produce value, recognize undiscovered
knowledge and create new knowledge.

The two parts of the benchmark architecture are equipped with several compo-
nents that reflect the objectives of our approach. The roles of these components
are described as follows:

– Web-based User Interface: Provides the end user with a user-friendly
interface where he/she can specify the configuration of his experiment by
making a choice of evaluated solutions, benchmarking tasks with its associ-
ated dataset, interesting metrics and rendering style of the results in addition
the target testing environment. For all of these choices, the metadata is in-
formation is available through a Metadata Store component that captures
all the required information during the benchmark design process. Moreover,
the Liquid Benchmark UI provides the end-users with other features such
as: managing user accounts, searching the results of previous experiments,
submitting new experiments, uploading private datasets and defining private
user-defined testing tasks.

– Experiment Manager: It receives the specification of the user-defined ex-
periment which is configured by the Liquid Benchmark GUI which is then
passed to the Experiment Queue for execution in the target testing en-
vironment. The experiment queue plays an important role in ensuring that
the execution of one experiment in a testing environment does not influence
the execution of another experiment in the same environment. Therefore,
any experiment need to be waiting in the queue until its target testing envi-
ronment becomes available. After the end of executing the experiment, the
experiment manager stores the experiment results in a Central Reposi-
tory and, in parallel, passes them with the rendering style information for
the Rendering Manager component which presents the results for the
end-user. Since the execution of some experiments can be too long, the ex-
periment manager is responsible for stopping any experiment that exceed
the maximum runtime. This maximum runtime represents a defined thresh-
old where the value of this threshold can depend on many factors such as:
the configuration of the target test environment, the task nature and the
user priority. In addition, the experiment manager can limit the number of
running experiments for any user in order to avoid overloading the system.

– Repository of Experiment Results: It stores the results of all previ-
ously running experiments with their associated configuration parameters,
provenance information (e.g. timestamp, user) and social information (e.g.
comments, discussions). Clearly, end-users can access and view the contents
of this repository to explore the results of previously running experiments
without taking the time of running any new ones.

– Cloud-Based Computing Environments: It hosts testing environments
which are shared by the liquid benchmark end-users. In fact, the hosting envi-
ronments should have variant and scaling (in terms of computing resources)
configuration settings (e.g. CPU speed, disk storage, main memory) that
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Fig. 2. Liquid Benchmarks: System Architecture

reflect different real-world scenarios. The rationale behind this is to ensure
that the result of comparing the evaluated solutions is fair, comprehensive
and insightful.

– Collaborative Design Environment: It is used by the set of registered
developer users who have the privilege to build the specification of the bench-
mark scenarios (e.g. datasets, tasks, metrics). This environment provides the
developers with the required tools to achieve their tasks (e.g. forums, wikis,
shared file systems).

– Solution Setup Environment: This is another collaborative environment
which is used by the developers to setup and configure the competing solu-
tions in the different testing environments. After the configuration step, the
solutions are running as accessible services for the end-users.

It is our ongoing work to realize the deployment of 3 case studies for liquid
benchmarks by employing this architecture. In these case studies, we are using
the Amazon Web Services (AWS) for establishing shared computing resources
(e.g. Elastic Compute Cloud (EC28), Simple Storage Service (S39), Relational

8 http://aws.amazon.com/ec2/
9 https://s3.amazonaws.com/

http://aws.amazon.com/ec2/
https://s3.amazonaws.com/
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Database Service (RDS10)) and the open source social network platform, elgg11.
These case studies are targeting the following domains:

1. XML compression: where we are reusing our previous work on benchmarking
XML compression tools in the context of the XMLCompBench project [1,19].
We are currently deploying the resources of this benchmark to be available
online for end-users where they can create, run and share their experiments.
The benchmark provides an extensive experimental platform for benchmark-
ing 9 of the available XML compression tools. The XML corpus of this bench-
mark consists of 57 documents which are covering the different types and
scales of XML documents. The experiments are evaluating the XML com-
pressors with 3 different metrics: compression ratio, compression time and
decompression time. In order to provide the chance of assessing the consis-
tency of the performance behaviors of the evaluated XML compressors, we
are configuring two testing environments: one with high computing resource
and the other with limited computing resources.

2. SPARQL query processing: where we are extending our previous work on
benchmarking relational techniques for processing SPARQL queries [15,20].
In this case study, we are using the SPARQL Performance Benchmark
(SP2Bench) that have been recently proposed by Schmidt et al. [21] in or-
der to compare between many of the available implementations (relational
and non-relational) of SPARQL query processors (e.g. RDF-3X12, Allegro-
Graph13, Jena14, Sesame15, Virtuoso16). The performance characteristics of
these implementations will be evaluated by different metrics such as: query
execution time, data loading time, disk storage cost, memory consumption
and scalability limit of handling very large RDF datasets.

3. Graph query processing: the field of graph databases and graph query pro-
cessing has recently received a lot of attention due to the constantly in-
creasing usage of graph data structure for representing data in different
domains such as: chemical compounds, multimedia databases, social net-
works and biological pathways. Several techniques have been proposed to
tackle the performance challenges of different graph query types [6]. How-
ever, so far, there is no standard benchmark or an experimental study to
evaluate these approaches. Therefore, we are furnishing this case study by
the available research and open source implementations in this domain (e.g.
Closure-Tree [12], gIndex [24], TreePi [25], neo4j17). In addition, we are col-
laboratively trying with some experienced researchers to design an initial
standard benchmark that can be used by the researchers in this domain.

10 http://aws.amazon.com/rds/
11 http://elgg.org/
12 http://www.mpi-inf.mpg.de/~neumann/rdf3x/
13 http://www.franz.com/agraph/allegrograph/
14 http://jena.sourceforge.net/
15 http://www.openrdf.org/
16 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF
17 http://neo4j.org/

http://aws.amazon.com/rds/
http://elgg.org/
http://www.mpi-inf.mpg.de/~neumann/rdf3x/
http://www.franz.com/agraph/allegrograph/
http://jena.sourceforge.net/
http://www.openrdf.org/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF
http://neo4j.org/
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6 Conclusions and Outlook

The Web has dramatically enhanced the people’s ability to share ideas, knowledge
and contributions. We believe that the Computer Science research community
should have the leadership in having such scientific collaborative environments
that will significantly improve the ability of the scientific communities to under-
stand their research problems, have clean and careful analysis for the state-of-the-
art and gain insights that can help them to develop new effective technologies and
solutions.

In this paper, we coined the notion of liquid benchmark as a first step towards
an effective solution that rely on current advances in the Web technologies to
provide collaborative Web-based platforms that facilitates the key tasks of eval-
uating, comparing and analyzing the continuous scientific contributions in dif-
ferent domains. We believe that our proposed solution can make the best use
of the increasing human power participating in the Computer Science research
efforts which are distributed over the world. In particular, we argue that our
solution can empower the Computer Science research communities with many
capabilities such as:

– Providing workable environments to collaboratively build standard bench-
marks that can be widely used for achieving insightful evaluation for alter-
native research efforts. These environments can help researchers to optimize
their time in assessing and improving the quality of their contribution. Hav-
ing such environments will discourage authors from publishing paper with
adhoc or poor experimental results.

– Developing centralized and focused repositories for related software imple-
mentations [2] and their experimental results. These repositories can be used
as a very positive step towards finding the solutions for repeatability problems.

– Facilitating collaborative maintenance of experimental studies to guarantee
their freshness. This task can follow the same model of collaborative orga-
nization of international conferences or journals where each participating
researchers or research groups in a specific community can play a volunteer-
ing managerial role for a specific period.

– Facilitate the establishing of shared computing resources environment that
can be utilized by different active contributors in the same domain who reside
in different parts of the world.

– Leveraging the wisdom of the crowd in providing feedbacks over the exper-
imental results in a way that can give useful insights for solving further
problems and improving the state-of-the-art.

– Establishing a transparent platform for scientific crediting process based on
collaborative community work.

– Creating concrete foundations and feasible environments for providing prove-
nance services [17] for scientific experimental results and time-analysis ser-
vice for the evolution of research efforts.

We recognize that our work is at a preliminary stage and may leave out some of
the important details (e.g. credit attribution, data anonymization). However, we
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hope that our proposal will serve as the foundation for a fundamental rethinking
of the experimental evaluation process in the Computer Science field.
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Abstract. Graph Database Management systems (GDBs) are gaining
popularity. They are used to analyze huge graph datasets that are nat-
urally appearing in many application areas to model interrelated data.
The objective of this paper is to raise a new topic of discussion in the
benchmarking community and allow practitioners having a set of basic
guidelines for GDB benchmarking. We strongly believe that GDBs will
become an important player in the market field of data analysis, and
with that, their performance and capabilities will also become impor-
tant. For this reason, we discuss those aspects that are important from
our perspective, i.e. the characteristics of the graphs to be included in
the benchmark, the characteristics of the queries that are important in
graph analysis applications and the evaluation workbench.

1 Introduction

The analysis and storage of data in the form of a graph has increased in the
recent years. Analyzing the characteristics of social networks, the use of the
Internet, or the interactions among proteins has put graph processing in the eye
of the storm. The amount of data managed in most of those cases is huge, and
the complexity of the algorithms needed for the analysis as well, leading to a
clear need in the market: the Graph Database Management System (GDB).

A GDB is a step forward in the management and analysis of data. As stated
by Angles and Gutierrez [1]: “Graph database models can be defined as those
in which data structures for the schema and instances are modeled as graphs or
generalizations of them, and data manipulation is expressed by graph-oriented
operations and type constructors”. Graph databases emphasize the queries that
compute results related to the structure of the links in the graphs rather than
on the entities themselves: for example detecting link patterns, path analysis,
authority relations, etc. However, managing large graphs is a complex issue, and
obtaining the best suited analysis algorithms is difficult.
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There are a certainly growing number of initiatives to implement and com-
mercialize GDBs, like Neo4j [2], HyperGraphDB [3], Infogrid [4] or DEX [5] and
many RDF solutions such as Jena [6] or AllegroGraph [7]. There are other ini-
tiatives to create graph querying languages that allow for a simplified view of
querying to the user like SPARQL [8] and Gremlin [9]. This shows that the com-
munity is very active proposing new technologies, and sets an adequate scenario
to reflect on which is the adequate benchmark for a GDB.

The main objective of this paper is to open the discussion on GDB bench-
marking. Thus, we describe and discuss important aspects to be considered for
benchmarking. We started describing and analyzing the type of applications
where it is necessary the use of GDBs. In particular, we review the application
of GDBs in Social Network Analysis (SNA), proteomics, recommendation sys-
tems, travel planning and routing, which gives a catalog of representative areas
where huge graph datasets are appearing.

We believe that the set of applications mentioned are representative of the
marketplace for GDBs. Thus, based on those, we discuss the characteristics of
the graphs that appear in such applications and how they could influence bench-
marking. We also survey different types of operations, why they are important
and how they can be categorized in order to produce a wide coverage of is-
sues within a benchmark. Finally, we discuss on the evaluation setup of the
benchmark, where issues like the experimental process to follow and the type
of measures to be taken are considered. Despite the diversity of applications,
we find that the different areas have common features, and we believe that the
design of a benchmark based on SNA would become a representative candidate
of general GDB applications.

The paper is organized as follows. We start by setting up the state of the art
in Section 2. Then, in Section 3, we analyze a broad spectrum of applications
demanding for massive graph management. From these scenarios, we extract
generic characteristics of graphs and queries, that will be important in order to
design a graph database benchmark. Also, we propose a query categorization
and we remark the relevant aspects that we should take into account for the
experimental settings of a benchmark. Finally, we draw some conclusions.

2 Graph Oriented Benchmarks

Popular database benchmarks, such as TPC-C or TPC-H [10], focus on evaluat-
ing relational database queries that are typical of a business application. These
benchmarks emphasize queries with joins, projections, selections, aggregations
and sorting operations. However, since GDBs aim at different types of queries,
these widespread benchmarks are not adequate for evaluating their performance.

Object oriented databases (OODB) share some similarities with GDBs. The
data of a OODB also conforms a graph structure, where the entities that are
represented as objects draw relationships among them. The OO1 benchmark [11],
one of the earliest proposals, is a very simple benchmark that emphasizes three
basic operations for OODB: (a) lookup, which finds the set of objects for a given
object identifier; (b) traversal, which performs a 7-hop operation starting from a



A Discussion on the Design of Graph Database Benchmarks 27

random node; and (c) insertion, which adds a set of objects and relations to the
database. OO1 defines a dataset that only contains one type of objects with a
fixed number of outgoing edges per object. Since the links mostly go to objects
with a similar document identifier, the graphs are very regular.

Another popular benchmark for OODB is the OO7 proposed by Carey et
al [12]. In OO7, the database contains three types of objects, which are organized
as a tree of depth seven. The connectivity of the database is also very regular
because objects have a fixed number of relations. The benchmark is made up by
a rich set of queries that can be clustered into two groups: (a) traversal queries,
which scan one type of objects and then access the nodes connected to them
in the tree, and (b) general queries, which mainly perform selections of objects
according to certain characteristics.

We observe that although OODB benchmarks create graphs, the graphs have a
very different structure from typical graphs in graph analysis applications. As we
review in detail in Section 3.2, graphs in GDBs are very irregular: the degree of
the nodes exhibit a large variance, nodes are clustered in communities and graphs
have small diameters. Furthermore, the applications that interact with GDBs
are mainly interested in analyzing the graph structure, i.e. the relationships,
instead of the attributes in the objects. For example, operations such as finding
the shortest path connecting two objects or finding patterns (e.g. a clique) are
common GDB operations that are not considered in OODB.

XML databases also follow a model which relates entities. An XML database
is a collection of typed data and attributes organized as a tree. One of the most
well known benchmarks for XML databases is XMARK [13], which models an
auction site. The queries in the benchmark cover many aspects: selections, sorted
access, tree path location, aggregation, etc. Nevertheless, XML only models trees,
which are a limited subclass of graphs.

In the recent years, the knowledge management community has made efforts
to design a standard for representing the relations between metadata elements,
which has derived in the introduction of the Resource Description Framework
(RDF). Along with RDF, the community has designed a query language called
SPARQL, which is an SQL extension to describe relationship patterns among
entities. In order to test the performance of these knowledge bases, Guo et al.
proposed a benchmark of 14 SPARQL queries in [14], which is known as LUBM.

To our knowledge, the only benchmark proposed for the evaluation of graph
libraries is the HPC Scalable Graph Analysis Benchmark v1.0 [15]. The bench-
mark is compound by four separated operations on a graph that follows a power
law distribution: (a) insert the graph database as a bulk load; (b) retrieve the
set of edges with maximum weight; (c) perform a k-hops operation; and (d)
calculate the betweenness centrality of a graph, whose performance is measured
as the number of edges traversed per second. However, this benchmark does
not evaluate some features expected from a GDB such as object labeling or at-
tribute management. For an implementation and a discussion of the benchmark
over different graph databases see [16].
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3 Benchmark Considerations

In this section, we discuss several aspects that may affect the design of a GDB
benchmark. First, we examine a set of motivating scenarioswhere graph databases
are useful. Second, we describe the most commonly used graph types. From this,
we explore common queries run in these scenarios and propose a categorization
depending on their interaction with the graph data. Finally, we review some ex-
perimental considerations for the design of GDB benchmarks.

3.1 Analysis of Motivating Applications

Over the past years, there has been an increasing interest in multiple disciplines
on datasets that can be represented and analyzed as a network or graph. In
these networks, the nodes represent the entities and the edges the interaction
or relationships between them. For example, the use of Social Network Analysis
(SNA) has grown to currently become one of the most successful tools to inves-
tigate the structure of organizations and social groups, focusing on uncovering
the structure of the interactions between people [17]. SNA techniques have been
effectively used in several areas of interest like social interaction and network evo-
lution analysis, counter-terrorism and covert networks, or even viral marketing.
The Web 2.0 [18] and the increasing use of Internet applications that facilitate
interactive collaboration and information sharing has caused the appearance of
many social networks of different kinds, like Facebook and LinkedIn for social
interaction, or Flickr for multimedia sharing. Other web portals that contain
human interactions can also be considered social networks, like in bibliographic
catalogs such as Scopus, ACM or IEEE, where the scientific community is shar-
ing information and establishing de facto relationships. In all these cases, there
is an increasing interest in the analysis of the underlying networks, to obtain a
better knowledge of the patterns and the topological properties. This may be
used to improve service to users or even to provide more profit to the information
providers in the form of direct advertising or personalized services.

The rapid growth of the World Wide Web, has caused new graph struc-
tured data to be archived and analyzed, such as hypertext and semi-structured
data [19]. Also, with RDF, users are allowed to explicitly describe semantic re-
sources in the form of graphs [20]. In this context, and others such as finding
web service’s connection patterns, algorithms and applications for graph and
subgraph matching in data graphs are becoming increasingly important [21].
Pattern matching algorithms are also used to find relationships in social net-
works [22], find research collaboration partners, or mine the connections among
research paper publications in archived bibliography datasets.

The use of graph theory combined with computing analysis has attracted the
interest of the graph mining community [23]. Some of the classical analysis in this
area are the determination of an actor’s centrality, to identify key players, leaders
or relevant people in a community; the grouping of individuals in communities
or affinity groups, to provide specific services or to improve their connectivity;
the identification of weaknesses or singular points in the network, for security
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or counter-terrorism; or the study of social roles and collaborations, to get the
position of an actor in the society or to connect people to others to improve their
relationships network in professional environments.

Another area of interest is in proteomics or genetic interactions, where the
large-scale study of proteins is considered the next step in the study of biologi-
cal systems. The fact that most proteins act in collaboration with other proteins
is the basis for proteomics to reveal which of those are potentially associated with
a certain disease. In protein-protein interaction networks, nodes represent pro-
teins, and edges between nodes represent physical interactions between proteins.
Several protein interaction databases are shared between hundreds of research
laboratories and companies around the world, such as BioGRID [24] or the Pro-
tein Data Bank (PDB) [25]. With this data, some of the most usual analysis
in genetic interactions are the study of the complexity of the network topology,
the node analysis of centrality and role, the identification of articulation points
or bridges between groups of proteins, or the clustering of proteins based on
their relationship or neighborhoods. Many scientific software tools are available
for the analysis and the visualization of data, like Navigator [26] for network
analysis, visualization and graphing.

Network analysis has also become essential for recommendation systems. In
this case, the goal is to present information that could be interesting to the users
based on previous knowledge extracted from their social environment. Recom-
mendation systems are prior to computers, but the Internet has exploded again
the use of recommendation for different purposes, such as on-line sales and cat-
alogs like Amazon, or digital music services in iTune. Even PageRank [27] in
Google can be considered a recommendation engine, and the analysis of hubs
and authorities to rate Web pages in HITS [28] is an exploration of the network
of relationships of a web page with its hyperlinks. Although relational databases
have been the storage system of choice in many commercial recommendation en-
gines for collaborative filtering, like Strands [29] for social networks and eCom-
merce, lately, new approaches have appeared using graph representation and
exploration like conceptual graphs [30] or more recently DirectedEdge [31]. An-
other area of network analysis where graphs may be large is travel planning
and routing, where the system tries to find the most efficient path between two
points according to some constraints or recommendations given by the user, like
in Amadeus [32], or real time analysis of traffic networks in large cities. In these
cases, the data is naturally represented as graphs where vertices stand for the
location and the edges are the routes with lengths and costs. Then, queries are
mainly navigational operations between neighbors or network topology analysis.

3.2 Graph Description

GDBs store entities as nodes, which have relations among them that are set as
edges. However, depending on the particular application, the graph model may
differ, showing a different degree of complexity. In addition to the plain storage
of nodes and edges, we detail the main features required by some applications:
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Attributes: In addition to nodes and edges, graph databases store information
associated to these nodes and edges. The associated information is typically
string or numerical values, which indicate the features of the entity or relation.
For the particular case of edges, some graphs include numerical attributes that
quantify the relation, which is usually interpreted as the length, weight, cost or
intensity of the relation. Moreover, many applications set a unique identifier for
each node and edge of the graph that labels each graph element.

Directed: Depending on the problems the relation between two nodes may be
symmetric or not. If the relation is symmetric, the edge might be traversed from
any of the adjacent nodes to the opposite one. If the relation is not symmetric,
edges differentiate the head and the tail. The tail of the edge is the node from
which the edge starts, and the head of the edge is the node which the edge
points to. Undirected graphs are a particular case of directed graphs, since an
undirected edge can be represented as two directed edges, each one in a reverse
direction of the other.

Node and edge labeling: Some applications differentiate different labels (or
types) of nodes and edges. Labeling has an important impact because some
applications require distinguishing between different kinds of relations. For ex-
ample, a social network may accept either “positive” or “negative” friendship
relations [33].

Multigraphs: Multigraphs differ from graphs in that two nodes can be con-
nected by multiple edges. Multigraphs appear commonly when graphs have typed
edges because often two nodes are related by different categories. For example,
in a mobile telephone network that represents the cell phones as the nodes and
the telephone calls as the edges, two nodes will have multiple connections if they
have called more than once.

Hypergraphs: A hypergraph is a generalization of the concept of a graph, in
which the edges are substituted by hyperedges. In contrast to regular edges, an
hyperedge connects an arbitrary number of nodes. Hypergraphs are used, for
example, for building artificial intelligence models [34].

Graph Characterization: Real graphs are typically very different from graphs
following the Erdös-Renyi model (random graphs) [35]. Leskovec et al. analyzed
over 100 real-world networks in [36] in the following fields: social networks, in-
formation/citation networks, collaboration networks, web graphs, Internet net-
works, bipartite networks, biological networks, low dimensional networks, actor
networks, and product-purchaser networks. The size of these networks varies
from a few hundred nodes to millions of nodes, and from hundreds of edges to
more than one hundred million. We note that although they might seem huge,
the graph data sets of some current applications are significantly larger: for ex-
ample Flickr accounts more than 4 billion photographs that can be tagged and
rated [37], and Facebook is publishing more than 25 billion pieces of content
each month. For these large graphs, one of the most interesting aspects is that
in general most graph metrics (such as the node degree or the edge weight) fol-
low power law distributions [36, 38, 39], and hence some areas of the graph are
significantly denser than others.
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With respect to the characterization of graphs, we summarize some properties
that often appear in these huge graphs [23]: (a) they contain a large connected
component that accounts for a significant percentage of the nodes; (b) they are
sparse, which means that the number of edges is far away from the maximum
number of edges; (c) the degree distribution follows a power law distribution
(i.e scale-free networks), where a few nodes have a number of connections that
greatly exceeds the average, usually known as hubs; (d) the average diameter
of each connected components from the graph is small, in other words, from a
given node there is a short path to reach the majority of the remaining nodes in
the connected component (which is also called the small world property); and
(e) the nodes are grouped in communities where the density of edges among the
members of the community is larger than the edges going outside the community.

Discussion: In this section, we see that graph applications represent their
datasets following graphs with different degrees of complexity. Nevertheless, we
observe that the structure of the graphs datasets follow power law characteriza-
tions and properties, which makes it possible to create generic graphs represen-
tative of multiple applications for benchmarking purposes.

According to the previously described applications, we also identify three
aspects that a generic GDB should be able to compute (and thus be included in
a benchmark): (a) labeled graphs, which enable to identify the nodes and edges
of the graph; (b) directed graphs, which set the relation and its direction; (c)
attribute support, which are used by applications such as for setting the weight
of the edges.

3.3 Graph Operations

In this subsection, we present several types of operations used in the areas pre-
sented before. The analysis of this section will be useful to learn different aspects
that will be used to fix criteria, in the following subsection, to design relevant
operations for a future benchmark. Table 1 lists some of these graph operations,
organized by the type of access that is performed on the graph.

First, we define a set of generic operations. These operations are not typical
in a single specific domain, but common operations that may be necessary in
any context. This set of operations allows us to (i) get atomic information from
the graph such as getting a node, getting the value of an attribute of an edge, or
getting the neighbor nodes of a specific node, and (ii) create, delete and transform
any graph. Any complex query or transformation of the graph will necessarily
use these operations.

Afterwards, we extend these operations to other higher level actions typically
performed in the scenarios presented before. We group these operations into
different types:

Traversals . Traversals are operations that start from a single node and explore
recursively the neighborhood until a final condition, such as the depth or visiting
a target node, is reached. For instance, we consider the operation of calculating
a shortest path, which is the shortest sequence of edges (or the smallest addition
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of edge weights in the case of weighted graphs) that connects two nodes. In a
directed graph the direction is restricted to outgoing edges from the tail to the
head. Note that shortest paths may be constrained by the value of some node
or edge attributes, as in the case of finding the shortest route from two points,
avoiding a certain type of road, for instance. This operation is also used as a
measure to calculate the information loss of graph anonymization methods. An-
other typical operations is calculating k-hops, which returns all the nodes that
are at a distance of k edges from the root node. A particular case is when k = 1,
also known as the neighbors of the node. The particular case of 1-hops is widely
used as part of other operations. For example to calculate the nearest neighbor-
hood in recommender systems, to obtain a particular user’s neighborhood with
similar interest, or in web ranking using hubs and authorities.

Graph Analysis . Basic graph analysis includes the study of the topology of
graphs to analyze their complexity and to characterize graph objects. It is ba-
sically used to verify some specific data distributions, to evaluate a potential
match of a specific pattern, or to get detailed information of the role of nodes
and edges. In several situations graph analysis is the first step of the analytical
process and it is widely used in SNA and protein interaction analysis. Among
this we may calculate the hop-plot (a metric to measure the rate of increase of
the neighborhood depending on the distance to a source node), the (effective)
diameter, the density, or the clustering coefficient (to measure the degree of
transitivity of the graph), to give some examples.

Components . A connected component is a subset of the nodes of the graph
where there exists a path between any pair of nodes. Thus, a node only belongs
to a single connected component of the graph. Finding connected components is
usually crucial in many operations, typically used in a preprocess phase. Also,
some operations are helpful to study the vulnerability of a graph, or the prob-
ability to separate a connected component into two other components. Finding
bridges, edges whose removal would imply separating a connected component, is
important in many applications. Going further, the cohesion of the graph can be
computed by finding the minimum number of nodes that disconnect the group
if removed.

Communities . A community is generally considered to be a set of nodes where
each node is closer to the other nodes within the community than to nodes
outside it. This effect has been found in many real-world graphs, especially social
networks. Operations related to the creation of a community may be building
dendograms (communities formed through hierarchical clustering), finding the
minimal-cut set of edges or other clustering techniques.

Centrality Measures. A centrality measure aims at giving a rough indication
of the social importance of a node based on how well this node connects the
network. The most well-known centrality measures are degree, closeness and
betweenness centrality.

Pattern matching . Pattern recognition deals with algorithms which aim at rec-
ognizing or describing input patterns. Graph matchings are usually categorized
into exact or approximate. Exact matchings may include finding homomorphisms



34 D. Dominguez-Sal et al.

or (subgraph) isomorphisms.Approximatematchingsmay include error-correcting
(subgraph) isomorphisms, distance-based matching, etc.

Graph Anonymization. The anonymization process generates a new graph with
properties similar to the original one, avoiding potential intruders to reidentify
nodes or edges. This problem gets more complex when the nodes and edges con-
tain attributes and the problem goes beyond the anonymization of the pure graph
structure. The anonymization of graphs becomes important when several actors
exchange datasets that include personal information. To give a couple of examples,
two anonymization procedures are the the k-degree anonymity of vertices, or the
k-neighborhood anonymity, which guarantees that each node must have k others
with the same (one step) neighborhood characteristics.

Other operations . There are other operations related to the applications pre-
sented in Subsection 3.1. For instance, finding similarity between nodes in a graph
has shown to be very important in SNA. An example of this is structural equiva-
lence, which refers to the extent to which nodes have a common set of linkages to
other nodes in the system. Also, specially for recommendation systems, ranking
the nodes of a graph is an important issue (for instance PageRank).

Discussion:We observe that over a small set of generic operations that are shared
by all scenarios, applications compute a rich set of more specific graph operations.
Moreover, according to Table 1, SNA provides one of the most rich set of graph
operations, which makes social networks a candidate scenario for designing bench-
marks that are representative of applications that use GDBs.

3.4 Query Categorization

The computational requirements of graph queries is not homogeneous. For ex-
ample, some queries may traverse the full graph, while others may request the
outdegree of a single node. In order to build a balanced benchmark it must be rep-
resentative of the different types of operations that can be issued by an application
to the graph database. In this section, we build up a set of categories to classify the
different operations that are issued to a graph database:

Transformation/Analysis: We distinguish between two types of operations to
access the database: transformations and analysis operations. The first group com-
prise operations that alter the graph database: bulk loads of a graph, add/remove
nodes or edges to the graphs, create new types of nodes/edges/attributes or mod-
ify the value of an attribute. The rest of queries are considered analysis queries.
Although an analysis query does not modify the graph, it may need to access to
secondary storage because the graph or the temporary results generated during
the query resolution are too large to fit in memory.

Cascaded access: We differentiate two access patterns to the graph: cascaded
and not cascaded. We say that an operation follows a cascaded pattern if the query
performs neighbor operations with a depth at least two. For example, a 3-hops op-
eration follows a cascaded pattern. Thus, a non cascaded operation may access a
node, an edge or the neighbours of a node. Besides, an operation that does not
request the neighbours of a node, though it may access the full graph, is a non cas-
caded operation. For instance, an operation that returns the node with the largest
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value of an attribute accesses all nodes, but since it does not follow the graph struc-
ture is a non-cascaded operation.

Scale: We classify the queries depending on the number of nodes accessed. We
distinguish two types of queries: global and neighbourhood queries. The former
type corresponds to queries that access the complete graph structure. In other
words, we consider as global queries those that access to all the nodes or the edges
of the graph. The latter queries only access to a portion of the graph.

Attributes: Graph databases do not only have to manage the structural infor-
mation of the graph, but also the data associated to the entities of the graph. Here,
we classify the queries according to the attribute set that it accesses: edge attribute
set, node attribute set, mixed attribute set or no attributes accessed.

Result: We differentiate three different types of results: graphs, aggregated re-
sults, and sets. The most typical output for a graph database query is another
graph, which is ordinarily a transformation, a selection or a projection of the origi-
nal graph, which includes nodes and edges. An example of this type of result is get-
ting the minimum spanning tree of a graph, or finding the minimum length path
that connects two nodes. The second type of results build up aggregates, whose
most common application is to summarize properties of the graph. For instance, a
histogram of the degree distribution of the nodes, or a histogram of the community
size are computed as aggregations. Finally, a set is an output that contains either
atomic entities or result sets that are not structured as graphs. For example, the
selection of one node of a graph or finding the edges with the greatest weight are
set results.

Discussion: Queries in a benchmark must represent the workload of the real
environment where the application is going to be executed, and thus should be
adapted to the particular application profile to be tested. We have seen that graph
operations are diverse, but many operations share similar operational patterns. In
Table 1, we summarize these patterns categorizing the catalog of popular oper-
ations. In this table, we find that although the most basic operations are neither
structured nor affect large fractions of the graph, many applications use large scale
operations that traverse the graph. Furthermore, we find that most graph oper-
ations are accessing the information stored in the edges since the attributes in
the edges (and weights in particular) are modeling the relations between entities,
which is the main objective of a graph. We also observe that generic GDB must
be able to store temporal objects because they are necessary for most operations
(e.g: storing a boolean to decide whether a node has been visited or counting the
number of paths through a node). Finally, we see that generic GDB must be able
to manage different types of result sets because we find operations in many differ-
ent applications that return sets, aggregates and graphs. We note that although
most operations analyze the graph, many applications may store the results as
attributes. In other words, although the results of a complex operation such as
community detection are analytical, they may be stored as attributes that may be
updated periodically.

In general, operations with a complexity larger than linear (over the number of
nodes or edges) should be included with care in a GDB benchmark because they
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may become unfeasible to compute for large graphs. If these operations are very
representative of a certain workload, then one possible approach is to accept ap-
proximate results. For example, the betweenness centrality measure is very ap-
preciated in the analysis of social networks, but in practice it is seldom computed
with an exact algorithm because of its high computational costs [40]. Therefore, if
large graphs are considered, benchmarks may also consider approximated imple-
mentations though metrics about quality of the result and precise descriptions of
the approximated algorithm are recommended.

3.5 Experimental Setting

Experimental setup and measurement is one of the most important parts of a
benchmark and it must be clearly defined and configured to allow a fair compar-
ison between multiple solutions in different environments. Early database bench-
marks only focused in the response time of the queries. As the benchmarks have
evolved and platforms are more complex, the measurements have become more so-
phisticated and, in consequence, the experimental setup and the testing process is
more expensive and complicated. For example, early benchmarks like Wisconsin
only considered the response time using very simple scale factors [41]. Later, TPC-
C or TPC-H introduced a metric with the relationship of the pricing with respect
the maximum throughput [42], and more recently LUBM [14], for the benchmark-
ing of RDF graphs, defined a combined metric between the query response time
and the answer completeness and soundness in the case of partial results and pat-
tern matching.

The different concepts related to the experimental setup and configuration of
a graph database benchmark can be grouped in the following areas: configuration
and setup, experimental process, and measures.

Configuration and setup: Modern benchmarks allow for the definition of the
dataset size by means of a scale factor, which fixes the dataset size generated fol-
lowing precise data distributions. For graphs, the scale factor defines the number
of nodes and edges. Additionally, the graph must conform to scale the graph struc-
tural properties for different scales such as the vertex degree and hop-plot distri-
butions, the diameter or the community structure [43].

A second set of parameters defines the allowed capabilities to preprocess the
dataset. Some of the most important factors to define are: (a) data partitioning,
which usually allows for a flexible graph partitioning using either horizontal parti-
tioning, (each structure partitioned), vertical partitioning (structures are grouped
following some criteria), or hybrid; (b) indexing, that allows the GDB to build
freely indexes that speedup queries at the expense of slower loads; (c) redundancy,
that specifies if data may be replicated; and if (d) data reorganization procedures
that optimize the internal data structures of the GDB are allowed. In order to have
precise measures, benchmarks usually distinguish between two parts: (a) a load
phase where the data is preprocessed, and (b) a query phase where the ingested
data cannot be reindexed or reorganized.

Finally, another aspect is the definition of the data consistency requirements
that the database must support during the benchmark. In transactional
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benchmarks,ACIDproperties areusually the standard.However, sincemanygraph
operations are analytical, more relaxed approaches can be taken, like eventual con-
sistency or simply requiring concurrence for multiple readers.

Experimental process: The experimental process definition minimizes the side-
effects produced by the way the experiments are executed, or by some influences
that may appear between experiments, like the the processor caches or the execu-
tion order of the queries. (a) The warm-up sets the state of the computer before
the benchmark is executed. It usually allows to populate the memory with a frac-
tion of the graph (or indexes) as a result of some warm up queries. On the other
hand, if the benchmarks aims at measuring the I/O overhead, it is necessary to
ensure that the operating system’s cache is emptied. (b) The query generation sets
in which order the queries are executed (e.g. in sequential order). For non sequen-
tial benchmarks, it also sets the probability distribution that incoming queries fit.
(c) The observational sampling procedure describes the number of executions for
each query and how they are summarized. The observations are collected once a
condition happens, which is typically once a query (or set of queries) finishes or a
period of time lapses. Optionally, outliers or the fastest and slowest results might
be discarded. It should be taken into consideration that when data is modified
by a query it is also important to include into the measure the flush of the graph
updates to disk.

Measures: Measures are closely related to the benchmark capabilities and to
the audience. Some general measures that can be applied to graphs are the follow-
ing: (a) the load time, which measures the elapsed time for loading and preprocess
the dataset; (b) the size of the graph; (c) the query response time that accounts
for the time elapsed between the query is issued until the results are output; (d)
the throughput that measures the number of queries completed in an interval of
time; (e) the price of the computing site including hardware, license and mainte-
nance costs if applicable; or (f) the power consumption that measures the energy
requirements of the computing equipment and gives an indirectmeasure of its cool-
ing requirements. In order to compare such metrics among different platforms, it
is common to introduce normalized metrics such as the price/throughput or the
power/throughput that enable an easier comparison of benchmarking results be-
tween, for example, a supercomputer and a laptop hardware setup.

In the area of graph benchmarking, some specialized metrics have been pro-
posed.TheHPCbenchmark [15] defines thenumberof traversals per second (TEPS)
as the average number of edges explored during a traversal per second. The TEPS
gives a measure of the average effort to navigate through the relationships with re-
spect to the size of the graph. For pattern matching, when it is difficult to find all
the results in a deterministic way like in knowledge bases, Guo et al. have proposed
to measure the query completeness (or recall) or how far is the result respect to all
the possible answers [14]. If the GDB is able to return results as soon as they ap-
pear, it might be interesting to obtain a plot of the GDB’s recall with respect to
time.
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Discussion: There are many experimental settings and measures that can be se-
lected for aGDBbenchmark.Thefinal selectiondepends on the benchmark charac-
teristics, the goals and the audience. Thus, an industrial-oriented benchmark will
probably focus on the throughput and cost of complex queries on very large graphs.
However, research oriented benchmarking may be interested in the performance of
more specific operations for different hardware configurations. In contrast to other
scenarioswhereACIDproperties aremandatory,webelieve thatmanyapplications
of GDB benchmarks allow for more relaxed consistency behaviors.

4 Conclusions

In this paper, we have analyzed important aspects for the design of a GDB bench-
mark. First of all, there is a significant core of applications that benefit signifi-
cantly from their management as a graph, like social network analysis, protein
interaction, recommendation and routing among others. These applications jus-
tify by themselves the existence and evolution of GDBs, and at the same time,
justify the existence and evolution of a GDB benchmark. Its correct design and
implementation implies the following aspects to be considered:

– The characteristics of the graph to be used in a benchmark are important. Con-
sidering the inclusion of directed graphs with attributes, with different node
and edge types in the context of multigraphs would be important.

– The characteristics of the graph like the distribution of edges per node, at-
tribute values per edge, etc. depend on the application and should be applied
based on the different studies appeared in the literature. Nevertheless, most
huge graph datasets follow power law distributions.

– Although not necessarily all the operations appearing in our analysis need to
be considered for a benchmark, both analytical and transformation operations
should be present.

– The cascaded nature of many graph operations is important, and a benchmark
should include a good selection of operations with and without this cascaded
nature.

– While there are operations that cover a traversal of all the database, others
just affect a few of their components. Such feature should be evaluated taking
into consideration the metrics to be used, in order to balance the importance
of each case.

– Depending on the application, some operations just evaluate the structure of
the graph, while others take the attributes in the nodes and specially in the
edges, to be evaluated. A good combination of queries with both characteristics
would be of interest for the proper deployment of a benchmark.

– The nature of the result is important because GDBs are capable of offering a
good assortment of answers. In particular, operations returning sets of nodes,
graphs or aggregational answers would be recommended for a balanced
benchmark.

– There are other aspects that influence the fairness of a benchmark. Those are
the configuration of the GDB (partitioning, indexing of attributes, data redun-
dancy and reorganization), the way the experimental process is undertaken
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(warm-up of the database, query generation and the observational procedure)
and the metrics to be considered (load time, repository size, query response
time, throughput obtained and the cost of the deployment). However, those
aspects are not totally influenced by the GDB environment.

Just to finalize, it would be very important to find an application covering as many
of the aspects that we have evaluated in this paper as possible. We believe that
social network analysis is very significant because it covers almost all the operation
types in graph databases, it is easy to understand by the final user and carries a
lot of natural queries with answers that can be conceptually understandable. Any
other application with such characteristics would be of use and beneficial for a
GDB benchmark.
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Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185,
pp. 37–48. Springer, Heidelberg (2010)

http://dist.neo4j.org/neo-technology-introduction.pdf
http://www.kobrix.com/hgdb.jsp
http://infogrid.org/blog/2010/03/operations-on-a-graph-database-part-4
http://infogrid.org/blog/2010/03/operations-on-a-graph-database-part-4
http://jena.sourceforge.net/documentation.html
http://jena.sourceforge.net/documentation.html
http://www.franz.com/agraph/
http://www.w3.org/TR/rdf-sparql-query/
http://wiki.github.com/tinkerpop/gremlin/
http://wiki.github.com/tinkerpop/gremlin/
http://www.tpc.org


40 D. Dominguez-Sal et al.

17. INSNA: International network for social network analysis,
http://www.insna.org/

18. OReilly, T.: What is Web 2.0: Design patterns and business models for the next
generation of software (2005)

19. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: from relations to semistruc-
tured data and XML. Morgan Kaufmann Publishers Inc., San Francisco (2000)

20. Brickley, D., Guha, R.V.: Resource description framework (rdf) schema specification
1.0. W3C Candidate Recommendation (2000)

21. Shasha, D., Wang, J., Giugno, R.: Algorithmics and applications of tree and graph
searching. In: PODS, pp. 39–52. ACM, New York (2002)

22. Anyanwu, K., Sheth, A.: ρ-queries: Enabling querying for semantic associations on
the semantic web. In: WWW, pp. 690–699. ACM Press, New York (2003)

23. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms.
ACM Computing Surveys (CSUR) 38(1), 2 (2006)

24. BioGRID: General repository for interaction datasets,
http://www.thebiogrid.org/

25. PDB: Rcsb protein data bank, http://www.rcsb.org/
26. NAViGaTOR, http://ophid.utoronto.ca/navigator/
27. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.

Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)
28. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),

604–632 (1999)
29. Strands: e-commerce recommendation engine, http://recommender.strands.com/
30. Chein, M., Mugnier, M.: Conceptual graphs: fundamental notions. Revue

d’Intelligence Artificielle 6, 365–406 (1992)
31. DirectedEdge: a recommendation engine, http://www.directededge.com (last re-

trieved in June 2010)
32. Amadeus: Global travel distribution system, http://www.amadeus.net/
33. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In:

CHI, pp. 1361–1370 (2010)
34. Goertzel, B.: OpenCog Prime: Design for a Thinking Machine. Online wikibook

(2008), http://opencog.org/wiki/OpenCogPrime
35. Erdos, P., Renyi, A.: On random graphs. Mathematicae 6(290-297), 156 (1959)
36. Leskovec, J., Lang, L., Dasgupta, A., Mahoney, M.: Statistical properties of com-

munity structure in large social and information networks. In: WWW, pp. 695–704
(2008)

37. Flickr: Four Billion, http://blog.flickr.net/en/2009/10/12/4000000000/ (last
retrieved in June 2010)

38. Faloutsos, M., Faloutsos, P., Faloutsos, C.: Onpower-law relationships of the internet
topology. In: SIGCOMM, pp. 251–262 (1999)

39. McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected com-
ponents: patterns and a generator. In: KDD, pp. 524–532 (2008)

40. Bader, D., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-
world networks. In: ICPP, pp. 539–550 (2006)

41. Bitton, D., DeWitt, D., Turbyfill, C.: Benchmarking database systems a systematic
approach. In: VLDB, pp. 8–19 (1983)

42. Transaction Processing Performance Council (TPC): TPC Benchmark H (2.11).
TPC website, http://www.tpc.org/tpch/ (last retrieved in June 2010)

43. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: An approach to modeling networks. Journal of Machine Learning
Research 11, 985–1042 (2010)

http://www.insna.org/
http://www.thebiogrid.org/
http://www.rcsb.org/
http://ophid.utoronto.ca/navigator/
http://recommender.strands.com/
http://www.directededge.com
http://www.amadeus.net/
http://opencog.org/wiki/OpenCogPrime
http://blog.flickr.net/en/2009/10/12/4000000000/
http://www.tpc.org/tpch/


A Data Generator for Cloud-Scale

Benchmarking

Tilmann Rabl, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch

Chair of Distributed Information Systems
University of Passau,

Germany
{rabl,frank,moussell,kosch}@fim.uni-passau.de

http://www.dimis.fim.uni-passau.de

Abstract. In many fields of research and business data sizes are break-
ing the petabyte barrier. This imposes new problems and research possi-
bilities for the database community. Usually, data of this size is stored in
large clusters or clouds. Although clouds have become very popular in re-
cent years, there is only little work on benchmarking cloud applications.
In this paper we present a data generator for cloud sized applications. Its
architecture makes the data generator easy to extend and to configure. A
key feature is the high degree of parallelism that allows linear scaling for
arbitrary numbers of nodes. We show how distributions, relationships and
dependencies in data can be computed in parallel with linear speed up.

1 Introduction

Cloud computing has become an active field of research in recent years. The
continuous growth of data sizes, which is already beyond petabyte scale for many
applications, poses new challenges for the research community. Processing large
data sets demands a higher degree of automation and adaptability than smaller
data sets. For clusters of thousand and more nodes hardware failures happen
on a regular basis. Therefore, tolerance of node failures is mandatory. In [19]
we sketched a benchmark for measuring adaptability, in this paper we present a
data generator that is cloud aware, as it is designed with the top goals of cloud
computing, namely scalability and decoupling, i.e. avoidance of any interaction
of nodes [3].

Traditional benchmarks are not sufficient for cloud computing, since they fall
short on testing cloud specific challenges [2]. Currently, there are only a few bench-
marks available specifically for cloud computing. The first one was probably the
TeraSort Benchmark1. Others followed, such as MalStone and CloudStone. These
benchmarks are dedicated to a single common task in cloud computing. While
this kind of benchmarks is essential for scientific research and evaluation, it fails
to give a holistic view of the system under test. We think that there is a need for
a benchmark suite that covers various aspects of cloud computing. The database
1 The current version can be found at http://www.sortbenchmark.org/
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community has traditionally an affection for simple benchmarks [11,22]. Although
reduction of complexity is a basic principle of computer science and unnecessary
complexity should be avoided by all means, there seems to be a trend to simplis-
tic evaluations. In order to get meaningful results benchmarks should have diverse
and relevant workloads and data [5]. Often it is best to use real life data. For ex-
ample, in scientific database research the Sloan Digital Sky Survey is frequently
referenced [24]. Yet for many applications such as social websites there is no data
publicly available. And even though storage prices are dropping rapidly, they are
still considerably high for petabyte scale systems. A current 2 TB hard drive costs
about USD 100, resulting in a GB price of about USD 0.05. So the price for 1 PB of
raw disk space is about USD 50000. Therefore, it is not sensible to store petabytes
of data only for testing purposes. Besides storage, the network necessary to move
petabytes of data in a timely manner is costly. Hence, the data should be created
where it is needed. For a cluster of nodes this means that each node generates the
data it will process later, e.g. load into a data base. In order to generate realistic
data, references have to be considered, which usually requires reading already gen-
erated data. Examples for references are foreign keys. For clusters of computers
this results in a fair amount of communication between nodes.

For example consider a table representing a many-to-many relationship be-
tween two tables. When generating corresponding keys one needs information
about the keys in the two tables participating in the many-to-many relationship.
On a single node system it is usually much faster to read in the two tables to
create the relationship. But if the data for the two tables is scattered across mul-
tiple nodes, it is more efficient to regenerate it. This way the relationship can
be created completely independently of the base tables. By using distributed
parallel random number generators, such as the leap frog method [10, Ch.10],
even the generation of single tables can be parallelized. Since the generation is
deterministic, also references can still be computed independently.

In this paper we present an ubiquitous parallel data generation framework
(PDGF) that is suitable for cloud scale data generation. It is highly parallel and
very adaptable. The generator uses XML configuration files for data descrip-
tion and distribution. This simplifies the generation of different distributions of
specified data sets. The implementation is focused on performance and extensi-
bility. Therefore, generators for new domains can be easily derived from PDGF.
The current set of generators is built to be nearly write-only, so they gener-
ate values only according to random numbers and relatively small dictionaries,
but without rereading generated data. This is done to reduce I/O and network
communication to the absolute minimum.

Consider the simplified example in Figure 1, taken from the eLearning man-
agement system presented in [19]. There are three tables, user, seminar, and
seminar user. The generation of tables user and seminar are straightforward.
For seminar user it has to be considered, that only user ids and seminar ids
are generated, that actually exist in user and seminar. This is only easy if
both attributes have continuous values, otherwise it has to be assured that the
referenced tuples exist. A second challenge is that degree program is replicated
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user seminar_user seminar
user_id

degree_program

...

user_id

seminar_id

...

degree_program

seminar_id

...

Fig. 1. Fragment of the schema of an eLearning management system

in seminar user, so the combination of user id and degree program have to exist
in user. Finally the values of tables like seminar user have typically non uniform
distributions.

The common solution to generate the table seminar user is to first generate
the two tables that are referenced and then use a look up or scan to generate the
distribution. If this is done in parallel, either the referenced data has to be repli-
cated, or the data generating process has to communicate with other nodes. This
is feasible for smaller clusters, but for cloud scale configurations the communi-
cation part will be the bottleneck. Therefore, we propose a fully computational
approach. Basically, our data generation is a set of functions that map a virtual
row id to a tuple’s attribute. Using this approach, we can easily recompute every
value. So for the example above we would define a function for each attribute
in the original tables. To generate uncorrelated data, the first computational
step is usually either a permutation or a pseudo random number generation.
For the example above this would only be needed for the degree program. The
value could either be chosen from a dictionary or be generated. To generate en-
tries of seminar user, two pseudo random numbers in the range of [1, |user |] and
[1, |seminar |] are computed, with according distribution properties and then the
function to generate degree program is used, resulting in a valid tuple for semi-
nar user. This can be computed completely independently of the generation of
user and seminar. Since parallel pseudo random number generators are used,
seminar user can be generated on any reasonable number of computing nodes
in parallel.

This flexibility opens a broad field of application. Besides traditional rela-
tional, row oriented data, our system can easily generate data in other storage
models, such as the Decomposed Storage Model [9], column wise as in MonetDB
[6] or C-Store [23] or even mixed models [20].

An often discussed problem is that experiments are run on too small data
sets [15]. This is not because of the negligence of researchers, but because large
sized experiments are very time consuming and many researchers have no access
to unlimited sized storage clusters. Hence, in many situations it seems sensible
to use only a fraction of the data set and simulate a fraction of the system.
Obviously, there are many research fields where such a methodology leads to
realistic results. An example would be sort experiments. Our data generator is
capable of generating statistically sound extracts of data sets as well as it can
generate large data sets in uncorrelated fractions. So large scale test can either
be scaled down or processed sequentially.
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The rest of the paper is organized as follows, Section 2 gives an overview
of previous work on data generation for database benchmarking. After that,
Section 3 describes how the design goals of the data generator are met. Section 4
explains the data generation approach. The architecture of the data generator
is described in Section 5. We evaluate the performance of our data generator in
Section 6 and conclude with future work in Section 7.

2 Related Work

There has been quite some research on data generation for performance bench-
marking purposes. An important milestone was the paper by Gray et al. [12], the
authors showed how to generate data sets with different distributions and dense
unique sequences in linear time and in parallel. Fast, parallel generation of data
with special distribution characteristics is the foundation of our data generation
approach.

According to their reference generation procedure, data generators can be
roughly divided into three categories: no reference generation, scanning refer-
ences, and computing references. No reference generation means that no rela-
tionships between tables are explicitly considered. So references are either only
simple or based on mathematical probabilities. In this scheme it is for example
not possible to generate foreign keys on a non-continuous unique key. Examples
are data sets that only consists of single tables or data sets (e.g. SetQuery [17],
TeraSort, MalGen [1], YCSB [8]) or unrelated tables (e.g. Wisconsin database
[4], Bristlecone2).

Scanned references are generated reading the referenced tuple, this is either
done simultaneously to the generation of the referenced tuple or by scanning the
referenced table. This approach is very flexible, since it allows a broad range of
dependencies between tables. However, the generation of dependent tables al-
ways requires the scanning or calculation of the referenced table. When the ref-
erenced table is read, additional I/Os are generated, which in many applications
will limit the maximum data generation speed. Generating tables simultaneously
does not constitute a problem. However, it requires generating all referenced ta-
bles. This is very inefficient, if the referenced tables are very large and don’t
need to be generated, e.g. for an materialized view with aggregation. Most sys-
tems that generate references use scanned references. An example is dbgen3, the
data generator provided by the TPC for the TPC-H benchmark[18]. Another ap-
proach was presented by Bruno and Chaudhuri [7], it largely relies on scanning
a given database to generate various distributions and interdependencies. In [14]
Houkjær et al. describe a graph based generation tool, that models dependen-
cies in a graph and uses a depth-first traversal to generate dependent tables. A
similar approach was presented by Lin et al. [16]. Two further tools that offer
quite similar capabilities are MUDD [21] and PSDG [13]. Both feature descrip-
tion languages for the definition of the data layout and advanced distributions.
2 Available at http://www.continuent.com/community/lab-projects/bristlecone
3 dbgen can be downloaded from http://www.tpc.org/tpch/

http://www.continuent.com/community/lab-projects/bristlecone
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Furthermore, both tools allow parallel generation. However, as described above
the independent generation of dependent data sets is not possible.

A computed reference is recalculated using the fact, that the referenced data
is deterministically generated. This results in a very flexible approach that also
makes it possible to generate data with cyclic dependencies. The downside is the
computational cost for regenerating the keys. However, as our test shows (see
Section 6) current hardware is most often limited by I/O speed. To the best of
our knowledge our tool is the only one that relies on this technique for parallel
data generation.

3 Design Goals

PDGF’s architecture was designed with the following goals: platform indepen-
dence, extensibility, configurability, scalability and high performance. The fol-
lowing sections explain how each goal is met.

3.1 Platform Independence

To achieve a high degree of platform independence, PDGF was written in Java.
It has been tested under Windows and different Linux distributions. Using Java
has no degrading effect on the performance of the generator. In fact, startup
and initialization times can be neglected compared to the time taken to gen-
erate terabytes of data for the cloud. This characteristic gives the just-in-time
compilation technology enough time to compile and optimize the code, so that
a similar generation speed as with pre-compiled binaries can be achieved.

3.2 Extensibility

PDGF is a framework that follows a black box plug-in approach. PDGF com-
ponents can be extended and exchanged easily. Custom plug-ins can be imple-
mented without consideration of programming aspects like parallelism or internal
details. Furthermore, some minor built-in components are also exchangeable via
the plug-in approach. These components include the file caching strategies and
the scheduling strategy which are responsible for work splitting among threads
and nodes. To make the system aware of new plug-ins it is sufficient to place
them in the classpath and to reference them in database scheme description file.

3.3 Configurability

PDGF can be configured by two XML-based configuration files. One file config-
ures the runtime environment, while the other configures the data schema and
generation routines.

Runtime Configuration File. The runtime configuration file determines which
part of the data is generated on a node and how many threads are used. This
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is used for splitting the work between participating nodes. The file is optional,
since these settings can also be specified via command line or within the built-in
mini shell. Listing 1 shows a sample runtime configuration file. This example is
for Node 5 out of 10 nodes. Two worker threads are used.

<?xml version="1.0" encoding="UTF -8"?>

<nodeConfig >

<nodeNumber >5</nodeNumber >

<nodeCount >10</nodeCount >

<workers >2</workers >

</nodeConfig >

Listing 1. ”Runtime configuration file”

Data Schema Configuration File. The data schema configuration file is used to
specify how the data is generated. It follows a hierarchical structure as illustrated
below. As mentioned above, all major components (e.g. the random number
generator, data generators, etc.) can be exchanged by plug-ins. To use a plug-
in, its qualified class name has to be specified in the name attribute of the
corresponding element (see listing 2).

<project name="simpleE -learning">

<scaleFactor >1</scaleFactor >

<seed >1234567890 </seed >

<rng name="DefaultRandomGenerator" />

<output name="CSVRowOutput ">

<outputDir >/tmp</outputDir >

</output>

<tables>

<table name="user ">

<size >13480</size >

<fields>

<field name="user_id">

<type >java.sql.Types.INTEGER </type >

<primary >true </primary > <unique>true </unique>

<generator name="IdGenerator " />

</field>

<field name="degree_program ">

<type >java.sql.Types.VARCHAR </type >

<size >20</size >

<generator name="DictList">

<file >dicts/degree.dict </file >

</generator >

</field>

</fields>

</table>

<table name="seminar"> [..] </table>
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<table name="user_seminare ">

<size >201754</size >

<fields>

<field name="user_id">

<type >java.sql.Types.INTEGER </type >

<reference >

<referencedField >user_id </referencedField >

<referencedTable >user </ referencedTable >

</reference >

<generator name="DefaultReferenceGenerator">

<distribution name="LogNormal ">

<mu>7.60021 </mu> <sigma>1.40058 </sigma>

</distribution >

</generator >

</field>

<field name="degree_program "> [..] </field>

<field name="seminar_id "> [..] </field>

</fields>

</table>

</tables>

</project >

Listing 2. ”Config file example for userSeminar references”

3.4 Scalability

To work in cloud scale environments a data generator must have a deterministic
output regardless the number of participating nodes. Moreover, it is necessary
to achieve a nearly linear performance scaling with an increasing number of
participating nodes.

To fulfill these requirements, we followed an approach that avoids the usage
of a master node or inter-node and inter-process communication. Every node is
able to act independently and process its share of workload without consider-
ing the data generated by other nodes. To achieve this kind of independence, a
combination of multiple instances of random number generators with inexpen-
sive skip-ahead functionality was applied. Allowing each node to determine its
workload is done as follows: Each node starts a process and initializes it with
the total number of participating nodes in addition to the node number. The
workload is divided into work units. Each work unit contains the current table
to be processed, the start row number and the end row number. For example, as-
suming that we have a table T1 with 1000 rows and 10 nodes (node1 to node10),
then the workload is divided as follows:

node1 work unit 1..100
node2 work unit 101..200
..
node10 work unit 901..1000
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The same approach is applied for every table of the database schema. Of course
PDGF also utilizes modern multi-core CPUs by spawning a worker thread per
(virtual) core. The number of worker threads is automatically determined or can
be set manually in the configuration. After the workload has been distributed
on the nodes, the work unit of a table is further divided and distributed on the
worker threads of each node using the same approach. However, the start value
of the work unit of the node should be added to the start and the end of each
worker workload. For instance, assume that Node 2 has four worker threads. The
work unit will be split among the worker threads.

node2 work unit 101..200
worker1 work unit 101..125
worker2 work unit 126..150
worker3 work unit 151..175
worker4 work unit 176..200

3.5 High Performance

PDGF achieves high performance by applying a set of strategies that allow
efficient computation by minimizing the amount of I/O operations. To avoid
synchronization overhead, custom per thread buffering and caching is used. Fur-
thermore, the overhead caused by object creation was reduced by applying eager
object initialization and the strict usage of shared reusable data transfer objects
on a per thread basis.

Recalculating the value for a field on demand is usually less expensive than
reading the data back into memory, as can be seen in the evaluation below. The
static scheduler also generates no network traffic during the data generation.
Avoiding read operations on the generated data limits I/O reads to the initial-
ization stage. Only data generators that require large source files (i.e. dictionar-
ies for text generation) produce I/O read operations. Therefore, an abstraction
layer between the framework and the files was added to provide direct line access
through an interface. This layer can easily be extended to use new file caching
strategies. In the current implementation all files, independent of their size, are
completely cached in the memory during the startup phase. With current hard-
ware this is no problem for files up to hundreds of megabytes. There are many
other aspects that directly or indirectly aid the performance, e.g. the efficient
seeding strategy or the fast random number generator.

4 Data Generation Approach

To generate field values independently and to avoid costly disk reads, a random
number generator (RNG) and a corresponding seed are assigned to each field.
The used RNGs are organized hierarchically so that a deterministic seed for
each field can be calculated, see Figure 2. To calculate a value for a field in a
specific row the field’s RNG only has to be re-seeded with the corresponding
deterministic seed.
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Fig. 2. Seeding strategy of PDGF

The RNG of the project element is considered as the root RNG and its seed
is considered as the root seed. Each seed is used to derive the value of the seeds
of the RNGs at the next lower level of the hierarchy. For example, the project
seed is used to calculate the seed of the RNG of the tables and that of a table
is used to generate seeds for columns and so on. Since there is only one project
seed, all other seeds can be derived from that seed. As table and field (column)
count are static, their seeds are cached after the first generation. Usually PDGF
does not need to run through the complete seeding hierarchy to determine the
seed for the generator RNG. It is sufficient to re-seed the field RNG with its pre-
calculated seed, skip forward to the row needed and get the next value. For the
default RNG used in PDGF this is a very inexpensive operation. After seeding,
the RNG is passed to the corresponding field generator to generate the actual
value.

5 Architecture

Figure 3 shows the architecture of the PDGF data generator. It consists of 5
basic components:

– The controller
– the view
– the generators, which contain

– field generators
– distribution functions
– the random number generator

– The output module for generated data
– The scheduler

Controller/View. The controller takes user input such as the configuration files
from the command line or a built in interactive mini-shell. This input is used to
configure an instance of PDGF and to control the data generation process. By
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Fig. 3. Architecture of PDGF

default PDGF is a stand alone command line tool but other views can be easily
attached to the controller e.g. a GUI. The controller allows the use of PDGF
as a library. Distributed startup is currently realized by an external shell script,
to allow the use with queuing systems. As PDGF can be used as a library, it is
possible to use more complex startup algorithms.

Field Generators. The field generators are the most important part as they
determine how the values for a field are generated. PDGF comes with a set of
generators for general purpose: data, default reference, dictionary, double values,
ids, int values, pseudo text grammar and static values. Since some data sets
require a special structure, e.g. the TPC-H benchmark data set, PDGF provides
a simple interface enabling easy implementation of generator plug-ins without
problems with parallelization or concurrency.

Distribution Functions. The distribution functions allow generators to easily
adapt and exchange how the values will be distributed. The distribution function
uses the uniform random values from the RNG provided to each generator to
calculate the non-uniformly distributed values. As for the field generators PDGF
comes with some basic distribution functions: beta, binomial, exponential, log-
normal, normal, Poisson, and Student’s-t.

Random Number Generator. A parallel random number generator is the key to
make the seeding algorithm efficient and fast. The used RNG generates random
numbers by hashing successive counter values where the seed is the initial value
for the counter. This approach makes skipping ahead very inexpensive. The
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default RNG can also be exchanged and in addition it is even possible to specify
a custom RNG per Generator. As for all other plug-ins, there is an interface that
allows the usage of other RNGs.

Output Module. The output module determines how to save the generated data.
An output module receives the values of an entire row for a table along with
some meta information. By default the generated data is written to a comma
separated value file, one per table and instance. Another possibility is to convert
the generated values into SQL insert statements. These can either be written
to a file or sent directly to a DBMS. In contrast to the other plug-in types an
output plug-in is a serialization point of PDGF as all workers write concurrently
to it.

Scheduler. The scheduler is the most complex plug-in. It influences the frame-
work behavior to a large degree. The scheduler is responsible for dividing the
work among physical nodes and the worker threads on the nodes. PDGF’s de-
fault strategy is to statically divide the work between nodes and workers in junks
of equal size. This is efficient if the data is generated in a homogeneous cluster or
similar environment. In a heterogeneous environment the static approach leads
to varying elapsed times among the participating nodes.

6 Performance Evaluation

We use the TPC-H and the SetQuery databases to evaluate our data generator
[18,17]. All tests are conducted on a high performance cluster with 16 nodes. Each
node has two Intel Xeon QuadCore processors with 2 GHz clock rate, 16 gigabyte
RAM and two 74 GB SATA hard disks configured with RAID 0. Additionally, a
master node is used, which has the same configuration, but an additional hard
disk array with a capacity of 2 TBytes. For both benchmarks two test series are
conducted. The first series tests the data generator’s scalability in terms of data
size on one node. The second series demonstrates the data generator’s scalability
in terms of the number of nodes with fixed data size. Each test was repeated at
least five times. All results are averages of these test runs.

SetQuery. The SetQuery data set consists of a single table BENCH with 21
columns. 13 of the columns are integers with varying cardinalities from 2 to
1, 000, 000 of which 12 are generated randomly. 8 additional columns contain
strings, one with 8 characters and the others with 20 characters. The table size
is scaled linearly according to a scaling factor SF , where SF = 1 results in about
220 MB. First we generated a 100 GB data set on 1 to 16 nodes (i.e. scaling
factor 460). As can be seen in Figure 4 the average speed up per node is linear to
the number of nodes. One node was able to generate about 105 MB per second.
The super linear speed up for a higher number of nodes results from caching
effects, which can be seen more clearly in the second test.
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Fig. 4. Scaleup results for 1 to 16 nodes for a 100 GB SetQuery data set

For the second test, different data sizes are generated on a single node. We use
scale factor 1 to 460. The resulting elapsed times for data generation are shown
in Figure 5. It can be seen that the data generation scales well with the amount
of data. However, the generation is not constant. This is due to caching effects
and initialization. For smaller data sizes the initialization overhead decreases the
overall generation speed. Then at scaling factor 10 (i.e. about 2 GB) there is a
peak that results from hard disk and disk array caches. For larger data sizes the
hard disks write speed is the bottleneck and limits the generation speed to about
100 MB/s.

TPC-H. To test a more complex scenario and compare the generation speed with
other data generation tools, we used our data generator to generate TPC-H data.
TPC-H defines 8 tables with different sizes and different number of columns. The
schema defines foreign key relations and the following data types: integer; char;
varchar; decimal and date. The amount of data is scaled linearly with the scale
factor SF , where SF = 1 will result in 1 GB of data. Again, we tested the data
generator’s scalability in terms of the amount of data and the number of nodes.
Figure 6 shows the data generation elapsed times for scale factor 1, 10 and 100
for a single node. Additionally, we generated the same data sizes with dbgen.
Both axes of the figure are in logarithmic scale. To obtain fair results, dbgen
was started with 8 processes, thus fully exploiting the 8 core system. Generation
times for both tools were CPU bound. Since we had notable variations in the
runtime of dbgen, we only report the best of 5 runs for each scaling factor. As
can be seen in the figure, our configurable and extensible Java implemented tool
can compete with a specialized C implementation.

Figure 7 shows the data generation elapsed times for different cluster sizes.
For all cluster sizes the data generation elapsed time scales linearly with the
data size. Furthermore, the generation time for certain scale factors decreases
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Fig. 6. Comparison of the generation speed of dbgen and PDGF

linearly with the number of nodes it is generated on. However, for scale factor
1 on 10 and 16 nodes the generation speed is significantly slower than for the
other configurations. This is due to the large initialization overhead compared
to the short generation time.

E-Learning. To measure data generation speed for more complicated distributed
values we executed our simple example with the configuration file shown in 2.
Even in this example with log normal distributed values and reference calcula-
tion, the generation speed is only limited by the hard disk speed. The values are
therefore similar to the SetQuery results.
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7 Conclusion

In this paper we presented a framework for parallel data generation for bench-
marking purposes. It uses XML files for the data definition and the configuration
file. Like other advanced data generators (e.g. [21,7,13,14]) it features dependen-
cies between relations and advanced distributions. However, it uses a new com-
putational model, which is based on the fact that pseudo random numbers can
be recomputed deterministically. Using parallel pseudo random number gener-
ators, dependencies in data can be efficiently solved by recomputing referenced
data values. Our experiments show, that this model allows our generic, Java
implemented data generator to compete with C implemented, specialized data
generators.

For future work we are intending to further expand our set of generators and
distributions. Furthermore, we will implement a GUI to allow a more convenient
configuration. We also want to include other features, as for example schema
and distribution retrieval from existing databases. To further increase the per-
formance, we will include new schedulers that reduce wait times for slower nodes,
as well as caching strategies to reduce re-computation of repeatedly used values.

To complete our benchmarking suite, we will use the data generator to im-
plement a query generator. For this we will introduce time series generators.
This will enable the generation of varying query streams as we presented in [19].
Furthermore, it will enable realistic time related data generation.
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Abstract. Transactional systems are the core of the information systems of 
most organizations. Although there is general acknowledgement that failures in 
these systems often entail significant impact both on the proceeds and reputa-
tion of companies, the benchmarks developed and managed by the Transaction 
Processing Performance Council (TPC) still maintain their focus on reporting 
bare performance. Each TPC benchmark has to pass a list of dependability-
related tests (to verify ACID properties), but not all benchmarks require meas-
uring their performances. While TPC-E measures the recovery time of some 
system failures, TPC-H and TPC-C only require functional correctness of such 
recovery. Consequently, systems used in TPC benchmarks are tuned mostly for 
performance. In this paper we argue that nowadays systems should be tuned for 
a more comprehensive suite of dependability tests, and that a dependability 
metric should be part of TPC benchmark publications. The paper discusses 
WHY and HOW this can be achieved. Two approaches are introduced and dis-
cussed: augmenting each TPC benchmark in a customized way, by extending 
each specification individually; and pursuing a more unified approach, defining 
a generic specification that could be adjoined to any TPC benchmark. 

Keywords: Industry standard benchmarks, ACID properties, Durability,  
Dependability. 

1   Introduction 

Transaction Processing Performance Council (TPC) benchmarks [1] have proven use-
ful to both information system vendors and purchasers. While vendors use the results 
of TPC benchmarks to demonstrate performance competitiveness for their existing 
products and to improve the performance of those that are under development, many 
purchasers require TPC benchmark results when considering new systems. During the 
past two decades the TPC has had a significant impact on the transactional systems and 
industry. However, although it raised the bar on expectations of industry standard 



58 R. Almeida et al. 

benchmarks by providing long lasting relevant performance metrics and sound bench-
marking methodologies, its benchmarks fall behind when measuring emerging quality 
attributes of modern transactional systems, such as high availability, reliability and 
maintainability. 

Transactional systems are the core of the information systems of most organiza-
tions. Hence, organizations expect their systems to be highly dependable. Even 
though systems vendors have been continuously improving quality and reliability of 
hardware components, in this day and age dependability has a much broader scope. 
The term dependability has been established by the International Federation for In-
formation Processing (IFIP) Working Group 10.4 [2]. It defines dependability as “the 
trustworthiness of a computing system which allows reliance to be justifiably placed 
on the service it delivers”. In practice, dependability is an integrative concept that 
includes the following attributes [3], [4]: 

• Availability (readiness for correct service) 
• Reliability (continuity of correct service) 
• Safety (absence of catastrophic consequences on user(s) and environment) 
• Confidentiality (absence of unauthorized disclosure of information) 
• Integrity (absence of improper system state alterations) 
• Maintainability (ability to undergo repairs and modifications). 

Although there is general acknowledgement that system failures often entail signifi-
cant impact both on the proceeds and reputations of companies, measuring a system’s 
ability to react and deal with such failures has been largely neglected by the TPC [14]. 
This is due to the fact that assessing dependability attributes of computer systems or 
computer system components dependents on many factors. Some of those factors are 
internal to systems, either pertaining to hardware or software, while others are exter-
nal to systems, such as the environment or the user. In practice, assessing system 
dependability is a difficult problem that has been addressed by using both model-
based and measurement-based techniques. The former include analytical [5] and si-
mulation [6] models, and the latter include field measurement [7], fault injection 
[8],[9] and robustness testing [10],[11]. 

In TPC benchmarks, the well known Atomicity, Consistency, Isolation and Dura-
bility property tests (ACID) constitute a partial measure of the dependability of a 
system. First coined by Jim Gray in the late 1970s and later formally defined by An-
dreas Reuter and Theo Haerder, these important tests define reliable transactional 
systems. Atomicity requires the Database Management System (DBMS) to assure that 
any database modifications follow an ‘all or nothing’ rule. The DBMS must maintain 
the atomic nature of transactions in spite of any application, DBMS, operating system 
or hardware failure. Consistency ensures that the database remains in a consistent 
state, i.e. any transaction takes the database from one consistent state to another con-
sistent state. The Isolation property ensures that other operations cannot access or see 
data that have been modified during an uncommitted transaction. Durability defines 
the ability of the DBMS to recover committed transaction updates against any kind of 
system failure (hardware or software), i.e. once the user or application has been noti-
fied of a transaction's success the transaction will not be lost. In practice, Atomicity, 
Consistency and Durability are the most relevant properties for describing the  
dependability of a transactional system. 
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The ACID tests in TPC benchmarks test the system’s ability to preserve the effects 
of committed transactions and insure database consistency after recovery from any of 
the following failures: permanent irrecoverable failure of any single durable me-
dium (i.e., media that contain database tables and recovery redo log; either an inher-
ently non-volatile medium, e.g., magnetic disk, magnetic tape, optical disk, etc., or a 
volatile medium with its own self-contained power supply); instantaneous interrup-
tion in processing (e.g., system crash and system hang); and failure of all or part of 
main memory, as described in Section 3. The TPC ACID tests, however, do not 
currently cover failures in all components of complex systems. In recent years, mas-
sive scale-out solutions configurations have become a popular way to increase per-
formance in TPC benchmarks. As a consequence, more components are involved. 
Examples of hardware and software failures that can occur in such systems and that 
are not covered currently by the TPC ACID tests are: 

• Loss or high failure rate of a storage controllers and Host Channel Adapter 
(HCA) attaching servers to the storage subsystem; 

• Loss (or high failure rate) of a SAN switches;  
• Connectivity failures, total or partial; 
• Database running out of resources (e.g. memory or disk space to hold addi-

tional data); 
• Application failure (e.g. an application attempts to post data that violates a 

rule that the database itself enforces, such as attempting to create a new ac-
count without supplying an account number);  

• The Operating System (OS) running out of resources (e.g. swap space); and  
• Operator error, such as terminating connections, deleting tables, etc.  

The ACID tests in TPC benchmarks only guarantee the functional correctness of the 
DBMS’ mechanisms to protect any application from failures. In fact, the TPC ACID 
tests do not adequately differentiate the performance impact of certain failures. In 
other words, except for TPC-E that partially measures the recovery time of some 
system failures, TPC benchmarks merely require functional correctness of such re-
coveries. Since all TPC benchmarks require ACID properties, what they measure is 
the general overhead of running a DBMS that has ACID properties activated. For 
instance, one of the durability tests in TPC-H is to simulate hardware failures of log 
and data drives. As many benchmark publications use mirrored disks to protect from 
such failures, they pass the durability tests without any further action. However, mir-
roring log and data disks has performance impacts on how fast logs and data blocks 
can be written. Additionally, it increases the overall cost of the system since more 
disks need to be configured. Alternatively, some benchmark publications do not mir-
ror log and data disks but rely on database backups to recover from such disk failure. 
As a consequence the DBMS recovery time is reported as part of the load time, which 
is a secondary metric in TPC-H.  

In this paper we argue that in this day and age systems should be tuned for a more 
comprehensive suite of dependability tests, and that dependability metrics should be 
part of TPC benchmark publications. The paper discusses WHY and HOW this can be 
achieved. Two approaches are introduced and discussed: 1) extending each TPC 
benchmark specification individually, in a customized way that takes into account the 
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specificities of the different TPC benchmarks; and 2) pursuing a unified approach, 
defining a generic specification that would be applicable to any TPC benchmark, as a 
complement to the already existing standard specifications. In both approaches we 
propose the extension of the ACID tests as a straightforward alternative for defining 
dependability tests required for gathering dependability related metrics. 

The outline of the paper is as follows. Section 2 introduces the dependability ben-
chmarking concept. Section 3 overviews current dependability tests in TPC bench-
marks. Section 4 discusses how to extend the specification of a TPC benchmark in 
order to include dependability aspects, while Section 5 discusses a unified approach 
for augmenting TPC benchmarks as a whole. Finally, Section 6 presents the conclu-
sion and proposes future steps. 

2   The Dependability Benchmarking Concept 

A dependability benchmark is a standardized specification of a procedure that merges 
concepts and techniques from performance benchmarking and experimental depend-
ability assessment to evaluate and compare the dependability and performance of 
computer systems or computer components [12]. Dependability benchmarking is 
mainly inspired on experimental dependability evaluation techniques, and relies on 
subjecting the system to faults, while executing a typical workload, to assess the be-
havior of the system as failures occur.  

TPC benchmarks include two major components: a workload and a set of perform-
ance metrics. To provide a practical way to measure and compare both performance 
and dependability of typical transactional systems, TPC benchmarks have to be en-
hanced with two additional elements [13]: dependability related metrics, and a fault-
load. Figure 1 shows the key components of current performance benchmarks and 
their augmented version considering dependability aspects. 

 
 
 
 
 
 
 
 

Fig. 1. Main components of a TPC benchmark enhanced to include dependability aspects 

The main components of a dependability benchmark are then: 

• Metrics: characterize the performance and dependability of the system under 
benchmarking in the presence of the faultload, while executing the workload.  

• Workload: the work that the system must perform during the benchmark run, 
which emulates real work performed by systems in the field.  

• Faultload: a set of faults and stressful conditions that emulate real faults ex-
perienced by systems in the field.  
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• Benchmark procedure and rules: the description of the setup, procedures and 
rules that must be followed during benchmark implementation/execution.  

2.1   Metrics 

TPC performance benchmarks rely on pure experimental approaches and provide a 
reduced set of metrics, making it easy for the users to obtain and understand the 
benchmark results, and allowing the comparison between different systems in the 
benchmark domain. This is also the approach for dependability benchmarking, where 
only direct experimental measures should be considered, following the traditional 
benchmarking philosophy based on a pure experimental approach. 

Experimental measurements result in values that are directly related to the condi-
tions disclosed in the benchmark report, which presents the benchmark implementa-
tion and execution details. So, similarly to performance benchmarking results (where 
performance values reported do not represent an absolute measure of performance, 
but are meant to compare computer performance in a meaningful way), the depend-
ability benchmark results must also be understood as relative, but vitally useful to 
characterize system dependability in a comparative fashion (e.g., to compare alterna-
tive systems or components) or to improve/ tune system dependability. Dependability 
benchmark metrics for transactional environments should: 

• Report the impact of the faultload on the service provided by the system, as 
perceived by end-users (real end-user and database administrators)  

• Be easy to implement and understand by the benchmark users, and experi-
mental values for these metrics must be simple to obtain.  

• Allow an easy comparison of systems or components within the benchmark 
domain, in both dependability and performance aspects.  

• Not be extrapolated or inferred: values must be directly computed based on 
the information collected during the benchmark execution.  

Extending TPC benchmarks for dependability requires, in addition to the performance 
metrics already considered, explicit dependability related metrics, such as availability 
from the user’s point of view or number of integrity errors detected. Values for the 
performance metrics can also be obtained both in the presence and absence of faults, 
in order to allow the evaluation of the faultload impact on the system performance. 

2.2   Faultload 

The faultload represents a set of faults and stressful conditions that emulates real 
faults experienced by the systems in the field. A faultload can be based on one or 
more of the following classes of faults [13]: 

• Operator faults: operator faults in transactional systems are database admin-
istrator mistakes. The great complexity of database administration tasks and 
the need for tuning and administration in a daily basis clearly illustrate why 
these faults are prevalent in database centric systems.  

• Software faults: software faults (i.e., program defects or bugs) are recognized 
as an important source of system outages, and given the huge complexity of 
today’s software the weight of software faults tends to increase. Recent  
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results have shown that it is possible to emulate software faults according to 
the software fault classes most commonly found in field data.  

• Hardware faults: traditional hardware faults, such as bit-flips and stuck-at, 
are not generally considered an important class of faults in OLTP systems, as 
these faults are usually related to external interferences that, normally, do not 
affect this class of systems. On the other hand, high-level hardware failures 
such as hard disk failures, network interface failures, or failures of the inter-
connection network itself are quite frequent. In fact, most of the transactional 
systems available today have recovery mechanisms explicitly developed to 
recover from hardware components failures.  

The faultload can be based on a single class or include a mixture of faults of different 
classes. Note that each class comprises many types of faults. For example, the opera-
tor faults class includes a large number of types of faults, related to the memory and 
processes administration, the storage management, the database objects (e.g., tables, 
views, etc.) administration, etc. Due to the great complexity of modern systems ad-
ministration, operator faults are becoming the main source of computer failures. Con-
sequently, we believe a faultload primarily focused on this class of faults is the best 
approach for extending TPC benchmarks. 

3   Levels of Dependability Testing in TPC Benchmarks 

One of the commonalities of all current TPC benchmarks is that they require passing 
a set of ACID tests. Atomicity guarantees that no partially-completed operations 
should leave any effects on the data. Consistency is the property of the application 
that requires any execution of transactions to take the database from one consistent 
state to another. Isolation pertains to the extent to which operations done upon data by 
one transaction are "seen" by, or protected from, a different concurrently-running 
transaction or query. Atomicity and consistency are required, as the database must not 
be corrupted by partially completed updates, since reloading is not a viable option for 
repair. Isolation is needed, albeit at a reduced level, because queries may be submitted 
while the database is being updated and should not see uncommitted updates. Durabil-
ity is essential as well, as reloading the database and replaying updates manually is 
not a practical means of dealing with media or system failures. 

TPC-C, TPC-H and TPC-E specifications define different ACI tests but conceptu-
ally they all achieve the same. In the case of TPC-C and TPC-E ACI properties are 
demonstrated on the test database. Although the ACI properties are not exercised for 
all transaction types, the ACI properties are satisfied for all transactions. In TPC-C 
and TPC-E the ACI properties can be demonstrated on any one system for which 
results have been submitted to the TPC, provided that they use the same software 
executables (e.g. Operating System, database manager, transaction programs).  Since 
TPC-H is not a transaction processing benchmark, the ACID properties are demon-
strated outside the timed portion of the test using a series of transactions, not part of 
the benchmark workload, on a qualification database (1GB in size) irrespective of the 
size of the database size (scale factor). The qualification database is intended to be 
identical to the test database in virtually every regard, except size. 
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Durability tests in TPC benchmarks guarantee the ability to preserve the effects of 
committed transactions and ensure database consistency after recovery from any of 
the failures considered in the specifications. They are not intended to be exhaustive 
quality or dependability assurance tests, but instead aim to ensure that the System 
Under Test (SUT) has no unrecoverable Single Points of Failure. The current durabil-
ity requirement does not take into consideration the ability of protection against the 
effect of multiple failures.  

In TPC benchmarks there are three types of failures tested to ensure the durability 
of the database: Durable Medium Failure, Processing Failure, and Loss of All Exter-
nal Power to the SUT. 

Durable Medium Failure: Durable Medium is defined as a field replaceable unit 
data storage medium, that is either a inherently non-volatile medium (e.g., magnetic 
disk, magnetic tape, optical disk, etc.) or volatile medium that will ensure the transfer 
of data automatically, before any data is lost, to an inherently non-volatile medium 
after the failure of external power, independently of reapplication of external power. 

Typically, recovery from a permanent failure of durable media containing (i) data-
base tables and (ii) log files are demonstrated. As a durable medium can fail, this is 
usually protected against by replication on a second durable medium (e.g., mirroring) 
or database logging to another durable medium. Memory can be considered a durable 
medium if it can preserve data long enough to satisfy the requirement, if it is accompa-
nied by an Uninterruptible Power Supply, and the contents of memory can be trans-
ferred to an inherently non-volatile medium during the failure. Note that no distinction 
is made between main memory and memory performing similar permanent or tempo-
rary data storage in other parts of the system (e.g., disk controller caches). 

In TPC-C, the durable media failure test(s) may be performed on a subset of the 
SUT configuration on a scaled down database. The tpmC for the test run must be at 
least 10% of the tpmC reported for the benchmark. In TPC-E, the tests must be per-
formed on a fully scaled database at least 95% of the reported throughput with no 
errors, and must satisfy the transaction mix requirements. As for TPC-H, the durable 
media failure test(s) are preformed on a qualification database using a series of trans-
actions that are not part of the benchmark workload, but are expressly specified for 
the ACID tests.  

Processing Failure: Instantaneous interruption (system or subsystem crash/system 
hang) in processing, which causes all or part of the processing of atomic transactions 
to halt. This may imply abnormal system shutdown, which requires loading of a fresh 
copy of the operating system from the boot device. It does not necessarily imply loss 
of volatile memory. When the recovery mechanism relies on the pre-failure contents 
of volatile memory, the means used to avoid the loss of volatile memory (e.g., an 
Uninterruptible Power Supply) must be included in the system cost calculation. A 
sample mechanism to survive an instantaneous interruption in processing is an un-
do/redo log. In configurations where more than one instance of an operating system 
can participate in an atomic transaction (e.g., database cluster) and are connected via a 
physical medium other than an integrated bus (e.g., bus extender cable, high speed 
LAN, or other connection methods between the multiple instances of the operating 
system that could be vulnerable to a loss from physical disruption), the instantaneous 
interruption of this communication is included in this definition as an item that needs 
to be tested. Interruption of one instance of redundant connections is required. 
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In TPC-C, these tests have to be performed under full terminal load and a fully 
scaled database, and at least 90% of the tpmC reported for the benchmark.  In TPC-E, 
the tests must be performed on a fully scaled database at, or above, 95% of the re-
ported throughput, with no errors, and must satisfy the transaction mix requirements. 
In the case of TPC-H the durable media failure test(s) are preformed on a 1GB quali-
fication database, again using a series of transactions that are expressly specified for 
the ACID tests. 

Loss of All External Power to the SUT: When demonstrating Durability in the event 
of loss of all external power to the SUT, all portions of the SUT must lose power 
simultaneously. The power failure requirement can be satisfied by pricing sufficient 
UPS’s to guarantee the availability of all components that fall under the power failure 
requirement for a period of at least 30 minutes. However, the use of a UPS protected 
configuration must not introduce new single points of failure (i.e., points of failure not 
protected by other parts of the configuration). The 30-minute requirement may be 
proven either through a measurement or through a calculation of the 30-minute power 
requirements (in watts) for the protected portion of the SUT, multiplied by 1.4. 

Tests to demonstrate recovery from this failure for TPC-C, TPC-E and TPC-H are 
performed under same conditions as the previous section. 

 
Table 1. Durability tests in TPC benchmarks 

Benchmark 
Specification 

Durable Medium 
Failure 

Processing Failure Loss of All External 
Power to the SUT 

C =>10% of the tpmC =>90% of the tpmC =>90% of the tpmC 

E => 95% of the tpsE => 95% of the tpsE => 95% of the tpsE 

H On a qualification 
database (1GB) 

On a qualification 
database (1GB) 

On a qualification data-
base (1GB) 

Table 1 summarizes the Durability tests available in TPC benchmarks. In addition to 
the tests presented before, TPC-E requires test sponsors to report how long it takes 
after a catastrophic failure to get the database back up and running at 95% of the re-
ported throughput. It defines three recovery times: 

• Database Recovery Time: the time of recovering the database from a single 
failure. The start of Database Recovery is the time at which database files are 
first accessed by a process that has knowledge of the contents of the files and 
has the intent to recover the database or issue Transactions against the data-
base. The end of Database Recovery is the time at which database files have 
been recovered.  

• Application Recovery Time: the time of recovering the business application 
after a single failure and reaching a point where the business meets certain 
operational criteria. The start of Application Recovery is the time when the 
first Transaction is submitted after the start of Database Recovery. The end 
of Application Recovery is the first time, T, after the start of Application Re-
covery at which the following conditions are met:  

 

o The one-minute average tpsE (i.e., average tpsE over the interval 
from T to T + 1 minute) is greater than or equal to 95% of Reported 
Throughput. 
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o The 20-minute average tpsE (i.e. average tpsE over the interval from 
T to T + 20 minutes) is greater than or equal to 95% of Reported 
Throughput. 

• Business Recovery: the process of recovering from a single failure and 
reaching a point where the business meets certain operational criteria.  

4   Extending the Specification of TPC Benchmarks 

A potential approach towards including dependability in TPC initiatives is to extend 
the specification of each individual benchmark. This can be achieved by directly mod-
ifying the specification (to include additional dependability related clauses) or by 
defining an addendum to that specification (that specifies the additionally clauses in 
an independent manner). In practice, the idea is to use the basic setup, the workload, 
and the performance metrics specified in the TPC specification, and introduce the new 
components mentioned before: metrics related to dependability, and faultload. Our 
proposal is to extend existing ACID tests with cases that emulate operator faults, and 
to use metrics that reflect both performance and key dependability attributes in the 
presences of faults. 

The key advantage of extending each TPC specification is that the dependability 
metrics and the faultload can be tailored to the specificities of the systems in the 
benchmark domain. In fact, for each benchmark, this approach allows to consider the 
most relevant dependability metrics and also to include the most representative faults, 
without concerns regarding portability across different benchmarks (and conse-
quently, across different benchmark domains). On the other hand, this approach re-
quires repeating the definition and approval process for each benchmark, which may 
be a long-term endeavor.  

4.1   Including Dependability Metrics in TPC Benchmarks 

We propose including dependability assessment in TPC benchmarks by considering 
three groups of metrics: baseline performance metrics, performance metrics in the 
presence of faults, and dependability related metrics. While extending the specifica-
tion of a particular TPC benchmark, metrics can be defined in such a way that they 
take into account the specificities (e.g., service provided) of the systems in the 
benchmark domain (i.e., an extended TPC-C would have dependability metrics differ-
ent from an extended TPC-H). 

The baseline performance metrics are the ones that already exist in the TPC per-
formance benchmarks. These metrics typically include the number of operations per 
unit of time (throughput) and the price-per-operation (cost). Note that in the context 
of an extended TPC benchmark, these metrics should represent a baseline perform-
ance, instead of optimized pure performance (as it is the case nowadays), and should 
consider a good compromise between performance and dependability. 

The performance metrics in the presence of the faultload characterize the im-
pact of faults on the transaction execution. Similarly to baseline performance metrics, 
performance metrics in the presence of the faultload should characterize throughput 
and cost. The first portrays the number of transactions executed per unit of time in the 
presence of the faultload (measures the impact of faults in the performance and favors 
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systems with higher capability of tolerating faults, fast recovery time, etc), and the 
second represents the impact of faults in the price-per-operation (measures the relative 
benefit of including fault handling mechanisms in target systems in terms of price). 

The goal of the dependability metrics is to assess and evaluate specific aspects of 
the system dependability. An obvious problem is that dependability includes many 
attributes, for which tens of metrics could be defined. However, benchmarks provid-
ing a large set of measures lead to too many dimensions for results analysis, which 
ultimately makes the results useless. Obviously, as we are also proposing the exten-
sion of ACID tests as an alternative to include dependability attributes, the depend-
ability metrics should focus on aspects that are observable during the execution of 
those tests. Examples of such metrics are recovery time, number of data integrity 
violations, uptime, protection against operator faults, among others.  

4.2   Defining the Faultload by Extending the ACID Tests 

The faultload represents a set of faults and stressful conditions that emulates real 
faults experienced by OLTP systems in the field. As mentioned before, a faultload can 
be based on three major types of faults: operator faults, software faults, and hardware 
faults. Although some of the published studies on the analysis of computer failures in 
the field are not directly focused on transactional systems, available studies clearly 
point operator faults as the most important cause for computer system failures 
[17],[18]. This way, our proposal is to augment the ACID tests by including situations 
that emulate operator mistakes. 

Operator faults in database systems are database administrator mistakes. The great 
complexity of database administration tasks and the need of tuning and administration 
in a daily basis, clearly explains why operator faults (i.e., wrong database administra-
tor actions) are prevalent in database systems. Obviously, end-user errors are not 
considered, as the end-user actions do not affect directly the dependability of DBMS. 
Database administrators manage all aspects of DBMS and, in spite of constant efforts 
to introduce self-maintaining and self-administering features in DBMS, database 
administration still is a job heavily based on human operators. 

The emulation of operator faults in a DBMS can be straightforwardly achieved by 
reproducing common database administrator mistakes, i.e., operator faults can be 
injected in the system by using exactly the same means used in the field by the real 
database administrator. Different DBMS include different sets of administration tasks 
and consequently have different sets of possible operator faults. However, as shown 
in [13], it is possible to establish equivalence among many operator faults in different 
DBMS. In other words, a faultload based on operator faults is fairly portable across 
typical OLTP systems (see [13] for a detailed discussion on operator faults portability 
in three leading DBMS, respectively Oracle 8i, Sybase Adaptive Server 12.5, and 
Informix Dynamic Server 9.3. Furthermore, operator faults also emulate the high-
level hardware access failures (e.g., disk access failures, network access failures, etc) 
normally found in OLTP environments. 

The types of faults to be considered have to be chosen based on a estimation of the 
probability of occurrence, ability to emulate the effects of other types of faults (to 
improve the faultload representativeness), diversity of impact in the system, complex-
ity of required recovery, and portability. The faultload should then be composed by a 
number of faults from diverse types. 
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4.3   The DBench-OLTP Dependability Benchmark, Example of Previous Work 

The DBench-OLTP dependability benchmark, based on TPC-C, is a good example of 
a dependability benchmark [12]. We believe that a similar approach to include de-
pendability evaluation can be used for other TPC benchmarks. DBench-OLTP uses 
the basic setup, the workload, and the performance measures specified in TPC-C and 
introduces the new components mentioned before: measures related to dependabil-
ity and the faultload. This section presents an overview of the DBench-OLTP bench-
mark (adapted from [14]). A detailed description and the complete specification can 
be found at [13]. 

A DBench-OLTP dependability benchmark run includes two main phases. In 
Phase 1, which corresponds to a normal TPC-C execution, the TPC-C workload is run 
without any faults, and the goal is to collect baseline performance metrics. During 
Phase 2, the TPC-C workload is run in the presence of the faultload to measure the 
impact of faults on specific aspects of the target system dependability. As shown in 
Figure 1, Phase 2 is composed by several fault injection slots. 

The DBench-OLTP benchmark can be used considering three different faultloads 
each one based on a different class of faults, namely: 1) operator faults (i.e., data-
base administrator mistakes); 2) software faults (i.e., program bugs at the operating 
system level); or 3) high-level hardware failures (e.g., hard disk failures, power 
failures, etc). A general faultload that combines the three classes is also possible. 

Fig. 2. Benchmark run and injection slots 

The DBench-OLTP specification follows the well-accepted style of the TPC-C 
standard specification, and is structured in clauses that define and specify how to 
implement the different components of the benchmark. Briefly, the structure of the 
DBench-OLTP dependability benchmark specification is as follows (see [13]): 

• Clause 1. Preamble: This clause provides an introduction to the DBench-
OLTP benchmark and to the benchmark specification.  

• Clause 2. Benchmark Setup: The benchmark setup is presented in this clause. 
The following elements of the setup are defined: Test configuration, System 
Under Test (SUT), Driver System, and Driver System/SUT Communications 
Interface.  
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• Clause 3. Benchmark Procedure: The benchmarking procedure, the phase 1 
and phase 2 requirements, and the integrity testing requirements are pre-
sented in clause 3.  

• Clause 4. Metrics: This clause defines the metrics provided by the bench-
mark and gives some guidelines on how to compute those metrics.  

• Clause 5. Faultload: Clause 5 presents the fault types that compose faultload 
and provides detailed guidelines to define and implement the faultload. The 
steps needed to inject the faults are also presented.  

• Clause 6. Full Disclosure Report: Clause 6 specifies what needs to be in-
cluded in the full disclosure report. Like in TPC-C performance benchmark, 
the DBench-OLTP benchmark requires all the aspects concerning the bench-
mark implementation to be disclosed together with the benchmark results.  

5   Unified Approach for Augmenting TPC Benchmarks 

In this section, we examine another approach to include a dependability component 
into TPC benchmarks. As mentioned earlier, all TPC benchmarks have some depend-
ability elements included implicitly in the specification. The previous section dis-
cussed some of the alternatives for including and measuring dependability separately 
in each of the TPC benchmarks. This section explores ideas on how to define a uni-
fied approach to dependability that is applicable to all TPC benchmarks. 

A unified approach would mean defining a set of criteria or tests that would be car-
ried out on the benchmark system and a methodology to measure and report the test 
outcomes. This approach was successfully demonstrated last year by the TPC-Energy 
specification [15], which defines an Energy Metric that can be measured and reported 
on any TPC benchmark. 

Defining a specification and being able to include it uniformly in all benchmarks 
has several advantages. The “define-once-use-many-times” has obvious cost-savings 
advantages in terms of saving time in defining and implementing the specification. 
Additionally, if defined across all benchmarks, it is easier for the benchmark sponsor, 
from the execution-viewpoint, to implement it for multiple benchmarks. The specifica-
tion is easier to maintain and to extend for future benchmarks. It promotes comparison 
across vendors and possibly even across benchmarks for those using the benchmark 
results to evaluate systems. 

However, there are also multiple challenges in defining a global specification. For 
all the existing benchmarks, which have their own schemas and workloads already 
defined, it will be a difficult to work within the constraints to come up with tests that 
can be applied uniformly. Modifications to schemas and workload are not possible as 
that would affect the current set of TPC results, published to-date and render them 
non-comparable to future ones. If additions to schemas and workload are envisioned, 
these will have to be carried out carefully to ensure that the existing primary metrics 
are not impacted in any way. These constraints are likely to impose a limit on the 
scope of dependability metrics that could be included in a unified Dependability  
Specification. 

Let us now look into how dependability metrics can be integrated as a metric in all 
TPC benchmarks. In including a measure of dependability for a benchmark, two  
possible methodologies are considered. The first approach is to think of dependability 
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as a set of features or functionality that a system possesses. If the feature does exist on 
the benchmark system, it is flagged in a way such that its existence is noted. The 
second is to define a series of tests or a workload that “measures” dependability and 
constitutes a secondary metric for the benchmark. While the first approach only tags 
the existence of dependability features, the second method not only reports their exis-
tence but also measures their performance. These two methods are examined in the 
remaining of this section. 

5.1   Dependency Level Approach 

In the Dependency Level approach dependability benchmarking is defined as a set of 
tests that a benchmark sponsor must execute to proof the existence of a set of depend-
ability functionalities. We do not define a dependability metric, which could be de-
rived from this set of tests. Rather, we define a reporting metric, called “Dependency 
Level”. The unit of the dependency level is a number indicating how “dependent” a 
system is (i.e., level 1, level 2, etc.). A higher number indicates a higher level of de-
pendability of the system. We define the following levels: 

Level 1: System is “available” (i.e., not shut down and restarted) through the 
load of the database and performance runs in the benchmark 

Level 2: Level 1 + ACID tests demonstrated on the test database; 
Level 3: Level 2 + Recovery times for system hardware, operating system re-

boot and database recovery reported during the crash durability test; 
Level 4: Level 3 + Reporting of any hardware, software or database errors dur-

ing the audit runs. 
Level 5: Level 4 + Protection against some user level errors (i.e., operator 

faults) demonstrated by the execution of additional tests during ACID. 

The list of functionality defined above is generic and can be easily applied to all TPC 
benchmarks. No modifications or additions are required to any of the benchmark 
database schema. For each level, a definition of the requirements to meet all the stated 
functionality would have to be defined. In case of some levels such as level 5, addi-
tional tests would have to be defined in a generic manner so that they are benchmark 
independent. An example of a user-level error test is the dropping of a “small” data-
base table. Small could be defined as having at most a certain percentage of the over-
all database size. All three TPC benchmarks have tables with various sizes so that one 
could define the percentage such that one table in each benchmark qualifies. 

The dependency level approach has several advantages. It is easier to define and 
apply uniformly across all TPC benchmarks. Ease of benchmarking would be main-
tained as reporting the dependency level could be left to the discretion of the bench-
mark sponsor. Such an optional reporting has been proven advantageous by the recent 
introduction of optional energy reporting. However, this may also be a negative as 
there would be no concrete inducement for a benchmark sponsor to report at a higher 
dependency level. 

Although most of the examples quoted above for dependency levels are easy to 
implement there are some that would be more difficult to define. A dependability 
feature like requirements for error monitoring is more variable across vendors as there 
are many different levels and types of error reporting on a system. Description of 
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what errors must be reported may be complex, especially as all vendors would be 
required to report at the same level of detail and granularity.  

Overall, it appears that the Dependency level approach could be implemented fair-
ly quickly and uniformly across all specifications, depending on the number of levels 
and dependability metrics defined in these levels. Its main deficiency is that it is lim-
ited in use, as it does not report a numerical metric that can be quantitatively com-
pared across vendors. 

5.2   Dependability Metric Approach 

The second approach is to have a Dependability Metric, which would be reported as a 
secondary metric for all TPC benchmarks. For such a dependability metric, a set of 
dependability metrics have to be identified and tests would have to be created for each 
of these features. The tests would include the definition of the workload or fault-load 
that needs to be applied to the system and their elapsed times. Assuming that the 
faultload (see also Section 1.2) consisted of a set of tests, some sort of weighted aver-
age of the elapsed times would define the dependability metric for the benchmarks. 
Defining each test must include the following steps: 

• Define a dependability feature that has to be measured 
• Define a test that would adequately measure the feature, in the context of all 

existing benchmarks 

• Define the measurement interval for the test 

Once several such dependability features have been identified, a secondary metric that 
combines the measurements of all the tests will have to be defined. This could simply 
be a sum or an average, weighted or otherwise of all the measurements (see [16] for a 
detailed discussion on metric selection). 

As examples, let’s examine two dependability features that were also examined in 
the previous section: recovery time and protection against user-level errors. Recovery 
times for the system hardware, operating system and database are useful metrics. 
They indicate how quickly a system can recover from failures. These recovery times 
can be extracted from a simple extension of the system crash test during the ACID 
test (i.e. durability test), which already exists in all TPC benchmarks. It would not 
require any changes to the existing database specifications and would be supplemen-
tary data that would be required to be collected during the crash test. TPC-E already 
includes some requirements around recovery times for the database. This test can be 
augmented easily in a similar way to measure each of these recovery times. 

Another example of a dependability measure that can be applied uniformly across 
benchmarks is protection against user-level errors. A test could be added to the exist-
ing ACID tests to drop a small table in the benchmark and measure the time it takes to 
drop and restore the table (i.e., enable the database to use the table). This would not 
require a change to the schema or workload. The operator fault test can be specified 
by using a small table in the schema of each benchmark. Again “small” would need to 
be defined. The choice of the table to be dropped and subsequently added back to the 
database can be specified in terms of its minimum size and need not be common 
across all benchmarks, for ease of use. 

Including dependability as a secondary metric provides many advantages to  
the customer over specifying a dependability level. It provides a basis for numeric 
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comparison, which is easier to use. It would drive improvements in the dependability 
features since they would now be measured and hence could be compared across 
published results. Including and measuring the dependability features would drive 
benchmarking to be more representative of customer environments. 

The metric-based approach is however more challenging to define, both in terms of 
ensuring a broad coverage of dependability measures in the metric and in defining 
tests that work across the entire spectrum of TPC benchmarks. Augmenting ACID 
tests is an obvious approach but additional tests may have to include additions to the 
schema. This could be complex to implement and also add to the complexity of exe-
cution of the benchmark.  

The tradeoffs of difficulty of implementation and complexity of execution should 
be weighed against a more useful metric when deciding between Dependency Level 
and Dependability Metric. 

6   Conclusion and Future Steps 

This paper discussed different approaches for extending TPC benchmarks with de-
pendability measures. This is a key aspect for the future of the TPC benchmark stan-
dards, as it is clear that the industry demands metrics and methodologies for measuring 
dependability of transactional systems. The paper discussed WHY and HOW this 
could be achieved for TPC benchmarks, following two different approaches: augment-
ing each TPC benchmark in a customized way (i.e., extending each specification indi-
vidually) and pursuing a unified approach (i.e., defining a generic specification that 
could be applied to any TPC benchmark). Both approaches include the extension of 
existing ACID tests in order to allow assessing specific dependability features.  

While the first approach allows defining metrics specifically targeting the systems 
in the benchmarking domain, as demonstrated by the DBench-OLTP benchmark, it 
requires revising the current specification of each TPC benchmark. On the other hand, 
the second approach allows a “define-once-use-many-times” that has obvious advan-
tages in terms of saving time in defining and implementing the specification. In fact, 
the specification is easier to maintain and to extend for future benchmarks. The draw-
back is that a unified approach limits the scope of the benchmark metrics, as it must 
be based in the common features of the existing benchmarks. 

Based on our analysis we argue that the TPC should envisage the inclusion of de-
pendability metrics in its benchmarks following an incremental approach. Starting 
from a single key metric, the unified approach could be applied to broadly dissemi-
nate the concept and foster the interest of vendors and purchasers on using this type of 
metrics for system comparison. Afterwards, it could be extended to include more 
metrics. Finally, after stabilizing the concept and raising interest on dependability 
aspects, some TPC benchmarks could be augmented to include the most relevant 
dependability metrics for the systems in each particular benchmarking domain. As 
future work we will research the steps required to help TPC implementing these steps.  
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Abstract. The value of a benchmark metric is directly related to how relevant it 
is to the consumer.  

The inclusion of a price/performance metric and an availability date metric 
in TPC benchmarks has provided added value to consumers since the first TPC 
benchmark was introduced in 1989. However, over time the relative value of 
these metrics has diminished – both because the base price of hardware and 
software comprises a smaller fraction of the total cost of ownership (TCO) and 
because TPC pricing requirements have not kept pace with changes in the  
industry. This paper aims to  

• Highlight the strengths provided by including price/performance 
and availability metrics in benchmarks. 

• Identify areas where the relative value of these metrics has dimin-
ished, over time. 

• Propose enhancements that could return them to provide high value 
to the consumer. 

Many of the ideas in this paper are a result of nearly a decade of discussions 
with many benchmark experts. It would be difficult to identify an originator for 
each specific suggestion. However, it is nearly certain that this is the first com-
prehensive list where this collection of ideas is presented.  

Keywords: Price/Performance, TCO, Total Cost of Ownership, Benchmark, 
TPC. 

1   Introduction 

When the Transaction Processing Performance Council brought out its first bench-
mark, TPC Benchmark A (TPC-A), in November of 1989 it introduced a novel  
approach that has provided value for over two decades. Not only was a strict method-
ology developed for implementing and measuring a performance benchmark to 
achieve a qualified throughput capacity for a computer system, but rules for defining 
a comparable price were developed and the values of price/performance and the date 
of availability of the total system were raised to be equal metrics along side the per-
formance capacity metric.  

These requirements provided substantial value to the consumer – by ensuring that 
the configurations that were measured were real configurations for which orders could 
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be placed and deliveries received, and by discouraging test sponsors from overloading 
their system with expensive components in order to achieve the highest performance 
score.  

For availability, there were two basic rules: 

1. All hardware and software had to be orderable on the day the benchmark re-
sult was announced (This generally meant that all hardware and software was 
also already announced to the general public.) 

2. All hardware and software had to be deliverable within six months of the day 
the benchmark result was announced. 

For price, there were three basic rules:  

1. The price had to include all hardware and software for the entire configura-
tion, including system, storage, end-user work stations, switches, software to 
execute the benchmark and software to develop the benchmark. 

2. In an attempt to reflect part of the cost of ownership, the price had to include 
5 years of maintenance for both hardware and software. 

3. The price had to be one that any customer could expect to pay 
 
In the TPC’s early years, steps were taken to strengthen the value of TPC benchmark 
results, including the price and availability metrics [1]. The TPC’s Technical Advi-
sory Board (TAB) was tasked with evaluating claims that benchmarks were not  
executed correctly. TPC Policy wording was generated to encourage fair marketing 
practices where TPC benchmark results were concerned. An audit process was insti-
tuted to require an independent attestation of the validity of results. Benchmark lan-
guage was created to preclude the use of specialized hardware or software that was 
developed solely for the purpose of enhancing the benchmark result.  

1.1   Eroding Strengths of the Original Metrics 

Throughout the past two decades, four key trends have caused the effectiveness of 
these metrics to diminish.  

1. Advances in technology have shifted the way that hardware and software 
providers interact with their customers, making some of the assumptions 
made in 1989 less relevant 

2. Similarly, advances in technology have allowed the creation of very complex 
consumer applications, meaning that the relatively simple benchmark appli-
cations require memory and storage configurations that are much larger than 
what is installed in a typical consumer environment 

3. New methods of computer solution delivery have been developed that are 
not included in the TPC’s specification or policy language 

4. In addressing these issues, the TPC has tended to relax requirements stan-
dards to accommodate an industry change rather than strengthening them. 

1.2   Proposed Enhancements Included in This Paper 

It is worth noting that, while the descriptions of the Price/Performance and Availability 
Date metrics and their historical changes are based on research and fact, the proposals 
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to enhance the impact of these metrics are editorial in nature. They are the result of 
collective experiences in the benchmarking environment, but they are essentially opin-
ion and are presented without proof. The intent of this method is to initiate conversa-
tions on these topics within the TPC and invite public feedback, as appropriate.  

2   Availability Date 

We begin with this metric because it is less complex than the price/performance met-
ric and we feel that the proposals for enhancing the metric are fairly straightforward.  

As noted in the introduction, it is to the TPC’s credit that this is a “metric”. 
Benchmark results are used in marketing materials and in consumer purchase deci-
sions. It is important for the consumer to understand whether the promised perform-
ance is available right away, in 2 months or in 6 months. The TPC requires this metric 
to be displayed whenever TPC benchmark results are used in public materials.  

Initially, the availability requirement for TPC benchmarks was that all hardware 
and software must be orderable from the day the benchmark result is announced and 
must be available for delivery within 6 months. The declared Availability Date Metric 
was that date when all components of the benchmark configuration could be delivered 
to a customer.  

Three things have changed within the industry and/or within the TPC:  
First, the delivery process for some software changed. Companies no longer held 

orders on the books for long periods of time. Instead, they chose to only allow cus-
tomers to order the software when it became ready to be shipped – often via a web 
download. The TPC’s response was to say “OK, hardware has to be orderable from 
day one, but for software, you only have to describe how it can be ordered by the 
availability date.” This response was natural, but had the effect of relaxing the  
requirement. 

This created a disparity between the way hardware availability and software avail-
ability were treated, so the second change was to say: “OK, we’ll treat everyone 
equally, but if your product is not orderable, you have to at least say how it can be 
ordered at a later date and show that the same process could be used to order a similar 
existing product, today.” This response was fair and reasonable, and the TPC deserves 
credit for adding the requirement that an established order process must exist, even if 
a component isn’t orderable until a later date. However, the net affect was to relax the 
prior requirement. 

Finally, new development processes for both hardware and software have caused 
the rate of product turnover and new product delivery to accelerate. Very few con-
sumer decisions are made based on what is available in 6 months – many are made 
based on what is available “now”.  This shift has not yet been addressed by the TPC. 

2.1   Availability Date – Proposed Enhancements for the TPC 

An immediate approach to strengthening the Availability Date metric lies in the hands 
of consumers, analysts and trade press. The approach is simply to give attention to 
this metric; to highlight when the products for a benchmark result are already avail-
able or will soon be available and contrast that with products that won’t be available 
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for 5-6 months. If consumers insisted on only using benchmarks that had fully avail-
able configurations, more benchmark results would be published on available product 
sets.  

However, the main tenant of this paper is to focus on what the TPC can do to en-
hance its metrics. The strength of the availability metric can be improved with two 
simple changes. The challenge with both is that they will remove some freedom that 
benchmark sponsors have enjoyed.  

1. Change the availability date window to 90 days. The benchmarks of the Stan-
dard Performance Evaluation Corporation (SPEC) typically require bench-
marked products to be available within 90 days, demonstrating that a 90-day 
rule works, even though it is “nice” to have the 185-day buffer (extended from 
6 months to ensure that it would be at least six months, regardless of the start 
date). 

2. Require that all products used in producing a result be orderable on the day the 
result is announced – period. The TPC’s software maintenance requirements 
already include support for product updates, so if the level of software needed 
to support a result is not immediately available, all that should be needed is to 
be able to order the predecessor level. If it is a new version that is not yet or-
derable, then the upgrade price from the prior version to the new version 
should be included. If it is a brand new product that has never been orderable, 
before, then it shouldn’t be included in a benchmark result until the provider 
has enough confidence in it to allow it to be ordered. A corollary to this is that 
all products used in producing a benchmark result should be described to con-
sumers somewhere other than in the benchmark result disclosure.  

3   Hardware Pricing 

From a surface view, the task of generating a price for a hardware configuration ap-
pears to be very straightforward: There is a list of physical components that are re-
quired to measure the benchmark; There is a price associated with each component; 
Multiply the price and the quantity of each component and add them together - - Triv-
ial if all customers expect to pay “list price”, or even if all suppliers expect to offer 
similar discounts.  However, this is hardly the case. Some suppliers list their products 
with fairly high profit margins and frequently offer deep discounts to their customers. 
Some suppliers discount very little, but price their offerings very competitively. Some 
suppliers tend to sell their product through resellers, where the “list price” of the sup-
plier may be 20% higher than the list price of the reseller.  

To deal with this, the TPC has a good set of rules to ensure that prices are mean-
ingful and comparable. Many of these also apply to software and maintenance, but are 
listed here, first:  

• The entire system under test, including storage and all servers, must be 
priced 

• Discounts are allowed, but the basis of the discount must be described 
• Both prices and discounts must be available to any customer 
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• Comparisons of prices must use the complete price, not component subsets, 
because there is no guarantee that the components are used in the same way 
in two different benchmark results 

However, over time changes have been made to the specifications and changes have 
occurred in the industry that reduce the overall importance of this portion of the price. 
In particular:  

• Where TPC-A and TPC-C once required pricing of workstations as part of 
the “total” system, the number of simulated users grew to be so large that the 
workstation price overwhelmed the price of the rest of the system, so it was 
eliminated from the requirement. This made the actual price more relevant, 
but it relaxed the “total system” requirement and caused the price per unit of 
work to be a smaller physical value. 

• TPC-C once required pricing sufficient storage to contain 180 days of ar-
chived data, but the benchmark transactions were so efficient that this re-
quired far more storage than a typical configuration would need, so the 
amount of space was reduced to 60 days of archived data. Again, this served 
to make the price more relevant, but caused the price/performance metric to 
have a smaller physical value. 

• Benchmark applications have become highly optimized in comparison with 
typical consumer applications. As a result, configurations needed to support 
the benchmarks, even with the adjustments listed above, have far more disk 
and memory than typical “customer” configurations. Discounts that can be 
offered on such configurations could potentially be deeper than some cus-
tomers would pay for more typical configurations.  

• Recognizing that a specific sales organization could deliver different pricing 
than a more general pricing method, such as a web tool, all that is required is 
to identify a pricing source that any customer has access to (1-800-BUY-
ACPU, for example). This method has been casually called “TPC Price 
Desk” The current availability requirements dictate that such a method be al-
lowed, since benchmarks are allowed to be published prior when configura-
tions can be ordered through a normal sales channel.  

The first two of these are really reflective of the third point. TPC benchmarks are 
focused on a specific set of database operations. They are touted as “full system”, but 
they do not include the complete path of a “full application”. In fact, while the data-
base activity is fairly robust, the actual “application” layer is as slim as the benchmark 
implementers can make it – in order to achieve more database performance. In reality, 
processor configurations used to measure these “database subsystem” benchmarks 
would process a fraction of the data processed by the benchmark, because there is a 
great deal of other work that they must accomplish outside of the database subsystem. 
Consequently, the amount of memory and storage configured to support the database 
is about an order of magnitude more than is typically included in a price quotation for 
a consumer configuration.  
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3.1   Hardware Pricing – Proposed Enhancements for the TPC 

If we accept that the benchmark configurations are exaggerated, and that this allows 
for pricing that, while be normal for these configurations, could be abnormal for more 
typical configurations, it follows that to the TPC should find a way to price more 
conservative configurations. There are three ways to accomplish this: 

1. Patch the benchmarks to reduce requirements, as was done with the first two 
bullets, above. This provides a temporary improvement, but it is cosmetic, at 
best.  

2. Change the benchmark to become more robust and require more processing 
resources relative to the other resources in the configuration. This is an admi-
rable approach, and one that partially succeeded with the introduction of 
TPC-E, but benchmark development takes a long time and this would dimin-
ish the data base focus that is a mainstay of TPC benchmarks.  

3. Define a subset configuration to be priced, based on the measured configura-
tion. Each benchmark would have its own rules. For example, TPC-C might 
require pricing a database server with 1/8 the memory used in the benchmark 
and 1/8 the total number of disks.  

This last solution is radical, in that it diverts from the standard rule of “price what you 
measure, measure what you price.” However, it resolves the challenges listed here 
quite nicely: Configurations would be of a size that customers might actually consider 
buying. Published benchmark prices would be self-verifying, because customers 
would go to their price source of choice and demand a similar or better price.. Fur-
thermore, the methodology associated with this can be adjusted in a new version of 
the benchmark to reflect current buying practices and technology.  

The fundamental point is to price configurations that have meaning to the con-
sumer, thereby increasing the relevance of the price/performance metric. 

4   Software Pricing 

Software presents a particular challenge in pricing requirements, in that customers do 
not buy software. They pay a license fee for the privilege to use the software. There 
are often a number of options available to consumers:  

• license a specific number of users to exercise the software, where a small 
number of sessions are expected to use the software  

• license a specific number of processors or processor-cores on which the 
software will be exercised, where the use of the software is unlimited, as 
long as it is run on no more physical resources than licensed 

• purchase a perpetual license, where the licensee is allowed to use the soft-
ware “forever”, even after maintenance support for the software is dropped  

• purchase a term-limited license, where the licensee is not allowed to use the 
software once the term expires, unless the license is extended 

• purchase of a utility-based license, where charges are based on the frequency 
with which the code is exercised. 

Any of these options may be viable for a particular consumer scenario. However, a 
performance benchmark introduces the challenge of producing comparable results.  
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Utility-based licenses would be difficult to enforce in a benchmark environment. 
They are typically oriented to a very large number of potential users, each only  
accessing the computer for a brief period. This is in contrast to benchmark environ-
ments when the computer is running at maximum capacity.  

Examining user-based licensing,  the benchmark application tends to be simpler 
and more stream-lined than a typical consumer application, the number of active ses-
sions needed to drive a system to full capacity may be far fewer than the number that 
may access similar software in a consumer environment. This is compensated in TPC-
E, where the number of users licensed must be equal to the tpsE throughput value and 
in TPC-H, where the number of licensed users must be 10 times the number of query 
streams executed – with the result that almost all benchmark results use licenses that 
are priced by number of processors or cores.  

Price by cores also has challenges. Seldom will a large system be used exclusively 
for database activity, and seldom will it be executing at 100% of system capacity, 
Consequently, there are more processing cores active during the benchmark than in 
almost any consumer scenario. Furthermore, all processor cores are not created 
equally, so many software vendors establish rules for each of several architectures 
that either charge less per core for some architectures than others, or that create a 
smaller number of “chargeable cores” than what is in the configuration. However, this 
is also how the licenses are presented to actual consumers, so apart from the potential 
for a company to provide lower prices for software running on “preferred” hardware 
than on other hardware, it may be as close to reality as possible. 

Finally, there is the difference between perpetual and term-limited licensing. Term-
limits are more similar to a lease of a license than a purchase. Note that, in the hard-
ware discussion, the term “lease” did not surface - - This is because the TPC has  
successfully barred hardware leases from being used in benchmark pricing. This does 
not mean that a hardware lease is not a viable option for a consumer – only that it was 
deemed not to be comparable with hardware purchases. Even after a hardware product 
has been fully depreciated, the consumer has the option of retaining and exercising 
the hardware – This is not the case with term-limited licenses.  

4.1   Software Pricing – Proposed Enhancements for the TPC 

The pricing of software could be made to be much more comparable with the imple-
mentation of three enhancements:  

1. Treat hardware and software consitently by requiring a “perpetual” purchase 
of the entire configuration, retaining some residual value for as long as the 
consumer desires. 

2. Rather than try to compensate for the simulated number of users in a con-
figuration, the TPC should simply disallow per-user-based or usage-based li-
censes and require perpetual software licenses on a per-core or per-processor 
basis.  

3. Apply a “reality adjustment” that is similar to the proposal for storage and 
memory in the hardware examples. Each benchmark committee should de-
termine the ratio of number of cores to be licensed relative to the number 
measured, perhaps reducing this be a factor of 2-3. 
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As with hardware, the latter suggestion strays from the concept of “Price what you 
measure; measure what you price.” It is proposed in the spirit of delivering priced 
configurations that are consumer-based, rather than benchmark-based, to encourage 
pricing of configurations that are relevant to consumers.  

5   Maintenance Pricing 

Maintenance of hardware and software is a critical part of data center operations, and 
a significant component in the total cost of ownership for a computing solution. Main-
tenance, or the broader category of “service,” is an area that is uniquely customizable 
to fit the consumer’s needs. Almost all customers require warranty-level maintenance 
on their products to fix items that fail or have defects, but most customers also require 
a level of additional support that helps them to make optimal use of their investment. 
This includes such things as software upgrades, consultation, education offerings, 
predictive analysis and myriad other options. Because customers’ needs differ, prod-
uct suppliers tend to offer a variety of options. 

When the TPC first defined rules for pricing, many systems were used for well 
over five years before being replaced with newer technology. Five years was also the 
fastest that the United States Internal Revenue Service and United States Generally 
Accepted Accounting Principles (GAAP) allowed for depreciation of assets. Similar 
rules were established with the International Financial Reporting Standards (IFRS) 
and the International Accounting Standards (IAS) This prompted the TPC to require 
maintenance support for a five-year period from the initial publish date. Over time, it 
appeared that the rapid turn-over of technology would prompt depreciation schedules 
to be shortened to three years, and the TPC adjusted to use that schedule.  

Hardware maintenance requirements for TPC benchmarks are fairly straightfor-
ward and, in the opinion of this author, fairly close to consumer requirements. In 
summary, there are two methods of maintenance allowed for hardware by the bench-
mark specifications:  

1. 7X24 support with 4-hour response time to begin working a problem, con-
tinuing work until the problem is resolved 

2. For customer-replaceable parts, the option to price an on-location supply of 
10% extra parts, with a mail-in replacement offering for failed parts.  

Although other hardware maintenance offerings are provided by many vendors, these 
requirements are representative of what a consumer might choose in an environment 
that supports critical run-your-business applications. Not all vendors offer the second 
option, but virtually all vendors that sell into mission-critical environments offer the 
first of these.  

It is more difficult to define specific levels of software support, because software 
also has “soft” problems – namely user errors, software configuration questions, im-
plementation and optimization concerns, and the like. Furthermore, many software 
providers handle these support items in a different way. To provide a set of require-
ments that are common among most software vendors, the TPC chose a “lowest 
common denominator” approach, requiring only the most basic maintenance for soft-
ware. The software maintenance requirements can be summarized as: 
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1. 7X24 support with a 4-hour response time to acknowledge that a software 
bug exists and begin working on it - - - but with no specific commitment to 
resolve the bug in any given amount of time 

2. Access to maintenance update software, such as Service Packs, that include 
rolled-up groups of fixes to previously resolved software bugs.  

Areas that are not included and are important to almost all customers: 

• Functional software updates (new releases) 
• Operational guidance 
• Customer Education 

The result is that often the maintenance offerings that are priced in a benchmark sat-
isfy only the bare minimum requirements of the benchmark and do not reflect the 
needs of a typical consumer.  

5.1   Maintenance Pricing – Proposed Enhancements for the TPC 

Three enhancements would bring TPC requirements for maintenance and support to a 
point where it would reflect relevant information for the consumer:  

1. It is first worth noting that depreciation schedules have remained at five 
years, for the most part. A reflection of this can be found in the United States 
IRS form 4562, used to document depreciation for tax purposes in the United 
States [2].Consequently, it is recommended that maintenance prices be ex-
tended to the TPC’s original five-year requirement.  

2. However, we also note that the initial purchase of the equipment is a capital 
investment, while the support costs are considered to be expenses – most of-
ten spread on an annual, quarterly, or monthly basis. Although the total 
price/performance metric should reflect the full five-year costs of initial pur-
chase and maintenance, there should be secondary metrics that call out the 
initial purchase price and the on-going yearly maintenance after the first 
year. It should be valid to compare benchmark results based on initial pur-
chase price, annual maintenance and total 5-year price.  

3. Most important and most difficult to define: The requirements for software 
support should be raised to a level that is relevant to a consumer whose busi-
ness depends on the products installed on the system(s). Support require-
ments should include the current TPC requirements, plus ongoing product 
updates, operational guidance and some level of customer education. Each 
component of maintenance should be priced for no more than one year, mul-
tiplying that value by the number of years needed (assuming some coverage 
is included in the purchase price for the first year) to create a five-year main-
tenance cost. The challenge will be drawing a line between “operational 
guidance” and “consultation services”. Most companies offer both, but do 
not always use the same criteria in shifting from the moderately priced, al-
most always purchased option and the more expensive level of support that 
would include design guidance, optimization and other services that might 
more typically be fee-for-service options.  
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6   The Relationship between the “TPC Price” and TCO 

The TPC does not claim that the required price sheet for their benchmarks represents 
the total cost of ownership of the system, although the inclusion of maintenance re-
quirements have prompted some to call it the “cost of ownership” without the word, 
“total.” The following table represents many of the elements of the total cost of own-
ership for a computer system, along with comments on whether the cost is covered or 
partially covered in the existing TPC requirements or in the proposed enhanced  
requirements. 

 
Element Included in 

TPC-Price? 
Included in 
Recom-
mendations 
? 

Comment 

Initial HW cost Yes Yes -  
Improved 

Improved in recommendations by 
requiring a more “consumer-
appropriate” configuration 

Initial OS, Middleware, 
Database SW cost 

Yes Yes -  
Improved 

Improved in recommendations by 
requiring perpetual licenses on a 
“typical” number of processor cores 

Initial Application SW 
cost 

No No Often a major component of the cost, 
but not possible to include in a 
generic benchmark 

HW upgrades cost No No Ability to upgrade without a total 
replacement can be a key factor in a 
purchase decision, but is not  
included, here. 

OS/Middleware/Database 
SW upgrades cost 

No Yes Proposed support costs include 
software upgrades 

Application upgrades cost No No Another missing element that cannot 
be in a generic benchmark 

HW maintenance Yes Yes -  
Improved 

Improved in recommendation by 
extending for 5 years and providing 
differentiation between capital and 
expense costs 

OS/Middleware/  
Database maintenance 

Yes Yes – Much 
Improved 

Improved in same ways as hardware, 
plus requiring a more robust level of 
support that is appropriate for most 
consumers with mission-critical 
computing environments. 

Application maintenance No No See other “application” entries 
Application set-up, 
customization 
 

No No See other “application” entries 

DB administration No Minor By including an operational level of 
support, a small amount of DB 
administration costs are also included 

Systems operations No Minor By including an operational level of 
support, a small amount of Systems 
Operations costs are also included 

Electricity No No, but This growing area of cost of  
ownership is covered by the TPC’s 
new TPC-Energy metrics that can 
be published with each benchmark 
at the sponsor’s option. Unlike price, 
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which includes variations based on 
channels, discounts and other  
marketing-related areas, the energy 
component of the total cost of  
ownership can be quantified with 
verifiable measurement. [3] 

Floor-space, building 
costs 

No No This is quantifiable area that could 
be a candidate for inclusion in a future 
price metric.  

Training No Yes The recommendation for support 
costs includes that some level of 
consumer education be required in 
the ongoing costs. 

Unscheduled down-time 
costs 

No No While it is difficult to quantify, this 
is not only a major part of the TCO, 
but can be extremely disruptive to 
the business. A proposal in the TPC-
TC ’09 recommended that the TPC 
undertake the creation of a  
“dependability” benchmark. [4] 

Scheduled down-time 
costs 

No No If a resiliency benchmark is created, 
it should cover both planned and 
unplanned down-time 

7   Summary 

A benchmark metric is only as valuable as it is relevant. The price/performance and 
availability metrics from TPC benchmarks have been quite relevant in the past, but 
changes in technology, changes in other elements in total cost of ownership and 
changes in the benchmarks themselves have reduced the worth of these metrics. 

By implementing the suggestions raised in this paper, the TPC could dramatically 
improve the relevance of the price/performance and availability metrics of TPC 
benchmarks. These suggestions should be viewed as an entire set, rather than specific 
individual decisions. Some of these changes would affect all vendors. Others would 
affect only some. With the entire collection, the relative impact to each vendor is 
mitigated by both the affect on other vendors and the closer approximation of con-
sumer reality.  

The proposed changes focus on 

• Physical configurations that are more relevant to consumers 
• Availability requirements that are closer to consumer buying practices 
• Software licensing requirements that represent a typical mission-critical en-

vironment, where longevity of an application is expected 
• Maintenance requirements that represent the typical levels of support that a 

consumer would require for a run-your-business application 

These changes do not approach the total cost of ownership for a computer system, but 
they enhance the portions of TCO that are covered by the TPC Price Specification to 
more realistically represent the actual contribution to TCO for these components.  

Implementing these changes will take courage and clearly generate benchmark re-
sults that are not comparable with those published today. Not implementing these 
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changes destines the price/performance metric, and to a lesser degree the availability 
metric, to reside in a realm where marketing claims are made, but the actual results 
are ignored.   

7.1   Another Alternative 

Without changes such as those suggested here, the TPC could be better off without 
official price/performance metrics at all. It may be that the best solution is to require 
that a well-defined bill-of-materials be listed, and that the list price for any products 
that are not publicly listed through another source be included, but to leave the com-
putation and comparisons of price to the marketing teams, rather than the performance 
engineers. The advantages of this are that the comparison method would allow “for 
purchase” comparisons, “for lease” comparisons, “utility/cloud” comparisons, “pur-
chase only” comparisons, “total cost of ownership” comparisons, and so on. The dis-
advantages of this are that the methods for comparison would be unregulated and 
could easily create confusing or misleading information. 
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Abstract. In this paper, I survey briefly some of the recent and emerging trends 
in hardware and software features which impact high performance transaction 
processing and data analytics applications. These features include multicore 
processor chips, ultra large main memories, flash storage, storage class memo-
ries, database appliances, field programmable gate arrays, transactional mem-
ory, key-value stores, and cloud computing. While some applications, e.g., Web 
2.0 ones, were initially built without traditional transaction processing function-
ality in mind, slowly system architects and designers are beginning to address 
such previously ignored issues. The availability, analytics and response time re-
quirements of these applications were initially given more importance than 
ACID transaction semantics and resource consumption characteristics. A pro-
ject at IBM Almaden is studying the implications of phase change memory on 
transaction processing, in the context of a key-value store. Bitemporal data 
management has also become an important requirement, especially for financial 
applications. Power consumption and heat dissipation properties are also major 
considerations in the emergence of modern software and hardware architectural 
features. Considerations relating to ease of configuration, installation, mainte-
nance and monitoring, and improvement of total cost of ownership have  
resulted in database appliances becoming very popular. The MapReduce para-
digm is now quite popular for large scale data analysis, in spite of the major in-
efficiencies associated with it.  

Keywords: Analytics, Appliances, Cloud Computing, Databases, FPGAs, 
Hardware, Key-Value Stores, Multicore, Performance, Software, Storage Class 
Memories, Transaction Processing. 

1   Introduction 

In the last few years, there have been many important developments in the hardware 
and software arenas that are having serious implications on how transaction process-
ing and data analytics are accomplished. They relate to memory and storage devices, 
computer architectures, programming paradigms, and software architecture, design 
and implementation. While some of these developments have already impacted main-
stream (traditional) applications, others have been influencing more heavily relatively 
new types of applications (e.g., Web 2.0 ones like social networking and cloud com-
puting). Some older technologies like field programmable gate arrays (FPGAs) have 



86 C. Mohan 

 

been adopted for building database appliances [19, 20]. In this paper, I survey briefly 
some of these recent and emerging trends in hardware and software architectural 
features which impact high performance transaction processing (HPTP) and data 
analytics applications.  

Research groups in a number of institutions across the world are focusing on the 
topics covered in this paper. Representative samples are: EPFL Lausanne [28], ETH 
Zurich [32], Google Research [49], IBM Almaden Research Center [31], Microsoft 
Research [45], MIT [29], Stanford University [34], University of California at Santa 
Barbara [33], Yahoo! Research [37] and Yale University [30]. In addition to big com-
panies like IBM and Oracle, a number of startups are also developing related products. 
Some of the startups are Netezza, ParAccel and Schooner Information Technology.  

2   Multicore 

While symmetric multiprocessors (SMPs) have been around for decades in the main-
frame context [26], it is only relatively recently that similar concepts have begun to 
make an impact in the non-mainframe computer architectures. More and more chip 
designers are using the ability to include a significantly larger number of transistors 
on a chip to increase the number of processing elements, cores, on a single chip, 
thereby creating multicore systems [25, 47]. IBM’s Power 795 [50] can have up to 
256 cores, while Oracle’s Exadata Database Machine X2-8 has 128 cores for database 
processing and 168 cores for storage processing [51].  

It is fairly straightforward to leverage multiple cores for dealing with analytics ap-
plications by parallelizing query processing, as in traditional parallel database man-
agement systems (DBMSs) [27]. While leveraging a large number of cores would 
appear to be an easy objective to accomplish in a HPTP system for gaining greater 
scalability by running larger number of transactions in parallel, significant problems 
could arise, for example, from the need to maintain coherence across the much larger 
number of processor caches [6]. Shared data structures and how their concurrency 
control is handled (e.g., via latches [13]) would surely have to be rearchitected to 
alleviate such problems.  A benchmark of four popular open-source storage managers 
(Shore, BerkeleyDB, MySQL and PostgreSQL) on a modern multicore machine (8 
cores with 4 hardware thread contexts per core) has revealed that they all suffer in 
terms of scalability [4]. Work done on FPGAs to improve query processing perform-
ance has been shown to apply to multicore environments also [20]. The MapReduce 
paradigm [36] has become quite popular for large scale data analysis using a vast 
array of cheap computational engines. Google, which has been leveraging multicore 
systems extensively for many years, has issued a timely warning recently about the 
relative benefits of brawny cores over wimpy cores [48].  

3   Large Main Memories 

Main memory sizes have been growing by leaps and bounds. In high end machines like 
the IBM P7 [21, 50], it could be as high as 8 terabytes (TB), and in Oracle’s Exadata 
Database Machine X2-8 it is 2 TB [51]. While in-memory database technology has 
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been around for more than 3 decades, starting with the main storage database (MSDB) 
feature of IMS/Fastpath to more modern relational database management systems 
(RDBMSs) like IBM SolidDB [16] and Oracle TimesTen [17], proper exploitation of 
TB size memories requires major rearchitecting of HPTP systems. Not all of the mem-
ory might be accessible at the same speed since the overall memory architecture might 
be NUMA like. Localizing accesses to be within a cluster of processors’ memory 
might be beneficial from a performance viewpoint.  

Not all of the existing features in a DBMS would scale well when the sizes of 
memories become really large. For example, in the case of Java Virtual Machines 
(JVMs), they are unlikely to work well beyond a few GBs of heap size due to the way 
most garbage collection algorithms in real life products work (this is the case in spite 
of all the research work that has gone on with respect to concurrent garbage collection 
algorithms).  

If users are tempted to make their objects very large because memory sizes have 
become large, numerous data structures in a DBMS might not be well designed for 
such sizes. The analogy here is similar to what RDBMSs had to do to deal with binary 
large objects (BLOBs) - separate storage areas for them compared to normal fields, 
different recovery and locking approaches, etc [22].  

From a concurrency perspective also, including huge amount of memory in a sin-
gle heap would be a problem. Storage management within a heap also would need to 
be done differently, possibly trading off some fragmentation for speedier and less 
disruptive handling of storage allocations and deallocations. Key value store (KVS) 
systems like Memcached have already adopted different approaches to storage man-
agement because of such reasons [23, 24].  

4   Storage Class Memories 

For some years now, flash memory [43] has been very popular in the context of con-
sumer devices like digital cameras and personal music players. Of late, flash is being 
adapted for usage in the enterprise context where some of the negative aspects of 
flash like data retention and other reliability properties, and asymmetry between read 
and write speeds have to be handled differently. Wear leveling and other techniques 
have been developed to deal with them. As denser chip technologies come into exis-
tence and flash encounters difficulties in working correctly under those conditions, 
other ways of constructing persistent memories are becoming popular. They are also 
intended to move away from the block oriented nature of flash, which has resulted in 
flash being used primarily as a disk replacement, and to let byte oriented read and 
write be supported which would make them behave more like DRAM. One such 
technology is phase change memory (PCM) [2, 3]. Hardware companies like Nu-
monyx/Micron and Samsung are in the process of releasing PCM chips. Micron has 
said in July 2010 that they are in production with two 128Mb, 90nm PCM parts (Om-
neo P5Q and P8P) and in development with a 1Gb, 45nm PCM die.  

Meanwhile, computer architects, and designers of operating systems (OSs), storage 
software and middleware are investigating different ways of exposing and leveraging 
the functionality of such chips. In IBM Almaden Research Center, we have an  
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exploratory research project which is focused on the middleware implications of PCM 
[1]. The design of a new file system for data resident in PCM is presented in [14].  

5   Database Appliances 

Considerations relating to ease of configuration, installation, maintenance and moni-
toring, and improvement of total cost of ownership have resulted in database  
appliances becoming very popular. Many big and small companies are producing 
appliance products.  

In the last few years, FPGAs have become popular in building database ma-
chines/appliances by companies like Netezza and Kickfire. This has increased the 
level of interest in the use of FPGAs in a database context. Designers hope to get 
better performance and lower energy consumption through the use of FPGAs, com-
pared to the use of traditional CPUs. FPGAs provide very high I/O bandwidth, have 
low power consumption and support massive parallelism.  

One of the major emerging trends is the concept of workload optimized systems. 
IBM is seriously behind this architectural push to codesign hardware and software to 
optimize the overall system performance for a certain class of applications (e.g., IBM 
pureScale Application System for transactional workloads and IBM Smart Analytics 
System for data warehousing and analytics [40]).  

6   Transactional Memory 

Transactional memory (TM) systems have been developed to make the exploitation of 
the parallelism possibilities of multicore systems to be easier to accomplish by ordi-
nary programmers [7, 8, 9]. Of course, for decades, designers of traditional TP  
systems (e.g., IMS/DC and CICS) and DBMSs (e.g., IMS, DB2, Oracle) have been 
leveraging the parallel execution capabilities of traditional multiprocessor computers 
to run numerous transactions and queries in parallel. Locking and latching mechanism 
have been carefully used to enable such executions to happen in an orderly and con-
sistent fashion [13]. Some researchers have recently started wondering if somehow 
the TM features of modern hardware and software could be exploited by DBMSs to 
improve their performance and to ease the job of DBMS designers in correctly lever-
aging greater levels of parallelism [11]. Having spent 3 decades in the concurrency 
and recovery areas, I am very doubtful about that!  

7   Key Value Stores 

Web 2.0 companies have been the breeding grounds for a number of non-SQL data 
management systems which go by the name of key value stores (KVSs). Some of the 
more popular KVSs are Cassandra [38], Memcached [39], Redis [52] and Voldemort 
[53]. Compared to RDBMS, KVSs have limited functionality along many dimensions. 
They were intended to counter the high overheads of RDBMS for certain types of 
applications. Their APIs have lot less functionality than SQL and they typically do 
not support the traditional notion of transactions. Many Web 2.0 applications (e.g., 
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Facebook, Twitter, Wikipedia and YouTube) have adopted KVSs as their data man-
agement platforms, especially in the context of ultra large main memory systems in 
order to meet stringent response time requirements. Typically, these systems do not 
perform logging and recovery as in traditional DBMSs [13]. They rely on in-memory 
replication to provide some level of fault tolerance. While some of the Web 2.0 appli-
cations were initially built without traditional transaction processing functionality in 
mind, slowly system architects and designers are beginning to address such previ-
ously ignored issues. The availability, analytics and response time requirements of 
these applications were initially given more importance than ACID transaction se-
mantics and resource consumption characteristics. 

In our project at IBM Almaden [18], we are adding transaction support to Mem-
cached. Our project’s goal is to support ultra large in-memory databases in DRAM 
and PCM, with high availability and high performance. Bitemporal data management 
[41] has also become an important requirement, especially for financial applications. 
The newest releases of DB2 [42] on the different platforms include support for it. 

8   Cloud Computing 

The promise of cloud computing of elasticity, the “pay as you go” payment model, 
comes with a number of additional functionality to be worried about by the providers 
of cloud-based services. In particular, for HPTP systems, multi-tenancy, security, 
quality of service guarantees via service level agreements, availability [46], and addi-
tional control and flexibility of migrating work between private and public clouds are 
major design issues. To provide more focus to the cloud computing area and also to 
provide a forum for discussions amongst researchers with different backgrounds, a 
new research conference, the ACM Symposium on Cloud Computing, has also been 
started this year (2010). In the context of the cloud environment, new benchmarks are 
also being defined, e.g., the Yahoo! Cloud Serving Benchmark YCSB [35]. 

9   Conclusions 

In this paper, I summarized some of the recent and emerging trends with respect to 
hardware and software features that relate to high performance transaction processing 
and data analytics applications. This is an exciting time with significantly large num-
ber of on-going activities that span the hardware-software boundary. Consolidation in 
the industry, with recent acquisitions by companies like Cisco, HP, IBM and Oracle, 
is also contributing to this trend. More and more researchers and practitioners are 
being forced to get out of their traditional way of working in technical silos. Led by 
the internet companies, exploitation of large clusters of servers, server farms, is also 
becoming common, both in the cloud and the non-cloud environments [46]. Interest-
ing tradeoffs involving availability, data consistency, power consumption, throughput, 
response time, dynamic adaptation to workload fluctuations and ease of rapid applica-
tion development are being made all the time, and, as to be expected, differently in 
different application environments.  
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Readers interested in more information on the topics summarized here could  
follow up by making use of the numerous citations given in this paper to research 
papers, presentations and web sites. I have also provided some information on the 
various research groups and commercial organizations that are working on related 
technologies.  
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Abstract. As we approach the ten-year anniversary of the first working draft of 
the XQuery language, one finds XML storage and query support in a number of 
commercial database systems. For many XML use cases, database vendors now 
recommend storing and indexing XML natively and using XQuery or 
SQL/XML to query and update XML directly. If the complexity of the XML 
data allows, shredding and reconstructing XML to/from relational tables is still 
an alternative as well, and might in fact outperform native XML processing. In 
this paper we report on an effort to evaluate these basic XML data management 
trade-offs for current commercial systems. We describe EXRT (Experimental 
XML Readiness Test), a simple micro-benchmark that methodically evaluates 
the impact of query characteristics on the comparison of shredded and native 
XML. We describe our experiences and preliminary results from EXRT’ing 
pressure on the XML data management facilities offered by two relational data-
bases and one XML database system. 

Keywords: Database management, benchmarks, XML, XQuery, SQL/XML. 

1   Introduction 

Since the late 1990’s, XML has been steadily gaining traction in the commercial IT 
and Web worlds. Perhaps more important than its initial document-centric motivation, 
the separation of (semantic) document markup and presentation, XML has become a 
widely used standard for Web-based information exchange between businesses, gov-
ernment agencies, and other organizations and applications. Numerous XML-based 
standards have been developed – in areas such as health care, finance, insurance, and 
virtually all facets of government – to specify the content of data and messages being 
exchanged. XML also serves as the foundation for the Web service and Service-
Oriented Architecture (SOA) facilities that provide the information and operational 
fabrics that tie together most modern enterprise IT systems, both within and across 
enterprises. As a result, a large volume of XML data is being created on a daily basis. 
XML is also gaining traction as a semi-structured information model, i.e., as a way of 
handling data that is too variable for convenient relational storage. 

Given the growth of XML for data sharing and an increasing focus on auditing and 
compliance, there is a strong need to manage and query significant quantities of XML 
data. Additionally, applications are starting to use XML as a database format as well; 
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reasons include simpler (more flexible) database design plus potential performance 
benefits and simplified application development compared to converting XML to and 
from relational form. In anticipation of these needs, the W3C formed an XML Query 
working group in 1999, ultimately leading to XQuery 1.0 in 2007 [27]. Also, the SQL 
community added XML extensions to SQL, called SQL/XML [7], first to enable 
publishing of XML from relational data and later to support direct storage and query-
ing of XML data. Relational database vendors have added extensive XML capabilities 
to their products. XML storage and query capabilities are available in Oracle [13], 
IBM DB2 [15], Microsoft SQL Server [19], and Sybase [24]. In parallel, several 
XML-targeted databases have emerged, such as Marklogic [11], Software AG's 
Tamino [22], and EMC's xDB, formerly known as X-Hive [8]. 

XML data management in the first half of the past decade involved “shredding” 
document instances, either generically or in a schema-driven manner, for storage and 
retrieval from tables in relational databases [23]. The data was then queried with SQL 
and “published” (reconstructed) using features such as XML publishing functions in 
SQL/XML. In recent years, however, the XML capabilities of commercial databases 
have reached a maturity point where vendors often recommend storing XML natively 
and using XQuery or SQL/XML for queries and updates. One XML evangelist argues 
that it no longer makes sense to disassemble and reassemble XML messages and 
business documents as they flow through enterprises’ SOA infrastructures just to 
persist and query them [12]. One reason is that real-world business records repre-
sented in XML are often too complex to be mapped to a relational schema in a sensi-
ble manner. For example, financial trading records represented in FpML [26] or 
FIXML [25] can be highly variable and require hundreds of tables if shredded to a 
normalized relational schema. In such cases, shredding is costly to develop and to 
maintain over time when XML structures evolve. Instead, it is claimed that XML 
indexing and query processing technologies have matured enough to compete very 
favorably with relational technology, making XQuery the “right answer” [9, 12]. 

In this paper we assess the current state of XML and XQuery support in commer-
cial database systems. We describe EXRT (Experimental XML Readiness Test), a 
simple micro-benchmark designed to methodically evaluate XML data management 
tradeoffs such as the impact of query characteristics on the relative performance of 
shredded versus native XML. We describe our benchmark and present our experi-
ences and preliminary results from using EXRT. Section 2 reviews related bench-
marking work and how EXRT differs, while Section 3 describes the benchmark itself, 
including its data characteristics, the benchmark queries and updates, and the intended 
operating conditions. Section 4 presents preliminary results for EXRT implementa-
tions on two commercial relational database systems and one XML database system. 
Section 5 summarizes the main results and discusses future work. 

2   Related Benchmarking Work 

Most XML data management benchmarking has focused on XML documents and 
exercising a variety of features of XQuery. In contrast, EXRT tries to capture and 
exercise only those XML storage and processing capabilities that are “core” features 
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for enterprise-oriented XML use cases – e.g., features that would likely be exercised 
in scenarios like SOA message archiving and querying. In the early days of the rela-
tional era, a micro-benchmark known as the Wisconsin Benchmark [6] helped poten-
tial adopters evaluate different database offerings and drove vendors to improve their 
products. The EXRT design was inspired by the Wisconsin model and its early use-
fulness, hence our adoption of a micro-benchmarking based approach. 

Regarding previous benchmarks, the database research community has proposed 
various XQuery and XML database benchmarks, including XMach-1[3], XMark [20], 
XPathMark [10], XOO7 [4], XBench [28], MBench [18], and MemBeR [2]. The only 
industry-led benchmark proposal to date is the TPoX (Transaction Processing over 
XML) benchmark from IBM and Intel [15]. Among these benchmarks, some are 
predominantly application-oriented and scale in the number of documents, such as 
TPoX and XMach-1, while others are designed as abstract, single-document micro-
benchmarks, such as MBench and MemBeR. XMark, XPathMark, and X007 are also 
single-document micro-benchmarks; they each use data and queries that represent 
(artificial) application scenarios and then try to exercise all relevant aspects of the 
XQuery and XPath languages in the manner of a micro-benchmark. Further discus-
sion and comparison of existing benchmarks can be found in [1,14,15,21]. 

EXRT differs significantly from both existing application-oriented benchmarks and 
existing micro-benchmarks. XMach-1 and TPoX are application-level benchmarks 
that measure the throughput of a multi-user read/write workload and evaluate a sys-
tem’s overall performance. In contrast, EXRT is a single-user micro-benchmark that 
methodically compares the performance impact of various query characteristics, mak-
ing it complementary to XMach-1 and TPoX. EXRT evaluates "feature strength" 
while TPoX evaluates "system strength" at an aggregate level in the spirit of TPC-B 
and TPC-C. EXRT uses a subset of the XML documents from TPoX. TPoX has three 
collections of documents, including complex FIXML messages [25] whose XML 
Schema cannot be reasonably mapped and shredded to a normalized relational 
schema. EXRT uses a single collection of documents (about customers and accounts) 
that can be shredded to a sensible relational schema and therefore allow a comparison 
of native versus relational XML storage.  

EXRT also differs from the existing micro-benchmarks in several ways: 

• Existing micro-benchmarks use a single XML document and scale in terms of the 
size of this document. EXRT uses many small XML documents and scales in the 
number of documents, which is the more realistic scenario in practice [17,11,15]. 

• Existing micro-benchmarks focus on exercising all features of the XPath and 
XQuery languages, while EXRT does not. EXRT defines a set of atomic tests to 
assess how the selectivity and "width" of a given query affect performance. 

• Existing micro-benchmarks examine XML and XQuery only. In contrast, EXRT 
evaluates both native and shredded XML storage with XQuery and SQL/XML. 

• Results from the existing micro-benchmarks are useful predominantly for the de-
signers of XQuery engines. EXRT provides additional information that is useful 
for designers of database schemas and applications that leverage both XQuery 
and SQL/XML functionalities [29,17]. 
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3   The EXRT Benchmark Design 

The EXRT benchmark focuses on data-oriented XML use cases rather than content- 
or document-oriented uses of XML. As a result, EXRT uses XML data for which a 
corresponding schema is available and knowledge of its query and update workloads 
is exploitable for creating suitable indexes. The EXRT workload is designed to exer-
cise a range of query and update features that we believe have a high likelihood of 
being exercised by typical SOA or Web applications interacting with XML business 
data. Being a micro-benchmark and independent of a particular application, EXRT 
takes a neutral stance with respect to expectations about short- and long-term locality 
of data access. As a consequence, both “cold” and “hot” operation times are measured 
and reported, similar to what was done in OO7 [5]. For systems that support both 
XQuery and SQL/XML, both are tested to examine their relative performance. 

It is not the goal of EXRT to determine whether one database system is superior to 
another. Hence, EXRT does not define a single aggregate performance metric that 
could be used to declare one implementation as a winner over another. Instead, EXRT 
produces a collection of response time results to study performance tradeoffs. The 
EXRT design is detailed in the remainder of this section. 

3.1   EXRT Database Design 

To support a controllable set of queries and updates, our initial thought was to follow 
the idea of the Wisconsin benchmark and design a generic synthetic (XML) database 
with randomly generated data values for EXRT. However, after examining existing 
XML benchmarks and their data, we decided to forgo reinvention of the wheel. We 
decided to utilize data from the open source TPoX benchmark [15]. We chose the 
TPoX data because we found its design to contain a sufficient range of XML features 
and “knobs” for EXRT’s needs, including simple and complex data types, single- and 
multi-valued nesting of XML elements, and a selection of unique- and non-unique-
valued attributes and elements for indexing and querying purposes. 

The TPoX database models a hypothetical brokerage house. It has three XML 
document types, CustAcc (for customers and accounts), Order (for buy/sell orders), 
and Security (for securities). The Order schema uses the FIXML industry standard 
[25] while the other schemas are based on experience with real XML data in the fi-
nancial sector. We chose the CustAcc schema for EXRT, as it contains key features 
we wanted and is still simple enough (in contrast to FIXML!) to explore both schema-
specific shredded relational storage and native XML storage. We used the TPoX data 
generator and extended the TPoX workload driver, which is a configurable Java 
application to execute, randomize, and measure a user-defined database workload. 

In TPoX, each customer has an associated CustAcc document that contains the cus-
tomer information, account details, and holdings information for the customer.  
CustAcc documents range from 4KB to 20KB in size. (Schema and sample data are 
available on the Web [16].) The information stored for each customer includes: 

• their name, with multiple short names and middle names possible 
• their date of birth, gender, nationality, country, languages spoken, preferences, etc. 
• their addresses, including all details and a set of phone numbers for each address 
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• their accounts, with a variety of account properties as well as their balances, set of 
value dates, and details of the holdings that make up the account. 

For the XML storage case, CustAcc instances are stored “as is”, either in a table with 
a single XML column (for relational systems) or in an XML collection (for the XML 
database). For the case of schema-specific shredded storage, normalizing the CustAcc 
XML schema into as few tables as possible yields the 12 tables shown in Fig. 1. The 
parent/child (referential) relationships between the tables in Fig. 1 mirror the con-
tainment hierarchy of the XML schema. In all cases, we (path-)indexed primary and 
foreign keys as well as elements and attributes used in non-key-based selections. 

customer
accountsinfo

18 columns
938K rows

languages
2 columns
920K rows

Middlenames
3 columns
294K rows

streets
3 columns

1788K rows

accountinputter
3 columns

9395K rows

shortnames
2 columns
600K rows

accountvaluedates
4 columns

6262K rows

phones
8 columns

1894K rows

emailaddresses
4 columns

1205K rows

accountholdings
5 columns

11482K rows

addresses
10 columns
893K rows

profile
25 columns
600K rows

 

Fig. 1. Normalized Relational Schema for TPoX CustAcc Information 

3.2   EXRT Queries and Updates 

The EXRT operations listed in Table 1 include a set of queries that cover a range of 
behaviors that we expect in typical data XML use cases, plus a set of simple updates. 
For the case of native XML storage, EXRT tests both XQuery and SQL/XML ver-
sions of each query, if supported by the system under test. For shredded XML storage, 
EXRT performs SQL/XML with XML construction over the relational tables. 

3.2.1   Queries 
The first four queries in the EXRT benchmark are parameterized on customer ID. 
Each takes a range of customer IDs and extracts varying amounts of information 
about each customer. These queries test basic exact-match and range-based ID look-
ups as well as the cost of fetching and assembling the requested information. For 
native XML storage, their cost involves selection, navigation, element extraction, and 
the construction of new result documents. For shredded storage, their cost involves 
selection, joins, and result construction. The fraction of customer information fetched 
for each customer is varied from just basic information (touching only one table in the 
shredded case) up to all of the information (touching all tables in the shredded case). 
We quantify the fraction of information fetched by counting the number of shredded 
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tables involved and refer to this metric as the width of a query. We also vary the size 
of the customer id range requested to control the result cardinality of the query, which 
we refer to as a query’s height (or selectivity). 

Table 1. EXRT Benchmark Operations 

Op Description Width 
Q1 For given customer IDs, fetch the customers’ minimal profile – consisting of their 

customer ID, title, first and last names, and suffix. 
1 

Q2 For given customer IDs, fetch the customers’ basic profile – adding middle and 
short names and languages to the minimal profile. 

4 

Q3 For given customer IDs, fetch the customers’ complete profile – adding e-mail 
information, addresses, streets, and phones to the basic profile information. 

8 

Q4 For given customer IDs, fetch all of the customers' information, including all of 
the information about their accounts and holdings. 

12 

Q5 For given customer IDs, get the complete information for all of their accounts. 5 
Q6 For a given account ID, get the complete account information. 4 
Q7 Given an account ID, get all of the customer information for the account’s owner. 12 
Q8 Get the average number of accounts for customers of a given nationality. 1 
Q9 Given a country name and a tax rate, return the average account balance for 

customers in that country who have a tax rate greater than the specified rate. 
3 

I Given an XML string containing all of the information for a new customer, insert 
the new customer into the database. 

12 

D Given a customer ID, delete all information about this customer and his accounts. 12 
NI1 Node Insert 1: Given a customer ID and an XML string with a new Address 

element, add the new address to the specified customer. 
3 

NI2 Node Insert 2: Given a customer ID and XML strings with a new Address  
element and a new e-mail address, add both to the specified customer. 

4 

NI3 Node Insert 3: Given a customer ID and XML strings containing a new Address 
element, a new e-mail address, and a new account, add these to the customer. 

8 

ND1 Node Delete 1: Given a customer ID plus an integer positional indication (1, 2, or 
3), delete the indicated Address node from the customer’s list of addresses. 

3 

ND2 Node Delete 2: Given a customer ID plus positional indicators for their address 
and e-mail lists, delete the indicated Address and Email nodes. 

4 

ND2 Node Delete 3: Given a customer ID, an account ID, and positional indicators for 
their address and e-mail lists, delete the indicated Account, Address, and Email. 

8 

NU1 Node Update 1: For a customer ID, update the customer’s last contact date. 1 
NU2 Node Update 2: Given a customer ID, a contact date, and the name of a new 

account officer, update the last contact date, upgrade the customer to premium 
status (premium = ‘yes’), and update the assigned account officer’s name. 

2 

NU3 Node Update 3: Given a customer ID, a contact date, the name of a new account 
officer, and an XML string with a list of addresses, update the customer’s last 
contact date, upgrade the customer to premium status, update the account officer’s 
name, and replace the customer’s current list of addresses with the new list. 

5 

EXRT includes two versions of Q4, one that simply returns a whole customer 
document "as-is" and one that first extracts all nodes and values and then reconstructs 
the same customer document. Although the full reconstruction is not generally rec-
ommended, it is included to demonstrate the cost of XML (re)construction and high-
light the performance benefit of storing and retrieving XML documents intact. 
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The next three EXRT queries (Q5, Q6, Q7) test the performance of navigation, 
path indexing, and document fragment extraction without reconstruction for complex 
objects (i.e., objects with nested sets of other objects). The widths of these queries are 
fixed by their information content, but we vary their selectivity. Comparing these 
three queries, notice that Query 5 does ID-based selection of a parent object and re-
turns its nested child objects of a certain kind. In contrast, Query 6 performs ID-based 
selection of a nested object and then returns the selected nested object itself. Query 7 
is an ID-based selection of a nested object but returns its parent object. 

The last pair of queries (Q8, Q9) are simple summary queries with multiple predi-
cates to spot-test the XML data aggregation capabilities of a system. 

3.2.2   Update Operations 
EXRT also contains basic insert, update, and delete operations, as listed in Table 1. 
EXRT includes full document insert and delete operations as well as node-level 
changes such as inserting, updating, or deleting individual pieces of an XML docu-
ment. These operations are each applied to a randomly selected customer, changing 
either the customer information or nested information within the customer. 

3.3   EXRT Testing Procedure 

To provide performance information that is useful to XML application developers, we 
measure both “cold” and “hot” execution times for each query. The cold tests are 
performed by clearing the buffer pool before each query’s execution, and different 
query parameters are randomly selected for each query execution. The buffer-clearing 
procedure used is vendor-dependent. Each of the relational database system vendors 
instructed us on how to ensure coldness for data and index pages. The XML-only 
database vendor actually added a cache-clearing feature for our benefit (which they 
plan to ship for general customer use in a future release). Despite assistance, we found 
the problem of ensuring a comparable degree of “coldness” across different systems 
to be challenging, especially for insert, update, and delete tests.  

Our hot tests execute each query repeatedly with the same parameter values with-
out clearing the buffer pool. In real-world applications, where data volumes are often 
much larger than main memory, systems require some physical I/O since they are 
never entirely hot nor entirely cold. Hot and cold tests represent the best and worst 
case scenarios and thus provide lower and upper bounds on the expected performance.  

For operations that are able to take advantage of parameterized query APIs with a 
separation of query preparation and query execution, the reported times include only 
the execution time plus the time to fetch all the query results from the database server. 
To obtain stable results, each query or update is repeated 10 times. The measured 
elapsed times of the first execution as well the slowest and fastest of the remaining 9 
executions are discarded. The resulting 7 measurements are then averaged. Queries 
are run sequentially (single-user) on an otherwise unloaded system. 

The EXRT workload driver uses JDBC to interact with the relational systems and 
uses a roughly comparable Java API for the XML database system. Given the API 
rules and restrictions for the various systems and languages, the EXRT queries used 
parameter markers (with separate query preparation and execution steps), except for 
the following cases where literal string substitution was used instead: node updates in 
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RDB 1 and XQuery queries in RDB 2. RDB 1’s JDBC API does not support pure 
XQuery, so a thin SQL/XML wrapper was needed for all of its queries. 

The parameter values themselves, including any XML arguments (e.g., new cus-
tomer accounts), were produced ahead of time as part of the database generation 
process, and the resulting parameter files were used to drive the benchmark. 

4   Preliminary Results 

Our tests were run on a Dell desktop system with a dual-core 3.16 GHz Intel® Core™ 
2 Duo E8500 CPU, 4GB of main memory, and a pair of 320 GB 7200 RPM Western 
Digital disks. The operating system was Red Hat Enterprise Linux Client release 5.4 
(Tikanga). The database instances for each system were created on a striped Linux 
file system volume in order to utilize both disks. All database files and logs were 
stored on that volume as well. We refer to the two relational systems as RDB 1 and 
RDB 2 and to the XML database system as XDB. 

We strive to show each system in a good (fair) light and to run the systems with as 
comparable configurations as possible. It is not our goal to “race” the systems against 
each other, but to show both intra- and inter-system performance trends and tradeoffs. 

For RDB 1, we used generally available code plus a generally available product 
patch to address JDBC driver issues with XML result sets. RDB 1's vendor also re-
quested that a few queries be slightly rewritten to help the optimizer to find more 
efficient indexed access plans. Finally, due to an issue with the collection of binary 
double index statistics in RDB 1, we dropped the binary double index statistics as part 
of the EXRT database setup in order to prevent suboptimal access plans from being 
chosen. As EXRT managed to reveal these issues in shipping software, EXRT has 
already provided significant vendor value in this regard. For RDB 2 we used its gen-
erally available code and executed all queries "as is" without manual rewrites. For 
XDB we also used generally available code plus a cache-clearing option that was 
needed to obtain cold results. 

4.1   Queries with XML Construction or Full Document Retrieval 

In the following, all results are arranged in the same format, i.e. three charts in a row 
to represent RDB 1, RDB 2, and XDB, respectively. The legends in the charts mean: 

• XQuery on XML = pure XQuery over an XML column or collection 
• SQL/XML on XML = SQL/XML with embedded XQuery over an XML column 
• SQL/XML on Rel = SQL over relational tables containing shredded XML. (Queries 

Q1 through Q7 use SQL/XML construction functions to produce XML results 
equivalent to the XQuery and SQL/XML results on XML columns.) 

Note that query "Q4(re)" retrieves a full customer document by reading all of its val-
ues and reconstructing it, which is expected to be expensive. In contrast, "Q4" reads 
the full document in one piece, which is the preferred and more efficient operation for 
full document retrieval. 

Fig. 2 shows the response times in milliseconds of the first four queries for a selec-
tivity of 1 row. As expected, the performance on a hot system is much better than on a 
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cold system, for all queries and all systems. Constructing XML becomes increasingly 
more expensive for the two relational systems as the size and width of the result be-
come bigger (Q1->Q2->Q3->Q4(re)); this effect is not seen for XDB in the 1-row 
case. In RDB 1 and RDB 2, constructing XML from cold relational tables becomes 
more expensive with increasing width because the number of I/Os made to distinct 
index and data pages increases with the width, i.e. with the number of tables accessed 
and joined. Retrieving a stored XML document as a single unit (Q4) is much faster 
than reconstructing a document from its individual nodes (Q4(re)), which clearly 
shows the benefit of a native XML column over shredded relational XML storage. 

 

 

 

Fig. 2. Query Response Times in Milliseconds (Result set size = 1) 

The hot tests show that constructing XML from shredded relational data can some-
times outperform all native XML options, i.e. native XML in RDB 1, RDB 2, and 
XDB. This is most evident in RDB 1 as well as in RDB 2 when the system is not cold 
and the width of the queries is low (Q1 and Q2), i.e. when only few of the tables need 
to be joined and the amount of constructed XML per result row is small. 

Some of the hot results can be improved if queries are stored as precompiled stored 
procedures, or "modules" in the case of XDB, on the database server. However, our 
goal was to test a scenario with dynamically submitted queries. As a result, both 
RDB 2 and XDB submitted XQuery without using a separate "prepare" step in the 
application to compile the queries before submitting them to the database. 

Fig. 3 shows the results for Q1-Q4 when the predicates select 60 customers instead 
of just one document (row). For a larger selectivity the elapsed time increases, as 
expected, and so does the effect of the width on query performance. Constructing 
XML documents with a large number of elements (e.g. Q3 and Q4(re)) then performs 
best in XDB. However, retrieving full XML documents without reconstructing them 
(Q4) performs slightly better in RDB 2 than XDB in both hot and cold systems. 
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Fig. 3. Query Response Times in Milliseconds (Result set size = 60) 

As the result set size increases to 600 rows in Fig. 4, the difference between hot 
and cold performance begins to diminish, because two other factors begin to outweigh 
the I/O cost. One factor is the CPU cost to construct XML for many result rows, and 
the other is the overhead of shipping results from the database server to the client. 
This trend became even stronger for a result set of 6000 records (charts omitted for 
brevity). In Fig. 4, the XQuery elapsed time for the cold run in RDB 1 is 4156 ms, 
slightly exceeding the scale of the chart, as indicated by the arrow. The performance 
benefit of Q4 over Q4(re) clearly shows the benefit of native XML columns in rela-
tional databases over shredded relational storage. 

 

 

 

Fig. 4. Query Response Times in Milliseconds (Result set size = 600) 
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4.2   Queries that Extract Partial Documents 

Query 5 extracts "account" fragments from customer documents that match given 
customer IDs, while Query 6 extracts "account" fragments that match given account 
IDs. For comparison, Query 7 returns full customer documents that include a given 
account ID. In XQuery and SQL/XML on XML columns, these three queries return 
XML documents or fragments without constructing new XML elements. Only the 
SQL/XML queries over relational tables require XML construction in this case. This 
explains their higher elapsed time than, e.g., SQL/XML over native XML columns. 

Fig. 5 shows the response times of Q5-Q7 when their predicates match only one 
document. In RDB 1, a suboptimal execution plan for the XQuery implementation of 
Q6 leads to a high response time. In the hot tests with RDB 2, the difference between 
XQuery versus SQL/XML access to XML columns is negligible, less than 0.1 msec. 
This is expected since equivalent XQuery and SQL/XML queries are compiled into 
identical execution plans in RDB 2. In RDB 2, Q7 on relational tables can actually be 
significantly faster than shown in Fig. 5 (similar to Q5) if textual parameter values are 
used rather than parameter markers, allowing the optimizer to estimate the selectivity 
of the range predicates more accurately. Reconstructing the full documents from rela-
tional tables is not vendor-recommended for RDB 2, though, as both XQuery and 
SQL/XML over XML columns provide better performance. 

In the cold tests, XDB performs similar to or slightly better than RDB 1 and 
RDB 2 for Q5-Q7. In the hot runs, however, SQL/XML on XML columns in RDB 1 
and RDB 2 as well as XQuery in RDB 2 outperform XDB. 

 

 

 

Fig. 5. Query Response Times in Milliseconds (Result set size = 1) 

Fig. 6 and Fig. 7 show the elapsed times of the same three queries when their 
predicates select 60 and 600 results, respectively. The larger selectivity means that 
more documents need to be processed, which amplifies most of the trends already 
observed in Fig. 5. In particular, the overhead of SQL/XML on shredded relational 
XML storage increases for RDB 1 and RDB 2, which again underscores the value of 
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Fig. 6. Query Response Times in Milliseconds (Result set size = 60) 

 

 

Fig. 7. Query Response Times in Milliseconds (Result set size = 600) 

the native XML database capabilities. The XQuery performance in RDB 2 is similar 
to the performance of XDB.  

4.3   Aggregation Queries 

These queries are basic analytical queries with several predicates for selection and 
aggregation of a metric of interest. Given the predicates in these queries, both queries 
require access to many documents that cannot possibly be clustered by customer ID. 
Hence, random access into the document collection is critical for good performance, 
especially when a system's memory is not entirely hot. In a cold environment, where 
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physical I/O to fetch data from secondary storage is necessary, SQL on relational 
tables in RDB 1 and RDB 2 outperforms XDB (Fig. 8, top). Since Q8 and Q9 are 
aggregation queries that return a simple numeric result, RDB 1 and RDB 2 use regular 
SQL without XML construction or embedded XQuery. In a perfectly hot environ-
ment, where all data resides in main memory and the queries run entirely CPU-bound, 
RDB 1 performs best in Q8 while XDB performs best in Q9 (Fig. 8, bottom). As 
indicated in the charts for RDB 1 in Fig. 8, Q9 is a query for which inaccurate binary 
DOUBLE index statistics had to be removed and an additional binary DOUBLE cast 
expression was added to the query to assist RDB 1’s optimizer. 

 

 

 

Fig. 8. Query Response Times in Milliseconds – Aggregation queries 

4.4   Full Document Inserts and Deletes 

The full documents inserts and deletes as well as the document updates discussed in 
section 4.5 were each executed as a single operation on a cold system. The reason for 
this was the desire to have short tests that match EXRT's micro-benchmark nature 
while capturing the I/O costs incurred for reading and possibly for writing data and 
index pages that need to be modified. However, we found it difficult to define a test 
procedure that makes such atomic write experiments fully comparable across multiple 
different database management systems. Hence, we consider the tests and results in 
sections 4.4 and 4.5 preliminary and subject to further refinement. For example, some 
of the vendors, including XDB, agreed that a more comparable test would execute 
many thousands (or perhaps even millions) of insert, update, or delete operations in 
sequence to capture the steady state performance of each system. We take this as an 
area for future work. 

With this caveat, Fig. 9 shows the response time for inserting and deleting the in-
formation for a single customer. In the relational systems, these operations are signifi-
cantly less expensive on an XML column than on shredded XML. The reason is that 
shredded XML requires row manipulation for 12 separate tables and indexes (using 
regular SQL DML statements). In XDB, the insert and delete times were significantly 
lower than in the relational systems, depending on how the system was prepared for 
the cold write operation. 
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Fig. 9. Inserting/Deleting a single Customer Document 

4.5   Sub-Document Insert, Delete, and Update Operations 

Fig. 10 shows the response times for a single cold update transactions that inserts, 
deletes, or updates nodes within an XML document. When XML is stored in  
relational tables, the node insert and node updates require incoming XML fragments 
to be parsed and translated into regular SQL insert and update statements (without 
XML functions) on multiple relational tables. For RDB 1, this tends to be less  
expensive than performing an XML write operation on a single XML document in a 
single table–except for test cases with a high width, such as NI3 and ND3 which have 
width 8. The opposite is true for RDB 2, where XML updates on an XML column 
 

 

 

 

Fig. 10. Inserting/Deleting/Updating Nodes in one Existing XML Document 
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always outperform the conversion of incoming XML snippets into relational inserts 
and updates. The results for RDB 1 and RDB 2 indicate that the cost of document 
manipulation increases with the width, and more so for shredded storage than for 
XML columns. In contrast, the width does not seem to affect the sub-document insert, 
delete, and update operations in XDB. 

5   Conclusions and Future Work 

In this paper, we have described the design of EXRT (Experimental XML Readiness 
Test), a new micro-benchmark for (i) evaluating XML data management tradeoffs 
such as the impact of query characteristics on the relative performance of shredded 
versus native XML and (ii) assessing the robustness of the XML storage and query 
support in commercial database systems. In addition, we demonstrated the use of 
EXRT to benchmark the XML data management capabilities of two commercial rela-
tional database systems as well as a commercial XML database system. We observed 
some similarities and some significant differences between the performance behavior 
of the three systems and discovered issues related to optimizations for XQuery versus 
SQL/XML queries over XML columns for one of the systems.  

The performance of shredded XML versus natively stored XML is query-
dependent, so the right tradeoff for a given application depends on its target use 
case(s). Shredded XML is akin to columnar storage for traditional relational data, and 
the tradeoff depends heavily on how much of a record’s full “width” has to be 
touched. Queries that touch a low width of data can run faster with SQL/XML on 
relational tables than on XML columns in relational systems or an XML collection in 
the XML database. However, shredding XML documents into a relational schema in 
the first place is easily 3 to 5 times more expensive than inserting it natively into 
XML columns. 

There are several potential avenues for future work based on EXRT. One interest-
ing pursuit would be to test the performance of a broader set of commercial systems, 
as we have only scratched the surface with the three systems considered here. We 
plan to make the EXRT benchmark package available to others via the web, most 
likely by providing a reference implementation for one of the relational systems. An-
other useful pursuit would be to refine the test procedure for inserts, updates, and 
deletes in EXRT. A final interesting avenue would be to develop an EXRT-like  
micro-benchmark that targets the data characteristics and common operations for 
content-oriented XML use cases such as large-scale document management and auto-
mated publishing. 
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Abstract. Intel co-founder Gordon E. Moore postulated in his famous 1965 pa-
per that the number of components in integrated circuits had doubled every year 
from their invention in 1958 until 1965, and then predicted that the trend would 
continue for at least ten years. Later, David House, an Intel colleague, after fac-
toring in the increase in performance of transistors, concluded that integrated 
circuits would double in performance every 18 months. Despite this trend in 
microprocessor improvements, your favored text editor continues to take the 
same time to start and your PC takes pretty much the same time to reboot as it 
took 10 years ago. Can this observation be made on systems supporting the 
fundamental aspects of our information based economy, namely transaction 
processing systems? 

For over two decades the Transaction Processing Performance Council (TPC) 
has been very successful in disseminating objective and verifiable performance 
data to the industry. During this period the TPC’s flagship benchmark, TPC-C, 
which simulates Online Transaction Processing (OLTP) Systems has produced 
over 750 benchmark publications across a wide range of hardware and software 
platforms representing the evolution of transaction processing systems. TPC-C 
results have been published by over two dozen unique vendors and over a dozen 
database platforms, some of them exist, others went under or were acquired. But 
TPC-C survived. Using this large benchmark result set, we discuss a comparison 
of TPC-C performance and price-performance to Moore’s Law. 

Keywords: Trends in System and Database Performance, Benchmark Standards. 

1   Introduction 

Intel co-founder Gordon E. Moore described in his famous 1965 paper [1] that the 
number of components in integrated circuits had doubled every year from the inven-
tion of the integrated circuit in 1958 until 1965, and predicted that the trend would 
continue for at least ten years. Around 1970 Caltech professor, VLSI pioneer, and 
entrepreneur Carver Mead coined the term the “Moore's Law”. Moore slightly altered 
his formulation of the law over time. In 1975, Moore refined his projection to a doubl-
ing every two years [2]. Later, David House, an Intel colleague, who factored in the 
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increase in performance of transistors, concluded that integrated circuits would double 
in performance every 18 months. History has shown that the capabilities of many 
digital electronic devices, such as processors, memory, etc. are strongly linked to 
Moore's law. All of these are improving at exponential rates. His prediction has prov-
en to be very accurate. Some suggest that this is because the law is used in the semi-
conductor industry to guide long-term planning and to set targets for research and 
development. Figure 1 shows the CPU transistor count starting from 1971 to 2008. 
The graph is also annotated with the major milestones in the history of the Intel pro-
cessor product line. 

 

Fig. 1. Number of transistors on a single CPU (source Wikipedia.org) 

But, does the exponential transistor growth, predicted by Moore’s Law, also translate 
into exponentially greater performance of systems supporting the fundamental aspect of 
our information based economy, namely transaction processing systems? Many suggest 
it doesn’t. Especially complex parallel applications that involve a diverse set of compo-
nents are difficult to scale with processor performance because of their non-processor 
bottlenecks such as disks, software components, storage and connectivity. 

In this paper we look at transaction processing systems, which are directly and indi-
rectly involved in virtually every moment of our lives, e.g. phone calls, bank transac-
tions, stock trades and flight reservations. As processor speeds have increased over the 
last two decades, performance of other critical components of transaction processing 
systems, such as disk latencies, I/O controllers and network latencies, have lagged far 
behind. Additionally, traditional algorithms may not be designed to scale to transaction 



112 R. Nambiar and M. Poess 

processing systems with a larger number of processors, large amount of memory and 
large number of disks. In this paper we look at performance improvements of transac-
tion processing systems, not just one component but total system that includes database 
server, storage, connectivity and software including database management systems and 
application middle-tier.  

In order to show relative performance gains of large complex application systems 
over time and to draw a comparison to Moore’s Law, one needs consistent, verifiable 
performance data over a long period of time across a diverse set of platforms. The two 
most prominent industry standard benchmark organizations to publish benchmarks 
since the late 1980’s are the Transaction Processing Performance Council (TPC), 
established 1987 and the Systems Performance Evaluation Corporation (SPEC), es-
tablished 1988. The TPC’s focus has been total system performance and price-
performance under database workloads, including: server, storage, connectivity and 
software. All results have a price-performance metric audited by an independent TPC 
certified auditor. Like the TPC, the SPEC develops suites of benchmarks intended to 
measure system level performance. These suites are packaged with source code and 
tools and are extensively tested for portability across platforms before they are re-
leased. Unlike the TPC results, the SPEC results are peer audited. While the SPEC 
has been revising their benchmarks frequently the TPC has long lasting specifications. 
During its over 20 year long history the TPC has created and maintained significant 
benchmarks, such as TPC-A, TPC-B, TPC-C, TPC-H, TPC-W and TPC-E. Its flag-
ship OLTP benchmark, the TPC-C, was first introduced in June 1992. Since then it 
has undergone several modifications. In its two decades of existence there have been 
over 750 results on dozens of hardware and software platforms. All major hardware 
and database vendors of yesterday and today have published TPC-C benchmarks, 
some of  them are in business while others went out of business or were acquired. 
TPC-C survived, tracking the evolution of processor architectures (MIPS, RISC, 
CISC etc.), server architectures (rack mounted, SMP, clusters, blades etc.) and data-
base technologies. There is no single benchmark standard that comes close at claim-
ing such industry acceptance and life span. These factors make TPC-C the ideal  
candidate for conducting a performance and price-performance trend analysis that 
compares one of the most important factors that touch every second of our lives in the 
information era, namely transaction performance to Moore’s law. 

The remainder of this paper is organized as follows. Section 2 gives a brief over-
view of those parts of the TPC-C benchmark specification that are necessary to under-
stand the subsequent sections. It also includes a history of the different revisions of 
TPC-C and explains why results from its different revisions can be used for the pur-
pose of our comparison to Moore’s Law. Section 3 demonstrates the performance and 
price-performance trends of TPC-C results from 1993 to 2010 and compares these 
trends to Moore’s predictions. 

2   Background of TPC’s OLTP Benchmarks and Why TPC-C Is 
Suitable for Long Term Trend Analysis 

TPC’s first OLTP benchmark specification, TPC-A, was published in November 
1989. Built upon Jim Gray’s DebitCredit benchmark TPC-A formalized the rules, 
which all vendors had to obey in order to publish a benchmark result. About one year 
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later, TPC-B was developed. TPC-B was a modification of TPC-A, using the same 
transaction type (banking transaction) but eliminating the network and user interac-
tion components. The result was a batch transaction processing benchmark. After two 
years of development, in June 1992, TPC’s third OLTP benchmark specification, 
TPC-C, was approved. 

Most TPC-C systems are implemented in three tiers mimicking typical transaction 
processing systems. A TPC-C benchmark implementation is also referred to as the 
System Under Test (SUT): 

1. Tier: Driver System 
2. Tier: Client 
3. Tier: Database Server 

 

Fig. 2. Typical TPC-C System Setup, SUT (conceptual) 

Compared to previous OLTP benchmarks, the TPC-C has a more representative data-
base schema, several complex transactions exercising fundamental database functio-
nalities and strict implementation requirements. It simulates a complete computing 
environment where a population of users executes transactions against a database. 
These transactions include entering and delivering orders, recording payments, check-
ing the status of orders, and monitoring warehouse stock levels. In order to maintain 
TPC-C’s applicability to systems of differing capacity, TPC-C implementations must 
scale both the number of users and the size of the database proportionally to the com-
puting power of the system to be measured. The unit used in TPC-C to measure per-
formance specifies the number of processed new-order transactions per minute 
(tpmC) while fulfilling the rest of the TPC-C transaction mix workload. There is re-
sponse time threshold for each transaction: 90% of each type of transaction must have 
a response time of at most 5 seconds, except stock-level, which is allowed to be at 
most 20 seconds. TPC price/performance metric ($/tpmC) is the ratio of 3 year cost of 
ownership to tpmC. In addition to performance, dependability aspects of a fully pro-
duction-ready system are also tested, by requiring full ACID properties (Atomicity, 
Consistency, Isolation and Durability). 

2.1   History of TPC-C Revisions 

In the first 18 months after approval TPC-C underwent two major revisions (Revision 
2 and 3). Both revisions were comparable due to their minimal effect on existing 
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results. Revision 4 failed to get the necessary support from TPC members. In October 
2000 Revision 5 of TPC-C was approved. This revision contained substantial changes 
with a large impact on existing results, which made it non-comparable to previous 
revisions under the rigid TPC rules. Since benchmark sponsors1 wanted to protect 
their investments in the large set of results that were already published across many 
hardware and software platforms, the TPC created a set of requirements and guide-
lines that allowed a onetime upgrade of results from Revision 3 to Revision 5. The 
following section highlights the changes in the different revisions and reasons why 
the results can be compared. 

Revision 2.0, released October 20th 1993 

Revision 2.0 included additional wording in the General Implementation Guideline 
section. This section defines the requirement of a benchmark implementation and 
specifically disallows “benchmark specials”. Although obvious to the TPC, rules to 
explicitly disallow hardware and software that was written specifically and solely to 
run TPC-C was not included in the TPC-C specification until this major revision. 
Additionally new disclosure requirements including a numerical quantity summary 
was added to the specification. Revision 2.0 requires the most relevant numerical data 
to be included as part of the executive summary of the benchmark publications and 
not scattered in the Full Disclosure Report.  

Revision 3.0, released February 15th 1995 

Revision 3.0 added new transaction monitor requirements for routing transactions. 
The first results published under revisions 1 and 2 revealed that only limited transac-
tion monitor functions were exercised. In order to avoid unrealistic implementations 
of these functions in the operating system, new requirements were added that require 
a full featured transaction monitor in case such functions were used. As it became 
apparent that the distinction between Wide Area Networks and Local Area Networks 
technologies in the context of TPC-C was becoming fuzzy, the distinction between 
the two was removed. Careful examination of results revealed that vendors were pric-
ing the lowest cost terminal available on the market. However, terminals accounted 
for a substantial portion of the reported price. As a consequence, terminals were  
excluded from the pricing to refocus the price on more crucial components of the 
configuration. 

Revision 5.0, released October 18th 2000 

The changes in Revision 5 can be divided in pricing related changes and benchmark 
run rule related changes. The pricing related changes had no impact on the transac-
tions-per-minute metric (tpmC), but changed the total cost of ownership (TCO) and 
hence impacted the price-performance metric. They reduced the maintenance support 
period from five to three years and increased the weekly uptime requirements from 
eight hours, Monday through Friday to 24-hours seven days a week. The changes also 
removed the requirement to price the terminal connectivity network (hubs, switches), 

                                                           
1 A benchmark sponsor is a company that publishes a TPC benchmark result. 
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which refocuses the benchmark on the client-tier, database-tier and their connectivity. 
They also allowed pricing quotes from web pages and print materials, which accom-
modates growing acceptance of online and direct purchase models. This changed the 
source of pricing, but had no impact on actual pricing. The last pricing related change 
was the reduction of the disk space requirements from 180 to 60 days. This is the disk 
space sufficient to store and maintain the data generated during a period of 60 days 
(instead of 180 days) of activity with an average of 8 hours per day at the reported 
tpmC rate. The intention was to reduce the cost for running benchmarks, but it made 
the total cost of ownership non comparable to results from previous revision. 

The run rule change had no impact on performance or on price-performance. It in-
creased the measurement interval from 20 minutes to 2 hours ensuring that the sys-
tem under test can sustain the reported tpmC and guaranteeing that modified database 
records are written to durable media every 30 minutes for two hours through check 
point mechanisms. The TPC allowed upgrading Revision 3 to Revision 5 results if 
benchmark sponsors re-priced their systems to accommodate the pricing changes 
explained above. The two increased measurement interval requirement was waved. 

2.2   Why TPC-C Is a Good Candidate for Technology Trend Analysis 

The previous section has shown that the TPC-C specification evolved to remain as 
representative as possible of current practice without fundamentally changing the 
workload and pricing model. There were changes on implementation requirements 
and pricing, but the benchmark fundamentals including data population, transactions, 
execution rules and metric remained unchanged. This makes the TPC-C workload the 
ideal candidate for performance and price-performance trend analysis. 

The pricing changes impacted the overall price of a system. For example in Revi-
sion 2 the price of terminals accounted for a substantial portion of the reported price, 
reducing maintenance support pricing to 3 years down from 5 years, and reducing the 
disk space requirements to 60 days from 180 days. Although the impact of these 
changes to TPC-C performance and price-performance is low, the strict TPC rules do 
not allow comparisons of results across major revisions. This is because benchmark 
sponsors usually compete over single digit percent differences. For our analysis in the 
next sections we use the performance and price-performance metrics without any 
adjustments because the changes had very little impact from a historical trend pers-
pective. First of all, the fundamentals of the benchmark did not change. Secondly, due 
to the significant improvements in performance while cost of almost every  
component dropped, even the unadjusted performance metric and price-performance 
metric reflected overall industry trend. And finally, such changes as mandating com-
mercially available transaction monitor and removing the terminal requirements are 
reflections of general changes in the industry. In the early 90’s customers imple-
mented their own home grown transaction monitors, which were eventually replaced 
by feature rich commercial TP monitors. In those days OLTP users accessed the  
servers over directly connected terminals, those were later replaced by remote web 
users. 
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3   Comparison of TPC-C Metrics with Moore’s Law 

In this section we analyze whether TPC-C performance improvements over the last 20 
years agree with Moore’s Law. We analyze both TPC-C’s primary performance 
[tpmC] and price-performance [$/tpmC] metrics.  

TPC-C benchmarks are published using a large range of system configuration siz-
es, which range from single server with one processor and a few disks to large cluster 
of servers with hundreds of processors and thousands of disk drives. Consequently, 
performance ranges from hundreds to millions tpmC. In order to compare the perfor-
mance across various system sizes, we normalize the TPC-C performance metric by 
dividing the reported tpmC number by the number of processors (sockets) that are 
configured in the 3rd tier, i.e. the database server. We refer to this normalized metric 
as the NtpmC. For each year we then compute the average NtpmC for all TPC-C 
publications. Since the price-performance metric already accounts for the higher per-
formance by an increased system cost, we do not need to adjust the price-performance 
with the number of processors.  

3.1   Comparison of TPC-C Performance with Moore’s Law 

In this section we compare NtpmC, which is TPC-C’s primary performance metric, 
normalized to the number of processors, to the adjusted2 Moore’s Law. The triangle 
markers in Figure 3 indicate the average Ntpmc per year from 1993 to 2010 on a 
logarithmic scale (base=10). The triangles are annotated with the major milestones in 
TPC-C publications. The dotted line shows TPC-C performance improvement using 
Moore’s law as amended by David House, i.e. performance doubles every 18 months. 
As a starting point we use the average NtpmC of 1995, as the number of results avail-
able for 1993 and 1994 is too small to indicate a representative performance. We 
calculate the dotted line with the following function: 2                                           (1) 

 is the performance projection for year y and 426.65  is the base 
performance with 1995. 

Interestingly, the performance graph calculated using Moore’s Law almost supe-
rimposes the data points taken from TPC-C publications [NtpmC]. There are three 
areas where NtpmC slightly over and under-performs Moore’s Law. 

In the years 1993 and 1994 and from years 1996 to 2000 Moore’s Law slightly un-
derestimates NtpmC. There are only a few results available for the first years, one 
result for 1993 and four results for 1994. Hence, the numbers obtained for these years 
are unlikely to be representative for performance improvements of technology in 
those years. The years between 1995 and 1999 saw a respectable number of bench-
mark results (between 21 and 76). Hence, the average of these results can be viewed 
as a very close representation of the performance that was achievable in these years. 

                                                           
2 Adjusted as by David House: processor performance doubles every 18 months. 
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Fig. 3. TPC-C primary performance metric trend vs. Moore’s Law 

During the years 1996 to 2000, Moore’s Law slightly underestimates NtpmC, while 
starting with 2008 it slightly overestimates NtpmC. In the period between 1996 and 
2000 the publications used a very diverse combination of database and hardware plat-
forms (about 12 hardware and 8 software platforms). Between 2001 and 2007 Moore’s 
Law estimates NtpmC pretty accurately. In this period most publications were on x86 
platforms running Microsoft SQL Server. Starting in 2008 Moore’s Law over esti-
mated NtpmC. At the same time the number of Microsoft SQL Server publications 
started decreasing. 2008 saw 21 benchmark publications, 2009 saw 6 benchmark pub-
lications and, so far, 20103 has seen 5 benchmark publications. This is mostly because 
of Microsoft’s increased interest in the new TPC-E benchmark, introduced in 2007, 
while Oracle’s DBMS took the lead in a number of TPC-C publications. Also, during 
this period the number of cores per processor for x86 processors increased to six. 
Another reason for the decline in the number of TPC-C publication is the increased 
benchmark implementation cost, mainly due to an increased number of spindles re-
quired to cope with increase in processor speed. 

Ignoring the two time periods during which NtpmC differed slightly from Moore’s 
Law, TPC-C performance increases are remarkably similar to the processor perfor-
mance improvements. This suggests that TPC-C performance is attributed solely to 
                                                           
3 As of June, 2010. 
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processor improvements, i.e. other system components, including system software, 
have not contributed much to the overall performance improvement of TPC-C results. 
However, this does not necessarily indicate that other system components and system 
software haven’t improved over time – quite to the contrary. The ongoing improve-
ments of processor speeds cause challenges on other system components, such that 
they do not become the next system’s bottleneck. Hence, their performance also 
needed to be increased constantly. Components whose performance improvements 
were slower than those of processors were replicated. For instance, the number of 
disks required per processor increased from a dozen in 1993 to over 100 in 2010.  

In case of software such replication is not necessarily possible. Especially the 
DBMS of the 3rd tier cannot be replicated because of the locking nature of the bench-
mark application. An attempt was made to use federated databases. However, the idea 
was abandoned shortly after it was introduced4. The development of multi-core pro-
cessors imposed challenges on the operating systems as well as the DBMS because of 
the increased number of processes that need to be scheduled to occupy all processor 
cores. Similarly, the increased number of processes challenged shared memory access 
and semaphore handling mechanisms. Similarly, the dramatic increase in memory 
density challenged DBMS because the design of algorithms that were previously 
optimized for using disk I/O, such as sort operations, hash-joins, needed to be revi-
sited to assure that they work optimally with large amounts of memory. The dramatic 
increase in processor cores and the resulting increase in TPC-C database size/number 
of database users (see Section 2) challenged the scalability capabilities of DBMS. The 
fact that TPC-C applications still scale with the vast increase in processor perfor-
mance is an indication that DBMS scaling capabilities improved at rate of processors 
performance improvements. With every DBMS release its code path increases due to 
the introduction of additional features. These features are not necessarily introduced 
to improve TPC-C, but improve the overall usability of the product, such as security 
and manageability features. 

3.2   Comparison of TPC-C Price-Performance with Moore’s Law 

In this section we compare TPC-C’s price-performance metric with the adjusted5 
Moore’s Law. TPC-C’s price-performance metric is defined as the ratio of the total 
system price of the SUT divided by the transactions per minute [$/NtpmC]. 

The triangle markers in Figure 4 shows the price per NtpmC per year from 1993 to 
2010 on a logarithmic scale (base=10). The dotted line shows Moore’s law as 
amended by David House, i.e. performance doubles every 18 months. Similarly to the 
previous section, as a starting point we use the price per NtpmC in 1995 as the num-
ber of results available for 1993 and 1994 is too small to indicate representative per-
formance for those years. We calculate the Moore’s Law graph with the following 
function:  2                                         (2) 

                                                           
4 Reasons for the abandonment of this technology would be pure speculation. 
5 Adjusted as by David House: processor performance doubles every 18 months. 
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Fig. 4. TPC-C price-performance vs. Moore’s Law 

 is the price-performance projection for year y and 465.41 $   is the 

base price-performance with 1995. 

The trend in Figure 4 demonstrates that the gradual decline in the cost for transac-
tion performance in line with Moore’s Law. Interestingly, we saw in the comparison 
of TPC-C’s normalized performance metric NtpmC with the calculated Moore’s Law 
graph, we also see a phenomenal similarity between the price-performance trend and 
the price-performance predicted by Moore’s Law.  

There are three areas where the price-performance graph slightly over and under-
performs the predictions of Moore’s Law. Between the years 1996 and 2000 and 
between 2002 and 2005 Moore’s Law slightly over-calculates the average transaction 
price as reported by benchmark sponsors. Contrary, between 2006 and 2010 Moore’s 
Law slightly under-calculates the actual transaction cost. However, the overall trend 
of the actual graph and the calculated graph are phenomenally similar. 

We had a closer look at the variations but the reasons were inconclusive, except 
that since 2006 the price-performance have been above the expectations potentially 
due to the extreme drop in system component pricing caused by competition, business 
efficiency and factory efficiency. This trend is likely to continue for the next several 
years.  
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4   Conclusion 

Many research papers and technical articles have been published about Moore’s Law 
and its applicability to hardware performance. This paper is a first of its kind attempt 
to analyze Moore’s theorizations in respect to the performance and the cost for per-
formance of complex application systems like transaction processing systems. The 
analysis involves not just the processor perspective, but the total system perspective, 
including hardware and software of database servers, storage subsystems, middle tiers 
and component connectivity. Our analysis shows that performance and price-
performance trends of over two decades of TPC-C results exhibit close resemblance 
to Moore’s predictions. 
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Abstract. For two decades, TPC benchmarks have been the gold standards for 
evaluating the performance of database servers. An area that TPC benchmarks 
had not addressed until now was virtualization. Virtualization is now a major 
technology in use in data centers, and is the number one technology on Gartner 
Group’s Top Technologies List. In 2009, the TPC formed a Working Group to 
develop a benchmark specifically intended for virtual environments that run da-
tabase applications. We will describe the characteristics of this benchmark, and 
provide a status update on its development. 

Keywords: Transaction processing performance; virtualization; virtual ma-
chines; server consolidation; benchmarks. 

1   Introduction 

A few years ago, virtualization on x86 PCs was a clever way for enthusiasts to run 
multiple Windows and Linux operating environments simultaneously on the same PC 
platform. Today, virtualization is an essential datacenter technology, enabling capa-
bilities that would not have been possible otherwise. This has brought about a demand 
for virtualization benchmarks. In this paper, we will introduce virtualization and its 
benefits, discuss existing benchmarks, and describe the TPC-V benchmark. 

It is important to point out that TPC-V is entering its early development stages. We 
will attempt to describe the benchmark in full, but some of those descriptions might 
change drastically during the development process. The intent is not to pre-announce 
a benchmark specification, or to promise exact properties for the benchmark. This is a 
status report of where the benchmark development stands at this point in time. 

2   State of Virtualization 

A virtual machine (VM) is a software computer that, like a physical computer, runs an 
operating system and applications. An operating system installed on a virtual machine 
is called a guest operating system. Virtual machines run on host servers. The same 
server can run many virtual machines. Every VM runs in an isolated environment. So 
one VM may be running a Windows-based web server application while another runs 
a Linux-based database application, all on the same hardware platform. The flexibility 
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and many benefits that this architecture affords the user have catapulted virtualization 
to the top of Gartner Group’s Top Technologies List [7]. 

In the 1960s, IBM’s VM operating system permitted the execution of a variety of 
IBM operating systems in multiple VMs on a single hardware platform [3]. Virtual-
ization on the Intel x86 architecture was introduced in the 1990s [6, 11, 14] as a 
means of allowing multiple operating systems to run simultaneously on a single PC. 
Today’s enterprise-class virtual machine management system (hypervisor) vendors 
include VMware, Microsoft, Citrix, KVM, and Oracle on x86, plus virtualization 
products on the Power [10], SPARC [13], and Intel Itanium [7, 9] architectures. 

2.1   Benefits of Virtualized Servers 

Consolidation: The first reason many users headed to virtualized servers was con-
solidation. The vast majority of datacenter servers are grossly underutilized. In this 
scenario, several underutilized servers are converted into VMs that all run on the 
same host server. With today’s multi-core, multi-socket commodity servers, the 
CapEx and OpEx savings of virtualization are major driving forces in the data center. 

Resource Management: packing multiple VMs onto a single server allows the hy-
pervisor to allocate resources to each VM based on its demand. Consolidation also 
enables elasticity: A VM gets more resources when its load risess. A server can 
achieve greater efficiency by overlapping the peaks and valleys of its many VMs. 

Migration: The ability to migrate a VM [12] to a new physical server while the ap-
plications on the VM continue to be in use allows for a rich set of load balancing and 
resource management features. Virtualization is the fundamental enabling technology 
behind cloud computing. 

Maintainability: The ability to migrate VMs live between hosts frees the original 
server for maintenance operations 

HA: Achieving high availability (HA) by allowing a VM to be restarted on a new 
server if the server running the VM fails [20]. Virtualization-enabled HA allows a few 
generic servers to act as the backup for a large number of active servers because the 
properties of the operating environment are captured in the VM. 

FT: Fault-tolerance on generic servers without hardware fault-tolerance features [21]. 
Two VMs are run in lockstep as is done in traditional hardware fault-tolerant architec-
tures. The Virtual Machine Monitor (VMM) ensures externally-visible output, e.g., 
network packets, are sent out from only one VM, but all VMs receive copies of in-
coming external stimuli, e.g., reads from disk. 

3   Virtualization Benchmarks 

The interest in virtualized servers has meant a strong interest in performance bench-
marks to study, compare, and tune virtual environments. Several benchmarks are in 
various states of use in the industry. The two main benchmarks are: 

• SPECvirt_sc2010 [16] is an industry-standard benchmark developed by  
the Standard Performance Evaluation Corporation (SPEC) and released in 
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July 2010. It modifies a number of SPEC workloads such as SPECWeb, 
SPECjAppServer and SPECmail for measuring virtualized server consolida-
tion. SPECvirt_sc2010 is expected to find widespread use. 

• VMmark [22] was developed by VMware, primarily for its vSphere hypervi-
sor operating system. But it should be possible to run VMmark on other  
hypervisors. VMmark is the de facto industry standard benchmark at the 
moment, with more than 91 published results from 13 vendors. 

3.1   The Need for a Database-Centric Virtualization Benchmark 

Virtualized database applications have been running under the IBM VM operating 
system for decades. Although skepticism existed in the early days of x86 virtualiza-
tion as to whether a virtual machine could handle the demanding load of a database 
server, customers now routinely virtualize their OLTP and DSS servers. Virtualiza-
tion at the hypervisor level provides excellent abstraction because each DBA has a 
hardened, isolated, managed sandbox. There is strong isolation between the VMs, 
which allows each VM/database to maintain its own policies in security, performance 
and resource management, configuration management and fault isolation. Recent 
results [2] prove virtualized databases work very well. End users no longer have a 
reluctance to virtualize databases, and there is a strong demand from the user commu-
nity for a virtual database benchmark. 

Database workloads include many operations that can have high overheads on vir-
tual servers: disk I/O, inter-process communication, process/thread context switching, 
large memory footprints and pressure on the TLB, guest OS system calls, etc. A non-
database benchmark cannot do justice to a hypervisor that does well (or poorly)  
running database applications. None of the existing virtualization benchmarks has a 
database-centric workload. Hence the strong need for a new benchmark that stresses 
virtualized servers with a database-centric workload. 

4   Genesis of the TPC-V Benchmark 

We presented a paper at the 2009 TPCTC [2], advocating the need for a benchmark to 
measure the performance of virtual environments under a database-centric workload. 
The TPC followed up on this by forming a Working Group of 14 companies1 to scope 
a virtualization benchmark. To meet the charter that the TPC General Council gave 
the Working Group, TPC-V has to meet these requirements: 

• Satisfies the industry need for a benchmark that: 
 

o Has a database-centric workload 
o Stresses the virtualization layer 
o Has a moderate number of VMs, exercising enterprise applications 
o Has a healthy storage and networking I/O content; emphasizes 

I/O in a virtualized environment 
o Does not contain many non-database application environments in 

an application consolidation scenario 
                                                           
1 The 14 companies were: AMD, Cisco, Dell, HP, IBM, Intel, Microsoft, NEC, Oracle, ParAc-

cel, Sun, Sybase, Unisys, and VMware. 
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• TPC-V results will not be comparable to other TPC benchmarks 
• TPC-V generates information not covered by other benchmarks 
• The benchmark has to have a timely development cycle (1-2 years) to 

satisfy the demand that member companies get from their customers 
o The TPC-V benchmark will be based on the TPC-E benchmark 

and borrows a lot from it 
o But is a different workload mix and the results cannot possibly 

be compared to TPC-E results. 

5   TPC-V Properties 

It is worthwhile to again remind the reader that this is a status report on the state of 
the benchmark as it stands at the publication date of this paper. The Development 
Subcommittee is charged with creating the final specification. Much can change after 
the results of prototyping experiments have been turned into the subcommittee. 

5.1   Business and Application Environment 

A typical business requires multiple applications to manage a variety of operations. 
Often these applications have been located on separate systems. With advances in 
virtualization technologies and in the strength of computing resources, it is now pos-
sible to co-locate these applications on the same system. 

While it may be possible to install and use multiple applications in a single system 
image, there can be advantages to maintaining the applications in distinct virtual ma-
chines (VMs). Depending on the size of the business and the size of the system used, 
the business model of TPC-V may be viewed as a “Data Center in a Box”, with a 
wide variety of applications, including both database tiers and application-
management tiers all residing on logically distinct VMs within a single computer 
 

 

Fig. 1. Business Model: Data Center in a Box 



 TPC-V: A Benchmark for Evaluating the Performance of Database Applications 125 

system. The following diagram illustrates the potential complexity of the business 
model portrayed in the benchmark. 

However, the complexities of the modeled environment do not lend themselves to 
a measureable, repeatable benchmark. So, the TPC-V application in Fig. 2 is a simpli-
fied view of this complex environment: retaining the key features of the business 
model, while effecting  meaningful and comparable benchmark results. 

 

Fig. 2. Simplified VM Components 

Each group of Application Interface, Update-Intensive and Read-Intensive VMs is 
a distinct “Set”. The size and number of sets is determined by the relative total load 
on the system. Sets are logically distinct from each other from an application perspec-
tive, although the benchmark driver may coordinate the amount of work being re-
quired of each set. 

To provide a meaningful application environment with database components and 
transactions that are relevant and understandable, the application environment of 
TPC-E is employed. TPC-E is altered to provide the desired read-intensive and up-
date-intensive environments in Fig. 2. While TPC-E uses a business model of a bro-
kerage house with transactions driven from multiple sources, the deployment of the 
adjusted application in TPC-V is intended to represent a wider variety of OLTP-based 
applications that could be employed in a virtualized computing environment. 

5.2   The TPC-E Benchmark 

TPC Benchmark™ E [17], TPC-E for short, is TPC’s most up to date transaction 
processing benchmark. It models the activity of a brokerage firm that must manage 
customer accounts, execute customer trade orders, and be responsible for the interac-
tions of customers with financial markets. TPC-E transactions are executed against 



126 P. Sethuraman and H. Reza Taheri 

three sets of database tables that represent market data, customer data, and broker 
data.  A fourth set of tables contains generic dimension data such as zip codes.  The 
following diagram illustrates the key components of the environment: 

Customers Brokers Market
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•Trade-Result
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•Security-Detail
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Fig. 3. TPC-E Application Components 

The benchmark represents a simplified form of the application environment. To 
measure the performance of the OLTP system, a simple Driver generates Transactions 
and their inputs, submits them to the System Under Test (SUT), and measures the rate 
of completed Transactions being returned.  To simplify the benchmark and focus on 
the core transactional performance, all application functions related to User-Interface 
and Display-Functions have been excluded from the benchmark.  The SUT is focused 
on portraying the components found on the sever side of a transaction monitor or 
application server. 

5.3   TPC-V Design Considerations 

5.3.1   TPC-V Schemas and Tables 
TPC-E defines 33 tables and 10 transactions types. TPC-V will retain the basic 
schema and transaction types of TPC-E. But some properties will have to be modified 
to facilitate the creation and loading of many different database sizes in one SUT, and 
to route different transactions to different VMs (see section 5.3.4). 
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A TPC-E SUT is divided into two Tiers: 

• Tier A contains all hardware and software needed to implement the down-
stream Connector, EGenTxnHarness, Frame Implementation, and Data-
base Interface functional components. Frame Implementation is a sponsor 
provided functionality that accepts inputs from, and provides outputs to, 
EGenTxnHarness through a TPC Defined Interface. The Frame Imple-
mentation and all down-stream functional components are responsible for 
providing the appropriate functionality outlined in the Transaction Pro-
files. EGenTxnHarness defines a set of interfaces that are used to control 
the execution of, and communication of inputs and outputs, of Transac-
tions and Frames. 

• Tier B contains all software needed to implement the Database Server 
functional components.  

5.3.2   TPC-V Set of VMs 
Using the TPC-E transactions as a base, the working group has defined 3 VMs that 
together form a Set for the TPC-V benchmark. The functionality of the Tier B com-
ponent of the TPC-E SUT has been divided into two separate VMs. One VM handles 
the Trade-Lookup and Trade-Update transactions, simulating the high storage I/O 
load of a decision support environment. The second VM services all other transac-
tions, which have a CPU-heavy profile and represent an OLTP environment. It re-
mains to prototyping to ensure that the two VMs display the desired characteristics. 
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Tier A in TPC-V functions similarly to a TPC-E Tier A with one major difference: 
Based on the transaction type, it routes the transaction to one of the two Tier B VMs. 
In Fig. 4, notations TL, TU, etc. under the VMs are the 2-letter abbreviations of 
TPC-E transactions [16]. 

In Fig. 5, Customer Emulator (CE) is responsible for emulating customers, request-
ing a service of the brokerage house, providing the necessary input for the requested 
service, etc. Market Exchange Emulator (MEE) is responsible for emulating the stock 
exchanges: providing services to the brokerage house, performing requested trades, 
providing market activity updates, etc. Rather than describing in detail the functions 
of each component, we point out that the benchmark has a large number of compo-
nents defined in the TPC-E specification. Some components, in yellow, have to be 
commercially available products. Some, in turquoise, are provided by the TPC and 
have to be incorporated in the benchmarking harness as is. The rest, in purple, is left 
up to the sponsor to provide. 
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Fig. 5. Functional Components of the Test Configuration 

5.3.3   Core Decisions Regarding Benchmark Load 
One of the first decisions the working group made was to depart from the tile archi-
tecture used in other virtualization benchmarks [3, 22]. In those benchmarks, a tile 
was defined to have a certain load that was the same for all tested systems. Two of the 
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most desirable properties of TPC benchmarks are their applicability to a wide range of 
server sizes, and their long lifetimes. TPC benchmarks scale, and they last. But a 
constant load per tile would mean the number of tiles would increase with the per-
formance of the system, possibly to unreasonably large numbers. In practice, more 
powerful servers support more VMs; but they also host VMs with higher resource 
demands. For example, it would be reasonable for a virtualization benchmark that 
runs on a 256-core server to have a VM that consumes 16 cores’ worth of resources. 
But unless the benchmark scales down the demand to each VM as the power of the 
server goes down, that same benchmark cannot be run on an 8-core server. A bench-
mark that is intended to be applicable to a wide range of servers, as is the tradition of 
TPC benchmarks, especially one that is meant to stand the test of time, has to deal 
with this issue. So early on, the working group decided against a tile architecture with 
a constant load per tile. 

Another common practice in existing virtualization benchmarks is to require a cer-
tain number of virtual processors, or a certain memory size, for each VM [3, 4, 22]. 
TPC-V does not specify such configuration details. If each VM is required to have, 
for example, 2 virtual processors, then a host with 1024 physical processor cores 
would need at least 512 VMs to saturate the system assuming each VM fully utilized 
its virtual processors. 512 VMs might be an unreasonably large number of VMs. 
Furthermore, what will happen in 10 years, when there might be servers with an order 
of magnitude more cores? So, hard-coding the number of virtual processors, or the 
memory size, of the VM would make it hard for the benchmark to be meaningful 
across a range of server sizes, or have a long lifetime. TPC benchmarks have always 
been defined in terms of the load presented to the system (mix of transactions, table 
properties, etc.), not the characteristics of the system (a particular memory size, a 
specified number of physical or virtual processors, etc.). 

If we move away from a tile architecture with a fixed load, how should the load be 
defined? A first, intuitive approach is to base the load on the size of the system, and 
what better way to gauge the size of a system than its number of processors/cores? 

That approach might work when dealing with a single architecture. But not all 
processor cores are comparable across a range of architectures: x86, Power, SPARC, 
UltraSPARC T3 [14], Intel Itanium, etc. If this benchmark is to be a suitable choice 
for measuring the performance of virtualized servers irrespective of the processor 
architecture, one cannot base the definition of the benchmark on the number of cores 
or the memory size of the physical server. 

5.3.4   The Set Architecture 

5.3.4.1   Basing the Load on the Performance of the Server. To avoid the limitations 
detailed in the prior sections, the working group has devised a Set architecture 
whereby both the number of Sets, and the load placed on each Set grow as the per-
formance of the system increases. The advantage here is that the benchmark will 
emulate the behavior of real-world servers: More powerful servers host more VMs, 
but also VMs that handle more load. This ensures that TPC-V is a fitting benchmark 
for servers of all sizes, and it will stay relevant in the future as servers become more 
powerful. It will scale, and it will last. 
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5.3.4.2   Varying the load across Sets. A shortcoming of existing benchmarks is that 
the same exact load is placed on all tiles (or VMs). In the real world, a virtualized host 
has to deal with the challenge of managing resources across VMs with varying de-
mands. So each Set in a TPC-V configuration will contribute a different percentage of 
the overall throughput. 

The exact number of Sets and the percentage contributed by each Set will depend 
on the prototyping experiments in the coming year. Let us assume that the metric for 
TPC-V is in terms of transactions per second, and let us abbreviate that to tpsV (the 
exact benchmark metric is yet to be named and defined). With that, following are the 
numerical values that will be used to initiate the prototyping process: 

• A Base Set, which contributes 15% of the overall throughput of the SUT 
• A Large Set, which contributes 45% of the overall throughput of the SUT 
• Variable Sets contribute the remaining 40% of the overall throughput. 

The exact number of Variable Sets and the division of the 40% among 
them is calculated based on the performance of the SUT. More powerful 
systems will have more Variable Sets, determined by: 

 

                   f(tpsV) = max(1, SQRT(45% * tpsV) / M + C) 
 

                  where M=SQRT(40) and C=-2. 
 

The actual number of Variable Sets will have some flexibility in order to 
avoid the case where a slight change in performance can force the bench-
mark sponsor to reconfigure the SUT for a different number of Sets. 

The table below is an example of the Set contributions to the overall throughput: 

Table 1. TPC-V SET/VM/VP Sizing Worksheet 

SUT Target tpsV=> 1,000 2,000 4,000 8,000 16,000 32,000 
Base Set Ratio 15% 15% 15% 15% 15% 15% 
Large Set Ratio 45% 45% 45% 45% 45% 45% 
Variable Sets Ratio 40% 40% 40% 40% 40% 40% 
f(tpsV)  1.35   2.74   4.71   7.49   1.42   16.97  
M  6.32   6.32   6.32   6.32   6.32   6.32  
C 2.00 2.00 2.00 2.00 2.00 2.00 
variability (+/- N)  0.50   0.50   0.50   0.50   0.50   0.50  
min Variable Sets  -     2.0   4.0   6.0   10.0   16.0  
max Variable Sets  1.0   3.0   5.0   7.0   11.0   17.0  
Tier A VMs per Set 1 1 1 1 1 1 
Tier B VMs per Set 2 2 2 2 2 2 
Base Set tpsV 150 300 600 1,200 2,400 4,800 
Large Set tpsV 450 900 1,800 3,600 7,200 14,400 
Variable Set tpsV 400 800 1,600 3,200 6,400 12,800 
Total Sets (S+L+M)  3 5 7 9 13 19 
Small Set VMs 3 3 3 3 3 3 
Large Set VMs 3 3 3 3 3 3 
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Table 1. (continued) 

Medium Set VMs 3 9 15 21 33 51 
Max Total VMs 9 15 21 27 39 57 
Variable Set 1 tpsV 400 133 107 114  97   84  
Variable Set 2 tpsV  -     267  213   229   194   167  
Variable Set 3 tpsV  -     400  320   343   291   251  
Variable Set 4 tpsV  -     -     427   457   388   335  
Variable Set 5 tpsV  -     -     533   571   485   418  
Variable Set 6 tpsV  -     -     -     686   582   502  
Variable Set 7 tpsV  -     -     -     800   679   586  
Variable Set 8 tpsV  -     -     -     -     776   669  
Variable Set 9 tpsV  -     -     -     -     873   753  
Variable Set 10 tpsV  -     -     -     -     970   837  
Variable Set 11 tpsV  -     -     -     -     1,067  920  
Variable Set 12 tpsV  -     -     -     -     -     1,004  
Variable Set 13 tpsV  -     -     -     -     -     1,088  
Variable Set 14 tpsV  -     -     -     -     -     1,171  
Variable Set 15 tpsV  -     -     -     -     -     1,255  
Variable Set 16 tpsV  -     -     -     -     -     1,339  
Variable Set 17 tpsV  -     -     -     -     -     1,422  
Total Variable Set tpsV 400 800 1,600 3,200 6,400 12,800 

5.3.5   Elasticity 
Performance benchmarks are typically measured in “steady state”, where the flow of 
work requests is adjusted to meet the capabilities of the system. For a single applica-
tion, this can provide a satisfactory answer, but not for a virtualized server. The follow-
ing diagram illustrates the existence of workload dynamics in the business model for 
TPC-V. Each application may vary between the minimum and maximum require-
ments, depending on such things as time zone, time of day, time of year or introduction 
 

 

Fig. 6. Demands by workload 
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of a new product. To accommodate each of the four applications represented on sepa-
rate systems, the total compute power required is represented by the “Total Separate” 
bar. However, in the chosen business model, the peak workload demands for each 
application are not simultaneous. One workload may be at a peak when another is at a 
valley, allowing computer resources to be shifted from the low-use application to the 
high-use one for some period of time, and shifting the resources to another high-
demand application at a subsequent point. This allows the total configured capacity to 
be more like the bar marked “Virtualized.” 

In the environment modeled by the benchmark, the dynamic nature of each work-
load could be dictated by a wide variety of influences that result in an unpredictable 
shifting of resources and an equally unpredictable amount of overall system output. 
As with the complexity of the modeled application environment, this level of work-
load dynamics is not easily repeated to deliver comparable measurements. Since the 
primary requirement of the virtualized environment for this situation is the ability to 
dynamically allocate resources to the VMs that are in high demand, it is sufficient to 
define a workflow time line that shifts workload demands among the VMs in a pre-
dictable manner, as illustrated, below: 

 

Fig. 7. Time Periods 

If we consider 4 applications represented by 4 sets (A-D), then over time, each 
set’s load vaires, and hence the contribution to the overall system throughput varies. 

Using the numerical values in the draft specification, below are the actual varia-
tions that we envision for the benchmark. There will be 12 10-minute periods in the 2-
hour Measurement Interval, during which the load of each Set will vary by as much as 
a factor of 2, 3, or 4 for the Large, Base, and Variable Sets, respectively. The exact 
values will be determined after the prototyping period is completed. Applying the 
values in Table 2 to Figure 8, Set A would be the large set, set D the base set, B and C 
the variable sets. 
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Table 2. Variation of the load of TPC-V Sets 

Period Large Set Base Set Variable Sets 
1 45% 15% 40% 
2 40% 10% 50% 
3 45% 10% 45% 
4 55% 30% 15% 
5 35% 10% 55% 
6 50% 15% 35% 
7 30% 10% 60% 
8 45% 15% 40% 
9 50% 15% 35% 
10 60% 20% 20% 
11 40% 15% 45% 
12 45% 15% 40% 
Average 45.0% 15.0% 40.0% 

6   Benchmark Development Status 

The Working Group has produced a specification draft that was accepted by the TPC 
General Council at its June, 2010 meeting. A Development Subcommittee, with 11 
member companies, has been formed to continue the development of the benchmark. 
Our goal is to complete the process by the end of 2011, and meet the original goal of a 
1- to 2-year development period. 

6.1   Challenges 

Although the Working Group has been able to find common ground among the mem-
ber companies in producing a draft specification, and in resolving all issues that have 
been raised over the past 6 months, we do recognize that developing a complex 
benchmark with a short schedule is a great challenge. 

6.1.1   Which Virtualization Properties to Measure 
In section 2.1, we listed 6 benefits for virtualized servers. In an ideal world, the TPC-
V score should be dependent on a virtual system performing well in all the areas listed 
in 1.1, and perhaps many more similar ones. Given real world constraints, TPC-V will 
measure how well a virtualized server does in consolidation and resource manage-
ment. If a hypervisor is able to meet the TPC-V requirements on multiple server 
nodes, then the ability to migrate VMs live between hosts will also be highlighted by 
TPC-V. Although high availability and fault tolerance are interesting new research 
areas for the TPC [19], the working group will not be able to address those properties 
given the development schedule of the first revision of TPC-V. 

6.1.2   Development Schedule 
TPC benchmarks often take 3 to 5 years to develop. But a virtualization benchmark is 
in demand today, and the council does not have the luxury of 3 to 5 years. So the 
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working group is starting from the solid foundation of TPC-E, and limiting the new 
benchmark properties to what can be tested and turned into a specification in 2 years. 

6.1.3   Architecture-Agnostic Definitions 
Many existing virtualization benchmarks are defined specifically for the x86 architec-
ture [3, 4, 22], and even specifically for one hypervisor [22]. In such cases, it is easy 
to assume what a VM is, what a hypervisor is, what a virtual processor is, what a core 
is, etc. The strength of TPC benchmarks is applicability across a wide variety of ar-
chitectures and server sizes. The working group cannot define a benchmark that as-
sumes a certain hardware or software architecture. 

To deal with this challenge, the TPC-V workload does not require, e.g., a certain 
number of virtual processors, a certain guest operating system, or any particular VM 
properties. We believe that the working group has succeeded in creating a benchmark 
that merely defines the workload. The SUT properties needed to deal with the work-
load follow from the workload definition. 

For example, virtualized servers typically have a degree of oversubscription (also 
called overcommitment). In an oversubscribed system, each VM is configured with 
enough virtual processors to handle its peak load. But most of the time, the VM uses a 
fraction of its possible peak CPU utilization. Thus, the total number of virtual proces-
sors configured by all the VMs is higher (often much higher) than the number of 
physical processor cores or threads on the host server. But since not all VMs run at 
peak load simultaneously, the server is not overtaxed. Rather than emulating this 
explicitly by requiring a specific degree of oversubscription, or by specifying the 
number of virtual processors in the VMs, the benchmark uses the elasticity properties 
described in section 5.3.5 to emulate oversubscription without actually spelling it out 
in the specification. 
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Abstract. TPC-Energy specification augments the existing TPC Benchmarks 
with Energy Metrics. The TPC-Energy specification is designed to help hard-
ware buyers identify energy efficient equipment that meets both their computa-
tional and budgetary requirements. In this paper we discuss our experience is 
publishing industry’s first-ever TPC-Energy metric publication. 

Keywords: TPC, Benchmarks, Energy, Performance, HP, TPC-C, TPC-E  
ProLiant. 

1   TPC-Energy Specification 

Performance and price/performance metrics have been key criteria in data center 
purchasing decisions, but the demands of today's corporate IT environment also in-
cludes energy consumption as a primary consideration. Energy efficiency has become 
a significant factor in evaluating computing systems. To address this shift of priori-
ties, the TPC has developed the Energy Specification which enhances its widely used 
benchmark standards.  

The TPC-Energy specification augments existing TPC Benchmark Standards, in-
cluding TPC-C, TPC-E and TPC-H, adding the measurement of energy consumption 
and relating this to the performance achieved. TPC-Energy enables manufacturers to 
provide energy metrics in the form “Watts per performance,” where the performance 
units are particular to each TPC benchmark. As vendors publish TPC-Energy results, 
customers will be able to identify systems, via the TPC Web site, that meet their 
price, performance and energy requirements. 

1.1   TPC-Energy Metrics Characteristics 

Performance, cost of ownership, and energy utilization of computing systems are in 
some ways opposing characteristics.  A measure of “goodness”, of a system design 
can be framed as having maximum performance, with the minimum cost and the 
minimum energy consumption.  There is also the characteristic of the how to maxi-
mize the utilization of the energy being consumed. This efficiency could be measured 
in a variety of ways, but in the case of the TPC-Energy benchmark metrics, efficiency 
is a direct correlation to the performance.  Representing each of these metrics on an 
axis provides a simple visual indicator of this “goodness”.  
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As illustrated in Figure 1, the 100% value of each axis is the baseline for compari-
son and the shaded portion illustrates the “goodness” of reducing the energy con-
sumption and cost without affecting the performance. This is the ideal case, but in 
computing systems being deployed today, some acceptable performance reduction 
can have a significant effect on the reductions in energy consumption and costs. 
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Fig. 1. 

1.2   Intelligent Configuration 

In addition to the vast amount of engineering design to reduce energy consumption of 
today’s computing hardware, the intelligent selection and configuration of the avail-
able systems components is deterministic in the energy efficiency of the actual  
deployment of an IT application.  In some application environments the maximum 
performance is the overriding criterion and energy efficiency and cost have a small 
influence on the intelligent selection of components. However, the vast majority of 
corporate IT deployments are measured on the return of investment (ROI). This ROI 
includes the operational costs in addition to the initial deployment investment. 

The information disclosed herein highlights the energy efficiency considerations 
when deploying Hewlett Packard ProLiant systems running database applications. 
These same considerations and analyses can be applied to most vendors’ hardware 
solutions today.  In actual customer deployments, intelligent component selection 
incorporates more than just the hardware analysis, as the performance of the software 
selection and tuning has a direct impact on the overall system performance and can 
also contribute to reductions in energy consumption during periods of reduced system 
load.  The impact analysis of software selection is not included in this paper.  

2   The Benchmark Configuration 

Computing systems deploying database applications can generally be defined using 
three major subsystems and an additional miscellaneous subsystem.  

1. Database Server Subsystem– Components which perform the intelligent data 
retrieval, updates, and calculation of results, using commercially available data-
base software. 
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2. Storage Subsystem - Provides durable media and transfer mechanism for storing 
the information retrieved and updated by the database server. 

3. Application Server Subsystem – The system(s) which run the business logic 
and typically the user interface to the database system. (This is sometimes com-
bined with the Database Sever Subsystem)  

4. Miscellaneous Subsystem – Additional components which are required for the 
systems operations, (this is typically networking and display components.) 

2.1   TPC-E Benchmark Configuration 

The TPC-E benchmark database schema models a brokerage firm with customers who 
submit transactions related to stock trades, stock account inquiries, and stock market 
research. In addition, the brokerage firm interacts with financial markets to execute 
orders on behalf of the customers and updates relevant account information [4].  

The database server HP ProLiant DL580 G7 consists of four Intel 8-core proces-
sors x7560 EX 2.27 GHz, 1 TB of main memory, two 4-port Giga-bit network con-
trollers and 10 storage HP SA P411 controllers.  

The storage controllers are connected to external 40 x D2700 enclosures to the 
server holding a total of 900 SAS SFF disk drives.  Two disks on the internal bay 
were used for the operating system and database software. The remaining 4 disks are 
connected to an integrated SA P410i controller holding the database redo log files. 

 

Fig. 2. 

2.2   TPC-C Benchmark Configuration 

The second configuration was a TPC-C benchmark conducted on the HP ProLiant 
DL585 G7, pictured in Figure 2. The operating system used for the benchmark was 
Windows Server 2008 R2 Enterprise Edition. The DBMS used was Microsoft SQL 
Server 2005 Enterprise x64 Edition SP3.   

The storage consisted of 180 – 120GB SSD drives for the database data, two 146 
GB SAS drives for the operating system,  66 - 146GB SAS drives for the database 
log,  and 100 - 300GB drives for backup and 60 day space.  

Nine LSI 92000_8E controllers were connected to nine D2700 disk drive boxes 
utilizing two controller ports per D2700.  The HP SmartArray P410i controller was 
connected to the internal disk drive cage which contained the 2 - 146GB SAS drives 
configured as a RAID-1 logical drive. The HP SmartArray P812 was configured as 
RAID1+0 and connected 4 - D2700 drive boxes for backup.  
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A FC1242 Dual Channel 4Gb PCI-e HBA was connected to an MSA2324fc utiliz-
ing 2 HBA ports, one to each of the redundant controllers of the MSA 2324fc.  
The MSA2324fc cache configuration was set to fault tolerant active-active. This 
MSA2324fc contained 22 drives at 300GB and connected to two MSA 70 drive boxes 
each with 22 drives each at 146 GB for the transaction log. These were configured as 
4 virtual disks at RAID 10.  

The application servers consisted of 22 DL360 G5/ 1.60GHz and 2 DL360 G6 / 
2.40GHz servers. The priced configuration substituted 24 DL360 G6 / 2.40GHz client 
systems. 

 

Fig. 3. 

3   Energy Measurement Configuration  

The energy measurement process may seem complicated and confusing for users 
unfamiliar with the TPC-Energy specification.  This section attempts to make the 
connection between the specification and its real world application.  It covers the 
individual specifications and the implementation details of the TPC-E benchmark 
configuration mentioned in the preceding text. 

3.1   Reported Energy Configuration 

The Reported Energy Configuration (REC) is based on the TPC Benchmark Standard 
“Priced Configuration”.  It consists of all the components that participate in the en-
ergy measuring process and may be divided into subsystems, each of which consists 
of one or more Power Measurable Units (PMU).   

The TPC-E REC in Figure 4 consists of three HP ProLiant DL series servers and 
twenty-four disk array enclosures. These are categorized by subsystem (Application 
Server, Database Server and Storage) to enable the reporting of subsystem energy 
metrics.  Not pictured is the Misc subsystem, which contains "priced components" 
like monitors, network switches, etc.  Although, these components are required to be 
included in the TPC-Energy measurements, they are omitted from Figure 4 for  
simplicity. 
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Fig. 4. 

The Application Server subsystem consists of a single PMU for measuring the 
power consumption of two HP ProLiant DL360 G6 servers which hosts the software 
that provides the interface between the simulated users and the Database Server(s).   

The Database Server subsystem consists of a single PMU for measuring the HP 
ProLiant DL380 G7 server, which hosts the database management software and im-
plements the database and transactions of the TPC-E Benchmark. 

The Storage subsystem is more complicated to measure and was divided into four 
PMU’s, each containing eight HP StorageWorks D2700 disk array enclosures.  This 
division was required due to the current measurement limitations of the power ana-
lyzers and the coupling selected for this particular benchmark.   

3.2   Power Measurable Unit 

The TPC-Energy specification, Clause 0.4, defines a Power Measurable Unit (PMU) 
as a component or collection of components of the REC which can be independently 
measured with a power analyzer.  The PMU components are hardware which is in-
strumented for measurements using a power analyzer. The PMU energy consumption 
data is collected from the power analyzer via the TPC provided Energy Measurement 
System software as shown in  

 

Fig. 5. 

The first PMU was designated with the name ArrayOne, and is one of the four 
PMU’s of the Storage Subsystem. These four PMUs are each a composite PMU, each 
containing eight HP StorageWorks D2700 disk array enclosures.  Each D2700 could 
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be independently measured as an individual PMU. The combining of multiple units 
into a larger group for measurement as a single composite PMU simplifies the meas-
urements by requiring less power analyzers.  

There are of course physical limitations in the number of units which can be com-
bined as a composite PMU. This grouping of the D2700 disk array enclosures was 
limited to eight per composite PMU due to the 20 ampere maximum current ratings of 
the power cables, breakout boxes, and power analyzers.  Most electrical codes also 
require a safety-margin of not exceeding 80% of the maximum rating, which would 
be 16 amperes in this case. 

3.3   PMU Substitution 

The TPC-Energy specification, Clause 3.6 provides a methodology for calculating 
energy for PMU’s which are not measured or substituted. The TPC-C Application 
Server subsystem of Figure 3 consisted of 24 DL360 G5 servers which are close to 
end-of-life, and 2 DL360 G6 servers which are the current generation of shipping 
servers. HP needed to price 26-DL360 G6 servers for the benchmark’s priced con-
figuration. It was therefore necessary to exercise the option in Clause 3.6.3 to measure 
a subset of equivalent PMUs and use those measurements to extrapolate the total 
energy consumption for the priced Application Server subsystem of 26 – DL360 G6 
servers.  The energy consumption for the unmeasured equivalent PMUs will be the 
extrapolated value(s) per Clause 3.6.2. 
 

Fig. 6. 

The TPC-C AppServer subsystem in Figure 6 shows the Priced configuration of 26 
DL360 G6 servers. Clause 3.6.2 requires that when extrapolation is used for the en-
ergy consumption of a PMU, instead of measuring the actual energy consumption, the 
following requirements must be met and procedure must be followed. 

1. At least two equivalent PMUs must be included in the measured configuration.   
2. The Auditor selects two PMUs from the measured configuration to be measured 

for the extrapolation calculation. (In this case there were only two) 
3. The measured PMU’s energy must be less than 10% variance to be considered 

equivalent. 
4. The energy consumption value used for each of the unmeasured PMUs is the 

value of the highest reading of the measured PMUs. 
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5. The total energy consumed for the Priced Application servers is the energy con-
sumed by the measured PMU’s plus the energy consumed by the calculated un-
measured PMUs. 

Applying the above procedure, the total energy reported for the AppServer subsystem 
is 3249.86 watts. This is calculated by assigning the highest measurement of 125.20 
watts to the 24 unmeasured severs (24 x 125.20 watts = 3004.8 watts). This extrapo-
lated value for the substituted application servers is then added to the power of all the 
measured application servers.   

( ) .86.324986.11920.12520.12524 wattswattswattswatts =++×    (1)

3.4   Power Analyzer Configuration 

The TPC-Energy specification, Clause 6 lists the requirements associated with the use 
of compliant and approved power analyzers.  It defines the power analyzer as the 
device that will be connected or coupled to the power input of the System Under Test 
(SUT) to collect power readings during the benchmark run.  More specifically, Clause 
6.1.2.4 states that the analyzer must be capable of reporting watts, voltage, amperes 
and power factor with an average accuracy of not to exceed 2% for each set of power 
measurement data, for the ranges measured during the benchmark run.   

The accuracy of a particular measurement is affected by the combination of all ana-
lyzer and components uncertainties, for the ranges and frequency being measured.  
Consequently, setting and documenting of the correct voltage and ampere ranges is the 
first and an important configuration step, since these ranges are used for the power ana-
lyzer accuracy calculation (which is required for the compensated value calculation).   

For example, the formulae below [2-5] illustrates the calculations used to get the 
power range value of the DBServer subsystem for the TPC-E configuration.  The 
DBServer subsystem is connected to a Yokogawa WT210 Digital Power Meter and 
the voltage and current range is set to 300 volts, 10 amps respectively. 

geCurrentRangeVoltageRanPowerRange ×=   (2)

300voltsgeVoltageRanVrng ==   (3)

AmperesgeCurrentRanIrng 10==   (4)

wattsAmperesvoltsPowerRangeng 300010300Pr =×==   (5)

3.5   Power Analyzer Range Settings 

The power-range on most power analyzers is indirectly selected by selecting the ap-
propriate voltage and current ranges. The product of the voltage-range and amperes-
range is equal to the volt-amps-range, which is also the power-range for real power.  
Real power is reported by most power analyzers and is the product of the voltage, 
current, and power-factor. Since the maximum value for power-factor is 1.0 (purely 
resistive load), this is also equal to the volt-amps.  
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3.6   Power Analyzer Accuracy Calculations 

All measurement devices have some inaccuracies in the readings provided.  The TPC 
has traditionally taken the pessimistic approach regarding accuracy and uncertainties 
for measurements.  Basically this is implemented by accounting for these uncertain-
ties by skewing the reported data to be the most pessimistic value.  In the case of 
measuring the energy utilization for TPC-Energy, the potential errors in the measure-
ments are added to the actual measured values and the compensated values are  
reported. 

The TPC-Energy specification, Clause 6.1.2.6 states that the overall accuracy must 
be calculated using the vendor provided specifications. This includes the accuracy of 
the power analyzer, the coupling device (inline, feed-thru, clamp-on), and range selec-
tion.  For instance, Figure 7 is an excerpt from the Yokogawa WT210 specification 
chart which provides the accuracy as a % of reading and a % of range.   

The Yokogawa WT210 specification has required values for the uncertainty of the 
Power Accuracy calculation using % of reading (Ardg) and % of range (Arng)  The 
calculated Power Accuracy value is used when calculating the Compensated Value 
and Accuracy Correction Factor (Acf).   

 

Fig. 7. 

The calculations used for the Accuracy Correction Factor, shown in the formulae 
below, uses the Power Accuracy and Compensated Value formulae of the TPC-
Energy specification, Clause 6.1.2.6 and 6.1.2.7. 

Reading of %Accuarcy =Ardg  (6)

Range of %Accuarcy =Arng  (7)

Power Average=Pavg  (8)

Factor CorrectionAccuracy =Acf   (9)
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1
Pr

+
×+×

=
Pavg

ArdgngArdgPavg
Acf

 
 (10)

1
34.1696

)3000(001.0)34.1696(001.0
+

×+×
=

watts

wattswatts
Acf

 
 (11)

003.1=Acf  (12)
The calculated Accuracy Correction Factor is then used to determine the Compen-
sated Value. [13-17] illustrates the Compensated Value Calculation used to compen-
sate for the variations in accuracy of different power analyzers and probe types.  The 
calculated overall accuracy of the device is used to adjust the power measurements by 
a factor that will ensure that the reported result is conservative. 

Em = Measured Energy. (13)

Acf = Accuracy Correction Factor . (14)

Ecv = Compensated Value Energy . (15)

Em = Measured Energy . (16)

Ecv = Acf  x Em .  (17)

3.7   Power Analyzer Connections to PMU 

In addition to the power analyzer settings, during the setup of the TPC-E configura-
tion, it was necessary to group multiple PMU's into a single PMU, depicted in  
Figure 8.  

 

Fig. 8. 

Although, the grouping of disk array enclosures may seem simplistic, there are 
some considerations not to be neglected.  Safety is always a primary concern and 
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ensuring that the maximum current and voltage required by the PMU is within the 
tolerance of the lowest rated component being used in the energy measuring process.   

Initially, the lowest rated component in Figure 8 was incorrectly attributed to the 
breakout box, which has a 300 volt, 20 amp rating. The actual limiting component 
was inadvertently overlooked.  The power cable was only rated at 10 amps.  During 
the initial full-load measurements the PMU drew 14.23 amps, and caused significant 
heating of  the power cables and the breakout box.  In a worst case scenario, this over-
sight could have resulted in an electrical fire. 

4   Energy Measuring System 

The TPC-Energy specification, Clause 4.1, defines the Energy Measuring System 
(EMS), which is the TPC provided software package designed to facilitate the imple-
mentation of TPC-Energy measurements. It consists of three software modules which 
participate in the energy measuring process, depicted in Figure 9 below. 

Fig. 9. 

During the measuring process a single EMSC instance communicates and controls 
multiple PTDM’s using a socket. Each PTDM is connected to a single instance of the 
PTD using a socket for communication.   

Finally, the PTD’s communicate to either a Power Analyzer or Temperature Sensor 
via an interface adapter (USB to RS232 or USB to GPIB). The EMS modules can be 
distributed across many controller servers (e.g. remotely or locally), local hosting was 
preferential. 

4.1   Energy Measuring System Controller 

The Energy Measuring System Controller (EMSC) is a binary executable, which 
primary function is to orchestrate the various components involved in TPC-Energy 
measurements. In addition to connecting to multiple PTDM’s, it also provides con-
nections for real-time displays and an interface to the benchmark driver. In other 
words, it receives configuration and run commands from a TPC benchmark driver 
(TPC-E in this case) then forwards them to the respective PTDM instances. Similarly, 
when a PTDM sends power or temperature data, it forwards it to a real-time display 
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like Microsoft’s Performance Monitor.  In most cases the default EMSC configuration 
settings will suffice. 

4.2   Power Temperature Daemon Manager 

The EMS-PTDM is a binary executable, which primary function is to synchronize, 
format, log, and forward power or temperature data received from the EMS-PTD to 
the Energy Measuring System Controller (EMSC).  It also sends configuration and 
run commands to the power analyzer via the PTD. 

The TPC-Energy Specification defines secondary metrics in order to allow detailed 
comparisons of the result, broken down by subsystem.  These secondary metrics must 
be reported in Subsystem-name Watts/Work per unit of time, where Subsystem-name 
is selected from DBServer, AppServer, Storage and Misc.  The PTDM has several 
command line options in addition to the default settings; in this case the -i [ptdm id] 
option was used.  The -i option allows users to set the Subsystem-name, which is later 
used for logging and to uniquely identify each PTDM instance.  For example, the 
Database Server Subsystem of SUT would receive the [ptdm id] of “DBServer”, and 
results would be reported in the form of DBServer watts/KtpmC.  Instead of using 
only the Subsystem-name, this setup expounds upon the naming convention by ap-
pending the PMU-name.  Now, the Database Server Subsystem would be reported in 
the form Subsystem-PMU name or DBServer-ArrayOne watts/KtmpC.  This conven-
tion is beneficial when tuning of analysis of specific PMU’s is desired.  Other than the 
-i option, the default PTDM configuration settings sufficed. 

4.3   Power Temperature Daemon 

The Energy Measuring System’s Power and Temperature Daemon (EMS-PTD) is a 
version of the SPEC PTDaemon tool, provided under license from the Standard Per-
formance Evaluation Corporation  (SPEC), which includes extensions to meet the 
requirements of the TPC. It communicates directly to the Power Analyzer or Tem-
perature Probe to obtain the readings.  In addition, it sends data to the Energy Measur-
ing System’s Power and Temperature Daemon Manager (EMS-PTDM).  EMS-PTD 
configuration settings are available in the EMS package and documentation. 

Although, the default "software" configuration settings are many times sufficient, 
the instrumentation configuration may present several challenges during the energy 
measurement process.  First, the EMS-PTD has the ability to communicate with de-
vices via a Serial or GPIB Interface.  Initially, an attempt was made to connect four 
power analyzers (each using a GPIB controller) to the “controller” server via a four 
port USB hub.  While all devices connected to the EMS-PTD successfully, at least 
one of the EMS-PTD instances consistently failed to receive reliable power samples 
during the measuring process.  Several additional attempts and configurations did not 
reliably collect power samples during the measuring process.  Once the GPIB Inter-
face (IEEE-488) was used, the EMS-PTD was able to connect to several power ana-
lyzers and reliably communicate through a single USB interface port via the National 
Instruments GBIB to USB controller (GPIB-USB-HS). 
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4.4   Report Generator 

The Energy Measuring System’s Report Generator (rgen) is a binary executable that 
produces standardized reports derived from the configuration and measurement data 
extracted from the XML logs recorded by the PTDM. 

The EMS-Report generator uses options to select the time periods of the specific 
measurement interval. Using the -s [start time] and -e [end time] command line op-
tions are utilized for this purpose.   An example, if the measurement interval started 
on 2010-06-15 at 22:30:21 and ended on 2010-06-16 at 01:30:21, then  the Rgen 
would be invoked with  the command "rgen -s 2010-06-15T22:30:21  -e 2010-06-
16T01:30:21. 

It is highly advantageous to synchronize all the participating systems, including the 
EMS controller server(s).  In this setup the SUT was chosen as the time server and the 
command, "net time \\hostname /SET" was executed on the controller(s) before each 
benchmark run.  

5   Tuning the SUT for Energy Efficiency  

Energy consumption of computing systems is directly and indirectly affected by the 
systems performance. Figure 10 presents a spectrum of various energy reducing tech-
niques [6]. These techniques range from specialized circuits all the way to the ap-
plication and database level tuning.   

Fig. 10. 

Energy consumption management in IT is an evolving field which will continue to 
be increasingly prominent for many years.  While searching for the best-practices and 
right-sized configurations for optimal energy/performance systems, demand for 
higher performing servers and increased scale-out implementations continue to drive 
the technology. Few environments are willing to sacrifice significant amounts of 
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performance unless there are also significant energy savings. However, it remains to 
be seen which techniques will be the biggest contributors in solving the energy vs. 
performance problem.  

Among these various methods, memory optimization, hardware adaptation, and 
application level techniques are implemented at various stages in our quest of tuning 
the system to provide the most optimal TPC-Energy results.  

6   System Configuration  

Before configuring a system for performance, we need to know the performance goal. 
Next step, we plan for the hardware needed to achieve this goal. Among the hardware 
components, the CPU performance characteristic is the most accepted component to 
be considered. Information on CPU performance comes from various sources. The 
first source is the processor vendor’s projection of the CPU performance. It provides a 
reliable and often first hand empirical, and theoretical performance numbers for the 
CPU. Another source of CPU performance projection comes from in-house modeling 
efforts. In addition, performance metrics from previous published benchmarks are 
among the reliable data.  

With the initial CPU performance sizing done, we need to look at other crucial 
components that makes up the benchmarks such as memory, storage to accommodate 
the I/O rate, network layer between different tiers. Among these, the I/O subsystem is 
at the top of the list. Both I/O throughput and latency enter the performance sizing 
picture. Number and type of disks, disk controllers, numbers of I/O slots in the system 
affect the performance greatly. With the current state of computer system perform-
ance, the I/O subsystem is often the bottleneck for some of the TPC benchmarks such 
as TPC-C and TPC-E. 

The network between tiers plays a crucial role in performance goal. It can be a 
source of bottleneck if it is not planned carefully. In general, TCP/IP protocol pro-
vides a reliable, easy-to-adopt network layer. However, others low latency communi-
cation layer such as infiniband, iscsi have been used with excellent performance for 
both network and storage I/O. 

The decision between which OS, database, applications to implement is sometime 
made in parallel with the hardware choice. One thing to remember about system per-
formance is that the role of software is just as important as hardware. Both software 
and hardware need to be tuned to bring about the optimal performance. Database and 
OS tuning process are complex and time-consuming. The intricacy of optimizing 
various parameters all at once is a science and an art. Online resources on how to tune 
the OS and database are quite plenty and up-to-date.  

The next step is configuring the system with the hardware and software list decided 
above. Here various sizing tools can be used to design the layout with proper number 
of hardware. For example, HP has the ProLiant Transaction Processing Sizer software 
to help in design of systems with Microsoft SQL Server database. The tool is intended 
to properly identify HP server and storage requirements for database transaction proc-
essing needs. 
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When TPC-Energy benchmark is used with other TPC benchmarks, proper current, 
amperage sizing for various DB server, application servers, network switches, and 
storage enclosures needed serious consideration and isolation from the surrounding for 
the ease of benchmarking. Proper and correct usage of the power cables and connectors 
is a must to avoid accident.  In system tuning, there are several stages involved:  

 

Fig. 11. 

After stage 5, if the performance goal is met, the benchmark is slated for eventual 
publication if it meets the compliance criteria, such as ACID tests, etc. required by the 
TPC specifications. If the performance, price/performance, or energy/performance 
goals are not met, an evaluation of the configuration of the hardware and software 
analyzed and changed based on the findings.  

Tuning all three parameters of performance, energy, and price (SUT price) of the 
system is a complex and challenging journey.  Considering the two examples shown 
in Error! Reference source not found., the performance is optimized while the energy 
consumption and price can be reduced. The goal is to reduce the energy and price, 
thus make the PEP volume (performance, energy, price volume of the right triangular 
pyramid) as small as possible. 

However, Figure 12 is only a special case where performance is already optimized. 
The overall goal of tuning in performance, energy and price 3-D landscape is to re-
duced the area of base, i.e. the product of Energy Consumption and Price while  
increase the Performance height of PEP volume.  

A more intuitive picture is to couple the Energy and Price dimensions with Per-
formance as shown in Figure 13. 
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Fig. 12. 

 

Fig. 13. 

Scaling Energy and Price dimensions to Performance gives a more intuitive picture 
for optimization. A formula [18-20] for the scaled PEP volume is 

Scaled PEP volume = 1/3 (Area of Base) x (Height) . (18) 

= 1/3 (Energy/Performance x Price/Performance) x (Performance) . (19) 

= 1/3 (Energy x Price) / Performance . (20) 

Thus, the goal for tuning is clearly to reduce the scaled PEP volume of Figure 13. 
Here, an increase in performance also helps reducing the other two dimensions thus 
help reducing/optimizing the scaled PEP volume at the same time. 

7   Experimental Data  

Data was collected on four different configurations. The SUT is an HP-DL580G7-4P 
with SAS or SSD drives. The configuration with SAS drives is the same as the one 
listed in Figure 2. For example, SUT-SAS-Power Save configuration means the SUT 
has SAS drives running in Power Save mode. Similarly, SUT-SSD-Power Save indi-
cates that the SUT is running with SSD in Power Save mode. In the SSD configuration 
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the SUT has 320 drives in RAID0+1 using a total of 16 + 1 storage cabinets, where the 
additional cabinet is for database backup purposes. The pricing is similar to that of 
TPC-Pricing rules and the TPC-E workload was used. Some of the energy data for sub-
systems such as clients, monitors, miscellaneous are taken and/or extrapolated from 
collected data. 

Figure 14 utilizes equation-20 to determine the optimal Scaled PEP volume.  
Among the four configuration shown, the least optimal is the SUT with SAS drives 
running in Power Save mode. Here, the (Energy/tps, Price/tps, Performance) are meas-
ured at (6.37 watts/tps, 384.93 USD/tps, 1800 tps), see Figure 15. 

The optimal configuration is the SUT with SSD drives running in High Performance 
mode. Here, the (Energy/tps, Price/tps, Performance) are measured at (1.72 watts/tps, 
440.51 USD/tps, 2102 tps).  

 
Fig. 14. 

8   Conclusion 

The Transaction Performance Processing Council has provided benchmarks which 
enable the agnostic measurement of database systems performance and 
price/performance, and now energy/performance.  All major hardware and software 
vendors participate and/or utilize TPC Benchmarks as part of the evaluation of their 
products. The corporate IT customers are demanding higher performance and less 
energy consumption at reduced costs. The TPC-Energy results provide the most com-
prehensive evaluation of this growing concern with a level playing field for IT ven-
dors to compete. Additional aspects of the TPC benchmarks are also significant when 
using the published results. 
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Abstract. When originally introduced, flash based solid state drives (SSD) exhib-
ited a very high random read throughput with low sub-millisecond latencies.  
However, in addition to their steep prices, SSDs suffered from slow write rates 
and reliability concerns related to cell wear.  For these reasons, they were rele-
gated to a niche status in the consumer and personal computer market.  Since then, 
several architectural enhancements have been introduced that led to a substantial 
increase in random write operations as well as a reasonable improvement in reli-
ability. From a purely performance point of view, these high I/O rates and  
improved reliability make the SSDs an ideal choice for enterprise On-Line Trans-
action Processing (OLTP) applications. However, from a price/performance point 
of view, the case for SSDs may not be clear. Enterprise class SSD Price/GB, con-
tinues to be at least 10x higher than conventional magnetic hard disk drives 
(HDD) despite considerable drop in Flash chip prices.   

We show that a complete replacement of traditional HDDs with SSDs is not 
cost effective.  Further, we demonstrate that the most cost efficient use of SSDs 
for OLTP workloads is as an intermediate persistent cache that sits between 
conventional HDDs and memory, thus forming a three-level memory hierarchy. 
We also discuss two implementations of such cache: hardware or software. For 
the software approach, we discuss our implementation of such a cache in an in-
house database system.  We also describe off-the shelf hardware solutions.  We 
will develop a Total Cost of Ownership (TCO) model for All-SSD and All-
HDD configurations. We will also come up with a modified OLTP benchmark 
that can scale IO density to validate this model. We will also show how such 
SSD cache implementations could increase the performance of OLTP applica-
tions while reducing the overall system cost.  

Keywords: Solid State Disks, OLTP performance, SSD caching, DBMS buffer 
pool management. 

1   Introduction 

The recent performance and reliability improvements of Solid State Drives (SSD) 
have opened a window of opportunity for this storage technology in the enterprise 
database market [1] [2].  SSDs provide read/write IO rates that are 100 times faster 
than a conventional Hard Disk Drives (HDD) while maintaining a comparable or 
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slightly higher sequential read/write bandwidth. However, prices/GB of SSDs is still 
at least 10 times higher than that of conventional HDDs. This huge price gap intro-
duces several challenges in directly replacing a HDD-based storage infrastructure 
with an SSD based storage solution. 

In the enterprise market, for SSD based storage solutions to be common place, it 
has to meet or beat the price/performance of conventional HDD based solutions. 
While some studies predict the prices to continue to slide at a faster pace than HDD 
prices, others doubt it will happen any time soon. For example, IDC, in a report re-
leased in 2007 [3], predicts the price of SSDs to continue to decline at an annual rate 
of 50% till year 2012.  Others [4], argue that when supply-side cost factors of the two 
technologies are taken into account, SSD based solutions will not achieve $/GB parity 
with HDD based solution any time soon. 

We believe that the introduction of SSDs in the enterprise storage infrastructure 
represents a qualitative shift that has the potential to affect how IO intensive applica-
tions are designed.  In particular, DBMSs have some architectural decisions to make.  
The first approach is to treat the storage layer as a homogenous and flat extent of disk 
blocks whether it is SSD or HDDs based. This approach may garner some perform-
ance gains at high cost. The second approach is to take advantage of the high random 
read/write rates at low sub-millisecond latency of SSD based solutions while trying to 
fray their associated high cost. It is our belief that in this approach the DBMS has to 
treat the SSDs as an intermediate layer in memory hierarchy bridging the gap between 
the high speed memory and the very slow HDDs. 

1.1   SSDs as a Mid-Tier General Purpose Cache in DBMSs 

A quick look at the current storage landscape shows the two extremes that dominate 
the market. On one hand, DRAM is extremely fast (~100 Nano-second access time), 
but relatively expensive (~36$/GB).  At the other side of this dichotomy is SATA 
disks (Table 1). SATA, which accounts for more than 90% of the disk storage sold 
annually [4], is relatively cheap ($0.15/GB) but very slow.  Between this duopoly, 
there are several storage solutions that strive for existence and attention.  The chal-
lenge with all these storage technologies is they are neither faster than DRAM nor 
cheaper than SATA. 

Today, the SAS 7.2K and SATA 7.2K solutions are converging in terms of price 
and performance. This is expected to increase with the SATA 3.0 adoption.  We be-
lieve that eventually, SATA 7.2K may end up replacing SAS 7.2K in the not distant 
future. In the rest of the paper whenever we refer to SAS, we mean the 10K and 15K 
flavors.  

Currently, SAS storage solution account for ~5% of the total storage sold [3].  In 
particular, SAS disks are heavily used in enterprise database applications where ran-
dom I/O throughput is essential to the overall system performance. A quick look at 
the TPC-C and TPC-E benchmark publications [5] proves this point. Compared to 
SSDs, the $/GB of SAS disks is anywhere from 10X-15X cheaper while the $/Perf is 
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Table 1. Cost vs. Performance of different storage topologies. DRAM performance is measured 
by the number of 8 byte reads/sec. SSD and HDD performance is measured by the number of 
8K random reads. 

Storage Type Size(GB) Price ($) Perf  $/GB $/Perf Watts 

DRAM 4 143 1000000 35.75 0.000143 6 

SSD 120 1244 10000 10.37 0.12 2 

SAS(15K) 300 216 200 0.72 1.08 14 
SAS(10K) 300 186 150 0.62 1.24 8 

SAS(7.2K) 2000 293 100 0.15 2.93 5 

SATA(7.2K) 2000 293 100 0.15 2.93 5 

 
10X-15X more expensive. In this paper we will show that by introducing SSD as a 
mid-tier cache, we can increase the performance of SAS based solutions.   

In this paper we will discuss two ways to implement three-tiered memory architec-
ture in a DBMS: a hardware solution and a software-based one. In addition, we will 
use this prototype to run a customized OLTP benchmark with different IO densities to 
determine how these approaches (hardware and software-based SSD caching) com-
pares to the conventional HDD and complete SSD solutions. 

1.2   Contribution 

The recent improvement in SSD read/write throughput and improved reliability make 
this technology a compelling enterprise storage solution.  However, their $/GB make 
it unattractive as a complete replacement for HDD based solutions. We propose to use 
SSDs as a persistent cache in a 3-level memory hierarchy: RAM-SSD-HDD.  

Our contributions in this paper are: 

• We develop a TCO model for comparing the cost effectiveness of an All-
SSD approach compared to an All-HDD solution. 

• We implement SSD-based persistent cache in an in-house relational DMBS. 
We use such prototype to collect performance numbers of different OLTP 
configurations with different IO densities. We will also pick up a commer-
cially available hardware caching solution and collect performance numbers 
for the same OLTP configurations. 

• We demonstrate that the introduction of SSDs as a mid-tier cache will in-
crease performance and reduce cost in most enterprise OLTP workloads.  
This approach, while taking advantage of the SSD’s high IO throughput also 
minimizes the cost associated with it. 

• We discuss the future implications of such persistent cache on different as-
pects of the DBMS such as checkpointing, recovery, and backup/restore. 

The rest of the paper is organized as follows. In section 2 we will cover related work 
in this area and the introduction of SSDs in enterprise in particular. Section 3 will be 
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devoted to discussing the software and hardware implementation of the SSD cache. In 
section 4, we will describe the TCO model of SSD vs. HDD and discuss the different 
parameters involved in this model. Based on that analysis, we will design an OLTP 
benchmark that will allow us to control those parameters. We will conclude this  
section by describing the system we used to collect the performance numbers. In 
section 5 we will discuss the results using HDD only, SSD only, Software SSD cach-
ing, and Hardware SSD caching. In section 6, we will discuss issues and opportunities 
associated with persistent cache. Section 7 will include our concluding remarks.  

2   Background and Related Work 

Solid State Drives:  
Solid State Drives are becoming predominantly important in the storage research 
community. Decreasing prices and increasing volume in different markets have en-
abled more technologies in this domain in both research and industry segments. Com-
panies manufacture both PCI-e based devices and also SATA devices and this has led 
to several interesting architectures. SSDs can play a role as hot page storage as pro-
posed in [6] for databases, or can replace the main memory buffer cache as proposed 
in [7]. SSDs can also be used to store file system metadata [8], hash based indices [9] 
and also an entire DBMS in Flash [13]. 

 
Solid State Drives in Enterprise:  
There has been active research for using SSDs in enterprises. Solid state disks for 
enterprise databases was proposed in [1] where magnetic disks could be replaced with 
flash based memory for transaction log, rollback segments and temporary table 
spaces. There are industry whitepapers [10] which discuss the performance and reli-
ability requirements for enterprise SSDs. The most closely related paper to our re-
search is [11], where the authors analyze the tradeoffs of using SSDs in enterprises 
and evaluate SSD as a caching device as well. They show with an analysis of enter-
prise traces that only 10% of the workloads would benefit from having SSDs. Though 
we agree with the author’s conclusions that SSDs would be useful only if there are 
data that can be cached in that layer, we believe that a trace based analysis does not 
change the IO distribution based on a new storage hierarchy. Datacenter applications 
that are already optimized to work on data in memory have a different distribution 
than one that would work on SSD cache. Hence, in our work we tune benchmarks 
based on our application profile and vary IO densities and then run an end-to-end 
system evaluation.  

3   Implementation of an SSD Cache 

We used two approaches to implement an SSD cache. The first is a software solution 
where we took an in house DBMS and modify it to take advantage of the SSD as 
cache. In the second approach we use off-the-shelf hardware solution that will allow 
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an application to transparently take advantage of the SSD cache without major re-
writes.  Below, we will discuss both approaches and discuss their respective merits 
and drawbacks. 

3.1   Software SSD Solution 

We modified an in-house DBMS to take advantage of SSD as cache.  As any modern 
DBMS, it has a memory manager that allocates the physical memory available in the 
system and breaks it into 8KB buffers. These buffers are initially added to the free 
buffer pool. Whenever the DBMS tries to read a page from disk the memory manager 
will allocate a free buffer and read the disk page into it. In case, there is no free buffer 
to read the disk page into, we free an allocated buffer using an LRU scheme.  Hence, 
the pool of allocated buffer is essentially a cache for the HDD pages.  We use a hash-
ing mechanism to quickly locate a page within this cache (see Figure 1). 

 

Fig. 1. Typical Working of DBMS memory manager 

We added a look-aside SSD cache to the above memory manager (see Figure 2).  
Each time a disk page is requested, we look it up in the memory cache. If the page is 
found, the memory manager returns it. However, the disk page is not found, we look 
up the look-aside SSD cache.  If the disk page is found, the memory manager will 
load it into the memory cache.  In case the disk page is not in the SSD cache, the 
memory manager will load the page into the memory cache. Whenever a disk page is 
evicted from the memory cache due to memory pressure and the disk page is already 
is already in the SSD cache, nothing further is done. However, if the disk page is not 
in the SSD cache and there is a free SSD page, the disk page will be written to that 
free SSD page. In the event there is no free SSD page, we select an eviction candidate 
from SSD cache using an LRU based scheme (There can be multiple schemes here 
similar to [14]).  We then compare the timestamps on the both eviction candidates.  If 
the timestamp on the memory eviction candidate is more recent, we then write it to 
the SSD page.   
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Because the hash tables and all the ancillary data structures that help manage the 
SSD cache is in RAM, the SSD cache is not persistent.  If the persistence property is 
desired, then having an emergency backup power source for the server will allow 
storing these data structures in SSD in case of an unforeseen power loss.  When 
power is restored and the server is brought back online, these data structures will be 
read back from the SSD and the cache will be accessible again. 

 

Fig. 2. DBMS memory manager with SSD pages 

3.2   Hardware Solution 

Another approach to SSD caching is to use RAID controllers with SSD caching fea-
ture. PMC-Sierra’s Adaptec hardware accelerator [12] is a publicly available RAID 
controller that can work with SSD caching. These controllers leverage their presence 
in the data path to provide several cache levels to speed up IO operations.  They also 
provide memory cache in addition to an SSD cache. They identify frequently accessed 
data and copy it to attached SSD cache pool for faster access.  Unlike, the software 
solution which requires modifications to applications to enable SSD caching, the 
hardware solution provide a transparent and seamless solution. Unlike the software 
solution, these RAID controllers are equipped with battery backup. Hence, cache 
persistence is supported out of the box.  Some of these RAID controllers provide 
other useful features such hot plug and failure isolation.  Hot plug allows the removal 
and addition of SSD disks to the SSD cache pool without requiring a system shut-
down. Failure isolation, on the other hand, enables the SSD cache and the system in 
general to continue operating even when some of the SSDs in the SSD cache pool 
fail.  When the controller detects a disk failure, it will automatically take the disk out 
of the SSD pool.  Similarly, a system administrator could add/remove disks to the 
SSD cache pool without causing the SSD cache to go offline. 
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4   Experiment Methodology and Infrastructure 

We will start this section by discussing the cost model of an all-SSD solution and the 
all-HDD solution. The cost model discussion will point out a dominant factor that will 
decide which solution will more cost effective: IO density.  Based on this finding, we 
will transition into the discussion of a benchmark that will allow us to simulate work-
loads with different IO densities. Finally we will discuss with detail the system con-
figuration of a typical production server that was used to collect all the performance 
numbers. 

4.1   The Cost Model 

From Table 1, $/Perf of a 10K RPM SAS based HDD is higher than the $/GB of the 
same drive.  Therefore, we believe that the cost structure of an HDD based solution 
will be dominated by the former. Since power is becoming the main constraint in  
a data center environment [15], we added the cost of power to the cost equation as 
well. 

 
CostHDD= IOPS*$/IOPSHDD + PowerHDD * $/Watt  (1) 

 
In the SSD case, however, the $/GB dominates the $/Perf.  Hence, the cost structure 
of an SSD solution will be based on $/GB. 

 
CostSSD= GB*$/GBSSD + PowerSSD * $/Watt               (2) 

 
For the SSD solution to become economically viable,  
 

CostHDD  >  CostSSD    (3) 
 

IOPS*$/IOPSHDD + PowerHDD * $/Watt  >      
                      GB*$/GBSSD + PowerSSD * $/Watt     (4)  

 
After few transformations, we end up with the following inequality.  

 
(IOPS/GB)*$/IOPSHDD + (PowerHDD/GB-PowerSSD/GB) * $/Watt  >   

$/GBSSD     (5) 

 
We make few notes and definitions before we proceed. IOPS/GB is called IO Den-
sity, which we will refer to as IOD in the rest of the paper.  IOD is independent of the 
storage technology and is a property of the workload [17]. PowerHDD/GB (PDHDD) and 
PowerSSD/GB (PDSSD) are power densities of HDD and SSD respectively. PDHDD - 

PDSSD is the power density delta between HDD and SSD, which we will refer to as 
PD∆   in the rest of the power.  Using all the above, the new cost model will be: 

 
IOD * $/IOPSHDD + PD∆ * $/Watt   >  $/GBSSD  (6) 
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Our production system uses 10K rpm SAS drives. Using Table 1, the values for 
$/IOPSHDD, PD∆, and $/GBSSD are $1.24, 0.01 Watt/GB, and $10.37, respectively. 
The $/Watt is the total cost of power which include the cost of actual power con-
sumed plus the data center infrastructure cost. The value of this parameter is pegged 
at $10/Watt.  Substituting all the values in the equation above and solving for IOD, 
we get: IOD > 8.28. This says that a complete SSD solution will not be cost effective 
unless the IO density of the workload is 8.28 or higher. In this paper we will attempt 
to answer two questions.  First, does SSD caching (hardware or software) helps to 
achieve performance gains for IO densities less than 8.28?  Second, how does SSD 
caching perform compared to the total SSD solution for IO densities higher than 8.28? 
(Given assumptions about the RAID setup that we present in Section 4.3) 

To answer these questions, we have to come up with a benchmark that is scalable, 
can easily generate different IO densities, and mimic the behavior to our OLTP appli-
cation in the cloud. 

4.2   Benchmark Description 

With the above goals in mind, we started with the standard TPC-E benchmark [5].  
We created a 50K customer database to fill the data partition of the system (see next 
section for details). Then, we tried to generate different IO densities by only exercis-
ing a subset of the users (10K, 20K, 30K, 40K, and 50K).  We immediately hit few 
issues with this configuration. First, the workload did not scale very well. With 10K 
and 20K customers we notice sizeable lock contention resulting in poor performance.  
Second, the initial IO density is still in double digit.   

To tackle the scalability issue, we had to increase the number of users on the same 
data partition. In order to do that, we had to reduce the number of disk space allotted 
to every TPC-E customer. Our TPC-E benchmark kit allows that by using two 
switches: scale factor and trading days.  A legal (auditable) TPC-E database requires 
values of 500 and 300 respectively for both knobs. With those values, a 1000 cus-
tomer database takes around 10 GB of disk space. In our modified TPC-E benchmark, 
we used 2000 and 30 for scale factor and trading days.  With these values, a 1000 
customer databases consumes around 400 MB of disk space. Hence, we have a reduc-
tion of disk space/customer by a factor of 25.  This big reduction of disk space re-
quirement per customer, allowed us to build a 1 million customer TPC-E database. 

Second, we modified the TPC-E transaction mix to allow I/O to scale by the num-
ber of customers. The changes to transaction mix are as follows: 

1. Market watch has a weight of 0 
2. Trade lookup frame 4 has 100% weight 
3. Trade update “Read rows” set to 2 
4. Trade update “update rows” set to 1 
5. No data maintenance transactions 

These changes make the new workload closer to the actual production workloads in 
two ways.  First, in real online OLTP applications, the server hosts millions of users. 
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However, only a subset of users is active at any time.  Second, IO densities of online 
OLTP applications tend to be very low [11] [17]. It also enables us to scale the IO 
density by varying the active customer count. Table 2 shows the IO densities various 
customer counts that will be used in all our experiments. 

Table 2. Customer count and corresponding IO densities 

Customer count 250K 500K 750K  1000K 

IO density 2.27 7.31 16.30 25.74 

4.3   System Configuration 

Table 3 shows the components of a typical production server which we used for per-
formance measurements. 

Table 3. System Configuration 

System configuration 

Platform HP ProLiant DL380 2U Model  

CPU  2 x Intel Xeon L5520 2.26GHz, 8MB L3 Cache, 60W 

Memory 12 x 4GB PC3-10600R (48GB total) 

HDDs 20 x 146GB 10K SAS 2.5” , 5 x 300GB 10K SAS 2.5” 

Controller PMC-Sierra’s Adaptec hardware accelerator 

Power Supply 2 x 750W Gold N+1 Redundant Power 

Network Single Dual Port Embedded Intel NIC 

 
 
Out of the 24 SAS disks, 14 146GB disks are short stroked in a RAID10 configura-

tion to form a 600GB (H drive) data partition (see Figure 3).  We also used 4 146GB 
disks in RAID10 configuration to make the temporary database partition (T drive). 
The 5 300GB SAS disks are grouped together in a RAID5 configuration to make the 
150GB log and 760GB backup partition (O and E, respectively).  

For the All-SSD configuration, we replaced the 14 146GB data disks with 12 HP 
120GB SSD disks.  We grouped these SSDs in a RAID10 configuration to form a 
600GB data partition. For the SSD cache we used 4 Intel X25 SLC 30GB disks. 

5   Experiment Methodology and Infrastructure 

In this section, we will discuss the experimental results of the different configurations: 
All HDD (Baseline), All SSD, hardware caching, and software caching.  We will also 
compare the TCO score of each solution. 
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Fig. 3. Disk layout for System under Test (SUT) 

5.1   All SSD vs. All HDD Solution 

We ran our benchmark with its four flavors (representing different IO densities) on an 
All-HDD (Baseline) and an All-SSD configuration.  Figure 4 shows the performance 
(tpsE) of both configurations.  The 250K-user (IOD 2.27) showed no gain when  
substituting HDDs with SSDs, since the memory housed most of the dataset in both 
configurations.  The remaining 3 configurations showed substantive gains ranging 
from 25% to 536%, when more requests had to be served from the disk configuration. 
Note however that the system price of the SSD solution is significantly higher than  
 

 

Fig. 4. Performance (tpsE) of Baseline compared to an All SSD solution (All SSD better in all 
cases) 
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the All HDD - Baseline solution. Figure 5 shows the corresponding TCO numbers. 
We calculate the tpsE/$/W which essentially gives the performance:cost benefit. Runs 
with IO densities less than 8.28 show that the HDD configuration is cheaper. The 
SSD configuration comes ahead with runs with IO density of 8.28 or higher. This is 
an experimental validation of our TCO model discussed in section 4.1. 

 

Fig. 5. TCO comparison between Baseline and All SSD solution (Higher value is better) 

5.2   Hardware SSD Caching Solution 

As discussed in section 4.3, we used PMC-Sierra’s Adaptec hardware accelerator 
solution [12].  For each benchmark flavor, we run with four different cache sizes: 
32GB, 64GB, 96GB, and 128GB. This will allow us to find the optimal cache size 
(and best TCO) for every run.  Figure 6 shows performance results of the Hardware 
SSD caching run under different SSD sizes.  As in the All-SSD configuration, 250K 
run did not show any gains from hardware caching.  The 500K run shows gains of as 
much as 25%.  It also shows that cache sizes bigger than 96GB will not improve per-
formance. The remaining two runs show substantial performance gains of 286% and 
514%, respectively.  These results are very impressive as they are almost identical to 
the All-SSD solution. 

Since the hardware caching solution is cheaper than an All SSD solution, the TCO 
numbers are much better for the SSD caching solution (see Figure 7). Another inter-
esting finding is that the SSD caching solution helps for IO densities lower than 8.28 
also. Figure 8 shows that the hardware SSD caching solution (with 64GB cache size) 
has better TCO than an All-HDD solution for the 500K run.  In comparison, the All-
SSD solution failed at achieving this result for the 500K run.  For the 750K and 
1000K runs, the hardware SSD caching solution beats both All-HDD and All-SSD 
solutions in terms of normalized TCO. 
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Fig. 6. Hardware SSD caching solution shows gains in tpsE over Baseline 

 

Fig. 7. Hardware SSD caching shows better gains in TCO (Higher value is better) 

5.3   Software SSD Caching Solution 

We used the modified in-house DBMS as described in section 3.1 to collect perform-
ance numbers.  As in the Hardware SSD caching solutions, for each flavor of the 
benchmark, we used four sizes for the SSD cache, 32GB, 64GB, 96GB, and 128GB.  
Since the SSD caching is tightly integrated with the memory manager, we expect the 
Software SSD caching to beat the hardware caching solution. This experiment will 
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Fig. 8. Hardware SSD caching is better than both baseline and All SSD solution for 500K, 
750K and 1000K cases 

 

Fig. 9. Software SSD caching shows better performance than Baseline 

show us the extent of these gains, if any, and the circumstances under which these 
gains are realizable. Figure 9 shows the performance numbers of the software SSD 
caching solution. The performance of the SSD software caching solution is very simi-
lar to that of the hardware SSD solution in three out of the four runs: 250K, 500K, and 
750K.  In the 1000K run, however, the software SSD caching solution is 46% better 
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than the hardware SSD aching solution.  The software SSD solution has a better TCO 
numbers than hardware solution due to a better performance (as is the case in the 
1000K run) and lower price due to the lack of a Hardware Accelerator (see Figure 10 
& Figure 11). We see that in all cases the Software SSD Caching solution performs 
better in terms of performance and TCO than the all Hardware Caching solution. 
However, it includes the cost and complexity if the software. Hence, it has a lower 
TCO than the baseline in the 250K case, where caching is not used much. However, 
for all the other cases (500K, 750K and 1000K), the software caching performs better 
than the baseline as well. 

 

Fig. 10. Software SSD caching has better TCO than baseline in 500K, 750K and 1000K cases 

 

Fig. 11. Software SSD caching is better than HW SSD caching in all cases 
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6   Future Work 

In both software and hardware SSD caching implementation discussed in this paper, a 
write through caching approach was implemented. There are few reasons for this 
choice. First, in the software SSD caching, the data structure that maps database disk 
pages to SSD pages resides in memory.  Since memory is volatile, these data struc-
tures will be lost leading to data loss.  Second, there is a worry about the SSD endur-
ance caused by cell wear. A write-through reduces writes to the SSD cache, ensuring 
a longer life span.  Third, there is a perception issue.  SSD is a new technology and 
there is still some mistrust or “wait and see” attitude. There is a lot of opportunity to 
address these challenges with new architectural enhancements for SSD solutions. 
 
Impact on DBMS: The PMC-Sierra’s Adaptec hardware accelerator has a battery 
backup. That in conjunction with better endurance numbers due to wear leveling 
techniques should make a write-back cache a reality.  Such persistent cache could 
have huge implication on checkpointing and recovery in a relational DBMS.  For 
example, in a system with 48GB, assuming 50% of the pages are dirty and a check-
point is issued every 30 minutes, checkpointing will generate as much as 2000 
writes/second. Given, that most enterprise systems use RAID10 for data volumes, this 
write rate will translate into 4000 IOPS.  Given that a 10K rpm SAS HDD supports 
about 150 IOPS while maintaining a decent latency, the system will need a minimum 
of 26 disks to support the checkpoint write rates.  Having a persistent write-back SSD 
cache that can absorb checkpoint writes will significantly reduce the need for HDD 
spindles. 

On the workload front, our work was primarily focused on OLTP workloads.  
Other areas that merit further investigation are DSS workloads and other non-database 
workloads such as file servers and web servers. We believe that an extensive work-
load characterization, benchmark tuning and TCO based selection similar to the 
methodology in this paper would quantify the benefits of SSD based solution in such 
environments. 

7   Conclusion 

Despite the improvement in both performance and reliability combined with the 
steady drop in price, SSDs are still not an outright cost effective alternative to HDDs.  
We presented a TCO model that states that workloads with IO densities of 8.28 or 
higher will gain from an all-SDD replacement of HDDs. This model was validated by 
our experimental results.  We tuned the TPC-E benchmark to exercise different IO 
densities that reflect a spectrum of production workloads. Further, we showed that 
both hardware and software SSD caching are able to meet the performance numbers 
of an All-SSD solution while handily winning in the TCO analysis. Another advan-
tage of SSD caching, both hardware and software, is their viability in terms of pure 
performance as well as TCO for IO densities lower than 8.28 where an All-SSD solu-
tion is extremely cost prohibitive. We also show that a software based SSD caching 
solution would yield the best TCO, thereby leading to datacenter energy and cost 
savings. 
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Abstract. Ideally, realizing the best physical design for the current and
all subsequent workloads would impact neither performance nor storage
usage. In reality, workloads and datasets can change dramatically over
time and index creation impacts the performance of concurrent user and
system activity. We propose a framework that evaluates the key premise
of adaptive indexing — a new indexing paradigm where index creation
and re-organization take place automatically and incrementally, as a
side-effect of query execution. We focus on how the incremental costs
and benefits of dynamic reorganization are distributed across the work-
load’s lifetime. We believe measuring the costs and utility of the stages
of adaptation are relevant metrics for evaluating new query processing
paradigms and comparing them to traditional approaches.

1 Introduction

Consider the task of selecting and constructing indexes for a database that con-
tains hundreds of tables with tens of columns each; a horrendous task if assigned
purely to a DB administrator. Figure 1 illustrates the various methods on how
to reach an appropriate physical design.

The simplest approach (top row) loads data quickly without indexes, and then
does a full table scan for every query. Traditional offline approaches (2nd row)
invest the effort to create certain indexes, and then enjoy fast queries on those
indexed columns. A third approach is based on online tuning and loads data
quickly without indexes. It first observes the workload and then identifies and
constructs the most promising indexes [2,12,13]. Unlike all of these methods,
adaptive indexing (bottom row) creates and refines indexes automatically and
incrementally, as a side effect of query execution [6,7,9,10,11].

Each approach is ideal for certain scenarios, depending on how much work-
load knowledge and idle time is available to invest in preparations, how much
storage space and maintenance effort we can afford to spend, and, last but not
least, workload composition. For example, if a workload is well-understood and
extremely unlikely to change, then it might be most effective to create indexes
up-front, as shown in Figure 1(2).

R. Nambiar and M. Poess (Eds.): TPCTC 2010, LNCS 6417, pp. 169–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Four approaches to indexing with regard to query processing

However, one can think of other scenarios with sudden, unpredictable, and
radical workload changes. For example, usage of search engines follows current
trends on news and human interest. A sudden event somewhere in the world
is followed by millions of users searching for the same patterns for a limited
amount of time. One cannot anticipate these events before-hand. Any effort to
improve performance should have instant results, yet may be useful only during
this workload peak, burdening the system afterwards unnecessarily with extra
storage and maintenance effort. Adaptive indexing, Figure 1(2), can respond to
workload changes automatically, yet without over-investing in short-lived trends.

Contributions. The first two approaches of Figure 1 have been extensively
studied in the past, and recently an initial approach for benchmarking online
selection (the third approach) has been proposed [14]. In this paper, we set forth
a framework for evaluating the new approach of adaptive indexing so that we
can properly and systematically compare adaptive indexing techniques as well
as identify their benefits over past approaches in dynamic scenarios.

Dynamic Workloads. Adaptive indexing targets dynamic and unpredictable
scenarios. For example, in a scientific database, researchers perform exploratory
analysis to interpret the data and infer underlying patterns. Workload patterns
continuously evolve with their exploration of the data [15]. With new scientific
data arriving on a daily basis and with changing search patterns, there is little
or no chance to settle for just one workload and create indexes only for that.
By the time we have created indexes for one workload pattern, the focus may
have already changed. In addition, blindly replicating data in such huge data
sets is not appropriate given the already extensive use of storage resources of
the ever-expanding data set.

With Knowledge and Time. Traditional approaches for physical design tun-
ing are designed with a drastically different scenario in mind. Perfect up-front
workload knowledge is assumed while workloads are assumed to be stable with
enough idle time to accommodate traditional physical design. More recent ap-
proaches, i.e., soft indexes and online tuning [2,13], go one step further by pro-
viding a monitoring step that tries to understand the workload while the system
is working and only then create the proper indexes. This deals with situations
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where the workload is not known up-front but it also increases the delay of
reaching good performance since queries during the monitoring period are not
supported by indexes. Such approaches only make sense for scenarios where the
time needed to spend in monitoring and the time needed to create the proper
physical design are in proportion to the workload span and query performance
without indexes is acceptable.

Continuous Physical Adaptation. Adaptive indexing, a very recent develop-
ment in database architecture technology, addresses the above problems. Instead,
of requiring monitoring and preparation steps in order to select and create useful
indexes, index creation becomes an integral part of query processing via adap-
tive database kernels. The actual query execution operators and algorithms are
responsible for changing the physical design. Essentially, indexes are built selec-
tively, partially and incrementally as a side-effect of query execution. Physical
changes do not happen after a query is processed. Instead, they happen while
processing the query and are part of query execution.

Adaptive indexing can drastically change the way a database system operates.
It also drastically changes the way we should evaluate query processing perfor-
mance. Current benchmarks largely consider workload knowledge a given, while
the index creation overhead is not taken into account as part of the processing
costs. However, an adaptive indexing technique and relevant application scenar-
ios need to be evaluated in an entirely different setting considering the complete
costs as well as to take into account the various workload phases and how the
system performance evolves. This changes the picture dramatically.

A New Benchmark. A recent benchmark proposal formalizes special require-
ments for online index selection [14]. Unlike established traditional benchmarks,
new index structures are intended to be created on-the-fly, so this benchmark
takes into account the cost of index creation.

In this paper, we outline a new benchmark specifically targeted for the eval-
uation of adaptive indexing implementations. As in online tuning, base data is
loaded without incurring any time cost for index maintenance before the first
query arrives. However, unlike the scenario considered by [14], index creation
and maintenance efforts are integrated into query execution actions. Given this
incremental, continuous and selective nature of adaptive indexing we need a very
different evaluation method than does online index selection.

Breaking the Workload Span. How good or bad an adaptive indexing tech-
nique is for a particular workload depends on the overhead that incremental
indexing adds to each query and how many queries benefit from the incremental
indexing, versus the degree to which that query benefits from the efforts of prior
queries. Thus, how an adaptive indexing system compares to a system without
index support (in terms of fast loading) or to a system with full index support
(in terms of fast queries) depends on how incremental physical design actions are
performed and scheduled during the workload span. We believe that such new
methods are required to evaluate how well query processing techniques serve
workloads that are increasingly complex, dynamic, and possibly mixed.
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Outline. The rest of this paper is organized as follows. Section 2 briefly dis-
cusses related work. Then, Section 3 describes the benchmark in detail while it
also provides examples of adaptive indexing behavior and evaluation. Section 4
discusses partial reference implementations of the benchmark, and Section 5
proposes future work. Finally, Section 6 concludes the paper.

2 Related Work and Background

2.1 Classic and Online Indexing

Typically, indexes have been selected and refined by database administrators,
possibly using physical design tools, in an offline process based on analyzing a
known representative set of the workload [4]. Indexes are then created wholesale.
State of the art research also suggests the usage of alerters [1,3], i.e., monitoring
tools that alert the DBA on when the system should be re-tuned in order to
refine a currently suboptimal physical design.

More recently online index creation approaches have been introduced [2,12,13].
They extend the above model for the cases where the workload is not known up-
front. They add a monitoring step while the actual workload is being processed
and an index is created automatically only once it is believed that it will pay
off. Indexes are again created in one go and completely with the difference being
that they are created in the background while the workload is actually running.

2.2 Adaptive Indexing

Here, we briefly sketch two adaptive indexing techniques we have recently
introduced.

Database Cracking. Database cracking [10] combines some features of both
automatic index selection and partial indexes to implement adaptive indexing.
As shown in Figure 1(4), it reorganizes data within the query operators, integrat-
ing the re-organization effort into query execution. When a column is queried by
a predicate for the first time, a new cracker index is initialized. As the column
is used in the predicates of further queries, the cracker index is refined by range
partitioning until sequentially searching a partition is faster than binary search-
ing in the AVL tree guiding a search to the appropriate partition. The keys in a
cracker index are partitioned into disjoint key ranges, but left unsorted within
each. Each range query analyzes the cracker index, scans key ranges that fall
entirely within the query range, and uses the two end points of the query range
to further partition the appropriate two key ranges.

For example, a read-only query on the range “d – p” would crack the keys “y
j s c s g m a q k b u e” into three partitions: (1) “c a b e”, (2) “j g m k”, and
(3) “y s q u.” If next a new query with range boundaries j and s is processed,
the values in partition (1) could be ignored, but partitions (2) and (3) would be
further cracked into partitions (2a) “j”, (2b) “g m k”, (3a)“q s”, and (3b)“y u”.
Subsequent queries continue to partition these key ranges until the structures
have been optimized for the current workload.
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Updates and their efficient integration into the data structure are covered
in [11]. Multi-column indexes to support selections and tuple reconstructions
are covered in [9]. Paper [9] also handles storage restrictions via dynamic partial
index materialization.

Adaptive Merging. Inspired by database cracking, adaptive merging [6,7]
works with block-access devices such as disks, in addition to main memory. The
principal goal for designing adaptive merging is to reduce the number of queries
required to converge to a fully-optimized index, and the principal mechanism is
to employ variable amounts of memory and CPU effort in each query.

While database cracking functions as an incremental quicksort, with each
query resulting in at most two partitioning steps, adaptive merging functions
as an incremental external merge sort. Under adaptive merging, the first query
to use a given column in a predicate produces sorted runs, ideally stored in a
partitioned B-tree [5], and subsequent queries upon that same column perform
merge steps. Each merge step affects key ranges that are relevant to actual
queries, avoiding any effort on all other key ranges. This merge logic executes as
a side effect of query execution.

For example an initial read-only query on the range “d – p” might break the
keys “y j s c s g m a q k b u e” into equally-sized partitions and then sort them
in memory to produce sorted runs : (1) “c j s y”, (2) “a g m q”, (3) “b e k u”.
If next a second query with range boundaries j and s is processed, relevant values
would be retrieved (via index lookup) and merged out of the runs and into a “final”
partition (fully-optimized for the current workload): (1) “c s y”, (2) “a g”, (3) “b
e u”, (final) “j k m q”. Subsequent queries continue to merge results from the runs
until the the “final” partition has been optimized for the current workload.

Hybrids. Currently, we are actively combining ideas from both database crack-
ing and adaptive merging with the goal of combining the strengths of these
adaptive indexing techniques so as to better handle dynamic environments.

2.3 Traditional and Online Index Tuning Benchmarks

Traditional benchmarks consider only the query processing costs. More recently,
[14] introduces a new benchmark that captures metrics about online indexing
techniques. The main distinction of [14] is that it includes the index creation
costs as part of processing performance, and is thus suited for evaluating online
techniques that create indexes on-the-fly.

Typically, the cumulative cost is considered, i.e., the total time needed to
run a workload of Q queries. For an online indexing technique though, [14]
includes the cost to run a number of queries without index support as long as
the monitoring and decision phase lasts as well as the costs to create the proper
indexes and subsequently the cost to run the rest of the workload with index
support. The quality of an online technique is based on minimizing this total
time as in the case of a classic indexing technique. In online tuning, however, this
can be broken down into the individual phases that characterize the costs and
benefits of an online technique. For example, one metric is how fast the system
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recognizes which indexes to build. The faster this happens, the more queries can
benefit from an improved performance.

To evaluate an adaptive indexing technique properly, we must understand
both the benefits and also the overhead costs of the incremental index improve-
ments. In adaptive indexing, indexes are built continuously with every query.
Each query runs several operators and each operator performs incremental phys-
ical changes that improve the structure of indexes. Thus, indexes are not built
at once, but rather in numerous steps that are determined by the workload. In
fact, an index may never reach a final, fully refined, state if a less-refined state
can provide sufficiently good performance for the current workload. In this way,
the setting for evaluating adaptive indexing technique is drastically different. We
need to carefully identify and evaluate the multiple different stages that index
creation goes through until it reaches a stable status. During each stage, the
performance characteristics are different. The duration of each of these stages
characterizes the quality of an adaptive indexing technique. In the following
section, we discuss these concepts in detail.

3 Framework for Adaptive Indexing Benchmarks

As the authors of two different approaches to adaptive indexing [6,7,9,10,11] and
long-time admirers of previous self-tuning approaches [1,2,3,12,13] we propose
here a framework for benchmarking adaptive indexing systems. One design goal
is that the framework should be able to measure the incremental costs and ben-
efits of reorganization actions in terms of how these are distributed along the
lifetime of a workload. A second design goal is that this framework should be
generic enough that a variety of utility functions and workloads could be used.
For example, an implementation of this benchmark could be used to compare
two adaptive indexing techniques on the basis of the time needed to execute the
workload just as well as on the basis of the energy used. Finally, the framework
should support the comparison of the effectiveness of an adaptive indexing tech-
nique to any other indexing technique, whether adaptive, online or traditional.
For example, given a utility function and a workload, a database practitioner
should be able to determine how an adaptive indexing technique compares to a
traditional approach in terms of that workload.

We begin by identifying stages that describe how the costs and benefits of
adaptive indexing are distributed along the lifetime of a workload. Distinguish-
ing between these stages informs comparisons between different adaptive index-
ing techniques. Second, we discuss how general design considerations, such as
workload composition and query selection, can impact adaptive indexing perfor-
mance in each of these stages. Finally, we discuss the use of metrics to compare
adaptive indexing performance across the lifetime of a workload.

3.1 Stages of Adaptive Indexing

We define stages of an adaptive indexing life-cycle in terms of the overhead that
incremental indexing adds to each query, versus the degree to which that query
benefits from the efforts of prior queries.
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Fig. 2. Adaptive Indexing Stages

As shown in Figure 2, these two metrics help us to identify four stages of
adaptive indexing over the lifespan of a workload phase. As starting point, we
assume that all data has been loaded into the database system, but no index
structures have been created, yet.

Stage 1: Planting. This first stage is characterized by the fact that per-query
costs of adaptive indexing exceed those of scan-based query evaluation. The ini-
tial step in adaptive indexing is always the extraction of future index entries from
the original data collection, e.g., a table stored unsorted and in row format. Even
this step can be implemented as side effect of query execution. Subsequently, the
index is refined as a side effect of each query. During the planting stage, the ex-
penses for initializing and refining the index exceed the benefits of exploiting the
still rudimentary index. Consequently, the total per-query costs are larger than
with scan-based query evaluation.

Stage 2: Nursing. With more queries being executed, the index becomes more
detailed and complete, yet query execution benefits from the efforts of prior
queries. Hence, the expenses for further refining the index decrease while at
the same time the benefits of using the improving index increase. Consequently,
the per-query costs of adaptive indexing decrease. The point where the per-
query costs of adaptive indexing become lower than those of scan-based query
evaluation marks the beginning of this second stage. During the nursing stage,
the investments of the planting stage start paying-off in terms of per-query costs.
However, the cumulative costs over all queries for adaptive indexing still exceed
those of scan-based query evaluation.

Stage 3: Growing. As index refinement proceeds, the cumulative benefits of
the nursing stage eventually outweigh the cumulative investments during the
planting stage. The first query that benefits from the restructuring efforts of
previous queries without having to expend any further effort itself beginning of
the growing stage, i.e., the stage at which the index structure begins to converge
to an optimal state for the current workload phase.

Stage 4: Harvesting. Finally, the index structure is fully optimized and query
execution no longer includes side effects. Per-query execution costs reach a min-
imum. We refer to this final stage as harvesting.
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Discussion. The above metrics are drastically different than simply measuring
the performance of an a priori fully optimized system or simply considering a
one-time index creation online. In adaptive indexing individual queries perform
small physical design changes and optimal physical design is reached only after
a number of queries have been processed. For adaptive indexing an index is
optimal if it allows the current query to be processed in the same time as a fully
materialized and fully optimized traditional index. This does not mean though
that the adaptive index is completely tuned at this point for the complete data
set. It even does not mean that the adaptive index is completely materialized.

Adaptive indexing stages apply to both new non-clustered (secondary, redun-
dant) indexes, as well as to individual key ranges. Applying adaptive indexing
to clustered (primary) indexes is more akin to table reorganization rather than
index creation. We note that the four stages defined above do not necessarily
occur only once per workload, but rather once per index (possibly partial) that
a workload phase requires.

While originally defined for adaptive indexing, we can also fit traditional a
priori index creation and online index selection/creation into the 4-stages frame-
work. For traditional a priori index creation, the planting stage consists of the
actual index creation, and the remainder of the workload moves directly into the
harvesting stage. For online index creation, the planting stage covers the initial
workload monitoring that leads to the index creation and the index creation
itself. After this, the remainder of the workload phase moves directly into the
harvesting stage.

3.2 Design Considerations

A benchmark should evaluate the design tradeoffs made by the techniques it
evaluates. For example, an online index selection benchmark may test how the
allocation of a space budget, the monitoring time period, and the analysis budget
impact performance of an index selection technique. In the case of adaptive
indexing, because index creation and refinement takes place automatically during
the execution of individual queries, there is no monitoring time period, analysis,
or even index selection needed. Instead, an adaptive indexing benchmark should
test how workload composition and the amount of work performed by query
execution side-effects impact each stage of the adaptive indexing process. For a
given technique and workload, certain stages might become longer or shorter or
even be skipped entirely.

Workload Phases. Because adaptive indexing particularly targets shifting
workloads, we model a workload W as a sequence of phases. Each workload
phase P comprises a sequence of queries Q and a scheduling discipline S that
determines how they will be submitted to the database: P = (Q, S).

Each phase of a workload potentially calls for new index structures and thus
passes through the planting, nursing, growing, and harvesting stages. When there
is a gradual transition between phases, queries associated with the old phase may
be in growing or harvesting stages while queries associated with the new phase
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must begin at the planting stage, although it is possible that the preliminary
stages of the new phase may be skipped or at least facilitated by work done
during a prior phase.

We can model any given indexing mechanism as a transformation function
that transforms Phase P ’s original sequence of queries Q into a new sequence
of queries Q′ at runtime: transform(Q, S) = (Q′, S). Each query q ∈ Q is trans-
formed individually, depending on its place in the workload.

Utility. Assume there exists a measure of utility utility(q) that applies to the
execution of each query and that can also be applied to stages, phases and
workloads. For example, one measure might be the time needed for a workload
phase to complete: utility(P ) = 1/time(P ). Other simple measures might be the
power used during execution of a query: utility(q) = 1/power(q), or the number
of records touched during query execution: utility(q) = 1/records accessed(q).

During the planting stage, each transformed query in q′ ∈ Q′ has less, or at
best equal, utility than its original counterpart. During the nursing stage, some
transformed queries have increased utility compared to their original counter-
parts. At the growing stage, all transformed queries have increased utility domi-
nate those with decreased utility. Finally, during the harvesting stage, the index
structure is fully optimized from the perspective of that particular workload
phase, and all remaining queries are overhead-free.

Metrics. There are a number of ways to assess the utility of an adaptive in-
dexing mechanism with regard to a given workload. We can assess the overall
impact of an adaptive indexing mechanism by comparing the utility of the origi-
nal and transformed workload. We can compare the overall efficiency of adaptive
indexing by comparing the utility of the transformed workload to the utility of
a workload with pre-populated indexes.

In addition, because the premise of adaptive indexing is that a workload can
reap immediate benefits with low initial investments, we should also consider the
cost of the planting and nursing stages, as well as the utility of queries within the
nursing and growing stages. To this end, we can measure the aggregate utility
per query. Finally, we can consider the speed of convergence (how many queries
it takes to reach the harvesting stage).

Experimental Parameters. A number of factors impact how the above met-
rics are met with regard to a given workload, and that benchmark specifications
should consider. The goal of an adaptive indexing benchmark would be to stress
an adaptive indexing technique regarding its ability to maintain a fluid and quick
transition from one stage to the next. The ideal goal of an adaptive indexing
technique is to quickly move through all stages and reach the harvesting stage.
The even more crucial part is that it quickly enters the nursing and growing
stages so that it can materialize immediate benefits when the workload changes.
Thus, critical parameters to study include:
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– Varying the range and distribution of keys used in query predicates. Shifting
the focus into different key ranges forces an adaptive indexing technique to
exit the harvesting stage and return to previous stages. Once the index is
again optimized enough or completely for the new key ranges, we again enter
the growing and harvesting stage. The smallest the disruption of the stages,
the best the adaptive indexing technique is.

– Varying the density of phases per workload rewards strategies that can adapt
quickly to a new phase. With workload phases changing rapidly there is less
time to spend in adapting so instant reactions and benefits are needed.

– Varying the overlap between workload phases rewards strategies that can
leverage effort done during prior phases.

– Varying the number of columns involved in query predicates as well as the
tables used in the query workload stresses the ability of an adaptive indexing
technique to focus into multiple parts of the data at the same time. It typ-
ically extends the length of the stages as it takes more queries and time to
improve performance on a given data part. It also stresses the ability of the
system to maintain and administer an extended table of contents efficiently.

– Varying the concurrency of queries (the scheduling policy) stresses the ability
of an adaptive indexing technique to properly schedule or serialize multiple
queries. Ideally, the stages should show the same behavior as if the queries
arrive one after the other.

– Varying the percentage of updates in the workload stresses the ability of an
adaptive indexing technique to not disturb the stages flow while new data
are merged and affect the physical actions performed. At worse an update
invalidates all previous actions and leads back to the planting stage. Adap-
tive indexing techniques though should rely on incremental and differential
approaches in order to maintain the stage development.

– Varying the amount of available storage stresses adaptive indexing for its
ability to gain and exploit partial knowledge when storage is not enough
to accommodate all necessary indexes. It should be able to work on par-
tially materialized indexes and continuously refine them, augment them and
reduce them as the workload shifts. Again a powerful adaptive indexing tech-
nique is characterized for its ability to quickly go past the planing stage and
materialize performance benefits.

4 Partial Reference Implementation

In this section, we illustrate the stages and metrics described in Section 3 using
the results of experiments previously published in [9] and [7].

4.1 General Experimental Setup

The ensuing experiments assume no up-front knowledge and, crucially, no idle
time to invest in any preparation. Data is loaded up-front in a raw format and
queries immediately arrive in a single stream.
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The database cracking implementation is built on top of the MonetDB open-
source column-store, which resulted in the design of new operators and opti-
mizer rules in the kernel of MonetDB. Experiments were run using a 2.4GHz
Intel Core2 Quad CPU equipped with one 32KB L1 cache per core, two 4 MB
L2 caches, each shared by 2 cores, and 8GB RAM. The operating system is
Fedora 12. The reported experiments for database cracking measure the elapsed
execution time for each query processed.

The adaptive merging experiments were done using a simulator capable of
configuring experimental parameters such as workspace size, merge fan-in, ini-
tial partition size, etc. The metric used is the number of records touched by
each query (as opposed to the number of comparisons) which is appropriate for
evaluating techniques that target movements in the memory hierarchy.

4.2 Planting, Nursing, and Growing Stages

Our first experiment runs 1000 simple selection queries defined on a 3 attribute
table of 107 tuples with unique integers randomly located in the table columns.
Having a data workload that equally spans across the value domain is again
the hardest scenario for adaptive indexing as it offers no flexibility to focus and
improve certain areas. The queries are of the following form:

select max (B),max (C) from R where v1 <A<v2

The queries are focused on a particular range of data — we choose v1 and v2

such that 9/10 queries request a random range from the first half of the attribute
value domain, while only 1/10 queries request a random range from the rest of
the domain. All queries request 20% of the tuples.

Figure 3 is based upon Figure 6 of [9], and compares the performance of
database cracking (blue), full-sort/traditional indexing (magenta), and scan-only
(red) approaches. The utility function is based on elapsed execution time of each
query.

The green annotations mark the planting, nursing, and growing stages of
database cracking. The nursing stage begins when the first time the cost exe-
cuting a database cracking query is less than the cost of executing a scan-only
query. The growing stage begins with the tenth query — the first that does not
incur a cracking action. Note that because the cracking overhead is minimal, in
practice, performance at the growing stage eventually matches the full-sort per-
formance. Actually, even in the nursing stage individual query response times
are significantly improved over the scan approach and only marginally slower
than the presort one.

For the full-sort approach, only the harvesting stage is shown. The presorting
cost (planting stage) for the full-sort approach was 3.5 seconds and is not shown
on the graph. In other words, this approach assumes perfect knowledge and idle
time to prepare. It represents the optimal behavior after paying a hefty cost in
the beginning of the query sequence. Since the planting stage fully refines data
structures, no nursing or growing stages take place.
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Fig. 3. Adaptive indexing stages illustrated by database cracking

The scan-only approach builds no auxiliary data structures, and thus does
not participate in any of the adaptive indexing stages at all. It cannot exploit
the fact that the query workload is mainly focused on a small area of the data.

4.3 Shorter Stages

Next we consider the results of an equivalent experiment run using adaptive
merging. Adaptive merging is designed with the property of reaching faster the
harvesting stage in terms of queries needed. It invests a bit more effort than
cracking during the planting stage but less effort than a full sort approach.

This experiment uses a workload of 5,000 queries. Queries are against a ran-
dom permutation of the integers 0 to 9,999,999. Each query requests a random
range of 1 value to 20% of the domain; 10% on average. Initial runs in the par-
titioned B-tree are created with a workspace of 100,000 records, for 51 initial
partitions. The merge fan-in is sufficient to complete all B-tree optimization in
a single merge level.

Figure 4 is based upon Figure 9 of [7], and compares the performance of
adaptive merging (red), full-sort/traditional indexing (purple), and scan-only
(green) approaches. Each data point shows the average of 1% of the workload or
50 queries. Note that in this graph, the utility function is based on the number
of records accessed by each query.

The scan and presort options show the same behavior as in the previous ex-
periment. Adaptive indexing though shows a different behavior with the stages
being much shorter. The red annotations mark the nursing, and harvesting stages
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Fig. 4. Adaptive merging query sequence: shorter stages

of adaptive merging. Given the active nature of adaptive merging the harvesting
stage begins very fast leaving a fully optimized B-tree after less than 50 queries.

4.4 Multiple Workload Phases, Including Updates

The experiments described above each address only a single phase. Our next two
experiments illustrates adaptive indexing in the context of a workload with mul-
tiple phases. We first consider a workload consisting of ten phases representing
drifting range queries with a drifting focus, as executed by adaptive merging.
We next consider a workload consisting of update and read-only query phases,
as executed by database cracking.

Drifting Query Focus. One of the design goals of adaptive indexing is to focus
index optimization effort on key ranges that occur in actual queries. If the focus
of query activity changes, additional key ranges are optimized in the index as
appropriate. In this workload, 107 records with unique key values are searched
by 500 queries in five phases that shift focus from the lowest key range in the
index to the highest key range.

Figure 5 is based upon Figure 18 of [8], illustrates the overhead per query as
the workload passes through the phases. As in the previous adaptive merging
experiment, the utility function is based on the number of records accessed by
each query. Because the data accessed by the various phases does not overlap,
each new phase must pass through new nursing, growing, and harvesting stages.
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Fig. 5. Workload with five phases of query focus illustrated by adaptive merging

Mixture of Updates and Read-Only Queries. Next we consider a workload
that contains a random mixture of update and query phases. Naturally, updates
require some auxiliary work which pose an overhead that may eventually disturb
the normal flow of adaptive indexing stages.

Two scenarios are considered here, (a) the high frequency low volume scenario
(HFLV); every 10 queries we get 10 random updates and (b) the low frequency
high volume scenario (LFHV); every 103 queries we get 103 random updates.
Random queries are used in the same form as for the first cracking experiment.
Using completely random queries represents the most challenging workload for
an adaptive technique as there is basically no pattern to adapt to. In other
words, using a random workload will result in the longest possible stages in the
adaptation procedure.

Figure 6 is based upon Figure 7 of [9], and shows that cracking maintains
high performance and a self-organizing behavior through the whole sequence of
queries and updates. Peaks and bumps occur frequently disturbing momentarily
the current stage every time.

The power of an adaptive indexing technique is how well it can absorb these
peaks. To achieve this an adaptive indexing needs to rely on adaptive and incre-
mental methods for handling updates. In this case, updates are handled during
query processing as part of the incremental physical design changes, i.e., the
actual query processing operators in the DB kernel are responsible for on-the-fly
merging the necessary updates.
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5 Outlook

Adaptive indexing techniques (database cracking, adaptive merging, and hy-
brids) can be combined with automatic index tuning in multiple ways. A tuning
tool might prevent certain indexes (e.g., due to excessive anticipated update
costs) or it might encourage certain indexes (e.g., for immediate creation as side
effect during the first appropriate query execution). Alternatively, the tuning
tool might observe activity and pursue index optimization proactively without
waiting for queries and their side effects. It might perform only some initial
steps of adaptive index creation and optimization (e.g., extraction of future in-
dex entries and run generation, but not merging) or it might finish partially
optimized indexes (e.g., sort small partitions left by database cracking). In ad-
dition, a tuning tool could set resource-usage based policies that limit adaptive
indexing during query execution (e.g., based on memory allocation during run
generation or merging). We intend to explore in our future research some or all
of these combinations of adaptive techniques with traditional index tuning tech-
niques. Benchmarks that measure and compare costs and benefits of such hybrid
techniques will increase our understanding and guide database developers when
choosing techniques to implement and when guiding the application developers.

6 Summary

In this paper, we have laid out the first framework for benchmarking adap-
tive indexing techniques. We have described the problem of adaptive indexing,
discussed characteristics that differentiate adaptive indexing approaches from
alternatives, and proposed a framework for comparing these characteristics. Un-
like traditional indexing techniques, adaptive indexing distributes the effort of
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indexing incrementally across the workload as a side effect of query execution.
Each phase of a workload goes through distinct stages of the adaptive index-
ing life-cycle in terms of the overhead that incremental indexing adds to each
query, versus the degree to which that query benefits from the efforts of prior
queries. An adaptive indexing benchmark for dynamic database scenarios must
take both workload phases and adaptive indexing stages into account, including
stressing the system’s ability to maintain a rapid and fluid transition from one
stage to the other. For the sake of illustration, we described our partial reference
implementation of a benchmark instance using this framework.

Adaptive indexing and the ways to evaluate it represent a completely new
paradigm. We believe the new evaluation methods presented here can also be
exploited by existing offline and online techniques to improve performance in
dynamic scenarios.
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Abstract. With the emergence of XML as a standard for representing
business data, new decision support applications are being developed.
These XML data warehouses aim at supporting On-Line Analytical Pro-
cessing (OLAP) operations that manipulate irregular XML data. To en-
sure feasibility of these new tools, important performance issues must be
addressed. Performance is customarily assessed with the help of bench-
marks. However, decision support benchmarks do not currently support
XML features. In this paper, we introduce the XML Warehouse Bench-
mark (XWeB), which aims at filling this gap. XWeB derives from the
relational decision support benchmark TPC-H. It is mainly composed
of a test data warehouse that is based on a unified reference model for
XML warehouses and that features XML-specific structures, and its as-
sociate XQuery decision support workload. XWeB’s usage is illustrated
by experiments on several XML database management systems.

Keywords: benchmark, XML data warehouse, OLAP, TPC-H.

1 Introduction

With the increasing volume of XML data available, and XML now being a stan-
dard for representing complex business data [2], XML data sources that are per-
tinent for decision support are ever more numerous. However, XML data bear
irregular structures (e.g., optional and/or diversely ordered elements, ragged
hierarchies, etc.) that would be intricate to handle in a relational Database
Management System (DBMS). Therefore, many efforts toward XML data ware-
housing have been achieved [14,17,29], as well as efforts for extending the XQuery
language with On-Line Analytical Processing (OLAP) capabilities [9,12,26].

XML-native DBMSs supporting XQuery should naturally form the basic stor-
age component of XML warehouses. However, they currently present relatively
poor performances when dealing with the large data volumes and complex an-
alytical queries that are typical in data warehouses, and are thus challenged
by relational, XML-compatible DBMSs. A tremendous amount of research is
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currently in progress to help them become a credible alternative, though. Since
performance is a critical issue in this context, its assessment is primordial.

Database performance is customarily evaluated experimentally with the help
of benchmarks. However, existing decision support benchmarks [7,15,16,24] do
not support XML features, while XML benchmarks [4,5,20,28] target transac-
tional applications and are ill-suited to evaluate the performances of decision-
oriented applications. Their database schemas do not bear the multidimensional
structure that is typical in data warehouses (i.e., star schemas and derivatives
bearing facts described by dimensions [11]); and their workloads do not feature
typical, OLAP-like analytic queries.

Therefore, we present in this paper the first (to the best of our knowledge)
XML decision support benchmark. Our objective is to propose a test XML
data warehouse and its associate XQuery decision support workload, for perfor-
mance evaluation purposes. The XML Warehouse Benchmark (XWeB) is based
on a unified reference model for XML data warehouses [14]. An early version of
XWeB [13] was derived from the standard relational decision support benchmark
TPC-H [25]. In addition, XWeB’s warehouse model has now been complemented
with XML-specific irregular structures, and its workload has been both adapted
in consequence and expanded.

The remainder of this paper is organized as follows. In Section 2, we present
and discuss related work regarding relational decision support and XML bench-
marks. In Section 3, we recall the XML data warehouse model XWeB is based
on. In Section 4, we provide the full specifications of XWeB. In Section 5, we
illustrate our benchmark’s usage by experimenting on several XML DBMSs. We
finally conclude this paper and provide future research directions in Section 6.

2 Related Work

2.1 Relational Decision Support Benchmarks

The OLAP APB-1 benchmark has been very popular in the late nineties [15].
Issued by the OLAP Council, a now inactive organization founded by four OLAP
solution vendors, APB-1’s data warehouse schema is structured around Sale facts
and four dimensions: Customer, Product, Channel and Time. Its workload of ten
queries aims at sale forecasting. Although APB-1 is simple to understand and
use, it proves limited, since it is not “differentiated to reflect the hurdles that
are specific to different industries and functions” [22].

Henceforth, the Transaction Processing Performance Council (TPC) defines
standard benchmarks and publishes objective and verifiable performance evalu-
ations to the industry. The TPC currently supports one decision support bench-
mark: TPC-H [25]. TPC-H’s database is a classical product-order-supplier model.
Its workload is constituted of twenty-two SQL-92, parameterized, decision sup-
port queries and two refreshing functions that insert tuples into and delete tuples
from the database, respectively. Query parameters are randomly instantiated fol-
lowing a uniform law. Three primary metrics are used in TPC-H. They describe
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performance in terms of power, throughput, and a combination of these two cri-
teria. Power and throughput are the geometric and arithmetic mean values of
database size divided by workload execution time, respectively.

Although decision-oriented, TPC-H’s database schema is not a typical star-
like data warehouse schema. Moreover, its workload does not include any explicit
OLAP query. The TPC-DS benchmark, which is currently in its latest stages of
development, fixes this up [24]. TPC-DS’ schema represents the decision sup-
port functions of a retailer under the form of a constellation schema with several
fact tables and shared dimensions. TPC-DS’ workload is constituted of four
classes of queries: reporting queries, ad-hoc decision support queries, interactive
OLAP queries, and extraction queries. SQL-99 query templates help randomly
generate a set of about five hundred queries, following non-uniform distribu-
tions. The warehouse maintenance process includes a full Extract, Transform
and Load (ETL) phase, and handles dimensions with respect to their nature
(non-static dimensions scale up while static dimensions are updated). One pri-
mary throughput metric is proposed in TPC-DS to take both query execution
and the maintenance phase into account.

More recently, the Star Schema Benchmark (SSB) has been proposed as a
simpler alternative to TPC-DS [16]. As our early version of XWeB [13], it is
based on TPC-H’s database remodeled as a star schema. It is basically archi-
tectured around an order fact table merged from two TPC-H tables. But more
interestingly, SSB features a query workload that provides both functional and
selectivity coverages.

As in all TPC benchmarks, scaling in TPC-H, TPC-DS and SSB is achieved
through a scale factor SF that helps define database size (from 1 GB to 100 TB).
Both database schema and workload are fixed. The number of generated queries
in TPC-DS also directly depends on SF . TPC standard benchmarks aim at
comparing the performances of different systems in the same experimental con-
ditions, and are intentionally not very tunable. By contrast, the Data Warehouse
Engineering Benchmark (DWEB) helps generate various ad-hoc synthetic data
warehouses (modeled as star, snowflake, or constellation schemas) and workloads
that include typical OLAP queries [7]. DWEB targets data warehouse design-
ers and allows testing the effect of design choices or optimization techniques in
various experimental conditions. Thus, it may be viewed more like a benchmark
generator than an actual, single benchmark. DWEB’s main drawback is that its
complete set of parameters makes it somewhat difficult to master.

Finally, to be complete, TPC-H and TPC-DS have recently be judged insuf-
ficient for ETL purposes [21] and specific benchmarks for ETL workflows are
announced [21,27].

2.2 XML Benchmarks

XML benchmarks may be subdivided into two families. On one hand, micro-
benchmarks, such as the Michigan Benchmark (so-named in reference to the
relational Wisconsin Benchmark developed in the eighties) [19] and MemBeR [1],
help XML documents storage solution designers isolate critical issues to optimize.
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More precisely, micro-benchmarks aim at assessing the individual performances
of basic operations such as projection, selection, join and aggregation. These low-
level benchmarks are obviously too specialized for decision support application
evaluation, which requires testing complex queries at a more global level.

On the other hand, application benchmarks help users compare the global
performances of XML-native or compatible DBMSs, and more particularly of
their query processor. For instance, X-Mach1 [4], XMark [20], XOO7 (an exten-
sion of the object-oriented benchmark OO7) [5] and XBench [28] are application
benchmarks. Each implements a mixed XML database that is both data-oriented
(structured data) and document-oriented (in general, random texts built from a
dictionary). However, except for XBench that proposes a true mixed database,
their orientation is either more particularly focused on data (XMark, XOO7) or
documents (X-Mach1).

These benchmarks also differ in: the fixed or flexible nature of the XML
schema (one or several Document Type Definitions – DTDs – or XML Schemas);
the number of XML documents used to model the database at the physical level
(one or several); the inclusion or not of update operations in the workload. We
can also underline that only XBench helps evaluate all the functionalities of-
fered by the XQuery language. Unfortunately, none of these benchmarks exhibit
any decision support feature. This is why relational benchmarks presented in
Section 2.1 are more useful to us in a first step.

3 Reference XML Warehouse Model

Existing XML data warehouse architectures more or less converge toward a uni-
fied model. They mostly differ in the way dimensions are handled and the number
of XML documents that are used to store facts and dimensions. Searching for
the best compromise in terms of query performance and modeling power, we
proposed a unified model [14] that we reuse in XWeB. As XCube [10], our ref-
erence XML warehouse is composed of three types of XML documents at the
physical level: document dw-model.xml defines the multidimensional structure
of the warehouse (metadata); each factsf .xml document stores information re-
lated to set of facts f (several fact documents allow constellation schemas); each
dimensiond.xml document stores a given dimension d’s member values for any
hierarchical level.

More precisely, dw-model.xml ’s structure (Figure 1) bears two types of nodes:
dimension and FactDoc nodes. A dimension node defines one dimension, its
possible hierarchical levels (Level elements) and attributes (including types), as
well as the path to the corresponding dimensiond.xml document. A FactDoc
element defines a fact, i.e., its measures, references to the corresponding dimen-
sions, and the path to the corresponding factsf .xml document. The factsf .xml
documents’ structure (Figure 2(a)) is composed of fact subelements that each
instantiate a fact, i.e., measure values and dimension references. These identifier-
based references support the fact-to-dimension relationships.

Finally, the dimensiond.xml documents’ structure (Figure 2(b)) is composed
of Level nodes. Each of them defines a hierarchy level composed of instance
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Fig. 1. dw-model.xml graph structure

nodes. An instance defines the member attributes of a hierarchy level as well as
their values.

4 XWeB Specifications

4.1 Principle

XWeB derives from TPC-H, modified in a number of ways explained in the
following sections, for three reasons. First, we acknowledge the importance of
TPC benchmarks’ standard status. Hence, our goal is to have XWeB inherit
from TPC-H’s wide acceptance and usage (whereas TPC-DS is still under devel-
opment). Second, from our experience in designing the DWEB relational data
warehouse benchmark, we learned that Gray’s simplicity criterion for a good
benchmark [8] is primordial. This is again why we preferred TPC-H, which is
much simpler than TPC-DS or DWEB. Third, from a sheer practical point of
view, we also selected TPC-H to benefit from its data generator, dbgen, a feature
that does not exist in TPC-DS yet.

The main components in a benchmark are its database and workload models.
XWeB’s are described in Sections 4.2 and 4.3, respectively. In a first step, we
do not propose to include ETL features in XWeB, although XQuery has been
complemented with update queries recently [6]. ETL is indeed a complex process
that presumably requires dedicated benchmarks [21]. Moreover, the following
specifications already provide a raw loading evaluation framework. The XWeB
warehouse is indeed a set of XML documents that must be loaded into an XML
DBMS, an operation that can be timed.
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Fig. 2. factsf .xml (a) and dimensiond.xml (b) graph structures

4.2 Database Model

Schema. At the conceptual level, like O’Neil et al. in SSB, we remodel TPC-H’s
database schema as an explicit multidimensional (snowflake) schema (Figure 3),
where Sale facts are described by the Part/Category, Customer/Nation/Region,
Supplier/Nation/Region and Day/Month/Year dimensions.

The Part/Category hierarchy, which is not present in TPC-H, is of partic-
ular interest. It is indeed both non-strict and non-covering [23]. Beyer et al.
would term it ragged [2]. We prefer the term complex since ragged hierarchy has
different meanings in the literature; e.g., Rizzi defines it as non-covering only
[18]. More precisely, in our context, non-strictness means relationships between
parts and categories, and between categories themselves, are many-to-many.
Non-coveringness means parts and subcategories may roll up to categories at
any higher granularity level, i.e., skipping one or more intermediary granularity
levels. Complex hierarchies do exist in the real world, are easy to implement in
XML, whereas they would be intricate to handle in a relational system [2].

At the logical level, the UML class diagram from Figure 3 translates into an
instance of dw-model.xml (Figure 4). Attributes (fact measures and dimension
members) are not mentioned in Figure 4 for brevity, but they are present in the
actual document.

Finally, at the physical level, fact and dimension instances are stored in
a set of XML documents, namely facts1.xml = f sale.xml, dimension1 =
d date.xml, dimension2 = d part.xml, dimension3 = d customer.xml and
dimension4 = d supplier.xml. To introduce further XML-specific features in
XWeB, f sale.xml’s DTD allows missing dimension references and measures, as
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Fig. 3. XWeB warehouse’s conceptual schema

well as any order in fact subelements. Our aim here is to introduce a measure of
“dirty data” in the benchmark.

Parameterization. XWeB’s main parameters basically help control data ware-
house size. Size (S) depends on two parameters: the scale factor (SF ) inherited
from TPC-H, and density D. When D = 1, all possible combinations of dimen-
sion references are present in the fact document (Cartesian product), which is
very rare in real-life data warehouses. When D decreases, we progressively elim-
inate some of these combinations. D actually helps control the overall size of
facts independently from the size of dimensions.

S can be estimated as follows: S = Sdimensions + Sfacts, where Sdimensions is
the size of dimensions, which does not change when SF is fixed, and Sfacts is the
size of facts, which depends on D. Sdimensions =

∑
d∈D |d|SF × nodesize(d) and
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<?xml version="1.0" encoding="UTF-8"?>

<xweb-dw-model>

<fact id="Sale" path="f_sale.xml"/>

<dimension id="Date" path="d_date.xml">

<level id="Day" rollup="Month" drilldown=""/>

<level id="Month" rollup="Year" drilldown="Day"/>

<level id="Year" rollup="" drilldown="Month"/>

</dimension>

<dimension id="PartDim" path="d_part.xml"/>

<level id="Part" rollup="Category" drilldown=""/>

<level id="Category" rollup="Category" drilldown="Part Category"/>

</dimension>

<dimension id="CustomerDim" path="d_customer.xml">

<level id="Customer" rollup="C_Nation" drilldown=""/>

<level id="C_Nation" rollup="C_Region" drilldown="Customer"/>

<level id="C_Region" rollup="" drilldown="C_Nation"/>

</dimension>

<dimension id="SupplierDim" path="d_supplier.xml">

<level id="Supplier" rollup="S_Nation" drilldown=""/>

<level id="S_Nation" rollup="S_Region" drilldown="Supplier"/>

<level id="S_Region" rollup="" drilldown="S_Nation"/>

</dimension>

</xweb-dw-model>

Fig. 4. XWeB warehouse’s logical schema

Sfacts =
∏

d∈D |hd
1|SF × D × fact size, where D is the set of dimensions, |d|SF

the total size of dimension d (i.e., all hierarchy levels included) w.r.t. SF , |hd
1|SF

the size of the coarsest hierarchy level in dimension d w.r.t. SF , nodesize(d) the
average node size in dimensiond.xml, and fact size the average fact element
size. For example, when SF = 1 and D = 1, with node sizes all equal to 220
bytes, the size of f sale.xml is 2065 GB. Eventually, two additional parameters
control the probability of missing values (Pm) and element reordering (Po) in
facts, respectively.

Schema Instantiation. The schema instantiation process is achieved in two
steps: first, we build dimension XML documents, and then the fact document.
Dimension data are obtained from dbgen as flat files. Their size is tuned by SF .
Dimension data are then matched to the dw-model.xml document, which contains
dimension specifications, hierarchical levels and attribute names, to output the
set of dimensiond.xml (d ∈ D) documents. d part.xml, which features a complex
hierarchy, is a particular case that we focus on.

Algorithm from Figure 5 describes how categories are assigned to parts from
d part.xml. First, category names are taken from TPC-H and organized in three
arbitrary levels in the cat table. Moreover, categories are interrelated through
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rollup and drill-down relationships to form a non-strict hierarchy. For example,
level-2 category BRUSHED rolls up to level-1 categories NICKEL and STEEL,
and drills down to level-3 categories ECONOMY, STANDARD and SMALL. The
whole hierarchy extension is available on-line (Section 6). Then, to achieve non-
coveringness, we assign to each part p several categories at any level. p.catset
denotes the set of categories assigned to p. Each “root” category (numbering
from 1 to 3) is selected from a random level lvl. Then, subcategories may be
(randomly) selected from subsequent levels. Non-coveringness is achieved when
initial level is lower than 3 and there is no subcategory. ncat and nsubcat refer
to category and subcategory numbers, respectively. cand denotes a candidate
category or subcategory. |cat[i]| is the number of elements in table cat’s ith

level.

cat := [[BRASS, COPPER, NICKEL, STEEL, TIN], // level 1

[ANODIZED, BRUSHED, BURNISHED, PLATED, POLISHED], // level 2

[ECONOMY, LARGE, MEDIUM, PROMO, SMALL, STANDARD]] // level 3

FOR ALL p IN d_part DO

p.catset := EMPTY_SET

ncat := RANDOM(1, 3)

FOR i := 1 TO ncat DO

lvl := RANDOM(1, 3)

REPEAT

cand := cat[lvl, RANDOM(1, |cat[lvl]|)]

UNTIL cand NOT IN p.catset

p.catset := p.catset UNION cand

nsubcat := RANDOM(0, 3 - lvl)

FOR j := 1 TO nsubcat DO

cand := cat[lvl + j, RANDOM(1, |cat[lvl + j]|)]

IF cand NOT IN p.catset THEN

p.catset := p.catset UNION cand

END IF

END FOR

END FOR

END FOR

Fig. 5. Part category selection algorithm

Facts are generated randomly with respect to the algorithm from Figure 6. The
number of facts depends on D, and data dirtiness on Pm and Po (Section 4.2).
D, Pm and Po are actually used as Bernouilli parameters. val is a transient table
that stores dimension references and measure values, to allow them to be nulli-
fied and/or reordered without altering loop index values. The SKEWED RANDOM()
function helps generate “hot” and “cold” values for measures Quantity and
TotalAmount, which influences range queries. Finally, the SWITCH() function
randomly reorders a set of values.
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FOR ALL c IN d_customer DO

FOR ALL p IN d_part DO

FOR ALL s IN d_supplier DO

FOR ALL d IN d_date DO

IF RANDOM(0, 1) <= D THEN

// Measure random generation

Quantity := SKEWED_RANDOM(1, 10000)

TotalAmount := Quantity * p.p_retailprice

// Missing values management

val[1] := c.c_custkey; val[2] := p.p_partkey

val[3] := s.s_suppkey; val[4] := d.d_datekey

val[5] := Quantity; val[6] := TotalAmount

FOR i := 1 TO 6 DO

IF RANDOM(0, 1) <= Pm THEN

val[i] := NULL

END IF

END FOR

// Dimension reordering

IF RANDOM(0, 1) <= Po THEN

SWITCH(val)

END IF

WRITE(val) // Append current fact into f_sale.xml

END IF

END FOR

END FOR

END FOR

END FOR

Fig. 6. Fact generation algorithm

4.3 Workload Model

Workload Queries and Parameterization. The XQuery language [3] allows
formulating decision support queries, unlike simpler languages such as XPath.
Complex queries, including aggregation operations and join queries over multiple
documents, can indeed be expressed with the FLWOR syntax. However, we are
aware that some analytic queries are difficult to express and execute efficiently
with XQuery, which does not include an explicit grouping construct compara-
ble to the GROUP BY clause in SQL [2]. Moreover, though grouping queries are
possible in XQuery, there are many issues with the results [2]. We nonetheless
select XQuery for expressing XWeB’s workload due to its standard status. Fur-
thermore, introducing difficult queries in the workload aims to challenge XML
DBMS query engines.

Although we do take inspiration from TPC-H and SSB, our particular XML
warehouse schema leads us to propose yet another query workload. It is cur-
rently composed of twenty decision support queries labeled Q01 to Q20 that
basically are typical aggregation queries for decision support. Though we aim
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to provide the best functional and selectivity coverages with this workload, we
lack experimental feedback, thus it is likely to evolve in the future. Workload
specification is provided in Table 1. Queries are presented in natural language
for space constraints, but their complete XQuery formulation is available on-line
(Section 6).

XWeB’s workload is roughly structured in increasing order of query com-
plexity, starting with simple aggregation, then introducing join operations, then
OLAP-like queries such as near-cube (with superaggregates missing) calcula-
tion, drill-downs (e.g., Q06 drills from Q05’s Month down to Day granularity)
and rollups (e.g., Q09 rolls from Q08’s Customer up to Nation granularity),
while increasing the number of dimensions involved. The last queries exploit the
Part/Category complex hierarchy. We also vary the type of restrictions (by-value
and range queries), the aggregation function used, and the ordering applied to
queries. Ordering labeled by −1 indicates a descending order (default being as-
cending). Finally, note that Q20, though apparently identical to Q19, is a further
rollup along the Category complex hierarchy. Actually, Q19 rolls up from Q18’s
product level to the category level, and then Q20 rolls up to the “supercategory”
level, with supercategories being categories themselves.

Moreover, workload queries are subdivided into five categories: simple report-
ing (i.e., non-grouping) queries; 1, 2, and 3-dimension cubes; and complex hierar-
chy cubes. We indeed notice in our experiments (Section 5) that complex queries
are diversely handled by XML DBMSs: some systems have very long response
times, and even cannot answer. Subdividing the workload into blocks allows
us to adjust workload complexity, by introducing boolean execution parameters
(RE, 1D, 2D, 3D and CH , respectively) that define whether a particular block
of queries must be executed or not when running the benchmark (see below).

Execution Protocol and Performance Metrics. Still with TPC-H as a
model, we adapt its execution protocol along two axes. First, since XWeB does
not currently feature update operations (Section 4.1), the performance test can
be simplified to executing the query workload. Second, as in DWEB, we allow
warm runs to be performed several times (parameter NRUN) instead of just
once, to allow averaging results and flattening the effects of any unexpected out-
side event. Thus, the overall execution protocol may be summarized as follows:

1. load test: load the XML warehouse into an XML DBMS;
2. performance test:

(a) cold run executed once (to fill in buffers), w.r.t. parameters RE, 1D,
2D, 3D and CH ;

(b) warm run executed NRUN times, still w.r.t. workload parameters.

The only performance metric in XWeB is currently response time, as in SSB and
DWEB. Load test, cold run and warm runs are timed separately. Global, aver-
age, minimum and maximum execution times are also computed, as well stan-
dard deviation. This kind of atomic approach for assessing performance allows to
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Table 1. XWeB workload specification

Group Query Specification Restriction Ordering

Reporting Q01 Min, Max, Sum, Avg of

f quantity and f totalamount

Q02 f quantity for each p partkey p retailprice ≤ 1000 p retailprice

Q03 Sum of f totalamount n name = ”FRANCE”

1D cube Q04 Sum of f quantity per p partkey p retailprice > 1500 p retailprice−1

Q05 Sum of f quantity and f total- Quarter(m monthkey) = 1 m monthname

amount per m monthname

Q06 Sum of f quantity and f total- Quarter(m monthkey) = 1 d dayname

amount per d dayname

Q07 Avg of f quantity and f total- r name = ”AMERICA”

amount per r name

2D cube Q08 Sum of f quantity and f total- p brand = ”Brand#25” c name,

amount per c name and p name p name

Q09 Sum of f quantity and f total- p brand = ”Brand#25” n name,

amount per n name and p name p name

Q10 Sum of f quantity and f total- p brand = ”Brand#25” r name,

amount per r name and p name p name

Q11 Max of f quantity and f total- s acctbal < 0 s name,

amount per s name and p name p name

3D cube Q12 Sum of f quantity and f total- c name,

amount per c name, p name p name,

and y yearkey y yearkey

Q13 Sum of f quantity and f total- y yearkey > 2000 c name,

amount per c name, p name and c acctbal > 5000 p name,

and y yearkey y yearkey

Q14 Sum of f quantity and f total- c mktsegment = ”AUTO- c name,

amount per c name, p name MOBILE” p name,

and y yearkey and y yearkey = 2002 y yearkey

Complex Q15 Avg of f quantity and f total- t name

hierarchy amount per t name

Q16 Avg of f quantity and f total- t name = ”BRUSHED” t name

amount per t name

Q17 Avg of f quantity and f total- t name = ”BRUSHED” p name

amount per p name

Q18 Sum of f quantity and f total- p size > 40 p name

amount per p name

Q19 Sum of f quantity and f total- p size > 40 t name

amount per t name

Q20 Sum of f quantity and f total- p size > 40 t name

amount per t name
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derive any more complex, composite metrics, such as TPC-H’s throughput and
power if necessary, while remaining simple.

5 Sample Experiments

To illustrate XWeB’s usage, we compare in this section a sample of XML-native
DBMSs, namely BaseX1, eXist2, Sedna3, X-Hive4 and xIndice5. We focus on
XML-native systems in these experiments because they support the formulation
of decision support XQueries that include join operations, which are much more
difficult to achieve in XML-compatible relational DBMSs. In these systems, XML
documents are indeed customarily stored in table rows, and XQueries are em-
bedded in SQL statements that target one row/document, making joins between
XML documents difficult to express and inefficient.

Our experiments atomize the execution protocol from Section 4.3, on one hand
to separately outline how its steps perform individually and, on the other hand,
to highlight performance differences among the studied systems. Moreover, we
vary data warehouse size (expressed in number of facts) in these experiments,
to show how the studied systems scale up. Table 2 provides the correspondence
between the number of facts, parameters SF and D, and warehouse size in kilo-
bytes. Note that warehouse sizes are small because most of the studied systems
do not scale up on the hardware configuration we use (a Pentium 2 GHz PC
with 1 GB of main memory and an IDE hard drive running under Windows XP).
The possibility of missing values and element reordering is also disregarded in
these preliminary experiments, i.e., Pm = Po = 0.

5.1 Load Test

Figure 7 represents loading time with respect to data warehouse size. We can
cluster the studied systems in three classes. BaseX and Sedna feature the best
loading times. BaseX is indeed specially designed for full-text storage and al-
lows compact and high-performance database storage, while Sedna divides well-
formed XML documents into parts of any convenient size before loading them
into a database using specific statements of the Data Manipulation Language.
Both these systems load data about twice faster than X-Hive and xIndice, which
implement specific numbering schemes that optimize data access, but require
more computation at storage time, especially when XML documents are bulky.
Finally, eXist performs about twice worse than X-Hive and xIndice because, in
addition to the computation of a numbering scheme, it builds document, element
and attribute indexes at load time.
1 http://www.inf.uni-konstanz.de/dbis/basex/
2 http://exist.sourceforge.net
3 http://www.modis.ispras.ru/sedna/
4 http://www.emc.com/domains/x-hive/
5 http://xml.apache.org/xindice/

http://www.inf.uni-konstanz.de/dbis/basex/
http://exist.sourceforge.net
http://www.modis.ispras.ru/sedna/
http://www.emc.com/domains/x-hive/
http://xml.apache.org/xindice/
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Table 2. Total size of XML documents

SF D Number of facts Warehouse size (KB)

1 1/14 × 10−7 500 1710

1 1/7 × 10−7 1000 1865

1 2/7 × 10−7 2000 2139

1 3/7 × 10−7 3000 2340

1 4/7 × 10−7 4000 2686

1 5/7 × 10−7 5000 2942

1 6/7 × 10−7 6000 3178

1 10−7 7000 3448

5.2 Performance Test

In this set of experiments, we measure query execution time with respect to
data warehouse size. Since we rapidly test the limits of the studied systems,
we only and separately evaluate the response of reporting, 1-dimension cube,
and complex hierarchy-based queries, respectively. In terms of workload param-
eters, RE = 1D = CH = TRUE and 2D = 3D = FALSE. Moreover, we stop
time measurement when workload execution time exceeds three hours. Finally,
since we perform atomic performance tests, they are only cold runs (i.e.,
NRUN = 0).

Figure 8 represents the execution time of reporting queries (RE) with respect
to warehouse size. Results clearly show that X-Hive’s claimed scalability capa-
bility is effective, while the performance of other systems degrades sharply when
warehouse size increases. We think this is due to X-Hive’s specifically designed
XProc query Engine (a pipeline engine), while Sedna and BaseX are specially
designed for full-text search and do not implement efficient query engines for
structural query processing. Finally, eXist and xIndice are specifically adapted
to simple XPath queries processed on a single document and apparently do not
suit complex querying needs.

In Figure 9, we plot the execution time of 1D cube queries (1D) with respect
to warehouse size. We could only test Sedna and X-Hive here, the other systems
being unable to execute this workload in a reasonable time (less than three
hours). X-Hive appears the most robust system in this context. This is actually
why we do not push toward the 2D and 3D performance tests. Only X-Hive
is able to execute these queries. With other systems, execution time already
exceeds three hours for one single query. The combination of join and grouping
operations (which induce further joins in XQuery) that are typical in decision
support queries should thus be the subject of dire optimizations.

Finally, Figure 10 features the execution time of complex hierarchy-based
queries (CH) with respect to warehouse size. In this test, we obtained results
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Fig. 8. RE performance test results

only with X-Hive, Sedna and BaseX. Again, X-Hive seems the only XML-native
DBMS to be able to scale up with respect to warehouse size when multiple join
operations must be performed.
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Fig. 9. 1D performance test results
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Fig. 10. CH performance test results

6 Conclusion and Perspectives

When designing XWeB, which is to the best of our knowledge the first XML
decision support benchmark, we aimed at meeting the four key criteria that
make a “good” benchmark according to Jim Gray [8]. Relevance means the
benchmark must answer various engineering needs. This is why we chose to base
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our work on a TPC standard. We also introduced more tunability, both at schema
and workload levels, to adapt to the reality of XML DBMSs. Portability means
the benchmark must be easy to implement on different systems. To this aim, we
implemented XWeB with the Java language that allows connecting to most XML
DBMSs through APIs (we used the very popular XML:DB6). Scalability means
it must be possible to benchmark small and large databases, and to scale up
the benchmark, which is achieved by inheriting from the SF parameter. Further
tuning is achieved through the density (D) parameter. Eventually, simplicity
means that the benchmark must be understandable, otherwise it will not be
credible nor used. This is why we elected to base XWeB on TPC-H rather than
TPC-DS or DWEB.

In this paper, we also illustrated XWeB’s relevance through several experiments
aimed at comparing the performance of five native-XML DBMSs. Although basic
and more focused on demonstrating XWeB’s features than comparing the studied
systems in depth, they highlight X-Hive as the most scalable system, while full-
text systems such as BaseX seem to feature the best data storage mechanisms.
Due to equipment limitations, we remain at small scale factors, but we believe our
approach can be easily followed for larger scale factors. We also show the kind of
decision support queries that require urgent optimization: namely, cubing queries
that perform join and grouping operations on a fact document and dimension
documents. In this respect, XWeB had previously been successfully used to ex-
perimentally validate indexing and view materialization strategies for XML data
warehouses [13].

Eventually, a raw, preliminary version of XWeB (warehouse, workload, Java
interface and source code) is freely available online7 as an Eclipse8 project. A
more streamlined version is in the pipe and will be distributed under Creative
Commons licence9.

After having designed a benchmark modeling business data (which XWeB
aims to be), it would be very interesting in future research to also take into
account the invaluable business information that is stored into unstructured
documents. Hence, including features from, e.g., XBench into XWeB would help
improve a decision support benchmark’s XML specificity.

Since the XQuery Update Facility has been issued as a candidate recommen-
dation by the W3C [6] and is now implemented in many XML DBMSs (e.g.,
eXist, BaseX, xDB, DB2/PureXML, Oracle Berkeley DB XML...), it will also
be important to include update operations in our workload. The objective is not
necessarily to feature full ETL testing capability, which would presumably neces-
sitate a dedicated benchmark (Section 4.1), but to improve workload relevance
with refreshing operations that are casual in data warehouses, in order to chal-
lenge system response and management of redundant performance optimization
structures such as indexes and materialized views.

6 http://xmldb-org.sourceforge.net/xapi/
7 http://ena-dc.univ-lyon2.fr/download/xweb.zip
8 http://www.eclipse.org
9 http://creativecommons.org/licenses/by-nc-sa/2.5/

http://xmldb-org.sourceforge.net/xapi/
http://ena-dc.univ-lyon2.fr/download/xweb.zip
http://www.eclipse.org
http://creativecommons.org/licenses/by-nc-sa/2.5/
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The core XWeB workload (i.e., read accesses) shall also be given attention. It
has indeed been primarily designed to test scaling up. Filter factor analysis of
queries [16] and experimental feedback should help tune it and broaden its scope
and representativity. Moreover, we mainly focus on cube-like aggregation queries
in this version. Working on the output cubes from these queries might also be
interesting, i.e., by applying other usual XOLAP operators such as slice & dice
or rotate that are easy to achieve in XQuery [9].

Finally, other performance metrics should complement response time. Beyond
composite metrics such as TPC benchmarks’, we should not only test system
response, but also the quality of results. As we underlined in Section 4.3, complex
grouping XQueries may return false answers. Hence, query result correctness
or overall correctness rate could be qualitative metrics. Since several XQuery
extension proposals do already support grouping queries and OLAP operators
[2,9,12,26], we definitely should be able to test systems in this regard.
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Abstract. The TPC-H benchmark proved to be successful in the decision sup-
port area. Many commercial database vendors and their related hardware ven-
dors used these benchmarks to show the superiority and competitive edge of 
their products. However, over time, the TPC-H became less representative of 
industry trends as vendors keep tuning their database to this benchmark-specific 
workload.  In this paper, we present XMarq, a simple benchmark framework 
that can be used to compare various software/hardware combinations. Our 
benchmark model is currently composed of 25 queries that measure the per-
formance of basic operations such as scans, aggregations, joins and index  
access. This benchmark model is based on the TPC-H data model due to its ma-
turity and well-understood data generation capability. We also propose metrics 
to evaluate single-system performance and compare two systems. Finally we il-
lustrate the effectiveness of this model by showing experimental results com-
paring two systems under different conditions. 

1   Introduction 

In the DSS area the TPC-D then TPC-H benchmarks [1] were quite successful as 
demonstrated by the large number of companies that ran them. The 3rd normal form 
schema on which it is based is easy to understand and rich enough to perform interest-
ing experiments. The main advantage provided by this benchmark has been the data 
generation utility (known as dbgen) that guaranteed repeatability on all platforms. The 
benchmark is now showing its age and its usefulness to drive the development of new 
database features is severely diminished. This is particular true in the area of query 
optimization as the query set is fixed and at this point in time too well understood. It 
still remains today a de facto standard and its good features are still very useful. In 
particular, it can be used as a basis for developing interesting workloads that are  
related but different from TPC benchmarks are used extensively in research by uni-
versities [2] or corporations [3, 9,10]. 

There are several issues associated with the TPC-H benchmark aside from its age. 
The main problem is the set of rules and restrictions that govern its execution. New 
database features often need to be adapted to be transparent or hidden to allow publi-
cation. As a result of this lack of transparency it is often difficult to assess what tech-
niques are actually used in a published result and how effective these techniques are. 
A side effect of this state of affairs is an inherent unfairness in comparing results. 
While shortly after the inception of the TPC-D benchmark it actually made sense for 
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vendors to partly assess new hardware or a new software releases with TPC-D met-
rics, it is no longer the case. It was still possible after the inception of the TPC-H 
benchmark as the few changes over TPC-D kept the interest alive for a while. It is still 
somewhat possible to get a glimpse at a new architecture by looking at the individual 
times in the power test for queries 1 and 6 since usually, they are respectively CPU 
and I/O bound.  

In this paper, we propose a very simple benchmark approach based on the TPC-H 
workload allowing a global and fair evaluation of new features. This approach could 
be of interest especially for hardware vendors as well. Hardware vendors have many 
tools at their disposal to determine the raw power of their equipment but these ap-
proaches usually do not take into account the database layer. What we propose here 
instead is an approach that takes the database layer into account.  

Many of the database optimization techniques designed for performance actually 
avoid utilizing the hardware. A good example is materialized structures such as mate-
rialized views, join indexes or summary tables since they practically bypass the I/O 
subsystem. Our benchmark is designed in such a way to exercise fully the hardware 
through basic database functions such as scans, joins and aggregations. Although the 
benchmark presented can be used “as is” the approach can also be adapted to define 
more involved queries that would lend themselves to comparisons between an opti-
mized and a non-optimized workload. 

There were several attempts to define new benchmarks around TPC-D and TPC-H 
Some of these attempts modified the data model or added a missing element or added 
new queries. In general it would be easy to introduce skew with the customer or sup-
plier distributions as was done in [6] a private benchmark built on top of TPC-D that 
introduced skew. Another example is [7] in which the authors present a star schema 
around the TPC-H benchmark. We follow a similar approach without modifying the 
TPC-H schema nor the data generation utility. 

In section 2 we present XMarq, our benchmark proposal. The discussion is broken 
into different database classes such as scans and aggregations. This includes a de-
scription of the queries to be run in each class and the rules under which these queries 
should be run. In section 3 we provide benchmark results and propose a methodology 
to evaluate those results absolutely and comparatively. In section 4 we analyze the 
XMarq benchmark in light of ideal conditions proposed at the 2009 TPC Conference 
[8]. The actual SQL associated with the queries is provided in the Appendix. 

2   Benchmark Specifications 

The TPC-H data model is a retail model fully described in [1]. TPC-H consists of 8 
tables with history over 8 years. We are presenting queries using mainly ORDERS 
(primary key (PK) =o_orderkey) containing the orders, LINEITEM (PK=l_orderkey, 
l_linenumber) containing the line items associated with these ORDERS and Customer 
(PK=c_custkey) contains customers placing orders.  Customers have a nation they 
belong to (FK=c_nationkey). There is a PART table (PK=p_partkey) and LINEITEM 
has a FK=l_partkey. 

Even though the XMarq benchmark can be defined for any scale factor supported 
by dbgen, not just the official TPC-H scale, we will define it here with scale factor 
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1000 for the sake of simplicity. XMarq is designed to be run right after the database 
has been materialized with dbgen. Because the benchmark must represent an ad hoc 
environment, only primary and foreign key columns may be indexed, and no opti-
mizer hints or extra pre-calculated structures may be used. Also pre-staging of the 
data including indexes is disallowed and so is vertical partitioning.. Only raw system 
performance through simple database queries is to be measured not the sophistication 
of the optimizer. Similarly, no techniques to limit the number of rows returned are 
allowed. 

The benchmark is organized into five query groups: scans, aggregations, joins, 
CPU-intensive and indexed. The main idea is to utilize known properties of the TPC-
H data to define basic queries. For a full table scan for instance we can use a con-
straint that is known to be impossible to satisfy. Examples of this can be l_linenumber 
< 0 since we know that that field is always between 1 and 7. In the sequel we go 
trough the proposed queries. Queries are named with a 2-letter code in which the first 
letter identifies the query group (e.g. S to scans, A for aggregation). 

2.1   Scan Queries  

ST – LARGE TABLE SCAN 
This query consists of scanning the LINEITEM table while returning no rows This is 
accomplished by selecting all the columns based on a constraint that is never satisfied 
namely l_linenumber < 0. For this query we assume that there are  no statistics or 
index on l_linenumber. 
 
SI – MATCHING INSERT/SELECT 
This query populates PARTX a copy of the PART table distributed by p_partkey with 
an insert/select. Matching merely means that the original table and its copy use the 
same DDL including the distribution field, in this case p_partkey. 
 
SN – NON MATCHING INSERT/SELECT  
This query populates PARTX with DDL similar to PART but distributed differently, 
in this case, by the non-unique combination of p_size, p_brand and p_container in-
stead of p_partkey. This will likely cause more data movement than the matching 
insert/select in most products. 
 
SU – SCAN UPDATE 4% OF THE ROWS 
This query utilizes the fact that column p_brand in PARTX has only 25 distinct vales 
so that, due to the uniform distribution of data produced by dbgen, any specific value 
of p_brand will be represented in about 4% of the rows. 
 
SP – SCAN UPDATE 20% OF THE ROWS  
This query utilizes the fact that p_mfgr has only 5 distinct values.  As a result a par-
ticular value of p_mfgr will involve about 20% of the rows. At scale factor 1000 ex-
actly 40,006,935 rows out of 200 millions are updated. 
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2.2   Aggregation Queries  

AR – ROW COUNT 
This query does a simple count of the rows in the largest table in the database, 
LINEITEM. The number of rows returned is well-documented in the TPC-H spec. 
 
AD – DISTINCT COUNT  
This query counts the distinct values of the column l_quantity in the LINEITEM  
table. A single row with a value of 50 should be returned at all scale factors and 
l_quantity must not be indexed for this query. 
 
AS – 15-GROUP AGGREGATE  
This query utilizes ORDERS and the fact that the combination o_ordertatus, 
o_orderpriority has only 15 distinct combinations at all scale factors.  
 
AM – THOUSAND GROUP AGGREGATE  
This query uses LINEITEM and l_receipdate that has only a limited number of values 
(2555 at scale factor 1000). While l_shipdate is more predictable (exactly 2406 dis-
tinct values at all scale factors) this field plays too central of a role in the TPC-H que-
ries. No index should be placed on l_receiptdate for this query.  
 
AL – HUNDRED THOUSAND GROUP AGGREGATE 
This query is meant to build over 100000 aggregate groups. By using the first 15 
characters of o_comment one can build exactly 111517 groups at scale factor 1000.  
To further limit the number of rows actually retrieved we added a limit on 
o_totalprice. 

2.3   Join Queries  

JI – IN-PLACE JOIN 
In this query we join ORDERS and LINEITEM on the key common to both tables 
without constraints while performing a calculation ensuring that the join is performed 
but only one row is returned.  
 
JF – PK/FK JOIN 
This query joins PART and LINEITEM on partkey which is the PK for PART and the 
FK for LINEITEM while performing an operation involving columns in both tables. 
No index on l_partkey is allowed for this query.  
 
JA – AD-HOC JOIN 
This query joins PART and LINEITEM on unrelated columns (p_partkey and 
l_suppkey) while performing a sum so that only one row is returned. Because of the 
fact that the join columns are sequential integers there will be some matching.  
 
JL – LARGE/SMALL JOIN 
This query joins CUSTOMER and NATION on nationkey while performing a group 
by operation. This is also an FK/PK join but the salient feature here is the size dis-
crepancy between the tables since NATION has only 25 rows.  
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JX – EXCLUSION JOIN 
This query calculates the total account balance for the one-third of customers without 
orders. For those customers the CUSTOMER rows do not have a customer key entry 
in the ORDER table. The inner query selects customers that do have orders so that by 
leaving these out we get the customers that do not have orders. 

2.4   CPU Intensive Queries  

CR – ROLLUP REPORT  
This query covers the group by operator. To accomplish that, the query is applied on a 
single table with a simple predicate. The query involves 7 columns and 12 aggrega-
tions to make it CPU intensive. 
 
CF – FLOATS & DATES 
This query maximizes CPU activity while minimizing disk or interconnect overhead.  
Floating point conversion is done multiple times for each of the rows, as well as re-
petitive complex date conversions.  Because of its emphasis on repetitive CPU-
intensive operations, it will highlight products that offer machine readable evaluation 
code, as opposed to the more common interpretive code.  It will also tend to favor 
products that are capable of caching and reusing repetitive instructions, and are coded 
to perform such activities efficiently. To minimize I/O, a predicate is used to filter out 
all but one row.  

2.5   Index Queries  

IP – PRIMARY RANGE SEARCH 
This query measures the ability of database system to select from a table based on a 
range of values applied to the table's primary (or clustering) index.  In this case the 
range constraint is on the same column as the partitioning key (clustering, primary 
index). It is designed to highlight capabilities such as value-ordered or value-sensitive 
indexes. 

A second constraint has been added to the WHERE clause, based on 
P_RETAILPRICE. Its purpose is to prevent large numbers of rows from being re-
turned.  An index on this constraint column is disallowed, so as to make sure that the 
primary index is the only index available for data access. 

This primary key range search query is different from the next query, I2, which 
uses secondary index access, because many database systems organize these different 
types of indexes differently, with differing performance characteristics. Often a pri-
mary index will determine the physical location or the physical sequencing of a row 
within a table.   Some database systems, however, do not differentiate between parti-
tioning (or primary) indexes and secondary indexes. This query returns 44 rows at 
Scale Factor 1000. 

 
IR – SECONDARY RANGE SEARCH 
In this query, the range constraint column is not the same column as the partitioning 
key, as was the case with query IP above.  Secondary index access usually requires 
traversing a secondary structure which points to the location of the physical rows 
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required.  This physical structure may or may not be sequenced, or may or may not be 
efficient to navigate.  This query attempts to measure those differences.  This query is 
expected to favor products that have value-ordered secondary indexes, or cost-based 
optimizers intelligent enough to consider scanning an index structure. An index must 
be placed on l_shipdate for this query. 

 
IL – LIKE OPERATOR 
This query uses the text string search capabilities of the LIKE clause, searching for all 
rows that have a value in their O_CLERK column that begin with that string. It  
then returns each distinct value for the O_CLERK column satisfies the LIKE clause 
condition. 

The number of distinct clerks in the Order table is determined at data generation 
time by multiplying the scale factor by 1000.  For Scale Factor 10 there will be 
10,000 Clerks randomly assigned to ORDERS.  As there are 9 significant digits mak-
ing up O_CLERK, and 7 of them are to the left of the percent sign (with 2 remaining, 
we know there are a possible 100 Clerks that meet the criteria of this query. 

The query returns 100 rows at all scale factors. An index must be placed on o_clerk 
for this query. 

 
IB – BETWEEN OPERATOR 
This query uses a third type of constraint with an index:  the between clause.  This 
query requests from the LINEITEM table only rows that have a ship date of a single 
month in 1992.  After accessing those particular LINEITEM rows, it returns only the 
distinct quantities associated with the rows l_quantity as a column is a random value 
from 1 to 50.  As there are approximately 7 years of data at all volume points, one 
month constitutes 1/84, or 1.2% of the LINEITEM rows which are processed by this 
query. Similarly to query IR an index must be placed on l_shipdate for this query.   

 
II – MULTIPLE INDEX ACCESS 
While previous index access queries tested either primary or secondary index strate-
gies, this query combines them both. 

This query utilizes the OR operator between two constraints:  one constraint is on a 
non-unique index on the Clerk column (as we mentioned above, there are 10,000 
Clerks at Scale Factor 10, about 1500 orders have the same Clerk) and the second is 
on a unique index o_orderkey.  There are 1462 actual Clerks with this Clerk_ID in the 
ORDERS table.   

Since this is OR condition, a row will qualify for inclusion in the answer set if ei-
ther side of the OR is satisfied, so some database optimizer decisions will need to 
accommodate this possible complexity. This query tests the flexibility and diversity of 
the optimizer in a controlled environment with mandatory indexes.   

Some database systems might be able to satisfy this query by only traversing the 
index structures, and not actually doing physical I/O on the base table itself.  This is a 
possibility, in part, because of the query's select list.  The query only returns a count 
of how many rows pass either of the selection criteria, and does not request data from 
the base table itself.  A single row with a count of 1462 is returned. An multiple col-
umn index on o_clerk and o_orderkey must be exist for this query. 
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IC – COUNT BY INDEX 
This query lists each distinct Discount in the largest table in the database, and counts 
how many rows are associated with each of the Discounts it finds.  This is a common 
activity useful to validate the database information, or to find out how your customer 
base is skewed geographically. 

This query is both a simple aggregation query and a query that demonstrates flexi-
bility in the use of the secondary index structure.  Assuming an index is placed on the 
l_discount column, it may be possible to accommodate this request without having to 
read the base table.  This greatly reduces I/O overhead in this case, because this query 
can only be satisfied by looking at information stored in the index structure and sim-
ply counting rows from there. There are 11 different discount values in l_discount.  
Therefore this query will return 11 rows for all Scale Factors. 

 
IM – MULTI-COLUMN INDEX -- LEADING VALUE ONLY 
It is not uncommon that in index created for a broader purpose may be useful for 
queries other than for which it was intended.  In this query we have a 2-column index 
on p_type and p_size but the condition is on p_type only. 

This query tests the ability of the index to respond to broader needs than antici-
pated. There are 150 different p_type values in the PART table.  This query deter-
mines what the average retailprice is for all the Parts of that type. A single row is 
returned by this query 

 
IT – MULTI-COLUMN INDEX -- TRAILING VALUE ONLY 
A somewhat related need is measured by this query, which provides a value for the 
second, or trailing value in a 2-column index.  There are 50 distinct values in p_size, 
of which only one is selected here.  This query, similar to the one above, averages the 
retailprice in all qualifying parts that have the size of 21. Instead of accessing the 
leading field of the 2-column index p_size, p_type this query accesse the trailing field 
of the index. Only a single row is returned. 

3   Experimental Results 

In order to illustrate the use of the benchmark in a real-life case we ran the benchmark 
with the same version of Teradata on two different platforms. The columns marked 
system A and system B portray actual performance numbers. In those columns the 
summary per category is an arithmetic mean. For instance, for scans, what we have in 
row SCANS is the arithmetic mean of all scan type performance for system A and 
system B respectively. The numbers in column A/B are ratios and the method to ag-
gregate those numbers is the geometric mean (see [4] and [5] for an explanation of the 
definition and proper use of arithmetic and geometric means). For instance, for scans, 
the score of 4.8 is the geometric mean of the five numbers above.  The overall scores 
follow the same logic. The overall score for system A and system B are the arithmetic 
means of their individual raw performance at the individual query level while the 
overall ratio score is the geometric mean of all ratios at query level. 
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QUERIES/CATEGORIES 
System 

A
System 

B A/B 
ST -- LARGE TABLE SCAN      95.9 18.6 5.1 

SI -- MATCHING INSERT/SELECT       48.0 8.7 5.5 

SN -- NON-MATCHING INSERT/SELECT       174.6 25.0 7.0 

SU -- SCAN/UPATE 4% OF THE ROWS    191.5 58.4 3.3 

SP -- SCAN/UPATE 20% OF THE ROWS    906.3 244.1 3.7 
SCANS 283.2 71.0 4.8 

AR -- ROW COUNT       0.8 0.3 3.0 

AD -- COUNT DISTINCT VALUES      112.3 29.8 3.8 

AS -- 15-GROUP AGGREGATE       51.5 14.4 3.6 

AM -- THOUSAND-GROUP AGGREGATE       30.2 9.7 3.1 
AL -- HUNDRED-THOUSAND GROUP  
AGGREGATION      61.1 16.6 3.7 

AGGREGATIONS 51.1 14.2 3.4 

JI -- IN PLACE JOIN      372.8 123.3 3.0 

JF -- FOREIGN KEY TO PRIMARY KEY JOIN   2441.5 340.5 7.2 

JA -- AD HOC JOIN      891.9 191.9 4.6 

JL -- LARGE/SMALL JOIN       0.1 0.0 11.0 

JX -- EXCLUSION JOIN       21.3 19.6 1.1 
JOINS 745.5 135.1 3.2 

CR -- ROLLUP REPORT       312.3 75.2 4.2 

CF -- FLOATS & DATES      96.4 16.5 5.9 

CPU INTENSIVE 204.3 45.8 4.9 

IP -- PRIMARY RANGE SEARCH      3.1 1.0 3.3 

IR -- SECONDARY RANGE SEARCH      10.7 0.3 42.7 

IL -- LIKE OPERATOR       29.0 7.7 3.8 

IB -- BETWEEN OPERATOR       14.1 0.6 22.1 

II -- MULTIPLE INDEX ACCESS      29.0 7.5 3.9 

IC -- COUNT BY INDEX      6.5 1.8 3.6 
IM -- MULTI-COLUMN INDEX -- LEADING 
VALUE ONLY 1.9 0.3 5.6 
IT -- MULTI-COLUMN INDEX -- TRAILING 
VALUE ONLY 1.7 0.2 7.3 

INDEXED OPERATIONS 12.0 2.4 7.1 
overall scores 236.2 48.5 4.9 

4   Conclusions 

In [8] Huppler proposed five criteria for a good benchmark. The most important one 
is "relevance" and the other four are "repeatability", "fairness”, "verifiability" and 
"being economical". Huppler also made the point that there should be a balance or 
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tradeoff between "relevance" and the other four criteria. We believe that XMarq 
meets all five criteria. In terms of relevance XMarq scores very high since it focuses 
on the most common paths in the database code. It also can be run on any hardware 
supporting the database under test. XMarq is repeatable since it is based on the well-
established TPC-H schema, the dbgen code that produces repeatable data and very 
simple SQL, actually a subset of the TPC-H SQL. These qualities make XMarq easily 
repeatable and portable. XMarq is also fair since it focuses on basic SQL operations 
and does not favor exotic optimizer features that are specific to certain database prod-
ucts. Verifying XMarq results is also straightforward. The metric proposed is actually 
better than the TPC-H power metric since it uses the arithmetic mean while the geo-
metric mean is used appropriately for ratios i.e. normalized data. Other measurements 
can be performed e.g. CPU, I/O or network consumption. XMarq is meant to measure 
the basic performance of existing hardware and software and therefore does not re-
quire any additional development. Finally, the overall cost is much lower than TPC-H 
since the process of running and auditing the benchmark is straightforward. It would 
be very interesting for hardware vendors to correlate TPC-H and XMarq results for a 
given database. 
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Appendix 

ST – LARGE TABLE SCAN 
SELECT * FROM LINEITEM WHERE L_LINENUMBER < 0; 
 
SI – MATCHING INSERT/SELECT 
INSERT INTO PARTX SELECT * FROM PART; 
 
SN – NON MATCHING INSERT/SELECT 
INSERT INTO PARTX SELECT * FROM PART; 
 
SP – SCAN UPDATE 4% OF THE ROWS 
UPDATE PARTX SET P_RETAILPRICE = (P_RETAILPRICE + 1) WHERE 
P_BRAND = ‘Brand#23’; 
 
SP – SCAN UPDATE 20% OF THE ROWS  
UPDATE PARTX SET P_RETAILPRICE = (P_RETAILPRICE + 1) WHERE 
P_MFGR = ‘Manufacturer#5’; 
 
AR – ROW COUNT 
SELECT COUNT(*) FROM LINEITEM; 
 
AD – DISTINCT COUNT 
SELECT COUNT (DISTINCT L_QUANTITY) FROM LINEITEM; 
 
AS – 15-GROUP AGGREGATE 
SELECT O_ORDERSTATUS, O_ORDERPRIORITY,  
AVERAGE (O_TOTALPRICE FROM ORDERS GROUP BY 1, 2; 
AM – THOUSAND-GROUP AGGREGATE 
SELECT L_RECEIPTDATE, COUNT (*) FROM LINEITEM  
GROUP BY 1 ORDER BY 1; 
 
AL – HUNDRED THOUSAND GROUP AGGREGATE  
SELECT SUBSTRING (O_COMMENT,1,15), ,COUNT(*) FROM ORDERS 
GROUP BY 1; 
 
JI – IN-PLACE JOIN 
SELECT AVERAGE (L_QUANTITY) FROM LINEITEM, ORDERS  
WHERE L_ORDERKEY=O_ORDERKEY; 

 
JF – PK/FK JOIN 
SELECT AVERAGE (P_RETAILPRICE*L_QUANTITY)  
FROM PART, LINEITEM WHERE P_PARTKEY=L_PARTKEY; 

 
JA – AD-HOC JOIN 
SELECT SUM(L_QUANTITY) FROM PART, LINEITEM  
WHERE P_PARTKEY=L_SUPPKEY; 
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JL – LARGE/SMALL JOIN 
SELECT N_NAME, AVERAGE(C_ACCTBAL) FROM CUSTOMER, NATION 
WHERE C_NATIONKEY=N_NATIONKEY GROUP BY N_NAME; 
 
CR – ROLLUP REPORT       
SELECT L_RETURNFLAG, 
L_LINESTATUS, 
L_SHIPMODE, 
SUBSTRING (L_SHIPINSTRUCT, 1, 1), 
SUBSTRING (L_LINESTATUS, 1, 1), 
((L_QUANTITY - L_LINENUMBER) + (L_LINENUMBER - L_QUANTITY)), 
(L_EXTENDEDPRICE - L_EXTENDEDPRICE), 
SUM ((1 + L_TAX) * L_EXTENDEDPRICE), 
SUM ((1 - L_DISCOUNT) * L_EXTENDEDPRICE), 
SUM (L_DISCOUNT / 3), 
SUM (L_EXTENDEDPRICE * (1 - L_DISCOUNT) * (1 + L_TAX)), 
SUM (L_EXTENDEDPRICE - ((1 - L_DISCOUNT) * L_EXTENDEDPRICE)), 
SUM (DATE - L_SHIPDATE + 5), 
SUM (L_SHIPDATE - L_COMMITDATE), 
SUM (L_RECEIPTDATE - L_SHIPDATE), 
SUM (L_LINENUMBER + 15 - 14), 
SUM (L_EXTENDEDPRICE / (10 - L_TAX)), 
SUM ((L_QUANTITY * 2) / (L_LINENUMBER * 3)), 
COUNT (*) 
FROM LINEITEM 
WHERE L_LINENUMBER GT 2 
 
GROUP BY 
 L_RETURNFLAG, 
 L_LINESTATUS, 
 L_SHIPMODE, 
 SUBSTRING (L_SHIPINSTRUCT,1,1), 
 SUBSTRING (L_LINESTATUS,1,1), 
  ((L_QUANTITY - L_LINENUMBER) + (L_LINENUMBER - L_QUANTITY)), 
  (L_EXTENDEDPRICE - L_EXTENDEDPRICE); 
 
CF - FLOATS & DATES 
SELECT COUN T(*) FROM LINEITEM 
WHERE (L_QUANTITY = 1.1E4 
OR L_QUANTITY = 2.1E4 
OR L_QUANTITY = 3.1E4 
OR L_QUANTITY = 4.1E4 
OR L_QUANTITY = 5.1E4 
OR L_QUANTITY = 6.1E4 
OR L_QUANTITY = 7.1E4 
OR L_QUANTITY = 8.1E4 
OR L_QUANTITY = 9.1E4 
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OR L_QUANTITY = 50) 
AND (DATE - L_SHIPDATE) GT 0 
AND (L_COMMITDATE + 5) LT (L_RECEIPTDATE + 5) 
AND (L_SHIPDATE + 20) LT (L_COMMITDATE + 20); 

 
IP – PRIMARY RANGE SEARCH 
SELECT P_NAME, P_RETAILPRICE FROM PART 
WHERE P_PARTKEY LT 50000 
AND    P_RETAILPRICE LT 909.00; 

 
IR – SECONDARY RANGE SEARCH 
SELECT L_ORDERKEY, L_LINENUMBER 
FROM LINEITEM 
WHERE L_SHIPDATE LT 981200; 

 
IL – LIKE OPERATOR 
SELECT DISTINCT O_CLERK 
FROM ORDERS 
WHERE O_CLERK LIKE 'Clerk#0000067%'; 
 
IB – BETWEEN OPERATOR 
SELECT DISTINCT L_QUANTITY 
FROM LINEITEM 
WHERE L_SHIPDATE BETWEEN 930301 AND 930331; 

 
II – MULTIPLE INDEX ACCESS 
SELECT COUNT (*) FROM ORDERS  
WHERE O_CLERK = 'CLERK#000006700' OR O_ORDERKEY = 50500; 
IC – COUNT BY INDEX 
SELECT L_DISCOUNT, COUNT (*) FROM LINEITEM 
GROUP BY L_DISCOUNT; 

 
IM – MULTI-COLUMN INDEX -- LEADING VALUE ONLY 
SELECT AVERAGE (P_RETAILPRICE) FROM PART 
WHERE P_TYPE = 'SMALL PLATED BRASS'; 

 
IT – MULTI-COLUMN INDEX -- TRAILING VALUE ONLY 
SELECT AVERAGE (P_RETAILPRICE) FROM PART 
WHERE P_SIZE = 21; 
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Abstract. Event Processing (EP) systems are being progressively used in busi-
ness critical applications in domains such as algorithmic trading, supply chain 
management, production monitoring, or fraud detection. To deal with high 
throughput and low response time requirements, these EP systems mainly use 
the CPU-RAM sub-system for data processing. However, as we show here, col-
lected statistics on CPU usage or on CPU-RAM communication reveal that 
available systems are poorly optimized and grossly waste resources. In this pa-
per we quantify some of these inefficiencies and propose cache-aware algo-
rithms and changes on internal data structures to overcome them. We test the 
before and after system both at the microarchitecture and application level and 
show that: i) the changes improve microarchitecture metrics such as clocks-per-
instruction, cache misses or TLB misses; ii) and that some of these improve-
ments result in very high application level improvements such as a 44%  
improvement on stream-to-table joins with 6-fold reduction on memory con-
sumption, and order-of-magnitude increase on throughput for moving aggrega-
tion operations.  

Keywords: Benchmarking, Complex Event Processing, Performance, Tuning. 

1   Introduction 

Previous work by Ailamaki [2], Ravishankar [11], and Abadi [1] showed that mi-
croarchitecture inspired improvements such as cache-aware algorithms and changes 
of internal data representations can lead to high improvements on the performance of 
database or data warehouse systems. Encouraged by this work, we took a similar 
position and set-out to discover the microarchitecture performance of Event Process-
ing (EP) systems. 

Using Esper [6], a widely used open-source EP system, we measured the systems’ 
performance executing common operations such as moving aggregations and stream-
to-table joins. We monitored the system at the microarchitecture level using the Intel 
VTune® profiler [8] and also collected application-level metrics such as memory 
consumption and peak sustained throughput. 

To isolate from secondary effects, we then replicated the main algorithms and data 
structures on our own event processing prototype and progressively improved them 
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with microarchitecture-aware optimizations. These optimizations were then validated 
first by running the tuned prototype in a multi-query scenario, and then porting the 
modifications back into Esper.  

Summary of Contributions 

In this paper we make the following contributions: 

• We analyzed how current event processing systems perform at both applica-
tion and hardware levels. By collecting and correlating metrics such as 
throughput, CPI, and cache misses during execution of continuous queries, 
we show that microarchitectural aspects significantly influence the final per-
formance of common event processing tasks, being in some cases the sole 
cause for performance degradation when the input is scaled up (Section 3.3). 

• We demonstrated how alternate data structures can drastically improve per-
formance and resource consumption in EP systems (Section 3.4). 

• We implemented, tested and evaluated an adapted version of the Grace Hash 
algorithm [9] for joining event streams with memory-resident tables. Results 
revealed that by reducing the impact of microarchitectural aspects on query 
execution performance was improved in up to 44 percent (Section 3.5). 

• We implemented, tested and evaluated a microarchitecture-aware algorithm 
for computing moving aggregations over sliding windows, which provided 
performance gains ranging from 28 to 35 percent (Section 3.5). 

2   Background 

From the microarchitectural point of view, the amount of time a given computational 
task T takes to complete depends primarily on two factors: the task size (i.e., Instruc-
tion Count or IC) and the average duration of instructions (frequently expressed as 
Cycles per Instruction or CPI). Algebraically, in cycles [7]: 

CPU execution time = IC × CPI 

Better performance can be achieved by reducing either factor or both. Traditionally, 
software developers have focused on reducing IC by improving time complexity of 
algorithms, but an increased interest in making a more efficient use of hardware re-
sources has been observed over the last years [2, 3, 12, 13]. 

To understand how these optimizations targeted at the hardware level work, it is 
necessary to know the internals of CPU operation. Every single instruction is exe-
cuted inside the processor as series of sequential steps across its several functional 
units. During this sequence of steps, generally referred as pipeline, CPU instructions 
are fetched from memory, decoded, executed and finally have their results stored back 
into registers or memory. To increase throughput, instructions in different stag-
es/functional units are processed in parallel (Instruction-Level Parallelism). In ideal 
conditions, the processor pipeline remains full most of the time, retiring one or more 
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instructions per cycle (implying CPI ≤ 1). Many factors, however, can cause instruc-
tions to stall, thus increasing average CPI. The gap between processor and memory 
speeds is one of them: an instruction that access data resident in main memory may 
require tens to hundreds of CPU cycles to complete. Another typical cause of stalls is 
data dependency: when an instruction j depends on a value produced by an instruction 
i that was fetched closely before it, j cannot execute until i completes (in fact, if the 
processor issues instructions in program order, when instruction j stalls, no later in-
structions can proceed, thus aggravating the performance impact of the data depend-
ency). Finally, control dependencies, which happen when the instruction flow cannot 
be determined until a given instruction i (e.g., a conditional branch) completes, can 
also adversely affect the degree of instruction-level parallelism achieved. 

In order to attenuate the aforementioned stalls, hardware vendors have devised 
several techniques. For example, to minimize memory-related stalls, smaller and 
faster cache memories are placed in the data path between processor and main mem-
ory. The strategy is to benefit from the locality principle and serve most memory 
requests with data coming from lower-latency cache accesses. Additionally, data 
dependencies are minimized by allowing instructions to execute out-of-order inside 
the pipeline. Finally, control dependencies are partially addressed via speculative 
execution (i.e., the processor executes instructions that lie beyond a conditional 
branch as if it had been already resolved). 

In practice, the characteristics of the applications determine whether the hardware 
techniques above will be successful or not at making the processor execute close to its 
full capacity. With that in mind, a number of novel analytical databases had been 
developed over the last years, in an attempt to better exploit the internal features of 
processors. Examples of microarchitectural optimizations employed by such data-
bases include a column-oriented data organization and compression techniques which 
together provide a more efficient use of memory hierarchy [12, 13]. Also, recently 
proposed compression algorithms [14] minimize the negative impact of branch mis-
predictions by removing if-then-else constructs from their critical path. 

We argue that similar optimizations can be applied in the context of event process-
ing systems, resulting in potentially higher gains since in this case data is manipulated 
mostly in main memory. 

3   Assessing and Improving CPU Performance of EP Systems 

This section introduces the workload, benchmark setup and an evaluation of Esper 
and of our own prototype with and without CPU and cache-aware optimizations. 

3.1   Workload 

In order to assess the gains of the optimizations proposed in this work we used a sim-
ple, though representative workload, composed by two common operations performed 
by event processing systems: moving aggregations over event streams and correlation 
of event streams with historic data (join). These two queries and the dataset are de-
scribed in detail next.  
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Dataset 
Input data consisted in a generic event stream S and table T with schemas shown in 
Figure 1 and Figure 2. 

CREATE STREAM S ( 
     ID integer, 

A1 double, 
A2 double, 
TS long) 

Fig. 1. Schema of input dataset (stream “S”)  

In our tests the values assumed by S attributes are not relevant for query perform-
ance evaluation, so they were filled with a fixed, pre-generated, data value – this en-
sures that measurements are minimally affected by data generation. The exception is 
the attribute ID, which is used to join stream S with table T. In this case, S’s ID 
was filled with random values uniformly distributed in the range of T’s ID. 

  CREATE TABLE T ( 
     ID integer, 
     T1 integer, 
     T2 integer, 
     T3 integer, 
     T4 integer) 

Fig. 2. Schema of table “T” used in the join query  

T’s ID attribute, used to perform the join with the event stream, assumes unique 
values ranging from 1 to TABLE_SIZE_IN_ROWS. The other four attributes in T do not 
influence query performance and are filled with random data.  

Aggregation Query 
The aggregation query used in this study computes a moving average over a count-
based sliding window1. The query is shown below using syntax of CQL [4], a SQL-
based query language for continuous stream processing: 

   SELECT avg(A1) 
FROM S [ROWS N Slide 1] 

Fig. 3. Aggregation query, written in CQL 

For this particular query, every event arrival at stream S causes the output of an 
updated result. Parameter N represents the window size, which varies across the tests, 
ranging from 1000 to 100 million events. 
                                                           
1 “Count-based” means that the window size is defined in terms of the number of events over 

which the computation takes place. “Sliding” means that once the window is full events are 
expired one-by-one upon arrival of new events. 
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Join Query 
To examine the behavior of an event processing system when performing a join, we 
used a query based on a real use-case of a telecom company that needed to join 
streaming call detail records (CDR) (here represented by stream S) with historic data 
(represented by table T). In our tests this query is expressed as follows: 

SELECT S.ID, S.A1, T.T1 
FROM   S, T 
WHERE  S.ID = T.ID 

Fig. 4. Join query – stream S with table T 

Since the goal here is to focus on the performance of processor and memory hier-
archy, the table is maintained in main memory, thus eliminating eventual effects of 
the I/O subsystem on the results. (As pointed out before, keeping the dataset in mem-
ory is commonplace in most EP applications, especially those which require high 
processing throughputs and/or low latencies.) The selectivity of the query is always 
100% (i.e., every event is matched against one and only one record in the table) and 
the table size is varied across tests, ranging from 1 thousand to 10 million rows. 

3.2   Experiments: Setup and Methodology 

All the tests were carried out on a server with two Intel Xeon E5420 Quad-Core proc-
essors (Core® microarchitecture, L2-Cache: 12MB, 2.50 GHz, 1333 MHz FSB), 16 
GB of RAM, running Windows Server 2008 x64 and Sun Hotspot x64 JVM.  

The performance measurements were done as follows: 

• A single Java application was responsible for generating, submitting and 
consuming tuples during the performance runs. Events are submitted and 
processed through local method calls, so that measurements are not affected 
by network/communication effects. 

• In the tests with join queries, load generation was preceded by an initial load-
ing phase, during which the in-memory table was populated with a given 
number of records. 

• Load generation started with an initial 1-minute warmup phase, with events 
(S tuples) being generated and consumed at the maximum rate supported. 

• Warmup was followed by a 15-minute measurement phase, during which we 
collected both application-level metrics and hardware-level metrics. Applica-
tion-level metrics, namely throughput and memory consumption, were gath-
ered inside the Java application. Throughput was computed as total event 
count divided by elapsed time. Memory consumption was computed using 
totalMemory() and freeMemory(), standard Java SDK Runtime 
class methods. Hardware-level metrics were obtained using the Intel VTune® 
profiler [8], as described in detail next. As in the warmup phase, events were 
submitted at the maximum rate sustained by the specific implementation. 

• Each test was repeated 3 times and the reported metrics were averaged. 
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VTune collects metrics by inspecting specific hardware counters provided by Intel 
processors. To avoid excessive monitoring overhead, only one or two events are col-
lected at a time – for doing that, VTune breaks event collection in “runs”. In our tests, 
each run has a duration of 2 minutes (1 minute for calibration and 1 minute for count-
ers collection), and 6 runs were necessary to collect all the configured metrics. 

We started the experimental evaluation by measuring the performance of the two 
queries in the open-source EP engine Esper (Section 3.3) and then implemented the 
same basis algorithms employed by it on a separate, custom-code, Java prototype. 
These baseline algorithms were then progressively modified to include the proposed 
optimizations while we performed new measurements2 (Sections 3.4 and 3.5). Finally, 
we validated the optimizations by measuring their performance in more realistic sce-
narios: first with the prototype processing several queries simultaneously (Section 3.6) 
and then with the optimizations being inserted into Esper code (Section 3.7). 

The basis algorithm for computing the aggregation query works as follows. The 
sliding window is implemented as a circular buffer, internally represented as a fixed-
length array; the average aggregation itself is computed by updating count and sum 
state variables upon event arrival/expiration. The join algorithm is also straightfor-
ward: it keeps the table into a hash index structure with the join attribute as key and 
then performs a lookup in that hash table every time a new event arrives.  

3.3   Preliminary Results 

Figure 5 illustrates the results for the join query running at the event processing en-
gine Esper, using two different tuple representations: Map and POJO (in the former 
events are represented as instances 
of the standard HashMap Java 
class, while in the latter events are 
represented as fixed-schema Plain 
Java Objects) 3: 

Two important observations can 
be made from the graph above: 
First, for both tuple representations, 
the throughput dropped about 40 
percent from a join with a 1000-
rows table to a join with a 10M-
rows table. This drop occurred even 
though the employed algorithm – 
hash join – has a O(1) runtime  

                                                           
2 We could have implemented the changes only on Esper, but our goal was to assess the per-

formance gains of the optimizations on query processing in spite of any product specificities. 
Besides, using a smaller custom-code application makes the effects of code changes more 
controllable and understandable. 

3 In this work, we focus on Esper due to its open-source nature, which allowed us to port some 
of the optimizations here proposed into a real engine. We point out, however, that the results 
here presented are representative of a range of event processing engines, given that the behav-
ior exhibited by Esper is similar to what was observed in previous tests with other products 
(see [10] for more details). 

Fig. 5. Performance of join query on Esper 
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complexity. Second, measured memory consumption during query execution was 4 to 
60 times the space required for keeping the table data. Examining carefully the hard-
ware metrics and Esper source code, we concluded that the drop on query performance 
was due mainly to microarchitectural aspects (and to a lesser extent, to increased gar-
bage collection activity) and that the excessive memory consumption was caused by 
non-optimized internal representation of tuples as further explored in the next section. 

3.4   Optimizing Internal Data Structures 

In order to address the problem of excessive memory consumption, we focused first 
in optimizing the structures used to keep data items in main memory (i.e., the window 
for the aggregation query, and the table for the join query). Specifically, we were 
interested in finding out if the original representations used by Esper to represent the 
stream and table tuples could be improved and if a column-oriented storage model 
would result in enhanced performance in the context of event processing.  

It is worthy to notice that column-store formats are especially useful for read-
oriented, scan-oriented, non-ad-hoc queries. Thus, while on one hand EP systems, 
with their scan-oriented, non-ad-hoc queries may benefit from column-store represen-
tations, on the other hand, EP systems read/write workloads might be hurt by column-
store representations. 

(a)         (b)    

 (c)                              (d)  

Fig. 6. The different data structures used to represent tuples: (a) key-value Map; (b) array of 
Objects; (c) Plain Object (POJO); (d) Column-Store 

To assess the impact of data structures on query performance, we started represent-
ing events/tuples as instances of the HashMap class – Figure 6(a) – and then em-
ployed progressively more lightweight representations: first as arrays of Objects (b), 
and then as fixed-schema Plain Java Objects (POJO) (c). Finally we tested the col-
umn-oriented storage model (d), in two different modalities: first keeping all original 
attributes of events/tuples (here named “Col-Store”) and then keeping (projecting) 
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only the attribute referenced in the query (“Col-Store Proj.”). In the Col-Store format, 
N aligned arrays of primitive types are kept in memory (where “N” is the number of 
attributes), while in the Col-Store Proj format only one array containing the values for 
the referenced attribute is maintained. Figure 7, Table 1 and Table 2 summarize the 
most relevant results for both the aggregation and join queries: 

     
   (a)                                                                           (b) 

Fig. 7. Impact of internal representation on performance: (a) aggregation; (b) join4. 

Table 1. Data structures and memory consumption (in MB): aggregation query 

Window Size Tuple 
Format 1k 10k 100k 1M 10M 100M 

Map 0.8 5.5 51.4 511.5 5,112.9 - 

Array 0.5 2.1 17.9 176.5 1,755.0 - 

POJO 0.3 0.8 6.3 61.2 682.1 6,103.0 

Col-Store 0.2 0.5 2.8 26.9 267.2 2,670.5 

Col-Store Proj. 0.2 0.3 0.9 7.8 76.0 763.1 

Table 2. Data structures and memory consumption (in MB): join query 

Table Size Tuple 
Format 100 1k 10k 100k 1M 10M 

Map 0.2 1.1 9.3 92.1 920.0 9,131.2 

Array 0.2 0.4 2.8 27.3 268.4 2,654.8 

POJO 0.2 0.3 1.4 13.6 130.6 1,275.3 

Col-Store 0.2 0.3 1.4 13.2 126.8 1,237.0 

Col-Store Proj. 0.2 0.3 1.3 11.7 111.5 1,083.8 

                                                           
4 For the sake of clarity, the lines “Col-Store” and “Col-Store Proj” were omitted in the Join 

graph since the results with these two implementations were very similar to the POJO case. 
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The numbers reveal that considerable gains in final performance and resource con-
sumption could be obtained by using more optimized data structures. For the join 
query, the most efficient representation achieved more than 3 times more throughput 
than the original one, while consuming less than 15% memory space of what was 
originally required. The gains for the aggregation query were even more impressive: 
the best performing implementation (column-store keeping only required data) 
achieved on average about 35 times more throughput than the one using maps as 
event representation and reduced memory consumption to around 1,5% of the mem-
ory space occupied by this initial implementation.  

Discussion: Aggregation Query 
A couple of facts in the aggregation tests results are worth mentioning. First, using 
optimized data structures allowed the aggregation query to operate over windows of 
larger sizes, which otherwise would not be possible if employing the original non-
optimized tuple representations (e.g., it was not possible to run the aggregation query 
over a window of 100M events when they were represented as Maps or arrays of 
Objects because these implementations required more memory space than it was 
physically available).  

Second, the POJO format, although more efficient than Map and array representa-
tions, suffered severe drops in performance in two distinct points of the graph: from 
10k to 100k and from 1M on. The collected metrics reveal that the first drop was 
caused by microarchitectural aspects (more specifically, an increase in L2 cache 
misses), while the second was due to an increased garbage collection activity. 

Further results indicate that the column-oriented storage model addressed partially 
or even totally the aforementioned issues. For instance, in contrast with the POJO 
line, the Col-Store line in Figure 7(a) remained steady after 1M. The reason for such 
difference is that the column-oriented representation, by using primitive types instead 
of Objects, is less susceptible to garbage collection than the POJO. In the best case 
(i.e., when keeping in memory only the attribute referenced by the query), the col-
umn-oriented model was also able to eliminate the microarchitectural issues. For that 
particular implementation, the memory access pattern is essentially sequential – con-
suming events from the stream and inserting them into the window means sequen-
tially traversing a primitive type array – which maximizes performance at the  
microarchitectural level and ensures a steady throughput over the most different win-
dow sizes. Indeed, this observation was corroborated experimentally, with the CPI 
metric remaining basically unaffected in all tests of that specific implementation 
(ranged from 0.850 to 0.878 for windows of 1000 up to 100M events). 

Discussion: Join Query 
Interestingly, for the join query the column-oriented storage model did not provide 
considerable performance gains with respect to the POJO representation. (In fact, both 
throughput and memory consumption were quite similar in these two configurations 
and for this reason we omitted the results for column-store in Figure 7(b)) This behav-
ior seems to be related to the fact that the amount of memory consumed by the pay-
load itself (i.e., tuples attributes) in that case is small compared to the overhead of 
inherent factors of the Java programming environment (e.g., object alignment,  
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wrappers for primitive types, and especially heavyweight native HashMap class, the 
structure used for indexing the table), which hides eventual gains provided by a more 
concise column-oriented dataset. Overall, the final performance of column-store im-
plementation for the join query oscillated around +3% and -5% in comparison with 
the tests with POJO tuples. 

3.5   Improving Algorithms Efficiency at the CPU Level 

Nearly all results presented in previous section revealed that the throughput of both 
aggregation and join queries dropped significantly as the input size was increased, 
even though the theoretical runtime complexity of the employed algorithms is O(1). 
In this section we delve into the causes for this behavior and propose optimizations to 
improve algorithms scalability with respect to input size. 

Aggregation Query 
As mentioned before, the algorithm for computing subtractable [5] aggregations such 
as AVG, SUM or COUNT over sliding windows consists essentially in updating some 
fixed set of state variables upon event arrival while maintaining the events of the 
window in main memory. As such, the algorithm has a O(N) space complexity but a 
theoretical O(1) time complexity. In practice, however, several factors can make the 
running time of the algorithm grow when the input size is increased. One of them is 
garbage collection: generally, the bigger the working set size and the higher the 
throughput, the more time will be spent on GCs. Besides, execution efficiency at the 
CPU will typically be hurt when more elements are referenced due to an increased 
probability of cache misses. This is particularly the case when events are represented 
as Objects, because there is no guarantee that consecutive elements in the window 
will be allocated contiguously in the heap by the JVM. Therefore, even though the 
algorithm logically traverses the window in a sequential way, the memory access 
pattern tends to be essentially random. One possible way of eliminating this undesir-
able effect is to employ the column-oriented storage model, which avoids the random 
walks through the heap by keeping attributes as arrays of primitive types. However, 
this approach is worthwhile only if the number of attributes referenced in the query is 
small. Otherwise, consuming an event from the stream and inserting it into the  
window will involve accessing several memory locations (one entry per attribute in 
different arrays).   

We tested, then, a tuned algorithm to minimize this performance penalty due to 
multiple inserts. The idea is to avoid references to distant memory locations by using 
a L2-resident temporary buffer for accommodating the incoming events. This tempo-
rary buffer consists in N aligned arrays (one per attribute) as in the original window, 
but with a capacity of only 100 events. Once these small arrays get full, the events are 
copied back to the window, one attribute at a time, so that they can be expired later.  

The algorithm is described in detail in Table 3. Figure 8 compares the performance 
of the proposed algorithm with the original column-oriented implementation. 
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Table 3. Cache-Aware algorithm for computing aggregations over sliding windows 

Input:    S: incoming event stream 
 K: the size of the L2-resident temporary buffer      

Output: R: stream of results 
 
for each event E in S do 

for each attribute Ai of event E do 
store Ai on the corresponding temporary location Ti 

compute aggregation (update aggregator state) 
insert aggregation result into output stream R 
if temporary buffer T is full then 

for each attribute Ai of event E do 
for each item Ij in temporary buffer Ti do 

copy Ij to the appropriate location in corresponding window Wi 
reset the temporary location T 
slide the window W in K positions 

The optimized algorithm provided gains in performance that ranged from 28 to 35 
percent when compared to the original column-store. The hardware metrics confirmed 
that it indeed exploits better 
the characteristics of the CPU: 
the CPI was almost half of the 
CPI of the original column-
store and L2 cache miss rate 
was reduced to around 70% of 
what was originally measured. 
Evidently, this microarchitec-
ture-aware algorithm is best-
suited for medium-to-large 
windows, since for smaller 
sizes the working set of the 
original column-oriented im-
plementation already fits in L2 
cache. 
 
Join Query 
In theory, the cost of a lookup on a hash table should be independent on the number 
of elements stored on it, but this ideal rarely can be achieved in practice since CPU 
operation – specifically cache behavior – is considerably affected by working set size. 
Figure 9 illustrates the correlation between microarchitectural aspects and final sys-
tem performance for the join tests with tuples represented as POJO. 

Fig. 8. Performance comparison: conventional Column-
Store algorithm vs. Microarchitecture-Aware algorithm 
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As it can be noticed from the graph, 
query throughput falls in the same  
proportion as the clock per instruction 
metric increases, indicating that mi-
croarchitectural factors were the major 
cause for performance degradation when 
the table size was increased. Further 
analysis of the hardware metrics con-
firmed that the increase in CPI was due 
to less efficient memory access patterns. 
For example, as the table size was in-
creased from 1,000 rows to 10M rows, 
L2 cache miss per instruction metric 
went from 0.6% to 3.1% and TLB miss 

penalty metric jumped from 0.3% to 19.4%. Notice also that up to 10k rows, the table 
fits in the 12MB L2 cache, which explains the negligible performance drop from 1k to 
10k, and the significant degradation from that point on. 

To improve data locality, we implemented an adapted version of the grace hash 
join algorithm [9] used in DBMSs. The idea is to reduce the number of times data is 
brought from main memory to cache by splitting the whole table into partitions and 
accessing them in bulks. The algorithm works as follows: 

• When the table is being populated, the records are stored into partitions using a 
given partitioning function g (in our tests the table was split into 1000 partitions); 

• Incoming events are then processed in batches. They are buffered into a parti-
tioned list until the batch is complete. (The partitioning function is the same as 
the one used for splitting the table, which ensures that matching tuples in the 
batch and the table will be kept in corresponding partitions). 

• Once the batch is complete, the corresponding partitions from event batch and 
table are loaded in pairs. The event partitions are then sequentially scanned, per-
forming for every event a lookup on the corresponding table partition. 

Figure 10 shows test results with both the conventional hash join algorithm and the 
batch grace hash algorithm, for table sizes ranging from 10M rows to 80M rows. 

    
                               (a)                                                              (b) 

Fig. 10. Conventional Hash Join vs. Batch Grace Hash Join 

Fig. 9. Drop on join performance due to 
increase in CPI 
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As it can be seen in (b), the batch algorithm was successful in improving locality of 
data accesses, which in turn caused a reduction in average CPI. This resulted in per-
formance gains that ranged from 11 to 44 percent, as illustrated in (a). 

Notice that there are a couple of competing factors influencing the performance of 
the batch grace hash algorithm. For example, each table partition should ideally fit in 
L2 cache in order to minimize the high penalties associated with memory accesses. 
Assuming that table size is application-specific and cannot be changed, the only way 
this can be achieved is by increasing the number of partitions in the table. Doing so, 
however, means that the number of partitions in the batch of events is also increased, 
thus reducing the number of events per partition. A reduced number of events per 
partition will probably hurt performance as a good fraction of the lookups in the table 
will incur in compulsive cache misses. For avoiding this to happen, batch size could 
be increased in the same proportion as the number of partitions, but obviously this is 
only feasible if there is availability of memory resources. Determining the optimal 
values for these parameters is subject for further investigation. 

3.6   Optimizations in a Multi-query Scenario 

A natural question that might arise after analyzing the results of previous sections is 
whether similar improvements in performance would be observed when moving from 
a scenario with only one continuous query running at a time to a multi-query scenario. 
In this section we answer this question and present the results for a set of tests in 
which the proposed optimizations are validated by measuring system performance 
during the execution of multiple simultaneous queries. More specifically, we tested 
three different situations: 

i. N instances of the same query are computed over a single event stream in a 
single thread; 

ii. N instances of the same query are computed over independent but identical 
event streams in a single thread; 

iii. N instances of the same query are computed over independent but identical 
event streams in N threads. 

 

For aggregation, we performed tests with 1 up to 16 simultaneous queries, with slid-
ing windows of 10 million events each. For join queries, we tested 1 up to 8 simulta-
neous queries operating over N tables of 10 million records (there was no physical 
memory available to test with 16 queries). We then analyzed the evolution of through-
put and hardware-level metrics as we progressively added more queries to the con-
figuration. The output throughput of each setting is shown in Figure 11.  

Application-level and hardware-level metrics collected during tests indicate that 
the proposed optimizations are also effective in a multiquery scenario. For instance, 
the microachitecture-aware aggregation algorithm introduced in Section 3.5 achieved 
superior performance than the conventional column-store in all multi-query tests. 
Also, the “Col-Store Proj”, which achieved the highest throughputs in the single 
aggregation query scenario due to improved microarchitectural performance, was 
once more the best performing implementation.  

For join, the speedup of the batch grace hash algorithm over the conventional hash 
algorithm oscillated between 1.02 to 1.64. On average, the optimized implementation 
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achieved 22 percent more throughput than the conventional non-optimized one, a 
slightly better speedup than the one observed in the single query scenario (20 
percent). Once more, hardware-level metrics followed the trend observed in the single 
query scenario (on average, the conventional hash algorithm had a CPI of 7.52 and L2 
cache miss rate of 3.5% against a CPI of 3.46 and a L2 cache miss rate of 1.6% for 
the batch grace hash algorithm). 

 
                          (a)                                        (b)                                        (c) 

 
                          (d)                                        (e)                                        (f) 

Fig. 11. Output throughput for aggregation and join queries in multi-query scenario 

A few words about the shape of the curves: on (a) the output throughput incresased 
sligthly when more queries were added as a result of a reduction on the relative 
weight of event instantiation on the workload (event is created once, but processed N 
times). This constrasts with the workload on (b) where event instantiation is replicated 
in the same proportion as queries, which explains the steady line (individual 
throughput of queries decreases, but total system throughput remains the same). 
Interestingly, the curves on (c) did not present a linear (or close to linear) growth that 
one would expect when increasing the amount of resources for a set of independent 
tasks (as happened on (f), for example). We found out that this happened because the 
CPI metric in these tests increased essentially in the same proportion as the number of 
queries. The reason for this behavior, however, is unclear to us since the other 
hardware metrics (i.e., cache miss rates, instruction fetch stalls, resource stalls, etc.) 
did not show any change that could justify this increase in CPI. Finally, it should be 
noticed that the drop on performance when jumping from 4 to 8 queries on (d) was 
caused by increased garbage collection activity (for 8 queries the system ran close to 
the maximum memory available). 
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3.7   Optimizations on a Real EP System 

In this section we discuss the results of the tests performed with the event processing 
engine Esper, after implementing the proposed optimizations. Figure 12 below shows 
the most relevant findings. 

    
                                      (a)                                                                 (b) 

Fig. 12. Optimizations on Esper (aggregation query): (a) Throughput (b) Memory Consumption 

As in the tests with the EP prototype, the modified version of Esper using a col-
umn-oriented storage model achieved higher throughputs and scaled better than the 
original implementations using Maps or POJOs as event representation. The column-
oriented implementations also proved once more to be useful for reducing memory 
consumption for aggregation queries. 

It should be noticed however, that many of the performance gains obtained with 
other optimizations in the tests with the prototype were hidden by bottlenecks inher-
ent to Esper implementation.  This phenomenon can be seen in Figure 12(a), where 
the “Col-Store Proj.” implementation achieved only 2,7% more throughput than the 
conventional “Col-Store”, while on the EP prototype the same optimization provided 
twice more performance. For the same reason, the cache-aware algorithm for aggrega-
tion and the batch grace hash join algorithm provided only slight performance gains 
on Esper (around 1 percent).  

4   Conclusions and Future Work 

In this paper we started the discussion on how event processing systems can execute 
more efficiently at processors of today. We first collected application and hardware-
level metrics during execution of a real event processing system to determine its per-
formance at CPU. After identifying some issues, we proposed, implemented and 
evaluated some changes in data organization and algorithms that together provided 
more than order of magnitude performance gains and considerable reductions on 
memory consumption. We have also found out that: 

1. Microarchitectural aspects played a fundamental role on the performance de-
gradation observed when input size was increased; 
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2. The column-oriented storage model can greatly improve performance for ag-
gregation queries when compared to alternative representations like Plain 
Java Objects or key-value Maps. These performance gains, whose roots are 
in an improved microarchitectural execution as well as in a reduced garbage 
collection activity, are also followed by significant memory savings (56% up 
to 98% reduction); 

3. The proposed cache-aware optimizations remained effective in a scenario 
with multiple queries running simultaneously. 

 
As future directions, we plan focus in the development of more optimized structures 
for join queries as well as to work in the optimization of other classes of continuous 
queries (e.g., event pattern detection). Other interesting topics worth of further inves-
tigation include how to make a better use of the parallelism provided by modern  
multicore processors and the compromise between CPU-level optimizations and 
query-plan sharing. 
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