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Preface

Research in Multi-Agent Systems offers promising technologies to implement
non-playing characters embodying more realistic cognitive models. However, the
technologies used in today’s game engines and multi-agent platforms are not
readily compatible due to some differences in their major concerns. For example,
where game engines focus on real-time aspects that prioritize efficiency and cen-
tral control, multi-agent platforms privilege agent autonomy instead. And while
multi-agent platforms typically offer sophisticated communication capabilities,
these may not be usable, or even appropriate, when the agents are coupled to a
game. So, although increased autonomy and intelligence may offer benefits for
a more compelling game play, and may even be essential for serious games, it is
not clear whether current multi-agent platforms offer the means that are needed
to accomplish this. Indeed, when current approaches to game design are used
to incorporate state-of-the-art Multi-Agent System technology, the autonomy
and intelligence of the agents might even be seen as more of a hindrance than
an asset. A very similar argument can be given for approaches centered around
agent-based (social) simulations.

In the current volume, Agents for Games and Simulations, we include papers
presented at AGS 2010: the Second International workshop on Agents for Games
and Simulations held on May 10 in Toronto. We received 12 submissions of
high quality covering many of the aspects mentioned above. Each submission
was reviewed by at least three Program Committee members. We accepted 11
papers for presentation, which can be found in this volume. This set of papers is
complemented by some extended versions of papers from other workshops and
the AAMAS conference in Toronto. Together this collection of papers give some
answers to the issues raised above.

We have grouped the papers into three sections. The first section contains
papers that are related to architectures combining agents and game engines.
Besides new results from the Pogamut platform itself, there is also a paper dis-
cussing the integration of GOAL agents to Unreal Engine with the use of the
Pogamut framework. It is nice to see this result stemming from last year’s AGS
workshop. Another paper in this section compares different multi-agent-based
systems for crowd simulation. Indeed this is an important topic for many (seri-
ous) games incorporating disasters in public spaces where crowds are involved.
The other two papers in this section treat issues with individual agent behav-
ior in games. One looks at the combination of human and AI control of virtual
characters, such that humans take care of those aspects that they are good at
and the AI controls the parts that humans are less good at. This is an interest-
ing point of view that might lead to new types of agent architectures as well.
The last paper advocates the use of ontologies during the design of the game
environment such that agents can use the ontology in their communication. This
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prevents, for example, one agent referring to an object as being a table while
another agent calls the object a desk. Avoiding this possible confusion makes it
possible to model the communication at a more abstract level, providing more
flexible protocols.

In the second section of this volume we included papers that focus on the
training aspects of the games. Three of the papers discuss the directing of the
game. The first paper uses value-driven characters. The second paper uses some
implicit mechanisms in the game and the third paper discusses a planning ap-
proach. The last paper in this section is also about keeping the game interesting,
but it uses an on-line adaptation mechanism to keep the game interesting for
the trainee. All of these papers show that the objective of agents in a gaming
environment should not just be to optimize some behavior, but rather to behave
in a way that the game is as interesting as possible for the user. Therefore we
should keep track of some overall storyline and objectives of the game as a whole.

The last section groups some papers around social and organizational aspects
of games and agents. Two of the papers discuss certain approaches from agent
institutions and organizations to model and implement the agent-based games.
Using these approaches gives agents a degree of individual freedom but also
keeps some central control over the game. The third paper discusses formal
approaches to model social practices which can be used in gaming. Finally, one
paper discusses the semi-automated classification of speech acts in a game. This
type of data-mining technique can assist in modeling interesting behavior of
agents based on the behavior of human players in a game.

All in all we are very happy with the papers contained in this volume. We
are sure they form a valuable overview of the current state of the art for people
that want to combine agent technology with (serious) games. Finally, we would
like to thank the Program Committee members, without whom the reviewing
would not have been possible and who gave valuable comments on all papers.

November 2010 Frank Dignum
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Unreal Goal Bots
Conceptual Design of a Reusable Interface

Koen V. Hindriks1, Birna van Riemsdijk1, Tristan Behrens2, Rien Korstanje1,
Nick Kraayenbrink1, Wouter Pasman1, and Lennard de Rijk1

1 Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
{k.v.hindriks,m.b.vanriemsdijk}@tudelft.nl

2 Clausthal University of Technology, Julius-Albert-Straße 4, 38678 Clausthal,
Germany

behrens@in.tu-clausthal.de

Abstract. It remains a challenge with current state of the art tech-
nology to use BDI agents to control real-time, dynamic and complex
environments. We report on our effort to connect the Goal agent pro-
gramming language to the real-time game Unreal Tournament 2004.
BDI agents provide an interesting alternative to control bots in a game
such as Unreal Tournament to more reactive styles of controlling
such bots. Establishing an interface between a language such as Goal

and Unreal Tournament, however, poses many challenges. We focus
in particular on the design of a suitable and reusable interface to man-
age agent-bot interaction and argue that the use of a recent toolkit for
developing an agent-environment interface provides many advantages.
We discuss various issues related to the abstraction level that fits an
interface that connects high-level, logic-based BDI agents to a real-time
environment, taking into account some of the performance issues.

Categories and subject descriptors: I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents; I.6.7 [Simulation
Support Systems]: Environments

General terms: Design, Standardization, Languages.

Keywords: agent-environment interaction, agent-oriented programming.

1 Introduction

Connecting cognitive or rational agents to an interactive, real-time computer
game is a far from trivial exercise. This is especially true for logic-based agents
that use logic to represent and reason about the environment they act in. There
are several issues that need to be addressed ranging from the technical to more
conceptual issues. The focus of this paper is on the design of an interface that
is suitable for connecting logic-based BDI agents to a real-time game, but we
will also touch on some related, more technical issues and discuss some of the
challenges and potential applications that have motivated our effort.

The design of an interface for connecting logic-based BDI agents to a real-time
game is complicated for at least two reasons. First, such an interface needs to be
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designed at the right abstraction level. The reasoning typically employed by logic-
based BDI agents does not make them suitable for controlling low-level details of
a bot. Intuitively, it does not make sense, for example, to require such agents to
deliberate about the degrees of rotation a bot should make when it has to make
a turn. This type of control is better delegated to a behavioral control layer. At
the same time, however, the BDI agent should be able to remain in control and
the interface should support sufficiently fine grained control. Second, for reasons
related to the required responsiveness in a real-time environment and efficiency
of reasoning, the interface should not flood an agent with percepts. Providing a
logic-based BDI agent with huge amounts of percepts would overload the agents’
processing capabilities. The cognitive overload thus produced would slow down
the agent and reduce its responsiveness. At the same time, however, the agent
needs to have sufficient information to make reasonable choices of action while
taking into account that the information to start with is at best incomplete and
possibly also uncertain.

We have used and applied a recently introduced toolkit called the Environ-
ment Interface Standard to implement an interface for connecting agents to a
gaming environment, and we evaluate this interface for designing a high-level
interface that supports relatively easy development of agent-controlled bots. We
believe that making environments easily accessible will facilitate the evaluation
and assessment of performance and the usefulness of features of agent platforms.

Several additional concerns have motivated us to investigate and design an
interface to connect logic-based BDI agents to a real-time game. First, we be-
lieve more extensive evaluation of the application of logic-based BDI agents to
challenging, dynamic, and potentially real-time environments is needed to assess
the current state of the art in programming such agents. Such an interface will
facilitate putting agent (programming) platforms to the test. Although real-life
applications have been developed using agent technology including BDI agent
technology, the technology developed to support the construction of such agents
may be put to more serious tests. As a first step, we then need to facilitate
the connection of such agents to a real-time environment, which is the focus of
this paper. This may then stimulate progress and development of such platforms
into more mature and effectively applicable tools. Second, the development of
a high-level agent-game bot-interface may make the control of game bots more
accessible to a broader range of researchers and students. We believe such an
interface will make it possible for programmers with relatively little experience
with a particular gaming environment to develop agents that can control game
bots reasonably well. This type of interface may be particularly useful to pro-
totype gaming characters which would be ideal for the gaming industry [1]. We
believe it will also facilitate the application of BDI agent technology by students
to challenging environments and thus serve educational purposes. The develop-
ment of such an interface has been motivated by a project to design and create
a new student project to teach students about agent technology and multi-agent
systems. Computer games have been recognized to provide a fitting subject [2].
As noted in [1],
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Building agents situated in dynamic, potentially antagonistic environments
that are capable of pursuing multiple, possibly conflicting goals not only teaches
students about the fundamental nature and problems of agency but also en-
courage them to develop or enhance programming skills.

Finally, an interesting possibility argued for in e.g. [2,3] is that the use of
BDI agents to control bots instead of using scripting or finite-state machines
may result in more human-like behavior. As a result, it may be easier to develop
characters that are believable and to provide a more realistic feel to a game.
Some work in this direction has been reported in [4], which uses a technique
called Applied Cognitive Task Analysis to elicit players’ strategies, on incorpo-
rating human strategies in BDI agents. [3] also discuss the possibility to use data
obtained by observing actual game players to specify the Beliefs, Desires, and
Intentions of agents. It seems indeed more feasible to somehow “import” such
data expressed in terms of BDI notions into sophisticated BDI agents, rather
than translate it to finite-state machines. The development of an interface that
supports logic-based BDI agent-control of bots thus may offer a very interesting
opportunity for research into human-like characters (see also [1,5,6,7]).

As a case study we have chosen to connect the agent programming language
Goal to the game Unreal Tournament 2004 (UT2004). UT2004 is a first-
person shooter game that poses many challenges for human players as well as
computer-controlled players because of the fast pace of the game and because
players only have incomplete information about the state of the game and other
players. It provides a real-time, continuous, dynamic multi-agent environment
and offers many challenges for developing agent-controlled bots. It thus is a suit-
able choice for putting an agent platform to the test. [8] argue that Unreal

Tournament provides a useful testbed for the evaluation of agent technology
and multi-agent research. These challenges also make UT2004 a suitable choice
for defining a student project as students will be challenged as well to solve these
problems using agent technology. Multi-agent team tasks such as coordination of
plans and behavior in a competitive environment thus naturally become avail-
able. In addition, the 3D engine, graphics and the experience most students
have with the game will motivate students to actively take up these challenges.
Moreover, as a competition has been setup around UT2004 for programming
human-like bots [5], UT2004 also provides a clear starting point for program-
ming human-like virtual characters. Finally, the Unreal engine has enjoyed
wide interest and has been used by many others to extend and modify the game.
As a result, many modifications and additional maps are freely available. It has,
for example, also been used in competitions such as the RobocupRescue com-
petition [9] which provides a high fidelity simulation of urban search and rescue
robots using the Unreal engine. Using the Unreal Tournament game as a
starting point to connect an agent platform to thus does not limit possibilities to
one particular game but rather is a first step towards connecting an agent plat-
form to a broad range of real-time environments. Moreover, a behavioral control
layer called Pogamut extending Gamebots is available for UT2004 [10,8] which
facilitates bridging the gap that exists when trying to implement an interface
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oriented towards high-level cognitive control of a game such as UT2004. Through-
out the paper the reader should keep in mind that we use these frameworks.
Technically, UT2004 is state of the art technology that runs on Linux, Windows,
and Macintosh OS.

Summarizing, the paper’s focus is on the design of a high-level interface for
controlling bots in a real-time game and is motivated by various opportunities
that are offered by such an interface. Section 2 discusses some related work.
Section 3 briefly introduces the Goal agent programming language. Section 4
discusses the design of an agent-interface to UT2004, including interface require-
ments, the design of actions and percepts to illustrate our choices, and the tech-
nology that has been reused. This section also introduces and discusses a recently
introduced technology for constructing agent-environment interfaces, called the
Environment Interface Standard [11,12]. Section 5 concludes the paper.

2 Related Work

Various projects have connected agents to UT2004. We discuss some of these
projects and the differences with our approach.

Most projects that connect agents to UT2004 are built on top of Gamebots [8]
or Pogamut [10], an extension of Gamebots: See e.g. [13,14] which use Gamebots
and [7] which use Pogamut.1 Gamebots is a platform that acts as a UT2004
server and thus facilitates the transfer of information from UT2004 to the client
(agent platform). The GameBots platform comes with a variety of predefined
tasks and environments. It provides an architecture for connecting agents to
bots in the UT2004 game while also allowing human players to connect to the
UT2004 server to participate in a game. Pogamut is a framework that extends
GameBots in various ways, and provides a.o. an IDE for developing agents and a
parser that maps Gamebots string output to Java objects. We have built on top
of Pogamut because it provides additional functionality related to, for example,
obtaining information about navigation points, ray tracing, and commands that
allow controlling the UT2004 gaming environment, e.g. to replay recordings.

A behavior-based framework called pyPOSH has been connected to UT2004
using Gamebots [14]. The motivation has been to perform a case study of a
methodology called Behavior Oriented Design [1]. The framework provides sup-
port for reactive planning and the means to construct agents using Behavior
Oriented Design (BOD) as a means for constructing agents. BOD is strongly
inspired by Behavior-based AI and is based on “the principle that intelligence is
decomposed around expressed capabilities such as walking or eating, rather than
around theoretical mental entities such as knowledge and thought.” [14] These
agents thus are behavior-based and not BDI-based.

Although we recognize the strengths and advantages of a behavior-based ap-
proach to agent-controlled virtual characters, our aim has been to facilitate the
use of cognitive agents to control such characters. In fact, our approach has been
to design and create an interface to a behavior-based layer that provides access
1 [15] is an exception, directly connecting ReadyLog agents via TCP/IP to UT2004.
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to the actions of a virtual character; the cognitive agent thus has ready access to
a set of natural behaviors at the right abstraction level. Moreover, different from
[1] the actions and behaviors that can be performed through the interface are
clearly separated from the percepts that may be obtained from sensors provided
by the virtual environment (although the behaviors have access to low-level de-
tails in the environment that is not all made available via the interface). The
main difference with [1] thus is the fact that cognitive agent technology provides
the means for action selection and this is not all handled by the behavior-layer
itself (though e.g. navigation skills have been “automated”, i.e. we reuse the
navigation module of Pogamut).

An interface called UtJackInterface is briefly discussed in [16]. This interface
allows JACK agents [17] to connect to UT2004. The effort has been motivated
by the “potential for teaming applications of intelligent agent technologies based
on cognitive principles”. The interface itself reuses components developed in the
Gamebots and Javabots project to connect to UT2004. As JACK is an agent-
oriented extension of Java it is relatively straightforward to connect JACK via
the components made available by the Gamebots and Javabots projects. Some
game-specific JACK code has been developed to “explore, achieve, and win” [16].
The interface provides a way to interface JACK agents to UT2004 but does not
provide a design of an interface for logic-based BDI agents nor facilitates reuse.

The cognitive architecture Soar [18] has also been used to control computer
characters. Soar provides so-called operators for decision-making. Similar to
Goal - which provides reserved and user-defined actions - these operators allow
to perform actions in the bots environment as well as internal actions for e.g.
memorizing. The action selection mechanism of Soar is also somewhat similar to
that of Goal in that it continually applies operators by evaluating if-then rules
that match against the current state of a Soar agent. Soar has been connected
to UT2004 via an interface called the Soar General Input/Output which is a do-
main independent interface [19]. Soar, however, does not provide the flexibility of
agent technology as it is based on a fixed cognitive architecture that implements
various human psychological functions which, for example, limit flexible access
to memory. An additional difference is that Soar is knowledge-based and does
not incorporate declarative goals as Goal does.

Similarly, the cognitive architecture ACT-R has been connected to Unreal

Tournament [20]. Interestingly, [20] motivate their work by the need for cog-
nitively plausible agents that may be used for training. Gamebots is used to
develop an interface from Unreal Tournament to ACT-R.

Arguably the work most closely related to ours that connects high-level agents
to Unreal Tournament is the work reported on connecting the high-level
logic-based language ReadyLog (a variant of Golog) to UT2004 [15]. Agents
in ReadyLog also extensively use logic (ECLiPSe Prolog) to reason about the
environment an agent acts in. Similar issues are faced to provide an interface
at the right abstraction level to ensure adequate performance, both in terms
of responsiveness as well as in terms of being effective in achieving good game
performance. A balance needs to be struck in applying the agent technology
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provided by ReadyLog and the requirements that the real-time environment
poses in which these agents act. The main differences between our approach and
that of [15] are that our interface is more detailed and provides a richer action
repertoire, and, that, although ReadyLog agents are logic-based, ReadyLog

agents are not BDI agents as they are not modelled as having beliefs and goals.
Summarizing, our approach differs in various ways from that of others. Im-

portantly, the design of the agent interface reported here has quite explicitly
taken into account what would provide the right abstraction level for connecting
logic-based BDI agents such as Goal agents to UT2004. As the discussion below
will highlight (see in particular Figure 1), a three-tier architecture has been used
consisting of the low-level Gamebots server extension of UT2004, a behavioral
layer provided by a particular bot run on top of Pogamut, and, finally, a logic-
based BDI layer provided by the Goal agent platform. Maybe just as important
is the fact that we have used a generic toolkit [11,12] to build the interface that is
supported by other agent platforms as well. This provides a principled approach
to reuse of our effort to facilitate control of Unreal bots by logic-based BDI
agents. It also facilitates comparison with other agent platforms that support
the toolkit and thus contributes to evaluation of agent platforms.

3 Agent Programming in Goal

Goal is a high-level agent programming language for programming rational or
cognitive agents. Goal agents are logic-based agents in the sense that they use
a knowledge representation language to reason about the environment in which
they act. The technology used here is SWI Prolog [21]. Due to space limitations,
the presentation of Goal itself is very limited and we cannot illustrate all features
present in the language. For more information, we refer to [22,23], which provides
a proper introduction to the constructs introduced below and discusses other fea-
tures such as modules, communication, macros, composed actions, and more.

The language is part of the family of agent programming languages that in-
cludes e.g. 2APL, Jadex, and Jason [24]. One of its distinguishing features is
that Goal agents have a mental state consisting of knowledge, beliefs and goals
and Goal agents are able to use so-called mental state conditions to inspect
their mental state. Mental state conditions allow to inspect both the beliefs and
goals of an agent’s mental state which provide Goal agents with quite expressive
reasoning capabilities.

A Goal agent program consists of various sections. The knowledge base is a
set of concept definitions or domain rules, which is optional and represents the
conceptual or domain knowledge the agent has about its environment. For the
purposes of this paper, the knowledge section is not important and we do not
explain the relation to beliefs and goals here (see for a detailed discussion [23]).
The beliefs section defines the initial belief base of the agent. At runtime a belief
base, which is a set of beliefs coded in a knowledge representation language (i.e.
Prolog in our case), is used to represent the current state of affairs. The goals
section defines the initial goal base, which is a set of goals also coded in the same
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knowledge representation language, used to represent in what state the agent
wants to be. The program section consists of a set of action rules which together
define a strategy or policy for action selection. The actionspec section consists
of action specifications for each action made available by the environment; an
action specification consists of a precondition that specifies when an action can be
performed and a postcondition that specifies the effects of performing an action.
Although Goal provides the means to write pre- and post-conditions it does not
force a programmer to specify such conditions, and actions may be introduced
with empty pre- and/or postconditions; we will discuss the usefulness of empty
conditions later in the paper again. Finally, a set of the percept rules specify how
percepts received from the environment modify the agent’s mental state.

Actions are selected in Goal by so-called action rules of the form

if <cond> then <action>

where <cond> is a mental state condition and <action> is either a built-in or an
action made available by the environment. These rules provide Goal agents with
the capability to react flexibly and reactively to environment changes but also
allow a programmer to define more complicated strategies. Modules in Goal

provide a means to structure action rules into clusters of such rules to define
different strategies for different situations [25]. Percept rules are special action
rules used to process percepts received from the environment. These rules allow
(pre)processing of percepts and allow a programmer to flexibly decide what to
do with percepts received (updating by inserting or deleting beliefs, adopting
or dropping goals, or send messages to other agents). Additional features of
Goal include a.o. a macro definition construct to associate intuitive labels with
mental state conditions which increases the readability of the agent code, options
to apply rules in various ways, and communication.

4 Agent Interface for Controlling Unreal Bots

One of the challenges of connecting BDI agents such as Goal agents to a real-
time environment is to provide a well-defined interface that is able to handle
events produced by the environment, and that is able to provide sensory infor-
mation to the agent and provides an interface to send action commands to the
environment. Although Gamebots or Pogamut do provide such interfaces they
do so at a very low-level. The challenge here is to design an interface at the
right abstraction level while providing the agent with enough detail to be able
to “do the right thing”. In other words, the “cognitive load” on the agent should
not be too big for the agent to be able to efficiently handle sensory information
and generate timely responses; it should, however, also be plausible and provide
the agent with more or less the same information as a human player. Similarly,
actions need to be designed such that the agent is able to control the bot by
sending action commands that are not too finegrained but still allow the agent to
control the bot in sufficient detail. Finally, the design of such an interface should
also pay attention to technical desiderata such as that it provides support for
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debugging agent programs and facilitates easy connection of agents to bots. This
involves providing additional graphical tools that provide global overviews of the
current state of the map and bots on the map as well as event-based mechanisms
for launching, killing and responding to UT server events. In the remainder of
this section, we describe in more detail some of the design choices made and the
advantages of using the Environment Interface toolkit introduced in [11,12]. We
begin with briefly discussing Unreal Tournament 2004 and then continue
with discussing the interface design.

4.1 Unreal Tournament

UT2004 is an interactive, multi-player computer game where bots can compete
with each other in various arenas. The game provides ten different game types
including, for example, DeathMatch in which each bot is on its own and competes
with all other bots present to win the game where points are scored by disabling
bots, and Team DeathMatch which is similar to DeathMatch but is different
in that two teams have to compete with each other. One of the key differences
between DeathMatch and Team DeathMatch is that in the latter bots have to act
as a team and cooperate and coordinate. The game type that we have focused on
is called Capture The Flag (CTF). In this type of game, two teams compete with
each other and have as their main goal to conquer the flag located in the home
base of the other team. Points are scored by bringing the flag of the opponent’s
team to one’s own home base while making sure the team’s own flag remains in
its home base.

The CTF game type requires more complicated strategic game play [15] which
makes CTF very interesting for using BDI agents that are able to perform high-
level reasoning and coordinate their actions to control bots. An interface “at
the knowledge level” [26] facilitates the design of strategic agent behavior for
controlling bots as the agent designer is not distracted by the many low-level
details concerning, for example, movement. That is, the interface discussed below
allows an agent to construct a high-level environment representation that can be
used to decide on actions and focus more on strategic action selection. Similarly,
by facilitating the exchange of high-level representations between agents that are
part of the same team, a programmer can focus more on strategic coordination.
As one of our motivations for building an agent interface to UT2004 has been to
teach students to apply agent technology in a challenging environment, we have
chosen to focus on the CTF game type and provide an interface that supports all
required actions and percepts related to this scenario (e.g. this game type also
requires that agents are provided with status information regarding the flag, and
percepts to observe a bot carrying a flag).2

2 Our experience with student projects that require students to develop soccer agents
using basically Java is that students spent most of their time programming more
abstract behaviors instead of focussing on the (team) strategy. Similar observations
related to UT2004 are reported in [13], and have motivated e.g. [10]. We hope that
providing students with a BDI programming language such as Goal will focus their
design efforts more towards strategic game play.
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4.2 Requirements

As has been argued elsewhere [1], in order to make AI accessible to a broad
range of people as a tool for research, entertainment and education various re-
quirements must be met. Here, we discuss some of the choices we made related
to our objective of making existing agent technology available for programming
challenging environments.

The tools that must be made available to achieve such broad goals as making
AI, or, more specifically, agent technology accessible need to provide quite dif-
ferent functionality. One of the requirements here is to make it possible to use
an (existing) agent platform to connect to various environments. We argue that
agent programming languages are very suitable as they provide the basic building
blocks for programming cognitive agents. Agent programming languages, more-
over, facilitate incremental design of agents, starting with quite simple features
(novices) to more advanced features (more experienced programmers).

Additional tools typically need to be available to provide a user-friendly devel-
opment environment, such as tools to inspect the global state of the environment
either visually or by means of summary reports. Auxiliary tools that support
debugging are also very important. Goal provides an Integrated Development
Environment with various features for editing (e.g. syntax highligting) and de-
bugging (e.g. break points). Similar requirements are listed in [19], which adds
that it is important that the setup is flexible and allows for low-cost development
such that easy modifications to scenarios etc are feasible. For example, in the
student project, we plan to use at least two maps to avoid student teams to bias
their agents too strongly with respect to one map. This presumes easy editing
of maps, which is facilitated by the many available UT2004 editors.

4.3 Interface Design

The Environment Interface Standard (EIS) [11,12] is a proposed standard for in-
terfaces between (agent-)platforms and environments. It has been implemented
in Java but its principles are portable. We have chosen to use EIS because it
offers several benefits. First of all, it increases the reusability of environments.
Although there are a lot of sophisticated platforms, the exchange of environ-
ments between them is very rare, and if so it takes some time to adapt the
environment. EIS on the other hand makes complex multi-agent environments,
for example gaming environments, more accessible. It provides support for event
and notification handling and for launching agents and connecting to bots.

EIS is based on several principles. The first one is portability which means
in this context that the easy exchange of environments is facilitated. Environ-
ments are distributed via jar-files that can easily be plugged in by platforms that
adhere to EIS. Secondly, it imposes only minimal restrictions on the platform
or environment. For example, there are no assumptions about scheduling, agent
communication and agent control. Also there are no restrictions on the use of
different technical options for establishing a connection to the environment, as
TCP/IP, RMI, JNI, wraping of existing Java-code et cetera can be used. An-
other principle is the separation of concerns. Implementation issues related to
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the agent platform are separated from those related to the environment. Agents
are assumed to be percept-processors and action-generators. Environment enti-
ties are only assumed to be controllable, i.e. they can be controlled by agents
and provide sensory and effectoric capabilities. Otherwise EIS does not assume
anything about agents and entities and only stores identifiers for these objects,
and as such assures the interface is agnostic about agent and bot specifics.

EIS provides various types of implementation support for connecting an
agent platform to an environment. It facilitates acting, active sensing (actions
that yield percepts), passive sensing (retrieving all percepts), and percepts-as-
notifications (percepts sent by the environment). Another principle is a standard
for actions and percepts. EIS provides a so called interface intermediate lan-
guage that is based on an abstract-syntax-tree-definition. The final principle is
the support for heterogeneity, that is that EIS provides means for connecting
several platforms to a single instance of an environment. EIS is supported by
and has been tested with 2APL, Jadex, Jason, and by GOAL.

The connection established using EIS between Goal-agents, which are exe-
cuted by the GOAL-interpreter, and UT2004 bots in the environment consists of
several distinct components (see Fig. 1). The first component is Goal’s support
for EIS. Basically this boils down to a sophisticated MAS-loading-mechanism
that instantiates agents and creates the connection between them and entities,
together with a mapping between Goal-percepts/actions and EIS ones. Con-
necting to EIS is facilitated by Java-reflection. Entities, from the environment-
interface-perspective, are instances of UnrealGOALBot, which is a heavy exten-
sion of the LoqueBot developed by Juraj Simlovic. LoqueBot on the other hand
is built on top of Pogamut[10]. Pogamut itself is connected to GameBots, which
is a plugin that opens UT2004 for connecting external controllers via TCP/IP.

Entities consist of three components: (1) an instance of UnrealGOALBot that
allows access to UT, (2) a so called action performer which evaluates EIS-actions
and executes them through the UnrealGOALBot, and (3) a percept processor
that queries the memory of the UnrealGOALBot and yields EIS-percepts.

The instantiation of EIS for connecting Goal to UT2004 distinguishes three
classes of percepts. Map-percepts are sent only once to the agent and contain
static information about the current map. That is navigation-points (there is a
graph overlaying the map topology), positions of all items (weapons, health, ar-
mor, power-ups et cetera), and information about the flags (the own and the
one of the enemy). See-percepts on the other hand consist of what the bot
currently sees. That is visible items, flags, and other bots. Self-percepts con-
sist of information about the bot itself. That is physical data (position, ori-
entation and speed), status (health, armor, ammo and adrenaline), all carried
weapons and the current weapon. Although these types of percepts are im-
plemented specifically for UT2004, the general concepts of percepts that are
provided only once, those provided whenever something changes in the visual
field of the bot, and percepts that relate to status and can only have a single
value at any time (e.g. current weapon) can be reapplied in other EIS instanti-
ations. Here are some examples: bot(bot1,red) indicates the bot’s name and
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its team, currentWeapon(redeemer) denotes that the current weapon is the
Redeemer, weapon(redeemer,1), indicates that the Redeemer has one piece of
ammo left, and pickup(inventoryspot56,weapon,redeemer) denotes that a
Redeemer can be picked up at the navigation-point inventoryspot56.

GOAL Interpreter EIS

UnrealGOALBot

Pogamut

UT2004

GameBots

Fig. 1. A schematic overview of the implementation. The Goal-interpeter connects
to the EIS via Java-reflection. EIS wraps UnrealGOALBot, a heavy extension of Lo-
quebot. UnrealGOALBot wraps Pogamut, which connects to GameBots via TCP/IP.
GameBots is an Unreal-plugin.

Actions are high-level to fit the BDI abstraction. The primitive behaviors that
are used to implement these actions are based on primitive methods provided
by the LoqueBot. Design-choices however were not that easy. We have identi-
fied several layers of abstraction, ranging from (1) really low level interaction
with the environment, that is that the bot sees only neighboring waypoints and
can use raytracing to find out details of the environment, over (2) making all
waypoints available and allowing the bot to follow paths and avoid for example
dodging attacks on its way, to (3) very high-level actions like win the game.
The low level makes a very small reaction-time a requirement and is very easy
to implement, whereas the high level allows for longer reaction times but re-
quires more implementation effort. We have identified the appropriate balance
between reaction-time implementation effort to be an abstraction layer in which
we provide these actions: goto navigates the bot to a specific navigation-point
or item, pursue pursues a target, halt halts the bot, setTarget sets the target,
setWeapon sets the current weapon, setLookat makes the bot look at a spe-
cific object, dropweapon drops the current weapon, respawn respawns the bot,
usepowerup uses a power-up, getgameinfo gets the current score, the game-type
and the identifier of the bot’s team. Due to space limitations we do not provide
all the parameters associated with these actions in detail. Note that several but
in particular the first two actions take time to complete and are only initiated
by sending the action command to UT2004. Durative actions such as goto and
pursue may be interrupted. The agent needs to monitor the actions through
percepts received to verify actions were succesful. EIS does support providing
percepts as “return values" of actions but this requires blocking of the thread
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executing the action and we have chosen not to use this feature except if there
is some useful “immediate" information to provide which does not require block-
ing. Special percepts were implemented to monitor the status of the goto action,
including e.g. whether the bot is stuck or has reached the target destination.
Moreover, the agent can control the route towards a target destination but may
also delegate this to the behavioral control layer.

4.4 An Example: The Unreal-Pill-Collector

Figure 2 shows the agent-code of a simple Goal-agent that performs two tasks:
(1) collecting pills and (2) setting a target for attack. The agent relies on the
reception of percepts that are provided by the environment to update its beliefs
during runtime. The beliefs present in the beliefs section in the agent program
code are used to initialize the belief state of the agent. The first fact listed states
that initially the agent has no target. The second fact represents the initial
parameters associated with the bot’s position, its rotation, velocity and moving
state, together called the physical-state of the bot (the moving state of a bot
can be stuck, moving, and reached). Similarly, the goals section is used to
initialize the agent’s goal base and initially will contain the goal of collecting
special items, represented simply by the abstract predicate collect, and the
goal to target all bots (implicitly only bots part of another team will be targeted
as it is not possible in UT2004 to shoot your own team mates). The first rule in
the program section makes the bot go to the specific location of a special-item
(a so-called pickup location) if the agent knows about such a location and has
the goal of collecting special items. The second rule sets the targets from none
to all bots.

In the example only two out the total number of actions that were briefly
introduced above have been used. We discuss these action more extensively here
because they help to clarify how the interface with UT2004 works. Actions de-
fined in the actionspec section need to be made available by the environment,
in our case UT2004. They need to be specified in Goal because the name and
parameters of the action need to be specified to be able to use it in action rules,
and because preconditions and postconditions of actions may be specified (but
need not be; they can be left empty). The goto action in the actionspec sec-
tion allows the bot to move in the environment. The setTarget action sets the
enemy bots that will be targeted if visible. These actions are quite different.
The goto action takes more or less time to complete depending on the distance
to be traveled. The setTarget action in contrast is executed instantaneously
as it only changes a mode of operation (a parameter). This difference has im-
portant consequences related to specifying the pre- and postcondition of these
actions. Whereas it is quite easy to specify the pre- and postcondition of the
setTarget action, this is not the case for the goto action. As goto is a durative
action that may fail (if only because an enemy bot may kill the bot) it is not
possible to specify the postcondition uniquely. Moreover, some of the “details”
of going somewhere as, for example, the exact route taken may (but need not
be) delegated to the behavioral layer; this means that most of the time only
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through percepts the exact route can be traced. Therefore, it makes more sense
in a dynamic environment that an agent relies on percepts that are made avail-
able by the environment to inform it about its state than on the specification
of a postcondition. For this reason, when an action is selected, Goal does not
“block” on this action until it completes. Instead, upon selection of an action,
Goal sends the action command to the environment and then simply contin-
ues executing its reasoning cycle; this design explicitly allows for monitoring
the results of executing the action command while it is being performed by the
bot in the environment. For some actions, among which the goto action, the
interface has been designed such that specific monitoring percepts are provided
related to events that are relevant at the cognitive level. The moving state per-
cepts stuck, moving, and reached are examples that illustrate how an agent
may conclude the goto action has failed, is ongoing, or has been successful. The
setup of sending an action command to the environment while continuing the
agent’s reasoning cycle also allows for interrupting the action if somehow that
seems more opportune to the agent; it can simply select a goto action with
another target to do so.

This discussion also clarifies that providing an action specification in an agent
programming language like Goal in dynamic environments is more of a (prag-
matic) design issue than a task to provide a purely logical analysis and specifica-
tion of a domain. It would require unreasonably complex specifications to handle
all possible effects whereas perception allows for much more effective solutions.3
The action specification for goto has been setup in such a way in the example
program, however, that another goto action is only selected if the agent believes
a position has been successfully reached in order to make sure that the agent
does not change its mind continually (something which obviously will need to be
changed in a truly multi-agent setting where the bot can get killed; the example
program is mainly used here for illustrative purposes).

The previous discussion will have made clear the importance that perception
has for controlling bots in a real-time strategy game such as UT2004. Rules to
process percepts (as well as possibly messages sent by agents) are part of the
perceptrules section of a Goal agent. In our example, the first percept rule
stores all pickup positions in the belief base whereas the second one stores the
movement state.

Though this agent is simple it does show that it is relatively simple to write
an agent program using the interface that does something useful like collecting
pills. Information needed to control the bot at the knowledge level is provided at
start-up such as where pickup locations are on the map. The code also illustrates
that some of the “tasks" may be delegated to the behavioral layer. For example,
the agent does not compute a route itself but delegates determining a route to

3 To be sure, we do not want to suggest that these remarks provide a satisfactory or
definite solution for these issues; on the contrary, there remain many issues for future
work. It does make clear, however, that in simulated environments such as games
some of these issues can be resolved by the design of a specific perceptual interface,
as we have done.
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pickup navigation point. One last example to illustrate the coordination between
the agent and the bot routines at lower levels concerns the precondition of the
goto action. By defining the precondition as in Figure 2 (which is a design choice
not enforced by the interface), this action will only be selected if a previously
initiated goto behavior has been completed, indicated by the reached constant.

main: unrealCollector { % simple bot, collecting special items, and setting shooting mode
beliefs{

targets([]). % remember which targets bot is pursuing
moving(triple(0,0,0), triple(0,0,0), triple(0,0,0), stuck). % initial physical state

}
goals{

collect. targets([all]).
}
program{

% main activity: collect special items
if goal(collect), bel(pickup(UnrealLocID,special,Type)) then goto([UnrealLocID]).
% but make sure to shoot all enemy bots if possible.
if bel(targets([])) then setTarget([all]).

}
actionspec{

goto(Args) {
% The goto action moves to given location and is enabled only if
% a previous instruction to go somewhere has been achieved.
pre { moving(Pos, Rot, Vel, reached) }
post { not(moving(Pos, Rot, Vel, reached)) }

}
setTarget(Targets) {

pre { targets(OldTargets) }
post { not(targets(OldTargets)), targets(Targets) }

}
}
perceptrules{

% initialize beliefs with pickup locations when these are received from environment.
if bel( percept(pickup(X,Y,Z)) ) then insert(pickup(X,Y,Z)).
% update the state of movement.
if bel(percept(moving(Pos, Rot, Vel, State)), moving(P, R, V, S))

then insert(moving(Pos, Rot, Vel, State)) + delete(moving(P, R, V, S)).
}

}

Fig. 2. A very simple Unreal-Goal-agent collecting pills and setting targets

4.5 Implementation Issues

It is realized more and more that one of the tests we need to put agent pro-
gramming languages to concerns performance. With the current state of the
art it is not possible to control hundreds or even tens of bots in a game such
as UT2004.4 The challenge is to make agent programs run in real-time and to
reduce the CPU load they induce. The issue is not particular for agent program-
ming, [2] reports, for example, that Soar executes its cycle 30-50 times per second
(on a 400MHz machine), which provides some indication of the responsiveness
that can be maximally achieved at the cognitive level. Although we recognize
4 Part of the reason is UT2004: increasing the number of bots also increases the CPU

load induced by UT2004 itself.
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this is a real issue, our experience has been that using the Goal platform it is
possible to run teams that consist of less than 10 agents including UT2004 on a
single laptop. Of course, a question is how to support a larger number of bots in
the game without sacrificing performance. Part of our efforts therefore have been
directed at gaining insight in which parts of a BDI agent induce the CPU load.
The issues we identified range from the very practical to more interesting issues
that require additional research; we thus identify some topics we believe should
be given higher priority on the research agenda. Some of the more mundane
issues concern the fact that even GUI design for an integrated development en-
vironment for an agent programming language may already consume quite some
CPU. The reason is quite simple: most APLs continuously print huge amounts of
information to output windows for the user to inspect, ranging from updates on
the mental states to actions performed by an agent. More interesting issues con-
cern the use and integration of third-party software. For example, various APLs
have been built on top of JADE [27]. In various initial experiments, confirmed by
some of our colleagues, it turned out that performance may be impacted by the
JADE infrastructure and performance improves when agents are run without
JADE (although this comes at the price of running a MAS on a single machine
the performance seems to justify such choices). Moreover, as is to be expected,
CPU is consumed by the internal reasoning performed by BDI agents. Again,
careful selection of third-party software makes a difference. Generally speaking,
when Prolog is used as reasoning engine, the choice of implementation may have
significant impact. Finally, we have built on top of Pogamut to create a behav-
ioral controller for UT bots. Measuring the performance impact of this layer
in the architecture illustrated in Figure 1 that connects Goal through various
layers to UT2004 is complicated, however; to obtain reasonable results for this
layer using e.g. profilers therefore remains for future work.

In retrospective, we have faced several implementation challenges when con-
necting to UT2004 using EIS. EIS though facilitated design of a clean and
well-defined separation of the agent (programmed in Goal) and the behavioral
layer (the UnrealGOALBot) to the Unreal-AI-engine. The strict separation of
EIS between agents as percept-processors and action-generators and entities as
sensor- and effector-providers facilitated the design. We also had in mind right
from the beginning that we wanted to use the UT2004-interface in order to pro-
vide the means for comparing APL platforms in general. Since support for EIS
is easily established on other platforms we have solved this problem as well, by
making the interface EIS-compliant.

4.6 Applications

The developed framework will be used in a student project for first year BSc.
students in computer science. Before the start of the project, students will have
had a course in agent technology where Prolog and Goal programming skills
are taught. The students are divided into groups of five students each. Every
group will have to develop a team of Goal agents that control UT bots in
a CTF scenario where two teams attempt to steal each other’s flag. In this
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scenario, students have to think about how to implement basic agent skills re-
garding walking around in the environment and collecting weapons and other
relevant materials, communication between agents, fighting against bots of the
other team, and the strategy and team work for capturing the flag. The time
available for developing the agent team is approximately two months, in which
each student has to spend about 1 to 1,5 days a week working on the project.
At the end of the project, there will be a tournament in which the developed
agent teams compete against one another. The grade is determined based on
the students’ report and their final presentation. The purpose of the project is
to familiarize students with basic aspects of agent technology in general and
cognitive agent programming in particular, from a practical perspective.

Designing the interface at the appropriate level of abstraction as discussed
above, is critical for making the platform suitable for teaching students agent
programming. If the abstraction level is too low, students have to spend most
of their time figuring out how to deal with low-level details of controlling UT
bots. On the other hand, if the abstraction level is too high (offering actions
such as win the game), students hardly have to put any effort into programming
the Goal agents. In both cases they will not learn about the aspects of agent
technology that were discussed above.

5 Conclusion and Future Work

As is well-known, the Unreal engine is used in many games and various well-
known research platforms such as the USARSIM environment for crisis man-
agement that is used in a yearly competition [9]. We believe that the high-level
Environment Interface that we have made available to connect agent platforms
with UT2004 will facilitate the connection to other environments such as US-
ARSIM as well. We believe the availability of this interface makes it possible to
connect arbitrary agent platforms with relatively little effort to such environ-
ments which opens up many possibilities for agent-based simulated or gaming
research. This is beneficial to put agent technology to the test. It will also make
it possible to research human-agent mixed systems that control bots in UT2004.

The interface and architecture for connecting Goal to UT2004 have been
used successfully in a large student project at Delft University of Technology
with 65 first-year BSc students that were trained to program Goal agents first
in a course on multi-agent systems. The multi-agent systems that were developed
by the students competed against each other in a competition at the end of the
project. Some lessons learned and an analysis of the agent programs that were
written are reported in [28]. The project has resulted in many insights on how
to design the agents controlling bots themselves, as well as on how to improve
some of the associated tools and methodologies for authoring agent behavior.
At the moment of writing, we are in the process of migrating the code of the
behavioral layer based on Pogamut 2 to the new, redesigned Pogamut 3 [29].

The connection of an agent programming language for rational or BDI agents
to UT2004 poses quite a few challenging research questions. A very interesting
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research question is whether we can develop agent-controlled bots that are able to
compete with experienced human players using the same information the human
players possess. The work reported here provides a starting point for this goal.
Even more challenging is the question whether we can develop agent-controlled
bots that cannot be distinguished by experienced human players from human
game players. At this stage, we have only developed relatively simple bots but
we believe that the interface design enables the development of more cognitively
plausible bots.

As noted in [30] and discussed in this paper, efficient execution is an issue for
BDI agents. By increasing the number of bots and the number of agents needed
to control these bots performance degrades. A similar observation is reported in
[31]. Although it is possible to run teams of Goal agents to control multiple
bots, our findings at this moment confirm those of [30]. We believe that efficiency
and scalability are issues that need to be put higher on the research agenda.

References

1. Brom, C., Gemrot, J., Bida, M., Burkert, O., Partington, S.J., Bryson, J.: POSH
Tools for Game Agent Development by Students and Non-Programmers. In: Proc.
of the 9th Computer Games Conference (CGAMES 2006), pp. 126–133 (2006)

2. Laird, J.E.: Using a computer game to develop advanced ai. Computer 34(7), 70–75
(2001)

3. Patel, P., Hexmoor, H.: Designing Bots with BDI Agents. In: Proc. of the Sympo-
sium on Collaborative Technologies and Systems (CTS 2009), pp. 180–186 (2009)

4. Norling, E., Sonenberg, L.: Creating Interactive Characters with BDI Agents. In:
Proc. of the Australian Workshop on Interactive Entertainment (IE 2004) (2004)

5. Botprize competition, http://www.botprize.org/ (Accessed 30, January 2010)
6. Davies, N., Mehdi, Q.H., Gough, N.E.: Towards Interfacing BDI With 3D Graph-

ics Engines. In: Proceedings of CGAIMS 2005. Sixth International Conference on
Computer Games: Artificial Intelligence and Mobile Systems (2005)

7. Wang, D., Subagdja, B., Tan, A.H., Ng, G.W.: Creating Human-like Autonomous
Players in Real-time First Person Shooter Computer Games. In: Proc. of the 21st
Conference on Innovative Applications of Artificial Intelligence (IAAI 2009) (2009)

8. Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A.,
Scholer, A., Tejada, S.: Gamebots: A flexible test bed for multiagent team research.
Communications of the ACM 45(1), 43–45 (2002)

9. RobocupRescue, http://www.robocuprescue.org (Accessed 30, January 2010)
10. Burkert, O., Kadlec, R., Gemrot, J., Bída, M., Havlíček, J., Dörfler, M., Brom,

C.: Towards fast prototyping of iVAs behavior: Pogamut 2. In: Pelachaud, C.,
Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007.
LNCS (LNAI), vol. 4722, pp. 362–363. Springer, Heidelberg (2007)

11. Behrens, T.M., Dix, J., Hindriks, K.V.: Towards an Environment Interface Stan-
dard for Agent-Oriented Programming. Technical report, Clausthal University of
Technology, IfI-09-09 (September 2009)

12. Behrens, T., Hindriks, K., Dix, J., Dastani, M., Bordini, R., Hübner, J., Braubach,
L., Pokahr, A.: An interface for agent-environment interaction. In: Proceedings
of the The Eighth International Workshop on Programming Multi-Agent Systems
(2010)

http://www.botprize.org/
http://www.robocuprescue.org


18 K.V. Hindriks et al.

13. Kim, I.C.: UTBot: A Virtual Agent Platform for Teaching Agent System Design.
Journal of Multimedia 2(1), 48–53 (2007)

14. Partington, S.J., Bryson, J.J.: The behavior oriented design of an unreal tour-
nament character. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D.,
Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 466–477.
Springer, Heidelberg (2005)

15. Jacobs, S., Ferrein, A., Ferrein Lakemeyer, G.: Unreal GOLOG Bots. In: Proceed-
ings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning in
Computer Games, pp. 31–36 (2005)

16. Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren,
G.: Innovations in multi-agent systems. Journal of Network and Computer Appli-
cations 30(3), 1089–1115 (2007)

17. JACK: Agent Oriented Software Group, http://www.aosgrp.com/products/jack
(Accessed 30, January 2010)

18. Laird, J.E., Newell, A., Rosenbloom, P.: Soar: An architecture for general intelli-
gence. Artificial Intelligence 33(1), 1–64 (1987)

19. Laird, J.E., Assanie, M., Bachelor, B., Benninghoff, N., Enam, S., Jones, B., Ker-
foot, A., Lauver, C., Magerko, B., Sheiman, J., Stokes, D., Wallace, S.: A test bed
for developing intelligent synthetic characters. In: Spring Symposium on Artificial
Intelligence and Interactive Entertainment (AAAI 2002) (2002)

20. Best, B.J., Lebiere, C.: Teamwork, Communication, and Planning in ACT-R. In:
Proceedings of the 2003 IJCAI Workshop on Cognitive Modeling of Agents and
Multi-Agent Interactions, pp. 64–72 (2003)

21. SWI Prolog, http://www.swi-prolog.org/ (Accessed 30, January 2010)
22. Hindriks, K.V.: Programming Rational Agents in Goal. In: Multi-Agent Program-

ming Languages, Tools and Applications, pp. 119–157. Springer, Heidelberg (2009)
23. Hindriks, K.V.: Goal Programming Guide (2010), Can be downloaded from

http://mmi.tudelft.nl/~koen/goal
24. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming

Languages, Platforms and Applications. Springer, Heidelberg (2005)
25. Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming

Languages, Tools and Applications. Springer, Heidelberg (2009)
26. Newell, A.: The Knowledge Level. Artificial Intelligence 18(1), 87–127 (1982)
27. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with

JADE. Wiley, Chichester (2007)
28. Hindriks, K.V., van Riemsdijk, M.B., Jonker, C.M.: An empirical study of patterns

in agent programs: An Unreal Tournament case study in Goal. In: Proceedings
of the 13th International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA 2010) (2010)

29. Gemrot, J., Brom, C., Plch, T.: A periphery of pogamut: from bots to agents and
back again. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS
(LNAI), vol. 6525, pp. 19–37. Springer, Heidelberg (2011)

30. Bartish, A., Thevathayan, C.: BDI Agents for Game Development. In: Proceedings
of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2002), pp. 668–669 (2002)

31. Hirsch, B., Fricke, S., Kroll-Peters, O., Konnerth, T.: Agent programming in prac-
tise - experiences with the jiac iv agent framework. In: Sixth International Work-
shop AT2AI-6: From Agent Theory to Agent Implementation, pp. 93–99 (2008)

http://www.aosgrp.com/products/jack
http://www.swi-prolog.org/
http://mmi.tudelft.nl/~koen/goal


F. Dignum (Ed.): Agents for Games and Simulations II, LNAI 6525, pp. 19–37, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

A Periphery of Pogamut: From Bots to Agents and  
Back Again 

Jakub Gemrot, Cyril Brom, and Tomáš Plch 

Charles University in Prague, Faculty of Mathematics and Physics 
Malostranské nám. 2/25, Prague, Czech Republic 

Abstract. Despite virtual characters from 3D videogames – also called bots – 
seem to be close relatives of intelligent software agents, the mechanisms of 
agent reasoning are only rarely applied in videogames. Why is this? One 
possible reason is the incompatibility between representations used by agent 
decision making systems (DMS) and videogame worlds, as well as different 
handling of these representations. In recent years, we developed Pogamut, 
which is a toolkit for coupling videogame worlds with DMSs originating within 
the agent oriented research as well as other disciplines, allowing for controlling 
in-game characters by these DMSs. To this end, Pogamut features an interface 
bi-directionally bridging the “representational gap” between a game world and 
an external DMS. This paper conceptualises functionality of this interface based 
on our experience with connecting Pogamut to various game worlds, most 
notably Unreal Tournament 2004. We present a general abstract framework, 
which verbalises requirements an agent researcher must fulfil in order to 
employ his/her reasoning mechanism for controlling in-game virtual characters. 
This paper also reviews Pogamut, which the researcher can utilise. 

Keywords: videogames, agents, action selection, Unreal Tournament. 

1   Introduction 

After years of stagnation, the field of artificial intelligence (AI) for videogames seems 
to have caught second wind [1]. Results achieved in disciplines such as planning [2], 
evolutionary computation [3], or stochastic modelling [4] inspire new solutions and 
approaches to known problems. Can knowledge accumulated by the multi-agent 
systems (MAS) community during the last decade be, to some extent, also employed 
in the context of 3D videogames? This idea stems from the fact that it may seem, 
superficially, that fields of gaming AI and MAS study entities of the same kind. 

Entities studied by the MAS community are often called intelligent software agents 
[5]. Creatures employed in the gaming AI field are typically called bots, non-player 
characters (NPCs), virtual characters or virtual agents. To avoid ambiguity, we will 
strictly use the term agents for the former entities while bots for the latter. 

The broad field of MAS studies includes many subfields, such as multi-agent 
communication, cooperation and negotiation, learning, and agent reasoning. It can be 
contemplated about how the knowledge gained in each of these subfields can be 
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employed in the context of videogames. This paper is concerned with reasoning of a 
single or few agents, leaving the other subfields for future work. 

The field of videogames is as diverse as the MAS field. In this paper, when 
speaking about videogames, we restrict ourselves only to 3D games modelling 
individual persons such as first-person shooters (FPS) or role-playing games (RPG). 
For the purposes of this paper, we also include 3D virtual reality simulations, such as 
crowd simulations or virtual storytelling systems, into the definition of a “3D game”. 
That is, virtual characters inhabiting these simulations and carrying out multiple 
goals, often called intelligent virtual agents, will be considered as bots here. However 
we will not use the term bots for conversational characters, unless they are fully 
embodied within a virtual world and have multiple goals besides chatting (e.g., a sport 
game commentator is not considered as a bot here unless he can also shoot, run, etc.). 
Similarly, we exclude from the definition of a “3D game” games without individual 
persons, e.g., statistical strategies and logical games, even though decision processes 
in these games can be conceived as agents by some (e.g., [6]). We also exclude games 
simulating only or predominantly vehicles, such as flight simulators and racing 
games, even though when these vehicles are controlled by a computer, they may be 
called bots by some.  

Now, we can rephrase and refine the question this paper aims at analysing: Can 
knowledge accumulated in the MAS field concerned with agent reasoning be used for 
reasoning of individual bots or a couple of bots? That means, can developers of bots 
employ MAS knowledge representations, reasoning algorithms, or goal-oriented 
software architectures such as Jason [7], Jack [8] or Jadex [9]? How to achieve this? 
What are the obstacles, what are the drawbacks and benefits? 

This paper does not provide conclusive answers. Instead, it proposes the way 
towards practical utilisation of MAS knowledge in the videogame domain, which 
leads through connecting these architectures to game engines, enabling empirical 
experiments. The paper explains what exactly it means to establish such connection 
and offers a robust toolkit we have developed to help in this work. 

An agent decision making system (DMS) can be connected to a game engine either 
internally or externally (see also [10] on this point). Internal connection means 
integrating a DMS into a game engine when the engine’s source code is available. 
However, the source code of games is available only rarely and typically for ten years 
old games (with some exceptions). Fortunately, several modern games allow for 
information exchange between their worlds and an external system, enabling a 
researcher to couple his/her architecture with a game externally, in most cases on a 
client-server basis. However, the researcher should be aware of two stumbling blocks: 
a) the way how bots are controlled internally (i.e., from the game within) may differ 
from the way how the bots can be controlled externally, b) bot DMSs use different 
input/output information than typical agent DMSs, no matter whether an agent DMS 
is connected internally or externally (mind the distinction between a bot DMS and an 
agent DMS1). While Point (a) is merely technical, Point (b) presents a deep 
conceptual difference. To understand this difference, Section 2 of this paper will 
explain the main distinctions between agents and bots in detail. 

                                                           
1 Whereas a bot DMS is a native controlling mechanism hardwired within the game engine, an 

agent DMS is a stand-alone application its creator is claiming it is MAS principles compliant. 
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When aiming at connecting an agent DMS to a game, it is an advantage to know 
about what can be expected from game engines; which information is available and 
which it is not, and how to acquire the desired information. To enable the reader to 
understand these points, Section 3 formally conceptualises game engines, providing a 
model of a bot DMS, game engine and information it holds. Based on this 
formalisation, Section 4 discusses the issue of connecting an agent DMS. 

Sections 3 and 4 did not appear from thin air. On the contrary, we have been 
working for several years on Pogamut, which is a robust toolkit for coupling 
videogame worlds with external DMSs [11]. This toolkit has been widely used, both 
by us [e.g., 12, 13] as well as others for the purpose of prototyping gaming algorithms 
[14] or for prototyping BDI-based agents acting in real-time, dynamic and complex 
environments [15]. The formalisations are derived based on our experience we gained 
during our work on Pogamut. Section 5 reviews Pogamut and presents a particular 
instantiation of the formal model, a multi-layered AgentSpeak(L)-based DMS [16] 
coupled to the Unreal Tournament 2004 game (UT 2004) [17]. The most important 
point is that Pogamut can be utilised for connecting other agent DMSs to videogames 
in an “out of the box” fashion (see also [15] on this point). Section 6 documents that 
Pogamut can be used not only in the context of the UT 2004 game: it reviews our 
work in progress on extending Pogamut to operate with Virtual Battle Space 2 [18], 
which is a multi-agent military simulator, as well as connecting Pogamut to StarCraft 
[19] and Defcon [20], strategy games.  

2   Bots Are Not Agents 

The border between bots (as defined above) and agents (as understood by MAS 
community) is not clear-cut, but there are several traits that help understand the 
difference. Arguably, the two most important traits are believability and embodiment. 
Firstly, bots should be believable, which is the ability to convey the illusion of reality 
[21] by whatever means necessary. In this aspect, bots and agents differ; while the 
ideal of agents is strong autonomy, which does not necessarily imply believability in 
terms of [21], believable bots need not be strongly autonomous. Secondly, bots are 
embodied; they have virtual bodies subject to constraints of their 3D virtual worlds2.  

Because of their embodiment, and this is crucial, bots require different information 
inputs about their surroundings than typical agent-oriented DMSs work with. Because 
of real-time constraints, bots have to cope with ever-changing virtual world rapidly, 
which requires acquiring and processing of external information in a timely fashion.3 
We will now elaborate on these two points.  

One useful way of categorising incoming information is based on the level of 
abstraction. It is useful when the information about some aspects of a bot’s surrounding 

                                                           
2 Recall that we call intelligent virtual agents bots here. 
3 Note that the meaning of the word “rapid” differs from the MAS community’s use: in gaming 

industry, constant algorithms tend to be considered as fast while polynomial are considered to 
be slow in general, let alone exponential (of course, this depends on a particular situation). 
For instance, traversing expression trees of dynamic lengths built out of domain specific 
language checking for event triggers, which is linear, is found to be slow [22]. That work 
suggests using only expression trees that fit into a rather small pre-allocated array. 
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is provided in an abstract manner while other aspects are presented in a low level way, 
i.e., more akin to inputs from robotic sensors. Thus, at the same time, a bot can get 
information like “a projectile is coming from 170o”, “there is a wall or something 2.34 
meters at 54o”, “this is a position from which you can shoot”. The important point is that 
the level of abstraction is not determined by an ideal of psychological plausibility or the 
logical coherence of the DMS, but by technical rationale, including the real-time 
constraints and the believability requirement.  

Another useful categorisation divides information into static and dynamic [10]. 
Static information is bound to properties of the virtual environment that do not change 
in the course of the simulation. For instance, whether a place is suitable as a cover in 
respect to a sentry gun fixed inside a bunker depends on the outlook of the sentry gun 
and the landscape. In an environment that does not change its topology, this 
information is known during the design time, i.e., the information has a static context, 
and can be precompiled. On the other hand, the information where defenders of a 
bunker have the weakest spot depends on their current positions, their patrol 
behaviour etc., i.e., it has a dynamic context implying the necessity to compute or 
acquire it during runtime. This distinction is crucial both technically and conceptually. 

Now, to be able to contemplate on how an agent DMS coupled with a game engine 
can access information, we need to know how data are provided by engines. In our 
experience, game engines tend to export only information that is available via regular 
bots’ access mechanisms (because providing different access mechanisms would 
present only additional unnecessary development). Thus, we have to take a look on 
how bots sense their worlds.   

Due to real-time constraints, game developers must balance the necessity of bots 
having to perform active sensor querying against bots’ automatic, i.e., passive, event 
notifications whenever a respective event occurs in the game engine. Note that the 
active vs. passive distinction may not mirror the static vs. dynamic dichotomy. The 
rationale behind the active vs. passive mechanisms is to automatically notify bots 
about important events that the bots would check anyway, such as “bot has been 
killed” or “bot has hit a wall” – this is the passive sensing. On the other hand, there 
are many events that bots need to know only from time to time. It is more efficient 
when bots actively request information about these events only when the information 
is really needed. 

What does it imply for an external agent DMS? Generally, there are three ways 
how information can be obtained. 1) The information that is passively sensed by bots 
is also automatically exported by the game engine (push strategy). 2) The information 
that can be actively requested by bots can also be requested from the engine (pull 
strategy). 3) The information that is not provided by the game engine itself but it may 
be inferred from existing information (inference strategy). 

Here is a distinction between agents and bots concerning these information access 
strategies: While bot DMSs tend to access information by several special purpose 
mechanisms, capitalising on both push and pull strategies, agent DMSs tend to use one 
generic mechanism only. This fact alone poses technical troubles for some agent 
DMSs. For instance, many goal-oriented agent architectures, such as AgentSpeak(L) 
[23] derivates, require for underlying agent worlds to keep them automatically 
informed about events, which corresponds to the push strategy. For these architectures, 
the lack of ability to cope with pull and inference strategies must be compensated.  
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Having the notion of key differences between bots and agents, the paper continues 
with discussing game engines in general. This will help the reader to better 
understand the prerequisites of connecting an agent DMS to a game engine.  

3   Game Engines 

This section presents a generic framework for understanding game engines (GE). The 
section starts in an informal tone and continues with a formal definition of a GE, 
functioning of a bot DMS, and relations between various data kept by the engine. 

3.1   GEs Informally 

“A game engine is a software system designed for the creation and development of 
video games. Game engines provide a suite of visual development tools in addition to 
reusable software components. These tools are generally provided in an integrated 
development environment to enable simplified, rapid development of games in a data-
driven manner.” [24, see also 25] A GE itself is not a game, rather a middleware used 
by the game developers, who may arbitrarily extend it to suit the game’s needs. As a 
middleware, it usually empowers the developers with the ability to script game rules 
using interpreted languages such as Lua [26], Python [27] or a proprietary language 
such as UnrealScript [28]. 

The high level task of a GE is to simulate a game’s virtual world in (nearly) real-
time providing smooth visualisation to players while reflecting their actions. One of 
the challenges GEs are facing is to arbitrate available CPU and GPU power between: 

1) game visualization, e.g., performing animations, managing polygons, textures 
and shader programs in the graphic card’s memory, etc.; 

2) (simplified) physics simulation, e.g., computing the trajectories of moving 
objects, performing collisions and deformations, etc.; 

3) game mechanics, e.g., triggering game events at correct time, executing scripted 
situations, etc.; 

4) artificial intelligence, e.g., providing believable behaviour for interactive game 
objects such as bots. 

Game engines tend to prioritize these issues in the given order. Smooth visualization 
is preferred over AI computations, which do not affect the simulated world every 
frame. Thus AI computations are interleaved with scene rendering, physics engine 
etc., and in most cases, are not given extensive computational facilities. 

In the previous section, we discussed how information can traverse from a GE to a 
bot. Now, we are going to discuss how these data are stored within the GE and how 
they are managed. 

GEs as managers of facts. GEs can be conceptualised as managers of game facts 
(grounded formulae of first order logic), which are true in the certain point of time. 
GEs represent them as data structures of a native programming language. GEs can 
also be seen as rule engines that transform given facts as the game proceeds. A GE 
maintains a virtual clock, which measures time in ticks. Each tick, the GE transforms 
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game facts according to game rules that are encoded inside the GE or written outside 
by game developers in a language the GE can interpret. We will refer to this 
transformation as TICK function. 

The following (non-exhaustive) list presents examples of such game rules: 

1) Physics. Change locations of objects, the speed of which is greater than 0, as if 
0.05 seconds has passed, and compute collisions along the way. 

2) Game mechanics. If a rocket explodes, compute damage and process the damage 
(lower health) to all bots and players in the radius of 500 m. 

3) Trigger. When a player steps on a jump pad, apply force of 1000 N to his avatar 
in the direction perpendicular to the jump pad. 

4) Bot API: If a bot issues a move command, change the bot’s speed to 20 km/h. 

Section 2 has divided a bot’s information into dynamic and static. This dichotomy 
comes from the GE itself as it is the GE which defines, which information can change 
in the course of the simulation and which can not. Static information (facts) contain 
the GE’s configuration, together with the underlying geometry of the land, game 
triggers, events or programs in a language that GE can interpret, etc. Examples of 
dynamic information (facts) includes the current number of bots and items in the 
game along with their state, i.e. position, current speed, animation in progress, etc. 

The distinction between static and dynamic facts is technical as well as conceptual. 
Technically, a DMS must handle dynamic facts differently, i.e., it must be ready to 
handle their change and offer the developer a way to act upon such changes. 
Conceptually, the more the game world is dynamic, the more sophisticated algorithms 
must be employed. For example, there are games where objects forming the borders 
of the virtual world are destructible by bots and players, e.g., it is allowed to blast a 
hole into a building’s wall, which makes the navigation mesh a dynamic fact. Thus a 
dynamic path finding algorithm, e.g., D* [29], must be used instead of a classical one. 

Now, let us proceed to the question how these facts are stored within a GE. 

Game facts division. Game facts that are true about the game in a given time can be 
categorised into three groups. We will refer to these groups as game facts classes.  

1) A GE usually provides an API to access all game facts it stores within its 
internal data structures, such as level geometry or a bot’s level of health. Accessing 
these facts is computationally efficient. We will refer to these facts as Class 1 facts.  

2) Additionally, there are facts that can be computed on request by invoking a 
method of an API that uses Class 1 facts to infer new facts. Such facts are, e.g., ray 
cast results or a path to a distant location. We will refer to these facts as Class 2 facts. 

3) Finally, there are facts that can not be obtained through the GE’s API but that 
are algorithmically inferable, such as the shortest path a bot should follow to collect 
all items in the world (leads to the well-known Travelling Salesman Problem). We 
will call these facts Class 3 facts. 

Sending requests to GEs. So far, only the information flow from a GE to a bot has 
been discussed. Fortunately, the other way is easier. A GE usually offers a set of 
methods that can be invoked by bots, e.g., GoTo(Location), Shoot(Actor), or 
GetPath(Location). These methods are of two types: 1) actions the bot’s body 
should carry out in the game world (GoTo, Shoot, etc.), and 2) computation requests 
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that induce facts not present implicitly in GE’s data structures, i.e. Class 2 facts (e.g. 
GetPath). Both commands and computation requests may last (and usually last) 
several TICKs before they are finished. The number of TICKs depends on the 
request’s complexity, e.g., say “Hello!” command will take less time to perform than 
GoTo(Hospital). Similarly, a ray cast request will finish well before the A* 
algorithm finds out that a requested path does not exist. 

Two major issues linked to the requests are to be handled by an agent DMS. 
Firstly, the DMS should be able to handle the lag between a computation request and 
its returned result. Especially the path requests should be made in advance. Secondly, 
GEs may not report success or failure of an action. In these cases, a DMS must 
actively watch over a bot’s related facts to infer whether the action is being carried 
out as expected (e.g., has the bot just hit an obstacle?). If a deviation from an expected 
result is detected, actions to compensate should take place. Such success/failure 
reporting is required, e.g., by BDI systems. Whenever the bot has an intention to go to 
the hospital, it needs to know whether the GoTo(Hospital) command has been 
executed successfully or failed in order to maintain, delete or re-plan the intention. 

3.2   GE (More) Formally 

This part of the paper summarises formally description of GEs in order to facilitate 
thinking about connecting agent DMSs to GEs. Therefore, the definition intentionally 
emphasises management of game facts and their accessibility, but not the issue of 
bots’ action selection and carrying out action commands by GEs. Note also that GEs 
may differ in important implementation details; what we present here is only our view 
of GEs. We are not aware of any widely accepted formal definition of a GE.  

 

 
 

Fig. 1. Visualization of TICK and DMS functions together with the sequence diagram of 
subsequent calls. The mark “X” (on the left figure) denotes a bot’s mental states and requests, 

i.e., )()( RPVMP bb × . The bots in the figure are marked as “internal”, i.e., they are native to 

the GE and controlled by bot DMSs. This labelling will become important later on in Figure 2. 
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Definition 1. (Game engine, managed facts) Game engine 
),,,,,,( TGSTICKBPIFGE = is characterized by: 

 Facts F . This is the set of all ground formulae that can be possibly true 
about the game during some moments. 

  The set F  consists of three classes: 321 FFFF ∪∪= . 

 Class 1 game facts FF ⊆1  is a set of all ground formulae that (a) 
can be possibly true about the game and (b) they are stored in 
appropriate data structures iff they are true. 

 Class 2 game facts FF ⊆2  is a set of all ground formulae that 
can be inferred by any inference function Ii ∈ (see below), i.e., 

∪
Ii

irangeF
∈

= )(2 .
4
 

 Class 3 game facts FF ⊆3  is a set of all ground formulae that 
can be possibly true about the game, but they are never stored 
within a GE’s data structure and they are not obtainable through 
any inference function Ii ∈ . 

 Additionally, F  can be divided amongst dynamic facts 

FDDDD ⊆∪∪= 321  and static facts FSSSS ⊆∪∪= 321 , where 
iii SDF ∪= , ∅=∩ ii SD . Dynamic facts can be changed between 

TICKs (see below), whereas static facts remain the same throughout the 
whole simulation. 

 Inference functions I . This is a set of all functions that the GE can use to 

infer facts of Class 2: )()()(: 221 FPFPFPIi →×∈ . 

 Embedded bots B . This is a set of all possible bots in the game. See Def. 2. 
 Embedded players’ abstractions P . This is a set of all possible 

manifestations of players in the game. See below. 
 Function TICK. This function )()()()()(: 22111 SPDPDPDPSPTICK ××→×  

is used to advance the game situation.  
 Concrete facts that can be changed by TICK function, i.e., 

1\))()(( STICKrangeTICKdef ∪ are called managed facts. 

 Game settings GS. ),,( πβω=GS  is characterized by 

 initial game situation )( 1FP∈ω , 

 list of bots B⊆β  and players P⊆π  connected to the game. 

 Terminal states T. This is a list of game situations that terminates the GE, 
)( 21 FFPT ∪⊆ . 

 
 
 

                                                           
4 In fact, a GE may cache results of inference functions making these facts Class 1 facts. 

However, these functions often compute dynamic facts, which are being quickly invalidated 
as the simulation advance forward, therefore we will omit caching.  
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Definition 2. (Bot, bot's facts) Bot ),,,,( DMSRVMPVBBb =∈ is characterized by: 

 the set of virtual body facts 1FVBb ⊆ , 

 the set of facts that can be possibly perceived 21 FFPb ∪⊆ , 

 the set of mental facts 1FVMb ⊆ , 

 the set of requests the bot can possible make 1DRb ⊆ , 
 decision making system function 

)()()()()()(: RPVMPRPVMPPPVBPDMS bbbbbbb ×→××× , 

 the set of all bots’ facts )()()()( RPVMPPPVBPbot bbbbb ∪∪∪= . 
 

Abstractions of players from Def. 1 can be defined similarly to the bot’s definition 
(Def. 2) except the DMS function is unknown and brings uncertainty to the game.  

Def. 1 and 2 result from the informal discussion from Section 2 and 3.1. The last 
thing to explain is how the function TICK and DMS work. 

)()()()()(: 22111 SPDPDPDPSPTICK ××→×  is being used to compute a next 

game state ( )( 1DP  from range(TICK)) as well as requests made by bots 

( )()( 11 DPSP × ). Concerning dom(TICK), inside )(),( 11 DPSP , there lies currently 

true facts about all bots’ virtual bodies, true facts bots are currently informed about, as 
well as their mental states and their active requests. The TICK function applies game 
rules to advance the game’s progress a small fraction of time forward, i.e., it replaces 
the current )( 1DPt ∈  of true facts with a new set. Additionally, it handles the bots’ 

requests by removing them and providing DMSs with )(),( 22 DPSP  facts that are 

accessible for a short period of time (they are invalidated in next few TICKs). 

)()()()()()(: RPVMPRPVMPPPVBPDMS bbbbbb ×→×××  assesses the current 

state of the virtual body )( VBP b , facts that are known to the bot )( PP b , the current 

DMS state )( VMP b  and unfinished bot’s requests )( RP b , and produces zero or more 

requests while altering its own state. Note that facts )( PP b  and )( VBP b  are computed 

by the TICK function. Conceptually, the TICK function also computes the DMS 
functions; however, for intelligibility, it is better to conceive these two functions as 
separate. 

The DMS function model suggests what needs to be done in order to connect an 
external agent DMS to a GE. This issue will be further elaborated in the next section. 

4   Connecting an Agent DMS to a GE 

Arguably, the final goal of the whole endeavour is that game industry starts using 
some ideas stemming from the subfield of agent reasoning in videogames or even 
employs a whole agent DMS for the purpose of controlling in-game bots. As already 
said, an agent DMS can be coupled with a game either internally or externally. In a 
final application, it is likely that bots will be controlled internally – this is more 
efficient than external connection both in terms of memory and processor 
requirements (see [10] for a different view). However, in our opinion, before this can 
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happen, it is necessary to connect several agent DMSs to a single GE and evaluate 
them. These DMSs should be compared with existing AI techniques currently used by 
the game industry, such as finite state machines [30], behavioural trees [31] and 
simple planning [22]. They should be compared along several lines, most notably in 
terms of computationally efficiency, improvement of bots’ cognitive abilities, and 
design time. For instance, before these DMSs can start to compete with industry 
solutions, they should accommodate multiple bots at the same time and they should 
be intelligible for game designers who may not have strong AI knowledge.  

All of this means that for the time being, the goal is not to employ an agent DMS 
within a videogame to be marketed, but to implement several prototypes. Should they 
employ the external or internal coupling? This section evaluates these two approaches 
and argues that the external one is better for prototyping purposes. It also makes it 
explicit what the external coupling means in terms of the formalism from Sec. 3. 

Be it internally or externally, both approaches require researchers to write 
additional code binding a DMS and a GE together. It would be an advantage if the 
researchers can use a middleware facilitating this infrastructure work. It would be 
even better, for the purposes of evaluation, if all of these researchers use a common 
middleware. Section 5 proposes that Pogamut can be used for this purpose.   

4.1   Internal or External Coupling?  

Integrating a DMS into a game engine. Integration of an existing DMS into a GE 
means to re-implement the existing solution inside the framework (code base) of the 
engine. 

The advantages are as follows: 
 

 The integration may utilise all features of the GE. 
 The implementation may blend with the original code of GE resulting in 

optimal performance, which suits the needs of the game industry. 

The disadvantages are as follows: 

 The DMS must be re-implemented in the native programming language of 
the GE. 

 The code of the engine must be opened. 
 The solution will be GE dependent and may not be reusable with different 

engines. 
 The implementation could not be developed over a common architecture that 

adapts the GE to the DMS, which will make empirical comparison of 
different DMSs troublesome. 

 

Note that in [10], this is called a server-side approach. That work also claims that 
the DMS must be completely synchronised with the GE, being integrated in the 
default game loop. However, this is not the case. Even internally coupled DMS can 
perform decisions in several time steps if it is able to interrupt and resume its 
computations. 
 

Connecting DMS to GE externally. The other way is to utilise existing DMS 
implementations and connect them to a GE externally via, for example, TCP/IP. 
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The advantages are as follows: 
 

 The translation of game facts and requests on both the GE’s and the DMS’s 
sides can be reused. 

 The creation of a general layer between the GE and the DMS can result in a 
common platform for empirical comparison of different DMSs. 

 The general layer could be extended to comfort more GEs. 
 The DMS and the GE may run on different computers, allowing for 

distributed simulations. 
 The DMS can be implemented in a language favoured by the developer. 

The disadvantages are as follows: 

 Game facts and requests have to be exported and translated between the GE 
and the DMS, which results in worsened performance. 

 The bot’s reactions to events take longer because there is a round trip time 
between the DMS and GE. 

Our experience gained during the implementation of Pogamut has shown that the 
disadvantages of the external approach are not so sever or troublesome. The 
translation of facts and requests between the GE and the DMS does not take such 
extensive time to harm the bot’s reactive capabilities (i.e., Pogamut can easily 
communicate synchronously with several bots on 4Hz, while asynchronous messages 
are handled in milliseconds). Thus, we will continue only by assessing the external 
approach. We will briefly return to the internal approach in Sec. 6. 

4.2   DMS as an External GE's Component 

According to Def. 1, an internal bot DMS is a function 

)()()()()()(: RPVMPRPVMPPPVBPDMS bbbbbb ×→××× . To provide the same 

mechanism externally, we need to export facts about the virtual body and facts 
perceived by the bot from the GE to an external DMS and to provide the DMS with a 
way to pass requests to the GE. The bot’s mental states need not be present inside the 
GE as the mental states are utilised only by a native DMS that will not be active. 
Instead, agent DMS may represent mental states derived by itself. Figure 2 depicts the 
desired model of a GE bound together with an external DMS. 

When comparing Figure 2 with Figure 1, Figure 2 divides bots between internal 
and external. The internal bots are controlled by their bot DMS functions (native to 
the GE) whereas external bots are controlled by agent DMSs, which are modelled 
separately of GE. The sequence diagram on the right reflects this distinction. Figure 2 
also contains many additional arrows between the GE and the agent: 1) load, 2) 
update, 3) requested, 4) requests, commands. These arrows denote the translation of 
facts and requests between the GE and the engine. The load, update and requested 
arrows are functions exporting facts from the GE and translating them to the 
representation used by the agent DMS. Load is invoked only at the beginning of the 
simulation, and it exports some (or all) S1 facts. Some S1 facts may stay managed by 
the GE and become later requested. Thus, the requested arrows realise the pull 
strategy (see Sec. 2) returning facts from D1, S! and more importantly from D2, S2. 
The update arrow realises the push strategy returning some facts from D1 regularly. 
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Note that technically, even external bots may use some AI algorithms implemented by 
the GE, algorithms operating with unexported facts, such as path-finding algorithms. 

The requests, commands arrow depicts the way the agent DMS passes requests 
back to the bot inside the GE. Requests are managed inside D1 class, i.e., as dynamic 
facts. Additionally, the agent DMS may implement supplementary inference 
algorithms to infer Class 3 facts as inferred arrow suggests. 

Importantly, by introducing push and pull strategy, the GEs conceptually differ 
from simple worlds such as grid worlds, in which many AI algorithms are tested, 
where all information is usually present as F1 facts but not F2 facts. 

 

 
 

Fig. 2. The figure pictures the information flow between GE–DMS together with sequence 
diagram of GE–DMS interaction. The mark X has the same meaning as on Fig. 1. 

4.3   Summary 

This section has presented a model of a GE bound with an external DMS, capitalising 
on the conceptual framework from Section 3. As every abstraction, the model 
presented here may not fit an actual GE entirely, but we believe it is robust enough to 
embrace most of them and to provide useful guidance in coupling agent DMSs with 
GEs. The next section will look at this topic from more technical standpoint, 
introducing a particular implementation of the abstract model. 

5   Pogamut 3 Platform, GE–DMS Mediation Layer 

The purpose of this section is to present the architecture of Pogamut 3 as a mediation 
layer between a GE and an agent DMS. The development of such layer is technically 
hard by itself. First, developers need to understand the complex, often undocumented 
code of the GE before they can even start thinking about the translation of facts into 
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an agent DMS. Then, the developers’ have to address many tedious technical issues, 
mostly out of the main scope of their work, such as development of a debugger. Many 
of such issues are addressed repeatedly, which is in most cases a waste of time. 

For past four years, we have been developing the Pogamut platform, which 
provides general solutions for many of these issues, allowing developers to focus on 
their main goals – experimenting with various DMSs inside simulated 3D worlds 
provided by the game industry. We remark that Pogamut is already widely used [e.g., 
12, 13, 14, 15]. A new major version, Pogamut 3, has been already released [11]. 
Importantly, Pogamut 3 is also suitable for education [32].  

Pogamut 3 currently utilises the well-known Unreal Tournament 2004 action 
videogame [17]. The game features a lot of pre-built objects, maps, and a map editor, 
allowing for custom modifications of the original game content, including creating 
simple maps for experiments. Section 6 reviews our work in progress concerning 
bindings Pogamut 3 with more game engines.  

Pogamut 3 is programmed in the Java language and is currently most suited for 
utilisation of DMSs implemented in Java, Python or Groovy language. The platform 
already allows to experiment with a few agent DMSs, namely POSH [33], ACT-R 
[34] and an AgentSpeak(L)-like system [16]. 

Pogamut 3 has been already discussed in depth in [11, 32, 35] where comparison 
with related work is given as well. This paper focuses more on the layers standing 
between DMSs and GEs. In the rest of this section, Pogamut’s generic agent 
architecture implementing the ideas from Sec. 3 and 4 will be introduced and 
exemplified on an implemented AgentSpeak(L)–based agent [16], called here AS 
agent, demonstrating Pogamut’s technical flexibility.  

5.1   Architecture of Pogamut Agent 

The generic architecture of Pogamut 3 agent is depicted on Figure 3. The architecture 
introduces a set of layers that shields an agent DMS from the low-level 
communication with a GE, taking care of the load, update, requested and requests 
arrows from Figure 2. These layers are: WorldView, Working memory, Inference 
engine, and Reactive layer. The layers were implemented by the AS agent using Java, 
tuProlog [36], RETE-engine Hammurapi rules [37], and again Java, respectively 
(tuProlog and Hammurapi where chosen due to their available Java implementation 
that fits nicely with Pogamut). Additionally, the AS agent employed our proprietary 
AgentSpeak(L)-like system [16] as the DMS.  

The DMS selects actions to execute based on facts represented in Working 
memory. It is more comfortable to work with facts like “bot Tom is chasing bot 
Clara” at the level of DMS (and thus at the level of Working memory) rather than 
with facts like “bot Tom is at position <x,y,z>” and “bot Clara’s speed is V”. It is the 
job of Inference engine to infer the former kind of facts, i.e., Class 3 facts.5  

The main component of the architecture, and the only mandatory, is WorldView. 
This component arose from the need to provide an abstraction of game facts for the 
                                                           
5 We also tried to infer these facts inside the DMS directly, but, at least for our AS agent, it 

turned out that that was inefficient and specification of the inference rules was cumbersome. 
A separate RETE engine ([37]) turned out to be more suitable for this task. These practical 
aspects motivated the separate component for inferring Class 3 facts in our architecture. 
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other components of the architecture. WorldView has two major functions:  
1) synchronising facts incoming from a GE as well as the other components,  
2) providing these facts to multiple components at once. The component can be seen 
as a blackboard [38].  

 

 
 

Fig. 3. High-level architecture of the Pogamut 3 agent implemented by the AS agent 

 
It implements both push and pull strategy information retrieval, i.e., it is possible to 

query WorldView directly, or attach listeners that are informed whenever facts are 
updated. Importantly, this update event model of WorldView is flexible, in the sense 
that WorldView understands an ontology of Java objects that comes out of the Java 
class hierarchy. This works as follows. Let us assume that the virtual world simulated 
by the GE can be populated by items such as fruits and vehicles, but currently only 
apples and cars are supported. Concerning agents populating this world, this means 
that designers must provide a way for the agents to recognise items of these two 
kinds. When WorldView is used, designers have to create the following classes 
representing the objects’ types and their categories: “item”, “fruit”, “vehicle”, 
“apple”, and “car”. Utilising Java class inheritance, designers will further define that 
classes “vehicle” extends “item”, “fruit” extends “item”, “apple” extends “fruit”, and 
“car” extends “vehicle”. WorldView then propagates events according to this 
ontology; for instance, when an event happens on the object of class “apple”, it is 
propagated also to “fruit” and “item”. This makes the object model of WorldView 
flexible as any other agent’s component may listen on all “fruit” events by attaching a 
listener on the class “fruit” instead of attaching the listener on every instance of fruit. 
This feature is not present in most GEs today. 

The application of WorldView for various knowledge representations is 
straightforward. Whenever a different knowledge representation is required, it 
suffices to create a translator from Java objects into a desired representation and vice 
versa. The WorldView event model will then take care of propagation of fact updates 
to such a translator. For the AS agent, we have implemented this mechanism for all 
the four components WorldView communicates with (Fig. 3). For instance, the RETE 
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inference engine has its listeners attached to desired Java classes inside WorldView 
and when it infers a new fact, this fact is propagated via WorldView to other 
components when they have their listeners up. 

The last component of the architecture is Reactive layer, which is useful for coping 
with situations like “projectile is coming” in a swift way. While it is possible to model 
this kind of reflexive behaviour within a high-level goal-oriented DMS, our 
experience is that it is better to have a separate module handling these reflexes (for 
instance due to time efficiency and due to the fact that reflexive behaviour is easier to 
manage in Java than in such DMS). This reflexive—deliberative decomposition is a 
reminiscence of layered control architectures [39].  

 The key point of the blackboard architecture is that individual components are, to 
a large extent, oblivious to existence of the other components. This is important for at 
least two reasons. First, a developer can use arbitrary Java libraries for different 
modules. Second, a new module can be added during development. In our case, we 
have added the inference engine in this way, but in the context of videogames, other 
modules come into mind, such as an emotion model or episodic memory.  

6   Pogamut 3 beyond UT 2004 

So far, this paper discussed predominantly coupling between a GE and an external 
agent DMS for controlling a single bot. Additionally, only a UT 2004 implementation 
has been presented. It is natural to ask whether our approach can be extended. This 
section discusses three possible directions of such extension.  

1) Different game engine. Does our approach work well for a different GE? 
2) Internal coupling. How the framework from Fig. 3 should be refined when an 

agent DMS is coupled internally? 
3) Multiple agent generalisation. How our framework can be generalised when 

multiple agents connect to a same GE? 

In fact, we already have prototypes of binding to Unreal Tournament 3 [40], 
Unreal Development Kit [41], Defcon [20], StarCraft [19] and Virtual Battle Space 2 
(VBS) [18] which provides us a broad range of game engines and game types for the 
validation of our approach (Point 1). 

Internal coupling (Point 2) is being tested mainly on binding to Defcon [20].  
Defcon is a completely different game than UT 2004. It is a simulation of a global 
thermonuclear conflict played in real-time, where a player takes a role of a 
commander in charge of military forces under the flag of one nuclear nation. 
Secondly, this work demonstrates that Pogamut can be used also beyond the domain 
of 3D bots. Thirdly, Pogamut is connected to Defcon via the game’s internal API, 
demonstrating that internal binding is possible. In future, we plan to investigate the 
relation between the framework presented on Fig. 2 and the Defcon binding in detail. 

Finally, connecting Pogamut to Virtual Battle Space 2 (VBS) [18], a military 
simulator, is important due to Point 3. Almost every 3D game features multiple bots. 
When these bots are represented as individuals, that is, each follows the architecture 
from Fig. 3, following observations can be made: 
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a) Repetitive queries. Facts, both static and dynamic, are often queried repetitively.  
b) Concurrent access. Bots may access the game engine concurrently, creating 

synchronisation issues. 
c) Locality of facts. Nearby bots tend to acquire similar fact sets. 
d) Shared facts. Bots may share some static and dynamic information, e.g. 

discovered map and known topology, communication channels, etc. 
e) Bots communication. If it is believable, bots may be allowed to communicate 

directly each other with, which opens the possibility to bypass the GE concerning the 
communication.  

Based on these observations, we designed the MultiBotProxy (MBP) architecture 
extending the architecture from Fig. 3. The MBP architecture covers the possibility of 
multiple externally connected DMSs to a single GE. This architecture is now being 
implemented using the VBS simulator.  

 

 
 

Fig. 4. MultiBotProxy schema. The MBP may allow connection of agent DMSs developed by 
different means (i.e., not only by Pogamut) to the same GE. 

 
The MBP is a 3-tier architecture (see Figure 4), where the MBP node is the place 

between the GE and the externally connected agents. The MBP provides, besides its 
obvious proxy functionality, an interface for communication and data flow 
management – information caching, request optimisation, and data processing. 
SharedWorldView, the main component of the architecture, can be conceived as a 
blackboard shared by the GE and all the agents.  

7   Conclusion 

This paper started with the question Can knowledge accumulated in the MAS field 
concerned with agent reasoning be used for reasoning of individual bots or a couple 
of bots? We argued that to answer this question, it is necessary to connect several 
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agent DMS to a single GE and compare them against existing AI techniques currently 
used by the game industry. To facilitate this process, we have presented a theoretical 
framework (Fig. 1, 2) for thinking about coupling external agent DMSs to GEs and 
the software toolkit Pogamut for practical development of such couplings. We have 
also presented an AgentSpeak(L)-based system fully connected to the UT 2004 game, 
demonstrating applicability of Pogamut. Finally, we reviewed our work in progress 
aiming at applying Pogamut beyond the domain of UT 2004: most notably for two 
strategy games, for new UT versions, and for a 3D game featuring teams of bots.  

We conclude this paper with an interesting observation that our architecture from 
Fig. 3 implementing the theoretical framework from Fig. 2 could be, per se, 
conceived as a multi-agent system. In other words, our suggestion is that a “mind” of 
a single agent connected to a game engine can be perceived as a system of interacting, 
fully or partly autonomous agents. It would be interesting to elaborate on this idea in 
future, since this may bring the possibility to use, in games, knowledge the MAS field 
gained on negotiation; not for negotiation between different bots, but between 
different components of their “minds”. 
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Abstract. Simulations for training can greatly benefit from BDI agents

as virtual humans playing the role of key players. Learning to commu-

nicate effectively is a key aspect of training to command a team that is

managing a crisis. In this paper, we present a goal-based dialogue system

which has been applied to a navy fire-fighting incident simulation, train-

ing the commanding officer. The system enables more natural training of

communication because agents utilize specialized communication goals.

Communication is data-driven where the content is defined by a shared

ontology of domain knowledge and tasks. The use of this ontology en-

ables reuse of agent capabilities within the system and enables a tight

coupling between the agents and the simulation.

Categories and Subject Descriptors:
I.2.0 [Artificial Intelligence]: General - Cognitive Simulation
I.2.1 [Artificial Intelligence]: Applications and Expert Systems

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence - In-
telligent Agents, Multiagent Systems
I.6.3 [Simulation and Modeling]: Applications

General Terms:Design, Human Factors.

Keywords:BDI Agents, Virtual Humans, Communication, Ontology,

Training, Simulation, Behavior Modeling.

1 Introduction

Modern society has ample systems where one decision maker controls the safety
of many. For example, during a fire, the fate of fire-fighters, bystanders and vic-
tims largely depend on decisions of the fire officer. It is evident that for such
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safety critical systems we need competent and experienced decision makers.
Scenario-based simulator training is considered very appropriate for learning
decision making in complex environments [1]. Common practice to realize this
in simulation-training is to use Subject Matter Experts (SMEs) (usually staff
members) to play the role of key players [2]. Training the fire-fighting comman-
der requires developing his command and control competencies. An important
aspect of command and control is the ability to communicate clearly with all
the members of the fire-fighting organization. A reason why SMEs are required
to play key roles, is that these can accommodate all the (possible variety of)
communication that occurs during a fire-fighting scenario. However, the logis-
tical effort to train (sometimes only one) student(s) becomes a great burden.
The student versus key-player ratio can be, in more complex scenarios, 1:10. An
alternative way of training command and control competencies such as commu-
nication that is not dependent on so many SMEs is sought after by the RNLN
(Royal Netherlands Navy). One possibility is to use virtual humans in a training
simulation to play the key roles [3].

The use of BDI agents for behavior modeling of virtual humans in games and
simulations has gained a lot of interest recently. In some applications like virtual
training simulations or interactive dramas the use of communication by agents
is essential and can be the main driving force for their behavior and therefore
the advancement of a story or scenario in terms of mental and environmental
changes. Successful attempts have been reported that employ BDI agents in
game engines as virtual humans for training or entertainment, though most
are not yet industry-ready [4,5,6,7]. Usually the focus is on non-communicative
agent behavior like navigation or object manipulation while interactions with
the player or trainee are limited. On the other hand, systems originating from
the field of embodied conversational agent (ECA) research pay a lot of attention
to believable communicative behavior [8,9]. Still, we have seen few examples
of where agents that communicate with a trainee play an independent role in a
larger organization, pursuing their own goals. Most examples that we found show
agents that take on a more supportive role and don’t express much goal-directed
behavior of their own.

Using the BDI paradigm for agents in these applications offers both advan-
tages and additional challenges with respect to simulating human communica-
tion. BDI offers a more intuitive way to translate (expert) domain knowledge
into agent knowledge. However, it offers a) no instruments to structure that
knowledge beyond the boundaries of an individual agent, and b) no inherent
guidance to model human communicative behavior. There is a need to specify
how goals can be used in communication for practical reasons like information
exchange or resolving conflicts of interest. Additionally, agents need a way to
coordinate goals and actions that relate to communication with other activities.
Lastly, it is not clear how the BDI paradigm guides the flow of conversations to
achieve natural human-like simulated interactions.

In this paper we present our approach to modeling communicative behavior
of agents. We report our experience in applying our dialogue system for use in
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BDI agents. We will argue that using an ontology can not only structure the
knowledge of BDI agents but also provide structure to information exchange
throughout the system as a whole. We introduce specialized goals that support
the BDI approach in modeling communicative behavior. We will show how spe-
cialized goals can also provide for a more natural flow between conversations.
The proposed dialogue system has been applied in the CARIM1 research project,
a virtual training application for command and control, simulating the roles of
military officers working together as a team fighting a damage control incident
on board of a navy ship.

This paper is organized as follows. A review of related work is given in sec-
tion 2. Section 3 provides an overview of the system that was developed focusing
on the design of our BDI agents and their integration into the visualization
engine. In section 4 we introduce the ontology-driven dialogue system and its in-
tegration in the agents. Requirements for the trainee to use the dialogue system
are outlined in section 5. Finally, section 6 provides a conclusion and describes
gained experiences and future aims.

2 Related Work

The scope of the presented work involves several research areas including the use
of embodied conversational agents (ECAs) for tutoring systems or interactive
dramas and the integration of multi-agent systems in games and simulations.
Much work has been carried out in those fields.

Looking at ECA tutoring systems, examples include the Tactical Language
Training System [8] where a trainee practices foreign communication skills in
a simulated village. The trainee can communicate with the local village people
and is assisted by a virtual aide. The system makes use of the THESPIAN archi-
tecture for interactive pedagogical drama [10]. Possible encounters and dialogue
instances are defined by a set of scripts where a ”fitting” algorithm automati-
cally adjusts the goals of the agents so they perform their roles according to the
scripts.

More wide-spread research on virtual humans for training environments is
described in [11], where the goal is to build embodied agents providing a social
human focus to training and serve as guides, competitors or teammates sup-
porting interactive face-to-face interaction to train leadership, negotiation and
cultural awareness. In this context dialogue modeling for communicative virtual
humans has given much attention [12,13]. Both in the tutoring work and the
virtual human work little attention has been given on how agent notions affect
the design of a training system as a whole.

Considering the integration of existing multi-agent systems to game engines,
several successful attempts have been made, where BDI agents are used for mod-
eling human behavior using more complex goal-driven characters. In [4,5] BDI
agents written in Jadex and JACK respectively were connected to a game engine
to apply more sophisticated agent techniques in games to overcome the limited
1 Cognitive Agents for Realistic Incident Management training.
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reactive behavior usually found in game agents. In these attempts agent com-
munication wasn’t given much attention. In [14], it is argued that the coupling
of agents to games requires a new design methodology including agent notions,
focusing on the aspects of synchronization, information representation and agent
communication. More experiences and design ideas can be found in [15] where a
middleware is introduced for integrating AI controllers into a game engine.

We argue that there is a need for a more light-weight goal-based dialogue
system to be employed by BDI agents and trainees giving those means to auto-
matically perform dialogues satisfying their immediate needs.

3 System Overview

The proposed dialogue system was designed in the context of the CARIM project.
The primary goal of the project is the development, implementation and evalua-
tion of intelligent agents for team-based command and control simulation train-
ing. A trainee takes on the role of the commanding officer during a fire-fighting
incident situation. Intelligent agents fulfill the roles of the remaining officers in
the damage control organization. A director agent controls the scenario and eval-
uates the trainee’s performance. An impression of the simulation environment is
illustrated in Figure 1.

Fig. 1. CARIM Screenshot

A complete technical overview of the system is described in [16]. Ideas and
design decisions for the director agent can be found in [17,18]. Below we describe
the relevant design aspects of the intelligent agents and the trainee which are
required as a basis for introducing the dialogue system.
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3.1 Intelligent Agents

Modeling the behavior of the officers to be simulated, we employed the BDI
agent paradigm. Using the BDI framework provides us with an efficient work-
flow converting cognitive models that were built with the help of subject matter
experts (SMEs) to corresponding BDI concepts like beliefs, desires and inten-
tions. The agents were created using Jadex [19], a multi-agent BDI platform.
For the visual representation of the agents’ embodiment and visualization of the
simulation environment, VSTEP’s in-house developed game engine was used2.

The use of these two distinct software technologies, namely the multi-agent
system and the game engine, forces us to create a distributed architecture of the
intelligent virtual agent (IVA). The proposed architecture is shown in Figure
2. It is composed of two layers: the cognitive layer of the IVA, realized in the
multi-agent system, and the physical layer, realized in the game engine.

Fig. 2. IVA Architecture

In the cognitive layer the full behavior of an agent comprises two modules
also known as capabilities: an agent-generic capability and an agent-specific ca-
pability. The agent-generic capability is shared by all agents and consists of basic
humanoid behaviors required in the simulated domain like agent communication
or object interactions like knowing how to use a phone. The agent-specific capa-
bility comprises task knowledge belonging to a certain role the agent can take
on. To give a small impression, Figure 3 illustrates a simplified abstract model
of such task knowledge for an officer in our example domain. High-level goals
break down to lower-level goals and eventually to actions at the bottom. Each
goal maps to a single plan which either adopts sub-goals or executes actions. Also
more generic goals were defined, for example a goal stating to inform a superior
officer about important information retrieved during the incident progress.

2 www.vstep.nl
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Fig. 3. Task knowledge of the officer Chief of the Watch

The agent’s physical layer executes the actions which have been scheduled by
the cognitive layer, influencing the environment. Changes in the environment
are sensed in the physical layer and communicated back to the cognitive layer.
Due to the distributed nature of the architecture, both conceptually and tech-
nically, reasoning is performed at both layers in parallel only at different levels
of abstraction. The cognitive layer reasons at a higher level using declarative in-
formation while the physical layer involves reasoning on procedural information,
having close ties with the environment. For example, reasoning in the cognitive
layer may form an intention of the agent to move itself to some other agent in
the environment. Reasoning in the physical layer involves identifying the target
agent, determining a path towards the target and reevaluating the path in case
the target changes position while navigating towards it. Results of the inten-
tion(s) are sent back to the cognitive layer. In addition, intentions sent to the
physical layer can be aborted if required.

The agents in our system have to operate in a complex environment with
a wide range of domain specific concepts. These concepts are not only shared
between agents, but also shared between the distributed components of the sys-
tem. For example an important concept in our example domain is the fire. It
is physically represented in the virtual environment in the game engine. In the
multi-agent platform agents can form beliefs and goals about it and use the
concept in communication. In turn, resulting agent actions concerning the fire
concept have to be recognized in the game engine to apply physiological changes
to the fire entity. A common approach to deal with the sharing and reuse of
knowledge and concepts is the use of an ontology.

3.2 Ontology

To capture the relevant concepts involved in the target domain to be simulated,
an ontology has been defined providing a formal representation of these concepts.
This ontology is essential for the system as it forces an agreement on the used
domain concepts throughout the system as a whole. Using such an agreement in
software design is also known as design by contract [20], increasing robustness
and reusability in software systems. By using the ontology as a design contract
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not only can the agents exchange these concepts among themselves. Also the
need to translate between intentions and perceptions in the agent system and
the actions and events in the simulation system is removed.

In our agent architecture this ontological design approach is applied in sev-
eral areas. First of all it is used in the connection between an agent’s physical
and cognitive layer, representing all valid environmental perceptions and agent
actions. Second, it limits the concepts the agents can reason about, the goals
they can adopt and the actions available to them to execute. Lastly, it is used
in the communication language of the agents ensuring valid semantics while
communicating knowledge and motivations.

Designing the ontology according to the above requirements, three categories
were identified:

– kowledge ontology: a complete reference of domain knowledge
– goal ontology: a complete reference of all goals used in the domain
– action ontology: a complete reference of all actions available to the agents

Items in each category adhere to the same structure. An ontological element
is defined by a concept type and a list of key-value attributes. The attribute key
corresponds to an enumeration type binding the possible attribute values. This
structure was chosen as it provides a generic encoding of information usable for
all required purposes. On one hand knowledge about objects or concepts can be
defined as a class type with properties. On the other hand, the element type
can be used to identify a specific goal or action where attributes are used for
parameterization. Further, this structure allows the full ontology to be used as
content for agent communication without a need for special-purpose parsing.

The use of these ontological concepts are illustrated in Figure 4. A simplified
part of a scenario of our fire-fighting simulation is shown where a fire is present
which needs to be extinguished using the right equipment. The left diagram
illustrates part of the ontology with ontological elements on the outside and
enumeration types in the middle. On the right side, an example conversation is
given between two officers employing the ontology in their dialogue acts.

It is clear that an appropriate design of the ontology is essential and should
be created early in the design-phase. We have experienced that any change to
the ontology in a later stage of development has serious consequences, breaking
functionality and requiring redesign throughout the system.

Fig. 4. Ontology Example
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4 Ontology-Driven Dialogue System

As seen from the agent dialogue example in Figure 4, agents sharing the ontol-
ogy can use simple dialogues to communicate knowledge and motivations among
each other. We have argued that being able to perform such practical communi-
cation can be an important requirement when modeling human behavior in BDI
agents. This becomes clear when considering the requirements of the CARIM
fire-fighting training simulation. Here, the majority of the officers simulated take
on a leading role, instructing a team of executing officers to perform their duties.
For example, the commanding officer, head of the damage control organization
and played by the trainee, has to formulate several plans like an attack plan and
a boundary cooling plan. These plans have to be discussed with the officers re-
sponsible for executing those plans. These officers, in turn, have to communicate
the plans to the executing teams and monitor the progress of these plans, which
they are required to report back to their superiors. In addition, the commanding
officer should not passively wait for information but also proactively retrieve in-
formation to obtain good situation awareness. Having a hierarchical organization
of officers, communication often needs to flow up and down the hierarchy.

To simulate these communication flows we need to augment our agents with
communicative abilities enabling them to exchange information and give or ac-
cept orders. As said earlier the ontology plays a central role, defining the possible
communication content.

We propose an ontology-driven goal-based dialogue system for use in BDI
agents simulating natural human-like interactions in virtual environments. The
system combines two main aspects of human communication in terms of goals
to achieve:

– Communicating semantic content through the execution of communi-
cation goals : An agent forms a communication goal when it desires to bring
over a communicative intent to another agent. This goal comprises the ex-
ecution of an initial speech act containing the intent to communicate and
the determination of a corresponding result. In addition, an agent forms a
communication goal as a response to a collaboration request to facilitate
another agent in achieving his communication goal.

– Providing a natural flow of conversation through the management
of an interaction instance in the form of a conversation goal controlling the
execution of one or more communication goals : A conversation goal provides
commencement and termination rules for an interaction instance. In addi-
tion, it relays incoming communicative acts to corresponding communication
goals.

In the next sections we describe these two aspects in more detail.

4.1 Communication Goal

In our system, a communication goal denotes a single ontology-driven dialogue
between two agents. A dialogue is an exchange of speech acts between two speech
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partners in turn-taking sequence aimed at a collective goal [21]. Walton and
Krabbe [22] have identified a set of dialogue types based on the initial situa-
tion of the participants, the goals of the individual participants and the goal
of the dialogue itself. We employ this classification to design communication
goals. Within one dialogue type, two goals can be identified based on the role
an agent takes on during the dialogue: the initiator’s goal and the participant’s
goal. Acts performed within each goal are part of a mutually agreed protocol
used for a specific dialogue type. Semantic content inside each act is based on
the shared ontology known by each participant. Figure 5 illustrates the process
of a dialogue, achieving the communication goal of the initiator.

Fig. 5. Dialogue using Communication Goals

Whenever the initiator has adopted a communication goal of the desired type,
he starts by sending the initial dialogue act to the participant. Receiving this
act, the participant adopts a corresponding communication goal to support the
initiator in achieving his communication purpose. Both participants then follow
the protocol belonging to the type of dialogue. Finishing the protocol, the ini-
tiator successfully finishes the goal if the result of the dialogue is equal to the
desired result. Otherwise the goal fails.

Currently the dialogue system supports three types of communication goals,
representing three types of dialogues according to the Watson and Krabbe clas-
sification, namely persuasion, information seeking and deliberation. Each type
uses a one-turn protocol. The system can be extended to allow for more types
of dialogue. Also, the protocols used inside the communication goals can be
extended to incorporate more standardized protocols like the FIPA interaction
protocols [23]. Figure 6 outlines the implemented goal types with corresponding
results at the initiator’s side and results of the dialogue as a whole.

The system assumes that agents have a norm stating they will follow the
protocol required for the corresponding dialogue type. Violation of this norm by
the participant results in a failure of the communication goal of the initiator.
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Fig. 6. Communication Goal types

Communication goals give BDI agents additional means to achieve their de-
sires besides non-communicative acts. They can be treated similar to other goals
allowing BDI agents to successfully employ communication in their plans to
achieve a desired state. To give an example, looking at our fire-fighting training
simulation, consider an agent taking on the role of the commanding officer in
the technical control room who wants to know the current status of the fire.
Without communicative abilities, the officer would have no other option but to
investigate himself and go to the fire, which would be a violation of his role of
being a commanding officer. The use of communication provides alternatives. He
can ask one of the officers in the room about the status; he can order that same
officer implicitly to retrieve the information for him or explicitly order him to
investigate the fire and report back; at last, he can use a communication device
like a headset or a phone to contact someone near the fire and ask for the status.
In case he orders another officer to retrieve the information, this officer in turn
has the same decision to make and the same options to choose from.

Dealing with agent communication in terms of goals provides advantages over
implicitly modeled communication. Communication goals to retrieve knowledge
can be adopted to satisfy preconditions of other goals. Communication goals
transferring motivations can help to achieve a higher-level goal. For example, an
agent who doesn’t have a plan himself to achieve some goal is now able to delegate
the goal to another agent. Additionally, agents can apply goal prioritization to
communication, giving priorities to certain communication targets or topics.

An agent can have multiple communication goals active at the same time
with one or more target agents. Managing the execution of these goals requires
us to introduce a higher level of control which we propose to achieve using a
conversation goal, representing an interaction instance with one participant.

4.2 Conversation Goal

With the help of communication goals the BDI agents are now able to use
dialogues to achieve their communicative purposes. However, simulating natu-
ral human communication requires additional communicative behavior. Agents
starting to perform acts cannot assume the intended interlocutor currently has
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their attention or is even available for communication. Commencing and termi-
nation rules are required to ensure a valid open communication channel with
the interlocutor. We don’t think it suits to add these rules to the protocol used
inside communication goals as it would result in unnatural communication when
multiple dialogues are performed consecutively or in parallel with the same par-
ticipant. We introduce the notion of a conversation goal to manage the execution
of one or more communication goals as one interaction instance.

Using a conversation goal, BDI agents don’t have to concern themselves with
performing natural and believable communication during planning. The goal
is automatically adopted and dropped based on the presence of one or more
communication goals involving a participant.

A conversation goal for a participant is automatically adopted when:

– the agent has communication goal(s) to achieve with the participant.
– the agent receives a request to collaborate in a conversation.

A conversation goal for a participant is automatically dropped when:

– the agent has no more communication goals active with the participant of
this conversation and there are no more unprocessed incoming communica-
tive acts coming from the participant.

– the agent receives a termination act from the participant. All currently active
communication goals will fail and cannot be achieved anymore within this
conversation instance.

– the agent decides to abort the goal himself in case there are higher priority
tasks to perform.

Interaction States. When active, the conversation goal can be in one of three
interaction states:

– Commencing State: Establishes a valid conversation instance. If the agent
is the initiator of the conversation, a collaboration request is sent to the
participant. If accepted, the active-conversation state is entered. If rejected,
the goal fails. If the goal was started based on an incoming collaboration
request, the agent either accepts the request and enters the next state or
rejects the request and aborts the goal.

– Active-Conversation State: Processes incoming communicative acts. Incom-
ing acts belonging to an active communication goal are relayed to the corre-
sponding goal for further reasoning. An incoming act representing the start
of a new dialogue will result in a new communication goal.

– Terminating State: A termination act is sent to the participant after which
the conversation goal will terminate. As a consequence, all active communi-
cation goals with this participant will fail.

The system allows one conversation with some participant to be active. Com-
munication goals with other participants can be scheduled but they will only
result in a new conversation when the current conversation has been terminated.
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When an agent receives a communication request from another participant dur-
ing a conversation, he is able to reject the request which results in a reactive
communicative behavior in the visualization engine, expressed either verbally or
nonverbally. This behavior is more in line with expectations of human commu-
nication. The attention of a simulated person is effectively capturing by being in
a conversation. However, flexibility is not lost as by reasoning about the priority
of communication goals the agent can still shift attention if necessary.

4.3 Communicative Action and Perception

To complete the functionality of the system, we need a way of handling the
execution of communicative acts and the perception of communicative acts by
other agents. Multi-agent systems that don’t require the simulation of virtual
humans are able to communicate directly with each other using standard agent
communication languages like FIPA ACL [23]. In our system, agents are vi-
sually represented in a virtual environment. They are therefore bound to use
the same communication channels as humans would: using verbal and nonver-
bal communicative behavior. Also, unlike in multi-agent systems, receiving a
communication event is not trivial and a successful reception depends on the
available medium from the source to target, bounded by the simulated laws of
physics.

Looking back at the architecture of our IVA in Figure 2, an agent performs a
communicative act by sending a parameterized communicative intent to its phys-
ical layer inside the game engine. This intent includes the intended target agent,
the communicative act type and the content message containing semantics ac-
cording to the ontology. Here, the intent is converted to a verbal communication
action accompanied with appropriate nonverbal behavior like gazing, orientation
and facial expressions. Finishing the communicative behavior, an event is gen-
erated in the environment originating from the source character containing the
communicative intent. This event can be sensed by other characters and sent to
their cognitive layers in the multi-agent system for further reasoning.

5 Trainee Communication

Allowing the trainee to use the proposed dialogue system imposes several re-
quirements for the game engine. In contrast to the BDI agents who control their
avatars from the multi-agent system, the trainee controls his avatar using input
devices processed inside the game engine. Therefore all communication actions
for the trainee need to be constructed in the game engine.

Two common approaches include the use of a dialogue interface from which
valid acts can be selected or the use of actual speech expressed by the trainee.
Either way, the trainee’s action must result in a communication message with
valid semantics according to the defined ontology. If the ontology can be ac-
cessed from inside the game engine the validity of the acts can be determined
here. Using a dialogue interface, acts can be presented to the trainee in an intelli-
gent way by categorizing acts based on communicative purposes and ontological
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concepts. When using actual speech input, natural language must be mapped to
an ontological representation to create valid speech acts. Approaches have been
described in [24].

In the CARIM system, communication actions are performed using a dialogue
interface with communication menus. Here, the ontology is only available from
within the multi-agent system and acts presented to the trainee are dynamically
determined from the trainee agent in the multi-agent system based on the current
scenario situation and the current dialogue turn. Such an approach imposes
additional requirements on the connection layer between the multi-agent system
and the game engine: a protocol is required to dynamically add and remove
dialogue acts available to the trainee for specific target agents. This approach
shows how the ontology agreement can be used to define the simulation system
as well as the agent system.

6 Conclusion and Future Work

In this paper, we discussed the development of an ontology-driven goal-based
dialogue system for use in BDI agents as virtual characters. The main purpose
of the system is to augment these agents with communicative abilities providing
those means to exchange knowledge and motivations with other agents using
content adhering to concepts defined in a shared ontology. Dialogues are goal-
based, performed within the context of communication goals. Different goals
exist for different communicative purposes. They are represented the same as
other BDI goals, so that agents can use them in reasoning, specify rules for
prioritization and specify alternatives for communication goal failure handling.
A higher level of control over dialogues is provided in the form of conversation
goals, managing the communication of multiple dialogues and participants to
create more believable and natural interactions.

Agent-based simulations for training command and control can greatly benefit
from the proposed dialogue system. In such simulations, inter-agent communi-
cation plays an essential role in the advancement of the story or scenario. For
example, the system enables both agents and trainees to obtain situation aware-
ness and to fulfill leadership roles by delegating goals and monitoring progress.
Ontologies defined for capturing domain knowledge and tasks in agent role de-
scriptions can be automatically employed in dialogues, enabling agents to com-
municate autonomously while ensuring believable interactions. By enforcing the
ontology throughout the system as a whole there is little need to translate in-
formation between agents and the simulation. If the agreement is enforced over
multiple simulations, agents will even be able to connect to other simulations
and perform their role without any changes.

The dialogue system has provided the communicative behavior required for
the CARIM fire-fighting training system, showing that the BDI approach to
model communication for agents in training simulations is both useful and fruit-
ful. By creating agents that can communicate naturally we reduce the depen-
dence on many human key role players in training scenarios.
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From our experience we see the need for further research concerning agent
communication. Although communication can now be employed by agents to
achieve a desired result, it is not always possible, desirable or the most efficient
way to achieve some goal. Deciding whether or not to use communication and
with who can be a very complex task and can be highly dependent on the current
situation, the agent’s role descriptions and available alternatives. Agents not only
need to decide when to use communication, but also how to handle situations
where communication fails. To ensure a believable and valid simulation, rules
and norms have to be specified for the agents enabling them to make proper
decisions. Some of these rules should be specified at a higher level of abstraction,
more easily accessible to designers or domain experts giving them more control
over the way agents make decisions.

More straightforward work to be done involves extending the current dia-
logue system by providing more types of communication goals, more advanced
interaction protocols and the ability to create communication goals within other
communication goals, thereby creating more complex dialogues.
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Abstract. We present a novel automated technique for the quantitative valida-
tion and comparison of multi-agent based crowd egress simulation systems. De-
spite much progress in the simulation technology itself, little attention has been
accorded to the problem of validating these systems against reality. Previous ap-
proaches focused on local (spatial or temporal) crowd patterns, and either re-
sorted to visual comparison (e.g., U-shaped crowd at bottlenecks), or relied on
ad-hoc applications of measures such as egress rates, densities, etc. to compare
with reality. To the best of our knowledge, we offer the first systematic and uni-
fied approach to validate the global performance of a multi-agent based crowd
egress simulation system. We employ this technique to evaluate a multi-agent
based crowd egress simulation system that we have also recently developed, and
compare two different simulation technologies in this system.

1 Introduction

We describe a novel technique for the evaluation of multi-agent based crowd egress
simulation systems in virtual environments. Crowd behavior simulation has been an ac-
tive field of research [7, 24, 14, 4, 5] because of its utility in several applications such as
emergency planning and evacuations, designing and planning pedestrian areas, subway
or rail-road stations, besides in education, training and entertainment. The most ad-
vanced and realistic simulation systems employ intelligent autonomous agents [24, 14,
22,19,21,25,23,11] with a balance between individual and group intelligence for scal-
ability of the architectures. Although several systems have even been commercialized
(e.g., the Evacuation Planning Tool from Regal Decision Systems [16], and CrowdFlow
from Avalias [1] among others), little attention has been accorded to the problem of val-
idating the outcomes of these simulations in a generalized manner, against reality. The
extent of validation fails to go much beyond visual matching between the simulation
and the actual scenarios (with recordings of human crowds), which can lead to highly
subjective and often questionable conclusions. The existing numerical measures often
rely on ad-hoc applications [6], e.g., local crowd densities are measured to verify pat-
terns, without a systematic procedure to identify at what times in the simulation and the
scenarios can the densities be compared. Furthermore, if there are multiple systems that
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simulate crowd behavior in the same scenario in the same virtual environment, then
no technique is currently known to quantitatively compare these systems in terms of
realism.

In this paper, we present a principled automated technique for such evaluation and
comparison. Our evaluation technique is systematic/algorithmic rather than an ad-hoc
selection of metrics. Moreover, instead of comparing with the actual scenarios at some
key points in the simulation where a close resemblance is detected, our approach au-
tomatically computes the comparison points in a principled way, based on the entire
simulation run. In this sense, our approach is geared toward global validity. The compar-
ison algorithm is closely intertwined with the selection of the comparison points, thus
unifying two (previously) distinct facets of validation. We also evaluate a multi-agent
based crowd egress simulation system that we have recently developed, and compare
two different simulation technologies in this system using our approach.

The paper is organized as follows. In section 2 we present our literature survey for
crowd simulation systems, with a focus on the existing evaluation methodologies and
their limitations. In section 3 we present our algorithmic approach to evaluation and
comparison of crowd egress simulation systems. In particular, we present two different
methods for computing a key parameter for our technique. In section 4 we present our
experimental results based on a stadium evacuation simulation system that we have de-
veloped, showing the differing evaluations of two different technologies for collision
avoidance. We present discussions on the applicability of our evaluation and compari-
son approach in section 5 and we conclude in section 6.

2 Crowd Simulation

In most architectures for crowd simulation individuals are modeled as intelligent agents
with (limited) perception and decision-making capabilities. Some of the earliest ap-
plications of simple agent-based behaviors were seen in Reynolds’ flocking model –
the “boids” [18]. In this and related work, each agent is endowed with a mix of simple
steering behaviors, that produce complex macroscopic (group-level) behaviors as emer-
gent phenomena. The basic idea of emergent behaviors has been extended to rule-based
systems [24, 14] that offer the added advantages of efficiency and variety in behaviors.
Thalmann, Musse and Kallmann [22] proposed to control agents having the same goal
as a unit, for efficiency. Rymill and Dodgson [19] describe a system that exploits psy-
chological studies in crowd behaviors relating to collision avoidance and overtaking,
to simulate believable behaviors. Shao and Terzopoulos [21] have integrated motor,
perceptual, behavioral and cognitive components through an artificial-life approach, to
simulate autonomous agents in a large urban setting. In recent studies, McDonnell et.
al. [10], have shed light on the perceptual impact of model cloning (different agents
using the same underlying motion models) based on numerical (e.g., reaction times of
the subjects in identifying clones) as well as non-numerical (e.g., agent appearance)
measures.
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With respect to integrating multiple agents within a distributed simulation, Wang
and colleagues have contributed the High Level Architecture (HLA) [25]. A layering of
social interaction on environmental simulation was also proposed to model interaction
between humans and natural environments [23]. The problem of congestion has been
addressed in context of amusement parks by using “social coordination” to reduce the
time wasted in congestion [11]. The issue of time management in MAS was discussed
to alleviate some of the problems that exist in the simulation by providing “Semantic
Duration Models” to help developers [8].

Murakami et. al. [12] have conducted extensive experiments in agent-based evacua-
tion simulation, and have used plots of the number of evacuees versus time, for various
evacuation strategies, and compared with control experimental results. Participatory de-
sign has been used to iteratively refine agent and interaction models based on real-world
human experiments, augmented with agents in virtual space [9]. While control exper-
iments shed light on the validity of specific strategies in simulation, and help in the
refinement of models, they are harder to perform (compared to scenario videos that are
beyond the control of the evaluator) and do not address the problem of global valida-
tion of a simulation system that is only available as a closed product. This also makes
the existing approaches to model verification and validation [20] inapplicable, since we
only have access to the outcomes of the simulations, not the models underlying these
systems. Pelechano et. al. [15] use the presence of some key desirable features such as
absence of shaking (unrealistic, rapid change of location), continuous movements, ab-
sence of overlapping (agents merging in space and time), pushing etc, to compare vari-
ous existing simulation methodologies such as social forces, rule-based systems etc. In
contrast, we seek a quantitative validation methodology. In fact, a common limitation of
the available systems is that none of them can be quantitatively compared to determine
the “better” or the more accurate systems for various scenarios. Neither can we quan-
titatively evaluate the realism of a system, compared to the actual scenarios (i.e., with
human crowds) in a general and global manner. Most of these systems have been vali-
dated subjectively through visual comparisons, looking for certain macroscopic patterns
(emergent behaviors) such as congestions in key locations, or egress rates. The numer-
ical measures that are often employed, such as statistics of local patterns [6], do not
offer insights into global (both temporally and spatially) validity of the systems, and
are also often applied in an ad-hoc manner. That is, there is hardly any motivation be-
hind the selection of time-points on the simulation clock and the real-world clock when
these numerical comparisons are made. Even if agent-speeds are initialized to visually
match reality, microscopic emergent events can quickly lead to asynchronism, such that
selecting such time-points is no longer a trivial problem.

Against this general backdrop, we present our technique for the quantitative valida-
tion and comparison of crowd egress simulation systems. We are particularly interested
in crowd simulations where the crowd egresses (rather than only ingress, or a mixture
of ingress and egress) a given virtual environment, since these are often associated with
preparedness for emergency situations, thus constituting high priority applications of
crowd simulation. However, due to absence of panic-data, we evaluate our techniques
in a zero-panic scenario.



56 B. Banerjee and L. Kraemer

Fig. 1. The virtual environment surfaces on which agents can walk are partitioned into convex
polygons shown in various colors

3 The Validation Algorithm

Almost all of the simulation systems identified above include a detailed geometry of
the environment (such as a sport stadium, or a subway station), partitioned into a set
of p convex polygons, {R1, R2, . . . Rp}. These polygons are the surfaces on which the
autonomous agents can move, as illustrated in Figure 1. The system simulates the nav-
igation behavior of the agents in context of the environment’s geometry. In an egress
simulation, there is one or more sink of agents (i.e., where agents exit the virtual envi-
ronment), but there is no source of agents (i.e., no polygon where agents are spawned).
Instead, the agent distribution over the regions is pre-specified at the start of the simu-
lation, and changes only by the simulated egress behavior.

In order to evaluate such an egress simulation system, we subscribe to the general
idea of seeking macroscopic patterns, but in a quantitative manner. We compare the
simulation run in the virtual environment, and the actual scenario with real people nav-
igating the corresponding real environment, with identical initial conditions. This com-
parison is accomplished by calculating the distance between the distributions of agents
over the p polygonal regions in the simulation (sim), and the distribution in the actual
scenario (scn) over the same regions, D(simt, scnt′). D can be calculated in a variety
of ways, and in an earlier draft [3] of this paper we had reported using 1

D(simt, scnt′) =

√√√√1
p

i=p∑

i=1

(
Ct

sim(Ri) − Ct′
scn(Ri)

X(Ri)

)2

(1)

1 The measure reported before mistakenly had some omissions, which are corrected here.
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where Ct
x(r) gives the count of the number of agents in region r at time t, and X(Ri)

is the maximum capacity of the region Ri. X(Ri) can easily be estimated as the ratio
of the total area of Ri to the (average) area occupied by an agent. It is important to
notice that the time-points (t, t′) at which the above comparisons can be made might
be on different scales, due to difference in the speeds between agents and people. We
emphasize that this distinction of the time-scales is crucial in validation, but has been
ignored in the past. Consider for instance, that an event (e.g., congestion) occurs at a
location in the map at 5 seconds in the simulation, and at 10 seconds in the scenario.
However, they last for 3 seconds and 2.5 seconds respectively, i.e., the factor to adjust
the time-scale going between the scenario and the simulation is not fixed. It is unlikely
that even the most accurate simulation will possess a consistent scale factor, but it is es-
sential to validation that we account for these discrepencies. Our solution is to “best-fit”
the simulation to the scenario in terms of a fixed (determined off-line) or an adjustable
(determined on-line) scale factor that is optimized through the entire duration of the
validation run.

We assume that Ct
scn(Ri) values are given for certain discrete time points t0, t1, . . . tk

at constant interval τscn, i.e., ti − ti−1 = τscn, ∀i = 1 . . . k. These could be generated
from the snapshots of crowd video at regular intervals. We call these time points snap
points. At the start of validation, the distribution Ct0

scn(Ri) is replicated in the simulation
(and a uniform random distribution followed within each region) and it is run for τsim

units of simulation time. Then D(simτsim , scnt1) is compared to a distance threshold
δ (0 ≤ δ ≤ 1). If the former is lower then the simulation continues to run, otherwise it
“snaps”. This means that the distribution Ct1

scn(Ri) is replicated in the simulation and
it is run for another τsim units of time. This process continues with the comparison of
D(simi∗τsim , scnti) against δ in the ith step, until we reach tk, and at this point the
total number of “snaps” so far – represented as nδ – is recorded as a function of δ.

The need to check for “snaps” at a regular interval stems from the fact that most
sophisticated crowd simulation systems incorporate complex agent-based models, pro-
ducing non-linear behavior as a function of time. Such emergent behavior can quickly
diverge from the behavior being modeled, if small discrepencies are allowed to accumu-
late, due to chaotic effects. Hence, any discrepency that is determined to be sufficiently
large needs to be reset, by re-matching the simulation distribution with the correspond-
ing distribution from the scenario – a process that we call “snap”. The main idea is that
a simulation system that needs to snap fewer times for a given δ, compared to another
simulation system in the same scenario, is more accurate for that scenario and for that
δ. A metric for comparison between two simulation systems in terms of accuracy for
any given scenario could be the area under the curve of nδ vs. δ; the lower this area, the
more accurate the simulation system. This is illustrated in Figure 2.

In order to score a system alone, we observe that there can be at most k snaps for
all possible values of 0 ≤ δ ≤ 1. Therefore, a reasonable metric for scoring a system
would be

Score(sys) = k −
∫ 1

0

nsys
δ dδ,

producing a baseline score of 0 for any system that snaps at all k points.
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Fig. 2. Example plots of nδ vs. δ that might be produced by two simulation systems, A and B.
The system with lesser area under the curve would be more accurate for the given scenario.

The main challenge underlying the above validation algorithm is in calculating the
appropriate value of τsim, since the timescale may differ between the simulation and
the scenario, e.g., the agents may be navigating too fast compared to real people in the
scenario, or too slow. Moreover, these speed-discrepencies may not stay constant, but
vary from region to region and also with time. Any endeavor at such synchronization
may also be affected by micro-level occurrences in reality that may be hard to reproduce
spatially and temporally in simulation, such as people stopping to chat (in a zero-panic
scenario), which ultimately affects the count distribution, and thus D. The premise of
our validation approach is that the inevitable mismatches in micro-level occurrences can
be overlooked as long as the macro-level patterns (e.g., agent count distribution over
regions) match well enough. Clearly, the problem of finding appropriate times to match
the simulation with the scenario at the macro-level is the key to this approach. We now
describe two approaches – an off-line and an on-line approach – to calculating τsim.

3.1 Off-Line (Pre-)Calculation of τsim

Here we describe an off-line strategy to find the best value of τsim that will enable the
closest possible match between the simulation and the scenario. Let Ct

x =
∑

i Ct
x(Ri),

i.e., the total number of agents (either in the simulation or the scenario) at time t. Then
we can represent the total number of people that have left the environment (i.e., the
set of p polygons) between time t0 and tj as Lj

scn = Ct0
scn − C

tj
scn. We can define a

sequence of these values over the snap-points, {Lj
scn}j=k

j=1 , that specifies a time-series
of the number of egresses between snap intervals in the scenario. Note that the sequence
{Lj

scn}j=k
j=1 must be a non-decreasing sequence to match with the assumption of there

being no agent source in the simulation.
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In order to pre-calculate τsim before the validation runs, we run the simulation once,
populated with the distribution Ct0

scn(Ri), and record the total agent counts Ct
sim (i.e.,

the total count over all polygonal regions) at small intervals Δ, thus producing a se-
quence C0

sim, CΔ
sim, C2Δ

sim, . . . , CmΔ
sim , where m is such that

CmΔ
sim ≤ Ctk

scn and C
(m−1)Δ
sim > Ctk

scn. (2)

The above condition is both necessary and sufficient , to terminate the above sequence.
The existence of m is guaranteed by the assumption that there is no agent source in the
simulation. Now, as in the case of the scenario, we can generate another non-decreasing
sequence {Lj

sim}j=m
j=1 , where Lj

sim = C0
sim − CjΔ

sim is the number of agents that have
egressed the virtual environment by time jΔ from the start of the simulation. If Δ is
chosen sufficiently small, then it can be ensured that m � k.

Given the above set-up, τsim can now be estimated as

τsim ≈ h∗Δ

where integer h∗ is found by solving the following discrete optimization problem

h∗ = argmin
h

k∑

s=1

(Lsh
sim − Ls

scn)2

under the constraint that kh ≤ m. This optimization computes the best “skip” value
(i.e., the number of consecutive points that can be skipped) h∗, for the sequence
{Lj

sim}j=m
j=1 , so that the subsequence of size k built by picking points every h∗ places

from this sequence, matches most closely with the sequence {Lj
scn}j=k

j=1 . Thus h∗ gives
the optimal matching between the times scales of the scenario and the simulation, and
the estimate of τsim thus produced, clearly gets increasingly accurate as Δ gets smaller,
i.e., when m � k.

It is noteworthy that if the assumption of no agent source is relaxed, then the only
part of the above scheme that might fail is the termination condition in equation 2. In
this case, Ctk

scn becomes a poor determinant of when the simulation must be stopped
(i.e., to determine m), as it is possible to meet the condition repeatedly. It is unlikely
that some scheme of selecting a value of m (for instance, the lowest m) from multiple
possibilities will not impact the reliability of the resulting evaluation.

3.2 On-Line Adjustment of τsim

Another technique for calculating τsim is to adapt it on-line during evaluation of each
segment between snap-points. In particular, the information generated during the run
through the segment tj−1 to tj is used to adapt τsim for the segment tj to tj+1. Let
τ j
sim be the value of τsim calculated at snap-point tj , and used for this segment. This is

calculated as

τ j
sim = τscn ·

(
C

tj−1
scn − C

tj
scn

Cx
sim − Cy

sim

)
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where x =
∑j−2

t=0 τ t
sim, and y = x + τ j−1

sim , for j = 1, . . . , k − 1, with τ−1
sim = 0, and

τ0
sim = t1 − t0 = τscn. The ratio C

tj−1
scn −C

tj
scn

Cx
sim−Cy

sim
gives the relative number of egresses

between the scenario and the simulation during the segment tj−1 to tj , and acts as an
estimate of how much faster (if < 1) or slower (if > 1) the simulation must be inter-
rupted (and possibly snapped) for the current segment, to produce a better (expected)
match with the following segment of the scenario. It is important to note that the result-
ing segment lengths in the simulation will not be a constant, viz., τ j

sim for the segment
between tj and tj+1, unlike in the off-line method.

Although this method is computationally cheaper than the off-line calculation of
τsim, the estimate is expected to alternate between overcompensation and undercom-
pensation for the discrepency in the number of egresses between the simulation and
the scenario. Hence, unless k is large, the estimate may not find enough time to stabi-
lize. Therefore we expect the off-line estimation method to produce greater accuracy
for validation with a few snap-points. Generally speaking, the accuracy of the on-line
method depends on the atomicity of the video data (spacing of the video shots), while
the accuracy of the off-line method depends on the atomicity of the simulation data (Δ),
and oftentimes it is easier to control the latter. This is mainly why we would prefer the
off-line method in general.

4 Experimental Results

We have implemented both techniques for estimating τsim, and evaluated a single seg-
ment of 7 minutes duration (with 7 possible snap-points after t0, at 1 minute intervals)
from the video footage of spectators from an actual football game at the Southern Miss
stadium [13]. The segment starts with the final declaration of scores in the game, at
which point spectators start to leave in large numbers. The segment ends (roughly 7
minutes later) when almost all spectators have left. We had recorded multiple games
during a season, but all except one turned out to be rather one-sided which meant spec-
tators left the stadium throughout the game and there was no coherent segment where
most of those that were moving across regions Ri were actually egressing. Since the
simulation system that we wanted to evaluate did not simulate a mix of casual move-
ments and egress, but only movements with the purpose of egress, these recordings
could not be used for evaluation. Consequently, we are only able to report results on
one segment.

We have recently developed a multi-agent based crowd egress simulation system [2]
which we used in the current evaluation against the chosen video segment. Figure 3
shows a pair of snapshots from a snap-point in the video, and the corresponding shot
from our simulation system from a comparable camera position. A major challenge in
comparing this system to existing open source systems was the remarkable difficulty of
applying these systems to the stadium model for Southern Miss. Although this model
was represented quite generally (as Google sketchups), we were unable to get another
system to simulate egress behavior on this model. On the other hand, commercial soft-
wares, such as those developed by EA Sports, do allow simulation on particularly the
Southern Miss stadium (using their own model representation), but are inflexible on
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Fig. 3. Left: A snap-shot from a game video segment. Spectators are leaving after a game, hence
the stairs are more crowded. Right: The corresponding shot from the simulation at that snap-point.
Stairs are shown in orange and bleachers in black.

snap points (which we believe is a useful feature and ought to be accommodated by
commercial simulation softwares) and do not allow access to code. Therefore, we set-
tled on evaluating just the simulation system that we developed, and compare the on-line
and the off-line schemes in this system for two different simulation technologies.

We applied two competing simulation technologies for controlling the avoidance of
collisions among the agents. Our simulation system was originally set up to work with
a physics engine, and was tuned to produce the kind of movement behaviors that are
observed in reality, e.g., agents moving from the bleachers (black regions in Figure 3
right) to the stairs (orange regions in the same figure), and then climbing down the
stairs. Collision avoidance was also controlled by the same physics engine. To produce
a variant, we turned off the collision avoidance part of the physics engine (other aspects
of movement control still rested on the physics engine), and replaced it with steering
behaviors [17], particularly separation among agents enforced. However, this variant
using the steering behavior with separation actually forced the agents to separate and
use the bleachers more often (since there was limited space on the stairs), which does
not visually match the videos. Therefore, we expected to see this visual discrepancy
between the two variants reflected in our validation measure, with the physics based
collision avoidance evaluating more favorably.

Our initial experiments using equation 1 were inconclusive on which collision avoid-
ance technique produced more accurate results. We tracked this down to the oversensi-
tivity of the distance measure in equation 1 to small sized regions, i.e., those with low
capacity. Note that there are many regions that have lower capacities than the stairs.
Small regions contribute large relative errors to the sum, thus obfuscating significant
differences over relatively larger regions. We addressed this by developing two new
distance measures that reduced this sensitivity. One measure simply removes regions
that have capacities below a threshold from the distance measure. Thus, if Rtrunc is the
set of resulting regions, the first alternative distance measure is

D1(simt, scnt′) =

√√√√ 1
|Rtrunc|

∑

Ri∈Rtrunc

(
Ct

sim(Ri) − Ct′
scn(Ri)

X(Ri)

)2
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The original setting contained p =101 polygons (with a combined capacity of 26401
agents), while after removing all regions with capacities below 25, Rtrunc contains only
35 polygons with a combined capacity of 16747.

A second distance measure explicitly weights the contributions of each region by its
capacity, so that they contribute proportionally to the overall distance. This is given by

D2(simt, scnt′) =
1
T

√√√√
i=p∑

i=1

(X(Ri) · |Ct
sim(Ri) − Ct′

scn(Ri)|)

where T =
∑p

1 X(Ri) is the total capacity. As with the other alternatives, this measure
is also guaranteed to lie in [0, 1], since

i=p∑

i=1

(
X(Ri) · |Ct

sim(Ri) − Ct′
scn(Ri)|

)
≤

p∑

i=1

X2(Ri)

≤ (
p∑

i=1

X(Ri))2

= T 2.

The plots of nδ vs. δ resulting from the application of our validation algorithm us-
ing measures D1 and D2 are shown in Figures 4 and 5 respectively. Figure 4 shows
that both the on-line and the off-line measures with the physics based collision avoid-
ance has better accuracy (score) than those for the steering based collision avoidance.
In further validation of the efficacy of the off-line measure compared to the on-line
measure, we see that the physics based off-line measure has significantly better score
than the physics based on-line measure, while the steering based off-line measure has
a marginally better score than the steering based on-line measure. Figure 5 shows that
both versions of the physics based collision avoidance have better scores than the cor-
responding steering based collision avoidance, once again numerically validating the
visual discrepancy observed above.

It is interesting to note that with both distance measures, D1 and D2, the on-line
measure for physics based collision avoidance shows a better score than that of the
off-line measure for steering based collision avoidance. In other words, the instability
of the on-line measure is more than compensated by the departure from realism of the
steering based collision avoidance. Another point to note is that the distance measure
D2 displays a compressed range of δ values, compared to D1 which shows a better
spread of the δ values. This is due to the fact that D1 involves normalization by smaller
factors compared to T used by D2.

Finally, Figure 6 shows the alternating overcompensation and undercompensation in
the estimate of τ j

sim (shown as the ratio τ j
sim/τscn, where the scale of j from 0 to 6

stands for t1 through t7, i.e., τ0
sim/τscn = 1 is omitted from the plot) produced by the

on-line method, in the experiment for physics based collision avoidance with D2 and
δ = 0. This plot also shows the 1-level for perspective. It verifies the intuition that with
a few snap-points the estimate fails to stabilize to a fixed point.
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Fig. 4. Plot of nδ vs. δ for the variants using distance measure D1
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for physics based collision avoidance with D2 and δ = 0

5 Discussion

The evaluation and validation scheme presented in this paper is by no means the only
possible, or the “best” (in some sense) scheme for crowd egress simulation. In fact,
it is unlikely there will ever be a single scheme that will be appropriate for all such
simulation systems. Our scheme is appropriate for systems

– that are closed in the sense that major changes to the underlying code are impossi-
ble, hence iterative refinement of models as in participatory/augmented design [9]
is ruled out;

– that offers the evaluator the ability to stop and re-start (with user-selected agent
distributions) the system at the times of the evaluator’s choice;

– that report the counts of agents on a region by region basis, as well as the capacities
of all regions.

While many existing crowd simulation systems possess these features, not all systems
necessarily do, and for even those that do, there may be other assumptions that may
conflict with the intention behind our scheme. For instance, if the agents maintain a
history of past events or an internal memory, then restarting the simulation at a “snap”
would essentially eliminate a major capability of the system by which it might seek to
approach reality.
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It should also be noted that this scheme does not validate or compare the simula-
tion models (as in [20]), only the observable behavior in the simulation’s output. Fur-
thermore, this scheme may be extended (with minor modifications) to any simulation
system that involves autonomous, intelligent control, such as traffic simulation systems.

6 Conclusion

We have presented a novel technique for the validation and comparison of multi-agent
based crowd egress simulation systems. Most existing systems rely on visual compari-
son or ad-hoc measures, whereas our technique is quantitative and principled. We eval-
uated a simulation system (that we have developed recently) using our technique, in
particular, comparing two different technologies for collision avoidance and showing
that the one with better visual match with reality also scores higher with our approach.
We have also experimentally compared two approaches to calculating a key validation
parameter and verified our intuition about the relative instability of one of them. The re-
sults also show a high degree of validity of our simulation system in an actual scenario
of spectator egress from a football game. In the future, we would like to apply our ap-
proach to validate and compare other existing simulation systems in various scenarios.
We would also like to address the issue of memory-based agents in future work.
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Abstract. Interactive characters – widely used for entertainment, education, and 
training – may be controlled by human operators or software agents. Human 
operators are extremely capable in supporting this interaction, but the cost per 
interaction is high. Believable agents are software controlled characters that 
attempt natural and engaging interaction. Believable agents are inexpensive to 
operate, but they cannot currently support a full range of interaction. To 
combine the strengths of human operators and believable agents, this paper 
presents steps toward an architecture for collaborative human/AI control of 
interactive characters. A human operator monitors the interactions of users with 
a group of believable agents and acts to intervene and improve interaction. We 
identify challenges in constructing this architecture and propose an architecture 
design to address these challenges. We discuss technologies that enable the 
operator to monitor many believable agents at once and act to intervene quickly 
and on many levels of granularity. To increase speed and usability, we employ 
principles of narrative structure in the design of our architectural components.  

Keywords: Believable agents, virtual humans, semi-autonomous agents, 
explainable AI, narrative generation. 

1   Introduction 

Interactive experiences with virtual or physically embodied characters are widely 
employed for entertainment, education, and training purposes. This interaction can be 
managed by human operators or software agents. Human operators can support the 
full range of human interaction and may provide deep and rich experiences to users. 
They can fully understand the speech, gestures, and actions of the users, and their 
responses can be novel and meaningful. A highly trained operator has the potential to 
draw users into the interaction with the character and allow users to suspend their 
belief for long periods of time. However, the cost of human operators is high. 
Operating a character in a believable and engaging manner requires advanced 
training, and an operator can only control a single character at a time. 

Believable agents are software agents that attempt to make their communication 
and actions understandable to an audience. These agents are adept at managing 
limited interactions where users’ speech, gestures, and actions often fall within a 
small set of possibilities [1]. Current believable agents are unable to handle the full 
scope of communication and action, including human-level reasoning, understanding 
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(e.g. natural language understanding, speech recognition, and gesture recognition), 
and expression (e.g. natural language generation, speech, and gesturing). However, 
believable  agents are inexpensive to operate (though initial design and development 
may incur additional cost) and highly available; they can manage hundreds or 
thousands of characters at the cost of a single human operator. 

To create highly engaging and realistic interactions with low cost and operating 
effort, human operators and believable agents may collaborate. For the purposes of 
this paper, we envision a single human operator managing a moderately sized group 
of believable agents who are, in turn, simultaneously interacting with a number of 
users in real time. We consider the number of believable agents to be on the order of 
tens – the maximum group size depends on the complexity of interactions, the number 
of simultaneous users, and the skill of the operator. The role of the operator is to 
improve the character interactions with the users by issuing commands to the agents, 
updating agent state, or taking full control of a character. With n agents a single agent 
can require at most 1/n of the operator’s time on average. Thus we assume that the 
believable agents are largely able to function autonomously and that they can 
complete interactions without operator support, though the quality of the interaction 
may be poor. We do not consider coordinated action by the agents, either through 
one-to-one communication or management by a director agent.  The rest of this paper 
discusses unique challenges presented by this problem in Section 2, a proposed 
approach in Section 3, related work in Section 4, and conclusions in Section 5. 

2   Challenges 

Enabling a human operator to manage, guide, and control a group of believable agents 
presents several open research questions. The operator must decide when, where, and 
how to intervene for each agent and then execute the interventions. This task is made 
more difficult by the real-time nature of interaction – the characters cannot “miss a 
beat” or they may seem artificial and unrealistic. With these constraints, we identify a 
set of challenges which may be grouped into monitoring (i.e. presenting the operator 
with sufficient and easily understandable information to make decisions about when, 
where, and how to intervene) and acting (i.e., enabling the operator to execute the 
interventions by exerting control and influence over the agents and environment). 

First, the operator should be able to make informed decisions about when and 
where to intervene. The system should provide information to the operator on the 
progress of each interaction. Overview information about the interaction, such as the 
interaction participants, when the interaction began, and the duration may aid the 
decision to intervene. Information about the state of the agents and whether the agents 
assess the interaction to be going well, going poorly, or at a stand-still may be critical 
to the operator’s decision.  The operator’s time and attention will be divided between 
all of the agents, thus this information should be minimal and direct.  

Second, the operator should have context to decide how to intervene. When the 
operator identifies a possible point of intervention, he should have the context to 
determine the content and style of the intervention. The operator should be able to 
examine a single agent and interaction with more detail. This may include a history of 
the interaction with topics discussed, agent state changes (e.g. emotional valences), 
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and actions taken. The operator may want to know additional information about the 
users and agents involved, such as their personalities, their abilities, or their 
knowledge about the other characters and environment. With this information, the 
operator can provide a cohesive interaction that does not break character, as well as an 
understandable interaction that meets the user’s knowledge and interaction style. 

Third, the operator should have effective control for the intervention. Once the 
operator has decided when, where, and how to intervene, the intervention must be 
executed through the controls afforded by the system. These controls should enable 
the operator to create deep and meaningful interactions, and hence, should be as 
unrestrictive and natural as possible. For instance, humanoid characters may benefit 
from an operator interface that enables full body control, mimicking the operator’s 
stance and gestures while projecting the operator’s speech, and puppeteering 
interfaces may be appropriate for both humanoid and non-humanoid characters. 
However, we stress that the control need not be complete to be effective. It may be 
equally as effective to control a character by sending its agent an instruction to dance 
as it would be to assume complete control and move each joint. 

Fourth, the operator should have efficient control for the intervention. Because the 
operator’s time and attention is divided between the agents, quick interventions that 
improve the interaction are preferable to longer interventions with the same effect. 
The overhead in time and effort for an intervention should be low; the operator should 
be able to switch between interventions rapidly. The operator should also be able to 
take advantage of the capabilities of the believable agents when appropriate. For 
example, instead of assuming control of a character and delivering a lengthy 
monologue, the operator should be able to instruct the agent controlling the character 
to deliver the monologue. The operator is then free to monitor and intervene 
elsewhere. Thus, the need for effective and total control must be balanced with the 
need for efficient and shallow control. No one scheme will work for every situation. 

Fifth, the believable agent should recover gracefully from the intervention. 
Interventions will be ineffective if the agent cannot account for them once the 
operator turns his attention elsewhere. For example, suppose an operator causes the 
character to display a rising level of anger and aggression leading to an emotional 
outburst. Once the operator ends the intervention, the agent is unaware of the new 
emotional state and proceeds to calmly discuss the previous topic, presenting the users 
with an abrupt and incoherent emotional transition. This incoherence may be avoided 
if the operator can communicate the changes in interaction state to the agent as a final 
step in the intervention. The agent can then transition smoothly and reflect knowledge 
gained during the intervention. 

3   Approach 

We approach the challenges of the previous section by proposing a general purpose 
architecture for collaborative human/AI control of interactive characters. The 
architecture enables the operator to 1) monitor character interactions to determine 
when, where, and how to intervene, 2) act with effective and efficient control over the 
character’s behavior, and 3) communicate new state information to the agent after an 
intervention. We discuss the technical and research challenges posed by each 
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component of the architecture and present possible techniques and approaches to 
address these challenges. 

3.1   Architecture 

The proposed architecture design is displayed in Fig. 1. A character in this 
architecture consists of an agent and a controller linked to an avatar representation in 
the environment. An agent has sensing capabilities which update its state, and action 
logic that determines the next speech, gesture, or action from this state. The 
commands are passed to the avatar which executes them in the environment with the 
users. When the operator does not send direct commands to the controller, commands 
from the agent’s action logic determine the avatar’s actions. 

Corpo ra te Ove rview  2 7 APR 0 7 v5
11 | 20

 

Fig. 1. Proposed Architecture 

The operator monitors the characters and environment through the global and 
single agent interfaces. The global interface presents a high level overview of the 
states of all of the agents and the state of the environment. The single agent interface 
presents the details of agent’s state and current interaction. The operator may also act 
to intervene from the global and single agent interfaces. In the global interface, the 
operator may update the state of many agents by sending high level commands (e.g. 
character X must adopt goal Y). In the single agent interface, the operator may again 
update the state of the viewed agent, or the operator may send commands directly to 
the avatar through the character’s controller. 

3.2   Explanation of Capabilities 

This section describes why the components of the proposed architecture design 
address the challenges posed by the problem. To enable the operator to decide when 
and where to intervene, the architecture provides global visualizations of agent and 
environment state through the global interface. For the global summarization of agent 
state to be effective, it should be intelligently reported by the agent. Simple metrics 
such as duration of interaction will not provide enough information to form a 
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complete picture, and the operator will not have enough time to review detailed 
accounts of the interaction history (e.g. full text logs of a conversation).  

Hence, the agent must process the interaction and report concise and meaningful 
metrics to the global visualization. For example, the agent may report rapidity of 
responses, confidence in interpreting user’s speech, gestures, and actions, confidence 
in choosing correct responses, and assessment of the users’ emotional states. Though 
none of these metrics are a comprehensive view of the interaction, combined they 
may provide the operator with a strong assessment of whether the intervention is 
necessary.  

Many such metrics are concise, often reporting a single number or percentage, and 
readily available from current believable agent technologies. Hidden Markov Models 
for speech recognition compute the probability that a particular utterance matches a 
sequence of words [2]. This probability can be reported to the operator in the global 
interface as an indication of the functioning of the speech recognition, allowing the 
operator to intervene if the believable agent cannot understand the users’ speech. 
Other possible interaction metrics for this purpose include distance measures for 
matching natural language text to stored sentences and phrases; discourse cohesion 
and coherence properties [3]; indicators of user psychological state and interest, such 
as galvanic skin response [4], posture, eye-gaze, facial expressions, and gestures [5]; 
and the agent’s perception of its progress along its interaction goals such as number of 
critical information points reached or repetition of information. 

To enable the operator to decide how to intervene, the  architecture provides 
detailed visualizations of agent state and interaction history through the single agent 
interface. The interface must rapidly convey the interaction history, possibly 
including significant aspects of the agent state, perceived user state, and recorded 
speech, gestures, and actions by both character and users. For rapidly conveying this 
information to the operator, this causally related sequence can be structured as a 
visual narrative.  

Narrative is a natural and prevalent form of communication, and narratives can 
present a large amount of information quickly by taking advantage of expectations 
and inferences about structure [6]. In this paper, a visual narrative incorporates visual 
elements into the presentation of the narrative to increase the speed at which elements 
can be recognized. We propose three principles, inspired by common narrative 
structure, for the organization of these visual narratives: 

 

1. Temporal organization – relative time of elements is immediately apparent. 
Examples include a list of actions in temporal sequence or a network of a 
icons representing emotions connected by directed arrows. 

2. Causal organization – the enabling causes of changes in elements are 
immediately apparent. An example may be short descriptions of an event 
next to icons for changes in emotional state.  

3. Prioritization – only the elements contribute the most  to the operator’s 
understanding are included. An example may be when displaying a history 
of character gestures only displaying the gestures that proceed  smiles or 
frowns by the users. 

 

These principles for the design of the visual narrative enable the operator to use natural, 
narrative reasoning to quickly assess the agent and interaction state and to intervene 
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without causing an abrupt gap in the interaction. The operator knows the “what” and 
“how” of the interaction by the indication of elements in the temporal organization. The 
operator knows the “why” of the interaction by the causal organization. And the 
operator is focused on the most critical elements by the prioritization.  

The specific design and presentation of the visual narrative depends on the internal 
structure of the believable agent and its type of interaction. For example, if the agent 
is acting as a tour guide and contains a model of emotion, a visual narrative might be 
a map displaying the agent’s path, an icon at each location for emotional state, and an 
image or short description of the main cause of each emotional transition. As another 
example, if an agent is a conversation agent that maintains beliefs about the world and 
goals for conversation topics, the visual narrative could present an ordered list of each 
statement by the agent or a user that caused a change in beliefs or an achievement of a 
topic goal alongside a set of topic goals yet to be achieved. 

To enable effective and efficient control for the intervention, the architecture 
allows the operator to intervene at multiple levels of resolution by updating the agents 
state and sending commands directly to the avatar through the global and single agent 
interfaces. These interventions may be direct interventions in which the operator 
controls the avatar directly or indirect interventions in which the operator updates the 
believable agent’s state or otherwise sends commands to the agent to influence 
behavior. The range of interventions should match the capabilities of the agents and 
the demands on the operator. If the believable agents are capable in a wide range of 
tasks, indirect intervention can be given to an agent to execute while the operator is 
left free to monitor other agents. If the agents are only able to provide a minimum of 
interaction, then the operator may use direct intervention to control the agents during 
much of the interaction. In the latter case, the operator will be able to effectively 
manage only a few agents. 

The form of the possible indirect interventions will be shaped by the internal 
structure of the believable agents. If the agents are goal driven, the operator may set 
or remove goals. If the agents maintain an emotional model, the operator may tweak 
the agent emotions. Similar interventions may be possible for agents that create plans, 
maintain beliefs, assign probabilities, or model conversation topics.  

Direct intervention is shaped by the available control interfaces and the form of the 
avatar. At one end of the spectrum, the operator may push buttons on a controller to 
move and play character animations as one would control a video game  character. At 
the other end of the spectrum, the operator may have a full body motion capture suit for 
the character to mimic his every gesture and facial movement. Speech may be projected 
through a microphone, or the operator may type text to be presented to the users.  

To enable the believable agent to recover gracefully from the intervention, the 
architecture allows the operator to update the agent state as the last step of the 
intervention through the single agent interface. Understandable transition between 
emotional states, plans, beliefs, or goals is one way in which believable agents 
increase believability. For example, a character that is making a sandwich, turns to 
see the toaster on fire, and sprints from the kitchen is more believable than a character 
that is  making a sandwich and then suddenly sprints from the kitchen for no apparent 
reason. For these transitions to be portrayed by the agent, the agent must know the 
previous action, the next action, and their relationship to each other. If an operator 
performs a direct intervention with an agent, the agent’s internal model of itself, the 
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user, and the interaction may no longer be valid by the end of the intervention. The 
agent must either watch and understand the intervention, updating its model as the 
interaction proceeds, or allow the operator to update its model to reflect the new state. 
In the first case, techniques the agent already uses when when interacting with the 
users may be employed to attempt understanding of both sides of the interaction, the 
users’ actions and the operator’s actions.  

However, the operator may often choose direct intervention because the agent in 
not capable of understanding the needs of the current interaction, and it may be 
preferable for the operator, with a clear understanding of the interaction, to update the 
agent on the intervention by relating the general “gist” of events and their meanings. 
For very simple believable agents, this may be a task of setting the values of one or 
two variables, but for agents of reasonable complexity we view this task as 
storytelling. Many of the same reasons for the visual narrative explanation apply here. 
The telling of a narrative is a concise representation of a sequence of events and the 
reasons for those events. The agent has access to the temporal and causal structure of 
the narrative, and only the most important events need to be related. The operator 
does not need to specify complete temporal or causal structure; instead, it may be 
inferred by the ordering and grouping of events. Thus the operator can quickly enter a 
brief narrative about the direct intervention in a format the agent can process before 
leaving the agent. The agent can process the narrative structure as if it were 
experiencing the interaction live and continue as if it had been managing the 
interaction the entire time. 

4   Related Work 

One of the first proponents of believable agents was the Oz Project [1]. Believable or 
broad agents differ from traditional AI agents. They focus on a broad range of shallow 
behavior instead of a restricted set of deep behavior, and they exhibit personality and 
manage user perception over striving for rationality. Loyall and Bates [7] describe an 
early implementation of believable agents using the Hap behavior language, and 
further extensions have incorporated models of emotion [8] and basic natural 
language generation [9].  Recent work has improved the capabilities of these agents, 
sometimes referred to as virtual humans or social agents, in the areas of speech, 
natural language processing, and emotional models [10] [11]. Applications have 
included military training and teaching of interpersonal skills [12] [13]. Much of this 
research has centered on fully autonomous believable agents whereas the focus for the 
present paper is on an architecture to support semi-autonomous believable agents. 

Effective and efficient depictions of internal believable agent state is a largely 
unexplored research area. Agent systems such as Woggle World [7] and Soar [14] 
often use debugging output to aid in the development of the agents, but do not present 
the user with this information. This information may be graphed as in the Woggle 
World agent brain “EEG” [Weyhrauch and Neal Reilly, Personal Communication], or 
may be simply printed as text debugging statements. However, more research is 
needed to make this information meaningful to non-developer users. Explainable AI 
systems record the agent’s decision process and can be later queried by the user to 
discover the agent’s reasoning [15]. Of note in this area is the Debrief system [16], 
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which generates explanations from agent traces using Soar’s rule mechanisms. These 
explainable AI systems are often intended to function when the operator’s time is not 
constrained as a type of after-action review, but rapid assessment of the agent state is 
needed in our proposed architecture. 

Collaborative control and adjustable autonomy have previously been explored for 
collaboration between humans and teams of robots. Fong et. al. [17] describe a 
method for controlling teams of driving robots using both dialog and sensor 
visualizations to pass information. An adaptation of this interface would be 
appropriate to fulfill a portion of the monitoring and command issuing capabilities 
discussed above. Olsen Jr. and Wood [18] investigate the effects of increasing the 
number of robots, termed “fan-out”, on the effectiveness human and robot team 
collaboration, finding that adding robots steadily decreases performance. Performance 
with believable agents is yet to be tested, but would likely follow similar trends as 
increasing demand is placed on use of the operator. Thus, future implementations 
should consider carefully the time and attention of the operator. Goodrich et. al. [19] 
describe an evaluation of the effects of adjusting the level at which the human and 
robot collaboration occurs, using a range of autonomy: full autonomy, goal-biased 
autonomy, waypoints and heuristics (for navigation), and intelligent-teleoperation 
with a joystick while allowing the robot to change course if obstacles are met. This 
range of autonomy is similar to the control offered by our global and single agent 
interfaces, and may include appropriate approaches for believable agents. While 
research in robotic collaborative control and adjustable autonomy addresses some of 
the same issues required by collaborative control of believable agents, issues uniquely 
emphasized by collaborative control of believable agents are 1) expressing the state of 
dialog and interaction, 2) intervention to produce high quality interaction, and 3) 
communicating the results of intervention to the agent. 

5   Conclusions 

This paper has presented first steps in an architecture for human/AI collaborative 
control of interactive agents. We have identified technical challenges of this task, 
proposed an architecture for addressing these challenges, and discussed architectural 
components using narrative structure as design inspiration. 
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Abstract. Agent architectures have proven to be effective in the real-

ization of believable characters, but they stay at odds with the notion of

story direction, that is difficultly reconciled with the characters’ auton-

omy.

In this paper we introduce the notion of character’s values to mediate

between agent architecture and story direction in storytelling systems.

Modern theories of drama view story advancement as the result of the

characters’ attempt to maintain or restore their values, put at stake by

unexpected events or antagonists. We relate characters’ values with their

goals; the activation and suspension of goals depend on the values that

are put at stake by the progression of story incidents. Values and goals

are integrated in a computational framework for the design of storytelling

systems in which the direction is defined in terms of characters’ values.

1 Introduction

In story-based artifacts, characters are the medium by which the story direction
is conveyed to the audience. However, their behavior must be controlled strictly
to achieve an effective story direction. This paper addresses this issue trough
the notion of characters’ values. The notion of character’s value has emerged
in scriptwriting theory as a major propulsive force in story advancement. First
stated in Egri’s definition of drama premise [13], the notion of value underpins
most of the subsequent work conducted in scriptwriting [8], until the recent
formulation stated by McKee [19] about cinematographic stories. In McKee’s
reading, the plot must be designed so as to put at stake the values characters
care for. The progression of the story follows a cyclic pattern: a character follows
a line of action suitable to preserve its values, when some event (typically, a twist
of fate or an antagonist’s action) occurs that invalidates its line of action, and
puts other, more important, values at stake, requiring the character to abandon
or suspend its current line of action and devise yet another line of action to
restore them.

For example, in Bond movies, the hero must defeat an arch-vilain who threat-
ens the human kind. As he devises a clever plan to neutralize his antagonist, the
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value at stake, initially limited to the ‘security of the country’, becomes increas-
ingly higher as an effect of the counter attacks of the antagonist, with a climax
that invariably ends with the removal of the threaten. In courtroom dramas,
a solitary lawyer fights against injustice; the climax puts at stake the lawyer’s
self-achievement, then the fate of the victim of the injustice, until the lawyer
becomes involved in some kind of direct opposition against the law institution.

The definition and formalization of the notion of story direction is still an open
issue in storytelling systems, especially for the paradigm of emergent narrative,
where the interaction with the user and the presence of autonomous characters
stay at odds with the accomplishment of a direction. Although this notion is
implicit in several models, for example, such as plot points [21], structural story
models [16] or narrative mediation [28], an agreed-upon definition of direction
is still lacking. Our claim is that the story direction can be conceptualized in
terms of the sequence of characters’ values the story puts at stake. The values
abstract from the actions actually carried out by the characters and this sequence
forms the ‘direction’ of the story [32]. The direction conveys a type of universal
meaning: for example, Bond movies tell the audience – through infinite variations
– that evilness can be defeated by the courage of a solitary hero, courtroom
dramas say that justice will eventually triumph.

In this paper, we address the following research questions:

– How can the story direction be formulated in terms of characters’ values?
– How can an architecture for interactive storytelling incorporate the notion

of characters’ values to tie the plot to a specific story direction?

The paper is structured as follows. First, we describe the features that char-
acterize a value–sensitive narrative system (Section 2). Then, we introduce the
model of value–sensitive deliberation (Section 3) that we use to implement char-
acters in such system (Section 4). In Section 5, we sketch a reference architec-
ture for value–based narrative storytelling. Conclusions and future work end the
paper.

2 Motivations for Value–Sensitive Storytelling

In this paper, we propose character’s values as a high–level guidance for the plot
development. The notion of value belongs to the realm of ethics and economics
[1]; a value is a subjective assignment of importance to some type of abstract or
physical object. In scriptwriting, the moral nature of direction has been explicitly
reaffirmed [19,36], following a tradition that dates back to [26]. The purpose of
using values to drive the development of the plot is two-fold. On the one side, we
want to give to authors a conceptual tool, the notion of value, they are familiar
with. On the other side, we want to endow artificial characters with a way to
drive the selection of goals. While intelligent agents have been acknowledged
to provide a valid model for characters’ rationality, the mechanism by which
they select their goals has not been investigated to depth. Here, we claim that
character’s goals respond to values at stake, and provide a framework for driving



78 R. Damiano and V. Lombardo

the development of the plot in which the direction is not directly expressed in
terms of characters’ goals, but stated in terms of values, which characterize the
language of drama. The approach proposed in this paper is to augment the agent
architecture with values and use embedded values as a drive for storytelling, with
a story direction that results from the actions characters undertake to reestablish
their values at stake, in line with the paradigm of emergent storytelling.

The paradigm of intelligent agents offers an operational way to design and
implement characters in interactive storytelling, as shown by a number of appli-
cations [23,27,2,24,14]. From a theoretical perspective, it has been argued that
characters, the primary medium for the audience identification [9], are expected
to be rational agents by the audience [30] and must manifest an intentional be-
havior to acquire believability. So, characters must maintain their believability
along the story, i.e., they must behave according to the basic requisites that are
usually attributed to intelligent agents, who act in a social and physical world,
according to some rationality constraints. For example, the generation of inter-
active stories by the system described in [29] relies on the assumption that a
rational model of the characters’ behavior is a precondition for equipping char-
acters with an ‘expressive behavior’ [31], i.e. meaningful elements that help the
audience making sense of the motivations underlying their behavior.

One of the mostly employed agent models is the Belief-Desire-Intention (BDI)
characterization of agents [4]. BDI-based architectures have proven to be a solid
and effective basis for the design and implementation of character-based story-
telling systems and the availability of programmable agent frameworks [7,25] has
promoted their utilization in practical applications. Recent work has explored
the practical and theoretical issues of their use in games [12,17].

Agent architectures, that are effective in implementing characters’ rational
behavior, do not have the sufficient expressivity to account for the “divergent
moral commitments and institutional obligations” that, according to Bruner
[6], constitute the privileged object of stories. Since values detain an abstract
and symbolic meaning, though, they do not exhibit a direct correspondence
within the rationality [33]. Although the BDI model allows creating believable
characters from a rational point of view, some decisional oppositions cannot be
dealt with on a purely rational basis. In stories, a character’s intentions are
often traded–off against unexpected options, brought in by some external source
of change (other characters’ actions or unintentional events), that challenge the
character’s established commitment on moral grounds (see also the work by [3]).
We believe that the notion of value can be an effective tool to model this kind of
situations, characterized by a prominently moral nature. Values are subjective,
and different individuals acknowledge different values, arranged into subjective
‘scales of values’ [33]. By providing the ranking of importance of some type of
abstract or physical object for a character, values reveal the inner nature of
that character. So, different characters react differently to values at stake, as a
consequence of the values they care for and the importance they attribute to
them.
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The main feature of value–based storytelling is its capability to use the notion
of characters’ values to constrain the advancement of a narrative by affecting the
characters’ behavior. In order to design a system for value–driven interactive
storytelling, we assume a character–based architecture. We tie the character’s
deliberation to values at stake, and we formalize the story direction in terms of
the values it puts at stake for the characters, given the priorities of values set
up by the author. Each story advancement occurs because a character’s value
is put at stake and, conversely, the character is required to execute actions that
may put other characters’ values at stake. If the system is provided with an
environment simulator, unintentional events may also put values at stake.

The interactive system manipulates the characters’ values by putting them at
stake; characters react by forming value–dependent goals (or altering the status
of their goals) and devise plans to achieve them. In the absence of relevant mod-
ification in the state of their values, characters behave autonomously, pursuing
their intentions through the execution of their current plans.

3 Value–Sensitive Characters

We model a character as a BDI agent, with beliefs, high-level goals (or desires)
and intentions (or plans) and we augment the BDI agent definition with the
notion of value. Finally, we link the character’s deliberation to its scale of values.
A character is a 4-tuple {B, D, I, V }, where V represent character’s values. Note
that, here, we consider only the subjective dimension of values, and do not
consider their relation with an external social system.

Each character features a set of values V . Each value is polarized, with a
negative or positive polarity, and is associated with a condition. The negative
polarity of a value means that, when the value condition holds in a certain state
of the world, the value is violated; the positive polarity corresponds to the value
being in force. In order to let characters arbitrate among their values, values are
assigned a priority ranking that ranks them according to their importance.

A value v is defined by a set of constructs (p, c, r) where p is a negative or
positive polarity, c is a ground logic formula and r is a priority (a real number).
We pose the restriction that, for some value v, the conditions c cannot be incon-
sistent and the priority r must be the same for all constructs. If the condition
c of a value v holds in a certain state of the world, that value is at stake. A
character’s record of the values at stake, V aS, is a set of constructs (c, p, r)
for which c holds in the current state of the world or is expected to hold in the
future, according to the character’s beliefs. The character’s record of the values
at stake (V aS) is a dynamic structure, updated along the progression of the
story.

The function Character.V aSupdate(V, B) updates the V aS of a character
by matching the conditions of the character’s values V with the character’s
belief state B. From the point of view of agent architectures, the monitoring of
values can be expensive. However, we assume that the set of character’s values
V has a limited size, since they are intended as general instruments for the
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regulation of behavior. In this sense, values can also be seen as means to limit
an agent’s options to those that affect its values, in line with the theory of
bounded–rationality [5].

The character’s beliefs include not only the current state of the world, but
also its expectations about how it may evolve. The expectations are computed
by verifying if, from the current state of the world, any state can be derived in
which any conditions of its values hold, as an effect of the character’s own actions
or other characters’ actions. This mechanism is necessary to make the character
proactive with respect to the compliance with its values, i.e., to model the fact
that the character opportunistically monitors the possibility of bringing about
its values when possible and anticipates the moves of the others when they may
put its values at stake.1

We assume that the character has multiple goals, whose formation is driven
by the values listed in its value system, but that the character is committed to
only one goal at a time (the one with the highest priority, determined by the
ranking of values). Beside value–dependent goals, the character may also form
instrumental goals, i.e., goals that are only aimed at establishing the conditions
to achieve the value–dependent ones.

So, the character’s beliefs include specific knowledge about its values and the
dynamic record of the current relevance of its values (the record of the values at
stake). The integration of values into the agent model requires that agent loop
to have the following form:

1. Monitoring. The character updates its belief state by performing sensing
actions; they include the character’s expectations about the outcomes that
may be generated by the behavior of the other characters, obtained by per-
forming a (possibly limited) form of intention recognition.

2. VaS update. Then, it updates the record of the values at stake, V aS, given
the new beliefs and expectations.

3. Goal adoption. If the values at stake have changed, the character forms new
goals accordingly, following the rules for the formation of value–dependent
goals listed below (Section 4).

4. Meta–deliberation. Through meta-deliberation, the character decides
whether the state of its goals must be modified, depending on two factors:
the ranking of the values that have determined the formation of the value–
related goals and the achievability of the goals themselves. As a result of this
process, the agent may commit to a new goal (new active goal), suspending
or dropping the previously current goal, or adopt new goals without them
to become active.

5. Planning. If the character commits to a new goal, it devises a plan to
achieve it. If no plan can be found, the character drops the goal since it is
infeasible.

1 Since expectations pose problems for the computational complexity of practical sys-

tems, the look–ahead process may be limited in practical applications, for example

by constraining it to few steps.
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Fig. 1. A graphical representation of goal states and transitions including values

(adapted from [30])

6. Execution. The next step of the character’s current plan is executed. Fi-
nally, the character evaluates the validity of its current plan: from time to
time, the character may realize that the current plan is not valid anymore
and re-plan (without modifying the related goal).

Two aspects of this loop require further comments. First, the formation of
goals is governed by the notion of value; the agent’s proactivity is confined to its
reactivity to the contextual relevance of values: this is a strong limitation for an
agent, but a reasonable one for a character, whose behavior is only functional
to a the communicative context set by the author. Second, the definition of
the character’s values is kept separated from their influence on the character’s
commitment, so that the choice of an appropriate policy to account for values
in meta-deliberation is left to the autonomy of the designer of the storytelling
architecture and can reflect the narrative design of the author.

4 Values at Work

When a character realizes that some value is at stake, it is expected to modify
its commitment accordingly, by forming a goal (value–dependent goal) that
contributes to re-establish the value at stake. The way goals arise and are affected
by values can be grasped effectively by the framework by [35], which provides a
unifying account of goal types and describes how goal state is transformed as a
consequence of the modifications of an agent’s beliefs. According the operational
architecture in [35], adopted goals remain suspended until they are ready for
execution (i.e., they are in active state), than possibly suspended again if a more
important goal is adopted. Goals can eventually be dropped if certain conditions
hold, namely, when the rationality constraints stated by [10] are met.2 In the
following, we assume this framework, and we only specify the role of values at
stake in the state transitions of goals, according to simple automaton represented
Figure 1.

2 In order to separate commitment to goals from commitment to plans, the model

in [35] acknowledges different conditions to manage the status change of a goal in

the presence or in the absence of a plan to achieve the goal. Since this difference is

irrelevant for our purposes, here we consider only the overall set of goal conditions.
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– Given a construct v(p, r, c) in V aS (the record of the values at stake), the
character formulates and adopts a set of goals that have the conditions of its
values at stake as an object.

1. If the condition c holds in the character’s expectations and the associated
polarity p is positive (i.e., it corresponds to the value being in force in
that state), the character forms the goal to achieve that state of affairs
(achievement goal). Expectations model the opportunity for the charac-
ter to achieve the compliance with her/his own values. According to the
framework in [35], this is an achievement goal.

2. If the condition holds in the present or in the character’s expectations
and the associated polarity is negative, the character forms the reactive
maintenance goal to achieve any state of the world in which that condi-
tion does not hold (any state s such that c �∈ s). In most cases, this goal
involves the need to contrast the behavior of an antagonist who is about
to bring about a state of affairs in which the condition holds.3

After a character adopts a goal, as a consequence of a value put at stake,
the goal state can vary, as the story advances, in the following way:

– Goals become suspended immediately after their adoption. In our model, the
activation of goals depends on the priority of the associated values, which
reflects their importance for the character. Multiple matches with the same
value cause multiple goals to be formed and adopted.

• If the priority r of the value at stake v is higher than the priority of the
current values at stake (∀ (pi, ci, ri), (v �= vi) → (ri < r)), the related
goal becomes active. At this point, the character can generate a plan
to achieve it and starts to execute it. The currently active goal may be
have already been active in the past: if so, the character may resume the
execution of a previously suspended plan, if still valid.

• Or, the new goal may not become active immediately, and be activated
later when no other goals with higher priority are left (because they have
been achieved or abandoned, two conditions that equally result in the
dropping of the goal) or never move to the active state. If a new goal
is formed in reaction to a value at stake that has a higher priority, the
active goal is suspended.

– A goal is finally dropped if the character recognizes that it is impossible to
find a plan to achieve it or if it has been achieved, or if it is not relevant
anymore, independently of its priority.

For an example of how a value-based framework can be applied to real stories,
see [11].

3 The number of states that match the definition above can be effectively limited

by considering the specific events or actions that have established or are going to

establish the condition c, and focusing the character’s deliberation on the possible

ways to undo the effects of these actions or events.
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5 Story Direction and Reference Architecture

In this section, we define the notion of story direction in terms of characters’
values and describe a reference architecture for value–sensitive interactive story-
telling systems. This architecture is not intended for being implemented as it is,
but to serve as the basis for testing the feasibility of constructing a value-based,
interactive storytelling system.

To define the story direction, we start from the specification of the characters.
It includes all the elements that are necessary to define the characters as rational,
value–driven agents: beliefs, scales of values, planning knowledge. Characters are
not initialized with goals, since all characters’ goals are formed along the story
as a response to values at stake (see Section 4). The story direction is defined by
specifying, for each character, a set of values to be put at stake and the order
by which they must be put at stake. For each character, this order must be
consistent with the ranking provided by her/his value specification, i.e., values
with higher priority must be put at stake later, so as to comply with the well
known notion of “dramatic climax” [15]. Values at stake challenge the character’s
system of values. The direction specifies that a certain subset of the character’s
values is put at stake and defines how the subset changes as the story advances
(by doing so, we admit that values at stake may be brought in force again by
other characters).

In summary, the direction is a sequence of pairs containing a value and a
boolean flag to indicate if the character is expected to be successful in restoring
that value: Direction = 〈{V1, bool1}, . . . , {Vn, booln}〉.

The reference architecture (see Figure 2) takes as input the definition of a
story world, a set of characters, and a story direction. The system interactively
generates a plot (bottom left) in which characters’ values are put at stake, and
the characters respond to values at stake by adopting new goals. Each charac-
ter is represented as a BDI agent integrated with values (top left), according to
the model described in Sections 3 and incorporates the value–sensitive delibera-
tion model described in Section 4. The architecture also includes a simulator of
the story world inhabited by the characters (bottom right), a set of “triggering
events” (top right), i.e., a list that associates to each value condition a set of
events that make the condition true in a given context. A full-fledged repre-
sentation of the characters’ mental states is maintained only by the individual
characters: so, the system relies on the characters’ processes to generate the plot
incidents from the current state of the story world. The system represents the
plot as a sequence of incidents, annotated with their relation to characters’ goals
and values.

The core of the architecture is the Story Manager, a sort of drama manager in
the sense established by [18], that drives the ongoing story towards the direction
given by the author by coping with the interaction with the user. In order to
make the plot advance, characters’ values are put at stake according to the story
direction. When a character’s value is put at stake, the character reacts at the
deliberation level, by forming a new value–dependent goal and devising a plan
to achieve it if its priority overcomes its previous commitment. If no new value
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is at stake, a character continues the execution of its current plan, replans if
necessary, or else resumes the execution of a previously suspended plan.

Furthermore, the story manager enforces two requisites on the story. Given a
character, the incident–value consistency holds when:

– For each character’s value–at–stake v, the character has formed (and not
dropped) the value–dependent goals prescribed by the value–sensitive delib-
eration model in Section 4.

– The priorities of the character’s value–dependent goals match the scale ac-
cording to which the characters’ values are ranked (with the highest priority
goal being the currently active one).

In other words, after each incident, the character must be compliant with her/his
values and their priorities. Moreover, the story must be consistent with the given
direction. Given a character, the story–direction consistency holds when:

– A character’s values are put at stake according to the sequence prescribed
by the story direction.

– The character is successful in restoring its values as prescribed by the
direction.

In other words, the system must correctly enforce the direction in the story.
The loop executed by the story manager is the following:

1. Triggering events generation. The system matches the value condition
of each value against applicable triggering events, considering only, for each
character, the next value to be put at stake according to the direction stated
by the author (the first one when the system is initialized). When a value
condition matches a triggering event, it means that the value can be put
at stake by applying that triggering event in the current story world, so the
story manager obtains a list of the candidate values at stake (query on values
in the Figure 2). If no value can be put at stake (for any character), the story
manager returns a failure.4

2. Value-dependent goal generation. Given the list of candidate values at
stake, the system queries the characters to know, for each character, which
candidate values at stake may lead that character to form a value-dependent
goal and to make it active, given the current story world (query on goals in
the Figure 2). From the goal dynamics described in Section 3, a goal becomes
active only if there is a viable plan to achieve it. For each candidate value
at stake, each character performs an anticipatory reasoning process in order
to answer the query: assuming the adoption of the value-dependent goal in
response to the candidate value at stake, it tries to devise a plan to achieve
this goal. If this attempt is successful (at least one plan is found), the value
is susceptible to become an active goal.

4 In order to relax this constraint, the system could allow for a fixed number of cycles

to be executed without new values at stake, but with the characters advancing with

their plans.
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Fig. 2. The reference architecture for a value–sensitive system for interactive story-

telling. The architecture encompasses a set of characters (value–sensitive agents, left),

a story engine that puts the characters’ values at stake and generates the user op-

tions based on the response of the characters (center). User’s choices determine the

sequence of generated incidents (bottom left). On the right, the author-defined knowl-

edge sources (direction, triggering events, story world). Dashed lines represent data

flow, solid lines represent control flow.

3. Selection of candidate value-dependent goals. After the characters
communicate the value-dependent goals that may become active, the system
verifies, for each of them, if it conflicts with the other characters’ active
goals. New characters’ goals, in fact, are likely to conflict with self and other
characters’ goals.

The first source of conflict with the new active goal may be the previously
active goal of the same character. Since we assume that, in the direction, the
order by which a character’s values are put at stake is consistent with that
character’s ordering of values, the new value-dependent goal is, by defini-
tion, related to a higher priority value than the current one. In a simplistic
approach, the character suspends the previously active goal and the new one
becomes active. However, in an ideal framework, characters should be able
to merge the two plans, when compatible. No matter the chosen approach
(simplistic or ideal), inner conflicts are not only tolerated, but even desirable
for creating dramatic effects (see for example the work by [3]).
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Secondly, a conflict may arise with the goals pursued by other characters.
There are two main approaches to detect conflicts between goals. If the goal
language is sufficiently expressive, conflicts may be detected by matching
the definition of the potentially conflicting goals [34]. Alternatively, conflicts
can be detected by examining the corresponding plans to verify if they are
compatible. In this case, to detect conflicts, the system should examine the
plans each character has devised to achieve its active goal. If a character’s
goal is in conflict with another character’s value-dependent goal, the story
manager consults the direction to verify if a failure to reestablish that value
is compatible with the direction. If this is not the case, the goal is expunged
from the candidate value-dependent goals.

Clearly, the strategy described so far only detects the interferences among
a character’s individual candidate goal and other characters’ active goals,
at some point of the story development. But this is not sufficient to de-
tect the conflicts within the candidate goal set. The latter, in fact, may
emerge or remain latent depending on the goals that will actually become
active. Although the system we describe is intended as a reference model for
designing value–sensitive storytelling systems, we believe that a complete
cross-verification of the interferences among the candidate goals is not in the
spirit of the approach we propose, that sees interactive storytelling as the
shaping of an emergent plot according to a given direction. So, here we only
state the instruments for dealing with control, but we consider the possibil-
ity that the behavior of the story characters leads to a system’s failure to
instantiate the direction later in the story generation. In order to address
this issue, we think that the direction could be conceived of as a optimal
solution, but suboptimal plots may be generated by relaxing the constraints
in the direction or by allowing the system to backtrack (the latter solution
may viable in an authoring scenario).

As a result of this survey, the story manager generates a list of candidate
characters’ value-dependent goals, each associated with a set of plans.

4. Candidate options generation. After the set of candidate value-dependent
goals has been computed, the story manager queries the characters to obtain
the plans by which each candidate goal can be achieved, getting a list of plans
(query on plans in the Figure). At this point, the story manager needs to know
if any of the candidate value-dependent goals or plans can put further values
at stake – no matter if these values are acknowledged by same or by another
character. Again, two situations are possible: a goal matches or logically im-
plies the condition of a value, or the execution of any step of one of the alter-
native plans that are associated with the goal matches or logically implies the
condition of a value. Notice that this situation is only relevant if the new value
put at stake, for the involved character, has a higher-priority than its current
value at stake (if any); otherwise, the value-related goal would be adopted but
not become active and thus would not affect the enforcement of the direction.
Conversely, if the new value put at stake has a higher priority than the cur-
rent value at stake and it is not consistent with the direction given, the plans
(or the plan) that are responsible for putting it at stake are removed from
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plan set. Again, we do not consider here the emergent aspects of the goal–
values interplay.

Plan actions, indexed by characters, constitute the candidate options for
the creation of the subsequent story incident.

5. Interactive option selection. In an interactive storytelling scenario, the
candidate options become the user options, with a separate set of options for
each character. The available options are communicated to the user through
the application–specific display environment (textual, 2D or 3D graphics,
multimodal). The option selected by the user will be acted by the characters
in the storyworld. Characters also adopt the value-dependent goals that have
not been selected, if any, but they do not become active (although they are
likely to become active later in the story). In an authoring scenario, for
each character, the author would select a candidate option for the story
prosecution.

Finally, characters who are not affected by new values at stake perform
a planning step as defined in Section 3. In particular, if a character realizes
that its current plan is flawed, it proceeds to repair it, committing to a new
plan if possible. Or, if the plan cannot be repaired, and no other plan is
available, it drops the current goal and selects a previously suspended goal,
if any, as the active goal (for example, a character may address a value at
stake of lower priority). Otherwise it remains with its current commitment
and selects the next step for execution.

6. Incident execution. Finally, the story manager communicates the selected
option to each character; the character executes the next step of the plan
it is currently committed to, and the story world is updated. The plot is
also update with the new incident, that contains the set of actions executed
by the characters. At this point, each character updates its mental state,
including the record of the values at stake. Here, emergent conflicts among
goals and emergent interferences among goals and values become explicit.
The character realizes that new values are at stake, and that some values
previously at stake are not at stake anymore, because the character’s efforts
to establish them have been successful or because the activity conducted by
some other character has brought about a state in which they are not at
stake anymore. Or, the character may realize that a value-related goal has
become unachievable, thus facing a failure to comply with that value.

7. Story–direction consistency checking. At this point, the story manager
verifies whether the story constructed so far is consistent with the direction.
While the incident-value consistency is automatically enforced by incorpo-
rating the value–sensitive deliberation model in the characters, the same
does not hold for the requisite of story-direction consistency stated above.
Due to the emergent aspects of the characters’ interaction, in fact, it may
be the case that, for a certain character, some value was put at stake too
prematurely with respect to the ordering of values at stake prescribed by the
direction. Or it may be the case that a character failed to achieve a value-
dependent goal, while the direction requires it to succeed. In both cases,
the system has failed to enforce the direction. Again, the direction may be
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relaxed, for example by limiting a strict enforcement to one character (the
main character).

8. Story ending. The story ends when the direction has been instantiated, i.e.
all the prescribed values have been put at stake by leading the characters
to form and actively pursue (successfully, if needed) the appropriate value-
related goals.

According to the definition of open and closed interactive systems given by
Meadows [20], the architecture we propose is closed for what concerns the defini-
tion of characters’ values, so as to allow authors to enforce well–specified values
in the story, and open for what concerns the plot generation, although the latter
inherits the property of resource–boundedness that characterizes BDI agents [5].

From the system loop described above, it is clear that the abstract architecture
has some important limitations. First, it is not guaranteed to find a compatible
plot with the given direction, mainly due to the interactions among characters’
goals and values that may emerge during the interactive plot construction.

The planning activity takes place in the characters, with the story manager
making only the computation that is strictly necessary to control (but not to
guarantee) the enforcement of the direction and to identify story failure and
completion. This distributed design can be an advantage for the implementation
of practical systems, but it is not suitable for modeling the characters’ failure to
restore their values in an explicit way, since a character’s failure to comply with
its values can happen only fortuitously.

The architecture and execution model presented above do not account for
many sources of knowledge that take part into the design of characters and
stories and into the expression of stories. For example, it does not address the
characters’ emotional aspects, an issue that has been recently addressed in vir-
tual characters and virtual storytelling [2,24]. So, the basic architecture should
be not only engineered to address its computational shortcomings (like the an-
ticipatory mechanism required to characters) but also be integrated with specific
modules to comply with storytelling issues. Finally, the perspective of emergent
storytelling should not be intended as an alternative to integrating the proposed
architecture with specialized techniques to manage and coordinate multi–agent
systems.

6 Conclusions and Future Work

In this paper, we have proposed to use the notion of characters’ values to embed
values in interactive storytelling systems, and we have proposed a definition of
value-based story direction and a reference architecture for value–based interac-
tive storytelling. In our proposal, values are exploited to constrain the task of
interactive generation of the plot to a smaller, value–compliant set of alterna-
tives, and as a way to provide the procedural author [22] with a conceptual tool
to define the “plot boundaries” [21] in terms of values. The whole architecture
can be seen as a multi–agent system, in which the plot generation module ex-
ploits the individual characters’ ability to perform value–sensitive deliberation
to keep the story consistent with the values declared by the author.
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The purpose of this architecture is to investigate the possibility of designing
value–based interactive storytelling systems by relying on agent theories and
technologies. In order to design and implement practical applications, the ab-
stract architecture and execution model we propose need to be integrated with
narrative knowledge required to manage all the story features the model does
not deal with, both at the story modeling level (like story models o character
definition), and at the story expression level (like story cadence, mood, etc).
However, we think the specifying a value–based framework is a necessary step
to verify its theoretical feasibility.

As future work, we envisage the implementation of a prototype to test the
value–based paradigm and its appropriateness in the development of interactive
storytelling systems and in story authoring, and the extension of the model
to deal with dynamic values and their relations with models of emotions and
personality.
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Abstract. Enabling intuitive interaction in system design remains an

art more than a science. This difficulty is exacerbated when the diversity

of device and end user group is considered. In this paper, it is argued

that conventional interaction modalities are unsuitable in many circum-

stances and that alternative modalities need be considered. Specifically

the case of implicit interaction is considered, and the paper discusses

how its use may lead to more satisfactory experiences. Specifically, har-

nessing implicit interaction in conjunction with the traditional explicit

interaction modality, can enable a more intuitive and natural interactive

experience. However, the exercise of capturing and interpreting implicit

interaction is problematic and is one that lends itself to the adoption

of AI techniques. In this position paper, the potential of lightweight in-

telligent agents is proposed as a model for harmonising the explicit and

implicit components of an arbitrary interaction.

Keywords: Implicit interaction, Social Signal Processing, Intelligent

agents.

1 Introduction

A laudable objective of many computing applications and services is the pro-
vision of seamless and intuitive interaction. Ubiquitous computing is a case in
point. The vision articulated by the proponents of this paradigm envisages a
world saturated with electronic infrastructures, with the objective of making
computing services available everywhere such that it may be accessed in an
as-needed fashion. Indeed, the late Mark Weiser, the father of ubiquitous com-
puting, likened ubiquitous computing to a common everyday signpost, both in its
pervasiveness in the environment, as well as the ease, intuitiveness and lack of ef-
fort associated with its use. However, how such intuitiveness was to be achieved
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in practice was not stated. To address this, the Ambient Intelligence (AmI)
[1] concept was proposed. This explicitly acknowledged the interaction problem
of practical pervasive or ubiquitous computing environments and proposed the
adoption of Intelligent User Interfaces (IUIs) [7] as a means of addressing this.
Again, the pragmatic issues of how such interfaces may be realised in practice
remains unanswered.

It is well known that in commercial software, one prerequisite to success is
ensuring that the user experience is a satisfactory one. For conventional work-
station environments, many useful heuristics have been constructed pertaining
to the effective design of interfaces and management of interactions. Given that
such environments have been studied since the 1960s, it would indeed be disap-
pointing if significant progress had not been made in this time interval. However,
given the many form factors that computing frequently utilises, as well as the
multitude of domains in which it is applied, it is questionable as to what degree
conventional good practice HCI principles apply for non-workstation environ-
ments. In the case of mobile computing, one reason why such principles may
not be applicable is that the nature of the context in which a mobile interaction
occurs may differ radically from that of conventional interactions. For example,
it has been demonstrated that there may be up to eight fold differences between
the attention span that users give to tasks under both laboratory conditions and
mobile contexts [13].

In this paper, it is argued that successfully harnessing the implicit interaction
modality may offer significant potential for augmenting the interaction experi-
ence. By incorporating implicit interaction, the potential for sharing control of
an application need be not seen as the exclusive preserve of either the human
operator or the application in question. Rather it can be regarded as a collab-
orative effort. In circumstances where intelligent agents have been adopted as
the software construct for capturing and interpreting implicit interaction, this
collaboration may be one shared between the human and the agent.

2 Interaction Modalities

A number of modals of interaction have been proposed, those of Beale [3] and
Norman [10] being well documented examples. For the purposes of this discus-
sion, interaction is considered, albeit briefly, from both a unimodal and multi-
modal perspective.

2.1 Unimodal Interaction

Unimodal interaction refers to interactions that occur when only one modality is
used, for example speech. Conventional interactions with computational devices
of various genre are almost inherently unimodal. Though the prevalent approach,
it is instructive to note that this is almost diametrically opposite to human
communication, which is inherently multimodal.
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2.2 Multimodal Interaction

Multimodal interaction involves a number of modalities being used in parallel,
for example voice and gestures. This may be regarded as a human centric view
of interaction. An alternative interpretation is based on the role of the compu-
tational artefact, making this central to the definition. Sebu [16] considers that
the computational equivalent of the human senses is what makes a system multi-
modal. For example, the use of voice recognition using a microphone, and gesture
recognition using a camera would constitute multimodality. Alternatively, using
a suite of cameras, for example to identify gestures and facial expressions, would
be regarded as unimodal. For this discussion, the human centric view is adopted.

Multimodal interaction is perceived as being more natural and intuitive [14].
However, this comes at a price: complexity and timeliness. Taken individually,
gesture and voice recognition demand sophisticated complex solutions. In paral-
lel, the difficulty is aggravated. Both modalities must be interpreted separately.
Then the result must be considered in combinations such that a semantic mean-
ing can be attributed to the interaction. All of this requires significant compu-
tational resources if the interaction is to be interpreted correctly, and, impor-
tantly, responded to, in a timely manner. Frequently, Artificial Intelligence (AI)
techniques, for example, machine learning, are used to facilitate the process of
interaction identification.

3 Explicit and Implicit Control

An alternative interpretation of interaction is to consider intent as the key pa-
rameter. Indeed, if intent was known with certainty in all circumstances, the
issue of intuitive interaction would be less problematic, although its realisation
in practice so as to meet user expectations might still raise particular difficul-
ties. When considered in the light of user intent, we can consider the interaction,
or by extension the control of the system, as being expressed in either an ex-
plicit or implicit fashion. However, an understanding of human communications
is necessary before these can be considered.

3.1 A Reflection of Human Communications

For the most part, the vocal channel is the predominant one used everyday.
However, this is usually accompanied by a variety of non-verbal cues that peo-
ple interpret subconsciously. Thus, it might be concluded, irrespective of the
particular utterance, that the speaker is sad, happy, busy or just indifferent.
Though contentious, it has been estimated that nonverbal cues have up to four
times the effect of verbal cues [2]. Indeed, a number of classifications of such
cues exist, for example Ekman & Friesen [4] have identified 5 categories–

1. Emblems: actions that carry meaning of and in themselves, for example a
thumbs up.

2. Illustrators: actions that help listeners better interpret what is being said,
for example, finger pointing;
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3. Regulators: actions that help guide communication, for example head nods;
4. Adaptors: actions that are rarely intended to communicate but that give a

good indication of physiological and psychological state;
5. Affect: actions that express emotion without the use of touch, for example,

sadness, joy and so on.

These give a flavour of the kind of cues that, if captured correctly, would lead
to significant enhancements to the interactive experience.

3.2 Explicit Interaction

Explicit interaction is the normal method of interacting with and controlling
software, and may be regarded as unimodal in nature. It is event or stimulus
driven. For example, a button is pressed, and the system responds, ideally in
some meaningful way. Its simplicity makes it easily understood by all, at least in
principle. From a software engineering perspective, most programming languages
make the managing of event handling relatively easy for software developers, for
example through the Model-View-Controller pattern [18].

3.3 Implicit Interaction

Implicit interaction is a more subtle construct, and computationally challenging
to implement. It is modelled on how humans communicate, and is essentially
multimodal in character. The challenge is to capture the cues that invariably
contribute to the human communication process, leading to a more complete
understanding of the interaction. Even a simple explicit interaction, such as
clicking a mouse, takes place within a context. For example, a mouse might
be clicked in anger. Assuming this anger can be detected, and developments in
affective computing make this increasingly likely, then the software can adapt.
How? this will depend on the domain in question. Similar to multimodal inter-
action, the challenge with implicit interaction is to capture and interpret it in a
meaningful fashion.

A question to be considered is whether implicit interaction occurs on its own,
or should be regarded merely as augmented explicit interaction. In some cases,
the lack of an explicit interaction event, if expected or available, may signify an
implicit interaction. In many e-commerce WWW sites, users usually ignore the
multitude of advertisements on offer. This they do subconsciously, for the most
part, unless of course their attention is obtained and they explicitly decide to
click on some advertisement.

4 Social Intelligence

Defining intelligent is one endeavour that has historically and continues to chal-
lenge research scientists in a number of disciplines. In many cases, intelligence
is associated with IQ. Increasingly, this is being viewed as an extremely narrow
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definition; indeed, in everyday life, it may be frequently observed that many
individuals who are commonly perceived as being intelligent, may frequently in-
dulge in behaviour that is anything but. Thus an increasing number of cognitive
scientists believe that additional concepts should be incorporated into the intel-
ligence construct. In short, additional abilities that are essential to success in
life should be incorporated into any definition of intelligence. In essence these
abilities define social intelligence [17] [6][20].

Abilities that indicate social intelligence include empathy, sympathy, polite-
ness and so on. In other words, social intelligence constitutes those abilities that
aid people in the performance of their everyday duties (both in their personal and
professional lives) and include negotiation, cooperation and collaboration, for ex-
ample. Such skills are essential to success in life. While most of the research and
discourse on social intelligence is naturally focused on human(s)-to-human(s),
the question of human(s)-to-computer(s) is receiving increased attention. Recall-
ing the previous discussion on Ambient Intelligence (AmI) and Intelligent User
Interfaces, a natural question to ask is whether social intelligence can contribute
to resolving the key problem of intuitive interaction. One emerging research do-
main that seeks to address this issue within a broader context is that of Social
Signal Processing.

4.1 Social Signal Processing

Social Signal Processing (SSP) [15] [19] has the singular objective of bringing
social intelligence to the computing domain. Machine analysis is seen as the key
enabler of SSP. Four key stages are envisaged in SSP:

1. Data capture - An array of sensors are necessary to capture selects aspects
of an interaction. Obviously, cameras and microphones are the predomi-
nant sensors that would be harnessed in this context. However, it is easy
to envisage that a wide variety of sensors could be fruitfully used, for ex-
ample, biometric or physiological sensors. A critical point to remember is
that communications and interaction always take place in a context. To de-
termine a full picture of the prevailing context is usually problematic. Yet
the data necessary even to practically achieve context recognition may be
indispensible.

2. People identification - A key initial step is to associate captured sensed data
with individuals. In cases involving a number of people, the difficulty and
complexity is aggravated.

3. Social Signal identification - In this process, the individual social signals are
extracted from the various data sets. A suite of techniques may be harnessed
here including facial expression analysis and gesture recognition.

4. Social behaviour understanding - This stage of the process involves attaching
semantic meaning to the signals and cues extracted from the data streams.
Context is of vital importance at this stage.

Significant challenges must overcome before SSP becomes a reality in practical
applications. However, it is important to recall that SSP is the summation of
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many years research in a multitude of disciplines. In addition, it incorporates
many of the issues described previously concerning implicit interaction. Indeed,
computer games may offer a fertile domain for exploring SSP. Understanding
SSP in terms of individual players offers significant potential for realizing games
that are inherently dynamic, adaptive and personalised for individual players. It
may also inform the situation where the control of the game can be exchanged
between the player and the game as circumstances dictate.

5 The Locus of Control

Ultimately, control of any interactive application or service must rest with the
user. However, in many cases, the application will perform in an autonomous
or semi-autonomous fashion, resulting in control being shared. Thus the user is
nominally in control, but is happy to remain outside the control loop as long as
the application is performing to their satisfaction. This may happen in systems
of all hues. Indeed, the objective of autonomic computing is to actually remove
the human operator from the command chain as much as possible. Human time
is perceived as a scarce and expensive commodity, as such must be used wisely.

With interactive entertainment systems in contrast, the motivation is different
with the user being the key actor, as it were. In this case, the user (usually)
wants to minimise their cognitive load, and with minimum interaction, leave the
application follow its own cycle. Any significant intervention must be motivated.
However, most entertainment systems react in a stimulus/response manner. No
effort is made to monitor the user’s reaction or perception to what is happening.

Considering the previous discussion on SSP and implicit interaction, it can
be seen that there is significant opportunity available for enhancing the user
experience, provided effort is expended to capture this interaction. By trans-
parently observing the user as they interact, the potential for a more fulfilling
experience emerges. In short, an arbitrary system could dynamically adapt its
behaviour in response to observed cues. Obviously, the strategies and polices
used for adaptation will be domain, and maybe user, dependent. However, how
such adaptivity should be designed for remains an open question. It is envisaged
that successfully adapting the behaviour of the application to the user is likely
to minimise their need to explicitly take control of the application, and increase
the likelihood that they will cede control to the application even if they should
need to make an intervention occasionally.

A final issue that needs to be addressed is the characteristics of a software
architecture for realising such adaptivity.

6 Software Architecture

Realising an adaptive application demands that the software inherently possesses
certain traits. Autonomy is essential, as a capability to react to external events.
For a dynamically adaptive solution, this is not sufficient. A capacity to act
proactively and to plan ahead is also essentially. Ideally, some capacity to learn
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would also be supported. Such characteristics immediately suggest the harness-
ing of the agent paradigm as this encapsulates these characteristics. However, not
all agent architectures are sufficiently endowed with such capabilities. However,
those that subscribe to the Belief-Desire-Intention (BDI) model [5] for example,
could be reasonably expected to be capable of forming the basis of adaptive ap-
plications. In selecting an agent framework to support implicit interaction and
realise an adaptive solution, it is essential that the attributes necessary for its
realisation be kept in mind.

In our own research, the viability of lightweight embedded agents [12] [9] have
been demonstrated in mobile computing contexts for managing and interpreting
interactions, both explicit and implicit. In the mobile tourism domain, informa-
tion has been adapted to tourists’ contexts [11] while in the e-commerce domain,
agents have negotiated deals for items on users’ shopping lists [8].

7 Conclusions

In this paper, the potential of the implicit interaction modality as a means of
augmenting the interactive experience was advocated. However capturing and in-
terpreting such interaction is computationally complex. The harnessing of agent
frameworks of sufficient power and complexity is suggested as a basis for realising
applications and services that can dynamically adapt to implicit user input.
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Abstract. The task of entertaining people has, until very recently, been the 
exclusive domain of humans. However, recent advances in Artificial 
Intelligence (AI) suggest that intelligent systems may be used to create dynamic 
and engaging real-time entertainment experiences.  In this paper we consider a 
novel technique called Experience Adaptation. Experience Adaptation is an 
offline process that leverages human creative ability by taking human-authored 
specifications of desired user experiences and autonomously “re-writing” them 
based on unique requirements of individual users. In this chapter, we illustrate 
Experience Adaptation in the context of computer-based role-playing games in 
which player experience is highly dependent on an unfolding plotline. Our 
approach uses a plan refinement technique based on partial-order planning to 
(a) optimize the global structure of the plotline according to input from a player 
model, (b) maintain plotline coherence, and (c) facilitate authorial intent by 
preserving as much of the original plotline as possible.   

Keywords: Experience Adaptation, Narrative Intelligence. 

1   Introduction 

Artificial intelligence has long been used to automate certain tasks in order to perform 
those tasks faster, more accurately, more efficiently, more safely, or more often. 
However, the task of entertaining people has, until very recently, been the exclusive 
domain of humans. When it comes to commercial production of entertainment 
artifacts like TV shows, movies, novels, theatre, computer games, etc., the task of 
entertaining people has been the exclusive domain of “creative professionals” such as 
writers, actors, movie directors, theatre and improv performers, dungeon masters, and 
so on. The reason the task of entertaining people has been the exclusive domain of 
humans is that the creativity and intuition that human entertainers possess have not 
been reliably replicated in computational systems. 

Currently, there are fewer professional and expert human “producers” of 
entertainment than there are human “consumers” of entertainment. This model works 
fine for mass-consumption entertainment such as film, TV, books, and, to a lesser 
extent, theatre performances. The creative authoring bottleneck refers to the situation 
where the cost of employing enough professional human producers to satisfy the 
demands of human consumers is prohibitively high, resulting in a situation where 
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there is more demand for quality content than production of quality content. (We use 
“authoring” to refer to the deliberate creation of any entertainment-related artifact, 
including an improvised performance created in real-time [9]). Recent work in the 
area of computational creativity, story generation, interactive storytelling, and 
autonomous believable agents lays the groundwork for a future where entertainment 
is fully automated. We are now at a unique point where modern computer technology, 
simulation, and computer games have opened up the possibility of that more can be 
done in the area of on-demand and uniquely customized entertainment. 

 

− On-demand entertainment refers to the possibility that one can request, at any 
time, an entertainment experience that is significantly different from any 
previously consumed. For example, game players can exhaust game-play content 
faster than expansion packs and new releases can be produced. For an early case 
study in which consumers outpace producers of content in online virtual game 
worlds, see [11]. Ideally, there is a one-to-one relationship between producers and 
consumers so that content can never be consumed faster than it is produced. 

− Uniquely customized entertainment means that entertainment artifacts should be 
customized or configured to suit every player’s unique motivation, tastes, desires 
and history. Usually this information is not available at the time the game is 
designed and implemented. The customization decisions can only be made in a 
just-in-time fashion because we need to know (a) who the user is, (b) what the 
user’s motivation, tastes, and desires are, and (c) what the user is doing at any 
given moment. 

 

As we approach a world in which on-demand and uniquely customized entertainment 
is the expectation, the conventional consumer-producer model breaks down. To 
overcome the creative authoring bottleneck, we must consider automation. In this 
chapter we consider a technique called Experience Adaptation [8, 17]. Experience 
Adaptation is an offline process that leverages human creative ability by taking 
human-authored specifications of desired future experiences and autonomously “re-
writing” them based on unique requirements of individual users. 

To motivate the need for on-demand and uniquely customized entertainment, we 
explore these concepts in the context of generating plotlines for computer-based role-
playing games. Computer based role-playing are believed to be highly dependent on 
individual differences such as play styles [1, 29, 26] and involve numerous tasks that 
may or may not be of interest to players. Rollings and Adams [21] argue that the core 
of gameplay in any game is “one or more causally linked series of challenges in a 
simulated environment.” These challenges often appear in units of role-playing game 
storytelling called quests. To accomplish the quests, players have to perform required 
gaming activities such as combat or puzzle-solving in a virtual world. Game designers 
usually use a main plotline, comprised of a set of quests, often ordered, that are 
sufficient and necessary to complete the game. The main plotline provides the player 
with a sense of meaningful progression through the game. Although the main plotline 
is mandatory, optional side-quests are often available to augment the gameplay 
experience, and to afford players a limited degree of customization through choice. 
Instead of supplementary side quests, we investigate intelligent systems that adapt and 
customize the primary plotline to satisfy player preferences, needs, and desires while 
maintaining narrative coherence and preserving the original plotline author’s intent.  
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We argue that customization of entertainment experience involves presenting the 
right experience to the right person at the right time. The significance of this claim is 
twofold. First, players usually possess diverse motivation, tastes, desires and history. 
A one-size-fits-all script may not cater to all types of players. Moreover, to achieve 
optimal game experience, challenges must adapt to the player’s skill level. Secondly, 
preferences of players can change over time. Having experienced one story, the player 
may demand a new one. Therefore, the ability to generate customized plotlines may 
enhance replayability and improve player experience. By addressing the two 
implications, we are working toward the potential of games that continuously grow 
and change with the player over a long period of time by generating novel, 
customized plotlines. 

The remainder of the chapter is organized as follows. In Section 2, we formulate 
the problem of game experience adaptation and ground the notion of experience on 
discrete computational representations of narrative. In Section 3, we provide a 
mathematical notion of narrative coherence based on our representation. Section 4 
deals with the practical side of experience adaptation with a detailed planning 
algorithm, an example, and discussions of authoring and evaluation. Section 5 
provides discussion of related work.  

2   Experience Adaptation 

We believe a computational system that scales up a human creator’s ability to deliver 
customized experiences to a large number of consumers will provide a solution to the 
content creation bottleneck. Automated adaptation of experience is necessary when 
we can only learn about our intended customer at playtime. Unfortunately, the 
construction of autonomous systems capable of assuming responsibility for human 
users’ entertainment experiences is largely an open research question. Until we have 
computational systems capable of creativity rivaling that of human experts, there is 
value in exploring hybrid approaches in which humans and computational systems 
share the responsibility of managing human users’ entertainment experiences. Thus, 
such a computational system becomes a practical compromise: it should be able to 
facilitate human authors and scale up their authoring effort, so that a large number of 
customized variations of the original content can be produced easily without 
sacrificing the quality. Chen et al. [2] coined the term authorial leverage to indicate 
the ratio of quality of experience delivered by a computational system to authorial 
input. Hybrid Experience Adaptation systems leverage human knowledge for the 
purpose of creating novel experiences. 

2.1   Leveraging Human Creative Effort 

In the context of computer games, Experience Adaptation takes a few human-
authored descriptions of experiences to be had in a virtual world and provides 
numerous experiences customized to individuals. The Experience Adaptation pipeline 
is shown in Fig. 1. A human author develops a plotline as a means of describing what 
a user should experience in the virtual world. The storyline determines events that 
will happen in the virtual world, including specifications for the behaviors of non-
player characters. The plotline, provided in a computational format that facilitates  
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Fig. 1. The plotline adaptation architecture 

automated analysis and reasoning, is combined with a player model and a world 
model. The world model describes what characters – human or virtual characters – 
can do in the world, and how the world is changed when actions are performed. The 
player model provides information about the user in terms of preferences over 
experiences. The player model also contains historical information describing the 
types of experiences the user has previously had.  The player model is capable of 
generating a set of experiential requirements – the features of the experience the user 
should receive.  

The plotline, player model requirements, and world model are inputs into the 
Experience Adaptor. The plotline is analyzed to determine whether it meets the 
experiential requirements from the player model. If it does not, the Experience 
Adaptor engages in an iterative process of making changes to the plotline until it 
meets the requirements of the user model. The result is a new creative artifact 
describing a customized narrative experience, which is sent to a game engine for 
interactive real-time execution. Note the cycle in Fig. 1 created by the Experience 
Adaptation process, resulting in improved replayability of authored experiences; as 
the player model evolves over time, the same human-authored storyline can be 
recycled into novel experiences.  

The core component in the Experience Adaptation process is the Experience 
Adaptor. The Experience Adaptor has two functions, to interpret the requirements 
provided by the user model, and to “rewrite” the story provided by a human author. 
The Experience Adaptation Problem is as follows: given a domain model, a set of 
experiential requirements, and a storyline that does not meet the requirements, find a 
coherent storyline that meets the experiential requirements and preserves the maximal 
amount of original content. A coherent storyline is one in which all events have causal 
relevance to the outcomes [28]. The preservation of original content ensures that as 
much of the creative intuition of the human author remains intact as possible.  

The plotline can be adapted in three different ways: 
 

− Deletion: Events in the storyline can be removed because they are unnecessary or 
unwanted. 

− Addition: Events can be added to the storyline to achieve experiential requirements, 
and to ensure narrative coherence. 

− Replacement: a combination of deletion and addition, old events are swapped for 
new events that better achieve experiential requirements. 

 

The application of these operations enables a refinement-search algorithm to 
incrementally tear down and build up a complete, human-authored narrative structure 
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until it meets the experiential requirements. Experience Adaptation can be online or 
offline; we have chosen to implement an architecture with an offline Experience 
Adaptor so as to optimize the overall global structure of the experience. 

For the Execution Adaptor to function, it needs a set of experiential requirements 
that it can use to evaluate the current plotline and evaluate potential new plotlines. 
The player model is responsible for generating this set of experiential requirements. 
We model the player's preference as a function of previously selected quests. Each 
quest, in turn, is represented as a feature vector in a semantic space. We utilize a 
technique similar to that by Sharma et al. [25] to determine preferences over quests 
via ratings after gameplay concludes; similarity metrics allow us to extend 
preferences to quests not previously experienced by the user. In addition, a novelty 
model based on work by Saunders and Gero [23] favors quests that are appropriately 
novel to the player based on his or her history so that he or she would be neither bored 
nor unpleasantly surprised. Computing a weighted sum of utility by preference and 
utility by novelty, the result is the selection of the k quests with the greatest utility that 
should be included in the game plotline. Due to space constraints, a detailed 
description is beyond the scope of this paper. 

2.2   Computational Representation of Plot 

Experience Adaptation can only work if experience can be formally represented in a 
form that can be reasoned about and manipulated. As noted above, experiences are 
captured as narratives. Following others [30, 18, 15], we employ plan-like 
representations of narrative because they capture causality and temporality of action 
and provide a formal framework built on first principles, such as soundness and 
coherence, for selecting and ordering events. The plan representation provides a 
formal framework to explicitly represent causal relationships between events and 
reason about them on first principles (for example, we can ask if a narrative is sound). 
Further, plans closely resemble cognitive models of narrative. Graesser et al. [4] and 
Trabasso and van den Broek [28] in particular highlight the importance of causalities 
in stories. However, unlike a plan meant for execution, we use plans as descriptions of 
events expected to unfold in a virtual world; each action represents a formal 
declaration of an event that can be performed by the player or non-player characters, 
or occur as a consequence of physics laws in the virtual world.  

Our specific representation builds on partial-order plans [14]. A partial-order plan 
consists of events and temporal and causal relations. Events encode preconditions, 
which must be true for the event to occur, and effects, which become true once the 
event completes.  Causal links, denoted as e1 →c e2, indicate that the effects of event 
e1 establish a condition c in the world necessary for event e2. Causal links act as 
protected intervals during which the truth of condition c in the world must be 
maintained. Temporal links indicate ordering constraints between events. 
Additionally, to capture semantic meaning of narrative subsequences, we allow for 
event abstraction hierarchies. Abstract actions are decomposed into sequences of 
equivalent, but less abstract events. The set of decomposition rules act as a grammar 
specifying legal configurations of narrative fragments. Decomposition rules must be 
authored a priori and are one way to leverage human authorial intuition; partial-order 
planning may discover causal and temporal relations based on the rules. 
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Fig. 2. An original game plotline before adaptation. The plotline contains two quest structures, 
represented as hierarchical decompositions. 

In our system, quests are represented as top-level abstract events. A quest has a 
single effect, quest-complete(quest-X), and may or may not have any 
preconditions. While not strictly necessary, we find the following authorial idiom to 
work well: decomposition rules break quests into an abstract task event and an 
abstract reward event, which are further decomposed into primitive events. Fig. 2 
shows a complete plotline consisting of two quests. Primitive actions are shown as 
solid rectangles and abstract actions are shown as rounded rectangles. The 
hierarchical relationship between events is reflected in the containment relationships 
of rectangles. For example, one legal way in which a witch-hunt quest can occur is to 
kill the witch with water and earn the trust from the king. Arrows represent causal 
links. Note that not all causal links are shown for clarity’s sake. Temporal links are 
omitted.  

The quest library (see Fig. 1) is a model of the dynamics of the virtual world. It is 
made up of primitive and abstract event templates plus decomposition rules. Event 
templates are parameterized events represented in a STRIPS-like (cf., [3]) format, 
allowing for specific characters, props, and location to be substituted in when an event 
is instantiated into a plan. The main plotline of the game, an example of which is 
illustrated in Fig. 2, is comprised of instantiated events, causal links, temporal links, 
and event relationships. 

3   Narrative Coherence 

We believe partial-order plans are effective representations of stories. Thus, a 
reasonable approach to solving the Experience Adaptation Problem is to use a form of 
refinement search that can manipulate partial-order plans. However, conventional 
planning is geared towards maximum efficiency, whereas the shortest or most 
efficient sequence of actions is rarely the best or most coherent story. Therefore, 
special care must be taken to maintain the coherence of the story generated. 

Trabasso and van den Broek [28] proposed the idea of narrative coherence as a 
property of the causal structure of the story. A narrative is coherent when each event 
contributes significantly to the causal achievement of the main outcome. On each 
hierarchical level, a plan can be seen as a directed acyclic graph (DAG) with actions 
represented as vertices and causal links as edges. Whereas soundness is achieved if all  
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Fig. 3. Schematic of dead-end events 

preconditions are on causal chains back to the initial state without creating logical 
inconsistencies, narrative coherence is achieved when each event has at least one 
effect on a causal chain to the outcome state. In this section, we elaborate on two 
types of story flaws that break narrative coherence: dead ends and superfluous efforts 
[7]. These flaws can happen even in a sound plan. The definitions of the two flaws 
rely purely on the abstract causal structure and performers of actions. In other words, 
the flaws are defined independently of the story domain, although they are dependent 
on how the preconditions and effects of actions are defined. 

3.1   Core Set  

First, we suggest that some events in a story are of special interest to the audience and 
more important than others. The significance of events can be perceived by human 
designers and audience. Other events set context for, revolve about, and eventually 
lead to these events, which form the core set of the story. The core set depends on the 
application. For example, when the player is interested in becoming filthy rich, the 
event where treasures are obtained is crucial, and other events should be subordinate. 
In this paper, we define the core set to include only the goal state of the plan. 
However, depending on the circumstances, one may want to choose other events for 
the core set. For example, complex authorial intent may be represented in the plan as 
intermediate goals, which can be negated after being achieved [16]. 

3.2   Dead Ends  

An event is a dead end if it does not contribute in a meaningful way to the unfolding 
of events in the core set. It is believed that the presence of dead-end events directly 
harms the perception of narrative coherence. Following the previous example, 
suppose the primary interest of the player is to find treasure, then the event of 
obtaining a sword which is not useful for this purpose is not very relevant. Therefore, 
we consider the event to be a dead end. See Fig. 3 for an illustration of the causal 
structure of dead end, where a box represents an action and an arrow represents a 
causal link. The initial state, core events, and dead ends are labeled.  

Formally, in a story DAG G = (V, E) where a vertex v ∈ V represents events in the 
plan and (u, v) ∈ E if and only if any effect of event u satisfies at least one 
precondition of event v. We use path(u, v) to denote the fact that there is a path from 
vertex u to vertex v in G. Given a core set SC ⊆ V, the set of dead end actions SD is 
defined by:  

∀u ∈ V, v ∈ SC, ¬path(u,v) ⇔ u ∈ SD . (1) 
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Fig. 4. Schematic of superfluous efforts (top) and non-superfluous efforts (bottom) 

In general, it is recommended the core set be designed such that there are no dead 
ends in the original hand-authored storyline. 

3.3   Superfluous Effort  

Another breach of narrative coherence could happen when an event is part of a causal 
chain that contributes to the core set but at closer inspection appears to reestablish a 
world condition that is unnecessarily negated. For example, the player gives a sword 
to a stranger, and then has to steal it back to slay a dragon with it. The action of giving 
the sword is superfluous if, before the condition of the player having the sword, no 
other effects contribute to the core set. Fig. 4 (top) shows superfluous effort because 
the events serve no purpose other than re-establishing condition p. Fig. 4 (bottom) 
shows non-superfluous effort because the events that re-establish condition p serve an 
additional purpose. It is required that actions in the superfluous efforts are all 
performed by the same character.  

Formally, a subset of vertices S ⊆ V is a superfluous effort if: 
 

1. S is (weakly) connected. 
2. The set of conditions annotating outgoing edges is a subset of the set of 

conditions annotating incoming edges. 
3. ¬ ∃a ∈V, (∃b, c ∈ S, path(b, a) ∧ path(a, c)) 

 

Whereas, dead ends prevent interference with intentions of the author, superfluous 
efforts can be considered a heuristic guard against interference with intentions of 
story characters. The list of coherence flaws is by no means exhaustive, but the two 
examples illustrate two very important and complimentary aspects of the narrative 
coherence. We believe that the preservation of narrative coherence is important for 
any type of story adaptation. 

4   The Experience Adaptor 

The Experience Adaptor is the central component of the Experience Adaptation 
process (see Fig. 1). It leverages existing plotlines and promotes replayability by 
creating a cycle of play and adaptation. The Experience Adaptor module receives as 
input the following components: 

 



 Creating Customized Game Experiences by Leveraging Human Creative Effort 107 

− A complete plotline – a partially ordered, hierarchical plan – composed of events 
within and outside of quests.  

− A set of plot requirements: quest-complete(quest-X) propositions specifying 
what quests should be included, and corresponding world-level outcome 
propositions. 

 

The adaptation process involves two stages. In the first stage, a problem instantiation 
is created by rewriting the initial world state and desired outcome situation to match 
the plot requirements. When rewriting the outcome situation, any quests that no 
longer causally link to the outcome situation become dead ends and the plotline is no 
longer coherent. When rewriting the initial state, the preconditions of some events 
may no longer be supported by the initial state and the plotline may no longer be 
sound.  

The second stage is plan refinement search process that progressively makes 
adjustments to the plotline until (a) all plot requirements are met, (b) the plotline is 
sound, and (c) the plotline is coherent.   

4.1   Experience Adaptation Planning Algorithm 

Plan refinement techniques search a space where each node in the space is an instance 
of a plan (partial or complete) until a plan is found that has no flaws, or reasons why a 
plan cannot be considered a solution. Partial-order planning [14] is a form of plan 
refinement search that starts with the empty plan. For each plan visited, a flaw is 
detected and all repair strategies are invoked, each strategy resulting in zero or more 
new plans in which that flaw has been repaired. These new plans are successors to the 
current plan and are added to the fringe of the search space. A heuristic is used to 
determine which plan on the fringe visit next. Note that repairing a flaw may 
introduce new flaws. 

Our adaptation algorithm is shown in Fig 5. The main loop is the standard plan 
refinement search loop. In addition to the pre-processing stage, we implement the 
following flaw types: 

 

− Open condition: an event has a precondition not satisfied by any causal links from 
a temporally earlier event or the initial state. 

− Causal threat: An event has an effect that undoes a condition necessary for 
another event to occur and there are no ordering constraints forbidding the 
interaction. 

− Un-decomposed event: An abstract event has not been decomposed. 
− Dead end: An event is not on a causal path to the outcome state. 
− Superfluous effort: Events reestablish a redundant world state. 
 

Each flaw type is paired with one or more repair strategies. Repair strategies can be 
additive or subtractive.  

Additive strategies are as follows. An open condition flaw can be repaired by 
instantiating a new event with an effect that unifies with the open precondition or by 
extending a causal link from an existing event to the open precondition [14]. Thus  
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events are added to a plan in a backward-chaining fashion. A causal threat can be 
repaired by imposing ordering constraints between events [14]. An un-decomposed 
event can be repaired by selecting and applying a decomposition rule, resulting in 
new events instantiated, or existing events reused, as less abstract children of the 
abstract event [31].  

Dead-end flaws can be handled in an additive fashion. We implement two additive 
dead-end repair strategies. First, if there is another event that has an open condition 
that unifies with an effect of the dead end, we can try to extend a causal link from an 
effect of the dead end to the open precondition of the other event. Second, we can 
shift an existing causal link to the dead-end event. This can happen if the dead end has 
an effect that matches the condition of a causal link between two other events. The 
dead-end event becomes the initiating point of the causal link, which may make the 
other event a dead end unless it has two or more causal links emanating from it. A 
third strategy is to ignore the flaw. This is used only as a last resort in the case that all 
other repair strategies, additive or subtractive, have proven to lead to failures. The 
intuition behind this strategy is that dead-end events are aesthetically undesirable but 
acceptable if necessary.  

Superfluous effort flaws often occur when resolving other flaws. To repair a 
superfluous effort, one strategy is to extend causal links from events in the 
superfluous effort back to earlier events with effects that match. Extending causal 
links back to earlier events is a common technique used in continuous planning [22]. 
After the extension, some events in the superfluous effort become dead ends, and will 
be repaired accordingly. As with dead ends, a last-resort strategy is to ignore the flaw, 
favoring a narrative with superfluous efforts over no solution. 

Subtractive strategies repair a flaw by deleting the source of the flaw from the 
plotline structure. Subtractive strategies are essential for plot adaptation because pre-
existing events may interfere with the addition of new events, resulting in outright 
failure or awkward workarounds to achieve soundness and coherence. Deletion is 
straightforward. However, if an event to be deleted is part of a decomposition 
hierarchy, all siblings and children are deleted and the parent event is marked as  

The algorithm takes a plotline plan, a set of rules to rewrite the goal and initial state, and a 
domain library Λ consisting of events specifications and quest decomposition rules. 

function ADAPT (plan, requirements, Λ) returns solution or failure 
plan ← REWRITE-GOAL-AND-INITS(plan, requirements) 
fringe ← {plan} 
loop do 
 if fringe = ∅ then return failure 
 plan ← POP(fringe) 
 if plan has no flaws then return plan 
 flaw ← GET-ONE-FLAW(plan) 
 newplans ← REPAIR(flaw, plan, Λ) 
 fringe ← INSERT-AND-SORT(newplans, fringe) 

 

Fig. 5. The plotline adaptation algorithm 
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un-decomposed. This preserves the intuition authored into quests and decomposition 
rules.  

Open condition flaws can be subtractively repaired by deleting the event with the 
open precondition. Causal threat flaws can be subtractively repaired by deleting the 
event that threatens a causal link. Dead end flaws can be subtractively repaired by 
deleting the dead end event. We implement a heuristic that prefers to retain events in 
the original quests as much as possible. Table 1 shows all the repair strategies 
available for each type of flaw. 

The ability to add and delete events can lead to non-systematicity – the ability to 
revisit a node through different routes – and infinite loops. To preserve systematicity, 
we prevent the deletion of any event or link that was added by the algorithm. Events 
and links inserted by the algorithm are marked as “sticky” and cannot be subsequently 
deleted, whereas those in the original plotline are not sticky and can be removed. 

4.2   Heuristics 

As with all search problems, a powerful heuristic can significantly improve the 
efficiency of the search algorithm. Two types of heuristics are typically used in 
conventional partial-order planning. Here, we focus on the heuristic that determines 
which plan on the fringe to visit. Traditionally, such a heuristic favors plans with 
fewer flaws and shorter plans over longer ones.  

Table 1. Additive and subtractive strategies for repairing flaws 

Flaw Description Repair Strategies 
Open 
condition 

Event e has a 
precondition p that 
is not satisfied by a 
causal link. 

1. Instantiate new event enew that has an effect that 
unifies with p. Extend a causal link from enew to e. 

2. Select an existing event eold that has an effect that 
unifies with p. Extend a causal link from eold to e. 

3. Delete e. 
Causal 
threat 

Event ek has an 
effect that negates a 
causal link between 
events ei and ej. 

1. Promotion: temporally order ek before ei. 
2. Demotion: temporally order ek after ej. 
3. Delete ek. 

Un-
decomposed 
event 

Event e is abstract 
but has no children. 

1. Select and apply a decomposition rule, instantiating 
new events or reusing existing events as children. 

Dead end 
event 

Event e is a dead 
end. 

1. Select an existing event eold that has a precondition 
that is unsatisfied and that unifies with an effect of e. 
Extend a causal link from e to eold. 

2. Select an existing event eold that has a precondition 
that is satisfied by causal link c and unifies with an 
effect of e. Transfer the starting point of c to e. 

3. Instantiate new event enew that has a precondition that 
unifies with an effect of e. Extend a causal link from 
e to enew. 

4. Ignore the flaw. 
Superfluous 
event 

Event e is 
superfluous. 

1. Link effects of earlier steps to preconditions of e. 
2. Ignore the flaw. 
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In order to preserve the original authorial intent of the plotline, deletion of events 
should be used with caution and guided by a good heuristic. One method is to favor 
the deletion of actions more relevant to the quests removed than to quests that remain. 
We propose two relevance criteria to build such a heuristic. The first criterion of 
relevance is causal relationships. Actions that immediately precede or follow actions 
within removed quest decompositions are more relevant to them than actions further 
away. The causal relevance between two actions is inversely proportionate to the 
length of the shortest path between them. The second criterion is the objects or 
characters the actions refer to. For example, actions in the Witch-Hunt quest refers to 
the witch frequently, where as other quests, as shown in Fig. 2 and 8, do not refer to 
her at all. We propose that the locality of character and object reference can be 
exploited to identify relationships between events in a plan. 

4.3   Adaptation Example 

In this section, we explain the working of quest-centric adaptation planning with an 
example of a simple role-playing game. As shown in Figure 6, the original game 
narrative consists of two quests. In the first quest, the player kills the witch, arch-
enemy of the king, by pouring a bucket of water on her. In the second quest, the 
player rescues the princess from a dragon and marries her. However, suppose the 
player prefers treasures to marriage, we can remove the rescue quest and add an 
escape quest where the player is locked in a treasure cave and can only escape by 
solving a puzzle. The original storyline, an intermediate step, and the final result are 
shown respectively in Figs. 6, 7 and 8. The order of operations is denoted with 
numbers in circles. We do not intend to explain every detail due to space constraints. 
For the sake of simplicity, the search is assumed to be nondeterministic, which always 
makes the correct choice at every decision point. Backtracking will happen in real 
applications, even though not shown here.  

Fig. 6 shows a given storyline of two quests. Thick gray arrows indicate the two 
quests satisfy quest-level goals quest-complete(Witch-Hunt) and quest-
complete(Rescue) respectively. At the world-state level, the only goal is 
married(player, princess), which is satisfied by the primitive action Marry 
Princess as shown by a thin black arrow. 

We begin with requirements from the user preferring escape missions to rescues. 
The quest-level goal situation is updated accordingly by removing quest-
complete(rescue) and adding quest-complete(escape). The only outgoing causal 
link from the action Rescue Quest is used to satisfy this quest-level goal. As a result, 
this action becomes a dead end. The first step of planning is to remove it together with 
all descendant actions and all associated causal links. To fulfill the added goal quest-
complete(escape), the abstract action Rescue Quest is added and subsequently 
decomposed. New actions in the decomposition are added. They bring new open 
preconditions. We then deal with world-level goals. In the next few refinement 
iterations, dead ends, marked with number 3, are removed and actions marked with 
number 4 and 5 are added to fulfilling open preconditions. After these operations, we 
have obtained the plan in Fig. 7. 
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Fig. 6. The original plotline 

 

Fig. 7. Snapshot of an intermediate point in the adaptation process 

The reward component of Witch-Hunt Quest is modified as follows. The action 
King Trusts You, marked with 6, becomes a dead end and removed. Its removal 
introduces two flaws: 1) the action Show Shoes to King has become a dead end, and 
2) the Witch-Hunt Reward abstract action now has no decomposition. The relevance 
heuristic comes into play in resolving the dead end. The action Show Shoes to King 
is determined to be more relevant to the remaining quest than to the removed.  Hence, 
we prefer establishing an outgoing link known-success(king, hero, witch-hunt) 
for action number 5 to removing it. Finally, we need a new decomposition for Witch-
Hunt Reward, and we realize the decomposition can reuse action number 5. Having 
fixed all flaws, we have a complete and coherent narrative, shown in Fig. 8. 

4.4   Analysis of Authorial Leverage 

Plotline adaptation scales up the ability to deliver customized experiences without 
significantly increasing the authoring effort. Chen et al. [2] defines authorial leverage 
as the quality of experience per unit of domain engineering, where quality is a 
function of complexity, ease of change, and variability of experience. We focus on 
variability – the number of distinct stories – as our metric. 
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Fig. 8. Complete, Coherent Narrative after Adaptation 

A one-time authoring cost by a domain engineer is incurred in the development of 
a world domain model, containing specifications for primitive events, abstract events 
(including quests), and decomposition rules. The payoff is a theoretically exponential 
leverage. The adaptation process can theoretically produce as many variations of a 
given plotline as the size of the power set of available quests. In practice, the number 
will be lower because a large fraction (e.g. 70%) of the original will be retained in 
each adaptation request. However, the scaling will still be exponential if the fraction 
remains constant. To manually achieve this scaling, one would have to author n(n-1) 
transitions between quests (n-1 variations of each quest so it can be paired with n-1 
other quests). Thus, one strength of plotline adaptation is the ability to 
opportunistically discover new transitions between quests based on the world model. 
Future work is required to measure the pragmatic authorial leverage of the system. 

4.5   Evaluation 

The principles of narrative soundness and coherence guide the adaptation process. To 
evaluate our approach to adaptation with respect to the necessity of detecting and 
resolving narrative soundness and coherence, we used an ablative technique whereby 
we determined degree of adaptation success on specific problems with several 
versions of the algorithm with different repair strategies disabled. Our hypothesis is 
that plotlines generated by the complete algorithm are preferred to stories generated 
when the system cannot repair dead ends or open preconditions. 

Two adaptation tasks were performed based on a hypothetical player model. Each 
required the replacement of one quest with another in a two-quest plotline. The 
following versions of our algorithm were used to generate three versions of plotlines 
for each task:  

 

− N0: Cannot repair flaws except un-decomposed events 
− N1: Cannot repair dead-end flaws 
− N2: The complete algorithm 
 

Plotlines produced by N0 lacked events that establish required preconditions and 
seemed to contain gaps. Plotlines produced by N1 contained at least one dead end. 
Text descriptions of each plotline were hand-authored and participants were provided 
with the six descriptions arranged in two groups where each group contained  
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Table 2. Empirical results of the evaluation 

Plot Group 1 N2>N1 N2>N0 N1>N0 

No. Participants 13 22 22 

Percentage 52% 88%* 88%* 

Plot Group 2 N2>N1 N2>N0 N1>N0 

No. Participants 19 25 15 

Percentage 76%* 100%* 60% 

 
adaptations generated by N0, N1, and N2 for one of the two tasks. Our hypothesis is 
confirmed if people prefer N2 to N1 (N2>N1) and N2 to N0 (N2>N0). 

Twenty-five participants were involved in the study. The results are summarized in 
Table 2. All results were put to one-sided tests on binomial distribution at the 
significance level of p < 0.05; asterisks (*) mark significant results. In group 1, a 
significant number of participants preferred N2 to N0, but no significance was found 
about those who preferred N2 to N1. For plotlines in group 2, a significant number of 
participants preferred N2 to both N0 and N1.   

Results from group 1 and group 2 should corroborate, suggesting a hidden 
independent variable. The N1 plotlines in both groups contained a dead end. 
However, the group 1 dead end appeared to be events that were never followed up, 
whereas the group 2 dead end directly contradicted the apparent intentions of other 
events. It is likely that our system, using formal definitions, is more sensitive to story 
incoherence than human game players. Thus, we believe that group 2 plotlines, 
consisting of more disruptive and noticeable dead ends, are more representative of 
worst-case situations. Group 2 results indicate that it may be beneficial to be cautious, 
erring on the side of being overly sensitive to story incoherence. Results of Group 2 
validate our hypothesis, leading us to believe that enforcing narrative coherence is 
beneficial and that no harm is done by being overly sensitive to story incoherence. 

5   Related Work 

Automated adaptation of computer games has been explored in the context of player 
character attributes, difficulty adjustment, and game environment changes. 
Increasingly, player models are being used to adapt game content. Interactive 
storytelling systems demonstrate how players’ behaviors can change the story content 
in virtual worlds on the fly. See Roberts and Isbell [20] for a general discussion of 
interactive narrative approaches. Of particular relevance to this work are interactive 
narrative approaches that leverage player models. Thue et al. [26] describe a 
technique whereby a player model based on role player types is used to select 
branches through an interactive story. Seif El-Nasr [24] attempts to infer feature-
vectors representing player style, affecting changes in which dramatic content is 
presented to the player. Sharma et al. [25] use case-based reasoning to learn player 
preferences over plot points for the purposes of selecting the next best story plot 
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point. These approaches assume the existence of branching story graphs or pre-
authored alternatives. 

Note that our system is an offline process that effectively “re-writes” a plotline 
based on a player model before it is executed. As such, our system can afford to 
backtrack and make globally optimal decision, such as those about narrative 
coherence, whereas online adaptation systems can only make local decisions that 
cannot be undone. Our system is not an interactive narrative system; once execution 
of the plotline begins, our system does not make further changes. Indeed, interactive 
storytelling and plotline adaptation are complimentary: the adaptation system can be 
seen as a process that, based on knowledge about the player, configures the drama 
manager, which then oversees the user’s interactive experience online. Our system 
can be coupled with, for instance, the Automated Story Director [18], a planning-
based interactive narrative system. 

As an offline procedure, plotline adaptation has a strong connection with story 
generation. Story generation is the process of automatically creating novel narrative 
sequences from a set of specifications. The most relevant story generation work is that 
that uses search as the underlying mechanism for selecting and instantiating narrative 
events (cf., [10], [6], [15], and [19]).  The distinction between our plotline adaptor and 
story generation is that plotline adaptation starts with a complete narrative structure 
and can both add and remove narrative content, whereas story generation typically 
starts from scratch. As with case-based planning, the adaptation of plotlines is, in the 
worst-case, just as hard as planning from scratch [12]. However, in the average case, 
starting from an existing plotline will require much fewer decisions to be made. 

In a parallel effort, the TACL system [13] is designed to adapt and customize 
military training scenarios. Realistic military training is a highly rigorous process. 
Any automatic adaptation must preserve pedagogical correctness and the tolerance of 
modification is low. Game quests, on the other hand, can be modified extensively. In 
this paper, we apply the algorithm in the novel context of quests and games.  

Work on adapting player experience in games has been addressed in terms of game 
level generation. Hullett and Mateas [5] have investigated generation of game level 
floor plans, and thus the narrative of moving through space, using HTN planning. 
HTN planning requires complete specification of how each task can be performed. In 
comparison, our approach is capable of opportunistic discovery of novel event 
sequences. Finally, others have explored game world generation and other non-
narrative content generation using neural network models of players and evolutionary 
computation (cf., [27]). At the moment, we are ignoring the generation of landscape 
and environment in games. 

6   Conclusions 

As game players possess different motivations, tastes and needs, a one-size-fits-all 
approach to game plotlines may prove to be limiting. We treat adaptation as the 
optimization of plotlines based on requirements derived from a player model 
employing knowledge about player preferences and a model of novelty. As such, we 
find an offline approach to be beneficial in achieving global optimization of plotline 
structure.  
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The adaptation problem itself is solved by an iterative improvement search based 
on partial-order planning. However, in order to start from a complete plotline and 
arrive at a variation with different quests, we employ both additive and subtractive 
improvement mechanisms. To the extent that the player model is an approximation of 
player preferences, future work may pair our offline adaptation technique with online 
interactive storytelling engines.  

As the world orients toward greater on-demand and customized entertainment 
experiences, overcoming the content authoring bottleneck will increasingly require 
automation on the level of creative production. We believe that a partnership between 
human authors and automated adaptation can scale up our ability to deliver the “right 
experience to the right person at the right time.”  
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Abstract. The complexity of training situations requires teaching dif-

ferent skills to different trainees and in different situations. Current

approaches of dynamic difficulty adjustment in games use a purely cen-

tralized approach for this adaptation. This becomes impractical if the

complexity increases and especially if past actions of the non player

characters need to be taken into account. Agents are increasingly used

in serious game implementations as a means to reduce complexity and

increase believability. Agents can be designed to adapt their behavior

to different user requirements and situations. However, this leads to sit-

uations in which the lack of coordination between the agents makes it

practically impossible to follow the intended storyline of the game and

select suitable difficulties for the trainee.

In this paper, we present a monitoring system for the coordination of

the characters actions and adaptation to guarantee appropriate combi-

nations of character actions that ensure the preservation of the storyline.

In particular we propose an architecture for game design that introduces

a monitoring module to check the development of user skills and direct

coordinated agent adaptation. That is, agents propose possible courses

of action that are fitting their role and context, and the monitor module

uses this information together with its evaluation of user level and sto-

ryline progress to determine the most suitable combination of proposals.

Categories and Subject Descriptors:
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms: Design.

Keywords: Agents in games and virtual environments, Adaptation,

Organisations.

1 Introduction

Dynamic difficulty adjustment is an important aspect in training applications
that need to be suitable for a large variety of users. Current approaches of dy-
namic difficulty adjustment in games use a purely centralized approach for this
adaptation [21,9]. This becomes impractical if the complexity increases and es-
pecially if past actions of the non player characters (NPC’s) need to be taken
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into account. Serious games [19,20] often require teaching different skills to the
trainee making centralized adaptation even more complex. The use of software
agents has been advocated as a means to deal with the complexity of serious
games [12]. Leaving the responsibly of staying believable and adjusting to game
progress, to the non player characters creates a much more manageable situa-
tion. In serious games, quality is measured in terms of how well the components
in the game are composed, how they encourage the player (or trainee) to take
certain actions, the extent to which they motivate the player, i.e. the level of im-
mersiveness the game provides, and how well the gaming experience contributes
to the learning goals of the trainee [4].

Believability is a main driver of game development. The search for enhanced
believability has increasingly led game developers to exploit agent technology in
games [12]. Three requirements for online game adaptation have been identified
[1]. First, the initial level of the player must be identified. Second, the possible
evolutions and regressions in the player’s performance must be tracked as closely
and as quickly as possible. Third, the behavior of the game must remain believ-
able. In this paper we will focus on how the tracking is used to find the most
appropriate solution while making sure that the game stays believable.

In order to optimize learning, serious games should provide the trainee an
ordered sequence of significantly different and believable tasks. Without a clear
organization structure, adaptation can quickly lead to a disturbed storyline and
the believability of the game will be diminished. Furthermore, characters in se-
rious games are usually active for relatively long periods. This poses an extra
burden on the believability of the game, namely coherence of long-term behav-
ior [14]. When there are multiple NPC’s that all have their own preferences and
can all adapt to the trainee independently, it becomes almost impossible to cre-
ate a coherent game that has a natural progression of the game and is the right
difficulty for the user. The game progression is much more controllable if there
is a monitoring system in the application where the desired progression (could
have different paths) is specified. We propose a system where we do not only
have a monitoring system that specifies the desired storyline but also keeps track
of the current progression within the storyline. The NPC’s are still programmed
with their own preferences but they receive updates of the game progression.
The agents can then easily be programmed to perform different plans, not only
dependent on their own beliefs but also dependent on the game progression.

Coordination of agent actions also becomes a lot more manageable if there is a
central control system that allows the designer to put restrictions on the possible
plans performed by the agents. A very simple example is that the designer can
specify that at a certain point in the game, one of the NPC’s should always check
the left hallway. A possibility would be that all the agents are programmed with
all these restrictions in mind and that they communicate directly with each
other to make sure that one goes left. We propose a coordination system where
all the agents propose multiple actions with preference weights corresponding to
each of these proposals. From these proposals the adaptation engine will select
the optimal solution that also keeps the restrictions of the designer and the
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preferences of the agents in mind. In this example, this still means that at least
one agent should have the capability to check the left hallway but it puts a lot
less burden on the designer to allow autonomy within the agents while making
sure that certain critical criteria are always met.

In previous work [24,23] we proposed the use of multi-agent organizations to
define a storyline in such a way that there is room for adaptation while making
sure that believability of the game is preserved. In this paper, we discuss the
effect of these approach to adaptation on the design of the agents.

The paper is organized as follows. In the next section the background and
motivation for this model are discussed. In section 3 we describe the framework
and the adaptation engine. We illustrate the use of the model with an example
in section 4. Conclusions are discussed in the last section.

2 Background

We advocate bringing together three issues in order to adapt serious games to
the user. The adaptation should be distributed over the separate elements that
constitute the story line, these elements should adapt themselves online using
some machine learning technique and they should do it in an organized fashion
to maintain the general story line. In this section, we discuss the related work
that can be used for these aspects.

2.1 Adaptation in Games

Even though many commercial games do not use any dynamic difficulty adapta-
tion [17], already some research has been done on difficulty adaptation in games.
Most of this research focuses on adaptation of certain simple quantitative ele-
ments in the game that do not influence the storyline of the game. For example
better aiming by opponents or adding more or a stronger type of opponents.

Current research on online adaptation in games is based on a centralized
approach [22,10]. Centralized approaches define the difficulty of all the subtasks
from the top down. This is only feasible if the number of adaptable elements
is small enough and if the separate adaptable elements have no separate time
lines that need to be taken into account. In shooting games, for example, these
requirements are not problematic. The games only adapt to the shooting skill of
the trainee and most characters only exist for a very limited amount of time.

Another important aspect of adaptation in (serious) games is the distinction
between direct and indirect adaptation. Direct adaptation occurs when the de-
signer specifies possible behavior of the agents in advance and specifies how and
when to change this behavior. The designer also specifies what input informa-
tion should be used. Direct adaptation only allows adaptation to aspects that
the designer has foreseen. No unexpected behavior can emerge when using direct
adaptation. On the other hand, in indirect adaptation performance is optimized
by an algorithm that uses feedback from the game world. This requires a fitness
function and usually takes many trials to optimize. If indirect optimization is
used the algorithm also needs to be able to cope with the inherent randomness
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of most computer games. In this paper, we will use an approach that has the
benefits of direct adaptation without the need for the designer to directly spec-
ify how the adaptation should be done. The designer is able to specify certain
conditions on the adaptation to guarantee the game flow but does not have to
specify which implementations are chosen after each state.

An added challenge for user adaptation in games is, that it can only be done
while the user is playing the game [3,5]. Online adaptation requires that the
algorithm adapts quicker with a lot less episodes and learning data. Because the
game is adapting while the user is participating in the game, it is also important
that no unwanted and unpredictable situations are introduced by the adapta-
tion. This means that the adaptation should only try promising and believable
solutions while exploring different options.

In this paper, we will focus on not supervised learning (we use this term
to avoid confusion with unsupervised learning). That is, we do not expect the
user or an expert to assess the performance of the user on certain tasks. The
algorithm also needs to stay real-time when scaled, meaning that it also functions
fast enough if a lot of adaptable elements are added.

One of the most important factors when performing online adaptation is to
limit the size of the state space. In offline learning the algorithms are usually
given a lot of different input variables and the algorithm is given enough time
and is flexible enough to learn which have the most influence. In online learning
this usually takes too much time.

Research has been done on using reinforcement learning in combination with
adaptation to the user [22,2]. Most of these algorithms rely on learning relatively
simple subtasks. Moreover, the aim of these adaptation approaches is learning
the optimal policy (i.e. making it as difficult as possible for the user). In order
to avoid that the system becomes too good for the user, some approaches filter
out the best actions to adjust the level of difficulty to the user. This results
in unrealistic behavior where characters that are too successful suddenly start
behaving worse again. Little attention is paid to preserving the story line in
present online adaptation mechanisms, because they only adjust simple subtasks
that do not influence the storyline of the game. Typical adjustments are, for
example, changing the aiming accuracy of the opponents or adding more enemies.
Some work has been done on preserving the storyline with adapting agents [13]
but they focus on preserving the plot, not on adapting to the trainee.

2.2 Agent Organizations

Adapting the game to the trainee for complex learning applications requires both
learning capabilities and decentralized control. However, in order to guarantee
successful flow of the game and the fulfillment of the learning objectives, the
system needs to be able to describe global objectives and rules. Although many
applications with learning agents exist, multi-agent systems with learning agents
are usually very unpredictable [16]. In order to limit unpredictability in MAS,
organization-oriented approaches have been advocated such as Opera [7] and
[8]. In this framework it is possible to define conditions when certain plans are
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allowed or not. The ordering of the different possible plans can also be defined
in this framework. This allows the designer to make sure that the users are not
exposed to tasks that are not suitable yet or would ruin the storyline. In previous
work we have shown how to use agent organizations to specify the boundaries
of the game [23].

The OperA model for agent organizations enables the specification of organi-
zational requirements and objectives, and at the same time allows participants
to have the freedom to act according to their own capabilities and demands. In
OperA, the designer is able to specify the flow of the game by using landmarks.
The different sub-storyline definitions of the game are represented by scenes
which are partially ordered without the need to explicitly fix the duration and
real time ordering of all activities. That is, OperA enables different scenes of
the game to progress in parallel. In the scenes, the results of the interaction are
specified and how and in what order the different agents should interact.

Such an interaction structure defines the ordering of the scenes and when it is
allowed to transition to the next scene. The scenes are defined by scene scripts
that specify which roles participate and how they interact with each other. The
definition of the organization can be so strict that it almost completely defines
the strategy, similar to what is done when using scripts. But it is also possible
to specify the organization in such a way that all the agents in the game work
towards achieving the goals of the game but are still able to do this, using
different strategies. For example, you can specify that a certain amount of money
needs to be earned by the agents before moving to the next scene, but that you
do not specify how they need to do this. It is also possible to defines norms in
the scene description. This makes it possible to put extra restrictions on the
behavior of the agent. In a scene script, it is also possible to define certain time
constraints to make sure that the game progresses fast enough.

2.3 Adaptation with BDI-Agents

Autonomous game characters should be able to ensure that they maintain a
believable storyline. They also have to make complex decisions during the game
because not all information is known before the game is started. Using BDI
agents is a suitable implementation because it allows us to create intelligent
characters that are goal directed and able to deliberate on their actions. For
the implementation of the BDI agents we will use the 2APL [6] language. 2APL
is an effective integration of programming constructs that support the imple-
mentation of declarative concepts such as belief and goals with imperative style
programming such as events and plans. Like most BDI-based programming lan-
guages, different types of actions such as belief and goal update actions, test
actions, external actions, and communication actions are distinguished. These
actions are composed by conditional choice operator, iteration operator, and se-
quence operator. The composed actions constitute the plans of the agents. Like
the existing agent programming languages, 2APL provides rules to indicate that
a certain goal can be achieved by a certain pre-compiled plan. Agents may select
and apply such rules to generate plans to achieve their goals.
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Most BDI architectures do not provide learning abilities. However, an exten-
sion of 2APL for adapting agents is available [11], in which multiple equivalent
2APL plans are available that are suitable for different skill levels. There are
many forms of adaptation that could be used in conjunction with BDI agents.
The approach we are using changes a preference ordering in the applicable plans
of the agents. This means that all the plans that are performed by the agents are
plans that are manually created. This results in adaptation that always selects
plans that have an predictable outcome. This is important for online adaptation
because the trainee observes all the plans that are performed by the agents. The
agents are created in such a way that they have multiple applicable plans at
the same time. The default 2APL deliberation cycle will always select the first
applicable plan. This extension makes it possible to select the applicable plan
with the highest preference. Plans with the same plan type but with a different
difficulty for the trainee are created. This allows for adaptation of the difficulty
level by changing the preferences. Not only is it possible to change the difficulty
level but it is also possible to have the agent perform a plan of a different type
if this is also an applicable plan.

3 Framework

To get a better understanding of the different elements of the whole framework
we first briefly describe the different elements and the information that is passed
between them. Figure 1 shows a schematic overview of all the different elements
of the framework. We are currently using a custom Java environment as our
game world, but our approach is also applicable to other games. The NPC’s and

Agent model• 2APL Agent

Agent model• Agent Bidding

• Game world

• Game state

• Agent interface

• User Model

• Adaptation Engine

• NPC• NPC• NPC• NPC

Update

User Performance

Translate

Plans Bid

Update Beliefbase

Task Weights Skill Levels

External Action
SelectionGame Actions

Preferences & 
Temination

Scene StatesApplicable plans

• Game Model

Fig. 1. Framework overview
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other dynamic game elements in the game are controlled by 2APL agents. The
agents in the game have the capability to perform basic actions, like walking to
a certain location or opening a door. The higher level behaviors are specified in
the 2APL agents which send the basic external actions to the agent interface
which translates these commands to basic game actions.

The game state is used to update the beliefs of the agents, update the pro-
gression of the game and pass the performance of the trainee to the user model.
The user model uses this information and the task weights from the adaptation
engine to update the estimated skill level for each state. These updated skill
levels can then be used again to find better matching agent behaviors.

The 2APL agents can perform different actions depending on their beliefs and
dependent on the scene states. The game model contains information about the
desired storyline of the game and keeps track of how far the game has progressed
in the storyline. This information is passed to the 2APL agents to influence
the possible actions they can perform. The agent bidding module specifies the
agent preferences for all the applicable plans. The adaptation engine uses this
information and the information from the user model to find the plan assignment
for the agents that best serves the situation for the trainee. The bidding module
of the agent uses this information to control the plans that are selected by the
agents.

The agents do not use the adaptation engine for all their plan selections. If
there is no need for adaptation, then the agents will keep running their normal
2APL program with the current preferences. The adaptation engine will request
a new bidding round if the deviation from the intended difficulty becomes too
large. The bidding process is also started at fixed points in the game scenario
where it is logical for the agents to start performing different actions. Updated
preferences also do not mean that the agents have to stop performing their
current plan but the selection of the first new plan is influenced.

3.1 Adaptation Engine

The adaptation engine consists of two different parts. One part selects the best
combination of plans for all the different agents. The other part keeps track of
the game progress and is responsible for checking if the combinations of plans are
currently valid depending on the state of the game. The combinatorial auction
has to optimize on two possibly conflicting objectives. On the one hand we want
to optimize on the preferences of the agents while on the other hand we want
to select the combination which is the optimal difficulty for the user. Because
we focus on adapting to the trainee, we give the highest priority to finding the
best match for the trainee. Remember that we optimize on different skills of the
trainee. Slight variations in difficulty level are not problematic but do want to
prevent large deviations from the desired skill levels for each separate skill. This
means that we rather have deviations that are a bit larger for each skill than
that we have multiple skill levels that are perfectly chosen but a large deviation
in one remaining skill.
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While optimizing on the skills of the trainee we also want to optimize on
the preferences of the agents to keep their preferences into account to keep
the game as believable as possible. This process uses a form of a combinatorial
auction [18]. This needs to be a combinatorial auction because the agents can
give a higher score for performing a certain action depending on which plans the
other agents will perform. This preference dependence is only used for tasks that
require coordination between the agents. For example, it is more believable for a
medical NPC to go towards enemy lines if the offensive NPC’s are going towards
enemy lines. We try to limit the amount of preference dependences because it is
much more labor intensive for the game designer to specify the preferences of the
agents and it is also more computationally expensive to find the best solution.
Similar to finding the best match for the skill level we also want to avoid large
deviations from the preferences. This means that we do not optimize on the
highest combination of preferences from the agents but on the smallest squared
deviations from the preferred proposal. The formula below is the function that
we currently use and corresponds with the properties that we specified. We will
extend the framework to allow for more complex multi attribute functions.

f = wu
((d1 − s1)2) + (d2 − s2)2) + ... + (dn − sn)2))

n
+

wa
((b1 − a1)2) + (b2 − a2)2) + ... + (bm − am)2))

m
(1)

With wu specifying the influence of the user model preference,n the number
of skill, si the desired difficulty level for skill i, di the difficulty of the task
combination for skill i, wa specifying the influence of the agent preferences, m
the number of agents bj the value of the highest preference of agent, aj the
preference value of agent j corresponding to the task combination.

A common point of critique is that using dynamic difficulty adjustment re-
moves the challenges from the game. This is true up to a certain point; the user
will always be able to play the complete game below his maximum skill level.
But if the player is not purposefully sabotaging the game it does not mean that
the challenges of the game have to be removed from the game. Controlling the
relative difficulty of the game at specific parts of the game results in a more sat-
isfying game experience than trying to optimize on a constant ”optimal” relative
difficulty. In the game model we do not only allow the designer to specify the
progress of the game but we also allow the designer to specify different difficul-
ties corresponding to certain phases in the storyline. We also allow the designer
to specify an absolute difficulty level, this can be a desired option especially
for serious games because one would like to be able to know that if the trainee
finishes the training that the skill level of the trainee is high enough. Updating
the user model can be done in different ways. Our proposed user model update
function is beyond the scope of this paper but is described in [23].

3.2 Synchronization

Selecting the best combination of plans from the different agents is easiest if they
all terminate at the same moment. If all plans are terminated and started at the
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same time the optimal combination for the trainee can be selected. However, the
time to execute the different plans by the agents is not always the same, and to
keep the storyline flowing, it is not always a possibility to terminate plans of all
the agents when a few agents have completed their task. In our framework we
specify different subtasks of the game application by using scenes. The end of a
scene usually is a natural time for all the participating agents to terminate their
behavior. This gives enough control to make the necessary changes both for the
gameflow and to optimize learning for the user.

Because multiple scenes can be active at the same time, it also does not mean
that if a scene is finished that all agents have terminated their plans. The goal
is to have the most suitable task combination for the trainee during the whole
game. Our solution is to assume that all plans that have not terminated are fixed
and that newly created plan combinations keep these active plans into account.
This results in a good combination for the trainee when the new plans are started.
If plans are terminated the difficulty of the task changes again (becomes easier
most of the time), but this can usually be compensated very quickly with new
plans from the same agents (instant correction) or new plans from other agents.
This results in a system that adapts quickly while keeping the behavior of the
agents realistic.

3.3 Agent Implementation

The high level actions of the NPCs are implemented using the 2APL [6] language.
This allows modeling of the NPC’s using the BDI architecture. The agents are
created with the game model structure in mind. This is done in such a way
that the applicable plans are not only dependent on the game state and the
internal state of the agent but also on the scenes that are currently active. This
process makes it a lot easier for the developer to ensure the certain behaviors
are only performed at the right moment in the game progress. The 2APL agents
are created in such a way that multiple plans are applicable at the same time.
These applicable plans can vary in difficulty for the trainee but they can also
have the NPC perform substantially different tasks in the game.

When the agents receive a request to perform a new behavior they reply with
a number of different applicable plans according to the game state, the active
scenes and the internal state of the agent. This bidding process is not part of the
normal 2APL deliberation cycle but is a separate part of the agent. We sepa-
rated these tasks because it would be very inefficient and unnecessarily complex
if the agents use the BDI reasoning process to decide why they want to perform
a certain plan. This separate bidding part of the agent is also responsible for
estimating the believability of each action. One important factor in estimating
the believability of a new plan is dependent on the difference compared to the
previous plan. This transition believability can either be fully manually audited
by the designer for each transaction but usually a hybrid solution is most suit-
able. In this hybrid solution the game designer can specify that a certain plan
can never follow certain other plans and may not be included in the current bid.
For example, it could be desired that a victim becomes more mobile to make
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it easier for the trainee to extract the victim but we do not want the trainee
to observe the victim NPC transitioning from having a broken leg to suddenly
running away. In most plans transitions, multiple new plans are possible but
one is more believable then another. Usually plans with the similar actions and
similar difficulty have the best believability. The larger the change in difficulty
and the more sudden the action types change, the less believable it becomes.
For example, it would be very unlikely if the aiming accuracy of an opponent in
a shooting game suddenly decreases. In these cases simple formulas are used to
specify the believability of plans transitions. The bidding element of the agent
influences the plans selected by putting a preference relation on the plans of
the agents. These preferences are used by a modified version of the deliberation
cycle which selects the plans with the highest preference from all the applicable
plans.

3.4 Prototype Implementation

We are currently developing a proof of concept of the model using java based
2D example. This particular game world is chosen to speed up the prototyping
process. We are also working on a very similar coupling with a serious game
created with the Quest 3D game engine.

The game model is specified using the Eclipse version of the Operetta [15] IDE.
This tool facilitates the design, analysis and development of agent organizations
using the OPERA Conceptual framework. Using this tool not only helps the
designer to chose the rigth elements in model but also allows to check the validity
of the model. Operetta makes it possible to export the game model to a XML
to make it easier for the adaptation engine to parse this information.

4 Example

In this section, we give an example of the possible interaction between the agents
and the adaptation engine. This example is situated in a game world with three
game characters, one adaptive game element, and a single building. Besides this
we also have the human player (the trainee) in the role of a firecommander. The
aim of the game is to train the fire commander on how to work under pressure,
and we will focus on one scene where a fire needs to be extinguished in a room.
The agents are adapting to optimize the difficulty best matching with the skill
levels of the trainee. For simplicity we only use one partial ordering for this
task. The partial ordering for this task is shown in figure 2. In this game, agents
simulate firemen with their own preferences, skills and own memory of past
games. The first evaluation on performance is done when the trainee has finished
extinguishing one room or when another ending criteria is reached (trainee can
fail the task completely). When this period is over we get feedback about the
performance of the trainee. These performance measures are always very domain
specific and need to be designed by an expert. Experts creating these kinds
of training are used to create performance measurable tasks. An example of a
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• Start • Get Access to Room

• Evacuate Victim

• Extinguish Fire

• End

Fig. 2. Example Scene

performance measure could for example be the time it took to extinguish the
fire (in reality this would be more complicated). Remember that we are getting
the performance of the user for the complete tasks because different subtasks
influence each other making it impossible to accurately measure independent
performance.

One important element in fire commander training is the behavior of the fire.
An agent that controls a certain element for the adaptation does not always need
to be a character in the game, allowing us to model the behavior of the fire as a
separate agent.It could be argued that the fire is also called a character. Finally
the victim inside the room is also modeled as an adaptive agent. Assume that
the trainee has to learn three skill categories: (1) extinguishing fire,(2) giving
orders to his team and (3) extract victims.

Let’s assume that the adaptation engine sends a request to all the agents to
send new bids because the difficulty needs to be adjusted. These requests go to
the bidding part of the agents. This bidding part uses the 2APL part of the agent
to retrieve a list of applicable plans. Listing 1.1 shows simplified and shortened
2APL code for fireman agent1. One aspect that can be seen in this code is
that different plans are applicable if different scenes are active. Remember that
multiple scenes can be active at the same time. In this example only ”scenea”
is currently active. The code also shows that specific ordering of plans can be
specified within the agent. This agent can only perform plans of the type ”a2”
after completing a plan of type ”a1”. Please also note that the game state also
influences the applicable plans of the agent by using guard checks in the plan
specifications. In this case the agent can only open the door with an axe if the
character has an axe in possession. It is possible to write more advanced agents
where the agent, for example, retrieves an axe to open the door with an axe.

The bidding element of the agents calculates the preferences for all the appli-
cable plans and sends this as a proposal to the adaptation engine. For simplicity
we will not use dependent preferences in this example.

The proposal of one fireman agent (fireman agent1 ) is shown in table 1(a).
The other fireman agent (fireman agent2 ) proposal is shown in table 1(b). The
proposal from the victim agent is shown in table 1(c). And the proposal for the
agent controlling the fire is shown in table 1(d). Please note that agents from
the same type can have different proposals. This difference grows as the game
progresses because each agent has a different history. Also note that the agents
can prefer different variants of one action type over and under another action,
at the same time, depending on the difficulty.
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Listing 1.1. FireMan1.2apl

ab i l i t yToAdd ( FireMan1 ) .

Be l i e fUpda te s :
{ t r u e } SetDoorOpened (A) {dooropened (A)}

[ . . . ]
{ t r u e } Se tGoa l S t a r t e d (A){ g o a l s t a r t e d (A)}
{ g o a l s t a r t e d (A)} SetGoalDone (A) {not g o a l s t a r t e d (A)}

PG−r u l e s :
[ . . . ]

s ceneb ( ) <− r o l e ( Fireman1 ) and not g o a l s t a r t e d ( s ceneb ) |
{ [ . . . ] }

PC−r u l e s :
a1 <− s t a t e ( FireMan1 , axe , yes , ) |
{@gameworld ( a c t i o n ( FireMan1 , ” opendoor , axe1 ” ,” ok ”) , ) ;}

a1 <− t r u e |
{ @gamewolrd ( a c t i o n ( FireMan1 , ” opendoor , k i c k 1 ” ,” ok ”) , ) ;}

[ . . ]
a1 <− t r u e |
{ @gameworld ( a c t i o n ( FireMan1 , ” manhose , h e l p f u l l 1 ” ,” ok ” ) , ) ;}
[ . . ]

Remember that their proposals not only contain different plans and different
action types but also contain several variations with different difficulties for the
user. Because there are no prior actions performed by the agents it is easier to
keep their behavior believable in this phase. For example the fire could start at
any level of intensity before the user arrives and the cooperative members could
be as intelligent as you like. This allows the agents to propose more varied plans.

The adaptation engine receives these proposals and calculates the highest
scores for the combinations. Starting with the highest score, the adaptation
engine will then check if the scores are valid within the game model. This process
continues until a valid combination is found (the valid combination with the
highest score).

A possible requirement for the whole task is that one agent always needs to
operate the water pump. Fireman agent1 is the only one capable of performing
this task and therefore only combinations with fireman agent1 manning the
pump are valid. The partial ordering specifies that the getting access to the room
needs to be completed before the victims can be extracted and before the fire can
be extinguished. This means that in the beginning of the task at least one agent
needs to perform this subtask. Fireman agent2 has two possible actions (‘open
door’ and ‘break window’) that fit this subtask. The finally selected combination
will contain at least one of these options. For all the remaining combinations the
expected difficulty for all the skills category of the trainee are calculated. From
these estimations the combination best matching with the desired difficulty is
selected.

The number of combinations grows exponentially in regards to the number
of proposals of the agents. In practice this is not a big problem because the
amount of proposals is of reasonable size and this calculation does not need to
be done very often compared to other processes in a real time game. The action
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Table 1.

(a) fireman agent1

Plan id Skill Type Diff Pref

ID1 orders man hose 0.5 0.7

ID2 orders man hose 0.6 0.7

ID3 orders open door 0.5 0.5

ID4 orders man pump 0.5 0.5

ID5 orders man pump 0.8 0.5

(b) fireman agent2

Plan id Skill Type Diff Pref

ID1 orders man hose 0.5 0.7

ID2 orders man hose 0.6 0.7

ID3 orders open door 0.5 0.6

ID4 orders break window 0.5 0.5

(c) victim agent

Plan id Skill Type Diff Pref

ID1 victim normal 0.4 0.7

ID2 victim disabled 0.8 0.3

(d) fire agent

Plan id Skill Type Diff Pref

ID1 fire ground fire 0.5 0.7

ID2 fire ceiling fire 0.8 0.7

ID3 fire ground fire 0.5 0.6

selection however is not a trivial task, the example would become too big if all
combinations are shown.

Let’s assume that the desired difficulty for each skill is 0.4, that the user model
influence wu = 0, 8, the agent influence wa = 0, 2 Given these assumptions the
best valid combination for the trainee is: Fire agent: ID1, Fireman agent1: ID4,
Fireman agent2 : ID3 and victim agent ID1. Using equation 1 the corresponding
result is ≈ 0.02917.

The agents get a response from the adaptation engine to perform the selected
plan variations. The agents always comply with these requests and should there-
fore never propose offers they do not want to execute.

After the fireman agent2 completes the task of opening the door he will send a
new proposal to the adaptation engine. The adaptation engine assumes that the
other agents continue with their tasks and selects an action from fire agent2 that
best fits the requirements for the trainee given the difficulties and limitations
given by the actions from the other agents. The proposed actions and prefer-
ences of fireman agent2 have changed because of internal changes and changes
in the scenario. It would make no sense to propose to open the door because the
door is already open. This selecting, matching en executing behavior is repeated
throughou the course of the game, guiding the adaptation of the agents.

5 Conclusions

In this paper we discussed online adaptation in serious games. The adaptation
is based on the use of learning agents. In order to coordinate the adaption of the
agents we use an organizational framework that specifies the boundaries of the
adaptation in each context. We have shown how the game adaptation model,
meets the requirements posed on adaptation of the game. I.e. it is done on-line,
takes care of a natural flow of the game and optimizes the learning curve of
the user. In order to fulfill the requirements the game adaptation model uses
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a user model, the preferences of the agents and uses the guidelines from the
organization model.

We argue that an agent based approach for adapting complex tasks is more
practical than a centralized approach. It is much more natural when the differ-
ent elements are implemented by separate software agents that are responsible
for their own believability. For complex games where characters play roles over
extended periods of time this increases the believability of the whole game. How-
ever, the system not only needs to be flexible, the designer also must be able
to define the storyline and put certain restrictions on the combined behavior of
the agents. The combination of using a game model to specify the desired game
progress and the adaptation engine to coordinate, we have the ability to guide
the behavior in the desired direction.

The proposed model for game adaptation selects tasks that are most suitable
for the trainee while following the specification of the game model and taking the
preferences of the separate agents into account. The combination of adaptations
selected at each moment is done through a kind of auction mechanism that
provides a balance between local optimization of the task and believability of the
agent and overall difficulty of the situation for the trainee. We have shown using
a small example how the system works in practice. A framework for reasoning
agents that are able to select different variations of subtasks, the learning 2APL
agents, is also presented.
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Abstract. Using staff personnel for playing roles in simulation-based training 
(e.g. team mates, adversaries) elevates costs, and imposes organizational con-
straints on delivery of training. One solution to this problem is to use intelligent 
software agents that play the required roles autonomously. BDI modeling is 
considered fruitful for developing such agents, but have been investigated typi-
cally in toy-worlds only. We present the use of BDI agents in training a com-
plex real-world task: on-board fire fighting. In a desktop simulation, the trainee 
controls the virtual character of the commanding officer. BDI-agents are devel-
oped to generate the behavior of all other officers involved. Additionally, 
agents are implemented to manage the information flow between the agents and 
the simulation, to control the scenario, and to tutor the trainee. In this paper we 
describe the design of the application, the functional and technical require-
ments, and our experiences during implementation. 

Categories and Subject Descriptors: I.2.0 [Artificial Intelligence]: General – 
Cognitive simulation; I.2.1 [Artificial Intelligence]: Applications and Expert 
Systems; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence – In-
telligent agents, Multiagent systems; I.6.3. [Simulation and Modeling]: applica-
tions; J.7. [Computers in Other Systems]: Military. 

General Terms: Design, Human Factors. 

Keywords: Intelligent Agents, Virtual Training, Multi-Agent System, BDI, 
Jadex. 

1   Introduction 

Scenario-based simulator training is considered very appropriate for learning decision 
making in complex environments [1]. A simulation enables trainees to experience the 
causal relations between actions, events and outcomes in the simulated task environ-
ment. It is common practice in simulation-training that Subject Matter Experts 
(SMEs) (usually staff members) play the role of key players. However, the need for 
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SMEs elevates costs of training, and staff tends to be scarcely available. As a result, 
there are often too few opportunities for training to achieve the required level of com-
petence. Organizations are therefore looking for more flexible forms of simulation-
training that require fewer organizational and logistic efforts. One solution to reduce 
the need for staff is to use intelligent software to play the required roles. 

Finite State Machines (FSM) are the traditional approach for developing characters 
acting as key players. In this approach, characters are controlled by defining list of 
rules and contingencies. FSM has proven its value for designing autonomous charac-
ters performing procedural and other constrained tasks. However, for ‘open’ tasks like 
tactical decision making, it is hard or even impossible to create a ‘spanning set’ deci-
sion matrix specifying appropriate behavior for all entities for all possible states that 
may occur during a scenario [2], as in even relatively simple scenarios the number of 
states tends to be very high [3]. A more promising approach is to develop agents 
whose behavior is a function of Beliefs, Desires, and Intentions (BDI) [4]. A BDI 
model represents the knowledge (both generic and situational) and the reasoning 
processes of an individual or entity in a certain domain, task or scenario. There is a 
growing conviction that BDI modeling is promising for developing agents being able 
to handle complex tasks [5]. A considerable amount of research effort has been spent 
on designing frameworks, tools and specialized programming languages that facilitate 
implementation of intelligent agents based on BDI [6]. However, application of BDI 
agents have so far typically been demonstrated in toy-world environments [7,8,9]. 

In this paper we present the design, development, and implementation of a sce-
nario-based simulator training of a complex real-world task in which BDI agents act 
as virtual team members. Our aim here is to describe the design of the application, to 
account for our choices to fulfill the identified functional and technical requirements, 
and to report our experiences during implementation. In the next section we will 
briefly introduce the domain and the purpose of the training application.  

2   Training Application 

For the Netherlands Defence Organization we developed an agent-based desktop 
training simulation. The domain is on-board fire fighting, and the task to be trained is 
that of the commanding officer, the Officer of the Watch (OW). If a fire breaks out, 
the OW is in charge of handling the incident. Operating in the Machinery Control 
Room (MCR) of the ship, he contacts his team, develops a plan to contend the inci-
dent, gives orders, monitors the events, and adjusts plans if necessary. The OW com-
municates with four other officers: Chief of the Watch (CW), MCR-Operator1 
(MCRO1), Leader Containment Party (LCP), and the Leader Main Party (LMP). The 
first two are for the greatest part also situated in the MCR, the last two are at or near 
the incident scene. 

The task of the OW is a typical example of decision making in a complex envi-
ronment. There are, of course, procedures for handling a fire accident. However, the 
OW also has to anticipate on possible complications, needs to respond to unforeseen 
actions, has to adjust plans when events require him to do so, and so on. In the same 
manner, his team members need to be able to react to unforeseen events and new ac-
tions of the OW. 
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In the desktop-simulation training, the trainee controls the virtual character of the 
OW. For an impression of the training simulation, see Figure 1. In addition to the 
OW, the aforementioned team members are also represented as virtual characters in 
the simulation. In order to achieve good training, the trainee must be able to practice 
the task in accordance with the way an OW does this in the MCR. This means, for 
instance, that all relevant information and communication equipment needs to be 
simulated, and team members needs to respond in a realistic fashion to the trainee and 
to each other. However, the application is not mere simulation, it concerns a training 
simulation. This implies that the scenario needs to be managed in order to make sure 
that the emerging situations support achievement of the learning objectives. Further-
more, the quality of the trainee’s performance must be evaluated and appropriate 
feedback needs to be given. In the next section we elaborate on the functional re-
quirements to ensure successful desktop-simulation training. 

 

Fig. 1. Impression of the desktop simulation training 

3   Functional Requirements 

In previous research we identified several functional requirements the training simula-
tion needs to adhere to [10, 11]. In this section we describe and extend these func-
tional requirements. Some requirements follow from choices concerning the scope of 
the training, e.g., only the OW is trained, others from the motivation to implement a 
full-fledged stand-alone training system, which includes believable behavior of virtual 
team members and a tutoring functionality. 

1. To ensure transfer of training, the trainee’s task environment needs to be simulated 
in a functionally realistic way. During fire fighting, the Officer of the Watch (OW) is 
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situated in the machinery control room (MCR) of the ship, while several team members 
enter and leave the MCR. So in the training system several virtual characters represent-
ing the trainee and the team members are required, as well as a realistic simulation of 
the MCR. 

2. A great part of the OW training concerns the interaction with team members. To 
train this realistically, it is required that the OW can interact with the other virtual 
characters with some degrees of freedom. On the other hand, to keep the training sce-
nario under control, communication should be regulated. 

3. The behavior of the virtual characters has to represent that of task experts, which 
entails that they should be able to autonomously perform their task. Moreover, they 
should be able to reason about their task and, e.g., propose an alternative plan if the 
trainee proposes a wrong one. 

4. To execute their task, the virtual characters need to have knowledge and reason 
about what has happened in the past. E.g. the Chief of the Watch (CW) should decide 
to plot the fire location on the damage control board if the fire broke out more than 30 
seconds ago and if it has not yet been plotted by anybody else. 

5. Some team members need to perform tasks in other parts of the ship than the 
MCR. In addition, the trainee needs to receive information coming from outside the 
MCR. So besides the visualized model of the MCR, we need a functionality that 
models events taking place in the rest of the ship (which does not need to be  
visualized). 

6. The team members that enter and leave the MCR during fire-fighting will exe-
cute tasks in the MCR, as well as on the rest of the ship. For them it should not make 
a difference whether their task environment is visualized (the MCR) or modeled by 
another functionality (the rest of the ship, see 5). 

7. To ensure believable behavior, what a team member can perceive should be de-
termined by its location. For example, initially only team members present in the 
MCR should know the status of the incident, based on the damage-control board. 
However, once the status has been broadcasted by the OW, everybody knows it, be-
cause broadcasts are audible at each location. 

8. A stand-alone training system requires a tutoring functionality. For tutoring it is 
foremost required to evaluate the trainee’s behavior. For this the system should be 
able to compare trainee actions with a specification of expert actions. Moreover, this 
comparison should lead to an appropriate tutoring action. 

9. Because goal-directed, systematic training is more effective than learning by do-
ing, we want to implement a scenario-based training system [12]. In order to control 
the training scenario, we need a functionality that (or inhibits) events at appropriate 
times during the scenario. 

10. To function coherently, the virtual characters and other functionalities of the 
training system require up to date information about the state of the simulated envi-
ronment and the actions of the trainee. Unfortunately, a simulated environment will 
generate so much data that, if unmanaged, this information exchange will slow down 
the training system. We therefore need a functionality to channel this data, ensuring 
that only relevant information is transferred and without significant delays. 

11. Our current focus is the development of a prototype training system, with the 
intention to develop it further for operational use in naval staff training. We therefore 
require our training system to be based on a stable software platform. 
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12. Future operational use of the program requires that the current prototype con-
taining one example scenario should be easily extendable with new scenarios. This 
makes it necessary to use a programming environment that is transparent, expressive, 
and easy to work with. 

4   Technical Solutions 

In this section we shortly discuss the technical solutions we selected for our training 
system for each of the functional requirements introduced above. 

1. To develop a visually realistic representation of the environment, we decided for 
a 3D representation of the MCR generated by a 3D game engine developed by our 
industrial partner “VSTEP”1. All equipment that is normally used by the OW is simu-
lated and available to the trainee (damage control board, information panels, commu-
nication equipment, etc). In addition five virtual characters are modeled, one repre-
senting the OW, the others representing his team members. 

2. In reality, team members communicate by speech. However, using speech in this 
training application would introduce at least two major problems. First, speech recog-
nition technology is not yet advanced enough to recognize and interpret spoken mes-
sages, certainly if the syntax and vocabulary is unrestricted and the system is untrained 
to pronunciation characteristics of the speaker. A second problem is that natural speech 
would introduce so much freedom that it would be very difficult to control the sce-
nario. As a solution, we decided to allow the trainee to communicate with its team 
members using pre-established context-sensitive menus that are dynamically filled 
with communication acts based on the current state of the training simulation, see Fig-
ure 1. All the OW’s possible communication acts, as those of his team members, are 
pre-recorded using a speech synthesizer. For an extensive discussion on the ontology-
driven dialog system underlying this feature of our training system, see [13]. 

3. To develop virtual characters that act as experts, domain knowledge is required. 
Because experts tend to explain their actions in terms of beliefs, goals and intentions, 
expert knowledge can be easily translated to a BDI model [14]. It has been demon-
strated that software agents based on the BDI-paradigm can provide virtual characters 
with believable behavior in computer games [15], and in virtual training [16]. BDI 
agents commonly incorporate a plan-base that embeds the information on how to reach 
specific goals. Decision making in fire fighting is often procedural in nature: plans for 
achieving goals under given conditions are thus available. Because of all these bene-
fits, we decided to implement software agents based on the BDI paradigm to control 
the non-player virtual characters. We refer to these agents as the role-playing agents. 

4. Due to the notion of beliefs, the agents have knowledge about the current situa-
tion. However, having beliefs does not necessarily entail that the agent can remember 
what was previously the case. To allow for temporal reasoning, we decided to store 
time annotated beliefs about every change of the world state into the agents' historical 
belief bases. 

5. In order to model and simulate parts of the ship that are not visualized in the 3D 
simulation, we introduce a world manager agent, which is one of the implemented 

                                                           
1 http://www.vstep.nl 
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functional agents as opposed to the role-playing agents. In contrast to a role-playing 
agent, a functional agent does not represent an individual in the scenario, but instead 
fulfills one or more functions on the background needed to manage the simulation-
based training. The world manager agent does not only simulate events outside the 
MCR, it also simulates the actions (with time and effects) of role-playing agents not 
present in the MCR. 

6. To ensure that the role-playing agents can interact in the same way with the 
visualized (MCR) as with the non-visualized part of the simulated environment (rest 
of the ship), we decided to channel all actions and observations through the world 
manager agent. The fact that this functional agent maintains the complete world state 
of the entire simulation also ensures that no inconsistencies arise between the visual-
ized and non-visualized part. 

7. Because the world manager agent is informed about the exact state of the world, 
it knows the location of each role-playing agent, and thus what that team member can 
see and hear. Below (see 10) we explain how this information is used to channel the 
information flow between the role-playing agents and the 3D simulation. 

8. In order to keep track of the actions that the trainee executes in the simulated 
environment, to evaluate the trainee’s performance, and to decide upon appropriate 
interventions (if any), we introduce an OW/Tutor agent. This agent is interesting in 
the sense that it is a functional agent, embedding a role-playing agent. The BDI task 
knowledge underlying the actions of role-playing agents can be reused in the tutor 
agent to evaluate behavior of the trainee. If a trainee’s action coheres with the task 
model (in this case of the OW), it is evaluated as correct. If the trainee fails to do what 
is required according to the task model (e.g. “hail the fire within 30 seconds after a 
positive fire alarm”), the OW/Tutor Agent interprets this as an error (constraint bro-
ken). In addition, the OW/Tutor agent has a function deciding whether and which 
intervention to take (e.g. letting the Chief of the Watch give a reminder). 

9. For starting the training scenario and keeping it on track by triggering events in 
the simulated environment we use a scenario manager agent. This agent triggers 
events based on a pre-defined scenario model (e.g. a fire of type A starts at location X). 
By separating this knowledge in a specific functional agent, we intend to facilitate the 
future extension of the training simulation with additional scenarios (see 12). 

10. In order to keep the data flow between agents and the 3D simulation manage-
able, we decided that agents only receive information that is relevant to them. We 
achieve this by using a publish/subscribe paradigm in which information producers 
and consumers coordinate among each other what information to exchange. We intro-
duce a functional agent called the broker to carry out this task. Publish/subscribe 
mechanisms are provided by common middleware standards like the Data Distribu-
tion Service (DDS), Java Messaging Service (JMS) and High Level Architecture 
(HLA). However, these mechanisms define static contracts, whereas our agents’ in-
formation need is dynamic (e.g. information exchange is, for instance, dependent 
upon the agent’s location in the ship). We introduce a dynamic filtering system that 
adjusts the subscriptions of the agent to information supplied by the simulation in 
such a fashion that it corresponds to its specific situation or context (the knowledge 
for this is provided by the world manager agent, see 7). In this way, the agent only 
receives information that it potentially can receive. 
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11,12. To be able to implement the system cost-efficiently, we looked for an exist-
ing BDI-based agent platform. Since the prototype under development will at a later 
stage be further developed for operational use in naval staff training, the stability and 
performance of the selected platform is of major importance. We have considered 
three agent platforms to implement the role-playing and functional agents: JACK, 
Jadex, and 2APL. 

JACK is a mature, proven agent platform providing commercial support. How-
ever, we experienced the provided development environment as rather unintuitive and 
the predefined workflow too inflexible for our needs.  

Jadex is an academic project aiming to develop an industrial strength agent plat-
form. It has been shown to be applicable in a real-world medical planning application 
[17], which made us believe that the performance of the system would be sufficient 
for our system. Agents in Jadex are specified using a relatively complex and verbose 
XML-based language. Since agents in Jadex can manipulate arbitrary Java objects 
and the platform is fully open-source, we considered the provided framework extensi-
ble enough to allow implementation of our specific needs. 

2APL is an academic, research-oriented agent programming language adhering 
more than the other platforms to the theoretical principles of BDI. However, the cur-
rent implementation has not been designed for computational efficiency and it has not 
been tested yet in operational contexts.   

The main criteria for selecting an agent platform were the stability of the platform, 
its performance, and the ability to customize the provided framework. In particular, 
we required the platform to support incorporation of historical belief bases and a pub-
lish/subscribe mechanism for messaging. We decided to drop 2APL because it does 
not provide production-level stability and performance. Next, after comparing JACK 
and Jadex, we decided to choose Jadex because of its extensible design and its open 
source code, as this would allow us to attach our own functionalities. 

5   System Architecture 

Following the functional requirements and technical solutions stated above, we im-
plemented a training system that consists of two major parts: 1) a 3D visualization 
that serves as an interface to the simulation for the trainee, and 2) an agent system 
accommodating a) role-playing agents that model behavior of the virtual characters 
and b) functional agents that manage the simulation, the execution of the scenario, 
and tutoring. For an overview of the training system, see Figure 2. In this section we 
will elaborate on the functionality of each part of the training system. 

3D Visualization 

Once a training session starts, the trainee can control his virtual character in the 3D 
game environment using the keyboard and mouse (section 4.1). Each interaction with 
the simulated environment (such as: picking up the headset, leaving the MCR, talking 
to another character) generates a cue (a data structure that describes the change of the 
world state), which is then relayed to the agent system. Conversely, the agent system 
can send a variety of commands to the 3D engine in order to force some of the entities 
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to perform a certain action. E.g. the CW role-playing agent may order the virtual 
character of CW to sit on his chair; the virtual character immediately starts moving 
towards the chair and once there, he plays the animation of the sitting move; after the 
successful completion of the action, the system generates a cue "the chair of CW is 
taken", which is then forwarded to all the virtual characters (and subsequently their 
attached role-playing agents) currently present in the room. Further, the 3D engine 
provides a dialog interface that allows a trainee to communicate with his team mem-
bers (section 4.2). Using the interface, the trainee can choose from a wide variety of 
sentences that can be communicated by clicking on one of them; the engine plays the 
corresponding pre-recorded speech and generates a communication cue which is sub-
sequently forwarded to the interlocutor. Since all communication between two virtual 
characters should be audible by the trainee (if he is in the same room), the role-
playing agents communicate through their virtual characters in the simulation. After 
the appropriate speech file is played, a communication cue is relayed to the corre-
sponding receiver and other characters that may have overheard the communication 
(section 4.7). 

 
Fig. 2. Diagram of the system architecture 

Connection Manager – functional agent 

When the Connection Manager is started it establishes a connection to the 3D visu-
alization and starts all the other Jadex agents. The connection manager serves as the 
gateway between the 3D visualization engine and the agent system. Being the connec-
tion gateway between the simulation and the agent system the connection manager 
has one additional task: translating the cues originating from the 3D visualization into 
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a format understandable to the agent system, and vice versa, translating the actions 
coming from the agent system into the language of the 3D visualization. These trans-
lations are made based on a dedicated mapping of the ontology used within the 3D 
simulation to the ontology used within the agent system. 

World Manager – functional agent 

Since the virtual environment is divided into a visualized part (MCR), which is simu-
lated within the 3D visualization, and a non-visualized part (the rest of the ship),   
the agent system contains a World Manager whose responsibility is to simulate the 
non-visualized part and to control the blending of both (section 4.5). As mentioned in 
section 4.6, the role-playing agents should not notice any difference between their 
interaction with the visualized, and non-visualized environment. Therefore all the 
cues from the visualized environment, denoting changes in the world state, are first 
send to the world manager that uses them to update its belief base containing the 
overall world state, ensuring that no inconsistencies exist. Next, these belief updates 
are forwarded to the rest of the agent system. Similarly, all role-playing agent actions 
are first send to the world manager that assesses whether or not they take entirely 
place in the MCR. If this is the case, the action is forwarded to the visualized envi-
ronment to be executed, resulting in cues from this environment to the world man-
ager, who will forward them to the appropriate agents. If an action takes (partly) place 
in the non-visualized environment, the world manager executes the action and gener-
ates (and forwards) the cues denoting the effects of the action. 

To illustrate this function, consider the following example: During fire fighting, the 
MCR operator (MCRO1) is ordered to check the smoke valves. In reality this in-
volves walking to a location near the fire, checking visually the status of the valves, 
then returning to the MCR. In our system, this action requires blending of the visual-
ized and non-visualized world and is therefore executed by the world manager. The 
world manager first instructs the virtual character of the MCRO1 to walk out of the 
MCR (visually observable to those inside the MCR), and then lets the MCRO1 “wait” 
around the corner (not observable to those inside the MCR). Based on the real walk-
ing distance to the fire location, the world manager calculates how long the MCRO1 
needs to wait outside the MCR before it can generate the cue denoting the result of 
the visual inspection, forwards this cue to the MCRO1, and instructs the MCRO1 to 
return into the MCR. 

CW, MCRO1, ATL, CTL – role-playing agents 

The four Role-playing agents (CW, MCRO1, LCP, LMP) represent the team mem-
bers of the OW. The models underlying their behavior consist of expert task knowledge 
in the form of beliefs, goals and plans (section 4.3). There may be several reasons for a 
role-playing agent to initiate action. It may originate from his own task knowledge, for 
example if circumstances in the world form beliefs that result in a goal to become ac-
tive, after which the agent selects a plan (series of actions) to achieve the active goal. It 
may also originate from a request for information, or an order, given by the trainee or 
other role-playing agents. Sometimes beliefs may trigger more than one goal. The role-
playing agent then has to decide which goal to pursue based upon priority rules. The 
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agents store all messages concerning changes of the world state (received from the 
world manager) in their historical belief base (section 4.4). In our application, role-
playing agents do not act directly in the simulated world. They do so by sending action 
messages via the broker to the world manager, who controls their virtual character ac-
cordingly. Because the models of role-playing agents are based on beliefs and goals, 
they are able to respond to questions from the trainee by inspecting their belief base, and 
can adopt any order as a goal. 

OW/Tutor – functional agent 

The OW/Tutor agent embeds two models: one model is an expert model of the OW, 
the second model is a user model of the trainee. The expert task model is static and 
established before the training. The trainee user model is dynamic, and formed during 
training. For example, when the trainee asks about the state of the ventilation and re-
ceives an answer, the OW agent stores this action and the received information in its 
belief base, building up the user model. This information about the user, in combina-
tion with the task knowledge embedded in the OW agent, can be used to generate an 
evaluation of the performance of the trainee (section 4.8). Based on this evaluation, the 
agent can decide to adjust the scenario in order to achieve more efficient training. This 
can be done indirectly by ordering the role-playing agents to change their behavior. 

Broker – functional agent 

The Broker represents the pivot of the publish-subscribe mechanism described in 
section 4.10. It contains a database of subscriptions determining which messages will 
be forwarded to each of the agents. It is the responsibility of the world manager agent 
to maintain the subscriptions for each agent, ensuring they are consistent with the 
constraints imposed by the world on what an agent can possibly sense. Consider the 
following example as an illustration of this mechanism: When the CW enters the 
MCR, the world manager subscribes him to all the beliefs related to the entities lo-
cated in the MCR (status of a phone, availability of a chair etc.) Through the newly 
established subscriptions, the CW receives messages about any change in MCR. Ana-
logically, as soon as the CW leaves the MCR, the world manager breaks all those sub-
scriptions, after which the CW will not be informed anymore about changes in the 
MCR.  

Scenario Manager – functional agent 

The Scenario Manager agent controls the course of events in the training simulation 
using a pre-specified scenario definition (section 4.9). The latter denotes, e.g., where a 
fire should start, what type of fire it is, and whether the ventilation of the ship will, or 
will not crash stop. Based on the scenario definition and generic knowledge about the 
environment stored in its own task model, e.g. about how the fire will react to certain 
events, the scenario manager agent will at appropriate times during training execute 
specific events like starting a specific type of fire at a specific location, expanding that 
fire, and crash stopping the ventilation. 
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6   Implementation 

As mentioned in Section 4, we decided to implement the agent-system outlined above 
using the Jadex platform [9]. Due to space limitations, we will not discuss the imple-
mentation in full detail. Instead, we present a few examples of representative issues 
we had to deal with, and reflect on the suitability of features available in Jadex for 
implementing our agent-system. 

Defining an Ontology and Fixing the Message Format 

After analyzing the domain, scenario and tasks, we found that we need about 40 types 
of beliefs to describe the states of the simulation environment (e.g. location of an 
agent, status of the fire siren etc.). Each belief has about 2 - 3 parameters. Similarly, 
we identified 52 actions required for the role-playing agents to perform their task. It is 
apparent that we need an appropriate ontology to handle the identified actions and 
belief types efficiently. 

The Jadex platform supports use of ontologies created in the Protégé environment   
through the provided Beanynizer plugin-in, which is able to generate JavaBeans for 
the modeled ontology. Consequently, each JavaBean may be serialized to XML and 
can easily be transferred between agents as the content of a FIPA message. 

Although the provided framework is very powerful, we considered this approach as 
too heavy-weight for our needs and decided to define our ontology as a collection of 
classes that provide static constants representing the domain concepts. That way, we 
can enjoy facilities such as code auto-completion available in the modern Java IDEs. 
Moreover, most of the syntax errors are discovered already by the Java editor and 
other problems concerning  incompatible use of beliefs or actions are reported as soon 
as the agent code is compiled. 

Further, we feared that the XML representation of beliefs might become unpracti-
cal when one needs to debug the multi-agent system. Therefore, we have developed a 
more space-economic serialization format, which is able to carry all the information 
the agents need to exchange, namely belief updates, actions, behavioral instructions2 
and broker messages3.  To illustrate the format we used: suppose the CW agent de-
cides to check the status of the fire fighting pumps. Using the methods available in 
our ontology, he can create an object that represents the action, which may be serial-
ized as follows: 

(messagetype:action)(source:cw)(type:mcrpanelaction)(id 
:checkpumps)(timeout:0)(location:panel_cw)(actiontype:c 
heckpumps) 

This representation proved practical for debugging purposes as one message  usually 
fits to one line in a debugging output. Besides, we designed the message format  

                                                           
2 A behavioral instruction is send by the Tutor agent to modify the behavior of a role-playing 

agent. The goal of intervening in the agent’s goal state is to bring about behavior that helps 
the trainee in achieving a learning objective. 

3 Broker messages are used to indicate that a) an agent is capable to generate a certain message 
b) an agent is interested in messages of a certain type c) the broker has established a subscrip-
tion between an information producer and an information consumer. 
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almost identical to the structure of cues and actions used within the 3D visualization 
engine, which makes the conversion of data exchanged between the two systems fast 
and straightforward. 

Unfortunately, this simplified message format revealed its limitations in later 
stages of the project development. In particular, we found it problematic that the for-
mat is unable to naturally express nested data structures, such as a query about a be-
lief, which forced us to come up with rather complicated workarounds. We now rec-
ognize that the built-in ontology support, most likely, would have served us better. 

Historical Belief Base 

The domain of fire-fighting requires agents to reason about time in relation to actions 
and beliefs. For example, if the fire alarm has been active for more than 30 seconds 
and there is still no attack plan plotted on the damage control board, the tutor agent 
can decide to remind the trainee of his duties by sending a behavioral instruction to 
the CW to suggest to the trainee to plot an attack plan. In order to allow for such rea-
soning over states in time, the agents requires access to a history of beliefs (when was 
is first believed that there was a fire alarm?) and actions (is there not attack plan plot-
ted since that time?). In addition, a history of the beliefs and actions of each agent can 
be used to off-line evaluate the trainee's performance. 

To our knowledge, Jadex does not offer support for temporal reasoning. In fact 
none of the considered BDI-platforms do. However, Jadex allows to add a time pa-
rameter to each belief and keep all adopted beliefs in a dedicated set. That way an 
agent has access to the complete history of his beliefs and is capable of deriving time-
related conclusions. 

A historical belief base could be implemented in two ways, a) by employing the 
belief set concept available in Jadex or b) as a single Jadex belief that encapsulates 
(since it is a Java object) all the desired functionality. Since we considered it practical 
to be able to define custom methods to search and update the beliefs stored in the be-
lief base, we chose for the latter solution. We found that the custom belief base speci-
fied in the above mentioned way enabled us to access the historical beliefs both from 
conditions in the agent definition files and from Java plans in a natural and effortless 
way. 

Logical Inferences 

To perform their role as task experts, the role-playing agents need to be able to make 
logical inferences.  For example, if an officer hears that the siren goes off, he needs to 
be able to derive that there is a fire alarm coming from an unknown source. 

The ability to specify implication rules as a part of the belief base of an agent is 
one of the fundamental features of logic-based agent-oriented languages. However, 
since the belief base in Jadex is not logic-based, but specified as a collection of Java 
objects, it does not provide support for logical inferences.  

To overcome this limitation, we have implemented a simple custom inference en-
gine, which is executed each time a new belief is added or removed from an agent’s  
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belief base. The inference engine is implemented as a Java class with a designated 
method that contains hard-coded implication rules that generally follow this structure: 

if <query on belief update>/<query on belief base>        
then <update the belief base>/<adopt a goal> 

Besides its original use to deduce new beliefs from existing beliefs, we found that this 
system was also useful for generating reactive behavior (i.e. when an incoming belief 
update makes the agent adopt a new goal) and for decomposing complex beliefs (e.g., 
when a new attack plan is received, atomic parts of the plan are also added to the be-
lief base). This turned out to be a robust approach: although our inference engine con-
tains tens of inference rules, it did not noticeably decrease system performance. 

XML vs. Java 

One of the distinguishing features of Jadex is its ability to program agents in both 
XML and Java. In fact, a programmer may decide whether he prefers to specify the 
major part of his agent declaratively in an XML-based agent definition file (ADF) or 
in a more imperative way using Java plans. However, from a theoretical point of 
view, it is more natural to program agents declaratively [18]. 

To explain the difference between using XML and Java to implement certain task 
behavior, consider the following example of desired role-playing agent behavior: 
When the siren goes off,  the MCR operator must check whether the ventilation has 
been automatically crash stopped, and inform the CW about the result of this check. 
Only after that, he can use his work station to check the location of the fire alarm, and 
turn of the siren. 

In this example we began by implementing this behavior in the XML-based agent 
definition file. For this, we first modeled that the MCR operator agent adopts the goal 
"deal_with_siren" as soon as it believes that the siren is active. When a goal becomes 
active, the agent constantly tries to execute all the associated plans. In the case of the 
“deal_with_siren” goal, multiple plans are associated: one for checking the status of 
the ventilation, one for telling this status to the CW, another for checking the location 
of the fire alarm, and yet another for turning the siren off. To ensure the correct exe-
cution of his task, the preconditions of these plans needed to be specified in such a 
way that in fact, they will be performed sequentially. We found that this led to very 
complex preconditions, e.g.: 

<precondition> 
  <!-- MCRO1 knows the status of the ventilation. --> 
  $beliefbase.worldbeliefs.contains(Ventilation 
    .getFunctor())   
  <!-- It has not been communicated yet. --> 
  $beliefbase.communicationbeliefs 
    .getLastInformPattern($beliefbase.id, Officers.CW, 
    null, Ventilation.getFunctor()) == null 
 </precondition> 

Next we implemented the identical behavior in a single Java plan that existed of a 
number of if-clauses that ensured that the “deal_with_siren” subtasks would be exe-
cuted in the correct order . Based on this and further experiences we noticed that,  
although the XML-based approach fits the agent-orientation notion better, our  
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programming productivity significantly increased when employing the Java-based 
approach. This was mainly due to the availability of sophisticated productivity fea-
tures for Java code such as code hints and instant source validation. None of these 
features are available to support the development of Java-like conditions in Jadex 
ADF files. Also the debugging of the Java code proved to be easier, as the error mes-
sages generated by the Jadex XML parser often provided insufficient details to iden-
tify the problem. For the above mentioned reasons, we found it easier to specify most 
of the agent's logic in the Java plans. 

Jadex v. 1 vs. Jadex v. 2 

When we started the implementation of our agent-based training system (May 2009), 
the Jadex agent platform was available in two versions: a) Jadex v. 0.96 b) Jadex v. 2-
beta2. As the latter version has undergone a complete re-design, which is expected  
to bring significant improvements in performance and flexibility [19], we aimed to 
base our system on Jadex v. 2. However, the problems stemming from the lack of 
documentation and instability of the platform we were facing in the first days of de-
velopment made us switch to Jadex v. 0.96.  This version has proven to be relatively 
well-documented and reasonable stable. 

7   Conclusion 

In this paper we have reported our efforts to develop a stand-alone training system for 
a complex real-world task based on software agents. We have adopted a BDI-
approach to develop role-playing agents that can act autonomously and intelligently, 
and selected the Jadex agent platform for implementation. 

It took us about 80 man-days of implementation to build the agent system for the 
desktop simulation for training on-board fire-fighting. The agent system consists of 9 
agents, 359 Java classes and 11 ADF files defined by 17 thousands lines of Java code 
and 2.5 thousands lines of XML code. The system satisfies our criterion that it should 
be able to react to events taking place in the simulation without any noticeable delays. 

Although the coverage and quality of the programming and debugging tools bun-
dled with Jadex are not comparable to mainstream development environments (e.g. 
Java + Eclipse), the Jadex agent framework proved to be a robust and well performing 
platform. We appreciated in particular that Jadex does not force programmers to work 
with the built-in notions of the BDI-components and allows users to extend or rede-
fine them. For example, Jadex allowed us to bypass the platform’s default belief base 
and switch to a custom-made historical belief base. 

The work presented in this paper covers the implementation of the role-playing 
agents and their interaction with the 3D visualization. For the former the focus lay on 
the realization of valid expert behavior in a wide variety of emerging situations. For 
the latter we focused on an efficient, reusable manner to link BDI role-playing agents 
to a virtual simulation, for which we developed several specific functional agents. 

Although we have far-stretching ideas on how to model the tutor agent conceptu-
ally [10, 11], we have as yet not been able to invest much efforts into implementation 
and integration of these ideas in the introduced OW/Tutor agent. Although all the 
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functionality is there for the OW/Tutor agent to record and reason about the behavior 
of the trainee, and to order other agents (role-playing ones, but also the scenario man-
ager agent) to perform certain actions (which they can also already execute), we have 
not spend time on defining the rules to govern which actions should be ordered to 
support the trainee in reaching his training objectives. In future work we will extend 
the knowledge of the tutor agent with such rules of intervention to exploit the innova-
tive opportunities offered by BDI agents to full extent: on-line control of agent behav-
ior, ensuring it is supportive to the training goals. A short example may illustrate this 
point. Suppose that a tutor assesses that a trainee is not challenged to learn by the 
events when presented with a standard scenario. The tutor agent may decide to intro-
duce events that do challenge the trainee in a useful way. He may for example send a 
behavioral instruction to the CW-agent prompting it to “forget” switching off the 
electricity at and near the incident scene. This forced event enables the trainee to 
achieve the learning objective of checking whether all safety precautions have been 
taken and to make corrections, if necessary. Such on-line control of autonomous train-
ing is the wish of many, and seem to come within reach by linking BDI agents to 
training simulations. 
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Abstract. As a step toward simulating dynamic dialogue between agents and 
humans in virtual environments, we describe learning a model of social 
behavior composed of interleaved utterances and physical actions. In our 
model, utterances are abstracted as {speech act, propositional content, referent} 
triples. After training a classifier on 100 gameplay logs from The Restaurant 
Game annotated with dialogue act triples, we have automatically classified 
utterances in an additional 5,000 logs. A quantitative evaluation of statistical 
models learned from the gameplay logs demonstrates that semi-automatically 
classified dialogue acts yield significantly more predictive power than 
automatically clustered utterances, and serve as a better common currency for 
modeling interleaved actions and utterances. 

Categories and Subject Descriptors 
I.2.7 [Artificial Intelligence]: Natural Language Processing – language parsing 
and understanding. 

 
 

General Terms 
Measurement, Performance, Design, Reliability, Experimentation, Human 
Factors, Languages, Verification. 

Keywords: Social simulation, Modeling natural language, Virtual Agents, 
Agents in games and virtual environments. 

1   Introduction 

While mature graphics hardware, rendering engines, physics simulators, and path 
planners have leveled the playing field for near-photorealistic visuals in video games 
and simulations, artificial intelligence methods for social planning, interaction, and 
communication are poised to take the lead as the differentiating feature in games of 
the future. Though much progress has been made in navigation and action selection, 
natural language communication between agents remains a difficult problem, and 
communication between agents and humans even more so. Dynamic interactive 
dialogue poses numerous technical challenges, yet also holds the key to enabling 
entirely new genres of games, and broadening the reach of games beyond 
entertainment into new forms of social simulation. 
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Fig. 1. Screenshot from The Restaurant Game 

Current approaches to implementing natural language dialogue systems in use in 
the video game industry are labor intensive, requiring designers to anticipate human 
input and hand-author responses. As von Ahn has demonstrated by labeling images 
with The ESP Game [20], the dramatic increase in popularity of online games 
provides an opportunity to teach machines by observing human gameplay. 
Multiplayer role-playing games and virtual worlds provide the opportunity for a 
potentially better approach to developing systems that can understand and generate 
natural language dialogue, by mining the enormous amount of data generated by 
thousands (or even millions) of human-human interactions. For example, as of 2008 
World of Warcraft had over 10 million paying subscribers, Habbo Hotel had 9.5 
million unique monthly visitors, and Second Life had 600,000 unique monthly visitors 
[4]. Clearly there is an opportunity to collect rich new forms of behavioral data from 
these players. What is less clear is how to maximize the utility of this data for agents 
to exploit at runtime, while minimizing the human labor required to structure and 
annotate corpora. 

We are working toward a long term goal of generating dialogue and behavior for 
agents based on data collected from human-human interactions. Our approach, 
influenced by Schank, is to represent context in the form of socio-cultural scripts [16]. 
Due to the technological limits of the 1970s, Schank’s scripts were hand-crafted, and 
thus subject to limitations associated with human authoring. Hand-crafted scripts are 
brittle in the face of unanticipated behavior, and are unlikely to cover appropriate 
responses for the wide range of behaviors exhibited in an open ended scenario. Today, 
we have the opportunity to do better by discovering scripts from human-human 
interaction traces of online gameplay.  

With these ideas in mind, we launched The Restaurant Game 
(http://theRestaurantGame.net) as a platform for collecting rich physical and linguistic 
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WAITRESS: "welcome to our fine restaurant" 
CUSTOMER: "thanks, it's just me tonight" 
WAITRESS: "would you like the seat by the window?" 
CUSTOMER: "sounds good" 
WAITRESS: "follow me" 
CUSTOMER SITSON chair3(Chair) 
WAITRESS: "perhaps i should start you off with some water" 
CUSTOMER: "that sounds good, can i check out a menu?" 
WAITRESS: "sure thing, coming right up" 
WAITRESS PICKSUP dyn1733(Menu) 
WAITRESS GIVES dyn1733(Menu) TO CUSTOMER 
CUSTOMER LOOKSAT dyn1733(Menu) 
WAITRESS: "water please" 
dyn1741(Water) APPEARS ON bar(Bar) 
WAITRESS PICKSUP dyn1741(Water) 
WAITRESS PUTSDOWN dyn1741(Water) ON table1(Table) 
WAITRESS: "here's your water" 
WAITRESS: "i'll give you a minute to look over the menu" 

Fig. 2. Transcript from a typical interaction in The Restaurant Game 

interaction [14]. To date we have collected over 9,400 game logs. The ultimate goal is 
to replace one of the players of The Restaurant Game with an automated agent that 
has knowledge of possible restaurant scripts at both a surface behavioral and linked 
deep intentional level. The agent will use this knowledge to guide its interpretation of 
the other human players’ actions, and to plan its own physical actions and utterances 
while participating in the joint activity of completing a restaurant meal. As a step 
towards this goal, we address the problem of mapping surface forms of dialogue acts 
to underlying intentions and evaluate the quality of the resulting model in its ability to 
predict human dialogue acts at the intentional level. 

Previously, we have demonstrated automating agents with data collected from The 
Restaurant Game [15]. In this first iteration of the system, dialogue between agents 
exhibited frequent non-sequiturs and incorrect responses, due to imitating human-
human dialogues relying solely on matching surface forms of utterances. The system 
had no means of recognizing utterances with unique surface forms but the same 
semantic function, or utterances with the same surface form but different 
contextually-dependent semantic functions. There was no representation of the intent 
behind the humans’ words. In contrast, players use a point-and-click interface to 
engage in physical interaction (e.g. highlight the dish and click the PickUp button on 
a pop-up menu). These interface interactions explicitly represent the player’s intent. 
While the automated system constrained the agents’ physical behavior based on 
learned patterns of these intentional actions, no analogous model existed for 
sequences of utterances. Ideally, a single model could capture patterns of interleaved 
physical actions and utterances. A precursor to learning such a model is an intentional 
representation of utterances that can be interleaved cleanly with physical actions. 

In this paper we present results of semi-automated annotation of dialogue data 
collected from The Restaurant Game. We demonstrate that classified dialogue acts 
can function effectively as a common currency for modeling interleaved actions and 
words, given a domain-specific annotation scheme which classifies both illocutionary 
force and associated propositional content. We describe a dialogue act classifier that 
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we have trained on 100 log files, and leveraged to automatically annotate the 
remaining 5,100. Our results demonstrate how annotating 2% of the log files from a 
5,200 game corpus can produce statistical models of dialogue act sequences with 
predictive power that outperform models based on surface forms. Finally, we show 
that dialogue acts can be integrated cleanly into a model of physical action sequences, 
preserving the predictive power of the original model of physical actions alone. While 
our current system filters out some percentage of utterances from the interleaved 
model, this is a step toward a solution, and the percentage of included utterances will 
increase in the future as the classifier improves. 

2   The Restaurant Game 

We designed The Restaurant Game to serve as both a data collection device, and a 
target platform for simulation of social behavior generated from the human data. 
Players are anonymously paired online to play the roles of a customer and waitress in 
a 3D virtual restaurant. Players can move around the environment, type open ended 
chat text, and manipulate 47 types of interactive objects through a point-and-click 
interface. Every object provides the same interaction options: pick up, put down, give, 
inspect, sit on, eat, and touch.  

To date, 13,564 people have played The Restaurant Game, from which we have 
collected 9,433 log files of two-player games. This paper describes work with a subset 
of 5,200 game logs. A game takes about 10-15 minutes, and an average game consists 
of 84 physical actions, and 40 utterances with an average length of four words each. 
Player interactions vary greatly, ranging from games where players dramatize what 
one would expect to witness in a restaurant, to games where players fill the restaurant 
with cherry pies. While many players do misbehave, we have demonstrated that when 
immersed in a familiar environment, enough people do engage in common behavior 
that it is possible for automatic system to learn valid statistical models of typical 
behavior and language [14]. 

3   Related Work 

We are working toward learning an interleaved model of actions and utterances in an 
everyday social situation, based on a large corpus of human-human interactions. Here 
we relate our work to previous research on dialogue modeling and learning from 
human data, and highlight significant differences. 

Gorin et al [6] describe a system that learns to route calls in response to the prompt 
“How may I help you?”, by finding mutual information between routing decisions and 
n-grams in human speech. Satingh et al [18] developed a dialogue management 
system that uses reinforcement learning to learn an optimal policy for a phone-based 
information system about activities in New Jersey based on interactions with human 
callers. Huang et al [8] trained chatbots by extracting title-reply pairs from online 
discussion threads. Our work differs from these projects by collecting data from 
humans situated in a (virtual) physical environment, where players dramatize an 
everyday scenario through a combination of (typed) dialogue and physical interaction, 



152 J. Orkin and D. Roy 

contributing to learning an interleaved model of actions and utterances, representing a 
commonsense script of restaurant behavior. Huang’s work may point toward an 
interesting direction for future work; incorporating knowledge extracted from external 
sources into our model. 

McQuiggan and Lester [13] applied a similar methodology to ours (capturing 
demonstrations between humans in a game environment) to learn models of 
empathetic behavior, including gestures, posture, and utterances. Their work did not 
focus on learning open-ended natural language dialogue, and instead incorporated 
pre-recorded utterances. Gorniak and Roy [7] collected data from pairs of players 
solving puzzles in Neverwinter Nights, and constructed a plan grammar, which could 
be used to understand utterances between players. Similarly, Fleischman and Hovy  
[5] leveraged a task model of the game-based Mission Rehearsal Exercise to 
understand natural language input. In these projects, hand-constructed models of the 
situation (the plan grammar or task model) helped the system understand language. In 
contrast, we are training a classifier to understand language, and using classified 
utterances as building blocks to learn the situation model. While our data collection 
methodology is similar to previous work, we are working toward learning the 
structure of the situation from data, based on semi-automated annotation and 
automatic recurrence analysis, rather than hand-crafting a plan grammar or task 
model. Learning the structure has the potential of producing a more robust model 
through a less laborious process. 

4   Dialogue Act Classification 

Players of The Restaurant Game communicate by freely typing chat text to one 
another. While we can capture every utterance transmitted, there is no explicit 
representation of the intent behind the words of the player. In contrast, players use a 
point-and-click interface to engage in physical interaction (e.g. highlight the dish and 
click the PickUp button on a pop-up menu). These interface interactions explicitly 
represent the player’s intent. Human annotation is required to transform utterances 
into functional units that share a common currency with physical actions – atomic 
units with explicit representations of intent and semantic function. Unfortunately, 
human annotation is expensive; it is infeasible to annotate a corpus of thousands of 
game logs, let alone millions. In this section we describe our approach to semi-
automating annotation. 

We randomly selected 100 game logs from our corpus of 5,200 logs to serve as 
training data for a classifier, and we annotated these logs by hand. Each utterance is 
classified along three axes: Speech Act, Propositional Content, and Referent. Speech 
Acts categorize utterances by illocutionary force (e.g. question, directive, assertion, 
greeting, etc.), Propositional Content describes the functional purpose of the 
utterance, and Referent represents the object or concept that the utterance refers to.  

Labels in the Speech Act axis are similar in function to those found in the widely 
used DAMSL annotation scheme [2]. Devising our own annotation scheme was 
necessary in order to also incorporate propositional content and referents, which will 
be critical to an interactive agent. It is not enough to recognize that an utterance is a  
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question or directive, the agent needs to understand what it is a question about  
(a problem with the bill, or the desire to see a menu) or a directive to do (prepare a 
steak, or have a seat at a table). Section 5.4 provides quantitative evidence that the 
inclusion of propositional content and referents maximizes the range of confidently 
recognized utterances while preserving an agent’s ability to predict future actions and 
utterances based on recent observations. 

Our three labels are combined into a {speech act, content, referent} triple that 
serves as an abstraction allowing utterances to be clustered semantically, rather than 
by surface forms, and greatly compresses the space of possible dialogue acts. Below 
we provide the details of our annotation scheme, feature selection, classifier 
implementation, and classification results. 

4.1   Human Annotation 

It took one of the authors 56 hours to annotate all 4,295 utterances (of average length 
four words) observed in 100 games. We developed the list of annotation-labels during 
the course of annotation. The Speech Act labels were based on Searle’s speech acts 
[17], expanded with Propositional Content and Referent labels to cover the range of 
utterances frequently observed in our corpus. 

All three axes include an OTHER label, applied to utterances that fall outside the 
scope of typical restaurant conversation, such as nonsense, gibberish, and discussion 
of the players’ personal lives. We applied a NONE label to the Propositional Content 
and/or Referent axes for utterances that did not require any content or referent 
specification. For example, the utterance “yes” is annotated as {CONFIRMATION, 
NONE, NONE}. Table 1 provides the complete lists of labels for each axis, along 
with their distributions within the 4,295 utterances observed in 100 games. Table 2 
provides a sampling of utterances from the 100 training games with their assigned 
label triples. 

4.2   Feature Selection 

Each line of dialogue is transformed into a feature vector consisting of features 
derived from the surface text, and contextual features based on the physical situation 
of the speakers. Contextual features include the social role of the speaker (waitress or 
customer), the posture of the speaker (sitting or standing), who the speaker is facing 
(one or more of: customer, waitress, bartender, chef), and the containing spatial 
region of the speaker (one or more of the possibly overlapping regions: inside-the-
restaurant, outside-the-restaurant, entrance, podium, table, counter, bar, behind bar, 
kitchen). The physical state of the players is reported explicitly in the game logs. The 
text-based features primarily consist of indicators for the presence of unigrams, 
bigrams, and trigrams of words observed to be salient for particular labels, as well as 
a smaller number of indicators for symbols and punctuation (‘?’, ‘!’, ‘$’, emoticons, 
and digits). Salience is computed based on the mutual information between n-grams 
and labels, where mutual information is a measure of statistical dependence [3]. 
Mutual information has been applied for text-based feature selection previously [6]. 
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The contextual feature set remains constant for each axis (speech act, content, and 
referent), while the salient indicators of the text-based feature set are customized for 
each axis. For each axis, we compute the mutual information between every label and 
every unigram, bigram, and trigram. The feature set for a classification axis is the 
compilation of the top 50 unigrams, bigrams, and trigrams for each label. We 
compute the mutual information between an n-gram and a label as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

)(*)(

),(
log*),(),(

ClassPwordP

ClasswordP
ClasswordPClasswordMI  

Where Class refers to a label (e.g. ASSERTION, DIRECTIVE, APPROVE, LAUGH, 
BILL, MONEY, etc.), and word refers to a unigram, bigram, or trigram of words from 
an utterance.  

Table 1. Label distributions and classification accuracy, precision (Pr), and recall (Re) 

Speech Act Content Referent 
Dist. Pr / Re  Dist. Pr / Re  Dist. Pr / Re 

ASSERTION 338 0.6 / 0.5 APOLOGIZE 71 0.8 / 0.9 AGE 19 0.6 / 0.5 

CONFIRMATION 354 0.9 / 0.8 APPROVE 267 0.7 / 0.6 BILL 106 0.9 / 0.9 

DENIAL 90 0.7 / 0.7 BRING 413 0.8 / 0.8 CUSTOMER 5 1.0 / 0.2 

DIRECTIVE 1,217 0.8 / 0.9 COMPLAIN 88 0.4 / 0.1 DIET 8 0.0 / 0.0 

EXPRESSIVE 724 0.8 / 0.8 CONSOLE 11 0.8 / 0.3 FLOWERS 31 1.0 / 0.8 

GREETING 302 0.9 / 0.9 CORRECT 11 0.5 / 0.2 FOOD 1,394 0.9 / 0.9 

OTHER 517 0.5 / 0.4 DESIRE 363 0.8 / 0.8 GEOGRAPHY 51 0.9 / 0.3 

PROMISE 136 0.9 / 0.8 EXCUSEME 25 0.8 / 0.8 MENU 52 0.9 / 0.9 

QUESTION 617 0.8 / 0.9 FAREWELL 110 0.8 / 0.7 MONEY 75 0.8 / 0.6 

  FOLLOW 24 0.9 / 0.8 NAME 24 1.0 / 0.3 

  GIVE 170 0.8 / 0.7 OTHER 651 0.6 / 0.4 

  HELLO 167 0.9 / 0.9 RESTAURANT 20 0.8 / 0.6 

  INFORM 176 0.6 / 0.3 SPECIALS 12 0.9 / 0.6 

  LAUGH 76 0.8 / 0.9 STAFF 22 0.9 / 0.5 

  MOVE 32 0.4 / 0.2 TABLE 37 0.9 / 0.9 

  OTHER 643 0.5 / 0.7 TIME 107 0.9 / 0.7 

  PICKUP 29 0.5 / 0.3 WAITRESS 21 0.8 / 0.7 

   PREPARE 627 0.9 / 0.9   
  REPREMAND 24 0.4 / 0.3    
  SIT 74 0.9 / 0.9    
  STATUS 149 0.7 / 0.4    
  THANK 290 0.9 / 0.9    
  UNDERSTAND 25 0.8 / 0.4    
  YRWELCOME 28 0.8 / 0.8    

CORRECT: 77.3%  CORRECT: 75.3%  CORRECT: 81.1%  
BASELINE: 28.3%  BASELINE: 15.0%  BASELINE: 38.6%  

OVERALL CORRECT:  60.9% OVERALL BASELINE:  14.3%  
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4.3   Classifier Implementation 

There have been numerous approaches to automatically classifying speech acts, 
including neural network classification [12], maximum entropy model classification 
[1], and Hidden Markov Model (HMM) speech act classification [21]. Our classifier 
is composed of three independent HMM classifiers, one for each axis (speech act, 
content, and referent). An HMM classifier exploits transition probabilities in the 
temporal patterns that emerge in human dialogue to boost classification recognition 
beyond that of individual utterances. We employed the SVMhmm classifier [9], which 
combines a Support Vector Machine (SVM) for observation classification with an 
HMM for learning temporal patterns of hidden states. Words and contextual features 
function as observations, and the labels themselves are the hidden states. This 
combination of an SVM and HMM has proven successful for dialogue act 
classification previously [19]. 
 

Table 2. Example labels for utterances in corpus, sorted by classification precision (pr) 

4.4   Classification Results 

Despite the apparent freedom, players of The Restaurant Game tend to constrain their 
dialogue to social conventions associated with the mutually understood “scripts” of 
restaurant interaction. This contributes to strong classification results given the 
challenge of correctly classifying three independent axes capable of producing 4,050 
unique triples.  

Table 1 presents our classification results, evaluated with 10 fold cross validation. 
(each fold trained on 90 game logs and tested on 10). For each of the classification 

Annotation Utterance Pr. 
{EXPRESSIVE, THANK, MONEY } “thank you for the tip” 1.0 
{ASSERTION, COMPLAIN, FOOD }  “excuse me, i didn't order the cheesecake” 1.0 
{PROMISE, BRING, MENU }  “I’ll be right back with your menu” 1.0 
{DIRECTIVE, PREPARE, FOOD } “one steak please” 0.9 
{GREETING, HELLO, NONE }  “Welcome!” 0.9 
{QUESTION, DESIRE, FOOD } “Would you like a drink to start with?” 0.9 
{CONFIRMATION, NONE, NONE }  “okey dokey” 0.9 
{PROMISE, BRING, BILL } “I'll be back with your bill in a moment.” 0.8 
{DIRECTIVE, FOLLOW, NONE } “follow me and i will have u seated” 0.8 
{ASSERTION, GIVE, NONE }  “there we r sir” 0.8 
{DIRECTIVE, SIT, NONE } “have a seat wherever you want” 0.8 
{DIRECTIVE, BRING, FOOD } “Yes I'll start off with a soup du jour” 0.8 
{EXPRESSIVE, YRWELCOME, NONE } “no problem” 0.8 
{QUESTION, DESIRE, TABLE } “table for one?” 0.8 
{EXPRESSIVE, LAUGH, NONE } “lol” 0.8 
{OTHER, OTHER, OTHER }  “i need to complete my quest” 0.5 
{OTHER, OTHER, OTHER }  “donfdgdfgdfgdfgadfg” 0.5 
{OTHER, OTHER, OTHER }  “some guy wanted to put 400 mb on floppies” 0.5 
{OTHER, OTHER, OTHER }   “what are you a vampire?” 0.5 
{EXPRESSIVE, APPROVE, FOOD }  “alrighty that was a satisfying dinner” 0.5 
{EXPRESSIVE, APPROVE, FOOD }  “yum that lobster is too good” 0.5 
{QUESTION, INFORM, SPECIALS }  “any specials today?” 0.0 
{ASSERTION, COMPLAIN, NONE }   “its cold” 0.0 
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axes, we report the precision and recall of each label, followed by the percentage 
classified correctly and a comparison baseline. All of the axes perform significantly 
better than baseline, contributing to 60.9% of the utterances being classified entirely 
correctly – correct on all three axes. It is notable that a human labeled at least one axis 
as OTHER in 11.7% of the incorrectly classified utterances. If we focus on the 
utterances that the human felt were relevant to the restaurant scenario, and ignore 
these degenerate utterances, the overall percentage correct increases to 70%. 

For each label, we tabulate the number of instances in which the label was assigned 
by the classifier, the number assigned by the human annotator, and the number 
correctly classified (where the human and classifier agree). Precision is computed by 
dividing the number correctly classified by the total number assigned by the classifier. 
Similarly, recall is computed by dividing the number correctly classified by the total 
number assigned by the human. Baseline represents the percentage classified correctly 
if we always choose the most common label for each axis (DIRECTIVE, OTHER, 
and FOOD respectively). 

In addition, we evaluated inter-annotator agreement among humans. A volunteer 
not involved with the development of the classifier annotated 10 game logs (422 
utterances). We computed a kappa coefficient of {0.73, 0.70, 0.89} respectively for 
{speech act, content, referent}, with a mean kappa of 0.77. Kappa between 0.61 and 
0.80 is considered substantial agreement [10]. 
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Fig. 3. Effect of training corpus size on classification 

Figure 3 illustrates the effect of the training corpus size. For one particular cut of 
the data, we plot the overall percent correct when the classifier is trained on between 
1 and 90 training log files, and tested on the same set of 10 logs. Given that the 
human labor involved in annotation is expensive, it appears as though annotating 
more than 30 game logs yields diminishing returns. Reviewing Table 1, we see that 
the labels with unsatisfactory results for precision or recall are most often due to 
sparse data – few examples for these labels in the training data. This suggests that 
continuing to annotate data is worthwhile, if we can focus human labor on appropriate 
selections of data. It is likely that a human-machine collaborative effort could lead to 
significant classification improvements, where the machine requests human assistance 
on assignments of low precision or recall, and efficiently classifies the rest 
independently. 
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5   Predictive Model Evaluation 

The fact that we can correctly classify a large proportion of utterances does not 
guarantee that these dialogue acts are useful for modeling social interaction. In this 
section, we demonstrate quantitatively that dialogue acts are useful building blocks 
for learning patterns of interleaved utterances and physical actions. Our long term 
goal is to generate social behavior for agents based on models learned by observing 
human-human interactions. These models will guide agents to conform to expected 
social conventions, and predict future actions (physical and linguistic) of other agents 
based on recent observations. As a first exploration in this direction, we experimented 
with simple n-gram statistical models [11] applied to both the surface word level and 
the speech act “intentional level.” In our experiments, we replay the interactions 
observed between two humans up to some point in a particular game log, and then 
stop the simulation and predict the next human utterance or action. For each game log 
in the test set, we slide a window of size n over the entire log and count correct 
predictions of the next utterance or action. These predictions indicate what an agent 
would do, if guided by these models. In section 5.1 we only predict the next utterance 
based on recent utterances; in section 5.3 we predict the next action or utterance 
based on an interleaved model. 

We evaluate our dialogue act classification quantitatively by learning three 
separate dialogue models – based on (1) classified utterances, (2) automatically 
clustered utterances, and (3) raw utterances – and comparing the predictive power 
provided by these models. We first evaluate models of utterance sequences alone. 
Next, we evaluate interleaved models of physical actions and utterances, in order to 
evaluate how well these utterance abstractions function as a common currency with 
physical actions.  

5.1   Comparison of Utterance Abstractions 

Our original corpus of 5,200 game logs was divided into 100 logs for annotating and 
training the dialogue act classifier, 4,800 logs for training n-gram models, and 300 
logs for evaluating prediction accuracy. After training the dialogue act classifier on 
100 logs, we automatically classified all utterances in the remaining 5,100 games in 
the corpus. There were 312 unique dialogue act triples observed in the 100 annotated 
logs, with 183 observed in more than one log. 

There are 112,650 unique raw utterances observed in the corpus. We clustered 
these utterances automatically using the k-means algorithm, based on the Euclidean 
distance between feature vectors of unigrams, bigrams, and trigrams observed within 
the utterances. We chose k=300, as this number of clusters provides a fair comparison 
with the 312 unique dialogue act triples. 

Figure 4 illustrates that dialogue acts are more predictive than raw utterances or 
clusters. Prediction accuracy is computed by counting the number of correct 
predictions of the next observed utterance, cluster, or dialogue act in a bigram, 
trigram, or 4-gram. The baseline prediction accuracy is computed by counting the 
number of correct predictions if we always choose the most likely utterance, cluster, 
or dialogue act found in the training corpus. Raw utterances yield poor prediction  
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Fig. 4. Prediction accuracy for utterances 

accuracy for n-gram models for all values of n, only achieving above 0.1 for bigrams. 
While clusters do achieve about a 30% increase in prediction accuracy over raw 
utterances, they fall below that of dialogue acts by over 50%. 

5.2   Filtering to Improve Prediction 

There is value in knowing what we don’t know. Our classifier assigns labels with 
60% accuracy. Ideally, we would train the n-gram model with only correctly labeled 
dialogue acts, rather than introducing noise with those classified incorrectly. Based on 
the statistics computed in section 4.4, we can interpret precision as our confidence 
that the classifier has assigned the correct label to an utterance, and exploit this to 
determine which labels to include in our model, and which to omit. Like a human 
traveler in a foreign country with limited understanding of the language, the system 
can grasp onto well understood utterances and exploit them to understand the gist of 
the interaction. There is no notion of confidence in automatically generated clusters, 
thus clusters cannot be filtered in the same meaningful way. For the sake of 
comparison, the best we can do is filter clusters by their observation frequency in the 
training corpus. 
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Fig. 5. Prediction accuracy for filtered utterances 
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If we train an n-gram model based only on dialogue acts with precision of at least 
80%, trigram prediction accuracy increases from 0.25 to 0.44. With 90% precision, 
accuracy increases to 0.64. There are 56 unique dialogue act triples with at least 80% 
precision covering 51.7% of the training data, and 33 triples with 90% precision 
covering 28.4% of the training data. See Table 2 for examples of high precision 
dialogue acts for the restaurant domain – utterances related to ordering food, paying 
bills, getting seated, and bringing menus. It is not surprising to see an increase in 
prediction accuracy when we decrease the number of unique labels, and number of 
utterances labeled. However, Figure 5 illustrates that filtering clusters in a similar way 
does not yield the same dramatic increase that we observe with dialogue acts. We 
compare prediction accuracy of the 56 most likely clusters to the 56 dialogue acts 
with 80% precision, and the 33 most likely clusters to the 33 dialogue acts with 90% 
precision. 

5.3   Integrating Utterances with Physical Acts 

We followed the methodology described previously [14] for generating a lexicon of 
unique physical actions from a corpus of thousands of game logs. By observing the 
state changes that occur each time a player takes a physical action in each game log, 
we learn a lexicon of context-sensitive, role-dependent actions (e.g. waitress picks up 
pie from counter). In our 5,200 logs, we have observed 7,086 unique actions. Based 
on the learned lexicon, log files are transformed into a sequence of action lexicon 
indices interleaved with utterances, where utterances may be represented as either 
clusters or dialogue act triples.  

In Figure 6, we illustrate the effect on prediction accuracy of integrating utterances 
into a trigram model of physical interaction. Based on recent observations of  
interleaved actions and utterances, the integrated model predicts the next action or 
utterance. This is a difficult problem, given that we are polluting the lexicon of 7,086 
directly observable actions with 112,650 unique utterances, which we can classify 
with 60% accuracy. We find that interleaving physical actions with dialogue acts 
gives better prediction accuracy than with raw utterances or clusters, and if we filter  
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to only include dialogue acts with at least 90% confidence we can achieve a 
prediction accuracy negligibly lower than that of physical acts alone (0.41 vs. 0.42), 
demonstrating that dialogue acts function well as a common currency with physical 
acts. While 90% confidence only covers 28.4% of the utterances, these are highly 
salient utterances for the restaurant domain, and coverage should increase as more 
data is annotated and the classifier improves. This is a first step toward discovering a 
higher-level structure of the restaurant scenario, composed of interleaved sequences 
of actions and utterances. 

Ideally integrating dialogue acts with physical actions would yield a higher 
prediction accuracy than either alone. The current representation of physical 
interaction clusters similar objects, and abstracts away timing information. In other 
words, the model does not differentiate between picking up steak or salmon (both 
clustered as food), and does not need to predict when the waitress will depart from the 
table to pick up food from the kitchen (perhaps after a three utterance exchange, 
concluding with “I’ll be right back with that”). Cleary these details will be important 
to an automated agent. We are working toward an agent guided by a model of 
physical interaction that retains these details, and we expect better prediction from the 
interleaved model of actions and words than from a model of either alone. 

5.4   Speech Acts vs. Dialogue Act Triples 

Recall that our classification scheme classifies the propositional content and referent 
in addition to the illocutionary force of each utterance. In this section, we demonstrate 
that this difference makes a significant impact on our ability to integrate a maximal 
number and variety of utterances into the predictive model of physical interaction, 
while preserving predictive power. We compare the predictive power of dialogue act 
triples to that of speech acts alone, while scrutinizing the percentage of utterances 
covered as we filter by confidence (aka precision). 

Initially, integrating speech acts into the model of physical interaction yields a 
slightly higher prediction accuracy than integrating dialogue act triples (0.34 vs. 
0.30). As we filter out lower confidence speech acts and dialogue acts, the prediction 
accuracy of both comes closer to that of the physical interaction alone (0.42), and the 
difference between predictive power of speech acts and dialogue acts becomes 
negligible. However, as we raise the confidence threshold, the percentage of 
utterances covered decreases dramatically for the coarser grained speech acts, as seen 
in Figure 7. We preserve 28.4% of the dialogue acts with 90% confidence, and only 
6.5% of speech acts. As seen in Table 1, only GREETING speech acts have above 
90% precision, compared to 33 unique dialogue act triples with 90% precision, which 
employ the full range of speech act labels (see Table 2 for a subset). At 80% 
confidence, a higher percentage of speech acts are preserved than dialogue acts 
(63.4% vs. 51.7%), but this comes at the cost of a 5% decrease in predictive power  
from physical interactions alone. Annotating with finer grained dialogue act triples 
provides a means of recognizing a maximal number and range of salient utterances for 
the restaurant domain, while preserving predictive power. 
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Fig. 7. Percent of utterances covered when filtering 

6   Conclusion 

Behavioral models generated by observing players of online games and virtual worlds 
have the potential to produce interactive socially intelligent agents more robust than 
can be hand-crafted by human designers. While it is possible to automatically learn 
statistically recurring patterns in surface level behavior, our results demonstrate that 
we can generate models with stronger predictive power by leveraging a minimal 
amount of human interpretation to provide annotation of the underlying intentions, in 
the form of dialogue act triples. The significant increase in predictive power with 
dialogue acts is evidence of progress towards discovering the socio-cultural scripts 
that guide social interaction in a restaurant. 

It is likely that our dialogue act classifier could be improved by providing more 
training data guided by an active learning process, however intention of utterances 
can never be fully recognized without understanding their role in the higher level 
structure – the sub-goals of the restaurant scenario composed of interleaved physical 
and dialogue actions. Our evaluation of integrating physical actions with dialogue 
models demonstrates the potential for dialogue acts to function as building blocks of 
sub-goals. Discovering this higher level structure remains a goal for future work. 
Human annotation will be required to identify intentional sub-goals spanning multiple 
physical actions and/or dialogue acts, and based on our experience with semi-
automated dialogue act annotation, we are optimistic that semi-automation of sub-
goal annotation will be possible as well. 
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Using Exclusion Logic to Model Social Practices
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Abstract. This paper introduces Exclusion Logic - a modal logic based

on hierarchical finite-state machines. We show how Exclusion Logic can

be used as a deontic logic to model social practices. We describe a com-

puter implementation of Exclusion Logic in a multi-agent simulation, and

explain how it efficiently resolves conflicts between incompatible norms.

Keywords: deontic, multi-agent, material incompatibility, exclusion,

hierarchical finite-state machine, defeasible reasoning, conflict resolution.

1 Introduction

There are many good reasons, frequently rehearsed, for modelling norms in some
sort of declarative formal language. Researchers working on normative multi-
agent systems have used a large array of formal languages to model aspects
of social practice: a variety of deontic logics, temporal logics, constraint logic
programming, the event calculus, and so on.

But when software engineers build multi-agent simulations for large-scale in-
dustrial applications, they tend to eschew such formalisms, and fall back on the
unglamorous but dependable finite-state machine. The hierarchical finite-state
machine (hereafter, HFSM) is a tree of states and sub-states, allowing context-
specific data and processes to be stored within each sub-state. Norm-violations
can be detected in state-specific event-handlers, and can be responded-to by
changing to a state which encourages some form of correction.

Despite the attractions of the HFSM, it has one fundamental weakness as a
means of representing social practices: the reason why the machine moved from
one state to another is hidden in the machine’s processes. This information is
compiled away into the run-time process, and is inaccessible to the agent. In other
words: the state machine may have moved correctly from one state to another,
but the reason why the machine changed state is not represented declaratively,
and hence is not accessible to the agents themselves. Weaknesses in HFSM-based
simulations are typically the result of this lack of informational transparency:
the agents are participating in the practice without understanding the practice.

One way to try to get the best of both worlds is to recast HFSMs in a declar-
ative language. Exclusion Logic, hereafter EL, is just such a language.
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We use EL to define a specifically deontic exclusion logic as a syntactic ex-
tension of EL. (A deontic logic is a type of logic which distinguishes between
what is in fact the case and what should be the case [15]). We show how this
deontic exclusion logic can be used to model social practices in a multi-agent
simulation.

2 Exclusion Logic

EL is a simple language for constructing trees of data. It does not contain opera-
tors for negation or disjunction, and uses only a restricted version of implication.
Instead, it has an operator for expressing the idea that one data-value excludes
other values.

Definition 1. Given a set S of symbols, the expressions in EL are defined as
all terms of type G in:

X ::= S | S:X | S.X

E ::= X | E ∧ E

G ::= E | E → E

The language is carefully stratified: terms are assembled into conjunctions, which
are then combined into implications. In this way, it resembles disjunctive normal
form. Note that → is not recursively embeddable: although P → Q is well-
formed, P → Q → R is not.

The only unusual feature of this simple language is the use of two binary
modal operators, ‘.’ and ‘:’, to build up trees of information. Asserting that A:B
is claiming both that A, and that one of the ways in which A is B. Saying that
A . B, by contrast, is to say that B is the only way in which A is the case. By
saying A . B, we exclude other values of A.

Terms Explanation

WhoseMove.Black It is Black to move

Agents:Jack:Age.37 One of the agents is Jack, and his age is 37

Agents.Jack:Age.38 Jack is the only agent, and his age is 38

Wolf:Class.Mammalia.Theria The wolf is of class Mammalia and sub-class Theria

Fig. 1. Examples of expressions in L

Both A:B and A.B imply that B is a way in which A is true. But A:B and
A:C are compatible terms, whereas A.B exclude other values of A, such as A.C.
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WhoseMove.Black WhoseMove.White

Agents:Jack Agents.Jill

Agents:Jack:Age.37 Agents:Jack:Age.38

Wolf:Class.Mammalia.Theria Wolf:Class.Gastropoda

Fig. 2. Pairs of incompatible expressions

2.1 Expressive Power and Expressive Impoverishment

In some respects, Exclusion Logic seems woefully impoverished in comparison
with more traditional formalisms such as predicate logic. But in other ways, it
seems surprisingly powerful and versatile.

Let’s look at the weaknesses first. At first glance, EL looks like a very im-
poverished logic indeed, hardly deserving of the name. How can we live without
operators for negation and disjunction? Although Exclusion Logic does not con-
tain these operators, it has resources for expressing some of what we want to
say when we use them.

Incompatibility and Negation in EL. Asserting ¬P is a way of denying P
- a particularly vague and non-committal way of denying it. Although EL has
no negation, it has other, more specific, ways of denying a claim.

Given A.B, we can make an incompatible claim by saying A.C or A.D. EL
has the ability to make contentful denials, but it doesn’t have the resources
for making the least contentful incompatible claim for any arbitrary complex
expression.

We also have the ability in EL to express negation directly using →. As
long as EL contains at least two symbols A and B, we can define an explicit
contradiction ⊥ as A.A∧A.B. Now define ¬P as P → ⊥. However, although we
can express the negation of a simple term such as P or P.X , there is no way to
express the negation of a complex term such as P ∧ Q or P → Q, because → is
not recursively embeddable.

Disjunction in EL. Although EL does not contain a disjunction operator, it
has other ways of achieving similar effects. Note that P ∨ Q is the most specific
of the claims which is entailed by P and by Q. If we see entailment as a partial
ordering, then P ∨ Q is the least upper bound of P and Q.

Now certain pairs of expressions in EL have a corresponding least upper
bound. For example, the least upper bound of A.B and A.C is A.

2.2 Expressive Power

So even if EL does not contain negation and disjunction, it has ways of expressing
some of what we want to do with these operators. Now let us focus on the ways
in which EL is expressively powerful.
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Quantifying over Properties and Relations. Because properties and re-
lations are just first-class elements in a string of symbols separated by ‘:’ and
‘.’, we can quantify over them just as easily as we can quantify over symbols
referring to objects.

So for example, if we have Apple : Green and Book : Green, then we can
state that there is an x such that Apple : x and Book : x. Similarly, if we have
Jack : Likes : Jill and Jill : Likes : Jack, then we can state that there is an x
such that Jack : x : Jill and Jill : x : Jack. (In EL, constants are upper-case
and variables are lower-case).

Mixing Deontic and Epistemic Operators. One of the motivations behind
EL was the desire for a simple language in which deontic and epistemic operators
could be mixed freely, so that we can express things like “Agent A believes that
P, but he should believe that Q”.

EL, with its ability, for any term t, to produce further terms of the form
Operator : t, allows us to mix and iterate deontic and epistemic operators freely.
The → operator is defined so that P → Q and Operator : P together imply
Operator : Q, which is a core requirement for being able to treat Operator
deontically or epistemically.

2.3 Semantics

There isn’t space in this article to specify the semantics of EL in full detail. (For
a complete description of the semantics, see [8]).

An expression in EL will be interpreted in a lattice of labeled rooted trees.
In a labeled rooted tree (hereafter, LRT), each vertex is labeled with a symbol
from S, and each edge is labeled with either ‘∗’ (suppressed) or ‘!’. If the edge
from X to Y is labeled with ∗, it means that Y is one of the children of X - but
X may have other children also. But if the edge is labeled with !, it means that
Y is the only child of X .

Definition 2. An LRT is a directed tree with a vertex- and an edge-labeling.
Formally, an LRT is a tuple (V, E, L, M, R) where:

– V is a set of vertices
– E is a set of edges
– L contains the vertex labels; it is a total function from V to the set of symbols

S
– M contains the edge labels; it is a total function from E to {∗, !}
– R ∈ V is the vertex for the root of the tree, where L(R) = T (here, T is a

symbol not occurring in S used to label the root of each tree).

We define a partial-ordering on these trees, where t1 ≤ t2 if t1 contains at least
as much information as t2.
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A B
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We define an operator � on trees, such that t1�t2 is the greatest lower bound:
the least-specific tree that contains all the information of t1 and t2, as long as
they are compatible, and ⊥ otherwise.

T
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T

B

T
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� =

Fig. 3. Example of �
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⊥� =

Fig. 4. Example of �

We also define least upper bound � in the natural way, as the tree which
contains all the information they share:

T

A

T

B

T� =

Fig. 5. Example of �
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A

!

T

A

T

A

� =

Fig. 6. Example of �
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Given this ordering, we can construct a lattice of labeled rooted trees, with
⊥ at the bottom, and the empty tree � at the top.

Using this lattice, we can give EL a clean semantics and a straightforward
decision procedure.

2.4 Decision Procedure

We will use the lattice of LRTs defined above to provide an efficient decision
procedure. We will interpret an expression by the

⊔
of the LRTs which satisfy

it.

Definition 3. Define [x] as the set of LRTs which satisfy x:

[x] = {M | M |= x}

Note that there are an infinite number of LRTs which satisfy an expression. Now
because the LRTs form a lattice, [x] has a least upper bound

⊔
. We can use this

least upper bound to calculate entailment directly.

Proposition 1.

X |= Y iff ∀M M |= X ⇒ M |= Y

iff [X ] ⊆ [Y ]

iff
⊔

[X ] ≤
⊔

[Y ]

Proof ( (Left to right)). We will show that [X ] ⊆ [Y ] ⇒ ⊔
[X ] ≤ ⊔[Y ]. Assume

[X ] ⊆ [Y ]. Now
⊔

[X ] ∈ [X ]. So
⊔

[X ] ∈ Y , as everything in [X ] is also in [Y ].
Now

⊔
[Y ] is ≥ everything in [Y ], including

⊔
[X ], as

⊔
[Y ] is an upper bound.

So
⊔

[Y ] ≥ ⊔[X ].

Proof ( (Right to left)). We will show that
⊔

[X ] ≤ ⊔[Y ] ⇒ [X ] ⊆ [Y ]. Assume⊔
[X ] ≤ ⊔[Y ]. Take an x ∈ [X ]. We must show that x ∈ [Y ]. Now x ≤ ⊔[X ], as⊔
[X ] is an upper bound. So x ≤ ⊔[Y ], by transitivity of ≤. Now |=⊔

[Y ] Y . As
|=M Y and M ′ ≤ M implies |=′

M Y , |=x Y . Since x is one of the models which
satisfies Y , x ∈ [Y ].

Next, we will provide a direct way of computing
⊔

[X ]. This will give us a direct
and efficient way of determining if Y is entailed by X : look to see if

⊔
[X ] ≤ ⊔[Y ].

Instead of having to verify all the models of X to see if Y is true, we just look
in one canonical model.

Computing
⊔

[X] directly. We will define a particular model m(X), and then
show that m is indeed the minimal model: m(X) =

⊔
[X ]. Note that the expres-

sions in L can be divided into two groups: the conjunctions and the implications.
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Definition 4. First we will define m(X) for the fragment of L that doesn’t
include implications.

– m(T ) = � = ({1}, {}, {(1, T )}, {}, 1)
– m(A ∧ B) = m(A) � m(B)
– m(A:B) = (Vm(A) ∪{v}, Em(A) ∪{v′, v}, Lm(A) ∪ (v, B), Mm(A) ∪ ({v′, v}, ∗))
– m(A.B) = (Vm(A) ∪{v}, Em(A) ∪ {v′, v}, Lm(A) ∪ (v, B), Mm(A) ∪ ({v′, v}, !))

Here, v is a new vertex not occurring in m(A) which is used to interpret B, and
v′ is the vertex which m(A) uses to interpret A i.e. the v′ such that sm(A)(v′) =
symbols(A).

Definition 5. We extend m from individual expressions to sets of expressions:

m(X) = �{m(e) | e ∈ X}
Definition 6. We extend m to include implications. First, divide a set X of
expressions into the conjunctions A and the implications G. We will interpret G
as a function, and interpret m(G, A) as the result of repeatedly applying m(G)
to m(A). Define m(X → Y ) as the pair of LRTs (m(X), m(Y )). Next we will
define the evaluation e of a pair (A, B) of LRTs to an LRT. The evaluation
function e is defined as:

e : LRT × LRT → LRT → LRT

e (A, B) X = if X ≤ A then B � X

else X

Definition 7. We extend e to operate on sets of pairs in the natural way: Define
e’ as:

e′ : 2LRT×LRT → LRT → LRT

e′ G X = �{e(h, X) | h ∈ G}
Definition 8. We define m(G, A) to be the least-specific model which is closed
under the application of e′ on m(G) over m(A):

m(G, A) =
⊔

{X |X ≤ e′(m(G), m(A)) ∧ e′(m(G), m(X)) = m(X)}

Proposition 2. m(X) =
⊔

[X ] for all sets of expressions X.

Remark 1. In summary, to determine whether G, A |= X , we just need to check
if m(G, A) ≤ m(X).

The Complexity of the Decision Procedure. We determine whether G, A |=
X by checking whether m(G, A) ≤ m(X). This computation involves the follow-
ing sub-tasks:

1. Computing m(G)
2. Computing m(A)
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3. Computing m(G, A) by repeatedly applying λz.e′(m(G), z) to m(A)
4. Computing m(X)
5. Determining whether the result of (3) ≤ the result of (4)

Assume G is a set of judgments of size n, and A and X are individual con-
junctive judgments. Assume the max number of conjunctions in G, A, X is m,
and the max complexity of any conjunct is k. Now computing m(G) involves
2n applications of m on a pair of conjunctions. Applying m to c1 ∧ c2 ∧ ... ∧ cn

involves computing (c1 � c2)... � cn. This involves Σm
i=1ik

2 ≤ m2k2 operations.
So computing m(G) involves at most 2nm2k2 operations. Computing m(A) and
m(X) involve another m2k2 each.

Computing the repeated application of λz.e′(m(G), z) to m(A) involves at
most n applications of e′. (Justification: a member of G can only be applied
once. Each time through, we either run out of pairs in G to apply, in which
case we are done, or we apply one, and start again, removing the one we used.
There can be at most n applications before we run out of pairs to apply). Each
application of e′ involves at most n iterations to find a pair in G which applies
to A, and an application of e if it finds one. So each application of e′ involves
Σn

i=1im
2k2 ≤ n2m2k2 operations. There are at most n applications of e′, so

repeatedly applying λz.e′(m(G), z) to m(A) takes at most n3m2k2 operations.
Determining whether m(G, A) ≤ m(X) involves comparing each vertex of

m(X) with every vertex in m(G, A). The size of m(G, A) is bounded by (n +
1)mk. So computing ≤ involves at most (n+1)mk×mk = (n+1)m2k2 operations.

In summary, testing entailment in L is polynomial-time (unlike, say, propo-
sitional calculus which is NP-complete). A polynomial-time decision procedure
is what we would expect, given that L is in a format very close to disjunctive
normal form.

3 Using Exclusion Logic as a Deontic Logic to Model
Social Practices

Deontic Exclusion Logic is a particular application of Exclusion Logic, designed
for modeling social practices.

3.1 Syntax

Given a set S of symbols, the expressions in Deontic Exclusion Logic are defined
as the terms G in:

X ::= S | S:X | S.X

J ::= X | �X | © X

E ::= J | E ∧ E

G ::= E | E → E

In Deontic Exclusion Logic, like Standard Deontic Logic, the intended meaning
of �P is that P should be the case. The © operator comes from temporal logic:
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©P means that P holds at the next state. �P and ©P are just syntactic sugar
for Should : P and Next : P respectively.

Note that the operators are carefully stratified. It is syntactically much more
restricted than Standard Deontic Logic: we cannot iterate the � (or ©) operator,
and we cannot put � (or ©) outside a conditional or conjunction.

Well-Formed Ill-Formed

�A ∧ �B �(A ∧ B)

A → �B �(A → B)

�A ��A
©A � © A
A → ©B ©(A → B)

Fig. 7. Well-formed and ill-formed expressions

4 Computational Implementation

Having described Deontic Exclusion Logic in the abstract, we now focus on the
computational implementation. We used this logic to power a multi-agent simu-
lation, featuring tens of agents running in real-time in a Sims-style environment.

4.1 Overview

At any time, the system has a set of judgments in working memory. (In the
current implementation, all agents share the same set of judgments, so there is
no chance of their understandings of the social world diverging). Judgments are
added to working memory by perceiving the world. Judgments are also added
by making inferences. These inferences can involve free variables. For example:

x:Apple -> x:Edible

Some of these conclusions are further facts, and some conclusions are deontic
judgments, to the effect that something should be the case. For example:

x:Stomach:Filled.Empty /\ y:Edible -> [] x:Act.Eat.y

Here, the conclusion is that x should eat y. In the code examples, the � operator
is represented by

[]

The © operator is represented by

Next

Conjunction (∧) is represented by

/\

Often, a number of incompatible conclusions will follow from the input data. In
these cases, the system has to resolve the conflict before it can act.
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Once conflicts have been resolved, the system is ready to act on the deontic
judgments (converting judgements about what it should do into action). Some
of the deontic judgments are primitive motor actions (body actions). These are
automatically executed by the underlying system. The results of these primitive
motor actions is that new facts are added to working memory. For example:

x:Agent /\ Motor:Animate:x.Eat.y.Finish.t -> x:Stomach:Filled.Full

These new facts suggest further inferences, which suggest further deontic judg-
ments, which resolve to subsequent action, and so on.

4.2 An Ergonomic Language for Implementing Simulations

In EL, when an expression is added to the database, all incompatible expressions
are removed.

This means that simulation rules can be expressed more economically than in
predicate logic. For example: in the postcondition of the “Move block x from y
to z” operator, we just need to specify that x : On.z - we do not need to specify
that x : On.y is removed - because this removal follows automatically from the
semantics of the ‘.’ operator.

There are more striking consequences of the fact that the semantics takes care
of the removal of invalid data. Suppose that A.B : C and A.B : D.E and A.B : F
were true, but then A.G was added to the database. This would invalidate the
whole tree of data underneath A : B. In this way, the semantics of the ‘.’ operator
takes care automatically of the removal of swathes of invalid data.

4.3 Motives Are Just a Type of Conditional Normative Judgment

In this deontic simulation, there is no separate system for goals, desires or mo-
tives. In this approach, having a desire to eat just is holding the conditional
judgment that I should eat when my stomach is empty:

x:Stomach:Filled.Empty /\ y:Edible -> [] x:Act.Eat.y

In [11], Habermas distinguishes between four types of action: the teleological/in-
strumental (goal-oriented), the normatively-regulated (norm-following), the dra-
maturgical (expressive) and the communicative (dialogical). Different theorists
have different understandings of which of these types of action is explanatorily
fundamental. The instrumentalist, for example, takes teleological goal-directed
action as most basic, and seeks to explain the other three types of action in
terms of it.

In many multi-agent normative architectures, e.g. the Boid Architecture [5],
obligations and desires are modelled separately. One of the things which is dis-
tinctive about the approach taken here, by contrast, is that the normative is
taken as explanatorily fundamental. Teleological/instrumental reasoning is sub-
sumed under the normative, as a special case.
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4.4 Examples

To test the language and supporting framework, we used a variety of examples,
ranging from the quotidian to the bizarre. For example:

– A case where eye-contact is used to communicate status - so an inferior must
look away when his superior is looking at him

– A simple turn-taking board-game, where the participants notice if the rules
are violated, and make suitable corrections

– A case where one agent is trying to kiss another, who is trying to run away
– A society where eating is private and shameful, and should not be done in

the presence of others
– A set of tribesmen queueing up to lick a sheep

Deontic Exclusion Logic allows us to express these practices naturally and con-
cisely.

Example: Queueing.

// If x is the head of the queue, and x has finished doing his thing, and

// y is next in the queue after x, then it is y’s turn next

Queue:Head.x /\ Animate:x.phi.z.Finish /\ Queue:After:x.y -> Next:Queue:Head.y

// If x wants to join an empty queue, then he becomes the head and tail

x:Participant /\ Queue:In:x.False /\ Queue:Tail.Null -> Next:AddHead.x

AddHead.x -> Queue:Head.x /\ Queue:Tail.x

// If x wants to join and the queue isn’t empty, x is added at the end

x:Participant /\ Queue:In:x.False /\ Queue:In:y.True

/\ y:Participant /\ Queue:Tail.y -> Next:AddAfter:y.x

AddAfter:x.y -> Queue:After:x.y /\ Queue:Tail.y

// When x is the tail of the queue, there is nobody behind him

x:Participant /\ Queue:Tail.x -> Next:Queue:In:x.True /\ Queue:After:x.Null

// When x is the head of the queue, he is encouraged to do the action

// which he has been queuing up to do

Queue:Head.x /\ x:Participant /\ Queue:Target.y -> [] x:Act.phi.y

The queue keeps track of the head, the tail, and an associative array of who is
behind whom. When somebody joins the queue, they are added at the back. The
person at the head is tasked with performing the action phi on the target. When
the head of the queue has finished performing the action, he leaves the queue,
and the person behind becomes the head.

Note that the participants are preoccupied with place-work [10]: making the
current state of the practice manifest. In this case, it means each member is
tasked with looking at the person in front, thereby showing who is in front of
him. Furthermore, if the head of the queue fails in his task of performing the
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specified action on the target, the participants will gently remind him of his
duty.

The result is a fluid practice involving multiple agents performing concurrent
overlapping actions to maintain the state of the practice, defined concisely in a
few declarative conditionals.

Example: Tic Tac Toe. A simple turn-taking game like Tic Tac Toe can be
modelled in a few lines:

G:HasWon:x /\ G:Other:x.y -> G:Playing.F /\ [] Motor:Animate:x.Hooray.y

UserInput.x.t.z /\ G:Move.x /\ G:Symbol:x.t /\ z.Empty

-> Motor:Animate:x.t.z.Finish

UserInput.x.t.z /\ G:Symbol:x.u /\ G:Different:t:u /\ G:Other:x.y

-> [] Motor:Animate:y.NotYourSymbol.x /\ [] Motor:PointAt:y.x

UserInput.x.t.z /\ G:Other:x.y /\ G:Move.y

-> [] Motor:Animate:y.ItsNotYourMove.x /\ [] Motor:PointAt:y.x

G:Playing.T /\ G:Move.x /\ square.Empty /\ G:Symbol:x.t /\ G:Other:x.y

-> [] x:Act.Mark.square.t

[] x:Act.Mark.square.t -> [] Motor:Route:x.square /\ [] Motor:LookAt:x.square.At

[] x:Act.Mark.square.t /\ Engine:Test(IsVeryNear, x, square)

-> [] Motor:Animate:x.t.square

Motor:Animate:x.t.z.Finish /\ G:Symbol:x.t -> Next:G:HasMoved:x:z:t

G:HasMoved:x:square:t /\ G:Other:x.y -> G:Move.y /\ square.t

Square11.s /\ Square12.s /\ Square13.s /\ G:Symbol:x.s -> Next:G:HasWon:x

Square21.s /\ Square22.s /\ Square23.s /\ G:Symbol:x.s -> Next:G:HasWon:x

...

The game state G keeps track of whose move it is in the G : Move term.
G : Move.x means that it is x’s turn to play. The game keeps track of which
symbol each player is assigned: G : Symbol : x.t means that t is x’s symbol. Note
that the player is physically capable of making illegal moves. If he makes a move
when it is not his turn, or he writes the wrong symbol, his opponent will notice,
and correct him.

In our prototype we have a number of such practices coexisting happily. For
example, if two agents are playing Tic Tac Toe, and a wolf comes along, the
agents will flee from the wolf. But if the wolf is killed, the agents will return to
their game. The propositions storing the state of the game have been retained,
so they carry on seamlessly from where they left off.

4.5 Inference Mechanism

The inference problem is: given a new piece of perceptual data, find all the conse-
quences of that data. The naive approach to inference is to iterate through all the
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rules, looking for a match with the input data. But this becomes prohibitively
expensive as the number of rules increases. We chose the Rete algorithm to op-
timize inference, as it has been proven to work efficiently in large real-world
applications.

The Rete algorithm works by maintaining a dependency graph of information
which allows the system to know exactly which inference-rules to trigger when
a new piece of information is added. The interested reader should consult [9] for
details.

4.6 Conflict Resolution

As soon as we apply the logic to real situations, our inference rules generate
inconsistent output. The incompatible conclusions may come from two different
practices, or from one practice containing two or more inference rules yielding
incompatible outputs.

Deontic Exclusion Logic uses a form of conflict-resolution which starts with
the approach used in [1].

Definition 9. If we divide our input theory into a set G of implications and a
conjunction A of terms, where G, A |= ⊥, then the max-family(G,A) is the
maximal subsets G′ of G such that G′, A � ⊥. The out-family is the set of
consequences of the members of the max-family:

out-family(G, A) = {{C|(G′, A) |= C}|G′ ∈ max-family(G, A)}

At this stage, we have a set of candidate maximal consistent subsets to choose
from. In order to act, we will need to choose one of these candidates. Alchourron
and Makinson use a partial ordering over G to resolve conflict in [1]. But in our
application, where we need agents to handle conflict-resolution immediately, we
insist on a total-ordering � over G. (In our implementation, the ordering of the
inference-rules is determined simply by their relative position in the file).

Given this total ordering �, there is a unique highest member of the max-
family. Let G� be the member of max-family(G, A) such that every other member
contains a member which is � every member of G�.

This maximal consistent subset G� is constructed by going through the ele-
ments of G, in descending order, starting with the topmost. If adding the next
member of G keeps the result consistent, we add it; otherwise, we skip it.

Applying this to our implementation, we need to generalize from the propo-
sitional case to the case of rules with universally-quantified free variables, by
grounding out all instances of each rule. If our inference-rule has k free vari-
ables, and each variable can take n values, then there are nk groundings of this
rule.

Now it would be prohibitively slow to construct G� naively by grounding
out the inference-rules, and going through all the elements in the right order.
Instead, we use a form of insertion-sort on the current-set of justifications, using
� to choose between justifications.
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The resulting conflict-resolution strategy is a form of justification-based truth-
maintenance system. We keep track of all the justifications associated with each
proposition. Each justification can be suppressed by a set of justifications, or it
can be suppressing a set of justifications. (It cannot be both). A proposition is
in if it has at least one justification which is not suppressed, it is out otherwise.

When the Rete inference engine wishes to add a new justification for a propo-
sition to the database, it looks to see if there are any propositions in the in-list
which conflict with it. If so, it looks through all the justifications for each con-
flicting term, and decides whether the conflicting justification is � the newly
added justification. If it is, then we add a new element to the Rete inference
agenda: suppress the old justification with the new justication. Otherwise, we
add the alternative pair: suppress the new justification with the old justifica-
tion. The Rete inference agenda is a list of actions; each action is either adding
a justification, suppressing a justification with another justification, or releasing
a suppression. When a justification for a proposition is suppressed, this suppres-
sion travels through the Rete network, suppressing all the consequences of that
proposition.

When we want to suppress a justification, we need to look to see if it is
currently suppressing anything else. If it is, then these elements need to be
released from this suppression. When a justification is released from suppression,
this release also travels through the Rete network.

Conflict-resolution is thus interweaved with inference in the Rete engine, per-
forming a continuous insertion-sort to respect � as new propositions are added.

4.7 Worked Example of Conflict-Resolution

Given the following rules:

P -> T.B
Q -> T.A
T.A -> M.P
C -> X.Z
B -> M.Q
M.Q -> X.Y

Suppose first the system receives B. Rete infers M.Q and then X.Y .
Next, suppose the system receives Q. First, Rete adds T.A from Q. But next

it wants to add M.P from T.A, but it sees that M.P and M.Q are incompatible.
At this point, it compares the justifications according to the � ordering, and sees
that B → M.Q � T.A → M.P (ordering of rules is based on relative position).
So T.A → M.P suppresses B → M.Q. Suppression propagates through the Rete
network, and so our justification for X.Y is also suppressed by T.A → M.P .

Next, suppose the system receives C. Rete infers X.Z. Now X.Z and X.Y
are incompatible, but because X.Y has already been suppressed, it has already
been removed from the in-list.

Finally, suppose the system receives P . Rete infers T.B. Now T.B is incom-
patible with T.A, and Q → T.A � P → T.B, so the earlier justification for
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T.A is suppressed. This suppression propagates through the Rete network, and
the earlier justification for M.P is also suppressed by P → T.B. Now M.P was
previously suppressing M.Q and X.Y , but now that M.P is suppressed, these
two are now released from their suppression. However, when we try to add X.Y
back again, we find another suppressing claim, X.Z, so X.Y is still excluded
from the in-list.

5 Related Work

5.1 Related Work on Conflict Resolution

Xavier Parent [14] also handles conflict resolution by assuming an ordering on
terms and uses the max-family and out-family constructs to find the best choices.
He is considering conflict-resolution in the context of the Input/Output logics,
rather than exclusion logic.

5.2 Comparison with HFSMs

In Deontic Exclusion Logic, a social practice is modeled as a set of declarative
conditionals. This has a number of advantages over modeling the practice as an
HFSM.

Firstly, the reason why the practice is in this particular state is accessible to
the agents, so they can justify their judgements about the situation. In Deon-
tic Exclusion Logic, the state-transition is a declarative conditional, which the
agents can inspect themselves (unlike the state-transition in the HFSM, which is
a compiled process). For example: one of the first practices modeled was a set of
rules for making eating taboo in the presence of others. In this scenario, agents
would not autonomously eat when other agents were around. But not only did
they behave correctly - they knew why they were behaving as they were. The
reason for their refraining was epistemically accessible to them: they could see
that it was the presence of others, and the rule about not eating with others
around, which prevented them from eating.

Secondly, when a practice is modeled as a set of declarative conditionals, it
is easier to learn. Instead of having to construct a large HFSM to explain a
block of behavior, the agent can learn individual declarative conditionals in a
piecemeal manner. In a block of procedural code, such as an HFSM transition,
an individual line does not even compile on its own, because of the various
dependencies between the line and earlier lines. But in Deontic Exclusion Logic,
each declarative conditional is intelligible on its own, so it can be learned on its
own.

6 Summary

This paper has introduced yet another formal language for the representation
of norms. The one thing that distinguishes this particular formalism is that it
allows the declarative rearticulation of the Hierarchical Finite-State Machine.
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Because Deontic Exclusion Logic is just a syntactic extension of EL, it is effi-
ciently decidable. It has been used to power a real-time multi-agent simulation,
to implement a variety of social practices. Our initial prototype suggests that
expressing social practices in this language is natural and concise.
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Abstract. The AI techniques used in commercial games are usually

predictable, inflexible and unadaptive, causing a lack of realism for the

player. In this paper, we introduce a proposal of integrating the ALIVE

framework, based on Organisational theory, into commercial games. The

objective of our proposal is to provide game AI developers with a method-

ology and tools to model gaming scenarios using social structures.

1 Introduction

Artificial Intelligence (AI) in commercial games (Game AI) provides the means
to enhance the two-way communication with the human player by delivering
the illusion of “intelligence” in the non-player characters’ (NPCs) behaviour.
Usually, it encompasses a subset of academic AI techniques that implement ad
hoc solutions in three groups[8]:

i Movement mechanisms, providing the decision process to control NPC’s mo-
tion, e.g. optimised real-time versions of A∗ algorithms.

ii Behaviour control used to control NPCs’ actions.
iii Strategy techniques used to co-ordinate groups of NPCs.

Whilst algorithms in (i) have evolved to mature state-of-the-art, solutions
commonly used in commercial games for (ii) and (iii) are far from aligned with
academic AI and are based on simplistic, rule-, automata- or case-based meth-
ods optimised for performance. These domain-dependent approaches present the
following limitations in most of the cases:

– Blind specifications: the NPCs are programmed on how to act in reaction
to environmental and/or other players conditions, but not why to act in a
given manner; hence, the actions are purposefuless and, in most cases, not
“natural” from the human player’s perception.

– Lack of flexibility and adaptiveness: the rule-based actions are limited and
reactive to external conditions, not beeing able to evolve, and providing
reduced pro-activeness.

F. Dignum (Ed.): Agents for Games and Simulations II, LNAI 6525, pp. 179–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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– Strange behaviour: the behaviour of the NPCs do no reflect the aspects of
sociability and “participating in a whole”, leading to unnatural actions from
the human player’s perception.

– Predictable behaviour: NPCs’ tactics are easily discoverable by the human
player and, after some time, predictable, leading to negative perception.

– Low reusability, as the solutions are commonly tailored to specific scenario
domains and, therefore, not re-usable through different games even if they
belong to the same genre.

We argue that it is possible to create elaborate solutions for the issues of
(ii) behaviour control and (iii) strategy techniques by integrating models based
on Organisation Theoretical methods to control NPCs’ behaviour. This theory
contributes to the systematic study of how actors behave within organisations.
Hence, the actors in a game are described as an organisation which behaviour is
based on specific roles, norms, dependencies, and capabilities (services). Our aim
is to provide a methodology and tools for Game AI developers to model gaming
scenarios using social structures. We demonstrate how this approach tackles the
limitations of the current domain-dependent approaches aforementioned.

This research is part of the Project ALIVE[2], which combines ideas from
organisational and coordination theories to create an integrated framework for
the development of complex distributed systems. We describe this framework
in the next section. Section 3 introduces our proposed architecture and how to
integrate to existing games. Section 4 provides proof-of-concept case studies.
Section 5 cross-relates our approach to other works. The paper concludes with
Section 6, where we discuss our achievements and propose future work.

2 The ALIVE Framework

The ALIVE framework is being developed as part of the Project ALIVE[2]. It
aims to combine existing work in coordination and organisational structures with
the state-of-the-art in service-oriented computing. It will allow system architects
to build service-oriented systems based on the definition of organisational struc-
tures and how they interact. This framework defines three structural levels, as
depicted in Figure 1:

– The Service Level augments and extends existing service models in order to
make components aware of their social context and of the rules of engagement
with other services via semantic demarcation technologies.

– The Coordination Level specifies the high-level patterns of interaction (known
as workflows) among services by using powerful coordination techniques from
recent agent research. These workflows can be adapted at runtime, which is
useful when the system has to react to unexpected events (such as failures and
exceptions).

– The Organisational Level provides the Service and Coordination levels with
a social context, specifying the organisational rules that govern interaction.
This level makes services organisational aware, that is, services are aware
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of system’s high-level objectives, structure and normative restrictions. This
reflects in task allocation, workflow generation and agreement at the coor-
dination level. For instance, the system will prevent workflows that violate
normative restrictions from being generated and tasks are to be allocated
to appropriate actors as defined on the organisational structure. This level
also benefits from recent research in organisational dynamics to allow the
structural adaptation of the system when changes on rules or restrictions
happen.

Fig. 1. ALIVE architecture (S stands for Service)

The ALIVE Framework allows Game AI developers to think in terms of why-
what-how when defining the decision-making actions for NPCs. That is, at the
Organisational level, the developer defines “why to do something” by describing
the elements of the organisational structure in terms of organisation objectives,
roles, norms, and restrictions. At the Coordination level, the developer defines
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“what to do” based on possible solutions and tasks to realise in specific situations;
finally, at Service level, the developer defines “how to do it” in terms of which
actual, low-level actions to perform in order to realise those tasks.

Moreover, the ALIVE framework applies substantive norms that define com-
mitments agreed upon actors and are expected to be enforced by authorita-
tive agents, imposing repair actions and sanctions if invalid states are reached.
Substantive norms allow the system to be flexible, by giving actors –human or
computer-controlled– the choice to cause a violation if this decision is beneficial
from an individual or collective perspective.

Finally, the ALIVE Framework provides useful tools to define these elements,
such as OperettA, a visual tool implemented as an Eclipse IDE plugin, which
allows to specify the organisational concepts of roles, interactions and norms.
These structures are implemented as coordination agents, used to build coordi-
nation plans for groups of agents enacting roles withing the organisation. Agents
interact for enacting their roles either via direct communication or via service
invocation. Monitors observe agent interactions. When these interactions are put
together with the normative and organisational states – e.g. obligations, permis-
sions, roles – they allow the agents to reason about the normative effects of their
actions. The detection of normative states is a passive procedure that consists
in monitoring past events and checking them against a set of active norms[1].

This set of tools and methods provides inherent support to the development
of complex, re-usable Game AI solutions.

3 Proposal

Our argument is to create elaborate solutions for the issues of (ii) behaviour
control and (iii) strategy techniques by integrating the ALIVE framework to
academic and commercial games. This approach will provide extended flexibil-
ity to the elements that imply intelligent behaviour, e.g. actors and characters,
teams of individuals, and narrative storylines. In addition, it will provide metrics
that can be applied to evaluate the organisational behaviour using the games’
environments as simulation scenarios. Hence, it would be possible to compare,
learn, and improve NPC’s behaviour with an approach based on organisation
theoretical solutions for Game AI. This would contribute to overall flexibility
and adaptiveness.

Figure 2 depicts the proposed architecture. We are providing in our solution:

1. A practical solution to couple agents to the Game Engine, by defining the
Game Enactor programming interface.

2. A tool to describe the Organisation Ontology, which contains a representa-
tion of agent structures.

3. The elements to describe game actors’ behaviour via social structures based
on norms, roles and their enactment, promoting the balance between auton-
omy and story direction.



Making Games ALIVE: An Organisational Approach 183

Fig. 2. ALIVE-Gaming coupling infrastructure

We propose that this solution is applicable to both fun games and serious
games. For the former, we foresee our solution helping to improve the games’
actors’ functioning with more flexibility and promoting natural behaviour. For
the latter, the model reflects the socio-environmental behaviour of human so-
cieties, providing the basis for games and simulations that can be used in the
emerging field of Computational Social Sciences. Next, we present a number of
case studies in the applicability field.

4 Case Studies

We are testing the solution in different games in order to validate our proposal,
as depicted in Figure 3. We intend to analyse what is the advantage in terms
of realism, flexibility and adaptability. Moreover, our application to simulation
environments will provide results useful for organisational research. In the case
of commercial games, it requires access to the internal game control structures.
We selected three representative examples for our case studies, considering the
complexity and validity of achieved results:

i Grand Theft Auto IV, from Rockstar Games;
ii Warcraft III, from Blizzard, and;
iii Lincity, an open-source, SimCity like city building simulation.
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(a) GTA IV (b) Warcraft III (c) Lincity

Fig. 3. Games used as case studies

4.1 Sandbox Game: GTA IV

Fig. 4. ALIVE-Gaming coupling infras-

tructure for GTA

First we will test our environment
on sandbox games, also known as
free-roaming games. In these kind
of games, players are given a large
amount of freedom, with non-linear
storylines and different paths to com-
pletion. For example, the Grand Theft
Auto (GTA) series allows the player
to wander around a whole city and
interact with hundreds of NPCs and
objects.

In free roaming games such as
GTA, most of the interactions with
characters are scripted, giving the
player a feeling of repetitiveness af-
ter a few hours of play. On the other
hand, the higher-than-normal free-
dom given to the player also provides
less realism.

Our objective is to define a high
level social structure, simulated by the
ALIVE coordination layer, with dy-
namic adaptation of interaction pat-
terns, using GTA as the graphic in-
terface of such a social environment.
For example, in GTA the player is al-
most free to behave in a violent way
while driving a car. Passing red lights,
driving in the wrong direction, and running over people are actions that have no
consequences in the vast majority of cases. We have already implemented a pro-
totype by designing, at the organisational level, traffic norms and roles defining
authority figures, i.e. police (see Figure 5). Police agents plan and reason about
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the sanctions to apply when detecting a traffic norm violation, which can consist
on imposing a fine or initiating a car chase, depending on the gravity of such
violation.

Fig. 5. Graphical representation of the norm it is forbidden to pass under a red light
(OperettA Tool)

For the GTA connection with ALIVE we have used GTA ScriptHook, an
open-source tool which allows us to capture all possible events and execute all
possible actions in the game running environment, including the control of NPCs’
behaviour. The following is a typical flow of information on our system (see
Figure 4):

1. An event, i.e. running past a red traffic light, happens on the game.
2. GTA ScriptHook captures the event and provides it to the Java GTA An-

notated Service.
3. The service interprets the game event as a low-level event and puts it on the

Event Bus.
4. The ALIVE Monitor captures the event from the Event Bus and infers its

high-level interpretation.
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5. This interpretation triggers the generation of a new event ChasePlayer that
is registered in the Event Bus.

6. The Java GTA Annotated Service captures the ChasePlayer event from the
Event Bus and, via ScriptHook, modifies the game.

7. This will effectively make something happen on the game, i.e. player being
chased by police forces, as a response of having run a traffic light.

As we have already seen in Section 2, norms modelled using the ALIVE tools
are not regimented but substantive, which means that the player –as well as any
NPC– can decide not to fulfill them. Thus, a player can decide to break traffic
rules if the police is not around or at line of sight, or if the player has no concerns
about the possible sanctions enforced by the NPCs. This is a simple example,
but more complex examples can be designed to create obstacles or motivations
for the player, by reasoning at runtime about the social-environmental context
in the game at a certain point of time.

Our intention is to design a full set of organisational constraints, i.e. norms,
individual objectives and roles, in order to define high-level social structures in
the game, therefore improving realism through sensible and adaptive interactions
with NPCs.

4.2 Real-Time Strategy Game: Warcraft III

For many years, computer wargames have been designed as turn-based games.
Real-time Strategy (RTS) games are an evolution of turn-based wargames, in
which the player has to command a team of virtual individuals with diverse
capabilities to achieve a common objective, commonly to defeat the teams of the
human- or computer-controlled rivals. Other (sub)objectives include the capture
and micro-management of resources, technological evolution, and so on. RTS
games are interesting for our purpose in the sense that the concepts they deal
with can be directly mapped to the ALIVE domain, i.e. organisational structure,
roles, role hierarchy, objectives, and coordination.

At the moment, we have modelled the organisational specification of an ab-
stract RTS game (see Figures 6 and 7), including roles, e.g. worker, defender,
attacker, objectives – e.g. gather resources, defeat the enemy armies –, and norms
– e.g. it is forbidden to create military units until there are enough workers to
support them. This specification can be reused through different RTS implemen-
tations. For our tests we are using Warcraft III.

We have coded a Java service that is connected to Warcraft 3 game, allowing
for bidirectional communication via sockets. This Java service is used by the
ALIVE framework. With this implementation, agents are able to:

– Perceive the “state of the world”, reacting to events happening in the game
at runtime, e.g. a unit being created, or a soldier spotting an enemy.

– Reason about which actions should be taken in the game taking into account
the current state of the world.
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Fig. 6. Social structure for generic RTS games (OperettA Tool)

Fig. 7. Interaction structure for Defend city (OperettA Tool)

– Include the ALIVE specification in their reasoning. Agents will take into
account the organisational structure: roles, plans and norms, defined in the
ALIVE model, and proactively decide at each moment which actions to enact
in order to accomplish the organisational objectives. The agents may also
decide to discard some actions to be enacted if an organisational norm is
forbidding to enact them given the current state of the world.

– Enact actions in the game (see Figure 8). Once the reasoning process has
decided which are the next actions to be performed, agents are able to com-
municate with the game, making the unit responsible of each action to enact
it according to the role and plan structures defined in the organisational
specification.

This is the scenario that could best benefit from the adaptability offered by the
ALIVE infrastructure. A common issue of RTS games is that after some amount
of time spent on it, computer opponents are predictable and easily defeatable
by using simple yet optimal strategies. We aim to produce computer opponents
capable of adapting to unpredictable scenarios by dynamically improving at the
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Fig. 8. Warcraft III units enacting actions sent from the ALIVE platform

organisation and coordination layers. Moreover, this type of game would provide
us a clear visual interface to execute simulations of organisations in real-time.

4.3 Macro-economic Simulation: Lincity

One of our main objectives, as noted earlier, is to use games as an interface
for visualising the results of simulations of organisational specifications. Real-
time simulation (RTS) games can be used for this, but they are only useful for
scenarios where the range of events types are limited. For discrete-event and
off-line simulations we propose the use of games that deal with macro-economic
variables.

In our case, we have chosen Lincity, which is an open-source city-building
simulator1 developed in C++. The idea behind this is to simulate the actions
taken by large amounts of virtual individuals and present the results at the
macro-economic level, i.e. the evolution of the city. Reorganisation techniques
will be intensively used in this scenario.

For instance, we intend to simulate crisis management scenarios during natu-
ral disasters[11]. City-simulations are perfect environments to describe intuitive

1 More particularly, it is a clone of the SimCity series.
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disaster situations, such as fire and floods. In this situation, the diverse stake-
holders have to coordinate their activities to handle such large scale crises. There
are various dynamic aspects that must be dealt with, as the crisis may escalate,
which require elaborate coordination mechanisms among the various stakehold-
ers involved: (i) Emergency Call Centre; (ii) Fire Station; (iii) Fire fighter Team;
(iv) First-Aid Station; (v) Police Station, and; (vi) Fire Fighter Truck.

We intend to introduce “unexpected events”, such as resources becoming un-
available, escalation of the problem, road block, and so on, that would require
the handling of exceptions in ongoing coordinations. In this case, modelling of
organizational knowledge has a crucial role, where role and objective concepts
define why the stakeholders must operate and letting the system define what to
do and how. Changes in the environment and in stakeholders needs are inher-
ently reflected in a top-down approach. When the service and coordination levels
fail, the system turns to the organizational level for continuing the operations.

Therefore, this elaborated simulation environment could also be used as a
tool to model real world situations, allowing for testing and evaluating different
response approaches to natural disaster situations.

5 Related Work

The current issues of commercial games AI introduced in Section 1 are related to
high-level concepts of gaming such as realistic virtual actors, automatic content
and storyline generation, dynamic learning, or social behaviour. Tackling these
issues could represent a qualitative improvement on gaming experience from
the player perspective and academic research on AI has good opportunities to
provide solutions to these challenges[3,9].

Adaptiveness in games has been already explored in academic AI research.
However, existing approaches are either focused on individual reasoning[5,6], or
do not take into account high-level definitions that would allow for reasoning
why to make a particular decision on a specific context[12]. These approaches
can get advantage of ALIVE by extending individual agents’ reasoning cycle
with organisational awareness.

Organisational frameworks such as OperA[4] are already being explored for
their use in serious games. In [13], organisational specifications are used to create
a distributed intelligent task selection system that adapts to the player skill level
and to model the storyline. With our work we intend to advance on this line of
work by generalising the use of organisational models for fun games, more focused
on the realism of gaming experience, rather than on user modelling and learning.

There are already examples showing that higher levels of abstraction can be
successfully used in commercial games’ AI. Actually, some recent important com-
mercial games such as F.E.A.R[10], Fallout 3, or Empire: Total War, have started
to apply more complex cognitive patterns by using GOAP (Goal-Oriented Ac-
tion Planning), a simplified and optimised version of STRIPS that allows for
real-time planning of actions with pre- and post-conditions, even outperforming
Finite State Machine-based algorithms in some scenarios[7]. Thus, these games
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execute complex symbolic reasoning not only about how to execute certain ac-
tions, but also about what to execute at each moment. We believe that, by using
an even higher level of abstraction in order to reason also about why actions have
to be performed, methods such as GOAP can be complemented and improved.

6 Conclusions

Our research intends to address a common problem of commercial Game AI so-
lutions by providing an approach based on the integration of an organisation the-
oretical control system for NPC. We suggest that this combination contributes
to Game AI solutions by providing an adaptive, extensible and flexible solution
to game development industry.

The main advantage of this approach is that now developers can specify NPCs’
behaviour in terms of “why” they should do something, not only “what’ and
“how” to do it. That is, the actors in a game are described as an organisation
which behaviour is based on specific roles, norms, dependencies, and capabilities
(services). Our aim is to provide a methodology and tools for Game AI developers
to model gaming scenarios using social structures.

We proposed an architecture for the integration of Project ALIVE’s organi-
sation specification and coordination framework to existing commercial games.
We propose the introduction of a middleware ‘Game Engine Interface’ that prox-
ies information in two-ways: from the game environment to the ALIVE-based
Game AI component, allowing developers to plug the proposed solution to ex-
isting games, as long as the basic interface methods to control NPCs actions are
available. We demonstrate the architecture, steps and expected improvements of
promoting this solution in three representative commercial games.

We conclude that this approach contributes to the issues of improved be-
haviour control and advanced strategy techniques, tackling some of the main
issues in Game AI solutions, by providing:

– open specifications where NPCs are programmed in terms of why they must
act in a certain way;

– enhanced flexibility and adaptiveness by describing NPC’s behaviour based
on specific roles, norms, dependencies, and capabilities;

– more “natural behaviour” as NPC will act autonomously, respecting envi-
ronmental conditions and organisational objectives that will be perceived as
“natural” by human player’s perception;

– broader behaviour range, as NPCs’ behaviour is more autonomous and
driven by overall organisation objectives, and;

– improved reusability, as the proposed solution is generic and can be attached
to a variety of existing commercial games through a common interface ad
customised organisation models.

As future work, we intend to complete our implementations and extend the
models with realistic social descriptions. We are also analysing the integrability
and extension of our approach by exploiting the integration to other commercial
games, such as World of Warcraft, and The Sims 3.
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Abstract. This document describes how to re-purpose an existing agent

technology called Virtual Institutions as a mechanism to define new

“quest” elements in Massively Multiplayer Online Games based on Multi-

Agent Systems. Quests are a very important part of most Massive Online

Games as they wield to flow and narrative of the game in a linear or non-

linear manner.

1 Introduction

Massively Multiplayer Online Games (MMOGs) are an important focus of re-
search, not only because they are economically attractive, but also because a
MMOG involves many fields and a large amount of data that is generated by
the interactions of many individuals: configuring a MMOG is a relevant source of
research. In the field of AI, to model such systems and its dynamics is nowadays
a very relevant task[17,11].

Massively Multiplayer Online Games, by nature, are played “in the cloud”,
i.e. in a virtual world away from the players’ computers and game devices that
are hosted in a large array of servers. The complex and distributed nature of
these kind of games makes them impossible to be played relying just in the
players’ hardware and resources, as some other types of online games do. This
distributed nature is also one of the many parallel factors between MMOGs and
Multi-Agent Systems, as it has been described in some previous works[1,3].

Also, MMOGs usually spot a very open-ended nature and narrative, basically
allowing the players to roam the virtual game world free doing largely whatever
they want to do. However, these games also use quite often the concept of quest
or instance: A quest is a specific mission designed to be fulfilled by the players
of a game. It is played in a different flow than the open-ended virtual game
world, a more straightforward and linear flow, similar to the flow of classic offline
games. This mission may include the involvement of other characters in the game
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(corresponding to players or not) and different sequences of actions to fulfill in
different places in the game.

For example, suppose a player is playing a science fiction game (similar to the
well-known “Star Wars Galaxies”TMor “Star Trek Online”TMgames) in which
players may travel freely with a spaceship through the cosmos. Players may
encounter another character in the game, a computer-controlled character called
the “quest-giver” which gives them the opportunity to embark on a singular
quest looking for a specific item on a planet. The moment the players accept
this endeavor, a new linear narrative opens just for them (and their potential
companions), and a new set of sequential goals and rewards becomes available
for the players.

This paper presents a new addition to the existing architecture of
MMOG based on Multi-Agent Systems[3]: the making of quests using Virtual
Institutions[8], detailing, not only the architecture (ontology and agent taxon-
omy), but also a prototype applied to a concrete game example.

In section 2 Virtual Institutions are presented. Later, in section 3 MMOG
based on MAS architecture is also presented. Following, the concept of quest in
this kind of systems is introduced in section 4. Additionally, section 5 explains
how to develop these quests using VI technology. Finally, some conclusions and
future lines of work are presented in section 6.

2 Virtual Institutions

Virtual Institutions are a 3D Virtual Worlds with normative regulation of in-
teractions [8]. This concept appeared as a combination of electronic institutions
[12] and 3D virtual worlds. In this context, electronic institutions are used to
specify the rules that govern participants’ behaviors, while 3D virtual worlds are
used to facilitate human participation in the institution. The design of Virtual
Institutions is divided in two separate steps: i) specification of the institutional
rules, and ii) generation of the virtual world.

The institutional rules are defined using Electronic Institution model com-
posed by the following components:

– Dialogical Framework. It defines a common ontology and communication
language to allow humans with different cultural backgrounds, as well as,
agents to exchange knowledge. This ontology and language for humans will
be further transformed into actions that are allowed to be executed in the
Virtual World. Those actions are connected to 3D models in the environ-
ment, the affordances of which will help in eliminating the cultural barrier.
Due to the further provided translation of the communication language into
actions and vice-versa, the agents will be able to interact with humans and
understand their actions. The dialogical framework also fixes the organiza-
tional structure of the society, that is, which roles can participants play, and
relationships among them.

– Scene. Interactions between agents in order to jointly perform an activity
are articulated through agent group meetings, which we call scenes, with a
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well-defined communication protocol. We consider the protocol of a scene
to be the specification of the possible dialogues agents may have. Hence,
a scene is specified as a deterministic finite automata, whose states repre-
sent interaction states, while arcs are labelled with messages (illocutions)
or timeouts. Notice however that the communication protocol defining the
possible interactions within a scene is role-based instead of agent-based. In
other words, a scene defines a role-based framework of interaction for agents.

– Performative Structure. Scenes can be connected, composing a network of
scenes, that we call performative structure, to capture the relationships
among scenes. The specification of a performative structure contains a de-
scription of how agents can legally move from scene to scene by defining
both the pre-conditions to join and leave scenes. Satisfying such conditions
will fundamentally depend on the roles allowed to be played by each agent
and its acquired commitments. The execution of a performative structure
equates to the execution of the multiple, possibly simultaneous, ongoing ac-
tivities, represented by scenes, along with the agents participating in each
activity. Agents within a performative structure may be possibly participat-
ing in different scenes, with different roles, and at the same time.

– Norms. They determine the consequences of user actions. These consequences
are modeled as commitments that participants acquire as a consequence of
their actions and have to fulfill later on. These commitments may restrict fu-
ture activities of the users.

Furthermore, for each role activity and performative structure the designer
can define an information model, which is composed of a set of attributes that
will be used to keep the state of the agent or an activity. For instance, the
information model of a player can contain its credit, points, or the objects it
have. The values of such attributes are modified depending to the evolution of
the institution. That is, when an action is executed some of the attributes are
modified. For instance, the points of a player can be increased after successfully
completing a quest.

Once the institutional rules have been specified it is time to generate the
virtual world. This can be automatically done taking into account the activities
can engage on defined in the specification. Specifically, a 3D room is represented
for each activity (scene). As a result a mapping is created between the activities
defined in the specification, and where these activities occur within the virtual
world. In addition, messages specified in scene protocols are mapped to actions
supported by the virtual world. For instance, in the context of an auction house
raising a hand can be mapped to the message for submitting a bid.

In contrast to Electronic Institutions, the normative part of a Virtual Insti-
tution does not represent all the actions that are allowed to be performed in a
Virtual World. Specifically, those actions that require institutional verification
are those mapped to scene messages. The rest of the actions provided by the
virtual world software can be freely executed. The specification of the institu-
tional rules can be regarded as valid sequences of actions among the ones that
require institutional verification. In addition, the attributes associated to the
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Fig. 1. Runtime Architecture

different roles, and activities help to keep participants or activities state. They
keep information of past actions which are relevant to determine the validity of
future actions.

Virtual Institutions are deployed by a 3-layered infrastructure presented in
Figure 1.

First layer is the Electronic Institution Layer. It uses the AMELI system [4]
for enforcing the institutional rules established on the specification step. AMELI
keeps the execution state of the institution and uses it along with the specifica-
tion to guarantee that participants’ actions do not violate any of the institutional
constraints.

Second layer is the Communication Layer. Its task is to causally connect [16]
the institutional infrastructure with the visualization system transforming the
actions of the visualization system into the messages, understandable by the in-
stitutional infrastructure and the other way around. This causal connection is
done via the Causal Connection Server using the mapping between institutional
messages and virtual world actions. The causal connection is happening in the
following way: an action executed in the 3D Virtual World (that requires insti-
tutional verification) results in a change of the institutional state in the AMELI
layer, as well as every change of the institutional state is reflected onto the 3D
Virtual World and changes its state. The Communication layer conceptually
and technologically connects two metaphors: Electronic Institutions and Virtual
Worlds and we see it as one of our major scientific contributions.

The third layer is called Visualization Layer. It is used to visualize the 3D
Virtual World for the users.
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3 Massively Multiplayer Online Games Based on MAS

Deploying a game like a MMOG is like deploying a major software project to act
as a service in the cloud. It presents all the issues and hazards one could expect
from deploying a large software system to solve a big and distributed problem:
need for good scalability, distribution of knowledge, user load balance, network
bottlenecks, long development cycle and asynchronous events, just to name a few.

There have been other approaches to use agents in online gaming, albeit not
exactly in the MMOG space. Most of them are oriented towards achieving better
behaviors in Non-Player Characters. Dignum et al. [10] propose a more natural
(long-term) behavior of Non-Player Characters through the use of Multi-Agent
Systems, and clarify that game design should be adjusted to incorporate the
possibilities of agents early on in the process, a statement also fundamental to
this line of research. Also, Gemrot et al. [15] take a more practical approach by
developing a full framework, called Pogamut, to integrate distributed intelligent
agents as synthetic opponents and allies (bots) in games powered by the “Unreal
Engine”TMtechnology. The main objective of the Pogamut project is to provide
new AI-driven players that can bestow new challenges to the players and learn
from their actions, using a distributed AI network that runs outside of the game
clients and server. Both approaches take online gaming in general as a domain for
agents achieving good results, so it is a natural step forward for agent technology
to enter the MMOG space.

3.1 Architecture

A MMOG (like most complex systems) can be seen as a system split into several
layered subsystems, with each layer being relatively independent and taking care
of one aspect of the whole MMOG experience. From the perspective of this work,
a MMOG is split into three layers:

HCI Layer: It is the client-side of the system, the part of the game running
on the players hardware (PC, mobile phone, game console, . . . ). It is the user
interface that the game provides to the player, i.e. the game client software, and
it provides the player with a gaming experience (i.e. 3D graphics, sound. . . ). It
is the framework of the InterfaceAgent [2].

Intelligent Virtual Environment (IVE) Layer: It is the virtual representa-
tion of the game environment itself. It is part of the server-side of the system, the
part of the game that runs mostly on the game provider’s hardware, a controlled
environment. The synthetic place and scenario where the game takes place: the
virtual world. This world is independent of the type of game or simulation it must
give support. Also, the IVE is designed following an agent-based approach, so it
can be seen as Multi-Agent System embedded into another, larger, Multi-Agent
System. The IVE layer is thoroughly described in [6].

MMOG Layer: It is a complex subsystem where all the game logics and me-
chanics are implemented and must be solved at run-time. It operates in conjunc-
tion with the IVE layer, but it is not dependent of that subsystem. It implements
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Fig. 2. The architecture of a MMOG based on MAS

the game rules / norms controlling the game development. It is the place where
all the game clients connect to play and, along with the IVE layer, it must fa-
cilitate game server scalability. In this line of research, this subsystem is seen
as the core of the MAS and requires, at least, one agent platform as its foun-
dation. The MMOG Layer is the place that groups all the elements from the
game which are independent both from the user space and the IVE, and thus is
the core piece of the whole system, as it is where the actual game takes place.
Section 3.2 describes this layer in more detail.

3.2 The MMOG Layer

As stated before, the MMOG Layer is essentially a dedicated, open MAS which
runs the game. This MAS uses agent technologies like agent services, Electronic
Institutions[13,7] and Agent Organizations[14,9,5] to model some game mechan-
ics, and translates the common issues and situations found in MMOGs into
problems that can be solved using classic software agent features, such as agent
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interactions, agent communication protocols (like auctions or call-for-proposals),
service-oriented computing, event-driven behaviors or role models.

Like any other agentification process, one of the key ideas is to identify the
agents and types of agents that will conform the system. In this case, the agents
are based on the concepts and entities that form the whole game experience of
a MMOG, and are explained in more detail in [2]:

ProfileAgent: a personal agent which manages the player status and profile
within the game community. It manages the player’s preferences in the game
world, which avatars the player uses and the role that the player plays in the
system (Spectator, Player or GameMaster).

AvatarAgent: an agent which represents an avatar of a human player within
the game (a PC or Player Character). It is a persistent kind of agent: is not
deleted and re-spawned often, it bears a long life cycle. It is the agent that holds
the PC stats (server-side), and so, a malicious player cannot modify them locally
(cheat). The AvatarAgent is the kind of agent that actually performs the actions
for the player in the virtual world.

NPCAvatarAgent: an agent which represents an avatar of an AI-controlled
character. It is similar to the AvatarAgent, as both populate the game world,
but it does not obey nor represent a player in the game.

GameZoneAgent: a kind of agent which implements the logics of the game
environment and works as a nexus between the MMOG Layer and the IVE
Layer’s Simulation Controller (see figure 2).

4 Defining Quests for MMOG

Quests are a very important part of most Massive Online Games as they wield to
flow the narrative of the game in a linear or non-linear manner. Quests present
the players with the opportunity to improve their virtual characters and their
playing experience by grouping together players with the same objectives and
guiding them through a segment of the overall game experience, rewarding play-
ers for their performance in the game. Quests also offer the designers of these
open-ended games, an opportunity to develop more narrow-focused “levels”,
similar to those found in traditional offline games, without sacrificing the social
aspects of online play and the overall goals of the game. Alas, the whole “ca-
reer” of a virtual character can be seen as a series of linked quests towards an
open-ended conclusion.

From the grand perspective of the game as a big Multi-Agent application,
quests are a part of the system. They are seen as smaller Electronic Institutions
with a semi-linear flow of the agents where custom and more strict norms exist
than those from outside (those in the “open” areas of play). However, quests
present some particular aspects that are not seen in other types of institutions.

Let’s present the concept of “sub-quest” in the context of quests, which has a
lot in common with the concept of scene in Electronic Institutions. A sub-quest
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is one of the steps that compose a quest. A sub-quest can be defined as a set
S = (G, O, L, P, E), where:

– G: is the set of objectives (goals) player agents (P) must complete in the
sub-quest. These objectives are expressed in the semantic ontology of the
game itself using the OWL-DL language, which in turn is based on “MMOG
Ontology” [3]1. This set of goals cannot be empty, there must be at least one
goal to play in the sub-quest.

Goals are defined using the properties and data types present in the
ontology, and usually make reference to modifying the state or the properties
of an object of the game. For instance, let’s presume a game uses an ontology
in which the game characters (i.e. Avatars) have a numeric “health” stat.
When a designer wants to create a goal that means “kill this enemy”, it can
be defined by declaring the “health” stat of the instance of NPCAvatar that
represents that enemy to zero:

Goal0: Avatar MyEnemy.health == 0.0

Another example: let’s say a designer wishes to express a goal that means
“take this chest to the vault”, it can be expressed by the placedAtZone prop-
erty of the chest item:

Goal1: GameItem MyChest.placedAtZone == "Vault"

Initially, goals should not need to be decomposed into subgoals, but this is
a feature that may be added in future iterations of this work.

– O: is the set of system agents (opponents) that oppose player agents (P)
and keep them from completing the sub-quest by a process of conflict. Their
view is the opposite of the player agents’ view and its actions counter those
of the players. However, contrary to classic game theory, these agents do
not seek the Nash equilibrium [18] in the system of the quest. They seek to
maintain the goals (G) in the initial state of the sub-quest, that is, without
being fulfilled. This may be an empty set (i.e. no opponents).

– L: is the set of virtual locations (also called Dungeons and Game Zones in
the literature) that serve as the environment around players (P) and the
opponents (O). They are comparable to the rooms and transitions present
in Electronic Institutions as they each have a maximum (and a possible
minimum) concurrent agents of a particular type and in each one of the
locations changes according to an interaction protocol, although the same
protocol can be shared by more than one location. This may be an empty
set, meaning that the sub-quest is not tied to a specific location.

Locations can be specified using lists of derivatives of the GameZone and
GameBeacon classes of the “MMOG Ontology”. The designers of the game
are expected to define and tag the virtual places where the game takes place
using instances of those classes (or some sub-classes). Therefore, in practice,
each L set will be a sequence of some of those instances, and the same
instance may appear in different sub-quests (or quests) for different purposes.

1 http://gti-ia.dsic.upv.es/ontologies/mmog.owl
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– P: is the set of agents who play the role of players. These agents are usually
controlled by human players that are playing the game. Sometimes an agent
of the group P can be controlled by the platform, but it is rare. The aims
of these agents are twofold: make sure the goals of the scene (G) are fully
accomplished and maximize the profits (E) during the process. Ideally, an
organization of player agents (P) wishes to complete all of the objectives of
a quest and to get the maximum number of potential profits. Player Agents
(P) are the antagonists of the Opponent Agents (O). This set cannot be
empty, there must be at least one agent that plays the sub-quest.

– E: the function of earnings player agents (P) can obtain during the quest.
In each sub-quest, this function changes to reflect the ratio of risk / profit
present. Based on this ratio, the quests can be dimensioned. For example, a
quest with a very large O component and a very low E component is seen
as a “High Risk and Low Gain” quest and is less desirable for the players
than a quest with a higher E component and lower O component, which
would be “Middle Risk and High Gain”. For a quest that has no earnings,
this function can be equal to zero.

So then, a quest can be defined as a non-linear (or non-deterministic) se-
quence of connected sub-quests linked through outcomes. These outcomes are
determined by the completion (or failing) of the goals in each sub-quest. Specif-
ically, a quest can be seen as a directed acyclic graph where the nodes are
sub-quests (as can be seen in figure 3). The designers of the quest must also
specify which sub-quest (or sub-quests) serve as an entry point to the quest and
which sub-quest (or sub-quests) serve as an exit point (i.e. end the quest). So, in
the end, a quest can be defined in a very similar fashion to a non-deterministic
finite automata:

Q = (SS, OC, I, F )

– SS: The set of sub-quests that compose the quest. The nodes of the graph.
– OC: The outcomes that connect the sub-quests. The strings of the graph.
– I: The subset of SS that are starting sub-quests for the quest.
– F: The subset of SS that are ending sub-quests for the quest.

Quests are semi-linear structures in nature. That means that a quest can
follow a straight path from beginning to end, or that it can branch its path one
or more times through its course. Nevertheless, every path that the players take
will eventually lead them to ending the quest in one of the ending sub-quests of
the quest. This gives the designers of the quest some sort of “elasticity” towards
the development and narrative of the quest, as well as the ability to add some
interesting gameplay elements.

For instance, suppose that a quest involves the players getting inside a locked
room to retrieve an object (i.e. a treasure). The designer can create a sub-quest
located in a contiguous room where an opponent (which has the door key) is
guarding the entrance to the room. The designer may also create another sub-
quest with no opponents that takes place in a backyard where a window leads
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to the important room. Both sub-quests have similar objectives (i.e. get inside
the important room), but they are presented as a choice to the players: Will the
players take the indoor or outdoor path? If they take the indoor path, will they
fight the opponent to get the key by force or will they try to bribe or sweet-talk
the guard into give them the key? If they take the outdoor path, do they have
the ability to open and jump off the window from the outside into the room?
These are all gameplay choices that the developer may present to the players
and implement them as branching paths in the quest design, but in the end, all
of these choices lead to the same conclusion: the achievement of the ultimate
quest goal and the completion of the quest.

Fig. 3. Components of a quest

5 Building Quests with VIs

In this section the use of the VI framework and tools to develop quests for
MMOG based on MAS is explained (specially using the Islander[12] editor).
The initial approach followed in this work takes a formal specification of a quest
and expresses it in practice using a VI. The transformation is implemented using
the Islander tool from the Electronic Institutions Development Environment [4].
The Islander tool was developed as a user-friendly graphic interface for specify-
ing Electronic and Virtual Institutions. In this work, it has been used in the first
steps of developing quests for MMOG based on MAS (what is usually called the
development pipeline in the videogame industry). In order to successfully imple-
ment a quest, the following points need to be taken care of: be able to express
the knowledge using an ontology (this basically includes goals and earnings); be
able to control the flow of the agents participating in the quest and the roles
they play (this basically includes players and opponents); be able to specify the
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flow and connections of the sub-quests; be able to express the different outcomes
of a sub-quest; and be able to specify the sub-quests themselves.

Regarding the use of an ontology, the Islander tool allows the definition of
custom ontologies with classes and properties, like the MMOG Ontology, that are
used in the definition of the Performatives Structures and Dialogic Frameworks.
So this need is fulfilled.

Regarding the agents, VI provide a unique type of internal agents called the
Governors. These Governors are paired with the agents participating in the in-
stitutions and act as their real interface towards the system, preventing them
from executing illegal actions based of their roles and characteristics (or stats,
in MMOG terms). Besides, Governors “move” the agents through the scenes
and transitions of the institutions as they interface with them. So this need is
fulfilled.

Regarding the flow and connections of the quest, it’s worth noting that the
main element of a VI is its Performative Structure which, as seen in section 2, is
essentially a directed graph that connects scenes through transitions. Although
they are different concepts, a Performative Structure and a quest share the same
kind of graphic representation. In fact, a quest may be seen as a subset of a whole
Performative Structure, which contains all the possible sub-quests and all the
possible paths that any agent can follow through the quest at any given time (or
attempt).

Regarding the possible outcomes of a sub-quest, VIs use diagrams called “Pro-
tocols” to define the inner workings of a scene. Protocols are essentially simplified
nondeterministic finite automata, with an arbitrary number of starting and fi-
nal states, and where the state changes are triggered by common interactions
between the agents of the scene or timed events. So, the different outcomes of a
scene can be directly mapped to the final states of the automaton. A scene will
have at least as many outcomes as final states has its inner Protocol (since more
that one final state can lead to the same outcome). So this need is fulfilled.

Regarding the sub-quests, the goals (G), opponents (O), players (P) and earn-
ings (E) have already been explained, as well as the outcomes. The location is
the missing item. Locations are normally defined logically through the use of
the MMOG Ontology (or one of its derivatives) by using the GameZone and
GameBeacon classes and their possible subclasses. In VI there is not a explicit
“location” field associated with a scene of the Performative Structure. Fortu-
nately, these scenes may have as many additional properties as needed. A prop-
erty is a semantic “key-value” pair (which may be mandatory to define in each
scene) where the “value” part is a semantic expression (or a list of semantic ex-
pressions). By creating a “location” property in each scene that needs locations,
this need is partially fulfilled. The other half of the question is the connection
between the VI location and the actual representation of the virtual place in the
IVE layer. This is done through the Causal Connection Server (as seen in fig-
ure 1), but this problem falls outside the scope of this work and will be explained
in detail in future articles.
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Fig. 4. Performative Structure of a quest as seen in Islander

In order to better explain this process, an example quest has been developed.
This example quest introduced for this work is depicted in figure 4 and takes
place in a fictional science-fiction MMOG game similar to the already men-
tioned examples in section 1. This quest follows the flow of a deed in which the
players must track down a treasure stolen by space pirates. Players first receive
the information of the deed by a non-player character (an agent of the class
NPCAvatarAgent), which plays the role of “quest-giver” prior to accepting the
quest (and entering the VI). This information presents the problem to the play-
ers (“The evil space pirates have stolen a treasure. Their last known location are
the ruins of an ancient base, but they are rumored to be in the orbit of a nearby
planet.”) and the players must decide whether or not to embark on the quest. If
so, the players are faced with an immediate choice: they can go to the ruins to
look for clues or they can go to the nearby planet to confront the pirates. These
two different paths correspond with a gameplay choice that the game designers
wish to present the players with: will they use subtlety and insight or will they
use brute force and a direct approach? Either way, players will eventually learn
the true location of the treasure (the drifting remains of an old ship) and proceed
there to try to find it. If they succeed, all ends well and the players “win” the
quest and retrieve the treasure. If they are not able to find it, the quest has a
bitter end as the players “fail” the quest and obtain no treasure whatsoever.



204 G. Aranda et al.

Fig. 5. FightScene Protocol

This quest has three types of scene: FightScene, with a protocol designed for
the fighting; FindScene, for searches and tracking treasure; and QuestEndScene
to resolve the end of the quest. The protocols of the scenes are quite simple. For
example, FightScene is described in figure 5.

Internally, when the players accept the quest their AvatarAgents enter the
VI. And the different gameplay branching choices are represented by different
sub-quests and paths in the quest definition, very similar to what can be seen
in figure 3. When the agents enter the VI, the first choice is represented by a
XOR transition (t0 ) which either leads them the “FindTrace” scene or to the
“FightPirates” scene.

If the players choose the first path, their agents transition to the “FindTrace”
scene. In this scene, the goal is to find the clue (or clues) to the real location of
the treasure. When the clue is found, the scene ends and its outcome brings the
players to the next transition (t1 ).

However, if the players chose to confront the pirates, their agents are lead to
a scene called “FightPirates”. This scene may end in two ways: the players beat
the pirates and obtain the location of the treasure by force, or the pirates kill
the players and escape with the treasure. This dichotomy is represented by two
possible outcomes, both passing through the t1 transition: the first one is the
normal flow of the quest and leads to the “FindCargo” scene. The second one,
terminates the quest and leads to the “QuestEndBad” scene (and later to the
“Exit” scene) of the institution.

When the agents arrive at the “FindCargo” scene, they have the chance to
look for the hidden treasure, but they have to find it in a short amount of time.
That limitation is represented using a timer in the protocol of the “FindCargo”
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scene. When the timer expires, the protocol ends with an outcome. However,
if the players find the treasure, the protocol ends with a different outcome. If
the players are unable to find the treasure, the quest ends in a negative way
through the “QuestEndBad” scene. Nevertheless, if the players are able to find
the treasure, the quest ends and the players receive a positive reward in their
“QuestEndGood” scene. After that, the players’ agents leave the institution and
so the quest ends.

6 Conclusions and Future Work

In this work, a new addition to the existing architecture of MMOG based on
Multi-Agent Systems [3] has been presented and successfully implemented: the
making of quests using Virtual Institutions[8], detailing, not only the architecture
(ontology and agent taxonomy), but also a prototype applied to a concrete game
example.

In the future of this line of work lie at least two new developments. The first
one is to define all the possible interactions that can happen between agents
populating a MMOG based on MAS and to integrate that knowledge into the
definition of quests, in order to have better control and configuration of sub-
quests based on agent interactions. The second one is to develop a methodology,
addressed to game developers, to guide them in the use of this architecture for
building their games.
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