
Chapter 2
Physical Principles of Evolution

Peter Schuster

Abstract Theoretical biology is incomplete without a comprehensive theory of evo-
lution, since evolution is at the core of biological thought. Evolution is visualized
as a migration process in genotype or sequence space that is either an adaptive walk
driven by some fitness gradient or a random walk in the absence of (sufficiently
large) fitness differences. The Darwinian concept of natural selection consisting
in the interplay of variation and selection is based on a dichotomy: All varia-
tions occur on genotypes whereas selection operates on phenotypes, and relations
between genotypes and phenotypes, as encapsulated in a mapping from genotype
space into phenotype space, are central to an understanding of evolution. Fitness
is conceived as a function of the phenotype, represented by a second mapping
from phenotype space into nonnegative real numbers. In the biology of organisms,
genotype–phenotype maps are enormously complex and relevant information on
them is exceedingly scarce. The situation is better in the case of viruses but so far
only one example of a genotype–phenotype map, the mapping of RNA sequences
into RNA secondary structures, has been investigated in sufficient detail. It pro-
vides direct information on RNA selection in vitro and test-tube evolution, and it
is a basis for testing in silico evolution on a realistic fitness landscape. Most of the
modeling efforts in theoretical and mathematical biology today are done by means
of differential equations but stochastic effects are of undeniably great importance
for evolution. Population sizes are much smaller than the numbers of genotypes
constituting sequence space. Every mutant, after all, has to begin with a single copy.
Evolution can be modeled by a chemical master equation, which (in principle) can
be approximated by a stochastic differential equation. In addition, simulation tools
are available that compute trajectories for master equations. The accessible popula-
tion sizes in the range of 107 ≤ N ≤ 108 molecules are commonly too small for
problems in chemistry but sufficient for biology.

P. Schuster (B)
Institut für Theoretische Chemie der Universität Wien, Währingerstraße 17, A-1090 Wien, Austria
e-mail: pks@tbi.univie.ac.at

H. Meyer-Ortmanns, S. Thurner (eds.), Principles of Evolution,
The Frontiers Collection, DOI 10.1007/978-3-642-18137-5_2,
C© Springer-Verlag Berlin Heidelberg 2011

45



46 P. Schuster

2.1 Mathematics and Biology

The beginning of modern science in the sixteenth century was initiated by
the extremely fruitful marriage between physics and mathematics. Nobody has
expressed the close relation between mathematics and physics more clearly than
Galileo Galilei in his famous statement [1]: Philosophy (science) is written in this
grand book, the universe, . . . . It is written in the language of mathematics, and its
characters are triangles, circles and other geometric features . . . . Indeed, physics
and mathematics have cross-fertilized each other from the beginnings of modern
science until the present day. Theoretical physics and mathematical physics are
highly respected disciplines and no physics journal will accept empirical obser-
vations without an attempt to bring it into a context that allows for quantification
and interpretation by theory. General concepts and successful abstractions have a
high reputation in physics and the reductionists’ program1 is the accepted scien-
tific approach towards complex systems. This view is common in almost all sub-
disciplines of contemporary physics and, in essence, is shared with chemistry and
molecular biology.

Conventional biology, in this context, is very different: Great works of biology,
such as Charles Darwin’s Origin of Species [2] or, in recent years, Ernst Mayr’s
Growth of Biological Thought [3], do not contain a single mathematical expression;
theoretical and mathematical biology had and still have a bad reputation among
macroscopic biologists; special cases are preferred over generalizations, which are
looked upon with scepticism; and holistic views are commonly more appreciated
than reductionists’ explanations, whether or not they are in a position to provide
insight into problems. A famous and unique exception among others is Charles
Darwin’s theory of natural selection by reproduction and variation in finite popula-
tions. Although not cast in mathematical equations, the theory is based on a general
concept whose plausibility is erected upon a wealth of collected and carefully inter-
preted empirical observations. Darwin’s strategy has something in common with
the conventional mathematical approach based on observation, abstraction, conjec-
ture, and proof: On different islands of the Galapagos archipelago Darwin observed
similar-looking species in different habitats and concluded correctly that these dif-
ferent species are closely related and owe their existence to histories of adaptation
to different environments on the individual islands. The occurrence of adaptations
has been attributed to natural selection as a common mechanism through abstraction
from specific cases. Darwin’s conjecture combines three facts known in his time:

1 The reductionist program, also called methodological reductionism, aims at an exploration of
complex objects through breaking them up into modular, preferentially molecular parts and study-
ing the parts in isolation before reassembling the object. Emergent properties are assumed to be
describable in terms of the phenomena from and the processes by which they emerge. The reduc-
tionist program is different from ontological reductionism, which denies the idea of ontological
emergence by the claim that emergence is merely a result of the system’s description and does not
exist on a fundamental level.



2 Physical Principles of Evolution 47

1. Multiplication: All organisms multiply by cell division, (parthenogenesis or
sexual reproduction), multiplication is accompanied by inheritance – “progeny
resembles parents”, and under the condition of unlimited resources multiplication
results in exponential growth of population size.

2. Variation: All natural populations show variance in phenotypic properties, either
continuously varying features, such as body size, or discontinuously varying fea-
tures, such as the number of limbs, the number of digits, color of flowers, skin
patterns, or seed shapes, and it is straightforward to relate variation to inheri-
tance.2

3. Selection: Exponential growth results in overpopulation of habitats,3 only a small
fraction of offspring can survive and have progeny of their own, and this stringent
competition prevents less efficient variants from reproduction.

Taking together these three items and introducing the notion of fitness for the num-
ber of offspring that reach the age of fertility, the conjecture could be formulated in
the following way:

Natural selection: In nonhomogeneous populations the frequencies of variants with fitness
values below the population average will decrease, while those with fitness values above
average will increase and consequently the population average itself will increase until it
reaches the maximum value corresponding to a homogeneous population of the best adapted
or fittest variant.

Darwin’s Origin of Species is an overwhelming collection of observations from
nature, from animal breeders, and from nursery gardens that provide strong evidence
for the correctness of Darwin’s conjecture. This enormous collection in a way is the
empirical substitute for a mathematical proof.

Although Gregor Mendel analyzed his experiments on inheritance in peas by
mathematical statistics and found thereby the explanatory regularities, mathematics
did not become popular in biology. On the contrary, Mendel’s work was largely
ignored by the biological community for more than 30 years. Then Mendel was
rediscovered and genetics became an important discipline of biology. Population
genetics was founded by the three scholars Ronald Fisher [4], J.B.S. Haldane, [5]
and Sewall Wright [6]. In the 1930s they succeeded in uniting Mendelian genetics
and Darwin’s natural selection, and to cast evolution in a rigorous mathematical
frame, but conventional geneticists and evolutionary biologists continued to fight
until the completion of the synthetic theory almost 20 years later [3].

Modeling in biology became an important tool for understanding complex
dynamical phenomena. Representative for many other approaches we mention here

2 Gregor Mendel was the first to investigate such relations experimentally [7–9] and discovered
the transmittance of properties in discrete packages from the parents to offspring. His research
objects were the pea (Pisum) from where he derived his rules of inheritance and the hawkweed
(Hieracium), which was rather confusing for him, because it is apomictic, i.e., it reproduces asexu-
ally. Charles Darwin, on the other hand, had a mechanism of inheritance in mind that was entirely
wrong. It was based on the idea of blending of the parents’ properties.
3 According to his own records Charles Darwin was influenced strongly by Robert Malthus and
his demographic theory [10].
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only three: (i) Modeling of coevolution in a predator–prey system was introduced
by Alfred Lotka [11] and Vito Volterra [12] by means of differential equations that
were borrowed from chemical kinetics. In a way, they were the pioneers of theo-
retical ecology, which was developed by the brothers Howard and Eugene Odum
[13] and became a respectable field of applied mathematics later [14]. (ii) A model
for pattern formation based on the reaction–diffusion (partial differential) equation
with a special chemical mechanism was suggested and analyzed by Alan Turing
[15]. Twenty years later the Turing model was applied to biological morphogen-
esis [16, 17] and provided explanations for patterns formed during development
[18, 19]. (iii) Based on experimental studies of nerve pulse propagation in the squid
giant axon, Alan Hodgkin and Andrew Huxley formulated a mathematical model
for nerve excitation and pulse propagation [20] that became the standard model
for single nerve dynamics in neurobiology. They were both awarded the Nobel
Prize in Medicine in 1963. A second breakthrough in understanding neutral systems
came from modeling networks of neurons. John Hopfield conceived an exceedingly
simple model of neurons in networks [21] that initiated a whole new area of sci-
entific computing: computation with neutral networks, in particular modeling and
optimization of complex systems. Despite these undeniable and apparent successes,
the skepticism of biologists with respect to theory and mathematics nevertheless
continued for almost the entire remainder of the twentieth century.

The advent of molecular biology in the 1950s brought biology closer to chemistry
and physics, and changed the general understanding of nature in a dramatic way
[22]. Inheritance received a profound basis in molecular genetics and reconstruc-
tion of phylogenies became possible through comparison of biopolymer sequences
from present-day organisms. Structures of biomolecules at atomic resolution were
determined by refined techniques from physical chemistry and they provided deep
insights into biomolecular functions. Spectroscopic techniques, in particular nuclear
magnetic resonance, require a solid background in mathematics and physics for con-
ceiving and analyzing conclusive experiments. A novel era of biology was initiated
in the 1970s when the highly efficient new methods for DNA sequencing developed
by Walter Gilbert and Frederick Sanger became available [23, 24]. Sequencing
whole genomes became technically within reach and financially affordable. The
first two complete bacterial genomes were published in 1995 [25] and the following
years saw a true explosion of sequencing data. High-throughput techniques using
chip technology for genome-wide analysis of translation and transcription prod-
ucts known as proteomics and transcriptomics followed, and an amount of data
was created that had never been seen before. In this context it is worth citing the
Nobel laureate Sydney Brenner, [26] who made the following statement in 2002 to
characterize the situation in molecular biology:

I was taught in the pre-genomic era to be a hunter. I learnt how to identify the wild beasts
and how to go out, hunt them down and kill them. We are now, however, being urged to
be gatherers. To collect everything lying about and put it into storehouses. Someday, it is
assumed someone will come and sort through the storehouses, discard the junk and keep
the rare finds. The only difficulty is how to recognize them.
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Who else but a theorist should this “someone” be? The current development seems
to indicate that “someday” is not too far away. The flood of data and the urgent need
for a comprehensive theory have driven back the biologists’ aversion to computer
science and mathematics. Modern genetics and genome analysis without bioinfor-
matics are unthinkable, and understanding network dynamics without mathematics
and computer modeling is impossible.

The new discipline of systems biology has the ambitious goal to find holistic
descriptions for cells and organisms without giving up the roots in chemistry and
physics. Although still in its infancy and falling into one trap after another, modeling
in systems biology is progressing slowly towards larger and more detailed models
for regulatory modules in cell biology. New techniques are being developed and
applied. Examples are flux-balance analysis [27] and application of inverse methods
[28], whereby the primary challenge is up-scaling to larger systems such as whole
organisms. Recent advances in experimental evolution allow for an extension of
detailed models to questions of evolution, which is of central importance in biology,
as Theodosius Dobzhansky encapsulated in his famous sentence: “Nothing in biol-
ogy makes sense except in the light of evolution” [29]. From a conceptional point
of view, theoretical biology is in a better position than theoretical physics, where
attempts at unification of two fundamental theories, quantum mechanics and rela-
tivity theory, have not been successful so far. Biology has one comprehensive theory,
the theory of evolution, and present-day molecular biology is building the bridge to
chemistry and physics. Lacking are a proper language and efficient techniques to
handle the enormous complexity and to build proper models.

2.2 Darwin’s Theory in Mathematical Language

If Charles Darwin had been a mathematician, how might he have formulated his
theory of natural selection? Application of mathematics to problems in biology has
a long history. The first example that is relevant to evolution dates back to medieval
times. In the famous Liber Abaci written in the year 1202 by Leonardo Pisano, also
known as Fibonacci (filius Bonacci), we find a counting example of the numbers of
pairs of rabbits in subsequent time spans. Every adult pair is assumed to give birth
to another pair, newborn rabbits have to wait one time interval before they become
fertile adults. Starting from a single couple yields the following series:

(0) 1 1 2 3 5 8 13 21 34 55 89 . . . .

Every number is the sum of its two precursors and the Fibonacci series is defined by
the recursion

Fi+1 = Fi + Fi−1 with F0 = 0 and F1 = 1 . (2.1)

It is straightforward to show that the Fibonacci series can be approximated well
by exponential functions as upper and lower limits (Fig. 2.1). The exponential
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Fig. 2.1 Fibonacci series, exponential functions, and limited resources. The Fibonacci series
(black; upper plot) is embedded between two exponential functions in the range 0 < i ≤ 10:
nupper(t) = exp

(
0.4453(t − 1)

)
(red) and nlower(t) = exp

(
0.5009(t − 2)

)
(blue), where the time

t is the continuous equivalent to the discrete (generation) index i . The lower plot compares the
exponential function, y(t) = y0 exp(r t) for unlimited growth (red; y0 = 0.02, r = 0.1) with the
normalized solution of the Verhulst equation (x(t), black; x0 = 0.02, r = 0.1, and C = 1 by
definition)

function, however, was not known before the middle of the eighteenth century;
it was introduced in the fundamental work of the Swiss mathematician Leonhard
Euler [30]. Robert Malthus – although he lived 50 years later – still used a geo-
metric progression, 2, 4, 8, 16, . . . , for the unlimited growth of populations [10].
The consequences of unlimited growth for demography are disastrous and, as said,
Malthus’s work was influential on Darwin’s thoughts.

A contemporary of Charles Darwin, the mathematician Pierre-François Verhulst
[31], formulated a model based on differential equations combining exponential
growth and limited resources (Fig. 2.1):

d N

dt
= Ṅ = r N

(
1− N

C

)
(2.2)
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with N (t) describing the number of individuals at time t , r being the Malthusian
parameter, and C the carrying capacity of the ecosystem. Equation (2.2) consists of
two terms: (i) the exponential growth term, r N , and (ii) the constraint to finite popu-
lation size expressed by the term −r N 2/C . In other words, the ecosystem can only
support N = C individuals and limt→∞ N (t) = C . The solution of the differential
equation (2.2) is of the form

N (t) = N0 C

N0 + (C − N0) exp(−r t)
. (2.3)

Here N0 = N (0) is the initial number of individuals. It is straightforward to nor-
malize the variable to the carrying capacity, x(t) = N (t)/C , yielding

x(t) = x0

x0 + (1− x0) exp(−r t)
(2.3′)

with x0 = N0/C . It will turn out to be useful to write the term representing the
constraint in the form N φ(t)/C = x φ(t). Then we obtain for the Verhulst equation

dx

dt
= ẋ = x

(
r − φ(t)

)
with φ(t) = x r (2.2′)

being the (mean) reproduction rate of the population.
Finally, we generalize to the evolution of n species or variants4 in the popu-

lation Ξ = {X1, X2, . . . , Xn}. The numbers of individuals are now denoted by
[Xi ] = Ni with

∑n
i=1 Ni = N and the normalized variables xi = Ni/N with∑n

i=1 xi = 1. Each variant has its individual Malthus parameter or fitness value
fi , and for the selection constraint leading to constant population size we find now
φ(t) = ∑n

i=1 xi fi , which is the mean reproduction rate of the entire population.
The selection constraint φ(t) can be used for modeling much more general situations
than constant population size by means of the mean reproduction rate. As we shall
see in Sect. 2.5, the proof for the occurrence of selection can be extended to very
general selection constraints φ(t) as long as the population size does not become
zero, N > 0.

The kinetic differential equation in the multispecies case, denoted as the selection
equation,

ẋ j = x j

(
f j − x j

n∑

i=1

xi fi

)
= x j

(
f j − x j φ(t)

)
, j = 1, 2, . . . , n , (2.4)

can be solved exactly by the integrating factors transform ([32], pp. 322ff.)

4 In this chapter we shall not consider sexual reproduction or other forms of recombination. In
asexual reproduction a strict distinction between variants and species is neither required nor possi-
ble. We shall briefly come back to the problem of bacterial or viral species in Sect. 2.7.
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z j (t) = x j (t) · exp

(∫ t

0
φ(τ)dτ

)
. (2.5)

Insertion into (2.4) yields

ż j = f j z j and z j (t) = z j (0) · exp( f j t) ,

x j (t) = x j (0) · exp( f j t) · exp

(
−

∫ t

0
φ(τ)dτ

)
with

exp

(∫ t

0
φ(τ)dτ

)
=

n∑

i=1

xi (0) · exp( fi t) ,

where we have used z j (0) = x j (0) and the condition
∑n

i=1 xi = 1. The solution
finally is of the form

x j (t) = x j (0) · exp( f j t)∑n
i=1 xi (0) · exp( fi t)

; j = 1, 2, . . . , n . (2.6)

The interpretation is straightforward. The term with the largest fitness value, fm =
max{ f1, f2, . . . , fn}, dominates the sum in the denominator after sufficiently long
time5:

n∑

i=1

xi (0) · exp( fi t) → xm(0) · exp( fmt) for large t and xm(t) → 1 .

Optimization in the sense of Charles Darwin’s principle of selection of the fittest
variant, Xm , takes place.

The occurrence of selection in (2.4) can be verified also without knowing the
solution (2.6). For this goal we consider the time dependence of the constraint φ,
which is given by

dφ

dt
=

n∑

i=1

fi ẋi =
n∑

i=1

fi
(

fi xi − xi

n∑

j=1

f j x j
) =

=
n∑

i=1

f 2
i xi −

n∑

i=1

fi xi

n∑

j=1

f j x j =

= f 2 − (
f
)2 = var{ f } ≥ 0 . (2.7)

Since a variance is always nonnegative, (2.7) implies that φ(t) is a nondecreas-
ing function of time. The value var{ f } = 0 implies a (local) maximum of φ and

5 We assume here that the largest fitness value fm is non-degenerate, i.e., there is no second species
having the same (largest) fitness value. In Sect. 2.5 we shall drop this restriction.
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hence, φ is optimized during selection. Zero variance is tantamount to a homoge-
neous population containing only one variant. Since φ is at a maximum, this is the
fittest variant Xm .

2.3 Evolution in Genotype Space

Evolution can be visualized as a process in an abstract genotype or sequence space,
Q. At constant chain lengths � of polynucleotides the sequence space is specified
as QA

� , where A is the alphabet, for example A = {0,1} or A = {G,C} is the
binary alphabet and A = {A,U,G,C} the natural nucleotide alphabet. The gains
of such a comprehensive view of genotypes are generality and the framework for
reduction to the essential features; the shortcomings, obviously, are lack of detail.
Building a model for evolution upon a space that fulfills all requirements required
for the molecular view of biology and which may, eventually, bridge microscopic
and macroscopic views, is precisely what we are aiming for here. The genotypes
are DNA or RNA sequences and the proper genotype space is sequence space. The
concept of a static sequence space [33, 34] was invented in the early 1970s in order
to bring some ordering criteria into the enormous diversity of possible biopolymer
sequences. Sequence space QA

� , as long we are only dealing with reproduction and
mutation, is a metric space with the Hamming distance6 serving as the most useful
metric for all practical purposes. Every possible sequence is a point in the discrete
sequence space and in order to illustrate the space by a graph, sequences are rep-
resented by nodes and all pairs of sequences with Hamming distance one by edges
(Fig. 2.2 shows a space of binary sequences as an example. Binary sequence spaces
are hypercubes of dimension �, � being the length of the sequences).

Two properties of sequence spaces are important: (i) All nodes in a sequence
space are equivalent in the sense that every sequence has the same number of nearest
neighbors with Hamming distance dH = 1, next nearest neighbors with Hamming
distance dH = 2, and so on, which are grouped properly in mutant classes. (ii) All
nodes of a sequence space are at the boundary of the space or, in other words, there is
no interior. Both features are visualized easily by means of hypercubes7: All points
are positioned at equal distances from the origin of the (Cartesian) coordinate sys-
tem. What makes sequence spaces difficult to handle are neither internal structures

6 The Hamming distance dH(Xi , X j ) [35] counts the number of positions at which two aligned
sequences Xi and X j differ. It fulfills the four criteria for a metric in sequence space:
(i) dH(Xi , X j ) ≥ 0 (nonnegativity), (ii) dH(Xi , X j i) = 0 if and only if Xi = X j (identity of
indiscernibles), (iii) dH(Xi , X j ) = dH(Xi , X j ) (symmetry), and (iv) dH(Xi , X j ) ≤ dH(Xi , Xk)+
dH(Xi , Xk) (triangle inequality). For sequences of equal chain length �, end-to-end alignment is
the most straightforward alignment, although it may miss close relatedness that is a consequence
of deletions and insertions, which are mutations that alter sequence length.
7 An �-dimensional hypercube in the Cartesian space of dimension � is the analogue of a (three-
dimensional) cube. The �-dimensional hypercube is constructed by drawing 2� (hyper)planes of
dimension (� − 1) perpendicular to the coordinate axes at the positions ±a. The corners of the
hypercubes are the 2� points where � planes cross.
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Fig. 2.2 Sequence space of binary sequences of chain length � = 5. The sequence space Q{0,1}5
comprises 32 sequences. Each sequence is represented by a point. The numbers in the yellow
balls are the decimal equivalents of the binary sequences and can be interpreted as sequences of
two nucleotides, “0”≡ “C” and “1”≡ “G”. Examples are 0≡ 00000≡CCCCC, 14≡ 01110≡
CGGGC or 29≡ 11101≡GGGCG. All positions of a (binary) sequence space are equivalent
in the sense that each sequence has � nearest neighbors, �(� − 1)/2 next nearest neighbors, etc.
Accordingly, sequences are properly grouped in mutant classes around the reference sequence,
here 0

nor construction principles but the hyper-astronomically large numbers of points:
|QA

� | = κ� for sequences of length � over an alphabet of size κ with κ = |A|.
The population Ξ = {X1, X2, . . . , Xn} is represented by a vector with the

numbers of species as elements N = (N1, N2, . . . , Nn), the population size is the
L1-norm:

N = ‖N‖1 =
n∑

i=1

|Ni | =
n∑

i=1

Ni ,

where absolute values are dispensable since particle numbers are real and non-
negative by definition. Normalization of the variables yields x = N/‖N‖ or
xi = Ni/N and

∑n
i=1 xi = 1, respectively. A population is thus represented by

an L1-normalized vector x and the population size N . An important property of a
population is its consensus sequence, X̄ , consisting of a nucleotide distribution at
each position of the sequence. This consensus sequence can be visualized as the
center of the population in sequence space.

A sequence is conventionally understood as a string of � symbols chosen from
some predefined alphabet with κ letters, which can be written as
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X j =
(

b( j)
1 , b( j)

2 , . . . , b( j)
�

)
with b( j)

i ∈ A = {α1, . . . , ακ } .

The natural nucleotide alphabet contains four letters: A = {A,U,G,C}, but RNA
molecules with catalytic functions have been derived also from three- and two-letter
alphabets [36, 37]. For the forthcoming considerations it is straightforward to adopt
slightly different definitions: A sequence X j results from the multiplication of the
alphabet vector α = (α1, . . . , ακ) with a κ × � matrix X j having only 0 and 1 as
entries:

X j = α · X j = α ·
(
β
( j)
1 ,β

( j)
2 , . . . ,β

( j)
�

)
with

β
( j)
i ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
1
...

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, . . . ,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
...

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(2.8)

In other words, the individual nucleotides in the sequence X j are replaced by prod-

ucts of two vectors, b( j)
i = α · β( j)

i .

With the definition (2.8) it is straightforward to compute the consensus sequence
of a population Ξ k :

Ξ k = α ·
n∑

j=1

x (k)j X j , (2.9)

and the distribution of nucleotides at position “i” is given by

b(k)i = α ·
n∑

j=1

x (k)j β
( j)
i . (2.9′)

It is important to note the difference between b( j)
i and b(k)i : The former refers to

the nucleotide at position “i” in a given sequence whereas the latter describes the
nucleotide distribution at position “i” in the population. If one nucleotide is dom-
inant at all positions, the distribution can be collapsed to a single sequence, the
consensus sequence.

The internal structure of every sequence space QA
� is induced by point mutation

and this is essential for inheritance because it creates a hierarchy in the accessability
of genotypes. Suppose we have a probability p of making one error in the reproduc-
tion of a sequence then, provided mutation at different positions is assumed to be
independent, the probability of making two errors is p2, of making three errors is
p3, etc. Inheritance requires sufficient accuracy of reproduction – otherwise children
would not resemble their parents – and this implies p has to be sufficiently small.
Then, p2 is smaller and the power series p dH decreases further with increasing
distance from the reference sequence. This ordering of sequences according to a
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probability criterion that is intimately related to the Hamming metric (Sect. 2.5). As
a matter of fact, mutation is indeed a fairly rare event in evolution and populations
are commonly dominated by a well-defined single consensus sequence since sin-
gle nucleotide exchanges that occur at many different positions do not contribute
significantly to the average.

Evolutionary dynamics is understood as change of the population vectors in
time: N(t) or x(t). This change can be modeled by means of differential equations
(Sect. 2.5) or stochastic processes (Sect. 2.6). A practical problem concerns the rep-
resentation of genotype space. Complete sequence space, QA

� has the advantage of
covering all possible genotypes but its extension is huge and, since the numbers of
possible genotypes exceed even the largest populations by far, we are confronted
with the problem that most degrees of freedom are empty and very likely will never
be populated during the evolutionary process described. Alternatively the descrip-
tion could be restricted to those genotypes that are actually present in the population
and that constitute the population support Φ(t), which is defined by

Φ(t)
.= {X j |N j (t) ≥ 1} . (2.10)

The obvious advantage is a drastic reduction in the degrees of freedom to a tractable
size but one has to pay a price for this simplification: The population support is time
dependent and changes whenever a new genotype is produced by mutation or an
existing one goes extinct [38]. Depending on population size, population dynamics
on the support can either be described by differential equations or modeled as a
stochastic process. Support dynamics, on the other hand, are intrinsically stochastic
since every mutant starts from a single copy.

Finally, it is important to mention that recombination without mutation can be
modeled successfully as a process in an abstract recombination space [39–41] and
plays a major role in the theory of genetic algorithms [42, 43]. A great challenge
for theorists is the development of a genotype space for both mutation and recom-
bination. Similarly, convenient sequence spaces for genotypes with variable chain
lengths are not at hand.

2.4 Modeling Genotype–Phenotype Mappings

The unfolding of genotypes to yield phenotypes is studied in developmental biology
and provides the key to understanding evolution and, in particular, the origin of
species. For a long time it has been common knowledge that the same genotype can
develop into different phenotypes, depending on differences in the environmental
conditions and epigenetic effects.8 Current molecular biology provides explanations
for several epigenetic observations and reveals mechanisms for the inheritance of

8 Epigenetics was originally used as a term subsuming phenomena that could not be explained by
conventional genetics.
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properties that are not encoded by the DNA of the individual. Genetics is still shap-
ing the phenotypes – otherwise progeny would not resemble parents – but epigenet-
ics and environmental influences provide additional effects that are indispensable
for understanding and modeling the relations between genotypes and phenotypes.
Here we shall adopt the conventional strategy of physicists and consider simple
cases in which the genotypes unfolds unambiguously into a unique phenotype. This
condition is fulfilled, for example, in evolution in vitro when biopolymer sequences
form (the uniquely defined) minimum free energy structures as phenotypes. Bacteria
in constant environments provide other cases of simple genotype–phenotype map-
pings (the long-term experiments of Richard Lenski [44–46] may serve as examples;
see Sect. 2.6). Under this simplifying assumption genotype–phenotype relations can
be modeled as mappings from an abstract genotype space into a space of pheno-
types or shapes. A counter example in a simple system is provided by biopoly-
mers with metastable suboptimal conformations, which can serve as models where
a single genotype – a sequence – can give rise to several phenotypes – molecular
structures [47].

Since only point mutations will be considered here, the choice of an appropriate
genotype space is straightforward. It is the sequence space QA

� with the Hamming
distance dH as metric. The phenotype space or shape space S� is the space of all
phenotypes formed by all genotypes of chain length �. Although the definition
of a physically or biologically meaningful distance between phenotypes is not at
all straightforward, some kind of metric can always be found. Accordingly the
genotype–phenotype mapping ψ can be characterized by

ψ : {Q(A)
� ; dH(Xi , X j )

} mfe===⇒ {S�; dS(Si , S j )} or Sk = ψ(Xk) . (2.11)

where mfe indicates minimum free energy. The map ψ need not be invertible. In
other words, several genotypes can be mapped onto the same phenotype when we
are dealing with a case of neutrality.

An example of a genotype–phenotype mapping that can be handled straight-
forwardly by analytical tools is provided by in vitro evolution of RNA molecules
[48–50]. RNA molecules are transferred to a solution containing activated
monomers as well as a virus-specific RNA replicase. The material consumed by
the replication reaction is replenished by serial transfer of a small sample into fresh
solution. The replicating ensemble of RNA molecules optimizes the mean RNA
replication rate of the population in the sense of Darwinian evolution [see (2.6)].
The interpretation of RNA evolution in vitro identifies the RNA sequence with
the genotype. The RNA structure, the phenotype, is responsible for binding to the
enzyme and for the progress of reproduction, since the structure of the template
molecules has to open in order to allow replication [51–53]. In the case of RNA
aptamer selection9 the binding affinity is a function of molecular structure, and

9 An aptamer is a molecule that binds to a predefined target molecule. Aptamers are commonly
produced by an evolutionary selection process [57].
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sequence–structure mapping is an excellent model for the relation between genotype
and phenotype.

RNA sequences fold spontaneously into secondary structures consisting of
double-helical stacks and single-stranded stretches. Within a stack, nucleotides form
base pairs that are elements of a pairing logic B, which consists of six allowed
base pairs in the case of RNA structures: B = {AU,UA,GC,CG,GU,UG}. Fur-
ther structure formation, very often initiated by the addition of two-valent cations,
mostly Mg2+, folds secondary structure into three-dimensional structures by means
of sequence specific tertiary interactions of nucleotide bases called motifs [54, 55].
Secondary structures have the advantage of computational and conceptional sim-
plicity, allowing the application of combinatorics to global analysis of sequence–
structure mappings [47, 56]. A conventional RNA secondary structure consists
exclusively of base pairs and unpaired nucleotides and can be represented in a
formal three-letter alphabet with the symbols ‘·’, ‘(‘,’)’ for unpaired nucleotides,
downstream-bound, and upstream-bound nucleotides, respectively (Fig. 2.3). A

Fig. 2.3 Symbolic notation of RNA secondary structures. RNA molecules have two chemically
different ends, the 5′- and the 3′-end. A general convention determines that all strings correspond-
ing to RNA molecules (sequences, symbolic notation, etc.) start from the 5′-end and have the
3′-end at the right-hand side (rhs). The symbolic notation is equivalent to graphical representation
of secondary structures. Base pairs are denoted by parentheses, where the opening parenthesis
corresponds to the nucleotide closer to the 5′-end and the closing parenthesis to the nucleotide
closer to the 3′-end of the sequence. In the figure we compare the symbolic notation with the
conventional graphical representations for two structures formed by the same sequence
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straightforward way to annotate pairs in structures is given by the base pair count
Si = [γ (i)1 , . . . , γ

(i)
� ], which we illustrate here by means of the lower (blue) structure

in the figure as an example10:

Si = [1,2,3,4,5,6,0,0,0,0,6,5,4,3,2,1,0,7,8,9,10,11,12,0,0,0,0,12,11,10,9,8,7,0,0,0,0]

Consecutive numbers are assigned to first nucleotides of base pairs corresponding
to an opening parenthesis in the sequence, in which they appear in the structure,
and the same number is assigned to the corresponding closing parenthesis lying
downstream. Unpaired nucleotides are denoted by ‘0’. In total the structure contains
np base pairs and ns single nucleotides with 2np + ns = �.

Molecular physics provides an excellent tool for modeling folding of molecules
into structures, the concept of conformation space: A free energy is assigned to
or calculated for each conformation of the molecule. Commonly, the variables of
conformation space are continuous, bond lengths, valence angles or torsion angles
may serve as examples. The free energy (hyper)surface or free energy landscape of a
molecule presents the free energy as a function of the conformational variables. The
mfe structure corresponds to the global minimum of the landscape, metastable states
to local minima. In the case of RNA secondary structures conformation space and
shape space are identical, and they are discrete spaces, since a nucleotide is either
paired or unpaired. Whether a given conformation, a given base pairing pattern, is a
local minimum or not depends also on the set of allowed moves in shape space S.
The move set defines the distance between structures, the metric dS(Si , S j ) in (2.11).
An appropriate move set for RNA secondary structures comprises three moves: (i)
base pair closure, (ii) base pair opening, and (iii) base pair shift [47, 62]. The first
two moves need no further explanation; the shift move combines base pair opening
and base pair formation with neighboring unpaired nucleotides. This set of three
moves corresponds to a metric dS(Si , S j ), which is the Hamming distance between
the symbolic notations of the two structures Si and S j .

Conventional structure prediction deals with single structures derived from sin-
gle sequence inputs. Structure formation depends on external conditions such as
temperature, pH value, ionic strength, and the nature of the counter-ions; in order
to obtain a unique solution these conditions have to be specified. Commonly the
search is for the most stable structure, the mfe structure, which corresponds to the
global minimum of the conformational free energy landscape of the RNA molecule.
In Fig. 2.4 the mfe structure S0 = ψ(X) is a single long hairpin shown (in red)
at the lhs of the picture. A sequence that forms a stable mfe structure S0 (free

10 The base pair count is another equivalent representation of RNA secondary structures. In the
case of conventional secondary structures, the symbolic notation is converted into the base pair
count by an exceedingly simple algorithm: Starting with zero at the 5′-end and proceeding from
left to right a positive integer counting the number of open parenthesis is assigned to every position
along the sequence. The base pair count is not only more convenient for base pair assignments but
also more general. It is, for example, applicable to RNA structures with pseudoknots.
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Fig. 2.4 Secondary structures of ribonucleic acid molecules (RNAs). Conventional RNA folding
algorithms compute the mfe structure for a given sequence [58, 59]. Hairpin formation is shown
as an example on the lhs of the figure. In addition, the sequence can fold also into a large number
of suboptimal conformations (diagram in the middle of the figure), which are readily computed by
efficient computer programs [60, 61]. If a suboptimal structure is separated from the mfe structure
by a sufficiently high activation barrier, the structure is metastable. The metastable structure in the
example shown here is a double hairpin (rhs of the figure). The activation energy of more than
20 kcal/mol does not allow interconversion of the two structures at room temperature. (For the
calculation of kinetic structures see, for example, [62, 63])

energy of folding11: 	Gfold(S0) < 0) commonly forms almost always a set of
suboptimal conformations {S1, S2, . . . , Sm} with higher free energies of formation,
	Gfold(Si ) > 	Gfold(S0) for i �= 0. In Fig. 2.4 (middle) the ten lowest subop-
timal structures are listed; together with S0 they represent the 11 lowest states of
the spectrum of structures associated with the sequence X . Low-lying suboptimal
conformations may influence the molecular properties, in particular when confor-
mational changes are involved. The Boltzmann-weighted contributions of all sub-
optimal structures at temperature T are readily calculated by means of the partition
function of RNA secondary structures [59, 64]. Instead of base pairs the analysis of
the partition function yields base pairing probabilities that tell how likely it is to find
two specific nucleotides forming a base pair in the ensemble of structures at thermal
equilibrium.

Although folding RNA sequences into secondary structures is, presumably, the
simplest conceivable case of a genotype–phenotype map, it is at the same time an
example of the origin of complexity at the molecular level. The base pairing inter-
action is essentially nonlocal since a nucleotide can pair with another nucleotide
from almost any position of the sequence.12 The strongest stabilizing contributions

11 The free energy of folding is the difference in free energy between the structure Si and the
unfolded (open) chain O: 	Gfold(Si ) = G(Si )− G(O).
12 Pairing with nearest neighbors is excluded for geometrical reasons. In other words, base pairs
of two adjacent nucleotides have such a high positive free energy of formation that they are never
observed.
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to the free energy of structure formation come from neighboring base pairs and are
therefore local. The combination of local and nonlocal effects is one of the most
common sources of complex relations in mappings.

The relation of an RNA sequence and its suboptimal structures is sketched in
Fig. 2.5 (lower part). A single sequence X gives rise to a whole set of structures
spread all over shape space. In principle, all structures that are compatible with
the sequence appear in the spectrum of suboptimals but only a subset is stable in the
sense that the structure Si (i = 1, . . .) corresponds to a local minimum of the confor-
mational energy surface and the free energy of folding is negative (	Gfold(Si ) < 0).
Using the base pair count, the set of all structures that are compatible with the
sequence Xh can be defined straightforwardly:

Si ∈ C(Xh) iff {γ (i)j = γ (i)k �⇒ b(h)j b(h)k ∈ B ∀ γ j �= 0, j = 1, . . . , �} (2.12)

Sequence space Structure space

Neutral network

Sequence space Structure space

Stable (sub)optimal structures

Fig. 2.5 Mappings from sequence space onto shape space and back. The upper part of the figure
sketchows schematically a mapping from sequence space onto structure or shape space. (Both
sequence space and shape space are high-dimensional. The two-dimensional representation is used
for the purpose of illustration only.) One structure is uniquely assigned to each sequence. The
drawing shows the case of a mapping that is many-to-one and noninvertible: Many sequences
fold into the same secondary structure and build a neutral network. The lower part of the figure
illustrates the set of stable (sub)optimal structures that are formed by a single sequence. The mfe
structure is indicated by a larger circle
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In other words, a structure Si is compatible with a sequence Xh if, and only if, two
nucleotides that can form a base pair appear in the sequence at all pairs of positions
that are joined by a base pair in the structure. For an arbitrary sequence the number
of compatible structures is extremely large but the majority of them have either
positive free energies of folding (	Gfold(Si ) > 0) and/or represent saddle points
rather than local minima of the conformational energy surface. Figure 2.5 indicates
the relation between an RNA sequence, its mfe structure, and its stable suboptimal
conformations.

Studies of mfe structures or suboptimal structures refer to a certain set of con-
ditions – for example, temperature T , pH, ionic strength – but time is missing
because free energy differences (	G) or partition functions are equilibrium prop-
erties. The structures that are determined and investigated experimentally, however,
refer always to some time window – we are not dealing with equilibrium ensem-
bles but with metastable states. The finite time structures of RNA are obtained by
kinetic folding (see, e.g., [62, 63]). The RNA example shown in Fig. 2.4 represents
the case of a bistable molecule: The most stable suboptimal structure S1, a double
hairpin conformation (blue), is the most stable representative of a whole family of
double hairpin structures forming a broad basin of the free energy landscape of the
molecule. This basin is separated from the basin of the single hairpin structure S0
by a high energy barrier of about 20 kcal/mol and this implies that practically no
interconversion of the two structures will take place at room temperature. We are
dealing with an RNA molecule with one stable and one metastable conformation, a
so-called RNA switch. RNA switches are frequent regulatory elements in prokary-
otic regulation of translation [65].

2.5 Chemical Kinetics of Evolution

Provided population sizes N are sufficiently large, mutation rates are high enough,
and stochastic effects are reduced by statistical compensation, evolution can be
described properly by means of differential equations. In essence, we proceed as
described in Sect. 2.2 and find for replication and mutation as an extension of the
selection equation (2.4)

dx j

dt
=

n∑

i=1

Q ji fi xi − φ(t) x j , j = 1, . . . , n with φ(t) =
n∑

i=1

fi xi

or
dx
dt
=

(
Q · F − φ(t)

)
x =

(
W − φ(t)

)
x ,

(2.13)

where x is an n-dimensional column vector and Q and F are n × n matrices. The
matrix Q contains the mutation probabilities Q ji , referring to the production of X j

as an error copy of template Xi , and F is a diagonal matrix whose elements are the
replication rate parameters or fitness values fi .
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Solutions of the mutation-selection equation (2.13) can be obtained in two steps:
(i) integrating factor transformation allows the nonlinear term φ(t) to be eliminated
and (ii) the remaining linear equation is solved in terms of an eigenvalue problem
[66–69]:

x j (t) =
∑n

k=1 b jk
∑n

i=1 hki xi (0) exp(λk t)
∑n

l=1
∑n

k=1 blk
∑n

i=1 hki xi (0) exp(λk t)
, j = 1, . . . , n . (2.14)

The new quantities in this equation, b jk and hkj , are the elements of two transfor-
mation matrices:

B = {b jk; j = 1, . . . , n; k = 1, . . . , n} and

B−1 = {hkj ; k = 1, . . . , n; j = 1, . . . , n}.

The columns of B and the rows of B−1 represent the right-hand and left-hand eigen-
vectors of the matrix W = Q · F with B−1 · WB = � being a diagonal matrix
containing the eigenvalues of W. The elements of the matrix W are nonnegative by
definition since they are the product of a fitness value or replication rate parameter
fi and a mutation probability Q ji , which are both nonnegative. If, in addition, W is a
nonnegative primitive matrix13 – implying that every sequence can be reached from
every sequence by a finite chain of consecutive mutations – the conditions for the
validity of the Perron–Frobenius theorem [70] are fulfilled. Two (out of six) proper-
ties of the eigenvalues and eigenvectors of W are important for replication-mutation
dynamics:

(i). The largest eigenvalue λ1 is nondegenerate, λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn , and
(ii). the unique eigenvector belonging to λ1 denoted by ξ1 has only positive ele-

ments, ξ (1)j > 0∀ j = 1, . . . , n.

After sufficiently long time the population converges to the largest eigenvector ξ1,
which is therefore the stationary state of (2.13). Since ξ1 represents the genetic
reservoir of an asexually replicating species it is called the quasispecies [68]. A qua-
sispecies commonly consists of a fittest genotype, the master sequence, and a mutant
distribution surrounding the master sequence in sequence space. Although the solu-
tion of the mutation-selection equation is straightforward, the experimental proof of
the existence of a stationary mutant distribution and its analysis are quite involved
[71]. The work has been conducted with relatively short RNA molecules (chain
length: � = 87). Genotypic heterogeneity in virus populations was first detected in
the 1970s [72]. Later, the existence of quasispecies in nature was demonstrated for
virus populations (For an overview and a collection of reviews see [73, 74]). Since it

13 A square nonnegative matrix W = {wi j ; i, j = 1, . . . , n; wi j ≥ 0} is called primitive if there
exists a positive integer m such that Wm is strictly positive: Wm > 0, which implies Wm =
{w(m)i j ; i, j = 1, . . . , n;w(m)i j > 0}.
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is very hard, if not impossible, to prove that a natural population is in a steady state,
the notion virus quasispecies was coined for virus populations observed in vitro and
in vivo.

In order to explore quasispecies as a function of the mutation rate p, a crude or
zeroth-order approximation consisting of neglect of backward mutations has been
adopted [33]. The differential equation for the master sequence is then of the form

dx (0)m

dt
= Qmm fm x (0)m − x (0)m φ(t) = x (0)m

(
Qmm fm − f̄−m − x (0)m ( fm − f̄−m)

)
,

with f̄−m =
(∑n

j=1, j �=m f j x j
)
/(1 − xm). We apply the uniform error approxima-

tion and assume that the mutation rate per nucleotide and replication event, p, is
independent of the nature of the nucleotide (A, U, G or C) and the position along
the sequence. We find for the elements of the mutation matrix Q

Q j j = (1− p)� and Q ji = (1− p)�
(

p

1− p

)dH(Xi ,X j )

, (2.15)

and obtain for the stationary concentration of the master sequence

x̄ (0)m = Qmm − σ−1
m

1− σ−1
m

= 1

σm − 1

(
σm (1− p)� − 1

)
,

where σm = fm/ f̄−m > 1 is the superiority of the master sequence and f̄−m is
defined by

f̄−m = 1

1− xm

n∑

i=1,i �=m

xi fi .

In this zeroth-order approximation the stationary concentration x̄ (0)m (p) vanishes at
the critical value (Fig. 2.6)

p cr ≈ 1 − (σm)
−1/� . (2.16)

Needless to say, zero concentration of the master sequence is an artifact of the
approximation, because the exact concentration of the master sequence cannot van-
ish by the Perron–Frobenius theorem as long as the population size is nonzero. In
order to find out what really happens at the critical mutation rate p cr computer
solutions of the complete equation (2.13) were calculated for the single peak fit-
ness landscape.14 These calculations [75] show a sharp transition from the ordered
quasispecies to the uniform distribution, x̄ j = κ−� ∀ j = 1, . . . , κ�. At the critical

14 The single peak fitness landscape is a kind of mean field approximation: A fitness value fm
is assigned to the master sequence, whereas all other variants have the same fitness f0. For this
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Fig. 2.6 The error threshold in RNA replication. The stationary frequency of the master sequence
Xm is shown as a function of the mutation rate p. In the zeroth-order approximation neglecting
mutational backflow the function x̄ (0)m (p) is almost linear in the particular example shown here. In
the inset the zeroth-order approximation (black) is shown together with the exact function (red) and
an approximation applying the uniform distribution to the mutational cloud (x̄ j = (1− x̄m)/(n−1)
∀ j �= m; blue), which is exact at the mutation rate p = 0.5 for binary sequences. The error rate
p has two natural limitations: (i) the physical accuracy limit of the replication process provides
a lower bound for the mutation rate and (ii) the error threshold defines a minimum accuracy of
replication that is required to sustain inheritance and sets an upper bound for the mutation rate.
Parameters used in the calculations: binary sequences, � = 6, σ = 1.4131

mutation rate p cr, replication errors accumulate and (independently of initial con-
ditions) all sequences are present at the same frequency in the long-time limit, as is
reflected by the uniform distribution. The uniform distribution is the exact solution
of the eigenvalue problem at equal probabilities for all nucleotide incorporations
(A→A, A→U, A→G, and A→C) occurring at p̃ = κ−1. The interesting aspect of
the error threshold phenomenon consists in the fact that the quasispecies approaches
the uniform distribution at a critical mutation rate p cr that is far below the random
mutation value p̃. As a matter of fact, the appearance of an error threshold and its
shape depend on details of the fitness landscape [76, pp. 51–60]. Some landscapes
show no error threshold at all but a smooth transition to the uniform distribution
[77]. More realistic fitness landscapes with a distribution of fitness values reveal a
much more complex situation: For constant superiority the value of p cr becomes

particular landscape the position x̄ (0)m = 0 calculated within the zeroth-order approximation almost
coincides with the position of the critical change in the population structure (Fig. 2.7).
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Fig. 2.7 The error threshold on single peak fitness landscapes. The upper part of the figure shows
the quasispecies as a function of the mutation rate p. The variables ȳk(p) (k = 0, 1, . . . , �) repre-
sent the total concentrations of all sequences with Hamming distance dH = k: ȳ0 = x̄m (black) is

the concentration of the master sequence, ȳ1 = ∑n
i=1,dH(Xi ,Xm )=1 x̄i (red) is the concentration of

the one-error class, ȳ2 =∑n
i=1,dH(Xi ,Xm )=2 x̄i (yellow) that of the two-error class and, accordingly,

we have ȳk = ∑n
i=1,dH(Xi ,Xm )=k x̄i for the k-error class. The lower part shows an enlargement.

The position of the error threshold computed from the zeroth-order approximation (2.16) is shown
as by a dotted line (gray). Choice of parameters: κ = 2, � = 100, fm = 10, f0 = 1 and hence
σm = 10 and pcr = 0.02276

smaller with increasing variance of fitness values. The error threshold phenomenon
can be split into three different observations that coincide on the single peak land-
scape: (i) vanishing of the master sequence xm , (ii) phase-transition-like behavior,
and (iii) transition to the uniform distribution. On suitable model landscapes the
three observations do not coincide and thus can be separated [78, 79].

How do populations behave at mutation rates above the error threshold? In real-
ity a uniform distribution of variants as required for the stationary state cannot be
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realized. In RNA selection experiments population sizes hardly exceed 1015

molecules, the smallest aptamers have chain lengths of � = 27 nucleotides [80] and
this implies 427 ≈ 18 × 1015 different sequences. Even in this most favorable case
we are dealing with more sequences than molecules in the population: a uniform
distribution cannot exist. Although the origin of the lack of selective power is com-
pletely different – high mutation rates wiping out the differences in fitness values
versus fitness differences being zero or too small for selection – the scenarios most
likely to occur are migrating populations similar to evolution on a flat landscape
[81]. Bernard Derrida and Luca Peliti find that the populations break up into clones,
which migrate into different directions in sequence space. Migrating populations are
unable to conserve a genotype over generations, and unless a large degree of neu-
trality allows a phenotype to be maintained despite changing genotypes, evolution
becomes impossible because inheritance breaks down.

Because of high selection pressure resulting from the hosts’ defense systems,
virus populations operate at mutation rates as high as possible in order to allow fast
evolution, and this is just below the error threshold [82]. Increasing the mutation
rate should drive the virus population beyond threshold, where sufficiently accurate
replication is no longer possible. Therefore virus populations are doomed to die
out at mutation rates above threshold, and this suggested a novel antiviral strategy
that has led to the development of new drugs [83]. A more recent discussion of the
error threshold phenomenon tries to separate the error accumulation phenomenon
from mutation-caused fitness effects leading to virus extinction, known as lethal
mutagenesis [84, 85]. In fact lethal mutagenesis describes the error threshold phe-
nomenon for variable population size N as required for lim N → 0, but an analysis
of population dynamics without and with stochastic effects at the onset of migration
of populations is still lacking. In addition, more detailed kinetic studies on repli-
cation in vitro near the error threshold are required before the mechanism of virus
extinction at high mutation rates can be understood.

Sequence–structure mappings of nucleic acid molecules (Sect. 2.4) and proteins
provide ample evidence for neutrality in the sense that many genotypes give rise to
the same phenotype and identical or almost identical fitness values that cannot be
discriminated by natural selection. The possible occurrence of neutral variants was
even discussed by Charles Darwin [2, chapter iv]. Based on the results of the first
sequence data from molecular biology, Motoo Kimura formulated his neutral theory
of evolution [86, 87]. In the absence of fitness differences between variants, random
selection occurs because of stochastic enhancement through autocatalytic processes:
more frequent variants are more likely to be replicated than less frequent ones. Ulti-
mately a single genotype becomes fixated in the population. The average time of
replacement for a dominant genotype is the reciprocal mutation rate, ν−1 = (�p)−1,
which, interestingly, is independent of the population size. Are Kimura’s results
valid also for large population sizes and high mutation rates, as they occur, for
example, with viruses? Mathematical analysis [88] together with recent computer
studies [78] yields the answer: Random selection in the sense of Kimura occurs
only for sufficiently distant (master) sequences. In full agreement with the exact
result in the limit p → 0 we find that two fittest sequences of Hamming distance
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dH = 1, two nearest neighbors in sequence space, are selected as a strongly coupled
pair with equal frequency of the two members. Numerical results demonstrate that
this strong coupling occurs not only for small mutation rates but extends over the
whole range of p values from p = 0 to the error threshold p = pcr. For clusters of
more than two sequences with dH = 1, the frequencies of the individual members
of the cluster are given by the components of the largest eigenvector of the adja-
cency matrix. Pairs of fittest sequences with Hamming distance dH = 2, i.e., two
next-nearest neighbors with two sequences in between, are also selected together
but the ratio of the two frequencies is different from one. Again coupling extends
from zero mutation rates to the error threshold. Strong coupling of fittest sequences
manifests itself in virology as systematic deviations from consensus sequences of
populations, as indeed observed in nature. For two fittest sequences with dH ≥ 3
random selection chooses arbitrarily one of the two and eliminates the other one, as
predicted by the neutral theory.

The function φ(t) was introduced as the mean fitness of a population in order
to allow straightforward normalization of the population variables. A more general
interpretation considers φ(t) as a flux out of the system. Then the equation describ-
ing evolution of the column vector of particle numbers N = (N1, . . . , Nn) is of the
form [89]

d N j

dt
= Fj (N) − N j

C(t)
φ(t) , i = 1, . . . , n ,

where Fj (N) is the function of unconstrained reproduction. An example is provided
by (2.13): Fj (N) = ∑n

i=1 Q ji fi Ni . Explicit insertion of the total concentration
C(t) =∑n

i=1 Ni (t) yields

φ(t) =
n∑

i=1

Fi (N) − dC

dt
or C(t) = C0 +

∫ t

0

(
n∑

i=1

Fi (N)− φ(τ)
)

dτ .

Either C(t) or φ(t) can be chosen freely; the second function is then determined by
the equation given above. For normalized variables we find

dx j

dt
= 1

C(t)

(

Fj (N) − x j

n∑

i=1

Fj (N)

)

.

For a large number of examples and for most cases important in evolution, the func-
tions Fj (N) are homogeneous functions in N . For homogeneity of degree γ we
have Fj (N) = Fj (C · N) = Cγ Fj (x) and find

dx j

dt
= Cγ−1

(

Fj (x) − x j

n∑

i=1

Fj (x)

)

, j = 1, . . . , n . (2.17)
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Two conclusions can be drawn from this equation: (i) For γ = 1, e.g., the selec-
tion equation (2.4) or the replication-mutation equation (2.13), the dependence on
the total concentration C vanishes and the solution curves in normalized variables
x j (t) are the same in stationary (C = const) and nonstationary systems as long as
C(t) remains finite and does not vanish, and (ii) if γ �= 1 the long-term behavior
determined by ẋ = 0 is identical for stationary and nonstationary systems unless the
population dies out C(t)→ 0 or explodes C(t)→∞.

2.6 Evolution as a Stochastic Process

Stochastic phenomena are essential for evolution – each mutant after all starts
out from a single copy – and a large number of studies have been conducted on
stochastic effects in population genetics [90]. Not so much work, however, has been
devoted so far to the development of a general stochastic theory of molecular evo-
lution. We mention two examples representative for others [91, 92]. In the latter
case the reaction network for replication and mutation was analyzed as a multi-type
branching process and it was proven that the stochastic process converges to the
deterministic equation (2.13) in the limit of large populations. What is still lacking
is a comprehensive treatment, for example by means of chemical master equations
[93]. Then the deterministic population variables x j (t) are replaced by stochastic
variables X j (t) and the corresponding probabilities

P( j)
k (t) = Prob{X j = k} , k = 0, 1, . . . , N ; j = 1, . . . , n . (2.18)

The chemical master equation translates a mechanism into a set of differential equa-
tions for the probabilities. The pendant of (2.13), for example, is the master equation

d P( j)
k

dt
=

(
n∑

i=1

Q ji fi

n∑

s=1

s P(i)s

)

P( j)
k−1 − φ(t) P( j)

k

−
(

n∑

i=1

Q ji fi

n∑

s=1

s P(i)s

)

P( j)
k + φ(t) P( j)

k+1 .

(2.19)

The only quantity that has to be specified further in this equation is the flux term
φ(t). For the stochastic description it is not sufficient to have a term that just com-
pensates the increase in population size due to replication, a detailed model of the
process is required. Examples are (i) the Moran process [94–96] with strictly con-
stant population size and (ii) the flow reactor (continuous stirred tank reactor, CSTR)
with a population size fluctuating within the limits of a

√
N law [97, 98].15 The

15 All thermodynamically admissible processes obey a so-called
√

N law: For a mean population
size of N the actual population size fluctuates with a standard deviation proportional to

√
N .
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Moran process assumes that for every newborn molecule one molecule is instanta-
neously eliminated. Strong coupling of otherwise completely independent processes
has the advantage of mathematical simplicity but it lacks a physical background. The
flow reactor, on the other hand, is harder to treat in the mathematical analysis but it
is based on solid physical grounds and can be easily implemented experimentally.
In computer simulation both models require comparable efforts and for molecular
systems preference is given therefore to the flow reactor.

For evolution of RNA molecules through replication and mutation in the flow
reactor, the following reaction mechanism has been implemented:

∗
a0 r
−−−−→ A ,

A + Xi

Q ji fi−−−−→ Xi + X j ; i, j = 1, . . . , n ,

A
r

−−−−→ ∅ , and

X j

r−−−−→ ∅ ; j = 1, . . . , n .

(2.20)

Stock solution flows into the reactor with a flow rate r and it feeds the reactor with
the material required for polynucleotide synthesis – schematically denoted by A and
consisting, for example, of activated nucleotides, ATP, UTP, GTP, and CTP, as
well as a replicating enzyme – into the system. The concentration of A in the stock
solution is denoted by a0. The molecules X j are produced by the second reaction
either by correct copying or by mutation. The third and fourth reactions describe
the outflux of material and compensate the increase in volume caused by the influx
of stock solution. The reactor is assumed to be perfectly mixed at every instant
(CSTR). For a targeted search the stochastic process in the reactor is constructed to
have two absorbing states (Fig. 2.8): (i) extinction – all RNA molecules are diluted
out of the reaction vessel – and (ii) survival – the predefined target structure has
been produced in the reactor. The population size determines the outcome of the
computer experiment: Below population sizes of N = 13 the reaction in the CSTR
almost certainly goes extinct, but it reaches the target with a probability close to
one for N > 20. The probability of extinction is very small for sufficiently large
populations, and for population sizes N ≥ 1, 000, as reported here, extinction has
been never observed.

In order to simulate the interplay between mutation acting on the RNA sequence
and selection operating on RNA structures, the sequence–structure map has to be
turned into an integral part of the model [97–99]. The simulation tool starts from
a population of RNA molecules and simulates chemical reactions corresponding to
replication and mutation in a CSTR according to (2.20) by using Gillespie’s algo-
rithm [100–102]. Molecules replicate in the reactor and produce both correct copies
and mutants, the materials to be consumed are supplied by the continuous influx
of stock solution into the reactor, and excess volume is removed by means of the
outflux of reactor solution. Two kinds of computer experiments were performed:
Optimizations of properties on a landscape derived from the sequence–structure
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Fig. 2.8 Survival in the flow reactor. Replication and mutation in the flow reactor are implemented
according to the mechanism (2.20). The stochastic process has two absorbing states: (i) extinction,
X j = 0∀ j = 1, . . . , n, and (ii) a predefined target state – here the structure of tRNAphe. A rather
sharp transition in the long-time behavior of the population is shown in the lower plot: populations
of natural sequences (AUGC) switch from almost certain extinction to almost certain survival in
the range 13 ≤ N ≤ 18 and for binary sequences (GC) the transition is even sharper but requires
slightly larger population sizes
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map and targeted searches in shape space where the target is some predefined
structure.

Early simulations optimizing replication rates in populations of binary GC-
sequences yielded two general results:

(i) The progress in evolution is stepwise rather than continuous, as short adaptive
phases are interrupted by long quasi-stationary epochs [97, 98].

(ii) Different computer runs with identical initial conditions16

resulted in different structures with similar values of the optimized rate parameters.
Despite identical initial conditions, the populations migrated in different – almost
orthogonal – directions in sequence space and gave rise thereby to contingency in
evolution [98].

In targeted search problems the replication rate of a sequence Xk , representing
its fitness fk , is chosen to be a function of the Hamming distance17 between the
structure formed by the sequence, Sk = f (Xk), and the target structure, ST,

fk(Sk, ST) = 1

α + dH(Sk, ST)/�
, (2.21)

which increases when Sk approaches the target (α is an empirically adjustable
parameter that is commonly chosen to be 0.1). A trajectory is completed when the
population reaches a sequence that folds into the target structure – appearance of the
target structure in the population is defined as an absorbing state of the stochastic
process. A typical trajectory is shown in Fig. 2.9. In this simulation a homogeneous
population consisting of N molecules with the same random sequence and structure
is chosen as the initial condition. The target structure is the well-known secondary
structure of phenylalanyl-transfer RNA (tRNAphe). The mean distance to target
of the population decreases in steps until the target is reached [99, 103, 104] and
again the approach to the target is stepwise rather than continuous: Short adap-
tive phases are interrupted by long quasi-stationary epochs. In order to reconstruct
optimization dynamics, a time-ordered series of structures is determined that leads
from an initial structure SI to the target structure ST. This series, called the relay
series, is a uniquely defined and uninterrupted sequence of shapes. It is retrieved
through backtracking, that is, in the opposite direction, from the final structure to
the initial shape. The procedure starts by highlighting the final structure and traces
it back during its uninterrupted presence in the flow reactor until the time of its first
appearance. At this point we search for the parent shape from which it descended
by mutation. Now we record the time and structure, highlight the parent shape,
and repeat the procedure. Recording further backwards yields a series of shapes

16 Identical means here that everything in the computer runs was the same except the seeds for the
random number generators and this implies different series of random events.
17 The distance between two structures is defined here as the Hamming distance between the two
symbolic notations of the structures.
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Fig. 2.9 A trajectory of evolutionary optimization. The topmost plot presents the mean distance to
the target structure of a population of 1,000 molecules, the plot in the middle shows the width of
the population in Hamming distance between sequences, and the plot at the bottom is a measure of
the velocity with which the center of the population migrates through sequence space. Diffusion
on neutral networks causes spreading on the population in the sense of neutral evolution [105]).
A remarkable synchronization is observed: At the end of each quasi-stationary plateau a new
adaptive phase in the approach towards the target is initiated, which is accompanied by a drastic
reduction in the population width and a jump in the population center. (The top of the peak at the
end of the second long plateau is marked by an arrow.) A mutation rate of p = 0.001 was chosen,
the replication rate parameter is defined in (2.21), and initial and target structures are shown in
Table 2.1

and times of first appearance that ultimately ends in the initial population.18 Use of
the relay series and its theoretical background allows classification of transitions
[99, 103, 106]. Inspection of the relay series together with the sequence record
on the quasi-stationary plateaus provides strong hints for the distinction of two
scenarios:

18 It is important to stress two facts about relay series: (i) The same shape may appear two or more
times in a given relay series series. Then, it was extinct between two consecutive appearances.
(ii) A relay series is not a genealogy, which is the full recording of parent–offspring relations in a
time-ordered series of genotypes.
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(i) The structure is constant and we observe neutral evolution in the sense of
Kimura’s theory of neutral evolution [87]. In particular, the numbers of neutral
mutations accumulated are proportional to the number of replications in the
population, and the evolution of the population can be understood as a diffusion
process on the corresponding neutral network [105].

(ii) The process during the quasi-stationary epoch involves several closely related
structures with identical replication rates and the relay series reveals a kind of
random walk in the space of these neutral structures.

The diffusion of the population on the neutral network is illustrated by the plot
in the middle of Fig. 2.9, which shows the width of the population as a function of
time [104]. The population width increases during the quasi-stationary epoch and
sharpens almost instantaneously after a sequence has been created by mutation that
allows the start of a new adaptive phase in the optimization process. The scenario
at the end of the plateau corresponds to a bottleneck of evolution. The lower part
of the figure shows a plot of the migration rate or drift of the population center and
confirms this interpretation: Migration of the population center is almost always
very slow unless the center “jumps” from one point in sequence space to a possi-
bly distant point where the molecule initiating the new adaptive phase is located.
A closer look at the three curves in Fig. 2.9 reveals coincidence of three events:
(i) collapse-like narrowing of the population spread, (ii) jump-like migration of the
population center, and (iii) beginning of a new adaptive phase.

It is worth mentioning that the optimization behavior observed in a long-term
evolution experiment with Escherichia coli [46] can be readily interpreted in terms
of random searches on a neutral network. Starting with twelve colonies in 1988,
Lenski and his coworkers observed, after 31,500 generation or 20 years, a great
adaptive innovation in one colony [45]: This colony developed a kind of membrane
channel that allows uptake of citrate, which is used as a buffer in the medium. The
colony thus conquered a new resource that led to a substantial increase in colony
growth. The mutation providing citrate import into the cell is reproducible when
earlier isolates of this particular colony are used for a restart of the evolutionary
process. Apparently this particular colony has traveled through sequence space to a
position from where the adaptive mutation allowing citrate uptake is within reach.
None of the other eleven colonies gave rise to mutations with a similar function.
The experiment is a nice demonstration of contingency in evolution: The conquest
of the citrate resource does not happen through a single highly improbable mutation
but by means of a mutation with standard probability from a particular region of
sequence space where the population had traveled in one case out of twelve – history
matters, or to repeat Theodosius Dobzhansky’s famous quote: “Nothing makes sense
in biology except in the light of evolution” [29].

Table 2.1 collects some numerical data sampled from evolutionary trajectories of
simulations repeated under identical conditions. Individual trajectories show enor-
mous scatter in the time or the number of replications required to reach the tar-
get. The mean values and the standard deviations were obtained from statistics of
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Table 2.1 Statistics of the optimization trajectories. The table shows the results of sampled evo-
lutionary trajectories leading from a random initial structure SI to the structure of tRNAphe, ST as
the target.a Simulations were performed with an algorithm introduced by Gillespie [100–102]. The
time unit is here undefined. A mutation rate of p = 0.001 per site and replication was used. The
mean and standard deviation were calculated under the assumption of a log-normal distribution
that fits well the data of the simulations

Population Number of Real time from Number of replications
size runs start to target [107]

Alphabet N nR Mean value σ Mean value σ

AUGC 1,000 120 900 +1,380–542 1.2 +3.1–0.9
2,000 120 530 +880–330 1.4 +3.6–1.0
3,000 1,199 400 +670–250 1.6 +4.4–1.2

10,000 120 190 +230–100 2.3 +5.3–1.6
30,000 63 110 +97–52 3.6 +6.7–2.3

100,000 18 62 +50–28 – –

GC 1,000 46 5,160 +15,700–3,890 – –
3,000 278 1,910 +5,180–1,460 7.4 +35.8–6.1

10,000 40 560 +1,620–420 – –

aThe structures SI and ST used in the optimization were:

SI: ((.(((((((((((((............(((....)))......)))))).))))))).))...(((......)))
ST: ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

trajectories under the assumption of log-normal distributions. Despite the scatter
three features are unambiguously detectable:

(i) The search in GC sequence space takes about five time as long as the corre-
sponding process in AUGC sequence space, in agreement with the difference
in neutral network structure.

(ii) The time to target decreases with increasing population size.
(iii) The number of replications required to reach target increases with population

size.

Combination of the results (ii) and (iii) allows a clear conclusion concerning time
and material requirements of the optimization process: Fast optimization requires
large populations whereas economic use of material suggests working with small
population sizes just sufficient to avoid extinction.

A study of parameter dependence of RNA evolution was reported in a recent
simulation [107]. Increase in mutation rate leads to an error threshold phenomenon
that is closely related to one observed with quasispecies on a single-peak landscape
as described above [69, 75]. Evolutionary optimization becomes more efficient19

with increasing error rate until the error threshold is reached. Further increase in

19 Efficiency of evolutionary optimization is measured by average and best fitness values obtained
in populations after a predefined number of generations.
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error rates leads to a breakdown of the optimization process. As expected the distri-
bution of replication rates or fitness values fk in sequence space is highly relevant
too: Steep decrease of fitness with the distance to the master structure represented
by the target, which has the highest fitness value, leads to sharp threshold behavior,
as observed on single-peak landscapes, whereas flat landscapes show a broad maxi-
mum of optimization efficiency without an indication of threshold-like behavior.

2.7 Concluding Remarks

Biology developed differently from physics because it refrained from using math-
ematics as a tool to analyze and unfold theoretical concepts. Application of math-
ematics enforces clear definitions and reduction of observations to problems that
can be managed. Over the years physics became the science of abstractions and
generalizations, biology the science of encyclopedias of special cases with all their
beauties and peculiarities. Among others there is one great exception to the rule:
Charles Darwin presented a grand generalization derived from a wealth of personal
and reported observations together with knowledge from economics concerning
population dynamics. In the second half of the twentieth century the appearance
of molecular biology on the stage changed the situation entirely. A bridge was built
from physics and chemistry to biology, and mathematical models from biochemical
kinetics or population genetics became presentable in biology. Nevertheless, the
vast majority of biologists still smiled at the works of theorists. By the end of the
twentieth century molecular genetics had created such a wealth of data that almost
everybody feels nowadays that progress cannot be made without a comprehensive
theoretical foundation and a rich box of suitable computational tools. Nothing like
this is at hand but indications for attempts in the right direction are already visible.
Biology is going to enter the grand union of science that started with physics and
chemistry and is progressing fast. Molecular biology started out with biomolecules
in isolation and deals now with cells, organs, and organisms. Hopefully, this spec-
tacular success will end the so-far fruitless reductionism versus holism debate.

Insight into the mechanisms of evolution reduced to the simplest conceivable sys-
tems was provided here. These systems deal with evolvable molecules in cell-free
assays and are accessible by rigorous mathematical analysis and physical experi-
mentation. An extension to asexual species, in particular viruses and bacteria, is
within reach. The molecular approach provides a simple explanation of why we have
species for these organisms despite the fact that there is neither restricted recombi-
nation nor reproductive isolation. The sequence spaces are so large that populations,
colonies, or clones can migrate for the age of the universe without coming close to
another asexual species. We can give an answer to the question of the origin of
complexity: Complexity in evolution results primarily from genotype–phenotype
relations and from the influences of the environment. Evolutionary dynamics may
be complicated in some cases but it is not complex at all. This has been reflected
already by the sequence–structure map of our toy example. Conformation spaces
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depending on the internal folding kinetics as well as on environmental conditions
and compatible sets are metaphors for more complex features in evolution proper.

Stochasticity is still an unsolved problem in molecular evolution. The mathe-
matics of stochastic processes encounters difficulties in handling the equations of
evolution in detail. A comprehensive stochastic theory is still not available and the
simulations lack more systematic approaches since computer simulations of chem-
ical kinetics of evolution are at an early stage too. Another fundamental problem
concerns the spatial dimensions: Almost all treatments assume spatial homogeneity
but we have evidence of the solid-particle-like structure of the chemical factories of
the cell. In the future, any comprehensive theory of the cell will have to deal with
these structurally rich supramolecular structures too.
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